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Preface

Ah, Love! could thou and I with Fate conspire
To grasp this sorry Scheme of Things entire,
Would not we shatter it to bits—and then
Re-mould it nearer to the Heart’s Desire!

Omar Khayyam, Rubaiyat

More than 10 years have passed since the publication of the first edition of this
textbook. During these years, a large number of monographs dealing with the same
topics have appeared. Some of them have been included in the new bibliography.
In addition, a wealth of material is now freely available online, some of it posted
by the very best (cf., e.g., [Tao11]). So one may question the wisdom of offering a
new edition of the old Basic Real Analysis, henceforth abbreviated BRA. And yet,
as is always the case, different people look at the same material in different ways
depending on their tastes. What should or should not be included and to what extent
may vary considerably, and all choices have their legitimate and logical justification.

Despite the fact that I have looked at a large number of real analysis textbooks
and have benefited from all of them, I still prefer not to modify the organization of
the material in BRA. The initial idea of a new edition came from Tom Grasso of
Birkhäuser, and I want to use this opportunity to thank him for suggesting it. He
pointed out that for the project to be justified, a reasonable number of changes must
be made. The most substantial change in the new edition is that I rewrote Chaps. 10
and 11 on Lebesgue measure and integral entirely. In doing so, I decided to abandon
F. Riesz’s method used in the first edition in favor of the more traditional approach
of treating Lebesgue measure before introducing the integral. I have come to believe
that measure theory is a fundamental part of analysis and the sooner one learns it,
the better.

Lebesgue measure and integral on the real line are now covered in Chap. 10.
Chapter 11 contains additional topics, including a quick look at improper Riemann
integrals, integrals depending on a parameter, the classical Lp-spaces, other modes
of convergence, and a final section on the differentiation problem. This last section
contains Lebesgue’s theorem on the differentiability of monotone functions (with F.
Riesz’s Rising Sun Lemma used in the proof) and his versions of the Fundamental
Theorem(s) of Calculus. Abstract measure and integration are treated in Chap. 12,
where I have included the Radon–Nikodym theorem which is used in the last section
on probability.
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viii Preface

Although the newly written chapters on Lebesgue’s theory constitute the major
change in this edition, all other chapters have been affected to various degrees.
For example, the treatment of convex functions has been modified and (hopefully)
improved. I have added a number of exercises in the text and many new problems
at the end of all chapters. A large number of typographical as well as more serious
errors have been corrected. I am particularly indebted to Professor Giorgio Giorgi of
Università Degli Studi Di Pavia for pointing out a serious one. Of course, as always,
other undetected errors may still be there and I take full responsibility for them.
Needless to say, I would be grateful to careful readers for pointing them out to me
(hsohrab@towson.edu).

Ideally, a book at this level should include some spectral theory, say, at least
the spectral properties of compact, self-adjoint operators. Unfortunately, this would
increase the size of the book beyond what I consider to be reasonable. I have
decided to include some of this and similar interesting material in the end-of-chapter
problems, and the interested readers may try as many of them as they want. A
complete solution manual is available from the publisher for the benefit of the
potential instructors. I have decided to use sequential numbering of all the items
throughout. I believe that this simplifies the navigation considerably even though it
may have its problems.

It is a great pleasure to thank Mitch Moulton, Birkhäuser’s assistant editor, for
his help and patience during the preparation of the manuscript. I am also grateful for
the technical assistance I received from Birkhäuser. One of the people I completely
forgot to thank in the first edition of BRA (shame on me!) is Loren Spice. He was
16 when he started enrolling in mathematics courses at Towson University, right
when I was preparing the first draft of the textbook. He read the first five chapters
very thoroughly and made a large number of suggestions and corrections. I am truly
indebted to him for his valuable comments which resulted in many improvements.
Also, I owe so much to the brilliant, anonymous reviewer of the first edition of BRA
whose excellent critical comments had a great influence, even though I couldn’t
possibly live up to his high expectations. I hope he finds this new edition to be
closer to his taste. In addition, the anonymous reviewers of this new edition have
made a number of excellent comments for which I am truly grateful.

Finally, I would like to thank my wife, Shohreh, and my children, Mahsa and
Zubin, whose love and support are the greatest driving force in my life.

Towson, MD, USA Houshang Sohrab

http://www.hsohrab@towson.edu


Contents

1 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Rings and Algebras of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Relations and Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Basic Algebra, Counting, and Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Infinite Direct Products, Axiom of Choice, and Cardinal

Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Sequences and Series of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Sequences in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4 Unordered Series and Summability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3 Limits of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.1 Bounded and Monotone Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 Limits of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.3 Properties of Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.4 One-Sided Limits and Limits Involving Infinity . . . . . . . . . . . . . . . . . . . . 107
3.5 Indeterminate Forms, Equivalence, and Landau’s Little

“oh” and Big “Oh” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4 Topology of R and Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.1 Compact and Connected Subsets of R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.2 The Cantor Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.3 Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.4 One-Sided Continuity, Discontinuity, and Monotonicity . . . . . . . . . . . 147
4.5 Extreme Value and Intermediate Value Theorems . . . . . . . . . . . . . . . . . . 153
4.6 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

ix



x Contents

4.7 Approximation by Step, Piecewise Linear,
and Polynomial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.1 Metrics and Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.2 Topology of a Metric Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.3 Limits, Cauchy Sequences, and Completeness . . . . . . . . . . . . . . . . . . . . . 191
5.4 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.5 Uniform Continuity and Continuous Extensions . . . . . . . . . . . . . . . . . . . 207
5.6 Compact Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
5.7 Connected Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6 The Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
6.1 Differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
6.2 Derivatives of Elementary Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
6.3 The Differential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
6.4 Mean Value Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
6.5 L’Hôpital’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
6.6 Higher Derivatives and Taylor’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
6.7 Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
6.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

7 The Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
7.1 Tagged Partitions and Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
7.2 Some Classes of Integrable Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
7.3 Sets of Measure Zero and Lebesgue’s Integrability Criterion . . . . . . 306
7.4 Properties of the Riemann Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
7.5 Fundamental Theorem of Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
7.6 Functions of Bounded Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
7.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

8 Sequences and Series of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
8.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
8.2 Pointwise and Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
8.3 Uniform Convergence and Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . . 356
8.4 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
8.5 Elementary Transcendental Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
8.6 Fourier Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
8.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

9 Normed and Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
9.1 Norms and Normed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
9.2 Banach Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
9.3 Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432



Contents xi

9.4 Function Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
9.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

10 Lebesgue Measure and Integral in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465
10.1 Outer Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
10.2 (Lebesgue) Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
10.3 The Lebesgue Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
10.4 Convergence Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
10.5 Littlewood’s Other Principles and Modes of Convergence . . . . . . . . . 511
10.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

11 More on Lebesgue Integral and Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
11.1 Lebesgue vs. Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
11.2 Dependence on a Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
11.3 Lp-Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
11.4 More on Modes of Convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
11.5 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
11.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

12 General Measure and Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
12.1 Measures and Measure Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
12.2 Measurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
12.3 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
12.4 Product Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
12.5 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
12.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

A Construction of Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667



Chapter 1
Set Theory

Set theory is an important part of the foundation of mathematics and its rigorous
treatment is beyond the scope of this book. The material in this chapter is included
mainly to make the book self-contained as far as elementary set theory is concerned.
Consequently, the readers need not go through the entire chapter to proceed further.
In fact, they can skip most sections and return to the corresponding topics later if a
reference makes it necessary. The first section introduces rings and algebras of sets
and the standard set theory notation to be used throughout the book. Next, relations
and functions are briefly covered, including equivalence and order relations. The
third section is a quick review of algebraic structures (groups, rings, etc.) and some
elementary number theory and combinatorial questions. Finally, the last section
covers infinite direct products and cardinal numbers. Most readers of this book
may have already seen the material covered in this chapter before, possibly in
slightly different form. It should be pointed out that the topics in this chapter will be
referred to on several occasions in subsequent chapters and most of the results will
be needed later.

1.1 Rings and Algebras of Sets

A set, S , will be defined as a “collection” (or “family”) of “objects” called elements.
The statement “s is an element of S” will be denoted s 2 S , and its negation will be
denoted s 62 S . The set with no elements will be called the empty set and denoted ;.
Given a pair of sets, S and T , we say that S is a subset of T , and write S � T ,
if each element of S is an element of T . Again the negation of the statement will
be denoted S 6� T . One obviously has ; � S for any set S: We write S D T if
both S � T and T � S . S is called a proper subset of T if S � T; but S 6D T .
In this case we also say that the inclusion S � T is a proper inclusion and use the
notation S ¤ T . We shall constantly use the notation S D ft 2 T W P.t/g to denote
the set of all elements in T for which the property P holds. In most problems, all

© Springer Science+Business Media New York 2014
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1



2 1 Set Theory

the sets we consider are subsets of a fixed (large) set, called the universal set or
the universe of discourse, which we denote by U . We will usually assume that such
a universe has been chosen, especially when complements of sets (to be defined
below) are involved in the discussion. Before defining the basic operations on sets,
let us introduce a notation which will be used throughout the book.

Notation 1.1.1. Given a pair of mathematical expressions P and Q, involving one
or more variables, we write P WD Q if the right side (i.e., the expression Q) is the
definition of the left side (i.e., the expression P ).

Definition 1.1.2 (Union, Intersection, etc.). Given two sets S and T , both subsets
of a universal set U , we define their union to be the set

S [ T WD fx 2 U W x 2 S or x 2 T g:

Their intersection is defined by

S \ T WD fx 2 U W x 2 S and x 2 T g:

We define the complement of S (with respect to the fixed set U ) to be the set

Sc WD fx 2 U W x 62 Sg:

We also define the difference set S n T by

S n T WD fx 2 S W x 62 T g D S \ T c;

and the symmetric difference of S and T by

S4T WD .S n T / [ .T n S/ D .S [ T / n .S \ T /:

Finally, we define the power set of S , denoted P.S/, to be the set of all subsets of S :

P.S/ WD fA � U W A � Sg:

Two sets S and T are called disjoint if S\T D ;:Given any set S , we obviously
have S\S D S[S D S , S\Sc D ;, S\U D S , and S[U D U . The following
properties are also immediate consequences of the definitions. The reader is invited
to prove them as an exercise. Recall that S D T if and only if S � T � S: Thus,
one can prove S D T by the “elementwise method”, i.e., by showing that every
element of S belongs to T and vice versa:

A [ B D B [ A; and A \ B D B \ A;
A � A [ B; and A D A [ B , B � A;
A \ B � A; and A D A \ B , A � B;
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A [ .B [ C/ D .A [ B/ [ C D A [ B [ C;
A \ .B \ C/ D .A \ B/ \ C D A \ B \ C;

A [ .B \ C/ D .A [ B/ \ .A [ C/;
A \ .B [ C/ D .A \ B/ [ .A \ C/;

;c D U; and U c D ;;
.Ac/c D A; A [ Ac D U; A \ Ac D ;;

A � B , Bc � Ac:

We will frequently use the following laws, called De Morgan’s laws, that relate the
complements to unions and intersections:

.A [ B/c D Ac \ Bc;

.A \ B/c D Ac [ Bc:

Unions and intersections may also be defined for families of sets: Suppose that
we are given an index set, ƒ, and that, for each � 2 ƒ; we are given a set A� � U:
We then define the union and intersection of the A� by

[

�2ƒ
A� W D fx 2 U W .9� 2 ƒ/.x 2 A�/g;

\

�2ƒ
A� WD fx 2 U W .8� 2 ƒ/.x 2 A�/g;

where the universal quantifier “8” means “for all”, and the existential quantifier “9”
means “there exists”, or “for some”.

If the index set is the set of natural numbers N WD f1; 2; 3; : : :g, then we have a
sequence of sets An, and their union and intersection are given by

[

n2N
An D fx 2 U W .9 n 2 N/.x 2 An/g;

\

n2N
An D fx 2 U W .8 n 2 N/.x 2 An/g:

De Morgan’s laws are also valid for families of sets:

�

[

A�
�c D

\

Ac�;

�

\

A�
�c D

[

Ac�;

where the unions and intersections are obviously over all � 2 ƒ:
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To demonstrate the elementwise method, let us prove the first De Morgan law:
.
S

�2ƒ A�/c D
T

�2ƒ Ac�: Now, x 2 .S�2ƒ A�/c if and only if x 62 S�2ƒ A�,
which (by the definition of

S

�2ƒ A�) happens if and only if x 62 A� for all � 2 ƒ:
But this is equivalent to x 2 Ac� for all � 2 ƒ, which (by the definition of

T

�2ƒ Ac�)
means x 2T�2ƒ Ac�:

Exercise 1.1.3. Prove the following properties of the symmetric difference for
arbitrary sets A; B; C , and D:

(a) ;4A D A,
(b) A4A D ;,
(c) A4B D B4A,
(d) A4B D Ac4Bc ,
(e) A4.B4C/ D .A4B/4C ,
(f) A4B � .A4C/ [ .C4B/,
(g) .A [ B/4.C [D/ � .A4C/ [ .B4D/,
(h) .A \ B/4.C \D/ � .A4C/ [ .B4D/,
(i) .A n B/4.C nD/ � .A4C/ [ .B4D/,
(j) A4B D C” B D A4C:
Hints: (a), (b), (c), and (d) follow at once from the definition. To prove the
associative property (e), first use the definition to show that the left side is equal to

ŒA n .B [ C/� [ ŒB n .C [ A/� [ ŒC n .A [ B/� [ .A \ B \ C/:

Now show that this is also the right side using the commutativity

.A4B/4C D C4.A4B/

and simple substitutions. For (f), use the inclusions

A n B � .A n C/ [ .C n B/; B n A � .C n A/ [ .B n C/:

To show (g), use the inclusion

.A [ B/ n .C [D/ � .A n C/ [ .B nD/:

Next, note that (h) follows from (g), (d), and De Morgan’s laws and (i) follows
from (h) and the fact that A n B D A \ Bc: Finally, to prove (j), show that
A4.A4B/ D B .

Notation 1.1.4 (Standard Set Notation). Throughout the book we shall use the
following standard notation for some frequently used sets: The set of natural
numbers will be denoted by N WD f1; 2; 3; : : :g and the set of nonnegative integers
by N0 WD f0; 1; 2; : : :gI the set of all integers by Z WD f0; ˙1; ˙2; ˙3; : : :g, and
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the set of rational numbers by Q WD fm=n W m; n 2 Z; n ¤ 0g: We shall use R

for the set of all real numbers and C WD RC iR (with i D p�1) for the set of all
complex numbers. The sets of all positive elements of Z; Q, and R will be denoted
by ZC; QC, and RC, respectively. Note that ZC D N:

Definition 1.1.5 (Rings and Algebras of Sets). A nonempty set R � P.U / is
called a ring (of subsets of U ) if A[B and A nB are in R whenever A and B are.
A ring A is called an algebra if U 2 A: The ring R (resp., the algebra A) is called
a � -ring (resp., a � -algebra) if it is closed under countable unions:

An 2 R; n D 1; 2; 3; : : : H)
[

n2N
An 2 R;

and similarly for A:

Remark 1.1.6. The set U is called the unit. It is easily seen that f;g and the set of
all finite subsets of U are rings, and the latter is an algebra if and only if U itself is
finite. Also, the power set P.U / is an algebra of sets, and so is f;; U g: It should be
noted that, by Exercise 1.1.3, a subset R � P.U / is a ring if and only if A4B and
A \ B are in R whenever A and B are.

Exercise 1.1.7.

(a) Show that a ring R is closed under symmetric differences as well as finite unions
and intersections. In other words,

A 2 R; B 2 R H) A4B 2 R;

A1; : : : ; An 2 R H)
n
[

kD1
Ak 2 R;

A1; : : : ; An 2 R H)
n
\

kD1
Ak 2 R:

(b) Show that a ring R is an algebra if and only if, for each A 2 R, we have
Ac 2 R:

Remark 1.1.8. One can show, as an exercise, that a ring R (resp., an algebra A/ in
the above sense is, indeed, a ring (resp., a ring with unit element) in the algebraic
sense (cf. Definition 1.3.7 and Remark 1.3.8(c) in this chapter) under the operations
of addition and multiplication defined by

AC B WD A4B; and AB WD A \ B:

The following proposition shows that any collection of subsets of a nonempty set
U can generate an algebra (or � -algebra):
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Proposition 1.1.9. Let U be a nonempty set and let C � P.U / be any collection
of subsets of U: Then there is a smallest algebra (resp., � -algebra) AC such that
C � AC : In other words, AC is an algebra (resp., � -algebra) containing C, and if B
is any algebra (resp., � -algebra) with C � B, then AC � B:

Proof. We prove the existence of a smallest algebra. The case of a � -algebra is
obtained by minor modifications. Let F be the family of all algebras (of subsets of
U ) which contain C, and note that P.U / 2 F : Define AC WD T

B2F B: Then we
have C � B, for each B 2 F , so that C � AC : Next, if A; B 2 AC , then A; B 2 B
for each B 2 F : Since B is an algebra, A[B 2 B and A nB � B for each B 2 F :
Therefore, A [ B 2 AC and A n B 2 AC . ut

1.2 Relations and Functions

To define relations we need the concept of Cartesian product of sets, which we now
define.

Definition 1.2.1 (Cartesian Product). Given two elements a; b 2 U , the set
fa; bg will be called an unordered pair. We also define the ordered pair .a; b/ WD
ffag; fa; bgg, in which a is the first element and b is the second element. Thus
.a; b/ D .c; d/ if and only if a D c and b D d: Now let A and B be two sets. We
define their Cartesian (or direct) product by

A � B WD f.a; b/ W a 2 A; b 2 Bg:

In a similar way, we define (ordered) triples, quadruples,. . . , n-tuples, which we
denote by .a; b; c/; .a; b; c; d/; : : : ; .a1; a2; : : : ; an/: The Cartesian product of the
sets A1; A2; : : : ; An is defined to be

n
Y

kD1
Ak D A1 � � � � � An WD f.a1; : : : ; an/ W a1 2 A1; : : : ; an 2 Ang;

and .a1; a2; : : : ; an/ D .b1; b2; : : : ; bn/ if and only if aj D bj for 1 � j � n:
Exercise 1.2.2. For arbitrary sets A; B; C , and D, show that

(a) A � B D ; , A D ;; or B D ;,
(b) A � B and C � D ) A � C � B �D,
(c) .A [ B/ � C D .A � C/ [ .B � C/,
(d) .A \ B/ � .C \D/ D .A � C/ \ .B �D/:
Definition 1.2.3 (Relation, Inverse, Composition). Given any sets X and Y , a
relation from (a subset of) X to Y is a subset R � X � Y: We say that x is R-
related to y if .x; y/ 2 R, which we also write xRy: If f � X � Y is a relation,
we define its domain and range by
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dom.f / W D fx 2 X W .9y 2 y/..x; y/ 2 f /g;
ran.f / W D fy 2 Y W .9x 2 X/..x; y/ 2 f /g:

The inverse of a relation f � X � Y is the relation

f �1 WD f.y; x/ W .x; y/ 2 f g � Y �X:

Given two relations f � X � Y and g � Y �Z, their composition (or composite)
is the relation from (a subset of) X to Z defined by

g ı f WD f.x; z/ 2 X �Z W .9y 2 Y /..x; y/ 2 f; .y; z/ 2 g/g � X �Z:

Note that we have

g ı f ¤ ; ” ran.f / \ dom.g/ ¤ ;:

Definition 1.2.4 (Restriction, Extension). Let f; g � X � Y be two relations.
If f � g, we say that f is a restriction of g or that g is an extension of f: If
dom.f / D D, then f � g is also denoted by f D gjD:
Definition 1.2.5 (Equivalence Relation). A relation R � X � X is called an
equivalence relation on X if it is

reflexive: .x; x/ 2 R 8x 2 X;
symmetric: .x; y/ 2 R) .y; x/ 2 R; and

transitive: .x; y/ 2 R and .y; z/ 2 R ) .x; z/ 2 R:

Example 1.2.6.

(a) The simplest example of an equivalence relation on a set X is equality; i.e., “x
is related to y” simply means x D y: The corresponding subset of X � X is
then the diagonal �X WD f.x; x/ W x 2 Xg:

(b) A more interesting and widely used example is the relation of congruence
modulo n (where n 2 N is a fixed positive integer) on the set Z of all integers:
For two integers a; b 2 Z, it is defined by

a � b .mod n/ ” b � a D kn for some k 2 Z:

Notation 1.2.7. Notice the use of xRy to indicate .x; y/ 2 R in the above
examples. It is also a common practice to use notation such as � or 	 (rather than
R) to denote an equivalence relation. Hence we write, for instance,� � X �X and
x � y will then mean that x and y are equivalent.
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Definition 1.2.8 (Equivalence Class, Quotient Set). Let R � X � X be an
equivalence relation on X: For each element x 2 X , the set

Œx� WD fy 2 X W yRxg

is said to be the equivalence class of x and the element x is called a representative
of the class Œx�: The set of all equivalence classes is denoted by X=R and is called
the quotient set of X by R:

X=R D fŒx� W x 2 Xg:

Definition 1.2.9 (Partition). A partition of a nonempty set X is a collection of
sets fX�g�2ƒ such that ; ¤ X� � X for all � 2 ƒ; X�\X� D ; for all �; � 2 ƒ
with � ¤ �, and X DS�2ƒ X�: In other words, a partition divides the set X into a
collection of pairwise disjoint and nonempty subsets whose union is X:

The following theorem which shows that, for a given (nonempty) set X ,
the sets of “equivalence relations” on X and “partitions” of X are in one-to-
one correspondence has many applications including some interesting ones in
combinatorial questions.

Theorem 1.2.10 (Equivalence Relations and Partitions). Let X be a nonempty
set and let R � X � X be an equivalence relation on X: Then the equivalence
classes of the elements of X form a partition of X: Conversely, given any partition
fX�g�2ƒ of X , the relation

R WD f.x; y/ 2 X �X W x; y 2 X� for some � 2 ƒg (�)

is an equivalence relation onX whose equivalence classes are precisely the setsX�.

Proof. Let R be an equivalence relation on X: Then for each x 2 X , we have xRx
and hence x 2 Œx�, so that Œx� ¤ ;: Next, we show that for any x; y 2 X , either
Œx� D Œy� or Œx� \ Œy� D ;: Indeed, if xRy, then z 2 Œy� implies zRy (or, by
symmetry, yRz) and hence (by transitivity) xRz so that z 2 Œx�: Thus, we have the
inclusion Œy� � Œx�: A similar argument shows that Œx� � Œy� and hence Œx� D Œy�:

On the other hand, if xR=y (i.e., if .x; y/ 62 R), then we must have Œx� \ Œy� D ;
since otherwise z 2 Œx� \ Œy� implies Œx� D Œz� D Œy�, by what we just proved, and
we get xRy: Finally, since x 2 Œx� 8x 2 X , we have X D S0

Œx�, where
S0 is

the union of pairwise disjoint classes. Conversely, let fX�g�2ƒ be a partition of X
and let R be the relation defined by .�/: Then R is immediately seen to be reflexive,
symmetric, and transitive. (Why?) ut
Example 1.2.11.

(a) As we saw above, equality, which corresponds to the diagonal �X WD f.x; x/ W
x 2 Xg, is a trivial equivalence relation on an arbitrary set X ¤ ;: For each
x 2 X , we have Œx� D fxg and hence

X=�X D ffxg W x 2 Xg;
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which is why it is customary to identify the two sets and writeX=�X D X even
though this is not really an equality.

(b) On the set Z of all integers, congruence modulo n, defined above, is an
equivalence relation. For each a 2 Z, its equivalence class is Œa� D a C nZ,
where nZ WD fnk W k 2 Zg, and the set of all equivalence classes is denoted by
Zn: Since the possible remainders upon division by n are 0; 1; 2; : : : ; n � 1,
we have

Zn D f0; 1; 2; : : : ; n � 1g;

where, for simplicity, we write Œk� D k:
Definition 1.2.12 (Partial Ordering). Given a set X , a relation R � X � X is
called a partial ordering on X if it is

reflexive: .x; x/ 2 R 8x 2 X;
antisymmetric: .x; y/ 2 R and .y; x/ 2 R ) x D y; and

transitive: .x; y/ 2 R and .y; z/ 2 R ) .x; z/ 2 R:

If R is a partial ordering on a set X , then we say that X is a partially ordered set.

Notation 1.2.13. If R � X � X is an arbitrary partial ordering on a set X , then
xRy will be denoted by x 
 y: We also use x � y to mean x 
 y and x ¤ y:

Note that the usual ordering “�” on the sets N; Z; Q, and R is obviously a
partial ordering (in fact a total ordering, as defined below) on those sets. Also, the
inclusion “�” is a partial ordering on P.U / which is not total if U contains more
than one element.

Definition 1.2.14 (Linear (or Total) Ordering, Chain). Let X be a partially
ordered set with partial ordering “
.” Two elements x and y are called comparable
if x 
 y or y 
 x: The set X is called linearly ordered, or totally ordered, if for
any x; y 2 X; x and y are comparable. A linearly ordered set is also called a chain.

Definition 1.2.15 (Maximal and Minimal Elements). Let X be a partially
ordered set. An element u 2 X is called maximal if, for any v 2 X; u 
 v
implies u D v: Similarly, an element t 2 X is called minimal if s 2 X and s 
 t
imply s D t:
Definition 1.2.16 (Upper and Lower Bounds, Sup, Inf, etc.). Let S be a subset
of a partially ordered setX: Then an element u 2 X (resp., t 2 X/ is called an upper
bound (resp., a lower bound) of S if s 
 u (resp., t 
 s) for all s 2 S . u is called
the least upper bound or supremum of S and denoted by u D sup.S/ (or supS ) if
u is an upper bound of S and if, for any upper bound v of S , we have u 
 v: The
greatest lower bound or infimum of S , denoted by t D inf.S/ (or infS ), is defined
similarly. If u D sup.S/ 2 S , then we write u D sup.S/ D max.S/ (or maxS ). u
is then called the greatest element or maximum of S . Similarly, if t D inf.S/ 2 S ,
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then we write t D inf.S/ D min.S/ (or minS ). The element t is then the least
element or minimum of S:

Definition 1.2.17 (Bounded Set). Let X be a partially ordered set, and let S � X:
We say that S is bounded if it is bounded both above and below; in other words, if
there are elements t; u 2 X such that t 
 s 
 u for all s 2 S:

The most important fact about partially ordered sets, chains, upper bounds, and
maximal elements is the following lemma which is equivalent to the Axiom of
Choice:

Lemma 1.2.18 (Zorn’s Lemma). If X is a partially ordered set in which every
chain has an upper bound, then X contains a maximal element.

Example 1.2.19.

(a) Consider the power set P.U / with the partial ordering � and suppose that, for
each element of an index set ƒ, we are given a set A� � U: Then we have

supfA� W � 2 ƒg D
[

�2ƒ
A�;

inffA� W � 2 ƒg D
\

�2ƒ
A�:

In particular, supP.U / D maxP.U / D U , and infP.U / D minP.U / D ;:
(b) Consider the set Z of integers, ordered by the partial ordering: “m 
 n, if and

only if mjn, i.e., if and only if m divides n.” Then we have

supfm; ng D lcm.m; n/ D least common multiple of m and n;

inffm; ng D gcd.m; n/ D greatest common divisor of m and n:

Warning. There is an important distinction between minimal and least elements.
For example, for the collection P.U / n f;g of all nonempty subsets of U (partially
ordered by “�”), each singleton fxg; x 2 U; is a minimal element, but, unless
U itself is a singleton, there is no least element. Similarly one should distinguish
between maximal and greatest elements.

Definition 1.2.20 (Well Ordering). A partial ordering “
” on a set X is called a
well ordering, and the setX is called well ordered, if for any subset S � X; S ¤ ;,
we have inf.S/ 2 S I in other words, if every nonempty subset of X has a least
element.

Remark 1.2.21. Note that a well-ordered set X is automatically a chain (i.e.,
linearly ordered). Indeed, for any pair of elements a; b 2 X , the nonempty subset
fa; bg must have a least element, so that a 
 b or b 
 a:
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Example 1.2.22.

(a) (Well-Ordering Axiom). Under the usual ordering “�,” the set N of all natural
numbers is well ordered. More generally, for any n 2 Z, the set Tn D fk 2 Z W
k � ng is well ordered.

(b) The sets Z and f1=n W n 2 Ng are not well ordered.

The following consequence of the Well-Ordering Axiom of the set N of natural
numbers is a powerful tool for many proofs:

Proposition 1.2.23 (Principle of Mathematical Induction). If a subset S � N

satisfies the following two conditions:

(i) 1 2 S;
(ii) n 2 S ) nC 1 2 S;
then we have S D N:

Proof. If S ¤ N; let m D min.N n S/: Then m � 1 62 N n S , which means that
m � 1 2 S: But then, by (ii), .m � 1/C 1 D m 2 S , which is absurd. ut

Another way of stating the principle is this: If, for each n 2 N; P.n/ is a
statement about n, and if we are given that P.1/ is true and that, for each natural
number k; P.k C 1/ is true whenever P.k/ is, then P.n/ is true for all n 2 N:

Indeed, we then simply define S WD fn 2 N W P.n/g:
Definition 1.2.24 (Initial Segment). LetX be a partially ordered set. For each x 2
X , the initial segment determined by x, denoted by s.x/, is the subset s.x/ WD fy 2
X W y � xg:
Proposition 1.2.25 (Principle of Transfinite Induction). Let X be a well-ordered
set and let S � X satisfy the following condition:

8x 2 X; s.x/ � S ) x 2 S:

Then S D X:
Proof. First, note that S ¤ ;: Indeed, if x0 WD min.X/ 2 X , then s.x0/ D ; � S ,
which implies x0 2 S: Next, if X n S ¤ ;, let � WD min.X n S/ 2 X n S: Then
s.�/ � S: But this implies � 2 S , which is absurd. ut
Corollary 1.2.26 (Principle of Strong Induction). If S � N satisfies the condi-
tion .8n 2 N/.fk 2 N W k < ng � S ) n 2 S ), then S D N: Equivalently, let
P.n/ be a statement about n for each n 2 N: If (i) P.1/ is true and (ii) P.n/ is true
whenever P.k/ is true for all 1 � k < n, then P.n/ is true for all n 2 N:

Remark 1.2.27. The Principle of Strong Induction is in fact equivalent to the
Principle of Mathematical Induction (Proposition 1.2.23). The reader is invited to
supply the proof (cf. Exercise 1.2.28 below). There are many situations where this
“strong” version is the appropriate one to use. An important example is the proof of
the Prime Factorization Theorem (cf. Corollary 1.3.45 of Proposition 1.3.39 below).
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Exercise 1.2.28. Show that the Principle of Strong Induction is in fact (logically)
equivalent to the Principle of Mathematical Induction (i.e., Proposition 1.2.23).

The most important fact about well ordering is the following theorem which is
equivalent to the Axiom of Choice. The proof, which we omit, may be found, e.g.,
in Suppes’s Axiomatic Set Theory [Sup60].

Theorem 1.2.29 (Well-Ordering Theorem of Zermelo). Every set X can be well
ordered. In other words, there exists an order relation “
” on X which is a well
ordering.

Definition 1.2.30 (Directed Set, Lattice). Let “
” be a partial ordering on a setX:
We say that X is directed if every pair of elements a; b 2 X has an upper bound
in X: We say that X is a lattice if, for every pair of elements a; b 2 X , we have
supfa; bg; inffa; bg 2 X I we then write a _ b WD supfa; bg and a ^ b WD inffa; bg:
It is obvious that if a and b are comparable, then a _ b D maxfa; bg is the greater
of a and b, and a ^ b D minfa; bg is the lesser of a and b:

Using the above definitions and notation, one can prove the following identities,
which are quite obvious for the usual ordering on the set of real numbers.

Proposition 1.2.31 (Lattice Identities). Let X be a partially ordered set and let
fx; y; zg be a chain in X: Then the following identities are satisfied:

1. x ^ x D x; x _ x D x (idempotent);
2. x ^ y D y ^ x; x _ y D y _ x (commutative);
3. x ^ .y ^ z/ D .x ^ y/ ^ z; x _ .y _ z/ D .x _ y/ _ z (associative);
4. x ^ .x _ y/ D x _ .x ^ y/ D x (absorption);
5. x 
 y ” x ^ y D x ” x _ y D y (consistency);
6. x^ .y_ z/ D .x^y/_ .x^ z/; x_ .y^ z/ D .x_y/^ .x_ z/ (Distributive).

Proof. Exercise! ut
Remark 1.2.32.

(a) A lattice X in which the identity (6) holds for all elements x; y; z 2 X is
called a distributive lattice. Note that, in the distributive property (6) above, the
two distributive relations are equivalent; i.e., each is a consequence of the other.

(b) Using the associative property, one can inductively define the ^ and _ opera-
tions for any finite chain fx1; x2; : : : ; xng � X: In this case we write

n̂

iD1
xi WD x1 ^ � � � ^ xn; and

n
_

iD1
xi WD x1 _ � � � _ xn:

Exercise 1.2.33 (Lexicographic Ordering on N � N). On the set N�N, where N
is the set of natural numbers, define the partial ordering

.a; b/ 
 .c; d/ ” a < c; or a D c and b � d;
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where “<” and “�” have their usual meanings. Show that “
” is a well ordering
on N � N: This dictionary ordering is one of the many possible ways of ordering a
(Cartesian) product.

Definition 1.2.34 (Function). Given two sets X and Y , a relation f � X � Y is
called a function (also called a mapping, or simply a map) if it is single-valued; in
other words, if we have

.x; y1/; .x; y2/ 2 f ) y1 D y2:

If .x; y/ 2 f , the (unique) element y 2 Y is denoted by y D f .x/: The set
dom.f / WD fx 2 X W .9y 2 Y /..x; y/ 2 f /g � X is called the domain of f , and
the set ran.f / WD fy 2 Y W .9x 2 X/..x; y/ 2 f /g D ff .x/ W x 2 dom.f /g � Y
is called the range of f: If dom.f / D X , then we say that f is a function from X

to Y and write f W X ! Y: In this case we also define f , informally, as a rule
which assigns to each x 2 X a unique y D f .x/ 2 Y:We may also use the notation
x 7! y D f .x/:
Notation 1.2.35. The set of all functions from a set X to a set Y will be denoted by
Y X: Occasionally, we may also use F.X; Y /:

Definition 1.2.36 (Sequence). Let X be a set. A sequence in X is a function x W
N ! X: We write x.n/ D xn, and x D .xn/ D .xn/n2N D .x1; x2; : : : ; xn; : : :/:

The element xn WD x.n/ is called the nth term of the sequence x: Using the above
notation, the set of all sequences in X will be denoted by XN:

Definition 1.2.37 (Direct and Inverse Images). Given a function f W X ! Y and
subsets A � X; B � Y , we define the (direct) image of A under f by

f .A/ WD ff .a/ W a 2 Ag

and the inverse image of B under f by

f �1.B/ WD fx 2 X W f .x/ 2 Bg:

Note, in particular, that ran.f / D f .X/: Also, if B D fyg � Y , then we write

f �1.y/ WD f �1.fyg/:

Example 1.2.38. Let f W R! R be the function f .x/ D x2:We then have f .R/ D
Œ0;1/ and f �1.Œ0; 1�/ D Œ�1; 1�, while f �1.Œ�1; 0// D ;:
Exercise 1.2.39. Let f W X ! Y be a function. Suppose that for an index set I we
have for each i 2 I a subset Ai � X and a subset Bi � Y: Show that

(a) f .
S

i2I Ai / D
S

i2I f .Ai /,
(b) f .

T

i2I Ai / �
T

i2I f .Ai /,
(c) f �1.

S

i2I Bi / D
S

i2I f �1.Bi /,
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(d) f �1.
T

i2I Bi / D
T

i2I f �1.Bi /,
(e) f �1.Y n B/ D X n f �1.B/ for any subset B � Y;
(f) f �1.B1 n B2/ D f �1.B1/ n f �1.B2/ for any subsets B1; B2 � Y , and
(g) f �1.B14B2/ D f �1.B1/4f �1.B2/ for any B1; B2 � Y:
Definition 1.2.40 (One-to-One, Onto, etc.). Let f W X ! Y be a function. We
say that f is one-to-one, or injective, if for all x1; x2 2 X with x1 ¤ x2, we have
f .x1/ ¤ f .x2/: We say that f is onto, or surjective, if ran.f / D f .X/ D Y:

Finally we say that f is a one-to-one correspondence, or is bijective, if it is both
one-to-one and onto.

Example 1.2.41.

(a) (Canonical Projection) Let R � X � X be an equivalence relation on a set
X and let X=R be the corresponding quotient set as in Definition 1.2.8 (i.e.,
the set of all equivalence classes). The canonical projection is then the function
	 W X ! X=R defined by

	.x/ WD Œx� 8x 2 X:

It is obviously a surjective (i.e., onto) map.
(b) Let A D fa1; a2; : : : ; amg and B D fb1; b2; : : : ; bng be two finite sets. Define

f W A � B ! f1; 2; : : : ; mng by f .ai ; bj / WD .i � 1/nC j; 1 � i � m; 1 �
j � n: Then f is bijective (why?).

(c) Let A1; A2; : : : ; Ak be sets and define g W A1 � A2 � � � � � Ak ! .A1 � A2 �
� � � �Ak�1/�Ak by g.a1; a2; : : : ; ak�1; ak/ WD

�

.a1; a2; : : : ; ak�1/; ak
�

: Then g
is clearly a bijective map.

Definition 1.2.42 (Permutation). Given a set X , a one-to-one correspondence f W
X ! X is called a permutation of X:

Example 1.2.43. Let f; g, and h be functions from R to R defined by f .x/ WD
x2; g.x/ WD x3 C x2, and h.x/ WD x3 8x 2 R: Then f is neither one-to-one
nor onto, g is onto but not one-to-one, and h is a one-to-one correspondence, i.e., a
permutation of R:

Definition 1.2.44 (Composite Functions). Given the sets X; Y; Z and functions
f W X ! Y; g W Y ! Z, the composite function g ı f W X ! Z is defined by

.g ı f /.x/ WD g.f .x// 8x 2 X:

Definition 1.2.45 (Inverse Function). Given a one-to-one function f W X ! Y ,
the inverse relation f �1 D f.y; x/ W y D f .x/g � Y � X is a function called
the inverse of f: If the function f is a one-to-one correspondence, then the inverse
function f �1 has domain Y , i.e., f �1 W Y ! X , and we have f ı f �1 D idY ,
while f �1 ı f D idX , where, for any set S , the identity function idS is defined by
idS .s/ WD s 8s 2 S:
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Remark 1.2.46.

(a) (Associativity of Composition). The composition of functions is associative in
the sense that, for any functions f W S ! T; g W T ! U , and h W U ! V ,
we have

h ı .g ı f / D .h ı g/ ı f:

This follows at once from the definition of composition: 8s 2 S ,

.hı.gıf //.s/ D h..gıf /.s// D h.g.f .s/// D .hıg/.f .s// D ..hıg/ıf /.s/:

(b) If f W X ! Y is not injective, the inverse relation f �1 WD f.y; x/ W .x; y/ 2 f g
is not a function since one can then find x1; x2 2 X and y 2 Y with x1 ¤ x2
but f .x1/ D f .x2/ D y, so that f �1 contains the pairs .y; x1/; .y; x2/ and
hence is not single-valued.

Exercise 1.2.47. Let X and Y be sets, A � X; B � Y; f W X ! Y , and
g W Y ! X:

1. Show that, if X D Y and if f and g are permutations of X , then so are f �1
and g ı f .

2. Show that, if g ı f D idX , then f is one-to-one and g is onto.
3. Show that f .f �1.B// � B and that equality holds if f is onto. Show by

example that the inclusion is proper in general.
4. Show that A � f �1.f .A// and that equality holds if f is one-to-one. Show by

example that the inclusion is proper in general.

Exercise 1.2.48. Let f W X ! Y be a one-to-one function. Show that for any
subsets A; B � X , we have

(a) f .A \ B/ D f .A/ \ f .B/,
(b) f .X n A/ D f .X/ n f .A/:
(c) Show by examples that the statements in (a) and (b) are false if f is not one-to-

one.

The following exercise provides a large class of equivalence relations that
includes most commonly encountered cases.

Exercise 1.2.49. Let X ¤ ; and S be sets and let f W X ! S be an arbitrary map.
Define the relation

Rf WD f.x; y/ 2 X �X W f .x/ D f .y/g:

Show that Rf is an equivalence relation. Also, show that the equivalence classes
are the sets

f �1.s/ WD fx 2 X W f .x/ D sg 8s 2 f .X/:
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Recall that the equivalence class of an element x 2 X is the set

Œx� WD fy 2 X W .x; y/ 2 Rf g:

Definition 1.2.50 (Finite and Infinite Sets). A set S is called finite if either S D ;
or there is a one-to-one correspondence between S and the set f1; 2; 3; : : : ; ng, for
some n 2 N: We then say that S has n elements and write jS j D n: A set that is not
finite is called infinite.

Example 1.2.51. It follows from Example 1.2.41(b) that if A and B are finite sets
with m and n elements, respectively, then their Cartesian product A � B is a finite
set withmn elements. Inductively, using Example 1.2.41(c), ifAj is a finite set with
nj elements, 1 � j � k, then the Cartesian product …k

jD1Aj is a finite set with
n1n2 � � �nk elements. It is obvious that the standard sets N; N0; Z; Q; R, and C are
all infinite.

Definition 1.2.52 (Characteristic Function). Let X be a set and A � X: The
characteristic function (or indicator function) of the set A, denoted by 
A (or 1A),
is defined by


A.x/ D 1A.x/ WD
(

1 if x 2 A;
0 otherwise.

Example 1.2.53. Given a universal set U , we obviously have 
U D 1 and 
; D 0,
where by 1 and 0 we mean the constant functions identically equal to 1 and 0,
respectively. Let S � U be any set, and let � D �S D f.s; s/ W s 2 Sg be the
diagonal in S � S: Then Kronecker’s delta, ı WD 
�, is the characteristic function
of �:

ıxy WD ı.x; y/ WD
(

1 if x D y;
0 if x ¤ y:

Exercise 1.2.54. LetX be a set and P.X/ its power set. Consider the set f0; 1gX of
all functions from X to f0; 1g, which we also denote by 2X , and define the function

 W P.X/! 2X by 
.A/D 
A: Show that 
 is a one-to-one correspondence.

Exercise 1.2.55. Prove the following properties of the characteristic function. Here,
A; B; A1; : : : ; Ak are arbitrary subsets of a universal set U :

(a) A � B , 
A � 
B ,
(b) 
A\B D 
A
B D minf
A; 
Bg;
(c) 
Ac D 1 � 
A,
(d) 
A[B D 1 � .1 � 
A/.1 � 
B/ D maxf
A; 
Bg D 
A C 
B � 
A
B;
(e) 
A4B D j
A � 
B j,
(f) 
A1\A2\���\Ak D

Qk
jD1
Aj , and 
A1[A2[���[Ak D 1 �

Qk
jD1.1 � 
Aj /,
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(g) if A is finite, then jAj D †x2U
A.x/, and
(h) (Inclusion–Exclusion Principle) if A and B are finite, then jA [ Bj D jAj C
jBj � jA \ Bj:

Definition 1.2.56 (Bounded Function). LetX and Y be sets, and assume that Y is
partially ordered. A function f W X ! Y is called bounded above (resp., below) if
its range f .X/ � Y is bounded above (resp., below) in Y I i.e., if there exists z 2 Y
(resp., y 2 Y ) such that f .x/ 
 z (resp., y 
 f .x/) for all x 2 X: The function
f is called bounded if it is bounded both above and below; otherwise, we call it
unbounded.

Example 1.2.57. Let f; g; h be the functions from R to R defined by f .x/ WD
sin x; g.x/ WD x2, and h.x/ WD x3 8x 2 R: Then f is bounded (�1 � sin x �
1 8x), g is bounded below (0 � x2 8x) but not above, and h is neither bounded
above nor bounded below.

1.3 Basic Algebra, Counting, and Arithmetic

Our goal in this section is to give a brief summary of the most basic definitions
and terminology in algebra, counting, and arithmetic. These will be needed on
various occasions in the upcoming chapters of the text. Most readers have already
encountered in other courses more detailed accounts of the topics we briefly
cover here. We start with the definitions of commonly used algebraic structures,
namely, groups, rings, fields, vector spaces, and algebras. We then introduce the
Basic Counting Principle as well as the Inclusion–Exclusion Principle and end
the section with some elementary facts from arithmetic. The reader is referred to
the excellent textbooks Topics in Algebra by Herstein [Her75] and A Survey of
Modern Algebra by Birkhoff and MacLane [BM77] for details. For vector spaces,
we also recommend Halmos’s beautifully written Finite-Dimensional Vector Spaces
[Hal58].

Definition 1.3.1 (Group). A group is a set G together with a binary operation
denoted by � (i.e., a map � W G �G ! G) satisfying the following axioms:

1. a � .b � c/ D .a � b/ � c 8a; b; c 2 G (associativity).
2. There exists an element e 2 G (called the identity element) such that a � e D
e � a D a 8a 2 G (existence of an identity element).

3. For every a 2 G there exists a�1 2 G (called the inverse of a) such that a �a�1 D
a�1 � a D e (existence of inverses).

Remark 1.3.2.

(a) The existence of (the) identity element [in axiom (2)] implies that a group is
never empty.
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(b) The binary operation � W G�G ! G is usually called the product even though it
may have nothing in common with the ordinary product of two numbers. Also,
one usually omits the “�” and writes ab instead of a � b:

(c) A group is a structured set; i.e., it is a set together with a binary operation.
Thus, to be precise, one should write “a group .G; �/” rather than “a group G.”
Nevertheless, the latter is often used if there is no confusion over the binary
operation.

Definition 1.3.3 (Subgroup, Abelian Group). LetG be a group. A subsetH � G
is said to be a subgroup of G if, with the product �jH (i.e., with the product of G
restricted to H ), the set H itself is a group. A group G is said to be Abelian (or
commutative) if

ab D ba 8a; b 2 G:

Example 1.3.4.

(a) The set Z of all integers with the operation of addition (i.e., .a; b/ 7! a C b)
is an Abelian group. The identity element is 0 and, for each integer a 2 Z, its
inverse is the opposite number �a: The subset

2Z WD f2n W n 2 Zg

of all even integers is a subgroup, as the reader can check at once. The subset of
all odd integers, however, is not a subgroup, nor is the subset N0 WD N [ f0g of
all nonnegative integers. (Why?)

(b) The set Q� WD Q n f0g of all nonzero rational numbers is a group with the
operation of multiplication, i.e., .r; s/ 7! rs: The subset QC of all positive
rationals is a subgroup and so is the subset f�1; 1g:

(c) LetX be an arbitrary nonempty set and let SX denote the set of all permutations
of X , i.e., the set of all maps f W X ! X that are bijective (i.e., one-to-
one and onto). Then .SX; ı/ is a group (called the symmetric group of X )
where ı denotes the composition of maps: .f; g/ 7! f ı g: This follows from
Exercise 1.2.47(1). Here, the identity element is the identity map idX W X ! X

defined by idX.x/ WD x 8x 2 X:
Proposition 1.3.5 (Uniqueness of Identity and Inverse). Let .G; �/ be a group.
Then the identity element e 2 G is unique. Also, for each a 2 G, the inverse a�1 is
unique.

Proof. If e and e0 are both identity elements, then we have ee0 D e since e0 is an
identity element, and ee0 D e0 since e is an identity element. Thus

e D ee0 D e0:
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Next, if b; c 2 G are both inverses of a 2 G, then, by associativity, we have

b D be D b.ac/ D .ba/c D ec D c

and the proof is complete. ut
Exercise 1.3.6. Let G be a group and let ; ¤ H � G: Show that H is a subgroup
of G if and only if the following is true:

ab�1 2 H 8a; b 2 H:

Definition 1.3.7 (Ring). A ring is a set R together with two binary operations C W
R � R ! R and � W R � R ! R, called addition and multiplication, such that, for
arbitrary elements x; y; z 2 R, the following axioms are satisfied:

1. x C y D y C x,
2. .x C y/C z D x C .y C z/,
3. 90 2 R such that x C 0 D x,
4. 9 � x 2 R such that x C .�x/ D 0,
5. x � .y � z/ D .x � y/ � z,
6. x � .y C z/ D x � y C x � z; and .y C z/ � x D y � x C z � x:
Remark 1.3.8.

(a) Axioms (1)–(4) simply indicate that .R;C/ is a commutative group.
(b) (Commutative Ring). If x � y D y � x 8x; y 2 R, then the ring R is said to be

commutative.
(c) (Ring with Unit Element). If there exists an element 1 2 R such that 1 � x D

x � 1 D x 8x 2 R, then the element 1 2 R is called a unit element and the
ring R is said to be a ring with unit element.

(d) (Division Ring). A ringR with unit element is said to be a division ring ifRnf0g
is a group under multiplication, i.e., if each x 2 R n f0g has an inverse x�1 2 R
(so that xx�1 D x�1x D 1, where 1 2 R is the unit element).

Example 1.3.9.

(a) With the usual addition and multiplication, the set Z of all integers is a
commutative ring with unit element 1. The set 2Z WD f2n W n 2 Zg of all
even integers is a commutative ring but has no unit element.

(b) With the usual addition and multiplication, the set Q of rational numbers is a
commutative (division) ring with unit element 1:

(c) Let X ¤ ; be an arbitrary set and let F.X;Q/ WD QX be the set of all functions
from X to Q: Then, as the reader can easily check, F.X;Q/ is a commutative
ring with addition and multiplication defined, for arbitrary f; g 2 F.X;Q/ and
x 2 X , by

.f C g/.x/ WD f .x/C g.x/ and .f � g/.x/ WD f .x/g.x/:
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Definition 1.3.10 (Subring, Ideal). Let R be a ring and let S � R: We say that
S is a subring of R, if with the addition and multiplication (of R) restricted to S ,
the set S is itself a ring. In particular, .S;C/ is a subgroup of .R;C/: We say that
S is a (two-sided) ideal (or simply an ideal) if S is a subgroup of .R;C/ and if, in
addition, we have

.8x 2 S/.8y 2 R/.x � y; y � x 2 S/:

Thus, every ideal is obviously a subring. The converse is, however, false in general.

Example 1.3.11.

(a) The set Z is a subring of Q but not an ideal. The set 2Z of even integers is an
ideal of Z:

(b) Let F.X;Z/ D ZX be the set of all integer-valued elements of F.X;Q/: Then
F.X;Z/ is a subring of F.X;Q/ but not an ideal. On the other hand, if x0 2 X
is a fixed element, then the subset Fx0 WD ff 2 F.X;Q/ W f .x0/ D 0g is an
ideal of F.X;Q/: (Why?)

Definition 1.3.12 (Field, Subfield). A field F is a commutative ring with unit
element 1 ¤ 0 such that .F n f0g; �/ is a group; i.e., each x 2 F n f0g has a
multiplicative inverse x�1 (so that xx�1 D x�1x D 1). In other words, a field is
simply a commutative division ring. A subset K � F is said to be a subfield of F if
K is a subring of F and K n f0g is a subgroup of .F n f0g; �/:
Example 1.3.13. The set Q of rational numbers is a field and so is the set R (resp.,
C) of all real (resp., complex) numbers (to be defined later). In fact, Q is a subfield
of R which is itself a subfield of C:

Definition 1.3.14 (Vector Space, Subspace). Let F be a field. A nonempty set V ,
whose elements will be called vectors, is said to be a vector space (over F ) if V
is an Abelian group under an operation C W V � V ! V called (vector) addition
and if there is a map � W F � V ! V , called scalar multiplication and written as
�.a; v/ D av for all a 2 F; v 2 V , such that the axioms

1. a.uC v/ D auC av,
2. .aC b/u D auC bu,
3. a.bu/ D .ab/u, and
4. 1u D u

are satisfied for arbitrary elements a; b 2 F and vectors u; v 2 V: A subset U � V
is said to be a (vector) subspace of V if, with the addition and scalar multiplication
restricted to U , the set U is itself a vector space.

Example 1.3.15.

(a) Any field F is a vector space over itself and, of course, over each of its subfields.
Thus, the field R is a vector space over itself and over Q: Also, the field C of
complex numbers is a vector space over C; R, and Q:
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(b) Let X ¤ ; be an arbitrary set and let F be any field. Then the set

F.X; F / WD FX

of all functions from X to F is a vector space over F:
(c) [A special case of (b)] Consider the set

Qn WD Qf1;2;:::;ng D f.x1; x2; : : : ; xn/ W xk 2 Q; 1 � k � ng:

For any x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ 2 Qn and any r 2 Q, define the
vector addition and scalar multiplication componentwise, i.e.,

x C y WD .x1 C y1; : : : ; xn C yn/; rx D .rx1; : : : ; rxn/:

Then Qn is a vector space over Q: Similarly, Rn is a vector space over R (and
Q) and Cn is a vector space over C; R, and Q:

Remark 1.3.16 (Module). If in the above definition of vector space the field F is
replaced by a ring R, then the resulting (structured set) V is said to be an R-module
(or a module over R). Since every field is a ring, it is obvious that every vector
space is a module. Note that, if the ring R has no unit element, then the axiom (4)
(i.e., 1u D u 8u 2 V ) must be omitted. On the other hand, if R has a unit 1 and
1u D u 8u 2 V is satisfied, then V is called a unital R-module. Given an arbitrary
set X ¤ ; and an arbitrary ring R, the set RX of all R-valued functions on X is an
R-module.

Definition 1.3.17 (Direct Sum, Complement). Let V1 and V2 be two subspaces
of a vector space V: We say that V is the direct sum of V1 and V2, and we write
V D V1 ˚ V2, if every v 2 V can be written uniquely as v D v1 C v2 with v1 2 V1
and v2 2 V2: The subspace V1 (resp., V2) is then said to be a complement of V2
(resp., V1).

Definition 1.3.18 (Span, Finite-Dimensional). Let V be a vector space (over a
field F ) and S � V: The span of S is the subspace of all finite linear combinations
of vectors in S I i.e.,

Span.S/ WD fa1v1 C � � � C anvn W a1; : : : ; an 2 F; v1; : : : ; vn 2 Sg:

For S D ;, we define Span.;/ WD f0g: The space V is said to be finite-dimensional
if V D Span.S/, for a finite set S � V: If V is not finite-dimensional, we call it
infinite-dimensional.

Definition 1.3.19 (Linear Independence, Basis). Given a vector space V over a
field F , a set S � V is said to be linearly independent if, for any finite subset
fv1; : : : ; vng � S , we have
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n
X

kD1
cnvk D 0 H) c1 D c2 D � � � D cn D 0;

where ck 2 F , for 1 � k � n: A set B � V is said to be a basis for V if B is
linearly independent and Span.B/ D V:

We state the following well-known fact without proof:

Theorem 1.3.20 (Dimension). Any two bases of a finite-dimensional vector space
V have the same number of elements; this number, denoted dim.V /, is called the
dimension of V:

Definition 1.3.21 (Algebra, Subalgebra). Let F be a field. A ring A is called an
algebra (over F ) if A is a vector space over F such that for any x; y 2 A and
any a 2 F we have a.xy/ D .ax/y D x.ay/: A subset B � A is said to be a
subalgebra of A if, with the operations of A restricted to B , the set B is itself an
algebra over F:

Definition 1.3.22 (Commutative Algebra, Division Algebra). Let A be an alge-
bra over a field F: We say that A is commutative if xy D yx 8x; y 2 A: We say
that A is a division algebra if A has a unit element 1 and if each x 2 A n f0g has an
inverse x�1I i.e., xx�1 D x�1x D 1:
Example 1.3.23.

(a) Every field is a commutative division algebra over itself and, of course, over
any of its subfields. Thus, the field C is a commutative division algebra over R
and also over Q:

(b) Given any field F and any set X ¤ ;, the set F.X; F / WD FX is a commutative
algebra over F and for each subfieldK � F , the setKX is a subalgebra of FX:

Note, however, that these algebras are not division algebras. (Why?)

The following exercise will give a rather involved but important example of a
noncommutative division algebra.

Exercise 1.3.24 (Real Quaternions). Let Q be the set

Q WD fa D a0 C a1i C a2j C a3k W a0; a1; a2; a3 2 Rg;

where i; j , and k are symbols having the following multiplication table.

� i j k

i �1 k �j
j �k �1 i

k j �i �1
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The elements of Q will be called (real) quaternions. Given two quaternions a D
a0 C a1i C a2j C a3k and b D b0 C b1i C b2j C b3k, we write a D b if and
only if at D bt for t D 0; 1; 2; 3: On the set Q one defines three operations as
follows. For arbitrary quaternions a; b 2 Q and real number c 2 R, the operations
of addition and scalar multiplication are defined componentwise:

aC b D .a0 C a1i C a2j C a3k/C .b0 C b1i C b2j C b3k/
WD .a0 C b0/C .a1 C b1/i C .a2 C b2/j C .a3 C b3/k;

ca D c.a0 C a1i C a2j C a3k/ WD ca0 C .ca1/i C .ca2/j C .ca3/k;

while multiplication is defined by

a � b D .a0 C a1i C a2j C a3k/.b0 C b1i C b2j C b3k/
WD c0 C c1i C c2j C c3k;

where the real numbers c0; c1; c2, and c3 are defined to be

c0 WD a0b0 � a1b1 � a2b2 � a3b3;
c1 WD a0b1 C a1b0 C a2b3 � a3b2;
c2 WD a0b2 C a2b0 C a3b1 � a1b3; and

c3 WD a0b3 C a3b0 C a1b2 � a2b1:

The above definition of the product of two quaternions is indeed complicated, to
say the least, but it can be obtained by formally expanding .a0 C a1i C a2j C
a3k/.b0 C b1i C b2j C b3k/, collecting the terms, and simplifying them using the
above multiplication table for i; j; k:

(a) Show that the eight elements f˙1;˙i;˙j;˙kg form a non-Abelian group with
the product defined by the above multiplication table.

(b) Show thatQ is a noncommutative division ring with zero element 0 WD 0C0iC
0j C 0k D 0 2 R and unit element 1 WD 1C 0i C 0j C 0k D 1 2 R: Hint: For
each a D a0 C a1i C a2j C a3k 2 Q, define its absolute value jaj to be

jaj WD
q

a20 C a21 C a22 C a23
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and note that a D 0 if and only if jaj D 0: Now show that, given any a ¤ 0, its
inverse is the quaternion

a�1 D a0

jaj �
a1

jaj i �
a2

jajj �
a3

jajk:

(c) Deduce that Q is a (noncommutative) division algebra (over R).

Definition 1.3.25 (Homomorphism, Isomorphism).

(a) Given two groups G and G0, a map � W G ! G0 is called a (group)
homomorphism if we have �.ab/ D �.a/�.b/ 8a; b 2 G:

(b) Given two rings R and R0, a map � W R ! R0 is a (ring) homomorphism if
�.x C y/ D �.x/C �.y/ and �.xy/ D �.x/�.y/ 8x; y 2 R:

(c) Given two fields F and F 0, a map � W F ! F 0 is called a (field) homomorphism
if it is a ring homomorphism, i.e., if �.x C y/ D �.x/ C �.y/ and �.xy/ D
�.x/�.y/ 8x; y 2 F:

(d) Given two vector spaces V and V 0 over the same field F , a map � W V ! V 0 is
called a (vector space) homomorphism (or a linear map) if �.uC v/ D �.u/C
�.v/ and �.au/ D a�.u/ for all a 2 F and u; v 2 V:

(e) Given two algebras A and A0 over the same field F , a map � W A ! A0 is
called an (algebra) homomorphism if it is a vector space homomorphism (i.e.,
�.x C y/ D �.x/ C �.y/ and �.ax/ D a�.x/ for all a 2 F and x; y 2 A)
and if, in addition, we have �.xy/ D �.x/�.y/ 8x; y 2 A:

In each of the above cases, the map � is said to be an isomorphism if (in addition
to the conditions above) it is bijective (i.e., one-to-one and onto). The corresponding
groups (rings, fields, etc.) are then said to be isomorphic.

We now look at some basic methods of counting the number of elements of
a finite set. Counting plays a fundamental role in many parts of mathematics and
numerous proofs are heavily dependent on the ability to count the number of
elements of various sets. Here are a few questions we can answer as soon as we are
familiar with the Basic Counting Principle and the (general) Inclusion–Exclusion
Principle (to be defined below): Given two finite sets X and Y , the set Y X of all
functions from X to Y is obviously also finite. How many elements does this set
have? How many of these elements are one-to-one maps? How many are onto? For
more difficult questions and methods to answer them, the reader can consult, e.g.,
Pólya–Szegö [PSz72]. The following proposition is an immediate consequence of
Example 1.2.51.

Proposition 1.3.26 (Basic Counting Principle). If a task can be performed in k
steps, and if for each j D 1; 2; : : : ; k, the j th step can be performed in nj ways,
regardless of the choices made for the preceding steps, then the total number of
ways in which the entire task can be performed is n1n2 � � �nk:
Definition 1.3.27 (Permutation, Combination). A permutation of n objects taken
k at a time is any ordered arrangement of k of the n objects. A combination of n
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objects taken k at a time is simply a selection of k objects from the n objects, with
order disregarded. The number of all permutations of n objects taken k at a time is
denoted by P.n; k/, and the number of all combinations of the n objects taken k at
a time is denoted by C.n; k/ D �

n
k

�

[read n choose k] and is also called a binomial
coefficient.

Remark 1.3.28. The number of permutations or combinations of n objects taken
k at a time can be easily computed using the Basic Counting Principle: For the
number of permutations, note that to form a permutation, we have n choices for the
first object, n � 1 choices for the second object; : : : ; n � k C 1 choices for the kth
object. Thus P.n; k/ D n.n � 1/.n � 2/ � � � .n � k C 1/ D nŠ=.n � k/Š, where “n
factorial” is defined by nŠ WD 1 � 2 � 3 � � � n for each n 2 N, and 0Š WD 1: In particular,
P.n/ WD P.n; n/ D nŠ: Note that in this particular case, a permutation is indeed a
one-to-one correspondence of the set of n objects with itself. For the combinations,
note that each subset of k objects produces kŠ permutations, so that P.n; k/ D
kŠC.n; k/, from which we get

�

n
k

� D C.n; k/ D P.n; k/=kŠ D nŠ=kŠ.n � k/Š:
Exercise 1.3.29. For n 2 N and k D 0; 1; 2; : : : ; n, prove the identities

 

n

k

!

D
 

n

n � k

!

and

 

nC 1
k

!

D
 

n

k

!

C
 

n

k � 1

!

;

where
�

n
0

� D 1 D �n
n

�

follows from 0Š WD 1:
The numbers C.n; k/ D �

n
k

�

are called binomial coefficients for the following
reason:

Proposition 1.3.30 (Binomial and Multinomial Formulas). For any integer n 2
N and any real numbers x; y 2 R, we have

.xCy/n D
n
X

kD0

 

n

k

!

xn�kyk D xnCnxn�1yC n.n � 1/
2

xn�2y2C� � �Cyn: ()

More generally, for any real numbers x1; x2; : : : ; xk 2 R, we have

.x1 C x2 C � � � C xk/n D
X

 

n

n1; n2; � � � ; nk

!

x
n1
1 x

n2
2 � � � xnkk ; ()

where the sum on the right is over all n1; n2; : : : ; nk 2 N0 with n1Cn2C� � �Cnk D
n, and where the multinomial coefficients are defined by

 

n

n1; n2; � � � ; nk

!

WD nŠ

n1Šn2Š � � � nkŠ :
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Proof. Note that the expansion of the product .x1 C y1/.x2 C y2/ � � � .xn C yn/

consists of 2n terms, each containing n factors that are either xj or yj , for some
j D 1; 2; : : : ; n: Now the number of terms containing as factors k of the yj ’s is
�

n
k

�

. (Why?) Setting xj D x; yj D y; j D 1; 2; : : : ; n, the binomial formula ()
follows at once. As for the multinomial formula (), it can be deduced from the
binomial formula () using induction and the identity

 

n

n1

!

.n � n1/Š
n2Šn3Š � � �nkŠ D

nŠ

n1Šn2Š � � �nkŠ :

We leave the details as an exercise for the reader. ut
Remark 1.3.31. The binomial and multinomial formulas are valid in any field. Thus
the numbers x and y in () and the xi , 1 � i � k in () may be complex.

The following proposition has numerous applications in counting problems and
will be needed in Exercises 1.3.35 and 1.3.36 below. For the following and other
proofs and applications we refer to [PSz72].

Proposition 1.3.32 (Inclusion–Exclusion Principle). Suppose we have a set of N
objects. Let Nj be the number of those objects that have the property Pj ; 1 �
j � n; Njk the number of those having simultaneously the properties Pj and
Pk; 1 � j; k � n; : : :, and N123���n the number of objects having simultaneously all
the properties P1; P2; : : : ; Pn: Then the number N0 of those objects having none of
the properties P1; P2; : : : ; Pn is given by

N0 D N �
X

i

Ni C
X

i<j

Nij �
X

i<j<k

Nijk C � � � C .�1/nN123���n:

Proof. Let U be the set of N objects and let Aj be the subset of those objects that
satisfy the property Pj ; j D 1; 2; : : : ; n: Similarly, let Aij WD Ai \ Aj ; Aijk WD
Ai \ Aj \ Ak; : : :, be the subsets of all objects that simultaneously satisfy the two
properties Pi and Pj , the three properties Pi ; Pj ; and Pk , etc. Now the set A0
of the objects that satisfy none of the properties P1; P2; : : : ; Pn can be written as
A0 D Ac1 \ Ac2 \ � � � \ Acn, and by Exercise 1.2.55, we have


A0 D .1 � 
A1/.1 � 
A2/ � � � .1 � 
An/
D 1 �

X

i


Ai C
X

i<j


Ai 
Aj � � � � C .�1/n
A1
A2 � � �
An

D 1 �
X

i


Ai C
X

i<j


Aij �
X

i<j<k


Aijk C � � � C .�1/n
A12���n :

Summing the (values of the) two sides over all x 2 U and noting that jAj D
P

x2U 
A.x/ [cf. Exercise 1.2.55(g)], the proposition follows. ut
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Exercise 1.3.33. Extend part (h) of Exercise 1.2.55 to the case of n finite sets, for
any n � 2: In other words, if A1;A2; : : : ; An are finite sets, find jA1[A2[� � �[Anj
in terms of the number of elements in various intersections of the Ai ; 1 � i � n:
Notation 1.3.34 (Pm

n ; S m
n ). Let X and Y be two finite sets withm and n elements

(1 � n � m), respectively. The number of all partitions of X into n (pairwise
disjoint nonempty) subsets (with union X ) will be denoted by Pm

n : The number of
all surjective (i.e., onto) functions from X onto Y will be denoted by Smn : Note that
we obviously have Pm

1 D 1 D Pm
m and Sm1 D 1: Also, Smm D P.m/ D mŠ: (Why?)

Exercise 1.3.35. Let X and Y be finite sets with m and n elements (1 � n � m),
respectively, and let Pm

n and Smn be defined as above. Show that

(a) PmC1
n D nPm

n C Pm
n�1,

(b) SmC1
n D nSmn C nSmn�1;

(c) Smn D nŠPm
n :

Hints: How are the numbers Pm
n and Smn affected if we adjoin an element to X?

Also, for .c/, note that for any surjection f W X ! Y; ff �1.y/ W y 2 Y g is a
partition of X:

Exercise 1.3.36. Let X and Y be finite sets with jX j D m; jY j D n:
(a) Using the Basic Counting Principle, find jY X j: Use the special case j2X j to find
jP.X/j:

(b) Find the number of one-to-one maps from X to Y:
(c) Show that the number of surjective (i.e., onto) maps from X onto Y is given by

Smn D nm �
 

n

1

!

.n � 1/m C
 

n

2

!

.n � 2/m � � � � C .�1/n0m:

(d) Find a formula for Pm
n :

Hint for .c/: Let Y D fy1; y2; : : : ; yng, and for each j D 1; 2; : : : ; n, define, for a
function f 2 Y X , the property Pj by “yj 62 f .X/.” Now use Proposition 1.3.32.

For our next application of Proposition 1.3.32, we need a few elementary facts
about integers. The proofs can be found in any textbook on abstract algebra (e.g.,
Herstein’s Topics in Algebra [Her75]).

Proposition 1.3.37 (Division Algorithm). Let a and b be integers and a ¤ 0:

Then there are unique integers q and r , with 0 � r < jaj, such that b D aqC r:We
call q the quotient and r the remainder of the division of b by a: If r D 0, then we
say that a is a divisor of b, or that a divides b, and write ajb:
Definition 1.3.38 (Greatest Common Divisor, Relatively Prime). The greatest
common divisor of two integers a and b, not both zero, is the largest positive integer
that divides both a and b: It is denoted by gcd.a; b/: In details, d D gcd.a; b/ if the
following two conditions are satisfied:
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(i) d > 0; d ja, and d jb,
(ii) c > 0; cja, and cjb, which imply cjd:
We say that two integers a and b are relatively prime if gcd.a; b/ D 1:
Proposition 1.3.39. Let a and b be two integers, not both zero. One can then find
integers m and n such that gcd.a; b/ D maC nb:
Corollary 1.3.40. If a and b are relatively prime, one can find integers m and n
such that maC nb D 1:
Corollary 1.3.41. Let a; b, and c be nonzero integers such that gcd.a; b/ D 1:

Then ajbc implies ajc:
Corollary 1.3.42. Let a and b be nonzero integers with gcd.a; b/ D 1: Then

ajc and bjc ” abjc:

Corollary 1.3.43. Let a1; a2; : : : ; ak be pairwise relatively prime, nonzero integers.
Then we have

ai jb; i D 1; 2; : : : ; n ” a1a2 � � � akjb:

Corollary 1.3.44. Let p be a prime number (i.e., an integer p � 2 whose only
positive divisors are 1 and p). Then, for any nonzero integers a and b,

pjab H) pja or pjb:

Corollary 1.3.45 (Prime Factorization). Let n > 1 be an integer. Then there are
unique primes p1; p2; : : : ; pm and unique positive integers r1; r2; : : :, rm, such
that p1 > p2 > � � � > pm and

n D pr11 pr22 � � �prmm :

Some Hints for the Proofs. For the proof of the division algorithm, let r WD
minfm � 0 W .9k 2 Z/ .b D ak C m/g, and define q accordingly. For
Proposition 1.3.39, show that gcd.a; b/ D minfd > 0 W .9m; n 2 Z/.d D
ma C nb/g: For Corollaries 1.3.40 and 1.3.41, pick m; n 2 Z, with ma C nb D 1,
and usemacC nbc D c: For Corollary 1.3.43, use induction. For Corollary 1.3.44,
note that, if p −a, then gcd.a; p/ D 1: Finally, for Corollary 1.3.45, use (strong)
induction.

Definition 1.3.46 (Euler’s Phi-Function). For each n 2 N, we define �.n/ to be
the number of positive integers less than or equal to n that are relatively prime to n:

Exercise 1.3.47. Let a1; a2; : : : ; am be pairwise relatively prime positive integers
and let n > 1 be any integer.



1.4 Infinite Direct Products, Axiom of Choice, and Cardinal Numbers 29

(a) Show that the number of integers in f1; 2; : : : ; ng that are divisible by ai ; 1 �
i � m, is

h

n
ai

i

, where Œr� is the greatest integer less than or equal to r:

(b) More generally, show that the number of integers in f1; 2; : : : ; ng that are

divisible by a1; a2; : : : ; ak; 1 � k � m, is
h

n
a1a2���ak

i

.

(c) Show that the number n0 of integers in f1; 2; : : : ; ng that are not divisible by
any of the integers a1; a2; : : : ; am is

n0 D n �
X

i

h n

ai

i

C
X

i<j

h n

aiaj

i

C � � � C .�1/m
h n

a1a2 � � � am
i

:

(d) Using (c), show that if n D p
r1
1 p

r2
2 � � �prmm is the prime factorization of n, as in

Corollary 1.3.45, then we have

�.n/ D n
�

1 � 1

p1

��

1 � 1

p2

�

� � �
�

1 � 1

pm

�

:

1.4 Infinite Direct Products, Axiom of Choice,
and Cardinal Numbers

In this section we shall introduce infinite direct (Cartesian) products and cardinal
numbers. Unlike finite sets, infinite sets have properties that are quite surprising and
are fundamentally different. Our definition of cardinal number, which extends the
idea of number of elements to arbitrary sets, will be vague, although more precise
definitions can be given. For instance, one way to define cardinal numbers is to
use the concept of ordinal numbers. However, the introduction of ordinal numbers
requires additional sections and we prefer, instead, to send the reader to the books
mentioned in the introduction, particularly Halmos’s Naive Set Theory [Hal60],
where details on these and other topics can be found.

Definition 1.4.1 (Direct Product, Choice Function). Letƒ be a (nonempty) index
set, and let X� be a set for each � 2 ƒ: The direct product (also called Cartesian
product) of the sets X�, denoted by

Q

�2ƒ X�, is the set of all functions x W ƒ !
S

�2ƒ X� such that x.�/ 2 X� for each � 2 ƒ: Each such function x is called a
choice function for the family fX�g�2ƒ and the element x� WD x.�/ 2 X� is called
the �th coordinate of x.

Remarks and Notation 1.4.2. It follows from the definition that we have
Q

�2ƒ X� D ; if X� D ; for some � 2 ƒ: If X� D X for all � 2 ƒ, then
we write

Q

�2ƒ X� D Xƒ: In other words, we obtain the set of all functions
from the index set ƒ to the set X: If ƒ D N, then Xƒ D XN is the set of all
sequences in X: Finally, if ƒ D f1; 2; : : : ; ng for some n 2 N, then we write
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Q

�2ƒ X� D
Qn
kD1 Xk D X1 � X2 � � � � � XnI i.e., we obtain the finite Cartesian

product defined earlier. In the latter case, if Xk D X for 1 � k � n, then we use the
notation Xn WD Xƒ D X f1; 2;:::; ng:

Example 1.4.3. The set Rn D f.x1; x2; : : : ; xn/ W xk 2 Rg is called the Euclidean
n-space, and the set Cn D f.z1; z2; : : : ; zn/ W zk 2 Cg is called the unitary n-space.

Axiom of Choice. Let fX�g�2ƒ be a family of sets indexed by a nonempty set ƒ:
If X� ¤ ;, for all � 2 ƒ, then the direct product

Q

�2ƒ X� is nonempty. In other
words, the family has at least one choice function.

Remark 1.4.4.

(a) As a special case, the Axiom of Choice may be used for the family P.U /nf;g of
all nonempty subsets of a nonempty setU: In this case, a choice function chooses
an element from each nonempty subset of U , guaranteeing the possibility of
simultaneously choosing elements from a (possibly infinite) collection of sets.

(b) The Axiom of Choice is logically equivalent to the Well-Ordering Theorem
which, in turn, is logically equivalent to Zorn’s Lemma.

Definition 1.4.5 (Equivalent Sets). Two sets S and T are called equivalent (also
called equipotent or equipollent) if there is a one-to-one correspondence between
them. This equivalence will be denoted by S � T:
Exercise 1.4.6.

(a) Show that the set equivalence S � T defined above is indeed an equivalence
relation on P.U / for each fixed set U:

(b) Show that N � 2N and that N � 2N � 1, where 2N WD f2k W k 2 Ng and
2N � 1 WD f2k � 1 W k 2 Ng are the subsets of even and odd positive integers,
respectively.

(c) Let A and B be sets, a 2 A and b 2 B: Show that A � B if and only if
A n fag � B n fbg:

Definition 1.4.7 (Cardinal Number). To each set, X , we associate a symbol, jX j,
called the cardinal number (also called cardinality) of X in such a way that jX j D
jY j if and only if X � Y:
Notation 1.4.8 (@0; c). We define j;j WD 0 and jf1; 2; : : : ; ngj WD n, for each
n 2 N: Thus, if X � f1; 2; : : : ; ng, then jX j WD nI i.e., jX j is the number of
elements in X: The cardinality of the set N of all natural numbers is denoted by
jNj D @0 [read “aleph naught”]. Finally, we write jRj D c [read “continuum”] for
the cardinality of the set of real numbers.

Definition 1.4.9 (Countable and Uncountable Sets). We say that a set X is
countable if either X is finite or X � NI i.e., either jX j D n for some n 2 N0
or jX j D @0: In the latter case X is also called countably infinite (or denumerable)
and any one-to-one correspondence x W N ! X is called an enumeration of X:
A set that is not countable is called uncountable.
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Exercise 1.4.10.

(i) Show that N2 D N � N is countably infinite by showing that the map f W
N�N! N defined by f .m; n/ WD 2m�1.2n�1/ is a one-to-one correspondence.
Deduce that if D is countable, then so is D �D (and, inductively, Dk; k 2 N).

(ii) Show that Z � N by defining (explicitly) a bijection g W Z! N.

Our first application of the Axiom of Choice is in the proof of the following
proposition, even though our informal proof does not mention the axiom explicitly.
The proof can, of course, be made precise by defining the appropriate choice
function.

Proposition 1.4.11. Every infinite set contains a countably infinite subset.

Proof. Let X be an infinite set. Then, in particular, X ¤ ;, and we can pick an
element x1 2 X: Since X is infinite, X n fx1g ¤ ;, and we can pick an element
x2 2 X n fx1g: Using once again the fact that X is infinite, we have that X n
fx1; x2g ¤ ; and hence contains an element x3: Continuing this process indefinitely
(this is where the Axiom of Choice is used), we obtain the countably infinite subset
fx1; x2; x3; : : :g � X . ut
Proposition 1.4.12. Let D be an infinite subset of N: Then D is countably infinite.
In fact, there is a unique enumeration d W N! D of D such that

d1 < d2 < � � � < dn < dnC1 < � � � ;

where dn WD d.n/ 8n 2 N:

Proof. Let d1 D min.D/ and define, inductively, dnC1 WD min.D n fd1; : : : ; dng/:
The map n 7! dn is the desired enumeration of D. ut
Corollary 1.4.13. If Y is a countable set and if X � Y , then X is countable.

Exercise 1.4.14. Prove the corollary.

Here is a couple of other characterizations of countable sets:

Proposition 1.4.15. A set X is countable if and only if there is an injective map
g W X ! N if and only if there is a surjective map f W N! X:

Proof. If X is countable, the very definition of countability implies that there exists
a one-to-one map g W X ! N: Conversely, if g exists, then g.X/ � N is countable
(by Corollary 1.4.13) and hence so is X � g.X/: Next, if g W X ! N is injective,
then we pick a fixed x0 2 X and define a surjective map f W N ! X by setting
f .n/ D x if n D g.x/ and f .n/ D x0 if n 62 g.X/: Conversely, if f W N ! X

is surjective, then for each x 2 X we can pick an integer nx 2 f �1.x/, getting
f .nx/ D x: We now define the map g W X ! N by g.x/ WD nx: Since g is one-to-
one (why?), the proof is complete. ut
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Exercise 1.4.16. Let Ak D 2k�1 � f1; 3 ; 5 ; : : :g WD f2k�1 � 1; 2k�1 � 3; 2k�1 �
5; : : :g; k 2 N: Show that fAkg is a partition of N, i.e., that Aj \ Ak D ; if
j ¤ k and that N D S1

kD1 Ak: Also show that Ak � N for all k 2 N: Hint: See
Exercise 1.4.10.

Proposition 1.4.17. A countable union of countable sets is countable.

Proof. Let Xk be a countable set for each k 2 N, and let the Ak be as in
Exercise 1.4.16. Now, by Proposition 1.4.15, we can find surjective (i.e., onto)
maps fk W Ak ! Xk 8k 2 N: Define the map f W N ! S1

kD1 Xk by
f .n/ WD fk.n/ if n 2 Ak: It follows easily that f is onto, and another application
of Proposition 1.4.15 completes the proof. ut
Corollary 1.4.18. The set Z of all integers and the set Q of all rational numbers
are countably infinite.

Proof. For the set Z, note that Z D N[f0g[.�N/, where�N WD f�1;�2;�3; : : :g:
For Q D fm=n W m 2 Z; n 2 Ng, define, for each k 2 Z, the set Qk WD fk=n W n 2
Ng � Q: Then each Qk is countably infinite, and Q DSk2Z Qk . ut
Definition 1.4.19 (Domination). Given two sets X and Y , we say that Y domi-
nates X , and write X 
 Y , if there is a one-to-one map from X into Y: If X 
 Y ,
then we write jX j � jY j: We also write jX j < jY j if X � Y , i.e., if X 
 Y , but
X 6� Y: In the latter case we say that Y strictly dominates X:

Remark 1.4.20.

(a) If f W X ! Y is one-to-one, then X � f .X/: Therefore, an equivalent
definition of domination is the following:

X 
 Y ” X � Y1 for some Y1 � Y:

(b) We can define the countability of sets in terms of set domination as follows:

X is countable ” X 
 N ” jX j � @0:

The relation “�” between the cardinal numbers of two subsets of a universal
set U (or, equivalently, the domination relation between the subsets themselves) is
easily seen to be reflexive and transitive (check it!). Therefore, to prove that it is in
fact a partial ordering on the cardinalities of all subsets of a fixed given set, all we
need is to show that it is antisymmetric. That this is indeed the case is a consequence
of the following important theorem.

Theorem 1.4.21 (Schröder–Bernstein). Let X and Y be two sets, and suppose
that there are one-to-one functions f W X ! Y and g W Y ! X: Then X � Y: In
other words, jX j � jY j and jY j � jX j imply jX j D jY j:
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Proof. Define the function � W P.X/! P.X/ by

�.S/ WD X n g�Y n f .S/� .8S 2 P.X//; ()

and note that we have

S � T � X H) �.S/ � �.T /: ()

Indeed, S � T ) f .S/ � f .T /) Y n f .T / � Y n f .S/: Thus g.Y n f .T // �
g.Y n f .S//, from which () follows at once. Now let S WD fS 2 P.X/ W S �
�.S/g and note that ; 2 S: If Z WD SS2S S , then for each S 2 S we have S � Z
and () implies S � �.S/ � �.Z/: Thus Z � �.Z/ and another application of
() gives �.Z/ � �.�.Z//, which implies �.Z/ 2 S: But then, �.Z/ � Z and
we get �.Z/ D Z: Therefore, by (), we have Z D X n g.Y n f .Z// and hence

X nZ D g�Y n f .Z/�: (�)

Using (�), it is now obvious that the function

h.x/ WD
(

f .x/ if x 2 Z;
g�1.x/ if x 2 X nZ

is a bijection of X onto Y . ut
Exercise 1.4.22.

(a) Show that any two cardinal numbers are comparable; i.e., for any sets X and
Y , we have jX j � jY j or jY j � jX j: Hint: Consider the set F of all injective
maps f with dom.f / � X and ran.f / � Y: Partially order F by “inclusion”
and find a maximal element h 2 F : Show that we must have dom.h/ D X or
ran.h/ D Y:

(b) Show that, if X is a proper subset of a finite set Y , then X 6� Y (i.e., X � Y ).
Deduce that N is infinite. Hint: Put Y D f1; 2; : : : ; ng and proceed by induction
on n: Assuming the case n, let Y D f1; 2; : : : ; nC 1g and suppose that there is
an injection f from Y onto a proper subset X � Y: Show that both nC 1 62 X
and nC 1 2 X result in contradictions.

(c) Show that, if X is infinite and if C is countable, then jX [ C j D jX j:
(d) Show that X is infinite if and only if @0 � jX j:
(e) Show that, if jX j � jY j and jY j � jZj, and if at least one of these is a strict

inequality, then jX j < jZj:
(f) Show that X is finite if and only if jX j < @0:

The reader may have observed that we still have not proved the existence of
uncountable sets. That such sets indeed exist is a consequence of the following
theorem of Georg Cantor.
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Theorem 1.4.23 (Cantor). For any set X , we have X � P.X/ � 2X : In other
words, jX j < jP.X/j D j2X j:
Proof. First, note that P.X/ � 2X follows from Exercise 1.2.54. Next, note that
the map f W X ! P.X/ defined by f .x/ WD fxg 8x 2 X is one-to-one, so that
we have X 
 P.X/: To show that we have a strict domination, we must show that
there are no maps from X onto P.X/: Suppose that g W X ! P.X/ is onto, and
let S be the set fx 2 X W x 62 g.x/g � X: Since g is onto, there exists � 2 X
with g.�/ D S: Now if � 2 g.�/, then the definition of S implies � 62 g.�/, and if
� 62 g.�/ D S; then, once again, the definition of S implies that � 2 g.�/ D S: In
other words, in either case we reach a contradiction, and the theorem is proved. ut
Corollary 1.4.24. The set P.N/ � 2N is uncountable. In other words, the set of all
sequences .x1; x2; x3; : : :/, where xn 2 f0; 1g for each n 2 N, is uncountable.

Remark 1.4.25.

1. In fact, one can prove that jP.N/j D j2Nj D jRj D c: In particular, the set R of
real numbers is uncountable. We will return to this fact (and its proof) after the
axiomatic definition of real numbers.

2. One can define an arithmetic on cardinal numbers as follows: Given two disjoint
sets X and Y , the sum of the cardinal numbers jX j and jY j is defined by jX j C
jY j WD jX [Y j: If X and Y are not disjoint, one considers the disjoint sets X 0 D
X�f0g and Y 0 D Y �f1g and defines jX jCjY j WD jX 0[Y 0j: For any setsX and
Y , not necessarily disjoint, the product of their cardinal numbers is defined by
jX jjY j WD jX �Y j: One can also define exponentiation by jX jjY j WD jXY j: It can
be proved that these operations have the properties satisfied by the corresponding
numerical operations. Checking these properties is a rewarding exercise, and we
encourage the reader to try some of them or to consult the references for details.
The following result will be needed later.

Exercise 1.4.26. Show that, if A is an infinite set, then jA � Nj D jAj: Hint: Let
F denote the set of all bijective maps f W S � N ! S , where S � A: Since
jN�Nj D jNj, we have F ¤ ;: (Why?) Show that Zorn’s Lemma can be applied in
F to produce a maximal bijection h W B � N ! B , with B � A, and that we must
have B D A, by examining the cases where S n B is finite or infinite.

1.5 Problems

1. Show that, for any subsets A; B of a universal set U , we have

A � B ” Ac � Bc ” A\ B D A ” A[ B D B:

2. Show that, for any sets A; B , and C , we have

.a/ A n .A n B/ D A\ B; .b/ A\ .B n C/ D .A\ B/ n C:
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3. Show that, for any sets A and B , there is a set C such that A4C D B: Is C unique?

4. For any sets A; B , and C , show that

A\ .B4C/ D .A\ B/4.A\ C/:

5. Given two sets A and B , show that

A[ B D A4B4.A\ B/ and A n B D A4.A\ B/:

Deduce that, if A\ B D ;, then A[ B D A4B .

6. Show that, given two sets A and B , we have

A D ; ” B D A4B:
7. Let U be an infinite set and let C � P.U / be the collection of all countable subsets of U and
their complements. Show that C is a �-algebra. Let F denote the set of all finite subsets of U and
their complements. Is F a �-algebra?

8. Let U be a nonempty set and A � P.U / a �-algebra. Show that, for any set S � U , the
collection fA\ S W A 2 Ag is a �-algebra of subsets of S:

9. Let .An/1nD1 be a partition of a (nonempty) set U I i.e., the An are nonempty, pairwise disjoint,
and

S

An D U: Show that the set of all unions of the An (including the “empty union” which we
define to be ;) is a �-algebra.

10. Let U be a nonempty set. Show that, given any family .Rj /j2J of equivalence relations on
U , the intersection R WD T

j2J Rj is also an equivalence relation on U: Give an example of two
equivalence relations on a set U whose union is not an equivalence relation.

11. Let R and S be two equivalence relations on a set U: Show that R ı S is an equivalence
relation on U if and only if R ı S D S ı R and that, in this case, R ı S is the intersection of all
the equivalence relations on U that contain both R and S:

12. Let U be a partially ordered set. Show that we can write U D S [ T , with S \ T D ;, such
that S is well ordered (with respect to the ordering in U ) and T has no least element. Hint: Look
at the union of all subsets of U that have no least element.

13. Using induction, prove the following statements for all n 2 N:

n
X

kD1

k D n.nC 1/

2
;

n
X

kD1

k2 D n.nC 1/.2nC 1/

6
;

n
X

kD1

k3 D n2.nC 1/2

4
;

n
Y

kD1

�

1C 1

k

�k

D .nC 1/n

nŠ
:

14. Let f W S ! T be a function and B � T: Show that f .f �1.B// D B \ f .S/: If A � S ,
show that .f jA/�1.B/ D A\ f �1.B/, where f jA denotes the restriction of f to A:

15. Let � be a well ordering on a set X and let f W X ! X be a permutation (i.e., a bijection
of X onto itself). Show that, if f is order preserving (i.e., f .x/ � f .y/ whenever x � y), then
f D idX :
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16. Let U be a nonempty set. Show that a ring R � P.U / (resp., an algebra A � P.U /)
is indeed a ring (resp., a ring with unit element) in the algebraic sense [cf. Definition 1.3.7 and
Remark 1.3.8(c)] under the operations of addition and multiplication defined by

AC B WD A4B; and AB WD A\ B:

17. Show that, if F is a field, then the only ideals in F are f0g and F:

18 (Maximal Ideal). Let R be a commutative ring with unit element 1 ¤ 0: Show that R has
at least one maximal ideal, i.e., an ideal M � R such that there is no ideal N � R satisfying
the proper inclusions M � N � R: Hint: Consider the set I of all ideals I ¤ R and note that
f0g 2 I: Partially order I by inclusion and show that, if .I˛/˛2A is a chain in I, then

S

˛2A I˛ 2 I:
Now use Zorn’s Lemma.

19. Let R be a commutative ring with unit element 1 ¤ 0 and let M � R be a maximal ideal.
For any x; y 2 R, let us write x � y if x � y 2 M: Show that � is an equivalence relation
on R and that, for each x 2 R, its equivalence class is Œx� D x C M WD fx C m W m 2 M g:
Now define Œx� C Œy� WD Œx C y� and Œx� � Œy� WD Œxy� for any x; y 2 R: Show that these are
well-defined binary operations on the quotient setR=M WD R= � (i.e., if x � x0 and y � y0, then
Œx�C Œy� D Œx0�C Œy0� and Œx�Œy� D Œx0�Œy0�). Finally, show that (with these operations) R=M is
a field.

20. For each n 2 N, prove the identities

n
X

kD0

 

n

k

!

D 2n and
n
X

kD0

.�1/k
 

n

k

!

D 0:

Deduce from the latter that, for any (nonempty) finite set, the number of even size subsets equals
the number of odd size ones.

21. For any m; n 2 N, apply the binomial formula to .1C x/m.1C x/n to prove the identity

k
X

jD0

 

m

j

! 

n

k � j

!

D
 

mC n

k

!

.0 	 k 	 mC n/;

where we define
�

`
i

� WD 0, for i > `: Deduce that

n
X

jD0

 

n

j

!2

D
 

2n

n

!

.8n 2 N/:

22. Given any n 2 N, show that the number of ordered pairs .i; j / of integers with 1 	 i 	 j 	 n

(resp., 1 	 i < j 	 n) is n.nC 1/=2 (resp., n.n� 1/=2).

23. For any integers 0 	 n 	 m, prove the identities

n
X

kD0

 

m

k

! 

m� k

n� k

!

D 2n

 

m

n

!

and
n
X

kD0

.�1/k
 

m

k

! 

m� k

n� k

!

D 0:

Hint: Given a set of size m, look at the subsets of size n that contain a given subset of size k; 0 	
k 	 n:

24. Let A and B be totally ordered sets with m and n elements, respectively. How many strictly
increasing functions are there from A to B‹
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25. Show that, for any integers 1 	 n 	 m, we have

nm D Smn C
 

n

1

!

Snn�1 C
 

n

2

!

Snn�2 C � � � C
 

n

n� 1

!

:

Hint: Let A and B have m and n elements, respectively. Look at the number of maps f 2 BA

whose ranges contain all but one element, two elements, etc. in B:

26. How many equivalence relations are there on a set U with n elements?

27. Given anym; n 2 N with gcd.m; n/ D 1, show that �.mn/ D �.m/�.n/, where � is Euler’s
Phi-Function (cf. Definition 1.3.46 and Exercise 1.3.47).

28. Show that, if A is a �-algebra containing an infinite number of sets, then this (cardinal)
number is uncountable. Hint: Start by showing that A contains a sequence .An/1nD1 of (nonempty)
pairwise disjoint sets and use Problem 9.

29. For each set S , let FS denote the set of all finite subsets of S: Show that, if S is countably
infinite, then jFS j D jS j: Actually, this holds for all uncountable sets S as well, but the proof is
harder (cf. Problem 35 below).

30. Let A and B be nonempty sets. Show that if there is a surjective (i.e., onto) map f W A ! B ,
then jBj 	 jAj:
31.

(a) Show that a set S is finite if and only if each nonempty subset of P.S/ (partially ordered by
inclusion) has a minimal element.

(b) Show that a set S is infinite if and only if S is equivalent to some proper subset of itself. Hint:
Recall that any infinite set contains a countably infinite subset.

32.

(a) Show that, if A is an infinite set, then jAj C jAj D jAj: Deduce that, if jBj 	 jAj, then
jAj C jBj D jAj: Hint: Show, as in Exercise 1.4.26, that jA
 f1; 2gj D jAj:

(b) Show that, if A is an infinite set and .An/ is a (finite or infinite) sequence of pairwise disjoint
sets with An � A for all n, then

P

n jAnj WD jSn Anj D jAj: Hint: As in part (a), show that
jA
 f1; : : : ; kgj D jAj, for all k 2 N:

33.

(a) Let J be an infinite index set and let fAj W j 2 J g be a family of infinite sets such that
Aj � A for all j 2 J and a set A. Show that we have

jAj 	 ˇ

ˇ

[

j2J
Aj
ˇ

ˇ 	 jJ 
 Aj:

Deduce, in particular, that if A � N, then jAj 	 jJ 
 Nj D jJ j, and if J � N, then
jSj2J Aj j D jAj:

34. Extend Exercise 1.4.26 by showing that, for any infinite set A, we have jA
Aj D jAj: Hint:
Show that the set F of all bijective maps f W S 
 S ! S (where S � A), partially ordered
by inclusion, has a maximal bijection h W B 
 B ! B: Now consider the cases jA n Bj 	 jBj
and jA n Bj > jBj: In the latter case, pick C � A n B with jC j D jBj, and produce a bijection
g W .D 
D/ n .B 
 B/ ! C , where D WD B [ C: Now extend h to h[ g W D 
D ! D:

35. Extend Problem 29 by showing that, given any infinite set S , we have jFS j D jS j, where FS
denotes the set of all finite subsets of S:



Chapter 2
Sequences and Series of Real Numbers

The elementary theories of real-valued functions of a real variable and of numerical
sequences and series are treated in any standard calculus text. In most cases,
however, the proofs are given in appendices and omitted from the main body of the
course. To give rigorous proofs of the basic theorems on convergence, continuity,
and differentiability, one needs a precise definition of real numbers. One way to
achieve this is to start with the construction of real numbers from the rational ones
by means of Dedekind Cuts. We shall not follow this path. Instead, we will give a
set of axioms for the real numbers from which all their properties can be deduced.
These axioms will be divided into three categories: First, we introduce the algebraic
ones. Next, we discuss the order axioms, and finally, we discuss the very deep and
fundamental Completeness Axiom. After outlining the axiomatic definition of the
real numbers, we will look at the sequences in R and their limits. Here, the most
important concept is that of a Cauchy sequence. It will be used in Appendix A
for a brief discussion of Cantor’s construction of real numbers from the Cauchy
sequences in the set Q of rational numbers. The properties of sequences will be
used in a short section on infinite series of real numbers. We shall return to infinite
series in another chapter to discuss series of functions, such as power series and
Fourier series. Finally, the last section is a brief introduction to unordered series
and summability. Throughout this chapter, our universal set will be U D R, so that
a set will automatically mean a subset of R:

2.1 Real Numbers

The set R of real numbers (whose detailed construction is given in Appendix A) is
an ordered field. That R is a field means that, on the set of real numbers, there are
two (binary) operations, i.e., two maps from R � R to R, denoted by “C” and “�”
and called addition and multiplication, respectively, satisfying the following nine
axioms. Here a; b, and c are arbitrary real numbers.
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Algebraic Axioms:

.A1/ aC b D b C a (commutativity of addition);

.A2/ .aC b/C c D aC .b C c/ (associativity of addition);

.A3/ 9 0 2 R with 0C a D a (existence of zero);

.A4/ 9 � a 2 R with aC .�a/ D 0 (existence of negative elements);

.M1/ a � b D b � a (commutativity of multiplication);

.M2/ .a � b/ � c D a � .b � c/ (associativity of multiplication);

.M3/ 9 1 2 R n f0g with a � 1 D a (existence of a unit element);

.M4/ 8 a 2 R n f0g 9 1=a 2 R with a � .1=a/ D 1 (existence of reciprocals);

.D/ a � .b C c/ D a � b C a � c (distributivity of “�” over “C”).

Exercise 2.1.1. If a is any real number, show that

1. a � 0 D 0;
2. .�1/ � a D �a;
3. �.�a/ D a; and
4. .�1/.�1/ D 1:
Exercise 2.1.2. Let a; b; c 2 R: Show that

(a) a ¤ 0 H) 1=a ¤ 0 and 1=.1=a/ D aI
(b) a � b D a � c and a ¤ 0 H) b D cI and
(c) a � b D 0 H) a D 0 or b D 0:
Notation 2.1.3. Henceforth, the product a �b will be denoted by ab, as long as there
is no danger of confusion.

Definition 2.1.4 (Subtraction, Division, Integral Exponents). We define the
binary operation “�” of subtraction by a � b WD a C .�b/ 8a; b 2 R: Division is
defined by a=b D a

b
D a � b WD a � .1=b/ D a.1=b/ 8a; b 2 R; b ¤ 0:

Exponentiation is defined as follows: For each real number a, we define
a1 WD a; a2 WD aa; a3 WD aaa, and, more generally, for any positive integer
n; anC1 WD .an/a: We next define, for each a 2 R n f0g; a0 WD 1 and a�1 WD 1=a:

Finally, for each a 2 R n f0g and each n 2 N, we define a�n WD 1=an D .1=a/n:
Remark 2.1.5. Using the above definition of an, for n 2 Z (and a ¤ 0, if n �
0), one can easily check the usual laws of exponents: aman D amCn; am=an D
am�n; .am/n D amn; .ab/n D anbn; .a=b/n D an=bn; etc. 8 a; b; m; n such
that the symbols are defined.

Next, we look at the three axioms that define the usual ordering on the set of real
numbers.

Order Axioms: There is a subset P � R satisfying the following three axioms:

.O1/ a; b 2 P H) aC b 2 P ;

.O2/ a; b 2 P H) ab 2 P ; and

.O3/ for each a 2 R, exactly one of the following holds:

a 2 P; a D 0; �a 2 P (Trichotomy)



2.1 Real Numbers 41

Notation and Remarks 2.1.6. Given any subsets A; B � R, we define AC B WD
faC b W a 2 A; b 2 Bg; A �B WD fab W a 2 A; b 2 Bg, and �A WD f�a W a 2 Ag:
With this notation, the order axioms can be written as follows:

.O1/ P C P � P ;

.O2/ P � P � P ; and

.O3/ R D P [ f0g [ .�P / is a partition of R:

Definition 2.1.7 (Positive, Negative). Let a 2 R:We say that a is (strictly) positive
if a 2 P and that a is (strictly) negative if �a 2 P (equivalently if a 2 �P ).
A real number a will be called nonnegative if a 2 P [ f0g and nonpositive if
a 2 .�P / [ f0g:
Definition 2.1.8 (Inequalities). Given two real numbers a and b, if a�b 2 P , then
we write a > b or b < a and say that a is greater than b or that b is less than a:
If a � b 2 P [ f0g, then we write a � b or b � a and say that a is greater than or
equal to b or that b is less than or equal to a:

Remarks and Notation 2.1.9. Note that, by trichotomy (Axiom O3), for each
a 2 R, exactly one of a > 0; a D 0, or a < 0 holds. For any real number a,
we have a � a because a � a D 0: Next, P C P � P implies that, if a � b

and b � c, then a � c: It also follows from trichotomy that, for any real numbers
a and b, exactly one of the following holds: a < b; a D b; a > b: Thus, if a � b
and b � a, then a D b: If a < b and b � c, then we write the combined inequality
in the form a < b � c: Similar notation is used for other types of inequalities.

Exercise 2.1.10. Prove each of the following:

(a) a 2 R n f0g H) a2 > 0I
(b) 1 > 0I and
(c) n 2 N H) n > 0:

Exercise 2.1.11. Deduce the following properties from the above definitions. Here
a; b; c, and d are real numbers:

1. a < b H) aC c < b C c 8 c 2 RI
2. a < b and c < d H) aC c < b C d I
3. a < b and c > 0 H) ac < bcI
4. a < b and c < 0 H) ac > bcI
5. a > 0 H) 1=a > 0, and a < 0 H) 1=a < 0I and
6. 0 < a < b H) 1=a > 1=b:

Exercise 2.1.12. Prove each of the following statements. Here, a and b are real
numbers:

1. a > 0 H) 0 < a=2 < a:

2. a < b H) a < .aC b/=2 < b:
3. If ab > 0, then a and b are both positive or both negative.
4. If ab < 0, then a and b have opposite signs.
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Theorem 2.1.13. Let a; b 2 R be arbitrary, and assume that a < b C " for every
" > 0: Then a � b:
Proof. If a > b, then, setting " D .a � b/=2 > 0 and using Exercise 2.1.12, we
have b C " D b C .a � b/=2 D .aC b/=2 < a, contradicting the assumption. ut
Corollary 2.1.14. If a 2 R, and if 0 � a < " for every " > 0, then a D 0:
Exercise 2.1.15. Prove the corollary.

Definition 2.1.16 (Absolute Value). For any real number a 2 R, we define its
absolute value, denoted by jaj, to be

jaj WD
(

a if a � 0;
�a if a < 0:

Proposition 2.1.17. Let a; b 2 R, and let c � 0: Then we have:

1. jaj D 0 ” a D 0I
2. j � aj D jajI
3. jabj D jajjbjI
4. ja=bj D jaj=jbj, if b ¤ 0I
5. �jaj � a � jajI
6. jaj � c ” �c � a � cI and
7. jaj � c ” a � �c or a � c:
Exercise 2.1.18. Prove the proposition.

Proposition 2.1.19 (Triangle Inequality). Given any real numbers a; b 2 R, we
have ja C bj � jaj C jbj: More generally, if a1; : : : ; an are real numbers, we have
ja1 C a2 C � � � C anj � ja1j C ja2j C � � � C janj:
Proof. By part (5) of Proposition 2.1.17, we have �jaj � a � jaj and �jbj � b �
jbj, from which we get �.jaj C jbj/ � a C b � jaj C jbj: Therefore, the first part
of the proposition follows from part (6) of Proposition 2.1.17. The second part is
proved by induction. ut
Corollary 2.1.20. Given any a; b 2 R, we have the following:

1. ja � bj � jaj C jbjI
2. jjaj � jbjj � ja � bj:
Exercise 2.1.21. Prove the corollary.

Exercise 2.1.22. Following our notation for lattice operations, for any numbers
a; b 2 R, we define a _ b D maxfa; bg and a ^ b D minfa; bg: Show that the
following are true for any numbers a; b; c 2 R:

1. a ^ b C a _ b D aC bI
2. .�a/ ^ .�b/ D �.a _ b/I
3. a _ b C c D .aC c/ _ .b C c/I
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4. c.a _ b/ D .ca/ _ .cb/ if and only if c � 0I
5. jaj D a _ .�a/; and
6. a _ b D .aC b C ja � bj/=2; a ^ b D .aC b � ja � bj/=2:
Proposition 2.1.23 (Bernoulli, Cauchy, and Triangle Inequalities). Let x > �1
and x1; x2; : : : ; xn; y1; y2; : : : ; yn be arbitrary real numbers. Then the following
inequalities hold:

Bernoulli’s Inequality:

.1C x/n � 1C nx; 8 n 2 N:

Cauchy’s Inequality:

� n
X

iD1
xiyi

�2

�
� n
X

iD1
x2i

�� n
X

iD1
y2i

�

:

Triangle Inequality:

� n
X

iD1
.xi C yi /2

�1=2

�
� n
X

iD1
x2i

�1=2

C
� n
X

iD1
y2i

�1=2

:

Exercise 2.1.24. Prove the proposition and show that in Bernoulli’s inequality,
equality holds if and only if n D 1 or x D 0: Also prove the following consequence
of Bernoulli’s inequality: If x > �1, then we have

.1C x/1=n � 1C x=n 8 n 2 N:

Hints: For Bernoulli’s inequality, use induction on n: For Cauchy’s inequality, set
X WD Pn

iD1 x2i ; Y WD
Pn

iD1 y2i , and Z WD Pn
iD1 xiyi : Observe that for any t 2

R; F .t/ WDPn
iD1.xi � tyi /2 � 0, and look at the discriminant Z2 �XY of F.t/:

Finally, note that the Triangle Inequality is a consequence of Cauchy’s inequality.

The next inequality is important enough to be stated separately. It is the famous
Arithmetic–Geometric Means Inequality. We give a well-known inductive proof and
ask the reader to give another one in Exercise 2.1.26 below.

Proposition 2.1.25 (Arithmetic–Geometric Means Inequality). For each natu-
ral number n � 2, let a1; a2; : : : ; an be real numbers with ai � 0 for i D
1; 2; : : : ; n: If their “arithmetic mean” is defined to beAn WD .a1Ca2C� � �Can/=n
and their “geometric mean” to be Gn WD .a1a2 � � � an/1=n, then we have

Gn � An;

with equality holding if and only if a1 D a2 D � � � D an D An:
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Proof. Assume first that n D 2m for some m 2 N: Now for m D 1, i.e., n D 2,
the inequality

p
a1a2 � .a1 C a2/=2 is equivalent to .

p
a1 � pa2/2 � 0, which

is obviously true and is an equality if and only if a1 D a2: Next, assuming the
inequality is true for n D 2m, we must prove it for 2n D 2mC1: However, using the
case n D 2m and the (already proven) inequality G2 � A2, we have

G2n D 2n
p
a1a2 � � � a2n D

q

n
p
a1 � � � an n

p
anC1 � � � a2n

� 1

2
. n
p
a1 � � � an C n

p
anC1 � � � a2n/

� 1

2
Œ.a1 C � � � C an/=nC .anC1 C � � � C a2n/=n�

D .a1 C a2 C � � � C a2n/=.2n/
D A2n:

To prove the inequality for arbitrary n, we pick m 2 N such that n < 2m and set
k D 2m � n: Setting anC1 D anC2 D � � � D a2m D An, and applying the inequality
to the 2m numbers a1; a2; : : : ; a2m , we get

.a1 � � � an/.An/k � Œ.a1 C � � � C an C kAn/=2m�2m

D Œ.nAn C kAn/=2m�2m D .An/2m;

and our inequality follows if we divide the two sides by Akn: The last statement
(about the cases where equality holds) also follows inductively. ut
Exercise 2.1.26. Prove Proposition 2.1.25 by induction along the following lines:
First, the inequality is trivial if the ai are all equal. If not, show that (after renaming
the ai , if necessary) we may assume that a1 < An < a2: Write Na1 D An and
Na2 D a1 C a2 � An, and show that a1a2 < Na1 Na2, deducing that it suffices to prove
the inequality Na1 Na2a3 � � � an � Ann: Prove the latter inequality by induction, using the
case n D 1 (or n D 2) as your first step and the case of n�1 numbers Na2; a3; : : : ; an,
as the inductive step.

Definition 2.1.27 (Intervals).

(A) Given any a; b 2 R with a < b, we define the following sets to be the bounded
intervals with endpoints a and b:

1. .a; b/ WD fx 2 R W a < x < bgI
2. Œa; b/ WD fx 2 R W a � x < bgI
3. .a; b� WD fx 2 R W a < x � bgI and
4. Œa; b� WD fx 2 R W a � x � bg:
.a; b/ is called open and Œa; b� is called closed; Œa; b/ and .a; b� are called half-
open (or half-closed).
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(B) Given any a 2 R, we define the following sets to be the unbounded intervals
with (finite) endpoint a:

5. .a;1/ WD fx 2 R W x > agI
6. Œa;1/ WD fx 2 R W x � agI
7. .�1; a/ WD fx 2 R W x < agI and
8. .�1; a� WD fx 2 R W x � ag:
Here, 1 (also denoted C1) and �1 are two symbols, called plus infinity
and minus infinity, respectively, that are not real numbers. The intervals .a;1/
and .�1; a/ are called open, while Œa;1/ and .�1; a� are called closed.
Furthermore, we consider R itself to be an unbounded interval (that is both
open and closed):

9. .�1;1/ WD R:

Remark 2.1.28 (Degenerate Interval). We may sometimes find it useful to include
the empty set ; � R and singletons (i.e., sets containing a single real number) in
the set of all intervals. Thus, for any a 2 R, we have .a; a/ D .a; a� D Œa; a/ D ;,
while Œa; a� D fag:

Finally, the last axiom of real numbers, which is fundamental in all aspects of
analysis, is the following:

Completeness Axiom (or Supremum Property)

(C) Every nonempty subset of R that is bounded above has a least upper bound
(in R).

In other words, if ; ¤ S � R, and if there exists an element u 2 R such that
s � u for all s 2 S , then sup.S/ 2 R:

Exercise 2.1.29. Show that the Supremum Property is equivalent to the Infimum
Property: Every nonempty subset of real numbers that is bounded below has a
greatest lower bound in R: In other words, if ; ¤ S � R, and if there exists a
number t 2 R such that t � s for all s 2 S , then inf.S/ 2 R: Hint: Show that
inf.S/ D � sup.�S/, where �S WD f�s 2 R W s 2 Sg:

In most applications, the following characterization of the least upper bound of a
nonempty set of real numbers is more convenient than the general definition, given
in Chap. 1, for nonempty subsets of any partially ordered set.

Proposition 2.1.30. Let ; ¤ S � R, and assume that S is bounded above. Then
u D sup.S/ if and only if (i) s � u 8 s 2 S (i.e., u is an upper bound of S ) and
(ii) 8 " > 0 9 s" 2 S such that u � " < s":
Proof. If u D sup.S/, then (i) is obviously satisfied. Also, for each " > 0, we have
u � " < u, so that u � " is not an upper bound of S: Therefore, there exists s" 2 S
such that u � " < s": Conversely, if (i) and (ii) hold, then u is an upper bound of
S by (i). If v is any other upper bound and if v < u, then, setting " D u � v > 0
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and using (ii), we can find s" 2 S such that v D u � " < s" � u, contradicting the
assumption that v is an upper bound of S. ut

One of the important consequences of the Completeness Axiom is the following.

Theorem 2.1.31 (Archimedean Property of R). Given any x 2 R, there exists
an integer nx 2 N such that x < nx:

Proof. Suppose not. Then there exists x0 2 R such that n � x0 for all n 2 NI
i.e., N is bounded above. Since ; ¤ N � R, the Supremum Property implies that
u D sup.N/ 2 R: Now, using Proposition 2.1.30 (with " D 1), we can find m 2 N

such that u � 1 < m � u: But then u < mC 1 2 N, contradicting the fact that u is
an upper bound of N. ut
Corollary 2.1.32. Let x and y be positive numbers. Then we have:

(a) 9 n 2 N such that x < ny;
(b) 9 n 2 N such that 0 < 1=n < x; and
(c) 9 n 2 N such that n � 1 � x < n:
Exercise 2.1.33. Prove the corollary. Hint for (c): Look at min.fk 2 N W x < kg/:

The next proposition which guarantees the existence of square roots of positive
numbers is our first application of the Archimedean Property.

Proposition 2.1.34 (Existence of Square Roots). Given any a > 0, there is a
unique x > 0 such that x2 D a: This unique x is denoted by

p
a:

Proof. Since 12 D 1, we assume that a > 1I otherwise, one can consider 1=a: Now
introduce the set S D fs > 0 W s2 < ag: Since 12 D 1 < a, we have S ¤ ;: Also,
1 < a implies that s < a for all s 2 S: In other words, S is bounded above. By the
Supremum Property, x WD sup.S/ 2 R:We prove x2 D a by showing that both x2 >
a and x2 < a result in contradictions. Assume first that x2 < a: Then the inequality
1=n2 � 1=n, true for all n 2 N, implies that .x C 1=n/2 � x2 C .2x C 1/=n: Now
using .a�x2/=.2xC1/ > 0 and the Archimedean Property, we can pick n 2 N such
that 1=n < .a � x2/=.2x C 1/, from which we get .x C 1=n/2 < a: However, this
gives x C 1=n 2 S , contradicting x D sup.S/: Next, assume that x2 > a: Then for
anym 2 N, we have .x�1=m/2 > x2�2x=m:Using the inequality .x2�a/=.2x/ >
0 and the Archimedean Property, we find anm 2 N such that 1=m < .x2�a/=.2x/:
But this implies that s2 < a < .x � 1=m/2 for all s 2 S: In other words, x � 1=m
is an upper bound of S , again contradicting x D sup.S/: The uniqueness follows
from the fact that 0 < x < y implies y2 � x2 D .y � x/.y C x/ > 0I i.e., y2 > x2.

ut
Remarks and Notation 2.1.35. A similar argument, using the binomial formula,
can be used to show that any positive number a has a (unique) positive nth root,
denoted by n

p
a and such that . n

p
a/n D a, for any n 2 N: This will be obtained in

Chap. 4 by a more abstract argument involving the continuity of inverse functions.
For a D 0, we have n

p
0 D 0 8n 2 N: If a < 0 and n is odd, then we define

n
p
a D � n

p�a: For n even and a < 0; n
p
a cannot be defined as a real number.
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What is needed is the set of complex numbers, which will be defined later. Using nth
roots, one can introduce fractional powers by defining a1=n WD n

p
a when the right

side is real and, more generally, am=n WD .a1=n/m D n
p
am for any n 2 N; m 2 Z,

when the right side is real. It is then easy to check that all the laws of exponents hold
for these fractional powers as well. Finally, note that

p
a2 D jaj 8a 2 R and, more

generally, n
p
an D an=jajn�1 8a 2 R n f0g:

The existence of square roots can be used to prove that irrational numbers exist;
in other words, that R n Q ¤ ;: The following theorem and its proof can be found
in Euclid’s Elements:

Theorem 2.1.36 (Irrationality of
p

2).
p
2 62 Q:

Proof. Suppose that
p
2 D m=n, where m; n 2 N and gcd.m; n/ D 1: Then

m2=n2 D 2, so that m2 D 2n2, and m is even, i.e., m D 2m0 for some m0 2 N:

But then 4m2
0 D 2n2 implies n2 D 2m2

0 and hence n is also even, contradicting
gcd.m; n/ D 1. ut
Remark 2.1.37. More generally, one can show that

p
n 62 Q if n � 2 has prime

factorization n D p
r1
1 p

r2
2 � � �prmm , where at least one of the positive exponents rj

is odd.

Our next application of the Archimedean Property shows that the set of rational
numbers is dense in the set of all real numbers:

Theorem 2.1.38 (Density of Q in R). If x and y are real numbers with x < y,
then there exists a rational number r 2 Q, such that x < r < y:

Proof. We may assume that x > 0: (Why?) By the Archimedean Property, there is
n 2 N such that 1=n < y�xI i.e., that ny�nx > 1: By part (c) of Corollary 2.1.32,
we can pick m 2 N such that m � 1 � nx < m: Since m � nx C 1 < ny, we get
nx < m < nyI in other words, with r D m=n, we have x < r < y. ut
Corollary 2.1.39. For any real numbers x and y with x < y, there is an irrational
number t such that x < t < y:

Exercise 2.1.40. Prove the corollary. Hint: Look at x=
p
2 and y=

p
2:

Our next application of completeness of R is the following.

Proposition 2.1.41 (Characterization of Intervals). A set I � R is a nondegen-
erate interval if and only if for any a; b 2 I , a < b, we have Œa; b� WD fx 2 R W
a � x � bg � I:
Proof. Clearly, any interval satisfies the condition in the proposition. To prove the
converse, let ˛ D inf.I /, ˇ D sup.I /, where we agree to write ˛ D �1 (resp.,
ˇ D C1) if I is not bounded below (resp., above). Let c 2 I: If ˛ D �1, then
for any x < c there is y 2 I such that y < x < cI hence x 2 I , and we get
.�1; c� � I: If ˛ 2 R and ˛ < c, then again for each x 2 R satisfying ˛ < x < c,
we can find y 2 I with y < x < c, which implies that x 2 I and hence that
.˛; c� � I: Similarly, we can show that Œc; ˇ/ � I , and hence .˛; ˇ/ � I: In view
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of the definitions of ˛ and ˇ, it follows that I must be one of the four possible
intervals with endpoints ˛ and ˇ: It is obvious that ˛ 62 I (resp., ˇ 62 I ) if ˛ D �1
(resp., ˇ D C1). ut

The following corollary may be worth stating.

Corollary 2.1.42. Let fI�g�2ƒ be any collection of intervals. If
T

�2ƒ I� ¤ ;, then
the union J DS�2ƒ I� is an interval.

Proof. Let c 2 T�2ƒ I� be a fixed point. Given any a; b 2 J with a < b, we
can pick �a; �b 2 ƒ with a 2 I�a and b 2 I�b and note that if a < c < b, say,
then (since c 2 I�a \ I�b ) we have Œa; c� � I�a � J and Œc; b� 2 I�b � J so that
Œa; b� � J , as desired. The cases c � a < b and a < b � c are simpler. ut

Here is another important application of the Completeness Axiom:

Theorem 2.1.43 (Nested Intervals Theorem). Let f In D Œan; bn� n 2 Ng be a
sequence of closed bounded intervals in R that is “nested,” i.e., InC1 � In 8 n 2 N:

Then
T1
nD1 In ¤ ;: If, in addition, inf.fbn � an W n 2 Ng/ D 0, then

T1
nD1 In D

f�g, for a unique � 2 R:

Proof. The set A D fan W n 2 Ng is bounded above (by b1). Let � D sup.A/:
Since the In are nested, for any positive integers m and n, we have am � amCn �
bmCn � bn, so that � � bn for each n 2 N: Since we obviously have an � � for
each n, we have an � � � bn, for all n, which implies � 2 T1

nD1 In: Finally, if
�; � 2T1

nD1 In, with � � �, then we get 0 � �� � � bn�an, for all n 2 N, so that
0 � � � � � inf.fbn � an W n 2 Ng/ D 0. ut
Exercise 2.1.44. Let fŒan; bn�gn2N be a sequence of nested intervals. If ˛ D
supfan W n 2 Ng and ˇ D inffbn W n 2 Ng, show that

1
\

nD1
Œan; bn� D Œ˛; ˇ�:

As the above proof shows, the Nested Intervals Theorem is a consequence of the
Supremum Property of R: In fact, as the next theorem shows, the converse is also
true, if the Archimedean Property is assumed as well.

Theorem 2.1.45. The Supremum Property of R is a consequence of the Nested
Intervals Theorem and the Archimedean Property. More precisely, if the Complete-
ness Axiom is replaced by the Nested Intervals Theorem and the Archimedean
Property, but all other axioms remain, then the Supremum Property holds.

Proof. Let ; ¤ S � R be bounded above. Pick an arbitrary s 2 S: For each n 2 N,
the Archimedean Property of R implies that s C m=2n is an upper bound of S , for
some m 2 N: Let kn be the smallest such m, and set In WD Œs C .kn � 1/=2n; s C
kn=2

n�: We then have In \ S ¤ ;: (Why?) Thus while (by definition) sC kn=2n D
sC.2kn/=2nC1 is an upper bound of S , sC.2kn�2/=2nC1 D sC.kn�1/=2n is not.
Therefore, either knC1 D 2kn or knC1 D 2kn� 1 and InC1 � In follow. The Nested
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Intervals Theorem now implies that
T1
nD1 In D fug for a unique u 2 R: Indeed, if

u < v and u; v 2 T1
nD1 In, then v � u > 1=2n for some n 2 N, which contradicts

u; v 2 In, since In has length 2�n: We claim that u D sup.S/: First, u is an upper
bound of S for, otherwise, there is t 2 S with u < t and hence t � u > 1=2n for
some n 2 N: Since u 2 In, we get s C kn=2n < t , which contradicts the definition
of kn: Next, if v is any upper bound of S and if v < u, then we can pick n 2 N

such that u � v > 1=2n, and since u 2 In, it follows that v < s C .kn � 1/=2n:
In particular, s C .kn � 1/=2n is an upper bound of S , which again contradicts the
definition of kn. ut

Nested intervals can be used to obtain decimal (or binary, ternary, etc.) repre-
sentations of real numbers. We will give a short account of this. The details may be
supplied by the reader or found in the references.

Binary, Ternary, Decimal, etc. Expansions.

Let x 2 Œ0; 1/ and let p > 1 be a fixed integer. Then x 2 Œ0; 1/ DSp�1
jD0

�

j=p; .j C
1/=p

�

, where the union is disjoint. Therefore, there is a unique integer x1 2
f0; 1; : : : ; p � 1g such that x 2 Œx1=p; x1=p C 1=p/: Dividing the latter interval
into p equal parts, there is a unique integer x2 such that 0 � x2 < p and
x 2 Œx1=p C x2=p2; x1=p C x2=p2 C 1=p2/: Continuing this process, at the nth
stage we have uniquely determined integers xj with 0 � xj < p for 1 � j � n,
and

x 2
h

n
X

jD1

xj

pj
;

n
X

jD1

xj

pj
C 1

pn

�

:

Now let I0 WD Œ0; 1� and

In WD
h

n
X

jD1

xj

pj
;

n
X

jD1

xj

pj
C 1

pn

i

; n 2 N:

Then the intervals I0; I1; I2; : : : are nested and Ik has length 1=pk for all k 2 N0:

Since x 2 Ik for all k, it follows from the Nested Intervals Theorem that
T1
kD0 Ik D

fxg: The base p expansion of x is now denoted by x D .0:x1x2 � � � /p and it is unique
by construction. If x 2 .0; 1/ is an endpoint of some In, say, x D Pn

kD1 xk=pk ,
with xn � 1, then the above construction gives the unique base p expansion x D
.0:x1 � � � xn000 � � � /p with xk D 0 for all k > n: It turns out, however, that in this
case we have a second expansion x D .0:x0

1x
0
2 � � � /p , where x0

j D xj for 1 � j �
n � 1; x0

n D xn � 1, and x0
k D p � 1 for all k > n: We shall come back to this in

Chap. 4 when we discuss the Cantor’s ternary set. We shall also see that x D 1 has
the unique expansion 1 D .0:x1x2 � � � /p with xn D p � 1 for all n.

If in the above procedure we take p D 2; p D 3; p D 10,. . . , then we obtain
the binary, ternary, decimal, etc. expansions of the real number x: For example,
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the binary (i.e., base two) expansion of x has the form x D .0:x1x2x3 � � � /2 WD
x1=2C x2=22 C x3=23 C � � � , where each xn is either 0 or 1. Similarly, the ternary
(i.e., base three) expansion of x has the form x D .0:x1x2x3 � � � /3 WD x1=3Cx2=32C
x3=3

3 C � � � , where each xn is 0, 1, or 2. As above, the expansion is unique unless
x 2 .0; 1/ is a subdivision point at some stage, in which case two expansions exist.
In the binary case, one of the two binary expansions ends with an infinite string of
0’s and the other with an infinite string of 1’s. If we always choose the latter, for
example, then each x 2 Œ0; 1� has a unique binary expansion. In other words, we
get a one-to-one map from Œ0; 1� into the set 2N of all sequences x D .x1; x2; : : :/,
where each xn is either 0 or 1. Conversely, to any such sequence we can assign the
unique real number .0:x1x2x3 � � � /2 2 Œ0; 1�: This defines a one-to-one map from 2N

into Œ0; 1�: Therefore, by the Schröder–Bernstein theorem, we have

Proposition 2.1.46. jŒ0; 1�j D j2Nj D jRj D c:

Proof. We must only show that Œ0; 1� � R: But Œ0; 1� � R, and the map f W R !
Œ0; 1� defined by f .x/ D x=.2

p
1C x2/ C 1=2 is one-to-one, so the equivalence

follows again from the Schröder–Bernstein theorem. ut
For certain applications it is convenient to extend the set of real numbers by

adjoining two elements called (plus) infinity and minus infinity, denoted by 1 D
C1 and �1, respectively; these symbols are distinct and are not real numbers.

Definition 2.1.47 (Extended Real Line). The extended real line is the disjoint
union R WD Œ�1;1� WD f�1g [ R [ f1g, with the following properties:

1. x 2 R H) �1 < x <1I
2. x 2 R H) x C1 D1; x �1 D �1; x=.˙1/ D 0I
3. x > 0 H) x � 1 D 1; x � .�1/ D �1I
4. x < 0 H) x � 1 D �1; x � .�1/ D1I
5. 1C1 D1; �1�1 D �1I and
6. 1 � .˙1/ D ˙1; �1 � .˙1/ D �1:
Remark 2.1.48. The operation 1 � 1 is left undefined. Also, by arbitrary con-
vention, we define 0 � 1 WD 0: To distinguish the real numbers from the extended
real numbers, we call the former finite. Next, given any subset S � R, S ¤ ;,
we define sup.S/ WD 1 if S is not bounded above, and inf.S/ WD �1 if S is not
bounded below. It then follows that every nonempty subset of R D Œ�1;1� has
both a least upper bound and a greatest lower bound. Finally, a function with values
in R D Œ�1;1� is called an extended real-valued function.

2.2 Sequences in R

In this section we summarize some of the basic facts about sequences of real
numbers. The first fundamental notion here is the convergence of a sequence and
is based on the usual concept of distance between two real numbers:
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Definition 2.2.1 (Distance, Epsilon-Neighborhood).

1. The distance between any two real numbers a and b is defined to be jb � aj:
2. Given any x 2 R, the "-neighborhood of x is the open interval B".x/ D .x �
"; x C "/, centered at x: The set PB".x/ WD B".x/ n fxg is called the deleted
"-neighborhood of x:

Definition 2.2.2 (Open and Closed Sets). A set O � R is called open if for each
x 2 O , there is " D ".x/ > 0 such that B".x/ � O: A set C � R is called closed if
its complement Cc D R n C is open.

Example 2.2.3. The sets ; and R are both open and closed, and they are the only
subsets with this property. Open intervals are open and closed intervals are closed.
A half-open interval Œa; b/ (or .a; b�), a < b, is neither open nor closed.

Exercise 2.2.4.

1. Let fO�g�2ƒ be a family of open sets in R indexed by a set ƒ: Show that
S

�2ƒ O� is open. If ƒ is finite, show that
T

�2ƒ O� is also open. Using the
infinite collection .�1=n; 1 C 1=n/; n 2 N, show that the latter statement is
false if ƒ is infinite.

2. Let fC�g�2ƒ be a family of closed subsets of R: Show that
T

�2ƒ C� is closed.
If ƒ is finite, show that

S

�2ƒ C� is also closed. Using the infinite collection
Œ1=n; 1 � 1=n�; n 2 N, show that the latter statement is false if ƒ is infinite.

3. Show that N and Z are closed, whereas the set f1=n W n 2 Ng is neither closed
nor open.

Definition 2.2.5 (Convergence, Limit). Given a sequence .xn/ 2 RN, we say that
.xn/ converges to a real number � , and we write lim.xn/ WD limn!1 xn D � , if given
any " > 0, there is an integer N D N."/ such that n � N implies jxn � �j < ":

The number � is called the limit of the sequence .xn/, and, if it exists, we say that
the sequence is convergent. A sequence that has no limit is called divergent.

Example 2.2.6.

1. (Ultimately Constant Sequences). If for some N 2 N and c 2 R we have xn D c
for all n � N , then lim.xn/ D c: Indeed, given any " > 0, we have jxn � cj D
0 < " for all n � N:

2. Show that lim.1=
p
n/ D 0: Well, for any " > 0, the inequality j1=pn � 0j < "

gives n > 1="2 and hence we can use any N > 1="2.
3. The sequence ..�1/n/ is divergent. Suppose, to get a contradiction, that

limn!1.�1/n D a 2 R and let " D 1: Then for some N 2 N we have
j.�1/n � aj < 1 for all n � N: Taking n � N to be even or odd, we see that
ja � 1j < 1 and jaC 1j < 1 must hold simultaneously. But then both a > 0 and
a < 0 must be satisfied, which is absurd.

4. We have limn!1 5nC2
2nC1 D 5

2
: Here, the inequality j 5nC2

2nC1 � 5
2
j < " gives n >

1=.4"/ � 1=2 and hence any N > 1=.4"/ � 1=2 will do.
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Exercise 2.2.7.

1. Show that, if a > 0, then lim.1=.1C na// D 0:
2. Show that, if 0 < b < 1, then lim.bn/ D 0: Deduce that lim.1=bn/ D 0 if b > 1:
3. Show that, if c > 0, then lim.c1=n/ D 1:
4. Show that lim.n1=n/ D 1:
Hints: For (1) and (2) use Bernoulli’s inequality. For (3), set dn WD 1� c1=n and use
Bernoulli’s inequality again. Finally, for (4) set kn WD n1=n � 1 for all n > 1 and,
expanding n D .1C kn/n (by the binomial formula), show that k2n � 2=n:
Definition 2.2.8 (m-Tail, Ultimately True).

1. Given a real sequence .xn/ and any m 2 N, the m-tail of .xn/ is the sequence
.xm; xmC1; xmC2; : : :/:

2. A property of sequences is said to be ultimately true for a sequence .xn/ (resp.,
sequences .xn/; .yn/, etc.), if there is an integer m 2 N such that the property is
satisfied by the m-tail of .xn/ (resp., m-tails of .xn/; .yn/, etc.).

Remark 2.2.9. Usingm-tails and "-neighborhoods, the above definition of the limit
of a real sequence can be rephrased as follows: A sequence .xn/ converges to a limit
� if, for any " > 0; there is an integer N D N."/ 2 N such that the "-neighborhood
B".�/ contains the N -tail of .xn/:

Exercise 2.2.10.

1. Show that, if lim.xn/ D � , then all m-tails of .xn/ also converge to � and
conversely: If an m-tail of .xn/ converges to � 2 R, then so does .xn/:

2. Show that, if two sequences .xn/ and .yn/ are ultimately equal (i.e., for some
m 2 N; xn D yn 8 n � m), then lim.xn/ D � H) lim.yn/ D � 8� 2 R:

3. Let ; ¤ S � R be bounded. Show that there are sequences .sn/ and .tn/ in S
such that lim.sn/ D inf.S/ and lim.tn/ D sup.S/: Hint: Use Proposition 2.1.30,
with " D 1=n; n 2 N:

For arbitrary subsets of real numbers, the following definition of limit point will
replace the definition given above for limits of sequences:

Definition 2.2.11 (Limit Point, Isolated Point). Let S � R: A number x 2 R

is said to be a limit point (or accumulation point) of S if for every " > 0, B".x/
contains an element s 2 S n fxg: A number x 2 S is called an isolated point of S if
it is not a limit point of S I i.e., if for some " D ".x/, we have B".x/ \ S D fxg:
Exercise 2.2.12.

1. Show that, if x is a limit point of a set S � R, then there is a sequence .sn/ in
S such that lim.sn/ D xI conversely if .sn/ 2 SN is not ultimately constant and
lim.sn/ D x, then x is a limit point of S:

2. Show that, if x is a limit point of S � R, then for each " > 0 the intersection
B".x/ \ S is infinite. Deduce that a finite set has no limit points. (Hint: Suppose
that the intersection is finite and get a contradiction).

3. Show that a setF � R is closed if and only if every limit point ofF belongs toF .
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Definition 2.2.13 (Perfect Set). A set S � R is called perfect if it is closed and if
every point of S is a limit point of S .

Example 2.2.14. Any closed interval I � R is perfect. The closed set S D
Œ0; 1� [ f2g is not perfect, because 2 is an isolated point of S: Proving that a set
is perfect is not simple in general. An important example is Cantor’s ternary set, to
be introduced in Chap. 4.

Remark 2.2.15.

1. The limit points of a set need not necessarily belong to the set, but an isolated
point of a set always belongs to the set.

2. The limit � of a convergent sequence .xn/ is not necessarily a limit point of the
set fxn W n 2 Ng: Indeed, a constant sequence is obviously convergent, but the
set of its terms, being a singleton, has no limit points.

3. Note that a set may have many (possibly infinite) limit points, whereas the limit
of a convergent sequence is unique:

Proposition 2.2.16. The limit of a convergent sequence is unique.

Proof. Let .xn/ be a sequence such that lim.xn/ D � and lim.xn/ D �: Then,
given any " > 0, we can find positive integers N1 and N2 such that n � N1
implies jxn � �j < "=2, and n � N2 implies jxn � �j < "=2: But then, with
N D max.N1;N2/; n � N implies j�� �j � jxn� �jC jxn� �j < "=2C "=2 D ",
and since " was arbitrary, we get � D �. ut
Definition 2.2.17 (Increasing, Decreasing, Monotone, Bounded). We say that a
real sequence .xn/ is increasing (resp., strictly increasing) if xn � xnC1 (resp.,
xn < xnC1), for all n 2 N: We say that it is decreasing (resp., strictly decreasing) if
xn � xnC1 (resp., xn > xnC1), for all n 2 N: The sequence is called monotone
if it is either increasing or decreasing (strictly or not). Finally, the sequence is
called bounded (resp., bounded above, bounded below) if the set fxn W n 2 Ng
is bounded (resp., bounded above, bounded below). A sequence that is not bounded
is called unbounded.

Examples and Remarks 2.2.18.

(a) A sequence x D .xn/ is decreasing (resp., strictly decreasing) if and only if the
sequence �x is increasing (resp., strictly increasing). (Why?)

(b) The sequences .n/; .n2/, and .2n/ are strictly increasing and unbounded. The
sequence .1=n/ is strictly decreasing and bounded, and the sequence .1� 1=n/
is strictly increasing and bounded.

(c) If .xn/ is bounded, then there are a; b 2 R such that a � xn � b for all n 2 NI
or, equivalently, there is A > 0 such that jxnj � A for all n 2 N:

Proposition 2.2.19 (Convergence and Boundedness). Every convergent sequence
is bounded. In particular, an unbounded sequence is divergent.
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Proof. Suppose that lim.xn/ D �: Then, we can find N 2 N such that n � N

implies jxn � �j < 1, and hence jxnj < j�j C 1: Therefore, we have jxnj � A for all
n 2 N, where A WD max.fjx1j; jx2j; : : : ; jxN�1j; j�j C 1g/. ut
Definition 2.2.20 (Subsequence, Subsequential Limit). Let x D .xn/ be a real
sequence, and let  D .1; 2; 3; : : :/ W N! N be any strictly increasing sequence
in NI i.e., assume 1 < 2 < 3 < � � � : Then the sequence xı D .x1 ; x2 ; x3 ; : : :/
is called a subsequence of .xn/: If .xk / converges, its limit is called a subsequential
limit of .xn/:

Example 2.2.21.

1. Given any real sequence .xn/ and any m 2 N, the m-tail .xmCk�1/k2N is a
subsequence of .xn/:

2. The even subsequence of .xn/ is defined to be .x2k/k2N, and the odd subsequence
is defined to be .x2k�1/k2N:

Exercise 2.2.22.

1. Let  D .1; 2; 3; : : :/ be a strictly increasing sequence in N: Show that k � k
for all k 2 N:

2. Let .xn/ 2 RN: Show that if lim.xn/ D � , then lim.xk / D � for any subsequence
.xk /k2N. Show by an example that the converse is false.

3. Show that a real sequence .xn/ converges to � 2 R if and only if its even and odd
subsequences .x2k/ and .x2k�1/ both converge to �: Deduce that the sequence
..�1/n/ is divergent.

Proposition 2.2.23 (Existence of Monotone Subsequence). Let .xn/ be a real
sequence. Then .xn/ has a monotone subsequence.

Proof. Let us call the mth term xm of x a peak if xm � xn, for all n � m: If the
sequence has infinitely many peaks, then, ordering their subscripts increasingly, we
get the peaks xm1; xm2; : : :, with m1 < m2 < � � � : But then, by definition, xm1 �
xm2 � � � � : If .xn/ has a finite number of peaks, then there is a subscript k � 1

such that xn is not a peak for all n > k: Let m1 WD k C 1: Then, since xm1 is
not a peak, there is m2 > m1 such that xm1 < xm2: Since xm2 is not a peak, there
is m3 > m2 such that xm2 < xm3: Continuing this process, we obtain a strictly
increasing subsequence: xm1 < xm2 < xm3 < � � � . ut

Our first convergence result is the following.

Theorem 2.2.24 (Monotone Convergence Theorem). Let .xn/ be a real
sequence. If .xn/ is increasing and bounded above (resp., decreasing and bounded
below), then .xn/ is convergent and we have lim.xn/ D supfxn W n 2 Ng (resp.,
inffxn W n 2 Ng).
Proof. We treat the increasing (bounded above) case and leave the decreasing one
as an exercise for the reader. Thus .xn/ is increasing, and there is u 2 R such that
xn � u for all n 2 N: Let � D supfxn W n 2 Ng and let " > 0 be arbitrary. Then
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there is N D N."/ such that � � " < xN , and hence 0 � � � xN < ": But .xn/ is
increasing, so that xN � xn for all n � N , and we get 0 � � � xn � � � xN < "

for all n � N . ut
As an application, the next exercise will show that for any a > 0, the positive

square root
p
a can be obtained as the limit of a decreasing sequence. This method

was known to the Babylonians before 1500 B.C.

Exercise 2.2.25.

1. Show that .t C a=t/2 � 4a, for all a 2 R and t ¤ 0:
2. Given a > 0, let x1 > 0 be arbitrary and define xnC1 D .xn C a=xn/=2

recursively for all n 2 N: Using (1) show that xnC1 � xn 8 n � 2, so that
.xn/ is ultimately decreasing and bounded below.

3. Deduce that .xn/ is convergent, and show that lim.xn/ D pa:
Next, we give a list of properties of convergent sequences. These properties are

all familiar to the reader from calculus and will be used frequently in what follows.

Theorem 2.2.26 (Limit Theorems). Let .xn/ and .yn/ be convergent sequences
with lim.xn/ D �; lim.yn/ D �: Then the following statements are true:

1. lim.xn ˙ yn/ D lim.xn/˙ lim.yn/ D � ˙ �I
2. lim.cxn/ D c lim.xn/ D c� .8c 2 R/I
3. lim.xnyn/ D lim.xn/ � lim.yn/ D ��I
4. lim.xn=yn/ D lim.xn/= lim.yn/ D �=� if yn ¤ 0 8 n and � ¤ 0I
5. lim.1=yn/ D 1= lim.yn/ D 1=� if yn ¤ 0 8 n and � ¤ 0I
6. if xn � 0 is ultimately satisfied, then � � 0I
7. if xn � yn is ultimately satisfied, then � � �I and
8. (Squeeze Theorem) If � D � and if xn � zn � yn is ultimately satisfied, then .zn/

converges and we have lim.zn/ D � D �:
Proof. We leave (1) and (2) as exercises for the reader. Note that (5) follows from
(4) if .xn/ is the constant sequence .1; 1; 1; : : :/, and (4) follows from (3) and (5).
Also, (7) follows from (6) applied to the sequence .yn � xn/: To prove (3), note that
for each n 2 N, we have

jxnyn � ��j D j�.xn � �/C xn.yn � �/j � j�jjxn � �j C jxnjjyn � �j: ()

Since the convergent sequence .xn/ is bounded, there is A > 0 with jxnj � A for all
n 2 N: Now define B D maxfA; j�jg, and pick N 2 N so large that n � N implies
jxn � �j < "=.2B/ and jyn � �j < "=.2B/: It then follows from () that

jxnyn � ��j � B.jxn � �j C jyn � �j/ < ":

To prove (5), note first that we can find N1 2 N such that n � N1 implies jyn��j <
j�j=2, which in turn implies jynj > j�j=2: (Why?) It then follows that j1=yn �
1=�j D jyn � �j=.jynjj�j/ < 2jyn � �j=j�j2, for all n � N1: Next, given " > 0,
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pick N2 2 N such that n � N2 implies jyn � �j < "j�j2=2: But then, with N D
maxfN1;N2g, we get j1=yn � 1=�j < ". Looking at (6), pick m 2 N such that
xn � 0 8 n � m: If � < 0, then, with " D ��=2 > 0, we can find N1 2 N, with
N1 � m, such that n � N1 implies jxn � �j < ��=2: But then, for n � N WD
maxfN1;mg, we get xn < � � �=2 D �=2 < 0, contradicting the fact that xn � 0
for all n � m: Finally, to prove (8), let m 2 N be such that xn � zn � yn 8 n � m:
For each " > 0, we can find N 2 N, with N � m, such that n � N implies the
inequalities jxn � �j < "=3 and jyn � �j D jyn � �j < "=3, from which we get
jyn � xnj < 2"=3 8 n � N: But then, for n � N , we have

jzn � �j � jzn � xnj C jxn � �j � jyn � xnj C jxn � �j < 2"=3C "=3 D ";

which completes the proof. ut
Remark 2.2.27. Note that, although nonstrict inequalities are preserved when we
pass to the limit (as in parts (6) and (7) of Theorem 2.2.26), this is not necessarily
true for strict inequalities. For example, while 1=n2 < 1=n, 8n � 2, we have
lim.1=n2/ D lim.1=n/ D 0:
Example 2.2.28.

1. We have limn!1 sinn=n D 0: Indeed, j sinn=nj � 1=n gives �1=n �
sinn=n � 1=n for all n 2 N: Since lim.�1=n/ D 0 D lim.1=n/ (why?), the
assertion follows from the Squeeze Theorem.

2. The sequence .sinn/ is divergent. Suppose, to get a contradiction, that
lim.sinn/ D b 2 R. Letting n ! 1 in the identity sin.n C 1/ D
sinn cos 1 C cosn sin 1, we see that a WD lim.cosn/ also exists and that
a2Cb2 D 1. (Why?) But then the identities sin.n˙1/ D sinn cos 1˙cos n sin 1
give the equations b D b cos 1 ˙ a sin 1, which in turn give a D b D 0, a
contradiction.

Exercise 2.2.29. Let .xn/ be a real sequence with lim.xn/ D �:
1. Show that lim.xkn/ D �k for all positive integers k: Show that the same also holds

for all integers k � 0, if xn ¤ 0 for all n and � ¤ 0:
2. Show that, if xn � 0 8 n 2 N, then lim.

p
xn/ D

p

�: Hint: Consider the cases
� D 0 and � > 0: In the latter case, use xn � � D .pxn �

p

�/.
p
xn C

p

�/ and
the fact that

p
xn C

p

� �p� > 0 8 n 2 N:

3. Show that lim jxnj D j�j:
Definition 2.2.30 (Null Sequence). A real sequence .xn/ is called a null sequence
if lim.xn/ D 0:
Exercise 2.2.31.

1. Show that lim.xn/ D � 2 R if and only if .xn � �/ is a null sequence.
2. Show that .xn/ is a null sequence if and only if .jxnj/ is.
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3. Show that, if .xn/ and .yn/ are null sequences, then so are .xn ˙ yn/ and .cxn/
for any constant c 2 R:

4. Show that, if .xn/ is a null sequence and .yn/ is bounded, then .xnyn/ is also a
null sequence.

Proposition 2.2.32. If .xn/ is a null sequence, then so is the sequence

. Nxn/ WD
�x1 C x2 C � � � C xn

n

�

:

Proof. Given " > 0, pick m 2 N such that n � m implies jxnj < "=2: Now for any
n � m, we have

j Nxnj � jx1 C x2 C � � � C xm�1j
n

C
�n �mC 1

n

� "

2
� j

Pm�1
kD1 xkj
n

C "

2
:

If we now pick N � m such that n � N implies jx1 C x2 C � � � C xm�1j=n < "=2;
it follows that j Nxnj < " for all n � N . ut
Corollary 2.2.33. If lim.xn/ D � and if . Nxn/ is as in Proposition 2.2.32, then
lim. Nxn/ D �:
Proof. Simply apply Proposition 2.2.32 to the null sequence .xn � �/. ut
Exercise 2.2.34. Show that . Nxn/may converge for a divergent sequence .xn/:Hint:
Let xn WD 1 � .�1/n:
Definition 2.2.35 (Infinite Limits). Given a real sequence .xn/, we say that .xn/
converges to 1 and write lim.xn/ D 1, if for every B 2 R there exists N 2 N

such that n � N implies xn > B: Similarly, we say that .xn/ converges to �1 and
write lim.xn/ D �1, if for every A 2 R there exists N 2 N such that n � N

implies xn < A:

Exercise 2.2.36. For real sequences .xn/ and .yn/ prove the following:

1. lim.xn/ D ˙1 H) lim.�xn/ D �1I
2. lim.xn/ D C1 (resp., �1) if and only if 9m 2 N with xn > 0 (resp., xn < 0)
8n � m and limk!1.1=xmCk/ D 0I

3. lim.xn/ D ˙1 and lim.yn/ D ˙1 H) lim.xn C yn/ D ˙1I
4. lim.xn/ D � > 0 and lim.yn/ D ˙1 H) lim.xnyn/ D ˙1I
5. lim.xn/ D � < 0 and lim.yn/ D ˙1 H) lim.xnyn/ D �1I
6. if xn � yn ultimately holds, then lim.xn/ D 1 implies lim.yn/ D 1 and

lim.yn/ D �1 implies lim.xn/ D �1I
7. if xn > 0; yn > 0 8n 2 N and lim.xn=yn/ D � > 0, then lim.xn/ D1 if and

only if lim.yn/ D1I
8. if .xn/ is ultimately increasing and not bounded above (resp., ultimately decreas-

ing and not bounded below), then lim.xn/ D1 (resp., lim.xn/ D �1); and
9. if .xn/ is bounded, lim.yn/ D ˙1, and yn ¤ 0 8n, then lim.xn=yn/ D 0:



58 2 Sequences and Series of Real Numbers

Definition 2.2.37 (Upper Limit, Lower Limit). Let .xn/ be a real sequence.

(a) If .xn/ is bounded above, then we define its upper limit (denoted lim sup.xn/ or
lim.xn/) to be

lim sup.xn/ D lim.xn/ WD lim
n!1.supfxk W k � ng/:

If .xn/ is not bounded above, then we define lim sup.xn/ D lim.xn/ WD 1:
(a) If .xn/ is bounded below, then we define its lower limit (denoted lim inf.xn/ or

lim.xn/) to be

lim inf.xn/ D lim.xn/ WD lim
n!1.inffxk W k � ng/:

If .xn/ is not bounded below, then we define lim inf.xn/ D lim.xn/ WD �1:
Example 2.2.38.

Let xn D .�1/n; yn D n2; zn D .�1/nn: Then lim.xn/ D �1 and lim.xn/ D 1;
lim.yn/ D lim.yn/ D1I lim.zn/ D �1 and lim.zn/ D1:
Proposition 2.2.39. Let .xn/ be a bounded sequence and for each n 2 N define
un WD inffxk W k � ng and vn WD supfxk W k � ng.
(a) If the inequalities a � xn � b are ultimately satisfied (i.e., hold for all n � m

with some m 2 N), then lim.xn/ � a and lim.xn/ � b:
(b) .un/ is increasing, .vn/ is decreasing, and we have lim.un/ D lim.xn/ �

lim.xn/ D lim.vn/:
(c) We have lim.xn/ � lim.xk / � lim.xk / � lim.xn/ for every subsequence .xk /

of .xn/:
(d) If ˛ < lim.xn/ [resp., ˇ > lim.xn/], then there is anN 2 N with xn > ˛ [resp.,

xn < ˇ] for all n � N:
(e) The sets fn W xn > lim.xn/ � "g and fn W xn < lim.xn/ C "g are both infinite
8 " > 0.

(f) lim.xn/ D � if and only if lim.xn/ D � D lim.xn/:

Proof. We leave parts (a), (b), (c), and (d) as exercises for the reader. For (e), let
v D lim.xn/ and suppose that fn W xn > v � "g is finite. Then for some m 2 N we
have xn � v�" for all n � m and part (a) gives v � v�", which is absurd. A similar
argument shows that fn W xn < lim.xn/C"g is also infinite. To prove (f), note that if
lim.xn/ D � , then for any " > 0 we can find N 2 N so that � � " < xn < � C " for
all n � N: But then parts (a) and (b) show that � � " � lim.xn/ � lim.xn/ � � C "
holds for all " > 0 and hence lim.xn/ D � D lim.xn/: Conversely, if lim.xn/ D
� D lim.xn/ holds and if " > 0 is arbitrary, then part (d) implies that there exists
N 2 N with � � " < xn < � C " for all n � N and hence lim.xn/ D � . ut
Proposition 2.2.40. Let S be the set of all subsequential limits of a bounded real
sequence .xn/I i.e., the set of all � 2 .�1;1/ such that � D lim.xk / for some
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subsequence .xk / of .xn/: Then inf.S/ and sup.S/ are both in S and we have
lim inf.xn/ D inf.S/ and lim sup.xn/ D sup.S/:

Proof. Since the proofs for inf.S/ and sup.S/ are similar, we show that sup.S/ D
lim.xn/ 2 S and leave the other case as an exercise. Now given any � 2 S ,
there is a subsequence .xk / of .xn/ with � D lim.xk /: By parts (c) and (f) of
Proposition 2.2.39, we get

� D lim.xk / D lim.xk / � lim.xn/:

Therefore, sup.S/ � lim.xn/. To finish the proof, let s WD lim.xn/ and note that (by
part (e) of Proposition 2.2.39) the set fn W s � 1=k < xn < s C 1=kg is infinite for
every k 2 N. So for each k 2 N we can pick k 2 fn W s � 1=k < xn < s C 1=kg
in such a way that kC1 > k for all k: We then have a subsequence .xk / such that
s � 1=k < xk < s C 1=k for all k and hence lim.xk / D s 2 S . ut
Exercise 2.2.41. Given any real sequences .xn/ and .yn/, prove the following:

1. lim inf.xn/ C lim inf.yn/ � lim inf.xn C yn/ � lim sup.xn/ C lim inf.yn/ �
lim sup.xnCyn/ � lim sup.xn/C lim sup.yn/, if none of the sums is1�1 (or
�1C1);

2. lim sup.xnyn/ � .lim sup.xn//.lim sup.yn// if xn � 0 and yn � 0 for all n (and
the right side is not of the form 0 � 1); and

3. lim inf.xn/ D � lim sup.�xn/:
The next theorem is very important and will appear in two versions. We first give

the version for the sequences and then the version for bounded infinite subsets of R:

Theorem 2.2.42 (Bolzano–Weierstrass Theorem for Sequences). Every bounded
sequence of real numbers has a convergent subsequence.

Proof. Let .xn/ be a bounded sequence in R: Then, by Proposition 2.2.23, it
has a monotone subsequence .xk /k2N, which is bounded because .xn/ is. The
convergence of the subsequence .xk / now follows from the Monotone Convergence
Theorem (Theorem 2.2.24). ut
Theorem 2.2.43 (Bolzano–Weierstrass Theorem for Infinite Sets). Every
bounded infinite subset of real numbers has a limit point in R:

Proof. Let X be a bounded infinite set of real numbers. By Proposition 1.4.11,
there is a sequence .xn/ in X with xj ¤ xk if j ¤ k: Now .xn/ is bounded
because X is and hence, by Theorem 2.2.42, it has a convergent subsequence .xk /:
Let lim.xk / D �: Since fxk W k 2 Ng is countably infinite (why?), it cannot be
ultimately constant. Thus (cf. Exercise 2.2.12) � is a limit point of X . ut

The next definition is of fundamental importance and will allow us to construct
the set of real numbers from the set of rational ones.
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Definition 2.2.44 (Cauchy Sequence). A real sequence .xn/ is said to be a Cauchy
sequence if for each " > 0 there is an integer N 2 N such that, if m; n � N , then
jxm � xnj < ":

The first immediate consequence of the above definition is the following

Proposition 2.2.45. Every Cauchy sequence in R is bounded.

Proof. Let .xn/ be a Cauchy sequence. Then, for " D 1, we can find an integer
N > 0 such that jxm � xnj < 1, for allm � N; n � N: In particular, jxn � xN j < 1
for all n � N , which implies jxnj < jxN j C 1 for all n � N: But then, with
B WD maxfjx1j; : : : ; jxN�1j; jxN j C 1g, we get jxnj � B for all n 2 N. ut

It is intuitively obvious that a convergent sequence must be a Cauchy sequence.
In fact, not only is this the case but also the converse, which is not obvious at all, is
true:

Theorem 2.2.46 (Cauchy’s Criterion). A real sequence .xn/ is convergent if and
only if it is a Cauchy sequence.

Proof. If lim.xn/ D � , then for each " > 0 we can find N 2 N such that n � N
implies jxn � �j < "=2: But then, if m; n � N , we have jxm � xnj � jxm � �j C
jxn � �j < "=2 C "=2 D ": Conversely, if .xn/ is Cauchy, then it is bounded (by
Proposition 2.2.45), and hence (by Theorem 2.2.42) has a convergent subsequence
.xnk /: Now, given " > 0, we can find N 2 N such that jxm � xnj < "=2 for
all m; n � N: Next, if lim.xnk / D � , then jxnK � �j < "=2 for some K 2 N:

Assuming, as we may, thatK � N , it follows that, for all n � N , we have jxn��j �
jxn � xnK j C jxnK � �j < "=2C "=2 D ". ut
Remark 2.2.47.

1. The above proof of Cauchy’s Criterion contains the following important fact:
If a Cauchy sequence .xn/ has a subsequence .xnk / that converges to � , then
lim.xn/ D � .

2. (Supremum Property ” Cauchy’s Criterion) The above proof also shows that
Cauchy’s Criterion is a consequence of the Supremum Property (Completeness
Axiom). In fact, the converse is also true and can be proved by the following
nested intervals argument. Let S be a nonempty subset of R that is bounded
above; i.e., there is a number u 2 R such that s � u 8s 2 S: Construct a
sequence of nested intervals Œan; bn� as follows: Pick I1 D Œa1; b1�, a1 < b1, such
that I1 meets S and b1 is an upper bound of S:Divide I1 in two equal parts. Let I2
be the right half if it meets S I otherwise, let it be the left half. Define I3; I4; : : :,
similarly. Now, for each n 2 N choose a point sn 2 In \ S: The sequence .sn/ is
Cauchy (why?). Let � D lim.sn/: We invite the reader to show that � D sup.S/:
Note that, by construction, each bn is an upper bound for S:

Exercise 2.2.48 (Contractive Sequence).

(a) A sequence .xn/ is said to be contractive if there exists a constant r 2 .0; 1/
such that jxnC2 � xnC1j � r jxnC1 � xnj for all n 2 N: Show that a contractive
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sequence is a Cauchy sequence. If x1 > 0 and xnC1 WD 1=.xn C 2/ for all
n � 1, show that .xn/ is contractive and find its limit. Hint: Use the fact that
Pm

kD1 rk D .1 � rmC1/=.1 � r/:
(b) Define the sequence .xn/ as follows: x1 WD 1, x2 WD 2, and xn WD .xn�2 C

xn�1/=2, for n > 2: Show that .xn/ is a Cauchy sequence and find its limit.
Hint: For the limit, look at the odd subsequence .x2nC1/:

(c) If 0 < r < 1, and if jxnC1 � xnj < rn for all n 2 N, show that .xn/ is a Cauchy
sequence.

2.3 Infinite Series

Recall that for a finite set fx1; x2; : : : ; xng � R, we denote the sum of its elements
by
Pn

kD1 xk: It is tempting to extend this summation to a countably infinite subset
of R, but, as we shall presently see, the corresponding infinite sums, which we shall
call (infinite) series, may not exist. The present section contains a brief discussion
of such series and the conditions under which they are summable. As the reader will
notice, we shall occasionally use exponentials with real exponents. These will be
defined rigorously later.

Definition 2.3.1 (Infinite Series, Partial Sums). Given a sequence .xn/ of real
numbers, the formal sum

1
X

nD1
xn D x1 C x2 C x3 C � � � C xn C � � �

is called an infinite series, or simply series, and, for each n 2 N; xn is called the
nth term of the series. Also, for integers n 2 N, the finite sums

sn D
n
X

kD1
xk

are called the partial sums of the series. If the sequence .sn/ converges to a number
s 2 R, we say that the series converges (or is convergent) and write

1
X

nD1
xn D s:

The number s is then called the sum of the series. If .sn/ diverges, we say that the
series diverges or that it is divergent. Unless the index n takes other values than
1; 2; 3; : : :, we sometimes replace

P1
nD1 xn by

P

xn:
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Remark 2.3.2. It is obvious from the above definition that, for each n > 1, we have
xn D sn � sn�1, so that, if we set x1 D s1, any statement about series can be written
as a statement about sequences and vice versa. In particular, since the convergence
of the series is, by definition, the convergence of the sequence of its partial sums,
Cauchy’s Criterion may be applied to .sn/ and implies the following theorem for the
series:

Theorem 2.3.3 (Cauchy’s Criterion for Series). A series
P1

nD1 xn is convergent
if and only if, for each " > 0, there is an integer N 2 N such that

m � n � N H)
ˇ

ˇ

ˇ

ˇ

m
X

kDn
xk

ˇ

ˇ

ˇ

ˇ

< ":

The next proposition gives a necessary (but not sufficient) condition for the
convergence of series.

Proposition 2.3.4. If
P1

nD1 xn is convergent, then lim.xn/ D 0:
Proof. Indeed, it follows from Cauchy’s Criterion (withm D n) that, for each " > 0,
there exists N 2 N with jxnj < " for all n � N . ut
Remark 2.3.5.

1. As pointed out above, the condition in Proposition 2.3.4 is not sufficient. Indeed,
as we shall see below, the harmonic series

P1
nD1 1=n is divergent, even though

we obviously have lim.1=n/ D 0:
2. If

P1
nD1 xn is a series of nonnegative terms, i.e., if xn � 0 8 n 2 N, then the

sequence .sn/ of its partial sums is obviously increasing. The following theorem
is then a consequence of the Monotone Convergence Theorem.

Theorem 2.3.6. A series of nonnegative terms is convergent if and only if the
sequence of its partial sums is bounded.

Definition 2.3.7 (Geometric Series, p-Series).

1. Given the real numbers a and r ¤ 0, the series

1
X

nD0
arn D aC ar C ar2 C ar3 C � � �

is called a geometric series with first term a and ratio r:
2. Given a real number p, the series

1
X

nD1
1=np D 1C 1=2p C 1=3p C � � �

is called a p-series. In particular, for p D 1, we get the harmonic series
P1

nD1 1=n:
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Proposition 2.3.8. Assuming (to avoid trivial cases) that a ¤ 0 ¤ r , the geometric
series

P1
nD0 arn is convergent if and only if jr j < 1, in which case we have

1
X

nD0
arn D a

1 � r : ()

Proof. First, we have the identity

1 � rnC1 D .1 � r/.1C r C r2 C � � � C rn/;

which is proved by expanding and simplifying the right side. It follows that
(if r ¤ 1)

sn D
n
X

kD0
ark D a.1 � rnC1/

1 � r :

Now, if jr j < 1, then (by Exercise 2.2.7) lim.rnC1/ D 0 and () follows at once. If,
however, jr j � 1, then, since (by assumption) a ¤ 0, we cannot have lim.arn/ D 0
(why?), and hence (by Proposition 2.3.4) the series diverges. ut

Before we consider the convergence of p-series, we prove the following compar-
ison test:

Theorem 2.3.9 (First Comparison Test). Let
P

xn and
P

yn be two series of
nonnegative terms, and suppose that we have xn � yn, for all n 2 N: Then the
following are true:

(a) If
P

yn is convergent, then so is
P

xn:

(b) If
P

xn is divergent, then so is
P

yn:

Proof. Define sn WD Pn
kD1 xn and tn WD Pn

kD1 yn: We then have sn � tn 8n 2 N:

The theorem is therefore an immediate consequence of Theorem 2.3.6. ut
Exercise 2.3.10.

1. Given a real sequence .xn/ and a natural number m 2 N, show that the series
P1

nD1 xn is convergent if and only if the series
P1

nDm xn is convergent.
2. Show that, in Theorem 2.3.9, the condition xn � yn 8n 2 N can be replaced by
9 m 2 N such that 8 n � m, we have xn � yn:

3. Show that, if
P

xn is a convergent series of nonnegative terms, and if .�n/ is a
bounded sequence of nonnegative real numbers, then the series

P

�nxn is also
convergent.

4. Show that, if
P

yn is a divergent series of nonnegative terms, and if .�n/ is a
sequence of positive reals that is bounded below by a positive number � > 0,
then the series

P

�nyn is also divergent.



64 2 Sequences and Series of Real Numbers

5. Let 0 < a < b, and let .cn/ be a real sequence satisfying a � cn � b 8n 2 N:

Show that the series of nonnegative terms
P

xn converges if and only if
P

cnxn
converges.

Corollary 2.3.11 (Limit Comparison Test). Let
P

xn and
P

yn be two series
with positive terms such that ` WD lim.xn=yn/ exists.

(a) If ` > 0, then
P

xn converges if and only if
P

yn converges.
(b) If ` D 0 and

P

yn converges, then
P

xn converges.

Proof. Exercise! ut
Proposition 2.3.12. The p-series

P

1=np is convergent for p > 1 and divergent
for p � 1: In particular, the harmonic series

P

1=n is divergent.

Proof. Let us first show that the harmonic series
P

1=n is divergent by proving that
the partial sums sn D Pn

kD1 1=k are unbounded. Given B > 0, pick k 2 N with
k > 2B , and let n � 2k be arbitrary. Now we have

sn �
�

1C 1

2

�

C
�1

3
C 1

4

�

C � � � C
� 1

2k�1 C 1 C � � � C
1

2k

�

>
1

2
C 2

�1

4

�

C � � � C 2k�1� 1
2k

�

D k

2
> B:

Therefore, .sn/ is unbounded. Now if p � 1, then 1=np � 1=n 8n 2 N and, by the
First Comparison Test,

P

1=np is divergent. Next, suppose that p > 1: To find an
upper bound for the partial sum

Pn
kD1 1=kp , choose k 2 N so large that n < 2k ,

and note that we have

s2k�1 D 1C
� 1

2p
C 1

3p

�

C � � � C
�

1

.2k�1/p
C � � � C 1

.2k � 1/p
�

� 1C 2

2p
C 4

4p
C � � � C 2k�1

.2k�1/p
:

Therefore, with r D 1=2p�1, we have

sn � s2k�1 �
k�1
X

jD1
rj D 1 � rk

1 � r <
1

1 � r :

Since this is true for each n 2 N, the proof is complete. ut
Exercise 2.3.13. Give another proof of the convergence of

P

1=np for p � 2,
using the First Comparison Test and the fact that, for k > 1, we have 1=k2 <
1=k.k � 1/ D 1=.k � 1/ � 1=k:
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The number e, called the natural base, is probably the most important number
in mathematics. We first define it as the sum of an infinite series and in the next
proposition show that it is also the limit of the sequence ..1C 1=n/n/:
Definition 2.3.14 (The Number e). e WDP1

nD0 1=nŠ:

Proposition 2.3.15. We have 2 < e < 3, and e D limn!1.1C 1=n/n:
Proof. It is obvious that e > 2: Since 1=nŠ � 1=.2 � 3n�2/ for all n � 3 and
P1

nD3 1=3n�2 D 1=2, we have that, for all n � 3,

sn D
n
X

kD0
1=kŠ < 1C 1C 1=2C

1
X

kD3
1=.2 � 3k�2/ D 11=4;

which shows that the series converges and that e � 11=4 < 3: To prove the last
statement, define tn WD .1C 1=n/n and note that by the binomial formula,

tn D 1C 1C 1

2Š

�

1 � 1
n

�

C � � � C 1

nŠ

�

1 � 1
n

��

1 � 2
n

�

� � �
�

1 � n � 1
n

�

:

It follows that tn � sn, so that

lim sup.tn/ � e:

Next, for any fixed m 2 N and n � m, we have

tn � 1C 1C 1

2Š

�

1 � 1
n

�

C � � � C 1

mŠ

�

1 � 1
n

�

� � �
�

1 � m � 1
n

�

;

so that letting n!1, we get

sm D
m
X

kD0

1

kŠ
� lim inf.tn/;

and, since m was arbitrary, it follows that

e � lim inf.tn/:

The proposition now follows from lim sup.tn/ � e � lim inf.tn/ and Proposition
2.2.39(f). ut
Exercise 2.3.16. Let xn WD .1 C 1=n/n and yn WD .1 C 1=n/nC1; n 2 N: Show
that .xn/ is increasing, while .yn/ is decreasing. Deduce that fŒxn; yn� W n 2 Ng is
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a sequence of nested intervals. Next, show that lim.yn � xn/ D 0, and deduce that
lim.xn/ D e D lim.yn/: Hint: To prove that .xn/ is increasing, note that

�nC 1
n

�n �
�nC 2
nC 1

�nC1” n

nC 1 �
	

n.nC 2/
.nC 1/2


nC1

” 1 � 1

nC 1 �
	

1 � 1

.nC 1/2

nC1

and use Bernoulli’s inequality. The proof of yn � ynC1 is similar.

Proposition 2.3.17 (The Irrationality of e). The number e WD P1
nD0 1=nŠ is

irrational.

Proof. If e D p=q with p; q 2 N, then q > 1 and

qŠe �
� q
X

kD0

1

kŠ

�

qŠ D 1

q C 1 C
1

.q C 1/.q C 2/ C � � � : (�)

Now the left side of (�) is an integer while the right side satisfies

0 <
1

q C 1 C
1

.q C 1/.q C 2/ C � � � <
1

q C 1 C
1

.q C 1/2 C � � � D
1

q
< 1:

This contradiction proves that e is indeed irrational. ut
Theorem 2.3.18 (Second Comparison Test). Let

P

cn and
P

dn be two series
of positive terms (i.e., cn > 0, dn > 0 8n 2 N) such that

P

cn is convergent while
P

dn is divergent. Given a series
P

xn of positive terms, we have:

1. If the inequalities xnC1=xn � cnC1=cn are ultimately true, then
P

xn is
convergent.

2. If the inequalities xnC1=xn � dnC1=dn are ultimately true, then
P

xn is
divergent.

Proof. To prove (1), note that, if the inequalities hold as stated, then for some m 2
N, we have xnC1=cnC1 � xn=cn for all n � m, so that the sequence .�n/ WD .xn=cn/
is ultimately decreasing and bounded below (by 0); it is therefore bounded and (1)
follows from Exercise 2.3.10, part (3). For (2), set �n WD xn=dn, and note that, if
again the inequalities hold, then for some m 2 N we have xnC1=dnC1 � xn=dn
for all n � m: In other words, .�n/ is ultimately increasing and �n > 0 8n 2 N:

Therefore, there exists � > 0 with �n � � for all n 2 N, and (2) follows from
Exercise 2.3.10, part (4). ut

Many series have nonnegative terms that decrease monotonically. For such series
the following theorem of Cauchy is usually helpful:
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Theorem 2.3.19 (Cauchy’s Condensation Theorem). Suppose that x1 � x2 �
x3 � � � � � 0: Then the series

P

xn is convergent if and only if the series

1
X

kD0
2kx2k D x1 C 2x2 C 4x4 C 8x8 C � � �

is convergent.

Proof. Let sn WDPn
jD0 xn and tk WDPk

jD0 2j x2j : Then, for n < 2k , we have

sn � x1 C .x2 C x3/C � � � C .x2k C � � � C x2kC1�1/

� x1 C 2x2 C � � � C 2kx2k D tk:

Next, for n > 2k , we have

sn � x1 C x2 C .x3 C x4/C � � � C .x2k�1C1 C � � � C x2k /

� 1

2
x1 C x2 C 2x4 C � � � C 2k�1x2k D

1

2
tk:

It follows that the sequences .sn/ and .tk/ are either both bounded or both
unbounded, so that the two series in the theorem either both converge or both
diverge. ut
Exercise 2.3.20. Using the above condensation theorem, show that the p-series
P

1=np converges for p > 1 and diverges for p � 1: Show that the same is also
true for the series

P1
nD2 1=n.logn/p , where logn D lnn is the natural logarithm

of n (to the base e/: The properties of logarithms are known to the reader from
calculus. However, we shall see them again later in more detail.

Using the comparison tests we can prove the following Root and Ratio Tests,
which can be used in most cases to decide whether a series is convergent or
divergent. In order to have a test for series whose terms may also be negative, we
first give the following definition.

Definition 2.3.21 (Absolute vs. Conditional Convergence). A series
P

xn of real
numbers is called absolutely convergent if the series

P jxnj is convergent. If
P

xn
is convergent but

P jxnj is divergent, then we say that
P

xn is conditionally
convergent.

The following comparison test is an immediate consequence of Cauchy’s
Criterion and the Triangle Inequality:

Proposition 2.3.22. If
P

cn is a convergent series of nonnegative terms and if, for
some N0 2 N, we have jxnj � cn 8 n � N0, then

P

xn is convergent. In particular,
an absolutely convergent series is convergent.
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Remark 2.3.23. Note that there are conditionally convergent series. The standard
example is the alternating harmonic series

P

.�1/n�1=n: The proof of this and
other similar facts will follow from the discussion of alternating series below.

Theorem 2.3.24 (Root Test). Given a series
P

xn, define (the extended real
number) � WD lim. n

pjxnj/: Then the following are true:

1. If � < 1;
P

xn is convergent.
2. If � > 1;

P

xn is divergent.
3. If � D 1, the test is inconclusive.

Proof. If � < 1, we can pick � with � < � < 1 and N 2 N such that

n
p

jxnj < � 8 n � N:

(Why?) In other words,

jxnj � �n 8 n � N:

Since
P

�n converges, the convergence of
P jxnj (and hence

P

xn, by Propo-
sition 2.3.22) follows from the First Comparison Test. Next, if � > 1, then
� � lim.jxnk j1=nk / > 1, for some subsequence .xnk / of .xn/: But then it follows
at once that lim.xn/ ¤ 0, and the series

P

xn is therefore divergent. Finally, to
prove (3), note that � D 1 both for the harmonic series

P

1=n which diverges and
for the convergent p-series

P

1=n2. ut
Theorem 2.3.25 (Ratio Test). Given a real series

P

xn such that xn ¤ 0 is
ultimately true, we have

1.
P

xn converges if lim sup.jxnC1=xnj/ < 1:
2.
P

xn diverges if 9m 2 N such that jxnC1=xnj � 1 8n � m:
3. If lim.jxnC1=xnj/ � 1 � lim.jxnC1=xnj/, then the test is inconclusive.

Proof. If (1) holds, then we can find � 2 .0; 1/ and N 2 N such that jxnC1=xnj < �
for all n � N: It then follows that, for n � N , we have jxnj � jxN j��N � �n, and the
convergence of

P

xn follows from the First Comparison Test. If (2) holds, then the
condition lim.xn/ D 0 is not satisfied, and the series

P

xn diverges. Finally, if we
consider once again the divergent series

P

1=n and the convergent series
P

1=n2,
then in both cases we have lim.jxnC1=xnj/ D 1I i.e., the condition (3) holds. ut
Remark 2.3.26.

(a) The Ratio Test can also be deduced from the Second Comparison Test.
(b) In the Root Test, if n

pjxnj � 1 for infinitely many distinct values of n, then the
series

P

xn diverges (why?).
(c) The Ratio Test is, for most series, easier to apply than the Root Test. As the

following theorem shows, however, the Root Test has wider scope. In fact, if
the Ratio Test implies convergence, so does the Root Test; also, when the Root
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Test is inconclusive, so is the Ratio Test. But there are series for which the Ratio
Test is inconclusive and the Root Test implies convergence.

Theorem 2.3.27. Given a sequence .xn/ of positive numbers, we have

lim inf.xnC1=xn/ � lim inf. n
p
xn/ � lim sup. n

p
xn/ � lim sup.xnC1=xn/:

Proof. Let � D lim inf.xnC1=xn/ and � D lim sup.xnC1=xn/: We must show that
lim inf. n

p
xn/ � � and lim sup. n

p
xn/ � �: For the latter, if � D1, we have nothing

to prove. Otherwise, pick �1 > � and N 2 N such that n � N implies xnC1=xn �
�1: Thus, with c WD xN�

�N
1 , we get xn � c�n1 for all n � N: But then, taking nth

roots and using the fact that lim. n
p
c/ D 1, we get lim sup. n

p
xn/ � �1: Since this

holds for all �1 > �, we get lim sup. n
p
xn/ � �: Next, note that lim inf. n

p
xn/ � 0:

So, assume that � > 0 and pick any �1 2 .0; �/: Then there exists N 2 N such
that n � N implies xnC1=xn � �1: Let c WD xN �

�N
1 , and note that n � N implies

n
p
xn � �1 n

p
c: Since lim. n

p
c/ D 1, we get lim inf. n

p
xn/ � �1: This is true for all

�1 2 .0; �/I it follows that lim inf. n
p
xn/ � � . ut

Example 2.3.28. Let xn WD �1�2 � � � �n, with .�n/ D .3; 1=9; 3; 1=9; : : :/: Then
xnC1=xn D �nC1, so that lim inf.xnC1=xn/ D 1=9 whereas lim sup.xnC1=xn/ D 3:

The Ratio Test is therefore inconclusive. Now xn D .1=3/n=2 for n even and
xn D 3.1=3/.n�1/=2 for n odd. Thus lim. n

p
xn/ D 1=

p
3, which implies that the

series
P

xn is convergent.

Exercise 2.3.29. Investigate the convergence or divergence of the following
series:

1.
P

. n
p
n � 1/nI

2.
P1

nD2 1=.logn/nI
3.
P

nŠ=nnI
4.
P1

nD2 1=.logn/lognI
5. 1

2
C 1

3
C 1

22
C 1

32
C 1

23
C 1

33
C � � � I and

6. 1
2
C 1C 1

8
C 1

4
C 1

32
C 1

16
C � � � :

Hint: For (5) and (6), note that the Ratio Test is inconclusive.

For many series for which the Ratio and Root Tests are both inconclusive, the
following test and its corollaries may be useful.

Theorem 2.3.30 (Kummer’s Test). Let .xn/ and .dn/ be two sequences of positive
numbers. Suppose that

P

1=dn D C1 and let tn WD dn� .xnC1=xn/dnC1: Then the
series

P

xn converges if tn � h is ultimately true for some h > 0 (equivalently, if
lim inf tn > 0) and diverges if tn � 0 is ultimately true (which is the case if, e.g.,
lim sup tn < 0).

Proof. If tn � h for some h > 0 and all n � m0 2 N, then

hxn < xndn � xnC1dnC1 .n � m0/: ()
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Adding the inequalities () for n D m0; m0 C 1; : : : ; m, we get

h

m
X

nDm0
xn � xm0dm0 � xmC1dmC1 < xm0dm0 .8m � m0/:

This implies that
P

xn has bounded partial sums and hence is convergent. If, on the
other hand, tn � 0 for all n � K 2 N, then xnC1dnC1 � xndn for all n � K, so
that xn � .xKdK/=dn for all n � K and the divergence of

P

xn follows from that
of
P

1=dn. ut
Corollary 2.3.31 (Raabe’s Test). Let .xn/ be a sequence of positive numbers.
Then

P

xn converges if xnC1=xn � 1 � r=n is ultimately true for some r > 1

(equivalently, if lim inf.n.1 � xnC1=xn// > 1) and diverges if xnC1=xn � 1 � 1=n
is ultimately true (which is the case if, e.g., lim sup.n.1 � xnC1=xn// < 1).

Proof. This follows at once from Kummer’s Test if we take dn WD n. ut
Before stating the next corollary, let us introduce a convenient notation. Let .cn/

be a sequence of positive numbers. Given a sequence .bn/, we write bn D O.cn/ if
there is a constant K > 0 such that jbnj � Kcn for all sufficiently large n: We shall
also assume the following facts:

lim
n!1

logn

n˛
D 0 .8˛ > 0/; lim

n!1n log

�

n

nC 1
�

D �1: (�)

These facts are immediate consequences of l’Hôpital’s Rule, as we shall see in
Chap. 6, and are true even when n is replaced by x 2 .0;1/:
Corollary 2.3.32 (Gauss’s Test). Let .xn/ be a sequence of positive numbers such
that, for some constants r 2 R and p > 1, we have

xnC1
xn
D 1 � r

n
CO

� 1

np

�

:

Then
P

xn converges if r > 1 and diverges if r � 1:
Proof. The condition implies that limn!1 n.1 � xnC1=xn/ D r , so that the result
follows from Raabe’s Test if r ¤ 1: For r D 1, we use Kummer’s Test with dn D
n logn (cf. Exercise 2.3.20). Now, with tn WD dn � .xnC1=xn/dnC1 as before,

tn D n logn �
h

1 � 1
n
CO

� 1

np

�i

.nC 1/ log.nC 1/

D n log
� n

nC 1
�

C 1

n
log.nC 1/CO

� 1

np

�

.nC 1/ log.nC 1/:

Therefore, by (�), we have lim.tn/ D �1. ut
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The next proposition will be needed in our treatment of alternating series.

Proposition 2.3.33 (Abel’s Partial Summation Formula). Given a pair of real
sequences .xn/ and .yn/, set sn WD Pn

kD1 xk and s0 WD 0: Then, if 1 � m � n;

we have

n
X

kDm
xkyk D

n�1
X

kDm
sk.yk � ykC1/C snyn � sm�1ym:

Proof. Using the fact that xn D sn � sn�1, we have

n
X

kDm
xkyk D

n
X

kDm
.sk � sk�1/yk D

n
X

kDm
skyk �

n�1
X

kDm�1
skykC1;

from which the proposition follows at once. ut
Here is a nice application:

Theorem 2.3.34 (Kronecker’s Lemma). Let .xn/ be a real sequence with
P1

nD1 xn D s < 1: If .bn/ is an increasing sequence of positive numbers with
lim.bn/ D1, then

lim
n!1

1

bn

n
X

kD1
bkxk D 0:

Proof. Using the above proposition with sn WDPn
kD1 xk; yn D bn, and m D 1, we

have

1

bn

n
X

kD1
bkxk D sn � 1

bn

n�1
X

kD1
.bkC1 � bk/sk: ()

Now note that for n > N the right side of () is

D sn � 1

bn

N�1
X

kD1
.bkC1 � bk/sk � 1

bn

n�1
X

kDN
.bkC1 � bk/sk

D sn �
N�1
X

kD1

�bkC1 � bk
bn

�

sk �
n�1
X

kDN

�bkC1 � bk
bn

�

s �
n�1
X

kDN

�bkC1 � bk
bn

�

.sk � s/;

which simplifies to

h

sn�
�bn � bN

bn

�

s
i

� 1

bn

N�1
X

kD1
.bkC1� bk/sk � 1

bn

n�1
X

kDN
.bkC1� bk/.sk � s/: ()
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If n ! 1, then sn ! s and (as bn increases to 1) .bn � bN /=bn increases to 1.
Thus the difference inside the brackets in () goes to zero. The second term in
() also approaches zero because the sum is independent of n. So, given " > 0

the first and second terms will each be < "=3 if n � N and N is large enough.
Finally, since .bn/ is increasing, the absolute value of the last term is bounded by
Œ.bn � bN /=bn�"=3 � "=3 if N is so large that jsk � sj < "=3 for k � N: Thus ()
is less than " if n � N and the proof is complete. ut

Here is another important application:

Theorem 2.3.35 (Dirichlet’s Test). Let
P

xn be a real series whose partial sums
sn D Pn

kD1 xk form a bounded sequence. If .yn/ is a decreasing sequence (of
nonnegative terms) with lim.yn/ D 0, then the series

P

xnyn converges.

Proof. Pick B > 0 such that jsnj � B 8 n 2 N: Now, given any " > 0, there is an
integer N 2 N such that yN < "=.2B/: Using Proposition 2.3.33 and the fact that
yn � ynC1 � 0 for all n, it follows that, if N � m � n, then

ˇ

ˇ

ˇ

n
X

kDm
xnyn

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

n�1
X

kDm
sk.yk � ykC1/C snyn � sm�1ym

ˇ

ˇ

ˇ

� B
"

n�1
X

kDm
.yk � ykC1/C yn C ym

#

D 2Bym � 2ByN < ":

By Cauchy’s Criterion, the series
P

xnyn is therefore convergent. ut
Corollary 2.3.36 (Abel’s Test). Suppose that

P

xn is convergent. Then, for any
bounded monotone sequence .yn/, the series

P

xnyn is also convergent.

Proof. We may assume that .yn/ is decreasing. Let y WD inffyn W n 2 Ng:
Then lim.yn/ D y: Put zn WD yn � y: Then .zn/ is monotone, nonnegative, and
lim.zn/ D 0: Since the convergent series

P

xn has bounded partial sums,
P

xnzn
converges by Dirichlet’s Test and the convergence of

P

xnyn follows at once. ut
Dirichlet’s Test can be used to give a convergence criterion for alternating series

which we now define:

Definition 2.3.37 (Alternating Series). Let .an/ be a sequence of positive real
numbers. The series

P

.�1/nC1an (or
P

.�1/nan) is then called an alternating
series.

Theorem 2.3.38 (Leibniz’s Test). Let .an/ be a sequence of positive numbers. If
.an/ is a decreasing null sequence; i.e., if a1 � a2 � a3 � � � � and lim.an/ D 0,
then the alternating series

P

.�1/nC1an D a1 � a2 C a3 � � � � (and hence also
P

.�1/nan) is convergent.
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Proof. Simply apply Theorem 2.3.35, with xn D .�1/nC1 and yn D an: ut
Next, we consider the arithmetic operations on convergent series. As usual, the

addition and multiplication by constants are quite elementary, and we leave the proof
of the next theorem for the reader.

Theorem 2.3.39. If
P

xn D � , and
P

yn D �, then
P

.xn C yn/ D � C �, and
P

cxn D c� for any constant c 2 R:

Exercise 2.3.40. Prove Theorem 2.3.39.

The multiplication of two convergent series is more involved, especially since
there are many ways to define a product. We therefore begin by defining the Cauchy
product. To have a more convenient notation, we begin our summations at n D 0

rather than n D 1: Note that, in general,
P1

nD1 xn D
P1

nD0 xnC1:

Definition 2.3.41 (Cauchy Product). For two series
P1

nD0 xn and
P1

nD0 yn, we
define their Cauchy product (or simply product) to be

P1
nD0 zn, where

zn D
n
X

kD0
xkyn�k .n 2 N0/:

Exercise 2.3.42. Consider the alternating series
P1

nD0.�1/n=
p
nC 1, which is

convergent (why?). Show that the (Cauchy) product of this series with itself is
P1

nD0 zn, where

zn D .�1/n
n
X

kD0

1
p

.n � k C 1/.k C 1/ ;

and that this series is divergent.
Hint: .n � k C 1/.k C 1/ D .n=2C 1/2 � .n=2 � k/2:

The series in Exercise 2.3.42 was conditionally convergent. The following
theorem shows that if at least one of two convergent series is absolutely convergent,
then the (Cauchy) product of the series converges to the product of their sums.

Theorem 2.3.43 (Mertens). Suppose that
P1

nD0 jxnj is convergent,
P1

nD0 xn D
�;

P1
nD0 yn D �, and that zn D Pn

kD0 xkyn�k; .n D 0; 1; 2; : : :/: Then
P1

nD0 zn D ��:
Proof. For each n � 0, let Xn WDPn

kD0 xk; Yn WD
Pn

kD0 yk; Zn WD
Pn

kD0 zk , and
�n WD Yn � �: Then we have

Zn D z0 C z1 C � � � C zn

D x0y0 C .x0y1 C x1y0/C � � � C .x0yn C x1yn�1 C � � � C xny0/
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D x0Yn C x1Yn�1 C � � � C xnY0
D Xn�C ın .n D 0; 1; 2; : : :/;

where we have defined (for each n 2 N)

ın WD x0�n C x1�n�1 C � � � C xn�0 .n D 0; 1; 2; : : :/:

Since lim.Xn�/ D ��, it suffices to show that lim.ın/ D 0: To show this, let " > 0

be given. Then, since lim.�n/ D 0 (why?), we can pick N 2 N such that j�nj <
" 8n � N: For each such n, we therefore have

jınj � j�0xn C � � � C �Nxn�N j C j�NC1xn�N�1 C � � � C �nx0j ()

< j�0xn C � � � C �Nxn�N j C "�;

where we have defined

� WD
1
X

nD0
jxnj:

But lim.xn/ D 0 (why?), so keeping N fixed and letting n!1 in (), we get

lim sup.jınj/ � "�:

Since " was arbitrary, we get lim.ın/ D 0 and hence lim.Zn/ D ��. ut
Exercise 2.3.44. Show that the Cauchy product of two absolutely convergent series
is absolutely convergent and that its sum is the product of the sums of the two series.

The next theorem, due to Abel, shows that what one wishes to be true is indeed
true! The proof will be given later when we look at power series. Note that no
absolute convergence is required.

Theorem 2.3.45 (Abel). If
P1

nD0 xn D �;
P1

nD0 yn D �, and
P1

nD0 zn D �,
where zn DPn

kD0 xkyn�k .n D 0; 1; 2; : : :/, then we have � D ��:
The next definition introduces the concept of rearrangement of an infinite series.

Here the important fact is that if a series is absolutely convergent, then all its
rearrangements converge to the same sum.

Definition 2.3.46 (Rearrangement). Let
P

xn be a real series and let  D
.1; 2; 3; : : :/ be a permutation of NI i.e., let  W N ! N be a one-to-one
correspondence. If we set x0

n WD xn 8n 2 N, then the series
P

x0
n is called a

rearrangement of
P

xn:
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Remark 2.3.47. As the next theorem (due to Riemann) shows, a rearrangement of
a conditionally convergent series need not converge to the same limit and may even
diverge. The next exercise gives an example of this phenomenon.

Exercise 2.3.48. Let s WDP.�1/nC1=n, and consider the rearrangement

1
X

kD1
.

1

4k � 3 C
1

4k � 1 �
1

2k
/ D 1C 1

3
� 1
2
C 1

5
C 1

7
� 1
4
C 1

9
C 1

11
� 1
6
C � � �

of the series, where we always have two positive terms followed by one negative
term. If .s0

n/ denotes the sequence of partial sums of this rearrangement, show that
s < s0

3 D 5=6 and that s0
3 < s0

6 < s0
9 < � � � : Deduce that lim sup.s0

n/ > 5=6, which
implies lim.s0

n/ ¤ s: Show, however, that .s0
n/ is convergent.

Theorem 2.3.49 (Riemann). Let
P

xn be a conditionally convergent real series,
and let �; � 2 Œ�1;C1� be given extended real numbers with � � �: Then there
exists a rearrangement

P

x0
n of

P

xn with partial sums s0
n such that

lim inf.s0
n/ D �; lim sup.s0

n/ D �:

In particular, if � D �, then
P

x0
n D �:

Proof. Define the sequences .pn/ and .qn/ by

pn WD jxnj C xn
2

; qn WD jxnj � xn
2

:

We then have pn � qn D xn and pn C qn D jxnj; pn � 0; qn � 0: Since
P

xn is
not absolutely convergent, both series

P

pn and
P

qn are divergent (why?).
Now let .Pn/ be the sequence of nonnegative terms of

P

xn in their proper order,
and let .Qn/ be the sequence of absolute values of the negative terms of

P

xn,
also in their proper order. Then the series

P

Pn and
P

Qn are both divergent,
since they differ from the series

P

pn and
P

qn by zero terms only. We want our
rearrangement

P

x0
n to have the form

.P1 C � � � C Pm1/ � .Q1 C � � � CQk1/

C .Pm1C1 C � � � C Pm2/ � .Qk1C1 C � � � CQk2/C � � � ; ()

where the sequences .mj / and .kj / are to be constructed. To do so, pick sequences
.�n/ and .�n/ such that lim.�n/ D �; lim.�n/ D �; �n < �n 8n 2 N, and �1 > 0:

Now let m1; k1 be the smallest integers such that

m1
X

iD1
Pi > �1 and

m1
X

iD1
Pi �

k1
X

jD1
Qj < �1:
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Next, let m2; k2 be the smallest integers such that

m1
X

iD1
Pi �

k1
X

jD1
Qj C

m2
X

iDm1C1
Pi > �2 and

m1
X

iD1
Pi �

k1
X

jD1
Qj C

m2
X

iDm1C1
Pi �

k2
X

jDk1C1
Qj < �2;

and continue the process. The reason why this can be done is that both
P

Pn and
P

Qn diverge. Now if .sn/ and .tn/ are the partial sums of the series () whose last
terms are Pmn and �Qkn , respectively, then we have

jsn � �nj � Pmn; jtn � �nj � Qkn;

and since lim.Pn/ D lim.Qn/ D 0, we get lim.sn/ D � and lim.tn/ D �: Finally, it
is obvious that all limit points of the partial sums of the series () must be between
� and �. ut

We can now prove the theorem that characterizes the infinite series all of whose
rearrangements converge.

Theorem 2.3.50. All rearrangements of a real series
P

xn converge if and only if
the series is absolutely convergent.

Proof. Suppose that
P

xn is absolutely convergent. Let  W N ! N be a
permutation of N, and let

P

x0
n be the corresponding rearrangement, i.e., x0

n D xn :
Now given any " > 0, there is an integer N 2 N such that

m � n � N H)
n
X

jDm
jxj j < ": ()

Let k 2 N be such that f1; 2; : : : ; N g � f1; 2; : : : ; kg; and let .sn/ and .s0
n/

denote the sequences of partial sums of
P

xn and
P

x0
n, respectively. Then, for

n > k, the numbers x1; x2; : : : ; xN are all canceled in the difference sn � s0
n, and

() implies jsn�s0
nj < ", hence we get lim.sn/ D lim.s0

n/:Next, if
P

xn is divergent,
then the trivial “identity” rearrangement is divergent. If

P

xn is conditionally
convergent, then by Theorem 2.3.49 there is a rearrangement

P

x0
n that is divergent,

and the proof is complete. ut
An immediate consequence is the following:

Corollary 2.3.51. If all rearrangements of a series
P

xn converge, then they all
converge to the same sum.
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We end this section with an important example which uses most of the concepts
introduced above. This example plays a fundamental role in the theory of Fourier
series and will be used later.

Example 2.3.52 (The Class `2.N/). The class of all square-summable (real)
sequences is defined to be the set

`2.N/ WD
n

x D .xn/ 2 RN W
1
X

nD1
x2n <1

o

;

and for each x D .xn/ 2 `2.N/ its `2-norm is defined to be the nonnegative number

kxk2 WD
� 1
X

nD1
x2n

�1=2

:

Thus `2.N/ is the set of all sequences with finite `2-norm. Then, given any sequences
x D .xn/; y D .yn/ 2 `2.N/, the series

P1
nD1 xnyn is absolutely convergent and

we have the Cauchy–Schwarz inequality:

ˇ

ˇ

ˇ

ˇ

1
X

nD1
xnyn

ˇ

ˇ

ˇ

ˇ

�
1
X

nD1
jxnynj �

r

X

x2n �
r

X

y2n D kxk2kyk2: (�)

To see this, recall Cauchy’s inequality (cf. Proposition 2.1.23):

� n
X

iD1
xiyi

�2

�
� n
X

iD1
x2i

�� n
X

iD1
y2i

�

;

which is a fortiori valid if its right side is replaced by kxk22kyk22: The inequality (�)
then follows if we take square roots and pass to the limit as n! 1: An important
consequence of the Cauchy–Schwarz inequality is that the class `2.N/ is a vector
space over R: Indeed, it is obvious that for each x D .xn/ 2 `2.N/ and each c 2 R,
we have cx WD .cxn/ 2 `2.N/ and

jjcxjj2 D jcjkxk2:

Now given any sequences x D .xn/; y D .yn/ 2 `2.N/, we must show that
x C y WD .xn C yn/ 2 `2.N/: Recall (cf. Proposition 2.1.23) that we have the
Triangle Inequality:

� n
X

iD1
.xi C yi /2

�1=2

�
� n
X

iD1
x2i

�1=2

C
 

n
X

iD1
y2i

!1=2

:
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Replacing the right side by kxk2 C kyk2 and taking the limit as n!1, we obtain
the Minkowski’s inequality

kx C yk2 � kxk2 C kyk2;

which implies indeed that x C y 2 `2.N/: The following properties of the `2-norm
are now easily checked. Here, x; y 2 `2.N/ and c 2 R are arbitrary:

1. kxk2 � 0I
2. kxk2 D 0, x D 0I
3. kcxk2 D jcjjjxjj2I and
4. kx C yk2 � kxk2 C kyk2 (Minkowski’s inequality).

Remark 2.3.53. In a similar fashion one defines the classes `2.N0/ and `2.Z/ with
the corresponding `2-norms. Thus,

`2.Z/ WD
n

x D .xn/ 2 RZ W
1
X

nD�1
x2n <1

o

;

and the partial sums are defined to be

sn WD
n
X

kD�n
x2k:

The above properties (1)–(4) remain valid for the new `2-norms, as may be checked
at once.

2.4 Unordered Series and Summability

Recall that a real (resp., complex) sequence is simply a function x W N! R (resp.,
x W N ! C). The value xn WD x.n/ is the nth term and the corresponding infinite
series is the formal sum

1
X

nD1
xn

of all the values of x: Its sum, if it exists, is the limit of partial sums:

sn WD
n
X

kD1
xk D x1 C x2 C � � � C xn:
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Now N has a natural order, 1 < 2 < 3 < � � � and is in fact well ordered under
this ordering. If we replace N by an arbitrary set X ¤ ; with no a priori order and
consider a function u W X ! F (where F is either R or C), can we still define the
“unordered sum”

X

x2X
ux

of all the values ux WD u.x/ of u‹ Well, if X is finite, then the answer is obviously
yes: Indeed, if X D fx1; x2; : : : ; xng, then

X

x2X
ux D

n
X

kD1
uxk D u.x1/C u.x2/C � � � C u.xn/;

where the finite sum on the right is independent of the order of its terms. This
suggests that we look at the set FX of all finite subsets of X: Thus,

FX WD fF � X W jF j <1g;

where jF j is the cardinality (i.e., the number of elements) of F:

Definition 2.4.1 (Summable, Partial Sum, Sum). Let X ¤ ; be a set and u W
X ! F, where F is either R or C: For each finite set F 2 FX , the sum

sF D sF .u/ WD
X

x2F
ux;

where ux WD u.x/, is called a partial sum of u: We say that u (or the corresponding
unordered series

P

x2X ux) is summable if there is a number s 2 F such that

.8" > 0/.9F" 2 FX/.8F 2 FX/.F � F") jsF � sj < "/:

The number s is then called the (unordered) sum of u (over X ) (or of the unordered
series

P

x2X ux/, and we write

s D
X

x2X
ux:

Remark 2.4.2. It can be easily checked that u W X ! C is summable if and only if
the real-valued functions Re.u/ and Im.u/ are both summable. (Why?) Therefore,
in what follows we shall only look at real-valued functions.

Example 2.4.3 (Multiple Sequences and Series). Unlike N, the sets Nk; k D
2; 3; 4 : : :, have no natural order. IfX WD Nk and k � 2, then a function u W Nk ! R

is called a multiple (real) sequence and the unordered series

X

.n1;:::;nk/2Nk
u.n1; : : : ; nk/
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is the corresponding multiple series. Thus a double sequence is a function u W N2 !
R and the corresponding double series is the unordered series

P

.m;n/2N2 umn, where
umn WD u.m; n/:

The following propositions follow easily from Definition 2.4.1.

Proposition 2.4.4 (Uniqueness of the Sum). The sum of a summable function u W
X ! R is unique.

Exercise 2.4.5. Prove the proposition.

Proposition 2.4.6 (Linearity of the Sum). Let X ¤ ; be a set and u; v W X ! R:

If u and v are summable, then, for any constants ˛; ˇ 2 R, the function ˛uC ˇv is
also summable and we have

X

x2X
.˛uC ˇv/x D

X

x2X
.˛ux C ˇvx/ D ˛

X

x2X
ux C ˇ

X

x2X
vx:

Exercise 2.4.7. Prove the proposition.

Proposition 2.4.8. If u W X ! R is nonnegative (i.e., ux � 0 for all x 2 X/, then u
is summable if and only if its partial sums are (uniformly) bounded; i.e., there is a
number M > 0 such that sF �M for all F 2 FX : In this case, we have

s D
X

x2X
ux D supfsF W F 2 FXg: ()

Proof. If u is summable with sum s, then for " D 1 we can find F1 2 FX such that
F � F1 implies js � sF j < 1 and hence sF < s C 1: If now F 2 FX is any finite
set, then F1 [ F � F1 and hence sF � sF1[F < s C 1: Thus, all partial sums are
bounded above by M WD s C 1: Conversely, if M is an upper bound for all partial
sums and if s is defined by (), then, by the very definition of “sup,” for each " > 0
we can find F" 2 FX such that s � " < sF" � s: But then, we have

F" � F 2 FX ) s � " < sF � s;

which means precisely that
P

x2X ux D s. ut
Definition 2.4.9 (Infinite Sum). We say that u W X ! R has sum C1 and write
P

x2X ux D C1, if for every M 2 R there exists FM 2 FX such that sFM D
P

x2FM ux > M:

The following corollary of Proposition 2.4.8 is now obvious:

Corollary 2.4.10. If a nonnegative u W X ! R is not summable, then we have
P

x2X ux D C1:
For X D N and a sequence u W N ! R, the definition of summability implies

that, if u is summable, then the (ordered) series
P1

nD1 un is convergent. That the
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converse is not true, however, is a consequence of the following theorem (cf.
Proposition 2.4.20 below). Before stating it, let us recall that, for any a 2 R, we
define aC WD maxfa; 0g and a� WD maxf�a; 0g: It is then obvious that

jaj D aC C a�; and a D aC � a� D 2aC � jaj:

Theorem 2.4.11 (Summable , Absolutely Summable). For a function u W X !
R, the following are equivalent:

1. u is summable;
2. u is absolutely summable (i.e., juj is summable);
3. There is a number M > 0 such that 8F 2 FX we have

P

x2F juxj �M:
Proof. Let us first prove the equivalence .1/ , .2/: If

P

x2X juxj is summable,
then so is

P

x2X uC
x , by Proposition 2.4.8, because 0 � uC

x � juxj, for all x 2 X:
But then u is also summable (by Proposition 2.4.6) because ux D 2uC

x �juxj, for all
x 2 X: Conversely, suppose that

P

x2X ux D s: Then we can pick F1 2 FX such
that jPx2F ux � sj < 1 (and hence jPx2F uxj < 1C jsj) if F1 � F 2 FX : Now,
given any F 2 FX , we have

X

x2F
ux D

X

x2F[F1
ux �

X

x2F1nF
ux � 1C jsj C

X

x2F1
juxj: ()

If we set FC WD fx 2 F W ux � 0g, then () implies

X

x2F
uC
x D

X

x2FC
ux � 1C jsj C

X

x2F1
juxj;

and hence
P

x2X uC
x is summable by Proposition 2.4.8. Since juxj D 2uC

x � ux , the
summability of juj now follows from Proposition 2.4.6. Finally, the equivalence
.2/ , .3/ is an immediate consequence of Proposition 2.4.8, and the proof is
complete. ut

The following corollaries are obvious consequences.

Corollary 2.4.12. Any summable function u W X ! R (nonnegative or not) has
bounded partial sums; i.e., there is a number M > 0 such that jsF j � M for all
F 2 FX :

Corollary 2.4.13. Let X be a set and u W X ! R a summable function. Then, for
any subset Y � X , the restriction ujY is summable (over Y ).

Definition 2.4.14 (Cauchy’s Criterion). We say that u W X ! R satisfies
Cauchy’s Criterion if

.8" > 0/.9F" 2 FX/.8F 2 FX/.F \ F" D ; ) jsF j < "/:
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Exercise 2.4.15.

1. Show that, if u W X ! R satisfies Cauchy’s Criterion, then so does the restriction
ujY for any Y � X: Deduce that the functions uC WD supfu; 0g and u� WD
supf�u; 0g satisfy Cauchy’s Criterion as well.

2. Show that, if u W X ! R satisfies Cauchy’s Criterion, then it has bounded partial
sums; i.e., there is a constant M > 0 with jPx2F u.x/j �M for any F 2 FX :

3. Show that a summable function u W X ! R satisfies Cauchy’s Criterion. Hint:
Let s D P

x2X u.x/ and pick F" 2 FX with js � sF j < "=2 for all F � F": If
F 2 FX and F \ F" D ;, note that

jsF j D jsF[F" � sF" j � js � sF[F" j C js � sF" j:

The following corollary of Theorem 2.4.11 shows that the condition in part .3/
of the above exercise is also sufficient:

Corollary 2.4.16 (Cauchy’s Criterion). A function u W X ! R is summable if
and only if it satisfies Cauchy’s Criterion.

Proof. By Exercise 2.4.15, uC and u� satisfy Cauchy’s Criterion and u D uC� u�:
But then both uC and u� have bounded partial sums and hence are summable. ut

Here is another interesting corollary:

Corollary 2.4.17. If u W X ! R is summable, then D WD fx 2 X W ux ¤ 0g is
countable.

Proof. Since u is absolutely summable, we have S WDP

x2X juxj < 1: Let Dn WD
fx 2 X W juxj > 1=ng: Then Dn is finite. Actually, jDnj < nS , where jDnj is the
number of elements in Dn: Since D DS1

nD1 Dn, the corollary follows. ut
Exercise 2.4.18. Deduce Corollary 2.4.17 from Cauchy’s Criterion. (Hint: For
each n 2 N, pick Fn 2 FX such that x 62 Fn implies ju.x/j < 1=n and look at
S

Fn.)

Theorem 2.4.19. Suppose that u W X ! R is summable with sum s: If .Fn/1nD1 is a
sequence of finite subsets of X such that

F1 � F2 � F3 � � � � ; and X D
1
[

nD1
Fn;

then we have

s D lim
n!1

X

x2Fn
ux:
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In particular, if .En/1nD1 is another sequence of finite subsets of X satisfying the
same conditions as .Fn/1nD1, then we have

lim
n!1

X

x2Fn
ux D s D lim

m!1
X

x2Em
ux:

Proof. Given any " > 0, we can pick F" 2 FX such that F" � F 2 FX implies
jsF � sj < ": Now pick N 2 N such that F" � FN : Since FN � Fn for all n � N ,
it follows that jPx2Fn ux � sj < " for all n � N and the proof is complete. ut

The following proposition is an important consequence:

Proposition 2.4.20. Let u W N ! R be a sequence. Then the unordered series
P

n2N un is summable if and only if the (ordered) series
P1

nD1 junj is convergent
(i.e., the series

P1
nD1 un is absolutely convergent) and, in this case, we have

X

n2N
un D

1
X

nD1
un:

Proof. In view of Theorem 2.4.11, the summability of
P

n2N un and the convergence
of the series

P1
nD1 junj are both equivalent to the existence of a numberM > 0 such

that

ju1j C ju2j C � � � C junj �M .8n 2 N/:

To prove the last statement, if u is summable, we can apply Theorem 2.4.19 with
X D N and Fn WD f1; 2; : : : ; ng to deduce that

X

n2N
un D lim

n!1
X

k2Fn
uk D lim

n!1

n
X

kD1
uk D

1
X

nD1
un;

and the proof is complete. ut
Example 2.4.21. We have seen that the alternating series

P1
nD1.�1/nC1=n is con-

vergent. We also know that the harmonic series
P1

nD1 1=n is divergent. Therefore,
the unordered series

P

n2N.�1/nC1=n is not summable.

Our next application of Theorem 2.4.19 is to the convergence of iterated sums
which arise in the study of double series (i.e., unordered series over the set N2/:
Actually, since we shall need the results later in our study of power series, it is more
convenient to use the set X WD f.m; n/ W m; n D 0; 1; 2; 3; : : :g: The values umn
of a function u W X ! R can then be arranged as a rectangular array:
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u00 u01 u02 : : :
u10 u11 u12 : : :
u20 u21 u22 : : :
:::

:::
:::
: : :

It is then natural to ask whether or not, leaving aside their precise meaning, the
iterated sums

1
X

mD0

� 1
X

nD0
umn

�

and
1
X

nD0

� 1
X

mD0
umn

�

exist and (if they do) are equal. To answer such questions, we need the following.

Theorem 2.4.22 (Repeated Summation or Associativity). Let .Xn/1nD1 be a
partition of X I i.e., Xn ¤ ; 8n 2 N; Xj \Xk D ; for j ¤ k, and X DS1

nD1 Xn:
If u W X ! R is summable, then the restriction ujXn is summable (over Xn) for
each n 2 N, and the unordered series

P

n2N.
P

x2Xn ux/ is summable. In this case,
we have

X

x2X
ux D

X

n2N

�

X

x2Xn
ux
�

D
1
X

nD1

�

X

x2Xn
ux
�

:

If we assume the stronger condition that
P

n2N.
P

x2Xn juxj/ is summable, then the
converse is also true.

Proof. Suppose that u is summable with sum s DPx2X ux: Then Corollary 2.4.13
implies that each restriction ujXn is also summable. Let sn D P

x2Xn ux: We want
to show that, given " > 0, there exists a finite set J" � N such that

(i) J" � J 2 FN)
ˇ

ˇ

ˇ

ˇ

s �
X

n2J
sn

ˇ

ˇ

ˇ

ˇ

< ":

Pick a finite set F" 2 FX such that

(ii) F" � F 2 FX )
ˇ

ˇ

ˇ

ˇ

s �
X

x2F
ux

ˇ

ˇ

ˇ

ˇ

< "=2:

Also, for each n 2 N, pick a finite set En" 2 FXn such that

(iii) En" � En 2 FXn )
ˇ

ˇ

ˇ

ˇ

sn �
X

x2En
ux

ˇ

ˇ

ˇ

ˇ

< "=2nC1:

Since F" is finite, the set J" D fn 2 N W F" \ Xn ¤ ;g is finite as well. Also, we
may (and will) assume that F" \Xn � En", for all n 2 J": It then follows from (iii)
that J" � J 2 FN implies

(iv)

ˇ

ˇ

ˇ

ˇ

X

n2J
sn �

X

x2Sn2J En"

ux

ˇ

ˇ

ˇ

ˇ

<
X

n2J

"

2nC1 <
1
X

nD1

"

2nC1 D
"

2
:
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Since F" DSn2J" F" \Xn �
S

n2J" En" �
S

n2J En", it follows from (ii) that

(v)

ˇ

ˇ

ˇ

ˇ

s �
X

x2Sn2J En"

ux

ˇ

ˇ

ˇ

ˇ

<
"

2
:

In view of (iv) and (v), we have js � Pn2J snj < " and (i) follows. Finally, if
P

n2N.
P

x2Xn juxj/ is summable, i.e., if (by Proposition 2.4.20) we have

X

n2N

�

X

x2Xn
juxj

�

D
1
X

nD1

X

x2Xn
juxj <1;

and if F 2 FX , then F �SN
nD1 Xn, for some N 2 N, so that

X

x2F
juxj D

N
X

nD1

X

x2F\Xn
juxj �

N
X

nD1

X

x2Xn
juxj �

1
X

nD1

X

x2Xn
juxj <1:

In other words, all partial sums of juj are (uniformly) bounded. This implies
(Proposition 2.4.8) that juj is summable and hence (Theorem 2.4.11) so is u. ut
Example 2.4.23. Consider the identity function u W Z ! Z: Thus, un D n 8n 2
Z: Then u is not summable because

P1
nD1 un D C1: On the other hand, consider

the partition Z DS1
kD0 Xk , where X0 WD f0g and Xk WD f�k; kg, for all k � 1: We

then have, for each k, that sk D P

x2Xk ux D �k C k D 0 D s0: Therefore
P

k2N0 sk D 0: This shows that the stronger condition in the last sentence of
Theorem 2.4.22 is indeed necessary.

