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Preface

Cancer is a highly complex disease with a myriad of different manifestations. The
reasons for this simply lie not only in the many types of different cells that exist in
our bodies, but also in the facts that populations of tumor cells often are highly het-
erogeneous and, overall, tumor growth depends on many aspects such as interactions
with its microenvironment, especially immune response and tumor vasculature.
At the same time, there exist many commonalities across various types of cancer
that allow for overarching principles to apply. The main treatments, i.e., surgery,
chemotherapy, and radiotherapy, as well as more novel approaches that also include
antiangiogenic treatments and immunotherapy, apply to a wide spectrum of this dis-
ease. Thus, there also exists uniformity that allows us to view the problem of cancer
treatment from a more all-embracing perspective. All treatments, while killing can-
cer cells, also induce toxicity to the healthy cells and thus the natural question arises
how therapeutic agents (various drugs, radiation dosages, antiangiogenic biological
agents, cancer vaccines, etc.) should be given in order to balance the therapeutic ben-
efits of treatment with its side effects. In order to answer this fundamental question,
one needs to understand the processes by which cancer evolves and the effects that
treatment has so that therapies can be administered in an optimal, i.e., best possible,
way. This book addresses these questions using the methods of optimal control.

Optimal control is a well-researched mathematical field with many applications
in engineering, economics, other fields in the sciences and, more recently, also in
biology. It deals with the minimization of some performance index imposed on an
underlying dynamical system subject to constraints. Controls simply are functions
in time that describe allowable outside influences on the system. These induce a
system response and, based on this response, an objective function is evaluated,
which is taken as a performance measure for the behavior of the system. Optimal
controls minimize this criterion. The scheduling of therapeutic agents over time
has all the characteristics of such a problem. The aim is to minimize some objective
related to tumor burden and quality of life of the patient while the underlying system
follows the processes of tumor development and treatment interactions.
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vi Preface

In this text, we shall apply the tools and methods from optimal control to ana-
lyze various minimally parameterized models that describe the dynamics of popu-
lations of cancer cells and elements of the tumor microenvironment under different
anticancer therapies. In spite of their simplicity, the analysis of these models that
capture the essence of the underlying biology sheds light on more general scenar-
ios and, in many cases, leads to conclusions that confirm experimental studies and
clinical data. For example, a treatment strategy for the application of chemotherapy
known as “chemo-switch” in the medical literature corresponds to optimal controls
that are of the type“bang-singular,” and these are shown to be optimal in many of
the models considered here.

Our focus is on qualitative information about the structure of treatment protocols.
For example, for many tumors it is standard medical practice to give chemotherapy
at maximum tolerated doses (MTD) with rest periods in between. These are simply
needed for the healthy tissue to recover from the strong toxic attack. The questions
we are interested in answering in this text are of the following type: Is this necessar-
ily the best strategy? If not, under what conditions is such a strategy optimal? Are
there situations when protocols of a different type should be favored? For example,
in a metronomic scheduling of chemotherapeutic agents, i.e., a more or less contin-
uous treatment at substantially reduced dose rates, toxic side effects of treatment are
lower, and thus it is hoped that, by being able to give treatment over prolonged pe-
riods, better results may be achieved. More generally, the concept of a biologically
optimal dose (BOD) as a dose which takes into account the current state of the un-
derlying biological system is an important topic in the medical and pharmaceutical
literature. Clinical trials explore the scheduling of therapeutic agents in medically
guided, exhaustive, trial-and-error approaches of simple strategies. Hardly ever are
more complicated or nonstandard protocols pursued in such research since, quite
simply, complex protocols are difficult, if not impossible to test in a laboratory set-
ting, or only at great cost. It is here that the analysis of mathematical models (in
silico)—an alternative noninvasive procedure—may be of use by giving theoretical
guidance as to the structure of treatment protocols or by establishing benchmarks
for medically realizable protocols.

While the underlying topic of this text is medical, the tools and techniques that
will be used are mathematical with some elementary dynamical systems theory and
more advanced methods from optimal control theory at the core of the reasoning.
Aside from its biomedical context, the analysis presented has an intrinsic value from
the mathematical point of view as interesting and challenging scenarios appear in the
analysis of the problem. These include multi-stable behaviors and stability bound-
aries, the presence of singular arcs in optimal syntheses, optimal chattering controls,
and others. The text is written in a self-contained way emphasizing the applica-
tion of mathematical tools presenting not only results, but also challenges and open
questions. We are interested in—as far as this is possible—complete solutions cov-
ering a wide range of parameters in order to obtain robust qualitative conclusions.
In our view, a qualitative understanding of the structure of all solutions (not just
some isolated numerical computations) and their robustness, respectively sensitivity
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properties, significantly enhances the understanding of the underlying system. In our
analysis, we shall inductively progress from simpler mathematical models that view
a tumor as a homogeneous agglomeration of sensitive cells to more complex struc-
tures that incorporate varying levels of resistance of the cancer cells and, eventually,
to models for combination treatments that model important aspects of a tumor’s
microenvironment.

Our text is intended for a dual audience. On one hand, we illustrate the appli-
cability of the tools and techniques of optimal control theory to a wide class of
problems coming from one particular field. As such, we hope it will be of interest
to researchers in mathematics and engineering to whom it introduces a fascinating
area of potential applications. On the other hand, this text is also aimed at students
and researchers in the applied sciences and the widely understood field of mathe-
matical modeling of cancer treatment. An effort has been made to write the text in a
self-contained way to make it accessible to these two possibly disjoint sets of target
audiences. Hence, as much as feasible, we included the biomedical background to
make the models intelligible to the nonexpert in the field. At the same time, we do
not dwell on the theoretical basis for optimal control, but focus on the application of
results. There exist several textbooks on optimal control, among them one written
by us, where this material is developed, but in this book we only include a con-
cise summary of the required theory in an appendix. Also, in order not to burden the
readability for the novice to optimal control theory, some of the more technical com-
putations have been relegated into an appendix. It is our opinion that a student with
a solid background in calculus and ordinary differential equations is well prepared
to follow the mathematical reasoning. More advanced topics, such as Lie brackets
or stable manifolds, are introduced whenever needed in the text.

We would like to take the opportunity to thank our colleagues who have col-
laborated with us on various topics that form the core of our text. This especially
includes Andrzej Swierniak who introduced us to this fascinating topic more than 15
years ago, Alberto d’Onofrio who throughout these years has been our go-to person
when we needed some medical clarifications, and Helmut Maurer who helped us
out with numerical computations whenever we had reached the end of the road with
our methods. Our friend and mentor Avner Friedman has provided us with valuable
feedback on several parts of the text. A special thanks also goes to Nicolas André
and Eddy Pasquier who have provided us with a wealth of data and information
about metronomic chemotherapy. Many of our graduate students have participated
in this research over the past 10 years and have in one way or the other contributed
to the material presented in this text. Thanks go to John Marriott, Yi Liu, Vignon
Oussa, Jim Munden, Benjamin Cardwell, Mohammad Naghneian, Mozhdeh Sa-
dat Faraji Mosalman, Mostafa Reisi Gahrooi, Sia Mahmoudian Dehkordi, Kenneth
Bratton, and Behrooz Amini. We also would like to thank our universities, Washing-
ton University in St. Louis and Southern Illinois University Edwardsville, and the
National Science Foundation that has supported our research at various stages for
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by now a good 25 years. Finally, we would like to thank all the editors at Springer,
especially Achi Dosanjh, Ana Inoa, Donna Chernyk, and Danielle Walker, who have
been so helpful throughout the entire production process. Special thanks are due
to a number of anonymous reviewers who carefully read an earlier version of our
manuscript and gave us many excellent suggestions.

St. Louis, MO, USA Heinz Schättler
Edwardsville, IL, USA Urszula Ledzewicz
March 2015



Outline of the Chapters of the Text

The text is organized to proceed from simpler to more complex models, both from
a modeling and mathematical perspective.

In the introductory Chapter 1, we summarize some of the more important facts
that form the biomedical background for the mathematical models of cancer devel-
opment and treatment considered. This includes a discussion of tumor development
and the main treatment modalities: chemotherapy and radiotherapy. We also give
a short introductory formulation of the principal models to be considered and ana-
lyzed in the text.

Cell cycle specific models for cancer chemotherapy are used to introduce some
basic modeling premises and are considered in Chapter 2, both for single and multi-
drug treatments. These models were originally formulated in the work of Swierniak
and co-workers (e.g., [311, 313]) and, under the assumption of exponential growth
of the tumor populations, are described by multi-input bilinear control systems.
Such systems then will be optimized with the objective to minimize a weighted
average of the tumor volume and the total amount of drugs given. The latter is in-
cluded as an indirect way of measuring side effects. In this chapter, we also discuss
the fundamental aspects of drug delivery (pharmacokinetics and pharmacodynam-
ics) and the effects which the inclusion of such models has on optimal controls.
This is an important topic to be considered in all mathematical models and will be
revisited several times in the later chapters.

An implicit assumption made in Chapter 2 is that the tumor population is ho-
mogeneous and consists of chemotherapeutically sensitive cells. In this situation,
clear answers can be given about the structure of optimal therapy protocols and they
consist of maximum tolerated dose (MTD) applications of cytotoxic agents with
rest periods, the common practice in medical treatments. However, in reality tumor
populations are heterogeneous with varying chemotherapeutic sensitivities. These
concepts will be incorporated into the modeling in Chapter 3. While this preserves
the mathematical structure of multi-input bilinear control systems, now clear-cut
answers as to the structure of optimal therapy protocols become elusive as, with in-
creasing drug resistance, the harm done to healthy cells needs to be weighted against
the tumor cell kill.

ix



x Outline of the Chapters of the Text

Throughout most of our text, we use as valuation for the effects of treatment an
objective functional which is affine in the controls and states, a so-called L1-type
objective. Such a formulation reflects well the biological background. For example,
if u denotes the dose rate of a chemotherapeutic agent, then the integral

∫ T
0 u(t)dt

represents the total dose administered, an important medical and pharmacological
quantity. On the other hand, also objectives which are quadratic in the controls,
so-called L2-type objectives, are commonly used in optimal control formulations
of biological models. Such an approach, with its inherent convexity, simplifies the
analysis. In Chapter 4, we present the solution for such formulations, also including
the analysis of sufficient conditions for local optimality, a topic which is mostly
absent in these problem formulations in the literature. We compare solutions for
this formulation with some of the solutions for the L1-type objective functionals
that were obtained in Chapter 2.

In the remaining chapters of the text, we consider models that incorporate the
most important aspects of the tumor microenvironment, the tumor vasculature and
tumor immune system interactions. In Chapter 5, we consider several models for an-
giogenic signaling that are based on a mathematical model proposed by Hahnfeldt
et al. [116]. We analyze the optimal control problem how to administer an a priori
given amount of antiangiogenic agents to minimize the tumor volume. For this prob-
lem, we give a complete synthesis of optimal controlled trajectories. Intuitively, such
a synthesis acts like a GPS system showing for every possible state of the system
how optimal protocols are administered, both qualitatively and quantitatively. This
gives a global solution of the optimal control problem. Different from the models
considered earlier, here it is better to spread the administration schedules of a given
amount of agents in time, and this is achieved optimally by time-varying admin-
istration schedules defined by so-called singular controls. However, time-varying
administration schedules are less practical. For this reason, in Chapter 6, we include
an extensive discussion of practically realizable suboptimal protocols. In fact, for
all the models considered here, excellent simple suboptimal protocols exist.

The model formulations in Chapters 5 and 6 only consider antiangiogenic treat-
ments as a monotherapy procedure. This is an indirect approach that aims to shrink
the tumor by depriving it of the vasculature it needs for a supply of oxygen and nutri-
ents. As such, the treatment is only limiting the tumor’s support mechanism without
actually killing the cancer cells and generally such procedures are less effective.
While antiangiogenic monotherapy thus is not considered a viable treatment op-
tion, it has become a staple of anticancer treatments in combination with radio- and
chemotherapy. In this way, simultaneously two separate compartments of a tumor—
the cancerous cells and the vasculature that supports it—are targeted. In Chapter 7,
we consider models for such combination therapies and it will be seen that the opti-
mal solutions computed in Chapter 5 for the monotherapy problem become the base
on which the optimal solutions for the combination treatments are built.

In Chapter 8, then the second major component of a tumor’s microenvironment,
tumor immune system interactions, will be considered. This leads to the emergence
of bistable systems with both benign and malignant situations present simultane-
ously. For various versions of a classical model by Stepanova [303], we formu-
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late an optimal control problem whose solutions induce the state of the system
to move from the malignant into the benign region. With the mitigating influence
of the immune system present, optimal protocols become what are called chemo-
switch protocols in the medical literature. Such protocols follow an initial phase of
maximum tolerated dose treatment with administration schedules at significantly re-
duced doses. In this chapter, we also formulate a model that combines angiogenic
signaling with tumor immune system interactions and analyze its properties under
so-called metronomic chemotherapy. This is the almost continuous administration
of chemotherapeutic agents at significantly lower dose rates than MTD, possibly
with small interruptions to increase the efficacy of the drugs. The hope is that, in the
absence of limiting side effects, it is possible to give chemotherapy over prolonged
time intervals so that, because of the greatly extended time horizon, the overall effect
may be improved when compared with repeated short MTD doses.

Finally, two appendices provide additional information which can be looked up,
if desired, while reading the main text. A “short course” on geometric methods in
optimal control is included as Appendix A, but we refer the interested reader to the
literature for proofs of the results (e.g., [31, 38, 217, 292]). Also, in order to make
the main text easier to read, some of the more technical mathematical proofs have
been relegated into Appendix B.

Generally, we include a fair amount of information on the biomedical aspects
and also are at times quite explicit in the mathematical reasoning to make the text
accessible to readers from various backgrounds. We hope we accomplished this
goal.
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Chapter 1
Cancer and Tumor Development: Biomedical
Background

In this introductory chapter, we briefly describe the more important aspects of the
medical and biological background for the mathematical models of cancer develop-
ment and treatment that will be considered and analyzed in this text. Obviously, this
merely constitutes a nonexperts’ attempt to summarize the major structural features
that motivate these models. We focus on the “big picture,” with at times full disre-
gard for the myriad and complex details. Yet, it is precisely this highly simplified
overall understanding that has motivated much of the historical developments of
cancer research and it still defines most current activities in the “search for a cure.”

We begin with a brief timeline of the major stages of tumor development
(Section 1.1) and, along the way, introduce some of the simpler pieces of the
huge puzzle that is mathematical modeling of cancer (Section 1.2). We briefly dis-
cuss the main treatment modalities in Section 1.3 and close with posing important
questions about the structure of treatment protocols as an optimal control problem
(Section 1.4).

1.1 Tumor Development

1.1.1 The Cell Cycle and the Origins of Cancer

The building blocks of all life are cells and cells constantly reproduce in the cell
cycle through cell division (see Figure 1.1), the main mechanism of our body that
governs growth and development. The general term “cancer” refers to an enor-
mously large family of high-mortality diseases, widely differing from each other in
their individual aspects and manifestations, but all having in common a derangement
of cellular proliferation that originated at some time in the past with mistakes in the
process of cell duplication. In the transition from cell birth to cell division, each cell
passes through a complex and tightly regulated sequence of molecular events that
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2 1 Cancer and Tumor Development: Biomedical Background

is encoded in our DNA (deoxyribonucleic acid) and executed by proteins. In a first
growth phase G1, mainly the synthesis of enzymes that are needed for DNA replica-
tion is carried out and the cell grows in size. Embedded in the cell cycle are various
check points (control mechanisms) set up to verify that these processes have been
adequately completed before the next phase of the cell cycle commences. One such
checkpoint is located at the end of the G1 phase where it is checked whether DNA
was damaged in the process and whether environmental conditions (e.g., supply of
oxygen and nutrients) are adequate for cell duplication. At this point, decisions are
made whether the cell should proceed with the cell cycle to division or delay divi-
sion and enter a resting stage G0. The latter is a phase in the cell cycle where the
cell neither divides nor prepares for division and is also called the quiescent state.
In fact, many cells are arrested in the cell cycle at the G1-checkpoint. Otherwise, if
conditions are right, the cell enters a phase S where DNA synthesis occurs. When
it is complete, all of the chromosomes have been duplicated and each chromosome
has two copies, essentially doubling the amount of DNA in the cell. After that a
second growth phase G2 commences in which the cell synthesizes further cellu-
lar components such as microtubules that are needed for mitosis. At the end of the
G2 phase, there is a second major check point to ensure the cell is ready for mit-
osis. If this checkpoint is passed, the cell enters phase M. Here cell growth stops
and mitosis occurs. This is the orderly division of the mother cell into two daugh-
ter cells containing roughly equal shares of the cellular components and in itself is
a highly complex process consisting of various subphases. During an intermediate
checkpoint in mitosis, the metaphase checkpoint, it is verified that all the chromo-
somes are properly aligned on the mitotic spindle. If all checkpoints are passed, cell
duplication commences. Ideally, the two daughter cells are genetically identical to
each other and to their parent cell, but errors in mitosis can either lead to cell death
through apoptosis or cause mutations which eventually might lead to cancer. Each
of the two daughter cells then reenters the cell cycle and thus starting the entire
process all over again.

Cell duplication is a tightly regulated molecular mechanism in which various
types of proteins (the so-called cyclins) control the transitions through the phases
of the cell cycle. Naturally, there exist many possibilities for things to go wrong in
such a complex and lengthy chain of events—and this happens on a regular basis.
Quite simply, as with any other highly complex system, this is unavoidable. Of
course, as medical research has established, the chances for matters to go wrong are
significantly higher if we live in an unhealthy environment or if cells are exposed
to detrimental factors introduced into our bodies such as tobacco. But given the
overall complexity of the process, life has developed many safeguard and rescue
procedures specifically designed to deal with mistakes during cell duplication. At
numerous checkpoints in the cell cycle, and only the most important ones were
mentioned above, both external factors (e.g., environmental conditions related to
the available amounts of oxygen and other nutrients) and internal factors (such as
whether chromosomes have arrived to the mitotic plate in mitosis) are verified and,
in theory, only if conditions are right, cells are allowed to pass from one phase
into the next. All in all, the regulation of the cell cycle includes numerous control
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Fig. 1.1 Schematic representation of the cell cycle and its main check points.

mechanisms that detect and possibly repair genetic damage and are crucial for the
survival of a cell.

Many of these mechanisms are connected with the actions of a specific protein,
p53, that, because of its importance as a suppressor gene in the cell cycle, has been
labeled “the guardian of the genome.” It is involved in various functions within the
regulatory mechanisms of the cell cycle: it activates DNA repair proteins when DNA
has sustained damage, it induces cell arrest at the G1-checkpoint holding the cell so
that DNA repair proteins are given time to fix the damage and, if DNA damage
proves to be irreparable, it initiates apoptosis. This is programmed death of the
affected cell, itself again a complicated sequence of molecular mechanism. There
exist several mechanisms which all under certain conditions initiate the command
for a cell to self-destruct and then execute this procedure. In lay-person terms, cells
die by suicide. The most important protein involved in these sequences of commands
(molecular signaling pathways) is p53. In many forms of cancer, the disease can be
traced to a series of mutations that occurred in cell duplication and had the effect
to inhibit and disable these regulatory pathways. While dysfunctional cells (cells
that do not fulfill their regular preprogrammed functions) which are produced in cell
division simply will be eliminated from our body under normal circumstances, in the
case of a cancerous cell these mechanisms become disabled and, in a weird sort of
way, the cell becomes “immortal.” Indeed, it is one of the important characteristics
of a cancer cell, or “hallmarks” as medical researchers say, that, for whatever reason,
it escapes the regulatory control mechanisms of the cell cycle that should eliminate
it. Typically a so-called cancer stem cell is not caused just by a single mutation, but,
being genetically unstable, in a sequence of progressive genetic changes which then
enable these cells to undergo uncontrolled abnormal mitosis and increase the total
number of cancer cells at that location.
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Yet, even if the control mechanisms of the cell cycle prove ineffective, this does
not necessarily mean that the medical disease that is called cancer has to develop. As
with any complex system, the more checkpoints, the better. There exist additional
mechanisms that lie outside of the cell cycle and enable the body to deal with rene-
gade cells. One of these is activation of the immune system. It has been hypothesized
for a long time, and also been backed up by medical evidence [72], that the immune
system has the capability to control cancerous cells in early stages of the disease in
a form of immunosurveillance. But, as cancer cells are part of our body, there are
also situations when the immune system does not react or when its reaction sim-
ply is inadequate to overcome the initial cancerous growth. Still, if for whatever
reason cancer cells do not duplicate, or grow so slowly that they never become a
problem, the disease that generally is called cancer, does not materialize. In this
sense, small ‘tumors’ are prevalent in all of us. For example, there are discussions
about prostate cancer to the effect of whether screening and treatment (which has
severe adverse side effects) should really be such an important part of prevention as
they currently are. The argument is being made that for this generally very slowly
growing tumor that mostly effects elderly men, it may simply be best to do nothing
since the chances that tests based on PSA (prostate specific antigen) come up with
false positives are actually unacceptably high, and, even if prostate cancer is present,
no serious malignancy might develop in the patient’s lifetime anyway. Clearly, for
some patients this will not be valid, but current medical research does not give any
indication as to where the boundary should be drawn.

Summarizing, mistakes in cell duplication are common, but no harm is done if
any of the body’s inherent control mechanisms succeeds in eliminating the initial
dysfunctional cell. It is only if such a cancerous cell persists, starts to duplicate,
eventually escapes regulatory mechanisms, and growth gets out of control that the
disease that is called cancer occurs, i.e., the “uncontrolled growth of abnormal cells
in the body.” In more medical terms, in the paper [119] by Hanahan and Weinberg
the following “hallmarks” of cancer are identified: “sustaining proliferative signal-
ing, evading growth suppressors, resisting cell death, enabling replicative immortal-
ity, inducing angiogenesis, and activating invasion and metastasis.”

1.1.2 A Rudimentary Classification of Tumors
and their Development Stages

Medicine distinguishes over 200 types of cells that vastly differ in their numbers
and functions [5]. For example, red blood cells transport oxygen and nutrients with
over 2 million of them newly produced every second [288], brain cells consist of
neurons (electrically excitable cells that receive, process and transmit information)
and glia that support and protect the functions of neurons, plasma cells produce an-
tibodies, gland cells secrete hormones, and other substances like saliva, and many
more types of cells make up our bodies. Depending on which type of cell and which
organ is affected, and possible variations of the mutations that actually occur, there
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exist hundreds of types of cancers which in principle all exhibit different charac-
teristics and are very different diseases with their own treatment options. But there
are also common characteristics in their development and the word tumor (which is
the Latin word for “being swollen” derived from tumere, “to swell”) is commonly
used for any abnormal growth of cells. In medicine, broadly one distinguishes be-
tween solid tumors that form a well-defined mass, grow in organs and can occur
almost anywhere in the body (e.g., kidney, prostrate, etc.) and liquid tumors that
occur in the blood (e.g., leukemia, glioma, lymphoma, and myeloma). Some mod-
els considered in this text (e.g., all those considered in Chapter 2) will be general,
others will only be applicable for solid tumors and we give a brief description of the
main phases of development of a solid tumor. These are avascular growth, tumor
angiogenesis, and metastasis.

Avascular growth is the first stage of tumor growth. As it develops, a tumor needs
a steady supply of oxygen and nutrients for cell duplication. Initially, this supply is
adequately provided by the surrounding environment through diffusion. At the onset
of the disease, since tumor cells are dysfunctional and do not partake in any kind of
regular tasks, cells cluster together and form a coherent parasitical unit, often grow-
ing in a small spherical shape. Over time, cells toward the center become deprived
of the necessary nutrients to divide further and develop a necrotic core of dead cells
[8, 227]. Proliferating cells generally are only found in the outermost cell layers
with a band of quiescent cells lying between these two regions [79]. Faced with
a shortage of nutrients, tumor cells that enter the dormant or quiescent stage of
the cell cycle trigger the release of vascular endothelial growth factor (VEGF) and
other stimulating agents that promote the creation of a network of blood vessels and
capillaries designed to provide the tumor with necessary nutrients, the tumor vascu-
lature. The importance of this network in tumor development was already stressed
in the early 1970s by J. Folkman [85, 86] who pointed to this vascular support
system as a possible target of tumor treatment. It is now generally recognized that
primary solid tumors require such a network in order to grow beyond 2 mm3 in
volume. The creation of this vascular network is called tumor angiogenesis after
the Greek words ανγειoν (angeı́on, “vessel, urn”) and γενεσις (genesis, “ori-
gin, source, beginning”). Tumor angiogenesis is sustained by various mechanisms:
tumors coopt existing vessels, induce the formation of new vessels from pre-existing
ones, and exploit endothelial precursors originating from the bone marrow [87, 89].
Overall, this is a complex process characterized by both proangiogenic agents such
as VEGF and antiangiogenic chemicals that are released by the tumor in order to
modulate the growth of the vessel network. A solid tumor thus deploys a sophisti-
cated strategy based on reciprocal signaling between endothelial cells (which form
the lining of the newly formed vessels and capillaries) and tumor cells to control
its own growth through a balance of stimulatory and inhibitory mechanisms that
are regulated through microenvironmental factors [90, 66]. It is the fact that en-
dothelial cells have receptors that make them sensitive to inhibitors of inducers of
angiogenesis that is one of the main modi operandi behind antiangiogenic thera-
pies with simple disruptions of the signaling processes the other. All aim to deprive
the tumor of the vasculature that it needs for vigorous growth by inhibiting and
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destroying endothelial cells which provide the lining for the newly forming blood
vessels. These cells thus are the main target of antiangiogenic therapies.

Once the tumor succeeds in developing its own vasculature, it has gained access
to the needed supply of oxygen and nutrients via the blood stream and undergoes
vigorous growth. In time, the size becomes large and incoherent enough that small
parts of the tumor break off and travel through the bloodstream to other organs
and parts of the body. This last stage of tumor development is called metastasis
after the Greek word for “displacement” derived from μετα (meta, “next”) and
στασις (stasis, “placement”). In the medical literature, the original tumor is called
the primary tumor while the newly formed secondary tumor is called a secondary or
metastatic tumor. Since the type of cancer is defined by the type of cell it originated
with, the type of cancer on the secondary site is the same as in the original one.
Metastasis, along with increased cell duplications and invasiveness, is one of the
main characteristics of a malignant tumor. In contrast, a tumor that does not grow
uncontrollably, does not invade neighboring tissues and does not spread throughout
the body is called benign. If the cancer has spread to other parts of the body, survival
chances are greatly diminished and treatment options are limited with chemotherapy
remaining the predominant option.

1.1.3 The Tumor Microenvironment

Immense progress has been made in the fields of medicine and molecular biology
which indicates that the great complexity of tumor behavior on the macroscopic
level reflects the intricacy of its underlying deregulating biochemical mechanisms
on the microscopic level. Other aspects contribute to this complexity as well. At an
intercellular level, tumor cell populations act as ecosystems [102, 299] and many
sources of complexity arise from internal cell-to-cell cooperative and competitive
interactions [254]. Interactions, that are critically relevant for the survival of a can-
cer, are its relationships with external cell populations, such as blood vessels, lym-
phatic vessels, and with the cells of the immune system. The responses of tumor
cells to these interactions are characterized by a considerable evolutionary ability
via changes by means of mutations to enhance their survival in a hostile environ-
ment. Cancer thus is a disease with myriad manifestations whose macroscopic time
course reflects complex, strongly nonlinear, inter- and intra-cellular phenomena. For
all these reasons, the view of a tumor as a homogeneous collection of roughly equal
and sensitive cells has been replaced with the understanding that tumors are het-
erogeneous aggregations not only of cancer cells of various types of sensitivities,
but also of many other types of healthy cells that make up its stroma. This is the
connective and functionally supportive framework that forms a tumor’s microen-
vironment. Its main components comprise the tumor vasculature (e.g., endothelial
cells), all kinds of cells of the innate immune system (T-cells, myeloid immune
cells, macrophages, and many more), and fibroblast cells that form the intracellular
matrix.
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In this text, we shall inductively progress from simpler mathematical models that
view a tumor as a homogeneous agglomeration of sensitive cells to more complex
structures that incorporate varying types of sensitivities of the cancer cells, the
tumor vasculature, tumor immune system interactions, and eventually lead over to
multi-compartment models for combination treatments that model important aspects
of a tumor’s microenvironment.

1.2 Mathematical Models of Tumor Growth

Mathematical models for cancer development and treatment are often constructed
in a modular way starting with pieces that broadly describe the major aspects of the
disease and then adding increasingly more complex features as additional building
blocks. One of the integral pieces in any such configuration becomes the model for
tumor growth. In view of all the complexities that only were briefly touched upon
above, it should be clear that it is not possible to devise one mathematical model
that describes the full development of cancer in time. Naturally, existing models
all have limited validity, limited both to specific stages in the tumor time line and
also to specific forms of the disease. The recurrent question which model is more
realistic simply is ill-posed and has no correct answer [227]. Populations of cancer
cells of different types and/or in different conditions may behave very differently.
Any macroscopic growth law that is derived by aggregating cell populations there-
fore has to mirror a set of phenomena that occur at the cellular scale including
metabolic processes and cellular interactions that vary considerably from case to
case [239, 254]. It should not be surprising at all that models of cancer growth are
very diversified.

We introduce the main types of mathematical models that are commonly used
to describe tumor growth. To begin with, a phenomenological model (i.e., a model
according to our perception and interpretation of events) that describes the growth
of a population of cells may simply be written in the general form

ṗ = pF(p) (1.1)

where p denotes the size of the population (measured in terms of volume, number
of cells, density of cells, etc.) and F(·) models its net proliferation rate, i.e., the
difference between the proliferation rate π = π(p) of the cells and their death rate
μ = μ(p) governed by apoptosis. Generally, it is difficult to infer the proliferation
rate π and death rate μ separately from experimental data and thus often the net
proliferation rate F is used.

1.2.1 Exponential Growth

Over a short time interval, and under relatively constant environmental conditions,
it is reasonable to assume that the proliferation and death rates are constant and in
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such a case the growth law becomes exponential [343] of the simple form

ṗ = ξ p (1.2)

with ξ a growth parameter. If the initial tumor volume at time t = 0 is given by p0,
then the tumor population evolves as

p(t) = eξ t p0

and the tumor growth rate ξ relates to the tumor doubling time T as

ξ =
ln2
T

.

This is a commonly used model for tumor growth during avascular and early vas-
cular growth, but it is not adequate over long time periods since generally the net
proliferation rate F = F(p) decreases as a function of p with the growth of the
population. The rationale behind this assertion simply is that with limited amounts
of oxygen and nutrients available and increased competition for these resources, the
proliferation rate π decreases as a function of the population size while the death rate
μ increases. If there exists a point q where these two rates agree, π(q) = μ(q), then
q becomes an equilibrium point for the dynamics (1.1) and, since the initial popula-
tion is small, this value q provides an upper limit for the population size. This value
q is called the carrying capacity of the population and represents its theoretically
maximal sustainable size. Unfortunately, in the vast majority of cases for tumors,
this value q well exceeds values compatible with the life of the host. Initially, for a
small tumor size, p � q, higher-order terms in an expansion of F can be neglected,
and thus an exponential growth law is appropriate and mathematically it simply rep-
resents a local linearization of the true underlying system. However, as the tumor
grows, the neglected terms matter and the model needs to be adjusted. Commonly
used models then are the so-called logistic and Gompertzian growth functions.

1.2.2 Gompertzian Growth

Because of its experimental support in data for breast cancer [244, 245, 247], the
Gompertzian growth law, introduced in 1825 as a demographic model for mortality
by Benjamin Gompertz, and although controversial in some of its aspects, is one
of the most commonly used equations to describe tumor growth in its latter stages
[343]. The net proliferation rate is modeled in the form

F(p) = a− b ln(p), a > b > 0, (1.3)

with the parameter a representing a baseline proliferation rate (summarizing the
effects of mutual inhibition between cells and competition for nutrients) and the
coefficient b a growth retardation factor that impedes the growth for large tumor
volume. Normalizing the initial tumor volume to p(0) = 1, the resulting differential
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equation for the tumor volume becomes

ṗ = p(a− b ln(p)) .

This is a linear differential equation in the variable y = ln(p),

ẏ = a− by, y(0) = 0,

with solution given by

y(t) =
a
b

(
1− e−bt

)
.

Thus the tumor volume is given by

p(t) = exp
(a

b

(
1− e−bt

))

and has the double exponential structure typical of the Gompertz law. The normal-
ized carrying capacity is q = exp

(
a
b

)
and it is more convenient and nowadays com-

mon to rewrite F in the form

FG(p) = ξ ln

(
q
p

)

=−ξ ln

(
p
q

)

(1.4)

with the coefficient ξ (= b) the growth parameter that determines the rate of con-
vergence of p to q. An example of the Gompertz growth function FG is given in
Figure 1.2 for a = 1 and b = 5.

The Gompertzian growth law is reasonable for large tumor volumes that possibly
approach the carrying capacity, but it clearly is inadequate for small tumor volumes
when its proliferation rate approaches infinity and this is not realistic. Any growth
law that has a relative growth rate ṗ

p that tends to ∞ as the size p tends to zero is
not valid for describing the growth of small aggregate tumors since their doubling
time, a quantity related to the complex biological processes in the cell cycle and
apoptosis, cannot be arbitrarily small [248, 343].

1.2.3 Logistic and Generalized Logistic Growth

A second classical phenomenological growth model that is based on competition
between processes associated with proliferation and death is the ubiquitous gener-
alized logistic law,

FL(p) = ξ
(

1−
(

p
q

)ν)

, ξ > 0, ν > 0. (1.5)

The classical model of logistic growth (ν = 1) was introduced in 1838 by Verhulst
in his studies of population growth to describe a self-limiting biological population
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under the assumption that the rate of reproduction is proportional to both the existing
population and the amount of available resources. The generalized version with an
arbitrary exponentν > 0 goes back to the work of Richards in the 1930s and it allows
to differentiate between slowly and fast growing cancers. The higher the exponent
ν is, the faster the tumor grows with the exponential growth law the limit as ν →∞.
The differential equation

ṗ = ξ p

(

1−
(

p
q

)ν)

, p(0) = p0, (1.6)

is a Bernoulli equation that can be integrated explicitly (e.g., see [34, 163]) and has,
as is easily verified by differentiating, the solution

p(t) = p0

[(
p0

q

)ν
+ e−νξ t

(

1−
(

p0

q

)ν)]− 1
ν

.

Note that, for small ν , we have the expansion

1− xν

ν
=

1− exp(ν ln(x)))
ν

=
1− (1+ν ln(x)+O(ν2))

ν
≈− ln(x)+O(ν)

and thus, if the growth coefficient ξ is made to depend on the parameter ν in the
order of ξ = O( 1

ν ), then the Gompertzian growth function can be recovered in the
limit as ν → 0+ (from the right). We use the standard Landau notation O(xα) to

denote functions f of x that have the property that the quotient
∣
∣
∣ f (x)

xα

∣
∣
∣ is bounded as

x → 0. Note that the growth function F is strictly convex, i.e., its second derivative
is positive, F ′′(p) > 0, for ν < 1 and strictly concave for ν > 1, F ′′(p) < 0. We
illustrate the functions FL and their corresponding solutions in Figure 1.2 for the
values ν = 1

2 ,1 and 2. A higher exponent causes the system to approach its carrying
capacity faster.

1.2.4 Other Growth Models

All of these phenomenological models were obtained through qualitative reasoning
and then, for specific cases, validated by means of data fitting with some of them
remarkably successful in data-based validation, e.g., [247, 25]. While these are the
more commonly used mathematical models for population growth, many other mod-
els exist (e.g., see [112, 124, 254]). We only briefly mention the following simple
modification of the Gompertzian and logistic models by Wheldon [343] that uses
a Gompertzian, respectively logistic growth law above a certain threshold C while
retaining a simple exponential growth for smaller tumor sizes, i.e.,
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Fig. 1.2 Examples of Gompertzian and generalized logistic growth functions with corresponding
responses.
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ṗ =

{
p(a− b ln(C)) for 0 < p ≤C,

p(a− b ln(p)) for C ≤ p.
(1.7)

This automatically stabilizes the ratio ṗ
p for small populations regardless of the spe-

cific measurement of the tumor size used (e.g., volume, number of cells, etc.), a
desired feature.

The argument can be made that all of these models reproduce at a larger degree
of approximation finer microscopic details, for example, of intercellular inhibitions.
The simple and plausible model in [239], that is based on the realistic hypothesis of
long range interactions between cells in a population whose structure is fractal, int-
roduces a mechanistic theory that links macroscopic phenomenological models of
this type to microscopic interactions and parameters. This approach allows to make
an argument that the various and at times seemingly contradictory growth models
are simply macroscopic different manifestations of a common physical microscopic
framework [254]. In other words, different values of the parameters of the micro-
scopic law result in different analytical laws for F = F(p). Thus, while one of these
models may be more appropriate for a specific medical situation (dependent, for
example, on the time of development of the tumor or a specific disease), in prin-
ciple, they all become viable options in the investigation of the development of a
tumor under treatment. In this text, various forms of these models will be used.

1.3 Treatment Approaches: An Overview

The main objectives of cancer treatments are two-fold: curative and palliative.
Clearly, if feasible, complete eradication of the tumor is sought and for certain types
of cancer this is a realistic and a viable option. For example, in kidney cancer, if
the tumor remains encapsulated, removal of the kidney generally eliminates the dis-
ease. In other situations, a total cure is unrealistic and then the objective becomes to
manage the disease, delay its further progression or maintain it at a tolerable level
and alleviate the symptoms. For types of cancer that are still largely not curable, the
objective simply becomes to improve the quality of life and survival probabilities
by avoiding life threatening toxicity. These are the objectives of palliative care.

But at large, the main objective of cancer treatments is to eradicate the disease.
In case of a solid tumor, if possible, the clear first choice of treatment is removal
via surgery. The only reason when this will not be pursued is if there would be
too much collateral damage. For example, in brain tumors often the risk of lethal
damage to vital brain functions becomes limiting. Besides surgery, the main stan-
dard treatment approaches to destroy tumors are by means of radiation and drugs.
In radiotherapy, guided by medical imaging techniques, it is attempted to destroy
the tumor with carefully directed radiation beams. It is estimated that about one half
of all cancer patients receive radiotherapy during their course of treatment, either
as primary procedure or in conjunction with surgery and chemotherapy [235]. But
the most common treatment approach, and in spite of its many negative side effects,
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still is chemotherapy. Especially if the cancer has already metastasized, chemother-
apy often is the only available option. Various types of drugs are being used whose
underlying basic premise simply is to prevent further cell divisions. For example,
spindle poisons stop the production of new cells by interrupting mitosis at the spin-
dle assembly checkpoint. On the other hand, if the cancer is already progressed far,
then such an action may simply not be adequate anymore and it really becomes
important to induce apoptosis and kill existing cancer cells like, for example, in
metastatic gastrointestinal cancers. However, many commonly used cancer drugs
such as paclitaxel do not necessarily induce apoptosis.

Even if the primary tumor can be removed by means of surgery or radiotherapy,
microscopic and undetectable metastases may exist which, if left untreated, will
grow and may lead to the recurrence of the disease. This may actually happen in an
accelerated form, for example, because the removal of the primary tumor may lead
to down-regulated activities of the immune system which, before on high alert bec-
ause of the existing tumor, was able to control small existing metastases. Thus, in
order to eradicate remaining microscopic tumors after surgery, and for other reasons,
for many types of cancer it becomes necessary to treat a patient with adjuvant (pre-
ventive) chemotherapy after surgery. This is commonly done, for example, in cases
of breast cancer or colorectal cancers. But chemotherapy has severe side effects and
only all too often, in the end it does not work. In the terminal stages of the disease,
adverse effects of strong chemotherapy may in fact lead to death. Another all to
common scenario is that some cancer cells within the tumor, because of the great
genetic variety of tumor cells, are intrinsically resistant to the action mechanisms of
cancer drugs or, in the course of time, once again because of their great genetic insta-
bility, acquire such resistance as a response to treatment. In these cases, “selection
of the fittest” works to our disadvantage. Over time, these partially or fully resistant
cell populations grow into the dominant portions of the tumor (as sensitive tumor
cells are eradicated by the treatment) leading to failure of chemotherapy. This may
possibly only happen after many years of seeming recession of the disease. Indeed,
drug resistance has been called the “curse of chemotherapy” [141] and only all too
often is the limiting factor in the therapy.

For this reason, modern therapies target not only the cancer cells, but also the
various support mechanisms that control tumor growth. Rather than just aiming
at destroying the cancerous cell, these multi-target approaches aim at the tumor
microenvironment. Antiangiogenic treatments disrupt the signaling mechanisms the
tumor gives to stimulate the development of its own vasculature or directly inhibit
the growth of endothelial cells that form the lining of the vessels and capillaries that
support the tumor with oxygen and nutrients. Because they only target the tumor
indirectly through the genetically much more stable endothelial cells, these treat-
ments are much less prone to drug resistance and were of great promise for this
reason. However, an indirect action alone often seems to be inadequate and thus this
promise is still largely unfulfilled. Other approaches, known collectively as imm-
unotherapy, try to recruit the immune system into a stronger reaction against the
cancer. New ideas and approaches such as cancer viruses are coming to the fore-
front of medical research all the time and the search for novel treatment approaches



14 1 Cancer and Tumor Development: Biomedical Background

in cancer is an ongoing activity that will remain with us until significant progress
has been made in the elusive “cure of cancer,” the holy grail of science.

In this section, we briefly describe the main rationales behind radiotherapy,
chemotherapy, antiangiogenic treatments, and immunotherapy and introduce the
types of mathematical models that will be used in this text to model and analyze
cancer treatment modalities.

1.3.1 Radiotherapy

Radiotherapy is the medical use of ionizing radiation to kill malignant cells. It may
be curative if the cancer is well localized to one area of the body, but it is also used
in synergy with surgery and chemotherapy to prevent recurrence of the tumor. Ion-
izing radiation damages the DNA of exposed tissue leading to loss of reproductive
functions of the cell. Generally, cells that lose their reproductive capabilities are con-
sidered “dead” since they no longer are able to produce a large colony of daughter
cells. In radiotherapy, one distinguishes between brachytherapy, where a radioac-
tive probe is inserted into the body close to the tumor, and external beam radiation,
still the more common of the two procedures. To spare normal tissues (such as skin
or organs through which radiation must pass in order to treat the tumor), shaped
radiation beams are aimed from various angles to intersect at the tumor site giving
it a larger absorbed dose than the surrounding, healthy tissue. Naturally, it is neces-
sary to include some margin of normal tissue around the tumor in the treated region
simply to allow for uncertainties that may be due to equipment set-up, but also due
to unavoidable internal movements of the patient, for example caused by breathing
and other bodily functions.

Based on a wealth of experimental data, several mathematical models have been
proposed to model cell death and cell survival during radiotherapy. These models
describe the fraction of surviving radiated cells as a function of the radiation dose
with the so-called linear-quadratic (LQ) model [94, 329] having become the stan-
dard. It expresses the probability of cell survival in the form

exp
(−αD−βD2) (1.8)

where D denotes the total radiation dose and α and β are radiosensitive parameters
that depend on the tissue that is being treated. Radiation is measured in Gray with
1 Gy being the amount of radiation required to deposit 1 Joule of energy in 1 kg
of matter. It relates to the historically used unit of rad (radiation absorbed dose)
by the simple formula that 1 Gy = 100 rad. The parameters α and β carry units
of [Gy−1] and [Gy−2], respectively. The quotient α

β is used to differentiate between
various types of tissue and often can be determined more accurately than α and
β separately. Note that the contributions of the linear term, e−αD, and the quadratic
term, e−βD2

, are equal for D = α
β . Essentially, the parameter α

β determines the shape
of the single-dose survival curve (see Figure 1.3) with a higher quotient leading to
a larger survival fraction. For fast dividing cells, also called the early responding
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Fig. 1.3 Cell survival probability for the linear-quadratic model under a single dose D.

tissue, this value can be as high as 10 while it is around 3 for most normal tissue,
the late responding tissue.

There exist numerous theoretical justifications for the linear-quadratic model in
the medical literature, among them the classical model by Chadwick and Leen-
houts [53]. Radiation causes abnormalities (in medical terms, lesions, Latin: laesio
- injury) that correspond to ruptures of the molecular bonds on the double-stranded
DNA. This damage is made up of two components: (i) simultaneous breaks in both
DNA strands that are caused by a single particle and (ii) two adjacent (both in loca-
tion and time) breaks on separate strands. While a double-strand break is assumed to
lead to loss of proliferative abilities, a single strand breakage is not considered lethal
since DNA has the ability to repair it. Only if a second adjacent break occurs on the
other strand before the first one can be repaired, this will lead to loss of proliferation
properties. Both scenarios (i) and (ii) are considered lethal in the sense that the cell
is no longer able to proliferate. The first situation leads to a linear term in the cell
survival model while the second one contributes quadratic terms. We briefly outline
the argument.

Consider a single event and let κ denote the fraction of DNA strand breaks that
occur per unit dose. These can be either double-strand breaks or only on a single
strand. Split these lesions into a fraction q that are double-strand breaks with the
remaining fraction 1− q generating single-strand breaks. First consider the double-
strand breaks and let N0 denote the initial number of critical molecular bonds that are
susceptible to a double-strand break (DSB) under radiation. The number N = N(D)
of critical bonds that remain intact after dose D is assumed to follow an exponential
law of the form

dN
dD

=−qκN, N(0) = N0,
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with the number of critical bonds that remain intact at dose D given by N0e−κqD.
Assuming that the proportion of lesions that can be repaired is given by ρ0, so that
ϕ0 = 1− ρ0 is the proportion of unrepaired lesions, it follows that the number of
double-strand breaks caused in one event is given by

NDSB = ϕ0 [1− exp(−κqD)]N0. (1.9)

Similarly, let Ni, i = 1,2 denote the number of critical bonds susceptible to a single-
strand break on one of the two strands, labeled 1 and 2. Then, analogously, the
number of single-strand breaks on each of the strands is given by

NSSB,i = ϕi [1− exp(−κ(1− q)D)]Ni, i = 1,2.

Assuming statistical independence of these events, the number of double-strand
breaks generated by two adjacent single-strand breaks can thus be modeled as

Nad jSSB = εϕ0ϕ1ϕ2 [1− exp(−κ(1−q)D)]2 N1N2 (1.10)

where ε denotes a factor that represents the likelihood that two single-strand breaks
are sufficiently close to each other (in time and space) for a double-strand break-
age to occur and, as in (1.9), ϕ0 denotes the fraction of these lesions that are not
repaired. Assuming in addition that there is only a proportion p of breaks that are
lethal, and combining (1.9) with (1.10), the total number of lethal double-strand
breaks is given by

Nlethal = pϕ0

(
[
1− e−κqD]N0 + εϕ1ϕ2

[
1− e−κ(1−q)D

]2
N1N2

)

. (1.11)

Typically, the fraction κ is small and using a Taylor expansion we approximately
have that

Nlethal ∼ pϕ0

(
qκDN0 + εϕ1ϕ2 ((1−q)κD)2 N1N2

)
. (1.12)

Finally, assuming that the number of lethal double-strand breaks follows a Poisson
random variable X with mean μ , the quantity Nlethal is an unbiased estimator for the
mean and the probability of cell survival is simply given by

P(X = 0) = exp(−μ)∼ exp
(−αD−βD2) (1.13)

where

α ∼ pϕ0qκN0 and β ∼ pεϕ0ϕ1ϕ2(1−q)2κ2N1N2.

There exist several other derivations for the linear-quadratic model based on sim-
ilar underlying principles, all arriving at the same functional representation. For
example, Kellerer and Rossi [139] derive the relation based on a theory of dual rad-
iation action grounded in analyzing clinical data. Tobias et al. [330] use a model
of repair and misrepair. For a detailed discussion of cell survival models that are
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based on repair/misrepair kinetics and quantify dose-response relations and dose-
protraction effects, we refer the reader to the review article by Sachs, Hahnfeldt
and Brenner [286]. Although the validity of the linear-quadratic model can be ques-
tioned for very low and very high dosages (e.g., see [120, 155]), there are numerous
studies that support conclusions derived from the linear-quadratic model [37] and it
is widely used to model cell survival in radiotherapy.

In actual treatments with external beam therapy, the total dose D is spread in
time and is given in several small, so-called fractionated doses. For example, if the
total dose D is divided into n equal fractions of treatment of d units, D = nd, then,
under the assumptions that the biological effects of each fraction are independent of
each other and that they are the same for each dose (this assumes complete repair of
nonlethal DNA strand ruptures during the time intervals between adjacent adminis-
trations of doses), the total probability of cell survival is given by the product,

[
exp
(−αd−βd2)]n = exp

(
n
(−αd−βd2)) .

This motivates the definition of the biologically equivalent dose, a suitably normal-
ized exponent in this fractionated LQ-survival probability as

BED = n ·d
(

1+ d
β
α

)

= D

(

1+d
β
α

)

(1.14)

with the quantity 1 + d β
α called the relative effectiveness per fractionated dose.

Essentially, the effect of a single fractionated dose is of the form exp
(−αd−βd2

)

and these terms are just multiplied which then leads to the exponent given by
−α ·BED. The biologically equivalent dose is an approximation that is generally
used in medical practice when comparing different fractionization schemes.

The main reason for fractionation is to improve the effect of radiotherapy. The
underlying rationale is based on what are called the four R’s of radiotherapy:
repair, reoxygenation, repopulation, and redistribution. The prolongation of treat-
ment, either by fractionation or decreasing dose-rate, allows a greater time for repair
between the treatment periods resulting in a reduced cytotoxicity to both tumor and
normal tissues. In fact, one of the main rationales behind fractionization schemes is
to exploit the differences in the α

β values between early and late responding tissues
to maximize the damage done to the cancer cells while limiting the side effects.
Fractionation allows normal tissue to recover while tumor cells are generally less
efficient in repairing radiation damage and thus are more effected by the treatment.
A second main reason for fractionization is reoxygenation. Tumors generally consist
of a mixture of cells some of which have ample supply of oxygen (aerated) while
others are deprived of oxygen (hypoxic). Radiation predominantly kills the aerated
cells since hypoxic cells are mostly in the quiescent phase in the cell cycle and
thus are much less radiosensitive. After radiation treatment, most surviving tumor
cells are hypoxic. Fractionation allows for these cells to again become oxygenated
and thus once more be radiosensitive. For the same reason, after radiation treatment,
tumors tend to go through a phase of increased growth and decreased cell loss called
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repopulation. Overall, it therefore becomes advantageous to give repeated doses.
Redistribution, the possibility of exploiting the dynamics in the cell cycle, seems to
be of lesser practical importance since cancer cells often have rather heterogeneous
cell-cycle kinetics.

In North America, a typical fractionation schedule for adults is 1.8 to 2 Gy per
day, five days a week. If the periods between fractions are too long, the cancer can
recover and the beneficial effects of treatment are lessened. For this reason, frac-
tionation schedules are individualized and can vary even between doctors. In fact,
medical research is ongoing into various fractionation schemes. In so-called hyper-
fractionation, higher numbers of fractions are used per day near the end of a course
of treatment to deprive small tumors that have strong regenerative properties of this
option (e.g., head-and-neck tumors). In case of lung cancer, CHART (continuous
hyperfractionated accelerated radiation therapy) which administers three smaller
fractions per day apparently has been quite successful. On the opposite side of the
spectrum, hypofractionation is a form of radiation treatment in which the total dose
of radiation is divided into large doses and treatments are given less than once a day.
In this kind of treatment, doses can reach up to 20Gy per fraction. As these widely
differing efforts indicate, mathematical modeling and analysis can be of interest in
the scheduling of radiotherapy doses.

We formulate a mathematical model for radiotherapy with cell loss by com-
bining the linear-quadratic model with the phenomenological models introduced
in Section 1.2 to describe the loss of tumor size under radiotherapy. However, we
do this for an extension of the standard model that takes into account incomplete
repair of DNA damage. The classical formula (1.8) is adequate under several as-
sumptions, one of which is that DNA repair of sublethal damage is complete by the
time the next dosages are administered. Then, indeed, over a reasonable time period
that does not allow for the tumor to grow significantly—and radiotherapies are de-
signed like this—a static fractionation policy with the same dose for all the fractions
is adequate. In reality, however, these repair processes are imperfect. In addition, as
already mentioned above, early and late tissues have very different repair rates ρ .
Taking these features into account, and considering an arbitrary, time-varying dose
rate w = w(t)≥ 0 over an interval [0,T ], the surviving fraction of cancer cells under
the traditional LQ-model is given by the expression (e.g., see, [340] and [286])

exp

(

−α
∫ T

0
w(t)dt − 2β

∫ T

0

∫ t

0
w(t)w(s)e−ρ(t−s)dsdt

)

(1.15)

where, as before, α and β are the constant LQ-parameters corresponding, respec-
tively, to the likelihood of lethal damage through a double-strand break and to the
probability that two single-strand breakages occur. But now the probability that two
such breaks occurring at times s and t will be lethal is assumed to decay exponen-
tially with the repair rate ρ . Denoting the total dose by D =

∫ T
0 w(t)dt, this expres-

sion can be rewritten in the form

exp
(−αD−βGD2) (1.16)
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with

G =
2

D2

∫ T

0

∫ t

0
w(t)w(s)e−ρ(t−s)dsdt, (1.17)

the so-called Lea-Catcheside dose-protraction factor. This constant represents the
fact that a single strand break that is created at time s, if not repaired, will interact
with a second single strand break at time t to form a lethal lesion. Note that for a
constant dose rate w(t) = w̄ = const and with D = w̄T , this term reduces to

G =
2w̄2

D2

(
e−ρT − 1+ρT

ρ2

)

= 1+o(ρT).

In particular, if we have ρ = 0, then G = 1 and this is the classical formula
exp
(−αD−βD2

)
with D = w̄T . More generally, if the irradiation time is short

enough, the higher order terms in this expansion can be ignored and G is close to 1.
For example, in standard external beam radiotherapy the time duration of a fraction-
ated dose is in the order of seconds compared with a typical repair time constant in
the order of an hour. Thus G is effectively 1 and, in case of daily fractionated doses,
there is no effective interaction between doses and the standard linear-quadratic
formula is adequate. In this case, the effect of fractionated doses is obtained by mul-
tiplying the cell survival probabilities for the individual doses and the overall effect
thus is described by the biologically equivalent dose as discussed above. But this
formula assumes complete cellular repair in between doses. On the other hand, if
radiation is given over longer time periods, as is the case in continuous low-dose
radiation schedules, then the exponential term e−ρ(t−s) may be significantly smaller
than 1 over sizable intervals and in such a case G < 1. We therefore choose the more
general cell survival probability (1.15) and incorporate it into the phenomenological
models for tumor growth.

Note that the integral term

r(t) =
∫ t

0
w(s)e−ρ(t−s)ds

is the solution to the first-order linear ODE

ṙ =−ρr+w, r(0) = 0. (1.18)

Hence we can formulate the combined model as the following 2-dimensional system
with α and β the standard LQ parameters and the equation for r representing the
temporal effects of tissue repair with repair rate ρ :

ṗ = pF (p)− (α+ 2β r) pw, p(0) = p0, (1.19)

ṙ =−ρr+w, r(0) = 0. (1.20)

The specific parameter values depend on the tissue treated and there will be separate
equations modeling the effects on cancerous and healthy tissue. A smaller tumor re-
pair rate implies a larger influence of the integral term in the quadratic component
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and thus a greater effectiveness of the therapy on this type of tissue. For a con-
stant dose rate w̄, in steady state (i.e., in the limit limt→∞ r(t) = r̄), we have that
r̄ = w̄

ρ and thus the damage term reduces to a standard linear-quadratic expression

−p
(
αw̄+ 2β

ρ w̄2
)

. Equation (1.20) better models the transient behavior and, from a

mathematical point of view, the structure of the overall model becomes more trans-
parent, and also more manageable, if we replace the integral

∫ t
0 w(s)e−ρ(t−s)ds with

the solution r to this differential equation. For large repair rates, it can be adequate
to replace the state r by its steady-state value and then we once more recover the
standard LQ-model, basically approximating the case of complete repair.

1.3.2 Chemotherapy

In principle, the term chemotherapy only indicates the use of a chemical to cure a
disease, typically in the case of proliferating pathogens such as bacteria or tumor
cells. But chemotherapy has such an important role in oncology that nowadays the
usage of language commonly refers to cancer chemotherapy. Quite simply, to this
day chemotherapy remains the main elective nonsurgical choice for treatment of
cancer, both as a stand-alone procedure if a tumor is not operable or as adjuvant
therapy to target microscopic metastases after surgery and radiotherapy.

While the specific drug that will be administered depends on the type and stage
of the tumor to be treated, the means of action of these drugs often follow similar
underlying principles. Broadly one distinguishes between cell-cycle nonspecific and
cell-cycle specific drugs. The first class, for example, includes anthracyclines which
are among the most effective anticancer treatments ever developed, but unfortu-
nately have high cardiotoxicity that may lead to heart failure. Among cell-cycle spe-
cific drugs, one broadly distinguishes between cytotoxic or killing agents that kill the
neoplastic cell and cytostatic or blocking agents that decelerate or block/arrest the
tumor cells’ proliferation. Typical drug actions cause DNA strand breaks in G2/M
and DNA synthesis inhibition in S. There also exist more specialized mechanisms
that play important roles in specific types of cancer. For example, in leukemia, can-
cer cells spent prolonged periods in the dormant stage of the cell cycle during which
time they essentially are not vulnerable. Then they go through a period of cell dup-
lication rather rapidly. Here so-called recruiting agents that induce cells to leave the
dormant stage and enter the cell cycle are of importance.

Cytotoxic agents interfere with specific processes in the cell-cycle and predomi-
nantly act in the G2/M phase where, during mitosis, the cell walls become thin and
porous and thus cells are more vulnerable to an attack. For example, spindle poisons
interrupt regulatory proteins that connect the centromere regions of chromosomes,
known as spindles, which leads to termination of cell division at the spindle assem-
bly checkpoint (SAC) in mitosis. As in case of radiotherapy, generally an action
that prevents the further generation of colonies of daughter cells is considered a
killing action, even if it does not induce apoptosis. One of the most typical such
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drugs is paclitaxel which is commonly used to treat patients with lung, ovarian,
breast, head and neck cancer [58]. Killing agents also include S specific drugs like
cyclophosphamide [58] or metatraxate [270] that mainly act in the DNA replica-
tion phase. Cytostatic agents, on the other hand, aim to synchronize the transitions
of cells through the cell cycle by causing brief and invisible inhibition of DNA
synthesis in the synthesis phase S and thus hold cells in the first growth phase G1

[6, 68, 223]. A recruitment action was demonstrated, for example, for granulocyte
colony stimulating factors (G-CSF) and granulocyte macrophage colony stimulat-
ing factors (GM-CSF). Generally, cytotoxic and cytostatic drugs are the more im-
portant ones and are among the common chemotherapeutic drugs given. But with
so many other classifications in medicine, this division is an idealized one and often
the mechanisms of actions of the drugs are more varied and mix both features.

We extend the growth model considered in Section 1.2 to include a cytotoxic
effect of chemotherapy. These models take a simpler form than in the case of ra-
diotherapy. Generally, for tumor growth, we have a positive net proliferation rate,
R(p) > 0. Clearly, a negative proliferation rate implies the self-extinction of the
neoplasm, a case only of interest for immunogenic tumors. But such a negative net
proliferation rate is exactly what chemotherapeutic agents aim at by reducing the
proliferation rate π or increasing the death rate μ of the neoplastic cells. When a
drug is delivered to a human or an animal host, two fundamental processes take
place called pharmacokinetics (PK) and pharmacodynamics (PD): pharmacokinet-
ics determines the concentration of the drug in the blood and tissue, i.e., “what the
body does to the drug,” and pharmacodynamics models the effects the drugs have,
i.e., “what the drug does to the body.” According to the law of mass action, the speed
of a chemical reaction is proportional to the product of the active masses (concen-
trations) of the reactants. If a drug is administered, in an ideal situation it has been
postulated by Skipper et al. in 1960 [298] that cell death under cancer drugs fol-
lows first order kinetics [343], i.e., the decrease in the number of cancer cells per
unit of time is proportional to the number of cancer cells with the rate depending
on the concentration of the anti-cancer drug. Thus, if we assume the density profile
of the chemotherapeutic agent in the blood stream is described by a time-varying
function c = c(t), then the cell loss caused by this concentration is proportional to
c(t)p(t), i.e., the pharmacodynamic model is linear in both the concentration c and
p. This hypothesis is called the linear log-kill hypothesis and incorporating it into
the growth law (1.1) results in the following growth model under chemotherapy,

ṗ = pR(p)−ϕcp (1.21)

with ϕ some positive constant that describes the effectiveness of the agent.
We briefly discuss the main effects that chemotherapy has on tumor volume using

equation (1.21). In medical practice, typical chemotherapy schedules administer
drugs in maximum dose therapy sessions with rest periods in between. The concept
of the maximum tolerated dose (MTD) refers to the highest dose of a radiological or
pharmacological treatment that can be given without unacceptably high toxicity. It is
determined in clinical trials by simply increasing doses until unacceptable limiting
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side effects are found. In order to speed up testing, drugs generally are given in a
single bolus dose, i.e., concentrated at some time instant. Over a short time-period,
it is realistic to assume that growth is exponential, i.e.,

ṗ = ξ p−ϕcp, p(0) = p0, (1.22)

with the time of application normalized to t0 = 0. Also, drug clearance rates often are
fast—half-lives tend to be in the order of minutes to hours—while cell-cycle times
are in the order of hours to days and even longer for some cell lines. Thus, over
a short period, in a first approximation it is reasonable to neglect pharmacokinetic
effects. For simplicity, let us also assume that the concentration is constant, c(t)≡ c̄,
over a small interval [0,Δ t]. Then the solution to (1.22) is given by

p(t) = p0 exp((ξ −ϕ c̄)Δ t) = p0eξΔ t · exp(−ϕ c̄Δ t) . (1.23)

Without treatment, the tumor grows to p0eξΔ t and thus the second factor determines
the reduction due to treatment. The total dose D administered is the product of the
concentration and time, D = c̄Δ t. A bolus administration of dose D corresponds to
an impulse and is the mathematical limit when this dose is given over decreasingly
smaller intervals with higher concentrations in the limit as Δ t → 0. Since the reduc-
tion term only depends on the total dose, the tumor reduction achieved by a bolus
injection of dose D is approximately given by

r = exp(−ϕD)

with ϕ a positive constant dependent upon the effectiveness of the drug. In particu-
lar, note that a given bolus dose of anti-cancer drugs eliminates a specific proportion
of cancer cells regardless of the size of the tumor, not a specific number of cancer
cells. However, this treatment also kills all other strongly proliferating cells as well
(especially in the bone marrow) and thus it needs to be followed by a significant
rest period that allows the damaged healthy cells to recover. A typical length T for
the time between doses in the US is three weeks. During this time the cancer will
regrow and, still using the simple exponential growth model, the total effect over a
therapy interval of length T is thus given by

exp(−ϕD) · exp(ξT ) .

Only if this quantity is less than 1, therapy can in principle be successful.
Figure 1.4 depicts some typical response curves to bolus type chemotherapy with

restperiods that result from this reasoning and are common in medical presentations
and publications on this topic. We plot the number of cancer cells on a logarithmic
scale vertically and time in weeks horizontally. In Figure 1.4(a) the initial condition
corresponds to 109 cells, probably the smallest size of tumor clinically detectable,
and just for sake of numerical illustration it is assumed that 99% of the cancer cells
are eliminated by the treatment with the remaining cells then regrowing slowly dur-
ing the restperiod. Clearly, overall this is a very favorable scenario and this is a
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Fig. 1.4 Schematic representation of the evolution of tumor volume under bolus injection at times
t = 1,4,7,10,13 weeks: (a, left) if cancer cells are sensitive and (b, right) if cancer cells contain a
high portion of resistant cells. In case (a), therapy will be successful while it fails in case (b).

model for a successful chemotherapy. In reality, however, often only a much smaller
ratio of cells is sensitive to the therapy and, in the course of time, as these resistant
cells are killed, the proportion of the resistant population of cancer cells increases
and, unfortunately, healthy cells do not develop similar resistance properties. Thus,
over time, chemotherapy becomes less and less effective and eventually may fail.
A simple example of such a scenario is shown in Figure 1.4(b).

Although this reasoning is oversimplified in many aspects, it is the staple of much
of the praxis of drug scheduling in chemotherapy. For example, this argument does
not consider the dynamics of the cell cycle when in reality only cycling cells can be
killed. These effects are simply subsumed in the coefficient ϕ that determines the
cancer cell kill fraction. For some types of tumors, especially in leukemia, this frac-
tion may represent only a small percentage, possibly less than 1%, of the total num-
ber of cancer cells. For this, and also other reasons, chemotherapy given in an MTD
fashion has proven less effective or even ineffective on slowly growing cancers that
have a small proportion of cycling cells. Generally, the effectiveness of a specific
treatment schedule depends on the type of tumor. Acute myeloid leukemia (AML)
is a cancer of the myeloid line of blood cells, characterized by rapid growth of abn-
ormal white blood cells that accumulate in the bone marrow and interfere with the
production of normal red blood cells. For this disease, MTD chemotherapy has been
very successful in achieving remission by reducing the number of leukemic cells
to an undetectable level. On the other hand, acute lymphoblastic leukemia (ALL)
is another form of leukemia where an MTD regimen is not that appropriate. This
disease is characterized by excess lymphoblasts (immature cells that differentiate
to form lymphocytes) and also causes damage and death by crowding out normal
cells in the bone marrow. ALL is most common in childhood and it has an overall
cure rate of about 80% that is achieved through prolonged low-dose treatment pro-
tocols that stretch from 2 to 3 years [332]. There also exist other types of cancer
where a so-called metronomic scheduling of chemotherapy has been proven suc-
cessful [118, 162, 272]. In this form of therapy, essentially, drugs are administered
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in a continuous low-dose way to avoid toxic side effects, possibly with small inter-
ruptions to increase the efficacy of the drugs. As is obvious from equation (1.23),
if it is possible to give chemotherapy at lower doses over prolonged time intervals
(e.g., if toxic side effects were absent), then the overall effect may be improved
because of the greatly extended time horizon in the term exp(−ϕ c̄Δ t) than what
can be achieved with repeated MTD doses [341]. The optimization of treatment
schedules to this day remains an active area of medical research and, in the context
of mathematical models, is one of the main topics of our text.

Generally, both in MTD schedules and even more so in a metronomic setting,
several drugs are combined to achieve synergistic effects. Figure 1.5 depicts the
evolution of the tumor volume under continuous infusion chemotherapy for two
drugs labeled drug 1 and drug 2 and a synergistic effect of combinations. This is
merely meant to illustrate the features and, for simplicity, we again assume that
tumor growth is exponential and that the continuous administrations of the drugs
reduce the growth factor ξ of the tumor by death rates μ1 and μ2 related to the
concentrations c̄ and the effectiveness ϕ of the drug, i.e.,

ṗ = (ξ − μ1) p, and ṗ = (ξ − μ2) p,

respectively. The combination of the two drugs is said to be synergistic if the death
rate Φ(μ1,μ2) attained by giving both drugs is greater than the sum of the indi-
vidual death rates, Φ(μ1,μ2)> μ1 +μ2, and it is called antagonistic if it is smaller,
Φ(μ1,μ2)< μ1+μ2. In general, two G2/M specific cytotoxic agents are expected to
be antagonistic, while there is hope that cytotoxic agents that act in different phases
of the cell cycle may be synergistic. But the specifics are clearly drug dependent and
are largely determined by the interplay of the specific activation mechanisms of the
drugs involved and their biochemical properties. In Figure 1.5 we give some typical
dose-response curves for tumor growth under continuous infusions for two drugs
under a simple linear pharmacokinetic model of the form ċ = −ρc+ u. Treatment
is initiated at time t = 1.

High dose chemotherapy is designed to be as toxic as possible to the cancerous
cells and thus naturally has severe side effects. The paradigm simply is that cancer
cells need to killed and that they need to be killed now and in large quantities. The
underlying rationale for this so-called induction chemotherapy is that the patient was
only diagnosed in a late stage and that the disease has progressed to a state where
immediate action is required, only an all too common scenario with a disease that
is widely symptomless in its early stages. (Among all types of tumors, pancreatic
cancer has one of the worst survival rates since it generally is only detected in very
late stages of the disease.) But most anticancer drugs are not selective to tumor cells
and equally kill a large number of proliferating healthy cells. Especially in these first
stages of modern chemotherapy that aim at remission of the disease, drugs target all
or at minimum large classes of proliferating cells, often with severe effects on a wide
range of physiologically proliferating cells important for life like the bone marrow.
Anti-cancer drugs interfere with one or more biochemical pathways important in
cell duplication. Naturally, the more the targeted pathway is specific to cancer cells,
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Fig. 1.5 Evolution of tumor volume under continuous time infusions starting at t = 1 for two drugs
and a synergistic combination.

the less severe side effects are. But since its first use, it has been plain that because
of the scarce selectivity of chemotherapeutic agents serious side effects are related
to the use of cytotoxic chemicals to cure tumors. If these side effects become too
strong, chemotherapy fails.

The main reason for the high number of these failures is drug resistance. Cancer
cells typically are genetically unstable and coupled with high proliferation rates this
leads to significantly higher mutation rates than in healthy cells [107]. If a mutated
cell exhibits a biochemical structure that invalidates the mechanism of attack of
the chemotherapeutic agent, these cells have become drug resistant (acquired res-
istance). Indeed, the response of tumor cells to chemotherapy is characterized by
a considerable evolutionary ability to enhance cell survival in an environment that
is becoming hostile. Malignant cancer cell populations are highly heterogeneous—
the number of genetic errors present within one cancer cell can lie in the thousands
[220]—and fast duplications combined with genetic instabilities provide just one
of several mechanisms which allow for quickly developing acquired resistance to
anti-cancer drugs. Moreover, because of this tremendous heterogeneity of cancer
cells, small sub-populations of cells may exist that are intrinsically not sensitive
to the treatment from the beginning (ab initio, intrinsic resistance). In this case,
after the sensitive cells have been killed by the treatment, a tiny fraction of resistant
tumor cells remains that then can grow to become a dominant population leading to
the failure of therapy, possibly only after many years of seeming remission of the
cancer. Drug resistance has been called the curse of chemotherapy and if it becomes
an issue, generally the realistic aim no longer becomes to cure the disease, but to
prolong the patient’s life expectancy.
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Considerable research efforts have been made and still are ongoing to overcome
drug resistance [95]. Rather than just killing the cancerous cells, modern treatments
take a more holistic approach and also target the tumor’s microenvironment [310],
especially the tumor vasculature and the immune system. As it was already out-
lined above, a solid tumor cannot grow beyond a small size without developing its
vasculature and for this recruitment of endothelial cells is necessary. Cells of the
immune system have both stimulatory and inhibitory effects that are being used in
immunotherapies. We still briefly describe these two treatment modalities.

1.3.3 Antiangiogenic Therapy

Chemotherapy targets the main characteristic of tumor cells, their proliferative der-
angement. But tumor cells also take part in a vast array of microscopic and macro-
scopic interactions with other cellular populations and this opens the door to alt-
ernative treatment approaches that can enhance traditional options. Antiangiogenic
therapy falls into this class of treatments. It was already in the early 1970s that
J. Folkman observed the importance of the development of a tumor’s vasculature
for the full development of a solid tumor and proposed antiangiogenic treatment
as a possible strategy to combat cancer [85, 86, 87]. But it only became a medi-
cal reality with the discovery of inhibitory mechanisms of the tumor in the 1990s
[161]. Indeed, the tumor both stimulates and inhibits the growth of the endothelial
cells that form the linings of the blood vessels and capillaries that define its vascula-
ture. As a whole, it is now understood that tumor angiogenesis is a tightly regulated
process with complex bidirectional signaling that provides a balance between stim-
ulatory and inhibitory mechanisms. Proangiogenic factors are released as the tumor
cells lack a full level of nutrients to stimulate the process and antiangiogenic chem-
icals modulate the growth of the vessel network, deploying a sophisticated strategy
to control the tumor’s growth. Folkman suggested that inhibiting the development
of the tumoral vessel network could be a powerful way to control the neoplastic
growth by means of reducing the supply of nutrients. He termed this new kind of
therapy antiangiogenic therapy. Rather than fighting the fast duplicating, geneti-
cally unstable and continuously mutating tumor cells, this indirect treatment ap-
proach targets the genetically much more stable endothelial cells that form the walls
of blood vessels. These cell lines are far less prone to developing drug resistance
[28] and still to this date no limiting clonal resistance to angiogenic inhibitors has
been observed in experimental cancer. For this reason, tumor antiangiogenesis has
been called a new hope for the treatment of tumors [141, 142]. But antiangiogenic
therapy only limits the tumor’s support mechanism without actually killing the can-
cer cells and thus far these high hopes have only been realized in mouse models.
As any mathematical model and numerous medical studies confirm, the tumor will
grow back once treatment is halted. Thus tumor antiangiogenesis is not efficient as
a stand-alone or monotherapy treatment, but in combination with other traditional
treatments that kill cancer cells such as chemotherapy or radiotherapy [77], it can
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enhance their effect and lead to synergistic benefits. For example, there is strong
interest and active research on tumor antiangiogenesis as a method that regularizes
the vasculature [131, 132] and thus, when combined with chemotherapy, enhances
the delivery of the drugs and thus the efficacy of the procedure.

There exists a large number of antiangiogenic agents with over 60 of them in
clinical trials in the US since 2006. Angiogenic inhibitors are commonly classified
as direct inhibitors which act on the endothelial cells and inhibit their proliferation
and migration or induce their apoptosis, or as indirect inhibitors that block the pro-
duction of angiogenic factors by malignant cells [143]; mixed agents target both
endothelial and malignant cells. Some direct inhibitors have a cytotoxic action that
induces a rapid destruction of existing blood vessels. Several antiangiogenic drugs
have undergone clinical development in recent years, and some of them have led
to improvement in overall survival or disease-free survival in various clinical sce-
narios. This way of controlling the tumor burden appears intriguing and there is
evidence from experimental work that inhibiting angiogenesis may induce tumor
regression and sometimes cure [266]. Also, there exists mounting medical evidence
that several cytotoxic drugs have antiangiogenic effects when given at reduced dose
rates [118, 162, 272].

Modeling the interplay between tumor growth and the development of its vas-
cular network, as well as the action of angiogenic inhibitors, is an important step
that can help in planing effective antiangiogenic therapies. Tumor angiogenesis is a
spatial consumption-diffusion process and to date a number of mathematical mod-
els have already been proposed. Among these, one can broadly distinguish between
cell-based models and population-based models. Cell-based models, such as they
are developed, for example, in [8, 13, 54, 55], aim to fully reflect the complex bio-
logical processes that underlie tumor angiogenesis. Population based models try to
aggregate these features into dynamical systems with a minimal number of variables
and parameters. While being a less accurate approximation of the medical reality,
they generally allow for mathematical analysis beyond the large scale simulations
of cell based models [236]. With their inherent reliance on specific parameter val-
ues, the conclusions drawn from such simulations tend to be less systemic while,
as we shall show in Chapter 5, the analysis of population based models leads to
robust results and interpretations. Furthermore, medical treatment does operate on
a highly aggregated level: once the type of cancer and the stage of progression of
the disease have been identified, therapy schedules are determined based on estab-
lished guidelines and the experience of the physicians without complete knowledge
of the intricate details of the specific situation. Therefore, low-dimensional dynam-
ical systems that are minimally parameterized allow for a mathematical analysis
(using tools from various branches in mathematics, not just optimal control as it is
applied in our text) and can provide robust results that are valid over a large range of
parameters [263, 264, 201]. Such results then lead to sound qualitative conclusions.
It are these kind of results that we shall focus on in this text.

Folkman and his coworkers formulated a simple, but largely influential math-
ematical model of this type—a minimally parameterized and low-dimensional
dynamical system—in [116] that describes the vascular phase of tumor growth.
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The appreciation of the role of angiogenesis in tumor development has led Hah-
nfeldt et al. to introduce the important concept of a varying carrying capacity, q(t),
defined as the tumor size potentially sustainable by the existing vascular network
at a given time [116]. This carrying capacity is an idealized quantity for the tu-
mor’s support mechanisms through its microenvironment and, to a large extent, it
depends on the tumor vasculature. Introducing such a variable into the phenomeno-
logical growth function F in equation (1.1), and simply postulating a dynamics for
q determined as a balance of stimulatory (S) and inhibitory (I) effects, results in the
following dynamical system:

ṗ = pF

(
p
q

)

, (1.24)

q̇ = S(p,q)− I(p,q). (1.25)

In their paper [116], Hahnfeldt, Panigrahy, Folkman, and Hlatky derive specific
functional forms for I and S using an asymptotic spatial analysis of the underlying
consumption-diffusion process for the concentrations of stimulators and inhibitors
under a series of simplifying assumptions that include spherical symmetry of the tu-
mor, a fast degradation of proangiogenic factors and a slow degradation of inhibitory
factors. Their model was biologically validated by fitting experimental data on the
growth and response to different antiangiogenic drugs for Lewis lung carcinomas
implanted in mice. Various extensions and modifications of this model have been
proposed and analyzed in the literature and we shall discuss these, along with the
precise underlying modeling aspects, in Chapter 5.

Equations (1.24) and (1.25) provide a general framework to portray the effects
of antiangiogenic therapies on the tumor, either alone or in combination with tra-
ditional therapies. For example, if we denote the concentrations of antiangiogenic
and chemotherapeutic agents by u and v, respectively, then, and making the log-kill
hypothesis, we obtain a system of the form

ṗ = pF

(
p
q

)

−ϕvp, (1.26)

q̇ = S(p,q)− I(p,q)− γuq−ηvq (1.27)

with the coefficient γ describing the effect of an angiogenic inhibitor on the vascu-
lature and the coefficients ϕ and η describing the effects of a cytotoxic agent on
the tumor and its vasculature, respectively. Obviously, this model can be made more
realistic by allowing that these quantities depend on the variables p and q with func-
tions of the quotient q

p , sometimes called the endothelial density, most intriguing
medically (see [259]). Various further extensions of the model, such as, for exam-
ple, the inclusion of pharmacokinetic equations for the therapeutic agents or models
for combination therapies of antiangiogenic agents with chemo- and radiotherapy
can be formulated and these are some of the topics considered in Chapters 6 and 7.
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1.3.4 Tumor Immune System Interactions

A tumor’s microenvironment also contains various types of cells of the immune sys-
tem with both beneficial and detrimental effects. The purpose of the immune system
is to protect the organism from disease. In order to fulfill this function, it needs to
be able to detect a wide variety of agents, from viruses to bacteria to parasites, but
also must be able to distinguish these from the organism’s own healthy tissue. There
exist various autoimmune diseases such as diabetes or asthma when the immune
system fails to make these distinctions and attacks important functional cells in the
body. Tremendous progress in understanding the workings of the immune system
has been made in connection with research on HIV and this new knowledge also
finds applications in cancer research. Since the immune system’s first response to
its environment is on the basis of a discrimination between “own” and “foreign”
objects, some types of tumor cells may be tolerated by the patient’s own immune
system if, essentially, they are classified as “own” cells [271]. However, tumor cells
generally exhibit a large number of abnormalities (such as mutated proteins, under-
or over-expressed normal proteins and many more) that lead to the appearance of
specific antigens some of which will be classified as “foreign” and thus do trigger
reactions by both the innate and adaptive immune system [144, 309]. In fact, the
empirical hypothesis of immunosurveillance, i.e., that the immune system may act
to eliminate tumors, is well established in the medical community and has recently
been confirmed experimentally and epidemiologically [72].

The competitive interaction between tumor cells and the immune system is com-
plex and involves an immense number of events with the kinetics of the interplay
strongly nonlinear. Moreover, to fully describe the immuno-oncologic dynamics,
one has to take into account a range of spatial phenomena since this interplay is
strongly shaped by the mobility of both tumor cells and the effector cells of the
immune system [232]. Thus the possible outcome of this interplay is not only con-
stituted by either tumor suppression or tumor outbreak, but by various intermediate
scenarios. For example, it has been hypothesized that in case of a fully developed
and metastatic tumor, upregulation of the immune system caused by the tumor may
be responsible for controlling small metastases. Also, there exist several theoretical
immuno-oncologic studies that were largely inferred from clinical data and come to
the conclusion that in some cases the immune system may be able to keep the tumor
in a dynamic equilibrium that corresponds to a microscopic (undetectable) dormant
state [248, 250, 232], so-called tumor dormancy. This theoretical prediction was
confirmed by Koebel and coworkers [164], who were able to experimentally show,
through an ad hoc mouse model, that adaptive immunity can maintain occult cancer
in an equilibrium state.

There exists a substantial amount of research literature on the mathematical des-
cription of tumor-immune system interaction. This field has seen a strong resur-
gence due to the increased understanding of the mechanisms of the immune system
in connection with AIDS (acquired immune deficiency syndrome) research, e.g.,
[17, 18, 158, 280, 252], to mention just a small sample of some more recent publi-
cations on this topic. Historically, one of the earliest references on this topic is the
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1980 paper by Stepanova [303] where a by now classical mathematical model of two
ordinary differential equations is proposed that aggregates the interactions between
cancer cell growth and the activities of the immune system during the development
of cancer. Precisely because of its simplicity, a few parameters incorporate many
medically important features, the underlying equations have been widely accepted
as a basic model. In that model, the main features of tumor immune system interac-
tions are aggregated into just two variables, the tumor volume, p, and the immuno-
competent cell densities, r, a non-dimensional, order of magnitude quantity related
to various types of immune cells (T-cells) activated during the immune reaction.
Stepanova’s model takes the following form:

ṗ = ξ pF(p)−θ pr, (1.28)

ṙ = α (1−β p) pr+ γ− δ r, (1.29)

with all Greek letters denoting constant coefficients. Note that, if we define r̂ = λ r
and rescale the parameters γ and θ as γ̂ = λγ and θ̂ = θ

λ , then the solutions to these
differential equations are unchanged. This 1-parameter group of scaling symmetries
can be used to normalize the set point value for r.

Equation (1.29) summarizes the main interactions of the tumor with the immune
system. Various organs such as the spleen, thymus, lymph nodes, and bone marrow,
each contribute to the development of immune cells in the body and the parame-
ter γ models a combined rate of influx of T-cells generated through these primary
organs; δ is simply the rate of natural death of the T-cells. The first term in this
equation models the proliferation of lymphocytes. For small tumors, it is stimulated
by tumor antigen and this effect here is taken to be proportional to the tumor vol-
ume p. It is argued in [303] that large tumors suppress the activity of the immune
system. The reasons lie in an inadequate stimulation of the immune forces as well
as a general suppression of immune lymphocytes by the tumor (see [303] and the
references therein). This feature is expressed in the model through the inclusion of
the term −β p2. Thus 1/β corresponds to a threshold beyond which the immuno-
logical system becomes depressed by the growing tumor. The coefficients α and β
are used to calibrate these interactions and collectively describe a state-dependent
influence of the cancer cells on the stimulation of the immune system. The first
equation, (1.28), models tumor growth with ξ a tumor growth coefficient. This par-
ameter could have been subsumed in the functional parameter F , but we prefer to
leave the definition of F to account only for the qualitatively different structures that
specify various growth models for the cancer cells. In Stepanova’s original research
an exponential model was used, FE(p)≡ 1, while Kuznetsov, Makalkin, Taylor, and

Perelson [171] use a classical logistic model FL(p) = 1−
(

p
p∞

)
. A Gompertzian

model, FG(p) = − ln
(

p
p∞

)
, has been used in the work by de Vladar and Gonzalez

[334] and also generalized logistic models of the form FL(p) = 1−
(

p
p∞

)ν
, ν > 0,

are of interest. The second term, −θ pr, models the beneficial effects of the immune
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system reaction on the cancer volume and θ denotes the rate at which cancer cells
are eliminated through the activity of T-cells.

Depending on the values of the parameters, the dynamical system (1.28)–(1.29)
exhibits a wide range of behaviors that encompass a variety of medically realistic
scenarios. These range from cases when tumor-immune system interactions are able
to completely eradicate the tumor in the sense that all trajectories converge to the
tumor free equilibrium point (0, γδ ) (immuno-surveillance) to situations when tumor
dormancy is induced (a unique, globally asymptotically stable benign equilibrium
point with small positive tumor volume exists) to multi-stable situations that have
both persistent benign and malignant behaviors to situations when tumor growth
simply is dominant and overcomes the immune system. Despite its simplicity, with
just a few parameters, this model rather accurately reflects the main qualitative as-
pects of tumor-immune interactions: the immune system can be effective in the con-
trol of small cancer volumes, but for large volumes the cancer dynamics suppresses
the immune system and the two systems effectively become separated. For this rea-
son, the underlying equations have been widely accepted as a basic model.

There exist several modifications and extensions of Stepanova’s model, most
notably the already mentioned paper by Kuznetsov, Makalkin, Taylor, and Perelson
[171] who employed a classical logistic model for cancer growth (FL(p) = 1− p

p∞
with a finite carrying capacity p∞) and biologically validated the model based on
in vivo data of B-lymphoma BCL1 in the spleen of mice. De Vladar and Gonzalez
[334] have carried out a complete bifurcation analysis for the model given here with
a Gompertzian growth function. More recently, d’Onofrio formulated and investi-
gated a general class of models [248, 249] that incorporates all of these dynamical
models and whose analysis confirms the earlier mathematical findings.

The qualitative dynamical properties described above are not effected by the
choice of the growth model (e.g., see [187]). Figure 1.6 shows four phase portraits of

the system (1.28)–(1.29) for (a) a Gompertzian growth model, FG(p) =− log
(

p
p∞

)
,

(b) a classical logistic model, FL(p)≡ 1− p
p∞

, (c) a generalized logistic model with

ν = 2, FGL(p) = 1−
(

p
p∞

)2
, and (d) an exponential growth function, FE(p) ≡ 1.

The parameter values that were used to generate these figures are summarized in
Table 1.1 and are taken from the paper by Kuznetsov et al. [171] with some modifi-
cations to account for Gompertzian growth. These values are non-dimensional on an
order of magnitude scale with the tumor volume p expressed in terms of multiples
of 106 cells and r a dimensionless quantity that describes the immuno-competent
cell density as an order of magnitude relative to some base value. The time scale is
taken relative to the tumor cell cycle in mice and is in terms of 0.11 days [171].

For the specified parameter values, the dynamics is multi-stable and the sys-
tem has both locally asymptotically stable microscopic and macroscopic equilib-
rium points as well as an unstable saddle point. The values for these equilibria are
given in Table 1.2. At the microscopic equilibrium point the tumor volumes are
small and the immuno-competent cell densities are upregulated. This corresponds
to a situation when the immune system is controlling the tumor. We denote the
corresponding equilibrium point by (pb,rb) and call it benign. The macroscopic



32 1 Cancer and Tumor Development: Biomedical Background

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

tumor volume, p

im
m

un
o 

co
m

pe
te

nt
 c

el
l d

en
si

ty
, r

(ps,rs)

(pb,rb)
*

*

*
(pm,rm)

(a)

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

tumor volume, p

im
m

un
oc

om
pe

te
nt

 d
en

si
ty

, r

(b)

*

(pb,rb)*
(ps,rs) (pm,rm)

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

tumor volume, p

im
m

un
oc

om
pe

te
nt

 d
en

si
ty

, r

(c)

(pb,rb)

(ps,rs)

*
(pm,rm)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

im
m

un
oc

om
pe

te
nt

 d
en

si
ty

, r

tumor volume, p

(d)

(pm,rm)

(ps,rs)

*(pb,rb)

Fig. 1.6 Phase portraits for the system (1.28)–(1.29) with (a) Gompertzian, (b) logistic, (c) gener-
alized logistic, and (d) exponential growth functions for the parameter values given in Table 1.1.

Table 1.1 Variables and parameters used for the phase portraits shown in Figure 1.6.

Variable
parameters Interpretation Numerical value Reference

p Tumor volume [303]
p∞ Fixed tumor carrying capacity 780
r Immuno-competent cell density [303]
α Tumor stimulated proliferation rate 0.00484
β Inverse threshold for tumor suppression 0.00264 [171]
γ Rate of influx of T-cells 0.1181 [171]
δ Death rate 0.37451 [171]
θ Tumor-immune interaction rate 1 [171]
ξ Tumor growth parameter 0.5618

equilibrium point is characterized by more than tenfold higher tumor volumes and
depressed immunocompetent cell densities. In these solutions, the tumor has sup-
pressed the immune system and almost reached its carrying capacity. We denote the
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Table 1.2 Equilibria for the phase portraits shown in Figure 1.6.

Benign Saddle Malignant
Growth model equilibrium point equilibrium

(pb, rb) (ps, rs) (pm, rm)
Gompertz

FG(p) =− log
(

p
p∞

)
(73.155,1.330) (355.136,0.442) (737.536,0.031)

Logistic
FL(p) = 1− p

p∞
(35.158,0.537) (387.527,0.283) (736.102,0.032)

Generalized logistic

FGL(p) = 1−
(

p
p∞

)2
(37.570,0.560) (354.617,0.446) (759.592,0.029)

Exponential
FE(p) ≡ 1 (37.696,0.562) (341.092,0.562) (∞,0)

corresponding equilibrium point by (pm,rm) and call it malignant. Both of these
equilibria are locally asymptotically stable, (pb,yb) a stable focus and (pm,rm) a
stable node. For a dynamical system ẋ = f (x) with a locally asymptotically stable
equilibrium point x∗, its region of attraction [111] is defined as the set of all initial
conditions x0 for which the corresponding solution x(t;x0) of the initial value prob-
lem ẋ = f (x), x(0) = x0, exists for all times t ≥ 0 and converges to x∗ as t → ∞.
This set is always open and connected. We call the regions of attraction of the be-
nign and malignant equilibria the benign and malignant regions, respectively. More
generally, if the equilibrium point x∗ is hyperbolic (i.e., the matrix of the partial
derivatives of the dynamics at the equilibrium point, A = DF(x∗), does not have
any eigenvalues on the imaginary axis), then the stable, respectively unstable sets
are manifolds called the stable, respectively unstable manifold of the equilibrium
point x∗ [111]. The tangent space to the stable manifold at x∗ is given by the stable
subspace of the matrix A = DF(x∗), i.e., the linear span of all eigenvectors and gen-
eralized eigenvectors corresponding to all eigenvalues λ with negative real parts.
As can be seen in all the phase portraits in Figure 1.6, the benign and malignant
regions are separated by the stable manifold of the saddle (shown as a dashed red
curve in each diagram) which forms the common boundary of these regions. This is
a general property of so-called Morse-Smale systems [111]. For the model with an
exponential growth function, the tumor size is not limited and in this case no ma-
lignant equilibrium exists, but the malignant region is characterized by the fact that
the p-component of the trajectories diverges to ∞ while the r-component converges
to 0.

In the model, the benign region consists of all initial conditions from which the
immune system is able to control the tumor while the malignant region corresponds
to initial conditions for which tumor growth is able to evade the actions of the im-
mune system and tumor dormancy and eventually, unless other treatment options
will be pursued, becomes lethal. In the first case, so-called immunosurveillance,
what medically would be considered cancer never develops; in the latter one, only
a therapeutic effect on the cancer (e.g., chemotherapy, radiotherapy, . . . ) needs to
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be analyzed. But the phase portraits represent a stationary situation (i.e., constant
parameters) that may be valid for a short time duration, but not over prolonged time
periods. It is quite intuitive that a benign equilibrium solution can be disrupted by
sudden events affecting the immune system (that are not included in the mathemat-
ical modeling) leading to a transition of the state into the malignant region. How
likely this is relates to the size of the region of attraction of this equilibrium: if the
benign region is small, even minor events may bring up the disease while the im-
mune system may well be able to control the disease if this region is large. Indeed,
if disease related impairments of innate and adaptive immune systems or immuno-
suppressive treatments preceding organ transplantations occur, then the tumor may
restart developing. This has experimentally been shown both by mouse models and
through epidemiologic studies [72, 304]. Thus, while there exist good reasons to be-
lieve that the immune system is able to control some tumors initially, over a longer
period of time, the neoplasm will develop various strategies to evade the actions of
the immune system and this allows the tumor to recommence growing [250, 72] into
clinically apparent tumors [164] and eventually reach its carrying capacity [250].
These adaptive processes are called immuno-editing [72].

We can see from the phase portraits that the malignant region is larger for faster
growing tumors corresponding to generalized logistic growth function with high
exponents and exponential models. In fact, for a generalized logistic growth model

FGL(p) = 1−
(

p
p∞

)ν
with ν > 0, and for the parameter values from Table 1.1, for

small enough ν there only exists one globally asymptotically stable equilibrium
which corresponds to a microscopic and thus benign equilibrium point. In this sense,
for slowly growing tumors, the immune system is able to control the disease. How-
ever, as ν increases, an unstable saddle and a stable macroscopic (malignant) equi-
librium are born in a saddle-node bifurcation and the benign region decreases at the
expense of the malignant regions as the parameter ν increases. The malignant region
increases in size with increasing parameter ν converging to the malignant region for
the model with exponential growth in the limit ν → ∞ reflecting the fact that the
immune system becomes increasingly overwhelmed by a fast growing tumor [187].

Overall, tumor-immune system interactions thus exhibit a multitude of dynamic
properties that include multi-stability, i.e., persistence of both benign and malignant
scenarios. From a practical point of view, the question how to move an initial condi-
tion that lies in the malignant region into the benign region can thus be posed. This
requires therapy and can naturally be formulated and analyzed as an optimal control
problem. We shall take up this question in Chapter 8. In these efforts, immunother-
apy is another treatment modality that broadly comprises therapeutic interventions
that are made to stimulate the body’s immune system in order to attack, better fight,
and hopefully eradicate the cancer cells. There are various methods in which the
patient’s immune system can be trained to recognize tumor cells (and only those)
as targets to be destroyed and thus to coax up an otherwise nonexisting or only
minor immune system reaction. One example is dendritic cell transfusion. In this
approach, dendritic cells, which are antigen presenting cells of the immune system,
are stimulated to activate a cytotoxic response toward specific antigens expressed on
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the surface of the tumor. Essentially, in all these approaches, immune effector cells
such as lymphocytes, macrophages, dendritic cells, natural killer cells, cytotoxic T
lymphocytes, etc., are trained to recognize abnormal antigens produced by the can-
cer and are activated to fight the cancer cells. The basic idea of immunotherapy is
simple and promising; however, the results obtained in medical investigations are
controversial, even if in recent years there has been evident progress [1, 137].

1.3.5 Summary: Tumor Growth Kinetics and Treatment Modalities

Fig. 1.7 Tumor growth and treatment modalities

We summarize the main treatment options discussed above in the diagram shown
in Figure 1.7. Until a growing tumor reaches a size of about 109 cells, generally,
in lieu of a lack of symptoms, it is considered clinically undetectable. During this
phase, its growth probably has been exponential with often a high growth fraction,
i.e., a large number of cells that is undergoing cell division, and consequently short
doubling times of the tumor. First symptoms typically can be seen with tumors of
sizes of 109–1011 cells when tumor growth slows down. Above these sizes, typically
the disease becomes incapacitating and, generally, tumors of sizes of 1012–1013 are
considered lethal. For tumors that are diagnosed in a range of more than 105 cells,
treatment commences typically in the forms of (i) surgery with adjuvant chemother-
apy to control possible metastases, (ii) multiple, intense chemotherapy regimens or
(iii) radiation treatment as well as combinations of any of these treatments with
antiangiogenic therapy. In the ideal situation, these treatment approaches are able
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to eradicate the tumor or bring it down to clinically undetectable sizes. For tumors
below a size of 105 cells, immunotherapy also is considered of benefit and may be
given as additional treatment option. If treatment fails, the tumor will keep growing,
typically with a lower growth fraction, but eventually it will reach an unsustainable
plateau and be terminal.

1.4 Treatment as an Optimal Control Problem—An Outlook

Because of limited resources and/or potential side effects of any kind of treatment,
the problem of how to administer therapeutic agents to achieve the “best possible”
effect is a natural one. Especially with cancer, the underlying biological mecha-
nisms of novel therapy approaches may not be fully understood and guidelines on
how to schedule these therapies may need to be established. In clinical trials, bec-
ause of the great complexity of the underlying medical problem, the scheduling of
agents is generally done in exhaustive, medically guided, expensive trial-and-error
approaches. More complicated structures are rarely, if ever pursued. But even with
all the medical research on this topic, these difficult scheduling questions are far
from being settled and there exists an opportunity for in silico mathematical model-
ing and analysis to be useful here.

Optimal control problems deal with the minimization of some performance crite-
rion imposed on an underlying dynamical system subject to constraints. Figure 1.8
gives a sketch of the main components involved in such a problem: controls are
functions in time that describe allowable outside influences on the system which,
when applied, induce a system response. Based on this response, an objective func-
tion is evaluated which is taken as a performance measure for the behavior of the
system. It generally includes terms related to the running cost during the interval as
well as possibly penalty terms at the end of therapy designed to induce a desired
system performance. Optimal control theory addresses the question of optimizing
this objective function. Naturally, the true response of the system will also be influ-
enced by outside disturbances and unmodeled dynamics that are not included in the
mathematical description and thus it may be different from the one computed within
the model. Hence questions about robustness of the solutions and various other kind
of stability properties are of great importance.

The scheduling of cancer treatments has all the features of such a problem: treat-
ments are scheduled over time and their interactions with the tumor growth dynam-
ics determine success or failure of the therapy. At the same time, constraints on
the toxicity of the treatment need to be taken into account. In essence, important
questions that should be answered are of the following type: What are the best dose
rates and total amounts of therapeutic agents that need to be administered in order to
achieve desired effects? How can a priori specified amounts of therapeutic agents be
administered to have the best possible effect? Does the sequencing of therapies make
a difference? and many, many more. We do not mean to suggest that the scheduling
of the therapies could ultimately decide between success and failure, but there may
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Fig. 1.8 Schematic representation of the structural elements of an optimal control problem.

be ways to achieve the same effects with less severe side effects, at lesser cost, or
with other tangible benefits. Methods from optimal control, and in particular those
that aim at constructing full solutions for the underlying problems, provide an ade-
quate framework to analyze such scheduling questions for cancer treatments. These
are the topics that will be pursued in this text.

Optimal control has a long and successful history of applications in engineering
and science. Rooted in the methods of Lagrangian and Hamiltonian mechanics in
physics, in a certain sense the field was reborn in the 1950s and 1960s with the eff-
orts of space exploration when it was largely influential in putting the first satellite
into orbit. Here the problem was to place an object into a sustained geostationary or-
bit and approaching the problem by imposing some criterion to be maximized led to
mathematical conditions that then were used in the computations for the actual flight
path. Other well known applications of optimal control techniques include autopi-
lots on commercial aircraft and automated processes in manufacturing, especially
in the field of robotics. Encouraged by its success in this field, economists—very
much interested in maximizing profits or minimizing cost—took up the techniques
in the 1970s with similar success. Merton’s investment-consumption model and the
Black and Scholes formula in option pricing not only earned their authors a Nobel
prize, but have become the foundation of modern finance and are still largely inf-
luential nowadays. However, there is a significant difference between these fields
and medicine. In science, and also in economics, the underlying dynamics for the
problem generally is based on simple first principle interactions and as a result, typ-
ically is well understood leading to reliable models. In engineering problems, the
dynamics more or less follow from the laws of physics or chemistry and some sim-
ple design or synthesis principles. In fact, it is a virtue to keep designs as simple
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as possible in order to understand the composite structures. While it is a tremen-
dous engineering achievement to send a satellite into outer space, guide it correctly
to the outer planets and its moons, and send back images to earth, the dynamics
still is based on Newton’s laws of motion and gravitational pull, essentially just
second-order differential equations. Even in economic applications, the underlying
dynamics is generally simple and broadly accepted. It simply is not very complex
to describe the effects of a trade, even if commissions are taken into account. Of
course, this is not be confused with the complex interactions that arise because of
the multitude of market participants. Thus, generally in these problems, the dynam-
ics is well understood and reasonably simple. As our exposition in this introduc-
tory chapter already indicated, this is far from the truth for biomedical systems.
Here the underlying processes are not determined by simple biological principles
(if they are, we simply do not know them yet), but are the outcomes of millions of
years of evolution that include many random effects. Hence mathematical models
for biomedical processes are formulated at various degrees of abstraction based on
experimental evidence. Modern biological research has the tendency to make these
models as comprehensive as possible, but should be aware of the pitfalls of Borges’s
cartographers guild [33]. In our view, it is the smallest model that still rather accu-
rately describes a phenomenon that is the best. In this text, our emphasis therefore
is on minimally parameterized models for biomedical phenomenon with the hope of
arriving at robust qualitative conclusions.

1.5 Comments on Related Literature on Optimal Control
in Cancer Treatment

In this text, we shall focus on a few selected topics where methods from optimal
control theory will be applied to biomedical problems arising in cancer treatments.
There exists a vast literature in which, more generally, optimal control methods are
applied to biological problems. We make no attempt to survey this area, but only
would like to highlight some references that specifically deal with problems related
to cancer treatments and apply methods generally from the realm of techniques that
will be used here.

The early literature on applications of optimal control theory to cancer treatment
is almost exclusively on cancer chemotherapy (e.g., [74, 150, 307, 308, 242, 243]).
Martin Eisen’s fundamental monograph [74], especially Chapter VIII “Towards
Mathematical Chemotherapy” and the references in this chapter, provides an excel-
lent overview of these contributions that even nowadays still makes for worthwhile
reading. Much of this work is on cell-cycle nonspecific mathematical models, often
1-dimensional, and focussing on different growth models [242]. The later mono-
graph [230] by Martin and Teo from 1994 is entirely devoted to such models, but
including increasingly more comprehensive medical conditions such as single and
multi-drug resistance. Eisen also gives some introductory discussion of cell-cycle
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specific chemotherapy and compartmental models (distinguishing between prolifer-
ating and quiescent cells), but mostly in the context of pharmacokinetics and clearly
the emphasis is more on modeling than on analysis. Starting in the 1980s, a greater
emphasis in research has been put on cell-cycle specific models. Dibrov et al. specif-
ically consider phase-specific administration of cytotoxic agents to increase the sel-
ectivity of therapy [67] and A. Swierniak models the proliferation cycle of leukemia
[311]. These efforts have seen a strong second effort in the 1990s in the research
by Swierniak, Kimmel, and co-workers (e.g., see [313, 318, 323, 324]) with the
further development and analysis of compartmental models which describe and an-
alyze the actions of drugs in specific compartments from a control theory point of
view. (These will be the topic of Chapter 2.) In these models, the emphasis is on
the cancerous cells and side effects are only measured indirectly through the to-
tal dose of drugs administered. Fister and Panetta [83] analyze a compartmental
model formulated by Eisen and Schiller [75] that takes the reverse point of view
and makes the side effects of cancer chemotherapy on the bone marrow the central
topic. The papers by F. Billy, J. Clairambault, and O. Fercoq [26] or by H. Sbeity
and R. Younes [289] are two more recent surveys about optimization methods in the
planning of cancer chemotherapy that also contain a wealth of information about al-
ternative modeling approaches to the topic which more generally lead to the use of
numerical optimization procedures, not necessarily methods from optimal control.
These topics, however, lie well outside the realm that we shall pursue here.

There exists a vast literature on optimal administration of chemotherapeutical
drugs in the presence of drug resistance and some of this will be considered in
Chapter 3. This topic also forms an integral component of the monograph by Martin
and Teo [230]. As a small sample, we only mention the papers by A. Coldman and
J. Goldie [60, 61, 105], M. Costa and J. Baldrini [63, 64], T. Jackson and H. Byrne
[130], A. Swierniak et al. [153, 324, 325], or our own [198, 199]. As will be seen,
this is also from the mathematical side quite a challenging topic.

In the 2000s there has been an especially strong resurgence of the use of opti-
mal control as a methodology in response to mathematical models for novel cancer
treatments that have been proposed in the medical literature. We shall extensively
discuss these efforts in connection with antiangiogenic treatments in Chapters 5–7
and will not repeat this here. But a second such topic is immunotherapy and this will
be less in the focus of our text. Optimal control of tumor immune interactions will be
considered in Chapter 8 in the context of Stepanova’s model, but there exists a wide
range of literature on this topic also for more general models. De Pillis and Radun-
skaya consider an optimal control approach to drug therapy with immune resistance
[279] that is based on a validated mathematical model of cell-mediated immune
response to tumor growth [280]. Some of the mathematical models used in this re-
search are based on an earlier paper by D. Kirschner and J.C. Panetta that models
immunotherapy of tumor-immune interaction [158]. An optimal control approach
to immunotherapy has been taken in the papers by Burden, Ernstberger, and Fis-
ter [42] and by Fister and Hughes Donnelly [82] who also build upon this model
by Kirschner and Panetta. In the context of modeling the activities of the immune
system, it is also worthwhile to at least mention a wealth of research that has been
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conducted in the context of HIV, also with an optimal control angle to it, such as the
paper by Kirschner, Lenhart, and Serbin [157]. But immunotherapy reaches well
beyond tumor immune-system interactions. For example, the optimal bolus type
scheduling of dendritic cell transfection is considered by Castiglione and Piccoli in
[49] and N. Komorova and D. Wodarz study oncolytic viruses [167, 168].

Without even attempting to be complete, we merely mention these references as
a snapshot for the renewed interest in methods of optimal control for biomedical
models. Some of these works and results are summarized as books, even in the form
of textbooks with student exercises like S. Lenhart and J. Workman [216] and by S.
Anita, V. Arnăutu and V. Capasso [12]. But these texts do not have cancer treatments
as the main focus.



Chapter 2
Cell Cycle Specific Cancer Chemotherapy
for Homogeneous Tumors

In this chapter, we analyze a class of cell cycle specific compartmental models
for cancer chemotherapy. Besides drug resistance, cell cycle specificity of drugs
is viewed as one of the major obstacles against successful chemotherapy [83, 52].
By considering the phases of the cell cycle separately, it is possible to appropri-
ately model the different actions of various drugs involved. A first such model
was introduced for leukemia in the work of Kimmel and Swierniak [150] and later
has been expanded greatly in the work by Swierniak and his co-workers (e.g., see
[313, 321, 322, 323, 324] and many more). A common characteristic of all the mod-
els analyzed in this section is that it is implicitly assumed that the cancer population
is homogeneous and consists of cells that are sensitive to the chemotherapy applied.
If we then minimize a weighted average of the tumor population and the total dose
of chemotherapy given over a fixed therapy interval, it will be seen that in this sce-
nario it indeed is optimal to give chemotherapy in one full dose session upfront at
the beginning of the therapy interval. These results are fully consistent with and con-
firm as optimal the classical MTD (maximum tolerated dose) regimen. Essentially,
the underlying scenario in these models is one where cancer is growing rapidly
at a critical level, but sensitive to chemotherapeutic agents. The intuitive optimal
solution then is to hit it as hard as possible, as soon as possible.

We begin in Section 2.1 with the analysis of the most rudimentary version of
these models, a 2-compartment model for chemotherapy for the action of a single
G2/M-specific cytotoxic agent (such as paclitaxel). This model is also used as a
vehicle to introduce and describe the tools and techniques of optimal control. These
range from an analysis of the first-order necessary conditions for optimality of the
Pontryagin maximum principle to the elimination of singular controls from opti-
mality through the Legendre-Clebsch condition (a high-order necessary condition
for optimality) to establishing the optimality of bang-bang controls by means of
the construction of a field of extremals. From the practical point of view, singular
controls correspond to lower-dose, time-varying dosing regimes, while bang-bang
controls represent full dose therapy sessions with rest periods. We give a detailed
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analysis of this particular model to illustrate the full set of techniques that generally
are required to come to a complete solution. A brief survey of the main theoreti-
cal results and procedures from optimal control theory that are used is provided in
Appendix A, but the text is written in a self-contained manner that can be read on
its own. We only relegate the construction of an optimal field of extremals to a sep-
arate appendix, Appendix B, where we carry out the more technical aspects of this
argument in detail. In Section 2.2, analogous MTD based structures are confirmed
as optimal for two examples of 3-compartment models when a G2/M-specific cyto-
toxic agent is combined with a cytostatic and recruiting agent, respectively. Also, as
an initial simplification, we ignore the pharmacokinetics of the drugs and identify
their dose rates with their concentrations in the blood stream. In Section 2.3, we
give a brief introduction to pharmacokinetics (PK) and pharmacodynamics (PD) of
drugs and show that the structure of solutions—maximum dose sessions with rest
periods—is retained when linear pharmacokinetic models (and these are the stan-
dard of the industry) are included in the modeling while only minute quantitative
changes in the actual solutions occur.

2.1 A 2-Compartment Model with a Cytotoxic Agent

We begin with a simple model that allows us to introduce and describe the tools
of optimal control with minimal mathematical complexity necessary. The same rea-
soning and analogous computations apply to the more detailed and complex models
considered later on. In this sense, this section sets the stage for the rest of the book.

2.1.1 Mathematical Modeling

We consider the problem of administering a single cytotoxic agent that is active
in the G2/M phase of the cell cycle such as, for example, paclitaxel. Taking into
account the phase sensitivity of the drug, the cell cycle is therefore broken up into
two compartments with one combining the second growth phase G2 and mitosis
M and the other compartment simply made up of the remaining phases of the cell
cycle. The state N of the system can then be described by a 2-dimensional vector
with N1(t) denoting the average number of cancer cells in the first compartment at
time t (comprised of the phases G0, G1 and S) and N2(t) the average number of
cancer cells in the second compartment at time t (comprised of G2 and M).

Cell division is a stochastic process with individual cells determining the sam-
ple paths while the transit times between the various stages follow some empirical
distribution. Various probabilistic models have been proposed and can be used to
describe these transit times with the Weibull distribution probably the most natural
choice. Of these, the simplest structure is provided by an exponential distribution
and this is the model that will be used here. Consider a specific compartment, and
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suppose the transit times of cells are modeled by an exponential random variable T
with mean θ . That is, the probability that a particular cell remains in the compart-
ment after time t is given by

P(T ≥ t) =
∫ ∞

t

1
θ

exp
(
− s
θ

)
ds = exp

(
− t
θ

)
.

Taking the average over all cells, the outflow from the compartment therefore is
simply governed by the linear ordinary differential equation Ṁ = − 1

θ M with the
coefficient the inverse average transit time through the compartment. Applying this
to the 2-compartment model, and for the moment assuming that no external stimuli
are present, the balance equation for the second compartment takes the form

Ṅ2(t) =−a2N2(t)+ a1N1(t) (2.1)

with ai > 0 the inverse mean transit time through the ith compartment. Here we
also use that the outflow of the first compartment equals the inflow into the second
compartment. For the second compartment this no longer is the case because of
cell division. While the outflow is still given by a2N2(t), the inflow into the first
compartment doubles and becomes 2a2N2(t) giving

Ṅ1(t) =−a1N1(t)+ 2a2N2(t). (2.2)

The transit times of cells through the G2 and M phases are notably shorter than
the combined transit times through the remaining phases. Most cells spend 50–80%
of the their growth time in the G1 phase and the shortest time in G2/M (less than
10% in some cell lines). It is not uncommon to have a cell line with a doubling
time of 20 hours to spent 14 hours in G1 and the G2/M phase only takes 4 hours.
For healthy, rapidly proliferating human cells, rough estimates are for the cell cycle
to last for about 24 hours with about 11 hours in G1, 8 hours in S, 4 hours in G2

and one hour in M. We therefore generally have that a1 < a2. However, except for
numerical simulations, we do not use specific parameter values, and develop the
theory in general.

We write the linear dynamics given by equations (2.1) and (2.2) in matrix form
as Ṅ = AN with N = (N1,N2)

T and A ∈ R
2×2 given by

A =

(−a1 2a2

a1 −a2

)

. (2.3)

The solution to this differential equation is given by the matrix exponential,

N(t) = exp(At)N(0) =

(
∞

∑
n=0

An

n!
tn

)

N(0).

Since the differential equations are linear, quotients of the variables obey Riccati
differential equations and it follows that in steady state, i.e., in the “long” run, fixed
proportions of the cells will lie in the respective compartments. Let
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x =
N1

N1 +N2
and y =

N2

N1 +N2
(2.4)

denote the average proportions of cells in the two compartments, x,y > 0, x+y = 1.
It then follows that

ẏ =
d
dt

(
N2

N1 +N2

)

=
a1N1 − a2N2

N1 +N2
− a2N2

2

(N1 +N2)
2 = a1x−a2y−a2y2,

so that y satisfies the Riccati equation

ẏ = a1 − (a1 + a2)y− a2y2. (2.5)

Note that for y = 0 we have ẏ|y=0 = a1 > 0 and for y = 1 we have that ẏ|y=1 =
−2a2 < 0. Hence it follows that solutions to this differential equation cannot escape
from the interval [0,1] forward in time.

Definition 2.1.1 (Invariant Regions). A region R is said to be positively invariant
for a differential equation ẋ = f (x) if whenever x0 is a point in R, then the solution
x(t;x0) of the initial value problem ẋ = f (x), x(0) = x0, exists for all times t ≥ 0 and
lies in R, x(t;x0) ∈ R for all t ≥ 0. Analogously, R is said to be negatively invariant
for a differential equation ẋ = f (x) if whenever x0 is a point in R, then the solution
x(t;x0) of the initial value problem ẋ = f (x), x(0) = x0, exists for all times t ≤ 0
and lies in R, x(t;x0) ∈ R for all t ≤ 0. A region R is said to be invariant if it is both
positively and negatively invariant.

It is easy to see that (2.5) has a unique, globally asymptotically stable equilibrium
point y∗ in the open interval (0,1) given by

y∗ =
1
2

⎛

⎝

√(

1+
a1

a2

)2

+ 4
a1

a2
−
(

1+
a1

a2

)
⎞

⎠ (2.6)

and all solutions approach this value as t → ∞. This limit only depends on the quo-
tient a1

a2
and this quotient can be recovered from measurements of the steady-state

proportion x∗ and y∗ as
a1

a2
= y∗

1+ y∗
1− y∗

=
y∗+ y2∗

x∗
. (2.7)

For example, if we use the rough approximate inverse transit times a1 =
24
19 = 1.263

[days] and a2 =
24
5 = 4.8 [days] based on the typical cell cycle transit times quoted

above, then at a specific time only about 20% of cells are in the G2/M compartment
where they can be killed (y∗ = 0.1821). Figure 2.1 illustrates the quick convergence
of the proportions to their steady-state values. The graph on the left with initial
condition y(0) = 0 shows how quickly the cells redistribute after a bolus type MTD
injection that would have killed all the cells in the G2/M compartment.

If we write C(t) = N1(t)+N2(t) for the average total number of cancer cells,
then the differential equations imply that
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Fig. 2.1 Trajectories for the average fractions x and y of cells in the compartments G0/G1/S and
G2/M.

Ċ(t) = a2N2(t) = a2y(t)C(t)≈ a2y∗C(t). (2.8)

Thus, in steady state, the total tumor population grows approximately exponentially
at rate a2y∗. If T denotes the tumor doubling time, then we have the simple relation
2 = exp(a2y∗T ), i.e.,

T =
ln2
a2y∗

. (2.9)

The steady-state proportion y∗ of cells in the G2/M phase and the tumor doubling
time T are quantities that can be determined experimentally and equations (2.7) and
(2.9) can be used to determine the cell cycle parameters a1 and a2 used in this model.
We summarize these formulas in the next Proposition.

Proposition 2.1.1. With T denoting the tumor doubling time and x∗ and y∗ the
steady-state proportions of cells in the G0/G1 + S and G2/M phases of the cell
cycle, respectively, we have that

a1 = (1+ y∗)
ln2
T x∗

and a2 =
ln2
Ty∗

.

There exist large differences between the transit times through the cell cycle for
different types of tumors and even from patient to patient for the same tumor. For
example, in clinical evaluations, for pancreatic carcinoma, tumor doubling times
have been observed that range from 68 to 255 days and for other carcinomas even
wider spreads occurred [237]. Many doubling times listed in that article have ranges
that differ by hundreds of days with the range for sarcoma, metastasized lung can-
cer, the most extreme ranging form 7 to 1172 days. Great progress has been made
in estimating cell cycle parameters of tumor cells in vivo. The stathmokinetic or
“metaphase arrest” technique consists of blocking cell division by an external agent
(usually a drug such as vincristine or colchicine). The cells gradually accumulate in
mitosis, emptying the postmitotic phase G1 and with time also the S phases. Flow
cytometry allows precise measurements of the fractions of cells residing in differ-
ent cell cycle phases. The pattern of cell accumulation in mitosis M depends on the
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kinetic parameters of the cell cycle and is used for estimation of these parameters.
Exit dynamics from G1 and transit dynamics through S and G2 and their subcom-
partments can be used to characterize very precisely both unperturbed and perturbed
cell cycle parameters. Thus cell cycle flow cytometry is readily able to assess the
proportions of cells that are in the G0/G1, S and G2/M phases of the cell cycle on an
individual basis (e.g., see, [73]) and from these proportions, cell cycle transit times
can be inferred.

Drug treatment influences the cell cycle in many ways and here only the most
fundamental aspect is considered, cell killing by a cytotoxic agent in the G2/M
phase. In this first model, we assume all cells are drug sensitive and do not yet
include a pharmacokinetic model on the drug. Thus, for the moment, the control
variable u represents the drug concentration in the blood stream or, for simplicity,
we identify the drug’s dose rate with its concentration. In accordance with the log-
kill hypothesis, we assume that the drug concentration u(t) kills a fraction of the
outflow a2N2(t) of cells from the G2/M compartment and thus the number of cells
killed is given by ϕu(t)a2N2(t) with ϕ a constant chemotherapeutic killing parame-
ter. The control set is a compact interval [0,umax] with umax denoting the maximum
dose rate/concentration. In the model, the control u always appears in conjunction
with the constant ϕ and thus, in order to keep the number of free parameters to a
minimum, we combine it with the maximum dose rate into one quantity that we
still denote with umax under the assumption that umax ≤ 1. If the concentration is
high enough, then indeed umax = 1 is realistic: almost all the cancer cells in that
compartment can be killed. Cells which are killed in G2/M leave this compartment,
i.e., are counted as outflows from the second compartment, but they no longer enter
the first compartment. In this sense, the prevention of further cohorts is considered
killing the cell even if no apoptosis is induced. The remaining fraction (1−u)a2N2

undergoes cell division and thus the controlled mathematical model becomes

Ṅ1 =−a1N1 + 2(1− u)a2N2, N1(0) = N10, (2.10)

Ṅ2 = a1N1 − a2N2, N2(0) = N20, (2.11)

with all initial conditions positive. A system of this type is called a bilinear control
system [76] since it is linear both in the state N and the control u. Note, however,
that there exist quadratic terms uN so that overall this is a nonlinear control system.
In matrix form we get

Σ : Ṅ(t) = (A+ uB)N(t), N(0) = N0, (2.12)

with A and B given below,

A =

(−a1 2a2

a1 −a2

)

, and B =

(
0 −2a2

0 0

)

. (2.13)

We illustrate the structure of the model in Figure 2.2.
Clearly, the states of this system correspond to positive numbers and we briefly

verify that the model is consistent in this aspect. It is therefore not necessary to add
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Fig. 2.2 A 2-compartment model with G2/M-specific cytotoxic agent.

nonnegativity of the states as an explicit state-space constraint. We generally denote
by P the positive orthant in R

n, so that for this model we set P= R
2
+ = {N ∈ R

2 :
Ni > 0 for i = 1,2}.

Definition 2.1.2 (Positively Invariant Control System). A subset P of the state-
space M is said to be positively invariant for a control system Σ if, whenever x0 is
an initial condition that lies in P, x0 ∈ P, and u is an arbitrary admissible control
defined on some interval I ⊂ [0,∞), then the corresponding trajectory x exists over
the full interval I and lies in P, x(t) ∈ P for all t ∈ I.

Proposition 2.1.2. The positive orthant P is positively invariant for the control
system (2.12).

Proof. For this proof, we already anticipate the argument needed for a more general
system Σ in Section 2.2. For any admissible control defined over an interval [0,T ],
the norm of the matrix A+uB is bounded over [0,T ] and thus the right-hand side of
the differential equation (2.12) is linearly bounded. It therefore follows from well-
known results about ordinary differential equations (e.g., see [292, Corollary B.1.3])
that the corresponding trajectory exists on all of [0,T ]. Positive invariance follows
from the fact that the dynamics Ṅ has the following structure

Ṅi(t) =−βii(t)Ni(t)+βi j(t)Nj(t), i = j,

where, regardless of the admissible control used, the functions βi j, i = j, are non-
negative and the diagonal elements βii are strictly positive. Proceeding with a proof
by contradiction, suppose τ = min{t ≥ t0 : Ni(t) = 0 for some index i} ≤ T . Since
the Ni are continuous functions, the minimum is well defined and for some index i0
we have that Ni0(τ) = 0. On the interval [0,τ) it then follows that

Ṅi0(t) =−βi0i0(t)Ni0(t)+α(t)

where βi0i0(t)> 0 and α(t) = βi0 j(t)Nj(t)≥ 0. Thus

Ni0(τ)= exp

(

−
∫ τ

t0
βi0i0(s)ds

)(

Ni0(t0)+
∫ τ

t0
exp

(

−
∫ s

t0
βi0i0(r)dr

)

α(s)ds

)

> 0.

Contradiction. �
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2.1.2 Formulation of the Optimal Control Problem

In all models, within various degrees of approximation, the dynamics represents the
underlying biology of the problem. On the other hand, the objective in an optimal
control problem is artificially imposed from the outside and thus generally there ex-
ist options with possibly not necessarily a clear “best” choice. In fact, in engineering
problems, it is quite common to vary the forms of the objective and eventually pick
one that induces a satisfactory system response, possibly because it shows good
properties (like stability, robustness, etc.) with respect to other design criteria that
were not included in the modeling. In other fields, like economics, this may be less
appropriate as the objective is clearly specified, for example, if the aim is to mini-
mize the cost of some production process. For biomedical problems, the truth often
lies somewhere in between these two extremes.

Clearly, the aim is to cure the patient. There are many ways to translate this into
a mathematical objective and, one way or the other, it will include the minimization
of the overall number of cancer cells. In addition, there is the important constraint of
the toxicity of the treatment. There are two principal ways of including this into the
model, either directly as additional constraint, or indirectly, by including a measure
for the side effects of the treatment as a penalty term in the objective.

In a direct approach, parts of the states in the model may be related to the side
effects. For example, bone marrow cells generally also divide rapidly and thus are
especially harmed by chemotherapy. Thus, one possible way of including side eff-
ects in the model is to simply make the bone marrow one of the compartments
and then to impose a restriction that the bone marrow levels stay above a certain
level. This constitutes a so-called state-space constraint, a common feature in some
optimal control problems. However, it generally is rather difficult to ascertain when
such thresholds are reached. It is therefore practically more convenient to limit the
overall amount of drugs to be given a priori (based on medical experience) and
then to ask the question how the drugs could best be used. Such a requirement can
mathematically be modeled as a terminal constraint and we shall extensively use
this approach in Chapter 5. Analyzing the solutions for various a priori specified
amounts of therapeutic agents, a comprehensive analysis of the overall problem can
be undertaken that will allow to balance the benefits of the treatment with the side
effects.

In indirect approaches, this is done in one step. Minimizing an objective that
includes measures for the quantities of tumor cells and the total amount of drugs
given forces a balance between these two conflicting terms: in order to minimize the
cancer cells, one needs to give drugs, but these are being penalized. Obviously, the
solution depends on the specific parameters and more so on the specific functional
forms chosen in the objective. For example, in the literature the penalty term on the
drugs often is taken in one of the following two forms known as L1-, respectively
L2-objectives:

∫ T

0
u(t)dt or

∫ T

0
u(t)2dt.
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The quadratic structure offers distinct mathematical advantages (due to the convex-
ity properties that it imposes on the optimal control problem), but is rather difficult
to justify biologically. The linear term, on the other hand, has a clear interpretation
as the overall amount of drug given and with a log-kill model of cell death under
chemotherapy, this term also stands in direct relation to the healthy cells killed by the
treatment. Hence the linear term has a clear biological meaning, but the mathemat-
ics becomes more difficult. We shall consider both formulations, but our emphasis
in this text will be on the biologically more appropriate L1-objective.

Here we chose the performance index or objective in the form

J = rN(T )+
∫ T

0
qN(t)+ su(t)dt → min (2.14)

where T is an a priori specified therapy horizon, r = (r1,r2) is a row vector of pos-
itive weights and q = (q1,q2) is a row vector of nonnegative weights. The penalty
term rN(T ) = r1N1(T )+ r2N2(T ) thus represents a weighted average of the total
number of cancer cells at the end of an assumed fixed therapy interval [0,T ] and the
term qN(t) = q1N1(t)+ q2N2(t) is a running cost that measures the tumor volume
during treatment. Side effects of the treatment are only included in the model indi-
rectly through minimization of the total dose,

∫ T
0 u(t)dt. The positive coefficient s at

this integral is actually redundant since it could be absorbed into the other weights.
But we also want to consider the dependence of the solutions on various coefficients,
and especially on this term, and it thus becomes more convenient to retain this co-
efficient. Recall that the number of cancer cells that do not undergo cell division at
time t and are considered “killed” is given by u(t)a2N2(t), i.e., u(t) is proportional
to the fraction of ineffective cell divisions. Since the drug kills healthy cells at a
similar rate, the integral

∫ T
0 u(t)dt represents the cumulative negative effects of the

treatment on the normal tissue or its toxicity. Overall, we thus arrive at the following
optimal control problem:

[CC2] for a fixed final time T > 0, minimize the objective

J(u) = rN(T )+

∫ T

0
qN(t)+ su(t)dt → min (2.15)

over all Lebesgue-measurable (respectively, piecewise continuous) functions u :
[0,T ]→ [0,umax], subject to the dynamics

Ṅ(t) = (A+ uB)N(t), N(0) = N0, (2.16)

with A and B given by the matrices (2.13).

We note that the class of Lebesgue measurable functions consists of all pointwise
limits of piecewise continuous (in fact, even piecewise constant) functions. We for-
mally employ it in our formulations of the optimal control problems considered in
this text since it provides appropriate closure properties that allow the application of
standard results in optimal control theory that guarantee the existence of an optimal
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solution. Even for the mathematical models considered in this text, optimal controls
need not be piecewise continuous, but may only be Lebesgue measurable functions
(c.f., Section 6.3). However, familiarity with this concept is not needed to follow our
reasoning. In order to make the text more accessible to the non-mathematician, and
also since this is more than adequate from a practical point of view, we typically
work with piecewise continuous controls. For the same reason we do not discuss
the existence of optimal solutions in our text. In fact, optimal solutions exist for all
the problems considered in this text (but see Section 8.2) and we refer the interested
reader to the corresponding literature (e.g., [51]).

2.1.3 Necessary Conditions for Optimality: Switching Functions,
Bang-Bang and Singular Controls

The fundamental first-order necessary conditions for optimality for problem [CC2]
are given by the Pontryagin maximum principle [282] (Theorem A.2.1 in App-
endix A). From an application oriented point of view, this result is a multiplier rule
with a constant multiplier λ0 ≥ 0 associated with the objective and a time-varying
multiplier λ associated with the dynamics. The main necessary condition for opti-
mality is the statement that optimal controls minimize (respectively, maximize, as it
was in the historical formulation) the so-called Hamiltonian function

H = H(λ0,λ ,N,u) = λ0(qN + su)+λ (A+uB)N (2.17)

over the control set [0,umax] pointwise along the optimal controlled trajectory
(N∗,u∗) and the multipliers (λ0,λ ). Specifically for the optimal control problem
[CC2], the conditions of the Pontryagin maximum principle reduce to the following
statement (see, Theorem A.3.1 in Appendix A):

Theorem 2.1.1 (Maximum Principle for Problem [CC2]). If u∗ is an optimal
control with corresponding trajectory N∗, then there exist a constant λ0 ≥ 0 and an
absolutely continuous function λ , which we write as row-vector, λ : [0,T ]→ (R2)∗,
called the adjoint or co-vector, such that the following conditions are satisfied:

1. nontriviality: (λ0,λ (t)) = (0,0) for all t ∈ [0,T ],
2. adjoint equation and transversality condition:the multiplier λ is a solution to the

terminal value problem

λ̇ =−∂H
∂N

(λ0,λ ,N∗,u∗) =−λ0q−λ (A+ u∗B), λ (T ) = λ0r, (2.18)

i.e.,

λ̇1 =−λ0q1 +λ1a1 −λ2a1, λ1(T ) = λ0r1,

λ̇2 =−λ0q2 − 2(1− u∗)λ1a2 +λ2a2, λ2(T ) = λ0r2,
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3. minimum condition: the optimal control minimizes the Hamiltonian H pointwise
over the control set [0,umax] along the optimal controlled trajectory and the mul-
tipliers (λ0,λ (t)), i.e.,

H(λ0,λ (t),N∗(t),u∗(t)) = min
u∈[0,umax]

H(λ0,λ (t),N∗(t),u) (2.19)

and the minimum value is constant over the interval [0,T ],

H(λ0,λ (t),N∗(t),u∗(t)) = const. (2.20)

We note that the multiplier λ is piecewise continuously differentiable if the con-
trol u∗ is piecewise continuous and this will be the case for all problems considered
in this chapter. These conditions form a highly interwoven system of equations from
which the optimal controlled trajectory needs to be determined. Together with the
dynamics of the system, the adjoint equation forms a two-point boundary value
problem that is linked with the optimal control through the minimization condition.
This system may have multiple solutions and, in principle, we need to find them all
to determine the globally optimal control.

