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Preface

Sliding mode control is a well-known discontinuous feedback control tech-
nique, which has been extensively explored in several books and many journal
articles by diverse authors. The technique is naturally suited for the regula-
tion of switched controlled systems, such as power electronics devices, and a
nonempty class of mechanical and electromechanical systems such as motors,
satellites, and robots. Sliding mode control was studied primarily by Russian
scientists in the former Soviet Union. We epitomize the pioneering work on
switched controlled systems by the fundamental book by Tsypkin [30] which,
to this day, continues being a source of inspiration to researchers and stu-
dents in the field. A complete account of the history and fundamental results
on sliding modes, or sliding regimes, is found in excellent books, such as those
by Utkin (see Utkin [31], Utkin [32], and also Utkin et al. [33]). In Utkin’s
most recent book [33], the discontinuous feedback control of a rather complete
collection of physical mechanical and electromechanical systems is addressed
along with remarkable laboratory implementation results. In that book, there
is some detailed attention devoted to the control and stabilization of DC to
DC power converters. A more recent book on sliding modes, mainly devoted
to the area of linear systems, with a terse and very clear exposition of the top-
ics along with some interesting laboratory and industry applications, is that
of Edwards and Spurgeon [4]. A well-documented book with some chapters
on sliding mode control is that of Slotine and Li [23]. A book containing a
rigorous exposition of Sliding Mode Control and interesting symbolic compu-
tation techniques is that of Kwatny and Blankenship [15]. Orlov [28] contains
a lucid exposition of Sliding Mode Control in continuous and discrete systems
while devoting attention in detail to the case of infinite dimensional systems
and applications to electromechanical systems. A book by Shtessel et al. [22]
contains the most recent developments in Sliding Mode Control and Slid-
ing Mode Observers, including the, so-called, second order and higher order
sliding mode approach to, both, control and observation problems. For the
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VIII Preface

reader interested in an important relation between sliding mode control and
optimization in uncertain systems, the book by Fridman, Poznyak, and Be-
jarano [11] is a source of interesting results. In particular, those pertaining to
Output Integral Sliding Mode Control, a new development, with great poten-
tial for applications, whose original developments were formulated by Utkin
and Shi in [34].

In this book, we provide an introduction to the sliding mode control of
switch regulated nonlinear systems. Chapter 1 gives a tutorial introduction
to sliding mode control on the basis of simple, physically oriented examples.
Many examples are linear but, in order to early introduce nonlinear systems,
we delve into several, simple, nonlinear examples. In this first chapter, we re-
view some of the advantages of sliding mode control, pertaining to the robust-
ness issue, and emphasize the need to familiarize the reader with the elements
of sliding mode control. Some simple linear plant examples exhibiting a lack
of global sliding mode existence, on linear sliding manifolds, are freed from
such restriction by considering appropriate nonlinear sliding surfaces.

Chapter 2 is devoted to the sliding mode control of Single-Input Single-
Output switched nonlinear systems case. Here, we formalize, in the language
of elementary Differential Geometry, the elements of sliding mode control in-
tuitively presented in the first chapter. Necessary as well as necessary and
sufficient conditions are given for the local existence of sliding motions on
given smooth sliding manifolds. Robustness of sliding mode controlled plants
with respect to matched perturbations is specifically treated through the use of
projection operators on tangent subspaces of sliding manifolds. The chapter il-
lustrates the concepts with some physically oriented examples from aerospace,
power electronics, and mechanical engineering with some attention to robotics.

Chapter 3 is devoted to Δ − Σ modulation, addressed from now on as
“Delta-Sigma modulation.” This key issue is explored in connection with a
natural, and idealized, translation of smooth analog input signals to infinite
frequency output switched signals whose average value precisely reproduces
the input signal. This simple mechanism allows to make available the entire
field of nonlinear control systems design to the class of switched systems. The
chapter explores a generalization of Delta modulation and its applications
in state estimation. Also, multilevel Delta-Sigma modulation is proposed as
a means to fraction switch amplitudes and reduce the corresponding induced
chattering. This development has a natural implication in the switched control
of mechanical systems.

Chapter 4 deals with the Multiple Input Multiple Output (MIMO) case.
The fundamental issues of MIMO sliding mode control, pertaining to the dif-
ficulties associated with a sound definition of sliding modes in the intersection
of a finite number of sliding manifolds as well as the reachability problem
are examined and a number of examples provided for enhancing the intuitive
understanding of the material. The use of Delta-Sigma modulation sidesteps
the difficult problem of sliding mode existence in the MIMO case. A more sys-
tematic design procedure is obtained in the last chapter via the exploitation
of flatness.
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Chapter 5 explores a fundamental possibility of defining sliding regimes on
the basis only of available input and output signals for linear systems. Some
extensions of input-output sliding mode control are shown to be possible in the
nonlinear case. The key concept to be used is that of Generalized PI control.
The GPI control approach and the Delta-Sigma modulation alternative are
shown to provide a systematic and rather natural sliding mode design tool.
GPI control enjoys interesting implications not only on the control of linear
finite dimensional system but also in linear delay systems (see Fliess, Marquez,
and Mounier [8]). Some of these topics, as well as some recent research topics,
are treated in a rather tutorial fashion in this chapter.

Chapter 6 studies the advantages of combining Differential Flatness and
Sliding Mode control in nonlinear single-input single-output (SISO) systems
and MIMO systems control. The sliding surface design problem is trivialized,
thanks to the exploitation of the flatness concept. For SISO systems the flat
output is simply the linearizing output and sliding motions are naturally in-
duced in appropriate linear combinations of the phase variables associated
with the flat output. In MIMO nonlinear systems flatness systematically de-
tects the need for dynamical feedback and how to go about it in specific
instances through appropriate input extensions (see Sluis [24], Charlet et al.
[2], Rouchon [19]).

In this chapter, we also provide a solution to a long-standing problem in
sliding mode control theory.

The writing of this book owes recognition to many many people. First
of all, the author is indebted to his former students who, throughout some
years, endured post-graduate work in the field of discontinuous feedback con-
trol under my not always pleasant supervision. Marco Tulio Prada Rizzo,
Miguel Rios-Boĺıvar, Pablo Lischinsky-Arenas, Orestes Llanes-Santiago, and
Richard Márquez-Contreras, all of them at the Universidad de Los Andes in
Mérida-Venezuela; students at some time, colleagues and friends ever since.
The author has enjoyed, for many years, the friendship of pioneers in the
area of sliding mode control: Alan S.I. Zinober, V. Utkin, S. Spurgeon, Chris
Edwards, and L. Fridman. He has always learned from them something new
and exciting out of informal conversations or heated discussions. Many years
ago, the author started a new life, away from his beloved venezuelan Andean
Mountains, in the megapolis of México City. The experience has been a most
rewarding one, thanks to the beauty of the country, the wealth of its cul-
ture, the kindness of its people, and the rich flavor of its foods, wines, and
drinks. The author is most indebted to his colleagues and numerous students
at the Mechatronics Section of the Electrical Engineering Department of Cin-
vestav, a generous, first class, Research Institution in México. This book has
been written during two sabbatical leaves of the author. One at the Indus-
trial Engineering Department of the Universidad de Castilla-La Mancha in
the Ciudad Real Campus, Spain. The generosity, kindness, and advice of Pro-
fessor Vicente Feliu Battle is gratefully acknowledged. The second sabbatical
was a most pleasurable stay at the Universidad Tecnológica de la Mixteca
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in Huajuapan, Oaxaca, México. The kind support of Dr. Jesus Linares Flores
and his enormous ability and leadership for transforming theoretical results in
superb experiments is gratefully acknowledged. Last but not least, the author
would like to pay special recognition and tribute to the memories of Prof.
Thomas A. W. Dwyer III and of Prof. Fred C. Schweppe. Tom was a dear
friend who wisely guided the author through his first publications in sliding
mode control, applied to challenging aerospace problems, during his one year
stay at the University of Illinois at Urbana-Champaign in 1986. Fred was
an inspired thesis director, back at MIT in the glorious 70s, from which the
author learned, as a student, everything there was to learn at the time in
Automatic Control, except Sliding Mode control.

My wife Maria Elena has been a superb, reliable, enthusiastic, and kind
spiritual and affective support throughout the many years in which sliding
mode control seemed to me most important than anything else in life. Fortu-
nately, I have come to realize that I was completely wrong, but, now, more
than ever, I know she was not entirely mistaken.

México, D.F., Mexico Hebertt Sira-Ramı́rez
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1

Introduction

1.1 Generalities about sliding mode control

This book is devoted to an exposition of sliding mode control of switch
regulated nonlinear systems. Implications are explored in the feedback con-
trol of some physical system models exhibiting one or multiple, independent,
switches as commanded inputs.

In this chapter, we begin by presenting the constitutive elements of sliding
mode control in rather general terms. We then present some elementary il-
lustrative examples of controlling, towards desired behaviors, low dimensional
plants by means of sliding modes. The control objectives include achieving tra-
jectory stabilization around constant equilibria as well as trajectory tracking
tasks. The several examples have the intention of serving as a tutorial intro-
duction to sliding mode control and some of its most important features. We
include simple mechanical systems, some electrical circuits, electromechanical
devices, and elementary hydraulic systems. The idea is to convey the feeling
that if we know a good description of the switched system in the form of a
mathematical model and we have a sound control objective, then we can al-
ways turn the problem of achieving such a control objective into an equivalent
one of suitably creating a, so-called, sliding regime on some smooth manifold
of the state space of the system, addressed as the sliding surface.

1.2 The elements of sliding mode control

The first fundamental element of the sliding mode control technique is The
plant, which is the dynamical system that needs regulation towards a specific
control objective. The plant, in the most general case treated in this book, is
assumed to be described by a finite dimensional state space model of non-
linear nature. As such, the plant is provided with outputs representing the
measurable variables of interest, the states, constituting a finite collection of
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variables, summarizing the past history of the system, whose knowledge al-
lows us to predict its future behavior under precise knowledge of the system
inputs. In our setting, the inputs are assumed to be represented by the com-
manded variables influencing the system behavior. These are assumed to take
values in discrete sets. Inputs are thus represented by functions such as switch
position functions. The control objectives adopt various forms: one may be
interested in letting the output signal, or signals, of the plant to accurately
track pre-specified output trajectories. In other instances, one may be inter-
ested in stabilization of the outputs, or states, trajectories to a region around
a constant equilibrium point. One may also be interested in having the entire
state vector of the system track a given trajectory.

It is assumed that we can translate the desired control objectives into
one, or several, scalar state constraints on the state vector of the system.
We restrict ourselves to only consider as many state constraints as there are
control inputs driving the system state trajectory. If we manage to force the
state trajectories of the system, independently of their initial value, to sat-
isfy one, or several, given constraints, then, as a result of our control efforts,
it is assumed that we will obtain a desirable behavior of the outputs of the
system, or of the states of the system. This controlled behavior most pre-
cisely matches the pre-specified desired behavior. Such state constraints will
often represent either a smooth surface or a set of non-redundant, independent
smooth surfaces in the state space of the system with nonempty intersection.
Smooth surfaces are completely specified by smooth scalar functions of the
state vector. These functions will be termed sliding surface coordinate func-
tions and they measure the distance to the zero level set defining the sliding
surface or sliding manifold . In the case where the control objective demands
that multiple independent constraints be simultaneously satisfied, it is then
their intersection manifold that represents the desired state constraint. The
smooth set of points where the simultaneous validity of the given set of state
constraints is satisfied is also addressed as the sliding surface. Our designed
switching policy or switching strategy will be responsible to drive, by means of
the limited available control actions, the state of the system towards the sur-
face representing the desired system behavior defined by the sliding surface.
Generally speaking, the switching policy will be executed as a state feedback
law of a discontinuous nature. Once the state trajectory “hits” the sliding sur-
face, i.e., once the state constraints become simultaneously valid at an instant
of time, it is mandatory to keep the state trajectory indefinitely evolving on
such a surface. We concentrate, in this chapter, on the single input (switch)
single (output) sliding surface case.

The evolution of the sliding mode controlled trajectories on a single smooth
sliding surface is easily idealized by considering a virtual feedback control ac-
tion that renders the sliding manifold an active constraint to the controlled
state trajectories. This state evolution on the sliding surface assumes, of
course, that the initial state was located, precisely, on such a sliding man-
ifold. It is easy to envision that if we were given the possibilities of smooth



1.3 A switch commanded RC circuit 3

valued control actions, instead of binary valued control actions, then, one
could, at least locally and hopefully globally, determine the required smooth
feedback control actions that ideally keeps the controlled system trajectory
evolving on the given sliding surface. If such a smooth feedback control exists,
we say that this control is responsible for making the sliding surface invariant
with respect to controlled motions starting on such a surface. This special,
virtual control action has a proper name, introduced by Utkin in [31]: the
equivalent control . The existence of the equivalent control is a crucial feature
in the assessment of the feasibility of the sliding regime existence on the given
sliding surface.

A key element in sliding mode control is constituted by the plant perturba-
tions. Their presence constitutes an inescapable feature of Automatic Control
Engineering. Sliding Mode control is a discontinuous feedback control tech-
nique that is remarkably robust, with respect to additive plant perturbations
in state space models, under certain structural restrictions known as matching
conditions . We fully explore the several cases of additive vector perturbations
in nonlinear systems and find the ubiquity of the matching conditions in the,
so-called, drift field perturbation case, the control input field perturbation
case and when the two types of perturbations are present. An input-output
formulation of Sliding Mode Control demonstrates that matching conditions
are trivially satisfied within that formulation.

In the following section, we present several elementary illustrative exam-
ples, which in detail explain the creation of sliding motions that render a
desired behavior of the controlled plant.