Exercise 2.4.24. Deduce Proposition 2.4.20 from Theorem 2.4.22.

Corollary 2.4.25. If u W X ! R is summable and if .Xn/1nD1 and .X 0
n/

1
nD1 are two

partitions of X (as in Theorem 2.4.22), then the corresponding unordered series
P

n2N.
P

x2Xn ux/ and
P

n2N.
P

x2X 0
n

ux/ are summable and we have

X

n2N

�

X

x2Xn
ux
�

D
X

x2X
ux D

X

n2N

�

X

x2X 0
n

ux
�

:

The following special case has many applications.

Theorem 2.4.26. Let umn 2 R for all integers m � 0 and n � 0: Then we have

1
X

mD0

1
X

nD0
umn D

1
X

nD0

1
X

mD0
umn D

1
X

kD0

X

mCnDk
umn D lim

N!1

N
X

mD0

N
X

nD0
umn;

provided any one of the above iterated series converges when umn is replaced by
jumnj:



86 2 Sequences and Series of Real Numbers

Exercise 2.4.27. Show that the unordered series

X

.m;n/2N2

1

.mC n/p

is summable if and only if p > 2: Hint:
Pn

mD1.mC n/�p > n=.2n/p:
Recall that the Cauchy product of the (ordered) series

P1
nD0 an and

P1
nD0 bn is

the series
P1

nD0 cn, where cn D Pn
kD0 akbn�k for all nonnegative integers n: The

following consequence of Theorem 2.4.26 is a special case of Mertens’ Theorem
(Theorem 2.3.43):

Theorem 2.4.28 (Cauchy Product). Suppose that the (ordered) series
P1

nD0 an
and

P1
nD0 bn are absolutely convergent. Then so is their Cauchy product and we

have

1
X

nD0
cn D

� 1
X

nD0
an

�� 1
X

nD0
bn

�

:

Proof. Let umn WD ambn: Then

1
X

mD0

� 1
X

nD0
jumnj

�

D
1
X

mD0

� 1
X

nD0
jamjjbnj

�

D
� 1
X

mD0
jamj

�� 1
X

nD0
jbnj

�

<1

and Theorem 2.4.26 implies

� 1
X

mD0
am

�� 1
X

nD0
bn

�

D
1
X

mD0

1
X

nD0
umn D

1
X

kD0

X

mCnDk
ambn D

1
X

kD0
ck;

completing the proof. ut

2.5 Problems

1. Let s WD Pn
kD1 ak , where ak > �1 for 1 	 k 	 n: Prove the inequality

n
Y

kD1

.1C ak/ 	
�

1C s

n

�n

:

Hint: Use the Arithmetic–Geometric Means Inequality.

2.

(i) Show that, if 0 	 a 	 b 	 c and b > 0, then
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2

r

a

c
	 a

b
C b

c
	 1C a

c
:

(ii) Let m WD minfa1; : : : ; ang and M WD maxfa1; : : : ; ang, where .ak/nkD1 is a finite sequence
of positive numbers. Show that we have

2n

r

m

M
	

n
X

kD1

ak

M
C

n
X

kD1

m

ak
	 n

�

1C m

M

�

:

(iii) With notation as in (ii), prove the inequalities

n2 	
 

n
X

kD1

ak

! 

n
X

kD1

1

ak

!

	 n2
.mCM/2

4mM
:

Hint: Use Cauchy’s inequality, the right inequality in (ii), and the trivial inequality ˛ˇ 	
.˛ C ˇ/2=4:

3. Show that, for all n 2 N, we have the inequalities

n
X

kD1

1

k
� 2n

nC 1
and

n
X

kD1

1

k3
� 4

.nC 1/2
:

Hint:
Pn

kD1 k D n.nC 1/=2 and
Pn

kD1 k
3 D n2.nC 1/2=4: (Why?)

4. Show that for each n 2 N we have
 

n

1

! 

n

2

!

� � �
 

n

n� 1

!

	
�2n � 2

n� 1

�n�1
:

5 (Geometric–Harmonic Means Inequality). Show that for any positive numbers a1; a2; : : : ; an,
we have

n
1
a1

C 1
a2

C � � � C 1
an

	 n
p
a1a2 � � � an:

6. For each of the following sets, find its sup; inf; max, and min, if they exist:

f1=n W n 2 Ng; f1=n W n 2 Ng [ f0g; Œ0;
p
2�\ Q; Œ0;

p
2�\ Qc :

7. Let B � R be a bounded set. Show that, if max.B/ and min.B/ exist, then max.B/ D sup.B/
and min.B/ D inf.B/:

8. For any nonempty bounded subsets A and B of R, define the sets A C B WD fa C b W a 2
A; b 2 Bg; AB WD fab W a 2 A; b 2 Bg, and (if 0 … A) 1=A WD f1=a W a 2 Ag: Prove the
following:

(a) A � B implies inf.B/ 	 inf.A/ 	 sup.A/ 	 sup.B/:
(b) sup.A[ B/ D maxfsup.A/; sup.B/g:
(c) If a 	 b for all a 2 A and b 2 B , then sup.A/ 	 inf.B/:
(d) inf.ACB/ D inf.A/Cinf.B/ and sup.ACB/ D sup.A/Csup.B/: In particular, ifA D fag,

then sup.aC B/ D aC sup.B/ and inf.aC B/ D aC inf.B/, where aC B WD fag C B:

(e) If A; B � Œ0;1/, then sup.AB/ D sup.A/ sup.B/: Furthermore, if inf.A/ > 0, then
sup.1=A/ D 1= inf.A/:
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9.

(i) Let A WD fx C 1=x W x > 0g: Show that sup.A/ D 1 and inf.A/ D 2:

(ii) Let B WD fm=nC 4n=m W m; n 2 Ng: Show that sup.B/ D 1 and inf.B/ D 4: Hint: Usep
ab 	 .aC b/=2:

(iii) Let C WD fm=.m C n/ W m; n 2 Ng: Show that sup.C / D 1 and inf.C / D 0: Hint: Fix
n D 1 (resp., m D 1).

10.

(i) Show that, given any r 2 Q and any " > 0, there is an irrational x 2 Qc such that jx� rj < ":
(ii) (Greatest Integer Function). Show that, given any x 2 R, there is a unique m 2 Z such that

m 	 x < m C 1: This m is denoted by Œx� and the function x 7! Œx� is called the greatest
integer function. Note that x D Œx�C .x� Œx�/, where Œx� 2 Z and x� Œx� 2 Œ0; 1/ are unique.

11 (Dirichlet).

(a) Given any irrational number ˛ 2 RnQ, show that the set S WD fmCn˛ W m; n 2 Zg is dense
in RI i.e., every nonempty open interval contains a point of S: Hint: For each k 2 N[ f0g, let
xk WD k˛� Œk˛� 2 Œ0; 1/, where (as in Problem 10) Œk˛� is the greatest integer 	 k˛. Now for
each nonempty open interval .a; b/, pick N 2 N with b � a > 1=N and note that, among the
N C 1 numbers xk 2 Œ0; 1/ with 0 	 k 	 N , there must be at least two, say xk2 and xk1 , such
that jxk2 �xk1 j < 1=N: Conclude that, for some ` 2 Z, we then have `.xk2 �xk1 / 2 .a; b/\S:

(b) With notation as in part (a), show that, for eachN 2 N, there are integers pN 2 Z and qN 2 N

such that qN ! 1 as N ! 1 and

ˇ

ˇ

ˇ˛ � pN

qN

ˇ

ˇ

ˇ <
1

NqN
	 1

q2N
:

(c) Deduce from part (a) that the set fn˛ � Œn˛� W n 2 Zg is dense in Œ0; 1�: In fact, even fn˛ �
Œn˛� W n 2 Ng is dense in Œ0; 1�, but the proof is harder.

12. Let ˛ > 0 be irrational. Show that for each n 2 Z there is a unique integer kn 2 Z such that
kn˛ 	 n < .kn C 1/˛: Let xn WD n � kn˛: Show that fxn W n 2 Zg is dense in Œ0; ˛�: Taking
˛ D 	 � 3:1415 : : : (which is known to be irrational), it follows that fn� kn	 W n 2 Zg is dense
in Œ0; 	�: Now, we shall see later that the function cos x is continuous, maps Œ0; 	� onto Œ�1; 1�,
and cos.n � kn	/ D ˙ cosn D ˙ cos jnj: In particular, if limj!1.nj � knj 	/ D � 2 Œ0; 	�,
then limj!1 cos.nj � knj 	// D cos � 2 Œ�1; 1�: Therefore, fcosn W n 2 Ng is dense in Œ�1; 1�:
13. Show that, for any n 2 N, either

p
n 2 N or

p
n 2 QcI i.e.,

p
n 2 Q if and only if n is a

perfect square. Hint: Let n D p
k1
1 � � �pkmm be the prime factorization of n: What if at least one of

the ki is odd?

14. For any distinct integers m; n 2 N, show that

p
mC p

n 2 Q ” p
m� p

n 2 Q ” p
m;

p
n 2 Q:

Deduce that
p
nC 1 ˙ p

n 2 Qc for all n 2 N: Note that
p
nC 1 � p

n ! 0 as n ! 1.
(Why?)

15. Using the Nested Intervals Theorem (Theorem 2.1.43), show that I WD Œ0; 1� is uncountable.
Hint: Suppose, to get a contradiction, that I is countable: I D fx1; x2; : : :g: Pick a closed interval
I1 � I such that x1 62 I1 and, then a closed interval I2 � I1 such that x2 62 I2, etc.

16. Show that, for each x 2 R, we have
T

"2RC B".x/ D fxg:
17. Show that, if F � R is a closed, bounded set, then inf.F /; sup.F / 2 F:
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18 (Derived Set). For each nonempty A � R, let A0 denote the set of all limit points of A:
We call A0 the derived set of A: Show that A0 is closed. Show by an example that we may have
.A0/0 ¤ A0: Hint: Construct a set A such that A0 D f1=n W n 2 Ng [ f0g:
19. Determine all the limit points of each set.

.a/

�

1

m
C 1

n
W m; n 2 N

�

I .b/:

�

.�1/n C 1

m
W m; n 2 N

�

I

.c/ f2�m C 3�n W m; n 2 Ng I .d/

�

.�1/nn
nC 1

W n 2 N

�

:

20. Prove the following statements:

.a/ lim.
p
n2 C 1� n/ D 0I .b/ lim.

p
n2 C n� n/ D 1=2I

.c/ lim

�

1C � � � C n

n2

�

D 1

2
I .d/ lim

�

nŠ

nn

�

D 0:

21. Let .xn/ be a sequence of positive numbers. Show that, if lim.xnC1=xn/ D ` < 1, then
lim.xn/ D 0: Deduce that lim.nk=2n/ D 0 for any k 2 N and that, more generally,

lim
n!1

nk

.1C p/n
D 0 .8p > 0/: (�)

Also show that limn!1 nŠ=2n
2 D 0: Can you prove (�) using the binomial formula?

22 (Euler’s Constant). Using the inequalities x=.x C 1/ < log.1C x/ < x, for all x 2 .0; 1/,
show that

1

nC 1
< log.nC 1/� logn <

1

n
: (�)

Deduce that the sequence .xn/, where

xn WD 1C 1

2
C � � � C 1

n
� logn;

is decreasing and xn � 0 for all n 2 N, and hence � WD lim.xn/ exists. The number
� � 0:5772156 : : : is called Euler’s constant. Using the fact that lim.logn/ D 1, conclude
that .

Pn
kD1 1=k/ is divergent.

23. Let yn WD P2n
kD1.�1/k�1=k: Show that lim.yn/ D log 2: Hint: yn D x2n � xn C log 2,

where xn is as in Problem 22.

24.

(i) Show that the following sequence .xn/ is increasing and bounded above and hence convergent:

xn WD 1

nC 1
C 1

nC 2
C � � � C 1

2n
:

(ii) Let 0 < a1 < b1 and define

anC1 D p

anbn; bnC1 D an C bn

2
.8n 2 N/:
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Show that the sequences .an/ and .bn/ are both convergent and have the same limit. Hint:
Show (inductively) that the intervals Œan; bn� are nested.

25. Let x1 D p
2 and xnC1 WD p

2C xn for all n 2 N: Show that lim.xn/ D 2: Hint: First show
that .xn/ is increasing and bounded above.

26. Let .xn/ be a real sequence and � 2 R: Suppose that every subsequence of .xn/ has, in turn,
a subsequence that converges to �: Show that we then have lim.xn/ D �: Hint: Prove this by
contradiction.

27. Using the fact that limn!1.1C 1=n/n D e, find each limit.

.a/ lim
n!1

�

1� 1

n

�n

I .b/ lim
n!1

�

1� 1

n2

�n2

I

.c/ lim
n!1

�

1� 1

n2

�n

I .d/ lim
n!1

�

1� 2

n

�n2

:

Hint: For (c), note that 1� 1=n2 D .1C 1=n/.1� 1=n/: For (d), find limn!1.1� 2=n/n first.

28. Using the Squeeze Theorem, find the following limits:

.a/ lim

 

n
X

kD1

1p
n2 C k

!

I .b/ lim.
n
p
n2 C n/I .c/ lim

�

.nŠ/1=n
2
�

:

29. Use
Pn

kD1 k D n.nC 1/=2 and the Squeeze Theorem to show that

lim
n!1

�

1

n2 C 1
C 2

n2 C 2
C � � � C n

n2 C n

�

D 1

2
:

30. Find the following limit in two different ways: (i) by using the identity
Pn

kD1 k
2 D n.n C

1/.2nC 1/=6 and (ii) by using the Squeeze Theorem

lim
n!1

n
p
12 C 22 C � � � C n2:

31. Given any nonnegative numbers a1; a2; : : : ; ak , find the following limit:

lim
n!1.an1 C an2 C � � � C ank/

1=n:

32. Prove the following statements:

.a/ lim

 

1

n

n
X

kD1

1

k

!

D 0I .b/ lim

 

1

n

n
X

kD1

k
p
k

!

D 1:

33.

(i) Let � WD lim.xn/ > 0, where xn > 0 for all n 2 N, and consider the sequence .yn/ WD
. n
p
x1 � � � xn/ of geometric means. Show that lim.yn/ D �: Hint: Look at logyn and use

Corollary 2.2.33 and the fact (to be proved later) that lim.log xn/ D log � if and only if
lim.xn/ D �:

(ii) Show that lim. n
p
n/ D 1: Hint: n D 1 � .2=1/ � � � Œn=.n� 1/�:
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(iii) Using lim..1C 1=n/n/ D e and
Qn
kD1Œ.k C 1/=k�k D .nC 1/n=nŠ, show that

lim
n!1

nC 1
n
p
nŠ

D lim
n!1

n
n
p
nŠ

D e:

34. Show that, if a sequence .xn/ satisfies jxnC1 � xnj < 1=2n for all n 2 N, then it is a Cauchy
sequence and hence convergent. Does the same hold if we only insist on the weaker inequalities
jxnC1 � xnj < 1=n?

35. Let x1 ¤ x2 be real numbers and let c 2 .0; 1/: For each n � 3, define xn WD cxn�1 C .1�
c/xn�2: Show that .xn/ is contractive (cf. Exercise 2.2.48) and find its limit.

36. It is known that x3 � 4x C 1 D 0 has a (unique) zero, say �, in .0; 1/: Let x1 2 .0; 1/

be arbitrary and define xnC1 WD .x3n C 1/=4, for all n 2 N: Show that .xn/ is contractive and
lim.xn/ D �:

37.

(i) Let a1 D 4 and anC1 D 3� 2=an, for all n 2 N: Show that lim.an/ D 2:

(ii) Let b1 D 1 and bn D bn�1 C 1=bn�1; 8n 2 N: Show that .bn/ is divergent.

38. Show that limn!1.nŠ/1=n D 1:

39. Show that .sinn/ is divergent and so is .sin
p
n/: Hint: For each k 2 N consider the intervals

In (resp., Jn) defined by Ik WD .	=6 C 2.k � 1/	; 5	=6 C 2.k � 1/	/ (resp., Jk WD .7	=6 C
2.k � 1/	; 11	=6C 2.k � 1/	/). Note that each Ik (resp., Jk) has length > 2: Let mk (resp., nk)
be the smallest integer in Ik (resp., Jk), and look at the subsequence .sinmk/ (resp., .sinnk/).

40. Find lim.cosn/ and lim.cosn/: Hint: Use Problem 12.

41. Find lim and lim of each sequence .xn/:

.a/ xn WD .�1/n
�

1C 1

n

�

I .b/ xn WD
�

.�1/n C 1

n

�

I

.c/ xn WD sin
�n	

2

�

C cos
�n	

2

�

I .d/ xn WD
�

2C .�1/n
n

�

:

42. Show that, if lim.xn/ D � exists, then for any sequence .yn/,

lim.xn C yn/ D � C lim.yn/ and lim.xn C yn/ D � C lim.yn/:

Assuming that lim.xn/ D � > 0, show that we also have

lim.xnyn/ D � lim.yn/ and lim.xnyn/ D � lim.yn/:

43. Find the sum of each series, where k 2 N and
P WD P1

nD1 :

.a/
X 2nC 1

n2.nC 1/2
I .b/

X

.�1/n 2nC 1

n.nC 1/
I .c/

X 1

4n2 � 1
I

.d/
X n� p

n2 � 1p
n.nC 1/

I .e/
X 1

n.nC k/
I .f/

X 1

n.nC 1/.nC 2/
:

Hint: Note that
2nC 1

n2.nC 1/2
D 1

n2
� 1

.nC 1/2
, etc.
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44. Show that the following series diverge. Here, p > 0 is arbitrary.

.a/
X 1

n n
p
n

I .b/
X

sinnI .c/
X 1p

n.logn/p
I

.d/
X n

n
p
nŠ

I .e/
X

n
p
1C � � � C nI .f/

X

p
nC 1� p

np
n

:

45 (Abel). Show that, if .xn/ is a decreasing sequence of positive numbers such that
P1

nD1 xn is
convergent, then lim.nxn/ D 0: Hint: Note that nx2n 	 Pn

kD1 xnCk ! 0, as n ! 1: Similarly,
lim.nx2nC1/ D 0:

46.

(a) Show by a counterexample that in the previous problem we cannot remove the condition that
.xn/ be decreasing.

(b) Show, however, that for any convergent series
P

n xn of positive numbers, we have

lim
n!1n.x1x2 � � � xn/1=n D 0:

47. Let
P

xn be a convergent series of positive terms.

(i) Show that the series
Pp

xnxnC1 is convergent.
(ii) Show that the series

Pp
xn=n is convergent.

48. Let .xn/ be a sequence of positive numbers with
P

xn D 1: Prove the following
statements:

(a) The series
P

xn=.1C xn/ is divergent.
(b) The series

P

xn=.1C nxn/ may be convergent or divergent.
(c) The series

P

xn=.1C n2xn/ is convergent.
(d) The series

P

xn=.1 C x2n/ may be convergent or divergent. Hint: For (b), use the sequence
xn D 1 if n D m2, for some m 2 N, and xn D 1=n2 otherwise.

49. Using the First Comparison Test, show that each series converges.

.a/
X

p
nC 1� p

n

n
I .b/

X 1

n2 � logn
I

.c/
X 1

n
log

�

1C 1

n

�

I .d/
X

�

1� cos
1

n

�

:

Hint: Use the inequalities log.1 C x/ < x for all x > �1; log x < x for all x > 0, and
1� cos 2� D 2 sin2 � 	 2�2 for all � � 0:

50. Test each series for convergence. In (a), k 2 N is arbitrary.

.a/
X nk

2n
I .b/

X

. n
p
n� 1/nI

.c/
X

�

n

nC 1

�n.nC1/

I .d/
X

3n
�

n

nC 1

�n2

:
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51. Test each series for convergence.

.a/
X .nŠ/2

.2n/Š
I .b/

X 2nnŠ

nn
I

.c/
X 3nnŠ

nn
I .d/

X 2n
2

nŠ
:

52. Show that the following series are divergent:

.a/
X

. n
p
n� 1/I .b/

1
X

nD2

1

.logn/log.logn/
:

Hint: For (a), let xn D n
p
n� 1 so that n D .1C xn/

n and hence logn D n log.1C xn/: Deduce
that lim.nxn/ D 1: For (b), use Œlog.logn/�2 	 logn for all large n, which follows from the fact
(to be proved later) that limx!1 log x=x˛ D 0 for any ˛ > 0 (cf. (�) before Gauss’s Test).

53. Show that Raabe’s Test (Corollary 2.3.31) implies the following one (which is due to
Schlömilch):
Let xn > 08n 2 N: Then

P

xn converges if n log.xn=xnC1/ � r is ultimately true for some r > 1
(equivalently, if lim.n log.xn=xnC1// > 1) and diverges if n log.xn=xnC1/ 	 1 is ultimately true
(which is the case if, e.g., lim.n log.xn=xnC1// < 1). Hint: Use the inequalities x=.x C 1/ 	
log.1C x/ 	 x for all x > �1:
54. Test the following series for convergence:

.a/
X 1

2log n
I .b/

X 1

3log n
:

55. Determine the values of a for which the series

1
X

nD1

nŠ

.aC 1/.aC 2/ � � � .aC n/

converges. Hint: Use Raabe’s Test.

56. For which values of p does the series

1
X

nD1

�

1 � 3 � 5 � � � .2n� 1/

2 � 4 � 6 � � � .2n/
�p

converge? Hint: Assume p 2 N0 WD N[ f0g (although this is not necessary) and use Gauss’s Test
(Corollary 2.3.32).

57. Show that the Cauchy product of
P

.�1/n�1=n with itself is the series

1
X

nD1

.�1/n�1 1

nC 1

�

1C 1

2
C � � � C 1

n

�

(�)

and that this series converges to .log 2/2: Hint: Use Problem 23.

58. Let an D bn WD .�1/n=.nC1/p , where p 2 Œ0; 1=2�: Show that the Cauchy product of
P

an
and

P

bn is divergent.
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59. Show that the Cauchy product of the following divergent series is convergent:

1�
1
X

nD1

�3

2

�n

and 1C
1
X

nD1

�3

2

�n�1�
2n C 1

2nC1

�

:

60. Test the following series for conditional and absolute convergence:

.a/
X .�1/np

n
I .b/

1
X

nD2

.�1/n
logn

I .c/
X .�1/n logn

n
I

.d/
X

.�1/n nC 1

2nC 1
I .e/

X

� �n
nC 1

�nI .f/
X

.�1/n. npn� 1/n:

61. Show that, if
P

xn is absolutely convergent, then
P

x2n < 1: Give an example of a
conditionally convergent series

P

xn such that
P

x2n D 1:

62. Show that the series
P1

nD1.�1/n�1.2nC 1/=Œn.nC 1/� is convergent and find its sum.

63. For any � ¤ 2k	; k 2 Z, prove the identities:

sin � C sin 2� C � � � C sinn� D sin.n�=2/ sin.nC 1/�=2

sin.�=2/
:

cos � C cos 2� C � � � C cosn� D sin.n�=2/ cos.nC 1/�=2

sin.�=2/
:

Hint: Recall that 2 sin˛ sinˇ D cos.ˇ � ˛/ � cos.ˇ C ˛/ and 2 sin˛ cosˇ D sin.ˇ C ˛/ �
sin.ˇ � ˛/:

64. Let .bn/ be a decreasing sequence of positive numbers with lim.bn/ D 0: Show that the series

X

bn cosn�;
X

bn sinn� .8� ¤ 2k	; k 2 Z/

are convergent. In particular, the series
P

.cosn�/=np and
P

.sinn�/=np are convergent for all
p > 0: Hint: Use Dirichlet’s Test and Problem 63.

65. Show that the series
P j sinnj=n and

P j cosnj=n are both divergent. Hint: For any three
consecutive integers, at least one satisfies j sinnj � 1=2 and similarly for cosn:

66.

(a) Show that the series
P

sink n=n and
P

cosk n=n are divergent if the (integer) exponent k � 0

is even and convergent if k is odd.
(b) Show, however, that the series

P

.�1/n sink n=n and
P

.�1/n cosk n=n are convergent for all
(integer) exponents k � 0.

(c) Extending the Problem 65, deduce from (a) and (b) that
P j sink nj=n and

P j cosk nj=n are
divergent for all k 2 N0:

Hint: Use the trigonometric identities in Theorem 8.5.17 and Problems 64 and 65.

67. Test the following series for convergence:

.a/
1
X

nD2

sinn

logn
I .b/

X sin.logn/

n
:

Hint: For (b), look at blocks of consecutive n’s for which sinn � 1=2:
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68. Rearrange the series
P

.�1/n�1=n to obtain the series

1� 1

2
� 1

4
C 1

3
� 1

6
� 1

8
C 1

5
� � � � ;

where each positive term is followed by two negative ones. Find the sum of this series. Hint:
Let Sn denote the nth partial sum of the series. Show that S3n D .

P2n
kD1.�1/k�1=k/=2 so that

lim.S3n/ D .log 2/=2:

69. Show that the following rearrangement of
P

.�1/n=n is divergent:

1

2
C 1

4
C 1

6
C � � � C 1

28
� 1C 1

28 C 2
C � � � C 1

216
� 1

3
C � � � :

Hint: Recall (as in Proposition 2.3.12) that
P2n�1

kD1 1=.2k/ > n=4:

70. Which of the following sequences are in `2.N/‹

.a/
� 1

n logn

�

I .b/
� 1p

n logn

�

I

.c/
� lognp

n

�

I .d/
� sinn

n

�

:

71. Show that if .ak�1/1kD1 2 `2.N/, then
P1

nD0 anx
n is (absolutely) convergent for every x 2

.�1; 1/: Here we set x0 WD 1 (even for x D 0).

72. Let a; b 2 .0; 1/: Show that the unordered series

X

.m;n/2N�N

ambn

is summable and find its sum.

73. Show that the double series

X

m; n2N

1

mpnq

is convergent if and only if p > 1 and q > 1:

74. Show that the double series

X

m; n2N

1

.m2 C n2/p

is convergent if and only if p > 1: Deduce that

X

.m;n/2Z�Z

1

m2 C n2 C 1

is divergent.
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75. Show that, with m; n 2 N0 WD N [ f0g, we have

X

.m;n/¤.0;0/

1

.mC n/p
D

1
X

kD1

k C 1

kp
:

Hint: Look at the terms with mC n D k:

76. Show that the following sum converges if and only if p > k:

X

.n1;:::;nk /2Nk

1

.n1 C � � � C nk/p
:

Hint: First show that .n1 C � � � C nk/
k � n1 � � �nk and

X

1�n2;:::;nk�n1

1

.n1 C � � � C nk/p
� nk�1

1

.kn1/p
:



Chapter 3
Limits of Functions

As was pointed out in Chap. 2, the central idea in analysis is that of limit, which was
introduced and studied for sequences of real numbers, i.e., for functions x W N! R:

In particular, the behavior of the term xn WD x.n/ was studied under the assumption
that the element n in the domain of our sequence was approaching infinity.

Our goal in this chapter will be to define limits of functions whose domains are
more general subsets of R:We shall see that the study of this extended limit concept
can, if one wishes, be reduced to the study of suitable sequences. The important and
related concept of continuity of real-valued functions of a real variable and the more
refined concept of uniform continuity will be introduced and studied in Chap. 4.
Further topics on limits will appear in Chap. 8.

What we needed for the definition of limit was the distance (or metric) in the
set R: It is therefore tempting to study limits of functions whose domains and ranges
are subsets of more general metric spaces. This will be done in Chap. 5, which can
be skipped, without loss of continuity, by those who wish to study the subject later.

To avoid unnecessary repetitions the following should be pointed out: Through-
out this chapter, X,Y, Z, etc. will denote subsets of R: Also, I and J (possibly with
subscript) will always denote intervals that may be open or closed, bounded or
unbounded. Finally, all functions are from subsets of R to R:

3.1 Bounded and Monotone Functions

Recall that in Chap. 2 we defined the concepts of bounded, increasing, and
decreasing real sequences. In this introductory section we want to define the same
concepts for real-valued functions defined on arbitrary subsets of R:

Definition 3.1.1 (Bounded (Above, Below), Unbounded). A function f W X ! R

is called bounded above (resp., below) if there exists B 2 R (resp., A 2 R) such
that, 8x 2 X; we have f .x/ � B (resp., f .x/ � A). The function f is called
bounded if it is bounded above and below, equivalently (why?), if there exists

© Springer Science+Business Media New York 2014
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98 3 Limits of Functions

B > 0 such that jf .x/j � B 8x 2 X: Finally, f is called unbounded if it is not
bounded. Given any subset S � X; we say that f is bounded above (resp., bounded
below, bounded, unbounded) on S if the restriction f jS is bounded above (resp.,
bounded below, bounded, unbounded).

Remark 3.1.2.

(a) The above definition may be restated as follows: a function f W X ! R is
bounded above (resp., bounded below, bounded) if and only if its range, f .X/;
is bounded above (resp., bounded below, bounded).

(b) It is obvious that a function f W X ! R is bounded above (resp., below) if and
only if the function �f defined by .�f /.x/ D �f .x/ 8x 2 X is bounded
below (resp., above). Also, f is bounded if and only if �f is.

(c) Note that the above definition makes sense even if the domain X of the function
f is an arbitrary set.

In view of the above remarks, it is natural to introduce the concepts of supremum,
infimum, maximum, and minimum for real-valued functions.

Definition 3.1.3 (Supremum, Infimum, Maximum, Minimum). Let f W X ! R:

The supremum (resp., infimum) of f is defined to be the extended real number
sup.f / WD supf .X/ D supff .x/ W x 2 Xg (resp., inf.f / WD inff .X/ D
infff .x/ W x 2 Xg). It is obvious that f is bounded above (resp., bounded below) if
and only if sup.f / <1 (resp., inf.f / > �1). We say that f attains its maximum
(resp., minimum) if and only if , for some x0 2 X; we have f .x0/ D sup.f / (resp.,
f .x0/ D inf.f /); we then write f .x0/ D max.f / (resp., f .x0/ D min.f /).

Example 3.1.4.

(a) The functions x 7! sin xI x 7! cos xI and x 7! e�x2 are bounded (on R).
(b) The functions x 7! jxj; x 7! ex I and x 7! x2 � 1 are bounded below but not

above.
(c) The functions x 7! 1� jxjI x 7! 4� x2; and x 7! �1= sin x .0 < x < 	/ are

bounded above but not below.
(d) Finally, the functions x 7! 1=x; x 7! log x .0 < x < 1/; and x 7! x3 are

neither bounded above nor bounded below.

The following definition is an extension of the corresponding one we gave for
real sequences in Chap. 2.

Definition 3.1.5 (Increasing, Decreasing, Monotone, Constant). A function f W
X ! R is called increasing (resp., strictly increasing) if x1; x2 2 X and x1 < x2
imply f .x1/ � f .x2/ (resp., f .x1/ < f .x2//: Similarly, f is called decreasing
(resp., strictly decreasing) if x1; x2 2 X and x1 < x2 imply f .x1/ � f .x2/ (resp.,
f .x1/ > f .x2//: The function f is called monotone (resp., strictly monotone) if it
is increasing or decreasing (resp., either strictly increasing or strictly decreasing).
Finally, f is called constant if f .x1/ D f .x2/ 8x1; x2 2 X: Given any subset
S � X; we say that f is increasing (resp., strictly increasing, decreasing, strictly
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decreasing, monotone, strictly monotone, constant) on S if the restriction f jS is
increasing (resp., strictly increasing, decreasing, etc).

Example 3.1.6. The functions x 7! ex and x 7! log x are both strictly increasing
(on their domains). Also, x 7! 1=x and x 7! e�x are both strictly decreasing, the
former on .�1; 0/ and .0;1/ and the latter on R:

Remark 3.1.7.

(a) f W X ! R is increasing (resp., strictly increasing, decreasing, strictly decreas-
ing) if and only if �f is decreasing (resp., strictly decreasing, increasing,
strictly increasing).

(b) f W X ! R is simultaneously increasing and decreasing if and only if it is
constant. (Why?)

(c) Monotone functions send “in-between points” to “in-between points.” In other
words, if f W X ! R is monotone and if x1; x2; x3 2 X satisfy x1 < x2 < x3;
then f .x1/ � f .x2/ � f .x3/ in the increasing case and f .x1/ � f .x2/ �
f .x3/ in the decreasing case. Thus, if f is not monotone, then there must exist
x1; x2; x3 2 X satisfying x1 < x2 < x3 and f .x2/ is not between f .x1/ and
f .x3/ —i.e., if we have, e.g., f .x1/ � f .x3/; then either f .x2/ < f .x1/ or
f .x2/ > f .x3/:

The following exercise, which is intuitively obvious and contains most of the
concepts introduced above, will be useful later. Recall that, if S is a subset of the
domain of a function f; then f jS denotes the restriction of f to S .

Exercise 3.1.8. Let a; b 2 R; a < b; and let f W .a; b/ ! R be increasing
(resp., decreasing) and bounded. Show that, for any c 2 .a; b/; we have sup.f / D
sup.f j.c; b// and inf.f / D inf.f j.a; c// [resp., sup.f / D sup.f j.a; c// and
inf.f / D inf.f j.c; b//].

We end the section with another intuitively obvious fact, namely that a strictly
increasing (resp., decreasing) function is necessarily one-to-one and that its inverse
function has the same property.

Proposition 3.1.9. Let X � R; and let f W X ! R be a strictly increasing (resp.,
strictly decreasing) function. Then f is invertible and its inverse f �1 W f .X/! X

is also strictly increasing (resp., strictly decreasing).

Proof. Suppose f is strictly increasing; the decreasing case is obtained by changing
f to�f: That f is injective is obvious. Indeed, if x1 ¤ x2; then we have either x1 <
x2 or x2 < x1: In the first case f .x1/ < f .x2/ and, in the second, f .x2/ < f .x1/:

Next, for any y1; y2 2 f .X/ satisfying y1 < y2; there are unique x1; x2 2 X
with f .x1/ D y1 and f .x2/ D y2: If x1 � x2—i.e., if f �1.y1/ � f �1.y2/—then
y1 D f .x1/ � f .x2/ D y2; contradicting the assumption y1 < y2: ut
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3.2 Limits of Functions

Our goal in this section is to define the limits of real-valued functions whose
domains are intervals or unions of intervals of real numbers. The properties of such
limits will be deduced, in the next section, from similar properties already proved
for real sequences in Chap. 2. Before defining limits, let us define for subsets of R
the notions of interior point, interior, cluster point, and closure. These concepts will
be introduced for subsets of metric spaces in Chap. 5.

Definition 3.2.1 (Interior Point, Interior, Cluster Point, Closure). Let X � R:

We say that a point x 2 X is an interior point of X if, for some " > 0; we have
B".x/ WD .x � "; x C "/ � X: The set of all interior points of X is denoted by Xı
and is called the interior of X: A point x 2 R is called a cluster point of X if x 2 X
or x is a limit point of X (cf. Definition 2.2.11). The set of all cluster points of X is
denoted by X� and is called the closure of X:

Remark 3.2.2.

1. For each X � R; Xı is open and X� is closed. (Why?) The interior I ı
of an interval I is obviously the open interval obtained by removing the
endpoint(s) it contains, and its closure I� is the closed interval obtained by
adjoining the endpoint(s) not in it. Here by endpoint we obviously mean finite
endpoints and not ˙1: Thus, if a < b; then all bounded intervals .a; b/; .a; b�;
Œa; b/; and Œa; b� have interior .a; b/ and closure Œa; b�I the unbounded intervals
.a;1/; Œa;1/ have interior .a;1/ and closure Œa;1/I the unbounded intervals
.�1; b/; .�1; b� have interior .�1; b/ and closure .�1; b�I and, finally, the
interior and closure of the unbounded interval R D .�1;1/ are both the set R
itself.

2. The extended real line Œ�1;1�; introduced in Chap. 2, was denoted by R:

This should not be confused with the closure of R; which we denote by
R� D R D Rı.

3. If a � b; then .a; b/ D ; and Œa; b� D fag: We have ;ı D ;� D ;; fagı D ;;
and fag� D fag; as follows easily from the definition.

Definition 3.2.3 (Limit of a Function). Let I be an interval and let x0 2 I�: Let
f be a function defined on I (except possibly at x0). We say that y0 2 R is the
limit of f .x/ at x0 (or that f .x/ converges to y0 as x approaches x0) and write
limx!x0 f .x/ D y0; if the following is satisfied:

.8" > 0/.9ı D ı."/ > 0/.8x 2 I /.0 < jx � x0j < ı) jf .x/� y0j < "/: ()

Remark 3.2.4.

1. We shall see below that the limit y0 is unique when it exists.
2. The point x0 need not be in I (e.g., it may be an endpoint not in I ) and, even

if x0 2 I; f .x0/ may be undefined. This is the reason for the strict inequality
0 < jx � x0j in ./: Note also that, even if f .x0/ is defined, we may have
y0 ¤ f .x0/.
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3. If x0 D b is the right endpoint of I; then 0 < jx � x0j < ı must be replaced by
�ı < x � b < 0; and if x0 D a is the left endpoint of I; then 0 < jx � x0j < ı

must be replaced by 0 < x � a < ı:
4. If the restriction 0 < jx � x0j is dropped (i.e., if we allow x D x0 when x0 2 I ),

then the new definition will be quite different. For example, if one adopts it and if
x0 2 I; then limx!x0 f .x/ does not exist when the point .x0; f .x0// is removed
from the graph of f and is replaced by .x0; y0/ for any y0 ¤ f .x0/: In other
words, with this new definition, if x0 2 I and if limx!x0 f .x/ exists, then we
must have limx!x0 f .x/ D f .x0/: (Why?)

Proposition 3.2.5 (Limits Are Unique). Let x0 2 I�; and let f be a function
defined on I (except possibly at x0). If limx!x0 f .x/ exists, then it is unique.

Proof. Suppose we have two limits, y0 and z0: Then, for any " > 0; it follows from
limx!x0 f .x/ D y0 that there is a ı1 > 0 such that x 2 I and 0 < jx � x0j < ı1
imply jf .x/ � y0j < "=2: Similarly, limx!x0 f .x/ D z0 implies that, for some
ı2 > 0; we have jf .x/� z0j < "=2 whenever x 2 I and 0 < jx � x0j < ı2 . If now
we set ı WD min.ı1; ı2/; then x 2 I and 0 < jx � x0j < ı imply

jy0 � z0j � jf .x/ � y0j C jf .x/ � z0j < "=2C "=2 D ": ()

Since ./ is true for every " > 0; we get y0 D z0: ut
Definition 3.2.6 (True Near, Sufficiently Close). Let x0 2 I�; and let f; g; : : : be
functions defined on I (except possibly at x0). We say that a property P.f; g; : : :/
involving the functions f; g; : : : is true near x0 (or for all x ¤ x0 sufficiently close
to x0), and we write

P.f .x/; g.x/; : : :/ .x 	 x0/;

if there exists a ı > 0 such that the given property is true for all x 2 I satisfying
0 < jx � x0j < ı, i.e., for all x 2 PBı.x0/:

In terms of this definition, limx!x0 f .x/ D y0 if, given any " > 0; the inequality
jf .x/ � y0j < " is satisfied near x0 (or satisfied for all x ¤ x0 sufficiently close
to x0).

Exercise 3.2.7.

(a) Let x0 2 I�; and let f be a function defined on I (except possibly at x0), and
assume that f is constant near x0; i.e., suppose that for some constants ı > 0

and c 2 R; we have f .x/ D c for all x 2 I satisfying 0 < jx � x0j < ı: Show
that limx!x0 f .x/ D c:

(b) Let f .x/ D x=jxj; for all x ¤ 0: Using the definition, show that limx!0 f .x/

does not exist.
(c) Let f .x/ D 1 � jxj if x ¤ 0 and let f .0/ D 0: Find y0 D limx!0 f .x/ and

observe that y0 ¤ 0 D f .0/:
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(d) Using the definition, show that, if x0 2 I� and f is a function defined on I
(except possibly at x0), then we have

lim
x!x0

f .x/ D 0” lim
x!x0

jf .x/j D 0:

Example 3.2.8. Throughout, let x0 2 R be arbitrary.

1. Let f .x/ D 2x C 3: To show the intuitively obvious fact that limx!x0 f .x/ D
2x0 C 3; we must prove that

.8" > 0/.9ı > 0/.0 < jx � x0j < ı) j.2x C 3/ � .2x0 C 3/j < "/:

We note, however, that j.2x C 3/ � .2x0 C 3/j D 2jx � x0j < " follows (from
jx � x0j < ı) for any ı satisfying 0 < ı � "=2:

2. Let f .x/ D x2�x20
x�x0 ; x ¤ x0: Then x0 is a limit point of the domain X D

.�1; x0/ [ .x0;1/; and x0 62 X: Let us show that limx!x0 f .x/ D 2x0: We
must prove that

.8" > 0/.9ı > 0/
�

0 < jx � x0j < ı)
ˇ

ˇ

ˇ

ˇ

x2 � x20
x � x0 � 2x0

ˇ

ˇ

ˇ

ˇ

< "

�

:

Now
ˇ

ˇ

ˇ

x2�x20
x�x0 � 2x0

ˇ

ˇ

ˇ

D j.x C x0/ � 2x0j D jx � x0j < " follows from 0 <

jx � x0j < ı if ı satisfies 0 < ı � ":
3. Let f .x/ D x2:We want to show that limx!x0 f .x/ D x20 I i.e., we want to prove

that

.8" > 0/.9ı > 0/ �0 < jx � x0j < ı) jx2 � x20 j < "
�

:

Since we want x to approach x0; we may restrict x to be within one unit of x0I
i.e., we may require that jx � x0j � 1: This implies that jx C x0j � 2jx0j C 1
and hence that jx2 � x20 j D jx C x0jjx � x0j � .2jx0j C 1/jx � x0j: It is now
clear that jx2 � x20 j < " follows (from jx � x0j < ı) for any ı satisfying 0 < ı �
min.1; "=.2jx0j C 1//:

Remark 3.2.9. The reader may have observed that, in Example 3.2.8(1) and (2), the
number ı depended only on " and not on x0: On the other hand, Example 3.2.8(3)
shows that ı may, in general, depend on both " and x0:

3.3 Properties of Limits

As we pointed out in the introduction, the study of limits of functions may be
reduced to that of sequential limits. To achieve this reduction we shall need the
following.
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Theorem 3.3.1 (Sequential Definition of Limit). Let x0 2 I�; and let f be a
function defined on I (except possibly at x0). Then limx!x0 f .x/ D y0 if and only
if limn!1 f .xn/ D y0 for all sequences .xn/ 2 IN such that xn ¤ x0 8n 2 N and
lim.xn/ D x0:
Proof. Suppose that limx!x0 f .x/ D y0; and pick a sequence .xn/ 2 IN satisfying
lim.xn/ D x0; and xn ¤ x0 8n 2 N: Then we have

.8" > 0/.9ı > 0/.8x 2 I /.0 < jx � x0j < ı) jf .x/ � y0j < "/: ()

Since lim.xn/ D x0 and xn ¤ x0 for all n, we also have

.9N 2 N/.n � N ) 0 < jxn � x0j < ı/: ()

It now follows from ./ and ./ that, for n � N; jf .xn/ � y0j < " and hence
limn!1 f .xn/ D y0: Conversely, suppose that limn!1 f .xn/ D y0; for all
sequences .xn/ satisfying the conditions of the theorem. If limx!x0 f .x/ ¤ y0;

then we have

.9"0 > 0/.8ı > 0/.9xı 2 I /.0 < jxı � x0j < ı and jf .xı/ � y0j � "0/:

Choosing ı D 1=n; n 2 N; we can then find xn 2 I nfx0g with jxn�x0j < 1=n and
jf .xn/ � y0j � "0: We have thus constructed a sequence .xn/ with xn 2 I n fx0g
8n 2 N; lim.xn/ D x0; and yet lim.f .xn// ¤ y0: This contradiction completes the
proof. ut
Exercise 3.3.2. Using Theorem 3.3.1, show that limx!0 sin.1=x/ does not exist.
Hint: You may use the sequences .xn/ and .x0

n/; where xn WD 1=.n	/ and x0
n WD

1=.2n	 C 	=2/ 8n 2 N:

We can now use Theorem 3.3.1 to prove the properties of limits of functions by
reducing them to the corresponding properties for sequential limits, already proved
in Chap. 2.

Theorem 3.3.3 (Limit Properties). Let x0 2 I� and let f and g be functions
defined on I (except possibly at x0). Suppose that limx!x0 f .x/ D y0 and
limx!x0 g.x/ D z0: Then, for any constant c 2 R; we have

1. limx!x0.f ˙ g/.x/ D y0 ˙ z0I
2. limx!x0.fg/.x/ D y0z0I
3. limx!x0.cf /.x/ D cy0I
4. limx!x0.f =g/.x/ D y0=z0 if z0 ¤ 0I
5. If .9ı > 0/.8x 2 I /.0 < jx � x0j < ı) f .x/ � 0/, then y0 � 0I and
6. If .9ı > 0/.8x 2 I /.0 < jx � x0j < ı) f .x/ � g.x//, then y0 � z0:

Proof. This is an immediate consequence of Theorem 3.3.1, above, and
Theorem 2.2.26 (Limit Theorems). ut
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Remark 3.3.4. Regarding the properties (5) and (6) in Theorem 3.3.3, it should be
pointed out that strict inequalities need not be preserved when we pass to the limits.
For example, we obviously have x2 < jxj if 0 < jxj < 1; but limx!0 x

2 D 0 D
limx!0 jxj:
Exercise 3.3.5.

(a) Show that limx!2.x
2 � 4/=.5x � 10/ D 4=5:

(b) Let f D p=q; where p and q are polynomial functions of degrees n and m;
respectively, i.e., p.x/ D a0Ca1xCa2x2C� � �Canxn and q.x/ D b0Cb1xC
b2x

2C � � � C bmxm; where the coefficients a0; a1; : : : ; an and b0; b1; : : : ; bm
are real numbers, an ¤ 0 ¤ bm: Show that, if q.x0/ ¤ 0; then limx!x0 f .x/ D
p.x0/=q.x0/:

Next we show that the Squeeze Theorem, which was proved for sequences, is also
true for limits of functions:

Theorem 3.3.6 (Squeeze Theorem). Let x0 2 I�; and let f and g be functions
defined on I (except possibly at x0). Suppose that limx!x0 f .x/ D y0 D
limx!x0 g.x/: If h is a function defined on I (except possibly at x0) such that

.9ı > 0/.8x 2 I /.0 < jx � x0j < ı) f .x/ � h.x/ � g.x//;

then limx!x0 h.x/ D y0:
Exercise 3.3.7. Prove Theorem 3.3.6, using the definition of limit and an argument
similar to the one used in Theorem 2.2.26 for sequences.

Example 3.3.8.

1. We have limx!0 x sin.1=x/ D 0: Indeed, if we define h.x/ WD x sin.1=x/ for
x ¤ 0; then we have the inequalities

�jxj � h.x/ � jxj 8x ¤ 0;

which follow from the well-known inequality j sin.�/j � 1 8� 2 R: It is also
obvious (why?) that limx!0.�jxj/ D 0 D limx!0 jxj and hence the Squeeze
Theorem may be used.

2. We have limx!0 log.1Cx/=x D 1;where log denotes the natural logarithm also
sometimes written ln.

To see this, note first that for any x 2 .�1; 1/ we have

x

1C x � log.1C x/ � x: ()

The second inequality, log.1 C x/ � x; is in fact true for all x > �1 (simply
look at the graphs of y D log.1C x/ and y D x) and will be proved rigorously
later. The first inequality in ./ follows from the second: Indeed, replacing x by
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�x; we first get log.1 � x/ � �x for all x < 1: In this inequality we replace x
by x=.1C x/; noting that x=.1C x/ < 1 for x > �1: It follows that

� log.1C x/ D log
� 1

1C x
�

D log
�

1 � x

1C x
�

� � x

1C x ;

from which x=.1C x/ � log.1C x/ follows. Now ./ implies that

1

1C x �
log.1C x/

x
� 1 8x 2 .0; 1/ ()

and

1 � log.1C x/
x

� 1

1C x 8x 2 .�1; 0/: (  )

If we let f .x/ WD 1=.1 C x/ for x 2 .0; 1/ and f .x/ WD 1 for x 2 .�1; 0/ and
let g.x/ WD 1 for x 2 .0; 1/ and g.x/ WD 1=.1 C x/ for x 2 .�1; 0/; it is then
obvious that limx!0 f .x/ D 1 D limx!0 g.x/ and [by () and (  )] that

f .x/ � log.1C x/=x � g.x/ 8x 2 .�1; 1/ n f0g:

Thus, once again, the Squeeze Theorem may be applied.

In Example 3.3.8(1) we deduced limx!0 x sin.1=x/ D 0 from the Squeeze
Theorem. Now x sin.1=x/ D f .x/g.x/; where f .x/ WD x and g.x/ WD sin.1=x/
satisfy limx!0 f .x/ D 0 and jg.x/j � 1 8x ¤ 0: In other words, as x ! 0; f .x/

converges to zero while g.x/ is bounded. The following theorem, which is also an
immediate consequence of the Squeeze Theorem (cf. Exercise 3.3.10 below), shows
that this example is a special case of a general result.

Theorem 3.3.9. Let x0 2 I�; and let f and g be functions defined on I (except
possibly at x0). Suppose that g is bounded near x0, and that limx!x0 f .x/ D 0:

Then we have

lim
x!x0

f .x/g.x/ D 0:

Proof. Since g is bounded near x0; there exist constants ı1 > 0 andB > 0 such that
jg.x/j � B whenever x 2 I and 0 < jx�x0j < ı1:Now limx!x0 f .x/ D 0 implies
that, for any " > 0; we can find a ı2 > 0 such that x 2 I and 0 < jx � x0j < ı2
imply jf .x/j < "=B: Therefore, with ı WD min.ı1; ı2/; we have

.x 2 I and 0 < jx � x0j < ı/) jf .x/g.x/j � Bjf .x/j < B."=B/ D ":

Since " > 0 was arbitrary, the theorem follows. ut
Exercise 3.3.10. Show that Theorem 3.3.9 also follows from the Squeeze Theorem.
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Exercise 3.3.11. Let x0 2 I�; and let f be a function defined on I (except possibly
at x0). Assume that limx!x0 f .x/ D y0 2 R:

(a) Show that f is bounded near x0, i.e., that we can find constants ı > 0 and
B > 0 such that x 2 I and 0 < jx � x0j < ı imply jf .x/j � B:
Hint: Take " D 1 in the definition of limx!x0 f .x/ D y0; and observe that one
may set B WD jy0j C 1 if x0 62 I and B WD max.jf .x0/j; jy0j C 1/ if x0 2 I:

(b) Let jf j be the function defined by jf j.x/ WD jf .x/j 8x 2 dom.f /: Show
that limx!x0 jf j.x/ D jy0j: Give an example where limx!x0 jf j.x/ exists but
limx!x0 f .x/ does not exist.

(c) Assume that f is nonnegative near x0, i.e., 9 ı > 0 such that x 2 I and
0 < jx � x0j < ı imply f .x/ � 0: Show that limx!x0

p

f .x/ D py0:
Exercise 3.3.12. Let x0 2 I�; and let g be a function defined on I (except possibly
at x0). Suppose that limx!x0 g.x/ D z0 ¤ 0: Show that there exists ı > 0 such that
0 < jx � x0j < ı implies g.x/ ¤ 0: This result, which is needed in the proof of
part (4) of Theorem 3.3.3, can also be stated as follows: If g.x/ has a nonzero limit
as x ! x0; then g.x/ is nonzero near x0: Show that the statement remains true if
nonzero is replaced throughout by positive or negative.

Cauchy’s Criterion for sequences and series (cf. Theorems 2.2.46 and 2.3.3) has
the following analog for functions:

Exercise 3.3.13 (Cauchy’s Criterion). Let x0 2 I� and let f be a function
defined on I (except possibly at x0). Show that limx!x0 f .x/ exists if and only
if for any given " > 0 there exists a ı > 0 such that, if x1; x2 2 I n fx0g; then the
inequalities jx1 � x0j < ı and jx2 � x0j < ı imply jf .x1/ � f .x2/j < ":

We have seen that limits behave nicely with respect to the algebraic operations
and order relations on functions. There is one operation, however, that we have
not yet considered; it is the fundamental operation of composition (i.e., “chaining
together”) of functions. As the following theorem shows, limits also behave nicely
with respect to this operation.

Theorem 3.3.14. Let I; J be intervals, x0 2 I�; and y0 2 J�: Let f be a function
defined on I (except possibly at x0) satisfying f .I nfx0g/ � J and limx!x0 f .x/ D
y0 such that for some ı0 > 0; we have f .x/ ¤ y0 for all 0 < jx�x0j < ı0: Finally,
let g be a function defined on J (except possibly at y0). If limy!y0 g.y/ D z0; then

lim
x!x0

g.f .x// D z0:

Proof. Given " > 0; pick ı1 > 0 such that y 2 J and 0 < jy � y0j < ı1 imply
jg.y/ � z0j < ": Now, given this ı1 > 0; there exists a ı > 0 with 0 < ı < ı0
such that x 2 I and 0 < jx � x0j < ı imply 0 < jf .x/ � y0j < ı1: But then, with
y D f .x/; we have 0 < jy � y0j < ı1 whenever x 2 I and 0 < jx � x0j < ıI i.e.,

.x 2 I and 0 < jx � x0j < ı/ H) 0 < jf .x/ � y0j < ı1 H) jg.f .x// � z0j < ";

and the proof is complete. ut
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It is a fact (cf. Exercise 3.3.11(a) above) that, if limx!x0 f .x/ D y0; then f is
bounded near x0: The converse is not true in general. Indeed, the function sin.1=x/
is bounded on R n f0g; but limx!0 sin.1=x/ does not exist. Observe, however, that
the graph of sin.1=x/ oscillates rapidly as x ! 0: The following theorem shows
that, for monotone functions, boundedness does imply the existence of limit.

Theorem 3.3.15 (Monotone Limit Theorem). Let a < b and let f W .a; b/! R:

Suppose that f is increasing (resp., decreasing) and bounded. Then limx!b f .x/ D
sup.f / and limx!a f .x/ D inf.f / (resp., limx!b f .x/ D inf.f / and
limx!a f .x/ D sup.f //:

Proof. Since f is decreasing and bounded below if and only if �f is increasing
and bounded above, and one then has inf.f / D � sup.�f / (why?), it suffices to
look at the increasing case. If u D sup.f / WD supff .x/ W a < x < bg and if " > 0;
then we can pick � 2 .a; b/ such that u � " < f .�/ � u: Set ı WD b � �: We then
have ı > 0 and, since f is increasing,

�ı < x � b < 0) � < x < b) u � " < f .�/ � f .x/ � u) jf .x/ � uj < ":

Therefore, limx!b f .x/ D u D sup.f /: The proof that limx!a f .x/ D inf.f / is
similar. ut

3.4 One-Sided Limits and Limits Involving Infinity

In our definition of limx!x0 f .x/ D y0; the restriction 0 < jx�x0j < ı allows x to
be on either side of x0: There are situations, however, where we want x to approach
x0 from one side only. This is formalized in the following:

Definition 3.4.1 (Left and Right Limits). Let x0 2 I�; and let f be a function
defined on I (except possibly at x0).

1. Assume that x0 is not the left endpoint of I: We say that y0 2 R is the left limit
of f at x0; and we write y0 D f .x0�/ D f .x0 � 0/ D limx!x0� f .x/; if the

following is satisfied:

.8" > 0/.9ı > 0/.8x 2 I /.�ı < x � x0 < 0) jf .x/ � y0j < "/: (�)

2. Similarly, assume that x0 is not the right endpoint of I: We say that y0 2 R

is the right limit of f at x0; and we write y0 D f .x0C/ D f .x0 C 0/ D
limx!x0C f .x/; if the following is satisfied:

.8" > 0/.9ı > 0/.8x 2 I /.0 < x � x0 < ı) jf .x/ � y0j < "/: (C)



108 3 Limits of Functions

Remark 3.4.2.

1. Note that 0 < jx � x0j < ı is equivalent to the pair of inequalities: �ı <
x�x0 < 0 or 0 < x�x0 < ı:We have used the first (which is equivalent to
x0�ı < x < x0) in (�) and the second (which is equivalent to x0 < x < x0Cı)
in (C).

2. The notation x ! x0� (resp., x ! x0C) is sometimes written as x # x0 (resp.,
x " x0).

3. As the reader can check easily, we have f .x0 ˙ 0/ D limı!0C f .x0 ˙ ı/: This
fact is the reason behind the notation f .x0 ˙ 0/:

Example 3.4.3.

(a) Let f W R n f0g ! R be defined by f .x/ WD x=jxj: Then, as the reader
can check at once, we have f .0�/ D limx!0� f .x/ D �1 and f .0C/ D
limx!0C f .x/ D 1:

(b) Let g W Œ�2; 2�! R be defined by g.x/ WD p4 � x2: Then we have g.2� 0/ D
0 D g.�2 C 0/: Notice that, in this example, the right endpoint 2 must be
approached from the left and that the left endpoint �2 must be approached from
the right.

To show that all the properties we proved (in Sect. 3.3) for the limits of functions
remain true (with minor modifications) for one-sided limits, we need the following
analog of Theorem 3.3.1. The proof is a copy of the one given for Theorem 3.3.1
(with obvious modifications) and is left as an exercise for the reader.

Theorem 3.4.4. Let x0 2 I�; and let f be a function defined on I (except possibly
at x0). Assume that x0 is not the left (resp., right) endpoint of I: Then f .x0�/ D y0
(resp., f .x0C/ D y0), if and only if limn!1 f .xn/ D y0 for all sequences .xn/ 2
IN such that xn < x0 8n 2 N (resp., xn > x0 8n 2 N) and lim.xn/ D x0:
Exercise 3.4.5. Using Theorem 3.4.4, show that all the limit properties proved in
Sect. 3.3 remain valid (with properly modified statements) for one-sided limits.

The next theorem gives the relation between the limit and the one-sided limits of
a function.

Theorem 3.4.6. Let x0 2 I�; and let f be a function defined on I (except possibly
at x0). If x0 is not an endpoint of I; then y0 D limx!x0 f .x/ if and only if f .x0�/ D
y0 D f .x0C/: If x0 D b is the right endpoint of I and if y0 D limx!x0 f .x/; then
y0 D f .x0�/: Finally, if x0 D a is the left endpoint of I and if y0 D limx!x0 f .x/;

then y0 D f .x0C/:
Exercise 3.4.7. Prove Theorem 3.4.6.

Remark 3.4.8.

(a) Theorem 3.4.6 shows that, if x0 is the right endpoint of I; then the concepts of
limit and left limit are the same. Similarly, if x0 is the left endpoint of I; then
the concepts of limit and right limit are the same.
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(b) We saw that limx!0� x=jxj D �1 and limx!0C x=jxj D 1: Since �1 ¤ 1;

Theorem 3.4.6 shows that limx!0 x=jxj does not exist.

In all the limits we have considered so far—i.e., y0 D limx!x0 f .x/ and y0 D
limx!x0˙ f .x/—we have assumed x0; y0 2 R:We now want to extend the concept
of limit (one-sided or not) to the cases where x0; y0 2 R WD Œ�1;1�: Therefore,
we want to allow x0 or y0 (or both) to be˙1: We first begin by looking at the case
where x0 2 R but y0 D ˙1 W
Definition 3.4.9 (Infinite Limits). Let x0 2 I�; and let f be a function defined on
I (except possibly at x0).

1. We say that f .x/ converges toC1 at x0; and write limx!x0 f .x/ D C1; if the
following is satisfied:

.8B 2 R/.9ı D ı.B/ > 0/.8x 2 I /.0 < jx � x0j < ı) f .x/ > B/:

2. Similarly, we say that f .x/ converges to �1 at x0; and write limx!x0 f .x/ D
�1; if the following is satisfied:

.8A 2 R/.9ı D ı.A/ > 0/.8x 2 I /.0 < jx � x0j < ı) f .x/ < A/:

With minor modifications, we can also give the definition of one-sided infinite
limits:

Definition 3.4.10 (One-Sided Infinite Limits). Let x0 2 I�; and let f be a
function defined on I (except possibly at x0).

1. Assume that x0 is not the left (resp., right) endpoint of I: We say that f .x/
converges to C1 as x approaches x0 from the left (resp., right), and write
limx!x0� f .x/ D C1 (resp., limx!x0C f .x/ D C1), if for every B 2 R

there exists ı D ı.B/ > 0 such that x 2 I and �ı < x � x0 < 0 (resp., x 2 I
and 0 < x � x0 < ı) imply f .x/ > B:

2. Similarly, assume that x0 is not the left (resp., right) endpoint of I: We say that
f .x/ converges to �1 as x approaches x0 from the left (resp., right), and write
limx!x0� f .x/ D �1 (resp., limx!x0C f .x/ D �1), if for every A 2 R there
exists ı D ı.A/ > 0 such that x 2 I and �ı < x � x0 < 0 (resp., x 2 I and
0 < x � x0 < ı) imply f .x/ < A:

Example 3.4.11.

(a) limx!0 1=x
2 D C1: Indeed, given any B > 0; the inequality 1=x2 > B

follows from 0 < jxj < ı for any ı satisfying 0 < ı � 1=pB:
(b) We have limx!0� 1=.1 � ex/ D C1 and limx!0C 1=.1 � ex/ D �1: Let

us prove the first assertion. Given any B > 1; the inequality 1=.1 � ex/ > B

is equivalent to ex > 1 � 1=B; which is equivalent to x > log.1 � 1=B/:
Therefore, if ı satisfies 0 < ı � � log.1 � 1=B/; the inequality �ı < x < 0

implies 1=.1 � ex/ > B:
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Exercise 3.4.12. Let x0 2 I�; and let f be a function defined on I (except
possibly at x0). Show that limx!x0 f .x/ D ˙1 if and only if limx!x0.�f /.x/ D
�1: Show that the same holds also for one-sided infinite limits.

Definition 3.4.13 (Vertical Asymptote). Let x0 2 I�; and let f be a function
defined on I (except possibly at x0). The line f.x; y/ 2 R2 W x D x0g is
called a vertical asymptote of f (or of the graph of f ) if f has an infinite limit
as x approaches x0 (possibly from one side only), i.e., if any one of the limits
limx!x0 f .x/; limx!x0� f .x/; or limx!x0C f .x/ isC1 or �1:

The following theorem, which is similar to Theorems 3.3.1 and 3.4.4, gives a
sequential characterization of (possibly one-sided) infinite limits:

Theorem 3.4.14. Let x0 2 I�; and let f be a function defined on I (except
possibly at x0).

1. We have limx!x0 f .x/ D ˙1 if and only if lim.f .xn// D ˙1 for all
sequences .xn/ 2 IN such that xn ¤ x0 8n 2 N and lim.xn/ D x0:

2. Assume that x0 is not the left (resp., right) endpoint of I: Then f .x0�/ D ˙1
(resp., f .x0C/ D ˙1) if and only if lim.f .xn// D ˙1 for all sequences
.xn/ 2 IN such that xn < x0 8n 2 N (resp., xn > x0 8n 2 N) and
lim.xn/ D x0:

Exercise 3.4.15. Prove Theorem 3.4.14.

Finally, we are going to look at the cases where x0 D ˙1 and where y0 is finite
or˙1: First, we look at the case y0 2 R:

Definition 3.4.16 (Finite Limits at Infinity). Let f W X ! R; and let y0 2 R:

1. Suppose that .a;1/ � X for some a 2 R:We say that y0 is the limit of f .x/ (or
that f .x/ converges to y0) as x approachesC1; and we write limx!C1 f .x/ D
y0; if the following is true:

.8" > 0/.9B D B."/ > a/.x > B ) jf .x/ � y0j < "/:

2. Suppose that .�1; b/ � X for some b 2 R: We say that y0 is the limit
of f .x/ (or that f .x/ converges to y0) as x approaches �1; and we write
limx!�1 f .x/ D y0; if the following is true:

.8" > 0/.9A D A."/ < b/.x < A) jf .x/ � y0j < "/:

Notation 3.4.17.

(a) We will often write x !1 instead of x !C1:
(b) If lim

x!C1f .x/ D y0 D lim
x!�1f .x/; then we write lim

x!˙1f .x/ D y0:
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The following exercise involving limx!1 f .x/ is formulated for functions
defined on Œa;1/ for some a 2 R; but it can obviously be stated and proved for
functions defined on .�1; b� and limx!�1 f .x/ as well.

Exercise 3.4.18 (Cauchy’s Criterion). Let f W Œa;1/ ! R: Show that
limx!1 f .x/ exists (in R) if and only if

.8" > 0/.9B > a/.8x; x0 2 R/.x; x0 > B ) jf .x/ � f .x0/j < "/:

Hint: The necessity of the condition is easy to see. For the sufficiency, pick
.xn/ 2 RN with lim.xn/ D C1: Show that .f .xn// is a Cauchy sequence in R:

Deduce that y0 WD lim.f .xn// exists and that limx!1 f .x/ D y0:
Recall that we defined a property to be true near x0 if it is true for all x 2 PBı.x0/

for some ı > 0: Now that the concept of “limit as x ! x0” has been extended to
one-sided limits (“x ! x0˙”) and limits at infinity (“x ! ˙1”), we must extend
the definition of “true near x0” accordingly:

Definition 3.4.19 (True Near, Sufficiently Close, Sufficiently Large). Let I be an
interval, and let x0 2 I� or x0 D ˙1 (if I is unbounded). Suppose that f; g; : : :
are functions defined on I (except possibly at x0), and let P.f; g; : : :/ be a property
(proposition, statement, etc.) involving f; g; : : : .
(a) If x0 2 I; we say that P.f .x/; g.x/; : : :/ is true near x0, and we write

P.f .x/; g.x/; : : :/ .x 	 x0/;

if 9ı > 0 such that P.f .x/; g.x/; : : :/ is true for all x 2 I with 0 < jx � x0j < ı:
(b�) If x0 is not the left (resp., right) endpoint of I;we say thatP.f .x/; g.x/; : : :/
is true near x0� (resp., true near x0C), and we write

P.f .x/; g.x/; : : :/ .x 	 x0�/ Œresp., .x 	 x0C/�;

if 9ı > 0 such that P.f .x/; g.x/; : : :/ is true for all x 2 I satisfying x0 � ı < x <
x0 (resp., x0 < x < x0 C ı/:
(c˙1) If x0 D C1 (resp., x0 D �1) and .a;C1/ � I for some a 2 R (resp.,
.�1; b/ � I for some b 2 R), we say that P.f .x/; g.x/; : : :/ is true near C1
(resp., true near �1), and we write

P.f .x/; g.x/; : : :/ .x 	 C1/ Œresp., .x 	 �1/�;

if 9A > a (resp., B < b) such that P.f .x/; g.x/; : : :/ is true for all x > A (resp.,
x < B).
In case (a) [resp., (b ), (b!)], we also say that P.f .x/; g.x/; : : :/ is true for all
x ¤ x0 (resp., x < x0; x > x0) sufficiently close to x0. Finally, in case (cC1)
(resp., (c�1)), we also say that P.f .x/; g.x/; : : :/ is true for all x > a (resp.,
x < b) sufficiently large.
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Remark 3.4.20. As we saw in Chap. 2, the limit of a sequence depends only on the
behavior of its tails. Similarly, the limit of a function, say as x ! x0; depends
only on the behavior of the function near x0. Thus, if f .x/ D g.x/ .x 	 x0/ and
limx!x0 f .x/ D y0; then we also have limx!x0 g.x/ D y0: In fact, the same is true
under weaker conditions, as we shall see in the next section (cf. the definition of
equivalent functions in Sect. 3.5).

Definition 3.4.21 (Horizontal Asymptote). Let f W X ! R; where X contains
.a;C1/ or .�1; b/ or both, for some a; b 2 R; and let y0 2 R: The horizontal
line f.x; y/ 2 R2 W y D y0g is called a horizontal asymptote of f (or of the graph
of f ) if f .x/ converges to y0 as x !C1 or x ! �1 or x !˙1.

Exercise 3.4.22. Show that, if limx!1 f .x/ (resp., limx!�1 f .x/) exists (in R),
then it is unique. Under the same assumption, show that f is bounded near C1
(resp., �1).

Example 3.4.23.

(a) We have limx!˙1 1=.ax C b/ D 0 for any a ¤ 0 and b in R: Well, it is easy
to see that j1=.axC b/j D 1=jaxC bj < " follows from jxj > .jbj C 1="/=jaj;
and hence any B D B."/ � .jbj C 1="/=jaj will do.

(b) We have limx!˙1 sin.1=x/ D 0: Indeed, as we shall see later, j sin � j � j� j
8� 2 R: Therefore, j sin.1=x/j � 1=jxj 8x ¤ 0; and we can use part (a).

The following proposition shows that (finite) limits at infinity may be reduced to
(possibly one-sided) ordinary limits.

Proposition 3.4.24. The following statements are true.

1. limx!C1 f .x/ D y0 ” limx!0C f .1=x/ D y0
2. limx!�1 f .x/ D y0 ” limx!0� f .1=x/ D y0
3. limx!˙1 f .x/ D y0 ” limx!0 f .1=x/ D y0
Exercise 3.4.25. Prove Proposition 3.4.24 and, combining it with Exercise 3.4.5,
deduce that all the limit properties proved in Sect. 3.3 remain valid, with suitably
modified statements, for finite limits at infinity.

Example 3.4.26. We have limx!�1 x=.1 C jxj/ D �1 and limx!C1 x=.1 C
jxj/ D 1: Indeed (Proposition 3.4.24), the first claim follows from the fact that
limx!0�.1=x/=.1 C 1=jxj/ D limx!0� 1=.x C x=jxj/ D �1; and the second is
treated similarly.

Exercise 3.4.27. Let f D p=q; where p and q are polynomial functions of degrees
n andm; respectively, i.e., p.x/ D a0Ca1xCa2x2C� � �Canxn and q.x/ D b0C
b1xCb2x2C� � �Cbmxm;where the coefficients a0; a1; : : : ; an and b0; b1; : : : ; bm
are real, an ¤ 0; and bm ¤ 0:
1. Show that, if m D n; then limx!˙1 f .x/ D an=bn:
2. Show that, if m > n; then limx!˙1 f .x/ D 0:
Hint: Use Proposition 3.4.24.
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Once again, we can give a sequential version of the above definition of “limits at
infinity”:

Theorem 3.4.28. Suppose that, for some a 2 R (resp., b 2 R), the domain of f
contains the interval .a;1/ (resp., .�1; b/). Then we have limx!C1 f .x/ D y0
(resp., limx!�1 f .x/ D y0) if and only if lim.f .xn// D y0 for all sequences .xn/
satisfying xn > a 8n 2 N and lim.xn/ D C1 (resp., xn < b 8n 2 N and
lim.xn/ D �1).

Proof. Exercise! ut
Example 3.4.29. The limits limx!C1 sin x and limx!C1 cos x do not exist, and
the same is true if C1 is replaced by �1: We prove the claim for limx!C1 sin x
and leave the others for the reader. Now, if we define the sequences .xn/ and
.x0
n/ by xn WD n	; and x0

n WD 2n	 C 	=2; then we obviously have lim.xn/ D
lim.x0

n/ D C1; but lim.sin.n	// D 0 ¤ 1 D lim.sin.2n	 C 	=2//; and
the claim is proved. Actually, we can also show directly that limn!1 sinn and
limn!1 cosn, where n 2 N, do not exist [cf. Example 2.2.28(2)]. Indeed, the
existence of ˛ WD limn!1 sinn 2 Œ�1; 1� and the identities

sin.n˙ 1/ D sinn cos 1˙ cosn sin 1 ()

would imply the existence of ˇ WD limn!1 cos n 2 Œ�1; 1�: But then ./would give
the system of equations

˛ cos 1C ˇ sin 1 D ˛
˛ cos 1 � ˇ sin 1 D ˛;

from which we get ˛ D ˇ D 0; contradicting ˛2 C ˇ2 D 1:
Finally, the next definition covers all the remaining cases, namely, those in which

both x0 and y0 are infinite:

Definition 3.4.30 (Infinite Limits at Infinity). Let f W X ! R:

1. Suppose that .a;1/ � X for some a 2 R: We say that f .x/ converges to C1
(resp., �1) as x approaches C1 if the following is true:

.8B 2 R/.9xB > a/.x > xB ) f .x/ > B/ Œresp., .x > xB ) f .x/ < B/�:

2. Suppose that .�1; b/ � X; for some b 2 R: We say that f .x/ converges to
C1 (resp., �1) as x approaches �1 if the following is true:

.8A 2 R/.9xA < b/.x < xA) f .x/ > A/ Œresp., .x < xA) f .x/ < A/�:

As before, the following theorem shows that this definition can be replaced by an
equivalent “sequential” version, which is more convenient to use in many cases.
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Theorem 3.4.31. Let f W X ! R; and suppose that .a;1/ � X for some a 2
R (resp., .�1; b/ � X for some b 2 R). Then limx!C1 f .x/ D ˙1 (resp.,
limx!�1 f .x/ D ˙1) if and only if lim.f .xn// D ˙1 for all sequences .xn/
satisfying xn > a 8n 2 N and lim.xn/ D C1 (resp., xn < b 8n 2 N and
lim.xn/ D �1).

Proof. Exercise! ut
We have seen that all the limit properties are valid for finite limits, i.e., the cases

where the limit y0 in limx!x0 f .x/ D y0 is a real number. For infinite limits (i.e.,
y0 D ˙1), however, one has to be more careful in handling the operations on
limits. Indeed, when we defined the algebraic operations on extended real numbers,
R D Œ�1;1�; expressions such as C1 C .�1/; �1 C 1; and ˙1= ˙ 1
were left undefined. Limits leading to such expressions are among the so-called
indeterminate forms (0=0; 1=1; 0 � 1; 1�1; 00; 11; 10), which will be
discussed briefly below and more extensively later when we introduce l’Hôpital’s
Rule.

Theorem 3.4.32. Let f; g; h W I ! R; and let x0 2 I� or x0 D ˙1 (if I
is unbounded). Assume that limx!x0 f .x/ D y0 and limx!x0 g.x/ D z0 for some
y0; z0 2 R . Then the following statements are true.

1. If y0 D ˙1 D z0; then limx!x0.f Cg/.x/ D y0Cz0 D .˙1/C.˙1/ D ˙1
and limx!x0.fg/.x/ D y0z0 D .˙1/.˙1/ D C1.

2. If y0 D ˙1 and z0 D �1, i.e., z0 D �y0; then limx!x0.fg/.x/ D y0z0 D
.˙1/.�1/ D �1:

3. If 0 < y0 < 1 and z0 D ˙1; then limx!x0.fg/.x/ D y0z0 D y0 � .˙1/ D
˙1 and limx!x0.g=f /.x/ D z0=y0 D .˙1/=y0 D ˙1:

4. If �1 < y0 < 0 and z0 D ˙1; then limx!x0.fg/.x/ D y0z0 D y0.˙1/ D
�1 and limx!x0.g=f /.x/ D z0=y0 D ˙1=y0 D �1:

5. If y0 2 R and z0 D ˙1; then limx!x0.f C g/.x/ D y0 C z0 D y0 C .˙1/ D
˙1 and limx!x0.f =g/.x/ D y0=.˙1/ D 0:

6. Suppose that, for some constant c > 0; we have

f .x/ � cg.x/ .x 	 x0/:

Then y0 D C1 implies z0 D C1; and z0 D �1 implies y0 D �1 .
7. Suppose that limx!x0 f .x/=g.x/ D � 2 R: Then y0 D ˙1 , z0 D ˙1 if
� > 0; and y0 D ˙1, z0 D �1 if � < 0 .

8. (Squeeze Theorem) Suppose that y0 D z0 and that we have

f .x/ � h.x/ � g.x/ .x 	 x0/:

Then we also have limx!x0 h.x/ D y0 D z0:
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Proof. We shall prove the case � > 0 (and z0 D C1) of property (7) and leave the
proofs of the remaining properties to the reader as an exercise! If x0 2 R; then we
can find ı > 0 such that x 2 I and 0 < jx � x0j < ı imply

0 < �=2 < f .x/=g.x/ < 3�=2: ()

If x0 D C1 (resp., �1), then there exists B 2 R (resp., A 2 R) such that
x 2 I and x > B (resp., x 2 I and x < A) imply ./: Now, ./ is equivalent
to �g.x/=2 < f .x/ < 3�g.x/=2 (if g.x/ > 0), and we can apply property (6). ut
Remark 3.4.33. Although, for simplicity, Theorem 3.4.32 is stated for infinite limits
“as x ! x0,” it is obviously satisfied for one-sided infinite limits as well.

Example 3.4.34.

(a) Show that limx!C1.sin x/=x D 0: Well, we simply note that

.8" > 0/.x > 1=") j sin x=xj � 1=jxj < "/:

(b) Find limx!C1.
p
x2 C 2x � px2 C x/: First note that this limit has the

indeterminate form1�1: Now, for all x > 0;

p

x2 C 2x �
p

x2 C x D .x2 C 2x/ � .x2 C x/p
x2 C 2x Cpx2 C x

D x

x
p

1C 2=x C xp1C 1=x

D 1
p

1C 2=x Cp1C 1=x :

Thus,

lim
x!1.

p

x2 C 2x �
p

x2 C x/ D lim
x!1 1=.

p

1C 2=x C
p

1C 1=x/ D 1=2:

(c) Find limx!1 x log.1C 1=x/: Note that limx!1 x D 1 and limx!1 log.1C
1=x/ D log 1 D 0: Thus, the desired limit has the indeterminate form1 � 0 (or
0 �1). To find the limit, recall that we have, for any x 2 .�1; 1/; the inequalities
x=.1C x/ � log.1C x/ � x [cf. Example 3.3.8(2)]. Replacing x by 1=x and
simplifying, we get the inequalities

1

1C 1=x � x log.1C 1=x/ � 1; if x > 1:
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It now follows from property (8) of Theorem 3.4.32 (Squeeze Theorem) that

lim
x!C1 x log.1C 1=x/ D 1:

Remark 3.4.35. In all the limits considered above, the requirement x ! x0 (resp.,
x ! x0˙) can always be reduced to x ! 0 (resp., x ! 0˙). Indeed, if x0 2 R;

then we can make the change of variable x0 D x � x0, and if x0 D ˙1; we can
make the change of variable x0 D 1=x.

We end this section with an extension of Theorem 3.3.15 (Monotone Limit
Theorem) which includes one-sided limits, limits at infinity, and infinite limits. For
simplicity, we state the theorem for increasing functions, but a similar result (with
obvious modifications) holds for decreasing functions as well.

Theorem 3.4.36 (Monotone Limit Theorem). Let I � R be an interval with
endpoints a; b 2 R D Œ�1;C1�; a < b; and let f W I ! R be an increasing
function. Then, for each interior point x0 2 I ı; the one-sided limits f .x0˙ 0/ both
exist (i.e., are finite), and we have

f .x0 � 0/ D supff .x/ W a < x < x0g
� f .x0/ � infff .x/ W x0 < x < bg D f .x0 C 0/: ()

Moreover, if a < x < y < b; then

f .x C 0/ � f .y � 0/: (�)

Finally, limx!a f .x/ D inf.f / WD infff .x/ W x 2 I g and limx!b f .x/ D
sup.f / WD supff .x/ W x 2 I g also exist (possibly as extended real numbers).

Proof. First, since f is increasing on .a; b/; it must be bounded on any subinterval
.c; d/ � .a; b/ with a < c < d < b: (Why?) Thus, if x0 2 I ı; then f is bounded
near x0 and the inequalities ./ are an immediate consequence of Theorem 3.3.15.
Next, the inequality .�/ follows from f .x C 0/ D infff .t/ W x < t < yg and
f .y � 0/ D supff .t/ W x < t < yg; which follow from ./ applied on the interval
.x; y/ (Exercise 3.1.8). To prove the last statement of the theorem, note that if I
and f are both bounded, then Theorem 3.3.15 may be applied again. Thus, we
may assume that I is unbounded or f is unbounded (or both). Let us first assume
that b D C1 and that f is bounded above, i.e., u WD sup.f / 2 R: Then, given any
" > 0;we can findA 2 I such that u�" < f .A/ � u: But then, f being increasing,
we get

x > A) u � " < f .A/ � f .x/ � u H) jf .x/ � uj < ";

which shows that limx!C1 f .x/ D u D sup.f /; as claimed. Suppose next that
b D C1 and sup.f / D C1: The latter implies that 8B > 0 we can find A 2 I
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such that f .A/ > B: Again, using the fact that f is increasing, x > A implies
f .x/ � f .A/ > B: In other words, we have

.8B > 0/.9A 2 I /.x > A) f .x/ > B/;

which shows, indeed, that limx!C1 f .x/ D C1 D sup.f /: The remaining cases
are similar and will be left to the reader. ut

3.5 Indeterminate Forms, Equivalence, and Landau’s Little
“oh” and Big “Oh”

The indeterminate forms have already been mentioned a few times (cf.
Example 3.4.34(b) and (c) above). As we pointed out before stating Theorem 3.4.32,
some limit properties do not extend to infinite limits. For example, if f .x/ D cx;

where c ¤ 0 is arbitrary, and if g.x/ D x; then limx!0 f .x/=g.x/ D
limx!˙1 f .x/=g.x/ D c; whereas limx!0 f .x/= limx!0 g.x/ D 0=0 and
limx!˙1 f .x/= limx!˙1 g.x/ D ˙1= ˙ 1 (or �1= ˙ 1; if c < 0) are
both meaningless. Since c was arbitrary, expressions such as 0=0 or 1=1 are
called indeterminate forms. We now give a formal definition of all indeterminate
forms to be studied later (when l’Hôpital’s Rule is introduced).

Definition 3.5.1 (Indeterminate Forms). Let I be an interval, and let x0 2 I� or
x0 D ˙1 (if I is unbounded). Suppose that f; g are two functions defined
on I (except possibly at x0). Then, with lim denoting limx!x0 ; we define the
indeterminate forms 0=0; 1=1; 0 � 1; 1�1; 00; 11; and10 as follows:

1. limf .x/=g.x/ is said to have the indeterminate form 0=0 if lim f .x/ D limg.x/

D 0:
2. limf .x/=g.x/ is said to have the indeterminate form 1=1 if j lim f .x/j D
1 D j limg.x/j:

3. limf .x/ � g.x/ is said to have the indeterminate form 0 � 1 if limf .x/ D 0 and
limg.x/ D ˙1 (or if limg.x/ D 0 and limf .x/ D ˙1).

4. lim.f .x/ � g.x// is said to have the indeterminate form1�1 if limf .x/ D
˙1 D limg.x/:

5. limf .x/g.x/ is said to have the indeterminate form 00 if f is ultimately positive
and limf .x/ D 0 D limg.x/:

6. limf .x/g.x/ is said to have the indeterminate form 11 if limf .x/ D 1 and
limg.x/ D ˙1:

7. limf .x/g.x/ is said to have the indeterminate form10 if limf .x/ D C1 and
limg.x/ D 0:
If x0 2 R; then the above indeterminate forms can also be defined, in a similar

fashion, for one-sided limits x ! x0� and x ! x0C.
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Remark 3.5.2.

(a) The exponential functions f g WD eg log f , where f is assumed to be positive on
its domain, will be defined later when we give the precise definitions of the exp
and log functions. We are, however, assuming that the reader is already familiar
with such functions from calculus.

(b) Recall that in Chap. 2, we defined 0 � ˙1 D ˙1 � 0 WD 0 by an arbitrary
convention. This should not be confused with the indeterminate form 0 � 1;
which is a limit of the form limx!x0 f .x/g.x/; where limx!x0 f .x/ D 0

and limx!x0 g.x/ D ˙1: For instance, limx!C1 x log.1 C 1=x/ has the
indeterminate form 0 � 1 (or, more accurately,1 � 0), but limx!C1 x log.1C
1=x/ D 1 ¤ 0; as was proved in Example 3.4.34(c).

(c) All the above indeterminate forms can be transformed to the form 0=0; but, as
we shall see, this is not necessarily a good practice. If desired, the transformation
to 0=0 is carried out as follows, where lim denotes limx!x0 W

(i) The identity f .x/=g.x/ D .1=g.x//=.1=f .x// transforms1=1 into 0=0:
(ii) The identity f .x/g.x/ D f .x/=.1=g.x// transforms 0 � 1 into 0=0:

(iii) The identity

f .x/ � g.x/ D 1

1=f .x/
� 1

1=g.x/
D 1=g.x/ � 1=f .x/

1=.f .x/ � g.x//
transforms1�1 to 0=0 .

(iv) If limf .x/g.x/ has the indeterminate form 00; we first write f .x/g.x/ WD
eg.x/ log f .x/ and note that lim log f .x/ D �1: Thus, limg.x/ logf .x/
has the indeterminate form 0 � 1 and is transformed to 0=0 as above.

(v) If limf .x/g.x/ has the indeterminate form 11; we first write f .x/g.x/ WD
eg.x/ log f .x/ and note that lim log f .x/ D 0: Hence limg.x/ logf .x/ has
the indeterminate form 0 � 1 (or, more accurately,1 � 0), which has been
discussed.

(vi) Finally, if limf .x/g.x/ has the indeterminate form10; write f .x/g.x/ WD
eg.x/ log f .x/ and note that lim log f .x/ D C1: Thus, limg.x/ logf .x/
has the indeterminate form 0 � 1 and can be transformed to 0=0 as before.

Exercise 3.5.3.

(a) Using the fact that lim�!0.sin �/=� D 1 (to be proved rigorously later), show
that (i) limx!˙1 x sin.1=x/ D 1I (ii) limx!0.1� cos x/=x2 D 1=2: Hints: For
(i), use Proposition 3.4.24. For (ii), use the identity 1 � cos x D 2 sin2.x=2/.

(b) Show that limx!C1.log x/=x D 0: Hint: Using the inequality log.1C x/ � x;
valid for all x > �1; show that log x D 2 log

p
x < 2

p
x 8x > 0 and apply

the Squeeze Theorem.

Definition 3.5.4 (Equivalent Functions). Let I be an interval, and let x0 2 I� or
x0 D ˙1 (if I is unbounded). Suppose that f; g are two functions defined on I
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(except possibly at x0). We say that f and g are equivalent as x ! x0; and we
write f � g .x ! x0/; if there exists a function u defined near x0 such that

f .x/ D g.x/u.x/ .x 	 x0/ and lim
x!x0

u.x/ D 1:

When x0 2 I ı; we define the equivalences f � g .x ! x0�/ and f � g .x !
x0C/ in a similar way.

Remark 3.5.5.

1. In what follows, we state all the properties of the equivalence (defined above)
for the case x ! x0 (where x0 D ˙1 is allowed). It is obvious that the same
properties also hold for the one-sided limits x ! x0� and x ! x0C when
x0 2 R:

2. If f � g .x ! x0/ and if g D 0 (the zero function) near x0; then the definition
implies that f D 0 near x0: On the other hand, if g D c is constant near x0 with
c ¤ 0; then it does not follow that f D c near x0:

3. If g.x/ ¤ 0 .x 	 x0/; then

f � g .x ! x0/” lim
x!x0

f .x/=g.x/ D 1: (Why?)

Example 3.5.6.

(a) sin x � x .x ! 0/: Indeed, limx!0.sin x/=x D 1; as we shall see later.
(b) Let p.x/ D a0 C a1x C � � � C anxn; where a0; a1; : : : ; an 2 R and an ¤ 0; be

a polynomial of degree n: Then we have p.x/ � anxn .x !˙1/: Indeed, we
have p.x/ D anxnu.x/; with

u.x/ D 1C
�an�1
an

� 1

x
C
�an�2
an

� 1

x2
C � � � C

�a0

an

� 1

xn
;

and we obviously have limx!˙1 u.x/ D 1:
(c) We have log.1 C 1=x/ � 1=x .x ! C1/: This, of course, is an immediate

consequence of Example 3.4.34(c).

The following proposition shows that the use of the word equivalence for the
relation f � g .x ! x0/ is justified.

Proposition 3.5.7. Let x0 2 I� or x0 D ˙1 (for I unbounded), and let Fx0
denote the set of all functions defined on I (except possibly at x0). Then the
equivalence f � g .x ! x0/; defined above, is indeed an equivalence relation
on Fx0 :

Proof. First, 8f 2 Fx0 ; we obviously have f � f .x ! x0/: Next, if
f � g .x ! x0/; then f .x/ D g.x/u.x/ .x 	 x0/ and limx!x0 u.x/ D 1: In
particular, u.x/ ¤ 0 .x 	 x0/ and we can write g.x/ D f .x/.1=u.x// .x 	 x0/:

Since limx!x0 1=u.x/ D 1; it follows that g � f .x ! x0/: Finally, if
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f � g .x ! x0/ and g � h .x ! x0/; then we can find functions u
and v; defined near x0, such that f .x/ D g.x/u.x/; g.x/ D v.x/h.x/; and
limx!x0 u.x/ D limx!x0 v.x/ D 1: But then, f .x/ D h.x/u.x/v.x/ .x 	 x0/;

uv is defined near x0; and limx!x0.uv/.x/ D 1: This shows that f � h .x ! x0/

and the proof is complete. ut
The next theorem shows that, if two functions have the same (finite) nonzero limit

as x ! x0; then they are equivalent as x ! x0.

Theorem 3.5.8. Let I be an interval, and let x0 2 I� or x0 D ˙1 (if I is
unbounded). Suppose that f; g are two functions defined on I (except possibly
at x0). If limx!x0 f .x/ D limx!x0 g.x/ D y0 2 R n f0g; then f � g .x ! x0/:

Proof. Since y0 ¤ 0; the function u.x/ WD f .x/=g.x/ is defined near x0; and
limx!x0 u.x/ D y0=y0 D 1: Also, f .x/ D g.x/u.x/ .x 	 x0/; and the theorem
follows. ut
Remark 3.5.9. Note that the condition y0 2 R n f0g is necessary. Indeed, if
f .x/ D jxj and g.x/ D x2; then limx!0 f .x/ D 0 D limx!0 g.x/; and yet
limx!0 f .x/=g.x/ D C1: Also, if f .x/ D 1=jxj and g.x/ D 1=x2; then we have
limx!0 f .x/ D limx!0 g.x/ D C1; and yet limx!0 f .x/=g.x/ D 0:

In view of Theorem 3.5.8, we may wonder whether two equivalent functions
must have the same limit. Well, the following theorem shows that this is indeed the
case if (at least) one of the functions does have a limit (even 0 or˙1).

Theorem 3.5.10. Let I be an interval, and let x0 2 I� or x0 D ˙1 (if I is
unbounded). Suppose that f; g are two functions defined on I (except possibly at
x0). If f � g .x ! x0/ and if limx!x0 f .x/ D y0; then limx!x0 g.x/ D y0; even
if y0 D 0 or y0 D ˙1.

Proof. Indeed, there exists a function u; defined near x0, such that g.x/ D
f .x/u.x/ .x 	 x0/ and limx!x0 u.x/ D 1: Thus,

lim
x!x0

g.x/ D lim
x!x0

f .x/u.x/ D y0 � 1 D y0;

and this is true even if y0 D 0 or y0 D ˙1. ut
Theorem 3.5.10 shows that when looking for the limit of a function, one may

replace it with any equivalent one. Together with the following theorem, this
provides a powerful tool for finding and manipulating limits in a simpler way.

Theorem 3.5.11. Let I be an interval, and let x0 2 I� or x0 D ˙1 (if I is
unbounded). Suppose that f1; f2; g1; g2 are functions defined on I (except
possibly at x0/ such that f1 � g1 .x ! x0/ and f2 � g2 .x ! x0/:

Then f1f2 � g1g2 .x ! x0/ and (if f2 and g2 are nonzero near x0)f1=f2 �
g1=g2 .x ! x0/: More generally, if f1; f2; : : : ; fn; g1; g2; : : : ; gn are defined on
I (except possibly at x0) and if fj � gj .x ! x0/ for j D 1; 2; : : : ; n; then
f1f2 � � � fn � g1g2 � � �gn .x ! x0/:
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Proof. Indeed, there are functions u1; u2; defined near x0; such that f1.x/ D
g1.x/u1.x/; f2.x/ D g2.x/u2.x/ .x 	 x0/; and lim u1.x/ D 1 D lim u2.x/ as
x ! x0: It then follows that f1f2 D g1g2u1u2 and (if f2 and g2 are nonzero near
x0) f1=f2 D .g1=g2/.u1=u2/ are satisfied near x0; and we have limx!x0.u1u2/.x/ D
1 D limx!x0.u1=u2/.x/: The last statement follows by induction. ut
Example 3.5.12.

(a) We have tan x � x .x ! 0/: Indeed, sin x � x .x ! 0/ and cos x D
1�2 sin2.x=2/ � 1 .x ! 0/ so that, by Theorem 3.5.11, tan x D sin x= cos x �
x=1 .x ! 0/:

(b) Let m; n 2 N; and let p.x/ D a0 C a1x C � � � C anx
n; q.x/ D b0 C

b1x C � � � C bmx
m be polynomials of degrees n and m; respectively. Thus

a0; a1; : : : ; an; b0; b1; : : : ; bm are real and an ¤ 0 ¤ bm: We have seen
above that p.x/ � anxn .x !˙1/ and q.x/ � bmxm .x !˙1/: It follows
from Theorem 3.5.11 that p.x/=q.x/ � anxn=bmxm .x !˙1/:

Warning!

(a) If f1 � g1 .x ! x0/; f2 � g2 .x ! x0/; it does not follow (in general) that
f1˙f2 � g1˙g2 .x ! x0/: For example, as x ! 0; we have xCx2 � xCx3
and x � x; but .x C x2/ � x D x2 6� x3 D .x C x3/ � x: Also, we have
cos x � 1 .x ! 0/ and (obviously) 1 � 1 .x ! 0/; but 1 � cos x 6� 0: In fact,
1 � cos x ¤ 0 for all x sufficiently close to 0:

(b) If g is nonzero near x0 and f � g .x ! x0/; then f .x/ and g.x/ are
approximately equal (i.e., jf .x/ � g.x/j is very small) when x 	 x0: Note
that we need not have f .x/ D g.x/ .x 	 x0/: If, in addition, g is bounded
near x0; then f .x/ � g.x/ D g.x/

�

f .x/=g.x/ � 1� ! 0 as x ! x0:

However, if limx!x0 f .x/ D ˙1 D limx!x0 g.x/; we do not (in general)
have limx!x0.f .x/ � g.x// D 0: For example, 1=jxj C 1=x2 � 1=x2 .x !
0/; because limx!0.1=jxj C 1=x2/=.1=x2/ D limx!0.1 C jxj/ D 1; but
limx!0..1=jxj C 1=x2/ � 1=x2/ D limx!0 1=jxj D C1:

Definition 3.5.13 (Landau’s Little “oh” and Big “Oh”). Let I be an interval,
and let x0 2 I� or x0 D ˙1 (if I is unbounded). Suppose that f; g are two
functions defined on I (except possibly at x0).

(o) We say that f is negligible compared to g as x ! x0 and write f D
o.g/ .x ! x0/; if there exists a function �; defined near x0; such that

f .x/ D g.x/�.x/ .x 	 x0/ and lim
x!x0

�.x/ D 0:

(O) We say that f has the same order as g as x ! x0 and write f D O.g/ .x !
x0/; if there exists a function ˇ; defined near x0; such that

f .x/ D g.x/ˇ.x/ .x 	 x0/ and ˇ is bounded:
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Remark 3.5.14. Note that f D o.g/ .x ! x0/ obviously implies f D O.g/.x !
x0/ but the converse is false in general.

Proposition 3.5.15. Let I be an interval, and let x0 2 I� or x0 D ˙1 (if I is
unbounded). Suppose that f; g are two functions defined on I (except possibly at
x0). If g is nonzero near x0; then

f D o.g/ .x ! x0/” lim
x!x0

f .x/=g.x/ D 0;

and

f D O.g/ .x ! x0/” f=g is bounded near x0.

In particular, f D o.1/ .x ! x0/ if and only if limx!x0 f .x/ D 0; and f D
O.1/ .x ! x0/ if and only if f is bounded near x0:

Proof. Exercise! ut
Example 3.5.16.

(a) Let m; n 2 N; and let p.x/ D a0 C a1x C � � � C anxn; q.x/ D b0 C b1x C
� � � C bmxm be polynomial functions of degrees n and m; respectively. Here,
a0; a1; : : : ; an; b0; b1; : : : ; bm are real, an ¤ 0 ¤ bm: Then we have p D
o.q/ .x ! ˙1/ if and only if m > n; and p D O.q/ .x ! ˙1/ if and only
if m � n:

(b) We have log x D o.x/ .x !C1/: This follows from Exercise 3.5.3(b).
(c) Since limx!0 sin x D 0 D limx!0 tan x; we have sin x D o.1/ and tan x D

o.1/ as x ! 0:

Definition 3.5.17 (Infinitesimal). Let I be an interval, and let x0 2 I� or x0 D
˙1 (if I is unbounded). Suppose that f is a function defined on I (except possibly
at x0). We say that f is an infinitesimal (or infinitely small) at x0 (or, as x ! x0/ if
f D o.1/ .x ! x0/, i.e., if limx!x0 f .x/ D 0:
Example 3.5.18. As we saw above, sin x and tan x are infinitesimals at x D 0; and
log x=x D o.1/ .x ! C1/: If p and q are polynomial functions of degrees n and
m; respectively, and if m > n; then p=q is an infinitesimal at x D ˙1:
Remark 3.5.19.

1. Using infinitesimals, we can rephrase many statements. Thus f D o.g/ .x !
x0/ can also be written as f D g � o.1/ .x ! x0/; which means (if g is nonzero
near x0) that f=g is an infinitesimal at x D x0:

2. As x ! 0; we have an important sequence of infinitesimals, namely, the
sequence of monomials x; x2; x3; : : : ; xn; : : : : It is obvious that the larger the
exponent n; the faster xn converges to 0: We shall see that many infinitesimals
at 0 are equivalent to an infinitesimal of the form axn; where n 2 N and a is a
nonzero constant.
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Our next theorem will summarize the behavior of “o” and “O” under algebraic
operations, as well as composition. Before stating it, however, we need the
following:

Definition 3.5.20 (Bounded Away From Zero). Let I be an interval, and let x0 2
I� or x0 D ˙1 (if I is unbounded). Suppose that f is a function defined on I
(except possibly at x0). We say that f is bounded away from zero as x ! x0 if there
exists " > 0 such that

jf .x/j � " .x 	 x0/:

Exercise 3.5.21. Let f be as in the above definition. Show that f is bounded away
from zero as x ! x0 if and only if 1=f is bounded near x0, i.e., if and only if
1=f D O.1/ .x ! x0).

Theorem 3.5.22. Let I be an interval, and let x0 2 I� or x0 D ˙1 (if I is
unbounded). Suppose that f; g; h are functions defined on I (except possibly at
x0). Then, as x ! x0; the following are true.

1. If f D o.h/ and g D o.h/; then f ˙ g D o.h/ and fg D o.h2/:
2. If f D o.h/ and c 2 R; then cf D o.h/ and (if c ¤ 0) f D o.ch/:
3. If f D o.h/ and g is bounded away from zero (x ! x0), then f=g D o.h/:
4. If f D o.g/ and if g D O.h/ (e.g., if g D o.h/), then f D o.h/:
5. If f D o.1/; then 1=.1C f / D 1 � f C o.f /:
6. If f D O.h/ and g D O.h/; then f ˙ g D O.h/ and fg D O.h2/:
7. If f D O.h/ and c 2 R; then cf D O.h/ and (if c ¤ 0) f D O.ch/:
8. If f D O.h/ and g is bounded away from zero (x ! x0), then f=g D O.h/:
9. If f D O.g/ and g D O.h/; then f D O.h/:

10. If f D O.1/ and g D O.h/; then fg D O.h/:
11. If f D o.1/ and g D O.h/; then fg D o.h/:
Proof. We shall only prove the properties (5) and (11) and leave the rest as exercises
for the reader (cf. Exercise 3.5.23 below). To prove (5), note that

1

1C f � .1 � f / D
f 2

1C f D f
�

f

1C f
�

and that limx!x0 f .x/=.1 C f .x// D 0, i.e., f=.1 C f / D o.1/: Thus, 1=.1 C
f / � .1 � f / D f � o.1/ D o.f /: For property (11), note that limx!x0 f .x/ D 0

and we have g.x/ D h.x/ˇ.x/; where ˇ is bounded near x0: Thus, f .x/g.x/ D
.f .x/ˇ.x//h.x/; where, by Theorem 3.3.9 (which is also valid if x ! x0˙ or
x !˙1), limx!x0 f .x/ˇ.x/ D 0: This shows, indeed, that fg D o.h/: ut
Exercise 3.5.23. Prove the remaining properties in Theorem 3.5.22, i.e., all prop-
erties except (5) and (11).
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Remark 3.5.24. Notice that, in property (1) of Theorem 3.5.22, f D o.h/ and g D
o.h/ imply fg D o.h2/ and not fg D o.h/; which is false in general. For instance,
we have e2x=3 D o.ex/ .x ! C1/; but e2x=3 � e2x=3 D e4x=3 ¤ o.ex/: The same
remark can be made for the property (6).

Despite the above remark, the behavior of “o” and “O” under the algebraic
operations is much nicer for the special case where h is a nonzero constant function,
in which case we may (without loss of generality) assume h D 1: The following
exercise is basically an immediate consequence of Theorem 3.5.22.

Exercise 3.5.25. Let x0 2 I� or x0 D ˙1 (for unbounded I ), and let Fx0.I /
denote the set of all functions defined on I (except possibly at x0). Let O WD ff 2
Fx0.I / W f D O.1/ .x ! x0/g and o WD ff 2 Fx0.I / W f D o.1/ .x ! x0/g:
Show that O is a (commutative) ring with identity and that o � O is an ideal. This
means that, for any f; g; h 2 O; the following properties are satisfied:

1. f C g; fg 2 OI
2. f C g D g C f; fg D gf; .f C g/C h D f C .g C h/; and .fg/h D f .gh/I
3. 9 0 2 o; 1 2 O such that 0C f D f; 1 � f D f I
4. 9 � f 2 O such that f C .�f / D 0I
5. f .g C h/ D fg C f hI
6. if f; g 2 o; then f � g 2 oI and
7. if f 2 o; then fg 2 o 8g 2 O:

As was pointed out before, we can always reduce x ! x0 to x ! 0 by
introducing the new variable x0 D x � x0 (if x0 2 R) or x0 D 1=x (if x0 D ˙1).
We also introduced the distinguished sequence x; x2; x3; : : : of infinitesimals at
x D 0 and mentioned that many infinitesimals are equivalent to constant multiples
of these powers of x as x ! 0. Before giving the formal definition, we prove a
uniqueness result:

Proposition 3.5.26. If f .x/ � axn .x ! 0/ for some n 2 N and a 2 R n f0g
(which implies that f is an infinitesimal at 0), then the constants a and n are
uniquely determined by f .

Proof. Suppose that we also have f .x/ � bxm .x ! 0/ with m 2 N; b 2 R n f0g:
Then axn � bxm .x ! 0/: This means that limx!0 ax

n=bxm D 1: Now, ifm > n;

then limx!0 jaxn=bxmj D C1; and if m < n; then limx!0 ax
n=bxm D 0: Thus,

we must have m D n; which also forces a D b: ut
Definition 3.5.27 (Principal Part and Order of Infinitesimals). If f .x/ �
axn .x ! 0/ for some constants n 2 N and a 2 R n f0g; then we say that axn

is the principal part of f and that f is an infinitesimal of order n at x D 0:
Example 3.5.28. We have seen that limx!0.sin x/=x D limx!0.tan x/=x D
limx!0.1 � cos x/=.x2=2/ D limx!0.log.1 C x//=x D 1: It follows that sin x;
tan x; and log.1 C x/ are infinitesimals at 0 of order 1 and principal part x; while
1 � cos x is an infinitesimal (at 0) of order 2 and principal part x2=2:
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3.6 Problems

Throughout this section, A, B, C,. . . , X, Y, Z will denote nonempty subsets of R:

1. Let f W X ! R be a bounded function. Show that, for any c 2 R;

sup.c C f / D c C sup.f / and inf.c C f / D c C inf.f /:

2. Let f; g W X ! R be bounded. Show that

sup.f /C inf.g/ 	 sup.f C g/ 	 sup.f /C sup.g/:

3. Let f W X ! R and g W Y ! R be bounded and assume that f .x/ 	 g.y/ for all x 2 X and
y 2 Y: Show that sup.f / 	 inf.g/:

4. Consider the function f .x/ WD .ax C b/=.cx C d/; where ad � bc ¤ 0: Show directly that
f is strictly increasing (resp., strictly decreasing) if ad � bc > 0 (resp., ad � bc < 0) and find
sup.f / and inf.f / in each case. Hint: First look at the case where c D 0: Next, assume that c ¤ 0

and reduce to the case where f .x/ WD ˛ C ˇ=.cx C d/; for some ˛ and ˇ:

5. Give an example of a one-to-one function f W .0;1/ ! R that is not monotone.

6. Let us say that a function f 2 RR is increasing at a point x0 if there is a ı > 0 such that
f .x/ 	 f .x0/ 	 f .y/ for all x 2 .x0 � ı; x0/ and y 2 .x0; x0 C ı/: Show that f is increasing
(on R) if and only if it is increasing at every x0 2 R:

7. Let A; B � R: Show that .A\ B/ı D Aı \ Bı and .A[ B/� D A� [ B�: On the other
hand, show that .A[ B/ı � Aı [ Bı and .A\ B/� � A� \ B�; and give examples to show
that both inclusions may be proper.

8. Using the definition, prove each statement.

.a/ lim
x!�1=2

2x C 1

1� 4x2
D 1

2
I .b/ lim

x!2

x C 1

2x � 3
D 3I .c/ lim

x!�2.x
2 C x/ D 2I

.d/ lim
x!0

p
x C 4� 2

x
D 1

4
I .e/ lim

x!0

x

1C 1=x
D 0I .f/ lim

x!2

1

x2
D 1

4
:

9. Show that

lim
x!x0

f .x/ D y0 ” lim
x!x0

Œf .x/� y0� D 0 ” lim
h!0

f .x0 C h/ D y0:

10. Show that the following limits do not exist. Recall that Œx� denotes the greatest integer 	 x

and that, for each A � R; 
A.x/ D 1 if x 2 A and 
A.x/ D 0 if x … A:

.a/ lim
x!1

jx � 1j
x � 1

I .b/ lim
x!n

Œx� .8n 2 Z/I
.c/ lim

x!x0

Q.x/ .8x0 2 R/I .d/ lim

x!0
cos.1=x2/:

11. Using limx!0.sin x/=x D 1 and the properties of limits (including Theorem 3.3.14), find
each limit.

.a/ lim
x!0

sin 3x

sin 2x
I .b/ lim

x!0

x sin x

cos x
I .c/ lim

x!0

tan2 x

2x2
I
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.d/ lim
x!0

1� cos x

x2
I .e/ lim

x!1

tan.x2 � 1/

1� x
I .f/ lim

x!0

x sin x

1� cos x
:

12. Using limx!0.sin x/=x D 1; show that limx!0.sinŒn� x/=x D 0; where we have used the
“nth iterate”, sinŒn�; defined by sinŒn� WD sin ı sin ı � � � ı sin, with n iterations.

13. Show that, if limx!0 f .x/=x D ` 2 R and a ¤ 0; then limx!0 f .ax/=x D a`: What if
a D 0‹

14. Let f 2 RR satisfy f .xCy/ D f .x/Cf .y/; for all x; y 2 R: Show that limx!0 f .x/ D 0;

if the limit exists, and that, in this case, limx!x0 f .x/ D f .x0/; 8 x0 2 R: Hint: f .2x/ D
2f .x/:

15. Consider the functions

.a/ f .x/ WD
(

x if x 2 Q;

0 if x … Q:
.b/ g.x/ WD

(

x if x 2 Q;

�x if x … Q:

Show that limx!0 f .x/ D limx!0 g.x/ D 0 but that limx!x0 f .x/ and limx!x0 g.x/ do not
exist for any x0 ¤ 0:

16. Find each limit if it exists; if it doesn’t, explain why.

.a/ lim
x!1

p
x � x2

1� p
x

I .b/ lim
x!0

�

1

x
p
x C 1

� 1

x

�

I .c/ lim
x!2

p
6� x � 2p
3� x � 1

I

.d/ lim
x!1

jx � 1j3=2
x � 1

I .e/ lim
x!0

jx � 1j � jx C 1j
x

I .f/ lim
x!1

x
p
x � 1

x2 � 1
:

17. Prove or disprove each statement.

(a) If lim
x!x0

f .x/ and lim
x!x0

Œf .x/C g.x/� exist, then lim
x!x0

g.x/ exists.

(b) If lim
x!x0

f .x/ and lim
x!x0

Œf .x/ � g.x/� exist, then lim
x!x0

g.x/ exists.

18. Let f; g W R ! R be such that limx!x0 f .x/ D y0 and limy!y0 g.y/ D z0: Does it
necessarily follow that limx!x0 .g ı f /.x/ D z0‹ Why or why not?

19. For each function f .x/; find limx!0C; limx!0�; and limx!0; if they exist.

.a/ f .x/ WD xŒx�I .b/ f .x/ WD x � Œx�I .c/ f .x/ WD Œ1� x2�I

.d/ f .x/ WD Œx2 � 1�I .e/ f .x/ WD x2

jxj I .f/ f .x/ WD sin x

jxj :

20. Show that, if limx!a� f .x/ < limx!aC f .x/; then there is a ı > 0 such that jx � aj < ı;

jy � aj < ı; and x < a < y; imply f .x/ < f .y/: Is the converse also true?

21. Assuming that all the limits involved exist, prove each statement.

.a/ lim
x!0C

f .x/ D lim
x!0� f .�x/I .b/ lim

x!0
f .jxj/ D lim

x!0C
f .x/ D lim

x!0
f .x2/:

22. Find each limit if it exists.

.a/ lim
x!�1

4x2 C 1

x
I .b/ lim

x!1
3x C 2p
x C 1

I
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.c/ lim
x!�1.

p
x2 C x C x/I .d/ lim

x!1 x cos
1

x
:

23. Find each limit if it exists. Recall that limx!0.sin x/=x D 1:

.a/ lim
x!1

sin xp
x

I .b/ lim
x!1 x sin

1

x
I

.c/ lim
x!1

x sin2 x

x C 1
I .d/ lim

x!1
x2.1C sin2 x/

.x C sin x/2
:

24. Let f W .a;1/ ! R and assume that limx!1 xf .x/ D ` 2 R: Show that we then have
limx!1 f .x/ D 0:

25. For each x 2 R; let hxi denote the distance from x to the integer nearest x and, recall that Œx�
denotes the greatest integer 	 x: Find each limit if it exists. If it doesn’t, explain why!

.a/ lim
x!1Œx�I .b/ lim

x!1.x � Œx�/I .c/ lim
x!1

Œx�

x
I

.d/ lim
x!1hxiI .e/ lim

x!1.x � hxi/I .f/ lim
x!1

hxi
x
:

26. Find each limit if it exists.

.a/ lim
x!0C

�

1

x
� 1

jxj
�

I .b/ lim
x!0�

�

1

x
� 1

jxj
�

I

.c/ lim
x!1 x2 sin

1

x
I .d/ lim

x!0C
p
x sin

1

x
:

27. Find each limit if it exists.

.a/ lim
x!1

.log x/ˇ

x˛
.˛; ˇ > 0/I .b/ lim

x!0C
x˛.j log xj/ˇ .˛; ˇ > 0/I

.c/ lim
x!1 x1=xI .d/ lim

x!1.1C 1=x/x:

28. Find each limit if it exists.

.a/ lim
x!1 x2

�

1� cos
1

x

�

I .b/ lim
x!0

.1� sin x/1=xI

.c/ lim
x!0C

xxI .d/ lim
x!0C

.tan x/1=x:

29. Prove each statement. Here, ˛ > 0 and ˇ > 0 are arbitrary.

.a/ .log x/˛ D o.xˇ/ .x ! 1/I .b/ sec 2x D 1C 2 sin2 x C o.1/ .x ! 0/I

.c/ x˛j log xjˇ D o.1/ .x ! 0C/I .d/
�

1� sin
1

x

�x D O.1/ .x ! 1/:

30. Find the order and the principal part of each infinitesimal (at 0).

.a/ tan x � sin xI .b/
p
1� cos xI

.c/ sin x tan xI .d/ log
p
1C x2:



Chapter 4
Topology of R and Continuity

Roughly speaking, a quantity y is said to depend continuously on a quantity x if
“small” changes in x result in small changes in y. Our goal in this chapter is to make
this statement mathematically precise. Now most interesting sets in mathematics
have structures (algebraic, geometric, topological, . . . ). For example, the set R of
real numbers is, algebraically, a field; i.e., it satisfies the nine axiomsA1�A4; M1�
M4, and D listed at the beginning of Chap. 2. Given this field structure, the most
(algebraically) desirable functions � W R! R are those that are faithful to the field
properties, i.e., preserve them. Such maps are called the morphisms of the field R:

For instance, addition is a map (binary operation) C W R � R ! R; given by
C.x; y/ D x C y 8x; y 2 R: A function � W R! R is additive (or faithful to the
addition) if it satisfies Cauchy’s functional equation:

�.x C y/ D �.x/C �.y/ 8x; y 2 R:

This can be written in a more suggestive way, using the composition of maps:

.� ı C/.x; y/ D .C ı Q�/.x; y// 8x; y 2 R;

where Q� WD .�; �/ is defined by Q�.x; y/ D .�; �/.x; y/ D .�.x/; �.y//: In other
words,

� ı C D C ı Q�: ()

If ./ is satisfied, we say (by abuse of language) that � commutes with the addition.
Thus, a map � is “faithful” toC if it commutes with it.

Now, we have repeatedly mentioned that the fundamental notion in analysis is
that of limit. Therefore, in the study of limits of functions (defined “near” a point x0)
as x ! x0; the most desirable functions are those that commute with limx!x0 , i.e.,

© Springer Science+Business Media New York 2014
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f
�

lim
x!x0

x
�

D lim
x!x0

f .x/;

and such functions are precisely what we call continuous functions (at x0). Before
giving the formal definition of continuity, we shall introduce some important facts
dealing with the topology of the real line, i.e., with its open sets. These facts will
be crucial when we introduce uniform continuity, a refinement of the concept of
continuity, and will play a fundamental role in our study of (Riemann) integration,
sequences and series of functions, and approximation.

4.1 Compact and Connected Subsets of R

Recall (cf. Definition 2.2.2) that a subset O � R is called open if, 8x 2 O; there
exists " D ".x/ > 0 such that B".x/.x/ WD .x�"; xC"/ � O: It is therefore obvious
that O DSx2O B".x/.x/ is a union of open intervals and that for O ¤ ; this union
is uncountable (why?) and is not disjoint. Theorem 4.1.2 below will show that we
can do much better than this. But let us first show that any union of open subsets of
R can be written as a countable union:

Proposition 4.1.1 (Lindelöf). Let fO�g�2ƒ be a collection of open subsets of R:
Then there is a countable subset f�1; �2; : : :g � ƒ such that

[

�2ƒ
O� D

1
[

kD1
O�k :

Proof. Let O WDS�2ƒ O�: Then, 8x 2 O; we have x 2 O�x for some �x 2 ƒ and,
since O�x is open, we can find "x > 0 with x 2 B"x .x/ � O�x : Using the fact that
the set Q of rational numbers is dense in R; we can find a rational number �x > 0

such that x 2 B�x .x/ � B"x .x/: Now the set f�x W x 2 Og � Q is countable and
hence can be written as f�x W x 2 Og D f�1; �2; : : :g; where �k D �xk for some
xk 2 O: If for each k 2 N we pick �k 2 ƒ such that B�k .xk/ � O�k ; then we have
a countable subcollection fO�k gk2N � fO�g�2ƒ which satisfies O DS1

kD1 O�k . ut
Proposition 4.1.1 actually shows that O DS1

kD1 B�k is in fact a countable union
of open intervals. These intervals need not, however, be disjoint. The next theorem
shows that this extra requirement can also be met. Before stating the theorem, let
us recall that a partition of a set S is a collection of nonempty subsets of S that are
pairwise disjoint and whose union is the set S:We saw in Chap. 1 that each partition
of S corresponds an equivalence relation on S and vice versa. Thus, it should not
be surprising to encounter an equivalence relation in the proof of the theorem.

Theorem 4.1.2. A set O � R is open if and only if it is a countable union of
pairwise disjoint open intervals.
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Proof. If O � R is a disjoint union of open intervals, then it is obviously open.
To prove the converse, define an equivalence relation on O as follows. For any
a; b 2 O; let us say that a is equivalent to b, and write a � b; if the (possibly
empty) open interval with endpoints a and b is contained in O: Now, this is
obviously reflexive and symmetric. (Why?) To prove the transitivity property, let
a; b; c be the three (distinct) elements of O such that a � b and b � c: Then,
assuming (without loss of generality) that a < b; we have the three possible cases
a < c < b; c < a < b; and a < b < c; and it follows at once from a � b

and b � c that we have .a; c/ � O in all these cases. Now, for each x 2 O; let
Œx� denote its equivalence class. Since x 2 Œx� and since two equivalence classes
are either identical or disjoint, fŒx� W x 2 Og is a partition of O; so we need only
show that each Œx� is an open interval; because then, by the density of Q; each Œx�
contains a (necessarily different) rational number and hence fŒx� W x 2 Og must
be countable. First, to prove that Œx� is an interval, let y; z 2 Œx� be any pair of
distinct elements with, say, y < z: Then, if y < u < z; we have y � u � z (why?)
and hence .y; z/ � Œx�: Finally, to show that Œx� is open, note that, if y 2 Œx�;

then (since O is open) there exists " > 0 such that .y � "; y C "/ � O: But then
.y � "; y C "/ � Œy� D Œx� and the proof is complete. ut

In Theorem 4.1.2, the set O was covered by a collection of open intervals. Such
a collection is said to be an open cover of the set O: This suggests the following:

Definition 4.1.3 (Open Cover, Subcover, Finite Subcover). Let S � R: A col-
lection O D fO�g�2ƒ of open subsets of R is called an open cover of S if
S � S

�2ƒ O�: If, for some ƒ0 � ƒ; we also have S � S

�2ƒ0 O�; then the
subcollection O0 D fO�g�2ƒ0 is called a subcover (of O). If, in addition, ƒ0 is
finite, then the subcollection O0 is called a finite subcover (of O).

Example 4.1.4. The collection f.n; 2nC 1/g1nD1 is an open cover of .2; 1024/I the
subcollection f.2k; 4k C 1/g1kD1 is a subcover, and the subcollection f.2k; 4k C
1/g256kD1 is a finite subcover.

We are now ready to define the important notion of compactness in R:

Definition 4.1.5 (Compact Set). A set K � R is called compact if every open
cover O D fO�g�2ƒ of K has a finite subcover.

Exercise 4.1.6.

(a) Let fK�g�2ƒ be a collection of compact subsets of R: Show that
T

�2ƒ K� is
compact and that, if ƒ is finite, then

S

�2ƒ K� is also compact. Deduce, for
instance, that any finite set is compact.

(b) Show that the set f0; 1; 1=2; 1=3; : : :g is compact but the subset f1; 1=2; 1=3; : : :g
is not.

Can we replace, in the definition of compactness, the open sets O� of our covers
by open intervals? The answer is yes.
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Proposition 4.1.7. A set K � R is compact if and only if every open cover I D
fI�g�2ƒ of K by (open) intervals I� has a finite subcover.

Proof. Well, if K is compact, then any cover of K by open intervals is an open
cover and hence has a finite subcover. Assume, conversely, that all covers of K by
open intervals have finite subcovers and let O D fO�g�2ƒ be an open cover of K:
Then, for each � 2 ƒ; the open set O� is the union of a (countable) collection I� of
(pairwise disjoint) open intervals. Thus, the collection

S

�2ƒ I� is a cover of K by
open intervals, and hence there exist intervals I1; I2; : : : ; In in this collection such
thatK � I1[I2[� � �[In: If we now pick �1; �2; : : : ; �n 2 ƒ such that Ij � O�j ;
then K �Sn

jD1 O�j : ut
The (closed) unbounded set Œ1;1/ is not compact because the open cover

f.0; n/gn2N has no finite subcover. Similarly, the (bounded) open set .0; 1/ is
not compact because the open cover f.1=n; 1/gn2N has no finite subcover. These
examples suggest that compact sets cannot be unbounded or open. It is in fact easy
to show that they have to be bounded and closed:

Proposition 4.1.8. Compact subsets of R are necessarily closed and bounded.

Proof. Let K � R be compact. Then the open cover f.�n; n/gn2N has a finite
subcover, say f.�n1; n1/; : : : ; .�nk; nk/g: If N D maxfn1; : : : ; nkg; then K �
Œ�N;N � and hence is bounded. Next, if K has no limit points, then it is closed.
If, to get a contradiction, we assume that � 62 K is a limit point of K; then the open
cover f.�1; � � 1=n/ [ .� C 1=n;1/gn2N has no finite subcover. (Why?) ut

The deeper fact, however, is that the converse of Proposition 4.1.8 is also true.
Before presenting it in full generality, let us first prove it for the special case of
closed and bounded intervals:

Proposition 4.1.9. Given any a; b 2 R such that a � b; the interval Œa; b� is
compact.

Proof. Let O D fO�g�2ƒ be an open cover of Œa; b�; and define S � Œa; b� to be
the set of all x 2 Œa; b� such that Œa; x� can be covered by a finite subcover (of O).
Then a 2 S; b is an upper bound of S; and c WD sup.S/ 2 Œa; b�: There is � 2 ƒ
such that c 2 O� and, since O� is open, we have .c � "; c C "/ � O� for some
" > 0: Now, if c < b; then we can pick d 2 .c; c C "/ such that c < d < b;

and it follows that Œa; d � can also be covered by a finite subcover, i.e., d 2 S: This,
however, contradicts c D sup.S/: Thus c D b; and the proof is complete. ut

We can now prove the following important theorem that completely characterizes
the compact subsets of R:

Theorem 4.1.10 (Heine–Borel). A setK � R is compact if and only if it is closed
and bounded.

Proof. In view of Proposition 4.1.8, we need only show that any closed and bounded
subset ofR is compact. So letK � R be closed and bounded, and let O D fO�g�2ƒ
be an open cover of K: Since K is bounded, we can pick a; b 2 R such that
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a < b and K D K� � Œa; b�: Now, Kc is open and if we let O 0 WD Kc; then the
collection O0 WD O [ fO 0g is an open cover of Œa; b�: Since Œa; b� is compact (by
Proposition 4.1.9), we can find a finite subcover O00 � O0: If O 0 WD Kc 62 O00; then
O00 is the desired finite subcover of K: If, however, O 0 2 O00; then O00 n fO 0g is the
finite subcover we are looking for. ut
Remark 4.1.11. Notice that, using Theorem 4.1.10, Exercise 4.1.6(a) becomes
trivial. (Why?) Also, it follows from Theorem 4.1.10 that closed subsets of compact
sets are compact. (Why?)

There are other useful characterizations of compact sets in terms of sequences
and limit points, and the next theorem shows that they are equivalent to the one
given in Theorem 4.1.10.

Theorem 4.1.12. For a set K � R the following statements are equivalent:

(a) K is compact.
(b) K is closed and bounded.
(c) Every infinite subset of K has a limit point in K:
(d) Every sequence in K has a subsequence that converges (to an element of K).

Proof. The equivalence .a/ , .b/ is, of course, the Heine–Borel Theorem. Let us
then prove the implications .b/) .c/) .d/) .b/: Suppose that K is closed and
bounded, and let S � K be an infinite subset. Then S is bounded (because K is)
and hence, by (the Bolzano–Weierstrass) Theorem 2.2.43, it has a limit point, say �:
Since K is closed we must have � 2 K and (c) follows. Next, suppose that (c) is
satisfied and let .xn/ 2 KN: If fxn W n 2 Ng is finite, then we can find integers n0
and nk; k 2 N; such that n1 < n2 < n3 < � � � and xnk D xn0 8k 2 N: (Why?)
Thus lim.xnk / D xn0 2 K as desired. If, on the other hand, fxn W n 2 Ng is infinite,
then [by (c)] it has a limit point � 2 K: By the very definition of limit point, for each
k 2 N, we can find increasing nk 2 N such that jxnk � �j < 1=k: It is then obvious
that lim.xnk / D � 2 K and (d) is satisfied. Finally, suppose that (d) is satisfied,
and let � be a limit point of K: We can find (using the definition of limit point) a
sequence .xn/ 2 KN such that lim.xn/ D �: This implies that all subsequences of
.xn/ also converge to �; and hence [by (d)] we must have � 2 K: Thus, K contains
all its limit points and is therefore closed. If K is unbounded, then we can find a
sequence .xn/ 2 KN such that jxnj > n 8n 2 N: But then no subsequence of .xn/
converges, contradicting (d). ut

We now introduce the concept of connectedness for subsets of R: Intuitively, a
subset of R should be connected if it is in “one piece”. For example, we “expect”
any interval to be connected but the set .0; 1/ [ .2; 3/; for instance, should not be
connected. The precise definition is as follows:

Definition 4.1.13 (Connected, Disconnected, Totally Disconnected). A set S �
R is said to be disconnected if there are open sets U; V � R such that fS \ U;
S \ V g is a partition of S , i.e., S \ U ¤ ;; S \ V ¤ ;; S \ U \ V D ;, and
S D .S \ U/ [ .S \ V /: A set S that is not disconnected is said to be connected.
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Finally, a set S � R is called totally disconnected if for any x; y 2 S such that
x < y; there exists z 2 .x; y/ such that z 62 S:
Exercise 4.1.14. Show that if fS�g�2ƒ is a family of connected subsets of R and if
T

�2ƒ S� ¤ ;; then
S

�2ƒ S� is also connected.

The following theorem shows that what is intuitively obvious is indeed the case,
namely, that the connected subsets of R are precisely the intervals.

Theorem 4.1.15. A subset S 2 R is connected if and only if it is an interval.

Proof. Recall that, by the characterization of intervals (Proposition 2.1.41), a subset
S � R is an interval if and only if, for any a; b 2 S such that a < b; we have
.a; b/ � S: If we suppose that S is connected and a; b 2 S but x 62 S for
some x 2 .a; b/; then U WD .�1; x/ and V WD .x;1/ are disjoint open sets
and fU \ S; V \ Sg is obviously a partition of S; contradicting the fact that S is
connected. Conversely, suppose that S is an interval with endpoints ˛; ˇ 2 R D
Œ�1;1�; ˛ < ˇ: Also, to get a contradiction, suppose U; V � R are open sets
such that fU \ S; V \ Sg is a partition of S: Pick a 2 U \ S; b 2 V \ S; and
assume, for instance, that a < b: Let x D sup.Œa; b�\ .U \S// D sup.Œa; b�\U/:
If x 2 U \ S; then x < b and we have Œx; xC ı/ � Œa; b�\ .U \ S/ D Œa; b�\U;
for some ı > 0; contradicting the definition of x: If on the other hand x 2 V \ S;
then x > a and we have .x � ı; x� � Œa; b� \ .V \ S/ D Œa; b� \ V; for some
ı > 0; which again contradicts the definition of x: Thus we must have x 62 U \ S
and x 62 V \ S: This, however, is absurd since Œa; b� � S: ut

4.2 The Cantor Set

In this section we end our topological preliminaries with a discussion of Cantor’s
ternary set. This is a remarkable subset of the unit interval Œ0; 1� which has
many applications and can be used to define numerous interesting examples and
counterexamples in analysis. Recall that a closed set of real numbers is called perfect
if every one of its elements is a limit point. For example, a closed interval is a
perfect set. Let us introduce one more “topological” definition before we look at the
Cantor set:

Definition 4.2.1 (Nowhere Dense). A set S � R is called nowhere dense if
S�ı D ;, i.e., if the closure of S contains no open intervals. Equivalently, S
is nowhere dense if its exterior (i.e., the interior of its complement) is dense:
..Sc/ı/� D ..S�/c/� D R.

Example. The sets N and Z are nowhere dense, because all their elements are
isolated points. It does not follow, however, that sets with limit points cannot
be nowhere dense. For example, the set f1; 1=2; 1=3; : : :g which has 0 as its
unique limit point is obviously nowhere dense. In fact, as the example of Cantor’s
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ternary set will show, even perfect sets can be nowhere dense! Let us finally point
out that the sets Q and Qc D R n Q are at the other extreme: they are dense, i.e.,
Q� D .Qc/� D R:

We now indicate how Cantor’s ternary set is constructed. We begin with the
(closed) unit interval C0 D Œ0; 1�: From C0 we remove its open middle third to
obtain C1I thus,

C1 D C0 n .1=3; 2=3/ D Œ0; 1=3� [ Œ2=3; 1�:

Next, to obtainC2;we remove the open middle thirds of the two subintervals Œ0; 1=3�
and Œ2=3; 1� of C1:

C2 D Œ0; 1=9� [ Œ2=9; 3=9� [ Œ6=9; 7=9� [ Œ8=9; 1�:

Continuing this construction, we obtain CnC1 by removing the open middle thirds
of all 2n subintervals of Cn: Observe that the Cn are nested: C1 � C2 � C3 � � � � .
The Cantor set C is now defined to be the intersection of the Cn:

Definition 4.2.2 (Cantor Set). Let fCngn2N be the collection of sets constructed
above. We define the Cantor set (or Cantor’s ternary set) C to be

C WD
1
\

nD1
Cn:

Remark 4.2.3.

1. That C ¤ ; follows, for instance, from the Nested Intervals Theorem. In fact,
since at each stage of the construction we remove the (open) middle thirds of
the remaining (closed) subintervals, the Cantor set contains all the endpoints
of the subintervals in Cn 8n 2 N: We shall see, however, that C is actually
uncountable!

2. The sets Cn can be defined (more explicitly) by the following recursive formula:

CnC1 D Cn n
1
[

kD0

�

3k C 1
3nC1 ;

3k C 2
3nC1

�

.n D 0; 1; 2 : : :/:

The concept of length (or measure) will be discussed in detail when we study
the Lebesgue integral. For our next exercise, however, we shall need the following
temporary:

Definition 4.2.4 (Length).

1. For a bounded (possibly degenerate) interval I with endpoints a; b 2 R; a � b;
we define the length (or measure) of I to be �.I / WD b � a: Thus,

�..a; b// D �.Œa; b// D �..a; b�/ D �.Œa; b�/ D b � a:

If I is an unbounded interval, we define its length to be �.I / WD C1:
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2. For a countably infinite collection fIngn2N of pairwise disjoint intervals, we
define the length of S DS1

kD1 Ik to be

�.S/ D �
�

1
[

kD1
Ik

�

WD
1
X

nD1
�.In/; ()

where, once again, the length is defined to beC1 if the above series is divergent.
3. If A; B are countable unions of disjoint intervals, A � B; and �.A/ <1; then

we define the length of B n A to be �.B n A/ WD �.B/ � �.A/.
Exercise 4.2.5.

(a) Show that �.;/ D 0: More generally, show that for any countable set S � R;

we have �.S/ D 0:
(b) Prove the relation ./ above for a finite collection fIkgnkD1 of pairwise disjoint

intervals. (Hint: Let Ik WD ; for all k > n). Deduce that

�
�

1
[

kD1
Ik

�

D lim
n!1�

�

n
[

kD1
Ik

�

:

(c) Show that, for every open set O � R; �.O/ is a well-defined extended real
number in Œ0;C1�:

(d) Show that if A � B � R are as in (3) above, then �.A/ � �.B/:
(e) Show that, for any intervals I and J , we have �.I [J / D �.I /C�.J /��.I \

J /: More generally, show that, if fIkgnkD1 is any finite collection of intervals,
then

�
�

[

k

Ik

�

D X

i

�.Ii /�X

i<j

�.Ii \ Ij /C X

i<j<k

�.Ii \ Ij \ Ik/� � � � C .�1/n�1�
�

\

k

Ik

�

:

Hint: Use the Inclusion–Exclusion Principle (Proposition 1.3.32).
(f) Let Cn be as in the construction of the Cantor set. Find �.Cn/ for each n 2 N

and show that limn!1 �.Cn/ D limn!1 �
�

Tn
kD1 Ck

�

D 0:
(g) Show that �.C / D 0; where C is the Cantor set. (Hint: Find �.D/; where D

is the union of all the open middle thirds deleted in the construction of the Cn;
and note that C D Œ0; 1� nD).

Actually, the length of an interval and hence that of a finite, disjoint union of
intervals can be defined as the limit of a sequence of normalized cardinalities:

Exercise 4.2.6.

(a) Let x 2 R and consider the sequence .Œnx�/1nD1; where, as usual, Œt � denotes the
greatest integer � t . Show that we have

lim
n!1

Œnx�

n
D x:

Deduce, in particular, that Q is dense in R (cf. Theorem 2.1.38).
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(b) Let I be an interval with endpoints a � b: Show that its length �.I / WD b � a
is given by

�.I / D lim
n!1

1

n

ˇ

ˇI \ .Z=n/ˇˇ;

where jS j denotes the cardinality of S and Z=n WD fm=n W m 2 Zg: Hint: For
each n 2 N count the number of integers m 2 Z such that na < m � nb and
use part (a).

To study the properties of the Cantor set C; we need a simple characterization
of its elements. Since C was obtained by deleting open middle thirds, it is not
surprising that the desired characterization of its elements is provided by their
ternary expansions.

Recall (from Chap. 2) that if p > 1 is a fixed integer, then any x 2 Œ0; 1/ has a
base p expansion x D .0:x1x2 � � � /p; where we have

x 2
h

n
X

jD1

xj

pj
;

n
X

jD1

xj

pj
C 1

pn

�

; 8 n 2 N:

In particular, jx �Pn
kD1 xk=pkj < 1=pn for all n 2 N and hence (why?)

x D .0:x1x2 � � � /p D
1
X

nD1

xn

pn
:

As was pointed out in Sect. 2.1, if x D Pn
kD1 xk=pk; then besides the expansion

x D .0:x1x2 � � � xn000 � � � /p; we also have the second expansion x D .0:x0
1x

0
2 � � � /p;

where x0
j D xj for 1 � j � n � 1; x0

n D xn � 1; and x0
k D p � 1 for all k > n:

Indeed,

1
X

nD1

x0
n

pn
D

n
X

kD1
xk=p

k � 1

pn
C

1
X

kDnC1

p � 1
pk

D
n
X

kD1
xk=p

k

because
P1

kDnC1
p�1
pk
D 1=pn: Also, note that 1 D .0:x1x2 � � � /p with xn D p � 1

for all n because

1
X

nD1

p � 1
pn

D .p � 1/=p
1 � 1=p D 1:

In particular, if p D 3; then each x 2 Œ0; 1� has a (not necessarily unique) ternary
expansion

x D .0:x1x2x3 : : :/3 WD x1

3
C x2

32
C x3

33
C � � � ;
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where each xk is either 0; 1; or 2: Note that, if x D .0:x1x2x3 : : :/3 is an arbitrary
ternary expansion, then, since xk � 2 for all k 2 N; we indeed have

x D
1
X

kD1

xk

3k
�

1
X

kD1

2

3k
D 2=3

1 � 1=3 D 1:

Example.

(a) We have 1=2 D .0:111 : : :/3; since

.0:111 : : :/3 D
1
X

kD1

1

3k
D 1=3

1 � 1=3 D
1

2
:

(b) We have 11=26 D .0:102102102 : : :/3; since

.0:102102102 : : :/3 D 1

3
C 0

32
C 2

33
C 1

34
C 0

35
C 2

36
C � � �

D
�

1

3
C 1

34
C 1

37
C � � �

�

C
�

2

33
C 2

36
C 2

39
C � � �

�

D 1=3

1 � 1=27 C
2=27

1 � 1=27

D 11

26
:

As was pointed out, the ternary (or base 3) expansion of a number x 2 Œ0; 1�
is unique except when x D m=3n for some positive integers m; n; where we may
assume that 3 does not divide m: In these exceptional cases, we have two ternary
expansions, one ending with a string of 0’s and, the other with a string of 2s:

x D .0:x1x2 : : : xn1000 : : :/3 D .0:x1x2 : : : xn0222 : : :/3;

for some n: For example, 1=3 D .0:1000 : : :/3 D .0:0222 : : :/3; since

1
X

kD2

2

3k
D 2

9

1
X

kD0

�

1

3

�k

D 1

3
:

It is therefore possible to write all the exceptional x’s—i.e., those with a terminating
ternary expansion—so that their expansions end with strings of 2s and, as we shall
see presently, have no 1’s.

First, we observe that if in the expansion x D .0:x1x2x3 : : :/3 we have xk D 1 for
some k 2 N; then x must belong to (the closure of) one of the middle thirds deleted
in the construction of the Cantor set. This can be seen inductively. For example, if
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x1 D 1; then x 2 Œ1=3; 2=3�: Indeed, we have x D x1=3 C t; where the “tail” t
satisfies

t D
1
X

nD2

xn

3n
�

1
X

nD2

2

3n
D 1

3
:

Also, x2 D 1 implies that x 2 Œ1=9; 2=9�; if x1 D 0I x 2 Œ4=9; 5=9�; if x1 D 1I and
x 2 Œ7=9; 8=9�; if x1 D 2: Thus, deleting the middle third .1=3; 2=3/ removes all
numbers x whose unique ternary expansions satisfy x1 D 1: Similarly, deleting the
middle third .1=9; 2=9/ of Œ0; 1=3� removes all x’s whose unique expansions satisfy
x1 D 0 and x2 D 1, while deleting the middle third .7=9; 9=9/ of Œ2=3; 1� removes
the x’s whose unique expansions satisfy x1 D 2 and x2 D 1: If all middle thirds
are deleted up to the nth stage, then deleting the middle thirds of the remaining
subintervals will remove all numbers x whose unique expansions satisfy xj D 0 or
2 for 1 � j � n and xnC1 D 1. Also, if x is the left endpoint of one of the deleted
middle thirds, then its expansion has the form x D .0:x1x2 � � � xn1000 � � � /3, with
xk D 0 or 2 for 1 � k � n. But then we also have x D .0:x1x2 � � � xn0222 � � � /3:
Summarizing these observations, we have

Proposition 4.2.7. The Cantor set C is the set of all x 2 Œ0; 1� such that x D
.0:x1x2x3 : : :/3; where each xk is either 0 or 2.

Example 4.2.8. We have 1=3 D .0:0222 : : :/3 2 C; 2=3 D .0:2000 : : :/3 2 C;
and, in general, C contains all the endpoints of the subintervals in all the Cn: But
we also have 1=4 D .0:020202 : : :/3 2 C and 3=4 D .0:202020 : : :/3 2 C: The next
theorem shows that, in fact, C and Œ0; 1� have the same cardinality!

Theorem 4.2.9. The Cantor setC is compact, nowhere dense, totally disconnected,
and perfect. Moreover, there is a surjective map from C onto Œ0; 1� and hence C has
the cardinality of the continuum: jC j D jŒ0; 1�j D jRj D c:

Proof. First, C is compact because it is a closed subset of the compact set Œ0; 1� (cf.
Remark 4.1.11). Next, to show that C is nowhere dense—i.e., that C�ı D C ı D
;—note that if .˛; ˇ/ � C for some ˛ < ˇ in R; then .˛; ˇ/ � Cn 8n 2 N:

Since Cn is a union of 2n pairwise disjoint intervals of equal length 1=3n; we must
have ˇ � ˛ � .2=3/n 8n 2 N; which is absurd. This also shows that C is totally
disconnected (why?). To prove that C is perfect, let x 2 C be arbitrary. Given
any " > 0; we can pick n 2 N such that 1=3n < ": Let In denote the subinterval
in Cn containing x: If xn ¤ x is an endpoint of In; then we have (xn 2 C and)
0 < jx � xnj < "; which proves that x is a limit point of C: Finally, if we define the
map � W C ! Œ0; 1� by

�

 1
X

nD1

xn

3n

!

D
1
X

nD1

xn=2

2n
;
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then �..0:x1x2x3 : : :/3/ D .0:y1y2y3 : : :/2;where yn D xn=2: Since each y 2 Œ0; 1�
has a binary expansion, the map � is onto and we get jC j � jŒ0; 1�j: But C � Œ0; 1�
implies that we also have jŒ0; 1�j � jC j and the proof is complete. ut
Remark 4.2.10. We shall see later that the map � W C ! Œ0; 1� defined above
is actually continuous and can be extended to a continuous, monotone map � W
Œ0; 1�! Œ0; 1�; called the Cantor (ternary) function.

4.3 Continuous Functions

We are now ready to define the notion of continuity for real-valued functions of a
real variable. We will assume that all sets in our discussions are subsets of R and
that, as before, I and J (possibly with subscripts or superscripts) will always denote
(not necessarily bounded) intervals. Since intervals are the most basic subsets of R;
we shall mainly consider functions defined on intervals. Most concepts discussed
below can, however, be defined for functions whose domains are arbitrary subsets
of R:

Definition 4.3.1 (Continuous, Discontinuous). Let f W I ! R and let x0 2 I:
We say that f is continuous at x0 if limx!x0 f .x/ D f .x0/, i.e., if f commutes
with “ limx!x0”:

lim
x!x0

f .x/ D f
�

lim
x!x0

x
�

:

Using the ."; ı/-definition of the limit, this means the following:

.8" > 0/.9ı D ı."; x0/ > 0/.8x 2 I /.jx � x0j < ı) jf .x/ � f .x0/j < "/:
()

If f is continuous at x for all x 2 I; then we say that f is continuous on I: Finally,
if f is not continuous at x0 2 I; then we say that f is discontinuous at x0:

Notation 4.3.2. The set of all functions f 2 RI that are continuous on I will be
denoted by C.I /: In particular, C.R/ denotes the set of all f 2 RR such that f is
continuous at every x 2 R: To simplify the notation, we shall often write C.a; b/
and C Œa; b� instead of C..a; b// and C.Œa; b�/; respectively.

Remark 4.3.3.

(a) If S � R is any subset and x0 2 S; then a function f W S ! R is continuous
at x0 if ./ (with .8x 2 I ) replaced by (8x 2 S )) is satisfied. Also, note that
continuity is defined “locally,” i.e., pointwise. Thus, a function f is said to be
continuous on a subset S of its domain if it is continuous at every point of S: In
this case, we write f 2 C.S/:
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(b) In terms of "-neighborhoods, “f W S ! R is continuous at x0 2 S” means

.8 " > 0/.9ı D ı."; x0/ > 0/ .f .S \ Bı.x0// � B".f .x0/// :

(c) The reader may have noticed that, in the above ."; ı/-definition, we have used
the restriction jx�x0j < ı rather than 0 < jx�x0j < ı: This is justified because
f is defined at x0 and, for x D x0; we certainly have jf .x/ � f .x0/j D 0 < ":

As the Remark (b) suggests, we should be able to define continuity by means of
open sets. The next theorem confirms this:

Theorem 4.3.4. We have f 2 C.S/, where S � R may or may not be an interval,
if and only if given any open set O 0 � R there is an open set O � R such that
f �1.O 0/ D S \ O: In particular, if S is open, then f is continuous (on S ) if and
only if the inverse image (under f ) of every open set is open.

Proof. Well, suppose first that f 2 C.S/: Let O 0 be any open set, and let
x0 2 f �1.O 0/, i.e., f .x0/ 2 O 0: Since O 0 is open, we have B".f .x0// � O 0
for some " > 0: Now, by the continuity of f at x0; we can find ı > 0 such
that f .S \ Bı.x0// � B".f .x0// � O 0: Therefore, f �1.O 0/ D S \ O for
some open set O: (Why?) Conversely, if this condition is satisfied for any open
set O 0 and if x0 2 S; then, given any " > 0; B".f .x0// is open and hence
f �1.B".f .x0/// D S \O" for some open set O" and we obviously have x0 2 O":
Pick ı > 0 such that Bı.x0/ � O": It is then clear that f .S \Bı.x0// � B".f .x0//
so that f is continuous at x0: Since x0 2 S was arbitrary, the proof is complete. ut
Remark 4.3.5. Since each open set in R is a (countable) union of (pairwise disjoint)
open intervals, in Theorem 4.3.4 we can replace “any open set O 0” by “any open
interval I 0.”

Corollary 4.3.6. We have f 2 C.S/ if and only if given any closed set F 0 � R

there is a closed set F � R such that f �1.F 0/ D S \ F: In particular, if S is
closed, then f is continuous (on S ) if and only if the inverse image (under f ) of
every closed set is closed.

Proof. Exercise! ut
Definition 4.3.7. Let f W I ! R: Let x0 2 I and recall that, for each ı > 0;
PBı.x0/ WD .x0 � ı; x0 C ı/ n fx0g is a deleted neighborhood of x0:

(Upper and Lower Limits). The upper and lower limits of f at x0 are (the
extended real numbers) defined, respectively, by

lim sup
x!x0

f .x/ WD inf
˚

supff .x/ W x 2 PBı.x0/ \ I g W ı > 0


and

lim inf
x!x0

f .x/ WD sup
˚

infff .x/ W x 2 PBı.x0/ \ I g W ı > 0


:

One also uses limx!x0 f .x/ and limx!x0
f .x/; respectively, to denote the upper

and lower limits of f at x0:
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(Upper and Lower Envelopes). The upper and lower envelopes of f are the
(extended real-valued) functions f and f defined, respectively, by

f .x0/ WD inf
˚

supff .x/ W x 2 Bı.x0/ \ I g W ı > 0


:

f .x0/ WD sup
˚

infff .x/ W x 2 Bı.x0/ \ I g W ı > 0


:

(Oscillation). The oscillation of f at x0 is defined by

!f .x0/ WD f .x0/ � f .x0/:

Exercise 4.3.8.

(a) Let f 2 C.a; b/: Show that, for any y0 2 R; the set fx 2 .a; b/ W f .x/ ¤ y0g
is open. In particular, the set fx 2 .a; b/ W f .x/ ¤ 0g of all points at which f
does not vanish is open.

(b) Let f 2 C Œa; b�: Show that, for any y0 2 R; the set f �1.y0/ WD fx 2 Œa; b� W
f .x/ D y0g is closed. In particular, the set Zf D fz 2 Œa; b� W f .z/ D 0g of all
zeros of f is closed.

(c) Let f W I ! R. Show that lim infx!x0 f .x/ � lim supx!x0
f .x/; for

all x0 2 I; with equality (for lim supx!x0
f .x/ ¤ ˙1) if and only if

limx!x0 f .x/ exists and, in this case, lim infx!x0 f .x/ D limx!x0 f .x/ D
lim supx!x0

f .x/:

(d) Let f W I ! R: Show that f .x/ � f .x/ � f .x/ for all x 2 I and that f is
continuous at x0 2 I if and only if !f .x0/ D 0:

Finally, in view of Theorem 3.3.1, our definition of continuity is also equivalent
to the following sequential version:

Theorem 4.3.9. Let f W I ! R and let x0 2 I: Then f is continuous at x0
if and only if limn!1.f .xn// D f .x0/ for all sequences .xn/ 2 IN satisfying
lim.xn/ D x0:
Definition 4.3.10 (Cauchy’s Functional Equation). A function f W R ! R is
said to be additive, or to satisfy Cauchy’s functional equation, if

f .s C t / D f .s/C f .t/ .8s; t 2 R/: (�)

Theorem 4.3.11. If f satisfies Cauchy’s functional equation and is continuous at
a point x0 2 R; then it is continuous on R and is linear; i.e., we have f .x/ D ax;

for all x 2 R and a constant a 2 R:

Proof. First note that f .0/ D f .0C 0/ D f .0/C f .0/ and hence f .0/ D 0: Now,
for any x 2 R; we have 0 D f .x � x/ D f .x/C f .�x/; so that f .�x/ D �f .x/:
From the continuity of f at x0; it follows that

lim
x!0

f .x/ D lim
x!x0

f .x � x0/ D lim
x!x0

Œf .x/ � f .x0/� D 0:
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Therefore, f is continuous at x D 0: But then, given any x 2 R; we have

lim
h!0

f .x C h/ D f .x/C lim
h!0

f .h/ D f .x/;

and f is indeed continuous on R: On the other hand, it follows from .�/ and a
simple inductive argument that, 8x1; : : : ; xn 2 R;

f .x1 C x2 C � � � C xn/ D f .x1/C f .x2/C � � � C f .xn/: (�)

Thus, taking x1 D � � � D xn D x in .�/; we get f .nx/ D nf .x/; for all x 2 R

and all n 2 N: In particular, we have f .n/ D nf .1/; for all n 2 N: Since f .�n/ D
�f .n/; we actually have f .n/ D nf .1/; for all n 2 Z: If m; n 2 Z and n ¤ 0;

then mf .1/ D nf .m=n/ implies that f .m=n/ D .m=n/f .1/: Therefore, we have
f .r/ D rf .1/; for all r 2 Q: Summing up, we have proved that

f .r/ D ar .8r 2 Q/; ()

where a WD f .1/: Finally, if x 62 Q; pick a sequence .rn/ 2 QN with limn!1 rn D
x: The continuity of f at x and ./ now imply that

f .x/ D lim
n!1f .rn/ D lim

n!1 arn D ax;

and the proof is complete. ut
Exercise 4.3.12 (Dirichlet Function). Show that the Dirichlet function f;

defined by

f .x/ D
(

1 if x 2 Q;

0 if x 62 Q;

is discontinuous at every x 2 R: Hint: Use the sequential definition of continuity
and the fact that both Q and Qc are dense in R:

Example 4.3.13 (Cantor’s Ternary Function). Given a point x 2 Œ0; 1� with x D
.0:x1x2x3 : : :/3; define N WD C1 if xn ¤ 1 8n 2 N; and N WD minfn W xn D 1g
otherwise. Let yn D xn=2 for n < N and let yN D 1: Now define Cantor’s ternary
function � W Œ0; 1�! Œ0; 1� by setting

�.x/ WD
N
X

nD1

yn

2n
:

Claim 1: � is well defined; i.e.,
PN

nD1 yn=2n is independent of the ternary
expansion of x if x has two such expansions.
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Claim 2: � is a monotone, continuous function from Œ0; 1� onto Œ0; 1�: In particular,
the function � W C ! Œ0; 1� defined in the proof of Theorem 4.2.9 is continuous.

Claim 3: � is constant on each interval contained in the complement of the Cantor
set C:

To prove the first claim, note that x has two ternary expansions if and only if it is
an endpoint of a removed middle third. In this case, we either have

x D .0:x1x2 � � � xN�11N0/3 D .0:x1x2 � � � xN�10N2/3;

where xj D 0 or 2 for 1 � j � N � 1 and N0 and N2 indicate (infinite) strings of 0’s
and 2’s, respectively, in which case we obtain the same value

�.x/ D
�

0:
x1

2

x2

2
� � � xN�1

2
1N0
�

2
D
�

0:
x1

2

x2

2
� � � xN�1

2
0N1
�

2
;

or we have

x D .0:x1x2 � � � xN�12N0/3 D .0:x1x2 � � � xN�11N2/3;

in which case we have the obviously unique value

�.x/ D
�

0:
x1

2

x2

2
� � � xN�1

2
1N0
�

2
D
�

0:
x1

2

x2

2
� � � xN�1

2
1N0
�

2
:

For the second claim, let x D .0:x1x2 � � � /3 and x0 D .0:x0
1x

0
2 � � � /3 be two points

in Œ0; 1� with x < x0 and let Nx � 1 and Nx0 � 1 be as above. If m is the
smallest index with xm ¤ x0

m then xm < x0
m and hence ym � y0

m so that �.x/ D
PNx

kD1 yk=2k �
PNx0

kD1 y0
k=2

k D �.x0/: Also, by Theorem 4.2.9, � is onto Œ0; 1� and
hence so is �: To prove the continuity, let " > 0 be given and pick ` so that 1=2` � ":
If x; x0 2 Œ0; 1� satisfy jx � x0j < 1=3`; then we can pick ternary expansions
x D .0:x1x2 � � � /3 and x0 D .0:x0

1x
0
2 � � � /3 with xk D x0

k for 1 � k � `: It follows
that the first ` digits of the binary expansions of �.x/ and �.x0/ are equal and hence
j�.x/ � �.x0/j � 1=2`C1 < ": In fact, as we shall see (cf. Theorem 4.4.7), since �
is increasing, it can only have jump discontinuities. However, being onto, � satisfies
the Intermediate Value Property and hence cannot have jump discontinuities (cf.
Theorem 4.5.16) and must indeed be continuous.

Finally, to prove the third claim, note that if x D .0:x1x2 � � � /3 and x0 D
.0:x0

1x
0
2 � � � /3 belong to the same middle third in the complement Œ0; 1� n C; then

the smallest index m with xm D 1 is also the smallest with x0
m D 1 and hence

�.x/ D �.x0/I i.e., � is constant on all such middle thirds.

Definition 4.3.14 (Period, Periodic Function). Let f W R! R:A number p 2 R

is said to be a period of f if f .x C p/ D f .x/ for all x 2 R: Let P denote the
set of all periods of f: Since 0 2 P; we have P ¤ ;: We say that f is periodic if
P ¤ f0g:
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Proposition 4.3.15. The setP of all periods of a function f W R! R is a subgroup
of R, i.e., (i) 0 2 P; (ii) �p 2 P whenever p 2 P; and (iii) p C q 2 P whenever
p; q 2 P: In particular, for each p 2 P; we have

pZ WD fkp W k 2 Zg � P:

Proof. Exercise! ut
Theorem 4.3.16 (Continuity and Period). Let f 2 C.R/: Then the set P of all
periods of f is a closed subgroup of R: In fact, either P D R or P D f0g or
P D aZ for some a > 0; where, as in Proposition 4.3.15, aZ WD fka W k 2 Zg:
Proof. By Proposition 4.3.15, P is a subgroup of R: For each x 2 R; set

Fx WD ft 2 R W f .x C t / D f .x/g:

Since the function fx W t 7! f .x C t / is continuous on R (why?) and ff .x/g
is closed in R; the set Fx D f �1

x .ff .x/g/ is closed as well (Corollary 4.3.6).
Therefore

P D
\

x2R
Fx

is also closed as claimed. Now, if 0 is a limit point of P; then for each " > 0 there
exists p D p" 2 P with 0 < jpj < ": This implies that, for any (nonempty) open
interval I � R of length > "; we have kp 2 I for some k 2 Z: (Why?) It follows
that P is dense in R and, since it is closed, we must have P D R: If 0 is an isolated
point of P , i.e., P \ .�"; "/ D f0g for some " > 0; then P \ .p � "; pC "/ D fpg
for every p 2 P (why?) and hence P is discrete; i.e., every point in P is isolated.
But then, since P is closed, P \ Œ�c; c� is compact and discrete and hence finite, for
any c > 0: (Why?) Therefore, either P D f0g or the set PC of all positive elements
of P has a smallest element, say a: By Proposition 4.3.15, we have aZ � P: If
P n aZ ¤ ;; then we can find p 2 P and n 2 Z such that a.n� 1/ < p < an: But
then an� p 2 P and we have 0 < an� p < a; contradicting the choice of a: This
shows that P D aZ and completes the proof. ut
Corollary 4.3.17 (Continuous Periodic Function). If f 2 C.R/ is periodic, then
either f is constant or it has a smallest positive period, p: This (unique) period
p > 0 is then said to be “the” period of f:

Proof. Since f is periodic, we have P ¤ f0g: Therefore, the corollary follows at
once from Theorem 4.3.16 if we note that P D R implies that f is constant. ut

The next theorem, which shows that sums, differences, constant multiples,
products, and ratios of continuous functions are continuous, is an immediate
consequence of Theorem 3.3.3.
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Theorem 4.3.18. If f; g W I ! R are continuous at x0 2 I; then the functions
f ˙ g; cf (where c 2 R is any constant), and fg are continuous at x0: If, in
addition, g.x0/ ¤ 0 (resp., g.x0/ > 0; g.x0/ < 0), then g.x/ ¤ 0 (resp., g.x/ >
0; g.x/ < 0) is true near x0 and the function f=g is also continuous at x0:

Also, the continuity of composites of continuous functions follows at once from
Theorem 3.3.14:

Theorem 4.3.19. Let f W I ! J and g W J ! R: Assume that f is continuous
at x0 2 I and that g is continuous at y0 D f .x0/ 2 J: Then g ı f W I ! R is
continuous at x0:

Example 4.3.20.

(a) Let c 2 R be arbitrary. Then the constant function x 7! c is continuous on R;

as follows at once from the definition.
(b) Since limx!x0 x D x0; the identity function x 7! x is continuous on R:

(c) Examples (a) and (b) and Theorem 4.3.18 imply that any polynomial function
x 7! p.x/ D a0 C a1x C � � � C anxn is continuous on R: Also, if x 7! q.x/ D
b0 C b1x C � � � C bmxm is any other (nonzero) polynomial function, then the
rational function x 7! p.x/=q.x/ is continuous at all x0 such that q.x0/ ¤ 0:

(d) The functions sin; cos; and x 7! ex are continuous on R: Also, x 7! log x
is continuous on .0;1/: These facts will be proved later when the precise
definitions of these functions are given (in terms of power series). Note,
however, that using the inequalities j sin � j � j� j and j cos � j � 1 8� 2 R

and the identity

sin x � sin x0 D 2 cos
x C x0
2

sin
x � x0
2

;

we get, for any " > 0; the implication

jx � x0j < " H) j sin x � sin x0j � jx � x0j < ";

which proves that sin is continuous on R: A similar argument (or the identity
cos x D sin.	=2 � x/; 8x 2 R which shows that cos x is the composite of the
continuous functions sin and x 7! 	=2 � x) implies that cos is also continuous
on R:

(e) Let us define the function f W R! R by

f .x/ D
(

x sin.1=x/ if x ¤ 0;
0 if x D 0:

Then f is continuous on R: Indeed, x 7! sin x is continuous on R and x 7! 1=x

is continuous on Rnf0g: Thus, f is certainly continuous on Rnf0g:On the other
hand, we have already seen (by squeezing) that limx!0 x sin.1=x/ D 0 D f .0/:
This proves the continuity at the remaining point x D 0:
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Exercise 4.3.21. Let f; g W I ! R be continuous at x0 2 I:
(a) Show that jf j is continuous at x0:
(b) Show that, if f .x/ � 0 8x 2 I; then

p

f is continuous at x0:
(c) Show that the functions f _g and f ^g defined by .f _g/.x/ D f .x/_g.x/ WD

maxff .x/; g.x/g and .f ^ g/.x/ D f .x/ ^ g.x/ WD minff .x/; g.x/g are
continuous at x0:

Hints: For parts (a) and (b), first prove the continuity of x 7! jxj and x 7! px;
and then use Theorem 4.3.19. For (c), note that 8a; b 2 R; we have a _ b D
.aC b C ja � bj/=2 and a ^ b D .aC b � ja � bj/=2; and use part (a).

4.4 One-Sided Continuity, Discontinuity, and Monotonicity

By definition, a function f (defined at x0) is continuous at x0 if it commutes
with “limx!x0 .” If this limit is replaced by a one-sided limit, then we obtain the
following definition of one-sided continuity which is a convenient tool for the study
of discontinuities.

Definition 4.4.1 (Left Continuous, Right Continuous). Let f W I ! R; and
let x0 2 I: If x0 is not the left (resp., right) endpoint of I; we say that f is left
continuous (resp., right continuous) at x0 if f .x0 � 0/ WD limx!x0� f .x/ D f .x0/

(resp., f .x0 C 0/ WD limx!x0C f .x/ D f .x0/).
Remark 4.4.2.

(a) It is obvious that, if x0 is the right (resp., left) endpoint of I; then “f is left
(resp., right) continuous at x0” simply means that f is continuous at x0:

(b) We can also give an ."; ı/-definition of left (resp., right) continuity at x0: For
example, if x0 is not the left endpoint of I; then “f is left continuous at x0”
means that

.8" > 0/.9ıDı."; x0/ > 0/.8x 2 I /.x0�ı < x < x0) jf .x/ � f .x0/j < "/:

A similar definition can be given (hopefully by the reader!) for the right
continuity at x0 (if x0 is not the right endpoint of I /:

(c) The reader can also provide the corresponding (equivalent) sequential defini-
tions of the above one-sided continuities.

The following theorem is an immediate consequence of Theorem 3.4.6.

Theorem 4.4.3. Let f W I ! R; and let x0 2 I ı be an interior point of I: Then f
is continuous at x0 if and only if it is both left and right continuous at x0, i.e., if and
only if

f .x0 � 0/ D f .x0/ D f .x0 C 0/:
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If a function f is undefined at x0; then it obviously cannot be continuous at x0:
Since, however, one can always extend the domain of f so that it includes x0 [simply
by assigning any value to f .x0/], we shall only consider the discontinuities of a
function on its domain. Using Theorem 4.4.3, we can classify the most common
discontinuities of a function f W I ! R as follows:

Definition 4.4.4 (Removable, Jump, and Infinite Discontinuities). Let f W I !
R; and let x0 2 I:
1. If limx!x0 f .x/ D y0 2 R and y0 ¤ f .x0/; then we say that f has a removable

discontinuity at x0
2. If x0 is an interior point of I and f .x0 � 0/ and f .x0 C 0/ both exist (i.e., are

finite) but f .x0 � 0/ ¤ f .x0 C 0/; then we say that f has a jump discontinuity
at x0: In this case, the difference

f .x0 C 0/ � f .x0 � 0/

is called the jump of f at x0:
3. If x D x0 is a vertical asymptote of f (and note that f .x0/ is still assumed to be

defined), then we say that f has an infinite discontinuity at x0:

Remark 4.4.5.

(a) Let f W I ! R; and let x0 2 I: Suppose that f has a removable discontinuity
at x0I i.e., assume that limx!x0 f .x/ D y0 2 R; but y0 ¤ f .x0/: Define the
function Qf W I ! R by

Qf .x/ D
(

f .x/ if x 2 I n fx0g;
y0 if x D x0:

Then Qf is continuous at x0: In fact, even if the original f is undefined at x0; the
new function Qf is an extension of f that is continuous at x0: We can, therefore,
remove the discontinuity of f at x0:

(b) Jump discontinuities are also called discontinuities of the first kind.
(c) If at least one of the one-sided limits limx!x0˙ f .x/ does not exist as a real

number, then the discontinuity of f at x0 is called a discontinuity of the second
kind. Thus, infinite discontinuities are of the second kind. Note, however, that
x 7! sin.1=x/; which is bounded, has a discontinuity of the second kind at 0:
Indeed, neither of the one-sided limits limx!0˙ sin.1=x/ exists, as we saw in
Chap. 3. Finally, note that the Dirichlet function (cf. Exercise 4.3.12) has a
discontinuity of the second kind at every x 2 R:

Example 4.4.6 (Greatest Integer Function). For each x 2 R let Œx� D maxfn 2
Z W n � xg be the greatest integer � x. The function x 7! Œx� is called the
greatest integer function. This function is continuous on R n Z: It is, however, right
continuous at each integer n 2 Z but not left continuous. Indeed, Œx� D n 8x 2
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Œn; nC 1/; so that limx!nCŒx� D n D Œn�; whereas limx!n�Œx� D n� 1: It follows
that Œx� has a jump of one unit at each integer: ŒnC 0�� Œn� 0� D n� .n� 1/ D 1
8n 2 Z: The greatest integer function is a step function with an infinite number of
steps, i.e., a function whose domain is a union of (an infinite number of) intervals
on each of which the function assumes a constant value.

The class of monotone functions plays an important role in analysis and will be
examined on several occasions. One remarkable feature of monotone functions is
that they have no discontinuities of the “second kind” and, in fact, are continuous
at “almost all” points of their domains. The precise statements of these facts are
summarized in the following.

Theorem 4.4.7. A monotone function f W I ! R can only have jump discontinu-
ities (i.e., discontinuities of the first kind). Moreover, the set D of all points x0 2 I
at which f is discontinuous is countable.

Proof. Recall that f has a discontinuity of the second kind at an interior point
x0 2 I if at least one of the one-sided limits f .x0 ˙ 0/ does not exist. Now, by
Theorem 3.4.36 (Monotone Limit Theorem), this does not happen for monotone
functions. The same theorem also shows that, if at an interior point x0 2 I ı we have
f .x0 � 0/ D f .x0 C 0/; then this common value is necessarily f .x0/ (why?) and
f is therefore continuous at x0: To prove the last statement, let us assume that f is
increasing; the decreasing case may be treated by a change of f to �f: Now, for
each x 2 D, pick a rational number r.x/ 2 Q such that

f .x � 0/ < r.x/ < f .x C 0/:

Since (by Theorem 3.4.36) x1 < x2 implies f .x1 C 0/ � f .x2 � 0/; we have
r.x/ ¤ r.y/; 8x ¤ y, and the map r W x ! r.x/ is a one-to-one function from D

to Q: The countability of Q now implies that D is countable. ut
Exercise 4.4.8. Let f W R ! R be a monotone function satisfying Cauchy’s
functional equation:

f .s C t / D f .s/C f .t/ .8s; t 2 R/:

Show that f is linear, i.e., f .x/ D ax for all x 2 R and some constant a 2 R:

Hint: cf. Theorem 4.3.11.

Remark 4.4.9.

(a) Since D is a countable subset of I; we can write D D fx1; x2; : : :g: Now,
assuming f is increasing, to each xn 2 D we associate the interval Jxn.f / WD
.f .xn � 0/; f .xnC 0// and note that, with � denoting the length, �.Jxn.f // D
f .xn C 0/ � f .xn � 0/ is precisely the jump of f at xn: If xm < xn; then it
follows from f .xm C 0/ � f .xn � 0/ that Jxm.f / \ Jxn.f / D ;: Therefore,
fJxn.f /gxn2D is a countable collection of pairwise disjoint open subintervals of
the range f .I /:
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(b) Note that, in Theorem 4.4.7, the points of D are not necessarily isolated. In
fact, D may even be dense, as the following construction of jump functions will
show.

Definition 4.4.10 (Jump Function). Let I be any interval, .xn/ 2 IN any
sequence, and .hn/ 2 .0;1/N any sequence of positive numbers such that

1
X

nD1
hn <1:

The function f W I ! .0;1/ defined by

f .x/ WD
X

xn<x

hn 8x 2 I; (�)

where the sum is over all n for which xn < x; is called a jump function. Note that
the sum in .�/ is defined to be 0 if xn � x for all n 2 N:

Remark 4.4.11.

(a) Since the series
P1

nD1 hn converges absolutely, its sum is unaffected by any
rearrangement of the terms.

(b) If, in the above definition, we assume that x1 < x2 < x3 < � � � ; then our jump
function is a “step function” with infinite number of steps.

The following theorem shows that the jump function .�/ is left continuous on its
domain and has a jump equal to hn at xn 8n 2 N: It also shows that a left-continuous
increasing function is “continuous modulo a jump function”:

Theorem 4.4.12.

(a) Given any sequence .xn/ 2 IN in I and any sequence .hn/ 2 .0;1/N of
positive numbers satisfying

P1
nD1 hn < 1; let f W I ! .0;1/ be the

corresponding jump function .�/. Then f is increasing, continuous on the
set I n fx1; x2; : : :g; and left continuous on I: Furthermore, f has jump
discontinuities at xn 8n 2 N with the jump at xn equal to hn:

(b) Let f W I ! R be any bounded, left continuous, increasing function. Then
f D � C  ; where � W I ! R is a continuous, increasing function and
 W I ! R is a jump function.

Proof. That f is increasing is clear from its definition. Let X WD fx1; x2; : : :g and
suppose that x 2 I nX: If x is not a limit point of X; then Bı.x/\X D ; for some
ı > 0: Thus, f is constant on I \ Bı.x/ and hence continuous at x: If, however, x
is a limit point of X; then for any " > 0 let N 2 N be such that

P

n>N hn < ": Pick
ı > 0 such that

Bı.x/ \ fx1; x2; : : : ; xN g D ;:
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It is then obvious that for any y 2 I \ Bı.x/; we have

jf .y/ � f .x/j �
X

n>N

hn < ":

Therefore, f is continuous at every x 2 I n X: Exactly the same argument with
Bı.x/ replaced by .x � ı; x/ shows that, if x is not the left endpoint of I , then f is
left continuous at x, i.e., f .x � 0/ D f .x/ (even if x 2 X ). On the other hand, f is
not right continuous at any xn 2 X: Indeed, if xn is not the right endpoint of I; we
clearly have the inequalities

f .xn C ı/ � f .xn/ � hn ()

for all n 2 N and all sufficiently small ı > 0: Finally, we show that

f .xn C 0/ � f .xn � 0/ D f .xn C 0/ � f .xn/ D hn .8n 2 N/; ()

assuming that the xn are all interior points of I: The case where some xn is an
endpoint is treated similarly and will be left to the reader. Now, if for some ı > 0

we have .xn; xn C ı/ \ X D ;; then ./ follows at once. (Why?) Assume, then,
that .xn; xn C ı/ \ X is infinite for every ı > 0: For each " > 0 pick N > n such
that

P

k>N hk < ": If ı > 0 is chosen so that

.xn; xn C ı/ \ fx1; x2; : : : ; xN g D ;;

then ./ implies that, for every x 2 .xn; xn C ı/; we have

hn � f .x/ � f .xn/ < hn C ":

Since " was arbitrary, ./ follows in this case as well.
To prove (b), note that f is increasing and hence has a countable number of jump

discontinuities, say at x1; x2; : : : ; with (positive) jumps

hn WD f .xn C 0/ � f .xn � 0/; .n D 1; 2; : : :/:

Also, the boundedness of f implies that

1
X

nD1
hn � sup.f / � inf.f / <1:

Now, for each x 2 I; we define  .x/ and �.x/ to be

 .x/ WD
X

xn<x

hn; �.x/ WD f .x/ �  .x/:
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For any x; y 2 I; x < y; we have

�.y/ � �.x/ D .f .y/ � f .x// � . .y/ �  .x// � 0;

for the net change f .y/ � f .x/ of the increasing function f on Œx; y� is at least as
large as the sum of its jumps in the same interval. Thus, � is increasing. To prove
the continuity of �; let x 2 I ı: If x 62 X WD fx1; x2; : : :g; then f and  are both
continuous at x and

�.xC0/��.x�0/ D .f .xC0/�f .x�0//�. .xC0/� .x�0// D 0�0 D 0;

while if x D xn for some n; then f and  have the same jump hn at xn and we still
have

�.xC0/��.x�0/ D .f .xC0/�f .x�0//�. .xC0/� .x�0// D hn�hn D 0:

Thus, � is continuous on I ı: The continuity at the endpoints is proved similarly. ut
We end this section by showing that, for a continuous function to be monotone

(say, increasing) on an interval, the condition “x < y ) f .x/ � f .y/” can be
replaced by a much weaker one:

Proposition 4.4.13. Let D be a countable subset of an interval I 2 R and let
f W I ! R be continuous. If for every interior point x 2 I ı with x 62 D and every
ı > 0 there exists y 2 .x; xC ı/ such that f .x/ � f .y/; then f is increasing on I:

Proof. Let s; t 2 I with s < t: We claim that the following holds.

� < f .s/ and � 62 f .D/ H) � � f .t/: (�)

Define S WD fx 2 Œs; t � W � � f .x/g and note that s 2 S so that S ¤ ;: Also, since
f is continuous, S D Œs; t �\f �1.Œ�;1// is closed (cf. Corollary 4.3.6). Therefore,
� WD sup.S/ 2 S: We claim that � D t: Suppose that � < t and note that we cannot
have � < f .�/ because, f being continuous, this would imply that � is an interior
point of S , which is impossible as � D sup.S/: (Why?) Therefore, � D f .�/: But
then � 62 D because � D f .�/ 62 f .D/: By assumption, we can then find a point
� 2 .�; t/ with � D f .�/ � f .�/: This, however, implies that � 2 S; contradicting
� D sup.S/: Therefore, � D t and hence � � f .t/; establishing .�/. Since f .D/ is
countable, there are numbers � 62 f .D/ arbitrarily close to f .s/ and hence we have
f .s/ � f .t/: ut
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4.5 Extreme Value and Intermediate Value Theorems

We shall now look at the (topological) properties of continuous functions. The two
most important properties are that continuous functions map compact sets onto
compact sets and connected sets onto connected ones (i.e., intervals onto intervals).

Theorem 4.5.1 (Continuity and Compactness). Let f 2 C.I /: If K is compact
and K � I; then the (direct) image f .K/ is also compact.

Proof. Suppose K is a compact subset of I; and let fO 0
�g�2ƒ be an open cover of

f .K/: Then the continuity of f implies that for each � 2 ƒ; we have f �1.O 0
�/ D

I \O� for some open set O�: Thus, the collection fO�g�2ƒ is an open cover of K
(why?). Since K is compact, it can be covered by a finite subcollection:

K � O�1 [O�2 [ � � � [O�n:

It then follows that

f .K/ � O 0
�1
[O 0

�2
[ � � � [O 0

�n
:

Since fO 0
�g�2ƒ was an arbitrary open cover of f .K/; the proof is complete. ut

The following theorem is an immediate corollary of Theorem 4.5.1. It states the
important fact that a continuous function on a compact setK assumes its (absolute)
maximum and minimum values in K:

Theorem 4.5.2 (Weierstrass’s Extreme Value Theorem). Let f 2 C.I / and let
K � I be a compact set. Then f is bounded on K and there are ˛; ˇ 2 K such
that f .˛/ D infff .x/ W x 2 Kg and f .ˇ/ D supff .x/ W x 2 Kg: In particular, if
f 2 C Œa; b�; then, for some ˛; ˇ 2 Œa; b�; we have f .˛/ D min.f / D inf.f / and
f .ˇ/ D max.f / D sup.f /:

Proof. Indeed, by Theorem 4.5.1, f .K/ is compact—hence closed and bounded—
and, as such, contains both supff .x/ W x 2 Kg and infff .x/ W x 2 Kg: ut
Remark 4.5.3. Note that the compactness of K and the continuity of the function
f are both necessary for the conclusion of Theorem 4.5.2, as the following simple
examples demonstrate:

(a) The function f W Œ0;1/ ! R defined by f .x/ WD x2 is certainly continuous
but it is not bounded above. This is because the domain Œ0;1/ is unbounded
and hence not compact.

(b) Define f W Œ�1; 1�! R by

f .x/ WD
(

1=x if x ¤ 0;
0 if x D 0:

Here, the domain Œ�1; 1� is compact but f is unbounded. This is because f is
discontinuous at 0:
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(c) Consider the function f W Œ0; 1/ ! R defined by f .x/ WD x3: Here, f is
continuous and bounded on the domain Œ0; 1/, but sup.f / D 1 is not attained
in the domain. The reason is that the interval Œ0; 1/ (which is bounded but not
closed) is not compact.

The next fundamental result is the fact that continuous functions preserve
connectedness. This is classically known as Bolzano’s Intermediate Value Theorem.
Since the connected subsets of R are the intervals and the latter have been
characterized (cf. Proposition 2.1.41), the theorem states that once a continuous
function assumes a pair of (distinct) values, it also assumes all the values in between.
We first give the abstract version of the result and, although Bolzano’s Theorem is
an immediate corollary, we still include (for the sake of concreteness) a direct proof.

Theorem 4.5.4 (Continuity and Connectedness). Let I be an open interval and
let f 2 C.I /: Then, for any connected set S with S � I; the (direct) image f .S/
is connected.

Proof. If f .S/ is disconnected, then we can find open sets U; V � R such that
fU \ f .S/; V \ f .S/g is a partition of f .S/: Since f is continuous on the open
interval I; the inverse images f �1.U /; f �1.V / are both open. Also, from U \
f .S/ ¤ ;; V \ f .S/ ¤ ; we deduce that the sets f �1.U / \ S and f �1.V / \ S
are nonempty and disjoint, the latter following from .U \f .S//\ .V \f .S// D ;:
Finally, we have S � f �1.U / [ f �1.V /: But this means that S is disconnected,
which is absurd. ut
Definition 4.5.5 (Intermediate Value Property). Let I � R be any interval and
let J � I be any subinterval of I: A function f W I ! R is said to have the
Intermediate Value Property on J; if for any a; b 2 J the function f takes on all the
values between f .a/ and f .b/, i.e., in view of Proposition 2.1.41 ( Characterization
of Intervals), if f .J / is an interval.

Theorem 4.5.6 (Bolzano’s Intermediate Value Theorem). Let f 2 C.I /: Then
f has the Intermediate Value Property on I: In other words, given any a; b 2 I;
a < b; and any number y0 between f .a/ and f .b/; there is a number x0 2 Œa; b�
such that f .x0/ D y0: In particular, the range f .I / is an interval.

Proof. As mentioned above, this is an immediate consequence of Theorem 4.5.4,
but here is a direct proof: Suppose, for instance, that f .a/ � f .b/; and let S WD
fx 2 Œa; b� W f .x/ � y0g: Since a 2 S; we have S ¤ ;: Also, S is certainly
bounded above by b: Let x0 WD sup.S/: Then we have a � x0 � b: (Why?) Now,
if f .x0/ < y0; then f .a/ � y0 � f .b/ implies that x0 < b: Since f is continuous
at x0; we can find x1 2 .x0; b/ such that f .x1/ < y0: Thus x1 2 S: But then
x1 > x0 contradicts the fact that x0 D sup.S/: Next, assume that f .x0/ > y0:

Then, using the continuity of f at x0; we can find x2 2 .a; x0/ such that f .x/ > y0
for all x 2 Œx2; x0�: But this contradicts the fact that x0 is the least upper bound of S:
Thus, we must have f .x0/ D y0: The last statement follows from Proposition 2.1.41
(Characterization of Intervals). ut
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Combining Theorems 4.5.2 and 4.5.4, we conclude that a continuous function
maps closed bounded intervals onto closed bounded intervals:

Theorem 4.5.7. If f 2 C Œa; b�; then its range f .Œa; b�/ is a closed, bounded
interval.

Proof. By Theorem 4.5.2, we can find ˛; ˇ 2 Œa; b� such that f .˛/ D m WD inf.f /
and f .ˇ/ D M WD sup.f /: Now Theorem 4.5.4 implies that Œm;M� � f .Œa; b�/:

Since f .Œa; b�/ � Œm;M� obviously holds, we get f .Œa; b�/ D Œm;M�: ut
Definition 4.5.8 (Zero, Consecutive zeros). Given a function f W I ! R; a
number z 2 I is called a zero of f if f .z/ D 0: Two zeros z1; z2 2 I; z1 < z2
of f are called consecutive zeros of f if f .x/ ¤ 0 for all x 2 .z1; z2/:

The Intermediate Value Theorem is in fact equivalent to the following special
case, which can be used to investigate the zeros of continuous functions:

Theorem 4.5.9 (Location of Zeros Theorem). Let a < b and f 2 C Œa; b�: If
f .a/ and f .b/ have opposite signs (i.e., if f .a/f .b/ < 0), then f .c/ D 0 for
at least one c 2 .a; b/: More generally, let f and g be continuous real-valued
functions on a closed bounded interval Œa; b�; a < b: If f .a/�g.a/ and f .b/�g.b/
have opposite signs, then f .c/ D g.c/ for at least one c 2 .a; b/:
Proof. If f .a/f .b/ < 0; then either f .a/ < 0 < f .b/ or f .b/ < 0 < f .a/; and
we can apply the Intermediate Value Theorem. The second part can be reduced to
the first by considering the continuous function f � g: ut
Corollary 4.5.10 (Fixed Point Theorem). If f W Œa; b� ! Œa; b� is continuous,
then there is a point p 2 Œa; b� such that f .p/ D p:
Proof. If f .a/ D a or f .b/ D b; then there is nothing to prove. Hence we may
assume that f .a/ > a and f .b/ < b: Now consider the function

g.x/ WD x � f .x/ .8x 2 Œa; b�/:

Then g is continuous on Œa; b� and we have g.a/ < 0 while g.b/ > 0: The corollary
now follows from the theorem. ut
Corollary 4.5.11. Let f 2 C.I / and let z1; z2 2 I; z1 < z2; be consecutive zeros
of f: Then either f .x/ > 0 8x 2 .z1; z2/ or f .x/ < 0 8x 2 .z1; z2/: In other words,
f does not change sign on .z1; z2/:

Remark 4.5.12.

(a) As pointed out above, Theorem 4.5.9 implies the Intermediate Value Theorem.
Indeed, if in Theorem 4.5.6 we replace f by the continuous function Qf WD
f � y0; where y0 denotes the constant function x 7! y0; then Qf .a/ and Qf .b/
have opposite signs and Theorem 4.5.9 may be applied.
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(b) The converse of the Intermediate Value Theorem is false. Indeed, consider the
function f W R! R defined by

f .x/ WD
(

sin.1=x/ if x ¤ 0;
0 if x D 0:

Then, as was seen before, neither of the one-sided limits limx!0˙ sin.1=x/
exists and hence f is discontinuous at 0; although the range of f is clearly
the closed interval Œ�1; 1� and hence f has the Intermediate Value Property.
We shall see below, however, that the converse is true for piecewise monotone
functions. In fact, it is also true for derivatives of differentiable functions (cf.
Darboux’s Theorem in Chap. 6).

Exercise 4.5.13 (Zeros of Odd-Degree Polynomials). Let p.x/ D a0 C a1x C
� � � C anxn be a polynomial of degree n; and assume that n is odd. Show that p
has at least one real zero, i.e., p.z/ D 0 for at least one z 2 R: Hint: Note that
p.x/ � anxn .x !˙1/; and look at the sign of anxn for jxj sufficiently large.

Exercise 4.5.14 (Bisection Method). Let I0 D Œa0; b0�; a0 < b0; and let
f 2 C Œa0; b0� be such that f .a0/ and f .b0/ have opposite signs; e.g., assume
that f .a0/ < 0 < f .b0/: Define (inductively) a sequence fIn; n D 0; 1; 2; : : :g of
closed intervals as follows. Let z0D .a0Cb0/=2 be the midpoint of I0: If f .z0/ ¤ 0;
let I1 D Œa1; b1� WD Œa0; z0� if f .z0/ > 0 and I1 D Œa1; b1� WD Œz0; b0� if f .z0/ < 0:

Suppose In D Œan; bn� is already defined. Let zn WD .anCbn/=2 be its midpoint and,
if f .zn/ ¤ 0; let InC1 D ŒanC1; bnC1� be the half of In on which f changes sign.

(a) Show that, if f .zn/ ¤ 0 8n 2 N; then

1
\

nD0
Œan; bn� D fzg;

where z D lim.zn/ 2 .a0; b0/ and f .z/ D 0: [Hint: Use the Nested Intervals
Theorem and the fact that jzn � zj � .b0 � a0/=2nC1(why?).]

(b) Apply the Bisection Method to the function f W Œ1; 2�! R defined by f .x/ WD
x2�2:Here we obviously have z D p2; and the approximation zn 	

p
2 can be

made accurate to any prescribed number of decimal places by a suitable choice
of n: Find n such that this approximation is accurate to ten decimal places.

Definition 4.5.15 (Piecewise Monotone, Piecewise Continuous). A function f W
Œa; b� ! R with a < b is called piecewise monotone (resp., piecewise continuous)
if, for some n > 1; there exist n � 1 numbers x1; x2; : : : ; xn�1 2 .a; b/ satisfying

x0 WD a < x1 < x2 < � � � < xn�1 < xn WD b
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such that f is monotone on (resp., has a continuous extension to) each Œxk�1; xk�;
1 � k � n: Note that the continuous extension of f to Œxk�1; xk� is guaranteed if
and only if f .xk�1 C 0/ and f .xk � 0/ are both finite.

We are now ready to prove the converse of the Intermediate Value Theorem for
functions that are piecewise monotone on any finite subinterval of their domain.

Theorem 4.5.16. Suppose f W I ! R is piecewise monotone on any subinterval
Œa; b� � I with a < b and satisfies the Intermediate Value Property (on I ). Then
f 2 C.I /:
Proof. Since f is monotone on closed subintervals of the form Œxk�1; xk�; it is
sufficient to show that a monotone function f on a closed interval Œa; b� with a < b
is continuous on Œa; b� if it satisfies the Intermediate Value Property (on Œa; b�).
Changing f to �f; if necessary, we may assume that f is increasing. If f has
a discontinuity at point x0 2 Œa; b�; then (by Theorem 4.4.7) it must be a jump
discontinuity; i.e., we must have f .x0�0/ < f .x0/ or f .x0/ < f .x0C0/ (or both).
Assume, for instance, that f .x0/ < f .x0C0/: Then the Intermediate Value Property
fails on Œx0; x0C ı� for any ı > 0: (Why?) Thus, we must have f .x0C0/ D f .x0/:
Similarly, we have f .x0 � 0/ D f .x0/: ut

The following proposition shows that if, in Theorem 4.5.16, we assume f to
be injective rather than piecewise monotone, then f will automatically be (strictly)
monotone and hence continuous.

Proposition 4.5.17. Suppose f W I ! R is injective and satisfies the Intermediate
Value Property. Then f is strictly monotone and continuous.

Proof. Let a; b 2 I; a < b: Since (f being one-to-one) f .a/ ¤ f .b/; let us
assume f .a/ < f .b/: We want to show that, for any x; y 2 I; x < y implies
f .x/ < f .y/: Now, if a < c < b; then f .a/ < f .c/ < f .b/: Indeed, if f .c/ >
f .b/; then f .a/ < f .b/ < f .c/; and by the Intermediate Value Property there
exists x 2 .a; c/ with f .x/ D f .b/; contradicting the injectivity of f: Likewise,
we cannot have f .c/ < f .a/: Similar arguments show that, if we start with b < c

(resp., c < a), then f .b/ < f .c/ (resp., f .c/ < f .a/). In general, given any
numbers x; y 2 I such that x < y; and any a 2 I; x ¤ a ¤ y; we may apply the
preceding arguments to the triple a; x; y; to deduce f .x/ < f .y/: The continuity
of f follows from Theorem 4.5.16. ut

Our goal for the rest of this section is to investigate the continuity of the inverse
of an injective, continuous function. We begin by making the following.

Remark 4.5.18. If f is strictly monotone, say strictly increasing, then the intervals
Jxn WD

�

f .xn� 0/; f .xnC 0/
�

in Remark 4.4.9(a) correspond to the “vertical gaps”
in the graph of f: We may “fill” these gaps by vertical line segments. The resulting
graph is not necessarily the graph of a function, but its “inverse graph”, i.e., its
reflection in the bisector y D x, is (draw a picture), and it actually provides a
continuous (left) inverse for f :
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Proposition 4.5.19. If f W I ! R is strictly monotone, then it has a continuous
(left) inverse. In other words, there is a continuous function g W J ! R; where J
is the interval whose endpoints are (the extended real numbers) infff .x/ W x 2 I g
and supff .x/ W x 2 I g; such that g.f .x// D x for all x 2 I:
Proof. We assume that f is strictly increasing. The decreasing case is similar, or
we can use the “flipped” function Lf .x/ WD f .�x/: As the above remark suggests,
we define

g.y/ WD supft 2 I W f .t/ � yg; 8y 2 J:

Then, since f is strictly increasing, g is well defined and increasing (although not
necessarily strictly) and we have g

�

f .x/
� D x for all x 2 I: Also, for any a < b

in I; we have g
�

Œf .a/; f .b/�
� D Œa; b� and hence g satisfies the Intermediate Value

Property on J: The continuity of g now follows from Theorem 4.5.16. ut
If a continuous, injective function has a continuous inverse function, then we call

it a homeomorphism:

Definition 4.5.20 (Homeomorphism). Let I; J � R be intervals. A function f W
I ! J is called a homeomorphism of I onto J if it is a continuous, one-to-one
correspondence whose inverse f �1 is also continuous. If such a function f exists,
the intervals I and J are then called homeomorphic.

Example 4.5.21. Let f W R ! .�1; 1/ be the function f .x/ WD x=
p
1C x2: Then

f is a homeomorphism of R onto .�1; 1/: Indeed, the inverse is f �1.x/ D
x=
p
1 � x2; and both f and f �1 are continuous. Moreover, the restriction

f j.0;1/ is a homeomorphism of .0;1/ onto .0; 1/; and the restriction f jŒ0;1/
is a homeomorphism of Œ0;1/ onto Œ0; 1/:

Exercise 4.5.22. Let I; J � R be nontrivial intervals (i.e., each containing more
than one point).

(a) Show that, if I and J are both open, then they are homeomorphic. (Hint: In the
bounded case I D .a; b/; J D .c; d/; show that there is an affine function
f .x/ WD ˛x C ˇ (with suitable constants ˛ ¤ 0 and ˇ) mapping .a; b/

homeomorphically onto .c; d/: If at least one of I; J is unbounded, use the
homeomorphism f .x/ WD x=p1C x2 given in Example 4.5.21.)

(b) Show that, if I; J are both closed and bounded, then they are homeomorphic.
Also show that all closed unbounded intervals .�1; b� and Œa;C1/; a; b 2 R

are homeomorphic to each other as well as to any bounded half-open intervals
.c; d � and Œc; d/; �1 < c < d < C1:

(c) Show that, if I is open and J ¤ R is closed or half-open, then I and J are not
homeomorphic. Also, if I is closed and bounded and J is half-open, show that
I and J are not homeomorphic.

The following theorem shows that the homeomorphisms between intervals of R
are precisely the strictly monotone, continuous functions.
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Theorem 4.5.23 (Homeomorphism Theorem). For a function f W I ! R the
following statements are equivalent and each implies that J WD f .I / is an interval.

(a) f is a homeomorphism onto J:
(b) f is injective and continuous.
(c) f is injective and satisfies the Intermediate Value Property.
(d) f is strictly monotone and satisfies the Intermediate Value Property.
(e) f is strictly monotone and continuous.

Proof. First note that, if f satisfies any one of the above statements, then it satisfies
the Intermediate Value Property and hence the range J WD f .I / is an interval. Let
us now prove the implications .a/ ) .b/ ) .c/ ) .d/ ) .e/ ) .a/: Observe
that .a/) .b/ follows from the definition of “homeomorphism,” .b/) .c/ follows
from the Intermediate Value Theorem, .c/) .d/ follows from Proposition 4.5.17,
and .d/) .e/ follows from Theorem 4.5.16. To prove .e/) .a/; note that, if f is
strictly monotone, then it is obviously one-to-one. Thus, to finish the proof, we must
only show that f �1 W J ! I is continuous. Since f �1 is also strictly monotone
(cf. Proposition 3.1.9), it suffices (by Theorem 4.5.16) to show that it satisfies the
Intermediate Value Property. However, this is clearly the case because the range of
f �1 is the interval I: ut
Example 4.5.24. For any integer n 2 N; consider the monomial p.x/ D xn: If n
is odd, then p is continuous and strictly increasing on R and, if n is even, it is
continuous and strictly increasing on Œ0;1/: By Theorem 4.5.23, p maps R onto
itself if n is odd and maps Œ0;1/ onto itself if n is even. In other words, every real
number has a unique nth root if n is odd, and every nonnegative real number has a
unique (nonnegative) nth root if n is even. Moreover, the inverse function x 7! x1=n

is continuous (on R for odd n’s and on Œ0;1/ for even n’s).

4.6 Uniform Continuity

Recall that a function f W I ! R is continuous at x0 2 I if

.8" > 0/.9ı D ı."; x0/ > 0/.8x 2 I /.jx � x0j < ı) jf .x/ � f .x0/j < "/:

Note that the dependence of ı on both " and x0 appears explicitly: ı D ı."; x0/: To
remove the dependence of ı on x0;we need a refinement of the concept of continuity
which we now define.

Definition 4.6.1 (Uniformly Continuous). A function f W I ! R is said to be
uniformly continuous (on I ) if

.8" > 0/.9ı D ı."/ > 0/.8x; x0 2 I /.jx � x0j < ı) jf .x/ � f .x0/j < "/:
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Remark 4.6.2.

(a) If, for each (fixed) x0 2 I; we set x0 D x0 in the above definition, it follows
that a uniformly continuous function (on I ) is continuous (on I ). Unfortunately,
the converse is false in general, as the following example shows: Consider the
function f .x/ WD x2 defined on R: Suppose that f is uniformly continuous on
R: Then, setting " D 1; we can find ı > 0 such that

.8x; x0 2 R/.jx � x0j < ı) jx2 � x02j < 1/:

Now, let x D 2=ı and x0 D ı=2C 2=ı: Then jx � x0j D ı=2 < ı; but

jx2 � x02j D
ˇ

ˇ

ˇ

ˇ

4

ı2
�
�

ı2

4
C 2C 4

ı2

�

ˇ

ˇ

ˇ

ˇ

D 2C ı2

4
> 1:

Observe that 2=ı !C1 as ı ! 0C; hence limı!0C x D limı!0C x0 D C1:
But even if the domain of our function is bounded, uniform continuity does
not follow in general. As we shall see below, compactness of the domain is a
sufficient (but not necessary) condition for a continuous function to be uniformly
continuous.

(b) Uniform continuity may be defined on sets other than intervals. For any set
S � R; we say that f W S ! R is uniformly continuous on S if

.8" > 0/.9ı D ı."/ > 0/.8x; x0 2 S/.jx � x0j < ı) jf .x/ � f .x0/j < "/:

It is obvious that, if f is uniformly continuous on S; then it is also uniformly
continuous on any subset of S: On the other hand, a function not uniformly
continuous on a subset of S cannot be uniformly continuous on S:

(c) For a function f W S ! R to be nonuniformly continuous on S; the following
must be satisfied:

.9"0 > 0/.8ı > 0/.9xı; x0
ı 2 S/.jxı � x0

ıj < ı and jf .x/ � f .x0/j � "0/:

Using ı D 1=n; n 2 N;we get the following criterion for nonuniform continuity
of a function f W S ! R: 9 "0 > 0 and two sequences .xn/; .x0

n/ 2 SN such
that lim.xn � x0

n/ D 0 and jf .xn/ � f .x0
n/j � "0 8n 2 N.

Example 4.6.3.

(a) Let f W R ! R be an affine function, i.e., f .x/ D ˛x C ˇ; for all x 2 R and
some ˛; ˇ 2 R: Then f is uniformly continuous on R: Indeed, if ˛ D 0; then
f is constant and jf .x/ � f .x0/j D jˇ � ˇj D 0 < " for any x; x0 2 R: If
˛ ¤ 0; then any ı 2 .0; "=j˛j� will do, since jx � x0j < ı � "=j˛j implies

j.˛x C ˇ/ � .˛x0 C ˇ/j D j˛jjx � x0j < ":
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(b) Consider the function x 7! sin x on R: The inequalities j sin � j � j� j and
j cos � j � 1; valid for every � 2 R; and the identity

sin x � sin x0 D 2 cos
x C x0

2
sin

x � x0

2

imply that for any x; x0 2 R we have

j sin x � sin x0j � jx � x0j:

Therefore, sin is uniformly continuous on R: The same is of course true for cos;
since cos x D sin.	=2 � x/ 8x 2 R:

We now prove that a continuous function is uniformly continuous on compact
subsets of its domain. Due to the importance of this result, we give two proofs for it!

Theorem 4.6.4 (Uniform Continuity and Compactness). Let f 2 C.I / and let
K � I be compact. Then f is uniformly continuous on K: In particular, any f 2
C Œa; b� is uniformly continuous.

First Proof. If f is not uniformly continuous on K; then (by Remark 4.6.2(c)
above) 9 "0 > 0 and two sequences .xn/; .x0

n/ 2 KN such that lim.xn � x0
n/ D 0

and jf .xn/�f .x0
n/j � "0 8n 2 N. SinceK is compact, there is a subsequence .xnk /

such that lim.xnk / D x0 for some x0 2 K: But then lim.xnk � x0
nk
/ D 0 implies

lim.x0
nk
/ D x0 as well. The continuity of f at x0 now implies that

lim
k!1f .xnk / D f .x0/ D lim

k!1f .x0
nk
/:

This, however, is impossible since

jf .xnk / � f .x0
nk
/j � "0 8k 2 N:ut

Second Proof. Let " > 0 be given. For each x 2 K the continuity of f at x
implies that

.9ıx > 0/.8x0 2 K/.jx � x0j < ıx ) jf .x/ � f .x0/j < "=2/:

The open intervals Ix WD .x � ıx=2; x C ıx=2/; x 2 K form an open cover of the
compact set K and hence we can find finitely many points x1; x2; : : : ; xn 2 K
such that

K �
n
[

kD1
Ixk :
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Now let ı WD minfıx1=2; ıx2=2; : : : ; ıxn=2g: For any x; x0 2 K satisfying
jx � x0j < ı; we then have x; x0 2 .xk � ıxk ; xk C ıxk / for some k: Indeed, if
x 2 Ixk ; then we have

jx0 � xkj � jx0 � xj C jx � xkj < ı C ıxk =2 � ıxk =2C ıxk =2 D ıxk :

Thus, jx � x0j < ı implies

jf .x/ � f .x0/j � jf .x/ � f .xk/j C jf .x0/ � f .xk/j < "=2C "=2 D ";

and the proof is complete. ut
We shall now look at some of the advantages of having uniform continuity.

As we saw in Chap. 3, the study of limits of functions can be reduced to the
study of suitably related sequences. The following proposition shows that uniformly
continuous functions map Cauchy sequences to Cauchy sequences.

Proposition 4.6.5 (Cauchy Sequences and Uniform Continuity). If f W S ! R

is a uniformly continuous function on a set S � R and if .xn/ 2 SN is a Cauchy
sequence in S; then .f .xn// 2 RN is a Cauchy sequence (in R).

Proof. Let " > 0 be given. Pick ı > 0 such that

.8x; x0 2 S/.jx � x0j < ı) jf .x/ � f .x0/j < "/: ()

Since .xn/ is Cauchy, we can find N 2 N such that jxm�xnj < ı for allm; n � N:
But then ./ implies that jf .xm/ � f .xn/j < " holds for all m; n � N: ut

We are now ready to prove that a function f W .a; b/ ! R is uniformly
continuous if it has a continuous extension to the closed interval Œa; b�:

Theorem 4.6.6 (Continuous Extension Theorem). A function f W .a; b/ ! R

is uniformly continuous on .a; b/ if and only if it can be extended to a continuous
function on Œa; b�:

Proof. If f has a continuous extension Qf W Œa; b� ! R; then (Œa; b� being
compact) Qf is uniformly continuous on Œa; b� and hence also on .a; b/; where
Qf D f: Conversely, suppose f is uniformly continuous on .a; b/: If .xn/ 2 .a; b/N

and lim.xn/ D a; then .f .xn// is Cauchy and (since R is complete) we have
lim.f .xn// D ˛ for some ˛ 2 R:Moreover, if .x0

n/ 2 .a; b/N is any other sequence
with lim.xn/ D a; then lim.xn � x0

n/ D 0 and the uniform continuity of f implies

lim.f .xn// D ˛ D lim.f .x0
n//:

A similar argument shows that there is a unique ˇ 2 R such that lim.f .xn// D ˇ

for every sequence .xn/ 2 .a; b/N satisfying lim.xn/ D b: If we now define
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Qf .x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

˛ if x D a;
f .x/ if a < x < b;

ˇ if x D b;

then Qf D f on .a; b/ and hence is continuous there. Also, by the sequential
definition of continuity, Qf is continuous at the endpoints a and b: ut
Exercise 4.6.7. Show that the function x 7! sin.1=x/ is not uniformly continuous
on .0; 1�:

Remark 4.6.8.

1. As we have seen above, a continuous function with compact domain is auto-
matically uniformly continuous. But compactness is not a necessary condition.
For example, any affine function x 7! ˛x C ˇ is uniformly continuous on R

and so are sin and cos : Given a uniformly continuous function on a noncompact
domain, it is not easy (in general) to check its uniform continuity. In the next
definition we introduce a condition that guarantees uniform continuity and holds
for many functions.

2. In view of Theorem 4.6.6, the definition of piecewise continuous functions (cf.
Definition 4.5.15) is equivalent to the following, where we use the notation of
Definition 4.5.15: f W Œa; b� ! R is piecewise continuous if it is uniformly
continuous on each .xk�1; xk/, 1 � k � n:

Definition 4.6.9 (Lipschitz Function, Contraction). Let f W I ! R.

(a) We say that f is Lipschitz (or satisfies a Lipschitz condition) and write f 2
Lip.I /; if there is a constant A > 0 such that

jf .x/ � f .x0/j � Ajx � x0j 8x; x0 2 I:

The constant A is then called a Lipschitz constant for f:
(b) We say that f is locally Lipschitz and write f 2 Liploc.I / if, for each x 2 I;

there exists " D ".x/ > 0 such that f is Lipschitz on I \ B".x/ WD I \ .x �
"; x C "/: The Lipschitz constant will (in general) vary with x:

(c) We say that f is a contraction (or a contraction mapping) if it is Lipschitz with
a Lipschitz constant A < 1:

(d) We say that f is Lipschitz of order ˛; 0 < ˛ � 1 and write f 2 Lip˛.I /; if
there is a constant A > 0 (still called a Lipschitz constant) such that

jf .x/ � f .x0/j � Ajx � x0j˛ 8x; x0 2 I:

(e) We say that f is locally Lipschitz of order ˛; 0 < ˛ � 1 and write f 2
Lip˛

loc.I / if, for each x 2 I; there exists " D ".x/ > 0 such that f 2 Lip˛.I\
B".x//:
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Remark 4.6.10.

(a) Geometrically, if f W I ! R satisfies the Lipschitz condition

jf .x/ � f .x0/j � Ajx � x0j 8x; x0 2 I;

then for any x; x0 2 I; x ¤ x0; the inequality

ˇ

ˇ

ˇ

ˇ

f .x/ � f .x0/
x � x0

ˇ

ˇ

ˇ

ˇ

� A

indicates that the slope of the chord joining the points .x; f .x// and .x0; f .x0//
on the graph of f is bounded by A:

(b) A Lipschitz function of order ˛ D 1 is simply a Lipschitz function, i.e.,
Lip1.I / D Lip.I /:

Exercise 4.6.11. Let f W I ! R be locally Lipschitz of order ˛; 0 < ˛ � 1. Show
that if K is compact and K � I; then f is Lipschitz of order ˛ (on K).

Example 4.6.12.

(a) We have seen before that

j sin x � sin x0j � jx � x0j 8x; x0 2 R:

Thus, sin is Lipschitz on R with Lipschitz constant A D 1: The same is of
course true for x 7! cos x D sin.	=2 � x/:

(b) Any affine function f .x/ WD ax C b is Lipschitz on R: Indeed,

jf .x/ � f .x0/j D j.ax C b/ � .ax0 C b/j D jajjx � x0j

holds for all x; x0 2 R; and the smallest Lipschitz constant is of course A D jaj:
(c) The function x 7! x2 defined on R is locally Lipschitz. In fact, it is Lipschitz

on any bounded subset of R: Indeed, if S � R and if jxj �M for all x 2 S and
some M > 0; then

jx2 � x02j D jx C x0jjx � x0j � 2M jx � x0j 8x; x0 2 S:

Note, however, that this function is not Lipschitz on R; as follows, for instance,
from the next theorem.

Exercise 4.6.13. Show that the function x 7! x sin x is locally Lipschitz on R but
it is not Lipschitz on R:

Theorem 4.6.14.

(a) If f W I ! R is Lipschitz of order ˛; 0 < ˛ � 1; then it is uniformly
continuous.
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(b) If f; g W I ! R are both Lipschitz functions of (the same) order ˛; then so are
f ˙ g and cf for any c 2 R: If (in addition) the functions f; g are bounded,
then the product fg is also Lipschitz of order ˛:

(c) If f W I ! R and g W J ! R are Lipschitz functions of orders ˛ and ˇ;
respectively, and if f .I / � J; then the composite function g ı f is Lipschitz of
order ˛ˇ (on I ). In particular, if f and g are Lipschitz, then so is g ı f:

Proof. To prove (a), let " > 0 be arbitrary and let A > 0 be a Lipschitz constant
for f: Then, for any 0 < ı � ."=A/1=˛; we have

.x; x0 2 I; jx � x0j < ı/) jf .x/ � f .x0/j � Ajx � x0j˛ < A.."=A/1=˛/˛ D ":

For (b), assume that f and g have Lipschitz constants A and B; respectively. Then,
for any x; x0 2 I; we have the inequalities

j.f ˙ g/.x/�.f ˙ g/.x0/j � jf .x/�f .x0/jCjg.x/�g.x0/j � .AC B/jx�x0j˛;
j.cf /.x/ � .cf /.x0/j D jcjjf .x/ � f .x0/j � jcjAjx � x0j˛:

If f; g are bounded, i.e., jf .x/j � M and jg.x/j � M 0 for all x 2 I and some
constants M > 0; M 0 > 0; then, for any x; x0 2 I; we have

j.fg/.x/ � .fg/.x0/j � jg.x/jjf .x/ � f .x0/j C jf .x0/jjg.x/ � g.x0/j
� .M 0ACMB/jx � x0j˛:

Finally, for (c), given any x; x0 2 I; we have f .x/; f .x0/ 2 J: So, if A and B are
Lipschitz constants for f and g; respectively, then for all x; x0 2 I;

jg.f .x// � g.f .x0//j � Bjf .x/ � f .x0/jˇ � BAˇjx � x0j˛ˇ:

ut
Remark 4.6.15.

(a) As the reader may have noticed, in the above proof we have used the fact that,
if 0 < x < y and r > 0; then xr < yr : This is obvious if r 2 Q: (Why?) For
irrational values of r; we have not yet defined xr for a positive base x: This will
be defined later, and we shall see that x 7! xr is increasing on Œ0;1/ for any
fixed exponent r > 0:

(b) By part (b) of Theorem 4.6.14, the product of two bounded Lipschitz functions
is Lipschitz. On the other hand, the function x 7! x sin x on R; which is not
Lipschitz on R (cf. Exercise 4.6.13 above), is the product of the unbounded
Lipschitz function x 7! x and the bounded Lipschitz function x 7! sin x:

(c) If the interval I is bounded, then any f 2 Lip˛.I / is automatically bounded.
(Why?) Therefore, on a bounded interval, sums, differences, constant multiples,
and products of Lipschitz functions (of order ˛) are all Lipschitz (of order ˛).
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Note, however, that the boundedness of f; g in part (b) of Theorem 4.6.14 is
not a necessary condition for fg to be Lipschitz. Indeed, the function x 7! px
.x � 1/ is obviously unbounded on Œ1;1/ and is Lipschitz, since

jpx �px0j D jx � x0jp
x Cpx0 �

1

2
jx � x0j 8 x; x0 2 Œ1;1/;

and the function .f 2/.x/ D .px/2 D x is also Lipschitz on Œ1;1/:
(d) Although any Lipschitz function is automatically uniformly continuous, the

converse is not true. For example, consider the function x 7! px on Œ0;1/: As
pointed out in part (c) above, the restriction of this function to the interval Œ1;1/
is Lipschitz, hence uniformly continuous on Œ1;1/: On the other hand, x 7!p
x is continuous on the compact set Œ0; 2� and hence is uniformly continuous

there. It follows that f is uniformly continuous on Œ0;1/ D Œ0; 2� [ Œ1;1/:
(Why?) The reader should check, however, that f W x ! px is not Lipschitz
on Œ0; 2� (why not?) and hence not Lipschitz on Œ0;1/:

(e) Any affine map f W x ! ax C b with a ¤ 0 is a homeomorphism of R onto
itself. The inverse function f �1 W x 7! x=a � b=a is also affine. In particular,
both f and f �1 are Lipschitz (hence uniformly continuous) on R: In general,
however, the inverse of a (one-to-one) uniformly continuous function is not
uniformly continuous. Thus, the inverse of a Lipschitz function need not be
Lipschitz:

Exercise 4.6.16. Let f W R! .�1; 1/ be the function x 7! x=.1C jxj/:
(a) Show that f is a homeomorphism [onto .�1; 1/].
(b) Show that f is Lipschitz (hence uniformly continuous). Show, however, that the

inverse function f �1 is not uniformly continuous (hence not Lipschitz).