The following terminology is standard in optimal control theory: A controlled
trajectory (N,u) for which there exist multipliers λ0 and λ such that these conditions
are satisfied, is called an extremal (pair) and the triple (N,u,(λ0,λ )) is an extremal
lift. If the multiplier λ0 = 0, the extremal is called abnormal while it is called normal
if λ0 > 0. In the latter case, by dividing by λ0, it is always possible to normalize
λ0 = 1. It is easily seen that for our case all extremals are normal. For, if λ0 = 0, then
the terminal condition in (2.18) becomes λ (T ) = 0 and thus λ vanishes identically
as solution to a homogeneous linear differential equation. But this contradicts the
nontriviality condition on the multipliers. We henceforth normalize λ0 = 1 and drop
λ0 in our notation.

The same structure of the equations which gave positive invariance of the posi-
tive orthant P in the state-space for the flow of controlled trajectories also implies
negative invariance of the first quadrant in the dual space, P∗ = {λ ∈ (R2

)∗
: λi >

0 for i = 1,2}, under the adjoint flow (2.18). This simply is a consequence of the
reversal of direction in the two differential equations.

Proposition 2.1.3. The positive orthant P∗ is negatively invariant for the adjoint
equation (2.18), i.e., if λ (T ) ∈ P

∗, then the multipliers λ1(t) and λ2(t) are positive
over the interval [0,T ].

Proof. Inspection shows that the adjoint equations have the structure

λ̇i(t) = γiiλi(t)− γi j(t)λ j(t), i = j,

where the γii are positive numbers and, regardless of which admissible control is
used, the functions γi j, i = j, are nonnegative. Let

τ = max{0 ≤ t ≤ T : λi(t) = 0 for some index i}



52 2 Cell Cycle Specific Cancer Chemotherapy for Homogeneous Tumors

and denote an index for which the minimum is achieved by i0. Then, on (τ,T ] we
have that

λ̇i0(t) = γi0i0λk(t)−α(t)

where γi0i0 > 0 and α(t) = γi0 j(t)λ j(t)≥ 0. Thus

λi0(τ) = exp
(
γi0i0 (τ−T)

)
(

ri0 +

∫ T

τ
exp
(−γi0i0(s−T )

)
α(s)ds

)

> 0.

Contradiction. �

Hence, since N0 ∈ P and r ∈ P
∗, it follows that

Corollary 2.1.1. For the optimal control problem [CC2], all states Ni and costates
λi, i = 1,2, of an extremal are positive over [0,T ].

Before we go into the discussion of how the conditions of the maximum principle
actually will be used to gain information about the structure of optimal controls, we
would like to insert one quite important remark about the choice of the weights
q and r in the objective (2.14). These are variables of choice and it would seem
obvious—and this is correct—that optimal controls will be identically u ≡ umax

if total disregard of the side effects is built into the model by choosing a small
coefficient s and similarly optimal controls will be given by u ≡ 0 if these side
effects are made far too important by choosing s too high. Once we normalize s, say
s = 1, then, since the objective has a linear structure, these features are still there if
we would choose q or r too small or too high. Since we are not interested in these
extreme situations, but into the relevant class of problems that lie in the middle,
the question about a proper scaling of these coefficients arises. If we include q and
r with the state N and costate λ into one vector, then indeed there exists a one-
parameter group of scaling symmetries (i.e., one degree of freedom) that allows us
an informed choice. Note that, if κ is a positive constant, then the rescaling

(r,q,N,λ ) �→ Sκ =

(
r
κ
,

q
κ
,κN,

λ
κ

)

(2.21)

leaves the extremals and the value of the objective function invariant. For, it follows
from the linearity of the dynamics and adjoint equation that under this transforma-
tion the states change from N to κN and the costates from λ to 1

κ λ . In particular,

J(u) = rN(T )+

∫ T

0
qN(t)+ su(t)dt

→
( r
κ

)
(κN(T ))+

∫ T

0

( q
κ

)
(κN(t))+ su(t)dt = J(u)

and

H = qN + su+λ (A+ uB)N → q
κ
κN + su+

λ
κ
(A+uB)κN = H.
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The controls are expressed as percentages and once we choose s near 1, then it
makes sense—and in our numerical computations this generally has given rise to
the nontrivial structures desired—to choose the coefficients r and q proportional to
1

N0
with N0 the initial condition for the tumor volume. Equivalently, without loss of

generality we normalize N0 = 1. We shall not make any use of this structure in our
theoretical derivations below, but use it in the numerical illustrations that we give.

We return to evaluating the conditions of the maximum principle. The condition
that gave this result its name is the third one which, in the original version of the
result, was formulated for a maximization problem. This is the most important of the
conditions in that it relates the solution of the optimal control problem, a minimiza-
tion problem on an infinite-dimensional function space defined by a class admissible
controls u(·), to a finite-dimensional minimization problem for the control at time
t, u∗(t), over the control set [0,umax]. For problem [CC2], after deleting terms that
do not depend on the control u, this condition reduces to

(s+λ (t)BN∗(t))u∗(t) = min
0≤v≤umax

(s+λ (t)BN∗(t))v. (2.22)

But this simply is the problem of minimizing a linear function of the form a(t)v
over the compact interval [0,umax] for some time-varying function a. If we define
the function Φ by

Φ(t) = s+λ (t)BN∗(t), (2.23)

then, whenever this function does not vanish, the optimal controls are simply
given by

u∗(x) =

{
umax if Φ(t)< 0,

0 if Φ(t)> 0.
(2.24)

A priori, however, the minimum condition does not provide us with any information
about u∗(t) if Φ(t) = 0. In this case, every control value v ∈ [0,umax] satisfies (2.22).
Note that the function Φ is differentiable—bothλ and N are solutions of differential
equations—and thus, for example, ifΦ(τ) = 0, but the derivative Φ̇(τ) does not van-
ish, then the time τ is an isolated point of the zero set ZΦ = {t ∈ [0,T ] : Φ(t) = 0}.
In this case, the function Φ changes sign at time τ and the optimal control switches
between the values 0 and umax: from 0 to umax if Φ̇(τ) < 0 and from umax to 0 if
Φ̇(τ)> 0. A junction of this type is called a bang-bang switch and the constant con-
trols that take on the extreme values 0 and umax are called bang controls. Because
of this behavior, the function Φ is called the switching function of the optimal con-
trol problem [CC2] and the structure of optimal controls is determined by the zero
set Z .

Unfortunately, in general this set Z can be extremely complicated. In fact, the
zero set of a differentiable function can be any closed subset of the domain (e.g.,
see [292, Proposition 2.8.1]). There is one special case, however, in which the sit-
uation simplifies considerably. It arises when the switching function vanishes over
an open interval I. For, in this case also all the derivatives of Φ on the interval I
vanish as well, and with the exception of degenerate situations, the corresponding
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formulas determine the control on this interval. Degenerate situations arise when
differentiation of the switching function never leads to a term that explicitly dep-
ends on the control. Then all controls that otherwise satisfy the constraints of the
problem become optimal. But such structures are almost always related to some-
what ill-posed problem formulations. An example of this situation for problems rel-
ated to chemotherapy is given in [317]. Generally, extremal controls for which the
switching function vanishes identically over an open interval I are called singular.
Note that, whether a control is singular or not is not just a property of the control,
but it depends on the full extremal lift (N∗,u∗,λ ) since both the multiplier λ and the
optimal trajectory N∗ enter into the definition of the switching function.

Definition 2.1.3 (Singular Controls and Extremals). Let (N∗,u∗) be an extremal
controlled trajectory with corresponding adjoint vector λ . The extremal lift (N∗,
u∗,λ ) is said to be singular on an open interval I ⊂ [0,T ] if the switching function
Φ vanishes identically on I. We say the control u∗ is singular on I and call the
corresponding portion of the controlled trajectory a singular arc.

This classical terminology is somewhat unfortunate in that it would seem to indi-
cate that this type of controls are an aberration while nothing could be further from
the truth. It has its historical origin in the simple observation that the switching
function can be expressed as

Φ(t) =
∂H
∂u

(λ (t),N∗(t),u∗(t))

and thus, formally, the condition Φ(t) = 0 is the first-order necessary condition for
the Hamiltonian to have a minimum in the interior of the corresponding control
interval. For a general, possibly multi-input optimal control problem, extremal lifts
are called singular, respectively nonsingular, over an open interval I if the first-order
necessary condition

Φ(t) =
∂H
∂u

(λ (t),N∗(t),u∗(t))≡ 0 (2.25)

is satisfied for t ∈ I and if the matrix of the second-order partial derivatives,

∂ 2H
∂u2 (λ (t),N∗(t),u∗(t)),

is singular, respectively nonsingular, on I. For control-affine problems (i.e., the dyn-
amics and objective are affine functions of the control) such as [CC2], this quantity
is identically zero and thus any portions of an optimal control that take values in
the interior of the control set are automatically singular. While the terminology is a
bit misleading, singular controls nevertheless are natural candidates for optimality.
They provide what sometimes also has been called turnpikes for the control problem
with switchings between bang controls making the transitions to and from these
structures or simply arising only when singular controls are inadmissible or simply
do not exist. We refer the interested reader to Appendix A and, more generally
to our textbook [292], for a more complete discussion of these concepts (also see
Section 2.1.4).
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For many (but not all) practical problems, optimal controls turn out to be finite
concatenations of bang and singular controls. The precise concatenation sequences
need to be determined through an analysis of the switching function. As the model
considered in Chapter 5 will demonstrate, this can become a highly nontrivial task.
However, for the compartmental problems for cancer chemotherapy considered in
this chapter, the situation is considerably simpler because, as we shall show now,
optimal controls do not contain intervals where the control is singular. This is a con-
sequence of necessary conditions for optimality of singular controls that we briefly
summarize (also, see Appendix A). As noted above in equation (2.25), the switch-
ing function Φ is the partial derivative of the Hamiltonian with respect to the control
variable u. The standard procedure of computing singular controls consists in differ-
entiating the switching function until the control explicitly appears in these formulas
for the first time and then solve the resulting equation Φ(r)(t)≡ 0 for the control u.
In order to be admissible, the resulting solution also needs to take values in the con-
trol set. It is quite possible that this procedure works, but determines a control that
takes values outside the admissible range and thus is not allowed.

In order to determine the structure of the optimal controls, we need to analyze
the switching function and its derivatives. The following lemma, which is central
to the computations, allows us to calculate these derivatives of the switching func-
tion in an efficient and organized manner by calculating commutators of matrices.
Anticipating further models, we formulate it for a general n-dimensional system.

Proposition 2.1.4. Let M ∈R
n×n be a constant matrix and defineΨ(t)= λ (t)MN(t),

where N is a solution to the system equation Ṅ = (A+uB)N for the control u and
λ is a solution of the corresponding adjoint equation λ̇ =−q−λ (A+uB). ThenΨ
is differentiable with derivative given by

Ψ̇(t) = λ (t)[A+ uB,M]N(t)−qMN(t), (2.26)

where, for two n× n matrices X and Y , the bracket [X ,Y ] denotes the commutator
of the matrices X and Y defined as

[X ,Y ] = Y X −XY. (2.27)

More generally, a similar result holds for single-input control affine systems of the
form ż = f (z)+ug(z) (c.f., Proposition A.3.1 in Appendix A) with the commutator
replaced with the Lie-bracket of the vector fields f and g. For the linear vector fields
f (z) = Xz and g(z) = Y z this reduces to

[ f ,g](z) = Dg(z) f (z)−D f (z)g(z) = YXz−XYz = [X ,Y ]z.

and we have chosen the order in the commutator to be consistent with this definition
of the Lie bracket. We refer the reader to Section A.3.2 in Appendix A for a brief
discussion of Lie derivatives and the Lie bracket.
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Proof. This is a straightforward verification. Dropping the argument t, along the
solutions of the dynamics and adjoint equation, we have that

Ψ̇ = λ̇MN +λMṄ

= (−q−λ (A+ uB))MN +λM(A+uB)N

= λ [A+ uB,M]N− qMN

verifying (2.26). �

Thus, for the switching function Φ(t) = s+λ (t)BN∗(t) it follows that

Φ̇(t) = λ (t)[A,B]N∗(t)− qBN∗(t). (2.28)

In particular, the control does not appear in the first derivative—this also is a gen-
eral property for single-input control affine systems—and Φ is at least twice contin-
uously differentiable. Applying Proposition 2.1.4 once more to the first derivative
then gives

Φ̈(t) = λ (t)[A+ u(t)B, [A,B]]N∗(t)− q[A,B]N∗(t)−qB(A+uB)N∗(t) (2.29)

= {λ (t)[A, [A,B]]− q[A,B]− qBA}N∗(t)

+u(t)
{
λ (t)[B, [A,B]]− qB2}N∗(t)

with the control u multiplying the term
{
λ (t)[B, [A,B]]−qB2

}
N∗(t). If this quantity

does not vanish over an interval I, then the control u is said to be singular of order 1
and can formally be computed as

using(t) =−{λ (t)[A, [A,B]]− q[A,B]−qBA}N∗(t)
{λ (t)[B, [A,B]]−qB2}N∗(t)

. (2.30)

Note that this formula only defines the singular control as a function of the state N∗
and the multiplier λ (i.e., as a function in the cotangent bundle), not as a feedback
function that only depends on the state N.

For the problem [CC2], direct computations verify the following relations for
products and commutators of the matrices A and B:

BA = 2a2

(−a1 a2

0 0

)

, B2 ≡ 0,

[A,B] = 2a2

(−a1 a2 − a1

0 a1

)

= 2a1a2

(−1 0
0 1

)

+(a1 −a2)B, (2.31)

[A, [A,B]] = 2a2

(
a1 (a2 − a1) −(a1 +a2)

2

2a2
1 −a1 (a2 −a1)

)

= (a1 − a2)[A,B]+ 4a1a2B+4a2
1a2

(
0 0
1 0

)

, (2.32)
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and

[B, [A,B]] = 8a1a2
2

(
0 1
0 0

)

=−4a1a2B. (2.33)

If the control u is singular on an open interval I, then Φ(t) ≡ 0 implies that
λ (t)BN∗(t)≡−s and thus

λ (t)[B, [A,B]]N∗(t) =−4a1a2sλ (t)BN∗(t) = 4a1a2s > 0. (2.34)

Along with the fact that B2 ≡ 0, this implies that singular controls are of order 1.
It is not difficult to compute an explicit formula for the singular control using

equation (2.30): Since we also have Φ̇(t)≡ 0 on the interval I, it follows that

λ (t)[A,B]N∗(t)≡ qBN∗(t) =−2a2q1N2(t)

and thus

λ (t)[A, [A,B]]N∗(t) =−2a2(a1 − a2)q1N2(t)−4a1a2 +4a2
1a2λ2(t)N1(t)

=−2a2(a1 − a2)q1N2(t)−4a1a2 (1−a1λ2(t)N1(t)) .

But

−s ≡ λ (t)BN∗(t) = (λ1(t),λ2(t))

(
0 −2a2

0 0

)(
N1(t)
N2(t)

)

=−2a2λ2(t)N1(t)

gives us that

λ2(t)N1(t) =
s

2a2

and thus

λ (t)[A, [A,B]]N∗(t)≡−2a2(a1 − a2)q1N2(t)−4a1a2

(

1− a1s
2a2

)

Furthermore,

q[A,B]N∗(t) = (q1,q2)2a2

(−a1 a2 − a1

0 a1

)

N∗(t)

= 2a1a2 (q2N2(t)− q1N1(t))+ 2a2(a2 −a1)q1N2(t),

and

qBAN∗(t) = (q1,q2)2a2

(−a1 a2

0 0

)(
N1(t)
N2(t)

)

=−2a2q1(a1N1(t)−a2N2(t)).
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Hence, overall the singular control is given by

using(t) =
a1 −a2

2a1
q1N2(t)+ 1− a1s

2a2
+

1
2
(q2N2(t)−q1N1(t))+

a2 −a1

2a1
q1N2(t)

− 1
2a1

q1(a1N1(t)− a2N2(t))

= 1− a1s
2a2

+
1
2
(q2N2(t)− q1N1(t))− 1

2
q1N1(t)+

a2

2a1
q1N2(t)

= 1− a1s
2a2

− q1N1(t)+
1

2a1
(a1q2 + a2q1)N2(t).

Note that, and different from (2.30), we now have obtained a feedback formula that
only depends on the current state N∗(t) of the system and the data, but not on the
multiplier, a merely auxiliary object. In order to be admissible, this control defined
by using(t) also needs to take values in the control set [0,umax].

However, singular controls are not necessarily minimizing, but they can also be
maximizing. In this case, they would be the worst possible option to pursue for the
problem under consideration. The Legendre-Clebsch condition, a high-order nec-
essary condition for optimality of singular controls (see Theorem A.3.2 in App-
endix A), allows us to distinguish between these two classes. If a minimizing control
u is singular of order 1 on an open interval I, then the Legendre-Clebsch condition
states that

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t))≤ 0 for all t ∈ I. (2.35)

As we mentioned above, ∂H
∂u =Φ , and thus this expression is given by the coefficient

that multiplies the control u in the second derivative of the switching function, i.e.,
here

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t)) =
{
λ (t)[B, [A,B]]−qB2}N∗(t) = 4a1a2s > 0.

Hence the Legendre-Clebsch condition for minimality of a singular control is vio-
lated. In fact, singular controls are locally maximizing for the problem [CC2]. We
therefore have proven the following result about optimal controls:

Theorem 2.1.2. If (N∗,u∗) is an optimal controlled trajectory for problem [CC2],
then there does not exist an interval on which the control u∗ is singular.

Consequently, the zero set of the switching function for an optimal controlled tra-
jectory does not contain intervals. If the optimal control were to be merely Lebesgue
measurable, this could still be a highly complicated set of positive measure. For ex-
ample, even in this text we shall come across solutions given by chattering controls
that have an infinite number of switchings on a finite interval. But if the control is
piecewise continuous, then this simply is a bang-bang control with a finite number
of switchings and these become the prime candidates for optimality.
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2.1.4 An Informal Discussion of Optimal Bang-Bang
and Singular Controls

Before proceeding with the details of this specific problem, this seems to be as good
a place as any to give an informal discussion of some general properties of the struc-
ture of solutions to optimal control problems encountered consistently throughout
this text. In a typical situation (ignoring trivial structures of extremals and degen-
erate scenarios when singular controls are of higher order etc.), the local types of
solutions to single-input control-affine optimal control problems can be classified
into the following three main scenarios: (i) singular extremals simply do not exist,
(ii) singular extremals exist and are locally minimizing (the strengthened Legendre-
Clebsch condition is satisfied, ∂

∂u
d2

dt2
∂H
∂u < 0), and (iii) singular extremals exist, but

are locally maximizing (the Legendre-Clebsch condition is violated, ∂
∂u

d2

dt2
∂H
∂u > 0)

[292, 31]. In the work of Bonnard and Kupka, because of associated geometric prop-
erties of the switching function of the corresponding extremals that are illustrated
in Figure 2.3, these three cases are called parabolic, hyperbolic, and elliptic, respec-
tively. Case (i), the parabolic situation, generally is simple and optimal controls are
bang-bang with a small number of switchings that can easily be established. Essen-
tially, (more precisely, after some normalizations on the multipliers have been made
that resolve simple structures) convexity properties of the switching function along
one of the bang controls prevent switchings: either the switching function is convex
when it is positive or concave when it is negative, and this limits the overall number
of switchings. In case (ii), the hyperbolic case, in fact for both controls the convexity
properties prevent switchings: the switching function is convex when it is positive
and concave when it is negative. In this case, bang-bang controls with a larger num-
ber of switchings are not optimal, but optimal bang arcs typically exist and generally
connections are made through ‘fast’ singular arcs. This, as an example, will be the
determining feature for problems of antiangiogenic therapy considered in Chapter 5.
In case (iii), the elliptic case, the convexity properties of the switching function in-
duce a potentially very large number of switchings: the switching function is strictly
concave when it is positive and strictly convex when it is negative. This, by far is the
most difficult of the three scenarios. And it is this one that we have for the cell cycle
specific models for cancer chemotherapy. The convexity properties of the switching
function entices switchings and there exist extremals with a large number of switch-
ings. But, and very much analogous to the time-optimal control problems analyzed
in [292], such controls are not optimal. Heuristically, the singular arc is the limit
of bang-bang trajectories with an increasing number of switchings as this number
goes to infinity. In case of a fast arc, more switchings do better, but in the limit the
singular arc is best and this corresponds to scenario (ii). In case of a slow singular
arc, more switchings do not improve the criterion and thus typically then solutions
are bang-bang with a small number of switchings. And that is exactly what we shall
see for the problems considered in this chapter.
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Fig. 2.3 This diagram visualizes the typical local behavior of optimal controls (after some nor-
malizations have been made that exclude simpler structures [31, 292]). In the parabolic cases,
the switching function is either convex (a, top left) or concave (b, top right) along all extremals.
Because of these geometric properties, singular controls are not possible and extremal controls
are bang-bang with at most two switchings. In the hyperbolic case (c, bottom left), the switch-
ing function is convex along u = umax (when it is positive) and concave along u = 0 (when it is
negative). This precludes more than one bang-bang junction and leads to optimal controls of the
type BSB which are concatenations of a bang control (either u = 0 or umax) followed by a singular
control and another bang control. In the elliptic case, these convexity properties are reversed and
thus extremals whose controls are bang-bang with a large number of switchings exist.

2.1.5 Numerical Computation of Bang-Bang Extremals

The existence of optimal singular controls is a serious obstacle in the numerical
computation of optimal controls. The reason is that, as we shall see in Chapter 5,
when singular controls are optimal for a system in small dimension, the
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corresponding trajectories often lie in a lower dimensional set, e.g., on a surface
in 3-dimensional space, that generally is extremely difficult to determine numeri-
cally without any a priori theoretical knowledge. Numerical schemes that compute
optimal controls through optimization without any a priori knowledge about their
structure often are ineffective and fail in these situations. Having eliminated singu-
lar controls from optimality for the problem [CC2], allows us to use quite simple
procedures to compute bang-bang extremals. In this subsection, we briefly describe
a gradient approach due to Duda [70, 71] and use it to give some examples of
extremals.

Arbitrarily select a bang-bang control with a reasonably large number of switch-
ings k, say 0 = t0 < t1 < · · · < tk < tk+1 = T . We denote the value of the control
on the interval [ti, ti+1], i = 0, . . . ,k, by ui. The controls alternate between the values
u = 0 and u = umax at the times ti, i = 1, . . . ,k, and thus the value of the control
on the first interval [0, t1] determines the sequence. For sake of specificity, we take
u = 0 as the first value so that u vanishes on the intervals [0, t1], [t2, t3], and so on.
Starting from the initial condition N(t0), then the corresponding trajectory is com-
puted forward in time. Since the controls are constant, the values of the state N at
the switching times are simply given by

N(ti+1) = exp(A+ uiB)N(ti), i = 0, . . . ,k, N(t0) given.

The transversality condition on the multiplier requires that λ (T ) = r and thus given
this controlled trajectory, the adjoint λ can be computed through backward integra-
tion of the adjoint equation. Once more, this only requires to solve linear differential
equations, but now these are inhomogeneous and depend on the state N of the sys-
tem. Having states and costates available, the switching function Φ (and also its
derivative Φ̇) are easily evaluated at the switching times ti using equations (2.23)
and (2.28). Naturally, for an arbitrarily selected control u, the zeroes of the switch-
ing function will not agree with the switching times ti of the control. The control
will thus be updated recursively until the switching times ti agree with the zeroes of
the computed switching function Φ and an extremal has been found.

In a gradient based method, these updates are done by means of small changes in
the switching times ti determined by the values Φ(ti) of the switching function. To
justify this, we give a brief formal derivation of the first variation δJ (or an infinites-
imal increment) of the objective J for this problem when a control u is perturbed
by δu,

δJ = J(u+ δu)− J(u).

Adjoining the dynamics to the objective with the multiplier λ , we have that

J(u) = rN(T )+
∫ T

0
qN(t)+ su(t)+λ (t)

{
(A+uB)N(t)− Ṅ(t)

}
dt

= rN(T )+
∫ T

0
H(λ (t),N(t),u(t))−λ (t)Ṅ(t)dt.
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We denote the response of the system to the control u+ δu by N + δN and rewrite
the differential in the form

δJ = rδN(T )+
∫ T

0
{H(λ (t),N(t)+ δN(t),u(t)+ δu(t))

−H(λ (t),N(t),u(t))−λ (t)δ Ṅ(t)
}

dt

with δ Ṅ defined by the difference of the differential equations for N + δN and N.
Integrating λδ Ṅ by parts, and noting that δN(0) = 0 (the comparison trajectory
obeys the same initial condition) gives

∫ T

0
λ (t)δ Ṅ(t)dt = λ (t)δN(t)|t=T

t=0 −
∫ T

0
λ̇ (t)δN(t)dt

= λ (T )δN(T )−
∫ T

0
λ̇ (t)δN(t)dt.

Formally expanding the Hamiltonian H around the controlled trajectory (N,u) and
ignoring higher-order terms gives

H(λ (t),N(t)+ δN(t),u(t)+ δu(t))−H(λ (t),N(t),u(t))

=
∂H
∂N

(λ (t),N(t),u(t))δN(t)+
∂H
∂u

(λ (t),N(t),u(t))δu(t)+ · · ·

and putting all these terms together, we obtain that

δJ(u) = (r−λ (T ))δN(T )+

∫ T

0

{
∂H
∂N

(λ (t),N(t),u(t))+ λ̇(t)
}

δN(t)dt

+

∫ T

0

∂H
∂u

(λ (t),N(t),u(t))δu(t)dt + · · · .

But along an extremal we have that

λ̇ (t) =−∂H
∂N

(λ (t),N(t),u(t)), λ (T ) = r,

and thus the first variation reduces to

δJ =

∫ T

0

∂H
∂u

(λ (t),N(t),u(t))δu(t)dt + · · · (2.36)

Hence the derivative with respect to changes δu in the control is determined by the
switching function Φ(t) = ∂H

∂u (λ (t),N(t),u(t)) and any gradient method is based
on this quantity.

The procedure itself therefore becomes quite simple: depending on the control
used and the value of the switching function at the switching time ti, simply increase
or decrease the lengths of the intervals. If the control is given by u= 0 on the interval
[ti−1, ti] and Φ(ti) > 0, then the optimality condition of the maximum principle is
satisfied at time ti and we increase the switching time by an increment δ ti while
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we decrease it if Φ(ti) < 0 when the optimality condition is violated. Similarly,
if u = umax on the interval [ti−1, ti] and Φ(ti) > 0, then the optimality condition is
violated and we decrease the switching time while we increase it if Φ(ti)< 0 when
the optimality condition is satisfied. Defining an index indi for the interval [ti−1, ti] as

indi =

{
+1 if u = umax on [ti−1, ti],

−1 if u = 0 on [ti−1, ti],

then, in a gradient method, the increment is simply taken as

δ ti =−κ indiΦ(ti) (2.37)

where κ denotes some appropriate, possibly adaptive step-size parameter that ens-
ures overall convergence of the procedure [305]. During the iterations, the switching
times change and potentially cross. This corresponds to a situation when an inter-
mediate interval gets eliminated and the two adjacent intervals coalesce leading to
trajectories with a smaller number of switchings. More generally, if the difference
between the switching times ti and ti+1 falls below a prescribed tolerance ε (and this
includes being negative), ti+1 − ti < ε , these switching times are eliminated and the
controls collapse (with obvious adjustments at the ends of the interval). For exam-
ple, if the optimal control starts with a full dose interval, but our initialization of the
algorithm was with a no dose interval, then at one step in the iterative algorithm the
first switching becomes eliminated. Overall, as a gradient method, standard local
convergence properties apply (e.g., see [305]).

We include some examples of extremal bang-bang controls that have been com-
puted using this procedure. For the cell cycle parameters we have chosen the values
a1 = 0.197 and a2 = 0.356 that were used in [313, 323] and in all computations the
initial condition is taken as the steady-state proportions defined by equation (2.6),
normalizing the total number of initial cancer cells to 1, i.e., N1(0) = 0.7012 and
N2(0) = 0.2988. In view of our earlier remark about the scaling of the coefficients
in the objective, these results easily scale to the general case. This situation would
be representative of conditions where the cancer has been growing exponentially
for some time without treatment. Even if chemotherapy has been given earlier, in
the rest periods the cells redistributed over the compartments and once more their
proportions are given by these values. The control limit is taken as umax = 0.9, but
this is just meant for illustrative purposes. Figure 2.4 shows three examples of con-
trols and corresponding trajectories when the coefficients in the objective have been
chosen as r = (3,3), q = (0.1,0.1) and s = 1

2 . The time horizon has been varied and
the examples shown are for T = 7, T = 21 and T = 60 [days]. In all cases, extremals
are bang-bang trajectories with exactly one switching from u = umax to u = 0. For
shorter time horizons, this switching occurs close to the terminal time (for T ≤ 5.69
the optimal control is constant given by umax) while the rest periods at the end bec-
ome longer as T increases. The total reductions in cancer cells at the end of the
therapy horizon for T = 7, 21 and 60 [days] are given by N1(T )+N2(T ) = 0.5660,
0.5297 and 0.4799, respectively. We summarize the numerical values used in our
calculations in Table 2.1.
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Table 2.1 Numerical values for the coefficients and parameters used in numerical computations
for the optimal control problem [CC2].

Coefficient Interpretation Numerical value Reference
a1 Inverse transit time 0.197 [313]

through G0/G1 +S
a2 inverse transit time 0.356 [313]

through G2/M
x∗ Steady-state proportion 0.2988 Eq. (2.6)

in compartment G0/G1 +S,
N1(0) = x∗ initial condition for N1 0.2988

y∗ Steady-state proportion 0.7012 Eq. (2.6)
in compartment G2/M,

N2(0) = y∗ initial condition for N2 0.7012
umax Maximum dose rate/concentration 0.90

effectiveness of the drug
s Penalty/weight for the total 0.50

dose of cytotoxic agent
q1 Penalty/weight in the objective 0.10

for the average number of cancer
cells in G0/G1 +S during therapy

q2 Penalty/weight in the objective 0.10
for the average number of cancer
cells in G2/M during therapy

r1 Penalty/weight in the objective for 3
the average number of cancer cells
in G0/G1 +S at the end of therapy

r2 Penalty/weight in the objective for 3
the average number of cancer cells
in G2/M at the end of therapy

T Therapy horizon T = 7,21,60 Illustration only

In Table 2.2, we give some numerical results when we vary the coefficient s at the
integral of the dosage. We retain the other parameter values, r =(3,3), q=(0.1.0.1),
umax = 0.9, and the therapy horizon is T = 21 [days]. As long as s > 0 optimal
controls are bang-bang with exactly one switching from u = umax to u = 0. For
s= 0, i.e., when no penalty is imposed on the use of drugs, then naturally the optimal
control is given by a constant full dose treatment, u ≡ umax. In this case, the total
number of cancer cells at the endpoint is given by N1(T )+N2(T ) = 0.0703 and this
is the best possible reduction within the model. As s increases, this number increases
and the interval when the drug is given diminishes. For s = 1.0 we have reached a
scenario when the total number of cancer cells at the end of therapy in fact exceeds
1 and thus the side effects are deemed worse than the cancer volume. For any other
administration of cytotoxic agents, the value of the objective will be larger.

Also, it is the inclusion of the term qN in the Lagrangian that makes optimal
controls start with a full dose as it penalizes prolonged high tumor volumes. If this
term is very small or nonexistent, then naturally all the efforts will only be put
on minimizing the values of N at the terminal time and in this case chemotherapy
will be given not at the beginning, but at the end. For several obvious reasons this
is a poor choice of strategy and objective. As an illustration, Figure 2.5 shows an
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Fig. 2.4 Examples of locally optimal controls (left) and their corresponding trajectories (right) for
T = 7 (top), T = 21 (middle) and T = 60 (bottom) from the steady-state solution (2.6) for the
parameter values given in Table 2.1.

example of such a control and trajectory for the same parameters as above and T =
21 if we set q= 0. Clearly, the intermediate rise of cancer volume is undesirable and
an objective with q makes much more sense.

In the next subsection we shall show that all extremals computed here are indeed
strong local minima; that is, there exists a neighborhood W of the graph of the
corresponding trajectory in [0,T ]×P such that the controls are optimal with respect
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Table 2.2 Numerical results for the switching times τ and total reductions in tumor volume,
N1(T ) +N2(T ). The initial condition is from the steady-state solution (2.6) of the uncontrolled
system, the parameter values are given in Table 2.1, and the therapy horizon of T = 21 (days).

s Switching time τ N1(T )+N2(T )
0 21.0000 0.0703

0.1 19.3550 0.1104
0.2 16.5051 0.2223
0.3 14.9350 0.3251
0.4 13.7950 0.4272
0.5 12.8949 0.5297
0.6 12.1450 0.6320
0.7 11.5250 0.7344
0.8 10.9849 0.8351
0.9 10.4948 0.9381
1.0 10.0551 1.0388
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Fig. 2.5 Example of a locally optimal control (left) and its corresponding trajectory (right) from
the steady-state solution (2.6) of the uncontrolled system for parameter values a1 = 0.197 and a2 =
0.356, time horizon T = 21 (days) and coefficients in the objective given by r = (3,3), q = (0,0)
and s = 1

2 .

to any other control u for which the graph of its corresponding trajectory N lies in
W . In fact, for this 2-compartment model we have consistently seen that extremal
bang-bang trajectories that have more than one switching are not optimal and it is
quite likely that all examples shown are indeed globally optimal. This simply means
that we can take the neighborhood W as the full space [0,T ]×P.

Given the framework of the model, chemotherapeutic agents are given at the
beginning of therapy and in a dose as high as possible. These results are consistent
with the medical point of view that for a homogeneous, therapeutically sensitive
tumor, chemotherapy should be given in an MTD scheme upfront. Also, toxic side
effects of chemotherapy are only indirectly modeled in the system and for this rea-
son the problem formulation considered here corresponds to just one chemotherapy
session, i.e., it does not take into account the required rest periods between sessions.
Different chemotherapy session with the medically required rest periods imposed
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simply reduce to repetitions of the structure obtained above. Since the steady-state
proportions of cells in the respective compartments stabilize very quickly, indeed
the solutions reduce to repetitions of the same scenario if the initial condition is
normalized.

2.1.6 Sufficient Conditions for Strong Local Optimality
of Bang-Bang Extremals

The bang-bang controls and corresponding controlled trajectories computed above
were found through a numerical procedure based on the conditions of the Pontrya-
gin maximum principle. These conditions only comprise first order necessary con-
ditions for optimality and a priori there is no guarantee that such an extremal is
optimal. This especially is the case in the situation that we have here when singular
controls are locally maximizing (which was called “elliptic” earlier) when generally
there exist many nonoptimal bang-bang extremals with a large number of switch-
ings as well. It is therefore necessary to follow up on computations like the ones
we just described with theoretical arguments that prove at least some kind of local
optimality. We give a brief overview of these results and corresponding optimality
statements for the problem [CC2]. The theoretical background consists in the con-
struction of a field of extremals or, equivalently, in the construction of a solution
to the Hamilton-Jacobi-Bellman equation by means of dynamic programming. The
general procedure is outlined in Appendix A and a fully self-contained construction
for the 2-compartment model [CC2] is given in Appendix B.1. We relegate the argu-
ment to this appendix for the simple reason that these constructions, albeit intuitive
and natural, are more on the technical side. Here we merely give the main steps and
results.

Let (N∗,u∗) be an extremal controlled trajectory, the reference extremal, such that
u∗ is a bang-bang control with switchings at times ti, i = 1, . . . ,k, 0 = t0 < t1 < · · ·<
tk < tk+1 = T , and denote the corresponding adjoint variable by λ∗. We assume that
the derivative of the switching function at time ti does not vanish at all switchings,

Φ̇∗(ti) = {λ∗(ti)[A,B]− qB}N∗(ti) = 0. (2.38)

A bang-bang junction for which the derivative of the switching function does not
vanish is called strict and we call the triple Γ = (N∗,u∗,λ∗) a strictly bang-bang
extremal lift.

In a first step, it becomes necessary1 to embed this reference extremal into a
parameterized family of extremals (see Appendix A). This simply is a collection

1 Even if we just consider the problem of minimizing a function f , it is not possible to determine
the local optimality of a critical point x∗ (i.e., f ′(x∗) = 0) from just the knowledge of the critical
point itself, but we need to understand the behavior of the function f over a neighborhood of x∗,
as, for example, it can be gained from the fact that the second derivative f ′′(x∗) does not vanish.
The construction of a family of extremals serves this purpose.
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of controlled trajectories and associated multipliers that satisfy the conditions of
the maximum principle, contain the reference extremal as a member, and in some
reasonable sense depend “nicely” on the parameters. For an optimal control problem
over a fixed finite interval [0,T ] that does not have any terminal constraints like
problem [CC2], such a family can be obtained by integrating the dynamics and
adjoint equation backward from the terminal time while choosing the control to
maintain the minimum condition. Specifically, set p∗ = N∗(T ) and for p in some
neighborhood P of p∗, let N(t, p) and λ (t, p), (t, p)∈ [0,T ]×P, denote the solutions
to the terminal value problem for the system and adjoint equations given by

Ṅ(t, p) = (A+ u(t, p)B)N(t, p), x(T, p) = p, (2.39)

λ̇ (t, p) =−λ (t, p)(A+ u(t, p)B)− q, λ (T, p) = r, (2.40)

while the control is chosen so that with

Φ(t, p) = s+λ (t, p)BN(t, p) (2.41)

we have that
Φ(t, p)u(t, p) = min

v∈[0,umax]
Φ(t, p)v. (2.42)

In particular, for p = p∗, the control u(·, p∗) reduces to the reference control u∗ and
N(·, p∗) and λ (·, p∗) are the reference trajectory and corresponding multiplier,

N(t, p∗) = N∗(t), u(t, p∗) = u∗(t), λ (t, p∗) = λ∗(t).

Proposition 2.1.5. Let Γ = (N∗,u∗,λ∗) be a strictly bang-bang extremal lift with
switching times ti, i = 1, . . . ,k, 0 = t0 < t1 < · · · < tk < tk+1 = T . Then there exists
a neighborhood P of p∗ = N∗(T ) in P and real-analytic functions τi defined on P,
i = 1, . . . ,k, such that for p ∈ P the controls u(·, p), which are defined as the bang-
bang controls that have switchings at the times 0 < τ1(p)< · · · < τk(p)< T in the
same order as the reference control, satisfy the conditions of the maximum princi-
ple. If N(·, p) and λ (·, p) denote the corresponding state and costate defined as so-
lutions to equations (2.39) and (2.40), then the triples Γp = (N(·, p),u(·, p),λ (·, p))
for p ∈ P are strictly bang-bang extremal lifts and the family E =

{
Γp : p ∈ P

}

is a real-analytic parameterized family of broken extremals over the domain D =
{(t, p) : 0 ≤ t ≤ T, p ∈ P}.

We define the associated flow � of controlled trajectories by means of the graphs
of the controlled trajectories as

� : D = [0,T ]×P → [0,T ]×P,

(t, p) �→�(t, p) = (t,N(t, p)). (2.43)

Intuitively, since the optimal control problem is defined on a fixed therapy horizon,
the time t, or equivalently, the time until the end of the treatment period matters,
and it thus needs to be included in this formulation. Our aim is to determine if a
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reference controlled trajectory is locally optimal. This is related to the geometric
property whether or not this flow � defines an injective mapping. Essentially, since
the controls are constant on the subdomains

Di = {(t, p) : τi−1(p)≤ t ≤ τi(p), p ∈ P}, i = 1, . . . ,k,k+1,

(where τ0(p)≡ 0 and τk+1(p)≡ T ), the restrictions �i =� � Di of the flow map �

to these subdomains are diffeomorphisms (this follows from classical results on so-
lutions to ordinary differential equations) and extend as continuously differentiable
mappings �̃i onto open neighborhoods D̃i of Di. The boundary pieces

Ti = {(t, p) : t = τi(p), p ∈ P}

are hypersurfaces (n-dimensional embedded submanifolds in (0,T )×P) and their
images under the flow are the switching surfaces Si,

Si =�(Ti) = {t,N) : t = τi(p), N = N(τi(p), p), p ∈ P} , i = 1, . . . ,k.

We recall that a differentiable mapping F : Rm → R
m is said to be regular at a

point x if the derivative DF : Rm → R
m is nonsingular at x. If the flow map �̃i is

regular at (ti, p∗) = (τi(p∗), p∗), then, for a sufficiently small neighborhood P of p∗,
the switching surface Si is an embedded hypersurface of (0,T )×P and the flow
�̃i is transversal to Si, i.e., the tangent vectors to the graphs of the trajectories,
(1, Ṅ(τi(p), p)), do not lie in the tangent space to Si at �(τi(p), p). Equivalently,
the graphs of the controlled trajectories cross the switching surface at a nonzero
angle.

Definition 2.1.4 (Transversal Crossings and Folds). We say the parameterized
family E =

{
Γp : p ∈ P

}
of broken extremals has a regular junction (or switching

point) at Ti if both flow maps �̃i and �̃i+1 are regular at (τi(p), p) for all p ∈ P.
In this case the graphs of both the trajectories before and after the switching cross
the switching surface Si transversally. We call such a regular switching point a
transversal crossing if the graphs of the trajectories t �→ N(t, p) cross the switching
surface Si in the same direction and a transversal fold if they cross it in opposite
directions.

Figure 2.6 depicts the geometry of a flow of broken extremals near a transver-
sal crossing and fold. While the overall mapping remains injective in the case of a
transversal crossing, trajectories overlap and there exist multiple extremals for ini-
tial data near a transversal fold. Intuitively, such a structure should no longer be
optimal and this indeed is the case: for a flow of bang-bang trajectories, optimal-
ity is preserved between switching surfaces and at transversal crossings, but lost at
transversal folds.

Theorem 2.1.3. Let Γ = (N∗,u∗,λ∗) be a strictly bang-bang extremal lift with
switching times ti, i = 1, . . . ,k, 0 = t0 < t1 < · · · < tk < tk+1 = T , and let E ={
Γp = (N(·, p),u(·, p),λ (·, p)) : p ∈ P

}
be the real-analytic parameterized family
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Fig. 2.6 The flow of a parameterized family of broken extremals near a transversal crossing (left)
and a transversal fold (right).

of broken extremals constructed in Proposition 2.1.5. If all the switchings (ti, p∗)
are transversal crossings, then there exists a neighborhood P of p∗ = N∗(t) such
that the flow � restricted to [0,T ]×P is injective and defines a field of broken ex-
tremals. The reference control u∗ is optimal when compared with any other control
u whose trajectory N lies in the region R covered by the flow �, R =�([0,T ]×P).

Theorem 2.1.4. Let Γ = (N∗,u∗,λ∗) be a strictly bang-bang extremal lift with
switching times ti, i = 1, . . . ,k, 0 = t0 < t1 < · · · < tk < tk+1 = T , and let E ={
Γp = (N(·, p),u(·, p),λ (·, p)) : p ∈ P

}
be the real-analytic parameterized family

of broken extremals constructed in Proposition 2.1.5. Suppose all the junctions are
regular, but there exists a switching (ti, p∗) that is a transversal fold. Then the refer-
ence control u∗ is not locally optimal.

The proofs of Theorems 2.1.3 and 2.1.4 are given in Appendix B. These two
results decisively summarize the geometric properties that determine local optimal-
ity of a strictly bang-bang controlled trajectory: if all switchings are transversal
crossings, the associated control is locally optimal while it is not if there exists a
switching which is a transversal fold.

In the theorem below, we still formulate an algorithmic procedure that easily and
efficiently allows us to verify these geometric properties for problem [CC2]. This
algorithm also is developed in Appendix B. While the states and costates remain
continuous at the switching surface, their partial derivatives generally are discontin-
uous and in the algorithm we update and propagate these derivatives.

Theorem 2.1.5. Let Γ = (N∗,u∗,λ∗) be a strictly bang-bang extremal lift for prob-
lem [CC2] with switching function Φ∗(t) = s+ λ∗(t)BN∗(t). Suppose the switch-
ing times of the control u∗ are given by ti, 0 = t0 < t1 < · · · < tk < tk+1 = T and
let ui be the value of the control on the interval (ti, ti+1). Set S−k+1 = 0 and for
i = k,k−1, . . . ,1, define
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S+i = exp
(
(A+ uiB)

T (ti+1 − ti)
)

S−i+1 exp((A+uiB)(ti+1 − ti)) , (2.44)

Gi =− umax∣
∣Φ̇∗(ti)

∣
∣
(
λ∗(ti)B+NT

∗ (ti)B
T S+i
)
, (2.45)

S−i =
(
BTλ T

∗ (ti)Gi + S+i
)
(

Id +
BN∗(ti)Gi

1−GiBN∗(ti)

)

. (2.46)

If, for i = k,k−1, . . . ,1, we have that
∣
∣Φ̇∗(ti)

∣
∣+ umaxNT

∗ (ti)B
T S+i BN∗(ti)> 0, (2.47)

then this algorithm is well defined, every switching is a transversal crossing, and u∗
is a strong local minimum for the optimal control problem [CC2]. If there exists an
index i such that ∣

∣Φ̇∗(ti)
∣
∣+ umaxNT

∗ (ti)B
T S+i BN∗(ti)< 0, (2.48)

then the ith switching is a transversal fold and the reference controlled trajectory is
not locally optimal.

Corollary 2.1.2. Every extremal strictly bang-bang controlled trajectory with at
most one switching is a strong local minimum.

Proof. The algorithm gives S+k = 0 and thus (2.47) is satisfied. �

This concludes our analysis of the 2-compartment model. Except for the fact that
we use that B2 = 0 in the formulas above, this algorithm is general and will be used
for other problems as well.

2.2 Compartmental Models for Multi-Drug Chemotherapy

We generalize the above results to multi-drug treatment protocols that combine the
actions of a G2/M specific cytotoxic agent with a second chemotherapeutic agent
that targets a different mechanism in the cell cycle. As examples, we consider the
combined actions of a killing and a recruiting agent and of a killing and a blocking
agent. The first model is of importance since dormant cells generally do not respond
to chemotherapy and recruiting the resting cells back into active cell division makes
them sensitive to the cytotoxic agents. This is of special importance in various types
of leukemia that have a large fraction of quiescent cells. Various types of growth
factors (colony-stimulating factors, CSFs) have been shown to increase the growth
fraction in acute myeloblastic leukemia (AML) by recruiting leukemic cells into the
cycle from the resting compartment [219]. The possibility of increasing the fraction
of cycling cells in AML populations thus represents a way to render them more sen-
sitive to cytostatic agents. More generally, significant advantages can be obtained
by recruiting resting cells into the drug-sensitive cell cycle if drug ineffectiveness
is because of large dormant populations [172, 233]. Adding a blocking or cytostatic
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agent in the second model aims at synchronizing cells in a drug-sensitive phase of
the cell cycle. By then applying the cytotoxic agent when a large fraction of the
cancer cells are in this phase, in principle more effective treatments are possible.
However, these results very much depend on the underlying assumption of a homo-
geneous cancer cell population.

2.2.1 General Mathematical Structure and Results

We formulate a mathematical model that has an arbitrary number of compartments.
Both the examples just mentioned and other compartmental models that will be
considered later, like the models involving cell populations of different chemother-
apeutical sensitivities or resistance levels in Chapter 3, fit this general structure.
Analyzing the general structure has the obvious advantage that the mathematical
arguments that are common to all these models only need to be carried out once.

The state space is the first orthantP in R
n and N =(N1, . . . ,Nn)

T denotes the state
with Ni the average number of cancer cells in the ith compartment, i = 1, . . . ,n. The
control is a vector u = (u1, . . . ,um)

T with ui denoting various drug concentrations
in the blood stream. We still identify the drug dose rates with these concentrations.
The control set U is a compact m-dimensional interval of the form U = [0,umax

1 ]×
·· ·× [0,umax

m ] with each umax
j representing the maximum dose rate/concentration and

the lower limit 0 representing that no drugs are administered. Admissible controls
are Lebesgue-measurable (respectively, piecewise continuous) functions u that take
values in the control set, u : [0,T ]→U . The dynamics consists of balance equations
that describe the inflows and outflows between the various compartments and takes
the form

Ṅ(t) =

(

A+
m

∑
j=1

u jB j

)

N(t), N(0) = N0, (2.49)

where the A and B j, j = 1, . . . ,m, are constant n×n matrices, A,B j ∈ R
n×n. As for

the 2-compartment model considered above, the matrix A describes the transitions
between the various compartments when no treatment is given and the matrices B j

represent the effects of the jth drug on the system. An equation of the form (2.49)
is a multi-input bilinear control system. The dynamics represents in- and outflows
of the various compartments and for this reason, no matter what the control is, all
diagonal entries of the matrix A+∑m

j=1 u jB j are negative (there always is a posi-
tive outflow from each compartment) and all the off-diagonal entries (which model
the inflows) are nonnegative. Zero values may occur when there are no connections
between some of the compartments, but every row will have at least one positive
entry. In mathematics, matrices with these properties are called M-matrices (named
so in honor of Minkowski) and their structure implies the positive invariance prop-
erties required for the model to be consistent. We therefore make the following
assumption:
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(M) For all u ∈ U the matrices A+∑m
j=1 u jB j have negative diagonal entries and

nonnegative off-diagonal entries,

A+
m

∑
j=1

u jB j ∈ M .

Under assumption (M), the state space P is positively invariant. The reasoning is
exactly the same as in the proof of Lemma 2.1.2 and will not be repeated.

Proposition 2.2.1. Under assumption (M), the positive orthant P is positively in-
variant for the control system (2.12).

Let r = (r1, . . . ,rn) and q = (q1, . . . ,qn) be n-dimensional row-vectors of positive
numbers and let s = (s1, . . . ,sm) be a nonzero m-dimensional row-vector of nonneg-
ative numbers. We denote the space of row-vectors by (Rn)∗—mathematically we
consider these as linear functionals acting on R

n—so that q,r ∈ (Rn)∗ and s∈ (Rm)∗.
The vectors q, r and s represent subjective weights, i.e., variables of choice, which
define the objective as

J = rN(T )+

∫ T

0
{qN(t)+ su(t)}dt (2.50)

=
n

∑
i=1

riNi(T )+
∫ T

0

{
n

∑
i=1

qiNi(t)+
m

∑
j=1

s ju j(t)

}

dt → min

Analogously as in the 2-compartment model considered in Section 2.1, the term
su = ∑m

i= j s ju j in the integral is a weighted average of the amounts of the various
drugs given and the coefficients s j represent the degrees of toxicity of the drugs.
Side effects generally depend on the specific cytotoxic agent used and may be more
severe than those of a cytostatic or recruiting agent. This would be reflected in the
choice of these weights. Similarly, the second integral term qN = ∑n

i=1 qiNi rep-
resents a weighted average of the number of cancer cells in the respective com-
partments during treatment and the penalty term rN(T ) =∑n

i=1 riNi(T ) represents a
weighted average of the number of cancer cells in the respective compartments at
the end of treatment. As before, the inclusion of the term qN in the Lagrangian is im-
portant since otherwise optimization will lead to protocols that put all the emphasis
on the end of the therapy interval ignoring the behavior in between. While relevant
biological information should be taken into account when selecting the parameters,
it generally is also useful to modulate these parameters within specified ranges to
obtain otherwise desired features of the optimal solutions. As for the 2-compartment
model, also the general model has a 1-dimensional group of scaling symmetries that
can be used to normalize these weights. We then consider the following optimal
control problem:

[CC] for a fixed therapy horizon [0,T ], minimize the objective (2.50) over all
Lebesgue-measurable (respectively, piecewise continuous) functions u : [0,T ]→
U = [0,umax

1 ]×·· ·× [0,umax
m ], subject to the dynamics (2.49).
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First order necessary conditions for optimality again follow from the Pontryagin
maximum principle (see Theorem A.3.1). As for the 2-compartment model consid-
ered above, all extremals are normal and we already anticipate this in our formula-
tion now and set λ0 = 1. Thus the Hamiltonian function is given by

H = qN + su+λ

(

A+
m

∑
j=1

u jB j

)

N. (2.51)

Theorem 2.2.1 (Maximum Principle for Problem [CC]). If u∗ = (u∗1, . . . ,u
∗
m) is

an optimal control with corresponding trajectory N∗, then there exists an absolutely
continuous function λ , which we write as row-vector, λ : [0,T ]→ (Rn)∗, called the
adjoint or co-vector, such that the following conditions are satisfied:

1. adjoint equation and transversality condition: the multiplier λ is a solution to the
terminal value problem

λ̇ =−∂H
∂N

(λ ,N∗,u∗) =−q−λ

(

A+
m

∑
j=1

u jB j

)

, λ (T ) = r, (2.52)

2. minimum condition: the optimal control minimizes the Hamiltonian H pointwise
over the control set U = [0,umax

1 ]× ·· · × [0,umax
m ] along the optimal controlled

trajectory and the multiplier λ (t), i.e.,

H(λ (t),N∗(t),u∗(t)) = min
v∈U

H(λ (t),N∗(t),v), (2.53)

and the minimum value is constant over the interval [0,T ],

H(λ (t),N∗(t),u∗(t)) = const.

Like for the 2-compartment model, it follows from assumption (M) that the pos-
itive orthant P∗ = {λ ∈ (Rn)∗ : λi > 0 for i = 1, . . . ,n} is negatively invariant.

Proposition 2.2.2. Under assumption (M), the positive orthant P∗ is negatively in-
variant for the adjoint equation (2.52), i.e., if λ (T ) ∈ P

∗, then all the multipliers
λi(t), i = 1, . . . ,n, remain positive over the interval [0,T ].

Corollary 2.2.1. Under assumption (M), all states Ni and costates λi are positive
over [0,T ].

This is an important relation in evaluating the signs of various expressions
that arise in the analysis of optimal controls. As for the 2-compartment model,
the Hamiltonian H is linear in the controls u j and since the control set U =
[0,umax

1 ]× ·· · × [0,umax
m ] is an m-dimensional interval, this minimization problem

splits into m separate 1-dimensional minimization problems of minimizing a linear
function over an interval. As before, typically the minimum is attained at the bound-
ary points (bang controls) and intermediate values (singular controls) can only be
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optimal if the function multiplying the control vanishes. This leads to the definition
of the m switching functions as

Φ j(t) = s j +λ (t)B jN(t), (2.54)

and optimal controls satisfy

u∗j(t) =
{

0 if Φ j(t)> 0,
umax

j if Φ j(t)< 0, (2.55)

with singular controls possible if the corresponding switching function vanishes
over an open interval. Once again, we thus need to analyze the derivatives of these
switching functions. These are computed using the system and adjoint equations
and the formula below, which is verified by the same direct computation that was
made in Proposition 2.1.4, gives the essential relation.

Proposition 2.2.3. Suppose M is a constant matrix and letΨ (t) = λ (t)MN(t) with
N a solution to the system equation (2.49) corresponding to the control u and λ a
solution to the corresponding adjoint equation (2.52). Then

Ψ̇(t) = λ (t)

[

A+
m

∑
j=1

u j(t)B j,M

]

N(t)−qMN(t), (2.56)

with [X ,Y ] = Y X −XY the commutator of the matrices X and Y .

As before, the main term is the commutator of the dynamics of the system with
the matrix M that defines the bilinear form in N and λ ; the second term is generated
by the inhomogeneous term in the adjoint equation (2.52). While further differenti-
ation of the first term leads to additional high-order bracket terms, differentiation of
the inhomogeneous term through the dynamics will bring up product terms of the
matrices. Also, the multi-control aspect of the problem matters when higher order
derivatives need to be computed since it may not be clear a priori that the controls
are differentiable functions. This, of course, is trivially true for the constant bang
controls.

Whether or not optimal controls can be singular depends on the properties of the
matrices A and B j and needs to be evaluated on a case-by-case basis. In the models
that we shall analyze in this chapter, singular controls (along with the partial dose
rates they represent) are not optimal for the cytotoxic agent. But again, this is under
the implicit assumption that the entire tumor population is chemotherapeutically
sensitive. In particular, for the two models that will be considered in this section,
bang-bang controls will again be optimal. Their local optimality can then be as-
serted with the same construction as for the 2-compartment model, but some minor
modifications need to be made to account for having more than one control. We still
briefly formalize the construction of a field of broken extremals for this scenario,
but only giving the relevant formulas and results.

Let (N∗,u∗) be a reference controlled extremal where all the components of u∗
are bang-bang controls with switchings at times ti, i = 1, . . . ,k, 0 = t0 < t1 < · · · <
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tk < tk+1 = T , and denote the corresponding adjoint variable by λ∗. Essentially,
the constructions outlined in Section 2.1.6 for the 2-compartment model (see Ap-
pendix B) carry over verbatim to the multi-input situation if we make the following
assumptions:

(A1) At every switching ti only one of the components of the control has a
switching.

This is the generic situation. Simultaneous switchings arise as two separate
switching surfaces intersect and mathematically they are related to bifurcation sce-
narios. The underlying geometry is much more complicated and we shall not go
into these structures in this text. While possible, simultaneous switchings are rare
and can easily be avoided from a practical point of view. Modulo this extra con-
dition, the theory developed in Section 2.1.6 carries over verbatim if the necessary
formal changes to adjust for the multi-input dynamics are made. Also, under ass-
umption (A1), all the switching functions are absolutely continuous functions with
derivatives given by

Φ̇ j(t) = λ (t)

[

A+∑
i= j

ui(t)Bi,B j

]

N(t)−qB jN(t).

In particular, the derivative Φ̇ j =
d
dt Φ j is continuous at ti if the jth control switches

at time ti and all the other controls are continuous at ti.

(A2) For each switching time ti, the derivative of the switching function Φ j of the
control that switches, j = j(i), does not vanish, Φ̇ j(ti) = d

dt Φ j(ti) = 0.

We call a triple Γ = (N∗,u∗,λ∗) along which conditions (A1) and (A2) are satis-
fied a strictly bang-bang extremal lift with simple switchings. Under these assump-
tions, a parameterized family of strictly bang-bang extremal lifts with simple switch-
ings that containsΓ can be constructed exactly as in Proposition 2.1.5 by integrating
the dynamics and the adjoint equation backward from the terminal time T with the
terminal condition N(T, p) = p and p varying in a sufficiently small neighborhood
of p∗ = N∗(T ). We have the identical results that local optimality is preserved at
transversal crossings and that it ceases at transversal folds. However, the formulas
in the algorithm that computes whether switchings are transversal crossings or folds
need to be adjusted to the multi-input setting and we here simply give these formulas
summarizing the results. Note that for the 2-compartment model we also had that
B2 ≡ 0 and this somewhat simplified the formulas. We now no longer have this and
thus the formulas take the more general form below.

Theorem 2.2.2. Let Γ = (N∗,u∗,λ∗) be a strictly bang-bang extremal lift for
problem [CC] with simple switchings and let Φ∗

j (t) = s j + λ∗(t)B jN∗(t) be the
switching function associated with the control u j, j = 1, . . . ,m. Denote the succes-
sive switching times in the controls by ti, i= 1, . . . ,k, 0= t0 < t1 < · · ·< tk < tk+1 = T
and suppose assumptions (A1) and (A2) are satisfied at the junctions. For the ith
switching, let J = J(i) be the indicator of the control that switches and denote the



2.2 Compartmental Models for Multi-Drug Chemotherapy 77

absolute value of the jump in the control by θJ , i.e., θJ = umax
j if J(i) = j. Let ui

j

denote the constant value of the controls on the interval (ti, ti+1). Set S−k+1 ≡ 0 and
for i = k,k−1, . . . ,1, define

S+i = exp

⎛

⎝

(

A+
m

∑
j=1

ui
jB j

)T

(ti+1 − ti)

⎞

⎠S−i+1 exp

((

A+
m

∑
j=1

ui
jB j

)

(ti+1 − ti)

)

,

(2.57)

Gi =− θJ∣
∣Φ̇∗

J (ti)
∣
∣
(
λ∗(ti)BJ +NT

∗ (ti)B
T
J S+i
)
, (2.58)

S−i =
(
BT

J λ
T
∗ (ti)Gi + S+i

)
(

Id+
BJN∗(ti)Gi

1−GiBJN∗(ti)

)

(2.59)

If, for i = k,k−1, . . . ,1, we have that
∣
∣Φ̇∗

J (ti)
∣
∣+θJ

{
λ∗(ti)BJ +NT

∗ (ti)B
T
J S+i
}

BJN∗(ti)> 0, (2.60)

then this algorithm is well defined, every switching is a transversal crossing, and u∗
is a strong local minimum for the optimal control problem [CC]. If there exists an
index i such that

∣
∣Φ̇∗

J (ti)
∣
∣+θJ

{
λ∗(ti)BJ +NT

∗ (ti)B
T
J S+i
}

BJN∗(ti)< 0, (2.61)

then the ith switching is a transversal fold and the reference controlled trajectory is
not locally optimal.

2.2.2 A 3-Compartment Model with a Killing and Recruiting Agent

We now consider a 3-compartment model originally formulated by Swierniak et al.
[323] where a cytotoxic agent (that can be active in either the S or the G2/M phase),
is combined with another chemotherapeutic agent that entices dormant cells in the
compartment G0 to reenter the active cell cycle, a so-called recruiting agent. A large
residuum of dormant G0 cells that are not sensitive to most cytotoxic agents is
one of the major problems in chemotherapy of some leukemias [52, 128, 224].
Similar findings for breast and ovarian cancers were reported, e.g., in [58, 83].
Experiments indicated that if Ara-C (arabinofuranosyl cytidine) was injected twice
during one cell cycle or if it was combined with Andriamycin or anthracyclines,
a significant reduction of leukemic burden was achieved without an evident inc-
rease of side effect on normal tissues [62]. This therapeutic gain was attributed to
the specific recruitment inducing effect of Ara-C on leukemic cells in the dormant
phase. Other agents that have a demonstrated effect to recruit quiescent cells into the
cycle are cytokines (stimulating factors that play a role in the regulation of normal
hemopoiesis) like G-CSF (granulocyte-colony stimulating factor), GM-CSF (gran-
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Fig. 2.7 A 3-compartment model with cytotoxic and recruiting agent.

ulocyte macrophage-colony stimulating factor), and especially interleukin-3 com-
bined with SCF (Skp, Cullin, F-box containing complex) [326, 10]. Then a cytotoxic
agent may be used to kill the cycling cells.

In the modeling, since one wants to analyze the alteration of the transit time
through G0 due to the feedback mechanism that recruits the cells into the cycle when
chemotherapy is applied, now the dormant stage G0 should be a separate compart-
ment. Cytotoxic agents can be active both in S and G2/M and thus here these phases
of the cell cycle are combined into one compartment. This leads to the following
three compartments: G0, G1, and S+G2/M. The state space is thus the first orthant
in R

3. Because of the association of the compartments with those specific phases
of the cell cycle and their established biological nomenclature, here we find it more
convenient to label the states N0, N1 and N2. Newly born cells start the cell division
process, but then may become dormant and remain in the quiescent stage G0. Let
p0 and p1 be positive numbers, p0 + p1 = 1, that represent the probabilities that
the daughter cells pass through the first growth phase unimpeded (p1) or undergo
cell arrest and become quiescent (p0). A recruiting agent is applied to reduce the
average transit time through the compartment G0 resulting in a higher outflow from
G0. If w (the second control u2 in the general framework of problem [CC]) denotes
the concentration of the recruiting agent, we assume that the outflow is increased by
a factor of 1+w, 0 ≤ w ≤ wmax, with the control w = 0 corresponding to no drug
being present and w = wmax occurring with a full dose treatment. As before, we do
not yet incorporate pharmacokinetic equations into the model. A cytotoxic agent u,
0 ≤ u ≤ umax, is applied in the third compartment with umax corresponding to the
maximum dose. (This would be our first control u1 in the framework of problem
[CC]). We illustrate the structure of the model in Figure 2.7.

Combining these drugs with the standard features of cell division and cell killing
(and again under the log-kill hypothesis) results in a bilinear control system of the
form (2.49) with n = 3 and m = 2 and the following matrices

A =

⎛

⎝
−a0 0 2p0a2

a0 −a1 2p1a2

0 a1 −a2

⎞

⎠ , (2.62)
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B1 =

⎛

⎝
0 0 −2p0a2

0 0 −2p1a2

0 0 0

⎞

⎠ and B2 =

⎛

⎝
−a0 0 0
a0 0 0
0 0 0

⎞

⎠ . (2.63)

As in the 2-compartment model considered earlier, the ai are positive coefficients
related to the inverse transit times for cancer cells through the compartments. It is
easily verified that condition (M) holds for all admissible controls,

A+uB1+wB2 =

⎛

⎝
−(1+w)a0 0 2p0(1−u)a2

(1+w)a0 −a1 2p1(1−u)a2

0 a1 −a2

⎞

⎠ ∈ M ,

and thus the state space P= R
3
+ is positively invariant.

As for the 2-compartment model, the proportions of cells that are in these com-
partments obey Riccati differential equations. Again, let C(t) = N0(t) +N1(t) +
N2(t) denote the average total number of cancer cells and let x, y and z denote the
proportions of cells in these three compartments,

x(t) =
N0(t)
C(t)

, y(t) =
N1(t)
C(t)

and x(t) =
N2(t)
C(t)

.

Then we have for the uncontrolled system (with u ≡ 0 and w ≡ 0) that

ẋ =−a0x+ 2p0a2z− a2xz, (2.64)

ẏ = a0x− a1y+ 2p1a2z−a2yz, (2.65)

ż = a1y− a2z− a2z2. (2.66)

Regardless of the initial condition, the proportions quickly converge to a unique
steady state that gives the average proportions of cancer cells in the three compart-
ments. However, this result is not clear a priori and a proof is required. Note that
one of the three equations is redundant because of the trivial relation x(t)+ y(t)+
z(t) ≡ 1 and we use it to eliminate the variable y from the system. We then are left
with the following planar system,

ẋ =−a0x+ 2p0a2z− a2xz, (2.67)

ż = a1 (1− x− z)− a2z−a2z2. (2.68)

Theorem 2.2.3. The unit simplex Σ = {(x,y,z) : 0 ≤ x, 0 ≤ y, 0 ≤ z, x+ y+ z = 1}
is positively invariant for the dynamical system given by equations (2.64)–(2.66)
and has a unique, asymptotically stable equilibrium point (x∗,y∗,z∗) inside of Σ
that contains the entire simplex Σ in its region of attraction. That is, given an arbi-
trary initial condition (x0,y0,z0) ∈ Σ , the solution of equations (2.64)–(2.66) exists
for all times t ≥ 0, lies in Σ and converges to (x∗,y∗,z∗) as t → ∞.

Proof. Because of the relation x(t)+ y(t) + z(t) ≡ 1, we can identify Σ with the
planar set Σ̃ = {(x,z) : 0 ≤ x, 0 ≤ z, x+ z ≤ 1} and we denote the corresponding
vector field by F ,
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F(x,z) =

( −a0x+ 2p0a2z−a2xz
a1 (1− x− z)− a2z−a2z2

)

.

In order to show that Σ̃ is positively invariant, it suffices to verify that for ev-
ery initial point (x0,z0) in the boundary of Σ̃ , (x0,z0) ∈ ∂ Σ̃ , the local solution
(x(t;x0,z0),z(t;x0,z0)) of the corresponding initial value problem enters the interior
of Σ̃ . (By the uniqueness of solutions to ordinary differential equations, trajectories
thus cannot leave Σ̃ and it is then a standard argument from the theory of ODEs
using the local existence of solutions to show that solutions exist over all of [0,∞)).

We consider the three boundary segments separately and start with x = 0 and 0 ≤
z ≤ 1. For x = 0 and z ∈ (0,1) we have that ẋ = 2p0a2z > 0 and thus the vector field

F points inside of Σ̃ . This also holds at the vertex (0,1) since F(0,1) = 2a2

(
p0

−1

)

and p0 ∈ (0,1). At the origin, F(0,0) =

(
0
a1

)

is tangent to the vertical boundary

segment of Σ̃ and we here need to compute a second order approximation of the so-
lution. By the implicit function theorem, we can express the solution curve starting
at the origin as a function of the form x = h(z) and the derivative h′(z) is given by

h′(z) =
dx
dz

=
ẋ
ż
=

−a0x+ 2p0a2z−a2xz
a1 (1− x− z)−a2z−a2z2 .

Differentiating the relation ẋ = h′(z)ż once more with respect to t gives that

ẍ = h′′(z)ż2 + h′(z)z̈

and evaluating this expression at the origin, while using h′(0) = 0, gives

h′′(0) =
ẍ
ż2 =

2p0a2a1

a2
1

= 2p0
a2

a1
> 0.

Hence the curve x = h(z) has a local minimum at z = 0 with contact of order 1
(i.e., the second derivative is nonzero) and lies inside the region Σ̃ for small positive
times. This verifies that solutions starting at points in the vertical boundary segment
of Σ̃ enter the interior of Σ̃ forward in time.

On the horizontal boundary segment, 0 ≤ x ≤ 1 and z = 0, we have for x < 1
that ż = a1 (1− x)> 0 and thus F(x,0) points inside Σ̃ at those points. At the vertex

(1,0), we have F(1,0) =

(−a0

0

)

and the trajectory is tangent to the horizontal

boundary segment. In this case we can describe the trajectory as a function of x,
say z = k(x), and a computation analogous to the one just carried out at the origin
verifies that this function also has a local minimum with contact of order 1. Hence,
again the trajectory enters the interior of Σ̃ . Finally, along the line x+z= 1, we have
that

(x+ z)· =−2a2(1− p0)z−a0x < 0
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Fig. 2.8 Positive invariance of the unit simplex Σ under the flow for the proportions.

and thus all trajectories starting on this line enter the interior of Σ . This verifies
that the simplex Σ̃ is positive invariant for the system (2.67) and (2.68). Figure 2.8
illustrates the phase portrait in the (x,z)-plane.

The system has a unique equilibrium point (x∗,z∗) in Σ̃ : solving the equation
ż = 0 for x gives

x∗ = 1−
(

1+
a2

a1

)

z∗ − a2

a1
z2
∗

and substituting this relation into the equation ẋ = 0 leads to the following cubic
polynomial in z whose solutions define the equilibria (x∗,z∗):

a2
2z3 +(a0 +a1 + a2)a2z2 +((a1 + a2)a0 +(2p0 −1)a1a2) z−a0a1 = 0.

Dividing by a2
2 and setting α0 =

a0
a2

and α1 =
a1
a2

we obtain the simpler expression

Q(y) = z3 +(1+α1 +α2) z2 +((1+α1)α0 +(2p0 −1)α1)z−α0α1 = 0.

Since Q′′(y) is positive for y ≥ 0, this polynomial Q is strictly convex on [0,∞). It
thus follows from Q(0) = −α0α1 < 0 and Q(1) = 2(1+a0+ p0α1) > 0 that there
exists exactly one positive root that lies in the open interval (0,1). Hence

x∗+ z∗ = 1− 1
α1

z∗(1+ z∗)< 1



82 2 Cell Cycle Specific Cancer Chemotherapy for Homogeneous Tumors

and from ẋ = 0 we obtain that

x∗ =
2p0z∗
α0 + z∗

> 0.

Thus there exists a unique equilibrium point (x∗,z∗) in Σ̃ and it lies in the interior.
The rest of the argument is an application of Poincaré-Bendixson theory for pla-

nar systems (e.g., see [145]): Since Σ̃ is compact and positive invariant, every tra-
jectory (x(t;x0,z0),z(t;x0,z0)) with initial condition (x0,z0) ∈ Σ̃ has a nonempty
ω-limit set.2 The divergence of the vector field F is negative on the first orthant,

div F =
∂F1

∂x
(x,z)+

∂F2

∂ z
(x,z) =−a0 − a2z−a1−a2 −2a2z < 0,

and thus it follows from Bendixson’s theorem that there do not exist periodic orbits
for the system (2.67) and (2.68) in Σ̃ . Hence these ω-limit sets all consist of a unique
equilibrium point. Since there is only one such point and ω-limit sets are attractive,
all trajectories converge to (x∗,z∗). �

This is an important result in that it says that independently of the size of the
tumor, by the time chemotherapy treatment starts, the system has settled down to
have specific fractions of cycling cells in the respective compartments. These frac-
tions are only determined by the coefficients that define the cell cycle kinetics. It is
possible to give explicit formulas for the equilibrium point (x∗,y∗,z∗) in terms of the
coefficients ai and p0 using Cardano’s formula for the roots of a cubic polynomial,
but these expressions are unwieldy and not informative. On the other hand, it is easy
to compute these fractions numerically. More interesting, like for the 2-compartment
model, the cell cycle parameters ai, i = 0,1,2 can be determined from these steady-
state proportions and the tumor doubling time. For the total number of cancer cells,
analogously as before, we have that

Ċ(t) = a2N2(t) = a2z(t)C(t)≈ a2z∗C(t)

approximating z(t) with its steady-state value z∗. Thus the tumor approximately
grows exponentially at rate a2z∗. If T denotes the tumor doubling time, then we
again have the simple relation

a2z∗ =
ln2
T

.

The other kinetic parameters a0 and a1 directly follow from the equilibrium relations
and we summarize the relations below:

Proposition 2.2.4. If T denotes the tumor doubling time and x∗, y∗ and z∗ are the
steady-state proportions of cells in the cell cycle compartments G0, G1 and S +
G2/M, respectively, then we have that

2 The ω-limit set of a positive semi-trajectory (x(t;x0, z0), z(t;x0, z0)) is the set of all accumulation
points of this trajectory as t → ∞.
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Fig. 2.9 Trajectories for the average fractions of cells in the compartments G0, G1 and S+G2/M.

a0 =
ln2
x∗T

(p0 − p1 + y∗+ z∗) , a1 = (1+ z∗)
ln2
y∗T

and a2 =
ln2
z∗T

.

Figure 2.9 illustrates the speed of convergence of the fractions to their equilib-
rium point solution for a0 = 0.05, a1 = 0.5, a2 = 1 and p0 = 0.9. In this case,
the limiting proportions are 85% in the dormant compartment G0, 10% in the first
growth phase G1, and only 5% in the cycling compartment S+G2/M where killing
agents act. The graph on the right in Figure 2.9 shows how quickly a proportion
of cycling cells distributes into these fractions. In the graph on the right side of the
figure, the initial condition is set to 1 for the proportion of cycling cells and to 0 for
the other compartments, an extreme case to illustrate this fact.

We now consider the optimal control problem of administering a killing and a
recruiting agent. The objective is taken in the form

J = rN(T )+
∫ T

0
qN(t)+ s1u(t)+ s2w(t)dt, (2.69)

where r = (r0,r1,r2) ∈
(
R

3
)∗

and q = (q0,q1,q2) ∈
(
R

3
)∗

are row vectors of pos-
itive coefficients. The weight s1 at the cytotoxic agent u is a positive number and
the weight s2 for the recruiting agent is nonnegative. In fact, here s2 = 0 or s2 a
much smaller positive weight than s1 is a biologically reasonable choice and we
want to allow this case. However, this brings in a degenerate scenario which arises
if umax =

1
2 . In this case, for u ≡ umax =

1
2 , the dynamics is given by

Ṅ =

⎛

⎝
−(1+w)a0 0 p0a2

(1+w)a0 −a1 p1a2

0 a1 −a2

⎞

⎠N

and we have that Ċ(t) ≡ 0. Hence the total cancer volume is constant along such a
trajectory, regardless of the control w used. In the case s2 = 0 there is no penalty
on the use of the control w and thus all controls w are equal in their effect and
optimal on any interval where u ≡ umax =

1
2 since w has no effect on the objective.
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This prevents us from making any conclusive statements about w, simply because
the effects of all controls are the same and thus any one will do fine. But this is not
an important restriction in the sense that in a practical situation umax will have to
be much larger than 1

2 , in fact, typically close to 1 in an MTD style application. If
umax =

1
2 , then, to begin with, it is impossible to reduce the cancer volume. Thus,

realistically umax � 1
2 . We therefore consider the following optimal control problem:

[CC3r] for a fixed therapy horizon [0,T ], minimize the objective

J = rN(T )+

∫ T

0
qN(t)+ s1u(t)+ s2w(t)dt → min

over all Lebesgue-measurable (respectively, piecewise continuous) functions
(u,w) : [0,T ]→ [0,umax]× [0,wmax], umax = 1

2 , subject to the dynamics

Ṅ(t) =

⎛

⎝
−(1+w)a0 0 2p0(1− u)a2

(1+w)a0 −a1 2p1(1− u)a2

0 a1 −a2

⎞

⎠N(t), N(0) = N0.

For the reader’s convenience, we write out the fundamental necessary conditions
for optimality for this system. The adjoint equation is given by

λ̇ =−λ (A+ uB1+wB2)− q, λ (T ) = r,

which, in terms of its components, reads

λ̇0 = (1+w)a0 (λ0 −λ1)− q0, λ0(T ) = r0,

λ̇1 = a1 (λ1 −λ2)− q1, λ1(T ) = r1,

λ̇2 =−2a2(1− u)(p0λ0 + p1λ1)+ a2λ2 −q2, λ2(T ) = r2.

The switching functions for the controls u and w are given by

Φ1(t) = s1 +λ (t)B1N(t) = s1 − 2a2{p0λ0(t)+ p1λ1(t)}N2(t) (2.70)

and
Φ2(t) = s2 +λ (t)B2N(t) = s2 − a0{λ0(t)−λ1(t)}N0(t), (2.71)

respectively. We first show that an optimal control for the cytotoxic agent u cannot
be singular.

Theorem 2.2.4. Suppose (N∗,u∗,w∗) is an optimal controlled trajectory for prob-
lem [CC3r]. Then there does not exist an interval on which the control u∗ is singular,
i.e., the cytotoxic agent is not given at partial dose rates/concentrations.

Proof. Suppose the control u∗ is singular over a nonempty open interval I so that the
switching function Φ1 vanishes identically. It then follows from Proposition 2.2.3
that also

Φ̇1(t) = λ (t) [A+w∗(t)B2,B1]N∗(t)−qB1N∗(t)≡ 0. (2.72)
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Direct matrix computations verify that

[B2,B1] = 2p0a0a2

⎛

⎝
0 0 −1
0 0 1
0 0 0

⎞

⎠ (2.73)

and therefore Φ̇1(t) depends on the second control w∗. A priori, we have no infor-
mation about w∗ and thus need to consider all possible cases. The switching function
Φ2 is continuous and let us first assume that there exists a time t ∈ I where Φ2 does
not vanish. Then, by continuity, Φ2 does not vanish on an open subinterval J ⊂ I
that contains t and on this interval the control w is constant, say w(t) ≡ w∗ on J.
Differentiating Φ̇1(t) once more on J, it follows that

Φ̈1(t) = λ (t) [A+ u(t)B1+w∗B2, [A+w∗B2,B1]]N∗(t)
− q [A+w∗B2,B1]N∗(t)− qB1 (A+u(t)B1+w∗B2)N∗(t).

The Legendre-Clebsch condition for local optimality of the singular control u (see
Theorem A.3.2 in Appendix A and equation (2.35)) requires that

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t),w∗)≤ 0 for all t ∈ J.

For the model [CC3r], this expression is given by

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t),w∗) =
{
λ (t)[B1, [A+w∗B2,B1]]−qB2

1

}
N∗(t).

We have that B2
1 ≡ 0 and also the second-order Lie bracket [B1, [B2,B1]] vanishes,

[B1, [B2,B1]]≡ 0, while

[A,B1] = 2a2

⎛

⎜
⎜
⎜
⎜
⎝

0 −p0a1 p0 (a2 −a0)

0 −p1a1 p0a0 + p1 (a2 −a1)

0 0 p1a1

⎞

⎟
⎟
⎟
⎟
⎠

and

[B1, [A,B1]] = 8p1a1a2
2

⎛

⎝
0 0 p0

0 0 p1

0 0 0

⎞

⎠=−4p1a1a2B1.

Therefore the Legendre-Clebsch condition reduces to

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t),w∗) = λ (t)[B1, [A,B1]]N∗(t)

=−4p1a1a2λ (t)B1N∗(t).
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But it follows from d
dt Φ1(t) ≡ 0 that λ (t)B1N∗(t) ≡ −s1 and thus overall for t ∈ J

we obtain that

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t),w∗)≡ 4p1a1a2s1 > 0 (2.74)

violating the Legendre-Clebsch condition. Hence singular controls u are locally
maximizing on intervals J where the recruiting agent w is constant.

It remains to consider the possibility that also w∗ is singular over I. In this case
both controls are simultaneously singular over I and there is an additional necessary
condition for optimality for this situation, the so-called Goh-condition (see Theo-
rem A.3.3 in Appendix A). It requires that

∂
∂w

d
dt

∂H
∂u

(λ (t),N∗(t),u∗(t),w∗(t))≡ 0 for all t ∈ I.

Since d
dt

∂H
∂u = Φ̇1, it follows from equations (2.72) and (2.73) that for all t ∈ I we

then must have that

0 ≡ λ (t)[B2,B1]N∗(t) = 2p0a0a2{−λ0(t)+λ1(t)}N2(t)≡ 0.

Since N2 is positive, it follows that λ0(t) ≡ λ1(t) for all t ∈ I. But the condition
Φ2(t) ≡ 0 reads s2 − a0 (λ0(t)−λ1(t))N0(t) ≡ 0 and thus this is not possible if
s2 > 0.

The scenario s2 = 0 is realistic for this model and requires a separate argument. If
s2 = 0, the Goh condition is satisfied, but λ0(t)≡ λ1(t) is a very restrictive relation
and we can exclude the optimality of such a scenario going back to the Legendre-
Clebsch condition for the control u∗. For, in this case we actually have that the
row-vector λ (t)[B2,B1] vanishes identically and thus the control w∗ drops out of the
formula (2.72) for the derivative of the switching function Φ1 for the control u∗, i.e.,
we have that

Φ̇1(t) = {λ (t) [A,B1]− qB1}N∗(t)≡ 0.

Differentiating this equation once more and computing the Legendre-Clebsch con-
dition for the control u gives the same condition (2.74) as in the case when the
control w∗ is constant and thus the Legendre-Clebsch condition is violated. This
concludes the proof. �

Theorem 2.2.5. Let (N∗,u∗,w∗) be an optimal controlled trajectory for problem
[CC3r]. If the weight s2 in the Lagrangian for the recruiting agent w is zero, s2 = 0,
then there does not exist an interval on which the control w∗ is singular. However, if
this coefficient is positive, s2 > 0, then the Legendre-Clebsch condition for optimal-
ity of a singular control w is satisfied.

Proof. Suppose that the control w∗ is singular on a nonempty open interval I. By the
previous result, the control u cannot be singular on I and, without loss of generality
we therefore assume that u is constant on I, given by either u = 0 or u = umax.
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First we consider the case s2 = 0. As above, the fact that the switching function
Φ2(t) = a0 {λ0(t)−λ1(t)}N1(t) vanishes identically on I implies that λ0(t)≡ λ1(t)
for all t ∈ I. Using the adjoint equations for the derivatives of these multipliers gives
us that

−q0 = λ̇0(t) = λ̇1(t) = a1 {λ1(t)−λ2(t)}− q1

and thus
λ1(t)−λ2(t) =

q1 − q0

a1
= const.

Hence we actually have that λ̇0(t)≡ λ̇1(t)≡ λ̇2(t). But then also

−q0 = λ̇0(t) = λ̇2(t) =−2a2(1− u)λ0(t)+ a2λ2(t)−q2

and thus

q2 −q0

a2
=−2(1− u)λ0(t)+λ2(t) =−2(1−u)λ0(t)+λ1(t)− q1 −q0

a1
.

Since λ0(t)≡ λ1(t), this relation implies that

q2 − q0

a2
+

q1 − q0

a1
= λ0(t)(2u−1).

But the control u is given by 0 or umax, and, since umax = 1
2 , this relation implies that

λ0(t) is constant. But λ̇0(t) =−q0 < 0. Contradiction. (It is only in this step that we
make use of the assumption that umax = 1

2 ).
The existence of the degenerate scenario for the case umax = 1

2 for s2 = 0 indi-
cates a bifurcation structure. Indeed, for s2 > 0 the Legendre-Clebsch condition is
satisfied. Recall that u is constant and thus by Proposition 2.2.3 the first and second
derivatives of the switching function Φ2 are given by

Φ̇2(t) = {λ (t) [A+ uB1,B2]−qB2}N∗(t)

and

Φ̈2(t) = λ (t) [A+ uB1+w∗(t)B2, [A+ uB1,B2]]N∗(t)
− q [A+ uB1,B2]N∗(t)− qB2 (A+uB1+w∗(t)B2)N∗(t).

Hence

∂
∂w

d2

dt2

∂H
∂w

(λ (t),N∗(t),u,w∗(t)) =
{
λ (t)[B2, [A+uB1,B2]]−qB2

2

}
N∗(t). (2.75)

A direct computation verifies that B2
2 = −a0B2 and using that Φ̇2(t) ≡ 0, we can

rewrite equation (2.75) as

∂
∂w

d2

dt2

∂H
∂w

(λ (t),N∗(t),u,w∗(t))

= λ (t){[B2, [A+ uB1,B2]]+ a0 [A+uB1,B2]}N∗(t).
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These brackets are given by

[A+ uB1,B2] = a0

⎛

⎝
0 0 −2p0(1−u)a2

a1 0 2p0(1−u)a2

−a1 0 0

⎞

⎠

and

[B2, [A+ uB1,B2]] = a2
0

⎛

⎝
0 0 −2p0(1−u)a2

−a1 0 2p0(1−u)a2

a1 0 0

⎞

⎠ ,

so that

[B2, [A+uB1,B2]]+ a0 [A+ uB1,B2] = 4p0a2
0a2(1−u)

⎛

⎝
0 0 −1
0 0 1
0 0 0

⎞

⎠ .

Hence

∂
∂w

d2

dt2

∂H
∂w

(λ (t),N∗(t),u,w∗(t))

= λ (t){[B2, [A+ uB1,B2]]+ a0 [A+uB1,B2]}N∗(t)

= 4p0a2
0a2(1− u){λ1(t)−λ0(t)}N2(t).

But Φ2(t)≡ 0 implies that a0{λ0(t)−λ1(t)}N0(t)≡ s2 > 0 and thus now we have
that λ0(t)> λ1(t) along a singular control w. Hence

∂
∂w

d2

dt2

∂H
∂w

(λ (t),N∗(t),u∗(t),w∗(t))≤ 0

and the Legendre-Clebsch condition is satisfied. Note that the strengthened Legendre-
Clebsch condition holds if u = 1 and this will always be the case if umax < 1. �

The calculations carried out in the proof also show that a singular control wsing
can be expressed in the form

wsing(t) =−{λ (t) [A+ uB1, [A+ uB1,B2]]− q [A+uB1,B2]−qB2 (A+uB1)}N∗(t)
λ (t){[B2, [A+ uB1,B2]]+ a0 [A+uB1,B2]}N∗(t)

and this expression can be evaluated similar as it was done for the 2-compartment
model. The result is messy with complicated algebraic expressions in the ai and
weights q. In addition, the control defined by this equation needs to lie within the
control limits and this is not guaranteed a priori. We shall not pursue this further
here, but instead give some numerical examples that show that singular controls
typically do not arise in optimal solutions.

For small positive weights s2, and this is the important case for this model, bang-
bang controls are optimal. Figure 2.10 shows the graphs of such controls u and w
and their corresponding trajectories when the weight s2 in the Lagrangian is chosen
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as s2 = 0 (on the left) and s2 = 0.1 (on the right) for parameter values specified in
Table 2.3. All switching surfaces are transversal folds and the computed controlled
trajectories are strong local minima. Table 2.4 gives the transversality conditions
for these two trajectories computed using Theorem 2.2.2. In both cases, as for the
2-compartment model considered earlier, the cytotoxic agent is given upfront in
one maximum dose session at the beginning of therapy. The effectiveness of this
agent is enhanced by the recruiting agent that also is given at maximum dose from
the beginning. The recruiting agent is withdrawn a short time before the cytotoxic
agent is stopped. Clearly, once the cells that were recruited into the cell cycle have
gone through the third compartment, the phases S+G2/M, the benefit from killing
the small fraction of cancer cells in the third compartment is outweighed by the
side effects as measured by the integral of the control u and thus at the right time
administration of the cytotoxic agent ceases. However, there is a difference in the
administration of the recruiting agent in these two scenarios. In the objective, we
have put three times the weight on cancer cells in the dormant stage G0 than in the
other stages of the cell cycle and thus the optimal controls will want to recruit these
cells, at a minimum to get them into a phase of the cell cycle that is less “costly” in
terms of the objective functional. When the administration of the recruiting agent is
“free,” i.e., for s2 = 0, then it is simply advantageous (in the sense of minimizing the
objective, not necessarily from a medical point of view) to move the cells from the
quiescent state into the active phases of the cell cycle and thus in this case there still
exists a large interval toward the end of therapy when the recruiting agent is at full
dose. From a practical point, this is not desired since these cells then will undergo
cell division and the tumor will grow stronger than otherwise would have been the
case. Thus, even if there are possibly no side effects to the recruiting agent, it clearly
is more prudent to have a small positive weight s2. As the figures on the right in Fig-
ure 2.10 illustrate, when the administration of the recruiting agent is made “costly,”
the incentive to move cancer cells into the cycling phase of the cell cycle needs to
be balanced with its “cost” and in this case the second interval where w = wmax is
forgone for longer first segments. Thus, this example also illustrates how the choice
of the weights leads to different protocols and that the weights can be—and should
be—adjusted to generate medically relevant and satisfactory protocols. For exam-
ple, these computations raise the specter of making the weight q time-varying: take
higher weights q0 at the beginning of the therapy period in order to induce the con-
trols to recruit dormant cells into the cell cycle and then proceed to equal weights
for all compartments in order not to entice recruiting of the cells toward the end of
therapy. Changes of this type could be incorporated into the model at the expense
of changes in the higher-order derivatives of the switching function. The reasoning
can easily be adjusted to this more general setting.
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Table 2.3 Numerical values for the coefficients and parameters used in computations for the opti-
mal control problem [CC3r] with cytotoxic and recruitment agent.

Coefficient Interpretation Numerical value Reference
a0 Inverse transit time through G0 0.05
a1 Inverse transit time through G1 0.5
a2 Inverse transit time through S+G2/M 1
p0 Probability that cells enter G0 0.9

p1 = 1− p0 Probability that cells enter G1 0.1
x∗ Steady-state proportion in G0 0.8589 Eq. (2.64)

N0(0) Initial condition for N0 0.8589
y∗ Steady-state proportion in G1 0.0954 Eq. (2.65)

N1(0) Initial condition for N2 0.0954
z∗ Steady-state proportion in S+G2/M 0.0456 Eq. (2.66)

N2(0) Initial condition for N2 0.0456
umax Maximum dose rate/concentration 0.95

effectiveness
s Penalty/weight at the 1

cytotoxic agent
q0 Penalty/weight in the objective 3

for the average number of cancer
cells in G0 during therapy

q1 Penalty/weight in the objective 1
for the average number of cancer
cells in G1 during therapy

q2 Penalty/weight in the objective 1
for the average number of cancer
cells in S+G2/M during therapy

r0 Penalty/weight in the objective for 3
the average number of cancer cells
in G0 at the end of therapy

r1 Penalty/weight in the objective for 1
the average number of cancer cells
in G1 at the end of therapy

r2 Penalty/weight in the objective for 1
the average number of cancer cells
in S+G2/M at the end of therapy

T Therapy horizon 21 Illustration only

Table 2.4 Numerical values of the transversality conditions at the bang-bang junctions for the
extremals in Figure 2.10.

Weight s2 Control that switches Switching time Value of the transversality condition (2.60)
0 w 11.415 0.0125

u 12.945 0.5144
w 17.777 0.0062

0.1 w 7.9349 0.0474
u 12.188 0.4778
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Fig. 2.10 Examples of locally optimal controls u (cytotoxic agent, top), w (recruiting agent, mid-
dle) and their corresponding trajectories (bottom) for weights s2 = 0 (left) and s2 = 0.1 (right). The
initial condition is the steady-state solution of the proportions (see Theorem 2.2.3) with the total
tumor volume normalized to 1. The parameter values are given in Table 2.3.

2.2.3 A 3-Compartment Model with a Killing and Blocking Agent

We also analyze a different type of drug interaction that arises when a G2/M-specific
cytotoxic (killing) agent is combined with a cytostatic (blocking) drug that is used to
synchronize the transitions of cells through the cell cycle [169]. Drugs of this type
include, for example, anthracycline antibiotics like adriamycin [6] or antineoplastic
agents like hydroxyurea (HU) [223, 68] that inhibit DNA and RNA synthesis in S
and thus hold cells in the first growth phase G1. The fractions of cells in the individ-
ual phases of the cell cycle vary, especially in tumors, but a rough approximate value
when cells are randomly distributed within the cell cycle, is that about 60% of the
cells will be in G1, 20% will be in the S phase and 20% will be G2/M. The purpose
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Fig. 2.11 A 3-compartment model with cytostatic agent ν and cytotoxic agent u.

of applying a cytostatic drug is to temporarily arrest cancer cells in the cell cycle
and then release them when a killing agent is at full potential in the G2/M phase
hoping to maximize the overall fraction of tumor cells killed while also somewhat
minimizing the killing effects on normal cells if these are not synchronized.

Cytostatic drugs slow down the growth of malignant cells in the sense that they
prevent cells from reaching the phase where cell division occurs. In the model here,
cell arrest in phase S is considered. We again use a 3-compartment model, but now
the compartments are the first growth phase G1 (which is lumped with the dormant
cells), synthesis S, and the second growth phase and mitosis, G2/M. The state space
thus once more is the first orthant P in R

3, but here we retain the notation N1, N2

and N3 for the states. A cytostatic blocking agent is applied to slow down the transit
times of cancer cells during the synthesis phase S and as a result, the flow of cancer
cells from the second into the third compartment is reduced by a factor of v(t)
percent from its original flow of a2N2(t) to (1− v(t))a2N2(t), 0 ≤ v(t) ≤ vmax < 1.
This factor v represents a second control in the model with v(t) ≡ 0 corresponding
to the case when no drug is administered and vmax giving the maximum reductions
with full dose. As before, the main control u represents the concentration in the
bloodstream of a cytotoxic agent with u ≡ 0 corresponding to no treatment and
u = umax corresponding to a maximum dose. We illustrate the general structure of
the model in Figure 2.11.

Retaining all the previous assumptions about the model of cell kill (the tumor
consists of a homogeneous population of drug sensitive cells and the log-kill hy-
pothesis), the corresponding mathematical model again is a bilinear system of the
form (2.49) with n = 3 and m = 2. Here the matrices are given by

A =

⎛

⎝
−a1 0 2a3

a1 −a2 0
0 a2 −a3

⎞

⎠ , (2.76)

B1 =

⎛

⎝
0 0 −2a3

0 0 0
0 0 0

⎞

⎠ and B2 =

⎛

⎝
0 0 0
0 a2 0
0 −a2 0

⎞

⎠ . (2.77)
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Once more it is easily verified that the controlled dynamics is described by
M-matrices,

A+uB1+ vB2 =

⎛

⎝
−a1 0 2(1−u)a3

a1 −(1− v)a2 0
0 (1− v)a2 −a3

⎞

⎠ ∈ M ,

and thus the state space P is positively invariant.
Again there exists a well-defined steady state for the proportions of cells in the

individual compartments. As above, let C(t) =N1(t)+N2(t)+N3(t) denote the total
number of cancer cells and define the proportions of cancer cells in these compart-
ments as x, y and z,

x(t) =
N1(t)
C(t)

, y(t) =
N2(t)
C(t)

and x(t) =
N3(t)
C(t)

.

so that with u ≡ 0 and w ≡ 0 we have that

ẋ =−a1x+ 2a3z− a3xz, (2.78)

ẏ = a1x− a2y− a3yz, (2.79)

ż = a2y− a3z− a3z2. (2.80)

Because of the trivial relation C(t) = N1(t) +N2(t)+N3(t) ≡ 1, one of the three
equations is redundant and again we eliminate the variable y from the system. We
then are left with the following planar system,

ẋ =−a1x+ 2a3z− a3xz,

ż = a2 (1− x− z)− a3z−a3z2.

If we identify the respective cell cycle parameters and take p0 = 1, then these are the
same equations as in (2.64)–(2.66). The only difference in the dynamics which this
change causes is that the trajectory starting at the vertex (x,z) = (0,1) now is also
tangent to the boundary of the unit simplex Σ̃ = {(x,z) : 0 ≤ x, 0 ≤ z, x+ z ≤ 1},
but as for the other two vertices, the order of contact of this trajectory with the line
x+ z = 1 is 1 and the trajectory enters the interior of Σ̃ forward in time. Thus Σ̃
remains positively invariant. Theorem 2.2.3 thus immediately gives the following
result:

Theorem 2.2.6. The unit simplex Σ = {(x,y,z) : 0 ≤ x, 0 ≤ y, 0 ≤ z, x+ y+ z = 1}
is positively invariant under the dynamical system given by equations (2.78)–(2.80)
and has a unique, asymptotically stable equilibrium point (x∗,y∗,z∗) inside of Σ that
contains the entire simplex Σ in its region of attraction. Given an arbitrary initial
condition (x0,y0,z0) ∈ Σ , the solution of equations (2.78)–(2.80) exists for all times
t ≥ 0, lies in Σ and converges to (x∗,y∗,z∗) as t → ∞.

Figure 2.12 illustrates the corresponding phase portrait.
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Fig. 2.12 Positive invariance of the unit simplex Σ under the flow for the proportions.

As in the other models, for the average total number of cancer cells C(t) =
N1(t)+N2(t)+N3(t) we have that

Ċ(t) = a3N3(t) = a3z(t)C(t)≈ a3z∗C(t)

so that cancer growth is approximately exponential with rate a3z∗. Thus we obtain
the same relation between the inverse transit time a3 through the G2/N compart-
ment and the average fraction z∗ of cancer cells in this compartment as before, and,
more generally, from the dynamics we have the following relations between the
parameters.

Proposition 2.2.5. If T denotes the tumor doubling time and x∗, y∗ and z∗ are
the steady-state proportions of cells in the cell cycle compartments G0/G1, S and
G2/M, respectively, then we have that

a1 = (1+ y∗+ z∗)
ln2
x∗T

, a2 = (1+ z∗)
ln2
y∗T

and a3 =
ln2
z∗T

.

We consider the problem to administer a cytotoxic and a cytostatic agent with the
objective taken in the same form as before,

J = rN(T )+
∫ T

0
qN(t)+ s1u(t)+ s2v(t)dt → min,

where r = (r1,r2,r3) ∈
(
R

3
)∗

and q = (q1,q2,q3) ∈
(
R

3
)∗

are row vectors of pos-
itive coefficients and the weights s1 and s2 at the drugs are positive numbers. We
thus have the following optimal control problem:

[CC3b] For a fixed therapy horizon [0,T ], minimize the objective

J = rN(T )+
∫ T

0
qN(t)+ s1u(t)+ s2v(t)dt → min
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over all Lebesgue-measurable (respectively, piecewise continuous) functions
(u,v) : [0,T ]→ [0,umax]× [0,vmax], subject to the dynamics

Ṅ(t) =

⎛

⎝
−a1 0 2(1− u)a3

a1 −(1− v)a2 0
0 (1− v)a2 −a3

⎞

⎠N(t), N(0) = N0.

For the reader’s convenience, we again write out the fundamental necessary con-
ditions for optimality for this system. The adjoint equation is formally unchanged,

λ̇ =−λ (A+ uB1+wB2)− q, λ (T ) = r,

but now, in terms of its components, reads

λ̇1 = a1(λ1 −λ2)− q1, λ1(T ) = r1,

λ̇2 = (1− v)a2(λ2 −λ3)− q2, λ2(T ) = r2,

λ̇3 = a3(λ3 − 2(1− u)λ1)− q3, λ3(T ) = r3,

and the switching functions for the controls u and v are given by

Φ1(t) = s1 +λ (t)B1N(t) = s1 −2a3λ1(t)N3(t)

and
Φ2(t) = s2 +λ (t)B2N(t) = s2 + a2{λ2(t)−λ3(t)}N2(t),

respectively. We again analyze the optimality properties of singular controls, but
start with the cytostatic agent whose analysis is simpler.

Theorem 2.2.7. If (N∗,u∗,v∗) is an optimal controlled trajectory for problem
[CC3b], then there does not exist an interval on which the control v∗ is singular.

Proof. Suppose v is singular on an open interval I, i.e., Φ2(t) ≡ 0 on I. By Propo-
sition 2.2.3, the derivative of the switching function Φ2 is given by

Φ̇2(t) = {λ (t) [A+ u∗(t)B1,B2]−qB2}N∗(t)≡ 0. (2.81)

A direct computation verifies that

[B1,B2] = 2a2a3

⎛

⎝
0 −1 0
0 0 0
0 0 0

⎞

⎠

and thus equation (2.81) depends on the second control u∗. As for model [CC3r],
we have no a priori information about u∗ and thus need to consider cases. But the
structure of this matrix allows us to exclude that both controls are singular simul-
taneously. For, if u∗ also is singular on an open subinterval J ⊂ I, then it again
is a necessary condition for optimality, the Goh-condition (see Theorem A.3.3 in
Appendix A), that
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∂
∂u

d
dt

∂H
∂v

(λ (t),N∗(t),u∗(t),v∗(t)) = λ (t)[B1,B2]N∗(t)≡ 0 for all t ∈ J.

Here this condition is violated:

λ (t)[B1,B2]N∗(t) =−2a2a3λ1(t)N2(t)< 0.

Thus the control u∗ must be constant over some subinterval J ⊂ I given by either 0
or umax. Differentiating (2.81) once more on J, the Legendre-Clebsch condition for
the control v takes the form

∂
∂v

d2

dt2

∂H
∂v

(λ (t),N∗(t),u∗,v∗(t)) =
{
λ (t)[B2, [A+u∗B1,B2]]−qB2

2

}
N∗(t).

(2.82)
These commutators are given by

[A+ u∗B1,B2] = B2 (A+ u∗B1)− (A+u∗B1)B2

= a2

⎛

⎝
0 2(1−u∗)a3 0
a1 0 0
−a1 −a3 0

⎞

⎠

and

[B2, [A+ u∗B1,B2]] = [A+ u∗B1,B2]B2 −B2 [A+u∗B1,B2]

= a2
2

⎛

⎝
0 2(1−u∗)a3 0

−a1 0 0
a1 −a3 0

⎞

⎠ .

In particular, this implies that

[B2, [A+u∗B1,B2]] = a2 [A+ u∗B1,B2]− 2a1a2
2

⎛

⎝
0 0 0
1 0 0
−1 0 0

⎞

⎠ . (2.83)

Furthermore, B2
2 = a2B2, and since the derivative (2.81) of the switching function

Φ2 vanishes identically, we have that

λ (t) [A+ u∗B1,B2]N∗(t)≡ qB2N∗(t).

Hence

a2λ (t) [A+ u∗B1,B2]N∗(t) = qB2
2N∗(t)

and thus, altogether, we obtain
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∂
∂v

d2

dt2

∂H
∂v

(λ (t),N∗(t),u∗,v∗(t)) = λ (t)[B2, [A+u∗B1,B2]]N∗(t)−qB2
2N∗(t)

=−2a1a2
2λ (t)

⎛

⎝
0 0 0
1 0 0
−1 0 0

⎞

⎠N∗(t)

=−2a1a2
2 {λ2(t)−λ3(t)}N1(t).

But Φ2(t) = s2 +a2{λ2(t)−λ3(t)}N2(t)≡ 0 gives that

λ2(t)−λ3(t) =− s2

a2N2(t)

and thus
∂
∂v

d2

dt2

∂H
∂v

(λ (t),N∗(t),u∗,v∗(t)) = 2s2a1a2
N1(t)
N2(t)

> 0.

Hence singular controls violate the Legendre-Clebsch condition and are not optimal.
�

For this model we can no longer assert in general that the cytotoxic agent u cannot
be singular, but need to impose an inequality relation on the inverse transit times in
the cell cycle and the maximum reduction vmax that the cytostatic agent can achieve.

Theorem 2.2.8. Suppose that

a1 + a2(1− vmax)− 2a3 ≥ 0. (2.84)

If (N∗,u∗,v∗) is an optimal controlled trajectory for problem [CC3b], there also
does not exist an interval on which the control u∗ is singular.

The proof of this result is a more technical calculation than the ones done so far
since the singular control cannot be determined from the second derivative of the
switching function. In the terminology from Definition A.3.5 in Appendix A, the
order of the singular control u is at least 2. This is a somewhat degenerate situation
and we relegate this computation to Section B.2 in Appendix B.

We close with some numerical examples of locally optimal controls for problem
[CC3b]. The parameter values are given in Table 2.5 and condition (2.84) is satisfied.
Figure 2.13 shows two different scenarios. In the graphs on the left, the weights at
the cancer cells are all taken to be equal, r = (1,1,1) and q = (1,1,1), and in this
case the optimal control u starts with a segment along which we have u ≡ umax. It
would make no sense to block the flow of cells while a cytotoxic agent is active
and accordingly the cytostatic agent is inactive at the beginning. It only becomes
activated between the switching times t1 = 10.115 and t3 = 19.835; the cytotoxic
agent is stopped at time t2 = 11.054. It is thus only turned on shortly before the
killing agent is withdrawn which corresponds to the timing effects in the cell cycle.
After the cytotoxic agent is withdrawn, then the cytostatic agents is activated for
most of the time and this simply is an alternative mechanism to slow down the
growth of the tumor. If one views the whole therapy interval as one coherent unit
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Table 2.5 Numerical values for the coefficients and parameters used in computations for the opti-
mal control problem [CC3b] with cytostatic and cytotoxic agents.

Coefficient Interpretation Numerical value Reference
a1 Inverse transit time through G1/G0 0.197 [313]
a2 Inverse transit time through S 0.395 [313]
a3 Inverse transit time through G2/M 0.107 [313]
x∗ Steady-state proportion in G1/G0 0.3866 Eq. (2.78)

N0(0) Initial condition for N0 0.3866
y∗ Steady-state proportion in S 0.1722 Eq. (2.79)

N1(0) Initial condition for N2 0.1722
z∗ Steady-state proportion in G2/M 0.4412 Eq. (2.80)

N2(0) Initial condition for N2 0.4412
umax Maximum dosage/concentration/ 0.95

effectiveness of cytotoxic agent
vmax Maximum blocking effect 0.30

of cytostatic agent
s1 Penalty/weight at the 1

cytotoxic agent
s2 Penalty/weight at the 0.01

cytostatic agent
q1 Penalty/weight in the objective 1, resp. 0.1

for the average number of cancer
cells in G1/G0 during therapy

q2 Penalty/weight in the objective 1, resp. 0.1
for the average number of cancer
cells in S during therapy

q3 Penalty/weight in the objective 1, resp. 0.1
for the average number of cancer
cells in G2/M during therapy

r1 Penalty/weight in the objective for 1, resp. 8.25
the average number of cancer cells
in G1/G0 at the end of therapy

r2 Penalty/weight in the objective for 1, resp. 8.25
the average number of cancer cells
in S at the end of therapy

r3 Penalty/weight in the objective for 1, resp. 8.25
the average number of cancer cells
in G2/M at the end of therapy

T Therapy horizon 21 Illustration only

and only looks at the total number of cancer cells, C(t) =N1(t)+N2(t)+N3(t), then
C decreases from C(0) = 1 to C(21) = 0.868. In the second example, the weights
are skewed to make it more important to minimize the value of the cancer cells at
the final time, r = (8.25,8.25,8.25), but we relaxed the weight on the intermediate
size of the tumor, q = (0.1,0.1,0.1). This leads to a shift of the interval where the
cytotoxic agent is active toward the end and accordingly then the cytostatic agent is
active at the beginning. In fact, and according with the dynamics of the cell cycle,
it is withdrawn shortly before the cytotoxic agent becomes active. Nevertheless, for
these weights we only see a reduction of the total tumor numbers from C(0) = 1 to
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C(21) = 0.978, basically just a maintenance of the current tumor volume. Clearly,
these numbers can be reduced by making chemotherapy less toxic, i.e., by using a
lower value for s1, and the numbers used here only serve to illustrate the general
mechanisms Table 2.6 still gives the values of the transversality conditions at the
switching times verifying the local optimality of the numerically computed solution.

Table 2.6 Numerical values of the transversality conditions at the bang-bang junctions for the
extremals in Figure 2.13.

Weights r and q Control that switches Switching time Transversality condition (2.60)
r = (1,1,1, ) v 10.115 0.0097
q = (1,1,1, ) u 11.054 0.1765

v 19.835 0.0332
r = (8.25,8.25,8.25) v 10.835 0.1339

q = (1,1,1, ) u 11.835 0.0839

2.2.4 Concluding Remarks

The main implicit assumption underlying all these models is that the tumor consists
of a homogeneous collection of drug sensitive cells. Under this condition our results
point to optimal treatment protocols that are bang-bang controls with a small num-
ber of switchings. In fact, the cytotoxic agent is always given in one full dose session
upfront, i.e., the results agree with the common paradigm of full dose chemother-
apy sessions with rest periods. These theoretical results do not dependent of specific
parameter values and the numerical illustrations that were given are only meant to
illustrate general principles. As always, applications of mathematical models to a
practical situation is contingent upon the ability to estimate the respective parame-
ters. These will vary on a case-by-case basis, but in principle, having a small number
of parameters is a plus and, as the results about the steady-state proportions of the
uncontrolled dynamics show, the parameters that are needed to set up these models
are well within the realm of practical medical possibilities.

2.3 Pharmacokinetics and Pharmacodynamics

In view of the tremendous complexity of the medical problem that is cancer treat-
ment, it is a reasonable strategy to start with the analysis of simplified models and
then add increasingly more complex and medically more realistic features into the
model and to analyze to what extent these structures change the solutions. A com-
monly used simplification that we also have made so far is to identify the drug dose
rates with the drug concentrations and even more, with the effects that these concen-
trations have. In reality, these clearly are different phenomena and their relations are
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Fig. 2.13 Examples of locally optimal controls u (cytotoxic agent) (top), v (cytostatic agent) (mid-
dle) and their corresponding trajectories (bottom) for different weights r = (1,1,1) and q=(1,1,1)
on the left and r = (8.25,8.25,8.25) and q = (0.1,0.1,0.1) on the right. The initial condition is the
steady-state solution (see Theorem 2.2.6) with total tumor size normalized to 1. The parameter
values are given in Table 2.5.
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studied under the names of pharmacokinetics (PK) and pharmacodynamics (PD).
In the formulations considered so far, the controls represented the drugs’ concentra-
tions in the blood stream and only in our language we have identified the drugs’ dose
rates with their concentrations; the effects were modeled making the linear log-kill
hypothesis. In this section, we make these compartmental models more realistic by
augmenting them with pharmacokinetic equations. The main question is whether,
and if so, to what extent, this more accurate modeling changes the previous analysis
about optimal protocols. Indeed, as we shall show, the addition of a standard linear
pharmacokinetic model for the drugs’ concentrations does not alter the structure of
optimal solutions. Singular controls, which are not optimal in the simplified models
without a linear pharmacokinetic model, still remain nonoptimal after adding these
equations, and, in fact, this is a general feature of the mathematical structure of PK,
not just for these compartmental bilinear models. Thus, for the models considered
here optimal controls remain bang-bang and indeed there are only minute quanti-
tative changes in the switching times that depend on the specific pharmacokinetic
parameters. Clearly, the relations between drug dose rates and drug concentrations
need to be taken into account in the scheduling of the drugs, but they are rather
unrelated to the question about the structures of optimal protocols. These can be de-
termined solely based upon the concentrations of the drugs. This therefore justifies
and enables a modular approach to the optimal treatment problems with respect to
pharmacokinetics. Mathematically, the reason for this lies in the fact that standard
pharmacokinetic models are described by linear differential equations. On the level
of pharmacodynamics, the same holds for linear models (e.g., the log-kill hypothe-
sis), but as nonlinearities come into play, qualitative changes arise.

In this section, we briefly describe the basics of commonly used mathematical
models for PK and PD in the context of continuous infusions and then analyze
the compartmental model [CC] when it is augmented with pharmacokinetic and
pharmacodynamic equations.

2.3.1 Mathematical Models for PK and PD

Pharmacokinetic equations model the time evolution of a drug’s concentration in
the blood plasma, i.e., “what the body does to the drug.” If a drug is given at a
time-varying dose rate u = u(t), let c = c(t) be its concentration in the plasma that
builds up in response. The standard model that describes this concentration c is one
of exponential growth and decay,

ċ =−γc+ u, c(0) = 0,

Fig. 2.14 Schematic representation of a 1-compartment pharmacokinetic model.
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with γ the so-called clearance rate of the drug, a constant. If the drug dose rate
is bounded by umax, then the maximum achievable drug concentration cmax in a
continuous infusion is given by

cmax =
umax

γ
and generally this saturation level is reached rather quickly, of course, depending on
the numerical value of γ . Once no more drugs are administered, u ≡ 0, this concen-
tration dissipates at an exponential rate determined by the body’s abilities to clear
the drug. Clearance quantifies elimination of the drug from the body and is defined
as the volume of plasma cleared of the drug per unit time. It usually is expressed in
terms of units such as liters per hour or milliliters per minute. The clearance rate γ
and the half-life T of the drug, the time it takes for the concentration to fall to half
of its previous value, are related by the usual formula, γT = ln2. These are the sim-
plest, 1-compartment PK models in which the drug dose u is related to the drug’s
concentration and its elimination is in one part of the body, e.g., the blood plasma
or at an absorption side (see Figure 2.14).

More generally, in 2-compartmental models for PK, the drug’s concentration and
its elimination are considered at a central and a peripheral compartment with their
interactions (see Figure 2.15). In such a case, the drug concentrations are modeled
by a 2-dimensional vector c(t) = (c1(t),c2(t))T with the components describing
the concentrations in the central (i = 1) and peripheral compartments (i = 2). The
model still is one of exponential growth and decay described by a linear system
ċ(t) = Ac(t)+ bu(t) of the form

ċ(t) =

(−γ−α β
α −β

)

c+

(
b1

b2

)

u(t)

where γ again denotes the clearance rate, α and β are positive rates that describe the
interactions between the central and peripheral compartments and the coefficients bi

(bi ≥ 0, b1 +b2 = 1) describe the relative influx of the drug into the compartments.
Note that the eigenvalues of the matrix A are the roots of the equation

t2 +(α+β + γ)t +βγ = 0

and thus are given by

1
2

(

−(α+β + γ)±
√

(α+β + γ)2 −4βγ
)

.

In particular, both are negative reals and the general solution thus has the form

c1(t) = ae−λ1t + be−λ2t



2.3 Pharmacokinetics and Pharmacodynamics 103

Fig. 2.15 Schematic representation of a 2-compartment pharmacokinetic model.

with 0 < λ1 < λ2 the negatives of the eigenvalues. Figure 2.16 illustrates the typical
two phase behavior shown on a logarithmic scale. The initial phase is called the
distribution phase while the second phase, which essentially is only determined by
the smaller eigenvalue (in absolute value) is called the elimination phase. Another
typical modeling here is when a first compartment describes the concentration in
the plasma and the second compartment describes the concentration in the tissue.
Depending on the specific situation, the vector b often is given by b = (1,0)T or
b = (0,1)T .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

time

log
(c 1(t))

c1 (t)

Fig. 2.16 The typical behavior of the concentration in the central compartment for a 2-
compartment pharmacokinetic model on a logarithmic scale.

Higher dimensional compartmental models are used less often, but arise, for ex-
ample, if the peripheral compartment is divided further into a ‘shallow’ and ‘deep’
compartment. For example, a 3-compartmental model is commonly used to describe
the clearance of insulin in diabetes, but generally one and two compartmental mod-
els are the norm for PK of cancer drugs.

Pharmacodynamic models describe the effects that the drug concentrations have
on the tumor cells, i.e., “what the drug does to the body.” Generally, these effects
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can be described in the form s(c)N where s is a function of the concentration c.
The linear log-kill hypothesis is the most commonly used model and in this case the
function s simply is linear, s(c) = σc with σ a constant that represents the effective-
ness of the drug. This model, which was used in the compartmental problems [CC]
above, is generally applicable over a reasonably wide range of concentrations, but
often is not a valid model for low or high concentrations. In fact, generally drugs
show very little and, in fact, often no effect if the concentrations are too low and
their effectiveness saturates at high concentrations. For example, paclitaxel is one
of the most cytotoxic drugs at high concentrations, but shows no killing effects at
low concentrations when indeed its effects can be classified as cytostatic. Thus, gen-
erally, the effect of a single chemotherapeutic agent can be modeled by a function s
defined on the interval [0,∞) with values in some interval [0,Emax],

σ : [0,∞)→ [0,Emax], c �→ σ(c),

with Emax denoting the maximum effect. Commonly used forms are the Emax model
that more accurately describes the intensity of the effect for high concentrations and
sigmoidal functions that capture the behavior at both lower and higher concentra-
tions. The Emax model is described by a standard Michaelis-Menten type equation
of the form

σ(c) =
Emaxc

EC50 + c
(2.85)

and an example of sigmoidal models that are used in pharmacology is of the form

σ(c) =
Emaxcn

(EC50)
n + cn (2.86)

with n > 1 a positive integer. In these equations, Emax denotes the maximum effect
that is achievable and EC50 denotes the concentration at which half of this maximum
effect is realized. These are commonly used parameters in pharmacology. The Emax

model is reasonable for fast acting drugs that quickly reach their saturation levels
while the sigmoidal models more accurately approximate the effectiveness at both
lower and higher concentrations. Figure 2.17 shows the qualitative behavior of these
two models.

Considering the graph of the sigmoidal function s for PD, it is clear that a linear
model well represents the important middle segment of the model. For low concen-
trations, the drug effect simply is negligible and at high concentrations, when the
effect has saturated, we can simply assume the concentration is constant. In either
of these ranges, it is not necessary to include a detailed pharmacodynamic equation
in the model. Similarly, the same effect arises under the Emax model once the con-
centration saturates. Thus, while these models are more realistic overall, in the most
relevant segments of the curves, a linear approximation is valid and for this reason,
the linear log-kill hypothesis stands as the most important of these pharmacody-
namic models. In the next section, we briefly explore the changes that arise for a
general model. We assume that the function s that defines the pharmacodynamic
model satisfies the following monotonicity condition:
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Fig. 2.17 Emax and sigmoidal pharmacodynamic models for the intensity of the effect as a function
of the drug concentration.

(PD) the functionσ : [0,cmax)→ [0,Emax), c �→σ(c), satisfies σ(0)= 0, is strictly
increasing and twice continuously differentiable.

Here cmax and Emax are limits for the maximum concentrations and their effects
that, in principle, are allowed to be infinity, but generally are finite numbers. In the
next section we analyze the changes that may (or, more importantly, may not) arise
when the compartmental model [CC] is augmented with these pharmacokinetic and
pharmacodynamic models. For simplicity of presentation, we restrict the analysis
to a 1-compartment pharmacokinetic model, but analogous results hold for multi-
compartmental PK models (e.g., see [215]).

2.3.2 The Effect of PK and PD on the Structure of Optimal
Controls

We consider a multi-drug treatment protocols, but assume that the drugs have dif-
ferent mechanisms of actions. For cytotoxic drugs that have similar mechanisms
synergistic or antagonistic properties come into play and their combined effective-
ness does not just depend on their combined concentrations. Assessing these in-
teractions is a generally difficult and drug specific question that even for the more
common drugs is not always fully understood. Therefore, in mathematical models,
similarly acting drugs are bundled together and represented by one control. Thus, in
the model below it is assumed that the controls correspond to qualitatively different
drugs which act in different compartments in the model (e.g., a G2/M-specific cyto-
toxic agent and a cytostatic agent active in the synthesis phase S). Then the overall
dynamics can be described as
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Ṅ =

(

A+
m

∑
j=1

σ j(c j)B j

)

N, N(0) = N0,

ċ j =−γ jc j + u j, c j(0) = 0.

In the objective, there are two options to gauge the cost or side effects of the
treatment. Recall that, within the compartmental models, side effects of treatment
are measured by ineffective cell divisions and these are determined by the pharma-
codynamic model of the drugs. Thus this leads to the minimization of an objective
of the form

J = rN(T )+
∫ T

0

(

qN(t)+
m

∑
j=1

s j (c j(t))

)

dt → min

where, as before r = (r1, . . . ,rn) and q = (q1, . . . ,qn) are row-vectors of positive
numbers and s = (s1, . . . ,sm) is a row vector of nonnegative functions of the con-
centrations that represent the side effects of treatment. If we make the log-kill hyp-
othesis, then these are proportional to the concentrations of the drugs and these
functions are simply given by s j(c j) = s jc j for some constants s j as before. In this
case, comparing this objective with the original one considered for problem [CC],
it should be clear that if we disconnect the concentrations c j from the drug dose
rates u j and simply optimize over the concentrations, this reduces to the original
problem. Thus this problem has already been solved, at least under the log-kill hyp-
othesis. The question then simply becomes how the concentrations c∗ computed as
optimal in the original model can be realized within the pharmacokinetic model. But
this is a standard and not very difficult issue in pharmacology not related to the issue
of optimizing treatment schedules. For example, for a continuous time infusion, it
is simply possible to adjust the dose rate to u∗j ≡ c∗

γ j
to maintain a constant concen-

tration c∗ once it has been reached. Figure 2.18 shows how more traditionally such
a constant concentration c∗ is approximated in pharmacological procedures based
on the 1-dimensional pharmacokinetic model by repeated oral or intravenous bolus
injections at specifically computed frequencies and doses. But within the task of
minimizing J, the optimal schedules can essentially be determined based on the con-
centrations. Clearly, we can investigate the problem as posed here, and this leads to
slightly different models as considered before if different pharmacodynamic models
are utilized, but the solutions are not affected by the pharmacokinetic models.

An alternative objective is to consider

Ĵ = rN(T )+
∫ T

0
qN(s)+ su(t)dt → min (2.87)

where the drug dose rates are used as penalty term to measure both the side ef-
fects and other tangible costs associated with treatment. While this may appear to
be somewhat inconsistent in view of measuring side effects by ineffective cell di-
visions, there are other reasons why this might be the preferred objective to use. If
we only include the concentrations in the penalty term, but do not penalize the dose
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Fig. 2.18 Approximation of a desired drug concentration through bolus injections

rates, then in view of the saturation of the concentrations, there is no mechanism
that would prevent the dose rates to go as high as possible if this would still have
even a tiny beneficial effect. Such a behavior is not realistic. Clearly, side effects of
drugs are manifold and administering too high a dose is undesired practically simply
since it is not clear what kind of unforeseen side effects could arise, not to mention
the fact that this term is directly related to the cost of the medication. Drastically
put, if it is possible to kill one more cancer cell for $1000, then the optimal control
will do so if we minimize the number of cancer cells and cost is not included in the
objective. It thus seems imperative, and a far better model, to include the total doses
of the drugs given,

∫ T
0 u j(t)dt, as penalty. Intuitively, the total dose

∫ T
0 u j(t)dt and

the “area under the curve” (AUC) of the concentrations,
∫ T

0 c j(t)dt, which so often
is used as a measure for the effectiveness of treatment in pharmacological studies,
are related by the linear pharmacokinetic model (e.g., if the dose rate is constant,
then one is a multiple of the other with the constant only depending on the therapy
horizon T and the clearance rate γ) and therefore often one is taken as a surrogate
for the other. But overall, the total dosages given,

∫ T
0 u j(t)dt, seem to be a more ad-

equate measure for the total adverse effects of chemotherapy treatment if also cost
is considered. We therefore take this as our objective and consider the following
optimal control problem:

[CCwPK&PD] for a fixed therapy horizon [0,T ], minimize the objective (2.87)
over all Lebesgue-measurable (respectively, piecewise continuous) functions u :
[0,T ]→U = [0,umax

1 ]×·· ·× [0,umax
m ], subject to the dynamics

Ṅ =

(

A+
m

∑
j=1

σ j(c j)B j

)

N, N(0) = N0, (2.88)

ċ j =−γ jc j + u j, c j(0) = 0. (2.89)
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Given the differential equations (2.89), the concentrations c j always lie in the int-

ervals [0,cmax
j ) where cmax

j =
umax

j
γ j

and the functions σ j take values in correspond-

ing intervals [0,Emax
j ). It follows from Proposition 2.2.1 in Section 2.2.1 that the

dynamics for the states N is positive invariant if all the matrices A+∑m
j=1σ jB j,

σ j ∈ [0,Emax
j ), have negative diagonal and nonnegative off-diagonal entries. We

make this assumption:

(M-PK) all the matrices A+∑m
j=1σ jB j, σ j ∈ [0,Emax

j ), have negative diagonal
and nonnegative off-diagonal entries.

First-order necessary conditions for optimality are once more given by the Pon-
tryagin maximum principle (Theorem A.2.1 in Appendix A). We are interested in
comparing the structure of optimal solutions to this problem with those of the sim-
plified model [CC] from Section 2.2.1. In order to distinguish the multipliers and
Hamiltonian functions for this problem from those of the original model, we retain
the notation λ for the multiplier and H for the Hamiltonian of the original problem
[CC] and denote the multipliers and Hamiltonian for the new problem by a hat, .̂ As
for problem [CC], it is easily seen that extremals are normal and thus the Hamilto-
nian for problem [CCwPK&PD] can be defined as

Ĥ(λ̂ , μ̂ ,N,c,u) = qN +
m

∑
j=1

s ju j + λ̂

(

A+
m

∑
j=1

σ j(c j)B j

)

N +
m

∑
j=1

μ̂ j (−γ jc j +u j) .

(2.90)
The necessary conditions for optimality then reduce to the following statement:

Theorem 2.3.1. If u∗ is an optimal control with corresponding trajectory (N∗,c∗),
then there exist absolutely continuous functions λ̂ and μ̂ which we write as row-
vectors, λ̂ : [0,T ]→ (Rn)∗, μ̂ : [0,T ]→ (Rm)∗, satisfying the adjoint equations with
transversality condition,

˙̂λ (t) =−∂ Ĥ
∂N

=−λ̂(t)

(

A+
m

∑
j=1

σ j(c
∗
j(t))B j

)

−q, λ̂ (T ) = r, (2.91)

˙̂μ j(t) =− ∂ Ĥ
∂c j

= μ̂ j(t)γ j −σ ′
j(c

∗
j(t))λ̂ (t)B jN∗(t), μ̂ j(T ) = 0, (2.92)

such the optimal control u∗ minimizes the Hamiltonian Ĥ over the control set U =
[0,umax

1 ]× ·· · × [0,umax
m ] along (λ̂ (t), μ̂(t),N∗(t),c∗(t)) and the Hamiltonian Ĥ is

constant,

Ĥ(λ̂ (t), μ̂(t),N∗(t),c∗(t),u∗(t)) = max
u∈U

Ĥ(λ̂ (t), μ̂(t),N∗(t),c∗(t),u) = const.

The Hamiltonian Ĥ still is affine in the controls, Ĥ = Φ̂0 +∑m
j=1 u jΦ̂ j , with the

switching functions Φ̂ j given by

Φ̂ j(t) = s j + μ̂ j(t) for j = 1, . . . ,m,
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and we also set

Φ̂0(t) = qN∗(t)+ λ̂(t)

(

A+
m

∑
j=1

σ j(c
∗
j(t))B j

)

N∗(t)−
m

∑
j=1

μ̂ j(t)γ jc
∗
j(t).

