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Series Preface

Mathematics is playing an ever more important role in the physical and biological
sciences, provoking a blurring of boundaries between scientific disciplines and a
resurgence of interest in the modern as well as the classical techniques of applied
mathematics. This renewal of interest, both in research and teaching, has led to
the establishment of the series: Texts in Applied Mathematics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical and
symbolic computer systems, dynamical systems, and chaos, mix with and rein-
force the traditional methods of applied mathematics. Thus, the purpose of this
textbook series is to meet the current and future needs of these advances and en-
courage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate and
beginning graduate courses, and will complement the Applied Mathematical Sci-
ences (AMS) series, which will focus on advanced textbooks and research level
monographs.



Preface

This is a text for a two-semester or three-quarter sequence of courses in partial
differential equations. It is assumed that the student has a good background in
vector calculus and ordinary differential equations and has been introduced to such
elementary aspects of partial differential equations as separation of variables, and
eigenfunction expansions. Some familiarity is also assumed with the application
of complex variable techniques, including conformal mapping, integration in the
complex plane, and the use of integral transforms. In this second edition, much of
the needed background is reviewed in the Appendix. In addition, new material has
been added to all the chapters, and some of the derivations and discussions have
been streamlined.

Linear theory is developed in the first half of the book and quasilinear and
nonlinear problems are covered in the second half, but the material is presented
in a manner that allows flexibility in selecting and ordering topics. For example,
it is possible to start with the scalar first-order equation in Chapter 5, to include
or delete the nonlinear equation in Chapter 6, and then to move on to second-
order equations selecting and omitting topics as dictated by the course. At the
Univeristy of Washington, the material in Chapters 5, and 1-3 is covered during
the third quarter of a three-quarter sequence that is part of the required program
for first-year graduate students in Applied Mathematics. We offer the material in
Chapters 4, and 6-8 to more advanced students in a two-quarter sequence.

The primary purpose of this book is to discuss the formulation and solution of
representative problems that arise in the physical sciences and engineering and are
modeled by partial differential equations. To achieve this goal, all the basic physi-
cal principles of a given subject are first considered in detail and then incorporated
into the analysis. Although proofs are often omitted, the underlying mathematical
concepts are carefully explained. The emphasis throughout is on deriving explicit
analytical results, rather than on the abstract properties of solutions. Whenever a
new idea is introduced, it is illustrated by an example from an appropriate area of
application. The ideas are further explored through problems that range in diffi-
culty from straightforward extensions of the textual material to rather challenging
departures testing the student’s skill at application. Several new problems have



viii Preface

been included in this edition, and all problems are now grouped by sections rather
than chapters.

The numerical solution of partial differential equations is a vast topic requir-
ing a separate volume; here, the emphasis is on analytical techniques. Numerical
solutions are mentioned only in connection with particular examples and, more
generally, to illustrate the solution of hyperbolic problems in terms of character-
istic variables. Certain analytical techniques coverd in specialized texts have also
been left out. The notable omissions concern the asymptotic expansion of solu-
tions obtained by integral transforms, integral equation methods, the Wiener—Hopf
method, and inverse scattering theory.

Acknowledgments

I rededicate this second edition with gratitude and admiration to the memory of
Paco A. Lagerstrom and Julian D. Cole. I want to thank my wife Seta again for
her patience and support during this project. Frances Chen created the TeX files
for this book from my rough handwritten notes and edited pages. Her skill and
cheerful cooperation throughout this process are greatly appreciated.

Seattle, Washington J. Kevorkian
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The Diffusion Equation

In this chapter we study the diffusion equation
u — (Uxx + Uyy + uz;) = px,y,21),

which describes a number of physical models, such as the conduction of heat in a
solid or the spread of a contaminant in a stationary medium.

We shall use this equation to introduce many of the solution techniques that will
be useful in subsequent chapters in our study of other types of linear partial differ-
ential equations. To begin with, it is important to have a physical understanding of
how the diffusion equation arises in a particular application, and we consider the
simple model of heat conduction in a solid.

1.1 Heat Conduction

Consider a thin axisymmetric rod of some heat-conducting material with variable
density p(x) (g/cm®) (for example, a copper-silver alloy with a variable cop-
per/silver ratio along the rod). Let A(x) (cm?) denote the cross-sectional area and
assume that the surface of the rod is perfectly insulated so that no heat is lost or
gained through this surface. (See Figure 1.1.) Thus, the problem is one-dimensional
in the sense that all material properties depend on the distance x along the rod.
We assume that at each spatial position x and time ¢ there is one temperature 6
that does not depend on the transverse coordinates y or z. Let x; and x, be two
arbitrary fixed points on the axis.

In the basic law of conservation of heat energy for the rod segment x; < x < x,
the rate of change of heat inside this segment is equal to the net flow of heat through
the two boundaries at x; and x;, plus the heat produced by a possible distribution
of internal heat sources in the interval. Consider an infinitesimal section of length
dx in the interval x; < x < x;. Using elementary physics, we have d 0, the heat
content in this section, proportional to the mass and the temperature:

dQ = c(pAdx)0, (1.1.1)

J. Kevorkian, Partial Differential Equations
© Springer Science+Business Media New York 2000



2 1. The Diffusion Equation

where the constant of proportionality c is the specific heat in cal/g°C. Thus, the
total heat content in the interval x; < x < x; is*

X2
o@) = f c(x)p(x)A(x)0(x, t)dx. (1.1.2)
X1
Next, we invoke Fourier’s law for heat conduction, which states that the rate
of heat flowing into a body through a small surface element on its boundary is
proportional to the area of that element and to the outward normal derivative of the
temperature at that location. The constant of proportionality here is k ~ (cal/cm
s°C), the thermal conductivity. Note that this sign convention implies the intuitively
obvious fact that the direction of heat flow between two neighboring points is
toward the relatively cooler point. For example, if the temperature increases as
a boundary point is approached from inside a body, then the outward normal
derivative of the temperature is positive, and this correctly implies that heat flows
into the body.
For the present one-dimensional example, the net inflow of heat through the
boundaries x; and x; is

a0 a0
R() = A(x2)k(x2) Ix (x2, 1) — A(x)k(x1) == (x1, 1). (1.1.3)
X d9x

Leth(x, t) (cal/g s) denote the heat produced per unit mass and time by the sources.
Thus, the total time rate of heat production by the sources is

H@t) = /n h(x, t)p(x)A(x)dx. (1.1.4)

X

FIGURE 1.1. Thin axisymmetric heat conductor

* In this text we shall often use the notation = instead of = when it is important to indicate that a new
quantity is being defined, as in (1.1.1) and (1.1.2). As a special case of this notation, the statement
f(x, y) = Oindicates that the function f of x and y vanishes identically; that is, it equals zero for all
x and y by definition.
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The conservation of heat then implies
d
_f_ =R@)+ H®), (1.1.5)

or

d [*» a6
7 f c(x)p(x)A(X)0(x, )dx = A(x2)k(x2) —— (x2, 1)
t x| 0x

X2
— A(x))k(xy) Z—i—- (x1,8) + / h(x,t)p(x)A(x)dx. (1.1.6)
Xy

Equation (1.1.6) is a typical integral conservation law, which has general
applicability. For example, (1.1.6) remains true if material properties have a dis-
continuity at a given point x = & inside the interval, as would be the case if we had
a perfect thermal bond between two rods of different materials. We shall encounter
other examples of such conservation laws later on in the book and shall study how
discontinuities propagate in detail in Chapter 5.

For smooth material properties, that is, if ¢, p, A, and k are continuous and
have a continuous first derivative, the solution 6(x, ) is also continuous with
continuous first partial derivatives 96/0x and 36 /3¢, and we may rewrite (1.1.6)
in the following form after we express R(¢) as the integral of a derivative:

X2 3
/ {C(x)p(x)A(X)——(x 1) — [A( )k(X) (x t)]

— h(x, t)p(x)A(x)} dx = 0. 1.1.7
Since (1.1.7) is true for any x; and x,, it follows that the integrand must vanish:
a
C(X)p(x)A(X)—~ ™ [A(x)k(x)—] = h(x, )p(x)A(x). (1.1.8)
For constant area and material properties, this reduces to
a6 , 0%
— - = 1), 1.1.9
5 K — oW ) (1.1.9)

where k2 = k/cp (cm?/s) is the thermal diffusivity and 0 = h/c. The dimen-
sionless form of (1.1.9) follows when characteristic constants with dimensions of
temperature, length, and time are used to define nondimensional variables.

For example, let us study (1.1.9) for a rod of length L that is initially at a
constant temperature 6y and has one end, x = L, held at 8 = 6, while the other
end, x = 0, has a prescribed temperature history 6(0, t) = 6o f(¢/T), where T is
a characteristic time scale. For simplicity assume o = 0. We set

6 ., x " tic?
u=s —, X = —, = —,
6o L L?
and obtain the following dimensionless formulation:
ad 82
- 0, 0<x* <1, (1.1.10a)

ar  dx*
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u(x*,0) = 1 (1.1.10b)
u(©,1*) = f(A*), t* >0, (1.1.10¢)
u(l, 1) =1, (1.1.10d)

where A is the dimensionless parameter L?/(k2T). The original dimensional
formulation of this problem involves the four constants «, 6y, L, and T. The
dimensionless description is considerably simpler, as it involves only the one pa-
rameter A. Once the dimensionless problem has been solved, say u = U (x*, t*),
the dimensional result is easily obtained in the form

x 1
0=6U —, — |].
The corresponding derivation for three-dimensional heat conduction follows

from similar steps. If a solid occupies the domain G with surface S and outward
unit normal n, as shown in Figure 1.2, the total heat content of the solid is given

by
o@) = f//cpe dv, (1.1.11)
G

where dV is the volume element; for instance, dV = dx dy dz in Cartesian
variables. The net inflow of heat through the boundary S is

R@) = /[kgradﬂ -ndA. (1.1.12)
s

We can express R(?) in terms of a volume integral over G using Gauss’ theorem.
This theorem states that if F is a one-valued vector field with continuous first partial

FiGURE 1.2. Three-dimensional heat conductor
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/:/F -ndA = f//dideV. (1.1.13)
N G

Therefore, for a medium where ¢, p, and k are smooth, we identify F in (1.1.13)
with & grad 6, and (1.1.12) becomes

R(@) = /://div(k grad 6)dV. (1.1.19)
G

Also, since G is fixed in space we have

dg d _
o = @ fffchdV = ///cpﬂ,dV. (1.1.15)
G

G

derivatives in G, then*

The conservation law of heat energy (1.1.5) becomes

ff/cp@,dv = /f/div(k grad 0)dV + fffhpdV. (1.1.16)
G G G

Therefore, assuming continuity of the integrands in (1.1.16), the three-
dimensional version of (1.1.8) is

cp6, — div(k grad 6) = hp. (1.1.17)
For constant &, this reduces to
0, — k’A0 = o, (1.1.18)

where k2 = k/(cp), 0 = h/c, and A is the Laplacian operator A = div grad,
given by
32 82 82

A= — + — + — 1.1.19
dx? + dy? + 972 ( )

in Cartesian coordinates.

1.2 The Fundamental Solution

The fundamental solution of a second-order partial differential equation is just
Green’s function for that equation over the infinite domain with zero boundary
conditions (if appropriate) at infinity. See Appendix A.1 for a review of the use of

* Thus, in writing R(¢) in the form given in (1.1.7), we have used the “one-dimensional version” of
Gauss’ theorem relating the definite integral of the derivative of a function to values of the function at
the endpoints.
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Green’s function in ordinary differential equations. For example, the fundamental
solution of the one-dimensional diffusion equation obeys

Uy — Uyy = 6(x — E)8(t — ) (1.2.1)

on —0 < x < 00,0 <t < oo, where £ and 7 are fixed constants, |§| < oo,
0 < t < o0, and 8 denotes the Dirac delta function. We may interpret (1.2.1)
physically as the equation governing the temperature in an infinite conductor that
is subjected to a concentrated unit source of heat at the point x = &. This source
of heat is turned on only for the “instant” ¢ = 7 and is absent for all other times;
its location is also concentrated at the point x = §.

Prior to the application of the heat source, the conductor has a constant
temperature that we normalize to equal zero. Thus, the boundary conditions are

u(x,t) > 0 as|x|] - oo, (1.2.2)

and the initial condition is
ux,t)=0; 0<t<r. (1.2.3)
The solution of (1.2.1)-(1.2.3) is the fundamental solution, which is a function

ofx —féand? — 1,

u=Fx-&1t—r1). (1.2.4)
There is no loss of generality in taking the initial and boundary temperatures
equal to zero in (1.2.2)—(1.2.3); any constant value u, can be used and then reduced
to (1.2.2)—(1.2.3) by simply considering the new dependent variable 4 — u,. This
is a consequence of the absence of nondifferentiated terms in (1.2.1). Also, since

the left-hand side of (1.2.1) does not involve x or ¢, we need only consider the
simpler problem correspondingto§ =t =0

Uy — Uy, = 8(x)8(2), (1.2.5)
u(x,07) =0, (1.2.6)
u(x,t) - 0 as|x| - oc. (1.2.7)

Once the solution u = F(x,t) of (1.2.5)-(1.2.7) is found, the general result
F(x — &,t — 1) is obtained by translation.

In Section 1.3 we shall show that once the fundamental solution is known, we
can solve the following general initial-value problem for the diffusion equation on
the infinite domain

Uy — Uy = p(x,1); —00<x <o0; 0<t < o0, (1.2.8)
u(x,0) = f(x), (1.2.9)
u(x,t) - f(foo) asx — oo, (1.2.10)

where p and f are prescribed functions and p(x,t) = 0ift < 0.

In the next three subsections we derive the fundamental solution F using differ-
ent techniques that have a broad range of applicability in solving partial differential
equations.
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1.2.1 Similarity (Invariance)

In this very useful approach, we ask under what scalings of the dependent and
independent variables the system (1.2.5)—(1.2.7) is invariant. If such scalings exist,
we can reduce (1.2.5) to an ordinary differential equation in terms of a “similarity”
variable using arguments that go as follows.

Assume that we have found the solution of (1.2.5)-(1.2.7) in the form u =
F(x, t).Is it possible to use this result to obtain a second solution u = G(x, t) by
setting X = Bx and f = y¢ and defining G by

G(x,t) = aF(Bx, yt) (1.2.11)

for positive constants «, 8, and y?
We compute G, = ayF:, G,, = af?Fsz, and use of the fact that for any
constant ¢, we may set (See (A.1.16))

8(cx) > il—ié(x). (1.2.12)
c

If G(x, t) is to be a solution of (1.2.5)-(1.2.7), we must have
G, — Gy =8(x)8(), G(x,07) =0, G(x,t) > 0 as|x| - oo. (1.2.13)

Expressing G, and G,, in terms of F; and Fy; and using 8(x)8(t) =
8(x/B)8(t/y) = Byd(x)8(7) in (1.2.13) gives

ayF; — af’Frz = Byd(@)s(7),
aF(x,07) =0, aF(x,f) > 0 as|x| - oo,

2
E-—(£>1§;
14

F(x,07) =0, F(x,f) > 0 as|x| —> oo.

or

I

(ﬂ ) 3(xX)8(1),

o

But we know that F (X, r) must satisfy (1.2.5)—(1.2.7) in terms of the X, ¢ vari-
ables. Therefore, G(x, t),as defined by (1.2.11), can be asolution only if 82/y = 1
and B/a = 1; thatis, if 8 = o and y = a?. Thus, (1.2.11) must be of the form

G(x, 1) = aF(ax, a’t). (1.2.14)

Have we discovered a new solution of (1.2.5)—(1.2.7)? Of course not; the solution
for this problem is unique, G = F, as is physically obvious and can be proved.
Therefore, (1.2.14) is just a statement of the similarity structure of the solution F,
and (1.2.14) must read

aF(ax, ¢’t) = F(x,1). (1.2.15)

That is to say, if we replace x by ax and ¢ by a?t in F and then multiply the result
by o (forany @ > 0), the resulting expression is identical to F (x, t). This property
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implies that F(x, t) must be of the form

Fx,1) = %f(%) or%g(x;), or%h(%),...

for certain functions f, g, A, . .. of the indicated arguments.