We are now going to prove that a contraction, i.e., a Lipschitz function with
a Lipschitz constant A < 1; has a (unique) fixed point. This “elementary” result
turns out to be an extremely powerful tool in proving the existence of solutions to
differential and integral equations.

Theorem 4.6.17 (Fixed Point Theorem). Let I be a closed interval, and let f W
I ! R be a contraction, i.e., f 2 Lip.I / with a Lipschitz constant A < 1: Then
f has a unique fixed point; i.e., there is a unique point x 2 I such that f .x/ D x:

If x0 2 I is an arbitrary point and if we define the sequence .x0; x1; x2; : : :/ by
xnC1 WD f .xn/ for all n � 0; then x D lim.xn/:

Proof. Let x0 2 I be arbitrary and let xnC1 WD f .xn/ 8n 2 f0; 1; 2; : : :g: Then, by
induction, we have

jxnC1 � xnj D jf .xn/ � f .xn�1/j � Anjx1 � x0j 8n 2 N: ()
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Indeed, for n D 1; we have

jx2 � x1j D jf .x1/ � f .x0/j � Ajx1 � x0j;

and for any k � 2; jxk � xk�1j � Ak�1jx1 � x0j implies

jxkC1 � xkj D jf .xk/ � f .xk�1/j � Ajxk � xk�1j
� A � Ak�1jx1 � x0j D Akjx1 � x0j:

Now, if m � n; then, using ./ and the Triangle Inequality repeatedly,

jxm � xnj � jxm � xm�1j C jxm�1 � xm�2j C � � � C jxnC1 � xnj
� .Am�1 C Am�2 C � � � C An/jx1 � x0j:

Therefore, for m � n; we have

jxm � xnj � An

1 � A jx1 � x0j; (�)

where, we recall, 1�A > 0 by assumption. Since lim.An/ D 0; it follows from .�/

that .xn/ is a Cauchy sequence and hence converges: lim.xn/ WD x 2 R: But then,
since I is assumed to be closed, we have x 2 I: To show that x is a fixed point, we
note that f; being Lipschitz, is uniformly continuous and hence continuous on I:
Thus,

f .x/ D f .lim.xn// D lim.f .xn// D lim.xnC1/ D x:

Finally, to prove the uniqueness of the fixed point x; suppose that x0 2 I is another
one, i.e., f .x0/ D x0: Then the inequalities

jx � x0j D jf .x/ � f .x0/j � Ajx � x0j

and A < 1 imply that we must have x D x0: ut

4.7 Approximation by Step, Piecewise Linear,
and Polynomial Functions

The basic goal of analysis is to break up the objects of its study into “simpler”
pieces, study these new objects, and then use a “synthesis” to get information on
the original objects. For example, to study continuous functions, one may need to
“approximate” them by other, more “elementary” functions. The following three
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theorems show how uniform continuity can be used to approximate continuous
functions by step functions, piecewise linear functions, and polynomial functions.

Definition 4.7.1 (Step and Piecewise Linear Functions). Let I be an interval
with endpoints a < b:

(a) A function � W I ! R is called a step function if there are finite sequences
.xk/

n
kD0 and .cj /njD1; with

a D x0 < x1 < x2 < � � � < xn�1 < xn D b; ()

such that �.x/ D cj 8x 2 .xj�1; xj /I i.e., the restriction of � to Ij WD
.xj�1; xj / is the constant function cj ; j D 1; 2; : : : ; n:

(b) A function  W I ! R is called piecewise linear (or, more accurately, piecewise
affine) if there is a finite sequence .xk/nkD0; satisfying ./ above, and such that
 is affine on each Ij WD .xj�1; xj /; 1 � j � n, i.e.,  .x/ D ˛j x C ˇj
8x 2 Ij and some constants ˛j ; ˇj 2 R; 1 � j � n:

Theorem 4.7.2 (Step Function Approximation). Given any f 2 C Œa; b� and any
" > 0; there exists a step function �" W Œa; b�! R such that

jf .x/ � �".x/j < " 8x 2 Œa; b�: ()

Proof. Since f is uniformly continuous on (the compact set) Œa; b�; given any " > 0,
we can find ı D ı."/ > 0 such that, for any x; x0 2 Œa; b� with jx � x0j < ı; we
have jf .x/ � f .x0/j < ": Now pick n 2 N such that h WD .b � a/=n < ı; and let
xk WD aC kh; k D 0; 1; : : : ; n: Define �" as follows: �.a/ WD f .a/ and

�".x/ WD f .xj / 8x 2 .xj�1; xj �; 1 � j � n;

so that, on each Ij WD .xj�1; xj /; the function �" is constantly equal to the value of
f at the right endpoint of Ij : Now, for each x 2 .a; b�; we have x 2 .xj�1; xj � for
some (unique) j; and hence

jf .x/ � �".x/j D jf .x/ � f .xj /j < ";

since jx � xj j < ı: Therefore, ./ is satisfied on Œa; b�: ut
Remark 4.7.3.

(a) Recall that the characteristic function of set S � R is defined by


S.x/ WD
(

1 if x 2 S;
0 if x 62 S:
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In terms of characteristic functions, the step function �" defined in
Theorem 4.7.2 can also be written as

�" D f .a/
fag C
n
X

jD1
f .xj /
.xj�1;xj �:

(b) Note that the construction of the step function �" in Theorem 4.7.2 actually
shows that given any continuous function f on Œa; b� and any " > 0; we can
approximate f by a step function that takes constant values on n subintervals
having the same length h WD .b � a/=n for a suitable integer n 2 N:

Since (nontrivial) step functions have jump discontinuities, it is natural to ask
whether we can approximate a continuous function f by elementary but continuous
functions. One such approximation is by means of piecewise linear functions:

Theorem 4.7.4 (Piecewise Linear Approximation). Given any f 2 C Œa; b� and
any " > 0; there exists a piecewise linear function  " W Œa; b�! R such that

jf .x/ �  ".x/j < " 8x 2 Œa; b�: (�)

Proof. Since f is uniformly continuous on Œa; b�; for every " > 0, we can pick
ı D ı."/ > 0 such that, for any x; x0 2 Œa; b� with jx � x0j < ı; we have
jf .x/�f .x0/j < ": Let n 2 N be such that h WD .b�a/=n < ı and let xk WD aCkh;
k D 0; 1; : : : ; n:Now on each Œxj �1; xj � define  " to be the affine function whose
graph is the line segment joining the two points

.xj�1; f .xj�1// and .xj ; f .xj //:

Explicitly, each x 2 Œxj�1; xj � has the form x D xj�1C t .xj �xj�1/ D xj�1C th
for some t 2 Œ0; 1�; and we have

 ".x/ D f .xj�1/C t .f .xj / � f .xj�1//:

But f .xj�1/C t .f .xj /� f .xj�1// belongs to the (closed) interval with endpoints
f .xj�1/ and f .xj /; so the Intermediate Value Theorem implies that f .xj�1/ C
t .f .xj / � f .xj�1// D f .�j / for some �j 2 Œxj�1; xj �: Since each x 2 Œa; b�
belongs to some Œxj�1; xj �; the choice of ı implies that

jf .x/ �  ".x/j D jf .x/ � f .�j /j < ";

and hence .�/ is satisfied on Œa; b�: ut
There is a much deeper approximation theorem, due to Weierstrass, in which

continuous functions are approximated by polynomials. There are several proofs
of this important theorem, but the most “elementary” treatment is by means of
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Bernstein polynomials to be defined below. These polynomials involve, in an
essential way, the binomial formula:

.aC b/n D
n
X

kD0

 

n

k

!

akbn�k;

valid for any a; b 2 R and n 2 N: Recall that the binomial coefficients are defined
to be

 

n

k

!

WD nŠ

kŠ.n � k/Š .k D 0; 1; : : : ; n/:

Proposition 4.7.5. For each n 2 N and k 2 f0; 1; : : : ; ng; let us define the
polynomial function pnk (or, for simplicity, pk) by

pk.x/ WD
 

n

k

!

xk.1 � x/n�k .0 � x � 1/:

The following identities are then valid 8x 2 Œ0; 1�:
n
X

kD0
pk.x/ D 1;

n
X

kD0
kpk.x/ D nx; and

n
X

kD0
k2pk.x/ D n2x2 � nx2 C nx:

Proof. The first identity follows directly from the binomial formula:

1 D 1n D .x C .1 � x//n D
n
X

kD0

 

n

k

!

xk.1 � x/n�k D
n
X

kD0
pk.x/:

To prove the second identity, note that

n
X

kD0
kpk.x/ D

n
X

kD1
k

nŠ

kŠ.n � k/Šx
k.1 � x/n�k

D
n
X

kD1

nŠ

.k � 1/Š.n � k/Šx
k.1 � x/n�k
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D nx
n
X

kD1

.n � 1/Š
.k � 1/Š.n � k/Šx

k�1.1 � x/n�k

D nx
n
X

kD1

 

n � 1
k � 1

!

xk�1.1 � x/n�k

D nx;

where the last equality follows from

n
X

kD1

 

n � 1
k � 1

!

xk�1.1 � x/n�k D
n�1
X

jD0

 

n � 1
j

!

xj .1 � x/.n�1/�j

D .x C .1 � x//n�1 D 1:

A slightly more involved but similar argument is needed for the third identity, whose
proof we leave as an exercise for the reader (cf. Exercise 4.7.7 below). ut
Corollary 4.7.6. With notation as in Proposition 4.7.5, we have

n
X

kD0
.x � k=n/2pk.x/ D x.1 � x/

n
: (�)

Proof. Let S denote the sum on the left side of .�/: Using the identities in
Proposition 4.7.5, we have

S D x2
n
X

kD0
pk.x/ � 2x

n

n
X

kD0
kpk.x/C 1

n2

n
X

kD0
k2pk.x/

D x2 � 2x
n
.nx/C 1

n2
.n2x2 � nx2 C nx/

D x.1 � x/
n

8x 2 I:ut

Exercise 4.7.7. Prove the third identity in Proposition 4.7.5, i.e., show that

n
X

kD0
k2pk.x/ D

n
X

kD0
k2

 

n

k

!

xk.1 � x/n�k D n2x2 � nx2 C nx .8x 2 I /:

Hint: Note that for each x 2 I; we have

n
X

kD0
k2pk.x/ D

n
X

kD2
k.k � 1/pk.x/C

n
X

kD1
kpk.x/I
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rewrite the first sum as

n
X

kD2
k.k � 1/pk.x/ D n.n � 1/x2

n
X

kD2

.n � 2/Š
.k � 2/Š.n � k/Šx

k�2.1 � x/n�k;

and observe that the sum on the right equals 1. (Why?)

We are now ready to define the Bernstein polynomials, which are going to be
used in the polynomial approximation of a continuous function f W Œ0; 1� ! R.
The readers who have studied elementary probability theory will certainly suspect a
connection to binomial random variables. Indeed, as we shall see later, Bernstein’s
discovery of his remarkable polynomials had its origin in probability theory.

Definition 4.7.8 (Bernstein Polynomials). For each n 2 N; the nth Bernstein
polynomial of a function f W Œ0; 1�! R is defined to be

Bn.x/ D Bn.x; f / WD
n
X

kD0
f

�

k

n

�

 

n

k

!

xk.1 � x/n�k D
n
X

kD0
f

�

k

n

�

pk.x/;

where pk.x/ is as in Proposition 4.7.5.

Theorem 4.7.9 (Bernstein Approximation Theorem). If f 2 C Œ0; 1� and " > 0;
then there exists N D N."/ 2 N (independent of x 2 Œ0; 1�) such that

.8n > N/.8x 2 Œ0; 1�/.jf .x/ � Bn.x/j < "/:

Proof. From the identity

f .x/ D
n
X

kD0
f .x/pk.x/; 8x 2 I;

which is a consequence of the first identity in Proposition 4.7.5, we get

f .x/ � Bn.x/ D
n
X

kD0
.f .x/ � f .k=n//pk.x/; 8x 2 I;

which in turn implies

jf .x/ � Bn.x/j �
n
X

kD0
jf .x/ � f .k=n/jpk.x/; 8x 2 I: ()

Now f (which is continuous on the compact set Œ0; 1�) is uniformly continuous
and bounded, so jf .x/j � M for all x 2 Œ0; 1� and some M > 0: To make the
right side of ./ small, we observe that since f is continuous at x; the difference
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jf .x/ � f .k=n/j can be made arbitrarily small if k=n is sufficiently close to x:
Otherwise, we can only assert that jf .x/ � f .k=n/j � 2M: So, we shall split the
sum on the right side of ./ in two parts: the first containing the terms for which
k=n is near x and the second consisting of the remaining terms. Given " > 0; the
uniform continuity of f implies that we can find ı D ı."/ > 0 such that jx�x0j < ı
implies jf .x/�f .x0/j < "=2:Now pickN 2 N such thatN � maxf1=ı4;M2="2g;
and assume n > N: Write, for x 2 I arbitrary,

n
X

kD0
jf .x/ � f .k=n/jpk.x/ D

X0 C
X00

;

where
P0 is the sum over the values of k for which jx � k=nj < 1= 4

p
n and

P00 is
the sum over the remaining values of k: If jx � k=nj < 1= 4

p
n � ı; then jf .x/ �

f .k=n/j < "=2 and hence

X0
<

n
X

kD0

"

2
pk.x/ D "

2

n
X

kD0
pk.x/ D "

2
:

To estimate
P00

; note that, for the k’s in this sum, we have .x � k=n/2 � 1=pn:
Thus, using the identity .�/ of Corollary 4.7.6 and the fact that jf .x/ � f .k=n/j �
2M; we have

X00 � 2M
X00

pk.x/ D 2M
X00 .x � k=n/2

.x � k=n/2 pk.x/

� 2Mpn
n
X

kD0
.x � k=n/2pk.x/

� 2Mpn x.1 � x/
n

� M

2
p
n
<
"

2
;

where the “�” at the beginning of the last line follows from the fact that x.1�x/ �
1=4 on Œ0; 1�: (Why?) Therefore, for n > N; the inequality

n
X

kD0
jf .x/ � f .k=n/jpk.x/ D

X0 C
X00

<
"

2
C "

2
D "

holds for all x 2 Œ0; 1� and the proof is complete. ut
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As an immediate corollary, we obtain the celebrated Weierstrass Approximation
Theorem:

Corollary 4.7.10 (Weierstrass Approximation Theorem). Given any f 2
C Œa; b� and any " > 0; there exists a polynomial function p" such that

jf .x/ � p".x/j < " .8x 2 Œa; b�/:

Proof. The affine function  W x ! .b�a/xCa is a homeomorphism of Œ0; 1� onto
Œa; b�; where we are obviously assuming a < b: The composite function g D f ı 
is therefore a continuous function on Œ0; 1�; and (by Theorem 4.7.9) we can choose
n" 2 N so that jg.x/ � Bn".x/j < " 8x 2 Œ0; 1�: If we now let p".x/ D Bn"..x �
a/=.b � a//; then jf .x/ � p".x/j < " 8x 2 Œa; b� as desired. ut

4.8 Problems

1. Let .U˛/˛2A be an open cover of a compact set K � R: Show that there is an " > 0 such that,
8x 2 K; we have B".x/ � U˛ for some ˛ 2 A:

2. Show that a set K � R is compact if and only if every countable open cover .Un/n2N of K
has a finite subcover.

3. For any sets A; B � R; define AC B WD fa C b W a 2 A; b 2 Bg: (i) Show that, if A and
B are compact, then so is A C B: (ii) Give an example to show that if A and B are closed, then
ACB need not be closed. (iii) Show, however, that if A is compact and B is closed, then ACB

is closed. Hints: Use sequences. For (ii), try the sets A D N and B D fn�1 � n W n D 2; 3; : : :g:
4. Show that any compact set K � R is complete; i.e., every Cauchy sequence .xn/ 2 KN

converges to a limit in K:

5 (Cantor). Let .Kn/n2N be a family of nonempty, compact subsets of R: Show that, if KnC1 �
Kn for all n 2 N; then

T

n2NKn ¤ ;: Hint: K1 6� .
T

n�2 Kn/
c :

6 (Finite Intersection Property). Prove the following extension of the previous problem. A set
K � R is compact if and only if, given any collection .F˛/˛2A of nonempty, closed sets such that
K \ .

T

˛2A0 F˛/ ¤ ; for every finite subset A0 � A; we have K \ .
T

˛2A F˛/ ¤ ;:
7. Prove the following characterizations of continuity. Recall that Aı and A� denote the interior
and closure of A � R; respectively.

f 2 C.R/ ” f .A�/ � .f .A//� ” f �1.Aı/ � .f �1.A//ı .8A � R/:

8. Consider the function

f .x/ WD
(

x if x 2 Œ0; 1�\ Q;

1� x if x 2 Œ0; 1�\ Qc :

(a) Show that f .f .x// D x and f .x/C f .1� x/ D 1 for all x 2 Œ0; 1�:

(b) Show that f is onto Œ0; 1� and is continuous only at x D 1=2:

(c) Show that f .x C y/� f .x/� f .y/ 2 Q for all x; y 2 Œ0; 1�:
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9. Let I be a nonempty interval and f W I ! R: Show that f 2 C.I / if and only if f is
continuous on every compact set K � I: Hint: If lim.xn/ D �; then f�; x1; x2; : : :g is compact.

10. Let f W R ! R be defined as follows. For x 2 .0; 1�; we set

f .x/ WD
8

<

:

1

q
if x D p

q
2 .0; 1� .p; q 2 N; gcd.p; q/ D 1/;

0 if x 2 Qc \ .0; 1/,

and for x 62 .0; 1� we define f .x/ by periodicity, i.e. f .x/ WD f .x�n/ where n 2 Z is the unique
integer with x 2 .n; nC 1�: Show that f is continuous at each x 2 Qc and discontinuous at each
x 2 Q: Hint: If .pn=qn/ is a sequence of (reduced) rationals in .0; 1/ with lim.pn=qn/ D x 2
Qc \ .0; 1/; show that lim.qn/ D 1:

11 (Volterra’s Theorem). Let f; g W .a; b/ ! R and let Cf and Cg denote the continuity sets
of f and g; respectively. Thus Cf WD fx 2 .a; b/ W f is continuous at xg and Cg defined similarly.
Show that if Cf and Cg are both dense, then so is Cf \ Cg: Deduce that there is no function that
is continuous on Q and discontinuous on Qc :

12. Show that there can be no continuous function g W R ! R that maps rational numbers to
irrational ones and vice versa.

13. Show that there can be no continuous function f W R ! R that satisfies

f .x/ 2 Q ” f .x C 1/ 2 Qc :

14.

(a) Give an example of a function f 2 C.R/ and a compact set K � R such that f �1.K/ is not
compact.

(b) Give an example of a function f 2 C.R/ and a connected set C � R such that f �1.C / is
not connected.

15. Let f; g 2 C Œa; b� satisfy f .x/ < g.x/ for all x 2 Œa; b�: Show that there is a constant c < 1
such that f .x/ 	 cg.x/ for all x 2 Œa; b�: Hint: Pick N � 0 such that f C N > 0 on Œa; b� and
look at .f CN/=.g CN/:

16. Let f 2 C.R/ satisfy limx!˙1 f .x/ D 1: Show that f attains its (absolute) minimum;
i.e., there is a point x0 2 R such that f .x/ � f .x0/ for all x 2 R:

17. Show that a function f 2 RR is continuous if and only if (i) f .I / is an interval for each
interval I � R and (ii) f �1.y/ is closed for each y 2 R: In fact, show that (ii) may be replaced
by: f �1.y/ is closed for each y 2 Q: Hint: Show that f �1.y0/ is not closed if f .x0/ < y0 <

f .x0/ and y0 ¤ f .x0/; by constructing a sequence .xn/ with lim.xn/ D x0 and f .xn/ D y0 for
all n 2 N:Here, f and f are the lower and upper envelopes of f; respectively (cf. Definition 4.3.7).

18. Show that a function f 2 C Œa; b� is bounded, using the following Bisection Method: Assume
that f is unbounded on Œa; b�: Then it must be unbounded on either Œa; .aCb/=2� or Œ.aCb/=2; b�I
let I1 be the one on which f is unbounded. Bisect I1 and let I2 be the (closed) half on which f is
unbounded, etc. Now use the Nested Intervals Theorem to get a contradiction.

19. Show that, if f W Œa; b� ! Œa; b� is a homeomorphism, then either a and b are fixed points or
f .a/ D b and f .b/ D a:

20. Show that, if f W .a; b/ ! R satisfies the Intermediate Value Property and jf j is constant,
then so is f . Deduce that if f is continuous and if f n D C is constant for an even integer n, then
either f D n

p
C or f D � n

p
C on .a; b/:
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21. Show that, if f 2 RR satisfies the Intermediate Value Property and f .x ˙ 0/ both exist at
every x 2 R; then f 2 C.R/:

22. Locate and classify the discontinuities of the following functions, where each function
satisfies f .0/ WD 0 and is defined for x ¤ 0 by

(a) f .x/ WD .sin x/=jxj,
(b) f .x/ WD e1=x ,
(c) f .x/ WD e1=x C sin.1=x/,
(d) f .x/ WD 1=.1� e1=x/.

23.

(a) Find a function f 2 RR such that f is continuous nowhere but jf j is continuous everywhere.
(b) Given any a 2 R; find a function f 2 RR such that f is continuous at a but discontinuous at

every other point.

24 (Characterization of Monotone Functions).

(a) Show that f 2 RR is monotone if and only if f �1.J / is an interval for every interval J � R:

(b) Give an example of a function f 2 C.R/ and an interval J � R such that f �1.J / is not an
interval.

25. Let Q D fq1; q2; : : :g � R be an enumeration of the rationals and consider the jump function

f .x/ WD X

fnWqn�xg
2�n .8x 2 R/:

Show that f is right (but not left) continuous at each x 2 Q and continuous at each x … Q:

26. Let � W Œ0; 1� ! Œ0; 1� be the Cantor ternary function (cf. Example 4.3.13) and define the set

D WD
�

�.x C h/� �.x/

h
W x 2 Œ0; 1�; h ¤ 0

�

:

Show that inf.D/ D 0 and sup.D/ D 1:

27. Let f 2 C Œa; b� satisfy f .a/ < f .b/: Show that there are c; d 2 Œa; b� such that a 	 c <

d 	 b and f .a/ D f .c/ < f .x/ < f .d/ D f .b/ for all x 2 .c; d/:

28 (Local Maxima and Minima). Let ; ¤ I � R be an interval and f 2 RI : We say that
f has a local maximum (resp., strict local maximum) at x0 2 I if there is an " > 0 such that
f .x/ 	 f .x0/ (resp., f .x/ < f .x0/) for all x 2 I \ PB".x0/: A similar definition can be given for
a local minimum (resp., strict local minimum) at x0:

(a) Show that, if f has a local maximum at every point x 2 I; then the range of f is
countable. Hint: For each y 2 f .I /; pick an interval Jy with rational endpoints such that
y D maxff .x/ W x 2 I \ Jyg: Assuming in addition that f 2 C.I /; show that f must be
constant.

(b) Show that M WD fx 2 I W f has a strict local maximum at xg is countable.

29. Let f 2 C Œa; b�: Show that, if f has a local maximum (see Problem 28) at x1 and a local
maximum at x2; for distinct points x1; x2 2 .a; b/; then there is a point � between x1 and x2
where f has a local minimum.

30. Show that, if f 2 C.Œa; b�/ does not have a local maximum or minimum at any point in
.a; b/; then it must be monotone.
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31. Show that, if f 2 C.R/ is strictly decreasing, then f .x/ D x for a unique x 2 RI i.e., f has
a unique fixed point.

32. If f 2 C Œ0; 1� satisfies f .Œ0; 1�/ � Q; what can you say about f ‹

33. Show that no function f 2 C.R/ assumes each of its values exactly twice.

34. Let I and J be (nonempty) intervals.

(a) Show that, if f; g W I ! R are uniformly continuous (on I ), then so is f C g: Show that the
same is true for fg provided f and g are both bounded (on I ). Give an example to show that,
if one of f; g is unbounded, then fg need not be uniformly continuous.

(b) Show that, if f W I ! R and g W J ! R are uniformly continuous and f .I / � J; then g ıf
is also uniformly continuous.

35. Show by a Bisection Method similar to the one used in Problem 18 that any function f 2
C Œa; b� is uniformly continuous.

36. Show that, if f 2 C Œa;1/ for some a 2 R [resp., f 2 C.R/] and if limx!1 f .x/ D
` 2 R (resp., limx!�1 f .x/ D k 2 R and limx!1 f .x/ D ` 2 R), then f is bounded and
uniformly continuous. Give an example of a bounded uniformly continuous f 2 C.R/ such that
limx!˙1 f .x/ do not exist.

37. Show that, if S � R is bounded, then any uniformly continuous f W S ! R is bounded.
Show (by example) that f need not be bounded if S is unbounded.

38. Show that, if f W Œ1;1/ ! R is uniformly continuous, then f .x/ D O.x/ .x ! 1/:

39. Let I � R be an interval and f W I ! R: Show that, if for each " > 0 there is a uniformly
continuous function g W I ! R such that jf .x/� g.x/j < " 8 x 2 I; then f is also uniformly
continuous.

40. Show that, if f 2 C.R/ is periodic, then it is uniformly continuous.

41. Give an example of a bounded continuous function on a bounded interval that is not uniformly
continuous.

42. Let I � R be an interval. Show that f W I ! R is uniformly continuous if and only if

.8" > 0/.9M > 0/

�

ˇ

ˇ

ˇ

f .x/� f .y/

x � y

ˇ

ˇ

ˇ > M H) jf .x/� f .y/j < "
�

: (�)

Hint: If .�/ holds and " > 0 is given, let ı WD "=M and show that jf .x/ � f .y/j � " implies
jx�yj � ı: If f is uniformly continuous and " > 0 is given, pick ı > 0 so that jf .x/�f .y/j � "

implies jx � yj � ı and set M WD 2"=ı: Assume (without loss of generality) that f .x/ < f .y/

and pick n 2 N such that � WD .f .y/� f .x//=n 2 Œ"; 2"�: Divide Œf .x/; f .y/� into n equal parts
using the partition points f .x/ C k�; 0 	 k 	 n: Using the Intermediate Value Theorem, pick
x0 WD x; x1; : : : ; xn WD y such that f .xk/ D f .x/ C k�: Deduce that jx � yj � nı and hence
jf .x/� f .y/j=jx � yj 	 M:

43. Let I � R be an interval. Show that, if f 2 Lip˛.I / with ˛ > 1; then f is constant (on I ).
Hint: Fix x0 2 I: Now, for each x 2 I; estimate jf .x/�f .x0/j D jPn

kD1 f .x0 Ckh/�f .x0 C
.k � 1/h/j; where h WD .x � x0/=n and let n ! 1:

44. Let ; ¤ S � R: Show that the function

dS .x/ WD inffjx � sj W s 2 Sg .8x 2 R/

is Lipschitz: jdS .x/� dS .y/j 	 jx � yj 8x; y 2 R:
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45.

(a) Let F � R be a closed set. Show that there is a function f 2 C.R/ such that F D fx W
f .x/ D 0g:

(b) Let E; F � R be closed sets with E \F D ;: Show that there is a function f 2 C.R/ such
that E D fx W f .x/ D 1g and F D fx W f .x/ D 0g: Hint: Use the functions dE and dF
introduced in Problem 44.

46. Define f W .�1; 1/ ! R by

f .x/ WD
(

0 if x D 0;

1= log jxj if 0 < jxj < 1:
Show that f 2 Liploc..�1; 1/ n f0g/ but that f … Lip˛.I / for any ˛ 2 .0; 1� and any open
interval I with 0 2 I � .�1; 1/:
47 (Kepler’s Equation). Show that, for any constants a 2 .0; 1/ and b 2 R; the equation
x D a sin x C b has a unique solution.

48. Let a < b and suppose that f W Œa; b� ! Œa; b� satisfies jf .x/ � f .y/j 	 jx � yj for all
x; y 2 Œa; b�: Show that the sequence .xn/; defined recursively by xnC1 D .xn C f .xn//=2 and
an arbitrary x1 2 Œa; b�; converges to a fixed point of f: Hint: Show that .xn/ is monotone by using
the identity

xnC2 � xnC1 D 1

2
Œf .xnC1/� f .xn/C xnC1 � xn� .8n 2 N/:

49. Let a < b and let f W Œa; b� ! Œa; b� be Lipschitz with constant 1, i.e., jf .x/ � f .y/j 	
jx�yj for all x; y 2 Œa; b�: Show that the set of all fixed points of f is a subinterval Œ˛; ˇ� � Œa; b�;

possibly reduced to a single point.

50 (Contractive Map). Let ; ¤ X � R: A map f W X ! X is said to be contractive if

jf .x/� f .y/j < jx � yj .8x; y 2 X; x ¤ y/:

(a) Show that a contractive map has at most one fixed point.
(b) Show that the function f .x/ WD x C 1=x is contractive on Œ1;1/ and does not have fixed

points.
(c) Show that g.x/ WD .x C sin x/=2 is contractive on R: Is there a fixed point?
(d) Show that, if f is contractive on a (nonempty) compact set K � R; then it has a unique fixed

point. Hint: Look at inffjf .x/� xj W x 2 Kg:
51 (Expansive Map). Let ; ¤ X � R: A map f W X ! X is said to be expansive if

jf .x/� f .y/j � jx � yj .8x; y 2 X/:

Show that if f W R ! R is both continuous and expansive, then it is a homeomorphism with
Lipschitz inverse f �1 W R ! R:

52. Let f W X ! X; where ; ¤ X � R: For each n 2 N; let f Œn� denote the nth iterate of f ,
i.e., f Œn� WD f ı f ı � � � ı f; with n copies of f: Show that, if f Œn� has a unique fixed point x0 for
some n 2 N; then x0 is a fixed point of f , i.e., f .x0/ D x0:
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53 (Absolute Continuity). A function F W Œa; b� ! R is said to be absolutely continuous (on
Œa; b�) if for each " > 0 there is a ı > 0 such that, given any collection f.ak; bk/ W 1 	 k 	 ng of
pairwise disjoint open subintervals of Œa; b�; we have

n
X

kD1

.bk � ak/ < ı H)
n
X

kD1

jF.bk/� F.ak/j < ":

(a) Show that an absolutely continuous function on Œa; b� is uniformly continuous there. To show
that the converse is false, consider the function f .x/ WD x sin.	=x/ for x ¤ 0 and f .0/ WD 0:

Show that f is uniformly continuous but not absolutely continuous on Œ0; 1�: Hint: Let " D 1

and, for each ı > 0; pick M; N 2 N with 1=ı < M < N such that
PN

kDM ak > 1; where
ak WD 2=.4k C 1/: Now let bk WD 2=.4k/ and consider the disjoint intervals .ak; bk/; with
M 	 k 	 N:

(b) Show that, if F 2 Lip.Œa; b�/, then it is absolutely continuous. The converse is false again.
Indeed, as we know, the function f .x/ WD p

x is not Lipschitz on Œ0; 1�: Show, however, that
it is absolutely continuous on Œ0; 1� as follows. Given " > 0; let ı D "2=2 and let .aj ; bj / �
Œ0; 1� be pairwise disjoint with

Pn
jD1.bj � aj / < ı: If ı=2 2 .aj ; bj /; for some j; then insert

it as an endpoint, getting two subintervals .aj ; ı=2/ and .ı=2; bj /: Now write
Pn

jD1.
p

bj �
p

aj / D P

1 CP

2; where
P

1 is over all j with bj 	 ı=2 and
P

2 is over the other j ’s.
Finally, observe that

P

1 	 "=2 and

X

2
	 1

"

X

.bj � aj / <
"

2
:

54.

(a) Let f .x/ WD x2: Show that Bn.x; f / D .n� 1/x2=nC x=n and hence Bn.x; f / ! x2; as
n ! 1:

(b) Let f .x/ WD x3 on Œ0; 1�: Find the Bernstein polynomials Bn.x/ D Bn.x; f / and prove that
Bn ! f:

55. Let f 2 C Œa; b�; where ; ¤ Œa; b� � .0; 1/: For each n 2 N; define the polynomials

QBn.x/ WD
n
X

kD0

" 

n

k

!

f .k=n/

#

xk.1� x/n�k;

where Œt � denotes the greatest integer 	 t . Show that, with Bernstein polynomials Bn.x/; we have

supfjBn.x/� QBn.x/j W x 2 Œa; b�g ! 0; as n ! 1:

Deduce that supfjf .x/ � QBn.x/j W x 2 Œa; b�g ! 0; as n ! 1, i.e., f can be uniformly
approximated (on Œa; b�) by polynomials with integer coefficients.



Chapter 5
Metric Spaces

Our goal in this chapter is to show that most of the concepts introduced in the
previous chapters for the set R of real numbers can be extended to any abstract
metric space, i.e., a set on which the concept of metric (or distance) can be defined.
Indeed, as we have already seen, the basic concept of limit which we studied in
Chaps. 2 and 3, and used to define (in Chap. 4) the related concept of continuity, is
defined in terms of distance. Let us recall that the distance between two real numbers
x and y is defined to be d.x; y/ WD jx�yj and satisfies three simple properties: For
any numbers x; y; z 2 R we have: (i) jx � yj � 0; and equality holds if and only
if x D yI (ii) jx � yj D jy � xjI and (iii) jx � yj � jx � zj C jy � zj: Property
(iii) is called the Triangle Inequality for obvious geometrical reasons. Using this
distance, we defined, in Chap. 2, the concepts of "-neighborhood, open set, closed
set, limit point, isolated point, convergent sequence, and Cauchy sequence. We then
defined the concept of limit for general real-valued functions of a real variable and
proved that such limits can also be defined in terms of limits of sequences. Also,
before introducing the related notion of continuity, we introduced (in Chap. 4) the
topological concepts of compactness and connectedness. All these notions can be
defined, in essentially the same way, in any (abstract) metric space and the proofs of
most theorems are basically copies of the ones we gave for the special metric space
R; if one replaces jx�yj by d.x; y/ throughout. Many proofs will therefore be brief
or will be left as exercises for the reader.

5.1 Metrics and Metric Spaces

In this section we define the concepts of metric, metric space, and subspace. The
reader should constantly compare the material to the corresponding one for the set
of real numbers and its subsets, as most of the ideas developed here have their origin
in the study of the real line and its topological properties.
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182 5 Metric Spaces

Definition 5.1.1 (Metric Space, Subspace). A metric space .M ; d / is a set M ,
whose elements will be called points, together with a map d WM �M ! R; called
a distance (or metric), such that for any x; y; z 2 M ; the following properties are
satisfied:

1. d.x; y/ � 0I
2. d.x; y/ D 0 ” x D yI
3. d.x; y/ D d.y; x/I and
4. d.x; z/ � d.x; y/C d.y; z/ .Triangle Inequality/:

For each subset S �M ; let dS WD d jS �S be the restriction of the metric d to the
subset S �S �M �M : The metric space .S ; dS / is called a (metric) subspace of
.M ; d /:

Remarks and Notation 5.1.2. We will usually abuse the notation and write “met-
ric space M ,” instead of “metric space .M ; d /,” unless more than one such space is
involved or the same set M is endowed with different distances. Also, for a subspace
.S ; dS / of .M ; d /; we shall omit the subscript S in dS and say that .S ; d / is a
(metric) subspace of .M ; d / or even that S is a subspace of M :

Example 5.1.3.

1. For our purposes, it is obvious that the most important example is the space R of
real numbers with its usual distance. There are, however, many unusual metric
spaces and some of them will be introduced later in this chapter, possibly in
exercises.

2. (Extended Real Line) Consider the function f W R ! .�1; 1/ given by
f .x/ WD x=.1 C jxj/ 8x 2 R: This map is a homeomorphism of R onto
.�1; 1/ with inverse f �1 W x 7! x=.1 � jxj/ (Exercise 4.6.16). We extend f
to R WD Œ�1;C1� by setting f .�1/ D �1 and f .C1/ D 1: Now on R

we define the metric d by d.x; y/ WD jf .x/ � f .y/j 8x; y 2 R: It is easy
to see that this is in fact a distance (why?); note that, for x � 0; we have
d.x;C1/ D 1=.1 C jxj/ and, for x � 0; d.�1; x/ D 1=.1 C jxj/: With
this metric, whose restriction to R is not the usual distance, R becomes a metric
space called the extended real line.

3. (Discrete Metric) Let M ¤ ; be an arbitrary set and, for any x; y 2 M ; let
d.x; y/ D 1 if x ¤ y and d.x; y/ D 0 if x D y: It is easy to check that all the
above properties .1/� .4/ are satisfied, so that d is indeed a metric on M ; called
the discrete metric. With this metric, M is called a discrete metric space.

4. (Uniform Metric) Let S be any nonempty set, and let M D B.S;R/ be the set
of all bounded functions from S to RI i.e., the set of all f W S ! R such that
jf .s/j � A for all s 2 S and some A > 0: Note that, for any f; g 2M ; we also
have f � g 2M : (Why?) Now define

d1.f; g/ WD sup.fjf .s/ � g.s/j W s 2 Sg/:
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The reader can check at once that this d1 is indeed a metric on M :We call it the
uniform metric for reasons to be explained later.

Exercise 5.1.4 (Bounded Metrics). Let .M ; d / be a metric space. Define the maps
d1; d2 W M �M ! R by d1 WD d=.1 C d/ and d2 WD min.1; d/I i.e., for any
x; y 2 M ; d1.x; y/ D d.x; y/=.1 C d.x; y// and d2.x; y/ D minf1; d.x; y/g:
Show that d1 and d2 are both metrics on M and that we have d1 � d2 � 2d1:
Exercise 5.1.5 (Product Metrics). Consider the set Rn WD f.x1; x2; : : : ; xn/ W
xk 2 R 1 � k � ng: Define the maps deuc; dmax; dsum W Rn � Rn ! R; as
follows. For each x D .x1; x2; : : : ; xn/ and y D .y1; y2; : : : ; yn/; let

deuc.x; y/ WD
v

u

u

t

n
X

kD1
.xk � yk/2;

dmax.x; y/ WD maxfjx1 � y1j; : : : ; jxn � ynjg; and

dsum.x; y/ WD
n
X

kD1
jxk � ykj:

Show that deuc; dmax; and dsum are metrics on Rn and that we have the inequalities
dmax � deuc � dsum � ndmax:

Definition 5.1.6 (Euclidean n-Space). The set Rn together with the metric deuc

defined in Exercise 5.1.5 is called the Euclidean n-space (or the n-dimensional
Euclidean space).

Exercise 5.1.5 suggests a way of defining metrics on a (Cartesian) product of
metric spaces:

Definition 5.1.7 (Product Spaces, Projections, Diagonal).

(a) Let M 1; M 2; : : : ; M n be metric spaces with metrics d1; d2; : : : ; dn; respec-
tively, and let M WDM 1 �M 2 � � � � �M n: Define the maps deuc; dmax; dsum W
M �M ! R as follows:

deuc.x; y/ WD
v

u

u

t

n
X

kD1
d 2k .xk; yk/;

dmax.x; y/ WD maxfd1.x1; y1/; : : : ; dn.xn; yn/g; and

dsum.x; y/ WD
n
X

kD1
dk.xk; yk/;
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for every x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ in M : Then deuc; dmax, and
dsum are metrics on M (Exercise 5.1.5), and the set M (with any one of these
metrics) is called the (metric space) product of the metric spaces M 1; : : : ;M n:

(b) With notation as in (a), we define the kth projection 	k WM !M k by 	k.x/ WD
xk; 1 � k � n; for each x D .x1; : : : ; xn/ 2M :

(c) Given a metric space .M ; d /; the diagonal of M �M is defined to be

�M WD f.x; x/ W x 2Mg:

Remark 5.1.8.

(a) The concepts of open set, closed set, and topology will be defined in the next
section, and we shall see later that the three metrics deuc; dmax; and dsum

produce the same topology (i.e., the same collection of open sets) and hence
the same notions of limit and continuity on the product space M D Qn

kD1 M k:

As we shall see on several occasions, depending on circumstances, one of the
above metrics may be preferable and may simplify the analysis at hand in a
significant way.

(b) It is easy to see (cf. Theorem 5.2.2(6) below) that the diagonal �M is a closed
subset of M �M for any metric space M .

Exercise 5.1.9. Let .M ; d / be a metric space.

(a) Show that, for any x1; x2; : : : ; xn 2M ; n � 2; we have

d.x1; xn/ � d.x1; x2/C d.x2; x3/C � � � C d.xn�1; xn/:

(b) Show that, for any x; y; z 2M ; we have

jd.x; z/ � d.y; z/j � d.x; y/:

Exercise 5.1.10 (Ultrametric Space). A metric space .M ; d / is called an ultra-
metric space if its metric d satisfies the ultrametric inequality:

d.x; z/ � maxfd.x; y/; d.y; z/g .8 x; y; z 2M /:

Show that we then have d.x; z/ D maxf.d.x; y/; d.y; z/g if d.x; y/ ¤ d.y; z/:
The distance between pairs of points in a metric space can be used to define

distances between arbitrary pairs of subsets of the space as follows.

Definition 5.1.11 (Distance Between Subsets, Diameter, Bounded Set). Let
.M ; d / be a metric space.

1. For any nonempty subsets A; B �M ; the distance between them is defined by

d.A;B/ WD inffd.a; b/ W a 2 A; b 2 Bg:

We write d.a; B/ WD d.fag; B/:
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2. The diameter of a nonempty subset A � M ; denoted by ı.A/; is defined to be
the extended real number

ı.A/ WD supfd.x; y/ W x; y 2 Ag 2 Œ0;1�:

3. A nonempty subset A �M is said to be bounded if its diameter is finite.

Exercise 5.1.12. Let .M ; d / be a metric space. Show that, for any nonempty
subsets A; B �M and any points x; y 2M ; the following are true.

1. If A \ B ¤ ;; then d.A;B/ D 0; but the converse need not be true. Hint: Use
subsets of R to give a counterexample.

2. jd.x;A/ � d.y;A/j � d.x; y/: Thus, x 7! d.x;A/ is Lipschitz.
3. If A and B are bounded, then so is A [ BI i.e.,

ı.A/ <1 and ı.B/ <1 H) ı.A [ B/ <1:

4. Define (on M ) the metrics d1 WD d=.1 C d/ and d2 WD min.1; d/ as in
Exercise 5.1.4. Show that in the metric spaces .M ; d1/ and .M ; d2/ all subsets
are bounded.

Remark 5.1.13.

(a) Although, for nonempty subsets A; B � M ; d.A;B/ is called the distance
between A and B; it does not define a metric on P.M / n f;g: For example,
consider the subsets A WD Œ0; 1�; B WD Œ1; 2�; and C WD Œ2; 3� of R: Then we
obviously have d.A;B/ D d.B;C / D 0; but d.A;C / D 1:

(b) If .M ; d / is a metric space and if d1 and d2 are the metrics defined in
Exercise 5.1.4 above, then, as we shall see soon, these metrics give the set M

the same topology (i.e., the same collection of open sets) as does the metric d;
but they have the advantage of being both bounded.

Next, we define, for a general metric space, the concepts of open ball, closed
ball, and sphere. Open balls are extensions to general metric spaces of the
"-neighborhoods we introduced for the real line R:

Definition 5.1.14 (Open Ball, Closed Ball, Sphere). Let x 2 M (where M is a
metric space) and let " > 0 be arbitrary.

1. The open ball of radius " centered at x is defined to be the setB".x/ WD fy 2M W
d.x; y/ < "g; and the corresponding deleted open ball is defined by PB".x/ WD
B".x/ n fxg:

2. The closed ball of radius " centered at x is defined to be the set B 0
".x/ WD fy 2

M W d.x; y/ � "g:
3. The sphere of radius " centered at x is defined to be the set S".x/ WD fy 2 M W
d.x; y/ D "g:
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Example 5.1.15.

(a) In the metric space R with its usual metric, the open ballB".x/ WD fy 2 R W jy�
xj < "g D .x� "; xC "/ is simply the "-neighborhood of x: The corresponding
closed ball and sphere are B 0

".x/ D Œx � "; x C "� and S".x/ D fx � "; x C "g;
respectively.

(b) Let M be a discrete metric space (cf. Example 5.1.3(3)). Then, for " < 1;

we have B".x/ D B 0
".x/ D fxg and S".x/ D ;: For " D 1; B1.x/ D

fxg; B 0
1.x/ DM ; and S1.x/ DM n fxg: Finally, for " > 1; we have B".x/ D

B 0
".x/ DM and S".x/ D ;:

(c) Consider the product M WD M 1 � M 2 � � � � � M n of the metric spaces
.M k; dk/; 1 � k � n; with metric dmax defined as in Definition 5.1.7. Then, as
the reader may easily check, we have

B".x/ D B1;".x1/ � � � � � Bn;".xn/; ()

where Bk;".xk/ denotes the open ball of radius " centered at xk 2M k; 1 � k �
n: Note that, by ./, we have 	k.B".x// D Bk;".xk/; 1 � k � n: In particular,
in Rn with the above metric, B".x/ is a cube with sides parallel to the axes.

5.2 Topology of a Metric Space

We now look at the topological structure of a metric space, i.e., the structure
deduced from the collection of its open sets. These open sets will then be used
to define the limits of sequences and functions and the related concept of continuity.

Definition 5.2.1 (Open, Closed, Limit Point, Isolated Point, Perfect). Let
.M ; d / be a metric space.

1. A subset U � M is called open if, given any x 2 U; we have B".x/ � U for
some " D ".x/ > 0:

2. A subset F �M is called closed if its complement F c DM n F is open.
3. A point x 2M is called a limit point (or accumulation point) of a subsetE �M

if, 8" > 0; PB".x/ \ E WD .B".x/ n fxg/ \ E ¤ ;: (Note that x need not be
in E.)

4. A point x 2 E � M is called an isolated point of E if it is not a limit
point of E: Equivalently, x 2 E is an isolated point of E if 9" > 0 such that
B".x/ \E D fxg:

5. A set E � M is called perfect if it is closed and if every point of E is a limit
point of E:
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Theorem 5.2.2. Let M be a metric space.

1. ; and M are simultaneously open and closed.
2. For any collection fU�g�2ƒ of open subsets of M ; the union

S

�2ƒ U� is open
and for any finite collection fUkgnkD1 of open subsets of M , the intersection
Tn
kD1 Uk is open.

3. For any collection fF�g�2ƒ of closed subsets of M ; the intersection
T

�2ƒ F� is
closed and for any finite collection fFkgnkD1 of closed subsets of M ; the union
Sn
kD1 Fk is closed.

4. Any singleton fxg �M is closed and hence so is any finite subset of M :

5. Every open ball B".x/ is open and every closed ball B 0
".x/ is closed. Also, every

sphere S".x/ is closed.
6. The diagonal �M WD f.x; x/ W x 2Mg is closed in M �M :

Exercise 5.2.3. Prove Theorem 5.2.2. Hint: For (6), use the distance dmax and the
comments in Example 5.1.15(c).

Definition 5.2.4 (Topology of .M ; d /; Equivalent Metrics).

(a) Given a metric space .M ; d /; the collection T .M ; d / WD fU �M W U is openg
of all open subsets of M is called the topology of .M ; d /: We sometimes write
T .M / if there is no danger of confusion.

(b) Two metrics d and d 0 on a set M are said to be equivalent if they define the
same topology on M , i.e., if T .M ; d / D T .M ; d 0/:

Theorem 5.2.5 (Open & Closed Relative to a Subspace). Let .M ; d / be a metric
space and let X �M : A set U � X is open (in X ) if and only if U D X \ U 0 for
an open set U 0 in M : A set F �M is closed (in X ) if and only if F D X \ F 0 for
a closed set F 0 in M :

Proof. Let x 2 X: Then, in the (metric) subspace X; the open ball of radius " > 0

centered at x is B";X.x/ WD fy 2 X W d.x; y/ < "g D X \ B".x/: Now, if U 0
is open (in M ), then for any x 2 X \ U 0 we have B".x/ � U 0 for some " > 0

and hence B";X.x/ WD X \ B".x/ � X \ U 0: Therefore, X \ U 0 is open (in X ).
Conversely, if U � X is open (in X ), then for each x 2 U there exists "x > 0 such
that B"x;X .x/ D X \ B"x .x/ � U: If we let U 0 WD S

x2U B"x .x/; then U 0 is open
(in M ) and U D X \U 0: Finally, a set F � X is closed (in X ) if and only if X nF
is open (in X ). By what we just proved, this is so if and only if X n F D X \ U 0
for some open set U 0 �M : But then F D X \ F 0; where F 0 WD U 0cDM n U 0 is
indeed closed in M . ut
Definition 5.2.6 (Relative Topology). LetX be a subset of a metric space .M ; d /:

Then the topology ofX induced by the metric d restricted toX is called the relative
topology on X and, with this topology, X is then a (topological) subspace of M : It
follows from Theorem 5.2.5 that

T .X; d/ D X \ T .M ; d / WD fX \ U W U �M is openg:
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Remark 5.2.7. Note that, in a subspace X of a metric space M ; a subset S � X

which is open (resp., closed) in X need not (in general) be open (resp., closed) in
M : For example, .1=2; 1� is open in the subspace .0; 1� of R; but is certainly not
open in R: Similarly, .0; 1=2� is closed in .0; 1� but not in R: However, we have the
following:

Proposition 5.2.8. Let M be a metric space and let X be a subspace. In order that
all open (resp., closed) subsets of X be open (resp., closed) in M ; it is necessary
and sufficient that X be open (resp., closed) in M .

Exercise 5.2.9. Prove Proposition 5.2.8.

Definition 5.2.10 (Interior, Exterior, Closure, Boundary). For any metric space
M and any subset A �M ; we define the following:

1. A point x 2 M is called an interior point of A if, for some " > 0; we have
B".x/ � A: The set of all interior points of A is denoted by Aı and is called the
interior of A: Clearly, Aı � A:

2. A point x 2M is called a cluster point of A if x is a limit point of A; or x 2 A:
The set of all cluster points of A is called the closure of A and is denoted by A�:
We obviously have A � A�:

3. A point x 2 M is called an exterior point of A if it is an interior point of the
complement Ac DM n A: The set .Ac/ı of all exterior points of A is called the
exterior of A and is denoted by Ext.A/:

4. A point x 2 M is called a boundary point of A if x is a cluster point of both A
and Ac: The set of all boundary points of A is denoted by Bd.A/ and is called
the boundary of A: It is clear that Bd.A/ D A� \ .Ac/� D Bd.Ac/:

Example 5.2.11.

(a) In R with its usual metric, let A WD Œa; b/; a < b: Then Aı D .a; b/; A� D
Œa; b�; Bd.A/ D fa; bg; and Ext.A/ D .�1; a/ [ .b;1/:

(b) Consider the set N � R: We have Nı D ; and N� D N D Bd.N/:
(c) Let M be a discrete metric space. Then, for " 2 .0; 1�; we have B".x/ D
fxg 8x 2M : Hence B1.x/ D .B1.x//� D fxg 8x 2M : (Why?) On the other
hand, the corresponding closed ball is B 0

1.x/ D M and hence
�

B 0
1.x/

�ı D
M 8x 2 M : This shows that the closure of an open ball (which is always a
subset of the corresponding closed ball (why?)) is not, in general, equal to the
closed ball. And the interior of the closed ball is not always the corresponding
open ball.

Exercise 5.2.12. Let M be a metric space and let A; B �M :

1. Show that

Aı D
[

fU �M W U � A and U openg; and

A� D
\

fF �M W A � F and F closedg:
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2. Show that Aı is the largest open set contained in A and that A� is the smallest
closed set containing A: Here, “largest” and “smallest” are in the sense of
inclusion “�.” Conclude that A is open (resp., closed) if and only if A D Aı
(resp., A D A�).

3. Show that, if M is discrete, then Aı D A� D AI in other words every subset is
simultaneously open and closed.

4. Let A0 denote the set of all limit points of A: Show that A� D A [ A0. Deduce
that A is closed if and only if A0 � A:

5. Show that x 2 A� if and only if d.x;A/ D 0:
6. Show that .A \ B/ı D Aı \ Bı and that .A [ B/� D A� [ B�: Prove the

inclusions Aı [ Bı � .A [ B/ı; .A \ B/� � A� \ B� and, using subsets of
R with its usual metric, show that both inclusions may be proper.

7. Using induction, extend the facts in part (6) to any finite collection of subsets of
M : Thus, given any sets A1; : : : ; An �M ;

 

n
\

jD1
Aj

!ı
D

n
\

jD1
Aı
j ;

 

n
[

jD1
Aj

!�
D

n
[

jD1
A�
j :

8. Show that Ext.A/ D .A�/c: Also, show that .Ac/� D .Aı/c; and deduce that
Bd.A/ D A� n Aı:

9. Show that Bd.A[B/ � Bd.A/[Bd.B/ and, using subsets of R; show that the
inclusion may be proper. Show, however, that if A� \ B� D ;; then Bd.A [
B/ D Bd.A/ [ Bd.B/:

10. Show that A is open if and only if the following holds for every set B �M :

A \ B D ; H) A \ B� D ;:

Remark 5.2.13. The intersection of a family of open sets is not open in general, as
the example

T1
nD2.�1=n; 1C 1=n/ D Œ0; 1� shows. Similarly, the union of a family

of closed sets is not closed in general. For instance,
S1
nD2Œ1=n; 1 � 1=n� D .0; 1/:

There are, however, exceptional cases as we shall see presently. First a definition:

Definition 5.2.14 (Locally Finite Family). A family A of subsets of a metric
space M is said to be locally finite if, given any x 2M ; there exists ı D ı.x/ > 0
such that the open ball Bı.x/ has a nonempty intersection with (at most) a finite
number of the sets A 2 A:

Proposition 5.2.15. If A � P.M / is a locally finite family of subsets of M ; then

�

[

A2A
A

��
D
[

A2A
A�: (�)

In particular, the union of a locally finite family of closed sets is closed.
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Proof. The inclusion “�” in .�/ is obvious. (Why?) To prove the reverse inclusion,
suppose that x 2 .

S

A2A A/�: We can pick ı > 0 such that Bı.x/ has
nonempty intersection with a finite number of the A 2 A; say A1; : : : ; Am:

By Exercise 5.2.12(10), we then have Bı.x/ \ A� D ; unless A 2 fA1; : : : ; Amg:
In particular, note that the family fA� W A 2 Ag of all closures of the elements of
A is also locally finite. (Why?) Using Exercise 5.2.12(7), it now follows that

x 2
 

m
[

nD1
An

!�
D

m
[

nD1
A�
n �

[

A2A
A�:

ut
Exercise 5.2.16 (Interior and Closure in a Subspace). Let X be a (metric)
subspace of a metric space M and let S � X: Show that the closure of S relative
to X is X \ S� but that the interior of S relative to X need not be X \ Sı. Hint:
In R; let X WD .0; 2� and S WD .1; 2�.
Definition 5.2.17. Let .M ; d / be a metric space.

(Dense). A set D �M is called dense (in M ) if D� DM :

(Nowhere Dense). A set A � M is called nowhere dense if .A�/ı D ;, i.e., if
the closure of A contains no nonempty open balls.

(First Category, Second Category). A set E �M is said to be of first category
(or meager) in M if it is a countable union of nowhere dense sets. A set which is
not of first category is said to be of second category.

(Separable). The metric space M is called separable if it contains a countable
dense subset, i.e., if D� DM for a countable subset D �M :

(Second Countable). The metric space M is called second countable (or is said
to satisfy the second axiom of countability) if it has a countable base, in other
words, if there is a countable collection fUngn2N of open sets in M such that
each open set in M is the union of the Uj that it contains.

Exercise 5.2.18. Let .M ; d / be a metric space and A �M : Show that

A is nowhere dense” A� is nowhere dense” Ext.A/ D .Ac/ı is dense:

Example.

(a) Consider the subspace Œ0; 1� of the metric space R: The sets Q \ Œ0; 1� and
Qc \ Œ0; 1� are dense. Since the set Q of rationals is countable and is dense in
R; the metric space R is separable and so are its subspaces.

(b) As we saw in Chap. 4, the Cantor set C � Œ0; 1� is perfect and nowhere dense.
It is therefore an example of a perfect set of first category. It is obvious that any
singleton fxg � R is nowhere dense. Thus any countable subset of R is of first
category. In particular, the dense set Q of rationals is of first category. We shall
see (Corollary 5.3.10 below) that R is of second category (in itself).
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The next proposition shows that, for metric spaces, separability is equivalent to
second countability:

Proposition 5.2.19. A metric space is separable if and only if it is second
countable.

Proof. Suppose that .M ; d / is separable and let fx1; x2; x3; : : :g � M be a dense
subset. For any j; k 2 N; set Uj;k WD B1=k.xj / D fx 2 M W d.x; xj / < 1=kg:
We claim that fUj;k W j; k 2 Ng is a (countable) base. Indeed, given any open set
O � M ; let O 0 be the union of the Uj;k contained in O: Then O 0 is obviously an
open subset of M and we have O 0 � O: To prove the reverse inclusion, let x 2 O
be arbitrary. Then there exists k0 2 N such that B1=k0.x/ � O: Let j0 2 N be such
that d.xj0 ; x/ < 1=.2k0/: Then x 2 Uj0;2k0 � O 0: Conversely, suppose that M

is second countable; i.e., there is a sequence .Un/n2N of open sets such that each
open set in M is the union of some of the Un: For each n 2 N; pick xn 2 Un and
let D D fxn W n 2 Ng: Then, every (nonempty) open subset V of M contains at
least one of the Un and hence V \D ¤ ;: Therefore, D is dense and the proof is
complete. ut

5.3 Limits, Cauchy Sequences, and Completeness

In Chaps. 2 and 3, we studied limits of sequences and functions in the metric
space R: Here, we shall do the same for general metric spaces. Since the basic
definitions and properties are quite similar, the presentation will not be as extensive
as before.

Definition 5.3.1 (Limit of a Sequence). Let .M ; d / be a metric space. A sequence
.xn/ 2MN is said to converge to the limit � 2M if

.8" > 0/.9N 2 N/.n � N ) xn 2 B".�//:

If .xn/ converges to �; we write limn!1 xn D lim.xn/ D �: If .xn/ has no limit, we
say that it is divergent.

The following proposition justifies the use of the limit (instead of limit) in the
above definition.

Proposition 5.3.2 (Uniqueness of the Limit). The limit of a convergent sequence
in a metric space is unique.

Proof. Suppose that a sequence .xn/ in a metric space .M ; d / has two limits �; � 2
M : Using the definition, for every " > 0, we can find N 0 2 N (resp., N 00 2 N) such
that n � N 0 (resp., n � N 00) implies d.xn; �/ < "=2 (resp., d.xn; �/ < "=2). If
N WD maxfN 0; N 00g; then the Triangle Inequality gives
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n � N H) d.�; �/ � d.�; xn/C d.xn; �/ < "

2
C "

2
D ":

Since this holds for every " > 0; we get d.�; �/ D 0 and hence � D �. ut
Definition 5.3.3 (m-Tail, Ultimately True).

(a) Let .xn/ be a sequence in a metric space M : Given any integer m 2 N; the
m-tail of .xn/ is the sequence .xm; xmC1; xmC2; : : :/:

(b) A property of sequences in a metric space M is said to be ultimately true
for a sequence .xn/ 2 MN if, for some m 2 N; it holds for the m-tail
.xm; xmC1; xmC2; : : :/:

Exercise 5.3.4. Let .M ; d / be a metric space.

(a) Let X � M and let x0 be a limit point of X: Show that x0 D lim.xn/ for a
sequence .xn/ 2 XN: Show that, if x0 62 X; then the converse is also true.

(b) LetX �M : Show that x0 2 X� if and only if x0 D lim.xn/ for some sequence
.xn/ 2 XN: Deduce that X �M is closed if and only if lim.xn/ 2 X for every
convergent sequence .xn/ 2 XN: Hint: Exercise 5.2.12(4).

(c) Assume that M is discrete. Show that a sequence .xn/ 2 MN is convergent if
and only if it is ultimately constant, i.e., if and only if there exists m 2 N such
that xn D xm 8n � m: What is the limit?

Definition 5.3.5 (Cauchy Sequence, Complete Metric Space). Let .M ; d / be a
metric space.

(a) A sequence .xn/ 2MN is said to be a Cauchy sequence if

.8" > 0/.9N 2 N/.m; n � N ) d.xm; xn/ < "/:

(b) M is called a complete metric space if every Cauchy sequence in M converges
to a point in M :

Example.

(a) The metric space R with its usual metric d.x; y/ D jx � yj is complete and
separable. Indeed, the completeness is a consequence of Cauchy’s Criterion,
and the separability follows from the fact that the set Q of rational numbers,
which we know is countable, is dense in R: It follows that all closed subsets of
R are also complete, separable metric spaces (Exercise 5.3.6 below).

(b) (Uniform Approximation) Consider the metric space BŒ0; 1� of all bounded
real-valued functions defined on Œ0; 1� with the uniform metric

d1.f; g/ WD supfjf .x/ � g.x/j W 0 � x � 1g:

Let C Œ0; 1�; Pol Œ0; 1�; StepŒ0; 1�; and PLŒ0; 1� denote the sets of continuous,
polynomial, step, and piecewise linear functions on Œ0; 1�; respectively. It is
obvious that these are all subspaces of the metric space .BŒ0; 1�; d1/ and that
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C Œ0; 1� � Pol Œ0; 1�: (Why?) We shall see later that BŒ0; 1� is complete and that
C Œ0; 1� is a closed subspace and hence (as we shall see below) is also complete.
Now, as we saw in Chap. 4 (Theorems 4.7.2, 4.7.4, and 4.7.9), any continuous
f 2 C Œ0; 1� is the limit (with respect to the uniform metric d1 above) of a
sequence of step, piecewise linear, or polynomial functions. We express this
by saying that f can be approximated uniformly by step, piecewise linear, or
polynomial functions. Equivalently, the subspaces StepŒ0; 1�; PLŒ0; 1�; and
Pol Œ0; 1� are all dense in C Œ0; 1�: Since the continuous function x 7! sin x; say,
is not a step, piecewise linear, or polynomial function on Œ0; 1�; it follows that
the subspaces StepŒ0; 1�; PLŒ0; 1�; and Pol Œ0; 1� are not complete.

Exercise 5.3.6. Let M be a metric space. Prove the following statements:

1. If .xn/ 2MN converges, then it is a Cauchy sequence.
2. For a sequence .xn/ 2 MN; let Tm D fxm; xmC1; xmC2; : : :g be the set

of all terms in the m-tail of .xn/: Show that .xn/ is Cauchy if and only if
limm!1 ı.Tm/ D 0: Recall that ı.Tm/ is the diameter of Tm:

3. Show that a Cauchy sequence .xn/ 2 MN is bounded; i.e., the diameter
ı.fx1; x2; x3; : : :g/ is finite.

4. If .xn/ 2 MN is a Cauchy sequence, then lim.xn/ D � if and only if for some
subsequence .xnk / of .xn/ we have lim.xnk / D �:

5. A subset A �M is dense in M if and only if for each � 2M there is a sequence
.xn/ 2 AN with lim.xn/ D �:

6. If a (metric) subspace A �M is complete, then it is closed. If the space M itself
is complete, then (a subspace) A �M is complete if and only if it is closed.

Our next goal is to prove the important Baire Category Theorem, which asserts
that a complete metric space is of second category (in itself). We first prove a
necessary and sufficient condition for the completeness of a metric space. This
result, which is due to Cantor, will remind you of the Nested Intervals Theorem
for the metric space R:

Theorem 5.3.7 (Cantor’s Theorem). A metric space .M ; d / is complete if and
only if for any (decreasing) nested sequence .Fn/n2N of nonempty closed subsets of
M (i.e., M � F1 � F2 � � � � / satisfying lim.ı.Fn// D 0; we have

T1
nD1 Fn D f�g;

for some � 2M :

Proof. Suppose first that M is complete and that .Fn/n2N satisfies the conditions
of the theorem. For each n 2 N, let xn 2 Fn: Then, given any " > 0; we can
pick N 2 N such that ı.Fn/ < " 8n � N: Therefore, m � n � N implies
d.xm; xn/ � ı.Fn/ < "I i.e., .xn/ is a Cauchy sequence. By completeness, � WD
lim.xn/ 2 M and hence each tail .xm; xmC1; : : :/ also converges to �: Since Fm
is closed for each m 2 N and fxm; xmC1; : : :g � Fm; we have � 2 Fm 8m 2 NI
i.e., � 2 T1

nD1 Fn: Furthermore, if � 0 2 T1
nD1 Fn; then d.�; � 0/ � ı.Fn/ 8n 2 N

implies d.�; � 0/ D 0 and we get
T1
nD1 Fn D f�g; as desired. Conversely, suppose

M satisfies the nested closed sets property in the theorem. Let .xn/ be a Cauchy
sequence and let Fn WD fxn; xnC1; : : :g�: It is clear that the Fn are nonempty, closed,
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and nested. Also, since .xn/ is a Cauchy sequence, we have (Exercise 5.3.6(2))
lim.ı.Fn// D 0: Therefore,

T1
nD1 Fn D f�g for some � 2M :Now, given any " > 0

pick N 2 N such that ı.FN / < ": Since � 2 FN ; we have d.xn; �/ < " 8n � N I
thus lim.xn/ D � . ut

We shall deduce the Baire Category Theorem from the following consequence of
Cantor’s Theorem which is of independent interest:

Theorem 5.3.8. In a complete metric space the intersection of a countable collec-
tion of open, dense sets is itself dense.

Proof. Let .M ; d / be a complete metric space. Let fUngn2N be a countable
collection of open, dense subsets of M and let V WD T1

nD1 Un: To show that V
is dense, we must show that, for any open set O �M ; we have O \ V ¤ ;: Now,
since U1 is dense,O \U1 is a nonempty open set. Let x1 2 U1\O and pick "1 > 0
so that B�

1 � O \ U1; where B1 WD B"1.x1/: Next, since U2 is dense, U2 \ B1 is
a nonempty open set. Pick x2 2 U2 \ B1 and 0 < "2 < minf"1=2; "1 � d.x1; x2/g
such that B�

2 � B1 \ U2; where B2 WD B"2.x2/: Continuing this construction
inductively, we find a sequence .Bn/ of open balls whose centers and radii form
the sequences .xn/ and ."n/; respectively. We have B�

nC1 � Bn \ UnC1 8n 2 N;

and lim."n/ D 0: In particular, fB�
n gn2N is a nested sequence of nonempty, closed

subsets of the complete metric space M ; and lim."n/ D 0 implies lim.ı.B�
n // D 0:

By Cantor’s Theorem, we have
T1
nD1 B�

n D f�g; for some � 2 M : From the
inclusions B�

nC1 � Bn \ UnC1 it now follows that � 2 V \O . ut
Corollary 5.3.9 (Baire Category Theorem). A complete metric space is of
second category in itself; in other words, it is not a countable union of nowhere
dense sets.

Proof. Let fEngn2N be a countable collection of nowhere dense subsets of a
complete metric space .M ; d /: If we let Un WD .E�

n /
c 8n 2 N; then fUngn2N is a

countable collection of open dense sets. (Why?) By Theorem 5.3.8, V WD T1
nD1 Un

is dense and, in particular, nonempty. If � 2 V; then � 62S1
nD1 En. ut

Corollary 5.3.10. The metric space R with its usual metric is of second category
in itself.

Exercise 5.3.11. Show that the set Qc of irrational numbers is of second category
in R: Hint: Show that the union of two sets of first category is of first category.

Next, let us prove a theorem concerning the perfect sets in complete metric
spaces. Recall that a subset of a metric space is called perfect if it is closed and
if every one of its points is a limit point.

Theorem 5.3.12 (Perfect ) Uncountable). Let .M ; d / be a complete metric
space. If M is perfect, then it is uncountable.

Proof. Let us first prove the following claim: Given any x 2M and any (nonempty)
open set U (which may or may not contain x), there is an open set V such that
V � U and x 62 V �: Well, we first need a point y 2 U with y ¤ x: If x 62 U;
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the existence of y is guaranteed by the assumption U ¤ ;: So, suppose that x 2 U:
Since x is a limit point and U is a neighborhood of x; the set U must contain
at least one point y ¤ x: Now pick " > 0 such that B".x/ \ B".y/ D ; and
put V WD U \ B".y/: This ends the proof of our claim. Now, to prove that M is
uncountable, we will show that there are no surjective sequences x W N ! M : Let
.xn/ be a sequence in M : Applying the above claim to the open set U WD M ; we
can find a nonempty open set V1 such that x1 62 V �

1 and 0 < ı.V �
1 / < 1: In general,

having chosen a nonempty open set Vn�1; with xn�1 62 V �
n�1; we pick a nonempty

open set Vn with Vn � Vn�1, xn 62 V �
n and ı.V �

n / < ı.V
�
n�1/=2: We therefore have

a nested sequence of nonempty closed sets

V �
1 � V �

2 � � � � � V �
n�1 � V �

n � � � �

with lim
�

ı.V �
n /
� D 0. By Cantor’s Theorem, there is a point � 2T1

nD1 V �
n : Since,

for each n 2 N;we have xn 62 V �
n while � 2 V �

n ;we obviously have � ¤ xn 8n 2 N

and the proof is complete. ut
For our next result, we recall that a metric space M is called second countable if

it has a countable base of open sets, i.e., if there is countable collection B D fUn W
n 2 Ng of open sets such that each open set in M is a union of some Un’s.

Theorem 5.3.13 (Cantor–Bendixon). Let .M ; d / be a second countable metric
space and let F � M be any closed subset. Then F D P [ C ; where P � M is
perfect and C �M is countable.

Proof. Let us call a point x 2M a condensation point of F ifU\F is uncountable
for each open set U 3 x: Let

P WD fx 2M W x is a condensation point of F g;

and define C WD F n P : Since each condensation point is clearly a limit point and
F is closed, we have P � F : It is then obvious that F D P [ C and P \ C D ;:
Let B D fUn W n 2 Ng be a countable base of open sets in M : Since each x 2 C is
not a condensation point of F ; for each such x we can find an open set Un.x/ 2 B
containing x and such that Un.x/ \F is countable. But then, C �Sx2C Un.x/ \F

and hence C is also countable. Next, for each x 2 P and each open set U 3 x;
the set U \ F is uncountable while the set U \ C is countable. It follows that
U \ P D .U \ F / n .U \ C / is uncountable and hence x is a limit point of P :

Thus all points of P are limit points of P :Hence, to show that P is perfect, we need
only show that it is closed. Well, let x 62 P : Then there is an open set V 3 x such
that V \ F is countable. We claim that V \ P D ;: Indeed, if y 2 V \ P ; then
V is a neighborhood of y 2 P and, since y is a condensation point of F , V \ F

would be uncountable, which is absurd. Thus, no x 2 Pc is a limit point of P I i.e.,
P contains all its limit points. This proves that P is closed and hence perfect. The
proof is now complete. ut
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Finally, before moving to the limits of functions, let us look at the completeness
in a product space. First a lemma:

Lemma 5.3.14 (Convergence in Product Spaces). Let .M 1; d1/; .M 2; d2/; : : : ;

.M n; dn/ be metric spaces and let M WDM 1 �M 2 � � � � �M n: A sequence .xn/ 2
MN converges to a point x0 2 M if and only if lim.	k.xn// D 	k.x0/ for 1 �
k � n:
Proof. We prove the lemma for n D 2; the arguments being the same in general.
Let ..xn; yn// be a sequence in M 1 �M 2: Then lim..xn; yn// D .x0; y0/ if and
only if, given any " > 0; there exists N 2 N such that n � N implies

dmax..xn; yn/; .x0; y0// WD maxfd1.xn; x0/; d2.yn; y0/g < "; ()

where we have chosen the distance dmax D max.d1; d2/ on M D M 1 �M 2: But
() is satisfied if and only if d1.xn; x0/ < " and d2.yn; y0/g < " are both satisfied
for all n � N; which means precisely that lim.xn/ D x0 and lim.yn/ D y0. ut
Theorem 5.3.15 (Complete Product Spaces). Let .M 1; d1/; .M 2; d2/; : : : ;

.M n; dn/ be metric spaces. Then the product M WDM 1�M 2�� � ��M n is complete
if and only if each M k; 1 � k � n; is complete.

Proof. Once again, to simplify the notation, we give the proof for n D 2: The
arguments in the general case are exactly the same. Using the distance dmax as in
the lemma, it is easily seen that a sequence ..xn; yn// is Cauchy in M DM 1 �M 2

if and only if the sequences .xn/ and .yn/ are Cauchy in M 1 and M 2; respectively.
Now if M 1 and M 2 are complete metric spaces, then lim.xn/ D x0 and lim.yn/ D
y0 for some x0 2M 1; y0 2M 2; and hence lim..xn; yn// D .x0; y0/: The converse
follows from the above lemma. ut

We next look at limits of functions from one metric space to another. This
was studied (in Chap. 3) for real-valued functions defined on subsets of the metric
space R:

Definition 5.3.16 (Limits of Functions). Let f W X ! M 0 be a function from
a subset X of a metric space .M ; d / to a metric space .M 0; d 0/; and let x0 be a
limit point of X: We say that a point y0 2 M 0 is the limit of f .x/ at x0 (or that
f .x/ converges to y0 as x approaches x0), and we write limx!x0 f .x/ D y0; if the
following is true:

.8" > 0/.9ı D ı."/ > 0/.8x 2 X/.0 < d.x; x0/ < ı) d 0.f .x/; y0/ < "/:
()

In terms of open balls, () may be written as follows:

.8" > 0/.9ı D ı."/ > 0/.x 2 X \ PBı.x0/) f .x/ 2 B".y0//; ()

where, we recall, PBı.x0/ WD Bı.x0/ n fx0g:
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Remark 5.3.17. If y0 WD limx!x0 f .x/ 2 M 0 (as defined above) exists, then it
follows at once from () that y0 2 .f .X//�:
Theorem 5.3.18 (Sequential Definition of Limit). Let f W X ! M 0 be a
function from a subset X of a metric space .M ; d / to a metric space .M 0; d 0/;
and let x0 be a limit point of X: Then y0 WD limx!x0 f .x/ 2 M 0 if and only if
lim.f .xn// D y0 for all sequences .xn/ 2MN with lim.xn/ D x0:
Proof. Suppose that y0 WD limx!x0 f .x/ 2 M 0 and let " > 0 be given. Then there
is ı > 0 such that x 2 X \ PBı.x0/ implies f .x/ 2 B".y0/: Now, if .xn/ 2 MN

satisfies lim.xn/ D x0; then we can pick N 2 N such that xn 2 Bı.x0/ 8n � N
and hence f .xn/ 2 B".y0/ 8n � N: Thus (by ./) we have lim.f .xn// D y0; as
desired. Next, if limx!x0 f .x/ ¤ y0; then there exists "0 > 0 such that, for each
n 2 N; we can find xn 2 X with d.xn; x0/ < 1=n and d.f .xn/; y0/ � "0: This,
however, means that lim.xn/ D x0 but lim.f .xn// ¤ y0. ut

The following theorem is similar to Theorem 3.3.3 and the proof is, with obvious
modifications, exactly the same.

Theorem 5.3.19. Let X be a subset of a metric space .M ; d / and let x0 be
a limit point of X: Let f; g W X ! R; and suppose that limx!x0 f .x/ D
y0; limx!x0 g.x/ D z0: Then we have

(a) limx!x0.f ˙ g/.x/ D y0 ˙ z0I
(b) limx!x0.fg/.x/ D y0z0I
(c) limx!x0.cf /.x/ D cy0 8c 2 RI and
(d) limx!x0.f =g/.x/ D y0=z0; if z0 ¤ 0:
Proof. Exercise! ut

We also have the analog of Theorem 3.3.14 for limits of composite functions:

Theorem 5.3.20. Let .M ; d /; .M 0; d 0/; and .M 00; d 00/ be metric spaces. Let f W
X ! Y and g W Y ! M 00; where X � M and f .X/ � Y � M 0: Suppose that
limx!x0 f .x/ D y0 and limy!y0 g.y/ D z0; where x0 (resp., y0) is a limit point of
X (resp., of f .X/). Assume in addition that there exists ı0 > 0 such that f .x/ ¤ y0
for all x 2 PBı0.x0/ \X: Then

lim
x!x0

g.f .x// D z0:

Proof. Given " > 0; pick ı1 > 0 such that y 2 Y \ PBı1.y0/ implies g.y/ 2 B".z0/:
Now, given this ı1; pick ı > 0 with 0 < ı < ı0 such that x 2 X and 0 < d.x; x0/ <
ı imply f .x/ 2 Y \ PBı1.y0/: We then have

x 2 X \ PBı.x0/ H) f .x/ 2 Y \ PBı1.y0/ H) g.f .x// 2 B".z0/;

which completes the proof. ut
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Finally, let us look at the limits of functions from a metric space into a product
of metric spaces.

Proposition 5.3.21. Let f D .f1; f2/ be a function from a subset X of a metric
space .M ; d / to the product M 1�M 2 of metric spaces .M 1; d1/ and .M 2; d2/I i.e.,
fj W X ! M j ; j D 1; 2; and let x0 be a limit point of X: Then limx!x0 f .x/ D
.y1; y2/ 2M 1 �M 2 if and only if limx!x0 f1.x/ D y1 and limx!x0 f2.x/ D y2:
Proof. Using the sequential definition of limit (Theorem 5.3.18), the proposition is
reduced to Lemma 5.3.14. ut

5.4 Continuity

The concept of continuity, which we defined in terms of limits of functions, was
treated in detail (in Chap. 4) for real-valued functions defined on subsets of the
metric space R: It is possible, however, to define continuity directly on any abstract
metric space as follows:

Definition 5.4.1 (Continuity at a Point, on a Set). Let M and M 0 be metric
spaces with metrics d and d 0; respectively. Given a set X �M and a point x0 2 X;
a function f W X !M 0 is said to be continuous at x0 if

.8" > 0/.9ı D ı."; x0/ > 0/.8x 2 X/.d.x; x0/ < ı) d 0.f .x/; f .x0// < "/:
()

In terms of open balls, () can be written as follows:

.8" > 0/.9ı D ı."; x0/ > 0/.x 2 X \ Bı.x0/) f .x/ 2 B".f .x0///: ()

Given any subset S � X; the function f is said to be continuous on S if it is
continuous at every point of S .

Remark 5.4.2.

(a) Note that the function f has to be defined at x0 in order to be continuous at x0:
(b) If x0 2 X is an isolated point of X; then ./ implies that any f W X ! M 0 is

automatically continuous at x0: Indeed, given any " > 0;we can choose ı > 0 so
small that d.x; x0/ < ı and x 2 X imply x D x0; and then d 0.f .x/; f .x0// D
0 < " is trivially satisfied.

(c) Recall that, for a function f W X ! M 0 from a subset X of a metric space
M to a metric space M 0; we defined limx!x0 f .x/ for a limit point x0 of X:
In particular, we may have x0 2 Xc: As ./ indicates, however, the definition
of continuity of f on the subset X does not involve the complement Xc at all.
Therefore, dropping this complement, we may as well talk about the continuity
of functions from one metric space to another, rather than of functions defined
on subsets. This will simplify matters in our global treatment of continuity
(Theorem 5.4.7 below).
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(d) The set X \ Bı.x0/ is the open ball of radius ı centered at x0 in the subspace
X �M ; and () implies that

X \ Bı.x0/ � f �1.B".f .x0///:

Recall that, for a subset Y �M 0; its inverse image under f is the set f �1.Y / WD
fx 2M W f .x/ 2 Y g:

The following theorem, which is an immediate consequence of the above defini-
tion and the definition of limx!x0 f .x/ given earlier, states that f is continuous at
x0 if and only if it commutes with “limx!x0 ,” i.e.,

lim
x!x0

f .x/ D f . lim
x!x0

x/:

Theorem 5.4.3. Let .M ; d / and .M 0; d 0/ be metric spaces andX �M : If x0 2 X
is a limit point of X; then a function f W X !M 0 is continuous at x0 if and only if

lim
x!x0

f .x/ D f .x0/:

Proof. Exercise! ut
Corollary 5.4.4 (Sequential Definition of Continuity). Let M and M 0 be metric
spaces andX �M : A function f W X !M 0 is continuous at a point x0 2 X if and
only if lim.f .xn// D f .x0/ for all sequences .xn/ 2 XN satisfying lim.xn/ D x0:
Proof. If x0 is a limit point of X; then we use Theorem 5.3.18. If, however, x0 is an
isolated point of X; then any function is automatically continuous at x0: Note that,
for an isolated point x0 2 X; we have lim.xn/ D x0 if and only if .xn/ is ultimately
constant, i.e., xn D x0 8n � m for some m 2 N; which obviously implies that
.f .xn// is ultimately constant and that lim.f .xn// D f .x0/. ut

The next two theorems are similar to Theorems 5.3.19 and 5.3.20 above.

Theorem 5.4.5. Let f; g W X ! R be defined on a subset X of a metric space
M ; and let x0 2 X: If f and g are continuous at x0; then so are the functions
f ˙ g; fg; and cf for any constant c 2 R: If, in addition, g.x0/ ¤ 0; then f=g is
also continuous at x0: In particular, if f and g are continuous on X; then so are the
functions f ˙ g; fg and cf; 8 c 2 R: If, in addition, g.x/ ¤ 0 8x 2 X; then f=g
is also continuous on X:

Proof. Exercise! ut
Theorem 5.4.6. Let .M ; d /; .M 0; d 0/; and .M 00; d 00/ be metric spaces. Let f W
X ! Y and g W Y ! M 00; where X � M and f .X/ � Y � M 0: If f is
continuous at x0 2 X and g is continuous at y0 WD f .x0/ 2 Y; then h WD g ı f W
X !M 00 is continuous at x0:
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Proof. Let " > 0 be given. Using the continuity of g at y0 D f .x0/; we have

.9ı0 > 0/.y 2 Y \ Bı0.y0/) g.y/ 2 B".h.x0///; ()

where, we recall, h.x0/ D g.f .x0// D g.y0/: Since f is continuous at x0; we have

.9ı > 0/.x 2 X \ Bı.x0/) f .x/ 2 Bı0.y0//: ()

It follows from () and () that

x 2 X \ Bı.x0/) h.x/ D g.f .x// 2 B".h.x0//: ut
So far, we have looked at continuity locally, i.e., at a point. The definition of

continuity in terms of open balls suggests a way of giving a global definition in
terms of open sets. As was remarked after the definition of continuity, we may as
well look at functions defined on a metric space rather than a subspace:

Theorem 5.4.7. Let .M ; d / and .M 0; d 0/ be metric spaces. A function
f WM !M 0 is continuous on M if and only if, for every open set V � M 0;
the inverse image f �1.V / is open in M : In particular, a function f W X ! M 0 is
continuous on a subset X �M if and only if, for every open set V �M 0; we have
f �1.V / D X \ U for an open subset U �M :

Proof. Suppose that f is continuous on M and let V �M 0 be open. For each x 2
f �1.V / we have f .x/ 2 V and V is open. Therefore, we can find " D ".x/ > 0

such that B".f .x// � V: Now, using the continuity of f at x; we can pick ı > 0

such that

Bı.x/ � f �1.B".f .x// � f �1.V /;

which proves that each point x 2 f �1.V / is an interior point and hence f �1.V / is
open. Conversely, suppose that f �1.V / is open in M for every open set V � M 0:
Given any fixed x 2 M and " > 0; let V WD B".f .x//: Then V is open and hence
f �1.V / is open. Since x 2 f �1.V /; we can find ı > 0 such that

Bı.x/ � f �1.V / D f �1.B".f .x//;

which shows indeed that f is continuous at x: Since x was an arbitrary point of M ;

the proof is complete. ut
Notation 5.4.8. Given any metric spaces .M ; d / and .M 0; d 0/ and any X � M ;

the set of all continuous functions f W X ! M 0 will be denoted by C .X;M 0/: In
particular, C .M ;M 0/will denote the set of all continuous functions f WM !M 0:
If M 0 D R; then we use the abbreviations C .X/ and C .M / instead of C .X;R/

and C .M ;R/:
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Corollary 5.4.9. Let .M ; d / and .M 0; d 0/ be metric spaces and let X � M : If
f 2 C .M ;M 0/; then f jX 2 C .X;M 0/: Here f jX is the restriction of f to X:

Proof. Since f is continuous on M ; f �1.V / is open in M for every open set V �
M 0; and hence .f jX/�1.V / D X \ f �1.V / is open in X . ut
Remark 5.4.10. Note that the restriction of a function to a subspace may be
continuous without the function itself being continuous at any point. For example,
the Dirichlet function 
Q (Exercise 4.3.12) is nowhere continuous but its restriction
to Q is identically 1; hence continuous.

Exercise 5.4.11. Let .M ; d / and .M 0; d 0/ be metric spaces and f W M ! M 0:
Show that the following statements are pairwise equivalent:

(a) f 2 C .M ;M 0/I
(b) for every closed set Y �M 0; f �1.Y / is closed in M I
(c) for every set Y �M 0; f �1.Y ı/ � .f �1.Y //ıI
(d) for every set Y �M 0; .f �1.Y //� � f �1.Y �/I
(e) for every set X �M ; f .X�/ � .f .X//�:
Exercise 5.4.12 (Continuity of Addition and Multiplication). Show that the
maps C W R � R ! R and � W R � R ! R defined by C.x; y/ WD x C y

and �.x; y/ WD xy are continuous.

Remark 5.4.13. In fact, the function “C” is uniformly continuous and so is the
dilation x 7! ax; where a 2 R is a constant. (Why?)

Given a metric space M ; we saw (Theorem 5.2.2(6)) that the diagonal �M WD
f.x; x/ W x 2 Mg of M �M is closed in M �M : Now �M is the graph of the
identity map idM WM !M defined by idM .x/ WD x 8x 2M : We shall presently
see that this closedness of the graph is a consequence of continuity.

Notation 5.4.14 (Graph). The graph of a function f from a metric space M 1 to
a metric space M 2 shall be denoted by

�f WD f.x; f .x// W x 2M 1g �M 1 �M 2:

We are now ready for our theorem. In fact, we shall give two proofs: the first uses
the closedness of the diagonal, while the second is a direct one using a sequential
argument which can be extended to other situations as well (Exercise 5.4.16
following the theorem).

Theorem 5.4.15 (Closedness of Graphs). Let .M 1; d1/ and .M 2; d2/ be metric
spaces and f 2 C .M 1;M 2/: Then the graph of f (i.e., the set �f WD f.x1; f .x1// W
x1 2M 1g) is a closed subset of the product space M WDM 1 �M 2:

First Proof. Let ˆ WM 1 �M 2 !M 2 �M 2 be defined by

ˆ.x; y/ WD .f .x/; y/ 8.x; y/ 2M 1 �M 2:
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From the continuity of f; it follows easily (e.g., using Theorem 5.4.3 and
Proposition 5.3.21) that ˆ is continuous. Since �f D ˆ�1.�M 2 /; the closedness of
�f follows from the fact that the diagonal �M 2 is closed (Exercise 5.4.11). ut
Second Proof. Let us show that �f contains its limit points. Suppose .x0; y0/ 2
M 1 �M 2 is a limit point of �f : Then, 8n 2 N; we have �f \B1=n..x0; y0// ¤ ;I
i.e., we can pick a point .xn; f .xn// 2 B1=n..x0; y0//: Using the distance dmax WD
max.d1; d2/; this implies that

dmax..xn; f .xn//; .x0; y0// WD maxfd1.xn; x0/; d2.f .xn/; y0/g < 1=n:

In particular, we have d1.xn; x0/ < 1=n and d2.f .xn/; y0/ < 1=n for all n 2 N:

Therefore, lim.xn/ D x0 and lim.f .xn// D y0: On the other hand, the continuity
of f at x0 implies that y0 D lim.f .xn// D f .x0/ and we indeed have .x0; y0/ D
.x0; f .x0// 2 �f . ut
Exercise 5.4.16 (Closedness of Level Curves). Let M 1; M 2; and M 3 be metric
spaces and f 2 C .M 1�M 2;M 3/: Show that, for each fixed point z0 2M 3; the set

Kz0 WD f.x; y/ 2M 1 �M 2 W f .x; y/ D z0g

is closed in M 1 �M 2: Deduce that, for a continuous function f W R�R! R; the
level curve

Kc WD f.x; y/ 2 R � R W f .x; y/ D cg

is a closed subset of the plane R2 for each constant c 2 R: Hint: Use an argument
similar to the second proof of Theorem 5.4.15.

Warning! The converse of Theorem 5.4.15 is false in general. For example,
consider the function f W R ! R defined by f .x/ D 1=x if x ¤ 0; and
f .0/ D 0: Then f is discontinuous at x D 0 but its graph �f D f.x; y/ 2
R � R W xy D 1g [ f.0; 0/g is closed. Indeed, the singleton f.0; 0/g is closed
and (by Exercise 5.4.16) so is the level curve f.x; y/ 2 R � R W xy D 1g of the
multiplication .x; y/ 7! xy; which is continuous (Exercise 5.4.12). We shall see,
however, that the converse is true if we assume that M 2 is compact.

As we have seen above, the inverse images of open (resp., closed) sets under a
continuous function are open (resp., closed). On the other hand, the direct images
of open (resp., closed) sets under a continuous function need not be open (resp.,
closed) in general. This motivates the following:

Definition 5.4.17 (Open Map, Closed Map). A map f from a metric space M

to a metric space M 0 is called open (resp., closed) if f .X/ is open (resp., closed) in
M 0 for each open (resp., closed) subset X �M :

Before giving examples of open and closed maps, let us mention an important
class of open maps:
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Proposition 5.4.18 (Openness of Projections). Let .M 1; d1/ and .M 2; d2/ be
metric spaces and consider their (metric space) product M WD M 1 �M 2: Then
the projections 	1 WM !M 1 and 	2 WM !M 2 defined by 	1.x1; x2/ D x1 and
	2.x1; x2/ D x2 are both open maps.

Proof. Since open sets are unions of open balls and since the (direct) image
of a union of sets is the union of their images, it suffices to show that 	1
(resp., 	2) maps each open ball of M onto an open set in M 1 (resp., M 2).
Now, by the Example 5.1.15(c), if we use the metric dmax..x1; x2/; .y1; y2// WD
maxfd1.x1; y1/; d2.x2; y2/g on M ; then, for any .x1; x2/ 2M ; we have

B"..x1; x2//WDf.y1; y2/ 2M W dmax..x1; x2/; .y1; y2// < "g D B1;".x1/�B2;".x2/;

where Bj;".xj / is the open ball of radius " centered at xj 2M j ; j D 1; 2: It now
follows that 	1.B"..x1; x2/// D B1;".x1/ and 	2.B"..x1; x2/// D B2;".x2/; which
are open in M 1 and M 2; respectively. ut

Now we are ready for our examples which show that a function may be open
without being closed or closed without being open. Also, a function may be
simultaneously open and closed or neither open nor closed.

Example 5.4.19.

(a) If f W M ! M 0 is a continuous one-to-one correspondence between two
metric spaces, then f �1 is both open and closed (Exercise 5.4.11). If f is also
open (or closed), then it is a homeomorphism (to be defined below).

(b) The function f W Œ0; 11	=6/ ! R defined by f .x/ WD sin.x/ is neither open
nor closed. Indeed, .	=3; 5	=3/ is open in Œ0; 11	=6/ but f ..	=3; 5	=3// D
Œ�1; 1� is closed (in R). Also, the interval Œ3	=2; 11	=6/ is closed in Œ0; 11	=6/
but f .Œ3	=2; 11	=6// D Œ�1;�1=2/ is not closed (in R).

(c) Let f W R ! R be a constant map, i.e., f .x/ D c 8x 2 R and some c 2 R:

Then f is obviously closed, but not open.
(d) Let 	1 W R�R! R be the projection 	1.x; y/ WD x; 8.x; y/ 2 R2: Then 	1 is

open but not closed. Indeed, by Proposition 5.4.18, 	1 is open. To show that it
is not closed, consider the hyperbola � WD f.x; y/ 2 R � R W xy D 1g: As we
pointed out in the “Warning” following Exercise 5.4.16, � is a level curve of the
multiplication function and is therefore closed in R2:However, 	1.�/ D Rnf0g
is not closed in R: The situation is better for cross sections, as we shall see later.

Exercise 5.4.20. Let .M 1; d1/; .M 2; d2/; : : : ; .M n; dn/ be metric spaces and let
M WDM 1 �M 2 � � � � �M n be their product with, say, the metric

dmax.x; y/ WD maxfd1.x1; y1/; : : : ; dn.xn; yn/g:

(a) Show that, if ; ¤ Xk � M k; 1 � k � n; then the product X1 � � � � � Xn is
open (resp., closed) in M if and only if each Xk �M k is open (resp., closed).
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(b) With the Xk as in part (a), show that

.X1 � � � � �Xn/� D X�
1 � � � � �X�

n ; and

.X1 � � � � �Xn/ı D Xı
1 � � � � �Xı

n :

In Chap. 4 we studied the behavior of one-to-one continuous functions between
subsets of R and proved that such functions must necessarily be strictly monotone.
We also looked at homeomorphisms, i.e., bijective functions that are continuous and
have continuous inverse. We now define these concepts for a general metric space.

Definition 5.4.21 (Homeomorphism, Isometry). Let .M ; d / and .M 0; d 0/ be
metric spaces and let f WM !M 0 be a one-to-one correspondence.

(a) We say that f is a homeomorphism if both f and f �1 are continuous. If such a
function exists, then M and M 0 are said to be homeomorphic.

(b) We say that f is an isometry if

d 0.f .x/; f .y// D d.x; y/ 8x; y 2M : (�)

If such a function exists, the metric spaces M and M 0 are said to be isometric.

Exercise 5.4.22. Let f W M ! M 0 and g W M 0 ! M 00 be one-to-one
correspondences between the metric spaces M ; M 0; and M 00:

(a) Show that if f; g are homeomorphisms (resp., isometries), then so are f �1 and
g ı f:

(b) Given a metric space M ; let Homeo.M / (resp., Isom.M /) denote the set
of all homeomorphisms (resp., isometries) of M onto itself. Show that both
these sets are groups under the operation of “composition.” This means (for
Homeo.M /) that

(G1) .f ı g/ ı h D f ı .g ı h/ 8f; g; h 2 Homeo.M /;

(G2) .9� 2 Homeo.M //.8f 2 Homeo.M //.� ı f D f ı � D f /; and
(G3) .8f 2 Homeo.M //.9f �1 2 Homeo.M //.f ı f �1 D f �1 ı f D �/;

with similar properties for the set Isom.M /: (Hint: Let � D idM be the identity
map: idM .x/ D x; 8x 2M /:

Remark 5.4.23.

(a) It is obvious that an isometry is a homeomorphism. (Why?) The converse is
false, however, as the following trivial example shows. Consider the dilation
f W R ! R defined by f .x/ WD 2x: It is clear that both f and f �1; which is
given by f �1.x/ D x=2; 8x 2 R; are continuous (even Lipschitz). Hence f
is a homeomorphism of R onto itself. On the other hand, f is obviously not an
isometry.
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(b) (Transported Distance) Let .M ; d / be a metric space and let M 0 be a set.
Assume that there exists a bijection f W M ! M 0: We can then define a
distance d 0 on M 0 by the formula .�/ above. This distance is said to have been
transported from M to M 0; and the metric spaces M and M 0 are then obviously
isometric.

Example 5.4.24 (Extended Real Line). Recall that, in Example 5.1.3(2), we
extended the homeomorphism f W x ! x=.1 C jxj/ of R onto .�1; 1/ to
R WD Œ�1;C1� by setting f .�1/ D �1 and f .C1/ D 1: If, on R � R;

we define d 0.x; y/ WD jf .x/ � f .y/j; then d 0 is easily seen to be a metric and
f W R ! Œ�1; 1� is then an isometry of .R; d 0/ onto .Œ�1; 1�; d/; where d is the
usual distance (d.x; x0/ D jx � x0j) in Œ�1; 1�:
Theorem 5.4.25. A bijection f W M ! M 0 from a metric space M to a metric
space M 0 is a homeomorphism if and only if, for any open sets U � M and
V � M 0; f .U / is open in M 0 and f �1.V / is open in M , i.e., if and only if f
is continuous and open.

Proof. This is an immediate consequence of Theorem 5.4.7. ut
Exercise 5.4.26. Show that an isometry f W R ! R is necessarily of the form
f .x/ WD ˙ x C b for a constant b 2 R:

Recall that two metrics d and d 0 on a set M are said to be equivalent if they
give M the same topology (i.e., the same collection of open sets). The following
proposition is an immediate consequence of Theorem 5.4.25.

Proposition 5.4.27 (Equivalent Metrics). Two metrics d and d 0 on a set M are
equivalent if and only if the identity map idM W .M ; d / ! .M ; d 0/; defined by
idM .x/ WD x 8x 2M ; is a homeomorphism.

Corollary 5.4.28. Let d and d 0 be two metrics on a set M and assume that for
some constants c > 0; c0 > 0 we have d 0 � cd � c0d 0: Then d and d 0 are
equivalent.

Proof. Exercise! ut
Exercise 5.4.29.

(a) Let .M ; d / be a metric space and define the distances d1 WD d=.1 C d/ and
d2 WD min.1; d/: Show that d1 and d2 satisfy the conditions of the corollary and
hence are equivalent.

(b) (Product Spaces) Let M 1; M 2; : : : ; M n be metric spaces with metrics
d1; d2; : : : ; dn; respectively, and let M WD M 1 � M 2 � � � � � M n: Recall
that the metrics deuc; dmax; dsum WM �M ! R are defined as follows:

deuc.x; y/ WD
v

u

u

t

n
X

kD1
d 2k .xk; yk/;
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dmax.x; y/ WD maxfd1.x1; y1/; : : : ; dn.xn; yn/g; and

dsum.x; y/ WD
n
X

kD1
dk.xk; yk/;

for every x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ in M : Show that deuc; dmax,
and dsum are equivalent metrics on M : The space M together with any one of
these metrics is called the product of the Mk 1 � k � n: Hint: Show that
dmax � deuc � dsum � ndmax:

Example 5.4.30 (Joint vs. Separate Continuity). On M WD R � R D R2; consider
the functions

f .x; y/ WD
(

2xy

x2Cy2 if .x; y/ ¤ .0; 0/
0 if .x; y/ D .0; 0/

; g.x; y/ WD
8

<

:

2xyp
x2Cy2 if .x; y/ ¤ .0; 0/

0 if .x; y/ D .0; 0/
:

Now both f and g are separately continuous in each variable x; y if the other is kept
fixed, as follows easily by using, e.g., the sequential definition of continuity and the
fact that f .0; y/ D g.0; y/ D 0 for all y; while f .x; 0/ D g.x; 0/ D 0 for all x:
Also, using sequences again, we see at once that both f and g are jointly continuous
functions of .x; y/ for all .x; y/ ¤ .0; 0/: On the other hand, f is discontinuous at
.0; 0/ because if yn D xn D 1=n for all n 2 N and if n!1, then .xn; xn/! .0; 0/

and .xn; 0/! .0; 0/, but f .xn; xn/! 1 while f .xn; 0/! 0: Finally, g is (jointly)
continuous even at .0; 0/: Indeed, since 2xy � x2Cy2 for all .x; y/ 2 R2; we have

g.x; y/ D 2xy
p

x2 C y2 �
x2 C y2
p

x2 C y2 D
p

x2 C y2 8.x; y/ ¤ .0; 0/;

and hence lim.x;y/!.0;0/ g.x; y/ D 0 D g.0; 0/:
Here is an example of a function on R2 that is separately continuous, but has a

dense discontinuity set:

Exercise 5.4.31. Let Q2 D f.rn; sn/ W n D 1; 2; 3; : : :g be an enumeration of the
dense subset Q2 � R2 and let f be the function in the above example. Consider the
function

h.x; y/ WD
1
X

nD1

f .x � rn; y � sn/
2n

:

Show that h is coordinate-wise continuous, but the discontinuity set of h is
precisely Q2: Hint: Use whatever you need from Chap. 8!



5.5 Uniform Continuity and Continuous Extensions 207

Definition 5.4.32 (Cross Sections, Horizontal and Vertical Fibers). Let
.M 1; d1/ and .M 2; d2/ be metric spaces, M D M 1 � M 2 their product, and
S �M 1 �M 2:

1. The sets 	�1
2 .x2/ DM 1 � fx2g (resp., 	�1

1 .x1/ D fx1g �M 2), where .x1; x2/
runs through M 1�M 2; are called the horizontal (resp., vertical) fibers of M 1�
M 2: Note that they are all closed subspaces of M 1 �M 2:

2. For any (fixed) point .a1; a2/ 2M 1 �M 2 we define the a1-cross section (resp.,
a2-cross section) of S to be the set Sa1 WD 	2.S \ fa1g �M 2/ (resp., Sa2 WD
	1.S \M 1 � fa2g). In other words, we have

Sa1 WD fx2 2M 2 W .a1; x2/ 2 Sg and Sa2 WD fx1 2M 1 W .x1; a2/ 2 Sg:

Exercise 5.4.33. Let M 1 and M 2 be metric spaces and M D M 1 � M 2 their
product. Show that for any (fixed) a2 2 M 2 (resp., a1 2 M 1) the function x1 7!
.x1; a2/ (resp., x2 7! .a1; x2/) is an isometry of M 1 (resp., M 2) onto the horizontal
fiber M 1 � fa2g (resp., the vertical fiber fa1g �M 2) of M :

Recall that the projections 	1 and 	2 are open maps, but not closed ones (cf.
Example 5.4.19(d)). However, we have the following

Proposition 5.4.34. Let the notation be as in Definition 5.4.32. If S is open (resp.,
closed) then so are the cross sections Sa1 and Sa2 for any .a1; a2/ 2M 1 �M 2:

Proof. For Sa1 ; note that (in view of Exercise 5.4.33) we need only show that the set
S \ .fa1g �M 2/ is (relatively) open (resp., closed) in the vertical fiber fa1g �M 2

if S is open (resp., closed) in M : But this follows at once from Theorem 5.2.5.
A similar proof can be given for the cross section Sa2 . ut

Let us end this section with a necessary and sufficient condition for the continuity
of a map from a metric space to a product of metric spaces. We state the theorem for
a product of two metric spaces, but the extension to any finite product is immediate.

Theorem 5.4.35. Let M ; M 1; and M 2 be metric spaces and f D .f1; f2/ WM !
M 1 �M 2: Then f is continuous if and only if f1 WM !M 1 and f2 WM !M 2

are both continuous, i.e., if and only if the composite functions 	1ıf and 	2ıf are
both continuous. Here, 	j is, of course, the projection of M 1�M 2 onto M j ; j D
1; 2:

Proof. This is an immediate consequence of Theorem 5.4.3. ut

5.5 Uniform Continuity and Continuous Extensions

In this section we define the concept of uniform continuity for functions from a
general metric space to another. Recall that uniform continuity played an important
role in the approximation of continuous real-valued functions on compact subsets
of R by step, piecewise linear, and polynomial functions (Theorems 4.7.2, 4.7.4,
and 4.7.9).
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Definition 5.5.1 (Uniform Continuity). Let .M ; d / and .M 0; d 0/ be metric
spaces. A function f WM !M 0 is said to be uniformly continuous on M if

.8" > 0/.9ı D ı."/ > 0/.8x; x0 2M /.d.x; x0/ < ı) d 0.f .x/; f .x0// < "/:
(�)

Remark 5.5.2.

(a) Unlike continuity, uniform continuity cannot be defined at a point; it is only
defined on larger subsets of the domain.

(b) If we compare (�) to () in Definition 5.4.1, we notice that in the pointwise
definition of continuity at x; the number ı D ı."; x/ depends on both " and x:
In (�), however, ı depends only on "I i.e., for a given " > 0; it is possible to find
a ı > 0 that works for all points x 2M :

(c) It is obvious that a uniformly continuous function is continuous. We shall see
later that, as in the special case of R; the converse (which is false in general) is
true if M is compact.

The Lipschitz class, which was defined in Chap. 4 for real-valued functions of a
real variable, can also be defined for functions from one metric space to another:

Definition 5.5.3 (Lipschitz Function, Contraction). For any metric spaces
.M ; d / and .M 0; d 0/ and any X � M ; we say that a function f W X ! M 0
is Lipschitz, and we write f 2 Lip.X;M 0/; if there exists a constant c > 0 such
that

d 0.f .x/; f .x0// � cd.x; x0/ 8x; x0 2 X:

The constant c is then called a Lipschitz constant for f: If c < 1; the function f is
said to be a contraction (or a contraction mapping).

Example 5.5.4.

(a) Let .M ; d / be a metric space and S � M a nonempty subset. The function
x 7! d.x; S/ is a Lipschitz function from M to Œ0;1/: Indeed, we have

jd.x; S/ � d.x0; S/j � d.x; x0/ 8x; x0 2M ()

To show (), note that the Triangle Inequality implies d.x; y/ � d.x0; y/ C
d.x; x0/ for all x; x0 2 M ; y 2 S; and hence (since d.x; S/ WD inffd.x; y/ W
y 2 Sg),

d.x; S/ � d.x0; y/C d.x; x0/ 8x; x0 2M ; 8y 2 S: ()

Now, keeping x and x0 fixed, () implies that

d.x; S/ � d.x0; S/C d.x; x0/;
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and the same inequality also holds if x and x0 are interchanged. The inequality
() now follows at once. Note that, since d.x; S/ D 0 if and only if x 2 S�
(Exercise 5.2.12(5)), the set of zeroes of the function x 7! d.x; S/ is precisely
the set S�: In particular, if M D R and if S D C is the Cantor set (which we
know is closed), then the set of zeroes of the function f .x/ WD d.x; C / (with
the usual distance d.x; y/ D jx � yj) is the Cantor set, which is uncountable
and totally disconnected. The latter property implies that the function f is never
identically zero on any open subinterval of Œ0; 1�:

(b) Let .M ; d / be a metric space and consider the product space M � M with
metric

dsum..x; y/; .x
0; y0// WD d.x; x0/C d.y; y0/:

Then the distance function d W M �M ! R is Lipschitz. Indeed, it follows
from the Triangle Inequality that

jd.x; y/ � d.x0; y0/j � d.x; x0/C d.y; y0/ D dsum..x; y/; x
0; y0//:

(c) (Projections) Let M WD M 1 �M 2 � � � � �M n be a product of metric spaces.
Then for each 1 � k � n; the kth projection 	k W M ! M k; defined by
	k.x1; x2; : : : ; xn/ WD xk; is Lipschitz. Indeed, given any points x D .x1; : : : xn/
and y D .y1; : : : ; yn/ in M ; we obviously have

dk.	k.x/; 	k.y// D dk.xk; yk/ � Qd.x; y/;

where Qd is any one of the distances deuc; dmax; dsum defined in Exercise 5.1.5.

Exercise 5.5.5 (Urysohn’s Lemma for Metric Spaces). Let .M ; d / be a metric
space and A; B � M two disjoint (nonempty) closed sets. Define the function
f WM ! R by

f .x/ WD d.x; B/

d.x;A/C d.x; B/ :

Show that f is continuous on M and that f .A/ D f1g; f .B/ D f0gI i.e., f is
identically 1 on A and identically 0 on B: Deduce that there are open sets U; V �
M such that A � U; B � V; and U \ V D ;:
Remark 5.5.6. It is obvious that a Lipschitz function is uniformly continuous,
but, as we saw in Chap. 4, the converse is false. One can also define the classes
Lip˛.X;M 0/ of Lipschitz functions of order ˛ 2 .0; 1� from a subsetX of a metric
space .M ; d / to a metric space .M 0; d 0/ by requiring the inequalities

d 0.f .x/; f .x0// � c.d.x; x0//˛ 8x; x0 2 X;
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where c > 0 is again called a Lipschitz constant. All functions in these classes
are also uniformly continuous on X and we obviously have Lip1.X;M 0/ D
Lip.X;M 0/: Finally, one can localize the Lipschitz condition and define the classes
Lip˛

loc.X;M
0/ to be the classes of functions f W X ! M 0 such that, for each

x 2 X; there exists " D ".x/ > 0 such that the restriction f jB".x/ \ X is
Lipschitz of order ˛: Note that the Lipschitz constant will (in general) vary with
the neighborhood B".x/; but not the order ˛:

The Fixed Point Theorem we proved in Chap. 4 (Theorem 4.6.17) can now be
extended to complete metric spaces:

Theorem 5.5.7 (Banach’s Fixed Point Theorem). Let .M ; d / be a complete
metric space. If f WM !M is a contraction, then f has a unique fixed point; i.e.,
there exists a unique � 2M such that f .�/ D �:
Proof. The proof is a copy of the one given for Theorem 4.6.17. We pick an arbitrary
point x0 2M and define the sequence .x0; x1; x2; : : :/ by the recursive formula

xnC1 D f .xn/ 8n 2 N0: ()

Using () and the fact that (by assumption) d.f .x/; f .x0// � cd.x; x0/; 8x; x0 2
M and a Lipschitz constant c 2 .0; 1/; we inductively prove (as in the proof of
Theorem 4.6.17) the inequalities

d.xn; xnC1/ D d.f .xn�1/; f .xn// � cnd.x0; x1/ 8n 2 N: ()

Repeated use of () and the Triangle Inequality then imply that

d.xm; xn/ � cn

1 � c d.x0; x1/ 8m � n: (�)

Since 1 � c > 0; we have lim.cn/ D 0 and (�) implies that .xn/ is a Cauchy
sequence. The completeness of M now implies that � WD lim.xn/ 2 M : To show
that � is a fixed point, we note that f is (uniformly) continuous and hence

f .�/ D f .lim.xn// D lim.f .xn// D lim.xnC1/ D �:

Finally, if we also have f .� 0/ D � 0 for another point � 0 2M ; then

d.�; � 0/ D d.f .�/; f .� 0// � cd.�; � 0/;

from which it follows at once that d.�; � 0/ D 0 and hence that � D � 0. ut
In Chap. 4, we proved (Theorem 4.6.6) that a continuous function f W .a; b/ !

R is uniformly continuous if and only if it has a continuous extension to the closed
interval Œa; b�: Note that .a; b/ is dense in Œa; b� and that a function which is merely
continuous on .a; b/ cannot always be continuously extended to Œa; b�: For example,
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the function f .x/ WD 1=.1� x2/ is continuous on .�1; 1/; but f .�1C 0/ D f .1�
0/ D C1 shows that it has no continuous extensions to Œ�1; 1�: We want to prove
a result analogous to Theorem 4.6.6 in a general metric space. Before announcing
this extension theorem, let us prove a couple of useful extension results:

Proposition 5.5.8 (Extension of Identities and Inequalities). Let .M ; d / and
.M 0; d 0/ be metric spaces.

(a) If f; g 2 C .M ;M 0/; then the set E WD fx 2 M W f .x/ D g.x/g is closed in
M : In particular, if E is dense in M ; then f D g:

(b) If f; g 2 C .M ;R/; then the set F WD fx 2M W f .x/ � g.x/g is closed in M :

In particular, if F is dense in M ; then f � gI i.e., f .x/ � g.x/ 8x 2M :

Proof. To prove (a), let us show that the set Ec D fx 2 M W f .x/ ¤ g.x/g is
open. Let � 2 Ec: Since f .�/ ¤ g.�/; we have " WD d 0.f .�/; g.�// > 0: Now,
by the continuity of f and g; we can pick ı > 0 such that x 2 Bı.�/ implies
d 0.f .x/; f .�// < "=2 and d 0.g.x/; g.�// < "=2: But then we must have f .x/ ¤
g.x/ 8x 2 Bı.�/; since otherwise we get d 0.f .�/; g.�// < " by the Triangle
Inequality. Thus, Ec is open and E is indeed closed. Moreover, if E is dense, then
E D E� DM ; and we get f .x/ D g.x/ 8x 2M : Next, we prove (b) by showing
that the complement F c D fx 2 M W f .x/ > g.x/g is open. Again, let � 2 F c;

so that f .�/ > g.�/: Pick � 2 R such that f .�/ > � > g.�/: Since .�;C1� and
Œ�1; �/ are open in R; the continuity of f and g implies that the inverse images
U WD f �1..�;C1�/ and V WD g�1.Œ�1; �// are both open in M and hence so is
U \ V: But then we have f .x/ > � > g.x/ 8x 2 U \ V I i.e., � 2 U \ V � F c;

which proves indeed that F c is open and hence F is closed. If F is dense, then
F D F � DM and we get f � g. ut
Remark 5.5.9. Note that, although nonstrict inequalities (� and �) extend by
continuity, this is not true (in general) for strict inequalities. For example, we have
x2 < x on the dense subset .0; 1/ of Œ0; 1�; but x2 D x for x D 0 and x D 1:

The next theorem is an intuitively “obvious” necessary and sufficient condition
for the existence of continuous extensions of continuous functions defined on dense
subsets of a metric space.

Theorem 5.5.10. Let .M ; d / and .M 0; d 0/ be metric spaces, X a dense subset of
M ; and f 2 C .X;M 0/: Then f has a continuous extension Qf 2 C .M ;M 0/ (i.e.,
Qf jX D f ) if and only if, for any x0 2M nX; the limit limx!x0 f .x/ exists in M 0:

The extension Qf (if it exists) is then unique.

Proof. If Qf 2 C .M ;M 0/ exists, then we obviously have Qf .x0/ D f .x0/ 8x0 2 X:
On the other hand, the density of X implies that any x0 2 M n X is a limit point
of X: Hence, by Theorem 5.4.3, we must have Qf .x0/ D limx!x0 f .x/ 2 M 0;
which also proves the uniqueness of Qf if it exists. Conversely, if the condition of
the theorem is satisfied, we define the extension Qf by Qf .x0/ WD limx!x0 f .x/ for
each x0 2 M n X and Qf .x0/ D f .x0/ 8x0 2 X: To prove the continuity of Qf at
an arbitrary point x0 2 M ; let " > 0 be given. We must show the existence of a
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ı > 0 such that x 2 Bı.x0/ implies f .x/ 2 B".y0/; where y0 WD Qf .x0/: Since Qf
is automatically continuous at any isolated point x0 2 M ; we may as well assume
that x0 is a limit point of M : It is then true that Qf .x0/ D limx!x0 f .x/ (whether
x0 2 X or not). Hence, we can pick ı > 0 such that d 0.f .x/; y0/ < "=2 for all
x 2 X \ Bı.x0/: For a point � 2 Bı.x0/ n X; since � is then a limit point of X , we
have Qf .�/ WD limx!� f .x/; where the x’s in “x ! �” are in X: We may, however,
restrict these x’s to be in X \ Bı.x0/: (Why?) It then follows that, for each such
x; f .x/ 2 B"=2.y0/ and hence, passing to the limit, Qf .�/ 2 B 0

"=2.y0/ WD fy 2M 0 W
d 0.y; y0/ � "=2g; which is the corresponding closed ball (cf. Remark 5.3.17). It
is now clear that x 2 Bı.x0/ implies Qf .x/ 2 B".y0/ and the continuity of the
extension Qf is established. ut

We are now going to prove the existence theorem for the extensions of uniformly
continuous functions from a metric space to a complete metric space. The following
proposition will be needed.

Proposition 5.5.11. Let f be a uniformly continuous function from a metric space
.M ; d / to a metric space .M 0; d 0/: For any Cauchy sequence .xn/ 2 MN the
sequence .f .xn// is Cauchy in M 0:

Proof. Let " > 0 be given. Since f is uniformly continuous, there exists ı > 0 such
that

.8x; x0 2M /.d.x; x0/ < ı) d 0.f .x/; f .x0// < "/: ()

Now, if .xn/ 2 MN is a Cauchy sequence, then we can find N 2 N such that
m; n � N implies d.xm; xn/ < ı and hence, by (), d 0.f .xm/; f .xn// < ". ut
Remark 5.5.12. Note that if f is merely continuous, then the image under f of a
Cauchy sequence need not be Cauchy. For example, the function f .x/ WD 1=x is
continuous on .0; 1� and .1=n/ is a Cauchy sequence in .0; 1�, but .f .1=n// D .n/

is not a Cauchy sequence.

Theorem 5.5.13 (Extensions of Uniformly Continuous Functions). Let f be a
uniformly continuous function from a dense subspaceX of a metric space .M ; d / to
a complete metric space .M 0; d 0/: Then f has a unique extension Qf 2 C .M ;M 0/:
Moreover, the function Qf is also uniformly continuous.

Proof. Let x0 2 M : Since X is dense, we have x0 D lim.xn/ for a sequence
.xn/ 2 XN: The sequence .xn/ converges to x0; hence it is a Cauchy sequence. By
Proposition 5.5.11, the sequence .f .xn// is also Cauchy in the complete metric
space M 0: Therefore, lim.f .xn// D y0 for some y0 2 M 0: We now define
Qf .x0/ WD y0. To show that this is well defined (i.e., that y0 depends only on x0

and not on the particular sequence .xn/), suppose we also have lim.x0
n/ D x0 for

another sequence .x0
n/ 2 XN: It then follows that lim.d.xn; x0

n// D 0 and, since
f is uniformly continuous, we have limn!1 d 0.f .xn/; f .x0

n// D 0: (Why?) Thus
y0 D lim.f .x0

n//; as desired. Finally, we show that Qf is uniformly continuous.
To this end, let " > 0 be given. By the uniform continuity of f; we can find
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ı > 0 such that for any x; x0 2 X we have d 0.f .x/; f .x0// < "=2 whenever
d.x; x0/ < 3ı: Now, given any �; � 0 2 M with d.�; � 0/ < ı; pick sequences
.xn/; .x

0
n/ 2 XN such that lim.xn/ D � and lim.x0

n/ D � 0: It then follows from the
inequalities

d.xn; x
0
n/ � d.xn; �/C d.�; � 0/C d.� 0; x0

n/ 8n 2 N

that 9 N 2 N with d.xn; x0
n/ < 3ı 8n � N: (Why?) Thus d 0.f .xn/; f .x0

n// <

"=2 8n � N and since Qf .�/ WD lim.f .xn//; Qf .� 0/ WD lim.f .x0
n//, we get (e.g.,

from the continuity of the distance function and the Extension of Inequalities) that
d 0. Qf .�/; Qf .� 0// � "=2 < ". ut
Example 5.5.14. Let fr1; r2; : : : g be an enumeration of the set Q\ Œ0; 1� and define
the jump function h.x/ WD P

rn<x
2�n; x 2 Œ0; 1� (cf. Definition 4.4.10). Then the

restriction f of h to the set Qc \ Œ0; 1� of irrational numbers in Œ0; 1� is continuous,
but has no continuous extension to Œ0; 1�: (Why?)

The following important consequence of the Baire Category Theorem is a version
of the Uniform Boundedness Principle to be discussed later (cf. Theorem 9.2.29).

Theorem 5.5.15 (Osgood’s Theorem). Let .M ; d / be a complete metric space
and F � C .M /. Suppose that, for each x 2 M ; there exists a constant Cx > 0

such that jf .x/j � Cx 8f 2 F . Then there exists a nonempty open ball B � M

and a constant C > 0 such that

jf .x/j � C 8f 2 F ; 8x 2 B:

Proof. For each n 2 N; let Fn;f WD fx 2 M W jf .x/j � ng and set Fn WD
T

f 2F Fn;f : Since f is continuous, each Fn;f is closed and hence so is each Fn:
Now, for each x 2M ; the assumptions in the theorem imply that we can find some
n 2 N such that jf .x/j � n 8f 2 F . This means that, for each x 2M ; there is an
integer n 2 N with x 2 Fn: Therefore, we have

M D
1
[

nD1
Fn:

Since M is complete, it follows from the Baire Category Theorem that, for at least
one n 2 N; the (closed) set Fn is not nowhere dense. Therefore, there exists a
nonempty open ball B with B � Fn: But then, for each x 2 B; we have jf .x/j � n
8f 2 F . ut

To end the section, we note that it is obviously desirable to work in complete
metric spaces. Fortunately, any metric space can, in fact, be completed (in an
essentially unique way) in the following sense:

Theorem 5.5.16 (Completion of a Metric Space). Any metric space .M ; d / is
isometric to a dense subspace of a complete metric space .M �; d�/I i.e., there is
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an isometry � W M ! M � such that �.M / is dense in M �: The space M �; which
is known as a “completion” of M ; is unique in the sense that, if M �� is another
completion of M ; then M � and M �� are isometric.

Proof. Let C denote the set of all Cauchy sequences in M : Thus

C WD f.xn/ 2MN W lim
m;n!1 d.xn; xm/ D 0g:

We define the following relation between the elements of C:

.xn/ � .yn/” lim.d.xn; yn// D 0:

It is easily checked that � is an equivalence relation on C: (Why?) We denote the
equivalence class of .xn/ 2 C by x� WD Œ.xn/� and the set of all equivalence classes
by M �: For each pair of elements x�; y� 2M �; we define

d�.x�; y�/ WD lim.d.xn; yn// ..xn/ 2 x�; .yn/ 2 y�/: (�)

Let us show that this limit always exists and is independent of the representatives
.xn/ and .yn/ of x� and y�; respectively. First, we show that .d.xn; yn// is a Cauchy
sequence in R: Indeed, as m; n!1; the Triangle Inequality implies

jd.xm; ym/ � d.xn; yn/j � jd.xm; ym/ � d.xn; ym/j C jd.xn; ym/ � d.xn; yn/j
� d.xm; xn/C d.ym; yn/! 0:

Since R is complete, the limit in (�) exists. Also, if .x0
n/ � .xn/ and .y0

n/ � .yn/;
then (using the Triangle Inequality again) we have

jd.xn; yn/ � d.x0
n; y

0
n/j � d.xn; x0

n/C d.yn; y0
n/! 0 .n!1/;

which shows that the limit in (�) is indeed independent of the choice of repre-
sentatives. Next, let us show that d� is a metric on M �: First, it is obvious that
d�.x�; y�/ D d�.y�; x�/: Also, d�.x�; y�/ D 0 if and only if x� D y�; by the
very definition of the relation�. To prove the Triangle Inequality, note that we have
the Triangle Inequality

d.xn; yn/ � d.xn; zn/C d.zn; yn/ .8n 2 N/

in M for all .xn/; .yn/; and .zn/ in C and hence, taking the limit as n ! 1; we
obtain

d�.x�; y�/ � d�.x�; z�/C d�.z�; y�/:
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Let us now define � WM !M � by setting

�.x/ WD Œ.x; x; : : :/� 2M �:

Then � is injective since no class can contain more than one constant sequence.
(Why?) Also, it is obvious from the definition of d� that

d�.�.x/; �.y// D d.x; y/

and hence � is indeed an isometry. To prove that �.M/ is dense in M �; given any
x� D Œ.xn/� 2 M � and any " > 0; pick N 2 N such that d.xn; xN / � "=2 for all
n � N: Then it follows at once that d�.x�; �.xN // D limn!1 d.xn; xN / � "=2 <
";which shows indeed that x� 2 .�.M //�: Finally, let us show that M � is complete.
Let .x�

n / be a Cauchy sequence in M � and, using the density of �.M / in M �, for
each n 2 N pick yn 2M such that d�.x�

n ; �.yn// < 1=n: Now observe that

d�.�.ym/; �.yn// � d�.�.ym/; x�
m/C d�.x�

m; x
�
n /C d�.x�

n ; �.yn//

<
1

m
C 1

n
C d�.x�

m; x
�
n /;

so that .�.yn// is a Cauchy sequence in �.M / and hence .yn/ 2 C: Let y� WD
Œ.yn/� 2M �: Then we have

d�.x�
n ; y

�/ � d�.x�
n ; �.yn//C d�.�.yn/; y�/ <

1

n
C d�.�.yn/; y�/;

and since d�.�.yn/; y�/ D limm!1 d.yn; ym/ D 0; it follows that lim.x�
n / D y�:

To complete the proof, we must show that any two completions of M are isometric.
To show this, let us identify the space M with its image �.M / and assume that M �
and M �� are complete and contain M as a dense subspace. For each x� 2 M �;
pick a Cauchy sequence .xn/ 2 M with lim.xn/ D x�: Since .xn/ is also Cauchy
in the complete space M ��; we have lim.xn/ D x�� 2M ��: We now define

�.x�/ WD x��:

It is easy to check that this construction is independent of the .xn/ that converges to
x� and that � is a well-defined bijection of M � onto M ��: (Why?) Now note that
�.x/ D x for all x 2M : Therefore, if lim.xn/ D x� 2 M � and lim.xn/ D x�� 2
M ��; while lim.yn/ D y� 2M � and lim.yn/ D y�� 2M ��; then

d�.x�; y�/ D lim.d.xn; yn// D d��.x��; y��/

and hence d��.�.x�/; �.y�// D d�.x�; y�/; as desired. ut
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5.6 Compact Metric Spaces

Our goal here will be to introduce, for subsets of an abstract metric space, the
fundamental concept of compactness which replaces, for metric spaces, the concept
of finiteness for general sets. We saw in Chap. 4 that, for the special metric space
R; a subset is compact precisely when it is closed and bounded. We showed that
continuous functions map compact subsets of R onto compact subsets of R and that
a continuous function on a compact subset of R is uniformly continuous. Most of
these results have analogs in general metric spaces as we shall presently see.

Definition 5.6.1 (Open Cover, Subcover). Let .M ; d / be a metric space and let
S � M : A collection U D fU�g�2ƒ of open subsets of M is said to be an open
cover of S if

S �
[

�2ƒ
U�:

If we also have S � S

�2ƒ0 U� for a subset ƒ0 � ƒ; then the collection U 0 D
fU�g�2ƒ0 is called a subcover (of U ). If, in addition, ƒ0 is finite, then the subcover
U 0 is called a finite subcover.

Definition 5.6.2 (Compact & Relatively Compact Sets). Let .M ; d / be a metric
space. A set K � M is said to be compact if every open cover fU�g�2ƒ
of K contains a finite subcover; in other words, there are finitely many indices
�1; : : : ; �n 2 ƒ such that

K �
n
[

jD1
U�j :

We say that K �M is relatively compact if (the closure) K� is compact.

Exercise 5.6.3. Let M be a metric space.

1. Show that any finite set F �M is compact.
2. Show that, if .xn/ 2MN is a convergent sequence with lim.xn/ D � 2M ; then

the set fx1; x2; x3; : : :g [ f�g is compact.
3. Show that, if M is discrete, then every compact set K �M is finite.
4. Show that the intersection of any collection of compact subsets of M is compact

and that the union of any finite collection of compact subsets of M is compact.

Definition 5.6.4 (Finite Intersection Property). A family of sets is said to have
the finite intersection property if each finite subfamily has nonempty intersection.

Proposition 5.6.5. A metric space M is compact if and only if each family of closed
subsets of M having the finite intersection property has a nonempty intersection. In
particular, if .Kn/ is a (decreasing) nested sequence of nonempty closed subsets of
M (i.e., KnC1 � Kn 8n 2 N), then

T1
nD1 Kn ¤ ;:
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Proof. This is simply an application of De Morgan’s laws. Indeed, U is an open
cover of M if and only if F WD fU c W U 2 Ug is a family of closed subsets of
M with empty intersection. Therefore, every open cover has a finite subcover if and
only if every family of closed sets with empty intersection has a finite subfamily
with empty intersection. ut

Recall that, if M is a metric space and if S � X � M ; then S may be open
in the subspace X without being open in M ; and the same can be said for closed
subsets. This may be expressed by saying that “openness” and “closedness” are
relative concepts. As the following proposition shows, however, compactness of a
set is in fact an absolute topological property; i.e., it is independent of the space in
which the set is embedded:

Proposition 5.6.6. Let M be a metric space andX �M : A setK � X is compact
in M if and only if it is compact in the (metric) subspace X:

Proof. Suppose that K is compact in M and that K � S

�2ƒ V�; where each V�
is open in X: Then, for each � 2 ƒ; there is an open set U� � M such that
V� D X \ U� and we clearly have K �S�2ƒ U�: Using the compactness of K (in
M ), we get

K �
n
[

jD1
U�j ()

for a finite subset f�1; : : : ; �ng � ƒ: But then we obviously have

K �
n
[

jD1
V�j ()

and K is indeed compact in X . Conversely, if K is compact in X and if K �
S

�2ƒ U�; where each U� is open in M ; then () is satisfied (with V� WD X \ U�)
for a subset f�1; : : : ; �ng � ƒ and, since K � X; () follows. ut
Theorem 5.6.7. Let M be a metric space. The following statements are true:

(a) Any compact subset K � M is closed and bounded. Thus any relatively
compact subset is bounded.

(b) Any closed subset F of a compact set K �M is compact.
(c) If K �M is compact and F �M is closed, then F \K is compact.

Proof. To prove (a) we show that, if K � M is compact, then Kc is open. Now
suppose x 62 K: For each y 2 K; pick "y such that 0 < "y < d.x; y/=2 and
let Uy WD B"y .x/; Vy WD B"y .y/: Using the compactness of K; we can choose
y1; y2; : : : ; yn 2 K such that

K � V WD Vy1 [ Vy2 [ � � � [ Vyn;
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which already proves thatK is bounded. (Why?) Now the set U WD Uy1\Uy2\� � �\
Uyn is open and U \ V D ;: Therefore, we have x 2 U � Kc and Kc is indeed
open. To prove (b), suppose that F � K �M ; with F closed and K compact. Let
fU�g�2ƒ be an open cover of F: Then the open collection fU�g�2ƒ [ fF cg covers
K and hence F: Using the compactness of K; we can pick a finite subcover. If F c

is part of this subcover, we simply remove it to get a finite cover of F by the U�:
Finally, (c) is an immediate consequence of (a) and (b). ut

Our next goal is to prove that a compact subset of a metric space is complete.
First, let us introduce some older variants of the concept of compactness. It turns
out that for metric spaces they are equivalent to the compactness defined above.
This, however, is not true for more general topological spaces.

Definition 5.6.8 (Fréchet Compact, Bolzano–Weierstrass Property). A metric
space M is called Fréchet compact (or is said to satisfy the Bolzano–Weierstrass
property) if every infinite subset of M has a limit point.

Definition 5.6.9 (Sequentially Compact). A metric space .M ; d / is called
sequentially compact if every sequence in M has a convergent subsequence.

Definition 5.6.10 (Countably Compact). We say that a metric space .M ; d / is
countably compact if every countable open cover of M has a finite subcover.

Remark 5.6.11. It is obvious that every compact metric space is countably compact.
The converse (which is not true for general topological spaces) turns out to be true
for metric spaces (Theorem 5.6.25 below).

Let us begin by proving the following

Proposition 5.6.12. Any countably compact metric space .M ; d / is Fréchet com-
pact; i.e., every infinite subset S �M has a limit point.

Proof. Since every infinite set contains a countably infinite subset, we may as well
assume that S is countably infinite. So let S D fx1; x2; : : :g: If no x 2 M is a
limit point of S; then each xn is an isolated point of S and S is closed. (Why?)
For each n 2 N, let Bn be an open ball with S \ Bn D fxng: The collection
fBn W n 2 Ng [ Sc is then a countable open cover of M with no finite subcover,
contradicting the countable compactness of M . ut
Remark 5.6.13.

1. The converse of Proposition 5.6.12 is also true and will be a consequence of
Theorem 5.6.25 below.

2. Fréchet compact spaces have the following interesting property:

Theorem 5.6.14 (Lebesgue’s Covering Lemma). Let .M ; d / be a Fréchet com-
pact metric space. Then, given any open cover fU�g�2ƒ of M ; there exists " > 0

such that each open ball B".x/ is contained in some U�:

Proof. Suppose, to get a contradiction, that the statement is false for an open cover
U D fU�g�2ƒ of M : We can then find a sequence .xn/ in M such that B1=n.xn/ 6�
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U� for all � 2 ƒ: If the set T WD fx1; x2; : : : g of terms is finite, then (at least) one
term, say xk; is repeated infinitely often. Since U covers M ; we have xk 2 U� for
some � 2 ƒ: Now U� is open so there exists ı > 0 such that Bı.xk/ � U�: Pick
N 2 N such that 1=N < ı and xN D xk to get B1=N .xN / � U�; a contradiction! So
let us assume that T is infinite. Since M is Fréchet compact, T has a limit point, say
�; and we can pick � 2 ƒ such that � 2 U�: There is a ı > 0 such that Bı.�/ � U�
and we may pick N 2 N so large that 1=N < ı=2 and xN 2 Bı=2.�/: But then we
get B1=N .xN / � Bı.�/ � U�, a contradiction again! ut
Remark 5.6.15. The number " > 0 in the above theorem depends on the open cover
U D fU�g�2ƒ: Note, however, that if every B".x/ is contained in some U�; then the
same is true for B"0.x/; where 0 < "0 < ": This suggests the following:

Definition 5.6.16 (Lebesgue Number). Let U D fU�g�2ƒ be an open cover of a
metric space .M ; d / and consider the set

EU WD f" > 0 W .8 x 2M / .9� 2 ƒ/ such that B".x/ � U�g:

IfEU ¤ ;; then the number "L D "L.U/ WD sup.EU / is called the Lebesgue number
of the covering U :

The following corollary is now an immediate consequence of the Lebesgue’s
Covering Lemma:

Corollary 5.6.17. Let .M ; d / be a Fréchet compact metric space. Then any open
cover fU�g�2ƒ of M has a Lebesgue number "L:

Here is another fundamental property of compact spaces:

Theorem 5.6.18 (Compact H) Complete). Let K be a compact subset of a
metric space M : Then, as a (metric) subspace of M ; K is complete.

Proof. Let .xn/ 2 KN be a Cauchy sequence in K: If there is a subscript n0 such
that for each k � n0 we can find nk � k with xnk D xn0 ; then lim.xnk / D xn0 and,
since .xn/ is Cauchy, we also have (Exercise 5.3.6(4)) lim.xn/ D xn0 2 K: If no
such n0 exists, then the set fx1; x2; x3; : : :g of all terms is infinite (why?) and hence,
by Proposition 5.6.12, has a limit point �: Since the compact set K is closed, we
have � 2 K: Pick a subsequence .xnk / of .xn/ with lim.xnk / D �:We then also have
lim.xn/ D � . ut

Recall that by Lindelöf’s Theorem (Proposition 4.1.1) every open cover of a
subset of R has a countable subcover. The proof used the fact that R is separable,
i.e., has a countable dense subset (namely Q). This property of R; called the
Lindelöf property, is in fact shared by all separable metric spaces. We shall see
(Proposition 5.6.22 below) that countable compactness implies separability and
hence the Lindelöf property. First, a couple of definitions:
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Definition 5.6.19 (Lindelöf Space). A metric space .M ; d / is said to be a Lindelöf
space (or to have the Lindelöf property) if every open cover of M has a countable
subcover.

Definition 5.6.20 (Totally Bounded, "-Net). A subsetX of a metric space .M ; d /

is said to be totally bounded if, given any " > 0; there exists a finite subset
fx1; x2; : : : ; xng � M , called an "-net, such that X � Sn

kD1 B".xk/I i.e., for each
" > 0; we can cover X by a finite number of open balls of radius ":

Exercise 5.6.21.

1. Show that a set S � Rn is totally bounded if and only if it is bounded.
2. Let X be a totally bounded subset of a metric space .M ; d /:

(a) Show that, if in the above definition we replace fx1; x2; : : : ; xng � M by
fx1; x2; : : : ; xng � X; we get an equivalent definition.

(b) Show that X is bounded; i.e., ı.X/ <1:
(c) Show that the closure X� is totally bounded.
(d) Show that any subset S � X is totally bounded.

Proposition 5.6.22. A separable metric space is a Lindelöf space.

Proof. Let M be a separable metric space. By Proposition 5.2.19 M has a
countable base B: Let U D fU�g�2ƒ be any open cover of M : Since each U� is
a union of members of B; there is a subcollection C of B that covers M and each
member of C is a subset of some U�: If for each B 2 C we pick a U� such that
B � U�, the resulting subcollection of U is the desired countable subcover. ut
Lemma 5.6.23. A countably compact metric space is totally bounded.

Proof. Let .M ; d / be a countably compact metric space. If M is not totally
bounded, then we can find a number "0 > 0 and a countably infinite set S WD
fx1; x2; : : :g �M such that d.xm; xn/ � "0: (Why?) Since each open ball of radius
"0=3 can contain at most one point of S; the infinite set S has no limit points,
contradicting Proposition 5.6.12. ut
Proposition 5.6.24. A countably compact metric space is separable and hence (by
Proposition 5.6.22) a Lindelöf space.

Proof. Let .M ; d / be a countably compact metric space. Then, by the above
lemma, M is totally bounded. For each n 2 N let Fn be a 1=n-net and hence
M �Sx2Fn B1=n.x/: Then D WDS1

nD1 Fn is a countable dense subset of M . ut
Theorem 5.6.25 (Equivalence of Compactness Notions). Let .M ; d / be a metric
space. Then the following statements are pairwise equivalent:

(a) M is compact;
(b) M is sequentially compact;
(c) M is Fréchet compact;
(d) M is countably compact.
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Proof. Suppose M is compact and let .xn/ 2 MN be any sequence. Let Tn WD
fxn; xnC1; : : :g 8n 2 N and set Fn WD T �

n : Then fFngn2N is a family of closed
subsets of M having the finite intersection property (in fact, it is even nested).
Thus, by Proposition 5.6.5, F WD T1

nD1 ¤ ;: Let � 2 F: It is then easily seen
that � D lim.xnk / for a subsequence .xnk / of .xn/ and the implication (a) ) (b)
follows. To prove (b)) (c), suppose M is sequentially compact and let X � M

be an infinite set. Then X contains a countably infinite subset S D fx1; x2; : : :g
with xj ¤ xk for j ¤ k: If now � D lim.xnk / for a subsequence .xnk / of
.xn/; then � is clearly a limit point of X: (Why?) Before proving (c) ) (d), let
us point out that (arguing as in Proposition 5.6.5) M is countably compact if and
only if every countable family F D fFngn2N of closed sets with finite intersection
property has a nonempty intersection. Now suppose M is Fréchet compact and
let F D fFngn2N be a countable collection of closed sets with finite intersection
property. Let En WD Tn

kD1 Fk 8n 2 N; and note that the En are nonempty, closed,
and nested. For each n 2 N pick xn 2 En and note that, by the Bolzano–Weierstrass
property, the sequence .xn/ has a convergent subsequence .xnk /: If � D lim.xnk /;
then, since xn 2 Fk 8k � n and the Fn are closed, we have � 2 Fn 8n 2 N:

This establishes (c) ) (d). Finally, suppose M is countably compact. Then, by
Proposition 5.6.24, it is a Lindelöf space. Thus, each open cover U of M has a
countable subcover U 0 which, in turn, has a finite subcover in view of the countable
compactness of M : This proves the implication (d)) (a) and completes the proof.
ut

We have seen that a compact (hence countably compact) space is complete and
totally bounded. In fact the converse is also true:

Theorem 5.6.26 (Compact ” Complete and Totally Bounded). A metric
space .M ; d / is compact if and only if it is complete and totally bounded.

Proof. If M is compact, then it is complete by Theorem 5.6.18 and totally bounded
by Lemma 5.6.23. Conversely, suppose that M is complete and totally bounded. Let
us show that it is sequentially compact. So let .xn/ 2MN and let T WD fx1; x2; : : : g
be the set of its terms. If T is finite, then (at least) one of the terms, say xk , is
repeated an infinite number of times and the constant subsequence .xk; xk; : : : / is
obviously convergent. Suppose then that T is infinite. Cover M with open balls
of radius " D 1 centered at the ( finite set of) points of a 1-net. At least one of
these balls, say B1; contains an infinite number of the xnI i.e., B1 \ T is infinite.
Pick xn1 2 B1 \ T: Next, cover M with open balls of radius " D 1=2 centered at
the (finite set of) points of a 1=2-net and pick one of the balls, say B1=2; such that
B1\B1=2\T is infinite. Now pick xn2 2 B1\B1=2\T with n2 > n1:Continuing this
process produces a subsequence .xnk / that is Cauchy. (Why?) Since M is assumed
to be complete, .xnk / is convergent and the proof is complete. ut

We end this section with a quick look at the relationship between continuity and
compactness in metric spaces.
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Theorem 5.6.27 (Continuity and Compactness). If f is a continuous function
from a compact metric space .M ; d / to a metric space .M 0; d 0/; then (the range)
f .M / is a compact subspace of M 0:

Proof. Let fV�g�2ƒ be an open cover of f .M /: Then, by the continuity of f;
each U� WD f �1.V�/ is open in M : Since M is compact, there is a finite set
f�1; �2; : : : ; �ng � ƒ such that

M � U�1 [ � � � [ U�n: ()

Since for each Y �M 0 we have f .f �1.Y / � Y; () implies

f .M / � V�1 [ � � � [ V�n;

which completes the proof. ut
Corollary 5.6.28 (Weierstrass’s Extreme Value Theorem). Let .M ; d / be a
compact metric space and f 2 C .M /: Then f attains its maximum and minimum
values. In other words, if ˛ WD inf.f / D infff .x/ W x 2 Mg and ˇ WD sup.f / D
supff .x/ W x 2Mg; then there exist a; b 2M such that f .a/ D ˛ and f .b/ D ˇ:
Proof. Indeed, by Theorem 5.6.27, f .M / is a compact subset of R and hence, by
the Heine–Borel Theorem (Theorem 4.1.10), is closed and bounded. In particular,
f .M / contains its cluster points ˛ D inf.f / and ˇ D sup.f /. ut
Exercise 5.6.29 (Completeness of C .K /). Let .K ; d / be a compact metric space.
Then .C .K /; d1/; where d1 is the uniform metric, is complete. Hint: If .fn/ is a
Cauchy sequence in C .K /; then, for each x 2 K ; .fn.x// is Cauchy in R and hence
converges to a number f .x/ 2 R: Show that f 2 C .K /; using an "=3-argument
and the inequalities

jf .x/ � f .x0/j � jf .x/ � fn.x/j C jfn.x/ � fn.x0/j C jfn.x0/ � f .x0/j:

Exercise 5.6.30 (Metric Spaces Lip˛.K /). Let .K ; d / be a compact metric space
and let Lip˛.K / denote the set of all real-valued Lipschitz functions of order ˛ 2
.0; 1� on K : For each f 2 Lip˛.K /; define

d˛;1.f; 0/ WD d1.f; 0/C sup

� jf .x/ � f .y/j
d.x; y/˛

W x; y 2 K ; x ¤ y
�

and, for each f; g 2 Lip˛.K /; let

d˛;1.f; g/ WD d˛;1.f � g; 0/:

Show that d˛;1 is a metric and .Lip˛.K /; d˛;1/ is complete.
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Exercise 5.6.31. Let A and B be nonempty subsets of a metric space .M ; d /:

(a) Show that, if A is compact, then there is a point a 2 A such that d.a; B/ D
d.A;B/:

(b) Show that, if A and B are both compact, then there exist a 2 A and b 2 B such
that d.a; b/ D d.A;B/:

(c) Show that, if A is compact and B is closed, then d.A;B/ D 0 if and only if
A \ B ¤ ;:

Corollary 5.6.32. A continuous map f from a compact metric space M to a metric
space M 0 is closed.

Proof. Indeed, if X � M is closed, then it is (by Theorem 5.6.7) a compact
subspace of M and hence (by Theorem 5.6.27) f .X/ is compact in M 0: Another
application of Theorem 5.6.7 now shows that f .X/ is closed. ut

Recall that two metric spaces M and M 0 are said to be homeomorphic if there
is a bijection f W M ! M 0 such that f and f �1 are both continuous. In general,
the continuity of f does not imply the continuity of f �1: For example, consider
the metric space R with its usual metric and let QR denote the set R with the discrete
metric Qd I i.e., Qd.x; y/ D 1 if x ¤ y and Qd.x; x/ D 0: Then the identity map
� W QR! R (defined by �.x/ WD x 8x 2 R) is clearly a continuous bijection, but the
inverse (which is again the identity map) is not continuous. (Why?) The following
theorem shows that the continuity of the inverse is automatic if the domain space
M is compact:

Theorem 5.6.33. A continuous bijection f of a compact metric space M onto a
metric space M 0 is a homeomorphism.

Proof. We must only prove that f �1 is continuous. Now, recall that a function is
continuous if and only if the inverse image of every closed set is closed. Thus, we
must show that for each closed set X � M , the inverse image of X under f �1 is
closed. This, however, means that .f �1/�1.X/ D f .X/ is closed, which follows
from Corollary 5.6.32. ut

We proved (Theorem 5.4.15) that the graph of a continuous function is closed.
We also gave an example to show that the converse is false in general. Now we prove
what was promised, namely, that the converse is true if the codomain (i.e., the target
space) is compact:

Theorem 5.6.34 (Closed Graph Theorem). Let f be a map from a metric space
M to a compact metric space M 0: Then f is continuous if and only if its graph is
closed.

Proof. In view of Theorem 5.4.15, we need only show that, if the graph of f
(i.e., the set �f WD f.x; f .x// W x 2 Mg) is closed in M � M 0; then f is
continuous. Since all functions are continuous at isolated points of M ; it suffices
to show that f is continuous at every limit point of M : So let x0 be such a
point and suppose, to get a contradiction, that f is discontinuous at x0: We can
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then find �0 > 0 and a sequence .xn/ 2 MN such that x0 D lim.xn/ but
d 0.f .xn/; f .x0// � "0 8n 2 N: Since M 0 (being compact by assumption) is
sequentially compact, the sequence .f .xn// 2M 0N has a convergent subsequence.
Thus, there is an increasing sequence .nk/ of positive integers and a point y0 2M 0
such that lim.f .xnk // D y0: But then the points .xnk ; f .xnk // form a sequence in
the graph �f with limk!1.xnk ; f .xnk // D .x0; y0/: Since �f is closed, we have
.x0; y0/ 2 �f I i.e., y0 D f .x0/; which contradicts d 0.f .xnk /; f .x0// � "0 8k 2
N. ut

We next prove the analog of Theorem 4.6.4 for abstract metric spaces. As
before, we include two proofs that are essentially copies of the ones given for
Theorem 4.6.4.

Theorem 5.6.35 (Uniform Continuity and Compactness). Let f be a continuous
function from a compact metric space .M ; d / to a metric space .M 0; d 0/: Then f
is uniformly continuous.

First Proof. If f is not uniformly continuous on M ; then 9"0 > 0 and two
sequences .xn/; .x0

n/ 2 MN such that lim d.xn; x
0
n/ D 0 and d 0.f .xn/; f .x0

n// �
"0 8n 2 N. (Why?) Since the compact space M is sequentially compact, there
is a subsequence .xnk / such that lim.xnk / D x0 for some x0 2 M : But then
lim d.xnk ; x

0
nk
/ D 0 implies that we also have lim.x0

nk
/ D x0: Therefore, by the

continuity of f at x0;

lim
k!1f .xnk / D lim

k!1f .x0
nk
/ D f .x0/:

This, however, is impossible since

d 0.f .xnk /; f .x0
nk
// � "0 8k 2 N:

ut
Second Proof. Let " > 0 be given. For each x 2M , the continuity of f at x implies
that

.9ıx > 0/.8x0 2M /.d.x; x0/ < ıx ) d 0.f .x/; f .x0// < "=2/:

The open balls Bıx=2.x/; x 2 M form an open cover of the compact space M

and hence we can find finitely many points x1; x2; : : : ; xn 2 M such that, with
Bk WD Bıxk =2.x/; we have

M �
n
[

kD1
Bk:
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Let ı WD minfıx1=2; ıx2=2; : : : ; ıxn=2g: Now note that, if x; x0 2 M satisfy
d.x; x0/ < ı; then x; x0 2 Bk for some k: Indeed, if x 2 Bk; then we also have

d.x0; xk/ � d.x0; x/C d.x; xk/ < ı C ıxk =2 � ıxk =2C ıxk =2 D ıxk :

Thus, d.x; x0/ < ı implies

d 0.f .x/; f .x0// � d 0.f .x/; f .xk//C d 0.f .x0/; f .xk// < "=2C "=2 D "

and the proof is complete. ut
Let us end this section with a theorem that is a special case of the celebrated

Tychonoff Theorem. This important theorem, which states that the product of an
arbitrary collection of compact spaces is compact, requires the definition of the
product topology for infinite products of topological spaces and is rather involved.
The proof is much simpler for finite products of metric spaces where compactness
and sequential compactness are identical. Before stating the theorem, we invite the
reader to solve the following exercise!

Exercise 5.6.36. Let .M 1; d1/; : : : ; .M n; dn/ be metric spaces. Show that the
spaces M 1 � � � � �M n and .M 1 � � � � �M n�1/ �M n are homeomorphic. In fact,
show that if we use the distance dmax throughout, then they are even isometric.

Theorem 5.6.37. Let .M 1; d1/; : : : ; .M n; dn/ be metric spaces. Then the product
M WDM 1 � � � � �M n is compact if and only if each M k; 1 � k � n is compact.

Proof. If M is compact, then, since the projections 	k W M ! M k 1 � k � n
are continuous (even Lipschitz), it follows from Theorem 5.6.27 that M k D 	k.M /

is compact for 1 � k � n: For the converse, let us first consider the case n D 2I
i.e., let us show that the product M WD M 1 �M 2 of compact spaces M 1 and M 2

is sequentially compact. Given any sequence ..xn; yn// 2 MN; the compactness
of M 1 implies that the sequence .xn/ 2 MN

1 has a convergent subsequence .xnk /:
Let x0 WD lim.xnk / and note that, by Exercise 5.4.33, the vertical fiber fx0g �M 2

is isometric to M 2 and hence is compact. Therefore, the sequence ..x0; ynk // 2
.fx0g �M 2/

N has a convergent subsequence. Hence there is a sequence .kj / in N

with k1 < k2 < k3 < � � � , such that .ynkj / converges to a point, say y0 2 M 2: It is
then clear that the subsequence ..xnkj ; ynkj // of ..xn; yn// converges to .x0; y0/ 2
M : The general case now follows by induction (using Exercise 5.6.36) and the proof
is complete. ut
Corollary 5.6.38. A set K � Rn (with any one of the distances deuc, dmax, dsum) is
compact if and only if it is closed and bounded.

Proof. If K � Rn is compact, then (Theorem 5.6.7(a)) it is closed. On the other
hand, 	k.K/ � R is a compact subset of R for each k and hence we have 	k.K/ �
Œak; bk�; 1 � k � n; for some ak; bk 2 R; ak � bk: Therefore, K � Œa1; b1� �
� � � � Œan; bn� and hence is bounded. Conversely, if K is closed and bounded, then,
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as we just saw, K is a closed subset of a product Œa1; b1� � � � � � Œan; bn� of compact
subsets of R, which is compact by Theorem 5.6.37. Theorem 5.6.7(b) now implies
that K is compact. ut
Example 5.6.39 (Unit Sphere, Torus). The unit sphere

S n�1 WD
n

.x1; : : : ; xn/ 2 Rn W
n
X

kD1
x2k D 1

o

;

which is the set of all points in Rn whose Euclidean distance from the origin
.0; 0; : : : ; 0/ is 1, is closed and bounded hence compact in Rn: In particular, the
unit circle S 1 D f.x; y/ 2 R2 W x2 C y2 D 1g is a compact subset of the plane R2:

By Theorem 5.6.37, the torus

Tn WD .S 1/n D S 1 � � � � � S 1

is therefore a compact subset of R2n:

5.7 Connected Metric Spaces

The concept of connectedness was defined for subsets of R in Chap. 4, and it was
proved that a set of real numbers is connected if and only if it is an interval. We also
saw that connected sets are mapped onto connected sets by continuous functions.
In this section we define connected metric spaces and prove some of their basic
properties.

Definition 5.7.1 (Connected Space, Subspace). A metric space .M ; d / is said to
be connected if there does not exist any partition of M into two (disjoint nonempty)
open sets, i.e., if it is not possible to write M D U [ V; where U; V � M are
open, U ¤ ; ¤ V; and U \ V D ;: A set X �M is said to be connected if (with
the relative topology) the subspace X of M is connected.

Exercise 5.7.2. Show that, for a metric space M ; the following are pairwise
equivalent.

(a) M is connected;
(b) M admits no partition into two (nonempty disjoint) closed sets;
(c) the only subsets of M that are both open and closed are ; and M :

Definition 5.7.3 (Separation). Let .M ; d / be a metric space. Two subsetsX; Y �
M are said to form a separation of M if fX; Y g is a partition of M (i.e., M D
X [ Y; X \ Y D ;; and X ¤ ; ¤ Y ), and X \ Y � D X� \ Y D ;:
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Remark 5.7.4 (Hausdorff–Lennes Separation Condition). We can combine the two
conditions X \ Y � D ; and X� \ Y D ; and write them as

.X \ Y �/ [ .X� \ Y / D ;: ()

We call () the Hausdorff–Lennes Separation Condition.

Exercise 5.7.5. Let .M ; d / be a metric space. Prove the following assertions.

(a) If fX; Y g is a separation of M ; then X and Y are both open and closed.
(b) M is connected if and only if it has no separation.

We defined the concept of connectedness for a metric space rather than a
subspace. The reason is that, like compactness, connectedness is an absolute
(topological) property of a set; i.e., it does not depend on the space in which the
set is embedded:

Proposition 5.7.6. Let M be a metric space and S � X � M : Then S is
connected in X if and only if it is connected in M :

Proof. By Exercise 5.7.5, we must prove that S has no separation inX if and only if
it has no separation in M : Now recall (Exercise 5.2.16) that the closure of a subset
E � X relative to X (which we denote here by E�

X ) is given by E�
X D X \ E�;

where E� is, of course, the closure of E in M : It follows from this fact that, if
U; V � S; then

.U \V �
X /[ .U�

X \V / D .U \X\V �/[ .U�\X\V / D .U \V �/[ .U�\V /:

Thus, the Hausdorff–Lennes Condition is satisfied in the relative topology of X if
and only if it is satisfied in M . ut
Proposition 5.7.7. Let X be a connected subset of a metric space M : Then any set
Y satisfying X � Y � X� is connected.

Proof. If Y is not connected, then there are nonempty sets U; V; open in Y; such
that Y D U [ V and U \ V D ;: Since our assumption implies X� \ Y D Y

and X� \ Y is the closure of X in Y; it follows that X is dense in Y: Thus, X \ U
and X \ V are nonempty open subsets of X with X D .X \ U/ [ .X \ V / and
.X \ U/ \ .X \ V / D ;; contradicting the assumption that X is connected. ut
Corollary 5.7.8. If X is a connected subset of a metric space M ; then its closure
X� is also connected.

It is intuitively clear that the union of a family of connected sets must be
connected if these sets have a common point. That this is indeed the case will follow
from

Theorem 5.7.9. Let fX�g�2ƒ be a family of connected subsets of a metric space
M : If

T

�2ƒ X� ¤ ;; then X WDS�2ƒ X� is connected.
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Proof. Suppose that X D U [ V where U and V are nonempty open sets in X
with U \ V D ;: Let x 2 T�2ƒ X�, say x 2 U: Since V is a nonempty subset of
the union

S

�2ƒ X�; we must have V \ X� ¤ ; for at least one � 2 ƒ: But then,
U \X� and V \X� are nonempty open subsets of X� that are disjoint and

X� D .U \X�/ [ .V \X�/;

contradicting the connectedness of X�. ut
Corollary 5.7.10. Let fXngn2N be a countable family of connected subspaces of a
metric space M such that Xn \XnC1 ¤ ; 8n 2 N: Then

S1
nD1 Xn is connected.

Proof. Using induction and Theorem 5.7.9, one sees that Yn WD Sn
kD1 Xk is

connected for each n 2 N: Also, Y1 � Y2 � Y3 � � � � ; so that
T1
nD1 Yn D Y1 ¤ ;:

Another application of Theorem 5.7.9 now implies that
S1
nD1 Xn D

S1
nD1 Yn is

connected. ut
The above properties may also be considered as corollaries of the following

intuitively “obvious” fact:

Theorem 5.7.11. Let fU; V g be a separation of a metric space M I i.e., U ¤ ; ¤
V; .U \ V �/ [ .U� \ V / D ;; and M D U [ V: If X � M is connected, then
either X � U or X � V:
Proof. First, we obviously have

X D X \M D X \ .U [ V / D .X \ U/ [ .X \ V /:

Since fU; V g is a separation of M ;

..X \U/\ .X \ V /�/[ ..X \U/� \ .X \ V // � .U \ V �/[ .U� \ V / D ;:

Thus, the subsets X \ U and X \ V form a separation of the connected set X if
they are both nonempty. Therefore, we must either have X \U D ; so that X � V;
or X \ V D ; so that X � U . ut
Corollary 5.7.12. Let X be a subset of a metric space M : If every two points of X
are contained in a connected subset of X; then X is connected.

Proof. If X is not connected, let fU; V g be a separation of X: Since U and V are
both nonempty, we can pick x 2 U and y 2 V: It follows from the hypothesis that
fx; yg � Y for a connected set Y � X: Theorem 5.7.11 now implies that either
Y � U or Y � V: Since U and V are disjoint, we have a contradiction. ut

The following theorem is also in agreement with our intuition: If a connected set
intersects both a set and its complement, then it must also intersect its boundary.
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Theorem 5.7.13. Let X and Y be subsets of a metric space M and assume that
X is connected. If X \ Y ¤ ; and X \ Y c ¤ ;; then X \ Bd.Y / ¤ ;: Here,
Bd.Y / WD Y � \ .Y c/� is the boundary of Y:

Proof. To get a contradiction, let us assume that X \ Bd.Y / D ;: First, we have

X D X \M D X \ .Y [ Y c/ D .X \ Y / [ .X \ Y c/; ()

and the two sets on the right side are both nonempty by hypothesis. Next, we note
that our assumption implies

.X \ Y / \ .X \ Y c/� � .X \ Y �/ \ .Y c/� D X \ .Y � \ .Y c/�/ ()

D X \ Bd.Y / D ;:

A similar argument shows that .X \Y /� \ .X \Y c/ D ;; which together with ()
and () implies that fX \ Y;X \ Y cg is a separation of the connected set X: This
contradiction completes the proof. ut
Exercise 5.7.14. Let X be a nonempty subset of a connected metric space M and
assume that X ¤M : Show that Bd.X/ ¤ ;: Hint: Use Theorem 5.7.13.

If a metric space is not connected, it is natural to look for its connected pieces. An
important role is played by the maximal connected pieces of the space, the so-called
connected components:

Definition 5.7.15 (Connected Component). For every point x of a metric space
M ; the union C.x/ of all connected subsets of M that contain x is called the
connected component of x:

Example.

(a) If M is connected, then there is only one connected component, namely M

itself.
(b) Consider the space Q of rational numbers, which is a dense subspace of the

metric space R: Since the only connected subsets of R are intervals, for each
x 2 Q we have C.x/ D fxg:

(c) The space Rn f0g has two connected components, namely .�1; 0/ and .0;1/:
Exercise 5.7.16. Show that, for each point x in a metric space M ; the connected
component C.x/ is closed, i.e., C.x/ D .C.x//�.

Exercise 5.7.17. On a metric space M ; define a binary relation � by “x � y if
and only if there exists a connected subset of M containing x and y.” Show that
� is an equivalence relation and that, for each x 2 M ; the equivalence class of x
is precisely C.x/: Deduce that the connected components form a partition of the
space into closed connected subsets. In particular, if y 2 C.x/; then C.x/ D C.y/
and, if y 62 C.x/; then C.x/ \ C.y/ D ;:
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Definition 5.7.18 (Locally Connected, Totally Disconnected). Let M be a metric
space.

(a) We say that M is locally connected if, given any x 2 M and any open set V
containing x; there exists a connected open set U with x 2 U � V:

(b) We say that M is totally disconnected if C.x/ D fxg 8x 2M :

Example.

(a) As was pointed out above, the set Q is totally disconnected. Another example
of a totally disconnected set is the Cantor set C (cf. Theorem 4.2.9).

(b) Every interval of R (and hence R itself) is locally connected. (Why?)
(c) The set Z is both totally disconnected and locally connected. (Why?) On the

other hand, the set Q (which is totally disconnected) is not locally connected.
(Why?)

Proposition 5.7.19. A metric space M is locally connected if and only if for each
open set U �M the connected components of U are open.

Proof. Assume first that M is locally connected and let V �M be open. If C is a
connected component of V; then for each x 2 C there exists a connected open set U
with x 2 U � V: By the very definition of connected components, we have U � C
and hence C is open as claimed. Conversely, if every connected component of every
open set is open, then for any x 2M and any open set V with x 2 V; the connected
component C of V containing x is a connected, open set with x 2 C � V . ut

The following corollary of Proposition 5.7.19 is, of course, nothing but Theo-
rem 4.1.2:

Corollary 5.7.20. A set O � R is open if and only if it is a countable union of
pairwise disjoint open intervals.

Proof. The sufficiency of the condition is obvious. To prove its necessity, note that
the connected components of O are open (since O is locally connected) and form
a partition of O: Being connected, each component is therefore an open interval.
Finally, since the (countable) set O \ Q is dense in O; each component contains a
necessarily different rational number. ut
Exercise 5.7.21. Let M be a locally connected, separable metric space. Show that
the set fC.x/ W x 2Mg of connected components of M is countable.

We now prove for general metric spaces what was proved for the special metric
space R, namely that continuous functions map connected sets onto connected sets:

Theorem 5.7.22 (Continuity and Connectedness). For any continuous map f
from a metric space M to a metric space M 0 and any connected subset X � M ;

the image f .X/ is a connected subset of M 0:
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Proof. If f .X/ D U 0 [ V 0; where U 0 and V 0 are nonempty open subsets of f .X/
withU 0\V 0 D ;; thenU WD X\f �1.U 0/ and V WD X\f �1.V 0/ are nonempty sets
open in X such that X D U [ V and U \ V D ;; contradicting the connectedness
of X . ut
Exercise 5.7.23. Show that a metric space M is connected if and only if every
continuous function from M to a discrete metric space M 0 having at least two
elements is constant.

Perhaps the most intuitive notion of connectedness is that of arcwise connected-
ness, by which we mean that any pair of points can be joined by a continuous arc.
The precise definitions follow.

Definition 5.7.24 (Arc, Arcwise Connected).

(a) Let M be a metric space and x; y 2 M : A continuous function � W Œa; b� !
M ; where a; b 2 R; a � b; is said to be an arc joining x to y if �.a/ D x

and �.b/ D y: Since Œa; b� is connected in R; by Theorem 5.7.22, the image
�.Œa; b�/ is a connected subset of M :

(b) A metric space M is said to be arcwise connected (or path connected) if for any
pair of points x; y 2M there exists an arc joining x to y:

Exercise 5.7.25 (Path Components). Let M be a metric space. Given any points
x; y 2M ; let us write x � y if and only if there exists an arc joining x to y: Show
that � is an equivalence relation on M : For each x 2M ; its equivalence class, Œx�;
is called the path component of x: Deduce that the path components of M form a
partition of M into arcwise connected subsets.

Proposition 5.7.26. An arcwise connected metric space is connected.

Proof. Suppose M is an arcwise connected metric space. Then, for any pair of
points x; y 2 M ; there is an arc � W Œa; b� ! M with �.a/ D x and �.b/ D y:

Since � is continuous, the image �.Œa; b�/ is a connected subset of M containing x
and y: The proposition now follows from Corollary 5.7.12. ut
Remark 5.7.27 (Topologist’s Sine Curve). The converse of Proposition 5.7.26 is
false. Indeed, consider the set X WD � [ Y � R2, where � WD f.x; sin.1=x// W
0 < x � 1g is the graph of the function f .x/ D sin.1=x/ with domain .0; 1�; the
so-called Topologist’s Sine Curve and Y WD f0g � Œ�1; 1�. Since f is continuous,
� is connected and hence so is its closure �� D X: On the other hand, X is not
arcwise connected:

Proposition 5.7.28. Let X be as in the above remark. Then X is connected, but not
arcwise connected.

Proof. By the above remark, we need only show that X is not arcwise connected.
Suppose there is a (continuous) path � W Œ0; 1�! X with �.0/ D .0; 0/ and �.1/ D
.1=	; 0/. We have �.t/ D �

x.t/; y.t/
�

; where x WD 	1 ı � is continuous because
both � and the projection 	1 are. Therefore, the set T WD ft 2 Œ0; 1� W x.t/ D
0g D x�1.0/ is closed. Also, we have 0 2 T: Thus � WD sup.T / 2 T and we



232 5 Metric Spaces

have 0 � � < 1 because x.1/ D 1=	 > 0: Hence x.t/ D 0 for t 2 Œ0; ��; while
x.t/ > 0 for t 2 .�; 1�: Let " D 1 and pick any ı > 0 with � C ı � 1: Let N 2 N

be so large that x.�/ D 0 < 1=.2N	 C 	=2/ < 1=.2N	 � 	=2/ < x.� C ı/:
By the Intermediate Value Theorem, we can then pick t1; t2 2 .�; � C ı� with
x.t1/ D 1=.2N	 C 	=2/ and x.t2/ D 1=.2N	 � 	=2/ and hence

y.t1/ D sin
� 1

x.t1/

�

D 1; y.t2/ D sin
� 1

x.t2/

�

D �1:

Thus, if y.�/ � 0; then jy.�/�y.t2/j � 1 D " and if y.�/ � 0; then jy.�/�y.t1/j �
1 D ". We have reached the contradiction that y (and hence � ) is discontinuous at
� and the proof is complete. ut

The example in the above remark is a subset of the product space R2 WD
R � R: The following theorem shows that a product of connected metric spaces
is connected.

Theorem 5.7.29. Let M 1; : : : ;M n be metric spaces. Then the product M WDM 1�
� � � �M n is connected if and only if each M k; 1 � k � n; is connected.

Proof. If the product M is connected, then Theorem 5.7.22 and the continuity of
the projections 	k W M ! M k imply that M k D 	k.M / is connected for 1 �
k � n: For the converse, let us first consider the case n D 2I i.e., let us show
that, if M 1 and M 2 are connected, then so is M WD M 1 � M 2: Now choose
a fixed base point .a; b/ 2 M 1 � M 2: Then the horizontal fiber M 1 � fbg is
isometric to M 1 and hence is connected. Similarly, for each x 2 M 1; the vertical
fiber fxg �M 2 is isometric to M 2 and hence also connected. It follows that the set
Tx WD .M 1 � fbg/[ .fxg �M 2/; which is the union of two connected sets with the
point .x; b/ in common, is connected for each x 2M 1: Finally, note that

M 1 �M 2 D
[

x2M 1

Tx

is connected, being the union of connected sets with the point .a; b/ in common.
The general case now follows from Exercise 5.6.36 and induction. ut

5.8 Problems

1. Define d W R
R ! R by d.x; y/ WD jx2 � y2j: Is d a metric on R‹ Is it a metric on Œ0;1/‹

2. Let M be a nonempty set and suppose that d W M 
 M ! R satisfies the following
conditions:

(i) d.x; y/ D 0 ” x D y .8x; y 2 M /.
(ii) d.x; y/ 	 d.x; z/C d.y; z/ .8x; y; z 2 M /:

Show that .M ; d / is a metric space.
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3 (The Spaces `1; `1; and `2).

(a) Let `1.N/ denote the set of all bounded real sequences x 2 RN: For each x; y 2 `1.N/;

define

d1.x; y/ WD supfjxn � ynj W n 2 Ng:
Show that .`1.N/; d1/ is a metric space.

(b) Let `1.N/ denote the set of all real sequences x 2 RN that are summable (i.e.,
P1

nD1 jxnj <
1). For each x; y 2 `1.N/; define

d1.x; y/ WD
1
X

nD1

jxn � ynj:

Show that .`1.N/; d1/ is a metric space.
(c) Consider the space `2.N/ of all real sequences x 2 RN that are square summable (i.e.,

P1
nD1 x

2
n < 1). For each x; y 2 `2.N/; define

d2.x; y/ WD
v

u

u

t

1
X

nD1

jxn � ynj2:

Show that .`2.N/; d2/ is a metric space.

4 (Washington D. C. Space). Let D WD fz 2 C W jzj 	 1g � C be the closed unit disk and, for
any z; w 2 D, define

d.z;w/ WD
(

jz � wj if z=jzj D w=jwj;
jzj C jwj otherwise.

Geometrically, if two points z; w 2 D n f0g are on a radius of the unit circle, then d.z;w/ is their
Euclidean distance. Otherwise, d.z;w/ is the sum of the distances of z and w from the origin. Show
that .D; d / is a metric space.

5 (Pseudometric). Given a set M ¤ ;; a map d W M 
 M ! R is called a pseudometric if it
satisfies the conditions (1), (3), and (4) of Definition 5.1.1 and the weaker condition .2/0 W x D
y ) d.x; y/ D 0: The pair .M ; d / is then called a pseudometric space. Given such a space, let us
write x � y if and only if d.x; y/ D 0: Show that this defines an equivalence relation on M : On
the set M � WD fŒx� W x 2 Mg of all equivalence classes, define d�.Œx�; Œy�/ WD d.x; y/: Show
that d� is well defined (i.e., independent of the representatives of the classes) and that .M �; d�/
is a metric space.

6. Let f 2 RR be bounded and continuous. Define d W R 
 R ! R by d.x; y/ WD supfjf .t �
x/� f .t � y/j W t 2 Rg: Show that d is a pseudometric on R and that it is a metric if and only if
f is not periodic.

7 (Hausdorff Distance). Let C denote the set of all (nonempty) closed subsets of a metric space
.M ; d /; where d is assumed to be bounded. For each A; B 2 C; let d�.A;B/ WD supfd.x; B/ W
x 2 Ag and define

dH .A;B/ WD maxfd�.A;B/; d�.B;A/g:
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Show that .C; dH / is a metric space. Also, show that

dH .A[ B;C [D/ 	 maxfdH .A;C /; dH .B;D/g .8A; B; C; D � C/:

8. Show that, in any metric space .M ; d /; we have

jd.x; y/� d.x0; y0/j 	 d.x; x0/C d.y; y0/ .8x; x0; y; y0 2 M /:

9.

(a) Let M be a metric space. Show that

A � M is open ” A\ B� � .A\ B/� .8B � M /:

(b) Find two open sets A; B � R such that the sets A\B�; B\A�; .A\B/�; and A� \B�
are all distinct.

(c) Find two intervals I; J � R such that I \ J� 6� .I \ J /�:

10 (Derived Set). Let .M ; d / be a metric space. For each A � M ; the derived set of A; denoted
by A0; is the set of all limit points of A: For any A; B � M ; prove the following.

(a) A0 is closed.
(b) .A[ B/0 D A0 [ B 0:
(c) .A\ B/0 � A0 \ B 0:
(d) A0 n B 0 � .A n B/0:
(e) If A � B and B n A is finite, then A0 D B 0:

11. Let M be a metric space and A � M : Show that A is closed (resp., open) if and only if
Bd.A/ � A (resp., A\ Bd.A/ D ;).

12. Let A and B be subsets of a metric space M : Show that

Bd.A[ B/[ Bd.A\ B/[ ŒBd.A/\ Bd.B/� D Bd.A/[ Bd.B/:

13 (F� and Gı). Let M be a metric space. A set S � M is called an F� (resp., a Gı) if there
is a sequence .Fn/ (resp., .Gn/) of closed (resp., open) subsets of M with S D S1

nD1 Fn (resp.,
S D T1

nD1 Gn/: Show that every closed set F � M is a Gı and that every open set G � M is an
F� :
14. Let .M ; d / be a metric space and for every subset A � M define ˛.A/ WD .A�/ı and
ˇ.A/ WD .Aı/�:

(a) Show that if A is open, then A � ˛.A/ and that if A is closed, then ˇ.A/ � A:

(b) Using (a), show that we always have ˛.˛.A// D ˛.A/ and ˇ.ˇ.A// D ˇ.A/:

(c) Give an example A � R such that A, Aı, A�, ˛.A/, ˇ.A/, ˛.Aı/, and ˇ.A�/ are all distinct.

15. Let M be a metric space and A; B; G � M :

(a) Show that Ext.A�/ D Ext.A/ and Ext.A[ B/ D Ext.A/\ Ext.B/:
(b) Show that, if G is open, then G [ Ext.G/ is dense (in M ).

16. Let M be a metric space and D � M a dense subset. Show that, for any open set G � M ;

we have G � .D \G/�:

17. Show that the union of a finite number of nowhere dense subsets of a metric space is itself
nowhere dense.
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18.

(a) Show that, for any closed or open set S in a metric space M ; its boundary Bd.S/ is nowhere
dense. Is this still true if S is neither closed nor open?

(b) Show that Q is not a Gı : (See Problem 13).

19. For each k 2 N; let PolkŒ0; 1� denote the set of all polynomial functions on Œ0; 1� of degree
	 k: Show that, as a subspace of the metric space .C Œ0; 1�; d1/; each PolkŒ0; 1� is nowhere
dense. Hints: (i) PolkŒ0; 1� has empty interior since, for any p 2 PolkŒ0; 1� and any " > 0; we
have p.x/ C ."=2/xkC1 2 B".p/: (ii) PolkŒ0; 1� is closed. Indeed, let pn.x/ D Pk

jD0 ajnx
j ;

where x0 WD 1; and lim.pn/ D f: Pick distinct points tj 2 Œ0; 1�; 0 	 j 	 k; and note that
lim.pn.tj // D f .tj / for each j: Deduce that .ajn/ converges for each j: As we shall see later (cf.
Theorem 9.2.14), the closedness of the PolkŒ0; 1� is actually a consequence of a general fact. Why
doesn’t Pol Œ0; 1� D S1

kD1 PolkŒ0; 1� contradict the Baire Category Theorem?

20. Show that, in a metric space, any subset of a set of first category is itself a set of first category.
Also, show that any countable union of sets of first category is of first category.

21. Let M be a second countable (e.g., separable) metric space and let .U˛/˛2A be a family of
nonempty, open sets in M :

(a) Show that, if ˛ ¤ ˇ implies U˛ \ Uˇ D ;; then the index set A is countable.
(b) Show that, if .U˛/˛2A is a cover of M , i.e., M D S

˛2A U˛; then there is a countable set
C � A such that M D S

�2C U� :

22 (Condensation Point). Let M be a metric space. A point x 2 M is said to be a condensation
point of a set A � M if U \ A is uncountable for each open set U 3 x: Assuming that M is
second countable, prove each statement:

(a) If A � M has no condensation points, then it is countable. Hint: Pick a countable base of
open sets, .Un/n2N; and look at the sets A\ Un:

(b) The set C of all condensation points of a set A � M is closed, every x 2 C is a condensation
point of C; and A\ Cc is countable. Hint: Use part (a).

23.

(a) Show that the spaces .`1; d1/ and .`2; d2/ introduced in Problem 3 are separable. Show,
however, that .`1; d1/ is not separable. Hint: For `1 and `2; look at the sequences x 2 QN

with xn D 0 except for a finite number of n’s. For `1; let X WD fx 2 `1 W xn 2 f0; 1gg and
note that X is uncountable. What is d1.x; y/ for each x; y 2 X‹

(b) Show that .C Œa; b�; d1/ is separable. Hint: Using the Weierstrass Approximation Theorem
(Corollary 4.7.10), show that polynomials with rational coefficients are dense in C Œa; b�:
Show, however, that .BŒa; b�; d1/ is not separable.

24. Let .xn/ be a sequence in a metric space .M ; d /: Show that, if the subsequences
.x2n�1/; .x2n/; and .x3n/ are convergent, then so is .xn/:

25.

(a) Let .M ; d / be an ultrametric space (see Exercise 5.1.10). Show that .xn/ 2 MN is a Cauchy
sequence if and only if lim.d.xn; xnC1// D 0:

(b) (Baire Metric) Let X be a nonempty set and M WD XN: Given any sequences x; y 2 M ;

let k.x; y/ WD minfn 2 N W xn ¤ yng and define

d.x; y/ WD
(

1=k.x; y/ if x ¤ y;

0 if x D y:

Show that .M ; d / is a complete, ultrametric space.
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26. Show that the metric space .R; d /; where

d.x; y/ WD
ˇ

ˇ

ˇ

ˇ

x

1C jxj � y

1C jyj
ˇ

ˇ

ˇ

ˇ

.8x; y 2 R/;

is not complete.

27. Let .M ; d / be a metric space and D � M a dense subset. Show that, if every Cauchy
sequence in D converges to an element of M ; then .M ; d / is complete.

28. Let .M ; d / be a complete metric space and let x 2 MN: Show that if we have
P1

nD1 d.xn; xnC1/ < 1; then .xn/ is convergent.

29. Let .M ; d / be a metric space with the property that given any closed sets A; B � M with
A\B D ;; we have d.A;B/ > 0: Show that .M ; d / is complete. Hint: Suppose that .xn/ 2 MN

is a Cauchy sequence that is not convergent and assume that xm ¤ xn when m ¤ n: Now look at
the sets fx2n�1 W n 2 Ng and fx2n W n 2 Ng:
30. Let .M ; d / be a metric space.

(a) Given a set A � M ; at which points a 2 M is 
A continuous?
(b) For which sets A � M is 
A continuous?

31. Consider the subspaces N and Q of R with its usual metric. Show that if f W N ! Q is any
bijection, then f is everywhere continuous while f �1 is nowhere continuous.

32. Let M and M 0 be metric spaces and f; g 2 C .M ;M 0/: Show that the set E WD fx 2 M W
f .x/ D g.x/g � M is closed and so is the set fx 2 M W f .x/ D yg for any fixed point y 2 M 0:
In particular, if f 2 C .M / WD C .M ;R/; then the set Z.f / WD fz 2 M W f .z/ D 0g of all zeros
of f is closed in M :

33. Let M be a separable metric space and f W M ! R: For each interval .p; q/ with p; q 2
Q; let Apq denote the set of all a 2 M such that limx!a f .x/ exists and f .a/ 	 p < q 	
limx!a f .x/: Show that Apq is countable. Deduce that the set of all points a 2 M such that
limx!a f .x/ exists but does not equal f .a/ is countable.

34. Let M and M 0 be metric spaces. Show that a function f W M ! M 0 is continuous if and
only if the restriction f jK is continuous for each compact set K � M :

35 (Oscillation on a Set, at a Point). Let M and M 0 be metric spaces, f W M ! M 0; and
S � M :We define the oscillation of f on S to be the nonnegative number !f .S/ WD ı.f .S// D
supfd 0.f .s/; f .t// W s; t 2 Sg: Given a point a 2 M ; the oscillation of f at a is then the number
!f .a/ WD inff!f .B".a// W " > 0g: Prove the following:

(a) Show that f is continuous at a if and only if !f .a/ D 0: Deduce that the set of all a 2 M at
which f is continuous is a Gı :

(b) For each c > 0; the set fx 2 M W !f .x/ < cg is open.
(c) There is no function f W R ! R that is continuous on Q and discontinuous on Qc :

(d) There is a function f W R ! R that is continuous on Qc and discontinuous on Q:

36. Let M and M 0 be metric spaces and f W M ! M 0: Suppose that M D S

˛2A F˛; where
each F˛ is closed and f jF˛ is continuous for each ˛ 2 A:

(a) Show that, if A is finite, then f is continuous on M :

(b) Give an example where A is countable and f is not continuous on M :

(c) Show that, if the collection .F˛/˛2A is locally finite (cf. Definition 5.2.14), then f is
continuous on M :
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37. Let M and M 0 be metric spaces and f W M ! M 0:We say that f is locally bounded (resp.,
locally open, locally closed), if for each x 2 M there is an open U � M containing x such
that f jU is bounded (resp., open, closed). We say that f is a local homeomorphism if, given any
x 2 M ; there are open sets U � M and V � M 0 such that x 2 U and f jU is a homeomorphism
onto V: Prove the following statements:

(a) f 2 C .M ;M 0/ ) f is locally bounded.
(b) f is locally bounded 6) f is bounded.
(c) f is locally open ) f is open.
(d) f is locally closed 6) f is closed.
(e) f is a local homeomorphism 6) f is a homeomorphism. Can you give a condition for such a

local homeomorphism to be a homeomorphism?

38. Show that the map f .x/ WD x=.1 C x/ is a homeomorphism of Œ0;1/ onto Œ0; 1/: Deduce
that, given any metric space .M ; d /; the metric d 0 WD d=.1C d/ is equivalent to d , but has the
advantage of being bounded: d 0.x; y/ < 1 for all x; y 2 M :

39. In a metric space .M ; d /; let A; B � M be nonempty subsets such that A \ B� D
B \ A� D ;: Show that there are open sets U; V � M with A � U; B � V; and U \ V D ;:
Hint: Consider the function x 7! d.x;A/� d.x; B/:

40. Show that given any metric space .M ; d /; the distance function d W M 
 M ! R (given
by .x; y/ 7! d.x; y/) is uniformly continuous. Deduce that, if .xn/; .yn/ 2 MN are Cauchy
sequences, then .d.xn; yn// is a Cauchy sequence in R:

41 (Topological, Metric, & Uniform Properties). Let M and M 0 be metric spaces. A property
is said to be topological if it is preserved under homeomorphisms f W M ! M 0 (i.e., if M and M 0
are homeomorphic, then M has the property if and only if M 0 does). It is called a metric property if
it is preserved under all (bijective) isometries f W M ! M 0. Finally, we call it a uniform property
if it is preserved under uniform homeomorphisms, i.e., bijective maps f W M ! M 0 such that
both f and f �1 are uniformly continuous.

(a) Let M D .0; 1� D M 0; d.x; y/ WD jx � yj and d 0.x; y/ WD j1=x � 1=yj: Show that d
and d 0 are equivalent so that M and M 0 are homeomorphic. Show, however, that .M ; d / is
not complete while .M 0; d 0/ is. It follows that completeness is not a topological property. By
Proposition 5.5.11, however, it is a uniform property.

(b) (Uniform Equivalence) Let M 0 D M and d 0 D d=.1Cd/: Show that d and d 0 are uniformly
equivalent in the sense that the identity map x 7! x is a uniform homeomorphism. Since d 0
is bounded while d need not be (e.g., look at .R; d / with d the usual distance), deduce that
boundedness is not a uniform property. However, it is obviously a metric one.

(c) Let M D R D M 0; d.x; y/ WD jx � yj; and d 0.x; y/ WD jx3 � y3j: Show that d and d 0
are equivalent but not uniformly equivalent. Nevertheless, show that M and M 0 have the same
Cauchy sequences. Thus completeness may be preserved without uniform equivalence.

42. Let M and M 0 be metric spaces. Show that a map f W M ! M 0 is uniformly continuous if
and only if, for any A; B � M ; we have d 0.f .A/; f .B// D 0 whenever d.A;B/ D 0:

43. Let M be a metric space, ; ¤ A � M ; and f 2 Lip.A;R/ with Lipschitz constant c: For
each x 2 M and each a 2 A; define fa.x/ WD f .a/C cd.x; a/ and g.x/ WD infffa.x/ W a 2 Ag:
Show that g W M ! R; g 2 Lip.M ;R/ with Lipschitz constant c; and gjA D f:

44. Let K be a compact subset of a metric space .M ; d /: Show that there are two points x; y 2 K

such that ı.K / D d.x; y/:

45 (Local Compactness). A metric space .M ; d / is called locally compact if for each x 2 M

there is an open set U 3 x such that U� is compact.
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(a) Show that, if M is locally compact, then every open subspace G � M and every closed
subspace F � M is locally compact.

(b) In the metric space R with its usual metric, give an example of two locally compact subspaces
A; B � R such that A[ B is not locally compact.

(c) Let M be a locally compact metric space. Show that M is separable if and only if M D
S1
nD1 K n; where each K n is compact.

46. Let .M ; d / be a metric space. Show that, if every closed ball in M is compact, then M is
locally compact, complete, and separable.

47.

(a) Show that total boundedness is a uniform property but not a topological one. For definitions,
cf. Problem 41.

(b) Show that a totally bounded metric space need not be complete.

48 (Pointwise Finite Cover). An open cover .U˛/˛2A of a metric space K is said to be pointwise
finite if any x 2 K belongs to at most a finite number of the U˛: Show that K is compact if and
only if each pointwise finite open cover of K has a finite subcover.

49 (Lebesgue’s Covering Property). Let .K ; d / be a compact metric space. Show that, given
any open cover .U˛/˛2A of K ; there is an " > 0 such that for each x 2 K there is an ˛x 2 A with
B".x/ � U˛x :

50. Let M be a metric space, f W M ! M ; and let f Œn� WD f ı f ı � � � ı f (with n copies of
f ) denote the nth iterate of f . Show that, if f Œn� has a unique fixed point x0; then f .x0/ D x0:

51. Let K be a compact metric space and f W K ! R: Show that f is continuous if and only if
its graph �f WD f.x; f .x// W x 2 Kg is a compact subset of K 
 R:

52. Let f 2 C .K ;K /; where K is a compact metric space. Show that, if f is nilpotent, i.e.,
f Œn� D idK for some n 2 N (where f Œn� is the nth iterate of f ), then f is a homeomorphism.
Show that, if K D Œ0; 1� (with the usual metric) and f .0/ D 0; then f D idŒ0;1�: Give an example
with K D Œ0; 1� to show that, in general, f ¤ idK :

53 (Contractive Map, Edelstein’s Theorem). Let .K ; d / be a compact metric space and let
f W K ! K be a contractive map, i.e., d.f .x/; f .y// < d.x; y/ for all x; y 2 K : Show that f
has a unique fixed point. Hint: Look at inffd.x; f .x// W x 2 Kg:
54. Let M be a complete metric space and, for each n 2 N; let f Œn� be the nth iterate of f W
M ! M : Show that, if f Œn� is a contraction for some n 2 N; then f has a unique fixed point.

55. Let .K ; d / be a compact metric space and let f W K ! K be an isometry, i.e.,
d.f .x/; f .y// D d.x; y/ for all x; y 2 K : Show that f is onto. Hint: If M WD f .K / ¤ K ;

pick x0 2 K n M and let ı WD d.x0;M /: Now define the sequence .xn/1nD0 inductively by
xnC1 WD f .xn/ for all n � 0 and observe that d.xm; xn/ � ı for all m < n: Give an example to
show that, if K is not compact, then f need not be onto.

56. Let .K ; d / and .K 0; d 0/ be two compact metric spaces and let f W K ! K 0 and g W K 0 !
K be isometries. Show that f .K / D K 0 and g.K 0/ D K :

57 (Expansive Map). Let .K ; d / be a compact metric space and let f W K ! K be an expansive
map, i.e., d.f .x/; f .y// � d.x; y/ for all x; y 2 K : Show that f is an isometry of K onto itself.
Hint: Pick any points a0; b0 2 K and define the sequences .an/1nD0 and .bn/1nD0 inductively by
anC1 WD f .an/ and bnC1 WD f .bn/; respectively. Now, given any " > 0; show that there is a
sequence .nk/ 2 NN with d.a0; ank / < " and d.b0; bnk / < " for all k 2 N and deduce that
d.a1; b1/ D d.a0; b0/:



5.8 Problems 239

58. Let .M ; d / be a connected metric space. Show that, if the distance d is not bounded, then
every sphere in M is nonempty; i.e., given any x 2 M and any r > 0; we have Sr.x/ WD fy 2
M W d.x; y/ D rg ¤ ;:
59. Let M be a metric space and A; B � M two (nonempty) connected sets. Show that, if
A� \ B ¤ ;; then A[ B is connected.

60. Let E WD f.x; y/ 2 R2 W x 2 Qc or y 2 Qcg: Show that E is connected.

61 (Convex Set). A subset K � Rn is said to be convex if, given any vectors x; y 2 K and any
t 2 Œ0; 1�; we have tx C .1� t /y 2 K: Show that a convex subset of Rn is connected.

62. Let A and B be two closed subsets of a metric space M such that A[B and A\B are both
connected. Show that A and B are connected. Show (by an example in R) that the closedness of A
and B is necessary.

63 (Chain Connectedness). A metric space .M ; d / is called chain connected if, given any
a; b 2 M and any " > 0; there are x0; x1; : : : ; xn 2 M such that x0 D a; xn D b; and
d.xj ; xjC1/ < " for 0 	 j 	 n � 1: Show that if M is compact and chain connected, then it is
connected.



Chapter 6
The Derivative

The derivative is one of the two fundamental concepts introduced in calculus. The
other one is, of course, the (Riemann) integral. For a real-valued function of a real
variable, the derivative may be interpreted as an extension of the notion of slope
defined for (nonvertical) straight lines. Recall that a (nonvertical) straight line is
the graph of an affine function x 7! axCb;where a; b are real constants and a is the
slope of the line. Now, if f .x/ WD axCb 8x 2 R; then, for any x; x0 2 R; x ¤ x0;
we have

f .x/ � f .x0/
x � x0 D ax C b � .ax0 C b/

x � x0 D a: ()

In other words, the slope a is the (average) rate of change of the dependent variable
y WD f .x/ D ax C b with respect to the independent variable x. For a general
function f W I ! R; where I � R is an interval, the quotient in () is no longer
a constant because the graph is a curve. Now, using a graphing calculator, which
is a quite popular tool these days, if we zoom in repeatedly at a point .x0; f .x0//
where the graph is smooth, we observe that the graph becomes practically a straight
line segment. In other words, at least locally [i.e., in a small neighborhood of a
(smooth) point], the graph is linear. Therefore, in that small neighborhood, the graph
of f and the tangent line to this graph at .x0; f .x0// are practically identical. This
suggests, once again, the “analytical” approach of divide and conquer. Our goal in
this chapter will be to carry out this analysis by making the above intuitive approach
mathematically rigorous. Throughout the chapter, I; J will always denote intervals
in R with nonempty interior.
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242 6 The Derivative

6.1 Differentiability

In this section we define the derivative of a real-valued function of a real variable
and investigate its basic properties. We begin with the following definition.

Definition 6.1.1 (Differentiable, Derivative, Tangent Line). Let f W I ! R and
let x0 2 I .

1. We say that f is differentiable at x0 if the limit

f 0.x0/ WD lim
x!x0

f .x/ � f .x0/
x � x0

exists. The number f 0.x0/ is then called the derivative of f at x0. This number is
also called the slope of the tangent line to the graph of f at the point .x0; f .x0//.
The equation of this tangent line is then

y � f .x0/ D f 0.x0/.x � x0/:

2. If A � I and if f 0.x/ exists for every x 2 A; then we say that f is
differentiable on A. We say that f is differentiable if it is differentiable on I .
If f is differentiable on I; the function x 7! f 0.x/ (defined on I ) is called the
derivative of f .

Remark 6.1.2.

1. The difference quotient .f .x/�f .x0//=.x�x0/ is the slope of the line segment
joining the points .x0; f .x0// and .x; f .x// of the graph of f . It can also
be interpreted as the average rate of change of y WD f .x/ with respect to x
on the interval with endpoints x0 and x. The derivative f 0.x0/; if it exists, is then
the instantaneous rate of change of y D f .x/ with respect to x at x0.

2. If we set h D x � x0 in the above definition, we may also write

f 0.x0/ WD lim
h!0

f .x0 C h/ � f .x0/
h

;

if the limit exists.
3. It follows from the above definition that differentiability of a function is a local

property. In other words, if f W I ! R; x0 2 I; and if g is a function such that
f .x/ D g.x/ 8x 2 .x0 � ı; x0 C ı/ \ I is satisfied for some ı > 0; then f is
differentiable at x0 if and only if g is differentiable at x0; and f 0.x0/ D g0.x0/.

Notation 6.1.3. There are several commonly used forms to denote the derivative
of a function. Depending on the situation, one may prefer one form to another.
For example, there are cases in which Leibniz’s df=dx is more convenient than
Newton’s (in fact, Lagrange’s!) prime notation f 0.x/. There are also situations
where Arbogast’s operator notation Df.x/ (or Dxf .x/) has definite advantages.
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Most of these forms will be used in this book. Thus, if f is differentiable at x0;
we write

f 0.x0/ D d

dx
f .x0/ D df

dx
.x0/ D df

dx

ˇ

ˇ

ˇ

ˇ

xDx0
D Df.x0/ D Dxf .x0/:

In fact, we shall even abuse the notation and write .f .x//0 instead of f 0.x/; if this
simplifies the exposition. For example, if f .x/ D xn; we may write .xn/0 instead
of f 0.x/.

Example 6.1.4. The function f .x/ WD x3 8x 2 R is differentiable on R with
derivative f 0.x/ D 3x2 8x 2 R.

To see this, note that for each x0 2 R we have

f 0.x0/ D lim
x!x0

x3 � x30
x � x0 D lim

x!x0

.x � x0/.x2 C xx0 C x20/
x � x0

D lim
x!x0

.x2 C xx0 C x20/ D 3x20 :

Definition 6.1.5.

(Left (Right) Derivative, Angular Point). Let f W I ! R and let x0 2 I . If x0
is not the right endpoint of I; then we say that f is right differentiable at x0 if
the limit

f 0C.x0/ WD lim
x!x0C

f .x/ � f .x0/
x � x0

exists. The number f 0C.x0/ is then called the right derivative of f at x0.
Similarly, if x0 is not the left endpoint of I; then we say that f is left
differentiable at x0 if the limit

f 0�.x0/ WD lim
x!x0�

f .x/ � f .x0/
x � x0

exists. The number f 0�.x0/ is then called the left derivative of f at x0. If the left
and right derivatives of f are both defined at x0 2 I ı but are not equal, then we
say that .x0; f .x0// is an angular point of the graph of f .

(Infinite Derivative, Vertical Tangent). We say that f has an infinite derivative
at x0; and write f 0.x0/ D ˙1; if

lim
h!0

f .x0 C h/ � f .x0/
h

D ˙1:

If f has an infinite derivative at x0; we say that the graph of f has a vertical
tangent at .x0; f .x0//. The equation of this line is, of course, x D x0.
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Remark 6.1.6. If f W I ! R and x0 2 I ı; then it is obvious that f is differentiable
at x0 if and only if it is both right and left differentiable at x0 and we have f 0�.x0/ D
f 0C.x0/. This common value is then f 0.x0/. Also, if f 0.x0/ exists and x0 is the
left endpoint (resp., right endpoint) of the interval I; then we automatically have
f 0.x0/ D f 0C.x0/ (resp., f 0.x0/ D f 0�.x0//.

Example 6.1.7.

(a) The function f .x/ WD jxj 8x 2 R is differentiable on R n f0g with derivative

f 0.x/ D
(

�1 if x < 0;

1 if x > 0:

Indeed, this is an immediate consequence of the definition:

f 0.x0/ D lim
x!x0

jxj � jx0j
x � x0 D

8

ˆ

<

ˆ

:

limx!x0

x � x0
x � x0 D 1 if x0 > 0;

limx!x0

�.x � x0/
x � x0 D �1 if x0 < 0:

Note also that

f 0.0/ D lim
x!0

jxj � j0j
x � 0 D lim

x!0

jxj
x

does not exist. In fact, f 0�.0/ D �1 ¤ 1 D f 0C.0/. The point .0; 0/ is therefore
an angular point of the graph.

(b) The function f .x/ WD x1=3 8x 2 R is differentiable on R n f0g with derivative

f 0.x/ D 1

3
x�2=3 8x ¤ 0:

Also, f has a vertical tangent at x0 D 0. Indeed, for each x0 2 R n f0g;

f 0.x0/ D lim
x!x0

3
p
x � 3
p
x0

x � x0 D lim
x!x0

3
p
x � 3
p
x0

. 3
p
x � 3
p
x0/.

3
p
x2 C 3

p
xx0 C 3

q

x20/

D lim
x!x0

1

3
p
x2 C 3

p
xx0 C 3

q

x20

D 1

3 3

q

x20

;

which also implies that limh!0
f .h/�f .0/

h
D C1. (Why?)

Exercise 6.1.8. Consider the function f .x/ WDpjxj; 8x 2 R.

(a) Using the definition (and considering the cases x0 > 0 and x0 < 0 separately),
find f 0.x0/ for all x0 ¤ 0.



6.1 Differentiability 245

(b) Show that f 0.0/ does not exist (even as an infinite derivative). In fact, show that
the left derivative at x0 D 0 is�1while the right derivative isC1. This shows
that the graph of f does not have a vertical tangent at .0; 0/ in the sense of the
above definition.

Exercise 6.1.9. Given a finite set fa1; a2; : : : ; ang � R; use an appropriate (alge-
braic) combination of functions of the form x 7! jx � cj to construct a continuous
function f W R! R such that f 0.ak/ does not exist for k D 1; 2; : : : ; n.

Remark 6.1.10. In fact, it is even possible to construct functions that are continuous
on R but are nowhere differentiable. We shall construct such a function later, when
we study sequences and series of functions.

The following characterization of differentiability will be useful in many proofs.
Before stating it, we briefly recall the definitions of equivalent functions and of
Landau’s little “oh” (see Sect. 3.5 for details). We say that two functions f and
g (defined near a point x0) are equivalent at x0; and we write f � g .x !
x0/; if there is a function u (defined near x0) such that f .x/ D g.x/u.x/ and
limx!x0 u.x/ D 1. Also, we say that f is negligible compared to g as x ! x0;

and write f D o.g/ .x ! x0/; if there is a function � (defined near x0) such that
f .x/ D g.x/�.x/ and limx!x0 �.x/ D 0.

Proposition 6.1.11 (Carathéodory). Let f W I ! R and let x0 2 I . Then f is
differentiable at x0 if and only if there exists a function � W I ! R such that � is
continuous at x0 and we have

f .x/ D f .x0/C .x � x0/�.x/ .8x 2 I /:

In this case, we have f 0.x0/ D �.x0/.
Proof. If � exists, then �.x/ D .f .x/ � f .x0//=.x � x0/; x ¤ x0; and, since
� is continuous at x0; we have limx!x0.f .x/ � f .x0//=.x � x0/ D �.x0/I i.e.,
f 0.x0/ D �.x0/. Conversely, if f 0.x0/ exists, then we define

�.x/ WD
8

<

:

f .x/ � f .x0/
x � x0 if x 2 I n fx0g;

f 0.x0/ if x D x0:

It is then easily seen (why?) that � satisfies the conditions of the proposition. ut
Remark 6.1.12. By Remark 6.1.2(3), for f 0.x0/ D �.x0/ to exist, the continuous
function � in the above proposition need not be defined on all of I . We only need �
to be defined on a (nondegenerate) subinterval J � I with x0 2 J .

As we saw above, the function f .x/ WD jxj 8x 2 R is not differentiable at
x0 D 0 even though it is obviously continuous there. The following corollary shows
that differentiability is a stronger condition and, in general, implies continuity:
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Corollary 6.1.13 (Differentiable H) Continuous). Let f W I ! R and let
x0 2 I . If f is differentiable at x0; then it is continuous at x0. In fact, if f is
right (resp., left) differentiable at x0; then it is right (resp., left) continuous at x0. In
particular, f is continuous at its angular points.

Proof. Well, let � be as in Proposition 6.1.11. Then

f .x/ D f .x0/C .x � x0/�.x/ 8x 2 I;

so that limx!x0 f .x/ D f .x0/ as desired. Alternatively, we have

f .x/ � f .x0/ D f .x/ � f .x0/
x � x0 � .x � x0/:

So letting x ! x0 or x ! x0C or x ! x0�; we obtain the continuity or right
(resp., left) continuity of f at x0. The last statement is then obvious. ut

The next consequence is in fact a rewording of Proposition 6.1.11 itself:

Corollary 6.1.14 (Local Linearity). Let f W I ! R and let x0 2 I . Then f is
differentiable at x0 if and only if there exists a number m 2 R such that

f .x/ D f .x0/Cm.x � x0/C .x � x0/o.1/ .x ! x0/ ()

and we then havem D f 0.x0/. Thus, with the affine function g.x/ WD mxCf .x0/�
mx0; whose graph is (by definition) the tangent line to the graph of f at .x0; f .x0//,
we have f .x/ � g.x/ D .x � x0/o.1/, as x ! x0.

Proof. It is obvious (from () and the definition of f 0.x0// that, ifm exists, then we
indeed have f 0.x0/ D m. Conversely, define �.x/ WD �.x/��.x0/ for x 2 I;where
� is as in Proposition 6.1.11. Then limx!x0 �.x/ D 0. Thus, �.x/ D o.1/ .x ! x0/

and ./ follows at once with m D �.x0/ D f 0.x0/. ut
Remark 6.1.15. Note that, with the above notation, not only f .x/ � g.x/ ! 0 as
x ! x0; but even Œf .x/ � g.x/�=.x � x0/! 0 as x ! x0.

Corollary 6.1.16. Let f W I ! R be differentiable at x0 2 I . If f 0.x0/ ¤ 0; then
we have

f .x0 C h/ � f .x0/ � hf 0.x0/ .h! 0/:

Proof. Since limh!0.f
0.x0/ C o.1// D f 0.x0/ ¤ 0; we have f 0.x0/ C o.1/ �

f 0.x0/ .h! 0/. Also, we obviously have h � h .h! 0/. Thus, by Corollary 6.1.14
and Theorem 3.5.11, we have

f .x0 C h/ � f .x0/ D hŒf 0.x0/C o.1/� � hf 0.x0/ .h! 0/:

ut
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6.2 Derivatives of Elementary Functions

We are now going to find the derivatives of some of the most commonly used
functions. These include the power functions, the trigonometric functions, and
the exponential function. As we have mentioned before, the rigorous definitions
of trigonometric and exponential functions will be given later. In fact, the definition
of the general power function x 7! xr ; where x > 0 and r 2 R; also depends on
the exponential function. Thus, we are going to assume some of the properties of
these functions whose proofs will not be given in this section. Once these properties
are assumed, however, the rest of the arguments are quite straightforward.

Beginning with constant functions, we have the following trivial result:

Proposition 6.2.1. If f .x/ WD c 8x 2 I and some constant c 2 R; then f 0.x/ D
0 8x 2 I . In other words, the derivative of a constant function (on an interval I ) is
the (identically) zero function (on I ).

Proof. Indeed, for every x0 2 I; it follows from the definition that

lim
x!x0

f .x/ � f .x0/
x � x0 D lim

x!x0

c � c
x � x0 D 0: ut

Next, we look at power functions. Recall that, if r D m=n 2 Q; where m; n are
relatively prime integers (and, of course, n ¤ 0), then we have xr WD n

p
xm; where

we assume x � 0 if n is even and x ¤ 0 if r � 0. Recall also that, for x ¤ 0;

we have x0 WD 1 and that x�r WD 1=xr ; when xr is well defined.

Proposition 6.2.2 (Power Rule). Given any rational number r 2 Q; the function
x 7! xr is differentiable, and we have

.xr /0 D rxr�1;
for every x for which the two sides are defined. In fact, the rule remains valid for
the function x 7! xr where x > 0 and r 2 R is arbitrary.

Proof. (For r 2 Q) For r D 0 (resp., r D 1) we have x0 D 1 8x ¤ 0 (resp.,
xr D x 8x 2 R) and a direct application of the definition implies that .x0/0 D 0

(resp., .x/0 D 1). Assume next that 0 < r D m=n ¤ 1; with relatively prime
positive integers m and n. Also, assuming xr and xr0 are both defined, let � WD n

p
x

and �0 WD n
p
x0. Then we have

xr � xr0 D �m � �m0 D .� � �0/.�m�1 C �m�2�0 C � � � C ��m�2
0 C �m�1

0 /;

as can be checked at once by expanding and simplifying the right-hand side.
Similarly, we have

x � x0 D �n � �n0 D .� � �0/.�n�1 C �n�2�0 C � � � C ��n�2
0 C �n�1

0 /:
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Therefore, assuming x0 ¤ 0 if r 2 .0; 1/; we have

lim
x!x0

xr � xr0
x � x0 D lim

�!�0

�m�1 C �m�2�0 C � � � C ��m�2
0 C �m�1

0

�n�1 C �n�2�0 C � � � C ��n�2
0 C �n�1

0

D m�m�1
0

n�n�1
0

D m

n
�m�n
0 D r.�n0 /m=n�1

D rxr�10 :

Finally, suppose that r D �m=n;withm; n as above. Then, using the previous case
and assuming that all powers make sense, we have

lim
x!x0

xr � xr0
x � x0 D � lim

x!x0
.xrxr0/

�

x�r � x�r
0

x � x0
�

D �x2r0
��rx�r�1

0

� D rxr�10 ;

and the proof is complete for the case r 2 Q. For r 2 R, the proof will be given
later when the power function x 7! xr is defined rigorously. ut

Next, we consider the (natural) exponential function exp.x/ D ex 8x 2 R.
As we pointed out above, this function will be rigorously defined later. One of the
consequences of that definition will be the well-known property

exp.x C y/ D exp.x/ exp.y/ .8x; y 2 R/:

Another important consequence is the following proposition. The proofs of these
facts are postponed until the precise definition is given.

Proposition 6.2.3. The (natural) exponential function x 7! exp.x/ D ex satisfies

lim
h!0

eh � 1
h
D 1: ()

In other words, since e0 WD 1; the function x 7! exp.x/ is differentiable at x D 0

and we have exp0.0/ D 1.

An immediate consequence is then the following.

Proposition 6.2.4. The exponential function x 7! exp.x/ is differentiable on R and
we have

exp0.x/ D exp.x/ .8x 2 R/:

Proof. Using the limit property () in Proposition 6.2.3, we have that
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lim
h!0

exp.x C h/ � exp.x/

h
D lim

h!0

exp.x/ exp.h/ � exp.x/

h

D exp.x/ lim
h!0

eh � 1
h
D exp.x/:

ut
Finally, we look at the derivatives of the trigonometric functions sin and cos.

Once again, the rigorous definitions of these functions will be given later when we
discuss power series. It will follow from those definitions that, for any real numbers
x; h 2 R; we have

(i) sin.x C h/ D sin x cos hC cos x sinh:

Similarly, for all x; h 2 R; we have

(ii) cos.x C h/ D cos x cos h � sin x sinh:

We also have the following limit properties:

Proposition 6.2.5. The functions x 7! sin x and x 7! cos x are continuous on R

and we have

.a/ lim
h!0

sin h

h
D 1; .b/ lim

h!0

cos h � 1
h

D 0:

In other words, since sin 0 D 0 and cos 0 D 1; the functions sin and cos are both
differentiable at x D 0 with .sin/0.0/ D 1 and .cos/0.0/ D 0.

Proof. Postponed! ut
We can now prove that the functions sin and cos are differentiable on R.

Proposition 6.2.6. The functions x 7! sin x and x 7! cos x are differentiable on R

and we have

.a/ .sin/0.x/ D cos x; .b/ .cos/0.x/ D � sin x:

Proof. For (a), using the identity (i) above and Proposition 6.2.5, we have

.sin/0.x/ D lim
h!0

sin.x C h/ � sin x

h
D lim

h!0

sin x cos hC cos x sinh � sin x

h

D sin x lim
h!0

cos h � 1
h

C cos x lim
h!0

sin h

h
D cos x:

For (b), we use the identity (ii) and Proposition 6.2.5 to get

.cos/0.x/ D lim
h!0

cos.x C h/ � cos x

h
D lim

h!0

cos x cos h � sin x sin h � cos x

h

D cos x lim
h!0

cos h � 1
h

� sin x lim
h!0

sinh

h
D � sin x:

ut
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6.3 The Differential Calculus

In this section we shall derive the fundamental rules of differentiation. Some of
these rules allow the differentiation of functions constructed from differentiable
functions by means of simple algebraic operations. The Chain Rule, which is
the most important and powerful of these rules, will handle the differentiation of
composite functions.