As before, the control set is an m-dimensional interval U = [0,umax
1 ]×·· ·× [0,umax

m ],
the minimization condition is equivalent to m scalar minimization problems for each
control u j and we have that

u∗j(t) =

{
0 if Φ̂ j(t)> 0,

umax
j if Φ̂ j(t)< 0.

Note that Φ̂ j(T ) = s j > 0 for all j and thus optimal controls will always end with
an interval where u j(t)≡ 0. Intuitively this is clear since the addition of a pharma-
cokinetic model generates a delay in the effectiveness of the control and thus, since
side effects are still measured instantaneously in the model in terms of penalizing
the drug dose rates, it is not optimal to give drugs until the very end of therapy.

As for the original problem [CC], all states and multipliers λ̂ are positive, but
the signs of the multipliers μ̂ can vary. However, we still have the following simple
partial result that applies to cytotoxic agents.

Proposition 2.3.1. Under assumptions (M-PK), all states Ni and costates λ̂i, i =
1, . . . ,n, are positive over the interval [0,T ]. If all entries of the matrix B j are non-
positive, then the multiplier μ̂ j is negative on [0,T ).

Proof. For the states Ni and costates λ̂i, i = 1, . . . ,n, this directly follows from
Propositions 2.2.1 and 2.2.2. Assumption (M-PK) ensures that these propositions
apply. If all entries of the matrix B j are nonpositive, then, since B j = 0, at least one
entry must be negative and thus λ̂ (t)B jN(t)< 0 for all t ∈ [0,T ]. If τ is a zero of μ̂ j,
then by the adjoint equation

d
dt

μ̂ j(τ) =−σ ′
j(c j(τ))λ̂ (τ)B jN(τ).

But σ j is strictly increasing and thus we have that ˙̂μ j(τ) > 0 whenever μ̂ j(τ) =
0. Hence the multiplier μ̂ j can only change sign from negative to positive. Since
μ̂ j(T ) = 0, it follows that μ̂ j is negative for t < T . �

We want to show that the optimality status of singular controls is not affected
by the augmentation of the model with a linear pharmacokinetic model. For this
purpose, suppose the control u∗j is singular on a nonempty open interval I. As bef-
ore, we need to analyze the switching function and its derivatives. In this case, the
multiplier μ̂ j is constant on I given by μ̂ j(t)≡−s j < 0 and

˙̂Φ j(t) = ˙̂μ j(t) =−s jγ j −σ ′
j(c

∗
j(t))λ̂ (t)B jN∗(t)≡ 0. (2.93)
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For example, if the entries of B j are nonpositive, then λ̂ (t)B jN∗(t) < 0 and we
always have a difference of negative terms which allows for the possibility of singu-
lar arcs. We thus need to differentiate the switching functions further. The analogue
of Proposition 2.2.3 now reads as follows:

Proposition 2.3.2. For any n× n matrix M, the derivative of Ψ(t) = λ̂(t)MN(t)
along solutions N of (2.88) and λ̂ of (2.91) is given by

Ψ̇ (t) = λ̂ (t)

[

A+
m

∑
j=1

σ j(c j(t))Bi,M

]

N(t)−qMN(t).

Differentiating (2.93) once more, we find that

d2

dt2 Φ̂ j(t) =−σ ′′
j (c

∗
j(t))

(−γ jc
∗
j(t)+ u j(t)

)
λ̂ (t)B jN∗(t)

−σ ′
j(c

∗
j(t))

{

λ̂(t)[A+∑
i= j

σ j(c
∗
j(t))Bi,B j]−qB j

}

N∗(t).

In particular,

− ∂
∂u j

d2

dt2

∂ Ĥ
∂u j

(λ̂ (t), μ̂(t),N∗(t),c∗(t),u∗(t)) = σ ′′
j (c

∗
j(t))λ̂ (t)B jN∗(t)

and thus, whether this expression is negative, i.e., whether or not the Legendre-
Clebsch condition is satisfied, depends on convexity properties of the function σ j

and the sign of the expression λ̂ (t)B jN∗(t). For example, we immediately have the
following result:

Proposition 2.3.3. If all entries of B j are nonpositive, then a singular control u∗j is
of order 1 and satisfies the Legendre-Clebsch condition for minimality in regions
where the function σ j is strictly concave (σ ′′

j (c j) < 0) and the Legendre-Clebsch
condition is violated in regions where σ j is strictly convex (σ ′′

j (c j)> 0).

The function

σ(c) =
Emaxc

EC50 + c

describing the Emax model is strictly concave everywhere and for sigmoidal mod-
els this holds for high concentrations. Thus, for fast acting cytotoxic drugs (which
are described by the Emax model) or, more generally, at high concentrations, opti-
mal controls could follow singular protocols while singular controls are not optimal
for regions where σ is strictly convex (or at low concentrations). This suggests a
structure of optimal controls that provide a quick initial boost in terms of bang-
bang controls and then regulate the concentration through slowly varying infusions.
Intuitively, once the drug’s concentration is built up, only the injection of smaller
time-varying doses is needed to make up for the clearance of the drug (also, see
Figure 2.18).
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For the standard log-kill pharmacodynamic model, σ(c) = σ jc, and thus

∂
∂u j

d2

dt2

∂ Ĥ
∂u j

(λ̂ (t), μ̂(t),N∗(t),c∗(t),u∗(t))≡ 0

so that singular controls will always be of higher order. But we shall show now
that the optimality status of singular controls is not effected by the addition of the
pharmacokinetic model. Nevertheless, this case is more involved since interactions
between drugs and their concentrations come into play. We compare the structure of
optimal solutions to this problem with those of the simplified model [CC] from Sec-
tion 2.2.1 and follow our original notation for that problem denoting the multiplier
by λ and the Hamiltonian by H, i.e.,

H = qN + su+λ

(

A+
m

∑
j=1

u jB j

)

N.

Under the log-kill hypothesis the switching function Φ̂ j and its first two deriva-
tives on the interval I are given by

Φ̂ j(t) = s j + μ̂ j(t)≡ 0,

˙̂Φ j(t) = ˙̂μ j(t) =−γ js j −σ jλ̂(t)B jN∗(t)≡ 0,

¨̂Φ j(t) =−σ j

(

λ̂ (t)

[

A+∑
i= j

σic
∗
i (t)Bi,B j

]

−qB j

)

N∗(t)≡ 0.

Since the second derivative does not explicitly depend on the control u j, the singu-
lar arc is at least of intrinsic order 2 (c.f., Definition A.3.5 in Appendix A). What
simplifies the computation is the fact that this derivative also does not depend on
the concentration c∗j of the drug dose u∗j that is singular. Differentiating once more
gives

Φ̂(3)
j (t) =−σ j

(

λ̂ (t)

[

A+
m

∑
k=1

σkc∗k(t)Bk,

[

A+∑
i= j

σic
∗
i (t)Bi,B j

]]

N∗(t)

− q

[

A+∑
i= j

σic
∗
i (t)Bi,B j

]

N∗(t) (2.94)

+∑
i= j

σi {−γic
∗
i (t)+ u∗i (t)} λ̂ (t)[Bi,B j]N∗(t)

−qB j

(

A+
m

∑
i=1

σici(t)Bi

)

N∗(t)

)

.

In the fourth derivative, also derivatives of the other controls ui, i = j, arise. If the
control ui is singular as well, then the Goh condition implies that λ̂ (t)[Bi,B j]N∗(t)≡
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0 and thus the term with the control u∗i drops out while there is no issue with dif-
ferentiability if the control is constant. In either case, we can treat the derivatives of
these controls as zero. In order to evaluate the generalized Legendre-Clebsch con-
dition, we then need to determine the term that multiplies the control u∗j(t) in the
fourth derivative. But this control only comes up in the dynamics for the derivative
of its concentration c∗j . Other terms do not contribute to the coefficient at the control
u∗j and, overall, we therefore get the following necessary condition for optimality of
the singular arc:

(−1)2 ∂
∂u j

d4

dt4

∂ Ĥ
∂u j

(λ̂ (t), μ̂(t),N∗(t),c∗(t),u∗(t))

=
∂
∂u j

Φ̂(4)
j (t) =−σ2

j

(

λ̂ (t)

[

B j,

[

A+∑
i= j

σic
∗
i (t)Bi,B j

]]

−qB2
j

)

N∗(t)≥ 0.

For a single-input system, this reduces to

∂
∂u

Φ̂(4)(t) =−σ2
{
λ̂(t) [B, [A,B]]−qB2

}
N∗(t)≥ 0. (2.95)

For example, for the 2-compartment model considered in Section 2.1, using (2.34)
we have that

∂
∂u

Φ̂(4)(t) = 4σ2a1a2λ̂(t)BN∗(t) =−4σa1a2γs < 0

and the generalized Legendre-Clebsch condition is violated. In fact, more gener-
ally, we have the following relation between the Hamiltonian H of original system
[CC] and the Hamiltonian Ĥ of the system augmented with a linear pharmacokinetic
model:

(−1)2 ∂
∂u j

d4

dt4

∂ Ĥ
∂u j

(λ̂ (t), μ̂(t),N∗(t),c∗(t),u∗(t))

= (−1)
∂
∂u j

d2

dt2

∂H
∂u j

(λ (t),N∗(t),u∗(t)).

The extra minus sign is generated by the fact that the switching function for problem
[CC] is given by Φ j(t) = s j +λ (t)BN∗(t) while the derivative of the switching func-

tion Φ̂ j(t) = s j + μ̂ j(t) gives us ˙̂Φ j(t) =−γ j μ̂ j(t)−σ jλ̂(t)B jN∗(t). This change in
sign is exactly what is required in the generalized Legendre-Clebsch condition to
preserve the status of optimality or nonoptimality. These computations generalize
to singular controls of higher order as well and we have the following useful result
that we state without proof.

Theorem 2.3.2. If the compartmental model [CC] is augmented with a linear phar-
macokinetic model for the concentrations of the drugs in the plasma and the log-
kill hypothesis is made, then the optimality, respectively nonoptimality properties of
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singular controls are the same for both models, i.e., are as they are for the model
without the pharmacokinetic model.

Figure 2.19 compares a locally optimal bang-bang control for the 2-compartment
model [CC2] considered in Section 2.1 with the corresponding solution for the
model [CCwPK&PD]. The cell cycle parameters and initial conditions for the runs
are the same as given in Table 2.1, but obvious adjustments in the control data and
the objective need to be made for the runs to be compatible. In the original model,
we only used one parameter umax = 0.90 that combined all the pharmacokinetic and
pharmacodynamic parameters into one quantity. In the model [CCwPK&PD], we
have the effectiveness σ of the cytotoxic drug, its clearance rate γ , and umax now
denotes the true maximum dose rate at which the drug is being given intravenously.
The value 0.90 in the model [CC2] thus represents the factor σcmax = σ umax

γ in the
new model and, in order to have a valid comparison, we need to choose parame-
ters that multiply to the same value 0.90. In the example shown in Figure 2.19 we
have used σ = 0.30, γ = 1 and umax = 3. Since the maximum dose rate has been
changed, we also need to adjust the weight s at the control in the objective to have
the same optimal control problem. We changed s so that the product sumax was equal
for both formulations, i.e., we chose s = 3

20 . The graph (a) on the left in Figure 2.19
depicts the control u and switching function Φ for the original formulation without
a pharmacokinetic model and the graph (b) on the right shows the optimal control u
and the switching function Φ̂ for the corresponding model [CCwPK&PD] for these
parameter values. As before, optimal controls still are bang-bang with one switch-
ing from u = umax to u = 0, i.e., there are no qualitative changes in the structure of
optimal controls. The switchings for problem [CCwPK&PD] occur slightly earlier
which is caused by the delay effect that the addition of the pharmacokinetic mod-
els brings into the problem. These differences depend on the clearance rate γ and
in Table 2.7, as an example, we give some of the quantitative changes depending
on γ when we chose σ = 0.30γ to maintain the overall product σcmax = 0.90. As
these results show, the switching times are earlier for higher clearance rates (and
higher effectiveness) and later for lower clearance rates (and lower effectiveness).
But overall, the changes in the switching time are minor and this shows that, at least
on the level of this model, the relevant pharmacokinetic and pharmacodynamic par-
ameters can succinctly be summarized in the one quantity σ

γ umax. Computations for
the simplified model are more than adequate to obtain results that are very close to
the optimal solutions for the more general model [CCwPK&PD].

Table 2.7 Optimal switching times in the model [CCwPK&PD] depending on the clearance rate
γ with σ = 0.30γ and umax = 3.

γ 0.33 0.50 1 2 3
Switching time 31.155 30.776 30.466 30.359 30. 326
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Fig. 2.19 A comparison of optimal controls for the models [CC2] and [CCwPK&PD].



Chapter 3
Cancer Chemotherapy for Heterogeneous
Tumor Cell Populations and Drug Resistance

The results of the previous chapter are consistent with the classical MTD paradigm
in medicine: give as much of the drug as possible immediately. This makes per-
fect sense in many situations: cancer is a widely symptomless disease which, once
finally detected, often is in an advanced stage where immediate action is required.
Then the aim simply is to be as toxic as possible to the cancerous cells. However,
this presumes that cells can be killed, i.e., that the tumor population consists of
chemotherapeutically sensitive cells. Malignant cancer cell populations on the other
hand are often highly genetically unstable and coupled with fast proliferation rates;
this leads to a great variety in the structure of the cells within one tumor—the num-
ber of genetic errors present within one cancer cell can lie in the thousands [220].
Consequently, many tumors consist of heterogeneous agglomerations of subpopula-
tions of cells that show widely varying sensitivities toward the actions of a particular
chemotherapeutic agent [104, 107]. Coupled with the fact that growing tumors also
exhibit considerable evolutionary ability to enhance cell survival in an environment
that is becoming hostile, this leads to multi-drug resistance of some strains of the
cells. Naturally, it makes sense to combine drugs with different activation mech-
anisms to reach a larger population of the tumor cells—and this is what is being
done—but the sad fact remains that some cells develop multi-drug resistance to a
wide variety of even structurally unrelated drugs. There may even exist subpopula-
tions of cells that are not sensitive to the treatment from the beginning (ab initio,
intrinsic resistance). For certain types of cancer cells, there are simply no effective
agents known.

The Norton-Simon hypothesis [244, 245, 246] postulates that tumors typically
consist of faster growing cells that are sensitive to chemotherapy and slower grow-
ing populations of cells that have lower sensitivities or even are resistant to the
chemotherapeutic agent. Given such a scenario, over time, as the drugs kill sensitive
tumor cells, the resistant subpopulation of cancer cells may become the dominant
one and eventually an MTD-style therapy may cause more harm to the healthy cells

© Springer Science+Business Media, LLC 2015
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than that it has beneficial effects [198, 215, 325]. Even if initially the fraction of
intrinsically resistant tumor cells is tiny, after the sensitive cells have been killed by
the treatment, it will grow and may turn into a fully developed tumor of chemother-
apeutically resistant cells leading to the eventual failure of therapy, possibly only
after many years of apparent remission of the disease.

Tumor heterogeneity thus is an important aspect in chemotherapy and in this
chapter we consider the effects it has on the structure of optimal protocols. There
exist a great many mathematical models for acquired drug resistance with stochastic
models ranging from Markov process models of point mutations [60, 61, 105, 106,
107, 229] to branching processes based on gene amplifications [7, 122, 123, 148,
296] the more common ones. But there also exist various continuum based models
using ordinary (e.g., [130]) or partial differential equations (e.g., [331]). Here, in
Section 3.1 we briefly discuss a model initially proposed by Lorz et al. [221] and
then expanded by Greene, Lavi, Gottesman, and Levy [110, 173] that gives a math-
ematical framework for multi-drug resistance based on cell density and mutations.
The model consists of integro-differential equations parameterized by a continuum
of resistance levels x, x ∈ [0,1], and it shows that as response to cell densities (differ-
ent division and death rates) and mutations over time a specific finite number traits
or resistance levels emerge to become dominant.

We then return to the topic of optimal administration of chemotherapeutic agents,
but take tumor heterogeneity into account. Other aspects of the tumor microenviron-
ment (such as the tumor vasculature and tumor-immune system interactions) will be
considered in Chapters 5 and 8. Mathematically, the models have the same bilinear
structure as those considered in Chapter 2. The models considered here are not cell-
cycle specific, but such effects could easily be incorporated at the expense of higher
dimensions [153, 324, 325]. In Section 3.2 we consider a 2-compartment model that
only distinguishes between ‘sensitive’ and ‘resistant’ subpopulations with the possi-
bility of sensitive cells becoming resistant (by means of gene amplification or some
other molecular mechanism, e.g., see [64, 104, 107]). Once more, we consider the
problem of administrating chemotherapy in a continuous-time formulation and exp-
lore the structure of optimal protocols that minimize the tumor burden as measured
by an average of the cancer cell population over an a priori prescribed therapy inter-
val and the total dosage of drugs given. It turns out that it matters whether resistant
cells can resensitize or not. If this is not the case, then indeed optimal controls still
give all the drugs at maximum dose rate in one session upfront. Essentially, since
there is no chance of killing the resistant cells, it still is the ‘best’ policy (in terms
of minimizing this particular objective) to eliminate the sensitive cell population as
fast as possible. Clearly, this limits the overall growth of the tumor the most and
it also prevents a further supply of resistant cells through transitions from sensitive
cells. Naturally, this does not cure the disease, but it still seems to be the “best”
of many inadequate choices. However, this changes as resensitizations are brought
into the picture. In such a case, as treatment progresses and the fraction of ‘resistant’
cells becomes large, now there still is some benefit to be gained from chemother-
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apy, but the damage caused by chemotherapy to healthy cells must be balanced with
the benefits of killing the cancer cells by using lower dose rates. These still provide
benefits at reduced side effects and singular controls (defining specific time-varying
administration schedules at less than maximum dose) become viable options. More
generally, in Section 3.3 we consider a mathematical model that considers three lev-
els of sensitivity. Interestingly, in such a case singular controls and the reduced dose
rates they represent become an option for optimal protocols from the very beginning
if only three distinct subpopulations are distinguished. As in the cell-cycle specific
models considered in Section 2, there always exist well-defined steady states for the
proportions of cells that lie in these subpopulations. We close this chapter with some
comments on “adaptive therapy,” a concept championed by Gatenby [102] in which
it is argued that maintenance of the cancer might be a preferable strategy over killing
the tumor. The underlying idea is that, and assuming the sensitive cell population
is the faster growing one, by preserving a proportion of the sensitive population,
this subpopulation will “outcompete” the resistant one through evolutionary mecha-
nisms (simply through crowding). This will limit the growth of the more dangerous
resistant subpopulation and thus prevent the development of a malignant tumor in
the future. Hence a continuous maintenance type strategy might be preferable over
an MTD killing approach. The hope simply is to thus make cancer a managable
chronic disease.

3.1 A Mathematical Model for the Emergence of Traits
(Resistance Levels) Under Chemotherapy

There exist numerous theories about developing drug resistance, but mutations play
a central role in all of them. It is not our intention to get into a discussion of these
models here, but we just mention gene amplification as one possible mechanism of
acquired drug resistance [123, 148]. In this process, the number of copies of a partic-
ular gene is increased causing cells to become increasingly more resistant to drugs.
Also, and this phenomenon is well-documented in the medical literature [296], it
is possible that resistant cells lose extra copies of the gene in a drug free medium
and mutate back to become more sensitive. This, however, is just one of several
molecular mechanisms that would explain the emergence of various levels of drug
resistance within a tumor. Rather than presenting such a model, here we show that
even when the system possibly has a continuum of traits or resistance levels ini-
tially, as a response to different net growth rates in the evolutionary dynamics under
treatment specific traits emerge to become dominant. The mathematical model, ini-
tially formulated in the work by Lorz et al. [221, 222] and then expanded upon by
Greene, Lavi, Gottesman, and Levy [110], explains the roles that increasing cell
densities and mutations play in the emergence of these traits.
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3.1.1 System Response to Variation in Rates for Growth
and Apoptosis

In the model, a continuum of possible traits/resistance levels x, x ∈ [0,1], is consid-
ered with x = 0 denoting cells that show no resistance to a particular chemother-
apeutic agent and x = 1 denoting fully resistant cells. If we denote the population
density of cells with trait x at time t by n(t,x), then the total number N(t) of cancer
cells at time t is

N(t) =
∫ 1

0
n(t,x)dx.

It is assumed that the division rate r and the natural death rate μ of cancer cells
depend on the specific trait and thus are functions of x, r = r(x) and μ = μ(x). Sim-
ilarly, the effects of chemotherapy depend on the trait of the cell and we denote the
cytotoxic killing parameter under the linear log-kill hypothesis by c = c(x). Essen-
tially, this coefficient is related to the drug concentration and trait of the subpopula-
tion. For simplicity, all these rates are assumed to be continuous functions on [0,1].
We also assume that the natural death rate μ does not vanish and thus it is bounded
away from zero. In the analysis here, only the case of a constant drug administration
is considered and its effects are subsumed in the definition of c. Thus the underlying
model of trait based growth is simply one of exponential growth dependent on the
trait x,

∂n
∂ t

(t,x) = (r(x)− μ(x)− c(x))n(t,x) (3.1)

with the initial distribution n(0,x) a continuous positive function. (Without loss of
generality, here we assume that all traits are represented. Otherwise, since we do
not yet include mutations, at this point of modeling, there is no need to consider
these traits.) Clearly, if chemotherapy is strong enough to make all the net growth
rates Δ(x) = r(x)−μ(x)−c(x) negative, then all subpopulations will go extinct and
the therapy will be successful. On the other hand, if there exist traits for which this
net growth rate remains positive, these traits will grow exponentially and the fastest
growing traits will be become dominant. More precisely, the following result holds:

Proposition 3.1.1. [110, 221] Suppose the function Δ(x) = r(x)− μ(x)− c(x) att-
ains its positive maximum M in a finite number of points xi, i = 1, . . . ,k. Then the
total number of cells N(t) grows exponentially while the relative proportions of
traits,

ρ(t,x) =
n(t,x)
N(t)

,

also called the occupation measure, has a well-defined steady state given by a
weighted average of the traits with the fastest net growth rates:

lim
t→∞

ρ(t,x) =
k

∑
i=1

aiδ (x− xi)
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where δ (x− xi) denotes the Dirac-δ -distribution centered at xi and

ai =
n(0,xi)

∑k
j=1 n(0,x j)

.

Proof. Note that n(t,x) is positive for all times t and traits x since the initial density
n(0,x) is positive. Given i ∈ {1, . . . ,k}, let x be a point that is not a maximizer of Δ .
Since Δ is continuous , there exist positive numbers ε , η and λ so that η < α < M,
Δ(y)≥ α for all y ∈ [xi − ε,xi + ε] and Δ(y)≤ η for all y ∈ [x− ε,x+ ε]. Defining

A(t) =
∫ xi+ε

xi−ε
n(t,x)dx,

it follows that

d
dt

A(t) =
∫ xi+ε

xi−ε

∂n
∂ t

(t,x)dx =
∫ xi+ε

xi−ε
Δ(x)n(t,x)dx ≥ α

∫ xi+ε

xi−ε
n(t,x)dx = αA(t)

and A(0) is positive by the continuity of n(0,x). Hence N(t) ≥ A(t) = A(0)eαt . In
particular, limt→∞ N(t) = ∞. Furthermore,

n(t,x)
N(t)

=
n(0,x)eΔ (x)t

N(t)
≤ n(0,x)eηt

A(0)eαt =
n(0,x)
A(0)

e(η−α)t → 0 as t → ∞.

At the same time

n(t,xi)

N(t)
=

n(0,xi)eΔ (xi)t

N(t)
≤ n(0,xi)eMt

A(0)eαt =
n(0,xi)

A(0)
e(M−α)t → ∞ as t → ∞.

Thus the relative proportions ρ(t,x) satisfy

lim
t→∞

ρ(t,x) =

{
0 if Δ(x)< M,

∞ if Δ(x) = M.

The invariance condition
∫ 1

0 ρ(t,x)dx = 1 implies that the limiting distribution is a
finite number of Dirac-δ -distributions at the points where Δ attains its maximum.
Since there are no interactions between the different traits in this model (yet), the
weights are the same as the relative weights at the initial time. �

3.1.2 System Response to Increasing Cell Densities

Equation (3.1) represents a model of exponential growth generating unbounded
total populations. Incorporating some logistic type structure into the model will
give finite carrying capacities. Such effects are caused by increasing cell densities.
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In reality, the rates for cell division and apoptosis depend on the cell density which
is closely related to the total tumor mass N [109]. Thus, more realistically, these
equations take the form

∂n
∂ t

(t,x) = { f (N(t))(r(x)− c(x))− g(N(t))μ(x)}n(t,x) (3.2)

with f = f (N) and g = g(N) tumor size dependent functions that model the rates
for cell division and apoptosis. As in the models in Chapter 2, cells ‘killed’ by the
chemotherapeutic agent simply signifies that cells no longer divide and thus here
these terms are subtracted to lower the reproduction rate r. If the chemotherapeu-
tic agent truly kills the cells, this would lead to increased rates for apoptosis and
could also be incorporated within the function μ . But most cytotoxic agents merely
prevent further divisions and thus here we follow the earlier and more common
approach. Following [110], equation (3.2) can be simplified by rescaling time ac-
cording to

τ(t) =
∫ t

0
f (N(s))ds

and in the new time-scale we have that

∂n
∂τ

(τ,x) = {r(x)− c(x)−G(N(τ))μ(x)}n(τ,x) (3.3)

with

G(N) =
g(N)

f (N)
.

Thus in the new time-scale only the apoptosis rates are changed. The model now
is nonlinear with the right-hand exhibiting similar features as a logistic term of the
form (a−bN)N. If one assumes that the growth rate f decays more rapidly than the
apoptosis rate g as the tumor size increases—and this is a reasonable assumption—
then the scaling factor G increases. Once this term offsets the balance between
growth and apoptosis, the population will stabilize.

Proposition 3.1.2. Let

G∗ = max
0≤x≤1

{
r(x)− c(x)

μ(x)

}

and suppose the function G : (0,∞) → (0,∞), N �→ G(N), is strictly increasing
with finite limit G∞ > G∗. Then there exists a unique population level N∗ such that
G(N∗) = G∗ and the total tumor population N stabilizes at this level in the sense
that

lim sup
τ→∞

N(τ) = N∗.

Proof. Since the functions r, c and μ are continuous, and since μ is bounded away
from zero, G∗ is well-defined and finite. Defining

γ(G) = max
0≤x≤1

{r(x)− c(x)−Gμ(x)} ,
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it then follows that γ(G∗) = 0 while γ(G)> 0 for G < G∗ and γ(G)< 0 for G > G∗.
Since the total tumor population N(τ) =

∫ 1
0 n(τ,x)dx evolves according to

dN
dτ

(τ) =
∫ 1

0

∂n
∂τ

(τ,x)dx =
∫ 1

0
{r(x)− c(x)−G(N(τ))μ(x)}n(τ,x)dx, (3.4)

it follows that,
dN
dτ

(τ)≤ γ(G(N(τ)))N(τ).

Whenever the tumor population N(τ) exceeds N∗, then this derivative is negative
and thus the overall tumor population cannot increase beyond level N∗.

Suppose that limsupτ→∞ N(τ) = N̂ <N∗. Given Ñ ∈ (N̂,N∗), there exists a time T̃
so that N(τ)< Ñ for τ > T̃ . If G̃=G(Ñ), then we have for all τ > T̃ that G(N(τ))≤
G(Ñ) = G̃ < G∗. Furthermore, it follows from the definition of G∗ that γ

(
G̃
)
> 0.

Let x̃ be a maximizer for the function r(x)− c(x)− G̃μ(x) and choose α > 0 and an
ε-neighborhood of x̃ such that

r(x)− c(x)− G̃μ(x)≥ α > 0 for all x ∈ [x̃− ε, x̃+ ε].

As above, if we define

A(τ) =
∫ x̃+ε

x̃−ε
n(τ,x)dx,

it then follows for τ > T̃ that

dA
dτ

(τ) =
∫ x̃+ε

x̃−ε
{r(x)− c(x)−G(N(τ))μ(x)}n(τ,x)dx

≥
∫ x̃+ε

x̃−ε

{
r(x)− c(x)−G(Ñ)μ(x)

}
n(τ,x)dx ≥ αA(τ).

Hence A(τ)≥ A(T̃ )eατ for τ > T̃ . Once again, since we are assuming that all traits
are originally represented, it follows that A(T̃ )> 0 and thus this portion grows exp-
onentially. But then also

N(τ) =
∫ 1

0
n(τ,x)dx ≥ A(τ)≥ A(T̃ )eατ → ∞ as τ → ∞.

This contradicts the fact that N(τ) cannot exceed N∗. �

While this argument does not establish the existence of a limit, if a limit exists, it
must be N∗. In principle, it is possible that the total tumor volumes might fluctuate
at levels below N∗, but then, again and again the total tumor values get closer and
closer to N∗. For all practical intents and purposes, this has the same implications.
If the limit exists, we have the same steady-state behavior as described in Proposi-
tion 3.1.1: if there exist a finite number of points x∗i , i = 1, . . . ,k, such that

r(x∗i )− c(x∗i )−G∗μ(x∗i ) = 0,
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then the occupation measure of traits,

ρ(τ,x) =
n(τ,x)
N(τ)

,

has a well-defined steady state:

lim
τ→∞

ρ(τ,x) =
k

∑
i=1

a∗i δ (x− x∗i ) where a∗i =
n(0,x∗i )

∑k
j=1 n(0,x∗j)

and δ (x− x∗i ) again is the Dirac-δ -distribution centered at x∗i .

3.1.3 System Response to Mutations

Mutations are described through transition probabilities from one trait to another.
For x,y ∈ [0,1], let p(x|y) denote the transition density of a change from trait y into
trait x. Thus for every y ∈ [0,1], p(·|y) is a nonnegative function that integrates to 1.
For example, if one wants to capture the effect that small mutations are more likely,
a modified Gaussian kernel of the form

p(x|y) = k(y)exp

(

−1
2

(
x− y
σ

)2
)

with the constant k(y) chosen so that

∫ 1

0
p(x|y)dx = 1

is appropriate. If, for simplicity, it is assumed that a fixed fraction θ , θ ∈ (0,1), of
cells mutate, then this reduces the reproduction rate r by θ and the total flow of all
mutating cells is given by

∫ 1

0
p(x|y)r(y)θn(τ,y)dy.

Hence the dynamics (3.3) will be modified to become

∂n
∂τ

(τ,x)= {r(x)(1−θ )− c(x)−G(N(τ))μ(x)}n(τ,x)+θ
∫ 1

0
p(x|y)r(y)n(τ,y)dy.

(3.5)
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The net effect of the mutations on the growth of the total population is zero and thus
this growth is still described by the same differential equation (3.4):

dN
dτ

(τ) =
∫ 1

0

∂n
∂τ

(τ,x)dx

=
∫ 1

0
{r(x)(1−θ )− c(x)−G(N(τ))μ(x)}n(τ,x)dx

+

∫ 1

0

(

θ
∫ 1

0
p(x|y)r(y)n(τ,y)dy

)

dx

=

∫ 1

0
{r(x)(1−θ )− c(x)−G(N(τ))μ(x)}n(τ,x)dx

+θ
∫ 1

0

(∫ 1

0
p(x|y)dx

)

r(y)n(τ,y)dy

=

∫ 1

0
{r(x)(1−θ )− c(x)−G(N(τ))μ(x)}n(τ,x)dx+θ

∫ 1

0
r(y)n(τ,y)dy

=

∫ 1

0
{r(x)− c(x)−G(N(τ))μ(x)}n(τ,x)dx.

In particular, the total tumor population remains bounded by N∗. However, the be-
havior of the occupation measure as t → ∞ becomes more complex. An important
consequence of the inclusion of the mutating fraction θ into the model is that it
allows for the net growth rate r(x)− c(x)−G(N(τ))μ(x) to be positive. For, in a
reasoning analogous to the one given in the proof of Proposition 3.1.2, we now only
have the lower bound

dA
dτ

(τ) =
∫ x̃+ε

x̃−ε
{r(x)(1−θ )− c(x)−G(N(τ))μ(x)}n(τ,x)dx

+θ
∫ x̃+ε

x̃−ε

(∫ 1

0
p(x|y)r(y)n(τ,y)dy

)

dx

≥
∫ x̃+ε

x̃−ε

{
r(x)(1−θ )− c(x)−G(Ñ)μ(x)

}
n(τ,x)dx.

Therefore, exponential growth of a specific trait x̃ only happens if for some α > 0
we actually have that r(x)(1−θ )−c(x)−Gμ(x)>α in a neighborhood of x̃. While
this is precluded by the fact that the population stabilizes, it is perfectly possible that
the maximal net growth rate without mutations is positive,

r(x̃)− c(x̃)−G∗μ(x̃)> 0.

For, this growth can be continuously off-set by the mutation rates to other traits
that will die out. Hence, and this is confirmed by the simulations given in [110],
the proportions no longer converge to Dirac δ ’s at the maximizers, but the limiting
behavior consists of distributions around these maximizers with small variances.
There still exists a clear dominance of specific traits in the steady state that are
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Fig. 3.1 Distribution of traits around the dominant steady states.

close to the maximizers of the function r(x)− c(x)−G∗μ(x), but now the limits are
distributions with positive variance and thus small variations of these traits persist
as well (see Figure 3.1).

Summarizing, as an evolutionary response to different rates for growth and apop-
tosis, increasing cell densities and mutations, in the long run (steady state), specific
traits emerge and become dominant, possibly with small variations. In the presence
of mutations, this occurs regardless of whether these traits were present originally or
not. In the remainder of this chapter we consider two such models from an optimal
therapy point of view.

3.2 Cancer Chemotherapy in the Presence of a Resistant
Subpopulation

We first consider a model in which only drug resistant (acquired or intrinsic) and
drug sensitive subpopulations are distinguished. Mathematically, this situation can
be described by a 2-compartment bilinear model similar to the one analyzed in Sec-
tion 2.1. It would seem intuitive that in this case, as the sensitive population becomes
depleted—and different from the results for the models considered in Chapter 2—
singular controls and the generally lower dose rates they represent become viable
candidates for optimal controls. Interestingly, this is only the case if resensitizations
of the resistant subpopulation are allowed. Otherwise, optimal protocols that aim to
minimize the cancer volume still follow MTD protocols.
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3.2.1 A 2-compartment Model with Sensitive and Resistant
Subpopulations

We consider two compartments consisting of drug sensitive and resistant cells and
denote the numbers of cells in the sensitive and resistant compartments by S and
R, respectively. The dynamical equations describing the growth and interactions of
cells in these compartments are classical (e.g., see [74, Section 2.4]) and take the
following form:

Ṡ = (α1 − γ1 −ϕu)S+ γ2R, S(0) = S0, (3.6)

Ṙ = γ1S+(α1 − γ2)R, R(0) = R0. (3.7)

Here α1 and α2 are the growth rates of the respective populations and γ1 and γ2

describe possible exchanges between the two subpopulations. The parameter γ1 is
positive and models the transitions of sensitive cells to become resistant through
mutations while γ2 is nonnegative modeling resensitization of resistant cells. We
allow for the possibility that the resistant population is intrinsically resistant, γ2 = 0.
As before, cell kill is expressed using the standard linear log-kill hypothesis with
the coefficient ϕ modeling the effectiveness of the drug (pharmacodynamics). We
do not include a pharmacokinetic model and consider u to be the concentration of
the chemotherapeutic agent, but in our language identify it with the dose rates which
are bounded by umax. We assume that the initial condition S0 is positive and R0 is
nonnegative and again denote the state of the system by N = (S,R)T . The dynamics
thus is a bilinear system of the form Ṅ = (A+ uB)N with the matrices given by

A =

(
α1 − γ1 γ2

γ1 α2 − γ2

)

and B =

(−ϕ 0
0 0

)

.

The matrix describing the dynamics no longer is an M-matrix, but positive invari-
ance of the control system is easily established.

Proposition 3.2.1. For any admissible control u, u : [0,T ]→ [0,umax], t �→ u(t), the
solution to the dynamical system (3.6)–(3.7) exists on the full interval [0,T ] and the
states R and S are positive on (0,T ].

Proof. Existence and uniqueness of solutions on [0,T ] for bilinear systems follows
from standard results on linearly bounded ODEs. The differential equations for R
and S are homogeneous and thus R and S cannot vanish simultaneously. If R0 = 0,
then Ṙ(0) = γ1S0 > 0 and thus R immediately becomes positive. But none of S
or R can vanish on (0,T ]. If γ2 = 0, it is clear that S is positive on [0,T ] and thus,
whenever R(τ) = 0, we have that Ṙ(τ) = γ1S(τ)> 0. Hence R cannot vanish neither.
Similarly, if γ2 > 0, then whenever one of the variables vanishes at a time τ , the
derivative of the other one will be positive. Hence both R and S remain positive. �

If C again denotes the total number of cancer cells, C = S+R, and x and y are
the proportions of the cancer cells in the respective compartments,
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x =
S
C

=
S

S+R
and y =

R
C

=
R

S+R
= 1− x,

then for the uncontrolled system (u ≡ 0) x obeys the ODE

ẋ =
ṠC− ĊS

C2 = (α2 −α1)x2 − (α2 −α1 + γ1 + γ2)x+ γ2.

This equation always has a well-defined steady state.
If we allow for resensitization, γ2 > 0, then it follows from ẋ|x=0 = γ2 > 0 and

ẋ|x=1 = −γ1 < 0 that the interval [0,1] is positively invariant. Regardless of the
parameter values, the polynomial

P(x) = (α2 −α1)x2 − (α2 −α1 + γ1 + γ2)x+ γ2

always has a unique root x̄ in the open interval: if α1 = α2, we simply have x̄ =
γ2

γ1+γ2
while P is strictly concave with one negative root and one root in (0,1) if

α1 > α2 and is strictly convex with one root in (0,1) and the second root greater
than 1 if α1 < α2. In any case, there exist well-defined steady states x̄ and ȳ for
the proportions of the uncontrolled system, x̄+ ȳ = 1, given by the unique root of
the quadratic polynomial P that lies in the interval (0,1). For example, if α1 = 3.5,
α2 = 1, γ1 = 0.15 and γ2 = 0.02, we have that x̄ = 0.9405. Such parameter values
correspond to a significantly faster growing sensitive population with a substantially
higher probability that sensitive cells becoming resistant than that resistant cells
resensitize. If the growth rates are equal, the steady-state value is determined by the
exchange between the two populations, x̄= γ2

γ1+γ2
, and in this case the balance would

shift to the more resistant population since the transitions from sensitive to resistant
are assumed to be higher.

In the case γ2 = 0 these relations simplify. If α1 − γ1 ≤ α2, i.e., the net growth
rate of the sensitive population is smaller than the growth rate of the resistant popu-
lation, then the steady state is simply x̄ = 0: the sensitive cells die out and the entire
population turns into resistant cells. If α1−γ1 >α2, then the steady state establishes
in the balance x̄ = α1−γ1−α2

α1−α2
∈ (0,1).

3.2.2 Chemotherapy as Optimal Control Problem
and Singular Controls

Using the same notation as before, we again consider the following optimal control
problem:

[Chet2] For a fixed therapy horizon [0,T ], minimize the objective

J = rN(T )+

∫ T

0
(qN(t)+ u(t))dt (3.8)

= r1S(T )+ r2R(T )+
∫ T

0
(q1S(t)+ q2R(t)+ u(t))dt → min
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over all Lebesgue-measurable (respectively, piecewise continuous) functions u :
[0,T ]→ [0,umax] subject to the dynamics (3.6)–(3.7).

We have normalized the coefficient at the penalty term to 1. As it was discussed
in Section 2.1.3, it is reasonable to choose the weights for the cancer cells S and
R so that the terms q1S and q2R are compatible with the coefficient at the control
since otherwise not enough or too much emphasis is put on the side effects. In this
respect, weights in the order q1 =

1
S0

and q2 =
1

R0
or q1 = q2 =

1
C0

make sense since
this will keep the expressions q1S(t) and q2R(t) reasonably close to 1.

For this problem, singular controls start to come into play. Formally, the mathe-
matical structure is the same as for the 2-compartment model analyzed in Section 2.1
and we briefly recall the relevant formulas. Since there are no constraints at the ter-
minal time, the multiplier at the Lagrangian cannot vanish and thus we define the
Hamiltonian function as

H = H(λ ,N,u) = qN + u+λ (A+uB)N. (3.9)

If u∗ : [0,T ]→ [0,umax] is an optimal control with corresponding trajectory N∗, then
there exists a solution λ = (λ1,λ2) : [0,T ]→ (R2

)∗
to the adjoint equation

λ̇ =−∂H
∂N

=−q−λ (A+ u∗B) , λ (T ) = r, (3.10)

such that u∗(t) minimizes the Hamiltonian H pointwise over the control set [0,umax]
along (λ (t),N∗(t)). In coordinates, the adjoint equations read

λ̇1 =−q1 −λ1 (α1 − γ1 −ϕu)−λ2γ1, λ1(T ) = r1,

λ̇2 =−q2 −λ1γ2 −λ2 (α2 − γ2) , λ2(T ) = r2,

and, as in Proposition 2.1.3, it can be seen that all multipliers remain positive.

Proposition 3.2.2. The multipliers λ1 and λ2 are positive over the interval [0,T ].

The switching function is given by

Φ(t) = 1+λ (t)BN∗(t) = 1−ϕλ1(t)S(t) (3.11)

and optimal controls satisfy

u∗(t) =

{
0 if Φ(t)> 0,

umax if Φ(t)< 0.

The derivatives of the switching function can be computed using Proposition 2.1.4
and are given by

Φ̇(t) = {λ (t) [A,B]− qB}N∗(t)
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and

Φ̈(t) = {λ (t) [A, [A,B]]− q [A,B]− qBA}N∗(t)

+ u∗(t)
{
λ (t) [B, [A,B]]−qB2)

}
N∗(t).

Hence the singular control becomes (c.f., equation (2.30))

using(t) =−{λ (t)[A, [A,B]]− q[A,B]−qBA}N∗(t)
{λ (t)[B, [A,B]]−qB2}N∗(t)

. (3.12)

The iterated brackets and products are easily computed. We have

[A,B] = ϕ
(

0 −γ2

γ1 0

)

, BA =−ϕ
(
α1 − γ1 γ2

0 0

)

, B2 = ϕ2
(

1 0
0 0

)

and setting Δ = (α1 − γ1)− (α2 − γ2), the difference of the net proliferation rates,
the second-order brackets are given by

[A, [A,B]] = ϕ
(−2γ1γ2 Δγ2

Δγ1 2γ1γ2

)

and [B, [A,B]] = ϕ2
(

0 −γ2

−γ1 0

)

.

For this model, the Legendre-Clebsch condition takes the form

∂
∂u

d2

dt2

∂H
∂u

=
{
λ (t) [B, [A,B]]− qB2}N∗(t)

=−ϕ2 (λ1(t)γ2R(t)+λ2(t)γ1S(t)+ q1S(t)) . (3.13)

Since states and multipliers are positive, this quantity is negative. Hence singular
controls are of order 1 and the strengthened Legendre-Clebsch condition is satisfied.

Proposition 3.2.3. Singular controls are of order 1 and the Legendre-Clebsch con-
dition for minimality is satisfied.

The multipliers λ1 and λ2 along a singular control are uniquely determined as
functions of the states S and R by the equations Φ = 0 and Φ̇ = 0,

λ (t)

⎛

⎝
−ϕS(t) −ϕγ2R(t)

0 ϕγ1S(t)

⎞

⎠=
(−1, −ϕq1S(t)

)
,

with the solution given by

(
λ1(t) λ2(t)

)
=

1
ϕS(t)

(
1, γ2

γ1

R(t)
S(t) −ϕ q1

γ1
S(t)
)
. (3.14)

The multiplier λ1(t) is always positive, while λ2(t) is positive if and only if the
states S and R lie in the region

D =
{
(S,R) : γ2R(t)> ϕq1S(t)2} .
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If the weight q1 is chosen so that q1S0 � 1, then the product q1S(t) is of order 1
and this therefore can be thought of as representing approximately a linear relation
between sensitive and resistant subpopulations. Singular controls are only possible if
the corresponding trajectory lies in this region D. This implies the following result:

Proposition 3.2.4. Optimal controls whose trajectories lie in the region

MT D =
{
(S,R) : γ2R(t)≤ ϕq1S(t)2} , (3.15)

are bang-bang with at most one switching from u = umax to u = 0.

Proof. Suppose the switching function Φ has a zero at time τ . If the junction lies
in the region MT D, then we have that

Φ̇(τ) = {λ (t)[A,B]− qB}N∗(t)
= ϕ {−λ1(τ)γ2R(τ)+λ2(τ)γ1S(τ)+ q1S(τ)}

≥ ϕ
{

− 1
ϕS(τ)

ϕq1S(τ)2 +λ2(τ)γ1S(τ)+ q1S(τ)
}

= ϕλ2(τ)γ1S(τ)> 0

and thus the switching function changes from negative to positive values. Hence the
corresponding control changes from u = umax to u = 0. In particular, there can only
be one switching while the trajectory lies in the region MT D. �

For γ2 = 0 the region MT D is the entire state-space and thus optimal controls
give as much of the drug as possible upfront, i.e., are in agreement with the MTD
paradigm. Thus, if there is no possibility of resensitization for the resistant tumor
population, this model still confirms an MTD approach as optimal if the aim is to
minimize the cancer volume. Intuitively, since there is no chance of eliminating
the resistant cells, it is still the ‘best’ policy to get to the sensitive cells as quickly
as possible. Clearly, this limits the tumor growth to the growth rate of the resistant
population and prevents the further supply of resistant cells through transitions from
sensitive cells. Naturally, this does not cure the cancer, but it still is the ‘best’ way of
minimizing the cancer volume. Note that we are still operating under the assumption
of exponential growth for the total tumor population. In particular, no interactions
between the sensitive and resistant populations as response to environmental crowd-
ing are incorporated into the model as it is formulated here. This requires a growth
model with a limited carrying capacity.

Singular controls, i.e., reduced dose rates, can only be optimal if the number of
sensitive cancer cells becomes small. Once trajectories enter the region D, singular
controls become viable options as the fact that the Legendre-Clebsch condition is
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satisfied indicates. Based on the formulas above, singular controls are easily com-
puted. Using the formulas for the multipliers, the Legendre-Clebsch condition sim-
plifies to

{
λ (t) [B, [A,B]]− qB2}N∗(t) =−2ϕγ2

R(t)
S(t)

,

while the numerator is more involved and does not simplify. Yet these formulas
uniquely determine a singular flow through every point (S,R) in the state space. It
needs to be verified that the singular control computed in this way is admissible,
i.e., takes values between 0 and umax. In view of the fact that it is the total dose,
i.e., the integral

∫ T
0 u(t)dt, that matters and that such a dose often is administered

as a bolus rate, the upper limit umax actually is less significant, but clearly negative
dose rates are not possible and in such cases the computed singular controls are not
admissible.

For a typical choice of parameter values and a high initial tumor burden C0, the
fraction x̄ will be high (above 90%) and if one chooses the weights q on a scale
commensurate with the initial tumor burden, say q1 = q2 and q1C0 = 1, then the
initial condition will lie in the set MT D and optimal controls will start with a period
of maximum dose therapy, i.e., follow an MTD strategy. This simply represents
the case of a high tumor burden when immediate action becomes necessary. As
the sensitive cells become depleted and the region D is reached, singular controls
become an option.

3.3 A Mathematical Model for a Heterogeneous Tumor Cell
Population with Resensitization

In view of the emergence of specific traits (or resistance levels) as a response to cell
density and mutations, it is of interest to consider mathematical models in which dis-
tinct levels of sensitivity are taken into account. We consider such a model with three
subpopulations and transitions possible between all subpopulations. The model can
be considered a continuous-time dynamical systems analogue of a discrete-time
probabilistic model of an ergodic Markov chain. For such a model there exists a
unique stationary distribution with the probabilities to be in a particular state all
positive. In the model here the dynamics describes the evolution of the average
number of cells in the compartments and there exists a well-defined steady-state
distribution for the percentages. Interestingly, as there are more levels of sensitivity
with resensitizations, in the optimal control problem lower time-varying dose rates
given by singular controls always become candidates for optimality. This only is the
case once a significant residuum of resistant cells had been created in the simpler
2-compartment model considered above.
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3.3.1 A 3-Compartment Markov Chain Based Model
for Tumor Heterogeneity

We consider a 3-compartment model for tumor heterogeneity labeling the compart-
ments ‘sensitive’, ‘partially sensitive’, and ‘resistant’. However, the terminology is
only meant to indicate that these populations have distinctly different sensitivities
toward a chemotherapeutic agent with the sensitive population having the high-
est and the resistant one the lowest. The underlying mathematical model again is
a stochastic process (more specifically, an ergodic homogeneous continuous time
Markov chain with transitions possible between all the states) and the states Ni,
i = 1,2,3 denote the average number of cells in the sensitive, partially sensitive
and resistant compartments, respectively. We assume that these populations grow
at growth rates α1, α2 and α3, respectively. In the absence of therapy, an ordering
α1 ≥ α2 ≥ α3 would be consistent with the Norton-Simon hypothesis that a tumor
consists of faster-growing populations of chemotherapeutically sensitive cells and
slower-growing populations of increasingly more resistant cells [244, 245, 246].
Our analysis below equally applies to continuous constant (low-dose) therapies and
in such a case the subpopulation with the strongest net growth rate actually may be
the resistant one while other populations may experience negative growth rates as
result of the treatment. We thus do not make any assumptions about the ordering of
the growth rates.

One important aspect in the model is that transitions between the compartments
are allowed. This includes the typical effects that sensitive cells can become inc-
reasingly more resistant, but also resensitizations are possible that make cells less
resistant to the chemotherapeutic agent [115, 296]. We denote the transition rate
from the ith into the jth compartment by ρi j and assume that all these rates are
positive constants. This creates an ergodic structure in which all compartments are
repeatedly visited by cells. Cell kill by a chemotherapeutic agent is expressed by
the standard linear log-kill hypothesis: if we denote the concentration of the drug in
the bloodstream by u, then the rate of cells eliminated is given by ϕiu, i = 1,2,3,
with the coefficients ϕ1, ϕ2 and ϕ3 representing the effectiveness of the drug on the
sensitive, partially sensitive and resistant subpopulations, respectively. In view of
the taken nomenclature we thus have that ϕ1 > ϕ2 > ϕ3 ≥ 0 and the case ϕ3 = 0
corresponds to the situation of a fully resistant subpopulation R. Again we do not
include the standard pharmacokinetic model on the agent here and treat u as the
control of the system with maximum concentration given by umax. The controlled
dynamics is then simply determined by the inflows and outflows from the various
compartments and is given by the following 3-dimensional bilinear system:

Ṅi = Ni

(

αi −∑
j =i

ρi j −ϕiu

)

+∑
j =i

Njρ ji, Ni(0) = Ni,0, i = 1,2,3. (3.16)
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The initial conditions Ni,0, i = 1,2,3 are nonnegative, but not all zero. Admissi-
ble controls are Lebesgue measurable (respectively piecewise continuous) functions
with values in a compact interval [0,umax], u : [0,T ]→ [0,umax], t �→ u(t).

Proposition 3.3.1. The associated control system is positively invariant: for any ad-
missible control u, the solution to equations (3.16) exists on the full interval [0,T ]
and all components are positive for t ∈ (0,T ].

Proof. The system (3.16) is a homogeneous linear system whose matrix has en-
tries that are bounded Lebesgue measurable functions; thus solutions exist over the
full interval [0,T ]. Because of the ergodic nature of the underlying Markov chain,
the solutions immediately become positive for t > 0: since not all initial condi-
tions are zero, we have that Ṅi(0) > 0 whenever Ni(0) = 0. Hence there exists an
interval (0,ε), ε > 0, so that all states are positive. Suppose there exists a com-
ponent that would become zero at a positive time and let τ ≥ ε denote the mini-
mum of all times when one of the components Ni is zero. Since the solution cannot
be identically zero, at least one of the remaining states must be positive. Hence
Ṅi(τ) = ∑ j =i Nj (τ)ρ ji > 0. Contradiction. �

3.3.2 Steady-State Behavior of the Relative Proportions

The discrete-time analogue of the model formulated above is a homogeneous
Markov chain with states S, P, and R and positive transition probabilities between
each pair of states. Such a chain is ergodic and has a well-defined limiting station-
ary distribution for which all probabilities to be in a particular state are positive
[135, 108]. The dynamical systems version has the same steady-state behavior: the
proportions of cells in the respective compartments converge to a positive limit.
Thus the dynamical system (3.16) again has a well-defined steady-state distribution
for the proportions of cells in the compartments.

Let C denote the total number of cancer cells, C = N1 +N2 +N3. We then have
that

Ċ = (α1 −ϕ1u)N1 +(α2 −ϕ2u)N2 +(α3 −ϕ3u)N3.

More generally, we consider a continuous administration of some chemotherapeutic
agent at a constant low dose u ≡ const. Mathematically, the analysis reduces to
considering the uncontrolled system by setting α̂i = αi −ϕiu and thus, without loss
of generality, we consider the case u ≡ 0. Let x, y and z denote the proportions of
the respective populations, i.e.,

x =
N1

C
, y =

N2

C
, and z =

N3

C
.

Since the system (3.16) is linear, the quotients x, y, and z obey Riccati equations and
direct computations verify that
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ẋ = x(α1 −ρ12 −ρ13)+ yρ21 + zρ31 − x(α1x+α2y+α3z), (3.17)

ẏ = xρ12 + y(α2 −ρ21 −ρ23)+ zρ32 − y(α1x+α2y+α3z), (3.18)

ż = xρ13 + yρ23+ z(α3 −ρ32 −ρ33)− z(α1x+α2y+α3z). (3.19)

Let Σ denote the unit simplex in R
3, i.e.,

Σ = {(x,y,z) : x ≥ 0,y ≥ 0,z ≥ 0,x+ y+ z= 1} .

Theorem 3.3.1. The unit simplex Σ is positively invariant for the dynamics (3.17)–
(3.19) and there exists a unique equilibrium point (x∗,y∗,z∗) in Σ that is globally
asymptotically stable, i.e., contains the entire simplex Σ in its region of attraction.

This result establishes that there exists a well-defined steady state for the sys-
tem of proportions. Its proof is a more involved technical application of Poincaré-
Bendixson theory and is given in Section B.3 in Appendix B.

Corollary 3.3.1. Suppose a chemotherapeutic agent is administered at a constant
concentration u and let (x∗,y∗,z∗) = (x∗(u),y∗(u),z∗(u)) denote the corresponding
steady state of the proportions. Asymptotically the total tumor population grows
approximately exponentially at rate

(α1 −ϕ1u)x∗(u)+ (α2 −ϕ2u)y∗(u)+ (α3 −ϕ3u)z∗(u).

Proof. It follows from the dynamics (3.16) that

Ċ = (α1 −ϕ1u)N1 +(α2 −ϕ2u)N2 +(α3 −ϕ3u)N3

= [(α1 −ϕ1u)x+(α2 −ϕ2u)y+(α3 −ϕ3u)z]C

� [(α1 −ϕ1u)x∗(u)+ (α2 −ϕ2u)y∗(u)+ (α3 −ϕ3u)z∗(u)]C.

Hence the result follows. �

In principle, this growth rate can be made negative in the limit u → ∞ if ϕ3 > 0,
but this may require unacceptably high doses. However, in case of an intrinsically re-
sistant subpopulation, ϕ3 = 0, this growth rate converges to α3 > 0 (see Figure 3.2).
For, once the net growth rates α1 −ϕ1u and α2 −ϕ2u become negative, these popu-
lations die out and as u → ∞ it follows that x∗(u)→ 0, y∗(u)→ 0 and z∗(u)→ 1.

We illustrate the dynamic behavior of the dynamical system (3.17)–(3.18) in
Figure 3.3. In all four diagrams we have chosen the same transit rates given by
ρ12 = 4, ρ13 = 2, ρ21 = 1, ρ23 = 2, ρ13 = 0.5 and ρ12 = 0.25. In diagram (a)
(top, left), the growth rates for the respective compartments are α1 = 10, α2 = 5
and α3 = 2 while these rates are α1 = −3, α2 = −1 and α3 = 2 in diagram (b)
(top, right). While these numbers are only for illustrative purposes, scenario (a)
corresponds to an uncontrolled system with the sensitive cells the most strongly
proliferating ones and the resistant population the slowest growing subpopulation.
Diagram (b) then would be typical for a system under constant rate chemotherapy
u(t) = const that kills sensitive and partially sensitive cells—and in effect generates
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Fig. 3.2 Asymptotic growth rates as function of a constant concentration u for ϕ3 = 0 (left) and
ϕ3 > 0 (right).
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Fig. 3.3 Equilibrium point (x∗,y∗) of the system (3.17)–(3.18) and trajectories from the vertices
of the unit simplex Σ . The growth rates are shown in the diagrams; the transit rates are the same in
each case and are given by ρ12 = 4, ρ13 = 2, ρ21 = 1, ρ23 = 2, ρ13 = 0.5 and ρ12 = 0.25.



3.3 Heterogeneous Tumor Cell Population with Resensitization 135

negative growth rates for these subpopulations—while it is assumed that the resis-
tant subpopulation R is fully resistant. Observe how the equilibrium point shifts
toward the origin which implies a strong dominance of the resistant subpopula-
tion R. The approximate growth rates α̂1x∗ + α̂2y∗ + α̂3z∗ for the two cases are
given by 5.6525 for scenario (a) and by 1.5320 for scenario (b). Thus, while such a
chemotherapy dosing is able to reduce the growth, it cannot eliminate it. The reason
is that we have z∗ = 0.8765 in case (b) and coupled with α̂3 = 2, this positive growth
rate cannot be overcome by the decline in the other populations. It is only when one
assumes that the agent can also reduce the growth rate of the resistant population
that one sees lower overall growth rates. Yet, since z∗ → 1 as the effectiveness of the
drug on the sensitive and partially resistant population becomes very high (x∗ → 0
and y∗ → 0), it is clear that the net growth rate α̂3 of the resistant subpopulation
becomes the determining factor. It is only when this rate becomes so small that it
can be overcome by the decrease in the sensitive and resistant populations that the
overall growth rate can be made negative. For example, this happens for α1 =−10,
α2 =−3 and α3 = 0.5 in which case (x∗,y∗,z∗) = (0.0322,0.0598,0.9080) and the
overall growth rate is −0.0472. The corresponding diagram is shown in scenario
(d) (bottom, right). Scenario (c) (bottom, left) shows another intermediate case for
α1 =−5.5, α2 =−3 and α3 = 0.5 characterized by the fact that the overall growth
rate of the total population is zero, i.e., the status quo is maintained.

3.3.3 Chemotherapy as Optimal Control Problem
and Singular Controls

With the presence of a resistant subpopulation, eradication of the cancer by means
of a particular chemotherapeutic agent generally is no longer possible. Nevertheless,
the problem of how to schedule the chemotherapeutic agent to optimize its benefits
remains. As before, we consider the following optimal control problem:

[Chet3] For a fixed therapy horizon [0,T ], minimize the objective

J(u) = rN(T )+

∫ T

0
qN(t)+ u(t)dt → min (3.20)

over all Lebesgue-measurable (respectively piecewise continuous) functions u :
[0,T ]→ [0,umax] subject to the dynamics (3.16).

As before, we write the dynamics more compactly in matrix form as Ṅ =
(A+uB)N with the matrices A and B given by

A =

⎛

⎝
α1 −ρ12 −ρ13 ρ21 ρ31

ρ12 α2 −ρ21 −ρ23 ρ32

ρ13 ρ23 α3 −ρ31−ρ32

⎞

⎠
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and

B =

⎛

⎝
−ϕ1 0 0

0 −ϕ2 0
0 0 −ϕ3

⎞

⎠ .

Formally, the necessary conditions for optimality are the same as for the 2-
compartment model [Chet2]. If u∗ : [0,T ] → [0,umax] is an optimal control with
corresponding trajectory N∗, then there exists a solution λ = (λ1,λ2,λ3) : [0,T ]→(
R

3
)∗

of the adjoint equation λ̇ =−λ (A+ u∗B)−q, λ (T ) = r such that u∗(t) min-
imizes the Hamiltonian

H = qN + u+λ (A+ uB)N,

pointwise over the control set [0,umax] along (λ (t),N∗(t)). In coordinates, the
adjoint equations read

λ̇1 = − ∂H
∂N1

=−q1 −λ1 (α1 −ρ12−ρ13 −ϕ1u)−λ2ρ21 −λ3ρ13, λ1(T ) = r1,

λ̇2 = − ∂H
∂N2

=−q2 −λ1ρ12 −λ2 (α2 −ρ21−ρ23 −ϕ2u)−λ3ρ23, λ2(T ) = r2,

λ̇3 = − ∂H
∂N3

=−q3 −λ1ρ13 −λ2ρ23 −λ3 (α3 −ρ31 −ρ32−ϕ3u) , λ3(T ) = r3.

and, as before, it follows that all multipliers remain positive.

Proposition 3.3.2. The multipliers λi, i = 1,2,3 are positive over the interval [0,T ].

The switching function Φ and its derivatives are as in Section 3.2.2 with the
formula for the singular control given by (3.12):

using(t) =−{λ (t)[A, [A,B]]− q[A,B]−qBA}N∗(t)
{λ (t)[B, [A,B]]−qB2}N∗(t)

.

Now we have the following formulas for the matrix products and commutators: B2

is a diagonal matrix with entries ϕ2
1 ,ϕ2

2 and ϕ2
3 and

BA =−
⎛

⎝
ϕ1 (α1 −ρ12 −ρ13) ϕ1ρ21 ϕ1ρ31

ϕ2ρ12 ϕ2 (α2 −ρ21 −ρ23) ϕ2ρ32

ϕ3ρ13 ϕ3ρ23 ϕ3 (α3 −ρ31 −ρ32)

⎞

⎠ ,

[A,B] =

⎛

⎝
0 (ϕ2 −ϕ1)ρ21 (ϕ3 −ϕ1)ρ31

(ϕ1 −ϕ2)ρ12 0 (ϕ3 −ϕ2)ρ32

(ϕ1 −ϕ3)ρ13 (ϕ2 −ϕ3)ρ23 0

⎞

⎠ ,

[B, [A,B]] =−
⎛

⎝
0 (ϕ2 −ϕ1)

2ρ21 (ϕ3 −ϕ1)
2ρ31

(ϕ1 −ϕ2)
2ρ12 0 (ϕ3 −ϕ2)

2ρ32

(ϕ1 −ϕ3)
2ρ13 (ϕ2 −ϕ3)

2ρ23 0

⎞

⎠ ,
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and [A, [A,B]] is a 3× 3-matrix with full and complex entries. The diagonal terms
of [A,B] and [B, [A,B]] vanish since B is a diagonal matrix which commutes with
the diagonal part of whatever matrix the bracket is taken with. As before, the coeffi-
cient multiplying the control u in the second derivative of the switching function is
given by

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t)) =
{
λ (t) [B, [A,B]]−qB2}N∗(t).

The matrix [B, [A,B]] has all nonpositive entries and since states N∗ and multiplier
λ are positive, we have that λ (t)[B, [A,B]]N∗(t)≤ 0. Furthermore,

qB2N∗(t) = q1ϕ2
1 N∗

1 (t)+ q2ϕ2
2 N∗

2 (t)+ q3ϕ2
3 N∗

3 (t)> 0

and thus for this model the strengthened Legendre-Clebsch condition is always
satisfied:

− ∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t))> 0.

Proposition 3.3.3. Singular controls are of order 1 and the strengthened Legendre-
Clebsch condition for minimality is always satisfied.

This result, coupled with some general results from optimal control in dimen-
sion 3 [103], implies that singular controls will be locally minimizing provided
they (i) are admissible, i.e., that its values lie in the control set [0,umax], and (ii)
the corresponding multipliers λ1, λ2 and λ3 are positive. While the upper limit
umax would be less restrictive on the level of dose rates (given the practically imp-
ortant bolus administrations or injections), in the model here the control really
stands for the concentration of the agent and thus clearly there is saturation at some
maximal feasible limit. In numerical computations, it is not difficult to verify ad-
missibility of the singular control. Regarding (ii), the facts that the switching func-
tion and its derivative vanish along a singular arc, Φ(t) = 1+λ (t)BN∗(t) ≡ 0 and
Φ̇(t) = {λ (t)[A,B]− qB}N∗(t)≡ 0, determine the multiplier λ modulo one degree
of freedom. Since all components need to be positive, we can parameterize the solu-
tions through λ3(t)> 0 and solve for λ1(t) and λ2(t). If one of these variables comes
out negative, the positivity condition is violated and no singular arc exists through
the given point N∗(t). Otherwise, this solution determines the singular control.

Overall, possible concatenations between bang and singular controls need to be
analyzed. In general, this becomes difficult for this model (mainly because of the
great variety of parameters and possible sign relations between them) and this anal-
ysis has not yet been carried out. However, we can illustrate the structure of sin-
gular controls and corresponding trajectories with some numerical samples. In Fig-
ure 3.4 we give an example of an extremal controlled trajectory (i.e., a trajectory
that satisfies the necessary conditions for optimality of the Pontryagin maximum
principle) for which the control is given by the maximum dose rate for an initial
interval [0,τb] and then by an admissible singular control over the remaining period
[τb,T ]. Ignoring the terminal value, we simply determine a value for λ (τb) so that
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Φ(τb) = Φ̇(τb) = 0 and then integrate the combined flow of the system dynam-
ics and adjoint equation corresponding to the singular control forward in time until
time T . As long as the multipliers λi(t), i = 1,2,3 remain positive for t ∈ [0,T ],
this generates an extremal for the optimal control problem [Chet3] with penalty
terms ri = λi(T ). But this construction is only meant to illustrate the singular con-
trol and its flow. In the medical literature, similar control structures are also known
as chemo-switch protocols [16, 277].
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Fig. 3.4 Control, states, and multipliers for a bang-singular controlled extremal.

Figure 3.4 illustrates the structure of a chemo-switch type protocol for the growth
rates α1 = 1, α2 = 0.5 and α3 = 0.1, transition rates ρ12 = 0.05, ρ13 = 0.01,
ρ12 = 0.03, ρ23 = 0.01, ρ31 = 0.01 and ρ32 = 0.03, and pharmacodynamic coef-
ficients ϕ1 = 1.5, ϕ2 = 1 and ϕ3 = 0.1; the maximum concentration was normalized
to umax = 1 and all the weights qi in the objective were chosen equal to 0.01. The ini-
tial interval with maximum dose has length τb = 5 and the therapy horizon is T = 28.
We also normalized the total cancer volume at the initial time to be C(0) = 1 and
took as initial condition the corresponding steady state of the proportions for the un-
controlled dynamics, i.e., S0 = x∗ = 0.8954, P0 = y∗ = 0.0933 and R0 = z∗ = 0.0112.
Figure 3.4(a) (top, left) shows the graph of the corresponding control and 3.4(b) (top,
left) shows the graphs of the corresponding states. The value of the singular control
using(t) is almost constant at about 60% of the maximum, but it increases slightly
over the interval [5,28]. The multipliers over the singular interval are shown in part
(c) (bottom) and remain positive. It then follows from Proposition 3.3.2 that they
are positive on the initial interval as well.

3.3.4 Concluding Remarks

These calculations, although clearly incomplete, nevertheless point to an increased
likelihood that singular controls, i.e., time-varying concentrations and dose rates
at less than the maximum rate, become increasingly more important when tumor
heterogeneity is incorporated into the mathematical model for administration of
chemotherapy. This would seem to be intuitive from a cost-benefit type analysis, but
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interestingly this is not supported by the results if only drug sensitive and resistant
populations are considered and the resistant cell population does not have a mecha-
nism of resensitization. In this case, optimal protocols still follow an MTD schedule.
However, as the degree of heterogeneity is increased, the interplay between the
various subpopulations makes singular controls and the lower dose administra-
tion schedules they represent a viable option. There is an interesting approach to
chemotherapy called adaptive therapy due to Gatenby et al. [102] that is based
on the competitive balance between various tumor subpopulations and also aims
to strike a balance between killing the drug sensitive and generally faster growing
populations with using them to control the more dangerous resistant, but generally
slower growing populations. This is an intriguing idea that also would seem to call
for alternative properly calibrated lower dose rates other than MTD administrations
that kill as many of the sensitive cells as possible.



Chapter 4
Optimal Control for Problems with a Quadratic
Cost Functional on the Therapeutic Agents

In this chapter, we give optimal solutions for systems with a control-affine dynamics
(c.f., Section A.3 in Appendix A) when the dependence on the control in the objec-
tive is taken as a positive definite quadratic function. The mathematical advantages
of such a formulation are obvious: the Hamiltonian H for the optimal control prob-
lem becomes strictly convex in the control u and thus has a unique minimizer, albeit
only in the state-multiplier space (cotangent bundle). While this does not guaran-
tee that controls found by an analysis of these necessary conditions are necessarily
optimal, it considerably simplifies the analysis. However, as already mentioned, a
quadratic functional form often is somewhat questionable and may be difficult to
justify for biomedical problems. The prevalence of such models has its origin in
an abundance of classical problems related to mechanical or electro-dynamical sys-
tems when such a term has a clear and justified connection with the kinetic energy
of the system. If such a connection is not there—as it is lacking in the case of drug
treatments—usually other, and often arbitrary “systemic” cost arguments are put
forward to justify the choice. But such reasoning rarely is based on the underlying
biology of the problem. Yet, the choice of the objective functional is crucial for the
structure of optimal controls and indeed many properties of the optimal solutions
are preordained by making this particular choice. For example, it is easily seen that
optimal controls are continuous in this L2-type framework. Thus, overall care needs
to be exercised when interpreting the results. Despite these modeling shortcomings,
there exists an abundance of literature on optimal control problems for biomedical
problems that employ quadratic terms in the controls. We therefore include a brief
analysis of such models, but use a more general form for the dynamics that applies
to a multitude of systems.

The analysis of the necessary conditions for optimality of the maximum principle
is straightforward and an explicit formula for the control as a function of the states
and multipliers can be written down. There exist ample numerical methods that will
compute an extremal controlled trajectory by solving the resulting two-point bound-
ary problem on states and multipliers, most of them based on some kind of shooting
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algorithms. But it is often overlooked that despite the quadratic and strictly convex
structure in the control variable, in general a solution to these conditions need not
be optimal, not even locally.1 Unfortunately, this is a fact ignored in many publica-
tions on applications to biologically motivated problems. In this section, we provide
a framework that allows to verify sufficient conditions for local optimality for such
problems. We use a general control-affine nonlinear dynamics in the state, simply
since there is no significant mathematical difference when compared to the bilin-
ear models considered so far, and since there exist many models that fall into this
more general category. For example, this includes models for cancer chemotherapy
when more complicated expressions for pharmacodynamics than the typical log-kill
framework are used. Similarly, kinetic models using a Michaelis-Menten structure
in the dynamics are typical in models for the treatment of HIV infections (e.g., see
[157, 159, 300]) or in epidemiological models (e.g., see [35, 101, 125]). Despite
the widely differing underlying areas of application, the mathematical structure is
uniform and this is what will be presented here. In the last section of this chapter,
as an additional example, we present an alternative model for cancer chemotherapy
due to Fister and Panetta [83] that puts the side effects of treatment center stage by
focussing on the bone marrow dynamics. It perfectly fits into the class of models
analyzed so far and we use it to compare the optimal solutions corresponding to L1

and L2-type objectives.

4.1 Optimal Control with an L2-type Cost Functional
on the Controls

4.1.1 Problem Formulation

We consider a general control affine, time-invariant dynamical system of the form

ẋ = f (x)+
m

∑
j=1

u jg j(x), x(0) = x0, (4.1)

over a fixed finite interval [0,T ], the therapy horizon. We assume that the state x∈R
n

takes values in some open subset P⊂ R
n which represents the admissible states for

the problem (e.g., points with positive coordinates) and that P is positively invariant
for the control system. This property will need to be verified for the specific model
under consideration, but generally amounts to no more than a rudimentary first ques-
tion of proper modeling. Admissible controls u= (u1, . . . ,um) are Lebesgue measur-
able (respectively piecewise continuous) functions whose components take values

1 We refer the interested reader to the discussions of conjugate points and singularities in the value
function of an optimal control problem in Chapter 5 of our monograph [292]. Essentially, if the
flow of extremals has a singularity, local optimality ceases. Simple mathematical examples to this
effect are given in [292].
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in a compact interval [0,umax
j ] ⊂ R, u j : [0,T ] → [0,umax

j ] and we again denote the
full control set by U , U = [0,umax

1 ]× . . .× [0,umax
m ]⊂ R

m. This control set is an in-
terval in R

m and we acknowledge that this fact simplifies the technical aspects of the
mathematical analysis. However, at the expense of more technical formulations, the
results developed in this chapter can be generalized to control sets that are compact
convex polyhedra. For the problems that interest us here, control sets which are in-
tervals are the most natural formulation and thus we use this simpler structure. If the
solution x to the initial value problem (4.1) corresponding to an admissible control
u exists over the full interval [0,T ], we associate to the controlled trajectory (x,u)
the objective

J(u) =
∫ T

0

(

L(x(t))+
1
2

m

∑
j=1

θ ju
2
j(t)

)

dt +ϕ(x(T )). (4.2)

with the coefficients θ j positive weights. The quadratic term has the form 1
2 uT Ru

with R the diagonal matrix R = diag(θ1, . . . ,θn). This also leads to a simplification
of the technical argument which, more generally, could be carried out for a positive
definite matrix R. These procedures are well known in automatic control (e.g., see
[41, 292]), but our interest here is to keep technicalities at a minimum. The drift
vector field f , f : P→R

n, the control vector fields g j, g j : P→R
n, j = 1, . . . ,m, the

Lagrangian L, L : P→R, and the penalty function ϕ , ϕ : P→R, all are assumed to
be twice continuously differentiable functions on P. No constraints are imposed
at the terminal times. We then simply phrase the corresponding optimal control
problem in the following form:

[Q] minimize the objective J(u) over all admissible controlled trajectory pairs
(x,u) : [0,T ]→ P×U .

4.1.2 Necessary Conditions for Optimality

Once more, necessary conditions for optimality for problem [Q] are given by the
Pontryagin maximum principle (Theorem A.2.1 in Appendix A). It is easily seen
that extremals are normal and therefore, without loss of generality, we normalize
the multiplier at the objective to λ0 = 1. Thus, if u∗ = (u∗1, . . . ,u

∗
m)

T is an optimal
control with corresponding trajectory x∗, then it follows that there exists an abso-
lutely continuous function λ , again written as a row-vector, λ : [0,T ]→ (Rn)∗, that
satisfies the adjoint equation

λ̇ (t) =−∂L
∂x

(x∗(t))−λ (t)

(
∂ f
∂x

(x∗(t))+
m

∑
j=1

u∗j(t)
∂g j

∂x
(x∗(t))

)

(4.3)

with terminal condition

λ (T ) =
∂ϕ
∂x

(x∗(T )), (4.4)
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such that the optimal controls u∗j minimize the Hamiltonian

H = H(λ ,x,u) = L(x)+λ f (x)+
m

∑
j=1

(
1
2
θ ju

2
j +λu jg j(x)

)

(4.5)

pointwise over the control set U = [0,umax
1 ]× . . .× [0,umax

m ] along (λ (t),x∗(t)). We

recall that ∂ f
∂x denotes the n×n matrix with (i, j) entry given by ∂ fi

∂x j
, i.e., the ith row

is given by the gradient of the ith entry of the vector field f . Similarly, ∂L
∂x is the

gradient of the function L written as a row vector.
The essential difference of this formulation to the ones considered previously is

that the Hamiltonian function H, when considered as a function of the control vector
u, has a positive definite Hessian matrix,

∂ 2H
∂u2 (λ ,x,u) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

θ1 0 · · · 0 0
0 θ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · θm−1 0
0 0 · · · 0 θm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= diag(θ1, . . . ,θm)> 0.

This property implies that every stationary point in u is a strict local minimizer of the
Hamiltonian H in the control. In the engineering literature on optimal controls such
extremals are called nonsingular [41]. The terminology singular in the context of
singular controls considered in Chapters 2 and 3 has its historical origin precisely in
the fact that for those problems this matrix is singular; in fact, for an L1-type formu-
lation with a linear term in the control, the matrix ∂ 2H

∂u2 (λ ,x,u) becomes identically
zero and it is this fact that makes the mathematical analysis far more challenging.
But for the problem under consideration here, the Hamiltonian H is strictly convex
over Rm and has a unique minimum that is attained at the stationary point,

0 =
∂H
∂u

(λ ,x,u) = (θ1u1 +λg1(x), . . . ,θmum +λgm(x)) .

Since the control set U is a product of m intervals, U = [0,umax
1 ]× . . .× [0,umax

m ],
this minimization problem can be solved componentwise and the minimum for the
jth component over R is attained at

ψ j(t) =− 1
θ j

λ (t)g j(x∗(t)). (4.6)

If this value lies in the control interval [0,umax
j ], it is admissible and then this formula

defines the global minimum. If ψ j(t) is negative, then the Hamiltonian is strictly
increasing for positive values u j and the minimum over the interval [0,umax

j ] is at-
tained for u∗j = 0 while the Hamiltonian is strictly decreasing over this interval if
ψ j(t) > umax

j and in this case the minimal value is attained for umax
j . Hence, an

evaluation of the minimum condition leads to the following relations:
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u∗j(t) =

⎧
⎪⎨

⎪⎩

0 if ψ j(t)≤ 0,

ψ j(t) if 0 ≤ ψ j(t)≤ umax
j ,

umax
j if umax

j ≤ ψ j(t).

(4.7)

Defining the saturation function sat j as

sat j(u) = min
{

umax
j ,max{0,u}}=

⎧
⎪⎨

⎪⎩

0 if u ≤ 0,

u if 0 ≤ u ≤ umax
j ,

umax
j if u ≥ umax

j ,

we can formally express the optimal controls u∗j in the compact form

u∗j(t) = sat j (ψ j(t)) . (4.8)

Optimal controls thus change continuously between the constant values 0 and
umax

j at the boundary of the control interval and differentiable functions which take
values in the interior of the control set. We call a time when one of the controls
changes from an interior value to a boundary value a junction. The functions ψ j,
similar to the switching functions for an L1-type objective, determine the optimal
control and we call them the indicator functions for the controls. Like the derivatives
of the switching functions in the case of an L1-type objective, the derivative of ψ j is
computed using the dynamics and adjoint equation and is given by

ψ̇ j(t) =− 1
θ j

{

λ∗(t)

(

[ f ,g j ] (x∗(t))+∑
i= j

ui(t) [gi,g j] (x∗(t))

)

−∂L
∂x

L(x∗(t))g j (x∗(t))

}

(4.9)

with
[ f ,g](x) = Dg(x) f (x)−D f (x)g(x)

denoting the Lie bracket of two vector fields f and g (c.f., Definition A.3.3 in
Appendix A). Since the controls remain continuous at junction points, it follows that
ψ j is continuously differentiable. Between junction points, ψ j can be differentiated
further to whatever order the smoothness properties of the dynamics and Lagrangian
L allow, but higher order derivatives generally have different left and right limits at
junction points. Because of the quadratic nature of the objective, it therefore fol-
lows that bang-bang controls are no longer optimal. We summarize these comments
in the theorem below.

Theorem 4.1.1 (Maximum Principle for Problem [Q]). Suppose u∗ =(u∗1, . . . ,u
∗
m)

is an optimal control for problem [Q] with corresponding trajectory x∗. Then there
exists an absolutely continuous function λ , λ : [0,T ] → (Rn)∗, that satisfies the
adjoint equation
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λ̇ (t) =−∂L
∂x

(x∗(t))−λ (t)

(
∂ f
∂x

(x∗(t))+
m

∑
j=1

u∗j(t)
∂g j

∂x
(x∗(t))

)

,

with terminal value λ (T ) = ∂ϕ
∂x (x∗(T )) so that the optimal controls satisfy

u∗j(t) = sat j (ψ j(t)) = sat j

(

− 1
θ j

λ (t)g j(x∗(t))
)

.

The Hamiltonian H is constant over the interval [0,T ], H(λ (t),x∗(t),u∗(t)) = const.

4.1.3 Sufficient Conditions for Strong Minima: Construction
of a Field of Broken Extremals with Regular Simple
Junctions

The advantage of the quadratic model is that it provides a unique minimizer for the
Hamiltonian function. But this only gives an expression for the control that depends
on the multiplier λ and does not determine the control completely since there may
exist more than one solution to the two point boundary value problem consisting of
the dynamics (4.1) and adjoint equation (4.3) coupled by the minimum condition
(4.8). Hence there is no a priori guarantee that a numerically computed solution
that satisfies the conditions of Theorem 4.1.1 is even locally optimal (e.g., see [292,
Sections 5.4 and 5.5]). In this section, we formalize sufficient conditions for strong
local optimality of an extremal controlled reference trajectory for the problem [Q].
The constructions are similar to those for the 2-compartment model of Section 2.1.6
that are carried out in Section B.1. A more detailed exposition of the theoretical
background is given in Appendix A.

Definition 4.1.1 (Regular Simple Junction). Let (x∗,u∗) be a reference extremal
for problem [Q] and denote the corresponding adjoint variable by λ∗. A time τ ∈
(0,T ) is called a junction time if a component of the control changes between a
boundary value (given by 0 or umax

j ) and the interior control ψ j. A junction time is
said to be simple if exactly one component of the control vector changes. A simple
junction τ is said to be regular if the derivative of the associated indicator function
ψ j for the control that switches, j = j(τ), does not vanish, ψ̇ j(τ) = 0.

Regular simple junction times are the typical (in the sense of most common)
scenario and we do not consider the more intricate case of simultaneous junctions.
We call an extremal triple Γ = (x∗,u∗,λ∗) for problem [Q] an extremal lift with
regular simple junctions if it only has a finite number of junction times and if each
junction is simple and regular. Under these conditions, it is rather straightforward
to construct a parameterized family of broken extremals (x(·, p),u(t·, p),λ (·, p))
with regular simple junctions that contains the reference extremal Γ : for values p
in a sufficiently small neighborhood P of p∗ = x∗(T ), integrate the dynamics and
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the adjoint equation backward from the terminal time T with terminal conditions
x(T, p) = p and λ (T, p) = ∂ϕ

∂x (p) while choosing the control u(t, p) to satisfy (4.8).
Specifically,

ẋ(t, p) = f (x(t, p))+
m

∑
j=1

u j(t, p)g j(x(t, p)), (4.10)

λ̇ (t, p) =−∂L
∂x

(x(t, p))−λ (t, p)

(
∂ f
∂x

(x(t, p))+
m

∑
j=1

u j(t, p)
∂g j

∂x
(x(t, p))

)

,

(4.11)

u j(t, p) = sat j

(

− 1
θ j

λ (t, p)g j(x(t, p))

)

(4.12)

with terminal values

x(T, p) = p and λ (T, p) =
∂ϕ
∂x

(p). (4.13)

Proposition 4.1.1. Let Γ∗ = (x(·, p∗),u(·, p∗),λ (·, p∗)) be an extremal lift with sim-
ple regular junctions at times ti, i = 1, . . . ,k, 0 = t0 < t1 < · · ·< tk < tk+1 = T . Then
there exists a neighborhood P of p∗ and continuously differentiable functions τi de-
fined on P, i = 1, . . . ,k, such that for p ∈ P the control u(·, p) has regular simple
junctions at the times 0 < τ1(p)< · · ·< τk(p)< T of the same type as the reference
control u∗. The corresponding family Γp = (x(·, p),u(·, p),λ (·, p)) for p ∈ P is a
parameterized family of broken extremals with regular simple junctions.

Proof. We inductively define the controls u = u(t, p), trajectories x = x(t, p) and
multipliers λ = λ (t, p) backward from the terminal time. For all p in some open
neighborhood P of p∗ and t ≤ T , let x(t, p) and λ (t, p) denote the solutions to equa-
tions (4.10) and (4.11) with terminal conditions (4.13) when the control u = u(t, p)
is given by the same structure as the reference control u(t, p∗) on the last interval
[tk,T ]. That is, for j = 1, . . . ,m, we choose u j(t, p) constant and with the same value
as u∗j(t) if the jth component of u∗j(t) is constant and we define

u j(t, p) =− 1
θ j

λ (t, p)g j(x(t, p)) = ψ j(t, p)

if u∗j(t) is given by the interior value ψ j(t, p∗). For values p close enough to p∗ =
x∗(T ), by the continuous dependence of solutions on initial data and parameters,
these solutions exist on an interval [tk − ε,T ] for some ε > 0. Let j = j(k) denote
the component of the reference control that has a junction at time tk. Then, again by
keeping the neighborhood P of p∗ small enough, we can guarantee that none of the
controls ui(t, p) for i = j has a junction over the interval [tk −ε,T ] and thus the only
change in the control occurs in the jth component. For sake of specificity, suppose
the jth control changes from an interior value to umax

j . Since ψ̇ j(tk, p∗) = 0, by the
implicit function theorem the equation ψ j(t, p)) = umax

j can be solved for t by a
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continuously differentiable function τk = τk(p) near p∗ and, because of continuity,
this function defines a regular junction for the jth component while no switchings in
the other components occur. Thus we adjust the jth component at this hypersurface
as for the reference control and then simply iterate the construction. �

The triples Γp = (x(·, p),u(·, p),λ (·, p)) define a parameterized family of broken
extremals (c.f., Definitions A.4.6 and A.4.8 in Appendix A), that is, they satisfy all
the necessary conditions for optimality of the maximum principle and are differen-
tiable functions of the parameter between the junction times. The associated flow
map for the controlled trajectories is defined as

� : (t, p) �→�(t, p) = (t,x(t, p)), (4.14)

and we need to determine whether � is locally a diffeomorphism along the refer-
ence trajectory t �→ x∗(t) = x(t, p∗). Since we are considering an optimal control
problem with a fixed terminal time T —in the terminology from [292] the problem
is time-dependent—in this flow map the graphs of the controlled trajectories need to
be considered. Essentially, the question of local optimality reduces to the question
whether this flow map � is locally a diffeomorphism along the reference trajectory
t �→ x∗(t) = x(t, p∗). For, it is shown in a more general setting in [292] (also see
Section A.4.2) that the reference trajectory Γ∗ provides a strong local minimum if
(i) the flow map � is a diffeomorphism on the segments between the junction times ti
and if (ii) all junction surfaces are transversal crossings. For problem [Q], one sim-
plification that occurs is that because controls remain continuous at junction times,
all junction surfaces indeed are transversal crossings and thus condition (ii) is al-
ways satisfied. If the flows between the junction surfaces are diffeomorphisms, then
a continuously differentiable solution to the Hamilton-Jacobi-Bellman equation can
be constructed on the region covered by the flow� of extremals in the family by tak-
ing the cost along the extremals. From this the desired optimality statements follow
by classical results (Theorem A.4.3 and Corollary A.4.2 in Appendix A). Thus it
only remains to check inductively whether the flows between the switching surfaces
are diffeomorphisms. In the special case when all the controls are constant, (i.e.,
none of the controls takes values in the interior of the control interval), this simply
is a consequence of the uniqueness of solutions to the dynamical system (4.10) and
(4.11). However, if one or more of the controls take values that lie in the interior of
the interval associated with these controls, then this forms a true requirement. We
briefly develop the necessary theory.

The mapping � : (t, p) �→ �(t, p) = (t,x(t, p)) is a local diffeomorphism along
the reference trajectory t �→ x(t, p∗) on the interval [ti, ti+1] if and only if the matrix
∂x
∂ p(t, p∗) is nonsingular on the interval [ti, ti+1]. This is equivalent to the statement
that the matrix

S∗(t) =
∂λ T

∂ p
(t, p∗)

(
∂x
∂ p

(t, p∗)
)−1

(4.15)

is well defined on [ti, ti+1]. Recall that, ∂x
∂ p denotes the n×n matrix with (i, j) entry

given by ∂xi
∂ p j

, i.e., the ith row is given by the gradient of xi. Similarly, the ith row
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of ∂λT

∂ p is given by the gradient of λi and the transpose is taken since λ is a row

vector. The partial derivatives ∂x
∂ p (t, p) and ∂λT

∂ p (t, p) are solutions of the variational
equations of (4.10) and (4.11). Formally, these equations are obtained by differen-
tiating equations (4.10) and (4.11) with respect to p and interchanging the partial
derivatives [145]. We briefly derive these equations. For this calculation it is more
convenient to write the adjoint equation in terms of the column vector λ T since
this leads to a uniform structure for the second derivatives. We therefore express
equations (4.10) and (4.11) in the form

ẋ(t, p) =

(
∂H
∂λ T (λ T (t, p),x(t, p),u(t, p))

)T

and

λ̇ T (t, p) =

(

−∂H
∂x

(λ T (t, p),x(t, p),u(t, p))

)T

,

with each differential equation written in column form. We consistently write gradi-
ents with respect to column vectors as row vectors and therefore need to include the
transposes on the right. Equivalently, we could write gradients with respect to row
vectors (such as λ ) as column vectors. This is the same as differentiating with re-
spect to the column vector λ T and then taking the transpose, i.e., the column vector
∂H
∂λ is given by ∂H

∂λ =
(

∂H
∂λT

)T
,

∂H
∂λ

= f (x)+
m

∑
j=1

u jg j(x).

When differentiating the Hamiltonian H twice with respect to column vectors (x,
u, or λ T ), we write the corresponding matrices of second derivatives with the com-
ponents of the first vector as row indices and the components of the second vector
as column indices. Thus, the (i, j) entry of ∂ 2H

∂x∂u is given by ∂ 2H
∂xi∂u j

. In other words,

differentiating the n-dimensional column vector HT
x =

(
∂H
∂x

)T
with respect to u, we

get the n×m matrix whose row vectors are the u-gradients of the components of the
column vector HT

x . We denote this matrix by Hxu. In particular, under our general
differentiability assumptions the mixed partial derivatives are equal and we have
that Hxu = HT

ux. If one of the derivatives is taken with respect to the row vector λ ,
we follow this convention for the column vector λ T . Thus HλT x is the matrix whose

(i, j) entry is given by ∂ 2H
∂λi∂x j

while HxλT is the matrix with (i, j) entry ∂ 2H
∂xi∂λ j

, so that

HλT x = (HxλT )
T . Hence HλT x is the matrix whose rows are given by the gradients

with respect to x of the column vector Hλ =
(

∂H
∂λT

)T
, i.e.,

HλT x =
∂Hλ
∂x

=
∂ f
∂x

(x)+
m

∑
j=1

u j
∂g j

∂x
(x) (4.16)



150 4 Optimal Control with Quadratic Objective on the Control

and

HxλT =

(
∂

∂λ T

(
HT

x

)
)

=
∂

∂λ T

[

λ

(
∂ f
∂x

(x)+
m

∑
j=1

u j
∂g j

∂x
(x)

)

+
∂L
∂x

(x)

]T

=

(
∂ f
∂x

(x)+
m

∑
j=1

u j
∂g j

∂x
(x)

)T

= (HλT x)
T . (4.17)

Analogously we have that

HλT u =
∂Hλ
∂u

= (g1(x), . . . ,gm(x)) (4.18)

and

Hxu =

(
∂
∂u

(
HT

x

)
)

=
∂
∂u

⎡

⎣
(
∂L
∂x

(x)

)T

+

(
∂ f
∂x

(x)+
m

∑
j=1

u j
∂g j

∂x
(x)

)T

λ T

⎤

⎦

=

((
∂g1

∂x
(x)

)T

λ T , . . . ,

(
∂gm

∂x
(x)

)T

λ T

)

. (4.19)

In the subsequent computations x, u, λ and their partial derivatives are evaluated
at (t, p), partial derivatives of f and the gi are evaluated along the controlled trajec-
tories of the family, (x(t, p),u(t, p)), and all partial derivatives of H are evaluated
along the full extremals, (λ (t, p),x(t, p), u(t, p)). For notational clarity, however,
we drop these arguments. The matrix ∂x

∂ p(t, p) of the partial derivatives with respect
to the parameter p is the solution of the variational equation of the dynamics, i.e.,
formally

d
dt

(
∂x
∂ p

)

=
∂ 2x
∂ t∂ p

=
∂
∂ p

(
dx
dt

)

=
∂
∂ p

(
∂H
∂λ T (λ T (t, p),x(t, p),u(t, p))

)T

= HλT x
∂x
∂ p

+HλT u
∂u
∂ p

, (4.20)

(Since H is linear in λ , it follows that HλTλT ≡ 0.) The equation for the partial

derivative ∂λT

∂ p follows by differentiating the adjoint equation:
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d
dt

(
∂λ T

∂ p

)

=
∂ 2λ T

∂ t∂ p
=

∂
∂ p

(
λ̇ T
)

=
∂
∂ p

{(

−∂H
∂x

(λ T (t, p),x(t, p),u(t, p))

)T
}

=−HxλT
∂λ T

∂ p
−Hxx

∂x
∂ p

−Hxu
∂u
∂ p

. (4.21)

Over a fixed interval [ti(p), ti+1(p)], the entries in the index set J that describes
which controls take values in the interior of the respective control intervals do not
change along the reference extremal: if the jth control u j is constant over the interval

of consideration, then
∂u j
∂ p ≡ 0 and if the control u j takes values in the interior of the

control set, then, by the maximum principle we have that

∂H
∂u j

(λ T (t, p),x(t, p),u1(t, p), . . . ,um(t, p))≡ 0.

Differentiating in p, it follows that

Hu jλT
∂λ T

∂ p
+Hu jx

∂x
∂ p

+
m

∑
i=1

Hu jui

∂ui

∂ p
≡ 0.

For the model [Q] all mixed second partial derivatives Huiu j for i = j are identically
zero and Hu ju j = θ j > 0 so that

∂u j

∂ p
=− 1

θ j

(

Hu jx
∂x
∂ p

+Hu jλT
∂λ T

∂ p

)

. (4.22)

We can express the term with the partial derivatives of the controls in a more com-
pact notation by defining a matrix H−J

uu (λ ,x,u) as the diagonal matrix whose entry
is 0 if j /∈ J and is equal to 1

θ j
if j ∈ J. With this notation, we simply have that

∂u
∂ p

=−H−J
uu

(

Hux
∂x
∂ p

+HuλT
∂λ T

∂ p

)

. (4.23)

Substituting this expression into the variational equations gives the following ho-
mogeneous matrix linear differential equation:
⎛

⎜
⎜
⎝

d
dt

(
∂x
∂ p

)

d
dt

(
∂λT

∂ p

)

⎞

⎟
⎟
⎠=

⎛

⎝
HλT x −HλT uH−J

uu Hux −HλT uH−J
uu HuλT

−Hxx +HxuH−J
uu Hux −(HxλT −HxuH−J

uu HuλT

)

⎞

⎠

⎛

⎜
⎝

∂x
∂ p

∂λT

∂ p

⎞

⎟
⎠ .

Note that
HxλT −HxuH−J

uu HuλT =
(
HλT x −HλT uH−J

uu Hux
)T

.
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Let X(t) = ∂x
∂ p (t, p∗) and Y (t) = ∂λT

∂ p (t, p∗) be the solutions of the variational
equation along the reference extremalΓ∗. The variational equations are linear matrix
differential equations with time-varying coefficients given by continuous functions
and thus these solutions always exist on the full interval. It is a classical result in
control theory, going back to Legendre and the calculus of variations, that if a pair
of n× n matrices (X ,Y ) is a solution to a linear matrix differential equation of the
form (

Ẋ
Ẏ

)

=

(
A R

−M −AT

)(
X
Y

)

where A, R, and M are matrices whose entries are continuous functions over [ti, ti+1]
and X(ti+1) nonsingular, then the matrix X(t) is nonsingular over the interval [ti, ti+1]
if and only if there exists a solution to the Riccati differential equation

Ṡ+SA(t)+AT(t)S+ SR(t)S+M(t)≡ 0, S(ti+1) = Y (ti+1)X(ti+1)
−1

over the full interval [ti, ti+1] while the matrix X(τ) is singular if this Riccati differ-
ential equation has a finite escape time τ ≥ ti. (For example, a proof is given in [292,
Proposition 2.4.1]). We thus have the following result:

Proposition 4.1.2. Suppose the matrix X(ti+1) =
∂x
∂ p(ti+1, p∗) is nonsingular. Then

X(t) = ∂x
∂ p (t, p∗) is nonsingular on the full interval [ti, ti+1] if and only if there exists

a solution S∗ to the matrix Riccati differential equation

Ṡ+S
(
HλT x −HλT uH−J

uu Hux
)
+
(
HλT x −HλT uH−J

uu Hux
)T

S (4.24)

− SHλT uH−J
uu HuλT S+

(
Hxx −HxuH−J

uu Hux
)≡ 0

with terminal condition S∗(ti+1) = Y (ti+1)X(ti+1)
−1 over the full interval [ti, ti+1].

In this case, we have that S∗(t) = Y (t)X(t)−1 for all t ∈ [ti, ti+1]. In equation (4.24)
all partial derivatives are evaluated along the reference extremal Γ∗ and J denotes
the set of indices j ∈ {1, . . . ,m} of controls which take values in the interior of the
control set over [ti, ti+1]. If J is empty, then H−J

uu ≡ 0 and (4.24) reduces to a linear
Lyapunov equation for which a solution always exists on the full interval [ti, ti+1].

If there exists a time τ ∈ [ti, ti+1) where the solution to the Riccati differen-
tial equation (4.24) ceases to exist, then it can be shown that the associated flow
� : (t, p) �→ �(t, p) = (t,x(t, p)), of the parameterized family of extremals has a
singularity at (τ, p∗) and it can be shown that the corresponding trajectory is no
longer optimal on intervals [t, ti+1] with t ≤ τ (e.g., this theory is developed in our
text [292] with Theorem 5.4.2 applicable to the situation considered here). The time
τ is called a conjugate time and the point x(τ, p∗) on the reference extremal is a
conjugate point. Essentially, near a conjugate point close-by extremals in the pa-
rameterized family overlap and this leads to a loss of optimality. This theory is fully
developed in [292], but is too lengthy to be even outlined here. On the other hand,
the nonexistence of conjugate points along the controlled reference trajectory is a
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sufficient condition for strong local optimality—this is the optimal control version
of the strengthened Jacobi condition from the calculus of variations—and we shall
outline this argument below.

Before doing so, we first simplify the structure of the Riccati differential equation
(4.24). The matrices Hxx −HxuH−J

uu Hux and HλT uH−J
uu HuλT are symmetric and thus

also the solution S = S(t) to (4.24) is a symmetric matrix. The Riccati equation itself
can be rewritten in the simpler form

Ṡ+SHλT x +HT
λT xS+Hxx − (SHλT u +Hxu)H−J

uu (HuλT S+Hux)≡ 0

and writing the quadratic term in S componentwise, using the special diagonal form
of H−J

uu = JH−1
uu J with J the diagonal matrix whose entries are 1 for j in the index

set J and 0 for j not in the index set J, this term simplifies to

Ṡ+SHλT x +HxλT S+Hxx −∑
j∈J

1
θ j

(
SHλT u j

+Hxu j

)(
SHλT u j

+Hxu j

)T ≡ 0

with each term in this sum a rank 1 matrix. Thus, over each interval [ti, ti+1], it just
becomes necessary to add or delete the corresponding rank 1 matrix into the sum
for the controls that take values in the interior of their respective control intervals.
If J is empty, all terms are gone and this reduces to a linear Lyapunov equation. At
junction points, the solution is propagated with the right and left limits.

The Riccati differential equation (4.24) does not involve the inverse of the ma-
trix ∂x

∂ p (t, p) and the existence of a solution to (4.24) implies that this matrix is
nonsingular. This gives us the desired sufficient condition for local optimality for
problem [Q].

Theorem 4.1.2. Let Γ∗ = (x∗(·),u∗(·),λ∗(·)) be an extremal lift with simple regular
junctions at times ti, i = 1, . . . ,k, 0 = t0 < t1 < · · · < tk < tk+1 = T . Suppose there
exists a solution S∗ to the matrix Riccati differential equation

Ṡ+SHλT x +HxλT S+Hxx − ∑
j∈J(t)

1
θ j

(
SHλT u j

+Hxu j

)(
SHλT u j

+Hxu j

)T ≡ 0,

(4.25)

(all partial derivatives are evaluated along the reference extremal Γ∗ and j ∈ J(t)
if and only the jth control u j takes values in the interior of the control set) with
terminal condition

S∗(T ) =
∂ 2ϕ
∂x2 (x(T, p∗)) (4.26)

over the full interval [0,T ]. Then there exists a neighborhood P of x∗(T ) such that
the flow

� : [0,T ]×P → [0,T ]×P, (t, p) �→ (t,x(t, p)),

is a local diffeomorphism and the reference control u∗ provides a strong local min-
imum for problem [Q]. Specifically, the reference controlled trajectory (x∗,u∗) is
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optimal relative to any other controlled trajectory (x,u) for which the graph of the
trajectory x lies in the set �([0,T ]×P) covered by the controlled extremal trajec-
tories in the field.

Proof. It follows from Proposition 4.1.1 that the reference extremal can be em-
bedded into a parameterized family of broken extremals with regular simple junc-
tions defined over some set [0,T ]×P with P a sufficiently small neighborhood of
x∗(T ) = p∗. We show that the existence of the solution S∗ over the full interval [0,T ]
implies that the Jacobian of the flow mapping � is nonsingular for all t ∈ [0,T ] and
p = p∗, i.e., ∂x

∂ p(t, p∗) is invertible for all t ∈ [0,T ].
We verify this inductively over the intervals [ti, ti+1], backward from the terminal

time T . In the construction of the parameterized family in Proposition 4.1.1, we
use the terminal values of the trajectories as parameter, i.e., p = x(T, p). Hence
∂x
∂ p(T, p∗) = Id is nonsingular. Furthermore, since λ (T, p)≡ ∂ϕ

∂ p (p), we have that

S∗(T ) =
∂λ T

∂ p
(T, p∗)

(
∂x
∂ p

(T, p∗)
)−1

=
∂ 2ϕ
∂x2 (p∗) .

Since the solution to the Riccati differential equation with index set J determined
by the last interval [tk,T ] exists on all of [tk,T ], it follows that ∂x

∂ p (t, p∗) is invert-
ible for t ∈ [tk,T ]. At the junction tk, the index set J increases or decreases by

one element and this leads to discontinuities in the derivatives d
dt

(
∂x
∂ p(·, p∗)

)
and

d
dt

(
∂λT

∂ p (·, p∗)
)

. But the controls remain continuous and thus the matrices ∂x
∂ p(·, p∗)

and ∂λT

∂ p (·, p∗) remain continuous. This follows from Lemma B.1.1 in Appendix B.1
which implies that
(
∂x
∂ t

(tk+, p∗),
∂x
∂ p

(tk+, p∗)
)

−
(
∂x
∂ t

(tk−, p∗),
∂x
∂ p

(tk−, p∗)
)

= κ
(

1,− ∂τ
∂ p

(p∗)
)

with the function t = τ(p) the local solution for t of the equation ψ j(t, p) = 0 re-
spectively ψ j(t, p) = umax

j that causes the junction at time tk. This function is well
defined and continuously differentiable because the junctions are simple and regu-
lar. Since the controls remain continuous at the junction, it follows from the first
equation that κ = 0 and thus the gradients of x(t, p) before and after the junc-
tion agree. The same applies to the partial derivatives of λ T . Hence the expression
∂λT

∂ p (t, p∗)
(

∂x
∂ p(t, p∗)

)−1
remains continuous at junction points. Thus the existence

of the solution S∗(t) on the full interval [0,T ] implies that the matrix ∂x
∂ p(t, p∗) is

invertible for all t ∈ [0,T ].
For a sufficiently small neighborhood P of x∗(T ) = p∗ the parameterized family

of broken extremals constructed in Proposition 4.1.1 therefore defines a field of
broken extremals. The flow � restricted to [0,T ]× P is invertible and it follows
from Theorem A.4.3 in Appendix A that the parameterized cost function,



4.2 Bilinear Models: Special Case and Examples 155

C(t, p) =
∫ T

t

(

L(x(s, p))+
1
2

m

∑
j=1

θ ju
2
j(s, p)

)

ds+ϕ(x(T, p)),

gives rise to a continuously differentiable solution V = C ◦�−1 of the Hamilton-
Jacobi-Bellman equation on the image G = �([0,T ]×P). From this the desired
optimality result directly follows from Corollary A.4.2 in Appendix A. �

We only mention that solutions to matrix Riccati differential equations form a
staple of automatic control theory in the context of linear-quadratic optimal con-
trol and that any numerically computed extremal controlled trajectory for problem
[Q] can easily be tested for local optimality by integrating the differential equation
(4.25) with terminal condition (4.26).

4.2 Bilinear Models: Special Case and Examples

In this section, we specify the form of the Riccati equation (4.25) further for a
general bilinear control systems as it was used in Chapters 2 and 3 and draw
some comparisons between the solutions for the L1 and L2-type formulations for
the 3-compartment model with cytotoxic and cytostatic agents considered in Sec-
tion 2.2.3.

4.2.1 Problem [Q] for a General Bilinear Model

As in Section 2.2.1 earlier, we take as state space P the positive orthant in R
n and

denote the states by N = (N1, . . . ,Nn)
T ,

P=R
n
+ = {N ∈ R

n : Ni > 0 for i = 1, . . . ,n} .

The dynamics is given by a general bilinear system of the form

Ṅ(t) =

(

A+
m

∑
j=1

u jB j

)

N(t), N(0) = N0, (4.27)

where A and B j, j = 1, . . . ,m, are constant n×n matrices, A,B j ∈R
n×n. The control

u = (u1, . . . ,um)
T represents various drug concentrations in the blood stream and

the control set U is a compact m-dimensional interval of the form U = [0,umax
1 ]×

·· ·× [0,umax
m ]. We assume that the positive orthant P is positively invariant. In the

objective to be minimized, we retain the linear structure on the state N, but now use a
quadratic term on the controls. As before, let r = (r1, . . . ,rn) and q = (q1, . . . ,qn) be
n-dimensional row vectors of positive numbers and let θ j, j = 1, . . . ,m, be positive
coefficients representing weights. We then define the objective as to minimize
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J(u) = rN(T )+

∫ T

0

{

qN(t)+
1
2

m

∑
j=1

θ ju j(t)
2

}

dt → min (4.28)

Contrary to the case of the linear objective used in Section 2.2.1 where the integrals∫ T
0 u j(t)dt are clearly related to the total dose given (if the controls represent dose

rates) or the AUC (area under the curve), a standard pharmacological concept, if
the controls represent concentrations, here there is no such interpretation for the in-
tegrals

∫ T
0 u j(t)2dt. A quadratic objective a priori favors lower concentrations/dose

rates: giving one tenth of the maximum dose rate contributes just one hundredth of
the cost of the maximum dose rate. One needs to be aware that such a feature in so-
lutions is not coming from the properties of the underlying system, but is artificially
imposed from the outside by choice of the objective functional. Thus, generally, we
prefer to use an L1-type criterion on the controls. But here we consider the following
L2-type optimal control problem:

[Qbilin] for a fixed therapy horizon [0,T ], minimize the objective (4.28) over all
Lebesgue-measurable functions u : [0,T ]→U = [0,umax

1 ]×·· ·× [0,umax
m ] subject

to the dynamics (4.27).

We simplify the results of the previous section to the bilinear model considered
here. The Hamiltonian function H is given by

H = qN +
1
2

m

∑
j=1

θ ju
2
j +λ

(

A+
m

∑
j=1

u jB j

)

N (4.29)

and the adjoint equation and transversality condition read

λ̇ =−q−λ (A+ uB), λ (T ) = r.

The indicator functions ψ j become bilinear expressions of the form

ψ j(t) =− 1
θ j

λ (t)B jN∗(t) (4.30)

and the optimal controls u∗j satisfy

u∗j(t) =

⎧
⎪⎨

⎪⎩

0 if ψ j(t)≤ 0,

ψ j(t) if 0 ≤ ψ j(t)≤ umax
j ,

umax
j if umax

j ≤ ψ j(t),

or, equivalently,

u∗j(t) = max
{

0,min
{

umax,ψ j(t)
}}

. (4.31)

Furthermore, the minimum value of the Hamiltonian H along the extremal (N∗,u∗,λ )
is constant over the interval [0,T ].
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The dynamics and adjoint equation are the same irrespective of whether an L1 or
L2-type objective is used for the controls. We thus have the following observation
from our results in Chapter 2.

Corollary 4.2.1. If all the matrices A+∑m
j=1 u jB j, 0 ≤ u j ≤ umax

j for j = 1, . . . ,m
are M -matrices, then all the states N∗

i and costates λi for i = 1, . . . ,n are positive
functions on [0,T ].

The matrix Riccati differential equation (4.25), and replacing the variable x with
N, reads

Ṡ+SHλT N +HNλT S+HNN − ∑
j∈J(t)

1
θ j

(
SHλT u j

+HNu j

)(
SHλT u j

+HNu j

)T ≡ 0,

and, since for this model we have that HNN ≡ 0, it simplifies to the following form:

Ṡ+S

(

A+
m

∑
j=1

u jB j

)

+

(

A+
m

∑
j=1

u jB j

)T

S (4.32)

− ∑
j∈J(t)

1
θ j

(
SB jN +BT

j λ
T )(SB jN +BT

j λ
T )T ≡ 0

with terminal condition
S(T ) = 0.

Corollary 4.2.2. The matrix S = S(t) is negative semidefinite.

Proof. Let Ã(t) = A+∑m
j=1 u j(t)B j. If we use the notation P1 ≥ P2 to indicate that

the matrix P1 −P2 is positive semidefinite, then equation (4.32) implies that

Ṡ+ SÃ(t)+ Ã(t)T S ≥ 0.

Let Φ̃(t,T ) be the fundamental solution to the equation Ẋ = Ã(t)X , i.e., ∂
∂ t Φ̃(t,T ) =

Ã(t)Φ̃(t,T ) and Φ̃(T,T ) = Id. The matrix Q(t) = Φ̃(t,T )T S(t)Φ̃(t,T ) then satisfies

Q̇(t) = Φ̃(t,T )T {Ã(t)T S(t)+ Ṡ(t)+ S(t)Ã(t)
}
Φ̃(t,T )≥ 0

and thus, for any vector z ∈R
n, the function q(t) = zT Q(t)z is nondecreasing. Since

S(T ) = 0, all these functions are nonpositive and thus Q is negative semidefinite.
Then so is S. �

This property, in conjunction with the fact that the matrix

−HNuH−J
uu HuN =− ∑

j∈J(t)

1
θ j

BT
j λ (t)

Tλ (t)B j

which defines the constant term in (4.32) is also negative semidefinite precludes
the use of standard results about solutions to Riccati differential equations which
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would a priori guarantee the existence of a solution on the interval [0,T ] (e.g., see
[292]). The existence of solutions over a priori specified intervals therefore needs to
be verified on a case by case basis.

4.2.2 Example: The 3-Compartment Model with Cytotoxic
and Cytostatic Agents

We revisit the mathematical model for cancer chemotherapy from Section 2.2.3 for
a quadratic objective. As before, we write the dynamics in the form

Ṅ = (A+ uB1+ vB2)N

with the matrices

A =

⎛

⎝
−a1 0 2a3

a1 −a2 0
0 a2 −a3

⎞

⎠ ,

B1 =

⎛

⎝
0 0 −2a3

0 0 0
0 0 0

⎞

⎠ and B2 =

⎛

⎝
0 0 0
0 a2 0
0 −a2 0

⎞

⎠ , (4.33)

and with u ∈ [0,umax] denoting the concentration of the cytotoxic agent and v ∈
[0,vmax] representing the reduction in flow from the synthesis phase S to the second
growth phase and mitosis, G2/M. Recall that for any choice of controls the dy-
namics is described by an M -matrix and thus all states and multipliers are positive
functions. We now consider the optimal control problem to minimize the objective

J2 = rN(T )+
∫ T

0
qN(t)+

1
2
θ1u(t)2 +

1
2
θ2v(t)2dt → min

and will compare its solutions with those of the L1-type objective

J1 = rN(T )+
∫ T

0
qN(t)+

1
2
θ1u(t)+

1
2
θ2v(t)dt → min

considered in Section 2.2.3.
The indicator functions ψ1 for u and ψ2 for v for the problem [Qbilin] are

given by

ψ1 =− 1
θ1

λB1N =
2a3

θ1
λ1N3 and ψ2 =− 1

θ2
λB2N =

a2

θ2
(λ3 −λ2)N2.
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Fig. 4.1 Locally optimal controls (with the cytotoxic agent u shown in red and the cytostatic agent
v shown in blue) for the objectives J2 (left) and J1 (right)

In particular, ψ1 is always positive and thus for this problem formulation there are
no rest periods; the cytotoxic agent will always be administered:

u∗(t) =

{
umax if ψ1(t)≥ umax,

ψ1(t) if ψ1(t)< umax.
(4.34)

Analogously,

v∗(t) =

⎧
⎪⎨

⎪⎩

0 if ψ2(t)≤ 0,

ψ2(t) if 0 ≤ ψ2(t)≤ vmax,

vmax if vmax ≤ ψ2(t).

(4.35)

We compare numerically computed locally optimal controls u∗ and v∗ for the
quadratic objective J2 and its linear counterpart J1. The parameters that were used in
the controlled dynamics are the same as in Table 2.5, i.e., a1 = .197, a2 = .395, a3 =
.107 for the cell cycle coefficients, umax = 0.95 and vmax = 0.3 for the control limits,
and the weights r = (1,1,1) and q = (1,1,1) in the penalty terms on the states. The
coefficients at the controls were taken as θ1 = 2 and θ2 = 0.02 to correspond to
the values s1 = 1 and s2 = 0.01 used for the L1-type objective in Section 2.2.3.
The therapy horizon again was T = 21 [days] and as initial condition we used the
steady-state proportions for the uncontrolled system from Section 2.2.3 with the
total cancer volume normalized to C(0) = N1(0)+N2(0)+N3(0) = 1, i.e.,

N1(0) = 0.3866, N2(0) = 0.1722 and N3(0) = 0.4412.

An extremal controlled trajectory for the L2-type objective J2 was computed
[295] by discretizing the dynamics and the adjoint with 21,000 grid points using
an implicit Euler integration method and then using the interior-point solver IPOPT
[337] on the resulting optimization problem using the Applied Modeling Program-
ming Language AMPL [93]. The solution to the L1-type objective J1 is repeated
from Section 2.2.3. Figure 4.1 shows locally optimal controls (cytotoxic agent u



160 4 Optimal Control with Quadratic Objective on the Control

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

st
at

es
 N

N
1

N
3

N2
0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time

st
at

es
 N

N
3

N
1

N
2

Fig. 4.2 Locally optimal controlled trajectories for the objectives J2 (left) and J1 (right)

in red and cytostatic agent v in blue) for the objectives J2 (on the left) and J1 (on
the right). Since the coefficient θ2 at the cytostatic agent is small, the L2-solution
closely approximates the L1-solution for the cytostatic agent with very steep, almost
linear connections between the values v = 0 and v = vmax approximating the bang-
bang switches of the linear solution. For the quadratic case, the time intervals when
the dose rate/concentration rises from 0 to vmax respectively decreases from vmax to
0 are given by [9.637,10.231] and [20.192,21] with the control v ending with the
value v(T ) = 0 as it is required from the optimality condition since ψ2(T ) = 0. For
the linear case, the control for the cytotoxic agent switches at times σ1 = 10.115 and
σ2 = 19.895. Since vmax � 1, squaring the value for v leads to higher amounts of
the drug being used with the total values, measured by the integral

∫ T
0 v(t)dt, given

by 2.6527 for the linear objective and 3.1959 for the quadratic objective. Similarly,
using a quadratic objective, the total amounts of cytotoxic agents used are given by
11.5035 for J2 and by 9.6089 for J1. The reduction in the total cancer burden from
C(0) = 1 to C(T ) = N1(T )+N2(T )+N3(T ) is given by 0.8673 for minimizing J1

and by 0.8314 for minimizing J2. Thus, minimizing the quadratic objective only
leads to about a 3% improvement in the reduction of the tumor at the expense of
increasing the amounts of both the cytotoxic and cytostatic agents by about 20%.
Minimizing J1 would appear to be the preferred strategy. Figure 4.2 compares the
corresponding trajectories and shows that the two solutions lead to very similar be-
haviors of the controlled systems.

Each controlled trajectory is a strong local minimum for minimizing the corre-
sponding objective. For J1, these results were developed and given in Section 2.2.3;
for J2, this can be verified by integrating the matrix Riccati differential equation
(4.32) along the computed extremal. Figure 4.3 shows the graphs of the entries of
the solution S to the matrix Riccati differential equations (4.32).
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Fig. 4.3 Graphs of the entries of the solution S to the matrix Riccati differential equations (4.32).

4.3 A Mathematical Model with Emphasis on the Side Effects:
Bone Marrow Dynamics

We close this chapter by comparing the solutions for L1- and L2-type objectives for
a mathematical model for cancer chemotherapy originally formulated and analyzed
by R. Fister and C. Panetta [83] in which the focus is on the side effects of treat-
ment. In all the models considered so far, side effects were only indirectly taken
into account by including in the objective an integral term that measured the total
amount of drugs given. In the model considered here, these side effects become
central. A typical chemotherapeutic agent acts indiscriminately on rapidly prolif-
erating cells, a feature shown by many lines of cancer cells, but also by certain
healthy cells in the body. This, for example, leads to hair loss as a common side
effect on chemotherapy. More importantly, it includes bone marrow cells and for
this reason often the dosage limiting tissue damage in chemotherapy is hemopoi-
etic (related to blood cell formulation). Mature cells of these renewing tissues are
formed through differentiation from the self-renewing stem-cell population in the
bone marrow and it is generally accepted that “ideal cancer treatment would aim
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to bring about minimal normal stem cell kill” [126]. Toxicity to the bone marrow
thus is of tantamount importance in chemotherapy. This directly correlates with the
clinical practice of taking a blood cell count of the patient before treatment ses-
sions. If the blood cell count is too low, clinicians will either delay the treatment
or give a reduced dose. Thus the blood count is an essential factor in designing the
treatment. The particular model considered in this section is based on a standard
two-compartment growth model for tissue [74] and focusses on this aspect of treat-
ment. It was formulated by Eisen and Schiller [75] and then analyzed as an optimal
control problem by Fister and Panetta in [83] with an L2 Lagrange-type objective.
Mathematically, it fits within the class of bilinear models considered earlier and we
use it as one more example to compare L1 and L2-type optimal controls.

4.3.1 Model Formulation and Necessary Conditions for Optimality

In the model, only proliferating cells P and quiescent (or dormant) cells Q in the
bone marrow are distinguished. The growth rate of the proliferating cells is denoted
by γ and the transition rates from proliferating to quiescent cells and vice versa
are denoted by α and β , respectively. The rate at which bone marrow enters the
blood stream is denoted by ρ and the natural death rate of the proliferating cells is
called δ (c.f., Figure 4.4). It is assumed that all these parameters governing the cell
cycle remain constant over the time horizon considered. The overall dynamics of
the uncontrolled system then becomes a 2-compartment bilinear model of the form

Ṗ = (γ− δ −α)P+βQ, P(0) = P0, (4.36)

Q̇ = αP− (ρ+β )Q, Q(0) = Q0, (4.37)

with positive initial conditions.

Fig. 4.4 A 2-compartment model of proliferating and quiescent cells in the bone marrow.

As for the 2-compartment model in Section 2.1, there exists a well-defined steady
state for the proportions:

x =
P

P+Q
and y =

Q
P+Q

= 1− x.
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For, setting ω = γ− δ +ρ , it follows from equations (4.36) and (4.37) that,

ẋ =−ωx2 +(ω−α−β )x+β .

The interval [0,1] is positively invariant and has a unique globally asymptotically
stable equilibrium point at x̄ ∈ (0,1), the unique positive root of the equation

ωx2 +(α+β −ω)x−β = 0. (4.38)

In steady state, the uncontrolled system then approximately grows exponentially at
rate ξ given by

ξ = ω x̄−ρ . (4.39)

Table 4.1 Numerical values for the coefficients and parameters used in computations for the dy-
namical system (4.36) and (4.37).

Coefficient Interpretation Numerical value Reference
α Transition rate from 5.643 [83]

proliferating to
quiescent cells

β Transition rate from 0.48 [83]
quiescent to
proliferating cells

γ Growth rate 1.47 [83]
of proliferating cells

δ Death rate 0
of proliferating cells

ρ Rate at which bone marrow 0.164 [83]
enters the blood stream

x̄ Steady-state proportion 0.1031 Eq. (4.38)
of proliferating cells

ȳ Steady-state proportion 0.8869 Eq. (4.38)
of proliferating cells

ξ Approximate overall 0.0044 Eq. (4.39
growth rate

In our numerical computations below we use the parameter values from [83, 225]
that are summarized in Table 4.1. For these data, we have that x̄ = 0.1031 and ξ =
0.0044. In particular, in steady state only about 10% of the bone marrow cells are
proliferating and the total bone marrow mass is quite stagnant. Figure 4.5 shows
graphs of trajectories of the system for various initial conditions. The percentages
of cells in the proliferating compartment are initially set to 10%, 50% and 90%,
respectively, with the total bone marrow cells normalized to 1. These simulations
illustrate how quickly the steady-state behavior is reached for the percentages. While
the total number of bone marrow cells grows slowly as the steady state is reached,
note, however, that transient effects due to higher initial numbers of proliferating
cells produce significantly higher total numbers of bone marrow cells. The reason
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Fig. 4.5 Steady-state behavior of the dynamical system (4.36) and (4.37).

lies in the high transition rate α from proliferating to quiescent cells. Thus, not only
the total initial bone marrow cells, but also their distribution as proliferating and
dormant cells, i.e., the initial condition of (4.36)–(4.37), determines the total number
of bone marrow cells. Such a transient effect, quite common in control theory, would
not be captured in a simple scalar exponential growth model.

Once a chemotherapeutic agent is introduced, the controlled dynamics takes the
form

Ṗ = (γ− δ −α−σu(t))P+βQ, P(0) = P0, (4.40)

Q̇ = αP− (ρ+β )Q, Q(0) = Q0. (4.41)

Chemotherapy kills proliferating cells while quiescent cells are not affected by the
agent. As in Chapter 2, the log-kill hypothesis is made with parameter σ describing
the overall effectiveness of the drug. No pharmacokinetic equations are included in
the model. If we set N = (P,Q), this system takes the form of a single-input bilinear
system,

Ṅ = (A+ uB)N, N(0) = N0, (4.42)

with the matrices given by

A =

(
γ− δ −α β

α −(ρ+β )

)

and B =

(−σ 0
0 0

)

. (4.43)

Note that the positive orthant P= R
2
+ is positively invariant for the control system

since, whenever one of the variables P or Q vanishes, then the corresponding deriva-
tive is positive.

Different from previous formulations, in this model the side effects are the central
aspect of the model and, indeed, cancer cells are not even included. Cancer cells
and the effect of chemotherapy on the tumor come into play only implicitly through
the total drug dose given. Similarly as for the compartmental models considered in
Chapter 2, it is assumed that the total dose stands in a direct relation to the number
of cancer cells killed. Thus the objective becomes to give as large as possible a total
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dose of drugs—this will kill a proportionally large number of cancer cells—and at
the same time keep the bone marrow cells high. Including a parameter ν = 1,2 to
model both a linear and a quadratic term on the control, it would, for example, be
reasonable to maximize an objective of the following form:

J̃ν(u) = rN(T )+

∫ T

0
qN(t)+

1
ν

u(t)νdt → max, ν = 1,2. (4.44)

As before, r = (r1,r2) and q = (q1,q2) are vectors of positive weights. This leads to
the following optimal control problem:

[B̃Mν] For a fixed therapy horizon [0,T ], maximize (4.44) over all Lebesgue mea-
surable functions u : [0,T ]→ [0,umax] subject to the dynamics (4.42).

First-order necessary conditions for optimality again follow from the conditions
of the Pontryagin maximum principle (Theorem A.2.1 in Appendix A), with the
only difference that the minimization condition of the Hamiltonian function H is re-
placed by a maximization condition. It follows from Corollary A.2.2 in Appendix A
that extremals for either problem are normal and thus we already set λ0 = 1 in the
definition of the Hamiltonian H,

H = qN +
1
ν

uν +λ (A+uB)N. (4.45)

The adjoint equation and transversality condition read the same in both cases:

λ̇ =−λ (A+ uB)− q, λ (T ) = r. (4.46)

Again it follows from the structure of the matrices A and B that the positive orthant
in the dual space, P∗ =

(
R

2
+

)∗
, is negatively invariant under the adjoint flow and

thus, overall, we have the following statement:

Corollary 4.3.1. For both problems [B̃M1] and [B̃M2] all states and costates are
positive over [0,T ].

In this setting, however, there is not much difference between the two problem
formulations. We shall show below that, as expected, optimal controls for the L1-
formulation are bang-bang. But here this also holds for the L2-formulation. The rea-
son simply is that although the objective is quadratic in u, in the maximum principle
we now need to maximize the Hamiltonian H. But this is a strictly convex function
of the control and thus the maximum will always lie at one of the boundary values
u = 0 or u = 1. In fact, the optimal control u∗ for [B̃M2] satisfies

u∗(t) =

⎧
⎪⎨

⎪⎩

0 if 1
2 +λ (t)BN(t)> 0,

1 if 1
2 +λ (t)BN(t)< 0,
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with 1
2 +λBN acting as the switching function. In a certain sense, these two problem

formulations only differ in the weights in the objective.
Therefore, in order to get the typical L2-formulation (in which one minimizes a

convex or maximizes a concave functional), we rewrite the objective in the same
way as it was done in [83] in the form

Jν(u) = rN(T )+

∫ T

0
qN(t)− 1

ν
(1− u(t))ν dt → max, ν = 1,2. (4.47)

For the L1-formulation, the functionals J̃1 and J1 are equivalent. We thus consider
the following optimal control problems:

[BMν] For a fixed therapy horizon [0,T ], maximize (4.47) over all Lebesgue mea-
surable functions u : [0,T ]→ [0,1] subject to the dynamics (4.42).

The Hamiltonian H now takes the form

H = qN − 1
ν
(1− u)ν +λ (A+uB)N, (4.48)

but the adjoint equation and transversality condition are not affected by this change
in the functional relation on the control. In particular, Corollary 4.3.1 remains valid
and all states and costates are positive. Furthermore, like the models considered
previously (e.g., see Section 2), the optimal control problems [BMν] have a 1-
dimensional group of scaling symmetries (invariance) that allow us to normalize
the initial condition N0 to N0 = 1. For, if we scale the states as κN and the coeffi-
cients in the objective as r

κ
and q

κ
, then the corresponding solutions to the dynamics

and adjoint equation are given by κN(t) and 1
κ
λ (t). Hence the values of the ob-

jective function Jν(u), the Hamiltonian H and all associated switching or indicator
functions remain invariant. We now distinguish between L1- and L2-type objectives.

4.3.2 Analysis with an L2-type Objective

The maximum of the Hamiltonian H for u ∈ R is attained at

u = 1+λ (t)BN∗(t)

and defining the indicator function as

ψ(t) = 1+λ (t)BN∗(t) = 1−σλ1(t)P∗(t), (4.49)

the optimal control u∗ therefore satisfies

u∗(t) =

⎧
⎨

⎩

0 if ψ(t)≤ 0,
ψ(t) if 0 ≤ ψ(t)≤ umax,
umax if umax ≤ ψ(t).

(4.50)
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Fig. 4.6 Optimal control and corresponding response of the system for problem [BM2].

Since states and multipliers are positive, it follows that ψ(t)< 1. Thus, if umax = 1,
then optimal controls will never be at their maximum values. Similarly, if umax < 1
and the penalty term is absent, r = 0, then ψ(T ) = 1 and thus optimal controls will
always end with an interval of full dose therapy.