1.3 A switch commanded RC circuit

Consider the following switch-commanded RC circuit, shown in Figure 1.1,
fed by a current source of constant value I which can be switched “ON” and
“OFF” from the circuit as indicated in the figure.

Fig. 1.1. Switched controlled RC circuit
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The equation describing the behavior of the only state variable of the
system, represented by the capacitor voltage v, is written as:

C
dv(t)

dt
= u(t)I − v(t)

R
(1.1)

where u is the control input, represented by a switch position function, taking
values in the discrete set {0, 1}. The function u takes the value zero when the
switch is open (i.e., it is OFF) and the source is detached from the circuit.
The switch takes the value one (i.e., it is ON) when the switch is closed and
the source is applied to the circuit. We denote the nature of the control input
by writing

u ∈ {0, 1} (1.2)

Suppose it is desired to obtain a given constant voltage, v(t) = Vd, at the
capacitor output, for all times. Given the limited control actions we have at
our disposal: u is either 1 or 0, the feasibility of the control objective must be
examined pertaining to the achievable values of Vd.

A common procedure in switched systems to determine if there are any
limitations in our control objective consists in separately examining the be-
haviors exhibited by the system with each one of the two possible control
options. This is particularly simple on first and second order systems. The
task may become extremely complex for systems of dimension 3 and higher.

When the control input u is sustained at the value u = 1, we obtain the
following differential equation,

C
dv

dt
= I − v

R
or

dv

dt
=

I

C
− v

RC
(1.3)

whose solution starting from an arbitrary initial value v(0) = v0 at time t = 0,
is given by

v(t) = e−
1

RC tv0 +

∫ t

0

e−
1

RC (t−σ) I

C
dσ

= e−
1

RC tv0 + IR(1− e−
1

RC t) (1.4)

The equilibrium point, which may be defined as limt→∞ v(t) and denoted by
v, is clearly given by

v = IR = Vss (1.5)

where Vss stands for the constant steady state voltage.
Irrespective of the initial conditions, all trajectories starting below Vss

grow towards this positive value. All trajectories starting above Vss decrease
towards the same value. We address Vss as Vmax

On the other hand, when the switch is permanently held at the open
position, u = 0, the system is described by the simpler linear differential
equation:



1.3 A switch commanded RC circuit 5

C
dv

dt
= − v

R
, or

dv

dt
= − v

RC
(1.6)

whose solution, for an initial condition v(0) = v0, is simply

v(t) = e−
1

RC tv0 (1.7)

The equilibrium point is now obtained as

v = 0 (1.8)

In this situation, and regardless of the initial condition value, all trajecto-
ries starting above the equilibrium value v = 0 decrease towards this value.
All trajectories starting below v = 0 increase towards the zero value.

The plots in Figure 1.2 depict the nature of the two time responses asso-
ciated with the permanent switch positions u = 0 and u = 1.
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Fig. 1.2. Voltage trajectories for u = 1 and u = 0.

It is clear that, given the binary valued nature of the control input u ∈
{0, 1}, then, for an arbitrary initial condition v0 in the real line, it becomes
impossible to achieve a constant voltage value v(t), which lies outside the
closed region, [0, Vmax], i.e., Vd should not be larger than Vmax nor less than
0. The only region where the two sets of controlled trajectories pass through a
possible desired voltage line while exhibiting opposite growth with each control
option is, precisely, that represented by the interval [0, Vmax]. Outside this
interval, both sets of controlled trajectories pass through the desired voltage
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line but exhibit the same growth for either switch position. The crisscross
nature of the two sets of controlled trajectories guarantees that, depending
on the value of the initial condition, one of the switch positions will certainly
drive the trajectory towards v = Vd. If the trajectory overshoots this line, the
alternative control action can immediately correct by forcing the trajectory
back towards this line. This is clearly portrayed in Fig 1.3.
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Fig. 1.3. Region of existence of a sliding regime for a constant voltage

We pose ourselves the following question: Is it possible, starting from arbi-
trary initial conditions, to indefinitely reach and sustain, by means of a suit-
able control switching policy an either constant, or, otherwise, time-varying,
voltage signal which is bounded by the interval [0, Vmax] of the real line?

We begin by considering the case in which it is desired to achieve a constant
capacitor voltage of value Vd satisfying,

0 < Vd < IR = Vmax (1.9)

For simplicity, let us assume that the initial condition is arbitrary but re-
stricted to satisfy v0 ∈ [0, Vmax]. The analysis equally applies when such an
initial state restriction is not satisfied.

Consider the voltage error σ = v − Vd. Clearly, using (1.1) and the fact
that v may also be written as v = σ + Vd, we have

σ̇ =
IRu− (σ + Vd)

RC
=

Vmaxu− σ − Vd

RC
(1.10)
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Our interest is in reaching, and sustaining, the condition σ = 0 indefinitely
in time, for in such a case v coincides with the desired constant voltage value
Vd. The first phase of the problem solution, which we refer to as the reaching
phase, will seek a switching policy that guarantees the approach of the condi-
tion σ = 0 from whatever initial condition for v ∈ [0, Vmax]. Due to the limited
nature of the available control actions and the previous analysis, the reaching
phase will require a switching policy that if indefinitely exercised will result in
the values v = Vmax or σ = 0. The crucial point is that using the appropriate
value of the control input, the condition v = Vd, or σ = 0 will indeed be vis-
ited at some instant th, addressed as the “hitting time,” since, in either case,
the error function σ will change its initial sign. Therefore, we will necessarily
have a finite time reachability of the desired condition σ = 0.

We are then led to consider the two only possible cases regarding the
nature of σ at the beginning of the experiment. Either the value of σ, say
at time t = 0, denoted by σ(0), is positive or it is negative. Suppose that
σ(0) is negative, i.e., the voltage v of the capacitor is then initially smaller
than the desired positive value Vd. We must then choose a control value which
guarantees the growth of σ, from negative values, towards the value of zero.
Since the control input u only influences the first time derivative of σ, the
value of u must be chosen so that σ̇ is then guaranteed to be positive. Clearly,
we should set u to the value u = 1 for, in such a case, the numerator of σ̇ is
incremented in the positive quantity IR = Vmax. The controlled motions of
σ, hence, satisfy the differential equation

σ̇ =
Vmax − σ − Vd

RC
= − 1

RC
[σ − (Vmax − Vd)] (1.11)

Since σ is negative around the initial instant of time and, by hypothesis,
Vmax > Vd we have that indeed σ̇ is positive as long as u = 1. Indeed

σ̇ =
(Vmax − Vd) + |σ|

RC
(1.12)

Note that σ̇ is still strictly positive at the moment when σ becomes zero at
t = th, i.e.

σ̇(th) =
Vmax − Vd

RC
> 0 (1.13)

In fact, the linear differential equation describing the motions of σ from
initially negative values predicts that the value of σ exponentially asymptoti-
cally converges towards the positive value Vmax − Vd. Hence, the value σ = 0
will be reached at some finite time th.

On the other hand, if σ is initially positive, then the other only possible
choice is that of choosing u = 0. This is, indeed, the correct choice since now
the evolution of σ is ruled by the following differential equation:

σ̇ =
−σ − Vd

RC
= − 1

RC
(σ + Vd) (1.14)
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The control input choice guarantees that the time derivative of σ is negative
and hence the initial positive value of σ can only decrease as time goes on.
Since the linear differential equation for σ predicts that σ converges exponen-
tially towards the negative value −Vd the condition σ = 0 will be reached in
some finite time, say th.

In summary the switching policy

u =

{
1 for σ < 0
0 for σ > 0

or u =
1

2
(1− sign(σ)) (1.15)

guarantees that the motions of the system approach, independently of the
initial state value1, the sliding surface represented by

S = {v : σ = v − Vd = 0 } (1.16)

is reachable in finite time.
The second phase, that of the sustaining task, requires the sliding motion

to be effectively kept on σ = 0 by fast switchings that corrects the small
overshoots that may be due to a non-infinitely fast switch. Clearly the reach-
ing control strategy equally accomplishes the sustaining phase by forcing the
incipient values of the error σ to go back, through the sliding surface σ = 0.
The trajectory of σ is again pushed back by the second control action causing
a very fast zigzagged motion around σ = 0. We term this motion a sliding
regime. The ideal frequency of this motion is, theoretically, infinite but in prac-
tice, with a real sensor and a real switch, the scheme accomplishes a highly
oscillatory motion in the immediate vicinity of the sliding surface S. We must
idealize this chattering behavior of the capacitor voltage around v = Vd by
assuming that both our sensor and switch are infinitely fast. In practice, we
know that the voltage evolution makes small excursions into the regions where
the switch position will change as advised by the sensor measuring σ.

A sliding regime is then obtained for our switched RC circuit which keeps
σ close to zero and, hence, v close to Vd. It is illustrative to find the smooth
virtual control action, or the equivalent control, that would be responsible for
such motions if the system were allowed to have continuous valued control
inputs.

The equivalent control, denoted by ueq, is obtained from the following
invariance conditions :

σ = 0, σ̇ = 0 (1.17)

Using (1.9) one has

σ̇ =
Vmaxu− σ − Vd

RC

∣∣∣∣
σ=0

= 0 (1.18)

i.e.,

1 We should add, even if such initial state v0 is outside the region [0, Vmax].
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ueq =
Vd

Vmax
(1.19)

The equivalent control is, in this case, positive and bounded above by 1, since,
by hypothesis, Vd < Vmax, i.e.,

0 < ueq < 1 when 0 < Vd < Vmax (1.20)

This restriction on the average control input u is consistent with the fact that
the desired voltage, Vd, should not be negative and should not exceed the
value Vmax.
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Fig. 1.4. Sliding mode controlled responses of switched RC circuit. Voltage response
v(t) and switch position function u(t).

The upper part of Figure 1.4 depicts the reaching phase and the sliding
mode sustaining phase. The reaching phase starts from an initial value v(0) =
v0 = 0 (i.e., σ(0) = −Vd < 0), which according to the switching strategy
initially demands the control action u = 1. Once the sliding surface is reached,
a rapid switching action, depicted in the lower part of Figure 1.4, is obtained.
This control input behavior, characteristic of sliding modes, keeps the value
of v(t) in a small neighborhood of S. In this case we have chosen:

R = 100Ω, C = 100μ F, I = 1 A, Vd = 40Volt, Vmax = 100Volt.

In the above example, the plant equations are linear in the state v and
in the control input u. The limitations in the control actions, u ∈ {0, 1},
lead to a limitation in the possibility of accomplishing the objective of a
desired constant voltage, limiting this voltage to a bounded interval of the
one-dimensional state space. Even for this simple linear example, sliding may
not take place on an arbitrary constant desired voltage line. Sliding regimes
may only be locally possible in the state space.
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Exercise 1.1. In simulations, it is often convenient to normalize the model
of the plant. In the previous switched controlled RC circuit, define the ca-
pacitor voltage as ϑ = v/IR = v/Vmax. Via an appropriate time coordinate
transformation (or, time normalization) show that the controlled system may
be written as

d

dτ
ϑ = u− ϑ (1.21)

where “τ” stands for the normalized time. The analysis of existence of sliding
motions on the normalized model is considerably simpler.

1.4 The effect of unknown perturbations

Fig. 1.5. Perturbed switched controlled RC circuit

Consider the perturbed RC circuit shown in Fig. 1.5 where now a current
demand, denoted by I0(t), of a time-varying nature may be either draining
current from the capacitor, thus discharging it, or else, injecting current into
the capacitor thereby increasing its charge. Suppose such a varying demand
is only known to satisfy the amplitude constraint : supt |I0(t)| < K, but it is
otherwise completely unknown.

The perturbed differential equation governing the system is written as

v̇ =
I

C
u− v

RC
− 1

C
I0(t) (1.22)

The analysis of existence of a sliding regime on σ = 0 with σ = v − Vd

entails examining the feasibility of having the virtual control action ueq(t)
satisfy the condition 0 < ueq(t) < 1. This now is traduced into the following
inequality for all times,

0 < ueq =
Vd

RI
+

I0(t)

I
< 1 (1.23)

The virtual control action ueq therefore explicitly depends on the pertur-
bation input in a manner that implies an exact cancelation of the disturbance.

This last inequality is guaranteed to be valid for all perturbation realiza-
tions whenever we take the most adverse values for the perturbation signal
values I0(t). In other words,
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0 <
K

I
<

Vd

RI
< 1− K

I
(1.24)

The effect of the perturbation is then translated into further reducing the
feasibility region for the desired constant voltage value; i.e., recalling that
RI = Vmax, one has

K

I
Vmax < Vd < (1− K

I
)Vmax (1.25)

This double inequality makes sense as long as the positive amplitude perturba-
tion bound K on the current I0(t) is below 50% of the input source amplitude
I. Under this circumstance, the interval of existence of a sliding regime is
definitely reduced, with respect to the same interval in the unperturbed case,
in direct proportion to the uncertainty present in the perturbation current
amplitude.

We state then that unknown disturbance signals to the plant directly affect
the region of existence of a sliding regime reducing it in accordance with the
level of uncertainty associated with the disturbance.

1.5 Trajectory tracking in a switched RC circuit

The developments of the previous section may be slightly generalized to the
case in which it is desired to have the capacitor voltage actually track a given,
sufficiently smooth2, reference trajectory v∗(t). From the lessons learned in
the previous example, it seems intuitively clear that one should only pursue
the tracking of reference trajectories which are bounded within the interval
[0, Vmax]. This is so, given that the system is the same and that the control
input limitations are identical. The only change lies in the nature of the voltage
error signal specifying the sliding line.