Any one of an infinite number of possibilities that satisfy the similarity condition
(1.2.15) may be used. Each choice will reduce (1.2.5) to an ordinary differential
equation, which, when solved, will give the same result for F. Let us pick the form

1
Fx,0) = — f(), ¢ = —.

Vi Vi
We compute
1, 1 " 1 x
Fx:;fy Fxx:t_3/_2fv F’——Wf_it—zf’

where’ = d/d¢.

Since the delta function on the right-hand side of (1.2.5) is identically equal to
zero for ¢t > 0, we need to solve only the homogeneous diffusion equation for
t > 0. However, the initial condition u(x, 07) = 0 in (1.2.6) does not remain
valid for t = 0%. (If it did, the result would be the trivial solution u(x, ¢t) = 0.)
The effect of the delta function on the right-hand side is to generate impulsively a
nonzero value for u(x, 0%) (see (1.2.22)), which is the appropriate initial condition
to be used in solving the homogeneous equation (1.2.5) for ¢ > 0.

Consider now the homogeneous version of (1.2.5). Using the results we
computed for F and its derivatives gives

1 4
“and T 212f - 13/2 v

which is the linear second-order ordinary differential equation
1 C 4 1

with the independent variable ¢.
Integrating once gives f’ + ({/2) f = A = constant, and the solution of this is

¢
f= Ae’(2/4/ e/*ds + Be%"/*, B = constant.

The constants A and B are determined by considering the total heat content H (¢)
in the bar. In terms of our dimensionless units, the total heat is just the integral of

the temperature:
o
/ F(x,t)dx

() 8 e

H(t)

(1.2.17)
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where we have defined

2

s [F 02 L e
fiQ)y=e"* /“f e ds = et “f o~ 2dg.
Integrating the second expression for f, by parts shows that (see Section A.3.5)

2
f®) =5+ 0™ as|f| > oo.
Therefore, (1/+/1) ff‘;o /1 dx in (1.2.17) is unbounded. Since the total heat must
be finite, we set A = 0 and have

B 2
F=—e*" 1>0. 1.2.18)
7i (
The idea now is to pick B in order to satisfy (1.2.5) atz = 0%. If we differentiate
the integral defining H (¢) in (1.2.17) with respect to ¢ and use (1.2.5), we obtain

dd—i’ - f F(x, dx = / [Fur(x, 1) + 8(0)3(0)dx,

so that

dH
I = Fi(o0,t) — Fy(—00,1t) + 8(t) = &(t),

because the temperature gradient at +oo due to a unit source must be zero.
Therefore, H(t) is the Heaviside function (see (A.1.14)), and for ¢ > 0, we have

00 B —x2 /4t
1= —e dx. (1.2.19)
—00 /1
Thus, after switching on a unit source of heat for an instant at the origin, the total
heat content in the rod remains constant, and this constant can be set equal to unity
under an appropriate nondimensionalization.

We can rewrite (1.2.19) as

e} e-x2/4t (o] EZ \/_
1:23/ dx:ZBf e S'dé = 2B4/m,
o VA W5 E

oo
or
1
_ Z_ﬁ ,
and the fundamental solution is
F(x,t) = 2_1_¢?r7 e, (1.2.20)

More generally, the solution of (1.2.1)-(1.2.3) is
1
2/t — 1)

Fx—&t—1) = e~ =9 /A=) (1.2.21)
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Itis important to note that the use of similarity is not restricted to linear problems.
For example, a classical use of similarity arguments is provided by the boundary-
layer equations for viscous incompressible flow over an infinite wedge (or the
special case of a semi-infinite flat plate if the wedge angle is zero). See Section
B.14 of [31]. Here, the nonlinear partial differential equation for the flow stream
function is reduced to a third-order nonlinear ordinary differential equation.

A crucial requirement for the applicability of similarity arguments is that both
the governing equations and initial and/or boundary conditions be reducible to
similarity form. In the preceding example, this was trivially true for the given
initial condition F = 0, as this also immediately implied G = 0. For further
reading on similarity methods, see [6] and [41].

The fundamental solution (1.2.20) can also be derived using Fourier or Laplace
transforms. A review of these techniques appears in Appendix 2, where this
problem is used as one of the illustrative examples.

1.2.2 Qualitative behavior, diffusion

Figure 1.3 shows three temperature profiles for F(x, t) given by (1.2.20) taken at
three successive times 0 < t; < t, < t3. In each case, the area under the curve
is, according to (1.2.19), equal to unity. For ¢ smaller and smaller, the contribution
to this area becomes more and more concentrated at the origin. This is just one of
the many possible representations of the delta function (for instance, see (A.1.11b)
with Aé = 4t), and we may write

F(x,0") = 8(x). (1.2.22)

Equation (1.2.22) also follows by integrating (1.2.5) with respectto ¢ from¢ = 0~
tot = 0* and noting that fo_ Ugedt = 0.

The fundamental solution can be used to give a precise definition of diffusion.
First, notice that if we regard the source at x = 0 as a disturbance introduced at
time # = 0, the “signal speed” due to this disturbance is infinite because for any
positive 7, no matter how small, the value of « is nonzero for all x. Thus, the entire
rod instantly “feels” the effect of the source. Of course, a real temperature gauge
would fail to detect the very weak disturbance at large distances. Thus, the idea of
a signal speed is not very useful in this case, and we would like to have a better
characterization of how the rod “heats up” for ¢+ > 0. Suppose we ask instead
where a given fraction of the total heat in the rod is to be found at any specified
time. We know that at ¢ = 0, all the heat is concentrated at the origin. For any
t > 0, the heat is nonuniformly distributed over the entire rod with the maximum
temperature at the origin, as shown in Figure 1.4.

Suppose that d is a fixed constant with 0 < d < 1. At some time ¢t > 0, the
temperature distribution is the even function of x given by (1.2.20) and sketched
in Figure 1.4. The shaded area represents the fraction d of the total area (which
equals unity). Thus, as 7 increases, so does x,. The question is, how does x, depend
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FIGURE 1.3. Fundamental solution for the temperature at three different times

on t? It follows from (1.2.20) and symmetry that
2 *d 2
d= —— e /*da,
2t _/(;
or, changing variables, that

xa/24/1
d= / e dy = erf (—xd—) , (1.2.23)

0 24/t

Q>

FIGURE 1.4. Interval (—xy4, x,) containing the fraction d of the total heat
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where the error function erf is defined in (A.2.76). Since the left-hand side of
(1.2.23) is a constant, we conclude that x,;/2+/f remains constant as ¢ increases.
Therefore, x; ~ +/t, and we say that heat due to a point source at x = 0,7 = 0
diffuses according to |x| ~ /1.

Problems

1.2.1.

1.2.2.

1.2.3

Consider the diffusion equation with variable coefficient
2xu; — Uy, =0, 0<x <o00, t >0, (1.2.24)
with boundary conditions

u(0, t) = C, = constant ift >0, (1.2.25a)
u(oo, t) = C, = constant ift >0, (1.2.25b)
and initial condition

u(x, 0) = C3 = constant. (1.2.26)

a. What is the most general choice for the constants C,, C,, and C3 for
which the solution of the above initial- and boundary-value problem can
be obtained in similarity form?

b. For the choice of constants obtained in part (a), calculate the solution and
evaluate all integration constants explicitly.

Use similarity to reduce the following initial- and boundary-value problem

for a nonlinear diffusion equation to an ordinary differential equation and

corresponding boundary conditions:

Uy —uu; =0, 0<x, 0<1, (1.2.27)
u(0,1) =0, (1.2.28b)
u(oo, t) =1, (1.2.28b)
u(x,0) =1. (1.2.29)

Discuss the behavior of the solution.

A semi-infinite bar (x > 0) insulated everywhere except at x = 0 loses
heat to the adjacent medium (x < 0) by blackbody radiation according to
the boundary condition

640, 1) — 6 = a6,(0,1), t > 0, (1.2.30)

where « is a constant (equal to the conductivity divided by the product
of the emissivity and the Stefan-Boltzmann constant), 6y is the constant
temperature of the medium, and 6(x, ¢) is the temperature at the point x
and time ¢ in the bar. Equation (1.1.9) with 0 = 0 governs the temperature
distribution in x > 0, and we assume that the initial temperature is given
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in the form
0(x, 0) =9|f(i>, (1.2.31)
Lo

where 6, is a characteristic temperature and L is a characteristic length.
The boundary condition at x = oo is
6(00,t) = 6; f(00) < o0. (1.2.32)

a. Introduce appropriate dimensionless variables u, x*, t* to reduce
(1.2.30)—(1.2.32) to the form

ou 3%u
- —— =0, 2.33
ar* Ix* (1.2.33a)
1
u(x*,0) = - f(x), (1.2.33b)
€
4 * au * *
u' 0,1 - 1= kax* ©, "), t* >0, (1.2.33¢)
1
u(oo, t*) = ;f(oo), (1.2.334d)

where € and A are dimensionless constants.
b. What does the limiting case

A> 1, e <1, Ae> = constant = A = O(1), (1.2.34)

describe physically? Since u is initially large, it is appropriate to consider
the rescaled dependent variable # = u/e, where u is O(1). Thus, to
leading order, u satisfies
ou 3%
ar*  ax*
uE*,0) = f(x", (1.2.34b)

=0, (1.2.34a)

40, 1*) = X%ﬁ;(o, t*) + 0(eh), t* >0, (1.2.34c)
(0o, t*) = f(00). (1.2.34d)

c. For what f(x*) (possibly singular) can (1.2.34) be solved by similarity?
For this choice of f derive, but do not solve, the ordinary differential
equation and boundary conditions governing the solution.

1.3 Initial-Value Problem in the Infinite Domain;
Superposition

The general initial-value problem for the inhomogeneous diffusion equation in the
infinite interval is

Uy — Uy = p(x,t), —00<x<o00, t=>0, (1.3.1a)
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u(x,0%) = f(x), (1.3.1b)

where p and f are arbitrarily prescribed functions with p = 0if ¢ < 0. For heat
conduction, p represents a dimensionless heat-source distribution, and f an initial
temperature distribution.

Because of linearity, the solution of (1.3.1) can be expressed as the sum of the
following two problems:

U, —uy = p(x,t), —oco<x<oo, t=>0, (1.3.2a)
ux,07) =0, (1.3.2b)
U — Uy, =0, —0<x <oo, t=>0, (1.3.3a)
u(x,0%) = f(x). (1.3.3b)

We now show that knowing the fundamental solution F(x — &, ¢t — t) allows
us to write the solution of the first problem immediately in terms of a *“superpo-
sition integral.” The derivation of this superposition integral is a straightforward
generalization of the single-variable case discussed in Appendix 1 (see (A.1.23)-
(A.1.28)). We consider the solution of (1.3.2) arising from the contribution of p
coming from a small neighborhood of the fixed point x = &,t = t, with p set
equal to zero everywhere outside this neighborhood. Let R(&, t) denote the small
neighborhood § — A§/2 < x <& + A&/2, Tt — At/2 <t < T + At/2, over
which we may regard the value of p as the constant p(&, 7).

If p denotes the incremental contribution to p from R, we have the following
expression defining p:

- H At H AT H AE
SRR A S R ) | MR

_H (x P _‘}f)] (1.3.4)

where H is the Heaviside function, and the bracketed expressions ensure that
the left-hand side vanishes outside R and equals p in R. We now multiply and
divide this expression for p by At A¢ and observe that since dH /ds = §(s), the
first bracketed expression divided by At represents (¢ — t), whereas the second
bracketed expression divided by A& represents &(x — &). Therefore, in the “limit”
as At — 0, A§ — 0, we have

p=pE )80 — 1)8(x — £)dT d&. (1.3.5)

Since the solution of the diffusion equation with right-hand side (¢t — 7)6(x — &)
is the fundamental solution F(x — &, t — 1) defined in (1.2.21), linearity implies
that the solution due to the right-hand side p is just

u=p& 1)Fx—§&,t—t)drd§. (1.3.6)

Linearity also implies that we may superpose the u contributions arising from
each of the infinitesimal domains R that cover the half-space —oc0 < § < oo,
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0 < t < t, and this leads to the desired superposition integral

u(x,t) :f f F(x —&,t —t)p, 1)dTr d§
E=—o00 J1=0"

_ / * / ' pE, 1)
"~ Jim—w Jrmo- 2Vm(E—T)
To confirm this formal derivation, it is easy to verify explicitly that (1.3.7) solves
(1.3.2); this is left as an exercise (Problem 1.3.1).
To solve (1.3.3), we note that it is equivalent to

e—(x—s)zl‘*('-f)dtdg, (1.3.7)

Uy — Uy =3@)f(x), —o0o<x<oo, t>0, (1.3.8a)

u(x,07) =0, (1.3.8b)
as can be verified by noting that integrating the inhomogeneous diffusion equation
(1.3.8a) withrespecttot from¢ = 0~ tot = 0% givesu(x, 0t) = f(x). Since the
right-hand side of (1.3.8a) vanishes when¢ > 0, (1.3.3) and (1.3.8) are equivalent.
To solve (1.3.8), we set p(&€, 7) in (1.3.7) equal to §(7) f(§) and obtain

1 / T p@etirugg, (1.3.9)
E=—o00

ux,t) =
(x. 1) 2/mt
This result can also be derived using transforms (see (A.2.32)—(A.2.36) for aderiva-
tion using Fourier transforms). Therefore, the solution of (1.3.1) is the sum of the
solutions (1.3.7) and (1.3.9).

Note that
I N R A
u(x,0%) = ,1_1)r(1)1+ ‘/;oo f($)2—\/;[—td§, (1.3.10)
and according to (1.2.22), this is just
w09 = [ @86 - 00 = 1), (1.3.11)

which is the correct initial condition.