Theorem 6.3.1. Let f and g be real-valued functions defined on an interval I and
assume that both functions are differentiable at a point x0 2 I . Then the functions
f ˙g; fg; cf (where c 2 R is any constant), and f=g are differentiable at x0 (for
f=g we obviously assume g.x0/ ¤ 0), and we have

(a) .f ˙ g/0.x0/ D f 0.x0/˙ g0.x0/I
(b) .fg/0.x0/ D f 0.x0/g.x0/C f .x0/g0.x0/ .product rule/;
(c) .cf /0.x0/ D cf 0.x0/I
(d) .f =g/0.x0/ D f 0.x0/g.x0/ � f .x0/g0.x0/

.g.x0//2
.quotient rule/.

Proof. These rules are immediate consequences of the definition of the derivative
and the limit properties (cf. Theorem 3.3.3). Part (a) follows from the fact that

.f ˙ g/.x/ � .f ˙ g/.x0/
x � x0 D f .x/ � f .x0/

x � x0 ˙ g.x/ � g.x0/
x � x0 :

Also, (c) follows from (b) and Proposition 6.2.1 or from the obvious observation

.cf /.x/ � .cf /.x0/
x � x0 D c f .x/ � f .x0/

x � x0 :

To prove (b), note that

.fg/.x/ � .fg/.x0/
x � x0 D

�

f .x/ � f .x0/
x � x0

�

g.x0/Cf .x/
�

g.x/ � g.x0/
x � x0

�

: ()

Now, by Corollary 6.1.13, f is continuous at x0 and we have limx!x0 f .x/ D
f .x0/. Therefore, taking limits as x ! x0 in ./, we obtain (b). Finally, to prove
(d), we first observe that, if g.x0/ ¤ 0; then

�

1

g

�0
.x0/ D � g0.x0/

.g.x0//2
: ()

Indeed,

1

g.x/
� 1

g.x0/

x � x0 D �
g.x/ � g.x0/
x � x0

g.x/g.x0/
: (�)
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But, by Corollary 6.1.13, g is continuous at x0 and hence limx!x0 g.x/ D g.x0/.
Taking limits in (�) as x ! x0; we obtain () as claimed. The property (d) is now
an immediate consequence of (b) and (). ut
Corollary 6.3.2. Let the functions fj W I ! R j D 1; 2; : : : ; n be differentiable
at x0 2 I and let c1; c2; : : : ; cn 2 R be arbitrary constants. Then the linear
combination

Pn
jD1 cj fj is differentiable at x0 and we have

.c1f1 C c2f2 C � � � C cnfn/0.x0/ D c1f 0
1 .x0/C c2f 0

2 .x0/C � � � C cnf 0
n.x0/:

Also, the product f1f2 � � � fn is differentiable at x0; with derivative

.f1f2 � � � fn/0.x0/ D f 0
1 .x0/f2.x0/ � � � fn.x0/C f1.x0/f 0

2 .x0/ � � � fn.x0/
C � � � C f1.x0/f2.x0/ � � � f 0

n.x0/:

Exercise 6.3.3. (a) Prove the corollary. Hint: Use induction on n.
(b) Deduce the following extension of the Power Rule for integral exponents: Let

f W I ! R and, for any integer n 2 Z; consider the function g.x/ WD
Œf .x/�n 8x 2 I (where, for n � 0; we have dom.g/ D fx 2 I W f .x/ ¤ 0g). If
f is differentiable at x0 2 I; then so is g and we have

g0.x0/ D nŒf .x0/�n�1f 0.x0/;

where the formula is interpreted as g0.x0/ D f 0.x0/ if n D 1; and we assume
f .x0/ ¤ 0 if n < 1.

We are now going to state and prove the Chain Rule, which is the most important
and powerful rule of differentiation. This rule, combined with the other rules and
the well-known derivatives of the elementary functions, allows the differentiation of
all functions one encounters in practice.

Theorem 6.3.4 (Chain Rule). Let f W I ! R; f .I / � J; and g W J ! R. If f is
differentiable at a point x0 2 I and g is differentiable at the point y0 WD f .x0/ 2 J;
then the composite function h WD g ı f is differentiable at x0 and we have

.g ı f /0.x0/ D g0.f .x0//f 0.x0/:

Proof. By Proposition 6.1.11, there is a function � W I ! R such that � is
continuous at x0 and f .x/ � f .x0/ D .x � x0/�.x/. Similarly, there exists a
function  W J ! R such that  is continuous at y0 WD f .x0/ and g.y/ � g.y0/ D
.y � y0/ .y/. It follows that

h.x/ � h.x0/ D g.y/ � g.y0/ D .y � y0/ .y/ (�)

D .f .x/ � f .x0// .f .x//
D .x � x0/�.x/ .f .x//:
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Since products and composites of continuous functions are continuous, the function
x 7! �.x/ .f .x// is continuous at x0 and the theorem follows from (�) and
Proposition 6.1.11. ut
Remark 6.3.5. Given that differentiability means local linearity, the Chain Rule
should come as no surprise. Indeed, if f .x/ D axC b and g.x/ D cxC d are both
affine functions, then so is the composite .g ı f /.x/ D caxC cbC d; whose slope
is precisely ca D g0.f .x//f 0.x/, valid for all x in this case.

Exercise 6.3.6 (General Power Rule). Show that, if f W I ! R is differentiable
at x0 2 I; then so is the function g W x 7! Œf .x/�r ; r 2 R; and we have

g0.x0/ D .f r /0.x0/ D rŒf .x0/�r�1f 0.x0/:

Here, the domain of g depends on the exponent r . Thus, for arbitrary r 2 R; we
have dom.g/ D fx 2 I W f .x/ > 0g.
Example 6.3.7.

(a) The function

f .x/ WD
(

x sin.1=x/ if x ¤ 0;
0 if x D 0;

is continuous on R and differentiable on R n f0g. Indeed, the functions
x 7! x; x 7! sin x; and x 7! 1=x are all continuous on R n f0g and hence so
is f . To prove the continuity at x D 0; we note that jx sin.1=x/j � jxj 8x ¤ 0.
Therefore, by the Squeeze Theorem, we have limx!0 f .x/ D limx!0 jxj D
0 D f .0/. Next, for each x ¤ 0; it follows from the Product Rule, the Quotient
Rule, and the Chain Rule, that

f 0.x/ D sin

�

1

x

�

� 1
x

cos

�

1

x

�

8x ¤ 0:

Therefore, f is indeed differentiable on R n f0g as stated and, in fact, f 0 is
continuous there. At x D 0; we use the definition:

f 0.0/ D lim
x!0

f .x/ � f .0/
x � 0 D lim

x!0

x sin.1=x/

x
D lim

x!0
sin.1=x/:

Since this limit does not exist (why?), f is not differentiable at x D 0.
(b) The function

g.x/ WD
(

x2 sin.1=x/ if x ¤ 0;
0 if x D 0;
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is differentiable on R and g0.0/ D 0. Moreover, g0 is continuous at every x 2 R

except x D 0. To see this, note first that, applying the differential calculus, we
have

g0.x/ D 2x sin.1=x/ � cos.1=x/ 8x ¤ 0;
so that g0 is indeed continuous on R n f0g. At x D 0; we use the definition and
obtain

g0.0/ D lim
x!0

g.x/ � g.0/
x � 0 D lim

x!0

x2 sin.1=x/

x
D lim

x!0
x sin.1=x/ D 0;

as was pointed out above. Finally, g0 is not continuous at 0 because
limx!0 g

0.x/ D limx!0.2x sin.1=x/ � cos.1=x// does not exist. (Why?)

Our next goal will be to look at the derivative of an inverse function. Recall that a
function f W I ! R is invertible if and only if it is injective (i.e., one-to-one). If this
is the case, then the inverse function f �1 has domain f .I / and is characterized by

y D f .x/ ” x D f �1.y/:

When we are interested in differentiability, the natural question is whether or
not injective, differentiable functions have differentiable inverses. The following
theorem addresses this question.

Theorem 6.3.8 (Differentiability of Inverse Functions). Let I ¤ ; be an
open interval and let f W I ! R be an injective, continuous function. If f is
differentiable at x0 2 I and f 0.x0/ ¤ 0; then f �1 is differentiable at y0 WD f .x0/,
and we have

.f �1/0.y0/ D 1

f 0.x0/
D 1

f 0�f �1.y0/
� :

In particular, if f is injective and differentiable on I and f 0.x/ ¤ 0 8x 2 I; then
f �1 is differentiable on J WD f .I / and we have

.f �1/0.y/ D 1

f 0�f �1.y/
� .8y 2 J /:

Proof. By Theorem 4.5.23, J WD f .I / is an interval and f is a homeomorphism of
I onto J I in other words, f �1 W J ! I is also continuous. In particular, f and f �1
are either both strictly increasing or both strictly decreasing. Using the sequential
definition of limit (Theorem 3.3.1), we must show that, given any sequence .yn/ in
J n fy0g with lim.yn/ D y0; we have

lim
n!1

f �1.yn/ � f �1.y0/
yn � y0 D 1

f 0.x0/
:
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But, if xn WD f �1.yn/, the injectivity and continuity of f �1 imply that .xn/ is
a sequence in I n fx0g with lim.xn/ D x0. Since f is differentiable at x0 and
f 0.x0/ ¤ 0; we have

lim
n!1

f �1.yn/ � f �1.y0/
yn � y0 D lim

n!1
xn � x0

f .xn/ � f .x0/ D
1

f 0.x0/
:

The last statement now follows from the fact that, if f is differentiable on I; then
(by Corollary 6.1.13) it is continuous on I . ut
Corollary 6.3.9 (Derivative of the Natural Logarithm). The natural logarithm
x 7! log x is differentiable on .0;1/ and we have

(i) .log x/0 D 1

x
.8x > 0/:

In fact, the function x 7! log jxj is differentiable on R n f0g and we have

(ii) .log jxj/0 D 1

x
.8x ¤ 0/:

More generally, if u W I ! R is differentiable on I and u.x/ ¤ 0 8x 2 I; then the
function x ! log ju.x/j is differentiable on I and we have

(iii) .log ju.x/j/0 D u0.x/
u.x/

.8x 2 I /:

Proof. To prove (i), note that x 7! log x 8x > 0 is the inverse of the natural
exponential x 7! exp.x/. Since .ex/0 D ex 8x 2 R and ex > 0 8x 2 R;

Theorem 6.3.8 implies that the inverse function x 7! log x is differentiable on its
domain .0;1/ and we have

.log x/0 D 1

exp0.log x/
D 1

exp.log x/
D 1

x
:

Next, we have log jxj D log x 8x > 0 so that we must only check (ii) for the case
x < 0. But then, jxj D �x and (i) together with the Chain Rule implies

.log jxj/0 D .log.�x//0 D 1

�x � .�x/
0 D �1�x D

1

x
:

Finally, (iii) is an immediate consequence of (ii) and the Chain Rule. ut
Exercise 6.3.10.

(a) Consider the function f .x/ WD xn 8x 2 R; where n is an odd integer
(cf. Example 4.5.24). Using Theorem 6.3.8, prove the Power Rule

.x1=n/0 D 1

n
x1=n�1 .8x ¤ 0/:
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(b) Prove the same rule for even integers n; using the function x 7! xn 8x > 0.
(c) Combining (a) and (b) (and the Chain Rule), give another proof of the Power

Rule for rational exponents: .xr /0 D rxr�1; r 2 Q.

Exercise 6.3.11. Let I be an open interval. Assume that u; v W I ! R are both
differentiable on I and u.x/ > 0 8x 2 I . Using the Chain Rule, find the derivative
of the function

u.x/v.x/ WD ev.x/ log u.x/ 8x 2 I:

6.4 Mean Value Theorems

Recall that the derivative of a function f at a point x0 is defined to be the instan-
taneous rate of change of the values f .x/ with respect to x; as x approaches x0.
In other words, it is the limit (as x ! x0) of the average rate of change
.f .x/ � f .x0//=.x � x0/ on the interval with endpoints x0 and x. The main result
of this section will be that, for a function that is continuous on a closed, bounded
interval Œa; b� and differentiable inside, the average rate of change on the interval
is in fact equal to the instantaneous rate of change at an interior point. As we shall
see, this result turns out to play a fundamental role in the study of the behavior of
real-valued functions of a real variable. We begin with a definition:

Definition 6.4.1 (Local Extrema). Let f W I ! R and let x0 2 I ı. We say that
f has a local maximum (resp., local minimum) at x0 if there exists ı > 0 such that
f .x/ � f .x0/ (resp., f .x/ � f .x0/) for all x 2 Bı.x0/\I WD .x0� ı; x0C ı/\I .
We say that f has a local extremum at x0 if it has a local maximum or a local
minimum at x0.

Remark 6.4.2.

(a) Recall that f W I ! R is said to have a (global or absolute) maximum [resp.,
(global or absolute) minimum] at x0 if f .x/ � f .x0/ (resp., f .x/ � f .x0/) for
all x 2 I .

(b) The plurals for maximum, minimum, and extremum are maxima, minima, and
extrema, respectively.

Proposition 6.4.3 (Fermat’s Theorem). Let f W I ! R and let x0 2 I ı be
an interior point. If f has a local extremum at x0 and is differentiable at x0;
then f 0.x0/ D 0. In other words, the tangent line to the graph of f at the point
.x0; f .x0// is horizontal.

Proof. Let us assume that f has a local maximum at x0. For the local minimum,
the proof is similar or one may use the function �f . Pick ı > 0 so small that
Bı.x0/ � I and f .x/ � f .x0/ 8x 2 Bı.x0/. Then we have

f .x/ � f .x0/
x � x0 � 0 8x 2 .x0; x0 C ı/: ()
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Letting x ! x0 in (), we get f 0.x0/ � 0. Similarly, we have

f .x/ � f .x0/
x � x0 � 0 8x 2 .x0 � ı; x0/: ()

Letting x ! x0 in (), we get f 0.x0/ � 0. Therefore, we must have f 0.x0/ D 0

as claimed. ut
The following consequence of the proposition shows that derivatives have

one fundamental property in common with continuous functions, namely, the
Intermediate Value Property:

Theorem 6.4.4 (Darboux’s Theorem). Let f W I ! R be differentiable on I ı
and let a < b in I ı be such that f 0.a/ < � < f 0.b/. Then there exists � 2 .a; b/
such that f 0.�/ D �. A similar result holds, of course, if f 0.a/ > f 0.b/.

Proof. The function g.x/ WD f .x/ � �x on I is differentiable on I ı and hence
continuous there. In particular, Theorem 4.5.2 implies that g attains its minimum
value on Œa; b�. Now, we have g0.a/ < 0 and g0.b/ > 0. It follows from the
definition of the derivative that, for ı > 0 small enough, we have g.x/ < g.a/ 8x 2
.a; aC ı/ and g.x/ < g.b/ 8x 2 .b� ı; b/. Therefore, the minimum value of g on
Œa; b� occurs at some point � 2 .a; b/. (Why?) It now follows from Proposition 6.4.3
that we have g0.�/ D 0. ut
Remark 6.4.5. Recall that the function

g.x/ WD
(

x2 sin.1=x/ if x ¤ 0;
0 if x D 0;

defined in Example 6.3.7(b), is differentiable on R and g0 is in fact continuous at all
x except x D 0. Darboux’s theorem implies that, despite the discontinuity at x D 0;
the function g0 has the Intermediate Value Property. In particular, the discontinuity
at x D 0 is not of the first kind (i.e., jump discontinuity). The reader may refer to
Sect. 4.4 for the definitions of various discontinuities. In general, we can make the
following statement: If f W I ! R is differentiable on I; then all the discontinuities
of f 0 are of the second kind.

Our next result is a special form of the Mean Value Theorem but, in fact, is strong
enough to be equivalent to it.

Theorem 6.4.6 (Rolle’s Theorem). Let f W Œa; b� ! R be continuous on Œa; b�,
be differentiable on .a; b/; and satisfy f .a/ D f .b/. Then there exists a point
c 2 .a; b/ such that f 0.c/ D 0.

Proof. By Theorem 4.5.2, the continuous function f attains both its maximum and
minimum values on Œa; b�. If both of them are attained at the endpoints, then f is
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in fact constant (why?) and we have f 0.c/ D 0 8c 2 .a; b/. If not, at least one
of the extrema is an interior one, i.e., attained at a point c 2 .a; b/. But then, by
Proposition 6.4.3, we have f 0.c/ D 0. ut
Remark 6.4.7.

(a) The point c 2 .a; b/ guaranteed by Rolle’s Theorem is not necessarily unique,
as the following example shows: Consider the function f .x/ D 3x4 � 6x2C 1.
Then f .�2/ D f .2/ D 25 and f 0.x/ D 12x3 � 12x; so that f 0.�1/ D
f 0.0/ D f 0.1/ D 0.

(b) The assumption f .a/ D f .b/ implies that the chord joining the points
.a; f .a// and .b; f .b// on the graph of f is horizontal. The theorem then
implies that, if this is the case, then the tangent line to the graph of f is
horizontal (i.e., parallel to the above chord) at some point .c; f .c// with (a not
necessarily unique) c 2 .a; b/.

If one rotates the graph of the function f in Rolle’s Theorem, then the condition
f .a/ D f .b/ will no longer be satisfied and hence the chord joining the points
.a; f .a// and .b; f .b// will not be horizontal. It is obvious, however, that the new
graph will have the property that the tangent line will be parallel to the chord at least
once between the endpoints .a; f .a// and .b; f .b//. This suggests the following
extension of Rolle’s Theorem:

Theorem 6.4.8 (Mean Value Theorem). Let f W Œa; b� ! R be continuous on
Œa; b� and differentiable on .a; b/. Then there exists a point c 2 .a; b/ such that

f 0.c/ D f .b/ � f .a/
b � a :

Proof. Consider the function

g.x/ WD f .x/ � f .a/ � f .b/ � f .a/
b � a .x � a/:

Note that g is simply the difference between the function f and the affine function

x 7! f .b/ � f .a/
b � a .x � a/C f .a/ 8x 2 Œa; b�;

whose graph is the line segment joining the points .a; f .a// and .b; f .b//. The
hypotheses of the theorem imply that g is continuous on Œa; b�; is differentiable
on .a; b/; and satisfies g.a/ D g.b/. It then follows from Rolle’s Theorem that
g0.c/ D 0 holds for at least one c 2 .a; b/. But this means precisely that

g0.c/ D f 0.c/ � f .b/ � f .a/
b � a D 0;

and the proof is complete. ut
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Remark 6.4.9.

(a) As the above proof shows, the Mean Value Theorem (henceforth abbreviated
MVT) is a consequence of Rolle’s Theorem. Since the converse is obviously
satisfied (why?), the two theorems are in fact equivalent.

(b) The Mean Value Theorem (MVT) can also be interpreted in terms of motion as
follows: If f .t/ represents a car’s position at time t (i.e., its (signed) distance
from an initial point), then f 0.t/ represents the instantaneous velocity at that
time, and .f .b/ � f .a//=.b � a/ represents the average velocity over the
time interval Œa; b�. Thus the MVT implies that, at some time c 2 .a; b/; the
instantaneous velocity is in fact equal to the average (i.e., mean) velocity.

The Mean Value Theorem is a fundamental tool in the study of the behavior
of functions defined and differentiable on intervals. For instance, it is obvious
(e.g., geometrically) that the derivative of a constant function on an interval is the
identically zero function on that interval (cf. Proposition 6.2.1). That the converse
is also true is an immediate consequence of the MVT, as we shall see below.

Corollary 6.4.10. Let h > 0 and suppose that f W Œx; x C h� ! R is continuous
on Œx; xCh� and differentiable on .x; xCh/. Then there exists a number � 2 .0; 1/
such that

f .x C h/ D f .x/C hf 0.x C �h/:

Proof. Simply note that any number in .x; x C h/ can be written as x C �h; for
some � 2 .0; 1/. ut
Corollary 6.4.11. Let f W Œa; b�! R be continuous on Œa; b� and differentiable on
.a; b/. If f 0.x/ D 0 8x 2 .a; b/; then f is constant on Œa; b�.

Proof. We must show that, for any x1; x2 2 Œa; b�; we have f .x1/ D f .x2/.
Assume (without loss of generality) that x1 < x2. Then, applying the MVT to the
function f on the interval Œx1; x2�; we can find a point x0 2 .x1; x2/ such that

f .x2/ � f .x1/ D .x2 � x1/f 0.x0/ D 0;

and the corollary follows. ut
Exercise 6.4.12. Suppose that f; g W R ! R are both differentiable and satisfy
f 0 D g and g0 D �f . Show that f 2 C g2 is a constant function. Give examples of
f and g satisfying the given conditions.

Corollary 6.4.13. Suppose that f and g are continuous on Œa; b�; differentiable on
.a; b/; and f 0.x/ D g0.x/ 8x 2 .a; b/. Then there exists a constant C such that
f D g C C .

Proof. Apply Corollary 6.4.11 to the function f � g. ut
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Corollary 6.4.14. Let f W I ! R be continuous on I and differentiable on
its interior I ı. Then f is increasing (resp., strictly increasing) on I if f 0.x/ �
0 8x 2 I ı (resp., f 0.x/ > 0 8x 2 I ı). Similarly, f is decreasing (resp., strictly
decreasing) on I if f 0.x/ � 0 8x 2 I ı (resp., f 0.x/ < 0 8x 2 I ı).

Proof. We simply note that, for any x1 < x2 in I;we may apply the MVT on Œx1; x2�
to find a point x0 2 .x1; x2/ with

f .x2/ � f .x1/ D .x2 � x1/f 0.x0/;

from which the corollary follows at once. ut
Remark 6.4.15.

(a) Note that, although the converses of the statements in Corollary 6.4.14 are true
for the increasing (resp., decreasing) cases (why?), they are false for the strictly
increasing (resp., strictly decreasing) cases. The function f .x/ WD x3 8x 2 R;

e.g., is strictly increasing on R; but f 0.x/ D 3x2; so that f 0.0/ D 0.
(b) Using the above corollary, we can strengthen the last statement of

Theorem 6.3.8 as follows.

Corollary 6.4.16 (Inverse Function Theorem). If I � R is an open interval and
if f W I ! R is a differentiable function such that f 0.x/ ¤ 0 for all x 2 I; then f
is a homeomorphism onto the interval J WD f .I / and its inverse f �1 W J ! I is
differentiable at every y D f .x/ 2 J with derivative

.f �1/0.y/ D 1

f 0.x/
:

Proof. Since f 0 is never zero, Darboux’s theorem (Theorem 6.4.4) implies that we
either have f 0.x/ > 0 for all x 2 I or f 0.x/ < 0 for all x 2 I . Thus f is either
strictly increasing or strictly decreasing on I . The rest of the proof is identical to
that of Theorem 6.3.8. ut
Exercise 6.4.17.

(a) Using the MVT and the fact that .ex/0 D ex 8x 2 R; prove the inequality

ex � 1C x .8x 2 R/:

(b) Using the MVT and the fact that .sin x/0 D cos x; .cos x/0 D � sin x 8x 2 R;

show that both sin and cos are Lipschitz functions with Lipschitz constant 1
(cf. Sect. 4.6, particularly Example 4.6.12(a)). In other words, show that we
have

j sin x � sinyj � jx � yj; j cos x � cos yj � jx � yj .8x; y 2 R/:

Deduce, in particular, that j sin xj � x and j cos x � 1j � x 8x � 0.



260 6 The Derivative

(c) (Bernoulli’s Inequality) Using the MVT and the Power Rule, prove the
following extension of Bernoulli’s inequality (cf. Proposition 2.1.23):

.1C x/r � 1C rx 8 x > �1 if r � 0 or r � 1;

.1C x/r � 1C rx 8 x > �1 if 0 � r � 1.

Show that the above inequalities are strict if x ¤ 0 and r ¤ 0; 1. Also prove
the following version:

.1 � x/r � 1 � rx 8 x 2 Œ0; 1� if r � 1.

Exercise 6.4.18. Let f W I ! R. Recall that f is said to be Lipschitz of order ˛
on I , 0 < ˛ � 1; if there is constant A > 0 such that

jf .x1/ � f .x2/j � Ajx1 � x2j˛ 8x1; x2 2 I:

In this case, we write f 2 Lip˛.I /. If ˛ D 1; then f is said to be Lipschitz on
I and we write f 2 Lip.I / D Lip1.I /.

1. Let a 2 I ı and assume that f 0.a/ exists. Show that there exists ı > 0 such that
f 2 Lip.Bı.a//. Show, by an example, that the converse is false.

2. Show that, if f 2 Lip˛.I / for some ˛ > 1; then f is constant on I .

Exercise 6.4.19 (A Version of Gronwall’s Inequality). Let f W Œ0;1/ ! R be
continuous on Œ0;1/ and differentiable on .0;1/. If f .0/ D 0 and jf 0.x/j �
jf .x/j 8x 2 .0;1/; show that f .x/ D 0 8x � 0. Hint: Differentiate the function
g.x/ WD Œf .x/�2e�2x .

Corollary 6.4.20. A differentiable function f W I ! R is Lipschitz on I if and only
if f 0 is bounded on I . In particular, if f 0 is continuous on I; then f is Lipschitz on
every compact subset (e.g., closed, bounded subinterval) of I .

Proof. Let A WD supfjf 0.x/j W x 2 I g. Then, given any x < x0 in I; the MVT
implies that f .x0/ � f .x/ D .x0 � x/f 0.�/; for some � 2 .x; x0/. Therefore,

jf .x0/ � f .x/j D jf 0.�/jjx0 � xj � Ajx0 � xj;

which shows that f is indeed Lipschitz and proves the last statement as well.
(Why?) Conversely, if jf .x/ � f .x0/j � Ajx � x0j for all x; x0 2 I; then
for each x0 2 I; j.f .x/ � f .x0//=.x � x0/j � A for all x ¤ x0. Since
f 0.x0/ WD limx!x0.f .x/ � f .x0//=.x � x0/; we have jf 0.x0/j � A. ut

Our last version of the MVT extends all the previous ones but, as the proof
shows, is in fact equivalent to them. This version, called Cauchy’s Mean Value
Theorem (henceforth abbreviated Cauchy’s MVT), will be used in the proof of
l’Hôpital’s Rule.
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Theorem 6.4.21 (Cauchy’s Mean Value Theorem). If two real-valued functions
f and g are both continuous on Œa; b� and differentiable on .a; b/; then there exists
c 2 .a; b/ such that

Œg.b/ � g.a/�f 0.c/ D Œf .b/ � f .a/�g0.c/:

Proof. Well, consider the function

h.x/ WD Œg.b/� g.a/�Œf .x/� f .a/�� Œf .b/� f .a/�Œg.x/� g.a/� 8x 2 Œa; b�:

Then h is continuous on Œa; b� and differentiable on .a; b/; and we have h.a/ D
0 D h.b/. Therefore, by Rolle’s Theorem, there exists c 2 .a; b/ such that
h0.c/ D 0; and the theorem follows at once. ut
Remark 6.4.22.

1. If, in Theorem 6.4.21, we assume that g0.x/ ¤ 0 8x 2 .a; b/; then we must have
g.a/ ¤ g.b/ (why?) and the conclusion of the theorem can also be written as

f .b/ � f .a/
g.b/ � g.a/ D

f 0.c/
g0.c/

:

2. Under the assumptions of Theorem 6.4.21, it follows from Theorem 6.4.8 that,
for some c1; c2 2 .a; b/; we have f .b/ � f .a/ D .b � a/f 0.c1/; and g.b/ �
g.a/ D .b � a/g0.c2/. In particular, if g0.c2/ ¤ 0; we have

f .b/ � f .a/
g.b/ � g.a/ D

f 0.c1/
g0.c2/

:

Note, however, that c1 ¤ c2; in general. For example, consider the functions
f .x/ WD x3 � 8x C 3 and g.x/ WD x2 � 2x C 2 on Œ0; 4�. Then, a computation
shows that c1 D 4=

p
3 and c2 D 2. In this case, the number c 2 .0; 4/ guaranteed

by Theorem 6.4.21 is c D 8=3. The reader is invited to check these simple facts.

Exercise 6.4.23. Consider the functions f .x/ WD x � x2 and g.x/ WD 2x3 � 3x4
on Œ0; 1�. Show that there is no number c 2 .0; 1/ such that

f .1/ � f .0/
g.1/ � g.0/ D

f 0.c/
g0.c/

:

Does this contradict Cauchy’s MVT?

Finally, as pointed out in Corollary 6.4.20, if a differentiable function f W I ! R

has bounded derivative, saym � f 0.x/ �M for all x 2 I; then for any a < b in I;
the Mean Value Theorem gives m.b � a/ � f .b/ � f .a/ �M.b � a/. It turns out
that this can be obtained with much weaker assumptions on f :
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Proposition 6.4.24. Let D be a countable subset of an interval I and let
f W I ! R be continuous. If f is right differentiable at every x 2 I n D and
m � f 0C.x/ �M for all x 2 I nD, then for any a < b in I we have

m.b � a/ � f .b/ � f .a/ �M.b � a/;

and the inequalities are strict when f is not an affine function on Œa; b�.

Proof. Let us first show that if f 0C.x/ � 0 for all x 62 D; then f is increasing on I .
Indeed, given any " > 0 and x 62 D; the assumption f 0C.x/ � 0 implies that for
every small enough number h > 0 we must have

f .x C h/ � f .x/ � �"h:
It follows that the function g.x/ WD f .x/ C "x satisfies the conditions of
Proposition 4.4.13 (why?) and hence is increasing. Since " > 0 was arbitrary, the
function f itself is also increasing. Now suppose that m � f 0C.x/ � M for all
x 2 I nD. Then the functions h.x/ WDMx � f .x/ and k.x/ WD f .x/�mx satisfy
h0C.x/ � 0 and k0C.x/ � 0 for all x 62 D and hence are increasing and the desired
inequalities follow. Finally, if f is not an affine function with f 0 D M; then the
function h.x/ DMx � f .x/ is not constant on Œa; b� and hence

Ma � f .a/ < Mb � f .b/:

A similar argument is used for k.x/ D f .x/ �mx. ut

6.5 L’Hôpital’s Rule

Indeterminate forms were discussed in Sect. 3.5. Of particular importance were
limits having the indeterminate forms 0=0 and 1=1. In this section, we shall
see how derivatives can be used to compute some such limits. The basic tool will
be Cauchy’s MVT.

Theorem 6.5.1 (L’Hôpital’s Rule). Let �1 � a < b � C1; and let f; g W
.a; b/ ! R be differentiable functions on .a; b/; with g0.x/ ¤ 0 8x 2 .a; b/.
Suppose that either

(i) lim
x!a

f .x/ D 0 D lim
x!a

g.x/

or

(ii) lim
x!a

g.x/ D ˙1:
If, for some L 2 Œ�1;C1�; we have

(iii) lim
x!a

f 0.x/
g0.x/

D L;
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then we also have

(iv) lim
x!a

f .x/

g.x/
D L:

The same conclusion holds if limx!a is replaced by limx!b throughout. Note that,
for finite a; we obviously have limx!a D limx!aC.

Proof. (Case 1: a > �1). If (i) holds and if we define f .a/ D g.a/ WD 0; then
both f and g become continuous on Œa; b/. Applying Cauchy’s MVT on Œa; x�
where x 2 .a; b/; we have

f .x/

g.x/
D f .x/ � f .a/
g.x/ � g.a/ D

f 0.�/
g0.�/

; ()

for some � 2 .a; x/. Since x ! a implies � ! a; .iv/ follows at
once from (iii) and (). Assume next that (ii) holds with C1 (for the case
limx!a g.x/ D �1; replace g by �g) and that L is finite. In view of (iii), for
each " > 0 we can find t > a such that g.u/ > 0 and jf 0.u/=g0.u/ � Lj < " for
all u 2 .a; t �. Applying Cauchy’s MVT on Œx; t � � .a; t �; we can find � 2 .x; t/
with

Œf .t/ � f .x/�g0.�/ D Œg.t/ � g.x/�f 0.�/;

which can also be written as

f .x/

g.x/
D f 0.�/
g0.�/

� g.t/

g.x/
� f

0.�/
g0.�/

C f .t/

g.x/
: ()

Let M D supfjf 0.u/=g0.u/j W u 2 .a; t �g. (Why is M finite?) Then () implies
that

ˇ

ˇ

ˇ

ˇ

f .x/

g.x/
� L

ˇ

ˇ

ˇ

ˇ

< "C
ˇ

ˇ

ˇ

ˇ

g.t/

g.x/

ˇ

ˇ

ˇ

ˇ

M C
ˇ

ˇ

ˇ

ˇ

f .t/

g.x/

ˇ

ˇ

ˇ

ˇ

:

Letting x ! a; we obtain
ˇ

ˇ

ˇ

ˇ

f .x/

g.x/
� L

ˇ

ˇ

ˇ

ˇ

� ";

which implies (iv). If L D C1 and if B > 0 is arbitrary, we can pick t > a

such that g.t/ > 0 and f 0.u/=g0.u/ > B for all u 2 .a; t/. Keeping t fixed, we
can pick t 0 2 .a; t/ such that 0 < g.t/ < g.x/ for all x 2 .a; t 0/. (Why?) It then
follows from () that

f .x/

g.x/
> B

�

1 � g.t/

g.x/

�

C f .t/

g.x/
8x 2 .a; t 0/:

Since the right side converges to B as x ! a; (iv) follows. The case L D �1
is treated similarly. The proof of case (1) is now complete.
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(Case 2: a D �1). Here we may assume that b < 0. Now observe that
x 7! �1=x is a homeomorphism of .�1; b/ onto .0;�1=b/ and that x ! �1
if and only if �1=x ! 0C. Therefore,

lim
x!�1

f .x/

g.x/
D lim

x!0C
f .�1=x/
g.�1=x/ ;

and it suffices to show that the right side converges to L. This, however, follows
from Case 1, because

lim
x!0C

Œf .�1=x/�0
Œg.�1=x/�0 D lim

x!0C
Œf 0.�1=x/�=x2
Œg0.�1=x/�=x2 D lim

x!�1
f 0.x/
g0.x/

D L:
ut

The above rule handles the cases in which x ! a or x ! b; where a and b are
the left and right endpoints of an interval, respectively. To have a rule which can also
be applied to the cases x ! c; where c is an interior point, we have the following

Corollary 6.5.2. Let f and g be differentiable on .a; c/ and .c; b/; with g0.x/ ¤
0 8x 2 .a; c/ [ .c; b/. Suppose that either

(i) lim
x!c

f .x/ D 0 D lim
x!c

g.x/

or

(ii) lim
x!c

g.x/ D ˙1:
If, for some L 2 Œ�1;C1�; we have

(iii) lim
x!c

f 0.x/
g0.x/

D L;

then we also have

(iv) lim
x!c

f .x/

g.x/
D L:

Proof. This follows at once from Theorem 6.5.1 by applying it to f and g on the
intervals .a; c/ and .c; b/ separately and using the fact that limx!c

f 0.x/
g0.x/ D L if and

only if limx!c� f 0.x/
g0.x/ D L D limx!cC f 0.x/

g0.x/ . ut
Remark 6.5.3.

1. As we saw in Sect. 3.5, one can always change an indeterminate form1=1 to
an indeterminate form 0=0; by observing that f .x/=g.x/ D Œ1=g.x/�=Œ1=f .x/�.
If this is done, however, l’Hôpital’s Rule becomes

lim
x!a

f .x/=g.x/ D lim
x!a

Œ1=g.x/�0=Œ1=f .x/�0;

which is not the same as the rule in Theorem 6.5.1. The case (ii) in l’Hôpital’s
Rule is therefore important in general. In fact, changing 1=1 to 0=0 may
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actually complicate matters, as the following simple example shows. Let
f .x/ WD x and g.x/ WD ex on .�1;1/. Then, limx!C1 x D C1 D
limx!C1 ex and l’Hôpital’s Rule implies that

lim
x!C1

x

ex
D lim

x!C1
.x/0

.ex/0
D lim

x!C1
1

ex
D 0:

On the other hand, if we write x=ex D e�x=.1=x/; which has the indeterminate
form 0=0 as x !C1; then the rule implies

lim
x!C1

e�x

1=x
D lim

x!C1
.e�x/0

.1=x/0
D lim

x!C1
e�x

1=x2
;

which is more complicated than limx!C1 e�x=.1=x/.
2. Although a powerful tool for computing limits of indeterminate forms,

l’Hôpital’s Rule is not necessarily the right one in all cases. The following simple
example illustrates this point. Recall that x 7! x=

p
1C x2 is a homeomorphism

of R onto the open unit interval .�1; 1/. The inverse homeomorphism is
x 7! x=

p
1 � x2. Now, limx!1 x D limx!1

p
1C x2 D C1; so that

limx!1 x=
p
1C x2 has the indeterminate form 1=1. If we use l’Hôpital’s

Rule, we get

lim
x!1

xp
1C x2 D lim

x!1
1

x=
p
1C x2 D lim

x!1

p
1C x2
x

:

Therefore, the rule does not help at all. In fact, a second application of it will
send us back to the original limit. On the other hand, we can find the limit easily
as follows:

lim
x!1

xp
1C x2 D lim

x!1
x

jxjp1C 1=x2 D lim
x!1

1
p

1C 1=x2 D 1:

3. L’Hôpital’s Rule can be applied repeatedly as long as the required conditions are
all satisfied. For example, we have

lim
x!0

1 � cos x

x2
D lim

x!0

sin x

2x
D lim

x!0

cos x

2
D cos.0/

2
D 1

2
:

4. It should be noted that the converse of Theorem 6.5.1 (or its corollary) is not true.
In other words, limx!a

f .x/

g.x/
may very well exist even though limx!a

f 0.x/
g0.x/ does

not. A simple example is the following. Consider the functions f .x/ WD x�sin x
and g.x/ WD x on R. Then

lim
x!C1

f .x/

g.x/
D lim

x!C1
x � sin x

x
D lim

x!C1.1 �
sin x

x
/ D 1;
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because j sin x=xj � 1=jxj ! 0 as x !C1. On the other hand,

lim
x!C1

f 0.x/
g0.x/

D lim
x!C1.1 � cos x/

does not exist.

Example 6.5.4.

1. Let ˛ and ˇ be arbitrary positive numbers. Then we have x˛ D o.eˇx/

.x !1/. We must show that limx!1 x˛=eˇx D 0. Now x˛=eˇx D .x=eˇx=˛/˛;
and limt!0C t˛ D 0 for all ˛ > 0. The claim is therefore a consequence of
l’Hôpital’s Rule:

lim
x!1

x

eˇx=˛
D lim

x!1
1

ˇ

˛
eˇx=˛

D 0:

2. Given any ˛ > 0; we have limx!0C x˛ log x D 0. To see this, note that
limx!0C x˛ D 0 and limx!0C log x D �1. These facts will be proved
later, when we define the logarithms and (general) power functions rigorously.
Therefore, we are dealing with an indeterminate form 0 � 1. To compute it, we
use l’Hôpital’s Rule as follows:

lim
x!0C x

˛ log x D lim
x!0C

log x

x�˛ D lim
x!0C

x�1

�˛x�˛�1 D �
1

˛
lim
x!0C x

˛ D 0:

3. Let us show that limx!0C xx D 1. Note first that this limit has the indeterminate
form 00. Now, by definition, xx WD exp.x log x/ 8x > 0. Also, by Example (2)
above, limx!0C x log x D 0. Since exp is continuous, we obtain

lim
x!0C x

x D exp. lim
x!0C x log x/ D exp.0/ D 1:

4. Show that limx!1.1 C ˛=x/x D e˛ . Here the limit has the indeterminate
form 11. By definition, we have .1C˛=x/x WD expŒx log.1C˛=x/�; so we must
find limx!1 x log.1C ˛=x/; which has the indeterminate form1� 0 (or 0 �1).
Using l’Hôpital’s Rule, we have

lim
x!1 x log.1C˛=x/ D lim

x!1
log.1C ˛=x/

1=x
D lim

x!1

�˛=x2
1C ˛=x
�1=x2 D lim

x!1
˛

1C ˛=x D ˛;

and the claim follows from the continuity of exp.
5. Let us show that log.1 C x/ � x .x ! 0/. Recall (cf. Sect. 3.5) that this is

equivalent to limx!0 log.1C x/=x D 1; which follows at once from l’Hôpital’s
Rule:

lim
x!0

log.1C x/
x

D lim
x!0

1=.1C x/
1

D 1:
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Exercise 6.5.5. Find the following limits, where a; b; ˛; and ˇ are arbitrary
positive constants.

.1/ lim
x!0

ax � 1
bx � 1 ; .2/ lim

x!1
.log x/˛

xˇ
:

Exercise 6.5.6. Find each limit.

.1/ lim
x!0C

e�1=x

x
; .2/ lim

x!0C.sin x/x:

6.6 Higher Derivatives and Taylor’s Formula

If f W I ! R is differentiable on I; then its derivative defines a new function f 0 W
I ! R and it is quite legitimate to ask whether this new function f 0 is differentiable
at a point x0 2 I . Hence the following definition:

Definition 6.6.1 (Higher-Order Derivatives). Let f W I ! R and suppose that f
is differentiable near x0 2 I I i.e., that f 0.x/ exists for all x 2 Bı.x0/\ I and some
ı > 0. If the derivative of f 0 exists at x0; then we say that f is twice differentiable
at x0 and we write f 00.x0/ WD .f 0/0.x0/. The number f 00.x0/ is called the second
derivative of f at x0. Inductively, we define f .0/.x0/ WD f .x0/; f .1/.x0/ WD f 0.x0/;
and, for each positive integer n 2 N; we define f .n/.x0/ WD .f .n�1//0.x0/.
If f .n/.x0/ exists, we call it the nth derivative (or nth-order derivative) of f at
x0 and say that f is n-times differentiable at x0. If f .n/.x/ exists for all x 2 I; we
say that f is n-times differentiable on I .

Remark 6.6.2.

1. If f W I ! R and f 00.x0/ exists for some x0 2 I; then f 0 must be defined near
x0. In other words, we can find ı > 0 such that f is differentiable on Bı.x0/ \
I . More generally, if f .n/.x0/ exists, then f is .n � 1/-times differentiable on
Bı.x0/ \ I for some ı > 0.

2. If f W I ! R is n-times differentiable on I for some n 2 N; then the derivatives
f .k/; 0 � k � n � 1 are all defined and continuous (why?) on I .

Notation 6.6.3. As in the case of the (first) derivative, there are several ways to
denote higher derivatives of a function, each having its own merits. We shall use all
these forms in this text. If f W I ! R and if f .n/.x0/ exists for some x0 2 I and
n 2 N; then we write

f .n/.x0/ D dnf

dxn
.x0/ D dn

dxn
f .x0/ D dnf

dxn

ˇ

ˇ

ˇ

ˇ

xDx0
D Dnf .x0/ D Dn

xf .x0/:

We even abuse the notation, occasionally, and write .f .x//.n/ instead of f .n/.x/.
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Exercise 6.6.4. Let f W I ! R and assume that f 00.x0/ exists for some x0 2 I ı.
Show that

f 00.x0/ D lim
h!0

f .x0 C h/ � 2f .x0/C f .x0 � h/
h2

;

and give an example where this limit exists even though f 00.x0/ does not. Hint: Use
l’Hôpital’s Rule and, for example, consider an odd function.

Definition 6.6.5 (The Classes Cn). Let f W I ! R and n 2 N. We say that f is of
class Cn on I , and write f 2 Cn.I /; if f .n/ is defined and continuous on all of I .
We say that f is of class C1 on I, and write f 2 C1.I /; if f 2 Cn.I / 8n 2 N.
The class of continuous functions on I will be denoted by C.I / instead of C0.I /.
We call Cn.I / the class of n-times continuously differentiable functions on I . For
n D 1; it is called the class of continuously differentiable functions on I . Finally,
C1.I / is called the class of infinitely differentiable functions on I .

Remark 6.6.6. Note that, as was pointed out above, the existence of f .n/ on I
automatically guarantees the existence and continuity of f; f 0 ; : : : ; f .n�1/ on I .
Also, it is obvious that we have the inclusions

C1.I / � � � � � CnC1.I / � Cn.I / � � � � C2.I / � C1.I / � C.I / WD C0.I /:

We should keep in mind that all the above inclusions are proper, as the following
exercise demonstrates.

Exercise 6.6.7. For n D 0; 1; 2; : : : ; consider the functions fn W R ! R defined
by f0.x/ WD jxj; and fn.x/ WD xnjxj 8n � 1. Show that, for all n � 0; we have
fn 2 Cn.R/ but fn 62 CnC1.R/. What are the successive derivatives of fn‹ Hint:
Note that fn D xfn�1 8n � 1; and use induction.

The following proposition is an extension of the Product Rule to higher-order
derivatives.

Proposition 6.6.8 (Leibniz Rule). Let f; g W I ! R be n-times differentiable
functions on I for some n 2 N. Then the product fg is also n-times differentiable
on I and we have

Dn.fg/ D
n
X

kD0

 

n

k

!

Dn�kf �Dkg; .Leibniz Rule/ (�)

where, for any k-times differentiable function h; Dkh WD h.k/ andD0h D h.0/ WD h.

Proof. We use induction on n. For n D 1; the rule is reduced to the Product Rule:
D.fg/ D Df � gC f �Dg. Thus, we must only show that if (�) is satisfied for any
n and if f and g are .nC 1/-times differentiable, then so is fg and the rule holds
for nC 1I i.e., we have
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DnC1.fg/ D
nC1
X

jD0

 

nC 1
j

!

DnC1�j f �Djg: (�)

Now, differentiating both sides of (�), we obtain

(i) DnC1.fg/ D
n
X

kD0

 

n

k

!

DnC1�kf �Dkg C
n
X

kD0

 

n

k

!

Dn�kf �DkC1g:

If we set k D j in the first sum on the right side of (i) and k D j � 1 in the second
sum, we get

(ii) DnC1.fg/ D
n
X

jD0

 

n

j

!

DnC1�j f �Djg C
nC1
X

jD1

 

n

j � 1

!

DnC1�j f �Djg:

If we isolate the first term of the first sum and the last term of the second sum and
combine the remaining sums, then the right side of (ii) is

D DnC1f �D0g C
n
X

jD1

" 

n

j

!

C
 

n

j � 1

!#

DnC1�j f �Djg CD0f �DnC1g

D DnC1f �D0g C
n
X

jD1

 

nC 1
j

!

DnC1�j f �Djg CD0f �DnC1g

D
nC1
X

jD0

 

nC 1
j

!

DnC1�j f �Djg;

where we have used the identity
�

n
j

� C � n
j�1
� D �

nC1
j

�

(cf. Exercise 1.3.29). This
establishes (�) and completes the proof. ut
Corollary 6.6.9. Suppose that f W I ! R; g W J ! R and that f .I / � J . If f is
n-times differentiable on I and g is n-times differentiable on J; then the composite
function g ı f is n-times differentiable on I .

Proof. We use induction on n; the case n D 1 being obviously true. (Why?) Now, it
follows from the Chain Rule thatD.gıf / D .g0 ıf / �f 0. Since f 0 is .n�1/-times
differentiable on I; the corollary follows from the Leibniz Rule if we can show that
g0 ı f is also .n � 1/-times differentiable on I . This, however, follows from our
inductive hypothesis. ut
Definition 6.6.10 (C n-Diffeomorphism). Let I and J be open intervals. A func-
tion f W I ! J is said to be a Cn-diffeomorphism if it is a bijection such that
f 2 Cn.I / and f �1 2 Cn.J /.

The following extension of Corollary 6.4.16 is remarkable.
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Corollary 6.6.11 (Smoothness of the Inverse Function). Let I ¤ ; be an open
interval. If f 2 Cn.I / satisfies f 0.x/ ¤ 0 8x 2 I; then it is a Cn-diffeomorphism
onto f .I /; i.e., the inverse function f �1 is n-times continuously differentiable on
the interval f .I /.

Proof. We proceed by induction again, the case n D 1 being Corollary 6.4.16 which
also provides the formula .f �1/0 D 1=f 0 ı f �1. Next, since f 0 is never zero on I;
the same holds for f 0 ı f �1 on f .I /. In view of the Quotient Rule, it is therefore
sufficient to show that f 0 ı f �1 is .n� 1/-times differentiable on the interval f .I /.
(Why?) By Corollary 6.6.9, this will follow if f �1 is .n � 1/-times differentiable
on the interval f .I /. But this is precisely the inductive step and the proof is
complete. ut

Our last corollary will be an extension of the Leibniz Rule to products involving
more than two functions:

Corollary 6.6.12. If fj W I ! R; j D 1; 2; : : : ; k; are n-times differentiable on I;
then so is their product, f1f2 � � � fk; and we have

Dn.f1f2 � � � fk/ D
X

n1Cn2C���CnkDn

nŠ

n1Šn2Š � � � nkŠD
n1f1D

n2f2 � � �Dnkfk: ()

Proof. The case k D 2 is the Leibniz Rule. Inductively, we may assume that
f2f3 � � � fk is n-times differentiable on I and apply the Leibniz Rule to obtain

Dn.f1f2 � � � fk/ D
X

n1CmDn

nŠ

n1ŠmŠ
Dn1f1D

m.f2 � � � fk/: ()

Applying () (with n replaced bym D n�n1) to the k�1 functions f2; f3; : : : ; fk;
the right side of () is then

D
X

n1CmDn

nŠ

n1ŠmŠ
Dn1f1 �

0

@

X

n2C���CnkDm

mŠ

n2Š � � �nkŠD
n2f2 � � �Dnkfk

1

A

D
X

n1Cn2C���CnkDn

nŠ

n1Šn2Š � � �nkŠD
n1f1D

n2f2 � � �Dnkfk:

ut
Our next goal is to prove Taylor’s formula, which is an extension of the MVT,

and plays an important role in the study of local approximation of functions
by polynomials. In Sect. 4.7, we proved the Weierstrass Approximation Theorem,
which asserts that a continuous function on a closed bounded interval can be
uniformly approximated by polynomials on that interval. In fact, in Theorem 4.7.9,
we approximated any continuous function on Œ0; 1� by its Bernstein polynomials.
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Despite the importance of this uniform approximation, one drawback is that the
nth Bernstein polynomial depends on the values of the function at n C 1 equally
spaced points in the interval. By contrast, the Taylor polynomials (defined below)
depend only on the values of the function and some of its derivatives at a single
point in the interval. Therefore, they are more suitable for local approximation, i.e.,
approximation in a neighborhood of a given point. Let us begin with the following.

Exercise 6.6.13.

(a) Using the Power Rule, show that, for each k 2 N and each j D 0; 1; � � � ; k;
we have

Œ.x � c/k�.j / D k.k � 1/ � � � .k � j C 1/.x � c/k�j D kŠ

.k � j /Š .x � c/
k�j :

In particular, Œ.x � c/k�.k/ D kŠ and Œ.x � c/k�.`/ � 0 8` > k. Deduce that the
polynomial function

p.x/ WD
n
X

kD0
ak.x � c/k; ()

where the ak and c are real constants, has the property that

ak D p.k/.c/

kŠ
.0 � k � n/; ()

and p.k/.x/ D 0 for all k > n and all x 2 R.
(b) Consider the function

f .x/ WD
(

e�1=x if x > 0,

0 if x � 0.

Show that f 2 C1.R/ and that f .n/.0/ D 0 for all n 2 N. Hint:
Concentrating at x D 0; use induction and l’Hôpital’s Rule.

Remark 6.6.14. If, in the above exercise, we replace x by � C � and c by � in ()
and use (), then we obtain the identity

p.� C �/ D
n
X

kD0

1

kŠ
p.k/.�/�k .8�; � 2 R/:

Definition 6.6.15 (Taylor Polynomials). Let f W I ! R be n-times differentiable
at x0 2 I I i.e., suppose that f .n/.x0/ exists. The nth Taylor polynomial of f at x0
is then defined to be

Pn;x0.x/ WD f .x0/C
f 0.x0/
1Š

.x�x0/C f
00.x0/
2Š

.x�x0/2C� � �C f
.n/.x0/

nŠ
.x�x0/n:
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The coefficients f .j /.x0/=j Š; 0 � j � n; are called the Taylor coefficients of f at
x0. It follows at once from Exercise 6.6.13 that we have

P .j /
n;x0
.x0/ D f .j /.x0/ .0 � j � n/:

Exercise 6.6.16.

(a) Let f .x/ WD ex 8x 2 R. Show that the nth Taylor polynomial of f at x0 D 0 is

Pn;0.x/ D 1C x

1Š
C x2

2Š
C x3

3Š
C � � � C xn

nŠ
:

(b) Let g.x/ WD sin x 8x 2 R. Show that the .2nC 1/th Taylor polynomial of g at
x0 D 0 is

P2nC1;0.x/ D x � x
3

3Š
C x5

5Š
� x

7

7Š
C � � � C .�1/n x2nC1

.2nC 1/Š :

(c) Let h.x/ WD log x 8x > 0. Show that

log.j /.x/ D .�1/j�1.j � 1/Š
xj

.j D 1; 2; : : :/:

Deduce that the nth Taylor polynomial of h at x0 D 1 is

Pn;1.x/ D .x�1/� .x � 1/
2

2
C .x � 1/

3

3
� .x � 1/

4

4
C� � �C .�1/

n�1.x � 1/n
n

:

If, instead of h; we consider the function k.x/ WD log.x C 1/ 8x > �1; show
that the nth Taylor polynomial of k at x0 D 0 is

Pn;0.x/ D x � x
2

2
C x3

3
� x

4

4
C � � � C .�1/n�1xn

n
:

The following proposition shows how the Taylor polynomials of a function at a
given point approximate the function in a neighborhood of that point.

Proposition 6.6.17. Let f W I ! R be n-times differentiable at a point x0 2 I and
let Pn;x0 be its nth Taylor polynomial at x0. Then we have

f .x/ D Pn;x0.x/C .x � x0/no.1/ .x ! x0/:

More precisely, there exists a function � W I ! R; with limx!x0 �.x/ D 0; such that

f .x/ D Pn;x0.x/C .x � x0/n�.x/ .8x 2 I /:
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If, in addition, f .nC1/.x0/ exists, then we have

lim
x!x0

�.x/

.x � x0/ D
f .nC1/.x0/
.nC 1/Š : (�)

Proof. Consider the function

�.x/ WD f .x/ � Pn;x0.x/
.x � x0/n .x ¤ x0/: ()

As was pointed out above, the existence of f .n/.x0/ implies that there exists an
interval J; with x0 2 J � I; such that f is .n � 1/-times (continuously)
differentiable on J . It is easily seen that all the derivatives of order � n � 1 of
the numerator and denominator of () are zero at x0. Since f .n�1/.x/ is defined for
all x 2 J; we can apply l’Hôpital’s Rule n � 1 times to () to obtain

lim
x!x0

�.x/ D lim
x!x0

f .n�1/.x/ � f .n�1/.x0/ � .x � x0/f .n/.x0/

nŠ.x � x0/ ; ()

if the limit on the right side exists. But, by hypothesis, f .n/.x0/ exists; i.e., we have

lim
x!x0

f .n�1/.x/ � f .n�1/.x0/
x � x0 D f .n/.x0/:

Therefore, the limit in () is indeed zero, as desired. If we define �.x0/ WD 0; then
the first part of the proposition is proved. To prove .�/, note that the existence
of f .nC1/.x0/ implies that f is n-times differentiable on an interval J; with
x0 2 J � I . We can therefore apply l’Hôpital’s Rule n times to the function
�.x/=.x � x0/ to obtain

lim
x!x0

�.x/

.x � x0/ D lim
x!x0

f .n/.x/ � f .n/.x0/

.nC 1/Š.x � x0/ D
f .nC1/.x0/
.nC 1/Š :

ut
Note that the above proposition only gives the behavior of the remainder

Rn;x0.x/ WD f .x/ � Pn;x0.x/ as x ! x0. In particular, the remainder will be small
in a sufficiently small neighborhood of x0. If we impose more restrictions on the
function f; we can find a more precise form of the remainder and give it an upper
bound over the entire interval I .

Theorem 6.6.18 (Taylor’s Formula with Lagrange’s Remainder). Let
f W I ! R be .n C 1/-times differentiable on I and let x0 2 I be fixed. Then
for each x 2 I; x ¤ x0; there exists a point � between x0 and x such that we have

f .x/ D Pn;x0.x/C
f .nC1/.�/
.nC 1/Š .x � x0/

nC1: (�)
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The termRn;x0.x/ WD f .nC1/.�/.x�x0/nC1=.nC1/Š is called Lagrange’s remainder
(or Lagrange’s form of the remainder). In particular, if

M WD supfjf .nC1/.x/j W x 2 I g <1;

then we have

jRn;x0.x/j �M
jx � x0jnC1

.nC 1/Š .8x 2 I /:

Proof. Assume x0 < xI the other case is similar. On the interval Œx0; x�; consider
the function

(i) F.t/ WD f .x/� f .t/� f
0.t/
1Š

.x � t /� f
00.t/
2Š

.x � t /2 � � � � � f
.n/.t/

nŠ
.x � t /n:

Computing F 0.t/; all but one of the terms cancel out and we obtain

F 0.t/ D �f
.nC1/.t/
nŠ

.x � t /n:

Next, introduce the function

(ii) G.t/ WD .x � t /nC1

.nC 1/Š .8t 2 Œx0; x�/;

so that G0.t/ D �.x � t /n=nŠ. Note, in particular, that we have F.x/ D G.x/ D 0;
and

(iii)
F 0.t/
G0.t/

D f .nC1/.t/:

Applying Cauchy’s MVT to F and G on Œx0; x�; and using (iii), we can find a point
� between x0 and x such that

F.x0/

G.x0/
D F.x/ � F.x0/
G.x/ �G.x0/ D

F 0.�/
G0.�/

D f .nC1/.�/:

In other words, we have F.x0/ D G.x0/f .nC1/.�/; which, in view of the definitions
(i) and (ii), completes the proof of (�). The last statement is an obvious consequence
of (�). ut
Remark 6.6.19 (Cauchy’s Form of the Remainder). If, in the above proof, we use
the function G.t/ WD x � t instead of (ii), then the remainder takes the form

Rn;x0.x/ D
f .nC1/.�/

nŠ
.x � �/n.x � x0/;
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which is called Cauchy’s form of the remainder. The reader is invited to supply the
details. There is another important form of the remainder which requires integration
and will be given in the next chapter.

The following corollaries are immediate consequences of Taylor’s Formula.

Corollary 6.6.20. Let f W I ! R be .n C 1/-times differentiable on I . Then for
each x 2 I and each h 2 R; with x C h 2 I; there exists a � 2 .0; 1/ such that

f .xCh/Df .x/C h
1Š
f 0.x/Ch

2

2Š
f 00.x/C� � �Ch

n

nŠ
f .n/.x/C hnC1

.nC 1/Šf
.nC1/.xC�h/:

Corollary 6.6.21. Let f W I ! R be .n C 1/-times differentiable on I . If
f .nC1/.x/ D 0 8x 2 I; then, on the interval I; f is a polynomial of degree at
most n.

Let us also include the following uniqueness property of Taylor’s Formula:

Proposition 6.6.22. Let f W I ! R be n-times differentiable at a point x0 2 I .
Suppose that for each x 2 I we have

f .x/ D a0Ca1.x�x0/Ca2.x�x0/2C� � �Can.x�x0/nC .x�x0/n�.x/; ()

where a0; a1; : : : ; an are real constants and � W I ! R satisfies limx!x0 �.x/ D 0.
Then we have

ak D f .k/.x0/

kŠ
.0 � k � n/: ()

Proof. Substituting x D x0 in (), we get a0 D f .x0/. This implies that Œf .x/ �
f .x0/�=.x � x0/ D a1 C o.1/; as x ! x0; and hence f 0.x0/ D a1. Similarly,
Œf .x/ � f .x0/ � f 0.x0/.x � x0/�=.x � x0/2 D a2 C o.1/; as x ! x0; which
(applying l’Hôpital’s Rule twice) gives a2 D f 00.x0/=2. Continuing, we deduce
that the ak are given by (). ut

As was pointed out before, Taylor’s Formula can be used for local approximation
of differentiable functions by polynomials. Here is an example:

Example 6.6.23. Let us approximate the function f .x/ WD ex by a polynomial
on the interval Œ�1; 1�; with error less than 10�10. Since f 0.x/ D f .x/; we have
f .n/.x/ D ex 8n 2 N. In particular, f .n/.0/ D 1 8n 2 N. By Taylor’s Formula,
for each x ¤ 0 in Œ�1; 1�; we can find a number � between 0 and x such that

ex D 1C x C x2

2Š
C x3

3Š
C � � � C xn

nŠ
C e� xnC1

.nC 1/Š :
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Now j�j < 1 implies e� < e < 3. Therefore,

jRn;0.x/j D e� jxj
nC1

.nC 1/Š �
e

.nC 1/Š <
3

.nC 1/Š :

A calculation shows that 13Š D 0:62270208 � 1010 < 3 � 1010 < 14Š D
8:71782912 � 1010. Therefore, if n D 13; the error is indeed less than 10�10. In
particular, for x D 1; we have

e 	 P13;0.1/ D 1C 1C 1

2Š
C � � � C 1

13Š
	 2:718281828446759;

which is correct to 10 decimal places. In fact, e 	 2:718281828459045.

Exercise 6.6.24. Using Taylor’s Formula, find an approximate value of sin 1 with
error less than 10�5.

Taylor’s Formula can be used to prove a generalization of the Leibniz Rule.
Before giving it, let us introduce some convenient terminology:

Definition 6.6.25.

(a) (Differential Operator, Symbol) Given any polynomial with real coefficients

p.�/ D
n
X

kD0
ak�

k D a0 C a1� C a2�2 C � � � C an�n; ()

we can associate with it the corresponding differential polynomial

p.D/ D
n
X

kD0
akD

k D a0 C a1D C a2D2 C � � � C anDn;

where D D d=dx. Given any n-times differentiable function u W I ! R; the
differential polynomial p.D/ can be applied to it in a natural way:

p.D/u D
n
X

kD0
akD

ku D
n
X

kD0
ak
dku

dxk
:

In this case, p.D/ is said to operate on u. When p.D/ operates on functions,
we call it a differential operator. The polynomial () is then called the symbol
of p.D/. If an ¤ 0; then p.D/ is said to be an nth-order (ordinary) differential
operator with (constant) coefficients a0; a1; : : : ; an.

(b) (Differential Equation, Solution) An equation of the form

p.D/u D f;
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where f W I ! R is a given function (with certain differentiability conditions)
and u W I ! R is an unknown (n-times differentiable function) to be
determined, is called a differential equation. A solution to this equation is any
function u that satisfies it.

Remark 6.6.26. It is obvious that an nth-order differential operator p.D/ defines
a map p.D/ W Cm.I / ! Cm�n.I / for each integer m � n. It is also clear that a
differential operator p.D/ of any order defines a map p.D/ W C1.I / ! C1.I /.
The most natural setting for the study of differential operators is the theory of
distributions (also known as generalized functions), because the differentiation is
then always possible. Distribution theory is treated in more advanced courses on
analysis and plays a fundamental role in the study of partial differential equations.

We are now ready to prove the extension of the Leibniz Rule mentioned above.

Theorem 6.6.27 (Hörmander’s Generalized Leibniz Rule). Let u; v W I ! R

be n-times differentiable functions on I . Given any nth-order differential operator
p.D/ DPn

kD0 akDk; we have

p.D/.uv/ D
n
X

kD0

1

kŠ
p.k/.D/u �Dkv:

Proof. Well, first note that the Leibniz Rule gives

p.D/.uv/ D
n
X

jD0
ajD

j .uv/ D
n
X

jD0
aj

j
X

iD0

 

j

i

!

Dj�iu �Div: ()

If, for each k D 0; 1; : : : ; n; we group all the terms on the right side of ()
containing Dkv; then ./ can be written as

p.D/.uv/ D
n
X

kD0
qk.D/u �Dkv; ()

where the qk are polynomials to be determined. Next, note that, for each fixed �; we
have Dxe

�x D �e�x . Repeated use of this fact implies that

q.D/e�x D q.�/e�x

for every polynomial q. Therefore, if we apply () with u.x/ WD e�x and v.x/ WD e�x
for fixed �; � 2 R; we have

p.� C �/e.�C�/x D
n
X

kD0
qk.�/ � �ke.�C�/x;
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which implies the identity

p.� C �/ D
n
X

kD0
qk.�/ � �k 8�; � 2 R: (�)

On the other hand, by Taylor’s Formula (cf. Remark 6.6.14), we have

p.� C �/ D
n
X

kD0

1

kŠ
p.k/.�/ � �k 8�; � 2 R: (�)

Comparing the identities (�) and (�), we conclude that qk D p.k/=kŠ and the proof
is complete. ut
Exercise 6.6.28. Show that the Leibniz Rule is an immediate consequence of the
above generalized version.

6.7 Convex Functions

The reader is certainly familiar with the notion of convexity introduced in calculus,
where it is usually referred to as concavity, and where one also encounters the
terms concave up and concave down. The definitions given in calculus textbooks are
often geometric and assume the differentiability of the function. The goal is then to
explain the connection to the sign of the second derivative and to the extrema (via
the second derivative test). The definition of convexity given below is more general
and we shall see that convexity on an interval implies differentiability at all but a
countable set of points in that interval.

Definition 6.7.1 (Convex Function, Concave Function). Let f W I ! R. We
say that f is convex on I if for every s; t 2 I and every � 2 Œ0; 1�; we have

f .�s C .1 � �/t/ � �f .s/C .1 � �/f .t/: (�)

We say that f is concave on I if �f is convex on I . Since f.�sC.1��/t; �f .s/C
.1 � �/f .t// W � 2 Œ0; 1�g is simply the chord joining the points .s; f .s// and
.t; f .t// on the graph of f; the inequality (�) means, geometrically, that this chord
is above the graph for every s; t 2 I .

Proposition 6.7.2 (Jensen’s Inequality). If f W I ! R is convex on I; then it
satisfies Jensen’s inequality:

f
�

n
X

kD1
�kxk

�

�
n
X

kD1
�kf .xk/;

for any x1; : : : ; xn 2 I and any �1; : : : ; �n 2 Œ0; 1�; with
Pn

kD1 �k D 1.
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Proof. We use (�) and induction, assuming the inequality for any xi 2 I and �i 2
Œ0; 1�; with

Pm
iD1 �i D 1 and m < n. We then have, for � < 1,

f
�

n
X

kD1
�kxk

�

D f
�

.1 � �n/
n�1
X

jD1

�j

1 � �n xj C �nxn
�

� .1 � �n/f
�

n�1
X

jD1

�j

1 � �n xj
�

C �nf .xn/

�
n
X

kD1
�kf .xk/:

ut
Proposition 6.7.3 (Three Chords Lemma). Let f W I ! R. Then, f is convex
on I if and only if, for any points a; b; c 2 I with a < b < c; we have

f .b/ � f .a/
b � a � f .c/ � f .a/

c � a � f .c/ � f .b/
c � b ; (�)

which is equivalent to saying that for any fixed x0 2 I the function

�.x/ WD f .x/ � f .x0/
x � x0 8x 2 I n fx0g

[i.e., the slope of the chord joining
�

x0; f .x0/
�

and
�

x; f .x/
�

] is increasing.

Proof. Note that, with

�1 D c � b
c � a and �2 D b � a

c � a ;

we have b D �1aC �2c. Applying Jensen’s inequality, we have

f .b/ � c � b
c � af .a/C

b � a
c � af .c/: ()

Now we subtract f .a/ from both sides of () to get the first inequality in (�), and
subtract f .c/ from both sides of () to get the second one. For the converse, we
must show that (�) implies (�) of the above definition. But a simple computation
transforms the first inequality in (�) into (), which is precisely (�) with a D s;

c D t; and b D �aC .1 � �/c. The last statement is an immediate consequence. ut
Exercise 6.7.4.

1. Show that an affine function f .x/ D ax C b; a; b 2 R is convex on R. In fact,
f 2 RR is affine if and only it is both convex and concave.

2. Show that the quadratic function f .x/ D x2 is convex on R.
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Remark 6.7.5. It should be noted that a convex function need not be differentiable.
For example, the function f .x/ WD jxj 8x 2 R is obviously convex (why?) but is not
differentiable at x D 0. In fact, a convex function on a closed interval need not even
be continuous. Indeed the function f W Œ0; 1�! R defined by f .x/ WD 0 8x 2 .0; 1�
and f .0/ WD 1 is convex on Œ0; 1� but discontinuous at 0. It turns out, however, that a
convex function on an open interval is automatically continuous there. In fact, such
a function has finite left and right derivatives at every point of the interval and is
differentiable except at a countable number of points:

Lemma 6.7.6. Let f W .a; b/ ! R be a convex function. Then the left and right
derivatives f 0�.x/ and f 0C.x/ are finite at every x 2 .a; b/—hence f is continuous
on .a; b/—and f 0�.x/ � f 0C.x/. Moreover, the inequalities

f 0�.s/ � f 0C.s/ �
f .t/ � f .s/

t � s � f 0�.t/ � f 0C.t/: ()

are satisfied for any s < t in .a; b/. In particular, f 0� and f 0C are both increasing on
.a; b/ and the set of x 2 .a; b/ at which f is not differentiable is countable.

Proof. Let x0 2 .a; b/ be arbitrary and let � be the (slope) function defined in
Proposition 6.7.3. If A WD f�.x/ W x 2 .a; x0/g and B WD f�.x/ W x 2 .x0; b/g; then
˛ � ˇ for all ˛ 2 A and ˇ 2 B because � is increasing on the intervals .a; x0/ and
.x0; b/. It follows (why?) that

f 0�.x0/ D �.x0 � 0/ D sup.A/ � inf.B/ D �.x0 C 0/ D f 0C.x0/:

Thus f has finite one-sided derivatives at x0 with f 0�.x0/ � f 0C.x0/. Since
x0 was arbitrary, the same is then true for every x 2 .a; b/. In particular (by
Corollary 6.1.13), f is both right and left continuous at each x 2 .a; b/ and hence
is continuous there. Next, let s < t in .a; b/ and let x 2 .s; t/. Then, by what we
just proved, we have

f 0�.s/ � f 0C.s/ �
f .x/ � f .s/

x � s � f .x/ � f .t/
x � t � f 0�.t/ � f 0C.t/;

from which () follows. Moreover, () implies that if f is not differentiable at
s and t; then the open intervals

�

f 0�.s/; f 0C.s/
�

and
�

f 0�.t/; f 0C.t/
�

are disjoint and
hence we cannot have more than a countable number of them. (Why?) ut
Corollary 6.7.7. Let I be an open interval and let f W I ! R be convex on I .
Given any x0 2 I and any number m with f 0�.x0/ � m � f 0C.x0/; we have f .x/ �
f .x0/Cm.x � x0/ 8x 2 I .

Proof. Since f is convex, the slope �.x/ WD .f .x/�f .x0//=.x�x0/ is increasing.
Now, if x > x0; then the definition of the right derivative implies that we have
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f .x/�f .x0/ � .x�x0/f 0C.x0/ � m.x�x0/. If x < x0; a similar argument shows
that f .x0/� f .x/ � .x0 � x/f 0�.x0/ � m.x0 � x/; which is the desired inequality
if we multiply the two sides by �1. ut

We can now characterize convex functions on open intervals completely:

Theorem 6.7.8. Let I � R be an open interval and f W I ! R. Then, f is convex
on I if and only if there is a countable subsetD � I such that f is continuous on I;
has a finite right derivative f 0C.x/ at every x 2 I nD; and f 0C is increasing on I nD.

Proof. If f is convex, then (by Lemma 6.7.6) the conditions of the theorem
are all satisfied. To prove the converse, we show that the slope function � in
Proposition 6.7.3 is increasing. So let a; b; c be points of I with a < b < c

and define

m WD supff 0C.x/ W x 2 .a; b/ nDg and M WD infff 0C.x/ W x 2 .b; c/ nDg:

It then follows from Proposition 6.4.24 that

f .b/ � f .a/ � m.b � a/ and M.c � b/ � f .c/ � f .b/:

Since m �M (why?), we get

f .b/ � f .a/
b � a � f .c/ � f .b/

c � b ;

and the proof is complete. ut
Corollary 6.7.9. Let I be an open interval and f W I ! R.

1. Suppose f is differentiable on I . Then f is convex on I if and only if f 0 is
increasing on I .

2. Suppose f is 2-times differentiable on I . Then f is convex on I if and only if
f 00.x/ � 0 8x 2 I .

Proof. This is an immediate consequence of Theorem 6.7.8 and Corollary 6.4.14. ut
Exercise 6.7.10. Prove Corollary 6.7.9 directly by using the Mean Value Theorem
to show that the (slope) function � in Proposition 6.7.3 is increasing.

Remark 6.7.11.

1. Note that, as was pointed out in Remark 6.4.15(a), the increasing in the above
corollary cannot be replaced by strictly increasing.

2. (Support Line) Corollary 6.7.7 can be interpreted, geometrically, as follows:
Given a convex function f on an open interval I; through each point P0 WD
.x0; f .x0// of the graph of f; we can draw a straight line lying entirely below the
graph of f . Such a line is called a support line of f .
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Exercise 6.7.12. Let I be an open interval, x0 2 I; and let f W I ! R be convex
on I . Show that, if f 0.x0/ exists, then there is a unique support line through P0 D
.x0; f .x0//, namely, the line tangent to the graph of f at P0 whose equation is
obviously y D f .x0/C f 0.x0/.x � x0/.
Example 6.7.13. Let p > 1 and let q be the positive number (necessarily > 1)
such that 1=p C 1=q D 1. The following inequalities are then satisfied for any
a � 0; b � 0:

.i/ a1=pb1=q � a

p
C b

q
; .ii/

�

aC b
2

�p

� 1

2
.ap C bp/ :

First note that the inequalities are obvious if ab D 0. Now, to prove (i), note that
.� log x/

00 D .�1=x/0 D 1=x2 > 0 for all x > 0. Thus, � log is convex on .0;1/.
By Jensen’s inequality, we have

� log

�

1

p
aC 1

q
b

�

� 1

p
.� log a/C 1

q
.� log b/: ()

Since

1

p
.log a/C 1

q
.log b/ D log.a1=p/C log.b1=q/ D log.a1=pb1=q/;

the inequality (i) follows from () and the fact that exp is increasing. The inequality
(ii) is an immediate consequence of Jensen’s inequality (with �1 D �2 D 1=2)
applied to the function f .x/ WD xp 8x 2 .0;1/; which is convex in view of the
fact that f 00.x/ D p.p � 1/xp�2 > 0 8x > 0.

Exercise 6.7.14 (Hölder and Minkowski Inequalities). Given any finite
sequences .ak/nkD1 and .bk/nkD1 in R; prove the following inequalities:

(a) For any p > 1; q > 1 with 1=p C 1=q D 1; we have

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

kD1
akbk

ˇ

ˇ

ˇ

ˇ

ˇ

�
 

n
X

kD1
jakjp

!1=p  n
X

kD1
jbkjq

!1=q

: (Hölder)

Hint: Show that we may assume ak � 0; bk � 0; for all k; and
Pn

kD1 jakjp D
Pn

kD1 jbkjq D 1. Now use (i) of the above example with a D apk and b D bqk .
(b) For any p � 1; we have

 

n
X

kD1
jak C bkjp

!1=p

�
 

n
X

kD1
jakjp

!1=p

C
 

n
X

kD1
jbkjp

!1=p

: (Minkowski)
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Hint: Assume ak � 0; bk � 0 for all k. Now, for p > 1; let q WD p=.p � 1/
and apply Hölder’s inequality to the two sums on the right side of the identity

n
X

kD1
.ak C bk/p D

n
X

kD1
ak.ak C bk/p�1 C

n
X

kD1
bk.ak C bk/p�1:

(c) Extend both inequalities in (a) and (b) to the case of infinite sequences .an/1nD1
and .bn/1nD1. Hint: Look at partial sums.

Here is a more general definition of convexity that does not imply continuity:

Exercise 6.7.15. Suppose that f W I ! R satisfies the condition

f

�

s C t
2

�

� 1

2
f .s/C 1

2
f .t/ 8s; t 2 I: (�)

(a) Show that f .�s C .1 � �/t/ � �f .s/C .1 � �/f .t/ holds for all s; t 2 I and
all � 2 Œ0; 1� of the form � D m=2n; with integersm � 0 and n � 1. Hint: Use
induction and the identity

m

2n
s C

�

1 � m
2n

�

t D 1

2

h m

2n�1 s C
�

1 � m

2n�1
�

t C t
i

:

(b) Show that if f satisfies .�/ and is continuous, then f is convex. Hint: Show that
fm=2n W m=2n � 1; m 2 N0; n 2 Ng is dense in Œ0; 1� and use part (a).

6.8 Problems

1. Let f .x/ WD jxj3. Find f 0.x/ and f 00.x/. Show that f 000.0/ does not exist.

2. Give an example of a function f W R ! R such that f 000.x/ exists for all x 2 R but is
discontinuous at x D 0.

3. Show that the function

f .x/ WD
(

x if x 2 Q;

�x if x 2 Qc

is nowhere differentiable. Show, however, that .f ı f /.x/ D x for all x 2 R.

4. Suppose that f .x/ D xg.x/ where g is continuous at x D 0. Show that f is differentiable at
x D 0 and find f 0.0/.
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5. Consider the function

f .x/ D
(

x2 if x 2 Q;

0 if x 62 Q.

Show that f is differentiable at x D 0 and find f 0.0/.

6. Let ˛ 2 .0; 1/ and ı > 0 be constants and assume that f .0/ D 0 and jf .x/j � jxj˛ for
x 2 .�ı; ı/. Show that f 0.0/ does not exist.

7 (Differentiable Periodic Function). Let f W R ! R be a differentiable, periodic function
with period a, i.e., f .x C a/ D f .x/ for all x 2 R. Show that f 0 is also periodic. What is its
period?

8. Let f W R ! R be differentiable. Show directly (i.e., without using the Chain Rule) that
Œf .cx/�0 D cf 0.cx/ for all c 2 R.

9 (Euler’s Theorem). A function f 2 RR is said to be homogeneous of order n 2 R; if f .tx/ D
tnf .x/ for all t > 0. If such a function is differentiable, show that xf 0.x/ D nf .x/; for all x 2 R.

10. Given a polynomial function p.x/ D a0 C a1x C � � � C anx
n; find a polynomial q.x/ with

q0.x/ D p.x/ for all x 2 R.

11 (Diffeomorphism). Let I and J be open intervals. A map f W I ! J is called a
diffeomorphism if it is bijective and if f and f �1 are both differentiable. Show that f .x/ WD
x3 C x is a diffeomorphism of R (onto R) and find .f �1/0.2/.

12. Let arcsin x and arctan x denote the inverses of sin x (restricted to Œ�	=2; 	=2�) and tan x
(restricted to .�	=2; 	=2/), respectively. Find the derivatives .arcsin/0.x/ (for x 2 .�1; 1/) and
.arctan/0.x/ (for x 2 R).

13.

(a) Let f; g W .a; b/ ! R be differentiable. Show that, between any pair of consecutive zeros of
f; there is always a zero of f 0 C fg0. Hint: Look at the function feg .

(b) Show that, between any pair of consecutive zeros of f .x/ WD 1� ex sin x; there is at least one
zero of g.x/ WD 1C ex cos x.

14.

(a) Show that a polynomial of even degree attains its absolute minimum.
(b) Show that the polynomial

p.x/ WD 1C x C x2

2Š
C x3

3Š
C � � � C xn

nŠ

has a unique real root if n is odd and no real roots if n is even. Hint: Note that, when p0.x/ D 0;

we have p.x/ D xn=nŠ.

15. Let p.x/ D a0 C a1x C � � � C anx
n and assume that a0 C a1=2C � � � C an=.nC 1/ D 0.

Show that p.�/ D 0 for some � 2 .0; 1/. Hint: Find a polynomial q.x/ with q0 D p.

16. Show that, if a polynomial p.x/ with real coefficients has m distinct real roots, then p0.x/
has m� 1 distinct real roots.

17. Prove the inequalities

x

1C x
	 log.1C x/ 	 x .8x > �1/:
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18. Prove the following inequalities.

m.x � 1/

x1�m
< xm � 1 < m.x � 1/ .0 < m < 1; x > 1/:

19. Show that, if f W .a; b/ ! R is differentiable and f 0 is bounded on .a; b/; then f .a C 0/

and f .b � 0/ exist.

20. Show that, if f is differentiable on I and f 0 D kf; then f .x/ D Cekx for some constant C
and all x 2 I .

21. Let f W R ! R satisfy the functional equation

f .x C y/ D f .x/f .y/ .8x; y 2 R/:

(a) Show that f is differentiable (on R) if and only if f 0.0/ exists.
(b) Show that, if f is differentiable and is not identically zero, then f .x/ D ecx for a constant

c 2 R.
(c) Show that the statement in (b) is true if f is merely continuous (instead of differentiable).

22. Find the following limit.

lim
x!0

sin x � tan x

tan�1 x � sin�1 x
:

23 (“Sublinear” Function). Let us define a function f W R ! R to be sublinear if f .x/ D o.x/

as jxj ! 1. Let f 2 RR be a differentiable function. Show that if limjxj!1 f 0.x/ D 0; then f
is sublinear and we have limjxj!1Œf .x C y/� f .x/� D 0 for each y 2 R.

24. Suppose that f is continuous on Œ0;1/; differentiable on .0;1/; f .0/ D 0; and f 0 is
increasing. Show that the function g.x/ WD f .x/=x is increasing on .0;1/.

25. Let f 2 RR be differentiable.

(a) Show that, if jf 0.x/j < 1 for all x 2 R; then f has at most one fixed point.
(b) Show that the function f .x/ WD x C 1=.1C ex/ satisfies jf 0.x/j < 1 for all x 2 R; but has

no fixed point.

26. Let f W .0; 1/ ! R be differentiable and jf 0.x/j 	 1 for all x 2 .0; 1/. Show that the
sequence .f .1=n//n2N is convergent.

27. Show that, if f; g W Œ0;1/ ! R are differentiable, f .0/ D g.0/; and f 0.x/ 	 g0.x/ for all
x > 0; then f .x/ 	 g.x/ for all x � 0.

28. Let f W Œ0; 1� ! R be a differentiable function such that there is no point x 2 Œ0; 1� with
f .x/ D f 0.x/ D 0. Show that the set Z WD fx 2 Œ0; 1� W f .x/ D 0g of zeros of f is finite.

29. Let f W Œ1; 3� ! R be continuous on Œ1; 3� and differentiable on .1; 3/; and assume that
f 0.x/ D Œf .x/�2 C 4. Explain whether f .3/� f .1/ D 5 is possible.

30. Can the Dirichlet function 
Q be the derivative of any function?

31 (Symmetric Derivative). Let f 2 RR. For each x 2 R; define the symmetric derivative of
f at x by

f s.x/ WD lim
h!0C

f .x C h/� f .x � h/

2h
;
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if the limit exists. Show that, if f 0.x/ exists, then f s.x/ D f 0.x/. Let g.x/ WD 2jxj C x. Show
that gs.x/ exists for all x 2 R even though g0.0/ does not exist. Also show that g attains its
absolute minimum (i.e., minfg.x/ W x 2 Rg) at x D 0; but gs.0/ ¤ 0.

32 (Uniform Differentiability). Let f be differentiable on Œa; b�. Show that f 0 is continuous
on Œa; b� if and only if f is uniformly differentiable on Œa; b�I i.e., given any " > 0; there is a
ı D ı."/ > 0 such that for any x0 2 Œa; b�; we have

0 < jx � x0j < ı H)
ˇ

ˇ

ˇ

ˇ

f .x/� f .x0/

x � x0
� f 0.x0/

ˇ

ˇ

ˇ

ˇ

< ":

33. Let f 2 RR be differentiable with bounded derivative, i.e., jf 0.x/j 	 M for all x 2 R and
some M > 0. Show that the function g.x/ WD x C "f .x/ is injective for small enough " > 0.

34. Suppose that f W Œa;1/ ! R satisfies limx!1Œf 0.x/ C f̨ .x/� D 0 for some ˛ > 0.
Show that limx!1 f .x/ D 0. Hint: Apply Cauchy’s MVT to f .x/e˛x .

35. Show that if f W R ! Œ0;1/ is twice differentiable and f 00 	 0 on R; then f is constant.

36. Let f W .0; 1/ ! R be a differentiable function such that limx!0C f .x/ and
limx!0C xf 0.x/ both exist. Show that limx!0C xf 0.x/ D 0

37 (Subexponential Function). Let us define a function f W R ! R to be subexponential if

f .x/ D o.e"jxj/ 8 " > 0; as jxj ! 1:

(a) Show that, if f W R ! R satisfies jf .x/j > 0 and f 0.x/ D o.f .x// (as x ! 1), then f is
subexponential. Hint: Show that (assuming f > 0) f .x/e�"x is decreasing (hence bounded)
for all large x > 0 and use l’Hôpital’s Rule.

(b) Let hxi WD p
1C x2. Show that exp.hxi˛/ is subexponential for ˛ < 1.

(c) Give an example of a (nontrivial) bounded function f 2 C1.R/ that satisfies f 0.x/ D
o.f .x//; as jxj ! 1.

38 (Schwarzian Derivative). Let f W I ! R and assume that f 000.x/ exists and f 0.x/ ¤ 0 for
all x 2 I . Define the Schwarzian derivative of f at x by

Df .x/ WD f 000.x/
f 0.x/

� 3

2

	

f 00.x/
f 0.x/


2

D
hf 00.x/
f 0.x/

i0 � 1

2

	

f 00.x/
f 0.x/


2

:

(a) Show that D.f ı g/ D .Df ı g/ � .g0/2 C Dg.
(b) Show that, if f .x/ D .ax C b/=.cx C d/; then Df D 0.
(c) Show that Dg D Dh if and only if h D .ag C b/=.cg C d/; where ad � bc ¤ 0.
(d) Show that, if fg D 1; then Df D Dg.
(e) Deduce the “if” part of (c) from (d). Hint: Note that, if c ¤ 0; then .ag C b/=.cg C d/ D

a=c C .bc � ad/=Œc.cg C d/�.

39. Let f be continuous on Œa; b� and differentiable on .a; b/ except possibly at a point x0 2
.a; b/. Show that, if limx!x0 f

0.x/ D ` 2 R; then f is differentiable at x0 and f 0.x0/ D ` so
that f 0 is actually continuous at x0. Hint: Apply the MVT on Œx0; x0 C h� (resp., Œx0 C h; x0�) for
small h > 0 (resp., h < 0) or use l’Hôpital’s Rule.
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40. Consider the function

f .x/ WD
(

e�1=x2 if x ¤ 0;

0 if x D 0.

Show that f 2 C1.R/ and f .n/.0/ D 0 for all n 2 N.

41 (Legendre’s Polynomials). Define the polynomials

Pn.x/ WD 1

2n.nŠ/

dn

dxn
.x2 � 1/n .8n 2 N/:

(a) Show that Pn.x/ has degree n and has n distinct (hence simple) real roots all of which are in
Œ�1; 1�. Hint: Let u WD .x2 � 1/n. Note that u.k/ is even (resp., odd) for k even (resp., odd).
Also, for k 	 n� 1; we have u.k/.˙1/ D 0 if k is even, and u.k/.˙1/ D u.k/.0/ D 0 if k is
odd. Now use Rolle’s Theorem repeatedly.

(b) Let u WD .x2 � 1/n as above. Show that

.x2 � 1/
du

dx
D 2nxu

and, taking the .nC1/th derivatives of both sides, that y WD Pn D u.n/=2n.nŠ/ satisfies Legendre’s
differential equation:

.x2 � 1/
d2y

dx2
C 2x

dy

dx
� n.nC 1/y D 0 .8x 2 R/:

42. Show that if f 2 RR is .nC 1/-times differentiable and f .nC1/.x/ D 0 for all x 2 R; then
f .x/ is a polynomial of degree 	 n.

43. Let .xn/ 2 Œa; b�N; xn ¤ xm; for n ¤ m; and lim.xn/ D � . Also, let f W Œa; b� ! R be such
that f .xn/ D 0 for all n 2 N.

(a) Show that, if f is twice differentiable, then f .�/ D f 0.�/ D f 00.�/ D 0.
(b) Show that, if f 2 C1.Œa; b�/; then f .k/.�/ D 0 for all k 2 N [ f0g.

44. Let f W I ! R and assume that f .n/.x/ D 0 for all x 2 I and f .k/.x0/ D 0 for 1 	 k 	
n� 1 (recall that f .0/ WD f ) and some x0 2 I . Show that f is constant on I .

45 (The Newton–Raphson Process). Let f 2 RR be a strictly increasing, convex function that
is differentiable and f .�/ D 0. Given a fixed x1 > �; define xnC1 WD xn � f .xn/=f

0.xn/ for all
n 2 N. Show that lim.xn/ D �. Hint: Use Corollary 6.7.7 and Exercise 6.7.12.

46. Let f 2 Cn.I / and x0 2 I . Suppose that, for some polynomial p.x/ of degree n; we have
jf .x/� p.x/j 	 cjx � x0jnC1; for all x 2 I and some constant c. Show that p.x/ D Pn;x0 .x/I
i.e., p is the nth Taylor polynomial of f at x0.

47. Let ˛ 2 R and consider the function f .x/ WD .1 C x/˛ on I WD .�1;1/. Find the nth
Taylor polynomial of f at x0 2 I .

48 (Landau’s Inequality). Let f W .0;1/ ! R be twice differentiable and define Mj WD
supff .j /.x/ W x > 0g; for j D 0; 1; 2. Show that M2

1 	 4M0M2. Hint: Note that, by Taylor’s
Formula, f 0.x/ D Œf .xC2h/�f .x/�=.2h/�hf 00.�/; for some � between x and xC2h. Deduce
that jf 0.x/j 	 hM2 CM0=h for all h > 0 and minimize the right side.
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49. Let f be twice differentiable on .0;1/ and assume that f 00.x/ D O.1/ and f .x/ D o.1/ as
x ! 1. Show that f 0.x/ D o.1/ as x ! 1. Show that the statement need not be true if f 00 is
not bounded on .0;1/.

50 (Difference Operators). Given any f W R ! R and any h 2 R; define the difference
operators: �hf .x/ WD f .x C h/� f .x/; and �nC1

h f .x/ WD �h.�
n
hf .x// for all n 2 N.

(a) Using the binomial coefficients, find an explicit formula for �n
hf .x/.

(b) Show that, if f 2 Cn.R/; then

�n
hf .x/ D hnf .n/.x C n�h/;

for some � 2 Œ0; 1�. Use this to give a definition of f .n/.x/ that is independent of the preceding
derivatives f 0; f 00; : : : ; f .n�1/.

(c) Let f 2 C.R/. Show that f is a polynomial of degree 	 n if and only if �nC1
h f .x/ D 0 for

all x; h 2 R.

51 (Littlewood). Let f W RC ! R be .nC 1/-times differentiable, limx!1 f .x/ D L 2 R;

and f .nC1/ D O.1/; as x ! 1. Show that f .n/.x/ D o.1/ as x ! 1. Hint: Use Problem 50.

52 (Local Extrema). Let f W I ! R and let x0 2 I be an interior point. Suppose that
f 2 Cn.J / for some open interval J with x0 2 J � I; and f 0.x0/ D f 00.x0/ D � � � D
f .n�1/.x0/ D 0; but f .n/.x0/ ¤ 0.

(a) If n is even and f .n/.x0/ > 0; then f has a local minimum at x0.
(b) If n is even and f .n/.x0/ < 0; then f has a local maximum at x0.
(c) If n is odd, then f has neither a local maximum nor a local minimum at x0. Hint: Use Taylor’s

Formula.

53 (The Maximum Principle). Let f W Œa; b� ! R be continuous on Œa; b� and twice
differentiable on .a; b/. Show that, if for some constant ˛ > 0 we have f 00.x/ D f̨ .x/ for
all x 2 .a; b/; then

jf .x/j 	 maxfjf .a/j; jf .b/jg 8 x 2 Œa; b�:

54 (Convex ) Locally Lipschitz). Show that any convex function f W .a; b/ ! R is locally
Lipschitz.

55.

(a) Let ; ¤ I � R be an interval and f and g be convex functions on I . Show that if g is
increasing, then g ı f is convex.

(b) Show that if f W I ! .0;1/ is a positive function on an interval I ¤ ; and if log.f / is
convex, the so is f . Show by an example that the converse is false.

56. Prove the following inequality.

.sin x/sin x < .cos x/cos x 8 x 2 .0; 	=4/:

57. Show that, if f 2 RR is differentiable, convex, and bounded, then it must be constant. Hint:
Use Corollary 6.7.7.

58. Show that, if f W I ! R is continuous and satisfies f ..x C y/=2/ 	 Œf .x/C f .y/�=2 for
all x; y 2 I; then for every x1; : : : ; xn 2 I; we have

f

�

x1 C x2 C � � � C xn

n

�

	 1

n
Œf .x1/C f .x2/C � � � C f .xn/�: (�)
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Deduce the Arithmetic–Geometric Means Inequality:

n
p
x1x2 � � � xn 	 x1 C � � � C xn

n
.8x1 � 0; : : : ; xn � 0/:

59. (Corollaries of Jensen’s Inequality). For k D 1; 2; : : : ; n, let xk > 0; 0yk > 0 and
�k > 0 with

Pn
kD1 �k D 1. Define the following means:

M�1 D M�1.x1; x2; : : : ; xn/ WD minfx1; x2; : : : ; xng;
M1 D M1.x1; x2; : : : ; xn/ WD maxfx1; x2; : : : ; xng;
M0 D M0.x1; x2; : : : ; xn/ WD x

�1
1 x

�2
2 � � � x�nn ;

Mt D Mt.x1; x2; : : : ; xn/ WD .�1x
t
1 C �2x

t
2 C � � � C �nx

t
n/
1=t ;

where t ¤ 0. Using Jensen’s inequality (Proposition 6.7.2), prove the following inequalities.
(Power Mean Inequality). If s 	 t , then we have

M�1 	 Ms 	 Mt 	 M1:

(Weighted Arithmetic–Geometric Means Inequality). We have M0 	 M1, i.e.,

x
�1
1 x

�2
2 � � � x�nn 	 �1x1 C �2x2 C � � � C �nxn:

In particular, with �k D 1=n for k D 1; : : : ; n; we obtain the Arithmetic–Geometric Means
Inequality:

1

n

n
X

kD1

xk � .x1x2 � � � xn/1=n:

(Weighted Arithmetic–Harmonic Means Inequality). We have M�1 	 M1, i.e.,

n
X

kD1

�kxk � 1
Pn

kD1 �k=xk
:

In particular, with �k D 1=n for k D 1; : : : ; n; we obtain the Arithmetic–Harmonic Means
Inequality:

1

n

n
X

kD1

xk � 1
1
n

Pn
kD1 1=xk

:

(Hölder’s Inequality). For any p > 1 and q > 1 with 1=p C 1=q D 1, we have

n
X

kD1

xkyk 	
�

n
X

kD1

x
p

k

�1=p�
n
X

kD1

x
q

k

�1=q

:

(Minkowski’s Inequality). For any p � 1; we have

�

n
X

kD1

.xk C yk/
p
�1=p 	

�

n
X

kD1

x
p

k

�1=p C
�

n
X

kD1

y
p

k

�1=p

:

60. Find two smooth, convex functions f; g W R ! R such that f .x/ D g.x/ if and only if
x 2 Z.



Chapter 7
The Riemann Integral

As was pointed out in the previous chapter, the second fundamental topic covered in
calculus is the Riemann integral, the first being the derivative. For a (nonnegative)
real-valued function of a real variable, this integral extends the notion of area,
defined initially for rectangles: For a nonnegative constant function f .x/ WD
c 8x 2 Œa; b�; the area of the rectangle bounded by the graph of f; the x-axis,
and the vertical lines x D a and x D b is defined to be the nonnegative number
A WD .b � a/c: This is then trivially extended to the case of step functions which
are piecewise constant: Simply add the areas of the finite number of rectangles
involved. This suggests the following analytic approach to the general case: Try
to approximate the given function by step functions, find the areas corresponding to
the latter functions as above, and pass to the limit. Our objective in this chapter is to
provide a mathematically rigorous foundation for this intuitive approach. We begin
with some basic definitions.

7.1 Tagged Partitions and Riemann Sums

In this section we shall state all the basic definitions and notation needed for the rest
of the chapter. Throughout the section, Œa; b� with �1 < a < b <1 will be a fixed
interval.

Definition 7.1.1 (Partition, Tagged Partition, Refinement). By a partition of an
interval Œa; b� we mean a finite sequence P WD .xk/nkD0 of points such that

a D x0 < x1 < x2 < � � � < xn�1 < xn D b:

Given a partition P WD .xk/
n
kD0 of Œa; b� and a finite sequence � WD .tj /

n
jD1 such

that tj 2 Œxj�1; xj �; j D 1; 2; : : : ; n; the pair PP WD .P; �/ is said to be a tagged
partition of Œa; b�: The number tj is the tag of the j th subinterval Ij WD Œxj�1; xj �:

© Springer Science+Business Media New York 2014
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It is obvious that P $ fx1; x2; : : : ; xn�1g is a one-to-one correspondence between
the set P D P.Œa; b�/ of all partitions of Œa; b� and the set F D F.Œa; b�/ of all
finite subsets fx1; x2; : : : ; xn�1g of .a; b/: Using this bijection, we can (partially)
order the partitions of Œa; b� as follows: Given two partitions P WD .xk/

n
kD0 and

P 0 WD .x0
i /
m
iD0 of Œa; b�; we write P � P 0 if and only if fx1; x2; : : : ; xn�1g �

fx0
1; x

0
2; : : : ; x

0
m�1g: In this case, P 0 is said to be a refinement of P :

Notation 7.1.2. The set of all tagged partitions of the interval Œa; b�will be denoted
by PP D PP.Œa; b�/:Also, given any partition P D .xk/nkD0 2 P.Œa; b�/; the set of all
possible sequences of tags associated with P is denoted by T .P/ WD f� D .tj /njD1 W
tj 2 Œxj�1; xj �; 1 � j � ng:
Remark 7.1.3. In view of the bijection P $ F ; we shall denote by P [ P 0 the
partition corresponding to the finite subset

fx1; x2; : : : ; xn�1g [ fx0
1; x

0
2; : : : ; x

0
m�1g � Œa; b�:

Note that, according to the above definition, P [ P 0 is a common refinement of the
partitions P and P 0:

Definition 7.1.4 (Riemann Sum, Darboux Sum). Let f W Œa; b�! R: Given any
tagged partition PP D .P; �/ of Œa; b�; with P D .xk/

n
kD0 and � D .tj /

n
jD1; we

define the Riemann sum of f corresponding to this tagged partition to be

S.f; PP/ WD
n
X

jD1
f .tj /�xj .�xj WD xj � xj�1; 1 � j � n/: ()

If f is bounded, then the lower and upper Darboux sums of f corresponding to the
partition P are defined to be the sums

L.f;P/ WD
n
X

jD1
mj�xj and U.f;P/ WD

n
X

jD1
Mj�xj ;

where the �xj are as in () and where we have defined mj WD infff .x/ W xj�1 �
x � xj g; Mj WD supff .x/ W xj�1 � x � xj g: If we also define m WD infff .x/ W
a � x � bg and M WD supff .x/ W a � x � bg; then it is obvious that m � mj �
f .tj / � Mj � M; 1 � j � n: Therefore, when f is bounded, then 8 PP 2 PP ; we
have the inequalities

m.b � a/ � L.f;P/ � S.f; PP/ � U.f;P/ �M.b � a/: ()

The following lemma describes the effect of refinements on the lower and upper
Darboux sums and provides an extension of the inequality L.f;P/ � U.f;P/
contained in () above.
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Lemma 7.1.5. Let f W Œa; b�! R be bounded and let P; P 0 2 P be two partitions
of Œa; b�: If P 0 is a refinement of P; then we have

L.f;P/ � L.f;P 0/ � U.f;P 0/ � U.f;P/:

Proof. Let P D .xk/nkD0; and assume first that P 0 D .x0
i /
nC1
iD0 is obtained from P by

adjoining a single point, say � 2 .a; b/: Thus, fx0
1; : : : ; x

0
ng D fx1; : : : ; xn�1g [ f�g;

and we may assume that � 2 .xj�1; xj /: Let �0 WD infff .x/ W xj�1 � x � �g and
�00 WD infff .x/ W � � x � xj g: Then, with mj WD infff .x/ W xj�1 � x � xj g; we
have mj � minf�0; �00g and hence

L.f;P 0/ � L.f;P/ D �0.� � xj�1/C �00.xj � �/ �mj .xj � xj�1/

D .�0 �mj /.� � xj�1/C .�00 �mj /.xj � �/ � 0:

The proof of U.f;P 0/ � U.f;P/ � 0 is similar. Finally, if P 0 is obtained from P
by adjoining p points, the above argument is repeated p times. ut
Corollary 7.1.6. Let f W Œa; b�! R be bounded. Given any partitions P; P 0 2 P ;
we have

L.f;P/ � U.f;P 0/:

Proof. Let P 00 be a common refinement of P and P 0I for example, we can pick
P 00 WD P [ P 0: Then, () and Lemma 7.1.5 imply that

L.f;P/ � L.f;P 00/ � U.f;P 00/ � U.f;P 0/: ut

Definition 7.1.7 (Lower and Upper (Darboux) Integrals). Given a bounded
function f W Œa; b� ! R; the lower and upper Darboux integrals of f; denoted
by
R

f and
R

f; respectively, are defined to be the real numbers

Z

f WD supfL.f;P/ W P 2 Pg;
Z

f WD inffU.f;P/ W P 2 Pg:

Example 7.1.8. Define f W Œa; b� ! R by f .x/ D 1 if x 2 Q and f .x/ D �1 if
x 2 Qc: Then, for any P 2 P ; we have mj D �1 and Mj D 1 for all j: (Why?)
Therefore, L.f;P/ D �.b � a/ and U.f;P/ D b � a and hence

R

f D �.b � a/
and

R

f D b � a:
Exercise 7.1.9. Let f W Œa; b�! R be bounded and let P0 2 P : Show that

Z

f WD supfL.f;P/ W P 2 P ;P0 � Pg;
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Z

f WD inffU.f;P/ W P 2 P ;P0 � Pg:

Hint: Use Lemma 7.1.5 which shows that, as we refine P; the lower sum L.f;P/
increases while the upper sum U.f;P/ decreases.

Corollary 7.1.10. Given any bounded function f W Œa; b�! R; we have

Z

f �
Z

f:

Proof. By Corollary 7.1.6, for any partitions P; P 0 2 P ; we have

L.f;P/ � U.f;P 0/:

Keeping P 0 fixed and taking the “sup” over all partitions P 2 P ; this inequality
implies

Z

f � U.f;P 0/;

from which the corollary follows if we take the “inf” over all P 0 2 P : ut
We now define the Riemann integral of a function f over the interval Œa; b� as

the “limit” of the above Riemann sums in the following way:

Definition 7.1.11 ((Riemann) Integrable, Integral). Let f W Œa; b� ! R: We
say that f is integrable (or Riemann integrable) on Œa; b� if there exists a number
I.f / 2 R such that

.8" > 0/.9P" 2 P/.8 PP 2 PP/.P" � P ) jS.f; PP/ � I.f /j < "/: (�)

The number I.f / is then called the integral (or Riemann integral) of f over
Œa; b� and will be denoted by

R b

a
f .x/ dx; or simply

R b

a
f: The set of all Riemann

integrable functions on Œa; b� is denoted by R.Œa; b�/:
Definition 7.1.12 (Area Under the Graph). If f is a nonnegative and integrable
function on Œa; b�; then its (Riemann) integral

R b

a
f is called the area under the

graph of f from x D a to x D b:
Exercise 7.1.13 (Integral of a Constant Function). Show that, if f .x/ WD c 8x 2
Œa; b�; then f 2 R.Œa; b�/ and

R b

a
f D c.b � a/: Note that, if c > 0; then the area

under the graph is precisely the area of the rectangle with sides b � a and c: Hint:
What are the numbers L.f;P/; U.P/;

R

f; and
R

f ?

Exercise 7.1.14 (Uniqueness of the Integral). Show that, if the Riemann integral
of f exists, then it is unique.
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Exercise 7.1.15. Show that, if f 2R.Œa; b�/ is bounded, then we have

Z

f �
Z b

a

f �
Z

f:

Remark 7.1.16.

1. The condition P" � P in (�) imposes no restriction on the sequence � of tags in
the corresponding tagged partition PP WD .P; �/:

2. Since the integral I.f / depends only on f and Œa; b�; the simplified notation
R b

a
f is more natural than

R b

a
f .x/ dx: Indeed the variable x in the latter notation

is a dummy variable, in the sense that it can be given any other name whatsoever:

Z b

a

f .x/ dx D
Z b

a

f .s/ ds D
Z b

a

f .t/ dt D
Z b

a

f .u/ du:

In practice, however, the presence of a dummy variable has its advantages. For
instance, to write the integral

R b

a
sin.tx/ dx without the variable x; we must first

define the function ft W x 7! sin.tx/ and then write
R b

a
ft :

3. The “limit” used in the above definition is of a sort we have not seen so far.
Indeed, we are not dealing here with a sequence, and we have only seen the
limits of functions whose domains are subsets of metric spaces where the notion
of distance is available. To define this new limit, one needs the concept of net
which is defined in most advanced courses on topology and will not be introduced
here. The interested reader may, e.g., consult the book by Kelley (cf. [Kel55]).

Definition 7.1.17 (Absolutely Integrable). A function f W Œa; b� ! R is said to
be absolutely integrable on Œa; b� if jf j 2R.Œa; b�/:

We shall see later that integrable implies absolutely integrable. The converse is
easily seen to be false:

Exercise 7.1.18 (Absolutely Integrable 6) Integrable). Give an example of an
absolutely integrable function that is not integrable.

The following proposition shows that integrability implies boundedness.

Proposition 7.1.19 (Integrable ) Bounded). If f W Œa; b� ! R is (Riemann)
integrable over Œa; b�; then it is bounded on Œa; b�:

Proof. Suppose that f 2 R.Œa; b�/ and pick a (fixed) partition P D .xj /njD0 2 P
such that jS.f; PP/ � R b

a
f j < 1 for any sequence � D .ti /

n
iD1 of tags (with ti 2

Œxi�1; xi �). If f is unbounded above on Œa; b�; then it must be unbounded above on
at least one subinterval, say Ik WD Œxk�1; xk�; of the partition P : This means that
Mk WD supff .x/ W xk�1 � x � xkg D C1: But then, we can pick the kth tag
tk so that f .tk/ is as large as we please. Keeping the remaining tags fixed, we can
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therefore make jS.f; PP/j arbitrarily large, contradicting the inequality jS.f; PP/j <
j R b
a
f j C 1: Therefore, f must be bounded above on Œa; b�: A similar argument

shows that f must also be bounded below on Œa; b�: ut
It should be noted, however, that boundedness does not, in general, imply

integrability:

Example 7.1.20. Consider the Dirichlet function

f .x/ WD
(

1 if x 2 Q;

0 if x 62 Q;

which is discontinuous at every point of Œ0; 1� (cf. Exercise 4.3.12). It is obvious
that f is bounded on Œ0; 1�: On the other hand, since Œ0; 1� \ Q and Œ0; 1� \ Qc are
both dense in Œ0; 1�; for any partition P of Œ0; 1�; we can pick two sequences of tags,
� D .ti / and � 0 D .t 0i /; such that the ti are all rational while the t 0i are all irrational.
If PP WD .P; �/ and PP 0 WD .P; � 0/; then S.f; PP/ D 1 and S.f; PP 0/ D 0: Therefore,
f is not integrable on Œ0; 1�:

Theorem 7.1.21 (Riemann–Darboux). For a bounded function f W Œa; b� ! R;

the following are equivalent:

(i) f 2R.Œa; b�/:
(ii) Given any " > 0 there exists a partition P" 2 P such that

U.f;P"/ � L.f;P"/ < ": (�)

(iii)

Z

f D
Z

f 2 R:

The common value in (iii) is, of course, the Riemann integral of f:

Proof. To prove (i)) (ii), suppose that f 2R.Œa; b�/ and let I.f / WD R b
a
f .x/ dx:

Given " > 0; we can pick P" D .xk/
n
kD0 2 P such that jS.f; PP"/ � I.f /j < "=2:

By Proposition 7.1.19, f is bounded on Œa; b�: In particular, mj WD infff .x/ W
xj�1 � x � xj g and Mj WD supff .x/ W xj�1 � x � xj g are all finite. Pick tags
� D .sj /

n
jD1; � D .tj /

n
jD1 2 T .P/ such that f .sj / � mj < "=2.b � a/ and

Mj � f .tj / < "=2.b � a/: Then we have the inequalities

U.f;P"/ � S.f; .P"; �// D
n
X

jD1
ŒMj � f .tj /�.xj � xj�1/ < "=2;

S.f; .P"; �// � L.f;P"/ D
n
X

jD1
Œf .sj / �mj �.xj � xj�1/ < "=2;
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which, together with jS.f; .P"; �//�I.f /j < "=2 and jS.f; .P"; �//�I.f /j < "=2;
imply �: The implication (ii)) (iii) is obvious, since " > 0 is arbitrary and we have

Z

f �
Z

f � U.f;P"/ � L.f;P"/ < ":

Finally, to prove (iii) ) (i), suppose (iii) holds and let I.f / denote the common
value in (iii). Then, given any " > 0; we can pick partitions P 0

"; P 00
" 2 P such that

I.f / � L.f;P 0
"/ < " and U.f;P 00

" / � I.f / < ":

(Why?) Using the refinement P" WD P 0
" [ P 00

" ; we then obtain the inequalities

I.f / � L.f;P"/ < " and U.f;P"/ � I.f / < ": ()

On the other hand, for any refinement P � P"; we have

L.f;P"/ � L.f;P/ � S.f; PP/ � U.f;P/ � U.f;P"/: ()

Combining () and (), we finally have

�" < L.f;P"/ � I.f / � L.f;P/ � I.f / � S.f; PP/ � I.f /
� U.f;P/ � I.f / � U.f;P"/ � I.f / < ";

i.e., jS.f; PP/ � I.f /j < " for any choice of tags in PP : Thus f 2R.Œa; b�/ and the
proof is complete. ut

We can deduce the following sequential version from the theorem.

Corollary 7.1.22. A bounded function f W Œa; b� ! R is Riemann integrable if
and only if there exists a sequence fPn W n 2 Ng of partitions of Œa; b� such that
limn!1.U.f;Pn/�L.f;Pn// D 0: In this case, we have limn!1 S.f; PPn/ D

R b

a
f;

regardless of the choices of tags in the PPn:
Remark 7.1.23.

1. The equivalence (i), (ii) in the above theorem is known as Riemann’s Lemma
and is basically Cauchy’s Criterion for integrability. The equivalence (i), (iii)
(or Theorem 7.1.26 below) is usually referred to as Darboux’s Theorem.

2. We may assume (by refining, if necessary) that the partition P" contains any
prescribed point (or any finite set of such points) in Œa; b�:

Exercise 7.1.24 (Translations & Reflections). Let f 2 R.Œa; b�/ and let c 2 R

be arbitrary. Define fc.x/ WD f .x�c/ and Lf .x/ WD f .�x/; for all x 2 Œa; b�: Show
that fc 2R.ŒaC c; b C c�/; Lf 2R.Œ�b;�a�/ and that we have
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Z b

a

f .x/ dx D
Z bCc

aCc
f .x � c/ dx; and

Z b

a

f .x/ dx D
Z �a

�b
f .�x/ dx:

Deduce that x 7! f .c � x/ is integrable on Œc � b; c � a� for all c 2 R; and

Z b

a

f .x/ dx D
Z c�a

c�b
f .c � x/ dx:

Hint: Note that .xk/nkD0 is a partition of Œa; b� if and only if .xk C c/nkD0 (resp.,
.�xk/nkD0) is a partition of ŒaC c; b C c� (resp., Œ�b;�a�).

There is another definition of the Riemann integral which is equivalent to
Definition 7.1.11. This version is the one usually used in calculus courses and is
convenient in practice for computing and approximating the integral. To introduce
it, we first need a definition.

Definition 7.1.25 (Mesh (or Norm) of a Partition). For each partition P D
.xk/

n
kD0 2 P.Œa; b�/; the number

kPkWD maxfxj � xj�1 W 1 � j � ng D maxf�xj W 1 � j � ng
is called the mesh (or norm) of the partition P :

Theorem 7.1.26. Let f W Œa; b� ! R: Then f 2 R.Œa; b�/ if and only if there
exists a number I.f / 2 R such that

.8" > 0/.9ı > 0/.8 PP 2 PP/.kPk < ı) jS.f; PP/ � I.f /j < "/: (�)

Proof. Suppose f satisfies the condition of the theorem, " > 0 is given, and
ı is as in (�) above. Pick a partition P" such that kP"k < ı: Then we have
jS.f; PP"/ � I.f /j < ": Now, given any refinement P � P"; we obviously have
kPk � kP"k < ı: (Why?) Therefore, by (�), we also have jS.f; PP/ � I.f /j < "

and hence f 2 R.Œa; b�/: To prove the converse, suppose that f 2 R.Œa; b�/ and
let " > 0 be given. Pick a partition P 0

" D .x0
j /
n
jD0 such that

(i) U.f;P 0
"/ � L.f;P 0

"/ D
n
X

jD1
.M 0

j �m0
j /�x

0
j <

"

2
;

where, as in Definition 7.1.4,m0
j andM 0

j are the “inf” and “sup” of f on Œx0
j�1; x0

j �;

respectively, and�x0
j WD x0

j �x0
j�1:Now, given any partition P D .xi /kiD0;we have

a sum similar to (i) given by
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(ii) U.f;P/ � L.f;P/ D
k
X

iD1
.Mi �mi/�xi ;

where mi , Mi; and �xi are, once again, as in Definition 7.1.4. For each subinterval
Œxi�1; xi � of P; let us call it type 1 if xi�1 < x0

j < xi ; for some point x0
j .1 �

j � n � 1/ of P 0
"; and type 2 if Œxi�1; xi � � Œx0

j�1; x0
j �; for some 1 � j � n: Note

that these are the only types possible and, since a and b belong to all partitions,
we have at most n � 1 type 1 subintervals. The sum on the right side of (ii) can
then be written as

P

1C
P

2; where
P

1 (resp.,
P

2) is the contribution of type 1
(resp., type 2) subintervals. Since f 2R.Œa; b�/; Proposition 7.1.19 implies that f
is bounded. Thus, m WD infff .x/ W a � x � bg and M WD supff .x/ W a � x � bg
are both finite. By the above remarks, we have

(iii)
X

1
� .n � 1/.M �m/kPk:

On the other hand, if Œxi�1; xi � � Œx0
j�1; x0

j �; then we obviously have .Mi �
mi/�xi � .M 0

j �m0
j /�x

0
j : Therefore, by (i),

(iv)
X

2
�

n
X

jD1
.M 0

j �m0
j /�x

0
j D U.f;P 0

"/ � L.f;P 0
"/ <

"

2
:

Combining (ii), (iii), and (iv), we have

(v) U.f;P/ � L.f;P/ D
k
X

iD1
.Mi �mi/�xi <

"

2
C .n � 1/.M �m/kPk:

Let ı WD "=Œ2n.M � m/�; where we assume M > mI the case M D m is trivial.
(Why?) If kPk < ı; then (v) implies that U.f;P/�L.f;P/ < ": Since L.f;P/ �
R b

a
f � U.f;P/ and L.f;P/ � S.f; PP/ � U.f;P/ for any sequence of tags in PP;

the proof is complete. ut
The following sequential criterion for integrability can be deduced from the

theorem and Corollary 7.1.22:

Corollary 7.1.27. A bounded function f W Œa; b� ! R is integrable if and only if
for every sequence . PPn/ of tagged partitions of Œa; b� such that limn!1 kPnk D 0;
the sequence .S.f; PPn// is convergent; or, equivalently,

lim
n!1.U.f;Pn/ � L.f;Pn// D 0:

It is then clear that we have

Z b

a

f D lim
n!1L.f;Pn/ D lim

n!1S.f; PPn/ D lim
n!1U.f;Pn/;

.
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7.2 Some Classes of Integrable Functions

Our goal in this section is to introduce the most commonly encountered classes of
integrable functions. In particular, we shall see that, for any interval Œa; b� � R;

the classes of continuous and monotone functions on Œa; b� are both subclasses of
R.Œa; b�/: In fact, the most natural class of functions to study here is the class
of regulated functions to be defined below. Although this class does contain the
monotone and continuous ones, we prefer to treat the latter separately, due to their
particular importance. Let us begin with the following.

Definition 7.2.1 (Content Zero). We say that a set S � R has content zero (or is
of content zero) if for every " > 0 there is a finite sequence of pairwise disjoint open
intervals f.ai ; bi / W 1 � i � pg such that S �Sp

iD1.ai ; bi / and
Pp

iD1.bi �ai / < ":
Remark 7.2.2. In the above definition, the requirement that the intervals be pairwise
disjoint may be dropped. Indeed, if the intervals overlap, then a pair of overlapping
open intervals may be replaced by a single interval (namely, their union). In fact,
the intervals need not even be open, as one may replace them by slightly larger
open ones.

Exercise 7.2.3. For a set S � R; show the following:

1. If S is finite, then it has content zero.
2. An infinite set may have content zero. Hint: Look at a set with a limit point.
3. If S has content zero and R � S; then R has content zero.
4. If fSj W 1 � j � kg is a finite collection of sets of content zero, then S WD
Sk
jD1 Sj has content zero. Give an example of an (even countably) infinite union

of sets of content zero which is not of content zero.
5. If S has content zero, then it has empty interior, i.e., Sı D ;:
6. For any �1 � ˛ < ˇ � C1; the set Œ˛; ˇ� \Q is not of content zero.

Theorem 7.2.4 (Zero-Content Discontinuity ) Integrable). Let f be a
bounded function on Œa; b� and letD WD fx 2 Œa; b� W f is discontinuous at xg: IfD
has content zero, then f 2R.Œa; b�/.
Proof. Put K WD b � a C M � m; with m WD infff .x/ W x 2 Œa; b�g and
M WD supff .x/ W x 2 Œa; b�g: Let " > 0 be given and suppose that D �
Sp
iD1.ai ; bi /; where the .ai ; bi / are pairwise disjoint and

Pp
iD1.bi � ai / < "=K:

The set C WD Œa; b� nSp
iD1.ai ; bi / is a closed and hence compact subset of Œa; b�: In

fact, C is a finite union of closed intervals. (Why?) Since f is continuous on C; by
Theorem 4.6.4, it is therefore uniformly continuous on C: In particular, we can find
ı > 0 such that jf .x/ � f .x0/j < "=K if x and x0 belong to a closed subinterval
of C and jx � x0j < ı: Using suitable partition points in each of the closed
subintervals of C; we can construct a partition P D .xk/

n
kD0 of Œa; b� such that for

each 1 � j � n; either Œxj�1; xj � � C and xj � xj�1 < ı; or Œxj�1; xj � � Œai ; bi �
for some i; 1 � i � p: Let G1 (resp., G2) denote the set of all j for which the
first (resp., second) alternative holds. Now, with mj WD infff .x/ W x 2 Œxj�1; xj �g
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and Mj WD supff .x/ W x 2 Œxj�1; xj �g; we have Mj � mj < "=K 8j 2 G1 and
P

j2G2.xj�xj�1/ �Pp
iD1.bi�ai / < "=K: Thus, with�xj WD xj�xj�1;we have

U.f;P/ � L.f;P/ D
X

j2G1
.Mj �mj /�xj C

X

j2G2
.Mj �mj /�xj

�
X

j2G1

"

K
�xj C

X

j2G2
.M �m/�xj

< .b � a/ "
K
C .M �m/ "

K
D ":

The theorem now follows from Riemann’s Lemma (cf. Theorem 7.1.21). ut
Before stating the immediate consequences of this theorem, let us recall a few

definitions.

Definition 7.2.5. Let f W Œa; b�! R:

(a) (Step Function) We say that f is a step function, and we write f 2
Step.Œa; b�/; if there is a partition P D .xk/nkD0 of Œa; b� and a finite sequence
.cj /

n
jD1 such that f .x/ D cj 8x 2 .xj�1; xj /; 1 � j � n:

(b) (Piecewise Linear) We say that f is a piecewise linear function, and we
write f 2 PL.Œa; b�/; if there is a partition P D .xk/

n
kD0 of Œa; b� and two

finite sequences .˛j /njD1 and .ˇj /njD1 such that f .x/ D ˛j x C ˇj 8x 2
.xj�1; xj /; 1 � j � n:

(c) (Piecewise Continuous) We say that f is piecewise continuous, and we write
f 2 PC .Œa; b�/; if there is a partition P D .xk/

n
kD0 of Œa; b� such that f is

continuous on .xj�1; xj /; for 1 � j � n and that f .xj�1 C 0/ and f .xj � 0/
are both finite for 1 � j � n. In particular, a continuous function on Œa; b� is
clearly piecewise continuous; i.e., we have C.Œa; b�/ � PC .Œa; b�/:

It is obvious that we have the proper inclusions

Step.Œa; b�/ � PL.Œa; b�/ � PC .Œa; b�/:

Remark 7.2.6. The importance of step functions in the study of the Riemann
integral comes from the fact that such functions arise naturally from the definitions
of Darboux and Riemann sums. Indeed, given any bounded f W Œa; b�! R and any
tagged partition PP D ..xk/

n
kD0; .tj /njD1/ of Œa; b�; it is quite natural to introduce

the following step functions: �.x/ WD mj ; �.x/ WD f .tj /; and �.x/ WD Mj ;

8 x 2 .xj�1; xj /; where mj and Mj have their usual meaning.

Corollary 7.2.7. Let f W Œa; b� ! R: If the set D of discontinuities of f is finite,
then f 2R.Œa; b�/: In particular, we have

Step.Œa; b�/ � PL.Œa; b�/ � PC .Œa; b�/ �R.Œa; b�/;

and C.Œa; b�/ � PC .Œa; b�/ �R.Œa; b�/:
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Proof. This follows at once from Theorem 7.2.4 and Exercise 7.2.3. ut
Due to the importance of the inclusion C.Œa; b�/ � R.Œa; b�/; we give an

independent proof of it:

Theorem 7.2.8 (Continuous ) Integrable). If f W Œa; b� ! R is continuous on
Œa; b�; then it is integrable on Œa; b�: Furthermore, for any sequence .Pn/ 2 PN

of partitions of Œa; b� such that limn!1 kPnk D 0; we have
R b

a
f .x/ dx D

limn!1 S.f; PPn/; regardless of the choice of tags in the PPn:
Proof. Let " > 0 be given. Since f is continuous on the compact set Œa; b�; it is
uniformly continuous (cf. Theorem 4.6.4). We can therefore pick ı > 0 such that
jx � x0j < ı ) jf .x/ � f .x0/j < "=.b � a/: In particular, if P is any partition
of Œa; b� with kPk < ı and if mj and Mj are as in Definition 7.1.4, then, for some
˛j ; ˇj 2 Œxj�1; xj �; we have Mj �mj D f .ˇj /� f .˛j / < "=.b � a/: Therefore,

U.f;P/ � L.f;P/ D
n
X

jD1
.Mj �mj /�xj

<
"

b � a
n
X

jD1
�xj D "

b � a .b � a/ D ":

This proves that f 2 R.Œa; b�/: The last statement follows from Corollary 7.1.27
and the proof is complete. ut

Finding the exact value of the integral as a limit of Riemann (or Darboux) sums
can only be achieved in a handful of cases and, even then, may require considerable
ingenuity. The following example gives one of these rare cases and is due to the
famous French mathematician Pierre de Fermat.

Example 7.2.9 (Power Rule). The power function f .x/ WD xp; with any p ¤ �1;
is integrable on Œa; b� for any 0 < a < b and we have

Z b

a

xp dx D bpC1 � apC1

p C 1 :

Indeed, as we shall see later, f .x/ D ep log x is continuous (even C1) on .0;1/:
Therefore, by the above theorem,

R b

a
f .x/ dx exists for any 0 < a < b: To compute

it, let n 2 N be fixed and let xk WD aık; with ı D ı.n/ WD .b=a/1=n and 0 � k � n:
The sequence P WD .xk/

n
kD0 is then a partition of Œa; b�: Note that �xj WD xj �

xj�1 D aıj � aıj�1 D a.ı� 1/ıj�1; so that the corresponding subintervals do not
have equal length. For p > 0; the upper sum can be computed as follows:

U.f;P/ D
n
X

jD1
f .xj /�xj

D
n
X

jD1
apıjpa.ı � 1/ıj�1
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D apC1
�

ı � 1
ı

� n
X

jD1
ıj.pC1/

D apC1.ı � 1/ı
n.pC1/ � 1
ıpC1 � 1 ıp (note that p ¤ �1)

D apC1 .b=a/pC1 � 1
1C ı C � � � C ıp ı

p:

Since limn!1 ı D 1; we have

Z b

a

f .x/ dx D lim
n!1U.f;P/ D apC1 .b=a/pC1 � 1

p C 1 D bpC1 � apC1

p C 1 :

All the functions in Corollary 7.2.7 have finite discontinuity sets. The next
theorem shows that all monotone functions are (Riemann) integrable. Recall that
(cf. Theorem 4.4.7) the discontinuity set of a monotone function is countable, and
hence, possibly infinite.

Theorem 7.2.10 (Monotone ) Integrable). If f W Œa; b� ! R is a monotone
(i.e., increasing or decreasing) function, then f 2R.Œa; b�/:
Proof. Assume f is increasing; the other case is similar (or we can use �f ). Given
any " > 0; pick n 2 N such that Œf .b/�f .a/�.b�a/=n < ": Consider the partition
Pn D .xk/

n
kD0 with xk WD a C k.b � a/=n: In particular, kPnk D .b � a/=n D

�xj 8j: Let mj and Mj be the “inf” and “sup” of f on Œxj�1; xj �; respectively.
Then we have mj D f .xj�1/ and Mj D f .xj / for 1 � j � n: Therefore,

U.f;Pn/ � L.f;Pn/ D b � a
n

n
X

jD1
Œf .xj / � f .xj�1/�

D b � a
n

Œf .b/ � f .a/� < ":

Since " > 0 was arbitrary, the theorem follows at once from Corollary 7.1.27. ut
As the reader has certainly observed, we are trying to find the largest class

of integrable functions. Our next goal will be to introduce a class of functions
containing, simultaneously, all the classes introduced so far. Here it is:

Definition 7.2.11 (Regulated Function). Let I � R be a nonempty interval and
let f W I ! R: We say that f is regulated if the one-sided limits

f .x � 0/ WD lim
h!0� f .x C h/; f .x C 0/ WD lim

h!0C f .x C h/
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exist for every x 2 I ı: If x is the left (resp., right) endpoint of I; then we only
require the existence of the right (resp. left) limit. The set of all regulated functions
on I will be denoted by Reg.I /:

Example 7.2.12. Let f W I ! R: If f is a monotone function, then (cf.
Theorem 3.4.36) f has one-sided limits at every point of I and is therefore
regulated. It is also obvious that step functions, piecewise linear functions and piece-
wise continuous functions have one-sided limits at every point of their domains.
Therefore, all these functions are regulated. In particular, continuous functions are
regulated.

Exercise 7.2.13. Let f W I ! R be a regulated function. Show that the set D WD
fx 2 I W f is discontinuous at xg is countable.

The following theorem gives a complete characterization of regulated functions
on bounded closed intervals in terms of step functions, showing once again the
crucial role played by step functions.

Theorem 7.2.14. Let f W Œa; b� ! R: Then f is regulated if and only if it can
be uniformly approximated by step functions; i.e., given any " > 0 there is a step
function g" 2 Step.Œa; b�/ such that jf .x/ � g".x/j < " 8x 2 Œa; b�:
Proof. If the condition of the theorem is satisfied and if " > 0 is given, then we can
pick g" 2 Step.Œa; b�/ such that jf .x/ � g".x/j < "=3 8x 2 Œa; b�: Now, for each
x0 2 Œa; b�; we can pick ı > 0 such that jg".s/� g".t/j < "=3 if s; t 2 .x0 � ı; x0/
or s; t 2 .x0; x0 C ı/: Thus, for such points s and t; we have

jf .s/ � f .t/j � jf .s/ � g".s/j C jg".s/ � g".t/j C jg".t/ � f .t/j < 3"
3
D ":

This shows (by Cauchy’s Criterion) that f .x0 � 0/ and f .x0 C 0/ both exist.
Conversely, suppose that f is regulated. Then, for each x 2 Œa; b�; we can find
ıx > 0 such that whenever s; t 2 .x � ıx; x/ \ Œa; b� (or s; t 2 .x; x C
ıx/ \ Œa; b�/; we have jf .s/ � f .t/j < ": (Why?) Since Œa; b� is compact, we can
find x1; x2; : : : ; xn 2 Œa; b� such that, with ıj WD ıxj and Bj WD Bıj .xj / WD
.xj � ıj ; xj C ıj /; we have Œa; b� � Sn

jD1 Bj : Let z0 < z1 < � � � < zm denote all
the points a; b; xj ; xj�ıj ; xjCıj (1 � j � n) that belong to Œa; b� in increasing
order. Now, for each 1 � j � n;we have zj�1 2 Bi for some i: It follows that either
zj 2 Bi or zj D xi C ıi : Therefore, if s; t 2 .zj�1; zj /; then jf .s/�f .t/j < ": Let
g" 2 Step.Œa; b�/ be defined by g".zj / WD f .zj / and g".x/ WD f ..zj�1 C zj /=2/
8x 2 .zj�1; zj /: Then we obviously have jf .x/ � g".x/j < " 8x 2 Œa; b�: ut
Remark 7.2.15. As we saw in Chap. 5, the set B.Œa; b�/ WD B.Œa; b�;R/ of all
bounded real-valued functions on Œa; b� is a metric space with the uniform metric:
d1.f; g/ WD supfjf .x/ � g.x/j W x 2 Œa; b�g: We shall see later that this space is
complete, i.e., every Cauchy sequence in it is convergent. It is easy to see that the
space Reg.Œa; b�/ of all regulated functions on Œa; b� is a closed (hence complete)
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subspace of B.Œa; b�/: The above theorem can therefore be stated as follows: the
subspace Step.Œa; b�/ of all step functions on Œa; b� is dense in Reg.Œa; b�/:

Before stating the last theorem of the section, let us prove a general lemma which
is of independent interest and from which the theorem will follow at once. The
lemma states that R.Œa; b�/ is a closed subspace of B.Œa; b�;R/ with the metric
defined in the above remark.

Lemma 7.2.16 (Closure Under Uniform Limits). Suppose that f W Œa; b� ! R

can be uniformly approximated by integrable functions, i.e., that we have

.8ı > 0/.9gı 2R.Œa; b�//.8x 2 Œa; b�/.jf .x/ � gı.x/j < ı/:

Then f 2R.Œa; b�/ and we have

Z b

a

f .x/ dx D lim
ı!0C

Z b

a

gı.x/ dx:

Proof. The proof is a standard “"=3-argument.” Given " > 0; let ı WD "=3.b � a/:
We can pick gı 2 R.Œa; b�/ such that jf .x/ � gı.x/j < ı .8x 2 Œa; b�/: Keeping
this ı fixed, we pick P 2 P.Œa; b�/ such that

U.gı;P/ � L.gı;P/ < "=3: ()

Now f .x/ < gı.x/C ı 8x 2 Œa; b� implies

U.f;P/ � U.gı;P/C .b � a/ı D U.gı;P/C "=3: ()

Similarly, gı.x/ � ı < f .x/ 8x 2 Œa; b� implies

L.f;P/ � L.gı;P/ � .b � a/ı D L.gı;P/ � "=3: (  )

Combining (), (), and (  ), we obtain

U.f;P/ � L.f;P/ D ŒU.f;P/ � U.gı;P/�C ŒU.gı;P/ � L.gı;P/�
C ŒL.gı;P/ � L.f;P/� < 3"

3
D ";

which proves that f 2 R.Œa; b�/: But then, as we shall see shortly (cf. Theo-
rem 7.4.9 and Corollary 7.4.14 below), we have f � gı 2R.Œa; b�/ and

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx �
Z b

a

gı.x/ dx

ˇ

ˇ

ˇ

ˇ

�
Z b

a

jf .x/ � gı.x/j dx � .b � a/ı;

from which the last assertion follows. ut
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We are now ready to show that the class of Riemann integrable functions contains
the regulated functions:

Theorem 7.2.17 (Regulated ) Integrable). We have

Reg.Œa; b�/ �R.Œa; b�/:

In other words, regulated functions on Œa; b� are integrable on Œa; b�:

Proof. Since step functions are integrable and regulated functions can be uniformly
approximated by step functions (cf. Theorem 7.2.14), the theorem follows at once
from the above lemma. ut
Remark 7.2.18. There is something unsatisfactory about all the above existence
theorems, namely, they all give sufficient conditions for the existence of the Riemann
integral. None of them gives a necessary and sufficient condition. Also, all the
functions we have considered so far have countable discontinuity sets. We may be
tempted to conjecture that the latter condition is also necessary. In fact, it is not!
It turns out that the ideal theorem we seek involves deeper ideas. The next section
will be devoted to introducing these ideas and proving the celebrated Lebesgue’s
Integrability Criterion.

7.3 Sets of Measure Zero and Lebesgue’s Integrability
Criterion

In the preceding section, we defined what is meant by a set of content zero. Recall
that a set has content zero if it can be covered by a finite collection of intervals
of total length less than any prescribed positive number. In this section, we will
introduce, for subsets of R; the concept of measure zero. What we shall do is to
relax the restriction that the collection of intervals covering the set be finite. It turns
out that this new concept is much more useful in analysis and provides the right tool
for our ideal existence theorem. Let us begin by recalling a definition:

Definition 7.3.1 (Length of an Interval). Let I � R be an interval. If I is
bounded with endpoints a � b; then the length of I is defined to be the nonnegative
number �.I / WD b � a: Thus,

�..a; b// D �.Œa; b// D �..a; b�/ D �.Œa; b�/ D b � a:

In particular, �.Œa; a�/ D �.fag/ D 0: Also, since .a; a/ D Œa; a/ D .a; a� D ;;
8a 2 R; we define �.;/ WD 0: If I is unbounded, then we define �.I / WD 1:
Definition 7.3.2 (Measure Zero). A set S � R is said to have measure zero (or to
be of measure zero) if for every " > 0 there is a sequence of bounded open intervals
I1; I2; I3; : : : such that
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(i) S �S1
nD1 In; and

(ii)
P1

nD1 �.In/ < ":

Remark 7.3.3. Note that the requirement that the intervals fIn W n 2 Ng be open
is not necessary. In fact, the In may be closed or half open. Indeed, if each In
is replaced by an open interval Jn � In such that �.Jn/ D �.In/ C "=2n; then
P1

nD1 �.Jn/ < 2":

Definition 7.3.4 (Almost Everywhere, Almost All). Let S � R: Suppose that
P.x/ is a proposition (or property), for each x 2 S:We say that P.x/ holds almost
everywhere (abbreviated a.e.) or for almost all x 2 S (abbreviated a.a. x 2 S ), if
the set fx W x 2 S and P(x) does not holdg has measure zero.

Proposition 7.3.5. The following statements are true.

(a) A subset of a set of measure zero has measure zero.
(b) If Sn has measure zero for all n 2 N and if S WD S1

nD1 Sn; then S has measure
zero.

(c) A countable set (finite or infinite) has measure zero.
(d) A set of content zero has measure zero. The converse is not true.

Proof. Part (a) is obvious since any cover of a set is also a cover of each of its
subsets. To prove (b), let " > 0: For each n; we can find intervals Ink such that
Sn � S1

kD1 Ink and
P1

kD1 �.Ink/ < "=2n: Now, the collection fInk W n; k 2 Ng
obviously covers S and we have

1
X

nD1

1
X

kD1
�.Ink/ <

1
X

nD1

"

2n
D ":

Next, since a set with a single element has measure zero (why?), part (c) follows
from (b). Finally, the first statement in (d) follows directly from the definitions. For
the second one, note that Q has measure zero (by (c)) but not content zero (cf.
Exercise 7.2.3). The proof is now complete. ut
Remark 7.3.6. As was pointed out above, the set Q of rational numbers has measure
zero. The same is of course true of Œ0; 1�\Q: On the other hand, the set Œ0; 1�\Qc

of the irrationals in Œ0; 1� does not have measure zero; otherwise, Œ0; 1� would have
measure zero. This, however, is absurd, as the following proposition shows.

Proposition 7.3.7. Let I be a bounded interval with endpoints a < b and let fIn W
n 2 Ng be a sequence of open intervals covering I I i.e., I �S1

nD1 In: Then

�.I / �
1
X

nD1
�.In/: ()

Proof. We may (and do) assume that the In are all bounded, since () is obvious
otherwise. Let 0 < " < .b � a/=2 and let J WD Œa C "=2; b � "=2�: Since J is
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compact, we can cover it with a finite number of In’s. One of them, say .a1; b1/;
must contain a C "=2. If b1 � b � "=2; then b1 62 .a1; b1/ implies that for another
one of the In; say .a2; b2/; we have a2 < b1 < b2: We continue this process and
note that it must terminate because our cover of J contains a finite number of the In:
But then the last interval in our process, say .am; bm/; satisfies am < b � "=2 < bm
and we have J �Sm

jD1.aj ; bj /: Now note that

1
X

nD1
�.In/ �

m
X

jD1
�
�

.aj ; bj /
� D

m
X

jD1
.bj � aj /

D bm � a1 C
m
X

jD2
.bj�1 � aj /

> �.J / D b � a � ":

Since this holds for all " 2 .0; .b � a/=2/; the inequality () follows. ut
Exercise 7.3.8 (Measure Zero ) Empty Interior). Show that a set of measure
zero must have empty interior.

This exercise and Proposition 7.3.5 may lead us to make the following
conjectures:

Conjecture 1. All sets of measure zero must be countable.

Conjecture 2. All sets with empty interior must have measure zero.

In fact, both conjectures are false! To disprove Conjecture 1, we look at our old
uncountable friend, the Cantor set:

Example 7.3.9 (The Cantor Set Has Measure Zero). Recall (cf. Sect. 4.2) that the
Cantor set C is obtained from C0 WD Œ0; 1� by successive deletion of middle thirds
and can be written as

C D
1
\

kD0
Ck; ()

where, C1 WD Œ0; 1=3�[ Œ2=3; 1�; C2 WD Œ0; 1=9�[ Œ2=9; 1=3�[ Œ2=3; 7=9�[ Œ8=9; 1�;
etc. In general, Cn is the union of 2n disjoint closed intervals of length 1=3n: Now,
given any " > 0; pick n such that .2=3/n < ": Then, C � Cn and the total length
of all the subintervals in Cn is 2n.1=3n/ D .2=3/n < ": Therefore, C has measure
zero as claimed.

To disprove Conjecture 2, we need a generalized version of the Cantor set:

Definition 7.3.10 (The Generalized Cantor Sets C.˛/). Let ˛ 2 .0; 1/ be fixed,
but arbitrary and, for each n 2 N; let an WD 2n�1˛=3n: From the center of C0.˛/ WD
Œ0; 1� we remove an open interval of length a1: The resulting set, C1.˛/; is the union
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of two disjoint closed intervals of equal length. From the center of each of these two
intervals we remove an open interval of length a2=2. The resulting set, C2.˛/; is a
union of 22 disjoint closed intervals of equal length. Repeating this process, at the
nth stage (n>1), we obtain the set Cn.˛/ by removing from the center of each one
of the 2n�1 disjoint closed intervals in Cn�1.˛/ an open interval of length an=2n�1:
We now define:

C.˛/ WD
1
\

nD0
Cn.˛/I

in other words, C.˛/ is what is left of Œ0; 1� after removing all the open intervals in
the above process. The set C.˛/ will be called a generalized Cantor set.

As the following proposition shows, the generalized Cantor sets have most of the
interesting properties of Cantor’s ternary set which, by the way, is C.˛/ with ˛ D 1:
Proposition 7.3.11. For each ˛ 2 .0; 1/; the generalized Cantor set C.˛/ is
compact, nowhere dense, and perfect.

Proof. By its very definition, C.˛/ is a closed subset of the compact set Œ0; 1� and
hence is itself compact. To prove that it is nowhere dense amounts to showing that
it contains no open intervals. But, if I � C.˛/ is an open interval, then we have
I � Cn.˛/ for each n 2 N: Since each of the 2n (disjoint) intervals in Cn.˛/
has length < 1=2n; we must have �.I / < 1=2n for all n 2 N; which is absurd.
Finally, we must show that C.˛/ is perfect, meaning that it is closed (which we
know to be true) and that every point in it is a limit point. Let x 2 C.˛/ and let
" > 0 be given. Then x 2 Cn.˛/ for all n 2 N: Pick n such that 1=2n < ":

Then B".x/ WD .x � "; x C "/ contains one of the 2n disjoint intervals in Cn.˛/:
Thus, denoting this interval by Ik WD Œak; bk�; we have Œak; bk� � B".x/: Since
ak; bk 2 C.˛/; we see that x is indeed a limit point of C.˛/: ut
Exercise 7.3.12 (C.˛/ Is Uncountable). Show that, for any ˛ 2 .0; 1/; the
generalized Cantor set C.˛/ is uncountable. Hint: Theorem 5.3.12.

Let us now show that Conjecture 2 is also false.

Proposition 7.3.13 (C.˛/ Is Not of Measure Zero). The generalized Cantor set,
C.˛/; is an uncountable set with empty interior that is not of measure zero.

Proof. In view of Proposition 7.3.11 and Exercise 7.3.12, we need only show the last
statement. Now the total length of the open subintervals removed in the construction
of C.˛/ is

1
X

nD1

�

2n�1

3n

�

˛ D ˛:
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Therefore, if C.˛/ could be covered by a countable set of open intervals of total
length < 1 � ˛; then, combining these intervals with the removed subintervals, we
would be able to cover the unit interval Œ0; 1� by a collection of open intervals of total
length less than 1 D .1 � ˛/ C ˛: Since this is impossible (by Proposition 7.3.7),
the proof is complete. ut

Before we state and prove Lebesgue’s theorem on the existence of the Riemann
integral, we need a couple of definitions:

Definition 7.3.14 (Oscillation: on a Set, at a Point). Let I � R be an interval and
let f W I ! R be a bounded function.

(a) For each set ; ¤ S � I , the oscillation of f on S is defined to be the
nonnegative real number

!f .S/ WD supfjf .s/ � f .t/j W s; t 2 SgI

i.e., !f .S/ is simply the diameter of the image f .S/:
(b) Given any point (i.e., element) x0 2 I; the oscillation of f at x0 is defined to be

the nonnegative number

!f .x0/ WD inff!f .Bı.x0/ \ I / W ı > 0g D lim
ı!0C!f .Bı.x0/ \ I /; (�)

where, as usual, Bı.x0/ WD fx 2 I W jx � x0j < ıg:
Remark 7.3.15.

(a) Note that for a point x0 2 I; the numbers !f .fx0g/ and !f .x0/ need not be the
same. Indeed, the former is obviously always zero, while the latter is zero if and
only if f is continuous at x0 (cf. Exercise 4.3.8(d)).

(b) The relevance of the concept of oscillation to the existence of the Riemann
integral becomes clear if we observe that, for any partition P WD .xk/

n
kD0 of

Œa; b�; the difference between the corresponding upper and lower sums is

U.f;P/ � L.f;P/ D
n
X

jD1
.Mj �mj /�xj D

n
X

jD1
!f .Ij /�xj ;

where,Mj ; mj and�xj have their usual meaning. Indeed, for each subinterval
Ij WD Œxj�1; xj �; we have !f .Ij / DMj �mj :

Exercise 7.3.16. Let the notation be as in Definition 7.3.14.

(a) Show that

!f .S/ D supff .s/ � f .t/ W s; t 2 Sg
D supff .x/ W x 2 Sg � infff .x/ W x 2 Sg:
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(b) Show that

S � T � I ) !f .S/ � !f .T / � 2 supfjf .x/j W x 2 I g:

(c) Prove the equality of the “inf” and the “lim” in (�).
(d) Show that the above definition of !f .x0/ is equivalent to the one given in

Chap. 4 (cf. Definition 4.3.7). In other words, show that

lim
ı!0C!f .Bı.x0/ \ I / D f .x0/ � f .x0/;

where, we recall,

f .x0/ WD inf
˚

supff .x/ W x 2 Bı.x0/ \ I g W ı > 0


and

f .x0/ WD sup
˚

infff .x/ W x 2 Bı.x0/ \ I g W ı > 0


:

Next, we prove a couple of lemmas that will be used in our main theorem but are
of independent interest as well.

Lemma 7.3.17. Let f W Œa; b�! R: Then, for each  > 0; the set

� WD fx 2 Œa; b� W !f .x/ < g

is (relatively) open (in Œa; b�).

Proof. Consider an arbitrary point x0 2 �: We must show that, for some ı > 0;

we have Bı.x0/ \ Œa; b� � �: Put !0 WD !f .x0/ and !x WD !f .x/: We then have
!0 <  and must find ı > 0 such that x 2 Œa; b� and jx � x0j < ı imply !x < :

Now, by the very definition of !0; we can pick ı > 0 such that

j!f .Bı.x0/ \ Œa; b�/ � !0j <  � !0:

It then follows at once (cf. Exercise 7.3.16) that, for any x 2 Bı.x0/; we have

!x � !f .Bı.x0/ \ Œa; b�/ < ;

and the lemma is proved. ut
Our second lemma is an extension of Theorem 4.6.4, which said that a continuous

function on a compact interval Œa; b� is uniformly continuous on Œa; b�: In fact, the
proof given below is almost identical to the second proof we gave for Theorem 4.6.4.

Lemma 7.3.18. Let f W Œa; b� ! R and " > 0: If !f .x/ < "; for all
x 2 Œa; b�; then

.9ı > 0/.8s; t 2 Œa; b�/.js � t j < ı) jf .s/ � f .t/j < "/:
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Proof. For each x 2 Œa; b�; using !f .x/ < " and Lemma 7.3.17, we can pick
ıx > 0 such that !f .Bıx .x/ \ Œa; b�/ < ": Since Œa; b� is compact, we can find a
finite number of points x1; x2; : : : ; xn in Œa; b� such that, with ıj WD ıxj and Bj WD
.xj � ıj =2; xj C ıj =2/; we have

Œa; b� �
n
[

jD1
Bj :

Now let ı WD minfı1=2; : : : ; ın=2g: If s; t 2 Œa; b� satisfy js � t j < ı and s 2 Bj ;
then we have t 2 .xj � ıj ; xj C ıj /: Indeed,

jt � xj j � jt � sj C js � xj j < ı C ıj =2 � 2.ıj =2/ D ıj :
Since !f .Bıj .xj / \ Œa; b�/ < "; for all 1 � j � n; we see that js � t j < ı implies
jf .s/ � f .t/j < "; as desired. ut

We are now ready to prove the main theorem of this section. The reader may
find the (ingenious) proof of the theorem rather complicated. It should be noted,
however, that the important quantity to be estimated is the difference between the
upper and lower (Darboux) sums:

U.f;P/ � L.f;P/ D
n
X

jD1
.Mj �mj /.xj � xj�1/:

The idea is now to divide this sum into two sums: the sum
P

1 corresponding
to the subintervals meeting the discontinuity set of f , and the sum

P

2 over the
subintervals on which f is continuous. Now, if the discontinuity set has measure
zero, then the total length

P

1.xj � xj�1/ can be made arbitrarily small while, in
the second sum, the oscillationsMj �mj can be made (uniformly) small due to the
continuity of f .

Theorem 7.3.19 (Lebesgue’s Integrability Criterion). Let f W Œa; b� ! R be
a bounded function. Then f is Riemann integrable if and only if it is continuous
almost everywhere.

Proof. For each N 2 N; let DN WD fx 2 Œa; b� W !f .x/ � 1=N g and put D WD
S1
ND1 DN : Then D is the set of all discontinuity points of f in Œa; b�: (Why?)

Suppose that f 2R.Œa; b�/: We want to prove that each DN has measure zero. By
Riemann’s Lemma, given any " > 0 we can find a partition P D .xk/

n
kD0 of Œa; b�

such that U.f;P/ � L.f;P/ < "=N: Let us divide f1; 2; : : : ; ng into two parts,
Gi D Gi.DN /; i D 1; 2 W

G1 WD fj W .xj�1; xj / \DN ¤ ;g; G2 WD fj W .xj�1; xj / \DN D ;g:
Now, with Mj WD supff .x/ W x 2 Œxj�1; xj �g; mj WD infff .x/ W x 2 Œxj�1; xj �g;
and �xj WD xj � xj�1; we have
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U.f;P/ � L.f;P/ D
X

j2G1
.Mj �mj /�xj C

X

j2G2
.Mj �mj /�xj <"=N:

Since .xj�1; xj / \DN ¤ ; implies Mj �mj � 1=N; we have

X

j2G1
�xj � N

X

j2G1
.Mj �mj /�xj < N"=N D ":

But the intervals .xj�1; xj / with j 2 G1 cover DN : Therefore, DN has measure
zero for each N; and hence, by Proposition 7.3.5(b), D has measure zero. To prove
the converse, let us assume that D has measure zero and let " > 0 be given. By
Lemma 7.3.17, each Œa; b� nDN is (relatively) open. Therefore each DN is a closed
(hence compact) subset of Œa; b� and has measure zero. Let N be such that .b �
a/=N < "=2 and pick a partition P D .xk/

n
kD0 of Œa; b� such that

P

j2G1.xj �
xj�1/ < "=.4M/; where G1 is as above and M WD supfjf .x/j W x 2 Œa; b�g: Next,
note that if K WD S

j2G2Œxj�1; xj �; with G2 defined as above, then K is a compact
subset of Œa; b� such that x 2 K implies !f .x/ < 1=N: By Lemma 7.3.18, we can
pick a ı > 0 such that s; t 2 K and js � t j < ı imply jf .s/ � f .t/j < 1=N: Let
P 0 D .x0

k0/n
0
k0D0 be a refinement of P with mesh kP 0k < ı: Then, with Mj 0 ; mj 0 ;

and �x0
j 0 defined as usual and the subsets G0

1; G
0
2 � f1; 2; : : : ; n0g defined as in

the first part of the proof, we have

U.f;P 0/ � L.f;P 0/ D
X

j 02G0
1

.Mj 0 �mj 0/�x0
j 0 C

X

j 02G0
2

.Mj 0 �mj 0/�x0
j 0

< 2M
X

j2G1
.xj � xj�1/C b � a

N

< 2M
"

4M
C "

2
D ";

which shows indeed that f 2R.Œa; b�/ and completes the proof. ut
Corollary 7.3.20. If f; g W Œa; b�! R are (Riemann) integrable on Œa; b�; then so
are the functions f̨ Cˇg (with arbitrary constants ˛ and ˇ), maxff; gg;minff; gg;
jf j; f 2; and fg: If, in addition, inffjg.x/j W x 2 Œa; b�g > 0; then 1=g and f=g are
also integrable.

Proof. Exercise! Hint: For each function h; let D.h/ denote the discontinuity set
of h: How are D. f̨ C ˇg/;D.maxff; gg/; etc. related to D.f / and D.g/? Also,
note that, with f C WD maxf0; f g and f � WD maxf0;�f g; we have f D f C � f �
and jf j D f CCf �: Finally, the integrability of fg may also be deduced from the
other cases and the identity

fg D 1

4
Œ.f C g/2 � .f � g/2�:

ut



314 7 The Riemann Integral

Exercise 7.3.21 ((Interval) Additivity). Let a < b and f 2R.Œa; b�/: Show that,
for any c 2 .a; b/; we have f
Œa;c� 2R.Œa; c�/; f
Œc;b� 2R.Œc; b�/; and

Z b

a

f .x/ dx D
Z c

a

f .x/ dx C
Z b

c

f .x/ dx:

We end this section by two more corollaries of Lebesgue’s Integrability Theorem
that are of independent interest.

Corollary 7.3.22. Let f W Œa; b� ! R be Riemann integrable and let g W Œc; d � !
Œa; b� be a bijection such that g�1 is Lipschitz. Then f ıg is Riemann integrable on
Œc; d �:

Proof. We prove that the set D.f ı g/ � Œc; d � of discontinuity points of f ı g has
measure zero. Note that g�1 (and hence g) is actually a homeomorphism. Indeed not
only g�1 is (uniformly) continuous, but its domain Œc; d � is compact and hence g�1
sends closed (hence compact) subsets of Œc; d � to compact (hence closed) subsets
of Œa; b�, so that g D .g�1/�1 is continuous as well. It follows that D.f ı g/ D
g�1�D.f /

�

: (Why?) So to complete the proof, we must show that g�1�D.f /
�

has
measure zero. This, however, follows from the general fact that Lipschitz functions
map sets of measure zero onto sets of measure zero. Indeed, suppose that A > 0 is a
Lipschitz constant for g�1I i.e.,

jg�1.�/ � g�1.�/j � Aj� � �j; 8 �; � 2 Œc; d �:

By assumption, the set D.f / � Œa; b� of discontinuity points of f has measure
zero. So let " > 0 be given and suppose that D.f / � S

n.an; bn/ with
P

n.bn �
an/ < "=A: We may assume that g is strictly increasing and note that the intervals
.a0
n; b

0
n/ WD g�1�.an; bn/

�

; with g.a0
n/ D an and g.b0

n/ D bn; cover D.f ı g/.
But then,

X

n

.b0
n � a0

n/ � A
X

n

.bn � an/ < ":

This shows indeed that D.f ı g/ has measure zero and completes the proof. ut
For our next corollary, recall (Definition 6.6.10) that a C1-diffeomorphism is a

bijection that is continuously differentiable and so is its inverse function.

Corollary 7.3.23. Let f be Riemann integrable on Œa; b� and let g W Œc; d �! Œa; b�

be a C1-diffeomorphism. Then f ı g is Riemann integrable on Œc; d �:

Proof. By our assumption, g�1 has continuous (hence bounded) derivative and
hence is Lipschitz by Corollary 6.4.20. Thus the assertion follows from Corollary
7.3.22. ut
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7.4 Properties of the Riemann Integral

In Corollary 7.3.20, we used the powerful Lebesgue Integrability Criterion to
deduce some of the basic properties of the Riemann integral. We can, however, avoid
that theorem entirely and give direct proofs of those (and other) properties using
only the definition or Riemann’s Lemma. This is what we shall do in this section.
Let us begin with the additivity property with respect to intervals (cf. Exercise 7.3.21
above):

Theorem 7.4.1 ((Interval) Additivity Theorem). Let f W Œa; b� ! R and let
c 2 .a; b/: Then f is (Riemann) integrable on Œa; b� if and only if its restrictions to
Œa; c� and Œc; b� are both integrable. In this case, we have

Z b

a

f .x/ dx D
Z c

a

f .x/ dx C
Z b

c

f .x/ dx: (�)

Proof. Suppose f 2 R.Œa; b�/ and let " > 0 be given. We can pick a partition
P D .xk/nkD0 of Œa; b� such that

U.f;P/ � L.f;P/ < ":

Adjoining the point c to our partition, if necessary, we may assume that c D xj for
some 1 � j � n: Now P 0 WD .xk/

j

kD0 and P 00 WD .xk/
n
kDj are partitions of Œa; c�

and Œc; b�; respectively. Also, we have

(i) L.f;P/ D L.f;P 0/C L.f;P 00/ and U.f;P/ D U.f;P 0/C U.f;P 00/;

from which it follows at once that

(ii) ŒU.f;P 0/ � L.f;P 0/�C ŒU.f;P 00/ � L.f;P 00/� < ":

Since each of the differences inside the brackets is nonnegative, each is less than "
and the restrictions of f to Œa; c� and Œc; b� are indeed integrable. Moreover, from
the inequalities

L.f;P 0/ �
Z c

a

f � U.f;P 0/ and L.f;P 00/ �
Z b

c

f � U.f;P 00/;

we deduce that

L.f;P/ �
Z c

a

f C
Z b

c

f � U.f;P/:

Since this holds for every partition (with c adjoined), (�) follows. Conversely,
suppose that the restrictions of f to Œa; c� and Œc; b� are both integrable and let " > 0
be given. Pick partitions P 0 and P 00 of Œa; c� and Œc; b�, respectively, such that

(iii) U.f;P 0/ � L.f;P 0/ <
"

2
and U.f;P 00/ � L.f;P 00/ <

"

2
:
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If now P is the partition of Œa; b� containing all the points of P 0 and P 00; then (i) is
satisfied again and hence (by (ii) and (iii)),

U.f;P/ � L.f;P/ < ":
This shows indeed that f 2R.Œa; b�/ and completes the proof. ut
Terminology. If f 2 R.Œa; b�/ and if Œc; d � � Œa; b�; then the above theorem
implies that the restriction of f to Œc; d � is integrable on Œc; d �: Henceforth, to
simplify the exposition, we abuse the language and say that f is integrable on Œc; d �:

Exercise 7.4.2. Show that, if f 2R.Œa; b�/; then

lim
c!aC

Z b

c

f .x/ dx D
Z b

a

f .x/ dx D lim
d!b�

Z d

a

f .x/ dx:

Definition 7.4.3. Let f 2R.Œa; b�/; where a < b: Then we define

Z a

b

f WD �
Z b

a

f and
Z a

a

f WD 0:

Corollary 7.4.4. For any a; b; c 2 R; if any two of the integrals
R b

a
f;
R c

a
f; and

R b

c
f exist, then so does the third one and we have

Z b

a

f D
Z c

a

f C
Z b

c

f; ()

which can also be written in the more symmetric form

Z b

a

f C
Z c

b

f C
Z a

c

f D 0:

Proof. This follows at once from Theorem 7.4.1 and Definition 7.4.3. For example,
if c < a < b; then

Z b

c

f D
Z a

c

f C
Z b

a

f D �
Z c

a

f C
Z b

a

f;

which gives (). Other cases can be treated the same way. ut
Corollary 7.4.5. Let f 2 R.Œa; b�/ and let P D .xk/

n
kD0 be a partition of Œa; b�:

Then f is integrable on each Ij WD Œxj�1; xj �; 1 � j � n; and we have

Z b

a

f .x/ dx D
n
X

jD1

Z xj

xj�1
f .t/ dt:

Proof. Induction! ut
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Exercise 7.4.6. Let f W R! R be a periodic function and let p > 0 be its period.
Show that, if f 2R.Œ0; p�/; then f 2R.Œa; aC p�/ for any a 2 R and

Z p

0

f .x/ dx D
Z aCp

a

f .x/ dx:

Hint: Use the Interval Additivity property and Exercise 7.1.24.

Corollary 7.4.7 (Integral of a Step Function). Suppose that f W Œa; b�! R is a
step function. In other words, there is a partition P D .xk/nkD0 of Œa; b� and a finite
sequence .cj /njD1 such that, for each 1 � j � n;

f .x/ D cj 8x 2 .xj�1; xj /:

Then we have
Z b

a

f .x/ dx D
n
X

jD1
cj .xj � xj�1/:

Proof. This follows at once from Corollary 7.4.5 and Exercise 7.1.13. ut
Exercise 7.4.8. Let f 2R.Œa; b�/:
1. Show that for any " > 0 there exists a step function g on Œa; b� such that

Z b

a

jf .x/ � g.x/j dx < ":

2. Show that
Z b

a

f D sup

�

Z b

a

g W g 2 Step.Œa; b�/; g � f
�

D
Z

f:

We next prove that, just like the derivative, the (Riemann) integral is linear; i.e.,
it is additive and homogeneous:

Theorem 7.4.9 (Linearity of the Integral). Let f and g be integrable on Œa; b�:
Then, for any real constants ˛ and ˇ; the linear combination f̨ C ˇg is also
integrable on Œa; b� and we have

Z b

a

. f̨ C ˇg/ D ˛
Z b

a

f C ˇ
Z b

a

g:

Proof. Simply observe that, for any tagged partition PP 2 PP.Œa; b�/; the correspond-
ing Riemann sums of the functions f̨ C ˇg; f; and g (cf. Definition 7.1.4) satisfy
the equation

S. f̨ C ˇg; PP/ D ˛S.f; PP/C ˇS.g; PP/
and use Theorem 7.1.26. ut
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The next theorem shows that integrability is stable under composition with
continuous functions.

Theorem 7.4.10 (Stability Under Composition). Let f be integrable on Œa; b�
with m � f .x/ � M for all x 2 Œa; b�: If � is continuous on Œm;M�; then
g WD � ı f 2R.Œa; b�/:
Proof. Let " > 0 be given. Since � is continuous, it is bounded and uniformly
continuous on Œm;M�: Therefore we have j�.s/j � K for some K > 0 and all
s 2 Œm;M�; and we can find ı > 0 such that j�.s/ � �.t/j < "=2.b � a/ for all
s; t 2 Œm;M� satisfying js � t j < ı: Also, since f 2 R.Œa; b�/; we can pick a
partition P D .xk/nkD0 of Œa; b� such that

U.f;P/ � L.f;P/ < "ı

4K
: ()

Letmj (resp.,Mj ) be the infimum (resp., supremum) of f on Œxj�1; xj � and letm0
j

and M 0
j be the corresponding numbers for g: Divide the set f1; 2; : : : ; ng into two

subsets:

G1 WD fj WMj �mj < ıg; G2 WD fj WMj �mj � ıg;

and note that, for j 2 G1; the choice of ı impliesM 0
j �m0

j < "=2.b�a/ while, for
j 2 G2; we have M 0

j �m0
j � 2K: Now, in view of (), we have

ı
X

j2G2
�xj �

X

j2G2
.Mj �mj /�xj <

"ı

4K
;

where, as always, �xj WD xj � xj�1: Thus
P

j2G2 �xj < "=.4K/: It now
follows that

U.g;P/ � L.g;P/ D
X

j2G1
.M 0

j �m0
j /�xj C

X

j2G2
.M 0

j �m0
j /�xj

� "

2.b � a/.b � a/C 2K
"

4K
D ":

Since " > 0 was arbitrary, we have g 2R.Œa; b�/: ut
Remark 7.4.11. Note that the continuity of � in the above theorem is crucial.
Indeed, if � is simply assumed to be integrable, i.e., if f; � 2 R.Œa; b�/; then
the composite function � ı f need not be integrable. (Cf. Problem #4 at the end of
the chapter.)

Using Theorems 7.4.9 and 7.4.10, we can now give another proof of Corollary
7.3.20, avoiding Lebesgue’s Integrability Criterion.
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Corollary 7.4.12. If f; g W Œa; b�! R are (Riemann) integrable on Œa; b�; then so
are the functions f̨ Cˇg (with arbitrary constants ˛ and ˇ), maxff; gg;minff; gg;
jf j; f 2; and fg: If, in addition, inffjg.x/j W x 2 Œa; b�g > 0; then 1=g and f=g are
also integrable.

Proof. The integrability of f̨ C ˇg is guaranteed by Theorem 7.4.9. Next, using
Theorem 7.4.10 with �.t/ WD tC WD maxf0; tg (resp., �.t/ WD t� WD maxf0;�tg),
we see that f C (resp., f �) is integrable on Œa; b�: Theorem 7.4.9 now implies that
the same holds for jf j D f C C f �: Taking �.t/ WD t 2 in Theorem 7.4.10, we
obtain the integrability of f 2 which, together with Theorem 7.4.9 and the identity

fg D 1

4
Œ.f C g/2 � .f � g/2�;

imply fg 2R.Œa; b�/: For maxff; gg and minff; gg; we use the identities

maxff; gg D 1

2
.f C g C jf � gj/ and minff; gg D 1

2
.f C g � jf � gj/:

Finally, if inffjg.x/j W x 2 Œa; b�g > 0; then we can use Theorem 7.4.10 with
�.t/ WD 1=t to deduce the integrability of 1=g: The case of f=g now follows from
the fact that the product of two integrable functions is itself integrable. The proof is
complete. ut

Next, we look at the behavior of the integral with respect to inequalities:

Proposition 7.4.13. Let f be Riemann integrable on Œa; b� and m � f .x/ � M;
for all x 2 Œa; b�: Thenm.b�a/ � R b

a
f �M.b�a/: In particular, if jf .x/j � K;

for all x 2 Œa; b�; then j R b
a
f .x/ dx/j � K.b � a/:

Proof. For any tagged partition PP of Œa; b�; we obviously have

m.b � a/ � S.f; PP/ �M.b � a/;
from which the first statement follows at once. The second statement then follows
from the first one and the inequalities �K � f .x/ � K; for all x 2 Œa; b�: ut
Corollary 7.4.14 (Stability of Inequalities). Let f and g be integrable functions
on Œa; b� such that f .x/ � g.x/; for all x 2 Œa; b�: Then

R b

a
f .x/ dx � R b

a
g.x/ dx:

If f is Riemann integrable on Œa; b�; then so is jf j and we have
ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

�
Z b

a

jf .x/j dx:

Proof. Since g.x/ � f .x/ � 0; for all x 2 Œa; b�; Proposition 7.4.13 implies

0 �
Z b

a

.g.x/ � f .x// dx D
Z b

a

g.x/ dx �
Z b

a

f .x/ dx;
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proving the first statement. In view of Corollary 7.4.12, the second statement
follows from the first one and the inequalities �jf .x/j � f .x/ � jf .x/j; for all
x 2 Œa; b�: ut
Corollary 7.4.15. Let f W Œa; b� ! R be integrable on Œa; b� and consider the
function

F.x/ WD
Z x

a

f .t/ dt .8x 2 Œa; b�/:

Then F is Lipschitz (and hence uniformly continuous) on Œa; b�:

Proof. Since f is integrable on Œa; b�; it is bounded. Let K WD supfjf .x/j W x 2
Œa; b�g: If x; x0 2 Œa; b�; then (by Corollary 7.4.4 and Proposition 7.4.13) we have

jF.x0/ � F.x/j D
ˇ

ˇ

ˇ

ˇ

Z x0

a

f .t/ dt �
Z x

a

f .t/ dt

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z x0

x

f .t/ dt

ˇ

ˇ

ˇ

ˇ

� Kjx0 � xj: ut

It is obvious that, if f is identically zero on Œa; b�; then its integral is also
zero. Our next theorem answers the following natural question: When is the
converse true?

Theorem 7.4.16 (
R jf j D 0 , f D 0 a.e.). Let f be integrable on Œa; b�: Then

R b

a
jf .x/j dx D 0 if and only if f .x/ D 0 almost everywhere.

Proof. Suppose that
R b

a
jf .x/j dx D 0: Since f is integrable, by Lebesgue’s

Integrability Criterion, it is continuous a.e. Pick x0 2 .a; b/ at which f is
continuous. If jf .x0/j > 0; then we can find ı > 0 such that Œx0�ı; x0Cı� � .a; b/
and jf .x/ � f .x0/j < jf .x0/j=2; for all x 2 Œx0 � ı; x0 C ı�: Therefore, jf .x/j >
jf .x0/j=2 on Œx0 � ı; x0C ı�: But then, by Theorem 7.4.1 and Corollary 7.4.14, we
have

Z b

a

jf .x/j dx �
Z x0Cı

x0�ı
jf .x/j dx � 1

2

Z x0Cı

x0�ı
jf .x0/j dx D ıjf .x0/j;

contradicting
R b

a
jf .x/j dx D 0: Thus f .x0/ D 0; for each x0 2 .a; b/ at which

f is continuous, and we have f .x/ D 0 for a.a. x 2 Œa; b�: Conversely, suppose
that f .x/ D 0 a.e. and let P D .xk/

n
kD0 be any partition of Œa; b�: Then, for

each 1 � j � n; there exists tj 2 Œxj�1; xj � such that f .tj / D 0: (Why?) In
particular, mj WD inffjf .x/j W x 2 Œxj�1; xj �g D 0; for all 1 � j � n: But
then L.jf j;P/ D 0; for all P 2 P.Œa; b�/; and we have

Z b

a

jf .x/j dx D supfL.jf j;P/ W P 2 P.Œa; b�/g D 0: ut
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Corollary 7.4.17. Let f and g be integrable on Œa; b�: If f .x/ D g.x/ for almost
all x 2 Œa; b�; then

R b

a
f D R b

a
g:

Proof. In view of Corollary 7.4.14, this follows from Theorem 7.4.16 applied
to f � g: ut

The following important inequality is usually referred to as the Cauchy–Schwarz
(or the Cauchy–Bunyakovsky–Schwarz) inequality:

Theorem 7.4.18 (Cauchy–Schwarz Inequality). Let f and g be integrable on
Œa; b�: Then we have

�

Z b

a

fg

�2

�
�

Z b

a

f 2

��

Z b

a

g2
�

: (�)

Proof. Since (by Corollary 7.4.12) f 2; g2; and fg are integrable, so is the
(nonnegative) function .f C tg/2; for every t 2 R: Now, by Corollary 7.4.14,
we have

�

Z b

a

g2
�

t 2 C 2
�

Z b

a

fg

�

t C
�

Z b

a

f 2

�

D
Z b

a

.f C tg/2 � 0; (�)

for all t 2 R: But the quadratic function of t on the left side of (�) cannot be � 0
for all real t unless its discriminant is nonpositive. Writing this in detail gives (�).ut

We end this section with the First and Second Mean Value Theorems for
Integrals, henceforth abbreviated “First MVT for Integrals” and “Second MVT for
Integrals,” respectively:

Theorem 7.4.19 (First Mean Value Theorem for Integrals). If g is a nonnega-
tive integrable function on Œa; b�; then for any continuous function f on Œa; b� there
is a point � 2 Œa; b� such that

(i)
Z b

a

f .x/g.x/ dx D f .�/
Z b

a

g.x/ dx:

In particular, we have

(ii)
Z b

a

f .x/ dx D f .�/.b � a/:

Proof. Since f is continuous on the compact interval Œa; b�; it is bounded. Letm WD
minff .x/ W x 2 Œa; b�g and M WD maxff .x/ W x 2 Œa; b�g: Now, g.x/ � 0 for all
x 2 Œa; b� implies mg.x/ � f .x/g.x/ � Mg.x/; for all x 2 Œa; b�: Therefore, by
Corollary 7.4.14, we have

m

Z b

a

g.x/ dx �
Z b

a

f .x/g.x/ dx �M
Z b

a

g.x/ dx: ()
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In particular, if
R b

a
g.x/ dx D 0; then

R b

a
f .x/g.x/ dx D 0 and (i) holds with any

�: If
R b

a
g.x/ dx > 0; dividing the inequalities () by it, we get

m �
R b

a
f .x/g.x/ dx
R b

a
g.x/ dx

�M: ()

But then, using () and applying the Intermediate Value Theorem (cf. Theorem
4.5.6) to the continuous function f; we can find � 2 Œa; b� such that

R b

a
f .x/g.x/ dx
R b

a
g.x/ dx

D f .�/;

which gives (i). Finally, for (ii), we simply use the constant function g D 1: ut
Theorem 7.4.20 (Second Mean Value Theorem for Integrals). For every func-
tion g 2R.Œa; b�/; the following are true:

1. If f is nonnegative and decreasing on Œa; b�; then there is a point � 2 Œa; b� such
that

(iii)
Z b

a

f .x/g.x/ dx D f .a/
Z �

a

g.x/ dx:

2. If f is nonnegative and increasing on Œa; b�; then there is a point � 2 Œa; b� such
that

(iv)
Z b

a

f .x/g.x/ dx D f .b/
Z b

�

g.x/ dx:

Proof.

1. To prove (iii), given a partition P WD .xj /njD0 of Œa; b�; let

Sn.f / D
n
X

kD1
f .xk�1/�xk; .�xk WD xk � xk�1/:

Also, put �fk WD f .xk/ � f .xk�1/ and �Gk WD G.xk/ � G.xk�1/; where
G.x/ WD R x

a
g.t/ dt: Finally, put K WD supfjg.x/jg on Œa; b� and let � and

M denote the infimum and supremum of G on Œa; b�; respectively. Note that
g.x/CK � 0 on Œa; b� and we have

Z b

a

f .g CK/ D
n
X

kD1

Z xk

xk�1
f .g CK/ �

n
X

kD1
f .xk�1/

Z xk

xk�1
.g CK/ ()

D
n
X

kD1
f .xk�1/�Gk CKSn.f /:
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Now G.a/ D 0; f is decreasing, and f .b/ � 0: Therefore, by Abel’s partial
summation formula (Proposition 2.3.33), we have

n
X

kD1
f .xk�1/�Gk D �

n
X

kD1
G.xk/�fk C f .b/G.b/ ()

� �M
n
X

kD1
�fk C f .b/G.b/

�MŒf .a/ � f .b/�C f .b/G.b/ � f .a/M:

If we let kPk ! 0; then Sn.f /!
R b

a
f so that by () and (),

Z b

a

f .g CK/ � f .a/M CK
Z b

a

f;

which implies

Z b

a

fg � f .a/M D f .a/ supfG.x/ W a � x � bg: (�)

Applying (�) with g replaced by �g; we also get

Z b

a

fg � f .a/� D f .a/ inffG.x/ W a � x � bg: (�)

Since G is continuous, (�) and (�) imply that, for some � 2 Œa; b�; we indeed
have (iii):

Z b

a

fg D f .a/G.�/ D f .a/
Z �

a

g:

(2) To prove (iv), we apply (iii) to f .b � x/ and g.b � x/ to find a number
� 2 Œ0; b � a� with

Z b�a

0

f .b � x/g.b � x/ dx D f .b/
Z �

0

g.b � x/ dx:

Putting � WD b � � and using Exercise 7.1.24, we obtain (iv):

Z b

a

f .x/g.x/ dx D f .b/
Z b

�

g.x/ dx:

ut
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Corollary 7.4.21. Let g 2 R.Œa; b�/: If f is monotone on Œa; b�; then there is a
point � 2 Œa; b� such that

Z b

a

fg D f .a/
Z �

a

g C f .b/
Z b

�

g:

Proof. Suppose that f is decreasing. Then f �f .b/ is nonnegative and decreasing.
By Theorem 7.4.20, we can therefore find a � 2 Œa; b� such that

Z b

a

Œf � f .b/�g D Œf .a/ � f .b/�
Z �

a

g;

which means

Z b

a

fg D f .a/
Z �

a

g C f .b/
	

Z b

a

g �
Z �

a

g




D f .a/
Z �

a

g C f .b/
Z b

�

g;

and the proof is complete. ut

7.5 Fundamental Theorem of Calculus

In this section we prove the two fundamental theorems known as the Fundamental
Theorem of Calculus. The reason why they are fundamental is that they relate the
two basic concepts of differentiation and integration and provide a natural way of
evaluating the integral for most “reasonable” functions obtained from “elementary
functions” by simple operations. Before stating the first of these theorems, we need
a definition:

Definition 7.5.1 (Primitive, Antiderivative). Let I be an interval and f W I ! R:

We say that F W I ! R is a primitive (or antiderivative) of f if F 0.x/ D f .x/ for
all x 2 I: A primitive of f is also called an indefinite integral of f:

The following proposition is in fact Corollary 6.4.13 of the Mean Value Theorem
(Theorem 6.4.8).

Proposition 7.5.2. Let f W Œa; b� ! R: If F is any primitive of f (on Œa; b�), then
any other primitive of f has the form F C C for some constant C:

Theorem 7.5.3 (First Fundamental Theorem). Let f be integrable on Œa; b� and
let C � Œa; b� be a finite set. If F W Œa; b� ! R is a continuous function such that
F 0.x/ D f .x/ for all x 2 Œa; b� n C; then we have

Z b

a

f .x/ dx D F.b/ � F.a/:
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Proof. Assume first that C D fa; bg: Given any partition P D .xk/
n
kD0 of Œa; b�;

the MVT and F 0 D f on .a; b/ imply that F.xj / � F.xj�1/ D f .tj /.xj � xj�1/;
for some tj 2 .xj�1; xj /; 1 � j � n: Therefore, with PP WD ..xk/

n
kD0; .tj /njD1/;

we have

S.f; PP/ D
n
X

jD1
f .tj /.xj � xj�1/ (�)

D
n
X

jD1
ŒF .xj / � F.xj�1/� D F.b/ � F.a/:

Since the right side of (�) is independent of the partition P 2 P.Œa; b�/ and f is
integrable, we have

R b

a
f .x/ dx D F.b/ � F.a/; as desired. In general, let C WD

fc1; c2; : : : ; cmg with c1 < c2 < � � � < cm: Applying what we just proved on the
subintervals Œa; c1�; Œc1; c2�; : : : ; Œcm; b�; we have

Z b

a

f D
Z c1

a

f C
Z c2

c1

f C � � � C
Z b

cm

f

D ŒF .c1/ � F.a/�C
m
X

kD2
Œf .ck/ � F.ck�1/�C ŒF .b/ � F.cm/�

D F.b/ � F.a/:

ut
Notation 7.5.4. In what follows we shall often use the abbreviation

ŒF .x/�ba WD F.b/ � F.a/:

Example 7.5.5. Since arcsin x is a primitive of 1=
p
1 � x2 on .�1; 1/; we have

Z 1=2

0

1p
1 � x2 dx D Œarcsin x�1=20 D arcsin.1=2/ � arcsin.0/ D 	

6
:

Remark 7.5.6. The function f in the First Fundamental Theorem must be inte-
grable on Œa; b�: In fact, even if F is differentiable on Œa; b�; its derivative f D F 0
need not be integrable, as the following exercise shows.

Exercise 7.5.7. Consider the function

F.x/ WD
(

x2 sin.1=x2/ if x ¤ 0
0 if x D 0.



326 7 The Riemann Integral

Show that f .x/ WD F 0.x/ exists for all x 2 R and find it. Show, however, that f is
not integrable on Œ0; 1� so that the First Fundamental Theorem cannot be applied to
F and f on Œ0; 1�:

Theorem 7.5.8 (Second Fundamental Theorem). Let I be an interval and f W
I ! R: Suppose that f is integrable on any closed, bounded subinterval of I: If a
is any point in I; then the function

F.x/ WD
Z x

a

f .t/ dt .8x 2 I /

is continuous on I: Moreover, if f is continuous at x0 2 I; then F 0.x0/ D f .x0/:
Proof. Let x0 2 I: If x0 is an interior point, we pick ı > 0 so that J WD Œx0 � ı;
x0 C ı� � I: If x0 is the left (resp., right) endpoint of I; then we pick ı > 0 such
that J WD Œx0; x0C ı� � I (resp., J WD Œx0 � ı; x0� � I ). The continuity of F at x0
now follows at once from Corollary 7.4.15 applied on the interval J: Next, assume
that f is continuous at x0 and let " > 0 be given. Pick ı > 0 so that t 2 I and
jt �x0j < ı imply jf .t/�f .x0/j < ": If h is such that jhj < ı and x0Ch 2 I; then

ˇ

ˇ

ˇ

ˇ

F.x0 C h/ � F.x0/
h

� f .x0/
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

1

h

Z x0Ch

x0

f .t/ dt � f .x0/
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

1

h

Z x0Ch

x0

Œf .t/ � f .x0/� dt
ˇ

ˇ

ˇ

ˇ

� 1

jhj jhj" D ":

Therefore, F 0.x0/ D f .x0/; as desired. ut
In view of Theorem 7.3.19, the following corollary is an immediate consequence

of the theorem.

Corollary 7.5.9. Let f W I ! R and F.x/ WD R x

a
f .t/ dt be as in Theorem 7.5.8.

Then F 0.x/ D f .x/ for almost all x 2 I: In particular, if f is continuous on I;
then the function F.x/ is the primitive of f on I with F.a/ D 0:
Remark 7.5.10. Note that the First Fundamental Theorem (Theorem 7.5.3) is a
consequence of the second one (Theorem 7.5.8) if we assume that f is continuous
on Œa; b�: Indeed, under this assumption, Corollary 7.5.9 implies that G.x/ WD
R x

a
f .t/ dt is the primitive of f on Œa; b� satisfying G.a/ D 0: Now, given any

other primitive F of f on Œa; b�; Proposition 7.5.2 implies that G � F is constant,
and hence, G.x/�F.x/ D G.a/�F.a/ D �F.a/; for all x 2 Œa; b�: With x D b;
this gives

G.b/ D
Z b

a

f .t/ dt D F.b/ � F.a/:
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Corollary 7.5.11. Let a and b be two differentiable functions on an open interval I:
Let J be an interval such that a.I /[ b.I / � J and let f be a continuous function
on J: Then the function G.x/ WD R b.x/

a.x/
f .t/ dt is differentiable on I and we have

G0.x/ D
�

Z b.x/

a.x/

f .t/ dt

�0
D f .b.x//b0.x/ � f .a.x//a0.x/; (�)

for all x 2 I:
Proof. Pick a fixed c 2 J and observe that

Z b.x/

a.x/

f .t/ dt D
Z b.x/

c

f .t/ dt �
Z a.x/

c

f .t/ dt D F.b.x// � F.a.x//; (�)

where F.y/ WD R y

c
f .t/ dt; for all y 2 J: Since (by the Second Fundamental

Theorem) F 0.y/ D f .y/; we obtain (�) by differentiating (�) and using the
Chain Rule. ut

Our next theorem, sometimes referred to as integration by substitution, is a useful
tool for evaluating many integrals.

Theorem 7.5.12 (Change of Variables). Let � be a C1 function on Œ˛; ˇ�; and let
a WD �.˛/; b WD �.ˇ/: If f is continuous on the interval �.Œ˛; ˇ�/; then

Z b

a

f .x/ dx D
Z ˇ

˛

f .�.t//�0.t/ dt: ()

Proof. Note that f ı � is continuous on Œ˛; ˇ�: Now, if F is a primitive of f; then
(using the Chain Rule) we have

d

dt
F.�.t// D F 0.�.t//�0.t/ D f .�.t//�0.t/:

Therefore, by the First Fundamental Theorem, the right side of () is

ŒF .�.t//�ˇ˛ D F.�.ˇ// � F.�.˛// D F.b/ � F.a/ D ŒF .x/�ba;

which equals the left side
R b

a
f .x/ dx D ŒF .x/�ba: ut

Example 7.5.13. Let 1 < ˛ < ˇ: Evaluate the integral

Z ˇ

˛

1

t log t
dt:

Simply note that the integral has the form
R ˇ

˛
f .�.t//�0.t/ dt; where �.t/ WD

log t and f .x/ WD 1=x: Therefore,
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Z ˇ

˛

1

t log t
dt D

Z logˇ

log˛

1

x
dx D log.logˇ/ � log.log˛/:

The continuity of f in the above Change of Variables Theorem may be replaced
by the weaker and more natural assumption that f be Riemann integrable on Œa; b�:
So here is another version of the theorem:

Theorem 7.5.14 (Integration by Substitution). Let f be Riemann integrable on
Œa; b� and let g W Œc; d � ! Œa; b� be a C1-diffeomorphism with g0.t/ > 0 for all
t 2 Œc; d �. Then we have

(i)
Z b

a

f .x/ dx D
Z d

c

f
�

g.t/
�

g0.t/ dt:

Proof. First note that f
�

g.t/
�

g0.t/ is Riemann integrable because it is the product
of the continuous (hence integrable) function g0 and the composite f ı g which is
integrable by Corollary 7.3.23. Now let P D .tk/

n
kD0 be a partition of Œc; d � and,

using the MVT, pick the tags �j 2 Œtj�1; tj � such that

g.tj / � g.tj�1/ D g0.�j /.tj � tj�1/; 1 � j � n:

Since g is a (strictly increasing) diffeomorphism, we have the corresponding
partition Q D .xk/

n
kD0 of Œa; b� with xk D g.tk/ for all k and kPk ! 0 if and

only if kQk ! 0: If we set �j WD g.�j / for 1 � j � n; then we have

(ii)
n
X

jD1
f .�j /.xj � xj�1/ D

n
X

jD1
f
�

.g.�j /
�

g0.�j /.tj � tj�1/:

Taking the limit in (ii) as kPk ! 0; we obtain (i). ut
The following theorem is another valuable tool for evaluating integrals:

Theorem 7.5.15 (Integration by Parts). Let f and g be integrable functions on
Œa; b�: Then, for any primitives F and G of f and g; respectively, we have

Z b

a

F.x/g.x/ dx D F.b/G.b/ � F.a/G.a/ �
Z b

a

f .x/G.x/ dx: ()

Proof. Well, since .FG/0 D F 0G C G0F D f G C gF; the First Fundamental
Theorem implies

Z b

a

Œf .x/G.x/C g.x/F.x/� dx D F.b/G.b/ � F.a/G.a/;

from which () follows at once. ut
Example 7.5.16. Let 0 < a < b: Evaluate the integral

R b

a
log x dx:
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Note that the integral has the form
R b

a
F.x/g.x/ dx; where F.x/ WD log x and

g.x/ WD 1: Thus, f .x/ WD F 0.x/ D 1=x and G.x/ WD x: Using integration by parts,
we obtain

Z b

a

log x dx D Œx log x�ba �
Z b

a

� 1

x

�

x dx D b log b � a log a � .b � a/:

We end this section with another version of Taylor’s Theorem. This time, as we
promised in Chap. 6, we shall give another form of the remainder, called the integral
remainder:

Theorem 7.5.17 (Taylor’s Formula with Integral Remainder). If f W I ! R

is of class CnC1 [i.e., .nC 1/-times continuously differentiable] on I; then for any
x0; x 2 I we have

f .x/ D Pn;x0.x/C
1

nŠ

Z x

x0

.x � t /nf .nC1/.t/ dt; (�)

with the nth Taylor polynomial

Pn;x0.x/ WD f .x0/C
f 0.x0/
1Š

.x � x0/C � � � C f .n/.x0/

nŠ
.x � x0/n;

and the integral remainder

Rn;x0.x/ WD
1

nŠ

Z x

x0

.x � t /nf .nC1/.t/ dt:

Proof. We use induction and integration by parts. For n D 1; the result is obvious:

f .x/ D f .x0/C .1=1Š/
Z x

x0

f 0.t/ dt:

Assume that (�) holds with n D kI i.e., that we have

f .x/ D Pk;x0.x/C
1

kŠ

Z x

x0

.x � t /kf .kC1/.t/ dt: (�)

Then we must show that (�) also holds for n D k C 1: Now, if f is .k C 2/-
times continuously differentiable on I; then f .kC1/ is continuously differentiable.
The integral on the right side of (�) has the form

R x

x0
u.t/v0.t/ dt; where u.t/ WD

f .kC1/.t/ and v0.t/ WD .x � t /k: Therefore, we have u0.t/ D f .kC2/.t/ and v.t/ D
�.x � t /kC1=.k C 1/: Thus, integrating by parts, we get
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1

kŠ

Z x

x0

.x � t /kf .kC1/.t/ dt D � 1

.k C 1/Š Œ.x � t /
kC1f .kC1/.t/�tDxtDx0

C 1

.k C 1/Š
Z x

x0

.x � t /kC1f .kC2/.t/ dt

D f .kC1/.x0/
.k C 1/Š .x � x0/

kC1

C 1

.k C 1/Š
Z x

x0

.x � t /kC1f .kC2/.t/ dt;

which proves the case n D k C 1 and completes the proof. ut

7.6 Functions of Bounded Variation

In this section we study an interesting class of functions that plays an important role
in differentiation, rectifiability of curves, Fourier series, and many more situations.
This class was introduced by the French mathematician Camille Jordan in his work
on the convergence of Fourier series. We saw that monotone functions enjoy many
nice properties. It will be seen that functions of bounded variation are closely
related to monotone functions and hence share some of these properties as well.
For example, the set of discontinuity points of a function of bounded variation is
countable. We already know this to be true for monotone functions.

Definition 7.6.1 (Total Variation, Bounded Variation). Given a function f W
Œa; b�! R and any partition P D .xk/nkD0 of Œa; b�; let us put

V.f;P/ WD
n
X

jD1
jf .xj / � f .xj�1/j D

n
X

jD1
j�fj j;

where �fj WD f .xj / � f .xj�1/: The total variation of f on Œa; b� is then defined
to be the extended real number

V b
a .f / WD supfV.f;P/ W P 2 P.Œa; b�/g:

The function f is said to be of bounded variation on Œa; b� if V b
a .f / is finite. The

set of all functions of bounded variation on Œa; b� will be denoted by BV .Œa; b�/:

Remark 7.6.2.

1. It is easy to see (cf. Proposition 7.6.10 below) that, if f 2 BV .Œa; b�/; then its
restriction to any subinterval Œc; d � � Œa; b� is of bounded variation on Œc; d �:We
shall abuse the language (and notation), however, by saying that f is of bounded
variation on Œc; d � and write f 2 BV .Œc; d �/:
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2. A function may be continuous (even differentiable) without being of bounded
variation, as the following example shows.

Example 7.6.3 (Differentiable 6) Bounded Variation). Consider the function

f .x/ D
(

x2 sin 	
2x2

if x 2 .0; 1�;
0 if x D 0:

Then f is differentiable but not of bounded variation on Œ0; 1�:

Since x 7! x2 sin.	=2x2/ is obviously differentiable on R n f0g; we need only
check the differentiability of f at x D 0: Now, by the Squeeze Theorem,

lim
x!0

f .x/ � f .0/
x � 0 D lim

x!0
x sin.	=2x2/ D 0I

i.e., f 0.0/ D 0: To show that f is not of bounded variation on Œ0; 1�; consider the
partition

P D
�

0;
1p
2n � 1 ;

1p
2n � 3 ; : : : ;

1p
5
;
1p
3
; 1

�

:

A simple computation shows that jf .x1/ � f .x0/j D 1=.2n � 1/ and

jf .xj / � f .xj�1/j D 1

2n � .2j � 1/ C
1

2n � .2j � 3/ .2 � j � n/:

Therefore,

n
X

jD1
j�fj j D 1

2n � 1 C
n
X

jD2

�

1

2n � .2j � 1/ C
1

2n � .2j � 3/
�

D 1C 2

3
C 2

5
C � � � C 2

2n � 1
> 1C 1

2
C 1

3
C � � � C 1

n
:

Since
P1

nD1.1=n/ D C1; we see indeed that f is not of bounded variation on
Œ0; 1�: The reader can check that the function in this example has an unbounded
derivative. In fact, this must be the case because, if f 0 is bounded, then f is Lipschitz
and hence necessarily of bounded variation (cf. Proposition 7.6.5 below).

Proposition 7.6.4 (Bounded Variation ) Bounded). If f W Œa; b� ! R is of
bounded variation, then it is bounded on Œa; b�:

Proof. For each x 2 .a; b/; consider the partition P WD .a; x; b/: Then we obviously
have jf .x/ � f .a/j � V b

a .f / and the boundedness of f follows. ut
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Proposition 7.6.5 (Monotone or Lipschitz ) Bounded Variation). Every mono-
tone function on Œa; b� is of bounded variation and so is every Lipschitz function. In
particular, if f W Œa; b�! R is integrable, then the function

F.x/ WD
Z x

a

f .t/ dt .8x 2 Œa; b�/

is of bounded variation on Œa; b�:

Proof. If f is monotone (i.e., increasing or decreasing), then, for any partition P D
.xk/

n
kD0 of Œa; b�; we obviously have

n
X

jD1
jf .xj / � f .xj�1/j D jf .b/ � f .a/j;

so that V b
a .f / D jf .b/ � f .a/j < 1: If f is Lipschitz, then there is a constant

A > 0 such that jf .s/ � f .t/j � Ajs � t j; for all s; t 2 Œa; b�: It follows that, for
any partition P as above,

n
X

jD1
jf .xj / � f .xj�1/j � A

n
X

jD1
.xj � xj�1/ D A.b � a/;

which implies V b
a .f / � A.b�a/ <1: This also proves the last statement because,

by Corollary 7.4.15, F is Lipschitz on Œa; b�: ut
Exercise 7.6.6. Show that, if f is continuous on Œa; b� and has a bounded derivative
on .a; b/; then it is of bounded variation. Hint: Use the MVT.

Remark 7.6.7. The sum and product of two monotone functions need not be
monotone. For example, both x 7! x and x 7! x2 are (strictly) increasing on Œ0; 1�;
but x�x2 is not monotone there. Also, x 7! x is (strictly) increasing on Œ�1; 1�; but
x 7! x2 is not monotone there. As the next proposition shows, however, the class of
functions of bounded variation is stable under most algebraic operations including
the operations of addition and multiplication:

Proposition 7.6.8. If f and g are functions of bounded variation on Œa; b�; then so
are jf j; f̨ C ˇg (for any constants ˛; ˇ 2 R), minff; gg; maxff; gg; and fg: If,
in addition, inffjg.x/j W x 2 Œa; b�g > 0; then 1=g and f=g are also of bounded
variation on Œa; b�:

Proof. Given any partition P D .xk/
n
kD0 of Œa; b� and any function � W Œa; b� !

R; let us write ��j WD �.xj / � �.xj�1/: Since
ˇ

ˇ�jf jj
ˇ

ˇ � j�fj j; we have
V b
a .jf j/ � V b

a .f /; which shows that jf j is of bounded variation. Next, we have
�. f̨ C ˇg/j D ˛�fj C ˇ�gj ; so that

n
X

jD1
j˛�fj C ˇ�gj j � j˛j

n
X

jD1
j�fj j C jˇj

n
X

jD1
j�gj j:



7.6 Functions of Bounded Variation 333

It follows that V b
a . f̨ C ˇg/ � j˛jV b

a .f /C jˇjV b
a .g/; and f̨ C ˇg is of bounded

variation. For fg; let A WD supfjf .x/j W x 2 Œa; b�g and B WD supfjg.x/j W x 2
Œa; b�g: Note that, by Proposition 7.6.4, A and B are finite. Now, if h WD fg; then
�hj D f .xj /�gj C g.xj�1/�fj ; from which we get

n
X

jD1
j�hj j � A

n
X

jD1
j�gj j C B

n
X

jD1
j�fj j:

Therefore, we have V b
a .fg/ � AV b

a .g/C BV b
a .f /: For minff; gg and maxff; gg;

the assertion follows from the identities used in Corollary 7.4.12. Note, in particular,
that both f C WD maxff; 0g and f � WD maxf�f; 0g are of bounded variation.
Finally, suppose that m WD inffjg.x/j W x 2 Œa; b�g > 0: Then

ˇ

ˇ

ˇ

ˇ

1

g.xj /
� 1

g.xj�1/

ˇ

ˇ

ˇ

ˇ

D jg.xj / � g.xj�1/j
jg.xj /g.xj�1/j �

1

m2
j�gj j;

and hence V b
a .1=g/ � 1

m2
V b
a .g/: Since f=g D f � .1=g/; it also follows that

V b
a .f=g/ is finite and the proof is complete. ut

Corollary 7.6.9. If f and g are two increasing functions on Œa; b�; then f � g is
of bounded variation on Œa; b�:

Proof. This follows at once from Propositions 7.6.5 and 7.6.8. ut
Next we show that, like the Riemann integral, the total variation is additive with

respect to intervals:

Proposition 7.6.10 (Interval Additivity). Let f W Œa; b�! R; with a < b; and let
c 2 .a; b/: Then f 2 BV .Œa; b�/ if and only if f 2 BV .Œa; c�/ \BV .Œc; b�/; and
we have

V b
a .f / D V c

a .f /C V b
c .f /: (�)

Proof. Suppose that f 2 BV .Œa; b�/ and let P1 and P2 be partitions of Œa; c� and
Œc; b�; respectively. If P is the partition of Œa; b� containing all the points of P1
and P2; then

V.f;P1/C V.f;P2/ D V.f;P/ � V b
a .f /:

Therefore, f is of bounded variation on Œa; c� and on Œc; b�; and we have

V c
a .f /C V b

c .f / � V b
a .f /: ()

Conversely, let P be any partition of Œa; b� and let P 0 WD P [ fcg: If P1 and P2 are
the partitions of Œa; c� and Œc; b�; respectively, induced by P 0; then we have

V.f;P/ � V.f;P 0/ D V.f;P1/C V.f;P2/ � V c
a .f /C V b

c .f /:
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Hence f 2 BV .Œa; b�/ and we also have

V b
a .f / � V c

a .f /C V b
c .f /: ()

Combining () and (), we obtain (�) and the proof is complete. ut
Remark 7.6.11. If f W Œa; b� ! R and if P D .xk/

n
kD0 is any partition of Œa; b�;

then Proposition 7.6.10 implies that

V b
a .f / D

n
X

jD1
V
xj
xj�1 .f /:

In particular, if f is monotone on each subinterval Œxj�1; xj �; then (in view of
Proposition 7.6.5) V b

a .f / can be easily computed:

V b
a .f / D

n
X

jD1
jf .xj / � f .xj�1/j:

For example, we have

V
3	=2

�	=2.cos/ D Œcos.0/ � cos.�	=2/�C Œcos.0/ � cos.	/�C Œcos.3	=2/ � cos.	/�

D 1C 2C 1 D 4:

Definition 7.6.12 (Total Variation Function). Let f be of bounded variation on
Œa; b�: The function vf .x/ WD V x

a .f /; for all x 2 .a; b�; and vf .a/ WD 0 is called the
total variation function of f on Œa; b�:

Proposition 7.6.13. Let f W Œa; b� ! R be of bounded variation on Œa; b�: Then
the total variation function vf is increasing on Œa; b� and, for each c 2 .a; b� (resp.,
c 2 Œa; b/), vf is left (resp., right) continuous at c if and only if f is left (resp.,
right) continuous at c:

Proof. That vf is increasing is obvious. (Why?) Suppose that vf is left continuous
at c 2 .a; b�: Since

jf .c/ � f .x/j � V c
x .f / D vf .c/ � vf .x/;

for all a � x < c; we see that f .x/ ! f .c/ as x ! c�; and f is indeed
left continuous at c: A similar argument shows that, if vf is right continuous at
c 2 Œa; b/; then so is f: Now suppose that f is left continuous at c 2 .a; b�: Then,
given any " > 0; we can pick a partition P D .xk/nkD0 of Œa; c� such that

n
X

jD1
jf .xj / � f .xj�1/j > vf .c/ � "

2
;
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and jf .c/ � f .xn�1/j < "=2: (Why?) It then follows that vf .x/ > vf .c/ � "; for
all x 2 .xn�1; c/: (Why?) Therefore, vf is indeed left continuous at c: A similar
argument shows that, if f is right continuous at c 2 Œa; b/; then so is vf and the
proof is complete. ut

We are now ready for our main theorem:

Theorem 7.6.14 (Jordan Decomposition Theorem). A function f W Œa; b� ! R

is of bounded variation on Œa; b� if and only if it is the difference of two increasing
functions.

Proof. If f is the difference of two increasing functions, then it is of bounded
variation (cf. Corollary 7.6.9). Conversely, suppose f 2 BV .Œa; b�/ and let
wf WD vf � f; where vf is the total variation function of f defined above. Then
f D vf �wf :Also, we already know that vf is increasing. Thus, we need only show
that wf is increasing as well. Now, if a � x < x0 � b; then, by Proposition 7.6.10,

wf .x
0/ � wf .x/ D Œvf .x0/ � vf .x/� � Œf .x0/ � f .x/�

D V x0
x .f / � Œf .x0/ � f .x/� � 0;

and the proof is complete. ut
Corollary 7.6.15. A continuous function f W Œa; b� ! R is of bounded variation
on Œa; b� if and only if it is the difference of two increasing, continuous functions on
Œa; b�:

Proof. This follows at once from Theorem 7.6.14 and Proposition 7.6.13. ut
Corollary 7.6.16. If f is increasing (resp., decreasing) on Œa; b� and if g is of
bounded variation on Œf .a/; f .b/� (resp., Œf .b/; f .a/�), then g ı f is of bounded
variation on Œa; b�:

Proof. Suppose f is increasing. By Theorem 7.6.14, we can pick two increasing
functions � and  on Œf .a/; f .b/� such that g D  ��: It then follows that gıf D
 ıf �� ıf is the difference of two increasing functions and hence is of bounded
variation as claimed. ut
Corollary 7.6.17 (Bounded Variation ) Regulated). If f is of bounded vari-
ation on Œa; b�; then it is regulated on Œa; b�: In other words, BV .Œa; b�/ �
Reg.Œa; b�/: In particular, the set of discontinuity points of f is countable.

Proof. This follows from Theorem 7.6.14, because monotone functions are regu-
lated and have countable discontinuity sets. ut
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7.7 Problems

1. Let f; h 2 R.Œa; b�/ and let g W Œa; b� ! R: Show that, if f .x/ 	 g.x/ 	 h.x/ for all

x 2 Œa; b� and
R b

a f D A D R b

a h; then g 2 R.Œa; b�/ and
R b

a g D A:

2. Let f 2 R.Œa; b�/: Show that

Z b

a

f .x/ dx D lim
ı!0C

Z b

aCı

f .x/ dx D lim
ı!0C

Z b�ı

a

f .x/ dx D lim
ı!0C

Z b�ı

aCı

f .x/ dx:

3. Give an example of a positive function f on Œ0; 1� such that f 2 R.Œ0; 1�/ but 1=f 62
R.Œ0; 1�/:

4 (R.Œa; b�/ Is Not Closed Under Composition).

(a) Consider the function

f .x/ D
8

<

:

1

q
if x D p

q
2 .0; 1� .p; q 2 N; gcd.p; q/ D 1/;

0 if x 2 Qc \ .0; 1�;

and f .0/ WD 1: Show that f 2 R.Œ0; 1�/ and that
R 1

0 f .x/ dx D 0:

(b) Let f be the function in part (a) and let g WD 
.0;1�: Show that g ı f 62 R.Œ0; 1�/ even though
f; g 2 R.Œ0; 1�/.

5. Show that a bounded, infinite set with a finite set of limit points has content zero.

6. Let f; g W Œa; b� ! R: Assume that f is bounded, g 2 R.Œa; b�/; and the set fx 2 Œa; b� W
f .x/ ¤ g.x/g has content zero. Show that f 2 R.Œa; b�/ and

R b

a f D R b

a g:

7. Show that the functions

f .x/ WD
(

x sin.1=x/ if 0 < jxj 	 1;

0 if x D 0
and g.x/ WD

(

x=jxj if 0 < jxj 	 1;

0 if x D 0

are both regulated on Œ�1; 1� but the composite function g ı f is not regulated.

8. Show that, if f 2 R.Œa; b�/; then there exists an x 2 Œa; b� such that
R x

a f .t/ dt D R b

x f .t/ dt:

Give an example where the only such x is an endpoint. Hint: Look at the function g.x/ WD
R x

a f .t/ dt � R b

x f .t/ dt:

9 (Cauchy’s Integral Test).

(a) Let k 2 N and let f be a nonnegative, decreasing function such that Œk;1/ � dom.f /:

Show that
P1

nDk f .n/ is convergent if and only if limb!1
R b

k f .x/ dx exists (in Œ0;1/).
Hint: Compare the left and right Riemann sums of f on Œk; n� to

R n

k f .x/ dx:

(b) Show that the series
P1

nD2

1

n.logn/p
converges if and only if p > 1:

10. Let a > 0 and f 2 R.Œ�a; a�/: Show that, if f is even (i.e., f .�x/ D f .x/ for all
x 2 Œ�a; a�), then

R a

�a f .x/ dx D 2
R a

0 f .x/ dx: Similarly, show that if f is odd (i.e., f .�x/ D
�f .x/ for all x 2 Œ�a; a�), then

R a

�a f .x/ dx D 0:
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11 (Average Value). Let a < b and f 2 R.Œa; b�/: Define the average value of f on Œa; b� to
be the number

Av.f / WD 1

b � a

Z b

a

f .x/ dx:

(a) Show that

Av.f / D lim
n!1

1

n

n
X

kD1

f

�

aC k
b � a

n

�

: (�)

(b) Let L denote the limit on the right side of (�) in (a). Give an example of a function f 62
R.Œ0; 1�/ for which L exists. This will show that .b � a/L cannot be used as the definition of
R b

a f .x/ dx:

12. Find each limit.

.a/ lim
n!1

n
X

kD1

1

nC k
; .b/ lim

n!1

n
X

kD1

n

n2 C k2
:

Hint: For (a), note that 1=.n C k/ D .1=n/=.1 C k=n/ and interpret the sum as a Riemann sum
for

R 1

0 dx=.1C x/:

13. Find each limit.

.a/ lim
n!1

1

n

n
X

kD1

sin
k	

n
; .b/ lim

n!1
1

n

n
X

kD1

kp
n2 C k2

:

14. Let f 2 C Œ0;1/ and let Av.f; b/ WD .
R b

0 f .x/ dx/=b be the average value of f on Œ0; b�:
Show that if limx!1 f .x/ D `, then limb!1 Av.f; b/ D `:

15. Let f be strictly increasing on Œa; b�: Consider a partition Q WD .yj /
n
jD0 of Œf .a/; f .b/� and

the corresponding partition P WD .xj /
n
jD0 of Œa; b�; where f .xj / D yj for 0 	 j 	 n: Show that

U.f;P/C L.f �1;Q/ D bf .b/� af .a/:

Deduce that

Z f .b/

f .a/

f �1.x/ dx D bf .b/� af .a/�
Z b

a

f .x/ dx:

Hint: Draw a picture! Show a similar result for a strictly decreasing function f on Œa; b�: Namely,
given the partitions P WD .xj /

n
jD0 and Q WD .yj /

n
jD0 as above, show that

L.f;P/C U.f �1;Q/ D bf .b/� af .a/:

Deduce that we have

Z f .a/

f .b/

f �1.x/ dx D af .a/� bf .b/C
Z b

a

f .x/ dx:
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16. Given any positive numbers p and q; show that
Z 1

0

.1� xp/1=q dx D
Z 1

0

.1� xq/1=p dx:

17 (Young’s Inequality). Let f 2 C.Œ0;1// be strictly increasing, f .0/ D 0; and
limx!1 f .x/ D 1: Show that

ab 	
Z a

0

f .x/ dx C
Z b

0

f �1.x/ dx
�8a; b 2 Œ0;1/

�

;

with equality holding if and only if b D f .a/:Hint: Let g WD f �1 and consider the corresponding
primitives F.x/ D R x

0 f .t/ dt and G.x/ WD R x

0 g.t/ dt , vanishing at x D 0: For fixed b � 0;

define H.a/ WD F.a/CG.b/� ab and note that H.a/ D 0 if and only if f .a/ D b: (Why?)

18. Let p > 1 and let q WD p=.p�1/ so that 1=pC1=q D 1: Show that, for any a; b 2 Œ0;1/;

ab 	 ap

p
C bq

q
;

with equality holding if and only if ap D bq: Hint: Let f .x/ WD xp�1 and use Young’s Inequality.

19 (Jensen’s Inequality).

(a) Show that, if � 2 RR is a convex function and if f 2 R.Œ0; 1�/; then we have

�
�

Z 1

0

f .x/ dx
�

	
Z 1

0

�.f .x// dx:

(b) Show that, for any f 2 R.Œ0; 1�/; we have

exp
�

Z 1

0

f .x/ dx/
�

	
Z 1

0

exp.f .x// dx:

Hint: Note that � is continuous.