Take the tracking error, or sliding surface coordinate function, as σ =
v − v∗(t). The dynamics of σ obeys the time-varying controlled differential
equation,

σ̇ = v̇ − v̇∗(t)

=
1

RC
[Vmaxu− σ − (v∗(t) +RCv̇∗(t))] (1.26)

2 Actually, we only need that the reference trajectory, v∗(t), be continuous and
differentiable over the real line, i.e. v∗(t) ∈ C1[0,∞).
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The analysis for the reaching phase is not entirely different to the one in
the constant desired voltage case. Indeed, if σ is initially negative, one must
now have a positive time derivative for σ. As before, this entitles using the
cooperation of the term Vmax in the numerator of the general expression for
σ̇ in (1.26). We set u = 1 as long as σ is negative. We obtain

σ̇ =
1

RC
[Vmax + |σ| − (v∗(t) +RCv̇∗(t))] (1.27)

The time derivative σ̇ is guaranteed to remain positive for any negative value of
σ whenever the reference trajectory uniformly satisfies the following condition:

Vmax > v∗(t) +RC v̇∗(t), ∀t (1.28)

On the other hand, if σ > 0, then σ̇ should be negative. The most we
can do is to annihilate the influence of the positive summand Vd from the
numerator of the dynamics associated with σ. We thus set u = 0 and obtain

σ̇ = − 1

RC
[σ + (v∗(t) +RCv̇∗(t))] (1.29)

The time derivative σ̇ is guaranteed to remain negative for any positive
value of σ whenever the reference trajectory uniformly satisfies the following
condition:

0 < v∗(t) +RC v̇∗(t) ∀t (1.30)

We therefore need that the reference trajectory v∗(t) uniformly complies with
the restriction

0 < v∗(t) +RC v̇∗(t) < Vmax ∀t (1.31)

The equivalent control is readily obtained from the expression (1.26), by
letting the invariance conditions: σ = 0, σ̇ = 0 be valid and solving for the
control u as ueq. One obtains

ueq(t) =
1

Vmax
[v∗(t) +RCv̇∗(t)] (1.32)

Note that the equivalent control coincides with the nominal open loop control
input u∗(t) corresponding with the given output reference trajectory, v∗(t) ,
obtained by system inversion3. The existence condition (1.31) is equivalent to

3 Note that, in an average sense, the system dynamics is described by v̇ =
− (1/RC) v + (Vmax/RC)u, with u being a smooth control input. This justi-
fies the statement just made which rests on the Internal Model principle (see
Francis and Wohnam [10]).
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the following one, obtained by dividing the inequality relation by the positive
constant Vmax = IR,

0 <
1

Vmax
[ v∗(t) +RC v̇∗(t)] < 1 ∀t (1.33)

which is seen to actually represent the well-known sliding mode existence
condition in terms of the equivalent control.

0 < ueq(t) < 1, ∀t (1.34)

Note that when v∗(t) = Vd is a constant, the expression (1.33) reproduces
the condition found in the previous example, (1.20), in the form 0 < ueq =
Vd/Vmax < 1.

Suppose now that v∗(t) is a biased sinusoid function of the form:

v∗(t) =
Vmax

2
+A sin(ωt) (1.35)

centered around the line v = Vmax/2 and with an amplitude A yet to be
determined in order to comply with the sliding mode existence conditions.
These conditions, in turn, guaranteeing the accurate tracking of v∗(t) by the
system output voltage v.

The equivalent control, ueq(t), is found to be

ueq(t) =
1

Vmax

[
Vmax

2
+A sin(ωt) +RCωA cos(ωt)

]

=
1

2
+

A

Vmax

√
1 + (RC ω)2 sin(ωt+ φ)

where φ is a frequency dependent angular shift, given by

φ = arctan (RCω) (1.36)

The sliding mode existence condition 0 < ueq(t) < 1 leads to a frequency-
amplitude tradeoff on the part of the polarized sinusoidal reference signal
v∗(t). Indeed one must have

− 1

2
<

A

Vmax

√
1 + (RC ω)2 <

1

2
(1.37)

Assuming the amplitude A is always positive, one has

A <
Vmax

2
√
1 + (RC ω)2

<
Vmax

2
(1.38)
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For a given allowable amplitude: A < Vmax/2, the angular frequency ω of the
voltage reference signal v∗(t) must satisfy the following amplitude-frequency
tradeoff,

ω <
1

RC

√(
Vmax/2

A

)2

− 1 (1.39)

For a given sinusoid amplitude A, the bandwidth of the controlled system
is thus limited to frequencies satisfying the above inequality.

Figure 1.6 depicts the performance of the sliding mode controller when the
amplitude-frequency inequality 1.38 is satisfied.
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Fig. 1.6. Trajectory tracking task in sliding mode controlled RC circuit.

Figure 1.7 shows the system response when the bandwidth limitations are
violated by the desired voltage reference trajectory. The figures depict the
lack of uniform existence of sliding motions and the equivalent control signal
exceeding the limitations of the interval [0, 1].

Aside from the locality of the existence of sliding regimes, regardless of
the reference voltage defining the sliding line being constant or not, the track-
ing of time-varying desired reference signals entitles an additional limitation
represented by the time variability, or frequency content, of the desired refer-
ence voltage signal. For the specific case of sinusoidal signals, the conditions
for the existence of a sliding regime explicitly reveals a bandwidth limitation,
i.e., a compromise between the desired voltage amplitude and its frequency of
oscillation.
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Fig. 1.7. Trajectory tracking under violation of bandwidth limitations.

1.6 A water tank system example

Consider the water tank shown in Figure 1.8, where u is the control input
representing the valve position function and U volume per unit time entering
the tank. As before, the control input is only allowed to take two possible
values in the binary set {0, 1}.

Fig. 1.8. Tank system
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The system is described by the following nonlinear first order controlled
differential equation,

ẋ = − c

A

√
x+

U

A
u, u ∈ {0, 1} (1.40)

where x represents the height of the liquid in the tank, c is a known coefficient,
and A is the area of the base of the tank. It is desired to keep the liquid height
at a constant value x = X.

When u = 0 the motions of the system, for an arbitrary initial condition
on the liquid height, x(0) = x0 > 0, at time t = 0, are governed by the solution
to the following initial value problem:

ẋ = − c

A

√
x, x(0) = x0 (1.41)

Using separation of variables, the solution of the uncontrolled differential
equation (1.41) is given by

x(t) =
(√

x0 − c

2A
t
)2

(1.42)

From any positive initial condition, x(t0) = x0 > 0, the solutions for x reach
zero in finite time, after which the model no longer has a physical meaning.
The model is thus valid for only x ≥ 0. Clearly, the tank will empty by itself
in a finite time, Te, given by

Te =
2A

c

√
x0 (1.43)

On the other hand, if the control input is allowed to permanently take the
alternative value, u = 1, then the system is governed by

ẋ = − c

A

√
x+

U

A
(1.44)

The solution of (1.44) cannot be written in explicit form. This solution has
the implicit relation:

− 2A

c
(
√
x−√

x0) +
2AU

c2
ln(

U − c
√
x0

U − c
√
x
) = t (1.45)

Note, however, that for u = 1, the equilibrium solution of equation 1.44 is
given by x = U2/c2. A tangent linearization of the nonlinear system around
this equilibrium value shows that such an equilibrium is stable. In fact, all
trajectories globally converge towards this equilibrium value from any initial
conditions satisfying x0 ≥ 0.

Figure 1.9 shows the local responses of the tank system for sustained values
(0 or 1) of the valve position function u.
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Fig. 1.9. Time responses for u = 0, u = 1.

Take the stabilization error, or sliding surface coordinate function as: σ =
x −X. The dynamics of the sliding surface coordinate function is now given
by the nonlinear equation

σ̇ = − c

A

√
σ +X +

U

A
u (1.46)

The virtual control input, ueq, that would achieve the desired constant
height, X, of the liquid, provided one starts the liquid height evolution pre-
cisely at this value (x(0) = X), is characterized by the enforcement of the
invariance conditions: σ = 0, σ̇ = 0. This leads to

ueq =
c

U

√
X (1.47)

The existence of a sliding motion on σ = 0 is feasible whenever 0 < ueq < 1.
This means that, 0 < X < U2/c2. The existence of a sliding regime on the
zero level set of the sliding surface coordinate function: σ = x−X, is, again,
a local possibility in the state space for the desired constant liquid heights.

If σ is initially negative, i.e., the liquid height is smaller than the desired
one, we have to strive to make σ̇ > 0. This may be accomplished using u = 1,
i.e., by completely opening the valve. We have

σ̇ = − c

A

√
σ +X +

U

A
(1.48)

Thus, provided the input flow U is such that

U > c
√
X (1.49)

then, for all σ < 0, the time derivative of σ is guaranteed to be positive and
σ grows towards zero, the desired error value.
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On the other hand, if σ is initially positive, i.e., the liquid level is above the
desired constant value, then we only have the choice of letting u = 0 and let
the liquid level diminish by the assumed draining. The differential equation
satisfied by the error height is given by

σ̇ = − c

A

√
σ +X (1.50)

Then, the time derivative of σ is negative for any positive value of σ and,
hence, σ decreases towards the desired value of zero.

A sliding regime is thus created on the condition, σ = 0, in finite time
and the liquid height x is sustained via active valve switching around the de-
sired value x = X. Clearly, a physical valve is incapable of sustaining a large
ON -OFF switching action, much less, to sustain an ideal infinite frequency
switching. Sliding mode control is severely limited in the regulation and con-
trol of hydraulic systems governed by valves. Something similar can be stated
for mechanical systems. However, mechanical valves may be actuated by elec-
tric motors, a class of devices that is usually driven by sophisticated ON-OFF
switches.

According to the system model (1.40), the largest available input flow is
given by U when u = 1. The control input u = 1 is larger than the ideal,
virtual, equilibrium input represented by ueq. If this were not the case, a
sliding regime could not have been created on σ = 0 since the valve fully open
would not have been capable of increasing the level of the liquid. The desired
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Fig. 1.10. Sliding mode controlled liquid height position
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condition would only be instantaneously visited by the state trajectory from
initial liquid heights located above the desired one and it would never be
reached from lower heights.

The simulations shown in Figure 1.10 used the following numerical values:

c = 0.1, X = 0.5 m, A = 1 m2, U = 0.3m3/s.

1.7 Trajectory tracking for the tank water height

It is in our interest to emphasize that trajectory tracking problems are not,
essentially, more complicated than stabilization problems but they do exhibit
bandwidth limitations.

Consider again the water tank system explained in the previous section.
Suppose it is desired to have the liquid height x(t) to follow a rather smooth
rest-to-rest reference trajectory, denoted by x∗(t) > 0. In other words, we
would like the height of the liquid, x(t), to pass from a pre-specified initial
equilibrium position towards a final equilibrium position, during a finite in-
terval of time, specified by tinit and tfinal. Evidently, the control algorithm
should be good enough to first set up the desired initial equilibrium position,
x∗(tinit), for whatever initial state, x(0), the tank variable x(t) happens to be
located at time t = 0 < tinit.

The sliding surface coordinate function σ may be defined to be the tracking
error e = x− x∗(t), i.e.,

σ = x− x∗(t) (1.51)

the tracking error time derivative satisfies thus the following first order differ-
ential equation,

σ̇ = − c

A

√
σ + x∗(t) +

U

A
u− ẋ∗(t) (1.52)

The sliding mode existence condition for initially positive values of σ de-
mands that σ̇ < 0. We must choose u = 0, for this is the only control option
that makes σ actually decrease. On the other hand, initial negative values of
σ demand that we set u = 1. Naturally, from (1.52), to have the condition
σ̇ > 0 fulfilled in this case, the reference trajectory, x∗(t), must be specified
in such a manner that, for all t ∈ [tinit, tfinal], one has

c
√
x∗(t)+Aẋ∗(t) < U, i.e. sup

t∈[tinit,tfinal]

[
c
√
x∗(t) +Aẋ∗(t)

]
< U (1.53)

The switching law is then specified as u = 0 for σ > 0 and u = 1 for σ < 0.
The equivalent control ueq clearly coincides with the open loop nominal

control input u∗(t) corresponding to the given reference signal x∗(t) and found
by system inversion. The existence condition: 0 < ueq < 1 is seen to represent
a bandwidth limitation of the control system due to the presence of the term,
ẋ∗. Rapidly varying references may violate the tracking capabilities of the
control system.
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For simulation purposes, we consider the following rest-to-rest trajectory,
defined with the help of an interpolating Bézier polynomial, of order 10
(see [26]):

x∗(t) = x∗
init + (x∗(tfinal)− x∗(tinit))ψ(t, tinit, tfinal) (1.54)

where the function ψ(t, tinit, tfinal) is defined as

ψ(t, tinit, tfinal) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 for t < tinit

[
t−tinit

tfinal−tinit

]5 [
r1 − r2

(
t−tinit

tfinal−tinit

)
+ · · · − r6

(
t−tinit

tfinal−tinit

)5]

for t ∈ [tinit, tfinal]
1 for t > tfinal

where

r1 = 252, r2 = 1050, r3 = 1800, r4 = 1575, r5 700, r6 = 126

Figure 1.11 shows the sliding mode controlled tank variables and the
smooth increase of the water height from an initial value towards a final value
within a given finite time interval. We have set the same system parameters
as in the stabilization case. The reference trajectory x∗(t) defining parameters
was chosen to be

tinit = 0.5, tfinal = 3, x∗
init = 0.3, x∗

final = 0.5

In this figure, we have also plotted the equivalent control just to check
that the sliding mode existence conditions are not violated with the specified
trajectory. Notice that multiplying throughout by the positive quantity U the
existence condition 0 < ueq < 1 leads to the equivalent condition: 0 < ueqU <
U = 0.3

In this example it is interesting to assess the effects of a violation of the
existence condition 0 < ueqU < U . For instance, if we required the rest-to-rest
maneuver to be accomplished in a substantially smaller time (say, 1.5 units
of time instead of 2.5 as in the previous simulation), then the time derivative
of the reference trajectory is accordingly increased during the maneuver. Fig-
ure 1.12 shows that the existence condition is violated during an open interval
of time between tinit and the new tfinal = 2.0. The sliding mode is no longer
sustained during this open interval and, as a consequence, the tracking of the
reference trajectory is temporarily lost.