Figure 4.6 shows the optimal control for the parameter values in Table 4.1 from
the steady-state initial condition P0 = 0.1031 and Q0 = 0.8869 with the initial tumor
volume normalized to N0 = 1 for the coefficients r = (1,1) and q = (2,2) in the
objective. The optimal solution is given by u ≡ 0 over the interval [0,τ] with τ =
17.82 and then follows the interior control over the final interval [τ,T ] increasing
the dose rate/concentration. Since the emphasis in this model is on side effects and a
cumulative measurement of the bone marrow is undertaken by means of the qN term
in the Lagrangian in the objective, here administration of chemotherapy is postponed
as long as possible and the administration schedule ends with dose intensification
toward the end of therapy. This leads to almost the opposite behavior as when the
emphasis is put on the tumor cells as it is the case in the cell-cycle specific models in
Chapter 2. From a practical side, this may seem somewhat confusing, but it makes
perfect sense mathematically. Essentially, in both models chemotherapy kills the
proliferating cells, but in the models of Chapter 2 these are tumor cells and optimal
controls aim to eradicate them as fast as possible while here these are bone marrow
cells that optimal controls want to protect as long as possible. Thus, clearly the
different emphasis put into the forms of the objective matters and the analysis of this
model offers additional insights into the scheduling of chemotherapeutic agents.

The local optimality of this solution is easily verified using the approach of
Section 4.1.3. If we change the control to v = 1− u and rewrite the maximization
problem as a minimization problem, then the objective becomes to minimize

Ĵ(u) =−rN(T )+
∫ T

0
−qN(t)+

1
2

v(t)2dt → min
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Fig. 4.7 The components of the solution S of the Riccati differential equation (4.51) over the
interval [τ ,T ] = [17.82,21].

and is of the form considered in Section 4.2.1 with dynamics

Ṅ = (A+ uB)N = (Â+ vB̂)N

and the matrices Â and B̂ given by

Â =

(
γ− δ −α−σ β

α −(ρ+β )

)

and B̂ =

(
σ 0
0 0

)

.

Since the control u is constant over the interval [0,τ], the Riccati differential equa-
tion (4.32) reduces to a linear Lyapunov equation for which a solution always exists.
Hence it is only necessary to integrate this equation over the interval [τ,T ] where
the control takes values in the interior of the control set. Since B̂ = −B, equation
(4.32) remains valid in the form

Ṡ+S (A+ uB)+ (A+ uB)T S (4.51)

−(SBN +BTλ T )(SBN +BTλ T )T ≡ 0, S(T ) = 0,

and Figure 4.7 shows the components of the solution. The existence of this solution
over the interval [τ,T ] then implies the strong local optimality of the control by
Theorem 4.1.2.
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4.3.3 Analysis with an L1-type Objective

For the L1-type objective, as in the other models considered earlier, singular controls
are not optimal and optimal controls are bang-bang. For, the switching function for
this model is the same as the indicator function for the L2-formulation, given by

Φ(t) = 1+λ (t)BN∗(t)

and thus optimal controls satisfy

u∗(t) =
{

umax if Φ(t)> 0,
0 if Φ(t)< 0.

Regardless of whether a minimization or maximization problem is considered, the
adjoint equation remains the same and thus the formulas for the derivative of the
switching function derived in Chapter 2 apply. In particular, as in Section 2.1, we
have that

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t)) = λ (t)
{
[B, [A,B]]−qB2}N∗(t). (4.52)

However, for a maximization problem, the Legendre-Clebsch condition for opti-
mality of a singular control now requires that this expression be nonnegative, i.e.,
that

∂
∂u

d2

dt2

∂H
∂u

(λ (t),x(t),u(t))≥ 0.

Since B2 = −σB and Φ̇(t) = {λ (t)[A,B]− qB}N∗(t) ≡ 0 along a singular arc, it
follows that

qB2N∗(t) =−σqBN∗(t) =−σλ (t)[A,B]N∗(t).

Hence

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t)) = λ (t){[B, [A,B]]+σ [A,B]}N∗(t).

along a singular arc. Direct calculations verify that

[A,B] = σ
(

0 −β
α 0

)

and [B, [A,B]] =−σ2
(

0 β
α 0

)

so that

∂
∂u

d2

dt2

∂H
∂u

(λ (t),N∗(t),u∗(t)) = σ2λ (t)
(

0 −2β
0 0

)

N∗(t) =−2σ2βλ1(t)Q∗(t)< 0

violating the Legendre-Clebsch condition. Thus all singular arcs locally minimize
the objective.
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Fig. 4.8 Optimal control and corresponding response of the system for problem [BM1].

Proposition 4.3.1. If (N∗,u∗) is an optimal controlled trajectory for problem [BM1],
then there does not exist an interval on which the control u∗ is singular.

Figure 4.8 shows a locally optimal control and its corresponding trajectory for
problem [BM1] and the same parameter values as before. In the objective the same
values r = (1,1) and q = (2,2) were used and θ was taken to be θ = 1. The control
is bang-bang with one switching from u = 0 to u = umax and it follows that the
corresponding controlled trajectory is a strong local minimum (c.f., Corollary 2.1.2).
Note that the behavior of the states is very similar for the two models. For the L1

objective the switching is at time τ = 16.04.

4.3.4 Comments and Interpretations

Different from the solutions in Section 2, for both an L1- and L2-type formulation
of the objective, the administration of drugs is delayed toward the end of the ther-
apy. The reason lies in the emphasis on the side effects in the model. Bone marrow
reproduces at a very low rate in steady state (ξ = 0.0044 for the parameter values
used here) and thus it simply is beneficial in terms of the objective to defer any ac-
tions that will deplete it in time. This is just the opposite from when the emphasis
is put on minimizing the tumor volume as it was done in the models considered
in Chapter 2, but it makes perfect sense from a mathematical optimization point of
view. Here simply competing objectives and rationales are employed and finding the
proper balance between them is precisely one of the reasons why it is so difficult to
find the perfect cancer treatment schedule. In medical practice, often the emphasis
first and foremost is on the tumor and this leads to upfront dosing with side effects
becoming the limiting aspect of therapy. This would be more in agreement with the
models considered in Chapter 2.



Chapter 5
Optimal Control of Mathematical Models
for Antiangiogenic Treatments

In the models considered so far, the focus was on the cancerous cells progressing
from mathematical models for homogeneous tumor populations of chemotherapeu-
tically sensitive cells to heterogeneous structures of cell populations with varying
sensitivities or even resistance. From an optimal control point of view, optimal treat-
ment schedules change from bang-bang solutions with upfront dosing (that corre-
spond to classical MTD approaches in medicine) to administrations that also include
singular controls (which correspond to time-varying dosing schedules at less than
maximum rates) as heterogeneity of the tumor population becomes more prevalent.
In this chapter, we begin to analyze mathematical models that also take into account
a tumor’s microenvironment.

Arguably the most important component of a tumor’s microenvironment is its
vasculature. In order to grow beyond a small size, a growing tumor needs to develop
its own network of blood vessels and capillaries that will provide it with nutrients
and oxygen. This process is called angiogenesis and was already pointed out as a
therapeutic target by J. Folkman in the early 1970s [85, 86] (see Section 1.3.3).
Antiangiogenenic treatments aim at depriving the tumor of this needed vasculature
by either disrupting the signaling process that the tumor uses to recruit surround-
ing, mature, host blood vessels or by directly inhibiting the growth of endothelial
cells that form the lining of the newly developing blood vessels and capillaries.
Ideally, without an adequate support network, the tumor shrinks and its further de-
velopment is halted. Rather than fighting the fast duplicating, genetically unstable,
and continuously mutating tumor cells, this indirect treatment approach targets the
genetically stable endothelial cells. As a consequence, no clonal resistance to angio-
genic inhibitors has been observed in experimental cancer [28] and for this reason,
after the discovery of antiangiogenic mechanisms that the tumor uses to control its
vasculature in the 1990s [90, 66, 161], antiangiogenic treatments were a new hope
in the war on cancer [141], a therapy ‘resistant against resistance’. Unfortunately
these high hopes have not been fully realized because of the indirect mechanism
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of targeting cancer cells. Nevertheless, in connection with traditional approaches
that directly kill tumor cells like chemo- or radiotherapy, antiangiogenic treatments
have become an important part in the overall strategy to combat a tumor. Thus, and
especially in combination treatments, the question how to best schedule therapies
over time needs to be answered. In clinical trials, because of the great complexity of
the medical problem, the scheduling of drugs is pursued in expensive, exhaustive,
medically guided trial-and-error approaches (e.g., [39, 69, 160]). But the extent to
which treatment schedules can be analyzed in this way are limited and there exists
an opportunity for modeling and mathematical analysis—in silico procedures—to
be useful. As a discipline, optimal control theory is uniquely suited to analyze such
scheduling problems and to provide qualitative insights into the structure of opti-
mal protocols. As we shall see, these structures are not at all obvious and relatively
difficult, or at least very expensive, to test in a laboratory setting.

We start our analysis of mathematical models for antiangiogenic treatments by
considering this treatment modality as a monotherapy, that is, as a stand alone proce-
dure. In Chapter 7 we shall consider combinations of antiangiogenic treatments with
chemo- and radiotherapy and it will be seen there that the solutions to these multi-
input optimal control problems strongly build upon the solutions for the optimal
scheduling of antiangiogenic agents developed here. An inductive approach that first
analyzes a simplified model and then adds increasingly more realistic features (such
as pharmacokinetics and pharmacodynamics and combinations with other treatment
modalities) works exceptionally well for the types of models analyzed in this chap-
ter. These models are based on a widely influential population based mathematical
model for tumor development under angiogenic signaling that was developed and
biologically validated in 1999 by Hahnfeldt, Panigrahy, Folkman, and Hlatky [116]
and has become an object of strong interest also in the mathematical literature. For
example, its dynamic properties under various types of periodic treatment proto-
cols were analyzed by d’Onofrio and Gandolfi [257] and bifurcation phenomena
are considered in the work of Agur, Arakelyan, Daugulis, and Ginosar [4] or Forys,
Keifetz, and Kogan [91]. Numerous generalizations and variations of the underlying
model have been proposed (e.g., see [77, 251, 259, 281]) and to this date the model
is still undergoing vigorous development. It has been analyzed from an optimal con-
trol point of view in our work, e.g., [196, 200, 201, 204], and also in the research by
Swierniak et al., e.g., [314, 319, 320].

In this chapter, we formulate and analyze as optimal control problem a class
of mathematical models for tumor antiangiogenesis that is based on this model by
Hahnfeldt et al. [116]. Its principal state variables are the primary tumor volume, p,
and the carrying capacity of the vasculature, q. The latter denotes a measure for the
tumor volume sustainable by the vascular network. It is predominantly measured
by the endothelial cells and we therefore sometimes also refer to it as the endothe-
lial support of the tumor for short. The dynamics describes the interactions between
these variables. The tumor volume p changes according to some growth function
dependent on the carrying capacity q and the q-dynamics consists of a balance of
stimulatory and inhibitory effects. In [116] an asymptotic analysis of the underly-
ing consumption-diffusion model is carried out that leads to the specific form for
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these terms proposed by Hahnfeldt et al. However, even within the premises of the
approach taken in [116], there exists some freedom in the modeling and the original
model has undergone various modifications with the first one given by Ergun, Camp-
hausen, and Wein in [77]. In this paper, the authors also for the first time consider
antiangiogenic therapy as an optimal control problem: given an a priori specified
amount of angiogenic inhibitors, how should it be scheduled in time to achieve the
best possible effect on minimizing the tumor volume? It is this formulation that we
shall analyze in this chapter. As we shall show, optimal antiangiogenic treatment
schedules are strongly determined by a time interval along which controls are sin-
gular. Indeed, optimal controlled trajectories maintain, as much as this is possible, a
specific relation between tumor volume p and carrying capacity q that is character-
ized by an optimal singular arc along which the destroying capacity of the treatment
is maximized. This is done through a judicious choice of the concentration of the an-
tiangiogenic agent which is expressed by the singular control. These mathematical
results show a strong correspondence to the medical idea that normalizing the tumor
vasculature through antiangiogenic therapy has beneficial aspects for the delivery of
chemotherapeutic agents [131, 132] and this will become even stronger when such
combination treatments will be considered in Chapter 7.

Several variations of the model by Hahnfeldt et al. have been proposed in the
literature and, more generally, in Section 5.1 we consider a class of systems that
includes both the original formulation and the modification by Ergun, Camphausen,
and Wein in [77] as well as some systems interpolating between these two models.
We also give a detailed derivation of the original model by Hahnfeldt, Panigrahy,
Folkman, and Hlatky from an asymptotic analysis of the underlying consumption-
diffusion equation. For these models, we derive a complete global solution to the
optimal control problem in form of a regular synthesis of controlled trajectories.
Such a synthesis can be thought of as a GPS-system which, for every possible com-
bination of the tumor volume p, its carrying capacity q and the available amount
y of antiangiogenic agents, gives a complete “road map” of how optimal protocols
are administered, both qualitatively and quantitatively. This embodies a full global
solution of the optimal control problem. Since we shall consider several models, in
Section 5.2 we give a general formulation of the problem with generic stimulation
and inhibition terms, S = S(p,q) and I = I(p,q), in the dynamics for the carrying
capacity. We then use this formulation to first develop those aspects and necessary
conditions for optimality that are common to all the models considered here. The
syntheses of optimal controlled trajectories for the main versions of the system dy-
namics are then developed in Section 5.3 for the original model by Hahnfeldt et al.
and in Section 5.4 for the modification by Ergun et al. As will be seen, although
the models differ vastly in some of their modeling premises, their optimal solutions
are qualitatively identical. In each case, and this holds for the full class of systems
considered here, an optimal singular arc is the core structure of these syntheses and
optimal controls follow specific concatenations of full- or no-dose treatments with
this singular control.
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5.1 A Class of Mathematical Models for Tumor Angiogenesis

We formulate a dynamical system for tumor development under angiogenic signal-
ing based on the equations by Hahnfeldt, Panigrahy, Folkman, and Hlatky [116]. In
this model, the spatial aspects of the underlying consumption-diffusion process that
stimulate and inhibit angiogenesis are incorporated into a nonspatial 2-compartment
model with the primary tumor volume, p, and the carrying capacity of the vascu-
lature, q, as its principal variables. Intuitively, the latter can be thought of as the
ideal tumor volume sustainable by the vascular network. It is closely related to the
volume of endothelial cells that form the lining of the existing and newly forming
capillaries and we sometimes also call it the endothelial support of the tumor for
short. The dynamics simply consists of two ODEs that describe the evolution of the
tumor volume and its carrying capacity. In principle, any of the underlying tumor
growth models can be used, but here, and following the original modeling, we shall
mostly employ a Gompertzian model of the form

ṗ =−ξ p ln

(
p
q

)

(5.1)

where ξ is a constant tumor growth parameter. The inverse quotient q
p is sometimes

also called the endothelial density. Note that the carrying capacity and tumor volume
are balanced for p = q and thus ṗ = 0 in this case while the tumor volume shrinks
for inadequate endothelial support (q < p) and increases if this support is plentiful
(q > p). Different from other approaches, the carrying capacity is not considered
constant, but becomes a state variable whose evolution is governed by a balance of
stimulatory and inhibitory effects. The general structure of this dynamics takes the
form

q̇ = S(p,q)− I(p,q)− μq (5.2)

where I and S denote endogenous inhibition and stimulation terms and the term μq,
μ ≥ 0, that has been separated describes the loss to the endothelial cells through
natural causes (death, etc.). These effects are small when compared with the stim-
ulation and inhibition exerted by the tumor and μ is often set to 0. The important
structures defining the model are the functional forms for the inhibition and stim-
ulation terms, I(p,q) and S(p,q). Clearly, these should reflect the main properties
of angiogenesis and important aspects are that “tumor-derived inhibitors from all
sites act more systemically, whereas tumor-derived stimulators act more locally to
the individual secreting tumor site” [116, pg. 4771]. Accordingly, the half lives of
endogenous inhibitors greatly exceed those of endogenous stimulators, or, equiva-
lently, their clearance rate is much smaller.
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5.1.1 Asymptotic Analysis of a Consumption-Diffusion
Model for Angiogenesis

In their paper [116], Hahnfeldt, Panigrahy, Folkman, and Hlatky derive specific
functional forms for I and S using an asymptotic spatial analysis of the underlying
consumption-diffusion process for the concentrations c of stimulators and inhibitors
both inside and outside of the tumor. It is assumed that the tumor is spherically sym-
metric with radius r0, that it secrets stimulators at rate s and that these proteins are
cleared in the body (i.e., taken up by other proteins) at rate γ . The basic mathemati-
cal model therefore is described by the following consumption-diffusion equation

∂c
∂ t

= D2Δc− γc+ s (5.3)

where D2 represents a diffusion coefficient, Δc denotes the Laplacian of the con-
centration as a spatial function in standard coordinates x, y, and z, c = c(x,y,z),

Δc =
∂ 2c
∂x2 +

∂ 2c
∂y2 +

∂ 2c
∂ z2 ,

and s denotes the secretion rate of the stimulators/inhibitors. For simplicity this rate
is assumed to be piecewise constant given by s = s0 inside the tumor and by s = 0
outside the tumor.

Assuming that the tumor is radially symmetric, the concentration c only depends
on the distance r to the center of the tumor, c = c(r). In spherical coordinates, the
Laplace operator Δc takes the form

Δc(r) =
1
r2

∂
∂ r

(

r2 ∂c
∂ r

)

= c′′(r)+
2c′(r)

r

and in so-called quasi steady state it also is assumed that the system has settled
down to a temporal stationary scheme, i.e., that ∂c

∂ t = 0. Under these assumptions
the consumption-diffusion equation (5.3) reduces to the second order ODE

c′′(r)+
2c′(r)

r
− γc(r)

D2 +
s

D2 = 0

or, equivalently,

r2c′′(r)+ 2rc′(r)− γ
r2

D2

[

c(r)− s
γ

]

= 0.

Transforming the dependent variable according to

z(r) =
√

r

[

c(r)− s
γ

]

, (5.4)
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a direct calculation verifies that

r2c′′(r)+ 2rc′(r) =
1√
r

(

r2z′′(r)+ rz′(r)− 1
4

z

)

and thus

r2z′′(r)+ rz′(r)−
(

γ
r2

D2 +
1
4

)

z = 0.

Rescaling the independent variable as

r =
D√γ

w,

we obtain a modified Bessel equation of order 1
2 for the unknown function z = z(w),

w2z′′(w)+wz′(w)−
(

w2 +
1
4

)

z = 0, (5.5)

Two linearly independent solutions for this equation can be given in closed form as

z1(w) =
ew
√

w
and z2(w) =

e−w
√

w

and thus any solution z of (5.5) is of the form

z(w) = αz1(w)+β z2(w) =
αew +βe−w

√
w

. (5.6)

for some real numbers α and β .
The concentration c= c(r) of stimulators at distance r = D√γ w to the tumor center

is a function made up of a solution nin(r) that describes the concentration inside the
tumor, i.e., over the interval [0,r0], and another solution nout(r) that describes this
concentration outside of the tumor, or, formally, over the interval [r0,∞). In the first
case, the secretion rate s is set to s≡ s0 while it is s≡ 0 in the second. The differential
equations differ in this constant term. Note that it follows from the transformation
(5.4) that

nin(r) =
zin

(√γ
D r
)

√
r

+
s0

γ
and nout(r) =

zout

(√γ
D r
)

√
r

.

The concentration inside the tumor cannot have a singularity at r = 0 and for this
reason must be a smooth function of r. This requires that for zin(w) we have that
α+β = 0 in (5.6) and thus necessarily, for some constant a

zin (w) =
a
2

(
ew
√

w
− e−w

√
w

)

= a
sinhw√

w
.



5.1 A Class of Mathematical Models for Tumor Angiogenesis 177

Similarly, the concentration outside of the tumor decays as r → ∞ and therefore for
zout (w) we must have that α = 0. Hence, with some constant b we have that

zout (w) = b
e−w
√

w
.

Overall, it is then postulated that the inside and outside concentrations cin(r) and

cout(r) match in a continuously differentiable way for r = r0. If we set ã =

√√γ
D a,

b̃ =

√√γ
D b and w0 =

√γ
D r0, then continuity of the concentration at the tumor radius

r0 is equivalent to

cin(r0) =
s0

γ
+ ã

sinh(w0)

w0
= b̃

e−w0

w0
= cout(r0). (5.7)

Similarly, for the derivatives we have that

d
dr

(cin(r)) = ã
d

dw

(
sinhw

w

)
dw
dr

= ã

(
coshw

w
− sinhw

w2

)√γ
D

= ã
√γ
D

wcoshw− sinhw
w2

and

d
dr

(coutside(r)) = b̃
d

dw

(
e−w

w

)
dw
dr

= b̃

(

−e−w

w
− e−w

w2

)√γ
D

=−b̃
√γ
D

1+w
w2 e−w.

The concentrations match continuously differentiable at r0 if and only if

ã(w0 coshw0 − sinhw0) =−b̃(1+w0)e
−w0 . (5.8)

Substituting (5.7) into (5.8) gives

ã(w0 coshw0 − sinhw0) =−(1+w0)

[
s0

γ
+ ã

sinh(w0)

w0

]

w0

which yields

ã =− s0

γ
[1+w0]e

−w0 and b̃ =
s0

γ
[w0 coshw0 − sinhw0] .

Summarizing, we have the following formulas:

Proposition 5.1.1. [116] The inside and outside tumor concentrations of inhibitors/
stimulators are given by
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cin(r) =
s0

γ

⎡

⎣1−
(

1+
√γ
D

r0

)

exp

(

−
√γ
D

r0

) sinh
(√γ

D r
)

(√γ
D r
)

⎤

⎦ ,

and

cout(r) =
s0

γ

[√γ
D

r0 cosh

(√γ
D

r0

)

− sinh

(√γ
D

r0

)] exp
(
−

√γ
D r
)

(√γ
D r
) .

For the case of angiogenic inhibitors, in accordance with their more systemic
effects, the clearance rate γ is small against the diffusion coefficient. Assuming that

γ � D2

r2
0

, or, equivalently that
√γ
D r0 � 1, these solutions give rise to the following

asymptotic expansions for the concentrations inside and outside of the tumor:

cin(r) =
s0

γ

[

1−
(

1+
√γ
D

r0

)(

1−
√γ
D

r0 +
1
2

(√γ
D

r0

)2

+ . . .

)

×
(

1+
1
6

(√γ
D

r

)2

+ . . .

)]

=
s0

γ

[

1−
(

1− 1
2
γ

r2
0

D2 + . . .

)(

1+
1
6
γ

r2

D2 + . . .

)]

= s0

[
1
2

r2
0

D2 − 1
6

r2

D2 + . . .

]

≈ s0

6D2

[
3r2

0 − r2]

and

cout(r) =
s0

γ

[√γ
D

r0

(

1+
1
2

(√γ
D

r0

)2

+ . . .

)

−
(√γ

D
r0 +

1
6

(√γ
D

r0

)3

+ . . .

)]

×
(

1−
√γ
D r+ . . .

)

(√γ
D r
)

=
s0

γ
r0

r

[(

1+
1
2
γ

r2
0

D2 + . . .

)

−
(

1+
1
6
γ

r2
0

D2 + . . .

)]

(1+ . . .)

≈ 1
3

s0r3
0

D2

1
r
.

For r = r0, this expression reduces to the term 1
3

s0
D2 r2

0 and it follows that inhibitors
will impact endothelial cells in a way that grows with the square of the tumor radius,
r2

0, i.e., is proportional to the tumor surface. With p denoting the primary tumor
volume and q representing the carrying capacity measured in terms of the volume
of endothelial cells, and arguing that the inhibition term I(p,q) is determined by
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tumor cells producing inhibitors that impact the vasculature, the functional form of
the inhibition term I(p,q) is given by the product of p

2
3 with q, i.e., takes the form

I(p,q) = d p
2
3 q (5.9)

with d a constant, mnemonically labeled as a “death” rate. More intuitively, in-
hibitors need to be released through the tumor surface and therefore the interaction
is not between the volumes p and q, but between p

2
3 and q.

On the other hand, tumor-derived stimulators act locally and this is reflected in
a fast clearing of the inhibitors. If γ is large, then the exponential terms are small
and approximately we get that

cin(r) =
s0

γ

⎡

⎣1−
(

1+
√γ
D

r0

)

exp

(

−
√γ
D

r0

) sinh
(√γ

D r
)

(√γ
D r
)

⎤

⎦

≈ s0

γ

[

1−
(

rD√γ
+

r0

r

)
1
2

exp

(√γ
D

(r− r0)

)]

≈ s0

γ
, r < r0,

and

cout(r) =
s0

γ

[√γ
D

r0 cosh

(√γ
D

r0

)

− sinh

(√γ
D

r0

)] exp
(
−

√γ
D r
)

(√γ
D r
)

≈ s0

γ

[
1
2

(√γ
D

r0 − 1

)

exp

(√γ
D

r0

)] exp
(
−

√γ
D r
)

(√γ
D r
)

≈ s0

γ

[
1
2

(
r0

r
− D

r
√γ

)

exp

(√γ
D

(r0 − r)

)]

≈ 0, r > r0.

It thus follows that the impact of the stimulators is relatively constant with tumor
size.

As the tumor radius r0 increases, the effect of the inhibitors on endothelial cells
thus will become dominant over the one of the stimulators leading to a saturation of
tumor growth. Since c(r0) ≈ 1

3
s0
D2 r2

0 for angiogenic inhibitors and cin(r0) ≈ s0
γ for

tumor derived stimulators, it can therefore be argued that the inhibitor term I(p,q)
grows at a rate of pαqβ faster than the stimulator term S(p,q) where approximately
α+β = 2

3 ,
I(p,q)
S(p,q)

� pαqβ , α+β =
2
3
. (5.10)

Summarizing, an asymptotic analysis of the underlying consumption-diffusion
model establishes the following two principal conclusions about the relations for
endogenous inhibition and stimulation between the tumor and its vasculature:
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1. the inhibitor I(p,q) impacts endothelial cells in a way that is proportional to the

tumor surface area, i.e., grows like p
2
3 , and

2. the inhibitor I(p,q) term tends to grow at a rate of pαqβ faster than the stimu-
lator term S(p,q) where α+β = 2

3 .

5.1.2 A Cornucopia of Models

Thus, taking into account (5.9), the stimulation term S can be expressed in the form

S(p,q)� p(
2
3−α)q1−β , α+β =

2
3
.

But there exists freedom in the choice of α and β . For example, choosing α = − 1
3

and β = 1 gives a stimulation term that is proportional to the tumor volume,

S(p,q) = bp, (5.11)

with b a constant labeled for “birth.” This choice, made in [116], results in a dynam-
ics for the carrying capacity of the form

q̇ = bp− d p
2
3 q− μq.

But also other choices are consistent with the above conclusions and, for example,
taking α = 2

3 and β = 0 results in the equally simple form

S(p,q) = bq (5.12)

when the stimulation is proportional to the carrying capacity. The latter choice in
fact generates a considerably simpler q-dynamics since q will factor,

q̇ = bq− d p
2
3 q− μq = q

(
b−d p

2
3 − μ

)
.

In quasi steady state, p and q will be closely related and thus both choices may be
thought of as similar, but these two systems have different types of optimal con-
trolled trajectories [204].

In the paper [116], the model using (5.11) was biologically validated based on ex-
perimental data for Lewis lung carcinoma implanted in male mice. Lewis lung car-
cinoma is a very fast growing type of cancer and for the parameter values reported
in [116] the q-dynamics is fast and the dynamics overall has a strong differential-
algebraic character, i.e., the movement is mostly confined to the slow manifold
in (p,q)-space defined by the equation q̇ = 0 (see Figure 5.1). It was argued by
Ergun, Camphausen and Wein in [77] that indeed the system reaches this steady
state too fast and hence in that paper modifications were made that slow down the
q-dynamics. Compared with the first conclusion above, in this approach the inhibitor
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term is taken proportional to the tumor radius r0, not the tumor surface r2
0, i.e., the

exponent 2
3 in the first conclusion of the analysis from [116] is replaced with 1

3 .

This leads to an inhibition term of the form I(p,q) = d p
1
3 q. At the same time, the

second conclusion of [116], that inhibitors tend to grow faster than stimulators with
the powers α and β adding to 2

3 , is retained which then leads to a stimulation term

of the form S(p,q) = bp
2
3 . Since the variables p and q tend to be closely related

in quasi steady state, it is still argued that p and q can be interchanged in a quasi
steady-state analysis and the variable p is replaced with q in the q-dynamics. This
leads to the simplified dynamics

q̇ = bq
2
3 − dq

4
3 − μq. (5.13)

As a justification for this choice of the stimulation term, it could also be argued that
the necrotic core of the tumor does not contribute to the stimulation of the vascula-
ture and thus the exponent 2/3 could be interpreted as scaling down the stimulation
effects from the full tumor volume p to a shell like region around the tumor sur-
face, i.e., use p

2
3 instead of p in the stimulation term to get S(p,q) = bp

2
3 . Then,

once again p is replaced with q in the quasi steady-state analysis. The mathemati-
cal advantage of this approach lies in a significant simplification, but formally this
eliminates a direct link between tumor volume p and endothelial support q and
thus decouples the vasculature from the tumor. While here some in a sense radical
changes have been made to the original model, we shall see in Section 5.4 that the
synthesis of optimal controlled trajectories is in its structure identical for these two
models.

But clearly, replacing p with q, although somewhat justified in the end by our
analysis to be given in this chapter, is somewhat problematic. We therefore also
consider the model that, as in [77] retains the exponent 1

3 to model the impact of in-
hibitors on the vasculature, but does not replace p with q. This leads to the following
inhibition and stimulation terms

I(p,q) = d p
1
3 q and S(p,q) = bp

2
3

with I
S � qp−

1
3 which is consistent with the second premise of [116]. More gener-

ally, we shall consider a stimulation term of the form

S(p,q) = bpθ

with θ a parameter. The choice θ = 1 corresponds to the term chosen in [116] while
θ = 2

3 is consistent with the modification made in [77]. Note that for θ = 1 we have
I
S � qp−

2
3 and thus α + β = 1

3 violating the second modeling premise of [116].
Thus these models can be thought of as interpolating between the models of [116]
and [77]. We summarize the q-dynamics of all four models in Table 5.1.

Figure 5.1 illustrates the uncontrolled dynamics for the models [H] from [116],
[E] from [77] and the two interpolating models [Iθ ] for θ = 2

3 and θ = 1 for param-
eter values based on the data from [116]. Since we eventually will be interested in
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Table 5.1 Models for inhibition and stimulation.
Model Inhibition I(p,q) Stimulation S(p,q) Reference

[H] dp
2
3 q bp [116]

[I] dp
1
3 q bpθ , θ = 2

3 , 1 [293]

[E] dq
4
3 bq

2
3 [77]
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Fig. 5.1 Phase portraits for the dynamical systems [H] (top left), [E] (top right), [I1] (bottom left),
and [I 2

3
] (bottom right) for the parameter values given in Table 5.2. The diagonal is shown as

dash-dotted line.

minimizing the tumor volume, we have elected to plot the tumor volume p verti-
cally and the carrying capacity q horizontally as this better visualizes tumor growth
and loss. Note the strong differential-algebraic character that the two models [H]
and [I1] show which have the inhibition term proportional to the tumor surface area;
away from the slow manifold the dynamics is almost horizontal. For the systems [E]
and [I 2

3
] when this term is proportional to the tumor radius, this dynamics, although

still quite fast, has been modulated. The parameter values that were used to gener-
ate these phase portraits are taken from [116] and are summarized in Table 5.2. We
shall use these values throughout this chapter in our numerical illustrations, but the
theoretical analysis will be done independently of specific parameter values and our
results are fully robust.
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Table 5.2 Variables and parameter values used in numerical simulations based on the data from
[116].

Variable/coefficients Interpretation Numerical value Dimension
p Tumor volume mm3

q Carrying capacity of the vasculature mm3

ξ Tumor growth parameter 0.084, 0.192 day−1

μ Natural loss of endothelial support 0, 0.02 day−1

b Stimulation parameter, ‘birth’ 5.85 day−1

d Inhibition parameter, ‘death’ 0.00873 mm−2 day−1

5.2 Antiangiogenic Treatment as an Optimal Control Problem

We formulate antiangiogenic treatment as an optimal control problem, state the nec-
essary conditions for optimality of the maximum principle (c.f., Theorem A.2.1 in
Appendix A), and derive general properties of optimal solutions that will apply to
all models considered. We then specialize to the main models separately in later
sections.

5.2.1 Formulation as an Optimal Control Problem

We now add treatment in terms of an antiangiogenic agent to the model. As in pre-
vious chapters, initially we do not include the standard pharmacokinetic model and
identify the agent’s dose rate with its concentration in the plasma. The variable u rep-
resents this control in the system. Following the log-kill model, a term γqu describes
the loss to the vasculature and is subtracted from the dynamics for the carrying ca-
pacity; γ is a constant that represents the antiangiogenic killing parameter. In view
of subsequent extensions, we prefer not to normalize the control set U , but choose
a compact interval U = [0,umax] with umax denoting an a priori set maximum dose
rate/concentration. Clearly, this interval could be normalized by replacing γ with
γumax, but in view of adding a pharmacokinetic model later on we prefer to keep
this mathematical redundancy in our formulation.

We consider the problem how an a priori given, fixed amount A of angiogenic in-
hibitors should be scheduled in time to achieve the smallest possible tumor volume.
In this formulation, there is no fixed therapy horizon [0,T ], but rather the terminal
time T is free, T ∈ [0,∞), and it merely represents the time when the minimum
tumor volume is being realized. Such a formulation, that also was considered by
Ergun, Camphausen, and Wein in [77], is practically of great interest and gives an
important alternative to the earlier finite therapy horizon formulations in Chapters 2
and 3. There exist various modifications of the formulation below that could be con-
sidered as well and lead to problems that all can be tackled using similar procedures
as they will be developed here with only minor modifications in the structure of
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the optimal solution (e.g., see [197, 205, 189]). We consider the following optimal
control problem for the antiangiogenic monotherapy problem:

[OCA] for a free terminal time T , minimize the terminal value p(T ) of the tumor
volume subject to the dynamics

ṗ =−ξ p ln

(
p
q

)

, p(0) = p0,

q̇ = S(p,q)− I(p,q)− μq− γuq, q(0) = q0,

over all Lebesgue measurable (respectively, piecewise continuous) functions
u : [0,T ] → [0,umax] that satisfy a constraint on the total amount of angiogenic
inhibitors to be administered,

∫ T

0
u(t)dt ≤ A. (5.14)

The solution to the problem gives the protocol that achieves the smallest tumor
volume achievable with the overall available amount A of inhibitors and T is the
time when the minimum tumor volume is being realized. Mathematically, it is more
convenient to adjoin the isoperimetric constraint (5.14) as a third variable and define
the problem in R

3
+. Hence we consider the following equivalent version of formu-

lation [OCA]:

[OCA] For a free terminal time T , minimize the terminal value p(T ) of the tumor
volume subject to the dynamics

ṗ =−ξ p ln

(
p
q

)

, p(0) = p0, (5.15)

q̇ = S(p,q)− I(p,q)− μq− γuq, q(0) = q0, (5.16)

ẏ = u, y(0) = 0, (5.17)

over all Lebesgue measurable functions (respectively, piecewise continuous)
u : [0,T ] → [0,umax] for which the corresponding trajectory satisfies y(T ) ≤
ymax=A.

Recall that, for any admissible control u : [0,T ] → [0,umax], the corresponding
trajectory z = (p,q,y)T is the solution to the initial value problem (5.15)–(5.17) and
that we call the pair (z,u) consisting of the control and its corresponding trajectory
a controlled trajectory. It is clear from the problem formulation that one condition
for the system to accurately reflect the underlying biological situation is that the
variables p and q remain positive. This holds for each of the models from Table 5.1
and will be established when we take a detailed look at specific systems. We make
the following natural assumption on the dynamics:
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(A) In quasi steady state, i.e., on the diagonal p = q, the upper limit umax on
the control is large enough to overcome the net balance between endogenous
stimulatory and inhibitory terms, i.e., for all q > 0 we have that

S(q,q)− I(q,q)< (γumax + μ)q.

Along intervals on the diagonal where this condition is not satisfied, stimula-
tory effects are simply too strong and it is not possible to reduce the tumor volume
locally with a maximum dose umax. Essentially, we assume that the maximum con-
centration for the antiangiogenic agent is large enough to overcome the endogenous
net-stimulation in equilibrium.

One consequence of using the Gompertzian growth function is that the tumor
volume is always decreasing in the region D+ = {(p,q) : p > q} and increasing in
the region D− = {(p,q) : p < q}. This generates some degeneracies in the problem
formulation [OCA] that are not very relevant medically and that we want to exclude
in our analysis. Essentially, this happens for initial conditions (p0,q0) that satisfy
q0 � p0 when the overall amount A of angiogenic inhibitors is too small. In such a
case, as it is schematically indicated in Figure 5.2, initially the tumor volume will
always be increasing until the diagonal D0 = {(p,q) : p = q} is crossed. Only then
the tumor volume can be reduced. But if A is too small, the minimum value that is
subsequently realizable will be higher than p0. In this case, the smallest tumor vol-
ume is therefore equal to p0 and was achieved at T = 0. Clearly, the mathematically
“optimal” solution for problem [OCA] thus is simply to do nothing and take T = 0.
It can easily be determined a priori whether this applies to a given initial condition
(p0,q0,A). In this case, it is still possible to slow down the tumor’s growth, for ex-
ample, by giving the full dose u = umax until all inhibitors run out (we shall see later
on that this need not be the best way of doing this). However, this then becomes a
different control problem and, from a practical point of view, we are fighting a lost
battle to begin with. We thus make the following definition.

Definition 5.2.1 (Well-Posed Initial Data). We say the initial data (p0,q0,A) are
ill-posed for the optimal control problem [OCA] if for no admissible control it is
possible to reach a point (p,q) with p < p0. The optimal solution for the problem
[OCA] with ill-posed data is given by T = 0. The initial data (p0,q0,A) are said to
be well posed if an objective value better than p0 is realizable. In this case, the final
time T along the optimal control is positive.

Clearly, whether or not given initial data (p0,q0,A) are well posed depends on the
specific system under consideration (inhibition and stimulation terms, values of the
parameters, etc.), but any initial condition (p0,q0) that satisfies p0 ≥ q0, i.e., lies in
D+ = {(p,q) : p> q} or on the diagonal D0 = {(p,q) : p= q}, is automatically well
posed. The same holds for the majority of initial conditions in D− = {(p,q) : p< q}
with, realistically, only extreme situations ill-posed. Henceforth we only consider
well-posed initial data (p0,q0,A).
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Fig. 5.2 Illustration of the dynamic behavior of the system for an ill-posed initial condition.

5.2.2 Necessary Conditions for Optimality—General Structure

Some arguments about optimality of controlled trajectories apply to all models re-
gardless of the specific terms chosen for the inhibition and stimulation terms and
in the rest of this section we develop those general facts before going into the de-
tails of the various models. As before, first-order necessary conditions for optimality
of a control u are given by the Pontryagin maximum principle (Theorem A.2.1 in
Appendix A). With a 3-dimensional row vector λ = (λ1,λ2,λ3)∈ (R3)∗, the Hamil-
tonian function H = H(λ , p,q,u) is given by

H(λ , p,q,u) =−λ1ξ p ln

(
p
q

)

+λ2 (S(p,q)− I(p,q)− μq− γuq)+λ3u. (5.18)

Theorem 5.2.1. If u∗ is an optimal control defined over an interval [0,T ] with corre-
sponding trajectory (p∗,q∗,y∗), then there exist a constant λ0 ≥ 0 and an absolutely
continuous co-vector, λ : [0,T ]→ (R3)∗, such that the following conditions hold:
(a) (nontriviality condition) (λ0,λ (t)) = (0,0) for all t ∈ [0,T ],
(b) (adjoint equations) λ1 and λ2 satisfy the equations

λ̇1 =−∂H
∂ p

= λ1ξ
(

ln

(
p
q

)

+ 1

)

−λ2

(
∂S
∂ p

(p,q)− ∂ I
∂ p

(p,q)

)

, (5.19)

λ̇2 =−∂H
∂q

=−λ1ξ
p
q
+λ2

(

μ− ∂S
∂q

(p,q)+
∂ I
∂q

(p,q)+ γu

)

, (5.20)

with terminal conditions

λ1(T ) = λ0, and λ2(T ) = 0; (5.21)

λ3 is constant and satisfies

λ3 =

{
0 if y(T )< ymax,

≥ 0 if y(T ) = ymax.
(5.22)
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(c) (minimum condition) for almost every time t ∈ [0,T ], the optimal control u∗(t)
minimizes the Hamiltonian along (λ (t), p∗(t),q∗(t)) over the control set [0,umax]
with minimum value given by 0,

H(λ (t), p∗(t),q∗(t),u∗(t)) = min
0≤v≤umax

H(λ (t), p∗(t),q∗(t),v)≡ 0. (5.23)

In order to simplify the notation, we write z = (p,q,y)T for the 3-dimensional
state. Also, recall that a pair (z,u) consisting of an admissible control u with corre-
sponding trajectory z = (p,q,y)T for which there exist multipliers (λ0,λ ) such that
the conditions of the Maximum Principle are satisfied is an extremal (pair) and the
triple (z,u,(λ0,λ )) is an extremal lift (to the cotangent bundle).

We start with establishing some general properties of optimal controls and ex-
tremals. We always assume that the initial conditions are well posed.

Lemma 5.2.1. Along an optimal trajectory (p∗,q∗,y∗), all available inhibitors are
exhausted, y∗(T ) = A, and at the final time p∗(T ) = q∗(T ) holds.

Proof. Since the initial condition is well posed, the optimal final time T is positive.
The tumor volume p is growing for p < q and is shrinking for p > q. Hence optimal
trajectories can only terminate at times where p∗(T ) = q∗(T ). For, if p∗(T )< q∗(T ),
then it would simply have been better to stop earlier since p was increasing over
some interval (T − ε,T ]. On the other hand, if p∗(T )> q∗(T ), then we can always
add another small interval (T,T + ε] with the control u = 0 without violating any
of the constraints and p will decrease along this interval if ε is small enough. Thus,
at the final time necessarily p∗(T ) = q∗(T ). If y∗(T ) < A, then it is still possible
to add a small piece of a trajectory for u = umax over some interval [0,ε]. Since
p∗(T ) = q∗(T ), it follows from assumption (A) that q̇∗(T )< 0 and ṗ∗(T ) = 0. Thus
the trajectory enters the region p > q where the tumor volume p is still decreasing
further. Hence T was not the optimal time. �

Lemma 5.2.2. Extremals are normal. The multipliers λ1 and λ2 cannot vanish si-
multaneously and λ2 has only simple zeroes.

Proof. The multipliers λ1 and λ2 satisfy the homogeneous linear system (5.19) and
(5.20) and thus they vanish identically if and only if they both vanish at some time
t. This is the case if and only if λ0 = 0 and thus in this case the nontriviality of
(λ0,λ (t)) implies that the constant multiplier λ3 is not zero. Hence it must be pos-
itive. The condition (5.23) therefore gives that u ≡ 0 and so the initial condition
is ill-posed. Contradiction. Without loss of generality, we therefore may assume
that λ0 = 1 and consequently λ1 and λ2 cannot vanish simultaneously. In particular,
whenever λ2(t) = 0, then the coefficient in (5.20) at λ1(t) does not vanish and thus
λ̇2(t) = 0. Hence λ2 has only simple zeroes. �

We henceforth normalize λ0 = 1. For almost every time t, the Hamiltonian
H(λ (t), p∗(t),q∗(t),u) is minimized over the interval [0,umax] as a function of u by
the optimal control u∗(t). Since H is linear in u, and defining the switching function
Φ as
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Φ(t) = λ3 −λ2(t)γq∗(t), (5.24)

it follows that

u∗(t) =

{
umax if Φ(t)< 0,

0 if Φ(t)> 0.
(5.25)

Lemma 5.2.3. If λ3 = 0, then the corresponding optimal control is constant over
the interval [0,T ] and given by the control u ≡ umax.

Proof. In this case, the switching function can equivalently be defined by λ2(t) and
thus has isolated zeroes by Lemma 5.2.2. Hence the corresponding control is
bang-bang. Furthermore, λ2(T ) = 0 and λ̇2(T ) =−ξλ1(T )

p∗(T)
q∗(T ) =−ξ < 0. Hence

λ2 is positive on some interval (τ,T ] near the terminal time and here the con-
trol is given by u(t) = umax. Since p∗(T ) = q∗(T ), it follows from assumption
(A) that the end piece of the trajectory lies in D− as long as the control is
u ≡ umax. But then λ2 cannot have another zero τ since otherwise we have H(τ) =
−λ1(τ)ξ p∗(τ) ln

(
p∗(τ)
q∗(τ)

)
= 0 and this contradicts equation (5.23). Thus the control

is constant u ≡ umax. �

Except for this degenerate case (the initial condition happens to be such that with
giving full dose all the time the diagonal is reached exactly when all inhibitors are
exhausted), we can and henceforth will assume that λ3 is positive. In particular, in
this case optimal controls always end with an interval (τ,T ] where u ≡ 0.

Corollary 5.2.1. If λ3 > 0, then there exists an interval (τ,T ] such that u∗(t)≡ 0 on
(τ,T ].

Proof. By the transversality condition (5.21) we have that Φ(T ) = λ3 > 0 and thus
optimal controls are 0 near the terminal time. �

Corollary 5.2.2. If an optimal control is singular over an interval I, then λ2(t)> 0
for t ∈ I.

Proof. This follows from the facts that λ3 > 0 and the switching function Φ van-
ishes identically on I. �

5.2.3 Singular Control and Singular Arcs

Different from the problems considered in Chapter 2, singular controls now are at
the heart of the solution for the optimal problem [OCA]. In this section, we give a
preliminary analysis of their local structure and optimality under these rather general
assumptions. If the control u is singular on some open interval I, the corresponding
trajectory z = (p,q,y)T is called a singular arc and the triple (z,u,λ ) a singular
extremal (see Definition A.3.2 in Appendix A).
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Again we need to analyze the switching function and its derivatives and, as al-
ready seen earlier, these computations can be expressed concisely within the frame-
work of geometric optimal control theory. We write the dynamics in the form

ż = f (z)+ ug(z) (5.26)

where

f (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)

S(p,q)− I(p,q)− μq

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and g(z) =

⎛

⎜
⎜
⎜
⎜
⎝

0

−γq

1

⎞

⎟
⎟
⎟
⎟
⎠

with f the drift and g the control vector field of the system. With this notation, the
Hamiltonian H takes the form

H = 〈λ , f (z)+ ug(z)〉 , (5.27)

the adjoint equation for the multipliers simply reads

λ̇ =−λ (D f (z(t))+ u(t)Dg(z(t))) (5.28)

and the switching function Φ becomes the inner product of the multiplier λ with
the control vector field g,

Φ(t) = λ3 −λ2(t)γq(t) = 〈λ (t),g(z(t))〉 .

For nonlinear models, the derivatives of the switching function can elegantly be
computed in terms of the Lie-brackets of the drift and control vector fields. Since
the Lagrangian L of the general problem formulation [OC] from Section A.3 in
Appendix A vanishes for problem [OCA], Proposition A.3.1 takes the following
form:

Proposition 5.2.1. If h is a continuously differentiable vector field h and

Ψ(t) = 〈λ (t),h(z(t))〉 ,

then the derivative ofΨ along a solution to the system equation (5.26) for control u
and a solution λ to the corresponding adjoint equation (5.28), is given by

Ψ̇ (t) = 〈λ (t), [ f + ug,h](z(t))〉 ,

with
[ f ,h](z) = Dh(z) f (z)−D f (z)h(z)

the Lie bracket of the vector fields f and h.
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For the switching function Φ(t) = 〈λ (t),g(z(t))〉 we thus obtain that

Φ̇(t) = λ (t)[ f ,g](z(t))

and
Φ̈(t) = λ (t)[ f + ug, [ f ,g]](z(t)), (5.29)

with the control u once more only appearing in the second derivative. If u is singular
on some open interval I, then these derivatives all vanish identically on I and if
〈λ (t), [g, [ f ,g]](z(t))〉 = 0, then the singular control is of order 1 and (5.29) can
formally be solved for u as

using(t) =−〈λ (t), [ f , [ f ,g]](z(t))〉
〈λ (t), [g, [ f ,g]](z(t))〉 . (5.30)

This relation defines the singular control as a function of the state z(t) and the mul-
tiplier λ (t). For the models considered here, all singular controls are of order 1.
The strengthened Legendre-Clebsch condition for optimality of the singular control
(c.f., Theorem A.3.2 in Appendix A) thus takes the following form:

〈λ (t), [g, [ f ,g]](z(t))〉 < 0 for all t ∈ I. (5.31)

The determination of singular controls and the analysis of their local optimality
properties therefore reduces to the computation of the Lie brackets [ f , [ f ,g]] and
[g, [ f ,g]] and their inner products with the multiplier λ .

A special situation arises in dimension 3, the setting for the state-space in prob-
lem [OCA], if the control vector field g and the Lie brackets [ f ,g] and [g, [ f ,g]] are
linearly independent. In this case, the Lie bracket [ f , [ f ,g]] can be written as a linear
combination of this basis with coefficients that are smooth functions of the state z,
say

[ f , [ f ,g]](z) = ρ(z)g(z)+ϕ(z)[ f ,g](z)+ψ(z)[g, [ f ,g]](z).

Along a singular extremal (z,u,λ ), the inner products of λ with g(z(t)) and
[ f ,g](z(t)) vanish identically and thus

〈λ (t), [ f , [ f ,g]](z(t))〉 = ψ(z(t))〈λ (t), [g, [ f ,g]](z(t))〉 .

If the singular control is of order 1, we therefore simply have that

using(t) =−ψ(z(t)). (5.32)

In particular, in this case the singular control is given in feedback form, i.e., as a
function of the state z alone, and no longer depends on the multiplier. Naturally,
whether this feedback is admissible, that is, whether it takes values in the control set
[0,umax] needs to be determined for each problem separately and cannot be asserted
in general.

Even when admissible, this feedback does not define a singular control every-
where, but only on a thin subset. The reason for this lies in the conditions of the
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maximum principle, Theorem 5.2.1, that need to be satisfied. The condition (5.23)
that H ≡ 0 requires that along a singular arc we also have that

〈λ (t), f (z(t))〉 ≡ 0 for all t ∈ I.

Thus the multiplier λ (t) vanishes against the vector fields f , g and [ f ,g] along a
singular trajectory. Since λ (t) = 0 by Corollary 5.2.2, it follows that these vector
fields must be linearly dependent along the singular arc and thus (5.32) only defines
a singular control on the surface

S = {z ∈ R
3 : det( f (z),g(z), [ f ,g](z)) = 0}

with det( f (z),g(z), [ f ,g](z)) denoting the determinant of the matrix whose ordered
columns are formed by the vectors f (z), g(z) and [ f ,g](z).

We close this section with computing the relevant Lie brackets. If we define Δ as
the difference between stimulation and inhibition terms, then direct computations
verify that we have that

[ f ,g](z) = γ

⎛

⎜
⎜
⎜
⎜
⎝

−ξ p

q ∂Δ
∂q (p,q)−Δ(p,q)

0

⎞

⎟
⎟
⎟
⎟
⎠

and

[g, [ f ,g]](z) = γ2

⎛

⎜
⎜
⎜
⎜
⎝

0

−q2 ∂ 2Δ
∂q2 (p,q)+ q ∂Δ

∂q (p,q)−Δ(p,q)

0

⎞

⎟
⎟
⎟
⎟
⎠
.

Because of the special form of the control vector field g, the q-coordinates of Lie
brackets with g can be expressed in a succinct form: let I denote the interval (0,∞)
and for an infinitely often continuously differentiable function f of a scalar variable
(in our case, q), f ∈C∞(I), denote by L the linear differential operator

L : C∞(I)→C∞(I), f �→ L f , (5.33)

defined by
(L f ) (q) = q f ′(q)− f (q). (5.34)

Note that for any α ∈ R, the powers f (q) = qα are eigenfunctions of this operator
with eigenvalue λ = α− 1, i.e.,

L (qα) = (α− 1)qα . (5.35)
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This allows for simple and elegant computations of the relevant Lie brackets for the
models in Table 5.1, all of which are of such form. With L n defined inductively by
L ◦L n−1, these Lie brackets then take the succinct form

[ f ,g](z) = γ

⎛

⎜
⎜
⎜
⎜
⎝

−ξ p

L (Δ)(p,q)

0

⎞

⎟
⎟
⎟
⎟
⎠
, [g, [ f ,g]](z) =−γ2

⎛

⎜
⎜
⎜
⎜
⎝

0

L 2(Δ)(p,q)

0

⎞

⎟
⎟
⎟
⎟
⎠

(5.36)

where the operator L acts on q and all other variables are treated as constants. In
particular, we have that

〈λ (t), [g, [ f ,g]](z(t))〉 =−γ2λ2(t)L
2(Δ)(p(t),q(t))

and using the fact that λ2 is positive along a singular arc (Corollary 5.2.2), the
strengthened Legendre-Clebsch condition (5.31) is satisfied if and only if

L 2(Δ)(p(t),q(t))> 0

holds along the singular arc. In this case, the vector fields g, [ f ,g] and [g, [ f ,g]]
are linearly independent and the singular control is given by (5.32). The auxiliary
variable y does not appear explicitly in the dynamics of the system. As a result,
the Lie bracket [ f , [ f ,g]] has last coordinate 0 and the vector field [ f , [ f ,g]] can be
written in the form

[ f , [ f ,g]](z) = ϕ(z)[ f ,g](z)+ψ(z)[g, [ f ,g]](z). (5.37)

For the same reason, the singular surface S does not depend on y, i.e., is vertical in
the y direction defined over the curve in (p,q)-space where the vector fields f and
[ f ,g] are parallel. Naturally, the explicit formulas depend on Δ . Summarizing these
general calculations we have the following result:

Theorem 5.2.2. If a control u is singular on some open interval (α,β ), then the
strengthened Legendre-Clebsch condition is satisfied on (α,β ) if and only if

L 2(Δ)(p(t),q(t))> 0.

In this case, the singular control is given as a feedback function of the form

using(t) =−ψ(z(t))

with ψ defined by the relation (5.37). The corresponding singular trajectory is lo-
cally minimizing for problem [OCA] and is located in the vertical surface S defined
over the base locus S0 of points (p,q) where the vector fields f and [ f ,g] are lin-
early dependent, i.e.,
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S0 =

{

(p,q,y) : Δ(p,q)+L (Δ)(p,q) ln

(
p
q

)

− μq = 0.

}

The singular curve is admissible at points where the singular control defined by
(5.32) takes values in the control interval [0,umax]. �

The local optimality of the singular arc follows from a classical construction of
Gardner-Moyer [103] in dimension 3 (also, see [292, Proposition 2.8.4]). Questions
about the global optimality, however, are not resolved. But this local result gives
a strong indication that the singular arcs will play an important role in the overall
solutions to the problem if the strengthened Legendre-Clebsch condition is satisfied.
This indeed is the case as now will be seen.

5.3 Optimal Synthesis for Model [H]

We give a complete solution for the optimal control problem [OCA] in form of
a regular synthesis of optimal controlled trajectories when the dynamics for the
vasculature is given by S(p,q) = bp and I(p,q) = d p

2
3 q. Thus we consider the

following version of the general optimal control problem [OCA]:

[H] For a free terminal time T , minimize the tumor volume at the terminal time,
p(T ), subject to the dynamics

ṗ =−ξ p ln

(
p
q

)

, p(0) = p0, (5.38)

q̇ = bp− d p
2
3 q− μq− γuq, q(0) = q0, (5.39)

ẏ = u, y(0) = 0, (5.40)

over all Lebesgue measurable (respectively, piecewise continuous) functions u :
[0,T ]→ [0,umax] for which the corresponding trajectory satisfies y(T )≤ A.

5.3.1 The Dynamical System with Constant Controls

For the analysis of the optimal control problem, it is of benefit to first fully under-
stand the dynamic properties of the system for a constant control u ≡ v with v some
value in the control set [0,umax]. Note that y is merely an auxiliary variable that
tracks the amounts of antiangiogenic agents administered and is immaterial for the
dynamic behavior of the system. Thus here we only consider the (p,q)-dynamics.
The uncontrolled system (u ≡ 0) has a unique equilibrium point at (p̄, q̄) given by

p̄ = q̄ =
(

b−μ
d

) 3
2

and this equilibrium point is globally asymptotically stable, i.e.,
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as t → ∞ every solution converges to (p̄, q̄). (We shall not use this result and there-
fore refer the interested reader to the paper by d’Onofrio and Gandolfi [257] where
these results are proven by means of suitable Lyapunov functions on R

2
+.) How-

ever, the dynamic behavior of the system for tumor volumes and carrying capacities
that are higher than p̄ and q̄ is not really medically relevant since this equilibrium
point generally corresponds to a situation where life already is not viable. In order
to exclude irrelevant discussions about the structure of optimal controls in regions
where the model does not represent the underlying medical problem to begin with,
we henceforth restrict our discussions to the following square domain D ,

D = {(p,q) : 0 < p < p̄, 0 < q < q̄},

and we restrict the sets D±,0 introduced earlier to this domain, i.e.,

D+ = {(p,q) ∈ D : p > q},
D0 = {(p,q) ∈ D : p = q},
D− = {(p,q) ∈ D : p < q}.

Proposition 5.3.1. D is positively invariant for the control system, i.e., if (p0,q0) ∈
D and u is an arbitrary admissible control defined on some interval [0,T ]⊂ [0,∞),
then the solution (p(·),q(·)) to the corresponding dynamics with initial condition
(p(0),q(0)) = (p0,q0) exists for all t ∈ [0,T ] and lies in D , (p(t),q(t)) ∈ D .

Proof. We need to show that, for arbitrary controls u, the corresponding trajectories
cannot leave the region D . Recall that we plot tumor volume p along the vertical
axis and the carrying capacity q along the horizontal axis.

On the boundary segment {(p,q) ∈ D : p = p̄, 0 < q < q̄} we have that ṗ < 0
and thus the vector field points into D . In order to analyze the vector field on the
vertical boundary segment {(p,q) ∈ D : 0 < p < p̄, q = q̄}, note that the nullclines
for q̇ = 0 for a constant control v are given by

q = Ξv(p) =
bp

μ+ γv+d p
2
3

and we can rewrite the q-dynamics in the form

q̇ = bp− d p
2
3 q− μq− γuq= (Ξv(p)−q)

(
μ+ γv+d p

2
3

)
.

Thus we have q̇ > 0 for q < Ξv(p) and q̇ < 0 for q > Ξv(p). The functions Ξv =
Ξv(p) satisfy Ξv(0) = 0, are strictly increasing, and at p̄ take the value

Ξv(p̄) =
b

b+ γv
p̄.

Thus, for all p, 0 < p < p̄, and all v ∈ [0,umax] we have that

Ξv(p)< Ξv(p̄)≤ p̄ = q̄.
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Hence q̇ is negative for trajectories starting at points in {(p,q)∈D : 0 < p < p̄, q =
q̄} and thus these trajectories enter D .

The point (p̄, q̄) is the equilibrium point for u = 0, but for any positive control u,
the solution starting at (p̄, q̄) enters D . On the diagonal, p = q, we always have that
ṗ = 0 and the second derivative reduces to p̈ = ξ q̇. Thus, at the equilibrium point
(p̄, q̄),

p̈ = ξ p̄
(

b− d p̄
2
3 − μ− γu

)
=−ξ p̄γu < 0

so that all trajectories have a local maximum. For a positive control, we have that
q̇ =−γ q̄u < 0 and thus trajectories enter D . Hence, regardless of the value v of the
control, trajectories can never leave the region D through the horizontal or vertical
boundary segments for p = p̄ or q = q̄.

We still need to analyze the segments on the coordinate axes for p = 0 and q = 0.
Here the dynamics has singularities and we therefore consider the lines p = xq for
x > 0. The dynamics (5.38) and (5.39) induces a motion on the projective variable x
and it suffices to show that ẋ is positive for small x > 0 (near the q-axis) and negative
for large x (near the p-axis). We have that

ẋ =
d
dt

(
p
q

)

=−ξ x ln(x)− x
(

bx− d p
2
3 − μ− γu

)
> x(−ξ ln(x)−bx)

and thus ẋ is positive for small x > 0. Furthermore, for x > 1+ γ
b umax we have that

ẋ < x
(

d p̄
2
3 + μ+ γumax − bx

)
= bx

(
1+

γ
b

umax − x
)
< 0.

Hence the region D is positively invariant for the control system. �
By increasing the value v of the control, the equilibrium point (p̄, q̄) can be

shifted toward the origin along the diagonal and finally be eliminated altogether. As
a function of v, the equilibrium is the unique fixed point of the equation p = Ξv(p)
in {p > 0} and is given by

p̄(v) = q̄(v) =

(
b− μ− γv

d

) 3
2

provided b−μ > γv; this equilibrium point (p̄(v), q̄(v)) remains globally asymptot-
ically stable. As b−μ ≤ γv, the system no longer has an equilibrium point and now
all trajectories converge to the origin as t → ∞ [257]. Thus, theoretically, eradica-
tion of the tumor is possible in this case, albeit only under the unrealistic scenario
of constant treatment with unlimited supply of inhibitors.

Figure 5.3 compares the phase portraits of the uncontrolled system on the left
with the one for u ≡ umax on the right. Recall that we show the tumor volume as
the vertical axis in our figures since this better visualizes the tumor reduction, re-
spectively increase. For comparison, the diagonal is included in these figures as a
dashed line. The dynamics implies that the tumor volume is decreasing in D+ and
increasing in D−. Note that both the trajectories for the constant controls u ≡ 0 and
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Fig. 5.3 Phase portraits for the dynamics [H] and constant controls u ≡ 0 and u ≡ umax ≡ 75.

u ≡ umax cross the diagonal D0 = {(p,q) : p = q} transversally: for u = 0, trajec-
tories cross from D+ into D− while they cross in opposite direction from D− into
D+ for u = umax. Also, trajectories for u = 0 approach the stable equilibrium (p̄, q̄)
from within the region D−, while trajectories for u = umax converge to the origin as
t → ∞ in the region D+.

We still note that a portion of the region D is transient and thus becomes of lower
importance. Let

N0 = {(p,q) ∈ D : bp = (μ+d p
2
3 )q}

denote the q̇-null cline of the uncontrolled system and define

N− = {(p,q) ∈ D : bp < (μ+d p
2
3 )q}

and
N+ = {(p,q) ∈ D : bp > (μ+d p

2
3 )q}

as the sets below, respectively above this nullcline (see Figure 5.4). We then have
the following result:

Lemma 5.3.1. Controlled trajectories cross N0 from N− into N+. The region N−
is transient in the sense that all controlled trajectories leave N− and cannot return.

Proof. For arbitrary control values u, at points in N0 we have that

ṗ =−ξ p ln

(
p
q

)

and q̇ =−γuq.

In D , i.e., for 0 < p < p̄ =
(

b−μ
d

) 3
2

it holds that

b− μ− d p
2
3 = d

(
b− μ

d
− p

2
3

)

= d
(

p̄
2
3 − p

2
3

)
> 0
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Fig. 5.4 The q̇ = 0 isocline N0 for the uncontrolled system, u ≡ 0.

and thus for (p,q) ∈ N0

p
q
=

μ+ d p
2
3

b
< 1.

Hence N0 lies in the region D−. A normal vector to N0 at (p,q) is given by

n= n(p,q) =

(
2
3 d p−

1
3 q−b

μ+ d p
2
3

)

and its inner product with the (p,q)-dynamics is always negative:
〈

n,

(
ṗ
q̇

)〉

= ξ p ln

(
p
q

)(

b− 2
3

d p−
1
3 q

)

− γuq
(
μ+d p

2
3

)

= bξ p ln

(
p
q

)(

1− 2
3

d p
2
3

μ+ d p
2
3

)

− γuq
(
μ+d p

2
3

)

=
b
3
ξ p ln

(
p
q

)(
3μ+ d p

2
3

μ+ d p
2
3

)

− γuq
(
μ+d p

2
3

)
< 0.

Hence all trajectories of the control system cross N0 in the same direction. Looking
at the control u = 0, it is clear that trajectories cross from N− into N+ �

Thus, regardless of which control is used (in particular, for u = 0) trajectories
leave the region N− and states in this region only represent a short lived transient
period. In our analysis we therefore restrict our attention to initial conditions (p,q)
that lie in the set D̃ = D ∩ (N+∪N0).
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The parameter values for the antiangiogenic killing action that we use in our
numerical illustrations are given below in Table 5.3. Our theoretical analysis is in-
dependent of these parameter values.

Table 5.3 Parameter values used for the antiangiogenic agent in numerical illustrations for the
model [H].

Variable/ Interpretation Numerical value Dimension
coefficient

γ Antiangiogenic killing parameter 0.15 conc−1 per day
(for angiostatin)

umax Maximum dose rate/concentration 75 mg per day
A Total amount of antiangiogenic agents 300 mg

5.3.2 Geometric Analysis of the Singular Arc and Control

We compute explicit formulas for the singular control and corresponding trajectories
for this model. The function Δ = S− I (see Section 5.2.3) is given by

Δ(p,q) = S(p,q)− I(p,q) = bp−d p
2
3 q.

Recall that the operator L is defined by (L f ) (q) = q f ′(q)− f (q) and we thus have
that L (S) =−S and L (I) = 0 which gives

L (Δ) = L (S)−L (I) =−S

and
L 2(Δ) = L (−S) = S > 0.

In particular, by Theorem 5.2.2, singular controls are of order 1 and the strengthened
Legendre condition is satisfied. Hence admissible singular arcs are locally optimal.

Recall that the singular surface S is the vertical surface in (p,q,y)-space defined
over the base curve S0 of points (p,q) where the vector fields f and [ f ,g] are
linearly dependent, i.e.,

Δ(p,q)+L (Δ)(p,q) ln

(
p
q

)

− μq = 0.

For model [H] this relation reads

bp− d p
2
3 q− bp ln

(
p
q

)

− μq = 0.

We desingularize this equation with a blow-up of the form p = xq, x > 0, and using
the projective coordinate x, we have that
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μ+ d p
2
3 = bx(1− lnx) . (5.41)

The quotient q
p is proportional to the endothelial density and can be used to replace

the carrying capacity of the vasculature as a variable. As it turns out, the singular
curve and the corresponding singular control can be expressed solely in terms of
the variable x. This fact indicates the importance of this quantity. However, for the
overall analysis, and especially in view of a ready interpretation of the results, we
prefer to keep the original variables p and q and only use x in the analysis of the
singular arc. In these variables, equation (5.41) can be rewritten in the form

p2 +ϕ(x)3 = 0

with

ϕ(x) =
1
d
(x(lnx− 1)+ μ).

The function ϕ is strictly convex with a minimum at x = 1 and minimum value μ−b
d .

For μ = 0, the zeroes of ϕ are given by x∗1 = 0 and x∗2 = e and ϕ is negative on the
interval (0,e). For μ > 0 we have ϕ(0) = μ

d = ϕ(e) and the zeroes x∗1 and x∗2 satisfy
0 < x∗1 < 1 < x∗2 < e. We thus have the following result:

Proposition 5.3.2. The base curve S0 for the singular surface S entirely lies in the
sector {(p,q) : x∗1q < p < x∗2q} where x∗1 and x∗2 are the unique zeros of the equation
ϕ(x) = 0 and satisfy 0 ≤ x∗1 < 1 < x∗2 ≤ e. In the variables (p,x) with x = p

q , S0 can
be parameterized in the form

μ+ d p
2
3 = bx(1− lnx) for x∗1 < x < x∗2. (5.42)

It is important to understand the geometric properties of the curve S0 and these
are summarized in the result below. These technical considerations are needed in
order to determine where the singular control will be admissible.

Proposition 5.3.3. The singular base curve S0 traces a loop in (p,q)-space an-
chored at the origin that consists of the union of the following three segments:

1. A curve S +
0 that is the graph of a differentiable function σ+ of q,

σ+ : [0, q̄]→ [0, p̄], q �→ σ+(q),

that lies in D+ and connects the origin to the equilibrium point (p̄, q̄), i.e.,
σ+(0) = 0 and σ+(q̄) = p̄.

2. A curve S out
0 that is the graph of a differentiable function σout of p defined over

an interval [p, p̄],

σout : [p, p̄]→ [q̄, q̂], p �→ σout(p),

that connects the equilibrium point (p̄, q̄) with the point (p, q̄) and, except for
the initial and endpoint, entirely lies in the region {(p,q) : p < q,q > q̄} outside
of D .
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Fig. 5.5 Geometry of the base curve S0 for the singular surface S .

3. A curve S −
0 that is the graph of a differentiable function σ− of q,

σ− : [0, q̄]→ [0, p̄], q �→ σ−(q),

that lies in D− and connects the origin to the point (p, q̄), i.e., σ−(0) = 0 and
σ−(q̄) = p.

Figure 5.5 illustrates Proposition 5.3.3 for the parameter values given in
Tables 5.2 and 5.3. These geometric properties are generally valid under the as-
sumption that b > μ ≥ 0 which will always be satisfied for the problems under
consideration.

Proof. Implicit differentiation of the relation (5.42) gives

d p
dx

=−3
2

b
d

p
1
3 lnx.

In particular, the values of p along the singular curve S0 are maximized for x = 1
at the equilibrium point (p̄, q̄) and are smaller than p̄ for all x = 1. Hence all points
(p,q) ∈ S0 for x > 1 lie in the set D+, i.e., they satisfy p < p̄. This segment of S0

is the curve S +
0 and since d p

dx does not vanish, it can be described by a function
p = σ+(q) of q. This function is well defined near q = q̄ and satisfies σ+(q̄) = p̄.
In the limit q → 0+, because the values of x are bounded above by e, it follows that
limq→0+σ+(q) = 0. This proves the first assertion.

For x < 1 there exist points on S0 when the values for the carrying capacity
exceed q̄ and these portions lie outside of the domain D . In order to see this, fix q
and write p = xq so that the equation defining the singular base curve S0 takes the
form
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bx(1− lnx) = μ+ dq
2
3 x

2
3 . (5.43)

The first and second derivatives of the function

ϕq(x) = bx(1− lnx)− μ−dq
2
3 x

2
3

are

ϕ ′
q(x) =−b lnx− 2

3
dq

2
3 x−

1
3 and ϕ ′′

q (x) =−b
x
+

2
9

dq
2
3 x−

4
3 .

The function x �→ x
1
3 lnx has a global minimum for x = e−3 with minimum value

ϕ
(
e−3
)
= − 3

e . Therefore the equation ϕ ′
q(x) = 0, x

1
3 lnx = − 2d

3b q
2
3 , has a unique

solution for q̃ =
(

9b
2ed

) 3
2 , two positive solutions for q < q̃ and no solutions for q > q̃.

In the latter case, the function ϕq is strictly decreasing for all x > 0 and, since
ϕq(0) = −μ ≤ 0, there are no positive solutions to equation (5.43). For q = q̃, the
function ϕq̃ has a global maximum for x = e−3 with value ϕq̃(e−3) =−μ− 1

2
b
e3 < 0

and thus there are still no positive solutions to equation (5.43). For values q < q̃,
there exist two stationary points xa < xb. The second derivative ϕ ′′

q has a unique
inflection point at

x̃(q) =

(
2d
9b

)3

q2

and ϕq is strictly convex for x < x̃(q) and strictly concave for x > x̃(q). It therefore
follows that xa is a local minimum and xb is a local maximum. As long as this
maximum is negative, there are no solutions to equation (5.43) and thus there exist
no points on the singular base curve S0 for these q values. If the maximum becomes
zero, there exists a unique such solution and once it becomes positive, there are
exactly two solutions to equation (5.43).

For 0 < q < q̄ =
(

b−μ
d

) 3
2

we have that ϕq(1) = b−μ−dq
2
3 > b−μ−dq̄

2
3 = 0

and thus in this range there exist exactly two solutions to (5.43), a lower branch
for x < 1 in D− which we denoted by S −

0 and the upper branch S +
0 for x > 1 in

D+ described above. Note that S −
0 can also be described by a function p = σ−(q)

of q that satisfies limq→0+σ−(q) = 0 and has a well-defined extension near q = q̄
with σ−(q̄) < p̄. For q > q̄, there still exist solutions, but the values lie outside of
D and we denoted this portion of the curve S0 by S out

0 . For later use, we note that
the values of q along the singular curve S0 are maximized at a value q̂, the upper
limit in the range of the function σout . There are exactly two solutions to equation
(5.43) for 0 < q < q̂, one solution for q = q̂ and none for q > q̂. If we denote the
associated values for x and p by x̂ and p̂, then q̂ is determined by the equation dq

dx = 0.
Differentiating p = xq gives

d p
dx

= q+ x
dq
dx

and thus q̂ is a solution to the equation

−3
2

b
d

p̂
1
3 ln x̂ = q̂ =

p̂
x̂
,
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or, equivalently,

d p̂
2
3 =−3

2
bx̂ ln x̂.

Substituting into equation (5.43), x̂ is a solution to

bx̂

(

1+
1
2

ln x̂

)

= μ . (5.44)

The function x �→ bx
(
1+ 1

2 lnx
)− μ is strictly concave, nonpositive at x = 0 and

positive for x = 1. Hence there exists a unique solution x̂ to equation (5.44) in the
interval (0,1) which then defines p̂ and q̂. The portion S out

0 of S0 that lies outside
of the domain D can be described as the graph of a function q → σout(q) over an
interval [p, p̄] with p < p̄ the second solution of equation (5.43) for q = q̄. This
verifies the Proposition. The geometric properties are illustrated in Figure 5.5. �

We now compute the singular control. The vector fields f and g introduced in
(5.26) and their Lie bracket [ f ,g] are given by

f (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)

bp−
(
μ+ d p

2
3

)
q

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, g(z) =

⎛

⎜
⎜
⎜
⎜
⎝

0

−γq

1

⎞

⎟
⎟
⎟
⎟
⎠
, [ f ,g](z) = γ p

⎛

⎜
⎜
⎜
⎜
⎝

ξ

−b

0

⎞

⎟
⎟
⎟
⎟
⎠

(5.45)
and the second order Lie brackets are

[g, [ f ,g]](z) =−γ2bp

⎛

⎝
0
1
0

⎞

⎠ (5.46)

and

[ f , [ f ,g]](z) = γ p

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ξ 2 + ξb p
q

ξb ln
(

p
q

)
+ ξ
(

2
3 d q

3√p − b
)
−
(
μ+d p

2
3

)
b

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (5.47)

The vector fields g, [ f ,g], and [g, [ f ,g]] are linearly independent everywhere and
thus, by Theorem 5.2.2, the singular control is given as

using(t) =−ψ(z(t))

where the function ψ is the [g, [ f ,g]]-coordinate of the vector field [ f , [ f ,g]], i.e.,

[ f , [ f ,g]](z) = ρ(z)g(z)+ϕ(z)[ f ,g](z)+ψ(z)[g, [ f ,g]](z).
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A direct computation verifies that

[ f , [ f ,g]](z) =

(

ξ + b
p
q

)

[ f ,g](z)+ψ [g, [ f ,g]](z) (5.48)

with

ψ = ψ(p,q) =−1
γ

(

ξ ln

(
p
q

)

+ b
p
q
+

2
3
ξ

d
b

q

p
1
3

−
(
μ+d p

2
3

)
)

.

Thus we have the following result:

Proposition 5.3.4. If the control u is singular on an open interval (α,β ) with cor-
responding trajectory (p,q), then the singular control is given in feedback form as

using(t) =−ψ(p(t),q(t))

=
1
γ

(

ξ ln

(
p(t)
q(t)

)

+ b
p(t)
q(t)

+
2
3
ξ

d
b

q(t)

p
1
3 (t)

−
(
μ+d p

2
3 (t)
)
)

(5.49)

The next result gives an equivalent expression for the singular control along the
singular arc in terms of the projective variable x alone. This relation is only valid on
the singular surface S , but it allows to determine the admissible part of the singular
arc, i.e., the portion of S where the singular control takes values in the interval
[0,umax].

Proposition 5.3.5. Along the singular arc, the singular control can be expressed as
a function of the scalar variable x = p

q in the form

Ψ (x) =
1
γ

[(
1
3
ξ + bx

)

lnx+
2
3
ξ
(

1− μ
bx

)]

. (5.50)

There exists exactly one connected arc on the singular base curve S0 along which
the control is admissible, i.e., satisfies the bounds 0 ≤Ψ ≤ umax. This arc is defined
over an interval [x∗� ,x

∗
u] where x∗� and x∗u are the unique solutions to the equations

Ψ(x∗�) = 0 andΨ(x∗u) = umax and these values satisfy x∗� < x∗u.

Figure 5.6 gives a plot of the petal like singular curve S0 for the parameter
values used before with the admissible portion marked as the solid segment and
the inadmissible portion shown as dashed curve. The qualitative structure shown in
this figure is always valid with the understanding that the admissible portion shrinks
with smaller values umax.

Proof. In the variables p and x, the singular control is given by

using(t) =
1
γ

(

ξ lnx(t)+ bx(t)+
2
3
ξ

d p(t)
2
3

bx(t)
−
(
μ+d p(t)

2
3

)
)

.
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Fig. 5.6 The singular base curve S0 is plotted in (p,q)-space (left) with the admissible part marked
as the solid segment of the curve. Away from this segment the singular control is either negative
or exceeds the maximum allowable limit umax. The singular control using is plotted as a function of
the quotient x = p

q on the right.

Along the singular arc we have that p
2
3 = −ϕ(x) and thus we obtain the singular

control as a feedback function of x alone, using(t) =Ψ(x(t)), in the form

Ψ (x) =
1
γ

(

ξ lnx+ bx+
2
3
ξ

bx(1− lnx)− μ
bx

−bx(1− lnx)

)

=
1
γ

[(
1
3
ξ + bx

)

lnx+
2
3
ξ
(

1− μ
bx

)]

.

Note that limx↘0Ψ(x) =−∞ and limx→∞Ψ(x) = +∞. Furthermore,

Ψ ′(x) =
1
γ

[

b(lnx+ 1)+
1
3
ξ
(

1
x
+2

μ
bx2

)]

,

Ψ ′′(x) =
1
γx3

(

bx2 − 1
3
ξ x− 4

3
ξ
μ
b

)

,

and the second derivative has a unique positive root at

x∗ =
1
6
ξ
b

(

1+
√

1+ 48
μ
ξ

)

.

It follows that Ψ is strictly concave for 0 < x < x∗ and strictly convex for x > x∗.
If the function Ψ has no stationary points, then Ψ is strictly increasing and thus,
as claimed, there exists a unique interval [x∗� ,x

∗
u] when Ψ takes values in [0,umax]

and the limits are the unique solutions of the equationsΨ (x) = 0 andΨ (x) = umax,
respectively. The same holds in the bifurcation scenario when Ψ has a unique sta-
tionary point at x∗. Otherwise, it follows from the convexity properties thatΨ has a
unique local maximum at x̃1 < x∗ and a unique local minimum at x̃2 > x∗. But the
values of the functionΨ at these local extrema are negative. For, ifΨ ′(x̃) = 0, then



5.3 Optimal Synthesis for Model [H] 205

−b ln x̃ = b+
1
3
ξ
(

1
x̃
+ 2

μ
bx̃2

)

> 0

and thus

Ψ(x̃) =
1
γ

[(
1
3
ξ + bx̃

)(

−1− 1
3
ξ
b

(
1
x̃
+ 2

μ
bx̃2

))

+
2
3
ξ
(

1− μ
bx̃

)]

=−1
γ

[

bx̃+
1
9
ξ 2

b

(
1
x̃
+ 2

μ
bx̃2

)

+
4
3
ξμ
bx̃

]

< 0.

Hence Ψ has a unique positive zero and is strictly increasing when it is positive.
This proves the proposition. �

Definition 5.3.1 (Saturation Point). We say the singular control using saturates at
time τ if its value at time τ is equal to one of the limits of the control set, i.e., if
either u(τ) = 0 or u(τ) = umax.

Note that

Ψ (1) =
2
3
ξ
γ

(
1− μ

b

)
> 0

and thus the lower saturation point occurs for x∗� < 1. In principle, it is possible that
the singular control already exceeds its admissible value for x= 1 and then, since the
function Ψ(x) is strictly increasing, the entire portion S +

0 would be inadmissible.
This is the case if 2

3ξ
(
1− μ

b

)≥ γumax. For example, for the parameter values from
Tables 5.2 and 5.3, this holds if umax < 0.374. Generally umax will be much higher.
If Ψ(1) ≥ umax, then, and this follows from our results below, optimal controls are
simply given by bang-bang controls with one switching that give all antiangiogenic
agents upfront. Henceforth we ignore this simpler case and assume that Ψ(1) <
umax.

Corollary 5.3.1. Suppose that

2
3
ξ
(

1− μ
b

)
< γumax

and let Sad denote the restriction of the admissible portion of the singular base
curve S0 to the domain D . Then Sad is a connected arc that extends from the
equilibrium point (p̄, q̄) in the upper right corner of D to the unique point (p̃, q̃) on
S0 where the singular control saturates at its upper limit umax; it is a subarc of S +

0
and entirely lies in D+. The segment S −

0 of the singular base curve S0 that lies in
D− is inadmissible.

Proof. It follows from the proof of Proposition 5.3.5 that the functionΨ(x) which
defines the singular control along S0 has a unique positive zero x∗� and is positive
for x > x∗� and negative for x < x∗� . Since Ψ is strictly increasing for x > x∗� , the
admissible range is a connected subarc of S +

0 that extends from the equilibrium
point (p̄, q̄) to the saturation point (p̃, q̃) in D+ and the control exceeds the upper
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control limit umax for points on S +
0 beyond (p̃, q̃). It remains to show that the seg-

ment S −
0 of S0 is inadmissible. It follows from the geometric description of the

curve S0 given earlier that there exists a unique value x̂ ∈ (0,1) where the q-value
is maximized over S0 and that this value is the unique solution of equation (5.44).
Hence

Ψ(x̂) =
1
γ

[(
1
3
ξ + bx̂

)

ln x̂+
2
3
ξ
(

1− μ
bx̂

)]

=
1
γ

[(
1
3
ξ + bx̂

)

ln x̂+
2
3
ξ
(

1−
(

1+
1
2

ln x̂

))]

=
1
γ

bx̂ ln x̂ < 0.

Thus the entire portion of the curve S0 for x ≤ x̂ is inadmissible. This includes the
segment S −

0 . �

5.3.3 A Synthesis of Optimal Controlled Trajectories

We thus have explicit analytical formulas for the singular arc, the corresponding sin-
gular control that keeps it invariant, and we also have a simple geometric situation
that determines the admissible portion. Overall, optimal controls are concatenations
of the singular control with bang-bang structures and we need to analyze the possi-
ble concatenation sequences. In fact, this is the technical and difficult aspect of the
construction. We summarize our results on the structure of optimal controls and tra-
jectories in the following theorem, but relegate the technical and somewhat lengthy
details of its proof to Appendix B.4.

Theorem 5.3.1. Given a well-posed initial condition (p0,q0) ∈ D̃ , optimal controls
are at most concatenations of 4 segments in the order bsumax0 where 0 denotes
an arc along the constant control u = 0, umax denotes an arc along the constant
control u = umax, b stands for either umax or 0 and s denotes an arc in the singular
surface S .

This result provides a in fact sharp upper bound on the number of segments for
optimal controls and it significantly limits the structure of possible concatenations of
bang and singular arcs. Once this simple maximal concatenation sequence of bang
and singular segments has been identified, it becomes relatively straightforward to
compute the optimal solutions and this argument also will be carried out in detail
in Appendix B.4. It is shown there that for most initial conditions there only exists
one extremal of this type (and this then is the optimal solution), but in many cases
the concatenation sequence is shorter (i.e., some segments in this sequence are not
present). For example, the medically most important case is for initial conditions
(p0,q0) that represent a growing tumor with high carrying capacity, p0 < q0, and
ample supply A of inhibitors. In such a situation, the optimal control is given by
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initial full dose therapy, u ≡ umax, until the corresponding trajectory meets the sin-
gular surface S . At this point, the optimal control switches to the singular control
and then administers agents at these dose rates until all angiogenic inhibitors are
exhausted. During that phase, the corresponding trajectory evolves on the singular
surface S . Since the singular surface lies in the region D+ = {(p,q) ∈ D : p > q},
after termination of therapy, the tumor volume will still be decreasing even if no
more agents are administered (because of after effects) as long as the trajectory re-
mains in D+. The minimum tumor volume will be realized as the trajectory reaches
the diagonal D0 = {(p,q) ∈ D : p = q}. Thus, for these cases optimal controls fol-
low the concatenation sequence umaxs0.

This, in fact, is the typical structure of optimal controlled trajectories for medi-
cally relevant initial conditions. But it depends on two facts: (i) the overall amount
of inhibitors is large enough to reach the singular arc in its admissible range, and
(ii) it is not so large that the singular control would saturate along the singular arc.
If (i) is violated and trajectories either do not reach S at all or reach S in its in-
admissible part, then the singular control never becomes an option and in this case
optimal controlled trajectories will simply be given by up-front administration of
all antiangiogenic agents at full dose rates. Thus, in such a case, optimal controls
are bang-bang with exactly one switching from u = umax to u = 0, i.e., of the type
umax0. This also is the structure of optimal controls if the singular arc is reached at a
point where the singular control is inadmissible. If condition (ii) is violated, then op-
timal concatenation sequences of the forms 0sumax0 and umaxsumax0 arise. In such
a case, the singular control using(t) reaches the upper limit umax of the control set
and needs to be terminated since it is no longer admissible. In fact, as is shown in
Appendix B.4, optimal trajectories need to leave the singular arc with a full dose
control u = umax prior to saturation. Aside from these more complicated cases near
saturation where indeed the full concatenation sequences bsumax0 will be realized,
the optimal synthesis is determined by the singular surface S and follows a bs0
pattern. The only difference is that, if the initial condition (p0,q0) lies in a region to
the “left” of S , the initial segment is given by u ≡ 0 while it is given by u ≡ umax

if the initial condition lies to the “right” of S . The region to the left of S repre-
sents lower values for the carrying capacity as they will be realized during therapy,
while the region to the right represents the typical scenario of an actively growing
tumor. In either case, controls steer the system toward the singular surface S and,
if this surface is encountered, a switch to the singular control occurs and optimal
controls remain singular until angiogenic inhibitors run out (see Figure 5.7). The
precise structure of optimal controlled trajectories depending on an arbitrary initial
condition (p,q;y) will be developed in Appendix B.4.

A synthesis of optimal controlled trajectories then consists of a unique covering
of the state space D̃ × [0,A]⊂R

3 by controlled trajectories with the optimal control
uopt = uopt(p,q;y) identifying the optimal dose rates as a function of an arbitrary
point (p,q;y) of the state (see Section A.4.4 in Appendix A). Intuitively, such a
synthesis acts like a “GPS system” showing for every possible state of the system
how optimal protocols are administered, both qualitatively and quantitatively. Math-
ematically, a synthesis is defined by a decomposition of the state space into a finite
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Fig. 5.7 Synthesis of optimal controlled trajectories for the problem [OCA] and model [H].

collection of embedded submanifolds, M = {Mi}i∈N, sometimes also called strata,
together with (i) a well-defined flow of trajectories corresponding to admissible con-
trols on each stratum and (ii) regular transitions between the strata that generate (iii)
a memoryless flow of extremal trajectories, i.e., there exist unique solutions for-
ward in time and the resulting controlled trajectories satisfy the conditions of the
Pontryagin maximum principle. The optimal solutions to problem [H] give rise to
such a decomposition and the global optimality of all the controlled trajectories that
define the synthesis follows from Theorem A.4.4 in Appendix A. Hence this gives
a complete solution to the optimal control problem.

We illustrate the optimal synthesis geometrically in Figure 5.7. The variable y
merely accounts for the amount of inhibitors that already has been used and it is
more convenient, and in fact more illustrative, to show the (overlapping) projections
of the trajectories into the (p,q)-plane. With only a slight abuse of terminology we
do not distinguish in our language between the trajectories in (p,q;y)-space and
their projections onto the (p,q)-coordinates. Figure 5.7 also identifies one typical
optimal controlled trajectory corresponding to an optimal of the form umaxs0 de-
scribed above.

In Figure 5.8 we give an example of an optimal controlled trajectory (on the left)
and its corresponding control (on the right) of the type umaxs0. The initial condition
is given by (p0,q0) = (12000 [mm3],15000 [mm3]) and the optimal control takes
the maximal value u = umax for the short interval from 0 to t1 = 0.0905 [days]
when the trajectory reaches the singular arc. At this point, the control switches to
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the time-varying singular control defined by the singular feedback (5.49) until all
inhibitors have been exhausted at time t2 = 6.5579 [days]. Then, due to after effects,
the minimum value of the tumor volume is realized a short period later at the final
time T = 6.7221 [days] when the trajectory for u = 0 reaches the diagonal. Along
the initial segment the tumor volume hardly shrinks. However, the initial carrying
capacity of the vasculature is much larger than the initial tumor volume and thus the
tumor would vigorously grow (at least in the mathematical model) if left untreated
and thus beneficial effects of treatment do show up here as well. Also note the very
fast q-dynamics away from the singular arc. Although the almost vertical trajectory
segments along the controls u = 0 and u = umax are sizable, the time spent along
these pieces is small. Most of the time the control is singular and the trajectory
follows the associated singular arc (whose projection in the (p,q)-space is a subset
of the base curve S0), but this dynamics is much slower. The optimal final value is
given by p∗(T ) = 8533.4 [mm3]. The optimal trajectory is shown as a solid curve
in Figure 5.8 and the singular curve S and the diagonal D0 are indicated as dotted
curves.
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Fig. 5.8 Example of an optimal umaxs0 controlled trajectory (left) and associated control as func-
tion of time (right) for initial data (p0,q0,A) = (12000,15000,300).

5.4 Optimal Synthesis for Model [E]

One of the main qualitative features of model [H] is the fact that, for the parameter
values given in [116], the dynamics of the carrying capacity q is much faster than
the dynamics of the tumor volume p. In fact, the system dynamics very much has
a differential-algebraic flavor with the system mostly evolving on the q̇ nullclines
which form the corresponding slow manifolds. In some sense, the singular control
shapes this nullcline to achieve optimal tumor reductions. In order to slow down



210 5 Optimal Control of Mathematical Models for Antiangiogenic Treatments

the q-dynamics, Ergun, Camphausen, and Wein in [77] modified the equations and
made the inhibition term in the vasculature proportional to the tumor radius. This,

in principle, results in the expression d p
1
3 q. As a further simplification, they still

identified p and q in steady state and replaced p with q in the dynamics for the
carrying capacity. This gives an inhibition term of the form dq

4
3 . Following the

second main conclusion derived in [116]—the inhibition term tends to grow at a rate
of q

2
3 faster than the stimulation term—the dynamics for the vasculature becomes

q̇ = bq
2
3 − dq

4
3 − μq− γuq.

This is a significant modeling change in that it decouples the dynamics of the car-
rying capacity from the tumor volume and thus is exposed to obvious criticism.
However, as we shall show next, the solution of the associated optimal control prob-
lem for this modified dynamics has qualitatively the same structure as the one pre-
sented above. One advantage of this formulation is that these same conclusions can
be obtained via a much simpler mathematical analysis. In this section, we give the
computations for the singular control and singular arc for model [E] and also include
the considerably less technical proofs in the construction of the optimal synthesis
highlighting the similarities with the one for model [H]. We also would like to point
out that the problem formulation considered in this chapter, i.e., the problem to min-
imize the tumor volume with an a priori given amount of antiangiogenic agents, was
originally considered by Ergun, Camphausen, and Wein in their paper [77]. In this
section we consider the following version of the general optimal control problem
[OCA]:

[E] For a free terminal time T , minimize the tumor volume at the terminal time,
p(T ), over all Lebesgue measurable (respectively, piecewise continuous) func-
tions u : [0,T ]→ [0,umax] subject to

ṗ =−ξ p ln

(
p
q

)

, p(0) = p0, (5.51)

q̇ = bq
2
3 − dq

4
3 − μq− γuq, q(0) = q0, (5.52)

ẏ = u, y(0) = 0, (5.53)

and terminal condition y(T )≤ A.

For our numerical computations we use the same parameter values as before
(see Table 5.2 and γ = 0.15 [conc−1][day−1] for angiostatin), but reduce the maxi-
mum dose rate to umax = 15 and the available amount of agents to A = 45. Again,
our results are general and these values are merely used for numerical illustrations
(Table 5.4).
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Table 5.4 Parameter values used for the antiangiogenic agent in numerical illustrations for the
model [E].

Variable/ Interpretation Numerical value Dimension
coefficient

γ Antiangiogenic killing parameter 0.15 conc−1 per day
(for angiostatin)

umax Maximum dose rate/concentration 15 mg per day
A Total amount of antiangiogenic agents 45 mg

5.4.1 The Dynamical System with Constant Controls
and the Biologically Relevant Region

As before, for the analysis of the optimal control problem, it is useful to have an
understanding of the dynamic properties of the systems for a constant control u ≡ v
with v some value in the control set [0,umax]. Equilibria lie on the diagonal p = q
and, setting x = 3

√
q, satisfy the quadratic equation

−dx2 − (μ+ γv)x+ b = 0.

It is clear that for each v there exists a unique positive solution. This equilibrium
point is a globally asymptotically stable node at

pv = qv =

⎛

⎝
−(μ+ γv)+

√
(μ+ γv)2 +4db

2d

⎞

⎠

3

.

Note that we have the following simple relation which will be used extensively
below,

q̇ = bq
2
3 − dq

4
3 − μq− γvq=

{
> 0 if q < qv,

< 0 if q > qv.
(5.54)

Different from model [H], here an equilibrium point exists for all values of v. Nat-
urally, among admissible control values the smallest value for pv occurs for the
full dose rate, u ≡ umax, and the largest value is the uncontrolled equilibrium for
u ≡ 0. We denote these values by p� = q� and ph = qh for low and high, respec-
tively. Figure 5.9 shows the phase portraits of the fully controlled (u = umax) and
uncontrolled system (u = 0). For the numerical values chosen, the equilibria are at
ph = 15,191 [mm3] and p� = 17 [mm3]. The high equilibrium is in the same range as
for model [H], but fully controlled trajectories, rather than converging to the origin,
now converge to the microscopic stable equilibrium point (p�,q�).

The biologically relevant region does not extend beyond the value of the uncon-
trolled equilibria and henceforth we restrict our analysis to the following square
domain D :

D = {(p,q) : p� < p < ph, q� < q < qh}. (5.55)
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Fig. 5.9 Phase portraits of the uncontrolled (u ≡ 0, left) and fully controlled (umax = 15, right)
system [E].

If an the initial condition lies outside of the set D and has small values for p or q,
the uncontrolled trajectory eventually will enter the region D (see Figure 5.9) and
then our analysis applies; on the other hand, very large initial conditions that would
exceed ph or qh simply are not medically realistic. As before, we denote by D+ and
D− the subregions of D that lie above and below the diagonal, D0, respectively.

Proposition 5.4.1. The region D is positively invariant for the flow of the control
system, i.e., if (p0,q0) ∈ D , then for any admissible control u defined over the
interval [0,∞) the solution (p(·),q(·)) to the corresponding dynamics with initial
condition (p0,q0) exists for all times t ≥ 0 and lies in D .

Proof. We again show that controlled trajectories that start at a point in the bound-
ary of D enter D . As for model [H], because of the Gompertzian growth model,
we have ṗ < 0 on the boundary segments {(p,q) : p� < p ≤ ph, q� = q} and
{(p,q) : p = ph, q� ≤ q < qh} and ṗ > 0 on the boundary segments {(p,q) : p� = p,
q� < q ≤ qh} and {(p,q) : p� ≤ p < ph, q = qh}. This already implies that trajecto-
ries starting in {(p,q) : p� = p, q� < q < qh} and in {(p,q) : p = ph, q� < q < qh}
enter D . Since q� is the equilibrium solution for the control u ≡ umax, the line
{(p,q) : q = q�} is invariant under this control and for u < umax we have that

q̇� = bq
2
3
� −dq

4
3
� − γuq�− μq� > bq

2
3
� − dq

4
3
� − γumaxq�− μq� = 0. (5.56)

Hence the q-dynamics always points to the right and trajectories starting on the
segment {(p,q) : p� < p ≤ ph, q� = q} enter D . Similarly, the line {(p,q) : q = qh}
is invariant under the control u = 0 and for u > 0, we have that q̇h = −γuqh < 0
which implies that trajectories starting on {(p,q) : p� ≤ p < ph, q = qh} enter D .
Like for model [H], we need to consider the two equilibrium solutions p� = q� and
ph = qh separately. Recall from the proof of Proposition 5.3.1 that, on the diagonal,
p = q, we have that ṗ = 0 and p̈ = ξ q̇, and this is irrespective of the q-dynamics.
Here we have for the high equilibrium point (ph,qh) and any control u > 0 that
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q̇h = −γuqh < 0 and thus the trajectory starting at (ph,qh) has a local maximum in
p and enters D . On the other hand, for the low equilibrium point (p�,q�) and any
control u < umax we have q̇� > 0 by (5.56) and thus the trajectory starting at (p�,q�)
has a local minimum in p and enters D as well. This completes the proof. �

5.4.2 Necessary Conditions for Optimality Revisited

We briefly summarize the first-order necessary conditions for optimality given in
Theorem 5.2.1 for problem [E] for well-posed initial data (p0,q0). Now the Hamil-
tonian H = H(λ , p,q,u) takes the form

H =−λ1ξ p ln

(
p
q

)

+λ2

(
bq

2
3 − dq

4
3 − γuq− μq

)
+λ3u,

and the adjoint equations with terminal conditions read

λ̇1 =−∂H
∂ p

= λ1ξ
(

ln

(
p
q

)

+ 1

)

, λ1(T ) = 1,

λ̇2 =−∂H
∂q

=−λ1ξ
p
q
+λ2

(

−2
3

bq−
1
3 +

4
3

dq
1
3 + γu+ μ

)

, λ2(T ) = 0.

The fact that the q̇ equation does not depend on p has some immediate consequences
for the multipliers λ1 and λ2 that will significantly simplify the reasoning.

Lemma 5.4.1. The multiplier λ1 is positive on [0,T ] and λ2 is positive on [0,T ).

Proof. The adjoint equation for λ1 is a homogeneous linear ODE and since λ1(T ) =
1, the first statement is immediate. The second one follows from the fact that when-
ever λ2(τ) = 0, then we have that

λ̇2(τ) =−ξλ1(τ)
p(τ)
q(τ)

< 0.

But then λ2 can have at most one zero. Since λ2(T ) = 0, this implies that λ2 is
positive for all times t < T . �

All general conclusions from Section 5.2.2 apply: if u∗ is an optimal control
defined over the interval [0,T ] with corresponding trajectory z∗ = (p∗,q∗,y∗)T , then
optimal controlled trajectories terminate on the diagonal, p∗(T ) = q∗(T ), and all
available agents are used up, y∗(T ) = A. Furthermore, without loss of generality, we
assume that λ3 is positive. The key properties for the synthesis of optimal controlled
trajectories are the same as for model [H], but have significantly easier proofs like
the following lemma.
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Lemma 5.4.2. Optimal controlled trajectories cross from D− = {(p,q)∈D : p< q}
into D+ = {(p,q)∈D : p > q} using the control u = umax, but never cross from D+

into D−. If an optimal trajectory reaches the diagonal from within D+ at time τ ,
then τ is the terminal time, T = τ .

Proof. Suppose an optimal controlled trajectory is on the diagonal at time τ , p(τ) =
q(τ). It then follows from the fact that the Hamiltonian H vanishes identically that

λ2(τ)q(τ)
(

bq(τ)−
1
3 − dq(τ)

1
3 − γu(τ)− μ

)
+λ3u(τ) = 0.

If u(τ)< umax, then either u(τ) = 0 or the control is singular. In either case we have
that

u(τ)Φ(τ) = u(τ)(λ3 −λ2(τ)γq(τ)) = 0

and thus
λ2(τ)q(τ)

(
bq(τ)−

1
3 − dq(τ)

1
3 − μ

)
= 0.

Since q < qh, the expression bq
2
3 − dq

4
3 − μq is positive in the domain D and thus

λ2(τ) = 0. Hence τ = T . On the other hand, if u = umax, then trajectories transver-
sally cross from D− into D+ since q > q� and thus q̇ < 0 in D . �

5.4.3 Analysis of the Singular Arc and Control

We derive geometric properties of the singular arc and compute the associated sin-
gular control. For this model, the function Δ = S− I is given by

Δ(q) = S(q)− I(q) = bq
2
3 −dq

4
3

and thus the operator L , (L f ) (q) = q f ′(q)− f (q), gives

L (S) =−1
3

S and L (I) =
1
3

I.

Hence

L (Δ) =−1
3
(S+ I) and L 2(Δ) =

1
9
Δ =

1
9

q
2
3

(
b−dq

2
3

)
.

For q < qh, we have that bq
2
3 − dq

4
3 > μq > 0 and therefore L 2(Δ) is positive for

trajectories lying in D . Thus it follows from Theorem 5.2.2 that singular controls are
of order 1 and that the strengthened Legendre condition is satisfied. Hence, as for
model [H], admissible singular arcs are locally optimal. Furthermore, the singular
curve S is the locus of points (p,q) that satisfy the equation

Δ(p,q)+L (Δ)(p,q) ln

(
p
q

)

− μq = 0
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which here is given by

bq
2
3 − dq

4
3 − 1

3

(
bq

2
3 + dq

4
3

)
ln

(
p
q

)

− μq = 0.

This equation solves for p as

p = qexp

(

3
b− μq

1
3 − dq

2
3

b+ dq
2
3

)

.

Hence, for this model the singular curve is the graph of a smooth function. Since
we have that b− μq

1
3 − dq

2
3 > 0 for all q < qh with equality for qh (c.f., (5.54)), it

follows that the high equilibrium point (ph,qh) lies on S and otherwise the singular
curve again lies in the region D+ = {(p,q) ∈ D : p > q}, i.e., above the diagonal.
Denote the subregions of D+ that lie above and below the singular curve by I and
II, respectively (see Figure 5.10).
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Fig. 5.10 The singular curve S and the subregions I and II of D+.

For model [E], the drift and control vector fields f and g are given by

f (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)

bq
2
3 − dq

4
3 − μq

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, g(z) =

⎛

⎜
⎜
⎜
⎜
⎝

0

−γq

1

⎞

⎟
⎟
⎟
⎟
⎠
,
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and their Lie bracket is

[ f ,g](z) = γ

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ξ p

− 1
3

(
bq

2
3 +dq

4
3

)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

with the higher-order Lie brackets given by

[ f , [ f ,g]](z) = γ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ p
(
ξ + 1

3

(
bq−

1
3 +dq

1
3

))

− 4
9 bdq− 1

9μ
(

bq
2
3 −dq

4
3

)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.57)

and

[g, [ f ,g]](z) = γ2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0

− 1
9

(
bq

2
3 −dq

4
3

)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

The vector fields g, [ f ,g] and [g, [ f ,g]] are everywhere linearly independent and thus
[ f , [ f ,g]] can again be expressed as a linear combination of this basis. This gives us
that

[ f , [ f ,g]](z) =

(

ξ +
1
3

b+ dq
2
3

q
1
3

)

[ f ,g](z)+ψ(z)[g, [ f ,g]](z) (5.58)

with

ψ(z) =−1
γ

(
b− dq

2
3

q
1
3

+ 3ξ
b+dq

2
3

b−dq
2
3

− μ

)

.

Setting x = 3
√

q and defining the function

Ψ(x) =
1
γ

(
b− dx2

x
+ 3ξ

b+dx2

b−dx2 − μ
)

,

the singular control is then given by

using(x) =Ψ(x)

and is a smooth feedback control that only depends on x = 3
√

q.
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Note that the functionΨ is well defined on the interval (0,xh) with xh = 3
√

qh. In
fact, xh is the unique positive root of the quadratic polynomial

Q(x) =−dx2 − μx+b

and Q(x) is positive on the interval (0,xh). Since Q

(√
b
d

)

= −μ
√

b
d < 0, the sin-

gularity of the second term, x =
√

b
d , lies to the right of xh and overallΨ is positive

on (0,xh). The range where the singular control is admissible is easily determined.

The functionΨ is strictly convex with poles at x = 0 and x =
√

b
d . For, we have that

Ψ ′(x) =
1
γ

(

−b+ dx2

x2 + 12ξ
bdx

(b−dx2)2

)

and

Ψ ′′(x) =
1
γ

(
2b
x3 +

12ξbd

(b− dx2)
2

[

1+
4dx2

b−dx2

])

> 0

in the interval (0,
√

b
d ). Hence, for large enough dose rates umax, there exist exactly

two values x∗� and x∗h, 0< x∗� < x∗h <
√

b
d , such that the singular control is admissible

for x ∈ (x∗� ,x
∗
h) and saturates with value u = umax at both x∗� and x∗h; the control is

inadmissible for x /∈ [x∗� ,x
∗
h]. If the dose rate umax is too small, then no admissible

singular controls may exist and in such a case it will follow from our computations
below that optimal solutions are bang-bang with at most two switchings in the order
0umax0. But henceforth we assume that an admissible segment of the singular arc
exists. If we set x� = 3

√
q�, then it holds that x� < x∗� . For, at the lower equilibrium

we have that b−dx2
� − μx� = γumaxx� and thus the singular control is given by

using(x�) = umax + 3
ξ
γ

b+ dx2
�

b− dx2
�

> umax.

At the high equilibrium we have that

using(xh) = 3
ξ
γ

b+ dx2
h

b− dx2
h

and thus the location of xh relative to x∗h depends on the value for umax. Summarizing,
we have the following result:

Proposition 5.4.2. In the domain D , and defining x = 3
√

q, the singular curve S is
the graph of a function psing of x, psing : [x�,xu]→ [p�, ph], x �→ psing(x), given by

psing(x) = x3 exp

(

3
b− μx−dx2

b+dx

)

. (5.59)
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The corresponding singular control that keeps S invariant is given in feedback
form by

using(x) =Ψ(x) =
1
γ

(
b− dx2

x
+ 3ξ

b+dx2

b−dx2 − μ
)

(5.60)

and it is admissible over an interval [x∗� ,x
∗
u] with x� < x∗� and the values x∗� and x∗u

are the unique solutions to the equationΨ (x) = umax in (0,
√

b
d ).

Figure 5.11 shows the graph of the singular control defined by (5.60) with the
horizontal axis representing the variable q. In order to better compare these func-
tions for the various models, we keep the original variable q in the graphs and
set q∗� = 3

√
x∗� and q∗u = 3

√
x∗u. For the numerical values given earlier, we have that

q∗� = 23.69 [mm3] and q∗u = 12,319 [mm3]. For comparison, the equilibrium value is
qh = 15,191 [mm3] and thus for these parameter values the admissible singular arc
Sad lies strictly between the two equilibria.
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Fig. 5.11 The singular control (left) and singular arc (right) for the model [E] with the admissible
part for umax = 15 shown as the solid segment.

5.4.4 Analysis of Junctions Between Bang and Singular Controls

As for model [H], the important step is to limit possible concatenations between op-
timal bang and singular arcs. Compared with the computations done in Section B.4
in Appendix B, the reasoning is greatly simplified for model [E] and we thus include
the details here. Recall that I denotes the region in D+ that lies above the singular
curve and II denotes the region below it.

Proposition 5.4.3. Suppose u∗ is an optimal control with corresponding trajectory
(p∗,q∗). If (p∗(t),q∗(t)) lies in region I, then u∗ can switch at time t only from u = 0
to u = umax; if (p∗(t),q∗(t)) lies in region II, then u∗ can only switch from u = umax

to u = 0. Below the diagonal, only switchings from u = 0 to u = umax are possible.
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Proof. If an optimal control switches at time τ , the multiplier λ (τ) vanishes against
g(z∗(τ)) and f (z∗(τ)). Away from the diagonal D0 = {(p,q) : p = q}, the vector
fields f , g and the constant coordinate vector field h = (0,0,1)T are linearly inde-
pendent and thus the Lie bracket [ f ,g] can be written as a linear combination of
these vector fields in the form

[ f ,g](z) = ρ(z) f (z)+σ(z)g(z)+ ζ (z)h,

i.e.,

γ

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ξ p

− 1
3

(
bq

2
3 +dq

4
3

)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

= ρ(z)

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)

bq
2
3 − dq

4
3 − μq

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
+σ(z)

⎛

⎜
⎜
⎜
⎜
⎝

0

−γq

1

⎞

⎟
⎟
⎟
⎟
⎠
+ζ (z)

⎛

⎜
⎜
⎜
⎜
⎝

0

0

1

⎞

⎟
⎟
⎟
⎟
⎠
.

This gives ρ(z) =− γ
ln
(

p
q

) and

σ(z) =
1
3

(
bq

2
3 + dq

4
3

)
ln
(

p
q

)
−
(

bq
2
3 −dq

4
3 − μq

)

q ln
(

p
q

) =−ζ (z).

The numerator of σ vanishes where f and the Lie bracket [ f ,g] are linearly de-
pendent and thus defines the singular curve S . It is positive above S and negative
below S . The denominator is positive in D+ and negative in D−. Thus σ is positive
in the regions I and D− and negative in region II. At a switching time τ we have
that

Φ̇(τ) =−σ(z∗(τ))λ3.

Without loss of generality, by Lemma 5.2.3, we may assume that λ3 > 0 and thus
Φ̇(τ) and σ(z∗(τ)) have opposite signs. Hence Φ̇(τ) is negative in I ∪D− and
positive in II. Thus, whenever the switching function has a zero and (p∗(τ),q∗(τ))
lies in I ∪D−, then the switching function changes sign at time τ from positive to
negative values and thus the control switches from u = 0 to u = umax. Analogously,
whenever the switching function has a zero and (p∗(τ),q∗(τ)) lies in region II, then
the switching function changes sign at time τ from negative to positive values and
thus the control switches from u = umax to u = 0. This proves the result. �

Proposition 5.4.4. An optimal control u∗ can take on the value 0 only along an
initial interval [0,τ] or a terminal interval [τ,T ].

Proof. Suppose there exists an interval [α,β ]⊂ (0,T ) such that the switching func-
tion Φ vanishes at the endpoints, Φ(α) = Φ(β ) = 0, and Φ is positive on (α,β ).
Then there exists a time τ ∈ (α,β ) where Φ attains its maximum and, with all
functions evaluated at τ , we have that
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0 = Φ̇(τ) = 〈λ (τ), [ f ,g](z(τ))〉 = λ1ξγ p− 1
3
λ2γ
(

bq
2
3 +dq

4
3

)
.

Using this identity in the formula for the second derivative along u = 0 at time τ ,
we get that (c.f., (5.57))

Φ̈(τ) = 〈λ (τ), [ f , [ f ,g]](z(τ))〉

= λ1γξ p

(

ξ +
1
3

bq−
1
3 +

1
3

dq
1
3

)

− 1
9
λ2γ
(

4bdq+bμq
2
3 −dμq

4
3

)

=
1
3
λ2γ
(

bq
2
3 + dq

4
3

)(

ξ +
1
3
(bq−

1
3 +dq

1
3 )

)

− 4
9
λ2γbdq

− 1
9
λ2γμq(bq−

1
3 −dq

1
3 )

=
1
9
λ2γ

⎛

⎜
⎝3ξ

(
bq

2
3 + dq

4
3

)
+

(
bq

2
3 − dq

4
3

)2

q
− μ(bq

2
3 −dq

4
3 )

⎞

⎟
⎠

=
1
9
λ2γ

(

3ξ
(

bq
2
3 + dq

4
3

)
+(bq

2
3 − dq

4
3 )

bq
2
3 − μq−dq

4
3

q

)

.

But bq
2
3 − μq−dq

4
3 is positive in the region D and thus Φ̈(τ) > 0. Contradiction.

Hence the switching function is either strictly increasing or strictly decreasing along
the control u ≡ 0 and trajectories corresponding to u = 0 must lie at the beginning
or the end of the interval [0,T ]. �

Proposition 5.4.5. If u∗ is an optimal control, then there exists at most one interval
I along which the control is singular.

Proof. Suppose there exist two consecutive open intervals (α1,β1) and (α2,β2)
where an optimal control is singular and in between the switching function Φ is
nonzero. It then follows from the previous Proposition that Φ must be negative and
thus there exists a concatenation sequence of the form sumaxs. The singular vector
field is given by (

−ξ p ln
(

p
q

)

bq
2
3 − dq

4
3 − μq

)

+ using

(
0

−γq

)

and at a point where the control is admissible, we have that using < umax. At any
such point the vector field corresponding to the control umax therefore has a smaller
q-component and trajectories for umax leave the singular arc transversally into the
region above (equivalently, to the left of) the singular arc, p > psing(q). Along the
umax trajectory, the carrying capacity decreases and it is impossible to once more
connect with the singular arc from above as long as the points are admissible. Con-
tradiction. �
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Hence, as for model [H], any trajectory for u = umax that starts on the admissible
portion of the singular arc enters the region above the singular curve and can only
return to the region below the singular curve through the segment where the control
is inadmissible. Propositions 5.4.4 and 5.4.5 immediately imply the following result
on concatenation sequences that are optimal.

Corollary 5.4.1. Given a well-posed initial condition (p0,q0)∈D , optimal controls
are at most concatenations of 5 pieces in the order 0umaxsumax0 with 0 denoting an
arc along the constant control u= 0, umax denoting an arc along the constant control
u = umax, and s denoting an arc in the singular surface S .

Different from model [H], here an additional bang-bang junction at the beginning
is possible. The reason is that the singular control saturates twice at the upper limit
umax at a low value q∗� and a high value q∗u. For model [H], such a saturation was
only possible at the exit from the admissible singular arc and it generated the con-
catenation sequence sumax0. Here this saturation is also possible at the entry into
the admissible singular arc and this is what generates the sequence 0umaxs at the
beginning. But, as for model [H], not all of the intervals in 0umaxsumax0 need to be
present in a particular solution. In fact, for the biologically most relevant situation,
again optimal controls typically have the form bs0 where b stands for an interval
along which the optimal control is given by either u = umax or u = 0. The more
complex concatenations only arise if the optimal trajectory passes near the satura-
tion points. The reason is that in such a scenario it is not optimal to remain on the
singular arc until the saturation point is reached, but optimal trajectories must leave
the singular arc prior to this point with the control u = umax.

Proposition 5.4.6. It is not optimal for a singular control to concatenate with the
control u = umax at saturation points.

Proof. Suppose τ is a junction time between a singular control and u = umax where
the singular control saturates at u = umax. In general, using (5.58) we have that

Φ̈(t) = 〈λ (t), [ f +ug, [ f ,g]](z(t))〉

=

(

ξ +
1
3

b+ dq(t)
2
3

q(t)
1
3

)

Φ̇(t)+ (u(t)+ψ(p(t),q(t)))〈λ (t), [g, [ f ,g]](z(t))〉 .

Along the singular arc, the derivative of the switching function vanishes, Φ̇(t) =
0, and since ψ(p(τ),q(τ)) = −umax at the saturation point, the second derivative
satisfies Φ̈(τ) = 0 and is still once more continuously differentiable at τ . Along the
control u = umax, we then get that

Φ(3)(τ) =
(

d
dt |t=τ

ψ(p(t),q(t))

)

〈λ (t), [g, [ f ,g]](z(t))〉

=−1
9
λ2(τ)γ2

(
bq(τ)

2
3 − dq(τ)

4
3

)( d
dt |t=τ

ψ(p(t),q(t))

)

.
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By Lemma 5.4.1, λ2(τ) is positive and in the region D we also have that

bq(τ)
2
3 − dq(τ)

4
3 > μq(τ)> 0.

In order to compute the derivative of ψ , recall that with x = 3
√

q and Ψ defined by
(5.60), we have thatΨ(x(t)) =−ψ(p(t),q(t)). Hence

− d
dt |t=τ

ψ(p(t),q(t)) =Ψ ′( 3
√

q(τ))
q̇(τ)

3q(τ)
2
3

.

Everywhere in the set D it holds that

q̇(τ) = bq(τ)
2
3 − dq(τ)

4
3 − μq(τ)− γumaxq(τ)< 0

and thus Φ(3)(τ) has the opposite sign as Ψ ′(q(τ)
1
3 ). The functionΨ is decreasing

at q∗� ,Ψ ′( 3
√

q∗�)< 0, and increasing at q∗h,Ψ ′( 3
√

q∗h)> 0. Hence we have Φ(3)(τ)> 0

if saturation occurs at q∗� and Φ(3)(τ)< 0 if saturation occurs at q∗h. But the singular
control moves the system along the singular arc from the high point q∗h to the low
point q∗� and thus, if saturation occurs at the low value q∗� , then the singular con-
trol terminates at time τ , i.e., the control is singular before time τ and is given by
u = umax after time τ . But Φ is positive for t > τ near τ and this contradicts the
minimization property of the maximum principle. Analogously, if saturation occurs
at the high value q∗h, then the singular control starts at time τ , i.e., the control is
given by u = umax before time τ and becomes singular after time τ . But again the
switching function is positive for time t < τ near τ violating the maximum princi-
ple. Thus in either case, it is not optimal to continue with u = umax if the singular
control saturates and optimal controlled trajectories enter and leave the singular arc
only along points when the singular control takes values lower than umax. �

5.4.5 Synthesis of Optimal Controlled Trajectories

We now have all the building blocks in place to construct a synthesis of optimal con-
trolled trajectories. We only briefly indicate the results, but note that the argument
is identical with the one carried out in detail in Appendix B.4 for model [H] and we
refer the reader to this section for the precise reasoning.

Medically realistic initial conditions lie below the singular curve, i.e., (p0,q0) ∈
II ∪D0 ∪D−, and in this case optimal controls start with full dose administrations
of antiangiogenic agents,

uopt(p,q,y)≡ umax, (p,q) ∈ II∪D0 ∪D−, 0 ≤ y < A.

Intuitively, it is rather clear that switchings from u = 0 to u = umax are not optimal
in D− (although in principle allowed by Proposition 5.4.3). For, if there exists an
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initial segment [0, t1] along which u ≡ 0, then we can equivalently take (p(t1),q(t1))
as initial condition, but the p and q values are higher and given the dynamic prop-
erties of the system with a given amount of antiangiogenic agents it is not possible
to reach a lower tumor volume than from (p0,q0). Thus optimal controlled trajecto-
ries start with an initial full dose segment. If the corresponding trajectory does not
reach the admissible portion of the singular curve, then the optimal control is of the
form umax0 given by a full dose rate treatment until all agents have been exhausted
followed by a trajectory for u = 0 until the diagonal is reached. If the admissible
portion of the singular curve is reached, it can be shown that this always happens at
points that lie below the high saturation point q∗h. At this point the control u = umax

remains an option, but also a switch to the singular control is possible. Typically,
the latter happens and optimal controlled trajectories follow the singular arc until
all antiangiogenic agents have been used up and then end with a segment for u = 0
until the diagonal is reached where the minimum tumor volume is realized. Excep-
tions to this structure exist if at the time when the singular arc is reached enough
agents are available so that saturation along the singular would occur. In this case,
optimal trajectories leave the singular arc prior to the saturation point with another
full dose segment for u = umax and overall a concatenation sequence of the form
umaxsumax0 arises. The precise reasoning is the same as it is detailed for model [H]
in Appendix B.4.

All initial conditions (p0,q0) in the region I above the singular curve are au-
tomatically well posed, but are medically less important. In such a case, the tu-
mor volume is high while the carrying capacity is low and thus the tumor volume
is shrinking. Depending on the location of the initial condition, controls can start
with both u = 0 and u = umax. In this case, a concatenation sequence in the order
0umaxsumax0 is possible and indeed is optimal (with all legs present for some initial
conditions). We just describe such a case. It arises if ample agents are available so
that saturation at both the high and low points becomes involved. For example, a
realistic scenario that leads to such a geometric constellation is that the maximum
dose rate umax is relatively small so that the admissible arc of the singular curve
becomes rather small (i.e., q∗� and q∗h are close). Obviously, one needs that the high
saturation value q∗h lies below the equilibrium value qh, q∗h < qh, so that there exists
an inadmissible portion of the singular arc. For initial conditions (p0,q0) above the
singular arc with q∗h < q0 < qh there exist two types of extremals. One is bang-bang
of the form 0umax0 and gives all agents in a single maximum dose rate session, the
other one involves a segment along which the control is singular and is of the form
0umaxsumax0. Initially, a u = 0 trajectory lowers the tumor volume briefly ((p0,q0)
lies above the diagonal) and then, while still in region I, a switch to u = umax oc-
curs. The corresponding trajectory then carries the state from region I into region II
across the inadmissible segment of the singular arc that lies between q∗h and qh. From
then on, the analysis for initial points in region II applies and, if saturation occurs
along the singular arc, this leads to the full concatenation sequence 0umaxsumax0.
The corresponding value of the objective then needs to be compared with the one
for the 0umax0 trajectories and the smallest value defines the optimal solution. These
adjustments around the saturation points occur only in small neighborhoods of these
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points and the sequence with the long period along the singular arc generally does
better because of the intermediate reduced dose rates. Such initial data may not al-
ways be relevant for the underlying medical problem, but this argument shows that
the concatenation structure 0umaxsumax0 is the mathematically best limit that can be
given on the structure of optimal controls.

We illustrate the typical structures of optimal controlled trajectories of the forms
0s0 and umaxs in Figure 5.12. Once again, we show projections of the controlled tra-
jectories into (p,q) space with the p-axis taken vertically. The admissible singular
arc is shown as a solid blue curve with the inadmissible part shown dotted. Trajecto-
ries corresponding to u ≡ umax are shown as solid green curves whereas trajectories
corresponding to u ≡ 0 are marked as dash-dotted green curves. The dotted black
line in the figure is the diagonal, p = q. We also include in Figure 5.13 the synthesis
shown in the variables p and x = 3

√
q which nicer illustrates the structure for small

tumor volumes.
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Fig. 5.12 Synthesis of optimal trajectories for model [E] in the variables (p,q).

Figure 5.14 gives an example of the optimal control as a function of time and its
corresponding trajectory for the initial condition p0 = 12,000 [mm3], q0 = 15,000
[mm3]. The initial condition lies in the region D− and thus initially the optimal con-
trol is given by the full dose rate u = umax. Note the relatively small shrinkage of
the tumor volume p along this interval compared with the changes in the carrying
capacity q. Antiangiogenic treatment here prevents the further growth of the tumor
that otherwise would have occurred. Once the trajectory corresponding to u = umax

meets the singular arc, the optimal control becomes singular and the optimal tra-
jectory follows the singular arc until all inhibitors are exhausted. It is only on this
interval that significant shrinkage of the tumor volume occurs. Since the inhibitors
run out in the region p > q, the tumor volume still shrinks for u = 0 until the tra-
jectory reaches the diagonal p = q at the final time T . For model [E], the intervals
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Fig. 5.14 Optimal control (a, left) and corresponding trajectory (b, right) for model [E] for the data
from Tables 5.2 and 5.4.

when the optimal control is constant (both for u = umax and u = 0) are much longer
when compared with model [H] since the q-dynamics has been slowed down and
there still is a sizable shrinkage of the tumor along the final segment for u = 0.
Note also that, like for model [H], the optimal singular control administers the in-
hibitors first at lower levels and then the dosage intensifies along the singular arc
(dose intensification), an observation already made by Ergun et al. in [77].

5.5 Optimal Synthesis for the Models [Iθ ]

Modifications involving significant modeling assumptions were made in the change
from model [H] to model [E]. Changing the dependence of the inhibitory effects of
the tumor on the vasculature from being proportional to the tumor surface in model
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[H] to being proportional to the tumor radius in model [E] seems quite reasonable
and biological justifications for it can be provided. This also has the beneficial effect
of slowing down the dynamics for the vascular support as measured by the carrying
capacity. However, the interchange of q with p in quasi steady state is somewhat
problematic since it decouples the q-dynamics from the growth of the tumor and
thus raises obvious concerns. Nevertheless, as we have just seen, this does not affect
the general qualitative form of the solutions to the optimal control problem [OCA]
while the analysis of the optimal control problem [E] is considerably simplified.
This, in some sense, adds credence to the modeling approach by Ergun et al. At
the same time, one reason for making this substitution also was to simplify compu-
tations for the combination therapy problem with radiotherapy considered in [77].
For the optimal control problem [OCA], this is not necessary and thus there is an
incentive to explore the modeling premises that differentiate these models further.
Therefore, in this section we still consider models that interpolate between these two
approaches in the sense that we make the inhibitory effects of the tumor dependent
on the tumor radius, but at the same time we retain the tumor volume as variable in
the dynamics for the carrying capacity and thus do not decouple the two dynamics.
Thus we take

I(p,q) = d p
1
3 q (5.61)

and consider the following models [Iθ ] dependent on a parameter θ .

[Iθ ] For a free terminal time T , minimize the tumor volume at the terminal time,
p(T ), subject to the dynamics

ṗ =−ξ p ln

(
p
q

)

, p(0) = p0,

q̇ = bpθ −
(
μ+ d p

1
3

)
q− γuq, q(0) = q0,

ẏ = u, y(0) = 0,

over all Lebesgue measurable (respectively, piecewise continuous) functions u :
[0,T ]→ [0,umax] for which the corresponding trajectory satisfies y(T )≤ A.

The choice θ = 1 gives the same stimulation term as in model [H], but we have
I
S � qp−

2
3 and thus α+β = 1

3 violating the second modeling premise of [116] (see
Section 5.1.1) as well. The parameter value θ = 2

3 is consistent with this modeling
premise. For both models, the same results on the structure of optimal controls are
valid as for models [H] and [E] and in this section we only derive the explicit analytic
form for the singular control and singular arc, but do not go into the technical details
of constructing the synthesis. We merely illustrate the geometry of the singular arc
and the structure of the syntheses for some numerical examples.
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5.5.1 The Dynamical System with Constant Controls

In order to see the effects that this modeling change has on the dynamics, it is useful
to compare the resulting dynamical systems for constant control values. Figure 5.15
gives the phase portraits of the uncontrolled (left) and fully controlled (right) sys-
tems [I 2

3
] and [I1] for the parameter values of Table 5.2 and umax = 75. The uncon-

trolled dynamics very much exhibits the same behavior as for model [H]. For the
fully controlled systems, the dynamic behavior of model [I 2

3
] is much closer to the

one for model [E] while the dynamic behavior for model [I1] qualitatively is very
much identical with the one for model [H]. Note, however, that there is a significant
quantitative difference in the values for the parameter values used. For system [I1],
the stable equilibrium point of the uncontrolled system is in the unrealistically high
range of 108. This obviously is caused by changing the term that multiplies q in
the inhibition term from p

2
3 to p

1
3 which reduces the inhibitory effects of the tumor

by one degree of magnitude. Thus the values are no longer realistic. However, as
our analysis is completely independent of the specific values that these parameters
actually have, we retained them for this illustration. If we counteract these effects
by also scaling down the coefficient b that determines the stimulatory effect of the
tumor by one order of magnitude, once more similar numerical values arise. As a
comparison, in Figure 5.15 we also include as the fourth row the phase portraits for
the system [I1] when the parameter b has been chosen as b = 0.25.

5.5.2 Analysis of the Singular Arcs and Controls

We briefly discuss the geometry of the singular arc and the corresponding singular
controls for the optimal control problems [Iθ ]. As before, we write the state of the
system as z =(p,q,y)T and express the dynamics in the form ż= f (z)+ug(z) where
now

f (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)

bpθ −
(

d p
1
3 + μ

)
q

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and g(z) =

⎛

⎜
⎜
⎜
⎜
⎝

0

−γq

1

⎞

⎟
⎟
⎟
⎟
⎠
.

The function Δ = S− I is given by

Δ(p,q) = S(p)− I(p,q) = bpθ −d p
1
3 q.

Since the operator L , (L f ) (q) = q f ′(q)− f (q), only acts on the variable q, we
have the same formulas as for model [H], i.e.,

L (S) =−S and L (I) = 0.
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Fig. 5.15 Phase portraits for the uncontrolled (left) and fully controlled (right) systems [E] (top
row), [I 2

3
] (second row), [I1] for b = 5.85 (third row), [I1] for b = 0.25 (fourth row), and [H]

(bottom row).
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Hence
L (Δ) =−S and L 2(Δ) = S > 0.

In particular, L 2(Δ) is positive and by Theorem 5.2.2 singular controls are of order
1 and the strengthened Legendre-Clebsch condition is satisfied. Furthermore, the
singular curve S is the locus of points (p,q) that satisfy

Δ(p,q)+L (Δ)(p,q) ln

(
p
q

)

− μq = 0

which now reads

bpθ − d p
1
3 q− bpθ ln

(
p
q

)

− μq = 0.