20. Let f W Œa; b� ! Œ0;1/ be continuous. Show that

lim
n!1

�

Z b

a

.f .x//n
�1=n D supff .x/ W x 2 Œa; b�g:

Hint: Let M WD supff .x/ W x 2 Œa; b�g and note that, given any " > 0; we have f .x/ > M � "

in some interval Œc; d � � Œa; b�:

21. Let f W Œa; b� ! R be a continuous function such that,
R ˇ

˛ f .x/ dx D 0 for all Œ˛; ˇ� �
Œa; b�: Show that f .x/ D 0 for all x 2 Œa; b�:

22. Show that, given any f 2 R.Œa; b�/ and any " > 0; there is a polynomial function p".x/
such that

Z b

a

jf .x/� p".x/j dx < ":

23 (Lerch’s Theorem). Let f 2 C.Œ0; 1�/: Show that, if
R 1

0 x
nf .x/ dx D 0 for all n 2 N[f0g;

then f .x/ D 0 for all x 2 Œ0; 1�:

24. Let f 2 C.Œ0; 1�/: Show that, if
R 1

0 x
kf .x/ dx D 0 for k D 0; 1; : : : ; n � 1

and
R 1

0 x
nf .x/dx D 1; then jf .x0/j � 2n.n C 1/ for some x0 2 Œ0; 1�: Hint:

R 1

0 .x � 1=2/nf .x/ dx D 1:
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25. Let f 2 C.Œa; b�/ and suppose that
R b

a f .x/g.x/ dx D 0 for all g 2 Step.Œa; b�/: Show
that f .x/ D 0 for all x 2 Œa; b�:

26. Show that, if f 2 R.Œ0; 1�/; then

�

Z 1

0

f .x/ dx
�2 	

Z 1

0

Œf .x/�2 dx:

27 (Poincaré–Wirtinger Inequality). Let a > 0 and f W Œ�a; a� ! R a continuously
differentiable function. Show that we have

Z a

�a

�

f .x/
�2
dx 	 4a2

Z a

�a

�

f 0.x/
�2
dx: (�)

28 (Lyapunov’s Inequality). Let a < b and let p W Œa; b� ! R be a nonzero, continuous
function. Suppose that f ¤ 0 is a twice continuously differentiable function satisfying f 00.x/C
p.x/f .x/ D 0 on Œa; b� and f .a/ D f .b/ D 0: Show that we then have

Z b

a

jp.x/j dx D
Z b

a

ˇ

ˇ

ˇ

f 00.x/
f .x/

ˇ

ˇ

ˇ dx >
4

b � a
:

29. Show that, if 0 < a < b; then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

sin x

x
dx

ˇ

ˇ

ˇ

ˇ

ˇ

	 2

�

1

a
C 1

b

�

:

Deduce that limb!1
R b

a x
�1 sin x dx exists. Hint: Use Corollary 7.4.21.

30. Using the integral remainder in Theorem 7.5.17 and the First MVT for Integrals (Theo-
rem 7.4.19) deduce the Cauchy form of the remainder for Taylor’s Formula:

Rn;x0 .x/ D f .nC1/.�/

nŠ
.x � �/n.x � x0/:

31. Show that

F.x/ WD
Z

dx

.1C x2/3=2
D sin.arctan x/C C:

32. Show that

Z 1

0

x4.1� x/4

1C x2
dx D 22

7
� 	:

Hint: Use “long division.”

33. Let f 2 C.Œ0;1// and f .x/ ¤ 0 for all x > 0: Show that, if

Œf .x/�2 D 2

Z x

0

f .t/ dt .8x > 0/;

then f .x/ D x for all x 2 Œ0;1/:
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34. Show that, if ˛ < 1; then

lim
x!1 x˛

Z xC1

x

sin.t2/ dt D 0:

Hint: Using integration by parts, estimate j R xC1

x sin.t2/ dt j:
35. Let f 2 C1.Œa; b�/ and f .a/ D f .b/ D 0:

(a) Show that

Z b

a

xf .x/f 0.x/ dx D �1
2

Z b

a

Œf .x/�2 dx:

(b) Show that, if we also have
R b

a Œf .x/�
2 dx D 1; then

 

Z b

a

Œxf .x/�2 dx

! 

Z b

a

Œf 0.x/�2 dx

!

� 1

4
:

36. Let b > 0 and suppose that f 2 C.Œ0; b�/ satisfies f .x/C f .b � x/ ¤ 0 for all x 2 Œ0; b�:

Evaluate the integral

Z b

0

f .x/

f .x/C f .b � x/
dx:

Hint: Let g.x/ WD f .x/ C f .b � x/: Look at the integrals
R b

0 Œf .x/=g.x/� dx and
R b

0 Œf .b � x/=g.x/� dx.

37. Let b > 0 and let f W Œ0; b� ! R be a differentiable function such that f 0.b � x/ D f 0.x/
for all x 2 Œ0; b�: Evaluate

R b

0 f .x/ dx: Can you give an example of such a function?

38. Let b > 0 and consider the set of all functions f W Œ0; b� ! R that satisfy the functional
equation

f .x/f .b � x/ D 1 .8x 2 Œ0; b�/: (�)

(a) Show that there are infinitely many functions f 2 C.Œ0; b�/ satisfying (�). Hint: Use the
exponential function.

(b) If f 2 R.Œ0; b/� is any positive function satisfying (�), for all x 2 Œ0; b�; calculate the integral

Z b

0

dx

1C Œf .x/�
p
2
:

Hint: Use the substitution u WD b � x:

39. Find all differentiable functions f 2 RR which satisfy Œf .x/�3 D R x

1 Œf .t/�
2 dt:

40. Find the derivative of each function.

.a/

Z x2

0

e�p
t dt; .b/

Z 1

p
1Cx2

sin.t2/ dt; .c/

Z x2

x

sec.et / dt:
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41 (Euler’s Beta Function). Show that

B.m; n/ WD
Z 1

0

xm�1.1� x/n�1 dx D .m� 1/Š.n� 1/Š

.mC n� 1/Š
.8m; n 2 N/:

Hint: Use repeated integration by parts, first getting B.m; n/ D n�1
m
B.mC 1; n� 1/:

42. Show that the function

f .x/ WD
(

x sin.log x/ if x 2 .0; 1�;

0 if x D 0

is differentiable on .0; 1� (but not at x D 0), that (defining f 0.0/ arbitrarily) f 0 2 R.Œ0; 1�/; and
that

R 1

0 f
0.x/ dx D 0:

43. Given any n 2 N [ f0g; show that the function

fn.x/ WD
8

<

:

sin.2nC 1/x

sin x
if x 2 .0; 	=2�;

2nC 1 if x D 0

is integrable on Œ0; 	=2� and find Jn WD R 	=2

0 fn.x/ dx by considering JnC1 � Jn: Deduce the
value of the integral

In WD
Z 	=2

0

sin2 nx

sin2 x
dx;

using the differences InC1 � In: Here, sin2 nx= sin2 x WD n2 at x D 0:

44 (Wallis’ Formula).

(a) Let I0 WD 	=2 and In WD R 	=2

0 sinn x dx for all n 2 N: Show that In D .n� 1/.In�2 � In/

for all n � 2; and deduce that

I2n D 1 � 3 � 5 � � � .2n� 1/

2 � 4 � 6 � � � .2n/
	

2
.8n � 1/:

(b) Similarly, show that I1 D 1 and hence

I2nC1 D 2 � 4 � 6 � � � .2n/
1 � 3 � 5 � � � .2nC 1/

.8n � 1/:

(c) Show that

I2n

I2nC1

D
�

1 � 3 � 5 � � � .2n� 1/

2 � 4 � 6 � � � .2n/
�2
.2nC 1/	

2
:

(d) Prove the inequalities 0 	 I2nC1 	 I2n 	 I2n�1 and show that

1 	 I2n

I2nC1

	 I2n�1
I2nC1

D 1C 1

2n
:

(e) Show that

lim
n!1

�

2 � 4 � 6 � � � .2n/
1 � 3 � 5 � � � .2n� 1/

p
2nC 1

�

D
r

	

2
:
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(f) Show that

lim
n!1

p
n � 2 � 4 � 6 � � � .2n/
1 � 3 � 5 � � � .2nC 1/

D
p
	

2
:

45.

(a) Show that

Z 1

0

.1� x2/n dx D 2 � 4 � 6 � � � .2n/
1 � 3 � 5 � � � .2nC 1/

.8n � 1/:

Hint: Use the substitution x D sin t:
(b) Similarly, show that

Z 1

0

1

.1C x2/n
dx WD lim

b!1

Z b

0

1

.1C x2/n
dx D 1 � 3 � 5 � � � .2n� 3/

2 � 4 � 6 � � � .2n� 2/

	

2
.8n � 2/:

Hint: Make the substitution x D cot u:
(c) Using the derivative, prove the inequalities 1 � x2 	 e�x2 for all x 2 Œ0; 1� and e�x2 	

1=.1C x2/ for all x � 0: Deduce that, for all n 2 N;

.1� x2/n 	 e�nx2 .8x 2 Œ0; 1�/; and e�nx2 	 1=.1C x2/n .8x � 0/:

(d) Integrating the inequalities in (c) and using the substitution � WD x
p
n; deduce that

p
n � 2 � 4 � 6 � � � .2n/
1 � 3 � 5 � � � .2nC 1/

	
Z

p
n

0

e��2 d� 	 p
n � 1 � 3 � 5 � � � .2n� 3/

2 � 4 � 6 � � � .2n� 2/

	

2
:

(e) Finally, conclude that

Z 1

0

e��2 d� WD lim
b!1

Z b

0

e��2 d� D
p
	

2
:

Hint: Use Problem 44.

46. Let ˛ > 0 and ˇ > 0 be given. Show that the function

f .x/ WD
8

<

:

x˛ sin
� 	

2xˇ

�

if x 2 .0; 1�;

0 if x D 0

is continuous but not of bounded variation if ˛ 	 ˇ: Hint: First prove the case ˛ D ˇ D 1 as in
Example 7.6.3, then use Corollary 7.6.16.

47.

(a) Show that the function

f .x/ WD
8

<

:

x cos
� 	

2x

�

if x 2 .0; 1�;

0 if x D 0

is continuous but not of bounded variation. Hint: Consider the partition Pn WD
.0; 1=.2n/; 1=.2n� 1/; : : : ; 1=2; 1/:
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(b) Show that the function

g.x/ WD
8

<

:

x2 cos

�

1

x

�

if x 2 .0; 1�;

0 if x D 0

is of bounded variation. Hint: Look at g0.x/:

48. Let P D .xk/
n
kD0 be a partition of Œa; b� and let � 2 Step.Œa; b�/ be constant on each

Ij WD .xj�1; xj /; 1 	 j < n: Show that � 2 BV .Œa; b�/ and we have

V b
a .f / D jdC

0 j C jd�
n j C

n�1
X

kD1

.jd�
k j C jdC

k j/;

where d�
k WD f .xk/� f .xk�/ and dC

k WD f .xkC/� f .xk/ are the left and right jumps of f at

xk; for 1 	 k 	 n� 1; d
C
0 WD f .aC/� f .a/; d�

n WD f .b/� f .b�/:
49. Show that, if f 2 BV .Œa; b�/ has the Intermediate Value Property, then f 2 C.Œa; b�/: Hint:
Note that f .x C 0/ and f .x � 0/ exist for all x 2 Œa; b�:

50. Show that if f 2 C.Œa; b�/ has a finite number of (local) maxima and minima, then
f 2 BV .Œa; b�/.

51. Show that, if f 2 C1.Œa; b�/ (i.e., both f and f 0 are continuous on Œa; b�), then
f 2 BV .Œa; b�/ and we have

V b
a .f / D

Z b

a

jf 0.x/j dx:

Hint: Use the MVT.

52 (Length of a Rectifiable Curve). Let f W I ! R; where I WD Œa; b�: For each partition
P WD .xk/

n
kD0 of I; consider the sum

`.f;P/ WD
n
X

jD1

q

.xj � xj�1/2 C Œf .xj /� f .xj�1/�2

which represents the length of the corresponding polygonal arc inscribed in the graph of f [with
successive vertices .x0; f .x0//; : : : ; .xn; f .xn//]. Now define the length of f on I to be

Lba.f / WD supf`.f;P/ W P 2 P.I /g:

(a) Show that we have the inequalities

V b
a .f /C .b � a/ � Lba.f / �

q

ŒV b
a .f /�

2 C .b � a/2;

so that f 2 BV .Œa; b�/ if and only if it is rectifiable, i.e., has finite length.
(b) Show that, if a < c < b; then we have

Lba.f / D Lca.f /C Lbc .f /:
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(c) Show that, if f 2 C1.Œa; b�/; then f is rectifiable and we have

Lba.f / D
Z b

a

p

1C Œf 0.x/�2 dx:

Hint: Rewrite `.f;P/ using the MVT.
(d) Find the length of f .x/ WD log.cos x/ on Œ0; 	=4�:

53. Let f be a real-valued function with continuous, nonnegative derivative such that f .0/ D 0

and f .1/ D 1: Show that if ` denotes the length of f on Œ0; 1�, then we have

p
2 	 ` < 2:

54 (Positive & Negative Variations). Let f W Œa; b� ! R. Then for any partition P D .xk/
n
kD0

of Œa; b� we define, with �fj WD f .xj /� f .xj�1/;

P.f;P/ W D
n
X

jD1

Œf .xj /� f .xj�1/�C D
n
X

jD1

.�fj /
C;

N.f;P/ W D
n
X

jD1

Œf .xj /� f .xj�1/�� D
n
X

jD1

.�fj /
�;

P b
a .f / W D supfVC.f;P/ W P 2 P.Œa; b�/g;

N b
a .f / W D supfV �.f;P/ W P 2 P.Œa; b�/g;
pf .x/ D P x

a .f /; 8 x 2 Œa; b�; and

nf .x/ D Nx
a .f /; 8 x 2 Œa; b�;

where 8 t 2 R; we have tC WD max.t; 0/ and t� WD max.�t; 0/ so that t D tC � t� and
jt j D tC C t�: We call P b

a .f / and Nb
a .f / the positive and negative variations of f on Œa; b�;

respectively. The functions pf and nf are called the positive and negative variation functions of f .
Show the following for any f 2 BV .Œa; b�/.

(a) max
�

P b
a .f /;N

b
a .f /

� 	 V b
a .f / 	 P b

a .f /CNb
a .f /:

(b) f .b/� f .a/ D P b
a .f /�Nb

a .f /.
(c) V b

a .f / D P b
a .f /CNb

a .f .
(d) f .x/� f .a/ D pf .x/� nf .x/ and vf .x/ D pf .x/C nf .x/:

55. Recall (Problem 4.8.#53) that a function F W Œa; b� ! R is said to be absolutely continuous
(on Œa; b�) if for each " > 0 there is a ı > 0 such that, given any collection f.ak; bk/ W 1 	 k 	 ng
of pairwise disjoint open subintervals of Œa; b�; we have

n
X

kD1

.bk � ak/ < ı H)
n
X

kD1

jF.bk/� F.ak/j < ":

(a) Show that, if F W Œa; b� ! R is absolutely continuous, then F 2 BV .Œa; b�/:

(b) Show that every F 2 Lip.Œa; b�/ is absolutely continuous. In particular, F.x/ WD R x

a f .t/ dt

is absolutely continuous for every f 2 R.Œa; b�/:

(c) Show that F.x/ WD p
x is absolutely continuous on Œ0; 1�:Hint: Look at the improper integral

R x

0 t
�1=2 dt WD lima!0C

R x

a t
�1=2 dt:



Chapter 8
Sequences and Series of Functions

In Chap. 2, we studied sequences and series of (constant) real numbers. In most
problems, however, it is desirable to approximate functions by more elementary
ones that are easier to investigate. We have already done this on a few occasions.
For example, in Chap. 4, we looked at the uniform approximation of continuous
functions by step, piecewise linear, and polynomial functions. Also, in Chap. 7,
we proved that each bounded continuous function on a closed bounded interval
is a uniform limit of regulated functions. Now all these approximations involve
estimates on the distance between the given continuous function and the elementary
functions that approximate it. This in turn suggests the introduction of sequences
(and hence also series) whose terms are functions defined, in most cases, on
the same interval. Throughout this chapter, we shall assume that I; possibly with
subscript, is an interval of R: Although we are studying real analysis here, we
should at least introduce the field C of complex numbers and even use it in some
definitions if this clarifies the concepts. Our presentation will be brief and most of
the proofs are left as simple exercises for the reader.

8.1 Complex Numbers

On the Cartesian plane R2 WD f.x; y/ W x; y 2 Rg; let us introduce the following
operations of addition and multiplication:

(C) .x; y/C .x0; y0/ WD .x C x0; y C y0/;
(�) .x; y/ � .x0; y0/ WD .xx0 � yy0; yx0 C xy0/:

Definition 8.1.1 (Complex Numbers). The set of complex numbers, denoted
by C; is defined to be the set R2 together with the binary operations (C) and (�)
defined above. Given two complex numbers z D .x; y/ and z0 D .x0; y0/; their sum
and product will be denoted by zC z0 and zz0 (instead of z � z0), respectively. Also, z
and z0 are said to be equal if and only if x D x0 and y D y0:

© Springer Science+Business Media New York 2014
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346 8 Sequences and Series of Functions

Definition 8.1.2 (Imaginary Unit, Identity, Zero). The complex numbers i WD
.0; 1/; 1 WD .1; 0/; and 0 WD .0; 0/ are called the imaginary unit, the identity, and
the zero of C; respectively. The definition of multiplication in C implies at once
that 12 D .1; 0/2 D .1; 0/ and i 2 D .0; 1/.0; 1/ D .�1; 0/: In view of the definition
of equality given above, for a complex number z D .x; y/; we have z D 0 (i.e.,
.x; y/ D .0; 0/) if and only if x D y D 0:
Proposition 8.1.3. The operations of addition and multiplication in C satisfy the
commutative, associative, and distributive laws. In other words, given any complex
numbers z D .x; y/; z0 D .x0; y0/; and z00 D .x00; y00/; we have

(a) zC z0 D z0 C z and zz0 D z0z;
(b) .zC z0/C z00 D zC .z0 C z00/ and .zz0/z00 D z.z0z00/;
(c) z.z0 C z00/ D zz0 C zz00:

Proof. Exercise! ut
Proposition 8.1.4.

(a) For each z 2 C; we have zC 0 D z; z � 0 D 0; and z � 1 D z; where 0 WD .0; 0/

and 1 WD .1; 0/.
(b) If z; z0; z00 2 C and zC z0 D zC z00; then z0 D z00.
(c) Given any z 2 C; there is a unique z0 2 C such that zC z0 D 0: This unique z0

is denoted by �z.

Proof. For (c), simply define �z D .�x;�y/ if z D .x; y/: Parts (a) and (b) are
obvious consequences of the definitions and the properties of real numbers. ut
Definition 8.1.5 (Subtraction). For any complex numbers z; z0 2 C; we write
z � z0 WD z C .�z0/; where if z0 WD .x0; y0/; then �z0 WD .�x0;�y0/ is the unique
complex number satisfying z0 C .�z0/ D 0:
Proposition 8.1.6. For any complex numbers z; z0 2 C; we have z � z D 0 and

.�z/z0 D z.�z0/ D �.zz0/ D .�1/.zz0/;

where �1 D .�1; 0/:
Proof. Exercise! ut
Definition 8.1.7 (Absolute Value). Given any z D .x; y/ 2 C; the absolute value
of z is defined to be the nonnegative number

jzj WD
p

x2 C y2:
In other words, jzj is simply the Euclidean distance between the points .x; y/ and
.0; 0/ in the plane R2: In particular, j.x; 0/j D jxj; where the right side is the usual
absolute value of the real number x:

Using the absolute value, we can define the notions of distance and convergence
for complex numbers:



8.1 Complex Numbers 347

Definition 8.1.8 (Distance, Limit). For any complex numbers z D .x; y/ and
w D .u; v/; the nonnegative number jz � wj D p

.x � u/2 C .y � v/2 is defined
to be the distance between them. A sequence .zn/ 2 CN is said to converge to a
complex number � D .�; �/ 2 C if

.8" > 0/.9N D N."/ 2 N/.n � N ) jzn � �j < "/:

The number � is then called the limit of .zn/ and we write

lim
n!1 zn D lim.zn/ D �:

In this case, the sequence .zn/ is called convergent; if .zn/ has no limit, we call it
divergent. If x0 is a limit point of a set D � R and if f W D ! C; we say that f .x/
converges to w0 2 C as x ! x0; and we write limx!x0 f .x/ D w0; if

.8">0/.9ıD ı."; x0/>0/.8x2D/.0< jx�x0j<ı)jf .x/�w0j<"/:

The following proposition lists some of the properties of the absolute value:

Proposition 8.1.9. Given any complex numbers z D .x; y/ and w D .u; v/;we have

(a) jzj > 0 if and only if z ¤ 0;
(b) jzwj D jzjjwj;
(c) jzC wj � jzj C jwj (Triangle Inequality).

Proof. .a/ is obvious! .b/ follows at once from Lagrange’s Identity:

.xu � yv/2 C .xvC yu/2 D .x2 C y2/.u2 C v2/;

which can be checked easily. Finally, the Triangle Inequality .c/ follows from
Proposition 2.1.23. ut
Corollary 8.1.10. (a) If z; w 2 C and zw D 0; then z D 0 or w D 0:
(b) If z; u; v 2 C satisfy zu D zv and if z ¤ 0; then u D v.

Proof. To prove .a/, note that zw D 0 if and only if jzwj D jzjjwj D 0: For .b/;
observe that zu D zv if and only if z.u � v/ D 0 and use part .a/. ut
Corollary 8.1.11. If z D .x; y/ 2 C and z ¤ 0; then there is a unique complex
number w (which is denoted 1=z) such that

zw D wz D 1:

Proof. Since z ¤ 0; we have jzj2 D x2 C y2 > 0: It is then easily checked that

w D 1

z
WD
�

x

x2 C y2 ;
�y

x2 C y2
�

satisfies the desired property. ut
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Corollary 8.1.12. Given any complex numbers u and v ¤ 0; there is a unique
complex number z (which is denoted u=v) such that vz D u:

Proof. Simply note that z WD u � .1=v/ satisfies the property. ut
We can now summarize all the algebraic properties highlighted above in the

following.

Proposition 8.1.13. The set C of complex numbers is a field.

Proposition 8.1.14. (1) A sequence .zn/ D ..xn; yn// 2 CN converges to � D
.�; �/ 2 C if and only if lim.xn/ D � and lim.yn/ D �:

(2) Let x0 be a limit point of a setD � R and let f D .u; v/ W D ! C; i.e., f .x/ D
.u.x/; v.x//; for all x 2 D and two real-valued functions u and v defined onD:
Then limx!x0 f .x/ D w0 D .u0; v0/ 2 C if and only if limx!x0 u.x/ D u0 and
limx!x0 v.x/ D v0:

Proof. Obvious! ut
Corollary 8.1.15 (Cauchy’s Criterion). A sequence .zn/ D ..xn; yn// 2 CN is
convergent if and only if it is a Cauchy sequence, i.e.,

.8" > 0/.9N D N."/ 2 N/.m; n � N ) jzm � znj < "/:

Proof. Indeed, it is easily seen that .zn/ is a Cauchy sequence if and only if .xn/
and .yn/ are. ut
Proposition 8.1.16. The set R WD f.x; 0/ W x 2 Rg � C is a subfield of C and the
map � W R ! R given by �.x/ WD .x; 0/ is a field isomorphism, i.e., a one-to-one
correspondence satisfying the properties

�.x C y/ D �.x/C �.y/; �.xy/ D �.x/�.y/ 8x; y 2 R: (�)

Proof. That R is a subfield (i.e., a subset that is itself a field) is easily checked.
Indeed, for any x; y 2 R; we have .x C y; 0/ D .x; 0/ C .y; 0/ and .xy; 0/ D
.x; 0/.y; 0/: Also, y ¤ 0 implies .1=y; 0/ D 1=.y; 0/ and hence .x=y; 0/ D
.x; 0/=.y; 0/: These relations show that .�/ holds. Finally, � is obviously a bijection.
ut
Notation 8.1.17. Henceforth, we shall identify the sets R and R and write R D R:

In fact, we write .x; 0/ D x for each x 2 R:With this agreement, we can then write
R � C. Now recall (Definition 8.1.2) that i WD .0; 1/ and hence, according to our
identification,

i 2 D .0; 1/2 D .�1; 0/ D �1:

Also, it follows that each complex number .x; y/ 2 C can be written as

.x; y/ D .x; 0/C .0; y/ D .x; 0/C .y; 0/.0; 1/ D x C yi:
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Definition 8.1.18 (Real and Imaginary Parts). For each z D .x; y/ D x C
yi 2 C; the real numbers x and y are called the real and imaginary parts of z;
respectively, and we write Re.z/ D x and Im.z/ D y:
Definition 8.1.19 (Complex Conjugate). Given any z D xCyi 2 C; the complex
number Nz WD x � yi is called the complex conjugate (or simply conjugate) of z:

Proposition 8.1.20. If z D x C iy; w D uC iv 2 C; then:

(a) .Nz/ D z,
(b) zC w D NzC Nw,
(c) zw D Nz Nw,
(d) zNz D jzj2,
(e) zC Nz D 2Re.z/ and z � Nz D 2i Im.z/, and
(f) z D Nz, z 2 R:

Proof. Exercise! ut
Corollary 8.1.21 ((Complex) Cauchy’s Inequality). Given any complex numbers
z1; z2; : : : ; zn and w1; w2; : : : ; wn; we have

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

jD1
zj Nwj

ˇ

ˇ

ˇ

ˇ

ˇ

2

�
n
X

jD1
jzj j2

n
X

jD1
jwj j2:

Exercise 8.1.22. Prove Corollary 8.1.21. Hint: Note that the inequality can be
written as jV j2 � ZW; where Z WD Pn

jD1 jzj j2; W WD
Pn

jD1 jwj j2; and V WD
Pn

jD1 zj Nwj : Now, using Proposition 8.1.20, show that

n
X

jD1
jW zj � V wj j2 D W.ZW � jV j2/:

8.2 Pointwise and Uniform Convergence

For a set E � R, let us denote by F.E;R/ the set of all functions from E to R.
We are interested in sequences and series in the sets F.E;R/: For each sequence
.fn/ 2 F.E;R/N and each x 2 E, the numerical sequence .fn.x// 2 RN may or
may not converge.

Definition 8.2.1 (Pointwise Convergence). For each .fn/ 2 F.E;R/N; let E0 �
E be the set of all points x 2 E such that the numerical sequence .fn.x// 2 RN

converges and let

f .x/ WD lim
n!1fn.x/ D lim.fn.x// 8x 2 E0; ()
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which, in detail, means that

.8" > 0/.9N D N.x; "/ 2 N/.n � N ) jfn.x/ � f .x/j < "/: (�)

The sequence .fn/ is then said to be pointwise convergent (or simply convergent)
on E0 and the function f 2 F.E0;R/; defined by ./; is called the pointwise limit
(or simply limit) of .fn/ on E0:

Remark 8.2.2.

(1) It is obvious that the same definition can be given for complex-valued functions
of a complex variable. Simply replace R by C in the above definition! For
the most part, however, we shall be concerned with real functions defined on
subsets of the real line and the complex case will only be used in connection
with Fourier series.

(2) It is important to note that, in general, the integer N D N.x; "/ depends on
both x and "; as indicated in .�/:

Example 8.2.3. (a) Let fn.x/ WD xn for all x 2 Œ0; 1�: For x 2 Œ0; 1/; we then have
lim.fn.x// D 0: On the other hand, lim.fn.1// D 1: The sequence is therefore
pointwise convergent on Œ0; 1�: We note, however, that the limit function

f .x/ D
(

0 if 0 � x < 1;
1 if x D 1

is discontinuous at x D 1; even though all functions fn.x/ WD xn are
continuous on Œ0; 1�:

(b) Let gn.x/ WD
p

x2 C 1=n for all x 2 R: Here we clearly have lim.gn.x// D jxj
for all x 2 R: Thus, the sequence is pointwise convergent on R:We also observe
that gn is differentiable on R for all n 2 N with g0

n.x/ D x=
p

x2 C 1=n: On
the other hand, the limit function g.x/ WD jxj is not differentiable at x D 0:

(c) Consider the sequence hn.x/ WD sin.n2x/=n for all x 2 R and n 2 N: Here the
limit function, h; is the (identically) zero function. Indeed, j sin.n2x/=nj � 1=n
holds for all x 2 R and n 2 N and lim.1=n/ D 0: Therefore, h.x/ D h0.x/ D 0
for all x 2 R: On the other hand,

h0
n.x/ D

n2 cos.n2x/

n
D n cos.n2x/

does not converge to 0: In fact, lim.h0
n.0// D lim.n/ D C1:

(d) Let un.x/ WD Œcos2.nŠ	x/� 8x 2 Œ0; 1�; where, for each t 2 R; Œt � denotes the
greatest integer � t: If x D p=q with (relatively prime) positive integers p and
q; then nŠx is an integer for all n � q and hence cos2.nŠ	x/ D 1: On the other
hand, if x 62 Q; then cos2.nŠ	x/ 2 .0; 1/: It follows that the (pointwise) limit
function, u; is given by
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u.x/ D
(

1 if x 2 Q \ Œ0; 1�,
0 if x 2 Œ0; 1� nQ:

In other words, u is the Dirichlet function which is nowhere continuous on Œ0; 1�:
In particular, u is not Riemann integrable. On the other hand, each un has only
a finite (in fact nŠ C 1) number of discontinuity points (why?) and hence is
Riemann integrable.

(e) Consider the functions vn.x/ WD nx.1�x2/n; for all x 2 Œ0; 1�: The (pointwise)
limit, v; is the identically zero function: v.x/ D 0 8x 2 Œ0; 1�: This is obvious
for x D 0 and x D 1; and for x 2 .0; 1/ it follows from the fact that
limn!1 n˛n D 0; for all ˛ 2 .0; 1/: (Why?) Now a simple computation gives

Z 1

0

vn.x/ dx D �n
2

	

.1 � x2/nC1

nC 1

1

0

D n

2.nC 1/ :

It follows that limn!1
R 1

0
vn.x/ dx D 1=2; and yet

R 1

0
v.x/ dx D 0:

Remark 8.2.4. The above examples show that, if f is the pointwise limit of a
sequence of functions fn; then the following may happen:

(1) Even if all the functions fn are continuous at a point x0; the limit f may be
discontinuous there.

(2) Even if all the fn are differentiable at x0; f need not be differentiable at x0:
And, even if f 0.x0/ exists, the sequence of derivatives f 0

n.x0/ need not converge
to f 0.x0/:

(3) Even if all the fn are Riemann integrable on some interval Œa; b�; the limit f
need not be integrable on Œa; b�: And, even if

R b

a
f .x/ dx exists, it need not be

the limit of the sequence of integrals
R b

a
fn.x/ dx:

It turns out that, in order for the limit function f to inherit some of the nice
properties shared by all the fn; one must replace the pointwise convergence with a
stricter one, called uniform convergence:

Definition 8.2.5 (Uniform Convergence). Let E � R: We say that a sequence
.fn/ 2 F.E;R/N converges uniformly on E0 � E to a function f W E0 ! R if

.8">0/.9N D N."/ 2 N/.8x2E0/.n�N ) jfn.x/ � f .x/j<"/: (�)

Remark 8.2.6.

(a) It is obvious that uniform convergence implies pointwise convergence. The
converse is false, as some of the examples below will show.

(b) Comparing the above .�/ to .�/ in Definition 8.2.1, we note that in uniform
convergence, the integer N D N."/ depends only on " and not on x 2 E0:
In other words, the sameN works for all x 2 E0. This turns out to have a major
impact on the behavior of the limit function.
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Exercise 8.2.7. Show that a sequence .fn/ 2 F.E;R/N; where E � R; converges
uniformly on E0 � E if and only if limn!1 supfjfn.x/� f .x/j W x 2 E0g D 0: In
other words,

.8">0/.9N D N."/2N/.n �N ) supfjfn.x/ � f .x/j W x 2 E0g<"/:

Example 8.2.8.

(1) Consider, once again, the sequence .xn/n2N;where x 2 Œ0; 1�:As we saw above,
the (pointwise) limit function, f; is

f .x/ D
(

0 if 0 � x < 1,

1 if x D 1:
Here the convergence is not uniform. Indeed, if for some " 2 .0; 1/ there exists
an integer N D N."/ 2 N such that n � N implies jxn � f .x/j < " for all
x 2 Œ0; 1�; then, for each x 2 Œ0; 1/; we have xN < ": But this would imply that
1 D limx!1� xN � "; which is absurd. Equivalently, using Exercise 8.2.7,

lim
n!1 supfjxn � f .x/j W x 2 Œ0; 1�g D lim

n!1 1 D 1 ¤ 0:

(2) As we saw in the above examples, the sequence .gn.x// D .
p

x2 C 1=n/ for
all x 2 R has pointwise limit g.x/ D jxj for all x 2 R: Let us show that this
limit is uniform. Indeed, a computation shows that

sup
˚

ˇ

ˇ

p

x2 C 1=n � jxjˇˇ W x 2 R
 D sup

n 1=n
p

x2 C 1=nC jxj W x 2 R

o

D 1=n
p

1=n
D 1p

n
;

and the uniform convergence follows at once from Exercise 8.2.7.
(3) Consider the sequence .hn.x// D .sin.n2x/=n/; where x 2 R: Here, as pointed

out above, the pointwise limit is h.x/ D 0 8x 2 R:As in the previous example,
the limit is uniform. This follows from the simple inequality j sin.n2x/=nj �
1=n; for all x 2 R and all n 2 N:

Theorem 8.2.9 (Cauchy’s Criterion). LetE � R and let .fn/ 2 F.E;R/N: Then
.fn/ converges uniformly on E0 � E (to some function f ) if and only if

.8">0/.9N DN."/ 2N/.8x2E0/.m; n�N ) jfm.x/ � fn.x/j<"/:

Proof. If .fn/ converges uniformly to f and if " > 0 is given, then we can find
N D N."/ 2 N such that n � N implies jfn.x/ � f .x/j < "=2 for all x 2 E0:
If we also havem � N; then jfm.x/�f .x/j < "=2 as well. Thus, for anym; n � N
and any x 2 E0,
jfm.x/ � fn.x/j � jfm.x/ � f .x/j C jfn.x/ � f .x/j < "=2C "=2 D ":
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Conversely, if the condition of the theorem is satisfied, then, for each x 2 E0; the
numerical sequence .fn.x// is a Cauchy sequence in R and hence converges. Let

f .x/ WD lim
n!1fn.x/ .8x 2 E0/:

Now, given any " > 0; we can find N D N."/ such that we have

jfm.x/ � fn.x/j < " .8x 2 E0; 8m; n � N/: ()

Keeping m fixed in ./ and letting n!1; we find that

jfm.x/ � f .x/j � " .8x 2 E0; 8m � N/:

Since " > 0 was arbitrary, it follows that .fn/ converges to f uniformly on E0, as
desired. ut
Exercise 8.2.10. Show that a sequence .fn/ 2 F.E;R/N;whereE � R; converges
uniformly on E0 � E if and only if supfjfm.x/ � fn.x/j W x 2 E0g ! 0; as
m; n!1: In other words,

.8">0/.9N DN."/2N/.m; n�N) supfjfm.x/ � fn.x/j Wx 2E0g<"/:

Example 8.2.8(1) shows that pointwise convergence does not imply uniform
convergence. There are exceptional situations, however, as the following theorem
shows.

Theorem 8.2.11 (Dini’s Theorem). Let I � R be a compact (i.e., closed and
bounded) interval and suppose that .fn/ 2 F.I;R/N is a sequence of continuous
functions converging pointwise to a continuous function f W I ! R: If .fn/ is
increasing (i.e., fn.x/ � fnC1.x/; for all x 2 I and n 2 N) or decreasing (i.e.,
fn.x/ � fnC1.x/; for all x 2 I and n 2 N), then .fn/ converges to f uniformly
on I .

Proof. The uniform convergence of .fn/ to f is equivalent to the uniform conver-
gence of .f �fn/ (or .fn�f /) to 0: (Why?) Let gn WD f �fn (resp., gn WD fn�f )
if .fn/ is increasing (resp., decreasing). Then .gn/ is a decreasing sequence of
continuous nonnegative functions converging pointwise to 0 on I: The theorem is
proved if we show that this convergence is in fact uniform on I: Let " > 0 be
given. For each x 2 I; lim.gn.x// D 0 implies that we can pick N.x/ 2 N with
gN.x/.x/ < "=2: Since gN.x/ is continuous at x; there is a ı.x/ > 0 such that

gN.x/.t/ < " 8t 2 .x � ı.x/; x C ı.x//: ()
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Since I is compact, Proposition 4.1.7 implies that we can cover I by a finite
number of intervals Ij WD .xj � ı.xj /; xj C ı.xj //; 1 � j � k: Let
N WD maxfN.x1/; : : : ; N.xk/g: Now, for any t 2 I; we have t 2 Ij for some j
and, by ./; gN.xj /.t/ < ": But since N � N.xj / and .gn/ is decreasing, we have

0 � gN .t/ � gN.xj /.t/ < " 8t 2 I:

Therefore, we indeed have

.8x 2 I /.n � N ) gn.x/ � gN .x/ < "/;

and the proof is complete. ut
Exercise 8.2.12. Show that, in Theorem 8.2.11, the compact interval I can be
replaced by any compact set K � R:

So far, we have only looked at sequences of functions. Since the study of (infinite)
series is equivalent to the study of the corresponding sequences of partial sums, all
the above results have analogs for infinite series of functions.

To begin, let E � R and let .fn/ 2 F.E;R/N: Then the formal sum

f1 C f2 C � � � C fn C � � � D
1
X

nD1
fn

is called an infinite series of functions with general term fn. For each x 2 E; we
have a numerical series

1
X

nD1
fn.x/:

For each n 2 N; we can then define the partial sum

sn.x/ WD
n
X

kD1
fk.x/:

This defines a sequence

.sn/ 2 F.E;R/N: ()

Definition 8.2.13 (Pointwise Convergent Series of Functions). With notation as
above, the series

P1
nD1 fn is said to be pointwise convergent (or simply convergent)

on E0 � E with sum s 2 F.E0;R/N if the sequence ./ of partial sums converges
(pointwise) to the function s on E0: In other words, if
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s.x/ D lim
n!1 sn.x/ .8x 2 E0/:

Example 8.2.14. For each n 2 N; let fn.x/ WD xn; where �1 < x < 1 and f0 WD 1:
Then the series

P1
nD0 fn is (pointwise) convergent on .�1; 1/ with sum

s.x/ D
1
X

nD0
fn.x/ D

1
X

nD0
xn D 1

1 � x :

Definition 8.2.15 (Uniformly Convergent Series of Functions). With notation as
in Definition 8.2.13, the series

P1
nD1 fn is said to be uniformly convergent on E0 if

the sequence .sn/ of partial sums is uniformly convergent on E0:

Example 8.2.16. In the above example, we saw that
P1

nD0 xn D 1=.1 � x/; for
each x 2 .�1; 1/: To show that this convergence is not uniform, note that, with
sn.x/ WD 1C x C � � � C xn�1 D .1 � xn/=.1 � x/; we have

js.x/ � sn.x/j D jxj
n

1 � x .�1 < x < 1/;

and supfjxjn=.1 � x/ W �1 < x < 1g D C1 for all n � 0: (Why?)

The following version of Dini’s Theorem for series follows at once from
Theorem 8.2.11.

Theorem 8.2.17 (Dini’s Theorem for Series). Let I � R be a compact (i.e.,
closed and bounded) interval and suppose that .fn/ 2 F.I;R/N is a sequence
of continuous functions such that the series

P1
nD1 fn converges pointwise to a

continuous sum s W I ! R: If the fn are all nonnegative (resp., nonpositive) on
I I i.e., fn.x/ � 0 (resp., fn.x/ � 0) for all x 2 I and n 2 N; then

P1
nD1 fn

converges to s uniformly on I:

Proof. Simply apply Theorem 8.2.11 to the sequence .sn/ of partial sums, where
sn D f1 C f2 C � � � C fn: ut

For infinite series of functions, we also define the following (stricter) notion of
convergence:

Definition 8.2.18 (Normally Convergent Series of Functions). With notation as
in Definition 8.2.13, the series

P1
nD1 fn is said to be normally convergent on E0 if

the series
P1

nD1 jfnj of absolute values is uniformly convergent on E0:

The following proposition is an immediate consequence of the above definitions.

Proposition 8.2.19. With notation as above, normal convergence of the series
P1

nD1 fn on E0 implies its uniform convergence on E0 which, in turn, implies its
pointwise convergence on E0:

Proof. Exercise. ut
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Theorem 8.2.20 (Weierstrass M-Test). Let E � R and .fn/ 2 F.E;R/N:
Suppose that for each n 2 N there exists a constant Mn � 0 such that jfn.x/j �
Mn; for all x 2 E and that

P1
nD1 Mn converges. Then .fn/ is normally (hence

uniformly) convergent on E:

Proof. It follows from our assumptions and Theorem 2.3.9 (First Comparison
Test), that the series

P1
nD1 jfn.x/j is convergent for each x 2 E: In other words,

P1
nD1 fn.x/ is absolutely convergent; we must show that this convergence is

uniform on E: Let us introduce the partial sums sn.x/ WD Pn
kD1 jfk.x/j and

�n WD Pn
kD1 Mk: Since .�n/ is convergent, it satisfies Cauchy’s Criterion: Given

any " > 0; there exists N 2 N such that

m > n � N ) j�m � �nj D
m
X

kDnC1
�k < ": ()

Since sn.x/ � �n; for all x 2 E and all n 2 N; ./ implies that

m > n � N ) jsm.x/ � sn.x/j D
m
X

kDnC1
sk.x/ �

m
X

kDnC1
�k < ";

for all x 2 E and the proof is complete. ut

8.3 Uniform Convergence and Limit Theorems

As was pointed out in the previous section, even if all functions in a sequence
have a nice property (such as continuity, differentiability, etc.), the (pointwise) limit
function, if it exists, need not (in general) share this property. Our goal now is to
show that, if the convergence is uniform, then many nice properties satisfied by all
the functions in the sequence will also be satisfied by their (uniform) limit.

Theorem 8.3.1 (Uniform Convergence & Continuity). Let E0 � E � R and let
.fn/ 2 F.E;R/N: If each fn is continuous at some x0 2 E0 and .fn/ converges
uniformly on E0 to a function f 2 F.E0;R/; then f is also continuous at x0: Thus,
if each fn is continuous on E0; then so is the limit function f:

Proof. What we need here is a standard "=3-proof. Let " > 0 be given. Since f is
the uniform limit of .fn/ on E0; we can find N 2 N such that

.i/ jfn.x/ � f .x/j < "=3 .8x 2 E0; 8n � N/:
With N as in .i/; the continuity of fN at x0 implies that we can find ı > 0 with

.ii/ jfN .x/ � fN .x0/j < "=3 8x 2 E0 \ .x0 � ı; x0 C ı/:
Also, .i/ implies that
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.iii/ jf .x/ � fN .x/j < "=3 8x 2 E0 \ .x0 � ı; x0 C ı/:
Now .i/; .i i/; and .i i i/ imply that, for each x 2 E0 \ .x0 � ı; x0 C ı/; we have

jf .x/ � f .x0/j � jf .x/ � fN .x/j C jfN .x/ � fN .x0/j C jfN .x0/ � f .x0/j < ";

and hence f is continuous at x0: The last statement is now obvious. ut
Corollary 8.3.2. Let E0 � E � R and let .fn/ 2 F.E;R/N: If each fn is
continuous at a point x0 2 E0 and the series

P1
nD1 fn converges uniformly on

E0 to a sum s 2 F.E0;R/; then s is also continuous at x0: In particular, if each fn
is continuous on E0; then so is the sum s:

Proof. Apply Theorem 8.3.1 to the sequence .sn/ WD .Pn
kD1 fk/ of partial sums. ut

Next, we show that Riemann integrability is preserved when we pass to uniform
limits:

Theorem 8.3.3 (Uniform Convergence & Integrability). Let .fn/ be a sequence
of Riemann integrable functions on Œa; b� � R: If lim.fn/ D f; uniformly on Œa; b�;
then f is also Riemann integrable on Œa; b� and we have

Z x

a

f .t/ dt D lim
n!1

Z x

a

fn.t/ dt 8 x 2 Œa; b�:

Proof. For " D 1; the uniform convergence of .fn/ to f implies that, for some
N 2 N; we have

jf .x/ � fn.x/j < 1 .8x 2 Œa; b�; 8n � N/:

In particular, jf .x/ � fN .x/j < 1; for all x 2 Œa; b�: Therefore,

jf .x/j � jfN .x/j C 1 .8x 2 Œa; b�/: ()

Now, by Proposition 7.1.19, fN 2 R.Œa; b�/ implies that fN is bounded on
Œa; b�: Hence, by ./; so is f: In view of Lebesgue’s Integrability Criterion
(Theorem 7.3.19), to prove f 2R.Œa; b�/, we need only show that f is continuous
almost everywhere on Œa; b�: Now, for each n 2 N; fn is Riemann integrable and
hence continuous on Œa; b� except on a setDn of measure zero. LetD WDS1

nD1 Dn:

Then D has measure zero. For each x 2 Œa; b� nD; all the fn are continuous at x.
Since fn converges to f uniformly, Theorem 8.3.1 implies that f is also continuous
at x: Thus, f is indeed continuous on Œa; b� n D and hence Riemann integrable.
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Next, given any " > 0; by uniform convergence, we can find N 2 N such that
jfN .t/ � f .t/j < "=.b � a/; for all t 2 Œa; b�: It then follows from Proposition
7.4.13 that

ˇ

ˇ

ˇ

ˇ

Z x

a

fN .t/ dt �
Z x

a

f .t/ dt

ˇ

ˇ

ˇ

ˇ

�
Z b

a

jfN .t/ � f .t/j dt < ";

and the proof is complete. ut
Corollary 8.3.4 (Term-by-Term Integration). Let .fn/ be a sequence of Rie-
mann integrable functions on Œa; b� � R: If the series

P1
nD1 fn converges uniformly

on Œa; b� to a sum s; then s 2R.Œa; b�/ and we have

Z x

a

s.t/ dt D
1
X

nD1

Z x

a

fn.t/ dt 8 x 2 Œa; b�:

In other words, we can integrate the series term by term.

Finally, we look at the differentiability properties of the limit of a uniformly
convergent sequence of differentiable functions. Here, the situation is more compli-
cated. In fact, even the uniform limit of a sequence of differentiable functions need
not be differentiable. Actually, we have already given an example above. Indeed,
as we have seen, the sequence .fn.x// D .

p

x2 C 1=n/ converges uniformly to
f .x/ WD jxj on R: It is also obvious that each fn is continuously differentiable on R

and yet f is not differentiable at 0: Therefore, we need stronger conditions. Before
treating the general case, let us use Theorem 8.3.3 to handle a special case that is
quite useful in many situations.

Theorem 8.3.5. Let .fn/ be a sequence of continuously differentiable functions
on Œa; b�: Suppose that .fn.x0// converges for some x0 2 Œa; b� and that the
sequence .f 0

n/ of derivatives converges uniformly on Œa; b� to a function g: Then
.fn/ converges uniformly to a continuously differentiable function f on Œa; b� and
we have f 0.x/ D g.x/; for all x 2 Œa; b�:
Proof. Since each f 0

n is continuous and lim.f 0
n/ D g; uniformly on Œa; b�; it follows

from Theorem 8.3.1 that g is continuous on Œa; b�: Also, by the First Fundamental
Theorem (Theorem 7.5.3), we have

fn.x/ D fn.x0/C
Z x

x0

f 0
n.t/ dt .8x 2 Œa; b�/:

Now Theorem 8.3.3 and the fact that lim.fn.x0// D f .x0/ imply that

f .x/ D f .x0/C
Z x

x0

g.t/ dt .8x 2 Œa; b�/:
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Finally, from the Second Fundamental Theorem (Theorem 7.5.8), we deduce that f
is differentiable on Œa; b� and f 0 D g as claimed. ut

We now give the more general result where the derivatives f 0
n are no longer

assumed to be continuous on Œa; b�:

Theorem 8.3.6 (Uniform Convergence & Differentiability). Let .fn/ be a
sequence of differentiable functions on Œa; b� such that .fn.x0// converges for
some x0 2 Œa; b�: If the sequence .f 0

n/ of derivatives converges to a function g
uniformly on Œa; b�; then the sequence .fn/ converges uniformly on Œa; b� to a
differentiable function f , and we have

f 0.x/ D lim
n!1f 0

n.x/ D g.x/ .8x 2 Œa; b�/:

Proof. For each bounded real-valued function h on Œa; b�; let

khk1 WD supfjh.x/j W x 2 Œa; b�g: (�)

Since .f 0
n/ converges uniformly on Œa; b�; Exercise 8.2.10 implies that

.i/ m; n!1) kf 0
m � f 0

nk1 ! 0:

Now, for each x ¤ x0 in Œa; b� and any integers m; n 2 N; we can apply the MVT
(Theorem 6.4.8) to the function fm � fn on the interval with endpoints x0 and x to
obtain

.ii/ fm.x/ � fn.x/ D fm.x0/ � fn.x0/C .x � x0/Œf 0
m.�/ � f 0

n.�/�;

for some � between x0 and x: Using .�/; we deduce from .i i/ that

.iii/ kfm � fnk1 � jfm.x0/ � fn.x0/j C .b � a/kf 0
m � f 0

nk1:
Thus, in view of .i/ and .i i i/; we have

m; n!1 H) supfjfm.x/ � fn.x/j W x 2 Œa; b�g ! 0;

which implies that .fn/ is uniformly convergent on Œa; b�: Let f denote its limit. Fix
any t 2 Œa; b� and let x 2 Œa; b� n ftg: Applying the MVT to fm � fn on the interval
with endpoints x and t; we have

Œfm.x/ � fn.x/� � Œfm.t/ � fn.t/� D .x � t /Œf 0
m.�/ � f 0

n.�/�;

for some � between x and t: Dividing both sides by x � t; we get

.iv/

ˇ

ˇ

ˇ

ˇ

fm.x/ � fm.t/
x � t � fn.x/ � fn.t/

x � t
ˇ

ˇ

ˇ

ˇ

� kf 0
m � f 0

nk1:

Now, given " > 0; pick N 2 N such that m; n � N implies kf 0
m � f 0

nk1 < "=3: It
then follows from .iv/ that
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.v/

ˇ

ˇ

ˇ

ˇ

fm.x/ � fm.t/
x � t � fn.x/ � fn.t/

x � t
ˇ

ˇ

ˇ

ˇ

� "=3;

for all m; n � N: Fixing n D N and letting m ! 1 in .v/; we deduce from
lim.fm/ D f that

.vi/

ˇ

ˇ

ˇ

ˇ

f .x/ � f .t/
x � t � fN .x/ � fN .t/

x � t
ˇ

ˇ

ˇ

ˇ

� "=3:

On the other hand, lim.f 0
n/ D g uniformly on Œa; b� implies that the integer N in

.vi/ can be selected so large that we also have

.vii/
ˇ

ˇf 0
N .t/ � g.t/

ˇ

ˇ � "=3:
Finally, since limx!t .fN .x/ � fN .t//=.x � t / D f 0

N .t/; we can pick ı > 0 such
that, for any x 2 Œa; b�;

.viii/ 0 < jx � t j < ı H)
ˇ

ˇ

ˇ

ˇ

fN .x/ � fN .t/
x � t � f 0

N .t/

ˇ

ˇ

ˇ

ˇ

< "=3:

Combining .vi/; .vi i/; and .vi i i/;we see that, if x 2 Œa; b� satisfies 0 < jx�t j < ı;
then we have

ˇ

ˇ

ˇ

ˇ

f .x/ � f .t/
x � t � g.t/

ˇ

ˇ

ˇ

ˇ

< "

and the proof is complete. ut
As before we can immediately deduce a corresponding result for series of

differentiable functions:

Corollary 8.3.7 (Term-by-Term Differentiation). Let .fn/ be a sequence of
differentiable functions on Œa; b� such that the series

P1
nD1 fn.x0/ converges for

some x0 2 Œa; b�: If the series
P1

nD1 f 0
n of derivatives converges uniformly on Œa; b�;

then the series
P1

nD1 fn converges uniformly on Œa; b� to a differentiable sum s and
we have

s0.x/ D
� 1
X

nD1
fn.x/

�0
D

1
X

nD1
f 0
n.x/ .8x 2 Œa; b�/:

We end this section by giving an example of a continuous function on R that is
nowhere differentiable. Consider the sawtooth function:

f0.x/ WD
(

x � Œx� if x � Œx�C 1=2;
Œx�C 1 � x if x > Œx�C 1=2;

where Œx� denotes the greatest integer � x: Then f0.x/ is the distance from x to the
nearest integer, i.e., f0.x/ D d.x;Z/, and is a continuous, periodic function on R

with period 1: Now define fn.x/ D 4�nf0.4nx/; for all x 2 R and n D 0; 1; 2; : : :.
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Then fn is also a continuous sawtooth function (with period 1=4n), whose graph
consists of line segments of slope ˙1: Since 0 � f0 � 1=2; we have 0 � fn.x/ �
1=.2 � 4n/; for all x 2 R and n 2 N0:

Theorem 8.3.8 (Van der Waerden). The function

f .x/ WD
1
X

nD0
fn.x/ .8x 2 R/;

where the fn are the sawtooth functions defined above, is continuous and nowhere
differentiable on R:

Proof. Since 0 � fn.x/ � 1=.2 � 4n/ and
P1

nD0 4�n < 1; it follows from the
Weierstrass M-Test (Theorem 8.2.20) that

P

fn converges uniformly on R: Thus,
if f WD P

fn; then f is continuous on R because the fn are. Now fix any x 2 R

and for each n 2 N let hn D ˙.1=4nC1/; where the sign is chosen so that 4nx and
4n.x C hn/ D 4nx ˙ 1=4 both belong to the same interval Œk=2; .k C 1/=2�: Since
on this interval f0 has slope˙1; we have

"n WD fn.x C hn/ � fn.x/
hn

D f0.4
nx C 4nhn/ � f0.4nx/

4nhn
D ˙1:

If m < n; then a tooth of fn is entirely below a rise or fall of a tooth of fm: So the
graph of fm also has slope˙1 on the interval with endpoints x and x C hn:

"m WD fm.x C hn/ � fm.x/
hn

D ˙1 .8m < n/:

For m � nC 1; however, 4m.x C hn/ � 4mx D ˙4m�n�1 is an integer and f0 has
period 1I hence fm.x C hn/ � fm.x/ D 0 for all m > n: Therefore,

f .x C hn/ � f .x/
hn

D
n
X

mD0

fm.x C hn/ � fm.x/
hn

D
n
X

mD0
"m; ()

which is an even (resp., odd) integer if n is odd (resp., even). Since hn ! 0 as n!
1 and limn!1

Pn
mD0 "m does not exist, ./ implies that f is not differentiable

at x. ut

8.4 Power Series

Power series are probably the most frequently used series of functions and have
many applications. The main reason for their importance is that their partial sums
are polynomials. As we have already seen, nice functions can often be approximated
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by polynomials. We shall presently see that power series may be thought of as a
generalization of polynomials and define a class of functions that includes most
elementary functions we constantly use.

Definition 8.4.1 (Power Series). Let .cn/1nD0 be a real sequence and x0 2 R: A
series of the form

1
X

nD0
cn.x � x0/n D c0 C c1.x � x0/C c2.x � x0/2 C � � � (�)

is said to be a power series about x0.

Remark 8.4.2.

(1) To simplify the exposition, we usually assume that x0 D 0 (which can be
achieved by the translation x0 WD x � x0). The power series .�/ is then reduced
to

1
X

nD0
cnx

n D c0 C c1x C c2x2 C � � � : (�)

(2) It is obvious that the power series .�/ (resp., .�/) converges at x D x0 (resp., at
x D 0) and has sum c0:

Proposition 8.4.3. If the power series
P1

nD0 cnxn converges for x D x0 ¤ 0; then
it is normally (i.e., uniformly and absolutely) convergent on any compact interval
Œa; b� � .�jx0j; jx0j/:
Proof. Since

P1
nD0 cnxn0 is convergent, we can find M > 0 such that jcnxn0 j � M

for all n 2 N: (Why?) It follows that

jcnxnj D jcnxn0 jjx=x0jn �M jx=x0jn: ()

Now, for jxj < jx0j (i.e., jx=x0j < 1/; the geometric series
P1

nD0 M jx=x0jn is
convergent (Proposition 2.3.8). Thus the proposition follows at once from ./ and
the Weierstrass M-Test (Theorem 8.2.20). ut
Theorem 8.4.4 (Radius of Convergence). For any power series

P1
nD0 cnxn;

there exists a unique (extended) number R 2 Œ0;1�, called the “radius of
convergence,” such that the power series converges absolutely for jxj < R and
diverges for jxj > R: In fact, the convergence is normal on any compact interval
Œa; b� � .�R;R/:
Proof. Let E denote the set of all x for which the series

P1
nD0 cnxn converges.

Since 0 2 E; we have E ¤ ;: Let R WD supfjxj W x 2 Eg: If (R > 0 and)
jxj < R; the definition of R implies that jxj < jx0j for some x0 2 E and hence
the power series is absolutely convergent at x by Proposition 8.4.3. If (R < 1
and) jxj > R; then the definition of R implies that x 62 E and hence

P1
nD0 cnxn is
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divergent. To prove the uniqueness ofR; suppose thatR0 also satisfies the conditions
of the theorem. If, say, R < R0; then the series

P1
nD0 cnxn is simultaneously

convergent and divergent for each x 2 .R;R0/; which is absurd. Finally, to
prove the last statement, pick R0 2 .0; R/ such that Œa; b� � .�R0;R0/ and use
Proposition 8.4.3. ut
Corollary 8.4.5 (Interval of Convergence). Let R 2 Œ0;1� be the radius of
convergence of a power series

P1
nD0 cnxn: Then the set of all x for which the series

converges is a possibly degenerate interval (centered at x D 0) with endpoints �R
and R. It is called the “interval of convergence” of the power series.

Proof. This follows at once from the above theorem because the power series
converges in .�R;R/ and diverges outside Œ�R;R�. ut
Remark 8.4.6. IfR D 0; then the series converges only at x D 0, and the interval of
convergence is then the degenerate interval Œ0; 0� WD f0g: IfR D1; then the interval
of convergence is obviously R D .�1;1/: ForR 2 .0;1/; the convergence at the
endpoints˙R must be checked separately because these are precisely the values of
x for which the Root Test is inconclusive.

Our next theorem shows how to obtain the radius of convergence R. Before
stating it, recall that, given a real sequence .un/n2N; its upper and lower limits are
the extended real numbers

lim sup.un/ D lim.Nun/ and lim inf.un/ D lim.un/;

respectively, where Nun WD supfuk W k � ng and un WD inffuk W k � ng: Note that
.Nun/ is decreasing and .un/ is increasing, as easily seen.

Theorem 8.4.7 (Cauchy–Hadamard). Let R be the radius of convergence of the
power series

P1
nD0 cnxn and let � WD lim supn!1 jcnj1=n 2 Œ0;1�: Then we have

R D 1=�I i.e.,

R D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if � D1;
1=� if 0 < � <1;
1 if � D 0:

Proof. Simply note that

lim sup.jcnxnj1=n/ D jxj lim sup.jcnj1=n/ D �jxj:

The theorem is therefore an immediate consequence of the Root Test (Theorem
2.3.24 ) and the uniqueness of R. ut

In many cases it is more convenient to use the Ratio Test to find the radius of
convergence:
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Theorem 8.4.8. Suppose that, for some N 2 N; we have cn ¤ 0 for all n � N and
limn!1 jcn=cnC1j exists (as an extended nonnegative number). If R is the radius of
convergence of the power series

P1
nD0 cnxn; then we have R D limn!1 jcn=cnC1j:

Proof. We note that, for x ¤ 0 and n � N;

lim
n!1

ˇ

ˇ

ˇ

ˇ

cnC1xnC1

cnxn

ˇ

ˇ

ˇ

ˇ

D jxj lim
n!1

ˇ

ˇ

ˇ

ˇ

cnC1
cn

ˇ

ˇ

ˇ

ˇ

:

Therefore, by the Ratio Test (Theorem 2.3.25), the power series converges if we
have jxj limn!1 jcnC1=cnj < 1 and diverges if jxj limn!1 jcnC1=cnj > 1: The
theorem now follows from the uniqueness of R: ut
Example 8.4.9.

(1) Since limn!1 nŠ=.n C 1/Š D 0; we have R D 0 and the power series
P1

nD0 nŠxn diverges for all x except, obviously, x D 0:
(2) For the power series

P1
nD1 xn=nn; we have lim sup n

p

1=nn D 0: It follows that
R D C1 and the interval of convergence is .�1;1/:

(3) Consider the geometric series
P1

nD0 xn: Here the interval of convergence is
.�1; 1/ because the series diverges at both endpoints x D ˙1:

(4) For the power series
P1

nD1 xn=n; we have limn!1.1=n/=.1=.n C 1// D 1:

Therefore, the radius of convergence is R D 1 and the interval of convergence
is Œ�1; 1/: Indeed, the series converges at the left endpoint x D �1 but diverges
at the right endpoint x D 1:

(5) For
P1

nD1 xn=n2; we have limn!1.1=n2/=.1=.n C 1/2/ D 1 and the interval
of convergence is Œ�1; 1� since the series converges at both endpoints x D ˙1:

Remark 8.4.10. As was pointed out in Remarks 8.4.6 and Examples (3), (4), and
(5) show, nothing can be said in advance about the convergence or divergence of
a power series at the (finite) endpoints ˙R. Also, although (by Theorem 8.4.4) a
power series converges uniformly on any compact subinterval of .�R;R/; it does
not follow in general that the convergence is uniform throughout .�R;R/: Indeed,
in Example (3) above, the geometric series

P1
nD0 xn is not uniformly convergent on

.�1; 1/ (cf. Example 8.2.16).

The following theorems are concerned with term-by-term differentiation and
integration of power series.

Theorem 8.4.11. Let
P1

nD0 cn.x � x0/n be a power series with radius of con-
vergence R > 0 and define f .x/ D P1

nD0 cn.x � x0/n; for all x 2 I WD
.x0 �R; x0 CR/: Then f is differentiable on I and, for each x 2 I; we have

f 0.x/ D
1
X

nD1
ncn.x � x0/n�1; ()

where the series on the right has the same radius of convergence R:
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Proof. It suffices to consider the case x0 D 0 so that I D .�R;R/: The last
statement about the radius of convergence follows from the fact that lim. n

p
n/ D 1;

which implies

lim sup n
p

jncnj D lim. n
p
n/ lim sup n

p

jcnj D 1=R:

Therefore,
P1

nD1 ncnxn�1 converges normally on any compact interval Œ�R0;R0�
with R0 < R: Corollary 8.3.7 now implies that f is differentiable and ./ holds for
all x 2 .�R;R/. ut
Corollary 8.4.12. Let f .x/ WD P1

nD0 cn.x � x0/n; where the series has radius of
convergence R > 0: Then f is infinitely differentiable on I D .x0 � R; x0 C R/
(i.e., f 2 C1.I /) and cn D f .n/.x0/=nŠ for all n � 0:
Proof. Applying Theorem 8.4.11 repeatedly, we deduce that f 0; f 00; : : : are
obtained from f by repeated term-by-term differentiation and that all the resulting
power series have the same radius of convergence R: In fact, by induction, we have

f .k/.x/ D
1
X

nDk
n.n � 1/ � � � .n � k C 1/cn.x � x0/n�k; ()

for every k D 0; 1; 2; : : : and every x 2 .x0 �R; x0CR/: Putting x D x0 in ./;
we have f .k/.x0/ D kŠck . ut
Theorem 8.4.13. Let f .x/ WD P1

nD0 cn.x � x0/n; where the series has radius of
convergence R > 0: Then f is (Riemann) integrable over any compact subinterval,
K; of the interval I WD .x0 � R; x0 C R/ and its integral (over K) is obtained by
integrating the series term by term. In particular, for each x 2 I; we have

Z x

x0

f .t/ dt D
1
X

nD0

cn

nC 1.x � x0/
nC1; (�)

where the series on the right has the same radius of convergence R:

Proof. Simply note that
P1

nD0 cn.x�x0/n is obtained from term-by-term differenti-
ation of the series in .�/. The latter series is easily seen to have radius of convergence
R and, if F.x/ denotes its sum, we have F 0 D f: Since F.x0/ D 0; the equation
.�/ follows. ut
Example 8.4.14.

(1) Consider the geometric series
P1

nD0 xn: Its interval of convergence is .�1; 1/
and we have

1

1 � x D
1
X

nD0
xn .8x 2 .�1; 1//:
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Term-by-term differentiation gives

1

.1 � x/2 D 1C 2x C 3x
2 C � � � C nxn�1 C � � � .8x 2 .�1; 1//:

(2) We have

1

1C x D 1 � x C x
2 � x3 C � � � .8x 2 .�1; 1//:

Integrating term by term, we obtain

log.1C x/ D x � x
2

2
C x3

3
� � � � .8x 2 .�1; 1//:

Next, we investigate the behavior of power series under algebraic operations and
composition.

Theorem 8.4.15. Let f .x/ WD P1
nD0 an.x � x0/n and g.x/ WD P1

nD0 bn.x � x0/n
have radii of convergence R0 and R00; respectively, and let c be a real constant.
Then (1) cf .x/ D P1

nD0 can.x � x0/n for jx � x0j < R0; (2) f .x/ C g.x/ D
P1

nD0.an C bn/.x � x0/n for jx � x0j < R WD minfR0; R00g; and (3) f .x/g.x/ D
P1

nD0 cn.x � x0/n for jx � x0j < R WD minfR0; R00g; where cn D Pn
kD0 akbn�k;

for all n D 0; 1; 2; : : : :
Proof. .1/ and .2/ follow from Theorem 2.3.39 and .3/ is a consequence of Theo-
rem 2.3.43 ( Mertens’ Theorem), since both

P1
nD0 an.x�x0/n and

P1
nD0 bn.x�x0/n

converge absolutely for jx � x0j < R. ut
Remark 8.4.16.

(1) It should be noted that, in Theorem 8.4.15, the interval of convergence of
f .x/C g.x/ and f .x/g.x/ may be larger, as follows at once from the trivial
case g.x/ D �f .x/:

(2) Using induction, we can extend Theorem 8.4.15 to sums and products of several
power series:

Corollary 8.4.17. Suppose that fk.x/ WD P1
nD0 akn.x � x0/

n has radius of
convergence Rk > 0 for k D 1; 2; : : : ; m and let R WD minfR1; : : : ; Rmg: Then
Pm

kD1 fk.x/ D
P1

nD0.
Pm

kD1 akn/.x � x0/n and f1.x/ � � � fm.x/ D P1
nD0 cn.x �

x0/
n; for jx � x0j < R and

cn D
X

n1C���CnmDn
a1n1 � � � amnm .8n 2 N0/:

Theorem 8.4.18 (Substitution Theorem). Let R and R1 be extended positive
numbers, f .x/ WDP1

nD0 an.x � x0/n for jx � x0j < R; g.x/� x0 WDP1
nD0 bn.x �

x1/
n; and suppose that

P1
nD0 jbnjjx � x1jn < R if jx � x1j < R1: Then f .g.x// D

P1
mD0 cm.x � x1/m for jx � x1j < R1: Here cm D P1

nD0 anbnm; where, for each
n 2 N0; the bnm are given by Œg.x/ � x0/�n DP1

mD0 bnm.x � x1/m:
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Proof. We have f .y/ D P1
nD0 an.y � x0/n for jy � x0j < R: Let y D g.x/ with

jx � x1j < R1 and note that, by assumption,

jy � x0j D jg.x/ � x0j �
1
X

nD0
jbnjjx � x1jn < R:

It follows that

f .g.x// D
1
X

nD0
anŒg.x/ � x0�n D

1
X

nD0
an

 1
X

mD0
bnm.x � x1/m

!

: ()

In view of the definition of the cm; the theorem follows if we can interchange the
order of summation in ./: To justify the interchange, we show that

1
X

nD0

1
X

mD0
janbnm.x � x1/mj <1 .jx � x1j < R1/; ()

and use Theorem 2.4.26. Now bnm D P

m1C���CmnDm bm1 � � � bmn; by Corollary
8.4.17. Thus, with Bnm WD P

m1C���CmnDm jbm1 j � � � jbmn j; we have jbnmj � Bnm:

Let h.x/ WD P1
mD0 jbmjjx � x1jm: Then

P1
mD0 Bnmjx � x1jm D Œh.x/�n and we

have
P

m janbnm.x � x1/mj � janjŒh.x/�n: Since h.x/ < R for jx � x1j < R1; we
have

P1
nD0 janjŒh.x/�n < 1 for jx � x1j < R1 and ./ follows from the First

Comparison Test (Theorem 2.3.9). ut
The following theorem on the ratio of two power series is our first application of

Theorem 8.4.18.

Theorem 8.4.19. Let 0 < R � 1 and let f .x/ WD P1
nD0 an.x � x0/n; g.x/ WD

P1
nD0 bn.x�x0/n; for jx�x0j < R: If g.x0/ ¤ 0; then there existsR1 2 .0; R� and

a sequence .cn/1nD0 such that f .x/=g.x/ DP1
nD0 cn.x � x0/n; for jx � x0j < R1:

Proof. Let us assume that x0 D 0: Since f .x/=g.x/ D f .x/ � .1=g.x//;
Theorem 8.4.15 implies that we need only consider the special case f .x/ � 1:

Also, replacing g.x/ by g.x/=g.0/; we may assume that g.0/ D 1: We then
have g.x/ D 1 C h.x/ with h.x/ D P1

nD1 bnxn: Pick R1 2 .0; R� such that
P1

nD1 jbnjjxjn < 1 for jxj < R1: Now the expansion 1=.1Cx/ DP1
nD0.�1/nxn is

valid for jxj < 1: Since 1=g.x/ D 1=.1C h.x//; the theorem follows at once from
the Substitution Theorem. ut

The class of all functions that can be represented (locally) by convergent power
series plays a very important role in analysis:

Definition 8.4.20 ((Real) Analytic Functions). Let I ¤ ; be an open interval.
A function f W I ! R is said to be (real) analytic (in I ) if for each x0 2 I there
exists a real sequence .cn/1nD0 and a number ı > 0 such that .x0 � ı; x0 C ı/ � I
and f .x/ DP1

nD0 cn.x � x0/n for all x 2 .x0 � ı; x0 C ı/:
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As another application of the Substitution Theorem, let us show that the sum of
a power series with positive radius of convergence is real analytic in the interior of
its interval of convergence. This is an extension of Taylor’s Formula.

Theorem 8.4.21 (Taylor’s Theorem). Let f .x/ WD P1
nD0 anxn; where the series

has radius of convergence R > 0: Then f is (real) analytic on .�R;R/: In fact, for
each x0 2 .�R;R/; we have

f .x/ D
1
X

nD0

f .n/.x0/

nŠ
.x � x0/n .jx � x0j < R1/; (�)

where R1 WD R � jx0j:
Proof. We use Theorem 8.4.18 (Substitution Theorem) with g.x/ WD x: Note that
jg.x/j D jxj D jx0 C .x � x0/j < R whenever jx � x0j < R1 D R � jx0j: Now,
using the binomial formula (Proposition 1.3.30), where

�

n
k

� D nŠ=kŠ.n � k/Š for
0 � k � n and

�

n
k

� WD 0 for all k > n; we have

xn D Œg.x/�n D Œx0 C .x � x0/�n ()

D
n
X

kD0

 

n

k

!

xn�k
0 .x � x0/k D

1
X

kD0

 

n

k

!

xn�k
0 .x � x0/k:

Substituting ./ in f .x/ and interchanging the order of summation as in Theorem
8.4.18, we deduce (for jx � x0j < R1) that

f .x/ D
1
X

nD0
an

1
X

kD0

 

n

k

!

xn�k
0 .x � x0/k

D
1
X

kD0

 1
X

nDk

 

n

k

!

anx
n�k
0

!

.x � x0/k D
1
X

kD0

f .k/.x0/

kŠ
.x � x0/k;

where the last equation follows from
P1

nDk
�

n
k

�

anx
n�k
0 D f .k/.x0/=kŠ; a conse-

quence of Corollary 8.4.12 (cf. the equation ./ in the proof of that corollary). The
proof is now complete. ut
Definition 8.4.22 (Taylor & Maclaurin Series (Expansions)). Supposing that f
has derivatives of all orders at x0; the series .�/ in Theorem 8.4.21 is said to be the
Taylor series (or Taylor expansion) of f at x0 (or about x0). If x0 D 0; the Taylor
series is called the Maclaurin series (or Maclaurin expansion).

Remark 8.4.23 (C 1 vs. Analytic). Let x0 2 .a; b/: If f .x/ D P1
nD0 cn.x � x0/n

for all x 2 .a; b/; then f 2 C1.a; b/ and the series is necessarily the Taylor series
of f at x0 (cf. Corollary 8.4.12). Now, for any function f 2 C1.a; b/; its Taylor
expansion at x0 2 .a; b/ is obviously well defined. However, it is not true in general
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that f .x/ DP.f .n/.x0/=nŠ/.x � x0/n on .a; b/ or even near x0: In other words, a
C1 function on .a; b/ is not necessarily analytic on .a; b/; although the converse
is always true. As an example, the function

f .x/ WD
(

e�1=x if x > 0,

0 if x � 0,

defined in Exercise 6.6.13, is in C1.R/: It is not, however, equal to the sum of
its Maclaurin series. Indeed, we have f .n/.0/ D 0 for all n 2 N and hence the
Maclaurin expansion is identically 0 whereas f is certainly not (identically) zero
in any open interval about x D 0: A more interesting example can be constructed
using the same type of functions:

Exercise 8.4.24.

(1) Given a < b; define the function

f .x; a; b/ WD
8

<

:

exp
h

�1
.x�a/.b�x/

i

if x 2 .a; b/,
0 if x 62 .a; b/.

Note that this function has compact support Œa; b�, where the support of a
function f , denoted supp.f /, is the closure of the set of all x with f .x/ ¤ 0:

supp.f / WD fx W f .x/ ¤ 0g�:

Show that, as a function of x with fixed a < b; we have f 2 C1.R/: Hint:
Show that, with u WD .x � a/�1; v WD .b � x/�1; and n 2 N; we have

Dn.e�uv/ D Pn.u; v/e�uv; ()

where D D d=dx and Pn is a polynomial (in two variables), and deduce that
the derivatives ./ converge to 0 as x ! aC or x ! b�.

(2) Given any fixed ı 2 .0; 1/; let g.x/ WD f .x;�1;�1C ı/; with f as in part (1),
and define

h.x/ WD 1

A

Z x

�1
g.t/ dt;

where A WD R �1Cı
�1 g.t/ dt: Show that h 2 C1.R/ and h.x/ � 1 for all

x � �1C ı; while h.x/ � 0 for all x � �1:
(3) Let �.x/ WD h.�jxj/ for all x 2 R and h as is part (2). Show that � 2 C1.R/;

�.x/ � 1 for all x 2 Œ�1C ı; 1 � ı�; and �.x/ � 0 for all jxj � 1:
Theorem 8.4.25. Let x0 2 .a; b/ � R and f 2 C1.a; b/: For each
n 2 N0; define Mn WD supfjf .n/.x/j W x 2 .a; b/g; and suppose that
limn!1Mn.b � a/n=nŠ D 0. Then,
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f .x/ D
1
X

nD0

f .n/.x0/

nŠ
.x � x0/n .8x 2 .a; b//: (�)

In particular, if Mn � CMn for all n 2 N0 and some constants C > 0 and M > 0

(i.e., Mn D O.Mn/ .n!1/), then .�/ holds.

Proof. For each x 2 .a; b/ n fx0g; Theorem 6.6.18 (Taylor’s Formula) gives

f .x/ D
n
X

kD0

f .k/.x0/

kŠ
.x � x0/k C f .nC1/.�/

.nC 1/Š .x � x0/
nC1;

for some � between x0 and x: Since, by assumption,

ˇ

ˇ

ˇ

ˇ

f .nC1/.�/
.nC 1/Š .x � x0/

nC1
ˇ

ˇ

ˇ

ˇ

� MnC1
.nC 1/Š .b � a/

nC1 ! 0;

as n ! 1; the first statement in the theorem follows. To prove the last
statement, we note that

P1
nD0 Mn.b � a/n=nŠ < 1 (why?) and hence

limn!1Mn.b � a/n=nŠ D 0. ut
Example 8.4.26.

(1) Let f .x/ D ex: Then f .n/.x/ D ex for all n 2 N: In particular, f .n/.0/ D 1

for all n 2 N: Thus, for any R > 0; we have supfjf .n/.x/j W x 2 .�R;R/g D
eR D O.1/; as n!1: Applying Theorem 8.4.25, we have

ex D
1
X

nD0

xn

nŠ
8x 2 R:

(2) Let f .x/ D sin x:Here jf .n/.x/j D j sin xj if n is even and jf .n/.x/j D j cos xj
if n is odd. It follows that jf .n/.x/j � 1 for all n 2 N and all x 2 R: Since
sin 0 D 0 and cos 0 D 1; Theorem 8.4.25 (with x0 D 0) gives

sin x D
1
X

kD0

.�1/k
.2k C 1/Šx

2kC1 D x � x
3

3Š
C x5

5Š
� � � � 8x 2 R:

Similarly, we find the Maclaurin series of x 7! cos x:

cos x D
1
X

kD0

.�1/k
.2k/Š

x2k D 1 � x
2

2Š
C x4

4Š
� � � � 8x 2 R:

In the next section, we shall use the above Maclaurin expansions for ex; sin x;
and cos x to define these functions. We shall also define the general exponential
bx for arbitrary b > 0 and x 2 R:
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Definition 8.4.27 (Binomial Coefficients). For each ˛ 2 R and n 2 N0; the
binomial coefficient

�

˛
n

�

is defined as follows:

 

˛

n

!

WD ˛.˛ � 1/ � � � .˛ � nC 1/
nŠ

;

 

˛

0

!

WD 1:

Exercise 8.4.28. Show that

.nC 1/
 

˛

nC 1

!

C n
 

˛

n

!

D ˛
 

˛

n

!

.˛ 2 R; n 2 N0/:

Theorem 8.4.29 (Newton’s Binomial Theorem). Suppose that x 2 .�1; 1/ and
˛ 2 R: Then

.1C x/˛ D
1
X

nD0

 

˛

n

!

xn: (�)

If ˛ 2 N0; then .�/ holds for all x 2 R:

Proof. First note that, for ˛ 2 N; .�/ is the usual binomial formula (Proposition
1.3.30). For ˛ 62 N; it follows easily from the Ratio Test that the power series in
.�/ converges absolutely on .�1; 1/: Let s.x/ denote its sum. Then the function
x 7! s.x/ is differentiable on .�1; 1/; and s0.x/ is obtained by term-by-term
differentiation:

s0.x/ D
1
X

nD1
n

 

˛

n

!

xn�1:

Thus, using Exercise 8.4.28, we have

.1C x/s0.x/ D
1
X

nD1
n

 

˛

n

!

xn�1 C
1
X

nD1
n

 

˛

n

!

xn

D ˛ C
1
X

nD2
n

 

˛

n

!

xn�1 C
1
X

nD1
n

 

˛

n

!

xn

D ˛ C
1
X

nD1

	

.nC 1/
 

˛

nC 1

!

C n
 

˛

n

!




xn

D ˛
1
X

nD0

 

˛

n

!

xn

D ˛s.x/:
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Put g.x/ WD .1Cx/�˛s.x/ for all x 2 .�1; 1/:A simple calculation gives g0.x/ � 0
on .�1; 1/: It follows that g is constant on .�1; 1/: Since g.0/ D 1; we indeed have
s.x/ D .1C x/˛ for jxj < 1. ut

We end this section with an important theorem on uniform convergence of power
series. As was pointed out before, the uniform convergence of a power series about
x0 with radius of convergence R is (in general) only guaranteed on compact subsets
of .x0 � R; x0 C R/. There is, however, an important result (due to Abel) that
guarantees the uniform convergence throughout the interval of convergence.

Theorem 8.4.30 (Abel). Let f .x/ WD P1
nD0 cn.x � x0/n; and assume that the

series converges at x D x0CR; for someR > 0: Then the series is in fact uniformly
convergent on Œx0; x0 CR� and we have

lim
x!.x0CR/�

f .x/ D f .x0 CR/ D
1
X

nD0
cnR

n: (�)

Proof. We may (and do) assume that R is the radius of convergence. Indeed, R is
at most equal to that radius and, if it is strictly smaller, then the result is obvious.
(Why?) Also, using the substitution x0 D .x � x0/=R; we may (and do) assume
that x0 D 0 and R D 1: Thus, f .x/ DP1

nD0 cnxn and
P1

nD0 cn is convergent. For
n > m; Abel’s partial summation formula (Proposition 2.3.33) implies

n
X

kDm
ckx

k D Cnxn C
n�1
X

kDm
Ck.x

k � xkC1/; ()

where Ck WD Pk
jDm cj for each k � m: Since

P

cn converges, given any " > 0,
we can pick N D N."/ 2 N such that k � m � N implies jCkj < ": Now,
for x 2 Œ0; 1�; the sequence .xn/ is decreasing and hence, for each x 2 Œ0; 1� and
n > m � N; ./ gives

ˇ

ˇ

ˇ

ˇ

ˇ

n
X

kDm
ckx

k

ˇ

ˇ

ˇ

ˇ

ˇ

� "xn C
n�1
X

kDm
".xk � xkC1/

� "xn C ".xm � xn/ D "xm � ";

which shows (by Cauchy’s Criterion for uniform convergence) that
P

cnx
n con-

verges uniformly on Œ0; 1�: In particular (Corollary 8.3.2), f is continuous on Œ0; 1�
and hence limx!1� f .x/ D f .1/; which proves .�/ and completes the proof. ut
Exercise 8.4.31. If f .x/ WD P1

nD0 cnxn has radius of convergence R D 1 and if
the series converges at x D ˙1; show that it is uniformly convergent (and hence
continuous) on Œ�1; 1�:
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As a corollary of Abel’s theorem, let us prove Theorem 2.3.45 (also due to Abel,
of course) as was promised:

Corollary 8.4.32 (Abel). If
P1

nD0 an and
P1

nD0 bn are convergent real series and
if their Cauchy product

P1
nD0 cn (with cn WDPn

kD0 akbn�k) is also convergent, then
we have

� 1
X

nD0
an

�� 1
X

nD0
bn

�

D
1
X

nD0
cn:

Proof. The series
P1

nD0 anxn and
P1

nD0 bnxn are both absolutely convergent for
jxj < 1 and hence (Theorem 8.4.15) so is

P1
nD0 cnxn and we have

� 1
X

nD0
anx

n

�� 1
X

nD0
bnx

n

�

D
1
X

nD0
cnx

n: ()

In view of Theorem 8.4.30, ./ implies

1
X

nD0
cn D lim

x!1�

1
X

nD0
anx

n � lim
x!1�

1
X

nD0
bnx

n D
� 1
X

nD0
an

�� 1
X

nD0
bn

�

and the proof is complete. ut

8.5 Elementary Transcendental Functions

Our goal in this section is to define the elementary transcendental functions (i.e.,
the exponential, logarithmic, and trigonometric functions) rigorously, using power
series. We have already used these functions in many examples, assuming their
basic properties. Here, we shall prove these properties and justify what was used
without proof. We begin with the exponential function, which we define for complex
variables first.

Definition 8.5.1 (Complex Exponential Function). For each z 2 C; we define

E.z/ WD
1
X

nD0

zn

nŠ
: (�)

It follows at once from the Ratio Test that the series is absolutely convergent (i.e.,
P1

nD0 jzjn=nŠ < 1 for all z 2 C/: Therefore, .�/ converges for all z 2 C (e.g., by
Cauchy’s Criterion). In fact, given any R > 0; the series converges normally on
Œ�R;R�: This follows from the Weierstrass M-Test (Theorem 8.2.20), whose proof
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can be followed verbatim for the complex case, and the fact that jzj � R implies
jzjn=nŠ � Rn=nŠ and

P

Rn=nŠ converges.

Theorem 8.5.2. Consider the function E W C ! C; where E.z/ is given by .�/
above. Then we have E.0/ D 1; E.z/ D E.z/; E.z/ ¤ 0 and E.�z/ D 1=E.z/; for
every z 2 C: Also, for any z; w 2 C;

E.zC w/ D E.z/E.w/: ()

More generally, for any z1; z2; : : : ; zn 2 C;

E.z1 C z2 C � � � C zn/ D E.z1/E.z2/ � � �E.zn/: ()

Finally, for each q 2 Q; we have E.q/ D eq; where e WD E.1/ DP1
nD0 1=nŠ:

Proof. That E.0/ D 1 is obvious from .�/ and so is E.z/ D E.z/: To prove ./;
we note that the proof of Mertens’ Theorem on Cauchy products (Theorem 2.3.43)
can be repeated for complex series. Since .�/ is absolutely convergent, we therefore
have

E.z/E.w/ D
1
X

nD0

zn

nŠ

1
X

mD0

wm

mŠ
D

1
X

nD0

n
X

kD0

zkwn�k

kŠ.n � k/Š

D
1
X

nD0

1

nŠ

n
X

kD0

 

n

k

!

zkwn�k D
1
X

nD0

.zC w/n

nŠ

D E.zC w/:

The equation ./ now follows by induction. Next, ./ implies

E.z/E.�z/ D E.z � z/ D E.0/ D 1 .8z 2 C/; (  )

which shows that E.z/ ¤ 0 for all z 2 C and E.�z/ D 1=E.z/ as claimed. To
prove the last statement, note that, taking zk D 1 for 1 � k � n in ./; we have
E.n/ D .E.1//n D en; for all n 2 N: Now, for each q D n=m with m; n 2 N; we
have

ŒE.q/�m D E.mq/ D E.n/ D en;

which implies E.q/ D eq for all q > 0: For q < 0; we have �q > 0 and .  /
implies E.q/ D 1=E.�q/ D 1=e�q D eq: Since e0 WD 1 D E.0/; the proof is
complete. ut
Notation 8.5.3. In view of the equation E.q/ D eq for all q 2 Q; we henceforth
define ez WD E.z/ for all z 2 C:
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Definition 8.5.4 (Real Exponential Function). For each x 2 R; we define

ex D exp.x/ WD E.x/ D
1
X

nD0

xn

nŠ
: (�)

Theorem 8.5.5. The map x 7! ex defined by .�/ is a strictly positive and strictly
increasing function from R onto .0;1/ satisfying the following conditions:

(1) exp 2 C1.R/ and dn.ex/=dxn D ex (8n 2 N/; in particular,

lim
x!0

ex � 1
x
D exp0.0/ D e0 D 1I

(2) exCy D exey and ex�y D ex=ey (8x; y 2 R);
(3) ex � 1C x 8x 2 R; with equality only at x D 0;
(4) limx!C1 ex D C1; limx!�1 ex D 0I
(5) limx!C1 xne�x D 0 (8n 2 N0).

Proof. The series in .�/ converges uniformly on compact subsets of R: Therefore,
ex is continuously differentiable on R and we can differentiate the series term by
term to obtain .ex/0 D ex: This proves .1/: Also, .2/ follows from Theorem 8.5.2.
From .�/; it is obvious that ex > 0 for all x � 0 which, using e�x D 1=ex , implies
ex > 0 for all x < 0 as well. Since .ex/0 D ex > 0 for all x 2 R; the exponential
function is strictly positive and strictly increasing as claimed. Next, for each x 2 R;

the Mean Value Theorem implies ex � 1 D xe� for some � between 0 and x. If
x > 0; then 0 < � < x implies e� > e0 D 1 and hence ex � 1 D xe� > x: If
x < 0; we have � 2 .x; 0/ and hence e� < 1; which implies ex � 1 D xe� > x:

Since .3/ is true for x D 0; it is therefore proved for all x 2 R: The first limit in .4/
follows from .3/ and the second one follows from the first and e�x D 1=ex: These
limits and the continuity of ex show that the range of exp is indeed .0;1/: Finally,
by .�/; we have ex > xnC1=.nC 1/Š and hence xne�x < .nC 1/Š=x; for all x > 0;
from which .5/ follows at once. ut

Since ex is strictly increasing and differentiable on R; it has an inverse function
which is also strictly increasing and differentiable on the range of ex , i.e., on .0;1/:
Definition 8.5.6 (Natural Logarithm). The inverse function of exp W R! RC WD
.0;1/ is called the (natural) logarithm function and is denoted by log x: Thus

y D log x” x D ey .8x 2 RC; 8y 2 R/:

Equivalently,

elog x D x .8x > 0/; log.ex/ D x .8x 2 R/:
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The properties of the natural logarithm are immediate consequences of the
corresponding properties of the (natural) exponential function.

Proposition 8.5.7. The natural logarithm is a strictly increasing, infinitely differ-
entiable function from RC onto R satisfying, for all x; u; v 2 RC; the following
properties:

(1) .log x/0 D 1=x and log x D R x
1
dt=t ;

(2) log x � x � 1 with equality precisely when x D 1;
(3) log.uv/ D log uC log v and log.u=v/ D log u � log v;
(4) limx!C1 log x D C1; limx!0C log x D �1.

Proof. Differentiating the relation exp.log x/ D x and using the fact that .ex/0 D
ex; we obtain

exp.log x/.log x/0 D x.log x/0 D 1 .8x > 0/;

which implies .log x/0 D 1=x: Since e0 D 1; we have log 1 D 0 and hence the
second equation in .1/ follows from the Fundamental Theorem of Calculus. For
.2/; note that by part .3/ of Theorem 8.5.5, we have

x D elog x � 1C log x .8x > 0/:

Next, since ex is the inverse of log x; the first equation in .3/ is equivalent to

elog uClog v D elog uelog v D uv D elog.uv/:

The second equation is proved similarly or deduced from the first one applied to the
product v � .u=v/: Finally, the limits in .4/ are a consequence of the ones in part .4/
of Theorem 8.5.5. ut
Exercise 8.5.8. Let � 2 C1.0;1/ satisfy the condition

�.st/ D �.s/C �.t/ .8s; t 2 RC/: ()

Show that there is a constantC such that �.x/ D C log x for all x 2 .0;1/:Deduce
that log is the unique continuously differentiable function on .0;1/ that satisfies
./ and whose derivative at 1 equals 1: Hint: Differentiate ./ with respect to
s and, fixing s; set t D 1=s: Alternatively, define  WD � ı exp and observe that
 satisfies Cauchy’s functional equation, i.e.,  .x C y/ D  .x/ C  .y/ for all
x; y 2 R (cf. Theorem 4.3.11).

Using the natural logarithm, we can now define general exponentials:

Definition 8.5.9 (General Exponential & Power). Given any (fixed) b 2 RC WD
.0;1/ with b ¤ 1; we define the general exponential function:

x 7! bx WD ex log b .8x 2 R/: ()
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Using ./; we define, for any fixed ˛ 2 R; the general power function:

x 7! x˛ WD e˛ log x .8x 2 RC/: ()

Proposition 8.5.10. Fix any 0 < b ¤ 1 and ˛ 2 R and define the general
exponential and power functions by ./ and ./; respectively. Then we have

(1) b0 D 1 and log bx D x log b .8x 2 R/;
(2) .bx/0 D bx � log b and

R

bx dx D bx= log b C C ;
(3) .x˛/0 D ˛x˛�1 and

R

x˛ dx D x˛C1=.˛ C 1/C C .8˛ ¤ �1/;
(4) bx (resp., x˛/ is C1 on R (resp., RC);
(5) if 0 < b < 1; then bx is strictly decreasing and bx ! 0 as x ! C1; while

bx !C1 as x ! �1;
(6) if b > 1; then bx is strictly increasing and bx ! C1 as x ! C1; while

bx ! 0 as x ! �1;
(7) limx!C1 x�˛ log x D 0 .8˛ > 0/:
Note that .3/ is an extension of the “Power Rule” to general exponents.

Proof. Exercise! Hint: For the derivatives (and integrals) use the Chain Rule and
the properties of ex and log x: For .7/; note that x˛ ! 1 as x ! 1; for ˛ > 0

(why?), and use L’Hôpital’s Rule. ut
Exercise 8.5.11. Show that the general power function (given by Definition 8.5.9)
satisfies the properties (1) x˛ � xˇ D x˛Cˇ; (2) x˛=xˇ D x˛�ˇ; (3) .x˛/ˇ D x˛ˇ;

(4) x�˛ D 1=x˛; (5) .xy/˛ D x˛y˛; and (6) .x=y/˛ D x˛=y˛; for all x; y 2 RC
and all ˛; ˇ 2 R:

Next, we want to define the trigonometric functions sine and cosine without
introducing the notion of angle. To do so, let us look at the complex exponential
function z 7! ez applied to a purely imaginary number, i.e., a number of the form
z D ix; where x 2 R n f0g and i WD p�1: We then have

eix D
1
X

nD0

.ix/n

nŠ
D

1
X

kD0
.�1/k x

2k

.2k/Š
C i

1
X

kD0
.�1/k x2kC1

.2k C 1/Š (  )

D
�

1 � x
2

2Š
C x4

4Š
� � � �

�

C i
�

x � x
3

3Š
C x5

5Š
� � � �

�

:

It then follows from the Ratio Test that both series on the right side of ./ have
radius of convergence R D C1 and hence define infinitely differentiable functions
on R:

Definition 8.5.12 (Sine & Cosine). For each x 2 R; we define

sin x WD
1
X

kD0
.�1/k x2kC1

.2k C 1/Š ; cos x WD
1
X

kD0
.�1/k x

2k

.2k/Š
I
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i.e., cos x WD Re.eix/ and sin x WD Im.eix/: In particular, we have Euler’s formula:

eix D cos x C i sin x .8x 2 R/: (�)

The following identities (also due to Euler) follow from .�/ and the fact that
eix D e�ix .

cos x D eix C e�ix

2
; sin x D eix � e�ix

2i
: (�)

Notation 8.5.13. It is customary to write cosk x WD .cos x/k and sink x WD .sin x/k;
for all k 2 N.

Theorem 8.5.14. sin x and cos x are infinitely differentiable (in fact, real analytic)
functions on R having the following properties for all x; y 2 R:

(1) sin 0 D 0; cos 0 D 1;
(2) sin.�x/ D � sin x; cos.�x/ D cos x;
(3) .sin x/0 D cos x; .cos x/0 D � sin x;
(4) cos2 x C sin2 x D 1 (i.e., jeixj D 1);
(5) sin.x C y/ D sin x cos y C cos x siny;
(6) cos.x C y/ D cos x cos y � sin x siny;
(7) cos.2x/ D cos2 x � sin2 x; sin.2x/ D 2 sin x cos x:

Proof. .1/ and .2/ follow at once from the definition and .3/ follows from term-
by-term differentiation of the power series defining sine and cosine. The identities
.4/; .5/, and .6/ follow easily from .�/ above. We may also prove .4/ as follows: let
f .x/ WD cos2 x C sin2 x: Then .3/ implies that f 0.x/ D 0 for all x 2 R and hence
f is constant. But then .1/ implies that f .x/ � 1: Finally, .7/ follows from .5/ and
.6/ with x D y. ut
Proposition 8.5.15 (De Moivre’s Formula). We have

.cos x C i sin x/n D cos.nx/C i sin.nx/ 8n 2 Z 8x 2 R:

First Proof. Using Euler’s formula, we have (for all n 2 Z and all x 2 R)

.cos x C i sin x/n D .eix/n D einx D cos.nx/C i sin.nx/:

Second Proof. Given any x; y 2 R; let u D cos xCi sin x and v D cos yCi siny:
Then, using Theorem 8.5.14, we have

uv D .cos x cos y � sin x siny/C i.sin x cos y C cos x siny/

D cos.x C y/C i sin.x C y/:
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Using this repeatedly with y D x; the result follows for all n > 0: The case n D 0

is obvious from the definition z0 WD 1 for all z ¤ 0: For n < 0, simply note that
.cos x C i sin x/�1 D cos x � i sin x D cos.�x/C i sin.�x/. ut
Remark 8.5.16. Combining the binomial formula, the (Euler’s) identities .�/ and
De Moivre’s formula, one can express (positive) powers sinm x and cosm x as linear
combinations of sin.kx/ and/or cos.kx/ for suitable integers k:

Theorem 8.5.17. The following identities hold for all x 2 R and all n 2 N:

cos2n x D 1

4n

	

 

2n

n

!

C 2
n
X

jD1

 

2n

n � j

!

cos.2jx/




;

sin2n x D 1

4n

	

 

2n

n

!

C 2
n
X

jD1

 

2n

n � j

!

.�1/j cos.2jx/




;

cos2nC1 x D 1

4n

n
X

jD0

 

2nC 1
n � j

!

cos.2j C 1/x;

sin2nC1 x D 1

4n

n
X

jD0

 

2nC 1
n � j

!

.�1/j sin.2j C 1/x:

Proof. With z D cos xC i sin x we have 1=z D cos x� i sin x and Euler’s identities
become cos x D .zC1=z/=2 and sin x D .z�1=z/=2i: Using the binomial formula,
for any integer m 2 N, we get

cosm x D 1

2m

m
X

kD0

 

m

k

!

zm�k.z�1/k D 1

2m

m
X

kD0

 

m

k

!

zm�2k:

Now, by De Moivre’s formula, we have zm�2k D cos.m � 2k/x C i sin.m � 2k/x
and hence

cosm x D 1

2m

m
X

kD0

 

m

k

!

cos.m � 2k/x C i

2m

m
X

kD0

 

m

k

!

sin.m � 2k/x:

Since the left side is real, we get

cosm x D 1

2m

m
X

kD0

 

m

k

!

cos.m � 2k/x: ()

If m D 2n is even, then the term with k D n is
�

2n
n

�

cos.2n � 2n/x D �

2n
n

�

: Also,
pairing the k-th term with the .2n � k/-th for 0 � k � n � 1 and noting that
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2n

k

!

cos.2n � 2k/x C
 

2n

2n � k

!

cos.2k � 2n/x D 2
 

2n

k

!

cos.2n � 2k/x;

we get

cos2n x D 1

4n

	

 

2n

n

!

C 2
n�1
X

kD0

 

2n

k

!

cos.2n � 2k/x



;

which, substituting j D n � k, establishes the first identity in the proposition. The
identity for cosm x when m is odd and the identities for the even and odd cases of
sinm x are proved similarly. ut
Exercise 8.5.18. Prove the following formulas of Wallis for all n 2 N0:

Z 	=2

0

cos2n x dx D
Z 	=2

0

sin2n x dx D .2n/Š

4n.nŠ/2
� 	
2
:

Proposition 8.5.19. The set of all positive numbers x with cos x D 0 is nonempty.
In fact, there is a smallest � > 0 with cos � D 0:
Proof. It follows from the definition of cosine that

1 � cos 2 D
1
X

kD0

24kC2

.4k C 2/Š
�

1 � 4

.4k C 3/.4k C 4/
�

;

and the convergent series on the right side has nonnegative terms. Therefore,

1 � cos 2 �
�

1 � 1
3

�

22

2Š
D 4

3
> 1;

and hence cos 2 < 0: Since cos 0 D 1 > 0 and cosine is continuous, the Intermediate
Value Theorem (Theorem 4.5.6) implies that we must have cos x D 0 for some
x 2 .0; 2/: LetZ.cos/ WD fx 2 R W cos x D 0g: Since cos x is continuous,Z.cos/ is
closed (Exercise 4.3.8), hence so is ZC WD Z.cos/ \ Œ0;1/ and note that 0 62 ZC:
Therefore, ZC has a smallest element, say � > 0; which is given by

� WD inffx > 0 W cos x D 0g: ()

ut
Definition 8.5.20 (The Number �). We define

	 WD 2�;

where � is given by ./ above. In particular, cos.	=2/ D 0:
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Theorem 8.5.21 (Periodicity of Sine & Cosine). sin x and cos x are periodic with
period 2	 I i.e., 2	 is the smallest positive number such that

sin.x C 2	/ D sin x; cos.x C 2	/ D cos x .8x 2 R/: (�)

Proof. First note that cos x > 0 on Œ0; 	=2/ so that sin x is (strictly) increasing on
Œ0; 	=2�: Since cos.	=2/ D 0; we have sin2.	=2/ D 1 (Theorem 8.5.14) and hence
sin.	=2/ D 1: In particular,

ei	=2 D cos
	

2
C i sin

	

2
D i;

which implies

e2	i D �ei	=2�4 D i 4 D 1:

Therefore,

cos.x C 2	/C i sin.x C 2	/ D ei.xC2	/ D eix D cos x C i sin x;

and .�/ follows. To complete the proof, we must show that no number in .0; 2	/
is a period for sine or cosine. Now Theorem 8.5.14 implies that cos	 D �1 and
sin	 D 0. It also implies that cos.x C 	=2/ D � sin x which shows, on the one
hand, that a number ˛ is a period of cos x if and only if it is a period of sin x
(and hence, if and only if it is a period of exp.ix/; which happens if and only if
exp.i˛/ D 1). On the other hand, it implies that cos x � 0 on Œ	=2; 	� and, since
cos.xC	/ D � cos x;we have cos x < 1 D cos 0 on .0; 2	/: Therefore, exp.ix/ ¤
1 for all x 2 .0; 2	/ and the proof is complete. ut

Once sin x and cos x are defined, the remaining trigonometric functions are
defined as usual: tan x WD sin x= cos x; cot x WD 1= tan x; sec x WD 1= cos x; and
csc x WD 1= sin x: The properties of these functions may be deduced from the
corresponding properties of sin x and cos x described above.

8.6 Fourier Series

In the preceding section, we saw that a function that can be represented by a
power series is analytic, hence infinitely differentiable, on the interior of the interval
of convergence of that series. In practice, however, most important functions we
encounter are hardly even continuous. Yet, these functions can in many cases be
represented by trigonometric series. This type of representation was introduced by
the French mathematician Fourier in his study of heat conduction. In view of Euler’s
formula (Definition 8.5.12), it will be convenient to work with complex-valued
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functions of a real variable. The notions of derivative and integral can immediately
be extended to such functions. Thus, if I � R is an open interval and f W I ! C;

then the derivative of f at x0 2 I is defined to be

f 0.x0/ WD lim
x!x0

f .x/ � f .x0/
x � x0 ; ()

if the limit exists. Now f D u C iv; where u WD Re.f / and v WD Im.f / are real-
valued functions on I; so that ./ and Proposition 8.1.14 give

f 0.x0/ D lim
x!x0

�

u.x/ � u.x0/

x � x0 C i v.x/ � v.x0/

x � x0
�

D lim
x!x0

u.x/ � u.x0/

x � x0 C i lim
x!x0

v.x/ � v.x0/

x � x0
D u0.x0/C iv0.x0/:

In particular, f W I ! C is differentiable (on I ) if and only if both u and v are and
we then have f 0 D u0 C iv0 on I: Next, for any f W Œa; b� ! C and any tagged
partition PP of Œa; b�; the corresponding Riemann sum S.f; PP/ of f D u C iv is
defined exactly as in Definition 7.1.4, and one sees at once that

S.f; PP/ D S.u; PP/C iS.v; PP/: ()

f is then said to be Riemann integrable on Œa; b� (and one then writes f 2
R.Œa; b�/) if there is a number I.f / 2 C such that

.8" > 0/.9P" 2 P/.8 PP 2 PP/.P" � P ) jS.f; PP/ � I.f /j < "/: (  )

It follows from ./ and .  / that f 2R.Œa; b�/ if and only if u; v 2R.Œa; b�/
and, in this case, we have

Z b

a

f .x/ dx D
Z b

a

u.x/ dx C i
Z b

a

v.x/ dx (�)

or, equivalently,

Re

 

Z b

a

f .x/ dx

!

D
Z b

a

Re.f .x// dx; Im

 

Z b

a

f .x/ dx

!

D
Z b

a

Im.f .x// dx:

In particular, we note the effect of complex conjugation:

Z b

a

f .x/ dx D
Z b

a

f .x/ dx:
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One may also use .�/ as the definition of
R b

a
f .x/ dx: It follows at once that, for

any f; g 2R.Œa; b�/ and ˛; ˇ 2 C; we have

Z b

a

Œ f̨ .x/C ˇg.x/� dx D ˛
Z b

a

f .x/ dx C ˇ
Z b

a

g.x/ dx:

In fact, most of the properties of the integral can be deduced from .�/ and the ones
already proved for real-valued functions. For instance, if F D U C iV W Œa; b�! C

with U 0 D u and V 0 D v on Œa; b�; then F is a primitive of f D u C iv (i.e.,
F 0 D f ), and we have

Z b

a

f .x/ dx D F.b/ � F.a/:

Also, if f W Œa; b�! C is continuous on Œa; b�; then f 2R.Œa; b�/ and
R x

a
f .t/ dt

is a primitive of f :

d

dx

Z x

a

f .t/ dt D f .x/:

If f D uC iv 2R.Œa; b�/; then jf j 2R.Œa; b�/ (why?) and we have

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

�
Z b

a

jf .x/j dx:

To prove this, let ˛ D R b
a

u.x/ dx and ˇ D R b
a

v.x/ dx: Then

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

2

D
Z b

a

.˛u.x/C ˇv.x// dx

�
Z b

a

p

˛2 C ˇ2
p

u.x/2 C v.x/2 dx

D
ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

jf .x/j dx;

where we have used Corollary 7.4.14 and Cauchy’s inequality (Corollary 8.1.21):

j˛u.x/C ˇv.x/j �
p

˛2 C ˇ2
p

u.x/2 C v.x/2:
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Exercise 8.6.1 (Cauchy–Schwarz Inequality). Given any f; g 2 R.Œa; b�/;
show that

ˇ

ˇ

ˇ

ˇ

ˇ

Z b

a

f .x/g.x/ dx

ˇ

ˇ

ˇ

ˇ

ˇ

2

�
 

Z b

a

jf .x/j2 dx
! 

Z b

a

jg.x/j2 dx
!

:

Definition 8.6.2 (Trigonometric Polynomial). A finite sum of the form

.i/ f .x/ D a0 C
N
X

nD1
.an cosnx C bn sinnx/ .8x 2 R/;

where the coefficients a0; : : : ; aN and b1; : : : ; bN are, in general, complex numbers,
is said to be a trigonometric polynomial. Using the identities cos � D .ei�Ce�i� /=2
and sin � D .ei� � e�i� /=.2i/; we may write .i/ in the more convenient form

.ii/ f .x/ D
N
X

nD�N
cne

inx .8x 2 R/;

where cn 2 C: It is obvious that f .x/ is periodic with period 2	:

Since, for n ¤ 0; we have Œeinx=.in/�0 D einx and e˙i	 D �1;

.iii/
1

2	

Z 	

�	
einx dx D

(

1 if n D 0,

0 if n D ˙1; ˙2; : : :.
If we multiply the trigonometric polynomial .i i/ by e�imx; where m 2 Z; and

integrate this product on Œ�	; 	�; Then .i i i/ implies that

.iv/ cm D 1

2	

Z 	

�	
f .x/e�imx dx

for jmj � N I for jmj > N; the integral in .iv/ is 0:
In particular, it follows from .iv/ that the trigonometric polynomial f .x/ in .i i/

is real if and only if c�n D cn; for n D 0; : : : ; N: The following definition is now
motivated by .i i/:

Definition 8.6.3 (Fourier Coefficient, Fourier Series). A series of the form

.v/
1
X

nD�1
cne

inx .x 2 R/

is said to be a trigonometric series and its nth partial sum is defined to be the right
side of .i i/. If f 2R.Œ�	; 	�/; then the numbers cn defined by .iv/ are called the
Fourier coefficients of f and are also denoted by Of .n/ W

Of .n/ WD 1

2	

Z 	

�	
f .x/e�inx dx:
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The series .v/ with these coefficients is called the Fourier series of f: In this case
we write

.vi/ f .x/ �
1
X

nD�1
Of .n/einx .x 2 R/:

Remark 8.6.4. (1) Note that the symbol � used in .vi/ simply means that the coef-
ficients cn are given by .iv/: It does not imply anything about the convergence or
divergence of the series. The convergence of Fourier series is an extremely tricky
business and has led many prominent mathematicians (including Dirichlet,
Riemann, Cantor, and Lebesgue) to discover numerous fundamental results that
play a crucial role in analysis. In this section we only look at some basic results
that require the Riemann integral. For more advanced results, the Lebesgue
integral is needed.

(2) As in Definition 8.6.2, we may write .vi/ in the form

f .x/ � a0 C
1
X

mD1
am cosmx C bm sinmx:

It is then easy to see (why?) that, for each m 2 N;

a0 D 1

2	

Z 	

�	
f .x/ dx;

am D 1

	

Z 	

�	
f .x/ cosmx dx;

bm D 1

	

Z 	

�	
f .x/ sinmx dx:

In particular, if f is even, then bm D 0 for all m 2 N; a0 D 1
	

R 	

0
f .x/ dx;

and am D .2=	/
R 	

0
f .x/ cosmx dx; for all m 2 N; so that f has a cosine

expansion: f .x/ � a0 CP1
mD1 am cosmx: Similarly, if f is odd, then a0 D

am D 0 for all m 2 N and bm D .2=	/
R 	

0
f .x/ sinmx dx for all m 2 N so

that, in this case, f has a sine expansion: f .x/ �P1
mD1 bm sinmx:

(3) The sequence .einx/1nD�1 used above may be replaced by more general systems
of functions that satisfy relations similar to .i i i/I such systems are called
orthogonal. We shall look at this later when we discuss Hilbert spaces.

Notation 8.6.5. To simplify the exposition, we shall often use the notation

en.x/ WD einx .x 2 R/:

The following theorem shows that, among all trigonometric polynomials, the
partial sums of the Fourier series of a function f provide the best mean square
approximation to f :
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Theorem 8.6.6 (Best Approximation). Let f 2 R.Œ�	; 	�/ and let sn.x/ D
Pn

kD�n ckeikx denote the n-th partial sum of its Fourier series. Then, given any
trigonometric polynomials tn.x/ WDPn

kD�n c0
ke
ikx; we have

1

2	

Z 	

�	
jf .x/ � sn.x/j2 dx � 1

2	

Z 	

�	
jf .x/ � tn.x/j2 dx; ()

and equality holds if and only if c0
k D ck; for k D �n; : : : ; n: In addition, we have

n
X

kD�n
jckj2 � 1

2	

Z 	

�	
jf .x/j2 dx: ()

Proof. For simplicity, let us write
P WDPn

�n;
R WD R 	�	 ; and d 0x WD dx=2	: Now,

using the definition of the cn; we have

Z

f .x/tn.x/ d
0x D

Z

f .x/
X

c0
k ek.x/ d

0x D
X

ckc
0
k:

Also, .i i i/ implies that

Z

jtn.x/j2 d 0xD
Z

tn.x/tn.x/ d
0xD

Z

X

c0
j ej .x/

X

c0
k ek.x/ d

0xD
X

jc0
kj2:

Therefore,

Z

jf � tnj2 d 0x D
Z

jf j2 d 0x �
Z

f tn d
0x �

Z

f tn d
0x C

Z

jtnj2 d 0x

D
Z

jf j2 d 0x �
X

ckc
0
k �

X

ckc
0
k C

X

jc0
kj2

D
Z

jf j2 d 0x �
X

jckj2 C
X

jc0
k � ckj2;

which is obviously minimized if and only if c0
k D ck for jkj � n; proving ./:

Putting c0
k D ck and noting that

R jf � tnj2 d 0x � 0; we obtain ./ as well. ut
Theorem 8.6.7 (Bessel’s Inequality). If f 2R.Œ�	; 	�/ and if

f .x/ �
1
X

nD�1
cne

inx;

then we have

1
X

nD�1
jcnj2 D lim

n!1

n
X

kD�n
jckj2 � 1

2	

Z 	

�	
jf .x/j2 dx: (�)
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In particular,

lim
n!˙1 cn D lim

n!˙1
1

2	

Z 	

�	
f .x/e�inx dx D 0: (�)

Proof. Indeed .�/ follows at once from the inequality ./ in Theorem 8.6.6 if we
let n!1 and .�/ is then an immediate consequence. ut
Remark 8.6.8. (1) As we shall see later, Bessel’s inequality .�/ is actually an

equality, known as Parseval’s Relation.
(2) That .�/ holds (i.e., that the limit of the n-th Fourier coefficient Of .n/ is zero as

n!1) is known as Riemann’s Lemma. The following theorem is an extension
of this lemma.

Theorem 8.6.9 (Riemann–Lebesgue Lemma). If f 2R.Œa; b�/; then we have

lim
˛!˙1

Z b

a

f .x/ei˛x dx D 0:

In particular,

lim
˛!˙1

Z b

a

f .x/ sin.˛x/ dx D lim
˛!˙1

Z b

a

f .x/ cos.˛x/ dx D 0:

Proof. Suppose first that f is a step function. Thus, there is a partition .xk/nkD0 of
Œa; b� and constants ck 2 R; 1 � k � n; with f .x/ � ck on .xk�1; xk/: Since, for
k D 1; 2; : : : ; n and ˛ 2 R; we have

lim
j˛j!1

Z xk

xk�1
f .x/ei˛x dx D lim

j˛j!1
ck

i˛

�

ei˛xk � ei˛xk�1� D 0;

the theorem follows in this case. (Why?) In general, let f 2 R.Œa; b�/ and let
" > 0: Then (cf. Exercise 7.4.8) we can pick a step function g such that

R b

a
jf .x/�

g.x/j dx < "=2: Since the theorem is true for g; we can pick A > 0 such that
j˛j � A implies j R b

a
g.x/ei˛x dxj < "=2: Therefore, if j˛j � A; we have

ˇ

ˇ

ˇ

Z b

a

f .x/ei˛x dx
ˇ

ˇ

ˇ

�
ˇ

ˇ

ˇ

Z b

a

Œf .x/ � g.x/�ei˛x dx
ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

Z b

a

g.x/ei˛x dx
ˇ

ˇ

ˇ

�
Z b

a

jf .x/ � g.x/j dx C
ˇ

ˇ

ˇ

Z b

a

g.x/ei˛x dx
ˇ

ˇ

ˇ

<
"

2
C "

2
D ";

and the proof is complete. ut



388 8 Sequences and Series of Functions

There are two special sequences of trigonometric polynomials that play an
important role in answering the question of convergence of Fourier series:

Definition 8.6.10 (Dirichlet’s Kernel, Fejér’s Kernel). For each integer n � 0;

the trigonometric polynomials

Dn.x/ WD
n
X

kD�n
eikx and Kn.x/ WD 1

nC 1
n
X

jD0
Dj .x/ ()

are called Dirichlet’s kernel and Fejér’s kernel, respectively. Note that Kn.x/ is the
arithmetic mean of the Dirichlet kernels D0.x/; : : : ; Dn.x/:

Theorem 8.6.11. For each integer n � 0; we have

(1) Dn.x/ D
sin.nC 1

2
/x

sin.x=2/
;

(2) Kn.x/ D 1

nC 1 �
1 � cos.nC 1/x

1 � cos x
D 1

nC 1 �
sin2Œ.nC 1/x=2�

sin2.x=2/
;

(3) Dn.2k	/ D 2nC 1; Kn.2k	/ D nC 1 .8k 2 Z/;

(4)
1

2	

Z 	

�	
Dn.x/ dx D 1

2	

Z 	

�	
Kn.x/ dx D 1:

Moreover, Kn.x/ � 0 for all x and

(5) Kn.x/ � 2

.nC 1/.1 � cos ı/
.0 < ı � jxj � 	/:

Proof. First note that ./ implies

.eix � 1/Dn.x/ D ei.nC1/x � e�inx: ()

Multiplying both sides of ./ by e�ix=2 and using the identities .�/ in
Definition 8.5.12, we obtain .1/: Next, we substitute ./ in the definition ofKn.x/

and use the identity

.e�ix � 1/ �ei.kC1/x � e�ikx� D 2 cos kx � 2 cos.k C 1/x

to obtain

.nC 1/Kn.x/.2 � 2 cos x/ D .nC 1/Kn.x/.e
ix � 1/.e�ix � 1/

D
n
X

kD0
.e�ix � 1/ �ei.kC1/x � e�ikx�

D 2 � 2 cos.nC 1/x;
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which (with the double-angle identity 1�cos 2� D 2 sin2 � ) implies .2/: Kn.x/ � 0
is then obvious and so is .5/ because cos is decreasing on Œ0; 	�: Finally, .3/ and
.4/ follow directly from ./. ut
Exercise 8.6.12.

(1) Using the identities 2 sin u sin v D cos.v � u/ � cos.vC u/ and 2 sin u cos v D
sin.vC u/ � sin.v � u/; show that, for all x ¤ 2k	 (k 2 Z), we have

n
X

kD1
sin kx D cos.x=2/ � cos.nC 1

2
/x

2 sin.x=2/
;

n
X

kD1
cos kx D sin.nC 1

2
/x � sin.x=2/

2 sin.x=2/
:

Use these identities to prove part .1/ of Theorem 8.6.11.
(2) Show that, if .cn/ is a monotone real sequence with lim.cn/ D 0; then the

trigonometric series
P1

nD1 cn sinnx converges for all x and
P1

nD1 cn cosnx
converges for all x except (possibly) x D 2k	; k 2 Z: Hint: Use the identities
in part .1/ and Dirichlet’s Test (Theorem 2.3.35).

Remark 8.6.13. Henceforth, as we study the convergence of Fourier series, we shall
consider functions f W R ! R that are periodic with period 2	: We note that any
function f 2 R.Œ�	; 	�/ can be extended to R as a 2	-periodic function. Indeed,
we may (if necessary) redefine f .	/ to be f .�	/: This will not affect the Riemann
integrals involving f: Now any x 2 R can be written as x D x0 C 2k	 for some
x0 2 Œ�	; 	� and some k 2 Z: For this x; we define f .x/ WD f .x0/:
Example 8.6.14. (1) Consider the function f .x/ WD x; �	 < x � 	; extended

to R as a 2	-periodic function. Then f is odd so, as remarked before, f .x/ �
P1

mD1 bm sinmx;with bm D 2
	

R 	

0
x sinmx dx: Integrating by parts, we obtain

bm D �
h2x cosmx

m	

i	

0
C 2

m	

Z 	

0

cosmx dx D �2 cosm	

m
D 2.�1/m�1

m
:

Thus,

f .x/ � 2
1
X

mD1

.�1/m�1 sinmx

m
:

(2) Let f .x/ WD jxj; �	 � x � 	; extended to R by 2	-periodicity. Then f is a
continuous, even function. Therefore, bm D 0 for allm; a0 D .1=	/

R 	

0
x dx D

	=2 and (for m > 0) am D 2
	

R 	

0
x cosmx dx: Thus,
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am D
h2x sinmx

m	

i	

0
� 2

	

Z 	

0

sinmx

m
dx D 2Œ.�1/m � 1�

m2	
;

which gives am D 0 ifm is even and am D �4=.m2	/ ifm is odd. We therefore
have

f .x/ � 	

2
� 4

	

1
X

kD1

cos.2k � 1/x
.2k � 1/2 :

(3) Let us extend the function f .x/ WD .	�jxj/2 on Œ�	; 	� to R by 2	-periodicity.
Then f is a continuous, even function. In particular, bm D 0 for all m and
a0 D .1=	/

R 	

0
.	 � x/2 dx D 	2=3: For m > 0; integrating by parts, we have

am D 2

	

Z 	

0

.	 � x/2 cosmx dx

D
h2.	 � x/2 sinmx

	m

i	

0
C 4

	m

Z 	

0

.	 � x/ sinmx dx

D �
h4.	 � x/ cosmx

	m2

i	

0

D 4

m2
:

Therefore,

f .x/ � 	2

3
C

1
X

mD1

4

m2
cosmx:

We now start our study of convergence with the following

Proposition 8.6.15 (Dirichlet’s Integral). Let f W R ! R be a 2	-periodic
function such that f 2 R.Œ�	; 	�/ and let sn.x/ be the n-th partial sum of its
Fourier series: sn.x/ DPn

�n Of .k/eikx: Then

sn.x/ D 1

2	

Z 	

�	
f .x� t /Dn.t/ dt D 1

2	

Z 	

0

Œf .xC t /Cf .x� t /�Dn.t/ dt; ()

with Dirichlet’s kernel Dn as in Definition 8.6.10.

Proof. Using the definitions of Of .n/ and Dn; we have

sn.x/ D
n
X

kD�n
Of .k/eikx D

n
X

kD�n

�

Z 	

�	
f .t/e�ikt d 0t

�

eikx
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D
Z 	

�	
f .t/

 

n
X

kD�n
eik.x�t/

!

d 0t D
Z 	

�	
f .t/Dn.x � t / d 0t;

where d 0t WD dt=.2	/: Hence, the first equation in ./ follows if we can prove

Z 	

�	
f .t/Dn.x � t / d 0t D

Z 	

�	
f .x � t /Dn.t/ d

0t:

For this, we take x � t as a new variable and use Exercise 7.4.6, noting that Dn and
f are both 2	-periodic functions. To show the second equation in ./; note thatDn

is an even function so that a change of variable from t to �t gives

Z 0

�	
f .x � t /Dn.t/ d

0t D
Z 	

0

f .x C t /Dn.t/ d
0t:

The second equation in ./ now follows from

Z 	

�	
f .x � t /Dn.t/ d

0t D
Z 0

�	
f .x � t /Dn.t/ d

0t C
Z 	

0

f .x � t /Dn.t/ d
0t

and the proof is complete. ut
Corollary 8.6.16 (Fejér’s Integral). Let f and sn be as in Proposition 8.6.15 and,
for n � 0; consider the arithmetic means

�n.x/ WD s0.x/C s1.x/C � � � C sn.x/
nC 1 :

Then, with Fejér’s kernel Kn as in Definition 8.6.10, we have

�n.x/ D 1

2	

Z 	

�	
f .x�t /Kn.t/ dt D 1

2	

Z 	

0

Œf .xCt /Cf .x�t /�Kn.t/ dt: ()

Proof. Exercise! ut
The next theorem, due to Riemann, shows that, for a 2	-periodic function

f 2 R.Œ�	; 	�/; the behavior of the sequence .sn.x// of partial sums of the
Fourier series of f at x depends only on the values of f in an arbitrarily small
neighborhood of x:

Theorem 8.6.17 (Riemann’s Localization Theorem). Let f be a 2	-periodic
function with f 2R.Œ�	; 	�/: Then, for any ı 2 .0; 	/; we have

lim
n!1

�

Z �ı

�	
C
Z 	

ı

�

f .x � t /Dn.t/ dt D 0: (�)
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Proof. As in the proof of Dirichlet’s integral, we have

.i/

�

Z �ı

�	
C
Z 	

ı

�

f .x � t /Dn.t/ dt D
Z 	

ı

Œf .x C t /C f .x � t /�Dn.t/ dt:

By Theorem 8.6.11, the right side of .i/ equals

.i i/

Z 	

ı

gx.t/ sinŒ.nC 1=2/t � dt; gx.t/ WD f .x C t /C f .x � t /
sin.t=2/

:

Since sin.t=2/ � sin.ı=2/ on Œı; 	�; we have gx 2 R.Œı; 	�/ and the Riemann–
Lebesgue lemma (Theorem 8.6.9) implies that the integral in .i i/ converges to 0 as
n!1 and .�/ follows. ut
Corollary 8.6.18. Under the conditions of Theorem 8.6.17, the Fourier series of f
converges at x if and only if, for some (and hence any) ı 2 .0; 	�;

lim
n!1

1

2	

Z ı

0

Œf .x C t /C f .x � t /�Dn.t/ dt

(or limn!1.2	/�1
R ı

�ı f .x � t /Dn.t/ dt ) exists (as a finite number); this limit is
then the sum of the Fourier series of f at x:

Proof. By Dirichlet’s integral,

sn.x/ �
Z ı

�ı
f .x � t /Dn.t/ d

0t D
 

Z �ı

�	
C
Z 	

ı

!

f .x � t /Dn.t/ d
0t;

where d 0t D dt=.2	/: Hence the corollary follows from Riemann’s Localization
Theorem which also implies that the limit is independent of ı: (Why?) ut
Theorem 8.6.19 (Dini’s Criterion). Let f be a 2	-periodic function on R with
f 2R.Œ�	; 	�/: If

lim
ı!0C

Z 	

ı

jf .x C t /C f .x � t / � 2sj
t

dt

exists (as a finite number), then the Fourier series of f converges to s at x:

Proof. Let d 0t WD dt=.2	/ and note that, by Theorem 8.6.11,

Z 	

�	
Dn.t/ d

0t D 2
Z 	

0

Dn.t/ d
0t D 1:

Therefore, Dirichlet’s integral implies

(1) sn.x/ � s D
Z 	

0

Œf .x C t /C f .x � t / � 2s�Dn.t/ d
0t

D
Z 	

0

�x.t/tDn.t/ d
0t;
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where �x.t/ WD Œf .x C t /C f .x � t / � 2s�=t: Now the last integral in .1/ can be
written as

(2) lim
ı!0C

Z �

ı

�x.t/tDn.t/ d
0t C

Z 	

�

�x.t/tDn.t/ d
0t;

where � 2 .0; 	� is arbitrary. Fix " > 0 and note that jt= sin.t=2/j � 	 for all
t 2 .0; 	�; as we see, e.g., by comparing the graph of y D sin x and the line segment
joining .0; 0/ and .	=2; 1/: Our assumption implies that the number � 2 .0; 	� can
be chosen such that limı!0C

R �

ı
j�x.t/j d 0t < "=.2	/: Since

jtDn.t/j D jt= sin.t=2/jj sin.nC 1=2/t j � 	 .8t 2 .0; 	�/;

the first term in .2/ satisfies

(3)

ˇ

ˇ

ˇ

ˇ

lim
ı!0C

Z �

ı

�x.t/tDn.t/ d
0t
ˇ

ˇ

ˇ

ˇ

� 	 lim
ı!0C

Z �

ı

j�x.t/j d 0t < "=2:

Next, �x.t/.t= sin.t=2// sin.n C 1=2/t 2 R.Œ�; 	�/ and hence, by the Riemann–
Lebesgue lemma, we can find N 2 N such that the second term in .2/ satisfies

(4) n � N H)
ˇ

ˇ

ˇ

Z 	

�

�x.t/tDn.t/ d
0t
ˇ

ˇ

ˇ

< "=2:

In view of .1/; .2/; .3/; and .4/; we finally have

jsn.x/ � sj < " .8n � N/

and the proof is complete. ut
Before stating an important corollary of the above criterion, we invite the reader

to solve the following.

Exercise 8.6.20. Let f W .a; b� ! R: If f 2 R.Œc; b�/ for all c 2 .a; b� and if f
is bounded on .a; b� (e.g., if limc!aC f .x/ exists), show that

lim
c!aC

Z b

c

jf .x/j dx ()

exists (as a finite number). Hint: Let I.c/ denote the integral in ./: Show that I.c/
is bounded on .a; b� and increases as c decreases to a:

Corollary 8.6.21. Let f be as in Theorem 8.6.19. If f .x C 0/ and f .x � 0/ are
both finite and

lim
t!0C

f .x C t / � f .x C 0/
t

and lim
t!0C

f .x � t / � f .x � 0/
t
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both exist (and are finite), then the Fourier series of f converges to

f .x C 0/C f .x � 0/
2

at the point x: In particular, if f 0.x/ exists, then the Fourier series of f converges
to f .x/ at the point x:

Proof. If we take s WD Œf .xC0/Cf .x�0/�=2 in Theorem 8.6.19, then a calculation
shows that, with the notation of that theorem, we have

�x.t/ D f .x C t / � f .x C 0/
t

C f .x � t / � f .x � 0/
t

and limt!0C �x.t/ is finite. Exercise 8.6.20 now gives limı!0C
R 	

ı
j�x.t/j dt <1

and the corollary follows from Dini’s Criterion. ut
The following exercise refers to Example 8.6.14.

Exercise 8.6.22.

(1) Show that the function f .x/ D x on .�	; 	� extended to R by 2	-periodicity
satisfies the conditions of Corollary 8.6.21. Deduce that

x D 2
1
X

mD1

.�1/m�1 sinmx

m
; .8x 2 .�	; 	//:

Note that, at x D 	; Œf .	C 0/Cf .	 � 0/�=2 D .�	C	/=2 D 0: Also show
that 	=4 DP1

kD1.�1/k�1=.2k � 1/:
(2) Show that the function f .x/ D jxj on Œ�	; 	� extended to R by 2	-periodicity

satisfies the conditions of Corollary 8.6.21. Deduce that

jxj D 	

2
� 	
4

1
X

kD1

cos.2k � 1/x
.2k � 1/2 .8x 2 Œ�	; 	�/:

Show, in particular, that 	2=8 DP1
kD1 1=.2k � 1/2:

(3) Show that the function f .x/ D .	 � jxj/2 on Œ�	; 	� extended to R by 2	-
periodicity satisfies the conditions of Corollary 8.6.21. Deduce that

.	 � jxj/2 D 	2

3
C

1
X

mD1

4

m2
cosmx .8x 2 Œ�	; 	�/:

Show, in particular, that 	2=6 DP1
mD1 1=m2:

In fact, the differentiability condition in the above corollary may be replaced by
weaker conditions:
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Corollary 8.6.23. Let f be as in Theorem 8.6.19. If f satisfies a Lipschitz
condition of order ˛ 2 .0; 1� in a neighborhood of x (cf. Definition 4.6.9), i.e.,

jf .x C h/ � f .x/j � Ajhj˛;

for all jhj sufficiently small, then the Fourier series of f at x converges to f .x/:

Proof. Let �x.t/ WD Œf .xC t /Cf .x� t /�2f .x/�=t: Then our assumption implies
that j�x.t/j D O.jt j˛�1/; as jt j ! 0; so that

lim
ı!0C

Z 	

ı

�x.t/ dt

exists (why?) and hence Dini’s Criterion may be used. ut
So far we have used Dirichlet’s kernel (and integral) in our convergence

theorems. We now look at Fejér’s kernel (and integral):

Theorem 8.6.24 (Fejér’s Theorem). Let f and �n.x/ be as in Corollary 8.6.16
(Fejér’s Integral).

(1). If f .x C 0/ and f .x � 0/ both exist (in R), then

lim
n!1 �n.x/ D f .x C 0/C f .x � 0/

2
:

In particular, limn!1 �n.x/ D f .x/ at any continuity point x of f:
(2). If f is continuous, then limn!1 �n.x/ D f .x/ uniformly for all x:

Proof. Let d 0t WD dt=.2	/: By Theorem 8.6.11, we have

Z 	

�	
Kn.t/ d

0t D 2
Z 	

0

Kn.t/ d
0t D 1:

Hence, using Fejér’s Integral (cf. ./ in Corollary 8.6.16),

(i) �n.x/ � f .x C 0/C f .x � 0/
2

D
Z 	

0

 x.t/Kn.t/ d
0t;

where

 x.t/ WD Œf .x C t / � f .x C 0/�C Œf .x � t / � f .x � 0/�:

Since by assumption f is 2	-periodic and f 2 R.Œ�	; 	�/; we can find M > 0

with jf .x/j � M for all x 2 R: (Why?) Therefore, j x.t/j � 4M for all x and t .
Also, limt!0C  x.t/ D 0: Hence, for any " > 0 we can find ı D ı."/ 2 .0; 	�
such that t 2 .0; ı/ implies j x.t/j < ": Thus, with s WD Œf .x C 0/C f .x � 0/�=2;
(i) gives
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(ii) j�n.x/ � sj �
ˇ

ˇ

ˇ

Z ı

0

 x.t/Kn.t/ d
0t
ˇ

ˇ

ˇ

C
ˇ

ˇ

ˇ

Z 	

ı

 x.t/Kn.t/ d
0t
ˇ

ˇ

ˇ

� "
Z ı

0

Kn.t/ d
0t C 4M

Z 	

ı

Kn.t/ d
0t:

But
R ı

0
Kn.t/ d

0t � R 	

0
Kn.t/ d

0t D 1=2 and limn!1Kn.t/ D 0 uniformly on
Œı; 	� (by Theorem 8.6.11), so that there is N" 2 N such that n � N" implies
R 	

ı
Kn.t/ d

0t < "=.8M/: Using these estimates in (ii), we get

n � N" H)
ˇ

ˇ

ˇ

�n.x/ � f .x C 0/C f .x � 0/
2

ˇ

ˇ

ˇ

<
"

2
C "

2
D ":

Since f .x C 0/ D f .x/ D f .x � 0/ at any continuity point x of f; part .1/ of
the theorem follows. The proof of part .2/ is almost identical. Here, we use the
uniform continuity of f on Œ�	; 	� to pick ı D ı."/ > 0 such that t 2 .0; ı� implies
j x.t/j < " for all x 2 Œ�	; 	�: Repeating the above argument, we get

j x.t/ � f .x/j < "

2
C 4M

Z 	

ı

Kn.t/ d
0t; .x 2 Œ�	; 	�/:

Finally, we can again pick N" 2 N as above to conclude that

n � N" H) j x.t/ � f .x/j < "
and the proof is complete. ut

We now deduce some of the important consequences of Fejér’s theorem. To
begin, recall that, by the Weierstrass Approximation Theorem (Corollary 4.7.10),
continuous functions can be uniformly approximated (on compact intervals) by poly-
nomials. The following corollary (also due to Weierstrass) shows that polynomials
can be replaced by trigonometric polynomials:

Corollary 8.6.25 (Weierstrass). A continuous 2	-periodic function can be uni-
formly approximated (on R) by trigonometric polynomials.

Proof. This follows at once from Fejér’s theorem if we use the trigonometric
polynomials �n.x/. ut
Corollary 8.6.26. If f and g are both 2	-periodic and continuous on R and have
the same Fourier series, then f .x/ D g.x/ for all x 2 R:

Proof. Indeed, if �n.x/ is the n-th arithmetic mean of the partial sums of this Fourier
series, then (by Fejér’s theorem) f .x/ D lim.�n.x// D g.x/ for all x. ut
Corollary 8.6.27. If f is a 2	-periodic continuous function on R such that

Of .n/ D 1

2	

Z 	

�	
f .x/e�inx dx D 0 .8n 2 Z/;

then f .x/ D 0 for all x 2 R:
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Proof. Simply take g D 0 in Corollary 8.6.26. ut
Corollary 8.6.28. If f is a 2	-periodic continuous function on R and if the Fourier
series of f converges uniformly, then it converges to f:

Proof. Let sn.x/ denote the n-th partial sum of the Fourier series of f and let
us write d 0x WD dx=.2	/: Now sn.x/ ! g.x/ uniformly implies sn.x/e�ikx !
g.x/e�ikx uniformly (8 k 2 Z) and hence

bsn.k/ D
Z 	

�	
sn.x/e

�ikx d 0x !
Z 	

�	
g.x/e�ikx d 0x D Og.k/:

But the orthogonality of the einx implies at once that bsn.k/ D Of .k/ for all n � k:
Therefore, Of .k/ D Og.k/ for all k and, by Corollary 8.6.26, we have g D f . ut

Before deducing a uniform convergence criterion from this corollary, we need
the following.

Definition 8.6.29 (Piecewise Differentiable Function). A function f W Œa; b� !
C is said to be piecewise differentiable if there is a partition .xj /njD0 of Œa; b� such
that

(1) f 0.t/ exists for all t 2 .xk�1; xk/ and every k; 1 � k � n;
(2) for each k; the restriction of f 0 to .xk�1; xk/ has a continuous extension to

Œxk�1; xk�:

Example 8.6.30. It is obvious that any f 2 C1.Œa; b�/ (i.e., any continuously
differentiable function on Œa; b�) is piecewise differentiable. Also, any piecewise
linear function on Œa; b� is piecewise differentiable.

Theorem 8.6.31. Let f be a continuous 2	-periodic function on R whose restric-
tion to Œ�	; 	� is piecewise differentiable. Then the Fourier series of f converges
uniformly on R to f:

Proof. The assumptions imply that f 0 is bounded on Œ�	; 	� and continuous there,
except possibly at finitely many points. In particular, f 0 2 R.Œ�	; 	�/: Therefore,
an integration by parts (over the subintervals determined by the above points) shows
that, for all n ¤ 0; we have

bf 0.n/ WD 1

2	

Z 	

�	
f 0.x/e�inx dx D in

2	

Z 	

�	
f .x/e�inx dx D in Of .n/:

Thus, Of .n/ D bf 0.n/=.in/ for all n ¤ 0 and hence, by Cauchy’s inequality,

n
X

kD�n
j Of .k/j D j Of .0/j C

X

0<jkj	n

jbf 0.k/j
jkj
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� j Of .0/j C
�

X

0<jkj	n

1

k2

�1=2�
X

0<jkj	n
jbf 0.k/j2

�1=2

:

Now Bessel’s inequality (Theorem 8.6.7) implies that
P1

�1 jbf 0.k/j2 < 1; and
we have

P

k�2 < 1 so that
P1

kD�1 j Of .k/j < 1: It now follows (from the
Weierstrass M-Test) that the Fourier series

P1
kD�1 Of .k/eikx converges uniformly

and, in view of Corollary 8.6.28, it must converge to f . ut
For our next theorem, we shall need the following lemma on the mean square

approximation of a Riemann integrable function by continuous functions.

Lemma 8.6.32. Let f 2 R.Œa; b�/: Then, given any " > 0; there is a continuous
function �" 2 C.Œa; b�/ such that

Z b

a

jf .x/ � �".x/j2 dx < ":

Proof. Pick a partition .xj /njD0 of Œa; b� such that, with Mk and mk denoting the
“ sup " and “ inf " of f on Œxk�1; xk�; respectively, we have

P

.Mk � mk/�xk <

"=.2M/; where �xk WD xk � xk�1 and M WD supfjf .x/j W x 2 Œa; b�g: Now
let �" be the continuous, piecewise linear function such that �".xj / D f .xj / for
0 � j � n and �" is affine on each Œxk�1; xk�, i.e., with �fk WD f .xk/ � f .xk�1/;
we have �".t/ D f .xk�1/C .�fk=�xk/.t � xk�1/ for all t 2 Œxk�1; xk�: Now note
that M � supfj�".x/j W x 2 Œa; b�g (why?), and hence

Z b

a

jf .x/ � �".x/j2 dx � 2M
n
X

kD1

Z xk

xk�1
jf .x/ � �".x/j dx < 2M."=2M/ D ":

ut
Theorem 8.6.33 (Parseval’s Theorem). Let f and g be 2	-periodic and f; g 2
R.Œ�	; 	�/: If sn.x/ denotes the n-th partial sum of the Fourier series of f; then we
have

(i) lim
n!1

Z 	

�	
jf .x/ � sn.x/j2 dx D 0;

(ii)
1
X

nD�1
Of .n/ Og.n/ D

Z 	

�	
f .x/g.x/ dx;

1
X

nD�1
j Of .n/j2 D 1

2	

Z 	

�	
jf .x/j2 dx: (Parseval’s Relation)

Proof. Let us write
R

for 1
2	

R 	

�	 : Assume first that f is continuous and let " > 0

be given. By Fejér’s theorem, we can then pick N 2 N such that n � N implies
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jf .x/ � �n.x/j < " for all x: By Theorem 8.6.6, we have

Z

jf � snj2 �
Z

jf � �nj2 < "2 .8n � N/;

and (i) follows. Next,

(iii)
Z

sn.x/g.x/ D
n
X

�n
Of .k/

Z

g.x/eikx D
n
X

�n
Of .k/ Og.k/;

and Cauchy–Schwarz inequality (Exercise 8.6.1) gives

(iv)

ˇ

ˇ

ˇ

ˇ

Z

f Ng �
Z

sn Ng
ˇ

ˇ

ˇ

ˇ

�
Z

jf � snjjgj �
�

Z

jf � snj2
Z

jgj2
� 1=2

;

which ! 0; as n ! 1; by (i). Using (iii) and (iv), we obtain (ii), from which
Parseval’s Relation follows if we take g D f: Finally, if f is not continuous, then
(using the above lemma) we pick a continuous function � on Œ�	; 	�, which we can
extend by 2	-periodicity to a continuous function on R (why?), such that

R jf �
�j2 < "=4: Let �n.x/ be the n-th arithmetic mean of the partial sums of the Fourier
series of � and pick N 2 N so that n � N implies

R j� � �nj2 < "=4: Then,

Z

jf � �nj2 � 2
Z

jf � �j2 C 2
Z

j� � �nj2 < ";

for all n � N: Thus .i/ follows from Theorem 8.6.6 (Best Approximation) and the
remaining assertions follow as above. The reader can provide the details. ut
Corollary 8.6.34 (Term-by-Term Integration). If f 2 R.Œ�	; 	�/ is 2	-
periodic, then we have

F.x/ WD
Z x

�	
f .t/ dt D

1
X

�1
Of .n/

Z x

�	
e�int dt;

where the convergence is uniform on Œ�	; 	�:
Proof. Let sn.x/ denote the n-th partial sum of the Fourier series of f: Then, by the
Cauchy–Schwarz inequality, we have

Z 	

�	
jf .x/ � sn.x/j dx �

p
2	

�

Z 	

�	
jf .x/ � sn.x/j2 dx

�1=2

:

This, together with the inequality

ˇ

ˇ

ˇ

Z x

�	
f .t/ dt �

Z x

�	
sn.t/ dt

ˇ

ˇ

ˇ

�
Z 	

�	
jf .t/ � sn.t/j dt .8x 2 Œ�	; 	�/
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and part .i/ of Parseval’s Theorem, implies that limn!1
R x

�	 sn.t/ dt D
R x

�	 f .t/ dt; with the convergence being uniform on Œ�	; 	�. ut
Exercise 8.6.35.

(1) Applying Parseval’s Relation to the function f in Exercise 8.6.22 (1), deduce
that

1
X

nD1

1

n2
D 	2

6
:

(2) Applying Parseval’s Relation to the function f in Exercise 8.6.22 (3), show that

1
X

nD1

1

n4
D 	4

90
:

Hint: Note that

Of .m/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1
2
.am � ibm/ if m > 0;

a0 if m D 0;
1
2
.a�m C ib�m/ if m < 0:

8.7 Problems

1 (Roots of Unity). Let rk WD e2.k�1/	i=n; k D 1; 2; : : : ; n be the nth roots of unity (i.e., the
solutions of 1� zn D 0).

(a) Show that for all z 2 C we have

1� zn D
n
Y

kD1

.1� rkz/ and (�)

1 D 1

n

n
X

jD1

Y

k¤j

.1� rkz/: (��)

Hint: For .��/ differentiate .�/.
(b) Evaluate the following sums.

s1 WD
n
X

iD1

ri ;

s2 WD X

i<j

ri rj ;
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s3 WD X

i<j<k

ri rj rk;

:
:
:

sn�1 WD X

j

Y

k¤j

rk;

sn WD
n
Y

kD1

rk:

How are these sums affected if each rj is replaced by 1=rj ?
(c) Prove .��/ using your answers to part (b).

2. (a) Suppose that .fn/ 2 F.E;R/N converges to f uniformly on E and that each fn is
bounded on E: Show that .fn/ is uniformly bounded; i.e., there is an M > 0 such that
jfn.x/j 	 M for all n 2 N and all x 2 E:

(b) Let fn.x/ WD 1=x C x=n for all x 2 .0; 1�: Show that .fn/ converges uniformly to f .x/ WD
1=x on .0; 1� and yet the fn and f are all unbounded on .0; 1�:

3. Let .fn/; .gn/ 2 F.E;R/N converge uniformly on E to f and g; respectively.

(a) Show that .fn ˙ gn/ converges to f ˙ g uniformly on E:
(b) Show, by an example, that .fngn/ need not converge to fg uniformly on E: If, however, the

fn and gn are all bounded on E; show that .fngn/ does converge to fg uniformly on E:
(c) Show (by an example) that, if fn.x/ ¤ 0 for all x 2 E and all n 2 N; then .1=fn/ need

not converge to 1=f uniformly on E: Can you add an assumption that would guarantee an
affirmative answer?

4. Show that .sinnx=.1C nx// converges uniformly on Œa;1/ for any a > 0 but not for a D 0:

5. Let fn.x/ WD .1C x=n/n for all x 2 R and n 2 N: Show that .fn.x// converges uniformly to
ex on any compact interval Œa; b� � R: Hint: Use Dini’s Theorem.

6 (Uniform Ratio Test). Let .fn/ 2 F.E;R/N be a sequence of bounded functions with
fn.x/ ¤ 0 for all x 2 E and all n 2 N: Show that, if there is an N 2 N and a constant � 2 .0; 1/

such that jfnC1.x/=fn.x/j 	 � for all n � N; then
P

fn.x/ is uniformly convergent on E:

7 (Uniform Dirichlet’s Test).

(a) Let .fn/ 2 F.E;R/N; where E � R; and assume that the partial sums
Pn

kD1 fk.x/ are
uniformly bounded on E: Show that, if .gn.x// is a decreasing sequence of nonnegative
functions on E converging uniformly to zero on E; then

P1
nD1 fn.x/gn.x/ converges

uniformly on E:
(b) Show that, for any ˛ > 0; the series

P1
nD1.sinnx/=n˛ and

P1
nD1.cosnx/=n˛ are both

uniformly convergent on any compact interval that does not contain 2k	 for any k 2 Z:

Hint: Use the identities in Problem 2.5.#63.

8 (Uniform Abel’s Test). Let .fn/ 2 F.E;R/N and assume that
P1

nD1 fn.x/ is uniformly
convergent on E � R: Then, for any uniformly bounded sequence .gn/ 2 F.E;R/N such that
.gn.x// is monotone for each x 2 E; the series

P1
nD1 fn.x/gn.x/ is uniformly convergent on

E: Hint: Consider (separately) the subsets E1 and E2 of E on which .gn.x// is increasing and
decreasing, respectively. Also, use Abel’s partial summation formula (Proposition 2.3.33).

9. (a) Show that the sequence .1=.nx C 1// converges pointwise but not uniformly on .0; 1/:
What is the limit function?

(b) Show that the sequence .x=.nxC1// converges uniformly on .0; 1/:What is the limit function?
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10 (du Bois–Raymond Test). Let .fn/; .gn/ 2 F.E;R/N be such that
P1

nD1 fn and
P1

nD1 jgn � gnC1j are both uniformly convergent on E � R and .gn/ is uniformly bounded on
E: Then

P1
nD1 fngn is uniformly convergent on E: Hint: Use Abel’s partial summation formula

(Proposition 2.3.33).

11 (Uniform Leibniz’s Test). Show that, if .fn/ is a decreasing sequence of functions
converging uniformly to zero on E � R; then

P1
nD1.�1/nfn converges uniformly on E:

12. Let f 2 RR be uniformly continuous (on R) and define fn.x/ WD f .x C 1=n/ for all n 2 N

and x 2 R: Show that .fn/ converges uniformly to f on R:

13. For each n 2 N; consider the function

fn.x/ WD xn

1C x2n
.8x 2 R/:

(a) Show that the sequence .fn/ converges uniformly on Œa; b� if and only if jxj ¤ 1 for all
x 2 Œa; b�I (i.e., Œa; b� does not contain the points C1 and �1).

(b) Find all x 2 R for which the series
P

fn.x/ is convergent. Also, find the intervals on which
the convergence is uniform.

14. Find the sum of the series

1
X

nD0

x2
n

1� x2
nC1

.8x 2 .0; 1//:

15. Let .fn/ 2 F.E;R/N be bounded and suppose that .fn/ converges uniformly to f on E:
Show that the sequence .

Pn
kD1 fk=n/ of arithmetic means converges uniformly to f on E:

16. Show that the series
P1

nD1.�1/n=.n C x2/ is uniformly convergent on Œ0;1/ but is not
absolutely convergent for any x � 0:

17. Show that, if fn 2 C.R/ for all n 2 N and if .fn/ converges uniformly to f (on R), then we
have

lim
n!1fn.x C 1=n/ D f .x/

uniformly on any bounded interval.

18. (a) Show that, if
P1

nD1 janj < 1; then
P1

nD1 ane
�nx is uniformly convergent on Œ0;1/:

(b) If we only assume that .an/ is bounded, show that
P1

nD1 ane
�nx is uniformly convergent on

Œı;1/ for all ı > 0:

19. Show that
P1

nD1 x
n.1 � x/ converges pointwise (but not uniformly) on Œ0; 1� and that

P

.�1/nxn.1 � x/ is uniformly convergent on Œ0; 1�: This shows that, if
P

fn.x/ is uniformly
convergent and

P jfn.x/j is pointwise convergent, it does not follow (in general) that
P jfn.x/j

is uniformly convergent.

20. Show that the convergence is not uniform in the following limits.

.a/ lim
n!1 sinn x; x 2 Œ0; 	�I .b/ lim

n!1 e�nx2 ; x 2 Œ�1; 1�

Hint: Are the limits continuous?

21. Let fn be continuous on E � R for all n 2 N; and assume that .fn/ converges uniformly to
f on E: Show that, if .xn/ 2 EN and lim.xn/ D x 2 E; then lim.fn.xn// D f .x/:
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22.

(a) Let fn 2 C.Œa; b�/ for all n 2 N: Show that, if .fn/ converges uniformly on .a; b/; then the
convergence is actually uniform on Œa; b�:

(b) More generally, let .fn/ be a sequence of bounded, continuous functions on E � R and let
D � E be dense in E (i.e., each x 2 E is the limit of a sequence .xn/ in D). Show that, if
.fn/ converges uniformly on D, then the convergence is in fact uniform on E:

23. Prove each equation.

.a/

Z 2

1

 1
X

nD1

ne�nx
!

dx D e

e2 � 1
I .b/

Z 	

0

 1
X

nD1

n sinnx

en

!

dx D 2e

e2 � 1
:

24. Prove each series can be differentiated term by term on the indicated domain.

.a/

1
X

nD1

sinnx

n3
.8x 2 R/I .b/

1
X

nD1

1

nx
.8x 2 .1;1//:

25. Let fn.x/ WD x=.1 C n2x2/ for all x 2 Œ�1; 1�: Show that .fn/ converges uniformly to a
differentiable function f; but that .f 0

n .x// does not converge to f 0.x/ for all x 2 Œ�1; 1�:
26. For each n 2 N0; define the nth-order Bessel function by

Jn.x/ WD
1
X

kD0

.�1/k
kŠ.k C n/Š

�x

2

�2kCn

.8x 2 R/:

(a) Show that .Jn.x// converges pointwise on R and uniformly on any Œa; b� � R:

(b) Show that .xnJn.x//0 D xnJn�1.x/ for all x 2 R and all n 2 N:

(c) Show that y WD Jn.x/ satisfies Bessel’s differential equation

x2y00 C xy0 C .x2 � n2/y D 0:

27. For each power series, find the radius of convergence and determine whether the series
converges at the endpoints of the interval of convergence.

.a/

1
X

nD1

.�1/n x
n

n2
I .b/

1
X

nD1

.�1/n xn

log.1C n/
I .c/

1
X

nD0

2nn2xnI

.d/

1
X

nD1

.nŠ=nn/xnI .e/

1
X

nD1

.1� 1=n/nxnI .f /

1
X

nD1

.�1=3/nxn:

28. Show that the power series
P1

nD1 anx
n; where

an WD
(

1 if n is odd;

n if n is even;

has radius of convergence R D 1; and that limn!1 janC1=anj does not exist.

29. Consider the power series s.x/ WD P1
nD1 x

nC1=
�

n.nC 1/
�

:

(a) Show that s.x/ has radius of convergence R D 1 and converges on Œ�1; 1�:
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(b) Show that s0.x/ D P1
nD1 x

n=n has radius of convergence R D 1 and converges on Œ�1; 1/:
(c) Show that s00.x/ D P1

nD0 x
n has radius of convergence R D 1 and converges only on

.�1; 1/:
30. If an 2 Œm;M� � .0;1/ for all n 2 N; show that the power series

P1
nD1 anx

n has radius of
convergence R D 1:

31. If
P1

nD1 anx
n has radius of convergence R; find the radii of convergence of the series

P1
nD1.an/

2xn and
P1

nD1 anx
2n:

32. Using the fact that .1� x/�1 D P1
nD0 x

n on .�1; 1/; find the sum of the following series:

.a/

1
X

nD1

nxnI .b/

1
X

nD1

n2xnI .c/

1
X

nD0

n3xnI

.d/

1
X

nD1

nxn

nC 1
I .e/

1
X

nD1

xn

n.nC 1/
I .f /

1
X

nD0

nxn

.nC 1/.nC 2/
:

33. Find the sum of each series.

.a/

1
X

nD1

n

.nC 1/Š
.b/

1
X

nD1

n2

2n
.c/

1
X

nD1

1

3n.nC 1/

Hint: For (a), use Œ.ex � 1/=x�0:

34. Show that

log
�1C x

1� x

�

D 2
�

x C x3

3
C x5

5
C � � � C x2nC1

2nC 1
C � � �

�

.jxj < 1/:

35. Show that the function f .x/ WD 1=.1Cx2/ is (real) analytic on R; even though its Maclaurin
expansion converges only in .�1; 1/:
36 (Bernstein’s Theorem). Recall (Remark 8.4.23) that C1 functions are not analytic in
general. Prove, however, the following positive result. Let I ¤ ; be an open interval and
f W I ! R: Suppose that f .x/ � 0 and f .n/.x/ � 0 for all x 2 I and all n 2 N: Then f
is analytic in I: Hint: Use Taylor’s Formula (Theorem 7.5.17) in an interval Œa; b� � I with the
integral remainder written as

Rn;a.x/ D 1

nŠ

Z x

a

.b � t /n
�x � t

b � t

�n

f .nC1/.t/ dt:

Note that t 7! .x � t /=.b � t / is decreasing (hence attaining its maximum at t D a) and that
Rn;a.b/ 	 f .b/.

37. Let I ¤ ; be an open interval and f 2 C1.I;R/: Suppose that for each a 2 I; the Taylor
series of f about a has a positive radius of convergence. Show that there is an open subinterval
J � I such that f is analytic in J:

38 (Principle of Isolated Zeroes).

(a) Let f .x/ WD P1
nD0 anx

n on .�R;R/; R > 0; and assume that there is a sequence .xk/k2N

of distinct points in .�R;R/ with lim.xk/ D 0 such that f .xk/ D 0; 8 k 2 N: Show that
an D 0 for all n � 0:

(b) Show that the conclusion in (a) remains valid if lim.xk/ D x0 2 .�R;R/; even if x0 ¤ 0:
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(c) Let .xk/ and x0 be as in (b). If g.x/ WD P1
nD0 bnx

n on .�R;R/ and f .xk/ D g.xk/ for all
k 2 N; show that an D bn for all n � 0:

(d) Let f and g be as in (c). If there is a compact set K � .�R;R/ such that the set fx 2 K W
f .x/ D g.x/g is infinite, then f .x/ D g.x/ for all x 2 .�R;R/: Hints: For (a), let m be
the smallest integer with am ¤ 0: Note that f .x/ D amx

m C o.jxjm/; as x ! 0 (so that
f .x/=xm � am for x � 0), and deduce that f .x/ ¤ 0 if 0 < jxj < " for " > 0 sufficiently
small. For (b), use (a) and Taylor’s Theorem (Theorem 8.4.21).

39 (Principle of Analytic Continuation). Let I � R be an open interval and let f; g 2 RI be
analytic functions on I:

(a) If there is a point x0 2 I such that f .k/.x0/ D 0 for all k 2 N0 (note that f .0/ WD f ), then
f .x/ D 0 for all x 2 I: Hint: Let Z WD fx 2 I W f .k/.x/ D 0 8k � 0g: Using the Taylor
series of f; show that Z is both open and closed (in I ).

(b) If there is an open set U � I such that f .x/ D g.x/ for all x 2 U; then f .x/ D g.x/ for all
x 2 I:

40. (a) Show that we have

arctan x D
1
X

nD0

.�1/n x
2nC1

2nC 1
.8x 2 .�1; 1//:

(b) Using Abel’s theorem (Theorem 8.4.30), show that the above series is actually uniformly
convergent on Œ�1; 1� and deduce that

	

4
D 1� 1

3
C 1

5
� 1

7
C � � � � :

41. Recall that, for any ˛ 2 R; we have (Newton’s) binomial series:

.1C x/˛ D
1
X

nD0

 

˛

n

!

xn .jxj < 1/:

For ˛ 2 N0; the series terminates and we get the binomial formula:

(a) Show that
P1

nD0

�

˛
n

�

converges for ˛ > �1 and diverges for ˛ 	 �1:
(b) Show that

P1
nD0.�1/n

�

˛
n

�

converges for ˛ � 0 and diverges for ˛ < 0:
(c) Show (using Abel’s theorem) that, if ˛ � 0; then the binomial series converges uniformly to

.1C x/˛ on Œ�1; 1� and, when ˛ > �1; it converges uniformly to .1C x/˛ on Œ�1C ı; 1� for
ı > 0: In particular, we have

P1
nD0

�

˛
n

� D 2˛ for all ˛ > �1 and
P1

nD0.�1/n
�

˛
n

� D 0 for all
˛ > 0:

(d) Show that f .x/ WD jxj can be uniformly approximated by polynomials on Œ�1; 1�:
42. Show that the converse of Abel’s theorem is false by producing a convergent power series
s.x/ WD P1

nD0 anx
n in .�1; 1/ such that limx!1� s.x/ exists but

P1
nD0 an is divergent. The next

problem will show that, under certain conditions, the converse of Abel’s theorem is true.

43 (Tauber’s Theorem). Let s.x/ D P1
nD0 anx

n for all x 2 .�1; 1/ and assume that
lim.nan/ D 0: Show that, if limx!1� s.x/ D S 2 R; then

P1
nD0 an D S: Hint: Given " > 0;

pick m 2 N such that njanj < "=3 for all n > m: Note that 1� xn 	 n.1� x/ for all x 2 Œ0; 1�

and hence
ˇ

ˇ

ˇ

ˇ

ˇ

m
X

nD0

an � S

ˇ

ˇ

ˇ

ˇ

ˇ

	 js.x/� S j C .1� x/

m
X

nD0

njanj C "

3.mC 1/

1
X

nDmC1

xn:
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Now, the last sum on the right is at most 1=.1 � x/: Let x D 1 � .1=m/ and show (using
Proposition 2.2.32) that each term on the right is < "=3 for sufficiently large m:

44 (Bernoulli Numbers). Since ex D P1
nD0 x

n=nŠ;we have .ex � 1/=x D 1C x=2ŠC x2=3ŠC � � �
and hence x=.ex � 1/ has a power series expansion. The coefficients Bn in the expansion

x

ex � 1
D

1
X

nD0

Bn

nŠ
xn

are called the Bernoulli numbers. Prove the following statements:

(a) We have B2nC1 D 0 for all n 2 N: Hint: Note that x=.ex � 1/C x=2 is an even function.
(b) We have B0 D 1 and the identity

 

n

0

!

B0 C
 

n

1

!

B1 C � � � C
 

n

n� 1

!

Bn�1 D 0 .8n � 2/:

Hint: Note that x D .
P1

mD1 x
m=mŠ/.

P1
nD0 Bnx

n=nŠ/:

(c) Show that B1 D �1=2; B2 D 1=6; B4 D �1=30; B6 D 1=42; and B8 D �1=30:
45 (Bernoulli Polynomials). The Bernoulli polynomials Bn.x/; n 2 N0 are defined by the
expansion

ext � t

et � 1
D

1
X

nD0

.xt/n

nŠ
�

1
X

nD0

Bn

nŠ
tn D

1
X

nD0

Bn.x/

nŠ
tn;

where the Bn are the Bernoulli numbers defined in the preceding problem. Prove the following
statements.

(a) Bn.x/ is a polynomial of degree n given by

Bn.x/ WD
 

n

0

!

B0x
n C

 

n

1

!

B1x
n�1 C � � � C

 

n

n� 1

!

Bn�1x C
 

n

n

!

Bn;

Bn.0/ D Bn for all n � 0; and Bn.1/ D Bn for all n � 2:

(b) B 0
nC1.x/ D .nC 1/Bn.x/:

(c) BnC1.x/ D BnC1 C .nC 1/
R x

0 Bn.t/ dt:

(d)
R 1

0 Bn.x/ dx D 0:

(e) B0.x/ D 1; B1.x/ D x � 1=2; B2.x/ D x2 � x C 1=6; B3.x/ D x3 � 3x2=2C x=2; and
B4.x/ D x4 � 2x3 C x2 � 1=30:

46. Show that the following expansions are valid in the indicated intervals:

.a/ x D 	 � 2

1
X

nD1

sinnx

n
.0 < x < 2	/;

.b/ x2 D 	2

3
C 4

1
X

nD1

.�1/n cosnx

n2
.�	 	 x 	 	/:

47. Obtain the following Fourier expansions for the Bernoulli polynomials on the interval Œ0; 1�:

.a/ B2n.x/ D .�1/nC1 2.2n/Š

.2	/2n

1
X

kD1

cos 2k	x

k2n
.8n 2 N/;
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.b/ B2nC1.x/ D .�1/nC1 2.2nC 1/Š

.2	/2nC1

1
X

kD1

sin 2k	x

k2nC1
.8n 2 N/:

Hint: For B1.x/ and B2.x/; use Problem 46. For the general case, proceed inductively, using
Problem 45 and term-by-term integration.

48 (Riemann Zeta Function). Recall that the series
P1

nD1 n
�s is convergent for s > 1 and

divergent for s 	 1: The Riemann zeta function is defined by

�.s/ WD
1
X

nD1

1

ns
.8s > 1/:

(a) Show that we have

�.2n/ WD
1
X

kD1

1

k2n
D .�1/nC1 .2	/

2nB2n

2.2n/Š
.8n 2 N/:

(b) Show that �.6/ D 	6=945 and �.8/ D 	8=9450:

49. (a) Show that, if ˛ 62 Z; then

cos˛x D sin˛	

	

	

1

˛
� 2˛

˛2 � 12
cos x C 2˛

˛2 � 22
cos 2x � C � � �




and deduce that

	

sin˛	
D 1

˛
� 2˛

˛2 � 12
C 2˛

˛2 � 22
� C � � � :

(b) Plugging x D 0 and x D 	 in the above series for cos˛x and relabeling, prove the following
partial fractions expansions:

.i/ csc	x D 1

	x
C 2x

	

1
X

nD1

.�1/n
x2 � n2

;

.i i/ cot	x D 1

	x
C 2x

	

1
X

nD1

1

x2 � n2
:

50 (Term-by-Term Differentiation).

(a) Show that, if f 2 C.R/ is 2	-periodic and piecewise smooth on Œ�	; 	�; then the Fourier
series of f 0 is obtained by differentiating the Fourier series of f term by term.

(b) Show that, if f is as in part (a), then Of .n/ D o.n�1/; as n ! 1: Hint: Apply the Riemann–
Lebesgue lemma to f 0:

(c) Let f 2 Ck.R/ be a 2	-periodic function. Show that Of .n/ D o.n�k/; as n ! 1: Deduce
that, for k D 2 (i.e., f 2 C2.R/), the Fourier series of f is absolutely convergent.

51. (a) (Poincaré’s Inequality) Let f 2 C1.Œ�	; 	�/ and let ˛ denote its average value, i.e.,
˛ WD Of .0/ D .1=2	/

R 	

�	 f .x/ dx: Show that we have

Z 	

�	
jf .x/� ˛j2 dx 	

Z 	

�	
jf 0.x/j2 dx;
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and that equality holds if and only if f .x/ D ˛ C ˇ cos x C � sin x for some (possibly
complex) constants ˛; ˇ, and �: Hint: Use Parseval’s Relation.

(b) (A Sobolev Inequality) Show that, if f 2 C2.R/ is 2	-periodic, then

Z 	

�	
jf 0.x/j2 dx 	

�

Z 	

�	
jf .x/j2 dx

�1=2 �Z 	

�	
jf 00.x/j2 dx

�1=2

:

52. Show that the following trigonometric series are convergent on R but are not the Fourier
series of any 2	-periodic functions that are (Riemann) integrable on Œ�	; 	�:

.a/

1
X

nD2

sinnx

logn
; .b/

1
X

nD1

cosnxp
n
:

Hint: Use Exercise 8.6.12 and Bessel’s inequality.

53 (Approximate Identity). A sequence .Kn/ in C.R;R/ is said to be an approximate identity
or a Dirac sequence if it satisfies these conditions:

AI 1. Kn.x/ � 0 for all x 2 R:

AI 2. We have

Z 1

�1
Kn.x/ dx D 1:

AI 3. Given " > 0 and ı > 0, there is an N 2 N such that n � N implies

Z �ı

�1
Kn.x/ dx C

Z 1

ı

Kn.x/ dx < ":

Note that as n increases the Kn have increasingly higher peaks at the origin and the area under the
curve in a small neighborhood .�ı; ı/ of 0 is almost 1: The improper integral

R1
�1 Kn is defined

to be

Z 1

�1
Kn.x/ dx WD lim

s!�1

Z 0

s

Kn.x/ dx C lim
t!1

Z t

0

Kn.x/ dx;

but we shall define
R1

�1 Kn WD R a

�a Kn if Kn is identically zero outside Œ�a; a�:
Show that each of the following sequences is an approximate identity.

(a) Kn.x/ WD nf .nx/ for all n 2 N; where (as in Exercise 8.4.24)

f .x/ WD
(

1
A
e1=.x

2�1/ if jxj < 1,

0 if jxj � 1,

with A D R 1

�1 e1=.x
2�1/ dx and hence

R 1

�1 f .x/ dx D 1:

(b) (Landau’s Kernel).

Ln.x/ WD
(

.1� x2/n=cn if jxj < 1,

0 if jxj � 1,
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where, as in Problem 7.7.#45 (a),

cn D
Z 1

�1
.1� x2/n dx D 2Œ2 � 4 � 6 � .2n/�

1 � 3 � 5 � .2nC 1/
:

(c) (Fejér’s Kernel). Define

Fn.x/ WD
(

sin2Œ.nC 1/x=2�=Œ2	.nC 1/ sin2.x=2/� if x 2 Œ�	; 	�,
0 if jxj > 	 .

Thus, Fn.x/ D Kn.x/=.2	/; with Kn.x/ as in Definition 8.6.10.

54 (Uniform Approximation, Convolution). Let .Kn/ be an approximate identity as in the
previous problem and let f W R ! R be a bounded, (piecewise) continuous function. For each
n 2 N; define the function fn by the convolution

fn.x/ D .Kn � f /.x/ WD
Z 1

�1
f .t/Kn.x � t / dt;

where the improper integral is defined as in the previous problem.

(a) Show that .fn/ converges uniformly to f on any compact set E on which f is continuous.
(b) LetLn, n 2 N, be the Landau’s Kernel defined above. Show that fn WD Ln�f is a polynomial

for each n: Deduce the Weierstrass Approximation Theorem (Corollary 4.7.10), which says
that any continuous function f W Œa; b� ! R can be uniformly approximated by polynomials.
Hint: Reduce to the case where Œa; b� D Œ0; 1� and, replacing f by g.x/ WD f .x/ � f .0/ �
xŒf .1/� f .0/�; if necessary, assume that f .0/ D f .1/ D 0:

(c) Let f W R ! R be a continuous, 2	-periodic function and let fn be the function fn WD Fn�f ,
where Fn is the Fejér’s Kernel as defined above. Show that fn is a continuous, 2	-periodic
function for each n and prove Fejér’s theorem: The sequence of functions �n.x/ WD Œs0.x/C
s1.x/C � � � C sn.x/�=.nC 1/ (cf. Corollary 8.6.16) converges uniformly to f on Œ�	; 	�:

55 (Poisson Kernel).

(a) Show that

1

2
C

1
X

nD1

rn cosn� D 1� r2

2.1� 2r cos � C r2/
.0 	 r < 1/;

and that the series converges uniformly in � for each fixed r 2 Œ0; 1/: Hint: Let z WD rei� and
take real parts in the identity .1=2/CP1

nD1 zn D .1� z/�1 � 1=2:

(b) Show that limr!1�Œ.1=2/ C P1
nD1 r

n cosn�� D 0 uniformly on Œı; 2	 � ı�; 8ı 2 .0; 	/:

Note, however, that .1=2/CP1
nD1 cosn� diverges for all �:

The function

Pr.�/ WD 1� r2

2	.1� 2r cos � C r2/
.0 	 r < 1/

is called the Poisson kernel. It satisfies the three conditions of an approximate identity given in
Problem 53 if we replace n by r and n ! 1 by r ! 1:



Chapter 9
Normed and Function Spaces

Metric spaces were defined and studied in Chap. 5. Despite their importance,
general metric spaces do not share the algebraic properties of the fields R and C;

because a metric space need not be an algebra or even a vector space. Any
(nonempty) subset of a metric space is again a metric space with the metric it
borrows from the ambient space. Thus, curves and surfaces in the Euclidean space
R3 are metric spaces but are almost never vector subspaces of R3: Even straight
lines and planes are not vector subspaces unless they pass through the origin. There
is an important class of metric spaces, however, that is a natural framework for the
extension of topological as well as algebraic properties of R and C W It is the class
of normed spaces, which we now define. Throughout this chapter, F will stand for
either R or C and X ; Y ; Z ; etc. will denote vector spaces over F:

9.1 Norms and Normed Spaces

In this first section we begin our study of normed spaces with the following

Definition 9.1.1 (Norm, Seminorm). Let X be a vector space over F. A norm on
X is a map k � k W x 7! kxk from X to R such that for all x; y 2 X and all ˛ 2 F;

we have:

N1 kxk � 0;
N2 kxk D 0, x D 0;
N3 k˛xk D j˛jkxk; and
N4 kx C yk � kxk C kyk (Triangle Inequality).

The map k � k W x 7! kxk is said to be a seminorm on X if it only satisfies the
conditions N1; N3; and N4:

© Springer Science+Business Media New York 2014
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Exercise 9.1.2.

(a) Show that N1 follows from N3 and N4:
(b) Show that, if k � k is a seminorm on X ; then the set Z WD fx 2 X W kxk D 0g is

a (vector) subspace of X :

Definition 9.1.3 (Normed Space, Seminormed Space). Given any vector space
X ; and any norm (resp., seminorm) k � k on X ; the pair .X ; k � k/ is said to be a
normed space (resp., seminormed space). We say that a normed (or seminormed)
space .X ; k � k/ is real (resp., complex) if F D R (resp., F D C). By abuse of
language, we shall refer to X itself as a normed (resp., seminormed) space if the
norm (resp., seminorm) used on X is obvious from the context.

Definition 9.1.4 (Normed Algebra). A normed space .X ; k � k/ is said to be a
normed algebra if X is an algebra over F (i.e., a vector space together with a binary
operation .x; y/ 7! xy as in Definition 1.3.21) such that kxyk � kxkkyk; for all
x; y 2 X and kek D 1 if e 2 X is a unit element.

Exercise 9.1.5. Let .X ; k � k/ be a normed space.

(a) Show that the map d W .x; y/ 7! kx � yk from X � X to R is a metric on X

such that, for all x; y; z 2 X and all ˛ 2 F; we have

d.x C z; y C z/ D d.x; y/ and d.˛x; ˛y/ D j˛jd.x; y/:

(b) Show that the map x 7! kxk is Lipschitz and hence uniformly continuous (with
respect to the above metric d ) on X :

The above exercise shows that norms behave nicely under translations and
dilations:

Definition 9.1.6 (Translation, Dilation, Translated Dilation). Let X be a vector
space over F: For each b 2 X the map �b W X ! X such that �b.x/ WD x C b
is said to be a translation. For each ˛ 2 F n f0g; the map �˛ W X ! X such that
�˛.x/ WD ˛x is called a dilation. Finally, composing the previous maps, we obtain
the map �b ı�˛ W X ! X given by �b ı�˛.x/ D ˛xCb; which we call a translated
dilation.

Remark 9.1.7. To simplify the exposition, we shall frequently use the same notation
k � k to denote norms on different normed spaces as long as this introduces no
confusion. The metric defined in Exercise 9.1.5 is said to be associated with the
norm k � k on X : When we study X as a metric space, we shall always refer
to the metric associated with the norm. Since in the above exercise we have
kxk D d.x; 0/; it is tempting to claim that, in any vector space with a metric
d; the map x 7! d.x; 0/ is a norm. In fact, this is not the case as the following
exercise shows:

Exercise 9.1.8. Let d denote the discrete metric on the vector space RI i.e.,
d.x; y/ D 0 if x D y and d.x; y/ D 1 otherwise. Show that d is not associated
with any norm on R:



9.1 Norms and Normed Spaces 413

Definition 9.1.9 (Equivalent Norms). Two norms k�k1 and k�k2 on a vector space
X are said to be equivalent if their associated metrics are equivalent in the sense of
Definition 5.2.4 (i.e., define the same topology on X ).

Remark 9.1.10. In view of Corollary 5.4.28, if k � k1 � ck � k2 � c0k � k1; for some
positive constants c; c0; then k � k1 and k � k2 are equivalent. We shall see that this
condition is also necessary.

Example 9.1.11.

(1) The vector space F is a normed space (in fact a normed algebra) with kxk D jxj
for all x 2 F. More generally, the Euclidean space Fn is a normed space. One
can take, e.g., the Euclidean norm: kxkeuc D .

Pn
kD1 jxkj2/1=2 for each vector

x D .x1; x2; : : : ; xn/ 2 Fn:

(2) Extending the example .1/;we can look at sequences: Consider the vector space
FN of all sequences in F: There are many interesting subspaces of FN that are
normed spaces. For example, consider the subspace of bounded sequences:

`1.N;F/ WD
n

x D .xn/ 2 FN W supfjxnj W n 2 Ng <1
o

:

Then `1.N;F/ is a subspace of FN and, as one can easily check, kxk1 WD
supfjxnj W n 2 Ng defines a norm on it; we call it the sup-norm. Next, we may
look at the (absolutely) summable sequences:

`1.N;F/ WD
n

x D .xn/ 2 FN W
1
X

nD1
jxnj <1

o

:

Then `1.N;F/ is a subspace of FN and one can check that kxk1 WD P jxnj
defines a norm on it; we call it the `1-norm. We may also look at square-
summable sequences:

`2.N;F/ WD
n

x D .xn/ 2 FN W
1
X

nD1
jxnj2 <1

o

;

which is again a subspace of FN: Here, kxk2 WD
p

P jxnj2 defines a norm, the
`2-norm, as is easily checked (cf. Example 2.3.52).

(3) As in example (2), one may consider the spaces `1.Z;F/; `1.Z;F/, and
`2.Z;F/ of all bounded, (absolutely) summable, and square-summable
sequences in FZ; respectively. As we know (Theorem 8.6.33), for any
2	-periodic function f such that f 2 R.Œ�	; 	�/; we have . Of .n//n2Z 2
`2.Z;C/ and

k. Of .n//n2Zk22 D
1

2	

Z 	

�	
jf .x/j2dx:
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(4) Let X WDR.Œa; b�/ and, for each f 2 X ; define kf k1 WD
R b

a
jf j: Then k � k1 is

a seminorm on X : Indeed the properties N1; N3; and N4 are obvious. (Why?)
On the other hand, kf k1 WD

R b

a
jf j D 0 only implies that f .x/ D 0 for almost

all x 2 Œa; b� (cf. Theorem 7.4.16). If we look at the subspace Y WD C.Œa; b�/

of all continuous functions on Œa; b�; then k � k1 is a norm on Y : (Why?)
(5) Given any set S ¤ ;; let B.S;F/ denote the vector space of all bounded,

F-valued functions on S: For each f 2 B.S;F/; put kf k1 WD supfjf .x/j W x 2 Sg:
Then f 7! kf k1 is easily seen to be a norm on B.S;F/: We call it the sup-
norm. In fact, .B.S;F/; k � k1/ is a normed algebra.

(6) Given the normed spaces X 1;X 2; : : : ;Xn (over F) with respective norms
k � k1; : : : ; k � kn; consider their Cartesian product X WD Qn

kD1 Xk: This is a
vector space over F (with componentwise addition and scalar multiplication).

For each vector x D .x1; : : : ; xn/ 2 X ; kxkeuc WD
q

Pn
kD1 kxkk2k; kxkmax WD

maxfkx1k1; : : : ; kxnkng; and kxksum WD Pn
kD1 kxkkk are easily seen to be

norms on X : The associated metrics were considered in Exercise 5.1.5.
It follows from the inequalities

kxkmax � kxkeuc � kxksum � nkxkmax

that these norms are equivalent (cf. Exercise 5.4.29).

Proposition 9.1.12. Let X be a normed space. The maps .x; y/ 7! xCy; x 7! ˛x

(for fixed ˛ 2 F), and ˛ 7! ˛x (for fixed x 2 X ) are Lipschitz (hence uniformly
continuous) on X � X ; X ; and F; respectively. Also, the map .˛; x/ 7! ˛x [or,
more generally, .˛; x/ 7! ˛x C b; for any fixed b 2 X] is continuous on F �X :

Proof. For the map .x; y/ 7! x C y; we simply note that, with k � ksum as in
Example (6) above,

k.x C y/ � .x0 C y0/k � kx � x0k C ky � y0k D k.x; y/ � .x0; y0/ksum:

For the maps x 7! ˛x and ˛ 7! ˛x; the result follows from k˛x � ˛x0k D j˛jkx �
x0k and k˛x�˛0xk D kxkj˛�˛0j; respectively. Finally, for .˛; x/ 7! ˛xCb; note
that

k˛x�˛0x0k � j˛�˛0jkx�x0kCj˛�˛0jkx0kCj˛0jkx�x0k: ut

Corollary 9.1.13. Let X be a normed space and let b 2 X and ˛ 2 F n f0g be
fixed. Then the translation �b.x/ WD b C x is an isometry of X onto itself (with
inverse ��b). Also, the translated dilation x 7! ˛x C b (and hence the dilation
x 7! ˛x) is a (Lipschitz) homeomorphism of X onto itself with (Lipschitz) inverse
x 7! ˛�1.x � b/ (resp., x 7! ˛�1x).

Proof. This follows at once from Exercise 9.1.5 and Proposition 9.1.12. ut



9.1 Norms and Normed Spaces 415

Corollary 9.1.14. Let X be a normed space and Y � X a subspace.

(a) The closure Y � is a subspace of X :

(b) Let S � X be closed (i.e., S� D S ). Then, for any b 2 X and any ˛ 2 F;

the set b C ˛S WD fb C ˛s W s 2 Sg is also closed and we have .b C ˛S/� D
b C ˛ � S�: In particular, b C S and ˛S are closed and so is the set b C Y for
any closed subspace Y :

Proof. Since (by Proposition 9.1.12) the map �.x; y/ WD x C y is continuous on
X �X ; and since .Y � Y /� D Y � � Y �; it follows from Exercise 5.4.11(e) that

�.Y � � Y �/ D �Œ.Y � Y /�� � Œ�.Y � Y /�� D Y �:

Similarly, since h˛ W x 7! ˛x is a homeomorphism for ˛ ¤ 0; we have

h˛.Y
�/ D Œh˛.Y /�� � Y �

and .a/ follows. For .b/; note that b C ˛S D h.S/, where h.x/ WD ˛x C b is a
homeomorphism, hence a closed map. ut
Exercise 9.1.15. Let X be a normed space and let R; S � X :

(1) Show that, if R is open, then so is RC S WD fr C s W r 2 R; s 2 Sg:
(2) Show that, if R is compact and S is closed, then R C S is closed. Give an

example of two closed sets R; S � R2 such that RC S is not closed.

Definition 9.1.16 (Linear Map, Operator, Functional). Given any normed
spaces X and Y , a map (or transformation) T W X ! Y is said to be linear if

T .˛x C y/ D ˛T x C Ty .8x; y 2 X ; 8˛ 2 F/;

where T x WD T .x/: The set of all linear maps T W X ! Y will be denoted by
L.X ;Y /: A linear map T W X ! X is called a linear operator on X : The set of
all linear operators on X will be denoted by L.X/: A linear map � W X ! F is
called a linear functional (or linear form). The set of all linear functionals on X will
be denoted by L.X ;F/ and is simply the algebraic dual of X :

Exercise 9.1.17 (Real vs. Complex Functional). Let X be a vector space over
C: A map � W X ! C is said to be a real (resp., complex) linear functional if
�.x C y/ D �.x/C �.y/ for all x; y 2 X and �.˛x/ D ˛�.x/ for all x 2 X and
all ˛ 2 R (resp., ˛ 2 C). Show that, if � W X ! C is a complex linear functional,
then its real part  WD Re.�/ is a real linear functional and we have

�.x/ D  .x/ � i .ix/ .8x 2 X/: ()

Conversely, show that, if  W X ! R is a real linear functional, then � defined
by () is a complex linear functional on X :
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Remark 9.1.18 (Balls in Normed Spaces). Recall (Definition 5.1.11) that, if .M ; d /

is a metric space, a subset S � M is said to be bounded if it has finite diameter;
i.e., if ı.S/ WD supfd.x; y/ W x; y 2 Mg < 1: This is equivalent to requiring that
S be contained in a ball of “sufficiently large” radius. Also, recall (Example 5.2.11)
that the closed ball B 0

r .x/ WD fy 2 M W d.x; y/ � rg (of radius r centered at
x 2 M ) is not, in general, the closure B�

r .x/ of the open ball Br.x/ WD fy 2
M W d.x; y/ < rg; which in turn is not always the interior

�

B 0
r .x/

�ı
of the closed

ball. This inconvenience disappears in normed spaces, where balls enjoy many nice
properties; e.g., they are all convex:

Definition 9.1.19 (Convex Set). Let X be a vector space. A subset C of X is said
to be convex if, for all x; y 2 C and t 2 Œ0; 1�; we have tx C .1 � t /y 2 C:
Proposition 9.1.20. Let X be a normed space and let Br.x/; B�

r .x/; and B 0
r .x/

be as above with x 2 X and r > 0: Then the following are true:

(1) We have B�
r .x/ D B 0

r .x/ and
�

B 0
r .x/

�ı D �

B�
r .x//

ı D Br.x/: Therefore,
Bd.B 0

r .x// D Bd.B�
r .x// D Sr.x/ WD fx 2 X W kxk D rgI i.e., the boundary

of a closed ball is the corresponding sphere.
(2) For any map h.x/ WD ˛x C b with fixed b 2 X and ˛ 2 F n f0g,

˛Br.x/C b D h.Br.x// D Bj˛jr
�

h.x/
� D Bj˛jr .˛x C b/: ()

Moreover, () remains valid if Br and Bj˛jr are replaced by B�
r and B�

j˛jr :
(3) Br.x/ D x C Br.0/ D x C rB1.0/ and B�

r .x/ D x C B�
r .0/ D x C rB�

1 .0/:

(4) For any x; y 2 X and r; s 2 .0;1/; we have Br.x/CBs.y/ D BrCs.x C y/
and B�

r .x/C B�
s .y/ D B�

rCs.x C y/: In particular, if y D �x; then

Br.x/ � Bs.x/ D Br.x/C Bs.�x/ D BrCs.0/ D .r C s/B1.0/
and a similar statement for closed balls.

(5) Every ball in X (open or closed) is convex. Also, every Br.0/ or B�
r .0/ is

invariant under the dilations x 7! ˛x with j˛j D 1:
(6) We have X DS1

kD1 Bk.0/ D
S1
kD1 kB1.0/:

Proof.

(1) Since B 0
r .x/ is closed and contains Br.x/; we obviously have B�

r .x/ � B 0
r .x/:

For the reverse inclusion we need only show that Sr.x/ � B�
r .x/. (Why?) But

if ky � xk D r and if we set yn WD x C ˛n.y � x/; where 0 < ˛n < 1 for
all n and ˛n ! 1 as n ! 1; then yn 2 Br.x/ for all n and hence y D
lim.yn/ 2 B�

r .x/: Next, since Br.x/ is an open subset of B 0
r .x/; we certainly

have Br.x/ �
�

B 0
r .x/

�ı
: For the reverse inclusion we need only show that if

ky � xk D r; then y 62 �

B 0
r .x/

�ı
: (Why?) But, given any " > 0, let z WD

y C ".y � x/=.2r/: Then kz � yk D "=2 and hence z 2 B".y/: On the other
hand, z 62 B 0

r .x/ because

kz � xk D
�

�

�

.y � x/C "

2r
.y � x/

�

�

�

D
�

1C "

2r

�

r > r:
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(2) 8 z 2 Bj˛jr .h.x//; we have z D h.y/ with y D ˛�1.z � b/ 2 Br.x/ W

kh.y/ � h.x/k D k˛.y � x/k D j˛jky � xk < j˛jr”ky � xk < r;

and a similar equivalence with “< r” replaced by “� r” for the closed balls.
(3) The first part follows from (2) if we set x D 0, b D x; and ˛ D 1. The second

part then follows if we take the closure of both sides and use Corollary 9.1.13.
(4) This follows at once from (3) because

Br.0/C Bs.0/ D .r C s/B1.0/ D BrCs.0/:

(5) Indeed, if y; z 2 Br.x/, then for each t 2 Œ0; 1� we have

kty C .1 � t /z � xk D kt .y � x/C .1 � t /.z � x/k � tky � xk C .1 � t /kz � xk
< tr C .1 � t /r D r;

and a similar statement with “< r” replaced by “� r” if y; z 2 B�
r .x/: The

statement about invariance under dilations is obvious.
(6) We simply note that for each x 2 X we have x 2 Bk.0/ if kxk < k: ut
Proposition 9.1.21 (Bounded Set). Let X be a normed space. A set S � X is
bounded if and only if it is contained in a closed ball centered at 0 2 X :

Proof. Exercise! ut
Theorem 9.1.22. Let X ; Y be normed spaces. For a linear map T 2 L.X ;Y /;
the following are pairwise equivalent:

(1) T is bounded on each bounded subset of X :

(2) T is bounded on the (closed unit) ball B�
1 .0/ of X :

(3) T is bounded on the unit sphere S1.0/ of X :

(4) There exists a constant c � 0 (called a bound for T ) such that kT xk �
ckxk 8x 2 X :

(5) T is Lipschitz (hence uniformly continuous) on X :

(6) T is continuous on X :

(7) T is continuous at 0:

Proof. The implications .1/ ) .2/ ) .3/ are obvious. If kT xk � c for all
x 2 S1.0/ and some c > 0; then kT .x=kxk/k � c for all x ¤ 0 and hence
kT xk � ckxk; which also holds for x D 0: This establishes .3/ ) .4/: Next,
.4/) .5/ follows from T x�Ty D T .x�y/ and .5/) .6/) .7/ is obvious. To
prove .7/) .1/; suppose that T is continuous at 0 and note that T 0 D 0: Then, with
" D 1; we can pick ı > 0 such that kxk � ı implies kT xk < 1: Now, if S � X

is bounded, then (Proposition 9.1.21) there is r > 0 such that S � B�
r .0/: But

kxk � r implies kıx=rk � ı and hence kT .ıx=r/k < 1; which gives kT xk < r=ı
and completes the proof. ut
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Definition 9.1.23 (Bounded Linear Map, Bounded Operator, Dual). A map T 2
L.X ;Y / is called a bounded linear map if it satisfies any (and hence all) of the
conditions in Theorem 9.1.22. A bounded linear map T W X ! X is called a
bounded operator on X : The set of all bounded linear maps from X to Y will be
denoted by B.X ;Y /, and the set of all bounded operators on X will be denoted by
B.X/: Finally, the set of all bounded linear functionals on X will be denoted by
X� and will be called the (topological) dual of X I i.e., X� WD B.X ;F/:
Exercise 9.1.24 (Bounded Multilinear Map). Let Y and Xk; 1 � k � n; be
normed spaces and let X WD Qn

kD1 Xk: A map T 2 L.X ;Y / is said to be
multilinear if T .x1; : : : ; xn/ is linear in each variable. Show that such a map T
is continuous if and only if there is a constant c > 0 such that

kT .x1; : : : ; xn/k � ckx1k � � � kxnk .8.x1; : : : ; xn/ 2 X/:

Definition 9.1.25 ((Topological) Isomorphism, Isomorphic). Let X and Y be
normed spaces. A bijective linear map T W X ! Y is said to be a topological
isomorphism (or, simply, an isomorphism) if both T and T �1 are bounded. If such
a map exists, we say that X and Y are (topologically) isomorphic.

Definition 9.1.26 (Isometry, Isometric Isomorphism). We say that a linear map
T W X ! Y is an isometry if kT xk D kxk for all x 2 X : If T is onto, then it is an
isomorphism (why?) and is called an isometric isomorphism. In this case, X and Y

are said to be isometrically isomorphic.

Example 9.1.27. Note that any dilation x 7! ˛x with j˛j D 1 is an isometry of X

onto itself. In fact, these maps are isometries of any open [resp., closed] ball Br.0/
[resp., B�

r .0/] onto itself because k˛xk D j˛jkxk D kxk:
Corollary 9.1.28 (Equivalent Norms). Two norms k�k and k�k0 on a vector space
X are equivalent if and only if there are two positive numbers a and b such that

akxk � kxk0 � bkxk .8x 2 X/:

Proof. The condition is sufficient in view of Remark 9.1.10. To show that it is
necessary, note that the equivalence of the two norms means that the identity map
� W .X ; k � k/! .X ; k � k0/ is an isomorphism; i.e., � and its inverse ��1 are bounded
(i.e., continuous) linear maps. Theorem 9.1.22 now implies that there are positive
constants c; c0 such that for each x 2 X ;

kxk0 D k�.x/k0 � c0kxk and kxk D k��1.x/k � ckxk0;

and the proof is complete. ut
Definition 9.1.29 (Kernel, Range, Nonzero, Injective, Surjective). The kernel
(also called null space) and the range (also called image) of a linear map
T W X ! Y are defined to be the sets
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Ker.T / WD T �1.f0g/ WD fx 2 X W T x D 0g;
Ran.T / WD T .X/ WD fT x W x 2 Xg:

It is easily checked that Ker.T / is a (vector) subspace of X and that Ran.T / is a
subspace of Y . Also, T is nonzero (i.e., T x ¤ 0 for at least one x 2 X ) if and only
if Ker.T / ¤ X : Note that T is injective if and only if Ker.T / D f0g (why?) and it
is surjective if and only if Ran.T / D Y :

Proposition 9.1.30. Given any linear map T 2 B.X ;Y /; its kernel, Ker.T /; is
a closed subspace of X : The range Ran.T / is a (not necessarily closed) subspace
of Y . A linear functional � 2 L.X ;F/ is bounded if and only if Ker.�/ is closed
in X :

Proof. That Ker.T / and Ran.T / are subspaces of X and Y ; respectively, is obvious.
Also, since T is continuous and f0g is closed in F; the subspace Ker.T / D T �1.f0g/
is closed in X : In particular, Ker.�/ is closed for each � 2 B.X ;F/: Conversely,
suppose that � is nonzero and H WD ��1.f0g/ is closed in X : Pick x0 2 X with
�.x0/ D 1I hence x0 62 H : Since H is closed, so is x0CH ; by Corollary 9.1.14, and
we have 0 62 x0CH : Therefore, we can find r > 0 such thatB�

r .0/\.x0CH / D ;:
In particular, �.x/ ¤ 1 for all x 2 B�

r .0/: If �.x/ D ˛ for some x 2 B�
r .0/ and

j˛j > 1; then kx=˛k D kxk=j˛j < r (i.e., x=˛ 2 B�
r .0/) and yet �.x=˛/ D 1: This

contradiction shows that k�.x/k � 1 for all x 2 B�
r .0/ and hence � is continuous.ut

Definition 9.1.31 (Norm of a Bounded Linear Map). If X ; Y are normed spaces
and T 2 B.X ;Y /; then the norm of T is defined to be the nonnegative number

kT kWD supfkT xk W x 2 X ; kxk � 1g: ()

Proposition 9.1.32. For a linear map T W X ! Y ; where X ¤ f0g and Y are
normed spaces, we have

kT k D supfkT xk W x 2 X ; kxk D 1g ()

D supfkT xk=kxk W x 2 X n f0gg
D inffc > 0 W kT xk � ckxk;8x 2 Xg:

In particular, kT xk � kT kkxk; 8x 2 X :

Proof. Let us write kT k0 WD supfkT xk W x 2 S1.0/g; kT k00 WD supfkT xk=kxk W
x 2 X n f0gg; and kT k000 WD inffc > 0 W kT xk � ckxk; 8x 2 Xg: Then kT k0 D
kT k00 follows from kT xk=kxk D kT .x=kxk/k; valid for x ¤ 0: Next, () implies
that kT k � kT k0: Also, if 0 < kxk � 1; then kT .x=kxk/k � kT k0 and hence
kT xk � kT k0kxk � kT k0; which also holds for x D 0: Thus, kT k0 � kT k and
the first equality in () follows. To prove kT k D kT k000; note first that () implies
kT .x=kxk/k � kT k for all x ¤ 0 and hence kT xk � kT kkxk for all x 2 X : This
proves the inequality kT k � kT k000: On the other hand, if kT xk � ckxk for all
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x 2 X ; then kT xk � c for all x with kxk � 1 and hence (by ()) kT k � c: This
shows that we indeed have kT k � kT k000 and completes the proof. ut
Exercise 9.1.33. Show that the “norm” () in Definition 9.1.31 is indeed a norm
on B.X ;Y /:

9.2 Banach Spaces

Unlike general metric spaces, normed spaces are vector spaces and hence the notions
of convergent and absolutely convergent series make sense in any normed space.
When we study sequences and series, however, it is natural to work with complete
spaces, i.e., spaces in which every Cauchy sequence converges to a vector in the
space. This is what we intend to do in this section.

Definition 9.2.1 (Banach Space, Banach Algebra). A normed space is said to be
a Banach space if it is complete. A complete normed algebra is called a Banach
algebra.

Example 9.2.2.

(1) The Euclidean spaces Fn for n 2 N are all Banach spaces and F is in fact a
Banach algebra.

(2) Given a set S ¤ ;; the normed algebra X WD B.S;F/ of all bounded F-
valued functions on S with the sup-norm kf k1 WD supfjf .x/j W x 2 Sg
is a Banach algebra. Indeed, if .fn/ 2 XN is a Cauchy sequence, then so is
the sequence .fn.x// in F; for each x 2 S: Let f .x/ WD lim.fn.x//: Then
supfjfn.x/�fm.x/j W x 2 Sg ! 0; as n; m!1 implies supfjfn.x/�f .x/j W
x 2 Sg ! 0; as n!1 and hence f is bounded. (Why?)

(3) For each compact set K � F; the space C.K;F/ of all continuous F-
valued functions on K with the sup-norm is a Banach algebra. Indeed, as
in the previous example, any Cauchy sequence of continuous functions on
K converges uniformly and hence (by Theorem 8.3.1, which also holds for
complex-valued functions) has a continuous limit. In fact, the same is true if
K is a compact metric space. Also, by Theorem 8.3.3, the space R.Œa; b�;F/
of all Riemann integrable (hence bounded) F-valued functions on Œa; b� is a
Banach space with the sup-norm.

(4) Let .K ; d / be a compact metric space and let Lip˛.K / denote the set of
all real-valued Lipschitz functions of order ˛ 2 .0; 1� on K : It follows from
Exercise 5.6.30, that Lip˛.K / is a Banach space with norm

kf k˛;1 WD kf k1 C sup

� jf .x/ � f .y/j
d.x; y/˛

W x; y 2 K ; x ¤ y
�

:

Exercise 9.2.3 (The Space c0 of Banach). Consider the space

c0 WD fx D .xn/ 2 FN W lim.xn/ D 0g:
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Show that, with the sup-norm kxk1 D supfjxnj W n 2 Ng; the space c0 is a Banach
space. Hint: Let .xk/ be a Cauchy sequence in c0; where xk D .xk;n/

1
nD1 for each

k 2 N: Show that, for each fixed n 2 N; the sequence .xk;n/1kD1 is Cauchy in F and
let �n denote its limit. Show that � WD .�n/ 2 c0 and � D lim.xk/:

As we shall see presently, the completeness of a normed space is a very desirable
property. As a nice example, the space Pol.Œa; b�;R/ of all polynomial functions on
a (nontrivial) interval Œa; b� is a normed space with the sup-norm. It is not complete,
but by the Weierstrass Approximation Theorem (Corollary 4.7.10), it is a dense
subspace of the Banach space C.Œa; b�;R/ of all continuous functions on Œa; b� with
the “same” sup-norm. The following theorem shows that any normed space can be
completed in an essentially unique way as follows:

Theorem 9.2.4 (Completion of a Normed Space). For any normed space X ;

there is a Banach space OX and an isometry (i.e., a norm-preserving linear map)
� W X ! OX such that �.X/ is dense in OX : The Banach space OX ; which is known

as the “completion” of X ; is unique in the sense that, if OOX is another completion of

X ; then OX and OOX are isometrically isomorphic.

Proof. Since X is a metric space with metric d.x; y/ WD kx � yk; the theorem
follows at once from Theorem 5.5.16. ut

Here is one way of constructing new Banach spaces:

Theorem 9.2.5. Given any normed space X and any Banach space Y ; the space
B.X ;Y / is a Banach space. In particular, the dual X� WD B.X ;F/ is a Banach
space.

Proof. Let .Tn/ be a Cauchy sequence in B.X ;Y / and let " > 0: We can pick
N 2 N such thatm; n � N implies kTm�Tnk < ": It follows from Definition 9.1.31
that kTmx � Tnxk < " if m; n � N and kxk � 1: Thus .Tnx/ is Cauchy in the
complete space Y if kxk � 1 and hence converges to an element T x 2 Y : This
is then also true if kxk > 1; because Tnx D kxkTn.x=kxk/: From the equations
Tn.˛x1Cx2/ D ˛Tnx1CTnx2 and Proposition 5.5.8, it follows that T .˛x1Cx2/ D
˛T x1 C T x2I i.e., T is linear. On the other hand, kTm � Tnk < " for all m; n � N
and kxk � 1 imply (asm!1) that k.T �Tn/.x/k D kT x�Tnxk � " and hence
kT xk � kTnxk C " for all n � N and kxk � 1: This proves that T is bounded. It
also follows from Definition 9.1.31 that kT � Tnk � " so that .Tn/ converges to T
in B.X ;Y /: ut
Proposition 9.2.6. Let X ; Y , and Z be normed spaces, T 2 B.X ;Y /, and S 2
B.Y ;Z /: Then ST WD S ı T 2 B.X ;Z / and kST k � kSkkT k:
Proof. This follows at once from the inequalities

kS.T x/k � kSkkT xk � kSkkT kkxk .8x 2 X/: ut



422 9 Normed and Function Spaces

Corollary 9.2.7. Given a Banach space X ; the space B.X/ of all bounded
operators on X is a Banach algebra.

Proof. This follows from Theorem 9.2.5 and Proposition 9.2.6. ut
Now may be a good time to state Banach’s Fixed Point Theorem (cf. Theorem

5.5.7) for Banach spaces.

Definition 9.2.8 (Contraction). Let X and Y be Banach spaces. A map
f W X ! Y is said to be a contraction if there is a constant c 2 .0; 1/ such
that

kf .x/ � f .y/k � ckx � yk:

Since a Banach space is a complete metric space, the following theorem is a
special case of Theorem 5.5.7:

Theorem 9.2.9 (Banach’s Fixed Point Theorem). Let X be a Banach space and
f W X ! X a contraction. Then f has a unique fixed point; i.e., there exists a
unique x 2 X such that f .x/ D x:
Example 9.2.10 (Fredholm Integral Equations). Consider the Banach space X WD
C.Œa; b�/ of continuous real-valued functions on a nondegenerate interval Œa; b�with
the sup-norm kf k1 WD supfjf .x/j W x 2 Œa; b�g: Let k W Œa; b� � Œa; b� ! R be
a continuous function. Now, given a function g 2 X , the goal is to find a function
f 2 X such that

f .x/ �
Z b

a

k.x; y/f .y/ dy D g.x/ .8 x 2 Œa; b�/: ()

For each f 2 X ; define the function

.Kf /.x/ WD
Z b

a

k.x; y/f .y/ dy:

We claim that K 2 B.X/: Indeed, k is uniformly continuous on the (compact)
square R WD Œa; b� � Œa; b� so for each " > 0 there is a ı > 0 such that jhj < ı

implies jk.xC h; y/� k.x; y/j < " for all .x; y/ 2 R such that xC h 2 Œa; b�; and
hence (by the MVT for integrals)

j.Kf /.xCh/�.Kf /.x/j D
ˇ

ˇ

ˇ

ˇ

Z b

a

Œk.xCh; y/�k.x; y/�f .y/ dy
ˇ

ˇ

ˇ

ˇ

< ".b�a/kf k1:

This shows that Kf is (uniformly) continuous on Œa; b�: As for the linearity of K; it
follows at once from the linearity of the integral. Now note that we can write () as

f .x/ D g.x/C
Z b

a

k.x; y/f .y/ dy D g.x/C .Kf /.x/ .8 x 2 Œa; b�/:
()
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Let F W X ! X be the map F.f / WD gCKf: Then () becomes F.f / D f I i.e.,
f is a fixed point of the map F: If M WD supfjk.x; y/j W .x; y/ 2 Rg; then for any
f1; f2 2 X and any x 2 Œa; b�; we have

jF.f2/.x/�F.f1/.x/j D
ˇ

ˇ

ˇ

ˇ

Z b

a

k.x; y/Œf2.y/�f1.y/� dy
ˇ

ˇ

ˇ

ˇ

ˇ

�M.b�a/kf2�f1k1;

which gives

kF.f2/ � F.f1/k1 �M.b � a/kf2 � f1k1 8 f1; f2 2 X :

Thus, if we assume that M < 1=.b � a/; then the map F is a contraction and
hence has a unique fixed point by Banach’s Fixed Point Theorem. In other words, if
M.b � a/ < 1; then the integral equation () has a unique solution f 2 X for each
given g 2 X :

Remark 9.2.11. As we shall demonstrate later (cf. Proposition 9.4.18), the linear
map K in the above example is in fact compact in the following sense:

Definition 9.2.12 (Compact Map, Compact Operator). Let X and Y be normed
spaces. A linear map K 2 L.X ;Y / is said to be compact if K.B/ is relatively
compact (i.e., the closure

�

K.B/
��

is compact) in Y for each bounded set B � X .
A compact (linear) map K W X ! X is called a compact operator. The set of all
compact maps K W X ! Y will be denoted by K.X ;Y / and the set of all compact
operators K W X ! X by K.X/:
Proposition 9.2.13. With the above notation, we have K.X ;Y / � B.X ;Y / and
K.X/ � B.X/:
Proof. Indeed, ifK 2 K.X ;Y /; and if B�

1 WD B�
1 .0/ denotes the closed unit ball in

X ; then the image K.B�
1 / is relatively compact in Y and hence [by Theorem 5.6.7

(a)] bounded. ut
In the following theorem we shall use the fact that a subset of Rn is compact if

and only if it is closed and bounded (cf. Corollary 5.6.38). Note that the same holds
for Cn; which is topologically R2n:

Theorem 9.2.14 (Finite-Dimensional Normed Space). Every finite-dimensional
normed space is a Banach space. In particular, every finite-dimensional subspace of
a normed space is closed. In fact, if X is an n-dimensional normed space with basis
fe1; e2; : : : ; eng; then the map L˛ WD Pn

kD1 ˛kek; where ˛ D .˛1; : : : ; ˛n/ 2 Fn;

is an isomorphism of the Euclidean space Fn onto X :

Proof. It is a simple exercise to check that L is linear, one-to-one, and onto and that
L�1 is also linear. That L is bounded follows from the inequalities

kLxk D
�

�

�

�

n
X

kD1
˛kek

�

�

�

�

�
n
X

kD1
j˛kjkekk � ck˛k; ()
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where k˛k D p

P j˛kj2 and c WD p

P kekk2: Now let S1 WD f˛ 2 Fn W k˛k D 1g
be the unit sphere in Fn and recall that S1 is closed and bounded hence compact.
The continuous map ˛ 7! kL˛k is strictly positive on S1: (Why?) Thus,

inffkL˛k W k˛k D 1g D r > 0:

It follows that, if ˛ 2 F n f0g; then kL.˛=k˛k/k � r and hence k˛k � .1=r/kL˛k;
which is also valid for ˛ D 0: This shows that L�1 is bounded as well. To show that
X is complete, note that a Cauchy sequence .xn/ in X is mapped by the Lipschitz
map L�1 onto the Cauchy (hence convergent) sequence .L�1xn/ in the complete
Euclidean space Fn: It follows that .xn/ converges to L˛; where ˛ D lim.L�1xn/:ut
Remark 9.2.15. Note in particular that, as pointed out in Chap. 5 (cf. Prob-
lem 5.8.#19), since the spaces PolkŒ0; 1� are finite dimensional, they are closed
subspaces of the Banach space (in fact Banach algebra) X WD C.Œ0; 1�/ with the
sup-norm kf k1 WD supfjf .x/j W x 2 Œ0; 1�g:
Corollary 9.2.16. Any linear map T from a finite-dimensional normed space X to
a normed space Y is compact, hence continuous.

Proof. Since dim.X/ < 1, the range Ran.T / is a finite-dimensional, hence
closed, subspace of Y by the above theorem. In particular, T is bounded if and
only if it is compact. Let fe1; : : : ; eng be a basis for X : For each x 2 X we
have x WD Pn

kD1 ˛kek with a unique vector ˛ D .˛1; : : : ; ˛n/ 2 Fn and hence
T x D Pn

kD1 ˛kTek: Thus T D UL�1 WD U ı L�1, where U 2 L.Fn;Y / is given
by U˛ WDP

˛kTek , while L�1 2 L.X ;Fn/ is given by L�1.
P

˛kek/ WD ˛ and is
continuous by Theorem 9.2.14. Also, as in (), the boundedness of U follows from
the inequalities

kU˛k D
�

�

�

�

n
X

kD1
˛kTek

�

�

�

�

�
n
X

kD1
j˛kjkTekk � dk˛k; d WD

r

X

kTekk2:

ut
Corollary 9.2.17. Any two norms on a finite-dimensional space are equivalent.

Proof. Indeed, if k � k1 and k � k2 are two norms on a finite-dimensional space X ;

then Corollary 9.2.16 implies that the identity map I W .X ; k � k1/! .X ; k � k2/ is a
topological isomorphism. ut
Definition 9.2.18 (Convergent and Absolutely Convergent Series). Let X be a
normed space and .xn/ 2 XN. We say that the infinite series

P1
nD1 xn is convergent

and has sum s 2 X if for each " > 0 there exists N 2 N such that n � N implies
ks �Pn

kD1 xkk < ": The series
P1

nD1 xn is said to be absolutely convergent if the
numerical series

P1
nD1 kxnk is convergent.
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Proposition 9.2.19. Let X ; Y be normed spaces and T 2 B.X ;Y /: If
P

xn is
a convergent (resp., absolutely convergent) series in X ; then

P

T xn is convergent
(resp., absolutely convergent) in Y and we have

P

T xn D T .P xn/:

Proof. Let s DP xn 2 X : Then

�

�

�

T s � T
�

n
X

kD1
xk

�

�

�

�

D
�

�

�

T
�

s �
n
X

kD1
xk

�

�

�

�

� kT k
�

�

�

s �
n
X

kD1
xk

�

�

�

! 0;

as n!1: The statement about absolute convergence is obvious. (Why?) ut
We have seen that an absolutely convergent series in R (or C) is necessarily

convergent. This is not true in general for series in normed spaces. In fact we have
the following.

Theorem 9.2.20. A normed space X is a Banach space if and only if every
absolutely convergent series in X is convergent.