The previous examples show that designing for a sliding regime, which
enforces a desired control objective, is rather simple in first order systems.
The limitations entail: local existence of sliding regimes, i.e., conditions rep-
resenting a desired objective achievable via sliding regimes may be limited to
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Fig. 1.11. Reference trajectory tracking for the tank system
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Fig. 1.12. Effects of violation of the bandwidth in the sliding mode existence con-
ditions

certain regions of the state space. The sliding mode existence problem for a
second order system exhibits further limitations while demanding more care,
as the following examples will now demonstrate.

1.8 A Bilinear DC to DC Converter

Consider the differential equations describing a “boost” converter consisting of
a voltage source of value E, an inductor of value L, and a capacitor of value
C (Fig. 1.13). The action of a switch (u = 0) energizes the inductor, thus
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Fig. 1.13. A Boost Converter Circuit

storing energy in its magnetic field and then the switch (u = 1) allows this
stored energy to be transferred to the output circuit consisting of a parallel
connection of a capacitor and a load resistor of value R. The stored energy
produces a voltage potential. These energy loading- energy transfer- energy
storing cycles may take place at considerable speed. The coupled differential
equations of the circuit are

L
di

dt
= −uv + E, C

dv

dt
= ui− v

R
(1.55)

where u ∈ {0, 1} is a switch position function and the state variables, i and
v, respectively, represent the inductor current and the capacitor voltage. A
magnitude and time normalization of the equations may be readily obtained
by setting:

x1 =
1

E

√
L

C
, x2 =

v

E
, dτ = dt/

√
LC (1.56)

The normalized system is described by the simpler (bi-linear) system:

dx1

dτ
= −ux2 + 1,

dx2

dτ
= ux1 − x2

Q
(1.57)

where Q = R
√

C
L .

Let “ ˙ ” abusively stand for normalized time differentiation (d/dτ). Sup-
pose the inductor is initially energized while the capacitor exhibits some
nonzero potential. When u is set to the value u = 0, the system is described
by the following set of differential equations

ẋ1 = 1, ẋ2 = −x2

Q
(1.58)

The normalized current x1 becomes unstable (the inductor current grows
without limit), while the normalized voltage x2 is seen to be exponentially
asymptotically stable to zero (i.e., the capacitor discharges its stored energy
through the resistor load if the switch position is indefinitely held at u = 0.)
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When the switch position is held at u = 1, the differential equations de-
scribing the circuit are given by:

ẋ1 = −x2 + 1, ẋ2 = x1 − x2

Q
(1.59)

The system exhibits the constant equilibrium point x1 = 1
Q , x2 = 1. It is

easy to verify that this equilibrium is globally asymptotically, exponentially,
stable. Indeed, the characteristic polynomial of the linear map defining the
system is given by

p(λ) = λ2 +
1

Q
λ+ 1 (1.60)

whose roots are real and strictly negative for 0 < Q < 1/2 and they are
complex conjugate with strictly negative real parts for Q > 1/2. Typical
trajectories are illustrated in Figure 1.14 for each value of u.
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Fig. 1.14. State trajectories of the boost converter circuit for u = 0, and u = 1,
switch positions.

1.8.1 Switching on a Desired Constant Voltage Line

Suppose it is desired to achieve a constant normalized voltage x2 = Vd. The
algebraic condition: σ = x2−Vd = 0, faithfully represents the constant output
voltage control objective. We examine the feasibility of reaching this condition
and indefinitely sustaining it. We restrict our considerations to the physically
plausible region: x1 > 0, x2 > 0.
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Ideally, when x2 = Vd, the corresponding equivalent control is just, ueq =
1
Vd

. The meaning of this constant control input is to be interpreted as the
non-switching control input that would be required to permanently sustain the
condition: σ = 0. Such a control input represents a virtual, continuous, control
input that replaces, on σ = 0, the infinite frequency switchings. The equivalent
control was derived from the condition σ̇ = 0. Notice that the corresponding
dynamics for x2 leads to ẋ2 = x1/Vd − Vd/Q = 0, i.e., x1 = V 2

d /Q, which is
the corresponding equilibrium value of the normalized inductor current x1.

The time derivative of σ is just σ̇ = ux1 − x2/Q. Thus, setting u = 0
for σ > 0 yields σ̇ = −x2/Q < 0, i.e., σσ̇ < 0. The initially positive value
of σ decreases towards the zero value. Setting u = 1 for σ < 0 leads to
σ̇ = x1 − x2/Q which is positive as long as x1 > (x2/Q) i.e., whenever x2 lies
below the line: x2 = Qx1. This line has positive slope, contains the origin,
and contains the equilibrium point (1/Q, 1) of the system when u is fixed to
u = 1. The intersection of this line with σ = 0 occurs at (Vd/Q, Vd) which is
to the left of the desired equilibrium point: (V 2

d /Q, Vd) (i.e., Vd/Q < V 2
d /Q).

Sliding motions occur to the right of (Vd/Q, Vd). In this region, σσ̇ < 0, so
σ grows from initially negative values towards the value zero. The switching
strategy: u = (1/2)(1− sign(σ)) may then, indeed, lead to a sliding regime.

Now suppose σ = 0 i.e., x2 = Vd, then, ideally, σ̇ = ux1 − Vd/Q = 0. A
continuous equivalent control law which sustains the condition σ = 0 is just
ueq = Vd/x1Q which substituted on the corresponding dynamics for x1 yields:
ẋ1 = −V 2

d /(x1Q) + 1. The equilibrium point of this equation coincides with
the previously found equilibrium point. To the right of the equilibrium point
we have: ẋ1 > 0, so the normalized inductor current grows without limit.
However, to the left of the equilibrium point a sliding regime does not exist
on σ = 0, since, now, we are above the line: x2 = (Q/Vd)x1 and σσ̇ > 0. The
sliding regime on σ = 0 locally exists but it is not feasible and unsustainable.

1.8.2 Switching on a Desired Constant Current Line

Consider now the switching line σ = x1 − V 2
d /Q. σ = 0 represents a vertical

line in the state space (x1, x2). To the right of σ = 0, σ is positive and to
the left of σ = 0, σ is negative. Initially, let σ > 0. The time derivative of
σ is just σ̇ = −ux2 + 1. Setting u = 1 guarantees a negative time derivative
of σ provided x2 > 1. Hence, above the line x2 = 1 the condition: σσ̇ < 0 is
valid to the right of σ = 0. When σ < 0, the control u = 0 yields σ̇ = 1, i.e.,
σσ̇ < 0. A sliding regime thus exists on the vertical line: x1 = V 2

d /Q, above
the normalized voltage line x2 = 1.

Let σ = 0, i.e., x1 = V 2
d /Q. The condition: σ̇ = 0 yields σ̇ = −ux2+1 = 0.

The equivalent control is then ueq = 1/x2. The closed loop dynamics for x2

on σ = 0 is, hence, governed by ẋ2 = (V 2
d /(x2Q)) − x2/Q. This nonlinear

dynamics exhibits the equilibria: x2 = ±Vd. Since there is no sliding regime
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below x2 = 1, the physically feasible equilibrium point is x2 = Vd > 1.
The equilibrium, x2 = Vd, is asymptotically stable as demonstrated by the
Lyapunov function candidate: V (x2) = (1/2)(x2−Vd)

2. Indeed, along the ideal
state trajectories on the sliding line, one has: V̇ (x2) = (x2−Vd)[(V

2
d /(x2Q)−

x2/Q] = [(x2 − Vd)/(x2Q)][V 2
d − x2

2] = −[1/(x2Q)][(x2 − Vd)
2(Vd + x2)] < 0.

Thus indicating that the positive quantity V (x2) is constantly decreasing until
reaching the condition x2 = Vd, where now V (x2) = 0 and V̇ (x2) = 0.

Simulations were performed on a normalized boost circuit model with Q =
0.31622 and desired voltage: Vd = 2, with a corresponding equilibrium current
V 2
d /Q = 12.649. Figure 1.15 depicts the controlled system trajectories in the

state space of coordinates (x1, x2). The equilibrium point on the constant
voltage sliding line is unstable and the sliding motion ceases to exist at some
point when the current decreases below its equilibrium value. The equilibrium
point on the constant current sliding line is asymptotically stable and the
sliding motion takes place in the region of the state space where the boost
converter amplifies, at the output, the normalized source voltage value, i.e.,
whenever x2 > 1.

Fig. 1.15. State trajectories of the boost converter circuit seeking sliding motions
on constant voltage and constant current lines.
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In second order systems, where sliding surface coordinate functions may
be a function of a single state variable or both state variables, it is seen that
sliding modes face a new concern. Sliding surfaces defined as a function of a
single state variable induce closed loop dynamics on the second state variable
that may or may not be convenient. This phenomenon, known as the stability
of the zero dynamics is a typical concern when the variable σ is considered
as a regulated variable of the system. Its zeroing leaves unobserved dynamics
that may exhibit convenient (possibly global, but generally local) stability
features around equilibrium points; the sliding surface coordinate function σ
is then a minimum phase output variable, otherwise it is addressed as a non-
minimum phase variable. Non-minimum phase behavior is to be avoided at
all costs by suitable consideration of an alternative, minimum phase, variable
(See Di Benedetto and Grizzle [3]).

1.9 A Second Order System Example

Consider the following switch controlled second order system, consisting of a
pure second order integrator system. We describe such a system via

ÿ = 1− 2u (1.61)

with u ∈ {0, 1}. Suppose it is desired to control the system, from any reason-
able arbitrary initial condition (y(0), ẏ(0)) = (y0, ẏ0), towards a given final
constant value for y, given by y = Y .

Consider the sliding line, σ(y, ẏ) = ẏ + α(y − Y ) with α > 0. This sliding
line prescription is compatible with the control objective: limt→∞ y(t) = Y ,
i.e., stabilizing the variable y to a constant value Y . Notice that under ideal
sliding conditions, on σ = 0, the constrained state evolves satisfying the linear,
asymptotically, exponentially stable dynamics: ẏ = −α(y− Y ). We deem this
behavior as desirable and, hence, it represents a proper control objective.

For u = 0, the system is simply, ÿ = 1 and the state trajectories, starting
from an arbitrary initial state y(0) = y0, ẏ(0) = ẏ0, are given by

ẏ(t) = t+ ẏ0, y(t) =
1

2
t2 + ẏ0t+ y0 (1.62)

The velocity ẏ grows linearly in time, while the output y grows quadratically in
time. This set of parametric equations corresponds to the following expression
for the graph of the state trajectory in the phase plane (y, ẏ),

y =
1

2
(ẏ − ẏ0)

2 + ẏ0(ẏ − ẏ0) + y0

=
1

2

[
(ẏ)2 − 2ẏ20 + 2y0

]
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Similarly, when u = 1, the system obeys, ÿ = −1 and, the parametric
equations describing the state trajectory from arbitrary initial states, are
given by

ẏ = −t+ ẏ(0), y(t) = −1

2
t2 + ẏ(0)t+ y(0) (1.63)

Eliminating the variable t from the last two expressions, we obtain the equa-
tion for the graph described by the state trajectory in the phase space

y = −1

2

[
(ẏ)2 − ẏ20 − 2y0

]
(1.64)

Figure 1.16 depicts typical phase trajectories for the two possible controlled
systems, with fixed switch positions u = 1 or u = 0.
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Fig. 1.16. Phase plane trajectories for u = 1 and u = 0

The time derivative of σ, along the controlled solutions of the second order
plant, is obtained as

σ̇ = 1− 2u+ αẏ (1.65)

When σ > 0 the most we can do is to set u = 1, so as to contribute as
much as possible to the negativity of σ̇. Conversely, when σ < 0, we must
set u = 0 in order not to contribute with a negative additive term to the
value of σ̇ which should be as positive as possible. The switching strategy is
circumscribed to: u = 1 for σ > 0 and u = 0 for σ < 0. In other words,
u = 1

2 (1 + signσ).
A sliding regime exists provided σ and σ̇ exhibit opposite signs in the

vicinity of the sliding line: S = {(y, ẏ) ∈ R
2 | σ(y, ẏ) = 0}. The product σσ̇

should be strictly negative close enough to S. When σ > 0, σ̇ = −1 + αẏ. It
follows that ẏ < 1/α. On the other hand, when σ < 0, σ̇ = 1 + αẏ, hence
ẏ > −1/α. The band: −1/α < ẏ < 1/α, shown in Figure 1.17, generates on
the sliding line S the corresponding existence region: Y −1/α2 < y < Y +1/α2

for the y coordinate.
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As the ideal sliding motions ẏ = −α(y−Y ) are required to converge faster
towards the equilibrium point (Y, 0), by choosing a larger value of α, the
rectangular sliding region on the phase space further shrinks thus having a
smaller region of existence of the sliding regime.

Figure 1.18 depicts a particular controlled trajectory converging towards
a desired equilibrium state y = Y = 1, ẏ = 0 and the corresponding discon-
tinuous control input actions.

The local nature of sliding regimes may be overcome, in this particular
instance, by proposing a nonlinear sliding line in the phase plane. This is
examined next.
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Fig. 1.17. Region of existence of sliding motions and controlled trajectories in the
phase plane
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second order system
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1.10 The quest for global sliding motions

The previous example illustrates a typical situation where our desire to have
simple controlled motions, of the linear kind, on the sliding surface is paid
by a local validity of the sliding mode existence. One may then wonder if
slightly more complex sliding surfaces, and hence slightly more complicated
ideal controlled motions, may bestow us with a global nature of the existence of
sliding motions. This would have a particular advantage regarding the quality
of the performance of the feedback controlled responses.