We can also verify that the initial condition is satisfied by the following alter-
native approach that does not involve use of the delta function. We write (1.3.9),
as the sum of three integrals over the intervals (—oo, x — €), (x — €, x + €), and
(x + €, 00), where € is an arbitrarily small, fixed positive number. As t — 07,
the integrals tend to zero except over the interval (x — €, x + €). Thus,

_ x+e e & —£)2 /4t
u(x,0") = ,11'51 f&) 2_¢Hd§' (1.3.12)
X—€

Changing the variable of integration from £ to 0 = (x — &)/2t!/? gives

u(x,0%) = lim 1 /‘e/ﬂ—t f(x + oNat)e " do
>0t ) e yva
= %/ e'do = f(x). (1.3.13)
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Problems

1.3.1. Verify by direct substitution that the sum of the expressions given by (1.3.7)
and (1.3.9) solves the initial-value problem (1.3.1).
1.3.2a Specialize (1.3.9) to the case where

1/2¢, —e <x <,

fx) = {0’ x> e, (1.3.14)

and show that the solution reduces to

1 x +e€ X —€
ulx,t) = E [erf (z—ﬁ) —erf (—27)] , (1.3.15)

where the error function erf is defined in (A.2.76).
b. Show thatase — 0 theresultin (1.3.15) tends to the fundamental solution
(1.2.20), as expected, since (1.3.14) is a representation of the delta function
(see (A.1.3)), and the solution (1.3.9) with f(x) = 3(x) is just (1.2.20).
1.3.3. Specialize (1.3.7) to the case where p(x, t) is a uniformly moving source

p(x,t) = 8(x — vt), v = constant. (1.3.16)

1.4 Problems in the Semi-infinite Domain; Green’s
Functions

In studying the diffusion equation over the semi-infinite interval with a prescribed
boundary condition at x = 0, it is useful first to consider the solution that results
from a unit source somewhere in the domain and subject to a homogeneous (zero)
boundary condition at the origin. This solution will be denoted by Green’s function
of the first kind, G,, or second kind, G,, depending on whether the boundary
conditionatx = OQisu = Ooru, = 0.

1.4.1 Green’s Function of the First Kind
Consider first the case where u = 0 at the origin; that is, we seek the solution for
Uy — Uy, =8()8(x — &) (1.4.1a)

on 0 < x < oo, with £ equal to a positive constant, and impose the boundary
condition

u@,t) =0, t >0, (1.4.1b)
and initial condition
u(x,07) =0. (1.4.1¢)

(Unless stated otherwise, we shall take the boundary condition for u atx = oo to
be the same as the limit as x — oo of the initial value. Thus, in the present case,
we have u(00, t) = u(oo,0) = 0.)
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Thus, we have introduced a concentrated unit source of heatatx = &£ andt = 0.
(Note that we can derive the solution for the case where (1.4.1) involves 8 (¢ — 1)
by replacing ¢ everywhere in the solution by ¢+ — 7.) The rod is initially at zero
temperature, and its left end is maintained at zero temperature for all time, for
example, by attaching this end to an infinite solid of zero temperature.

The only difference between this problem and the fundamental solution is the
fact that we require u to vanish at x = 0 and x — oo instead of x — =o0.
Thus, Green’s function is the response to a source with a homogeneous boundary
condition imposed at a finite point.

An intuitively appealing procedure invokes symmetry relative to the origin to
construct the solution once the fundamental solution is known. (This is often called
the method of images.)

Consider the temperature that results in the infinite domain if we turn on a
positive source of unit strength at x = & and ¢t = 0, and simultaneously turn on a
negative source of unit strength at x = —§&, the image point.

At any time ¢t > 0, the temperature in the rod will be the sum of the two
temperatures F(x — &, ¢) and —F(x + &, t), corresponding to the positive and
negative sources, respectively. These individual temperature profiles at some ¢t > 0
are sketched in Figure 1.5. In particular, the combined temperature will always
vanish at x = 0 for ¢ > 0, by symmetry. Moreover, since the image source is

located at x = —§&, outside the domain of interest, the combined temperature
satisfies (1.4.1a). Therefore, the solution of (1.4.1) is Green’s function:
Gl(x7 59 t) = F(x—f, t)'— F(X+E, t)a (1'4'2)

where F is defined by (1.2.20).

F(X_Evt)

"F(X + Ev 19}

FIGURE 1.5. Temperature due to a unit positive source at x = £ and a unit negative source
atx = —§
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More generally, the solution of
Uy — Uy =0(x — &)@ —1), £€>0, >0, (1.4.3)

with initial condition u(x, 77) = 0 and boundary condition #(0, t) = Ofor? > 7
and x on the semi-infinite interval 0 < x < o0 is Green’s function of the first
kind for the semi-infinite domain and has the form

1 2 2
Gi(x, 6,1 — 1) = —— [¢”C7/47D) _ o= (GH0YA=D (14,4
1(x, & ) W) [ | )

1.4.2 Homogeneous Boundary-Value Problems

Consider the following inhomogeneous diffusion equation with zero initial
condition and homogeneous boundary condition:

U — Uy = px, 1), 0<x, 0=1¢, (1.4.5a)
u(x,07) =0, (1.4.5b)
u©,1) =0, t>0. (1.4.5¢)

The superposition idea leading to (1.3.7) also applies for this case, and we have

u(x,t) = f dt/ pE, )G (x,&,t — 1)dE. (1.4.6)
0- 0

It is important to bear in mind that Green’s function and the desired solution of
(1.4.5) must both satisfy a zero boundary condition at the origin in order for the
superposition idea and the result (1.4.6) to make sense. For example, if G, (0, &, t —
t) # 0, then (1.4.6) does not satisfy (1.4.5c). Conversely, if we wish to solve the
problem (1.4.5) with the right-hand side of (1.4.5c) replaced by some prescribed
function g(z), the representation (1.4.6) fails, since it automatically has u(0, ¢) =
0. We shall see in Section 1.4.3 that this case is easily handled once the problem
is transformed to one with a zero boundary condition at the origin.

Consider now the case where the initial condition (1.4.5b) is prescribed
arbitrarily. Since the homogeneous problem

U, —u,, =0, 0<x, 0<1, (1.4.7a)
with nonzero initial condition
ux,0M) = f(x) (1.4.7b)
and homogeneous boundary condition
u,1) =0, t >0, (1.4.7¢)
is equivalent to

Uy — Uxx = 8(1) f(x) (1.4.8)
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with #(x,07) = 0 and u(0, ) = 0, we can express the solution of (1.4.7) using
the result (1.4.6) with p = §(7) f(£); that is,

wxn) = [ [ 80 7@ 60 - vavas = [ £©)6165, 8,0
° (1.49)
For the special case where f(£) = c, a constant, (1.4.9) gives

(x, 1) 2 [ / " gt gy / " e—<*+f>z/“'d§] (1.4.10)
u(x, 1) = - . 4.
24/mt LJo 0
Changing the variable of integration from £ to n = (x — £)/2¢'/? in the first
integral and to 7 = (x + £)/2¢'/? in the second integral results in

u(x,t) = d /0 ed /-—oo ed /oo ed
' ﬁ x/2/t " 0 1 x/2/t "
(1.4.11a)
It is important to note that because x — £ vanishes for § = x, which is a point
in (0, 00), the first integral in (1.4.11a) must be decomposed into two parts.
Simplifying this expression gives

2c x/2V1
v Jo

where the error function erf is defined in (A.2.76).

The qualitative behavior of the solution (1.4.11) has u rising rapidly from its
zero boundary value to the asymptotic value ¥ = c. Temperature profiles at various
times are sketched in Figure 1.6.

u(x, 1) = e "dy = cerf (L) , (1.4.11b)

2Vt

FIGURE 1.6. Temperature profiles at various values of ¢
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Notice that lim .o+ u(x,t) = ¢, in agreement with (1.4.7b), and that
x>0
lim ..o+ u(x,t) = 0, in agreement with (1.4.7c). In particular, u(0*, 0%) is
>0
undefined, as is to be expected from (1.4.7b) and (1.4.7c).

1.4.3 Inhomogeneous Boundary Condition u(0, t) = g(t)

As pointed out in Section 1.4.2, the crucial requirement for applying superposition
is that the boundary condition at x = 0 be homogeneous. Does this mean that we
cannot use Green'’s functions to solve an inhomogeneous boundary-value problem?
We shall show next that if it is possible to transform the problem to one with a
homogeneous boundary condition at x = 0 (as is often the case), a solution derived
by superposition of Green’s functions can still be used.

Consider the inhomogeneous boundary-value problem

U — U, =0, 0<x<oo, 0<t < o0, (1.4.12a)
with zero initial condition
u(x,0") =0, (1.4.12b)
and a prescribed boundary condition at x = 0:
u(,1) = g(), t > 0. (1.4.12¢)

Again, in view of (1.4.12b), it is understood that u (oo, t) = 0.

The ideais to transform u (x, t) to anew dependent variable w(x, ), which obeys
ahomogeneous boundary condition at the origin. Clearly, the simple homogenizing
transformation

w(x,t) =ulx,t) —g@) (1.4.13)
works, since w obeys the inhomogeneous diffusion equation
w, — Wy, = —g(), t >0, (1.4.14)
with constant initial condition
w(x, 0") = —g(0"), (1.4.15a)
and zero boundary condition
w(0,1) =0, ¢t > 0. (1.4.15b)

Note that w(oo, t) = —g(¢) if ¢ > 0, but this does not preclude superposition. A
problem equivalent to (1.4.14)-(1.4.15) is

w, — Wy, = —g(t) — g(0M)8(), (1.4.16a)
w(x,07) = 0, (1.4.16b)
w@0,1) =0, ¢t >0, (1.4.16c¢)
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and the system (1.4.16) is a special case of (1.4.5), with p(x,?) = —g() —
g(0%)8(¢). Writing out the solution (1.4.6) for this case gives

w(x,t) _f / 5 —g(r) [ —(x—§)%/40t-1) __e—(x+§)2/4(t—r)]ds dt

(it - 1)
0
—/ —g( ”: [e~ G874 _ gm0t /4y ge (1.4.17)
0 v
The solution (1.4.17) involves the two integrals
e~ (x— £)2/4(1-1)
I = ——d¢ (1.4.18a)
N / Vi—t
and
1 —(x+£)?/4(t-1)
o —

In preparation for evaluating I, we set the exponent in the integrand equal to
—n?, where 7 is a new variable of integration. Again, we must be careful to take
into account the fact that this exponent vanishes at the point § = x > 0, which
is inside the interval of integration. Thus, we first split (1.4.18a) into two integrals
over) < £ < xandx < § < oo; then we change variables § — n by setting

(x —&)/2t — t =n,d§ = —24/t — tdn to obtain

1 0 2 o,
- -nt(_gq =" (—d
ﬁ[fx,zf—,_f ( ””/o e ")]

1 /x/z./:-r 7 o) .
— e dn+f e "dn|.
\/7_[ 0 0 ‘

It then follows from the definition (A.2.76) of the error function that

1 1
I=—erf

~
|

<2Jt‘_:?) (1.4.18¢)

Since (x + &) does not vanish forx > 0if 0 < § < oo, we evaluate K directly
by setting (x + £)/24/t — T = 7 to obtain

1 o 2 1
K= — / e "dn erfc( ) (1.4.184)
VT [ X)Wt :] 2Vt -1

where erfc denotes the complementary error function, erfc(y) = 1 — erf(y). See
(A.2.77).
Thus, I may also be written as

I=1- l erfc( (1.4.19)

=)
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and (1.4.17) becomes

_ r X " X
w(x,t) = /.; g(t) erfc (__-2«/1‘_1) dt + g(0™) erfc (_2ﬁ> — g().
(1.4.20)

Therefore, u(x, t) = w(x, t) + g(t) is given by

_ [, x + *
u(x,t)_./O+g(t)eﬁc(2Jt__t)dr+g(0 )eﬁc(zﬁ). (1.4.21)

Note that w(oo, ) = —g(¢) as required. For the special case g(t) = d =
constant, ¢ = 0, and we have u(x,t) = d erfc(x/24/t). Here, again, as for
(1.4.11), u(0*, 0%) is undefined. However, lim .o+ u(x,t) = 0, in agreement
with (1.4.12b), and lim ._o+ u(x,t) = d, in agreé;rolent with (1.4.12c).
Integrating the first lel:;I(; by parts in (1.4.21) gives the alternative form

g(r)e—xz/ti(t——t) gt — t)e—xz/d«r

x d x !
uxn = Zﬁ/o [t — )32 v = 2«/5/0 T (1.4.22)

The solution (1.4.22) is derived in Appendix A.2 using Laplace transforms. See
(A.2.73). In Problem 1.4.4a this result is obtained as the solution of a related
integral equation. Problem 1.4.6 explores the application of the preceding ideas to
the case of discontinuous material properties. Problem 1.4.7 concerns the effect of
moving boundaries.

Next, we consider problems on the semi-infinite domain subject to the homo-
geneous boundary condition #, = 0 at x = 0 and see how Green’s function may
also be used to solve the problem where u, is specified at x = 0.

1.4.4. Green’s Function of the Second Kind

We can also use a symmetry argument to solve

Uy — Uy, = 6(x —£)8(2) (1.4.23a)
on 0 < x < oo, with & > 0 subject to the boundary condition
u(0,1) =0, ¢t >0, (1.4.23b)
and initial condition
u(x,07) =0. (1.4.23¢)

Here again, we assume that as x — 00, u remains equal to the value it has at
infinity initially.

We might interpret the solution of (1.4.23) as the temperature in a semi-infinite
rod in response to a unit source of heat at x = &, r = 0 for the case where the rod
is insulated (that is, there is no heat flow) at the left end.

In order to ensure that condition (1.4.23b) holds for all # > 0 at the origin,
we need to introduce an image, or reflected, source of unit positive strength at the
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image point x = —&. The situation corresponding to Figure 1.5 now has the two
bell-shaped profiles above the x-axis and centered at the points x = +£. Therefore,
the slope of the combined profile vanishes at x = 0, since the contributions to u,

from the source at x = & and x = —& cancel out exactly for all ¢ > 0.
Thus, the solution of (1.4.23) is
Gy(x, &, t)=F(x —&, 1)+ F(x + §&,1), (1.4.24)

where F is the fundamental solution defined by (1.2.20).
More generally, if the source is turned on at ¢ = t > 0, we have

1 , 2
Gor(x, &, 1 — 1) = ————[e”"TV/HTD 4 o~ CHDVHD] (1,425
25,6, =) = e ] (1.4.25)

1.4.5 Homogeneous Boundary-Value Problems

As in Section 1.4.2 we can use superposition to express the solution of

U, — Uy, = p(x,t), 0<x,0<t, (1.4.26a)
u(x,07) = 0, (1.4.26b)
u,(0,t) =0, t >0, (1.4.26¢)
in the form
t o0
uix, 1) = / de f [P, T)Ga(x, £, 1 — T)IdE. (1.4.27)
0 0

Also, we can accommodate a nonzero initial condition
ux,0%) = f(x)
by adding to (1.4.27) the contribution
o0
ulx,t) = / fE)G(x, &, 1)dE. (1.4.28)
0

For the case f(§) = ¢ = constant, it is easily seen by changing the sign of the
second term in (1.4.10) that (1.4.28) reduces to u = c, as expected.