Proof. Let X be a Banach space, .xn/ 2 XN; and
P1

nD1 kxnk D M < 1: Given
any " > 0 we can then find N 2 N such that

P1
nDN kxnk < ": If sn WDPn

kD1 xn is
the n-th partial sum of

P

xn; then n > m � N implies

ksn � smk D
�

�

�

�

n
X

kDm
xk

�

�

�

�

�
n
X

kDm
kxkk �

1
X

kDN
kxkk < ":

Therefore .sn/ is a Cauchy sequence in the complete space X and hence must
converge. Conversely, suppose that every absolutely convergent series is convergent
in X and let .xn/ 2 XN be a Cauchy sequence. We can then pick positive integers
n1 < n2 < � � � such that kxn � xmk < 2�k if maxfm; ng � nk: Put y1 WD xn1 and
yk WD xnk � xnk�1 for k > 1: It then follows that xnk is the kth partial sum of the
series

P

yk . But then,

X

kykk � ky1k C
X

2�kC1 D ky1k C 1

and
P

yk is absolutely convergent. Our assumption now implies that
P

yk is
convergent. This means that the subsequence .xnk / is convergent. (Why?) Since
.xn/ is a Cauchy sequence, Exercise 5.3.6 (4) implies that it converges to the same
limit. ut
Exercise 9.2.21 (Quotient Space). Let V be a vector space.

(1) Show that, if W is a (vector) subspace of V; then the relation x � y , x � y
2 W is an equivalence relation on V: The equivalence class of a vector x 2 V
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is Œx� WD xCW: The quotient space V=W is the space of all equivalence classes
with vector addition and scalar multiplication defined by Œx�C Œy� WD Œx C y�
and ˛Œx� WD Œ˛x�; respectively. Show that these operations are well defined in
the sense that, for any x0 2 Œx� and y0 2 Œy�; we have Œx� C Œy� D Œx0� C Œy0�
and ˛Œx0� D ˛Œx� and that V=W is indeed a vector space.

(2) Let k � k be a seminorm on V and, as in Exercise 9.1.2, consider the subspace

W WD fx 2 V W kxk D 0g:

For each x 2 V; let Œx� D x CW be its equivalence class and define kŒx�k WD
kxk: Show that this defines a norm on the quotient space V=W:

Here is another way of constructing new Banach spaces:

Theorem 9.2.22. Let Y be a closed subspace of a normed space X and, for each
Œx� 2 X=Y ; define

kŒx�kWD inffkx � yk W y 2 Y g D d.x;Y /: ()

Then () defines a norm on X=Y . If X is a Banach space, then the quotient space
X=Y ; with the above norm, is also a Banach space.

Proof. First, kŒx�k � 0 is obvious and kŒx�k D d.x;Y / D 0 means x 2 Y � D Y

and hence Œx� D Œ0�: Next, for any ˛ 2 F n f0g;

kŒ˛x�k D inffk˛x � yk W y 2 Y g D j˛j inffkx � y=˛k W y 2 Y g D j˛jkŒx�k:

Finally, kŒx1�C Œx2�k � kŒx1�k C kŒx2�k follows from the fact that

kx1 C x2 � .y1 C y2/k � kx1 � y1k C kx2 � y2k .8y1; y2 2 Y /:

Next, suppose that X is complete, hence a Banach space. In view of Theorem 9.2.20,
to show that X=Y is complete, it suffices to show that, if .xn/ 2 XN satisfies
P kŒxn�k < 1; then

P

Œxn� converges (in X=Y ). To show this, note that we can
pick a sequence .yn/ 2 Y N such that kxn � ynk � kŒxn�k C 2�n: (Why?) Then
P kxn � ynk <1 and hence (since X is a Banach space) x WDP

.xn � yn/ 2 X :

But then

�

�

�

Œx� �
n
X

kD1
Œxk�

�

�

�

D
�

�

�

Œx� �
n
X

kD1
Œxk � yk�

�

�

�

D
�

�

�

h

x �
n
X

kD1
.xk � yk/

i

�

�

�

�
�

�

�

x �
n
X

kD1
.xk � yk/

�

�

�

! 0 as n!1,

and we have Œx� DPŒxn�: ut



9.2 Banach Spaces 427

Remark 9.2.23 (Canonical Projection). With notation as above, the surjective map
	 W X ! X=Y defined by 	.x/ WD Œx� is called the canonical projection. It is a
(linear) Lipschitz map, as kŒx�k D d.x;Y / � kxk for all x 2 X :

Lemma 9.2.24. Let Y ¤ X be a closed subspace of a normed space X : Then there
is a sequence .xn/ 2 XN such that, kxnk D 1 for all n 2 N; kŒxn�k increases with
n; and lim.kŒxn�k/ D 1: Here, Œxn� D xn C Y 2 X=Y :

Proof. Let x 2 X n Y : It follows from the definition of kŒx�k that we can find a
sequence .yn/ 2 Y N such that .kx�ynk/ is decreasing and lim.kx�ynk/ D kŒx�k:
Let zn WD x � yn; xn WD zn=kznk; and note that Y is closed and xn 62 Y ; so that
kŒxn�k > 0 for all n: It is then easily checked that .xn/ is the desired sequence. ut

As a corollary, we prove the following fundamental result which characterizes
finite dimensional normed spaces (cf. Theorem 9.2.14):

Theorem 9.2.25 (F. Riesz’s Lemma). A normed space X is finite dimensional if
and only if the closed unit ball B�

1 .0/ WD fx 2 X W kxk � 1g is compact.

Proof. If dim.X/ < 1; then the compactness of B�
1 .0/ follows from Theorem

9.2.14 and the fact that the closed unit ball in Fn is compact for any n 2 N:

If dim.X/ D 1; let us construct, inductively, a sequence .xn/ of (independent)
vectors such that kxnk D 1 for all n and kxj � xkk � 1=2 for j ¤ k: Assuming
that the xi , 1 � i � n; have been chosen, let Xn WD Span.fx1; x2; : : : ; xng/ and
note that Xn is a finite-dimensional (hence closed) subspace and Xn ¤ X : By the
above lemma, we can therefore pick xnC1 2 X n Xn such that kxnC1k D 1 and
d.xnC1;Xn/ � 1=2: Now note that .xn/ is a sequence in B�

1 .0/ with no convergent
subsequence. ut
Definition 9.2.26 (Total Set, Total Family). Let X be a normed space. A set
S � X is said to be total if its span is dense in X I i.e., if Span.S/� D X : A family
.xj /j2J of vectors in X (i.e., a function x 2 XJ ) is called a total family if its
range fxj W j 2 J g is total. In particular, a sequence .xn/ 2 XN is total if the set
fxn W n 2 Ng is total.

Recall that a metric space is called separable if it contains a countable dense
subset.

Theorem 9.2.27 (Separable Normed Space). If a normed space X contains a
total sequence, then it is separable. Conversely, if X is separable, then it contains a
total sequence consisting of linearly independent vectors.

Proof. Suppose that .bn/ 2 XN is a total sequence and let D denote the set of all
finite linear combinations

Pn
kD1 �kbk with rational coefficients; i.e., the �k are in

Q if F D R and in QC iQ if F D C: It is easily seen that D is a countable union
of countable sets and hence is itself countable. Since S WD Span.fbn W n 2 Ng/ is
dense in X ; we need only show that D is dense in S: But this follows from
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�

�

�

�

�

n
X

kD1
˛kbk �

n
X

kD1
�kbk

�

�

�

�

�

�
n
X

kD1
j˛k � �kjkbkk

and the fact that Q (resp., QC iQ) is dense in R (resp., C). Conversely, suppose that
X is separable. We may assume that X is infinite dimensional because otherwise
every basis is already a finite total subset of independent vectors. Let .bn/ be an
infinite, dense sequence of vectors in X and let Y 1 WD Span.fbk1g/; where k1 is
the smallest n with bn ¤ 0: Note that no proper closed subspace of X (hence
no finite-dimensional subspace) can contain all the bn: (Why?) So, let k2 > k1
be the smallest index with bk2 62 Y 1: Assuming we have chosen k1 < � � � < kn;

we put Y n WD Span.fbk1 ; : : : ; bkng/ and let knC1 > kn be the smallest index with
bknC1

62 Y n: It is then obvious that the sequence .bkn/
1
nD1 is a total sequence of

linearly independent vectors in X : (Why?) ut
Theorem 9.2.28 (Extension of Bounded Linear Maps). Let X be a dense sub-
space of a normed space Y (i.e., X� D Y ) and let Z be a Banach space. Then
any T 2 B.X ;Z / has a unique continuous extension QT 2 B.Y ;Z / and we have
kT k D k QT k:
Proof. Since T is Lipschitz (hence uniformly continuous), the existence of QT
follows from Theorem 5.5.13. The linearity of QT follows from the continuity of QT ;
Propositions 9.1.12, and 5.5.8. Finally, the equality of norms follows easily from
Definition 9.1.31 and Proposition 5.5.8. (Why?) ut

We now prove a number of fundamental results that are consequences of the
Baire Category Theorem (cf. Corollary 5.3.9). The first one, known as the Prin-
ciple of Uniform Boundedness is essentially a consequence of Osgood’s Theorem
(Theorem 5.5.15) and is also known as the Banach–Steinhaus Theorem.

Theorem 9.2.29 (Uniform Boundedness Principle). Let X be an arbitrary
Banach space and let fTj gj2J be a family of bounded linear maps from X to
a normed space Y : If for each x 2 X there is a constant Mx > 0 such that
kTj xk � Mx for all j 2 J; then there is a constant M > 0 such that kTj k � M
for all j 2 J:
Proof. Let fj .x/ WD kTj xk: Then ffj W j 2 J g is a set of continuous real-valued
functions on X and, since X is complete, it follows from Theorem 5.5.15 that there
is an open ball Bı.x0/ � X ; ı > 0; on which all the fj are uniformly bounded; i.e.,
there is a constantM 0 > 0 such that kTj xk �M 0 for all j 2 J and all x 2 Bı.x0/:
Now, if kxk < ı; then x C x0 2 Bı.x0/ and hence kTj xk � kTj .x C x0/k C
kTj x0k �M 0CMx0; for all j 2 J: This implies that kTj k �M for all j 2 J with
M WD .M 0 CMx0/=ı: ut
Corollary 9.2.30. Let X be a Banach space and let .Tn/n2N be a sequence of
bounded linear maps from X to a normed space Y : If for each x 2 X the
sequence .Tnx/ is convergent and if we let T x WD lim.Tnx/; then T 2 B.X ;Y /
and kT k � lim infn!1 kTnk:
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Proof. The linearity of T follows at once from the linearity of the Tn and the
continuity of the vector addition and scalar multiplication in Y : Also, Mx WD
supfkTnxk W n 2 Ng < 1 for each x 2 X ; so (by Theorem 9.2.29) there is an
M > 0 such that kTnxk � Mkxk for all x 2 X and all n 2 N: Therefore, by the
continuity of the norm,

kT xk D lim
n!1 kTnxk � lim inf

n!1 kTnkkxk .8x 2 X/:

ut
The next important theorem uses the Baire Category Theorem to show that

surjective (bounded linear) maps between Banach spaces are open. Let us first prove
a lemma.

Lemma 9.2.31. Let X ; Y be Banach spaces and let T 2 B.X ;Y / be surjective. If
B1 WD B1.0/ denotes the open unit ball in X (centered at 0), then the closure of its
image under T (i.e., .T .B1//�) contains an open ball Bı.0/ in Y :

Proof. Since T is onto and X D S1
kD1 kB1; it follows that Y D S1

kD1 kT .B1/:
But Y is complete and hence the Baire Category Theorem implies that .NT .B1//�
has nonempty interior for some N 2 N: Thus, we can find y0 2 Y and r > 0 such
that Br.y0/ D fy 2 Y W ky � y0k < rg � .NT .B1//�: But then, since �B1 D B1;
we also have Br.�y0/ � .NT .B1//�: This implies (by Proposition 9.1.20) that

B2r.0/ WD fy 2 Y W kyk < 2rg � .2NT .B1//� D 2N.T .B1//�; ()

where the last equality follows from the bicontinuity of y 7! ˛y for all ˛ ¤ 0:

From () we deduce that Bı.0/ � .T .B1//� with ı D r=N: (Why?) ut
Theorem 9.2.32 (Open Mapping Theorem). Let X ; Y be Banach spaces and
let T 2 B.X ;Y / be surjective. Then T is an open mapping, i.e., for any open set
O � X ; T .O/ is open in Y :

Proof. Let Br WD Br.0/ denote the open ball of radius r centered at 0 in X or Y :

Using translations, it suffices to show that, if U is an open neighborhood of 0 in
X ; then T .U / is an open neighborhood of 0 in Y : (Why?) This in turn follows
(using dilations) if we show that T .B1/ contains an open ball B" in Y : Thus we
need only show that .T .B1//� � T .B2/ D 2T .B1/ because, by Lemma 9.2.31, we
know that Bı � .T .B1//� for some ı > 0: Now, given any y 2 .T .B1//�; we can
pick x1 2 B1 such that y � T x1 2 Bı=2 � .T .B1=2//�: (Why?) Similarly, we can
pick x2 2 B1=2 such that .y � T x1/ � T x2 2 Bı=4 � .T .B1=4//�: Continuing this
process, we can pick xn 2 B21�n such that

y �
n
X

kD1
T xk 2 Bı=2n � .T .B1=2n//�:

But then x WD P

xn 2 B2 D 2B1 and y D T x: (Why?) This proves our claim and
completes the proof. ut
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Corollary 9.2.33. If X ; Y are Banach spaces and if T 2 B.X ;Y / is bijective,
then it is in fact a topological isomorphism.

Proof. By Theorem 9.2.32, T is open and hence T �1 is continuous. ut
Corollary 9.2.34 (Canonical Projection). Let Y be a closed subspace of a
Banach space X and let X=Y be the corresponding quotient space. Then the
canonical projection 	 W X ! X=Y defined by 	.x/ WD Œx� is an open map.

Proof. Indeed, X=Y is also a Banach space (Theorem 9.2.22) and 	 is onto. ut
Corollary 9.2.35. Let k � k1 and k � k2 be two norms on a Banach space X : If there
is a constant c > 0 such that kxk2 � ckxk1; then the norms k � k1 and k � k2 are
equivalent.

Proof. Our assumption means that the identity map I W .X ; k � k1/! .X ; k � k2/ is
continuous. By Corollary 9.2.33, it is therefore a topological isomorphism. ut

Next, let X ; Y be normed spaces and T 2 L.X ;Y /: The graph of T is the set

�T WD f.x; T x/ W x 2 Xg � X � Y :

Note that �T is in fact a (vector) subspace of X � Y : (Why?) By Theorem 5.4.15,
if T 2 B.X ;Y /; then �T is closed in X � Y : The following is a converse.

Theorem 9.2.36 (Closed Graph Theorem). Let X ; Y be Banach spaces and
T 2 L.X ;Y /: If �T is closed, then T 2 B.X ;Y /:
Proof. It is easily seen that .x; T x/ 7! kxkCkT xk is a norm on the subspace �T of
X �Y and our hypothesis implies that �T is in fact a Banach space with this norm.
(Why?) Consider the projections P1 W �T ! X and P2 W �T ! T .X/ defined
by P1.x; T x/ WD x and P2.x; T x/ WD T x: They are both continuous linear maps.
(Why?) Also, P1 is bijective and hence a topological isomorphism of �T onto X .
But then, the composite map T D P2P�1

1 WD P2 ı P�1
1 is continuous. ut

We end the section with the celebrated Hahn–Banach Theorem, which guarantees
the existence of (norm-preserving) extensions of linear functionals defined on
subspaces and is one of the most fundamental results in functional analysis.

Theorem 9.2.37 (Hahn–Banach Theorem). Let Y be a subspace of a real vector
space X and let p W X ! R satisfy

p.x C y/ � p.x/C p.y/ and p.˛x/ D ˛p.x/ .8x; y 2 X ; 8˛ � 0/:

If � W Y ! R is linear and �.y/ � p.y/ for all y 2 Y ; then there exists a linear
functionalˆ W X ! R such thatˆ.y/ D �.y/ for all y 2 Y (i.e.,ˆ is an extension
of � to X ) and

�p.�x/ � ˆ.x/ � p.x/ .8x 2 X/:
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Proof. We assume that Y ¤ X ; pick x0 2 X n Y ; and let

Y 1 WD Y ˚ Rx0 D fy C ˛x0 W y 2 Y ; ˛ 2 Rg
be the subspace spanned by Y and x0: From the inequalities

�.y/C �.z/ D �.y C z/ � p.y C z/ � p.y � x0/C p.x0 C z/;

valid for all y; z 2 Y ; it follows that

.i/ �.y/ � p.y � x0/ � p.zC x0/ � �.z/ .8y; z 2 Y /.

If �0 WD supf�.y/ � p.y � x0/ W y 2 Y g; then .i/ implies

.i i/ �.y/ � �0 � p.y � x0/ .8y 2 Y /

and

.i i i/ �.z/C �0 � p.zC x0/ .8z 2 Y /.

Now define �1 W Y 1 ! R by

.iv/ �1.y C ˛x0/ WD �.y/C ˛�0 .8y 2 Y ; 8˛ 2 R/.

Then �1 is linear and �1jY D �: If we replace y by y=.�˛/ in .i i/ for ˛ < 0;

z by z=˛ in .i i i/ for ˛ > 0; and multiply the resulting inequalities by �˛ and ˛;
respectively, then .iv/ implies that �1 � p on Y 1:

The second half of the proof requires the use of Zorn’s Lemma. Let E denote
the set of all pairs .Y 0; �0/ such that Y 0 is a subspace of X with Y 0 � Y and
�0 W Y 0 ! R is linear with �0jY D � and �0 � p on Y 0: We partially order E
by defining .Y 0; �0/ 
 .Y 00; �00/ to mean that Y 0 � Y 00 and �00jY 0 D �0: If C is a
chain in E ; then an upper bound is the pair . QY ; Q�/; where QY WD S

.Y 0;�0/2C Y 0 and
Q� W QY ! R is defined by Q�jY 0 WD �0 for each .Y 0; �0/ 2 C: It is easily checked
that QY is a subspace of X and that Q� is linear on QY : (Why?) By Zorn’s Lemma, E
has a maximal element, say .Z ;  /:We claim that Z D X and that  is the desired
extension ˆ. Indeed, if Z ¤ X ; using the construction in the first half of our proof,
we can extend to the larger subspace Z˚Rx1 where x1 2 XnZ ; contradicting the
maximality of .Z ;  /: Finally,  � p implies that �p.�x/ � � .�x/ D  .x/

for all x 2 X : ut
The following consequence is an extension of the result to complex vector spaces

and complex functionals.

Theorem 9.2.38. Let k � k be a seminorm on a vector space X over F: If Y is a
subspace of X and � W Y ! F is a linear functional such that

j�.y/j � kyk .8y 2 Y /;

then � extends to a linear functional ˆ W X ! F such that

jˆ.x/j � kxk .8x 2 X/:
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Proof. If F D R; then the result is contained in the Hahn–Banach Theorem, where
we define p.x/ WD kxk and note that k� xk D kxk for all x 2 X : We therefore
assume that F D C and let  WD Re.�/: Then (Exercise 9.1.17)  is a real
functional on Y and �.y/ D  .y/ � i .iy/ for all y 2 Y : By Theorem 9.2.37,
there exists a real linear functional ‰ W X ! R such that ‰jY D  and
j‰.x/j � kxk for all x 2 X : Consider the corresponding complex linear functional:
ˆ.x/ D ‰.x/�i‰.ix/ for all x 2 X :We then haveˆjY D � (by Exercise 9.1.17).
Also, for each x 2 X ; we can pick ˛ 2 C such that j˛j D 1 and ˛ˆ.x/ D jˆ.x/j:
It then follows that

jˆ.x/j D ˆ.˛x/ D ‰.˛x/ � k˛xk D j˛jkxk D kxk

and the proof is complete. ut
Corollary 9.2.39. Let X be a normed space. Then, for each x0 2 X ; there exists
ˆ 2 X� such that

ˆ.x0/ D kx0k and jˆ.x/j � kxk .8x 2 X/:

Proof. If x0 D 0; we take ˆ D 0: Otherwise, applying Theorem 9.2.38 with Y WD
Fx0; we can extend the linear functional �.˛x0/ WD ˛kx0k to the desired functional
ˆ 2 X� with the required property. ut

9.3 Hilbert Spaces

Recall that an n-dimensional normed space is essentially a copy of Fn and that
all norms on such a space are equivalent. Since the Euclidean norm on Fn comes
from the standard inner product h˛; ˇi WDPn

kD1 ˛kˇk; it is natural to study normed
spaces whose norms are derived from inner products. Such spaces are called pre-
Hilbert spaces and their complete versions are called Hilbert spaces. In this section
we explore some of the elementary properties of Hilbert spaces. These spaces form
a particularly important class of Banach spaces and play a fundamental role in
functional analysis. We begin with the notion of inner product on which most other
properties will be based.

Definition 9.3.1 (Inner Product). Let X be a vector space over F: By an inner
product on X we mean a map h�; �i W X � X ! F such that, for any vectors
x; y; z 2 X and any scalars ˛; ˇ 2 F; the following conditions are satisfied:

IP1 hx; yi D hy; xi,
IP2 h˛x C ˇy; zi D ˛hx; xi C ˇhy; zi,
IP3 hx; xi � 0; and hx; xi D 0, x D 0.

Inner products are examples of sesquilinear forms:



9.3 Hilbert Spaces 433

Definition 9.3.2 (Sesquilinear Form). Given a normed space X ; we say that a
map  W X �X ! F is a sesquilinear form if  .x; y/ is linear in x and conjugate
linear in y; meaning that for all x; y; y0 2 X and ˛ 2 F; we have

 .x; ˛y C y0/ D ˛ .x; y/C  .x; y0/:

Remark 9.3.3. Note that a sesquilinear form is always R-bilinear (i.e., it is bilinear
if we only use real scalars). Also,  is continuous if and only if it is bounded, i.e.,
M WD supfj .x; y/j W kxk D 1 D kykg <1:
Definition 9.3.4 (Pre-Hilbert Space, Hilbert Space). A pre-Hilbert space is
defined to be a pair .X ; h�; �i/; where X is a vector space over F and h�; �i is an inner
product on X : A complete pre-Hilbert space is called a Hilbert space.

Example 9.3.5.

(1) The Euclidean space Fn is a pre-Hilbert (in fact a Hilbert) space with the
standard inner product

h˛; ˇi WD
n
X

kD1
˛kˇk:

(2) The space `2.N;C/ of all sequences x D .xn/ 2 CN that are square summable,
i.e.,

P jxnj2 <1; is a pre-Hilbert (in fact a Hilbert) space with inner product

hx; yi WD
1
X

kD1
xnyn: ()

Exercise 9.3.6. Show that the product () in example (2) above is indeed an inner
product.

Proposition 9.3.7. Let .X ; h�; �i/ be a pre-Hilbert space. Then

kxkWD hx; xi1=2

defines a norm on X : Moreover, we have the Cauchy–Schwarz inequality

hx; yi � kxkkyk .8x; y 2 X/; (�)

and Minkowski’s inequality

kx C yk � kxk C kyk .8x; y 2 X/: (�)

Proof. Let us first prove the Cauchy–Schwarz inequality. Using the properties
IP1 � IP3 of inner products, for any x; y 2 X and any ˛ 2 F; we have

0 � hx C ˛y; x C ˛yi D hx; xi C hx; ˛yi C h˛y; xi C h˛x; ˛yi;
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and hence

kxk2 C ˛hx; yi C ˛hx; yi C j˛j2kyk2 � 0; ()

where equality holds if and only if x C ˛y D 0: If y ¤ 0; then (�) follows by
taking ˛ D �hx; yi=kyk2; and if x ¤ 0 we can take ˛ D �hx; yi=kxk2: Since the
inequality is trivially satisfied if x D 0 D y; (�) follows. For (�), we take ˛ D 1

in () and use (�) to get

hx C y; x C yi D kxk2 C 2Rehx; yi C kyk2

� kxk2 C 2jhx; yij C kyk2

� kxk2 C 2kxkkyk C kyk2

D �hx; xi1=2 C hy; yi1=2�2 :
Now (�) is the Triangle Inequality for the norm x 7! hx; xi1=2 and the other
properties are trivial. ut
Corollary 9.3.8. Let X be a pre-Hilbert space. Then the inner product .x; y/ !
hx; yi is a bounded sesquilinear form on X � X : Moreover, for each y 2 X ; the
linear map x ! hx; yi is a conjugate linear isometry of X into its dual X�:

Proof. The boundedness of the inner product follows from the Cauchy–Schwarz
inequality. For a fixed y 2 X ; let  y.x/ WD hx; yi and note that y !  y is
conjugate linear. The Cauchy–Schwarz inequality implies that  y is a bounded
linear functional (i.e.,  y 2 X�) with k yk � kyk: Since  y.y/ D kyk2; we have
k yk D kyk: ut
Remark 9.3.9. We shall see that the isometry y !  y is in fact onto the dual X�
if X is complete (i.e., a Hilbert space).

Exercise 9.3.10 (Parallelogram Law). Let .X ; h�; �i/ be a pre-Hilbert space.
Show that we have

kx C yk2 C kx � yk2 D 2kxk2 C 2kyk2 .8x; y 2 X/:

Proposition 9.3.11. Let H be a Hilbert space and let K � H be a (nonempty)
closed, convex subset. Then, for each x 2 H ; there is a unique z 2 K such that

kx � zk D d WD d.x;K / D inffkx � yk W y 2 Kg:
In particular, the statement is true for any closed (hence Hilbert) subspace K of H :

Proof. Since K � fxg WD fy � x W y 2 Kg is also closed and convex (why?), we
may assume that x D 0: Thus we have to show that K contains a unique element z
of minimal norm, i.e.,

kzk D d WD inffkyk W y 2 Kg:
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Pick a sequence .yn/ 2 KN such that lim.kynk/ D d: Since K is convex, we have
.ym C yn/=2 2 K and hence kym C ynk2 � 4d2 for all m; n 2 N: But then, using
the parallelogram law (Exercise 9.3.10), we have

kym � ynk2 D 2kymk2 C 2kynk2 � kym C ynk2

� 2kymk2 C 2kynk2 � 4d2 ! 0;

as m; n ! 1: In other words, .yn/ is a Cauchy sequence and hence (H being
complete) converges to a vector z 2 H : Since K is closed, we have z 2 K and the
proof is complete. ut
Definition 9.3.12 (Orthogonal Vectors). Let X be a pre-Hilbert space. We say
that two vectors x; y 2 X are orthogonal, and we write x ? y; if hx; yi D 0:

Given a nonempty subset S � X ; we say that a vector x 2 X is orthogonal to S ,
and we write x ? S; if hx; yi D 0 for all y 2 S: The set of all vectors orthogonal
to S is denoted by S? (read “S perp”); thus

S? WD fx 2 X W x ? Sg D fx 2 X W hx; yi D 0 8y 2 Sg:

We say that two subsets S; T � X are orthogonal, and we write S ? T; if x ? T
for all x 2 S:
Exercise 9.3.13. Let S be a nonempty subset of a pre-Hilbert space X : Show that
S? D .S�/? D Span.S/? is a closed subspace of X :Deduce that S? D f0g if and
only if S is total; i.e., Span.S/ is dense in X : Hint: Note that A � B � X implies
B? � A?: Also, for each x 2 S; fxg? is the kernel of the functional y 7! hy; xi
and S? DTx2Sfxg?:

The following characterization of orthogonality is a useful consequence of the
arguments in Proposition 9.3.7 and is geometrically obvious (cf. Proposition 9.3.11,
with K a one-dimensional subspace):

Proposition 9.3.14. Let X be a pre-Hilbert space and x; y 2 X : Then x ? y if
and only if kyk � k˛x C yk for all ˛ 2 F:

Proof. We may assume that x ¤ 0: Let ˇ WD hx; yi: As in the proof of
Proposition 9.3.7, we have

0 � k˛x C yk2 D j˛j2kxk2 C 2Re.˛ˇ/C kyk2:

Taking ˛ D �ˇ=kxk2; we get

0 � k˛x C yk2 D kyk2 � jˇj
2

kxk2 ;

which shows that kyk � k˛x C yk is false when ˇ ¤ 0: ut
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Theorem 9.3.15 (Orthogonal Complement). If K is a closed subspace of a
Hilbert space H ; then K ? is also a closed subspace with K \ K ? D f0g and
H D K CK ?: In other words, H is the orthogonal direct sum of K and K ?:

H D K ˚K ?:

The subspace K ? is called the orthogonal complement of K :

Proof. That K ? is a closed subspace follows from Exercise 9.3.13. If x 2 K\K ?;
then kxk2 D hx; xi D 0 so that x D 0: Next, given any x 2 H ; Proposition 9.3.11
implies that there is a unique x1 2 K that minimizes the distance kx � x1k: Put
x2 WD x�x1; so that x D x1Cx2: Then kx2k � kx2Cyk for all y 2 K and hence,
by Proposition 9.3.14, x2 2 K ? and the proof is complete. ut
Definition 9.3.16 (Orthogonal Projection). Let the notation be as in Theorem
9.3.15 and its proof. Then the map PK W H ! H defined by PKx D x1 (i.e., PKx

is the point in K closest to x) is called the orthogonal projection onto the closed
subspace K :

Corollary 9.3.17. If K is a closed subspace of a Hilbert space H ; then the orthog-
onal projection PK is a linear operator from H onto K ; satisfying P 2

K D PK : Also,
kPKxk � kxk for all x 2 H and, if K ¤ f0g; then kPKk D 1: Finally, we have

hPKx; PKyi D hPKx; yi D hx; PKyi .8x; y 2 H /: ()

Proof. For any x; y 2 H and ˛ 2 F; note that x1 D PKx and y1 D PKy are the
unique vectors in K with x�x1 2 K ? and y�y1 2 K ?: It follows that PKx1 D x1
and hence P 2

K D PK : Also, since .˛x C y/ � .˛x1 C y1/ 2 K ?; the linearity of
PK follows. (Why?) Next, note that, for each x 2 H ;

kPKxk2 D kx1k2 � kx1k2 C kx2k2 D kxk2;
where x2 D x � x1 2 K ?: Therefore, kPKk � 1: If K ¤ f0g and x1 2 K n f0g;
then PKx1 D x1 and hence kPKk D 1: Finally, to prove (), note that

hPKx; yi D hPKx; PKy C .y � PKy/i D hPKx; PKyi;
as y � PKy 2 K ?: The other equality is similar. ut
Corollary 9.3.18. If K is a closed subspace of a Hilbert space H ; then
.K ?/? D K .

Proof. By Theorem 9.3.15, we have

K ˚K ? D H D K ? ˚ .K ?/?:

Since for each x 2 H we have x D x1 C x2 with unique vectors x1 2 K and
x2 2 K ?; the corollary follows. ut
Exercise 9.3.19. Show that, for any subspace K of a Hilbert space H ; we have
.K ?/? D K �:
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We now prove the characterization of the dual of a Hilbert space mentioned after
the proof of Corollary 9.3.8.

Theorem 9.3.20 (Riesz Representation Theorem). Given any Hilbert space H ;

the map y !  y; defined by  y.x/ WD hx; yi; is a conjugate linear isometry of H

onto its dual H �: In particular, for each  2 H �; there is a unique y 2 H such
that  .x/ D hx; yi for all x 2 H :

Proof. In view of Corollary 9.3.8, we need only show that the given map is onto.
So let  2 H �: We must show that  D  y for some y 2 H : If  D 0; then
we take y D 0: If not, let K WD Ker. /: It is a closed, proper subspace of H : By
Theorem 9.3.15, there is a vector z 2 K ? n f0g: Now note that

 .x/z �  .z/x 2 K .8x 2 H /

gives h .x/z �  .z/x; zi D 0 for all x 2 H : Thus  .x/ D . .z/=kzk2/hx; zi; so
that  D  y with y WD  .z/z=kzk2: Finally, the uniqueness of y follows from the
fact that hx; yi D hx; y0i for all x 2 X implies that y � y0 2 X? D f0g: ut
Remark 9.3.21. The uniqueness of y mentioned above implies that, for any z; z0 2
K ? n f0g; we have

 .z/z=kzk2 D  .z0/z0=kz0k2:

This comes from the deeper fact that the kernel of a linear functional is a hyperplane:

Definition 9.3.22 (Hyperplane). Let X ¤ f0g be a vector space over F: A proper
subspace Y � X is said to be a hyperplane if X is the (algebraic) direct sum of Y

and Fx0 WD f˛x0 W ˛ 2 Fg for some (and hence any) x0 62 Y I i.e., X D Y ˚ Fx0:

Proposition 9.3.23. Let X ¤ f0g be a normed space over F and let � 2 L.X ;F/n
f0g. Then Ker.�/ is a hyperplane in X : Conversely, if Y � X is a hyperplane and
x0 62 Y ; then there is a unique functional � 2 L.X ;F/ such that Ker.�/ D Y and
�.x0/ D 1:
Proof. Let � ¤ 0 be a linear functional on X : If x 2 X and x0 62 Ker.�/; then
it is easily checked that x D y C ˛x0 with ˛ 2 F and y 2 Ker.�/ if and only if
˛ D �.x/=�.x0/: Therefore, Ker.�/ is indeed a hyperplane. Conversely, if Y is a
hyperplane and x0 62 Y ; then each x 2 X can be written as x D y C ˛x0 with
unique y 2 Y and ˛ 2 F: Define � by setting �.x/ WD ˛ and note that �.x0/ D 1.
If x; x0 2 X and ˇ 2 F; then, with unique y; y0 2 Y and ˛; ˛0 2 F; we have
x D y C ˛x0 and x0 D y0 C ˛0x0: Therefore, ˇx D ˇy C ˇ˛x0 is the unique
decomposition of ˇx and the corresponding one for ˇx C x0 is

ˇx C x0 D .ˇy C y0/C .ˇ˛ C ˛0/x0:

Thus (by uniqueness), �.ˇxC x0/ D ˇ�.x/C �.x0/ and � is linear. It is also clear
that � is unique and Y D Ker.�/: (Why?) ut
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Exercise 9.3.24. Deduce the Riesz Representation Theorem (Theorem 9.3.20)
from Theorem 9.3.15 and Proposition 9.3.23.

Proposition 9.3.25 (Pythagorean Theorem). If x and y are two orthogonal
vectors in a pre-Hilbert space X ; then we have

kx C yk2 D kxk2 C kyk2:
More generally, if fx1; : : : ; xng � X ; xi ? xj for i ¤ j; and ˛1; : : : ; ˛n 2 F; then

�

�

�

�

�

n
X

kD1
˛kxk

�

�

�

�

�

2

D
n
X

kD1
j˛kj2kxkk2:

Proof. This follows at once from

D

X

˛j xj ;
X

˛kxk

E

D
n
X

jD1

n
X

kD1
˛j ˛khxj ; xki: ut

Corollary 9.3.26. Let fe1; : : : ; eng be a finite orthonormal set in a pre-Hilbert
space X I i.e., hei ; ej i D ıij ; where ıij D 0 if i ¤ j andD 1 if i D j: Then

kxk2 D
n
X

kD1
jhx; ekij2 C

�

�

�

x �
n
X

kD1
hx; ekiek

�

�

�

2

.8x 2 X/: ()

In particular, we have

n
X

kD1
jhx; ekij2 � kxk2 .Bessel 0s Inequali ty/: ()

Proof. A simple computation shows that x �Pn
kD1hx; ekiek is orthogonal to each

ek and hence to
Pn

kD1hx; ekiek: Thus () follows from the Pythagorean theorem
and () is then an immediate consequence. ut
Definition 9.3.27 (Orthogonal & Orthonormal Systems). Let X be a pre-
Hilbert space. We say that a set S D fxj W j 2 J g � X is an orthogonal system if
xj ¤ 0 for all j 2 J and hxj ; xki D 0 for j ¤ k: We say that S is an orthonormal
system if it is an orthogonal system and kxj k D 1 for all j 2 J: It is clear that, if
fxj W j 2 J g is an orthogonal system, then fxj =kxj k W j 2 J g is an orthonormal
system. A sequence .xn/ 2 XN is said to be orthogonal (resp., orthonormal) if its
range fxn W n 2 Ng is an orthogonal (resp., orthonormal) system.

Exercise 9.3.28.

(a) Let S D fxj W j 2 J g be an orthogonal system in a pre-Hilbert space X : Show
that the vectors in S are linearly independent.
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(b) Show that if a pre-Hilbert space is separable, then every orthonormal system in
X must be countable. Hint: If S is an orthonormal system in X ; then kx�yk Dp
2 for all x; y 2 S with x ¤ y.

Definition 9.3.29 (Complete System, Basis). Let S be an orthogonal (resp.,
orthonormal) system in a pre-Hilbert space X : We say that S is complete (or
total) if it is total in the sense of Definition 9.2.26, i.e., if X D Span.S/�.
A complete orthogonal (resp., orthonormal) system is also called an orthogonal
(resp., orthonormal) basis.

Example 9.3.30.

(1) In the Euclidean space Fn; the canonical (orthonormal) basis is fe1; : : : ; eng;
with e1 D .1; 0; 0; : : : ; 0/; e2 D .0; 1; 0 : : : ; 0/; : : : ; en D .0; 0; : : : ; 0; 1/:

(2) The pre-Hilbert space `2.N;F/ extends the above example. Here, the sequence
.en/; where e1 D .1; 0; 0; : : :/; e2 D .0; 1; 0 : : :/; e3 D .0; 0; 1; : : :/; : : : is
obviously an orthonormal basis. Indeed, for any x D .xn/

1
nD1 2 `2.N;F/; let

us define

xk WD .x1; x2; : : : ; xk; 0; 0; : : :/ .8k 2 N/:

Then xk DPk
jD1 xj ej and kxk � xk ! 0 as k !1:

(3) Let C2Œ�	; 	� denote the space of all (complex-valued) continuous functions
on Œ�	; 	� with the inner product

hf; gi WD 1

2	

Z 	

�	
f .x/g.x/dx

and the corresponding norm kf k2 WD
phf; f i: Let us prove that the sequence

.en/
1
nD�1;where en.x/ WD einx; is an orthonormal basis. That it is orthonormal,

we already know (cf. Definition 8.6.2). Given any f 2 C2Œ�	; 	� and N 2 N;

let fN 2 C2Œ�	; 	� be such that fN D f on Œ�	; 	�1=N �; fN .	/ D f .�	/;
and fN is affine on Œ	 � 1=N; 	�: It is easily seen that, taking N large enough,
we have kf �fN k2 < " for any prescribed " > 0: Now, by Parseval’s Theorem
(Theorem 8.6.33), fN can be approximated arbitrarily closely (in the above
norm) by linear combinations of the en.x/ and hence so can f .

Proposition 9.3.31. Any pre-Hilbert space X ¤ f0g has an orthonormal basis. In
fact, any orthonormal system S � X is contained in a complete orthonormal set.

Proof. It suffices to prove the last statement. Let S � X be orthonormal (e.g.,
S WD fx=kxkg for some x ¤ 0) and let S denote the collection of all orthonormal
sets containing S: Note that S is partially ordered by inclusion. Given any chain
(i.e., totally ordered set) fSj W j 2 J g � S; we let T WD S

j2J Sj : It is clear that
S � Sj � T for all j 2 J and T is orthonormal. Therefore T is an upper bound for
fSj W j 2 J g: By Zorn’s Lemma (Lemma 1.2.18), there exists a maximal element
S0 2 S: If Y WD Span.S0/� ¤ X ; then there is a vector 0 ¤ y 2 Y ? and we can
obtain a bigger orthonormal system than S0: ut
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The above proposition is not constructive. For separable Hilbert spaces, there is a
standard way of constructing an orthonormal system from any given (possibly finite)
total sequence of linearly independent vectors. The existence of such a sequence is
guaranteed, e.g., by Theorem 9.2.27.

Theorem 9.3.32 (Gram–Schmidt Orthogonalization). Let .bn/ be a (possibly
finite) total sequence of linearly independent vectors in a separable Hilbert space
H . Then we can construct an orthonormal basis .en/ for H having the same
cardinality as the bn.

Proof. We note that the bn are nonzero and define the sequences .cn/ and .en/ as
follows: c1 WD b1; c2 WD b2�hb2; e1ie1; and, in general, cn WD bn�Pn�1

kD1hbn; ekiek;
where ek WD ck=kckk for all k 2 N: Observe that the cn are all nonzero because
the bn are independent. Now the sequence .en/ is easily seen to be orthonormal.
Also, for eachm; the finite sequences .bj /mjD1 and .ej /mjD1 span the same subspace.
Therefore the linear span of the en is the same as the linear span of the bn: ut
Definition 9.3.33 (Fourier Coefficient, Fourier Series). Let X be a pre-Hilbert
space and .ej /j2J an orthonormal system. Then, given any x 2 X and j 2 J; the
number hx; ej i is called the j th Fourier coefficient (or coordinate) of x (with respect
to .ej /j2J /: The unordered series

P

j2J hx; ej iej is called the Fourier series of x.

Exercise 9.3.34 (Best Approximation). Let .ej /njD1 be a finite orthonormal
system in a pre-Hilbert space X (over F) and let x 2 X: Show that the minimum
value of the number

�

�

�

x �
n
X

jD1
cj ej

�

�

�

;

where .cj /njD1 2 Fn; is obtained when cj D hx; ej i for 1 � j � n; and the
minimum is then given by

�

�

�

x �
n
X

jD1
hx; ej iej

�

�

�

D
v

u

u

tkxk2 �
n
X

jD1
jhx; ej ij2:

Hint: Cf. Theorem 8.6.6.

Before proving our next result, let us briefly mention the notions of summability
and absolute summability of unordered series in normed spaces. They were defined
for the special case of R in Chap. 2 (cf. Sect. 2.4).

Definition 9.3.35 (Summable, Absolutely Summable). Let .X ; k�k/ be a normed
space and J an arbitrary (nonempty) index set. We say that a function .xj /j2J 2 XJ

is summable with sum x 2 X ; and we write x DPj2J xj ; if given any " > 0 there
is a finite subset J" � J such that kx �Pj2J 0 xj k < " for any (finite) J 0 � J with
J 0 � J": We say that .xj /j2J is absolutely summable if the (numerical) unordered
series

P

j2J kxj k is summable in the sense of Definition 2.4.1.
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Definition 9.3.36 (Cauchy’s Criterion). We say that .xj /j2J 2 XJ satisfies
Cauchy’s Criterion if

.8" > 0/.9J" 2 FJ /.8J 0 2 FJ /.J
0 \ J" D ; ) ksJ 0k < "/;

where FJ denotes the set of all finite subsets of J and, for each J 0 2 FJ ; sJ 0 WD
P

j2J 0 xj denotes the corresponding partial sum.

Exercise 9.3.37.

(1) Show that, if .xj /j2J 2 XJ satisfies Cauchy’s Criterion, then it has bounded
partial sums; i.e., there is a constant M > 0 such that, with notation as in
Definition 9.3.36, we have ksJ 0k � M for all J 0 2 FJ : (Hint: Suppose not.
For each n 2 N pick Jn 2 FJ such that ksJnk > n and observe that, for each
J 0 2 FJ ; ksJnnJ 0k > n �MJ 0 ; where MJ 0 WD maxfksJ 00k W J 00 � J 0g.)

(2) Show that a summable function .xj /j2J 2 XJ satisfies Cauchy’s Criterion.
(Hint: Imitate part (3) of Exercise 2.4.15.)

(3) Show that, if .xj /j2J 2 XJ satisfies Cauchy’s Criterion, then fj 2 J W xj ¤
0g is countable. (Hint: Imitate Exercise 2.4.18.)

Theorem 9.3.38 (Cauchy’s Criterion). Let X be a Banach space and J ¤ ; an
arbitrary index set. Then a function .xj /j2J 2 XJ is summable if and only if it
satisfies Cauchy’s Criterion.

Proof. In view of Exercise 9.3.37, we need only show that the condition is sufficient.
So suppose that .xj /j2J 2 XJ satisfies Cauchy’s Criterion. Using part (3) of the
above exercise, let fj1; j2; : : :g be any enumeration of the set fj 2 J W xj ¤ 0g
(which we may and do assume to be infinite) and consider the (ordered) series
P1

iD1 xji : It follows at once from Cauchy’s Criterion that its partial sums sn WD
Pn

iD1 xji form a Cauchy sequence. (Why?) Since X is complete, .sn/ converges.
Let x WDP1

iD1 xji 2 X :We claim that x is the sum of the family .xj /j2J : Let " > 0
be given and let J" be a finite subset of J such that for any finite subset J 0 � J with
J 0 \ J" D ;; we have ksJ 0k < "=2: Also, pick N 2 N such that n � N implies
kx �Pn

iD1 xji k < "=2: We may (and do) assume that fxj1 ; : : : ; xjN g � J" and that
N is the largest i with xji 2 J": If now J 00 � J is a finite subset with J" � J 00, then

�

�

�

x �
X

j2J 00
xj

�

�

�

D
�

�

�

x �
X

ji2J 00
xji

�

�

�

D
�

�

�

�

x �
N
X

iD1
xji

�

�
X

ji2J 00; i>N
xji

�

�

�

� "

2
C "

2
D ": ut

Theorem 9.3.39 (Parseval’s Relation). Let H be a Hilbert space. If .ej /j2J is
an orthonormal basis, then for each x 2 H we have

x D
X

j2J
hx; ej iej ; .Fourier series/ (�)
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and

kxk2 D
X

j2J
jhx; ej ij2: .Parseval 0s Relation/ (�)

If the orthonormal system .ej /j2j is not complete, then we still have the inequality

X

j2J
jhx; ej ij2 � kxk2: .Bessel 0s Inequali ty/

Proof. Note that the series in (�) and (�) are unordered series in H and R, respec-
tively. Bessel’s inequality was proved in Corollary 9.3.26 for finite orthonormal sets.
Thus, for any finite subset J 0 � J; we have

P

j2J 0 jhx; ej ij2 � kxk2: It follows
from Proposition 2.4.8 that

P

j2J jhx; ej ij2 is summable with sum bounded by
kxk2: This proves Bessel’s inequality as stated, even if .ej /j2j is not complete.
It also follows (cf. Corollary 2.4.17) that hx; ej i ¤ 0 for at most a countable
number of j ’s, say j1; j2; : : :, and hence

P1
iD1 jhx; eji ij2 < 1: Now let xn WD

Pn
iD1hx; eji ieji : Then, for m < n;

kxn � xmk2 D
�

�

�

n
X

iDmC1
hx; eji ieji

�

�

�

2 D
n
X

iDmC1
jhx; eji ij2:

Thus, .xn/ is a Cauchy sequence and hence converges to a vector x0 2 H : To
prove (�), we show directly (i.e., without using Theorem 9.3.38) that x D x0: Since
.ej /j2J is complete, it suffices to show that .x � x0/ ? ej ; for all j 2 J: But, for
each jm; we have

hx � x0; ejmi D lim
n!1

D

x �
n
X

iD1
hx; eji ieji ; ejm

E

D hx; ejmi � hx; ejmi D 0:

And, if j ¤ ji for all i; then

hx � x0; ej i D lim
n!1

D

x �
n
X

iD1
hx; eji ieji ; ej

E

D 0 � 0 D 0:

Therefore x � x0 is indeed orthogonal to each ej and hence must be 0: In other
words,

x D lim
n!1

n
X

iD1
hx; eji ieji D

X

j2J
hx; ej iej
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and (�) holds. Moreover,

0 D lim
n!1

�

�

�

x �
n
X

iD1
hx; eji ieji

�

�

�

2

D lim
n!1

�

kxk2 �
n
X

iD1
jhx; eji ij2

�

D kxk2 �
X

j2J
jhx; ej ij2

so that (�) holds as well. ut
Exercise 9.3.40 (Parseval’s Identity). Let H be a Hilbert space and .ej /j2J an
orthonormal basis. Show that, for every x; y 2 H ;

hx; yi D
X

j2J
hx; ej ihy; ej i:

Hint: Use the continuity of the inner product.

Here is the converse to the above theorem:

Theorem 9.3.41 (Riesz–Fischer Theorem). Let .ej /j2J be an orthonormal basis
in a Hilbert space H : If .˛j / 2 FJ and

P

j2J j˛j j2 < 1; then
P

j2J ˛j ej is
summable; i.e., there is a vector x 2 H with x D P

j2J ˛j ej : Moreover, we have
˛j D hx; ej i and

P

j2J j˛j j2 D kxk2:
Proof. The argument is basically the same as the one used in Theorem 9.3.39.
Indeed,

P

j2J j˛j j2 < 1 implies that the ˛j are nonzero for at most a countable
number of j ’s, say j1; j2; : : : : Since

�

�

�

�

n
X

iDmC1
˛ji eji

�

�

�

�

2

D
n
X

iDmC1
j˛ji j2 ! 0 as m; n!1;

the series
P1

iD1 ˛ji eji converges in H to a vector x and we have x DP

j2J ˛j ej :
Also, using the continuity of the inner product, we have

hx; ejmi D lim
n!1

� n
X

iD1
˛ji eji ; ejm

�

D ˛jm:

And, if j ¤ ji for all i; then hx; ej i D 0 D ˛j : Finally,
P

j2J j˛j j2 D kxk2 is
nothing but Parseval’s Relation. ut

For the next result we need a couple of facts about cardinal numbers. The first
one is the Schröder–Bernstein theorem (Theorem 1.4.21) which asserts that, if A
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and B are sets with jAj � jBj and jBj � jAj; then jAj D jBj: Here jS j denotes the
cardinality of the set S: The second fact is the assertion in Exercise 1.4.26: If A is
an infinite set, then jA � Nj D jAj:
Theorem 9.3.42 (Orthogonal Dimension). Any two orthonormal bases in a
Hilbert space H have the same cardinal number. This cardinal number is called
the orthogonal dimension of H :

Proof. Let .ei /i2I and .fj /j2J be two orthonormal bases in H :We must show that
jI j D jJ j: If H is finite dimensional with dimension n; then any orthonormal basis
is just an algebraic basis and hence contains n elements. We therefore assume that I
and J are infinite. For each j 2 J; the setDj WD fi 2 I W hei ; fj i ¤ 0g is countable.
Also, for each i 2 I; 1 D keik2 D P

j2J jhei ; fj ij2 implies that hei ; fj i ¤ 0 for
some j 2 J: Therefore, I DSj2J Dj : But then,

jI j D
ˇ

ˇ

ˇ

ˇ

[

j2J
Dj

ˇ

ˇ

ˇ

ˇ

� jJ � Nj D jJ j:

By symmetry, we also have jJ j � jI j and hence jI j D jJ j. ut
Definition 9.3.43 (Isomorphic Hilbert Spaces). We say that two Hilbert spaces
.H ; h�; �i/ and .H 0; h�; �i0/ are isomorphic if there is a linear bijection T W H ! H 0
such that

hT x; Tyi0 D hx; yi .8x; y 2 H /:

Thus an isomorphism between Hilbert spaces is in fact an isometric isomorphism.

Example 9.3.44 (The Hilbert Space `2.J;F/). Let J be a nonempty set and let

`2.J;F/ WD
n

˛ WD .˛j /j2J 2 FJ W
X

j2J
j˛j j2 <1

o

;

where we recall that, with FJ denoting the set of all finite subsets of J;

X

j2J
j˛j j2 WD sup

n

X

j2J 0
j˛j j2 W J 0 2 FJ

o

:

Then,

h˛; ˇi WD
X

j2J
˛j ˇj ; (�)

with ˛ D .˛j /j2J and ˇ D .ˇj /j2J in `2.J;F/; defines an inner product on
`2.J;F/; making it a Hilbert space.
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Indeed, the trivial inequality j˛jˇj j � .j˛j j2Cjˇj j2/=2 shows that the unordered
series in (�) is absolutely summable and hence summable. It is then easily checked
that (�) satisfies the conditions of Definition 9.3.1. The corresponding norm will be
denoted by k � k2: Thus, k˛k2 D .

P

j2J j˛j j2/1=2: Next, we define the canonical
orthonormal basis in `2.J;F/: For each j 2 J; let 
j WD 
fj g denote the
characteristic function of the singleton fj gI i.e., 
j .j / D 1 and 
j .j 0/ D 0 for
all j 0 ¤ j: Then .
j /j2J is the desired orthonormal basis. That it is orthonormal
is obvious. Also, its cardinality is clearly jJ j: To prove its completeness, note first
that, for each ˛ 2 `2.J;F/; we have h˛; 
j i D ˛j for all j 2 J: Now, given any
" > 0; pick a finite J" � J such that

P

j2JnJ" j˛j j2 < ": Then,

�

�

�

˛ �
X

j2J"
˛j 


j
�

�

�

2

2
D
�

�

�

˛ �
X

j2J"

D

˛; 
j
E


j
�

�

�

2

2
D

X

j2JnJ"
j˛j j2 < ":

Theorem 9.3.45. Every nonzero Hilbert space H is isomorphic to `2.J;F/; for a
set J such that jJ j is the orthogonal dimension of H : In particular, if two Hilbert
spaces H and H 0 have the same orthogonal dimension, then they are isomorphic.

Proof. Let .ej /j2J be an orthonormal basis in H : Then jJ j is the orthogonal
dimension of H : Now let T be given by T x WD .hx; ej i/j2J : Then T x 2 `2.J;F/
for each x 2 H (by Bessel’s inequality) and it is easily checked that T is linear.
That T is onto follows from the Riesz–Fischer Theorem (Theorem 9.3.41). Finally,
Parseval’s Relation (Theorem 9.3.39) implies that T is an isometry. ut

9.4 Function Spaces

We end this chapter with a brief look at some of the most basic facts about spaces of
continuous functions on metric spaces. Our goal will be to prove two important
theorems regarding families of functions. One is the Arzelà–Ascoli Theorem
on equicontinuous families of functions and the other is the celebrated Stone–
Weierstrass Theorem which characterizes the dense subalgebras of the algebra of
continuous real (or complex)-valued functions on compact metric spaces. We recall
that a subset B of a metric space .M ; d / is said to be bounded if it has finite
diameter, i.e., if supfd.x; y/ W x; y 2 Bg < 1: Also, given any nonempty set
S and any metric space .M ; d /; a function f W S ! M is said to be bounded if
its range (i.e., f .S/) is bounded in M : Throughout the section, M ;M 0; etc. will
denote metric spaces.

Notation 9.4.1 (Bounded & Continuous Functions). Let .M ; d / and .M 0; d 0/
be metric spaces and S ¤ ; an arbitrary set. The set of all bounded functions
f W S !M will be denoted by B.S;M /: The set of all continuous functions from
M to M 0 will be denoted by C.M ;M 0/: Finally, the set of all bounded, continuous
functions f W M ! M 0 will be denoted by BC .M ;M 0/: Thus BC .M ;M 0/ D
B.M ;M 0/ \ C.M ;M 0/:
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Theorem 9.4.2. Let .M ; d / be a metric space and S ¤ ; an arbitrary set. For
each pair of functions f; g 2 B.S;M /; define

d1.f; g/ WD supfd.f .x/; g.x// W x 2 Sg: (�)

Then d1 is a metric (called the uniform metric) on B.S;M / and the metric space
.B.S;M /; d1/ is complete if M is complete.

Proof. That d1 is a metric is quite obvious. Indeed, d1 is nonnegative and
symmetric, and supfd.f .x/; g.x// W x 2 Sg D 0 implies f D g: Also, the Triangle
Inequality follows from the fact that

d.f .x/; h.x// � d.f .x/; g.x//C d.g.x/; h.x// � d1.f; g/C d1.g; h/;

for all x 2 S: If M is complete and if .fn/ is a Cauchy sequence in .B.S;M /; d1/;
then d.fn.x/; fm.x// � d1.fn; fm/ implies that, for each x 2 S; .fn.x// is
a Cauchy sequence in M and hence converges to some point f .x/ 2 M : We
must show that f 2 B.S;M / and d1.fn; f / ! 0 as n ! 1: Given any
" > 0; pick N 2 N such that m; n � N implies d1.fm; fn/ < " and hence
d.fm.x/; fn.x// < " for each x 2 S: Letting m!1; we get d.f .x/; fn.x// � "
for all x 2 S: This implies that

d.f .x/; f .y// � d.fn.x/; fn.y//C 2" .8x; y 2 S;8n � N/;

and hence f 2 B.S;M /: It also follows that d1.f; fn/ � " for all n � N and
hence lim.fn/ D f: ut
Remark 9.4.3. It is obvious that a sequence of functions fn W S ! M converging
with respect to the uniform metric d1 is uniformly convergent.

Corollary 9.4.4. If .M ; d / and .M 0; d 0/ are metric spaces and M 0 is com-
plete, then the space .BC .M ;M 0/; d1/ is a closed, hence complete, subspace
of .B.M ;M 0/; d1/: In particular, if M is compact, then .C.M ;M 0/; d1/ is
complete. Here, as in Theorem 9.4.2,

d1.f; g/ WD supfd 0.f .x/; g.x// W x 2Mg .8f; g 2 B.M ;M 0//:

Proof. We need only show that BC .M ;M 0/ is closed in B.M ;M 0/: Now, if .fn/
is a sequence in BC .M ;M 0/ and d1.f; fn/ ! 0; then (by Theorem 9.4.2) we
have f 2 B.M ;M 0/: To prove the continuity of f; let x0 2M and " > 0 be given.
Pick n 2 N and ı > 0 such that d1.f; fn/ < "=3 and d 0.fn.x/; fn.x0// < "=3 for
all x 2 Bı.x0/: For each such x; we then have

d 0.f .x/; f .x0// � d 0.f .x/; fn.x0//C d 0.fn.x/; fn.x0//C d 0.fn.x0/; f .x0//

< d1.f; fn/C "

3
C d1.fn; f / < ":
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Since x0 and " are arbitrary, we have f 2 C.M ;M 0/: Finally, if M is compact, then
(Theorem 5.6.27) each f 2 C.M ;M 0/ has compact and hence (Theorem 5.6.7)
closed and bounded range. Thus C.M ;M 0/ � B.M ;M 0/ and the proof is
complete. ut
Remark 9.4.5. Note that, in the above corollary, we have proved that the uniform
limit of a sequence of continuous functions from one metric space to another is
continuous. This extends Theorem 8.3.1 and the proof is basically the same.

Definition 9.4.6 (Equicontinuity). Let .M ; d / and .M 0; d 0/ be metric spaces.
A set F � B.M ;M 0/ is said to be equicontinuous at x0 2M if, given any " > 0;
there is ı D ı."; x0/ > 0 such that d 0.f .x0/; f .x// < " for all f 2 F and all
x 2 Bı.x0/ WD fx 2 M W d.x; x0/ < ıg: The family F is said to be equicontinuous
on M if it is equicontinuous at every point x 2M :

Remark 9.4.7. Note that, if F is equicontinuous at x0; then all the functions f 2 F
are simultaneously continuous at x0: The converse is, of course, not true because if
the f 2 F are only simultaneously continuous, the ı in the above definition will
depend on "; x0; and f: For F equicontinuous at x0; ı is independent of f 2 F
(but, in general, it depends on x0 2 M and "). If, however, F is equicontinuous on
M and the space M is compact, we expect ı to be independent of x 2M as well:

Exercise 9.4.8 (Uniform Equicontinuity). Let K and M be metric spaces with
respective metrics dK and dM ; and assume that K is compact. If F � B.K ;M /

is equicontinuous on K ; show that it is in fact uniformly equicontinuous; i.e., given
any " > 0; there exists ı D ı."/ > 0 (independent of x 2 K and f 2 F) such that

dK .x; y/ < ı) dM .f .x/; f .y// < " .8x; y 2 K ;8f 2 F/:

Hint: Read the second proof of Theorem 5.6.35.

Example 9.4.9. As above, let .M ; d / and .M 0; d 0/ be metric spaces andC.M ;M 0/
the set of continuous functions from M to M 0:

(1) If F � C.M ;M 0/ is finite, then it is equicontinuous on M : (Why?)
(2) Let ˛ 2 .0; 1� and consider the set Lip˛.M ;M 0/ of all Lipschitz functions of

order ˛ from M to M 0: Recall that f 2 Lip˛.M ;M 0/ means that there is a
constant C > 0 with

d 0.f .x/; f .y// � C.d.x; y//˛ .8x; y 2M /:

Then Lip˛.M ;M 0/ � C.M ;M 0/ and any subset of Lip˛.M ;M 0/ is
uniformly equicontinuous on M : (Why?)

Before stating the main theorem, we prove some lemmas. In the first one, we
use G. Cantor’s diagonal method:

Lemma 9.4.10. Let D be a countable subset of a metric space M and let .fn/ be
a sequence of functions from D to a metric space M 0: If for each x 2 D the set
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ffn.x/ W n 2 Ng is relatively compact (i.e., has compact closure), then there is a
subsequence .fnk / such that .fnk .x// converges for each x 2 D:
Proof. LetD D fxk W k 2 Ng: Since ffn.x1/ W n 2 Ng is relatively compact, we can
pick a subsequence .f1n/ such that .f1n.x1// converges. Using a similar argument,
we can then pick a subsequence .f2n/ of the sequence .f1n/ such that .f2n.x2//
converges. Continuing this process, for each j 2 N; we have a subsequence
.fjn/ such that .fjn.xj // is convergent. We now consider the “diagonal” sequence
.fnn/

1
nD1: Since .fnn/1nDj is a subsequence of .fjn/ for each j 2 N; the sequence

.fnn.xk// is convergent for all k 2 N: ut
Lemma 9.4.11. Let .fn/ be an equicontinuous sequence of functions from a metric
space .M ; d / to a complete metric space .M 0; d 0/ and let D � M be a dense
subset. If .fn.x// converges for each x 2 D; then it converges for each x 2M and
the limit function f .x/ WD lim.fn.x// is continuous (on M ).

Proof. Given any x 2 M and " > 0; pick ı > 0 so that y 2 Bı.x/ implies
d 0.fn.x/; fn.y// < "=3 8n 2 N: Since D is dense, we can pick a point y 2
D \ Bı.x/ and since (by our assumption) .fn.y// converges, we can pick N 2 N

such that d 0.fn.y/; fm.y// < "=3 for all m; n � N: Therefore,

d 0.fn.x/; fm.x// � d 0.fn.x/; fn.y//C d 0.fn.y/; fm.y//C d 0.fm.y/; fm.x//

< " .8m; n � N/:
In other words, .fn.x// is a Cauchy sequence in the complete space M 0 and hence
is convergent. Define f .x/ WD lim.fn.x// for each x 2 M : To show that f is
continuous at x; let " > 0 be given. Using the equicontinuity, we can find ı > 0

with d 0.fn.x/; fn.y// < " for all n 2 N and all y 2 Bı.x/ and hence

d 0.f .x/; f .y// D lim.d 0.fn.x/; fn.y// � " .8y 2 Bı.x//;
which proves the continuity of f at x: ut
Lemma 9.4.12. Let .K ; dK / be a compact metric space and .fn/ an equicontin-
uous sequence of functions from K to a metric space .M ; dM /: If .fn/ converges
pointwise to f (i.e., lim.fn.x// D f .x/ for all x 2 K ), then the convergence is in
fact uniform (on K ).

Proof. First note that, by Exercise 9.4.8, .fn/ is actually uniformly equicontinuous
on K : In other words, given any " > 0; there is a ı D ı."/ > 0 such that

dK .x; y/ < ı H) dM .fn.x/; fn.y// < "=3 .8n 2 N/: ()

Letting n!1 in (), we also have dM .f .x/; f .y// � "=3 whenever dK .x; y/ <

ı. Now pick fx1; : : : ; xmg � K such that K D Sm
jD1 Bı.xj /: Also, for each j 2

f1; : : : ; mg; pick Nj 2 N such that n � Nj implies dM .f .xj /; fn.xj // < "=3: If
N WD maxfNj W 1 � j � mg; then 8 x 2 K we have x 2 Bı.xj / for some j; so
that
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dM .fn.x/; f .x// � dM .fn.x/; fn.xj //C dM .fn.xj /; f .xj //

C dM .f .xj /; f .x// < " .8n � N/

and the proof is complete. ut
We now put together the above lemmas to prove the main theorem:

Theorem 9.4.13 (Arzelà–Ascoli). Let M and M 0 be metric spaces. Assume that
M is separable and M 0 is complete. Let F � B.M ;M 0/ be equicontinuous.
If .fn/ is a sequence in F such that, for each x 2 M ; the set ffn.x/ W n 2 Ng
is relatively compact (i.e., has compact closure), then there is a subsequence .fnk /
that converges pointwise to a continuous function f: Moreover, this convergence is
uniform on compact subsets of M :

Proof. Indeed, let D be a countable dense subset of M : Then .fn/ satisfies the
conditions of Lemma 9.4.10 and hence we have a subsequence .fnk / converging at
each x 2 D: It then follows from Lemma 9.4.11 that .fnk / converges pointwise
(on M ) to a continuous function f: Finally, the uniform convergence on compact
subsets follows from Lemma 9.4.12. ut

Recall (Theorem 9.4.2) that, if M and M 0 are metric spaces and M 0 is complete,
then .B.M ;M 0/; d1/ and its closed subspace .C.M ;M 0/; d1/; where d1 is the
uniform metric, are also complete. Since (by Theorem 5.6.25) for metric spaces
sequential compactness is equivalent to compactness, the Arzelà–Ascoli Theorem
characterizes relatively compact subsets of .C.M ;M 0/; d1/ with separable M and
complete M 0:We now prove some important special cases (of independent interest)
as corollaries.

Corollary 9.4.14. Let K and M be metric spaces, where K is compact and M

is complete. Then F � C.K ;M / is relatively compact if and only if (1) it is
equicontinuous and (2) for each x 2 K the set ff .x/ W f 2 Fg is relatively
compact in M :

Proof. If F is equicontinuous and each ff .x/ W f 2 Fg is relatively compact,
then the relative compactness of F follows from the theorem. Conversely, suppose
that F is relatively compact. Given " > 0; we can then pick a finite subset
ff1; : : : ; fmg � F such that for each f 2 F there exists j 2 f1; : : : ; mg with
d1.f; fj / < "=3: In particular, with d denoting the metric in M , for each x 2 K

we have d.f .x/; fj .x// < "=3; 1 � j � m: Therefore, the closure of the set
ff .x/ W f 2 Fg is totally bounded and complete (because M is) and hence is
compact by Theorem 5.6.26. Next, given any x 2 K ; we can pick ıj > 0 such that
d.fj .x/; fj .y// < "=3 for all y 2 Bıj .x/: If ı D minfı1; : : : ; ımg; then for any
f 2 F we have d1.f; fj / < "=3 for some j and hence

d.f .x/; f .y// � d.f .x/; fj .x//C d.fj .x/; fj .y//C d.fj .y/; f .y// < ";

whenever y 2 Bı.x/ and the equicontinuity of F is also established. ut
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Corollary 9.4.15. Let K and M be compact metric spaces. Then F � C.K ;M /

is relatively compact if and only if it is equicontinuous. In this case, any sequence
.fn/ in F has a uniformly convergent subsequence.

Proof. The if and only if statement follows at once from the above corollary
because, M being compact, the condition (2); i.e., the relative compactness of the
set ff .x/ W f 2 Fg for each x 2 K is automatically satisfied. The last statement is
obvious. ut

We next look at the special case of the above theorem where M D Fn for some
n 2 N: Note that, in this case, C.K ;Fn/ is a Banach space with the sup-norm
kf k1 WD supfjf .x/j W x 2 Kg: Also, recall (Corollary 5.6.38) that a subset of the
Euclidean space Fn is compact if and only if it is closed and bounded. In particular,
any bounded subset B � Fn is relatively compact. Before stating the corollary, we
invite the reader to try the following.

Exercise 9.4.16 (Pointwise & Uniform Boundedness). Let K be a compact
metric space and F � C.K ;Fn/ an equicontinuous family of functions. Show
that if F is pointwise bounded; i.e., for each x 2 K there exists Mx > 0 such
that jf .x/j � Mx for all f 2 F ; then it is uniformly bounded; i.e., there exists a
constant M > 0 (independent of x 2 K and f 2 F) such that jf .x/j � M for all
x 2 K and all f 2 F :

Corollary 9.4.17. Let K be a compact metric space and n 2 N: A set F �
C.K ;Fn/ is relatively compact if and only if it is pointwise bounded and equicon-
tinuous. In particular, if F � C.K ;F/ is pointwise bounded and equicontinuous,
then every sequence .fn/ in F has a uniformly convergent subsequence.

Proof. Indeed, if F is pointwise bounded and equicontinuous, then (Exer-
cise 9.4.16) it is uniformly bounded: 9M > 0 with jf .x/j � M for all f 2 F
and x 2 K : But then, F can be regarded as a subset of C.K ; B�

M.0//; with
the closed ball B�

M.0/ D f˛ 2 Fn W j˛j � M g and Corollary 9.4.15 may
be applied. Conversely, if F is relatively compact, then it is equicontinuous by
Corollary 9.4.15. In addition, if the fj are as in the proof of that corollary and if
M WD maxfkfj k1 W 1 � j � mg; then it is obvious that F is uniformly bounded
by M C "=3: ut

To apply the above results, let us now show, as was promised after Exam-
ple 9.2.10, that the operator K W f 7! Kf defined in that example is compact,
i.e., maps bounded sets onto relatively compact sets:

Proposition 9.4.18 (Compactness of Integral Operators). Consider the square
R WD Œa; b� � Œa; b�; where Œa; b� is a nondegenerate interval and let k 2 C.R;R/.
Then the integral operator

.Kf /.x/ WD
Z b

a

k.x; y/f .y/ dy; f 2 C.Œa; b�/

is a compact operator of X WD �

C.Œa; b�/; k � k1/; i.e., K 2 K.X/; and we have
kKk �M.b � a/, where M WD supfjk.x; y/j W .x; y/ 2 Rg:
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Proof. That K 2 B.X/ was already proved in Example 9.2.10 and, as in that
example, we have (by the MVT for integrals)

j.Kf /.x/j D
ˇ

ˇ

ˇ

ˇ

Z b

a

k.x; y/f .y/ dy

ˇ

ˇ

ˇ

ˇ

�M.b � a/kf k1 .8x 2 Œa; b�;8 f 2 X/;

from which kKk � M.b � a/ follows at once. So we need only show that K is a
compact operator; i.e., if B � X is bounded, then K.B/ is relatively compact. Let
C > 0 be such that kf k1 � C for all f 2 B: As pointed out in Example 9.2.10,
k is uniformly continuous on the (compact) square R WD Œa; b� � Œa; b� so for each
" > 0 there is a ı > 0 such that jhj < ı implies jk.x C h; y/ � k.x; y/j < " for all
.x; y/ 2 R with x C h 2 Œa; b�; and hence (by the MVT for integrals)

j.Kf /.x C h/ � .Kf /.x/j < ".b � a/kf k1 � ".b � a/C 8 f 2 B:

In other words, K.B/ is equicontinuous at each x 2 Œa; b�. Moreover, for each
x 2 Œa; b�; we have

j.Kf /.x/j D
ˇ

ˇ

ˇ

ˇ

Z b

a

k.x; y/f .y/ dy

ˇ

ˇ

ˇ

ˇ

�M.b � a/C 8 f 2 B

so that K.B/ is also pointwise bounded. Therefore, the relative compactness of
K.B/ follows from Corollary 9.4.17. ut

Our final goal in this chapter is to prove a fundamental result in approximation
theory known as the Stone–Weierstrass Theorem. We have already seen Weier-
strass’s seminal contributions to the theory: He proved (cf. Corollary 4.7.10) that
continuous functions on compact intervals can be uniformly approximated by poly-
nomials. He also proved (Corollary 8.6.25) that continuous 2	-periodic functions
can be uniformly approximated by trigonometric polynomials. Our objective is to
give Stone’s far-reaching generalization of these theorems.

Recall that, given a compact metric space K ; the set C.K ;F/ of all F-valued
continuous functions on K with the sup-norm is a Banach algebra. Stone’s
generalization is achieved by a careful study and ultimate characterization of the
dense subalgebras of C.K ;F/: We shall first look at the case F D R: Henceforth,
K will always denote a compact metric space.

Definition 9.4.19 (Lattice). We say that a subset L � C.K ;R/ is a lattice if, for
each f; g 2 L; we also have f _ g 2 L and f ^ g 2 L; where

.f _ g/.x/ WD maxff .x/; g.x/g and .f ^ g/.x/ WD minff .x/; g.x/g:

Definition 9.4.20 (Separating Points). A subset F � C.K ;R/ is said to separate
points if, given any distinct points x; y 2 K ; there is an f 2 F such that
f .x/ ¤ f .y/:



452 9 Normed and Function Spaces

Lemma 9.4.21. Let A be a closed subalgebra of C.K ;R/ such that 1 2 A: Then,
A is a lattice.

Proof. If suffices to show that jf j 2 A for each f 2 A and use

f _ g D jf � gj
2

C f C g
2

and f ^ g D �Œ.�f / _ .�g/�:

We may and do assume that kf k1 D 1: By the Weierstrass Approximation
Theorem (Corollary 4.7.10), for each n 2 N we can pick a polynomial pn.x/ such
that

ˇ

ˇpn.x/ � jxj
ˇ

ˇ < 1=n for all x 2 Œ0; 1�: Since A is an R-algebra, 1 2 A and
f 2 A imply that P.f / 2 A for any polynomial P.x/ (with real coefficients).
Also, kf k1 � 1 implies that

�

�pn.f /� jf j
�

�1 < 1=nI i.e., jf j D limn!1 pn.f /:

Since A is closed, it follows that jf j 2 A and the proof is complete. ut
Lemma 9.4.22. If A � C.K ;R/ is a subalgebra that separates points and 1 2 A;
then for each pair x; y of distinct points of K and each pair of numbers ˛; ˇ 2 R;

there exists a function g 2 A such that g.x/ D ˛ and g.y/ D ˇ:
Proof. Since A separates points, we can pick h 2 A such that h.x/ ¤ h.y/: Now
define

g.t/ WD ˛ C .ˇ � ˛/ h.t/ � h.x/
h.y/ � h.x/ :

It is then clear that g 2 A and satisfies the requirements. ut
Theorem 9.4.23 (Stone–Weierstrass Theorem). Let A be a subalgebra of the
Banach algebra C.K ;R/: If A separates points and 1 2 A; then A is dense in
C.K ;R/:

Proof. Since the closure A� also separates points and 1 2 A�; we may (and do)
assume that A is closed and must then show that A D C.K ;R/: Let f 2 C.K ;R/
and " > 0 be given. We must prove that kf � hk1 < " for some h 2 A: For each
g 2 A; define

U.g/ DW fx 2 K W g.x/ < f .x/C "g;
L.g/ DW fx 2 K W g.x/ > f .x/ � "g:

Since f and g are continuous, bothU.g/ andL.g/ are open. Now, given any t 2 K ;

Lemma 9.4.22 implies that the sets U.g/with g 2 A and g.t/ D f .t/ form an open
cover of the compact metric space K : (Why?) Therefore, we can pick g1; : : : ; gn 2
A such that fU.g1/; : : : ; U.gn/g covers K : Define

ht WD g1 ^ g2 ^ � � � ^ gn:
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By Lemma 9.4.21, we have ht 2 A: Also, ht .x/ < f .x/C " for each x 2 K and
ht .t/ D f .t/; so that t 2 L.ht /: Therefore, fL.ht / W t 2 Kg is an open cover of K :

Let fL.ht1/; : : : ; L.htm/g be a finite subcover. Then (by Lemma 9.4.21)

h D ht1 _ ht2 _ � � � _ htm 2 A

and we have

f .x/ � " < h.x/ < f .x/C " .8x 2 K /I
in other words, kf � hk1 < " and the proof is complete. ut
Remark 9.4.24.

(1) In the proof of Lemma 9.4.21, we used the Weierstrass Approximation Theorem
(Corollary 4.7.10) to approximate jxj uniformly by polynomials on Œ�1; 1�.
This, however, can be proved directly as in Problem 8.7.#41 (d).

(2) Let Pol.Œa; b�;R/ and C.Œa; b�;R/ denote the algebras of polynomial and
continuous functions from Œa; b� to R; respectively. Clearly, Pol.Œa; b�;R/ is
a subalgebra of C.Œa; b�;R/; contains the constant functions, and separates
points. It follows that the classical Weierstrass Approximation Theorem (Corol-
lary 4.7.10) is a special case of the Stone–Weierstrass Theorem. The same
holds for the algebra of continuous 2	-periodic functions and the subalgebra
of trigonometric polynomials (Corollary 8.6.25).

(3) Since polynomial functions (on Œa; b�) with rational coefficients form a
countable dense subset of Pol.Œa; b�;R/; it follows that the Banach algebra
C.Œa; b�;R/ is separable. In fact, this is true in general for any C.K ;R/:

Corollary 9.4.25. For any compact metric space .K ; dK / ; the Banach algebra
C.K ;R/ is separable.

Proof. Let D D fx1; x2; : : :g be a countable dense subset of K and consider the
continuous functions

fn;k.t/ WD dK

�

t;K n B1=k.xn/
�

.8k; n 2 N/:

The set D of all functions of the form

f
j1
n1;k1
� � � f ji

ni ;ki
; (�)

where j1; j2; : : : ; ji are nonnegative integers, is countable. Let A denote the
subspace of C.K ;R/ generated by the functions (�) (i.e., the set of all finite linear
combinations of these functions with real coefficients). Then (Theorem 9.2.27) A
is a separable subalgebra of C.K ;R/ and 1 2 A: We claim that A� D C.K ;R/:

In view of the Stone–Weierstrass Theorem, we need only show that A separates
points. Now, given any distinct points x; y 2 K ; we can pick integers n; k such
that x 2 B1=k.xn/ and y 2 K n B1=k.xn/: Since K n B1=k.xn/ is closed, we have
fn;k.x/ > 0 (why?) while fn;k.y/ D 0: ut
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Finally, let us prove the Complex Stone–Weierstrass Theorem. Here, the situation
is not quite the same and the assumptions of the real case will not be enough.

Theorem 9.4.26 ((Complex)Stone–WeierstrassTheorem). If A is a subalgebra
of C.K ;C/ such that A separates points, 1 2 A; and Nf 2 A for each f 2 A;
then A is dense in C.K ;C/:

Proof. We first note that, for any f 2 A; the real-valued functions Re.f / D
.f C Nf /=2 and Im.f / D .f � Nf /=2i are both in A: Let A0 denote the (real)
subalgebra of A consisting of all real-valued functions, then it follows at once
that A0 separates points and contains constant functions. By the (Real) Stone–
Weierstrass Theorem, A0 is dense in C.K ;R/: Since A D A0 C iA0; its density
in C.K ;C/ D C.K ;R/C iC.K ;R/ follows. ut
Remark 9.4.27. It should be noted that the complex conjugation condition imposed
above is crucial. In fact, the theorem is false without it.

9.5 Problems

1. Let k � k be a norm on a vector space X ¤ f0g: Define Qd W X 
 X ! R by Qd.x; y/ WD
kx � yk C 1 if x ¤ y and Qd.x; x/ WD 0; for all x; y 2 X : Show that Qd is a metric not associated
with any norm on X :

2 (`p-Spaces). For each p � 1; consider the following subset of FN W

`p WD `p.N;F/ WD
n

x D .xn/ 2 FN W
1
X

nD1

jxnjp < 1
o

:

For each .xn/ 2 `p; p � 1; define its `p-norm by

k.xn/kp WD
�

1
X

nD1

jxnjp
�1=p

:

For p > 1; define its conjugate to be the number q > 1 with 1=p C 1=q D 1 and for p D 1;

define q WD 1:

(a) Prove the Hölder and Minkowski inequalities for any p 2 Œ1;1� and any .xn/; .yn/ 2 FN W
k.xnyn/k1 	 k.xn/kpk.yn/kq; (Hölder)

k.xn/C .yn/kp 	 k.xn/kp C k.yn/kp: (Minkowski)

Hint: Follow Exercise 6.7.14, treating the case p D 1 separately.
(b) Deduce that, for each p � 1; `p.N;F/ is a normed space with the `p-norm k � kp:
3. Let .Bn/ be a decreasing sequence of balls in a normed space X I i.e., Bn � BnC1 for all
n 2 N: Show that the centers of the Bn form a Cauchy sequence. Show by an example that this
may fail if X is only a metric space.
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4. (a) Let .X ; k � k/ be a seminormed space. Show that k � k is a norm if and only if the open
unit ball B1.0/ (and hence any open ball Br.0/, r > 0) does not contain a one-dimensional
subspace.

(b) Show that, in a normed space .X ; k � k/ over F; we have

kxk D inff1=j˛j W ˛ 2 F n f0g; k˛xk 	 1g .8x 2 X/:

5. Recall that a subset C of a normed space X is convex if tx C .1� t /y 2 C for all x; y 2 C

and t 2 Œ0; 1�: Prove the following statements.

(a) C � X is convex if and only if

sC C tC D .s C t /C .8s; t > 0/:
(b) If C � X is convex, then so are its closure C� and its interior C ı:
(c) If .Cj /j2J is a collection of convex subsets of X ; then so is

T

j2J Cj :

(d) If A; B � X are convex, then so is ˛AC ˇB; for any ˛; ˇ 2 F:

(e) Let C be a (proper) closed, convex subset of X such that C \ Br.x0/ D ; for some x0 62 C

and r > 0: Show that C C Br.0/ is open and convex, and that x0 62 C C Br.0/:

6 (Convex Hull, Closed Convex Hull). Let X be a normed space. Given any A � X ; we define
the convex hull of A to be the set

co.A/ WD
n

n
X

jD1

tj aj W aj 2 A; tj � 0;

n
X

jD1

tj D 1; n 2 N

o

:

(a) Show that co.A/ is the intersection of all convex subsets of X containing A: Deduce that, if A
is bounded, then so is co.A/:

(b) Define the closed convex hull of A; denoted by co.A/; to be the intersection of all closed,
convex subsets of X that contain A: Show that

co.A/ D .co.A//�:

7. Let .k � kk/nkD1 be a (finite) sequence of seminorms on a vector space X and .˛k/nkD1 a (finite)
sequence of nonnegative numbers. Show that

Pn
kD1 ˛kk � kk is also a seminorm on X :

8.

(a) Let X WD C1.Œ0; 1�/ and, for each f 2 X ; define kf k1 D supfjf .x/j W x 2 Œ0; 1�g and
kf k01 WD supfjf 0.x/j W x 2 Œ0; 1�g: Show that k � k01 is a seminorm on X which is not a
norm but that k � k.1/ WD k � k1 C k � k01 is a norm on X :

(b) Define the sequence .fn/ in C1.Œ0; 1�/ by fn.x/ WD n�1=2 sin.nx/: Show that lim.fn/ D 0

with respect to k � k1; but that lim.fn/ ¤ 0 with respect to k � k.1/: Deduce that these norms
are not equivalent.

(c) Show that, if k � k0 is a norm and k � kj ; for 1 	 j 	 n; are seminorms on a vector space X ;

then
Pn

kD0 k � kk is a norm on X :

9. As in Problem 8, consider the space X WD C1.Œa; b�/ with norms kf k1 WD supfjf .x/ W x 2
Œa; b�g and kf k.1/ WD kf k1 C kf k01; where kf k01 WD kf 0k1: Show that X is not a Banach
space with norm k � k1; but is a Banach space with norm k � k.1/:
10. For each f 2 C.Œ0; 1�/; define

(i) kf k1 WD
Z 1

0

jf .x/jdx,
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(ii) kf k2 WD
�

Z 1

0

jf .x/j2dx
�1=2

.

(a) Show that k � k1 and k � k2 are both norms on C.Œ0; 1�/ and that they are not equivalent. Also
show that neither of these two norms is equivalent to the sup-norm k � k1:

(b) Show that
�

C.Œ0; 1�/; k � k1� and
�

C.Œ0; 1�/; k � k2� are not Banach spaces.

11.

(a) Show that the set BV .Œa; b�/ of all functions of bounded variation on Œa; b� is a seminormed
space with seminorm kf kWD V b

a .f / (cf. Definition 7.6.1). Is this a norm?
(b) Show that BV 0.Œa; b�/ WD ff 2 BV .Œa; b�/ W f .a/ D 0g is a Banach space with norm

kf kWD V b
a .f /:

12. Show that `p.N;F/ [cf. Problem 2] is a Banach space for all p � 1: Hint: Let .xk/ be a
Cauchy sequence in `p; where xk WD .xkn/

1
nD1: Fixing n; show that .xkn/1kD1 is Cauchy in F and

let �n 2 F be its limit. Let � WD .�n/
1
nD1; and note that xk � � 2 `p; for k large enough, and hence

� 2 `p: Finally, show that .xk/ ! � in `p:

13 (Schauder Basis). A sequence .en/ in a normed space X (over F) is said to be a Schauder
basis for X if, given any x 2 X ; there is a unique sequence .�n/ 2 FN such that x D P1

nD1 �nenI
i.e.,

lim
n!1 kx � .�1e1 C � � � C �nen/k D 0:

(a) Show that, if X is a normed space with a Schauder basis, then X is separable. It is a known
(though highly nontrivial) fact that the converse of this statement is false.

(b) Find Schauder bases for `p; p � 1 and c0 WD f.xn/ 2 `1 W lim.xn/ D 0g: Hint: Consider the
sequences en WD .ınk/

1
kD1; where ınk WD 0 if k ¤ n and ınn WD 1:

14.

(a) Show that `1.N;F/ with norm k � k1 is a Banach algebra. Note that all operations are
componentwise and the multiplicative identity is obviously .1; 1; 1; � � � /:

(b) Show that `1 does not have a Schauder basis. Hint: Cf. Problem 5.8.#23.
(c) Let c00 be the set of all sequences in `1.N;F/ with only finitely many nonzero terms. Show

that c00 is a subalgebra of `1.N;F/; but not a closed one.
(d) Show that the space c0 (cf. Exercise 9.2.3) is a closed subalgebra of `1; hence itself a Banach

algebra. Note, however, that c0 is not unital, i.e., has no multiplicative identity.
(e) Let c denote the set of all convergent sequences in F: Show that c is a closed (hence Banach)

subalgebra of `1:

15. Consider the following subspaces of c0 W
Y W D f.xn/ 2 c0 W x2n D 0 8 n 2 Ng;
Z W D f.xn/ 2 c0 W x2n D x2n�1=n 8 n 2 Ng:

Show that Y and Z are closed and Y C Z is dense in c0, but Y C Z ¤ c0: Deduce that the sum
of two closed subspaces of a Banach space need not be a closed subspace.

16. Let Y and Z be subspaces of a Banach space X : Show that if Y is finite-dimensional and Z

is closed, then Y C Z is also closed.

17 (Direct Sum, Complement, Complemented). Let Y and Z be subspaces of a normed
space X : We say that X is the direct sum of Y and Z and write X D Y ˚ Z ; if X D Y C Z
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and Y \ Z D f0g: The subspaces Y and Z are then said to be complements of each other.
A given subspace Y is said to be complemented if it has a complement Z : Show that if Y is finite-
dimensional, then it is complemented. In fact show that X D Y ˚ Z with a closed subspace
Z : Hint: Let fy1; : : : ; yng be a basis for Y . Let  k 2 Y � be the linear functional satisfying
 k.yj / D 1 if j D k and  k.yj / D 0 if j ¤ k: Using the Hahn–Banach theorem, extend each
 k to a functional �k 2 X� and let Z WD Tn

kD1 Ker.�k/:

18.

(a) Show that a proper, closed subspace of a Banach space is nowhere dense.
(b) Consider the Banach algebra X WD C.Œa; b�;R/ with norm k � k1: For each n 2 N0; let

Xn WD Poln.Œa; b�;R/ denote the set of all polynomials of degree 	 n: Show that each Xn is
nowhere dense in X and yet

S1
nD0 Xn is dense in X (cf. Problem 5.8#19).

(c) Prove that an infinite-dimensional Banach space cannot be spanned, as a vector space, by a
countable subset; i.e., it cannot have a countable Hamel (i.e., algebraic) basis.

19 (Volterra Operator). Let X WD C.Œ0; 1�/ (with norm k � k1) and for each f 2 X define
the function Af by Af .x/ WD R x

0 f .t/dt: Show that A 2 B.X/ and is injective but not surjective.
What is kAk‹
20. Let X WD C1.Œ0; 1�/ (with norm k � k1) and consider the linear map Df WD f 0 for all
f 2 X :

(a) Show that D is onto but not one-to-one. Also, show that D 62 B.X/:
(b) Consider the subspace X 0 WD ff 2 X W f .k/.0/ D 0 8 k � 0g and the restriction

D0 WD DjX 0: Show that D0 W X 0 ! X 0 is a bijective linear map. Is D0 2 B.X 0/‹ Is
D�1
0 2 B.X 0/‹

21. Let X WD `1.N;F/ and define T W X ! X by T x WD .xn=n/ for each x D .xn/ 2 X :

Show that T 2 B.X/:
22 (Closed Range, Bounded Inverse). Let X and Y be normed spaces and suppose that
T 2 B.X ;Y / satisfies kT xk � ckxk for some c > 0 and all x 2 X :

(a) Show that if X is a Banach space, then Ran.T / is closed.
(b) Show that if Ran.T / D Y ; (i.e., T is onto), then T has a bounded inverse T�1 2 B.Y ;X/

with kT�1k 	 1=c: Deduce that this conclusion follows if X is a Banach space and Ran.T /
is dense.

23. Show that the range Ran.T / WD T .X/ of a linear operator T on a normed space X need not
be closed. Note, however, that if X is finite dimensional, then so is Ran.T / which is closed.

24 (Finite Rank Linear Map). Let X and Y be normed spaces. A linear map T 2 B.X ;Y / is
said to be finite rank if Ran.T / is a finite-dimensional subspace of Y . Show that such a linear map
is compact.

25. Let X be a normed space, Y a Banach spaces and let the Tn 2 K.X ;Y / be compact linear
maps such that lim kTn � T k D 0 for some linear map T 2 B.X ;Y /: Show that we have
T 2 K.X ;Y /. Hint: Use Cantor’s diagonal method (cf. Lemma 9.4.10) and an "=3-argument.

26 (The Ideal K.X/). Let X be a normed space, A 2 K.X/ and B 2 B.X/. Show that
AB; BA 2 K.X/: In particular, K.X/ is a (two-sided) ideal of the Banach algebra B.X/:
27. Let X be an infinite-dimensional Banach space and A 2 K.X/: Show that A cannot be a
bijection onto X .

28 (Fredholm Operator). Let X be a Banach space and T 2 K.X/:
(a) Show that Ker.1X � T / is finite-dimensional.
(b) Show that Ran.1X � T / is closed.
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(c) Given any 0 ¤ � 2 F and any k 2 N, show that KerŒ.�1X � T /k� is finite-dimensional and
RanŒ.�1X � T /k� is closed.

29. Produce an isometry of C.Œ0; 1�/ (with norm k �k1) into the space `1.N;R/: Hint: For each
f 2 C.Œ0; 1�/; look at .f .rn// for a suitable dense sequence .rn/ 2 Œ0; 1�N:

30. Show that the canonical projection 	 W X ! X=Y , where X is a normed space and Y ¤ X

a closed subspace, is a bounded, open linear map with k	k D 1:

31. Let X and Y be normed spaces, T 2 B.X ;Y /; Z WD Ker.T /; and 	 W X ! X=Z the
canonical projection. Show that there is a unique QT 2 B.X=Z ;Y / such that T D QT ı 	 and
k QT k D kT k:
32. Let X WD C.Œa; b�/ with norm k � k1.

(a) Let �.f / WD R b

a f .t/dt for all f 2 X : Show that � 2 X� (i.e., is a bounded linear functional,
on X ) and that k�k D b � a:

(b) Let g 2 X be fixed and define �g.f / WD R b

a f .x/g.x/dx for all f 2 X : Show that �g 2 X�

and k�gk D R b

a jg.x/jdx: Hint: Use the functions fn.x/ WD ng.x/=.1C njg.x/j/ for n 2 N:

(c) Given a fixed point x0 2 Œa; b�; define the evaluation map  .f / WD f .x0/ for all f 2 X :

Show that  2 X� and k k D 1:

33. Consider the space X WD C1.Œa; b�/ with norm kf k.1/ defined in Problem 9. Show that the
linear functional �.f / WD f 0..a C b/=2/ for all f 2 X is bounded on .X ; k � k.1//, but not
bounded on .X ; k � k1/:

34 (.c0/� Š `1). Show that, if � 2 .c0/
�; then .�.en// 2 `1I in other words,

P1
nD1 j�.en/j < 1: Here, en WD .ınk/

1
kD1; where ınk WD 0 if k ¤ n and ınn WD 1: Conversely,

given any a WD .an/ 2 `1; show that there is a unique functional �a 2 .c0/
� with �a.en/ D an for

all n 2 N and we have k�ak D kak1: Deduce that the dual .c0/� can be identified with `1: Hint:
Note that .en/ is a Schauder basis for both c0 and `1:

35 (.`1/� Š `1). Show that .`1/� can be identified with `1: Hint: Given any x WD .xn/ 2 `1;

we have x D P1
nD1 xnen; with the Schauder basis .en/ as in Problem 34. So, for each � 2 .`1/�;

we have �.x/ D P1
nD1 xnbn where .bn/ WD .�.en// 2 `1 and k.bn/k1 	 k�k: Conversely,

given any b WD .bn/ 2 `1; define �b 2 .`1/� by �b.x/ WD P

xnbn and show that k�bk D kbk1:

36. Let .ak/1kD1 2 FN: Show that, if
P1

kD1 akxk converges for all x WD .xk/ 2 `1; then .ak/ 2
`1: Hint: For each n 2 N define the linear functional �n on `1 by �n.x/ WD Pn

kD1 akxk and let
�.x/ WD limn!1 �n.x/: Using the Uniform Boundedness Principle, show that � 2 .`1/� and
jak j 	 k�k for all k 2 N:

37. Let X be a normed space.

(a) Show that X ¤ f0g implies X� ¤ f0g: In fact, show that, if X has n (linearly) independent
vectors, then so does X�:

(b) Show that, given any x 2 X ; we have

kxk D supfj�.x/j W � 2 X�; k�k 	 1g:
Hint: Use Corollary 9.2.39.

38 (Second Dual, Reflexivity). Given a normed space X ; the space X�� WD .X�/� is called
the second dual of X :

(a) For each x 2 X ; define the evaluation map Ox on X� by Ox.�/ WD �.x/: Show that Ox 2 X��
and that the (natural) map x 7! Ox is an isometry of X into X��: The space X is said to be
reflexive if x 7! Ox is onto, i.e., X Š X��:
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(b) Show that a reflexive normed space is a Banach space.
(c) Show that, if X is reflexive, then so is X�:
(d) Show that the Banach space c0 is not reflexive.

39 (Weak Convergence). Let .xn/ be a sequence in a normed space X . We say that .xn/
converges to x weakly and write xn * x as n ! 1, if �.xn/ ! �.x/ for all � 2 X�:

(a) (Uniqueness). Show that weak limits are unique.
(b) Show that if lim.xn/ D x; then xn * x:

(c) Show that if xn * x; then .xn/ is bounded.

40. Let X and Y be normed spaces and A 2 K.X ;Y / any compact operator. Show that if
xn * x as n ! 1; then limn!1 Axn D Ax (in norm).

41. Let X be a Banach space, T 2 B.X/; and let 1X WD idX 2 B.X/ denote the identity
operator.

(a) Show that, if kT k < 1; then the operator 1X � T is invertible, and we have

.1X � T /�1 D
1
X

nD0

T n 2 B.X/: (�)

Here, T 0 WD 1X and T n WD T ı T ı � � � ı T (with n copies of T ) is the n-th iterate of T: Hint:
Show that the series on the right side of (�) is absolutely convergent and hence convergent.
(Why?) Note that kT nk 	 kT kn ! 0; as n ! 1:

(b) More generally, show that, if kT k < j�j (where � 2 F n f0g/; then .�1X � T /�1 2 B.X/,
and we have

R�.T / WD .�1X � T /�1 D
1
X

nD0

��.nC1/T n:

42 (Resolvent Set, Spectrum). With notation as in Problem 41, the set

�.T / WD f� 2 F W R�.T / D .�1X � T /�1 2 B.X/g
is called the resolvent set of T and the function � 7! R�.T / is called the resolvent of T:
Furthermore, the complement

�.T / WD F n �.T /
is called the spectrum of T:

(a) Show that, if �; � 2 �.T /; then

R�.T /�R�.T / D .�� �/R�.T /R�.T /: (Resolvent Equation)

Deduce that R�.T /R�.T / D R�.T /R�.T /:

(b) Show that �.T / is bounded; in fact,

�.T / � f� 2 F W j�j 	 kT kg:
(c) Let � 2 �.T /: Show that, if j� � �j < kR�.T /k�1; then � 2 �.T /: Deduce that �.T / is

open.
(d) Show that the spectrum �.T / is compact.
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43. Let X be a real pre-Hilbert space and x; y 2 X . Prove the following:

x ? y ” kx C yk2 D kxk2 C kyk2; and (a)

kxk D kyk ” hx C y; x � yi D 0: (b)

44. Let X be a pre-Hilbert space and x; y 2 X : Show that

x ? y ” kx C ˛yk D kx � ˛yk 8˛ 2 F:

45 (Appolonius’ Identity). Show that, for any vectors x; y; and z in a pre-Hilbert space X ; we
have

kz � xk2 C kz � yk2 D 1

2
kx � yk2 C 2kz � .x C y/=2k2:

46 (Polarization Identity). Show that the inner product of a pre-Hilbert space X can be
rediscovered from its norm by the following identities:

(a) hx; yi D 1

4
.kx C yk2 � kx � yk2/ .F D R/,

(b) hx; yi D 1

4
.kx C yk2 � kx � yk2/C i

4
.kx C iyk2 � kx � iyk2/ .F D C/.

47.

(a) Show that the Banach space C.Œ0; 1�/ with norm k � k1 is not a Hilbert space; i.e., the norm
k � k1 cannot be obtained from an inner product. Hint: Show that the parallelogram law
(Exercise 9.3.10) fails for the functions f .x/ WD 1 and g.x/ WD x on Œ0; 1�:

(b) Using part (a) and an affine transformation, show that C.Œa; b�/ (with norm k � k1) is not a
Hilbert space.

48. Show that the Banach space `p.N;F/; where p � 1; is a Hilbert space if and only if p D 2:

Hint: Show that the parallelogram law fails if p ¤ 2:

49. Let X be a pre-Hilbert space and .xn/ 2 XN: Show that, if lim.kxnk/ D kxk and
lim.hxn; xi/ D hx; xi; then kxn � xk ! 0; as n ! 1:

50 (Completion). Show that, given any pre-Hilbert space X ; there is a Hilbert space H and
an isometric isomorphism � of X onto a dense subspace of H : Hint: Let H be the completion
of X guaranteed by Theorem 9.2.4 and � the corresponding (isometric) isomorphism. Now for
each x; y 2 H ; let x D lim.xn/ and y D lim.yn/ with xn; yn 2 X Š �.X/; and define
hx; yi WD lim.hxn; yni/:Using the continuity of h�; �i; show that this is a well-defined inner product
on H and that (in view of hx; xi D kxk2) � is indeed an isometry.

51 (The Hilbert Space L2.Œa; b�/). Consider the pre-Hilbert space C.Œa; b�/ with the inner

product hf; gi WD R b

a f .x/g.x/dx: Let the Hilbert space L2.Œa; b�/ be the completion of C.Œa; b�/
with the corresponding L2-norm:

kf k2 WD
 

Z b

a

Œf .x/�2dx

!1=2

:

(a) Show that the system of trigonometric functions

1; cos
2	nx

b � a
; sin

2	nx

b � a
.n 2 N/
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is an orthogonal basis for L2.Œa; b�/: Hint: Using an affine transformation, reduce to the case
of L2.Œ�	; 	�/: The system then consists of the functions 1; cos.nx/; and sin.nx/; for n 2 N:

Now look at Example 9.3.30 (3).
(b) Show that, if .en/ is an orthonormal sequence in L2.Œa; b�/ such that, given any f 2 C.Œa; b�/

and any " > 0; there is an N 2 N and scalars a1; : : : ; aN such that

�

�

�f �
N
X

nD1

anen

�

�

�

2
< ";

then .en/ is an orthonormal basis for L2.Œa; b�/:

52. Let .en/ be an orthonormal basis for a separable Hilbert space H and let .fn/ be an
orthonormal sequence in H such that

P1
nD1 ken�fnk2 < 1: Show that .fn/ is also an orthonormal

basis.

53. Let X and Y be closed subspaces of a Hilbert space H and Let P W H ! X and Q W
H ! Y be the corresponding orthogonal projections. Show that, if X ? Y , then P C Q is the
orthogonal projection onto X ˚ Y :

54. Show that, if P and Q are orthogonal projections in a Hilbert space H , and if PQ D QP;

then P CQ � PQ is also an orthogonal projection. What is its range?

55. Let X be a complex pre-Hilbert space and A; B 2 B.X/:
(a) Show that, if hAx; xi D 0 for all x 2 X ; then A D 0: Hint: Expanding hA.x C y/; x C yi

and hA.x C iy/; x C iyi; show that hAx; yi D 0 for all x; y 2 X :

(b) Show that the assertion in (a) is false if X is a real pre-Hilbert space. Hint: Pick a suitable
rotation in R2:

(c) Show that, if hAx; xi D hBx; xi for all x 2 X ; then A D B:

56 (The Adjoint Operator). Let H be a Hilbert space and A 2 B.H /: For each fixed y 2
H ; the map x 7! hAx; yi is easily seen to be a bounded linear functional and hence, by the
Riesz Representation Theorem (Theorem 9.3.20), there is a unique y� 2 H such that hAx; yi D
hx; y�i: Define the map A� W H ! H by A�y WD y�: We then have

hAx; yi D hx;A�yi .8x; y 2 H /: (�)

We call A� the adjoint of A. Prove the following assertions for any bounded operators A; B 2
B.H /.

(a) A� 2 B.H /; A�� WD .A�/� D A; and we have kA�k D kAk: Hint: Note that

kA�yk2 D hA�y;A�yi D hA.A�y/; yi 	 kAkkA�ykkyk:

(b) kA�Ak D kAk2:
(c) .AC B/� D A� C B�; .AB/� D B�A�; and .˛A/� D N̨A� for all ˛ 2 F:

(d) If A�1 2 B.H /; then .A�1/� D .A�/�1:

57. Let H be a Hilbert space and A 2 B.H /: Recall that Ran.A/ WD A.H /:

(a) Show that Ker.A�/ D Ran.A/? and Ker.A/ D Ran.A�/?: Deduce that Ran.A/ is dense if
and only if A� is injective, and that Ran.A�/ is dense if and only if A is injective.

(b) Show that H D Ker.A�/˚ .Ran.A//�:

58 (Hellinger–Toeplitz). Let T be a linear operator on a Hilbert space H such that

hT x; yi D hx; Tyi .8x; y 2 H /:

Show that T 2 B.H /: Hint: Show that T has closed graph; i.e., if lim.xn/ D x 2 H and
lim.T xn// D y 2 H ; then y D T x:
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59 (Self-Adjoint Operator, Real Spectrum). Let H be a (complex) Hilbert space. An operator
A 2 B.H / is said to be self-adjoint if A� D A:

(a) Show that, if A is self-adjoint, then it has real spectrum, i.e., �.A/ � R:

(b) Show that, if A and B are self-adjoint, then AB is self-adjoint if and only if AB D BA:

(c) Show that, for any A 2 B.H /; the operators A�A and AC A� are self-adjoint.
(d) Show that, if a self-adjoint operator A 2 B.H / is surjective, then it is also injective. Deduce

that A�1 2 B.H / and is also self-adjoint.
(e) Show that if A is self-adjoint, then we have

kAk D supfjhAx; xij W kxk D 1g:
60 (Eigenvalue, Eigenvector, Eigenspace). Let A 2 B.H /: A scalar � 2 F is said to be an
eigenvalue of A if Ax D �x for some x ¤ 0I i.e., if Ker.�1H � A/ ¤ f0g. Any (nonzero) vector
x 2 Ker.�1H � A/ is then said to be an eigenvector of A corresponding to the eigenvalue �: The
subspace Ker.�1H �A/ is called the eigenspace of A corresponding to �: Let 0 ¤ A 2 K.H / be
a self-adjoint, compact operator.

(a) (Point Spectrum). Let �p.A/ denote the set of all eigenvalues of A (the so-called point
spectrum of A). Show that �p.A/ � �.A/ and deduce that all eigenvalues are real.

(b) Show that eigenvectors corresponding to distinct eigenvalues are orthogonal.
(c) Show that each eigenspace Ker.�1H � A/ with � ¤ 0 is finite-dimensional.
(d) Show that either kAk > 0 or �kAk < 0 is an eigenvalue of A.

61 (Multiplication Operator). Let H WD `2.N;C/: For each given sequence a D
.a1; a2; : : : / 2 `1.N;C/, we define the corresponding multiplication operator Ma W H ! H by

Max WD ax D .a1x1; a2x2; a3x3; : : : / 8 x D .x1; x2; x3; : : : / 2 H :

(a) Show that Ma 2 B.H / and kMak D kak1:

(b) Show that MaMb D Mab for all a; b 2 `1.N;C/ and hence MaMb D MbMa: Deduce that
M�1
a exists if and only if 1=a WD .1=a1; 1=a2; : : : / 2 `1.N;C/ and we then have M�1

a D
M1=a:

(c) Show that M�
a D MNa and hence Ma is self-adjoint if and only if a 2 `1.N;R/:

(d) Show that �p.Ma/ D fa1; a2; a3; : : : g.
(e) Show that �.Ma/ D fa1; a2; a3; : : : g� is the closure of �p.Ma/:Deduce thatM�1

a D M1=a 2
B.H / if and only if 0 is not a limit point of �p.Ma/:

(f) Show that Ma is compact if and only if lim.an/ D 0:

62 (Shift Operators). Let H WD `2.N;C/ and define the right shift operator Sr and the left shift
operator S` by letting for each x D .x1; x2; : : : / 2 `2.N;C/,

Sr .x1; x2; x3; : : : / W D .0; x1; x2; x3; : : : /;

S`.x1; x2; x3; : : : / W D .x2; x3; x4; : : : /:

(a) Show that S�
r D S` and hence Sr is not self-adjoint.

(b) Show that Sr and S` are not compact operators.
(c) Show that Sr has no eigenvalue, i.e., �p.Sr / D ;: What is �.Sr /?
(d) Show that �p.S`/ D f� 2 C W j�j < 1g: What is �.S`/?
(e) Consider the multiplication operator Mh; where h WD .1; 1=2; 1=3; : : : / is the harmonic

sequence and note that h 2 `2.N;R/: Show that the operator T WD MhSr is compact, has
no eigenvalue, and �.T / D f0g:
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63. Let B be a bounded subset of C.Œa; b�/: Show that the set

�

Z x

a

f .t/dt W f 2 B
��

is compact.

64. Let X D C.Œ0; 1�;C/ and let A 2 B.X/ be the Volterra operator

Af .x/ WD
Z x

0

f .t/ dt 8 f 2 X :

Show that A is a compact operator with no eigenvalue.

65. Prove that fsin.nx/ W n 2 Ng is not an equicontinuous subset of C.Œ0; 	�/:

66. Let f W R ! R be uniformly continuous and, for each a 2 R; define fa.x/ WD f .x � a/:

Show that the family ffa W a 2 Rg is equicontinuous on R:

67. Define the sequence .fn/ in BC .Œ0;1/;R/ by fn.x/ D sin.
p
x C 4n2	2/: Show that .fn/

is equicontinuous on Œ0;1/ and that lim.fn.x// D 0 for all x 2 Œ0;1/: Show, however, that
ffn W n 2 Ng is not relatively compact in BC .Œ0;1/;R/: Hint: Show that .fn/ does not converge
to zero uniformly.

68. Given ˛ 2 .0; 1�; consider the subalgebra Lip˛.Œ0; 1�/ of C.Œ0; 1�/ consisting of all Lipschitz
functions of order ˛: Recall [Example 9.2.2 (4)] that Lip˛.Œ0; 1�/ is actually a Banach space with
norm

kf k˛;1 WD kf k1 C supfjf .x/� f .y/j=jx � yj˛ W x; y 2 Œ0; 1�; x ¤ yg:
Show that the set ff 2 Lip˛.Œ0; 1�/ W kf k˛;1 	 1g is a compact subset of C.Œ0; 1�/:

69. Let .fn/1nD1 be a sequence of differentiable functions on Œ0; 1� such that the sequence .fn.x0//
is bounded for some x0 2 Œ0; 1� and that jf 0

n .x/j 	 M for all n 2 N and all x 2 Œ0; 1�: Show that
.fn/ has a uniformly convergent subsequence.

70. Let M be a metric space, X a normed space, and .fn/ an equicontinuous sequence in
BC .M ;X/: Show that the set of all x 2 M such that .fn.x// is a Cauchy sequence in X is
a closed subset of M :

71. Let M be a metric space, X a normed space, and .fn/ a sequence in BC .M ;X/ that
is equicontinuous at a point x0 2 M : Show that, if lim.fn.x0// D y0 2 X ; then we have
lim.fn.xn// D y0 for any sequence .xn/ in M with lim.xn/ D x0:

72. Let M be a metric space and F an equicontinuous subset of BC .M ;R/: Show that the set
B WD fx 2 M W F.x/ is boundedg is both open and closed. Here F.x/ WD ff .x/ W f 2 Fg:
73. This problem provides another way of showing that jxj can be uniformly approximated by
polynomials on Œ�1; 1� and can be used in the proof of Lemma 9.4.21 instead of the Weierstrass
Approximation Theorem (Corollary 4.7.10).

(a) Show that there is a sequence
�

pn.t/
�

of polynomials that is increasing in Œ0; 1� and converges
uniformly to

p
t : Hint: Use the Babylonian method (cf. Exercise 2.2.25).

(b) Show that jxj can be approximated uniformly on Œ�1; 1� by polynomials.

74. Let f 2 C.Œ0; 1�/ be strictly increasing. Show that the subalgebra A of C.Œ0; 1�/ generated
by f1; f g is dense in C.Œ0; 1�/:
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75. Let .K ; dK / be a compact metric space containing at least two points. For each y 2 K ;

consider the function dK .�; y/ 2 C.K ;R/ defined by dK .�; y/ W x 7! dK .x; y/: Show that the
unital subalgebra of C.K ;R/ generated by the family fdK .�; y/ W y 2 Kg is dense in C.K ;R/:

76. Let .K ; dK / be a compact metric space and A � C.K ;R/ an algebra that separates the
points of K : Show that either A� D C.K / or there is a point x0 2 K such that A� D ff 2
C.K ;R/ W f .x0/ D 0g:
77. Let K and M be compact metric spaces. Show that the subalgebra ofC.K 
M ;R/ generated
by the functions of the form .x; y/ 7! g.x/h.y/; where g 2 C.K ;R/; h 2 C.M ;R/; is dense in
C.K 
M ;R/I i.e., given any f 2 C.K 
M ;R/ and any " > 0; there are functions gk 2 C.K ;R/

and hk 2 C.M ;R/; 1 	 k 	 n; such that

ˇ

ˇ

ˇf .x; y/�
n
X

kD1

gk.x/hk.y/

ˇ

ˇ

ˇ < " .8x; y 2 K 
 M /:



Chapter 10
Lebesgue Measure and Integral in R

In Chap. 7 we saw that the Riemann integral of a (bounded) function f W Œa; b�! R

can be obtained as a “limit” of integrals of step functions that approximate f . In fact,
we have (cf. Exercise 7.4.8)

Z

f D sup

�

Z b

a

� W � 2 Step.Œa; b�/; � � f
�

; ()

and for f 2 R.Œa; b�/ the left side of () is indeed
R b

a
f: If .xk/nkD0 is a partition

of Œa; b� and if � is a step function with �.x/ D cj for all x 2 Ij WD .xj � 1; xj /;
1 � j � n; then we have

Z b

a

� WD
n
X

jD1
cj �.Ij /;

where �.Ij / WD xj � xj�1 is the length of Ij : Thus, the length of intervals
(Definition 7.3.1) is all we need for Riemann’s theory of integration. Now we did
extend length (cf. the “temporary” Definition 4.2.4) to more complicated sets and
also defined sets of measure zero (cf. Definition 7.3.2). The theory of integration we
want to develop here, due to the French mathematician Henri Lebesgue, requires
a more sophisticated measure that extends length and still has the most desirable
properties we need: Ideally, with 2R D P.R/ denoting the power set of R; what we
want is a set function � W 2R ! Œ0;1� that is:

1 an extension of length: �.I / is the length of I if I � R is an interval,
2 monotone: A � B implies �.A/ � �.B/;
3 translation invariant: �.AC c/ WD �.faC c W a 2 Ag/ D �.A/ 8c 2 R; and
4 countably additive: �.

S

n2NAn/ D
P1

nD1 �.An/ if Ai \ Aj D ; for i ¤ j:
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Unfortunately, such a (set-) function � does not exist unless we are willing to
reduce the domain of� from the whole power set 2R to a proper subset of it; namely,
the � -algebra M�.R/ of the so-called (Lebesgue) measurable sets, to be defined
below. So, to begin, we should define a measure precisely:

Definition 10.0.1 (Measure, Measurable Space, Measure Space). LetX be a set
and let A be a � -algebra of subsets of X: A set function � W A W! Œ0;1� is said
to be a countably additive measure (or simply a measure) on A if it satisfies the
following conditions:

(i) �.;/ D 0, and
(ii) Given any sequence .An/ of pairwise disjoint elements of A, we have

�
�

1
[

nD1
An

�

D
1
X

nD1
�.An/ .“countable additivity” or “��additivity”/:

The pair .X;A/ is then called a measurable space and the triple .X;A; �/ is said to
be a measure space. Elements of A are called measurable sets and for each A 2 A;
its measure is the (extended nonnegative) number �.A/:
(Operations on Measures). Let � and  be measures on a � -algebra A and let
c � 0: Then one defines the set functions �C  W A W! Œ0;1� and c� W A W!
Œ0;1� by

.�C /.A/ WD �.A/C .A/ and .c�/.A/ WD c�.A/ 8A 2 A:

It is easily checked that the “sum” � C  and the “scalar multiple” c� are also
measures. Thus, the set M.A/ of all measures on A is a cone.

Remark 10.0.2. Throughout this chapter (and the next), we shall obviously work
with the space X D R and the � -algebra M�.R/; which will be defined shortly.
General measure spaces will be studied in Chap. 12.

The Riemann integral was defined using step functions, which take on (constant)
values on subintervals of a partition of an interval Œa; b�: It is possible (as was done in
the first edition of this book) to follow F. Riesz and develop Lebesgue’s theory using
step functions as well, without introducing measure theory except for the concept
of sets of measure zero, already introduced and used in Chap. 7. But the success of
the new theory comes from the fact that, instead of partitioning the domain of the
function into subintervals, it partitions its range and assigns a measure (“generalized
length”) to the inverse image f �1.J / for each subinterval J of such a partition.
Now, if f is a step function, then f �1.J / is a (disjoint) union of intervals and its
measure is simply the sum of their lengths. In general, however, f �1.J / must be
nice, i.e., measurable. For this new approach the class of step functions must be
replaced by the larger class of (measurable) simple functions. These are functions
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that take on (distinct) constant values on a finite collection of (pairwise disjoint)
measurable sets. Thus, although step functions are simple, the converse is not true.
The Lebesgue integral of f , if it exists, is then defined by modifying () as follows:

Z b

a

f d� D sup

�

Z b

a

� d� W � 2 Simp.Œa; b�/; � � f
�

; ()

where Simp.Œa; b�/ is the space of all simple functions on Œa; b�: Here, the Lebesgue
integral of a simple function � in () that takes on the (distinct) constant values cj
on the (pairwise disjoint) measurable sets Aj WD ��1.cj / � Œa; b�, 1 � j � n; is
defined to be the sum

Z b

a

� d� WD
n
X

jD1
cj �.Aj /;

where �.Aj / is the Lebesgue measure of the measurable set Aj ; 1 � j � n:
Of course, a legitimate question to ask is this: Why even extend Riemann’s theory

of integration? The most logical answer seems to be this: As we have pointed out
repeatedly, the most fundamental notion in analysis is that of limit. Therefore, the
most desirable theory of integration is one that behaves nicely (i.e., “continuously”)
when we deal with limits of functions and/or sets. The Riemann theory requires
uniform convergence if we want nice properties to be preserved when we pass to
the limit and the uniformity condition is too restrictive and hence an unnecessary
nuisance in practice.

Example. Let Q1 WD fr1; r2; r3; : : : g be an enumeration of the rational numbers in
Œ0; 1�: Define the sequence .fn/ of functions on Œ0; 1� by

fn.x/ D
(

1 if x 2 fr1; r2; : : : ; rng;
0 otherwise.

Since fn is continuous except on fr1; : : : ; rng; we have fn 2R.Œ0; 1�/ for all n 2 N

and in fact
R 1

0
fn D 0: On the other hand, limfn.x/ is 1 if x 2 Q1 and 0 otherwise,

i.e., lim.fn/ D 
Q1 ; which is not Riemann integrable. It is, however, Lebesgue
integrable as we shall prove in what follows.

10.1 Outer Measure

To define Lebesgue measure we first introduce the (Lebesgue) outer measure of a
subset of R:

Definition 10.1.1 (Lebesgue Outer Measure). Given a set A � R; its (Lebesgue)
outer measure is defined to be the extended real number
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��.A/ D inf
n

1
X

nD1
�.In/ W A �

1
[

nD1
In

o

; (�)

where .In/1nD1 is a sequence of open intervals that covers the set A, i.e., A �
S1
nD1 In; and the “inf” is taken over all such covers of A:

Remark 10.1.2.

(a) In Definition 10.1.1 the intervals In that cover A need not be open. Indeed, if
In is not open, we may replace it with an open interval Jn with In � Jn and
�.Jn/ D �.In/C "=2n for any prescribed " > 0. We then have

P1
nD1 �.Jn/ �

P1
nD1 �.In/C " and hence the “inf” will be the same.

(b) (Jordan Outer Measure). If in Definition 10.1.1 we use finite covers of A by
open intervals instead of countable ones, then the resulting infimum is called
Jordan outer measure of A and will be denoted by ��.J /.A/: As in the previous
remark, open intervals may be replaced by closed (or half-open) ones.

Exercise 10.1.3. For any setA � R and any x 2 R we define its translateACx WD
fa C x W a 2 Ag and its reflection �A WD f�a W a 2 Ag: Prove the following
assertions, where A; B � R and x 2 R are arbitrary:

(a) .A\B/C x D .AC x/\ .B C x/; .A[B/C x D .AC x/[ .B C x/; and
Ac C x D .AC x/c:

(b) �.A \ B/ D .�A/ \ .�B/; �.A [ B/ D .�A/ [ .�B/; and �Ac D .�A/c:
Proposition 10.1.4. The outer measure satisfies the following properties:

(1) If A � R has measure zero, then ��.A/ D 0: In particular, any countable set
has outer measure zero.

(2) (�� is Monotone) If A � B; then ��.A/ � ��.B/:
(3) (�� is Translation Invariant) ��.AC x/ D ��.A/ for all x 2 R:

(4) (�� is Reflection Invariant) ��.�A/ D ��.A/:
(5) For any interval I � R (bounded or not), ��.I / D �.I / is the length of I:

Proof. Statements (1) and (2) follow at once from the definition (�) of �� and the
same is also true for property (3). (Why?) For (4) we simply note that if I D .a; b/;
then �I D .�b;�a/ and �.I / D �.�I / D b � a: Also, a sequence .In/ of
open intervals covers a set A � R if and only if the corresponding sequence .�In/
covers �A: To prove (5), let us first consider the case of a closed, bounded interval
I D Œa; b� with a < b: Since I � .a � "; b C "/ for each " > 0 and �

�

.a �
"; b C "/� D b � a C 2"; we have ��.I / � b � a C 2" for all " > 0 and hence
��.I / � b � a: Therefore, we need only show that ��.I / � b � a; which follows
at once from Proposition 7.3.7. If I has endpoints a < b; but is not closed, then
I" WD Œa C "; b � "� � I for all small " > 0 and hence, by property (2), ��.I"/ D
b � a � 2" � ��.I / � ��.Œa; b�/ D b � a and the result follows at once. Finally,
if I is unbounded, then for any ` > 0 we can pick a (bounded) closed interval
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J � I with �.J / D ��.J / D `: But then ��.I / � ` for all ` > 0 and we get
��.I / D1 D �.I /: ut
Exercise 10.1.5.

a. Let A; Z � R and assume that Z has measure zero. Show that ��.A [ Z/ D
��.A/ and that ��.A nZ/ D ��.A/:

b.
�
The “Distance” ��.A4B/

�
: For any A; B � R define

d�.A;B/ WD ��.A4B/:
Prove the following properties for arbitrary subsets A; B; and C of R:

d�.A;B/ D d�.B;A/; d�.A;A/ D 0; d�.A;B/ � d�.A;C /C d�.B; C /:
Deduce that A � B ” d�.A;B/ D 0 defines an equivalence relation on
P.R/: Also prove that

d�.A;B/ D 0 H) ��.A/ D ��.B/

and give a simple example (with ��.A/ D ��.B/ < 1) to show that the
converse is false and hence d�.A;B/ is not a distance on M��<1 WD fE �
R W ��.E/ < 1g: Show, however, that the set of all equivalence classes
fŒE� W E 2M��<1g is a metric space with metric d�.ŒA�; ŒB�/ WD d�.A;B/:
Unfortunately, �� is not countably additive, but it is countably subadditive in the

following sense.

Proposition 10.1.6 (Countable Subadditivity of ��). Given any sequence .An/
of subsets of R; we have

���
1
[

nD1
An

�

�
1
X

nD1
��.An/:

Proof. We may (and do) assume that the right side is finite and hence that ��.An/ <
1 for all n 2 N: Now for each n we can pick a sequence .In;m/1mD1 of open
intervals such that An � S1

mD1 In;m and
P1

mD1 �.In;m/ < ��.An/ C "=2n.
Since fIn;m W n; m 2 Ng is a countable collection of open intervals satisfying
S1
nD1 An �

S

.n;m/2N
N In;m and " > 0 is arbitrary, our claim follows from

���
1
[

nD1
An

�

�
1
X

nD1

1
X

mD1
�.In;m/ <

1
X

nD1

�

��.An/C "

2n

�

D
1
X

nD1
��.An/C ": ut
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Before proving an important consequence of the countable subadditivity, let us
give a definition that will be useful.

Definition 10.1.7 (F� and Gı). A setA � R is said to be an F� if it is a countable
union of closed sets. A set B � R is said to be a Gı if it is a countable intersection
of open sets.

Remark 10.1.8. It is clear that any countable set, e.g., the set Q of rational numbers,
is an F� . It follows that the set Qc of irrational numbers, which is an uncountable,
dense set that contains no nondegenerate intervals, is a Gı: In fact, if fr1; r2; : : : g is
an enumeration of the rational numbers, then

Qc D
1
\

nD1
frngc D

1
\

nD1

�

.�1; rn/ [ .rn;1/
�

:

This shows, in particular, that the complement of a countable union of intervals may
be a huge, complicated set, a fact we also encountered when we defined the Cantor
set and its generalized versions.

We can now prove the following regularity result for the outer measure.

Corollary 10.1.9 (Outer Regularity of ��). Given any set A � R we have

��.A/ D inff��.O/ W A � O and O is openg: (�)

In particular, for any " > 0, there is an open set O such that A � O and ��.O/ <
��.A/C ": Also, there is a set G 2 Gı such that ��.A/ D ��.G/:

Proof. Let ��
O.A/ denotes the right side of (�). Since every open set is a countable

union of (pairwise disjoint) open intervals (cf. Theorem 4.1.2), we obviously
have ��.A/ � ��

O.A/. For the reverse inequality we may (and do) assume that
��.A/ <1: Then, given any " > 0; the definition of ��.A/ guarantees the
existence of a sequence .In/1nD1 of open intervals with A �S1

nD1 In and such that

1
X

nD1
�.In/ < �

�.A/C ": ()

If we define O WDS1
nD1 In, then () and the countable subadditivity of �� give

��.O/ �
1
X

nD1
��.In/ D

1
X

nD1
�.In/ < �

�.A/C ";

and hence ��
O.A/ < �

�.A/C", from which ��
O.A/ � ��.A/ follows because " > 0

was arbitrary. Finally, for each k 2 N, we can (by the first assertion) pick an open
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set Ok such that A � Ok and ��.Ok/ � ��.A/ C 1=k: If we set G WD T1
kD1 Ok;

then G 2 Gı and we have A � G � Ok for all k 2 N: Therefore,

��.A/ � ��.G/ � ��.Ok/ � ��.A/C 1

k
8 k 2 N;

which implies ��.A/ D ��.G/; as desired. ut
Remark 10.1.10. Given any A � R; Corollary 10.1.9 implies that for any " > 0,
we can pick an open set O such that A � O and

��.O/ � ��.A/ < ":

Since the subadditivity of �� implies that ��.O/���.A/ � ��.O nA/; the stronger
condition

��.O n A/ < " ()

need not be true. The condition () is one of the many logically equivalent ways to
define the (Lebesgue) measurability of A. It is basically Littlewood’s first principle,
which says that a measurable set is nearly open or, as Tao puts it in [Tao11], that
it can be efficiently contained in open sets. If one adopts this definition, which is
one of the most intuitive ones, then open sets are obviously measurable. There is
another definition (due to Carathéodory) that is less intuitive, but in it A and Ac

play symmetric roles and hence are either both measurable or both nonmeasurable.
It also has the advantage that it can be used in abstract spaces, as we shall see in
Chap. 12.

Definition 10.1.11 (Lebesgue Measurable, Lebesgue Measure). A set E � R

is said to be (Lebesgue) measurable if for any set A � R we have

��.A/ D ��.A \E/C ��.A \Ec/:

We then define the (Lebesgue) measure of E to be

�.E/ WD ��.E/:

Notation 10.1.12 (M�.R/; M�<1.R/). The set of all Lebesgue measurable
subsets of R is denoted M�.R/ or simply M� if no confusion results. We use
M�<1.R/ (or simply M�<1) to denote the set of all E 2 M� such that
�.E/ <1:
Remark 10.1.13. Since ��.A/ � ��.A\E/C ��.A\Ec/ is always true because
�� is countably (hence finitely) subadditive, we have

E 2M�” ��.A/ � ��.A \E/C ��.A \Ec/ 8A � R:



472 10 Lebesgue Measure and Integral in R

As the example of Cantor set and its generalized versions show, we are naturally
led to the measure (i.e., generalized length) of countable unions and intersections
of sets. Therefore, the natural domain of a measure should be a � -algebra of subsets
of R and hence we expect this to be true for the set M�.R/ of Lebesgue measurable
sets we just defined. Let us recall (Definition 1.1.5) that, given a set X; a nonempty
subset A of the set P.X/ of all subsets of X is said to be an algebra if it contains X
as well as the complements and finite unions of its members. If an algebra A contains
all countable unions of its members, then it is said to be a � -algebra: The most
trivial � -algebras are, of course, f;; Xg and P.X/: Also recall (Proposition 1.1.9)
that, given any C � P.X/; there is a smallest � -algebra; AC ; with C � AC I we
call it the � -algebra generated by C. It is, in fact, the intersection of all � -algebras
(of subsets of X ) that contain C: Here is an important example:

Definition 10.1.14 (Borel Algebra, Borel Set). Let OR denote the collection of
all open subsets of R: The Borel algebra of R, denoted by BR; is the ��algebra
generated by OR: A set B 2 BR is said to be a Borel set (of R).

Exercise 10.1.15.

(a) Show that, in the above definition of BR; we may replace OR by the collection
CR of all closed subsets of R:

(b) Let AC1 and AC2 be the � -algebras generated by C1 WD f.a; b� W a; b 2 R; a �
bg and C2 WD f.�1; b� W b 2 Rg; respectively. Show that

AC1 D BR D AC2 :

Theorem 10.1.16 (M�.R/ is a � -Algebra). The collection M�.R/ of all
(Lebesgue) measurable subsets of R is a � -algebra containing every set Z � R

with ��.Z/ D 0: Also, Lebesgue measure � WD ��jM� is monotone, translation
invariant, reflection invariant, and countably (hence finitely) additive.

Proof. If ��.Z/ D 0; then for each A � R we have 0 � ��.A \Z/ � ��.Z/ D 0
and hence ��.A \Z/ D 0. Since �� is monotone, we have

��.A/ � ��.A \Zc/ D ��.A \Z/C ��.A \Zc/

and Z 2 M� follows. In particular, ; 2 M� and hence R 2 M� because it
is obvious from the definition that E 2 M� if and only if Ec 2 M�: Next, if
E; F 2M� and A � R; then we have

��.A/ D ��.A \E/C ��.A \Ec/

D ��.A \E \ F /C ��.A \E \ F c/

C ��.A \Ec \ F /C ��.A \Ec \ F c/

� ��.A \ .E [ F //C ��.A \ .E [ F /c/;
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which implies that E [F 2M� and hence M� is an algebra. It also shows that, if
E; F 2M� and E \ F D ;; then

��.E [ F / D ��..E [ F / \E/C ��..E [ F / \Ec/ D ��.E/C ��.F /:

Thus, by induction, ��jM� is finitely additive. To prove that M� is a � -algebra, let
.En/

1
nD1 be a sequence of pairwise disjoint sets in M� and put E WDS1

kD1 Ek and
Fn WD Sn

kD1 Ek: Then we have Fn 2M�; Fn \ En D En; and Fn \ Ec
n D Fn�1

(with F0 WD ;/: Now, for each A � R; a simple induction gives

��.A \ Fn/ D ��.A \En/C ��.A \ Fn�1/ D
n
X

kD1
��.A \Ek/:

(Why?) Since Ec � F c
n ; we therefore obtain

��.A/ D ��.A \ Fn/C ��.A \ F c
n / �

n
X

kD1
��.A \Ek/C ��.A \Ec/;

which (letting n!1) implies

��.A/ � ��.A \Ec/C
1
X

nD1
��.A \En/ (�)

� ��.A \Ec/C ��.A \E/;

and hence E 2M�: If the En 2M� are not pairwise disjoint, we define F1 WD E1
and Fn WD En n Sn�1

kD1 Fk for all n � 2 and note that Fn 2 M� for all n 2 N;

Fi \ Fj D ; if i ¤ j; and
S1
nD1 En D

S1
nD1 Fn: We have thus proved that M�

is a � -algebra. Next, we already know (cf. Proposition 10.1.4) that �� is monotone,
translation invariant, and reflection invariant. That E 2M� implies E C x 2M�

for any x 2 R can be seen by noting that (cf. Exercise 10.1.3)

��.A/ D ��.A � x/ D ���.A � x/ \E�C ���.A � x/ \Ec
�

D ����.A � x/ \E�C x
�

C ����.A � x/ \Ec
�C x

�

D ���A \ .E C x/�C ���A \ .E C x/c�;

for every A � R: A similar argument shows that E 2M� if and only if �E 2M�

and we then have �.E/ D �.�E/: Finally, the countable additivity of � follows
from (�) if we replace A by E WDS1

nD1 En: ut
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Exercise 10.1.17 (Effect of Scaling). Given any E 2M� and any affine function
f .x/ WD mx C b; show that f .E/ D mE C b WD fmx C b W x 2 Eg 2M� and
�
�

f .E/
� D jmj�.E/: Hint: Reduce to the case m > 0 and b D 0.

Remark 10.1.18.

1. (Lebesgue Measure Is Complete). The measure � is complete in the sense that
M�.R/ contains all subsets of any set of measure zero. We also say that the
� -algebra M�.R/ is complete. The Borel algebra BR; on the other hand, is not
complete. For example, Cantor’s ternary set contains subsets that are not Borel
sets (cf. Problem #18 at the end of this chapter or Halmos’s Measure Theory
[Hal50], p. 67).

2. (Lebesgue Measure Generalizes Length). We have already seen (cf. Proposi-
tion 10.1.4) that the outer measure of an interval is its length. Thus ��.I / D
�.I / WD b � a if I is an interval with endpoints a � b and ��.I / D �.I / WD 1
if I is unbounded. To justify our use of the symbol � to denote both the length
(of intervals) and the measure (of Lebesgue measurable sets), we must show
that each interval I � R is measurable (i.e., I 2 M�) and hence its length
and (Lebesgue) measure are identical. In fact, we have the following stronger
assertion.

Theorem 10.1.19 (BR � M�.R/). Every Borel set in R is Lebesgue measurable.
In particular, all open and closed sets are measurable.

Proof. In view of Exercise 10.1.15, it suffices to show that .�1; b� 2M� for every
b 2 R: Given any set A � R; we must show that

��.A/ � ��.A0/C ��.A00/; ()

where A0 WD A \ .�1; b� and A00 WD A \ .b;1/: We may (and do) assume that
��.A/ <1 and, given any " > 0; pick a sequence .In/ of open intervals such that
A �S1

nD1 In and

1
X

nD1
�.In/ � ��.A/C ";

where �.In/ is the (usual) length of the interval In. For each n 2 N consider the
intervals I 0

n WD In \ .�1; b� and I 00
n WD In \ .b;1/, which may be empty, and note

that we have �.In/ D �.I 0
n/C �.I 00

n /: Now A0 � S1
nD1 I 0

n and A00 � S1
nD1 I 00

n and
hence we have

��.A0/ � ���
1
[

nD1
I 0
n

�

�
1
X

nD1
�.I 0

n/ and

��.A00/ � ���
1
[

nD1
I 00
n

�

�
1
X

nD1
�.I 00

n /;
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from which we deduce

��.A0/C ��.A00/ �
1
X

nD1

�

�.I 0
n/C �.I 00

n /
�

�
1
X

nD1
�.In/ � ��.A/C ":

Since " > 0 was arbitrary, () follows and the proof is complete. ut
Remark 10.1.20. As it turns out, the inclusion BR � M�.R/ is a proper one;
i.e., there are Lebesgue measurable sets that are not Borel sets. One way to see
this is given in Problem #18 at the end of the chapter. But, as was pointed out
before, we have Littlewood’s first principle, which says that a Lebesgue measurable
set is nearly a finite union of (disjoint) open intervals and hence nearly Borel.
Before making this and related approximations precise, let us give an example of
a nonmeasurable set:

Example 10.1.21 (A Nonmeasurable Set). On the real line R; let us set x � y if
x � y 2 Q: This is easily seen to be an equivalence relation. Now let E � .0; 1/ be
a set containing exactly one representative from each equivalence class (the Axiom
of Choice is needed here). We claim that E is not Lebesgue measurable. Indeed,
given any x 2 .0; 1/, there is a y 2 E such that x � y 2 .�1; 1/ \Q: Therefore, if
.�1; 1/ \Q D fr1; r2; : : :g; then

.0; 1/ �
1
[

nD1
.E C rn/ � .�1; 2/; (�)

where EC rn WD fyC rn W y 2 Eg: Now, if j ¤ k; then .EC rj /\ .EC rk/ D ;:
Indeed, if x 2 .E C rj / \ .E C rk/; then we have x D y C rj D z C rk with
y; z 2 E: It follows that y � z D rk � rj 2 Q and hence y � z: But then, by
the definition of E; we must have y D z; which is absurd. Now suppose that E is
Lebesgue measurable. Then we have �.E/ D �.E C rn/ for all n 2 N and, by the
countable additivity, (�) implies

1 D �..0; 1// �
1
X

nD1
�.E C rn/ � �..�1; 2// D 3: (�)

If �.E/ D 0; then the first inequality in (�) gives 1 � 0 and if �.E/ > 0; then the
second inequality in (�) implies1 � 3: It follows from these contradictions that E
is indeed nonmeasurable as claimed.

Theorem 10.1.22 (Littlewood’s First Principle). IfE 2M�<1.R/ (i.e., �.E/ <
1), then for any " > 0 there exists a finite sequence .Ik/nkD1 of (disjoint) open
intervals such that, with U WDSn

kD1 Ik; we have

d�.U;E/ WD ��.U�E/ < ":
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Conversely, if for each " > 0 there is a finite sequence of open intervals with union
U such that ��.U�E/ < "; then E 2M�.R/, possibly with �.E/ D1:
Proof. Suppose E 2 M�<1 and let " > 0 be given. Using the outer regularity
of � (cf. Corollary 10.1.9), we can pick an open set O with E � O and �.O/ <
�.E/C "=2: In particular, �.O/ < 1: Let .Ik/1kD1 be a sequence of disjoint open
intervals with O DS1

kD1 Ik and note that the (finite) additivity of � gives

�.O nE/ D �
�

1
[

kD1
In nE

�

D �.O/ � �.E/ < "

2
: ()

By countable additivity, �.O/ D P1
kD1 �.Ik/ < 1 so we can pick n 2 N such

that
Pn

kD1 �.Ik/ > �.O/ � "=2I i.e., �.O n U/ D �.O/ � �.U / < "=2; where we
have defined U WD Sn

kD1 Ik: Since E n U � O n U and � is monotone, we have
�.E n U/ � �.O n U/ < "=2: On the other hand, using U n E � O n E and (),
we also have �.U nE/ < "=2 and hence

�.U�E/ D �.U nE/C �.E n U/ < "

2
C "

2
D ":

For the converse we shall prove that

9G 2 Gı with E � G and ��.G nE/ D 0; ()

from which E D G n .G n E/ 2M� follows because any Gı is measurable and so
is any set with (outer) measure zero. Now note that () follows from

8" > 0 there is an open set O � E such that ��.O nE/ < ": (  )

Indeed, applying () with " D 1=k; k 2 N;we can find an open setOk � E with
��.Ok n E/ < 1=k. If we set G WD T1

kD1 Ok; then E � G 2 Gı and ��.G n E/ <
1=k for all k 2 N; implying (). So suppose that for every " > 0 there is a finite
union U of open intervals with ��.U�E/ < ": Then we have ��.E n U/ < "

(as well as ��.U n E/ < ") and, using outer regularity, we can pick an open set
O 0 � E nU such that ��.O 0/ � ��.E nU/C " < 2": But then, withO WD O 0[U;
we haveO � E and ��.O nE/ � ��.U nE/C��.O 0/ < 3", which implies ()
and completes the proof. ut

In our next theorem we list a few statements that are logically equivalent to the
(Lebesgue) measurability of a set. Actually, some of them are already contained in
(the proof of) Littlewood’s first principle (Theorem 10.1.22).

Theorem 10.1.23 (Criteria for Measurability). For a set E � R the following
statements are pairwise equivalent:

(i) E is measurable.
(ii) For every " > 0 there is an open set O � E such that ��.O nE/ < ":



10.1 Outer Measure 477

(iii) For every " > 0 there is a closed set F � E such that ��.E n F / < ":
(iv) There is a set G 2 Gı such that E � G and ��.G nE/ D 0:
(v) There is a set F 2 F� such that E � F and ��.E n F / D 0:

If ��.E/ <1; then the above statements are equivalent to
(vi) For every " > 0 there is a finite union U of open intervals such that

d�.E;U / WD ��.U�E/ < ":

Proof. The implications .i/) .ii/) .iv/) .i/ are already contained in the proof
of Theorem 10.1.22. Also, E 2 M� , Ec 2 M� and applying (ii) to Ec; for
any " > 0 we can find an open set O � Ec with �.O n Ec/ D �.O \ E/ D
�.E \ F c/ D �.E n F / < "; where F WD Oc is a closed set with F � E: It
follows that .ii/ , .iii/: Similarly, applying (iv) to Ec , we can find G 2 Gı such
that Ec � G and ��.G n Ec/ D 0: Thus, if we set F WD Gc , then F 2 F� ; E � F
and ��.E nF / D 0 and we obtain .iv/, .v/: Since the last statement also follows
from Theorem 10.1.22, the proof is complete. ut
Remark 10.1.24.

1 (Measurable Means “Almost Borel”). Since Gı � BR and F� � BR; criteria
(iv) and (v) show that a set E � R is (Lebesgue) measurable if and only if it can
be approximated by a Gı or an F� (i.e., by a Borel set) to within a set of measure
zero. Indeed, (iv) means that E D G n .G nE/ with G 2 Gı and ��.G nE/ D 0;
while (v) gives E D F [ .E n F / with F 2 F� and ��.E n F / D 0.

2 (M�.R/ is the Completion of BR). Let A denote the completion of BR; i.e.,
the smallest � -algebra that contains BR as well as all subsets of any Borel set of
measure zero. Now M�.R/ is complete and (by Theorem 10.1.19) BR �M�.R/:

Thus we need only show that M�.R/ � A: Given any E 2M�; pick (using the
above remark) G 2 BR with G D E [ .G n E/: Similarly pick Z 2 BR with
G nE � Z and �.Z/ D 0: But thenG nE 2 A and henceE D G n.G nE/ 2 A:

Recall that a numerical function f is continuous at a point a if we have
limn!1 f .xn/ D f .a/ D f .limn!1 xn/; for every sequence .xn/ with
lim.xn/ D a: Even though Lebesgue measure is a set function � W M� ! Œ0;1�;
we shall now show that it also behaves nicely (i.e., continuously) with respect to
limits of sets in the following sense:

Theorem 10.1.25 (Continuity of �, Monotone Convergence).

(a) Let .En/ be a sequence in M� that is increasing, i.e., E1 � E2 � E3; : : : and
let E D limEn WDS1

nD1 En: Then we have

�.E/ D �� lim
n!1En

� D lim
n!1�.En/:
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(b) Let .En/ be a sequence in M� that is decreasing, i.e., E1 � E2 � E3; : : : and
let E D limEn WDT1

nD1 En: If �.E1/ <1; then we have

�.E/ D �� lim
n!1En

� D lim
n!1�.En/:

Proof.

(a) Let F1 WD E1 and Fn WD En n En�1 for all n � 2: Then .Fn/ is a sequence
of pairwise disjoint measurable sets with En D Sn

kD1 Ek D
Sn
kD1 Fk for

every n 2 N and E D S1
kD1 Ek D

S1
kD1 Fk: Thus, by countable (and finite)

additivity, we have �.E/ DP1
kD1 �.Fk/; �.En/ D

Pn
kD1 �.Fk/ and hence

�.E/ D
1
X

kD1
�.Fk/ D lim

n!1

n
X

kD1
�.Fk/ D lim

n!1�.En/:

(b) Let Fn WD En n EnC1 for all n 2 N: Then .Fn/ is an increasing sequence of
measurable sets with F WD S1

kD1 Fk D E1 n E (where E WD T1
kD1 Ek) and

Fn DSn
kD1 Fk D E1 nEnC1: Therefore, applying part (a), we have

�.E1/��.E/ D �.E1nE/ D �.F / D lim
n!1�.Fn/ D lim

n!1
�

�.E1/��.EnC1/
�

;

which, in view of the assumption �.E1/ <1; completes the proof. ut
Exercise 10.1.26. Show that the assumption �.E1/ < 1 in part (b) is necessary
by giving an example of a decreasing sequence .En/ in M� with �.En/ D 1 for
all n 2 N and E WDT1

nD1 En D ;:

10.2 (Lebesgue) Measurable Functions

As we saw in Chap. 7, the Riemann integral was initially defined for step functions
before it was extended to more general functions that could be approximated by
step functions, e.g., the regulated functions. For Lebesgue integral we follow the
same kind of construction, but the natural substitute for a step function is now a
simple function, to be defined shortly. These functions will be the building blocks
of more general measurable functions that include all functions one encounters in
practice. Lebesgue integral, initially defined for simple functions, will be extended
to various subspaces of the space of all measurable functions by a limiting process.
These spaces are much larger than the space of Riemann integrable functions and
Lebesgue integral is proved to be a true extension of the Riemann integral when the
latter is defined.
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Definition 10.2.1 (Simple Function). We say that a function f W R ! R is a
simple function if it can be written as a finite linear combination

� D
n
X

kD1
ak
Ak ; (�)

with real constants a1; : : : ; an and measurable sets A1; : : : ; An: The set of all simple
functions on R will be denoted by Simp.R/:

Example 10.2.2 (Step.R/ � Simp.R/). Since intervals are measurable (including
those reduced to points), it is obvious that all step functions are simple functions.
The converse is false. For example (the Dirichlet function) 
Q is certainly not a step
function, but it is clearly a simple function.

Remark 10.2.3 (Canonical Representation). Note that, for a simple function �;
the representation (�) in Definition 10.2.1 is not unique. But if � is simple and if
fa1; : : : ; ang is the set of distinct values of �; then

� D
n
X

kD1
ak
Ak ; (�)

where the measurable sets Ak WD fx W �.x/ D akg are pairwise disjoint and
Sn
kD1 Ak D R: The representation (�), which is unique, is called the canonical

representation of �:

Exercise 10.2.4. Given any � 2 Simp.R/, show that we have j�j 2 Simp.R/:More
generally, show that if f .x/ is any real-valued function whose domain contains the
(finite) range of �; then f ı � 2 Simp.R/:

Proposition 10.2.5. Given any �;  2 Simp.R/, and c 2 R; the functions
c� C ; � , maxf�; g, and minf�; g are simple functions. In particular, �C WD
maxf�; 0g; �� WD maxf��; 0g; and j�j D �C C �� are simple functions.

Proof. Let � D Pm
jD1 aj 
Aj and  D Pn

kD1 bk
Bk be the canonical represen-
tations of � and  ; respectively, and let Cjk WD Aj \ Bk; for 1 � j � m and
1 � k � n: Since .Aj / and .Bk/ are both (finite) sequences of pairwise disjoint
measurable sets, so is the (double) sequence .Cjk/. Also, 
Aj D

Pn
kD1 
Cjk and


Bk D
Pm

jD1 
Cjk : Therefore,

c� C  D
n
X

kD1

m
X

jD1
.caj C bk/
Cjk and � D

n
X

kD1

m
X

jD1
aj bk
Cjk ()

are indeed simple. For maxf�; g and minf�; g we can now use Exercise 10.2.4
and the fact that maxfa; bg D .aCbCja�bj/=2 and minfa; bg D .aCb�ja�bj/=2
for any a; b 2 R: ut
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Remark 10.2.6.

(1) Note that the representation of c�C (resp., � ) given in () is not necessarily
canonical because the numbers caj C bk (resp., aj bk) need not be distinct.

(2) Using the above proposition repeatedly, it follows that if �1; : : : ; �n are simple
functions and if P.x1; : : : ; xn/ is a real-valued polynomial function of n
variables, then P.�1; : : : ; �n/; maxf�1; : : : ; �ng; and minf�1; : : : ; �ng are also
simple functions.

As pointed out above, simple functions are the building blocks of the class of
measurable functions. Before defining the latter, we need the following:

Proposition 10.2.7. Let E 2 M�.R/ and f W E ! R: Then the following
statements are pairwise equivalent:

(i) fx 2 E W f .x/ > bg 2M� .8b 2 R/;

(ii) fx 2 E W f .x/ � bg 2M� .8b 2 R/;

(iii) fx 2 E W f .x/ < bg 2M� .8b 2 R/;

(iv) fx 2 E W f .x/ � bg 2M� .8b 2 R/:

Moreover, any of these conditions implies that

(v) f �1.fbg/ WD fx 2 E W f .x/ D bg 2M� .8b 2 R/:

The equivalence of (i)–(iv) also holds if f W E ! R WD Œ�1;1� is extended
real-valued and (v) can then be replaced by

(vi) f �1.fbg/ WD fx 2 E W f .x/ D bg 2M� .8b 2 R/:

Proof. Whether f W E ! R or f W E ! R; for each b 2 R we have

(1) fx 2 E W f .x/ � bg DT1
nD1

˚

x 2 E W f .x/ > b � 1
n



,
(2) fx 2 E W f .x/ < bg D E n fx 2 E W f .x/ � bg,
(3) fx 2 E W f .x/ � bg DT1

nD1
˚

x 2 E W f .x/ < b C 1
n



, and
(4) fx 2 E W f .x/ > bg D E n fx 2 E W f .x/ � bg;
from which the equivalence of the four statements follows at once. For statement
(v), note that (i) and (ii) imply

f �1.fbg/ D fx 2 E W f .x/ � bg n fx 2 E W f .x/ > bg 2M� .8 b 2 R/:

Finally, if f W E ! R; then (v) implies that for (vi) we need only consider the cases
b D ˙1: But then note that we have

fx 2 E W f .x/ D C1g D
1
\

nD1
fx 2 E W f .x/ > ng 2M�; and

fx 2 E W f .x/ D �1g D
1
\

nD1
fx 2 E W f .x/ < �ng 2M�;

which complete the proof. ut
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Definition 10.2.8 ((Lebesgue) Measurable Function). Let E 2M�.R/. A func-
tion f W E ! R [resp., f W E ! R] is said to be (Lebesgue) measurable if any one
of the four statements (i)–(iv) in Proposition 10.2.7 is satisfied.

Notation 10.2.9 (L0.E;R/; L0.E;R/). The set of all measurable real-valued
[resp., extended real-valued] functions with domain E will be denoted L0.E;R/

[resp., L0.E;R/]. We also write L0.E;RC/ for the space of all nonnegative,
extended real-valued functions f W E ! RC; where RC WD Œ0;1�: Also, we
may write L0.R/ instead of L0.R;R/.

Remark 10.2.10.

1. (Measurability vs. Continuity). Note that the sets in statements (i)–(iv) of
Proposition 10.2.7 are all inverse images. For instance, in statement (i), fx 2 E W
f .x/ > bg is (by definition) f �1�.b;1/� [resp., f �1�.b;1��] if f W E ! R

[resp., f W E ! R]. In other words, measurability imposes conditions on the
inverse images of a special class of sets. This reminds us of continuity: Recall
that a function f W R ! R is continuous if and only if f �1.I / is open for each
open interval I:

2. (Global vs. Local). To study measurable functions and their integrals it is
possible and convenient to work with functions defined globally, i.e., on the
entire real line R: One can then localize the results using trivial extensions:

Definition 10.2.11 (Trivial Extension). Given any set S � R and any function
f W S ! R (or f W S ! R), the trivial extension of f is the function Qf W R! R

defined as follows:

Qf .x/ WD
(

f .x/ if x 2 S;
0 if x 62 S:

Proposition 10.2.12. Let E 2 M�: A function f W E ! R (or f W E ! R) is
measurable if and only if its trivial extension Qf is.

Proof. For a given b 2 R; note that we have

fx 2 R W Qf .x/ � bg D fx 2 E W f .x/ � bg [ F;

where F D ; if b < 0 and F D Ec if b � 0: It is then easily seen (why?) that
fx 2 E W f .x/ � bg 2M� if and only if fx 2 R W Qf .x/ � bg 2M�: ut
Example 10.2.13.

(1) Constant functions are measurable. Indeed, if f .x/ D c 2 R for all x 2 R and
if b 2 R is any given number, then

fx W f .x/ < bg D
(

; if b � c;
R if b > c:
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If f .x/ D 1 for all x 2 R; then fx W f .x/ < bg D ; for every b 2 R: Finally,
if f .x/ D �1 for all x 2 R; then fx W f .x/ < bg D R for all b 2 R:

(2) We have Simp.R/ � L0.R/: In fact � 2 Simp.R/ if and only if � is measurable
and takes on only a finite number of values. Indeed, if � is simple with canonical
representation � DPm

jD1 aj 
Aj ; then for any b 2 R we have

fx W �.x/ � bg D
[

fj Waj	bg
Aj 2M�:

Conversely, if � 2 L0.R/ and if a1; a2; : : : ; am are the distinct values of �;
then Aj WD ��1.faj g/ 2M� for each j and we have � DPm

jD1 aj 
Aj :
(3) Since step functions are simple, every step function is measurable.
(4) Every continuous function f W E ! R with measurable domain E 2 M� is

measurable. Indeed, the interval .b;1/ is open for every b 2 R and hence (by
Theorem 4.3.4) we have fx 2 E W f .x/ > bg D f �1�.b;1/� D E \ O;
for some open set O � R. Since O 2 M�; we have E \ O 2 M� and
f 2 L0.E;R/ follows.

(5) If f 2 L0.E;R/ and if F � E is measurable, then the restriction g WD f jF
is a measurable function because fx 2 F W g.x/ > bg D fx 2 E W f .x/ >
bg \ F 2M� for all b 2 R:

Exercise 10.2.14. Let E 2M�: Show that f 2 L0.E;R/ if and only if the sets

E1 WD fx 2 E W f .x/ D1g and E�1 WD fx 2 E W f .x/ D �1g

are both measurable and the real-valued function

g.x/ D
(

f .x/ if x 62 E1 [E�1;
0 if x 2 E1 [E�1

is measurable.

Exercise 10.2.15 (Monotone ) Measurable). Show that, if f W Œa; b� ! R is
monotone (or, more generally, of bounded variation), then it is measurable.

Exercise 10.2.16 (Composition with Continuous Functions). Show that, if f 2
L0.R/ and g 2 C.R/; then g ı f 2 L0.R/:

The next proposition shows that we can modify a measurable function on a set
of measure zero without destroying its measurability.

Proposition 10.2.17. Let E 2 M�; f 2 L0.E;R/, and g W E ! R: If the set
Z WD fx 2 E W f .x/ ¤ g.x/g has measure zero, then g 2 L0.E;R/:

Proof. Simply note that for any b 2 R we have

fx 2 E W g.x/ > bg D fx 2 E nZ W f .x/ > bg [ fx 2 Z W g.x/ > bg:
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Now the first set on the right side is measurable because E nZ 2M� and, f being
measurable, so is its restriction f jE nZ: As for the second set on the right side, it
has measure zero and hence is also in M�: ut
Remark 10.2.18. Given any E 2 M�.R/; we can check at once that “f .x/ D
g.x/ for almost all x 2 E” is an equivalence relation on L0.E;R/ (as well as
L0.E;R/). Thus, in view of Proposition 10.2.17, it is natural to identify measurable
functions that are equal almost everywhere or even allow functions to be defined
almost everywhere. This can be done more formally:

Notation 10.2.19 (The Spaces L0.E;R/ and L0.E;R/). Given any E 2
M�.R/; let N .E;R/ [resp. N .E;R/] denote the set of all null functions, i.e.,
all f W E ! R [resp., f W E ! R] with f .x/ D 0 for almost all x 2 E: We then
define L0.E;R/ WD L0.E;R/=N .E;R/ [resp., L0.E;R/ WD L0.E;R/=N .E;R/].
Thus, for each f 2 L0.E;R/; say, its class Œf � 2 L0.E;R/ will consist of all
functions in L0.E;R/ that agree with f for almost all x 2 E: If E D R; we
may write L0.R/ instead of L0.R;R/: Actually, we shall often identify any pair of
measurable functions on E that are equal almost everywhere. Therefore, we may
(occasionally) even write L0.E;R/ instead of L0.E;R/, etc.

As in the case of continuous functions, measurable functions are stable under
algebraic and lattice operations:

Proposition 10.2.20. Given any E 2 M�; the set L0.E;R/ is an algebra with
identity as well as a lattice. In other words, all constant functions are measurable
and, for any measurable functions f and g on E and any c 2 R; the functions

cf C g; f 2; jf j; fg; maxff; gg; minff; gg; f C and f � (�)

are also measurable. Finally, if g.x/ ¤ 0 for all x 2 E, or if the (measurable) set
Z WD fx 2 E W g.x/ D 0g has measure zero and g.x/ is reassigned an arbitrary
nonzero value for each x 2 Z; then f=g is also measurable on E.

Proof. We have already seen that constant functions on E are measurable. To prove
the measurability of the functions listed in (�), it suffices to show that f Cg; f 2 and
jf j are measurable. Indeed, we can then use the identities fg D Œ.f C g/2 � f 2 �
g2�=2, maxff; gg D .f C gC jf � gj/=2, and minff; gg D .f C g � jf � gj/=2:
Now, given any b 2 R, consider the set fx 2 E W f .x/ C g.x/ < bg: Since Q is
dense in R; we can find a number r 2 Q such that f .x/ < r < b � g.x/ and hence

fx W f .x/C g.x/ < bg D
[

r2Q

�fx W f .x/ < rg \ fx W g.x/ < b � rg� 2M�

because the right side is a countable union of measurable sets. Therefore, f C g 2
L0.E;R/: Next note that

b � 0 H) fx W f 2.x/ > bg D fx W f .x/ >
p
bg [ fx W f .x/ < �

p
bg 2M� and
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b < 0 H) fx W f 2.x/ > bg D E 2M�

imply f 2 2 L0.E;R/: Also, jf j 2 L0.E;R/ because for each b � 0 we have

fx W jf .x/j > bg D fx W f .x/ > bg [ fx W f .x/ < �bg 2M�:

Finally, for f=g; we may assume (by Proposition 10.2.17) that g.x/ ¤ 0 for all
x 2 E and need only show that 1=g 2 L0.E;R/: However, we then have

n

x W 1

g.x/
> b

o

D

8

ˆ

ˆ

<

ˆ

ˆ

:

fx W 0 < g.x/ < 1=bg 2M� if b > 0;

fx W g.x/ > 0g 2M� if b D 0;
fx W g.x/ < 1=bg [ fx W g.x/ > 0g 2M� if b < 0;

which shows indeed that 1=g 2 L0.E;R/: ut
Remark 10.2.21.

(1) Proposition 10.2.20 and its proof remain mostly valid for L0.E;R/ with a
couple of exceptions. First, recall that we have adopted the convention that
0 � ˙1 D 0 but have left the expression1�1 undefined. Therefore, cf D 0
if c D 0; even for f W E ! R: However, f C g is not well defined on the
measurable set

F WD fx 2 E W f .x/ D1; g.x/ D �1g [ fx 2 E W f .x/ D �1; g.x/ D1g:

Thus L0.E;R/ is not a vector space. However, if we define f C g to be any
(fixed) number (e.g., zero) on F , or if F has measure zero and we define f C g
arbitrarily on F , then f C g 2 L0.E;R/ follows. (Why?) Next, our proof of
the measurability of fg for real-valued measurable functions f and g relied
on the identity fg D Œ.f C g/2 � f 2 � g2�=2: We shall use this and a limit
argument to prove the measurability of fg when f; g 2 L0.E;R/ after the
next proposition.

(2) Note that in view of the identities

f D f C � f �; jf j D f C C f �; f C D jf j C f
2

; and f � D jf j � f
2

;

we have f 2 L0.E;R/ if and only if f C; f � 2 L0.E;R/:

(3) If E 2 M�; then for any f1; f2; : : : ; fn 2 L0.E;R/ and any constants
c1; c2; : : : ; cn 2 R; repeated use of Proposition 10.2.20 implies that we have
Pn

jD1 cj fj 2 L0.E;R/;maxff1; : : : ; fng 2 L0.E;R/, and minff1; : : : ; fng 2
L0.E;R/. Also, for any polynomial P.x1; : : : ; xn/; we have P.f1; : : : ; fn/ 2
L0.E;R/:
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Fortunately for integration, measurable functions turn out to behave a lot better
than continuous functions. As we have seen, a pointwise limit of continuous
functions need not be continuous. The situation is different for sequences of
measurable functions:

Proposition 10.2.22. Let .fn/n2N be a sequence in L0.E;R/: Then the functions
infff1; : : : ; fng; supff1; : : : ; fng; infffn W n 2 Ng, supffn W n 2 Ng; lim.fn/;
and lim.fn/ are all measurable. In particular, if f .x/ WD lim.fn.x// exists (as an
extended real number) for all x 2 E then f is measurable.

Proof. Let gn.x/ WD supff1.x/; : : : ; fn.x/g for all x 2 E: Then fx W gn.x/ >
bg D Sn

jD1fx W fj .x/ > bg 2 M�; which shows gn is measurable. Similarly, if
we define g.x/ WD supffk.x/ W k 2 Ng for all x 2 E; then fx W g.x/ > bg D
S1
kD1fx W fk.x/ > bg 2 M� and hence g is measurable. For the measurability

of infff1; : : : ; fng and infffn W n 2 Ng we can use a similar argument. Next, by
what we just established, hn WD supffk W k � ng is measurable for each n 2 N and
hence so is lim.fn/ D inffhn W n 2 Ng. Again, a similar argument establishes the
measurability of lim.fn/: Finally, if f WD lim.fn/ exists, then lim.fn/ D lim.fn/ D
lim.fn/ shows that it is measurable and the proof is complete. ut
Proposition 10.2.23. E 2M�.R/ and f; g 2 L0.E;R/ imply fg 2 L0.E;R/:

Proof. For each m; n 2 N; let us introduce the truncated functions

fn.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

f .x/ if jf .x/j � n;
n if f .x/ > n;

�n if f .x/ < �n;
and gm.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

g.x/ if jg.x/j � m;
m if g.x/ > m;

�m if g.x/ < �m:

Then fn and gm are (real-valued) measurable functions on E (why?) and hence
(by Proposition 10.2.20) so are the products fngm for all m; n 2 N: Since

f .x/gm.x/ D lim
n!1fn.x/gm.x/ 8x 2 E;

the measurability of fgm follows from Proposition 10.2.22. But then another
application of the same proposition and the fact that

f .x/g.x/ D lim
m!1f .x/gm.x/ 8x 2 E

show that fg 2 L0.E;R/: ut
We now show that, as pointed out before, simple functions are indeed the building

blocks of measurable functions:

Theorem 10.2.24. Let E 2 M�.R/: Then f 2 L0.E;R/ if and only if there is
a sequence .�n/ of simple functions on E such that j�nj � jf j for all n and
f .x/ D lim.�n.x// for all x 2 E. In fact, if f W E ! Œ0;1�, then there exists
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an increasing sequence of simple functions that converges to f at every x 2 E and
the convergence is uniform if f is bounded.

Proof. If f .x/ D lim.�n.x// for all x 2 E; then by Proposition 10.2.22 we have
f 2 L0.E;R/: For the converse, let us first prove the last statement. So suppose
that f W E ! Œ0;1� is measurable and let n 2 N: Then, for 1 � k � n2n; the sets

En;k WD
�

x 2 E W k � 1
2n
� f .x/ < k

2n

�

; Fn WD fx 2 E W f .x/ � ng

are all measurable. Define the sequence .�n/ as follows:

�n WD
n2n
X

kD1

k � 1
2n


En;k C n
Fn:

Then .�n/ is a sequence of simple functions such that

0 � �1 � �2 � � � � � f; 0 � �n � n; and 0 � f .x/ � �n.x/ < 1

2n

for all x 62 Fn. Thus .�n/ " f D supf�n W n 2 Ng: Also, if f .x/ � N for all
x 2 E and some N 2 N; then 0 � f .x/ � �n.x/ < 1=2n for all n � N and hence
lim.�n/ D f uniformly. Finally, for a measurable function f W E ! Œ�1;1�; we
apply the above construction to f C and f � and use f D f C � f �: ut
Exercise 10.2.25. Let E 2M�.R/ and f; g 2 L0.E;R/: Use Theorem 10.2.24 to
deduce the measurability of fg. Also deduce the measurability of f Cg provided it
is well defined, e.g., if f; g 2 L0.E;R/. Note that f Cg (which is not well defined
in general) can be suitably redefined to become measurable, as we pointed out in
Remarks 10.2.21.

Finally, in some applications we may have to work with complex-valued
functions and need the following:

Definition 10.2.26. Let E 2 M�.R/: A function f W E ! C is said to be
measurable if its real and imaginary parts are. Thus with f D Re.f / C i Im.f /;
where Re.f / and Im.f / are real-valued, we have Re.f /; Im.f / 2 L0.E;R/:

Notation 10.2.27 (L0.E;C/; L0.E;C/). Given any E 2 M�.R/; we write
L0.E;C/ for the algebra of all Lebesgue measurable functions f W E ! C:

We also write L0.E;C/ for the corresponding algebra of equivalence classes of
functions in L0.E;C/ that are equal almost everywhere on E:
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10.3 The Lebesgue Integral

As promised above, we shall first define the Lebesgue integral for simple functions
and then extend it to the largest possible subspace of Lebesgue measurable functions
defined on a given measurable set. As was pointed out before, if Q1 WD Q \ Œ0; 1�,
then the simple functions 
Q1 and 
Œ0;1�nQ1 are not Riemann integrable. And yet, it
is natural to expect the “integral” of the characteristic function 
E of a measurable
set E 2M� to be the measure �.E/ of that set:

Z


E d� D �.E/:

This will basically serve as the starting point in defining our new integral. Thus
the integral of a (finite) linear combination of characteristic functions of measurable
sets shall be the corresponding linear combinations of their measures. The following
definition will be needed.

Definition 10.3.1 (Simp0.R/; SimpC
0

.R/). We say that a function f W R ! R

vanishes outside a set of finite measure if there is a setE 2M�.R/with �.E/ <1
such that f .x/ D 0 for all x 62 E: The set of all simple functions that vanish outside
a set of finite measure will be denoted Simp0.R/ and the set all simple functions � W
R ! Œ0;1/ that vanish outside a set of finite measure will be denoted SimpC

0 .R/:

Note that, if �;  2 Simp0.R/ and c 2 R; then we clearly have c�C 2 Simp0.R/
and j�j 2 SimpC

0 .R/. It is a simple exercise to check that Simp0.R/ is a real vector
space.

Definition 10.3.2 (Integral of a Simple Function). Let � 2 Simp0.R/ have
canonical representation � D Pn

jD1 aj 
Aj : Then we define its Lebesgue integral
to be the number

Z

� d� WD
n
X

jD1
aj �.Aj /: (�)

If E is any measurable set, then we also define

Z

E

� d� WD
Z

� � 
E d� D
n
X

jD1
aj �.Aj \E/: (�)

In particular, for any A; E 2M�.R/; we have A\E 2M�; 
A �
E D 
A\E and
hence

Z


A d� D �.A/ and
Z

E


A d� D �.A \E/:



488 10 Lebesgue Measure and Integral in R

Remarks and Notation 10.3.3.

(1) Note that we may have to use 0 � 1 D 0 in (�) because it may happen that for
some j we have aj D 0 and �.Aj / D1: Also, it follows from (�) that

�.E/ D 0 H)
Z

E

� D 0:

(2) If it is necessary to display the (“dummy”) integration variable, then we write,
e.g.,

R

�.x/ d�.x/: On the other hand, we may occasionally omit d� and
simply write

R

� (or
R

E
�) if no confusion results.

(3) Since simple functions have many possible representations, the following
lemma will be useful.

Lemma 10.3.4. Let � 2 Simp0.R/ have canonical representation � D
Pm

jD1 aj 
Aj and suppose that � D Pn
kD1 bk
Bk is another representation of

�; where the Bk 2M� are also pairwise disjoint and
Sn
kD1 Bk D R: Then

Z

� D
n
X

kD1
bk�.Bk/:

Proof. Simply note that for each j D 1; : : : ; m; we have Aj D fx W
�.x/ D aj g D S

fkWbkDaj g Bk so (by the additivity of �) we have aj �.Aj / D
P

fkWbkDaj g aj �.Bk/ D
P

fkWbkDaj g bk�.Bk/. But then we have

m
X

jD1
aj �.Aj / D

m
X

jD1

X

fkWbkDaj g
bk�.Bk/ D

n
X

kD1
bk�.Bk/: ut

Theorem 10.3.5 (Properties of
R

�). Let �;  2 Simp0.R/; c 2 R, and E 2
M�.R/ be arbitrary. Then we have

(1)
R

E
.c� C  / D c R

E
� C R

E
 (Linearity),

(2) � �  a.e. on E H) R

E
� � R

E
 (Monotonicity),

(3)
ˇ

ˇ

R

E
�
ˇ

ˇ � R
E
j�j (Triangle Inequality),

(4) � D  a.e. on E H) R

E
� D R

E
 , and

(5) � � 0 a.e. and
R

E
� D 0 H) � D 0 a.e. on E:

Proof. Let � D Pm
jD1 aj 
Aj and  D Pn

kD1 ak
Bk be the canonical represen-
tations of � and  . Then, the Aj \ Bk are disjoint measurable sets and, as in
Proposition 10.2.5, we have

� D
m
X

jD1

n
X

kD1
aj 
Aj\Bk ;  D

m
X

jD1

n
X

kD1
bk
Aj\Bk ; and
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c� C  D
m
X

jD1

n
X

kD1
.caj C bk/
Aj\Bk :

Applying Lemma 10.3.4, we therefore have

Z

E

� D
m
X

jD1

n
X

kD1
aj �.Aj \ Bk \E/;

Z

E

 D
m
X

jD1

n
X

kD1
bk�.Aj \ Bk \E/; and

Z

E

.c� C  / D
m
X

jD1

n
X

kD1
.caj C bk/�.Aj \ Bk \E/;

from which (1) follows. To prove (2), note that by linearity we have
R

E
� � R

E
 D

R

E
.� �  /, so it suffices to show that � � 0 a.e. on E implies

R

E
� � 0: But then,

�.Aj \E/ D 0 if aj < 0 and hence

Z

E

� D
X

fj Waj <0g
aj �.Aj \E/C

X

fj Waj�0g
aj �.Aj \E/ D

X

fj Waj�0g
aj �.Aj \E/ � 0;

as desired. Next, (3) follows from (2) and �j�j � � � j�j and (4) follows from
(2) as well. Finally, to prove (5), note that we have �.x/ � 0 for a.e. x 2 E; so it
suffices to show that �.E \ fx W �.x/ > 0g/ D 0: But if for some a > 0 we had
�.E\fx W �.x/ D ag/ > 0; then we would get

R

E
� � a�.E\fx W �.x/ D ag/ >

0; a contradiction. ut
Corollary 10.3.6. Let � 2 Simp0.R/ be represented by � D Pn

kD1 bk
Bk , where
the Bk are not necessarily disjoint. Then for any E 2M�.R/ we have

Z

E

� D
n
X

kD1
bk�.Bk \E/:

In other words, in Lemma 10.3.4, the assumption that the Bk be pairwise disjoint is
unnecessary.

Exercise 10.3.7 (Set Additivity). Let � 2 Simp0.R/ and E; F 2M�.R/: Show
that if E \ F has measure zero, then

Z

E[F
� D

Z

E

� C
Z

F

�:

Hint: First show this for the case E \ F D ;:



490 10 Lebesgue Measure and Integral in R

Exercise 10.3.8 (Set Monotonicity). Let � 2 SimpC
0 .R/ and E; F 2 M�.R/:

Show that

E � F H)
Z

E

� �
Z

F

�:

Exercise 10.3.9. Let � 2 Simp0.R/ and E; F 2M�.R/: Show that

�.x/ D 0 8x 62 F H)
Z

E

� D
Z

E\F
�:

Before we go any further, let us include a useful lemma:

Lemma 10.3.10. Let � 2 SimpC.R/: Then the set function  WM�.R/ ! Œ0;1�
defined by

.E/ D
Z

E

�; E 2M�.R/

is a (countably additive) measure.

Proof. Since we obviously have .E/ � 0 for all E 2M�.R/ and .;/ D 0; we
need only show that  is countably additive. Let � DPm

jD1 aj 
Aj be the canonical
representation of � with Aj 2M�.R/ for all j: If B DS1

nD1 Bn is a disjoint union
of measurable sets, then

.B/ WD
Z

B

� D
m
X

jD1
aj �.Aj \ B/ D

m
X

jD1

1
X

nD1
aj �.Aj \ Bn/

D
1
X

nD1

� m
X

jD1
aj �.Aj \ Bn/

�

D
1
X

nD1

Z

Bn

� D
1
X

nD1
.Bn/: ut

Remark 10.3.11. The above lemma is an extension of Theorem 10.1.25, which
asserts the continuity of Lebesgue measure � and is in fact the Monotone Conver-
gence Theorem for Measurable Sets. It will be extended (in Sect. 10.3) to one of the
fundamental convergence theorems for the Lebesgue integral.

We now define the upper and lower (Lebesgue) integrals of bounded functions:

Definition 10.3.12 (Upper and Lower (Lebesgue) Integrals). Let E 2
M�<1.R/ and let f W E ! R be a bounded function. We define the upper
(Lebesgue) integral and lower (Lebesgue) integral of f on E by

Z

E

f d� WD inf

�

Z

E

 W f �  on E;  2 Simp0.R/
�

and
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Z

E

f d� WD sup

�

Z

E

� W � � f on E; � 2 Simp0.R/
�

:

Proposition 10.3.13. Let E 2M�<1 and let f W E ! R be bounded. Then

Z

E

f d� D
Z

E

f d�

if and only if f is measurable.

Proof. Suppose first that f is measurable and let M > 0 be such that jf .x/j � M
for all x 2 E: Then for each n 2 N the sets

Ek WD
n

x 2 E W M.k � 1/
n

< f .x/ � Mk

n

o

; �n � k � n

are measurable, pairwise disjoint and E D Sn
kD�n Ek: In particular, �.E/ D

Pn
kD�n �.Ek/: Now consider the simple functions

�nD M

n

n
X

kD�n
k
Ek and  nD M

n

n
X

kD�n
.k � 1/
Ek :

Then �k;  k 2 Simp0.R/ and we have

Z

E

. n � �n/ D M

n

� n
X

�n
k�.Ek/ �

n
X

�n
.k � 1/�.Ek/

�

D M

n
�.E/:

Since �n.x/ � f .x/ �  n.x/ for all x 2 E; we deduce the inequalities

0 �
Z

E

f d� �
Z

E

f d� �
Z

E

. n � �n/ � M

n
�.E/ 8n 2 N;

from which
R

E
f d� D R

E
f d� follows. Conversely, if

R

E
f d� D R

E
f d�, then

for each n 2 N we can find simple functions �n;  n 2 Simp0.R/ such that

�n.x/ � f .x/ �  n.x/ .8x 2 E/ and
Z

E

. n � �n/ � 1

n
: ()

Define the functions

g D supf�n W n 2 Ng and h D inff n W n 2 Ng:
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By Proposition 10.2.22 we have g; h 2 L0.E;R/ and g � f � h: Now consider
the measurable sets

Zm WD fx 2 E W h.x/ � g.x/ > 1=mg and Z D fx 2 E W h.x/ � g.x/ > 0g:

We claim that �.Z/ D 0: Indeed, Z D S1
mD1 Zm and it suffices to show that

�.Zm/ D 0 for all m 2 N: But, with Fm;n WD fx 2 E W  n.x/ � �n.x/ > 1=mg; it
follows from () that

1

m
�.Fm;n/ D 1

m

Z

E


Fm;n �
Z

E

. n � �n/ � 1

n
;

which gives �.Fm;n/ < m=n: Since Zm � Fm;n for all n 2 N; we have �.Zm/ �
m=n for all n and hence �.Zm/ D 0: Thus we have proved that g.x/ D h.x/ for
almost all x 2 E and hence f D g D h except on a set of measure zero. But then
Proposition 10.2.17 implies that f 2 L0.E;R/ and the proof is complete. ut
Notation 10.3.14 (BL0.E/; BL0

0.E/). For any E 2 M�.R/ we let BL0.E/

denote the set of all bounded, measurable functions f W E ! R:We write BL0
0.E/

for all functions f 2 BL0.E/ that vanish outside a measurable subset F � E with
�.F / < 1: As pointed out before (cf. Remark 10.2.10 and Proposition 10.2.12),
we may assume that all functions we study have domain R by using their trivial
extensions if necessary. For a bounded, measurable function f W E ! R with
E 2M�<1.R/ we then have Qf 2 BL0

0.R/:

We are now ready to define the Lebesgue integral of bounded measurable
functions on a set of finite measure:

Definition 10.3.15 (Lebesgue Integral of Bounded Functions). Given any E 2
M�<1 and any bounded, measurable function f 2 BL0.E/; we define its
Lebesgue integral over E by

Z

E

f d� WD
Z

E

f d� D sup

�

Z

E

� W � � f on E; � 2 Simp0.R/
�

;

which, of course, coincides with the upper (Lebesgue) integral of f:

Notation 10.3.16. We sometimes use the abbreviated
R

E
f instead of

R

E
f d�:

However, if the dummy variable of integration has to be displayed, then we write
R

E
f .x/ d�.x/: If E D Œa; b�; we write

R b

a
f d� instead of

R

E
f d�: Also, if

f 2 BL0.R/ and f � 0 outside E 2M�<1; then we may even write
R

f instead
of
R

E
f:

Exercise 10.3.17.

(1) Show that for a simple function f 2 Simp0.R/ the above definition of the
integral agrees with Definition 10.3.2.
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(2) Show that if in Definition 10.3.15 �.E/ D 0; then
R

E
f d� D 0:

(3) Let E; F 2M�<1 with F � E and let f 2 BL0.E/: Show that

Z

F

f d� D
Z

E

f
F d�:

Notation 10.3.18 (BL1.E/ D BL0.E/; BL1.E/ D BL0.E/). The set of all
bounded Lebesgue integrable functions f W E ! R is denoted by BL1.E/: The
above definition implies that we have BL1.E/ D BL0.E/: Also, as in 10.2.19, we
define BL1.E/ WD BL1.E/=N .E/; where N .E/ denotes the set of real-valued,
null functions on E.

Recall that for any closed, bounded interval Œa; b� � R; a Riemann integrable
function f 2R.Œa; b�/ is necessarily bounded. As the following proposition shows,
f is actually (Lebesgue) measurable (hence Lebesgue integrable) and its Lebesgue
and Riemann integrals coincide:

Proposition 10.3.19 (Riemann Integrable ) Lebesgue Integrable). If f is
Riemann integrable on Œa; b�; then it is measurable and we have

Z b

a

f .x/ dx D
Z b

a

f .x/ d�.x/;

with the Riemann integral on the left and the Lebesgue integral on the right.

Proof. Let
R b

a
f .x/ dx and

R b

a
f .x/ dx denote the lower and upper Darboux

integrals of f; respectively. Since Step.Œa; b�/ � Simp.Œa; b�/; we have

Z b

a

f .x/ dx �
Z

Œa;b�

f d� �
Z

Œa;b�

f d� �
Z b

a

f .x/ dx:

But f 2R.Œa; b�/ implies that its lower and upper Darboux integrals coincide and
hence all the above inequalities are equalities. The (Lebesgue) measurability of f
now follows from Proposition 10.3.13. ut
Theorem 10.3.20 (Properties of

R
f d� for Bounded f ). If E 2M�<1, then

BL1.E/ D BL0.E/ is a real vector space. Also, for any f; g 2 BL1.E/ and any
c 2 R; we have

(1)
R

E
.cf C g/ d� D c R

E
f d�C R

E
g d�: (Linearity)

In particular, we have

Z

E

f d� D
Z

E

f C d� �
Z

E

f � d� and

Z

E

jf j d� D
Z

E

f C d�C
Z

E

f � d�:
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(2) IfA andB are measurable subsets ofE with �.A\B/ D 0 (e.g., ifA\B D ;),
then

Z

A[B
f d� D

Z

A

f d�C
Z

B

f d�:

(3) f � g a.e. on E H) R

E
f d� � R

E
g d� (Monotonicity),

(4) f D g a.e. on E H) R

E
f d� D R

E
g d�,

(5)
ˇ

ˇ

R

E
f d�

ˇ

ˇ � R
E
jf j d� (Triangle Inequality),

(6) If m � f .x/ �M for almost all x 2 E; then we have

m�.E/ �
Z

E

f d� �M�.E/; and

(7) f � 0 a.e. and
R

E
f d� D 0 H) f D 0 a.e. on E:

Proof. This is basically an extension of Theorem 10.3.5, where we saw that the
above statements are true if f and g are simple functions. In what follows all Greek
letters (�, , etc.) will always denote simple functions. Also, note that if c ¤ 0, then
� 2 Simp0.R/ if and only if c� 2 Simp0.R/. For (1) we first show that

R

E
cf d� D

c
R

E
f d�: Now for c > 0, we have

Z

E

cf d� D sup

�

Z

E

c� W c� � cf
�

D c sup

�

Z

E

� W � � f
�

D c
Z

E

f d�:

If c < 0; then c � cf if and only if  � f so (by Proposition 10.3.13) we get

Z

E

cf d� D sup

�

c

Z

E

 W  � f
�

D c inf

�

Z

E

 W  � f
�

D c
Z

E

f d�:

Next, note that f C g 2 BL0.E/ and hence

Z

E

.f C g/ d� D sup

�

Z

E

� W � � f C g
�

D inf

�

Z

E

 W  � f C g
�

: ()

Now, if �1; �2 2 Simp0.R/ satisfy �1 � f and �2 � g; then �1 C �2 � f C g
and () gives

Z

E

�1 C
Z

E

�2 D
Z

E

.�1 C �2/ �
Z

E

.f C g/ d�:

Taking the sup of the left side over all �1 � f and �2 � g; we get
R

E
f d� C

R

E
g d� � R

E
.f C g/ d�: For the reverse inequality, we note that if  1;  2 2

Simp0.R/ satisfy  1 � f and  2 � g; then  1 C  2 � f C g and () implies
Z

E

 1 C
Z

E

 2 D
Z

E

. 1 C  2/ �
Z

E

.f C g/ d�:
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Taking the inf of the left side over all  1 � f and  2 � g; we have our reversed
inequality

R

E
f d�C R

E
g d� � R

E
.f C g/ d� and the proof of (1) is complete.

Now, by Exercise 10.3.17, (2) follows from (1) and the fact that 
A[B D 
AC
B �

A\B: Also, since the linearity is established, to prove (3) we need only show that
f � 0 a.e. on E implies

R

E
f d� � 0: But for any  2 Simp0.R/ with  � f

on E we have  � 0 a.e. on E and hence Theorem 10.3.5 gives
R

E
 � 0: Thus

R

E
f d� D inffR

E
 W  � f g � 0; as desired. This also proves (4) and (5)

because f D g a.e. on E means f � g � f a.e. on E and we have �jf j �
f � jf j: Next, (6) follows from (1) and (3) because we have m
E � f � M
E
a.e. on E and

R

E

E d� D �.E/: Finally, (7) follows if we can show that the set

fx 2 E W f .x/ > 0g has measure zero. Since

fx 2 E W f .x/ > 0g D
1
[

nD1
fx 2 E W f .x/ > 1=ng;

it suffices to show that �.En/ D 0 for every n 2 N; where En WD fx 2 E W f .x/ >
1=ng: But .1=n/
En 2 Simp0.R/ and .1=n/
En � f , so if �.En/ > 0 for some
n 2 N; then we have the contradiction

0 <
1

n
�.En/ D

Z

E

1

n

En D 0

because the assumption
R

E
f d� D supfR

E
� W 0 � � � f g D 0 implies

R

E
� D 0

for every simple function 0 � � � f: ut
We first defined the Lebesgue integral for simple functions and then extended

it to bounded, measurable functions vanishing outside a set of finite measure. Our
final step will be an extension of the integral to the general case where the function
is not necessarily bounded and need not vanish outside a set of finite measure. This
we do in two steps: We first define the general integral for nonnegative, measurable
functions and then use it to define the general integral.

Definition 10.3.21 (Lebesgue Integral of Nonnegative Functions). Let E 2
M�.R/ and let f W E ! Œ0;1� be measurable. We define the Lebesgue integral of
f on E to be the (extended, nonnegative) number

Z

E

f d� W D sup

�

Z

E

h d� W h � f; h 2 BL0
0.E/

�

()

D sup

�

Z

E

h d� W 0 � h � f; h 2 BL0
0.E/

�

;

where the second equality in () follows from the fact that
R

E
h d� � R

E
hC d�:

Since any nonnegative, measurable function is the (pointwise) limit of an
increasing sequence of simple functions (cf. Theorem 10.2.24), the following
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equivalent definition of the integral, which is an extension of Definition 10.3.15,
seems more natural and is, in fact, more convenient to use in most situations.

Proposition 10.3.22. Let E 2 M�.R/ and let f W E ! RC WD Œ0;1� be
measurable. Then we have

Z

E

f d� D sup

�

Z

E

� d� W 0 � � � f on E; � 2 Simp.R/
�

: (�)

Proof. Let R denote the right side of (�) and assume first that
R

E
f d� D1: Then

for any N > 0 there exists h 2 BL0
0.E/ such that 0 � h � f; h � 0 outside

a measurable set F � E with �.F / < 1 and
R

E
h d� � N: Since

R

E
h d� D

sup
˚ R

E
� d� W 0 � � � h on E; � 2 Simp.R/



; we can pick �N 2 Simp.R/ such
that

R

E
�N >

R

E
h d� � 1 � N � 1. This gives R � N � 1 and hence R D 1

because N > 0 was arbitrary. Assume next that
R

E
f d� <1: Then the inclusion

f�jE W 0 � � � f; � 2 Simp.R/g � fh W 0 � h � f; h 2 BL0
0.E/g

implies that R � R

E
f d�: Therefore, we need only show the reverse inequality

R

E
f d� � R: Now, given any " > 0; we pick a function h" 2 BL0

0.E/ such that

(i) 0 � h" � f and
Z

E

f d� <

Z

E

h" d�C "

2
.

Also, as above, we can pick �" 2 Simp.R/ such that

(ii) 0 � �" � h" and
Z

E

h" d� <

Z

E

�" d�C "

2
.

Combining (i) and (ii), we have
R

E
f d� <

R

E
�" d� C " � R C ": Since " > 0

was arbitrary, the proof is complete. ut
The following theorem summarizes some of the properties of the integral we just

defined.

Theorem 10.3.23 (Properties of
R

f d� for f � 0). Let E 2M�.R/: Then for
any f; g 2 L0.E;RC/ and c > 0 we have

(1)
R

E
cf d� D c R

E
f d� (Homogeneity).

(2)
R

E
.f C g/ d� D R

E
f d�C R

E
g d� (Additivity).

(3) IfA andB are measurable subsets ofE with �.A\B/ D 0 (e.g., ifA\B D ;),
then

Z

A[B
f d� D

Z

A

f d�C
Z

B

f d�:

(4) f � g a.e. on E H) R

E
f d� � R

E
g d� (Monotonicity).
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(5) If A and B are measurable subsets of E, then

A � B H)
Z

A

f d� �
Z

B

f d�:

(6) f D g a.e. on E H) R

E
f d� D R

E
g d�:

(7)
R

E
f d� D 0” f D 0 a:e: on E:

Proof. We prove only the additivity:
R

E
.f C g/ d� D R

E
f d� C R

E
g d�: The

remaining parts can be proved as in Theorem 10.3.20 and are left as exercises for
the reader. Now given any h; k 2 BL0

0.E/ with 0 � h � f and 0 � k � g; we
have 0 � hC k � f C g and hence

Z

E

h d�C
Z

E

k d� D
Z

E

.hC k/ d� �
Z

E

.f C g/ d�:

Taking the sup of the left side over all such h and k; we get
R

E
f d�C R

E
g d� �

R

E
.f C g/ d�: For the reverse inequality, let ` 2 BL0

0.E/ satisfy 0 � ` � f C g:
Define h WD min.`; f / and k WD ` � h and note that h; k 2 BL0

0.E/ are both
bounded by any upper bound for ` and vanish where ` vanishes. Also, ` D hC k;
0 � h � f and 0 � k � g: But then

Z

E

` d� D
Z

E

h d�C
Z

E

k d� �
Z

E

f d�C
Z

E

g d�;

and taking the sup of the left side gives
R

E
.f C g/ d� � R

E
f d�C R

E
g d�: ut

Exercise 10.3.24. Prove the remaining parts of Theorem 10.3.23. Also, show that
for any E 2M�.R/ and any f 2 L0.E;R/; we have

Z

E

jf j d� D
Z

R

jf j
E d� and
Z

E

jf j d� D
Z

E

f C d�C
Z

E

f � d�:

Definition 10.3.25 (Nonnegative (Lebesgue) Integrable Functions). Given any
E 2M�.R/; a function f W E ! RC WD Œ0;1� is said to be Lebesgue integrable
if
R

E
f d� <1:

Notation 10.3.26 (L1.E;RC/; L1.E;RC/). Given any E 2 M�.R/; the set of
all Lebesgue integrable functions f W E ! RC is denoted by L1.E;RC/: Using
the equivalence relation “f D g a:e:” on L1.E;RC/; the corresponding space of
all equivalence classes will be denoted L1.E;RC/:

Exercise 10.3.27 (Integrable ) Almost Real-Valued). Let E 2 M�.R/: Show
that if f 2 L1.E;RC/; then the set E1 WD fx 2 E W f .x/ D1g has measure zero
by integrating over the sets En WD fx 2 E W f .x/ � ng:
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We are now ready for the general case:

Definition 10.3.28 (The General Lebesgue Integral). Let E 2 M�.R/: Given
any measurable function f W E ! Œ�1;1�; we define the Lebesgue integral of
f by

Z

E

f d� WD
Z

E

f C d� �
Z

E

f � d�; (�)

provided at least one of the integrals on the right side is finite, where, as always,
f C D f _ 0 WD maxff; 0g and f � D .�f / _ 0 WD maxf�f; 0g: If both integrals
on the right side of (�) are finite, then we say that f is Lebesgue integrable.

Notation 10.3.29 (L1.E/; L1.E;R/; L1.E/; L1.E;R/). Given any E 2
M�.R/; the set of all Lebesgue integrable functions f W E ! R [resp.,
f W E ! R] will be denoted by L1.E/ WD L1.E;R/ [resp., L1.E;R/]. Thus,
using Exercise 10.3.24, we have

f 2 L1.E;R/”
Z

E

jf j d� D
Z

E

f C d�C
Z

E

f � d� <1: ()

As in 10.2.19, 10.3.18, and 10.3.26, we write L1.E/ WD L1.E/=N .E/ [resp.,
L1.E;R/ WD L1.E;R/=N .E;R/] for the corresponding set of all equivalence
classes modulo the null functions.

Proposition 10.3.30. Let E 2M�.R/ and any f; g 2 L0.E;R/: Then

(1) f 2 L1.E;R/ if and only if jf j 2 L1.E; Œ0;1�/ and we then have

ˇ

ˇ

ˇ

ˇ

Z

E

f d�

ˇ

ˇ

ˇ

ˇ

�
Z

E

jf j d�:

(2) g 2 L1.E;R/ and jf j � jgj on E imply that f 2 L1.E;R/ and we have

Z

E

jf j d� �
Z

E

jgj d�:

Proof. Note that (1) is a restatement of () and the Triangle Inequality. The latter
can also be proved as follows:

ˇ

ˇ

ˇ

ˇ

Z

E

f d�

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

E

f C d� �
Z

E

f � d�
ˇ

ˇ

ˇ

ˇ

�
Z

E

f C d�C
Z

E

f � d� D
Z

E

jf j d�:

For (2), jf j � jgj on E implies (by Theorem 10.3.23) that
R

E
jf j d� �

R

E
jgj d� <1: ut
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Theorem 10.3.31 (Properties of the General Lebesgue Integral). For any E 2
M�.R/, f; g 2 L1.E;R/, and c 2 R; we have cf; f C g 2 L1.E;R/: In fact
L1.E;R/ is a real vector space. Also, the integral is a (positive) linear functional
on L1.E;R/; satisfying the following properties:

(1)
R

E
cf d� D c R

E
f d�: (Homogeneity)

(2)
R

E
.f C g/ d� D R

E
f d�C R

E
g d� (Additivity),

(3) ifA andB are measurable subsets ofE with �.A\B/ D 0 (e.g., ifA\B D ;),
then

Z

A[B
f d� D

Z

A

f d�C
Z

B

f d�;

(4) f � g a.e. on E H) R

E
f d� � R

E
g d� (Monotonicity),

(5)
ˇ

ˇ

R

E
f d�

ˇ

ˇ � R
E
jf j d� (Triangle Inequality),

(6) f D g a.e. on E H) R

E
f d� D R

E
g d�, and

(7)
R

E
jf j d� D 0” f D 0 a:e: on E:

Proof. First, by the additivity and monotonicity in Theorem 10.3.23, we have
R

E
jf C gj d� � R

E
jf j d� C R

E
jgj d� < 1 and hence f C g 2 L1.E;R/:

Checking the vector space axioms is now routine and left to the reader. Also, part
(1) follows from the definition of the integral and Proposition 10.3.22. We prove (2)
and leave the remaining parts as exercises for the reader. Since

.f C g/C � .f C g/� D f C g D f C � f � C gC � g�;

we have

.f C g/C C f � C g� D .f C g/� C f C C gC

and all functions on both the left and right sides are nonnegative. Integrating the two
sides and using Theorem 10.3.23, we therefore have

Z

E

.f Cg/C d�C
Z

E

f � d�C
Z

E

g� d� D
Z

E

.f Cg/� d�C
Z

E

f C d�C
Z

E

gC d�;

from which the additivity property follows at once. ut
Exercise 10.3.32.

(a) Prove the remaining parts of Theorem 10.3.31.
(b) Let E 2M�.R/ and f 2 L1.E;R/: Show that if f D f1�f2 where f1; f2 2

L1.E;RC/; then

Z

E

f d� D
Z

E

f1 d� �
Z

E

f2 d�

and use it to give another proof of part (2), i.e., the additivity of the integral.
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(c) Let E 2 M�.R/ and f 2 L1.E;R/: Show that if
R

A
f d� D 0 for every

measurable A � E; then f D 0 almost everywhere. Hint: Look at A WD fx 2
E W f .x/ > 0g:

Remark 10.3.33 (L1.E;R/ Is Almost a Vector Space). There is a reason why we
didn’t state (and prove) Theorem 10.3.31 for f; g 2 L1.E;R/, although it is almost
true in this case as well. Indeed, as pointed out in Remark 10.2.21, L0.E;R/ is
not a vector space and hence neither is L1.E;R/: In fact, for f; g 2 L1.E;R/;

the function f C g is undefined on the sets fx 2 E W f .x/ D 1; g.x/ D �1g
and fx 2 E W f .x/ D �1; g.x/ D 1g: However, these sets have measure zero
(by Exercise 10.3.27) and hence f C g is almost well defined. In other words, if we
define it arbitrarily on the above sets, then our arbitrary choice will neither affect
the integrability of f C g nor the value of its integral.

Finally, we can define the Lebesgue integral of a complex-valued, measurable
function as follows.

Definition 10.3.34 (Lebesgue Integral of Complex Functions). Let E 2M�.R/

and f D Re.f / C i Im.f / 2 L0.E;C/I i.e., both Re.f / and Im.f / are real-
valued, measurable functions on E: We say that f is Lebesgue integrable if
Re.f /; Im.f / 2 L1.E;R/ and we then define

Z

E

f d� D
Z

E

Re.f / d�C i
Z

E

Im.f / d�I

i.e., Re
� R

E
f d�

� D R
E

Re.f / d� and Im
� R

E
f d�

� D R
E

Im.f / d�:

Notation 10.3.35 (The Lebesgue Spaces L1.E;C/ and L1.E;C/). Given E 2
M�.R/; the set of all complex valued, integrable functions on E is denoted by
L1.E;C/: If we identify integrable functions that are equal almost everywhere on
E; the corresponding space of equivalence classes modulo the null functions will be
denoted by L1.E;C/:

Here are some of the properties of the complex Lebesgue integral.

Theorem 10.3.36 (Properties of the Complex Lebesgue Integral). Let E 2
M�.R/; f; g 2 L1.E;C/, and c 2 C: Then we have cf; f C g 2 L1.E;C/;

jf j 2 L1.E; Œ0;1// (which in turn implies f 2 L1.E;C/). In fact L1.E;C/

is a complex vector space. Also, the integral is a linear functional on L1.E;C/;

satisfying the following properties, where c 2 C and f; g 2 L1.E;C/ are
arbitrary:

(1)
R

E
cf d� D c R

E
f d� (Homogeneity),

(2)
R

E
.f C g/ d� D R

E
f d�C R

E
g d� (Additivity),

(3) ifA andB are measurable subsets ofE with �.A\B/ D 0 (e.g., ifA\B D ;),
then
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Z

A[B
f d� D

Z

A

f d�C
Z

B

f d�;

(4)
ˇ

ˇ

R

E
f d�

ˇ

ˇ � R
E
jf j d� (Triangle Inequality),

(5)
ˇ

ˇ

R

E
f d�

ˇ

ˇ D R

E
jf j d� if and only if jf j D f̨ a.e. on E for some ˛ 2 C

with j˛j D 1,
(6)

R

E
jf j d� D 0” f D 0 a:e: on E, and

(7) f D g a.e. on E H) R

E
f d� D R

E
g d�:

Proof. First, f 2 L1.E;C/, jf j 2 L1.E; Œ0;1// follows from the inequalities

jf j D jRe.f /C i Im.f /j � jRe.f /j C jIm.f /j � 2jf j:

The integrability of cf and f C g now follows from jcf j D jcjjf j and jf C gj �
jf j C jgj: In view of Theorem 10.3.31, we need only prove (1) for c D i D p�1:
But then

Z

E

.if / d� D i
Z

E

Re.f / d� �
Z

E

Im.f / d�

D i
�

Z

E

Re.f / d�C i
Z

E

Im.f / d�

�

D i
Z

E

f d�:

We prove (4) and (5) and leave the remaining parts for the reader as an exercise. For
any complex number z 2 C n f0g; we have z D jzjei� for some � 2 R and hence
jzj D e�i� z > 0: So we can pick ˛ 2 C with j˛j D 1 such that j R

E
f d�j D

˛
R

E
f d� and note that

ˇ

ˇ

ˇ

ˇ

Z

E

f d�

ˇ

ˇ

ˇ

ˇ

D ˛
Z

E

f d� D Re

�

Z

E

f̨ d�

�

D
Z

E

Re
�

f̨
�

d� �
Z

E

jf j d�;

where we have used the fact that Re. f̨ / � j f̨ j D jf j and the monotonicity of the
real integral. If, as assumed in (5), the last inequality is actually an equality, then we
have

R

E
Œjf j � Re. f̨ /� d� D 0; which (the integrand being nonnegative) implies

jf j � Re. f̨ / D 0 a.e. on E: Thus jf j D Re. f̨ / a.e. on E and hence (why?)
jf j D j f̨ j D Re. f̨ / D f̨ a.e. on E: Since this condition is clearly sufficient,
the proof is complete. ut
Exercise 10.3.37.

(a) Prove the remaining parts of Theorem 10.3.36.
(b) Let E 2 M�.R/ and f 2 L1.E;C/: Show that if

R

A
f d� D 0 for every

measurable A � E; then f D 0 almost everywhere.
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We end the section with the following nice property of average values of an
integrable function, which provides a converse to property (6) in Theorem 10.3.20.

Theorem 10.3.38 (Average Value Theorem). Let E 2 M�.R/ with �.E/ < 1
and let f 2 L1.E;C/: If S � C is a closed set such that

avA.f / WD 1

�.A/

Z

A

f d� 2 S

for every measurable A � E with �.A/ > 0, then f .x/ 2 S for almost all x 2 E:
In particular, if f is real-valued and S D Œa; b�, then a � f .x/ � b for almost all
x 2 E:
Proof. Since Sc is open, for any � 2 Sc we can pick r > 0 such that B�

r .�/ WD fz 2
C W jz � �j � rg � Sc: In fact, Sc is a countable union of such closed disks. So it
suffices to show that �

�

f �1.D/
� D 0 if D WD B�

r .�/: Let F WD f �1.D/ and note
that if �.F / > 0, then we have

javF .f / � �j D 1

�.F /

ˇ

ˇ

ˇ

Z

F

.f � �/ d�
ˇ

ˇ

ˇ

� 1

�.F /

Z

F

jf � �j d� � r;

which is impossible because avF .f / 2 S: ut

10.4 Convergence Theorems

As already pointed out a number of times, the greatest advantage of using
Lebesgue’s theory of integration is that it behaves nicely under limit operations. In
this section we state and prove the most important convergence theorems and some
of their consequences. We begin with the first fundamental convergence theorem:

Theorem 10.4.1 (Monotone Convergence Theorem). Let E 2 M�.R/ and let
.fn/ be a sequence in L0.E;RC/: If .fn/ is increasing (i.e., f1 � f2 � f3 � � � � )
and converges pointwise to f [i.e., lim

�

fn.x/
� D f .x/ for all x 2 E], then f 2

L0.E;RC/ and we have

Z

E

f d� D lim
n!1

Z

E

fn d�:

Proof. That f is measurable follows from Proposition 10.2.22. By monotonicity,
the numerical sequence

� R

E
fn d�

�

is increasing and bounded above by
R

E
f d�

(because fn � f for all n 2 N). Hence lim
� R

E
fn d�

�

exists as an extended
nonnegative number and satisfies

lim
n!1

Z

E

fn d� �
Z

E

f d�:
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To prove the reverse inequality, it suffices to show that

Z

E

� d� � lim
n!1

Z

E

fn d� 8 � 2 SimpC.R/; 0 � � � f; ()

because
R

E
f d� WD supfR

E
� W 0 � � � f; � 2 Simp.R/g: So let � 2 SimpC.R/

satisfy 0 � � � f and pick " 2 .0; 1/: Consider the measurable sets

En D fx 2 E W fn.x/ � .1 � "/�.x/g; .n 2 N/:

Since .fn/ is increasing, so is the sequence .En/, i.e., En � EnC1 for all n 2 N:

We claim that E D S1
nD1 En: Indeed, if f .x/ D 0, then x 2 En for all n: And if

f .x/ > 0; then we must have .1 � "/�.x/ � fn.x/ for large enough n because,
otherwise, fn.x/ < .1 � "/�.x/ � .1 � "/f .x/ for all n 2 N would give the
contradiction 0 < f .x/ � .1 � "/f .x/: Next, integrating fn � .1 � "/� over En;
we have

.1 � "/
Z

En

� d� �
Z

En

fn d� �
Z

E

fn d� .8n 2 N/:

Taking limits as n!1 and using Lemma 10.3.10, we have

.1 � "/
Z

E

� d� � lim
n!1

Z

E

fn d�;

which, sending "! 0; gives () and completes the proof. ut
Corollary 10.4.2. Let E 2M�.R/ and f 2 L0.E;RC/: Then, for any increasing
sequence .�n/ in SimpC.R/ with lim

�

�n.x/
� D f .x/ 8x 2 E; we have

Z

E

f d� D lim
n!1

Z

E

�n d�:

In particular, one can use the sequence .�n/ constructed in Theorem 10.2.24.

Proof. Obvious!

Remark 10.4.3 (.fn/ Increasing Is Crucial).

(1) In the Monotone Convergence Theorem the assumption that .fn/ be increasing
(at least a.e.) is essential. Indeed, onE D R; the sequences

�

1
n

.0;n/

�

;
�


.n;nC1/
�

,
and

�

n
.0;1=n/
�

all converge to 0 everywhere and yet for every n 2 N we have
R

1
n

.0;n/ d� D

R


.n;nC1/d � D
R

n
.0;1=n/d � D 1:
(2) On E D R; consider the decreasing sequence of functions fn WD 
Œn;1/ for all

n 2 N: Then lim.fn/ D 0, but
R

R
fn d� D1 for all n 2 N:
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Corollary 10.4.4 (Tonelli’s Theorem). Let .fn/ be a sequence in L0.E;RC/;
where E 2 M�.R/; and define f WD P1

nD1 fn: Then we have f 2 L0.E;RC/
and

Z

E

f d� D
Z

E

�

1
X

nD1
fn

�

d� D
1
X

nD1

Z

E

fn d�:

Proof. Let gn WDPn
kD1 fk . Then .gn/ is an increasing sequence in L0.E;RC/ and

we have lim
�

gn.x/
� D f .x/ for all x 2 E: Thus the corollary follows from the

Monotone Convergence Theorem and the (finite) additivity of the integral. ut
Corollary 10.4.5. Let .fn/ be an increasing sequence in L0.E;RC/, where E 2
M�.R/; and let f 2 L0.RC/: If limn!1 fn.x/ D f .x/ for almost all x 2 E; then

Z

E

f d� D lim
n!1

Z

E

fn d�:

Proof. Let F � E be the set of all x 2 E such that fn.x/ increases to f .x/: Then
�.E nF / D 0 and we have f �f
F D fn�fn
F D 0 a.e. onE: Thus

R

E
f d� D

R

E
f
F d� and

R

E
fn d� D

R

E
fn
F d� for all n 2 N: Since .fn
F / ! f
F

everywhere (on E), the Monotone Convergence Theorem gives

Z

E

f d� D
Z

E

f
F d� D lim
n!1

Z

E

fn
F d� D lim
n!1

Z

E

fn d�:

Corollary 10.4.6. Let f 2 L0.E;RC/, where E 2M�.R/: Then the set function
�f WM�.R/! RC defined by

�f .A/ WD
Z

A\E
f d� D

Z

E

f
A\E; 8 A 2M�.R/

is a (countably additive) measure. Also, �f .A/ D 0 whenever �.A/ D 0:
Proof. Since we obviously have �f .;/ D 0, we need only check the countable
additivity. So assume that A D S1

nD1 An is a disjoint union of measurable sets and
define fn WD f
An\E 2 L0.E;RC/. Then f
A\E DP1

nD1 fn and, using Tonelli’s
theorem, we have

�f .A/ WD
Z

A\E
f d� D

1
X

nD1

Z

E

f
An\E d� D
1
X

nD1

Z

An\E
f d� D

1
X

nD1
�f .An/:

Since the last statement is obvious, the proof is complete. ut
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The implication “�.A/ D 0 H) �f .A/ D 0” is referred to as “the absolute
continuity of �f with respect to �” and is equivalent to the condition in the
following:

Corollary 10.4.7 (Absolute Continuity). Let E 2M�.R/ and f 2 L1.E;C//:

Then, given any " > 0, there is a ı > 0 such that for any A 2M�.R/ with A � E;
we have

�.A/ < ı H) �jf j.A/ WD
Z

A

jf j d� < ":

Proof. If f is bounded, then the assertion is trivially satisfied. (Why?) Otherwise,
define

fn.x/ WD
(

jf .x/j if jf .x/j � n;
n if jf .x/j > n:

Then .fn/ is an increasing sequence of bounded, measurable functions with
lim.fn/ D jf j on E: By the Monotone Convergence Theorem, we can pick N 2 N

so large that
R

E
fN d� >

R

E
jf j d� � "=2 and hence

R

E
.jf j � fN / d� < "=2: If

0 < ı < "=.2N / and �.A/ < ı; then

Z

A
jf j d� D

Z

A
.jf j � fN / d�C

Z

A
fN d� �

Z

E
.jf j � fN / d�CN�.A/ < "

2
C "

2
D "

and the proof is complete. ut
The Monotone Convergence Theorem can also be used to show that Lebesgue

integral is translation invariant.

Proposition 10.4.8 (Translation Invariance of Lebesgue Integral). Let f 2
L1.R/ and, given any b 2 R; consider the translated function fb.x/ WD f .x C b/:
Then fb 2 L1.R/ and we have

Z

R

fb.x/ d�.x/ D
Z

R

f .x C b/ d�.x/ D
Z

R

f .x/ d�.x/:

More generally, for any real numbers m ¤ 0 and b; we have

jmj
Z

R

f .mx C b/ d�.x/ D
Z

R

f .x/ d�.x/: (�)

In particular, taking m D ˙1 shows that Lebesgue integral is invariant under the
isometries of R:
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Proof. If � D a
A with a > 0 andA 2M�.R/; then �.mxCb/ D a
A.mxCb/ D
a
m�1.A�b/.x/; and hence Exercise 10.1.17 gives

Z

�.mx C b/ d�.x/ D a��m�1.A � b/� D a

jmj�.A/ D
1

jmj
Z

�.x/ d�.x/;

so (�) holds in this case. It then follows at once that (�) is satisfied for every � 2
SimpC.R/: Next, assuming f � 0; we can pick an increasing sequence .�n/ in
SimpC.R/ such that lim.�n/ D f: By the Monotone Convergence Theorem we
then have

jmj
Z

f .mx C b/ d�.x/ D jmj lim
n!1

Z

�n.mx C b/ d�.x/ D lim
n!1

Z

�n.x/ d�.x/

D
Z

f .x/ d�.x/;

proving (�) for f � 0: We now apply this to f C and f � for a general f D
f C � f � 2 L1.R/ to complete the proof. ut

Despite its importance, the Monotone Convergence Theorem is not directly
applicable in cases where one must deal with nonmonotone sequences. For such
sequences, one should be particularly cautious when integrating term by term:

Example 10.4.9.