In the previous example there are two particularly interesting trajectories
in the phase space, generated by the available controls, u = 0 and u = 1, that
precisely pass through the desired equilibrium point, y = Y , ẏ = 0, in the
phase space. These trajectories are depicted in Figure 1.19.
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Fig. 1.19. Controlled motions leading to the desired equilibrium point

Being that these trajectories are obtained by actual available control in-
puts, they do not themselves qualify as sliding surfaces. Somehow sliding sur-
faces are generated by “average” control actions. The mathematical expres-
sions of each branch of the parabola representing these particular trajectories
are the following:

u = 0, ẏ = +
√

2(Y − y), y < Y (1.66)

and
u = 1, ẏ = −

√
2(y − Y ), y > Y (1.67)
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Consider then scaled versions of the arcs of parabolas (1.66), (1.67) leading
towards the point (Y, 0), and form sliding surfaces with the resulting expres-
sions. For this let λ be a positive scalar satisfying 0 < λ < 1. Let S be
defined as follows:

S = S+ ∪ S− (1.68)

where the “∪” symbol stands for union in the set theoretic sense and, also,

S+ = {(y, ẏ) | σ(y, ẏ) = ẏ − λ
√
2(Y − y) = 0, y < Y }

S− = {(y, ẏ) | σ(y, ẏ) = ẏ + λ
√
2(y − Y ) = 0, y > Y } (1.69)

One of the advantages of these sliding arcs rests on the global nature of
the sliding motions that can be induced on their union and moreover, once the
sliding surface is reached the motions reach the desired equilibrium in finite
time.

To demonstrate the validity of this last statement, consider the motions
ideally taking place along the arc denoted by S+, on the portion of the phase
space determined by ẏ > 0 and y < Y . Suppose that the initial condition
on such a line is given by y(0) = y0. The differential equation governing the
closed loop system is given by

ẏ = λ
√
2(Y − y), y(0) = y0 < Y (1.70)

The solution of this nonlinear separable equation is given by

y(t) = Y − 1

2

[
t−

√
2(Y − y0)

]2
(1.71)

Clearly, at time t = T =
√
2(Y − y0) the point y(T ) = Y , ẏ(T ) = 0 is reached.

Similarly, motions taking place on S− from an initial condition y(0) = y0
are governed by

ẏ = −λ
√

2(y − Y ), y(0) = y0 > Y (1.72)

The solution of this initial value problem is given by

y(t) = Y +
1

2

[
−t+

√
2(y0 − Y )

]2
(1.73)

At time t = T =
√
2(y0 − Y ) the desired point y(T ) = Y , ẏ(T ) = 0 is reached.

To show that sliding motions on S exist globally consider first the branch
of the sliding surface denoted by S+. The time derivative of the sliding surface
coordinate function, σ = ẏ−λ

√
2(Y − y), along the controlled motions of the

system is given by

σ̇ = −1 + 2u+ λ
ẏ√

2(Y − y)

= −1 + 2u+ λ

[
σ + λ

√
2(Y − y)√

2(Y − y)

]
(1.74)
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For small, negligible, values of σ, whether positive or negative the time deriva-
tive of σ around S+ is governed by

σ̇ = −1 + 2u+ λ (1.75)

When σ < 0 our choice is u = 1. The time derivative of σ is given by σ̇ =
1 + λ > 0. If, on the other hand, σ > 0, then the choice u = 0 leads to
σ̇ = −1 + λ. Since λ ∈ (0, 1) the derivative is negative. Notice that these two
conditions are valid everywhere in the immediate vicinity of S+. A similar
analysis shows that sliding motions are global around S−.

Figures 1.20 and 1.21 depict the sliding mode controlled responses of the
second order system when the nonlinear sliding surface guaranteeing finite
time stabilization is used.
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Fig. 1.20. Sliding mode controlled response of second order system with global,
finite time, stabilization surface.
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Sliding regimes are, generally speaking, local. Global sliding regimes may
be highly desirable. Achieving this feature is part of a design problem with no
clear-cut general guidelines. The problem of achieving global sliding regimes is
relatively easy to tackle for one and two dimensional systems. As dimensions
increase, the intuitive feeling becomes blurred.

Exercise 1.2. Consider the mechanical system shown in Figure 1.22. Assume
the control torque input is only capable of producing a fixed torque value in
either sense (clockwise or counterclockwise). This translates into one of two
possible applied force values, say F and −F to the mass.

Fig. 1.22. Control of a mass position

The system model, including viscous friction forces, is given by the follow-
ing second order system,

Mẍ = −Bẋ+ f, f ∈ {F,−F} (1.76)

It is desired to control the system, from any reasonable arbitrary initial po-
sition and initial velocity, to a given final constant position given by x = X.
Work out the details. Propose a sliding surface, containing x = X, on which
one may create a global sliding regime.

1.11 A nasty perturbation

Consider the following perturbed state space system,

ẋ1 = x2 + ε sin(ωt), ẋ2 = W (1− 2u) (1.77)

with ε and ω being completely unknown, while W > 0 is a sufficiently large
gain. Suppose it is desired to stabilize the system to the origin of coordinates
(x1, x2) = (0, 0).

A sliding surface of the form:

S = {(x1, x2) | σ(x) = x2 + αx1 = 0, α > 0} (1.78)
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may be reached via the switching control strategy: u = 1
2 (1 + signσ). Indeed,

σ̇ = W (1− 2u) + α(x2 + ε sin(ωt)) (1.79)

Clearly, when σ > 0, σ̇ = −W + αx2 + αε sin(ωt) and when σ < 0, σ̇ =
W +αx2+αε sin(ωt). A sliding regime exists on the time-varying band of the
state space,

− W

α
+ ε < x2 <

W

α
− ε (1.80)

which is a feasible region provided ε < W/α.
On S, the evolution of the controlled system satisfies:

ẋ1 = −α(x1 − ε

α
sin(ωt)), x2 = −αx1 (1.81)

and neither x1, nor x2, converge to zero as desired. The closed loop system
is affected by the perturbation signal and even though its presence does not
preclude the existence of a sliding regime, the ideal sliding dynamics is defi-
nitely affected by such perturbation inasmuch as the control objective is not
achieved. The perturbation input directly affects the dynamics of the state x1

while the control directly affects the dynamics of x2. The perturbation is said
to be non-matched.

Notice, however, that if the perturbed system is of the form,

ẋ1 = x2, ẋ2 = W (1− 2u) + ε sin(ωt). (1.82)

A sliding regime exists on the same sliding surface S specified above, with a
rather similar region of existence:

− W

α
+

ε

α
< x2 <

W

α
− ε

α
(1.83)

where, now, it must be assumed that ε < W .
On S the system is governed by

ẋ1 = −αx1, x2 = −αx1 (1.84)

and now both x1 and x2 asymptotically exponentially converge to zero.
In the second case, we say that the closed loop system is robust with re-

spect to the perturbation signal since the ideal sliding dynamics is completely
independent of such signal. The perturbation input, which now affects di-
rectly the evolution of the state x2, similarly to the control input, is said to
be matched.
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1.12 Some lessons learned from the examples

The essential feature of the sliding mode control problem in a switched sys-
tem is that of prescribing a suitable state restriction on the state variables,
represented as a smooth manifold, called the sliding surface, for which the
available binary valued control input can 1) guarantee, even if locally, an ap-
proach in finite time of the state trajectory representative point to the sliding
surface while inducing opposite behaviors of the state trajectories in the im-
mediate vicinity of the switching manifold. Such opposite behaviors refer to
an oblique (as opposed to tangential) approach of the state trajectories to the
sliding surface, from each one of the two regions in the state space delimited
by the sliding manifold. This is tied to the potential of actually crossing such
a boundary from each side, under the action of one of the fixed control in-
puts. Such a crossing is to occur in a direction opposite to that which can be
achieved from the “other side” with the other (only) available control input. 2)
The motion, constrained to the given surface, can be in principle indefinitely
sustained, by using the same feedback control law that achieved the reaching
of the sliding surface in finite time from any of the two “sides” of the sliding
manifold. For this, the nature of the controlled trajectories around the sur-
face is such that they are always pointing towards the surface in its immediate
vicinity. The sliding motion will be lost, in a certain region of the state space,
where the two kinds of controlled state trajectories no longer point towards
each other around the geometric boundary represented by the sliding mani-
fold. In general, the sliding motions are, generally speaking, expected to be
only locally sustainable. Idealized, virtual, feedback control strategies which
smoothly guarantee the evolution of the controlled trajectories on the given
sliding manifold, for trajectories starting on it, are essential in assessing the
validity of local, or global, existence conditions of the induced sliding regime.
This virtual feedback control constitutes the equivalent control. The existence
conditions of a sliding regime on a given sliding manifold simply demand that
the equivalent control must be bounded within the interval determined by the
two extreme numerical values assigned to the switch position function. The
equivalent control law must be realizable as an intermediate smooth feedback
control action with respect to the available switching control extremes. Such
virtual control actions are responsible for sliding surface invariance, a concept
that is intimately related to the ideal controlled behavior of the system on the
restriction, or sliding, manifold. For trajectory tracking tasks, the existence
conditions assessed in terms of the bounded nature of the equivalent control
are tantamount to natural limitations on the bandwidth of the control system.
The frequency content of the reference trajectories to be tracked is necessar-
ily limited. In linear systems it is not difficult to show that such a frequency
content limitation refers to a low frequency band. Finally, state coordinate
and input coordinate transformations, locally or globally invertible, may help
in visualizing a simpler solution to the sliding mode creation problem. Unfor-
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tunately, the physical significance of the system variables may be lost in the
framework of transformed coordinates.

Let σ(x) represent the sliding surface coordinate function of the system
state vector x, with the sliding manifold being represented by:

S = { x | σ(x) = 0 } (1.85)

A sliding regime exists on S if the following two conditions are satisfied ([31]):

lim
σ→0+

σ̇ < 0 and lim
σ→0−

σ̇ > 0 (1.86)

This existence condition clearly depicts the opposite nature of the controlled
motions around the condition σ(x) = 0. Indeed, approaching the surface from
negative values of the sliding surface coordinate function this function must
grow towards zero. When approaching the surface from positive values of σ(x)
this function must decrease towards zero. The two conditions above can be
summarized into a single one, namely,

lim
σ→0

σσ̇ < 0 (1.87)

i.e., the sliding surface coordinate function σ(x) and its time derivative σ̇(x),
computed along the controlled trajectories, exhibit opposite signs on each
small neighborhood of the sliding surface.4.

The actual sliding motions taking place on S, thanks to the active, infinite
frequency control input switchings, can be idealized into smoothly controlled
motions satisfying the following sliding surface invariance conditions :

σ(x) = 0, σ̇(x) = 0 (1.88)

The invariance conditions describe the fact that motions take place pre-
cisely on the sliding surface and never abandon it. The virtual smooth feedback
control action that would be responsible for the evolution of the state trajec-
tory on the sliding manifold, very closely tracks the actual sliding motions
without exhibiting small high frequency chattering, characteristic of realistic
sliding motions, is addressed as the equivalent control.

The equivalent control is an intermediate control action lying between the
two extreme values of the discrete set of available controls, which we have so
far limited to switch position functions taking values in the discrete set {0, 1}.
The equivalent control is therefore bounded by these two extreme values

0 < ueq(x) < 1 (1.89)

4 Clearly condition (1.87) is a consequence of demanding that the positive (semi-
definite) function V (σ) = 1

2
σ2 locally exhibits a negative time derivative: V̇ =

σσ̇ on any arbitrary small vicinity of S. This Lyapunov like argument actually
constitutes a necessary and sufficient condition for the local existence of sliding
motions on S for the case of single input nonlinear systems (see Utkin[31]).
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If the equivalent control violates these bounding restrictions, then it cannot
be virtually synthesized as the result of the active switchings of the control
input between the extreme values 0 and 1. It follows that the system becomes
incapable of sustaining the controlled motions on the sliding manifold. The
existence of the equivalent control between the hard bounds, defined by the
control input set, is therefore tantamount to the definition of the region of
existence of a sliding regime on the given manifold.

We list the limitations found so far of the sliding mode control methodology

• Sliding motions for switched systems are, generally speaking, not global.
Global sliding motions demand sliding surfaces to be in a class “similar”
to that of the integral manifolds of the controlled trajectories.

• In trajectory tracking problems, the bandwidth limitations directly affect
the existence of sliding regimes accomplishing the trajectory tracking task.
Tradeoffs can be easily established, via analytic techniques, in the case of
linear systems.

• The presence of unknown perturbations limits the region of existence of
sliding motions. Sliding motions may be eased in those instances where
estimation techniques are available for the unknown disturbance signals.

• Robustness of the sliding mode controlled system to unknown disturbances
seems to be ruled by rigid structural constraints that require control inputs
and disturbances to affect the state dynamics through the same “channel.”
This reveals a severe limitation of the state space formulation of sliding
regimes, known under the general name of matching conditions.

• The formulation of sliding regimes seems to be unavoidably linked to the
state space formulation and to the need of measuring, or estimating, the
unavailable states of the system. It is one of our tasks in this book to illus-
trate techniques where sliding motions can be obtained when input-output
descriptions of the plant are available. We shall also explore non-traditional
means of estimating states of the system via knowledge of inputs and out-
puts alone and use them in sliding regime creation under suitable addi-
tional compensation.
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Single-input single-output sliding mode control

2.1 Introduction

In this chapter we formalize, in a rather direct, and elementary, mathematical
language, the ideas presented in the previous chapter. We introduce all the
previously discussed elements of sliding mode control theory and illustrate,
through several design examples mainly drawn from the switched power elec-
tronics area, the use and features of this important control design methodol-
ogy.