1.4.6 Inhomogeneous Boundary Condition,
u,(0,1t) = h((t)

To solve the problem

Uy —uy, =0, 0<x <oo, 0<t < o0, (1.4.29a)
u(x,0%) =0, (1.4.29b)
u,0,t) =h@), t >0, (1.4.29¢)

we introduce the homogenizing transformation

w(x,t) = u(x,t) — xh(t). (1.4.30)
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It then follows that if u solves (1.4.29), w solves

w; — Wy, = —xh(?), (1.4.31a)
w(x, 01) = —xh(0™), (1.4.31b)
w,(0,¢) = 0. (1.4.31¢)

Using the results in (1.4.27) and (1.4.28), we have
t o0
ux,t) — xh(t) = ~/ dt/ ER(T)Go(x, &, t — T)dE
0 0

— h(0") foo EGy(x, &, 1)dE. (1.4.32a)
0

This can be simplified to the form
t

u(x, t) = — (D)t — 1) e /4Dy, (1.4.32b)

1
77 o
In Problem 1.4.8 you are asked to derive this result and to reconcile it with the
result obtained by Laplace transforms.

1.4.7 The General Linear Boundary-Value Problem

The general linear boundary-value problem over the semi-infinite domain is

Uy — Uy, = p(x,t), (1.4.33a)
u(x,0%) =0, (1.4.33b)
a(u0,t) + b(t)u,(0,t) = c@), t > 0, (1.4.33¢)

as we have the most general linear boundary condition (1.4.33c) at the left end
with arbitrarily prescribed nonvanishing functions a, b, and c. In our previous
discussion, we have solved the two special cases a = 0 and b = 0. There is no
loss of generality in setting u(x, 0t) = 0 in (1.4.33b), since for a general initial
condition u(x, 0t) = f(x), we can transform the problem to the form (1.4.33)
by considering ¥ — f as a new dependent variable.

A Green’s function approach is not feasible if a, b, and ¢ are all nonzero, and
we study two approaches next for solving (1.4.33).

(i) au(,t) 4+ bu,(0,t) = c(t), a and b constant

If a and b are constant, (1.4.33c) may be interpreted as Newton’s law of cooling
for a semi-infinite heat conductor with its left end (x = 0) in contact with a heat
reservoir with prescribed time-dependent temperature. We write (1.4.33c) in the
form

bu,(0, t) = alug() — u(0, t)], (1.4.34)

and regard —b as the thermal conductivity, a > 0 as the heat transfer coefficient,
and ug(t) = c(t)/a as the reservoir temperature. Thus, for example, if ug(t) >
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u(0, 1), we expect heat to flow from the reservoir into the conductor, making the
left end x = O hotter than the interior, i.e., u,(0,¢) < 0. This follows from
(1.4.34), since b < 0 in this interpretation.
One approach for solving (1.4.33) is to introduce a new dependent variable
v(x, t) defined by
v(x,t) = au(x,t) + bu,(x, t). (1.4.35)
If we compute v, — v, using (1.4.35) we obtain
U — Uyx = a(u; — Uxy) + b, — uyy)y.
Thus, if u satisfies (1.4.33a), v satisfies
U, — Uy = ap(x,t) + bp(x, 1) = q(x, 1), (1.4.36a)

the same diffusion equation with a different, but known, right-hand side. Note that
if a and b depend on ¢, this approach does not lead to the same diffusion equation;
we pick up additional terms involving time-dependent coefficients.
The initial and boundary conditions for v are obtained in the form
v(x,0) =0, (1.4.36b)
v(0, t) = c(1). (1.4.36¢)

Therefore, using (1.4.6) and (1.4.9), we have

t
v(x,t) = 5—3}_—” / 3¢t — r)e"‘z/‘”dt
0

+ / dt /ooq(g, )G (x, &, t — 1)d§, (1.4.37)
0 0

where G is defined in (1.4.4).
Knowing v(x, t), we compute u(x, t) by solving the linear inhomogeneous
ordinary differential equation (1.4.35). This gives

—ax/b
u(x, 1) = gty + £

/ ) v(E, e /bdk, (1.4.38)
0

where ¢ () is as yet unspecified. The initial condition u(x, 0) = 0 and the fact
that v(x, 0) = 0 imply that ¢ (0) = O. It is easy to verify by direct substitution
that (1.4.38) satisfies the boundary condition (1.4.33c) identically. To determine
¢ (¢t) we substitute (1.4.38) into the governing equation (1.4.33a). We have

. 1 x
u = p()e ™" + Ee“”“’ / v (€, 1)e®/PdE, (1.4.39a)
0
— a —ax/b a —ax/b * at /b 1
Uy = —E(p(t)e - ﬁe v(&, 1)e"’dE + Ev(x, 1), (1.4.39b)
0
a? a? x a’
w= —o@ —ax/b - —ax/b/ , at /b _ =
u % o()e + X e A v(E, )e™'°dE 7 v(x,t)
1
+ —ve(x, t). (1.4.39¢)

b
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The integral in the expression defining u,, can be developed by integration by
parts twice to give

2
1
e = T3 9WE = Z0(0, 067 + 2 v, (0, e

b2
1 X

+ Ee"”/b / Ve (&, 1)e®/bdE. (1.4.39d)
0

Substituting (1.4.39a) for u, and (1.4.39d) for u,, into (1.4.33a) and using the
boundary condition (1.4.33c) gives

. 2 1 x
px, 1) = [¢(t) - Z—2¢(z)] e /b 4 Ee“‘“/b f lap(&, 1) + bp, (&, t)]e™/°d
0

+ [% c(t) — % v,(0, t)] e—axlb, (1.4.40)

Now, when we integrate by parts the integral of pe®/?, the integrals involving p;
cancel. We also pick up a p(x, t) on the right-hand side of (1.4.40) that cancels the
p(x, t) on the left-hand side. Finally, we multiply though by e**/® to obtain the fol-
lowing first-order linear inhomogeneous ordinary differential equation governing

o @):

. a? a 1
o) — "b‘2—¢(1) = - ;2‘0(1) + p(0,1) + ZUX(O, 1. (1.4.41)

Since v is given by (1.4.37), the right-hand side of (1.4.41) is a known function of
t. The solution of (1.4.41) subject to ¢(0) = 0 defines ¢ (¢) uniquely. When this
result is used in (1.4.38), we have the solution of (1.4.33).

We work out the details next for the special case p(x,t) = 0, c = constant.
Thus, according to (1.4.21) (with g(0), g(0*) = c) we have

vix,t) = cerfc( (1.4.42)

)

Using the definition (A.2.77) of the complementary error function, we have

d 2 2
— erf =——¢ 7, 1.4.43
¢ c(2) ﬁe ( )
Therefore, v,(0, t) = —c/+/7t, and (1.4.41) reduces to
. a? ac c
- —=¢=—— — . 1.4.44
¢ b? ¢ b? b/mt ( 4

The solution of (1.4.44) subject to ¢(0) = O is

(1) = 2 {1 — [1 + erf (“‘[)]] (1.4.45)
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Thus, u(x, t) is given by (1.4.38) in the form

u(x,t) = ge“”/b {1 — /b I:l + erf (#):I]

c o &
+ —e“‘”‘/b/ e"s/berfc<—)d . 1.4.46
b A Wi 3 ( )
This result can be further simplified by evaluating the integral on the right-hand
side. We outline the calculations next, although the final result may be obtained
directly using Mathematica or Maple. We have

* §
= a§ /b 2
10_'/(; e eﬁc(zﬁ)dg
b ( x ) 1 /‘x at £’
= - [e erfc —Zﬁ -1+ _——\/_t A exp > ¢ |.
Denoting

B x as ;;2
11 =‘/(; exp(; - Z)ds,

we find, upon completing the square in the exponential, that

x _ 2
I, = e"z'/bzf exp (—————E 2at/b) dE.
0 2t

The above is a useful trick for integrals with quadratic exponents as in /,. Now we
evaluate /; by splitting the integral into two parts as in (1.4.18c) to obtain

_ /b M (x - 2at/b)
I, = J/mte l:erf( 5 >+erf —7 )|

Therefore, using this result in the expression for I gives
b x
Iy = — e‘”/berfc(——)——l
°7 4 { 21

+ 7Y [erf (%/—;) + erf (x_—-—zf/a;t/b )J} .

Now we substitute this expression for I into (1.4.46) to obtain the solution

c x a’t  ax x —2at/b
ux,t) = — |erfc{ — ) —exp| — — — Jerfc { ———— .
*0 a[ (%) p(b2 b) (57"
(1.4.47)
It is a straightforward matter using Mathematica or Maple to verify that (1.4.47)

satisfies (1.4.33).
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@ii) a@)u(, t) + b(t)u, (0, t) = c(t), a and b depend on t

As pointed out earlier, the transformation of dependent variable (1.4.35) is not
helpful in this case. Instead, we assume an unknown boundary value for u at
x =0,

u©,t) =k@), t >0, (1.4.48)

where k(2) is as yet unspecified. The solution of the problem consisting of (1.4.33a),
(1.4.33b), and (1.4.48) was worked out in (1.4.21). We have

_ [ _x ¥ x
u(x,t)—/0 k(r)eﬁc(2m)dr+k(0 )edc(zﬁ). (1.4.49)

We now compute

- — _1_ ' _ k() e—xz/4(t~r)dt _ k(0+) e~x2/4t
\/7? 0 AVt —T1 ot
where we have used (1.4.43) to calculate the derivative of the complementary error

function. Evaluating (1.4.50) at x = 0 and using the result together with (1.4.48)
in the boundary condition (1.4.33c) gives the following integral equation for k(t):

b "k kOt
c(t) = a(O)k(r) — % [fo Jti’:)?dr— (Jt)] (1.4.51)

In the first term on the right-hand side of (1.4.50), note the occurrence of the
integrable singularity proportional to (t — 7)~'/? at t = t. Had we used the
form (1.4.22) for the solution u, the corresponding singularity would have been
proportional to x2(¢t — t)7>/?, requiring further manipulations to derive a well-
behaved result at x = 0.

A discussion of techniques for solving the integral equation (1.4.51) is beyond
our scope. Once k(¢) has been determined, the solution for u(x, t) is given by
(1.4.49).

. (1.4.50)

Problems

1.4.1. Verify by direct substitution that (1.4.6) solves (1.4.5), and that (1.4.9)
solves (1.4.7).

1.4.2. Verify by direct substitution that (1.4.22) solves (1.4.12).

1.4.3. Consider the linear equation

U, —u, =0, 0<x, 0<1, (1.4.52a)
with initial condition
u(x,0) =0, (1.4.52b)
and the following boundary condition at x = 0:

u@©,t) =Crt", t >0, (1.4.52c)
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where n is a nonnegative constant and C is a positive constant.
As usual, (1.4.52b) implies the boundary condition at infinity

u(o,t) =0, t >0. (1.4.524d)
a. Use the result (1.4.22) to express the solution in the form

u(x,t) = Cr*f(6), (1.4.53)

where
0= 1.4.54a
= 57 (1.4.54a)

and
2 [™ 02\" .

) = — 1 - — ~ds. 1.4.54b
10 = — [ %) eas (1.4.545)

b. Show that the similarity form (1.4.53) satisfies (1.4.52), and derive the
following differential equation and boundary conditions for f(6):

f"+20f —4nf =0, (1.4.55a)
fO) =1, (1.4.55b)
f(c0) = 0. (1.4.55¢)

Show that the solution of (1.4.55) gives (1.4.54b).
c. Now consider the nonlinear diffusion equation

u, — fku,l, =0, 0 <x, 0<1t, (1.4.56)

where k(u) is a prescribed function of u.
The initial condition is (1.4.52b), and the boundary condition at x =
oo is (1.4.52d), whereas at x = 0 we have

u(,1) = g(t), t >0, (1.4.57)

for some prescribed function g(¢). This problem is discussed in [6].
i. If k(u) = Au”, where A and v are positive constants, show that the
most general g(¢) for which a similarity solution exists is

gt) = Ct", (1.4.58)
where C and n are constants as in (1.4.52c¢). In this case, the similarity
form is

n _ X
ux,t) =t"¢), ¢ = pOTF YR (1.4.59)
and ¢ obeys
d d¢ vn+1 _d¢
A= b — —_—— =0, 1.4.60
dg (d’ dc>+ 2 fa " (1.4.600)

subject to the boundary conditions
$0) = C, ¢(c0) =0. (1.4.60b)
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ii. If k(u) is prescribed arbitrarily, show that the most general g(t) for
which a similarity solution exists is g(#) = C = constant. In this
case the similarity form is

ulx,1n =¢@©), 0 = t,% (1.4.61)
and ¢ obeys
d d¢ 6 dp
p7) [k(¢)ﬁ] to5 T 0, (1.4.62a)
with boundary conditions
¢(0) = C, ¢(o0) =0. (1.4.62b)

1.4.4a. Assume that the solution of (1.4.12) on the positive axis may be regarded
as the response due to a source of unknown strength g(¢) at the origin
for an infinite conductor. Therefore, u(x, t) may be expressed in the form
(1.3.7) with p = §(x)q(¢). In this case, (1.3.7) reduces to

1 t e—x2/4(t—r)
1) = —— T) ———dr. 1.4.63
u(x, 1) oW fo q(7) N ( )
But in order to satisfy the boundary condition (1.4.12c), we must have
1 ' g(r)dr
1) = . 1.4.64
s = 5= | = (1.4.64)
This is an integral equation (solved by Abel) for the unknown g (¢) in terms
of the known g(¢).
Use Laplace transforms and the convolution integral to show that
2 d (' gdr
1) = — — . 1.4.65
a0 = — % [ £25 (1.465)

Therefore, the solution of (1.4.12) may also be expressed in the form

1 ('] e*/%=D g 7 g(s)ds
) = — ——— dr. 1.4.66
u@x, 1) n'/o l: Jt—1 dt Jy JTt—5 ¢ ¢ )

Show that (1.4.66) reduces to (1.4.22).

b. For the case g(¢) = 1, we have shown that (1.4.66) reduces to u(x, t) =
erfc(x/2t'/?). Suppose that we wish to regard this solutionin0 < x < oo,
0 <t < oo as being produced by an unknown initial specification of u
of the form

0 ifx >0,

u(x, 0) = {f(x) ifx <0,

for the same diffusion equation (1.4.12a) over the infinite interval —oco <
x < oo. With f(x) = f(—x) show that f obeys the integral equation

(1.4.67)

fw FEe s = 2/q1. (1.4.68)
0
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Use Laplace transforms to show that ](s) = 2.
Modify the calculations leading to (1.4.22) so that you obtain the solution
of (1.4.12) with (1.4.12b) replaced by the arbitrary initial condition

u(x,0%) = f(x). (1.4.69)

. Specialize the results in (a) to the case f = constant = u,, and express

the solution in a form such that u, (0", t) is free of singularities. (Note:
(1.4.22) has an apparent singularity at x = 0, whereas (1.4.21) does not.)
Consider two semi-infinite rods with initial temperatures 4 = u; = con-
stant and ¥ = u, = constant, thermal diffusivities (see (1.1.9)) xlz =
constant and x22 = constant, and thermal conductivities k; = constant and
k, = constant. Suddenly, at ¢t = 0, the two conductors are brought into
perfect contact at x = 0. Let the first conductor lie on 0 < x < oo and
let the second conductor lie on —00 < x < 0.