Equivalently, and again using the projective coordinate x = p
q ,

bx(1− lnx) =
(

d p
1
3 + μ

)
p1−θ .

The singular control once more is computed as the coefficient at the Lie bracket
[g, [ f ,g]] when we express [ f , [ f ,g]] as a linear combination of the vector fields g,
[ f ,g] and [g, [ f ,g]]. Direct calculations verify that here these brackets are given by

[ f ,g](z) = γ

⎛

⎜
⎜
⎜
⎜
⎝

ξ p

−bpθ

0

⎞

⎟
⎟
⎟
⎟
⎠
, [g, [ f ,g]](z) =−γ2bpθ

⎛

⎜
⎜
⎜
⎜
⎝

0

1

0

⎞

⎟
⎟
⎟
⎟
⎠

and

[ f , [ f ,g]](z) = γ pθ

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ξ
(
ξ p1−θ +b p

q

)

θξb
(

ln
(

p
q

)
− 1
)
+ 1

3ξd p
1
3−θq−b

(
d p

1
3 + μ

)

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and thus g, [ f ,g] and [g, [ f ,g]] are linearly independent everywhere. As before, ex-
pressing [ f , [ f ,g]](z) as a linear combination of this basis as in Section 5.2.3, we
obtain the singular control as a feedback function of p and q. Summarizing, we
have the following formulas for the singular arc and its corresponding singular con-
trol for the interpolating models [Iθ ].

Proposition 5.5.1. For model [Iθ ] there exists a locally optimal singular arc defined
by the zero set of the equation

bx(1− lnx) =
(

d p
1
3 + μ

)
p1−θ (5.62)
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and the singular control that makes this curve invariant is given as

using(p,q) =
1
γ

[

θξ
(

ln

(
p
q

)

− 1

)

+
1
3
ξ

d
b

p
1
3−θq−

(
d p

1
3 + μ

)
+b

pθ

q
+ ξ
]

.

(5.63)

Recall that the singular curve for the model [H] is given by

bx(1− lnx) = d p
2
3 + μ .

If we set θ = 1 in (5.62), then the only difference lies in the exponent at the d-term
which is 2

3 if the inhibition term is taken proportional to the surface area and is 1
3

if it is taken proportional to the tumor radius. Figure 5.16 shows the singular arcs
with the admissible portions identified for the models [H], [I1] and [I 2

3
]. All three

have the same geometric shape and the basic structure of the admissible portion of
the singular arc is preserved. Note that for both models saturation of the singular
control no longer becomes an issue since here the saturation points at upper limits
are for very small tumor volumes; negative values again make the portion that lies in
D− inadmissible. We include graphs of the singular controls as defined by equation
(5.63) in Figure 5.17. The singular dose rates become much smaller for these two
models.

Based on these formulas and analogous constructions as they were carried out
for the systems [H] and [E], a synthesis of optimal controlled trajectories can be
constructed and once more the same qualitative structure is verified as optimal for
the models [Iθ ]. Figure 5.18 gives these optimal syntheses for θ = 2

3 and θ = 1,
respectively. Comparing these structures with the optimal syntheses for the models
[H] and [E], the same features are easily recognizable. In fact, the optimal syntheses
for problems [I 2

3
] and [I1] are virtually identical with the one for model [E] as the

geometric shape of the trajectories for u = 0 and u = umax are concerned. Trajecto-
ries corresponding to the control u = 0 no longer show the fast, almost horizontal
dynamics caused by the differential-algebraic structure of the equations for [H], but
much closer follow trajectories similar to those for the model [E]. But the shape of
the singular arc closely resembles the one for the model [H].

As these figures illustrate, there exists a uniform and consistent structure to the
synthesis of optimal controlled trajectories for all the models within the class con-
sidered in this chapter. These last results also indicate that it would be possible, if so
desired, to incorporate more general fractal dependencies on both the inhibitory and
stimulatory effects of the tumor on the vasculature (not just through the tumor ra-
dius, dimension 1, tumor surface, dimension 2, or tumor volume, dimension 3) into
these models without changing the qualitative structure of the optimal solutions. If
no limits are imposed on the dose rates of the antiangiogenic agents, the following
simple structure of mathematically optimal therapies emerges: at time t = 0 give
the properly measured bolus dose that moves the initial condition (p0,q0) onto the
singular arc and then maintain the relation between p and q defined by the singular
arc through singular dose rates.
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Fig. 5.16 Singular arcs with admissible portions identified for the systems [H] (top), [I 2
3
] (middle)

and [I1] (bottom) and parameter values from Table 5.2 (b = 0.25 has been used for model [I1].
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Fig. 5.17 Graphs of the singular control for models [I 2
3
] (left) and [I1] (right) for parameter values

from Table 5.2 (b = 0.25 has been used for model [I1]).

5.6 Medical Interpretations and Modeling Extensions

Summarizing our results, for various mathematical models of antiangiogenic ther-
apy that are based on the research in [116], we presented a complete theoretical
solution for the problem of optimally scheduling an a priori given amount of antian-
giogenic agents in order to minimize the primary tumor volume. These solutions
show a uniform picture across various modeling assumptions that is fully robust
with respect to parameter values. Optimal controls implement the following strat-
egy: give antiangiogenic agents at maximum dose rates until an ideal relation be-
tween tumor volume and carrying capacity has been established (defined by the
singular arc), then maintain this relation by judiciously chosen lower reduced dose
rates (defined by the singular controls). The singular arc and its associated singular
controls thus play the central role in the structure of optimal solutions. “More” is
definitely not better as far as the administration of antiangiogenic agents is con-
cerned, but properly designed dose rates are optimal. Only if the singular surface
S is not reachable in the region where the singular control is admissible, optimal
controls will administer agents at full dose rates upfront, but otherwise the partial
dose rates along the singular arcs better distribute the antiangiogenic agents over
time and lead to lower tumor volumes. If we were to put no limitations on the dose
rates, optimal solutions consist of an initial bolus injection to reach the singular arc
S0 and then administer antiangiogenic agents according to the singular control until
all agents are exhausted. This simple structure, which can be established rigorously
mathematically by letting umax → ∞ in the optimal solution presented here, is the
best possible scenario and represents the essence of the solutions to the problem.
These robust structural findings give strong credence to the underlying model as a
high-level, minimally parameterized model for antiangiogenic therapy.

An important conclusion from this analysis is that there does exist an ideal rela-
tion between tumor volume and vasculature along which tumor shrinkage is max-
imized. For each mathematical model employed here, rather elegant Lie-algebraic
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] (top) and [I1] (bottom) for the parameter values

from Table 5.2 (b = 0.25 has been used for model [I1]).

computations provide us with explicit formulas for the singular arc and the corre-
sponding singular control that keeps it invariant. The singular surface lies in the
region where the tumor volume p is higher than its carrying capacity q, but the
carrying capacity q is not pushed to zero too fast. Rather, a specific balance be-
tween p and q is maintained along the optimal solution. We shall see in Chap-
ter 7 that this balance is preserved in combinations of antiangiogenic therapy with
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chemo- or radiotherapy. Since the vascular network of the tumor is needed to de-
liver the chemotherapeutic agents, this perfectly makes sense and it is reminiscent
of the medical notion of a regularization of the vasculature proposed by Jain et al.
[131, 132]. In the models analyzed here, such a possibility is introduced purely from
an optimization point of view.

From a more practical point of view, singular controls may not seem realistic with
current technologies. But implementing the optimal strategies is not the only reason
for solving optimal control problems. In fact, solutions to optimal control problems
provide benchmark values to which any other strategy can be compared in order to
evaluate their efficiency. Naturally, strategies of the type umax0 that give all avail-
able inhibitors in one session are the easiest to implement in practice and for some
initial conditions these are indeed the optimal ones. This holds for initial conditions
for which umax-trajectories do not meet the admissible singular arc, but also for ini-
tial conditions when this intersection point is close to the saturation point. Indeed,
for model [H] the dynamics for u ≡ umax very much has a differential-algebraic
structure with the q-dynamics fast and the p-dynamics slow. As a result, after a
brief transient phase, in steady state the system essentially follows the q̇-nullcline.
This nullcline is very close to the singular curve near the saturation point (also, see
Figure 6.3 in Chapter 6) and thus the differences in the objective are almost unno-
ticeable near such initial conditions. For initial conditions far away from this point,
the singular arc and the q̇-nullcline are separated and then the singular control is no-
ticeably better. Of course, only knowing the optimal solution allows to make such
an comparison. In Chapter 6, we shall give an exhaustive numerical evaluation of
the structure of easily practically realizable, piecewise constant protocols and show
that simple, suboptimal protocols can be designed that come within a few percent of
the optimal solutions. Furthermore, and this also is a consequence of the structure of
optimal solutions, these protocols are fully robust with respect to the carrying capac-
ity, a theoretical quantity difficult to measure. Thus these solutions lead to several
practically interesting findings.

We close this chapter with a few comments about the modeling premises. It has
already been stated that model [H], on which the class of models analyzed in this
chapter is based, was formulated by Hahnfeldt, Panigrahy, Folkman, and Hlatky, a
group of researchers then at Harvard Medical School, as a model for angiogenic sig-
naling and first published in the journal Cancer Research in 1999 [116]. The optimal
control problem to minimize the tumor volume with a given amount of antiangio-
genic agents was formulated in 2003 by Ergun, Camphausen, and Wein in the paper
[77] who studied it in the context of a combination of tumor antiangiogenic treat-
ment with radiotherapy. In order to alleviate somewhat the complicated mathemat-
ical structures that arise in the radiotherapy calculations (c.f., also Chapter 7), the
simplifications that led to the model [E] were introduced. The results on the structure
of optimal controls presented in this chapter are our own and various aspects of it
have been published piecemeal in the literature (e.g., see [196, 200, 201, 204, 206]).
Other variations of the model exist as well, for example the one by d’Onofrio and
Gandolfi where the stimulation term is taken to be S(p,q) = bq. For this model, it
can be shown that singular arcs do not exist and hence—and still consistent with the
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structures derived here—the concatenation structure of optimal controls collapses
to become bang-bang with at most two switchings in the order 0umax0 [204, 314].
In some sense, this situation represents an extreme within the class we considered
here. Naturally, all models can be considered with different growth functions [183].
Also if a classical logistic model is used, F(x) = 1− x, singular arcs do not exist
and simple bang-bang solutions arise [314, 319]. But, in our view, these are the
exceptional cases. Optimal controls are bang-bang not because these are the better
structures, but simply because the truly best options, namely those presented by the
singular controls, are not available. This very much is a general principle in solu-
tions to optimal control problems with L1-type objectives. The problem formulation
considered in this chapter is what appears to us as the most intriguing formulation
from which many medically natural questions can easily be answered, but clearly
other options for defining the objective functional exist. These include, for example,
fixed therapy horizon formulations similar to the ones considered in Chapter 2. Gen-
erally, the same techniques apply and similar results are obtained. We refer the inter-
ested reader to the literature on this topic (e.g., see [189, 197, 205, 314, 316, 319]).
Finally, numerous other modifications of the underlying model have been proposed
in the literature (e.g., see [251, 259, 281]), though generally not in an optimal control
setting.



Chapter 6
Robust Suboptimal Treatment Protocols
for Antiangiogenic Therapy

As was shown in the previous chapter, singular controls play an essential role in
determining the overall structure of optimal controlled trajectories for the class of
mathematical models for antiangiogenic treatments based on the model by Hahn-
feldt et al. Lie algebraic computations provide an elegant framework in which the
singular controls and corresponding arcs can be determined analytically, but the re-
sulting formulas define feedback controls that administer time varying partial doses
depending on the current state of the system, that is, on the tumor volume p and its
carrying capacity q. Even at the initial time, while a reasonably reliable estimate for
the tumor volume p0 may be available, the carrying capacity of the vasculature, q0,
is a highly idealized quantity and there are no accurate methods to measure it. Thus,
indeed there is significant uncertainty about the actual values of the states. Even if
it were possible to monitor the states p(t) and q(t), medical devices that would ad-
minister such time-varying state-dependent dosages do not exist. The value of the
theoretical optimal solution that was derived for problem [OCA], apart from giving
important qualitative insights into the underlying system, lies in clarifying what in
principle is possible. In fact, for many practical problem, this precisely is the contri-
bution that optimal control methodologies provide. Then, based on the benchmarks
that the theoretically optimal solutions provide, it becomes of importance to formu-
late simple, easily implementable, but also robust strategies that could be employed
even in the face of great uncertainty in the parameters and the state of the system.
The models considered in Chapter 5 exhibit strong robustness with respect to param-
eter values and in this chapter we shall see that this also is valid in their dependence
with respect to the values of the carrying capacity q. More generally, the question
becomes what kind of responses can be achieved, and how closely can the optimal
values be approximated with realistic and medically realizable protocols that are
robust with respect to a wide range of parameters and uncertainties. This will be
the topic of this chapter.
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For both model [H] and [E] we analyze in Sections 6.1 and 6.2 the effectiveness
of some simple, practically common therapy protocols. Constant dose therapies can
be applied without any information on the initial data, but they are not necessarily a
good strategy. Essentially, if the resulting concentration is too low, no positive effect
may be achieved while too high a concentration unnecessarily wastes inhibitors that
could have been used more effectively at lower dose applications spread out in time.
We shall see below that the averaged value of the theoretically optimal control com-
puted in Chapter 5 provides an excellent suboptimal strategy. More generally, we
shall analyze the performance of piecewise constant protocols with a small num-
ber of segments (constant dose rates, two rate regimens, daily dosages, etc.). The
value of knowing the theoretically optimal solutions thus is bifold: it directly gives
rise to an excellent simple protocol and it provides benchmark values against which
one can judge the quality of simple, heuristically chosen strategies and protocols.
Using the knowledge of the theoretically optimal solution, it is indeed possible to
design excellent realizable suboptimal protocols for the models of antiangiogenic
therapy discussed in Chapter 5. Here a numerical evaluation will be carried out
for the models [H] and [E]. These results are based on joint work with John Mar-
riott of the University of Hawaii at Manoa and Helmut Maurer from the Rheinisch
Westfälische Wilhelms Universität Münster in Germany and have been reported in
various publications (e.g., [178, 179, 203]).

In the models in Chapter 5 dose rates of the agent are identified with concen-
trations in the blood stream. We here also consider extensions of the models that
include a linear pharmacokinetic model for the antiangiogenic agent, i.e., distin-
guish between these two quantities. We already have seen for the compartmental
models considered in Chapter 2 that the optimality status of singular controls was
preserved when a linear pharmacokinetic model was added to the reduced model
(see Theorem 2.3.2 in Section 2.3.2). The same holds true here and, in fact, in great
generality. However, it becomes necessary to adjust the formulas and equations to
the new model description. We shall see in Section 6.3 that the analytic equations
derived in Chapter 5 for the singular arc as a function of p and q remain valid ver-
batim except that the expressions which defined the singular control in the reduced
models now describe the corresponding concentrations. Thus these explicit compu-
tations directly carry over and all essential features of the simplified model are pre-
served. Once more this gives credence to the approach of inductively adding more
medically realistic features into the model. At the same time, however, mathemati-
cally under this modeling extension the intrinsic order of the singular arc increases
from 1 to 2 and this has significant implications on the structure of optimal con-
catenations of trajectories with the singular arc. It is no longer optimal to switch
from a full or no dose control to the singular control, but now this transition is ac-
complished by means of chattering controls (see Proposition A.3.3 in Appendix A).
Thus, while essential features are preserved verbatim under this modeling extension,
the qualitative structure of the optimal synthesis is not the same and indeed optimal
solutions become more complicated and even less practically feasible. Thus, once
again, the important question becomes how to construct suboptimal realizable pro-
tocols that come close to the optimal results. Thus this topic naturally fits into this
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chapter. After establishing the theoretical results in Section 6.3, we again describe
simple suboptimal protocols that come very close to the optimal solution. As before,
information about the structure of the optimal solutions directly suggests excellent
suboptimal approximations. From a practical point of view, these provide satisfac-
tory control schemes for treatment protocols for antiangiogenic therapy.

6.1 Realizable Suboptimal Treatment Protocols for Model [H]

We optimize treatment strategies over some simple classes of piecewise constant
treatment protocols and evaluate their effectiveness by comparing the results with
the optimal values for the model [H]. (Dose rates of the agent are still identified with
the concentrations in the bloodstream.) For realistic initial conditions some simple
strategies that divide the overall amount of antiangiogenic agents to be given into
a small number of intervals with constant values can come within 1% of the theo-
retically optimal values when the times of administration are included as variables
in this optimization problem. We also consider the case when these times are fixed
a priori to fit some practically imposed constraints. Naturally, due to the resulting
lack of freedom, these strategies perform worse, but they still come reasonably close
to the theoretically optimal values. Our main conclusion is that simple, piecewise
constant, and hence realistic protocols can be found that come very close to the the-
oretically optimal solution. We note that it is not difficult to compute these solutions
numerically, but that it is only the knowledge of the theoretically optimal solution
that allows to judge their quality. Unless specified otherwise, throughout this section
we use the parameter values from Tables 5.2 and 5.3 for our numerical illustrations,
but the principal conclusions are valid for a wide range of initial conditions and are
fully robust with respect to changes in the parameters.

6.1.1 Constant Protocols

It is straightforward to compute the best constant protocol for a fixed initial condi-
tion. As one example, we consider (p0,q0) = (12,000 [mm3];15,000 [mm3]). For this
initial condition, the optimal concatenation sequence is given by umaxs0: initially
the optimal control administers agents at full dose rate umax = 75 until the singular
base curve S0 is reached at time t1 = 0.091 [days]. Then administration follows the
time-varying singular control until the antiangiogenic agents are exhausted at time
t2 = 6.558 [days]. Because of after effects, the maximum tumor reduction is realized
along a trajectory for control u = 0 at the optimal terminal time T = 6.722 [days]
when the trajectory reaches the diagonal p = q. The theoretically optimal minimum
value for these data is given by p∗ = p(T ) = 8533.38 [mm3]. Figure 6.1 shows the
corresponding optimal control and its associated trajectory.
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Fig. 6.1 Optimal control (left) and corresponding trajectory (right) for problem [H] and initial
conditions (p0 ,q0) = (12,000 [mm3]; 15,000 [mm3])

One way to compute a good constant dose rate is to simply give the available
amount A of anti-angiogenic agents at a constant dose rate u over time tu = A

u and
then to take as the dose rate the value û that minimizes the values of the solutions
p̂u at the times tu,

û = argmin p̂u (tu) .

This is a straightforward one-dimensional numerical minimization problem and for
the initial condition (p0,q0) = (12,000 [mm3];15,000 [mm3]) the optimal dose rate
and the final time are given by

û = 45.27 and tu = A/û = 6.626 [days].

Note, however, that this problem formulation is not consistent with the optimal con-
trol problem [H] that was formulated in Chapter 5 since the terminal values of the
trajectories, (p̂u(tu), q̂u(tu)), do not lie on the diagonal. For example, for the value
û = 45.27 we have that (p̂û(tû), q̂û(tû)) = (8570.0 [mm3],4807.1 [mm3]). Since the
carrying capacity is smaller than the tumor volume, there will still be an additional
tumor reduction after all agents have been exhausted. The amount of this reduc-
tion also depends on the value of the carrying capacity q̂u(tu) at the endpoint and
minimizing the values that are realized as the trajectories cross the diagonal indeed
slightly changes the value of the optimal dose rate. The formulation that is consis-
tent with problem [H] is to give all available antiangiogenic agents at rate u over the
interval [0, A

u ] and then still concatenate the trajectory at the point (p̂u(tu), q̂u(tu))
when all agents have been exhausted with a trajectory corresponding to the control
u = 0. The minimum tumor volume then is realized as this trajectory crosses the
diagonal at some time Tu. We denote this minimum tumor volume by πu (Tu) and
minimizing over u gives the following slightly different optimal constant dose rate,

u∗ = argminπu(Tu) = 46.34.

The minimal tumor volume is p∗ = 8544.15[mm3]. Figure 6.2 shows the graph of the
function πu(Tu) with a small interval around the optimal value blown up on the right.
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For comparison, if one still adds the u = 0 segment to the trajectory for û = 45.27,
then the corresponding value on the diagonal is slightly larger given by πû (Tû) =
8544.62 [mm3] with final time T = 6.777 [days]. Clearly, from a practical point of
view, there is no difference between these values and both are extraordinarily close
to the theoretically optimal value 8533.38 [mm3].
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Fig. 6.2 Graph of πu(Tu) over [40,50] (left) and a blow-up over [46,47] (right).

A different type of constant protocol can be obtained by averaging the optimal
control over the interval of administration, i.e.,

ū ≡ 1
Topt

∫ Topt

0
uopt(t)dt =

A
Topt

.

In this formula, uopt denotes the optimal control as a function of time, Topt is the
time when all antiangiogenic agents have been exhausted and, as before, A denotes
the a priori specified overall amount of agents to be given. Since all antiangiogenic
agents are used along the optimal control, the integral is simply given by this total
amount A. The final interval when the tumor volume still decreases because of after
effects is not included in this computation. We call this the averaged optimal dose
rate protocol. For (p0,q0) = (12,000 [mm3];15,000 [mm3]), the averaged optimal
dose rate is ū = 45.75 and gives the value pū = 8570.09 [mm3] at the time when
inhibitors run out. Adding the final segment u = 0, we obtain as minimum value
8544.30 [mm3] with final time T = 6.709 days. This value only lies slightly above

Table 6.1 Comparison of minimal values for various constant dose rate protocols for problem [H].

Control Minimal value [mm3] Terminal time [days] Switching time [days] to u = 0
Optimal 8533.38 6.722 6.558

ū = 45.75 8544.30 6.709 6.558
û = 45.27 8544.62 6.777 6.626
u∗ = 46.34 8544.15 6.626 6.474
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the best constant dose rate protocol, but does better than when we simply minimize
at the time when all agents are used up. Table 6.1 summarizes the numerical results.
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Fig. 6.3 Model [H]: The singular curve S (shown in red) and the nullclines Numax (shown in blue)
and N 1

2 umax
(shown in green) for the constant dose protocols for u ≡ umax and u ≡ 1

2 umax.

Clearly, these optimal values depend on the initial condition (p0,q0) and we now
investigate the robustness of these values with respect to the initial data. It follows
from our theoretical results developed in Chapter 5 that full dose rate protocols of
the form umax0 are optimal if the initial tumor volume p0 is close to the p-value
for the lower saturation point on the singular arc and indeed these strategies are the
optimal solutions for all realistic values of the carrying capacity q0. Naturally, thus
an umax0-protocol is an excellent sub-optimal strategy for small tumor volumes that
is almost as good as the optimal solution. However, reduced dose rates do better for
initial conditions with higher values p0. While this may seem counterintuitive, for
this problem it is simply the case that agents are less effective (or more wasteful)
at higher rates and therefore it is beneficial to administer an a priori given amount
of antiangiogenic agents at lower rates. As a simple comparison, in our figures we
also include the optimal values that correspond to half dose rate protocols that give
the full amount of inhibitors at half the maximum dose over twice the time. This is
a simple ad-hoc strategy that generally does better than a full dose protocol for high
tumor values p0. The reasons for this can easily be understood mathematically from
the synthesis of optimal controlled trajectories: the dynamics for a general constant
dose protocol u ≡ v has a strong differential-algebraic character with fast variable
q and slow variable p. Essentially, the system follows an almost “horizontal” line
until the algebraic constraint manifold determined by the q̇ = 0 nullcline,

q =
bp

μ+ γv+ d p
2
3

,
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is reached; then the dynamics evolves along this curve. This nullcline very much
plays the same role for constant dose protocols as the singular curve does for the
optimal solutions. Figure 6.3 shows both the singular curve (in red) and the q̇ = 0
nullclines for the full dose u= umax (in blue) and half dose u= 1

2 umax (in green). The
umax-nullcline intersects the singular curve in the saturation point and the two curves
are almost identical around and below this saturation point. Hence in this area the
full dose protocols come very close to the optimal protocols. But for higher values
of p and q these curves separate and now the singular curve is better approximated
by the 1

2 umax-nullcline. Hence a half-dose rate protocol does better there. In fact, it
seems clear from Figure 6.3 that, as the tumor volumes increase, lower dose rates
should still do better.

While the full and half dose rate protocols are mere ad-hoc strategies that do not
take into account the initial data, the optimal constant dose and the averaged optimal
dose rate protocols are functions of p0 and q0. It is therefore of interest how sensitive
these dose rates are with respect to the initial data. In Figures 6.4–6.6 we compare
the minimum tumor volumes that can be achieved with these constant rate dose pro-
tocols with the one for the optimal control for initial tumor volumes for p0 = 6,000
[mm3], p0 = 9,000 [mm3], and p0 = 12,000 [mm3] and values of the carrying capac-
ity q0 ranging from q0 = 2,500 [mm3] to q0 = 12,000 [mm3]. The top row of each
figure shows the graphs for the minimum tumor volume realized by the various pro-
tocols for a fixed initial condition p0 and varying initial conditions q0, i.e., slices
through the graph of the associated value function for p0 = const. In all diagrams,
the solid red curve gives the theoretically optimal values corresponding to the op-
timal controls determined in Chapter 5, the dashed blue curve corresponds to the
full dose rate umax, the dashed-dotted blue curve to half dose rate 1

2 umax, the dashed
black curve gives the values for the averaged optimal dose rate and the dash-dotted
black curve gives the values corresponding to the optimal constant dose rate. The
graphs in the bottom row give the optimal constant dose rates (left) and the averaged
optimal dose rates (right) for fixed p0 as a function of q0. In all cases, the averaged
optimal dose rate protocol is very close to the optimal constant dose rates and both
stay within 0.5% of the theoretically optimal value. These averaged values are easily
computed while the computations of the optimal constant dose rates is straightfor-
ward, but lengthier. For smaller tumor volumes, there is no discernable difference
between the optimal control, the averaged optimal and optimal constant dose rate
protocols. Only as the tumor volume becomes high, separation of the corresponding
slices of the value function is seen. The curves for the values corresponding to the
optimal constant dose rates and the averaged optimal dose rates are almost identical
and differences are hardly discernible in the diagrams. We show on the top right
portion of each figure blow-ups of the graphs that show that the optimal constant
dose rates just lie slightly below the averaged optimal dose rates.

The saturation point for the singular control lies at psat = 4,122 [mm3] and in
this range, as the value of the singular control is close to umax = 75, the optimal,
averaged, and full dose protocols give almost identical values. The half dose pro-
tocol does noticeable worse for these values. In fact, it is so far off that we did not
include this curve in the range for Figure 6.4. Naturally, the realizable minimum
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Fig. 6.4 The graphs of the minimum tumor volumes realized by the optimal control (solid red
curve), a full dose rate protocol (dashed blue curve), the averaged optimal control protocol (dashed
black curve), and the optimal constant dose rate protocol (dash-dotted black curve) for the fixed
initial tumor volume p0 = 6,000 [mm3] as a function of the initial carrying capacity q0 (top, left)
and a blow-up of the graphs (top, right). The values for the half-dose rate protocol lie outside of the
range shown and are not included in this figure. The graphs at the bottom give the optimal constant
dose rates (left) and the averaged optimal dose rates (right) as functions of the initial carrying
capacity q0.

values increase with growing initial endothelial support q0. As the initial tumor vol-
ume p0 increases, the full dose rate protocol starts to perform worse while the half
dose rate protocol improves. For p0 = 12,000 [mm3] (see Figure 6.6), the full dose
protocol does considerably worse while the half dose protocol does markedly better.
In all cases, the averaged optimal dose rate protocol comes remarkably close to the
optimal constant dose rates and both stay within 0.5% of the theoretically optimal
value. But even for the full dose rate protocols, the differences to the optimal value
barely exceed 2% for high initial values of q0 if the initial condition (p0,q0) lies
to the right of the singular curve (see Figure 6.3) since the optimal control starts
with u ≡ umax in this region. If, however, the initial condition lies to the left of the
singular curve, then the discrepancies become larger, exceeding the 5% range for
the full dose rate protocol. The reason is that in this region it is optimal to first wait
(i.e., start with the control u = 0) until the level of endothelial support reaches the
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Fig. 6.5 The graphs of the minimum tumor volumes realized by the optimal control (solid red
curve), a full dose rate protocol (dashed blue curve), the half-dose rate protocol (dash-dotted blue
curve), the averaged optimal control protocol (dashed black curve), and the optimal constant dose
rate protocol (dash-dotted black curve) for the fixed initial tumor volume p0 = 9,000 [mm3] as a
function of the initial carrying capacity q0 (top, left) and a blow-up of the graphs (top, right). For
increasing tumor volumes the effects of the half-dose rate protocols now lie in the range shown
here, but are still worse than a full dose rate protocol. The graphs at the bottom give the optimal
constant dose rates (left) and the averaged optimal dose rates (right) as functions of the initial
carrying capacity q0.

singular curve upon which treatment ensues. This feature, that the optimal control
starts with a segment where u ≡ 0 if the initial condition (p0,q0) lies to the left
of the singular curve, also is responsible for the fact that the optimal constant and
averaged optimal dose rates in Figure 6.4 increase for small values of q0 and then
tend to level off. These values tend to increase in q0 since the initial interval when
u ≡ umax is being used, however brief it is, increases with q0.

One important qualitative feature of the optimal constant and averaged optimal
dose rates is how little the values vary with q0. For all the cases here (that cover
realistic scenarios) these variations are tiny. Consequently, these dosages are fully
robust with respect to the initial condition q0, a quantity that generally is not mea-
surable. Hence it is not important to know the value exactly, but even the crudest
of approximations will do. However, these three figures clearly show that the dose
rates (optimal or averaged) for fixed q0 decrease with increasing initial tumor vol-
ume p0. The reason for this somewhat counterintuitive property lies in the fact that
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Fig. 6.6 The graphs of the minimum tumor volumes realized by the optimal control (solid red
curve), a full dose rate protocol (dashed blue curve), the half-dose rate protocol (dash-dotted blue
curve), the averaged optimal control protocol (dashed black curve), and the optimal constant dose
rate protocol (dash-dotted black curve) for the fixed initial tumor volume p0 = 12,000 [mm3] as
a function of the initial carrying capacity q0 (top, left) and a blow-up of the graphs (top, right).
For high tumor volumes the effects of the half-dose rate protocols are better than for a full dose
rate protocol. The graphs at the bottom give the optimal constant dose rates (left) and the averaged
optimal dose rates (right) as functions of the initial carrying capacity q0.

the optimal singular control has this property of dose-intensification that was already
noted for model [E] in [77] - the dosage increases in time as the tumor volume be-
comes smaller. This feature is inherited by the optimal constant dose rates.

Since antiangiogenic therapy does not kill the tumor directly, but only impedes
its growth, another positive effect of the optimal solution over a full dose rate pro-
tocol is that it delays the time when this minimum is reached. For the averaged
optimal dose rate protocol, the time when all agents are exhausted is the same as
for the optimal protocols and thus the times when the minimum tumor reductions
are achieved are almost identical. But since the optimal singular arc applies the in-
hibitors at time-varying lower doses, the time Topt when the minimum is realized
along the optimal solution is larger, at times significantly, than the time Tfull for the
full dose rate protocol. In Table 6.2 these times are compared for the optimal con-
trol and full dose rate protocols. Given the data, with a full dose rate protocol all
inhibitors are exhausted in 4 = A

umax
days. For umax0-protocols, the minimum tumor

volumes are being realized almost immediately afterward and this does not change
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much with the initial condition (p0,q0) (see Table 6.2, left portion). However, if
the initial tumor volume p0 is high, then antiangiogenic agents are given at a much
lower rate initially along the optimal control and this leads to significantly larger
times T for which the minimum is realized (see Table 6.2, right portion). For exam-
ple, if p0 = 15,000 [mm3] and q0 = 18,000 [mm3], then the time Topt for the optimal
control (9.077 [days]) is more than double the time for the straightforward umax0-
protocol (4.229 [days]). Clearly, this indicates that in these cases it was not a good
strategy to give all inhibitors in one session at the beginning and that they might
have better been applied at lower dose rates as the singular control does.

Table 6.2 Comparison of the times when the minimum tumor volumes are realized for model [H]
for the optimal control (left) and a maximum dose rate protocol (right).

q0�p0 6000 9000 12000 15000
6000 4.446 5.390 6.784 9.138

12000 4.447 5.371 6.729 9.103
18000 4.451 5.369 6.718 9.077

q0�p0 6000 9000 12000 15000
6000 4.139 4.164 4.192 4.228

12000 4.139 4.164 4.193 4.229
18000 4.140 4.165 4.193 4.229

It is clear from these computations that lower concentrations do better as the
tumor volume increases. This behavior can be understood from the geometry of the
trajectories involved. Figure 6.7 shows an example of the relevant trajectories for the
initial condition (p0,q0) = (15,000 [mm3]; 6,000 [mm3]). It is clear that the q̇ = 0
nullcline for u≡ 1

2 umax is a much better approximation of the optimal singular curve
for high initial values of p0 than is the q̇ = 0 nullcline for u ≡ umax. Naturally, the
half dose rate strategy is then a better sub-optimal control for large tumor volumes
than a full dose rate strategy. In fact, if we were to reduce the upper limit umax defin-
ing the control set to 1

2 umax in the optimal control problem, the saturation point of
the singular arc will be at psat = 11,902 [mm3] and thus for almost all initial condi-
tions considered here the optimal controls will be given by bang-bang controls that
give the new “full” dose 1

2 umax from the beginning. This explains the superior per-
formance of the half dose rate protocols for this range of initial conditions. Lowering
the upper limit of the dose further to 1

4 umax, no longer improves the value. In fact,
these protocols generally do quite worse, since the q̇ = 0 nullcline for u = 1

4 umax

now becomes a poor approximation of the singular curve. For the initial condition
(15,000 [mm3];6,000 [mm3]), the realized minimal value for the quarter dose strat-
egy is only p(T ) = 12,316 [mm3], almost 20% worse than the value realized with
the half dose rate protocol. Thus the geometric shape of the optimal singular arc
very much explains the effects of these simple constant protocols.

Summarizing, given an a priori specified amount of antiangiogenic agents, the
maximum tumor reductions that can be realized with a constant protocol depend
on the concentration and a higher concentration is not necessarily better. Optimal
protocols give guidance on how to choose this value and, for example, the averaged
optimal control provides a generally excellent suboptimal concentration level that
is quite insensitive to changes in the initial value of the carrying capacity, a highly
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Fig. 6.7 Model [H]: A comparison of the optimal trajectory (red curve) with trajectories for the
averaged optimal dose rate protocol (black curve), the full dose rate protocol (blue curve) and half
dose rate protocol (green curve) for the initial condition (p0,q0) = (15,000 [mm3]; 6,000 [mm3]).

desirable feature. For model [H], this protocol consistently comes within 1% of the
theoretically optimal value. Full dose rate protocols are optimal for low initial tumor
volumes p0, but the optimal dose rates decrease with increasing tumor volumes p0.

6.1.2 Optimal Two-Stage Protocols

Clearly, these constant protocols already provide excellent approximations to the
theoretically optimal control. The value can still be improved by increasing the
number of switchings in the control. Since the constant approximations already do
so well, we only consider controls that have one switching, i.e., take a constant value
u1 for time t1 and a second value u2 for time t2. The second time is calculated so
that all antiangiogenic agents become exhausted, i.e.,

u1t1 + u2t2 = A.

This is a simple 3-dimensional minimization problem with variables u1, t1, and u2,
and we denote this 3-tuple by v, v = (u1, t1;u2). As above, if we denote the point
when the agents are exhausted by (p̂v(tv), q̂v(tv)) and the associated point on the
diagonal by πv(Tv), then we can define controls v̂ and v∗ as the corresponding mini-
mizers,

v̂ = argmin p̂v(tv) and v∗ = argminπv(Tv).

The optimal values for the initial condition (p0,q0) = (12,000 [mm3];15,000 [mm3])
and the same data used earlier are summarized in Table 6.3. The dosages are close to
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each other, but their durations differ by quite a bit. However, this does not effect the
minimum tumor volume much, although, overall, of course there is an improvement
in the sense that the difference to the optimal value is cut in half. But on an absolute
scale this improvement is irrelevant.

Table 6.3 Comparison of minimal values for various 2-stage constant protocols for problem [H]

Control u1 t1 [days] u2 t2[days] Minimal value [mm3] Terminal time [days]
Optimal 8533.38 6.722

v∗ 42.47 3.525 49.73 3.022 8539.21 6.736
v̂ 41.83 2.931 47.20 3.758 8540.20 6.843

Figure 6.8 compares the constant control u∗ (in red) with the 2-stage control v∗
(in blue). Consistent with dose intensification along the optimal singular control,
these dosages increase: u2 > u1.
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Fig. 6.8 The suboptimal controls u∗ and v∗ for problem [H](right).

Figures 6.9 and 6.10 show the graphs of the values πv(Tv) when the first and
second control, respectively, have been fixed at its optimal values.

6.1.3 Daily Regimes

In the above formulations the durations of administration at the various dose rates
are included as optimization variables. It is also of practical interest to specify these
durations a priori and consider daily or even semi-daily dosages (e.g., give a dose
over 8 or 12 hour periods and include a rest period during the night). Any such strat-
egy significantly reduces the flexibility of possible schedules and it should come as
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Fig. 6.9 Cross section through the graph of πv(Tv) for u1 = 42.47 [mm3].
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Fig. 6.10 A cross section through the graph of πv(Tv) for u2 = 49.73 [mm3].

no surprise that with such restrictions the number of segments needs to be increased
to obtain a similar degree of approximation. It seems reasonable to give the full
amount of anti-angiogenic agents over the same time period as the optimal control
does and in this section we still consider this optimization problem for the same data
as before.

For the initial condition (p0,q0) = (12,000 [mm3];15,000 [mm3]), all antiangio-
genic agents are used up at time 6.558 [days] along the optimal solution and we
restrict the protocols to give the same total amount in 6 daily doses. The best such
solution is given by

u1 = 46.61, u2 = 45.31, u3 = 48.15, u4 = 50.71, u5 = 53.20, and u6 = 56.02.
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The tumor volume still decreases along the trajectory for u = 0 for time t7 = 0.169
days until the diagonal p = q is reached with minimal value p(T ) = 8544.4 [mm3].
These ‘daily’ dose rates closely mimic the structure of the theoretically optimal
control. Note the small dip in the values from the first to the second day and then
the values gradually increase over the remaining days. Since the piece along which
the optimal control is given by umax is small, the first daily value is significantly
lower than umax = 75, but it still is higher than the value for the second day. Along
the optimal singular arc the dose intensifies and this is reflected in the increasing
values of the daily doses over the remaining days. Still, specifying the time structure
by restricting to daily doses reduces the quality of the approximation. The minimal
value of 8544.4 [mm3] for the 6 day strategy is virtually identical with the optimal
constant dose value, but the higher number of pieces does not make up for the loss
of freedom by choosing the times in a 2-piece control when the minimal value is
8539.2 [mm3]. Figure 6.11 shows the daily dosages and corresponding trajectory in
the (p,q)-space.
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Fig. 6.11 Optimal ‘daily’ doses (left) and corresponding trajectory (right) for problem [H] and
initial conditions (p0,q0) = (12,000 [mm3]; 15,000 [mm3]).

6.1.4 Summary and Medical Interpretation

Optimal solutions for problem [H] contain a in-time substantial segment where the
control is given by a time-varying feedback function of the primary tumor volume
p and its carrying capacity q. Such a strategy is not realizable with current medi-
cal technologies. The numerical results presented in this section show that excel-
lent realizable protocols can easily be obtained from the theoretically optimal solu-
tion. For example, for the initial condition (p0,q0) = (12,000 [mm3];15,000 [mm3]),
these approximations consistently come within 0.5% of the optimal tumor values
for the specified data. In fact, in all the cases considered here the corresponding
value functions are relatively flat around the optimal solution and thus dose rates
that are reasonably close to the optimal values do not give any degradation in
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the approximation. This conclusion is valid for a wide range of initial conditions
[179, 203]. Furthermore, these approximations are robust with respect to variations
in the value q0 for the carrying capacity. This gives practical relevance to the re-
sults obtained. While constant protocols provide very good approximations to the
optimal solutions, the choice of the dose rate and resulting concentration makes a
difference. Generally, for higher tumor volumes lower dose rates do better as high
concentrations waste limited antiangiogenic agents. Hence the computation of op-
timal, piecewise constant dosages with a small number of switchings, a simple and
easily executed numerical procedure, is worthwhile.

6.2 Realizable Suboptimal Treatment Protocols for Problem [E]

We briefly show that similar approximation results are valid for the modification
[E] by Ergun, Camphausen, and Wein. We recall that the structure of the synthesis
of optimal controlled trajectories is qualitatively identical with the one for [H] and
in Figure 6.12 we show the optimal control (left) and its corresponding trajectory
(right) for the initial condition (p0,q0) = (8,000 [mm3]; 10,000 [mm3]). We use the
same numerical values for the parameters, but, as before, limit the maximum dose
for this model to umax = 15 and the total amount of inhibitors to A= 45. The optimal
control is at full dose rate until the singular curve S is reached at t1 = 1.341 [days].
The administration then follows the time-varying singular control for t2 = 3.722
[days] until all anti-angiogenic agents are exhausted after 5.062 [days]. Due to af-
ter effects, the maximum tumor reduction is realized along a trajectory for control
u = 0 at the optimal terminal time T = 9.378 [days] when the trajectory reaches the
diagonal p = q. The theoretically optimal minimum value for these data is given
by p∗ = p(T ) = 2242.65 [mm3]. We use this particular example since it illustrates
the longer time segments along the bang controls u = umax and u = 0 caused by the
slower q-dynamics for model [E] and the effect this has on suboptimal protocols. Al-
though the values are not directly comparable because of the different q-dynamics,
we shall see that the quality of approximations here is equally excellent. As for
model [H], we first analyze constant dose protocols.

6.2.1 Constant Protocols

We only consider the minimization problem that is consistent with the optimal con-
trol formulation [OCA] in Section 5.2.1 and minimize over the values of the corre-
sponding trajectories as the diagonal is reached along a final no dose segment. Thus
the control corresponding to a constant dose rate u is given by

v(t) =

{
u for 0 ≤ t ≤ A

u ,

0 for A
u < t ≤ Tu,
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Fig. 6.12 Optimal control for problem [E] (left) and corresponding trajectory (right) for the initial
condition (p0,q0) = (8,000 [mm3]; 10,000 [mm3]).

with Tu the time when the diagonal is reached. We again denote the minimum tumor
volume reached by such a strategy at time Tu by πu (Tu) and the best solution (for a
particular initial condition) is given by

u∗ = argminπu(Tu).

For the initial condition (p0,q0) = (8,000 [mm3];10,000 [mm3]), we obtain u∗ =
9.246 and this rate is given over t1 = 4.867 [days]; then the control is still u∗ = 0
for t2 = 4.735 [days] until the minimum tumor volume is realized as the trajectory
crosses the diagonal at the time T = 9.602 [days]. Figure 6.13, on the left, shows
the graph of the associated value function πu(Tu) for dose rates lying between u = 8
and u = 11 around the optimal value u∗. On the right, it gives the corresponding
trajectory. The minimal tumor volume realized by this optimal constant dose rate
trajectory is p∗ = 2264.22 [mm3] and has a relative error of about 1% compared with
the optimal value. As a comparison, the constant averaged optimal dose is given by
ū = 8.888 over the time span of 5.063 [days] and for this strategy the virtually iden-
tical value pū = 2264.44 [mm3] is obtained at T = 9.732 [days]. Indeed, for model
[E], and notwithstanding the blow-up shown in Figure 6.13, the value πu(Tu) is flat
around its minimum value varying only between 2264.5 and 2268.2 for u between
u = 8 and u = 11 and any intermediate dose rate gives excellent approximations.

In Figures 6.14 and 6.15, we compare the minimum tumor volumes that can be
realized by the various strategies considered for varying initial carrying capacity q0

and fixed initial tumor volume p0 for p0 = 8,000 [mm3] and p0 = 15,000 [mm3],
respectively. As for model [H], in the diagrams, the solid red curve gives the the-
oretically optimal values corresponding to the optimal controls determined in Sec-
tion 5.4, the dashed blue curve corresponds to the full dose rate umax, the dashed-
dotted blue curve to half dose rate 1

2 umax, the dashed black curve gives the values
for the averaged optimal dose rate, and the dash-dotted black curve gives the values
corresponding to the optimal constant dose rate. The graphs in the second row of
these figures give the optimal constant dose rates (left) and the averaged optimal
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Fig. 6.13 The value of the minimum tumor volumes πu(Tu) for constant dose rates u ∈ [8,11]
(left) and the trajectory corresponding to the optimal dose rate u∗ = 9.246 for initial condition
(p0,q0) = (8,000 [mm3]; 10,000 [mm3])
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Fig. 6.14 The graphs of the minimum tumor volumes realized by the optimal control (solid red
curve), a full dose rate protocol (dashed blue curve), the half-dose rate protocol (dash-dotted blue
curve), the averaged optimal control protocol (dashed black curve), and the optimal constant dose
rate protocol (dash-dotted black curve) for the fixed initial tumor volume p0 = 8,000 [mm3] as a
function of the initial carrying capacity q0 (top, left) and a blow-up of the graphs (top, right). The
graphs at the bottom give the optimal constant dose rates (left) and the averaged optimal dose rates
(right) as functions of the initial carrying capacity q0.
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Fig. 6.15 The graphs of the minimum tumor volumes realized by the optimal control (solid red
curve), a full dose rate protocol (dashed blue curve), the half-dose rate protocol (dash-dotted blue
curve), the averaged optimal control protocol (dashed black curve), and the optimal constant dose
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function of the initial carrying capacity q0 (top, left) and a blow-up of the graphs (top, right). The
graphs at the bottom give the optimal constant dose rates (left) and the averaged optimal dose rates
(right) as functions of the initial carrying capacity q0.

dose rates (right) for fixed p0 as a function of q0. For both examples, the optimal
constant dose rates and the averaged optimal dose rates are very close and there is
virtually no difference noticeable in the graphs of the corresponding value functions,
not even in the blow-ups in the top right panels of the figures. This again confirms
the optimal average dose rate as an excellent sub-optimal approximation that can
easily be determined from the theoretically optimal solutions. For p0 = 8,000 [mm3]
these values are close to the half dose rate for small values of the carrying capacity
q0 and there is no difference visible in the value functions. For higher values of q0,
the optimal constant dose rates increase and there is a small separation from the
half dose values, but the optimal constant dose rates and the averaged optimal dose
rates remain so close throughout that even in the blow-up there is hardly a differ-
ence noticeable in the achieved values. As for model [H], for high values of p0, like
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p0 = 15,000 [mm3] shown here, the optimal constant dose rates decrease and now
both the curves corresponding to a full dose and half dose rate lie above the curves
for the optimal constant and averaged optimal dose rates.

6.2.2 Optimal Two-Stage Protocols

Going to a 2-stage protocol, the approximation of the optimal value can still be
improved. Once more, using (p0,q0) = (8,000 [mm3];10,000 [mm3]) as initial con-
dition, and following the same scheme and the same notation as in Section 6.1.2, the
minimizing controls v∗ = argminπv(Tv) are given by u1 = 15.00 for time t1 = 1.273
[days], u2 = 6.710 for t2 = 3.861 [days], and the time along the final u = 0 seg-
ment is t3 = 4.240 [days]. The diagonal is reached at time T = 9.374 [days] when
the minimum value is realized. The optimal value decreases to 2242.75 [mm3] com-
pared with the optimal value of 2242.65 [mm3] and thus for any practical standard
such a protocol duplicates the optimal solution. In this case, the optimal two-stage
regimen starts out at maximum dose (like the theoretically optimal control) and
then lowers the value to reflect the lower dosages along the singular control. Fig-
ures 6.16 and 6.17 give cross sections of the value πv(Tv) when the first control u1,
respectively the time t1 along the first dose rate, are fixed at their optimal values. We
summarize the results for the constant and 2-stage protocols in Table 6.4.

Table 6.4 Comparison of the minimal values for piecewise constant protocols for problem [E]; t1,
t2, and t3 denote the times of administration (in days).

Control u1 t1 u2 t2 t3 T Min. value (mm3)
Optimal 15.00 1.341 Singular 3.722 4.315 9.378 2242.65

One stage, u∗ 9.246 4.867 − − 4.735 9.602 2264.22
Averaged optimal, ū 8.888 5.063 − − 4.669 9.732 2264.44

Two stage, v∗ 15.00 1.273 6.992 3.861 4.240 9.374 2242.75

6.2.3 Daily and Semi-Daily Regimes

Along the optimal solution for (p0,q0) = (8,000 [mm3]; 10,000 [mm3]), antiangio-
genic agents are used up in 5.062 days. Running a minimization over 6 constant
daily doses gives the optimal dose for the sixth day as u = 0. Minimizing a daily
regimen gives the following optimal dose rates,

u1 = 15.00, u2 = 9.73, u3 = 5.45, u4 = 6.88, and u5 = 7.94

with the minimum value 2243.15 [mm3]. Again, this is the value that the trajectory
corresponding to the control u = 0 attains as the diagonal p = q is crossed, in this
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Fig. 6.16 A cross section through the graph of πv(Tv) at u1 = 15.00.
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Fig. 6.17 A cross section through the graph of πv(Tv) for t1 = 1.27.

case at time at 9.373 [days]. Here, because of the slower q-dynamics of this modi-
fication, the optimal daily strategy is comparable to the optimal 2-stage regimen v∗.
Figure 6.18 shows these dosages and the corresponding trajectory.

As for model [H], also here the pattern resembles the structure of the optimal
control. During the first day the control is at maximum level and then drops down.
The value for the second day is an average of the maximum dose rate with the
much lower singular control. In the optimal solution, the dosage is still at maximum
for about 8 hours while it then is lowered to the value u = 3.53 at the onset of
the singular arc. In the dose for the second day, this averages out to a value that
still is higher than the third dose when the optimal control is singular for the entire
period, and hence much smaller than the maximum. But the dose rate intensifies
along the singular arc and thus the values increase. The last daily dosage on the fifth
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Fig. 6.18 Optimal ‘daily’ doses (left) and corresponding trajectory (right) for problem [E] and
initial conditions (p0,q0) = (8,000mm3;10,000mm3).

day is determined by the fact that all agents are being used up, but still increases
because of dose intensification along the singular arc and the fact that the optimal
time exceeds 6 hours and an average over slightly more than one day is taken. Thus,
while the structure of dosages resulting from a solution of the finite-dimensional
optimization problem might appear erratic, it makes perfect sense if one compares
them to the optimal solution found in Chapter 5. It is the knowledge of the structure
of the optimal solution that elucidates the behavior of these numerically computed
optimal values and thus gives insights into the problem.

If one were to include rest periods into each daily regimen, say antiangiogenic
agents are given at a constant rate for 8, respectively 12 hours, then the 12 hour
scheme would use up the total amount A = 45 in exactly 6 daily dosages at the
maximum u = 15 and, due to the requirement that all agents should be exhausted,
no optimization problem arises. Similarly, if we only give antiangiogenic agents for
8 hours, then, in order to use up the full amount, 9 days need to be considered at
maximum dosage. The trajectories corresponding to these strategies are shown in
Figure 6.19 and, naturally, the quality of approximation decreases. As a reference,
in this and the subsequent figures the black curve is the optimal trajectory. For the
12 hour scheme the realized value is given by p12 hr = 2262.29 and for the 8 hour
scheme by p8 hr = 2335.99. While the 12 hour value still realizes a value in the
range of the optimal constant dosage, degradation starts to occur if the rest-periods
become too large. Longer rest periods allow the vascular support to recover and with
the 8 hour scheme the relative error is 4.16%, quite large compared to other values.

Figure 6.20, on the left, compares the corresponding optimal strategies when the
upper limit umax in the control set has been doubled to umax = 30. The solid red
lines give the optimal 12 hour doses while the solid blue lines give the optimal daily
doses when umax = 15. For comparison, the dashed lines are the average values of
the 12 hour doses for the full day and these are close to these optimal daily values.
The optimal trajectory for the semi-daily doses is shown to the right. In this figure,
we also kept the optimal trajectory for umax = 15 as the solid black curve and it is
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Fig. 6.19 Trajectories corresponding to 12 (left) and 8 hour daily doses (right) for problem [E],
respectively.

seen how closely now the semi-daily doses approximate this particular trajectory.
But, of course, the optimal control for problem [E] with umax = 30 is different and
in this case the maximum tumor reduction possible is given by p∗∗ = 2231.98 [mm3]
compared with p∗ = 2242.65 [mm3] when umax = 15.
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Fig. 6.20 Comparison of the optimal daily doses for umax = 15 with the optimal 12 hour dosages
(left) and corresponding trajectory for umax = 30 (right).

It is noteworthy that a higher initial boost which drives the system to the singular
arc faster leads to a small decrease in the optimal value. Thus, as already pointed out
in Chapter 5, without limitations on the dosage, the optimal overall strategy would
be to get to the singular arc as fast as possible with a high dose bolus injection
(mathematically, an impulse) and then follow the singular arc with much smaller
dosages.
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6.3 Mathematical Models with Linear Pharmacokinetic
Equations

In most parts of the text we do not include a pharmacokinetic model for the agent,
i.e., we identify an agent’s dose rates with the concentrations in the blood stream.
Naturally, bang-bang controls make sense if we think of the control representing
dose rates, but not if these represent concentrations which vary continuously. Yet,
if modeling extensions with pharmacokinetic equations do not alter the structure
of the solutions significantly, then this simplified modeling is justified. We have al-
ready seen in Chapter 2 that augmenting the dynamics with a linear pharmacokinetic
model did not change the optimality status of singular controls for compartmental
models for cancer chemotherapy (Theorem 2.3.2). This actually holds true in great
generality and also for the solutions to the optimal control problem [OCA] of Chap-
ter 5. Thus, for this problem singular controls remain locally optimal. However, the
order of the singular control increases (see also Section 2.3.2) and this leads to qual-
itative changes in the structure of the optimal synthesis as the concatenations with
singular arcs are concerned. Now these transitions are accomplished by means of
chattering controls that rapidly alternate between the maximum dose rate u = umax

and rest periods for u = 0 and, in fact, have an infinite number of switchings on a
finite interval. Such controls no longer are piecewise continuous, but only Lebesgue
measurable. While this is a significant departure from the structure of optimal con-
trols from a theoretical point of view, on the level of realizable protocols, again
simple, piecewise constant suboptimal approximations exist that come close to the
optimal values. Thus the main conclusions drawn so far remain valid if the models
are made more realistic by including a standard linear pharmacokinetic model (PK)
for the antiangiogenic agents.

6.3.1 Augmentation of the Model [OCA] with Linear
Pharmacokinetic Equations

Following the models described in Section 2.3, we augment the dynamics with a
first-order linear ordinary differential equation that describes the concentration c of
the antiangiogenic agent in the blood stream. From a control theoretic point of view,
this corresponds to the output injection of a linear system into the original dynamics
which generates this concentration as a new state c with the dose rate u as input.
The role of the control in the original formulations is then taken over by the state c
in the extended model (see Figure 6.21).

We first analyze such an extension in a general framework and show how it ef-
fects the defining equations for optimal singular controls and arcs. The models con-
sidered in Chapter 5 are 2-dimensional systems with the state x = (p,q)T to which
a third variable y has been added to track the amount of antiangiogenic agents that
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Fig. 6.21 A block diagram representation for the augmentation of the original dynamics with a
linear pharmacokinetic model.

is being given. For this reason, here we consider a general 2-dimensional dynamics
of the form

Σ : ẋ = f (x)+ cg(x), x ∈ X⊂ R
2, c ≥ 0, (6.1)

where X denotes some open subset of R2 that serves as the state-space of the system
and the variable c denotes the concentration of some agent and is defined by the
output of a first order linear time-invariant system of the form

ċ =−kc+ u, c(0) = 0, 0 ≤ u ≤ umax. (6.2)

The parameter k is the clearance rate of the agent. This is the commonly used 1-
compartment model of exponential growth/decay that also was included in the orig-
inal modeling in [116]. We consider the following augmentation of the optimal con-
trol problem [OCA]:

[OCAPK] For a free terminal time T , minimize an objective given by J(u) =
ϕ(x(T )) in Mayer form for some continuously differentiable function ϕ : X→ R

over all Lebesgue measurable functions u : [0,T ] → [0,umax] subject to the dy-
namics

ẋ = f (x)+ cg(x) x(0) = x0,

ċ =−kc+ u c(0) = 0,

ẏ = u, y(0) = 0,

and the terminal constraint y(T )≤ A.

Compared with the original problem formulation [OCA], the control has been
replaced by the concentration c of the agent and the new control u represents the
actual dose rate of administration with upper limit umax. This limit determines the
supremum for the achievable concentration as cmax = umax/k , but the concentration
will always lie below this value and take values in the interval [0,cmax). Note that,
once agents are administered, the concentration will become positive and remain so
for all times.

As before, the model is a single-input control affine system and the main candi-
dates for optimality are the constant bang controls u = 0 and u = umax and singular
controls. Since singular controls are inherently defined through nonlinear relation-
ships, a priori it is not clear to what extent their optimality properties, let alone their
analytic representations, will be preserved under such a modeling extension. This
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indeed is the case for a planar system. All equations that define an order 1 singu-
lar control and its optimality status carry over verbatim from the optimal control
problem [OCA] to the model [OCAPK]. At the same time, for the first-order lin-
ear pharmacokinetic model (6.2), the order of the singular arc increases by 1 (see
Definition A.3.5 in Appendix A) and this has significant implications on the con-
catenation structures of optimal trajectories. Direct concatenations of the optimal
singular control with the bang controls u = 0 and u = umax are no longer optimal
and now this transition can only be accomplished by means of chattering controls
(e.g., see [292, 348]). Thus, while essential features are preserved under the mod-
eling extension considered here, the qualitative structure of the optimal synthesis
changes.

6.3.2 Prolongation of the Formulas for Singular Controls and Arcs

We briefly recall from Chapter 5 the relevant facts about the singular controls and
arcs needed below. Both in the original and the augmented models, the variable y
merely tracks the amount of antiangiogenic agents and has no influence on the sin-
gular control and arc; we thus drop it in our analysis. Denote by λ the 2-dimensional
adjoint variable corresponding to the state x ∈ X and, in order to distinguish it from
the control of the augmented model, here denote the control in the original model
by v. If this control is singular on an open interval I, then the first and second deriva-
tives of the switching function,

Φ̇(t) = 〈λ (t), [ f ,g](x(t))〉

and
Φ̈(t) = 〈λ (t), [ f + vg, [ f ,g]](x(t))〉 ,

vanish identically. For all models considered in Chapter 5, 〈λ (t), [g, [ f ,g]](x(t))〉 is
negative, singular controls are of order 1 and the strengthened Legendre-Clebsch
condition for minimality is satisfied. Furthermore, the Lie bracket [ f , [ f ,g]] can be
expressed as a linear combination of the vector fields [ f ,g] and [g, [ f ,g]] with coef-
ficients that are smooth functions of the state x,

[ f , [ f ,g]](x) = ϕ(x)[ f ,g](x)+ψ(x)[g, [ f ,g]](x), (6.3)

and the singular control is given in feedback form by

using(t) =−ψ(x(t)). (6.4)

When admissible, this feedback defines a singular control only on the set

S = {x ∈X : Δ(x) = det( f (x), [ f ,g](x)) = 0} (6.5)
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where the vector fields f and [ f ,g] are linearly dependent. Furthermore, since the
strengthened Legendre-Clebsch condition is satisfied along these arcs, wherever the
singular control takes values in the interior of the control set, it can be concatenated
with the bang controls u = umax or u = 0 without violating the conditions of the
conditions of the maximum principle (see Section A.3.3 in Appendix A). This leads
to a local synthesis of extremals around S by integrating the constant controls u =
umax or u = 0 forward and backward from the singular arc.

The formulas that define the singular arc and its control carry over verbatim (al-
beit with a different interpretation) once equation (6.2) is added to the model. Denote
by z = (x,c) the augmented state and write the dynamical equations in the form

ż = F(z)+ uG,

with

F(z) =

(
f (x)+ cg(x)

−kc

)

and G =

(
0
1

)

. (6.6)

It is important for the subsequent computations that the new control vector field G
is constant. Denote the adjoint variable corresponding to the new state z = (x,c) by
Λ = (λ̂ , μ̂) with λ̂ associated with x and μ̂ associated with c. The Hamiltonian Ĥ
for problem [OCAPK] is

Ĥ = λ̂ ( f (x)+ cg(x))+ μ̂(−kc+u)+ ν̂u

with ν̂ a constant multiplier associated with the isoperimetric constraint on y. The
new adjoint equations and transversality conditions take the form

˙̂λ =−λ̂ (D f (x)+ cDg(x)) , λ̂(T ) =
∂ϕ
∂x

(x(T )),

˙̂μ =−λ̂g(x)+ kμ̂, μ̂(T ) = 0.

The switching function for the augmented problem is thus given by

Ψ(t) = μ̂(t)+ ν̂ = 〈Λ(t),G(z(t))〉+ ν̂,

and, as before, we need to calculate its derivatives. The control vector field G is the
coordinate vector field that differentiates with respect to the variable c and the Lie
bracket is simply given by

[F,G](z) =−DF(z)G =−∂F
∂c

(z) =

(−g(x)
k

)

. (6.7)

It no longer depends on the concentration c and thus all higher order Lie brackets
with G vanish identically: if we write adn

G(F) = adG ◦adn−1
G (F) with adG(F) defined

by adG(F) = [G,F ], then, for n ≥ 2 we have that

adn
G(F)(z) =

∂ nF
∂cn (z)≡ 0.
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In particular, [G, [F,G]](z) ≡ 0, and singular controls for problem [OCAPK] are of
higher order. The first three derivatives of the switching function are thus given by

Ψ̇(t) = 〈Λ(t), [F,G](z(t))〉 ≡ 0,

Ψ̈(t) =
〈
Λ(t),ad2

F(G)(z(t))
〉 ≡ 0, (6.8)

and ...
Ψ(t) =

〈
Λ(t),ad3

F(G)(z(t))
〉 ≡ 0.

In the last equation, we use the fact that the Jacobi condition (cf., (A.18) in
Appendix A) implies that

[G, [F, [F,G]]] = [F, [G, [F,G]]] = [F,0] = 0.

The control u therefore only enters the fourth derivative in the form

Ψ (4)(t) =
〈
Λ(t), [F + uG,ad3

F(G)](z(t))
〉≡ 0. (6.9)

We shall compute the quantity
〈
Λ(t), [G,ad3

F(G)](z(t))
〉

that multiplies the control
below and verify that it is nonzero. Hence the singular control is of intrinsic order
2 (see Definition A.3.5 in Appendix A).

If the control u is singular on an open interval I, then Λ vanishes against the
vector fields F (since Ĥ ≡ 0), G, and their Lie brackets [F,G], ad2

F(G) and ad3
F(G).

Generically, these are too many conditions to be met simultaneously in low dimen-
sions and for this reason singular controls of higher order are rare. However, because
of the special structure of the overall dynamics defined by the linear output injection,
for the problem considered here there exist relations between these vector fields that
cause all these conditions to be satisfied. Note that

F(z) =

(
f (x)

0

)

− c[F,G](z)

and thus

ad2
F G(z) = [F, [F,G]](z) = D([F,G])(z)F(z)−DF(z)[F,G](z)

=

(−Dg(x) 0
0 0

)(
f (x)+ cg(x)

−kc

)

−
(

D f (x)+ cDg(x) g(x)
0 −k

)(
g(x)

k

)

=

(−[ f + cg,g](x)− kg(x)
k2

)

=−
(
[ f ,g](x)

0

)

+ k[F,G](z). (6.10)

Similar computations verify that

ad3
F G(z) =−

(
[ f + cg, [ f ,g]](x)

0

)

+ kad2
F G(z) (6.11)
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and

[G,ad3
F(G)](z) =−

(
[g, [ f ,g]](x)

0

)

. (6.12)

For well-posed initial conditions the multiplier Λ is nonzero (otherwise the con-
trol is u ≡ 0 ). Hence the condition that Λ vanishes against the vector fields F ,
[F,G] and ad2

F(G) is equivalent to the statement that these vector fields are linearly
dependent. Using (6.5), we obtain that

0 = det
[

F(z), [F,G](z), ad2
F(G)(z)

]

= det

[(
f (x)+ cg(x)

−kc

)

,

(−g(x)
k

)

,

(−[ f ,g](x)− kg(x)
k2

)]

= det

[(
f (x)

0

)

,

(−g(x)
k

)

,

(−[ f ,g](x)
0

)]

= kΔ(x). (6.13)

Hence this equation reduces to the relation (6.5) that defines the singular arc for the
model [OCA]. Now, however, this relation, which does not depend on the third vari-
able c, only defines a vertical surface in (x,c)-space on which singular arcs need to
lie. ButΛ(t) also vanishes against the vector field ad3

F(G) and the linear dependence
of the vector fields adF(G), ad2

F(G) and ad3
F(G) determines c:

0 = det
[
[F,G](z), ad2

F(G)(z), ad3
F(G)(z)

]

= det

[

[F,G](z), ad2
F(G)(z), −

(
[ f + cg, [ f ,g]](x)

0

)

+ kad2
F(G)(z)

]

=−det

[

[F,G](z), −
(
[ f ,g](x)

0

)

+ k[F,G](z),

(
[ f + cg, [ f ,g]](x)

0

)]

= det

[(−g(x)
k

)

,

(
[ f ,g](x)

0

)

,

(
[ f + cg, [ f ,g]](x)

0

)]

= k det
[
[ f ,g](x), [ f + cg, [ f ,g]](x)

]
. (6.14)

Using the relation (6.3) to express [ f , [ f ,g]] as a linear combination of [ f ,g] and
[g, [ f ,g]], it thus follows that

0 = det
[
[ f ,g](x), [ f + cg, [ f ,g]](x)

]

= det
[
[ f ,g](x), ϕ(x)[ f ,g](x)+ (ψ(x)+ c)[g, [ f ,g]](x)

]

= (c+ψ(x))2 det
[
[ f ,g](x), [g, [ f ,g]](x)

]

and the linear independence of [ f ,g] and [g, [ f ,g]] implies that c is given by

c =−ψ(x) =−ψ(p,q), (6.15)

the very same function that defines the optimal singular control in the model [OCA].
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Theorem 6.3.1. For the models [H], [E], and [Iθ ] considered in Chapter 5, the
singular arc of the optimal control problem [OCA] in (p,q)-space is preserved as
a vertical surface in (p,q,c)-space. The equation that defines the singular control
for problem [OCA] now defines the concentration c as a function of p and q, c =
−ψ(p,q). The graph of this function intersects the vertical singular surface in a
unique curve, the new singular arc Ŝ . The corresponding singular control that
keeps this arc invariant is given as feedback function by

using(p,q,c) = kc−Dψ(p,q)( f (p,q)+ cg(p,q)) .

The formula for the singular control is easily obtained from (6.2) by implicit
differentiation:

using = ċ+ kc =−Dψ(p,q)( f (p,q)+ cg(p,q))+ kc.

Figures 6.22 and 6.23 illustrate the geometry for model [H] when a linear phar-
macokinetics is added. Figure 6.22 shows the vertical surface V that is obtained in
(p,q,c)-space when the singular base curve S0 for problem [H] defined by the equa-

tion
(
μ+d p

2
3

)
q = bp

(
1− ln

(
p
q

))
in the coordinate plane c = 0 is plotted as a

subset of the first quadrant in 3-space. In Figure 6.22, this surface is then intersected
with the graph of the function c =−ψ(p,q) where ψ is the function

ψ(p,q) =−1
γ

(

ξ ln

(
p
q

)

+ b
p
q
+

2
3
ξ

d
b

q

p
1
3

−
(
μ+d p

2
3

)
)

defining the singular control as a feedback. Since the admissible portion of the sin-
gular curve lies in the region p > q, we only graph this function in that region. The
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Fig. 6.22 Vertical singular surface in (p,q,c)-space for problem [H].
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intersection of these two surfaces defines the new singular arc Ŝ for the problem
[OCAPK] for model [H].
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Fig. 6.23 Singular arc in (p,q,c)-space for problem [H] defined by the intersection of the vertical
singular surface with the graph of the function c =−ψ(p,q).

6.3.3 The Kelley Condition and Chattering Arcs

Higher order necessary conditions for optimality take the place of the Legendre-
Clebsch condition if a singular control is intrinsic of order k > 1. These generalized
Legendre-Clebsch conditions (see Theorem A.3.2 in Appendix A) can succinctly be
formulated in terms of the Hamiltonian function H of the optimal control problem
and for minimization problems take the following form:

(−1)k ∂
∂u

d2k

dt2k

∂H
∂u

≥ 0. (6.16)

For k= 2 this result is also known as the Kelley condition and for problem [OCAPK]
it becomes

∂
∂u

d2k

dt2k

∂H
∂u

=
∂
∂u

(
d4

dt4Ψ(t)

)

=
〈
Λ(t), [G,ad3

F(G)](z(t))
〉 ≥ 0.

By equation (6.12) this expression reduces to

〈
Λ(t), [G,ad3

F(G)](z(t))
〉
=−

〈
λ̂ (t), [g, [ f ,g]](x(t))

〉
. (6.17)
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Hence, if the multiplier λ̂ can be identified with the adjoint vector λ of the original
optimal control problem [OCA] over an interval I where the control is singular, then
the strengthened Legendre-Clebsch condition for the original problem is equivalent
to the strengthened version of the Kelley condition for problem [OCAPK]. This in-
deed can be done: since the singular arc S is preserved and the concentration c is
defined by the same feedback function of x, it follows that λ and λ̂ satisfy the same
differential equation on such an interval I. Furthermore, by (6.8) and (6.10) we also
have that 〈

λ̂ (t), [ f ,g](x(t))
〉
= 0.

The fact that the switching function Φ for problem [OCA] vanishes on I implies
that

〈λ (t),g(x(t))〉=−ν

while the fact that the switching function Ψ and its derivative vanish for problem
[OCAPK] imply that

μ̂(t)≡−ν̂ and
〈
λ̂ (t),g(x(t))

〉
= kμ̂(t).

We thus have that 〈
λ̂ (t),g(x(t))

〉
=−kν̂

and for the multipliers λ (t) ≡ λ̂(t) and ν = kν̂ all the conditions of the maximum
principle for problem [OCA] that the corresponding control is singular on the inter-
val I are satisfied. But these multipliers are uniquely determined by the conditions
for an optimal singular arc and thus they are equal. Hence the status of the necessary
condition for optimality of a singular control carries over from problem [OCA] to
[OCAPK].

Theorem 6.3.2. For the models [H], [E], and [Iθ ] considered in Chapter 5, the
Kelley condition for optimality of a singular extremal of order 2 is satisfied for
problem [OCAPK].

However, the fact that the Kelley condition carries a positive sign has signifi-
cant implications on possible concatenations between the singular control and bang
controls. If the singular control takes a value in the interior of the control set,
0 < using(z(t)) < umax, then, by Proposition A.3.3 in Appendix A, it is no longer
optimal to concatenate the singular control at time t with any of the two bang con-
trols u = 0 or u = umax. For example, suppose that for some ε > 0 the control is
singular on the interval (τ − ε,τ) and is given by u = 0 on the interval (τ,τ + ε).
Since the fourth derivative of the switching function vanishes on (τ−ε,τ), the Kel-
ley condition gives

〈
Λ(τ),ad4

F(G)(z(t))
〉
< 0 and thus it follows that

Φ(4)(τ+) =
〈
Λ(τ),ad4

F(G)(z(t))
〉
< 0.

Hence the switching function has a local maximum for t = τ , i.e., is negative
over the interval (τ,τ + ε). But this contradicts the minimization condition on
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the Hamiltonian. An analogous contradiction arises for each of the other types of
concatenations. Thus an optimal singular control of order 2 that takes values in the
interior of the control set cannot be concatenated with a bang control.

The structure of the optimal syntheses of controlled trajectories therefore differs
significantly from the one constructed in Chapter 5 qualitatively. Transitions onto
the singular arc now occur by means of so-called chattering controls that switch
infinitely often between the extremal controls u = 0 and u = umax on any small
interval (τ,τ + ε). In particular, optimal controls no longer need to be piecewise
continuous, but are only Lebesgue measurable functions. The classical example for
such a synthesis is given by the Fuller problem where indeed this structure is optimal
(e.g., see [292, Sections 2.11 and 5.2.3]). From a practical point of view, for medical
problems chattering controls are not realistic. But, as before, there exist excellent
suboptimal approximations with a small number of switchings. It is for this reason
that we have included this topic in this chapter.

We only mention that optimal bang-bang controls with an arbitrarily large num-
ber of switchings become optimal near such chattering transitions. For example, if
for a certain initial condition inhibitors are insufficient for trajectories to approach
the singular arc on a chattering spiral, then, at one point controls change from a
strategy that is spiraling in to one that is spiraling away from the singular arc. This
generates optimal controls with a very large number of switchings. While the overall
structure of optimal controls thus is complex, the situation is much simpler on the
level of the controlled trajectories and can still be fully understood geometrically.
This helps clarify what otherwise, on the level of optimal controls, would appear to
be a quagmire of unrelated structures. But this is of a mere theoretical interest and
will not be pursued here. From the practical point of view, knowing the structure
of optimal solutions again establishes benchmark values to which we can compare
other, simple and realizable strategies. For a particular initial condition, this ques-
tion can satisfactorily be settled numerically. As an example, in the next section we
show for model [E] that simple, nonoptimal concatenations with bang controls will
provide satisfactory suboptimal approximations.

6.3.4 Suboptimal Approximations for Model [E] with Linear PK

For model [E], incorporating the standard linear pharmacokinetic model (6.2) into
the mathematical model results in the following optimal control problem: minimize
p(T ) subject to

ṗ =−ξ p ln

(
p
q

)

, p(0) = p0,

q̇ = bq
2
3 − dq

4
3 − μq− γcq, q(0) = q0,

ċ =−kc+ u, c(0) = 0,

ẏ = u, y(0) = 0.
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Recall that the singular curve S for the optimal control problem [E] is defined in
(p,q)-space by the equation

psing(w) = qexp

(

3
b− μw−dw2

b+dw

)

where w = 3
√

q and the corresponding singular control using that keeps S invariant
is given in feedback form by as using(w) =−ψ(w) with

ψ(w) =−1
γ

(
b− dw2

w
+ 3ξ

b+dw2

b−dw2 − μ
)

.

Figure 6.24 shows the corresponding vertical surface in (p,q,c)-space and Fig-
ure 6.25 also shows the graph of the function c = −ψ( 3

√
q). Note that the con-

centration only depends on w in this case and therefore the graph of ψ consists of
horizontal lines in the p-direction. Again, the singular curve S lies in the region
p > q and we only plot the function ψ in that region. The intersection of these two
surfaces defines the new singular arc Ŝ for the problem [OCAPK] for model [E].
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Fig. 6.24 Vertical singular surface in (p,q,c)-space for model [E].

We include some numerical results obtained by H. Maurer [181] which show
that simple suboptimal controls achieve a tumor volume which gives an excellent
approximation of the optimal value. In the calculations, the values from Tables 5.2
and 5.4 were used with tumor growth parameter ξ = 0.192 per day and total amount
of inhibitors given by A = 60. The half-life k of the agent in equation (6.2) is taken
for angiostatin as k = 0.38 per day [116]. As always, the variables p and q are
volumes measured in [mm3].
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Fig. 6.25 The singular curve for model [E] in (p,q,c)-space is defined by the intersection of the
vertical singular surface with the graph of the concentration, c =−ψ(w), w = 3

√
q.

The computational results are for the initial conditions p0 = 8,000 [mm3] and
q0 = 10,000 [mm3]. The optimal control package NUDOCCCS due to Büskens [43]
was implemented to compute a solution of the discretized control problem using
nonlinear programming methods. A time grid with N = 400 points and a high order
Runge-Kutta integration method were chosen. Figure 6.26 shows the graph of a
numerically computed ‘optimal’ chattering control (top, left) and its corresponding
concentration c (top, right) as well as the graphs of the states and their corresponding
trajectory in (p,q)-space (bottom). The highly irregular structure of the numerically
computed control is caused by the fact that the theoretically optimal control chatters
and has a singular middle segment. Consequently, as the intervals shrink to 0, the
actual control values no longer alternate between their upper and lower values ±1
and thus this control only gives a numerical approximation of the optimal value, as
it is unavoidable with any numerical computation of optimal chattering arcs. The
value of the objective is within the preset error tolerance and the tumor volume is
given by p(T ) = 78.5326 [mm3] obtained at the final time T = 11.6406 [days].

For the same parameter values, Figure 6.27 gives an example of a heuristic sub-
optimal control that is computed by taking a control of the following simple bang-
bang structure:

u(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

umax for 0 ≤ t < t1,

0 for t1 ≤ t < t2,

umax for t3 ≤ t < t3,

0 for t4 ≤ t ≤ T.

Thus, both the chattering and singular arcs are completely eliminated at the expense
of two adjacent bang-bang arcs that become larger. The switching times t1, t2, t3 and
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Fig. 6.26 A numerically computed chattering control (top, left) with corresponding concentration
c (top, right), states p and q (bottom, left), and corresponding trajectory (bottom, right) for problem
[OCAPK] for model [E] with initial conditions p0 = 8,000 [mm3] and q0 = 10,000 [mm3].

the final time T here are free optimization variables. Using the arc-parametrization
method developed in [234] and the code NUDOCCCS [43], the switching times
t1 = 1.78835 [days], t2 = 4.60461 [days], t3 = 6.86696 [days], and the final time
T = 11.3101 [days] were obtained. Surprisingly, this rather crude suboptimal con-
trol already gives an excellent approximation with a minimal tumor volume of
p(T ) = 78.8853 [mm3]. On the right of Figure 6.27, the corresponding concentration
is shown.

Tumor volumes that are virtually identical with the numerically optimal ones can
be achieved with a slightly more refined control structure of the form

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

umax for 0 ≤ t < t1,

0 for t1 ≤ t < t2,

v for t2 ≤ t < t3,

umax for t3 ≤ t < t4,

0 for t4 ≤ t ≤ T.

Once more the chattering arcs are approximated by a simple bang-bang control that
switches once from umax to 0 and the singular segment is approximated by a constant
intermediate control value v over the full singular interval. This particular choice is
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Fig. 6.27 A simple suboptimal bang-bang control with four arcs (left) and corresponding concen-
tration c (right) for model [E].

probably the simplest reasonable approximation to the theoretically optimal control
structure: a chattering control followed by a singular control and one more chatter-
ing control. The switching times ti, i = 1, . . . , t4, the final time T , and the value v of
the control are free optimization variables. Again, the arc-parametrization method
[234] and the code NUDOCCCS [43] were used to compute the switching times:
t1 = 1.467 [days], t2 = 3.081 [days], t3 = 5.986 [days], t4 = 7.358 [days], the final
time T = 11.639 [days] and the constant control v is given by v = 6.24784. These
are the optimal values within this restricted class of controls. This generates a tu-
mor volume of p(T ) = 78.5329 [mm3] for the suboptimal approximation which is
basically identical with the minimal tumor volume p(T ) = 78.5326 [mm3] for the
chattering control. On the right of Figure 6.28 the corresponding concentration is
shown. Overall, the behavior is very similar as in case of the chattering control, but
the system has a much smoother and thus for many aspects preferable response. Like
in the case of problem [OCA] without PK, the differences in the minimum tumor
volumes that can be achieved on the level of suboptimal controls are negligible.
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Fig. 6.28 A suboptimal piecewise constant control (left) and corresponding concentration c (right)
for model [E].
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6.4 Toward the Practical Side

In this chapter, we illustrated the bifold role that optimal solutions have in designing
practical protocols for antiangiogenic treatments. Obviously, the theoretically opti-
mal protocols define benchmark values to which other—simple and heuristically
chosen, but implementable—protocols can be compared. Optimal solutions thus de-
termine a measure for how good an otherwise given protocol is. Equally important,
the structure of theoretically optimal solutions suggests simple realizable subop-
timal protocols that generally give excellent approximations. Here we considered
some simple piecewise constant suboptimal protocols and evaluated their overall
efficiency by comparing the minimum tumor volumes that these protocols achieve
with the optimal solution for problem [OCA]. For example, the averaged optimal
dose protocol which is easily obtained from the theoretically optimal solution, pro-
vides a generally excellent approximation for models [H] and [E].

While the choice of a suboptimal protocol naturally depends on the specific
model considered, the initial tumor volume, and the size of the carrying capacity
of the vasculature, some general observations can be made that are of interest:

1. Both optimal and suboptimal protocols are strongly robust with respect to the
carrying capacity. Since generally no reliable data or observations about this
quantity are available, this is of practical significance.

2. For higher initial tumor volumes, protocols that generate lower concentrations
perform better. The reason is that for high dose rates in the models considered
here the dynamics for the carrying capacity overshoots the “optimal” path for
tumor reduction (that is determined by the optimal singular arc). Hence, in a
certain sense, inhibitors are wasted at higher dose rates/concentrations whereas
better effects can be achieved if the total available dose is spread out over time.

3. Under the augmentation of the dynamics with a standard linear pharmacokinetic
model for the antiangiogenic agent, not only are essential features of the optimal
synthesis (e.g., optimal singular controls and arcs) preserved, but the formulas
carry over verbatim to the new model formulation, albeit with different interpre-
tation. While there exist both qualitative and quantitative changes in the structure
of optimal protocols, again simple, close to optimal suboptimal protocols ex-
ist. Like for the simplified model [OCA], the structure of theoretically optimal
solutions points to some straightforward simple classes of controls that are pa-
rameterized by a small number of parameters and thus can easily be minimized.
Overall, this gives credence to a modeling approach that initially neglects the
pharmacokinetic model.



Chapter 7
Combination Therapies with Antiangiogenic
Treatments

Antiangiogenic treatment discussed in Chapters 5 and 6 is an indirect approach to
cancer therapy that aims at limiting a tumor’s ability to grow by depriving it of the
required vasculature. It initially provided a new hope in cancer treatment since tar-
geting the healthy and genetically stable endothelial cells of the lining for the blood
vessels showed no drug resistance, the curse of chemotherapy [141, 142]. However,
since the treatment is only limiting the tumor’s support mechanism without actually
killing the cancer cells, antiangiogenic therapy by itself only achieves a temporary,
“pseudo-therapeutic effect” that goes away with time. In some cases, once treatment
is halted, the tumor grows back even more vigorously than before. While antiangio-
genic monotherapy thus is not considered a viable treatment option, it has become
a staple of anticancer treatments in combination with radio- and chemotherapy. In
this way, simultaneously two separate mechanisms that support cancer are targeted,
the cancerous cells and the vasculature that supports them [283]. The idea simply is
that antiangiogenic therapy can enhance the efficacy of traditional approaches by
normalizing a tumor’s vasculature. For example, Jain and Munn argue that a nor-
malization of a tumor’s irregular and dysfunctional vasculature [131, 132] through
prior antiangiogenic treatment enhances the delivery of chemotherapeutic agents
and thus improves the effectiveness of chemotherapy.

In this chapter, in Section 7.1, we consider mathematical models for combi-
nations of antiangiogenic treatments with chemotherapy and, in Section 7.2, with
radiotherapy. Combination therapies provide a double challenge, both from the
modeling perspective and in the subsequent mathematical analysis of such models.
Different from the problems considered in Chapter 2 which all were within the con-
text of chemotherapy (e.g., combining cytotoxic and cytostatic drugs), here funda-
mentally different mechanisms of operation are merged. When doing so, sometimes
even the most fundamental questions do not have obvious answers. For example, if
chemotherapy is combined with antiangiogenic treatments, which procedure should
come first? The delivery of chemotherapeutic agents takes place by means of the

© Springer Science+Business Media, LLC 2015
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bloodstream and thus requires the tumor’s vasculature. But this exactly is the target
of antiangiogenic treatments. Thus, should chemotherapy be given first in order not
to destroy this vasculature? Or is it be better to normalize this vasculature to enable
a more efficient delivery of chemotherapy? We shall see below, that it is the sec-
ond alternative that optimization of mathematical models suggests. However, this
mathematical analysis now becomes more difficult since we need to deal with fully
nonlinear models and generally high dimensional multi-input optimal control prob-
lems. The optimal solutions for the monotherapy problem computed in Chapter 5
lay the foundation on which the solutions for these multi-input models for the com-
bination therapies can be built. Indeed, as will be seen, both for combinations with
chemo- and radiotherapy, these optimal solutions have close connections with the
optimal solutions for the combination therapy models. This property also gives cre-
dence to the modular approach that we have pursued in this text of building up on
simpler models by increasingly incorporating more medically relevant features.

The main conclusion of our results presented in Chapter 5 is that there exists
a in a certain way optimal relation between tumor volume p and its carrying cap-
acity q when tumor kill is maximized. By no means was this to destroy as much of
the vasculature as possible, but to maintain a proper balance between tumor size
and vasculature through the administration of antiangiogenic agents according to an
optimal singular control. Here we shall see that for all the models of angiogenic sig-
naling considered in Chapter 5, and both for combinations with chemotherapy and
with radiotherapy, simple modifications to this relation exist that adjust this relation
to account for the additional treatment modalities. And once more explicit Lie alge-
braic calculations allow to make the necessary modifications. The persistence of an
optimal relation between tumor volume and carrying capacity of the vasculature in
so many mathematical models gives strong credibility to the belief that indeed an
ideal relation between these two variables gives the best tumor reductions that can be
achieved. The question how these optimal paths can be characterized and computed
is answered, at least in the mathematical models considered here, decisively by the
optimal control approach. These paths correspond to so-called singular arcs and the
concentrations, respectively dose rates, that keep them invariant, are the so-called
singular controls. Lie derivative based computations provide a powerful means to
perform these nonlinear calculations and to arrive at explicit formulas for singular
controls and arcs.

7.1 Combination of Antiangiogenic Treatment
and Chemotherapy as Multi-Input Optimal Control Problem

We combine the mathematical model [H] for angiogenic signaling with the action
of a chemotherapeutic agent. In his concluding remarks in the paper [251], A.
d’Onofrio introduces such a model along with fundamental biological inferences.
In that model, a simple linear killing term was added to the dynamics of tumor
growth. This is a reasonable approximation to describe chemotherapies that are not



7.1 Antiangiogenic Treatment and Chemotherapy 277

cell-cycle specific, or even, as a first crude approximation to model radiotherapy
ignoring the quadratic effects. Possible cytotoxic effects of the chemotherapeutic
agent on the endothelial cells for the combined model have been considered by A.
Swierniak in [315] and in our joint paper [264] with A. d’Onofrio and H. Maurer
for combination of a vessel disrupting and a cytotoxic agent. This is the model that
we formulate below and analyze as an optimal control problem. Mathematically,
the challenge lies in the fact that this is now a fully nonlinear multi-input optimal
control problem and a much more complex structure of optimal controls is possible.
We briefly describe the model in Section 7.1.1 and derive the adjusted formula for
the singular control of the antiangiogenic agent in Section 7.1.3. For the administra-
tion of the cytotoxic agent optimal controls are bang-bang. In fact, in Section 7.1.4
we give several numerical examples that support the following structure of optimal
protocols: administration of the vessel disrupting antiangiogenic agent u follows the
same pattern as for the monotherapy problem derived in Chapter 5 (i.e., for a med-
ically typical initial condition, after a full dose segment, antiangiogenic agents are
administered following the optimal singular control until they run out at some time
τ) and administration of the cytotoxic agent v follows a bang-bang control. In fact,
chemotherapy is given in one full dose session that commences at a specific, opti-
mal time σ . In some sense, a regularization of the vasculature has been achieved
that maximizes the killing potential of the cytotoxic drugs. Depending on the avail-
able amounts of both antiangiogenic and chemotherapeutic agents, the time σ can
lie anywhere in the interval. For a typical set of parameters, σ occurs during the
interval when the antiangiogenic agent is given by the singular control. Cases when
σ would lie before the singular curve has been reached correspond to mathematical
scenarios when a very large amount of cytotoxic drugs to be given is assumed and
generally are medically unrealistic, while σ will only occur after antiangiogenic in-
hibitors are exhausted, if this amount of cytotoxic agents is assumed very small. As
before, the minimum tumor volume is realized at a later time T > τ after all the
chemotherapeutic drugs have been given.

7.1.1 Model [H] Under Combination with Chemotherapy

We again assume that the total amounts of vessel disruptive antiangiogenic and
chemotherapeutic agent have been determined a priori and the question becomes
how they can be optimally administered to achieve the best possible effects. Once
more, we just consider the minimization of the tumor volume. Thus the optimal
control formulation follows the same premises as in Chapter 5 in the sense that
we assume the question of limiting side effects has already been determined (by
a medical practitioner) in terms of limiting the total dosage. From a mathematical
side, once the solution to the problem formulated below is known, by comparing
these solutions for various maximum dosages, a desired protocol can be chosen,
very much like what is a common procedure in engineering applications of optimal
control. Mathematically, we thus consider the following optimal control problem:
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[ACh] For a free terminal time T , minimize the objective J(u) = p(T ) subject to
the dynamics

ṗ =−ξ p ln

(
p
q

)

−ϕ pv, p(0) = p0, (7.1)

q̇ = bp−
(
μ+ bp

2
3

)
q− γqu−ηqv, q(0) = q0, (7.2)

ẏ = u, y(0) = 0, (7.3)

ż = v, z(0) = 0, (7.4)

over all Lebesgue measurable (respectively, piecewise continuous) functions

u : [0,T ]→ [0,umax] and v : [0,T ]→ [0,vmax]

for which the corresponding trajectory satisfies

y(T )≤ ymax and z(T )≤ zmax.

As before, the variables y and z keep track of the total amounts of agents adminis-
tered. The constants umaxand vmax represent the maximum dose rates/concentrations
of the antiangiogenic agent u and the cytotoxic agent v, respectively, and the total
dosages of each drug are limited by ymax and zmax. Like in the previous models, γ
is the antiangiogenic killing parameter and ϕ and η are the pharmacodynamic co-
efficients for the cytotoxic agent. As usual, we use the linear log-kill hypothesis in
these terms.

As in Section 5.3, we only consider the following medically relevant square do-
main D ,

D =

{

(p,q) : 0 < p < p̄ =

(
b− μ

d

) 3
2

, 0 < q < q̄ =

(
b− μ

d

) 3
2
}

.

The following lemma, whose proof is analogous to the one of Proposition 5.3.1 in
the monotherapy case, implies that no state-space constraints need to be imposed on
the variables.

Lemma 7.1.1. For arbitrary positive initial conditions p0 and q0 and any admissi-
ble controls u and v, the solution (p,q,y,z) to the dynamics (7.1)–(7.4) exists for all
times t > 0 and both p and q remain positive.

We summarize the notation for the variables and give the values used in the num-
erical computations in Table 7.1.

It is convenient to have a single notation for the state vector. Since, as before, the
quotient p

q plays an important role in the analysis of the problem and was denoted
by x previously, we retain the notation x = p

q and denote the full state vector by χ ,

χ = (p,q,y,z)T . The dynamics then takes the form

χ̇ = f (χ)+ ug1(χ)+ vg2(χ) (7.5)
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Table 7.1 Notations for the variables, parameters and controls for the optimal control problem
[ACh].

Symbol Units Value used in Reference
computations

p Primary tumor volume mm3

q Carrying capacity of the vasculature mm3

x = p
q Inverse of the endothelial density

y Amount of antiangiogenic mg
agent used

z Amount of cytotoxic mg
agent used

χ State vector - (p,q,y,z)T

ξ Tumor growth parameter [per day] 0.084 [116]
b Stimulation parameter [per day] 5.85 [116]
d Inhibition parameter [per day] 0.00873 [116]
μ Loss of vascular support 0.02

through natural causes

u Antiangiogenic agent
umax Maximum allowable dose rate/concentration [mg] 75

of the antiangiogenic agent
ymax Available total dose [mg] 300

of the antiangiogenic agent
v Chemotherapeutic agent

vmax Maximum allowable dose rate/concentration 1/2
of the chemotherapeutic agent

zmax Available total dose 2/10
of the chemotherapeutic agent

γ Antiangiogenic [ kg
mgof dose per day] 0.15 [116]

elimination parameter
ϕ Cytotoxic killing parameter 0.1

for the tumor
η Cytotoxic killing parameter 0−0.1

for the vasculature
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where

f (χ) =

⎛

⎜
⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)

bp−
(
μ+ d p

2
3

)
q

0
0

⎞

⎟
⎟
⎟
⎟
⎠
, (7.6)

g1(χ) =

⎛

⎜
⎜
⎝

0
−γq

1
0

⎞

⎟
⎟
⎠ , and g2(χ) =

⎛

⎜
⎜
⎝

−ϕ p
−ηq

0
1

⎞

⎟
⎟
⎠ . (7.7)

We note that the control vector fields g1 and g2 commute, i.e., their Lie bracket
vanishes identically:

[g1,g2](χ) = Dg2(χ)g1(χ)−Dg1(χ)g2(χ)

=

⎛

⎜
⎜
⎝

−ϕ 0 0 0
0 −η 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

0
−γq

1
0

⎞

⎟
⎟
⎠−

⎛

⎜
⎜
⎝

0 0 0 0
0 −γ 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

−ϕ p
−ηq

0
1

⎞

⎟
⎟
⎠≡ 0.

This significantly will simplify the mathematical analysis.

7.1.2 Necessary Conditions for Optimality

Our aim is to characterize and compute optimal controlled trajectories. As in the
monotherapy problem analyzed in Chapter 5, there exist sets of data when the math-
ematically optimal solution degenerates and is given by T = 0. Once again this hap-
pens when the available amounts of antiangiogenic and cytotoxic agents are too
small to achieve a reduction in tumor volume beyond its initial value p0. For prob-
lem [ACh] however, also other, less degenerate situations are possible in which the
cytotoxic agents are being used up while antiangiogenic agents are not. This makes
it necessary to distinguish various cases in the analysis of optimal solutions. Here
we elect not to do so and instead restrict our analysis to the most typical scenario
when both angiogenic inhibitors and cytotoxic drugs are fully used up.

Definition 7.1.1 (Well-Posed Initial Condition). We say the initial condition (p0,
q0) is well posed for the data of the optimal control problem [ACh] if the terminal
time T along an optimal solution is positive and if all available therapeutic agents
are used up, i.e., y(T ) = ymax and z(T ) = zmax hold.

Suppose (u∗,v∗) are optimal controls for well-posed initial data defined over the
interval [0,T ] with corresponding trajectory χ∗ = (p∗,q∗,y∗,z∗)T . Necessary condi-
tions for optimality are given by the Pontryagin maximum principle (cf., Theorem
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A.3.1 in Appendix A) and they state that there exist a constant λ0 ≥ 0 and an abso-
lutely continuous co-vector, λ : [0,T ]→ (R4)∗, that do not vanish simultaneously,
(λ0,λ (t)) = 0 for all t, such that λ satisfies the adjoint equations (using x = p

q )

λ̇1(t) = λ1(t)(ξ (ln(x∗(t))+ 1)+ϕv∗(t))+λ2

⎛

⎝2
3

d
q∗(t)

p
1
3∗ (t)

−b

⎞

⎠ , λ1(T ) = λ0,

(7.8)

λ̇2(t) =−λ1(t)ξ x∗(t)+λ2(t)(μ+ d p
2
3∗ (t)+ γu∗(t)+ηv∗(t)), λ2(T ) = 0,

(7.9)

λ̇3(t) = 0, and λ̇4(t) = 0, (7.10)

and such that the optimal controls u∗(t) and v∗(t) minimize the Hamiltonian H,

H =−λ1

(

ξ p ln

(
p
q

)

+ϕ pv

)

+λ2

(
bp−

(
μ+d p

2
3 + γu+ηv

)
q
)
+λ3u+λ4v

(7.11)
along (λ0,λ (t),χ∗(t)) over the control set [0,umax]× [0,vmax] with minimum value
given by 0.

Lemma 7.1.2. If the initial condition (p0,q0) is well posed for the data, then ext-
remals are normal. The multipliers λ1 and λ2 do not vanish identically (equivalently,
have no common zeros) and are positive on an open interval (τ,T ) near the terminal
time. The multipliers λ3 and λ4 are constant and nonnegative.

Proof. Suppose λ0 = 0. Then, since λ1 and λ2 satisfy the homogeneous equations
(7.8) and (7.9), they vanish identically. By the nontriviality condition on the multi-
plier, λ3 and λ4 cannot both vanish. Suppose λ3 = 0. If λ3 < 0, then by the minimum
condition u≡ umax and thus, since H ≡ 0, we have that λ4v=−λ3umax > 0. But then
both λ4 and v are positive which contradicts the minimum condition on v. Hence λ3

is positive. But then the minimum condition implies that u ≡ 0 and this contradicts
the fact that the initial data are well posed. An analogous argument gives a contra-
diction if λ4 = 0. Without loss of generality we therefore normalize λ0 = 1.

This implies that the multipliers λ1 and λ2 are nontrivial. For λ1 this is clear since
λ1(T ) = 1 and for λ2 it follows from λ̇2(T ) = −ξ x∗(T ) < 0. In particular, both λ1

and λ2 are positive on some open interval (τ,T ). The fact that λ3 and λ4 are constant
follows from the adjoint equations since the right-hand side of the dynamics does
not depend on the variables y and z.

The multipliers λ3 and λ4 are the partial derivatives of the optimal value with
respect to the auxiliary variables y and z at the initial condition (cf., equation (A.30)
in Theorem A.4.2 in Appendix A). If we denote the value function of the opti-
mal control problem [ACh] by V , then λ3 < 0 means that ∂V

∂y (p0,q0,0,0) < 0 and
thus V (p0,q0,ε,0) < V (p0,q0,0,0) for some sufficiently small ε > 0. The opti-
mal control corresponding to the initial condition (p0,q0,ε,0) only uses a total of
ỹmax = ymax − ε antiangigenic agents and thus a better effect can be achieved with
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less inhibitors. Clearly, this cannot be the case since the optimal solution for the
initial point (p0,q0) with ỹmax and z̃max = zmax is also an admissible control for the
original optimal control problem [ACh]. Hence λ3 ≥ 0. Analogously it follows that
λ4 ≥ 0. In fact, this reasoning is generally valid and these inequalities are merely
complementary slackness conditions. �

Optimal controls satisfy the minimum condition on the Hamiltonian H. Since H
is linear in u and v, and since the control sets are compact intervals, their values
once more are determined by their respective switching functions Φ1 and Φ2,

Φ1(t) = 〈λ (t),g1 (χ∗(t))〉= λ3 −λ2(t)γq∗(t), (7.12)

Φ2(t) = 〈λ (t),g2 (χ∗(t))〉= λ4 −λ1(t)ϕ p∗(t)−λ2(t)ηq∗(t), (7.13)

and we have that

u∗(t) =
{

0 if Φ1(t)> 0
umax if Φ1(t)< 0,

(7.14)

and

v∗(t) =
{

0 if Φ2(t)> 0
vmax if Φ2(t)< 0

. (7.15)

Singular controls are possible over an open interval I if one or both of the switching
functions vanish identically. In the latter case, the controls are called totally singular.

7.1.3 Analysis of Singular Controls

Like for the models considered in Chapter 5, the Lagrangian is independent of the
state. The adjoint equations therefore can be written compactly as

λ̇ =−λ (D f (χ)+ uDg1(χ)+ vDg2(χ)) . (7.16)

This provides us with the following simple formula to compute the derivatives of
the switching functions (cf., Proposition A.3.1 in Appendix A):

Proposition 7.1.1. Let χ(·) be a solution of the dynamics (7.5) for the controls u
and v and let λ be a solution of the corresponding adjoint equation (7.16). For a
continuously differentiable vector field h, let

Ψ(t) = 〈λ (t),h(χ(t))〉= λ (t)h(χ(t)). (7.17)

Then the derivative ofΨ is then given by

Ψ̇(t) = 〈λ (t), [ f + ug1 + vg2,h](χ(t))〉 . (7.18)

Proof. Dropping the argument t, along the solutions of the dynamics and adjoint
equation, we have that
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Ψ̇ = λ̇h(χ)+λDh(χ)χ̇
=−λ (D f (χ)+ uDg1(χ)+ vDg2(χ))h(χ)+λDh(χ)( f (χ)+ ug1(χ)+ vg2(χ))
= λ (Dh(χ) f (χ)−D f (χ)h(χ))+ uλ (Dh(χ)g1(χ)−Dg1(χ)h(χ))

+ vλ (Dh(χ)g2(χ)−Dg2(χ)h(χ))
= 〈λ , [ f +ug1+ vg2,h](χ)〉

verifying (7.18). �

For any vector field h it holds trivially that [h,h]≡ 0 and the control vector fields
g1 and g2 for problem [ACh] commute. Thus the first derivatives of the switching
functions Φ1 and Φ2 are simply given by

Φ̇1(t) = 〈λ (t), [ f ,g1](χ∗(t))〉 (7.19)

and
Φ̇2(t) = 〈λ (t), [ f ,g2](χ∗(t))〉 . (7.20)

Direct calculations verify that (also see Section 5.3.2)

[ f ,g1](χ) = γ p

⎛

⎜
⎜
⎝

ξ
−b
0
0

⎞

⎟
⎟
⎠ (7.21)

and

[ f ,g2](χ) =

⎛

⎜
⎜
⎝

(η−ϕ)ξ p

(ϕ−η)bp− 2
3ϕd p

2
3 q

0
0

⎞

⎟
⎟
⎠=

η−ϕ
γ

[ f ,g1](χ)− 2
3
ϕd p

2
3 q

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠ .

(7.22)

In particular, the vector fields g1, [ f ,g1], g2, and [ f ,g2] are everywhere linearly
independent and thus the adjoint variable λ can never vanish against all four vectors.

Proposition 7.1.2. The controls u and v cannot be singular simultaneously. If one
of them is singular over an open interval I, then the other control is bang-bang
over I. �

Proof. Suppose both Φ1 and Φ2 vanish at some time τ . If also Φ̇i(τ) = 0, then, by
the nontriviality of the multiplier λ , it follows that Φ̇ j(τ) = 0 for i = j. �

Furthermore, the derivatives of the switching function do not depend on the con-
trols and thus can be differentiated one more time to give

Φ̈1(t) = 〈λ (t), [ f + ug1 + vg2, [ f ,g1]] (χ(t))〉 ≡ 0. (7.23)
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and
Φ̈2(t) = 〈λ (t), [ f + ug1 + vg2, [ f ,g2]] (χ(t))〉 ≡ 0. (7.24)

We first consider antiangiogenic dose rates that are singular. These computations
mimic the results from Chapter 5 with the appropriate modifications for the presence
of the chemotherapeutic agent. Suppose that an optimal control u∗ is singular on an
open interval I = (α,β ). Then both Φ1(t) and its derivative Φ̇1(t) vanish identically
on I and we have that

λ3 ≡ λ2(t)γq∗(t) and λ1(t)ξ ≡ λ2(t)b. (7.25)

These relations imply that all the multipliers λ1(t), λ2(t), and λ3 are positive on I
and that β < T . A direct computation (see also (5.46)) verifies that

[g1, [ f ,g1]](χ∗(t)) =−γ2bp∗(t)

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠= γ[ f ,g1](χ∗(t))− γ2ξ p∗(t)

⎛

⎜
⎜
⎝

1
0
0
0

⎞

⎟
⎟
⎠ .

Since 〈λ (t), [ f ,g1](χ(t))〉 ≡ 0 on I, it follows that

〈λ (t), [g1, [ f ,g1]](χ∗(t))〉=−λ1(t)γ2ξ p∗(t)< 0 (7.26)

and thus singular controls u are of order 1 and the strengthened Legendre-Clebsch
condition is satisfied.

Proposition 7.1.3. Suppose (u∗,v∗) is an optimal control. If u∗ is singular on I =
(α,β ), then the multipliers λ1, λ2 and λ3 are positive on I. Furthermore, the control
u∗ ends with an interval (τ,T ) where u ≡ 0 and v∗ is bang-bang on I with at most
one switching from v = 0 to v = vmax.

Proof. Since Φ1(T ) = λ3 > 0, the minimum condition on the Hamiltonian H im-
plies that u∗ ≡ 0 near the terminal time T .

By equation (7.22) the derivative of the switching function Φ2 for v is given by

Φ̇2(t) = 〈λ (t), [ f ,g2] (χ∗(t))〉= η−ϕ
γ

〈λ (t), [ f ,g1] (χ∗(t))〉− 2
3
λ2(t)ϕdp∗(t)

2
3 q∗(t).

Since 〈λ (t), [ f ,g1]〉(χ∗(t)) vanishes on I, it follows that

Φ̇2(t) =−2
3
λ2(t)ϕd p∗(t)

2
3 q∗(t)< 0

and thus Φ2 is strictly decreasing on I. Hence v is bang-bang on I with at most one
switching from v = 0 to v = vmax. �
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Solving equation (7.23) for u, the singular control is given by

using(t) =−〈λ (t), [ f + v∗(t)g2, [ f ,g1]](χ(t))〉
〈λ (t), [g1, [ f ,g1]](χ(t))〉 .

The Lie brackets [ f , [ f ,g1]] and [g1, [ f ,g1]] were already computed in Chapter 5 (cf.,
(5.46) and (5.47)) and another computation verifies that

[g2, [ f ,g1]](χ(t)) = (ϕ−η)γbp

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠=−ϕ−η

γ
[g1, [ f ,g1]](χ(t)). (7.27)

We therefore have that

using(t) =− 〈λ (t), [ f , [ f ,g1]](χ(t))〉
〈λ (t), [g1, [ f ,g1]](χ(t))〉 +

ϕ−η
γ

v∗(t).

The first term in this expression is the singular control for the monotherapy case
from Proposition 5.3.4 in Chapter 5 and we can simply draw on these results to de-
termine the singular controls. It follows from those calculations that [ f , [ f ,g1]] lies
in the linear span of the vector fields [ f ,g1] and [g1, [ f ,g1]],

[ f , [ f ,g1]](χ) =
(

ξ + b
p
q

)

[ f ,g1](χ)−ψ [g1, [ f ,g1]](χ)

with

ψ(p,q) =
1
γ

(

ξ ln

(
p
q

)

+ b
p
q
+

2
3
ξ

d
b

q

p
1
3

−
(
μ+d p

2
3

)
)

.

Overall, we have the following result:

Theorem 7.1.1. If the optimal control u∗ is singular on an open interval I, then

γusing(t)+ (η−ϕ)v∗(t) = γψ(p∗(t),q∗(t)). (7.28)

and v∗ is bang-bang on I with at most one switching on I from v = 0 to v = vmax.

Recall that it is the function ψ that determines the optimal singular antiangio-
genic dose rates/concentrations. Equation (7.28) corrects these rates in the presence
of chemotherapy by adjusting according to the effects of the chemotherapy on the
tumor and the vasculature. Indeed, γu∗(t)+ηv∗(t) is the combined killing rate on
the vasculature and ϕv∗(t) is the killing rate on the tumor volume.

Suppose u∗ is singular on an open interval I =(α,β ). It then follows from Propo-
sition 7.1.3 that the control v∗ has at most one switch from v = 0 to v = vmax on I.
While v = 0, the problem reduces to the monotherapy situation analyzed in Chap-
ter 5. In this case, the fourth coordinate of the vector fields f , g1 and [ f ,g1] is zero
and these fields span the (p,q,y)-subspace. The only multiplier that is orthogonal
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to all these vectors is (0,0,0,λ4). But along an optimal singular control the multi-
plier λ2 must be positive and thus it follows that the vector fields f , g1 and [ f ,g1]
must be linearly dependent along the singular arc. Hence, although formulated in
R

4, this case reduces to the three-dimensional problem considered earlier and all
the formulas given there apply.

Once the control v switches to vmax, the condition H ≡ 0 of the maximum prin-
ciple implies that

〈λ (t), f (χ(t))+ vmaxg2(χ(t))〉 ≡ 0

and thus λ (t) vanishes against the vector fields g1, [ f ,g1] and f + vmaxg2,

g1(χ) =

⎛

⎜
⎜
⎝

0
−γq

1
0

⎞

⎟
⎟
⎠ , [ f ,g1](χ) = γ p

⎛

⎜
⎜
⎝

ξ
−b
0
0

⎞

⎟
⎟
⎠ ,

f + vmaxg2(χ) =

⎛

⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)
− vϕ p

bp− (μ+ d p
2
3 )q−ηvmaxq

0
vmax

⎞

⎟
⎟
⎟
⎠
.

These three vector fields are linearly independent and the fourth coordinate in
f + vmaxg2 is nonzero given by vmax. Hence there exists an up to multiples unique
multiplier λ that is orthogonal to these three vector fields. It is clear that the solution
has multipliers λ1, λ2 and λ3 which have the same sign and we need to choose
the direction so that these entries are positive. Therefore, in this case, there are no
restrictions on the locus of points where the singular control is admissible and the
singular control is a feedback function defined in (p,q)-space that also depends on
vmax. As always, any such computed singular control u needs to be admissible, i.e.,
take values in the control set [0,umax].

In principle, for this problem singular controls are also possible for the chemother-
apeutic agent v. In the computations below we assume that ϕ > 3η , a realistic as-
sumption for high dose chemotherapy that has a more prevalent effect on the rapidly
duplicating tumor cells than the slowly proliferating endothelial cells. Suppose that
an optimal control v∗ is singular on an open interval I = (α,β ). In this case we have
that

λ4 ≡ λ1(t)ϕ p∗(t)+λ2(t)ηq∗(t) (7.29)

and

λ1(t)ξ p∗(t)≡ λ2(t)

(

bp∗(t)− 2
3

ϕ
ϕ−η

d p∗(t)
2
3 q∗(t)

)

. (7.30)

Proposition 7.1.4. Suppose that ϕ > 3η . If the optimal control v∗ is singular on
an open interval I = (α,β ), then λ1 and λ2 are positive on I. The corresponding
controlled trajectory lies in the region

Dv,sing =

{

(p,q) : bp >
2
3

ϕ
ϕ−η

d p
2
3 q

}

=

{

(p,q) : q <
3
2

(

1− η
ϕ

)
b
d

p
1
3

}
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and the strengthened Legendre-Clebsch condition for minimality is satisfied. Over
the interval I, the control u∗ can have at most one switching from u = 0 to u = umax.

Proof. In a first step, we show that λ1 and λ2 cannot change sign on I. It follows
from (7.30) that λ2 cannot change sign on I since λ1 and λ2 do not vanish simulta-
neously. Suppose λ1 changes sign and we have that λ1(τ) = 0. It then follows from
(7.29) that λ4 is positive (λ2(τ) would have to vanish as well if λ4 = 0) and thus λ2

is positive on I as well. Hence we have that

bp∗(τ) =
2
3

ϕ
ϕ−η

d p∗(τ)
2
3 q∗(τ).

Furthermore, the fact that H ≡ 0 implies that

H = λ2(τ)
(

bp∗(τ)−
(

μ+ d p
2
3∗ (τ)

)

q∗(τ)
)

+Φ1(τ)u∗(τ)

= λ2(τ)
((

2
3

ϕ
ϕ−η

− 1

)

d p∗(τ)
2
3 − μ

)

q∗(τ)+Φ1(τ)u∗(τ) = 0.

For ϕ > 3η , the first term is negative. However, we always have that Φ1(τ)u∗(τ)≤ 0
and thus this is not possible. Hence λ1 has constant sign on I as well.

This implies that the quantity Δ = bp− 2
3

ϕ
ϕ−η d p

2
3 q has constant sign along an

extremal controlled trajectory for which the control v is singular. Consider the full
relation H = 0:

H =−λ1ξ p ln

(
p
q

)

+λ2

(
bp−

(
μ+d p

2
3

)
q
)
+Φ1u.

If Δ is negative, then we have that

bp−
(
μ+ d p

2
3

)
q <

[(
2
3

ϕ
ϕ−η

− 1

)

d p
2
3 − μ

]

q < 0

and
p
q
<

2
3

ϕ
ϕ−η

d
b

p
2
3 ≤ d

b
p

2
3 ≤ d

b
p̄

2
3 =

d
b

b− μ
d

= 1− μ
d
≤ 1.

Furthermore, in this case it follows from (7.30) that λ1 and λ2 have opposite signs.
If λ2 is positive, then we have that

H =−λ1ξ p ln

(
p
q

)

+λ2

(
bp−

(
μ+d p

2
3

)
q
)
+Φ1u < 0

contradicting the condition H = 0. Similarly, if λ2 is negative, then the switching
function Φ1(t) = λ3 −λ2(t)γq(t) is positive and thus u ≡ 0. But then in this case

H =−λ1ξ p ln

(
p
q

)

+λ2

(
bp−

(
μ+d p

2
3

)
q
)
+Φ1u > 0
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again contradicting the condition H = 0. Hence Δ must be positive and extremal
controlled trajectories along which v is singular must lie in Dv,sing.

In this case, λ1 and λ2 have the same sign and it follows from (7.29) that they are
positive. The Lie bracket [g2, [ f ,g2]] is given by

[g2, [ f ,g2]](χ) = D([ f ,g2]) (χ)g2(χ)−Dg2(χ)[ f ,g2](χ)

=−(ϕ−η)2

(

bp− 4
9

(
ϕ

ϕ−η

)2

d p
2
3 q

)
⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠

and thus the Legendre Clebsch condition takes the form

〈λ (t), [g2, [ f ,g2]] (χ∗(t))〉=−λ2(t)(ϕ−η)2

(

bp∗(t)− 4
9

(
ϕ

ϕ−η

)2

d p
2
3∗ (t)q∗(t)

)

.

But 0 < 2
3

ϕ
ϕ−η ≤ 1 and thus on Dv,sing we have that

bp >
2
3

ϕ
ϕ−η

d p
2
3 q ≥

(
2
3

ϕ
ϕ−η

)2

d p
2
3 q.

Hence 〈λ (t), [g2, [ f ,g2]] (χ∗(t))〉 is negative and the strict Legendre-Clebsch condi-
tion for minimality is satisfied.

Furthermore, it follows from (7.30) that the derivative of the switching function
Φ1 for u is given by

Φ̇1(t) = γ p∗(t) [λ1(t)ξ −λ2(t)b] =−2
3
γλ2(t)

ϕ
ϕ−η

d p∗(t)
2
3 q∗(t)< 0

and thus Φ1 is strictly decreasing over I. Hence the control u∗ can have at most one
switching from u = 0 to u = umax. �

Using equation (7.24), a singular control v is given by

vsing(t) =−〈λ (t), [ f + u∗(t)g1, [ f ,g2]](χ∗(t))〉
〈λ (t), [g2, [ f ,g2]](χ∗(t))〉 .

It follows from the Jacobi identity (see equation (A.18) in Appendix A) that

[g1, [ f ,g2]]+ [ f , [g2,g1]]+ [g2, [g1, f ]]≡ 0. (7.31)
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Since g1 and g2 commute, we have that

[g1, [ f ,g2]](χ) = [g2, [ f ,g1]](χ) = (ϕ−η)γbp

⎛

⎜
⎜
⎝

0
1
0
0

⎞

⎟
⎟
⎠

=− γ
ϕ−η

bp

bp− 4
9

(
ϕ

ϕ−η

)2
d p

2
3 q

[g2, [ f ,g2]](χ).

All the vector fields arising in these computations have zero y and z coordinates and
we can therefore write [ f , [ f ,g2]] in the form

[ f , [ f ,g2]] (χ) = ω (χ) [ f ,g2] (χ)+ρ (χ)[g2, [ f ,g2]] (χ) .

Since the multiplier λ vanishes against [ f ,g2], it follows that

vsing(t) =−ρ (χ∗(t))+ u∗(t)
γ

ϕ−η
bp∗(t)

bp∗(t)− 4
9

(
ϕ

ϕ−η

)2
d p

2
3∗ (t)q∗(t)

. (7.32)

Equivalently,

(ϕ−η)

[

bp∗(t)− 4
9

(
ϕ

ϕ−η

)2

d p
2
3∗ (t)q∗(t)

]
(
vsing(t)+ρ (χ∗(t))

)
= γbp∗(t)u∗(t).

Higher order brackets have zero y- and z-coordinates. For simplicity of notation, we
delete these components in the following computations, but retain the names of the
vector fields. A somewhat lengthier computation verifies that

[ f , [ f ,g2]](χ) = D([ f ,g2])(χ) f (χ)−D f (χ)[ f ,g2](χ)

=

⎛

⎜
⎜
⎝

−(η−ϕ)ξ 2 p ln
(

p
q

)

−
(
(ϕ−η)b− 4

9ϕd p−
1
3 q
)
ξ p ln

(
p
q

)
− 2

3ϕd p
2
3

(
bp−

(
μ+d p

2
3

)
q
)

⎞

⎟
⎟
⎠

−

⎛

⎜
⎜
⎝

−(η−ϕ)ξ 2 p
(

1+ ln
(

p
q

))
+ξ p

q

(
(ϕ−η)bp− 2

3ϕd p
2
3 q
)

(
bp− 2

3 d p
2
3 q
)
(η−ϕ)ξ −

(
μ+d p

2
3

)(
(ϕ−η)bp− 2

3ϕd p
2
3 q
)

⎞

⎟
⎟
⎠

= (ϕ−η)

⎛

⎜
⎜
⎜
⎝

−ξ 2 p−ξ p
q

(
bp− 2

3
ϕ

ϕ−η d p
2
3 q
)

(
−bp+ 4

9
ϕ

ϕ−η d p
2
3 q
)
ξ ln
(

p
q

)
+ξ
(

bp− 2
3 d p

2
3 q
)
+bp

[

μ+
1
3ϕ−η
ϕ−η d p

2
3

]

⎞

⎟
⎟
⎟
⎠
.
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Writing
⎛

⎜
⎜
⎝

−ξ 2 p−ξ p
q

(
bp− 2

3
ϕ

ϕ−η d p
2
3 q
)

(
−bp+ 4

9
ϕ

ϕ−η d p
2
3 q
)
ξ ln
(

p
q

)
+ξ
(

bp− 2
3 d p

2
3 q
)
+bp

[(
μ+d p

2
3

)
− 2

3
ϕ

ϕ−η d p
2
3

]

⎞

⎟
⎟
⎠

= ω(χ)

⎛

⎜
⎝

−ξ p

bp− 2
3

ϕ
ϕ−η d p

2
3 q

⎞

⎟
⎠−ρ(χ)(ϕ −η)

⎛

⎜
⎝

0

bp− 4
9

(
ϕ

ϕ−η

)2
d p

2
3 q

⎞

⎟
⎠ ,

it follows that

ω(χ) = ξ + b
p
q
− 2

3
ϕ

ϕ−η
d p

2
3

and

−ρ(ϕ−η)

[

bp− 4
9

(
ϕ

ϕ−η

)2

d p
2
3 q

]

=−ξ ln

(
p
q

)(

bp− 4
9

ϕ
ϕ−η

d p
2
3 q

)

+ξ
(

bp− 2
3

d p
2
3 q

)

+bp

(

μ+
1
3ϕ−η
ϕ−η

d p
2
3

)

−
(

ξ +b
p
q
− 2

3
ϕ

ϕ−η
d p

2
3

)(

bp− 2
3

ϕ
ϕ−η

d p
2
3 q

)

=−ξ ln

(
p
q

)(

bp− 4
9

ϕ
ϕ−η

d p
2
3 q

)

+
2
3
ξ

η
ϕ−η

d p
2
3 q

+bp

(

μ+
1
3ϕ−η
ϕ−η

d p
2
3

)

−
(

bp− 2
3

ϕ
ϕ−η

d p
2
3 q

)2 1
q
.

This relation defines the function ρ and through it the singular control vsing(t). For
example, if u ≡ 0, then the singular control is given by

vsing(t) =−ρ (χ)

=

{

−ξ ln(x)

(

bx− 4
9

ϕ
ϕ−η

d p
2
3

)

+
2
3
ξ

η
ϕ−η

d p
2
3

+bx

(

μ+
1
3ϕ−η
ϕ−η

d p
2
3

)

−
(

bx− 2
3

ϕ
ϕ−η

d p
2
3

)2
}

/(ϕ−η)

[

bx− 4
9

(
ϕ

ϕ−η

)2

d p
2
3

]

.

Furthermore, along a v-singular arc, and using the notation x = p
q , the condition

H ≡ 0 implies that
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H =−λ1ξ p lnx+λ2

(
bp−

(
μ+ d p

2
3

)
q
)
+Φ1u

=−λ2

[

bp− 2
3

ϕ
ϕ−η

d p
2
3 q

]

lnx+λ2

(
bp−

(
μ+d p

2
3

)
q
)
+Φ1u

= λ2

⎛

⎝− lnx+
bx− (μ+ d p

2
3 )

bx− 2
3

ϕ
ϕ−η d p

2
3

⎞

⎠
[

bx− 2
3

ϕ
ϕ−η

d p
2
3

]

q+Φ1u.

Note that we always have that Φ1u ≤ 0 since Φ1 is negative if u = umax. It thus
follows that

ln(x)≤
bx−

(
μ+ d p

2
3

)

bx− 2
3

ϕ
ϕ−η d p

2
3

< 1 (7.33)

with equality if u = 0. In particular, in this case

d p
2
3 =

bx(1− lnx)− μ
1− 2

3
ϕ

ϕ−η lnx
. (7.34)

Figure 7.1 visualizes the singular curve for the control v if u = 0 and for the pa-
rameter values given in Table 7.1. The loop shown in the figure on the left gives
the full solutions to equation (7.34) and the figure on the right shows the values of
the singular control vsing(t) along this loop. The upper branch gives the values of the
control as the system traverses the lower portion of the singular curve and the lower
branch gives the values along the upper portion of the singular control. In particu-
lar, the singular control is admissible (the precise locus depends on the value umax)
on the portion that lies in the region D− below the diagonal, but is inadmissible in
the region D+ above the diagonal. More generally, it follows from (7.33) that for
u = umax singular arcs are only possible inside the loop shown in Figure 7.1.
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Fig. 7.1 The singular curve for the cytotoxic agent if u ≡ 0 (left) and corresponding control values
that keep the singular arc invariant (right).
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7.1.4 Toward an Optimal Synthesis and Numerical Results

Singular controls thus are also an essential part of the optimal solutions for the opt-
imal control problem [ACh] describing combinations of antiangiogenic treatment
with chemotherapy. However, given the much broader range of possibilities for the
multi-input optimal control problem, it now is more difficult to develop a full sol-
ution from all possible candidates of bang and partially singular segments in form of
a regular synthesis. The theoretical computations above point to solutions that have
an interval on which one of the two controls is singular, but they are not conclusive
in whether this is the antiangiogenic dose rate or the chemotherapy and it is quite
likely that from a mathematical point it is the initial condition (p0,q0) that becomes
the determining factor in this analysis. While all such initial conditions make sense
for the mathematical model, there is a much smaller set that would be typical for
the medical situation. Clearly, the carrying capacity should exceed the tumor volume
since otherwise the system would be shrinking already and thus initial conditions
when q0 is larger are the natural situation while it would not be expected that q0

exceeds p0 by orders of magnitude.
In this section, we give several numerical computations when, because of its

adverse side effects, the amount of cytotoxic agents is limited to be much smaller
than the amount of antiangiogenic agents. In this case, and for a realistic range of
initial conditions, optimal combination treatment protocols all have the following
structure: initially the vessel disruptive antiangiogenic agent, the optimal control u∗,
follows the identical pattern as for the monotherapy problem (of the form umaxs0)
and the chemotherapeutic agent, the optimal control v∗ is bang-bang with exactly
one switching from v = 0 to v = vmax. Cytotoxic agents are given in one session at
maximum dose. In principle, the activation of the chemotherapeutic agent v is possi-
ble anywhere along the optimal monotherapy trajectory, but for a typical set of data,
this switching occurs while the control u∗ is singular. Only if the total amount of cyt-
otoxic agents is large (respectively small), then the activation can already occur on
the first interval where the antiangiogenic dose rate is maximal (respectively, only
after all antiangiogenic inhibitors have been used up). In all these cases the mini-
mum value of the tumor volume is realized as the chemotherapeutic drugs run out
and this occurs after the angiogenic inhibitors have been used up. Hence treatment
ends with an interval where chemotherapy is at maximum dose while antiangiogenic
therapy is over.

We present some numerical results for the initial conditions, (p0,q0) = (12,000;
15,000) which corresponds to what may be considered a typical scenario for a
strongly growing tumor. In the paper [264], additional examples are given that all
support the same structure of optimal protocols. The parameter values for the numer-
ical calculations are given in Table 7.1. The computations, carried out by H. Maurer,
proceed in two steps. In a first step, the optimal control problem is discretized on a
fixed time grid with N = 100 to N = 500 time points. The resulting large-scale, non-
linear programming problem is solved by means of a sequential quadratic program-
ming method or by Interior-Point-Methods (cf., e.g., Büskens [43] or Büskens and
Maurer [44, 45]). Since singular arcs in an optimal solution often cause numerical
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chattering, it is advisable in order to avoid, or at least keep this effect under control
numerically, to modify the cost functional by adding a small penalty on the control
and thus consider the modified cost functional

min → Jε(u) = p(T )+ ε
T∫

0

u(t)2dt

with a small value of ε , e.g., ε = 0.005. Incorporation of the quadratic term sim-
plifies the numerical computations (see Chapter 4) and for ε small enough the
concatenation structure between the bang and interior pieces that is revealed res-
embles the concatenation structure of optimal controls for the original problem with
ε = 0. This step generally only provides a somewhat crude approximation of the
singular controls and associated switching times. Hence in a second step the switch-
ing times are optimized directly using the arc-parametrization method developed in
[234]. The application of this method is made possible by the fact that explicit for-
mulas are available for the controls along each subarc. In all cases considered the
cytotoxic agent v was bang-bang with exactly one switching from zero to full dose
at a switching time tv,

v∗(t) =

{
0 for 0 ≤ t < tv,

vmax for tv ≤ t < T,
(7.35)

while the antiangiogenic agent u followed the concatenation sequence umaxs0 of the
monotherapy solution with

using(p,q) =
1
γ

(

ξ ln

(
p
q

)

+ b
p
q
+

2
3
ξ

d
b

q

p1/3
− (μ+ p2/3)

)

+
ϕ−η
γ

vc

where vc denotes the value of the control v with either vc = 0 or vc = vmax.
Specifically, if we take η = 0 in the q-dynamics (7.2) and use low upper bounds

vmax and zmax for the chemotherapy, then the control structure that results from the
discretization procedure is of the following type:

(u∗(t),v∗(t)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(umax,0) for 0 ≤ t < t1,

(using(p(t),q(t)),0) for t1 ≤ t < t2,

(using(p(t),q(t)),vmax) for t2 ≤ t < t3,

(0,vmax) for t3 ≤ t < T,

(7.36)

with switching times t1, t2 and t3. Optimizing this structure in the arc-parametrization
method, for the upper bounds vmax = 1 and zmax = 2, the following values were
obtained:

p(T ) = 7019.09, q(T ) = 7365.27,

t1 = 0.09051, t2 = 4.647, t3 = 6.485, T = 6.647.
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Figure 7.2 shows the corresponding controls and trajectories. The treatment starts
with a short period of full dose antiangiogenic therapy and then follows the singu-
lar regimen computed above. During this time, the chemotherapy treatment initi-
ates with full dose and continues until the cytotoxic drug is exhausted. Angiogenic
inhibitors are fully used up while the chemotherapy is on and before the cytotoxic
drugs run out. Local optimality of this control structure with respect to the switching
times has been verified through second-order sufficient conditions for the induced
switching time optimization problem [234].
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Fig. 7.2 The optimal controls u∗ (a, top left) and v∗ (b, top right) for initial values (p0,q0) =
(12,000mm3;15,000mm3) with time histories for p and q (c, bottom left) and corresponding tra-
jectory in the (p,q)-plane (d, bottom right) for the case when vmax = 1 and zmax = 2.

Increasing the bounds on the maximum concentration and available amounts for
the cytotoxic agents leads to the same concatenation structure. For the upper limits
vmax = 2 and zmax = 10, a direct optimization of the arc-lengths yields the results
given below. The corresponding graphs of the controls and trajectories are shown in
Figure 7.3.

p(T ) = 3285.09, q(T ) = 3993.07,

t1 = 0.09051, t2 = 1.016, t3 = 5.855, T = 6.016.

In these calculations we have taken η = 0 in the dynamics (7.2) for the carrying
capacity q, i.e., we assumed that the cytotoxic agent does not effect the vasculature.
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Table 7.2 Terminal values of p(T ), q(T ) and T for initial condition (p0,q0) =
(12,000mm3;15,000mm3) as η varies from η = 0 to η = ϕ = 0.1.