Using the language of elementary differential geometry, we formulate in a
rather general setup the sliding mode creation problem for a given switched
system. We revisit the single switch case (i.e., the single-input-single output
case). We examine the most salient features and theoretical elements of sliding
mode control, namely: the sliding surface meaning, its accessibility, or reach-
ability, problem, the definition of the equivalent control and its corresponding
ideal sliding dynamics. Finally, we address the robustness of closed loop slid-
ing mode responses with respect to additive perturbation fields satisfying the
so-called matching condition. The approach naturally allows to relate these
important features with well-known concepts of nonlinear geometric control
such as: invariance, zero dynamics, minimum and non-minimum phase out-
puts, projection operators (over tangent subspaces along, or parallel to, the
span of a given set of input vector fields or, equivalently, to the span of the
input matrix), and local stability in the sense of Lyapunov. After the theoret-
ical introductions to sliding mode control, for the SISO case, we then center
our attention on the sliding mode control of some of the most popular DC
to DC power converters written, for ease of treatment, in normalized form.
This practice not only greatly facilitates the algebraic manipulation and the
computer simulation tasks, it is also a good guide and handy check for actual
implementation of feedback controllers in many areas of Power Electronics.
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2.2 Variable structure systems

A variable structure system is a system in which the current dynamic model,
or system structure, heavily depends on the region of the state space where the
operation of the system is circumstantially found. The discontinuous nature
of the model is characteristic and the structural changes occur due to either a
voluntary action on the part of the operator, or due to the automatic activation
of one or more switches present in the system, or, also, due to a sudden change
in the temporary values of certain system parameters.

The class of described systems is quite wide for its detailed study and its
interest in applications is somewhat limited. For this reason, we shall study
variable structure systems regulated by one or several switches. The position
of the switches constitutes our only set of available control inputs.

Additionally, we restrict ourselves to the class of systems where its several
descriptions, or structures, have in common the invariance of the dimension
of the resulting systems, as well as the nature of the describing state of the
system.

2.3 Control of single switch regulated systems

We study the control of systems represented by nonlinear state space models
of the following form:

ẋ = f(x) + g(x)u, y = σ(x) (2.1)

where x ∈ R
n, u ∈ {0, 1}, y ∈ R. The vector functions f(x) and g(x) represent

smooth vector fields, i.e. infinitely differentiable vector fields, defined over the
tangent space to R

n. The output function, σ(x), is a smooth scalar function
of x taking values in the real line R. We refer to x as the state of the system.
The variable u is addressed as the control input, or simply as the control. The
variable y is the output of the system. We usually refer to f(x) as the drift
vector field and to g(x) as the control input field.

The main feature of the systems to be studied is the binary valued nature
of the control input variable. Without loss of generality we assume that the
control input takes values on the discrete set {0, 1}. Note that if the set of
possible values for the scalar control input u were the discrete set {W1,W2}
with Wi ∈ R, i = 1, 2, then the following invertible input coordinate transfor-
mation:

v = (u−W2)/(W1 −W2), u = W2 + v(W1 −W2) (2.2)

makes the new control input v a binary valued control input function with
values in the set {0, 1}
Example 2.1. The circuit in Figure 2.1 represents a DC to DC power converter,
known as the “boost” converter, controlled by a single switch.



2.4 Switching between continuous feedback laws 39

Fig. 2.1. Boost converter circuit

The controlled differential equations describing the system are given by

L
di

dt
= −uv + E

C
dv

dt
= ui− 1

RL
v (2.3)

where i is the input inductor current, v is the output voltage, and u is the
switch position function satisfying (u ∈ {0, 1}).

In matrix terms, the mathematical description of the “boost” converter is
given by

d

dt

[
i
v

]
=

[
0 0
0 − 1

RLC

] [
i
v

]
+

[− v
L
i
L

]
u+

[
E
L
0

]
(2.4)

Letting x = [x1 x2]
T = [i v]T , we have

f(x) =

[
0 0
0 − 1

RLC

]
x+

[
E
L
0

]
=

⎡
⎣

E
L

− x2

RLC

⎤
⎦ (2.5)

and

g(x) =

⎡
⎣−x2

L

x1

C

⎤
⎦ (2.6)

2.4 Switching between continuous feedback laws

The description we have adopted for the study of sliding regimes is general
enough to include a class of switched systems that entitles the switching be-
tween two available feedback laws.

Indeed consider the nonlinear system

ẋ = F (x, v) (2.7)
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where F is smooth function of its arguments (x, v) and v is a scalar control
input.

Suppose that the scalar control input v may be chosen to be one of two
possible smooth feedback controls laws in accordance with the sign of a deci-
sion function σ(x) as follows:

v =

{
u+(x) for σ(x) < 0
u−(x) for σ(x) > 0

(2.8)

Clearly the system may be represented by a switched system with controls
taking values in the discrete set {0, 1}. Indeed consider the system

ẋ = F (x, u−(x)) + u
[
F (x, u+(x))− F (x, u−(x))

]
(2.9)

with the switching law

u =

{
1 for σ < 0
0 for σ > 0

(2.10)

The control problem has now been cast into one in which the system is of the
form: ẋ = f(x) + ug(x) with u ∈ {0, 1}.
Example 2.2. An interesting case of switched feedback control of a linear sys-
tem consists in controlling the system by being able to switch the gain of a
linear output feedback control law. For this, consider a linear second order
system which is a simpler version of one treated in Utkin’s book ([31])

ÿ = −Ψ y, Ψ ∈ {α,−α}, α > 0 (2.11)

We can rewrite the system in state space switched form as

ẋ1 = x2

ẋ2 = −(2u− 1)αx1

y = x1

with u ∈ {0, 1}.
In this case

f(x) =

[
x2

αx1

]
, g(x) =

[
0

−2αx1

]
, u ∈ {0, 1} (2.12)

We will be examining, later on, the possibilities of inducing a stable sliding
motion towards the origin on the switching surfaced defined by the coordinate
function: σ = x2 + λx1, with λ > 0.
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2.5 Sliding surface

In the context of single switch controlled n-dimensional systems, a sliding
surface, denoted by S, is represented by the set of state vectors x in R

n,
where the state restriction, σ(x) = 0, is satisfied, with σ being a smooth
scalar output function.

The main assumption is the following:
The restriction σ(x) = 0 (which is represented by a smooth manifold,

S, of dimension n − 1 in R
n) locally satisfied by the state trajectory, x(t),

ideally produces a desired behavior for the state of the controlled system which
represents the control objective. The constrained evolution of the state on S is
locally, or globally, to be accomplished thanks to appropriate switched control
input actions satisfying: u ∈ {0, 1}.

The restriction, σ(x) = 0, on the state vector, x, defines a smooth n− 1-
dimensional manifold in R

n. We denote such a manifold by S, i.e.

S = {x ∈ R
n | σ(x) = 0} (2.13)

One of the primordial features in the design of feedback control laws for
switch regulated systems is represented by the fact that the specification of
the smooth scalar function σ(x) is an integral part of the design problem. The
choice of the output function y = σ(x) and, hence, of the smooth manifold S
entirely depends upon our control objective.

Example 2.3. In the previous “boost” converter example, a sliding surface may
be proposed to be :

σ(x) = v − Vd = x2 − Vd (2.14)

where Vd is the average desired output equilibrium voltage. If one succeeds in
forcing σ(x) to be zero, along the controlled trajectories of the system, then
the output voltage ideally coincides with the desired voltage.

Another sliding surface that one may consider is given by

σ(x) = i− Id = x1 − Id (2.15)

where Id = V 2
d /(ERL) represents an average equilibrium input current which

corresponds with the desired average output equilibrium voltage Vd.

As it was shown in Chapter 1, even though both sliding surfaces represent
a desired behavior of the output, only one of them is actually feasible due to
internal closed loop stability considerations.
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2.6 Notation

Let f(x) and g(x) be smooth vector fields locally defined on the tangent space
to R

n at x, here denoted by TxR
n. Let σ(x) be a smooth scalar function taking

values on R. We denote by the triple (f, g, σ) the nonlinear system

ẋ = f(x) + g(x)u, y = σ(x) (2.16)

with state x ∈ R
n, drift vector field f(x), input vector field g(x), control

input u ∈ {0, 1} and σ(x) plays the role of a smooth scalar output function,
customarily referred to as a sliding surface coordinate function .

We define the directional derivative of σ(x) in the direction of f(x) as the
scalar quantity:

(
∂σ/∂xT

)
f(x), and we denote it by means of Lfσ(x). Simi-

larly, we refer to Lgσ(x) as the directional derivative of σ(x) in the direction
of the vector field g(x).

In local coordinates we have:

∂σ

∂xT
=

(
∂σ

∂x1

∂σ

∂x2
· · · ∂σ

∂xn

)
, f(x) =

⎡
⎢⎢⎢⎣

f1(x)
f2(x)

...
fn(x)

⎤
⎥⎥⎥⎦ (2.17)

and

Lfσ(x) =

n∑
i=1

∂σ

∂xi
fi(x) (2.18)

Gradients of scalar functions are usually addressed as differentials of such
functions, the expression dσ stands for a row vector (in the dual to the tangent
space of vector fields, or cotangent space). Thus, the directional derivative Lfσ
may also be denoted as

Lfσ = 〈dσ, f〉 (2.19)

with the operation “〈 , 〉” being understood in the sense of the scalar product
of the differential, dσ, and the vector field f . Row vectors with smooth func-
tions as components are also called co-vectors, cotangent vectors, and 1-forms.
Differentials are particular cases of co-vectors.

2.7 The transversal condition

The existence of a sliding regime on σ = 0 entitles the opposite growth of
the sliding surface coordinate function σ on a sufficiently large open vicinity
of Rn, locally intersecting S. We denote this open vicinity of S by N . If x is
located in such a vicinity, N , so that σ(x) > 0, the time derivative σ̇ must
be negative and, hence σ decreases. On the other hand, if x ∈ N is such that
σ(x) < 0, the time derivative σ̇ must be positive and σ increases towards its
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zero value. In other words, σσ̇ < 0 remains locally valid on the considered
open vicinity N . We shall be abusively referring to “above the surface” to the
region where locally the condition σ > 0 is valid. Contrarily, we use “below
the surface” to indicate that σ(x) < 0. This is made only in the interest of
intuition and the statement is clearly devoid of any mathematical meaning.
We may assume without loss of generality that the following is valid above
the surface, i.e., when σ > 0:

σ̇(x) = Lfσ(x) = 〈dσ, f〉 < 0 (2.20)

where the control input has been set to u = 0. i.e., the vector field f “points”
towards S and locally creates state trajectories that tend to cross the sliding
surface S with σ constantly decreasing. When σ(x) is negative, the control
u = 1 is enforced, the existence of a sliding regime entitles

σ̇ = Lf+gσ(x) = 〈dσ, f + g〉 = Lfσ + Lgσ > 0 (2.21)

These two conditions are valid on N and, hence, locally valid on S.
We have the following immediate result:

Proposition 2.4. The condition Lgσ(x) > 0, x ∈ S is a necessary condition
for the local existence of a sliding regime. This condition is addressed as the
transversal condition of the control input field g with respect to the sliding
manifold S.

Proof The proof is rather simple. Suppose a sliding regime locally exists
on S then on the open vicinity N , Lfσ(x) < 0 and Lfσ(x) + Lgσ(x) > 0.
Clearly, Lgσ(x) > 0 on N . In particular, Lgσ(x) > 0 on S ∩N .

We remark that if S is such that, locally, Lgσ < 0. The simple sliding
surface coordinate change σ = −σ̃ makes all the previous assumptions valid.
There is no loss of generality, then, in locally taking the transversal condition
as: Lgσ > 0.

Henceforth, all our statements about existence of a sliding regime are
meant in a local sense. This locality assumes that its validity occurs in a
sufficiently large region of S for guaranteeing an effective, sustainable, con-
trolled motion of the system on the sliding surface.

2.8 Equivalent control and ideal sliding dynamics

Let us assume that thanks to the use of an appropriate switching law, we man-
age to make the state x locally evolve restricted to the smooth manifold, S.
In other words, we achieve, by means of appropriate commutations, the in-
variance of S with respect to the trajectories of the state of the system. It is
our assumption that while the condition x ∈ S is satisfied, we are complying
with some specific control objective.
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We define the equivalent control as the smooth feedback control law, de-
noted by ueq(x) which locally sustains the evolution of the state trajectory
ideally restricted to the smooth manifold S when the initial state of the sys-
tem x(t0) = x0 is located precisely on the manifold S, i.e., when σ(x0) = 0. In
other words, the equivalent control is the smooth control that locally renders
the sliding manifold S invariant.