It follows from the integral conservation law (1.1.6) with A = con-
stant that the interface conditions for t > 0 are u(0*, t) = u(0™, t) and
kyu (0%, t) = kou, (0™, t). Show this. Use the result in Problem 1.4.5b to
show that the heat flow k;u, (0%, t) (or kou, (0™, £)) at the point of contact
and ¢ > 0 is given by

1 Kk
F(t) = — — (u; —0), 1.4.70
@) N (uy —o©) ( )
where c is the constant temperature at x = 0:
- k
T RV L3 (1.4.71)
1l -« koky

. Now consider the situation where these two rods are initially at zero tem-

perature and in perfect thermal contact. Use the method of images to
calculate the fundamental solution; that is, solve

U, — Kug, = 8(1)8(x — £), 0 < &, (1.4.72)

on —00 < x < oo with u(x,0”) = 0, where k = k; if x > 0 and
k = Kk, if x < 0. Use the interface conditions u (0%, ) = u(0, t) and
ki, (0%, t) = kou, (07, t). Hint: Assume that in the domain x < 0, the
solution u,(x, t) may be regarded as the response to a source of unknown
strength B and unknown location (§; > 0) in an infinite medium with
the uniform properties «,, k, throughout. Thus, u,(x, t) corresponds to a
“transmitted” temperature due to the primary source atx = £ and ¢ = 0.
For the solution u(x, ¢) in the domain x > 0, assume that in addition to
the response due to the primary source, there is a “reflected” contribution,
which may be regarded as the response to an image source of unknown
strength A located at the unknown point x = &, < 0 in an infinite rod with
properties k; and «; throughout. Use the interface conditions to determine
A, B, &, and &,. Verify that in the limits (k;/k,) — 1 and (k2/k;) — 1,
A—>0Oand B — 1.
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1.4.7. Consider the diffusion equation
U —u, =0, 0<t < oo, (1.4.73)

on the time-dependent domain at < x < oo, where a is a constant. We
wish to solve the initial- and boundary-value problem having

u(x,0m) =0, (1.4.74)
u(at, t) = g(@), (1.4.75)

fort > 0and a prescribed g(¢). Thus, u is prescribed as a function of time

on the left boundary that moves at a constant speed a.

a. Introduce the transformation of variables X = x — at, 7 = t and solve
the resulting problem by Laplace transforms.

b. Calculate the appropriate Green’s function for the problem in x, ¢
variables and rederive the solution using this.

1.4.8. Use the expression (1.4.25) for G, to simplify the solution in (1.4.32a)
to the form given by (1.4.32b). Rederive the same result using Laplace
transforms.

1.5 Problems in the Finite Domain; Green’s Functions

The next step in our development involves problems on the finite domain, which
may be taken as the unit interval 0 < x < 1 with no loss of generality (that is, we
choose the length L of the domain as the scale to normalize (1.1.9)). As in Section
1.4, we distinguish problems that have ¥ = 0 or u, = 0 at either end. Thus, we
need to study four different Green’s functions, and we start with the simplest case.

1.5.1 Green’s Function of the First Kind

We refer to the solution satisfying the boundary condition # = 0 at both ends as
Green’s function of the first kind, G,. More precisely, define the solution of

Uy —Uyy =8(x — 83t —1), 0<x<1, t <1, (1.5.1a)

u(x,t7) =0, (1.5.1b)
u@©,t) =u(1,t) =0, t >, (1.5.1¢)

as Green’s function G, (x, &, t — ). Here, £ and 7 are constants with0 < & < 1,
0<r.

Let us construct G; using symmetry arguments in terms of appropriate funda-
mental solutions. Consider the “primary” source §(x — £)8(t — 1) sketched as 1
atthe point x = £,0 < & < 1, on the unit interval in Figure 1.7.

In order to cancel the contribution of the primary source at the left boundary
x = 0, we need to introduce a reflected (or image) source of negative unit strength
(sketched as | ) at the image point x = —&. This image source must also be turned
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FIGURE 1.7. Primary and reflected sources to giveu = Qatx =O0andx = 1

on at ¢t = . Similarly, to take care of the boundary contribution of the primary
source at x = 2, we introduce another image source at x = 2 — §, also turned on
atr = 1. But now, the image source at x = —£ contributes to the boundary value
at x = 1, and the image source at x = 2 — & contributes to the boundary value
at x = 0. To take care of the first, we introduce the 4 unit source at x = 2 + &.
To take care of the second, we introduce the 1 unit source at —2 + &, and so on.
The pattern that emerges has positive unit sourcesatx = 2n +§,n = 0, 1, £2,
..., and negative unit sources are at x = 2n — &, n = 0, 1, £2, .... The sum
of all these source contributions is a representation for Green’s function G, in the
following series form:

00
Gi(x,§,1~1) = ) (Flx—@n+§), 1—t]-Flx—Q2n~§),1~7l}, (1.5.2)
n=-—00
where F is defined in (1.2.20).
Green’s function G, has the interesting symmetry property

Gi(x,&E,t—1)=G(,x,t —1). (1.5.3)

The corresponding steady-state result is noted in Appendix A.1.3. To demonstrate
this symmetry property, we note that the right-hand side of (1.5.3) is by definition
given by

o0
G, x,t—1) = Y [FE-2n—x,t—7)—F( —2n+x,1—1)]. (1.5.4)
n=-—00
Since F is an even function of its first argument, we can rewrite the first term in
the summation as F(—§ + 2n + x,t — t). Furthermore, since the summation
ranges over —o0 < n < 00, the infinite sum of these terms remains the same if
we replace n by —n. Therefore, we may write

00
Gi(§,x,1—1) = Y [F(~£—2n+x,t—1)—F(—2n+x,t-71)], (1.5.5)
n=—00
which is just G, (x, &, t — 7).
In terms of heat conduction, the result (1.5.3) is intuitively obvious and phys-
ically consistent. Suppose we consider a conductor with uniform properties and
with its two endpoints maintained at the same temperature, here normalized to be
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zero. Fix any two distinct locations x and £ on the conductor and carry out the
following two experiments. In the first experiment we turn on a unit source of heat
at time 7 at the point § and measure the temperature at the point x and time ¢ > .
This gives the result G, (x, &, t — ) for the measured temperature. In the second
experiment, we reverse the locations of the source and observer without changing
the values of 7 or ¢ and find that the temperature at &, given by G, (£, x, ¢t — 1), is
the same as that measured in the first experiment.

Using G, and superposition, we can now solve the inhomogeneous problem
(see (1.4.5))

U —uy = px,t), 0<x<1, 0<1, (1.5.6a)

with zero initial condition

ux,07) =0 (1.5.6b)
and zero boundary conditions at both ends,
u@©,t) =u(l,t) =0 for t >0, (1.5.6¢)
in the form
t 1
u(x,t) =/ dr/ [p¢, )G (x, &t — 1)]dE. (1.5.7)
0 0

Similarly, as in (1.4.7)-(1.4.8), we solve the problem with p(x,¢) = 0 and
nonzero initial condition

u(x,0%) = f(x), (1.5.8)

instead of (1.5.6b), in the form

1
u(x,t) =/(; fEG(x, &, t)dE. (1.5.9)

Green’s functions for the remaining three homogeneous boundary-value
problems are listed in Problem 1.5.2.

1.5.2 Connection with Separation of Variables

You may be wondering how the result in (1.5.9) is related to the solution we

obtain by the more conventional separation of variables approach that is usually

discussed in a first course in partial differential equations. We explore this question

next. (Problem 1.5.6 gives a review of the basic ideas of separation of variables.)
To solve

Uy — Uz =0, (1.5.10a)
u(x,0") = f(x), (1.5.10b)
u©,1) = u(l,t) =0, t >0, (1.5.10¢)
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we assume that 4 can be expressed in the “separated” form:

ulx,t) = Xx)T(1). (1.5.11)
Substituting (1.5.11) into (1.5.10a) gives
i T X//
XT —X'T =0, or—= = —, (1.5.12)
T X

where the dot indicates d/dt and the double prime indicates d?/dx?. The second
part of (1.5.12) can hold only if it equals a constant, and we quickly convince
ourselves that this constant must be negative, say —A2. (Why?)

So, we obtain the eigenvalue problem

X"+A2X =0, X(0)=x(1)=0, (1.5.13)
associated with (1.5.10). The solution is the eigenfunction
X, = b, sinA,x, A, = nm,
where b, is arbitrary and » is an integer. Thus, the solution of (1.5.10) in a series
of eigenfunctions is just the Fourier sine series
[e¢]
u(x,t) = Y By(t) sinnmx. (15.14)
n=1

Substituting (1.5.14) into (1.5.10a), or using T, +Aﬁ T, = 0,gives B, = c,,e‘"z”zt,
where ¢, = constant.

To determine the c,, we impose the initial condition (1.5.10b) and make use of
orthogonality to obtain

1
= 2[ f(&) sinnw& d§. (1.5.15)
0
Thus, the solution of (1.5.10) may be written in series form as
> 1 2.2
ux,t) = Z [2/ f&)sinnng dg] e " sinnmx.
n=I1 0

If we interchange summation and integration (a step that is nearly never questioned
in a course in applied mathematics!), we obtain

1
u(x,t) = / fEH(x, &, 1)d§, (1.5.16a)
0
where
H(x,§,1) =2 (sinnw£)e™™ ™" sinnmx. (1.5.16b)
n=1

Comparing (1.5.16) with (1.5.9) shows that these two results do not look alike.
In fact, in order for the two results to agree, we must be able to show that G; = H.
This is indeed the case, and is a consequence of a certain identity for the theta
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function. For example, see page 75 of [12]. It is instructive to work out this identity
in detail next.
We may use trigonometric identities to rewrite H in the form

o0 o0
H(x, &, 1) = % nzz_oo e cosnm(x — £) — % ";w e cos n (x + ).
(1.5.17)
Now, the expression for G, in (1.5.2) agrees with (1.5.17) if we can show that
e 1 X 2.2 .
Y Fx+&-2n1) = 5 Y e cosnm(x + £) (1.5.18a)
n=-—00 . n=-—0o0
and
o0 [o¢]
Y Fe-g-2mn=5 Y e cosnm(x — ). (1.5.18b)
n=-00 n=—00

These two conditions are equivalent and reduce to the simple condition

1 i —n(z—n)?/n i —nlnp 2 (1.5.19)
— e = e cos Z2nmz, Q.
Vi =0

n=-—0oo

if we write (x + &) or (x — &) as 2z, set n = ¢, and use the expression (1.2.20)
defining F.
Denote /7 times the expression on the left-hand side of (1.5.19) by ¢; that is,

o0
o= Y e @/, (1.5.20)
n=—0o0

Clearly, ¢ is an even function of z (that is, ¢ (17, —z) = @(n, 2)). Also, it is
periodic in z with unit period: ¢(n, z + 1) = ¢ (n, z). Therefore, we may expand
¢ in a Fourier cosine series:

o0

¢(n,2) = Z a,(n) cos 2mrvz, (1.5.21a)
vV=—00
where
1 oo
a,(n) = / Z e "¢/ cos 2 vt di. (1.5.21b)
0

n=-—00

Interchanging integration and summation in (1.5.21b) gives
00 1 5
o, (n) = Z f e "6~ cos 2w v de. (1.5.22)
n=—oo 0
Now change the integration variable and let s = n — ¢ to obtain

o0 n
a,(n) = Z f e ™'/ cos 2mvsds
n=—oo0 Yn—1
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o0
= / e ™M cos 2mvs ds = ﬁe‘”“zn. (1.5.23)
-—00
Thus, we have proven the identity
ad 2 ad 2
Z e @/ — }: Jne ™" cos 2 nz, (1.5.24)
n=—00 n=-—00

which is (1.5.19) when we divide by /7.

In conclusion, the series representation for G| converges to the same result as
the series for H, even though these series do not agree term by term. This latter
observation means that if we truncate the series for G, the resulting approximation
will be valid in a different sense than the approximation obtained by truncating
the Fourier series H. Let us pursue this idea further, as it will provide a useful
characterization of the two approaches we have used.

Consider first what happens if we truncate the series (1.5.2) at n = N for
G,. Clearly, we are neglecting all the heat sources located at distances greater than
2N + £ on the positive axis and greater than 2N — £ on the negative axis. For short
times, the response due to these sources is very small over the unit interval (because
we are ignoring only the weak exponential tails of the corresponding F functions).
Thus, the Green’s function representation (1.5.9), when G, is truncated for some
n = N, should be valid for short times. In particular, the boundary conditions at
x = 0and x = 1 are only approximately satisfied with the truncated series, and
this approximation deteriorates as ¢ gets large. On the other hand, if we truncate the
Fourier series representation (1.5.16), the boundary conditions are exactly satisfied
for all times, but the initial condition will be described only approximately. Thus,
the truncated series (1.5.16) should provide a good approximation for t large.
A more careful analysis of the convergence properties of the G, and H series
confirms the above intuitive conclusions.

We reiterate that both expressions converge to the same solution if the infinite
series are summed. We shall see in Chapter 3 in examples for the wave equation
that this property of Green'’s functions versus eigenfunction expansions is also true
there. Itis a useful result, as we are able to have an approximation involving a finite
number of terms for both ¢ small and ¢ large.

1.5.3 Connection with Solution by Laplace Transforms

A third approach for solving the problem in (1.5.10) is to use Laplace transforms
withrespect to ¢. For simplicity, consider the special case f = 1.Using the notation
U (x, s) for the Laplace transform of u(x, ) (see Section A.2.6), we obtain

Uy —sU = —1, U@©,s) =U(,s) =0.

The solution is easily obtained in the form
1
U,s) = —=———[e¥" — ™" 4+ (7 = De’™ — (¢¥F — e V™.

sl =) (1.5.25)
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The solution for u(x, t) is then given by the inversion integral (A.2.41b); that
is,
1 0% +ico
u(x,t) = — e U(x, s)ds. (1.5.26)
270 Jo+—ico
Note the branch points at s = 0 and s = oco. Since we must choose the branch of
/s that is positive when s is along the positive real axis, it is convenient to cut the
s-plane along the negative real axis; hence ¢ = 0% for the vertical contour.

The expression (1.5.26) cannot be evaluated in terms of a finite number of ele-
mentary functions. One standard approximation for a Laplace transform inversion
is the “large s approximation, which consists of expanding (1.5.25) in series form
for s large and then integrating the result, term by term, in (1.5.26). As discussed
in texts on complex variables (for example, see page 279 of [8]), this gives an
approximation for u(x, t) valid for ¢ small.

To see this, just change the variables in (1.5.26), setting s = o/t and consider
the limit |s| — oo, |o| fixed. Clearly, this implies that we need to take t — 0, and
in effect, the substitution o/t for s in U (x, s) accomplishes this.