η p(T ) q(T ) T

0.0 3285.09 3993.07 6.016
0.01 3282.66 3982.28 6.029
0.02 3280.24 3971.79 6.042
0.05 3272.98 3940.43 6.080
0.1 3260.94 3888.83 6.114

For small positive values of η the value of the performance slightly improves (see
Table 7.2), but no qualitative changes occur in the structure of the optimal controls
and trajectories. Increasing the parameter η has the effect that the tumor volume
p(T ) and the carrying capacity q(T ) slightly decrease while the final time T slightly
increases. Note that for η = ϕ = 0.1, the second term in the relation (7.28) drops out
and in this case the singular control is identical with the one for the monotherapy
problem.
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Various other calculations support the same structure for the optimal controls,
even when extreme sets of initial conditions are considered, like, for example,
(p0,q0) = (15,000;1,500). For very small values, such as (p0,q0) = (625,200) and
(p0,q0) = (200,625) the singular control using is no longer admissible since its value
exceeds the upper bound umax. In these cases the optimal monotherapy is bang-bang
of the type umax0 and the optimal concatenation structure becomes

(u∗(t),v∗(t)) =

⎧
⎪⎨

⎪⎩

(umax,0) for 0 ≤ t < t1,

(umax,vmax) for t1 ≤ t < t2,

(0,vmax) for t2 ≤ t ≤ T.

Even for these extreme cases, these computations confirm the assertion that the opti-
mal combination therapy follows the optimal monotherapy for u and that chemother-
apy is bang-bang with one switching from v = 0 to v = vmax which occurs while
angiogenic therapy is active; chemotherapy then continues until after angiogenic
inhibitors have run out. It follows from Theorem 7.1.1 that chemotherapy cannot be
stopped while the antiangiogenic dose rate is singular.

7.1.5 Summary and Medical Discussion

In the optimal control problem [ACh], for a priori determined total doses of anti-
angiogenic and chemotherapeutic agents, we analyzed the question how to sched-
ule these agents in order to maximize the tumor reduction. Mathematically, this
becomes a multi-control problem and the structure of a synthesis of optimal con-
trols is more complex than in the monotherapy case analyzed earlier (Chapter 5).
While a theoretical proof of optimality in form of a regular synthesis of optimal
controlled trajectories still has not been carried out, once again singular controls
along with the partial lower dose rates they determine are the crucial element in the
solutions. Numerical results suggest that for a large range of realistic, well-posed
initial conditions optimal controls (u∗,v∗) have the following structure: the vessel
disruptive antiangiogenic agent u∗ follows the same pattern as for the monotherapy
problem and the cytotoxic agent v∗ is bang-bang with one switching from v = 0 to
v = vmax. This switching occurs while the control u∗ is singular and the minimum
value of the tumor volume is realized as the chemotherapeutic drugs run out. In all
cases for which we calculated the optimal solutions numerically, therapy starts with
giving angiogenic inhibitors and chemotherapy commences at some optimal time
during angiogenic therapy. Chemotherapy then lasts beyond the time when all ang-
iogenic inhibitors are used up and the maximum tumor reduction is achieved as the
chemotherapeutic agent became exhausted.

Clearly, this structure is in agreement and supportive of the notion that a reg-
ularization of the vasculature is beneficial in order to maximize the effects of
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chemotherapy. Naturally, this model is only a first attempt at capturing a very com-
plex situation and more detailed modeling of the response of a tumor to cytotoxic
chemotherapy interacting with a vessel-disrupting treatment probably should also
take into account that the now perturbed dynamics of the vessels does influence the
effectiveness of both those drugs. The drug-induced reduction of the carrying ca-
pacity, aside from its influence on the size of the tumor, might decrease the supply
of the chemotherapeutic agent and thus, in turn, decrease the beneficial effect of
this second therapy. On the other hand, this drug induced reduction, by eliminating
small and leaky vessels, makes drug delivery more effective and this precisely is the
biomedical rationale of regularizing the tumor vasculature first. In any case, optimal
solutions never fully destroy the vasculature, but rather strive to maintain what may
be considered an optimal relation between the variable p and q. But, overall, the
complex nonlinear interlinking of effects and counter-effects might open interesting
perspectives also for the optimal control approach to the problem.

7.2 Combination of Antiangiogenic Treatment and Radiotherapy
as Multi-Input Optimal Control Problem

Antiangiogenic treatments have also been combined with radiotherapy in order to
achieve a better definition of the target tumor. In fact, this was the motivation for
the paper by Ergun, Camphausen, and Wein [77]. Basic models for the effects of
radiotherapy have been described in Section 1.3 and combining them with a model
for angiogenic signaling again leads to multi-input control systems. Depending on
how detailed an approach is taken to model the radiation damage (e.g., to what
extent its effects on tumor cells, the vasculature, and healthy cells are distinguished),
systems of varying dimensions arise. Once more singular controls arise naturally in
the solutions of the corresponding optimal control problems, but their form depends
on the available degrees of freedom and these are closely related to the dimension of
the state space. In this section, we derive these formulas for a 5-dimensional model
where the dynamics for tumor-vascular interactions is given by model [E] and a
6-dimensional model that differentiates radiation damage to the healthy tissue and
is based on the model [H].

7.2.1 A General Formulation

We recall the linear-quadratic (LQ) model for radiation damage from Section 1.3.1.
Denoting the radiation dose rate by w, the damage of radiation to the tumor can be
modeled in the form
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− p(t)

(

α+β
∫ t

0
w(s)exp(−ρ(t − s))ds

)

w(t) (7.37)

where α , β and ρ are positive constants. The linear component −α pw is equivalent
to a log-kill term and represents the damage done by double-strand breaks with
α the corresponding probability. The coefficient β in the quadratic term is related
to the probability that two single-strand breakages occur and the coefficient ρ in
the exponential denotes the tumor repair rate. The probability that two such breaks
occurring at times s and t will be lethal is modeled to decay exponentially with
repair rate ρ . The parameters α and β are the tumor LQ parameters in the medical
literature. The integral term in parenthesis in (7.37) is simply the solution to the first
order linear differential equation

ṙ =−ρr+w, r(0) = 0, (7.38)

and thus the radiation damage can also be written in the form

− p(t)(α+β r(t))w(t). (7.39)

For a constant dose rate w̄ in steady state we have that r̄ = w̄
ρ and thus the damage

term becomes the standard linear-quadratic expression −p
(
αw̄+ β

ρ w̄2
)

. Equation

(7.37) better models the transient behavior and the structure of the overall model
becomes clearer if we replace the integral with the differential equation (7.38).

A slow tumor repair rate implies a larger influence of the integral term in the
quadratic component and thus a greater effectiveness of the therapy. On the other
hand, for fast repair rates, the integral may be replaced with its steady-state value. In
the combined model with angiogenic signaling we distinguish three different types
of tissue: cancer cells, endothelial cells related to the carrying capacity of the vas-
culature, and healthy cells that endure the side effects of treatments. The parameters
that describe the damage of radiotherapy are tissue specific and thus, incorporat-
ing a linear-quadratic model into the general dynamical system that describes the
tumor-vascular interactions, we arrive at the following five-dimensional system:

ṗ = pF

(
p
q

)

− (α+β rp) pw, p(0) = p0

q̇ = S(p,q)− I(p,q)− γqu− (η+ δ rq)qw, q(0) = q0

ṙi =−ρiri +w, i = p,q,z,

with the parameters α and η accounting for the linear damage caused by radiation
to the tumor and the vasculature, respectively, and β and δ the parameters associ-
ated with the quadratic part of the damage. The three equations for rp, rq and rz,
respectively, represent the effects of tissue repair with the coefficients ρp, ρq and
ρz denoting the repair rates for the tumor, the vasculature and the healthy cells,
accordingly.
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An optimal control problem now arises as we limit the available amounts of anti-
angiogenic agents and the damage done to healthy cells by the radiation ionization.
Mathematically, this gives rise to two isoperimetric constraints. As before, we sim-
ply limit the total amount of antiangiogenic agents administered,

∫ T
0 u(t)dt ≤ ymax,

and we also limit the total damage caused by the radiation treatment to the healthy
tissue expressed in terms of its biologically equivalent dose (BED) as

∫ T

0
(1+θ rz(t))w(t)dt ≤ zmax. (7.40)

In [77], in addition a constraint on the early-responding tissue [340] is considered
that is related to the behavior of these tissues between fractionated dosages and takes
into account repopulation. Here we only consider a simplified model that does not
distinguish between early and late responding tissue and thus the early responding
tissue constraint is omitted. In medical practice, the limits ymax and zmax generally
are decided upon at the beginning of the therapy period. The question thus becomes
how these amounts of therapeutic agents and total radiation dose can best be admin-
istered to have an “optimal” effect. Again, we choose as objective to be minimized
the tumor volume p(T ) and incorporate the constraints into the problem by adding
extra states y and z that keep track of the total amounts of antiangiogenic agents
given, respectively, the total damage done by radiotherapy. We thus arrive at the
following formulation:

[AR-gen] for a free terminal time T , minimize the objective J(u,w) = p(T ) sub-
ject to the dynamics

ṗ = pF

(
p
q

)

− (α+β rp) pw, p(0) = p0, (7.41)

q̇ = S(p,q)− I(p,q)− γqu− (η+ δ rq)qw, q(0) = q0, (7.42)

ṙi =−ρiri +w, i = p,q,z r(0) = 0, (7.43)

ẏ = u, y(0) = 0, (7.44)

ż = (1+θ rz)w, z(0) = 0, (7.45)

over all Lebesgue measurable (respectively, piecewise continuous) functions

u : [0,T ]→ [0,umax] and w : [0,T ]→ [0,wmax]

for which the corresponding trajectory satisfies the end-point constraints

y(T )≤ ymax and z(T )≤ zmax.

We only remark that under any assumptions on the general functions F , S and
I that define a reasonable model for the tumor-vascular interactions, and for any
admissible controls u and w, the solutions p and q to the dynamics will remain
positive for all times and there is no need to impose a nonnegativity constraint on
p and q. Also, it needs to be pointed out that we consider a fully continuous-time
formulation. It is our aim to illustrate that such a model leads to effective and simple
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procedures to arrive at formulas for singular treatment schedules. Similarly as it
was done for the antiangiogenic monotherapy problem in Chapter 6, from these
solutions piecewise continuous approximations that relate to fractionated dosages
can be obtained.

7.2.2 Necessary Conditions for Optimality

We write the dynamics (7.41)–(7.45) underlying the optimal control problem [AR-
gen] in the form

χ̇ = f (χ)+ ug1(χ)+wg2(χ), (7.46)

with χ = (p,q,rp,rq,rz,y,z)T the 7-dimensional state vector and the vector fields f ,
g1 and g2 describing the dynamics. As in the problems considered earlier, the issue
of whether the total amounts of agents suffice to reduce the tumor volume below its
initial volume comes up. Throughout this section we assume that this is the case.
Specifically, we assume that the initial condition (p0,q0) is well posed in the sense
that the terminal time T along an optimal solution is positive and that all available
therapeutic agents are used up. Thus we have that y∗(T ) = ymax and z∗(T ) = zmax

hold along an optimal solution. Then, if u∗ and w∗ are optimal controls defined over
an interval [0,T ] with corresponding trajectory χ∗, it follows from the maximum
principle (Theorem A.2.1 in Appendix A) that there exist a constant λ0 ≥ 0 and an
absolutely continuous co-vector, λ : [0,T ]→ (R7)∗, such that (i) (λ0,λ (t)) = (0,0)
for all t ∈ [0,T ], (ii) λ satisfies the adjoint equations

λ̇ (t) =−〈λ (t),D f (χ∗(t))+ u∗(t)Dg1(χ∗(t))+w∗(t)Dg2(χ∗(t))〉 , (7.47)

with terminal condition

λ (T ) = (λ0,0,0,0,0,λ6,λ7)
T (7.48)

where λ6 and λ7 are nonnegative constants and (iii) the controls u∗(t) and w∗(t)
minimize the Hamiltonian H,

H = 〈λ , f (χ)+ ug1(χ)+wg2(χ)〉 ,
along (λ (t),χ∗(t)) over the control set [0,ymax]× [0,zmax] with the minimum value
given by 0.

We note that the multiplier λ = λ (t) is always nonzero. For, λ is a solution to
a homogenous linear differential equation and if λ (τ) = 0 for some time τ , then λ
vanishes identically and thus also λ0 = 0. This contradicts the nontriviality condition
(i) for the multipliers. Also, it follows from the adjoint equation (7.47) that the
multipliers λ6 and λ7 are constant and the nonnegativity requirements are the same
complementary slackness conditions as derived in Lemma 7.1.2 for the case of the
optimal control problem [ACh]. As before, we define the switching functions Φ1

and Φ2 as,

Φ1(t) = 〈λ (t),g1(χ∗(t))〉 and Φ2(t) = 〈λ (t),g2(χ∗(t))〉 . (7.49)
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It follows that optimal controls u∗ and w∗ satisfy

u∗(t) =

{
0 if Φ1(t)> 0,

umax if Φ1(t)< 0,
and w∗(t) =

{
0 if Φ2(t)> 0,

wmax if Φ2(t)< 0.

Derivatives of the switching functions are computed using Proposition 7.1.1.
The further analysis of the problem requires to specify the growth function F and

the stimulation and inhibition terms, S(p,q) and I(p,q). Below we consider both the
underlying dynamics from model [E] and [H] considered in Chapter 5. Furthermore,
in order to elucidate the roles of singular controls, we first consider a model where
we identify the repair rates for the various types of tissue resulting in a simplified
five-dimensional system and then increase the dimension as we differentiate these
rates for healthy and tumor cells.

7.2.3 A 5-dimensional Model with Equal Repair Rates

We use a Gompertzian function, F(x) =−ξ lnx, to model tumor growth and employ

the terms S(p,q) = bq
2
3 and I(p,q) = dq

4
3 of model [E] for the stimulation and

inhibition terms in the dynamics for the carrying capacity. Also, in this first model,
rather than distinguishing between the repair rates ρp, ρq and ρz for the tumor, vas-
culature, and healthy cells, we take them all equal and thus instead of having three
equations for rp, rq and rz that enter the quadratic effects, we only have one equa-
tion, ṙ = −ρr+w, reducing the dimension by 2. Thus, we consider the following
optimal control problem with five-dimensional state space χ =(p,q,r,y,z)T and two
controls u and w:

[AR5] for a free terminal time T , minimize the objective J(u,w) = p(T ) subject
to the dynamics

ṗ =−ξ p ln

(
p
q

)

− (α+β r) pw, p(0) = p0, (7.50)

q̇ = bq
2
3 − dq

4
3 − γqu− (η+ δ r)qw, q(0) = q0, (7.51)

ṙ =−ρr+w, c(0) = 0, (7.52)

ẏ = u, y(0) = 0, (7.53)

ż = (1+θ r)w, z(0) = 0, (7.54)

over all Lebesgue measurable (respectively, piecewise continuous) functions

u : [0,T ]→ [0,umax] and w : [0,T ]→ [0,wmax]

for which the corresponding trajectory satisfies the end-point constraints

y(T )≤ ymax and z(T )≤ zmax.
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Formally, if we allow the coefficients β , δ and θ to be zero, this model reduces to
the mathematical model for combination of antiangiogenic therapy with chemother-
apy for model [E] similarly to the one considered for model [H] in Section 7.1. The
adjoint equations read as follows:

λ̇1(t) = λ1(t)

(

ξ
(

ln

(
p∗(t)
q∗(t)

)

+ 1

)

+(α+β r∗(t))w∗(t)
)

, λ1(T ) = λ0,

(7.55)

λ̇2(t) =−λ1(t)ξ
p∗(t)
q∗(t)

−λ2(t)(
2
3

bq−
1
3 − 4

3
dq

1
3 − γu∗(t)− (η+ δ r)w∗(t)),

λ2(T ) = 0, (7.56)

λ̇3(t) = λ1(t)β p∗(t)w∗(t)+λ2(t)δq∗(t)w∗(t), λ3(T ) = 0, (7.57)

and λ4 and λ5 are nonnegative constants.
The drift vector field f and the control vector fields g1 and g2 are given by

f (χ)=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)

bq
2
3 −dq

4
3

−ρr
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, g1(χ)=

⎛

⎜
⎜
⎜
⎜
⎝

0
−γq

0
1
0

⎞

⎟
⎟
⎟
⎟
⎠

and g2(χ)=

⎛

⎜
⎜
⎜
⎜
⎝

−(α+β r) p
−(η+ δ r)q

1
0

1+θ r

⎞

⎟
⎟
⎟
⎟
⎠
.

(7.58)
The vector fields g1 and g2 commute, [g1,g2] = 0, and somewhat longer, but direct
and elementary calculations verify the following formulas for the first- and second-
order Lie brackets:

[ f ,g1](χ) = γ

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ξ p

− 1
3

(
bq

2
3 + dq

4
3

)

0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠
, (7.59)

[ f ,g2](χ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(η+ δ r)ξ p− (α+β r)ξ p+βρrp

− 1
3 (η+ δ r)

(
bq

2
3 + dq

4
3

)
+ δρrq

ρ
0

−ρθ r

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(7.60)

=
η+ δ r

γ
[ f ,g1](χ)+

⎛

⎜
⎜
⎜
⎜
⎝

−(α+β r)ξ p+βρrp
δρrq
ρ
0

−ρθ r

⎞

⎟
⎟
⎟
⎟
⎠
,
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[g1, [ f ,g1]](χ) = −1
9
γ2

⎛

⎜
⎜
⎜
⎜
⎝

0

bq
2
3 −dq

4
3

0
0
0

⎞

⎟
⎟
⎟
⎟
⎠
, (7.61)

[g2, [ f ,g1]](χ) = −1
9
γ(η+ δ r)

⎛

⎜
⎜
⎜
⎜
⎝

0

bq
2
3 −dq

4
3

0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

(7.62)

and

[g2, [ f ,g2]](χ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(δ −β )ξ p+2ρβ p

− 1
9 (η+ δ r)2

(
bq

2
3 − dq

4
3

)
− δ

3

(
bq

2
3 +dq

4
3

)
+2ρδq

0
0

−2ρθ

⎞

⎟
⎟
⎟
⎟
⎟
⎠
.

(7.63)
The formulas for the second-order Lie brackets with f , especially, for [ f , [ f ,g2]],
become rather unwieldy and we do not list them.

These brackets collectively determine explicit analytical formulas for singular
controls u and w. Since the control vector fields g1 and g2 commute, [g1,g2](χ)≡ 0,
applying Proposition 7.1.1 to Φi gives that

Φ̇i(t) = 〈λ (t), [ f + ug1+wg2,gi](χ(t))〉= 〈λ (t), [ f ,gi] (χ(t))〉 (7.64)

and

Φ̈i(t) = 〈λ (t), [ f + ug1 +wg2, [ f ,gi]] (χ(t))〉 ≡ 0, i = 1,2. (7.65)

Formulas for singular controls u can quite simply be computed explicitly and
regardless of the structure of the control w. The reason lies in the following rela-
tion that is satisfied between second-order Lie brackets. Simple inspection of (7.62)
shows that

[g2, [ f ,g1]](χ) =
η+ δ r

γ
[g1, [ f ,g1]](χ). (7.66)

This relation allows to eliminate the Lie bracket [g2, [ f ,g1]] from equation (7.65) for
Φ̈1. In fact,

Φ̈1(t) = 〈λ (t), [ f , [ f ,g1]] (χ(t))〉+ 1
γ
(γu+(η+ δ r)w) 〈λ (t), [g1, [ f ,g1]] (χ(t))〉 .

(7.67)
If we set

ũ = u+
η+ δ r

γ
w, (7.68)
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then equation (7.67) is identical with the formula that defines the singular control in
the monotherapy case considered in Section 5.4,

Φ̈1(t) = 〈λ (t), [ f + ũg1, [ f ,g1]] (x(t))〉 ≡ 0.

Hence all results directly carry over if we replace u with ũ. More specifically, in the
monotherapy case, the effect of the antiangiogenic agent on the carrying capacity q
is given by −γqu. Replacing u with ũ, this term becomes

−γqũ =−γqu− (η+ δ r)qw

and thus for model [AR5] the combined effect that an optimal singular control using

and a radiation dose rate w have on q̇ is identical to the monotherapy case. Further-
more,

〈λ (t), [g1, [ f ,g1]] (χ(t))〉=−γ2bpλ2(t).

The conditions of the maximum principle give that the multipliers λ4 and λ5 are
constant and nonnegative. Since the switching function vanishes on I, we have that
λ2(t)γq∗(t)≡ λ4 ≥ 0. If λ4 = 0, it follows that λ2 vanishes identically on I and then
the adjoint equations (7.55)–(7.57) imply that also λ1 and λ3 vanish identically. But
then λ5 must be positive and Φ2(t)≡ λ5 implies that w∗(t)≡ 0 contradicting the fact
that the initial condition is well posed for the data. Thusλ2 is positive on I and the
strengthened Legendre-Clebsch condition is satisfied. The following result therefore
directly follows from Proposition 5.4.2.

Proposition 7.2.1. If the optimal control u∗ is singular on an open interval I,
u∗(t) = using(t), and the radiotherapy schedule given by w∗(t), then γusing(t) +
(η+ δ r∗(t))w∗(t) is a smooth feedback control that only depends on the carrying
capacity q∗(t) in the form

γusing(t)+ (η+ δ r∗(t))w∗(t) =Ψ
(

3
√

q∗(t)
)
, (7.69)

where

Ψ(x) =
b− dx2

x
+ 3ξ

b+dx2

b−dx2 . (7.70)

If we set β , δ , and θ to be zero, then this formula also gives us the formula for
combining antiangiogenic treatment with chemotherapy for model [E]. Thus, like
for the model considered in Section 7.1, also in this case there is an immediate and
mathematically simple extension of the formula that determines the optimal singular
antiangiogenic dose rate to the more structured and more complicated mathematical
model that describes the combination treatment with chemo- or radiotherapy.

However, for radiotherapy the structure of the second control is very different.
Different from the case of combined antiangiogenic treatment with chemotherapy,
the radiation dose rate typically will—if the bounds on the dosages permit—be sin-
gular as well. Generally, if all controls of a multi-input control are simultaneously
singular, these controls are said to be totally singular. Such controls are the defining



7.2 Antiangiogenic Treatment and Radiotherapy 305

structure for the combination of antiangiogenic therapy with radiotherapy. For this,
we need a second equation that links using with wsing. If w is singular on an open
interval I, then also

Φ2(t) = 〈λ (t),g2(χ(t))〉 ≡ 0, Φ̇2(t) = 〈λ (t), [ f ,g2] (χ(t)〉 ≡ 0

and
Φ̈2(t) = 〈λ (t), [ f + ug1+wg2, [ f ,g2]](χ(t))〉= 0. (7.71)

Since g1 and g2 commute, it follows from the Jacobi-identity that [g1, [ f ,g2]](χ) =
[g2, [ f ,g1]](χ) (also see (7.31)). The vector fields g1, g2, [ f ,g1], [ f ,g2] and [g2, [ f ,g2]]
are linearly independent and form a basis for the state space. The second-order Lie
brackets [ f , [ f ,g2]] and [g1, [ f ,g2]] can therefore be expressed in the form

[ f , [ f ,g2]] = a1g1 + a2g2 + a3[ f ,g1]+ a4 [ f ,g2]+A [g2, [ f ,g2]] (7.72)

[g1, [ f ,g2]] = b1g1 + b2g2 + b3[ f ,g1]+ b4 [ f ,g2]+B [g2, [ f ,g2]] (7.73)

where the vector fields and coefficients ai, bi, A, and B all are functions of χ .
It is easy to see that, because of the overall structure of the dynamics, the y (or
fourth) coordinate of the vector fields g2, [ f ,g1], [ f ,g2], [g2, [ f ,g2]], [g1, [ f ,g2]], and
[ f , [ f ,g2]] vanishes and thus the coefficients a1 and b1 vanish identically. If desired,
it is possible (using Cramer’s rule) to give explicit analytical formulas for the rem-
aining coefficients in terms of determinants that only involve the vector fields in the
dynamics and some of their iterated Lie brackets. If both controls are singular over
an open interval I, then the multiplier λ (t) vanishes against the vector fields g1, g2,
[ f ,g1] and [ f ,g2] along the trajectory χ∗(t). We therefore get that

〈λ (t), [ f , [ f ,g2]](χ∗(t))〉= A(χ∗(t))〈λ (t), [g2, [ f ,g2]](χ∗(t))〉 ,

and
〈λ (t), [g1, [ f ,g2]](χ∗(t))〉= B(χ∗(t))〈λ (t), [g2, [ f ,g2]](χ∗(t))〉 .

Since the multiplier λ is nontrivial, it cannot vanish against [g2, [ f ,g2]] along χ∗ and
thus the expression 〈λ (t), [g2, [ f ,g2]](χ∗(t))〉 is nonzero. Equation (7.71) therefore
reduces to the linear equation

0 = A(χ∗(t))+ using(t)B(χ∗(t))+wsing(t).

Thus we have the following result:

Proposition 7.2.2. If both the optimal antiangiogenic dose rate/concentration u and
the radiation dose schedule w follow singular regimens using and wsing on an open
interval I, then, in addition to equation (7.69), the relation

A(χ∗(t))+B(χ∗(t))using(t)+wsing(t)≡ 0 (7.74)

holds along the optimal controlled trajectory χ∗ on I; A and B are the smooth func-
tions defined in equations (7.72) and (7.73).
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Overall, (using,wsing) thus are the solutions of the 2× 2 system of linear equa-
tions defined by (7.69) and (7.74) whose coefficients are determined solely by the
equations defining the dynamics of the system. As already mentioned, it is possible
to give explicit expressions for the functions A and B and thus also for the singu-
lar controls. But these formulas depend on the second derivatives of the terms in
the dynamics and they are long and unwieldy. On the other hand, given a particular
value (p,q) and values of the parameters, it is straightforward to compute these co-
efficients A and B numerically and then solve for the controls. Figure 7.4 shows two
examples of singular controls using and wsing computed in this way for the parameter
values given in Table 7.3. These values are based on the data in [77] and [116], but
are only meant to illustrate the mathematical procedure.
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Fig. 7.4 Examples for singular dose rates using and wsing for the values in Table 7.3.

If both controls u and w are singular over an interval I, then the multiplier λ
vanishes against the vector fields g1, g2, [ f ,g1] and [ f ,g2] along the trajectory χ∗.
Furthermore,

H = 〈λ (t), f (χ∗(t))〉+ using(t)Φ1(t)+wsing(t)Φ2(t)≡ 0,

and thus λ also vanishes against the vector field f . Since λ is nontrivial, these five
vector fields must be linearly dependent along a singular arc. Hence totally singular
controls are only optimal on a singular hyper-surface S defined by

S = {χ : det( f (χ),g1(χ),g2(χ), [ f ,g1] (χ), [ f ,g2] (χ)) = 0} , (7.75)

where, as before, det denotes the determinant of the matrix whose ordered columns
are f , g1, g2, [ f ,g1] and [ f ,g2]. The auxiliary variables y and z that keep track of how
much inhibitors are still available, respectively, how close to the maximum allow-
able total BED the radiation damage already is, do not enter into this computation
and S therefore can be visualized as a surface in (p,q,r)-space. The values of the
variables y and z only indicate whether it is still allowed to follow trajectories on
this surface or not. A somewhat longer computation shows that this surface actually
can be described as the graph of a function of q and r in the form
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Table 7.3 Notations for the variables, controls, and coefficients for the optimal control problem
[AR-5].

Value used in
Symbol Units computations Reference

p Primary tumor volume [mm3]
q Carrying capacity of the vasculature [mm3]
r Variable related to quadratic

radiation effects (repair)
y Amount of antiangiogenic agent [mg]

used so far
z Cumulative radiation dose in BED [Gy]
x State vector - (p,q, r,y, z)T

ξ Tumor growth parameter [day−1] 0.192 [17]
b Tumor-induced stimulation parameter [day−1] 5.85 [17]
d Tumor-induced inhibition parameter [mm−2 day−1] 0.00873 [17]
μ Baseline loss of vascular support [day−1] 0 for [AR5]

through natural causes 0.02 for [AR6]

u Antiangiogenic agent dose rate
[

mgof dose
kg

]
day−1

umax Maximum allowable dose for
[

mgof dose
kg

]
day−1

the antiangiogenic agent

ymax Available total amount
[

mgof dose
kg

]

for the antiangiogenic agent
w Radiation dose [Gy] day−1

wmax Maximum allowable radiation dose [Gy] day−1

zmax Maximum allowable total BED [Gy]

γ Antiangiogenic elimination parameter
[

kg
mgof dose

]
day−1 0.15 [17]

α Tumor LQ parameter
[
Gy−1

]
0.7 [18]

β Tumor LQ parameter
[
Gy−2

]
0.140 [18]

η Endothelial LQ parameter
[
Gy−1

]
0.136 [18]

δ Endothelial LQ parameter
[
Gy−2

]
0.086 [18]

θ Healthy tissue parameter day−1 0.5 [18]

ρ Tumor/endothelial repair rate day−1 ln(2)
0.02 [18]

σ Healthy tissue repair rate day−1 ln(2)
0.16 [18]

S : p = qexp(ζ (q,r))

with ζ given by

ζ (q,r) = 3
b− dq

2
3

b+ dq
4
3

−
αr+

[
β
(

1− ρ
ξ

)
+θα

(
1+ ρ

ξ

)]
r2 +θβ r3

1+2θ r

−3ρ (ηθ − δ )
r2

1+ 2θ r
q

1
3

b+dq
4
3

.
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Fig. 7.5 The totally singular surface S for model [AR5] and parameter values given in Table 7.3.

Fig. 7.6 Samples of totally singular controlled trajectories on S for the parameter values in
Table 7.3.
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Fig. 7.7 Values of the singular control using on the singular surface S expressed as function of the
base values q and r for the parameter values in Table 7.3.

Figure 7.5 shows the surface S in the three-dimensional (p,q,r)-subspace. For
r = 0, we obtain the curve representing the optimal singular arc in the case of
monotherapy treatment from Section 5.4. We see that, once the variable r(t), which
determines the quadratic terms for the radiation damage, increases, both the tumor
volume p(t) and the vasculature q(t) decrease. Figure 7.6 shows a different view of
the same surface with some of the responses corresponding to the totally singular
flow shown on the surface and Figures 7.7 and 7.8 show the values of the singular
controls using and wsing on the singular surface as functions of the base variables q
and r.

7.2.4 A 6-dimensional Model with a Different Repair Rate
for the Healthy Tissue

Naturally, the repair rates for tumor cells, endothelial cells, and healthy cells are
not the same and thus should be modeled by separate equations (7.52) with dif-
ferent parameters ρi. This leads to similar formulations, but in spaces of varying
dimensions. Mathematically, this generates different behaviors since the degrees of
freedom that come with higher dimensional state-spaces no longer force singular
flows to be constrained to lower dimensional submanifolds as this is the case for
the 5-dimensional system just considered. In the literature, often the effects of rad-
iation therapy on the tumor cells and its vasculature are modeled by one equation
(e.g., see [77], where equal numerical values are used for these repair rates that are
based on [36]) and here we take this approach as well. As before, we then include
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Fig. 7.8 Values of the singular control wsing on the singular surface S expressed as function of
the base values q and r for the parameter values in Table 7.3.

separate states y and z that keep track of the total amounts of antiangiogenic agents
given, respectively, the total damage done by radiotherapy measured in terms of its
biologically equivalent dose (BED). In this section, we also change back equation
(7.52) for the carrying capacity from model [E] to model [H]. We then arrive at the
following 6-dimensional optimal control formulation:

[AR6] for a free terminal time T , minimize the objective J(u,w) = p(T ) subject
to the dynamics

ṗ =−ξ p ln

(
p
q

)

− (α+β r) pw, p(0) = p0, (7.76)

q̇ = bp−
(
μ+ d p

2
3

)
q− γqu− (η+ δ r)qw, q(0) = q0, (7.77)

ṙ =−ρr+w, r(0) = 0, (7.78)

ẏ = u, y(0) = 0, (7.79)

ż = (1+θ s)w, z(0) = 0, (7.80)

ṡ =−σs+w, s(0) = 0, (7.81)

over all Lebesgue measurable (respectively, piecewise continuous) functions

u : [0,T ]→ [0,umax] and w : [0,T ]→ [0,wmax]

for which the corresponding trajectory satisfies the end-point constraints

y(T )≤ ymax and z(T )≤ zmax.

The meaning of the parameters is the same as before (see Table 7.3). The only
new parameter is a different repair rate σ for healthy tissue in (7.81). We also are
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interested to see what implications the changes in the q-dynamics have on the sys-
tem. The state of the system is now given by χ = (p,q,r,y,z,s)T and the drift vector
field f and the control vector fields g1 and g2 take the form

f (χ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)

bp− (μ+ d p
2
3 )q

−ρr
0
0

−σs

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, g1(χ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
−γq

0
1
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, g2(χ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(α+β r) p
−(η+ δ r)q

1
0

1+θ s
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The control vector fields g1 and g2 still commute and, like for the five-dimensional
model considered above, iterated Lie brackets that involve the vector field g1 only
have nonzero terms in the first two coordinates. If we introduce the notation ∂

∂ p and
∂
∂q (common in differential geometry) for these first two coordinate fields, respec-
tively, then we can express these vector fields more concisely in the form

[ f ,g1](χ) = γ p

(

ξ
∂
∂ p

− b
∂
∂q

)

, (7.82)

[g1, [ f ,g1]](χ) =−γ2bp
∂
∂q

, (7.83)

[g2, [ f ,g1]](χ) = ((α+β r)− (η+ δ r))γbp
∂
∂q

. (7.84)

The formulas for the Lie brackets with g2 generally are full, only having a zero value
in the fourth coordinate corresponding to the variable y. For example, we have that

[ f ,g2](χ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

[(η+ δ r)− (α+β r)]ξ p+βρrp

− [(η+ δ r)− (α+β r)]bp− 2
3 d p

2
3 q(α+β r)+ δρrq

ρ
0

−σθ s
σ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(η+ δ r)− (α+β r)

γ
[ f ,g1](χ)+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

βρrp

− 2
3 d p

2
3 q(α+β r)+ δρrq

ρ
0

−σθ s
σ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Similar to the five-dimensional model of Section 7.2.3, we have the relation

[g2, [ f ,g1]](χ) =
(η+ δ r)− (α+β r)

γ
[g1, [ f ,g1]](χ) (7.85)
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which again allows us to eliminate the Lie bracket [g2, [ f ,g1]] from the relation for
the second derivative of the switching function:

Φ̈1(t) = 〈λ (t), [ f + ug1 +wg2, [ f ,g1]] (χ(t))〉
= 〈λ (t), [ f , [ f ,g1]] (χ(t))〉

+

(

u+
(η+ δ r)− (α+β r)

γ
w

)

〈λ (t), [g1, [ f ,g1]] (χ(t))〉 .

Also, as for model [AR5], we have that

〈λ (t), [g1, [ f ,g1]] (χ(t))〉=−γ2bpλ2(t)

and λ2(t) is positive along a singular arc since γq(t)λ2(t) ≡ λ4 > 0. Hence the
strengthened Legendre-Clebsch condition for local optimality of a singular arc is
satisfied. If we now set

ũ = u+
(η+ δ r)− (ϕ+β r)

γ
w, (7.86)

then, once more, we have exactly the monotherapy case considered in Section 5.4
and, as for problem [AR5], all the formulas directly carry over with u replaced by ũ.

Proposition 7.2.3. If the optimal anti-angiogenic dosage u follows a singular con-
trol using(t) on an open interval I and if the radiotherapy schedule is given by w∗,
then we have the following relation between the controls u and w:

γusing(t)+ [(η+ δ r)− (α+β r)]w∗(t) =Ψ (p(t),q(t)) (7.87)

with Ψ the function defining the singular feedback control for the optimal anti-
angiogenic monotherapy given by

Ψ(p,q) = ξ ln

(
p
q

)

+ b

(
p
q

)

− (μ+d p
2
3 )+

2
3

d
b
ξ p−

1
3 q. (7.88)

Note that, as in the monotherapy case, whenever the antiangiogenic control u
follows a singular regimen, then the quotient p

q obeys the simple dynamics

d
dt

(
p
q

)

=
ṗq− pq̇

q2

=−ξ
p
q

ln

(
p
q

)

− (α+β r)
p
q

w

− p
q

[

b

(
p
q

)

−
(
μ+ d p

2
3

)
− γusing− (η+ δ r)w

]

=

(
p
q

)[

−Ψ(p,q)+ γusing+[(η+ δ r)− (α+β r)]w+
2
3

d
b
ξ p−

1
3 q

]

=
2
3
ξ

d
b

p
2
3 . (7.89)
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For the parameter values used in [116] and [77], and for realistic values for p, this
quotient is small and varies little. As a result, the corresponding controlled trajecto-
ries follow an almost linear relation between p and q. Also note that for this model,
replacing u with ũ, the combined effect of a singular antiangiogenic and radiother-
apy treatment is given by

−γqu− (η+ δ r)qw =−γqũ− (α+β r)qw

with the −(α+β r)w the same term that determines the damage to the tumor. This
once more states that, in a certain way antiangiogenic treatment compensates for ra-
diotherapy in the sense to make the effects of radiotherapy on tumor and vasculature
equal.

As for the 5-dimensional problem, we need a second equation to determine
totally singular protocols (using,wsing). If w is singular as well, then

Φ2(t) = 〈λ (t),g2(χ(t))〉 ≡ 0 Φ̇2(t) = 〈λ (t), [ f ,g2] (χ(t))〉= 0

and
Φ̈2(t) = 〈λ (t), [ f + ug1+wg2, [ f ,g2]] (χ(t))〉 ≡ 0. (7.90)

Since the dimension is increased by one, we need one more vector field to represent
the second order Lie brackets and thus include f in our basis. Note that it follows
from the maximum principle that

0 ≡ H = 〈λ (t), f (χ)+ ug1(χ)+wg2(χ)〉= 〈λ (t), f (χ)〉 ,

so that λ vanishes against the vector fields f , g1, g2, [ f ,g1] and [ f ,g2] along a totally
singular trajectory χ . If we now express the second-order brackets in the form

[ f , [ f ,g2]] = a0 f + a1g1 + a2g2 + a3 [ f ,g1]+ a4 [ f ,g2]+A [g2, [ f ,g2]], (7.91)

[g1, [ f ,g2]] = b0 f + b1g1 + b2g2 + b3 [ f ,g1]+ b4 [ f ,g2]+B [g2, [ f ,g2]], (7.92)

with coefficients that are smooth functions of χ (assuming that the vector fields
on the right are linearly independent), then, as above, along an optimal controlled
trajectory χ∗ we get that

〈λ (t), [ f , [ f ,g2]](χ∗(t))〉= A(χ∗(t))〈λ (t), [g2, [ f ,g2]](χ∗(t))〉

and
〈λ (t), [g1, [ f ,g2]](χ∗(t))〉= B(χ∗(t))〈λ (t), [g2, [ f ,g1]](χ∗(t))〉 .

The nontriviality of the multiplier implies that 〈λ (t), [g2, [ f ,g1]](χ∗(t))〉 cannot van-
ish and thus, as before, we get from (7.90) that

A(χ∗(t))+B(χ∗(t))using(t)+wsing(t)≡ 0.

Of course, the coefficients A and B are not the same as in model [AR5], but formally
we have the identical statement and conclusions.
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Proposition 7.2.4. If the optimal antiangiogenic dosage u and the radiotherapy
schedule w both follow singular regimens using and wsing on an open interval I,
then in addition to equation (7.87) we have that

A(χ∗(t))+B(χ∗(t))using(t)+wsing(t)≡ 0 (7.93)

holds on I with A and B smooth functions defined by (7.91) and (7.92).

As before, (using,wsing) are the solutions of a 2× 2 system of linear equations
whose coefficients are determined solely by the equations defining the dynamics of
the system. Using Cramer’s rule, it is possible to give explicit expressions for the
functions A and B and thus also for the totally singular controls. As before, these
formulas are long and unhandy, but numerically the controls are easily computed.

Different from the five-dimensional model [AR5], in this case the number of
constraints defining totally singular controls matches the degrees of freedom in the
model. Along a totally singular controlled trajectory the multiplier λ (t) vanishes
against the vector fields f , g1, g2, [ f ,g1] and [ f ,g2]. Now these conditions uniquely
determine the multiplier (up to a positive scalar multiple that is determined by the
terminal condition on λ1(T )) and thus there exists a well-defined totally singular
flow for the system. Rather than only being able to use totally singular controls on
a hypersurface, as it is the case for the five-dimensional version of this model, now
at every point in the state space totally singular controls computed as solutions to
(7.87) and (7.93) are available, provided they do not violate the control limits.

Figure 7.9 gives an example of a totally singular antiangiogenic dose rate u and a
radiotherapy schedule w that have been computed in this way for parameter values
taken from [77]. Part (a) shows the graph of the radiation schedule if no upper limit
on the dosage is imposed. If we set the radiation limit to wmax = 4, then this upper
bound is initially exceeded and part (b) shows the control that has been computed
by saturating this schedule at wmax. Since equation (7.87) is valid regardless of the
structure of w, the calculations easily adjust. The corresponding graph of the singu-
lar control u is given in part (c) and part (d) shows the corresponding trajectory. Note
that, in accordance with our earlier observation, since the antiangiogenic dose rate
is always singular, this trajectory is almost linear. For this simulation, the right-hand
side of (7.89) only varies between 0.03 and 0.09.

The controls given in this figure were not computed to be optimal, but they only
illustrate a totally singular control structure for the combined antiangiogenic and
radiotherapy model. Based on our theoretical analysis, it is clear that these controls
will play an integral part in the structure of optimal protocols. This is seconded by
the structure of optimal protocols computed through numerical optimization in [77]
where all the solutions are totally singular when no hard limits are imposed on the
dose rates. In order to solve the overall optimal control problem [AR6], however, it is
necessary to take these constraints into account and to establish the structure of op-
timal controls before and after the singular segments. Different from the monother-
apy problem described earlier, in this case there exists a vector field whose integral
curves are the trajectories for totally singular controls everywhere, but it matters
which of these trajectories is taken. Research on determining an optimal synthesis
is ongoing.
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Fig. 7.9 Examples of totally singular controls for initial conditions (p0,q0) = (10000,15000) and
values of the parameters in Table 7.3: (a, top left) the unsaturated singular radiation schedule w,
(b, top right) the radiation schedule w with upper limit wmax enforced, (c, bottom left) correspond-
ing singular anti-angiogenic agent u, and (d, bottom right) corresponding trajectory (p,q) with p
plotted vertically and q horizontally.

7.2.5 Summary and Discussion

We formulated a model for the combination of antiangiogenic treatment with radio-
therapy and considered two particular realizations of it, a five-dimensional model
when we identified the repair rates for the various tissues and used the model [E] by
Ergun et al. [77] to describe the tumor vascular interactions, and a six-dimensional
model when we differentiated between the repair rates for the tumor and the healthy
tissues and used the model [H] by Hahnfeldt et al. [116]. For the antiangiogenic
monotherapy problem considered in Chapter 5 singular controls form the core of
the optimal solutions and our computations here verify that the structure of these
singular arcs prevails if combinations with chemo- and radiotherapy are considered.
In fact, simple extensions of the earlier computations now determine totally singular
controls for the optimal control problem when antiangiogenic treatments are com-
bined with radiotherapy. Clearly, the analysis of these problems is not finished, and
we do not claim that our computations give the optimal controls. But, based on the
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earlier analysis of the related problems, there is a strong expectation that the singular
controls computed here will be of importance to the optimal structures. Compared
with extensive numerical computations that are the standard in radiotherapy, the
computations of these singular regimes is exceedingly simple. However, we have
not considered fractionated dosages that give radiation only for a brief instant in
time, the standard in medical practice. A continuous-time model has mathematical
advantages over a pure optimization procedure in that and one can also obtain some
insights into the structure of optimal protocols from explicit formulas. From this it
may be possible to come up with suboptimal fractionization schedules that are close
to the solutions of the continuous-time models. However, a challenge in doing so is
to properly relate the values of the parameters for these two vastly different models.



Chapter 8
Optimal Control for Mathematical Models
of Tumor Immune System Interactions

In this chapter, we consider the second major feature of the tumor microenviron-
ment: interactions between the tumor and the immune system. Fundamental prin-
ciples that have already been outlined in the introduction (see Section 1.3.4) will
be expanded upon in this chapter. As a vehicle for the analysis we use the classi-
cal model by Stepanova [303] and some of its modifications that have been dev-
eloped in the literature. This model captures the main features that we want to
discuss here—immune surveillance and tumor dormancy—and, at the same time,
being low-dimensional and minimally parameterized, has the advantage of allowing
us to easily visualize associated geometric features (regions of attractions, stabil-
ity boundaries, etc.). We formulate an optimal control problem whose objective to
be minimized is tailored to the inherent multi-stable structure that these systems
have. These problems are considered under chemotherapy and under combinations
of chemotherapy with a rudimentary form of an immune boost. Interestingly, after
a brief administration of maximum dose chemotherapy, for these models optimal
treatment schedules switch to singular controls and significantly lower concentra-
tions. In the medical literature such protocols have been tested and sometimes are
referred to as “chemo-switch” protocols [16, 277].

In these solutions, the tumor microenvironment plays a major role: an initial
MTD style chemotherapy brings the state of the system into a region where the
immune system is potent enough to control (not necessarily to eliminate or to
eradicate) the tumor and there lower concentrations of chemotherapy are sufficient
to maintain the system in a benign state. In fact—but such a structure is not in-
cluded in the model considered here—higher concentrations of the cytotoxic agent
may be harmful in that they might adversely effect the immune system which
otherwise would have come to the assistance in combating the tumor. There ex-
ists substantial medical evidence that low-dose chemotherapy, while still having
a moderate cytotoxic effect on cancerous cells in the absence of significant nega-
tive side effects, has both antiangiogenic and immune stimulatory effects (e.g., see
[9, 24, 39, 118, 162, 277] as well as the survey article [272] and editorial [273]).

© Springer Science+Business Media, LLC 2015
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Metronomic chemotherapy is a term used in the medical literature for the almost
continuous administration of chemotherapeutic agents at significantly lower dose
rates than MTD, possibly with small interruptions to increase the efficacy of the
drugs. The idea behind such administration schedules is that, in the absence of lim-
iting side effects, it is possible to give chemotherapy over prolonged time inter-
vals so that, because of the greatly extended time horizon, the overall effect may
be improved when compared with repeated short MTD doses [136, 341]. Further-
more, while low dose chemotherapy has an immune stimulatory effect, high dose
chemotherapy simply suppresses the immune system as well taking out another fac-
tor that could be utilized in fighting the tumor.

In this chapter, we explore the structure of optimal administrations of chemother-
apeutic agents when such interactions with the tumor immune system and its vas-
culature are taken into account. In Section 8.1 we formulate a dynamics for tumor-
immune system interactions based on Stepanova’s model [303] and also describe the
needed fundamental concepts from dynamical systems theory such as the region of
attraction of a locally asymptotically stable equilibrium point. Depending on the na-
ture of the equilibrium point, we call these the benign and malignant regions. Based
on the geometric properties of the dynamical system, in Section 8.2 we formulate
treatment as an optimal control problem with the aim to move the state of the system
from the malignant into the benign region. We then analyze the case of a strongly
targeted chemotherapeutic agent in Section 8.3. We close out this chapter—and our
text—by combining the model for tumor-immune system interactions considered
here with the model [H] for angiogenic signaling from Chapter 5 to formulate a dy-
namical system for metronomic chemotherapy that incorporates the main features
of the tumor microenvironment. This model exhibits the same multi-stable charac-
teristics as the model for tumor-immune system interactions and its optimization
once more suggests chemo-switch type protocols as solutions.

8.1 Multistability and Immune Surveillance

The competitive interaction between tumor cells and the immune system is complex,
to say the least, and still is the topic of immense medical research. It involves an ex-
cessively large number of events with the kinetics of the interplay strongly nonlinear
and characterized by multi-stability, i.e., persistence of both benign and malignant
scenarios. The possible outcome of this interplay is not only constituted by tumor
suppression or tumor outbreak, but there exist many intermediate scenarios. How-
ever, depending on the specific aim of the mathematical analysis, a more detailed
and precise model, may not necessarily be the better one to use since it may simply
obscure, or even hide the main features.1 Especially, if the aim is to study treatment
protocols—and we are just interested in their general structure rather than a par-
ticular case—then low-dimensional mathematical models that capture the essence

1 The reader may find the short fragment “On Exactitude in Science” by Jorge Luis Borges [33] of
interest.
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within a few parameters are preferred. For this reason, here we use Stepanova’s
classical model [303] for tumor interactions along with its various generalizations.
It is perfectly adequate to make the main points that no doubt can also be extracted
from more complex models, but at considerably more effort with not necessarily
more insight.

In her 1980 paper [303], Stepanova formulated a by now classical mathematical
model of two ordinary differential equations that aggregate the interactions between
tumor cell growth and the activities of the immune system during the development
of cancer. Precisely because of its simplicity—a few parameters incorporate the
medically most important features—the underlying equations have been widely ac-
cepted as a basic model. There exist numerous extensions and generalizations of
this model, e.g., [158, 171, 248, 249, 250, 334], that all share in similar qualitative
findings: while the immune system can be effective in the control of small cancer
volumes, for large volumes the cancer dynamics suppresses the immune dynamics
and the two systems effectively become separated [334, appendix B]. In the first
case, so-called immunosurveillance, what medically would be considered cancer
never develops; in the latter case therapeutic action is needed to cure the disease.
But, as we shall see, the persistence of both benign and malignant scenarios signifi-
cantly effects the structure of optimal chemotherapy protocols.

Stepanova’s model has been introduced in Section 1.3.4 and here we only briefly
recall the equations, but do not repeat the medical motivations:

ṗ = ξ pF(p)−θ pr, (8.1)

ṙ = α
(

p−β p2)r+ γ− δ r. (8.2)

As before, the tumor volume is denoted by p while p∞ ≤∞ is a fixed carrying capac-
ity; r is a nondimensional, order of magnitude variable called the immunocompetent
cell density and is related to the activities of various types of T -cells activated dur-
ing the immune reaction. While Stepanova [303] uses an exponential model for the
growth of the tumor, we, more generally, include an arbitrary growth rate F(p) de-
pending on the tumor volume p only assuming that F is a positive, nondecreasing,
twice continuously differentiable function defined on an interval (0, p∞). If the car-
rying capacity p∞ is finite, we also assume that F(p∞) = 0. At various times we shall
consider Gompertzian, logistic, or exponential growth models. All Greek letters in
these equations denote constant coefficients. Recall that, if we scale r as r̂ = ιr, then
the solutions are unchanged if we also scale the parameters γ and θ as γ̂ = ιγ and
θ̂ = θ

ι . This 1-parameter group of symmetries thus can be used to normalize the set
point value for r.

In Table 8.1 we list the numerical values that we use for the computations and
illustrations shown in this chapter. They almost exclusively are taken from the pa-
per [171] by Kuznetsov, Makalkin, Taylor, and Perelson who estimate these pa-
rameters based on in vivo experimental data for B-lymphoma BCL1 in the spleen
of mice. In that paper, a classical logistic growth term is used for cancer growth
and we adjusted the growth rates to account for Gompertzian growth using linear
data fitting. Also, the functional form

(
p−β p2

)
r used in Stepanova’s model in
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Table 8.1 Variables and parameter values used in numerical illustrations.

Variable/
parameters Interpretation Numerical value Dimension Reference

p Tumor volume 106 cells [303]
p0 Initial value for p 600 106 cells
p∞ Carrying capacity 780 106 cells
r Immuno-competent Orders of magnitude [303]

cell density Non-dimensional
r0 Initial value for r 0.10 Non-dimensional

α Tumor stimulated 0.00484 Non-dimensional
proliferation rate

β Inverse threshold 0.00264 Non-dimensional [171]
for tumor suppression

γ Rate of influx 0.1181 Non-dimensional [171]
δ Death rate 0.37451 Non-dimensional [171]
θ Interaction rate 1 107 cells/day [171]
ξ Tumor growth parameter 0.5618 107 cells/day

equation (8.2) is a quadratic expansion of the term used in [171]. Following [171],
p is given in multiples of 106 cells and r is a dimensionless quantity that describes
the immuno-competent cell density on an order of magnitude basis. The time scale
is taken relative to the tumor cell cycle and is in terms of 0.11 days [171]. As before,
we only use these particular values to illustrate our analytical results.

8.1.1 Stability Properties of Equilibria, Bifurcations,
and Regions of Attraction

We briefly review some fundamental concepts and results from dynamical systems
theory that we shall be using in this chapter. Given a differential equation of the
form ẋ = f (x) with f : G → R

n a continuously differentiable vector field defined
on some open set G ⊂ R

n, it follows from standard results on ordinary differential
equations that the initial value problem with initial condition x(0) = x0 ∈ G has a
unique solution x = x(t;x0) which is defined on a maximal open interval I ⊂ R.
The solution curves in the state space, x(·;x0) : I → G, t �→ x(t;x0), are called the
trajectories of the system and the totality of all solution curves for x0 ∈ G is called
the phase portrait of the dynamical system. If f (x∗) = 0, then this solution curve is
just the point x(t;x∗)≡ x∗ defined for I = R and x∗ is called an equilibrium point.

Definition 8.1.1 (Stable, Asymptotically Stable and Unstable Equilibria). An
equilibrium point x∗ is said to be stable if for every ε > 0 there exists a δ = δ (ε)> 0
such that whenever ‖x0 − x∗‖< δ then for all t > 0 it follows that ‖x(t;x0)− x∗‖< ε;
otherwise it is said to be unstable. An equilibrium point x∗ is said to be locally
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attractive if there exists a neighborhood U of x∗ such that for all initial conditions
x0 ∈U the solution x(t;x0) exists for all times t ≥ 0 and satisfies limt→∞ x(t;x0) = x∗.
An equilibrium point that is both stable and locally attractive is said to be locally
asymptotically stable.

The simple linear system ẋ1 = −x2 and ẋ2 = x1, the harmonic oscillator, shows
that equilibria can be stable without being attractive. (Solutions are given by the
circles x2

1 + x2
2 ≡ r2.) It is a much less trivial fact that equilibria which are locally

attractive need not be stable [114].
If x∗ is an equilibrium point, then the linear system ẏ = Ay with A = D f (x∗), the

Jacobian matrix of f at x∗, is called the linearization around the equilibrium point.
The eigenvalues of the matrix A are also called the eigenvalues of f at x∗.

Definition 8.1.2 (Hyperbolic Equilibrium). An equilibrium point x∗ of f is said to
be hyperbolic if none of its eigenvalues λ lie on the imaginary axis, i.e., Reλ = 0
for all λ ∈ σ(A), the spectrum of A.

Hyperbolic equilibria play an important role in the theory of dynamical systems
since important local properties of the system are ‘stable’ near such a point in the
sense that they do not change if small changes in the dynamics (such as in values of
parameters that define the vector field f ) occur. For example, local stability proper-
ties can be determined in terms of its eigenvalues.

Proposition 8.1.1 ([111, 145]). Let x∗ be a hyperbolic equilibrium point for ẋ =
f (x). If all eigenvalues of A = D f (x∗) have negative real part, then x∗ is locally
asymptotically stable; if there exists an eigenvalue with positive real part, then x∗ is
unstable.

In the plane, G = R
2, an equilibrium point with complex conjugate eigenvalues

with Reλ = 0 is called an asymptotically stable, respectively unstable focus. If both
eigenvalues are real and nonzero, the equilibrium point is an asymptotically sta-
ble/unstable node if the eigenvalues are negative, respectively positive. If it has both
a positive and negative real eigenvalue, it is called a saddle.

Proposition 8.1.2 (Hartman-Grobman Theorem [111]). If x∗ is a hyperbolic
equilibrium point, then there exist neighborhoods U of x∗ and V of 0 and a homeo-
morphism ϕ : U →V (i.e., an invertible continuous mapping that has a continuous
inverse) such that the trajectories of the nonlinear system ẋ = f (x) in U are mapped
bijectively onto the trajectories of the linearization ẏ = Ay in V .

This theorem thus states that, essentially, a nonlinear system looks like a linear
systems near a hyperbolic equilibrium point.

Definition 8.1.3 (Region of Attraction). Let x∗ be a locally asymptotically stable
equilibrium point for ẋ = f (x). Its region of attraction, A(x∗), consists of all initial
conditions x0 for which the corresponding solution exists for all t ≥ 0 and converges
to x∗ as t → ∞,

A(x∗) =
{

x0 ∈ G : x(t;x0)exists for all t > 0and lim
t→∞

x(t;x0) = x∗
}
.
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It is not difficult to see that the region of attraction of a locally asymptotically
stable equilibrium point is an open and connected subset of the state space. For an
unstable equilibrium point there still exist points on a lower dimensional set, in fact,
lying on a manifold, for which a similar convergence result holds true.

Definition 8.1.4 (Local Stable Manifold). Given any hyperbolic equilibrium point
x∗ and a sufficiently small neighborhood U of x∗, the local stable manifold of x∗ in
U is defined as the set of all initial conditions x0 ∈ U such that the corresponding
solution x(t;x0) exists for all t ≥ 0, lies in U , x(t;x0)∈U for all t > 0, and converges
to x∗ as t → ∞, limt→∞ x(t;x0) = x∗,

W s
loc(x∗;U) =

{
x0 ∈U : x(t;x0) ∈U for all t > 0 and lim

t→∞
x(t;x0) = x∗

}
.

Theorem 8.1.1 ([111]). Let x∗ be a hyperbolic equilibrium point and let W denote
the linear subspace of Rn generated by all eigenvectors and generalized eigenvec-
tors of the matrix D f (x∗) that correspond to eigenvalues with negative real parts;
suppose dimW = k. Then, for U sufficiently small, the local stable manifold of x∗
in U is a k-dimensional embedded submanifold and its tangent space at x∗ is given
by W.

This is an a bit technical, but not difficult result which, however, requires some
familiarity with manifolds. We only remark that embedded submanifolds M in R

n

are what typically are curves, surfaces, etc. and that they can be described locally
as the zero set of some mappingΨ : V ⊂ R

n → R
�, M = {x ∈U :Ψ(x) = 0}, with

the matrix DΨ of constant rank equal to n− k on M and k the dimension of the
manifold. For example, the 2-sphere S2 in R

3 can even globally be described as
S2 =

{
(x,y,z) ∈ R

3 : x2 + y2 + z2 = 1
}

and ∇Ψ = (2x,2y,2z) is nonzero on S2.
The global stable manifold of x∗ is then defined by propagating the solutions that

lie in a local stable manifold backward in time. Denote the flow of the differential
equation by Φt , i.e., we simply have that Φt(x0) = x(t;x0) for t ∈ I. Thus we get the
following definition:

Definition 8.1.5 (Global Stable Manifold). Given a hyperbolic equilibrium point
x∗, for a sufficiently small neighborhood U of x∗ let W s

loc(x∗;U) denote the local
stable manifold. The global stable manifold of x∗ is then defined as

W s(x∗) = ∪t≤0 {Φt(x0) : x0 ∈W s
loc(x∗;U)} .

Unfortunately, by propagating trajectories backward, nice geometric properties
may be lost and generally global stable manifolds need no longer be embedded
submanifolds, but are only what are called immersed submanifolds. In our text,
however, we only encounter the more regular structures and therefore do not go into
these details.

Corresponding local and global unstable manifolds are defined by reversing the
orientation of time.
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Definition 8.1.6 (Local Unstable Manifold). Given a hyperbolic equilibrium point
x∗ and a sufficiently small neighborhood U of x∗, the local unstable manifold of x∗
in U is defined as the set of all initial conditions x0 ∈U such that the corresponding
solution x(t;x0) exists for all t ≤ 0, lies in U , x(t;x0)∈U for all t < 0, and converges
to x∗ as t →−∞, limt→−∞ x(t;x0) = x∗,

W u
loc(x∗;U) =

{

x0 ∈U : x(t;x0) ∈U for all t < 0 and lim
t→−∞

x(t;x0) = x∗
}

.

Theorem 8.1.2 ([111]). Let x∗ be a hyperbolic equilibrium point and let W denote
the linear subspace of Rn generated by all eigenvectors and generalized eigenvec-
tors of the matrix D f (x∗) that correspond to eigenvalues with positive real parts;
suppose dimW = k. Then, for U sufficiently small, the local unstable manifold of
x∗ in U is a k-dimensional embedded submanifold and its tangent space x∗ is given
by W.

Definition 8.1.7 (Global Unstable Manifold). Given a hyperbolic equilibrium point
x∗, for a sufficiently small neighborhood U of x∗ let W u

loc(x∗;U) denote the local un-
stable manifold. The global unstable manifold of x∗ is then defined as

W u(x∗) = ∪t≥0 {Φt (x0) : x0 ∈W u
loc(x∗;U)} .

No qualitative changes in the local behavior of a dynamical system occur at
hyperbolic equilibria. If we write the vector field f more explicitly in the form
f : G×Θ → R

n, (x,θ ) �→ f (x,θ ) with θ ∈ Θ ⊂ R
k denoting the dependence of

the equations on parameters, for a fixed value of the parameters naturally all the
concepts defined above apply. For example, if x∗ is a hyperbolic equilibrium point
at the parameter value θ∗, then in particular the Jacobian matrix ∂ f

∂x (x∗,θ∗) is nonsin-
gular and therefore by the implicit function theorem there exists a unique solution
x = x(θ ) to the equation f (x,θ ) = 0 that satisfies x∗ = x(θ∗) in a neighborhood
of θ∗. Hence the number of equilibria does not change. Furthermore, since eigen-
values depend continuously on the entries of a matrix, it also follows (if necessary
on a smaller neighborhood of θ∗) that the number of eigenvalues that lie in the posi-
tive and negative halfplanes in C remain unchanged and thus also the local stability
properties (such as the dimensions of stable and unstable manifolds) do not change
as the parameter θ varies in this neighborhood. But such changes do occur as the
eigenvalues cross the imaginary axis as parameters vary and are called bifurcations.
Of these, the simplest one is the so-called saddle-node bifurcation that plays an im-
portant role for the models considered here. Intuitively, a saddle-node bifurcation
occurs as a single real eigenvalue crosses the imaginary axis and it leads to the
birth, respectively annihilation, of two equilibria.

Definition 8.1.8 (Saddle-Node Bifurcation). Consider the dependence of the
dynamics on a single parameter θ ∈ R. A point (x∗,θ∗) is a saddle-node bifurca-
tion point if the Jacobian matrix ∂ f

∂x (x∗,θ∗) has a simple eigenvalue 0, no other
eigenvalues on the imaginary axis, and the following transversality conditions are
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satisfied: if λ and v are a left- and right-eigenvectors for the eigenvalue 0 of the
matrix ∂ f

∂x (x∗,θ∗), respectively,

λ
∂ f
∂x

(x∗,θ∗) = 0 and
∂ f
∂x

(x∗,θ∗)v = 0

then

λ
∂ 2 f
∂x2 (x∗,θ∗)(v,v) = 0 and λ

∂ f
∂θ

(x∗,θ∗) = 0. (8.3)

Then the following saddle-node bifurcation theorem [111, Theorem 3.4.1] holds:

Theorem 8.1.3 (Saddle-Node Bifurcation Theorem [111]). If (x∗,θ∗) is a saddle-
node bifurcation point, then near (x∗,θ∗) there exists a smooth curve of equilibria
passing through (x∗,θ∗) that is tangent to the hyperplane θ ≡ θ∗ such that depend-
ing on the signs in equations (8.3) there are no equilibria for θ < θ∗ (respectively,
θ > θ∗ ), a unique equilibrium point for θ = θ∗ and two equilibria for θ > θ∗ (re-
spectively, θ < θ∗). The two equilibria near (x∗,θ∗) are hyperbolic and have stable
manifolds that differ in their dimensions by one.

The transversality conditions (8.3) enforce that the real eigenvalue actually
crosses the imaginary axis along the smooth curve of equilibria and thus the change
in the dimension of the stable manifold by one. It is generically satisfied and pre-
vents more degenerate situations from occurring. In this sense, the saddle-node bi-
furcation is the most common of the so-called static bifurcations that arise as the
number of equilibria change. If this number is not affected, but the stability behavior
of the equilibrium point changes, one speaks of a dynamic bifurcation. Of these the
most typical one is the Hopf bifurcation which occurs as a simple pair of complex
eigenvalues crosses the imaginary axis. This bifurcation, or the even more general
global bifurcations, do not occur in this model. (We refer the interested reader to the
text by Guckenheimer and Holmes [111] for this topic.)

We return to our discussion of the system (8.1)–(8.2). There always exists a dis-
ease free equilibrium point at (p f ,r f ) = (0, γδ ). The Jacobian matrix is given by

DF(p f ,r f ) =

⎛

⎝
ξF(0)−θ γ

δ 0

α γ
δ −δ

⎞

⎠

and thus this equilibrium point is a locally asymptotically stable node if F(0)< θγ
ξδ

and a saddle point for F(0) > θγ
ξδ . The latter case includes the Gompertzian model

when limp→0+F(p) = +∞. Essentially, if the initial tumor growth rate ξF(0) is
small enough, then the beneficial effects of the immune system are able to eliminate
the cancerous growth near the tumor free equilibrium point in an extreme form of
immunosurveillance. However, if there also exist equilibria with positive p-values
(and this is the case if the disease free equilibrium point is unstable), then, even if
the disease free equilibrium is locally stable, a strong enough perturbation (unfore-
seen event or not modeled dynamics) may dislocate the state out of the region of
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Fig. 8.1 Phase portraits of the system (8.1) and (8.2) for a Gompertzian growth function F(p) =

− log
(
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)
and parameter values from Table 8.1.

attraction of this equilibrium point. Note that the positive half-line {p = 0,r > 0}
is invariant and forms the stable manifold of the disease free equilibrium point if
F(0)> θγ

ξδ .
Typically there exist equilibria with positive tumor volumes and we call such

equilibrium points positive equilibria. Figure 8.1 shows the phase portrait of the
system (8.1) and (8.2) for a Gompertzian growth rate and the parameters listed in
Table 8.1. Here there exist three equilibria with positive tumor volumes: a locally
asymptotically stable focus at (pb,rb) = (72.961,1.327) (marked by a green star),
a saddle point at (ps,rs) = (356.174,0.439) (marked by a black star) and a sec-
ond asymptotically stable node at (pm,rm) = (737.278,0.032) (marked by a red
star). This indeed is the situation for a wide range of parameters (see also Proposi-
tion 8.1.3 below and Proposition 8.4.1 in Section 8.4). In the phase portrait we have
also marked the unstable manifold of the saddle as the black curve and its stable
manifold as the red curve. Both of these, since the dimension is 2, are differentiable
curves. Note that the regions of attraction of the stable equilibria are open and that
they are separated by the stable manifold of the saddle. A similar geometric struc-
ture is commonly valid for what are called Morse-Smale systems [111] and we shall
encounter similar geometric pictures throughout this section.

The tumor volume for the stable equilibrium point (pm,rm) is close to the carry-
ing capacity and it is by an order of magnitude larger than for the equilibrium point
(pb,rb). For a typical set of parameter values, these values might be interpreted as a
microscopic and a macroscopic locally asymptotically stable equilibrium point with
the high value indicating that the patient will succumb to the disease.

Definition 8.1.9 (Benign and Malignant Equilibria). We call a locally asymp-
totically stable positive equilibrium point (p∗,r∗) of the equations (8.1) and (8.2)
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malignant if the corresponding tumor volume p∗ is close to the carrying capacity of
the system; we call it benign if it is by at least an order of magnitude smaller. We
call the region of attraction of a malignant, respectively benign equilibrium point
the malignant, respectively benign regions.

In case of a microscopic benign equilibrium, this region can be interpreted as
the set of all states of the system where the immune system is able to control the
cancer and this is one possible way of describing what medically has been called
immunosurveillance. The region of attraction of the macroscopic equilibrium point,
on the other hand, corresponds to conditions when the system has escaped from this
immunosurveillance and the disease, if untreated, will become lethal. Obviously, a
relevant structure therefore is the boundary between these two behaviors which is
formed by the stable manifold of the saddle point. Since reality is far more compli-
cated than accounted for in this or any model, constantly random (and otherwise)
events will take place that perturb the state of the system in the state-space and,
once such a temporary disturbance has passed, the system will settle down to fol-
low the trajectories in the phase portrait. Thus tumors that have a large malignant
regions correspond to more aggressive form since it is more likely for a perturbation
to land in this set. Once this happens, the question becomes how (if possible) to
move the state back into the benign region. This will be the main topic discussed in
this section.

8.1.2 On Immune Surveillance: Benign and Malignant Regions
for Stepanova’s Model with Generalized Logistic Growth

We explore the dynamics of the system for a generalized logistic growth rate

F(p) = 1−
(

p
p∞

)ν
, ν > 0,

and, especially, how the benign and malignant regions change with the parame-
ter ν . This exponent largely determines the rate of tumor growth: for small values

of ν , the term
(

p
p∞

)ν
will be close to 1 and the model reflects a slowly growing

tumor while tumor growth accelerates with increasing values of ν reaching unre-
stricted exponential growth in the limit ν → ∞. We just remark that if the tumor
growth parameter ξ that multiplies the function F is made to depend on the pa-
rameter ν in the order of ξ = O( 1

ν ), then a Gompertzian model is obtained in the
limit ν → 0. Thus, in a certain sense, the generalized logistic rate function F inter-
polates between Gompertzian and exponential growth models with the parameter
ν related to the speed of tumor growth. For the models of the tumor-vasculature
dynamics that were considered in Chapter 5 it has been argued by d’Onofrio, Gan-
dolfi, and Rocca [263] that models with ν < 1 more realistically reflect a slowing
down process of tumor proliferation as a response to its changing environment. This



8.1 Multistability and Immune Surveillance 327

also agrees with a mechanistic model for non-immunogenic tumors as discussed by
d’Onofrio in [254]. In the context of tumor immune system interactions, which play
a major role at the onset of the disease, it would seem that all values of ν are reason-
able, simply modeling different rates of tumor growth lying between the extremes
of Gompertzian and exponential growth models. Thus we consider the full range
ν ∈ (0,∞).

For a generalized logistic growth model, the disease free equilibrium point is
locally asymptotically stable if ξδ < θγ and unstable if ξδ > θγ . In the first case,
we shall see below that if ν is close to 0, then there are no other equilibria and the
disease free equilibrium point is globally asymptotically stable, i.e., every solution
converges to (0, γδ ). This simply corresponds to a scenario when the immune system
indeed is able to control the cancerous growth. Solving the equation ṗ = 0 for r
and substituting into the relation ṙ = 0, positive equilibria are the solutions of the
nonlinear equation

ξ
(

1−
(

p
p∞

)ν)

− θγ
αβ p2 −α p+ δ

= 0. (8.4)

in the interval (0, p∞). Note that no solutions p∗ exist where the quadratic polyno-
mial Q(p) = αβ p2 −α p+δ is negative. If α ≥ 4βδ , then Q has two positive roots
p− < p+ given by

p− =
1

2β

(

1−
√

1− 4
βδ
α

)

and p+ =
1

2β

(

1+

√

1−4
βδ
α

)

and all zeros p∗ of (8.4) lie in the intervals (0, p−) or (p+, p∞); forα < 4βδ the roots
are complex and Q is always positive so that the location of the roots in (0, p∞) is
not restricted. Also note that, in the case ν = 1 of classical logistic growth, equation
(8.4) is equivalent to a cubic polynomial and thus there exist at most three roots.
This holds in general.

Proposition 8.1.3. For a generalized logistic growth rate F(p) = 1−
(

p
p∞

)ν
and

for all values of ν > 0, there exist at most three positive equilibria for the dynamical
system (8.1)–(8.2). Generically, a saddle-node bifurcation occurs if

(
p∗
p∞

)ν

1−
(

p∗
p∞

)ν =
2αβ p2∗−α p∗

αβ p2∗ −α p∗+ δ
. (8.5)

In particular, this is only possible in the region 2β p∗ > 1. If we order the equilibrium

points (p(i)∗ ,r(i)∗ ) according to their tumor volumes, p(1)∗ < p(2)∗ < p(3)∗ , then the low

and high equilibrium points (p(1)∗ ,r(1)∗ ) and (p(3)∗ ,r(3)∗ ) are locally asymptotically

stable while the intermediate equilibrium point (p(2)∗ ,r(2)∗ ) is unstable.
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Proof. We rewrite equation (8.4) in the following form using as variable x and defin-
ing functions Pν and R:

Pν(x) = 1−
(

x
x∞

)ν
=

θγ
ξ

1
αβx2 −αx+ δ

= R(x).
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Fig. 8.2 Equilibria for the system (8.1) and (8.2) for a generalized logistic growth function

F(x) = 1−
(

x
x∞

)ν
.

If the roots of Q are complex, then R is positive on [0,∞) with a global maximum
at x̃ = 1

2β . Furthermore, R is strictly increasing on [0, x̃) and strictly decreasing on
(x̃,∞). Since Pν is a decreasing function, it follows that there exists at most one equi-
librium point in the interval [0, 1

2β ], possibly none. In the interval [ 1
2β ,∞), the func-

tion R has a unique inflection point x̂ and is strictly concave over the interval [ 1
2β , x̂)

and strictly convex over [x̂,∞). Coupled with monotonicity and convexity properties
of the function F , it follows that there can be no more than two additional zeroes on
the interval [ 1

2β ,∞) for a maximum of three possible zeros. Note that it is possible
that there are no solutions for certain parameter values. If the roots of Q are real, then
R has simple poles at x− = p− and x+ = p+ and is positive, strictly monotonically
increasing and convex over (0,x−) and positive, strictly monotonically decreasing
and convex over (x+,x∞). It immediately follows from these monotonicity proper-
ties that there can be at most one zero on (0,x−) and since limx→x1− R(x) = +∞, it
is clear that there exists a solution in this interval if and only if θγ ≤ ξδ . If ν ≥ 1,
then F is concave over the interval (x+,x∞) and this implies that there can be at most
two intersections with the graph of R. If ν < 1, it follows that the difference R−F
is strictly increasing after a second intersection and thus also in this case no more
equilibria are possible. In either case, this allows for at most two more solutions.
The underlying geometric properties are illustrated in Figure 8.2.
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Using the relation that

θ r∗ = ξ
(

1−
(

p∗
p∞

)ν)

,

the Jacobian matrix A at a positive equilibrium point (p∗,r∗) is given by

⎛

⎜
⎝

−ξν
(

p∗
p∞

)ν −θ p∗

α (1− 2β p∗)r∗ α
(

p∗ −β p2∗
)− δ

⎞

⎟
⎠

and thus its characteristic polynomial

χA(t) = det(t · Id−A) = t2 +at+b

has coefficients

a =
(
αβ p2

∗ −α p∗+ δ
)
+ ξν

(
p∗
p∞

)ν

and

b = det(A) =
(
αβ p2

∗ −α p∗+ δ
)
ξν
(

p∗
p∞

)ν
+αθ (1−2β p∗) p∗r∗. (8.6)

At a positive equilibrium point p∗, Q(p∗) = αβ p2∗ −α p∗+ δ is positive. For, this
always holds if the roots of Q are complex and if the roots are real, then the equilibria
lie outside of the interval [p−, p+]. Hence the coefficient a is positive and A has a
positive real eigenvalue if and only if b = det(A) < 0 while all eigenvalues have
negative real parts if b = det(A)> 0. Thus the equilibrium point (p∗,r∗) is unstable
if det(A) < 0 and locally asymptotically stable if det(A) > 0. If b = 0, and this is
equivalent to (8.5), A has eigenvalue 0 and a negative eigenvalue and generically a
saddle-node bifurcation occurs. This is only possible if p∗ ≤ 1

2β . Since the benign
equilibrium point is always locally asymptotically stable, the remaining stability
properties are a consequence of the saddle-node bifurcation theorem. �

Figure 8.3 shows the values of the equilibria as function of ν for the data from
Table 8.1. We have ξδ > θγ and thus the disease free equilibrium point (p f ,r f ) =
(0, γδ ) is unstable. For small values of ν , ν < ν∗ = 0.40355, there only exists one
globally asymptotically stable equilibrium point with small p-value that corresponds
to a microscopic benign state. These parameter values medically reflect a situation
where the tumor growth is very small and the reaction of the immune system is
able to control the tumor. For ν∗ = 0.40355 the system undergoes a saddle-node
bifurcation and two additional equilibria, one stable (malignant), the other unstable,
are created and the system becomes multi-stable for ν > ν∗ with three equilibria.
The benign equilibrium point (pb,rb) is a stable focus whose values are represented
by the green curves in Figure 8.3 and the malignant equilibrium point (pm,rm) is
a stable node whose values are represented by the red curves; the values for the
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saddle point (ps,rs) are represented by the blue curves. For example, for classical
logistic growth (ν = 1) the numerical values are given by (pb,rb) = (35.158,0.537),
(ps,rs) = (387.527,0.283) and (pm,rm) = (736.102,0.032).
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Fig. 8.3 Values of the positive equilibria for the system (8.1) and (8.2) as a function of ν (x-values
on the left and y-values on the right). The values for the benign equilibrium point are shown as
the green curve, for the saddle as the blue curve and for the malignant equilibrium point as the red
curve.
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Fig. 8.4 Phase portraits of the system (8.1) and (8.2) for (a) ν = 1
2 , (b) ν = 1, (c) ν = 2, and (d)

ν = 4 and the parameter values from Table 8.1.
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Figure 8.4 illustrates the phase-portraits for the values ν = 1
2 ,1,2, and 4. In each

of the figures, we have highlighted the stable manifold of the saddle (ps,ys), which
forms the stability boundary for the benign and malignant regions, as a thick solid
red line. This curve also is called the separatrix for planar systems. These phase
portraits show the decrease of the benign region at the expense of the malignant
regions as the parameter ν increases reflecting the fact that the immune system
becomes increasingly overwhelmed by a faster growing tumor. In the limit ν → ∞
we obtain a malignant region similar to the one for exponential growth. The benign
equilibrium point (pb,rb) converges to the disease free equilibrium point (0,r f ) as
ν → ∞.

These phase portraits reflect a general structure of the dynamics that is multi-
stable and has both an asymptotically stable microscopic (benign) and an asymptot-
ically stable macroscopic (malignant) equilibrium point. The corresponding regions
of attraction are separated by the stable manifold of a saddle. Figure 8.5 shows a
blow-up of the curve of saddle points for ν ∈ [ 1

2 ,4] along with a normalized stable
eigenvector. It is always possible to choose this vector so that both coordinates are
positive. The figure shows that the direction is quite stable, but that with increas-
ing values of ν the stable manifold moves toward lower p and higher r values. The
tumor growth rate directly relates to the sizes of the regions of attraction of the sta-
ble equilibria with slower growing tumors having larger benign regions and faster
growing tumors having larger malignant regions. From a practical point of view,
the question of curing cancer then is related to the mathematical problem of how
one can move an initial condition that lies in the malignant region into the benign
region through therapy. But first we need to incorporate therapeutic action into the
dynamics (8.1) and (8.2).

Fig. 8.5 The saddle points for ν ∈ [ 1
2 ,4] with a stable eigenvector at the saddle point.
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8.2 Formulation of an Optimal Control Problem: Transfer from
the Malignant into the Benign Region Through Therapy

We incorporate both a standard chemotherapeutic agent and a rudimentary im-
munotherapy in the form of an immune boost into the model. As before, we use the
log-kill hypothesis to model tumor loss under chemotherapy, i.e., we assume that the
elimination of tumor cells is proportional to the tumor volume p and the concentra-
tion of the chemotherapeutic agent which we denote by u. The cytotoxic effects of
the chemotherapeutic agent on the immune system are complex and are more diffi-
cult to assert. The effects on existing cells of the immune system may be modeled
as a separate log-kill type term in the equation for ṙ, but the negative side effects
of chemotherapy also include a lower influx of T-cells from the primary organs that
are potentially damaged by chemotherapy, especially the bone marrow. These can
be incorporated into the model by reducing the factor γ that denotes this influx. But
these effects are secondary to the main chemotherapy and initially we assume they
are smaller and neglect them. This is a reasonable assumption for so-called strongly
targeted chemotherapeutic drugs. For simplicity, we also do not include a phar-
macokinetic model and identify dose rates with concentrations. Generally, when a
standard linear pharmacokinetic model is added to the model, the changes that oc-
cur follow the same principles discussed earlier (see Sections 2.3 and 6.3) and thus
here we follow this simpler modeling approach. For example, optimal control for
this system with PK is considered in [176]. While most of the models in this chapter
will focus on chemotherapy, in some we also include a rudimentary immunotherapy
in the form of an immune boost which is added as a positive term to equation (8.2).
Overall, the controlled equations with treatment take the form

ṗ = ξ pF(p)−θ pr−κ pu, (8.7)

ṙ = α
(

p−β p2) r+ γ(1− ζu)− δ r−ηru+ρrv. (8.8)

Admissible controls are Lebesgue measurable (respectively, piecewise continuous)
functions u and v that take values in the interval [0,1]. Since no pharmacokinetic
model is included, without loss of generality we normalize the maximum values
for the controls to 1 and subsume the maximum dose rates/concentrations in the
coefficients for the pharmacodynamic model (κ ,ζ ,η and ρ). As before, all Greek
letters denote constant positive coefficients and in addition we have that ζ < 1. The
state space for the problem is given by M = {(p,r) : 0 < p < p∞,0 < r} and we
assume that initial conditions lie in M. We also restrict the tumor growth rate F to
Gompertzian, logistic or generalized logistic models. For each of these the carrying
capacity is finite and we have that F(p∞) = 0.

Proposition 8.2.1. The region P is positively invariant for the control system, i.e.,
given arbitrary admissible controls u : [0,T ]→ [0,1] and u : [0,T ]→ [0,1] defined
over an interval [0,T ], T ≤∞, the solution to the dynamics (8.7) and (8.8) exists on
[0,T ] and the corresponding trajectory lies in M.
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Proof. Since q̇|q=0 = γ (1− ζu)> 0, it follows that the q-coordinate of the solution
is always positive. Furthermore, for any control u, p ≡ 0 is an equilibrium solution
to equation (8.7) and we also have that ṗ|p=p∞ < 0. Hence the p-component of the
solution cannot leave the finite open interval (0, p∞). It follows that the right-hand
side of the dynamics is linearly bounded and, by a standard argument of ODEs, this
implies that solutions exist on all of [0,T ]. �

The practical aim of therapy thus becomes to move an initial state (p0,r0) of
the system that lies in the malignant region of the uncontrolled system into the
region of attraction of the stable, benign equilibrium point while keeping side effects
tolerable. Here we consider the following optimal control problem:

[CI] For a free terminal time T , minimize the objective

J = Ap(T )−Br(T)+
∫ T

0
(Mu(t)+Nv(t)+ S)dt, (8.9)

over all Lebesgue measurable (respectively, piecewise continuous) functions u :
[0,T ]→ [0,1] and v : [0,T ]→ [0,1] subject to the dynamics (8.7) and (8.8),

ṗ = ξ pF(p)−θ pr−κ pu, p(0) = p0,

ṙ = α
(

p−β p2)r+ γ (1− ζu)− δ r−ηru+ρyv r(0) = r0.

The objective function consists of three separate pieces: (i) the penalty term
Ap(T )−Br(T ) at the final time is designed to induce the state of the system to move
from the malignant into the benign region, (ii) the terms

∫ T
0 u(t)dt and

∫ T
0 v(t)dt

measure the amounts of drugs given, and (iii) the penalty term ST on the final time
makes the mathematical problem well posed. All coefficients are positive. We em-
phasize that, like in engineering, the coefficients in the objective (8.9) are actually
variables of choice that should be calibrated to fine-tune the response of the sys-
tem. The choice of the weights aims at striking a balance between the benefit at the
terminal time T , Ap(T )−Br(T ), and the overall side effects measured by the total
amount of drugs given, while it guarantees the existence of an optimal solution by
also penalizing the free terminal time T . We discuss the rationale behind each term.

(i) The main feature here is to formulate the objective (8.9) in such a way that
minimization induces a transfer of the system from the malignant into the be-
nign region of the state space. For this, it may no longer be adequate to just
minimize the tumor volume since, as can be seen in the phase-portraits, small
tumor volumes are possible that lie in the malignant region if the immune sys-
tem is depressed. Rather, the geometric shape of the separatrix matters. Ideally,
if a functional description of this manifold could be given, one would minimize
or maximize the level sets of this function to achieve a transfer into the benign
region. But these are generally highly transcendental equations that cannot be
solved explicitly. On the other hand, local approximations for the separatrix at
the saddle point are easily obtained. It follows from Theorem 8.1.1 that the sta-
ble eigenspace at the saddle is the tangent space to the separatrix. This tangent
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line is easily computed and its normal vector can serve as a reasonable direc-
tion in which we want the system to move. A second natural option would be
to take the direction of the unstable eigenvector at the saddle point. For, this
is the tangent vector to the path which uncontrolled trajectories in the benign
region will follow closely when in the benign region. For sake of specificity,
we consider the first approach. Let v = (B,A)T denote a stable eigenvector v
of the saddle point (ps,rs) oriented so that both A and B are positive numbers.
It follows from the geometry of the stable manifold that A and B will have the
same sign and including in the objective a term of the form Ap(T )−Br(T )
gives the correct direction to minimize in the objective. The level sets of this
quantity are lines parallel to the tangent space of the stable manifold of the
saddle, and minimizing this quantity thus creates an incentive for the system to
move into the benign region.

(ii) As for the models considered earlier, we do not include a separate compartment
of healthy cells that would describe the side effects of treatment. These are
only measured indirectly through the total amounts of drugs given. Therefore,
in the objective function to be minimized, we once more include the terms∫ T

0 Mu(t)+Nv(t)dt as soft constraints. Clinical data as to the severity of the
drugs should be reflected in the choices for C and D. Naturally, the specific type
of tumor and stage of cancer will enter into the calibration of these coefficients.
In a more advanced stage, higher side effects need to be tolerated and thus
smaller values of C would be taken.

(iii) The last term in the objective function, which can be written either under the
integral or as a separate penalty term ST , is included to give a mathemati-
cally well-posed problem formulation. The reason is that the existence of the
asymptotically stable, benign equilibrium point generates controlled trajecto-
ries that improve the value Ap(T )− Br(T ) of the objective along the trivial
controls u = 0 and v = 0. If no penalty is imposed on the terminal time, then
this creates a “free pass” structure in which the value of the objective can be
improved without incurring a cost. As a result, in such a situation an optimal
solution may not exist. Intuitively, the controls can switch to (u,v) = (0,0)
immediately as the separatrix is crossed and then take an increasingly longer
time as they pass near the saddle point with the infimum arising in the limit
T → ∞ as the control switches to follow u = 0 when the controlled trajectory
intersects the separatrix, then follows the separatrix for an infinite time to the
saddle and then again leaves this saddle point along the unstable manifold,
once more taking an infinite time. This indeed would be the “optimal” solution
for this problem formulation, but it is not an admissible trajectory in our sys-
tem. From a practical point of view, of course it would also be unacceptable
for the system to move along the boundary between benign and malignant be-
haviors. In view of imprecise and mathematically not modeled dynamics and
other random perturbations, the addition of this term not only makes the opti-
mal control problem well defined, but it also provides desired robustness and
stability properties for the underlying real system. Thus it makes perfect sense,
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both mathematically and practically, to include a penalty term on the final time
in the objective. It creates a well-posed mathematical problem for which the
existence of solutions follows from standard theory.

Writing the state of the system as z = (p,r)T , we again express the dynamics in
the vector field form

ż = f (z)+ ug1(z)+ vg2(z) (8.10)

with drift vector field

f (z) =

⎛

⎝
ξ pF(p)−θ pr

α
(

p−β p2
)

r+ γ− δ r

⎞

⎠ (8.11)

and control vector fields

g1(z) =−
⎛

⎝
κ p

ηr+ γζ

⎞

⎠ and g2(z) =

⎛

⎝
0

ρr

⎞

⎠ . (8.12)

8.2.1 Necessary Conditions for Optimality

We briefly state the necessary conditions for optimality of the maximum princi-
ple for the general form. Since there are no terminal constraints, extremals for this
problem are normal (see Corollary A.2.2 in Appendix A) and, with λ = (λ1,λ2), we
therefore define the Hamiltonian H = H(λ , p,r,u,v) as

H = Mu+Nv+ S+λ1(ξ pF(p)−θ pr−κ pu) (8.13)

+λ2
(
α
(

p−β p2)r+ γ (1− ζu)− δ r−ηru+ρrv
)
.

Equivalently, in terms of the drift and control vector fields we have that

H = S+ 〈λ , f (z)〉+ u(M+ 〈λ ,g1(z)〉)+ v(N + 〈λ ,g2(z)〉) .

If (u∗,v∗) is an optimal control defined over an interval [0,T ] with correspond-
ing trajectory z∗ = (p∗,r∗)T , then it follows from the maximum principle (The-
orem A.3.1 in Appendix A) that there exists an absolutely continuous covector
λ : [0,T ]→ (

R
2
)∗

, that satisfies the adjoint equations

λ̇1 =−∂H
∂ p

=−λ1
(
ξ
(

pF ′(p)+F(p)
)−θ r−κu

)−λ2α (1−2β p)r (8.14)

λ̇2 =−∂H
∂ r

= λ1θ p−λ2
(
α
(

p−β p2)− δ −ηu+ρv
)

(8.15)

with terminal conditions λ1(T ) = A and λ2(T ) = −B such that for almost every
time t ∈ [0,T ], the optimal controls (u∗(t),v∗(t)) minimize the Hamiltonian H along
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(λ (t), p∗(t),r∗(t)) over the control set [0,1]× [0,1] and the minimized Hamiltonian
is constant equal to 0,

H(λ0,λ (t), p∗(t),r∗(t),u∗(t),v∗(t))≡ 0.

Since the Lagrangian in the objective does not depend on the state variables p
and r, the adjoint equation again is a homogeneous linear equation of the form

λ̇(t) =−λ (t)(D f (z∗(t))+ u∗(t)Dg1(z∗(t))+ v∗(t)Dg2(z∗(t))) . (8.16)

Since λ (T ) = 0, it follows that the multiplier λ doesn’t vanish: λ (t) = 0 for all
t ∈ [0,T ].

The minimization of the Hamiltonian H decouples and can be carried out sepa-
rately. Defining the switching functions Φ1 for u and Φ2 for v as

Φ1(t) = M+ 〈λ (t),g1(z∗(t))〉= M−λ1(t)κ p∗(t)−λ2(t)(ηr∗(t)+ γζ ) , (8.17)

and
Φ2(t) = N + 〈λ (t),g2(z∗(t))〉= N +λ2(t)ρr∗(t), (8.18)

it follows that

u∗(t) =

{
0 if Φ1(t)> 0,

1 if Φ1(t)< 0,
and v∗(t) =

{
0 if Φ2(t)> 0,

1 if Φ2(t)< 0.
(8.19)

The controls will be singular if the respective switching functions vanish over an
open interval I and, as before, we need to compute the derivatives of these functions.
As for the models considered in Chapter 7, the Lagrangian is independent of the
state and thus we have the same result as in Proposition 7.1.1 (cf., Proposition A.3.1
in Appendix A):

Proposition 8.2.2. Let z(·) be a solution of the dynamics (8.10) for the controls u
and v and let λ be a solution of the corresponding adjoint equation (8.16). For a
continuously differentiable vector field h, let

Ψ(t) = 〈λ (t),h(z(t))〉= λ (t)h(z(t)). (8.20)

The derivative ofΨ is then given by

Ψ̇(t) = 〈λ (t), [ f + ug1 + vg2,h](z(t))〉 . (8.21)

The first derivatives of the switching functions Φ1 and Φ2 are thus given by

Φ̇1(t) = 〈λ (t), [ f + vg2,g1](z∗(t))〉
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and
Φ̇2(t) = 〈λ (t), [ f + ug1,g2](z∗(t))〉 .

The commutator of the control vector fields is the constant vector field

[g1,g2](z) =

(
0 0
0 ρ

)( −κ p
−ηr−αζ

)

−
(−κ 0

0 −η

)(
0
ρr

)

=

(
0

ραζ

)

. (8.22)

If ζ = 0, the two control vector fields commute and this at times considerably sim-
plifies the mathematical analysis.

8.3 Cancer Chemotherapy with Strongly Targeted
Cytotoxic Drugs

We consider the single-input optimal control problem for chemotherapy with a
strongly targeted chemotherapeutic drug. In this case, we assume that the side ef-
fects on the immune system are negligible and consider the following simplified
form of the dynamics:

ṗ = ξ pF(p)−θ pr−κ pu, p(0) = p0,

ṙ = α
(

p−β p2) r+ γ− δ r, r(0) = r0.

In this section we shall analyze the structure of optimal controls for both a Gom-

pertzian (FG(p) = − ln
(

p
p∞

)
) and generalized logistic growth model (FL(p) =

1−
(

p
p∞

)ν
, ν > 0). It will be seen that the results for the Gompertzian model relate

to the limiting behavior of the results for the generalized logistic model as ν → 0.
The drift and control vector fields are

f (z) =

⎛

⎝
ξ pF(p)−θ pr

α
(

p−β p2
)

r+ γ− δ r

⎞

⎠ and g(z) =

⎛

⎝
−κ p

0

⎞

⎠ .

We label the corresponding optimal control problem [CI1].

8.3.1 Singular Controls and Arcs

For this optimal control problem the way in which singular controls and arcs are
computed is somewhat different than in Chapters 2 and 3. The procedure is inde-
pendent of the particular growth function, but the formulas for singular controls and
curves will of course depend on this specification.



338 8 Optimal Control for Mathematical Models of Tumor Immune System Interactions

As before, if an optimal control u∗ is singular on an open interval I, then the
switching function Φ ,

Φ(t) = M+ 〈λ (t),g(z∗(t))〉= M−λ1(t)κ p∗(t),

and all its derivatives vanish on I. Furthermore, the Hamiltonian H vanishes identi-
cally over [0,T ] and thus we also have that

H = S+ 〈λ (t), f (z∗(t))〉+ u∗(t)Φ(t)≡ 0.

Along a singular arc it therefore follows that

H = S+ 〈λ (t), f (z∗(t))〉 ≡ 0

and combining this relation with Φ(t)≡ 0, we obtain

〈λ (t),M f (z∗(t))〉 ≡ −MS ≡ 〈λ (t),Sg(z∗(t))〉

so that
〈λ (t),M f (z∗(t))− Sg(z∗(t))〉 ≡ 0.

Furthermore, it follows from Proposition 8.2.2 that

Φ̇(t) = 〈λ (t), [ f ,g](z∗(t))〉 ≡ 0

on I. Since λ ∈ (R2
)∗

is nontrivial, the vector fields M f − Sg and [ f ,g] must be
linearly dependent when the optimal control is singular. Hence a singular arc must
lie in the zero set of the determinant,

det(M f (z)− Sg(z), [ f ,g](z)) = 0. (8.23)

Proposition 8.3.1. For the optimal control problem [CI1], the singular curve S is
contained in the zero set of a function W = W (p,r) which is quadratic in r with
coefficients that are functions of p,

W (p,r) = w2(p)r2 +w1(p)r+w0(p),

given by

w0(p) =−Mγξ pF ′(p),

w1(p) = [MξF(p)+ Sκ ]α(p− 2β p2)− ξ pF ′(p)M
(
α
(

p−β p2)− δ
)
,

w2(p) =−Mθα
(

p− 2β p2) .
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Proof. The Lie bracket [ f ,g] is given by

[ f ,g](z) = Dg(z) f (z)−D f (z)g(z)

=

⎛

⎝
−κξ pF(p)+κθ pr

0

⎞

⎠−
⎛

⎝
−κξ p(F(p)+ pF ′(p))+κθ pr

−κα (1−2β p) pr

⎞

⎠

= κ p

⎛

⎝
ξ pF ′(p)

α(1− 2β p)r

⎞

⎠ .

Hence

det(M f (z)−Sg(z), [ f ,g](z)) = κ p

∣
∣
∣
∣
∣
∣

M (ξ pF(p)−θ pr)+ Sκ p ξ pF ′(p)

M
(
α
(

p−β p2
)

r+ γ− δ r
)

α(1−2β p)r

∣
∣
∣
∣
∣
∣

= κ p ·W(p,r)

with the function W defined by the determinant on the right-hand side. Multiplying
out the terms verifies the functional form and the coefficients specified above. �

Because W is quadratic in r, for every fixed value of p, the singular curve S
contains at most two points in M. For a Gompertzian growth model we have that

pF ′
G(p)≡−1 and for the generalized logistic model we get pF ′

L(p) =−ν
(

p
p∞

)ν
. In

either case, the coefficient w0(p) is always positive. The quadratic coefficient w2(p)
does not depend on the growth function and is negative for p < 1

2β and positive for

p > 1
2β . In particular, for p < 1

2β there exist two real solutions, one positive, one
negative. Only the positive one is of interest for the problem and thus the singular
curve S is the graph of a function over the interval (0, 1

2β ). Whether solutions exist

for p > 1
2β depends on the actual parameter values. Analytic formulas for r as a

function of p can still be written down, but they get unwieldy.
We still compute the Legendre-Clebsch condition for optimality of a singular arc.

By Proposition 8.2.2 the second derivative of the switching function is given by

Φ̈(t) = 〈λ (t), [ f , [ f ,g]](z∗(t))〉+ u(t)〈λ (t), [g, [ f ,g]](z∗(t))〉

and it is a necessary condition for optimality of a singular control u∗ that

〈λ (t), [g, [ f ,g]](z∗(t))〉 ≤ 0.
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This Lie bracket is given by

[g, [ f ,g]](z) = D([ f ,g]) (z)g(z)−Dg(z)[ f ,g](z)

=−κ p

⎛

⎝
κξ
(
2pF ′(p)+ p2F ′′(p)

)

κα (1− 4β p)r

⎞

⎠+κ p

⎛

⎝
κξ pF ′(p)

0

⎞

⎠

=−κ2 p

⎛

⎝
ξ
(

pF ′(p)+ p2F ′′(p)
)

α (1− 4β p)r

⎞

⎠ .

We now need to analyze the different growth functions separately. For the Gom-

pertzian model, FG(p) =− ln
(

p
p∞

)
, we have that

pF ′
G(p)≡−1 and pF ′

G(p)+ p2F ′′
G(p)≡ 0.

Hence the Lie brackets are given by

[ f ,g](z) = κ p

⎛

⎝
−ξ

α(1− 2β p)r

⎞

⎠

and

[g, [ f ,g]](z) =−κ2 p

⎛

⎝
0

α (1−4β p)r

⎞

⎠ .

Furthermore, a direct computation verifies that [ f , [ f ,g]] takes the form

[ f , [ f ,g]](z) = κ p

⎛

⎜
⎝

−ξ 2 +αθ (p−2β p2)r

−α(1− 4β p)r
[
ξ ln
(

p
p∞

)
+θ pr2

]
+(γ− ξ r)α(1−2β p)r

⎞

⎟
⎠ .

The vector fields g and [ f ,g] are linearly independent unless p = 1
2β . For p =

1
2β there does not exist a point on the singular curve: it follows from Φ̇(t) =

−λ1(t)
κξ
2β = 0 that λ1(t) = 0 and thus Φ(t) = M > 0. For p = 1

2β , we can express
the second-order brackets [ f , [ f ,g]] and [g, [ f ,g]] as linear combinations of this basis
in the form

[ f , [ f ,g]](z) = ϕ1(z)g(z)+ϕ2(z)[ f ,g](z) (8.24)

and
[g, [ f ,g]](z) = ψ1(z)g(z)+ψ2(z)[ f ,g](z). (8.25)

Along a singular arc 〈λ (t),g(z∗(t))〉=−M < 0 and 〈λ (t), [ f ,g] (z∗(t))〉= 0. Hence

〈λ (t), [g, [ f ,g]] (z∗(t))〉=−Mψ1(z∗(t))
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and thus the Legendre-Clebsch condition is satisfied if and only if ψ1(z∗(t)) is non-
negative. Direct computations verify that

ψ1(z) = κξ
1− 4β p
1− 2β p

and ψ2(z) =−κ
1−4β p
1−2β p

. (8.26)

Thus the strengthened Legendre-Clebsch condition is satisfied for 0 < p < 1
4β and

1
2β < p and it is violated for 1

4β < p < 1
2β .

By solving the equation Φ̈(t) = 0 for u, the singular control can again formally
be expressed as

using(t) =−〈λ (t), [ f , [ f ,g]](z∗(t))〉
〈λ (t), [g, [ f ,g]](z∗(t))〉 .

Using the representations for the second order brackets, this simplifies to

using(t) =−ϕ1(z∗(t))
ψ1(z∗(t))

. (8.27)

Overall, we therefore get the following result:

Proposition 8.3.2. For the optimal control problem [CI1] with a Gompertzian

growth rate FG(p) = − ln
(

p
p∞

)
, the control that keeps the singular curve S in-

variant is given in feedback form as

using(t) =−ϕ1(z∗(t))
ψ1(z∗(t))

with the coefficients ϕ1 and ψ1 defined through the relations (8.24) and (8.25). This
control is admissible if and only if its value lies in the interval [0,1]. The strength-
ened Legendre-Clebsch condition is satisfied for p < 1

4β and 1
2β < p, and it is vio-

lated for 1
4β < p < 1

2β .

Based on the formulas derived above, the singular arc, the singular control, and
their admissible portions can easily be evaluated numerically. Note that, given a
point z∗(t) ∈ S , the equations Φ(t) = 0 and Φ̇(t) = 0 have a unique solution for
the multiplier λ (t) and if the singular control is admissible, this locally defines a
singular arc along which the strengthened Legendre-Clebsch condition is satisfied.
In Figure 8.6 we illustrate the structure of the singular curves for the data from
Table 8.1 and several parameter values C and S for the objective.

For the generalized logistic growth rate, FL(p) = 1−
(

p
p∞

)ν
, ν > 0, we have that

pF ′
L(p) =−ν

(
p

x∞

)ν
and p2F ′′

L (p) =−ν (ν−1)

(
p

p∞

)ν
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Fig. 8.6 Examples of singular curves for problem [CI1] with a Gompertzian growth function. The
admissible portions are identified by the solid segments.

and thus

[ f ,g](z) = κ p

⎛

⎜
⎝

−ξν
(

p
p∞

)ν

α (1− 2β p)r

⎞

⎟
⎠

and

[g, [ f ,g]](z) =−κ2 p

⎛

⎜
⎝

−ξν2
(

p
p∞

)ν

α (1−4β p)r

⎞

⎟
⎠ .

Proposition 8.3.3 ([187]). For the optimal control problem [CI1] with a generalized

logistic growth rate FL(p) = 1−
(

p
p∞

)ν
, ν > 0, singular controls are of order 1 and

the strengthened Legendre-Clebsch condition is satisfied if and only if

ν <
1− 4β p∗(t)
1− 2β p∗(t)

. (8.28)

Proof. Suppose the control u∗ is singular over an open interval I. Then Φ(t) ≡ 0
on I, i.e., λ1(t)κ p∗(t) ≡ M > 0, implies that λ1 is positive along a singular arc.
Furthermore, Φ̇(t)≡ 0 on I gives that

λ2(t)α (1− 2β p∗(t)) r∗(t)≡ λ1(t)ξν
(

p∗(t)
p∞

)ν
> 0.

Evaluating the Legendre-Clebsch condition, and using this relation to eliminate the
multiplier λ2, we therefore obtain that
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〈λ (t), [g, [ f ,g]](z∗(t))〉

= κ2
{

λ1(t)ξ
(

p∗(t)
p∞

)ν
ν2 p∗(t)+λ2(t)α

(
4β p2

∗(t)− p∗(t)
)

r∗(t)
}

= κ2λ1(t)p∗(t)

⎧
⎪⎨

⎪⎩
ξ
(

p∗(t)
p∞

)ν
ν2 +

ξ
(

p∗(t)
p∞

)ν
ν

1−2β p∗(t)
(4β p∗(t)−1)

⎫
⎪⎬

⎪⎭

= κ2λ1(t)ξ
(

p∗(t)
p∞

)ν
ν p∗(t)

{

ν− 1−4β p∗(t)
1−2β p∗(t)

}

. (8.29)

Since λ1(t) is positive along a singular arc, this implies that the Legendre-Clebsch
condition is satisfied if and only if (8.28) is satisfied. �

This determines the following intervals along which an optimal control can be
singular dependent on the parameter ν .

Corollary 8.3.1. Suppose an optimal control u∗ for the optimal control problem
[CI1] with a generalized logistic growth rate is singular at time t. Then, it follows
that

1. if 0 < ν < 1, we have either 0 ≤ β p∗(t)< 1
2

1−ν
2−ν < 1

4 or 1
2 < β p∗(t),

2. if 1 ≤ ν ≤ 2, then 1
2 < β p∗(t) and

3. if ν > 2, then 1
2 < β p∗(t)< 1

2
1−ν
2−ν . �
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∨

Fig. 8.7 The highlighted region represents the intervals (horizontally, for fixed value of ν and
scaled as β p) on which the Legendre-Clebsch condition for minimality of singular arcs is satisfied.

These relations readily follow from condition (8.28) and are illustrated in Figure
8.7. In the limiting case ν → 0 we obtain that the Legendre-Clebsch condition is
satisfied for β p in the intervals [0, 1

4 )∪ ( 1
2 ,∞) and this agrees with Proposition 8.3.2

for a Gompertzian growth function. As ν increases, these intervals continuously
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shrink until, in the limit ν → ∞, for exponential growth singular controls are no
longer optimal. The computation of the singular control is exactly as for the case of
a Gompertzian function and the same formula (8.27) is valid, albeit with different
functions ψ1 and ϕ1.

8.3.2 Optimal Controlled Trajectories for Gompertzian Growth

Since the Hamiltonian H vanishes identically, it follows from the transversality con-
ditions λ1(T ) = A and λ2(T ) = −B that the terminal points of optimal controlled
trajectories need to lie on specific curves.

Lemma 8.3.1. If the optimal control ends with a segment where u = 0 or the control
is singular, u = using, then the terminal point (p∗(T ),r∗(T )) lies on the curve

A

(

−ξ p ln

(
p

x∞

)

−θ pr

)

−B
(
α
(

p−β p2)r+ γ− δ r
)
+S = 0; (8.30)

if it ends with a segment for u = 1, then it lies on the curve

A

(

−ξ p ln

(
p

p∞

)

−θ pr−κ p

)

−B
(
α
(

p−β p2) r+ γ− δ r
)
+M+S = 0.

(8.31)

Generally, optimal controls need to be synthesized from bang and singular arcs.
In this section, we give examples of optimal controlled trajectories for different sce-
narios that show the typical structures of the solutions. Optimal controls for problem
[CI1] are no longer bang-bang and the potential presence of optimal singular arcs
makes numerical computations challenging. There exists a large literature on algo-
rithms that solve optimal control problems when the Hamiltonian is quadratic (cf.,
Chapter 4) or more generally positive definite in the controls, but numerical methods
and software for problems that would include optimal singular arcs and, especially,
concatenations with bang controls, is relatively scarce. The numerical difficulties lie
with the fact that typically, as it is the case for the problem considered here, singu-
lar controls are only optimal on lower dimensional submanifolds and without any a
priori information about these structures, numerical algorithms just are not able to
locate these sets. ’Solutions’ often exhibit chattering, i.e., controls that seemingly
switch rapidly between various values, not necessarily the extreme points 0 and 1
of the control interval (e.g., see Figure 6.26 in Chapter 6). These are tell-tale signs
of optimal singular arcs. For the computations reported in this section2 we used
the classical ε-algorithm approach in which a quadratic penalty term ε

∫ T
0 u2(t)dt is

added to the objective and then the optimal controls for the underlying problem are
recovered in the limit as ε → 0 [15]. For the first step in the computations we also

2 The numerical computations were carried out by our former graduate students Mohammad Nagh-
neian and Mozhdeh Moselman Faraji Sadat.
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used GPOPS (General Pseudo-spectral OPtimal Control Software), an open-source
MATLAB optimal control software that implements the Gauss hp-adaptive pseudo-
spectral methods (http://www.gpops.org/, [284]). In these algorithms the
state is approximated using a basis of Lagrange polynomials and the dynamics at
the Legendre-Gauss nodes is collocated [19, 20, 129]. The continuous-time optimal
control problem is then transformed into a finite-dimensional nonlinear program-
ming problem that is being solved using standard algorithms. These type of algo-
rithms are especially effective to find controls that lie in the interior of the control set
like the singular controls for our problem, but they have issues when the controls are
discontinuous as it is the case here for the concatenations of the singular controls
with bang controls. The analytic formulas derived above allow us to verify whether
a numerically found solution for interior controls is accurate in the sense that the
corresponding controlled trajectories follow the singular curve S along singular
controls. While these computations thus are not able to determine the optimal solu-
tions completely, they are accurate enough to determine optimal finite concatenation
structures. Then a subsequent local optimization over the switching times completes
the computation of the optimal solutions. This algorithm based on GPOPS generates
local minima and, when there were more than one candidate, a simple comparison
of the values was done to obtain the best of these solutions that we describe below.

We illustrate the changes in the structure of optimal controls as we vary the co-
efficients M and S in the objective. The coefficients A and B are chosen according
to the stable eigenvector of the saddle point and are kept constant at A = 0.00192
and B = 1; so is the numerical value chosen for κ , κ = 1. In our computations, we
always use the same initial condition given by (p0,r0) = (600,0.1). The initial tu-
mor volume p0 denotes a multiple of some reference value and represents a tumor
cell count that is 600 times higher than some chosen base value (say 106 cells); r0

is a dimensionless, order-of-magnitude quantity that represents a depletion of the
immuno-competent cell densities to 10% of a nominal value. These initial condi-
tions lie well within the malignant region and initially in each scenario considered
below the control is given by u ≡ 1 for some interval [0, t1].

Scenario 1: If the penalty on the terminal time T is large relative to the side-
effects of treatment, S � M, this term becomes dominant and the optimal control is
simply constant given by a full dose treatment, u ≡ 1. Figure 8.8 shows an example
for this kind of trajectory with M = 0.001 and S = 0.28. The initial and terminal
points are labeled in the figure as z0 = (p0,r0) and zT = (pT ,rT ), respectively. It
is noticeable that with such a high cost on the terminal time, the optimal trajectory
barely crosses into the benign region. A blow-up of the trajectory near the terminal
point is given in the small box inserted into the figure. Yet, assuming the dynamics
follows the uncontrolled system after the final time T , the state then converges to
the benign equilibrium point. The figure also shows the potential singular arc for
these coefficients which in this range is the graph of a function with its admissible
portion identified by the solid green segment. For these parameter values, the opti-
mal solution terminates exactly at the time when the singular arc is reached, but this
is a mere coincidence without significance. This figure, as well as the ones given
below, also identifies the two curves defined in equations (8.30) and (8.31) where an

http://www.gpops.org/
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Fig. 8.8 Optimal controlled trajectory for M = 0.001 and S = 0.28. The corresponding control is
constant, u∗(t)≡ 1.

optimal control satisfies the required transversality conditions for ending with u = 0
and u = 1, respectively. The terminal point needs to lie on this curve according to
the final value of the control being used.

Scenario 2: As the penalty S for the time used is decreased, the optimal controlled
trajectory starts from z0 = (p0,r0) with an initial maximum dose chemotherapy seg-
ment, u ≡ 1, until the singular curve S is reached. At that time, the control changes
and becomes singular. Optimal controlled trajectories then follow the singular arc
from the malignant into the benign region across the separatrix. In the benign re-
gion, at a certain time τ the control switches to u ≡ 0 and follows the uncontrolled
trajectory toward the benign equilibrium point. In some situations, optimal controls
still switch one more time to a short full dose chemotherapy segment toward the end
of treatment, possibly after a prolonged period of rest. We use the notation 1s0, re-
spectively 1s01, to label such concatenation sequences of the optimal controls. That
is, an 1s01-trajectory starts with an interval [0, t1] when the control is at maximum
dose rate, u ≡ 1, followed by an interval [t1,τ] where the control is singular and the
trajectory follows an admissible singular arc. The optimal behavior then includes a
rest period over an interval [τ,σ ] when no drugs are given, u ≡ 0. For chemother-
apeutic agents with low side effects, the overall therapy session ends with another
short burst of full dose chemotherapy over a final interval [σ ,T ]. This structure can
also be used to define a three-dimensional minimization problem over the variables
(τ,σ ,T ) whose numerical solution defines the optimal control. Overall, a concate-
nation sequence for the control of at most the form 1s01 results.

Figure 8.9 shows three examples of numerically optimal controlled trajectories
for (M,S) = (0.001,0.23), (M,S) = (0.01,0.2) and (M,S) = (0.05,0.2). As before,
we label the initial and terminal conditions as z0 = (p0,r0) and zT = (pT ,rT ),
respectively, and we mark the consecutive switching points by black dots. In the
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Fig. 8.9 Three examples of numerically computed optimal controlled trajectories whose controls
follow the concatenation structure 1s01 for (M,S) = (0.001,0.23) (top), (M,S) = (0.01,0.2) (mid-
dle), and (M,S) = (0.05,0.2) (bottom).
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range where the singular arc comes into play, it is the graph of a function and the
figure also identifies its admissible segment.

Scenario 3: If the penalty on the chemotherapeutic agent is increased further,
the last full dose therapy segment disappears and the structure of optimal controlled
trajectories reduces to 1s0. Increasing the parameter M gives a stronger role to the
side effects and in this case the optimal trajectory ends on the curve (8.30) that
defines the terminal values for the control u = 0. This situation is rather typical and
we illustrate it for the two cases (M,S) = (0.05,0.01) and (M,S) = (0.05,0.05) in
Figure 8.10.

Fig. 8.10 Two examples of numerically computed optimal controlled trajectories whose controls
follow the concatenation structure 1s0 for (M,S) = (0.05,0.01) (top) and (M,S) = (0.05,0.05)
(bottom).
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8.3.3 Comments and Interpretation

There are some interesting theoretical insights about optimal therapies in the pres-
ence of tumor immune interactions that can be drawn from these numerical compu-
tations. Firstly, by including a penalty term on the final time T , we obtain a well-
posed formulation for which optimal controls exist. If too much prominence is given
to this penalty, optimal controls simply will be constant maximum dose therapies,
i.e., if time is of the essence, give as much as you can as soon as you can. However,
if the time horizon is longer and the coefficient at the terminal time is lowered, opti-
mal responses are concatenations that start with a full dose therapy session, but then
are followed by a segment when the dose rates are lowered and given according to a
singular control. As some of the examples given above show, during such a period
it is even possible that the tumor volume p increases. However, the immunocompe-
tent density r increases as well and this leads to an overall better state that lies in the
benign region. Thus, optimal controls no longer aim at eradicating the tumor, but
rather are content to move the state of the system into a region where the beneficial
actions of the innate immune system are able to control the cancer. These strate-
gies correspond to protocols that initially apply a burst of chemotherapy to reduce
the tumor volume and then sustain a smaller volume with reduced dosages. In the
medical literature, such protocols have been considered under the terminology of
“chemo-switch” strategies. The additional, and usually very short burst of full dose
chemotherapy that marks the end of some of these therapies also is quite interesting.
While this may appear a bit odd at first, there indeed exist practical chemotherapy
protocols that, based on the physicians experience, follow such a pattern.

With the prominent role played by the singular arc, these solutions for model
[CI1] contrast with the optimal bang-bang controls for cell cycle specific models for
cancer chemotherapy considered earlier when tumor-immune system interactions
were not taken into account. It is the mitigating influence of the immune system
which, for smaller tumor volumes, leads to the abandonment of the strict bang-bang
scheme that is seen in the cell cycle specific models. Intuitively, if the system is in a
condition where it is able to control the cancer itself, why administer chemotherapy
if this might destroy this innate ability of the organism? Thus, despite the model’s
simplicity, its solutions address the important practical question how to schedule
therapies over time and lead to some qualitative structures that give some ideas
about designing treatment protocols for more complex models.

8.3.4 Combination Treatment: Targeted Chemotherapy
with Immune Boost

We now add rudimentary immunotherapy in the form of an immune boost (e.g.,
application of a drug based on the interleukin family) to the model. The system
thus takes the multi-input form (8.10) with two controls u and v and we label the
corresponding optimal control problem [CI2]. Figure 8.11 shows the phase-portraits
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for the corresponding system for a Gompertzian growth function when no agents
are used (left) and when only an immune boost at constant maximum dose is used
(right). As before, the parameters for the dynamics are from Table 8.1 and in the
control vector field for the immune boost we choose ρ = 1. The uncontrolled sys-
tem shows the typical bistable behavior which is preserved under the immune boost.
The malignant region shrinks with the immune boost, but immunotherapy alone is
not able to eliminate it and thus control the tumor. The stable manifold of the saddle
at (ps,rs) = (555.1,0.191) still separates a region where the immune system, aided
by the immune boost, can eliminate the cancer (here the r-values of the system ap-
proach +∞ while p converges to 0 from the right) from a region where the cancer
eventually will dominate and trajectories converge to the asymptotically stable ma-
lignant equilibrium point (pm,rm) = (715.6,0.048).
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Fig. 8.11 Phase-portraits for a Gompertzian growth function when no agents are used (left) and
when only an immune boost at constant maximum dose is used (right).

An important feature of the optimal control problem [CI2] is that the con-
trol vector fields g1 and g2 commute (see (8.22)). This implies that the deriva-
tives of the switching functions, Φ1(t) = M + 〈λ (t),g1(z∗(t))〉 for u and Φ2(t) =
N + 〈λ (t),g2(z∗(t))〉 for v, are given by

Φ̇i(t) = 〈λ (t), [ f ,gi](z(t))〉 , i = 1,2. (8.32)

In particular, these derivatives do not depend on the controls u or v and thus can be
differentiated once more. It follows from Proposition 8.2.2 that

Φ̈i(t) = 〈λ (t), [ f + ug1+ vg2, [ f ,gi]](z(t))〉 , i = 1,2.

From above, we have that

[ f ,g1](z) = κ p

⎛

⎝
ξ pF ′(p)

α(1− 2β p)r

⎞

⎠
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and

[ f ,g2](z) = Dg2(z) f (z)−D f (z)g2(z)

=

⎛

⎝
0

ρα
(

p−β p2
)

r+ γ− δ r

⎞

⎠−
⎛

⎝
−ρθ pr

ρ
(
α
(

p−β p2
)− δ

)
r

⎞

⎠= ρ

⎛

⎝
θ pr

γ

⎞

⎠

does not depend on the particular growth model F used. Furthermore,

[g1, [ f ,g2]](z) = D([ f ,g2]) (z)g1(z)−Dg1(z)[ f ,g2](z)

= ρ

⎛

⎝
θ r θ p

0 0

⎞

⎠

⎛

⎝
−κ p

0

⎞

⎠−ρ

⎛

⎝
−κ 0

0 0

⎞

⎠

⎛

⎝
θ pr

γ

⎞

⎠≡ 0

and also

[g2, [ f ,g1]](z) = D([ f ,g1]) (z)g2(z)−Dg2(z)[ f ,g1](z)

=

⎛

⎝
0

κα
(

p− 2β p2
)
ρr

⎞

⎠−
⎛

⎝
0

ρκα
(

p−2β p2
)

r

⎞

⎠≡ 0.

Thus, regardless of the tumor growth model used, we have that the second deriva-
tives of the switching functions are given by

Φ̈1(t) = 〈λ (t), [ f + ug1, [ f ,g1]](z∗(t))〉 (8.33)

and
Φ̈2(t) = 〈λ (t), [ f + vg2, [ f ,g2]](z∗(t))〉 . (8.34)

The Lie bracket relations of the vector fields therefore decouple the controls u
and v in the first two derivatives of the switching functions. In particular, the gen-
eral formulas derived above for a singular control for the chemotherapeutic agent
u remain valid, but with the one change that the equation H ≡ 0 now involves the
second control v∗ and thus reads

H = S+ 〈λ (t), f (z∗(t))〉+ v∗(t)(N + 〈λ (t),g2(z∗(t))〉)≡ 0.

Proposition 8.3.4. Optimal controls v∗ are not singular on any interval.

Proof. Suppose the control v∗ is singular on an open interval I. Regardless of the
specific form of the control u∗, by the Legendre-Clebsch condition it is a necessary
condition for optimality of v∗ that

∂
∂v

d2

dt2

∂H
∂v

(λ (t),z∗(t),u∗(t),v∗(t)) = 〈λ (t), [g2, [ f ,g2]](z(t))〉 ≤ 0 on I.
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On I we have that

Φ2(t) = N + 〈λ (t),g2(z∗(t))〉 ≡ 0 and Φ̇2(t) = 〈λ (t), [ f ,g2](z∗(t))〉 ≡ 0.

The vector fields g2 and [ f ,g2] are linearly independent on M and can therefore be
used as a basis for the higher order Lie brackets. We write the second-order Lie
bracket [g2, [ f ,g2]] as a linear combination of g2 and [ f ,g2] in the form

[g2, [ f ,g2]](z) = ω1(z)g2(z)+ω2(z)[ f ,g2](z)

with smooth functions ω1 and ω2. We have that

[g2, [ f ,g2]](z) = D([ f ,g2])(z)g2(z)−Dg2(z)[ f ,g2](z)

= ρ
(
θ r θ p
0 0

)(
0
ρr

)

−ρ
(

0 0
0 ρ

)(
θ pr
γ

)

= ρ2
(
θ pr
−γ

)

,

and solving the equations

ρ
(
θ pr
−γ

)

= ω1(z)

(
0
r

)

+ω2(z)

(
θ pr
γ

)

yields

ω1(z) =−2ργ
r

and ω2(z) = ρ .

Hence it follows along a singular control v∗ that

〈λ (t), [g2, [ f ,g2]](z∗(t))〉= ω1(z∗(t))〈λ (t),g2(z∗(t))〉
+ω2(z∗(t))〈λ (t), [ f ,g2](z∗(t))〉

= ω1(z∗(t))(−D)+ω2(z∗(t)) ·0
=

2Nργ
r∗(t)

> 0

violating the Legendre-Clebsch condition. �

Thus, for a singular control u∗, we only need to consider the cases v∗ = 0 and
v∗ = 1. If v = 0, we have the earlier situation with the same formulas valid verbatim.
For v = 1 we now get that

det(M ( f (z)+ g2 (z))− (N + S)g1(z), [ f ,g1](z)) = 0

and this expression is equal to

det(M f (z)−Sg1(z), [ f ,g1](z))+M det(g2 (z) , [ f ,g1](z))−N det(g1(z), [ f ,g1](z)) .
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The first term corresponds to the expression computed earlier and the other terms
are given by

det(g2 (z) , [ f ,g1](z)) = κρ pr

∣
∣
∣
∣
∣
∣

0 ξ pF ′(p)

1 α(1− 2β p)r

∣
∣
∣
∣
∣
∣
=−κρξ p2F ′(p)r

and

det(g1(z), [ f ,g1](z)) = κ p

∣
∣
∣
∣
∣
∣

−κ p ξ pF ′(p)

0 α(1− 2β p)r

∣
∣
∣
∣
∣
∣
=−κ2α(p−2β p2)pr.

Hence, if we write

det(M ( f (z)+ g2 (z))− (N + S)g1(z), [ f ,g1](z))

= κ p ·Q(p,r) = κ p · (q2(p)r2 + q1(p)r+q0(p)
)
,

then Q differs from W only in the linear term which now is given by

q1(p) = α(p−2β p2) [MξF(p)+ (N + S)κ ]−Mξ pF ′(p)
[
α(p−β p2)− δ +ρ

]

with q0 ≡ w0 and q2 ≡ w2.
Based on the formulas derived above, the singular arc, the singular control, and

their admissible portions can easily be evaluated numerically. As an illustration,
Figure 8.12 shows how the singular curve S changes from v ≡ 0 (blue curve)
to v ≡ 1 (red curve) for the parameter values from Table 8.1 for the dynamics,
κ = 2 and ρ = 1, and the coefficients M = 0.036, N = 0.007 and S = 0.036 for
the objective.

Fig. 8.12 The singular curve S for the chemotherapeutic agent u with constant controls v ≡ 0
(blue curve) and v ≡ 1 (red curve).
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Scenario 4: Figure 8.13 shows an optimal control (top) and its corresponding
trajectory (bottom) for the same parameter values for the dynamics as before and
coefficients κ = 2 and ρ = 1 in the control vector fields. Also, the initial con-
dition is the same as before, (p0,r0) = (600,0.1). The objective is defined with
A = 0.00192 and B = 1 (coming from the stable eigenvector of the saddle for the
uncontrolled system) and we have chosen the other weights as M = 0.01, N = 0.025
and S = 0.001. For these weights, both the side effects of chemotherapy and the im-
mune boost are significant. Chemotherapy has overall the better effectiveness and
becomes the dominant therapy. Initially, chemotherapy is given at full dose with-
out any immune boost. However, already after a brief time interval, as the state of
the system nears the separatrix, chemotherapy is reduced drastically and is only ad-
ministered at lower dose rates according to the singular control using. Once more
the “chemo-switch” type behavior of administration of a chemotherapeutic agent is
seen as optimal. In the figure on the right the corresponding switching points are
indicated on the trajectory by a red asterisk. Once a “safe” distance to the separatrix
has been established, chemotherapy is turned off and the system follows the un-
controlled trajectory toward the benign stable equilibrium point. This portion of the
trajectory closely follows the unstable manifold of the saddle for the uncontrolled
system and is labeled a “free pass” in Figure 8.13. Along this trajectory, only a small
penalty for the time is incurred. Toward the end, when the cancer volume is already
quite small, it becomes beneficial to give an immune boost with the precise timing
depending on the penalty S given to the terminal time. The two green asterisks on
the corresponding trajectory mark the beginning and end of the arc generated by the
action of the immune boost. Toward the end, as it was the case in scenario 2, another
short full dose chemotherapy session starting at the point marked on the trajectory
with a red star reduces the cancer volume further. Thus for this choice of weights
in the objective, chemotherapy is the dominant portion and overall for the admin-
istration of the chemotherapeutic agent we have a concatenation structure for the
optimal controls of the form 1s01 with 1 and 0 denoting full dose and no dose seg-
ments, respectively, and s denoting an interval along which the optimal control u∗ is
singular. Immunotherapy is only used as an additional tool once the cancer volume
has become small so that the tumor-immune interactions become significant and for
the immune boost the concatenation structure for the controls is 010.

8.4 Toward Metronomic Chemotherapy: A Mathematical Model
with Antiangiogenic and Immune Stimulatory Effects

There exists medical evidence that low-dose chemotherapy, while it still has mod-
erate cytotoxic effects on cancerous cells in the absence of significant negative
side effects, has both antiangiogenic and immune stimulatory effects (e.g., see
[9, 24, 39, 118, 162, 277] as well as the survey article [272] and editorial [273]).
This has led to the concept of metronomic chemotherapy. Essentially, this is the al-
most continuous administration of chemotherapeutic agents at significantly lower
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Fig. 8.13 Optimal controls (top) and corresponding trajectory (bottom) for scenario 4. The stars
in the panel on the right indicate the points when switchings in the optimal controls occur (red
asterisks for switchings in the chemotherapy, green asterisks for switchings in the immunotherapy).
The curve gives the response of the system to the optimal controls.

dose rates than MTD, possibly with small interruptions to increase the efficacy of
the drugs. The hope is that, in the absence of limiting side effects, it is possible
to give chemotherapy over prolonged time intervals so that, because of the greatly
extended time horizon, the overall effect may be improved when compared with
repeated short MTD doses [136, 341]. Furthermore, while low dose chemotherapy
seems to have an immune stimulatory effect, high dose chemotherapy simply sup-
presses the immune system taking out another factor that could be utilized in fight-
ing the tumor. Higher doses thus may not only be more harmful to the healthy cells,
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but they may also adversely effect the immune system which otherwise would have
come to the assistance in combating the tumor.

Several mathematical models that explore the efficiency of a metronomic versus
an MTD-type administration of chemotherapy have been formulated and analyzed
going back to the paper [117] by Hahnfeldt, Folkman and Hlatky. We have already
seen in Chapter 3 that, as tumor populations become more heterogeneous, mathe-
matically optimal strategies favor lower concentrations of the agents (e.g., see the
review articles [211, 212] and the references quoted therein). More recently, Ben-
zekry et al. [21] and Benzekry and Hahnfeldt [23] also have analyzed the impact
of such types of protocols on metastatic spreading of cancers and found that metro-
nomic dosing generally does better. Thus there exists increasing evidence which,
under certain conditions, would support a metronomic scheduling of chemothera-
peutic drugs.