(1) For each n 2 N; consider the function fn.x/ WD ne�nx on Œ0; 1�: We have
limn!1 fn.x/ D 0 for all x 2 .0; 1� and hence lim.fn/ D 0 a.e. On the other
hand,

R 1

0
fn D 1 � e�n ! 1; as n!1: Therefore,

lim
n!1

Z 1

0

fn.x/ dx ¤
Z 1

0

lim.fn.x// dx:

(2) For each n 2 N; let gn.x/ WD n2e�nx on Œ0; 1�: Then limn!1 gn.x/ D 0 for
all x 2 .0; 1� so that lim.gn/ D 0 a.e. But a computation gives

R 1

0
gn D

n � ne�n !C1 and we obviously have

lim
n!1

Z 1

0

gn.x/ dx ¤
Z 1

0

lim.gn.x// dx:

The next consequence is another one of the fundamental convergence results,
where the sequence of functions is not assumed to be increasing.

Lemma 10.4.10 (Fatou’s Lemma). If E 2 M�.R/ and .fn/ is a sequence in
L0.E;RC/; then we have

Z

E

lim.fn/ d� � lim

�

Z

E

fn d�

�

:
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Proof. For each n 2 N; let gn WD infffk W k � ng and note that gn 2 L0.E;RC/;
.gn/ is increasing, and lim.fn/ D lim.gn/: Also, gn � fk for all k � n implies

Z

E

gn d� �
Z

E

fk d�; 8k � n;

which implies that the increasing sequence
� R

E
gn d�

�

satisfies

Z

E

gn d� � inf

�

Z

E

fk d� W k � n
�

D lim

�

Z

E

fn d�

�

; 8n 2 N:

By the Monotone Convergence Theorem, we therefore have

Z

E

lim.fn/ D
Z

E

lim.gn/ d� D lim

�

Z

E

gn d�

�

� lim

�

Z

E

fn d�

�

:

ut
Example 10.4.11. On E D R consider the sequence of functions fn WD n
.0;1=n/
for all n 2 N. Then

0 D
Z

R

lim.fn/ d� < 1 D lim

�

Z

R

fn d�

�

;

so that the inequality in Fatou’s lemma is strict in this case.

Corollary 10.4.12. Let E 2M�.R/ and .fn/ a sequence in L0.E;RC/ such that
limn!1 fn.x/ D f .x/ for almost all x 2 E and some f 2 L0.E;RC/: Then

Z

E

f d� � lim

�

Z

E

fn d�

�

:

Proof. If lim
�

fn.x/
� D f .x/ for all x 2 E; then the assertion follows from Fatou’s

lemma. In general, we need only modify the fn and f on a set of measure zero,
which (by Theorem 10.3.23) has no effect on the integrals. ut
Exercise 10.4.13. Deduce the Monotone Convergence Theorem from Fatou’s
lemma.

So far we have only looked at sequences of nonnegative measurable functions.
What if the fn are not nonnegative? What conditions would guarantee the integra-
bility of the limit of a sequence of (complex-valued) measurable functions? Also,
will the integral of the limit function equal the limit of the integrals of the functions
in the sequence? The most important theorem that answers these questions is the
following.
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Theorem 10.4.14 (Dominated Convergence Theorem). Let E 2M�.R/ and let
.fn/ be a sequence in L0.E;C/ such that limn!1 fn.x/ D f .x/ for almost all
x 2 E, where f 2 L0.E;C/: If there exists a function g 2 L1

�

E; Œ0;1/� such that
jfn.x/j � g.x/ for all n 2 N and almost all x 2 E; then f 2 L1.E;C/ and

Z

E

f d� D lim
n!1

Z

E

fn d�:

In fact, we even have

lim
n!1

Z

E

jf � fnj d� D 0:

Proof. Modifying f and fn on a set of measure zero, if necessary, we may (and do)
assume that jfn.x/j � g.x/ 8 n 2 N and lim

�

fn.x/
� D f .x/ hold for all x 2 E:

Also, considering the real and imaginary parts, we may (and do) assume that the fn
and f are real-valued. Since jf j � g; Proposition 10.3.30 gives f 2 L1.E;R/ and
hence

R

E
.g ˙ f / d� D R

E
g d� ˙ R

E
f d�: Now the nonnegative, measurable

functions g˙fn satisfy lim.g˙fn/ D g˙f onE: By Fatou’s lemma we therefore
have

Z

E

g d�C
Z

E

f d� � lim
Z

E

.g C fn/ d� D
Z

E

g d�C lim
Z

E

fn d�;

Z

E

g d� �
Z

E

f d� � lim
Z

E

.g � fn/ d� D
Z

E

g d� � lim
Z

E

fn d�:

Thus lim
R

E
fn d� �

R

E
f d� � lim

R

E
fn d�; from which the assertion follows.

For the last assertion, note that the assumption jfn.x/j � g.x/ for all n and almost
all x implies that jf .x/j � g.x/ for almost all x. Now we have lim jf .x/�fn.x/j D
0 and jf .x/�fn.x/j � 2g.x/ for almost all x (and for all n). Therefore, by the first
part of the proof, we have

R

E
jf � fnj d�! 0 as n!1: ut

Remark 10.4.15. The assumption that all the functions fn be bounded above by the
same, fixed integrable function g � 0 can be weakened as follows:

Corollary 10.4.16. Let E 2M�.R/ and let .gn/ be a sequence in L1
�

E; Œ0;1/�
such that lim.gn/ D g 2 L1

�

E; Œ0;1/� and lim
� R

E
gn d�

� D R

E
g d�: If .fn/

is a sequence in L0.E;C/ such that jfn.x/j � gn.x/ for all n 2 N and almost all
x 2 E and if for some f 2 L0.E;C/ we have lim

�

fn.x/
� D f .x/ for almost all

x 2 E; then f 2 L1.E;C/ and

Z

E

f d� D lim
n!1

Z

E

fn d�:
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Once again, we even have the stronger condition

lim
n!1

Z

E

jf � fnj d� D 0:

Proof. The proof of the Dominated Convergence Theorem works in this case as
well if we replace the functions g˙fn by gn˙fn: As for the last statement, simply
note that lim.jfn � f j/ D 0 and jfn � f j � jfnj C jf j � gn C g both hold almost
everywhere and we have

R

E
.gn C g/ d�!

R

E
2g d�: Thus applying the first part

implies
R

E
jf � fnj d�! 0: ut

The complex-valued case of the Dominated Convergence Theorem obviously
includes the real-valued case. However, the theorem is true for extended real-valued
functions as well:

Theorem 10.4.17 (Dominated Convergence Theorem in L1.E;R/). Let E 2
M�.R/ and .fn/ a sequence in L0.E;R/ such that lim

�

fn.x/
� D f .x/ for almost

all x 2 E and a function f 2 L0.E;R/: If there exists a function g 2 L1.E;RC/
such that jfn.x/j � g.x/ for almost all x 2 E, then f 2 L1.E;R/ and we have

Z

E

f d� D lim
n!1

Z

E

fn d�:

In fact,

lim
n!1

Z

E

jf � fnj d� D 0:

Proof. It follows from the assumptions that the subsets of E on which the functions
jf j; g; and jfnj take on the value C1 have measure zero and hence we may
assume that all these functions are real-valued. The assertions then follow from
Theorem 10.4.14. ut
Corollary 10.4.18 (Beppo-Levi). Let E 2 M�.R/: Suppose that .fn/ is a
sequence in L1.E;R/ such that

P1
nD1

R

E
jfnj d� < 1: Then there is a function

f 2 L1.E;R/ such that
P1

nD1 fn.x/ D f .x/ for almost all x 2 E and we have

Z

E

�

1
X

nD1
fn

�

d� D
1
X

nD1

Z

E

fn d�:

Proof. We have
R

E

�

P1
nD1 jfnj

�

d� D P1
nD1

R

E
jfnj d� < 1; as follows at

once from Tonelli’s Theorem (Corollary 10.4.4). In particular, g WD P1
nD1 jfnj 2

L1.E;R/ and Exercise 10.3.27 implies that
P1

nD1 fn.x/ converges for almost all
x 2 E. Let f .x/ denote the sum for such x’s and define f .x/ arbitrarily for any
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other x: Now note that jPn
kD1 fkj � g for all n, so by the Dominated Convergence

Theorem (applied to the partial sums of
P

n fn) we have f 2 L1.E;R/ and
R

E
f d� DP1

nD1
R

E
fn d�: ut

Here is another useful consequence (cf. Corollary 10.4.6):

Corollary 10.4.19. Let E 2 M�.R/ and f 2 L1.E;C/: Suppose that E D
S1
nD1 En, where the En are pairwise disjoint measurable sets. Then f is integrable

on each En and

Z

E

f d� D
1
X

nD1

Z

En

f d�:

Moreover,

1
X

nD1

Z

En

jf j d� <1: (�)

Proof. Indeed, we have f D P1
nD1 f
En on E and hence for each partial sum

fn WD Pn
kD1 f
Ek , we have jfnj � jf j. Since f D lim.fn/; and

R

fn d� D
Pn

kD1
R

En
f d�; the result follows from the Dominated Convergence Theorem.

Also, (�) follows if we apply the same argument to the integrable function jf j: ut
Note that the converse of Corollary 10.4.19 is not true; i.e., the integrability of f

on each En does not in general imply that f is integrable on E: However, it is true
if the condition (�) is satisfied.

Proposition 10.4.20. LetE and theEn be as in Corollary 10.4.19 and suppose that
f W E ! C is integrable on each En. If (�) is satisfied, then f is integrable on E
and we have

Z

E

f d� D
1
X

nD1

Z

En

f d�:

Proof. Since
R

En
f d� D R

E
f
En d�; the proposition follows from Corollary

10.4.18 with fn WD f
En: ut
Finally, the following consequence of the Dominated Convergence Theorem can

be applied in many situations and may be worth stating separately.

Theorem 10.4.21 (Bounded Convergence Theorem). Let E 2 M�<1.R/ and
.fn/ a sequence in L0.E;C/. Suppose that there is a constant M > 0 such that
jfn.x/j � M for all n 2 N and almost all x 2 E: If for some f 2 L0.E;C/ we
have lim

�

fn.x// D f .x/ for almost all x 2 E; then f 2 L1.E;C/ and

Z

E

f d� D lim
n!1

Z

E

fn d�:
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In fact, we have

lim
n!1

Z

E

jf � fnj d� D 0:

Proof. This follows at once from the Dominated Convergence Theorem if we use
g WDM
E: ut
Exercise 10.4.22.

(1) Deduce Fatou’s lemma from the Bounded Convergence Theorem.
(2) Let fn D n�2
Œ0;n2� for each n 2 N: Show that lim.fn/ D 0 uniformly and

that
R

fn D 1 for all n 2 N: Explain why this does not contradict Lebesgue’s
Dominated Convergence Theorem.

Remark 10.4.23 (Escape to Infinity, Moving Bumps). The basic reason why in our
convergence theorems we need the sequence .fn/ to be increasing (in the Monotone
Convergence Theorem) or dominated by an integrable function (in the Dominated
Convergence Theorem) is to prevent the areas (masses) under the graphs of the fn
to escape to infinity in some sense. The standard examples that demonstrate this
phenomenon are the so-called moving bump functions we saw above, namely, the
functions 
.n;nC1/; n
.0;1=n/; and 1

n

.0;n/: To use Tao’s terminology (in [Tao11]), we

say that for 
.n;nC1/ the mass escapes to horizontal infinity, for n
.0;1=n/ it escapes
to vertical infinity, and for 1

n

.0;n/ to width infinity. The reader is invited to sketch

the graphs to see why the terminology fits the situation. The convergence theorems
show that if we impose conditions that prevent such escapes to infinity, then the
limit function has the desired properties.

10.5 Littlewood’s Other Principles and Modes
of Convergence

In Sect. 10.1 we established Littlewood’s first principle (Theorem 10.1.22), which
says that a measurable set is “nearly” a finite union of open intervals. There are two
more principles that we want to look at in this section. For the record, here is the list
of all three principles:

Remark 10.5.1 (Littlewood’s Three Principles).

(i) Every measurable set is nearly a finite union of intervals.
(ii) Every measurable function is nearly continuous.

(iii) Every pointwise convergent sequence of measurable functions is nearly uni-
formly convergent.

The point is, of course, to give the precise meaning of the adverb nearly in each
case. The first principle was basically a more precise version of “outer regularity”
(Corollary 10.1.9). That a (Lebesgue) measurable set can be approximated by open
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sets from without and by closed sets from within [cf. Theorem 10.1.23, (ii) and (iii)]
can be stated and proved in many ways and we begin this section by giving another
version of this so-called regularity of Lebesgue measure which relates measurability
to the topology of R:

Theorem 10.5.2 (Regularity of Lebesgue Measure). Let E 2 M�.R/. Then we
have

(a) (Outer Regularity). �.E/ D inff�.U / W U is open and E � U g:
(b) (Inner Regularity). �.E/ D supf�.K/ W K is compact and K � Eg:
(c) (Lusin’s Criterion). E 2 M�<1.R/ if and only if for each " > 0 there is a

compact set K and an open set U such that

K � E � U and �.U nK/ < ":

Proof. Part (a) is simply Corollary 10.1.9 (the outer regularity of ��). To prove
(b), note that if K is a compact subset of E; then K 2 BR � M�.R/ and by
monotonicity of � we have �.K/ � �.E/. Taking the supremum we certainly have
supf�.K/ W K is compact,K � Eg � �.E/: For the reverse inclusion, suppose first
that E is bounded and let " > 0 be given. Then by part (iii) of Theorem 10.1.23 we
can pick a closed (hence compact) set K � E such that �.E nK/ < ": Since " > 0
was arbitrary, the equality in (b) follows for the bounded case. If E is unbounded,
define En WD fx 2 E W n � 1 < jxj � ng , n 2 N; and let " > 0 be given.
Using the preceding argument pick a compact set Kn � En with �.Kn/ > �.En/�
"2�n: Let Fn WD Sn

kD1 Kk and note that Fn is compact and Fn � E for each n:
Also, �.Fn/ > �

�

Sn
kD1 Ek

�� ". Since the continuity of � (Theorem 10.1.25) gives
�.E/ D limn!1 �.

Sn
kD1 Ek

�

; the result holds for the unbounded case as well.
Finally, (c) follows from (a) and (b). ut
Corollary 10.5.3. If E 2M�.R/; then there is an increasing sequence .Fn/1nD1 of
closed sets and a decreasing sequence .Un/1nD1 of open sets such that Fn � E � Un
for all n 2 N and

lim
n!1�.Fn/ D �.E/ D lim

n!1�.Un/:

If, in addition, �.E/ <1; then the closed sets Fn may be assumed to be compact.

Proof. For each n 2 N; the regularity of � guarantees the existence of a closed set
F 0
n and an open set U 0

n such that

F 0
n � E � U 0

n and �.U 0
n n F 0

n/ <
1

n
:

Now let Fn WD Sn
kD1 F 0

k and Un WD Tn
kD1 U 0

k: Note that Un n Fn � U 0
n n F 0

n and
hence lim.�.Un n Fn// D 0: It follows at once that the sequences .Fn/ and .Un/
satisfy the required properties. ut
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Here is another form of the measurability criterion:

Corollary 10.5.4. Let E � R: If E 2M�.R/; then

supf�.F / W F � EI F closedg D inff�.U / W E � U I U openg; (�)

and �.E/ is then the (extended) number in (�). Conversely, if (�) holds and is finite,
then E is measurable.

Proof. Exercise!

Remark 10.5.5. Note that the finiteness of (�) for the converse in the above corollary
is necessary. Indeed, let A � Œ0; 1� be nonmeasurable and let E WD A [ Œ2;1/:
Then both sides of (�) areC1 and yet E is not measurable.

Exercise 10.5.6 (Squeeze Theorem). Let E � R and ��.E/ < 1: Show that
E 2 M�<1.R/ if and only if for any " > 0 there are measurable sets A"; B" 2
M�<1.R/ such that

A" � E � B" and �.B" n A"/ < ":

Let us now look at a version of Littlewood’s second principle.

Theorem 10.5.7 (Littlewood’s Second Principle). Let f W Œa; b� ! R be
measurable and almost finite; i.e., the set fx 2 Œa; b� W jf .x/j D 1g has measure
zero. Then for every " > 0 there is a step function  and a continuous function g
satisfying jgj � j j � jf j such that

jf .x/ �  .x/j < " and jf .x/ � g.x/j < "

except on a set of measure less than ": Thus �
�fx 2 Œa; b� W jf .x/� .x/j � "g� < "

and �
�fx 2 Œa; b� W jf .x/ � g.x/j � "g� < ":

Proof. Assume first that f is bounded. By Theorem 10.2.24, we can pick a sequence
.�n/ of simple functions such that j�nj � jf j for all n and lim.�n/ D f (uniformly)
on Œa; b�: Thus, there is a simple function � W Œa; b� ! R with j�j � jf j such
that jf .x/ � �.x/j < "=2: Let � D Pm

jD1 aj 
Aj be the canonical representation
of �. By Littlewood’s first principle (Theorem 10.1.22), for each j there is a finite
union Uj D Smj

iD1 Ij;i of (disjoint) open intervals such that �.Uj�Aj / < "=.2n/:

Consider the step function  WDPm
jD1 aj 
Uj nSj�1

kD1 Uk
: If  .x/ ¤ �.x/, then either

for some i we have  .x/ D ai ¤ �.x/, in which case x 2 Ui n Ai ; or  .x/ D 0

and �.x/ D ai ; in which case x 2 Ai n Ui : Therefore,

� D  except possibly on A WD
n
[

jD1
Uj�Aj ;
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where �.A/ < "=2: But then, the Triangle Inequality gives jf .x/� .x/j < "=2C
"=2 D " except on the set A whose measure is less than "=2: Also, since both
 and � take values in fa1; : : : ; amg, we have j j � jf j as well. To construct
the continuous function g; we first pick a step function  with j j � jf j and
jf .x/ �  .x/j < "=2 except on a set of measure less than "=2: We now define a
piecewise linear function g as follows: Suppose  .x/ D c1 for x 2 Œx0; x1� and
 .x/ D cj for x 2 .xj�1; xj �; 2 � j � `; where a D x0 < x1 < � � � < x` D b:

Let � D maxfjxj � xj�1j W 1 � j � `g denote the mesh of this partition and
pick ı > 0 with ı < minf�=2; "=4.` � 1/g. Define g WD  outside the intervals
.xj � ı; xj C ı/; 1 � j � `� 1; and on each interval .xj � ı; xj C ı/ let the graph
of g consist of the two line segments that join .xj ; 0/ to the points .xj � ı; cj / and
.xj C ı; cjC1/: It then follows at once that jf .x/ � g.x/j < " except on a set of
measure less than " and jgj � j j � jf j: Finally, if f is not bounded, set En WD
fx 2 Œa; b� W jf .x/j > ng and note that .En/ is a decreasing sequence of measurable
sets with �.

T1
nD1 En/ D 0: We can therefore pick N 2 N such that �.EN / < "=2:

The truncated function fN WD .�N _ f / ^ N D minfmaxf�N; f g; N g is then
bounded and f D fN except on a set of measure less than "=2: We can now find
a step function  and a continuous function g; satisfying jgj � j j � jfN j � jf j;
such that jfN �  j < "=2 and jfN � gj < "=2 except on sets of measure less that
"=2: So, by the Triangle Inequality, jf �  j < " and jf � gj < " except on sets of
measure less that ": ut
Corollary 10.5.8. Let f W Œa; b�! R be measurable and almost finite. Then there
is a sequence . n/ of step functions and a sequence .gn/ of continuous functions
on Œa; b� with jgnj � j nj � jf j for all n 2 N such that limn!1  n.x/ D
f .x/ D limn!1 gn.x/ for almost all x 2 Œa; b�: In particular, this is true when
f is integrable and we then also have

lim
n!1

Z b

a

jf .x/ �  n.x/j d�.x/ D lim
n!1

Z b

a

jf .x/ � gn.x/j d�.x/ D 0: (�)

In fact, if E is measurable and f 2 L1.E;R/, then for each " > 0 there is a step
function  and a continuous function g such that

Z

E

jf �  j d� < " and
Z

E

jf � gj d� < ":

Proof. We prove the existence of .gn/I the case of . n/ is similar. Since �.fx W
jf .x/j D 1g/ D 0; we may (and do) assume that f W Œa; b�! R: For each n 2 N

we use the above theorem with " D 1=2n to pick a continuous function gn on Œa; b�
and a set En � Œa; b� such that �.En/ < 1=2n and jf .x/ � gn.x/j < 1=2n for
all x 2 Œa; b� n En: If Fn WD S1

kDnC1 Ek; then .Fn/ is a decreasing sequence of
measurable sets with �.Fn/ <

P1
kDnC1 1=2k D 1=2n: Thus, with Z WD T1

nD1 Fn,
we have �.Z/ D limn!1 �.Fn/ D 0. Moreover, for each x 2 Œa; b� n Z; we have
x 62 Fn for some nI i.e., x 62 Ek for all k > n and hence jf .x/� gk.x/j < 1=2k for
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all k > n: We therefore have limn!1 gn.x/ D f .x/ for all x 2 Œa; b� nZ: Finally,
if f is integrable, then it is automatically almost finite by Exercise 10.3.27 and (�)
follows from the inequalities jf � nj � 2jf j; jf �gnj � 2jf j and the Dominated
Convergence Theorem. We now prove the existence of the step function  in the
last assertion; the case of g is similar. For each N 2 N define fN WD f
Œ�N;N �:
Then limN!1 jf � fN j D 0 and jf � fN j � 2jf j. It follows from the Dominated
Convergence Theorem that limN!1

R

E
jf � fN j d� D 0: So, given " > 0 we can

pick N so large that
R

E
jf � fN j d� < "=2: Now by the first part of the corollary,

there is a step function  such that
R N

�N jfN �  j d� < "=2: If we define  to be
zero outside Œ�N;N �, then we have

Z

E

jf � j d� �
Z

E

jfN� j d�C
Z

E

jf �fN j d� < "

2
C "
2
D ": ut

Having looked at Littlewood’s first and second principles, we turn our attention
to Littlewood’s third principle. Before giving a version of the principle, we need the
following.

Definition 10.5.9 (Uniform and Locally Uniform Convergence). Let X � R

and consider a sequence of functions fn W X ! R (resp., fn W X ! C). We say that
.fn/ converges to f W X ! R (resp., f W X ! C) uniformly (on X ) if for every
" > 0 there exists N D N."/ 2 N such that jfn.x/ � f .x/j < " for all n > N and
all x 2 X:

We say that .fn/ converges to f locally uniformly (on X ) if for every bounded
set B � X; .fn/ converges uniformly to f on B:

Exercise 10.5.10. Let X � R: Show that fn W X ! R (or fn W X ! C) converges
locally uniformly to f (on X ) if and only if for every x0 2 X there is an open set
U 3 x0 such that .fn/ converges uniformly to f on X \ U: Hint: Use the Heine–
Borel theorem.

Remark 10.5.11. Note that uniform convergence is stronger than locally uniform
convergence, which in turn is stronger that pointwise convergence.

Example 10.5.12.

(1) Let fn.x/ WD Pn
kD0 xk=kŠ: Then fn.x/ ! ex locally uniformly (on R), but

not uniformly.

(2) Let fn.x/ WD
(

1=.nx/ if x > 0

0 otherwise
: Then limn!1 fn.x/ D 0 for all x 2 R

(i.e., .fn/ converges to zero pointwise everywhere on R), but .fn/ does not
converge locally uniformly.

Here now is a version of Littlewood’s third principle.

Proposition 10.5.13. Let E 2 M�<1.R/ and let .fn/ be a sequence of real
(or complex) measurable functions on E. Suppose that .fn/ converges (pointwise)
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almost everywhere (on E) to a (measurable) function f: Then, given any numbers
" > 0 and ı > 0, there is a measurable set A � E with �.A/ < ı and an integer N
such that

x 2 E n A and n � N H) jfn.x/ � f .x/j < ":

Proof. Let B � E be such that �.B/ D 0 and fn.x/ ! f .x/ for all x 2 E n B:
Consider the measurable sets

Ek WD fx 2 E n B W jfn.x/ � f .x/j � " for some n � kg:

Then we have EkC1 � Ek for all k and, for each x 2 E n B; there is a kx 2 N

such that x 62 Ekx because fn.x/ ! f .x/: We therefore have
T1
kD1 Ek D ; and

the continuity of � gives limk!1 �.Ek/ D 0: Thus, given any ı > 0, we can pick
N 2 N so large that �.EN / < ı: If we now set A WD B [ EN ; we then have
�.A/ < ı and

x 2 E n A H) jfn.x/ � f .x/j < " .8 n � N/: ut

Remark 10.5.14. Note that in the above proposition the convergence of .fn/ to f is
not uniform on E n A because the integer N depends on the prescribed ı > 0: The
following important consequence is stronger and does indeed achieve the uniform
convergence.

Theorem 10.5.15 (Egorov’s Theorem). Let .fn/ be a sequence of real (or com-
plex) measurable functions on a set E 2M�<1.R/. If .fn/ converges to a function
f almost everywhere (on E), then for each " > 0 there is a measurable set A � E
with �.A/ < " and such that .fn/ converges to f uniformly on E n A:
Proof. Let " > 0 be given. Using Proposition 10.5.13, for each k 2 N, we can pick
a measurable set Ak � E with �.Ak/ < "=2k and an integer Nk such that

x 2 E n Ak and n � Nk H) jfn.x/ � f .x/j < 1=k:

Now let A WD S1
kD1 Ak and note that �.A/ <

P1
kD1 "=2k D ". If we pick k0 2 N

such that 1=k0 < "; then we have

x 2 E n A and n � Nk0 H) jfn.x/ � f .x/j < 1=k0 < "

and hence .fn/ converges to f uniformly on E n A: ut
Remark 10.5.16. The convergence in Egorov’s theorem does not mean uniform
convergence outside of a set of measure zero; so (in general) the set A D A."/

in Egorov’s theorem cannot be chosen to have measure zero. For example, if gn WD

.0;1=n/; then lim.gn.x// D 0 for all x 2 Œ0; 1� so that Egorov’s theorem guarantees
uniform convergence outside a set of arbitrarily small measure. But .gn/ does not
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converge uniformly outside any set of measure zero. (Why?) As another example,
consider the sequence of functions fn.x/ D xn on Œ0; 1�: We have lim.fn/ D f;

where f .x/ D 0 for all x 2 Œ0; 1/ and f .1/ D 1: Since the fn are all continuous on
Œ0; 1�; the convergence is not uniform on Œ0; 1�: In fact, it is not uniform on Œ0; 1�nZ;
for any Z � Œ0; 1� with �.Z/ D 0 (why?). On the other hand, the convergence is
certainly uniform on Œ0; 1 � "� for any " 2 .0; 1/:

The following version of the theorem now follows from the one we just proved.

Theorem 10.5.17 (Egorov’s Theorem, Locally Uniform Version). Let E 2
M�.R/ and let .fn/ be a sequence of measurable real (or complex) functions
converging almost everywhere (on E) to a function f . Then, for each " > 0 there
is a measurable set A � E with �.A/ < " such that .fn/ converges to f locally
uniformly on E n A:
Proof. For each k 2 N let Ek WD E \ Œ�k; k� and note that by Egorov’s theorem
applied on Ek we can find a set Ak � Ek with �.Ak/ < "=2k such that .fn/
converges to f uniformly on Ek nAk . Define A WDS1

kD1 Ak and note that �.A/ <
P1

kD1 "=2k D ": If now B is any bounded subset of E, then B � Ek for some k
and .fn/ does indeed converge to f uniformly on B n A � Ek n Ak: ut
Remark 10.5.18. The locally uniform convergence in Egorov’s theorem cannot
(in general) be upgraded to uniform convergence. Indeed, consider the moving
bump sequence fn WD 
Œn;nC1� on R: Then .fn/ converges pointwise and locally
uniformly to f D 0 but not uniformly outside any set A with �.A/ < " 2 .0; 1/
because we then have jfn.x/ � f .x/j D 1 > " for all x 2 Œn; n C 1�. Thus,
to get uniform convergence, the exceptional set A is forced to contain a set of
measure 1. In fact, A must contain Œn; n C 1� for all sufficiently large n and hence
we must have �.A/ D1. Note that this is caused by the fact that .fn/ escapes to
horizontal infinity, which cannot happen under the condition �.E/ < 1 imposed
in Theorem 10.5.15.

In fact the converse of Egorov’s theorem is also true:

Proposition 10.5.19 (Converse of Egorov’s Theorem). LetE be measurable with
�.E/ < 1 and let f; fn 2 L0.E/ 8n 2 N: Suppose that for each " > 0, there is
a measurable subset A."/ � E with �.A."// < " such that lim.fn/ D f uniformly
on E n A."/: Then lim.fn/ D f almost everywhere on E:

Proof. For each k 2 N; let Ak be a measurable subset of E with �.Ak/ < 1=k such
that lim.fn/ D f uniformly on E n Ak: Define Z DT1

kD1 Ak: Then we have

�.Z/ � �.Ak/ < 1

k
.8k 2 N/:

It follows that �.Z/ D 0 and it is easily checked that lim.fn.x// D f .x/ for all
x 2 E nZ: ut
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Let us now use Egorov’s theorem to prove the following important version of
Littlewood’s second principle.

Theorem 10.5.20 (Lusin’s Theorem). Let f W Œa; b� ! R (resp., f W R ! R)
be a measurable function and let " > 0 be given. Then there is a measurable set
A � Œa; b� (resp. A � R) with �.A/ < " such that the restriction of f to the
complement Œa; b� n A (resp., Ac) is continuous on that set.

Proof. Consider first the case f W Œa; b� ! R: By Corollary 10.5.8, there is a
sequence .gn/ of continuous (hence measurable) functions on Œa; b� such that .gn/
converges to f almost everywhere. Now for a given " > 0 we use Egorov’s theorem
to find a set A � Œa; b� with �.A/ < " such that .gn/ converges to f uniformly on
Œa; b�nA: Since uniform limits of continuous functions are continuous, it follows that
f restricted to Œa; b� n A is indeed continuous. If f W R ! R; then for each n 2 Z

we can (using the previous case) pick a measurable set An � Œn; n C 1� satisfying
�.An/ < 2

�jnj"=3 such that the restricted function f j.Œn; nC1�nAn/ is continuous.
If A WD S1

nD1 An; then �.A/ < ."=3/
P

n2Z 2�jnj D " and the restriction f jAc is
continuous. ut
Remark 10.5.21.

(1) Note that, as the trivial example f WD 
Q shows, the original measurable
function f in Lusin’s theorem may in fact be discontinuous everywhere.

(2) Lusin’s theorem remains valid if f W Œa; b�! R (resp., f W R! R) is replaced
by f W Œa; b� ! R (resp., f W R ! R), provided we assume that f is finite
almost everywhere, i.e., the set fx W jf .x/j D 1g has measure zero.

Exercise 10.5.22 (Converse of Lusin’s Theorem). Show that the converse of
Lusin’s theorem is also true: If f W Œa; b� ! R and if for each " > 0 there is
a measurable set A D A."/ � Œa; b� with �.A/ < " such that f j.Œa; b� n A/ is
continuous, then f is measurable.

Before stating the last theorem of the section, let us recall (Definition 5.1.11)
that, if .M ; d / is a metric space and S � M ; then, for each x 2 M ; the distance
between x and S is the nonnegative number

d.x; S/ WD inffd.x; s/ W s 2 Sg:

Note (cf. Exercise 5.1.12) that the function x 7! d.x; S/ is Lipschitz (hence
uniformly continuous) on M : In particular, for any ı > 0; the set fx 2 M W
d.x; S/ < ıg is open. The theorem we are about to prove shows that, although
a set S � R with positive measure may have empty interior (e.g., a generalized
Cantor set), the set S � S WD fs � t W s; t 2 Sg has nonempty interior:

Theorem 10.5.23 (Steinhaus’s Theorem). Let E � R be a measurable set with
�.E/ > 0: Then there exists " > 0 such that

.�"; "/ � E �E WD fx � y W x; y 2 Eg:
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Proof. Let En WD E \ Œ�n; n�: Then En 2M�<1.R/ for all n and lim.�.En// D
�.E/ > 0: Thus �.EN / > 0 for sufficiently large N and we may (and do) assume
that �.E/ < 1: Next, by Lusin’s Criterion (cf. Theorem 10.5.2) for each " > 0

there is a compact setK and an open setU such thatK � E � U and �.U nK/ < ":
So we may pick K � E with �.K/ > 0 as close to �.E/ as we wish. Thus we may
(and do) assume that E D K is compact. For each n 2 N; consider the open set

Un WD fx W d.x;K/ < 1=ng: ()

Note that the Un are bounded and decreasing, i.e., UnC1 � Un for all n 2 N: (Why?)
Also, we have

K D
1
\

nD1
Un:

Indeed, K � T1
nD1 Un because K � Un for all n: On the other hand, if x 62 K;

then, since Kc is open, we can pick m so large that .x � 1=m; x C 1=m/ � Kc:

Whence x 62 Um: Now the continuity of � (Theorem 10.1.25) implies that

lim
n!1�.Un/ D �.K/:

Therefore, given any fixed ı 2 .0; 1=2/; we can pick N so large that

.1 � ı/�.UN / < �.K/: ()

Let " WD 1=N: Then jzj < " implies that

K � z WD fx � z W x 2 Kg � UN :

Since �.K � z/ D �.K/; writing Kz WD K � z; () implies that

�.UN n .K \Kz// D �
�

.UN nK/ [ .UN nKz/
�

� �.UN nK/C �.UN nKz/

D 2�.UN / � 2�.K/
< 2ı�.UN / < �.UN /:

It follows that K \ .K � z/ has positive measure and hence is nonempty for each
z 2 .�"; "/: Thus, for each such z; we can find x; y 2 K such that y D x � z and
hence z D x � y 2 K �K as desired. ut
Corollary 10.5.24. If A 2M�.R/ and �.A/ > 0; then A contains a nonmeasur-
able set.
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Proof. For each k 2 Z, set Ak WD A \ Œk; k C 1� and note that we must have
�.Ak/ > 0 for some k. Therefore, since � is invariant under translations, �.Ak �
k/ D �.fx � k W x 2 Akg/ > 0 and Ak � k � Œ0; 1�: So we may (without loss of
generality) assume that A � Œ0; 1�: Now let E � Œ0; 1� be the nonmeasurable set
constructed in Example 10.1.21 and let the En WD E C rn; n 2 N, be the disjoint
nonmeasurable sets in that example. Then we have the disjoint union A D S

n An;

where An WD A \ En: If An is measurable for every n; then we have
P

n �.An/ D
�.A/ > 0 and hence can pick N with �.AN / > 0. Now given any distinct points
x; y 2 AN ; we have x D � C rN and y D � C rN with �; � 2 E and hence
x � y D � � � 62 Q: But this implies that AN � AN contains no rational numbers,
contradicting Steinhaus’ theorem. So some An is nonmeasurable. ut

We now give an interesting application of Steinhaus’s theorem. Recall (Theorem
4.3.11) that, if an additive function on the real line is continuous at a point, then it
is continuous everywhere and is linear. In particular, if f W R ! R is additive and
monotone, then it is linear (cf. Exercise 4.4.8). The same also holds if the additive
function f has bounded variation. The following proposition shows that, in fact,
measurability (which holds in the above cases) is enough:

Proposition 10.5.25 (Cauchy’s Functional Equation). Let f W R ! R be a
measurable function satisfying Cauchy’s functional equation:

f .x C y/ D f .x/C f .y/ .8x; y 2 R/:

Then f is linear, i.e., f .x/ D ax for all x 2 R and a WD f .1/:
Proof. We have already seen (Theorem 4.3.11) that f satisfies f .r/ D ar for all
r 2 Q and a WD f .1/: Let us first assume that f is bounded on .�"; "/ for some
" > 0I i.e., there is a constant M > 0 such that jf .x/j � M for all x 2 .�"; "/:
Given any fixed x 2 R and any n 2 N; we can find a rational r 2 Q such that
jx � r j < "=n: It then follows that

jf .x/ � axj D jf .x � r/ � a.x � r/j � M C a"
n

:

Since this holds for all n 2 N; we have f .x/ D ax; as desired. In general, for each
n 2 N, let En WD fx 2 R W jf .x/j � ng: Then .En/ is an increasing sequence
of measurable sets with

S1
nD1 En D R: Thus �.EN / > 0 for a large enough N .

By Steinhaus’s theorem, we have .�"; "/ � EN � EN for some " > 0: Since
jf .z/j � 2N for all z 2 EN �EN , the linearity of f follows as before. ut
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10.6 Problems

1. Show that if .En/ is a sequence of pairwise disjoint measurable sets in R, then for any set
A � R we have

��
�

A\
1
[

nD1

En

�

D
1
X

nD1

��.A\En/:

2 (Inclusion–Exclusion Principle). Show that if E and F are measurable subsets of R with
�.E \ F / < 1, then �.E [ F / D �.E/C �.F /� �.E \ F /:

3. Let Ej � .0; 1/; 1 	 j 	 n; be measurable sets with
Pn

jD1 �.Ej / > n � 1: Show that
�.
Tn
jD1 Ej / > 0: Hint: Look at the complements.

4. Show that a set Z � R of measure zero may or may not be dense but that Zc must be dense.
Deduce that if f and g are continuous on R and if f .x/ D g.x/ for all x 2 Zc; then f D g: Also
deduce that any measurable set E � Œ0; 1� with �.E/ D 1 is dense in Œ0; 1�:

5. Show that, if E � R is measurable and �.E/ D 1; then for any number ˛ 2 Œ0; 1�; there is a
measurable set A˛ � E with �.A˛/ D ˛: Hint: Show that the function F.x/ WD �

�

E\ .�1; x�
�

is continuous on R with limx!�1 F.x/ D 0 and limx!1 F.x/ D 1:

6.

(a) Let f 2 Lip.I /: Show that, if Z � I and �.Z/ D 0; then �.f .Z// D 0:

(b) Show that, if �.E/ D 0; then �.fx2 W x 2 Eg/ D 0:

7. Show that f 2 2 L0.I / implies jf j 2 L0.I /: Find an interval I and a function f 2 RI such
that f 2 2 L0.I /; but f 62 L0.I /:

8. Show that, if f 2 RI is differentiable, then f 0 2 L0.I /: Hint: Consider the functions
gn.x/ WD nŒf .x C 1=n/� f .x/�; for all x 2 I ı:

9. Let E 2 M�.Œa; b�/: Show that, given any " > 0; there are (relatively) open sets O1; O2 �
Œa; b� such that E � O1; E

c WD Œa; b� nE � O2; and �.O1 \O2/ < ":

10. Let E1; E2 � Œa; b� and �.E1/ D 0: Show that, if E1 [ E2 2 M�.Œa; b�/; then E2 2
M�.Œa; b�/:

11. Show that E1; E2 2 M�.Œ0; 1�/ and �.E1/ D 1 imply �.E1 \E2/ D �.E2/:

12. Show that there is a nonmeasurable set that is dense in Œ0; 1�:

13. Show that, if E 2 M�.Œ�1; 1�/ and �.E/ > 1; then there is a measurable set F � E such
that F D �F and �.F / > 0:

14.

(a) Let E � Œ0; 1� be the nonmeasurable set in Example 10.1.21. Show that, if F � E is
measurable, then �.F / D 0: Hint: Let .rj /1jD0 be an enumeration of Q \ Œ0; 1/ with r0 D 0;

and let Fj WD F C rj : Show that .Fj /1jD0 is a pairwise disjoint sequence of measurable sets

with �.Fj / D �.F / for all j so that
P1

jD0 �.Fj / D �.
S1
jD0 Fj / 	 2:

(b) Let A � R with ��.A/ > 0: Show that there is a nonmeasurable set B � A: Hint: Suppose
that A � .0; 1/ and set Aj WD A\ .EC rj / with E and .rj / as in part (a). If Aj 2 M�; 8 j;

then �.Aj / D 0; 8 j; but
P

�.Aj / � ��.A/ > 0:
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15. Show that, if E 2 M�.R/ is bounded and �.E/ > 0; then there exist x; y 2 E with
x � y 2 Q: Hint: Assume E � Œ0; 1�: If E \ .E C r/ D ; for all r 2 Q \ Œ0; 1�; then note that
the sets En WD E C rn; rn 2 Q \ Œ0; 1� are pairwise disjoint measurable subsets of Œ0; 2�:

16. Show that there does not exist a measurable set E � R such that for any interval I; we
have �.E \ I / D �.I /=2: Hint: If E exists, then �.E \ Œ0; 1�/ D 1=2: Cover E \ Œ0; 1� by a
sequence .In/ of pairwise disjoint intervals such that

P1
nD1 �.In/ < 1 and derive a contradiction

from countable subadditivity.

17. Let � W Œ0; 1� ! Œ0; 1� be the Cantor function (cf. Example 4.3.13) and consider the function
f .x/ WD x C �.x/ for all x 2 Œ0; 1�: Show that f is a homeomorphism of Œ0; 1� onto Œ0; 2�:
If C � Œ0; 1� is the Cantor set, show that �.f .C // D 1 even though �.C / D 0: Hint: Note
that f �1 cannot have any jump discontinuities. Also, � is constant on the subintervals that make
up Cc WD Œ0; 1� n C and f maps each of these intervals onto an interval of equal length. Thus
�.f .C c// D 1:

18 (BR ¤ M�.R/).

(a) Let f W Œ0; 1� ! Œ0; 2� be the homeomorphism in the preceding problem. Show that f maps
each Borel set onto a Borel set. Show, however, that f maps a measurable set E onto a
nonmeasurable setB and hence that measurability is not a topological property. Also conclude
that f �1.B/ 2 M�.R/nBR and hence that BR ¤ M�.R/:Hint: Pick a nonmeasurable subset
B of f .C /:

(b) With f and the nonmeasurable set B as in part (a), let g WD 
B ı f: Show that g.x/ D 0 a.e.
Thus, 
B is nonmeasurable and yet 
B D g ı f �1; with g measurable and f �1 continuous
(cf. Exercise 10.2.16).

19. Let E be a nonmeasurable subset of .0; 1/ and define the function f W .0; 1/ ! .0; 2/ by
f .x/ WD x C 1 if x 2 E and f .x/ WD x if x 62 E:

(a) Show that, if Z � .0; 1/ and �.Z/ D 0; then �.f .Z// D 0:

(b) Show that there is a measurable set A � .0; 1/ such that f .A/ is nonmeasurable.

20.

(a) Show that f 2 L0.I / if and only if fx 2 I W f .x/ > rg is measurable for every r 2 Q:

(b) More generally, let E 2 M�.R/ and let D be a dense subset of R: Show that f 2 L0.E/ if
and only if fx 2 E W f .x/ > dg 2 M� for all d 2 D:

21. LetE 2 M�.R/: Show that, if f 2 L0.E/ and if g 2 RR is monotone, then gıf 2 L0.E/:

22. Let E 2 M�.R/ and f; g 2 L0.E;R/: If F W R2 ! R is continuous, show that the
composite function h D F.f; g/ is a measurable function on E: Deduce, in particular, that f C g

and fg are measurable.

23 (Borel vs. Lebesgue). Define a function g 2 RR to be a Borel function (or Borel measurable)
if g�1.B/ 2 BR for any B 2 BR:

(a) Show that g 2 RR is a Borel function if and only if g�1.O/ 2 BR for each open set O � R:

In fact, show that open set can be replaced by open interval.
(b) Show that, if f 2 L0.R/; then there is a Borel function g 2 RR such that f D g a.e.

Hint: For each r 2 Q; let Er WD fx W f .x/ < rg: Show that we can write Er D Br4Zr ;
where Br 2 BR and �.Zr/ D 0: Now pick Z � BR with �.Z/ D 0 and

S

r2QZr � Z

(Theorem 10.1.23), and define

g.x/ WD
(

0 if x 2 Z;

f .x/ if x 62 Z:
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24. Let .fn/ be a sequence in L0: Show that the set fx W .fn.x// convergesg is measurable.

25. Let g; h 2 L1.Œa; b�/: Show that, if f 2 L0.Œa; b�/ and g 	 f 	 h a.e. on Œa; b�; then
f 2 L1.Œa; b�/:

26. Let f; g 2 L1.R/ have compact support; i.e., they vanish outside a pair of compact sets. Is
it true in general that g ı f 2 L1.R/?

27. Show that the function

f .x/ WD
(

1=
p
x if x > 0;

0 if x D 0

is (Lebesgue) integrable on Œ0; 1� and find
R 1

0 f .x/ d�.x/: Hint: For each n 2 N; consider the
function

fn.x/ WD
(

0 if x 2 Œ0; 1=n2/;

1=
p
x if x 2 Œ1=n2; 1�:

28. Show that, for each b > 0; the function f .x/ WD xe�bx is (Lebesgue) integrable on Œ0;1/

and find
R1
0 f .x/ d�.x/:

29. Show that the function f .x/ WD x=.ex � 1/, defined to be 1 at x D 0; is Lebesgue integrable
on Œ0;1/ and we have

Z 1

0

x

ex � 1
d�.x/ D 	2

6
:

Hint: Expand .ex � 1/�1; and then use the previous problem and Tonelli’s Theorem (Corol-
lary 10.4.4).

30. Let f 2 L1.Œ0; 1�/: Show that limn!1
R 1

0 x
nf .x/ d�.x/ D 0:

31 (Borel–Cantelli Lemma). Let .En/ be a sequence of measurable sets in R such that

1
X

nD1

�.En/ < 1: (�)

Show that almost every x 2 R belongs to at most a finite number of the En: What if the
condition (�) is removed? Hint: Consider the function g.x/ WD P

n 
En.x/:

32. Let E � R be measurable. Show that if .fn/ is a sequence in L1.E/ with fn ! f almost
everywhere and f 2 L1.E/; then

R jfn � f j d� ! 0 if and only if
R jfnj d� ! R jf j d�:

33. Show that if .fn/ is a sequence in L1.R/ and if there is a function f 2 L1.R/ such that

Z

R

jfn � f j d� 	 1

n2
8n 2 N;

then limn!1 fn.x/ D f .x/ for almost all x 2 R:

34. Evaluate the following limit using the Monotone Convergence Theorem.

lim
n!1

Z n

0

.1C x=n/ne�2x dx:
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35. Let f 2 L0.R/ and assume that f .x/ � 0 for almost all x 2 R: Define the numbers

mk D �
�fx 2 R W 2k�1 < f .x/ 	 2kg�; 8k 2 Z:

Show that f 2 L1.R/ if and only if
P1

kD�1 2kmk < 1:

36. Let E � R be measurable and let .fn/ be a sequence of nonnegative functions in L0.E/

such that lim.fn/ D f almost everywhere on E and fn.x/ 	 f .x/ for all n and almost all x 2 E.
Show that we have

Z

E

f d� D lim
n!1

Z

E

fn d�:

Show that the same holds if instead of assuming fn � 0 for all n we assume that fn � g for a
function g 2 L1.E/:

37. Let .En/ be an increasing sequence of measurable sets: E1 � E2 � � � � : Show that, if
f 2 L1.En/ and limn!1

R

En
jf j < 1; then f 2 L1.E/; where E D S1

nD1 En; and we have

Z

E

f .x/ d�.x/ D lim
n!1

Z

En

f .x/ d�.x/:

Hint: Write E D E1 [ .E2 nE1/[ .E3 nE2/[ � � � :
38 (Chebyshev’s Inequality). Let E 2 M�.R/ and 0 	 f 2 L0.E/: Show that, for each
c > 0;

�.fx 2 E W f .x/ � cg/ 	 1

c

Z

E

f .x/ d�.x/:

Hint: Note that, with Ec WD fx 2 E W f .x/ � cg; we have
R

E f � R

Ec
f:

39. Let E 2 M�.R/ and f 2 L1.E/: Use Chebyshev’s inequality to show that
R

E jf .x/j d�.x/ D 0 implies f D 0 a.e. Hint: Look at �.fx 2 E W jf .x/j > 1=ng/:
40. Let f 2 L1.Œa; b�/ and assume that

R x

a f .t/ d�.t/ D 0 for all x 2 Œa; b�: Show that f D 0

almost everywhere.

41. Let f 2 L1.Œa; b�/ and assume that
R b

a x
nf .x/ d�.x/ D 0 for all n 2 N0: Show that f D 0

almost everywhere. Hint: Use the previous problem and the Weierstrass Approximation Theorem
(Corollary 4.7.10).

42. Let f 2 L1.Œa; b�/ and, for each n 2 N; let En WD fx 2 Œa; b� W f .x/ > ng: Show that
limn!1

R

En
f D 0:

43 (Jensen’s Inequality). Let � W R ! R be a convex function and let f 2 L1.Œ0; 1�/: Then
we have

Z 1

0

�
�

f .x/
�

d�.x/ � �
�

Z 1

0

f .x/ d�.x/
�

:

Deduce that

Z 1

0

exp
�

f .x/
�

d�.x/ � exp
h

Z 1

0

f .x/ d�.x/
i

:
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Hint: Look at a support line to the graph of � at
�

�; �.�/
�

; where � WD R 1

0 f .x/ d�.x/:

44. Show that, if f 2 L1.Œa; b�/; if f is bounded on Œa; b�; and if

F.x/ WD
Z x

a

f .t/ d�.t/;

then F 2 Lip.Œa; b�/:

45. Show that, if in the preceding problem the assumption that f be bounded is removed, then
we still have F 2 C.Œa; b�/: Hint: Approximate f by continuous functions.

46. Show that, if f 2 L1.Œa; b�/ and F.x/ WD R x

a f .t/ d�.t/; then F D G � H; where G
and H are continuous and increasing. Deduce that F 2 BV .Œa; b�/: Hint: Note that F.x/ D
R x

a f
C.t/ d�.t/� R x

a f
�.t/ d�.t/:

47. Let f 2 L1.Œa; b�/ and F.x/ WD R x

a f .t/ d�.t/: Given any partition P WD .xi /
n
iD0 with

a D x0 < x1 < � � � < xn D b; show that

n
X

jD1

jF.xj /� F.xj�1/j 	
Z b

a

jf j:

Deduce that F 2 BV .Œa; b�/ and that

V b
a .F / 	

Z b

a

jf j:

In fact, V b
a .F / D R b

a jf j; as we shall see below.

48. Let f 2 L1.Œa; b�/ and F.x/ WD R x

a f .t/ d�.t/: Show that F 2 BV .Œa; b�/ and

V b
a .F / D

Z b

a

jf j:

Hint: Let .�n/ 2 Step.Œa; b�/N with �n ! f a.e., and define the functions

"n.x/ WD
8

ˆ

<

ˆ

:

C1 if �n.x/ > 0;

0 if �n.x/ D 0;

�1 if �n.x/ < 0:

Now consider the integrals
R b

a "n.x/f .x/ d�.x/:

49. Show that, if F 0 D f is bounded on Œa; b�; then f 2 L1.Œa; b�/ and we have

Z b

a

f .x/ d�.x/ D F.b/� F.a/:

Hint: Redefine F (if necessary) so that F.x/ D F.b/ for all x > b and define

fn.x/ WD nŒF.x C 1=n/� F.x/� .8x 2 Œa; b�/:

Now use the Bounded Convergence Theorem to show that
R b

a fn ! R b

a f:
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50. Let f 2 L1.R/ and, for each h 2 R; define fh.x/ WD f .x C h/: Show that

lim
h!0

Z

R

jfh � f j d� D 0:

51. Let .fn/ be a decreasing sequence of nonnegative functions with f1 2 L1.R/ and
lim.

R

fn/ D 0: Show that lim.fn.x// D 0 for almost all x 2 R: Hint: Let f WD lim.fn/:

52. Let f 2 L1.Œa; b�/ and suppose that 0 	 f .x/ < 1 for all x 2 Œa; b�: Show that

limn!1
R b

a Œf .x/�
n d�.x/ D 0:

53. Show that if f W R ! RC is integrable, then the function F.x/ WD R x

�1 f d� is continuous.

54. Prove the Bounded Convergence Theorem (Theorem 10.4.21) using Egorov’s theorem
(Theorem 10.5.15).

55. Let f 2 L1.R/. Show that for any " > 0 there is a continuous function g with compact
support such that

Z

R

jf � gj d� < ":

56. Let f W R ! R be a measurable function such that

lim
jxj!1

Œf .x C y/� f .x/� D 0 .8y 2 R/: (�)

Show that the convergence in (�) is in fact uniform (in y) on bounded sets. Hint: Given " > 0;

consider the sets

En WD fy 2 R W jxj > n ) jf .x C y/� f .x/j < "g:
Show that .En/ is an increasing sequence of measurable sets with R D S1

nD1 En: Deduce that
�.EN / > 0 for sufficiently large N and hence I WD Œ�ı; ı� � EN � EN for some ı > 0: Show
that, 8y 2 I; we have jf .xCy/�f .x/j < 2" if jxj > N C ı: Using this observation repeatedly,
deduce the uniform convergence if y belongs to a bounded set.

57. Let f W R ! R be a nonzero measurable function satisfying f .x C y/ D f .x/f .y/ for all
x; y 2 R: Show that f .x/ D ax; where a D f .1/:



Chapter 11
More on Lebesgue Integral and Measure

Our objective in this chapter is to add a few more topics to Lebesgue’s theory
of measure and integration introduced in Chap. 10. We begin by revisiting the
connection to Riemann’s theory and give a short discussion of improper Riemann
integrals. Next, we look at integrals depending on a parameter and give sufficient
conditions under which the order of limits and integrals may be interchanged
as well as conditions that guarantee the possibility of differentiating under the
integral sign. The third section includes a short introduction to Lp-spaces which
are important examples of classical Banach spaces. The fourth section gives a brief
treatment of additional modes of convergence including the notion of convergence in
measure. Finally, the last section deals with the differentiation problem and includes
Lebesgue’s theorem on the differentiability of monotone functions as well as his
versions of the Fundamental Theorem(s) of Calculus.

11.1 Lebesgue vs. Riemann

Now that we have the Lebesgue theory of integration with its powerful convergence
theorems, it would be instructive to take another look at its relation to Riemann
integral and use the convergence theorems to give shorter proofs. We begin by
giving Lebesgue’s own definition of his integral in terms of partitions and show
that it is equivalent to the one given in Chap. 10. Next, we give another proof of
Lebesgue’s Criterion for a bounded function to be Riemann integrable. Finally,
we obtain convergence criteria for improper Riemann integrals and explore their
relation to the corresponding Lebesgue integrals.

© Springer Science+Business Media New York 2014
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Definition 11.1.1 (Lebesgue Sum). Let E 2 M�<1.R/ and f W E ! R a
bounded measurable function with m WD infff .x/ W x 2 Eg and M WD supff .x/ W
x 2 Eg. Given any tagged partition PP D .P; �/ of Œm;M�; where P D .yk/

n
kD0

and � D .�j /njD1 satisfy

y0 WD m < y1 < � � � < yn WDM and �j 2 Œyj�1; yj �; 1 � j � n;

we define the corresponding Lebesgue sum of f to be the number

S�.f; PP/ WD
n
X

jD1
�j �.Ej /;

where Ej WD f �1.Œyj�1; yj //, 1 � j � n � 1; and En WD f �1.Œyn�1; yn�/.

Remark. Note that, since f is measurable, so are the setsEj and the finite sequence
.Ej /

n
jD1 is in fact a measurable partition of E into pairwise disjoint (measurable)

subsets. Also note that, while for Riemann sums the domain of f was partitioned,
for Lebesgue sums we partition the range of f . This was in fact already used in
the proof of Theorem 10.2.24. Finally, let us recall that the mesh (or norm) of the
partition P is the number kPkWD maxfyj � yj�1 W 1 � j � ng.
Definition 11.1.2 (Lebesgue’s Definition). Let E 2 M�<1.R/. Then, given a
bounded measurable function f W E ! R; the Lebesgue integral of f on E;
denoted by

R

E
f d�; is defined to be

Z

E

f d� WD lim
kPk!0

S�.f; PP/; (�)

where the limit is defined as in Theorem 7.1.26.

We now have the following.

Proposition 11.1.3. Let E 2 M�<1.R/ and f W E ! R be a bounded,
measurable function. Then the integral in (�) agrees with the Lebesgue integral of
f , as defined in Chap. 10.

Proof. Let the notation be as in Definition 11.1.2 and define the simple function � PP
by setting

� PP WD
n
X

jD1
�j 
Ej :

Then, integrating, we have

Z

E

� PP d� D S�.f; PP/:
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Now observe that jf .x/ � � PP.x/j � kPk for all x 2 E. Thus, if . PPn/ is a
sequence of tagged partitions of Œm;M� with kPnk < 1=n and Pn � PnC1 for
all n; and if �n WD � PPn ; then lim.�n/ D f and the Bounded Convergence Theorem
(Theorem 10.4.21) implies that

lim
n!1S�.f; PPn/ D lim

n!1

Z

E

�n.x/ d�.x/ D
Z

E

f .x/ d�.x/: ut

Our next goal is to give a shorter proof of Lebesgue’s Integrability Criterion
(Theorem 7.3.19). Recall that if P D .xi /

n
iD0 is a partition of Œa; b� and if

f W Œa; b� ! R is a bounded function, then with mj WD infff .x/ W x 2 Œxj�1; xj �g
and Mj WD infff .x/ W x 2 Œxj�1; xj �g, the corresponding lower and upper Darboux
sums of f are

L.f;P/ WD
n
X

jD1
mj .xj � xj�1/ and U.f;P/ WD

n
X

jD1
Mj .xj � xj�1/:

Thus, with the step functions

`P WD f .a/
fag C
n
X

jD1
mj
.xj�1;xj � and ()

uP WD f .a/
fag C
n
X

jD1
Mj
.xj�1;xj �;

we have `P � f � uP on Œa; b� and

Z b

a

`P.x/ d�.x/ D L.f;P/ and
Z b

a

uP.x/ d�.x/ D U.f;P/:

Now, pick a sequence .Pk/ of partitions of Œa; b� such that Pk � PkC1 and kPkkWD
maxfxj � xj�1 W 1 � j � ng ! 0 as k !1. Let `k WD `Pk and uk WD uPk be the
corresponding step functions as in (). Then .`k/ is increasing, .uk/ is decreasing,
and `k � f � uk on Œa; b� for all k. Define the functions ` WD lim.`k/ and u D
lim.uk/. Then ` and u are bounded Borel functions and we have l � f � u on
Œa; b�. Also, the Bounded Convergence Theorem gives

Z

Œa;b�

` d� D lim
k!1

Z

Œa;b�

`k d� D lim
k!1L.f;Pk/ D

Z

f; ()

Z

Œa;b�

u d� D lim
k!1

Z

Œa;b�

uk d� D lim
k!1U.f;Pk/ D

Z

f:
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Theorem 11.1.4 (Lebesgue’s Integrability Criterion). A bounded function f W
Œa; b� ! R is Riemann integrable if and only if it is continuous at almost every
x 2 Œa; b�.
Proof. Let Q WD S1

kD1 Pk , with the sequence of partitions .Pk/ as above. Then Q
has measure zero and if x 62 Q, then f is continuous at x, i.e., the oscillation of f
at x is zero [cf. Exercise 4.3.8 (d)], if and only if `.x/ D u.x/. Now, if f is Riemann
integrable, then () and the equality of the lower and upper Darboux integrals show
that

R

Œa;b�
.u � `/ d� D 0. But then u � ` � 0 implies that `.x/ D f .x/ D u.x/

for almost all x 2 Qc and hence for almost all x 2 Œa; b�. Conversely, if f is
continuous almost everywhere, then ` D f D u almost everywhere and hence
R

Œa;b�
` d� D R

Œa;b�
u d�. Therefore, given " > 0, we can pick k so large that

U.f;Pk/ � L.f;Pk/ D
Z

Œa;b�

uk d� �
Z

Œa;b�

`k d� < "

and hence f is Riemann integrable. ut
Our objective for the rest of this section is to look briefly at improper Riemann

integrals and the corresponding Lebesgue integrals.

Definition 11.1.5 (Improper Riemann Integral (1)). Let�1 < a < b <1 and
let f W .a; b� ! R. Suppose that f 2 R.Œc; b�/ for all c 2 .a; b/. The improper
Riemann integral of f on Œa; b� is then defined to be

(i)
Z b

a

f .x/ dx WD lim
c!aC

Z b

c

f .x/ dx,

provided the limit exists, in which case we say that
R b

a
f .x/ dx is convergent (or

exists). Otherwise, we say that the integral is divergent. Similarly, we define the
improper Riemann integral

(ii)
Z b

a

f .x/ dx WD lim
c!b�

Z b

c

f .x/ dx,

provided that f 2R.Œa; c�/ for all c 2 .a; b/ and the limit in (ii) exists. Finally, let
c 2 .a; b/ be such that f 2 R.Œa; d �/ and f 2 R.Œe; b�/ for all d 2 .a; c/ and all
e 2 .c; b/. Then we define the improper Riemann integral

(iii)
Z b

a

f .x/ dx WD
Z c

a

f .x/dx C
Z b

c

f .x/ dx,

if the improper Riemann integrals
R c

a
f .x/ dx and

R b

c
f .x/ dx (defined as in (ii)

and (i), respectively) are both convergent.

Exercise 11.1.6. Show that, if f 2R.Œa; b�/; then the integrals defined by (i), (ii),
and (iii) above coincide with the proper (i.e., usual) Riemann integral

R b

a
f .x/ dx.
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Example 11.1.7.

(1) For each p 2 .0; 1/ the improper integral
R 1

0
x�p dx exists. Indeed, we have

Z 1

0

1

xp
dx D lim

c!0C

Z 1

c

x�p dx D lim
c!0C

�

1

1 � p �
c1�p

1 � p
�

D 1

1 � p :

(2) The improper Riemann integral
R 1

0
x�p dx is divergent for all p � 1. For p > 1

the computation is exactly as in the example (1) above, but, in this case, the limit
is obviously infinite. For p D 1; we have

Z 1

0

1

x
dx D lim

c!0C

Z 1

c

dx

x
D lim

c!0C.� log c/ D C1:

(3) Consider the improper integral
R 1

0
log x dx. A simple integration by parts shows

that
R

log x dx D x log x � x. Therefore,

Z 1

0

log x dx D lim
c!0C

Z 1

c

log x dx D lim
c!0C.log 1 � 1 � c log c C c/ D �1;

where we have used the fact that limc!0C c log c D 0. (Why?)

Next, we consider improper Riemann integrals on unbounded intervals:

Definition 11.1.8 (Improper Riemann Integral (2)). Let f W Œa;1/ ! R and
suppose that f 2 R.Œa; b�/ for all b > a. The improper Riemann integral of f on
Œa;1/ is then defined to be

(iv)
Z 1

a

f .x/ dx WD lim
b!C1

Z b

a

f .x/ dx,

provided the limit exists, in which case we say that
R1
a
f .x/ dx is convergent

(or exists). Otherwise, we say that the integral is divergent. Similarly, we define
the improper Riemann integral

(v)
Z b

�1
f .x/ dx WD lim

a!�1

Z b

a

f .x/ dx,

provided that f 2 R.Œa; b�/ for all a < b and the limit in (v) exists. Finally, if
f W R ! R and if f 2 R.Œa; b�/ for all �1 < a < b < 1; then we define the
improper Riemann integral

(vi)
Z 1

�1
f .x/ dx WD

Z c

�1
f .x/ dx C

Z 1

c

f .x/ dx,

where c is any fixed number, if the improper Riemann integrals
R c

�1 f .x/ dx

and
R1
c
f .x/ dx (defined as in (v) and (iv), respectively) are both convergent.

R1
�1 f .x/ dx is then independent of c. (Why?)
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Example 11.1.9.

(1) For each p > 1; the improper integral
R1
1
x�p dx is convergent. Indeed, we

have

Z 1

1

1

xp
dx D lim

b!1

Z b

1

x�p dx D lim
b!1

�

b1�p

1 � p �
1

1 � p
�

D 1

p � 1 :

(2) The improper Riemann integral
R1
1
x�p dx is divergent for all p 2 .0; 1�. For

p 2 .0; 1/ we compute exactly as in example (4) above, but find that the limit
isC1. For p D 1; we have

Z 1

1

1

x
dx D lim

b!1

Z b

1

dx

x
D lim

b!1 log b D C1:

(3) Consider the improper integral
R1
2
1=.x log x/ dx. Here, we have

Z 1

2

1

x log x
dx D lim

b!1Œlog.log b/ � log.log 2/� D C1:

Remark 11.1.10.

1. Note that, if f .x/ � 0 on Œa;1/ and f 2 R.Œa; b�/ for all b > a; then
R b

a
f .x/ dx is an increasing function of b. It follows that

Z 1

a

f .x/ dx D sup

(

Z b

a

f .x/ dx W b � a
)

2 Œ0;1�:

Therefore, in this case, the improper integral
R1
a
f .x/ dx is either convergent or

diverges to C1. The same comment can be made about the improper integrals
R b

�1 f .x/ dx and
R1

�1 f .x/ dx if f is a nonnegative function.
2. (Integral Test). If f is a nonnegative, decreasing function whose domain

contains Œ1;1/, then (cf. Problem 7.7.#9)

1
X

1

f .n/ <1”
Z 1

1

f .x/ dx <1:

Indeed, this follows at once from the inequalities

f .2/C f .3/C � � � C f .n/ �
Z n

1

f .x/dx � f .1/C f .2/C � � � C f .n � 1/:

Definition 11.1.11 (Absolute vs. Conditional Convergence). An improper
integral

R1
a
f .x/ dx is said to be absolutely convergent if

R1
a
jf .x/j dx

is convergent. In this case, f is said to be absolutely integrable on Œa;1/.
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If
R1
a
f .x/ dx exists but

R1
a
jf .x/j dx D C1; then

R1
a
f .x/ dx is said

to be conditionally convergent. For the improper integrals
R b

�1 f .x/ dx and
R1

�1 f .x/ dx; the absolute and conditional convergence are defined similarly.

To simplify the exposition, we formulate the following results for functions
defined on Œa;1/. It is obvious, however, that similar results hold for the other
types of improper integrals as well.

Theorem 11.1.12 (Cauchy’s Criterion). The improper integral
R1
a
f .x/ dx is

convergent if and only if, given any " > 0; there exists B > 0 such that

x; y � B )
ˇ

ˇ

ˇ

ˇ

Z x

a

f .t/dt �
Z y

a

f .t/dt

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z y

x

f .t/dt

ˇ

ˇ

ˇ

ˇ

< ":

Proof. Let F.x/ WD R x

a
f .t/dt . Then S WD R1

a
f .x/ dx exists if and only if

limx!1 F.x/ D S . The theorem now follows from Exercise 3.4.18. ut
Corollary 11.1.13 (Absolute Convergence) Convergence). An absolutely inte-
grable function f on Œa;1/ is integrable on Œa;1/.
Proof. Simply note that if x � y; then j R y

x
f .t/ dt j � R y

x
jf .t/j dt . ut

Remark 11.1.14. As this corollary shows, improper Riemann integrals behave like
(ordered) series, where absolute convergence implies convergence. By contrast,
only the converse holds for proper Riemann integrals (cf. Corollary 7.3.20 or
Corollary 7.4.12).

Here is a lemma which provides positive integrable functions that can be used as
dominating functions in Lebesgue’s Dominated Convergence Theorem.

Lemma 11.1.15. Let I � R be an interval, f W I ! R; and let .In/1nD1 be an
increasing sequence of intervals (i.e., I1 � I2 � � � � ) with I D S1

nD1 In. If f jIn 2
L1.In/ for all n � 1 and if the sequence .

R

In
jf j/ is bounded, then f 2 L1.I / and

Z

I

f D lim
n!1

Z

In

f:

In fact, we have

lim
n!1

Z

jf � f
In j D 0: ()

Proof. Consider the truncated functions fn WD f
In for all n 2 N. If f � 0; then
.fn/ is an increasing sequence of nonnegative functions in L1.I / that converges to
f . The numerical sequence .

R

I
fn d�/ is then increasing, nonnegative, and bounded

above by assumption, hence convergent. The Monotone Convergence Theorem now
implies that limn!1

R

In
f d� D R

I
f d� <1. Moreover, .f �fn/ is a decreasing,

nonnegative sequence with limn!1.f � fn/ D 0; from which () follows at once.
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In general, we have f D f C�f � and may apply the previous case to the functions
f C and f � to deduce that f 2 L1.I /. Also, since () holds for f C and f �;
we have

lim
n!1

Z

I

jf � fnj � lim
n!1

�

Z

I

.f C � f C
n /C

Z

I

.f � � f �
n /

�

D 0: ut

We now use the lemma to prove the following convergence result for improper
Riemann integrals.

Proposition 11.1.16. Let f be defined on Œa;1/. If f is Riemann integrable on
Œa; b� for each b � a and

R b

a
jf .x/j dx � M for some M > 0 and all b �

a; then the improper Riemann integrals
R1
a
f .x/ dx and

R1
a
jf .x/j dx are both

convergent. Also, f 2 L1.Œa;1// and the Lebesgue integral of f is equal to its
improper Riemann integral. In particular, the same conclusion holds if jf j � g;

where g is Lebesgue (or improperly Riemann) integrable on Œa;1/.
Proof. This follows from the above lemma with I WD Œa;1/; In WD Œa; a C n�

and Proposition 10.3.19, which implies that for each b � a; the Riemann integral
R b

a
f .x/ dx and the Lebesgue integral

R b

a
f .x/ d�.x/ coincide. ut

Example 11.1.17. The improper integral
R1
1

log x=xp dx is convergent for all
p > 1.

Indeed, we note that log x < x˛=˛ for all x > 0 and all ˛ > 0. (Why?) Thus,
if 0 < ˛ < p � 1; we have log x=xp < 1=.˛xp�˛/. Since, as we saw earlier,
R1
1
1=.˛xp�˛/ dx exists, the assertion follows from the above proposition.

Exercise 11.1.18.

(a) Let f .x/ WD e�jxj for all x 2 R. Show that f 2 L1.R/ and that its Lebesgue
integral coincides with its improper Riemann integral. Conclude that

Z 1

�1
e�jxj dx D 2:

(b) State and prove Proposition 11.1.16 for the other types of improper Rie-
mann integrals:

R b

�1 f .x/ dx D lima!�1
R b

a
f .x/ dx;

R b

a
f .x/ dx D

limc!aC
R b

c
f .x/ dx, and

R b

a
f .x/ dx D limc!b�

R c

a
f .x/ dx.

Here is an exercise containing an example of an improperly Riemann integrable
function that is not Lebesgue integrable.

Exercise 11.1.19. Let f .x/ WD sin x=x on Œ1;1/. Show that the improper Riemann
integral

Z 1

1

f .x/ dx
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is convergent. Show, however, that f is not Lebesgue integrable on Œ1;1/. Hint:
Use integration by parts to obtain

Z b

1

sin x

x
dx D

h� cos x

x

ib

1
�
Z b

1

cos x

x2
dx:

On the other hand, show that
R1
1
j sin xj=x dx is divergent by observing that

Z k	

.k�1/	
j sin xj=x dx � 1

k	

Z k	

.k�1/	
j sin xj dx D 2

k	
:

For each x > 0; consider the function f .t/ WD tx�1e�t for all t 2 .0;1/.
If t 2 .0; 1�; then tx�1e�t < tx�1 and hence

Z 1

0

tx�1e�t dt D sup

�

Z 1

ı

tx�1e�t dt W 0 < ı < 1
�

�
Z 1

0

tx�1 dx D 1

x
:

If t > 1; then one easily checks that the function t 7! txC1e�t has a maximum at
t D x C 1 and hence

Z 1

1

tx�1e�t dt D
Z 1

1

.txC1e�t /t�2dt

� .x C 1/xC1e�.xC1/
Z 1

1

1

t2
dt D .x C 1/xC1e�.xC1/:

In view of these estimates, it is legitimate to make the following.

Definition 11.1.20 (Euler’s Gamma Function). For each x > 0 we define

�.x/ WD
Z 1

0

tx�1e�t dt:

Exercise 11.1.21 (�.x C 1/ D xŠ). Show that �.1/ D 1 and that

�.x C 1/ D x�.x/ .8x > 0/:

Deduce that �.nC 1/ D nŠ for all n 2 N. Hint: Use integration by parts:

Z b

0

txe�t dt D ��txe�t �b
0
C x

Z b

0

tx�1e�t dt:
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11.2 Dependence on a Parameter

As the example of the Gamma function shows, there are situations where we must
consider integrals with integrands depending on a real parameter. In this section we
show how Lebesgue’s Dominated Convergence Theorem may help investigate the
properties of such integrals. To simplify the exposition, we make the following

Assumption. Throughout the section, we assume that E 2 M�.R/; that f W
E � Œa; b� ! R, where a < b; and that the function x 7! f .x; t/ is (Lebesgue)
measurable on E for each t 2 Œa; b�.
Proposition 11.2.1 (Interchanging Limit and Integral). If for some t0 2 Œa; b�
we have

f .x; t0/ D lim
t!t0

f .x; t/ 8 x 2 E;

and if jf .x; t/j � g.x/ for all .x; t/ 2 E � Œa; b� and a function g 2 L1C.E/; then

Z

E

f .x; t0/ d�.x/ D lim
t!t0

Z

E

f .x; t/ d�.x/I

i.e., the order of limt!t0 and
R

E
may be interchanged.

Proof. For any sequence .tn/ in Œa; b� with lim.tn/ D t0; define fn.x/ WD f .x; tn/

for each n 2 N and note that our assumption implies that limn!1 fn.x/ D
f .x; t0/ for each x 2 E. Thus the proposition follows from Lebesgue’s Dominated
Convergence Theorem. ut

The following corollary is an immediate consequence.

Corollary 11.2.2. If the function t 7! f .x; t/ is continuous on Œa; b� for each x 2
E and jf .x; t/j � g.x/ for all .x; t/ 2 E � Œa; b� and a function g 2 L1C.E/; then
the function

F.t/ WD
Z

E

f .x; t/ d�.x/

is continuous on Œa; b�.

For the next proposition we shall need the following.

Definition 11.2.3 (Partial Derivative). Given a function f W E� Œa; b�; we define
its partial derivative with respect to t , denoted @f=@t; to be the function

@f

@t
.x; t/ WD d

dt
f .x; t/;

with domain the set of all .x; t/ 2 E � Œa; b� for which the derivative exists.
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Proposition 11.2.4 (Differentiating Under the Integral Sign). Suppose that for
some t0 2 Œa; b� the function x 7! f .x; t0/ is (Lebesgue) integrable on E; that
@f=@t exists on E � Œa; b�; and that there is a function g 2 L1C.E/ such that

ˇ

ˇ

ˇ

@

@t
f .x; t/

ˇ

ˇ

ˇ

� g.x/ 8 .x; t/ 2 E � Œa; b�:

Then the function F.t/ WD R
E
f .x; t/ d�.x/ is differentiable on Œa; b� and we have

dF

dt
.t/ D d

dt

Z

E

f .x; t/ d�.x/ D
Z

E

@f

@t
.x; t/ d�.x/:

Proof. Let t 2 Œa; b� and pick any sequence .tn/ in Œa; b� such that tn ¤ t for all
n 2 N and lim.tn/ D t . Then we have

@f

@t
.x; t/ D lim

n!1
f .x; tn/ � f .x; t/

tn � t 8 x 2 E;

and hence the function x 7! .@f /=@t/.x; t/ is measurable on E. Next, for any
x 2 E and any t 2 Œa; b� with t ¤ t0; we can apply the MVT (Theorem 6.4.8) to
find a number s between t0 and t such that

f .x; t/ � f .x; t0/ D .t � t0/@f
@t
.x; s/

and hence

jf .x; t/j � jf .x; t0/j C jt � t0jg.x/;

which shows that x 7! f .x; t/ is integrable for every t 2 Œa; b�. Thus, if tn ¤ t;

then we have

F.tn/ � F.t/
tn � t D

Z

E

f .x; tn/ � f .x; t/
tn � t d�.x/:

Since the integrand is dominated by g 2 L1C.E/; taking the limit as n ! 1 and
using Lebesgue’s Dominated Convergence Theorem complete the proof. ut

The next proposition deals with the possibility of interchanging the order of
the Riemann integral

R b

a
and the Lebesgue integral

R

E
in the iterated integral

R b

a
Œ
R

E
f .x; t/ d�.x/�dt .

Proposition 11.2.5 (Interchanging the Order of Integration). Suppose, as in
Corollary 11.2.2, that t 7! f .x; t/ is continuous on Œa; b� for each x 2 E and
that jf .x; t/j � g.x/ for all .x; t/ 2 E � Œa; b� and a function g 2 L1C.E/. Then,
with F.t/ WD R

E
f .x; t/ d�.x/; we have
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Z b

a

F.t/ dt D
Z b

a

h

Z

E

f .x; t/ d�.x/
i

dt

D
Z

E

h

Z b

a

f .x; t/ dt
i

d�.x/;

where the integrals with respect to t are Riemann integrals.

Proof. Consider the function

h.x; t/ WD
Z t

a

f .x; s/ ds 8 .x; t/ 2 E � Œa; b�;

where the Riemann integral on the right side is a limit of Riemann sums and hence
the function x 7! h.x; t/ is measurable on E. The (Second) Fundamental Theorem
of Calculus (Theorem 7.5.8) implies that .@h=@t/.x; t/ D f .x; t/. Also, since
jf .x; t/j � g.x/ for all .x; t/ 2 E � Œa; b�; it follows that jh.x; t/j � .b � a/g.x/
and hence x 7! h.x; t/ is integrable onE for each t 2 Œa; b�. Therefore, if we define

H.t/ WD
Z

E

h.x; t/ d�.x/;

then Proposition 11.2.4 implies that

dH

dt
.t/ D

Z

E

@h

@t
.x; t/ d�.x/ D

Z

E

f .x; t/ d�.x/ D F.t/:

But then, the (First) Fundamental Theorem of Calculus (Theorem 7.5.3) gives

Z b

a

F.t/ dt D H.b/ �H.a/

D
Z

E

Œh.x; b/ � h.x; a/� d�.x/

D
Z

E

h

Z b

a

f .x; t/ dt
i

d�.x/:

ut
Example 11.2.6. We have

Z 1

0

e�tx sin x dx D 1

1C t 2 8 t > 0: ()

Here the integrand f .x; t/ WD e�tx sin x is differentiable (in x and t ), jf .t; x/j �
e�tx for all .x; t/; and

R1
0
e�tx dx D 1=t < 1 for all t > 0. So the improper

integral is convergent for all t > 0. To evaluate it, an integration by part gives
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Z b

0

e�tx sin x dx D
h

� .t sin x C cos x/e�tx

1C t 2
ib

0

D � .t sin b C cos b/e�tb

1C t 2 C 1

1C t 2 ;

and () follows if we take the limit as b !1.
Here is a classical example where the introduction of a parameter helps evaluate

an improper Riemann integral.

Example 11.2.7 (Dirichlet). We have

Z 1

0

sin x

x
dx D 	

2
:

First, by Exercise 11.1.19, the integral is convergent. Let us introduce the related
function

F.t/ WD
Z 1

0

e�tx sin x

x
dx; t � 0:

Note that F.0/ is the integral to be evaluated. Since limx!0.sin x=x/ D 1; the
integrand f .x; t/ WD e�tx sin x=x may also be defined at x D 0 by setting
f .0; t/ WD 0 and is then defined (and continuous) for all .x; t/. Also, the inequality
j sin xj � jxj; which follows at once from the MVT [cf. Exercise 6.4.17(b)], implies
that, with our convention sin 0=0 WD 1;

jf .x; t/j D e�tx j sin xj
jxj � e

�tx 8 .x; t/: ()

Now for all t > 0 we have
R1
0
e�tx dx D 1=t < 1; so that F.t/ is well defined

and continuous on .0;1/. Also, () implies that

jF.t/j �
Z 1

0

e�tx
ˇ

ˇ

ˇ

sin x

x

ˇ

ˇ

ˇ

dx �
Z 1

0

e�tx dx D 1

t
8 t > 0: (  )

In fact, F.t/ is differentiable for all t > 0. Indeed, @f .x; t/=@t D �e�tx sin x and
Example 11.2.6 shows that we have

F 0.t/ D �
Z 1

0

e�tx sin x dx D � 1

1C t 2 8 t > 0:

We therefore have F.t/ D C � arctan t for t > 0 and a constant C . To
find the constant, note that (  ) implies limt!1 F.t/ D 0 and hence
C D limt!1 arctan t D 	=2. Thus
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F.t/ D
Z 1

0

e�tx sin x

x
dx D 	

2
� arctan t; 8 t > 0:

We already know that F.t/ is continuous (even differentiable) on .0;1/; but to be
able to use limt!0C F.t/ D F.0/; i.e.,

Z 1

0

sin x

x
dx D lim

t!0C

Z 1

0

e�tx sin x

x
dx D lim

t!0C

�	

2
� arctan t

�

D 	

2
; (�)

we must show that F is continuous at t D 0. This will follow if we can show
that

R1
0
e�tx.sin x=x/ dx converges uniformly to 	=2� arctan t on Œ0;1/. But the

integral
R1
0
.sin x=x/ dx being convergent, given any " > 0; we can find N > 0 so

large that B > A � N implies j R B
A
.sin x=x/ dxj < ". Since e�tx is a decreasing,

positive function (of x), we can use Theorem 7.4.20 (the Second MVT for Integrals)
to find � 2 ŒA; B� with

ˇ

ˇ

ˇ

Z B

A

e�tx sin x

x
dx
ˇ

ˇ

ˇ

D e�At
ˇ

ˇ

ˇ

Z �

A

sin x

x
dx
ˇ

ˇ

ˇ

< " 8 t � 0;

which proves the desired uniform convergence on Œ0;1/ and justifies (�).

Exercise 11.2.8. Show that for any ˛ 2 R we have

Z 1

0

sin2.˛x/

x2
dx D 	

2
j˛j:

Hint: Integrate by parts.

11.3 Lp-Spaces

The spaces we want to introduce in this section are often called classical Banach
spaces, and their study will provide an opportunity to use some of the results we
obtained for abstract Banach spaces in Chap. 9. In fact, we have already introduced
one of these spaces before, namely the space L1.E;F/, where E 2M�.R/ and F

is either R or C. As was pointed out in Notation 10.3.29, we look at equivalence
classes of measurable functions modulo the class of null functions.

Definition 11.3.1 (Lp-Spaces, 1 � p < 1). Let F denote either R or C. Given
any E 2 M�.R/ and any p 2 Œ1;1/; we denote by Lp.E;F/ the set of all
measurable functions f 2 L0.E;F/ such that

R

E
jf jp d� < 1. The Lp-norm

of f is then defined to be

kf kp WD
h

Z

E

jf .x/jp d�.x/
i1=p

: (k � kp)
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Thus f 2 Lp.E;F/ if and only if jf jp 2 L1.E;F/. The space Lp.E;F/ WD Lp

.E;F/=N .E;F/ is then the set of all equivalence classes Œf � WD f C N .E;F/,
where f 2 Lp.E;F/ and N .E;F/ is the set of all (F-valued) null functions on E.
Abusing the notation, we usually write f 2 Lp.E;F/ instead of f 2 Lp.E;F/.

To prove that k � kp is indeed a norm on Lp.E/; we need a couple of well-known
inequalities which we now establish.

Proposition 11.3.2 (Hölder’s Inequality). Suppose that p; q 2 .1;1/ are related
by 1=p C 1=q D 1. Then for any f 2 Lp.E;F/ and g 2 Lq.E;F/ we have
fg 2 L1.E;F/ and

kfgk1 � kf kpkgkq:

Proof. We may (and do) assume that kf kp > 0 and kgkq > 0. Now recall (cf.
Example 6.7.13) that we have

a1=pb1=q � a

p
C b

q
8 a � 0; b � 0: ()

Applying () with a D jf .x/jp=kf kpp and b D jg.x/jq=kgkqq , we have

jf .x/g.x/j
kf kpkgkq �

jf .x/jp
pkf kpp C

jg.x/jq
qkgkqq :

Since both functions on the right side are integrable, fg 2 L1.E;F/ follows. But
then, integrating the two sides gives

kfgk1
kf kpkgkq �

1

p
C 1

q
D 1:

ut
Exercise 11.3.3. Show that if E 2 M�<1.R/; i.e., �.E/ < 1; then Lp

.E;F/ � L1.E;F/ for all p 2 Œ1;1/.
For p D q D 2; Hölder’s inequality becomes

Corollary 11.3.4 (Cauchy–Schwarz Inequality). Let E 2M�.R/. Then, for any
f; g 2 L2.E;F/; we have fg 2 L1.E;F/ and

ˇ

ˇ

ˇ

Z

E

f .x/g.x/ d�.x/
ˇ

ˇ

ˇ

� kfgk1 � kf k2kgk2:

We are now ready to prove the second important inequality that will show
that k � kp is indeed a norm on Lp.E/.
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Proposition 11.3.5 (Minkowski’s Inequality). Let E 2M�.R/ and p 2 Œ1;1/.
Given any functions f; g 2 Lp.E;F/; we have f C g 2 Lp.E;F/ and

kf C gkp � kf kp C kgkp:

Proof. For p D 1, we have already seen (cf. the proof of Theorem 10.3.31) that
f; g 2 L1.E;F/ implies f Cg 2 L1.E;F/ and we then have kf Cgk1 � kf k1C
kgk1. Also, we may (and do) assume that kf C gkp > 0 because the inequality is
trivially satisfied otherwise. Now, if p > 1; then it follows from Example 6.7.13 that

jf C gjp � .jf j C jgj/p � 2p�1.jf jp C jgjp/

and hence f C g 2 Lp.E;F/. Also,

jf C gjp D jf C gjjf C gjp�1 � jf jjf C gjp�1 C jgjjf C gjp�1: ()

But f C g 2 Lp.E/ means jf C gjp 2 L1.E;F/ and, with q D p=.p � 1/; we
have jf C gjp�1 2 Lq.E;F/. Thus Hölder’s inequality gives

Z

E

jf jjf C gjp�1 d� � kf kp
h

Z

E

jf C gj.p�1/qi1=q

D kf kpkf C gkp=qp :

Treating the second term on the right side of () similarly, we deduce that

kf C gkpp � kf kpkf C gkp=qp C kgkpkf C gkp=qp

D .kf kp C kgkp/kf C gkp=qp :

Dividing the two sides by kf kpCkgkp and noting that p�p=q D 1;Minkowski’s
inequality follows. ut
Corollary 11.3.6. LetE 2M�.R/ and p � 1. Then the Lebesgue space Lp.E;F/

is a normed vector space (over F) with the operations

Œf �C Œg� WD Œf C g� and cŒf � WD Œcf � 8 f; g 2 Lp.E;F/; 8 c 2 F;

and the norm

kŒf �kp WD
h

Z

E

jf jp d�
i1=p

:

Proof. It is easily checked that the operations are well defined. Also, the above
proposition shows that for any f; g 2 Lp.E;F/ and any c 2 R; we have
f C g; cf 2 Lp.E;F/. Checking the vector space axioms is also a simple exercise
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left to the reader. As for the norm, the Triangle Inequality is simply Minkowski’s
inequality and kŒf �kp D 0 if and only if

R

E
jf jp d� D 0; which is the case if and

only if f .x/ D 0 for almost all x 2 E; i.e., Œf � D Œ0�. ut
In fact, as we shall now prove, Lp.E;F/ is complete, i.e., a Banach space.

Theorem 11.3.7 (Lp is a Banach Space). Let E 2M�.R/ and p 2 Œ1;1/. Then
Lp.E;F/ with norm k � kp is a Banach space.

Proof. We identify a class Œf � 2 Lp.E;F/ with the representative f 2 Lp.E;F/.
By Theorem 9.2.20, it suffices to show that if .fn/ is a sequence in Lp.E;F/ such
that

P1
nD1 kfnkp D S < 1; then

P1
nD1 fn 2 Lp.E;F/. Set Gn WD Pn

kD1 jfkj
and G WD P1

kD1 jfkj. Then kGnkp � Pn
kD1 kfkkp � S for all n 2 N.

Since .Gn/ is increasing, the Monotone Convergence Theorem implies that
R

E
Gp

d� D limn!1
R

E
G
p
n d� � Sp and henceG 2 Lp.E;F/. In particular,G.x/ <1

for almost all x 2 E, which implies that F.x/ WD P1
nD1 fn.x/ converges for

almost all x 2 E. Since jF j � G; we also have F 2 Lp.E;F/. Furthermore,
jF�Pn

kD1 fkjp � .2G/p 2 L1.E;F/; so by the Dominated Convergence Theorem,
we have

�

�

�

F �
n
X

kD1
fk

�

�

�

p

p
D
Z

E

ˇ

ˇ

ˇ

F �
n
X

kD1
fk

ˇ

ˇ

ˇ

p

d�! 0; as n!1:

Thus the series
P1

nD1 fn converges in Lp.E;F/ and the proof is complete. ut
Remark 11.3.8. Given any f D u C iv 2 L0.E;C/; we have f 2 Lp.E;C/ if
and only if u; v 2 Lp.E;R/. Therefore, to simplify the exposition we may (and
usually do) prove the results for real-valued functions. The complex-valued case
then follows by looking at the real and imaginary parts of the functions involved.

Let us now show that simple functions that vanish outside sets of finite measure
form a dense subspace of Lp for any p � 1.

Proposition 11.3.9 (Simp0.R/ and Step.R/ are Dense in Lp.R/). For any
p � 1 the set Simp0.R;F/ of simple functions f D Pm

jD1 aj 
Aj ; where the Aj
are pairwise disjoint measurable sets with �.Aj / < 1 and F 3 aj ¤ 0 for all
j; is dense in Lp.R;F/. The same conclusion holds if Simp0.R;F/ is replaced by
Step.R;F/.

Proof. We may (and do) assume that F D R and use the abbreviations Lp.R/ WD
Lp.R;R/ and Lp.R/ WD Lp.R;R/. Clearly we have Simp0.R/ � Lp.R/. Now,
given any f 2 Lp.R/; there is (by Theorem 10.2.24) a sequence .fn/ in Simp0.R/

such that fn converges to f almost everywhere and we may assume jfnj � jf j
for all n. But then fn 2 Lp.R/ and jf � fnjp � 2pjf jp 2 L1.R/; so we can
use the Dominated Convergence Theorem to conclude that kf � fnkp ! 0; as
n ! 1. Also, if fn D P

j aj 
Aj is the canonical representation of fn; then
R jfnjp d� D P

j jaj jp�.Aj / < 1 implies that we must have �.Aj / < 1 for
all j . To prove the statement for Step.R/ � Lp.R/; for a given f 2 Lp.R/ we
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first pick N > 0 so large that, with fN WD f
Œ�N;N �; we have kf � fN kp < "=2.
So (by Minkowski’s inequality) we only need a step function  such that kfN �
 kp < "=2. But, by Corollary 10.5.8, there is a sequence . n/ of step functions
with j nj � jfN j for all n 2 N and such that lim. n/ D fN almost everywhere
on Œ�N;N �. Since jfN �  njp � 2pjfN jp; the Dominated Convergence Theorem
implies that limn!1 kfN �  nkp D 0. Thus, for n large enough, we indeed have
kfN �  nkp < "=2 and the proof is complete. ut

We now use this proposition to extend the Riemann–Lebesgue lemma
(Theorem 8.6.9) to L1.R/. The proof is basically the same. First, we extend the
definition of Fourier coefficients:

Definition 11.3.10 (Fourier Transform). Given any f 2 L1.R/; its Fourier
transform is defined to be the function

Of .�/ WD
Z 1

�1
f .x/e�ix� d�.x/ 8 � 2 R:

The integral is convergent because jf .x/e�ix� j � jf .x/j for all x; � 2 R. In
particular, the (real) integrals

Z 1

�1
f .x/ sin.�x/ d�.x/ and

Z 1

�1
f .x/ cos.�x/ d�.x/;

called the Fourier sine transform of f and Fourier cosine transform of f ,
respectively, are both convergent for all � 2 R.

Theorem 11.3.11 (Riemann–Lebesgue Lemma). Given any f 2 L1.R/; its
Fourier transform Of is continuous (on R) and we have

lim
j�j!1

Of .�/ D lim
j�j!1

Z 1

�1
f .x/e�ix� d�.x/ D 0: (�)

In particular,

lim
j�j!1

Z 1

�1
f .x/ sin.�x/ d�.x/ D 0 D lim

j�j!1

Z 1

�1
f .x/ cos.�x/ d�.x/: (�)

Proof. Suppose that lim.�n/ D � . Then the sequence of functions gn.x/ WD
f .x/e�ix�n converges to f .x/e�ix� for all x and jgnj � jf j for all n. Therefore,
limn!1 Of .�n/ D Of .�/ follows from the Dominated Convergence Theorem.
To prove (�), assume first that f D 
Œa;b� with a < b. Then we have

Z 1

�1
f .x/e�i�x d�.x/ D

Z b

a

e�i�x d�.x/ D 1

i�
.e�i�a � e�i�b/! 0;
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as j�j ! 1. Since a step function is a finite linear combination of characteristic
functions of bounded intervals, it follows that (�) holds for all step functions. In
general, given f 2 L1.R/; pick (Proposition 11.3.9) a sequence . n/ of step
functions with lim. n/ D f a.e. and kf �  nk1 ! 0 as n ! 1. Then we also
have limn!1  n.x/e

�i�x D f .x/e�i�x for almost all x and
�

�fe�ix�� ne�ix��
�

1
D

kf �  nk1 ! 0 as n!1. Now, given " > 0; pick N 2 N so large that

�

�fe�ix� �  Ne�ix��
�

1
D kf �  N k1 WD

Z 1

�1
jf .x/ �  N .x/j d�.x/ < "

2
:

Next, keeping N fixed, pick A > 0 such that j�j � A implies

ˇ

ˇ

ˇ

ˇ

Z 1

�1
 N .x/e

�i�x d�.x/
ˇ

ˇ

ˇ

ˇ

<
"

2
:

It now follows that for j�j � A;
ˇ

ˇ

ˇ

ˇ

Z 1

�1
f .x/e�i�x d�.x/

ˇ

ˇ

ˇ

ˇ

�
Z 1

�1
jf .x/ �  N .x/j d�.x/C

ˇ

ˇ

ˇ

ˇ

Z 1

�1
 N .x/e

�i�x d�.x/
ˇ

ˇ

ˇ

ˇ

<
"

2
C "

2
D "

and (�) is established in general. Since (�) is an immediate consequence, the proof
is complete. ut
Remark 11.3.12. In view of Corollary 10.5.8, we can easily modify the proof of
Proposition 11.3.9 to show that the set of all continuous functions on R that vanish
outside a compact (hence bounded) set is also dense in Lp.R;F/. However, as we
shall see below, we can even show that (infinitely) smooth functions with compact
support form a dense subspace of Lp.R;F/ for all p 2 Œ1;1/. Note, by the way,
that if I is a noncompact interval, then C.I;F/ 6� Lp.I;F/. (Why?)

Definition 11.3.13 (Support of a Function). Let I � R be an open interval and
f W I ! F a continuous function. The support of f; denoted by supp.f /; is the
closure (relative to I ) of the set fx 2 I W f .x/ ¤ 0g. We say that f has compact
support if supp.f / is compact.

Notation 11.3.14 (Cc.I/; C k
c .I/; C 1

c .I/). If I is an open interval of R; then
Cc.I;F/ denotes the set of all continuous (F-valued) functions on I with compact
support. For each k 2 N; C k

c .I;F/ will denote the set of k-times continuously
differentiable functions on I with compact support. Finally, C1

c .I;F/ will denote
the set of infinitely differentiable functions on I with compact support. It is obvious
that C1

c .I;F/ � Ck
c .I;F/ � Cc.I;F/ and that all these spaces are (vector)

subspaces of Lp.I;F/ for each p 2 Œ1;1/.
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Theorem 11.3.15 (C 1
c .R;F/ is Dense in Lp.R;F/). The space C1

c .R;F/ is
dense in Lp.R;F/ and hence so are Cc.R;F/ and Ck

c .R;F/ (for all k 2 N). The
same is also true if R is replaced by any open interval I of R.

Proof. We may and do assume that F D R and all functions are real-valued. Let
f 2 Lp.R/ and let " > 0 be given. As in Proposition 11.3.9, pick N so large that,
with fN WD f
Œ�N;N �; we have kf � fN kp < "=3. Then pick a step function  
such that kfN � kp < "=3. If we can show the existence of a function u 2 C1

c .R/

such that ku �  kp < "=3; then the theorem follows from the Triangle Inequality
in Lp . Since  is a finite sum of functions of the form c
Œa;b� with a constant c 2 R;

we need only look at the case  D 
Œa;b� and show the existence of a function
u 2 C1

c .R/ such that k
Œa;b� � ukp < "=3. For this, let h 2 C1.R/ be as in
Exercise 8.4.24 and recall that h.x/ � 1 for all x > �1 C ı and h.x/ � 0 for
x � �1; where ı 2 .0; 1/. Now define

u.x/ WD h
�

�
ˇ

ˇ

ˇ

2x � a � b
b � a

ˇ

ˇ

ˇ

�

:

Then u 2 C1
c .R/; and we have

u.x/ D
(

1 if aC ı.b � a/=2 < x < b � ı.b � a/=2;

0 if x 62 .a; b/.

If Œı.b � a/=2�1=p < "=6; then it follows that k
Œa;b� � ukp < "=3 as desired. ut
Let us also include a nice inequality.

Proposition 11.3.16 (Chebyshev’s Inequality). Let E 2 M�.R/ and p 2
Œ1;1/. If f 2 Lp.E;F/, then for any ˛ > 0 we have

�.fx 2 E W jf .x/j > ˛g/ � �kf kp=˛
�p
:

Proof. Let E˛ WD fx 2 E W jf .x/j > ˛g. Then E˛ 2M�.R/ and we have

kf kpp D
Z

E

jf jp d� �
Z

E˛

jf jp d� � ˛p
Z

E˛

1 d� D ˛p�.E˛/: ut

In our study of Lp with p � 1; to each index p > 1, we associated a conjugate
index q > 1 such that 1=p C 1=q D 1. To complete this picture, note that at least
formally we have 1=1 C 1=1 D 1; so the conjugate index of p D 1 should be
“q D1.” This motivates the search for the space L1.

Definition 11.3.17 (Essentially Bounded, Essential Supremum). Let E 2
M�.R/ and let f W E ! F be measurable. We say that f is essentially bounded if
it is bounded almost everywhere, i.e., there is a set Z � E with �.Z/ D 0 and a
constant B � 0 such that jf .x/j � B for all x 62 Z. The essential supremum of f
is then defined to be the number
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kf k1 D ess supx2E jf .x/j WD inf
˚

B � 0 W �.fx W jf .x/j > Bg/ D 0; (�)

with the convention inf;WD 1.

Exercise 11.3.18. Show that if f W Œa; b� ! R is continuous, then kf k1 D
supfjf .x/j W x 2 Œa; b�g.
Notation 11.3.19 (L1.E;F/; L1.E;F/). Given any E 2M�.R/, the set of all
essentially bounded measurable functions f W E ! F is denoted by L1.E;F/.
Also, if N .E;F/ denotes the set of all null functions on E; then we define the
quotient space L1.E;F/ WD L1.E;F/=N .E;F/.

Theorem 11.3.20. For each E 2M�.E/, the space L1.E;F/ is a Banach space,
i.e, a complete, normed vector space over F with the operations Œf �CŒg� WD Œf Cg�
and cŒf � WD Œcf �; and the norm kŒf �k1 WD kf k1 as in (�) of Definition 11.3.17.

Proof. Let F D R and note that (�) is well defined on L1.E/. Indeed, let f1; f2 2
L0.E/ satisfy f1 D f2 outside a set Z1 � E of measure zero. If jf2.x/j � B2
for all x outside a set Z2 � E of measure zero, then jf1.x/j D jf2.x/j � B2
outside Z1 [ Z2 gives kf1k1 � kf2k1. Interchanging f1 and f2 gives the reverse
inequality and hence kf1k1 D kf2k1. Next, (�) implies that for each n 2 N we
can find Zn � E with �.Zn/ D 0 and jf .x/j � kf k1 C 1=n for all x 62 Zn.
If we set Z WD S1

nD1 Zn; then �.Z/ D 0 and we have jf .x/j � kf k1 for all
x 62 ZI in other words, the infimum kf k1 in (�) is actually attained. Now, given
f; g 2 L1.E/; pick subsets Z1; Z2 of E with �.Z1/ D �.Z2/ D 0 such that
jf .x/j � kf k1 for all x 62 Z1 and jg.x/j � kgk1 for all x 62 Z2. It then
follows that jf .x/j C jg.x/j � kf k1 C kgk1 for all x 62 Z1 [ Z2 and hence
the Triangle Inequality kf C gk1 � kf k1 C kgk1 is established. Also, the
properties kf k1 � 0; k0k1 D 0; and kcf k1 D jcjkf k1 are trivially satisfied.
Next, kf k1 D 0 implies that for each n 2 N there is a setZn � E with �.Zn/ D 0
and such that jf .x/j � 1=n for all x 62 Zn. If we setZ WDS1

nD1 Zn; then �.Z/ D 0
and jf .x/j � 1=n for all n and all x 62 Z, i.e., f .x/ D 0 for all x 62 Z and hence
Œf � D Œ0�. The vector space properties are also easily checked. Finally, to prove the
completeness, let .fn/ be a Cauchy sequence in L1.E/. Then we can pick a set
Z � E with �.Z/ D 0 and such that jfn.x/j � kfnk1 for all n 2 N and all x 62 Z.
In fact, we may even arrange for jfn.x/� fm.x/j � kfn � fmk1 to be satisfied for
all x 62 Z and all m; n 2 N. But then the sequence .fn/ converges uniformly on
E nZ. If we define

f .x/ WD
(

limn!1 fn.x/ for x 62 Z
0 for x 2 Z;

then f is measurable and it follows easily that limn!1 kf � fnk1 D 0. ut
The following exercise contains Hölder’s inequality for the limiting case p D 1,

q D1.
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Exercise 11.3.21 (Hölder’s Inequality, Again). Show that Hölder’s inequality
also holds when p D 1 and q D 1I i.e., if f 2 L1.E;F/ and g 2 L1.E;F/,
where E 2M�.R/; then fg 2 L1.E;F/ and we have

kfgk1 D
Z

E

jfgj d� � kf k1kgk1:

11.4 More on Modes of Convergence

As we have seen (in Chap. 10), a sequence .fn/ of measurable functions on a
measurable set E 2 M�.R/ may converge to a function f in a number of ways,
namely, pointwise, almost everywhere, uniformly, and almost uniformly. And in this
chapter we have also introduced convergence in Lp for p 2 Œ1;1�. In this section
we want to introduce another mode of convergence (introduced by F. Riesz) that is
weaker than convergence almost everywhere (at least on sets of finite measure), but
will be needed later when we discuss the Weak Law of Large Numbers in Chap. 12.
This convergence is motivated by the following observation: If

R

E
jfnj d� ! 0;

then for each " > 0; �
�fx 2 E W jfn.x/j � "g

�

should go to zero.

Definition 11.4.1 (Convergence in Measure, Cauchy in Measure). Let
E 2 M�.R/. A sequence .fn/ of real (or complex-)-valued measurable functions
on E is said to converge in measure to a function f if, given any " > 0, there is an
N 2 N such that

n � N H) �
�fx 2 E W jf .x/ � fn.x/j � "g

�

< ":

We say that .fn/ is Cauchy in measure if, given any " > 0; there is an N 2 N

such that

n � m � N H) �
�fx 2 E W jfn.x/ � fm.x/j � "g

�

< ":

Exercise 11.4.2. Let .fn/ be a sequence of real (or complex) measurable functions
on E 2M�.R/. Show that if .fn/ converges to f in measure (resp., is Cauchy in
measure), then the same holds for any subsequence .fnk /.

Unfortunately, convergence in measure (resp., almost everywhere or even every-
where) does not imply convergence almost everywhere (resp., in measure), as the
following examples show.

Example 11.4.3.

1 (Escape to Horizontal Infinity). Let fn WD 
Œn;nC1� for all n 2 N. Then fn.x/!
0 for all x 2 Œ0; 1�; but fn does not converge in measure.

2 (Typewriter Sequence). Divide the interval Œ0; 1� successively into 1; 2; 3; 4; : : :
equal parts and enumerate the resulting subintervals in succession: I1 WD Œ0; 1�;
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I2 WD Œ0; 1=2�; I3 WD .1=2; 1�; I4 WD Œ0; 1=3�; I5 WD .1=3; 2=3�; I6 WD .2=3; 1�;

I7 WD Œ0; 1=4�; etc. Now let fn WD 
In ; for all n 2 N. Then fn ! 0 in measure.
Indeed, if n � m.mC1/=2 D 1C2C� � �Cm; then fn D 
In and �.In/ � 1=m.
In fact we even have

kfn � 0kpp D
Z

jfnjp d� D
Z

fn d� � 1=m;

so that fn ! 0 in Lp for all p 2 Œ1;1/. However, .fn/ diverges everywhere. In
fact, for each x 2 Œ0; 1�; the sets fn 2 N W fn.x/ D 1g and fn 2 N W fn.x/ D 0g
are both infinite.

Despite the fact that convergence in measure does not imply convergence almost
everywhere, we have the following.

Theorem 11.4.4. Let E 2M�.R/ and let .fn/ be a sequence of real (or complex)
measurable functions on E. If fn ! f in measure, then .fn/ is Cauchy in measure.
Conversely, if .fn/ is Cauchy in measure, then there is a measurable function f
such that fn ! f in measure and there is a subsequence .fnk / that converges to
f almost everywhere on E. Moreover, if we also have fn ! g in measure, then
f .x/ D g.x/ for almost all x 2 E.

Proof. Suppose that fn ! f in measure and, given n 2 N and " > 0; consider the
set En;" WD �

�fx 2 E W jfn.x/ � f .x/j � "=2g
�

. Then

�
�fx 2 E W jfn.x/ � fm.x/j � "g

� � �.En;"/C �.Em;"/! 0; as m; n!1

and hence .fn/ is Cauchy in measure. Conversely, suppose .fn/ is Cauchy in
measure and pick positive integers nk with nk < nkC1 such that

n � m � nk H) �
�fx 2 E W jfn.x/ � fm.x/j � 2�kg� < 2�k:

Define gk WD fnk and Ek WD fx 2 E W jgkC1.x/ � gk.x/j � 2�kg. If Fk WD
S1
jDk Ej ; then .Fk/ is a decreasing sequence of measurable sets with �.Fk/ < 21�k

and, for j � i � k; we have

jgj .x/ � gi .x/j �
j�1
X

`Di
jg`C1.x/ � g`.x/j �

j�1
X

`Di
2�` � 21�k: ()

Thus .gk/ is (pointwise) Cauchy on E n Fk . Now, with Z WD T1
kD1 Fk , we have

�.Z/ D 0, so if we set f .x/ WD limk!1 gk.x/ for x 2 E n Z and f .x/ D 0 for
x 2 Z; then f is measurable (cf. Proposition 10.2.12) and fnk D gk ! f almost
everywhere. Also, taking j D k and letting i ! 1 in (), we have jfnk .x/ �
f .x/j � 21�k for all x 2 E n Fk . Since �.Fk/ ! 0 as k ! 1; we deduce that
fnk ! f in measure; in fact, .fnj /

1
jDk converges to f uniformly on E n Fk . But

then we actually have fn ! f in measure because for any " > 0; we have
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fx W jfn.x/�f .x/j � "g �
n

x W jfn.x/�fnk .x/j �
"

2

o

[
n

x W jfnk .x/�f .x/j �
"

2

o

;

and .fn/ being Cauchy in measure, both sets on the right have measures tending to
zero, as n; k !1. Finally, if fn ! g in measure, then the inclusions

fx W jf .x/�g.x/j � "g � fx W jf .x/�fn.x/j � "=2g[fx W jfn.x/�g.x/j � "=2g

hold for all n 2 N and every " > 0 and hence �
�fx W jf .x/ � g.x/j � "g� D 0.

Letting " ! 0 (through a decreasing sequence of values), we get f D g almost
everywhere. ut

The subsequence .fnk / in the above proof converges uniformly outside a set of
small measure. We now give a name to the this type of convergence which was also
seen in the conclusion of Egorov’s theorem (Theorem 10.5.15):

Definition 11.4.5 (Almost Uniform Convergence). Let E 2M�.R/ and let .fn/
be a sequence of real (or complex) measurable functions on E. We say that .fn/
converges to f almost uniformly if, given any " > 0; there is a measurable set
F � E such that �.F / < " and .fn/ converges to f uniformly on E n F . We also
say that .fn/ is almost uniformly Cauchy if for each " > 0 there exists a set F � E
with �.F / < " such that fn � fm ! 0 uniformly on E n F as m; n!1.

Having this definition, we can state the following corollary of Theorem 11.4.4,
whose proof is basically contained in the proof of the theorem.

Corollary 11.4.6. Let E 2M�.R/ and let .fn/ be a sequence of real (or complex)
measurable functions on E. If fn ! f in measure, then there is a subsequence
.fnk / such that fnk ! f almost uniformly.

Proof. Exercise!

Some of the easy implications involving the relation between different modes of
convergence are summarized in the following theorem. To simplify the notation we
use R as the domain of the functions, but one can obviously use any E 2M�.R/.

Theorem 11.4.7. Let .fn/ be a sequence of (complex-valued) measurable functions
on R and let p 2 Œ1;1/.

(i) fn ! f pointwise H) fn ! f almost everywhere.
(ii) fn ! f uniformly H) fn ! f pointwise.

(iii) fn ! f almost uniformly H) fn ! f almost everywhere.
(iv) fn ! f almost uniformly H) fn ! f in measure.
(v) fn ! f in Lp H) fn ! f in measure.

(vi) .fn/ is Cauchy in Lp H) .fn/ is Cauchy in measure.
(vii) fn ! f in L1” fn ! f uniformly outside a set of measure zero.

(viii) .fn/ is Cauchy in L1” .fn/ is uniformly Cauchy outside a set of measure
zero.
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(ix) fn ! f in L1 H) fn ! f almost uniformly.
(x) fn ! f uniformly H) fn ! f in L1.

Proof. (i) and (ii) are obvious. For (iii), note that with " D 1=2n we can pick
a measurable set En with �.En/ < 1=2n such that fn.x/ ! f .x/ uniformly
on Ec

n . If Fn WD S1
kDnC1 Ek; then .Fn/ is a decreasing sequence of measurable

sets with �.Fn/ <
P1

kDnC1 1=2k D 1=2n. Thus, with Z WD T1
nD1 Fn, we have

�.Z/ D limn!1 �.Fn/ D 0 and fn.x/ ! f .x/ uniformly (hence pointwise) on
Zc . To prove (iv), pick Z � R with �.Z/ D 0 such that fn ! f uniformly on
Zc . Then, given any " > 0; we have fx 2 Zc W jfn.x/ � f .x/j � "g D ; for all
sufficiently large n 2 N. Thus, for all such n; we have �

�fx 2 R W jfn.x/�f .x/j �
"g� D 0, i.e., fn ! f in measure. Next, suppose that kfn � f kp ! 0; as n!1
and for a given " > 0 let En."/ WD fx 2 R W jfn.x/ � f .x/j � "g. Then we have

"p�
�

En."/
� �

Z

En."/

jfn � f jp d� �
Z

R

jfn � f jp d�! 0; as n!1;

which shows that fn ! f in measure and proves (v). In fact, the same argument
also proves (vi). For (vii), note that if kfn � f k1 ! 0; then for any integer m 2 N

we have kfn � f k1 < 1=m for all sufficiently large n. But then, for each such n,
we can find a set Zn with �.Zn/ D 0 and such that jfn.x/ � f .x/j < 1=m for all
x 2 Zc

n. Thus, if Z WD S1
nD1 Zn; then �.Z/ D 0 and fn ! f uniformly on Zc .

Conversely, if there is a set Z with �.Z/ D 0 and such that fn ! f uniformly
on Zc; then for each " > 0 we have jfn.x/ � f .x/j < " for all x 2 Zc and all
sufficiently large n. Therefore, kfn�f k1 < " for all sufficiently large n and hence
fn ! f in L1. An identical proof works for (viii) as well. Finally, (ix) and (x)
follow from (vii) and the proof is complete. ut
Corollary 11.4.8. Let E 2M�.R/ and let .fn/ be a sequence in Lp.E;F/; where
p 2 Œ1;1/ and F is either R or C. If fn ! f in Lp; then there is a subsequence
.fnk / such that fnk ! f almost everywhere.

Proof. By Theorem 11.4.7 (v), fn ! f in measure and hence the corollary follows
from Theorem 11.4.4. ut

The following exercise (where we use the terminology in [Tao11]) shows that the
relation between different modes of convergence is far from straightforward.

Exercise 11.4.9. Prove the following statements, where p 2 Œ1;1/.
[a] (Escape to Horizontal Infinity). Let fn WD 
Œn;nC1� for all n 2 N. Then the

sequence .fn/ converges to zero pointwise (hence almost everywhere), but it
does not converge uniformly, almost uniformly, in Lp; in L1; or in measure.

[b] (Escape to Width Infinity). Let fn WD 1
n

Œ0;n� for all n 2 N. Then the

sequence .fn/ converges to zero uniformly (hence also almost uniformly, in
L1, pointwise, almost everywhere, and in measure), but not in Lp .
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[c] (Escape to Vertical Infinity). Let fn WD n
Œ 1n ;
2
n �

for all n 2 N. Then the
sequence .fn/ converges to zero pointwise (hence almost everywhere) and
almost uniformly (and hence in measure), but not uniformly, in L1, or in Lp .

[d] (Typewriter Sequence). Let fn WD 
Œj=2k ;.jC1/=2k �; with n D 2k C j and
0 � j < 2k . Then the sequence .fn/ converges to zero in measure and in
Lp , but not almost everywhere (and hence not pointwise, not uniformly, not
almost uniformly, and not in L1).

Remark 11.4.10. As we saw above, convergence almost everywhere does not in
general imply convergence in measure. However, the situation is different if our
functions are defined on a set of finite measure.

Proposition 11.4.11. Let E 2M�.R/ with �.E/ < 1 and let fn, n 2 N; and f
be (real or complex) measurable functions on E. Then fn ! f almost everywhere
if and only if fn ! f almost uniformly. Also, if fn ! f almost everywhere, then
fn ! f in measure.

Proof. Indeed, the “if and only if” assertion follows from Egorov’s theorem
(Theorem 10.5.15) and Theorem 11.4.7 (iii). The second assertion then follows from
Theorem 11.4.7 (iv). ut
Remark 11.4.12. In fact, if E 2 M�.R/ and �.E/ < 1, then we have the
following characterization of almost everywhere convergence:

Proposition 11.4.13. Let E 2M�.R/ and �.E/ < 1 and let fn, n 2 N; and f
be (real or complex) measurable functions on E. Then fn ! f almost everywhere
if and only if

lim
n!1�

�

1
[

kDn
fx 2 E W jfk.x/ � f .x/j � "g

�

D 0 8 " > 0:

Proof. Let En;" WD fx 2 E W jfn.x/ � f .x/j � "g and E" WD lim supn En;" WD
T1
nD1

S1
kDn Ek;". Then limn!1 �

�

S1
kDn Ek;"

� D �.E"/ because
S1
kDn Ek;"

decreases to E". Also, since E"1 � E"2 for "1 > "2; we have

fx 2 E W lim
n
fn.x/ ¤ f .x/g D

[

">0

E" D
1
[

mD1
E1=m:

Therefore,

fn
a:e:�! f ” �.E"/ D 0 8 " > 0” lim

n!1�
�

1
[

kDn
Ek;"

�

D 0 8 " > 0:

ut
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The next proposition shows that the Dominated Convergence Theorem
(Theorem 10.4.14) remains valid if “convergence almost everywhere” is replaced
by “convergence in measure.”

Proposition 11.4.14. Let .fn/ be a sequence in Lp.E;F/; where F is R or C and
E 2M�.R/. If .fn/ converges in measure to f and if jfn.x/j � g.x/ for almost
all x 2 E and some g 2 Lp

�

E; Œ0;1/�; then .fn/ converges to f in Lp.E;F/.

Proof. If not, then there exists "0 > 0 and a subsequence .gk/ WD .fnk / with

kgk � f kp � "0 8 k 2 N: ()

Now (by Exercise 11.4.2) gk ! f in measure and hence (by Theorem 11.4.4)
there is a subsequence .gkj / of .gk/ such that .gkj / converges almost everywhere
and in measure to a function h. By the uniqueness part of Theorem 11.4.4, we then
have h D f almost everywhere. But gkj ! f and jgkj jp � gp almost everywhere
imply (by the Dominated Convergence Theorem) that kgkj �f kp ! 0, as j !1;
contradicting (). ut
Exercise 11.4.15. Show that the Monotone Convergence Theorem (Theorem 10.4.1)
and Fatou’s lemma (Lemma 10.4.10) remain valid if “convergence almost
everywhere” is replaced by “convergence in measure.”

11.5 Differentiation

When we studied the Riemann integral in Chap. 7, we looked at the relation
between differentiation and integration and proved the two fundamental theorems
of calculus:

FTC 1 (First Fundamental Theorem). Let f be Riemann integrable on Œa; b�
and let C � Œa; b� be a finite set. If F W Œa; b�! R is a continuous function such
that F 0.x/ D f .x/ for all x 2 Œa; b� n C; then we have

Z b

a

f .x/ dx D F.b/ � F.a/:

FTC 2 (Second Fundamental Theorem). Let I be an interval and f W I ! R.
Suppose that f is Riemann integrable on any closed, bounded subinterval of I .
If a is any point in I , then the function

F.x/ WD
Z x

a

f .t/ dt .8x 2 I /

is continuous on I . Also, if f is continuous at x0 2 I , then F 0.x0/ D f .x0/.
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It is quite natural to look for similar results in the Lebesgue theory and this
is our objective in this section. One of the fundamental results is Lebesgue’s
Differentiation Theorem, which says that monotone functions are differentiable
almost everywhere. Let us begin by defining the derivative(s) of a function.

Definition 11.5.1 (Dini Derivatives). Let I be an open interval, f W I W! R; and
x 2 I . Then the four Dini derivatives of f at x are the following limits:

DCf .x/ D limh!0C
f .x C h/ � f .x/

h
;

D�f .x/ D limh!0�
f .x C h/ � f .x/

h
;

DCf .x/ D limh!0C
f .x C h/ � f .x/

h
;

D�f .x/ D limh!0�
f .x C h/ � f .x/

h
:

We obviously have DCf .x/ � DCf .x/ and D�f .x/ � D�f .x/. If DCf .x/ D
DCf .x/ D D�f .x/ D D�f .x/ ¤ ˙1; then we say that f is differentiable at
x and the common value of the four Dini derivatives is then denoted by f 0.x/.
Sometimes we even write f 0.x/ D 1 (resp., f 0.x/ D �1) if all four Dini
derivatives of f are1 (resp., �1).

Remark 11.5.2.

(1) IfDCf .x/ D DCf .x/ ¤ ˙1; then this common value is denoted f 0C.x/ and
is called the right derivative of f at x. Similarly, if D�f .x/ D D�f .x/ ¤
˙1; then the common value is denoted f 0�.x/ and is called the left derivative
of f at x. Thus f 0.x/ exists, f 0C.x/ D f 0�.x/ ¤ ˙1.

(2) If f is increasing, then all four Dini derivatives are nonnegative and hence
“exist” as extended numbers in Œ0;1�.

(3) The four Dini derivatives are all equal if and only if

D�f .x/ � DCf .x/ and DCf .x/ � D�f .x/: ()

We first prove Lebesgue’s Differentiation Theorem for continuous, monotone
functions, using the Rising Sun Lemma of F. Riesz. We begin with the following.

Definition 11.5.3 (Shadow Point). Let a < b and let f W Œa; b� ! R be
continuous. A point x 2 Œa; b� is said to be a shadow point (of f ) if there is a
point y such that x < y � b and f .x/ < f .y/.

Remark 11.5.4. Think of the graph of a continuous function as a number of “hills”
and “valleys”; draw a picture! If the (horizontal) rays of the sun [located at
“.C1; 0/”] hit the graph, then the shaded parts of the graph consist of the points
.x; f .x// that are in the shadow of the rising sun.
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Lemma 11.5.5 (Rising Sun Lemma). Given a < b; let f W Œa; b� ! R be a
continuous function. Then the set Of of all shadow points in .a; b/ is open. In fact,
either Of D ; or Of D S

n In is a disjoint union of a (finite or denumerable)
sequence of nonempty open intervals In WD .an; bn/ � .a; b/ such that f .an/ �
f .bn/ for all n 2 N.

Proof. By definition, we have

Of WD fx 2 .a; b/ W f .x/ < f .�/ for some � 2 .x; b/g:

If x0 2 Of ; then f .x0/ < f .�/ for some � > x0. Since f is continuous, we then
have f .x/ < f .�/ if jx � x0j < ı for ı > 0 small enough. Therefore, Of is open
and hence (cf. Theorem 4.1.2) Of D S

n In, where the In D .an; bn/ � .a; b/ are
disjoint, nonempty intervals. To show that f .an/ � f .bn/ it suffices to show that
f .x/ � f .bn/ for all x 2 .an; bn/ because the continuity of f at an will then give
f .an/ D limx!anC f .x/ � f .bn/. Now for a given x 2 .an; bn/; consider the set

F WD fy 2 Œx; bn� W f .x/ � f .y/g:

Then F is a closed, bounded (i.e., compact) set containing x. Let � WD sup.F / 2 F
and note that f .x/ � f .�/. Thus f .x/ � f .bn/ follows if we show that � D bn.
But if � < bn then � 2 .an; bn/ is a shadow point. We can then pick � > � with
f .�/ < f .�/. Since � D sup.F /; the maximality of � forces � > bn. Also bn > �

gives bn 62 F and hence f .�/ > f .�/ � f .x/ > f .bn/. But then bn is a shadow
point, a contradiction. ut

We now use this lemma to prove Lebesgue’s theorem for continuous functions.
Before giving the proof, let us make a few remarks.

Remark 11.5.6. If f is an increasing function, then so is � Lf ; where Lf .x/ WD
f .�x/. Now we can easily check that D� Lf .�x/ D �DCf .x/ and DC Lf .�x/ D
�D�f .x/. Using this observation in Remark 11.5.2 (3), we see that the first
inequality in () implies the second one. Therefore, an increasing function f is
differentiable at x if and only if the two conditions

DCf .x/ � D�f .x/ andj (�)

DCf .x/ <1 (�)

are satisfied because we then have

DCf .x/ � D�f .x/ � D�f .x/ � DCf .x/ � DCf .x/ <1:

Theorem 11.5.7 (Lebesgue’s Differentiation Theorem 1). Let I be an interval
and f W I ! R a continuous, monotone function. Then f is differentiable at almost
all x 2 I .
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Proof. We may assume that f is increasing and, since I is a countable union of
compact intervals, we may (and do) assume that I D Œa; b�. Now we must show
that (�) and (�) hold for almost all x 2 Œa; b�. Let us first look at (�) and show
that, if E� WD fx 2 .a; b/ W DCf .x/ D 1g; then �.E�/ D 0. We note that
E� � En WD fx 2 .a; b/ W DCf .x/ > ng for every n 2 N. But DCf .x/ > n

implies that Œf .y/ � f .x/�=.y � x/ > n for some y > x; which we can write as
gn.y/ > gn.x/ with the continuous function gn.x/ WD f .x/ � nx. In other words,
E� � En � Ogn . Thus, using (Rising Sun) Lemma 11.5.5, we can cover E� by a
sequence of disjoint open intervals .ak; bk/ such that gn.ak/ � gn.bk/ for all k. In
other words, n.bk � ak/ � f .bk/� f .ak/, and summing these inequalities over all
k gives

n
X

k

.bk � ak/ �
X

n

Œf .bk/ � f .ak/� � f .b/ � f .a/:

Therefore,E� can be covered by a sequence of intervals with total length� Œf .b/�
f .a/�=n. Since n was arbitrary, we indeed have �.E�/ D 0. Next, we must show
that (�) holds almost everywhere; i.e., if E� WD fx 2 .a; b/ W D�f .x/ < DCf .x/g;
then �.E�/ D 0. However, we note that the collection of sets

Eq
p WD fx 2 .a; b/ W D�f .x/ < p < q < DCf .x/g; 0 � p < q; p; q 2 Q

is countable and E� DSp;q E
q
p , so it suffices to show that �.Eq

p/ D 0 for each pair
of rationals 0 � p < q. Now note that

Eq
p D Ep \Eq; with Ep WD fx W D�f .x/ < pg; Eq WD fx W DCf .x/ > qg:

Assuming first that D�f .x/ < p; there exists y 2 .a; x/ with Œf .y/� f .x/�=.y �
x/ < p and hence f .x/ � px < f .y/ � py. This can be written as Lgp.�x/ <
Lgp.�y/ with �b < �x < �y < �a; where gp.x/ WD f .x/ � px and, as before,
Lgp is the flipped function Lgp.z/ D gp.�z/ for all z 2 .�b;�a/. Therefore, �Ep WD
f�x W x 2 Epg � O Lgp and, by Lemma 11.5.5, we can cover �Ep by a sequence of
disjoint intervals .�bi ;�ai / such that Lgp.�bi / � Lgp.�ai / for all i . In other words,
f .bi / � pbi � f .ai / � pai and hence Ep is covered by the sequence of disjoint
intervals .ai ; bi / with

f .bi / � f .ai / � p.bi � ai / 8 i: (11.1)

Next, if x 2 .ai ; bi / \ Eq; i.e., DCf .x/ > q; then for some y 2 .x; bi /; we have
Œf .y/ � f .x/�=.y � x/ > q and hence f .x/ � qx < f .y/ � qy; which means
gq.x/ < gq.y/ with gq.x/ WD f .x/� qx. Thus, .ai ; bi /\Eq � .ai ; bi /\Ogq and
hence (by Lemma 11.5.5) can be covered by a sequence .aij ; bij / (indexed by j ) of
disjoint subintervals of .ai ; bi / such that gq.aij / � gq.bij /; i.e.,

q.bij � aij / � f .bij / � f .aij / 8 j: (11.2)
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Summing (11.2) over all j and using (11.1), we get

q
X

j

.bij � aij / �
X

j

Œf .bij / � f .aij � � f .bi / � f .ai / � p.bi � ai /: (11.3)

Since Eq
p �Si;j .aij ; bij /; summing (11.3) over all i and dividing by q; we see that

�.Eq
p/ �

X

i;j

.bij � aij / � .p=q/.b � a/:

If we now repeat the above argument with .aij ; bij / instead of .a; b/; then we obtain
a sequence of intervals .aijk`; bijk`/; whose union contains Eq

p; with inequalities

�.Eq
p/ �

X

i;j;k;`

.bijk` � aijk`/ � .p=q/
X

i;j

.bij � aij / � .p=q/2.b � a/:

Thus, iterating the process gives �.Eq
p/ � .p=q/n.b � a/ for all n 2 N. Since

0 � p=q < 1; we have �.Eq
p/ D 0 and hence �.E�/ D 0. ut

Lebesgue’s theorem is true without the restriction that f be continuous on I .
One way to prove it is to modify the Rising Sun Lemma and show that it is
still valid without the continuity assumption. But there is another method, due to
Rubel [Rub63], that we shall use instead. It requires the following lemma, which is
intuitively plausible and was part of the above proof with the additional continuity
assumption.

Lemma 11.5.8. If f W Œa; b�! R is monotone, then the set

E1 WD fx 2 .a; b/ W jf 0.x/j D 1g

is of measure zero.

Proof. We assume that f is increasing. In fact, replacing f .x/ by f .x/ C x; if
necessary, we may (and do) assume that f is strictly increasing and satisfies

x < y H) f .y/ � f .x/ > y � x:

If x 2 E1; then DCf .x/ D D�f .x/ D 1 and hence for any c > 0 we have
DCf .x/ > c and D�f .x/ > c. Thus we can find s; t 2 .a; b/ with s < x < t

such that f .t/ � f .x/ > c.t � x/ and f .x/ � f .s/ > c.x � s/; and hence

x 2 E1 H) f .t/ � f .s/ > c.t � s/ for some a < s < x < t < b:
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Now introduce the set

(i) Ec WD fx 2 .a; b/ W f .tx/�f .sx/ > c.tx�sx/ for some a < sx < x < tx < bg.
Then E1 � Ec for all c > 0. Also, Ec is easily seen to be open (why?) and hence
Ec D S

n.an; bn/ is a countable union of disjoint open intervals. Let the intervals
Œa0
n; b

0
n� be chosen such that

(ii) Œa0
n; b

0
n� � .an; bn/ and 2.b0

n � a0
n/ D bn � an 8n,

and note that we have

Œa0
n; b

0
n� �

[

x2Œa0
n;b

0
n�

.sx; tx/ � .an; bn/:

Since Œa0
n; b

0
n� is compact, there is a finite subcover, say, Œa0

n; b
0
n� �

SN
kD1.sk; tk/.

Proceeding as in the proof of Proposition 7.3.7, we may (after a relabel, if necessary)
assume that s1 < s2 < t1 < s3 < t2 < s4 < � � � ; so that both f.s2j�1; t2j�1/ W j 2
Ng and f.s2j ; t2j / W j 2 Ng consist of pairwise disjoint intervals. It then follows
that

(iii)
N
X

kD1
Œf .tk/ � f .sk/� � 2Œf .bn/ � f .an/�.

Now using (i) and (iii), we obtain the inequalities

b0
n � a0

n �
N
X

kD1
.tk � sk/ < 1

c

N
X

kD1
Œf .tk/ � f .sk/� � .2=c/Œf .bn/ � f .an/�:

Summing over all n and using (ii), we finally have

X

n

.bn � an/ D 2
X

n

.b0
n � a0

n/ <
4

c

X

n

Œf .bn/ � f .an/� � .4=c/Œf .b/ � f .a/�:

Since E1 � Ec for every c > 0; we conclude that �.E1/ D 0. ut
We are now ready to prove Lebesgue’s Differentiation Theorem in its full

generality.

Theorem 11.5.9 (Lebesgue’s Differentiation Theorem 2). Let I be an interval.
If f W I ! R is a monotone function, then f 0.x/ exists (as a finite number) for
almost all x 2 I .

Proof. As before, we assume that I D Œa; b� and that f is increasing. In fact, since
f .x/ is differentiable for almost all x 2 .a; b/ if and only if f .x/ C x is, and the
latter is strictly increasing, we may (and do) assume that f is strictly increasing on
Œa; b�. But then, by Proposition 4.5.19, f has a continuous (left) inverse; i.e., there is
a continuous function F W Œf .a/; f .b/� ! R with F.f .x// D x for all x 2 Œa; b�.
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By Theorem 11.5.7, F 0.y/ < 1 exists for almost all y 2 Œf .a/; f .b/�. Next, note
that, as in Theorem 6.3.8, we have

f .y/ � f .x/
y � x D f .y/ � f .x/

F.f .y// � F.f .x// D
hF.f .y// � F.f .x//

f .y/ � f .x/
i�1

:

Since the (strictly) increasing function f has at most countably many discontinuity
points, we have limy!x f .y/ D f .x/ for almost all x 2 Œa; b� and hence

lim
y!x

f .y/ � f .x/
y � x D lim

f .y/!f .x/

hF.f .y// � F.f .x//
f .y/ � f .x/

i�1 D 1

F 0.f .x//

for almost all x 2 Œa; b�. In other words, we have f 0.x/ � 1 for almost all x 2
Œa; b�. Since, by Lemma 11.5.8, the set of all such x for which f 0.x/ D 1 has
measure zero, the proof of the theorem is complete. ut

Recall that, by Jordan Decomposition Theorem (cf. Theorem 7.6.14), if f W
Œa; b� ! R has bounded variation (cf. Definition 7.6.1), then it is the difference
of two increasing functions. The following corollary is therefore an immediate
consequence of Lebesgue’s theorem.

Corollary 11.5.10 (Bounded Variation ) Differentiable a.e.). If f W Œa; b�! R

has bounded variation, then it is differentiable almost everywhere.

Corollary 11.5.11 (Lipschitz ) Differentiable a.e.). If f W Œa; b� ! R is
Lipschitz, then it is differentiable almost everywhere.

Proof. This follows from Corollary 11.5.10 because a Lipschitz function is of
bounded variation by Proposition 7.6.5. But we can also give a direct proof. Indeed,
suppose that f is Lipschitz with Lipschitz constant A; i.e.,

jf .y/ � f .x/j � Ajy � xj 8 x; y 2 Œa; b�:

Then the function g.x/ WD f .x/ C Ax is increasing. Thus g0.x/ exists for almost
all x and hence so does f 0.x/ D g0.x/ � A. ut

Let us also recall the definition of absolutely continuous functions (cf. Problem
4.8.# 53), which play a crucial role in Lebesgue’s Second Fundamental Theorem of
Calculus.

Definition 11.5.12 (Absolutely Continuous Function). A function F W Œa; b� !
R is said to be absolutely continuous if for each " > 0 there is a ı > 0 such
that given any finite sequence .Ik/nkD1 of pairwise disjoint open intervals Ik WD
.ak; bk/ � Œa; b�; we have

n
X

kD1
.bk � ak/ < ı H)

n
X

kD1
jF.bk/ � F.ak/j < ":
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Since ı is independent of n, “finite sequence” may be replaced by “countable
sequence.” Hence if .an; bn/ � Œa; b�; n 2 N; are pairwise disjoint, then

1
X

nD1
.bn � an/ < ı H)

1
X

nD1
jF.bn/ � F.an/j � ":

The set of all absolutely continuous functions on Œa; b� will be denoted AC .Œa; b�/.

Exercise 11.5.13. Show that AC .Œa; b�/ is an algebra by showing that if f; g 2
AC .Œa; b�/ and c 2 R; then cf C g 2 AC .Œa; b�/ and fg 2 AC .Œa; b�/. Also,
show that jf j 2 AC .Œa; b�/ and that if g.x/ ¤ 0 for all x 2 Œa; b�; then 1=g 2
AC .Œa; b�/.

Lemma 11.5.14 (Lip ) AC ) BV ). We have F 2 Lip.Œa; b�/ H) F 2
AC .Œa; b�/ H) F 2 BV .Œa; b�/.

Proof. If F 2 Lip.Œa; b�/ with Lipschitz constant A > 0; then with notation as in
the above definition and ı < "=A; we have

n
X

kD1
jF.bk/ � F.ak/j � A

n
X

kD1
.bk � ak/ < Aı < "

and hence F 2 AC .Œa; b�/. But then, assuming xj � xj�1 < ı for all j; we have
V
xj
xj�1 .F / < " for all j and hence

V b
a .F / D

n
X

jD1
V
xj
xj�1 .F / < n" <1:

ut
Example 11.5.15.

(1). The function F.x/ WD x2 sin.	=x/ for x 2 .0; 1� and F.0/ WD 0 is absolutely
continuous. Indeed, it is easily checked F is differentiable on Œ0; 1� and that
F 0 is bounded. Therefore (cf. Corollary 6.4.20), F is Lipschitz and hence
absolutely continuous.

(2). The function G.x/ WD x2 sin.	=x2/ for x 2 .0; 1� and G.0/ WD 0 is uniformly
continuous but is not absolutely continuous. The uniform continuity follows
from the fact that G is continuous (even differentiable) on the compact set
Œ0; 1� (cf. Theorem 4.6.4). On the other hand, for each n 2 N, let an D .2nC
1=2/�1=2 and bn D .2n/�1=2. Given ı > 0; pick integersN > M > 0 such that
1=
p
2M < ı and

PN
nDM a2n > 1. Then the intervals .an; bn/,M � n � N , are

pairwise disjoint and
PN

nDM.bn � an/ < ı; but
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N
X

nDM
jG.bn/ �G.an/j D

N
X

nDM
a2n > 1:

Thus G is not absolutely continuous on Œ0; 1�. In fact, as we have seen (cf.
Example 7.6.3), F is not of bounded variation and hence cannot be absolutely
continuous.

Corollary 11.5.16 (Absolutely Continuous ) Differentiable a.e.). If
f W Œa; b�! R is absolutely continuous, then it is differentiable almost everywhere.

Proof. In view of the above lemma, this follows from Corollary 11.5.10. ut
Next, we prove Lebesgue’s first Fundamental Theorem of Calculus (1st FTC):

Theorem 11.5.17 (Lebesgue’s 1st FTC). Let f W Œa; b�! R be increasing. Then
its derivative f 0 (defined almost everywhere) is measurable and we have

Z b

a

f 0.x/ d�.x/ � f .b/ � f .a/: ()

In particular, f 0 is integrable on Œa; b�.

Proof. Extend f to R by setting f .x/ WD f .a/ for all x < a and f .x/ WD f .b/

for all x > b. Let gn.x/ be the slope of the secant line joining .x; f .x// and .x C
1=n; f .x C 1=n//I i.e.

gn.x/ WD f .x C 1=n/ � f .x/
1=n

D nŒf .x C 1=n/ � f .x/�:

Now f is measurable (in fact, continuous almost everywhere) and hence so is gn.
Also, by Theorem 11.5.9, limn!1 gn.x/ D f 0.x/ for almost all x and for each
such x we have 0 � f 0.x/ < 1. Therefore, f 0 is measurable and Fatou’s lemma
gives

Z b

a

f 0.x/ d�.x/ D
Z b

a

lim inf
n!1 gn.x/ d�.x/ � lim inf

n!1

Z b

a

gn.x/ d�.x/:

So () follows if we can show that
R b

a
gn.x/ d�.x/ � f .b/ � f .a/. However,

Z b

a

gn.x/ d�.x/ D n
Z bC1=n

b

f .x/ d�.x/�n
Z aC1=n

a

f .x/ d�.x/ � f .b/�f .a/;

because f .x/ D b for all x � b gives n
R bC1=n
b

f .x/ d�.x/ D f .b/ while f .x/ �
f .a/ for all x implies n

R aC1=n
a

f .x/ d�.x/ � f .a/. ut
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Remark 11.5.18.

(1) Following the proof with Œa; b� replaced by Œ˛; ˇ�; where a < ˛ < ˇ < b; and
letting ˛ ! aC and ˇ ! b�; we even have the stronger inequality

Z b

a

f 0.x/ d�.x/ � f .b�/ � f .aC/:

(2) The inequality in () may be strict. For example, if Œa; b� WD Œ0; 1� and f WD
� is Cantor’s ternary function (cf. Example 4.3.13), then f is a continuous,
increasing function that is constant on all the middle thirds removed from Œ0; 1�

to obtain the Cantor set C . In particular, f 0 D 0 on Œ0; 1� nC . Since �.C / D 0;
we have f 0 D 0 almost everywhere. On the other hand f .0/ D 0 and f .1/ D 1
so that 0 D R 1

0
f 0.x/ d�.x/ < f .1/ � f .0/ D 1.

Let us now look at the Second Fundamental Theorem. Here, we will be dealing
with functions of the form F.x/ WD R x

a
f .t/ d�.t/; where f W Œa; b�! R is at least

measurable. We begin with the following.

Proposition 11.5.19. If f is integrable on Œa; b�; then the function

F.x/ WD
Z x

a

f .t/ d�.t/; x 2 Œa; b�

is absolutely continuous (hence uniformly continuous and of bounded variation) on
Œa; b�. Also, F 0.x/ exists for almost all x 2 Œa; b� and is integrable.

Proof. Since f is integrable on Œa; b�; for each " > 0; there exists (by Corollary
10.4.7) ı > 0 such that A � Œa; b� and �.A/ < ı imply

R

A
jf j d� < ". Now

let Ik WD .ak; bk/ � Œa; b�; 1 � k � n; be pairwise disjoint intervals and set
A WDSn

kD1 Ik . If we have �.A/ DPn
kD1.bk � ak/ < ı; then

n
X

kD1
jF.bk/ � F.ak/j D

n
X

jD1

ˇ

ˇ

ˇ

Z bk

ak

f d�
ˇ

ˇ

ˇ

�
n
X

kD1

Z bk

ak

jf j d� D
Z

A

jf j d� < ":

Next, F is differentiable almost everywhere by Corollary 11.5.16. Finally, F is of
bounded variation and hence F D F1�F2 with increasing functions F1 and F2 and
we have jF 0.x/j D jF 0

1.x/ � F 0
2.x/j � F 0

1.x/ C F 0
2.x/. By Theorem 11.5.17, we

therefore have

Z b

a

jF 0.x/j d�.x/ � F1.b/C F2.b/ � F1.a/ � F2.a/: ut

Remark 11.5.20.

(1) That F.x/ is of bounded variation may also be seen by using Theorem 7.6.14.
Indeed, F.x/ D R x

a
f C d� � R x

a
f � d� and both functions on the right side

are increasing.
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(2) Of course, the important question now is whether or not F 0.x/ D f .x/. This is
indeed the case for almost all x; as we shall see below.

Lemma 11.5.21. If f W Œa; b�! R is integrable and if

Z x

a

f .t/ d�.t/ D 0 8 x 2 Œa; b�;

then f .t/ D 0 for almost all t 2 Œa; b�.
Proof. First note that for any a � c � d � b; we have

R d

c
f d� D R d

a
f d� �

R c

a
f d� D 0. Now let EC WD ft 2 Œa; b� W f .t/ > 0g and note that EC D

S1
nD1 En; where En WD ft 2 Œa; b� W f .t/ > 1=ng and we have En � EnC1 for all

n 2 N. Thus, if �.EC/ > 0; then �.En/ > 0 for n large enough. Using the regularity
of � (Theorem 10.5.2), we can pick a compact set K � En with �.K/ > 0. Now
note that .a; b/nK DSn.an; bn/;where the intervals .an; bn/ � .a; b/ are pairwise
disjoint. By Corollary 10.4.19, we are then led to the contradiction

0 D
Z b

a

f d� D
X

n

Z bn

an

f d�C
Z

K

f d� D
Z

K

f d� > .1=n/�.K/;

where the last inequality follows from the L1-version of Chebyshev’s inequality
(Proposition 11.3.16). Therefore, �.EC/ D 0. Similarly, we can show that
�.E�/ D 0; where E� WD ft 2 Œa; b� W f .t/ < 0g. ut

We can now prove Lebesgue’s 2nd Fundamental Theorem. We first consider the
case of bounded functions.

Lemma 11.5.22 (Lebesgue’s 2nd FTC; Bounded Case). Let f W Œa; b�! R be a
bounded, measurable function and define

F.x/ WD F.a/C
Z x

a

f .t/ d�.t/:

Then we have F 0.x/ D f .x/ for almost all x 2 Œa; b�.
Proof. By Proposition 11.5.19, F is absolutely continuous, F 0.x/ exists for almost
all x 2 Œa; b� and is integrable. Suppose that jf j �M and define

fn.x/ WD nŒF.x C 1=n/ � F.x/� D n
Z xC1=n

x

f .t/ d�.t/:

Then we have jfnj � M for all n and limn!1 fn.x/ D F 0.x/ for almost all
x 2 Œa; b�. Thus, the Bounded Convergence Theorem (Theorem 10.4.21) and the
(uniform) continuity of F (which is actually Riemann integrable) imply
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Z �

a

F 0.x/ d�.x/ D lim
Z �

a

fn.x/ d�.x/ D lim
Z �

a

nŒF.x C 1=n/ � F.x/� d�.x/

D lim
h

n

Z �C1=n

�

F .x/ d�.x/ � n
Z aC1=n

a

F.x/ d�.x/
i

D F.�/ � F.a/ D
Z �

a

f .x/ d�.x/:

Therefore, we have

Z �

a

ŒF 0.x/ � f .x/� d�.x/ D 0 8 � 2 Œa; b�:

But then, Lemma 11.5.22 gives F 0.x/ D f .x/ for almost all x 2 Œa; b�. ut
Now we use the above special case to prove the general one:

Theorem 11.5.23 (Lebesgue’s 2nd FTC; General Case). Let f W Œa; b� ! R be
an integrable function. Then the function

F.x/ WD F.a/C
Z x

a

f .t/ d�.t/

is absolutely continuous and we have F 0.x/ D f .x/ for almost all x 2 Œa; b�.
Proof. The theorem is proved if we can prove it for f C and f �. So we assume that
f � 0. Define fn by fn.x/ WD f .x/ if f .x/ � n and fn.x/ WD n otherwise. If
Fn.x/ WD

R x

a
fn.t/ d�.t/; then f � fn � 0 implies that Gn.x/ WD F.x/� Fn.x/ D

R x

a
Œf .t/ � fn.t/� d�.t/ is increasing and hence G0

n.x/ � 0 exists for almost all
x 2 Œa; b�. Also, applying Lemma 11.5.22 to Fn; we have F 0

n.x/ D fn.x/ for
almost all x 2 Œa; b� and hence

F 0.x/ D G0
n.x/C F 0

n.x/ � fn.x/ for almost all x 2 Œa; b�:

Since n 2 N is arbitrary and lim.fn/ D f; we obtain the inequality

F 0.x/ � f .x/ for almost all x 2 Œa; b�: ()

Integrating over Œa; b� and using Theorem 11.5.17, we have

F.b/ � F.a/ D
Z b

a

f .x/ d�.x/ �
Z b

a

F 0.x/ d�.x/ � F.b/ � F.a/

and hence

Z b

a

F 0.x/ d�.x/ D F.b/ � F.a/ D
Z b

a

f .x/ d�.x/;
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which gives

Z b

a

ŒF 0.x/ � f .x/� d�.x/ D 0:

Since F 0 � f � 0 almost everywhere by (), we must have F 0.x/ D f .x/ for
almost all x 2 Œa; b�. ut
Remark 11.5.24. The above theorem can be strengthened to an “if and only
if” statement: A function is an indefinite integral if and only if it is absolutely
continuous. To prove it, we need a few lemmas of independent interest (cf. [Gor94]).
First, it is a simple exercise to show that Lipschitz functions map sets of measure
zero onto sets of measure zero. What is more interesting is that the same is also true
for absolutely continuous functions.

Exercise 11.5.25. Show that if f W Œa; b�! R is Lipschitz, then �
�

f .Z/
� D 0 for

any Z � Œa; b� with �.Z/ D 0.

Lemma 11.5.26. An absolutely continuous function f W Œa; b� ! R maps sets of
measure zero onto sets of measure zero.

Proof. Let f W Œa; b� ! R be absolutely continuous and pick Z � .a; b/ with
�.Z/ D 0. Then, given " > 0, we can find ı > 0 and a sequence of pairwise
disjoint intervals .ak; bk/ � .a; b/ such that

Z �
[

n

.ak; bk/;
X

k

.bk � ak/ < ı and
X

k

jF.bk/ � F.ak/j < ":

Since f is (uniformly) continuous, we have mk WD minff .x/ W x 2 Œak; bk�g D
f .˛k/ and Mk WD maxff .x/ W x 2 Œak; bk�g D f .ˇk/ for some ˛k; ˇk 2 Œak; bk�.
But then the absolute continuity gives

X

k

jˇk � ˛kj �
X

K

.bk � ak/ < ı H)
X

k

.Mk �mk/ < ":

Since f .Z/ �Sk f Œ.ak; bk/� �
S

k.mk;Mk/; we have

�
�

f .Z/
� �

X

k

.Mk �mk/ < ":

ut
Corollary 11.5.27. An absolutely continuous function f W Œa; b� ! R maps
measurable sets onto measurable sets.

Proof. If E � Œa; b� is measurable, then (by Corollary 10.5.3) we can pick an
increasing sequence .Fn/ of closed sets and a set Z of measure zero such that
E D �

S

n Fn
� [ Z. Since f .E/ D f

�

S

n Fn
� [ f .Z/ D �

S

n f .Fn/
� [ f .Z/
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and �
�

f .Z/
� D 0 by the above lemma, we need only show that each f .Fn/ is

measurable. But f is continuous and Fn is compact, so f .Fn/ is also compact,
hence measurable. ut
Lemma 11.5.28. Let f W Œa; b� ! R be continuous and set E WD fx 2 Œa; b� W
DCf .x/ � 0g. If f .E/ contains no intervals, then f is increasing on Œa; b�.

Proof. Suppose that f .d/ < f .c/ for some c < d in Œa; b�. Since f .E/ contains no
intervals, there is a point y0 2

�

f .d/; f .c/
� n E. If x0 WD supfx 2 Œc; d � W f .x/ �

y0g; then the continuity of f implies that x0 2 .c; d/ and y0 D f .x0/. (Why?)
Also, x0 62 E gives DCf .x0/ > 0. But f .x/ < y0 for all x 2 .x0; d � implies that
DCf .x0/ � 0. This contradiction completes the proof. ut
Lemma 11.5.29. If f W Œa; b� ! R is absolutely continuous and if DCf .x/ � 0
for almost all x 2 Œa; b�; then f is increasing.

Proof. Let f".x/ WD f .x/ C "x; where " > 0 is arbitrary. Then f" is absolutely
continuous and the set E WD fx 2 Œa; b� W DCf".x/ � 0g has measure zero. By
Lemma 11.5.26, f".E/ has measure zero and hence contains no intervals. Therefore
f" is increasing by Lemma 11.5.28. Since " > 0was arbitrary, the function f is also
increasing. ut
Corollary 11.5.30. If f W Œa; b� ! R is absolutely continuous and if f 0.x/ D 0

for almost all x 2 Œa; b�; then f is constant.

Proof. Indeed, by Lemma 11.5.29, the functions f and �f are both increasing.
Thus f is both increasing and decreasing, hence constant. ut

We are now ready to prove the final version of Lebesgue’s 2nd FTC.

Theorem 11.5.31 (Lebesgue’s 2nd FTC; Final Version). A function F W Œa; b�!
R is an indefinite integral, i.e., has the form

F.x/ WD F.a/C
Z x

a

f .t/ d�.t/ (�)

for an integrable function f on Œa; b�; if and only if it is absolutely continuous.

Proof. In view of Theorem 11.5.23, we need only show that if F is absolutely
continuous, which we now assume, then it is an indefinite integral. Now, as we
know (cf. Corollary 11.5.16 and Theorem 11.5.17), F 0.x/ is defined for almost all
x and is integrable. So if we define

G.x/ WD
Z x

a

F 0.t/ d�.t/ x 2 Œa; b�;

then (by Theorem 11.5.23) G is absolutely continuous and G0.x/ D F 0.x/ for
almost all x 2 Œa; b�. But then F � G is absolutely continuous and we have .F �
G/0.x/ D 0 for almost all x 2 Œa; b�. Therefore, by Corollary 11.5.30, F � G is
constant and (�) follows. ut
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11.6 Problems

1. Evaluate each improper integral.

(a)

Z 	=2

0

p
sin x tan x dx;

(b)

Z 1

�1
dx
3

p
x

;

(c)

Z 	=2

0

x cot x dx;

(d)

Z 1

0

log xp
x
dx.

2.

(a) Using integration by parts, show that
R 1

0 x
k log x dx D �1=.kC1/2 for all k 2 N0 WD N[f0g;

where we define x0 WD 1.
(b) Using part (a), show that

Z 1

0

log x

1� x
dx D �	

2

6
:

Hint: Note that .log x/=.1 � x/ D P1
kD0 x

k log x for x 2 .0; 1/ and, considering partial sums,
justify term-by-term integration of the series. Note that xk log x 	 0 for all x 2 .0; 1�.

3. Show that the integrals
R1
0 sin x dx and

R1
0 cos x dx are divergent.

4. Show that, for any ˛ > 0 and ˇ 2 R; we have

(a)

Z 1

0

e�˛x cos.ˇx/ dx D ˛

˛2 C ˇ2
;

(b)

Z 1

0

e�˛x sin.ˇx/ dx D ˇ

˛2 C ˇ2
.

5. Evaluate each improper integral if it exists. If it doesn’t, explain why.

(a)

Z 1

0

dx

x
p
1C x2

;

(b)

Z 1

�1
dxp
1� x2

;

(c)

Z 1

0

dx

.x C 	/
p
x

;

(d)

Z 1

1

p
x

.1C x/2
dx.

6. Show that the integral

Z 1

0

x˛�1

1C x
dx

is convergent if and only if 0 < ˛ < 1.

7 (Dirichlet’s Test). Let f be continuous and � decreasing on Œa;1/. Show that, if F.x/ WD
R x

a f .t/ dt is bounded on Œa;1/ and limx!1 �.x/ D 0; then
R1
a f .x/�.x/ dx is convergent.

Hint: Note that jF.x/j 	 M for some M > 0 and all x � a. Given " > 0; pick A � a such



568 11 More on Lebesgue Integral and Measure

that �.A/ < "=.2M/. Now let B > A. Use the fact that � � 0 (why?) and the Second MVT for

Integrals (Theorem 7.4.20 (1)) to find a � 2 ŒA; B� with
R B

A f .x/�.x/ dx D �.A/
R �

A f .x/ dx.

Deduce that j R BA f .x/�.x/ dxj < " and use Cauchy’s Criterion.

8. Given any p > 0; show that the integrals
R1
1 .sin x=xp/ dx and

R1
1 .cos x=xp/ dx are both

convergent. Show that, for p > 1; both integrals are absolutely convergent. That this is false if
p 2 .0; 1� can be proved by an argument similar to the one used in Exercise 11.1.19.

9 (Fresnel Integrals). Show that the integrals
R1
0 sin.x2/ dx and

R1
0 cos.x2/ dx are both

convergent. Hint: Make the substitution t D x2 in
R1
1 sin.x2/ dx.

10.

(a) Show that

Z 	

0

sin.nC 1
2
/x

sin.x=2/
dx D 	:

Hint: Use the identity 1C 2
Pn

kD1 cos.kx/ D sin.nC 1
2
/x= sin.x=2/.

(b) Show that

lim
˛!1

Z 	

0

h 2

x
� 1

sin.x=2/

i

sin
�

˛ C 1

2

�

x dx D 0

and hence, by (a),

lim
˛!1

Z 	

0

2 sin.˛ C 1
2
/x

x
dx D 	:

Hint: Note that the expression in brackets is bounded and use the Riemann–Lebesgue lemma.
(c) Using the substitution t D .˛ C 1

2
/x and (b), show that

Z 1

0

sin x

x
dx D 	

2
:

11. For each ˛ 2 R; prove the following:

(a)

Z 1

0

sin2.˛x/

x2
dx D 	

2
j˛j;

(b)

Z 1

0

1� cos.˛x/

x2
dx D 	

2
j˛j;

(c)

Z 1

0

sin4 x

x2
dx D 	

4
;

(d)

Z 1

0

sin4 x

x4
dx D 	

3
.

Hint: For (a), integrate by parts and use the preceding problem. For (c), note that
cos2 x C sin2 x D 1, and for (d), use integration by parts and (c).

12.

(a) Using the substitution u D tx in the definition of the Gamma function, show that

�.x/ D 1

x

Z 1

0

e�u1=x du:
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(b) Using (a) and the fact that
R1
0 e�x2 dx D p

	=2 (Problem 7.7.#45), show that �.1=2/ Dp
	 . Deduce that, in general,

�
�

nC 1

2

�

D
�

n� 1

2

��

n� 3

2

�

� � � 1
2

p
	:

13. Evaluate the following integrals:

(a)

Z 1

0

x2e�x2 dx;

(b)

Z 1

0

.
p
x/e�2x dx.

14.

(a) Show that, for each ˛ > 0; we have

In;˛ WD
Z 1

0

.1� t /nt˛�1 dt D nŠ

˛.˛ C 1/ � � � .˛ C n/
.8n 2 N0/:

Hint: Show that In;˛ D n
˛
In�1;˛C1.

(b) Substituting x D nt; deduce that

Z n

0

�

1� x

n

�n

x˛�1 dx D nŠn˛

˛.˛ C 1/ � � � .˛ C n/
:

15. Consider the function

F.t/ WD
Z 1

0

e�tx sin x

x
dx .8t > 0/;

where sin x=x WD 1 if x D 0.

(a) Differentiating under the integral sign, show that F 0.t/ D �1=.1 C t 2/ and deduce that
F.t/ D C � arctan t; for all t > 0 and some constant C 2 R.

(b) Using the sequence .F.n//n2N; show that C D 	=2 and deduce that

Z 1

0

sin x

x
dx D 	

2
:

16 (Fourier Transform). Recall (Theorem 11.3.11) that, for any f 2 L1.R/; its Fourier
transform

Of .�/ WD
Z

R

f .x/e�ix� dx .8� 2 R/

is continuous on R and that limj�j!1 Of .�/ D 0. Show that, if
R

R jxf .x/j dx < 1; then Of is
continuously differentiable on R and we have

. Of /0.�/ D
Z

R

.�ix/f .x/e�ix� dx .8� 2 R/:
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17. Show that

�.˛/ D lim
n!1

nŠn˛

˛.˛ C 1/ � � � .˛ C n/
.8˛ > 0/:

Hint: Note that, .1 � x=n/n 	 e�x for all x 2 Œ0; n� and limn!1.1 � x=n/n D e�x . Now use
Problem 14 and Lebesgue’s Dominated Convergence Theorem.

18. Let S1 WD ff 2 L1.Œ0; 1�/ W kf k1 D 1g. Find a sequence .fn/ 2 SN
1 that has no convergent

subsequence (with respect to the L1-norm). This shows, by F. Riesz’s Lemma (Theorem 9.2.25),
that L1.Œ0; 1�/ is an infinite dimensional Banach space. Hint: Consider a sequence of functions
with disjoint supports.

19. Let E 2 M�<1.R/. Show that, if fn 2 L0.E;R/ for all n 2 N and if .fn/ converges
uniformly to f; then fn ! f in Lp.E;R/; p 2 Œ1;1/.

20. Let E 2 M�<1.R/ and p 2 Œ1;1/. Suppose that fn 2 Lp.E;F/ for all n 2 N and
lim.fn/ D f 2 Lp.E;R/ almost everywhere. Show that fn ! f in Lp.E;R/ if and only if
kfnkp ! kf kp .

21. Show that in the previous problem fn ! f almost everywhere can be replaced by fn ! f

in measure.

22. Let E 2 M�.R/ and �.E/ < 1. If 0 < p < q 	 1; show that Lq � Lp and that we have

kf kp 	 kf kq�.E/.1=p/�.1=q/:
23 (Lp Interpolation). Let 0 < p < q < r 	 1 and E 2 M�.R/. Then Lp.E/ \ Lr .E/ �
Lq.E/ and, with ˛ WD .1=q � 1=r/=.1=p � 1=r/; we have

kf kq 	 kf k˛pkf k1�˛r :

24. Let E 2 M�<1.R/ and f 2 Lp.E/\ L1.E/ for some p 2 Œ1;1/. Show that

lim
q!1 kf kq D kf k1:

25 (Weak Convergence). Let E 2 M�.R/ and let .fn/ be a sequence in Lp.E;R/, where
p 2 Œ1;1/. We say that fn converges to f weakly if

R

E fng ! R

E fg for all g 2 Lq.E;R/;

where 1=p C 1=q D 1. Show that if fn ! f in Lp.E;R/ then fn ! f weakly.

26. Let E 2 M�.R/ and let .fn/ be a sequence in L2.E;R/. Show that if fn ! f 2 L2.E;R/

weakly and if limn!1 kfnk2 D kf k2; then fn ! f in L2.E;R/.

27. Let E 2 M�.R/ and p 2 .1;1/. Let .fn/ be a sequence in Lp.E;R/ that converges almost
everywhere to a function f 2 Lp.E;R/. If kfnkp 	 M for all n and some constant M; show that
.fn/ ! f weakly. Is the assertion true for p D 1‹ Hint: Use a combination of absolute continuity
and Egorov’s theorem.

28 (A Converse to Hölder’s Inequality). Let E 2 M�<1.R/, g 2 L0.E;R/, and p 2 Œ1;1/.
Suppose that fg 2 L1.E;R/ for all f 2 Lp.E;R/ and that for some constant M we have

ˇ

ˇ

ˇ

Z

E

fg d�

ˇ

ˇ

ˇ 	 Mkf kp 8 f 2 Lp.E;R/:

Then g 2 Lq.E;R/; where 1=p C 1=q D 1; and kgkq 	 M . Hint: First look at the case p 2
.1;1/ and consider the sequence of functions fn WD jgnjq=psgn.gn/, where gn.x/ D g.x/
En
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with En WD fx 2 E W jg.x/j 	 ng. Here, for any t 2 R, its signum is defined to be sgn.t/ WD jt j=t
if t ¤ 0 and sgn.0/ WD 0.

29 (Multiplication Operator). Consider the Hilbert space H WD L2.E;C/; where E 2 M�.R/

and �.E/ > 0. Given a function � 2 L0.E;C/; we define the corresponding multiplication
“operator” M� W

M�f WD �f 8 f 2 L2.E;C/:

Show that M� W H ! H , i.e., �f 2 L2.E;C/ for every f 2 L2.E;C/; if and only if � 2
L1.E;C/ and that M� is then a bounded operator with kM�k D k�k1. Hint: Use the Closed
Graph Theorem.

30. Let E 2 M�.R/, �.E/ > 0; and let H WD L2.E;C/. For each � 2 L1.E;C/, let M� 2
B.H / be the corresponding multiplication operator as in the previous problem.

(a) Show that M�
� D M N� and that M� is self-adjoint (i.e., M�

� D M� ) if and only if � is almost

real; i.e., N� D � almost everywhere.
(b) Show that M�M D M M� for all �;  2 L1.E;C/. In particular, M�

� M� D M�M
�
� D

Mj�j2 and hence M� is a normal operator, i.e., commutes with its adjoint.
(c) Show that M� is unitary, i.e., M�

� M� D 1H , if and only if j�j D 1 almost everywhere.
(d) Show that M� is a projection, i.e., M2

� D M� , if and only if � D 
F for a measurable set
F � E.

(e) Show that if � is real-valued, then the spectrum �.M�/ is the essential range of � defined as
follows:

�.M�/ D ˚

x 2 R W ����1.x � "; x C "/
�

> 0 8 " > 0


:

31. Let E 2 M�.R/; fn 2 Lp.E;R/, and gn 2 Lq.ŒE;R/ for all n 2 N; where p; q 2
Œ1;1/ and 1=p C 1=q D 1. Show that if fn ! f in Lp.E;R/ and gn ! g in Lq.E;R/, then
R

E fngn ! R

E fg.

32. Let f 2 L2.Œa; b�/ and let us denote its trivial extension (i.e., the one defined to be 0 outside
Œa; b�) by f as well. Show that

lim
h!0

Z b

a

Œf .x C h/� f .x/�2dx D 0:

Hint: First show this for f 2 C.Œa; b�/.

33. Let f be as in the preceding problem and define F.x/ WD R b

a f .x C t /f .t/dt for all x 2 R.
Show that F is continuous at x D 0. Hint: Apply Cauchy–Schwarz to F.x/ � F.0/ and use the
preceding problem.

34 (Calderon’s Proof of Steinhaus’s Theorem). Let E be a measurable subset of Œa; b� with
�.E/ > 0 and consider the function

F.x/ WD
Z b

a


E.t/
E.x C t /dt .8x 2 R/:

(a) Show that F is continuous at x D 0 and deduce that there is a ı > 0 such that F.x/ > 0 for
all x 2 .�ı; ı/.

(b) Show that, given any x 2 .�ı; ı/; there is a t0 D t0.x/ such that 
E.t0/
E.x C t0/ D 1.
Conclude that t0 2 E and x C t0 2 E and hence that .�ı; ı/ � E �E.
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35 (M. Fréchet). Given any f 2 L0.Œa; b�/; define

kf k WD
Z b

a

jf j
1C jf j :

(a) Show that kf k D 0 if and only if f D 0 a.e.
(b) Show that, if fn; f 2 L0.Œa; b�/ for all n 2 N; then limn!1 kfn � f k D 0 if and only if

fn ! f in measure.
(c) Recall that L0.Œa; b�/ WD L0.Œa; b�/=N ; where N WD ff 2 L0.Œa; b�/ W f D 0 a:e:g. Show

that d.f C N ; g C N / WD kf � gk defines a metric on L0.Œa; b�/; making it a complete
metric space.

36. LetE 2 M�<1.R/ and let .fn/ be a sequence in L0.E;R/ such that any of its subsequences
admits a (further) subsequence that converges almost everywhere to a function f 2 L0.E;R/.
Show that fn ! f in measure.

37. Let F W R2 ! R be a continuous function and let .fn/ and .gn/ be two sequences in
L0.E;R/, where E 2 M�<1.R/. If fn ! f and gn ! g in measure for two functions
f; g 2 L0.E;R/, then F.fn; gn/ ! F.f; g/ in measure. Deduce that fn C gn ! f C g

and fngn ! fg in measure.

38. Show that the condition �.E/ < 1 in the previous problem cannot be removed in general. In
fact, show that if fn ! f and gn ! g in measure, where fn; gn; f , and g are in L0.E;R/, then
fn C gn ! f C g in measure even if �.E/ D 1; but that in this case fngn need not converge to
fg in measure.

39. Show that the Monotone Convergence Theorem and Fatou’s lemma remain valid if fn ! f

almost everywhere is replaced by fn ! f in measure.

40. Find the Dini derivatives of the following functions at x D 0:

(a) f .x/ WD
(

x sin.1=x/ if x ¤ 0;

0 if x D 0:

(b) g.x/ WD
(

jxj if x 2 Q;

2jxj if x 62 Q:

41.

(a). Show that DCŒ�f .x/� D �DCf .x/.
(b). Show that if g WD � Lf ; where Lf .x/ WD f .�x/; we have DCg.�x/ D D�f .x/ and

D�g.�x/ D DCf .x/.

42. Show that if f is continuous on Œa; b� and has a local maximum at c 2 .a; b/; thenDCf .c/ 	
0 	 D�f .c/.

43. Let f W R ! R be a continuous function and a < b. Suppose that (1) every point of .a; b/ is
a shadow point of f and (2) a and b are not shadow points. Show that

f .x/ 	 f .b/ 8x 2 .a; b/ and f .a/ D f .b/:

Deduce that in the Rising Sun Lemma (Lemma 11.5.5) we actually have f .an/ D f .bn/ except
possibly when an D a for some n.

44. Show that the Cantor’s ternary function � W Œ0; 1� ! Œ0; 1� (Example 4.3.13) is not absolutely
continuous.
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45. Show that if f 2 AC .Œa; b�/; then its total variation function vf WD V x
a .f / is also absolutely

continuous. In particular, we have

vf .x/ D
Z x

a

v0
f d�:

Hint: Note that vf is increasing so that V y
x .f / D vf .y/� vf .x/.

46. Show that if f 2 AC .Œa; b�/; then f D g � h; where g and h are both increasing and
absolutely continuous.

47. Show that if f 2 AC .Œa; b�/; then V b
a .f / D R b

a jf 0j d�.

48. Let f 2 BV .Œa; b�/. Show that f 2 AC .Œa; b�/ if and only if

V b
a .f / D

Z b

a

jf 0j d�: (�)

49. Let f be absolutely continuous and strictly increasing on Œa; b�. Show that if g is absolutely
continuous on Œf .a/; f .b/�; then the composite function g ı f is absolutely continuous on Œa; b�.
Show by an example that the assertion is false if f in not strictly increasing.

50. Let a > 0 and b > 0 be given. Show that the function

f .x/ WD
8

<

:

xa sin
� 1

xb

�

if x 2 .0; 1�;

0 if x D 0

is absolutely continuous if and only if a > b. Deduce that f has bounded variation if and only if
a > b.

51. Suppose that f W Œ0; 1� ! R is continuous at x D 0 and absolutely continuous on Œ˛; 1�
for every ˛ 2 .0; 1/. Does it follow that f is absolutely continuous on Œ0; 1�? What if we add the
assumption f 2 BV .Œ0; 1�/?

52 (Singular Function). Define a function h 2 BV .Œa; b�/ to be singular if h0.x/ D 0

almost everywhere; e.g., Cantor’s ternary function � (cf. Example 4.3.13) is a continuous, singular
function. Show that if f W Œa; b� ! R is increasing, then f D gChwith two increasing functions
g and h such that g is absolutely continuous and h is singular. Can an absolutely continuous
function be singular?



Chapter 12
General Measure and Probability

Our goal in this final chapter is to extend the notions of measure and integral to
general sets. As an application, we shall include a brief discussion of some basic
facts in probability theory. We saw in Chap. 10 that Lebesgue measure, �; can be
defined by first introducing the Lebesgue outer measure, �� (Definition 10.1.1),
which is defined on P.R/ and then restricting it by means of Carathéodory’s
definition (Definition 10.1.11). As was pointed out there, this construction has the
advantage that it can be carried out in general sets and this is what we intend to
do here. Most of the results on Lebesgue measure and integral will therefore be
extended and, since the proofs are in many cases almost identical, we may omit
such proofs and assign them as exercises for the reader. Throughout this chapter,
X will denote an arbitrary (nonempty) set. Also recall that, in the set Œ�1;1� of
extended real numbers, we have ˙1 � 0 WD 0.

12.1 Measures and Measure Spaces

Definition 12.1.1 (Measure). Let X be an arbitrary set and A � P.X/ a
� -algebra of subsets of X . A function � W A! Œ0;1� is said to be a measure on A
if it satisfies �.;/ D 0 and is countably additive; i.e., for any sequence .An/1nD1 of
pairwise disjoint sets in A; we have

�.

1
[

nD1
An/ D

1
X

nD1
�.An/:

Definition 12.1.2 (Finite, � -Finite). Let A � P.X/ be a � -algebra. We say that
a measure � W A! Œ0;1� is finite if �.X/ <1. We then call �.X/ the total mass
of �. If X D S1

nD1 An; where An 2 A and �.An/ <1 for all n 2 N; then we say
that � is � -finite.

© Springer Science+Business Media New York 2014
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Definition 12.1.3 (Measurable and Measure Spaces). Given a set X and a
� -algebra A � P.X/; the pair .X;A/ is called a measurable space and the elements
of A are called measurable sets. If � W A ! Œ0;1� is a measure, then the triple
.X;A; �/ is called a measure space.

Theorem 12.1.4. Given a measure space .X;A; �/; the following properties hold
for any measurable sets A; B; and An; n 2 N.

1. (Monotonicity)

A � B H) �.A/ � �.B/:

2. (Finite Additivity)

Ai \ Aj D ; .1 � i; j � n; i ¤ j / H) �
�

n
[

jD1
Aj

�

D
n
X

jD1
�.Aj /:

3. (Finite Subadditivity)

�
�

n
[

jD1
Aj

�

�
n
X

jD1
�.Aj /:

4. (Countable Subadditivity)

�
�

1
[

jD1
Aj

�

�
1
X

jD1
�.Aj /:

5. (Continuity)

A1 � A2 � A3 � � � � H) �
�

1
[

nD1
An

�

D lim
n!1�.An/; and

�.A1/ <1 & A1 � A2 � A3 � � � � H) �
�

1
\

nD1
An

�

D lim
n!1�.An/:

Proof. Since �.;/ D 0; (2) follows from the countable additivity of � if we take
Aj D ; for all j � nC1. Now, ifA � B; thenB D A[.BnA/ andA\.BnA/ D ;.
Therefore, by (2), we have �.B/ D �.A/C �.B n A/ � �.A/ and (1) follows. To
prove (3), let A0

1 WD A1 and A0
k WD Ak n .Sk�1

jD1 Aj / for all k > 1. Then the A0
k are

measurable and pairwise disjoint. Also,
Sn
kD1 Ak D

Sn
kD1 A0

k . Since A0
k � Ak; (1)

and (2) imply

�
�

n
[

kD1
Ak

�

D �
�

n
[

kD1
A0
k

�

D
n
X

kD1
�.A0

k/ �
n
X

kD1
�.Ak/:
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To prove the first part of (5), let B1 WD A1 and Bn WD An n An�1 for all n � 2.
Then .Bn/ is a sequence of pairwise disjoint measurable sets. Also, An DSn

kD1 Bk
and

S1
nD1 An D

S1
nD1 Bn. Therefore, �.

S1
nD1 An/ D

P1
nD1 �.Bn/ and (by (2))

�.An/ DPn
kD1 �.Bk/ so that

�
�

1
[

nD1
An

�

D
1
X

nD1
�.Bn/ D lim

n!1

n
X

kD1
�.Bk/ D lim

n!1�.An/:

The second part of (5) now follows if we apply the first part to the increasing
sequence .A1 n An/1nD1. (Why?) Finally, to prove (4), consider the increasing
sequence .Bn/ of measurable sets Bn WD Sn

kD1 Ak . Applying (5), we have
�.
S1
nD1 An/ D limn!1 �.Bn/. But, using (3), we have

�.Bn/ �
n
X

kD1
�.Ak/ �

1
X

nD1
�.An/ .8n 2 N/;

from which (4) follows. ut
Example 12.1.5 (Counting Measure). Let X ¤ ; and define  W P.X/ ! Œ0;1�
by .A/ D jAj (i.e., the number of elements of A) if A is finite, and .A/ D 1
if A is infinite. Then  is a measure on P.X/ (why?), called the counting measure.
Clearly,  is finite (resp., � -finite) if X is finite (resp., countable).

Example 12.1.6 (Dirac Measure). Let X ¤ ; and x 2 X a fixed element. Define
ıx W P.X/ ! Œ0;1� by ıx.A/ D 1 if x 2 A and ıx.A/ D 0 if x 62 AI i.e.,
ıx.A/ D 
A.x/. Then ıx is a (finite) measure on P.X/. (Why?) We call it the Dirac
measure at x.

Sets of measure zero play a special role in general measure spaces as they did in
the case of Lebesgue measure:

Definition 12.1.7 (Null Set, Almost Everywhere). Let .X;A; �/ be a measure
space. A set Z 2 A is called a null set (or set of measure zero) if �.Z/ D 0. To
be more precise, we sometimes say �-null (or �-measure zero). A statement about
elements x 2 X is said to be true almost everywhere (abbreviated a.e.) or �-almost
everywhere (abbreviated �-a.e.) if it is true except on a (�-) null set. We also say
that the statement is true for almost all x (abbreviated a.a. x).

It is obviously desirable that all subsets of a null set be measurable and hence
also null sets. This motivates the following.

Definition 12.1.8 (Complete Measure). Let .X;A/ be a measurable space.
A measure � W A ! Œ0;1� (or the corresponding measure space .X;A; �/) is
said to be complete if every subset of a null set is measurable; i.e., if A 2 A and
�.A/ D 0; then Z 2 A for all Z � A.
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Theorem 12.1.9 (Completion). Let .X;A; �/ be a measure space. Let NA denote
the set of all E � X for which there are A; B 2 A with A � E � B and
�.B nA/ D 0 and define N�.E/ WD �.A/ in this case. Then N� is an extension of � to
NA and .X; NA; N�/ is a complete measure space, called the completion of .X;A; �/.

Proof. First, it is obvious that A � NA and N�.A/ D �.A/ for all A 2 A. In
particular, X 2 NA. If A � E � B; then Bc � Ec � Ac and Ac n Bc D B n A.
Therefore, E 2 NA implies Ec 2 NA. Next, if An � En � Bn; for all n 2 N; and if
A WDSAn; E WDSEn; and B WDSBn; then A � E � B and

B n A �
1
[

nD1
.Bn n An/;

so that �.Bn n An/ D 0 for all n 2 N implies �.B n A/ D 0. Thus En 2 NA for
all n implies E 2 NA. It follows that NA is indeed a � -algebra. To check that N� is
well defined on NA; suppose that A � E � B , A0 � E � B 0; and �.B n A/ D
0 D �.B 0 n A0/. Then A n A0 � B 0 n A0 and hence �.A n A0/ D 0. Similarly,
�.A0 n A/ D 0. Therefore,

�.A/ D �.A \ A0/ D �.A0/:

Finally, the countable additivity of N� on NA is obvious. (Why?) ut
Definition 12.1.10 (Operations, Partial Order). Let MA denote the set of all
(positive) measures on a measurable space .X;A/. For any �;  2 MA and any
t 2 Œ0;1/; the addition and scalar multiplication are given by

.�C /.A/ WD �.A/C .A/ and .t�/.A/ WD t�.A/ .8 A 2 A/:

Also, we define a partial ordering on MA by

� � ” �.A/ � .A/ .8 A 2 A/:

Exercise 12.1.11.

(a) Show that the set functions �C and t� defined above are also measures on A.
Deduce that MA is a cone. Show, however, that this cone is not a lattice by
giving an example of two measures �;  2MA such that � _  WD maxf�; g
is not additive; i.e., there are two sets A; B 2 A with A \ B D ; but

.� _ /.A [ B/ ¤ .� _ /.A/C .� _ /.B/

and hence � _  62MA.
(b) For a fixed A 2 A; define the set function �A W A ! Œ0;1� by �A.E/ WD

�.E \ A/. Show that �A is a measure on A.
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The following theorem shows, however, that directed sets of measures are nicely
behaved:

Theorem 12.1.12. Let A � P.X/ be a � -algebra and let M be a set of measures
on A. If M is directed, i.e., given any�1; �2 2M; there exists a measure�3 2M
such that �3 � �1 _ �2; then

.E/ WD supf�.E/ W � 2Mg .8E 2 A/

defines a measure on A.

Proof. It is obvious that  is a well-defined function from A to Œ0;1�. Let .An/n2N
be a sequence of pairwise disjoint sets in A. Then

�

� 1
[

nD1
An

�

D
1
X

nD1
�.An/ �

1
X

nD1
.An/ .8� 2M/;

and hence



� 1
[

nD1
An

�

�
1
X

nD1
.An/:

To prove the opposite inequality, we may (and do) assume that .An/ < 1 for all
n 2 N. (Why?) Now, for fixed n 2 N and " > 0; the definition of  implies that,
for each k; 1 � k � n; we can pick a measure �k 2M such that .Ak/ � "=n <
�k.Ak/. Using the hypothesis (and induction), we can now find a � 2M such that
�k � � for k D 1; 2; : : : ; n. Thus

n
X

kD1
.Ak/ � " <

n
X

kD1
�k.Ak/ �

n
X

kD1
�.Ak/

D �
� n
[

kD1
Ak

�

� 
� n
[

kD1
Ak

�

� 
� 1
[

kD1
Ak

�

:

Since " > 0 was arbitrary, we have

n
X

kD1
.Ak/ � 

� 1
[

kD1
Ak

�
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and, letting n!1; we finally obtain

1
X

kD1
.Ak/ � 

� 1
[

kD1
Ak

�

:

ut
The following corollary is a useful special case:

Corollary 12.1.13. Let A � P.X/ be a � -algebra and let .�n/ be an increasing
sequence of measures on A. For each A 2 A; define �.A/ WD supf�n.A/ W n 2 Ng.
Then � is a measure on A.

Example 12.1.14. Let X be a (nonempty) set. Given any function p W X ! Œ0;1/;
let us define � W P.X/! Œ0;1� by �.;/ WD 0 and �.E/ WDPx2E p.x/; where the
sum is an unordered series in the sense of Definition 2.4.1. Then � is a measure
on P.X/. Indeed, if for each finite set F � X we put �F WD P

x2F p.x/ıx;
where ıx is the Dirac measure at x (defined above), then each �F is a measure
by Exercise 12.1.11. Since

� D supf�F W F 2 FXg;

where FX denotes the set of all finite subsets of X; Theorem 12.1.12 implies that �
is a measure. In particular, if p.x/ D 1 for all x 2 X; then � is simply the counting
measure defined above. Also, if p D 
fx0g for some x0 2 X; then we obtain the
Dirac measure ıx0 .

The last example can be used to give new proofs of some of the results on
unordered series discussed in Chap. 2:

Exercise 12.1.15. Using the above example, prove Corollary 2.4.25 for nonnega-
tive functions and Theorem 2.4.26 for nonnegative double series.

To construct measures on a � -algebra A � P.X/; it is often more convenient
to start with outer measures (which are defined on all of P.X/) and then use
Carathéodory’s definition (cf. Theorem 10.1.16).

Definition 12.1.16 (Outer Measure). Given a set X; we say that a map �� W
P.X/! Œ0;1� is an outer measure on X if it satisfies the following conditions:

1. ��.;/ D 0.
2. A � B H) ��.A/ � ��.B/ (monotonicity).
3. For any sequence .An/ of subsets of X; we have

��
� 1
[

nD1
An

�

�
1
X

nD1
��.An/ (countable subadditivity):
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As we saw in the case of Lebesgue measure, the construction of an outer measure
requires a set function, �; defined initially on a subset of P.X/. For the Lebesgue
outer measure, � was the length defined on the set of intervals. Here is an extension
of Proposition 10.1.6 to more general sets with essentially the same proof:

Theorem 12.1.17. Let X be a set and suppose that there is a collection C � P.X/
with ; 2 C and a sequence .Xn/ in C such that X D S1

nD1 Xn. Let � W C ! Œ0;1�
with �.;/ D 0 and define �� W P.X/! Œ0;1� by

��.A/ WD inf

� 1
X

nD1
�.Cn/ W Cn 2 C; A �

1
[

nD1
Cn

�

: (�)

Then �� is an outer measure.

Proof. First note that the existence of the sequence .Xn/ implies that the set on
the right side of (�) is not empty. Also, the monotonicity of �� and the fact that
��.;/ D 0 are easily checked. (Why?) Therefore, we need only show the countable
subadditivity. So let .An/ be a sequence in P.X/ and let " > 0 be given. We may
(and do) assume that ��.An/ < 1 for all n 2 N. Now, for each n; we pick a
sequence .Cnk/1kD1 in C such that An �S1

kD1 Cnk and

1
X

kD1
�.Cnk/ � ��.An/C "

2n
:

Since fCnk W n; k 2 Ng is a countable collection of sets in C covering
S1
nD1 An; we

have

��.
1
[

nD1
An/ �

X

n; k2N
�.Cnk/ D

1
X

nD1

1
X

kD1
�.Cnk/

�
1
X

nD1
.��.An/C 2�n"/ D

1
X

nD1
��.An/C ":

Since " > 0 was arbitrary, the countable subadditivity follows. ut
Example 12.1.18.

1. (Lebesgue Outer Measure on Rn). The most important example is, of course,
the Lebesgue outer measure on Rn: Here X WD Rn; C is the collection I W
f.a;b/ W a; b 2 Rng of all bounded open intervals:

.a;b/ WD .a1; b1/ � .a2; b2/ � � � � � .an; bn/;
where a D .a1; : : : ; an/; b D .b1; : : : ; bn/; �1 < aj � bj < 1; for 1 �
j � n; and � D �n; where �n..a;b// WD Qn

jD1.bj � aj / is the volume of the
interval .a;b/. The corresponding outer measure is then denoted by ��

n . If n D 1;
we recover the Lebesgue outer measure, ��; on R. (cf. Definition 10.1.1).



582 12 General Measure and Probability

2. (Lebesgue–Stieltjes Outer Measures). Let F W R! R be an increasing, right-
continuous function: 8 x1; x2 2 R; x1 < x2 implies F.x1/ � F.x2/ and
F.xC0/ D F.x/8x 2 R. Such a function is often called a distribution function.
Now let C be the set of all half-open intervals .a; b� of R and let � D �F ; where
�F ..a; b�/ WD F.b/ � F.a/. The corresponding outer measure ��

F is then called
the Lebesgue–Stieltjes Outer Measure associated with F .

3. (Hausdorff Outer Measures). Let .M ; d / be a separable metric space and
p � 0. For each " > 0 introduce the collection

C" WD fC �M W 0 < ı.C / < "g;

where ı.C / WD supfd.x; y/ W x; y 2 C g is the diameter of C . Define
�p".;/ WD 0 and �p".C / WD .ı.C //p; for each C 2 C". Now let ��

p" be the
corresponding outer measure. It is easily checked that ��

p" � ��
p"0 if 0 < "0 < ".

Next, for each E �M ; define

��
p.E/ WD supf��

p".E/ W " > 0g:

It follows (e.g., from Theorem 12.1.12) that ��
p is an outer measure. It is called

the p-dimensional Hausdorff outer measure on M and is also denoted by Hp .

Remark 12.1.19. Note that ��
p.E/ will not change if we assume that the members

of the C" are all closed or all open. Indeed, for any set A � M ; we have ı.A/ D
ı.A�/. Also, if A" WD fx 2 M W d.x;A/ < "g; then A" is open and ı.A"/ �
ı.A/C 2".
Exercise 12.1.20.

1. Show that ��
0 is the counting measure on M .

2. Let M WD R with its usual metric. Show that ��
1 D ��; where �� is the Lebesgue

outer measure (Definition 10.1.1).

Exercise 12.1.21. Let .M ; d / be a separable metric space and A �M . Show that,
if ��

p.A/ < 1; then ��
q D 0 for all q > p � 0. Deduce that, if ��

p.A/ > 0;

then ��
q .A/ D 1 for all 0 � q < p. Hint: Show that, if q > p; then ��

q".A/ �
"q�pŒ��

p.A/C 1�.
Definition 12.1.22 (Hausdorff Dimension). Let .M ; d / be a separable metric
space and A �M . The (unique) number

dimH.A/ WD inffp � 0 W ��
p.A/ D 0g D supfp � 0 W ��

p.A/ D1g (�)

is called the Hausdorff dimension of A. Note that the equality in (�) follows from
Exercise 12.1.21, which also implies

dimH.A/ D supfp � 0 W ��
p.A/ > 0g D inffp � 0 W ��

p.A/ <1g:
In particular, if 0 < ��

p.A/ <1; then dimH.A/ D p.
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Computing the Hausdorff measure (or dimension) of a set is a tricky business
and, as a rule, lower bounds are much more difficult to find than upper bounds. We
shall only consider the case of Cantor’s ternary set and refer the reader to Falconer’s
The Geometry of Fractal Sets [Fal85] for other interesting examples. The following
lemma (used in the same reference) will be needed.

Lemma 12.1.23. Let p WD log 2= log 3. If a; b; and c are any nonnegative numbers
with c � .aC b/=2; then we have

.aC b C c/p � ap C bp:

Proof. Since 0 < p < 1; the function x 7! xp is concave. Therefore,

.aC b C c/p � .3.aC b/=2/p D 2
�aC b

2

�p

� ap C bp;

where we have used the fact that 3p D 2. ut
Proposition 12.1.24 (dimH .C / D log 2=log 3). Let C � Œ0; 1� be the Cantor set
and let p WD log 2=log 3. Then dimH.C / D p and ��

p.C / D 1.

Proof. Recall that C D T1
nD1 Cn; where Cn is the disjoint union of 2n closed

intervals of length 3�n. Therefore, if p WD log 2= log 3; we have

��
p.1=3/n.C / � 2n.1=3/np D 1;

which (letting n ! 1) implies that dimH.C / � log 2= log 3. To complete the
proof, we need the opposite inequality dimH.C / � log 2= log 3. This follows if,
given any collection I of intervals covering C (i.e., C � S

I2I I ), we can prove
that

X

I2I
.�.I //p � 1: ()

Now, enlarging each I slightly and using the compactness of C; it suffices to
prove () when the cover I is a finite collection of closed intervals all contained
in Œ0; 1�. Next, let .˛; ˇ/ be one of the open middle thirds (henceforth called holes)
removed to construct C . If I D Œa; b� 2 I and if a 2 Œ˛; ˇ/ (resp., b 2 .˛; ˇ�),
then we replace I by I n Œ˛; ˇ/ (resp., I n .˛; ˇ�/. This does not increase the sum
in () and gives a cover by a finite collection of pairwise disjoint closed intervals
which we still denote by I. In addition, the left (resp., right) endpoint of each I 2 I
is the left (resp., right) endpoint of an interval in some Cm. Now, given any I 2 I;
let J be the largest hole contained in I . Then I is contained in the interval (used in
the construction of C ) from which J was removed, and hence we have the disjoint
union I D I 0 [ J [ I 00, with �.J / � .�.I 0/C �.I 00//=2. By Lemma 12.1.23, the
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sum in () does not increase if the term .�.I //p is replaced by .�.I 0//pC.�.I 00//p .
We can therefore replace I by the pair of intervals I 0 and I 00. Repeating this a finite
number of times, we arrive at the cover Cn of C for some n 2 N and () follows. ut

We shall now construct measures using outer measures:

Definition 12.1.25 (Carathéodory). Let X be a set and �� an outer measure
on X . We say that a set E � X is ��-measurable if, for every set A � X; we
have

��.A/ D ��.A \E/C ��.A \Ec/: ()

The set of all ��-measurable subsets of X will be denoted by M�.

Remark 12.1.26. Note that, because �� is (countably) subadditive, () may be
replaced by the inequality

��.A/ � ��.A \E/C ��.A \Ec/: ()

Theorem 12.1.27. Let �� be an outer measure on a setX . Then the collection M�

of all ��-measurable subsets of X is a � -algebra containing every set Z � X with
��.Z/ D 0; and the restriction � WD ��jM� is a complete measure.

Proof. If Z � X and ��.Z/ D 0; then it is obvious that () is satisfied for all
A � X and E D Z. Thus Z 2M�I in particular, ; 2M�. It is also obvious that
E 2M� if and only if Ec 2M�. Next, if E; F 2M� and A � X; then we have

��.A/ D ��.A \E/C ��.A \Ec/

D ��.A \E \ F /C ��.A \Ec \ F c/

C ��.A \Ec \ F /C ��.A \E \ F c/

� ��.A \ .E [ F //C ��.A \ .E [ F /c/;

which implies that E [ F 2M� and hence M� is an algebra. It also shows that,
if E; F 2M� and E \ F D ;; then

��.E [ F / D ��..E [ F / \E/C ��..E [ F / \Ec/ D ��.E/C ��.F /:

Thus, by induction, �� is finitely additive. To prove that M� is a � -algebra, let
.En/

1
nD1 be a sequence of pairwise disjoint sets in M� and put E WD S1

kD1 Ek and
Fn WD Sn

kD1 Ek . Then we have Fn 2M�; Fn \ En D En; and Fn \ Ec
n D Fn�1

(with F0 WD ;/. Now, for each A � X; a simple induction gives

��.A \ Fn/ D ��.A \En/C ��.A \ Fn�1/ D
n
X

kD1
��.A \Ek/:
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Since Ec � F c
n ; we therefore obtain

��.A/ D ��.A \ Fn/C ��.A \ F c
n / �

n
X

kD1
��.A \Ek/C ��.A \Ec/;

which (letting n!1) implies

��.A/ � ��.A \Ec/C
1
X

nD1
��.A \En/ (�)

� ��.A \Ec/C ��.A \E/;

and hence E 2M�. Since any countable union in the algebra M� can be written
as a countable disjoint union (in M�), we have thus proved that M� is a � -algebra.
Finally, the countable additivity of �� on M� follows from (�) if we replace A by
E WDS1

nD1 En. ut
Definition 12.1.28 (Semialgebra). Let X be a set. A collecting S � P.X/ is said
to be a semialgebra if (i) S \ T 2 S for any S; T 2 S; and (ii) if S 2 S; then Sc

is a finite, disjoint union of sets in S .

Example 12.1.29 (Semiclosed Intervals). Given any a; b 2 R with a � b; consider
the set of all left-open, right-closed intervals with endpoints a and b W If b < 1;
then .a; b� WD fx 2 R W a < x � bg and if b D 1; then we define .a; b� WD .a;1/.
We obviously have .a; a� D ; for all a 2 R. The set of all these right-semiclosed
intervals will be denoted by Isem. For each I 2 Isem; we either have I c 2 Isem or
I c D I1 [ I2; with I1; I2 2 Isem and I1 \ I2 D ;. Since I c D I c [ ;; in either
case we may write I c as a disjoint union of two members of Isem. Therefore, Isem

is a semialgebra.

Here is a useful fact:

Lemma 12.1.30. If S is a semialgebra, then the set QS of all finite, disjoint unions
of sets in S is an algebra; i.e., for any A; B 2 QS; we have Ac 2 QS and A [ B 2 QS
[or, equivalently, A \ B D .Ac [ Bc/c 2 QS�.
Proof. Given any disjoint unions A D Sm

iD1 Si and B D Sm
jD1 Tj with the Si and

Tj in S; we have Si \ Tj 2 S for all j; k and hence the disjoint union A \ B D
S

i;j .Si \ Tj / is also in QS . Thus (inductively) QS is closed under finite intersections.

But then Ac DTi S
c
i 2 QS because Sci 2 QS for all i . ut

Notation 12.1.31. Let Isem be as in Example 12.1.29. Then the corresponding
algebra QIsem of all finite, disjoint unions of semiclosed intervals (provided by
Lemma 12.1.30) will be denoted by Asem. Note that the � -algebra generated by
Asem is in fact the Borel algebra BR. (Why?)
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Definition 12.1.32 (Premeasure). Let G � P.X/ be an algebra. A function � W
G ! Œ0;1� is said to be a premeasure (on G) if �.;/ D 0 and � is countably
additive on GI i.e., if Gn 2 G for all n 2 N; Gi \ Gj D ; for i ¤ j; and
G WDS1

nD1 Gn 2 G; then �.G/ DP1
nD1 �.Gn/.

Proposition 12.1.33. Suppose that the class C in Theorem 12.1.17 is actually
an algebra and that � W C ! Œ0;1� is a premeasure. If �� is the outer
measure constructed in that theorem, then each E 2 C is ��-measurable and
��.E/ D �.E/.
Proof. Let E 2 C and A � X . Given any " > 0; we can pick a sequence .Cn/ in C
such that

A �
1
[

nD1
Cn and ��.A/ �

1
X

nD1
�.Cn/ � ��.A/C ":

Define the disjoint sequence .C 0
n/ in C by C 0

1 WD C1 and C 0
n WD Cn n .Sn�1

kD1 Ck/ for
all n > 1. Since C 0

n � Cn and � is countably additive on C; we have

��.A/C " �
1
X

nD1
�.C 0

n/ D
1
X

nD1
Œ�.C 0

n \E/C �.C 0
n \Ec/� (�)

� ��.A \E/C ��.A \Ec/;

which (" > 0 being arbitrary) implies that E is ��-measurable. Next, note that
��.E/ � �.E/ is obvious. For the opposite inequality, we take A D E in (�), let
"! 0; and use the countable additivity of � on C to deduce

��.E/ �
1
X

nD1
�.E \ C 0

n/ D �.E/:

ut
The above results provide the following important theorem:

Theorem 12.1.34 (Extension Theorem). Let G � P.X/ be an algebra, � a
premeasure on G; and let A WD AG be the � -algebra generated by G. Then there
exists a measure Q� on A whose restriction to G is �. If  is another such measure,
then .E/ � Q�.E/ for all E 2 A; with equality if Q�.E/ <1. If � is � -finite, then
Q� is the unique extension of � to A.

Proof. Let �� be the outer measure constructed in Theorem 12.1.17 (with C WD G)
and let M� denote the � -algebra of all ��-measurable sets as in Theorem 12.1.27.
Then A � M� and hence, by Proposition 12.1.33, Q� WD ��jA satisfies the first
assertion. Next, let E 2 A and assume that E � A WD S1

nD1 An; with An 2 G for
all n 2 N. Then, with  as in the second assertion, we have .E/ �P1

nD1 .An/ D
P1

nD1 �.An/. Therefore, .E/ � ��.E/ D Q�.E/. Moreover,
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.A/ D lim
n!1 

� n
[

kD1
Ak

�

D lim
n!1�

� n
[

kD1
Ak

�

D Q�.A/:

If Q�.E/ < 1 and " > 0; then (by the definition of ��) we can pick the sequence
.An/ in such a way that Q�.A/ < Q�.E/C ". Thus Q�.A nE/ < " and hence

Q�.E/ � Q�.A/ D .A/ D .E/C .A nE/
� .E/C Q�.A nE/ � .E/C ":

Since " > 0 is arbitrary, we have Q�.E/ D .E/. Finally, suppose that X D
S1
nD1 Xn with Xn 2 A and �.Xn/ < 1 for all n 2 N. We may and (do) assume

that the Xn are pairwise disjoint. (Why?) Given any E 2 A; we then have

Q�.E/ D
1
X

nD1
Q�.E \Xn/ D

1
X

nD1
.E \Xn/ D .E/:

ut
Remark 12.1.35 (Lebesgue–Stieltjes and Hausdorff Measures). Let us go back to
the three outer measures ��

n ; �
�
F ; and ��

p (cf. Example 12.1.18). Each gives rise
to a measure according to Theorem 12.1.27. ��

n produces the Lebesgue measure,
�n; on Rn. The measure �F corresponding to ��

F is called the Lebesgue–Stieltjes
measure induced by F . As for ��

p; the corresponding measure, �p; is called the
p-dimensional Hausdorff measure (on M ).

Due to the important role played by the Lebesgue–Stieltjes measures in probabil-
ity theory, we follow the recipe in the extension theorem to construct them in detail.
First, we include another useful

Lemma 12.1.36. Let S � P.X/ be a semialgebra and QS the corresponding
algebra as in Lemma 12.1.30. Suppose that � is a set function defined on S such
that �.;/ D 0 and �.S/ D Pm

iD1 �.Si / if Si 2 S are pairwise disjoint and
S WDSm

iD1 Si 2 S . Let us extend � to a set function Q� on QS by setting

Q�
�

n
[

jD1
Sj

�

WD
X

�.Sj /;

if the Sj 2 S are pairwise disjoint. Then for any sets A; Bj 2 QS , 1 � j � n; we
have

(a) A DSn
jD1 Bj is a disjoint union H) Q�.A/ DPn

jD1 Q�.Bj /.
(b) A �Sn

jD1 Bj H) Q�.A/ �Pn
jD1 Q�.Bj /.
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Proof. For (a), note that Bj D S

` Sj;` is a finite, disjoint union of sets in S for
each j; and hence

Q�.A/ D
X

j;`

�.Sj;`/ D
X

j

Q�.Bj /:

In particular, if we also have A D S

k Ck for pairwise disjoint sets Ck 2 QS; then
P

j Q�.Bj / D
P

k Q�.Ck/ and hence Q� is well defined on QS . To prove (b), assume first
that n D 1 and setB WD B1. ThenA � B gives the disjoint unionB D A[.B\Ac/
with B \ Ac 2 QS; so that

Q�.A/ � Q�.A/C Q�.B \ Ac/ D Q�.B/:

For n > 1; let C1 WD B1 and Ck WD Bk \Bc
1 \ � � � \Bc

k�1. Then the Ck are pairwise
disjoint sets in QS with Ck � Bk and

Sn
jD1 Bj D

Sn
jD1 Cj . Also, we have the

disjoint union A D A \ .Sj Bj / D
S

j .A \ Cj /. It then follows from the case
n D 1 and part (a) that

Q�.A/ D
n
X

jD1
Q�.A \ Cj / �

n
X

jD1
Q�.Cj / �

n
X

jD1
Q�.Bj /:

ut
We can now prove our main result, where we use the notation in 12.1.31.

Proposition 12.1.37. Let F W R! R be an increasing, right-continuous function.
Given any pairwise disjoint intervals .aj ; bj � 2 Isem; 1 � j � n; define

�F

�

n
[

jD1
.aj ; bj �

�

WD
n
X

jD1
ŒF .bj / � F.aj /�;

and hence �F .;/ D �F
�

.a; a�
� D 0. Then �F is a premeasure on Asem.

Proof. To begin, note that F.1/ WD limx"1 F.x/ and F.�1/ WD limx#�1 F.x/

both exist, as F is increasing. Also �1 < F.1/ and F.�1/ < 1, so that
�F ..a; b�/ WD F.b/ � F.a/ makes sense for all �1 � a � b � 1. Now, if a < b
and .a; b� D Sm

kD1.ak; bk�; where the union is disjoint, then we may assume (after
possibly relabeling the intervals) that a D a1 < b1 D a2 < b2 D � � � < bn D b and
hence

�F
�

.a; b�
� D F.b/ � F.a/ D

m
X

kD1
ŒF .bk/ � F.ak/� D

m
X

kD1
�F
�

.ak; bk�
�

:
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Therefore, the conditions of Lemma 12.1.36 are satisfied with S WD Isem; QS D Asem

and Q� WD �F . In particular, �F is well defined on Asem and is finitely additive.
To prove the countable additivity, let .In/n2N be a disjoint sequence in Isem with
A WD S1

nD1 In 2 Asem. Then A is a finite disjoint union of intervals in Isem; each of
which being the union of a subsequence of .In/. So, using finite additivity, we may
as well assume that A D .a; b� is a single interval. But then

�F .A/ D �F
�

n
[

kD1
Ik

�

C �F
�

A n
n
[

kD1
Ik

�

� �F
�

n
[

kD1
Ik

�

D
n
X

kD1
�F .Ik/;

and letting n!1 gives �.A/ �P1
nD1 �F .In/. For the reverse inequality, assume

first that �1 < a < b <1 and let " > 0 be given. Then the right-continuity of F
may be used to pick ı > 0 with aC ı < b such that F.aC ı/� F.a/ < ". Also, if
In WD .an; bn� (where we may assume that �1 < an < bn < 1 for all n), we can
pick �n > 0with F.bnC�n/�F.bn/ < "2�n for each n 2 N. Now the open intervals
.an; bn C �n/ cover the compact interval Œa C ı; b�. We pick a finite subcover and
relabeling its intervals, if necessary, assume that Œa C ı; b� � SN

jD1.aj ; bj C �j /.
By part (b) of Lemma 12.1.36, we then have

F.b/ � F.aC ı/ �
N
X

jD1
ŒF .bj C �j / � F.aj /� �

1
X

jD1
ŒF .bj C �j / � F.aj /�:

Our choice of ı and �j now gives

�F
�

.a; b�
� D F.b/� F.a/ � 2"C

1
X

jD1
ŒF .bj /� F.aj /� D 2"C

1
X

jD1
�F
�

.aj ; bj �
�

:

Since " > 0 was arbitrary, the countable additivity of �F is established when �1 <

a < b < 1. If .a; b� is unbounded, then for any bounded interval .˛; ˇ� � .a; b�;
the above argument gives F.ˇ/�F.˛/ �P1

nD1ŒF .bn/�F.an/�. Since .˛; ˇ� was
arbitrary, the proof is complete. ut
Theorem 12.1.38. Given any increasing, right-continuous function F W R ! R;

there is a unique measure �F on BR such that �F ..a; b�/ D F.b/ � F.a/ for all
a; b 2 R. If G is another such function, then �F D �G if and only if F � G is
constant. Conversely, if � is a measure on BR that is finite on all bounded Borel
sets, then the function

F.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

�..0; x�/ if x > 0;

0 if x D 0;
��..x; 0�/ if x < 0

is increasing, right-continuous, and � D �F .
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Proof. By Proposition 12.1.37, each increasing, right-continuous F induces a
premeasure �F on Asem and it is obvious that �F D �G if and only if F � G is
constant. (Why?) Also, since R DS1

nD�1.n; nC1�; the premeasure �F is � -finite.
Thus the first two assertions follow from the extension theorem (Theorem 12.1.34).
To prove the last one, note that the monotonicity of � implies that F is increasing
and the continuity of � implies that F is right-continuous. (Why?) Also, we clearly
have � D �F on Asem and hence � D �F by the uniqueness assertion in the
extension theorem. ut
Remark 12.1.39.

1. Given any finite measure � on BR; we have � D �F ; where F.x/ WD
�..�1; x�/. (Why?) This function F is called the (cumulative) distribution
function of �.

2. Note that, in Remark 12.1.35, we used �F to denote the Lebesgue–Stieltjes
measure, i.e., the complete measure induced by the Lebesgue–Stieltjes outer
measure ��

F . It turns out that the Lebesgue–Stieltjes measure �F is in fact the
completion of the unique measure �F on BR given by Theorem 12.1.38.

Exercise 12.1.40. Let F W R ! R be an increasing, right-continuous function.
Show that the corresponding Lebesgue–Stieltjes measure �F is the completion of
the unique measure �F provided by Theorem 12.1.38.

We end this section by giving a necessary and sufficient condition that an outer
measure �� on a metric space .M ; d / must satisfy in order for each Borel set of M

to be ��-measurable. We shall need the following.

Definition 12.1.41 (Metric Outer Measure). We say that an outer measure �� on
a metric space .M ; d / is a metric outer measure if, for any sets A; B � M ; we
have

d.A;B/ > 0 H) ��.A [ B/ D ��.A/C ��.B/;

where d.A;B/ WD inffd.a; b/ W a 2 A; b 2 Bg.
Before stating the theorem, let us prove a lemma.

Lemma 12.1.42. Let �� be a metric outer measure on a metric space .M ; d / and
let O � M be a nonempty open set. If ; ¤ E � O and if, for each n 2 N; we
define En WD E \ fx W d.x;Oc/ � 1=ng; then

lim
n!1��.En/ D ��.E/: (�)

Proof. First, it is obvious that .En/1nD1 is an increasing sequence of subsets of EI
i.e., En � EnC1 � E for all n 2 N. Also, since Oc is closed, we have E D
S1
nD1 En. (Why?) Now defineE0 WD ; andDn WD EnC1nEn for all n 2 N0. IfDnC1

and En are both nonempty, then d.DnC1; En/ > 0. Indeed, if d.DnC1; En/ D 0;

then we can find x 2 DnC1 and y 2 En such that d.x; y/ < 1=n.nC 1/. But then
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d.y;Oc/ � d.x; y/C d.x;Oc/ <
1

n.nC 1/ C
1

nC 1 D
1

n
;

which is absurd. It follows that, for each n 2 N0; we have ��.DnC1 [ En/ D
��.DnC1/C ��.En/; and hence

��.DnC1/ D ��.DnC1 [En/ � ��.En/ � ��.EnC2/ � ��.En/: ()

Applying () repeatedly, we obtain the inequalities

��.E2nC1/ �
n
X

jD1
��.D2j / and ��.E2n/ �

n
X

jD1
��.D2j�1/: ()

Thus (�) is trivially satisfied if either one of the two series

1
X

nD1
��.D2n/ and

1
X

nD1
��.D2n�1/

diverges. So assume that they both converge and note that En D Sn
jD1 Ej D

Sn
jD1 Dj for all n 2 N and E D S1

nD1 En D
S1
nD1 Dn. Therefore, using ()

and the countable subadditivity of ��; we have

��.E/ � ��.E2n�1/C ���
1
[

jD2n
Dj

�

� ��.E2n�1/C
1
X

jDn
��.D2j /C

1
X

jDnC1
��.D2j�1/;

which, in view of the fact that .��.En// is an increasing sequence, shows that (�)
holds (why?) and completes the proof. ut
Theorem 12.1.43. Let �� be an outer measure on a metric space .M ; d /. Then ��
is a metric outer measure if and only if every Borel set of M is ��-measurable.

Proof. Assume first that �� is a metric outer measure and let O � M be an open
set. Given any A �M ; letE WD A\O and define the setsEn as in Lemma 12.1.42.
Now note that, for each n 2 N; we have d.En;A \Oc/ > 0. Therefore,

��.A/ � ��.En [ .A \Oc// D ��.En/C ��.A \Oc/:

Letting n!1 and using Lemma 12.1.42, we have

��.A/ � ��.A \O/C ��.A \Oc/;
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which proves that (the arbitrary open set) O is measurable and hence so is every
Borel set. Conversely, assume that all Borel sets are measurable and pick arbitrary
sets A; B �M with ı WD d.A;B/ > 0. Then, for each x 2 A; the set Ox WD fy 2
M W d.x; y/ < ı=2g is open and hence so is the set O WD S

x2A Ox . Also, we have
A � O (i.e., A \O D A) and B \O D ;. Since O is measurable, we now have

��.A [ B/ D ��..A [ B/ \O/C ��..A [ B/ \Oc/

D ��.A/C ��.B/;

and the proof is complete. ut
Exercise 12.1.44.