If we expand the denominator of (1.5.25) and take the product of this series with
the numerator, we find that U equals the particular solution 1/s plus four series in
the form

Ux,s) =- + ! [e—ﬁ(z_x) e VSUmD) | mVS6-0 ]

|-

)
[e—Js‘x 4 e VE@HD 4 Vi 4 ]

e ViU=0) | p=V5G-1) | ,=5(-0) +]

+

N N -

[e—ﬁ(m) 4 e VEBHD 4 oAt 4 ] )
These series can be rearranged in the form
L LN yrg=vin—n _ 1§ {yng-vsoen
U, s) = = 4+ = Y (=1)"e V™D — - N (—1yre™V50+0_ - (15.27)
S $ n=1 S n=0
Using (1.5.26) or tables of Laplace transforms, we find that the transform of

f@t) = erfc ( (1.5.28a)

i)
with ¢t > 0 and A real, is

1
F(s) = Ee'lﬁ. (1.5.28b)

Therefore, the termwise inversion of (1.5.27) gives the series

) Z( 1)" erfe ( G ) (1.5.29)

n=0

u(x,t) =1+ Z( 1)" erfc(
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It is left as an exercise (Problem 1.5.4) to show that this series is the same as
the one resulting from the Green’s function representation (1.5.9) when we take
f = 1 and integrate the series for G| term by term. This gives a confirmation of
our earlier intuitive argument that the truncated Green’s function representation of
the solution is valid for ¢ small.

At any rate, the exact expressions (1.5.9), (1.5.16a) with f = 1, and (1.5.26)
define the same function u(x, t). The advantage of (1.5.9) and (1.5.16a) over
(1.5.26) is that these are in terms of real quadratures, whereas (1.5.26) is a complex
integral. Another example of the use of Laplace transforms to calculate the solution
of the diffusion equation in a bounded domain is given in Problem 1.5.5.

1.5.4 Uniqueness of Solutions

In this section we show that solutions of the initial- and boundary-value problem
for the diffusion equation are unique. We consider solutions of

U, — Uy, =0, 0<x<1, 0<t < o0, (1.5.30a)
with initial condition
u(x, 0%) = f(x), (1.5.30b)

and one of the following four boundary conditions:

u©,1) = g@), u(l,1) = h@), (1.5.31a)
u,1) = g@), u,(1,t) = h@), (1.5.31b)
u; (0,1) = g(t), u(l,1) = h(@), (1.5.31¢)
u,(0,8) = g@), u,(1,1t) = h(2). (1.5.31d)

Here g and h are arbitrarily prescribed in each case.

In preparation for this proof, we first derive an integral identity for solutions of
(1.5.30a). Multiply (1.5.30a) by u(x, ¢) and integrate the result with respect to x
on the unit interval to obtain

1 1
/ uu,dx = / Ul dx.
0 0

Since the interval is independent of 7, we may write the left-hand side of this
expression as (d /dt) fol (#?/2)dx, and integrating the right-hand side by parts, we
obtain

1d [!

1
1
2 2
- = ,0dx = uu,| — , . 1.5.32
2 ), u(x,t)dx = uu /Oux(x t)ydx (1.5.32)

0

The identity (1.5.32) is true for any solution of (1.5.30a). Suppose that u; and
u, are two solutions of (1.5.30a), each of which satisfies the initial condition
(1.5.30b) and one of the four pairs of boundary conditions (1.5.31). If we denote
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the difference by u; — u, = v(x, t), then v(x, ¢) satisfies the problem
U — Uy = 0,
v(x,0) =0,
vw, =0 atx=0 and x = 1.

Therefore, the identity (1.5.32) for v becomes

1 d 12( t)d /l 2(x,)dx < 0
- — vo(x, = — y x < 0.
T X A v, (x
Or if we let
1 1
1) = —/ vi(x, t)dx >0
2 Jo
and
1
G@t) = —/ vi(x, t)dx < 0,
0
we have
dl
= = G(@), thatis, I(@) —I1(0) = /G(t)dr<0 (1.5.33)

Thus, I (¢#) —1(0) < 0.But7(0) = 0; hence, I(¢) < 0. According to its definition,
I(t) > 0. So, we must have 7 (¢) = 0, and the integral of a nonnegative quantity,
such as v, can vanish only if v(x, t) = 0. Thus, we have proven that u,(x, t) =
ux(x, t).

1.5.5 Inhomogeneous Boundary Conditions

As discussed in Section 1.4, we can transform a homogeneous equation with
inhomogeneous boundary conditions to an inhomogeneous equation with homo-
geneous boundary conditions. To illustrate the idea, consider (1.5.30a) with mltlal
condition (1.5.30b) and boundary conditions (1.5.31a).
To homogenize the boundary conditions, assume a transformation of dependent
variable ¥ — w in the following form that is linear in x,

ux,t) =wx,t) +al@)x + @), (1.5.34)

with as yet unspecified functions « and S of the time, to be chosen such that the
boundary conditions for the resulting problem for w are homogeneous.
Using (1.5.34), we compute

Uy = w,; + ax + ﬂ,
Uy = Wy + O, Uyx = Wyy.
Therefore,

U — Uy = W, +aX + B — Wy, =0,
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that is, w obeys the inhomogeneous problem
W, — Wyy = —AX — ﬂ

Inorderto have w(0, t) = 0, we find from (1.5.34) that we mustset () = g(2).
Similarly, in order to have w(l,?) = 0, we must set a(t) = h(t) — g(¢). Thus,
the transformation relation is

u(x,t) = wx,t) +xh@) —g®)l + g@), (1.5.35)
and w obeys the inhomogeneous equation
w — wi = [0 — Al — §(0) = p(x, 1) (1.5.36a)
subject to the initial condition
w(x,0) = f(x) — x[h(0*) — gO")] — g(0") = q(x) (1.5.36b)

and homogeneous boundary conditions
w(©,1) = w(,r) =0. (1.5.36¢)

The solution of the problem (1.5.36) is just the sum of the solutions (1.5.7) and
(1.5.9) with f = q; that is,

1 1 1
w(x, 1) =f0 dtfo pG, )G (x, &, 1 — 1)d§ +/0 q€)Gi(x, §, 1)d§.

- (1.5.37)

Having found w(x, t), we obtain u(x, t) from (1.5.35). Note that the form

(1.5.36) is also appropriate for a solution using Fourier series, as homogeneous

boundary conditions are also crucial in being able to superpose eigensolutions.
Problem 1.5.7 concerns the solution for the case (1.5.31b).

Problems

1.5.1a. Show that Green’s function for the following general homogeneous
boundary-value problem for the steady-state diffusion equation

—u =8(x—£); 0<x<1, 0<é&<1,  (1.538)

u(0) + aou’(0) = 0; ao = constant, (1.5.39q)
u(1) + a;’'(1) = 0; a; = constant, (1.5.39b)
is given by
G(x, &) = [ S ¥ <6 (1.5.40)
) (1_);:2:)_(30—110); x> E. 5.

Give a physical reason why G becomes infinite if ag — a; = 1.
b. Give a physical reason why Green’s function for (1.5.38) with the
homogeneous boundary conditions ' (0) = u’(1) = 0 does not exist.
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1.5.2.

1.5.3.

1.5.4.

1. The Diffusion Equation

Use symmetry arguments to show that Green'’s function for the diffusion
equation

Uy — Uy, =8 — T)0(x — &) (1.5.41)

with zero initial condition and each of the following three types of
homogeneous boundary conditions is given in the specified form.
a. u(0,t) = u,(1,t) = 0has

Go(x, k1 —1) = Y (D)"{Flx — @n+£),1 — 1]

n=-—00

— F[x — 2n - §&),t — 11}. (1.5.42a)
b. u,(0,¢) = u(l,t) = 0has

Gi(x, &t —1) = D" {Flx — 2n+&),t — 7]

n=-—

+ Flx — 2n — &),t — t]}. (1.5.42b)
c. uy(0,1) =u,(1,t) = Ohas

&

Ga(x, &, —1) = Y {Flx — @n+£),t—1]

n=-—00
+ Flx — (2n —§),t — t]}. (1.5.42¢0)
What symmetry properties, if any, can you uncover for G,, G3, and
Gyifx — £, - x?
d. Use the results of parts (a)-(c) to solve the general initial/boundary
value problem for

Uy — uyy = p(x,t), (1.5.43a)
ulx,0 = f(x), (1.5.43b)

and each of the following pairs of boundary conditions for z > 0 after
introducing an appropriate homogenizing transformation as in Section
155

u©,0) = g1(); u:(1,1) = g2(0), (1.5.44a)
u (0,1) = hi(1); u(l, 1) = hy(t), (1.5.44b)
ur(0,1) = hi(1); u(1,1) = g2(). (1.5.44¢)

Evaluate (1.5.7) for the special case where p = §(x — ¢), where ¢ is a
fixed constant on 0 < ¢ < 1. Show that as t — ©0, your result reduces
to Green’s function for the steady-state problem derived in Appendix A.1
(see (A.1.40)).

Evaluate (1.5.9) for f = 1 and show that the resulting series is the same
as (1.5.29).
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1.5.5a. Show that the Laplace transform U (x, s) of the solution of

U, —u,, =0, 0<x<1; 0<1, (1.5.45a)
u@,)=1; u(1,t) =0, (1.5.45b)
u(x,0) =0, (1.5.45¢)

is

1 sinh \/s(1 — x)

Ux,s) = — 1.5.46
(x. 5) s sinh /s ( )
b. Rewrite (1.5.46) in the form
1 1
R SV > SRV Ol ¢ 2 )]
Ux,s) = s 0= e (e e ), (1.5.47)
and expand the factor
o0

— e~2f Z (1.5.48)

for large s to obtain the series
Ux,s) = ! i(e*ﬁ@"*‘*) — VSN (1.5.49)

bl s —

Now use (1.5.28) to show that the solution u(x, ¢) has the series form

ad 2n + x 2mn+2—x
u(x, 1) = ;) [erfc (2—ﬁ) — erfc (——-2\—”—)] (1.5.50)

c¢. Calculate the solution of (1.5.45) using Green'’s function and superposition
after homogenizing the boundary condition at x = 0. Show that this result
agrees with (1.5.50).
1.5.6. This is a review problem to illustrate separation of variables and Fourier
series. Consider

U, — Uy, = xsint, 0 <x <1, 0<zy, (1.5.51a)
ux,0 =x(1 —x), (1.5.51b)
u@,1) =u,(1,t) =0 ift > 0. (1.5.51¢)

a. Look for a solution of the homogeneous equation (1.5.51a) in the sep-
arated form u(x, t) = X(x)T (¢), and show that X is given by any one
of the eigenfunctions

X,(x) = a, sin A,.x, (1.5.52)

where the eigenvalues are A, = 2n + 1)x/2forn = 0,1,2,... and
«, = constant.
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b. Based on this result assume a solution of (1.5.51) in the form of a series
of eigenfunctions:

u(x, t) = Z A,(t) sin Ayx, (1.5.53)
=0

where the A,(t) are functions of ¢ to be specified. Also, expand the
right-hand side of (1.5.51a) in a series of the eigenfunctions X,,,

[o.¢]
xsint = (}: b, sin A,,x) sin 1. (1.5.54)

n=0

Use orthogonality to show that b, = 8(—1)"/7%(2n + 1)2.
Now substitute (1.5.52) into (1.5.51a) with (1.5.54) for its right-hand
side to show that the A, (¢) satisfy

dA
=L 4+ A2A, = b, sint. (1.5.55)
dt n

c. Solve (1.5.55) to obtain
by . -
An(t) = Ay(0)e ™" + IE—J:T(Af, sint — cost + e ™). (1.5.56)

d. Use (1.5.53) with A,(¢t) given by (1.5.56) in the initial condition
(1.5.51b) to obtain

32 — 8n(~1)"2n + 1)

Ay (0) = B 1) (1.5.57)
1.5.7. Solve
Uy — Uy, = p(x,t), 0<x<1, 0<1, (1.5.58a)
u(x,0) = f(x), (1.5.58b)
u,1) = g@), u,(1,t) = h(@), (1.5.58¢)

using Green’s function as well as separation of variables after having
transformed to a homogeneous boundary-value problem.

1.6 Higher-Dimensional Problems

The diffusion equation in two or more space dimensions is given by the following
dimensionless form of (1.1.18):

u; — Au = p, (1.6.1)

where A is the Laplace operator and p is a prescribed function of the spatial vari-
ables and the time. For certain domains where one or more of the coordinates are
bounded, solutions may be calculated using separation of variables. This technique
may also be combined with Fourier transforms with respect to one or more coor-
dinates that have an unbounded range. An example is outlined in Problem 1.6.4b.
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For a complete discussion of separation of variables see [22]. Another approach
for solving (1.6.1) is to take its Laplace transform with respect to . The result is
a Helmbholtz equation for the transformed variable, and this equation is discussed
in Chapter 2. See Section 2.3.2 and Problems 2.3.4, 2.6.1, and 2.6.2. Here we will
only consider solutions using Green’s functions, and we begin our discussion with
a derivation of the fundamental solution.

1.6.1 The Fundamental Solution

Consider the n-dimensional diffusion equation with a unit source turned on at the
origin attime t = 0:

" 9%u
Uy ~ ; o = 518 (x1)8(xz) . . . 8(xy), (1.6.2)

where n is a positive integer. As in (1.2.6)—(1.2.7), we have the zero initial condition
ulxy, ..., x,,07) =0, (1.6.3)

and require u to vanish at infinity:

Uy, ..., un,2) >0 as r=,/x?+x}+...+x2 > oo (1.6.4)

In view of the fact that the source term on the right-hand side of (1.6.2) produces
a spherically symmetric solution, we need only consider the spherically symmetric
Laplacian, and (1.6.2) has the form

-1
uy =y = & - )4, = 5(1)8,(r). (1.6.5)
We have used the notation §, (r) to denote the n-dimensional delta function
Su(r) = 8(x1)8(x2) . ..8(x,). (1.6.6)
Consider the volume integral in terms of the Cartesian coordinates x,, . . ., x, of

the n-dimensional delta function over some domain D in this n-dimensional space.
By simply applying the properties of the one-dimensional delta function to each of
the n integrals defining the volume integral, we have the following generalization
of the definition for the one-dimensional case

1 if the originisin D,
0 otherwise.

f.../8(x1)8(x2)...8(x,,)dx1dx2...dx,, = [
D

(1.6.7)
For n > 2, we may also write (1.6.7) in terms of the n-dimensional delta function
8, (r) and the appropriate volume element d V

f.../a,,(r)dv - [1 ifr = Oisin D, (1.6.8)
D

0 otherwise.