In this section, we close our analysis with formulating a model for low-dose
chemotherapy that combines Stepanova’s model for tumor-immune system interac-
tions with Hahnfeldt’s model [H] for angiogenic signaling to consider the full anti-
tumor, antiangiogenic and immune stimulatory effects. We carry out a dynamical
systems analysis of the equilibria—including regions of attraction of stable equi-
libria and bifurcation phenomena—and provide a comprehensive overview of the
dynamical systems properties of the model for the full range of parameters. We
close with a brief discussion of optimal controls for this combined model.

8.4.1 A Minimally Parameterized Mathematical Model
for Metronomic Chemotherapy

Combining the mathematical model [H] of tumor growth under angiogenic signaling
with the above model for tumor-immune system interactions we obtain the follow-
ing equations:

ṗ =−ξ p ln

(
p
q

)

−θ pr,

q̇ = p−
(
μ+ d p

2
3

)
q,

ṙ = α
(

p−β p2)r+ γ− δ r.

As before p denotes the primary tumor volume, q the carrying capacity of its vas-
culature and r the immunocompetent cell density. All other symbols in these equa-
tions denote constant coefficients which have the same meaning as in the previous
chapters. We now add constant, low-dose chemotherapy to this model. In such a
case, there is no need to add the standard linear pharmacokinetic model. For, if
we denote the dose rate of the chemotherapeutic agent by u and its concentration
by c, ċ = −ωc+ u, the concentration quickly saturates at the steady-state value
c∗(u) = u

ω . It is therefore possible to absorb the coefficient ω in the constant for
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the pharmacodynamic model and we thus identify u with c while retaining u as
the variable. Using the linear log-kill hypothesis [298, 343], the influence of the
chemotherapeutic agent on the tumor volume and its carrying capacity therefore
take the form −ϕ1 pu and −ϕ2qu, respectively. Accordingly, we also use ϕ3ru to
model the immune stimulatory effect of chemotherapy. For our theoretical analysis
below, we do not make any assumptions on the relations between the parameters
ϕi, but for low dose metronomic chemotherapy typically the antiangiogenic effect
is dominant while the cytotoxic and pro-immune effects are lower. Overall, the con-
trolled equations take the following form:

ṗ =−ξ p ln

(
p
q

)

−θ pr−ϕ1pu, (8.35)

q̇ = bp−
(
μ+ d p

2
3

)
q−ϕ2qu, (8.36)

ṙ = α
(

p−β p2)r+ γ− δ r+ϕ3ru. (8.37)

We shall give a complete analysis of the dynamical systems properties of this
model (equilibria, stability, bifurcations). The state-space for the model is the posi-
tive octant P= R

3
+ = {(p,q,r) : p > 0,q > 0,r > 0}. It follows from general results

of ODEs that the solution (p(t),q(t),r(t)) with initial condition (p0,q0,r0) ∈ P ex-
ists, forward in time, on a maximal interval [0,τ). The equations imply that the
solutions remain positive over the interval of existence, but it is possible that trajec-
tories converge to the tumor free equilibrium point, (p(t),q(t),r(t))→ (0,0, γ+ϕ3u

δ )
as t → τ . This corresponds to the medical situation when the low-dose metronomic
chemotherapy is able to eradicate the tumor and its vasculature while upregulating
the immune system.

A complete analysis of the dynamical properties of the two separate systems that
make up this model has been given before. It follows from the results in Chapter 5
that the model for angiogenic signaling (consisting of equations (8.35) and (8.36)
with θ = 0) is well posed in the region {p > 0,q > 0} and has a unique globally

stable equilibrium point at (p̄, q̄) =

((
b−μ−ϕ2u

d

) 2
3
,
(

b−μ−ϕ2u
d

) 2
3
)

if b > μ +ϕ2u

while all solutions converge to (0,0) if b ≤ μ+ϕ2u. For u = 0, and, more generally,
for low values of u, this corresponds to a malignant situation when the equilibrium
point represents death of the patient. In the other extreme, for large values of u,
constant chemotherapy (while ignoring side effects) would be able to eradicate the
disease. For a Gompertzian tumor growth model, de Vladar and Gonzalez [334]
have carried out a complete analysis of the submodel defined by equations (8.35)
and (8.37) and for this model, depending on the parameter values, various equilib-
rium structures are possible that include a multi-stable scenario when both locally
asymptotically stable and unstable equilibria persist very much like it was described
in Section 8.1. We shall see that these features of the two models combine and for
the model (8.35)–(8.37) we have scenarios that range from a unique, asymptotically
stable benign equilibrium point (that represents a situation of immune surveillance)
to a multi-stable situation with both benign and malignant equilibria to the situation
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when only a unique, asymptotically stable malignant equilibrium point (that repre-
sents death of the patient) exists like for the uncontrolled model [H].

8.4.2 Static Bifurcations

We begin with the analysis of the static bifurcations, i.e., changes in the number of
equilibria. Recall that we call an equilibrium point positive if it has a positive tumor
volume p. For any equilibrium point (p∗,q∗,r∗) of the system (8.35)–(8.37) in P we
have that

r∗ =− 1
θ

(

ξ ln

(
p∗
q∗

)

+ϕ1u

)

and q∗ =
bp∗

μ+ϕ2u+d p
2
3∗
. (8.38)

Given p∗, these equations define the remaining coordinates of the equilibrium point,
q∗ = q∗(p∗) and r∗ = r∗(p∗). Furthermore,

b
p∗
q∗

= μ+ϕ2u+ d p
2
3∗ , (8.39)

a relation that will be used frequently. Substituting these expressions into the equa-
tion ṙ = 0 and rearranging terms results in the following equivalent equation:

ξ ln

⎛

⎝μ+ϕ2u+ d p
2
3∗

b

⎞

⎠+ϕ1u =− θγ
αβ p2∗−α p∗+ δ −ϕ3u

. (8.40)

We have grouped terms so that the expression on the left side only contains param-
eters that depend on the tumor-vascular interactions while the right-hand side only
contains parameters that depend on the tumor-immune system interactions. This, in
some sense, allows us to look at these features individually and then only consider
the intersections of these two graphs. For p ≥ 0 define

Φ(p) = ξ ln

(
μ+ϕ2u+ d p

2
3

b

)

+ϕ1u (8.41)

and

Ψ(p) =− θγ
αβ p2 −α p+ δ −ϕ3u

. (8.42)

Proposition 8.4.1. There exist at most three positive equilibria for the dynamical
system (8.35)–(8.37).

Proof. Equilibria correspond to solutions of the equation Φ(p) =Ψ(p) and be-
tween any two solutions there needs to lie a solution of the derivatives, Φ ′(p) =
Ψ ′(p). We show that the equation for the derivatives can have at most two positive
roots and the result follows from this.
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The equation for the derivatives takes the form

2
3

ξd p−
1
3

μ+ϕ2u+ d p
2
3

=
θγα (2β p−1)

(αβ p2 −α p+ δ−ϕ3u)2 . (8.43)

The left-hand side is positive and thus solutions can only exist for p > 1
2β .

The equation itself is equivalent to

2
3

ξd
θγα

(
αβ p2 −α p+ δ−ϕ3u

)2

(2β p− 1)
= (μ+ϕ2u) p

1
3 +d p.

The quadratic polynomial Q(p) = αβ p2 − α p + δ − ϕ3u has its minimum for
p = 1

2β and completing the square, the left-hand side can be written in the form

1
3
ξd
θγ

((
p− 1

2β

)2
+Ξ
)2

p− 1
2β

=
1
3
ξd
θγ

[(

p− 1
2β

)3

+2Ξ
(

p− 1
2β

)

+
Ξ 2

p− 1
2β

]

with

Ξ =
4β (δ −ϕ3u)−α

4αβ 2 .

The second derivative of the difference

Δ(p) =
1
3
ξd
θγ

[(

p− 1
2β

)3

+ 2Ξ
(

p− 1
2β

)

+
Ξ 2

p− 1
2β

]

− (μ+ϕ2u) p
1
3 −d p

(8.44)
is given by

Δ ′′(p) =
1
3
ξd
θγ

⎡

⎢
⎣6

(

p− 1
2β

)

+
2Ξ 2

(
p− 1

2β

)3

⎤

⎥
⎦+

2
9
(μ+ϕ2u) p−

5
3

and is positive for p > 1
2β . Hence Δ is a strictly convex function on this interval and

thus can have at most two zeros. This verifies the result. �

The function Φ is strictly increasing and strictly concave over the interval (0,∞)
and takes the value

Φ0 = ξ ln

(
μ+ϕ2u

b

)

+ϕ1u

for p = 0. From a purely mathematical point of view, for high doses u we will have
Φ(0) > 0 and thus the function Φ is positive. If the quadratic polynomial Q has
complex roots, then the function Ψ will always be negative and thus the graphs of
Φ and Ψ do not intersect. Hence no positive equilibria exist and in this case all
trajectories of the system converge to the tumor free equilibrium point given by
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(0,0, γ+ϕ3u
δ ). Intuitively, this simply means that continuous administration of such

a dose would be able to eliminate the tumor. However, the model is realistic only
for low doses u since high doses no longer stimulate the immune system, but have
a detrimental effect. Thus these are academic discussions and we shall not consider
the equilibrium analysis for large u. Furthermore, the realistic situation is that the
death rate μ is very small, μ ≈ 0; in particular, it is much smaller that b, μ � b. Thus
Φ0 is negative for low doses; in fact Φ0 →−∞ as μ → 0+ and u → 0+. Henceforth
we assume that u ∈ [0,umax] with the maximum dose rate umax so small that for
p = 0 we have that

Φ0 = ξ ln

(
μ+ϕ2umax

b

)

+ϕ1umax <Ψ0 =
θγ

ϕ3umax − δ
. (8.45)

Here Ψ0 could be positive. This simply means that the immune stimulatory effect
of metronomic chemotherapy is greater than the natural death rate δ . Under as-
sumption (8.45), there always exists at least one equilibrium point (p∗,q∗,r∗) with
p∗ > 0.

We illustrate the typical equilibrium structures for the system (8.35)–(8.37) in P.
The number of equilibria depends on the geometric shape of the graph ofΨ and thus
ultimately on the roots of the quadratic polynomial Q(p) = αβ p2 −α p+ δ −ϕ3u.
These are given by

p± =
1

2β

(

1±
√

1− 4
β
α
(δ −ϕ3u)

)

(8.46)

and are complex for 4β (δ −ϕ3u)> α and real for 4β (δ −ϕ3u)≤ α . These cases
lead to similar, but in their details different bifurcation scenarios.

If the roots are complex, Q is always positive and the function Ψ is negative on
[0,∞) with a global minimum at pmin =

1
2β and the minimum value is given by

Ψmin =−
(

θγ
δ −ϕ3u− α

4β
+ϕ1u

)

.

Figure 8.14 shows the typical scenarios for complex roots on the left. If Φ
(

1
2β

)
<

Ψmin, there only exists one intersection for (generally large) p(3)∗ > 1
2β and, as

we shall show below, the corresponding equilibrium point (p∗,q∗,r∗) is globally

asymptotically stable and corresponds to a malignant scenario. If Φ
(

1
2β

)
=Ψmin,

then, sinceΨ has a local minimum at 1
2β and Φ ′

(
1

2β

)
> 0, the graphs of Φ andΨ

intersect in two points, p(1)∗ = 1
2β and p(2)∗ > 1

2β close to 1
2β . A unique intersection

happens as Φ
(

1
2β

)
→Ψmin from below and the graphs of Φ andΨ become tangen-

tial. At this point, a second equilibrium point
(

p(1)∗ ,q(1)∗ ,r(1)∗
)
=
(

p(2)∗ ,q(2)∗ ,r(2)∗
)

is
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born in a saddle-node bifurcation (see Theorem 8.4.1 below). Then three equilibria

persist, ordered in our notation so that p(1)∗ < p(2)∗ < p(3)∗ . We shall show below that

the lowest equilibrium point p(1)∗ is locally asymptotically stable and can be con-

sidered a benign scenario. Also, the highest equilibrium point p(3)∗ is always locally
asymptotically stable, but it corresponds to a malignant scenario. The intermediate

equilibrium point p(2)∗ is always unstable with a 2-dimensional stable manifold that
separates the regions of attraction of the low and high equilibria.

Similar features exist when the roots of the quadratic polynomial Q are real,
4β (δ −ϕ3u) ≤ α . In this case, the function Ψ has two simple poles at the roots
p± of Q (respectively a double pole if the roots are equal) and is negative to the
left and to the right of these poles and positive in between. The smaller pole p− is
positive if and only if ϕ3u < δ , i.e., if the immuno-stimulatory effects of the metro-
nomic chemotherapy cannot overcome the natural death rate of the cells associated
with the immunocompetent cell density. Figure 8.14 depicts the typical scenarios
for this case on the right. Under assumption (8.45), there always exists an asymp-

totically stable low (benign) equilibrium point p(1)∗ < 1
2β . In the illustration on the

top this is the only equilibrium point and it is globally asymptotically stable. Med-
ically this corresponds to a scenario when the low-dose metronomic chemotherapy
is able to control the disease. As the parameters are varied, in the middle panel,

again a saddle-node bifurcation occurs in which an unstable equilibrium point p(2)∗
and a high (malignant) equilibrium point p(3)∗ are born. These then persist as the
graphs of Φ and Ψ shift to generate two intersections. For the case ϕ3u ≥ δ , i.e.,
if the immuno-stimulatory effects of the metronomic chemotherapy overcomes the
natural death rate of the cells associated with the immunocompetent cell density,
the smaller pole p− is negative. Essentially, the possible scenarios are the same as
shown in Figure 8.14 with the difference that the value p = 0 now lies to the right
of the pole. In this case, the low (benign) equilibrium point does not exist and its
role is taken over by the tumor-free equilibrium point (0,0, γ+ϕ3u

δ ). When there are
no other equilibria, all trajectories converge to this equilibrium. This corresponds to
a scenario when metronomic chemotherapy at dose rate u is able to eradicate the
tumor.

Figure 8.15 shows one of many bifurcation scenarios. Here only the tumor
growth factor ξ is varied while all other parameters are kept constant. The parameter
values are chosen to illustrate the full range of the behaviors, but have no specific
medical significance. For low tumor growth rates we have that Φ0 >Ψ0 and no equi-
librium points exist. All trajectories converge to the tumor free equilibrium point,
i.e., metronomic chemotherapy is able to eradicate the tumor. As ξ increases, a first
saddle-node bifurcation occurs when the graph of Φ becomes tangential to the graph

ofΨ at some value p(2=3)
∗ > 1

2β and the unstable equilibrium point p(2)∗ and the high

(malignant) equilibrium point p(3)∗ are born. As the tumor growth rate increases fur-
ther, the value Φ0 drops belowΨ0, the tumor free equilibrium becomes unstable and

a low (benign) locally asymptotically stable positive equilibrium point p(1)∗ > 0 is
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Fig. 8.14 Saddle node bifurcation mechanism in the case of complex (left) and real (right) roots.

born. Now the system has become multi-stable with both a benign region, the re-
gion of attraction of the low equilibrium point, and a malignant region, the region
of attraction of the high equilibrium point. These are separated by the stable man-

ifold of the unstable equilibrium point p(2)∗ . As the tumor growth rate ξ increases

further, the benign equilibrium point p(1)∗ and the unstable equilibrium point p(2)∗
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Fig. 8.15 Bifurcations as the tumor growth rate ξ is varied.

move closer to each other and eventually coalesce and disappear in a second saddle
node bifurcation which occurs when Φ ′ (p∗) =Ψ ′(p∗). For higher tumor growth
rates only the high (malignant) equilibrium point exists and this simply describes
a medical scenario when the tumor growth cannot be overcome by a constant low
dose chemotherapy. Figure 8.15 illustrates the corresponding bifurcation scenario
and the corresponding bifurcation diagram is shown qualitatively in Figure 8.16.
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Fig. 8.16 Qualitative illustration of the bifurcation diagram. The stable (benign and malignant)
equilibria are shown as a solid curve while the unstable equilibrium point is shown as a dashed
curve.

8.4.3 Stability Properties of the Equilibria

We analyze the stability properties of the equilibria and prove that saddle-node bi-
furcations occur as the graphs of Φ andΨ intersect tangentially. We use the classical
stability criterion by Routh and Hurwitz about zeros of a polynomial. For a normed
cubic polynomial, this result is elementary and is given by the following statement:

Proposition 8.4.2. All roots of a real cubic polynomial χ(t) = t3 + a2t2 + a1t + a0

have negative real part if and only if a0 > 0, a1 > 0 and a2 >
a0
a1

.

Let (p∗,q∗,r∗) be an equilibrium point of the system (8.35)–(8.37) in P. Using
(8.38), the Jacobian matrix A of the system at the equilibrium point simplifies as
follows:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ξ ξ p∗
q∗ −θ p∗

b
μ+ϕ2u+ 1

3 d p
2
3∗

μ+ϕ2u+d p
2
3∗

−b p∗
q∗ 0

α(1− 2β p∗)r∗ 0 α
(

p−β p2
)− δ +ϕ3u

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Let
χA(t) = det(t · Id−A) = t3 + a2t2 +a1t +a0
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denote the characteristic polynomial of the matrix A. We then have that

χA(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

t + ξ −ξ p∗
q∗ θ p∗

−b
μ+ϕ2u+ 1

3 d p
2
3∗

μ+ϕ2u+d p
2
3∗

t + b p∗
q∗ 0

−α(1−2β p∗)r∗ 0 t −α
(

p∗ −β p2∗
)
+ δ −ϕ3u

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

⎡

⎣(t + ξ )
(

t +b
p∗
q∗

)

− ξ
p∗
q∗

b
μ+ϕ2u+ 1

3 d p
2
3∗

μ+ϕ2u+ d p
2
3∗

⎤

⎦
(
t −α

(
p∗ −β p2

∗
)
+ δ −ϕ3u

)

+θ p∗
(

t + b
p∗
q∗

)

α(1− 2β p∗)r∗,

so that

a0 = b
p∗
q∗

⎡

⎣ξ

⎛

⎝
2
3 d p

2
3∗

μ+ϕ2u+ d p
2
3∗

⎞

⎠
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)
+θα(1−2β p∗)p∗r∗

⎤

⎦ ,

a1 = ξb
p∗
q∗

⎛

⎝
2
3 d p

2
3∗

μ+ϕ2u+ d p
2
3∗

⎞

⎠+

(

ξ + b
p∗
q∗

)
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)

+θα(1−2β p∗)p∗r∗,

and
a2 = αβ p2

∗ −α p∗+ δ −ϕ3u+ ξ +b
p∗
q∗

.

Using the relation (8.39), the coefficients a0 and a1 simplify to

a0 =
2
3
ξd p

2
3∗
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)
+

(

b
p∗
q∗

)

θα(1−2β p∗)p∗r∗,

a1 =
2
3
ξd p

2
3∗ +

(

ξ + b
p∗
q∗

)
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)
+θα(1−2β p∗)p∗r∗.

Without loss of generality we make the following positivity assumption at an
equilibrium point p∗:

αβ p2
∗ −α p∗+ δ −ϕ3u > 0.

For, if the polynomial Q has complex roots, this holds for all p whereas, if the
roots are real, for u small enough, i.e., under low dose chemotherapy, this also holds
since the roots lie outside of the interval (p−, p+) between the two poles. Only with
increasing dose rates u it is possible that zeros arise that lie in (p−, p+), but we do
not consider these cases since the model no longer reflects the medical scenario that
is modeled. Thus, in particular, we always have that a2 > 0.
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Proposition 8.4.3. If a0 is positive, then the equilibrium point (p∗,q∗,r∗) is locally
asymptotically stable.

Proof. We verify that the conditions of the Routh-Hurwitz criterion are satisfied.
More generally, and again using (8.39), a0 ≥ 0 implies that

θα(1−2β p∗)p∗r∗ ≥ −ξ

⎛

⎝
2
3 d p

2
3∗

μ+ϕ2u+ d p
2
3∗

⎞

⎠
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)

(8.47)

and thus also

a1 >

(

ξ +b
p∗
q∗

)
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)
+θα(1−2β p∗)p∗r∗

≥
⎛

⎝b
p∗
q∗

+ ξ
μ+ϕ2u+ 1

3 d p
2
3∗

μ+ϕ2u+ d p
2
3∗

⎞

⎠
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)
> 0.

Furthermore, we always have that

a1a2 −a0 =
2
3
ξd p

2
3∗
[

αβ p2
∗ −α p∗+ δ −ϕ3u+

(

ξ +b
p∗
q∗

)]

+

(

ξ + b
p∗
q∗

)
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)2

+

(

ξ + b
p∗
q∗

)2 (
αβ p2

∗ −α p∗+ δ −ϕ3u
)

+θα(1− 2β p∗)p∗r∗
[

αβ p2
∗ −α p∗+ δ −ϕ3u+

(

ξ +b
p∗
q∗

)]

− 2
3
ξd p

2
3∗
[
αβ p2

∗ −α p∗+ δ −ϕ3u
]−
(

b
p∗
q∗

)

θα(1−2β p∗)p∗r∗

=
2
3
ξd p

2
3∗
(

ξ + b
p∗
q∗

)

+

(

ξ + b
p∗
q∗

)
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)2

+

(

ξ + b
p∗
q∗

)2 (
αβ p2

∗ −α p∗+ δ −ϕ3u
)

+θα(1− 2β p∗)p∗r∗
(
αβ p2

∗ −α p∗+ δ −ϕ3u+ ξ
)
.
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Using the lower bound (8.47) and trivial positivity bounds, it follows that

a1a2 −a0 >

(

ξ + b
p∗
q∗

)
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)2

+

(

ξ + b
p∗
q∗

)2 (
αβ p2

∗ −α p∗+ δ −ϕ3u
)

− ξ

⎛

⎝
2
3 d p

2
3∗

μ+ϕ2u+ d p
2
3∗

⎞

⎠
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)

× (αβ p2
∗ −α p∗+ δ −ϕ3u+ ξ

)

> ξ
μ+ϕ2u+ 1

3 d p
2
3∗

μ+ϕ2u+ d p
2
3∗

(
αβ p2

∗ −α p∗+ δ −ϕ3u
)2

+

(

ξ + b
p∗
q∗

)2 (
αβ p2

∗ −α p∗+ δ −ϕ3u
)

− ξ 2

⎛

⎝
2
3 d p

2
3∗

μ+ϕ2u+ d p
2
3∗

⎞

⎠
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)

> ξ 2 μ+ϕ2u+ 1
3 d p

2
3∗

μ+ϕ2u+ d p
2
3∗

(
αβ p2

∗ −α p∗+ δ −ϕ3u
)
> 0.

This verifies that all the conditions of the Routh-Hurwitz criterion are satisfied if a0

is positive and thus the equilibrium point is locally asymptotically stable. �

Corollary 8.4.1. There exists at most one equilibrium point (p∗,q∗,r∗) in the range
0 < p ≤ 1

2β and, if it exists, this equilibrium point is locally asymptotically stable.

Proof. On the interval (0, 1
2β ] the function Φ is strictly increasing andΨ is strictly

decreasing. Hence there exists at most one point of intersection for the graphs in this
range. For p∗ ≤ 1

2β , the coefficient a0 is positive and thus the result follows from
Proposition 8.4.3. �

Note that, if a0 is negative, then the equilibrium point (p∗,q∗,r∗) is unstable
since A has a positive real eigenvalue. It is clear that a0 = −detA needs to vanish
at saddle-node bifurcations and if a0 vanishes, then saddle-node bifurcations arise
as long as the transversality conditions in Definition 8.1.8 are satisfied. This is true
generically.

Theorem 8.4.1. If a0 = 0, then generically the system undergoes a saddle-node bi-
furcation. Geometrically, saddle-node bifurcations correspond to tangential inter-
sections of the graphs of Φ and Ψ and can be characterized as the solutions to the
equation Δ(p∗) = 0 with Δ defined in equation (8.44). They are only possible for
p > 1

2β .
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Proof. Saddle node bifurcations occur when the Jacobian matrix A has a simple
eigenvalue 0 and the transversality conditions related to the corresponding left-
and right eigenvectors and the bifurcation parameter in Definition 8.1.8 are satis-
fied [111]. These conditions are generically met. Since a0 = −detA, the condition
a0 = 0 is equivalent to A having eigenvalue 0. It was shown in the proof of Propo-
sition 8.4.3 that a1 is positive if a0 vanishes and thus the eigenvalue 0 is always
simple.

For the system considered here, saddle node bifurcations can be characterized
geometrically by the fact that the graphs of Φ and Ψ intersect tangentially. This
can easily be seen from the formulas for a0, Φ and Ψ . Using the relations (8.38)
and (8.39), we can express the coefficient a0 at an equilibrium point (p∗,q∗,r∗) as a
function of p∗ in the form

a0 =
2
3
ξd p

2
3∗
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)

−α
(

μ+ϕ2u+ d p
2
3∗
)

(p∗ − 2β p2
∗)

⎛

⎝ξ ln

⎛

⎝μ+ϕ2u+d p
2
3∗

b

⎞

⎠+ϕ1u

⎞

⎠ .

Using equation (8.40), we can replace the logarithmic expression to obtain

a0 =
2
3
ξd p

2
3∗
(
αβ p2

∗ −α p∗+ δ −ϕ3u
)

+α
(

μ+ϕ2u+ d p
2
3∗
)

θγ(p∗ −2β p2∗)
αβ p2∗ −α p∗+ δ −ϕ3u

.

Note that a0 vanishes if and only if

2
3

ξd p
− 1

3∗

μ+ϕ2u+ d p
2
3∗
=

αθγ (2β p∗−1)

(αβ p2∗ −α p∗+ δ −ϕ3u)2

and this is exactly the relation Φ ′(p∗) =Ψ ′(p∗) for the functions Φ and Ψ defined
in equations (8.41) and (8.42). Since Φ is strictly increasing and Ψ is strictly de-
creasing for p < 1

2β , no intersections are possible for p ≤ 1
2β . For p > 1

2β we can
write

a0 =
αθγ(2β p∗ − 1)p

2
3∗

αβ p2∗ −α p∗+ δ −ϕ3u
Δ(p∗) (8.48)

with

Δ(p) =
1
3
ξd
θγ

[(

p− 1
2β

)3

+ 2Ξ
(

p− 1
2β

)

+
Ξ 2

p− 1
2β

]

− (μ+ϕ2u) p
1
3 −d p.

This is the function defined by equation (8.44) in the proof of Proposition 8.4.1.
Note that no equilibria exist that would correspond to the roots of the quadratic
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polynomial Q(p) = αβ p2 −α p+δ −ϕ3u and thus the coefficient multiplying Δ is
always nonzero and well defined at an equilibrium point p∗. Hence a0, equivalently
detA, vanishes if and only if Δ(p∗) = 0. �

Proposition 8.4.4. If there exist two equilibria with 1
2β < p(2)∗ < p(3)∗ , then the equi-

librium point (p(2)∗ ,q(2)∗ ,r(2)∗ ) is unstable (with a 2-dimensional stable manifold) and

the high equilibrium point (p(3)∗ ,q(3)∗ ,r(3)∗ ) is locally asymptotically stable.

Proof. We distinguish between the cases when the roots of Q are real and complex.

In the case of real roots, the equilibria p(2)∗ and p(3)∗ lie to the right of the second
zero p+ of Q. The term multiplying Δ in (8.48) is therefore positive. Furthermore,

Δ(p+) =−(μ+ϕ2u) p
1
3
+−d p+ < 0.

Since Δ is strictly convex and limp→∞Δ(p) = +∞, in this range, if Δ(p∗) = 0, then

Δ ′(p∗) > 0. Hence Δ and a0 are negative at the equilibrium point p(2)∗ generated

in a saddle-node bifurcation and positive at p(3)∗ . Thus, by Proposition 8.4.3, p(3)∗ is

locally asymptotically stable and p(2)∗ is unstable.
In the case of complex roots, the term multiplying Δ in (8.48) is always positive.

The function Δ can have two zeros p̃1 < p̃2 with Δ ′(p̃1) < 0 and Δ ′(p̃2) > 0. Ac-
cordingly two possibilities exist (see Figure 8.15). The value p̃1 is close to 1

2β and

in this case the two equilibria p(1)∗ < p(2)∗ are generated (or merge). The functions

Δ and a0 are positive for p(1)∗ and negative for p(2)∗ so that p(1)∗ is locally asymp-

totically stable (also, see Corollary 8.4.1) and p(2)∗ is unstable. On the other hand,

at p̃2 the equilibria p(2)∗ < p(3)∗ are generated and in this case the signs of Δ and

associated stability properties are reversed so that p(2)∗ is unstable and p(3)∗ is locally
asymptotically stable.

It remains to show that the equilibrium point p(2)∗ has a 1-dimensional unstable
manifold. Since a0 < 0, there exists a positive real eigenvalue λ > 0. We therefore
can factor the characteristic polynomial χA(t) in the form

χA(t) = (t −λ )(t2 + vt +w) = t3 +(v−λ )t2+(w−λv)t−λw.

Since a0 is negative, we have w > 0 and a2 > 0 implies that v > λ > 0. Hence the
other two roots are negative or have negative real parts. �

Thus the low and high equilibrium points, (p(1)∗ ,q(1)∗ ,r(1)∗ ) and (p(3)∗ ,q(3)∗ ,r(3)∗ ),
are always locally asymptotically stable and have corresponding regions of attrac-
tion. The tumor volumes for the low equilibrium point cannot exceed 1

2β by much
and, away from the saddle-node bifurcation points, are smaller. This equilibrium
point therefore can be interpreted as the benign equilibrium point and its region of
attraction the benign region. This region can be interpreted as the set of all states
of the system where a low-dose metronomic chemotherapy is able to control the
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cancer to the benign equilibrium point. Situations when this is the only equilibrium
point are related to the concepts of tumor dormancy and immunosurveillance. On
the other hand, tumor volumes at the high equilibrium point are by an order of mag-
nitude larger than for the low equilibrium point and these can be interpreted as the
malignant equilibrium point and its region of attraction is the malignant region. This
region corresponds to conditions where tumor growth overcomes the effects of the
low dose chemotherapy, is able to evade the actions of the immune system and tumor
dormancy and eventually, unless other treatment options will be pursued, becomes
lethal.

Naturally, reality is far more complicated than accounted for in this or any model,
and random (and otherwise) events take place that perturb the state of the system in
the state-space. In particular, for parameter values for which both benign and malig-
nant regions exist, transitions from one into the other always become a possibility
due to unmodeled structures and/or random perturbations that misplace the state of
the system. Once such a temporary disturbance has passed, the system will settle
down to follow the trajectories in the phase portrait. Tumors that have large malig-
nant regions correspond to more aggressive forms simply since it is more likely for
a perturbation to land in this set.

8.4.4 Numerical Illustrations and Choice of the Parameter Values

Biologically validated data are available for the separate models: for the model for
angiogenic signaling in the paper by Hahnfeldt et al. [116] for Lewis lung carcinoma
and for the mathematical model for tumor-immune system interactions in the paper
by Kuznetsov et al. [171] based on in vivo experimental data for B-lymphoma BCL1

in the spleen of mice. But these data cannot just be combined. The equilibrium of

the model for angiogenic signaling from [116] is given by
(

b−μ
d

) 3
2

and is by an

order of magnitude larger than the carrying capacity for the model in [171]. We
therefore here adjust the values of b and d for the high equilibrium point to be in the
same range as the carrying capacity for the tumor-immune system model. Also, the
dynamical model for the immunocompetent density in [171] is of the form

ṙ =

(
ρ

η+ p
− μ
)

rp+ γ− δ r

and we approximated the expression ρ
η+p − μ for the parameter values from [171]

by the linear term α (1−β p) that has the same value for p = 0 and the same zero.
Table 8.2 below lists the numerical values that we use for the computations and
illustrations shown here. Following [171], p and q are given in multiples of 106

cells and y is a dimensionless quantity that describes the immuno-competent cell
density on a relative order of magnitude basis. The time scale is taken relative to the
tumor cell cycle in mice and is in terms of 0.11 days [171].
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Table 8.2 Variables and parameter values used in numerical computations.

Variable/ Numerical values
parameters interpretation used in Dimension Reference

illustrations
p Tumor volume 106 cells [303, 171]
q Carrying capacity 106 cells [116]
r Immuno-competent Orders of magnitude [303]

cell density Non-dimensional
u Concentration of the mg of dose/106 cells

cytotoxic agent

α Tumor stimulated 0.0529 Non-dimensional
proliferation rate

of immune system
β Inverse threshold 0.00291 Non-dimensional [171]

of tumor suppression
γ Constant influx 0.05 106 cells/day [171]

into immune system
δ Death rate 0.3743 Non-dimensional [171]
θ Tumor immune system 1

interaction rate

ξ Tumor growth parameter 0.0347
b Tumor induced 5 Cells/day

stimulation parameter
of vasculature

d Tumor induced 0.0667 Non-dimensional
inhibition parameter

of vasculature
μ Loss of vascular support 0 Cell/day

through natural causes

ϕ1 Cytotoxic killing 0.005 106 cells/mg of dose
parameter

ϕ2 Antiangiogenic elimination 0.06 106 cells/mg of dose
parameter

ϕ3 Immune stimulatory 0.02 106 cells/mg of dose
parameter

In order to better visualize the structure of the phase portrait, Figure 8.17 shows
2-dimensional projections of the phase portraits into the (p,q) and (p,r) planes. In
each figure, the malignant equilibrium point is marked by a blue star and the unstable
equilibrium by a red star; the benign equilibrium point is very close to the origin and
is not marked on these diagrams. The red curves through the unstable equilibrium
point depict the corresponding sections of the stability boundary between benign
and malignant behaviors and its 1-dimensional unstable manifold is shown as the
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Fig. 8.17 Two-dimensional cross sections of the phase portrait for equations (8.35)–(8.37) for the
values γ = 0.01,0.05 and 0.073.

black curve. While keeping all other parameters constant, we show three different
scenarios as the parameter values for γ , the constant influx of immune cells from the
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Fig. 8.18 Bifurcation diagram as γ is varied.

primary organs, is increased. The figures3 illustrate how the unstable and malignant
equilibrium points move toward each other and eventually, for γ = 0.07524, anni-
hilate each other in a saddle-node bifurcation. For larger values of γ , the benign
equilibrium point is globally asymptotically stable and the immune system is strong
enough to control the cancer in a form of immunosurveillance. Figure 8.18 shows
the corresponding bifurcation diagram.

Summarizing the dynamical properties, the model (8.35)–(8.37) exhibits a wide
range of behavior that encompasses a variety of medically realistic scenarios. These
range from cases when low-dose metronomic chemotherapy is able to completely
eradicate the tumor (in the sense that all trajectories converge to the tumor free
equilibrium point) to situations when tumor dormancy is induced (when a unique,
globally asymptotically stable benign equilibrium point with small positive tumor
volume exists) to multi-stable situations that have both persistent benign and malig-
nant behaviors to situations when tumor growth simply is too dominant and cannot
be affected by low-dose metronomic chemotherapy. Thus, despite its simplicity, the
model is able to capture the most important structural features of tumor development
under low-dose metronomic chemotherapy. On the other hand, precisely because of
the model’s simplicity, it is possible to give a complete mathematical analysis of its
dynamic behavior.

8.4.5 Optimal Control Formulation for the Combined Model

We conclude this chapter with analyzing the optimal control problem when more
generally time-varying administrations schedules are allowed. We are implicitly as-

3 The numerical calculations were carried out by Behrooz Amini.



374 8 Optimal Control for Mathematical Models of Tumor Immune System Interactions

suming a set of parameter values for which the system is bistable and has both a
benign and a malignant region of attraction. We take the objective to be minimized
of the form

J(u) = Ap(T )+Bq(T)−Cr(T )+
∫ T

0
(Mu(t)+ S)dt (8.49)

where, as before, the weights (A,B,−C) in the objective are chosen to induce
the system to move from the malignant into the benign region. We have added
a minus sign in the last coordinate so that all coefficients A, B and C are posi-
tive. One canonical choice is to take (A,B,C) as a multiple of the unstable eigen-
vector at the saddle point, oriented to point from the benign into the malignant
region. Another natural choice would be to take a normal vector to the stable
eigenspace of the saddle. For example, for the numerical values in Table 8.2, the
saddle point is given by (ps,qs,rs) = (412.75,558.41,0.0105) and a properly ori-
ented unstable eigenvector is (A,B,C) = (0.9134,0.4071,−0.0001). If the strength
γ of the innate immune system is reduced to γ = 0.01, then these values change to
(ps,qs.rs) = (349.65,528.37,0.0143) and (A,B,C) = (0.9061,0.4230,−0.0007) .
We consider the following optimal control problem:

[M] For a free terminal time T , minimize the objective (8.49) over all Lebesgue
measurable (respectively, piecewise continuous) functions u : [0,T ]→ [0,1] sub-
ject to the dynamics (8.7)–(8.8) with initial condition (p0,q0,r0).

Now writing the state as z = (p,q,r)T , the dynamics again takes the form ż =
f (z)+ ug(z) with drift and control vector fields given by

f (z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ξ pln
(

p
q

)
−θ pr

bp− (μ+ d p
2
3 )q

α(p−β p2)r+ γ− δ r

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and g(z) =

⎛

⎜
⎜
⎜
⎜
⎝

−ϕ1 p

−ϕ2q

ϕ3r

⎞

⎟
⎟
⎟
⎟
⎠
. (8.50)

First-order necessary conditions for optimality of a control u again follow from
the maximum principle (Theorem A.3.1 in Appendix A). Extremals are all normal
and thus, with a three-dimensional row-vector λ = (λ1,λ2,λ3) ∈ (R3)∗ we already
define the Hamiltonian H = H(λ , p,q,r,u) as

H = Mu+ S+λ1

(

−ξ pln

(
p
q

)

−θ pr−ϕ1up

)

+λ2

(
bp− (μ+ d p

2
3 )q−ϕ2uq

)
(8.51)

+λ3
(
α(p−β p2)r+ γ− δ r+ϕ3ur

)
.

If u∗ is an optimal control defined over an interval [0,T ] with corresponding trajec-
tory z∗ = (p∗,q∗,r∗)T , then there exists an absolutely continuous covector λ defined
on [0,T ] that satisfies the adjoint equations
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λ̇1 =−∂H
∂ p

= λ1

(

ξ
(

1+ ln

(
p
q

))

+θ r+ϕ1u

)

(8.52)

−λ2

(

b− 2
3

dqp−
1
3

)

−λ3 (α(1−2β p)r) ,

λ̇2 =−∂H
∂q

=−λ1ξ
p
q
+λ2(μ+ d p

2
3 +ϕ2u), (8.53)

λ̇3 =−∂H
∂ r

= λ1θ p−λ3
(
α(p−β p2)− δ +ϕ3u

)
, (8.54)

with terminal condition λ (T ) = (A,B,−C) such that for almost every time t ∈ [0,T ]
the optimal control u∗(t) minimizes the Hamiltonian along (λ (t), p∗(t),q∗(t),r∗(t))
over the control set [0,T ] with minimal value given by 0.

Since the integral term of the objective does not depend on the state variables
p,q and r, once more the adjoint equations can succinctly be expressed in the form
(8.16) for a single-input u,

˙λ (t) =−λ (t)(D f (z∗(t))+ u∗(t)Dg(z∗(t))),

and Proposition 8.2.2 applies to compute the derivatives of the switching function

Φ(t) = M+ 〈λ (t),g(z∗(t))〉= M−ϕ1λ1(t)p∗(t)−ϕ2λ2(t)q∗(t)+ϕ3λ3(t)r∗(t).
(8.55)

If an optimal control u∗ is singular on an open interval I, then, as above, on I we
have that Φ(t)≡ 0,

Φ̇(t) = 〈λ (t), [ f ,g](z∗(t))〉 ≡ 0,

and
H = 〈λ (t), f (z∗(t))〉+ S ≡ 0.

The Lie bracket [ f ,g] is given by

[ f ,g](z) = Dg(z) f (z)−D f (z)g(z)

=

⎛

⎝
−ϕ1 0 0

0 −ϕ2 0
0 0 ϕ3

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ξ pln
(

p
q

)
−θ pr

bp− (μ+ d p
2
3 )q

α(p−β p2)r+ γ− δ r

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−ξ
(

1+ ln
(

p
q

))
−θ r ξ p

q −θ p

b− 2
3 d p−

1
3 q −(μ+ d p

2
3 ) 0

α(1− 2β p)r 0 α(p−β p2)− δ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

−ϕ1 p

−ϕ2q

ϕ3r

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

−(ϕ1 −ϕ2)ξ p+ϕ3θ pr

(ϕ1 −ϕ2)bp− 2
3ϕ1d p

2
3 q

ϕ1α(p− 2β p2)r+ϕ3γ

⎞

⎟
⎟
⎟
⎟
⎠

and, except for a 2-dimensional surface, the vector fields f , g and [ f ,g] are linearly
independent. We therefore have the following result:

Proposition 8.4.5. If an optimal control u∗ is singular on an open interval I, then,
away from the surface

L = {z ∈M : det( f (z),g(z), [ f ,g](z)) = 0} ,

the associated multiplier λ (t) is the unique solution of the equation

λ (t)( f (z∗(t)),g(z∗(t)), [ f ,g](z∗(t)) = (−S,−M,0). (8.56)

Thus, because of the dimension of the state-space, singular controlled trajectories
are not constrained to lie on a priori specified lower dimensional submanifold, but,
except for the set L , solving equation (8.56) for λ = λsing(z) and using the fact that
Φ̈ ≡ 0, determines the singular control as the feedback function

using(z) =−〈λsing(z), [ f , [ f ,g]](z)〉
〈λsing(z), [g, [ f ,g]](z)〉 . (8.57)

Naturally, for optimality it needs to be checked that the Legendre-Clebsch condition
is satisfied and that the values of the control are admissible. Away from the set
L we can express the second-order Lie brackets [ f , [ f ,g]] and [g, [ f ,g]] as linear
combinations of the basis f , g, and [ f ,g] in the form

[ f , [ f ,g]](z) = σ1(z) f (z)+σ2(z)g(z)+σ3(z)[ f ,g](z) (8.58)

and
[g, [ f ,g](z) = ω1(z) f (z)+ω2(z)g(z)+ω3(z)[ f ,g](z). (8.59)

We then have that

〈λsing(z), [ f , [ f ,g]](z)〉 =−σ1(z)S−σ2(z)M

and
〈λsing(z), [g, [ f ,g]](z)〉 =−ω1(z)S−ω2(z)M
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so that the singular control is given by the feedback function

using(z) =− σ1(z)S+σ2(z)M
ω1(z)S+ω2(z)M

. (8.60)

Note that if the emphasis is put on quick actions, i.e., if S � M, then

using(z)�−σ1(z)
ω1(z)

and if the emphasis is more on side effects M � S, then

using(z)�−σ2(z)
ω2(z)

.

The vector field [ f , [ f ,g]] contains full and lengthy expressions that do not offer
much insight, but [g, [ f ,g]] reduces to the following simple form:

[g, [ f ,g]](z) =

⎛

⎜
⎜
⎜
⎜
⎝

ϕ2
3θ pr

−(ϕ1 −ϕ2)
2bp+ 4

9ϕ
2
1 d p

2
3 q

−ϕ2
1α(p− 4β p2)r−ϕ2

3 γ

⎞

⎟
⎟
⎟
⎟
⎠
.

It is not difficult to compute these vector fields and hence also the singular con-
trol (8.60) numerically and to verify the Legendre-Clebsch condition. Figure 8.19
shows the graphs of the feedback functions 〈λsing(z), [ f , [ f ,g]](z)〉 and 〈λsing(z),
[g, [ f ,g]](z)〉 (the Legendre-Clebsch condition) for the parameter values from
Table 8.2 with the one change that γ = 0.01; the coefficients in the objective were
chosen as S = 10 and M = 1. Cross-sections through the graphs of the correspond-
ing singular control using(z) are shown in Figure 8.20 for the value r = 0.5 on the
top for the range considered in Figure 8.19 and on the bottom for the higher range
(p,q)∈ [350,500]× [350,500]. Recall that the strengthened Legendre-Clebsch con-
dition is satisfied if 〈λsing(z), [g, [ f ,g]](z)〉 is negative and this is the case for all
points in the ranges shown here. However, the singular control is negative and thus
inadmissible in the high range. Hence, in the malignant region the control will be
at the maximum metronomic dose considered in the model. Once the system moves
into the benign region, then singular controls keep decreasing and thus in this range
it seems reasonable that the control rates will be lowered to control the benign equi-
librium point.

In Figure 8.21 we still show the evolution of some sample controlled trajec-
tories for a singular control over time from the initial condition (p0,q0,r0) =
(200,300,0.1).
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(bottom) along a singular control for r = 0.5.
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Fig. 8.21 Time evolution of some sample controlled trajectories for a singular control from the
initial condition (p0,q0, r0) = (200,300,0.1).



Chapter 9
Concluding Remarks

The question how therapeutic agents should be administered in order to maximize
their potential effects is of fundamental importance in medical treatments. In the
administration of cancer treatments, these questions are still far from being ans-
wered conclusively. In this text, we have explored what can be said about this topic
from an analysis of minimally parameterized models described by ordinary differ-
ential equations using an optimal control approach. Clearly, more precise and in this
sense more realistic models exist. These range from the inclusion of spatial aspects
in partial differential equations to the incorporation of random features in stochas-
tic models to complex agent-based models. Becoming increasingly more precise,
such models, however, are prone to the pitfalls of Borges’s cartographers guild [33].
While current computer technologies enable large-scale computations and simula-
tions, the number of parameters involved automatically carries with it uncertainty.
Also, no matter how precise the data are that are available, the values of the param-
eters are for a particular case and numerical results pertain to a specific situation.
On the other hand, the models considered here are all highly aggregated population
based models, which, having small dimensions, allows to examine the underlying
models analytically, not just numerically. Indeed, fairly robust qualitative features
emerge from our analysis that we still would like to summarize.

The prevailing paradigm of giving as much of the drugs as possible as soon as
possible clearly makes sense at the onset of discovery of the disease when quick
and immediate actions are required. This is borne out in mathematical models for
a homogeneous tumor population of chemotherapeutically sensitive cells. However,
at an intercellular level, tumor cell populations act as ecosystems and many sources
of complexity arise from internal cell-to-cell cooperative and competitive interac-
tions which may generate great heterogeneity within a tumor. This can lead to the
development of various degrees of chemotherapeutic resistance not just to one, but
to several drugs. As these facts are taken into account, the picture of optimal drug
administration schedules becomes blurry and MTD therapies no longer need to be
the best overall options. Also, quiescent cells are immune from a cytotoxic attack

© Springer Science+Business Media, LLC 2015
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and this type of drug administration thus will be rather ineffective for tumors with
small growth fractions. In such a case, MTD-based strategies may do more harm
to the healthy tissue than good. For this reason, chemotherapy often is ruled out
for slowly growing tumors. Even if MTD-type chemotherapy is initially successful,
in the long run it is not uncommon that therapy fails because of drug resistance.
A particularly difficult situation arises if a possibly tiny fraction of drug-resistant
tumor cells has been present from the very beginning. While the sensitive cells are
exceedingly being depleted by the MTD-type attack, in time (and possibly only
after many years of seemingly remission of the cancer) the resistant cells become
dominant leading to an eventual failure of therapy. Clearly, there do not yet exist
well-developed strategies to deal with such situations and adaptive and metronomic
chemotherapy are just two alternative scheduling protocols that have been proposed
in the medical literature. The fact that conclusive answers remain elusive also in
the mathematical analysis of such problems only reflects the complexities of the
underlying real problem.

The question how chemotherapeutic agents should be scheduled to optimize their
effects is a difficult one when the true system (patient) is considered and many sys-
temic aspects need to be taken into account to give a satisfactory answer. This re-
quires to consider not just the cancerous cells, but include also other aspects of the
tumor microenvironment such as its vasculature or tumor-immune system interac-
tions. The models analyzed in this text seem to point into the direction that it is
not necessarily the better approach to give more. Clearly, robust conclusions can be
drawn from the analysis of the mathematical models for angiogenic signaling that
support the theory that an ideal balance between tumor size and tumor vasculature
improves the efficacy of drug administration. There also exist well-founded biolog-
ical considerations that would support such a notion. Tumor vasculature is highly
irregular and large amounts of drugs simply are wasted in this leaky network since
they never reach their intended target. Thus a properly calibrated dose of antian-
giogenic agents can achieve a better overall effect than a purely maximum possible
damage type of concept, certainly if agents are limited. Similarly, if tumor immune
system interactions are taken into account, after some time optimal drug administra-
tion schedules tend to favor lower doses. The analysis of the models considered in
this text consistently point to chemo-switch type protocols as optimal. Thus, while
the models that were considered are highly aggregated, they led to robust results
about the qualitative structures of optimal protocols.

Overall, our results are based on rudimentary, minimally parameterized models
which still capture the essence of the underlying biology. Naturally, while these
cannot include the more refined biological details, nevertheless the results obtained
correlate positively with many approaches taken in medical practice and shed some
light as to how these treatments should be administered in reality. As such the goal
to obtain qualitative information about the structure of optimal administration of
treatment protocols has been realized. On the other hand, clearly these models are
limited. In modern medicine many promising avenues are pursued that fall outside
of the realm of the models and procedures discussed here and that aim to overcome
the limitations of these more conventional therapies. For example, the models for
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chemotherapy considered here apply to a wide range of drugs that damage DNA
or attempt to block synthesis that still form the staple of cancer treatment. In cur-
rent medical research there is a strong attempt to develop drugs that target specific
molecular pathways involved in carcinogenesis even to the extent of developing pat-
ient specific treatments. The mechanisms of actions and toxicities of such drugs are
quite different from conventional approaches. For example, by being specifically
targeted to particular molecular pathways, generally these drugs are less toxic to the
healthy tissue. Yet, the issue of tumor heterogeneity still remains and specific path-
ways need not apply to all the cells in a tumor. These approaches require modeling
approaches that are different from the fundamental principles that were considered
here and since these pathways generally are highly complex, such models will be
large scale. But from a mathematical modeling side little is known about these sys-
tems currently. While it is not likely that optimal control methods can be directly
applied to large-scale models, numerical methods can always be undertaken. Yet,
this leads us back to the discussions from the beginning of this chapter. Without a
doubt, the ultimate question—how to optimize the anti-tumor, antiangiogenic, and
pro-immune effects of chemotherapy by modulating dose and administration sched-
ule—will still occupy both medical practitioners and modelers alike for many years
to come.



Appendix A
Optimal Control: A Review of Main Results
and Concepts

In this appendix, we review the main results and tools from optimal control. The
presentation follows our book [292], but we forego generality to match the problem
formulations closely to the ones considered in this text. Also, no proofs will be
given. Some of the proofs are lengthy and difficult, but it is not necessary to know
these proofs in order to follow the applications of the results. Generally, the main
portion of the text is written in a self-contained manner and the appendix merely
provides a convenient summary for the tools and techniques that we use.

In Section A.2 we formulate a general optimal control problem, establish stan-
dard terminology, and present the Pontryagin maximum principle, the fundamental
necessary conditions for optimality. Then, in Section A.3 we specify these condi-
tions further for systems that depend affinely on the controls. Such mathematical
models are by far the most common models in practical applications of optimal
control in engineering and the life sciences, and all the problems considered in this
text have this structure. It simply reflects the fact that “controls” represent outside
influences on a dynamical system and that one wants to set them up in a way so that
these effects can be most easily understood and analyzed. For control-affine control
systems, the analysis of the necessary conditions of the maximum principle leads to
two classes of control functions as prime candidates for optimality, so-called bang
and singular controls. We introduce the fundamental framework to analyze these
controls consisting of switching functions and Lie-derivative based formulas for its
derivatives and also state higher order necessary conditions for optimality of sin-
gular controls. Section A.4 concludes the appendix with an overview of sufficient
conditions for optimality. We formulate the Hamilton-Jacobi-Bellman equation and
briefly outline the method of characteristics as a procedure to construct a solution to
this equation by means of integrating a field of extremals. In Appendix B.1 we shall
explicitly carry out these technical constructions for the cancer chemotherapy model
formulated in Section 2.1. We close with some results about a regular synthesis of
optimal controls, the global solution of optimal control problems.
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A.1 Notation and Terminology

We write the state x, x ∈R
n, of the system as a column vector, x = (x1, . . . ,xn)

T , but
distinguish the state from the multipliers λ that arise in the necessary conditions for
optimality and write these, consistent with their geometric meaning as covectors, as
row vectors denoting the space of n-dimensional covectors or row vectors by (Rn)∗.
However, we do not distinguish between R and R

∗. We also interchangeably use the
notations 〈λ ,x〉= λx for the inner product of a row vector λ with a column vector x.
For a scalar, continuously differentiable function h : Rn →R, x �→ h(x), we write the
gradient with respect to x as a row vector and denote it by ∇h(x) or ∂h

∂x (x), i.e.,

∇h(x) =
∂h
∂x

(x) =

(
∂h
∂x1

(x), . . . ,
∂h
∂xn

(x)

)

.

For a vector-valued continuously differentiable map H,

H : Rk → R
�, x �→ H(x) =

⎛

⎝
h1(x)
. . .

hk(x)

⎞

⎠ ,

we denote the Jacobian matrix of the partial derivatives of the components hi(x)
with respect to the variables x j by

DH(x) =
∂H
∂x

(x) =

⎛

⎜
⎜
⎝

∂h1
∂x1

(x) . . . ∂h1
∂xk

(x)
... ∂hi

∂x j
(x)

...
∂hk
∂x1

(x) . . . ∂hk
∂xk

(x)

⎞

⎟
⎟
⎠

1≤i, j≤k

,

with i as row index and j as column index. Thus, the Jacobian matrix is the matrix
whose ith row is given by the gradient of the component hi. The Hessian matrix of
a twice continuously differentiable function h : Rn → R, x �→ h(x), is the matrix of

the second-order partial derivatives of h and will be denoted by D2h(x) = ∂ 2h
∂x2 (x).

With the convention above, the Hessian of h is the Jacobian matrix of the transpose
of the gradient of h,

D2h(x) =
∂ 2h
∂x2 (x) =

∂ (∇h)T

∂x
(x).

IfΛ =(λ1, . . . ,λn) is a row vector of continuously differentiable functions λ j :Rn →
R, x �→ λ j(x), j = 1, . . . ,n, then, and consistent with the notation just introduced,

we denote the matrix of the partial derivatives
(
∂λ j
∂xi

)

1≤i, j≤n
with row index i and

column index j by ∂Λ
∂x , that is,

∂Λ
∂x

(x) =

(
∂ΛT

∂x
(x)

)T

or DΛ(x) =
(
D
(
ΛT (x)

))T
.



A.2 Optimal Control Problems and Necessary Conditions for Optimality 387

Not only does this formalism properly distinguish the different geometric meanings
of the variables involved, but it also allows us to write formulas without having to
use transposes and this simplifies the notation considerably.

A.2 Optimal Control Problems and Necessary Conditions
for Optimality

An optimal control problem is a dynamic optimization problem in which the state
of a system, x = x(t), is linked in time to the application of a control function,
u = u(t), by means of the solution to an ordinary differential equation that is shaped
by the control, ẋ = f (x,u(t)), and then an objective J = J(u) is optimized over all
possible responses subject to external constraints. (More generally, the dynamics
could be described by partial differential equations and/or stochastic effects may be
included, but in this text we only consider so-called finite-dimensional deterministic
problems.) We start with establishing some terminology and a precise formulation
of the problems to be considered.

A.2.1 Formulation of an Optimal Control Problem

Definition A.2.1 (Control System). A control system is a 4-tuple Σ = (M,U, f ,U )
consisting of a state space M, a control set U , a dynamics f , and a class U of
admissible controls.

Throughout this text, we only consider the following simplified data structures
defining control systems:

1. The state space M is an open and connected subset of Rn.
2. The control set U is a compact and convex subset of Rm.
3. The dynamics, ẋ = f (x,u), is defined by a family of continuously differentiable

vector fields f parameterized by the control values u ∈U ,

f : M×U → R
n, (x,u) �→ f (x,u),

i.e., f assigns to every point (x,u) ∈ M×U a vector f (x,u) ∈R
n.

4. The class U of admissible controls consists of all Lebesgue measurable func-
tions u defined on a compact interval I ⊂ R with values in the control set U ,
u : I → U , t �→ u(t). (This generality is needed to ensure the existence of solu-
tions to optimal control problems and indeed, even for the problems considered
in this text, optimal controls are not necessarily piecewise continuous.)

Given any admissible control u∈U defined over some open interval J, it follows
from standard results about the local existence and uniqueness of ordinary differen-
tial equations that for any initial condition x(t0) = x0 with t0 ∈ J, there exists a
unique solution x to the initial value problem
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ẋ(t) = f (x,u(t)), x(t0) = x0, (A.1)

defined over some maximal interval (τ−,τ+)⊂ J that contains t0.

Definition A.2.2 (Controlled Trajectory). Given an admissible control u ∈ U
defined over an interval J, let x be the unique solution to the initial value prob-
lem (A.1) with maximal interval of definition I = (τ−,τ+). We call this solution
x the trajectory corresponding to the control u and call the pair (x,u) a controlled
trajectory over the interval I.

An optimal control problem then consists in finding, among all admissible con-
trolled trajectories, one that minimizes an objective, possibly subject to additional
constraints. In this text, in addition to the control constraints that are implicit in the
definition of the control set, we only consider terminal constraints in the form of
a target set into which the controls need to steer the system. These may include
a fixed terminal time T (e.g., chemotherapy over a prescribed therapy horizon) or
limitations on the terminal state for a free final time T (e.g., optimizing in time the
use of an a priori specified amount of therapeutic agents). We therefore describe the
terminal set N in the form

N = {(t,x) ∈ R×M : Ψ(t,x) = 0}

whereΨ : R×M → R
n+1−k, (t,x) �→Ψ(t,x) = (ψ0(t,x), . . . ,ψn−k(t,x))T , is a con-

tinuously differentiable mapping with the property that the matrix DΨ of the partial
derivatives with respect to (t,x) is of full rank n+ 1− k everywhere on N, (i.e.,
the gradients of the functionsψ0(t,x), . . . ,ψn−k(t,x) are linearly independent on N).
A fixed terminal time simply will be modeled as the equation Ψ0(t,x) = t − T in
the mapping Ψ defining the constraint in N. Geometrically, the terminal set is a
k-dimensional embedded submanifold of R×M.

The objective is given in so-called Bolza form as the integral of a Lagrangian L
plus a penalty term ϕ . Both the Lagrangian L, L : M×U → R, (x,u) �→ L(x,u), and
the penalty term ϕ , ϕ : R×M → R, (t,x) �→ ϕ(t,x), are continuously differentiable
functions and the objective or cost functional is given as

J (u) =
∫ T

0
L(x(s),u(s))ds+ϕ(T,x(T )), (A.2)

where x is the unique trajectory corresponding to the control u. The initial time has
been normalized to t0 = 0 and the terminal time T can be fixed or free. In the latter
case the possibility of penalizing long intervals is included in the function ϕ . The
initial condition x0 is fixed, but arbitrary. The optimal control problem then is the
following one:

[OC] Minimize the objective J (u) over all admissible controlled trajectories
(x,u) defined over an interval [0,T ] such that the terminal constraint (T,x(T )) ∈
N is satisfied.
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A.2.2 The Pontryagin Maximum Principle

The maximum principle of optimal control gives the fundamental necessary con-
ditions for a controlled trajectory (x,u) to be optimal. It was developed in the
mid 1950s in the Soviet Union by a group of mathematicians under the leader-
ship of L.S. Pontryagin, also including V.G. Boltyanskii , R.V. Gamkrelidze, and
E.F. Mishchenko, and is known as the Pontryagin maximum principle [29, 282]. On
a formal level, it gives multiplier type necessary conditions for optimality, but its
geometric significance lies quite a bit deeper.

Definition A.2.3 (Hamiltonian). The (control) Hamiltonian function H,

H : [0,∞)× (Rn)∗ ×R
n ×R

m → R, (λ0,λ ,x,u) �→ H(λ0,λ ,x,u),

for the optimal control problem [OC] is defined as

H(λ0,λ ,x,u) = λ0L(x,u)+λ f (x,u). (A.3)

Theorem A.2.1 (Pontryagin Maximum Principle [282]). Let (x∗,u∗) be a con-
trolled trajectory defined over the interval [0,T ]. If (x∗,u∗) is optimal, then there
exist a constant λ0 ≥ 0 and a covector λ : [0,T ] → (Rn)∗, the so-called adjoint
variable, such that the following conditions are satisfied:

1. Nontriviality of the multipliers: (λ0,λ (t)) = 0 for all t ∈ [0,T ].
2. Adjoint equation: the adjoint variable λ is a solution to the time-varying linear

differential equation

λ̇ (t) =−λ0
∂L
∂x

(x∗(t),u∗(t))−λ (t)
∂ f
∂x

(x∗(t),u∗(t)). (A.4)

3. Minimum condition: almost everywhere in [0,T ] we have that

H(λ0,λ (t),x∗(t),u∗(t)) = min
v∈U

H(λ0,λ (t),x∗(t),v) = const. (A.5)

4. Transversality condition: at the endpoint of the controlled trajectory, the covector(
H +λ0

∂ϕ
∂ t ,−λ +λ0

∂ϕ
∂x

)
∈ (R1+n

)∗
is orthogonal to the terminal manifold N.

This is equivalent to the existence of a multiplier ν ∈ (Rn+1−k)∗ such that

H +λ0
∂ϕ
∂ t

+ν
∂Ψ
∂ t

= 0, λ = λ0
∂ϕ
∂x

+ν
∂Ψ
∂x

at (T,x∗(T )). (A.6)

The following statement is an immediate special case of the transversality
condition.

Corollary A.2.1. If the penalty function ϕ and the terminal constraint Ψ do not
depend on t (and in this case the terminal time T necessarily is free), then the Hamil-
tonian H vanishes identically along the optimal controlled trajectory (x∗,u∗),
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H(λ0,λ (t),x∗(t),u∗(t))≡ 0.

We introduce some useful terminology and give a brief, but somewhat informal
description of the significance of each condition.

Definition A.2.4 (Extremals; Normal and Abnormal). Controlled trajectories
(x,u) for which there exist multipliers λ0 and λ such that the conditions of the
maximum principle are satisfied are called extremals and the pair ((x,u),(λ0,λ ))
consisting of the controlled trajectory and the multipliers is called an extremal lift
(to the cotangent bundle in case of manifolds). If λ0 > 0, then the extremal lift is
called normal while it is called abnormal if λ0 = 0.

(1) Normal and abnormal extremal lifts. The maximum principle takes the
form of a multiplier rule with multiplier (λ0,λ (t)). The nontriviality condition
precludes a trivial solution of these conditions with (λ0,λ (t)) = (0,0). Since the
conditions are linear in the multipliers (λ0,λ ), it is always possible to normalize this
vector. For example, if λ0 > 0, then the conditions do not change if we divide by λ0

and instead consider as the new multiplier (1, λ̃(t)), where λ̃ (t) = λ (t)/λ0. Thus,
without loss of generality, we may always assume that λ0 = 1 if the extremal lift is
normal. Note that it is a property of the extremal lift, not the controlled trajectory, to
be normal or abnormal. It is possible that both normal and abnormal extremal lifts
exist for a given controlled trajectory (x,u). For this reason, controlled trajectories
for which only abnormal extremal lifts exist are sometimes called strictly abnormal.

(2) Adjoint system. As a solution to a linear time-varying ordinary differen-
tial equation, the adjoint variable λ (·) is well defined over the full interval [0,T ].
Geometrically, and this is shown in the proof of the maximum principle, the multi-
plier (λ0,λ (t)) represents a normal vector to a hyperplane in (t,x)-space (hence the
nontriviality condition) that evolves in time according to the adjoint equation. This
equation arises as the adjoint in the sense of linear ordinary differential equations of
the so-called variational equation

ẏ =
∂ f
∂x

(x∗(t),u∗(t))y, (A.7)

which transports tangent vectors (that are generated by means of variations) along
the reference controlled trajectory t �→ (x∗(t),u∗(t)). Solutions of the adjoint sys-
tem provide the corresponding transport for covectors along this curve. In terms of
the Hamiltonian H, the coupled system consisting of the dynamics and the adjoint
equation can be written as

ẋ∗(t) =
∂H
∂λ

(λ0,λ (t),x∗(t),u∗(t)) and λ̇ (t) =−∂H
∂x

(λ0,λ (t),x∗(t),u∗(t))
(A.8)

and thus forms a Hamiltonian system that is coupled with the control u∗ through the
minimization condition (A.5).

(3) Minimum condition. In the original formulation of the theorem by Pontrya-
gin et al. [282], this condition was formulated as a maximum condition and gave
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the result its name. In fact, depending on the choice of the signs associated with
the multipliers λ0 and λ , the maximum principle can be stated in four equivalent
versions. Here, since most of the problems we will be considering are cast as mini-
mization problems, we prefer this more natural formulation, but retain the classical
name. The minimum condition (A.5) states that in order to solve the minimization
problem on the function space of controls, the control u∗ needs to be chosen so that
for some extremal lift, it minimizes the Hamiltonian H pointwise over the control
set U , i.e., for almost every t ∈ [0,T ], the control u∗(t) is a minimizer of the function
v �→ H(λ0,λ (t),x∗(t),v) over the control set U . Note that it is not just required that
the control satisfy the necessary conditions for minimality—and this is how a weak
version of the maximum principle is formulated—but that the control u∗(t) be a true
minimizer over the control set U . This condition generally is the starting point for
any analysis of an optimal control problem. Formally, we may try to “solve” the
minimization condition (A.5) for the control u as a function of the other variables,
u = u(t,x∗;λ0,λ ), and then substitute the “result” into the differential equations for
dynamics and adjoint variable to get

ẋ = f (x,u(t,x∗;λ0,λ )), x(t0) = x0,

λ̇ (t) =−λ0
∂L
∂x

(x∗(t),u(t,x∗;λ0,λ ))−λ (t)
∂ f
∂x

(x∗(t),u(t,x∗;λ0,λ )).

Multiple solutions to the minimization problem can exist and in general this is not
a unique specification of the control. Even when the minimization problem has a
unique solution, this solution depends on the multiplier, i.e., lives in the cotangent
bundle. It is possible that there exist multiple solutions and thus this need not give
rise to unique controlled trajectories. In fact, two extremals projecting onto the same
point in the state space is the typical geometric picture that arises when trajectories
lose local optimality properties near conjugate points.

(4) Transversality conditions. Equations (A.1) and (A.4) form a system in
2n+1 variables (the state x, the multiplier λ , and the terminal time T ) with the
initial condition x0 specified. Information about the remaining n+ 1 conditions is
contained in the transversality conditions at the endpoint. The requirement that the
terminal state lie on the manifold N, (T,x(T ))∈N, imposes n+1−k conditions and
thus leaves k degrees of freedom. The adjoint variable λ (T ) ∈ (Rn)∗ at the terminal
time T is determined on the k-dimensional tangent space to N at (T,x∗(T )) by the
relation

λ (T ) = λ0
∂ϕ
∂x

(T,x∗(T ))+ν
∂Ψ
∂x

(T,x∗(T )

and the multiplier ν ∈ (Rn+1−k
)∗

in this equation accounts for n−(n+1−k)= k−1
degrees of freedom. The last degree of freedom is taken up by the equation

H(λ0,λ (T ),x∗(T ),u∗(T ))+λ0
∂ϕ
∂ t

(T,x∗(T ))+ν
∂Ψ
∂ t

(T,x∗(T )) = 0

if the terminal time T is free. Overall, there thus are 2n + 1 equations for the
boundary values x(T ), λ (T ) and T . Hence, at least in nondegenerate situations, the
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transversality conditions provide the required information about the missing bound-
ary conditions for both the adjoint variable and the terminal time T . The geometric
statement that the vector (H +λ0

∂ϕ
∂ t ,−λ +λ0

∂ϕ
∂x ) is orthogonal to the terminal con-

straint N at the endpoint of the controlled trajectory is equivalent to the formulation
given in the theorem.

Corollary A.2.2. If there are no constraints on the terminal state x(T ), then all
extremals are normal.

Proof. In this case the transversality conditions reduce to the equations

H(λ0,λ (T ),x∗(T ),u∗(T ))+λ0
∂ϕ
∂ t

(T,x∗(T )) = 0

and

λ (T ) = λ0
∂ϕ
∂x

(T,x∗(T )).

If λ0 = 0, then the adjoint equation (A.4) is a time-varying homogeneous linear dif-
ferential equation with terminal condition λ (T ) = 0. Hence λ (t) ≡ 0 contradicting
the nontriviality of the multipliers. �

Summarizing, in order to solve an optimal control problem, in principle, we
need to find all solutions to a boundary value problem on state and costate, coupled
by a minimization condition, and then compare the costs that the projections of these
solutions onto the controlled trajectories give. This is not an easy task.

A.3 Control Affine Systems as Mathematical Models
for Biomedical Models

We say a control system is control-affine with drift vector field f and control vector
fields gi, i = 1, . . . ,m, if the dynamics takes the following form:

ẋ = f (x)+
m

∑
i=1

gi(x)ui, x ∈ M, u ∈U. (A.9)

Here the vector field f represents the uncontrolled dynamics while the vector fields
gi model the influence of the ith control on the system. In the biomedical models
considered in this text, the controls represent dose rates or concentrations of some
agents and these are nonnegative values that lie in prescribed ranges. We therefore
take the control set U as an m-dimensional interval of the form

U = [0,umax
1 ]×·· ·× [0,umax

m ] (A.10)

and the class U of admissible controls is given by Lebesgue measurable functions
u = (u1, . . . ,um)

T defined on some interval I with values in U , ui : I → [0,umax
i ], t �→
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ui(t). In this section, we only consider terminal constraints on the final state x(T )
of the system, but once more assume that such constraints have a regular geometric
structure and are given in the form N = {x ∈ M : ψ(x) = 0} with ψ : M → R

n−k a
continuously differentiable mapping and the matrix Dψ of the partial derivatives of
ψ with respect to x of full rank everywhere on N. We also adjust the functional form
of the objective to be consistent with the control-affine structure of the dynamics,
i.e., we take the functional to be minimized in the form

J (u) =
∫ T

0

(

L(x(s))+
m

∑
i=1

θiui(s)

)

ds+ϕ(x(T )). (A.11)

with L : M → R, x �→ L(x), and ϕ : N → R, x �→ ϕ(x), continuously differentiable
functions. The terminal time T can be fixed or free. Not only does this form agree
with the general structure of a control-affine control systems, but, more importantly,
the integrals

∫ T
0 ui(t)dt have an immediate interpretation in terms of the total dose of

agents given if the control represents dose rates or the AUC (area under the curve),
a commonly used pharmacological quantity, if the controls denote concentrations.
Thus these quantities are biomedically meaningful. The optimal control problem is
the same as before:

[OC] minimize the objective J (u) over all admissible controlled trajectories
(x,u) subject to the terminal constraint x(T ) ∈ N.

A.3.1 Bang-Bang and Singular Controls

For a control-affine system the Hamiltonian function H takes the form

H = λ0

(

L(x)+
m

∑
i=1

θiui

)

+

〈

λ , f (x)+
m

∑
i=1

gi(x)ui

〉

(A.12)

and the conditions of the Pontryagin maximum principle reduce to the following
statement:

Theorem A.3.1 (Pontryagin Maximum Principle for Control-Affine Systems).
Let (x∗,u∗) be a controlled trajectory for the problem [OC] defined over the interval
[0,T ]. If (x∗,u∗) is optimal, then there exist a constant λ0 ≥ 0, a multiplier ν ∈
(Rn−k)∗ and a co-vector λ : [0,T ] → (Rn)∗ such that the following conditions are
satisfied:

1. Nontriviality of the multipliers: (λ0,λ (t)) = 0 for all t ∈ [0,T ];
2. Adjoint equation: the adjoint variable λ is a solution to the time-varying linear

differential equation
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λ̇ (t) =−λ0
∂L
∂x

(x∗(t))−λ (t)

(
∂ f
∂x

(x∗(t))+
m

∑
i=1

u∗i (t)
∂gi

∂x
(x∗(t))

)

(A.13)

with terminal condition

λ (T ) = λ0
∂ϕ
∂x

(x∗(T ))+ν
∂ψ
∂x

(x∗(T )) ; (A.14)

3. Minimum condition: almost everywhere in [0,T ] we have that

H(λ0,λ (t),x∗(t),u∗(t)) = min
v∈U

H(λ0,λ (t),x∗(t),v) = const. (A.15)

If the terminal time T is free, the value of this constant is 0.

For this problem, since U is an m-dimensional interval, U = [0,umax
1 ]× ·· · ×

[0,umax
m ], the minimum condition splits into m scalar minimization problems that

are easily solved. Defining the functions Φi(t) = λ0θi + 〈λ (t),gi(x∗(t))〉, it follows
that the optimal controls satisfy

u∗i (t) =

{
0 if Φi(t)> 0,

umax
i if Φi(t)< 0.

(A.16)

Definition A.3.1 (Switching Function). The function Φi : [0,T ]→ R,

t �→Φi(t) =
∂H
∂ui

(λ0,λ (t),x∗(t),u∗(t)) = λ0θi + 〈λ (t),gi(x∗(t))〉 , (A.17)

is called the switching function corresponding to the control ui.

A priori, the control ui is not determined by the minimum condition at times
when Φi(τ) = 0. In such a case, all control values trivially satisfy the minimum
condition and thus, in principle, all are candidates for optimality. However, the
switching functions are absolutely continuous and if the derivative Φ̇i(τ) does not
vanish, then the control switches at time τ from ui = 0 to ui = umax

i if Φ̇i(τ) is neg-
ative and from ui = umax

i to ui = 0 if Φ̇i(τ) is positive. Such a time τ is called a
bang-bang switch. On the other hand, if Φi(t) were to vanish identically on an open
interval I, then, although the minimization property by itself gives no information
about the control, in this case also all the derivatives of Φi(t) must vanish and this
condition puts strong limitations on the controls. Extremal controls for which the
switching function vanishes identically over an open interval I are called singular
while the constant controls ui = 0 and ui = umax

i are called bang controls; controls
that only switch between 0 and the maximum control values are called bang-bang
controls. If the control represents dose rates for the application of some therapeu-
tic agent, then bang-bang controls correspond to treatment strategies that switch
between maximum dose therapy sessions and rest periods, the typical MTD (max-
imum tolerated dose) type applications of chemotherapy. Singular controls, on the
other hand, correspond to time-varying administrations of the agent at intermediate
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and often significantly lower dose rates. There is growing interest in such structures
in the medical community because of mounting evidence that “more is not neces-
sarily better” [118, 273] and that a biologically optimal dose (BOD) with the best
overall response should be sought. The question whether optimal controls are bang-
bang or singular thus has an immediate interpretation and practical relevance for the
structure of optimal treatment protocols.

Strictly speaking, to be singular is not a property of the control, but of the ex-
tremal lift, since it clearly also depends on the multiplier λ defining the switching
function.

Definition A.3.2 (Singular Controls and Extremals). Let Γ be an extremal lift for
the problem [OC] consisting of a controlled trajectory (x∗,u∗) defined over the in-
terval [0,T ] with corresponding multiplier λ0 and adjoint vector λ : [0,T ]→ (Rn)∗.
The extremal lift Γ is said to be singular on an open interval I ⊂ [0,T ] if one of the
switching functions Φi vanishes identically on I. We say the corresponding control
u∗i is singular on I and call the corresponding portion of the trajectory x a singular
arc. The extremal lift Γ is said to be totally singular on an open interval I ⊂ [0,T ] if
all of the switching functions Φi vanish identically on I.

This terminology has its historical origin in the following simple observation:
in terms of the Hamiltonian H for problem [OC], the switching functions can be
expressed as

Φi(t) =
∂H
∂ui

(λ0,λ (t),x∗(t),u∗(t))

and thus, formally, the condition Φi(t) = 0 is the first-order necessary condition
for the Hamiltonian to have a minimum in the interior of the corresponding con-
trol interval. For a general optimal control problem, extremal lifts are called sin-
gular, respectively nonsingular, over an open interval I if the first-order necessary
condition

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t)) = 0

is satisfied for t ∈ I and if the matrix of the second-order partial derivatives,

∂ 2H
∂u2 (λ0,λ (t),x∗(t),u∗(t)),

is singular, respectively nonsingular, on I. For a control-affine problem [OC], this
quantity is always zero, and thus any component ui of an optimal control that takes
values in the interior of the control set is necessarily singular. While the terminol-
ogy may be a bit misleading, singular controls indeed are often the more natural
candidates for optimality with bang controls only arising where singular controls
are inadmissible or simply do not exist.

Bang and singular controls are thus the prime candidates for optimality in optimal
control problems for control affine systems. It is clear that the zero sets Zi of
the switching functions, Zi = {t ∈ [0,T ] : Φi(t) = 0}, determine the structures
of the optimal controls. Unfortunately, all that can be said about Zi in general is
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that it is a closed set (e.g., see [292, Proposition 2.8.1]). Even within the general
class of control-affine optimal control problems, it is not difficult to construct ex-
amples (given by infinitely often differentiable drift and control vector fields) such
that starting with an arbitrary (as weird as the reader can or cannot image) locally
bounded, Lebesgue measurable control u, this control is the unique solution of the
associated time-optimal control problem. No such results exist if the vector fields
are real analytic. But also, except for the classical bang-bang theorem for linear
systems [292, Theorems 3.4.1 and 3.6.1], no truly general results about regular-
ity properties of optimal controls for analytic nonlinear systems are known either.
Even for the models considered in this text, some optimal controls exhibit chatter-
ing or the so-called Fuller or Zeno phenomenon, i.e., switch infinitely many times
on a finite interval. For example, such structures arise when the optimal concentra-
tions of agents follow singular arcs and standard linear pharmacokinetic equations
are included in the model (see Section 6.3). Thus, even for control-affine systems,
it generally is a highly nontrivial mathematical problem to determine the precise
structures of optimal controls.

A.3.2 Lie Brackets and High-Order Necessary Conditions
for Optimality of Singular Controls

Optimal controls need to be synthesized from bang and singular controls, and the
switching functions contain the information to unlock this structure. In order to
study their zero sets, one needs to analyze the derivatives of the switching functions
and in these calculations the Lie bracket of vector fields comes up naturally. We
only remark that the Lie bracket is a natural generalization of the concept of the
directional derivative from functions to vector fields. In fact, the Lie derivative of a
function φ along a vector field X at a point p, LX (φ)(p), is defined as the directional
derivative of the function φ in the direction of X(p), i.e., LX (φ)(p) =∇φ(p) ·X(p).
This notion then extends in a unique way to arbitrary tensor fields and in this way
the Lie bracket [X ,Y ] can be thought of as a directional derivative of the vector field
Y in the direction of X . For the purpose of this text, however, the simple coordinate
wise definition given below suffices. We refer the interested reader to any textbook
on differential geometry or the more specialized literature on optimal control (e.g.,
[2, 38, 31, 292]) for an intrinsic geometric set-up.

Definition A.3.3 (Lie Bracket of Vector Fields). Given two continuously differ-
entiable vector fields f and g defined on some open set G ⊂R

n, f ,g : G →R
n, their

Lie bracket [ f ,g] is another vector field defined on G by

[ f ,g](x) = Dg(x) f (x)−D f (x)g(x).

It is clear that the Lie bracket is anti-commutative, i.e., for all vector fields we
have that [ f ,g] = −[g, f ]. In addition, for arbitrary vector fields f , g and h, the Lie
bracket satisfies the Jacobi identity
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[ f , [g,h]]+ [g, [h, f ]]+ [h, [ f ,g]]≡ 0. (A.18)

Note that the Jacobi-identity can be re-written in the form

[ f , [g,h]] = [[ f ,g],h]+ [g, [ f ,h]]

and thus it merely expresses the fact that taking the Lie bracket of f with the product
[g,h] obeys the product rule and thus acts like a derivative. This property, which
can be verified by a direct computation, is inherited from the definition of the Lie
derivative as the directional derivative.

The importance of the Lie bracket in optimal control lies in the following formula
for the derivatives of the switching function:

Proposition A.3.1. Let x(·) be a solution of the dynamics (A.9) for the controls ui

and let λ be a solution of the corresponding adjoint equation (A.13). For any con-
tinuously differentiable vector field h, the derivative of the function

Ψ(t) = 〈λ (t),h(x(t))〉= λ (t)h(x(t))

is given by

Ψ̇(t) =

〈

λ (t),

[

f +
m

∑
i=1

ui(t)gi,h

]

(x(t))

〉

−λ0

〈
∂L
∂x

(x(t)),h(x(t))

〉

.

Proof. This is a direct verification:

Ψ̇(t) = λ̇ (t)h(x(t))+λ (t)Dh(x(t))ẋ(t)

=

(

−λ0
∂L
∂x

(x(t))−λ (t)

(

D f (x(t))+
m

∑
i=1

ui(t)Dgi(x(t))

))

h(x(t))

+λ (t)Dh(x(t))

(

f (x(t))+
m

∑
i=1

gi(x(t))ui(t)

)

= 〈λ (t), [ f ,h](x(t))〉+
m

∑
i=1

ui(t)〈λ (t), [gi,h](x(t))〉−λ0
∂L
∂x

(x(t))h(x(t))

=

〈

λ (t),

[

f +
m

∑
i=1

ui(t)gi,h

]

(x(t))

〉

−λ0

〈
∂L
∂x

(x(t)),h(x(t))

〉

. �

Generally, singular controls are determined by differentiating the switching func-
tions using the dynamics until the controls explicitly appear and then solving the
resulting equations for the controls. Degenerate situations arise when such differen-
tiation never leads to a term that explicitly depends on the control. In such a case,
often all controls that otherwise satisfy the constraints of the problem are optimal
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and such structures are almost always related to ill-posed problem formulations
(e.g., see [317]). But typically, as all the examples analyzed in this text attest to,
this procedure works fine. In the multi-input case the procedure may somewhat be
hampered by the fact that controls appear that a priori are only known to be measur-
able and thus the procedure cannot be continued. In such a case, generally various
cases that distinguish bang from singular controls needs to be considered (e.g., see
Sections 2.2.2 and 2.2.3). The situation is more straightforward for a single-input
control-affine system and we demonstrate the procedure for the system

ẋ = f (x)+ g(x)u. (A.19)

In this case [g,g] ≡ 0 and thus the first derivative of the switching function Φ is
given by

Φ̇(t) = 〈λ (t), [ f ,g](x(t))〉−λ0

〈
∂L
∂x

(x(t)),g(x(t))

〉

. (A.20)

This formula does not depend on the control and if the vector fields f and g and
the Lagrangian L are twice continuously differentiable, we can differentiate Φ̇ once
more to get

Φ̈(t) = 〈λ (t), [ f + ug, [ f ,g]](x(t))〉−λ0

〈
∂L
∂x

(x(t)), [ f ,g](x(t))

〉

−λ0
d
dt

〈
∂L
∂x

(x(t)),g(x(t))

〉

= 〈λ (t), [ f , [ f ,g]](x(t))〉−λ0

〈
∂L
∂x

(x(t)), [ f ,g](x(t))+Dg(x(t) f (x(t))

〉

−λ0

〈

f T (x(t))
∂ 2L
∂x2 (x(t)),g(x(t))

〉

+u(t)

{

〈λ (t), [g, [ f ,g]](x(t))〉−λ0

〈
∂L
∂x

(x(t)),Dg(x(t))g(x(t))

〉

−λ0

〈

g(x(t))T ∂ 2L
∂x2 (x(t)),g(x(t))

〉}

.

These formulas becoming increasingly more complex because of the derivatives of
the terms multiplying λ0, but the control u only appears linearly. Hence, if the term
multiplying u is nonzero, the equation Φ̈(t) = 0 formally can be solved for u and
the result determines the singular control. But note that this formula depends on the
state and the multipliers λ0 and λ , i.e., on the extremal lift. In differential-geometric
terms, it defines the singular control in the cotangent bundle, not as a feedback
function in the state space. Naturally, the formula also in no way guarantees that
the control bounds imposed by u ∈U are satisfied and generally whether a singular
control is admissible needs to be verified on a case-by-case basis.
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Formally, since Φ = ∂H
∂u , the term multiplying the control can be expressed as

∂
∂u

d2

dt2

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))

with the understanding that the outer derivative with respect to the control is taken
ignoring the time-dependence in the derivative. Because of the anti-commutativity
of the Lie bracket, the control cannot appear in the first derivative of the switching
function and, in fact, in various situations, because of Lie-algebraic properties, the
control can only occur for the first time in an even numbered derivative. This has
led to the following definitions.

Definition A.3.4 (Order 1 Singular Control). Let Γ be a singular extremal lift for
the problem [OC] consisting of a controlled trajectory (x∗,u∗) with corresponding
multiplier λ0 and adjoint vector λ . The control u∗ is said to be of order 1 on an open
interval I if

∂
∂u

d2

dt2

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))

does not vanish on I.

Definition A.3.5 (Higher-Order Singular Control). Let Γ be a singular extremal
lift for the problem [OC] consisting of a controlled trajectory (x∗,u∗) with corre-
sponding multiplier λ0 and adjoint vector λ . The singular control is said to be of
intrinsic order k over an open interval I if the first 2k−1 derivatives of the switch-
ing function vanish identically and

∂
∂u

d2k

dt2k

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))

does not vanish on I.

Singular controls arise from the extremality conditions of the maximum principle
when the minimization condition is satisfied trivially because ∂H

∂u = 0. However, this
condition does not distinguish between minimization and maximization and thus
singular controls can be both minimizing or maximizing. It is the sign of the quantity
∂
∂u

d2k

dt2k
∂H
∂u (λ0,λ (t),x∗(t),u∗(t)) that distinguishes between these two cases and the

following high-order necessary condition for optimality, the so-called generalized
Legendre-Clebsch condition, holds.

Theorem A.3.2 (Generalized Legendre–Clebsch Condition). LetΓ be a singular
extremal lift for the problem [OC] consisting of a controlled trajectory (x∗,u∗) with
corresponding multiplier λ0 and adjoint vector λ : [0,T ]→ (Rn)∗. If the controlled
trajectory (x∗,u∗) is optimal and the control u∗ is singular of intrinsic order k over
an open interval I ⊂ [0,T ], then

(−1)k ∂
∂u

d2k

dt2k

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))≥ 0 for all t ∈ I. (A.21)
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We say the Legendre-Clebsch condition for minimality of a singular control of
order k is satisfied if equation (A.21) holds. If this quantity is positive, we say the
strengthened Legendre-Clebsch condition holds.

A.3.3 Concatenations Between Optimal Bang and Singular Arcs

The order of a singular control is of importance when it comes to possible concate-
nations between singular and bang controls. In fact, for order 1 singular controls
such concatenations are always locally optimal while they are never optimal for
order 2 singular controls. These results will be used frequently in our text and we
include this simple classical reasoning. We write BS for a concatenation of a trajec-
tory corresponding to one of the constant controls u = 0 or u = umax with a singular
arc; i.e., for some ε > 0 the control is given by

u(t) =

{
0 or umax for t ∈ (τ− ε,τ),
using(t) for t ∈ [τ,τ+ ε).

Concatenations of the type SB are defined similarly. The time τ is called a junction
time and x(τ) a junction (point).

Proposition A.3.2. Let Γ be a singular extremal lift for the problem [OC] consist-
ing of a controlled trajectory (x∗,u∗) with corresponding multiplier λ0 and adjoint
vector λ . Suppose the control u∗ is singular of order 1 on an open interval I, takes
values in the open interval (0,umax), and the strengthened Legendre-Clebsch con-
dition is satisfied. Then, at every time τ ∈ I, there exists an ε > 0 such that any
concatenation of the singular control with a bang control u = 0 or u = umax at time
τ satisfies the necessary conditions of the maximum principle; i.e., concatenations
of the types BS and SB are allowed.

Proof. The singular control using is defined by solving the equation Φ̈(t) = 0 and is
a continuous function. So trivially are the constant bang controls and thus the limits
of the second derivative of the switching function at time τ are continuous from the
left (−) or right (+) and have the form

Φ̈(τ±) =Θ(τ±)+ u(τ±)
∂
∂u

d2

dt2

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))

with Θ denoting the expression in Φ̈ that does not multiply the control. The second
derivative Φ̈ vanishes identically along the singular control and since the strength-
ened Legendre-Clebsch condition is satisfied, we have that

∂
∂u

d2

dt2

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))< 0.
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HenceΘ(t) is positive along the singular control. Since using(τ±)> 0, we also have
that Θ(τ±)> 0. If we switch to the constant control u ≡ 0, then it follows that

Φ̈(τ±) =Θ(τ±)>Θ(τ±)+ using(τ±)
∂
∂u

d2

dt2

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t)) = 0

and for u = umax we obtain

Φ̈(τ±) =Θ(τ±)+ umax
∂
∂u

d2k

dt2k

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))

<Θ(τ±)+ using(τ±)
∂
∂u

d2

dt2

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t)) = 0.

In each case, these signs are consistent with both entry and exit from the singular
arc, i.e., for example, if u = 0 on an interval (τ − ε,τ), then the switching function
has a local minimum at time t = τ with minimum value 0 and thus Φ is positive
over this interval. This is consistent with the minimum condition of the maximum
principle. �

Proposition A.3.3. Let Γ be a singular extremal lift for the problem [OC] consist-
ing of a controlled trajectory (x∗,u∗) with corresponding multiplier λ0 and adjoint
vector λ . Suppose the control u∗ is singular of order 2 on an open interval I, takes
values in the open interval (0,umax) and the strengthened Legendre-Clebsch condi-
tion is satisfied. Then, at no time τ ∈ I can the control u be concatenated with the
bang controls u = 0 or u = umax. Concatenations of the types BS and SB violate the
conditions of the maximum principle and are not optimal.

Proof. The computations are analogous to the ones in the proof of Proposition A.3.2
and, without loss of generality, we consider the case when the control is singular
over the interval (τ − ε,τ) and is given by u = 0 over the interval (τ,τ + ε). Since
the singular control is of order 2, the first three derivatives of the switching function
do not depend on the control and all vanish identically. Thus the fourth derivative
takes the form

Φ(4)(t) =Θ(t)+ u(t)
∂
∂u

d4

dt4

∂H
∂u

(λ0,λ (t),x∗(t),u∗(t))

with Θ again denoting the term that does not depend on the control. Here we have
that ∂

∂u
d4

dt4
∂H
∂u (λ0,λ (t),x∗(t),u∗(t))> 0 and thusΘ(t) is negative along the singular

arc givingΘ(τ±)< 0. Hence the fourth derivative ofΦ at τ from the right is given by
Φ(4)(τ) =Θ(τ±)< 0. Thus the switching functionΦ has a local maximum for t = τ
and is negative over the interval (τ,τ+ε). But then the minimization property of the
Hamiltonian implies that the control must be u = umax. The analogous contradiction
arises for all concatenations of the type SB or BS. �

This result implies that an optimal singular control of order 2 cannot be concate-
nated with a bang control. In fact, an optimal control needs to switch infinitely many
times between the bang controls u = 0 and u = umax on any interval (τ,τ ± ε) if a
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singular junction occurs at time τ . Corresponding trajectories are called chattering
arcs and they indeed arise in optimal solutions. Also for the biomedical problems
considered here for some initial conditions such structures become optimal once
pharmacokinetic models are included in the equations.

A.3.4 The Goh Condition for Multi-Input Systems

The Goh condition is a specific necessary condition for optimality when more than
one component of the control vector is singular. It follows from Proposition A.3.1
that the first derivatives of the switching function are given by

Φ̇i(t) = 〈λ (t), [ f ,gi](x(t))〉+∑
j =i

u j(t)
〈
λ (t), [g j,gi](x(t))

〉

−λ0

〈
∂L
∂x

(x(t)),g(x(t))

〉

.

In contrast to the single-input case, now the derivative Φ̇i depends on the controls; on
the controls other than ui, that is. The differentiability properties of these controls
thus determine whether further derivatives can be computed. Clearly, there is no
problem when controls are constant. If more than one component is singular at the
same time, the following result, the so-called Goh condition, implies that these terms
drop out from the computation.

Theorem A.3.3 (Goh Condition). Let Γ be a singular extremal lift for the problem
[OC] consisting of a controlled trajectory (x∗,u∗) with corresponding multiplier λ0

and adjoint vector λ : [0,T ]→ (Rn)∗. If the controlled trajectory (x∗,u∗) is optimal
and the controls ui and u j are simultaneously singular over an open interval I, then

〈
λ (t), [gi,g j](x(t))

〉≡ 0 for all t ∈ I.

A.4 Sufficient Conditions for Optimality

The results discussed so far are only necessary conditions for optimality and do not
guarantee that a controlled trajectory that satisfies them is optimal. The theory of
sufficient conditions for optimality is more intricate. Essentially, to guarantee local
optimality properties, it becomes necessary to embed a reference extremal (i.e., the
controlled trajectory together with an associated multiplier) into a family of ex-
tremals in such a way that the controlled trajectories cover a neighborhood of the ref-
erence controlled trajectory. If this can be done globally in the form of what is called
a regular synthesis, then the associated controls all are globally optimal. These con-
cepts are related to classical ideas from the calculus of variations about fields of
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extremals or, in a more modern language, to dynamic programming and solutions
of the Hamilton-Jacobi-Bellman equations. We outline the main ideas and results
for the optimal control problem [OC] in the formulation given in Section A.2.1.

A.4.1 The Hamilton-Jacobi-Bellman Equation and Value
Function of an Optimal Control Problem

The key idea in studying sufficient conditions for optimality is to consider the value
V of the optimal control problem as a function of variable initial conditions. In this
context, it is customary and more convenient, although somewhat ambiguous, to
denote the initial time by t and the initial value by x so that the value function is
defined as

V (t,x) = inf
u∈U

J (u;t,x),

where the infimum is taken over all admissible controls u ∈ U whose correspond-
ing trajectories start at the point x at time t and satisfy all other requirements of the
optimal control problem. Essentially, the approach is to consider the optimal control
problem for all possible initial conditions and determine the best possible action at
time t if the state of the system is given by x. Note that, although the dynamics for
the optimal control problem [OC] is time-invariant, the value function will depend
on t if our problem formulation includes the terminal time T , either as a finite pre-
determined therapy horizon or through the penalty term ϕ = ϕ(T,x(T )). Intuitively,
if the therapy horizon is specified, clearly it will matter how close to the end of the
interval the current state of the system is. It is not difficult to see—and this is known
as Bellman’s dynamic programming principle (e.g., see [292, Proposition 5.1.1])—
that, if the function V is differentiable at (t,x) with gradient ( ∂V

∂ t (t,x),
∂V
∂x (t,x)), then

for all u ∈U the following inequality is satisfied:

∂V
∂ t

(t,x)+
∂V
∂x

(t,x) f (x,u)+L(x,u)≥ 0.

Furthermore, if u∗ is an optimal control for the initial condition (t,x) which is con-
tinuous at the initial time t, then equality holds for u = u∗(t). In this case the value
V satisfies the so-called Hamilton-Jacobi-Bellman equation:

∂V
∂ t

(t,x)+min
u∈U

{
∂V
∂x

(t,x) f (x,u)+L(x,u)

}

≡ 0. (A.22)

This is a first-order linear partial differential equation coupled with the optimal con-
trol u∗ through the minimum condition. Generally, if it is possible to carry out this
minimization and write the minimizer as a function of t, x, and ∂V

∂x (t,x), a highly
nonlinear PDE results.

The importance of this equation lies in its significance as a sufficient condition
for optimality. Indeed, if the pair (V,u∗) is a solution to this equation (in the sense
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that V is a continuously differentiable function and u∗ = u∗(t,x) is an admissible
control for which the minimum is realized), then u∗ is an optimal control.

Definition A.4.1 (Admissible Feedback Controls). Let G be a region in the (t,x)-
space. We call a feedback control u : G →U , (t,x) �→ u(t,x), admissible (on G) for
the control problem [OC] if for every initial condition (t,x) ∈ G the initial value
problem

ξ̇ = f (ξ ,u(s,ξ )), ξ (t) = x, (A.23)

has a unique solution ξ : [t,T ]→ R
n (forward in time) for which the corresponding

open-loop control η : [t,T ]→U , η(s) = u(s,ξ (s)), lie in the class U of admissible
controls.

If the feedback control u is smooth enough (e.g., continuous and Lipschitz in x),
standard results on ODE’s guarantee the existence and uniqueness of solutions to the
initial value problem (A.23). However, in the presence of control constraints optimal
feedbacks rarely are continuous and standard theory of ODEs is not potent enough
to clarify the existence of solutions for piecewise continuous feedback functions.
Rather than entering into the intricacies of when solutions to ordinary differential
equations with discontinuous right-hand sides exist, we simply require the existence
and uniqueness of solutions to (A.23) while, at the same time, demanding that the
open-loop control that would give rise to this controlled trajectory is admissible.
This will be satisfied for all the problems considered in this text.

Definition A.4.2 (Classical Solution to the Hamilton-Jacobi-Bellman Equation).
Let G be a region in the (t,x)-space that contains the terminal manifold N in its
boundary. We say the pair (V,u∗) is a classical solution to the Hamilton-Jacobi-
Bellman equation for problem [OC] on G if (i) V : G → R is continuously differ-
entiable on G and extends continuously onto N, (ii) u∗ is an admissible feedback
control, (iii) we have

∂V
∂ t

(t,x)+min
u∈U

{
∂V
∂x

(t,x) f (x,u)+L(x,u)

}

≡ 0

with equality holding for the feedback control u∗, and (iv) the boundary condition
V (t,x) = ϕ(t,x) holds for all (t,x) ∈ N.

Theorem A.4.1. If (V,u∗) is a classical solution to the Hamilton-Jacobi-Bellman
equation on G, then the control u∗ is optimal with respect to any other admissible
control η for which the graph of the corresponding controlled trajectory ξ lies in
G and V is the corresponding minimal value when taken over this class of controls.
In particular, if a classical solution (V,u∗) exists on the full space, then u∗ is an
optimal control and V is the value function for the problem.

Proof. Let η : [t,T ]→ U be any admissible control for initial condition (t,x) ∈ G
with corresponding trajectory ξ . By assumption, the graph of ξ lies in G for s∈ [t,T )
and the function V is differentiable along the graph of ξ . Since ξ is an absolutely
continuous curve, we have a.e. on [t,T ) that
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d
ds

V (s,ξ (s)) =
∂V
∂ t

(s,ξ (s))+
∂V
∂x

(s,ξ (s)) f (s,ξ (s),η(s))

It thus follows from the Hamilton-Jacobi-Bellman equation that

d
ds

V (s,ξ (s)) ≥−L(s,ξ (s),η(s)).

Integrating this inequality from t to some time T − ε and then taking the limit as
ε → 0 therefore yields

V (T,ξ (T ))−V(t,x)≥−
∫ T

t
L(s,ξ (s),η(s))ds.

The boundary condition for V demands that V (T,ξ (T )) = ϕ(T,ξ (T )) and thus it
follows that

V (t,x)≤
∫ T

t
L(s,ξ (s),η(s))ds+ϕ(T,ξ (T )) = J (η ;t,x).

Furthermore, for the control η∗, η∗(s) = u∗(s,ξ∗(s)), we have equality and thus
V (t,x)=J (η∗;t,x). HenceV is the value function,V (t,x)=minη∈U(t,x)

J (η ;t,x).
This proves the theorem. �

The solution of optimal control problems is thus closely related to finding
solutions to the Hamilton-Jacobi-Bellman equation (A.22). It is the coupling of two
aspects, first-order PDE and optimization problem, that makes this a challenge. As
already mentioned, one possible approach is to try and solve the minimization prob-
lem for u and ‘define’ the control as a ‘function’ of the state and the gradient ∂V

∂x ,

u = u(t,x, ∂V
∂x ), and then substitute the resulting relation into the partial differential

equation. But there exist serious obstacles to this procedure: the minimum may not
be unique and even if it is, (e.g., if the Hamiltonian of the associated control problem
is strictly convex in u), then the resulting PDE typically becomes highly nonlinear
and difficult to solve. In special cases, such as the linear-quadratic regulator in con-
trol theory (e.g., see [292, Example 5.1.1]) this procedure works to perfection and
gives an explicit solution, but generally—and in particular for the problems consid-
ered in this text—this is not possible. An alternative procedure, that has its origin
in the classical ideas of fields of extremals in the calculus of variations, is to con-
struct a solution of the HJB-equation by adapting the method of characteristics, the
standard procedure of solving first-order PDEs, to the optimal control problem. This
also establishes the connections between necessary and sufficient conditions for op-
timality: the characteristic equations are given by the dynamics in the state-space
and the adjoint equations on the multipliers. It is this procedure that we employ
throughout this text. We briefly outline the main ideas below, but refer the reader to
Chapters 5 and 6 of our text [292] for the mathematical details.
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A.4.2 The Method of Characteristics

The key idea is to parameterize extremals by integrating the system and adjoint
equation backward from the terminal manifold while maintaining the minimum
condition of the maximum principle and then to investigate the mapping proper-
ties of the corresponding family of controlled trajectories. If the associated flow of
controlled trajectories is one-to-one, then the objective evaluated along this fam-
ily of trajectories, also sometimes called the cost-to-go function, will give rise
to the desired solution of the Hamilton-Jacobi-Bellman equation. The construc-
tion itself clearly brings out the relationships between the necessary conditions of
the maximum principle, Theorem A.2.1, and the dynamic programming principle,
Theorem A.4.1.

For a typical control-affine optimal control problem with a bounded control
set, as they are considered in this text, separate “patches” consisting of controlled
extremals corresponding to smooth controls (e.g., the individual segments when a
bang-bang control is constant or portions when the control is given by a differen-
tiable singular control) need to be glued together to obtain the full solution. We first
formalize the mathematical conditions for one such patch. Essential to the construc-
tion is some degree of smoothness on the parameter p that determines the family of
controlled extremals.

Definition A.4.3 (Cr-Parameterized Family of Controlled Trajectories). Given
an open subset P of Rd with 0 ≤ d ≤ n, let

t− : P → R, p �→ t−(p), and t+ : P → R, p �→ t+(p),

be two r-times continuously differentiable functions, t± ∈Cr(P), that satisfy t−(p)<
t+(p) for all p ∈ P. We call t− and t+ the initial and terminal times of the
parametrization and define its domain as

D = {(t, p) : p ∈ P, t−(p)≤ t ≤ t+(p)}.

Let ξ− : P →R
n, p �→ ξ−(p), and ξ+ : P→R

n, p �→ ξ+(p), be r-times continuously
differentiable functions, ξ± ∈ Cr(P). A d-dimensional Cr-parameterized family T
of controlled trajectories with domain D, initial conditions ξ− and terminal condi-
tions ξ+ consists of:

1. admissible controls, u : D→U , (t, p) �→ u(t, p), that are continuous on D, r-times
continuously differentiable in p on the interior of D with these partial derivatives
extending continuously onto D, (u ∈C0,r(D)),

2. and corresponding trajectories x : D → R
n, (t, p) �→ x(t, p), i.e., solutions of the

dynamics
ẋ(t, p) = f (x(t, p),u(t, p)), (A.24)

that exist over the full interval [t−(p), t+(p)] and satisfy the initial condition
x(t−(p), p) = ξ−(p) and terminal condition x(t+(p), p) = ξ+(p).
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We shall be considering both time-dependent and time-independent formulations
and always wish to separate between the time t and the state x in our notation (Fig-
ure A.1). For example, a time-dependent formulation arises if a fixed therapy hori-
zon is considered (e.g., the models from Chapters 2 and 3) while time-independent
formulations arise when the optimal administration of an a priori given amount of

x

t

M− M+

Fig. A.1 A parameterized family of controlled trajectories

agents is considered (e.g., see Chapter 5). It is convenient, however, to have a com-
mon notation for the associated flows.

Definition A.4.4 (Flow of Controlled Trajectories). Let T be a Cr-parameterized
family of controlled trajectories. For a time-dependent optimal control problem, we
define the associated flow as the map

� : D → R×R
n, (t, p) �−→�(t, p) =

(
t

x(t, p)

)

,

i.e., in terms of the graphs of the corresponding trajectories. For a time-independent
optimal control problem, we define the associated flow as the flow of the trajectories,

� : D → R
n, (t, p) �−→�(t, p) = x(t, p).

We say the flow � is a C1,r-mapping on some open set Q ⊂ D if the restriction of
� to Q is continuously differentiable in (t, p) and r times differentiable in p with
derivatives that are jointly continuous in (t, p). If � ∈ C1,r(Q) is injective and the
Jacobian matrix D�(t, p) is nonsingular everywhere on Q, then we say � is a C1,r-
diffeomorphism onto its image �(Q).

The boundary sections

M− = {(t, p) : p ∈ P, t = t−(p)} and M+ = {(t, p) : p ∈ P, t = t+(p)}
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of a Cr-parameterized family of controlled trajectories are the graphs of the func-
tions t− and t+, M− = gr(t−) and M+ = gr(t+). We call the images of these
sections under the flow �, N± = �(M±), the source, respectively the target of the
parametrization. Thus

N± = {(t,x) : t = t±(p), x = ξ±(p), p ∈ P},

in the time-dependent case and

N± = {x : x = ξ±(p), p ∈ P}

for a time-independent problem. In the constructions, generally one of these is speci-
fied and the trajectories are defined as the solutions of the associated initial (or termi-
nal) value problem. The other then simply is defined by the flow of these solutions.
It is useful to be able to consider both the cases when trajectories are integrated for-
ward in time (families of controlled trajectories with source N−) and backward in
time (families of controlled trajectories with target N+).

Definition A.4.5 (Cr-Parameterized Family of Controlled Trajectories with Cost
γ). Suppose T is a d-dimensional Cr-parameterized family T of controlled tra-
jectories with domain D and initial and terminal values ξ− and ξ+. Given an
r-times continuously differentiable function γ− : P → R, p �→ γ−(p), (respectively,
γ+ : P → R, p �→ γ+(p),) we define the cost or cost-to-go function associated with
T as

C(t, p) = γ−(p)−
∫ t

t−(p)
L(x(s, p),u(s, p))ds,

(respectively, as

C(t, p) =
∫ t+(p)

t
L(s,x(s, p),u(s, p))ds+ γ+(p),

when the terminal value is specified) and call T a Cr-parameterized family of con-
trolled trajectories with cost γ .

The functions γ+ and γ− propagate the cost along trajectories from patch to patch
and C(t, p) represents the value of the objective for the control u = u(·, p) if the ini-
tial condition at time t is given by x(t, p). This specification is equally valid for a
time-dependent or time-independent problem. Since the value of the optimal cost
on the terminal manifold N is specified by the penalty term ϕ in the objective, inte-
grating trajectories backward in time is the typical procedure. For syntheses where
trajectories can be successively integrated backward from the terminal manifold,
these functions are easily computed.

Definition A.4.6 (Cr-Parameterized Family of Extremals). As before, let P be
an open subset of Rd , 0 ≤ d ≤ n, and let t− and t+, t± ∈ Cr(P), be the initial and
terminal times for the parametrization and let D= {(t, p) : p∈P, t−(p)≤ t ≤ t+(p)}.
A d-dimensional Cr-parameterized family E of extremals (or extremal lifts) with
domain D consists of
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1. a Cr-parameterized family T of controlled trajectories (x,u) with domain D,
initial and terminal conditions ξ− and ξ+, and cost γ− (respectively, γ+):

ẋ(t, p) = f (x(t, p),u(t, p)), x(t±(p), p) = ξ±(p);

2. a nonnegative multiplier λ0 ∈ Cr−1(P) and co-state λ : D → (Rn)∗, λ = λ (t, p),
so that (λ0(p),λ (t, p)) = (0,0) for all (t, p) ∈ D and the adjoint equation

λ̇ (t, p) =−λ0(p)
∂L
∂x

(x(t, p),u(t, p))−λ (t, p)
∂ f
∂x

(x(t, p),u(t, p)),

is satisfied on the interval [τ−(p),τ+(p)] with boundary condition λ−(p) =
λ (τ−(p), p) (respectively, λ+(p) = λ (τ+(p), p)) given by an (r−1)-times con-
tinuously differentiable function of p,

such that the following conditions are satisfied:

3. defining h(t, p) = H(λ0(p),λ (t, p),x(t, p),u(t, p)), the controls u = u(t, p) solve
the minimization problem

h(t, p) = min
v∈U

H(λ0(p),λ (t, p),x(t, p),v);

4 (a). with h±(p) = h(t±(p), p)), the following transversality condition holds at the
source (respectively, target)

λ±(p)
∂ξ±
∂ p

(p) = λ0(p)
∂γ±
∂ p

(p)+ h±(p)
∂ t±
∂ p

(p); (A.25)

4 (b). if the target N+ is a part of the terminal manifold N, N+ ⊂ N, then setting
T (p) = t+(p), with ξ+(p) = x(T (p), p) we have that γ+(p) = ϕ(T (p),ξ+(p));
furthermore, there exists an (r− 1)-times continuously differentiable multiplier
ν : P → (Rn+1−k

)∗
so that the following transversality conditions are satisfied:

λ (T (p), p) = λ0(p)
∂ϕ
∂x

(T (p),ξ+(p))+ν(p)
∂Ψ
∂x

(T (p),ξ+(p)), (A.26)

−h(T (p), p) = λ0(p)
∂ϕ
∂ t

(T (p),ξ+(p))+ν(p)
∂Ψ
∂ t

(T (p),ξ+(p)). (A.27)

This definition merely formalizes that all controlled trajectories in the family E
satisfy the conditions of the maximum principle while some smoothness properties
are satisfied by the parametrization and natural geometric regularity assumptions
are made at the terminal manifold N. It is not assumed that the parametrization E
of extremals covers the state-space injectively. The degree r in the definition de-
notes the smoothness of the parametrization of the controls in the parameter p,
u ∈ C0,r, and it implies that x ∈ C1,r. The condition λ ∈ C1,r−1 is ensured by re-
quiring that the multipliers λ0 and the boundary values λ±(p), respectively ν , are
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(r−1)-times continuously differentiable. In particular, for a C1-parameterized fam-
ily of extremals only continuity in p is required. If the data defining the problem
[OC] possess an additional degree of differentiability in x and if the multiplier λ0

and the function λ±(p) are r-times continuously differentiable with respect to p,
then it follows that λ (t, p) ∈C1,r as well. In particular, this is true if r = ∞ or r = ω
as it will be the case in all problems considered in this text. In such a case, we
call E a nicely Cr-parameterized family of extremals (e.g., see Chapter 4). Also, if
λ0(p) > 0 for all p ∈ P, then all extremals are normal and by diving by λ0(p) we
may assume that λ0(p)≡ 1 and we call such a family normal.

The transversality condition (A.25) ensures the proper relationship between the
multiplier λ and the cost γ . Essentially, this condition is the propagation of the
transversality condition (A.14) of Theorem A.3.1 from the terminal constraint along
the parameterized family of extremals.

Lemma A.4.1 ([292, Lemma 5.2.1 and Corollary 5.2.1]). For the optimal con-
trol problem [OC], if the target N+ is a part of the terminal manifold N, N+ ⊂ N,
then condition (A.25) follows from the transversality conditions of the maximum
principle. Furthermore, given any continuously differentiable function τ : P → R,
p �→ τ(p), that satisfies t−(p) ≤ τ(p) ≤ t+(p), and defining ξ (p) = x(τ(p), p),
γ(p) =C(τ(p), p), λ (p) = λ (τ(p), p) and h(p) = h(τ(p), p)), we have that

λ (p)
∂ξ
∂ p

(p) = λ0(p)
∂γ
∂ p

(p)+ h(p)
∂τ
∂ p

(p).

In particular, the transversality condition (A.25) propagates between source and
target.

The following result establishes the key technical relation in making the transi-
tion from necessary to sufficient conditions for optimality.

Lemma A.4.2 (Shadow-Price Lemma [292, Lemma 5.2.2]). Let E be a C1-
parameterized family of extremal lifts with domain D. Then for all (t, p) ∈ D we
have that

λ0(p)
∂C
∂ p

(t, p) = λ (t, p)
∂x
∂ p

(t, p). (A.28)

If the parameterized family of extremals is normal and if the corresponding
family of trajectories covers a region G injectively, then the Shadow-Price lemma
implies that the associated cost-to-go function gives rise to a classical solution to the
Hamilton-Jacobi-Bellman equation on G. Without loss of generality, we consider
the time-dependent formulation, i.e., the flow � is given by �(t, p) = (t,x(t, p)).

Theorem A.4.2 ([292, Theorem 5.2.1]). Let E be a Cr-parameterized family of
normal extremals for a time-dependent optimal control problem and suppose the
restriction of its flow � to some open set Q ⊂ D is a C1,r-diffeomorphism onto an
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open subset G ⊂R×R
n of the (t,x)-space. Then the value V E of the parameterized

family E defined by
V E : G → R, V E =C ◦�−1,

is continuously differentiable in (t,x) and r-times continuously differentiable in x
for fixed t. The function

u∗ : G → R, u∗ = u ◦�−1,

is an admissible feedback control that is continuous and r-times continuously dif-
ferentiable in x for fixed t. Together, the pair (VE ,u∗) is a classical solution of the
Hamilton-Jacobi-Bellman equation

∂V
∂ t

(t,x)+min
u∈U

{
∂V
∂x

(t,x) f (x,u)+L(x,u)

}

≡ 0

on G. Furthermore, the following identities hold in the parameter space on Q:

∂V E

∂ t
(t,x(t, p)) =−H(λ (t, p),x(t, p),u(t, p)), (A.29)

∂V E

∂x
(t,x(t, p)) = λ (t, p). (A.30)

If E is nicely Cr-parameterized, then V E is (r+1)-times continuously differentiable
in x on G and we also have that

∂ 2V E

∂x2 (t,x(t, p)) =
∂λ T

∂ p
(t, p)

(
∂x
∂ p

(t, p)

)−1

. (A.31)

Outline. The identity C =VE ◦� gives that

∂C
∂ p

(t, p) =
∂V E

∂x
(t,x(t, p))

∂x
∂ p

(t, p).

In view of Lemma A.4.2 and the fact that ∂x
∂ p is nonsingular, equation (A.30) follows;

furthermore,

−L(x(t, p),u(t, p)) =
∂C
∂ t

(t, p) =
∂VE

∂ t
(t,x(t, p))+

∂V E

∂x
(t,x(t, p))ẋ(t, p)

=
∂V E

∂ t
(t,x(t, p))+λ (t, p) f (x(t, p),u(t, p))

gives (A.29). But then the minimum condition in the definition of extremals implies
that the pair (V E ,u∗) solves the Hamilton-Jacobi-Bellman equation: for (t,x) =
(t,x(t, p)) ∈ G and an arbitrary control value v ∈U we have that
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∂VE

∂ t
(t,x)+

∂V E

∂x
(t,x) f (x,v)+L(x,v)

=
∂V E

∂ t
(t,x(t, p))+

∂VE

∂x
(t,x(t, p)) f (x(t, p),v)+L(x(t, p),v)

=
∂V E

∂ t
(t,x(t, p))+λ (t, p) f (x(t, p),v)+L(x(t, p),v)

=
∂V E

∂ t
(t,x(t, p))+H(λ (t, p),x(t, p),v)

≥ ∂V E

∂ t
(t,x(t, p))+H(λ (t, p),x(t, p),u(t, p)) = 0

with equality for v = u(t, p).
If E is nicely Cr-parameterized, then in addition λ also is Cr in p and thus,

since on G we have ∂VE

∂x = λ ◦�−1, it follows that ∂VE

∂x is still r-times continuously

differentiable in x. Differentiating the column vector λ T (t, p) =
(
∂VE

∂x

)T
(t,x(t, p)),

we get that
∂λ T

∂ p
(t, p) =

∂ 2VE

∂x2 (t,x(t, p))
∂x
∂ p

(t, p)

where, consistent with our notation, ∂λT

∂ p is the matrix of partial derivatives of the

column vector λ T . �

If the problem is time-independent, then simply consider the autonomous version
of the dynamics defined by

f ′(x′,u) =
(

1
f (x′,u)

)

with the flow map given by �(t, p) = x(t, p). For such a case, the terminal time T
is necessarily free and thus the Hamiltonian H vanishes identically. Hence the value
function is independent of t and the relation (A.30) reads

∂V E

∂x
(x(t, p)) = λ (t, p). (A.32)

Definition A.4.7 (Local Field of Extremals). A Cr-parameterized local field of
extremals, F , is a Cr-parameterized family of normal extremals for which the
associated flow � : D → R×R

n, (t, p) �→ �(t, p), is a C1,r-diffeomorphism from
the interior of the set D, D̊ = {(t, p) : p ∈ P, t−(p) < t < t+(p)}, onto a region
G =�

(
D̊
)
.

We do not require that the flow � is a diffeomorphism on the source or target
of the parametrization. However, if these are hypersurfaces (codimension 1 embed-
ded submanifolds) so that the flow � is transversal to them, then the flow extends
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as a C1,r-diffeomorphism onto a neighborhood of the full closed domain D. This
is the typical scenario along switching surfaces and is satisfied in all the examples
considered in Chapters 2 and 3. Combining Theorems A.4.1 and A.4.2 implies the
following result about optimality (see Figure A.2):

Corollary A.4.1. Let F be a Cr-parameterized local field of extremals with target
NT in the terminal manifold N, NT ⊂ N, and assume its associated flow covers a
domain G. Then, given any initial condition (t0,x0) ∈ G, x0 = x(t0, p0), the open-
loop control ū(t) = u(t, p0), t0 ≤ t ≤ T (p0), is optimal when compared with any
other admissible control u for which the corresponding trajectory x (respectively,
its graph) lies in G, i.e., J (ū)≤ J (u).

G

N

x(⋅ ,p0)
x0

t 0

x(⋅ ,p)
x

x

t

Fig. A.2 A relative minimum—J (u(t0,x0))≤ J (v).

t

x

Fig. A.3 A parameterized family (field) of broken extremals.
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A.4.3 Parameterized Families of Broken Extremals

The results above apply to a single patch (i.e., require a certain degree of smooth-
ness in the parameterizations). In general, however, it is necessary to glue together
various local fields of extremals to obtain a solution along a reference trajectory in
order to construct a global synthesis. It is the minimization condition that generally
determines when and where the control changes. This may happen because the value
where the minimum of the Hamiltonian is achieved jumps and discontinuities arise
in the optimal controls like at bang-bang junctions or where regularity properties of
the parametrization break down as it occurs at junctions for the problems considered
in Chapter 4. This naturally leads to the notion of parameterized families of broken
extremals (Figure A.3).

Definition A.4.8 (Family of Broken Extremals). A Cr-parameterized family of
broken extremals is a finite concatenation E = E 1 ∗ · · · ∗ Ek of Cr-parameterized
families of extremals.

In order to simplify the notation, and without loss of generality, we only describe
the concatenation of two parameterized families of extremals. We keep the nota-
tion unambiguous by restricting the considerations to the time-dependent case, but
the adjustments to the time-independent case are merely formal. Throughout this
subsection, the flow � is thus defined in terms of the graphs of the controlled trajec-
tories, �(t, p) = (t,x(t, p)). Let P be an open subset of Rd with 1 ≤ d ≤ n and let
E1 be a Cr-parameterized family of extremals with domain

D1 = {(t, p) : p ∈ P, t1,−(p)≤ t ≤ t1,+(p)},

source
N1,− = {(t,x) : t = t1,−(p), x = ξ1,−(p), p ∈ P},

target
N1,+ = {(t,x) : t = t1,+(p), x = ξ1,+(p), p ∈ P}

and cost γ1,± : P → R, p �→ γ1,±(p), at the source, respectively, target. For the same
parameter set P, let E2 be a Cr-parameterized families of normal extremals with
domain

D2 = {(t, p) : p ∈ P, t2,−(p)≤ t ≤ t2,+(p)},
source

N2,− = {(t,x) : t = t2,−(p), x = ξ2,−(p), p ∈ P},
target

N2,+ = {(t,x) : t = t2,+(p), x = ξ2,+(p), p ∈ P}
and cost γ2,± : P→R, p �→ γ2,±(p), at the source, respectively, target. We denote the
corresponding controls, trajectories, and multipliers by the corresponding subscript.
For example, λ2 denotes the adjoint variable for the family E2 and we denote the
constant multiplier by λ0,2(p).
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Two Cr-parameterized families E1 and E2 of extremals can be concatenated if
for all p ∈ P we have that (i) t1,+(p) = t2,−(p), ξ1,+(p) = ξ2,−(p), (ii) λ0,1(p) =
λ0,2(p), λ1(t1,+(p), p) = λ2(t2,−(p), p), and (iii) γ1

+(p) = γ2−(p). Conditions (i) and
(ii) enforce that the controlled trajectories of the two flows and their adjoint variables
match at the junction N1,+ = N2,− while condition (iii) guarantees the agreement
of the associated cost functions. In order to simplify the notation, we denote the
functions defining the concatenation by

τ(p) = t1,+(p) = t2,−(p), ξ (p) = ξ1,+(p) = ξ2,−(p), γ(p) = γ1
+(p) = γ2

−(p),

λ0(p) = λ0,1(p) = λ0,2(p) and λ (p) = λ1(t1,+(p), p) = λ2(t2,−(p), p)

Furthermore, it follows from the fact that E1 and E2 are Cr-parameterized families
of extremals that the controls ui = ui(t, p) solve the minimization problems

min
v∈U

H(t,λi(t, p),xi(t, p),v) = H(t,λi(t, p),xi(t, p),ui(t, p)).

Hence also the functions hi(t, p) = H(t,λi(t, p),xi(t, p),ui(t, p)) remain continuous
at the junction and we let

h(p) = h1(t1,+(p), p) = h2(t2,−(p), p).

The concatenated family E = E 1 ∗E2 is then defined as the family of extremals with
domain

D = {(t, p) : p ∈ P, t1,−(p)≤ t ≤ t2,+(p)},
source

N1,− = {(t,x) : t = t1,−(p), x = ξ1,−(p), p ∈ P},
target

N2,+ = {(t,x) : t = t2,+(p), x = ξ2,+(p), p ∈ P}
and the controls u, trajectories x, and adjoint variable λ are defined piecewise as

u(t, p)=

{
u1(t, p) for (t, p) ∈ int (D1) ,

u2(t, p) for (t, p) ∈ D2,
x(t, p)=

{
x1(t, p) for (t, p) ∈ D1,

x2(t, p) for (t, p) ∈ D2,

and

λ (t, p) =

{
λ1(t, p) for (t, p) ∈ D1,

λ2(t, p) for (t, p) ∈ D2.

The set T = {(t, p) : t = τ(p), p ∈ P} is the graph of a continuously differ-
entiable function τ and thus is a hypersurface in (0,T )×P. We also want that the
image S under the flow,

S =�(T ) = {t,x) : t = τ(p), x = x(τ(p), p), p ∈ P} ,
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is a hypersurface in (0,T )× P and this requires some regularity condition. By
construction, the two flows �i, i = 1,2 agree on the surface T . However, their
derivatives are discontinuous and we need to specify which flow is used when we
differentiate at the switching parameters. Since the construction of extremals is done
backward, we generally take the limits from the right, i.e., we consider the flow
�̃2. We call T the switching parameters and S the switching surface. A differ-
entiable mapping F : Rm → R

m is said to be regular at a point x if the derivative
DF : Rm → R

m is nonsingular at x.

Lemma A.4.3. Let T = {(t, p) : t = τ(p), p ∈ P} with P ⊂ R
n an open set. If the

flow map �i, i = 1 or i = 2, is regular for t = τ(p), then near (t,x) = (τ(p),ξ (p))
the switching surface

S =�(T ) = {(t,x) : t = τ(p), x = ξ (p), p ∈ P}.

is an embedded n-dimensional hypersurface and the flow �i is transversal to S ,
i.e., the tangent vectors to the graphs of the trajectories, (1, ẋ(t, p))T , do not lie in
the tangent space to S at �i(t, p).

Fig. A.4 Transversal crossing (left) and fold (right) in a parameterized family of broken extremals.

Definition A.4.9 (Transversal Crossings and Folds). We say the Cr-parameterized
family E = E 1 ∗E2 of broken extremals has a regular switching point at (t0, p0) =
(τ(p0), p0) if both flow maps �1 and �2 are regular at (t0, p0). We call such a
switching point a transversal crossing if the graphs of the trajectories t �→ xi(t, p),
i = 1,2, cross the switching surface

S = {(t,x) : t = τ(p), x = ξ (p), p ∈ P}

in the same direction and a transversal fold if they cross it in opposite directions (see
Figure A.4).

Proposition A.4.1. Suppose ∂x2
∂ p (t, p) is nonsingular for t = τ(p) and let

k(p) = f (ξ (p),u2(τ(p), p))− f (ξ (p),u1(τ(p), p)).
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The point (τ(p), p) is a regular switching point if and only if

1+
∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1

k(p) = 0. (A.33)

The concatenated family E = E 1 ∗E2 of broken normal extremals has a transversal
crossing at (τ(p), p) if

1+
∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1

k(p)> 0 (A.34)

and a transversal fold if

1+
∂τ
∂ p

(p)

(
∂x2

∂ p
(τ(p), p)

)−1

k(p)< 0. (A.35)

Recall that our formulations are for the time-dependent case, but analogous defi-
nitions and results apply to the time-independent formulation.

Proof. We show that the sign of the quantity (A.33) distinguishes between transver-
sal folds and crossings. Since ∂x2

∂ p (t, p) is nonsingular at t = τ(p), the flow �2

corresponding to the control u2, (t, p) �→ (t,x2(t, p)), is locally a C1,r diffeomor-
phism and hence invertible between some neighborhoods V of (τ(p), p) and W of
(τ(p),x2(τ(p), p)). Denote the inverse by �

−1
2 : W → V , (t,x) �→ (t,π(t,x)), and

define a continuously differentiable functionΨ : W → R by

Ψ(t,x) = t − τ(π(t,x)). (A.36)

This functionΨ then describes the switching surface in the state-space,

S = {(t,x) ∈W :Ψ(t,x) = 0}.

The gradient ∇Ψ(t,x) is not zero on S : for (t,x) = (τ(p),x2(τ(p), p)), we have
that

∇Ψ (t,x) =
(

1, −∇τ(p)
)
(

1 0
∂π
∂ t (t,x)

∂π
∂x (t,x)

)

=
(

1, −∇τ(p)
)
(

1 0
∂x2
∂ t (t, p) ∂x2

∂ p (t, p)

)−1

=
(

1, −∇τ(p)
)
(

1 0

−
(
∂x2
∂ p (t, p)

)−1 ∂x2
∂ t (t, p)

(
∂x2
∂ p (t, p)

)−1

)

=

(

1+∇τ(p)

(
∂x2

∂ p
(t, p)

)−1 ∂x2

∂ t
(t, p),−∇τ(p)

(
∂x2

∂ p
(t, p)

)−1
)

.
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In particular, if ∂Ψ
∂x (t,x) = 0, then ∂Ψ

∂ t (t,x) = 1 and therefore ∇Ψ(t,x) = 0. Further-
more, by construction ofΨ we have on S that

∇Ψ(t,x) ·
(

1
f (ξ (p),u2(τ(p), p))

)

≡ 1

and along the flow �1 corresponding to the control u1 we have that

∇Ψ (t,x) ·
(

1
f (ξ (p),u1(τ(p), p))

)

= 1+∇τ(p)

(
∂x2

∂ p
(t, p)

)−1

k(p).

The tangent plane to S at a point (t,x) = (τ(p),x2(τ(p), p)) is given by

T(t,x)S =

{

(α,z) ∈R
n+1 :

∂Ψ
∂ t

(t,x)α+
∂Ψ
∂x

(t,x)z = 0

}

,

and two vectors (1,v) and (1,w) point to the same side of T(t,x)S at (t,x) if and

only if ∇Ψ (t,x) ·
(

1
v

)

and ∇Ψ(t,x) ·
(

1
w

)

have the same sign. Hence it fol-

lows that the switching point at (τ(p), p) is a transversal crossing if and only if

1+∇τ(p)
(
∂x2
∂ p (τ(p), p)

)−1
k(p) is positive while it is a transversal fold if and only

if this quantity is negative. �

The important feature of families of broken normal extremals is that the cor-
responding value in the state-space is a solution to the Hamilton-Jacobi-Bellman
equation wherever the flow covers an open set in the state-space injectively. This
even holds if for some intermediate segment this flow collapses onto lower dimen-
sional manifolds, a common scenario both with bang-bang controls and when the
controlled trajectories follow singular arcs. The key observation is that, since the
trajectories, multipliers and the cost agree at the junctions, the transversality condi-
tion (A.25),

λ (p)
∂ξ
∂ p

(p) = λ0(p)
∂γ
∂ p

(p)+ h(p)
∂τ
∂ p

(p),

propagates from one family to the other. This directly follows from Lemma A.4.1.
Hence the Shadow-Price lemma remains valid as one crosses from one parame-
terized family of extremals to the next and (A.28) holds on the domain D of the
concatenated family E of extremals away from the junction T = {(t, p) : t = τ(p),
p ∈ P}. On T the partial derivatives of C and x with respect to the parameter p
generally are discontinuous, but their jumps cancel in the expression (A.28) and this
allows to construct solutions to the Hamilton-Jacobi-Bellman equation for families
of broken extremals. The formulas below are used in the constructions in Chapter 4
and in Section B.1 in Appendix B.