(a) Show that the Lebesgue outer measure �� is a metric outer measure on R. Show
that the same holds for the Lebesgue outer measure ��

n on Rn for n > 1.
(b) Let .M ; d / be a separable metric space and p � 0. Show that the Hausdorff

outer measure ��
p is a metric outer measure on M . Hint: Let A; B � M with

d.A;B/ > 0. For any " 2 �0; d.A;B/�; pick a sequence .Cn/1nD1 of subsets
of M with A [ B � S1

nD1 Cn and ı.Cn/ � " for all n 2 N. Observe that no
Cn intersects both A and B and split

P1
nD1.ı.Cn//p into two parts according to

whether Cn \ A D ; or Cn \ B D ;. Deduce that

1
X

nD1
.ı.Cn//

p � ��
p.A/C ��

p.B/:

12.2 Measurable Functions

We now want to take the natural step of extending the notions of (Lebesgue)
measurability and integrability from the measure space .R;M�; �/ to a general
measure space .X;A; �/. Let us recall that, if C � P.X/; then the � -algebra
generated by C is denoted by AC . In particular, if X is a metric space and OX is
the set of all open sets inX; then BX WD AOX is the Borel algebra ofX . In this case,
the measurable space .X;BX/ will be called a Borel space. We shall also need the
Borel algebra of R WD Œ�1;1�; defined by

BR WD fE � R W E \ R 2 BRg:

Note that any open set in R is a union of intervals of the form .a; b/; Œ�1; b/; and
.a;1�; where a; b 2 R.

Exercise 12.2.1. Recall (cf. Example 5.1.3(2)) that R is a metric space with metric
d.x; y/ WD jf .x/ � f .y/j; where f .x/ WD x=.1 C jxj/ for all x 2 R and
f .˙1/ WD ˙1. Show that BR defined above is indeed the Borel algebra of the
metric space .R; d /.
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Here is a routine but useful exercise:

Exercise 12.2.2. For any sets X; X 0 and any function f W X ! X 0; prove the
following:

1. If A0 � P.X 0/ is a � -algebra, then the collection

f �1.A0/ WD ff �1.A0/ W A0 2 A0g � P.X/

is a � -algebra (on X ).
2. If C0 � P.X 0/ and C D f �1.C0/ WD ff �1.C 0/ W C 0 2 C0g; then AC D f �1.AC0/.

Definition 12.2.3 (Measurable Function, Borel Function). Let .X;A/ be a
measurable space and .Y;BY / a Borel space. A function f W X ! Y is said to
be measurable if (with notation as in Exercise 12.2.2)

f �1.BY / � A:

The set of all measurable functions from X to Y (or from .X;A/ to .Y;BY /) will
be denoted by L0.X; Y / (or, more accurately, L0A;BY .X; Y /). If X is also a metric
space and A D BX; then a measurable function f W X ! Y is said to be Borel
measurable or simply a Borel function.

Notation 12.2.4 (Nonnegative Measurable Functions). Given a measurable
space .X;A/; the set of all measurable functions f W X ! Œ0;1� will be denoted
by L0C.X/.

Definition 12.2.5 (Restriction of a � -Algebra). Let A � P.X/ be a � -algebra
and let Y � X . The restriction of A to Y is defined to be

AjY WD fA \ Y W A 2 Ag:

It is easy to see (cf. Problem 1.5.#8) that AjY is a � -algebra on Y .

Here is a nice way of constructing a measurable function using a sequence of
measurable functions defined on members of a disjoint cover.

Proposition 12.2.6. Let .X;A/ be a measurable space and .Y;BY / a Borel space.
Let .Xn/ be a sequence in A of pairwise disjoint sets with X D S1

nD1 Xn and for
each n 2 N, let fn be a measurable function from .Xn;AjXn/ to .Y;BY /. Define f
by f .x/ WD fn.x/ if x 2 Xn. Then f W X ! Y is measurable.

Proof. Well, by assumption, given any Borel set B � Y and any n 2 N; we have
f �1
n .B/ D An \Xn for some An 2 A. But then

f �1.B/ D
1
[

nD1
f �1
n .B/ D

1
[

nD1
An \Xn 2 A:

ut
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Proposition 12.2.7. Let the notation be as in Definition 12.2.3. Then we have
f 2 L0.X; Y / if and only if f �1.O/ 2 A for each open set O � Y . In particular,
a function f W X ! Œ�1;1� is measurable if and only if f �1..a;1�/ 2 A for all
a 2 R.

Proof. Exercise! Note that BR is generated by the intervals .a;1�; a 2 R and use
Exercise 12.2.2. In fact, there are other equivalent conditions for the measurability
of f W X ! R:

Exercise 12.2.8. Show that f 2 L0.X;R/ if and only if f �1.Œa;1�/ 2 A if and
only if f �1.Œ�1; b// 2 A if and only if f �1.Œ�1; b�/ 2 A; for all a; b 2 R.
Deduce that, for any real c ¤ 0; f is measurable if and only if cf is measurable.
For c D 0; we have cf � 0; which is measurable since any constant function is
measurable. (Why?)

Corollary 12.2.9. Let .X;BX/ and .Y;BY / be Borel spaces. Then every continuous
function f W X ! Y is a Borel function.

Proposition 12.2.10 (Stability Under Limits). Let .X;A/ be a measurable space
and let fn 2 L0.X;R/ for all n 2 N. Then the functions x 7! supffn.x/ W n 2
Ng; x 7! infffn.x/ W n 2 Ng; x 7! lim supn!1ffn.x/ W n 2 Ng; and x 7!
lim infn!1ffn.x/ W n 2 Ng are also measurable.

Proof. Simply note that, if f .x/ WD supffn.x/ W n 2 Ng; then f �1..a;1�/ D
S1
nD1 f �1

n ..a;1�/. Since inf.fn/ D � sup.�fn/; the function x 7! infffn.x/ W
n 2 Ng is also measurable. Next, note that

lim sup
n!1

fn.x/ D inf
˚

supffk.x/ W k � ng W n 2 N


;

which implies the measurability of lim sup.fn/. The statement for lim inf is proved
similarly or by considering .�fn/. ut
Corollary 12.2.11. If .X;A/ is a measurable space, if fn 2 L0.X;C/ for all n 2
N; and if f .x/ D limn!1 fn.x/ for all x 2 X; then f 2 L0.X;C/.

Proposition 12.2.12 (Composition with Continuous Functions). Suppose that
.Y;BY / and .Z;BZ/ are Borel spaces and .X;A/ is a measurable space. Then,
for any f 2 L0.X; Y / and any continuous function g W Y ! Z; the composite
function g ı f W X ! Z is measurable.

Proof. Exercise! ut
Proposition 12.2.13. Let .X;A/ be a measurable space, and let u and v be real-
valued measurable functions onX . If .Y;BY / is a Borel space and F W R2 ! Y is a
continuous function, then the function h W X ! Y defined by h.x/ WD F.u.x/; v.x//
is measurable.

Proof. Since h D F ı g; where g.x/ WD .u.x/; v.x//; it suffices (by
Proposition 12.2.12) to prove that g W X ! R2 is measurable. But, given any



12.2 Measurable Functions 595

open setO � R2; there are two sequences .Im/ and .Jn/ of (pairwise disjoint) open
intervals such that, with Rmn WD Im � Jn; we have O D S

.m;n/2N
NRmn. (Why?)
Since

g�1.O/ D g�1�[

m;n

Rmn

�

D
[

m;n

g�1.Rmn/ D
[

m;n

�

u�1.Im/ \ v�1.Jn/
�

;

and since u and v are measurable, the measurability of h follows. ut
Proposition 12.2.14 (Stability Under Algebraic Operations). Let .X;A/ be a
measurable space.

(a) A function f W X ! C is measurable if and only if Re.f / and Im.f / are
measurable. In this case, jf j is also measurable.

(b) If f; g W X ! C are measurable, then so are f C g and fg. Moreover, if
g.x/ ¤ 0 for all x 2 X; then f=g is also measurable.

(c) If f; g W X ! R are measurable, then so are the functions f _g WD maxff; gg
and f ^ g WD minff; gg. In particular, f C WD f _ 0 and f � WD .�f / _ 0 are
measurable.

Proof. For (a), we simply use Proposition 12.2.13 with the continuous function
F.x; y/ WD .x; y/; and Proposition 12.2.12 with the continuous functions z 7!
Re.z/; z 7! Im.z/; and z 7! jzj. Also, (b) follows from Proposition 12.2.13 with the
continuous functions F.x; y/ WD xCy; F.x; y/ WD xy and, for y ¤ 0; F.x; y/ WD
x=y. Finally, for (c), we use Proposition 12.2.13 with F.x; y/ WD maxfx; yg and
F.x; y/ WD minfx; yg. ut
Exercise 12.2.15. Let .X;A; �/ be a complete measure space. Prove the following
assertions.

(a) If f 2 L0.X;C/; g W X ! C; and f .x/ D g.x/ for almost all x 2 X; then
g 2 L0.X;C/.

(b) If f and fn, n 2 N; are in L0.X;C/ and lim.fn.x// D f .x/ for almost all
x 2 X; then f 2 L0.X;C/.

The following definition is an extension of Definition 10.2.1 and Remark 10.2.3:

Definition 12.2.16 (Simple Function, Canonical Representation). Let .X;A/
be a measurable space and let F denote either R or C. A function � W X ! F

is said to be a simple function if there are measurable sets Ej 2 A and constants
cj 2 F; 1 � j � n; such that

� WD
n
X

jD1
cj 
Ej : (�)

The set of all F-valued [resp., nonnegative] simple functions on X will be denoted
by Simp.X;F/ [resp., SimpC.X/]. The representation (�) is called the canonical
representation of � if the cj are all distinct (ci ¤ cj for i ¤ j ) and Ej WD
��1.fcj g/; for 1 � j � n. Note that we then obviously have Ei \ Ej D ; for
i ¤ j and X DSn

jD1 Ej .
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Remark 12.2.17. It is clear that a function � W X ! F is simple if and only if it is
measurable and assumes only a finite number of values. (Why?)

Proposition 12.2.18. Let .X;A/ be a measurable space. Given any measurable
function f W X ! Œ0;1�; there is a sequence .�n/ of nonnegative simple functions
such that .�n/ is increasing (i.e., �nC1 � �n) and lim.�n.x// D f .x/ for all x 2 X .
If f is bounded, then .�n/ ! f uniformly on X . Furthermore, if � W A ! Œ0;1�
is a � -finite measure, then we may choose the �n so that each vanishes outside a set
of finite measure.

Proof. Exercise! Hint: Define the �n as in the proof of Theorem 10.2.24. ut

12.3 Integration

We now want to define the integral of functions defined on a general measure space
.X;A; �/. To this end, we first define the integral for nonnegative simple functions
and then extend it to general measurable functions using Proposition 12.2.18.
Throughout this section, .X;A; �/ will be a measure space.

Definition 12.3.1 (Integral of a Simple Function). If � 2 SimpC.X/ has
canonical representation � WD Pn

jD1 cj 
Ej and E 2 A; then the (Lebesgue)
integral of � over E (with respect to �) is defined to be the extended nonnegative
number

Z

E

� d� WD
n
X

jD1
cj�.Ej \E/: ()

Remark 12.3.2. Note that the sum in () may contain a term of the form 0 �1WD 0.
Also, as we saw in Chap. 10 (cf. Lemma 10.3.4 and Corollary 10.3.6), the value of
the integral

R

E
� d� is independent of the representation of � as a (finite) linear

combination of characteristic functions of measurable sets.

Definition 12.3.3 (Integral of a Nonnegative Function). If f 2 L0C.X/ and
E 2 A; then the (Lebesgue) integral of f over E (with respect to �) is defined
to be the (extended) nonnegative number

Z

E

f d� WD sup

�

Z

E

� d� W � 2 SimpC.X/; � � f
�

:

If E D X; then we simply write
Z

f d� WD
Z

X

f d�:

Exercise 12.3.4. Show that if f 2 SimpC.X/; then the two definitions of
R

E
f d�

given by Definitions 12.3.1 and 12.3.3 are the same.
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Proposition 12.3.5. Let f; g W X ! Œ0;1� be measurable and let A; B; and E
be measurable sets. Then the following are true:

(a) f � g on E implies
R

E
f d� � R

E
g d�.

(b) A � B implies
R

A
f d� � R

B
f d�.

(c)
R

E
cf d� D c R

E
f d� for all c 2 Œ0;1/.

(d) f .x/ D 0 for all x 2 E implies
R

E
f d� D 0; even if �.E/ D C1.

(e) �.E/ D 0 implies
R

E
f d� D 0; even if f .x/ D C1 for all x 2 E.

(f)
R

E
f d� D R

X
f
E d�.

Proof. Exercise! ut
Remark 12.3.6. Note that, by part (f), there is no loss of generality to restrict the
definition of the integral to the case E D X .

Exercise 12.3.7. Show that, if � 2 SimpC.X/; then the map

��.E/ WD
Z

E

� d� .8E 2 A/

is a measure on A such that �.E/ D 0 implies ��.E/ D 0.

The general integral defined above is also additive, as we expect, but this is not
easy to see from Definition 12.3.3. We prove the additivity for simple functions first
and deduce the general case from the fundamental convergence theorems.

Proposition 12.3.8. For any �;  2 SimpC.X/ and any E 2 A; we have

Z

E

.� C  / d� D
Z

E

� d�C
Z

E

 d�:

Proof. Let � D Pm
iD1 ci�.Ei / and  D Pn

jD1 dj�.Fj / be the canonical
representations of � and  , respectively. Then the collections .Ei /; .Fj /; and
.Ei \ Fj / are all mutually disjoint covers of X and � C  has the constant value
ci C dj on Ei \ Fj . Thus

Z

E

.� C  / d� D
X

i;j

.ci C dj /�.Ei \ Fj \E/

D
X

i

ci
X

j

�.Ei \ Fj \E/C
X

j

dj
X

i

�.Ei \ Fj \E/

D
X

i

ci�.Ei \E/C
X

j

dj�.Fj \E/

D
Z

E

� d�C
Z

E

 d�:

ut
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Here is a useful inequality:

Proposition 12.3.9 (Chebyshev’s Inequality). Let f W X ! Œ0;1� be a
measurable function, E 2 A; and c > 0. If Ec WD fx 2 E W f .x/ � cg; then
we have

�.Ec/ � 1

c

Z

E

f d�:

Proof. Since f � c on Ec; parts (a) and (b) of Proposition 12.3.5 imply

c�.Ec/ D
Z

Ec

c d� �
Z

Ec

f d� �
Z

E

f d�:

ut
Corollary 12.3.10. If f 2 L0C.X/ and

R

E
f d� <1; then

�.fx 2 E W f .x/ D C1g/ D 0I
i.e., f is finite almost everywhere on E.

Proof. Let A WD fx 2 E W f .x/ D C1g and An WD fx 2 E W f .x/ � ng for all
n 2 N. Then we have A DT1

nD1 An. Now, by Chebyshev’s inequality, we have

�.A/ � �.An/ � 1

n

Z

E

f d� .8n 2 N/:

Since
R

E
f d� <1; the corollary follows. ut

Corollary 12.3.11. Let f 2 L0C.X/ and let E 2 A. Then

Z

E

f d� D 0” f D 0 a:e: on E:

In particular, if f .x/ > 0 for all x 2 E; then
Z

E

f d� D 0” �.E/ D 0:

Proof. Let A WD fx 2 E W f .x/ > 0g and let An WD fx 2 E W f .x/ > 1=ng; for all
n 2 N. Then A D S1

nD1 An and it suffices to show that �.An/ D 0 for all n 2 N.
But, by Chebyshev’s inequality, we have

�.An/ � n
Z

E

f d� D 0 .8n 2 N/:

If f .x/ > 0 for all x 2 E, then
R

E
f d� D R

X
f
E d� D 0 implies f .x/
E.x/ D

0; and hence 
E.x/ D 0; for �-almost all x 2 X; which gives �.E/ D 0. ut
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Theorem 12.3.12 (Monotone Convergence Theorem). Let .fn/ be an increasing
sequence in L0C.X/I i.e., fn.x/ � fnC1.x/ for all n 2 N and x 2 X . If
lim.fn.x// D f .x/ for all x 2 X; then f 2 L0C.X/ and we have

lim
n!1

Z

X

fn d� D
Z

X

f d�:

Proof. Since .
R

fn d�/ is an increasing sequence in Œ0;1�; it converges. Also,
R

fn d� �
R

f d� for all n 2 N implies that lim.
R

fn d�/ �
R

f d�. To prove
the reverse inequality, fix ı 2 .0; 1/. Pick any � 2 SimpC.X/ with � � f and
let En WD fx W fn.x/ � ı�.x/g. Then the En are measurable, En � EnC1 for
all n 2 N; and

S1
nD1 En D X . Also, we have

R

fn d� �
R

En
fn d� � ı

R

En
�.

By Exercise 12.3.7 and Theorem 12.1.4(5), we have lim.
R

En
� d�/ D R

� d� and
hence lim.

R

fn d�/ � ı
R

� d�. Since this is true for all ı < 1; it remains true for
ı D 1 and, taking the supremum over all � 2 SimpC.X/ with � � f; we obtain
lim.

R

fn d�/ �
R

f d�. ut
Remark 12.3.13.

1. The assumption that the sequence .fn/ is increasing (at least almost everywhere)
is necessary. Indeed, in R with Lebesgue measure �; the sequence .
.n;nC1//
converges to zero pointwise, but

R


.n;nC1/ d� D 1 for all n 2 N. Note, however,
that we will always have

R

f d� � lim
n!1

R

fn d� (cf. Fatou’s Lemma below).

2. The fact that sets of measure zero are negligible in integration suggests that
we allow functions that are defined almost everywhere. Thus, if .X;A; �/ is a
measure space and A 2 A with �.Ac/ D 0; we say that f W A ! R (resp.,
f W A ! R) is measurable on X if f �1.B/ \ A 2 A for every B 2 BR (resp.,
B 2 BR). It then follows that Qf 2 L0.X;R/ (resp., Qf 2 L0.X;R//; where the
trivial extension Qf is defined by Qf .x/ WD f .x/ if x 2 A and Qf .x/ WD 0 if x 62 A.
(Why?) In fact, if � is complete, then we may define f on Ac arbitrarily and still
get a measurable extension to X . (Why?)

Corollary 12.3.14. If, in Theorem 12.3.12, we have lim.fn.x// D f .x/ for almost
all x 2 X; then we still have

R

f d� D limn!1
R

fn d�.

Proof. Suppose that the fn.x/ increase to f .x/ for all x 2 E � X with�.Ec/ D 0.
Then f D f
E and fn D fn
E almost everywhere, and hence

Z

f d� D
Z

f
E d� D lim
n!1

Z

fn
E d� D lim
n!1

Z

fn d�:

ut
Corollary 12.3.15 (Additivity of the Integral). If f; g 2 L0C.X/ and E 2 A;
then we have

Z

E

.f C g/ d� D
Z

E

f d�C
Z

E

g d�:
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Proof. Without loss of generality, we may (and do) assume that E D X . Pick
increasing sequences .�n/ and . n/ of simple functions such that lim.�n/ D f

and lim. n/ D g. Then .�nC n/ is increasing and lim.�nC n/ D f C g. Using
Proposition 12.3.8 and the Monotone Convergence Theorem, we have

Z

.f C g/ d� D lim
n!1

Z

�n d�C lim
n!1

Z

 n d� D
Z

fd�C
Z

g d�:

ut
Corollary 12.3.16. Let .fn/ 2 L0C.X/N and let f .x/ WD P1

nD1 fn.x/ for all
x 2 X . Then

Z

f d� D
1
X

nD1

Z

fn d�:

Proof. Let gn WDPn
kD1 fk . Then a simple induction using Corollary 12.3.15 shows

that
R

gn d� DPn
kD1

R

fk d�. Applying the Monotone Convergence Theorem, the
corollary follows at once. ut
Corollary 12.3.17. Given any g 2 L0C.X/; the set function

�g.E/ WD
Z

E

g d� .8E 2 A/ ()

is a measure on A and, for each f 2 L0C.X/;
Z

f d�g D
Z

fg d�: ()

In particular, �g is absolutely continuous with respect to � in the sense that
�.E/ D 0 implies �g.E/ D 0.

Proof. Let .En/ be a sequence of pairwise disjoint elements of A with E WD
S1
nD1 En and note that g
E D P1

nD1 g
En . Since �g.E/ D
R

g
E d� and
�g.En/ D

R

g
En d�; Corollary 12.3.16 gives �g.E/ D P1
nD1 �g.En/. Also,

�g.;/ D 0 and hence the first part of the corollary is proved. Next, note that ()
implies () for g D 
E with any E 2 A. Therefore, () holds for any
(nonnegative) simple function. The general case now follows from the Monotone
Convergence Theorem (cf. Proposition 12.2.18). ut
Remark 12.3.18. The absolute continuity referred to in this corollary (cf. also
Corollary 10.4.7) will soon be extended to a general relation between a pair of
measures and will provide a sufficient condition for a measure to have the form
�g for a suitable g � 0. This will be the content of the Radon–Nikodym theorem
(cf. Definition 12.3.31 and Theorem 12.3.35 below).
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Theorem 12.3.19 (Fatou’s Lemma). For any sequence .fn/ in L0C.X/; we have

Z

.lim inf
n!1 fn/ d� � lim inf

n!1

Z

fn d�: (�)

Proof. Define gn.x/ WD infffk.x/ W x 2 X; k � ng. Then gn � fn for all n 2 N

and hence
Z

gn d� �
Z

fn d� .8n 2 N/: ()

Now, by Proposition 12.2.10, we have gn 2 L0C.X/ for all n 2 N. Also, g1 � g2 �
� � � and lim inf.fn/ D lim.gn/. Therefore, the Monotone Convergence Theorem
implies that the left side of () converges to the left side of (�) and hence (�) follows
from (). ut

We now define the integral for general real (or complex-)-valued functions
defined on a measure space .X;A; �/:

Definition 12.3.20 (The Spaces L1
�.X;R/ and L1

�.X;C/). Let .X;A; �/ be a
measure space. For any function f 2 L0.X;R/;we define its (Lebesgue) integral by

Z

f d� WD
Z

f C d� �
Z

f � d�

if at least one of the integrals on the right side is finite. If
R

f C d� and
R

f � d�
are both finite, then we say that f is integrable (on X ). The set of all real-valued
integrable functions on X will be denoted by L1�.X;R/. Next, if f 2 L0.X;C/; we
say that f is integrable if Re.f / and Im.f / are both integrable. In this case, we
define

Z

f d� WD
Z

Re.f / d�C i
Z

Im.f / d�: ()

The set of all complex-valued integrable functions will be denoted by L1�.X;C/.

Exercise 12.3.21.

(a) Show that f 2 L1�.X;C/ if and only if
R jf j d� <1.

(b) Let A WD P.X/ and let � WD  be the counting measure; i.e., .A/ D jAj is
the cardinality of A if A is finite and .A/ D 1 otherwise. Show that f 2
L1.X;C/ if and only if jf j is summable in the sense of Definition 2.4.1 and, in
this case,

Z

X

f d D
X

x2X
f .x/:
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Theorem 12.3.22 (Linearity of the Integral). Given any f; g 2 L1�.X;C/ and
any a; b 2 C; we have af C bg 2 L1�.X;C/ and

Z

.af C bg/ d� D a
Z

f d�C b
Z

g d�: (�)

Proof. That af C bg is measurable follows from Proposition 12.2.14. Also,

Z

jaf C bgj d� �
Z

.jajjf j C jbjjgj/ d�

D jaj
Z

jf j d�C jbj
Z

jgj d� <1;

by Proposition 12.3.5, and hence af Cbg 2 L1�.X;C/. We next prove (�) for f; g 2
L1�.X;R/ and a D b D 1. If we let h WD f Cg; then hC�h� D f C�f �CgC�g�
and hence hC C f � C g� D h� C f C C gC; so that Corollary 12.3.15 implies

Z

hC d�C
Z

f � d�C
Z

g� d� D
Z

h� d�C
Z

f C d�C
Z

gC d�;

from which
R

h d� D R

f d� C R

g d� follows at once. Next, by Proposi-
tion 12.3.5, we have

R

af d� D a
R

f d� if f is real-valued and a � 0. For
a < 0; note that .�f /C D f � and .�f /� D f C imply

R

.�f / d� D � R f d�.
Thus, (�) holds for real-valued functions and real constants. Finally, for complex-
valued functions, given any u; v 2 L1�.X;R/;

i

Z

.uC iv/ d� D i
Z

u d� �
Z

v d� D
Z

.iu � v/ d� D
Z

i.uC iv/ d�;

where we have used the real case and the definition () above. ut
Proposition 12.3.23. For each f 2 L1�.X;C/; we have

ˇ

ˇ

ˇ

ˇ

Z

f d�

ˇ

ˇ

ˇ

ˇ

�
Z

jf j d� .Triangle Inequlity/

with equality holding if and only if f̨ D jf j for some ˛ 2 C with j˛j D 1.

Proof. See the proof of properties (4) and (5) in Theorem 10.3.36. ut
The average value theorem (cf. Theorem 10.3.38) also holds in general if the

measure � is finite:

Theorem 12.3.24 (Average Value Theorem). Let � be a finite measure on a
measurable space .X;A/. If f 2 L1�.X;C/ and if S � C is a closed set with
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avA.f / WD 1

�.A/

Z

A

f d� 2 S

for every A 2 A with �.A/ > 0, then f .x/ 2 S for almost all x 2 X . In particular,
if f is real-valued and S D Œa; b�, then a � f .x/ � b for almost all x 2 X .

Proof. See the proof of Theorem 10.3.38. ut
Exercise 12.3.25. Let f; g 2 L1�.X;C/. Show that

Z

X

jf � gj d� D 0” f D g a:e:”
Z

E

f d� D
Z

E

g d� 8E 2 A:

Hint: Let h WD f � g D uC iv and E WD fx 2 X W u.x/ � 0g. Now note that, if
R

E
h d� D 0; then

R

E
uC d� D Re.

R

E
h d�/ D 0 and Corollary 12.3.11 may be

applied.

Remark 12.3.26 (The Normed Spaces L1
�.X;F/). Let F be either R or C and let

.X;A; �/ be any measure space. For any f; g 2 L0.X;F/; we define f � g if
f D g (�-) a.e. (on X ). This is easily seen to be an equivalence relation on
L0.X;F/ and the equivalence class of each function f will still be denoted by f . If
f; g 2 L1�.X;F/ and f � g; then (by the above exercise)

R

X
f d� D R

X
g d�.

The vector space of all equivalence classes of functions in L1�.X;F/ will be denoted

by L1
�.X;F/. For each f 2 L1

�.X;F/; its L1-norm is defined by

kf k1 WD
Z

X

jf j d�:

That this is indeed a norm follows from Exercise 12.3.25. We shall see below that
(as in Chap. 10) the above spaces are complete and hence Banach spaces.

We now prove (Lebesgue’s) Dominated Convergence Theorem:

Theorem 12.3.27 (Dominated Convergence Theorem). Let .fn/ be a sequence
in L0.X;C/ such that lim.fn.x// D f .x/ for all x 2 X . If there is a (nonnegative)
function g 2 L1�.X; Œ0;1// such that jfnj � g for all n 2 N; then f 2 L1�.X;C/;

lim
n!1

Z

X

jfn � f j d� D 0; ()

and

lim
n!1

Z

X

fn d� D
Z

X

f d�: ()

Proof. Since f is measurable and jf j � g; it follows that f 2 L1�.X;C/. Since
jfn � f j � 2g; Fatou’s lemma can be applied to the sequence .2g � jfn � f j/ and
implies
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Z

2g d� � lim inf
n!1

Z

.2g � jfn � f j/ d�

D
Z

2g d�C lim inf
n!1

�

�
Z

jfn � f j d�
�

D
Z

2g d� � lim sup
n!1

Z

jfn � f j d�:

Now
R

2g d� <1 and hence we can cancel it to obtain

lim sup
n!1

Z

jfn � f j d� � 0;

from which () follows at once. (Why?) Finally, applying Proposition 12.3.23 to
fn � f; we deduce () from (). ut

As we saw in Chap. 11, for each E 2 M�.R/ and p 2 Œ1;1�; the normed
spaces Lp.E;F/ are complete and hence Banach spaces. The Lp-spaces can also
be defined in general measure spaces .X;A; �/ and the corresponding results in the
general case can be proved exactly the same way. We therefore give the definitions
and the summary of the results. The proofs are left as exercises and can be provided
by the reader.

Definition 12.3.28 (Lp
� Spaces, 1 � p < 1). Let F denote either R or C and let

.X;A; �/ be a measure space. For each p 2 Œ1;1/; we denote by Lp
�.X;F/ the

set of all measurable functions f 2 L0.X;F/ such that
R

X
jf jp d� < 1. The

Lp-norm of f is then defined to be

kf kp WD
h

Z

X

jf .x/jp d�.x/
i1=p

: (k � kp)

(The Space L1
� ). For any f 2 L0.X;F/; its L1-norm is defined to be

kf k1 WD inf
n

a � 0 W ��fx W jf .x/j > ag� D 0
o

: (k � k1)

We call kf k1 the essential supremum of f . The space L1
� .X;F/ consists of all

f 2 L0.X;F/ such that kf k1 < 1. The space of all equivalence classes of
functions in Lp

�.X;F/ [resp., L1
� .X;F/] modulo the set of all �-null functions is

then denoted by Lp
�.X;F/ [resp., L1

� .X;F/].

Theorem 12.3.29. Given any measure space .X;A; �/; the following are true:

1. If p; q 2 .1;1/ satisfy 1=p C 1=q D 1 and f; g 2 L0.X;F/; then

kfgk1 � kf kpkgkq (Hölder’s inequality):

Thus, if f 2 Lp
�.X;F/ and g 2 Lq

�.X;F/, then fg 2 L1
�.X;F/.
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2. If 1 � p � 1 and f; g 2 Lp
�.X;F/; then we have

kf C gkp � kf kp C kgkp (Minkowski’s inequality):

3. Given any a > 0 and any f 2 Lp
�.X;F/; we have

�.fx W jf .x/j > ag/ � .kf kp=a/p (Chebyshev’s Inequality):

4. Lp
�.X;F/ is a Banach space for every p 2 Œ1;1�.

5. The space L2
�.X;F/ is a Hilbert space with inner product

hf; gi WD
Z

X

f Ng d�

and norm kf k2 D hf; f i1=2; and we have

jhf; gij � kf k2kgk2 (Cauchy-Schwarz inequality):

6. The set of all F-valued simple functions that vanish outside sets of finite measure
is dense in Lp

�.X;F/ for every p 2 Œ1;1/.
7. The set of all F-valued simple functions is dense in L1

� .X;F/.
8. Let p 2 Œ1;1�. Then any Cauchy sequence .fn/ in Lp

�.X;F/ with limit f has a
subsequence that converges �-almost everywhere to f .

Proof. Exercise! ut
An important consequence of the fact that L2

�.X;F/ is a Hilbert space is the
Riesz Representation Theorem:

Theorem 12.3.30 (Riesz Representation Theorem). Let .X;A; �/ be a measure
space. Given any bounded (i.e., continuous) linear functional � W L2

�.X;C/ ! C;

there exists a unique g 2 L2
�.X;C/ such that

�.f / D
Z

X

f Ng d� 8 f 2 L2
�.X;C/:

Before we prove the Radon–Nikodym theorem, as promised in Remark 12.3.18,
we need the (general) definition of absolute continuity:

Definition 12.3.31.

(Absolutely Continuous, Mutually Singular). Let MA denote the set of all
(positive) measures on a measurable space .X;A/ and let �;  2MA.

(Absolutely Continuous). We say that  is absolutely continuous with respect to
� and write  � �; if we have

A 2 A and �.A/ D 0 H) .A/ D 0:
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(Mutually Singular). We say that � and  are mutually singular and write � ? 
if we have

�.A/ D 0 and .Ac/ D 0 for some A 2 A:

Exercise 12.3.32. Given any measures 1; 2; ; and � on a measurable space
.X;A/; prove the following:

(a) � ? � H) � D 0.
(b) 1 � � and 2 � � imply 1 C 2 � �.
(c) 1 ? � and 2 ? � imply 1 C 2 ? �.
(d) 1 � � and 2 ? � imply 1 ? 2.
(e)  � � and  ? � imply  D 0.

Here is a characterization of absolute continuity (cf. Corollary 10.4.7):

Proposition 12.3.33. Let �;  2MA be positive measures on a measurable space
.X;A/ and assume that  is finite, i.e., .X/ < 1. Then  � � if and only if for
any " > 0 there is a ı > 0 such that �.A/ < ı implies .A/ < ".

Proof. If the ."; ı/-condition is satisfied and if �.A/ D 0; then �.A/ < ı for any
ı > 0 and hence .A/ < " for all " > 0; giving .A/ D 0. If the ."; ı/-condition
is false, pick "0 > 0 such that for any n 2 N there is a set An 2 A with
�.An/ < 1=2n; but .An/ � "0. If Bn WD S1

kDn Ak and B WD T1
nD1 Bn; then we

have BnC1 � Bn and �.Bn/ < 1=2n�1 for all n 2 N. In particular, �.B1/ < 1 and
.B1/ � .X/ <1. By the continuity of � and  [cf. part (5) of Theorem 12.1.4,
which is a special case of the Monotone Convergence Theorem] we therefore have
�.B/ D 0 and yet

.B/ D lim
n!1 .Bn/ � "0 > 0;

so that  � � is false as well. ut
We are now ready for our main theorem. Since its proof involves the sum �C 

of two measures, we invite the reader to solve the following.

Exercise 12.3.34. Given a pair of measures �;  2 MA on a measurable space
.X;A/; show that

Z

X

f d.�C / D
Z

X

f d�C
Z

X

f d
�8 f 2 L0C.X/

�

: (�)

Also, using the inequalities � � �C  and  � �C ; show that

f 2 L1�C.X;C/” f 2 L1�.X;C/ \ L1.X;C/:

Hint: Prove (�) for f D 
A; where A 2 A (cf. Definition 12.1.10), then for all
simple functions, and finally for all nonnegative measurable functions. For a general
function f 2 L0.X;C/; look at u˙ and v˙; where u WD Re.f / and v WD Im.f /.
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Theorem 12.3.35 (Radon–Nikodym). Let .X;A/ be a measurable space and let
�;  2 MA be finite (positive) measures with  � �. Then there is a unique
function g 2 L1

�

�

X; Œ0;1/� such that  D �gI i.e.,

.A/ D
Z

A

g d� .8 A 2 A/:

Proof (von Neumann). Introduce the finite measure ! WD � C  and note that for
any f 2 L2

!.X;C/; whose norm will be denoted kf k2;! , we have (by Cauchy–
Schwarz)

ˇ

ˇ

ˇ

Z

X

f d
ˇ

ˇ

ˇ

�
Z

X

jf j d �
Z

X

jf j d! �
p

!.X/kf k2;!:

In particular, the linear functional �.f / WD R

X
f d is bounded on L2

!.X;C/ and
hence the Riesz Representation Theorem implies that

Z

X

f d D
Z

X

f h d! D
Z

X

f h d�C
Z

X

f h d ()

for a unique “equivalence class” h 2 L2
!.X;C/. Clearly, as a function in

L2!.X;C/; h is determined only !-almost everywhere. Using f D 
A in () for
any A 2 A with !.A/ > 0; we get

R

A
h d! D .A/ � !.A/ and hence

0 � 1

!.A/

Z

A

h d! � 1:

By the Average value theorem (Theorem 12.3.24) we therefore have 0 � h.x/ � 1
for almost all x 2 X and () can be written as

Z

X

f .1 � h/ d D
Z

X

f h d� 8 f 2 L2
!.X;C/: ()

Since our construction of g will involve division by 1 � h; let us set Y WD fx 2 X W
0 � h.x/ < 1g and Z WD fx 2 X W h.x/ D 1g. If in () we put f D 
Z; it follows
that �.Z/ D 0 and hence .Z/ D 0 as well, in view of the assumption  � �.
Thus !.Z/ D 0 and, given that the set W WD fx 2 X W h.x/ < 0 or h.x/ > 1g also
satisfies !.W / D 0; we may (and do) assume that 0 � h.x/ < 1 for all x 2 X and
that () holds for this h and every f 2 L2

!.X;C/. Next, since h is bounded and !
is a finite measure, f WD .1C hC h2C � � � C hn�1/
A 2 L2

!.X;C/ for every n 2 N

and every A 2 A. So using it in () and simplifying, we have

Z

A

.1 � hn/ d D
Z

A

h

1 � h.1 � h
n/ d� .8 n 2 N;8 A 2 A/; (  )
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where the denominator 1 � h.x/ on the right side is strictly positive for all x 2 X .
But .1 � hn/ is an increasing sequence with lim.1 � hn/ D 1 and hence using the
Monotone Convergence Theorem in (  ) we finally obtain

.A/ D
Z

A

h

1 � h d� .8 A 2 A/:

In particular, setting A WD X , we have
R

X
h=.1 � h/ d� D .X/ < 1 and hence

h=.1 � h/ 2 L1
�.X; Œ0;1//. In other words, our desired function g is indeed g WD

h=.1 � h/. ut
Remark 12.3.36. Examining the above proof, we see that the assumption
 � � was only used to show that �.Z/ D 0 implies .Z/ D 0; where
Z WD fx W h.x/ D 1g. Thus, even if  � � is not true, the arguments leading
to () and �.Z/ D 0 are still valid. If we introduce the measures

ac.A/ WD .A \Zc/ and s.A/ WD .A \Z/ .8 A 2 A/;

we then have  D ac C s . Also, ac.Z/ D �.Z/ D s.Z
c/ D 0 shows

that s ? � and ac ? s (i.e., s and � are mutually singular in the sense of
Definition 12.3.31 and so are ac and s). Finally, if A � Zc and �.A/ D 0; then
putting f D 
A in () gives

R

A
.1� h/ d D R

A
h d� D 0. But then 1� h > 0 on

A implies (cf. Corollary 12.3.11) that .A/ D 0. Thus �.A/ D 0 for A 2 A implies
ac.A/ D 0 and hence ac � �I i.e., ac is absolutely continuous with respect to �.
To summarize, we have proved that

 D ac C s; where ac � �; s ? �; and ac ? s:

Corollary 12.3.37 (Lebesgue Decomposition). Let � and  be finite (positive)
measures on a measurable space .X;A/. There is a unique pair of measures ac
and s in MA satisfying ac ? s such that

 D ac C s; ac � �; and s ? �: (�)

Proof. In view of the above remark, we need only prove the uniqueness. Now, if
another pair .0

ac; 
0
s/ of measures also satisfy (�), then we have

0
ac � ac D s � 0

s: (�)

But 0
ac � ac � � and s � 0

s ? �; so it follows from Exercise 12.3.32(e) that
both sides of (�) are zero. ut
Remark 12.3.38. The restriction (in Theorem 12.3.35 and Corollary 12.3.37) that
both measures � and  be finite is too strong and both results are in fact true if the
measure � is only assumed to be � -finite (cf. Definition 12.1.2) rather than finite.
Indeed, we can then writeX DS1

nD1 Xn; where Xn 2 A and �.Xn/ <1 for all n.
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We may even assume that the Xn are pairwise disjoint and, for otherwise, we can
use the sequence .X 0

n/, where X 0
1 WD X1 and X 0

n WD Xn n
Sn�1
kD1 Xk . If we define the

measures n.A/ WD .A \ Xn/ and �n.A/ WD �.A \Xn/; then .n; �n/ is a pair of
finite measures for each n 2 N and we have � DPn �

n;  DPn 
n.

Theorem 12.3.39 (Lebesgue–Radon–Nikodym). Let .X;A/ be a measurable
space and let �;  2MA; where � is � -finite and  is finite.

(a) There is a unique pair of measures ac and s such that

 D ac C s; ac � �; s ? �; and ac ? s: (L)

(b) There is a unique function g 2 L1
�.X; Œ0;1// such that

ac.A/ D
Z

A

g d� .8 A 2 A/: (R-N)

In particular, if  � �; then (R-N) holds with ac D  and we have an
extension of Theorem 12.3.35 to the case where � is � -finite.

Proof. With notation as in the above remark, if  � �, i.e., ac D , then we have
n � �n for all n. By Theorem 12.3.35, there is a (unique) �n-integrable function
gn W Xn ! Œ0;1/ such that .A\Xn/ D

R

A\Xn gn d� for everyA 2 A. Now define
g W X ! Œ0;1/ by setting g.x/ WD gn.x/ if x 2 Xn. Then (by Proposition 12.2.6)
g is measurable and for each A 2 A, we have

Z

A

g d� D
1
X

nD1

Z

A\Xn
g d� D

1
X

nD1

Z

A\Xn
gn d� D

1
X

nD1
.A \Xn/ D .A/:

In particular, with A D X; we get
R

X
g d� D .X/ < 1 and hence g 2

L1
�.X; Œ0;1// and the proof of part (b) is complete. Next, to establish (a), for each

n we can use Corollary 12.3.37 to find a pair .nac; 
n
s / of measures such that

n D nac C ns ; nac � �n; ns ? �n; and nac ? ns :

If we set ac WD P1
nD1 nac and s WD P1

nD1 ns ; then we can check easily that
.ac; s/ provides the desired Lebesgue decomposition of . ut
Exercise 12.3.40. Show that the pair .ac; s/ of measures constructed in the above
proof is unique and the relations (L) in Theorem 12.3.39 are indeed satisfied.

Definition 12.3.41 (Radon–Nikodym Derivative, Density). The function g in
the Radon–Nikodym theorem (or the Lebesgue–Radon–Nikodym theorem when
 � �) is called the Radon–Nikodym derivative or density of  with respect to �
and is written g D d=d�. The justification for this is the fact that .A/ D R

A
g d�

gives
R

A
� d� D R

A
�g d� for any simple function � � 0 and hence, approximating

any measurable function f � 0 by simple functions, we have
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Z

A

f d D
Z

A

fg d�;

so that the relation between , �; and g can be symbolically abbreviated as

d D g d�:

12.4 Product Measures

In many applications, we must consider functions defined on product spaces.
To integrate such functions, we need product measures. We begin with a few
definitions:

Definition 12.4.1 (Rectangle, Product � -Algebra). Let .X;A/ and .Y;B/ be
measurable spaces. By a (measurable) rectangle (in X � Y ) we mean a set of the
form A � B where A 2 A and B 2 B. The � -algebra on X � Y generated by all
measurable rectangles will be denoted by A˝ B and called the product � -algebra.
Thus, if R denotes the set of all rectangles in X � Y; then A˝ B WD AR.

Definition 12.4.2 (Cross sections). Let .X;A/; .Y;B/ be measurable spaces and
let E � X � Y . Given any .x; y/ 2 X � Y; we define the x-section Ex and the
y-section Ey (of E) by

Ex WD fy 2 Y W .x; y/ 2 Eg; Ey WD fx 2 X W .x; y/ 2 Eg:

Also, for any function f defined on X � Y; the x-section fx and the y-section f y

(of f ) are the functions defined (on Y and X; respectively) by

fx.y/ WD f .x; y/; f y.x/ WD f .x; y/:

Proposition 12.4.3. Let the notation be as in Definition 12.4.2. Given any E 2
A˝ B; we have Ex 2 B and Ey 2 A; for every x 2 X and y 2 Y .

Proof. We prove the statement for Ex I the proof for Ey is similar. Define the
collection

C WD fE 2 A˝ B W Ex 2 B 8x 2 Xg:

Now, given any rectangle R WD A � B; we have Rx D B if x 2 A and Rx D ;
if x 62 A. Therefore C contains the collection R of all rectangles. We now prove
that C is a � -algebra and hence C D A ˝ B. First, X � Y 2 C. Next, if E 2 C;
then .Ec/x D .Ex/

c and hence Ec 2 C. Finally, if En 2 C for all n 2 N and E WD
S1
nD1 En; thenEx DS1

nD1.En/x implies thatE 2 C and the proof is complete. ut
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Proposition 12.4.4. Let .X;A/ and .Y;B/ be measurable spaces and let .Z;BZ/
be a Borel space. If f W X � Y ! Z is (A ˝ B-) measurable, then fx W Y ! Z

(resp., f y W X ! Z) is (B-) measurable (resp., (A-) measurable) for each x 2 X
(resp., y 2 Y ).

Proof. This follows at once from Proposition 12.4.3 because .fx/
�1.C / D

.f �1.C //x and .f y/�1.C / D .f �1.C //y; for each C 2 BZ . ut
Definition 12.4.5 (Elementary Set). Let the notation be as in Definition 12.4.1.
By an elementary set (in X � Y ) we mean a finite union of pairwise disjoint
rectangles. The collection of all elementary sets will be denoted by E.X � Y / or
simply E . Thus

E WD fR1 [ � � � [Rn W Rj 2 R; 1 � j � n 2 N; Ri \Rj D ;; i ¤ j g:

Proposition 12.4.6. The collection E of elementary sets in X � Y is an algebra.

Proof. Let Rj WD Aj � Bj 2 R for j D 1; 2. Then we have

R1 \R2 D .A1 \ A2/ � .B1 \ B2/ 2 E

and

R1 nR2 D Œ.A1 n A2/ � B1� [ Œ.A1 \ A2/ � .B1 n B2/� 2 E :

It follows that, for any P; Q 2 E ; we have P \ Q 2 E and P n Q 2 E . Since
P [Q D .P nQ/ [Q and .P nQ/ \Q D ;; we have P [Q 2 E . ut
Definition 12.4.7 (Monotone Sequences of Sets). We call a sequence .An/ in
P.X/ increasing (resp., decreasing) if An � AnC1 (resp., An � AnC1) for all
n 2 NI we then write limn!1An WD S1

nD1 An (resp., limn!1An WD T1
nD1 An).

We say that .An/ is monotone if it is either increasing or decreasing.

Definition 12.4.8 (Monotone Class). A family M � P.X/ is said to be a mono-
tone class if, given any monotone sequence .An/1nD1 in M; we have lim.An/ 2M.

Exercise 12.4.9.

1. Show that any � -algebra A � P.X/ is a monotone class.
2. Show that, given any family .M˛/˛2A of monotone classes (of subsets of X ),

their intersection
T

˛2AM˛ is also a monotone class.
3. Show that, if A � P.X/ is an algebra as well as a monotone class, then it is a
� -algebra. Hint: If .An/ is a sequence in A; consider the sequence .A0

n/; where
A0
n WD

Sn
jD1 Aj .

Part (2) of the above exercise suggests the following.
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Definition 12.4.10. For any C � P.X/; the intersection of all monotone classes
containing C is the unique, smallest monotone class containing C and is called the
monotone class generated by C. We denote it by MC .

Proposition 12.4.11. Let G � P.X/ be an algebra. Then AG D MG . In other
words, the � -algebra generated by G coincides with the monotone class generated
by G.

Proof. To simplify the notation, let us write A and M instead of AG and MG .
Since (by Exercise 12.4.9(1)) A is a monotone class, we have M � A. By
Exercise 12.4.9(3), the reverse inclusion will follow if we show that M is an
algebra. (Why?) Now, given any E 2M; define

M.E/ WD fF 2M W E [ F; E n F; F nE 2Mg:
Observe that ;; E 2M.E/ and that F 2M.E/ if and only if E 2M.F /. Also,
if .Fn/ is a monotone sequence in M.E/; then we have

�

lim
n!1Fn

� nE D lim
n!1.Fn nE/ 2M;

E n � lim
n!1Fn

� D lim
n!1.E n Fn/ 2M;

and

E [ � lim
n!1Fn

� D lim
n!1.E [ Fn/ 2M:

Therefore, M.E/ is a monotone class for each E 2 M. Since G is an algebra,
E 2 G implies F 2 M.E/ for all F 2 G. Thus G � M.E/ for all E 2 G and
hence (by the very definition of M) we have M �M.E/ for allE 2 G. Therefore,
if F 2 M; then F 2 M.E/ for all E 2 G. But then E 2 M.F / for all E 2 G
and hence G � M.F / for each F 2 M. Since each M.F / is a monotone class,
we now have M � M.F / for all F 2 M. Since X 2 G � M; the definition of
M.F / now implies that M is an algebra. ut

The following proposition is now an immediate consequence of Proposi-
tions 12.4.6 and 12.4.11:

Proposition 12.4.12. Let .X;A/ and .Y;B/ be measurable spaces and let E denote
the algebra of all elementary sets in X � Y . Then A˝ B DME I i.e., the product
� -algebra is the monotone class generated by the elementary sets.

Our next goal is the construction of product measures: Given two measure spaces
.X;A; �/ and .Y;B; /; we want to construct a measure on A ˝ B which is the
“natural” product of � and .

Lemma 12.4.13. Let .An � Bn/ be a countable sequence of pairwise disjoint
rectangles and let A � B be a rectangle such that A � B D S

An � Bn. Then
we have
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�.A/.B/ D
X

n

�.An/.Bn/: ()

Proof. Given any .x; y/ 2 X � Y; we have


A.x/
B.y/ D 
A
B.x; y/ D
1
X

nD1

An
Bn.x; y/ D

1
X

nD1

An.x/
Bn.y/:

Integrating with respect to x, and using Corollary 12.3.16, we have

�.A/
B.y/ D
1
X

nD1

Bn.y/

Z


An.x/ d�.x/ D
1
X

nD1
�.An/
Bn.y/:

If we now integrate with respect to y; another application of Corollary 12.3.16
implies (). ut
Exercise 12.4.14. With E � P.X � Y / denoting the algebra of elementary sets,
define the map � �  W E ! Œ0;1� as follows: For any E D Sn

jD1 Rk 2 E ; where
the Rj D Aj � Bj are pairwise disjoint rectangles, let

.� � /.E/ WD
n
X

jD1
�.Aj /.Bj /:

Show that � �  is well defined; i.e., if we also have E D Sm
kD1 A0

k � B 0
k; with

pairwise disjoint rectangles R0
k WD A0

k � B 0
k; then

n
X

jD1
�.Aj /.Bj / D

m
X

kD1
�.A0

k/.B
0
k/:

Deduce that � �  is a premeasure on the algebra E of elementary sets. Hint:
.� � /.Rj / DPm

kD1.� � /.Rj \R0
k/.

Definition 12.4.15 (Product Measure). Let .X;A; �/ and .Y;B; / be two
measure spaces and let � �  W E ! Œ0;1� be the premeasure defined in
Exercise 12.4.14. The product measure of � and ; denoted by � ˝ ; is the
extension of �� to the product � -algebra A˝B D AE provided by the extension
theorem (Theorem 12.1.34). If, in addition, � and  are � -finite measures, then
�˝  is the unique measure on A˝B such that .�˝ /.A�B/ D �.A/.B/; for
all rectangles A � B . In this case, �˝  is also � -finite. (Why?)

Remark 12.4.16. Even if both � and  are complete measures, � ˝  is almost
never complete. Indeed, suppose that there is an A 2 A with A ¤ ; and �.A/ D 0.
Also, suppose that there is a B � Y such that B 62 B. Then A � B � A � Y
and � ˝ .A � Y / D 0; but A � B 62 A ˝ B. In particular, if X D Y D R and
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� D  D � (Lebesgue measure), then �˝� is not complete and hence �˝� ¤ �2.
It is a fact, however, that �2 is the completion of � ˝ � (cf., e.g., Rudin’s Real &
Complex Analysis [Rud74]).

The following proposition will be needed in the proof of the main result (the
Fubini–Tonelli Theorem) on the integration of functions on X � Y .

Proposition 12.4.17. Let .X;A; �/ and .Y;B; / be � -finite measure spaces. Then,
for each E 2 A˝B; the functions x 7! .Ex/ and y 7! �.Ey/ are measurable on
X and Y , respectively, and we have

.�˝ /.E/ D
Z

.Ex/ d�.x/ D
Z

�.Ey/ d.y/: ()

Proof. Let us first assume that � and  are finite, i.e., �.X/ < 1 and .Y / < 1.
Let C denote the collection of all E 2 A ˝ B satisfying the conclusions of the
proposition. If E D A�B is a rectangle, then .�˝ /.E/ D �.A/.B/; .Ex/ D

A.x/.B/; and �.Ey/ D �.A/
B.y/; so that () holds and E 2 C. Therefore,
by additivity, we have E � C. By Proposition 12.4.11, the general case is proved if
we show that C is a monotone class. So let .En/ be an increasing sequence in C and
let E WD S

n En. Then the functions fn.y/ WD �..En/
y/ are measurable and form

an increasing sequence converging pointwise to f .y/ WD �.Ey/. By the Monotone
Convergence Theorem, f is measurable and (by ()) we have

Z

�.Ey/ d.y/ D lim
n!1

Z

�..En/
y/ d.y/ D lim

n!1.�˝ /.En/ D .�˝ /.E/:

A similar argument shows that .� ˝ /.E/ D R

.Ex/ d�.x/ and hence E 2 C.
Next, suppose that .En/ is a decreasing sequence in C and let E WD T1

nD1 En.
Since �..E1/y/ � �.X/ <1; we have g.y/ WD �..E1/y/ 2 L1.Y /. Applying the
Dominated Convergence Theorem, we easily deduce thatE 2 C and the proposition
is proved for finite measure spaces. Finally, suppose that � and  are � -finite. We
then have X � Y D S1

nD1 Xn � Yn; with an increasing sequence .Xn � Yn/ of
rectangles such that �.Xn/ <1 and .Yn/ <1 for all n 2 N. Given E � A˝B;
we can apply our previous arguments to the sets En WD E \ .Xn � Yn/ and obtain

.�˝ /.En/ D
Z


Xn.x/.Ex \ Yn/ d�.x/ D
Z


Yn.y/�.E
y \Xn/ d.y/:

Another application of the Monotone Convergence Theorem now proves the
proposition. ut

We can now prove the main theorem:

Theorem 12.4.18 (Fubini–Tonelli Theorem). Let .X;A; �/ and .Y;B; / be
� -finite measure spaces.
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(a) (Tonelli) If f 2 L0C.X � Y /; then the functions g.x/ WD R

fx d and h.y/ WD
R

f y d� are in L0C.X/ and L0C.Y /; respectively, and we have

Z

f d.�˝ / D
Z

	

Z

f .x; y/ d.y/




d�.x/ (�)

D
Z

	

Z

f .x; y/ d�.x/




d.y/:

(b) (Fubini) If f 2 L1�˝.X � Y;C/; then fx 2 L1.Y;C/ for a.e. x 2
X; f y 2 L1�.X;C/ for a.e. y 2 Y; the functions g.x/ WD R

fx d and
h.y/ WD R

f y d� (defined almost everywhere) are in L1�.X;C/ and L1.Y;C/;
respectively, and (�) is satisfied.

Proof. First, if f D 
E for some E 2 A ˝ B; then part (a) reduces to
Proposition 12.4.17. By linearity, (a) is therefore true for all f 2 SimpC.X � Y /.
Now, given any f 2 L0C.X � Y /; we can pick an increasing sequence .�n/ in
SimpC.X �Y / such that limn!1 �n.x; y/ D f .x; y/ for all .x; y/ 2 X �Y . From
the Monotone Convergence Theorem, we deduce that the corresponding sequences
of functions  n.x/ WD

R

�nx d and �n.y/ WD
R

�
y
n d� are increasing and converge

to g and h; respectively, that g and h are measurable, and that

Z

g d� D lim
n!1

Z

 n d� D lim
n!1

Z

�n d.�˝ / D
Z

f d.�˝ /;
Z

h d D lim
n!1

Z

�n d D lim
n!1

Z

�n d.�˝ / D
Z

f d.�˝ /;

which yields (�). This completes the proof of (a) and also shows (by
Corollary 12.3.10) that, if f 2 L0C.X � Y / and

R

f d.� ˝ / < 1; then g
and h are finite almost everywhere, i.e., fx 2 L1.Y; Œ0;1// for almost all x and
f y 2 L1�.X; Œ0;1// for almost all y. To prove part (b), we simply apply the above
results to the functions Re.f /˙ and Im.f /˙ for a given f 2 L1�˝.X � Y;C/. ut
Remark 12.4.19.

1. In practice, given an f 2 L0.X �Y;C/; one usually tries to prove that one of the
two iterated integrals

Z

	

Z

jf .x; y/j d.y/



d�.x/;

Z

	

Z

jf .x; y/j d�.x/



d.y/

is finite. The other one and the double integral
R jf j d.� ˝ / are then also

finite and the three integrals coincide. Therefore, the order of integration may be
reversed if f � 0 or if one of the iterated integrals of jf j is finite.

2. The � -finiteness assumption in the theorem is necessary. Indeed, suppose that
X D Y D Œ0; 1�; � WD � is Lebesgue measure, and  is the counting measure.
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Let f WD 
D;whereD W f.x; y/ 2 X�Y W x D yg is the diagonal. Then we have
R

f .x; y/ d.y/ D 1 for all x 2 X and hence
R

Œ
R

f .x; y/ d.y/� d�.x/ D 1;

but
R

f .x; y/ d�.x/ D 0 for all y 2 Y; so that
R

Œ
R

f .x; y/ d�.x/� d.y/ D 0.

12.5 Probability

Our objective in this section is a brief discussion of some of the most basic
concepts in probability theory which, in its modern axiomatic form (introduced
by Kolmogorov in 1933), uses measure theory as its foundation. For a complete
treatment, the interested reader should consult more advanced texts, some of which
are listed in the bibliography. The study of probability was first undertaken by
the French mathematicians Fermat and Pascal, who were primarily motivated by
a desire to answer some challenging questions posed by a number of professional
gamblers. A game of chance is an example of an experiment with a finite set of
(simple) outcomes, !1; : : : ; !n. The set � WD f!1; : : : ; !ng is then the sample
space of the experiment and each subset E � � is an event. The event E is
said to have occurred if the experiment results in an outcome that belongs to E.
It should be pointed out that, although the entire sample space � is known in
advance, the occurrence of each individual ! 2 � is random in the sense that it
cannot be predicted in advance. The goal of the theory is to assign a number to
each event E that would represent the probability (or likelihood) of its occurrence.
The simplest example of an experiment is coin tossing: If a coin is flipped once,
the sample space is fH;T g; where H and T symbolize the occurrences of head
and tail, respectively. More generally, one may consider the (practically impossible)
experiment of flipping a coin indefinitely:

Definition 12.5.1 (Bernoulli Trial, Sequence). A Bernoulli trial is defined to be
an experiment with two outcomes called success and failure. A Bernoulli sequence
is an outcome of a sequence of Bernoulli trials. Thus, a Bernoulli sequence may be
represented by a string of s’s and f ’s such as

ssfff sff ssssf ssfff : : : ;

where s and f stand for success and failure, respectively. The set of all Bernoulli
sequences will be denoted by B.

The set B is almost in one-to-one correspondence with the unit interval Œ0; 1�:

Proposition 12.5.2. There is a countable set C �B such that B nC is in one-to-
one correspondence with .0; 1�.

Proof. For each ! 2 .0; 1� consider its binary expansion

! D .0:d1d2d3 : : :/2 WD
1
X

nD1

dn

2n
.dn 2 f0; 1g/;
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and define ˇ.!/ to be the Bernoulli sequence whose nth term is an s if dn D 1

or an f if dn D 0. Unfortunately, ˇ is not a well-defined function from .0; 1� to
B because some numbers ! 2 .0; 1� have two binary expansions. For example,
1=2 D .0:1000 : : :/2 D .0:0111 : : :/2. To fix this, let us adopt the following rule: If
a number has a terminating and a nonterminating binary expansion, we always pick
the nonterminating one. It is then obvious that ˇ is a one-to-one map from .0; 1�

onto the set B n C; where C is the set of all Bernoulli sequences that end with a
string of f ’s. Since C is countable (why?), the proof is complete. ut

It turns out that, to study more sophisticated experiments and their properties, it
is necessary to introduce a measure-theoretic model. We therefore begin with the
following.

Definition 12.5.3 (Probability Space, Probability Measure). We define a proba-
bility space to be a measure space .X;A; �/ such that � is finite with total mass
1 W �.X/ D 1. Following the standard practice, we shall henceforth denote X by �
and � by P . Thus a probability space will be denoted by .�;A; P / and the measure
P will be called a probability measure.

Definition 12.5.4 (Sample Space, Event, Probability). In any probability space
.�;A; P /; the set � is called the sample space and each ! 2 � is called a sample
point. Also, each measurable set A 2 A is called an event. The measure P.A/ of an
event A 2 A is called the probability of A. It is obvious that 0 � P.A/ � 1; for all
A 2 A.

Definition 12.5.5 (Almost Surely). Let .�;A; P / be a probability space.
A statement about sample points ! 2 � is said to be true almost surely (abbreviated
a.s.) if it is true P -almost everywhere, i.e., if the event F � � of all ! 2 � for
which it fails to be true has probability zero: P.F / D 0.

Example 12.5.6. Let � D I WD Œ0; 1�; let A be the � -algebra M�.I / of Lebesgue
measurable sets in I; and let P be the restriction �I of Lebesgue measure to I . Note
that, although P.f!g/ D 0 for all ! 2 �; we have P.�/ D 1 and hence one of
the events f!g is certain to occur. More generally, we can consider any Lebesgue
measurable � � R with 0 < �.�/ < 1; let A be the � -algebra of all measurable
subsets of �; and define P.A/ WD �.A/=�.�/ for each A 2 A.

Example 12.5.7 (Classical Probability). Let � D f!1; : : : ; !ng be any finite set,
A D P.�/; and P WD =n; where  is the counting measure; i.e., .E/ D jEj is
the cardinality of E for each E � �. In this case, we have P.E/ D jEj=n. For
example, consider a Bernoulli trial in which success and failure are equally likely.
We then have the sample space � WD fs; f g with P.fsg/ D P.ff g/ D 1=2.

Remark 12.5.8 (Random Selection). In the case of classical probability, we may
think of � as the sample space of the experiment of selecting an element from
� D f!1; : : : ; !ng at random; i.e., in such a way that each !j is equally likely
to be selected. This implies that P.f!ig/ D P.f!j g/ for all i; j . Since P.�/ D
Pn

jD1 P.f!j g/ D 1; we have P.f!j g/ D 1=n for all j and hence P.E/ D jEj=n
for each E � �.
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Exercise 12.5.9. Let m and n be positive integers and suppose that m chips are
placed randomly in n boxes.

(a) If m � n; what is the probability that no box is empty?
(b) If m � n; what is the probability that no box contains more than one chip?

Hint: Look at the functions from the set C WD fc1; : : : ; cmg of chips to the set
B WD fb1; : : : ; bng of boxes and use Exercises 1.3.35 and 1.3.36.

Exercise 12.5.10. Let n � 2 be an integer and let a number be randomly selected
from the set f1; 2; 3; : : : ; ng. What is the probability that the selected number is
relatively prime to n? Hint: Let n D p

r1
1 p

r2
2 � � �prmm be the prime factorization of n

and use Exercise 1.3.47.

We now give an example that contains the classical probability as a special case:

Example 12.5.11. Let� be a (possibly uncountable) set and let p W �! Œ0;1/ be
a summable function with positive sum, i.e., 0 < s WDP!2� p.!/ <1; where the
sum is an unordered series. Let A WD P.�/ and define P.A/ WDP

!2A p.!/=s for
each A � �. Then .�;A; P / is a probability space. Note that, by Corollary 2.4.17,
we have P.f!g/ D p.!/=s D 0 except for a countable set of !’s. When � is finite
and p.!/ D 1 8! 2 �; we recover the classical probability.

If we know that an eventB 2 A has occurred, how does this knowledge affect the
probability of another eventA 2 A‹ To answer this question, we need the following.

Definition 12.5.12 (ConditionalProbability,Independence). Given a probability
space .�;A; P / and any A; B 2 A with P.B/ > 0; the number

P.AjB/ WD P.A \ B/
P.B/

is called the conditional probability of A given B . Two events A; B 2 A are said to
be independent if

P.A \ B/ D P.A/P.B/:
It is then obvious that P.AjB/ D P.A/ if P.B/ > 0.

Exercise 12.5.13. Show that, if A and B are independent events, then so are Ac

and B .

Proposition 12.5.14. Let the notation be as in Definition 12.5.12. Then the set
function PB.E/ WD P.EjB/ is a probability measure on A.

Proof. See Exercise 12.1.11. ut
Remark 12.5.15 (Reduced Sample Space). Let .�;A; P / be a probability space
and let B 2 A be any fixed event with P.B/ > 0. Consider the restricted � -
algebra AjB WD fA\B W A 2 Ag and the restricted probability measure P jB.E/ WD
P.EjB/ D P.E/=P.B/ for each E 2 AjB . Then .B;AjB; P jB/ is a probability
space with the reduced sample space B .
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Exercise 12.5.16 (The Total Probability Law). If � D S1
nD1 En; with a

sequence .En/ of pairwise disjoint events such that P.En/ > 0 for all n 2 N;

show that

P.A/ D
1
X

nD1
P.AjEn/P.En/ .8A 2 A/:

Exercise 12.5.17 (Bayes’s Formula). Under the assumptions of Exercise 12.5.16,
show that for each event A with P.A/ > 0; we have Bayes’s formula:

P.EkjA/ D P.AjEk/P.Ek/
P.A/

D P.AjEk/P.Ek/
P1

nD1 P.AjEn/P.En/
.8k 2 N/:

The concept of independence can be extended to more than two events. In fact,
it can even be defined for collections whose elements are families of events:

Definition 12.5.18 (Independence of Families of Events). Let .�;A; P / be a
probability space. A subset C � A is said to be independent if, given any (distinct)
events C1; C2; : : : ; Cn 2 C; we have

P.C1 \ C2 \ � � � \ Cn/ D P.C1/ � P.C2/ � � �P.Cn/:
Let J be an index set. A collection C WD fCj W j 2 J g of subsets Cj � A is said
to be independent if, given any (distinct) indices j1; j2; � � � ; jn 2 J and any events
Cj1 2 Cj1 ; : : : ; Cjn 2 Cjn ; we have

P.Cj1 \ Cj2 \ � � � \ Cjn/ D P.Cj1/ � P.Cj2/ � � �P.Cjn/:

Exercise 12.5.19. Let C � A be an independent collection of events. Show that
C [ fCc W C 2 Cg is independent. Hint: Use induction and P.C c/ D 1 � P.C/.
Exercise 12.5.20. Let fAk W k D 1; 2; : : : ; ng be a finite collection of events. Show
that, in order for this collection to be independent, we must impose a total of 2n �
n � 1 conditions of the form

P.Ai1 \ � � � \ Aij / D P.Ai1/ � � �P.Aij /:

Remark 12.5.21 (Pairwise Independence 6) Independence). Consider the experi-
ment of throwing two fair dice. The sample space is � D f.i; j / W i; j D
1; 2; : : : ; 6g. Let A WD f.i; j / W i D 1; 2; 3g; B WD f.i; j / W j D 4; 5; 6g; and
C WD f.i; j / W i C j D 7g. Then we have P.A/ D P.B/ D 1=2; P.C / D
1=6; P.A \ B/ D 1=4; P.A \ C/ D P.B \ C/ D P.A \ B \ C/ D 1=12.
(Why?) It follows that P.A \ B/ D P.A/P.B/; P.A \ C/ D P.A/P.C /; and
P.B\C/ D P.B/P.C /; so that the events A; B; and C are pairwise independent.



620 12 General Measure and Probability

On the other hand, P.A \ B \ C/ ¤ P.A/P.B/P.C / and hence the collection
fA;B;C g is not independent.

Suppose that a coin is flipped indefinitely, so that the sample space is � D
fH;T gN (or f0; 1gN). Let An denote the event of a head on the nth flip. It is natural
to consider the event E of infinitely many heads or the event F of all but finitely
many heads. How can E and F be represented in terms of the An‹ The following
definition answers this question.

Definition 12.5.22 (Limsup and Liminf). Let .An/ be a sequence of events. Then
the limit superior (or upper limit) of the An is defined to be the event

lim sup
n!1

An WD
1
\

nD1

1
[

kDn
Ak:

Similarly, the limit inferior (or lower limit) of the An is defined to be the event

lim inf
n!1 An WD

1
[

nD1

1
\

kDn
Ak:

Exercise 12.5.23 (Infinitely Often, Eventually). Let the notation be as in
Definition 12.5.22. Prove the following:

lim sup
n!1

An D f! 2 � W ! 2 An infinitely often, i.e., for infinitely many ng;

lim inf
n!1 An D f! 2 � W ! 2 An eventually, i.e., for all but finitely many ng:

Theorem 12.5.24 (First Borel–Cantelli Lemma). Let .An/n2N be a sequence of
events and letA WD lim supn!1 An. Then

P1
nD1 P.An/ <1 implies thatP.A/D0.

Proof. Let En WD S1
kDn Ak so that A D T1

nD1 En. Now let " > 0 be given. Since
P1

nD1 P.An/ < 1; we can pick n so large that
P1

kDn P.Ak/ < " and hence, by
subadditivity,

P.En/ �
1
X

kDn
P.Ak/ < ":

But A � En for all n 2 N so that P.A/ < ". Since " > 0 was arbitrary, the proof is
complete. ut

The following theorem is a partial converse to the First Borel–Cantelli Lemma:

Theorem 12.5.25 (Second Borel–Cantelli Lemma). Let .�;A; P / be a prob-
ability space. If .An/ is an independent sequence of events such that we have
P1

nD1 P.An/ D1; then P.lim supn!1An/ D 1.
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Proof. Let A WD lim supn!1An D T1
nD1

S1
kDn Ak . We must show that, if

P1
nD1 P.An/ D 1; then P.Ac/ D 0. Since Ac D S1

nD1
T1
kDn Ack; it is

sufficient, by subadditivity, to show that P.
T1
kDn Ack/ D 0 for each n. Now, by

Exercise 12.5.19, the Ack are independent and hence, for each m > n;

P

� m
\

kDn
Ack

�

D
m
Y

kDn
P.Ack/ D

m
Y

kDn
Œ1 � P.Ak/�: ()

Since 1 � x � e�x for all x 2 R (why?), () implies that

P

� m
\

kDn
Ack

�

� e�Pm
kDn P.Ak/: ()

But
P1

nD1 P.An/ D 1 so that e�Pm
kDn P.Ak/ ! 0 as m ! 1. Therefore, by ()

and the continuity of P;

P

� 1
\

kDn
Ack

�

D lim
m!1

m
Y

kDn
P.Ack/ D 0:

ut
So far we have only looked at events, i.e., measurable sets in probability theory.

We now look at what (in probability theory) corresponds to measurable functions:

Definition 12.5.26 (Random Variable). Let .�;A; P / be a probability space.
By a random variable we mean a measurable function X W � ! R (i.e.,
X 2 L0.�;R/); thus X�1.B/ 2 A for each Borel set B 2 BR. One may also define
R-valued (resp., C-valued) random variables X W � ! R (resp., X W � ! C) by
requiring X�1.B/ 2 A for each B 2 BR (resp., B 2 BC).

Notation 12.5.27. Given a random variable X W � ! R and a Borel set B 2
BR; the event X�1.B/ will often be denoted by fX 2 Bg. Thus, fX � bg WD
X�1..�1; b�/; fa < X � bg WD X�1..a; b�/; etc.

To each random variable there corresponds, in a natural way, a Borel measure
on R:

Definition 12.5.28 (Probability Distribution). Let X W � ! R be a random
variable. Then

AX WD fX�1.B/ W B 2 BRg

is a sub-� -algebra of A. (Why?) We define a (Borel) measure, PX; on R by setting

PX.B/ WD P.X�1.B// .8B 2 BR/:
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The measure PX is called the probability distribution of X .

Proposition 12.5.29. With notation as in Definition 12.5.28, .R;BR; PX/ is a
probability space.

Proof. It is obvious that PX.R/ D 1. Now, given a sequence .Bn/ of pairwise
disjoint Borel sets in R; the corresponding sequence of events .X�1.Bn// is pairwise
disjoint and we have

PX

�

1
[

nD1
Bn

�

D P
�

X�1�
1
[

nD1
Bn

��

D
1
X

nD1
P.X�1.Bn// D

1
X

nD1
PX.Bn/:

ut
Example 12.5.30 (Constant Variable). Suppose that X is constant, i.e., X.!/ D a
for all ! 2 � and a fixed a 2 R. Then PX D ıa is the Dirac measure at a. Indeed,
PX.B/ D 
B.a/ for each Borel set B 2 BR. (Why?)

Example 12.5.31 (Bernoulli Variable). A random variable X on � whose range is
f0; 1g is called a Bernoulli random variable. The events A WD fX D 1g and Ac D
fX D 0g are then called success and failure, respectively, and we have X D 
A.
Let p WD P.X D 1/ WD P.A/. Then P.X D 0/ WD P.Ac/ D 1 � p; and we have

PX.B/ D pı1.B/C .1 � p/ı0.B/ .8B 2 BR/:

A Bernoulli variable is a special simple variable:

Definition 12.5.32 (Simple Variable). A random variable X W �! R is called a
simple variable if it takes a finite number of values. If fa1; : : : ; ang is the range of
X and if Aj WD fX D aj g; then we have

X D
n
X

jD1
aj 
Aj :

Let pj WD P.Aj /; for 1 � j � n. Then we have
Pn

jD1 pj D 1 and

PX.B/ D
n
X

jD1
pj ıaj .B/ .8B 2 BR/:

Extending the previous case, we can consider random variables with countable
range:

Definition 12.5.33 (Discrete Variable). A random variable X W � ! R is called
discrete if it takes at most countably many distinct values. If fa1; a2; a3; : : :g is an
enumeration of the (distinct) values ofX and if pn WD P.X D an/; then

P

n pn D 1
and
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PX.B/ D
X

n

pnıan.B/ .8B 2 BR/:

Example 12.5.34 (Binomial Variable). We say that a random variable X has
binomial distribution with parameters n 2 N and p 2 Œ0; 1�; and we write
X � B.n; p/; if the range of X is f0; 1; 2; : : : ; ng and if

pk WD PX.fkg/ D
 

n

k

!

pk.1 � p/n�k .k D 0; 1; : : : ; n/:

Example 12.5.35 (Poisson Variable). We say that a random variableX has Poisson
distribution with parameter � > 0 if the range of X is the set N0 and if

pk WD PX.fkg/ D �k

kŠ
e�� .k D 0; 1; 2; : : :/:

Definition 12.5.36 (Continuous Variable). A random variable X 2 R� is said to
be continuous if

PX.f!g/ WD P.X D !/ D 0 .8! 2 �/:

Example 12.5.37. Consider the probability space .I;M�.I /; �I /; where I D
Œ0; 1�; �I is the restriction of Lebesgue measure to I; and M�.I / is the set of
all Lebesgue measurable subsets of I . Then, any (Lebesgue) measurable function
X W I ! R is a random variable. For instance, the affine function X.!/ WD a!C b;
where a > 0 and b 2 R; is a continuous random variable with range Œb; aC b� and
probability distribution PX D 1

a
�Œb;aCb�.

As was pointed out before, Lebesgue–Stieltjes measures play an important role
in probability. Indeed, by Theorem 12.1.38, each finite measure � (in particular
each probability measure) on BR is completely characterized by its (cumulative)
distribution function: F.x/ WD �..�1; x�/. To construct probability distributions,
it is therefore natural to look at distribution functions:

Definition 12.5.38 (Distribution Function). Given any random variable X W
�! R; its (cumulative) distribution function is defined by

FX.x/ WD P.X � x/ D PX..�1; x�/ .8x 2 R/:

Proposition 12.5.39. Given a random variable X W � ! R; its distribution
function FX is increasing, right-continuous and satisfies the following asymptotic
properties:

lim
t!�1FX.t/ D 0; lim

t!1FX.t/ D 1: ()

Proof. That F is increasing follows from the monotonicity of P . Also, the right-
continuity of F follows from the continuity of P and .�1; x� D T1

nD1.�1; x C
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1=n�. Finally, since P.;/ D 0 and P.�/ D 1; the limit properties () are also
consequences of the continuity of P . (Why?) ut
Exercise 12.5.40.

1. Show that PX..a; b�/ D FX.b/ � FX.a/ and PX.fag/ D FX.a/ � FX.a � 0/.
Deduce from the latter that X is a continuous random variable if and only if FX
is continuous on R.

2. Find the distribution function FX for (i) a Bernoulli variable X with parameter
p WD P.X D 1/; (ii) a binomial variable X � B.n; p/; and (iii) a Poisson
variable X with parameter � > 0.

Example 12.5.41 (Uniform Distribution). Let a < b be real numbers. A random
variable X is said to be uniformly distributed over Œa; b� if its probability measure
is given by PX.B/ D �.B/=.b � a/; for each Borel set B � Œa; b�. The distribution
function of X is therefore

FX.x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if x < a;
x � a
b � a if a � x < b;
1 if x � b.

Most important random variables belong to the class of absolutely continuous
variables:

Definition 12.5.42 (Absolute Continuity, Density). A random variable X is
said to be absolutely continuous if its probability distribution PX is absolutely
continuous (with respect to Lebesgue measure). It then follows from the Lebesgue–
Radon–Nikodym theorem (Theorem 12.3.39) that there is a “unique” nonnegative
function fX 2 L1�.R/ (which we may assume to be defined everywhere) such that

PX.B/ D
Z

B

fX.x/ d�.x/ .8B 2 BR/:

The function fX is then called the density function (or simply the density) of X and
we clearly have

R

R
fX.x/ d�.x/ D 1.

Remark 12.5.43.

1. If X is an absolutely continuous random variable, then its distribution function
is obviously given by

FX.x/ D
Z x

�1
fX.t/ d�.t/:

In particular, an absolutely continuous variable is continuous. (Why?) The
converse, however, is false as the next example will show.

2. It follows from the Fundamental Theorem of Calculus that, if fX is continuous
(on R), then FX is continuously differentiable (on R) and we have
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F 0
X.x/ D fX.x/ .8x 2 R/: ()

In fact, if fX is only piecewise continuous, then () remains valid except at the
discontinuity points of fX .

Example 12.5.44 (Cantor–Lebesgue Variable). A random variable X is said to
have the Cantor–Lebesgue distribution if its distribution function is given by

FX WD

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if x < 0;

�.x/ if 0 � x � 1;
1 if x > 1;

where �.x/ is Cantor’s ternary function (cf. Example 4.3.13). Note that FX.x/ D
1=2 for x 2 Œ1=3; 2=3/; FX.x/ D 1=2 for x 2 Œ1=3; 2=3/; FX.x/ D 1=4 for
x 2 Œ1=9; 2=9/; FX.x/ D 3=4 for x 2 Œ7=9; 8=9/; etc. Thus FX is constant outside
Œ0; 1� and on all the intervals removed in the construction of the Cantor set. It is also
increasing and continuous. In particular, X is a continuous variable. Now suppose
that X has a density fX . If .a; b/ is any one of the removed middle thirds, then
R b

a
fX.x/ dx D FX.b/�FX.a/ D 0 and hence (since fX � 0) we have fX.x/ D 0

for almost all x 2 .a; b/. Similarly, fX D 0 a.e. on .�1; 0/ and .1;1/. Thus,
since �.C / D 0; we have fX.x/ D 0 for a.a. x 2 R; which is absurd. Alternatively,
since FX is constant outside C; we have fX.x/ D F 0

X.x/ D 0 for all x 62 C .
Therefore, X is not absolutely continuous. Note also that P.X 62 C/ D 0 and
hence P.X 2 C/ D 1 despite the fact that P.X D x/ D 0 for all x 2 C .

Here are some important examples of absolutely continuous variables:

Example 12.5.45 (Uniform Variables). Given a setB 2 BR with 0 < �.B/ <1; a
random variableX is said to be uniformly distributed overB ifPX has (the uniform)
density function

fX.x/ WD
8

<

:

1

�.B/
if x 2 B;

0 otherwise.

Example 12.5.46 (Normal or Gaussian Variables). Letm 2 R and � > 0 be given.
We say that a random variableX is normal (or Gaussian) with meanm and variance
�2; and we write X � N.m; �2/; if X has density

fX.x/ WD 1

�
p
2	

exp

�

� .x �m/
2

2�2

�

:

If X � N.0; 1/; then we say that X is standard normal. Given the well-known fact
that

R1
�1 e�x2=2 dx D p2	; we indeed have

R

R
fX.x/ d�.x/ D 1.

Example 12.5.47 (Cauchy Variable). A random variable X is said to have the
Cauchy distribution if its density is
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fX.x/ WD 1

	.1C x2/ :

Example 12.5.48 (Exponential Variables). We say that X is an exponential vari-
able with parameter � > 0 if its density is the function

fX.x/ WD
(

�e��x if x � 0;
0 if x < 0.

Before discussing the integration of random variables, let us give two more
important definitions.

Definition 12.5.49 (Identically Distributed Variables). Two random variables
X; Y W � ! R are said to be identically distributed if they have the same
probability distribution, i.e., if PX D PY .

Definition 12.5.50 (Independent Variables). Two random variablesX; Y W �!
R are said to be independent if the corresponding � -algebras AX WD X�1.BR/ and
AY WD Y �1.BR/ are independent; i.e., given any Borel sets B; C 2 BR;

P.X�1.B/ \ Y �1.C // D P.X�1.B//P.Y �1.C //:

More generally, if J is an index set and Xj W �! R is a random variable for each
j 2 J; then the collection fXj W j 2 J g is said to be independent if the collection
of � -algebrasfAXj W j 2 J g is independent.

Exercise 12.5.51. Let .I;M�.I /; �I / be the probability space of the Exam-
ple 12.5.37. Show that the random variables X WD 
Œ0;1=2� and Y WD 
Œ1=4;3=4�
are independent. Hint: Consider the corresponding � -algebras. Note, e.g., that
AX D f;; Œ0; 1=2�; .1=2; 1�; Œ0; 1�g.
Exercise 12.5.52. Let .Xk/nkD1 be independent random variables on�; and let gk W
R! R be (Borel-) measurable functions for 1 � k � n. Show that the composites
gk.Xk/ are also independent random variables on �.

Having defined random variables (i.e., measurable functions on the sample
space �), it is natural to ask whether such variables are integrable. Now, given a
random variable X; its probability distribution PX is a probability measure on R

and enables us to transform the integrals over � into integrals over R W
Theorem 12.5.53 (Change of Variables). Let .�;A; P / be a probability space
and X W � ! R a random variable. Then, for each measurable function
g W R! R; the composite function g ıX is a random variable. Moreover, g ıX 2
L1P .�/ if and only if g 2 L1PX .R/ and we have

Z

�

g.X.!// dP.!/ D
Z

R

g.x/ dPX.x/: (�)

Proof. The first statement is obvious. To prove (�), we first note that if g D 
B
for some B 2 BR; then 
B ı X D 
X�1.B/ and both sides of (�) reduce to
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P.X�1.B//. By linearity, (�) is therefore satisfied for each simple function g.
Next, if g is a nonnegative integrable function, then g D lim.gn/ where .gn/
is an increasing sequence of simple functions and hence (�) follows from the
Monotone Convergence Theorem. Finally, for a general g 2 L1PX .R/; we note that
g D gC � g� and apply the previous case to gC and g�. ut
Corollary 12.5.54. Under the assumptions of Theorem 12.5.53, if X is absolutely
continuous with density function fX; then we have

Z

�

g.X/ dP D
Z

R

g.x/fX.x/ d�.x/:

Example 12.5.55.

1. IfX is constant, i.e.,X.!/ D a for all! 2 � and some a 2 R; then gıX � g.a/
and hence the left side of (�) is g.a/P.�/ D g.a/. Also, PX D ıa so that (�)
becomes

Z

R

g.x/ dıa.x/ D g.a/:

2. More generally, consider a discrete random variable X taking the values
fa1; a2; a3; : : :g with probabilities pn WD P.X D an/. Then we have PX D
P

n pnıan and (�) gives
Z

�

g.X/ dP D
X

n

g.an/pn:

The most important special case is when g is the identity function: g.x/ D x for
all x 2 R W
Definition 12.5.56 (Expectation). Given an integrable random variableX W �!
R; the expectation (or mean) of X is its integral:

EŒX� WD
Z

�

X.!/ dP.!/ D
Z

R

x dPX.x/:

Of course, EŒX� exists (as a finite number) if and only if
R

R
jxj dPX.x/ < 1

and we then have jEŒX�j � R

R
jxj dPX.x/ D EŒjX j�. More generally, given any

g 2 L1PX .R/; we have

EŒg.X/� D
Z

�

g.X.!// dP.!/ D
Z

R

g.x/ dPX.x/:

For a complex variable Z W �! C; we define EŒZ� WD EŒRe.Z/�C iEŒIm.Z/�; if
EŒRe.Z/� and EŒIm.Z/� exist.

Exercise 12.5.57.
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1. Let X be a Poisson variable with parameter � > 0. Thus X takes only the values
k D 0; 1; 2; : : : with probabilities P.X D k/ D �ke��=kŠ. Show that EŒX� D
�.

2. Find EŒX� for an exponential variable with parameter � > 0.
3. If X has the Cauchy density fX WD 1=	.1C x2/; show that EŒX� does not exist.

Another special case of importance is obtained if we take g.x/ WD .x � m/2;
where m D EŒX�. To introduce it, we need the following.

Definition 12.5.58 (Square-Integrable Variable). A random variable X on � is
said to be square integrable if X2 2 L1P .�/I i.e.,

Z

�

jX.!/j2 dP.!/ <1:

The set of all square integrable random variables will be denoted by L2P .�/.

Proposition 12.5.59. L2P .�/ is a (vector) subspace of L1P .�/.

Proof. That L2P .�/ is a vector space follows at once from the elementary inequality
jX C Y j2 � 2.jX j2 C jY j2/. Next, since P.�/ D 1; we have 1 2 L1P .�/. Thus, if
X2 2 L1P .�/; then the trivial inequality jX j � .1CX2/=2 implies thatX 2 L1P .�/.

ut
Definition 12.5.60 (Variance, Standard Deviation). Given any random variable
X 2 L2P .�/; we define its variance to be the integral

Var.X/ WD
Z

�

.X �EŒX�/2 dP D EŒ.X �EŒX�/2� D EŒX2� � .EŒX�/2;

where the last equation follows from the fact that EŒX� is linear in X . The notation
�2.X/ WD Var.X/ will also be used. The square root of the variance, i.e., �.X/ D
p

Var.X/; is called the standard deviation of X .

Exercise 12.5.61. Show that, if X 2 L2P .�/; then

Var.aX C b/ D a2Var.X/ .8a; b 2 R/:

Exercise 12.5.62.

1. Find Var.X/ if X is a (i) Poisson variable with parameter � > 0 or (ii) an
exponential variable with parameter � > 0. Hint: Use Exercise 12.5.57.

2. Let X be uniformly distributed over Œa; b�. Show that EŒX� D .a C b/=2 and
Var.X/ D .b � a/2=12.

3. Show that, for a normal variable X � N.m; �2/; we indeed have EŒX� D m

and Var.X/ D �2. Hint: Use the substitution z WD .x �m/=� and integration by
parts.
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Remark 12.5.63. Let X and Y be identically distributed random variables on �.
Then, for any f 2 L1PX .R/ D L1PY .R/; the Change of Variables Theorem implies
that

Z

�

f .X/ dP D
Z

�

f .Y / dP:

In particular, if X; Y 2 L2P .�/; then EŒX� D EŒY � and Var.X/ D Var.Y /.

Definition 12.5.64 (Joint Distribution). Let X; Y be random variables on � and
consider the random vector .X; Y / W �! R2; i.e., the measurable map

.X; Y /.!/ WD .X.!/; Y.!// 2 R2:

Its probability distribution, denoted by P.X;Y /; is called the joint distribution of X
and Y and is defined by

P.X;Y /.B/ WD P..X; Y / 2 B/ .8B 2 BR2 /:

Exercise 12.5.65 (Marginal Distributions). Let X and Y be random variables
on �. Show that the probability distributions PX and PY can be obtained from the
joint distribution P.X;Y / as follows:

PX.B/ D P.X;Y /.B � R/; PY .B/ WD P.X;Y /.R � B/ .8B 2 BR/:

When expressed this way, PX and PY are called marginal distributions.

Definition 12.5.66 (Jointly Continuous). Two random variables X; Y on �

are said to be jointly continuous if their joint distribution P.X;Y / is absolutely
continuous; i.e., there is a nonnegative function f.X;Y / 2 L1�2.R

2/ such that

P.X;Y /.B/ D
Z

B

f.X;Y /.x; y/ d�2.x; y/ .8B 2 BR2 /:

The function f.X;Y / is then called the joint density of X and Y .

Exercise 12.5.67 (Marginal Densities). Let f.X;Y / be the joint density of random
variables X and Y . Show that both X and Y are then absolutely continuous with
respective densities

fX.x/ WD
Z

R

f.X;Y /.x; y/ d�.y/; fY .y/ WD
Z

R

f.X;Y /.x; y/ d�.x/:

When expressed this way, fX and fY are called marginal densities.

The analog of Change of Variables (Theorem 12.5.53) holds for joint distribu-
tions as well and is proved in exactly the same way:
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Theorem 12.5.68 (Change of Variables). Let P.X;Y / be the joint distribution
of the random variables X and Y on �. Then, for each measurable func-
tion g W R2 ! R; the composite g.X; Y / is a random variable on �. Moreover,
g.X; Y / 2 L1P .�/ if and only if g 2 L1P.X;Y / .R

2/ and we have

Z

�

g.X.!/; Y.!// dP.!/ D
Z

R2
g.x; y/ dP.X;Y /.x; y/:

Proof. Exercise! ut
Using joint distributions, we can characterize independent random variables:

Proposition 12.5.69. Two random variables X; Y on � are independent if and
only if

P.X;Y / D PX ˝ PY : (�)

Proof. First note that BR2 is generated by the Borel rectanglesB�C;whereB; C 2
BR. (Why?) Therefore, by the definition of the product measure PX ˝PY ; we need
only show that (�) holds when both sides are evaluated at Borel rectangles. Now,
assuming that X and Y are independent, for any Borel rectangle B � C; we have

P.X;Y /.B � C/ D P..X; Y / 2 B � C/ D P..X 2 B/ \ .Y 2 C//
D P.X 2 B/P.Y 2 C/ D PX.B/PY .C /
D .PX ˝ PY /.B � C/: ut

Theorem 12.5.70. Let X and Y be independent random variables with finite
expectations EŒX� and EŒY �; respectively. Then EŒXY � exists and we have

EŒXY � D EŒX�EŒY �:

Proof. Applying Theorem 12.5.68 with g.x; y/ WD xy and Proposition 12.5.69, we
have

EŒXY � D
Z

R2
xy dP.X;Y /.x; y/ D

Z

R2
xy dPX.x/˝ dPY .y/

D
�

Z

R

x dPX.x/
�

�

Z

R

y dPY .y/

�

D EŒX�EŒY �;

where we have used Fubini’s theorem. ut
Corollary 12.5.71. Let .Xk/nkD1 be independent, square integrable random vari-
ables on �. Then

Var.X1 C � � � CXn/ D
n
X

kD1
Var.Xk/:
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Proof. Introduce the centered variables Yk WD Xk � EŒXk�; for 1 � k � n. Then
the Yk are also independent (why?) and we have EŒYk� D 0 for 1 � k � 0. Thus,
by Theorem 12.5.70, we have

EŒYj Yk� D EŒYj �EŒYk� D 0 .j ¤ k/;
and hence

Var.X1 C � � � CXn/ D EŒ.Y1 C � � � C Yn/2� D
X

j;k

EŒYj Yk�

D
X

k

EŒY 2k � D
X

k

Var.Xk/:

ut
Corollary 12.5.72. Let .Xk/nkD1 be independent, square integrable variables on �
and let Sn WD X1 C � � � CXn. Then we have

EŒSn=n� D 1

n

n
X

kD1
EŒXk�; Var.Sn=n/ D 1

n2

n
X

kD1
Var.Xk/:

Proof. The first equation follows from the linearity of E and the second from
Corollary 12.5.71 and Exercise 12.5.61. ut

For the main results of this section, we shall need a few well-known and useful
inequalities. Let us start with

Proposition 12.5.73 (Markov’s Inequality). Let X be a random variable. Then
for any constant c > 0 we have

P.jX j � c/ � EŒjX j�
c

: (�)

More generally, for any nonnegative (Borel-) measurable function f W R! R and
any c > 0; we have

P.f .X/ � c/ � EŒf .X/�

c
: (�)

Proof. To prove (�), let A WD ff .X/ � cg. Then f .X/ � c
A and hence

EŒf .X/� D
Z

�

f .X/ dP � c
Z

�


A dP D cP.A/:

The inequality (�) now follows if we take f .x/ WD jxj. ut
Here is an immediate corollary:
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Proposition 12.5.74 (Chebyshev’s Inequality). Let X 2 L2
P .�/. Then, for any

constant c > 0; we have

P.jX �EŒX�j � c/ � Var.X/

c2
:

Proof. This follows from Proposition 12.5.73 if we use f .x/ WD .x � m/2 in (�),
where m WD EŒX�. Or, note that Y WD X � EŒX� is square integrable and EŒY 2� D
Var.X/. Applying Markov’s inequality—the inequality (�)—we have

P.jX �EŒX�j � c/ D P.Y 2 � c2/ � EŒY 2�

c2
D Var.X/

c2
:

ut
We shall also need the following extension of Chebyshev’s inequality:

Proposition 12.5.75 (Kolmogorov’s Inequality). Let .Xk/nkD1 be independent,
square-integrable variables on � with EŒXk� D 0 and Var.Xk/ D �2k ; and define
Sk WD X1 C � � � CXk; for 1 � k � n. Then, for any constant c > 0; we have

P
�

max
1	k	n jSkj � c

�

� 1

c2

n
X

kD1
�2k :

Proof. Let A1 WD fjS1j � cg and, for 2 � k � n; define

Ak WD fjS1j < c; jS2j < c; : : : ; jSk�1j < c; jSkj � cg:

Note that the Ak are pairwise disjoint and we have

B WD
n

max
1	k	n jSkj � c

o

D
n
[

kD1
Ak:

Thus, setting 
k WD 
Ak ; for 1 � k � n; we have 
B D Pn
kD1 
k . Now, by

Corollary 12.5.71, we have

n
X

kD1
�2k D EŒS2n � � EŒS2n
B� D

n
X

kD1
EŒS2n
k�: ()

Next, note that Sk
k and Sn � Sk are independent and EŒSn � Sk� D 0. (Why?)
Thus, by Theorem 12.5.70,

EŒSk
k.Sn � Sk/� D 0: ()
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Using () and the fact that S2n D ŒSk C .Sn � Sk/�2; we have

EŒS2n
k� D EŒS2k
k�CEŒ.Sn � Sk/2
k� � EŒS2k
k�
� c2EŒ
k� D c2P.Ak/;

which, by () and the fact that the Ak are pairwise disjoint, gives

n
X

kD1
�2k � c2

n
X

kD1
P.Ak/ D c2P.B/:

ut
Let us use this inequality to prove the following result on the convergence of a

series of random variables.

Theorem 12.5.76. If .Xn/ is a sequence of independent random variables with
EŒXn� D 0 for all n and

P1
nD1 Var.Xn/ < 1; then

P1
nD1 Xn converges almost

surely.

Proof. Let Sn WD Pn
kD1 Xk and for each m; k 2 N; let Tm;k WD SmCk � Sm D

Pk
jD1 XmCj . Since the Xj are independent, for each " > 0, we can apply

Kolmogorov’s inequality to the Tm;k; 1 � k � n; to get

P
�

max
1	k	n jTm;kj � "

�

� Var.Tm;n/

"2
D 1

"2

mCn
X

jDmC1
Var.Xj /: ()

Next, note that P.max1	k	n jTm;kj � "/ D P.
Sn
kD1fjTm;kj � "g/ and that our

assumption implies limm!1
P1

jDmC1 Var.Xj / D 0. Therefore, letting m ! 1
in (), we get

lim
m!1P

�

1
[

kD1
fjTm;kj � "g

�

D lim
m!1

h

lim
n!1P

�

n
[

kD1
fjTm;kj � "g

�i

� lim
m!1

h

lim
n!1

1

"2

mCn
X

jDmC1
Var.Xj /

i

()

D 1

"2
lim
m!1

1
X

jDmC1
Var.Xj / D 0:

We now use () to prove that .Sn/ converges almost surely. Note that .Sn.!//
converges if and only if it is Cauchy. Therefore, if E WD f! W .Sn.!// divergesg;
then we have

E D
1
[

jD1

1
\

nD1

1
[

kD1

n

jTn;kj � 1=j
o

: (�)
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Since for any m 2 N we have the inclusions

1
\

nD1

1
[

kD1

n

jTn;kj � 1=j
o

�
m
\

nD1

1
[

kD1

n

jTn;kj � 1=j
o

�
1
[

kD1

n

jTm;kj � 1=j
o

;

letting m! 1 and using (), we get P.
T1
nD1

S1
kD1fjTn;kj � 1=j g/ D 0; which

in view of (�) gives P.E/ D 0. ut
We are now ready to prove our main result: the law of large numbers. There are

two versions of this law. For the weak one, we need the following.

Definition 12.5.77 (Convergence in Probability). We say that a sequence
.Xn/

1
nD1 of random variables converges to a random variable X in probability if

lim
n!1P.jXn �X j > "/ D 0 .8" > 0/:

Remark 12.5.78. Convergence in probability is in fact weaker than convergence
almost surely. In the context of measure theory, the former is referred to as
convergence in measure and the latter corresponds, of course, to convergence almost
everywhere. (cf. Proposition 11.4.11).

Proposition 12.5.79. If Xn ! X almost surely, then Xn ! X in probability.

Proof. Suppose that Xn ! X almost surely; i.e., if Z WD f! 2 � W Xn.!/ 6!
X.!/g; then P.Z/ D 0. This is equivalent to the inclusions

1
\

nD1

1
[

kDn
f! W jXk.!/ �X.!/j > "g � Z .8" > 0/:

In particular, using the continuity of P;

P.jXn �X j > "/ � P
�

1
[

kDn
f! W jXk.!/ �X.!/j > "g

�

! 0;

as n!1. ut
Theorem 12.5.80 (Weak Law of Large Numbers). Let .Xn/ be a sequence
of independent, square-integrable variables with means .mn/

1
nD1 and variances

.�2n/
1
nD1. If limn!1

Pn
kD1 �2k=n2 D 0; then n�1Pn

kD1.Xk � mk/ ! 0 in
probability, as n!1.

Proof. By Corollary 12.5.72, the average n�1Pn
kD1.Xk � mk/ has mean zero and

variance n�2Pn
kD1 �2k . Therefore, by Chebyshev’s inequality, for any " > 0 we

have
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lim
n!1P

�

ˇ

ˇ

ˇ

n�1
n
X

kD1
.Xk �mk/

ˇ

ˇ

ˇ

> "
�

� lim
n!1.n"/

�2
n
X

kD1
�2k D 0:

ut
Corollary 12.5.81. If .Xn/1nD1 is a sequence of independent, identically distributed,
and square-integrable variables with mean m and variance �2; then, with Sn WD
Pn

kD1 Xk; we have

lim
n!1P

�

ˇ

ˇ

ˇ

Sn

n
�m

ˇ

ˇ

ˇ

> "
�

D 0 .8" > 0/I

i.e., .Sn=n/ converges in probability to the constant variable m.

Proof. Since (by Corollary 12.5.72) EŒSn=n� D m and Var.Sn=n/ D �2=n; the
corollary follows from Theorem 12.5.80. ut

We now look at a version of the strong law of large numbers due to Kolmogorov:

Theorem 12.5.82 (Strong Law of Large Numbers). Let .Xn/ be a sequence
of independent, square-integrable variables with means .mn/

1
nD1 and variances

.�2n/
1
nD1. If

P1
nD1 �2n=n2 <1; then

lim
n!1n�1

n
X

kD1
.Xk �mk/ D 0 almost surely.

Proof. Let Sn WDPn
kD1.Xk �mk/ and let " > 0 be given. For each k 2 N; define

Ak WD f! 2 � W jSn.!/j=n � " for some n with 2k�1 � n < 2kg:

Then, for each ! 2 Ak; we have jSn.!/j � "2k�1 for some n < 2k . Thus, by
Kolmogorov’s inequality, we have

P.Ak/ � 1

."2k�1/2
2k
X

nD1
�2n ;

which (in view of
P

k>m 2
�2k <

R1
m
2�2x dx) implies that

1
X

kD1
P.Ak/ � 4

"2

1
X

kD1

2k�1
X

nD1
�2n=2

2k D 4

"2

1
X

nD1

 

X

k>log2 n

2�2k
!

�2n

� 8

"2

1
X

nD1

�2n
n2
<1:
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Therefore, it follows from the First Borel–Cantelli Lemma (Theorem 12.5.24) that
we have P.lim supk!1Ak/ D 0. Since

lim sup
k!1

Ak D f! 2 � W jSn.!/j=n � " for infinitely many ng;

it follows that

P.lim sup
n!1

fjSnj=n < "g/ D 1:

Setting " WD 1=j; j 2 N; and letting j ! 1; we deduce that limn!1 Sn=n D 0

almost surely. ut
Corollary 12.5.83. Let .Xn/1nD1 be a sequence of independent, identically dis-
tributed, and square-integrable variables with mean m and variance �2. Then, with
Sn WDPn

kD1 Xk; we have

lim
n!1

Sn

n
D m almost surely.

Proof. Since
P1

nD1 �2=n2 D 	2�2=6; the corollary follows at once from
Theorem 12.5.82. ut
Remark 12.5.84. In fact, the assumption Xn 2 L2P .�/ in Corollary 12.5.83 can
be replaced by the weaker assumption Xn 2 L1P .�/; but the proof is then more
involved. The reader is referred to more advanced texts for this and other extensions
of the strong law of large numbers.

We end the chapter by giving a probabilistic proof of Bernstein Approximation
Theorem (Theorem 4.7.9), i.e., the fact that Bernstein polynomials are dense in the
space of all continuous real-valued functions on Œ0; 1� with uniform metric. The
following exercise will be needed:

Exercise 12.5.85. Let .Xk/nkD1 be independent Bernoulli variables with EŒXk� D
P.Xk D 1/ D p; 1 � k � n; and let S WD Pn

kD1 Xk . Show that S is a binomial
random variable with parameters n and pI i.e., S � B.n; p/. Deduce that

EŒS� D np; Var.S/ D np.1 � p/:

Theorem 12.5.86 (Bernstein Approximation Theorem). For any continuous
function f W Œ0; 1�! R; the Bernstein polynomials

Bn.x/ WD
n
X

kD0
f

�

k

n

�

 

n

k

!

xk.1 � x/n�k

converge to f uniformly on Œ0; 1�.
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Proof. Let " > 0 be given. Since f is uniformly continuous on Œ0; 1�; we can pick a
ı > 0 such that jx � yj < ı implies jf .x/ � f .y/j < "=2. Let M WD supfjf .x/j W
0 � x � 1g and pick N 2 N so large that M=N < "ı2. We shall prove that
jBn.x/�f .x/j < " for all n � N and x 2 Œ0; 1�. Let n � N and x 2 Œ0; 1� be fixed.
Let .Xk/nkD1 be an independent sequence of Bernoulli variables with P.Xk D 1/ D
x and P.Xk D 0/ D 1 � x, 1 � k � n. Then EŒXk� D x and VarŒXk� D x.1 � x/
for 1 � k � n. If S WD Pn

kD1 Xk; then (by Exercise 12.5.85) S � B.n; x/ and we
have EŒf .S=n/� D Bn.x/. (Why?) Now, by the (weak) law of large numbers, we
expect S=n to be close to x with large probability. To make this precise, note that

ˇ

ˇ

ˇ

f
�S

n

�

� f .x/
ˇ

ˇ

ˇ

�
(

"=2 on fjS=n � xj < ıg;
2M on fjS=n � xj � ıg. ()

But Exercise 12.5.85 and the fact that x.1 � x/ � 1=4 on Œ0; 1� give Var.S=n �
x/ � 1=.4n/ (why?) so, by Chebyshev’s inequality, we have P.jS=n � xj � ı/ �
1=.4nı2/. Therefore, integrating () and noting that n � N; we get

jBn.x/ � f .x/j � E
h

ˇ

ˇ

ˇ

f
�S

n

�

� f .x/
ˇ

ˇ

ˇ

i

� "

2
C 2M

4nı2
< 2

� "

2

�

D ":

ut

12.6 Problems

1. Let X be an uncountable set and let S WD ffxg W x 2 Xg be the set of all singletons in X .
Show that the �-algebra AS generated by S is given by

AS WD fE � X W jEj 	 @0 or jEc j 	 @0g;
and that the map � W AS ! Œ0;1/ given by �.E/ D 0 if jEj 	 @0 and �.E/ D 1 if jEc j 	 @0

is a measure on AS .

2. Let .X;A/ be a measurable space and suppose that � W A ! Œ0;1� is finitely additive. Show
that, if � is �-subadditive, i.e., if �.

S

An/ 	 P

�.An/ for any sequence .An/ in A; then � is a
measure. Deduce that any finitely additive outer measure is actually a measure.

3. Let C denote the collection of all countable subsets of R and define � W C ! Œ0;1� by
�.A/ D 0 if jAj < 1 and �.A/ D 1 if jAj D @0. Show that � is finitely additive but not
countably additive.

4. Let  be the counting measure on an infinite set X . Show that there is a decreasing sequence
.An/ 2 P.X/N with lim.An/ D ; and yet lim..An// ¤ 0.

5. Let X be a (nonempty) set and f W X ! Œ0;1/. Define the measure �f W P.X/ ! Œ0;1�

by �f .;/ WD 0 and �f .E/ WD P

x2E f .x/; where the sum is an unordered series. Find necessary
and sufficient conditions (on f ) for �f to be finite or �-finite.
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6. Let �� be an outer measure on X . Show that, if A � X and ��.A/ D 0; then ��.A[ B/ D
��.B/ for all B � X .

7. Let �� be an outer measure on X . Show that A � X is ��-measurable if and only if, given
any " > 0; there is an E 2 M� such that E � A and ��.A nE/ < ".
8. Let �� be an outer measure on X and let A � X . Show that, if for each " > 0 there is an
E 2 M� such that ��.A4E/ < "; then A 2 M�.

9. Let �� be an outer measure on X and A � E � X . Show that, if A 62 M� and E 2 M�;

then ��.E n A/ > 0.

10. Let �� be an outer measure on X that is regular; i.e., for each B � X there is a C 2 M�

such that B � C and ��.B/ D ��.C /; and let A � X . Show that, if there is an E 2 M� such
that ��.E/ < 1 and ��.E/ D ��.A/C ��.E n A/; then A 2 M�.

11. Let .X;A; �/ be a measure space. For each sequence .An/ 2 AN; define

lim inf.An/ WD
1
[

kD1

1
\

nDk

An; lim sup.An/ WD
1
\

kD1

1
[

nDk

An:

(a) Show that �.lim inf.An// 	 lim inf.�.An//.
(b) Show that, if �.

S

An/ < 1; then �.lim sup.An// � lim sup.�.An//.
(c) (Borel–Cantelli) Show that, if

P1
nD1 �.An/ < 1; then �.lim sup.An// D 0.

(d) Show that, if lim inf.An/ D lim sup.An/ and we denote it by A; then �.A/ D lim.�.An//.

12. Let .M ; d / be a complete metric space and, for each E � M ; define ��.E/ D 0 if E
is of first category and ��.E/ D 1 otherwise. Show that �� is an outer measure. What are the
��-measurable sets?

13. Let X be an uncountable set and, for each E � X; define ��.E/ D 0 if E is countable and
��.E/ D 1 otherwise. Show that �� is an outer measure. What is the corresponding M�‹

14. Let .X;A; �/ be a complete measure space and A 2 A. Show that, if B � X and
�.A4B/ D 0; then B 2 A.

15. (Atom, Nonatomic). Let .X;A/ be a measurable space. A nonempty set A 2 A is called an
atom (of A) if

A0 � A and A0 2 A H) A0 D A or A0 D ;:
A measurable space .X;A/ with no atoms is called nonatomic.

(a) Show that, if A; A0 2 A are distinct atoms, then A\ A0 D ;.
(b) Show that, if A is finite (i.e., contains a finite number of sets), then every nonempty A 2 A is

the union of the atoms it contains. Hint: Show first that every nonempty set A 2 A contains at
least one atom.

(c) Continuing (b), show that, if A1; : : : ; An are the atoms of A; then the Ak are pairwise disjoint
and X D Sn

kD1 Ak .
(d) Show that, if X D Sm

jD1 Bj where the Bj are pairwise disjoint, and if B is the (finite)
�-algebra generated by the Bj ; then the Bj are the atoms of B.

16. Let � be a Borel measure on a metric space X such that �.X/ D 1 and �.fxg/ D 0 for
each x 2 X . Show that, given any " > 0 and any x 2 X; there is an open set U with x 2 U and
�.U / < ". Show that, if X is separable, then there is a dense, open set O � X with �.O/ < ".
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17. Let F W R ! R be an increasing, right-continuous function. Show that the corresponding
Lebesgue–Stieltjes outer measure ��

F is a metric outer measure.

18.

(a) Show that �1.Œa; b�/ D b � a and that dimH .Œa; b�/ D 1; where dimH denotes the Hausdorff
dimension.

(b) Show that dimH .R/ D 1.
(c) Show that dimH .fxg/ D 0 for each x 2 R and deduce that dimH .E/ D 0 for every countable

set E � R.

19. Show that, if F.x/ WD x for all x 2 R; then ��
F D ��I i.e., the corresponding Lebesgue–

Stieltjes outer measure is identical to Lebesgue outer measure.

20. What is the Lebesgue–Stieltjes measure corresponding to the following function?

F.x/ WD
8

ˆ

<

ˆ

:

0 if x < 0;

x if 0 	 x < 1;

1 if x � 1:

21. Let �1 denote the one-dimensional Hausdorff measure on R2. Show that, for any open set
O � R2; we have �1.O/ D 1.

22. Let .X;A/ be a measurable space and f; g 2 L0.X/. Show that the following sets are
measurable:

(a) fx 2 X W f .x/ < g.x/gI
(b) fx 2 X W f .x/ 	 g.x/gI
(c) fx 2 X W f .x/ D g.x/g.

23. Let .X;A/ be a measurable space and E 2 A. We say that a function f W X ! R is
measurable on E if the restriction f jE is measurable on the measurable space .E;A\E/; where
A \E WD fA\E W A 2 Ag.

(a) Show that, if f 2 L0.X/; then f is measurable on E for every E 2 A.
(b) Let E 2 A; f W E ! R; and let fE be the trivial extension of f defined by fE.x/ D f .x/

if x 2 E and fE.x/ D 0 if x 2 Ec . Show that, if f is measurable on the measurable space
.E;A \E/; then fE 2 L0.

24. Let .X;A/ be a measurable space. If X D A[ B with A; B 2 A; show that f W X ! R is
measurable (on X) if and only if it is measurable on A and on B .

25. Let .X;A/ be a measurable space, f; g 2 L0.X/; and A 2 A. Show that the function
h W X ! R defined by h.x/ WD f .x/ if x 2 A and h.x/ WD g.x/ if x 2 Ac is measurable.

26. Let .X;A; �/ be a measure space and fn 2 L0.X/ for each n 2 N.

(a) Show that fx 2 X W lim.fn.x// existsg 2 A.
(b) Define the function

f .x/ WD
(

lim.fn.x// if lim.fn.x// exists;

0 otherwise:

Show that f 2 L0.X/.
(c) Suppose that fn ! g a.e., where g is not necessarily measurable (unless � is complete).

Show that there is a function f 2 L0.X/ such that fn ! f a.e.
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27. Let .X;A/ be a measurable space and f W X ! R. Show that, if f �1..r;1�/ 2 A for
each r 2 Q; then f 2 L0.X;R/. More generally, show that, if D is a dense subset of R and
f �1..d;1�/ 2 A for each d 2 D; then f 2 L0.X;R/.

28 (Convergence in Measure, Cauchy in Measure). Let .X;A; �/ be a measure space and .fn/
a sequence in L0.X/. We say that fn ! f in measure if given any " > 0 there is an N 2 N such
that

n � N H) �.fx 2 X W jfn.x/� f .x/j � "g/ < ":
We say that .fn/ is Cauchy in measure if for each " > 0 there is an N 2 N such that

m; n � N H) �.fx 2 X W jfm.x/� fn.x/j � "g/ < ":
(a) Show that fn converges in measure if and only if it is Cauchy in measure.
(b) Show that, if fn ! f in measure, then every subsequence .fnk / converges to f in measure.
(c) Show that, if fn ! f in measure, then there is a subsequence .fnk / such that fnk ! f a.e.
(d) Show that fn ! f in measure if and only if every subsequence of .fn/ has in turn a

subsequence that converges to f in measure.
(e) Show that fn ! f in measure if and only if every subsequence of .fn/ has in turn a

subsequence that converges to f almost everywhere.
(f) Show that, if .X;A; �/ is complete and if fn ! f in measure, then f 2 L0.X/.
(g) Let .X;A; �/ D .R;M�; �/ and consider the functions fn WD 
Œn;nC1� for all n 2 N. Show

that fn ! 0 everywhere, but fn 6! 0 in measure. See, however, Problem 32 below.

29. Show that, if  is the counting measure onX WD Z; then convergence in measure is equivalent
to uniform convergence.

30. Let .X;A; �/ be a measure space with �.X/ < 1. For any f; g 2 L0.X;R/; define

d�.f; g/ WD inf
˚

" > 0 W �.fx 2 X W jf .x/� g.x/j > "g/ 	 "


:

(a) Show that d�.f; g/ D 0 if and only if f D g �-a.e.
(b) Show that d� induces a metric (still denoted by d�) on the quotient space L0.X;R/ WD

L0.X;R/=N ; where N WD ff 2 L0.X;R/ W f .x/ D 0 a.e.g.
(c) Show that d�.fn; f / ! 0 if and only if fn ! f in measure.
(d) Show that the metric space .L0.X;R/; d�/ is complete.

31. Let .X;A/ be a measurable space. Show that a map � W X ! R is simple if and only if
��1.BR/ � A is a finite �-algebra.

32. Let .X;A; �/ be a finite measure space and let f and .fn/1nD1 be measurable functions on X
such that fn ! f a.e.

(a) (Egorov’s Theorem) Show that, given any " > 0; there is an A 2 A such that �.Ac/ < " and
fn ! f uniformly on A.

(b) Show that fn ! f in measure. Hint: Given " > 0; let En WD fx 2 X W jfn.x/�f .x/j � "g
and show that lim.�.En// D 0.

33. Let .X;A; �/ be a measure space and f 2 L1.X/. Show that, if
R

E f d� D 0 for every
E 2 A; then f D 0 a.e. Hint: Consider the sets fx W f .x/ > 0g and fx W f .x/ < 0g.

34. Let .X;A; �/ be a measure space, f 2 L1.X/; .An/ 2 AN; and A WD S1
nD1 An.

(a) Show that, if .An/ is increasing; i.e., An � AnC1 for all n 2 N; then

Z

A

f d� D lim
n!1

Z

An

f d�:
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(b) Show that, if Aj \ Ak D ; for all j ¤ k; then

Z

A

f d� D
1
X

nD1

Z

An

f d�:

35. Let .X;A; �/ be a measure space and f 2 L1.X/. Show that, given any " > 0; there is an
A 2 A such that �.A/ < 1 and

R

Ac jf j d� < ".
36. Let .X;A; �/ be a measure space and f 2 L1.X/. Show that the measure �jf j.E/ WD
R

E jf j d� is absolutely continuous (with respect to �) in the sense that, given any " > 0, there is
a ı > 0 such that

E 2 A and �.E/ < ı H)
Z

E

jf j d� < ":

37. Let .X;A; �/ be a measure space and .fn/ a sequence in L0.X/ such that
P1

nD1

R jfnj < 1.
Show that

P1
nD1 fn.x/ converges almost everywhere to an integrable sum and that

Z

�

1
X

nD1

fn

�

d� D
1
X

nD1

Z

fn d�:

Deduce that, if fn � 0 for all n; then
P

n

R

fn d� < 1 implies
P

fn.x/ < 1 for almost all
x 2 X .

38. Let .X;A; �/ be a finite measure space and f 2 L0.X/. Define the map ˆ W .0;1/ !
Œ0;1� by ˆ.t/ WD �.fx 2 X W jf .x/j > tg/.
(a) Show that (even in the case �.X/ D 1), if

R jf jp d� < 1 for some p > 0; then ˆ.t/ 	
Ct�p for some constant C > 0 and all t > 0.

(b) Show that f 2 L1.X/ if and only if
P1

nD1 ˆ.n/ < 1.
(c) Show that, if there exist C > 0 and p > 0 such that ˆ.t/ 	 Ct�p for all t > 0; then

R jf jq d� < 1 for every q 2 .0; p/.
(d) Show that, if f 2 L1.X/; then limt!1 tˆ.t/ D 0.

39. Let .X;A; �/ be a measure space and f 2 L1.X/. Show that the set fx 2 X W f .x/ ¤ 0g has
�-finite measure; i.e., it is the countable union of a sequence of measurable sets of finite measure.

40. Let .X;A; �/ be a measure space and A; B 2 A. Show that, if �.A4B/ D 0; then for every
0 	 f 2 L0.X/; we have

R

A f d� D R

B f d�.

41. Let .X;A; �/ be a measure space and 0 	 f 2 L0.X/.

(a) Find conditions under which the measure �f .E/ WD R

E f d� is (i) finite and (ii) �-finite.
(b) Show that, if f is bounded, then L1

�.E/ � L1
�f
.E/ for each E 2 A. Show that the

boundedness of f is necessary.

42. Let .X;A; �/ be a measure space, f 2 L1.X/, and .An/ a decreasing sequence in A. Show
that, with A WD T1

nD1 An; we have
R

A f d� D limn!1
R

An
f d�.

43. Let .X;A; �/ be a measure space and f 2 L1.X/. For each ˛ > 0; define A˛ WD fx 2 X W
jf .x/j > ˛g. Show that lim˛!1

R

A˛
jf j d� D 0.

44. Let .X;A; �/ be a finite measure space, fn 2 L1.X/ for all n 2 N; and fn ! f uniformly
on X . Show that f 2 L1.X/ and

R

fn d� ! R

f d�.
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45. Let .X;A; �/ be a finite measure space and, for any f; g 2 L0.X/; define

d�.f; g/ WD
Z jf � gj
1C jf � gj d�:

(a) Show that d�.f; g/ D 0 if and only if f D g �-a.e.
(b) Show that d� induces a metric (still denoted by d�) on the quotient space L0.X/ WD

L0.X/=N ; where N WD ff 2 L0.X/ W f .x/ D 0 a.e.g.
(c) Show that d�.fn; f / ! 0 if and only if fn ! f in measure.
(d) Show that the metric space .L0.X/; d�/ is complete.

46 (Convergence Theorems for Convergence in Measure). Let .X;A; �/ be a measure space
and f; fn 2 L0.X/ for all n 2 N. Prove the Bounded Convergence Theorem (BCT), Fatou’s
Lemma (FL), the Monotone Convergence Theorem (MCT), and the Dominated Convergence
Theorem (DCT) for convergence in measure:

(a) (BCT) Suppose that �.X/ < 1; that .fn/ is uniformly bounded on X; and that fn ! f in
measure. Show that limn!1

R

fn d� D R

f d�. Hint: Given any " > 0; define En WD fx W
jfn.x/� f .x/j > "g and let n ! 1 in the inequality

Z

jfn � f j d� D
Z

Ecn

jfn � f j d�C
Z

En

jfn � f j d� 	 "�.X/C 2M�.En/;

where M D supfjfn.x/j W n 2 N; x 2 Xg.
(b) (FL) Suppose that fn � 0 for all n 2 N and fn ! f in measure. Then we have

R

f d� 	
lim infn!1

R

fn d�.
(c) (MCT) If fn � 0 for all n 2 N; .fn/ is increasing, and fn ! f in measure, then

limn!1
R

fn d� D R

f d�.
(d) (DCT) If fn ! f in measure and if jfnj 	 g for all n 2 N and some 0 	 g 2 L1.X/; then

f 2 L1.X/ and lim.
R

fn d�/ D R

.lim.fn// d�. Hint: For (b), (c), and (d), use Problem 28
(parts (b) and (c)), and the fact that

R

fn d� ! R

f d� if and only if every subsequence
.
R

fnk / has in turn a subsequence converging to
R

f d�.

47. Let .X;A; �/ be a finite measure space and f; fn 2 L0.X/ for all n 2 N. Show that fn ! f

a.e. if and only if, given any " > 0; we have

lim
n!1�

�

1
[

kDn

fx 2 X W jfk.x/� f .x/j � "g
�

D 0:

48. Let .X;A; �/ be a finite measure space and f 2 L0.X/.

(a) Show that limn!1
R jf jn d� exists (in RC) if and only if �.fx 2 X W jf .x/j > 1g/ D 0.

(b) Suppose that f n 2 L1.X/ for all n 2 N. Show that we have
R

f n d� D C for all n 2 N and
some constant C 2 R if and only if f D 
A (except possibly on a set of measure zero) for
some A 2 A.

49. Let .X;A; �/ be a measure space and g; fn 2 L0.X/ for all n 2 N. Suppose that jfnj 	 g

for all n; that gp 2 L1.X/ for some p > 0; and that fn ! f a.e. Show that jf jp 2 L1.X/ and
that limn!1

R jfn � f jp d� D 0. Hint: Use the Dominated Convergence Theorem.

50 (The Banach Spaces L
p
�.X;F/). Let .X;A; �/ be a measure space. Given any p 2 Œ1;1/;

let Lp
�.X;F/ (or Lp.X;F/) denote the set of all f 2 L0.X;F/; where F is either R or C; such

that jf jp 2 L1
�.X;F/. Now define Lp

�.X;F/ WD Lp
�.X;F/=N ; where N is the set of all f 2

L0.X;F/ with f .x/ D 0 for almost all x 2 X . For each f 2 Lp.X;F/; define its Lp-norm by

kf kp WD
�

Z

jf jp d�
�1=p

:
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(a) Show that Lp.X;F// is a vector space (over F). Hint: jf Cgjp 	 2p�1.jf jpCjgjp/. (Why?)
(b) (Hölder’s Inequality) Let p; q 2 .1;1/ with 1=p C 1=q D 1. Show that, given any f 2

Lp.X;F/ and g 2 Lq.X;F/; we have fg 2 L1.X;F/ and
Z

jfgj d� 	 kf kpkgkq:
Hint: Using that ab 	 ap=pCbq=q for any a; b � 0; show that

R jfgj 	 kf kpp=pCkgkqq=q.
In it, replace f by tf and g by g=t and minimize over t 2 .0;1/.

(c) (Minkowski’s Inequality) Show that, for any p � 1 and f; g 2 Lp.X;F/; we have f Cg 2
Lp.X;F/ and

kf C gkp 	 kf kp C kgkp:
Hint: For p > 1; note that jf C gjp 	 jf jjf C gjp�1 C jgjjf C gjp�1 and that we have
jf C gjp�1 2 Lq (where 1=q D 1� 1=p). Now apply Hölder’s inequality.

(d) Deduce that Lp
�.X;F/ is a normed space with the Lp-norm.

(e) Show that Lp
�.X;F/ is a Banach space. Hint: Follow the proof of Theorem 11.3.7.

(f) Show that, if �.X/ < 1; then Lp
�.X/ � L1

�.X/ for all p � 1.

51 (The Hilbert Space L2
�.X;F/). With notation as in the preceding problem, show that

L2
�.X;F/ is a Hilbert space with inner product

hf; gi WD
Z

X

f Ng d�:
In this case, Hölder’s inequality is reduced to the Cauchy–Schwarz inequality:

jhf; gij 	 kf k2kgk2:
52. Show that, if .X;A; �/ D .N;P.N/; /; where  denotes the counting measure, then
Lp.N;F/ is in fact the Banach space `p.N;F/ already introduced in Sect. 9.5 (Problem 9.5.#2).
More generally, considering the measure space .X;P.X/; / where  is the counting measure on
the set X; introduce the Banach spaces `p.X;F/.

53. Let .X;A/ be a measurable space and let MA denote the set of all positive measures on A.
Show that the binary relation   � is reflexive and transitive and that MA is directed with  in
the sense that for any pair of measures 1; 2 2 MA, there exists a measure � such that 1  �

and 2  �. In fact, given any measures 1; : : : ; n; there exists a measure � with j  � for
1 	 j 	 n.

54. Given any measures 1; 2; ; and � on a measurable space .X;A/ and any constants c1 � 0

and c2 � 0; prove the following: except possibly on a set of measure zero)

(a) � ? � H) � D 0.
(b) 1  � and 2  � imply c11 C c22  �.
(c) 1 ? � and 2 ? � imply c11 C c22 ? �.
(d) 1  � and 2 ? � imply 1 ? 2.
(e)   � and  ? � imply  D 0.

55. Let .k/k2N be a sequence of measures on a measurable space .X;A/ such that k.X/ 	 1

for all k 2 N, and define

�.A/ WD
1
X

kD1

2�kk.A/ 8 A 2 A:

Show that � is a measure and that we have k  � for all k 2 N.
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56 (Radon–Nikodym Derivatives). Let 1, 2, , �, and � be �-finite (positive) measures on a
measurable space .X;A/.
(a) Show that if   � and if f 2 L1

 ; then f .d=d�/ 2 L1
� and we have

Z

f d D
Z

f
d

d�
d�: (�)

(b) Show that if 1  � and 2  �; then we have 1 C 2  � and

d.1 C 2/

d�
D d1

d�
C d2

d�
:

(c) (Chain Rule) Show that if   � and �  �, then we have   � and

d

d�
D d

d�

d�

d�
� � almost everywhere.

(d) If   � and �  ; then

� d

d�

��d�

d

�

D 1 almost everywhere (with respect to either � or /:

57 (Lebesgue–Stieltjes Measures). Let G W R ! R be increasing and absolutely continuous
(i.e., absolutely continuous on any interval Œa; b� � R). Show directly that the Lebesgue–Stieltjes
measure �G is absolutely continuous (with respect to Lebesgue measure �) and find its Radon–
Nikodym derivative g WD d�G=d�.

58. Show that, if M and M 0 are separable metric spaces, then we have

BM�M 0 D BM 
 BM 0 :

Hint: Note that M 
M 0 is a separable metric space and hence a Lindelöf space (Definition 5.6.19).

59. Let X D Y D Œ0; 1�; � WD � is Lebesgue measure, and  is the counting measure. Let
f WD 
D; where D W f.x; y/ 2 X 
 Y W x D yg is the diagonal. Show that

R

f .x; y/ d.y/ D 1

for all x 2 X and that
R

Œ
R

f .x; y/ d.y/� d�.x/ D 1. Next, show that
R

f .x; y/ d�.x/ D 0

for all y 2 Y and hence that we have
R

Œ
R

f .x; y/ d�.x/� d.y/ D 0. Conclude that 
D is not
�˝ -integrable.

60. If X D Y D N; A D B D P.N/; and � D  is the counting measure on N; interpret
Fubini–Tonelli’s theorem in terms of double series of real numbers.

61. Show that, if f is continuous onR WD Œa; b�
Œc; d �; then, with dx WD d�.x/; dy WD d�.y/;

and dx dy WD d.�˝ �/.x; y/; we have

Z b

a

"

Z d

c

f .x; y/ dy

#

dx D
“

R

f .x; y/ dx dy D
Z d

c

"

Z b

a

f .x; y/ dx

#

dy:

62. Show that, if f 2 L1.Œ0; 1� 
 Œ0; 1�/; then we have

Z 1

0

	

Z x

0

f .x; y/ dy




dx D
Z 1

0

	

Z 1

y

f .x; y/ dx




dy:
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63. Consider the function

f .x; y/ WD
8

ˆ

<

ˆ

:

x2 � y2

.x2 C y2/2
if .x; y/ ¤ .0; 0/;

0 if .x; y/ D .0; 0/:

(a) Show that

Z 1

0

	

Z 1

0

f .x; y/ dy




dx D 	

4
;

Z 1

0

	

Z 1

0

f .x; y/ dx




dy D �	
4
:

Hint:
d

dt
Œt=.a2 C t 2/� D .a2 � t 2/=.a2 C t 2/2.

(b) Deduce that f is not integrable over R WD Œ0; 1�
 Œ0; 1� and that
’

R jf .x; y/jdx dy does not
exist.

64. Let Q WD Œ�1; 1� 
 Œ�1; 1� and define f on Q by f .x; y/ WD xy=.x2 C y2/2 if .x; y/ ¤
.0; 0/ and f .0; 0/ WD 0.

(a) Show that

Z 1

�1

	

Z 1

�1
f .x; y/ dy




dx D 0 D
Z 1

�1

	

Z 1

�1
f .x; y/ dx




dy:

(b) Show that
’

Q f .x; y/ dx dy does not exist. Hint: If it did, then
R 1

0 Œ
R 1

0 f .x; y/ dy� dx would
also exist. Show, however, that

Z 1

0

f .x; y/ dy D 1

2x
� x

2.x2 C 1/
.8x 2 .0; 1�/:

65. Use Fubini’s theorem and the fact that
R1
0 e�xt dt D 1=x; for all x > 0; to prove that

Z 1

0

sin x

x
dx D 	

2
:

66. Show that, if f .x; y/ WD ye�.1Cx2/y2 ; then

Z 1

0

h

Z 1

0

f .x; y/ dx
i

dy D
Z 1

0

h

Z 1

0

f .x; y/ dy
i

dx;

and use this to prove that

Z 1

0

e�x2 dx D
p
	

2
:

67. Let .X;A; �/ and .Y;B; / be �-finite measure spaces, f 2 L1
�.X/ and g 2 L1

.Y /; and

define h W X 
 Y ! R by h.x; y/ WD f .x/g.y/. Show that h 2 L1
�˝.X 
 Y / and

Z

h d.�˝ / D
�

Z

f d�
��

Z

g d
�

:
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68 (Convolution of Functions).

(a) Given f; g 2 L1.R/; show that
Z

R

jf .x � y/g.y/j dy < 1

for almost all x 2 R and, for each such x; define the convolution of f and g to be the function

.f � g/.x/ WD
Z

R

f .x � y/g.y/ dy:

(b) Show that f � g 2 L1.R/ and that we have

kf � gk1 	 kf k1kgk1:
Hint: By Problem 10.6#23, there are Borel functions f0; g0 with f D f0 and g D g0 almost
everywhere. Since the above integrals are unchanged if (for each x) we replace f and g by
f0 and g0; one may assume that f and g are Borel functions. With this assumption, and using
the fact that .x; y/ 7! x � y is continuous, show that the function .x; y/ 7! f .x � y/g.y/ is
Borel on R2. Now use Fubini’s theorem together with the translation invariance of Lebesgue
measure.

69 (Convolution of Borel Measures). Let � and  be two �-finite Borel measures on R.

(a) Show that, for any B 2 BR; we have

B2 WD f.x; y/ 2 R2 W x C y 2 Bg 2 BR2 :

(b) Show that the functions g.x/ WD .B � x/ and h.y/ WD �.B � y/; where B � t WD fb� t W
b 2 Bg; are Borel functions.

(c) Show that, with B and B2 as above,

.�˝ /.B2/ D
Z

R

.B � x/ d�.x/ D
Z

R

�.B � y/ d.y/:

(d) Define the convolution of � and  by

.� � /.B/ WD .�˝ /.B2/ .8B 2 BR/:

Show that � �  is a Borel measure on R2 and that � �  D  � �. Also show that, if
� D ı WD ı0 is the Dirac measure at x D 0; then we have

ı �  D :

(e) Show that, given any f 2 L1
��.R;BR/; we have

Z

R2
f .x C y/ d.�˝ /.x; y/ D

Z

R

f .t/ d.� � /.t/:

Hint: Use approximation by simple functions.
(f) Given any 0 	 f 2 L1.R/; the set function �f .B/ WD R

B f d� defines a finite Borel
measure on R. (Why?) Show that, if f; g 2 L1.R/ are nonnegative, then

�f � �g D �f �g;

where the convolution f � g is defined as in the preceding problem.
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70 (Fourier Transform of a Measure). Given a finite Borel measure � on R; define its Fourier
transform O� W R ! C by

O�.�/ WD
Z

R

eix� d�.x/:

(a) Show that O� is well defined; i.e., the above integral exists for each � 2 R.
(b) Show that, if  is another finite Borel measure on R; then we have

b� � .�/ D O�.�/O.�/;
where �� is the convolution of � and  defined in the preceding problem. Hint: Use Fubini’s
theorem.

71 (Ordinate Set, Area Under the Graph). Given a �-finite measure space .X;A; �/ and a
function f 2 L1.X; Œ0;1//; introduce the set A.f / WD f.x; y/ 2 X 
 R W 0 	 y 	 f .x/g;
called the (upper) ordinate set of f . Show that A.f / � A ˝ BR and that we have

.�˝ �/.A.f // D
Z

f d�:

Hint: Note that the map .x; y/ 7! .f .x/; y/ is measurable from .X 
 R;A ˝ BR/ to .R2;BR2 /

and that .z; y/ 7! z � y is continuous. Also, with the cross section Ax WD fy W .x; y/ 2 A.f /g;
we have

�.Ax/ D
(

f .x/ if x 2 A.f /;

0 if x 62 A.f /:

72. Bill and Barbara are among ten people seated at a round table. What is the probability that
they are seated next to each other?

73. Two fair dice are rolled and the sum of the outcomes is S . Find P.S D 9/I P.S �
4/I P.S < 10/I and P.S is an odd number/.

74. What is the probability that among 24 people, at least two have the same birthday? Hint: Look
at the “complementary event.”

75. In a shipment of 2,000 light bulbs, it is known that 4% are defective. If a random sample of
25 bulbs is selected, what is the probability that it contains three defective ones?

76. Show that, if fA1; : : : ; Ang is an independent set of events in �; then
Sn�1
kD1 Ak and An are

independent. Hint: Use induction.

77. Show that, if P.A/ D ˛ and P.B/ D ˇ > 0; then P.AjB/ � .˛ C ˇ � 1/=ˇ.

78 (Law of Multiplication). Show that, if .Ak/nkD1 is a sequence of events in � such that

P.
Tn�1
kD1 Ak/ > 0; then we have

P
�

n
\

kD1

Ak

�

D P.A1/P.A2jA1/P.A3jA1 \ A2/ � � �P.AnjA1 \ � � � \ An�1/:

79. Let A; B; and C be events in �. Show that

P.AjC/ � P.BjC/ and P.AjCc/ � P.BjCc/ H) P.A/ � P.B/:
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80 (Favorable). Given any events A; B � �; we say that A is favorable to B if P.A\ B/ �
P.A/P.B/. Show that A is favorable to B if and only if Ac is favorable to Bc .

81.

(a) Let A � � be an event. Show that, if A is independent of itself, then P.A/ D 0 or P.A/ D 1

and that, in this case, A is independent of every event B � �.
(b) Show that, if A � B � � are two independent events, then either P.A/ D 0 or P.B/ D 1.

82. Let � WD Œ0; 1� with Lebesgue measure and let ; ¤ Œa; b� ¤ �. Find all intervals I � �

such that fI; Œa; b�g is independent.

83. Box B1 contains nine red and six blue balls and box B2 contains five red and seven blue
balls. A ball is randomly picked from B1 and put in B2 and then, after mixing the balls, one ball is
randomly selected from B2.

(a) What is the probability that the selected ball is red?
(b) If the selected ball is red, what is the probability that the transferred ball was red? Hint:

Bayes’s formula.

84.

(a) Show that, if X � B.n; p/; then

PX.fkg/ D p

1� p

n� k C 1

k
PX.fk � 1g/ .k D 1; 2; : : : ; n/:

(b) Using the above formula and induction (starting with PX.f0g/ D .1�p/n), derive the formula
PX.fkg/ D �

n
k

�

pk.1� p/n�k for 0 	 k 	 n.

85. Let Xn � B.n; �=n/ for all n 2 N and some � > 0. Show that

lim
n!1P.Xn D k/ D �k

kŠ
e��:

86.

(a) Let X be a Poisson variable with parameter � > 0. Show that

PX.fk C 1g/ D �

k C 1
PX.fkg/ .k D 0; 1; 2; : : :/:

(b) Using the above formula and induction (starting with PX.f0g/ D e��), find PX.fkg/.
87 (Density of a Function of a Random Variable). Let X be an absolutely continuous variable
on � with (continuous) density fX .

(a) Find the density function of X2. Hint: Differentiate FX2.x/ D FX.
p
x/� FX.�p

x/.
(b) If X > 0; find the density of

p
X .

(c) Find the density functions of X3 and eX .
(d) Let g W R ! R be a differentiable function with g0.x/ ¤ 0 for all x 2 R. Show that g.X/ is

absolutely continuous with density

fg.X/.y/ D fX.g
�1.y//j.g�1/0.y/j:

Hint: Note that, if g is strictly increasing, then Fg.X/.y/ WD P.g.X/ 	 y/ D FX.g
�1.y//.
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88. If two points X and Y are randomly selected from Œ0; 1�; what is the probability that the
distance between them is at least 1=3? Hint: Find P.jX � Y j � 1=3/; where .X; Y / is a random
vector from the unit square R WD Œ0; 1�2.

89. Let X be a positive random variable on � such that

P.X > s C t jX > s/ D P.X > t/ .8s; t 2 Œ0;1//:

Show that X has an exponential distribution. Hint: Let ˆ.t/ WD P.X > t/ and use Problem
10.6.#57.

90. Let X � 0 be a random variable on � and n 2 N. Show that EŒXn� D n
R1
0 xn�1P.X >

x/ dx. Deduce, in particular, that EŒX� D R1
0 P.X > x/ dx. Hint: Note that xn D R x

0 nt
n�1 dt

and use Fubini–Tonelli’s theorem.

91. A discrete random variable X takes the values 1; 2; 3; : : : ; with probabilities 1=3, 1=9, 1=27,
: : :. What is EŒX�‹ What is EŒeX �‹

92 (Geometric Random Variable). A sequence of independent Bernoulli trials, each with
probability of success p; is performed. LetX be the number of trials until the first success occurs.

(a) Find PX.fkg/ for each k 2 N.
(b) Find EŒX� and Var.X/.

93 (Negative Binomial Variable). A sequence of independent Bernoulli trials, each with
probability of success p; is performed. LetX be the number of trials until k successes are obtained,
where k 2 N is fixed.

(a) Find PX.fng/.
(b) Find EŒX�.

94. Let X be a random variable on � with distribution function

FX.x/ WD
8

ˆ

<

ˆ

:

0 if x 	 �1;
aC b arcsin x if �1 < x 	 1;

1 if x � 1:

(a) Find the constants a and b.
(b) Find EŒX� and Var.X/.

95. Let a and b be arbitrary positive numbers and let Z WD .X; Y / be a randomly selected point
from the rectangle R WD Œ0; a�
 Œ0; b�. Show that the variables X and Y are independent.

96. Two random points X and Y from Œ0; 1� divide Œ0; 1� into three segments. What is the
probability that the three segments can be used to form a triangle? Hint: Consider the case X < Y

first and note that the Triangle Inequality must hold.

97. Let � WD Œ0; 1� with P WD �Œ0;1� (the restriction of Lebesgue measure to Œ0; 1�). Show that
the random vector .X; Y /.!/ WD .!; !/ is not absolutely continuous. Show, however, that the
marginal distributions PX and PY are both absolutely continuous. What are their densities?

98. Show that two random variables X and Y on � are independent if and only if

P.X < a; Y < b/ D P.X < a/P.Y < b/ .8a; b 2 Q/:
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99. Show that a sequence .Xn/1nD1 of discrete random variables on � is independent if and only
if, given any fi1; i2; : : : ; ikg � N and any xi1 2 Xi1 .�/; : : : ; xik 2 Xik .�/; we have

P
�

Xi1 D xi1 ; : : : ; Xik D xik
� D P

�

Xi1 D xi1
� � � �P �Xik D xik

�

:

100. Let X and Y be jointly continuous random variables on �. Show that the variables U WD
X C Y and V WD X � Y are also jointly continuous and we have

fU;V .u; v/ D 1

2
f.X;Y /

�

u C v

2
;

u � v

2

�

:

101. LetX � B.m; p/ and Y � B.n; p/ be independent binomial variables. Find the distribution
of Z WD X C Y .

102. Let X and Y be independent Poisson variables with parameters ˛ and ˇ; respectively. Show
that Z WD X C Y is also a Poisson variable. What is its parameter?

103. Let .Xk/nkD1 be independent random variables on � with distribution functions .Fk/nkD1.
If
W

Xk WD max.X1; : : : ; Xn/ and
V

Xk WD min.X1; : : : ; Xn/; find the distribution functions
FWXk and FVXk .

104. Let .�;A; P / D .D;D \ M2; 	
�1�2/; where D WD f.x; y/ 2 R2 W x2 C y2 	 1g is the

unit disk in R2; M2 is the �-algebra of Lebesgue measurable subsets of R2, and �2 is the Lebesgue
measure on R2. Let .X; Y / be a randomly selected point from D.

(a) Find EŒD�; where D.X; Y / WD p
X2 C Y 2 is the distance from the origin to .X; Y /.

(b) Are the variables X and Y independent?

105 (Covariance). Let X and Y be two random variables on � with finite variances. The
covariance of X and Y; denoted by Cov.X; Y /; is defined by

Cov.X; Y / WD E
�

.X �EŒX�/.Y �EŒY �/
�

:

(a) Show that, if X and Y have finite variances, then we have

Cov.X; Y / D EŒXY ��EŒX�EŒY �:

(b) Show that, if .Xj /mjD1 and .Yk/nkD1 are random variables on � with finite variances and if
.aj /

m
jD1 2 Rm and .bk/nkD1 2 Rn are arbitrary, then

Cov
�

m
X

jD1

ajXj ;

n
X

kD1

bkYk

�

D
m
X

jD1

n
X

kD1

aj bkCov.Xj ; Yk/:

(c) Show that, if .Xk/nkD1 are square integrable random variables and .ak/nkD1 2 Rn is arbitrary,
then

Var
�

n
X

kD1

akXk

�

D
n
X

kD1

a2kVar.Xk/C 2
XX

j<k

aj akCov.Xj ;Xk/:

106 (Uncorrelated Variables). LetX and Y be two random variables on�with finite variances.
We say that X and Y are uncorrelated if Cov.X; Y / D 0. More generally, given any index set J
and any family .Xj /j2J of random variables on � with finite variances, we say that the Xj are
uncorrelated if Cov.Xi ; Xj / D 0 for all distinct i; j 2 J .
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(a) Show that, if .Xk/nkD1 are uncorrelated and .ak/nkD1 2 Rn; then

Var
�

n
X

kD1

akXk

�

D
n
X

kD1

a2kVar.Xk/:

(b) Show that, given any square integrable variables X and Y; the random variables X C Y and
X � Y are uncorrelated if and only if Var.X/ D Var.Y /.

107 (Correlation Coefficient). Let X and Y be two random variables on � with finite, positive
variances �2.X/ and �2.Y /; respectively. The correlation coefficient ofX and Y is then defined by

�.X; Y / WD Cov.X; Y /

�.X/�.Y /
:

(a) Show that

Var

�

X

�.X/
˙ Y

�.Y /

�

D 2˙ 2�.X; Y /:

(b) Show that �1 	 �.X; Y / 	 1.
(c) Show that �.X; Y / D ˙1 if and only Y D aX C b for some constants a; b 2 R. Hint:

Cauchy–Schwarz inequality!

108. Let X and Y be jointly continuous on � with joint density

f.X;Y /.x; y/ WD
(

1
2

sin.x C y/ if x; y 2 Œ0; 	=2�;

0 otherwise:

Find the correlation coefficient �.X; Y /.

109. Let X and Y be independent variables on �

(a) Show that PXCY D PX � PY ; with the convolution � defined as in Problem 69.
(b) Show that, ifX is absolutely continuous with density fX ; thenZ WD XCY is also absolutely

continuous and has density

fXCY .z/ D
Z

fX.z � y/ dPY .y/:

(c) Show that, if X and Y are both absolutely continuous, then fXCY D fX � fY with the
convolution � as in Problem 68.

110.

(a) If X and Y are both uniformly distributed over Œ0; 1�; find the density function of X C Y .
(b) If X and Y are two exponential random variables with parameters ˛ D 1=2 and ˇ D 1=3;

respectively, find the density function of X C Y .

111 (Characteristic Function). Given a random variable X on �; its characteristic function,
denoted by �X ; is defined to be the Fourier transform of its probability distribution PX W

�X.t/ WD cPX.t/ D EŒeitX � D
Z

eitx dPX.x/:
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In particular, if X is absolutely continuous with density fX ; then

�X.t/ D
Z

fX.x/e
itx d�.x/ D bfX.t/:

(a) Show that �X is a continuous function with �X.0/ D 1; j�X.t/j 	 1; and �X.�t / D �X.t/.
(b) Show that, for any a; b 2 R; we have �aXCb.t/ D eitb�X .at/.
(c) Show that, if X and Y are independent, we have

�XCY D �X�Y :

(d) Find �X if (i) X is Bernoulli with P.X D 1/ D pI (ii) X � B.n; p/I (iii) X is Poisson with
parameter � > 0I (iv) X is uniformly distributed over Œa; b�I and (v) X is exponential with
parameter � > 0.

112 (Moments). Let X be a random variable on �. For each integer k 2 N; the kth moment
of X , denoted by mk D mk.X/; is the number

mk WD EŒXk� D
Z

xk dPX.x/;

providedEŒjX jk� WD R jxjk dPX.x/ < 1. In particular,m1.X/ D EŒX� andm2.X0/ D Var.X/;
where the centered variableX0 WD X�EŒX� is the deviation ofX from its mean. One also defines
m0 WD 1 even if P ŒX D 0� > 0.

(a) Show that, if mk D EŒXk� exists for some k > 0; then mj exists for all j with 0 	 j 	 k.
(b) Show that, if mk exists for some k > 0; then

mk D
�

i�k
dk

dtk
�X

�

.0/:

Hint: For k D 1; note that the Mean Value Theorem implies j.ei.tCh/X � eitX /=hj D jX j and
use the Dominated Convergence Theorem. For k > 1; use induction.

(c) Assuming thatmn D EŒXn� is finite, deduce from Taylor’s formula (Theorem 7.5.17) that we
have

�X.t/ D
n
X

kD0

mk

.i t/k

kŠ
C o.tn/ .t ! 0/:

Also show that, if mn is finite for all n 2 N; then

�X.t/ D
1
X

kD0

mk

.i t/k

kŠ

for all t in the interval of convergence of the series.
(d) Suppose that �.2n/X .0/ exists and is finite for some n 2 N. Show that the moments mk.X/

exist for 0 	 k 	 2n. Hint: With � WD �X ; consider the difference operators �h�.0/ WD
�.h/� �.0/; and �kC1

h �.0/ WD �h.�
k
h�/.0/ for all k 2 N as in Problem 6.8.#50. Show that

�2n
h e

itX jtD0 D .�1/n22neinhX sin2n.hX=2/;



12.6 Problems 653

and hence that

�.2n/.0/ D lim
h!0

�2n
h �.0/

h2n
D lim

h!0

Z

einhx
� sin.hx=2/

h=2

�2n

dPX.x/:

Now use the fact that limh!0 sin.hx=2/=.h=2/ D x and Fatou’s lemma to deduce that
EŒX2n� 	 j�.2n/.0/j.

(e) Suppose that X � N.0; 1/I i.e., that X is standard normal. Show that m2kC1 D 0 and
m2k D .2k/Š=kŠ2k for every integer k � 0. Deduce (using (c) and (d)) that

�X.t/ D
1
X

kD0

.�1/k .t
2=2/k

kŠ
D e�t2=2 .8t 2 R/:

113. Recalling that �.mC1/ D R1
0 xme�x dx D mŠ; fixm 2 N and letX be a random variable

with density

fX.x/ WD
8

<

:

xm

mŠ
e�x if x � 0;

0 otherwise:

Show that P.0 	 X 	 2.mC 1// > m=.mC 1/. Hint: Use Chebyshev’s inequality.

114 (Chebyshev’s Inequality). Let X � 0 be a random variable on �.

(a) Show that, for any p > 0 and " > 0; we have

P.X � "/ 	 EŒXp�

"p
:

(b) Deduce that, if EŒXp� < 1; then

lim
"!1 "pP.X � "/ D 0:

115. Show that, if X � 0 is a random variable on �; then

1
X

nD1

P.X � n/ 	 EŒX� 	
1
X

nD0

P.X � n/:

Deduce that EŒX� is finite if and only if
P1

nD1 P.X � n/ < 1.

116. Let .Xn/ be an independent sequence of Bernoulli variables with P.Xn D 1/ D pn and
P.Xn D 0/ D 1� pn for all n 2 N.

(a) Show that Xn ! 0 in probability if and only if lim.pn/ D 0.
(b) Show that Xn ! 0 almost surely if and only if

P1
nD1 pn < 1.

117 (Monte Carlo Method). Let .Xn/ be a sequence of randomly selected points from � WD
Œ0; 1�. Let f 2 L1.Œ0; 1�/ and let Sn.f / WD 1

n

Pn
kD1 f .Xk/; 8 n 2 N. Show that Sn.f / !

R 1

0 f .x/ d�.x/ in probability. Hint: weak law of large numbers.

118. Let X be uniformly distributed over Œ0; 2	� and define Xk WD sin.kX/ for all k 2 N. Show
that

lim
n!1

X1 CX2 C � � � CXn

n
D 0 almost surely:
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119. Let � WD .0; 1� with P D ��. For each ! 2 �; consider its binary expansion ! D
.0:d1d2d3 : : :/2; where (cf. Proposition 12.5.2) we always pick the nonterminating expansion if
there is also a terminating one. For each n 2 N; define Xn.!/ WD dn.

(a) Show that .Xn/1nD1 is a sequence of independent, identically distributed random variables with
P.Xn D 0/ D P.Xn D 1/ D 1=2 for all n 2 N. Hint: Given any .0:d1d2 : : :/2 2 .0; 1�; let
An WD f! W Xk.!/ D dk; 1 	 k 	 ng. Then

P.An/ D �

�

�d1

2
C d2

22
C � � � C dn

2n
;
d1

2
C d2

22
C � � � C dn

2n
C 1

2n

i

�

D 1

2n
:

Using this, deduce that, given any positive integers i1 < � � � < ik and any dij 2 f0; 1g; with
1 	 j 	 k; we have

P
�

Xi1 D di1 ; : : : ; Xik D dik
� D 1

2k
:

(b) If Sn WD X1 C � � � CXn; for each n 2 N; show that

lim
n!1

�Sn

n
� 1

2

�

D 0 almost surely:

(c) Show that, if f W Œ0; 1� ! R is continuous, then

lim
n!1EŒf .Sn=n/� D f .1=2/:

120 (Rademacher Functions). Let � D .0; 1� and, for each ! D .0:d1d2 : : :/2 as in the
preceding problem, define Rn.!/ D 2dn � 1. The Rn are called the Rademacher functions.

(a) Show that .Rn/1nD1 is an independent sequence of identically distributed variables with
P.Rn D 1/ D P.Rn D �1/ D 1=2 for all n 2 N.

(b) Show that

1
X

nD1

2�nRn.!/ D 2! � 1:

(c) Show that the random harmonic series

1
X

nD1

Rn

n

converges with probability 1.
(d) Show that

R 1

0 Rn.!/ d! D 0; for each n 2 N; and

Z 1

0

Rm.!/Rn.!/ d! D
(

0 if m ¤ n;

1 if m D n:

(e) (Vieta’s Formula) Find the characteristic functions �Rn.t/ and, using part (b), show that

sin t

t
D

1
Y

nD1

cos
�

t=2n
�

;

where the right side is defined by limn!1
Qn
kD1 cos.2�kt/.



Appendix A
Construction of Real Numbers

The purpose of this appendix is to give a construction of the field R of real numbers
from the field Q of rational numbers which, we assume, is known to the reader.
Let us point out that we did not give the axiomatic construction of the set N of
natural numbers from which one can first construct the set Z of integers and,
subsequently, the set Q of rationals. These constructions may be found in most
textbooks on abstract algebra, e.g., A Survey of Modern Algebra, by Birkhoff and
MacLane [BM77].

Most authors use the so-called Dedekind Cuts to construct the set of real
numbers from that of rational numbers. Since, however, the reader is now familiar
with sequences and series, it is more natural to use Georg Cantor’s method of
construction, which is based on Cauchy sequences of rational numbers, and can
be extended to more abstract situations. This abstraction, which is referred to as the
completion of a metric space, was discussed in Chap. 5. We begin our discussion by
introducing some notation and definitions.

Notation. We recall that the set of rational numbers is denoted by Q and the set
of positive rationals by QC D fr 2 Q W r > 0g: Also, the set of all sequences of
rational numbers, i.e., the set of all functions from N to Q; is denoted by QN:

Next, we define the Cauchy sequences of rational numbers. Although the
definition of Cauchy sequences was given earlier, since we have not yet constructed
the set of real numbers, we must insist that the " > 0 in our definition take on
rational values only.

Definition A.1 (Cauchy Sequences in Q). A sequence x 2 QN is called a Cauchy
sequence if the following holds:

.8" 2 QC/.9N 2 N/.m; n � N ) jxm � xnj < "/:

The set of all Cauchy sequences in Q will be denoted by C:
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656 A Construction of Real Numbers

Next, we define null sequences in Q: Again, this was defined earlier, but we must
be careful to use only rational " > 0 .

Definition A.2 (Null Sequences in Q). A sequence x 2 QN is called a null
sequence if the following holds:

.8" 2 QC/.9N 2 N/.n � N ) jxnj < "/:

The set of all null sequences in Q will be denoted by N :

Remark. Note that N is precisely the set of all rational sequences that converge to
zero and that we obviously have N � C: (Why?)

As we have seen, the set Q of rationals is dense in the set R of real numbers,
which we introduced axiomatically. It follows that each real number � is the limit of
a (not unique) sequence .xn/ of rational numbers. It is tempting, therefore, to take
such a sequence .xn/ as the definition of the real number �: The nonuniqueness of
.xn/ poses a problem, however, for two such sequences in fact represent the same �:
This motivates the following definition.

Definition A.3 (Equivalent Cauchy Sequences). We say that two Cauchy
sequences x; y 2 C are equivalent and write x � y; if and only if x � y 2 N :

Exercise A.1. Show that the relation � is indeed an equivalence relation on the
set C:

Notation. For each sequence x 2 C; its equivalence class is denoted by Œx� and, we
recall, is defined by Œx� D fy 2 C W y � xg: The set of all equivalence classes of
elements of C is denoted by C=N :

Definition A.4 (Real Number). The set R of real numbers is defined to be
R WD C=N : Thus � is a real number if � D Œx� for some x 2 C: The sequence
x 2 C is then called a representative of �: Clearly, if x and y both represent �; then
x � y 2 N .

Exercise A.2.

1. Show that a Cauchy sequence in Q is bounded.
2. Show that C is closed under addition and multiplication; i.e., 8x; y 2 C; we

have x C y; xy 2 C:
3. Show that N is an ideal in CI i.e., it is closed under addition and satisfies the

stronger condition that 8x 2 N and 8y 2 C we have xy 2 N : Hints: For
the addition, use an "=2-argument. For the multiplication, use the inequalities
jxmym�xnynj � jymjjxm�xnjC jxnjjym�ynj � Bjxm�xnjCAjym�ynj; for
some constants A; B 2 QC; where the second inequality follows from part (1).

Definition A.5 (Addition, Subtraction, Multiplication). Let � D Œx� and � D Œy�
be any real numbers. We define � C �; ��; � � �; and �� (or � � �) as follows:
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1. � C � WD Œx C y�;
2. �� WD Œ�y�;
3. � � � WD � C .��/ D Œx � y�; and
4. �� WD Œxy�:
Exercise A.3. Show that the definitions of � C � and �� are independent of the
representatives x and y of � and �; respectively. In other words, show that, if x � x0
and y � y0; then we have x C y � x0 C y0 and xy � x0y0: Hint: You will need
arguments similar to those needed in Exercise A.2.

Proposition A.1 (Ring Properties of R). The set R of real numbers is a commuta-
tive ring with identity. In other words, for all real numbers �; �; and �; we have

1. � C � D �C �;
2. .� C �/C � D � C .�C �/;
3. 9 0 2 R with 0C � D �;
4. 9 � � 2 R with � C .��/ D 0;
5. �� D ��;
6. .��/� D �.��/;
7. 9 1 2 R; 1 ¤ 0; with 1 � � D �; and
8. �.�C �/ D ��C ��:
Proof. The proofs of these properties are straightforward. For example, to prove (2),
note that if � D Œx�; � D Œy�; and � D Œz�; then .� C �/C � D Œ.x C y/C z�; while
�C.�C�/ D ŒxC.yCz/�: Since we obviously have .xCy/Cz D xC.yCz/ in C; (2)
follows. Note that the additive identity (“0” in (3)) is in fact 0 D Œ.0; 0; 0; : : :/� 2 N
and that the multiplicative identity (“1” in (7)) is 1 D Œ.1; 1; 1; : : :/�: Also, 1 ¤ 0 is
obvious, because the sequences .0; 0; 0; : : :/ and .1; 1; 1; : : :/ are not equivalent. ut
Proposition A.2. Let � W Q ! R be defined by �.r/ D Œ.r; r; r; : : :/�: Then
� is an injective “ring homomorphism.” In other words, � is a one-to-one map
satisfying �.r C s/ D �.r/C �.s/; �.rs/ D �.r/�.s/; �.0/ D 0; and �.1/ D 1;
8 r; s 2 Q:

Exercise A.4. Prove Proposition A.2.

Remark. By Proposition A.2, the map � is a field isomorphism of Q onto its image
�.Q/ � RI i.e., a one-to-one correspondence between Q and �.Q/ that preserves
all the algebraic properties of Q: Therefore, we henceforth identify the two sets and,
by abuse of notation, will write Q D �.Q/ � R: Based on this identification, the
field Q of rational numbers becomes a subfield of the field R of real numbers. Here,
by a field we mean a set F together with two operations “+” of addition and “�” of
multiplication, i.e., two mapsC W .x; y/ 7! xCy and � W .x; y/ 7! x �y; from F�F
to F; satisfying the nine (algebraic) axioms (A1 �A4; M1 �M4; D) stated for real
numbers in Sect. 2.1 of Chapter 2.

Proposition A.1 only shows that R is a commutative ring with identity. To prove
that R is actually a field, the only property we need to check is the existence of
reciprocals for nonzero real numbers (cf. Axiom .M4/ at the beginning of Chap. 2).
To this end, we shall need the following.
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Proposition A.3. Let � be a nonzero element of R: Then, there exists a rational
number r 2 QC and a representative x 2 C of � such that either xn � r 8n 2 N

or xn � �r 8n 2 N:

Proof. Let y 2 C be a representative of �: Since � ¤ 0; the sequence .yn/ is not
equivalent to .0; 0; 0; : : :/ and we have

.9" 2 QC/.8N 2 N/.9n � N/.jyn � 0j � "/: ()

On the other hand, .yn/ 2 C implies that

.9K 2 N/.m; n � K ) jym � ynj < "=2/: ()

Now, by (), we can find k � K such that jykj � ": Changing � to ��; if necessary,
we may assume that yk � ": Therefore, using (),

m � K ) jym � ykj < "=2 ) ym � yk � jym � ykj � " � "=2 D "=2:

Let xn WD "=2 for n < K; and xn D yn for n � K: It is then clear that � D Œ.xn/�

and that, with r WD "=2; we have xn � r for all n 2 N. ut
Definition A.6 (Positive and Negative Cauchy Sequences). We say that a
sequence x 2 C is positive (resp., negative) if it satisfies the first (resp., second)
alternative in Proposition A.3. The set of all positive (resp., negative) sequences in
C is denoted by CC (resp., C�).

Remark. It is obvious that the two alternatives in Proposition A.3 are mutually
exclusive, i.e., that CC \ C� D ;: Moreover, the condition in the first (and hence
also second) alternative needs only be satisfied ultimately; i.e., it can be replaced by

.9r 2 QC/.9N 2 N/.n � N ) xn � r/:

Indeed, one can always replace x by the equivalent sequence x0 defined by x0
k WD

r 8k < N and x0
k WD xk 8k � N:

Proposition A.4. We have C D CC[ N [C�; where the union is disjoint. In other
words, fCC;N ; C�g is a partition of C:

Proof. This is an obvious consequence of Proposition A.3. ut
We are now going to prove that R is indeed a field.

Theorem A.1. The set R of real numbers is a field. In other words, in addition to
the ring properties (1)–(8) of Proposition A.1, we also have the following:

.8� 2 R n f0g/.9 1=� 2 R n f0g/.� � .1=�/ D 1/:
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Proof. Suppose that � 2 R n f0g: By Proposition A.3, we can then find r 2 QC
and a representative .xn/ of � such that jxnj � r 8n 2 N: If we can show that
.1=xn/ 2 C; then, setting 1=� WD Œ.1=xn/�; we clearly get � � .1=�/ D 1: However,
.xn/ 2 C implies

.8" 2 QC/.9N 2 N/.m; n � N ) jxm � xnj < "r2/:
Therefore,

m; n � N ) j1=xm � 1=xnj D jxm � xnjjxmjjxnj <
"r2

r2
D ";

which proves indeed that .1=xn/ 2 C and completes the proof. ut
Having established the field properties of R;we now turn our attention to its order

properties. Recall that this was treated axiomatically (cf. Axioms .O/1�.O/3 at the
beginning of Chap. 2) by means of a subset P � R called the subset of positive real
numbers. In what follows we will define this subset and will denote it by RC; rather
than P:

Definition A.7 (Positive and Negative Real Numbers). We define a real number
� 2 R to be positive (resp., negative) and write � > 0 (resp., � < 0), if � D Œx� for
some x 2 CC (resp., x 2 C�). The set of all positive (resp., negative) real numbers
will be denoted by RC (resp., R�).

Proposition A.5. We have R� D �RC WD f� 2 R W �� 2 RCg; and the set RC of
positive real numbers satisfies the following properties:

1. RC C RC � RC;
2. RC � RC � RC; and
3. R D RC [ f0g [ R�; where the union is disjoint (Trichotomy).

Exercise A.5. Prove Proposition A.5.

Now that the existence of the set RC of positive real numbers has been
established and that, in view of Proposition A.5, the order axioms .O1/; .O2/; and
.O3/ are satisfied, all the order properties of the set R of real numbers can be proved
as before. For instance, given �; � 2 R; we write � � � to mean � � � 2 RC [ f0g
and the set R is then totally ordered by the ordering � :
Remark.

1. We have defined the notion of Cauchy sequence once for (axiomatically defined)
real numbers in Chap. 2 and again, in this appendix, for rational numbers (which
are real numbers), using exclusively rational " > 0: To show that, for rational
sequences, the two definitions are identical, we need only show the following:

.8" 2 RC/.9"0 2 Q/.0 < "0 � "/:

This, however, follows at once from Proposition A.3.
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2. Since the set R we have constructed satisfies all the algebraic and order
properties treated axiomatically in Chap. 2, the notion of convergent sequence
can be defined as before. In other words, a sequence .�n/ 2 RN of real numbers
converges to the limit � 2 R (in symbols lim.�n/ D �/; if the following holds:

.8" 2 RC/.9N 2 N/.n � N ) j�n � �j < "/:

Our construction of real numbers was motivated by the intuitive idea that a real
number should be the limit of a convergent sequence of rationals. The following
proposition shows that this is indeed the case.

Proposition A.6. Let � be a real number. For a sequence x 2 C to be a
representative of �; it is necessary and sufficient that lim.xn/ D �:
Proof. Suppose that � D Œx�; and let " 2 RC be given. Then, we can find "0 2 QC
with "0 � ": We can also find N 2 N such that

m; n � N ) �"0 < xm � xn < "0: ()

Given m � N; the real number xm � � is the class of the sequence .xm � x1; xm �
x2; : : :/ which, using ./, can be replaced by an equivalent one, .yn/ 2 C; such that
xm � � D Œ.yn/� and �"0 < yn < "0 8n 2 N: Therefore, �"0 < xm � � < "0; and
hence jxm� �j < ": This shows that we have lim.xn/ D �: Conversely, suppose that
lim.xn/ D � and that � D Œ.yn/� for a sequence .yn/ 2 C: Then, as we just proved,
lim.yn/ D �: It then follows that .xn/ � .yn/ (why?), and we have � D Œ.xn/�: ut

All the algebraic and order properties we have proved for the set R WD C=N
are also shared by its subfield Q of rational numbers. We are finally ready to
prove the completeness of R which, in the axiomatic treatment, was called the
Supremum Property or Completeness Axiom. This property is not satisfied by the
subfield Q: Since the Supremum Property is equivalent to Cauchy’s Criterion [as
was pointed out in Remark 2.2.47 (2)], all we need is to prove this criterion for our
set R WD C=N :

Theorem A.2 (Cauchy’s Criterion). A sequence .�n/ 2 RN is convergent if and
only if it is a Cauchy sequence.

Proof. The necessity of the condition is obvious, as we saw in the proof of
Theorem 2.2.46. To prove the sufficiency, note that, by Proposition A.6, for each
n 2 N; we can find a rational number xn 2 Q (recall that xn D Œ.xn; xn; : : :/�) such
that j�n � xnj < 1=n: Now

.8" 2 RC/.9N 2 N/.m; n � N ) j�m � �nj < "=3/:
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Thus, if m; n � maxfN; 3="g; then

jxm � xnj � jxm � �mj C j�m � �nj C j�n � xnj

<
1

m
C "

3
C 1

n
� "

3
C "

3
C "

3
D ";

and hence .xn/ 2 C: Let � D Œ.xn/�. We then have lim.xn/ D � and, since
lim.�n � xn/ D 0, we get lim.�n/ D �. ut
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Index

A
Abel’s partial summation formula, 71
Abel’s Test, 72
Abel’s Theorem, 74, 372
Abelian (commutative), 18
absolute continuity, 505
absolute value, 42, 346
absolutely continuous, 179, 344, 605
absolutely continuous function, 559
absolutely convergent series, 67
absolutely summable, 81
accumulation point, 52, 186
additive (function) , 142
adjoint operator, 461
aleph naught (@0), 30
algebra, 22

�-, 5
Banach, 420
Borel, 472
commutative, 22
division, 22
normed, 412
sub-, 22

algebra of sets, 5
almost all (a.a.), 307
almost everywhere (a.e.), 307, 577
almost surely (a.s.), 617
almost uniform convergence, 550
alternating series, 72
angular point, 243
antiderivative (primitive), 324
Appolonius’ identity, 460
approximate identity, 408
approximation (uniform), 192
Archimedean Property, 46
arcwise connected, 231

area under the graph, 294, 647
Arithmetic-Geometric Means Inequality, 43,

289
Arzelà–Ascoli Theorem, 449
associativity, 17, 84
asymptote

horizontal, 112
vertical, 110

at random, 617
atom, 638
Average Value, 337
Average Value Theorem, 502
Axiom of Choice, 10, 30

B
B.n; p/, 623
BL0.E/; BL0

0.E/, 492
BL1.E/; BL1.E/, 493
Baire Category Theorem, 194
Baire metric, 235
ball

closed, 185
open, 185

Banach
the space c0 of, 420

Banach algebra, 420
Banach space, 420
Banach spaces

classical, 540
Banach’s Fixed Point Theorem, 210, 422
Banach–Steinhaus Theorem, 428
base

countable, 190
Basic Counting Principle, 24
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basis, 22
orthogonal, orthonormal, 439
Schauder, 456

Bayes’s formula, 619
Bernoulli

random variable, 622
sequence, 616
trial, 616

Bernoulli numbers, 406
Bernoulli polynomials, 406
Bernoulli’s inequality, 43, 260
Bernstein Approximation Theorem, 172, 636
Bernstein polynomials, 172
Bernstein’s Theorem, 404
Bessel’s inequality, 386, 438, 442
Best Approximation, 386, 440
big O , 121
binary expansion, 49
binary operation, 17
binomial coefficients, 25, 371
Binomial Formula, 25
binomial random variable, 623
Birkhoff and MacLane, 17
Bisection Method, 156
Bolzano–Weierstrass Property, 218
Bolzano–Weierstrass Theorem, 59
Borel algebra, 472
Borel function, 522, 593
Borel set, 472
Borel–Cantelli Lemma

First, 620
Second, 620

bound
least upper, greatest lower, 9
upper, lower, 9

boundary, 188
point, 188

bounded
above, below, 10
essentially, 546
function, 17
pointwise, 450
uniformly, 80, 450

bounded away from zero as, 123
Bounded Convergence Theorem, 510, 642
bounded functions

metric space of, 192
bounded inverse, 457
bounded set, 10, 185, 417
bounded variation, 330
bounded, unbounded (sequence), 53

C
Cn, C1, 268
Calderon’s proof

of Steinhaus’s Theorem, 571
canonical projection, 14, 427, 430
canonical representation, 479
Cantor set, 134, 135

generalized, 308
Hausdorff dimension of, 583
measure of, 308

Cantor’s diagonal method, 447
Cantor’s ternary function, 140, 143
Cantor’s Theorem, 34, 193
Cantor–Bendixon Theorem, 195
Carathéodory’s definition, 584
Carathéodory’s Theorem, 245
cardinal number (or cardinality), 30
Cartesian product, 6, 29
Cauchy in measure, 548, 640
Cauchy product, 73, 86

Abel’s Theorem on, 373
Cauchy sequence, 60, 192

negative, 658
positive, 658

Cauchy’s Condensation Theorem, 67
Cauchy’s Criterion, 60, 62, 81, 82, 106, 111,

348, 441, 533, 660
uniform, 352

Cauchy’s functional equation, 129, 142, 520
Cauchy’s inequality, 43, 349
Cauchy–Hadamard Theorem, 363
Cauchy–Schwarz inequality, 77, 321, 384, 433,

643
Cauchy-Schwarz inequality, 541
chain (totally ordered set), 9
chain connected, 239
Chain Rule, 251
Change of Variables, 327, 626, 630
characteristic function, 16

of a random variable, 651
characterization of intervals, 47
Chebyshev’s Inequality, 546
Chebyshev’s inequality, 524, 598, 632, 653
choice function, 29
class, 8

equivalence, 8
representative of a, 8

class Cn (function of), 268
classical Banach spaces, 540
closed ball, 185
Closed Graph Theorem, 223, 430
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closed range, 457
closed set, 51, 186
closure, 100

relative, 190
closure (of a set), 188
cluster point, 100, 188
coin-tossing, 616
commutative ring, 19
compact, 131, 216

countably, 218
Fréchet, 218
relatively, 216
sequentially, 218

compact map, 423
compact operator, 423, 450
compact support, 369
compactness, 217
complement, 2, 456
complement (of a subspace), 21
complemented, 456
complete, 192
Completeness Axiom (Supremum Property),

45
completion, 213, 460

of a normed space, 421
complex conjugate, 349
complex number, 345
composite function, 14
composition, 7

of relations, 7
concave function, 278
condensation point, 195, 235
conditional probability, 618
conditionally convergent series, 67
congruence modulo n, 7
conjugate linear, 433
connected (metric space), 226

arcwise, 231
locally, 230

connected component, 229
connected, disconnected, 133
content zero (set of), 300
continuity

at a point, on a set, 198
global definition of, 200
sequential definition of, 142, 199

continuous, 140, 198
jointly, 206
separately, 206

Continuous Extension Theorem, 162
continuous extensions, 211
continuum (c), 30
contraction (mapping), 163, 208, 422
contractive map, 178, 238

contractive sequence, 60
convergence

absolute, 67, 532
almost surely, 634
almost uniform, 550
conditional, 67, 532
in measure, 548
in probability, 634
interval of, 363
locally uniform, 515
normal, 355
of a sequence, 51
of Fourier series, 392
of series, 61
pointwise, 349
radius of, 362
uniform, 351, 515
weak, 570

convergence in measure, 548, 640
convergent

weakly, 459
convergent, divergent, 51
convergent, divergent (series), 61
convex function, 278
convex hull, 455
convex set, 239, 416
convolution, 409
convolution of Borel measures, 646
convolution of functions, 646
correlation coefficient, 651
cosine function, 377
countable base, 190
countable set, 30
countably compact, 218
countably infinite, 30
covariance, 650
cover

open, 131, 216
pointwise finite, 238

Criterion
Cauchy’s, 60
Dini’s, 392
Lebesgue’s Integrability, 312
Lusin’s, 512

Cross Sections, 207

D
Darboux integrals, 293
Darboux sum, 292
Darboux’s Theorem, 256, 297
De Moivre’s formula, 378
De Morgan’s Laws, 3
decimal expansion, 49
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decreasing, 98
degenerate interval, 45
dense, 47, 190

nowhere, 134
density, 609
density function, 624

joint, 629
density of Q (in R), 47
denumerable, 30
derivative, 242

left, right, 243
partial, 536
Radon-Nikodym, 609
Schwarzian, 286
symmetric, 285

derivatives
Dini, 554

derived set, 234
diagonal, 7, 184
diameter, 185
diffeomorphism, 284

Cn-, 269
difference operator, 288
difference set, 2
differentiability of inverse functions, 253
differentiable, 242

n-times, 267
n-times continuously, 268
infinitely, 268
uniformly, 286

Differential Calculus, 250
differential equation

Legendre’s, 287
differential operator, 276

symbol of, 276
differentiating under the integral sign, 537
differentiation

term-by-term, 360
dilation, 412
dimension, 22

orthogonal, 444
Dini derivatives, 554
Dini’s Criterion, 392
Dini’s Theorem, 353, 355
Dirac measure, 577
Dirac sequence, 408
direct (or Cartesian) product, 6, 29

infinite, 29
direct image, 13
direct sum, 21, 456
directed set, 12, 579
Dirichlet function, 143, 296
Dirichlet’s integral, 390
Dirichlet’s Kernel, 388

Dirichlet’s Test, 72, 567
Uniform, 401

Dirichlet’s Theorem, 88
discontinuity

infinite, 148
jump, 148
of the first kind, 148
of the second kind, 148
removable, 148

discontinuous, 140
discrete, 145

random variable, 622
distance (metric), 182

Hausdorff, 233
in R, 51
transported, 205

distribution function, 582
cumulative, 590
of a random variable, 623

divergent
sequence, 191
series, 61

division algebra, 22
Division Algorithm, 27
division ring, 19
domain, 6
Dominated Convergence Theorem, 509, 603,

642
domination (set-), 32
double, multiple (sequence), 79
double, multiple (series), 79
du Bois–Raymond Test, 402
dual

(algebraic), 415
(topological), 418

E
EŒX�, 627
"-neighborhood, 51
e (natural base), 65

irrationality of, 66
Edelstein’s Theorem, 238
Egorov’s Theorem, 516, 640
eigenspace, 462
eigenvalue, 462
eigenvector, 462
element, 1

maximal (minimal), 9
elementary functions, 247

derivatives of, 247
elementary set, 611
elementwise method, 2
enumeration, 30
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envelope
upper, lower, 142

Epsilon-net, 220
equation

Kepler’s, 178
equicontinuous, 447

uniformly, 447
equivalence class, 8
equivalent (or equipotent, equipollent) sets, 30
equivalent functions, 119
equivalent metrics, 187, 205
equivalent norms, 413, 418
essential range, 571
essential supremum, 546, 604
essentially bounded, 546
Euclidean n-space, 30, 183
Euler’s �-function, 28
Euler’s Beta Function, 341
Euler’s Constant, 89
Euler’s formula, 378
Euler’s Theorem, 284
event, 617
events

independent, 618
limsup, liminf of, 620

eventually, 620
expansion

binary, 49
decimal, 49
ternary, 49

expansive map, 178, 238
expectation, 627
experiment, 616
exponential function

complex, 373
derivative of, 248
general, 376
real, 375

extended real line, 50, 100, 205
extension

trivial, 481
Extension Theorem, 586
exterior, 188

point, 188
extrema

global, 255
local, 255, 288

Extreme Value Theorem, 153, 222

F
F. Riesz, 554
F. Riesz’s Lemma, 427
Falconer, 583

Fatou’s Lemma, 506, 601, 642
Fatou’s lemma, 572
favorable, 648
Fejér’s integral, 391
Fejér’s Kernel, 388, 409
Fejér’s Theorem, 395
Fermat’s Theorem, 255
Fermat, Pierre de, 302
fiber

horizontal, vertical, 207
horizontal, 232
vertical, 232

field, subfield, 20
finite (real number), 50
Finite Intersection Property, 174, 216
finite rank linear map, 457
finite set, 16
finite-dimensional, 21
first category (meager), 190
First Comparison Test, 63
First Fundamental Theorem, 324
First Fundamental Theorem of Calculus

Lebesgue’s, 561
Fixed Point Theorem, 155, 166
Formula

Binomial, 25
Multinomial, 25
Taylor’s, 273

Fourier coefficient, 384, 440
Fourier series, 385, 440
Fourier Transform, 544
Fourier transform, 569

of a measure, 647
Fréchet compact, 218
fractional powers (roots), 47
Fredholm integral equation, 422
Fredholm operator, 457
Fresnel integrals, 568
Fubini–Tonelli Theorem, 614
function, 13

nth iterate of, 238
absolutely continuous, 179, 344, 559
absolutely summable, 81
additive, 142
Borel, 522, 593
bounded above, below, 17, 97
bounded, unbounded, 17, 97
Cantor’s ternary, 140
characteristic, 16
choice, 29
complex exponential, 373
composite, 14
continuous, 140, 192, 198
contractive, 178, 238
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function (cont.)
convex, concave, 278
differentiable, 242
Dirichlet, 143, 296
discontinuous, 140
distribution, 582
domain, range of, 13
Euler’s Beta, 341
expansive, 178
extended real-valued, 50
Gamma, 535
general exponential, 376
general power, 376
graph of, 201
greatest integer, 148
homogeneous, 284
identity, 14, 146
increasing at a point, 125
increasing, decreasing, 98
indicator, 16
integrable, 601
inverse of, 14
jump, 150
Lebesgue measurable, 481
left continuous, 147
limit of, 100, 196
linear, 142
Lipschitz, 163, 208, 260
maximum, minimum of, 98
measurable, 593
monotone, 98
natural logarithm, 375
nowhere differentiable, 361
of bounded variation, 330
one-to-one (injective), 14
onto (surjective), 14
oscillation of, 142, 236
periodic, 144
piecewise continuous, 156, 301
piecewise differentiable, 397
piecewise linear, 168, 192, 301
piecewise monotone, 156
polynomial, 192
rational, 146
real analytic, 367
real exponential, 375
regulated, 303
Riemann Zeta, 407
right continuous, 147
right differentiable, 243
sawtooth, 360
simple, 479, 595
sine, cosine, 377
singular, 573

step, 168, 192, 301
subexponential, 286
sublinear, 285
summable, 79
support of, 545
supremum, infimum of , 98
total variation, 334
uniformly continuous, 159, 208
unordered sum of, 79
with compact support, 545

functions
equivalent, 119
trigonometric, 377

G
Gamma function, 535
Gauss’s Test, 70
geometric series, 62

ratio of, 62
Geometric-Harmonic Means Inequality, 87
global extrema, 255
Gram–Schmidt Orthogonalization, 440
graph, 201
greatest common divisor (gcd), 27
greatest integer function, 148
greatest lower bound (inf), 9
Gronwall’s inequality, 260
group, 17

Abelian (commutative), 18
symmetric, 18

H
Hölder’s inequality, 541
Hahn–Banach Theorem, 430
Halmos, 17, 29, 474
harmonic series, 62

alternating, 68
Hausdorff dimension, 582

of the Cantor set, 583
Hausdorff distance, 233
Hausdorff measure, 587
Hausdorff outer measure, 582
Hausdorff–Lennes separation condition, 227
Heine–Borel Theorem, 132
Hellinger–Toeplitz Theorem, 461
Herstein, 17
higher derivatives, 267
Hilbert space, 433, 460
Hilbert spaces

L2
�.X;F/, 643

`2.J;F/, 444
isomorphic, 444
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Hölder’s inequality, 282, 454, 643
homeomorphic, 158, 204
homeomorphism, 158, 204, 223
Homeomorphism Theorem, 159
homogeneous, 284
homomorphism, 24
Hörmander’s Generalized Leibniz Rule, 277
horizontal asymptote, 112
horizontal fiber, 232
hyperplane, 437

I
ideal, 20

maximal, 36
identity element, 17
identity function, 14
image (direct, inverse), 13
image (range), 418
imaginary part, 349
imaginary unit, 346
improper Riemann integral, 530
Inclusion-Exclusion Principle, 26, 521
increasing, 98
increasing at a point, 125
increasing, decreasing (sequence), 53
indefinite integral, 324
independent events, 618
independent families of events, 619
indeterminate forms, 117
index set, 29
indicator function, 16
Induction

Principle of Mathematical, 11
Principle of Strong, 11
Principle of Transfinite, 11

inequality
Arithmetic-Geometric Means, 43, 289
Arithmetic-Harmonic Means, 289
Bernoulli’s, 43, 260
Bessel’s, 386, 438, 442
Cauchy’s, 43
Cauchy–Schwarz, 77, 321, 384, 433, 643
Cauchy-Schwarz, 541
Chebyshev’s, 524, 546, 598, 632, 653
Geometric-Harmonic Means, 87
Gronwall’s, 260
Hölder’s, 282, 289, 454, 541, 643
Jensen’s, 278, 338, 524
Kolmogorov’s, 632
Landau’s, 287
Lyapunov’s, 339
Markov’s, 631
Minkowski’s, 78, 282, 289, 433, 454, 542,

643

Poincaré, 407
Poincaré-Wirtinger, 339
Power Mean, 289
Sobolev, 408
Triangle, 42, 43, 411
ultrametric, 184
Weighted Arithmetic-Geometric Means,

289
Young’s, 338

Infimum Property, 45
infinite limit, 57
infinite set, 16
infinite-dimensional, 21
infinitely often, 620
infinitesimal, 122

order of, 124
principal part of, 124

infinity (˙1), 50
initial segment, 11
injective, 14
inner product, 432
inner regularity, 512
integers, 4
integrable function, 294, 601

absolutely, 295
integral

indefinite, 324
Lebesgue, 492, 495, 498, 528
linearity of , 602
lower Darboux, 293
Riemann, 294
upper Darboux, 293

integral equation
Fredholm, 422

integral operator, 450
Integral Test (Cauchy’s), 336
integration

by parts, 328
by substitution, 327
term-by-term, 358, 399

Integration by Substitution, 328
interchanging limit and integral, 536
interchanging the order of integration, 537
interior, 188

point, 100, 188
relative, 190

Intermediate Value Property, 154, 256
Intermediate Value Theorem, 154
Interpolation

Lp , 570
intersection, 2
interval, 44

bounded, unbounded, 44
endpoint(s) of, 44
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interval (cont.)
length of, 306
open, half-open, closed, degenerate, 44

Interval Additivity Theorem, 315
interval of convergence, 363
inverse element, 17
inverse function, 14

derivative of, 253
Inverse Function Theorem, 259
inverse image, 13
irrationality of

p
2, 47

irrationality of e, 66
isolated point, 52, 186
isometric, 204
isometric isomorphism, 418, 444
isometry, 204, 418
isomorphic

algebras, 24
fields, 24
groups, 24
rings, 24
vector spaces, 24

isomorphic (topologically), 418
isomorphism, 24
isomorphism (topological), 418
iterated sum, 84

J
Jensen’s inequality, 278, 338, 524
joint density, 629
joint distribution, 629
jointly continuous, 206
Jordan Decomposition Theorem, 335
Jordan outer measure, 468
Jordan, Camille, 330
jump (of a function), 148
jump function, 150

K
Kelley, John, 295
Kepler’s equation, 178
kernel

Dirichlet’s, 388
Fejér’s, 388, 409
Landau’s, 408
Poisson, 409

kernel (null space), 418
Kolmogorov, 616
Kolmogorov’s inequality, 632
Kronecker’s delta, 16
Kronecker’s lemma, 71
Kummer’s Test, 69

L
L0.E;C/, L0.E;C/, 486
L0.E;R/, L0.E;R, 483
L1 space, 604
L1 spaces, 547
L1-norm, 604
Lp interpolation, 570
Lp norm, 540, 604
Lp spaces, 540, 604
Lp
�.X;F/, 642

L0.E;R/, L0.E;R, 481
L1.E/; L1.E;R/; L1.E/; L1.E;R/, 498
L1.E;C/; L1.E;C/, 500
L1.E;RC/; L1.E;RC/, 497
L1
� .X;F/, 604

Lp.E;F/, 540
Lp
�.X;F/, 604

`1, `2, `1, 233
`2, 77
L0.X; Y /, 593
L1�.X;R/, L1�.X;C/, 601
Lagrange’s identity, 347
Lagrange’s remainder, 274
Landau’s inequality, 287
Landau’s Kernel, 408
Landau’s o, O, 121
lattice, 12, 451

distributive, 12
lattice identities, 12
Law of Multiplication, 647
least upper bound (sup), 9
Lebesgue covering property, 238
Lebesgue decomposition, 608
Lebesgue integrable (function), 601
Lebesgue integrable function, 498
Lebesgue integral, 492, 495, 498, 528, 601

general, 498
lower, 490
of a nonnegative function, 596
of bounded functions, 492
of nonnegative functions, 495
upper, 490

Lebesgue Measurable, 471
Lebesgue measurable function, 481
Lebesgue Measure, 471
Lebesgue measure

completeness of, 474
Lebesgue measure

Regularity of, 512
Lebesgue number, 219
Lebesgue outer measure, 467
Lebesgue sum, 528
Lebesgue’s 1st FTC, 561
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Lebesgue’s 2nd Fundamental Theorem, 563,
566

Lebesgue’s Covering Lemma, 218
Lebesgue’s Differentiation Theorem, 555, 558
Lebesgue’s Integrability Criterion, 312, 530
Lebesgue–Stieltjes

measure, 587
outer measure, 582

Lebesgue-Radon-Nikodym theorem, 609
left continuous, 147
left limit, right limit, 107
Legendre’s differential equation, 287
Legendre’s Polynomials, 287
Leibniz Rule, 268

Hörmander’s Generalized, 277
Leibniz’s Test, 72

Uniform, 402
Lemma

Lebesgue’s Covering, 218
lemma

Fatou’s, 506
Kronecker’s, 71
Riemann’s, 387
Riemann–Lebesgue, 544
Rising Sun, 555

length, 135
Lerch’s Theorem, 338
L’Hôpital’s Rule, 262
limit, 51, 191

infinite, 57, 109
left, right, 107
one-sided, 107
properties of, 103
sequential definition of, 103, 197
uniqueness of, 191
upper, lower, 58, 141

limit (of a function), 100
Limit Comparison Test, 64
limit point, 52, 100, 186
Limit Theorems, 55
lim sup, lim inf, 58
Lindelöf, 130
Lindelöf property, 219
Lindelöf space, 220
linear, 142
linear combination, 21
linear functional, 415
linear map, 24, 415

bounded, 418
kernel of, 418
range of, 418

linear operator, 415
linearly independent, 21
Lip, Lip˛ , 163, 208, 420

Lipschitz, 163, 208, 260, 420
condition, 163
constant, 163, 208
locally, 163, 210
of order ˛, 163

little o, 121
Littlewood’s Theorem, 288
local extrema, 255, 288
local homeomorphism, 237
locally bounded, 237
locally closed, 237
locally compact, 237
locally connected, 230
locally finite, 189
locally Lipschitz, 163

of order ˛, 163
locally open, 237
locally uniform convergence, 515
Location of zeros Theorem, 155
logarithm (natural), 104
lower (Lebesgue) integral, 490
Lusin’s Criterion, 512
Lyapunov’s Inequality, 339

M
m-tail, 52, 192
Maclaurin series, 368
map

compact, 423
map (or mapping), 13

(bounded) multilinear, 418
contraction, 208, 422
linear, 24, 415
open, closed, 202

marginal distributions, 629
Markov’s inequality, 631
maximal (minimal) element, 9
maximal ideal, 36
Maximum Principle, 288
maximum, minimum, 9, 98

global, 255
local, 176, 255

meager ( of first category), 190
mean, 627
mean square approximation, 398
Mean Value Theorem, 257

Cauchy’s, 261
for Integrals (First), 321
for Integrals (Second), 322

Mean Value Theorem for Integrals, 321
measurable

Lebesgue, 471
measurable function, 593

Lebesgue, 481
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measurable set, 466
measurable space, 466, 576
measure, 466, 575

�-finite, 575
complete, 474, 577
completion of, 578
continuity of, 576
countable subadditivity of, 576
counting, 577
Dirac, 577
finite, 575
finite additivity of, 576
finite subadditivity of, 576
Fourier transform of, 647
Hausdorff, 587
Lebesgue, 471
Lebesgue–Stieltjes, 587
metric outer, 590
monotonicity of, 576
outer, 580
probability, 617
product, 613

measure space, 466, 576
measure zero, 306, 577
measures

absolutely continuous, 605
mutually singular, 605

Mertens’ Theorem, 73
mesh (or norm), 298
metric

associated with a norm, 412
Baire, 235
discrete, 182
product, 183
uniform, 182, 192

metric (distance), 182
metric outer measure, 590
metric property, 237
metric space, 182

chain connected, 239
complete, 192
completion of, 213
connected, 226
countably compact, 218
Fréchet compact, 218
locally compact, 237
product, 184
second countable, 190
separable, 190
sequentially compact, 218

metrics
equivalent, 205
uniformly equivalent, 237

middle third (open), 135

Minkowski’s inequality, 78, 282, 433, 454, 542,
643

module, 21
moments (of a random variable), 652
monotone (function), 98
monotone class, 611
Monotone Convergence Theorem, 54, 502,

572, 599, 642
Monotone Limit Theorem, 107, 116
monotone sequence, 53

of sets, 611
Monte Carlo method, 653
multilinear map, 418
Multinomial Formula, 25
multiplication operator, 462, 571
mutually singular, 605
MVT, 258

N
n-space

Euclidean, 30
Unitary, 30

natural logarithm, 375
derivative of, 254

negative variation, 344
Nested Intervals Theorem, 48
Newton’s Binomial Theorem, 371
Newton-Raphson process, 287
nonatomic, 638
nonmeasurable, 475
norm, 411

L2-, 460
L1, 604
Lp , 540, 604
Lp-, 643
`1-, 413
`2-, 77, 413
`p-, 454
Euclidean, 413
sup-, 413

norm (or mesh), 298
normal operator, 571
normed algebra, 412
normed space, 412

finite dimensional, 423
quotient, 425
separable, 427

nowhere dense, 134, 190
nowhere differentiable, 361
null sequence, 56, 656
null set, 577
null space (kernel), 418
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numbers
complex, 5, 345
extended, 50
irrational, 47
natural, 3
prime, 28
rational, 5
real, 5, 39

O
one-sided limits, 107

infinite, 109
one-to-one, 14
one-to-one correspondence (bijective), 14
onto, 14
open, 51, 130

locally, 237
open ball, 185
open cover, 131, 216
open interval, 44

in Rn, 581
open map, 202
Open Mapping Theorem, 429
open set, 51, 186
operation (binary), 17
operator

adjoint, 461
bounded, 418
compact, 423, 450
difference, 288
differential, 276
Fredholm, 457
integral, 450
multiplication, 462, 571
normal, 571
self-adjoint, 462
shift, 462
unitary, 571
Volterra, 457

ordered
n-tuple, 6
pair, 6
linearly, 9
partially, 9
totally, 9
well, 10

ordering
lexicographic (or dictionary), 12
partial, 9
total, 9
well, 10

ordinate set, 647
orthogonal

basis, 439
complement, 436
projection, 436
system, 385
vectors, 435

orthogonal dimension, 444
orthogonal system, 438

complete, 439
orthogonalization

Gram–Schmidt, 440
orthonormal

basis, 439
orthonormal system, 438

complete, 439
oscillation, 142

at a point, 236, 310
on a set, 236, 310

Osgood’s Theorem, 213, 428
outer measure, 580

Hausdorff, 582
Jordan, 468
Lebesgue, 467
Lebesgue (on Rn), 581
Lebesgue–Stieltjes, 582
metric, 590

outer regularity, 512

P
	 , 380
p-series, 62
parallelogram law, 434
Parseval’s

Identity, 443
Relation, 398, 441
Theorem, 398

partial derivative, 536
partial ordering, 9
partial sum (of a function), 79
partial sum (of series), 61
partition, 8, 226, 291

mesh (or norm) of, 298
refinement of, 292
tagged, 291

path component, 231
path connected, 231
peak, 54
perfect set, 53, 186, 194
period, 144
periodic function, 144

continuous, 145
permutation, 14
permutation, combination, 24
piecewise continuous function, 156, 301
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piecewise differentiable function, 397
Piecewise Linear Approximation, 169
piecewise linear function, 168, 301
piecewise monotone function, 156
Poincaré inequality, 407
Poincaré-Wirtinger inequality, 339
point

accumulation, 52
angular, 243
condensation, 195, 235
isolated, 52
limit, 52
shadow, 554

point spectrum, 462
pointwise

convergence, 349
limit, 350

pointwise finite, 238
Poisson Kernel, 409
polarization identity, 460
Pólya–Szegö, 24
Polynomials

Legendre’s, 287
Taylor, 271

positive variation, 344
power function (general), 376
Power Mean Inequality, 289
Power Rule, 247, 302

General, 252
power series, 362
power set, 2
pre-Hilbert space, 433
premeasure, 586
prime

factorization, 28
number, 28

primitive (antiderivative), 324
Principle of Analytic Continuation, 405
Principle of Isolated Zeroes, 404
Principle of Mathematical Induction, 11
Principle of Strong Induction, 11
Principle of Transfinite Induction, 11
probability, 617

classical, 617
conditional, 618

probability distribution, 621
probability measure, 617
probability space, 617
product

Cauchy, 73
direct (or Cartesian), 6, 29

product ��algebra, 610

product (metric) space, 184
complete, 196
convergence in, 196

product measure, 613
product metric, 183
Product Rule, 250
projection

canonical, 14, 427, 430
orthogonal, 436

proper inclusion, 1
pseudometric, 233
pseudometric space, 233
Pythagorean Theorem, 438

Q
quantifier, 3

existential, 3
universal, 3

quaternions (real), 22
Quotient Rule, 250
quotient set, 8
quotient space, 425

R
Raabe’s Test, 70
Rademacher functions, 654
radius of convergence, 362
Radon-Nikodym derivative, 609
Radon-Nikodym Theorem, 607
random, 616
random selection, 617
random variable, 621

absolutely continuous, 624
Bernoulli, 622
binomial, 623
Cantor–Lebesgue, 625
Cauchy, 625
characteristic function of, 651
constant, 622
continuous, 623
density function of, 624
discrete, 622
distribution function of, 623
expectation of, 627
exponential, 626
geometric, 649
mean of, 627
negative binomial, 649
normal (or Gaussian), 625
Poisson, 623
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probability distribution of, 621
simple, 622
square-integrable, 628
standard deviation of, 628
standard normal, 625
uniform, 625
uniformly distributed, 624
variance of, 628

random variables
identically distributed, 626
independent, 626
jointly continuous, 629
uncorrelated, 650

range
essential, 571

range (image), 418
range, 6
rate of change

average, 255
instantaneous, 255

Ratio Test, 68
Uniform, 401

rational function, 146
real analytic function, 367
real numbers, 39

addition of, 656
construction of, 655
multiplication of, 656
subtraction of, 656

real part, 349
real spectrum, 462
rearrangement, 74
rectangle, 610
rectifiable curve, 343
reduced sample space, 618
reflexive space, 458
regularity of Lebesgue measure, 512
regulated function, 303
relation, 6

antisymmetric, 7, 9, 398
composite, 7
domain of, 6
equivalence, 7
extension of, 7
inverse of , 7
range of, 6
restriction of, 7

relative interior, closure, 190
relative topology, 187
relatively compact, 216
relatively open, closed, 187
relatively prime, 28
remainder

Cauchy’s form of, 274

Lagrange’s, 274
repeated sum, 84
representative, 8
resolvent, 459

equation, 459
set, 459

restriction of a ��algebra, 593
Riemann integrable, 294
Riemann integral, 294

improper, 530
Riemann sum, 292
Riemann Zeta Function, 407
Riemann’s Lemma, 297, 387
Riemann’s Localization Theorem, 391
Riemann’s Theorem (on rearrangements),

75
Riemann–Darboux Theorem, 296
Riemann–Lebesgue Lemma, 387, 544
Riesz Representation Theorem, 437, 605
Riesz–Fischer Theorem, 443
right continuous, 147
right differentiable, 243
ring, 19

�-, 5
commutative, 19
division, 19
with unit element, 19

ring of sets, 5
Rising Sun Lemma, 554, 555
Rolle’s Theorem, 256
Root Test, 68
Rudin, 614

S
��algebra

restriction of a, 593
sample point, 617
sample space, 617

reduced, 618
sawtooth function, 360
scalar multiplication, 20
Schauder basis, 456
Schröder–Bernstein Theorem, 32
Schwarzian derivative, 286
second category, 190
Second Comparison Test, 66
second countable, 190
second dual, 458
Second Fundamental Theorem, 326

Lebesgue’s, 563, 566
self-adjoint operator, 462
semialgebra, 585
seminorm, 412
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seminormed space, 412
separable, 190
separately continuous, 206
separating points, 451
separation, 226
sequence, 13

m-tail of, 52
bounded, unbounded, 53
Cauchy, 60, 192
contractive, 60
convergence of, 51
convergent, divergent, 51, 191
Dirac, 408
double, multiple, 79
increasing, decreasing, 53
limit of, 51, 191
monotone, 53
null, 56
pointwise convergent, 350
strictly increasing, decreasing, 53
uniformly convergent, 351

sequential definition
of continuity, 142, 199
of limit, 197

sequential definition of limit, 103
sequentially compact, 218
series, 61

Abel’s Test, 72
absolutely convergent, 67, 424
alternating, 72
alternating harmonic, 68
Cauchy product, 73
conditionally convergent, 67
convergent, divergent, 61, 424
Dirichlet’s Test, 72
double, multiple, 79
First Comparison Test, 63
Fourier, 385
Gauss’s Test, 70
geometric, 62
harmonic, 62
Kummer’s Test, 69
Leibniz’s Test, 72
Limit Comparison Test, 64
Maclaurin, 368
normally convergent, 355
p-, 62
partial sum of, 61
pointwise convergent, 354
power, 362
Raabe’s Test, 70
Ratio Test, 68
rearrangement of, 74

Riemann’s Theorem, 75
Root Test, 68
Second Comparison Test, 66
square summable, 77
Taylor, 368
trigonometric, 384
uniformly convergent, 355
unordered, 79

sesquilinear form, 433
set, 1

F� , 234
Gı , 234
Borel, 472
boundary of, 188
bounded, 10, 185, 417
Cantor, 134
closure of, 100, 188
compact, 131, 216
connected, disconnected, 133, 226
convex, 239, 416
countable, 30
countably infinite, 30
dense, 190
denumerable, 30
derived, 234
diameter of, 185
directed, 12
discrete, 145
elementary, 611
exterior of, 188
finite, infinite, 16
interior of, 188
interior point, interior (of), 100
Lebesgue measurable, 471
linearly ordered, 9
measurable, 466
nonmeasurable, 475
nowhere dense, 134, 190
null (or of measure zero), 577
of first category, 190
of measure zero, 306
of second category, 190
open, closed, 51, 186
partially ordered, 9
partition of, 8
perfect, 53, 186
quotient, 8
relatively compact, 216
totally bounded, 220
totally disconnected, 134
totally ordered, 9
uncountable, 30
universal, 2
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sets, 2
algebra of, 5
disjoint, 2
equivalent, 30
pairwise disjoint, 8
ring of, 5

shadow point, 554
shift operator, 462
�-algebra, 5

product, 610
�-finite measure, 575
�-ring, 5
simple function, 479, 595

canonical representation of, 479
integral of, 596

sine function, 377
singular function, 573
Sobolev inequality, 408
space

n-dimensional Euclidean, 183
Euclidean, 183
measurable, 466, 576
measure, 466, 576
metric, 182
normed, 412
probability, 617
pseudometric, 233
sample, 617
seminormed, 412
Washington D. C., 233

spaces
Lip, Lip˛ , 420
L1
�.X;R/, L1

�.X;C/, 603
L1, 547
Lp , 540, 604
Lp
�.X;F/, 642

B.X/, B.X ;Y /, 418
L.X/, L.X ;Y /, 415
L.X ;F/, 415
`p-, 454
`1, `1; `2, 413
L0.X; Y /, 593
L1�.X;R/, L1�.X;C/, 601
c0, 420
Banach, 420
Hilbert, 433, 460
pre-Hilbert, 433

span, 21
spectrum, 459

point, 462
real, 462

sphere, 185

unit, 226
square root (existence of), 46
square summable series, 77
Squeeze Theorem, 104, 114, 513
standard deviation, 628
Steinhaus’s Theorem, 518

Calderon’s proof of, 571
step function, 168, 301

integral of, 317
Step Function Approximation, 168
Stone–Weierstrass Theorem, 452

Complex, 454
strictly increasing, decreasing (sequence), 53
Strong Law of Large Numbers, 635
subcover (open), 131
subexponential function, 286
subgroup, 18
sublinear function, 285
subring, 20
subsequence, 54

monotone, 54
subset, 1

proper, 1
subspace

metric, 182
Substitution Theorem, 366
sufficiently close, 101, 111
sufficiently large, 111
sum

Darboux, 292
iterated, 84
Lebesgue, 528
repeated, 84
Riemann, 292
unordered, 79

summable, 440
absolutely, 81, 440

summable function, 79
Suppes, 12
support, 369, 545

compact, 545
support line, 281
supremum

essential, 546, 604
Supremum Property (Completeness Axiom),

45
supremum, infimum, 9, 98
surjective, 14
symbol, 276
symmetric derivative, 285
symmetric difference, 2
symmetric group, 18
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T
tag, 291
Tauber’s Theorem, 405
Taylor coefficients, 272
Taylor Polynomials, 271
Taylor series, 368
Taylor’s Formula

with integral remainder, 329
Taylor’s Formula with Lagrange’s Remainder,

273
Taylor’s Theorem, 368
term

nth , 13
ternary expansion, 49, 138
ternary set

Cantor’s, 134
Test

Abel’s, 72
Dirichlet’s, 72
First Comparison, 63
Gauss’s, 70
Kummer’s, 69
Leibniz’s, 72
Limit Comparison, 64
Raabe’s, 70
Ratio, 68
Root, 68
Second Comparison, 66

Theorem
(Lebesgue’s) Dominated Convergence, 509
Average Value, 502
Radon-Nikodym, 607
Abel’s, 74, 372
Abel’s (on Cauchy Product), 373
Arzelà–Ascoli, 449
Baire Category, 194
Banach’s Fixed Point, 210, 422
Banach–Steinhaus, 428
Bernstein Approximation, 172, 636
Bernstein’s, 404
Bolzano–Weierstrass, 59
Bounded Convergence, 510, 642
Cantor’s, 34, 193
Cantor–Bendixon, 195
Carathéodory’s, 245
Cauchy’s Condensation, 67
Cauchy–Hadamard, 363
Closed Graph, 223, 430
Complex Stone–Weierstrass, 454
Continuous Extension, 162
Darboux’s, 256, 297
Dini’s, 353, 355
Dirichlet’s, 88
Dominated Convergence, 603, 642

Edelstein’s, 238
Egorov’s, 516, 640
Euler’s, 284
Extension, 586
Extreme Value, 153, 222
Fejér’s, 395
Fermat’s, 255
First Fundamental, 324
Fixed Point, 155, 166
Fubini–Tonelli, 614
Hahn–Banach, 430
Heine–Borel, 132
Hellinger–Toeplitz, 461
Homeomorphism, 159
Intermediate Value, 154
Interval Additivity, 315
Inverse Function, 259
Jordan Decomposition, 335
Lebesgue’s Differentiation, 555
Lebesgue-Radon-Nikodym, 609
Lerch’s, 338
Littlewood’s, 288
Location of zeros, 155
Mean Value, 257
Mean Value (for Integrals), 321
Mertens’, 73
Monotone Convergence, 54, 502, 599, 642
Monotone Limit, 107, 116
Nested Intervals, 48
Newton’s Binomial, 371
Open Mapping, 429
Osgood’s, 213
Parseval’s, 398
Pythagorean, 438
Riemann, 75
Riemann’s Localization, 391
Riemann–Darboux, 296
Riesz Representation, 437
Riesz representation, 605
Riesz–Fischer, 443
Rolle’s, 256
Schröder–Bernstein, 32
Second Fundamental, 326
Squeeze, 104, 513
Steinhaus’s, 518
Stone–Weierstrass, 452
Substitution, 366
Tauber’s, 405
Taylor’s, 368
Tonelli’s, 504
Volterra’s, 175
Weierstrass Approximation, 174, 396
Zermelo’s Well Ordering, 12

Three Chords Lemma, 279
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Tonelli’s Theorem, 504
topological property, 237

absolute, 217, 227
Topologist’s Sine Curve, 231
topology, 187

relative, 187
torus, 226
total

family, 427
mass, 575
ordering, 9
set, 427

Total Probability Law, 619
totally bounded, 220
totally disconnected, 134, 230
translated dilation, 412
translation, 412
transported distance, 205
Triangle Inequality, 42, 43, 411
trichotomy, 40
trigonometric function, 377
trigonometric polynomial, 384
trigonometric series, 384
trivial extension, 481
true near, 101, 111

U
ultimately equal, 52
ultimately true, 52, 192
ultrametric inequality, 184
ultrametric space, 184
uncountable set, 30, 194
uniform approximation, 192, 409
Uniform Boundedness Principle, 213, 428
uniform convergence, 351, 515
uniform distribution, 624
uniform limit, 351
uniform metric, 182, 192
uniform property, 237
uniformly bounded, 80
uniformly continuous, 159, 208
uniformly differentiable, 286
uniformly equivalent metrics, 237
union, 2
uniqueness of weak limits, 459
unit, 5
unit element, 19, 22
unit sphere, 226
unital, 21
unitary operator, 571
unordered pair, 6
unordered series, 79

unordered sum, 79
associativity of, 84

upper (Lebesgue) integral, 490
upper bound, lower bound, 9
upper envelope, lower envelope, 142
upper limit, lower limit, 58, 141
Urysohn’s lemma, 209

V
Var.X/, �2.X/, 628
Van der Waerden, 361
variance, 628
variation

bounded, 330
negative, 344
positive, 344
total, 330

variation function
negative, 344
positive, 344

vector, 20
vector addition, 20
vector space, 20

basis of, 22
dimension of, 22

vertical asymptote, 110
vertical fiber, 232
vertical tangent, 243
Vieta’s formula, 654
Volterra operator, 457
Volterra’s Theorem, 175

W
Wallis’ Formula, 341
Washington D. C. space, 233
weak convergence, 459, 570
Weak Law of Large Numbers, 634
weak limit

uniqueness, 459
weakly convergent, 459
Weierstrass Approximation Theorem, 174, 396
Weierstrass M-test, 356
well ordering, 10
Well Ordering Axiom, 11
Well Ordering Theorem, 12

Y
Young’s inequality, 338

Z
Zorn’s Lemma, 10
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