46 1. The Diffusion Equation

For example, if n = 2 and D is the interior of a circle of radius € centered at
the origin, then dV = r dr d6, and we have

€ 2n €
f / S(r)rdfdr = 27[/ ré,(rydr = 1, (1.6.9a)
r=0 J6=0 0

where r and 6 are polar coordinates in the plane: x = rcos6, y = rsin6. If
n = 3 and D is the interior of a sphere of radius € centered at the origin, the
corresponding result is

€ 2 b 4 €
f f / 83(r)r’sing d¢ do dr = 4n / r28;(rydr = 1, (1.6.9b)
r=0 J6=0 J¢=0 0

where r, 6, and ¢ are the spherical polar coordinates: x = rsin¢cosf, y =
r sin ¢ sin 6, z = r sin ¢. More generally, for an n-dimensional sphere of radius
€ centered at the origin, (1.6.8) reduces to

Wy, f r"18,(r)dr = 1, (1.6.9¢)
r=0

where w, is the “area” of the n-dimensional unit sphere.
To calculate w, consider the following identity:

o0
o0
/ / e f R Fndxdxy . .. dx, = f e r"\w,dr, (1.6.10)
0
—00

n
where r2 = x? +. ..+ x2. The left-hand side of (1.6.10) is just (f_o:o e”‘zdx) =
/2, The right-hand side is

o0 —r — , o _ n_ w n
w,,/o e r"ldr = 7 e ‘6% do = —2ﬁr<5), (1.6.11)
where I"(z) is the gamma function defined by
o0
I'(z) zf e ’0* 'do;z > 0. (1.6.12)
0
Therefore, the area w, of the n-dimensional unit sphere is
27{"/2
= . 1.6.13
“" = T(/2) (1619

Coming back to (1.6.5), we solve the homogeneous problem using similarity.
Proceeding as in Section 1.2.1, we find that the fundamental solution F(r, t) has
the following similarity structure (cf. (1.2.15))

o"F(ar, &’t) = F(r, 1) (1.6.14)
for any positive constant «. Setting

F(r,t) =t™2f©),6 = rt™'/?, (1.6.15a)
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we see that (1.6.15a) satisfies (1.6.14) and gives the following ordinary differential
equation for f:

6 n-—1 n
" /
= —f=0.
1+ (2 + = )f + 5 f
It is easily seen that

f = Ce?/* C = constant,

is a solution that upon substitution into (1.6.15) gives

c
F(r,t) = ,ﬁe—r%' (1.6.15b)

This solution has the appropriate singularityatr = 0,z = Oanddecaysasr — oo,
t > 0ort — oo, r > 0. The other solution of (1.6.15) gives an unbounded
contribution to the total heat content in the domain as in the one-dimensional case.

To evaluate C, we integrate (1.6.5) over the entire n-dimensional space Do, to
obtain

f.../F,dV =/.../AFdV+/.../8(t)8,,(r)dV. (1.6.16)
Do Do Dy

Using Cartesian coordinates we have

’F
AFdV = . dx;...dx, =0,
/ ./ / _/ {ax1 + ax,%il o *

(1.6.17)
because for eachi = 1, ..., n, 3F/dx; vanishes if any one of its arguments x;
equals +oo. The second integral on the right-hand side of (1.6.16) gives (), and

we obtain
/ /FdV—d/ deV——&(t)
o .. t - dt o — .
Dx D:x:

Therefore,

f.../de=1 if >0, (1.6.18)

as in the one-dimensional case (cf. (1.2.19)). Using the result (1.6.15b) for F in
(1.6.18) gives

C
tn/z

o0
f e M ldr = 1. (1.6.19a)
Changing the integration variable from r to s = r2/4t gives

oo
2"“w,,c/ e*si7'ds = 2"'w,CT (2) =1. (1.6.19b)
0
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Therefore,
1 1
C = = , 1.6.20
2", T (n/2) 2ngn/2 ( )
and the fundamental solution is
1
F(rt)= ————e "%, (1.6.21)

2"7‘["/21‘"/2
More generally, the fundamental solution at time ¢ at a point P with coordinates
X1, . .., X, due to a source located at the point Q with coordinates &, . . ., &, and
turned on at time 7 is
—rf,Q/4(t—r)

e
F(rPQ7t—T) = m, (1.6.22)

where we have introduced the notation
rpg = (1.6.23)

for the distance between the observer at P and the source point Q.

1.6.2 Initial-Value Problem in the Infinite Domain

Consider the general initial-value problem for the three-dimensional diffusion
equation in the infinite domain:

Uy — Uxx — Uyy — Uz = p(x,y,2,1), (1.6.24a)
ux,y,z,0) = f(x, y, 2). (1.6.24b)

Here p and f are prescribed, and p = 0 if ¢+ < 0. The corresponding one-
dimensional problem was discussed in Section 1.3. The basic ideas are the same; we
split (1.6.24) into two problems as in (1.3.2) and solve each using the fundamental
solution. The result is

u(x,}”Z,t)I/ 0/; / f F("PQ,t"f)P(f,'I:{,T)dCdfldsdf
T= =-00 Jp=-00 J{=—00

+/E / / f& 0, O)F(rpg, 1)dt dndé, (1.6.25)
=—00 Jy=-00 J{=-00

where r3, = (x — £)* + (y — 7)? + (z — ¢)%, and F is given by (1.6.22) with
n = 3. Similar formulas can be written down for the solution for any n.

(i) Example, axisymmetric problem in two dimensions

Consider the axisymmetric problem in two dimensions

u - (urr + 1ur) =0, (1.6.26a)
r
u(r,0) = f(r). (1.6.26b)
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The fundamental solution is (n = 2, r,%Q =@ -8+ -1

_ 1 (x — )+ (y — n)?
F(YPQ,t —-1) = ZJ!(I——T) exp (— 40— 1) ) . (1.6.27)

We introduce the polar coordinates r, 8 for P defined by x = r cos 6,y = r sin8
andset§ = pcosd,n = psing. Thenry, = r* — p> — 2rp cos(6 — ¢), and
(1.6.27) becomes

_ 1 r2 4+ p% — 2rpcos(6 — ¢)
F(rpg,t — 1) = m exp (— TP . (1.6.28)

In the superposition integral corresponding to (1.6.25) only the second term
contributes, and we use polar coordinates to obtain

e—r2/4r 00 s 27
u(r,t) = f e " pf(p) / POy L dp. (1.6.29)
0

4t 0

The definite integral with respect to ¢ can be evaluated explicitly. For any positive
constant , we have

2
/ e* 4 = 2 Ip(a), (1.6.30)
0

where I, is the modified Bessel function of order zero. Therefore, (1.6.29)
simplifies to

_ e—r2/41 oo #p2/411 r—e 4 1631
u(r, t) > f(p)pe ol 5 )P (1.6.31)
0

1.6.3 Green’s Function for Various Simple Domains

The use of image sources to satisfy boundary conditions also generalizes to higher-
dimensional problems for certain simple geometries. Three planar examples are
discussed next to illustrate ideas.

(i) The half-plane y > 0 with u(x,0,t) =0
Consider
u, — (Uxx +uyy) =8(x — )y —n)d — 1) (1.6.32a)

in the upper half-plane: —o0 < x < 00,0 < y < oo for positive constants &, n,
7. The initial condition is

ulx,y,t7) =0, (1.6.32b)
and boundary conditions are

u(x,0,t) = u(x,00,1t) =0. (1.6.32¢)
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Using a negative image source at x = §,y = —»,t = T we obtain Green’s
function using (1.6.22) withn = 2
1 —rz_ -
G =&y, mt—1) = —— |74 _ 7| (16.33)
4t — 1)
where
rhg = (x =&+ (v —n)’ (1.6.34a)
rig =@ -6+ 0+ (1.6.34b)

Knowing G, we can solve the general initial- and boundary-value problem in
the upper half-plane,

Uy — Uy — Uyy = p(x, y,t), (1.6.35a)
u(x,y,0) = f(x,y), (1.6.35b)
u(x,0,t) = g(x,t), t >0, (1.6.35¢)

for prescribed functions p, f, and g using Green’s function and superposition
after the boundary condition (1.6.35c) is homogenized. The details are entirely
analogous to the one-dimensional case discussed in Section 1.4 and are left as an
exercise (Problem 1.6.1).

The same ideas can be used to compute Green’s function in the half-space in
three dimensions and to construct Green'’s function of the second kind where the
normal derivative of u vanishes along the boundary.

(ii) The quarter-plane x > 0, y > 0 with u(x,0,t) = u(0, y,t) =0
Green’s function satisfies

U~ (Ugx +uyy) =8(x —§)8(y —n)d — 1), (1.6.36a)

ux,y,t7) =0, (1.6.36b)
u(x,0,t) =0, x >0, (1.6.36¢)
u@,y,t) =0, y > 0. (1.6.36d)

For this domain, the positive primary source of unit strength is located at x =
& >0,y =n > 0 and turned on at time t = t. In order to have u = 0 on
both the positive x- and y-axes we need to introudce negative image sources of
unit strength at the points x = £,y = —pand x = —&, y = n. We also need
a positive image source of unit strength at x = —§, y = —n. This maintains the
symmetry relative to the two coordinate axes.

Therefore, the solution is given by

1

Go.E.ynt—1)= — [e—rf/:t(r—z) _ on3/4u-1)
& y,1 ) o

_ e—r§/4(:~t) + e_'}/‘w—t)] , (1.6.37)
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where
ri=rpg = -8+ (y—n? (1.6.38a)
r2=(x—-6*+ @+ (1.6.38b)
r2=x+8>+ @y —n? (1.6.38¢)
r2=(x+86>+ @+ (1.6.384)

Using (1.6.37) we can solve the general initial- and boundary-value problem in
the quarter-plane. See Problem 1.6.2. Problem 1.6.3 concerns the solution in the
quarter plane with u, (x, 0, t) prescribed.

The symmetry idea also generalizes to corner domains in higher dimensions,
eg.,x >0,y > 0,z > 0in three dimensions.

(iii) The infinite strip 0 < y < 1, —00 < x < 00 with
ux,0,t) =ulx,1,1) =0

Green’s function of the first kind for this domain satisfies

Up — Uy — Uyy = 8(x — &)8(y — n)é(t — 1), (1.6.39a)
ux,y, t7) =0, (1.6.39b)
ux,0,t) =ulx,1,t) =0, t > 0. (1.6.39¢)

The solution of (1.6.39) is entirely analogous to the one- dimensional version
(1.5.2), and we have

e

G —&ynt—1)= Y {(Frnt—17)~FF.t—10)},  (1.6.40)
where
e—r2/4l
Forot) = ——, (1.6.41)
r2=(x-&*+y—Qn+nb, (1.6.42a)
R=@-§+y—@n-nP (1.6.42b)

We can now use (1.6.40) to solve the general initial- and boundary -value prob-
lem in the infinite strip. See Problem 1.6.4a. This problem can also be solved
by Fourier transforms with respect to x followed by separation of variables as
discussed in Problem 1.6.4b.

Boundary-value problems where u,, is specifiedon y = Oory = 1 or both can
also be solved using the appropriate Green’s function as in Problem 1.5.2.

Problems

1.6.1. Use the homogenizing transformation w(x, y, t) = u(x, y,t) — g(x, t)
to show that if u solves (1.6.35), then w is the solution of

W, — Wy — Wy, = h(x, t) +5@k(x,y), (1.6.43a)
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w(x,y,07) =0, (1.6.43b)
w(x,0,1) =0, t >0, (1.6.43¢)
where

h(x,t) = p(x,y,t) — g (x, 1) + gex(x, 1), (1.6.44a)
k(x,y) = f(x,y) — g(x,0). (1.6.44b)
Using Green'’s function (1.6.33), the solution of (1.6.35) then becomes

u(x,y,t) :f /-oo /wh(s, 1)G(x —&,y,n,t —t)dndédt
0 —00 JO

+/ /0 kE, MG(x — £, y, 7, 1)dn d&

+g(x,1). (1.6.45)
Develop the result in (1.6.45) using (1.4.18) to obtain (see (1.4.21))

=ity [ s (=)
we Y, “2y7 Jo -t \2/i=<
x [ f " he, r)e“("“E)z/“"")d’g] dt

o0

_ 1 YN[ —(x—8)?/4
N (zﬁ) [ o0 as

1 © oo . 2
* f f f&, n) [e“"‘“ﬂ +(y—m2)/4t
4t J_o Jo

_e—[(x—e)2+(y+n)21/4t] dn dt. (1.6.46)

1.6.2. Consider the general initial- and boundary-value problem in the quarter
planex > 0,y > O:

Uy — uxx — Uyy = p(x, y,1), (1.6.47a)
ux,y,0 = f(x,), (1.6.47b)
u(x,0,1) = gi(x, 1), (1.6.47¢)
u@©,y, 1) = ga(y, 1). (1.6.47d)

Introduce the homogenizing transformation
wix, y, 1) = ux,y, 1) —alx,y,t), (1.6.48)

where « is a function that satisfies a(x,0,¢) = g,(x, ), «(0, y,t) =
g2(y, t). For example, we may choose

g1(x, Hx + &0y, )y

. (1.6.49)
Vil yr o a2ty

a(x,y,t) =




1.6.3.

1.6.4a.
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Show that if u satisfies (1.6.47), then w is governed by
Wy — Wyy — Wyy = h(x, y,1) + 8@)k(x, y), (1.6.50a)
w(x,y,07) =0, (1.6.50b)
w(x,0,t) = w0, y,t) =0, t >0, (1.6.50c¢)

where

h(x,y,t) =p(x,y,t) —o;(x,y, 1) + ax(x, y, t)
+ayy(x, y, 1), (1.6.51a)
k(x,y) =f(x,y) — a(x, y, 0). (1.6.51b)

Solve (1.6.50) using Green’s function (1.6.37).

What is Green'’s function for the corner domain0 < x < 00,0 <y < 00
with boundary conditions u(0, y,t) = 0, u,(x,0,¢) = 07 Use this
result to calculate the solution of (1.6.47), where we replace (1.6.47c) by
uy(x,0,t) = g3(x, t).

Consider the diffusion equation in two dimensions in the infinite strip
—00 < x < 00,0 < y < 1 with prescribed source distribution, and
initial and boundary values for u given by

Uy — Ugx — Uyy = p(x, y,1), (1.6.52a)
u(x, y,0) = f(x, ), (1.6.52b)
u(x,0,t) = g1(x,t), t >0, (1.6.52¢)
ux,1,t) = ga(x,t), t > 0. (1.6.524)

Introduce the homogenizing transformation
wx, y, 1) =ux,y,0)+ - Dgaix, 1) —yax1) (1.653)
to show that w satisfies
W, — Wiy — Wy, = h(x,y, t) +8@)k(x,y), (1.6.54a)
w(x,y,07) =0, (1.6.54b)
w(x,0,t) = wx,1,t) =0, >0, (1.6.54c)
where
h(x,y, 1) =p(x, y, 1) + (1 = y)(g, — 81..)
= (82, — 82.) (1.6.55)
k(x,y) =f(x,y) + (y — Dgi(x, 0) — yga(x, 0). (1.6.56)
Calculate the solution of (1.6.54) using Green’s function (1.6.40).

. An alternative approach for solving (1.6.52) is to take Fourier transforms

with respect to x. Show that the transformed variable u(k, y, t) satisfies
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(overbars indicate the Fourier transform, see (A.2.9a))

U, — Uy, + k% = p(k, y, 1), (1.6.57a)
uk,y,0) = fk,y), (1.6.57b)
uk,0,1) =g,k 1), t >0, (1.6.57¢c)
uk,1,1) = g,(k, 1), t > 0. (1.6.57d)

In preparation for solving (1.6.57) by separation of variables, introduce
the homogenizing transformation (1.6.53),

and show that w satisfies

W, — Wy, +k°W = P+ (y— 1)@, +k°8)) — y(@,, +£°82) = q(k, y, 1),

(1.6.59a)
Wk, y,0) = fk, y) + (y — DZ,(k, 0) — yg,(k, 0) = r(k, y),
(1.6.59b)
w(k,0,t) =wk,1,1) =0, t > 0. (1.6.59¢)
Solve (1.6.59) by separation of variables in the form
w(k, y, t) = i B,(k, t)sinnmy, (1.6.60)

n=1

where

, .
B,(k,t) = [Bn(k’ 0) +f Qn(k, r)e(n2”2+k2)td{l e—(n2n2+k2)t,
0

(1.6.61)
and B, (k, 0), g, (k, t) are the Fourier coefficients
1
B,(k,0) = 2/ r(k, y) sinnmydy, (1.6.62a)
0
1
qn(k,t) = 2/ qk, y,t)sinnwydy. (1.6.62b)
0
1.7 Burgers’ Equation
The quasilinear diffusion equation
U, +uu, —€u,, =0, € >0, (1.7.1)

is attributed to Burgers, who in 1948 proposed it as a mathematical model for
turbulence [7]. Actually, (1.7.1) was first studied by Bateman in 1915 in modeling
the motion of a fluid with small viscosity € [5]. Although (1.7.1) may be obtained
as a limiting form of the x-component of the momentum equation for viscous
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flows, as first shown in [32], it does not model turbulence. Nevertheless, (1.7.1) is
a fundamental evolution equation that arises in a number of unrelated applications
where viscous and nonlinear effects are equally important. Examples are discussed
in [16] and in Section 6.2.5 of [26]. This equation also models traffic flow and is
derived in Section 5.1.2.