Lemma A.4.4 ([292, Lemma 6.1.1]). The Shadow-Price identity (A.28) is valid for
the concatenated family E = E 1 ∗ E2 of broken extremals for all (t, p) ∈ D \T .
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Along the switching surface T = {(t, p) : t = τ(p), p ∈ P}, it is valid in the limits
as t → τ(p) from the right and the left. Setting

k0(p) = L(ξ (p),u2(τ(p), p))−L(ξ (p),u1(τ(p), p))

and
k(p) = f (ξ (p),u2(τ(p), p))− f (ξ (p),u1(τ(p), p)),

we have that
λ0(p)k0(p)+λ (p)k(p) = 0

and

∂C2

∂ t
(t, p) =

∂C1

∂ t
(t, p)− k0(p)

(

1,− ∂τ
∂ p

(p)

)

, (A.37)

∂x2

∂ p
(t, p) =

∂x1

∂ p
(t, p)+ k(p)

(

1,− ∂τ
∂ p

(p)

)

. (A.38)

Recall that ∂τ
∂ p(p) denotes the gradient of τ written as a row vector. Hence

∂x2
∂ p (t, p) is a rank 1 correction of the matrix ∂x1

∂ p (t, p).
It seems geometrically intuitive that local optimality properties of the flow of

extremals are preserved at transversal crossings where the combined flow remains
one-to-one while optimality ceases at a switching surface that is a transversal fold
where trajectories overlap. This indeed is the case and in the first case the value
function V E remains continuously differentiable at the switching surface S while
this surface consists of so-called “conjugate points” in the latter scenario.

Definition A.4.10 (Field of Broken Extremals). We say the Cr-parameterized
family E = E 1 ∗E2 of broken extremals defines a field of broken extremals over the
domain D if each of the two flows �i : Di → Gi =�i(Di), is a C1,r-diffeomorphism
on the interior of the domains Di and the combined flow map

� : D → G =�(D), (t, p) �→ (t,x(t, p)) =

{
(t,x1(t, p)) for (t, p) ∈ D1,

(t,x2(t, p)) for (t, p) ∈ D2,

is injective. The sets G and Gi are defined as the images under these flows and we
have that G = G1 ∪S ∪G2.

Theorem A.4.3. [292, Theorem 6.1.1] Let E = E 1 ∗E2 be a Cr-parameterized field
of broken normal extremals. If E has transversal crossings at all switching points
in T = {(t, p) : t = τ(p), p ∈ P}, then the combined flow � : D → G = �(D) is a
diffeomorphism and the associated value function VE : G → R, VE =C ◦�−1, is a
continuously differentiable solution to the Hamilton-Jacobi-Bellman equation on G.

Corollary A.4.2. Let E be a C1-parameterized field of broken normal extremals
with regular transversal crossings over its domain D. Let G =�(D), G =�(D)∪N
and let VE : G → R, VE = C ◦�−1, be the corresponding value function and
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u∗ : G →U, u∗ = u◦�−1, the corresponding feedback control. Then VE is a contin-
uously differentiable solution to the Hamilton-Jacobi-Bellman equation on G which
has a continuous extension to the terminal manifold N. The feedback control is op-
timal on G (i.e., in comparison to any other control for which the corresponding
trajectory lies in G) and the corresponding value function is given by VE .

Transversal folds, on the other hand, correspond to surfaces where optimality of
the combined flow ceases. In this case the switching surface S consists of con-
trolled trajectories and if it can be argued that these trajectories cannot be optimal
(e.g., if the associated controls need to be singular, but singular controls are known
not to be optimal), then using the theory of envelopes [292, Sect. 6.1.3] it can be
shown that S consists of “conjugate points” where optimality ceases. Rather than
discussing this in general, in Appendix B.1 we shall carry out the full construction
of a parameterized family of broken extremals and associated optimality consider-
ations for the cell-cycle specific 2-compartment model considered in Section 2.1.
There we also provide an efficient finite algorithm that allows to determine whether
switching points are transversal crossings or folds.

A.4.4 A Regular Synthesis of Optimal Controlled Trajectories

We close this appendix with a verification theorem for proving the optimality of
a family of extremal controlled trajectories that have been obtained by combining
various local parameterized fields of extremals. The key feature is that a globally
and piecewise defined value function VE : G →R only needs to be differentiable on
a sufficiently rich open subset of G. The result below will be used in Section B.4 in
Appendix B to verify the optimality of a piecewise defined feedback control for the
problem of antiangiogenic monotherapy considered in Chapter 5. For this reason we
give the formulation here for a time-independent problem [OC] with free terminal
time.

Definition A.4.11 (Synthesis). A synthesis of controlled trajectories for the optimal
control problem [OC] over a domain G ⊂ M consists of a family of controlled tra-
jectories S = {(xz,uz) : z ∈ G} that start at the point z ∈ G, xz(0) = z. A synthesis
is called optimal (respectively, extremal) if each controlled trajectory in the family
S is optimal (respectively, extremal).

Clearly, an optimal synthesis needs to be extremal and the aim of all the earlier
constructions is to give conditions that guarantee that an extremal synthesis that
has been found through an analysis of necessary conditions for optimality indeed is
optimal. The result below provides such a statement. A union of sets Si ⊂ M, i ∈ I,
is said to be locally finite if every compact subset K of M only intersects a finite
number of the sets Si.

Theorem A.4.4 (Verification Theorem [292, Theorem 6.3.1]). Let G ⊂ M be a
domain with N in its boundary and suppose V : G∪N → R is a continuous function
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defined on G that satisfies V (z)≤ ϕ(z) for z∈ N. Suppose there exists a locally finite
union of embedded submanifolds Mi, i ∈ N, of positive codimensions, such that the
function V is continuously differentiable on the complement of these submanifolds
in M, Mg = M \∪i∈NMi, and satisfies the Hamilton-Jacobi-Bellman inequality

∂V
∂ z

(z) f (z,u)+L(z,u) ≥ 0 for all z ∈ Mg and u ∈U. (A.39)

Then, for every controlled trajectory (x,u) that starts at a point z ∈ M whose trajec-
tory lies in the region G over the interval [0,T ) and ends in N at time T , we have
that

J(u)≥V (z).

Generally, the function V of the theorem is defined by the value of the objective
for some synthesis of controlled trajectories that has been constructed through an
analysis of extremals as it has been described above. In particular, it then follows
that the corresponding controls are optimal. However, in principle the function V
could come from an arbitrary such selection of controlled trajectories (xz,uz) that
steer the points z ∈ G into N and it can even be allowed that there are multiple
members of this family for some values z ∈ G as long as they give the same value of
the objective. This, for example, is of interest when optimal controls are not unique.
Typically, however, the function V comes from a unique specification in terms of
what is called a memoryless synthesis.

Definition A.4.12 (Memoryless Synthesis). A synthesis S = {(xz,uz) : z ∈ G} of
controlled trajectories for the optimal control problem [OC] over a domain G ⊂ M
is called memoryless, if whenever (xz,uz) ∈ S is defined on [0,T ] and z̃ = x(τ) is a
point on the trajectory for τ > 0, then the controlled trajectory (xz̃,uz̃) in the family
starting at the point z̃ is given by the restriction of the controlled trajectory to the
interval [τ,T ].

Parameterized families of extremals, E , and their associated value functions VE

naturally give rise to the piecewise defined functions V that are needed for this
verification theorem to apply. Differentiability properties of VE on open subsets
along with the fact that the Hamilton-Jacobi-Bellman equation is valid are auto-
matic corollaries of our constructions while lower dimensional submanifolds Mi

where differentiability fails arise naturally where the flow of parameterized families
collapses to follow lower dimensional submanifolds (like it is often the case along
singular trajectories in small dimensions), but can also include submanifolds where
it is just inconvenient to verify differentiability of the value function. Being able
to exclude these lower dimensional subsets from the differentiability requirement
gives the result its global nature. Clearly, if the set G is small, the theorem provides
sufficient conditions for a local minimum. At the same time, these constructions
also provide us with a control u = uz in the parameterized family for which equal-
ity holds, V (z) = J(uz). Thus the verification theorem implies the optimality of the
controls in the synthesis.
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We close with a brief indication of the main argument for the proof of the verifi-
cation theorem. We start with the observation that the result is trivial if V is differ-
entiable everywhere on G and that this is simply the argument considered earlier in
Theorem A.4.1: for any controlled trajectory defined over an interval [0,T ] we have
that

d
dt

V (x(t)) =
∂V
∂ z

(x(t)) f (x(t),u(t)) ≥−L(x(t),u(t))

and thus

V (x(T ))−V(x(0))≥−
∫ T

0
L(x(s),u(s))ds.

Hence

V (x(0))≤
∫ T

0
L(x(s),u(s))ds+V (x(T ))

≤
∫ T

0
L(x(s),u(s))ds+ϕ(x(T )) = J(u).

However, this reasoning breaks down if there exist lower dimensional submanifolds
along which V is not differentiable. In principle, the set of times when a given con-
trolled trajectory x lies in such a submanifold can be an arbitrary closed subset of
the interval [0,T ] and it simply is no longer possible to differentiate the function
V along such a trajectory. Dealing with this problem becomes a highly nontrivial
technical matter. The idea, which goes back to Boltyansky’s original approach of a
so-called regular synthesis [29], is to perturb the given nominal trajectory in such a
way that the resulting trajectory has a value that is close to the one of the original
trajectory, but only intersects the manifolds where V is not differentiable for a finite
set of times. Using Sard’s theorem and various technical constructions, it can be
shown that such an approximation is possible. Then the argument above can be car-
ried out piecewise and the result follows in the limit as the approximations approach
the given controlled trajectory (e.g., see [276] or [292, Sect. 6.3]). In Boltyansky’s
original definition, several, at times stringent, assumptions are made that guarantee
these properties. Not all of these are necessary and in the theorem formulated here
this approximation procedure is carried out using arguments of Sussmann that lead
to continuity requirements on the value function V that are even weaker than we
have stated them in Theorem A.4.4 [276].



Appendix B
Mathematical Proofs

In this appendix we collect some of the more mathematical constructions and proofs
that have been omitted in the main portion of the text. In particular, we include a
complete construction of the fields of bang-bang extremals for the cell-cycle specific
models for chemotherapy from Chapter 2 and a verification of the synthesis of opti-
mal controlled trajectories for model [H] in Chapter 5.

B.1 Construction of a Local Family of Broken Extremals
for Cell-Cycle Specific Cancer Chemotherapy

The mathematical models for cell-cycle specific cancer chemotherapy considered in
Section 2 all have optimal controls that are bang-bang. In this appendix, we give a
detailed construction of the corresponding field of extremals for the 2-compartment
model [CC2]. More generally, the same constructions apply for optimal control
problems of the form [CC] for arbitrary multi-input bilinear systems as stated in
Theorem 2.2.2.

B.1.1 Construction of a Parameterized Family of Broken
Bang-Bang Extremals

We consider the optimal control problem [CC2] from Section 2, i.e.,

[CC2] for a fixed final time T > 0, minimize the objective

J(u) = rN(T )+

∫ T

0
qN(t)+ su(t)dt → min (B.1)
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over all Lebesgue-measurable functions u : [0,T ] → [0,umax], subject to the
dynamics

Ṅ(t) = (A+ uB)N(t), N(0) = N0, (B.2)

with A and B given by the matrices

A =

(−a1 2a2

a1 −a2

)

and B =

(
0 −2a2

0 0

)

. (B.3)

It is shown in Theorem 2.1.2 that optimal controls do not contain intervals where
the control is singular and thus bang-bang controls are the prime candidates for
optimality.

Let (N∗,u∗) be an extremal controlled trajectory, the reference extremal, such that
u∗ is a bang-bang control with switchings at times ti, i = 1, . . . ,k, 0 = t0 < t1 < · · ·<
tk < tk+1 = T , and denote the corresponding adjoint variable by λ∗. We assume that
all the switchings are strict, i.e., that the derivatives of the switching function at the
switching times ti do not vanish,

Φ̇∗(ti) = {λ∗(ti)[A,B]− qB}N∗(ti) = 0. (B.4)

In a first step, we embed this reference extremal into a parameterized family
of broken extremals (see Definitions A.4.3 and A.4.8). Set p∗ = N∗(T ) and for p
in some neighborhood P of p∗, let N(t, p) and λ (t, p), (t, p) ∈ [0,T ]×P, denote
the solutions to the terminal value problem for the system and adjoint equations
given by

Ṅ(t, p) = (A+ u(t, p)B)N(t, p), x(T, p) = p, (B.5)

λ̇ (t, p) =−λ (t, p)(A+ u(t, p)B)− q, λ (T, p) = r, (B.6)

while the control is chosen so that with

Φ(t, p) = s+λ (t, p)BN(t, p) (B.7)

we have that
Φ(t, p)u(t, p) = min

v∈[0,umax]
Φ(t, p)v. (B.8)

In particular, for p = p∗, the control u(·, p∗) reduces to the reference control u∗ and
N(·, p∗) and λ (·, p∗) are the reference trajectory and corresponding multiplier,

N(t, p∗) = N∗(t), u(t, p∗) = u∗(t), λ (t, p∗) = λ∗(t).

Such a family is well defined near a strictly bang-bang extremal.

Proposition B.1.1. Let Γ = (N∗,u∗,λ∗) be a strictly bang-bang extremal lift and
denote the switching times of the control u∗ by ti, i = 1, . . . ,k, 0 = t0 < t1 < · · · <
tk < tk+1 = T . Then there exists a neighborhood P of p∗ = N∗(T ) in P and real-
analytic functions τi defined on P, i = 1, . . . ,k, such that for p ∈ P the controls
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u(·, p), which are defined as the bang-bang controls that have switchings at the times
0 < τ1(p) < · · · < τk(p) < T in the same order as the reference control, satisfy the
conditions of the maximum principle. If N(·, p) and λ (·, p) denote the corresponding
state and costate defined as solutions to equations (B.5) and (B.6), then the triples
Γp = (N(·, p),u(·, p),λ (·, p)) for p ∈ P are strictly bang-bang extremal lifts and the
family E =

{
Γp : p ∈ P

}
is a real-analytic parameterized family of broken extremals

over the domain D = {(t, p) : 0 ≤ t ≤ T, p ∈ P}.

Proof. We inductively define the controls u = u(t, p), trajectories N = N(t, p) and
multipliers λ = λ (t, p) backward from the terminal time. For all p in some open
neighborhood P of p∗ and t ≤ T , let u = u(t, p) be constant given by the value of
the reference control u∗ on the interval (tk,T ] and define N(t, p) and λ (t, p) as the
solutions of (B.5) and (B.6), i.e.,

N(t, p) = exp((t −T )(A+uB)) p,

and

λ (t, p) =

(

r+ q
∫ T

t
exp((s−T )(A+ uB))ds

)

exp(−(t −T)(A+uB)) .

Since the control is constant and independent of p, the solutions to these linear
ODEs exist for all t ∈ [0,T ] and are real analytic functions. Furthermore, it follows
from the uniqueness of solutions that

N(t, p∗) = N∗(t), u(t, p∗) = u∗(t), λ (t, p∗) = λ∗(t) for tk ≤ t ≤ T.

In terms of the parameterized switching function (B.7), we also have that

Φ(t, p∗) =Φ∗(t) = s+λ∗(t)BN∗(T ) for tk ≤ t ≤ T.

In particular,
∂Φ
∂ t

(tk, p∗) = Φ̇∗(tk) = 0

and thus, by the implicit function theorem, the equation Φ(t, p) = 0 can be solved
uniquely for t as a function of p in a neighborhood of (tk, p∗). This solution is given
by a real analytic function τk = τk(p) defined in a sufficiently small neighborhood
of p∗. By choosing P small enough, we furthermore can ensure that Φ(t, p) has no
additional zeros on the set Dk+1 = {(t, p) : τk(p) ≤ t ≤ T, p ∈ P} and is such that
∂Φ
∂ t (τk(p), p) = 0 for all p∈ P. Hence (N(·, p),u(·, p)) is an extremal over [τk(p),T ]

with corresponding multiplier λ (·, p) that has a strict bang-bang junction at τk(p)
with a switch in the control.

We now iterate this construction backward from switching surface to switching
surface: Suppose τi = τi(p) is given and N(τi(p), p) and λ (τi(p), p) are real-analytic
functions on P. Define u(t, p) by the constant value of the reference control u∗ on
the interval (ti−1, ti) and integrate the corresponding system and adjoint equations
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backward from {(t, p) : t = τi(p)} with boundary conditions given by N(τi(p), p)
and λ (τi(p), p). It then again follows from the uniqueness of solutions to an ODE
that

N(t, p∗) = N∗(t), u(t, p∗) = u∗(t), λ (t, p∗) = λ∗(t) for ti−1 ≤ t ≤ ti

and that N and λ are real-analytic functions given by analogous formulas as above:
for t ≤ τi(p) we now have that

N(t, p) = exp((t − τi(p))(A+ uB))N(τi(p), p)

and

λ (t, p) =

(

λ (τi(p), p)+q
∫ τi(p)

t
exp((s− τi(p))(A+uB))ds

)

exp(−(t −T )(A+uB)) .

Consequently, by the implicit function theorem, the equation Φ(t, p) = 0, now
defined in terms of the newly constructed state and costate, can again be solved
uniquely for t in a neighborhood of (ti−1, p∗) and the solution is given by a real
analytic function τi−1(p) in a neighborhood of p∗. As before, by choosing P
small enough, the resulting switching function will have no additional zeroes on
Di = {(t, p) : τi−1(p)≤ t ≤ τi(p), p∈ P} and ∂Φ

∂ t (τi−1(p), p) = 0 holds for all p∈ P.
The triples Γp = (N(·, p),u(·, p),λ (·, p)) inductively constructed in this way are

strictly bang-bang extremal lifts for p ∈ P. �

B.1.2 Transversal Crossings and Fields of Bang-Bang Extremals

For an optimal control problem over a prescribed time horizon, the flow � of tra-
jectories associated with a parameterized family of extremals is defined in terms of
the graphs of the controlled trajectories as

� : D = [0,T ]×P → [0,T ]×P,

(t, p) �→�(t, p) = (t,N(t, p)). (B.9)

In general, this flow need not be injective: it is defined piecewise, and, if we denote
its subdomains by

Di = {(t, p) : τi−1(p)≤ t ≤ τi(p), p ∈ P}, i = 1, . . . ,k,k+1,

(with the convention that τ0(p) ≡ 0 and τk+1(p) ≡ T ), then the restrictions �i =
� � Di of the flow map � to the domains Di are diffeomorphisms, but overlaps
can occur at the switching surfaces. The first statement is a consequence of the
fact that the control is constant on each subdomain and thus standard results about
uniqueness and differentiability of solutions to ODEs apply (also, see the proof of
Theorem B.1.1 below) while the second one simply is due to the fact that different
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controls before and after the switching are used. We thus need to analyze the map-
ping properties of the flow near the switching surfaces, i.e., determine whether the
combined flow has a transversal crossing or a transversal fold (see Definition A.4.9).
While the overall mapping remains injective in the case of a transversal crossing,
near a transversal fold trajectories overlap and there exist two extremals for initial
conditions near Si prior to the switching. Intuitively, such a structure should no
longer be optimal and this indeed is the case. As we shall show now, for a flow of
bang-bang trajectories, optimality is preserved between switching surfaces and at
transversal crossings, but lost at transversal folds.

Theorem B.1.1. Given a strictly bang-bang extremal lift Γ = (N∗,u∗,λ∗) with the
switching times in the control u∗ given by ti, i = 1, . . . ,k, 0 = t0 < t1 < · · · <
tk < tk+1 = T , let E =

{
Γp = (N(·, p),u(·, p),λ (·, p)) : p ∈ P

}
be the real-analytic

parameterized family of broken extremals constructed in Proposition B.1.1. If all
the switchings (ti, p∗) are transversal crossings, then there exists a neighborhood P
of p∗ = N∗(t) such that the flow � restricted to [0,T ]× P defines a field of bro-
ken extremals and the reference control u∗ is optimal when compared with any
other control u whose trajectory N lies in the region R covered by the flow �,
R =�([0,T ]×P).

Proof. We first show inductively that, for a sufficiently small neighborhood P, the
extensions �̃i of the restrictions of the flow map � to the subdomains Di are diffeo-
morphisms, i.e., that they are injective mappings for which the Jacobian matrices
D�̃i are nonsingular. It then follows from the inverse function theorem that these
mappings have differentiable inverses and, in particular, that �̃i maps the hypersur-
face Ti diffeomorphically onto the switching surfaces Si.

Consider the last segment, i.e., i = k+ 1. Since the control is constant, all con-
trolled trajectories satisfy the same differential equation, Ṅ = (A+ uB)N, and thus
by the uniqueness result on ODEs different trajectories cannot intersect: suppose
there exist times (s1, p1) and (s2, p2) in Dk+1 such that �k+1(s1, p1) =�k+1(s2, p2).
Since the flow is defined in terms of the graphs of the trajectories, this immediately
implies that s1 = s2 and thus the trajectories N(·, p1) and N(·, p2) are solutions to the
differential equation Ṅ = (A+ uB)N that have the same value N(s1, p1) = N(s2, p2)
at time s1 = s2. By standard uniqueness results about solutions to an ODE, these
two trajectories agree for all times and thus p1 = N(T, p1) = N(T, p2) = p2. Hence
the mapping � � Dk+1 is injective. It remains to show that the Jacobian matrix,

D�(t, p) =

(
1 0

Ṅ(t, p) ∂N
∂ p (t, p)

)

,

is nonsingular. But the matrix X(t, p) = ∂N
∂ p (t, p) is the fundamental solution to the

variational equation
Ẋ = (A+ uB)X , X(T ) = Id,
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with Id denoting the identity matrix, and thus is nonsingular. In fact, we simply have
that

∂N
∂ p

(t, p) = exp((t −T )(A+ uB)) for τk(p)≤ t ≤ T.

We only remark that the variational equation is obtained by formally differentiating
the identity

Ṅ(t, p) = (A+ uB)N(t, p), N(T, p) = p,

with respect to p and interchanging differentiation with respect to time and param-
eter [145]. Since the dynamics is linear in N, this reproduces the same differential
equation and differentiation of the terminal condition gives ∂N

∂ p (T, p) = Id.
Inductively now assume the statement is correct over the interval [τi+1(p),T ]

with i ≤ k−1 and consider the previous section of the flow mapping, �̃i. Injectivity
of the map again follows from the uniqueness of solutions to ODEs, but also uses the
fact that switchings are transversal. Suppose there exist times (s1, p1) and (s2, p2) in
Di+1 = {(t, p) : τi(p)≤ t ≤ τi+1(p), p ∈ P} such that �i(s1, p1) =�i(s2, p2); then,
as above, this implies that s1 = s2 and that the two trajectories N(·, p1) and N(·, p2)
agree on their common domain. Since all trajectories cross the switching surfaces
transversally in the same direction, it follows that τi+1(p1) = τi+1(p2) and thus,
with τ = τi+1(p1) = τi+1(p2), we also have that �̃i(τ, p1) = �̃i(τ, p2). The flow �̃i

agrees with the flow �̃i+1 on the hypersurface Ti and by inductive assumption, �̃i+1

maps Ti diffeomorphically onto Si. Thus p1 = p2 follows. Furthermore, X(t, p) =
∂N
∂ p (t, p) still is a solution of the differential equation Ẋ = (A+uB)X , but now with
terminal condition given by

X(τi+1(p), p) =
∂N−
∂ p

(τi+1(p), p)

with the notation N− indicating that the partial derivatives are computed from the
left. By assumption, all switchings are regular for both the flows before and after
the switchings. Hence this matrix is nonsingular and so is then the solution X(t, p).
Now we have that,

∂N
∂ p

(t, p) = exp((t −T )(A+ uB))
∂N−
∂ p

(τi+1(p), p) for t ≤ τi+1(p).

This completes the inductive argument.
The reasoning used so far is valid whenever the junctions are regular for both

flows involved in the switching: we only have used that the controls are constant
and that all trajectories in each of the flows cross the switching surface in a unique
direction. It is the fact that trajectories of both flows cross the switching surface
in the same direction that makes the overall mapping � : [0,T ]×P → [0,T ]× P

one-to-one. This is clearly seen in Figure A.4 and can be proven as follows: sup-
pose there exist times (s1, p1) and (s2, p2) in D such that �(s1, p1) = �(s2, p2).
Then, as above, s1 = s2 and, proceeding with a proof by contradiction, suppose that
p1 = p2. By the previous argument, the points (s1, p1) and (s2, p2) cannot lie in the
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same subdomain Di since the flows �i = � � Di are diffeomorphisms. By choos-
ing the neighborhood P small enough, if necessary, we can also assume that for all
switching times τi we have that supp∈P τi(p)< infp∈P τi+1(p). This then implies that
(s1, p1) and (s2, p2) must lie in adjacent domains Di and Di+1 since any hyperplane
t = s in [0,T ]×P can at most intersect one of the hypersurfaces Ti and thus at most
intersects two adjacent domains. Hence �(s1, p1) =�(s2, p2) ∈�(Di)∩�(Di+1).
This is possible in case of a transversal fold, but in case of a transversal crossing the
images �(Di) and �(Di+1) lie to opposite sides of the switching surface Si. This
is clear locally and follows for the full domains Di and Di+1 from the fact that the
flow is defined by the graphs of the trajectories. Contradiction.

Overall, the full, piecewise defined flow

� : [0,T ]×P→ R =�(D)⊂ [0,T ]×P, (t, p) �→�(t, p) = (t,N(t, p)),

is one-to-one and piecewise continuously differentiable on the interiors of the sub-
domains Di, i = 1, . . . ,k,k+ 1. Furthermore, the individual pieces �i : Di → Ri =
�(Di)⊂ [0,T ]×P have continuously differentiable extensions onto open neighbor-
hoods D̃i of Di. The flow thus has a globally well-defined inverse �

−1 : R → D,
(t,N) �→ �

−1(t,N), and the restrictions of �
−1 to the regions Ri = �(Di) are

continuously differentiable functions (i.e., with continuous limits at the bordering
switching surfaces Si and Si+1).

The parameterized cost C = C(t, p) (see Definition A.4.5) associated with the
parameterized family of E =

{
Γp = (N(·, p),u(·, p),λ (·, p)) : p ∈ P

}
of broken

extremals is defined as the cost-to-go function of the family, i.e.,

C(t, p) = rp+
∫ T

t
{qN(z, p)+ su(z, p)}dz. (B.10)

Thus C(t, p) is the value of the objective of the optimal control problem [CC2] if
the initial condition is given by N(t, p) at time t. Recall that the parameterization is
through the endpoints of the trajectories and thus N(T, p) = p. The value V = V E

of the parameterized family in the state-space is then simply given by

V =VE : R → R, VE =C ◦�−1. (B.11)

By construction, this function is continuous and continuously differentiable away
from the switching surfaces Si, i = 1, . . . ,k. It is a remarkable fact that, although
the individual pieces of C and � are not continuously differentiable at the switch-
ings, in case of a transversal crossing, the value function remains continuously
differentiable at the switching surfaces Si. This is a consequence of the fact that
the parameterized family of controlled trajectories that was used to define this value
V consists of extremals and the conditions of the maximum principle. It follows
from Lemma A.4.2 that the relation

∂C
∂ p

(t, p) = λ (t, p)
∂N
∂ p

(t, p), (B.12)
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holds for all (t, p)∈ Di, i = 1, . . . ,k, and, as a consequence, away from the switching
surfaces Si, the derivatives of the parameterized value function VE are given by

∂VE

∂N
(t,N(t, p)) = λ (t, p)

and
∂V E

∂ t
(t,N(t, p)) =−H(λ (t, p),N(t, p),u(t, p))

(see Theorem A.4.2). But the multipliers and the Hamiltonian remain continuous
at the switchings and thus these partial derivatives of V E merge to a continuously
differentiable function on the switching surfaces as well. Thus the function VE =
C ◦�−1 is continuously differentiable on all of R.

Theorem A.4.2 then implies that VE together with the feedback control u∗ =
u◦�−1 is a classical solution of the so-called Hamilton-Jacobi-Bellman equation,

∂V
∂ t

(t,N)+min
u∈U

{
∂V
∂N

(t,N)(A+ uB)N +(qN + su)

}

≡ 0, V (T,N) = rN.

(B.13)
and optimality follows from Theorem A.4.1. �

B.1.3 Transversal Folds and Loss of Local Optimality

Theorem B.1.1 verifies that bang-bang extremals for the optimal control prob-
lem [CC2] are strongly local optimal if all switchings are transversal crossings.
It remains to show that local optimality ceases at transversal folds.

Theorem B.1.2. Given a strictly bang-bang extremal lift Γ = (N∗,u∗,λ∗) with the
switching times in the control u∗ given by ti, i = 1, . . . ,k, 0 = t0 < t1 < · · · < tk <
tk+1 = T , let E =

{
Γp = (N(·, p),u(·, p),λ (·, p)) : p ∈ P

}
be the real-analytic pa-

rameterized family of broken extremals constructed in Proposition B.1.1. If all the
junctions are regular and there exists a switching (ti, p∗) that is a transversal fold,
then the reference control u∗ is not locally optimal.

Proof. Let � be the largest index for which the switching surface is a transversal
fold. It then follows from Theorem B.1.1 that the controlled trajectories (N(·, p),
u(·, p)) are locally optimal over the domain Dopt = {(t, p) : τ�(p)< t ≤ T, p ∈ P},
i.e., for initial conditions that lie in Gopt =�(Dopt). We now show that the extremals
of the field that start at points on the �-th switching surface S� are no longer optimal.
Hence, these controlled trajectories are not optimal for initial times t < τ�(p) and
thus are not optimal over the full interval [0,T ].

The result follows using an envelope argument that shows that the �-th switching
surface consists of conjugate points where local optimality ceases [292, Theorem
6.1.2]. For the model considered here, all the necessary calculations can easily be
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done and we give a self-contained derivation. Since S� is a transversal fold, at every
point (t,N) ∈S� the tangent vectors (1,AN) and (1,(A+umaxB)N) to the graphs of
the trajectories corresponding to the bang controls u≡ 0 and u≡ umax are transversal
to S� and point to opposite sides of the surface S� at (t,N). Hence there exists a
unique value ũ = ũ(t,N) that lies in the open interval (0,umax) such that the vector
(1,(A+ ũ(t,N)B)N) is tangent to S� at (t,N). By the implicit function theorem, this
function ũ = ũ(t,N) is continuously differentiable and by the theorem on existence
of local solutions to ODEs, there exists a unique solution Ñ = Ñ(t) to the initial
value problem

Ṅ = (A+ ũ(t,N)B)N, N(t�) = N∗(t�),

over some small interval [t�, t� + κ ]. The open-loop control ũ defined as ũ(t) =
ũ(t, Ñ(t)) is continuous and takes values in the interior of the control set and thus is
admissible. Hence (Ñ, ũ) is an admissible controlled trajectory. Furthermore, since
the graph of the trajectory Ñ = Ñ(t) is tangent to the switching surface S� at every
point along this trajectory, it follows that this graph lies in the switching surface S�.

We now use this controlled trajectory (Ñ, ũ) to construct a one-parameter fam-
ily of controlled trajectories (Nε ,uε) with initial point (t�,N∗(t�)) that all have the
same value for the objective. Since the flow ��+1 corresponding to the trajectories
from the right is a diffeomorphism, given ε ∈ [0,κ ], there exists a unique parameter
p(ε) ∈ P given by a differentiable function of ε such that

Ñ(t�+ ε) = N(t�+ ε, p(ε)), (B.14)

i.e., there exists a unique trajectory in the family E of strictly bang-bang extremals
that passes through the point (t�+ε, Ñ(t�+ε)) and we denote the associated param-
eter by p(ε). We now concatenate the controlled trajectory (Ñ, ũ) with the controlled
trajectory (N(·, p(ε)),u(·, p(ε))) at time t�+ ε (see Figure B.1). Define the control
uε over the interval [t�,T ] as

uε(t) =

{
ũ(t) if t� ≤ t < t�+ ε,
u(t, p(ε)) if t�+ ε ≤ t ≤ T,

so that the corresponding trajectory is given by

Nε (t) =

{
Ñ(t) if t� ≤ t < t�+ ε,
N(t, p(ε)) if t�+ ε ≤ t ≤ T.

Note that for ε = 0 this reduces to the reference controlled trajectory,

u0(t) = u(t, p∗) = u∗(t) and N0(t) = N(t, p∗) = N∗(t) for t� ≤ t ≤ T.

The corresponding cost is given by

Γ (ε) =
∫ t�+ε

t�

{
qÑ(z)+ sũ(z)

}
dz+C(t�+ ε, p(ε))
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where, as above,

C(t, p) =
∫ T

t
{qN(z, p)+ su(zx, p)}dz+ rp

Fig. B.1 The 1-parameter family of controlled trajectories Nε .

denotes the cost of the parameterized extremal with initial condition N(t, p) at
time t.

We will now show that all these trajectories have the same cost, i.e., that Γ (ε)≡
Γ (0) for all ε ∈ [0,κ ]. (In the language of optimal control, the switching surface S�

is an envelope for the control system [292, Definition 5.4.5 and Theorem 6.1.2]).
The function Γ (ε) is differentiable in ε and it suffices to show that its derivative
vanishes on [0,κ ]. We have for almost every ε ∈ [0,κ ] that

dΓ
dε

(ε) = qÑ(t�+ ε)+ sũ(t�+ ε)+
∂C
∂ t

(t�+ ε, p(ε))+
∂C
∂ p

(t�+ ε, p(ε))
d p
dε

(ε).

(B.15)

By definition of C(t, p), we have that

∂C
∂ t

(t�+ ε, p(ε)) =−qN(t�+ ε, p(ε))− su(t�+ ε, p(ε))

and it follows from equation (B.12) that

∂C
∂ p

(t�+ ε, p(ε)) = λ (t�+ ε, p(ε))
∂N
∂ p

(t�+ ε, p(ε))

where the partial derivatives of N with respect to p are evaluated from the right.
The parameters p(ε) are defined as solutions to equation (B.14), N(t�+ ε, p(ε)) =
Ñ(t�+ ε), and thus (B.15) simplifies to

dΓ
dε

(ε) = s [ũ(t�+ ε)− u(t�+ ε, p(ε))]+
∂C
∂ p

(t�+ ε, p(ε))
d p
dε

(ε).
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We need to compute d p
dε . In terms of the flow ��+1 defined for t ≥ τ�(p), equation

(B.14) gives that

(t�+ ε, p(ε)) =�
−1
� (t�+ ε, Ñ(t�+ ε))

and thus differentiating with respect to ε yields

(
1

d p
dε (ε)

)

= (D��(t�+ ε, p(ε)))−1
(

1
dÑ
dε (t�+ ε)

)

=

⎛

⎝
1 0

∂N
∂ t (t�+ ε, p(ε)) ∂N

∂ p (t�+ ε, p(ε))

⎞

⎠

−1⎛

⎝
1

dÑ
dε (t�+ ε)

⎞

⎠

=

⎛

⎜
⎝

1 0

−
(
∂N
∂ p (t�+ ε, p(ε))

)−1( ∂N
∂ t (t�+ ε, p(ε))

) (
∂N
∂ p (t�+ ε, p(ε))

)−1

⎞

⎟
⎠

×
⎛

⎝
1

dÑ
dε (t�+ ε)

⎞

⎠

Hence

d p
dε

(ε) =
(
∂N
∂ p

(t�+ ε, p(ε))
)−1 [dÑ

dε
(t�+ ε)−

(
∂N
∂ t

(t�+ ε, p(ε))
)]

.

Since Ñ is a trajectory of the system, we have that

dÑ
dε

(t�+ ε) = (A+ ũ(t�+ ε)B)Ñ(t�+ ε)

and from the parametrization of the extremals in the family E it follows that

∂N
∂ t

(t�+ ε, p(ε)) = (A+ u(t�+ ε, p(ε))B)N(t�+ ε, p(ε)).

But N(t�+ ε, p(ε)) = Ñ(t�+ ε) and we therefore obtain that

d p
dε

(ε) =
(
∂N
∂ p

(t�+ ε, pε)

)−1

[ũ(t�+ ε)− u(t�+ ε, p(ε))]BN(t�+ ε, p(ε)).

Hence

dΓ
dε

(ε) = [ũ(t�+ ε)− u(t�+ ε, p(ε))] (s+λ (t�+ ε,qε)BN(t�+ ε, p(ε)))

= [ū(t�+ ε)− u(t�+ ε, p(ε))]Φ(t�+ ε, p(ε)),
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where, in the last line, Φ(t, p) = s + λ (t, p)BN(t, p) denotes the parameterized
switching function (see Eq. (B.7)). But the points (t� + ε,N(t� + ε, p(ε))) all lie
on the switching surface S� and therefore we have that

Φ(t�+ ε, p(ε))≡ 0.

Hence dΓ
dε (ε) = 0 and thus the function Γ (ε) is constant.

The value of the objective for the reference controlled trajectory over the interval
[t�,T ], i.e., with initial condition N∗(t�) at time t�, is given by Γ (0). If this trajectory
is optimal, then so are all the other controlled trajectories (N(·, p(ε)),u(·, p(ε)))
in this one-parameter family since they have the same initial point and cost. But
over the interval (t�, t�+ ε) the control ũ takes values in the interior of the control
set and thus this portion of the control is singular. But by Theorem 2.1.2 optimal
controlled trajectories cannot have such an interval. Contradiction. Hence none of
the controlled trajectories, including the reference, are optimal. �

B.1.4 Algorithmic Determination of Transversal Crossings
and Folds

Theorems B.1.1 and B.1.2 decisively summarize the geometric properties that
determine local optimality of a strictly bang-bang controlled trajectory: if all switch-
ings are transversal crossings, it is optimal, if there exists a switching that is a
transversal fold, it is not. These results apply to any single-input bilinear system
and also to multi-input bilinear systems as long as only one of the controls switches
at a particular switching surface. Locally, this of course is the typical (i.e., least
degenerate) behavior. But it remains to provide an efficient numerical scheme that
allows us to determine whether switchings are regular, and if so, whether they are
transversal crossings or folds. For the 2-compartment model [CC2] we have that
B2 = 0, a relation generally not valid. We therefore derive these formulas in general
without making this assumption.

For the moment, consider the following set-up: the controls have a strict bang-
bang switching at time t = τ(p) defined by a differentiable function on P and we
denote the constant controls for t > τ(p) and t < τ(p) by u+ and u−, respectively,
with Δu = u+− u− the jump in the controls. For p ∈ P, let N+(t, p) and N−(t, p)
denote the solutions to the dynamics

Ṅ = (A+ u±B)N, N±(τ(p), p) = N(τ(p), p).

Thus the trajectories of the system are given by N+(t, p) for t ≥ τ(p) and by
N−(t, p) for t ≤ τ(p) and N+ and N− agree for the switching parameters T =
{(t, p) : t = τ(p)}. Note that both functions N+ and N− are defined on a full neigh-
borhood of T . Later on, as above, our argument will proceed by induction back-
ward from the terminal time. Recall that ∂N−

∂ p (T, p) ≡ Id and that thus the matrix
∂N+

∂ p (τk(p), p) at the last switching time is given by
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∂N+

∂ p
(τk(p), p) = exp((τk(p)−T )(A+u+B))

with u+ denoting the constant value of the reference control (0 or umax) over the
interval [tk,T ]. In particular, this matrix is nonsingular. We thus inductively assume
that the matrix ∂N+

∂ p (τ(p), p) of the partial derivatives with respect to p taken
from the right is nonsingular and first we need to determine whether the matrix
∂N−
∂ p (τ(p), p), now with the partial derivatives with respect to p taken from the left

along the trajectories corresponding to the control u−, is nonsingular as well. If it
is, the switching is regular.

While the states and costates remain continuous at the switching surface, their
partial derivatives generally are discontinuous because of the two different controls
used to the left and right of the switching surface. The jumps in these derivatives can
be computed using the following elementary result. (For example, a proof is given
in [292, Lemma 6.1.2]).

Lemma B.1.1. Let z0 ∈ R
n and let Z be an open neighborhood of z0. Suppose g :

Z → R and h : Z → R are continuously differentiable functions so that h(z) = 0 on
{z ∈ Z : g(z) = 0}. If g(z0) = 0 and ∇g(z0) = 0, then there exist a neighborhood W
of z0 contained in Z and a continuous function k : W → R so that h(z) = k(z)g(z)
for z ∈W and ∇h(z0) = k(z0)∇g(z0).

We have that h(t, p) = N+(t, p)−N−(t, p) = 0 whenever g(t, p) = t − τ(p) = 0
and ∇g(t, p) = (1,−∇τ(p)) = 0. Applying the Lemma, it follows that there exists a
continuous real-valued function k = k(t, p) defined near T such that for (t, p) ∈ T
we have that

∇N−(t, p) = ∇N+(t, p)+ k(t, p)(1,−∇τ(p)).

Considering the partial derivatives in t, it follows that

k(t, p) = (A+ u−B)N−(t, p)− (A+ u+B)N+(t, p) =−ΔuBN(τ(p), p)

and thus

∂N−

∂ p
(τ(p), p) =

∂N+

∂ p
(τ(p), p)+ΔuBN(τ(p), p)∇τ(p). (B.16)

Hence ∂N−
∂ p (τ(p), p) is a rank 1 correction of ∂N+

∂ p (τ(p), p). The following fact from
matrix algebra (e.g., see [292, Lemma 6.1.4]) gives us the desired update formulas.

Lemma B.1.2. Suppose A ∈ R
n×n is nonsingular and let u and v be vectors in R

n.
Then the matrix B = A+ uvT is nonsingular if and only if 1+ vT A−1u = 0. In this
case

(A+ uvT )−1 = A−1 − A−1uvT A−1

1+ vT A−1u
.
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Thus the matrix ∂N−
∂ p (τ(p), p) is nonsingular if and only if

1+Δu ·∇τ(p)

(
∂N+

∂ p
(τ(p), p)

)−1

BN(τ(p), p) = 0 (B.17)

and in this case the inverse is given by

(
∂N−

∂ p
(τ(p), p)

)−1

=

(
∂N+

∂ p
(τ(p), p)

)−1

×

⎛

⎜
⎝Id−

ΔuBN(τ(p), p)∇τ(p)
(

∂N+

∂ p (τ(p), p)
)−1

1+Δu∇τ(p)
(
∂N+

∂ p (τ(p), p)
)−1

BN(τ(p), p)

⎞

⎟
⎠ .

The sign of the quantity in Eq. (B.17) determines whether a regular junction is a
transversal crossing or a transversal fold. Recall from Proposition A.4.1 that the
point (τ(p), p) is a regular switching point if and only if

1+∇τ(p)

(
∂N+

∂ p
(τ(p), p)

)−1

k(p) = 0. (B.18)

The switching at (τ(p), p) is a transversal crossing if

1+∇τ(p)

(
∂N+

∂ p
(τ(p), p)

)−1

k(p)> 0 (B.19)

and a transversal fold if

1+∇τ(p)

(
∂N+

∂ p
(τ(p), p)

)−1

k(p)< 0. (B.20)

It remains to compute the quantity ∇τ(p)
(
∂N+

∂ p (τ(p), p)
)−1

. The function τ that

defines the switchings is the solution of the equation

Φ+(t, p) = s+λ+(t, p)BN+(t, p) = 0

for the parameterized switching function Φ+ from the right with λ+ denoting the
adjoint variable corresponding to the control u+. Since the reference extremal has
strict bang-bang switchings it follows from the implicit function theorem that

∇τ(p) =−
∂Φ+

∂ p (τ(p), p)
∂Φ+

∂ t (τ(p), p)
.
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Differentiating Φ(t, p) with respect to p, it follows that

∂Φ+

∂ p
(t, p) = λ+(t, p)B

∂N+

∂ p
(t, p)+

(
∂λ+

∂ p
(t, p)BN+(t, p)

)T

.

By assumption, ∂N+

∂ p (t, p) is nonsingular near the parameterized switching set T =

{(t, p) : t = τ(p)} and thus the matrix

S+(t, p) =
∂λ+T

∂ p
(t, p)

(
∂N+

∂ p
(t, p)

)−1

(B.21)

is well-defined. Using it, we can write

∂Φ+

∂ p
(t, p) =

{
λ (t, p)B+N

+T (t, p)BT S+(t, p)
} ∂N+

∂ p
(t, p)

and thus for t = τ(p) we have that

∇τ(p)

(
∂N+

∂ p
(t, p)

)−1

k(p) (B.22)

=− Δu

Φ̇(t, p)

{
λ+(t, p)B+N

+T (t, p)BT S+(t, p)
}

BN+(t, p)).

Except for the matrix S+, all the terms in this expression are known in a numerical
computation of an extremal.

The matrix S+ is easily computed. The partial derivatives X = ∂N+

∂ p and Y =

∂λ+T

∂ p are solutions of the corresponding variational equations for N and λ . But
these equations are linear and thus X and Y are solutions of the matrix differential
equations

Ẋ = (A+ uB)X and Ẏ =−(A+uB)T Y.

But then the quotient Z = YX−1 satisfies

Ż = Ẏ X−1 +Y
d
dt

(
X−1)= Ẏ X−1 −YX−1ẊX−1

=−(A+ uB)T Z −Z (A+ uB)

and thus the matrix S+(t, p) is a solution to the linear Lyapunov equation

Ṡ+ S(A+ uB)+ (A+uB)TS ≡ 0 (B.23)
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with constant coefficients. Over an interval [t0, t1], this solution is given explicitly in
the form

S(t) = exp
(
(A+ uB)T (t1 − t)

)
S(t1)exp((A+uB)(t1 − t)) (B.24)

if the value at the terminal time t1 is equal to S(t1).
Furthermore, the minimum condition of the maximum principle gives us that

Δu = u+− u− =−umaxsgn
(
Φ̇(τ(p), p)

)
.

(For example, if u− = 0 and u+ = umax, then because of the minimization property
of an extremal control the switching function decreases at a strict switching time
τ(p) so that Φ̇(τ(p), p) < 0.) Thus,

Δu

Φ̇(t, p)
=− umax∣

∣Φ̇(t, p)
∣
∣ .

It therefore follows from equation (B.22) that

1+∇τ(p)

(
∂N+

∂ p
(t, p)

)−1

k(p)

= 1+
umax∣
∣Φ̇(t, p)

∣
∣
{
λ+(t, p)B+NT (t, p)BT S+(t, p)

}
BN(t, p).

Equivalently, assuming that ∂N+

∂ p (τ(p), p) is nonsingular, a switching is regular if
and only if

∣
∣Φ̇(t, p)

∣
∣+umax

{
λ+(t, p)B+NT (t, p)BT S+(t, p)

}
BN(t, p) = 0; (B.25)

it is a transversal crossing if
∣
∣Φ̇(t, p)

∣
∣+umax

{
λ+(t, p)B+NT (t, p)BT S+(t, p)BN(t, p)

}
> 0 (B.26)

and a transversal fold if
∣
∣Φ̇(t, p)

∣
∣+umax

{
λ+(t, p)B+NT (t, p)BT S+(t, p)

}
BN(t, p)< 0. (B.27)

In particular, no partial derivatives of the state or costate with respect to the param-
eter p need to be calculated nor does one need to calculate an inverse. Everything
is subsumed in the algorithmic computation of the matrix S+(t, p) at the switching
points.

However, since the matrix S is defined in terms of the p-partials, it will no longer
be continuous at switching times and we need to update formulas at the switchings.
As above, let S+(t, p) and S−(t, p) denote the matrices S when constructed with N±
and λ± respectively. The state N and costate λ are continuous at the switchings and
so we simply write N and λ for these values. Then, and analogous to (B.16), we
have that
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S−(τ(p), p) =
∂ (λ−)T

∂ p
(τ(p), p)

(
∂N−

∂ p
(τ(p), p)

)−1

=

(

−ΔuBTλ T (τ(p), p)∇τ(p)+
∂ (λ+)

T

∂ p
(τ(p), p)

)

×
(

ΔuBN(τ(p), p)∇τ(p)+
∂N+

∂ p
(τ(p), p)

)−1

.

To simplify the notation, set

Gτ(p) =−∇τ(p)

(
∂N+

∂ p
(τ(p), p)

)−1

Δu

=
Δu

Φ̇(τ(p), p)

{
λ (τ(p), p)B+NT (τ(p), p)BT S+(τ(p), p)

}
.

Then, with all functions evaluated at (τ(p), p), it follows that

S− =
(
BTλ T Gτ + S+

) ∂N+

∂ p

(

(−BNGτ + Id)
∂N+

∂ p

)−1

=
(
BTλ T Gτ + S+

)
(Id−BNGτ)

−1

=
(
BTλ T Gτ + S+

)
(

Id+
BNGτ

1−GτBN

)

.

Recall that for a regular switching we have that

1−Gτ(p)BN(τ(p), p) = 1+∇τ(p)

(
∂N+

∂ p
(τ(p), p)

)−1

ΔuBN(τ(p), p) = 0

and thus this matrix is well defined. Summarizing, we have the following update
formula for S(t, p) at the switching t = τ(p):

Proposition B.1.2. If the switching at t = τ(p) is regular, then with

Gτ(p) =
Δu

Φ̇(τ(p), p)

{
λ (τ(p), p)B+NT (τ(p), p)BT S+(τ(p), p)

}

we have that Gτ(p)BN(τ(p), p) = 1 and

S−(τ(p), p) =
(
BTλ T (τ(p), p)Gτ (p)+ S+(τ(p), p)

)

×
(

Id+
BN(τ(p), p)Gτ (p)

1−Gτ(p)BN(τ(p), p)

)

. (B.28)

The algorithms presented in Theorem 2.1.5 for the 2-compartment optimal con-
trol problem [CC2] and in Theorem 2.2.2 for the general multi-input case then fol-
low by propagating the flow of extremals between the various subdomains using this
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update formula. At the terminal time T we have that x(T, p)≡ p and λ (T, p)≡ r so
that

S−(T, p) =
∂λ T

∂ p
(T, p)

(
∂N
∂ p

(T, p)

)−1

≡ 0.

Propagating the value of S through the last interval [tk,T ], it follows from equation
(B.24) that S+k = 0 as well and thus the condition (B.25) for the last switching to be
regular reduces to the following statement

∣
∣Φ̇∗(tk)

∣
∣+ umaxλ (tk)B2N∗(tk) = 0.

For the 2-compartment model [CC2] we have B2 = 0 and thus the last switching is
always a transversal crossing. The matrix S−k is then computed through the update-
formula (B.28). In general, these updates are given by

S−i =
(
BTλ T

∗ (ti)Gi + S+i
)
(

Id+
BN∗(ti)Gi

1−GiBN∗(ti)

)

where
Gi =− umax∣

∣Φ̇∗(ti)
∣
∣
(
λ∗(ti)B+NT

∗ (ti)B
T S+i
)
.

In between the switching surfaces, the matrix S is simply propagated as the solution
to a linear Lyapunov equation using equation (B.24). This verifies the algorithms
presented in Chapter 2.

B.2 Proof of Theorem 2.2.8

We consider the optimal control problem [CC3b] from Section 2.2.3. The aim is to
show that if (N∗,u∗,v∗) is an optimal controlled trajectory and

a1 + a2(1− vmax)− 2a3 ≥ 0,

then there also does not exist an interval on which the control u∗ is singular.
Suppose u∗ is singular on an open interval I, i.e., Φ1(t)≡ 0 on I. It follows from

Theorem 2.2.7 that v∗ cannot be singular on any subinterval and thus, without loss
of generality, we may assume that v∗ is constant on I, v∗(t) ≡ v, given by either
0 or vmax. The first and second derivatives of the switching function Φ1 are thus
given by

Φ̇1(t) = {λ (t) [A+ vB2,B1]− qB1}N∗(t)≡ 0

and

Φ̈1(t) = λ (t) [A+ u∗(t)B1 + vB2, [A+ vB2,B1]]N∗(t)
− q [A+ vB2,B1]N∗(t)− qB1 (A+u∗(t)B1 + vB2)N∗(t).
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For this model we have that B2
1 = 0 and thus

Φ̈1(t) = {λ (t) [A+ vB2, [A+ vB2,B1]]− q [A+ vB2,B1]−qB1 (A+ vB2)}N∗(t)
+ u∗(t)λ (t) [B1, [A+ vB2,B1]]N∗(t).

But for this system, the coefficient at the control u∗ vanishes. Indeed,

[A+ vB2,B1] = 2a3

⎛

⎝
0 −a2 (1− v) a3 −a1

0 0 a1

0 0 0

⎞

⎠

and this matrix commutes with B1,

[B1, [A+ vB2,B1]] = [A+ vB2,B1]B1 −B1 [A+ vB2,B1]≡ 0.

Hence the second derivative of the switching function does not depend on the control
u and it becomes necessary to differentiate further. In such a case it follows from
general facts in Lie algebra that the control u cannot appear in the third derivative
and we need to compute at least the fourth derivative. The singular control is at least
of intrinsic order 2 in this case (c.f., Definition A.3.5).

In order to simplify the notation, it is convenient to switch to a formalism of Lie
derivatives. Let

f (N) = (A+ vB2)N and g(N) = B1N

denote the linear drift and control vector fields. For higher order derivatives the
notation adXY = [X ,Y ] for the Lie bracket (c.f., Definition A.3.3) becomes more
convenient and we define adn

XY inductively as

adn
XY = adX ◦ adn−1

X Y.

For the linear vector fields f (N) and g(N) we have that

[ f ,g](N) = B1(A+ vB2)N − (A+ vB2)B1N = [A+ vB2,B1]N

and the first two derivatives of the switching function Φ1 can be expressed as

Φ̇1(t) = λ (t)[ f ,g](N∗(t))− qB1N∗(t),

Φ̈1(t) = λ (t)[ f +u∗g, [ f ,g]](N∗(t))− q [A+ vB2,B1]N∗(t)−qB1 (A+ vB2)N∗(t).

Hence
[g, [ f ,g]](N) = [B1, [A+ vB2,B1]]N ≡ 0

so that the vector field [g, [ f ,g]] vanishes identically. In terms of the ad-notation, the
formula for the second derivative can be rewritten more compactly as

Φ̈1(t) = λ (t)
(
ad2

f g
)
(N∗(t))− q

(
ad f g

)
(N∗(t))−qB1 (A+ vB2)N∗(t) (B.29)
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with
(
ad f g

)
(N∗(t)) = [A+ vB2,B1]N∗(t)

and
(
ad2

f g
)
(N∗(t)) = [A+ vB2, [A+ vB2,B1]]N∗(t).

We now differentiate (B.29) once more, using Proposition 2.2.3 for the first term
and the dynamics for all the terms with q. This yields that

Φ(3)
1 (t) = λ (t)

{(
ad3

f g
)
(N∗(t))+ u∗(t)[g,ad2

f g](N∗(t))
}−q

(
ad2

f g
)
(N∗(t))

−q[A+ vB2,B1] (A+ u∗(t)B1 + vB2)N∗(t)
−qB1 (A+ vB2)(A+ u∗(t)B1 + vB2)N∗(t)

= λ (t)
(
ad3

f g
)
(N∗(t))− q

(
ad2

f g
)
(N∗(t))

−q
{
[A+ vB2,B1] (A+ vB2)+B1 (A+ vB2)

2
}

N∗(t)

+u∗(t)
{
[g,ad2

f g](N∗(t))− q([A+ vB2,B1]B1 +B1 (A+ vB2)B1)N∗(t)
}
.

It follows from Lie algebraic facts about vector fields that the coefficient at the
control u must vanish. In fact, since the vector field [g, [ f ,g]] vanishes identically,
the Jacobi identity and anticommutativity of the Lie bracket imply that

[g,ad2
f g](N∗(t)) = [g, [ f , [ f ,g]]]

= − [ f , [[ f ,g],g]]− [[ f ,g], [g, f ]] (B.30)

= [ f , [g, [ f ,g]]] = [ f ,0]≡ 0.

Furthermore, as is easily verified, the matrices [A+ vB2,B1]B1 and B1 (A+ vB2)B1

vanish as well. Thus the control u∗ only appears in the fourth derivative Φ(4)
1 . This

occurs linearly and the term multiplying u∗ is the coefficient that we need for the
generalized Legendre-Clebsch condition. For a control of intrinsic order 2, the gen-
eralized Legendre-Clebsch condition (see Theorem A.3.2 in Appendix A) takes the
form

(−1)2 ∂
∂u

d4

dt4

∂H
∂u

(λ (t),N∗(t),u∗(t),v∗(t))≥ 0 for all t ∈ I.

By differentiating (B.29) once more and taking the coefficient that arises at the con-
trol u∗, we obtain that the

∂
∂u

d4

dt4

∂H
∂u

(λ (t),N∗(t),u∗(t),v) = λ (t)
[
g,
(
ad3

f g
)]
(N∗(t)) (B.31)

− q [A+ vB2, [A+ vB2,B1]]B1N∗(t)
− q[A+ vB2,B1] (A+ vB2)B1N∗(t)

− qB1 (A+ vB2)
2 B1N∗(t).
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We first compute the term multiplying q. Since each matrix is multiplied with B1

on the right, we only need the first rows of the other factors, but we need the com-

mutator anyway to compute
[
g,
(

ad3
f g
)]

. Somewhat longer, but nevertheless direct

computations verify that the matrix

[A+ vB2, [A+ vB2,B1]] = [A+ vB2,B1] (A+ vB2)− (A+ vB2) [A+ vB2,B1]

is given by 2a3 times the matrix

⎛

⎝
−a1a2 (1−v) a2

2 (1−v)2 +(a3 −2a1)a2 (1−v) −(a3 −a1)
2

0 2a1a2 (1−v) −a1 (2a3 −a1)+a1a2 (1−v)
0 0 −a1a2 (1−v)

⎞

⎠

and upon multiplication with B1 we get that

[A+ vB2, [A+ vB2,B1]]B1 = 4a2
3

⎛

⎝
0 0 a1a2 (1− v)
0 0 0
0 0 0

⎞

⎠=−2a1a2a3 (1− v)B1.

In fact, it also holds that

[A+ vB2,B1] (A+ vB2)B1 = 4a2
3

⎛

⎝
0 0 a1a2 (1− v)
0 0 0
0 0 0

⎞

⎠=−2a1a2a3 (1− v)B1

and

B1 (A+ vB2)
2 B1 = 4a2

3

⎛

⎝
0 0 a1a2 (1− v)
0 0 0
0 0 0

⎞

⎠=−2a1a2a3 (1− v)B1

as well. All these matrices are equal and the term involving q is given by

−q
{
[A+vB2, [A+vB2,B1]]B1 +[A+vB2,B1] (A+vB2)B1 +B1 (A+vB2)

2 B1

}
N∗(t)

= 6a1a2a3 (1−v)qB1N∗(t). (B.32)

It remains to compute the first term,
[
g,
(
ad3

f g
)]
(N∗(t)) = [B1, [A+ vB2, [A+ vB2, [A+ vB2,B1]]]]N∗(t).

We only need the first column and last row of the matrix

[A+ vB2, [A+ vB2, [A+ vB2,B1]]] .
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For, if this matrix has entries (mi j)1≤i, j≤3, then the commutator with B1 is of the
form

[B1, [A+ vB2, [A+ vB2, [A+ vB2,B1]]]] = 2a3

⎛

⎝
m31 m32 m33 −m11

0 0 −m21

0 0 −m31

⎞

⎠ .

A lengthier computation verifies that these entries are of the form

mi j = 2a1a2a3(1− v)m̃i j

where

m̃11 =−2a1 + a2(1− v)+ a3,

m̃21 = 3a1, m̃31 = 0, m̃32 =−3a2,

m̃33 =−a1 − a2(1− v)+ 2a3.

Hence

[B1, [A+ vB2, [A+ vB2, [A+ vB2,B1]]]]

= 12a1a2a2
3(1− v)

⎛

⎝
0 −a2 (1− v) 1

3 (a1 −2a2(1− v)+ a3)
0 0 −a1

0 0 0

⎞

⎠ .

The generalized Legendre-Clebsch condition (B.31) therefore takes the form

∂
∂u

d4

dt4

∂H
∂u

(λ (t),N∗(t),u∗(t),v)

= λ (t)
[
g,
(
ad3

f g
)]
(N∗(t))+ 6a1a2a3 (1− v)qB1N∗(t)

= 12a1a2a2
3(1− v)

⎧
⎨

⎩
λ (t)

⎛

⎝
0 −a2 (1− v) 1

3 (a1 −2a2(1− v)+ a3)
0 0 −a1

0 0 0

⎞

⎠

+q

⎛

⎝
0 0 −1
0 0 0
0 0 0

⎞

⎠

⎫
⎬

⎭
N∗(t).

The fact that Φ̇1(t) ≡ 0 implies that we have {λ (t) [A+ vB2,B1]−qB1}N∗(t) ≡ 0,
i.e.,

0 = 2a3

⎧
⎨

⎩
λ (t)

⎛

⎝
0 −a2 (1− v) a3 − a1

0 0 a1

0 0 0

⎞

⎠−q

⎛

⎝
0 0 −1
0 0 0
0 0 0

⎞

⎠

⎫
⎬

⎭
N∗(t).
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Multiplying this equation by 6a1a2a3(1− v) and adding it to the first yields that

∂
∂u

d4

dt4

∂H
∂u

(λ (t),N∗(t),u∗(t),v) = 24a1a2a2
3(1− v)

×λ (t)

⎛

⎝
0 −a2 (1− v) − 1

3 (a1 +a2(1− v)−2a3)
0 0 0
0 0 0

⎞

⎠N∗(t).

This quantity is negative (and in this case singular controls are not optimal) if and
only if

−a2 (1− v)N2(t)− 1
3
(a1 + a2(1− v)−2a3)N3(t)< 0

or, equivalently, if and only if

−3a2 (1− v)
N2(t)
N3(t)

− a1 − a2(1− v)+ 2a3 < 0.

Since the states Ni(t) are positive, an immediate sufficient condition for this to hold
is that −a1 −a2(1− v)+ 2a3 < 0. This proves Theorem 2.2.8.

Although this argument does not exclude singular controls u altogether, they are
highly unlikely to exist even if a1 + a2(1− v)< 2a3. The reason is that generically
the dimension of the state-space, n = 3, is too small for a singular arc to be of or-
der 2. In fact, the condition Φ1(t)≡ 0 determines the multiplier λ1(t) in terms of the
state N3(t). Then the condition that Φ̇1(t)≡ 0 allows to solve for the multiplier λ2(t)
in terms of the states N(t). An additional necessary condition of the maximum prin-
ciple is that the Hamiltonian function must be constant along the optimal controlled
trajectory and the value of the constant is determined by the endpoint of the trajec-
tory. It is then possible to determine the multiplier λ2(t) along the singular arc from
this third condition. Having the multiplier, for an order 1 singular control, then the
singular control is obtained by solving the equation Φ̈1(t)≡ 0 for u and, if this con-
trol is admissible, in dimension 3 this forms a well-defined closed set of conditions.
However, if the order is higher like it is the case here, then additional conditions
need to be satisfied. Since the second derivative does not depend on the control,
with the multipliers replaced by the conditions imposed by the switching function,
its derivative and H ≡ const, the equation Φ̈1(t) ≡ 0 poses an additional constraint
on the states of the system to be satisfied. Generically (i.e., under “typical” con-
ditions) this defines a surface in the state-space on which the singular trajectories

need to lie. But then the condition Φ(3)
1 (t) ≡ 0 imposes a second such condition

and thus generically singular trajectories can only be very special curves that lie in
the intersections of these surfaces. Thus, a higher order singular control imposes
severe additional requirements on the location where the corresponding trajectories
can only lie. Therefore, typically, i.e., for most values of the parameters ai and vmax,
optimal trajectories simply will not contain singular arcs.
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B.3 Proof of Theorem 3.3.1

Recall that we consider a 3-compartment model consisting of chemotherapeutically
sensitive, partially sensitive and resistant subpopulations with x, y and z denoting
the proportions of the respective populations. The dynamics obeys the following
Riccati differential equations:

ẋ = x(α1 −ρ12 −ρ13)+ yρ21 + zρ31 − x(α1x+α2y+α3z),

ẏ = xρ12 + y(α2 −ρ21 −ρ23)+ zρ32 − y(α1x+α2y+α3z),

ż = xρ13 + yρ23+ z(α3 −ρ32 −ρ33)− z(α1x+α2y+α3z).

and the aim is to show that there exists a unique equilibrium point (x∗,y∗,z∗) ∈ Σ
that is globally asymptotically stable, i.e., contains the entire simplex Σ in its region
of attraction.

Because of symmetries in the differential equations, without loss of generality,
i.e., by relabeling the states if necessary, we may assume that

α1 ≥ α2 ≥ α3.

Since x+y+z≡ 1, the dynamics is 2-dimensional and we use x and y as the variables
setting z = 1− x− y. We also consider Σ as a subset of (x,y)-space in R

2,

Σ =
{
(x,y) ∈ R

2 : x ≥ 0,y ≥ 0,x+ y+ z ≤ 1
}
.

For x = 0 we have that ẋ|x=0 = yρ21 + zρ31. At least one of y or z must be positive
and thus it follows that ẋ|x=0 > 0. Analogously, we have that

ẏ|y=0 = xρ12 + zρ32 > 0 and ż|z=0 = xρ13 + yρ23 > 0.

Hence all trajectories starting at a point (x0,y0) in the boundary of Σ , ∂Σ , enter Σ
forward in time, i.e., Σ is positively invariant.

Given an arbitrary initial condition (x0,y0) ∈ ∂Σ , the ω-limit set Ω(x0,y0)
is defined as the set of all accumulation points of the positive semi-trajectory
{(x(t;x0,y0),y(t;x0,y0)) : t > 0} as t → ∞. It is clear that, for all (x0,y0) ∈ ∂Σ the
ω-limit set Ω(x0,y0) is nonempty. It follows from Poincaré’s theorem [145] that
this limit set is a periodic orbit if it does not contain an equilibrium point. Since, by
elementary index theory, any periodic orbit contains at least one equilibrium point
(x∗,y∗) inside its trajectory [145], it follows that the dynamics (3.17)–(3.18) has at
least one equilibrium point inside Σ . If (i) this equilibrium point is unique and if (ii)
there exist no periodic orbits, then this implies that the system (3.17)–(3.18) is glob-
ally asymptotically stable with Σ its region of attraction. For, by (ii), for any initial
condition (x0,y0) in the boundary of Σ , the ω-limit set Ω(x0,y0) consists of ex-
actly one equilibrium point and thus, by (i), every trajectory (x(t;x0,y0),y(t;x0,y0))
converges to (x∗,y∗) as t → ∞. It thus remains to establish these two properties.

Lemma B.3.1. There exists exactly one equilibrium point in the unit simplex Σ .
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Proof. Using z = 1− x− y, the equations defining the equilibria are given by

(α3 −α1)x2+(α1 −α3 −ρ12 −ρ13−ρ31)x−(α2 −α3)xy+ρ21y+ρ31(1−y) = 0,

and

(α3 −α2)y2+(α2 −α3 −ρ21−ρ23 −ρ32)y−(α1 −α3)xy+ρ12x+ρ32(1−x) = 0.

We begin with the solutions to the first equation, ẋ = 0. On the boundary of the unit
simplex Σ , since ẋ|x=0 = yρ21 + (1− y)ρ31 > 0, there are no solutions for x = 0.
But it is easily seen that, and regardless of the values of the parameters, there exist
unique solutions (xu,yu) ∈ ∂Σ on the line x+ y = 1 and (x�,0) ∈ ∂Σ on the x-axis:
for, we have that

ẋ|x+y=1 = (α2 −α1)x2 +(α1 −α2 −ρ12 −ρ13 −ρ21)x+ρ21

and
ẋ|y=0 = (α3 −α1)x2 +(α1 −α3 −ρ12 −ρ13 −ρ31)x+ρ31.

If α1 > α2, then ẋ|x+y=1 and ẋ|y=0 are concave quadratic functions that are positive
for x = 0 and negative for x = 1. Hence there exist unique zeroes xu and x� that lie
in the open interval (0,1). If α1 = α2 > α3, then this argument still applies to ẋ|y=0
while we can simply solve ẋ|x+y=1 = 0 to get

xu =
ρ21

ρ12 +ρ13 +ρ21
and yu =

ρ12 +ρ13

ρ12 +ρ13 +ρ21
.

If all growth rates are equal, α1 = α2 = α3, we get that

x� =
ρ31

ρ12 +ρ13 +ρ31
.

The same argumentation can be used to show that there are no solutions (x,y) of the
equation ẋ = 0 for y > yu while there exists a unique solution (x,y) = (x(y),y) ∈ Σ
for y ∈ [0,yu]: if α1 = α2 = α3, this follows by simply solving the equation ẋ = 0
for x as

x = x(y) =
ρ21y+ρ31(1− y)
ρ12 +ρ13+ρ31

.

These values are nonnegative for y ∈ [0,1] and we have that x(yu) = yu. Since
x(1)> 0, the points (x(y),y) lie above the line x+ y = 1 for y > yu and below it
for y < yu. If α1 > α3, then, as above, the restrictions ẋ|y=const are concave quadratic
functions that are positive for x = 0 and are positive for x = y if y > yu and neg-
ative if y < yu. Hence, for y > yu these functions have no zero in [0,y] while they
have a unique zero x = x(y) ∈ (0,y) if y < yu. Furthermore, by the implicit function
theorem, x = x(y) is a continuously differentiable function. Overall, it therefore fol-
lows that the restriction Γx of the curve ẋ = 0 to Σ is the graph of a continuously
differentiable function defined over the interval [0,yu].
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We need to know more about the geometry of this curve Γx. It is not difficult to
describe the set ẋ = 0 exactly, but, depending on the parameter values, several cases
need to be distinguished. We content ourselves with describing a typical situation
assuming that α1 > α2 > α3 and leave it to the interested reader to supply the cal-
culus type details for the remaining cases. The formulas and the geometry of the
resulting curves actually simplify if equality relations hold. Generically, the curve
ẋ = 0 is the graph of the rational function

y = y(x) =
(α3 −α1)x2 +(α1 −α3 −ρ12−ρ13 −ρ31)x+ρ31

(α2 −α3)x+ρ31−ρ21
(B.33)

= Ax+B+
C

x+D

with simple pole xp =−D and slanted asymptote y = Ax+B. We have that

A =−α1 −α3

α2 −α3
< 0 and D =

ρ31 −ρ21

α2 −α3

and, making the generic assumptions that C = 0, D = 0 and D =−1, the remaining
constants B and C can easily be computed from the values

y(0) =
ρ31

ρ31 −ρ21
= B+

C
D

and

y(1) =− ρ12 +ρ13

α2 −α3 +ρ31−ρ21
= A+B+

C
1+D

.

Note that the following sign relations hold:

Dy(0) =
ρ31

α2 −α3
> 0 and (1+D)y(1) =−ρ12 +ρ13

α2 −α3
< 0

Depending on the location of the pole xp, three cases need to be distinguished: xp <
0, 0 < xp < 1 and xp > 1. The reasoning in each case is similar and we only describe
the geometry for the second subcase xp ∈ (0,1), i.e., for −1 < D < 0. (We refer the
interested reader to [175] where an alternative argument is fully carried out.) The
condition ρ21 > ρ31 corresponds to the realistic case that the transition rate ρ21 from
the partially resistant to the sensitive compartment is higher than the transition rate
ρ31 from the fully resistant to the sensitive compartment. In this case, both y(0) and
y(1) are negative. But depending on whetherC is positive or negative, there still exist
two subcases: if C > 0, the graph of y lies above the slanted asymptote for x > xp and
below it for x < xp while these relations are reversed if C < 0. As a result, and using
that y(0) < 0, if C > 0, there is no segment of ẋ = 0 that lies in Σ for x < xp while
there exists a unique such segment for x > xp. For C < 0, these relations are reversed
and now there exists a unique segment of ẋ = 0 in Σ for x < xp. We illustrate the
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geometry of the corresponding rational functions in Figure B.2 and show blow-ups
of the resulting segments of the curve ẋ = 0 that lie in Σ in Figure B.3.

In each case, the curve Γx (the segment of ẋ = 0 that lies in Σ) is the graph of
either a strictly increasing function y = ϕ(x) defined over the interval [x�,xu] or a
strictly decreasing function defined over [xu,x�] with range given by [0,yu]. This
condition can be verified as well for all other cases (generic or nongeneric). For
example, in the most degenerate case when α2 = α3 and ρ21 = ρ31, Γx is simply the
segment of the vertical line y ≡ x� = xu inside Σ .
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Fig. B.2 The graphs of the rational function y(x) = Ax+B+ C
x+D for −1 < D < 0 and C < 0 (left)

and C > 0 (right).
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Fig. B.3 The segments Γx of the graphs of y(x) = Ax+B+ C
x+D in the unit simplex Σ .

It is clear, i.e., it follows by arguments invoking symmetry, that the geometry
of solving the equation ẏ = 0 is entirely the same, only with the roles of x and
y interchanged. Now we have ẏ|y=0 = xρ12 +(1− x)ρ32 > 0 and thus there is no
intersection with the x-axis in Σ , but there exist unique points (0, ỹ�) ∈ Σ on the
y-axis and (x̃h, ỹh) on the line x+ y = 1 that solve ẏ = 0. It is a matter of verification
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to show that x̃h > xu or, equivalently, that yu > ỹh. Here the curve ẏ= 0 is generically
the graph of the rational function

x = x(y) =
(α3 −α2)y2 +(α2 −α3 −ρ21 −ρ23 −ρ32)y+ρ32

(α1 −α3)y+ρ32−ρ12
= Ax+B+

C

x+D

and the curve Γy (the segment of ẏ = 0 that lies in Σ) is the graph of either a strictly
increasing function x =ψ(y) defined over the interval [ỹ�, ỹh] or a strictly decreasing
function defined over [ỹh, ỹ�] with range given by [0, x̃h]. In the most degenerate
case when α1 = α3 and ρ12 = ρ32, this again simply becomes the segment of the
horizontal line x ≡ ỹ� = ỹh in Σ . We illustrate the geometric shape of the curve Γy

for the two most typical scenarios in Figure B.4.
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Fig. B.4 The segments Γy of the graphs of y(x) = Ax+B+ C
x+D in the unit simplex Σ .

Intersecting the graphs of the strictly monotonic function y = ϕ(x) describing
the curve Γx with the graph of the strictly monotonic function x = ψ(y) describ-
ing the curve Γy results in at most one intersection point. Since yu > ỹh, or, since we
already know that such an intersection point must exist, the result follows. �

Lemma B.3.2. There do not exist periodic orbits in the unit simplex Σ .

Proof. Unfortunately, Bendixson’s criterion is not conclusive here and we need to
resort to a more direct and technical argument. It follows from elementary index
theory that any periodic orbit γ must contain the equilibrium point (x∗,y∗) in the
region encircled by γ . No periodic orbit can therefore exist if there exists a trajec-
tory {(x(t;x0,y0),y(t;x0,y0)) : t > 0} that starts at a point (x0,y0) in the boundary
of Σ and converges to the equilibrium point (x∗,y∗) as t → ∞. (This simply is a
consequence of uniqueness of solutions). This and similar arguments can be used
in each case to preclude the existence of a periodic orbit. Here we only present two
cases that are based on the geometric properties of the curvesΓx or Γy for the generic
cases.

Figure B.5 depicts the main geometric scenarios that arise. Both ẋ and ẏ are
positive at the origin and we have ẋ > 0 and ẏ < 0 at the vertex (0,1) and ẋ < 0
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Fig. B.5 The main geometric scenarios that determine the regions bounded by the curves Γx and
Γy and the directions of the vector field defining the dynamics (3.17) and (3.18).

and ẏ > 0 at the vertex (1,0). This determines the directions of the vector fields
in each of the subregions of Σ bounded by the curves Γx and Γy. Let R denote the
subregion that has the origin in its boundary, so that both ẋ and ẏ are positive in
R. All trajectories are inflowing into R in case (a) and outflowing from region R in
case (d). Hence in these cases no periodic orbit γ can exist since it would need to
both enter and leave this region R. Cases (b) and (c) are more intricate. Now the
directions of the vector field in principle would allow for circular motions, but the
geometry of the curves Γx and Γy actually prevents a return. This can be seen by
setting up a simple dynamical system that bounds the solutions. Consider case (b)
and let (x0,y0) be an initial condition on the curve Γx that lies below the equilibrium
point (x∗,y∗). In particular, we have that

y0 = Ax0 +B+
C

x0 +D
.

Then define the next point (x1,y1) by keeping x1 = x0 and defining y1 to lie on the
curve Γy, i.e., by solving

x0 = Ay1 +B+
C

y1 +D
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for y1. Continuing this procedure, (x2,y2) is the point on the curve Γx for y2 = y1,
i.e.,

y1 = Ax2 +B+
C

x2 +D

and (x3,y3) is the point on the curve Γy for x = x2, i.e.,

x2 = Ay3 +B+
C

y3 +D
.

Finally, (x4,y4) is the return point on the curve Γx for y4 = y3, i.e.,

y3 = Ax4 +B+
C

x4 +D
.

It follows from the geometric properties of the curves Γx and Γy that this return point
is closer to the equilibrium point than the initial condition was. But a solution to the
differential equations, if it were to return at all, needs to lie above the point (x4,y4).
Thus no periodic orbits are possible. This proves the lemma. �

This concludes the proof of Theorem 3.3.1.

B.4 Synthesis of Optimal Controlled Trajectories
for Antiangiogenic Therapy

We prove Theorem 5.3.1 and construct the synthesis of optimal controlled trajecto-
ries for model [H].

B.4.1 Analysis of Bang-Bang Junctions

We begin with the analysis of optimal bang-bang junctions. We first carry out a
strictly local analysis of switchings that establishes the regions in (p,q)-space where
optimal switchings from u = umax to u = 0 or from u = 0 to u = umax are possible.
The singular base curve S0 and the diagonal D0 = {(p,q) : p = q} form boundary
curves to these regions. Denote by S+ the region outside of the singular loop S0

and by S− the region inside this loop and then define the following regions (see
Figure B.6)

I = D+∩S+, II = D+∩S−, III = D− ∩S−, IV = D− ∩S+.
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Fig. B.6 Definition of the regions I, II, III, and IV .

Proposition B.4.1. Let u∗ be an optimal control and denote the corresponding
trajectory by (p∗,q∗). If (p∗(t),q∗(t)) lies in regions I or III, u∗ can switch at time t
only from u = 0 to u = umax and if (p∗(t),q∗(t)) lies in regions II or IV , u∗ can only
switch from u = umax to u = 0.

Proof. Suppose an optimal control switches at time τ . At the junction the multiplier
λ (τ) vanishes against g(z∗(τ)) and f (z∗(τ))≡ 0. Except for points on the diagonal
D0 = {(p,q) : p = q}, the vector fields f , g and the constant coordinate vector field
h = (0,0,1)T are linearly independent and thus the Lie bracket [ f ,g] can be written
as a linear combination of these vector fields in the form

[ f ,g](z) = ρ(z) f (z)+σ(z)g(z)+ ζ (z)h,

namely,

γ p

⎛

⎜
⎜
⎜
⎜
⎝

ξ

−b

0

⎞

⎟
⎟
⎟
⎟
⎠

= ρ(z)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ξ p ln
(

p
q

)

bp−
(
μ+ d p

2
3

)
q

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+σ(z)

⎛

⎜
⎜
⎜
⎜
⎝

0

−γq

1

⎞

⎟
⎟
⎟
⎟
⎠

+ ζ (z)

⎛

⎜
⎜
⎜
⎜
⎝

0

0

1

⎞

⎟
⎟
⎟
⎟
⎠
.

This gives

ρ(z) =− γ

ln
(

p
q

) and σ(z) =
b p

q

(
ln
(

p
q

)
−1
)
+
(
μ+d p

2
3

)

ln
(

p
q

) =−ζ (z).
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Thus we have that

Φ̇(τ) = 〈λ (τ), [ f ,g](z∗(τ))〉
= ρ(z∗(τ))〈λ (τ), f (z∗(τ))〉+σ(z∗(τ))〈λ (τ),g(z∗(τ))〉−σ(z∗(τ))λ3

=−σ(z∗(τ))λ3. (B.34)

Without loss of generality, by Lemma 5.2.3 we may assume that λ3 > 0 and thus
Φ̇(τ) and σ(z∗(τ)) have opposite signs. The denominator of σ is positive in D+ =
{(p,q) ∈ D : p > q} and negative in D− = {(p,q) ∈ D : p < q} while the zero set
of the numerator of σ is the locus where the vector fields f and [ f ,g] are linearly
dependent, i.e., the singular base curve S0 (see (5.42)). We have labeled the regions
so that the numerator is positive in S+ and negative in S−. Hence Φ̇(τ) is negative
in regions I and III and positive in regions II and IV . Thus, whenever the switching
function has a zero and (p∗(τ),q∗(τ)) lies in region I or III, then the switching
function changes sign at time τ from positive to negative values and thus the control
switches from u = 0 to u = umax. Analogously, whenever the switching function has
a zero and (p∗(τ),q∗(τ)) lies in region II or IV , then the switching function changes
sign at time τ from negative to positive values and thus the control switches from
u = umax to u = 0. �

We proceed to the analysis of bang-bang controls over the full interval. For the
reader’s convenience, we restate the form of the Hamiltonian and the adjoint equa-
tions for the model [H]:

H =−λ1ξ p ln

(
p
q

)

+λ2

(
bp−

(
μ+ d p

2
3

)
q− γuq

)
+λ3u,

=−λ1ξ p ln

(
p
q

)

+λ2

(
bp−

(
μ+ d p

2
3

)
q
)
+Φu,

and

λ̇1 = ξλ1

(

ln

(
p
q

)

+ 1

)

+λ2

(
2
3

d
q

p
1
3

− b

)

, λ1(T ) = 1, (B.35)

λ̇2 =−ξλ1
p
q
+λ2

(
μ+ d p

2
3 + γu

)
, λ2(T ) = 0. (B.36)

We begin with some simple, but useful facts.

Lemma B.4.1. Optimal controlled trajectories have no switching points on the di-
agonal.

Proof. If Φ(τ) = 0 and (p(τ),q(τ)) ∈ D0, then the Hamiltonian reduces to

H = λ2(τ)p∗(τ)
(

b− μ− d p∗(τ)
2
3

)
≡ 0.
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In the domain D , i.e., for 0 < p < p̄ =
(

b−μ
d

) 3
2
, we have that

b− μ− d p
2
3 = d

(
b− μ

d
− p

2
3

)

= d
(

p̄
2
3 − p

2
3

)
> 0

and thus λ2(τ) = 0. Hence Φ(τ) = λ3 > 0. Contradiction. �

We recall (see Figure B.7) the notation

N+ = {(p,q) ∈ D : bp > (μ+d p
2
3 )q},

N0 = {(p,q) ∈ D : bp = (μ+d p
2
3 )q}

and
N− = {(p,q) ∈ D : bp < (μ+d p

2
3 )q}.

It was shown in Lemma 5.3.1 that all controlled trajectories cross N0 from N−
into N+.
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Proposition B.4.2. Optimal controlled trajectories do not have switching points in
the region III ∩N+ or on its boundary curve N0. If a state (p,q;y) is well posed
and the projection (p,q) lies in (III ∩N+)∪N0, then the optimal control at (p,q;y)
is given by a maximum dose rate treatment, i.e., uopt = uopt(p,q;y)≡ umax.

Recall that a point (p,q;y) in the state-space D × [0,A] is well posed if it is
possible to reach a final state (p̃, q̃;A) with p̃ < p (see Section 5.2.1). We only
consider well-posed states.
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Proof. Let u∗ be an optimal control with corresponding trajectory (p∗,q∗) defined
over [0,T ] and suppose there exists a time α ∈ (0,T ) when the corresponding tra-
jectory has a switching point in (III∩N+)∪N0. It then follows from the fact that
the Hamiltonian H vanishes identically that

−λ1(α)ξ p∗(α) ln

(
p∗(α)
q∗(α)

)

+λ2(α)
(

bp∗(α)−
(
μ+d p∗(α)

2
3

)
q∗(α)

)
= 0.

Without loss of generality, again we only consider extremals with λ3 > 0 and thus
λ2(t) is positive whenever the switching function Φ(t) = λ3−λ2(t)γq∗(t) vanishes.
Hence λ2(α) > 0 and λ1(α) ≤ 0. It follows from Proposition B.4.1 that a switch
at time α must be from u = 0 to u = umax. Since optimal controls end with an
interval along which u∗(t)≡ 0, there exists another switching time β < T such that
u∗(t)≡ umax on (α,β ). The switching function is negative on this interval with zeros
at α and β , Φ(α) =Φ(β ) = 0. Hence Φ has a minimum over the interval [α,β ] at
some time σ ∈ (α,β ) and by (5.45) we have that

Φ̇(σ) = 〈λ (σ), [ f ,g](z(σ))〉 = γ p∗(σ)(ξλ1(σ)−bλ2(σ)) = 0.

In particular, λ1(σ) and λ2(σ) have the same sign. But λ2(σ) is positive (the switch-
ing function is negative) and thus λ1(σ)> 0. Hence there exists a last zero for λ1 in
the interval [α,σ), say λ1(ρ) = 0. At this zero, the adjoint equation (B.35) reads

λ̇1(ρ) = λ2(ρ)

(
2
3

d
q∗(ρ)

3
√

p∗(ρ)
−b

)

.

By Lemma 5.3.1, the controlled trajectory lies in N+ for all times t > α , i.e., we
have that

q∗(t)<
bp∗(t)

μ+ d p∗(t)
2
3

,

and thus

2
3

d
q∗(ρ)

3
√

p∗(ρ)
−b ≤ 2

3
d

bp∗(ρ)
2
3

μ+ d p∗(ρ)
2
3

− b = b

(
2
3

d p∗(ρ)
2
3

μ+d p∗(ρ)
2
3

−1

)

<−1
3

b < 0.

Since the multiplier λ2(ρ) is positive, we therefore get that λ̇1(ρ) < 0 and thus λ1

is negative for t > ρ . Contradiction.
This argument implies that whenever (p,q;y) ∈ (III ∩N+)∪N0 is well posed,

then any associated switching function is nonzero. At this point the control cannot be
u = 0 since then there would need to be a switch to u = umax at some later time, but
the entire forward orbit for u= 0 lies in the set III∩N+ and thus this is not possible.
Hence at any such point the optimal control is given by uopt(p,q;y)≡ umax. �

Corollary B.4.1. Optimal controlled trajectories cannot cross from D+ into D−.
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Proof. Let u∗ be an optimal control defined over [0,T ] and suppose there exists a
time τ ∈ (0,T ) such that the corresponding trajectory crosses from D+ into D−. It
follows from Lemma B.4.1 that the switching function does not vanish at time τ and
thus the control u∗ is given by u∗(t) ≡ 0 in some neighborhood of τ . The diagonal
D0 lies in the set N+,

bp−
(
μ+d p

2
3

)
p = d p

(
b− μ

d
− p

2
3

)

> 0 for 0 < p < p̄ =

(
b− μ

d

) 3
2

,

and thus, as long as the control u= 0 is used, the corresponding controlled trajectory
for t > τ lies in III ∩N+. But by Proposition B.4.2 no more switchings are thus
possible. Clearly, then the optimal time to terminate the trajectory is T = τ . �

Proposition B.4.3. For points (p,q;y) ∈ D × [0,A] whose projection (p,q) lies in
the region II, the optimal control is given by

uopt(p,q;y) =

{
umax if y < A,

0 if y = A.

Proof. In region II, whenever the switching function Φ vanishes at some time τ , by
Proposition B.4.1 only changes from u= umax to u= 0 are possible. Such switchings
arise whenever the antiangiogenic agents run out and clearly uopt(p,q;A) ≡ 0. We
thus only need to argue that an optimal control cannot switch to u = 0 as long as
antiangiogenic agents are available. Suppose it did. Then, since the control cannot
switch back to u = umax while the trajectory lies in region II, the corresponding
trajectory reaches the diagonal D0 with antiangiogenic inhibitors remaining. This is
not optimal by Lemma 5.2.1. But it also cannot cross into D− by Corollary B.4.1.
Contradiction. �

Coupled with Lemma B.4.1, Propositions B.4.2 and B.4.3 imply that

uopt(p,q;y)≡ umax in the region S− ∩N+

inside the singular loop provided the state (p,q;y) is well posed.

Corollary B.4.2. Suppose (p,q;y) is a well-posed point with antiangiogenic agents
still available, y<A, whose projection (p,q) lies in S−∩N+ = (II∪D0∪III)∩N+

or on N0. Then the optimal control at (p,q;y) is given by a maximum dose rate
treatment, i.e., uopt(p,q;y)≡ umax.

We close this section with an important qualitative statement about controlled tra-
jectories that lie in D+. Note that initial conditions (p0,q0) ∈ D+ are automatically
well posed and that these trajectories remain in D+ until they reach the diagonal at
the optimal terminal time T (Corollary B.4.1).

Proposition B.4.4. Let (α,β ) be a maximal open interval on which the optimal
control is given by u∗ ≡ 0 with corresponding trajectory (p∗(·),q∗(·)) lying in D+.
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Then α and β cannot both be switching times. If α is a switching time, then β = T ,
the final time, and if β is a switching time, then α = 0, the initial time.

Proof. On the interval (α,β ), we have that

H =−λ1(t)ξ p∗(t) ln

(
p∗(t)
q∗(t)

)

+λ2(t)
(

bp∗(t)−
(
μ+d p∗(t)

2
3

)
q∗(t)

)
≡ 0

with ξ p ln( p
q )> 0 and bp−

(
μ+ d p

2
3

)
q> 0 on D+. Neither λ1 nor λ2 can vanish in

this case and therefore λ1 and λ2 have the same sign over (α,β ). Since λ2 is positive
at switchings times, it follows that both λ1 and λ2 are positive over the compact
interval [α,β ] if at least one of the endpoints is a switching time. Along u = 0 the
derivatives of the switching function are given by Φ̇(t) = 〈λ (t), [ f ,g](z∗(t))〉 and
Φ̈(t) = 〈λ (t), [ f , [ f ,g]](z∗(t))〉. If there exists a time τ ∈ (α,β ) where Φ̇(τ) = 0,
then it follows from (5.48) and (5.46) that

Φ̈(τ) =
(

ξ + b
p∗(τ)
q∗(τ)

)

Φ̇(τ)+ψ(p∗(τ),q∗(τ))〈λ (τ), [g, [ f ,g]](z∗(τ))〉

=−ψ(p∗(τ),q∗(τ))bγ2 p∗(τ)λ2(τ).

Recall that

ψ(p,q) =−1
γ

(

ξ ln

(
p
q

)

+ b
p
q
+

2
3
ξ

d
b

q

p
1
3

−
(
μ+d p

2
3

)
)

and on the set D+ we have that

b
p
q
−
(
μ+ d p

2
3

)
> b− μ− d p

2
3 > b− μ−d

(
b− μ

d

)

= 0.

Hence ψ(p∗(τ),q∗(τ)) < 0 and Φ̈(τ) > 0.
Suppose α is a switching time. Since the control changes to u = 0 at α , the

switching function becomes positive for t > α near α and therefore Φ̇(α) ≥ 0.
Hence there exists an ε > 0 so that Φ̇ is positive in (α,α + ε). This is clear by
continuity if Φ̇(α) > 0 and even if Φ̇(α) = 0, then the argument just made shows
that Φ̈(α) > 0 and thus Φ̇ will be positive on some interval (α,α + ε) as well.
If Φ̇ has zeroes in (α,β ), then there thus exists a smallest one, say τ . Then we
have Φ̇(t) > 0 on the interval (α,τ) and so Φ cannot have a local minimum at τ
contradicting Φ̈(τ) > 0. Hence Φ is strictly increasing over (α,β ) and there does
not exist another zero at β . Hence β = T , the terminal time. Similarly, if β is a
switching time, then Φ is strictly decreasing over (α,β ) and again there cannot
exist another zero at α so that α = 0. �

It thus follows that once optimal controlled trajectories cross from D− into D+

(and this happens along the control u = umax), the corresponding controls can only
switch to u ≡ 0 as all antiangiogenic agents have been exhausted.
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B.4.2 Analysis of Junctions of Singular and Bang Arcs

The important and nontrivial aspect of the synthesis arises if controlled trajectories
reach the admissible portion of the singular arc, Sad , with antiangiogenic agents
left. At such a time, in principle the trajectory could continue with the control u ≡
umax or it could switch to the singular control and follow the corresponding singular
trajectory. The derivative ṗ does not depend on the control and thus, for (p,q)∈Sad

and setting x = p
q , we have that

p̈ =−ξ ṗ lnx− ξqẋ with ẋ = x(γu− (ξ +bx) lnx) .

If the singular control using is admissible, then ẋ is maximized for u ≡ umax and the
tumor volume decays the fastest along the maximum dose rate control. But agents
are limited and as long as the singular control is admissible, these values lie below
umax, in some cases significantly, and thus agents can be administered for a longer
time along the singular curve. The question then becomes which of these two be-
haviors wins out in the end. This depends on the remaining amount of agents and
where on the singular curve Sad the point (p,q) lies.

We first show that concatenations of bang controls with the admissible singular
arc Sad are locally extremal whenever the singular control at the junction point takes
values in the interior of the control set. This is the statement of Proposition A.3.2
for this particular problem. We denote the relative interior of Sad by S̊ad .

Proposition B.4.5. Let I be an open interval on which the optimal control u∗ is
singular and takes values in the interior of the control set. Then concatenations of
both the forms bs and sb where b stands for any of the two bang controls, u = 0 or
u = umax, are extremal.

Proof. Let (τ− ε,τ+ ε) be a small interval with the property that the optimal con-
trol is singular on (τ−ε,τ) or (τ,τ+ε) and constant on the complementary interval,
u = 0 or u = umax . We show that the conditions of the maximum principle are satis-
fied. To see this, recall that, by (5.29), for any control u that is continuous from the
left (−) or right (+), the second derivative of the switching function is given by

Φ̈(τ±) = 〈λ (τ), [ f , [ f ,g]](z∗(τ))〉+ u(τ±)〈λ (t), [g, [ f ,g]](z∗(τ))〉

and along the singular control this derivative vanishes identically. Since the strength-
ened Legendre-Clebsch condition is satisfied, we have that

〈λ (t), [g, [ f ,g]](z∗(t))〉< 0.

By assumption, the singular control takes values in the interior of the control set
[0,umax] and thus

〈λ (t), [ f , [ f ,g]](z∗(t))〉> 0.

Hence, for u = 0 we get Φ̈(τ) > 0 and for u = umax we have that Φ̈(τ) < 0. These
signs are consistent with entry and exit from the singular arc for each control, i.e.,
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for example, if u = 0 on an interval (τ − ε,τ), then Φ is positive over this interval
consistent with the choice u = 0 as minimizing control. The remaining cases are
analogous. �

Thus, as long as the singular control has not saturated, it is possible to concate-
nate it with the constant controls u = 0 or u = umax at any point without violating
the conditions of the maximum principle locally (in a neighborhood of the junction
point). Optimality over longer time-intervals is not guaranteed and needs to be ana-
lyzed. For example, it follows from Proposition B.4.4 that the singular arc can only
be left with the control u = 0 when all inhibitors have been exhausted. Similarly, if
the remaining amount of agents is too small so that it would be impossible to reach
the region II =D+∩S− along the constant control u = umax (for only in this region
a switching from u = umax to u = 0 can be optimal), then optimal controlled tra-
jectories will follow the singular arc until all inhibitors are exhausted. On the other
hand, if an ample amount of antiangiogenic agents is available and prolonged use of
the singular control would lead to saturation, then, as we shall show now, optimal
controlled trajectories must leave the singular arc before this happens.

Proposition B.4.6. Let u∗ be an optimal control with the property that u∗ is singular
over an interval [σ ,τ]. If the singular control saturates at time τ , then all inhibitors
become exhausted at time τ , y∗(τ) = A. Optimal controlled trajectories for which
the singular control would saturate with agents remaining, must leave the singular
arc prior to the saturation point (p̃, q̃) with the control u = umax.

While this result may seem somewhat counterintuitive, this indeed is the generic
behavior at saturation points in low dimensions (e.g., see [32, 291, 292]).

Proof. We use the same notation as in Proposition 5.3.5: (p̃, q̃) denotes the point
on Sad where the singular control saturates at its upper limit umax and x∗u =

p̃
q̃ . Also

recall from the proof of this result that the value of the singular control is strictly
increasing along the singular arc and thus that there exists a unique time when the
singular control saturates.

Consider a trajectory that follows the singular arc, saturates at the upper con-
trol limit at time τ , and continues with the constant control umax. It follows from
equations (5.29) and (5.47) that

Φ̈(t) =

(

ξ + b
p(t)
q(t)

)

Φ̇(t)+ (u(t)+ψ(p(t),q(t)))〈λ (t), [g, [ f ,g]](z(t))〉 .

The derivative of the switching function, Φ̇(t), vanishes along the singular arc and
at the saturation point we also have that Φ̈(τ−) = 0 since ψ(p(τ),q(τ)) = −umax.
Hence, along the control u = umax from the right we obtain that

Φ(3)(τ+) =

(
d
dt |t=τ+

ψ(p(t),q(t))

)

〈λ (t), [g, [ f ,g]](z(t))〉

=−
(

d
dt |t=τ+

ψ(p(t),q(t))

)

bγ2λ2(τ)p(τ).
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At the saturation point, the control remains continuous and thus the function
t �→ ψ(p(t),q(t)) is continuously differentiable at τ . We can therefore replace the
derivative from the right with the derivative from the left. Furthermore,

−ψ(p(t),q(t)) =Ψ(x(t)), x =
p
q
,

withΨ defined by (5.50) in Proposition 5.3.5. We thus have that

− d
dt |t=τ

ψ(p(t),q(t)) =Ψ ′(x∗u)ẋ(τ).

It follows from the proof of Proposition 5.3.5 that Ψ ′(x∗u) > 0 and in general we
have that

ẋ =
ṗq− pq̇

q2 =−ξ x lnx− bx2 +(μ+d p
2
3 )x+ γux.

Substituting (μ+d p
2
3 ) = bx(1− lnx) along the singular arc (c.f., (5.41)), we obtain

that
ẋ = x

(
γusing − (ξ + bx) lnx

)
.

But at the saturation point we also have that

γumax = γusing(τ) =
(

1
3
ξ + bx(τ)

)

lnx(τ)+
2
3
ξ
(

1− μ
bx(τ)

)

and thus, again using (5.41),

ẋ(τ) =
2
3
ξ
b
(bx(τ)(1− lnx(τ))− μ) =

2
3
ξ
b

d p(τ)
2
3 > 0.

Hence Φ(3)(τ+) is positive. But then Φ is positive for t > τ , t near τ , and this
contradicts the minimization property for u = umax. Thus it follows that optimal
controlled trajectories need to leave the singular arc Sad prior to saturation. As long
as inhibitors are still available, by Proposition B.4.4 this is only possible with the
control u = umax.

An analogous computation with u= 0 for t > τ shows that it is possible to switch
to u = 0 at saturation if all inhibitors have been exhausted. In this case, we have that

Φ̈(τ+) =−umax 〈λ (τ), [g, [ f ,g]](z(τ))〉

and since the strengthened Legendre-Cebsch condition is satisfied along the singular
arc, this quantity is positive. Hence Φ is positive for t > τ near τ consistent with the
choice of u = 0 as the minimizing control. �

When precisely optimal controlled trajectories leave the singular arc depends on
the amount of inhibitors left. We now have sufficiently reduced the possible struc-
tures of optimal controls and trajectories and can reduce the computation of this time
to a 1-dimensional optimization problem that can be solved numerically. Suppose



462 B Mathematical Proofs

(p,q) is a point on the admissible portion of the singular base curve different from
the saturation point and let y < A. Consider the controlled trajectory that starts at
(p,q) at time t = 0 and follows the singular control using. Along this trajectory, let
θsat = θsat(p,q) denote the time when the singular control saturates at its upper
value umax (ignoring the constraint on the amount of agents) and let θA = θA(p,q;y)
denote the time when all antiangiogenic agents are used up along the singular arc
(ignoring saturation). For 0 ≤ ε ≤ θ = min{θA,θsat}, define a 1-parameter family
of controlled trajectories

Γε = (pε(·),qε(·);yε (·)), ε ∈ [0,θ ],

that follows the singular arc for time ε , then switches to a full dose rate trajectory
with u = umax until all agents have been exhausted at time τ(ε), and ends with a
segment for u = 0 until the minimum tumor volume is realized as the diagonal D0

is crossed at time T (ε). Thus the control is given by

uε(t) =

⎧
⎪⎨

⎪⎩

using(t) for τ ≤ t ≤ ε,
umax for ε ≤ t ≤ τ(ε),
0 for τ(ε)≤ t ≤ T (ε).

(B.37)

Note that the amount of agents used up along the singular portion of the control is

σ(ε) =
∫ ε

0
using(t)dt (B.38)

and thus

τ(ε) = ε+
A− y−σ(ε)

umax
. (B.39)

The terminal time T (ε) is defined implicitly by the fact that the trajectory ends on
the diagonal.

Proposition B.4.7. For an initial condition (p,q;y) with (p,q) ∈ S̊ad (the admis-
sible portion of the singular base curve, but not at saturation) and y < A, the con-
trolled trajectories Γε , 0 ≤ ε ≤ θ , are the only possible extremals.

Proof. The control u(t) = 0 is not optimal unless all agents have been used up.
For, in this case the corresponding trajectory enters the region II where switchings
from u = 0 to u = umax are not optimal by Proposition B.4.1. Hence the diagonal is
reached with antiangiogenic agents to spare. Contradiction. Thus, initially the con-
trol must be singular or u = umax. On the other hand, once the control u(t) = umax is
used at any point on the segment S̊ad of the singular base curve, the corresponding
trajectory enters the region I where switchings from u = umax to u = 0 are not opti-
mal. No change in the control is therefore possible until the corresponding trajectory
has crossed over into the region II. This can only happen in the inadmissible portion
of the singular base curve S0. Once in II, it is again only possible to switch to u = 0
when all antiangiogenic agents have been used up. Summarizing, once an extremal
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controlled trajectory leaves the singular arc with u = umax, this control must be used
until all available agents have been used up. Since, by Proposition B.4.6, it is not
optimal to continue with u = umax at the saturation point, the family Γε exhausts all
possibilities. �

Thus, optimal controlled trajectories from a point of the singular arc are at most
concatenations of the form sumax0. The family Γε , 0 ≤ ε ≤ θ , contains the extreme
situations when optimal controlled trajectories are of the form umax0 (ε = 0) and s0
(ε = θ = θA) for the limits of the parameters. The value of the objective along this
family of controlled trajectories is given by

υ(ε) = pε(T (ε)).

It is clear from the definition of the family Γε that υ is a continuously differentiable
function of ε . (This follows from the fact that solutions to an ordinary differential
equation defined by continuously differentiable functions themselves are continu-
ously differentiable functions of initial conditions and parameters. It is also used
that the functions τ and T are continuously differentiable functions. For τ , this is
immediate from its definition and for T this follows from the implicit function the-
orem and the fact that the trajectories cross the diagonal D0 transversally.) It is not
difficult to compute the values υ(ε) numerically and then to minimize over [0,θ ].

Figure B.8 illustrates the family of controlled trajectories (pε(·),qε (·)) for the
case when θ = θA < θsat . The trajectory that follows the singular arc until all in-
hibitors are exhausted is shown in blue and some sample trajectories ofΓε are shown
in black. The red curve is the curve of endpoints for the full dose rate segments when
all inhibitors are exhausted. For the data used to generate the figure, the amount of
available agents is too small to reach region II inside the loop S using the control
u = umax and thus the only extremal is the trajectory Γθ . The optimal control is of
the type s0 and given for the final parameter, εmin = θ , i.e., it is optimal to follow
the singular arc until all agents have been used up. The figure on the right shows the
corresponding values υ which are strictly decreasing in ε .
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Fig. B.8 The 1-parameter family of controlled trajectories (pε (·),qε(·)) is shown on the left. The
endpoints of the variation are represented by the red curve. The graph of the corresponding value
ε �→ υε(ε) is shown on the right. In this case, the optimal control is of the form s0.
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Fig. B.9 Comparison of a umax0-trajectory (dashed blue curve) with an optimal using0-trajectory
(solid red curve).

Figure B.9 still shows a comparison of an optimal trajectory that follows the
singular arc with the nonoptimal umax0-trajectory. The initial conditions are given by
p0 = 12,000 [mm3] and q0 = 15,000 [mm3]. For comparison, the optimal minimum
tumor volume is p∗(T ) = 8533.4 [mm3] while the terminal value for the trajectory
which applies all available inhibitors in one full dose rate session is 8707.4 [mm3].

In order to determine whether u = umax or the singular control is better at the
initial point (p,q;y), we can also consider ε as a variational parameter and compute
the derivative

υ ′(0) =
dυ
dε |ε=0

.

As long as this derivative is negative, the optimal control is given by using(p,q) and
the point to leave the singular arc with u = umax occurs when υ ′(0) = 0. By the
chain rule,

υ ′(ε) =
∂ pε
∂ε

(T (ε))+
∂ pε
∂ t

(T (ε))T ′(ε).

Since the endpoint lies on the diagonal, pε(T (ε)) ≡ qε(T (ε)), the second term in
this expression vanishes,

∂ pε
∂ t

(T (ε)) = ṗε(T (ε))≡ 0,

and thus

υ ′(ε) =
∂ pε
∂ε

(T (ε)). (B.40)

Proposition B.4.8. Given z = (p,q;y) ∈ S̊ad, let (p0(·),q0(·)) be the controlled
trajectory for ε = 0 in the 1-parameter family Γε and denote the corresponding
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terminal time by T0 (i.e., the available antiagiogenic agents are used up along an
initial full dose segment and T0 is the time when the subsequent trajectory for u ≡ 0
crosses the diagonal.) Let λ be the solution of the corresponding adjoint equation
with terminal value λ (T0) = (1,0,0) and set η = λ (0). The derivative υ ′(0) of the
value of the 1-parameter family Γε along at ε = 0 is then given by

υ ′(0) =
(

1− using(p,q)

umax

)

〈η , f (z)〉 .

The optimal control at (p,q;y) is given by

uopt(p,q;y) = using(p,q) if 〈η , f (z)〉 < 0.

Proof. The computation of the derivative of the family Γε with respect to the pa-
rameter ε involves differentiations of a solution of an ODE with respect to initial
conditions and parameters and is more involved. Customarily, the solution at time t
to an initial value problem of the form ż = X(z), z(0) = z0, is denoted by z(t;z0) or,
if the emphasis is on the flow, by z(t;z0) =ΦX

t (z0). The flow along these solutions is
then defined by ΦX

s,t(z) =
(
ΦX

t ◦ΦX−s

)
(z) and it simply denotes the value of the so-

lution to the ODE at time t with initial condition z at time s. Using this notation, and
denoting the singular vector field by S = f +usingg and setting Y = f +umaxg, then,
with e1 = (1,0,0) the covector for the first coordinate vector field in the variable
z = (p,q,y), we can represent the function υ(ε) in the form1

υ(ε) = pε(T (ε)) =
〈

e1,Φ f
τ(ε),T (ε)

(
ΦY

ε,τ(ε))
(
ΦS

0,ε(z)
))〉

.

At this point, a good computational framework for the flows of vector fields be-
comes helpful. Such a framework is provided by an exponential formalism for so-
lutions to differential equations (e.g., see [292, Sect. 4.5]) and we therefore deviate
from conventional usage and we write the solution to the above initial value prob-
lem, ż = X(z), z(0) = z0, in the form

z(t) = z0 exp(t f ).

Different from customary notation, here the operator acts on the right side. With this
notation, we can express the endpoint of the variation in the equivalent form

ς(ε) =Φ f
τ(ε),T (ε)

(
ΦY

ε,τ(ε))
(
ΦS

0,ε(z)
))

� zexp(εS)exp((τ(ε)− ε)Y )exp((T (ε)− τ(ε)) f ) .

The advantage of the exponential formalism is that differentiation rules using ex-
ponential calculus apply not only to the flow of solutions, but also to all versions
of variational equations derived from it. For example, using the product rule, the
derivative with respect to ε can simply be expressed in the form

1 Note the reverse order in the switching times along the trajectory that this customary notation
induces.
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ς ′(ε) = zexp(εS)Sexp((τ(ε)− ε)Y )exp((T (ε)− τ(ε)) f )

+ zexp(εS)exp((τ(ε)− ε)Y )Y
(
τ ′(ε)−1

)
exp((T (ε)− τ(ε)) f )

+ zexp(εS)exp((τ(ε)− ε)Y )exp((T (ε)− τ(ε)) f ) f
(
T ′(ε)− τ ′(ε)

)

where we have used a Roman font (S,Y,f) to distinguish vectors from the flows rep-
resented by the exp-terms. This is a formal expression for complicated mathematical
objects: For example, the term

zexp(εS)Sexp((τ(ε)− ε)Y )exp((T (ε)− τ(ε)) f )

denotes the vector obtained by moving the tangent vector zexp(εS)S at the end-
point of the singular portion of the variation forward along the remaining portions
of the trajectory to the endpoint of the trajectory by integrating the corresponding
variational equations. The time derivatives τ ′(ε)− 1 and T ′(ε)− τ ′(ε) are scalar
quantities that can be moved freely along the flows. Similarly,

zexp(εS)exp((τ(ε)− ε)Y )exp((T (ε)− τ(ε)) f ) f

denotes the vector field f evaluated at the endpoint of the trajectory. As before, since
pε(T (ε))≡ qε(T (ε)), we have that

〈e1,zexp(εS)exp((τ(ε)− ε)Y )exp((T (ε)− τ(ε)) f ) f〉T ′(ε)≡ 0

and thus this term, which is equivalent to ∂ pε
∂ t (T (ε))T

′(ε), vanishes. Although the
exponential notation may seem cumbersome, it is anything but and offers tremen-
dous computational advantages when dealing with the variational equations since
the same exponential formalisms applies to both the underlying system and these
variational equations. This is what is needed here. For example, vectors can be
moved backward and forward along their own flows, i.e.,

z(t) = zexp(t f )f = zfexp(t f ).

Since υ ′(ε) = 〈e1,ς ′(ε)〉 where e1 = (1,0,0) denotes the covector for the first co-
ordinate, we can express υ ′(ε) in the form

υ ′(ε) =
〈
e1,ς ′(ε)

〉

=
〈
e1,zexp(εS)

{
S+Y

(
τ ′(ε)−1

)}

× exp((τ(ε)− ε)Y )exp((T (ε)− τ(ε)) f )〉 .

The tangent vector zexp(εS){S+Y(τ ′(ε)− 1)} is easily computed:

S+( f +umaxg)
(
τ ′(ε)− 1

)
= f + usingg+( f +umaxg)

(

−using

umax

)

= f

(

1− using

umax

)
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and thus, for ε = 0, we have that

υ ′(0) =
〈

e1,z f

(

1− using

umax

)

exp(τAY )exp(τ0 f )

〉

where τA = A−y
umax

denotes the time along the umax-trajectory starting at z until all
agents are exhausted and τ0 denotes the subsequent time along u = 0 until the diag-
onal is reached.

This equation can be simplified by moving the two operators exp(τ0 f ) and
exp(τAY ) to the covector e1 using the adjoint operators. The derivatives of the flow
of a differential equation are computed by integrating the variational equation and
the adjoint of this equation is precisely the adjoint equation of the maximum prin-
ciple, hence its name (e.g., see [292, Proposition 4.2.2]). The value of the inner
product is constant under this operation and we obtain

υ ′(0) =
〈

e1 (exp(τ0 f ))∗ (exp(τAY ))∗ ,z f

(

1− using

umax

)〉

.

With (p0(·),q0(·)) denoting the umax0-trajectory that, starts at z = (p,q,y), and λ
the solution of the corresponding adjoint equation with terminal condition λ (T0) =
(1,0,0), the result follows. �

If one ignores the saturation limit on the control, the variation Γε can be made
anywhere on the singular base curve S0. At the saturation point we have that
using(p,q) = umax and thus υ ′(0) = 0. Hence the changes in the value υ near the
saturation point will be of higher order and indeed, the point when optimal trajecto-
ries leave the singular arc will be very close to the saturation point. From a practical
point of view, the difference in the values is negligible. Thus the errors made by re-
placing optimal controlled trajectories with the simpler ones that follow the singular
arc until saturation and then use a full dose control are insignificant. Figure B.10
shows an example of the function υ(ε) when saturation occurs. The differences in

0 0.5 1 1.5 2 2.5 3
3864.45

3864.5

3864.55

3864.6

3864.65

3864.7

3864.75

3864.8

3864.85

3864.9

parameter ε

tu
m

or
 v

ol
um

e,
 p υ

ε
(ε)

2.5 2.55 2.6 2.65 2.7 2.75 2.8 2.85 2.9

3864.455

3864.46

3864.465

3864.47

3864.475

parameter ε

tu
m

or
 v

ol
um

e,
 p υ

ε
(ε)

Fig. B.10 A smoothed (averaged) graph of the function ε �→ υε(ε) for a case when the singular
control saturates (left) and a blow-up near the saturation values (right).
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the terminal values are minute and the graph on the left has been smoothed out by
averaging close-by values. The graph on the right shows a blow-up near the param-
eter values corresponding to the saturation point.

As these computations indicate, the precise structure of optimal trajectories that
pass close to the saturation point is rather involved. In [291], a theoretical analysis
of time-optimal controls near a saturation point of a singular arc is developed and it
can also be found in the context of a specific application from the chemical industry
in [32]. In these papers, a general local synthesis of optimal controls of the type bbsb
or bsbb where b denotes a bang arc and s a singular arc, is established and for our
problem here the same structure is valid near the saturation point: optimal controls
follow the concatenation structure bsumax0 with b denoting an arc corresponding to
the control u = 0 or u = umax depending on from which side trajectories meet the
singular arc.

B.4.3 Synthesis of Optimal Controlled Trajectories

We combine the pieces and construct a synthesis of optimal controlled trajectories
on the subset X̃ = D̃ × [0,A] of the state space X = D × [0,A]. Formally, the
fact that the range in the variable y is closed represents a state space constraint.
But this analysis is straightforward. Initial conditions lie on the boundary segment
X̃0 = D̃ ×{0} and terminal conditions (for well-posed initial data) all lie on D0 ×
{A} ⊂ X̃A = D̃ ×{A}. The structure of any admissible controlled trajectory is such
that it will lie on X̃0 for some interval [0,τ0] if the control u ≡ 0 is applied, but as
soon as antiangiogenic agents are administered, the controlled trajectory enters the
interior of the region X̃ where it will remain as long as agents are still available.
Only as all agents have been used up, the state enters X̃A and then remains there
over a final interval [τA,T ] until the diagonal is reached along the control u ≡ 0. The
control u ≡ 0 indeed is optimal in some regions of the sets X̃0 and X̃A and becomes
part of the optimal synthesis, but there is no need to consider the formulation as
an optimal control problem with state space constraints. Formally, if one would, all
additional structures caused by this formulation, will be trivial.

The singular base curve S0 divides the set D̃ into a region E that lies below S0

(in direction of p) and a region F that lies above S0. The region E is the union of the
diagonal D0, the region II = D+ ∩S−, and the portion of III = D− ∩S− that lies
above the nullcline N0; the region E is the same as I = D+∩S+ (see Figure B.11).

We now determine the optimal control for an arbitrary well-posed point (p,q;y)
with (p,q)∈ D̃ and y < A. Recall that the point (p,q;y) is well posed if it is possible
to reach a tumor volume lower than p with the remaining amount of antiangiogenic
agents yr = A− y. This will always be true if (p,q) ∈ D+.

(i) Optimal controlled trajectories for points (p,q) ∈ S +
0 = S0 ∩D+: If (p,q) ∈

S̊ad , the interior of the admissible singular arc, this structure has just been deter-
mined and we have seen that optimal controlled trajectories starting from such a
point are at most of the form sumax0. For points (p,q) ∈ S +

0 that are inadmissible
or at the lower saturation point (p̃, q̃), the optimal control is given by
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Fig. B.11 Partition of the set D̃ .
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Fig. B.12 A blow-up of the trajectory for u ≡ umax near the saturation point. On the right, the
q̇ nullcline for u ≡ umax is shown. After the saturation point has been passed, umax trajectories
closely follow this nullcline which represents the slow manifold for the corresponding differential-
algebraic system.

uopt(p,q,y) = umax, (p,q) ∈ S +
0 �S̊ad, y < A, (B.41)

and optimal controlled trajectories are of the type umax0. For, controlled trajecto-
ries corresponding to the control u(t)≡ umax cross the curve S̊ad transversally from
region II inside the singular loop into region I outside the singular loop. At the
saturation point (p̃, q̃) the value of the singular control is given by umax and the
corresponding trajectory through the saturation point is tangential to the singular
base curve S +

0 . It has order of contact 1 and immediately reenters region II. At all
the points on the singular base curve S +

0 that are not admissible, the directions are
reversed and here umax-trajectories cross the curve S +

0 from region I outside the
singular loop into region II inside the singular loop. Figure B.12 shows a blow-up
of the umax trajectory that passes through the saturation point (p̃, q̃) and also shows
the q̇-nullcline for u ≡ umax. Note how close it is to the inadmissible portion of the
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singular arc. If at any such point the control would be u = 0, then the corresponding
trajectory would lie in the region II as long as u = 0 and could have no more switch-
ing by Proposition B.4.1. But then it would reach the diagonal with antiangiogenic
agents left. Contradiction. This proves (B.41). Hence the q̇-nullcline for u ≡ umax

represents the optimal response of the system for low tumor volumes.
(ii) Optimal controls for points (p,q) ∈ E = III ∪D0 ∪ (III ∩D+): Let Γmax de-

note the curve that is obtained by integrating the dynamics for p and q and the
control u(t) ≡ umax backward from the saturation point (p̃, q̃). This curve divides
E into a region E+ that lies above Γmax (in the sense of higher p-values) and a re-
gion E− that lies below Γmax (see Figure B.13). For a well-posed state (p,q;y) with
(p,q) ∈ E−, the corresponding optimal control is given by

u∗(t) =

{
umax if 0 ≤ t ≤ τ = A−y

umax
,

0 if τ < t ≤ T.

with τ the time when all remaining antiangiogenic agents have been used up and
T the time when the trajectory corresponding to u = 0 reaches the diagonal. This
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Fig. B.13 Subdivision of the regions E and F: the curve Γmax is the trajectory obtained by inte-
grating u ≡ umax backward from the saturation point (p̃, q̃).

directly follows from Corollary B.4.2 which implies that the optimal control is given
by the feedback function

uopt(p,q,y)≡ umax, (p,q) ∈ E,

whenever the base point (p,q) lies in the interior of E (or on N0). For initial condi-
tions in E−, the entire forward orbit of the controlled trajectory with u ≡ umax lies
in E− for all times t > 0. Once the diagonal has been crossed (this happens since
the state is well posed), the remaining trajectory lies in the region II ∩E− until all
agents have been used up. The same holds for initial conditions (p,q) that lie on
the curve Γ with the possible exception that the trajectory may touch S +

0 in the
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saturation point (p̃, q̃). This form also is the structure of optimal controls for ini-
tial conditions (p,q) that lie in E+ if the remaining amount of inhibitors yr = A− y
simply is too small to reach the singular base curve S +

0 , but still the data are well
posed. In this case, antiangiogenic agents run out as the state is moving toward S0

in region II, but just never reaches this curve. For such points and all points on Γmax

and in E−, optimal controlled trajectories again are simply of the type umax0. If, for
a state (p,q) ∈ E+ there are enough agents left to reach the admissible portion S̊ad

of the singular arc, then from the junction point onward, the above analysis applies
and overall optimal controlled trajectories are of the type umaxsumax0. This is the
longest concatenation sequence that can arise for an initial condition (p,q;0) with
(p,q) ∈ E .

(iii) Optimal controls for points (p,q) ∈ F = I = D+ ∩S+: For states (p,q;y)
with base point (p,q) in F , the only nontrivial situation arises at the initial condition
when y = 0. For, if 0 < y < A, then we have that

uopt(p,q,y)≡ umax, (p,q) ∈ F, 0 < y < A.

This immediately follows from Proposition B.4.4: Suppose the optimal control at
such a point were given by u= 0. Since y> 0, agents have already been administered
in the past and thus, integrating u≡ 0 backward from this point, at some time α there
must be a switching time to u = 0. But this backward trajectory entirely lies in D+

and thus, by Proposition B.4.4, there cannot exist another switching forward in time.
Hence, once more the diagonal is reached with agents left over. Contradiction. This
result simply expresses the fact that, once controlled trajectories have entered into
the region F during treatment, this only can happen along the terminal portion when
u = umax.

The synthesis at the initial point, y = 0, is more involved. In such a case, initially
both u = 0 and u = umax are possible. We already know that the optimal control is
given by umax on the inadmissible part of S +

0 and thus it is to be expected that this
is the optimal control near such points in F . On the other hand, once the control
starts with umax, by Proposition B.4.1 it cannot switch any more in the region F .
Thus, if the value of p is high and the amount of agents is too small to reach the
region II inside the singular loop, the initial control must be u = 0. Thus there exists
a curve Γcut , a so-called cut locus, that divides the regions where the controls u = 0
and u = umax are optimal. Similarly as for initial points on the admissible portion
of the singular arc, we set up a 1-parameter family of controlled trajectories and
minimization of the objective along this family determines the optimal control at
the initial time.

For (p,q) ∈ F , let ς = ς(p,q) denote the trajectory along the control u = 0 that
starts at (p,q) and denote by θ = θ (p,q) the time when this trajectory reaches the
singular base curve S +

0 . Since this trajectory converges to the equilibrium point
(p̄, q̄) along the nullcline N0 from within D−, it is clear that this time is finite. For
0 ≤ δ ≤ θ , consider the controlled trajectories

Θδ = (pδ (·),qδ (·);yδ (·)), ε ∈ [0,θ ],
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that follow the trajectory ς for time δ and then switch to the full dose rate trajectory
with u = umax until all agents have been exhausted. The time along these full dose
rate trajectories is constant and given by τ = A

umax
. The endpoint of this trajectory lies

in D+ and thus, as before, the minimum tumor volume is realized as the subsequent
trajectory for u = 0 crosses the diagonal at time T = T (δ ). Hence the control is
given by

uδ (t) =

⎧
⎪⎨

⎪⎩

0 for τ ≤ t ≤ δ ,
umax for δ ≤ t ≤ τ+ δ ,
0 for τ+ δ ≤ t ≤ T (δ ).

Switchings from u = 0 to u = umax are feasible in the region F , but the second
switching must be in E for such a structure to be optimal. As before, the correspond-
ing value υ (δ ) = pδ (T (δ )) is a continuously differentiable function and attains its
minimum on the compact interval [0,θ ]. If this minimum is attained for θ = 0, op-
timal controlled trajectories are simply of the form umax0 and this is the structure
for initial points near the inadmissible portion of the singular arc. If the minimum
is attained in the interior of the interval, 0 < δmin < θ , then optimal controls are
bang-bang with two switchings in the order 0umax0. While this may appear odd, it
can arise for initial conditions with low carrying capacities, q � p. Intuitively, if the
optimal tumor reductions arise along the q̇-nullcline for u = umax, then it is optimal
to let the vasculature grow to get close to this nullcline and only then apply agents
to reduce the tumor volume. While clearly possible as optimal controls for such an
initial condition, the initial condition itself is not medically realistic and we do not
discuss this scenario further. The minimum of υ (δ ) is attained for the right end
point δ = θ only if ς meets the singular arc in its admissible portion. (It is not diffi-
cult to see that there cannot be a switch from u = 0 to u = umax anywhere on S +

0 .)
In this case, the analysis of Section B.4.2 applies and overall the optimal control is
of the form 0sumax0. However, also these initial conditions are not realistic for the
underlying problem. This concludes the mathematical proof of Theorem 5.3.1.

(iv) Initial conditions (p,q) that lie in D , but not in E or F , are even less rele-
vant. It is possible to carry on the mathematical analysis and, for example, it easily
follows from the results that have already been established that optimal controls are
concatenations of at most the form 0umaxsumax0 if the initial condition lies in the
region III. (Proposition B.4.1 allows for one more switch from u = 0 to u = umax

in the region III before the system enters the region E .) For initial conditions that
lie in region IV , in principle one more switch could occur, but such conditions are
totally unrealistic. In fact, in view of Lemma 5.3.1, any such initial conditions are
not viable steady states and would never occur as initial conditions for the medical
problem. These are the ones in the region III∩N+.

B.4.4 On the Mathematical Verification of the Optimal Synthesis

We close with some comments on the construction of the synthesis. For every pos-
sible initial condition (p,q;0) with (p,q) ∈ D̃ = E ∪D0 ∪F , the reasoning above
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shows that optimal controls are at most concatenations of the form bsumax0 with b
denoting an arc corresponding to the control u = 0 or u = umax and, in each case,
if the structure of a unique extremal is not clear a priori, a simple one-dimensional
minimization allows to compute the optimal control. This, for all means and pur-
poses, solves the optimal control problem.

An optimal synthesis for an optimal control problem provides a decomposition of
the state space into a finite (or possibly even countably infinite) collection of embed-
ded submanifolds, M = {Mi}i∈N, sometimes also called strata, together with (i) a
well-defined flow of trajectories corresponding to admissible controls on each stra-
tum and (ii) regular transitions between the strata that generate (iii) a memoryless
flow of extremal trajectories, i.e., there exist unique solutions forward in time and
the resulting controlled trajectories satisfy the conditions of the Pontryagin maxi-
mum principle (c.f., Theorem A.4.4). Modulo minor technical arguments that have
not been given, our construction above does precisely that. Basically, it would still
need to be established rigorously that there exists a unique curve Γcut in the set
F ×{0} that separates the regions where u= 0 and u = umax and it would need to be
shown that there is a well-defined curveΨ : Sad → [0,A], p �→ϒ (p), defined over
Sad , the admissible portion of the singular base curve, that separates points where
the optimal control is singular (and this will happen for points that have y-values
below the curve) from those points where u = umax (above this curve). This curve
passes through the lower saturation point (p̃, q̃) when y = A and increases along the
singular arc Sad to reach this terminal value for p̃. These arguments become even
more technical and do not add new insights into the structure of optimal controlled
trajectories. We therefore do not carry them out here.

It is clear from our proofs that all constructed controlled trajectories are extremal
and thus satisfy the conditions of the maximum principle. This is essential in the
verification that the cost-to-go function, i.e., the cost evaluated along the trajecto-
ries in the synthesis, is a solution to the Hamilton-Jacobi-Bellman equation. It is
not difficult to verify that the cost is a continuous functions and, in fact, is contin-
uously differentiable away from some lower dimensional submanifolds which are
related to structural changes in the optimal controls (like the cut-locus Γcut where
optimal concatenation sequences change from 0umax0 to 0sumax0 or near the sat-
uration point where changes from bs0 to bsumax0 occur). We refer the interested
reader to Section 6.2 of our textbook [292] where a detailed proof of the differ-
entiability of the value has been carried out for the case of an optimal controlled
trajectory of the form umaxs0 for an initial condition in the region III ∩N+. These,
and further analogous verifications simply make sure that the technical assumptions
for an optimal synthesis are met. Specifically, the conditions of Theorem 6.3.3. in
[292] hold. We only mention that not all of the requirements imposed on a regular
synthesis as defined originally by Boltyansky [29] are satisfied. Indeed, there exist
tangential intersections of some of the strata at the saturation point for the singu-
lar control. However, such transversal intersections are not required in Sussmann’s
approach [276] (also, see [292, Section 6.3]).
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