The sliding surface coordinate function, σ(x), satisfies, under ideal sliding
motions on σ(x) = 0, the following set of invariance conditions, σ = 0, σ̇ = 0.
Explicitly,

σ̇(x) =
∂σ

∂x
(f(x) + g(x)ueq(x))

∣∣∣∣
σ=0

= 0 (2.22)

where we are using the fact that Lgσ 
= 0, i.e., the vector field g is not
tangential to S. In other words,

Lfσ(x) + [Lgσ(x)]ueq(x)

∣∣∣∣
σ=0

= 0 (2.23)

and therefore, the equivalent control, on σ = 0, is expressed in a unique fashion
as the quotient:

ueq(x) = −Lfσ(x)

Lgσ(x)

∣∣∣∣
σ=0

= −〈dσ, f〉
〈dσ, g〉

∣∣∣∣
σ=0

(2.24)

The controlled vector field, f(x)+ g(x)ueq(x), and the corresponding evo-
lution over the smooth manifold S of the state trajectories of the system, is
expressed as

ẋ =

[
f(x)− g(x)

Lfσ(x)

Lgσ(x)

] ∣∣∣∣
σ=0

(2.25)

and it will be addressed as the ideal sliding dynamics .
Note that any other initial condition which is not over the smooth manifold

S evolves in such a manner that the function σ(x) remains constant. Such a
constant value only adopts the value of zero when the initial state x0 is located
on S. The closed loop system, fed back by the equivalent control, on S, may
be alternatively described as follows:

ẋ =

[
I − 1

Lgσ(x)
g(x)

∂σ

∂xT

]
f(x)

∣∣∣∣
σ=0

= M(x)f(x)

∣∣∣∣
σ=0

(2.26)

Proposition 2.5. The square n×n matrix M(x) is a projection operator,
onto the tangent space to S, along the span{g(x)}. The operator M(x) projects
any smooth vector field defined in the tangent space of Rn onto the tangent
subspace to the manifold S in a parallel fashion to the span{g(x)}, or in the
direction of the control input field g(x) .
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Indeed, let v be a vector field in the tangent space to R
n such that v ∈

span g(x) i.e., v(x) may be expressed as v(x) = g(x)α(x) where α(x) is a
smooth scalar function. We then have

M(x)v(x) =

{
I − 1

Lgσ(x)
g(x)

∂σ

∂x

}
g(x)α(x)

=

{
g(x)− 1

Lgσ(x)
g(x)

∂σ

∂x
g(x)

}
α(x)

=

{
g(x)− 1

Lgσ(x)
g(x)Lgσ(x)

}
α(x)

= [g(x)− g(x)]α(x) = 0 (2.27)

Additionally, the n-th dimensional co-vector: ∂σ/∂xT annihilates the im-
age under M(x) of the vector fields lying in the tangent space of Rn. For this,
it is enough to show that any 1-form in the span of dσ annihilates all the
column vectors of M(x).

A 1-form in the span of dσ = ∂σ/∂xT is written as : ξ(x)(∂σ/∂xT ), where
ξ(x) is a completely arbitrary nonzero scalar function. Indeed:

ξ(x)
∂σ

∂xT
M(x) = ξ(x)

∂σ

∂xT

{
I − 1

Lgσ(x)
g(x)

∂σ

∂xT

}

= ξ(x)

[
∂σ

∂xT
− Lgσ(x)[Lgσ(x)]

−1 ∂σ

∂xT

]

= ξ(x)

[
∂σ

∂xT
− ∂σ

∂xT

]
= 0 (2.28)

The image under M(x) of any vector field in the tangent space to R
n is

in the null space of ∂σ/∂xT . In other words, they are in the tangent subspace
to S.

Clearly, M2(x) = M(x) given that M(x)g(x) = 0 or that dσM(x) = 0.

Exercise 2.6. Show that the operator I−M(x) is a projection operator onto
the span{g} along the tangent subspace to S at x, TxS.
Exercise 2.7. Show that the tangent subspace of S coincides with the image
of the operator M. Proceed by establishing a contradiction.

The projection operator reveals an immediate property of the correspond-
ing ideal sliding dynamics: The equivalent control idealization is invariant
with respect to time coordinate transformations, even if these are state de-
pendent. This property reveals that the equivalent control is an infinite fre-
quency idealization associated with the actual input switching strategy and
hence, invariant with respect to finite time coordinate transformations (See
Fliess et al. [7]).
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Let μ(x) be a strictly positive scalar function of the state x and define
a transformed time scale τ for the system as dτ = dt/μ(x). The underlying
switch controlled system is represented as

dx

dτ
= μ(x)f(x) + μ(x)g(x)u = f̃(x) + g̃(x)u (2.29)

Proposition 2.8. The equivalent control, ueq(x), associated with the sliding
surface S = {x | σ(x) = 0}, is independent of any time scaling exercised on
the system via a time scaling factor μ(x) > 0 .

Proof

ũeq(x) = −Lf̃σ(x)

Lg̃σ(x)
= −Lfσ(x)

Lgσ(x)
= ueq(x) (2.30)

The state dependent projection operator, M(x), is, therefore, independent
of the time scaling factor μ(x). The ideal sliding dynamics is just dx/dτ =
M(x)f̃(x). The ideal sliding motions can be locally, artificially, accelerated,
or slowed down, but the equivalent control is always the same function of the
state x.

2.9 Accessibility of the sliding surface

Let x be a representative point of a state trajectory, located in an open neigh-
borhood N of the manifold S (This neighborhood strictly contains its inter-
section with the sliding manifold). Assume, without loss of generality that, at
this point x, the surface coordinate function σ(x) of the manifold S is strictly
positive, i.e., σ(x) > 0. We may conventionally say that we are located above
the surface S. Our objective is to prescribe an appropriate control action
which guarantees that the trajectory of the system reaches and crosses the
manifold S. The time derivative of σ(x) at the point x is given by

d

dt
σ(x) =

∂σ

∂x
(f(x) + g(x)u) = Lfσ(x) + [Lgσ(x)]u (2.31)

If we assume that Lgσ(x) > 0 in a neighborhood of S (i.e., Lgσ(x) is strictly
positive, above and below S in the vicinity of this surface), then we require
that the time derivative of σ(x) in (2.31) be strictly negative at x.

Since Lgσ(x) > 0, we must choose the control input that annihilates the
positive incremental effect that this term has over the derivative of σ, we
must then set u = 0. The sliding surface coordinate function time derivative
coincides then with the value Lfσ(x). It follows that being Lgσ > 0 in an
open neighborhood of S, it is necessary that Lfσ(x) be strictly negative in a
neighborhood of S.

If we now assume that the point x is located “below” the surface, i.e.,
σ(x) < 0, then it is easy to see that for the trajectories to reach, and have the
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potential to cross, the sliding manifold S, the time derivative of σ(x) must be
strictly positive. In other words, Lfσ(x)+[Lgσ(x)]u > 0. Since Lg(x) > 0 and
Lfσ(x) < 0, we must choose u = 1, so as to magnify the positive incremental
effect of Lgσ(x) over the time derivative of σ(x), but, besides, it is necessary
that this positive term be of such magnitude that it also overcomes the effect
of the negative increment represented by Lfσ(x) over the time derivative.

We conclude that, assuming Lgσ(x) > 0, in an open neighborhood of
S, the necessary condition for the existence of a sliding regime on S is that
Lgσ(x) > −Lfσ(x) > 0. In other words, dividing this inequality by the strictly
positive quantity Lgσ(x), it is necessary that

1 > −Lfσ(x)

Lgσ(x)
> 0 (2.32)

Note that this inequality must be valid in an open neighborhood of S. In
particular, if this inequality is locally valid for x ∈ S, then it is also valid in
an open neighborhood of S given the smooth character of the involved vector
fields and of the surface coordinate function σ(x).

Under the assumption that Lgσ(x) > 0 around S, it is easy to see that
the previously discussed existence condition is also sufficient.

Indeed, if the representative point is located, say, above the sliding man-
ifold S, the above inequality tells us that Lfσ(x) < 0 and then it suffices to
take u = 0 and since then σ̇(x) < 0 in any open neighborhood of S. The
state trajectory thus approaches, and crosses, the manifold S from any neigh-
boring point located above the surface. If the representative point is located
below S, then, the inequality establishes that Lf (x) +Lgσ(x) > 0 and, there-
fore, the choice, u = 1, forces the condition: σ̇(x) > 0 for any point in an
open neighborhood of S. This says that the state trajectory approaches the
manifold S.

Note that if we locally had Lgσ(x) < 0, we then should have Lfσ(x) > 0
in any neighborhood of S. The changes in the previous arguments for surface
reachability are reduced to the choice of u in each case. In this case, we would
choose u = 1 when x is located “above” S and we should set u = 0 when we
are “below” the sliding surface.

Nevertheless, and in order to avoid confusion, we note that if locally,
Lgσ(x) < 0, we may always redefine S taking as a sliding surface coordi-
nate function, −σ(x), and now all the previous analysis becomes valid.

The condition Lgσ(x) > 0 is particularly important and it determines the
switching policy that locally achieves a sliding regime over the sliding manifold
S. We address this condition as the transversal condition of the control input
field g(x) in relation to the sliding manifold S. Note that if Lgσ(x) = 0 on
an open set around the sliding manifold, the system is not controllable and
the quantity σ̇(x) cannot be made to change its sign in such a vicinity of
S. Therefore, the transversal condition is a necessary condition for the local
existence of a sliding regime.
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By virtue of the fact that the quantity −Lfσ(x)/Lgσ(x) coincides with
the equivalent control on S, we conclude as follows.

Theorem 2.9. The necessary and sufficient condition for the local existence
of a sliding regime over the smooth manifold S = {x | σ(x) = 0} is that the
equivalent control satisfies

0 < ueq(x) < 1, x ∈ S (2.33)

The transversal condition Lgσ(x) > 0, or, more generally : Lgσ(x) 
= 0,
tells us that if the sliding surface coordinate function σ(x), is considered as
a system output function, y = σ(x), then, this function must be, necessarily,
locally relative degree equals to 1 around the value y = 0. Note that for y = 0
the output zero dynamics entirely coincides with the ideal sliding dynamics
redundantly given by

ẋ = f(x)− g(x)
Lfσ(x)

Lgσ(x)

∣∣∣∣
y=0

= f(x) + g(x)ueq(x)

∣∣∣∣
y=0

(2.34)

We dwell, in more detail and generality, on the issues associated with the
relative degree and the zero dynamics concepts further ahead in this chapter.

Under the assumption that the transversal condition adopts the form:

Lgσ(x) > 0 (2.35)

in a sufficiently large open neighborhood of the sliding surface S, the control
law, that locally forces the state trajectories to reach the sliding surface and
these acquire the possibility of “crossing” this surface, is given by

u =

{
1 if σ(x) < 0
0 if σ(x) > 0

, u =
1

2
[1− sign σ(x)] (2.36)

Evidently, any incipient incursion of the state trajectory to the “other side”
of the sliding manifold causes an immediate control reaction commanding the
switch to change its position to the other only available realization. As a conse-
quence, the trajectory is forced to return towards the surface possibly crossing
it again with a corresponding new change in the switch control position. The
resulting motion taking place around an arbitrarily small neighborhood of the
sliding surface is characterized by a “zigzag” motion whose frequency is, the-
oretically speaking, infinitely large and widely known as a sliding regime or a
sliding motion.

The transversal condition may undergo a singularity situation by which
Lgσ(x) changes sign on the sliding surface S. In other words, there may exist a
sub-manifold of S on which Lgσ(x) = 0. In spite of the fact that the equivalent
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control may not exist at a certain time intervals, or points, of the sliding
motions, outside this singularity, it is still possible to locally maintain a sliding
regime. Consider then,

σ̇ = Lfσ + uLgσ (2.37)

The switching policy, modified to the following one:

u =
1

2
[1− sign(σLgσ)] , (2.38)

locally reaches the sliding surface S irrespective of the local sign of Lgσ. It
guarantees the satisfaction of the necessary and sufficient condition for the
existence of a sliding regime in open regions of S outside the sub-manifold:
{x ∈ S | Lgσ(x) = 0}. Notice that such a singularity arises from a tangency
of the control vector field, g(x), with the sliding surface tangent space at x.
In other words, Lgσ = 0, if and only if, g(x) ∈ TxS ⊂ TxR

n.

Example 2.10. Consider the second order system linear system, with a switch-
ing output feedback gain, in example 2.2. We write this system in the form
ẋ = f(x) + ug(x), as follows:

ẋ1 = x2

ẋ2 = −(2u− 1)αx1, u ∈ {0, 1}
y = x1 (2.39)

where the parameter α is assumed to be strictly positive. For this system, we
have

f(x) =

[
x2

αx1

]
, g(x) =

[
0

−2αx1

]
, σ(x) = x2 + λx1 (2.40)

We compute

Lgσ(x) = [λ 1] g(x) = −2αx1, Lfσ(x) = λx2 + αx1

(2.41)

The equivalent control, in σ(x) = 0, is found to be

ueq(x) = −Lfσ

Lgσ
=

λx2 + αx1

2αx1
=

(α− λ2)

2α
(2.42)

Note that Lgσ changes sign in accordance with the variable x1. Hence, in
order to obtain the right switching law, we will have to take into account,
besides the sign of σ, also, the sign of x1. So, let us first consider x1 < 0 which
yields Lgσ > 0 as hypothesized in previous sections.
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The existence condition: 0 < ueq < 1 yields the following two inequali-
ties

α+ λ2 > 0

α− λ2 > 0 (2.43)

The first condition being always valid from the hypothesis that α > 0, we
have then, necessarily, the following existence condition

λ <
√
α (2.44)

Thus, in the fourth quadrant, the sliding line is below the stable eigen-line of
the closed loop system ÿ = αy and in the second quadrant the sliding line is
above the stable eigen-line. The sliding motion is therefore globally sustained
on the sliding surface

S = {(x1, x2) |σ(x) = x2 + λx1 = 0, λ <
√
α} (2.45)

The switching law has to now take into account the sign of σ and x1 since
the nature of Lgσ changes beyond the origin of coordinates along the sliding
line. Clearly the switching law

u =
1

2
(1− sign(σx1)) (2.46)

yields the desired global stable sliding motion on S.
Figure 2.2 depicts the phase space trajectories of the switch regulated

second order linear system where the output feedback gain acts as a switching
control input.