Hopf [24], and Cole [9] independently showed that (1.7.1) may be transformed
to the linear diffusion equation of this chapter. We now work out this transformation
and discuss how it may be used to solve initial- and boundary-value problems for
(1.7.1).

1.7.1 The Cole-Hopf Transformation

This transformation of dependent variable u — v is defined by

u=-2¢= (1.7.2)
v
We then calculate
u, = ——-26&\1 +263X—:1,
v v
Vyy v2
uy, = —2¢ + 2¢ —;
Uy = —2€ Dexx 4 6e ___vxv;x - 46;)2
v v v
Substituting these expressions into (1.7.1) gives
v
;x_ (€vxx — V) — (€Uxx — ), = 0. (1.7.3)

Thus, any solution v(x, t) of (1.7.3), when used in (1.7.2), gives an expression
u(x, t), that satisfies (1.7.1).
In particular, if v satisfies the diffusion equation

€V — v =0, (1.7.49

it also solves (1.7.3) trivially, and the resulting u(x, ¢) satisfies (1.7.1).

Although the parameter € may be transformed out of (1.7.1) (and hence also out
of (1.7.4)) by an appropriate scaling of the x and ¢ variables, it is more instructive
to retain it in the solution because we can then study how the results behave in
the limit € — 0. This is a singular perturbation problem that we will discuss in
Section 8.2.3.

1.7.2 Initial-Value Problem on —00 < x < 00

Let us study how we can use the preceding result to solve the initial-value problem
for Burgers’ equation:

U, + uu, — €uy, =0, —00 < x < 00, (1.7.5qa)
u(x,0) = f(x). (1.7.5b)
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According to (1.7.2), the new variable v(x, ¢) must initially satisfy
2ev,(x, 0)
- 1.7.6
fx) 2(x, 0) ( )

This is a linear first-order ordinary differential equation for v(x, 0) and has the
general solution
v(x, 0) = ae "% Jy fods _ ag(x), a = constant. 1.7.7)

Thus, for a given f(x), we compute g (x) by quadrature. Of course, it is understood

that the integral fox f(s)ds exists. So, we need to solve the following linear problem
for v(x, t):

U — €Uy =0, —00 < Xx < 00, (1.7.8a)

v(x,0) = ag(x). (1.7.8b)

This is essentially (1.3.3) and has the solution (1.3.9) after replacing u — v,
f — ag,t = et

[04 0 2
1) = —x=E) et g 1.7.9
v(x, 1) Nz g&)e & ( )
It then follows that
V(X 1) = —— f g(E)(x~{-‘) e~ B /et gg (1.7.10)

Therefore, using (1.7.2) to compute u(x, t) gives
ffzo g(s) (Xr—é) e—(x—s)z/ktds
[oo 8(&)e~ -7/t g

in which the constant a cancels out.
We shall use these results in discussing discontinuous solutions of the first-order
equation

u(x,t) = , (1.7.11)

u, +uu, =0 (1.7.12)

in Chapter 5. We compute (1.7.11) explicitly for the case where f (x) is piecewise
constant in Problem 1.7.1.

1.7.3 Boundary-Value Problems

The solution of Burgers’ equation on the semi-infinite or bounded interval in x is
more complicated than the solution we have derived in (1.7.11). We now consider
some special cases.

(i) Semi-infinite interval: 0 < x < 00
The problem is

U, + uu, — €u,, =0, 0 < x < o0, (1.7.13a)
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u(x,0) = f(x), (1.7.13b)
u@©,t) =h(), t > 0. (1.7.13¢)

Using (1.7.2) we obtain the following problem for the new dependent variable
v(x,t)

v, — €U, =0, (1.7.14a)
v(x,0) = aexp (—i _/OX f(s)ds) = ag(x), (1.7.14b)
h(t)v(0, t) + 2ev,(0,t) = 0. (1.7.14c)
If h = constant and f = 0, (1.7.14b) and (1.7.14c¢) reduce to
v(x, 0) = o = constant, (1.7.15a)
hv(x, 0) + 2ev,(x,0) = 0, h = constant. (1.7.15b)

In (1.7.14b) and (1.7.15a), the constant « is arbitrary.
To use previously calculated results, we set

VT=v—a, [=¢t, X=2x

to obtain
vy — U = 0, (1.7.16a)
v(x,0) =0, (1.7.16b)
hv(x, 0) + 2evz(x, 0) = —ha. (1.7.16¢)
The solution is given by (1.4.47) withu — v,a — h,b — 2¢,c = —ha,

x = X, t >1,

X 257 — - -
56, 1) = —a [rf(z_f;) _exp<% . /;_)rf(_%_/z_)]

(1.7.17a)
or
x h*t  hx x — ht
v(ix,t) =a |1 —erfc ex — — — Jerfc{ —— .
G [ (57)+ p<4€ 2e> (z@)]
(1.7.17b)
We now use this result to evaluate (1.7.2) for u(x, t) and obtain
erfc ( 2=
w(x,t) = h (”‘7) (1.7.18)

hx h2 -\
exp(z - T’)erf(zje_') +erfc(2"J:7)
In [31], this result is attributed to J.D. Cole.

If h is not constant, the above approach does not apply, but we may use the idea
discussed in Section 1.4.7 of replacing (1.7.14c) by an unknown boundary value
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v(0, t) = k(z), then deriving an integral equation for k(). The details are entirely
analogous to those discussed in Section 1.4.7. See Problem 1.7.2.

(ii) Finite interval 0 < x <7

The following initial- and boundary-value problem for Burgers’ equation is
discussed in [9]:

U, + uu, = €uy,, 0 <x <m, (1.7.19a)
u(x,0) = f(x), (1.7.19b)
u@©,t) = u(x,t) =0, t > 0. (1.7.19¢)
The problem for v(x, t) defined by (1.7.2) satisfies
U — €Uy, = 0, (1.7.20a)
v(x, 0) = ag(x), a = constant, (1.7.20b)
v,(0,1) = v,(m,t) =0, t >0, (1.7.20¢)

where « is arbitrary and g(x) is defined in (1.7.14b).
The solution for v(x, t) is easily derived using separation of variables in the
form

[o¢]
v(x,t) = %Q + "zz; a,,e_”z" cos nx, (1.7.21)
where
2 b4
a, = —NE g(x) cosnx dx. (1.7.22)
0

The transformation relation (1.7.2) gives the solution of (1.7.19) in the form

00 —nlet ;
Y ney Nane sin nx
ag 00 —n2et '
2+ 2, ane cos nx

u(x,t) = 2e (1.7.23)

A discussion of the qualitative features of the solution is given in [9]. The problem
where f(x) has a discontinuity in the interval 0 < x < 1 isdiscussed in [29]. This
problem is of interest in understanding the long-term behavior of a shock layer for
Burgers’ equation. We still study shock layers in Chapter 5.

Problems

1.7.1. Consider Burgers’ equation on —00 < x < 00,
U, + Ul = €Uy, (1.7.24)

a. For the piecewise constant initial condition

1 ifx <0,
ulx,0) = {_1 ifx > 0, (1.7.25)
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derive the solution in the form

e~*/€ erfc (2«/_) — erfc (' ;j:_,)
T\

ulx,t) = (1.7.26)
— X+t
”/ferfc(zf) + erfc (—ZJZ)
For the piecewise constant initial condition
-1 ifx <O,
u(x,0) = [ 1 ifx >0 (1.7.27)
derive the solution in the form
—erfc ( 22L ) + e~/ erfc £
u(x, t) = (zf) (2‘/‘_’) (1.7.28)

erfc ( ":/"—) + e~*/¢ erfc ( f)

To study the problem (1.7.13) for Burgers’ equation, replace (1.7.14c) with
the boundary condition

v(0, t) = k(1), (1.7.29)

where k(¢) is as yet unspecified. Use the results in Sections 1.4.2-1.4.3 to
write the solution for v(x, t) in terms of the unknown k(¢) in the form

v(x,t) = 3 8(5) ~(x—§)2/4€l . e—(x+s)2/4a] dE
t . x
+‘/(; k(r)erfc(T;—-'—T)d‘[

+ k(0™) erfc ( (1.7.30)

)
2et )
Use the condition (1.7.14c) to derive the following integral equation for
k(t) (Assume o = k(01))

h(Ok(T) = ¢@t) +2.] < f ";(t) (1.7.31)
Jt—1
where

o) = 2k(0+)‘/ [1— g(E)e~8"1%1q (&2 /4et)] (1.7.32)
0

Note that ¢ (t) = 0if f(x) = 0.
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Laplace’s Equation

2.1 Applications

There are numerous physical applications that are modeled by the inhomogeneous
Laplace equation (Poisson equation)

Au = Uxx + uyy + U, = Q(xa Y, z)

Some of the standard examples are given in the following table.

Henceforth, to standardize terminology, we shall refer to u as the potential, even
though in some applications it is not a potential and one is interested in the value
of u itself rather than in its gradient. Also, we shall refer to a real function that
satisfies Laplace’s equation in some domain G as being harmonic in G.

We have already shown that for the steady-state problem of heat conduction
in a material with constant properties and no heat sources, the temperature field
satisfies Laplace’s equation [see (1.1.18)].

A derivation of Laplace’s equation for the deflection of a membrane (in the limit
of small amplitudes) may be found on pp. 214-215 of [21].

In electrostatics, the potential due to a stationary distribution of charges follows
directly from Maxwell’s equation. For example, see p. 100 of [33]. A derivation
of the gravitational potential for an arbitrary solid is given in Section 2.4.1, and a
discussion of applications for incompressible flow follows next.

2.1.1 Incompressible Irrotational Flow

Consider the flow of a fluid having density o(x, y, z, t) (g/cm?) and defined by the
vector velocity fieldd(x, y, z, #) (cm/s). As in Section 1.1, we can derive an integral
law of mass conservation by equating the rate of change of mass inside a given
fixed domain G to the net inflow of mass. If we also have an arbitrary distribution of
mass sources of strength/unit volume equal to Q(x, y, z, t) (g/cm’s), the integral
law of mass conservation analogous to (1.1.16) becomes

%///pdvz_/qu.ndmr/f Qadv, 2.1.1)
G S G

J. Kevorkian, Partial Differential Equations
© Springer Science+Business Media New York 2000
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TaBLE 2.1. Some Applications of Poisson’s Equation
Application u o
Steady-state temperature in u = temperature —Heat source
a solid strength/unit
volume
Static deflection of a thin u = deflection Pressure
membrane in two dimen-
sions
Electrostatics u = electrostatic potential, Charge/unit
electricfield= E = grad u volume

Incompressible irrotational
flow in two or three dimen-
sions

u = velocity potential, ve-
locity = q = grad u

Mass source
strength/unit
volume

Two-dimensional incompress-

ible steady flow

u = stream function = ¢,
velocity = q = ¥,i — ¥,j

— Vorticity

Newtonian gravitation

u = gravitational potential,
force of gravity = F =
—grad u

Mass density

where again, n is the outward unit normal on the surface S bounding G. For smooth

flows, (2.1.1) gives

o +div(pq) = Q.

2.1.2)

Now, if the density is a constant (incompressible flow), (2.1.2) reduces to

divg = Q = Q/p.

2.1.3)

If in addition one assumes that the flow is irrotational—that is, curl q = 0—it
follows from vector calculus that q is the gradient of a scalar potential: u(x, y, z, )

(cm?/s); that is,

q = grad u.

(2.1.4)
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Combining (2.1.3) and (2.1.4), we obtain the Poisson equation

divgradu = Au = Q. (2.1.5)

2.1.2 Two-Dimensional Incompressible Flow

A flow is two-dimensional if the velocity field is independent of z, for instance.
Consider such a flow and assume also that it is steady (independent of time),
is source free, has a constant density, but is not necessarily irrotational. Mass
conservation, (2.1.3), reduces in this case to

q, +q2, = 0, (2.1.6)

where @ = ¢q;i + g»j and i, j are Cartesian unit vectors along x and y, respectively.

Consider an arbitrary simple curve C joining the origin to the point P as shown in
Figure 2.1. The flow rate per unit depth across a given elementds = (dx?+dy?)'/?
isdM = p(q1dy — g2dx) (g/cm s). Therefore, the total flow/unit depth across the
arc C is the line integral

M
— = /(qldy — godx)(cm?/s). 2.1.7)
1Y c
y P
A
C
q)——>
a |
-q | qi dy
dy} -
! Max |
Y —q, dx
> X

FIGURE 2.1. Two-dimensional flow across a curve
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Introduce the vector F = —qzi + q\j, and note thatcurl F = (g1, + ¢2,)k = 0
because of (2.1.6). Here k is the Cartesian unit vector in the z direction. Therefore,
the line integral (2.1.7), which may also be written as

M
== / F - dr, dr = dxi + dyj, (2.1.8)
C

is a function only of the endpoint P and does not depend on the path C. Definee
M/p = ¥(x, y), where ¢ is called the stream function for the flow. Thus, at any
point P, ¥ measures the total mass flow between P and the origin.

It follows from the fact that curl F = ( that

F = grad ¢ = ¢.i + ¥yj. (2.1.9a)
Therefore,

@ =Yy, @ = —VYx, (2.1.9b)

that is, the velocity vector q at any point is tangent to the curve ¥ = constant
passing through that point. The curves ¥ = constant are called streamlines (see
Figure 2.2) and measure loci of constant mass flow relative to a reference point
in the sense just discussed. In particular, the mass flow between any two curves
¥ = c; and ¥ = c, remains constant. Thus, if the distance between these two
curves narrows down, the velocity must increase to conserve mass flow.

For the velocity field defined by 4, let us define

curlq = 2 = Q(x, y)k. (2.1.10)

The vector £2 is called the vorticity and corresponds to twice the average angular
velocity of a fluid element. (For example, see p. 158 of [21].)

<

\%‘p:(ﬁ
q
\_/;{,:Q

q
®¢=C‘

N YY)

FIGURE 2.2. Streamlines
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Now, by definition,
curlq = (g2, — q1,)k,
and using (2.1.9b) and (2.1.10), we obtain
curlq = —AYk = 2(x, y)k. (2.1.11)

Thus, for a steady, incompressible, sourceless, two-dimensional, possibly
rotational flow, the stream function ¥ (x, y) obeys

AY 