Example 2.11. A slight modification in the above example leads to quite dif-
ferent realities. Consider, for instance, the following third order integrator
system with switched output feedback,

ẋ1 = x2

ẋ2 = x3

ẋ3 = −(2u− 1)αx1

y = x1

A stabilizing sliding surface may be proposed via the following definition
of the sliding surface coordinate function:

σ(x) = x3 + 2ξωnx2 + ω2
nx1 (2.47)

with ξ > 0 and ωn > 0.
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Fig. 2.2. Sliding mode control by switchings of the output feedback gain in a second
order integrator system.

The ideal sliding dynamics, valid on S = {x | σ(x) = 0}, is given by the
following “traditional” asymptotically stable second order closed loop system

ÿ + 2ξωnẏ + ω2
ny = 0 (2.48)

We have

f(x) =

⎡
⎣ x2

x3

αx1

⎤
⎦ , g(x) =

⎡
⎣ 0

0
−2αx1

⎤
⎦ (2.49)

The equivalent control, on S, is given by

ueq(x) = −ω2
nx2 + 2ξωnx3 + αx1

−2αx1
=

1

2
− ξω3

n

α
+

[
ω2
n(1− 4ξ2)

2α

]
x2

x1
(2.50)

Note that, contrary to the previous case the equivalent control is now singular
at the origin. It is worthwhile to examine the ideal sliding motions on the plane
x1−x2 in order to assess the behavior of the closed loop system in the vicinity
of the origin.

The ideal sliding dynamics is governed by the linear state space model
[
ẋ1

ẋ2

]
=

[
0 1

−ω2
n −2ξωn

] [
x1

x2

]
(2.51)

whose characteristic polynomial is given by

p(s) = s2 + 2ξωns+ ω2
n (2.52)
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The positive choices for ξ and ωn render an asymptotically stable origin
as an equilibrium point. The approach of the controlled trajectory determines
the nature of the equivalent control and the limit behavior of its singular
character in the vicinity of the origin. It is clear that we have to impose some
dominant eigenvalue behavior so that the controlled trajectories approach the
origin along a convenient straight eigen-line. We should therefore not allow
stable complex eigenvalues but, instead, real and widely separated. This is
achieved by letting ξ ≥ 1 and ωn sufficiently large.

The eigenvalues of the closed loop linear dynamics are characterized by
the set of straight lines

x2 = λx1

x2 = − ω2
n

2ξωn − λ
x1

with
λ = −ξωn ± ωn

√
ξ2 − 1 (2.53)

Both eigen-lines have negative slope in the plane x1−x2. The dominant eigen-
line is that corresponding to the largest eigenvalue.

2.10 A Lyapunov approach to surface reachability

Consider the scalar quantity:

V (y) =
1

2
y2 =

1

2
σ2(x) ≥ 0 (2.54)

This quantity represents a certain instantaneous energy, or quadratic mag-
nitude, of the sliding surface coordinate function y with respect to its zero
value, which defines the smooth manifold S.

A plausible policy for reaching the desired condition σ(x) = 0, from any
open vicinity of S, is to adopt switching actions for the control input u ∈ {0, 1}
that result in a strict decrease of the positive semi-definite function V (σ(x)).

This can be locally achieved influencing over the system in such a manner
that the speed of variation of V (σ(x)) be strictly negative on a sufficiently
small region locally containing the zero level set of the function σ(x). In other
words,

lim
σ→0

d

dt
(V (σ(x))) = lim

σ→0

1

2

d

dt

(
σ2(x)

)
= lim

σ→0
σ(x)

dσ(x)

dt
< 0 (2.55)

Using the relation σ̇(x) = Lfσ(x) + Lgσ(x)u and realizing that Lfσ(x) +
Lgσ(x)ueq = 0 for any x /∈ S, we have, adding and subtracting the quantity
Lgσ(x)ueq to the time derivative expression of the function σ(x), the following
relations,
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σ(Lfσ(x) + Lgσ(x)u) = σ (Lfσ(x) + Lgσ(x)(u− ueq) + Lgσ(x)ueq)

= σLgσ(x)(u− ueq) < 0 (2.56)

We may assume, without any loss of generality, that the transversal condi-
tion Lgσ(x) > 0 is satisfied over an open neighborhood of the representative
point x located on the immediate vicinity of the sliding surface S. However,
in the interest of some generality we let the sign of Lgσ to be locally either
positive or negative.

A choice for the switched control input, u ∈ {0, 1}, which guarantees the
validity of the above condition, regardless of the sign of the product σLgσ, is
given by

u =

{
1 if σ(x)Lgσ(x) < 0
0 if σ(x)Lgσ(x) > 0

(2.57)

In other words,

u =
1

2
[1− sign (σ(x)Lgσ(x))] (2.58)

When the transversal condition Lgσ > 0 is particularly valid, or enforced,
then the switching control law is simply: u = 1

2 [1− sign σ(x)].

2.11 Control of the Boost converter

We revisit the Boost converter example performing the following normaliza-
tion of the state variables and the time scale of the system:

x1 =
i

E

√
L

C
, x2 =

v

E
(2.59)

τ =
t√
LC

, QL = RL

√
C

L
(2.60)

The normalized model is then given by

ẋ1 = −ux2 + 1

ẋ2 = ux1 − 1

Q
x2 (2.61)

In the context of the previously defined notation we have

f(x) =

[
1

− 1
Qx2

]
, g(x) =

[−x2

x1

]
(2.62)
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2.11.1 Direct control

The control objective is to drive the normalized average voltage x2 to a desired
equilibrium valueX2. We first try with the following sliding surface coordinate
function

σ(x) = x2 −X2 (2.63)

Driving the output function σ(x) to zero by means of discontinuous control
means that the output voltage coincides with the desired average equilibrium
output voltage. Nevertheless, we wish to establish the nature and the stability
of the corresponding remaining internal dynamics, or zero dynamics. In our
case we have

Lfσ(x) =
∂σ

∂xT
f(x) = − 1

Q
x2

Lgσ(x) =
∂σ

∂xT
g(x) = x1 (2.64)

The equivalent control is found to be

ueq(x) = −Lfσ(x)

Lgσ(x)
=

1

Q

(
x2

x1

)
(2.65)

The ideal sliding dynamics occurs when ueq(x) acts on the system as a feed-
back function while the system is ideally satisfying the condition x2 = X2.
We then have

ẋ1 = − 1

Q

(
X

2

2

x1

)
+ 1 (2.66)

The above dynamics exhibits an unstable equilibrium point. We may establish
this fact via several approaches:

Via approximate linearization:
This technique will provide us with the local nature of the stability around

the equilibrium point of the zero dynamics corresponding with σ(x) = 0. The
incremental model (or tangent linearization model) of the normalized inductor
current is given by

d

dt
x1δ =

(
1

Q

X
2

2

X
2

1

)
x1δ (2.67)

where x1δ = x1 −X1, x2 δ = x2 −X2.
The equilibrium point is clearly unstable in view of the fact that the lin-

earized zero dynamics exhibits a characteristic polynomial with a zero in the
right half part of the complex plane.

Via Lyapunov stability theory
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We rewrite the zero dynamics corresponding to σ(x) = 0 as

dx1

dτ
=

1

x1

(
x1 − X

2

2

Q

)
(2.68)

Consider the following Lyapunov function candidate in the x1 variable space

V =
1

2

(
x1 − X

2

2

Q

)2

(2.69)

The derivative of this function, taking into account that x1 > 0 is given by

V̇ =
1

x1

(
x1 − X

2

2

Q

)2

≥ 0 (2.70)

By means of the phase diagram (see Figure 2.3)

2.11.2 Indirect control

The alternative is then to use as a sliding surface coordinate function a func-
tion that, when set to zero, reproduces the desired equilibrium value of the
input inductor current, in correspondence with the desired output equilibrium
voltage.

σ(x) = x1 −X1 (2.71)

Fig. 2.3. Non-minimum phase character of the output voltage

To specify this function we compute the equilibrium point of the system
under ideal sliding conditions. We write the equilibrium value of the current
in terms of the equilibrium value of the output voltage.

X1 =
1

Q
X

2

2 (2.72)
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We now have
Lfσ(x) = 1, Lgσ(x) = −x2 (2.73)

The equivalent control is then given by

ueq(x) =
1

x2
(2.74)

The ideal sliding dynamics corresponding to x1 = X1 is given by:

ẋ2 =
X

2

2

Qx2
− x2

Q
(2.75)

It is easy to see that the unique equilibrium point of the zero dynamics is an
asymptotically stable equilibrium point. Indeed, consider the following Lya-
punov function candidate in the x2 space

V (x2) =
1

2
(x2 −X2)

2 (2.76)

The time derivative of this function is given by

V̇ (x2) =
1

Qx2
(x2 −X2)(X

2

2 − x2
2)

= − 1

Qx2
(x2 −X2)

2(X2 + x2) (2.77)

Evidently, the last expression is negative definite around the equilibrium point
X2, given that x2 > 0 around the equilibrium.

According to the developed theory, the sliding surface is reachable, or
accessible, by means of the following switching policy,

u =

{
1 if (x1 −X1) > 0
0 if (x1 −X1) < 0

(2.78)

2.11.3 Simulations

We consider a boost converter with the following parameter values:

L = 0.01 [H], C = 10−4 [F],

RL = 10 [Ω], E = 30 [V]

It is desired to regulate the output voltage to the average equilibrium value

Vd = 119.92

The equilibrium value of the corresponding average normalized inductor
current is, approximately, given by
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Id = 48.00 [A]

Figure 2.4 depicts the sliding mode controlled responses of the chosen boost
converter from zero initial conditions. Initially the control u = 1 is sustained
until the inductor current reaches and slightly overshoots the desired constant
value. After this the sliding mode is triggered letting the corresponding zero
dynamics take over the output capacitor voltage making it increase towards its
desired value. The figure also depicts the evolution of the Lyapunov function
in its convergence towards the value of zero.

2.12 Control of the “Buck-Boost” converter

The circuit shown in Figure 2.5 represents a DC to DC power converter con-
trolled by a switch. This system is better known as the “buck-boost” converter.
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Fig. 2.4. Sliding mode controlled responses of the boost converter

Fig. 2.5. Buck-Boost circuit
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The differential equations describing this system are given by

L
di

dt
= (1− u)v + uE

C
dv

dt
= −(1− u)i− v

R
(2.79)

where i represents the input inductor current and v is the output voltage.
Performing the following normalization of the state variables and of the

time variable:

x1 =
i

E

√
L

C
, x2 =

v

E
,

τ =
t√
LC

, Q = R

√
C

L

we obtain the normalized average model of the DC to DC power converter

dx1

dτ
= (1− u)x2 + u

dx2

dτ
= −(1− u)x1 − 1

Q
x2 (2.80)

In the vector field notation introduced earlier, we specifically have

f(x) =

[
x2

−x1 − 1
Qx2

]
, g(x) =

[
1− x2

x1

]
(2.81)

2.12.1 Direct control

The control objective is to have the normalized average voltage x2 to converge
towards the desired equilibrium value X2. We try first with the following
sliding surface coordinate function

σ(x) = x2 −X2 (2.82)

Clearly, if σ(x) is forced to be zero, the output capacitor voltage coincides
with the desired value. As before, we must establish the stability features of
the corresponding internal, or zero, dynamics of this output function.

In our case we have

Lfσ(x) =
∂σ

∂xT
f(x) = −x1 − 1

Q
x2

Lgσ(x) =
∂σ

∂xT
g(x) = x1 (2.83)

and the equivalent control is then given by
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ueq(x) = −Lfσ(x)

Lgσ(x)
= 1 +

1

Q

(
x2

x1

)
(2.84)

The ideal sliding dynamics takes place when the control input is regarded
as a smooth input and the equivalent control ueq(x) is used on the system
dynamics. Of course this cannot be made in practice on a switched system.
If furthermore the system is assumed to be initially on the sliding manifold,
one ideally has x2(t) = X2. We have

ẋ1 =

(
1− X̄2

)
X̄2

Q

(
1

x1

)
+ 1 (2.85)

It will be shown that this dynamics has a unique equilibrium point which is
unstable. We show this fact via several approaches.

Via approximate linearization:
The linear incremental model ( or the tangent linearization model) of the

normalized average current is given, after defining the incremental variables
as: x1δ = x1 −X1, x2δ = x2 −X2, by :

d

dτ
x1δ =

[
Q(

X̄2 − 1
)
X̄2

]
x1δ (2.86)

which has an unstable equilibrium point due to the fact that the characteristic
polynomial of the linearized dynamics exhibits a zero in the right-hand side
of the complex plane. This is established from the fact that X̄2 < 0.

Via Lyapunov stability theory
We rewrite the zero dynamics corresponding to σ(x) = 0 as:

dx1

dτ
=

1

x1

(
x1 −

(
X̄2 − 1

) X̄2

Q

)
(2.87)

and consider the positive definite Lyapunov function in the x1 space

V =
1

2

(
x1 −

(
X̄2 − 1

) X̄2

Q

)2

(2.88)

By virtue of the fact that x1 > 0, the time derivative of this function is positive
semi-definite. Indeed,

V̇ =
1

x1

(
x1 −

(
X̄2 − 1

) X̄2

Q

)2

≥ 0 (2.89)

2.12.2 Indirect control

The alternative is then to use the sliding surface coordinate function a func-
tion which reproduces for the variable x1 the desired equilibrium current, in
correspondence with the desired average normalized voltage,
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σ(x) = x1 − X̄1 (2.90)

To specify this function we calculate the equilibrium point of the system
under ideal sliding conditions, writing the equilibrium current in terms of the
average equilibrium normalized output voltage

X̄1 = − (1− X̄2

) X̄2

Q
(2.91)

We, then, have

Lfσ(x) = x2, Lgσ(x) = 1− x2 (2.92)

The equivalent control is therefore given by

ueq(x) = − x2

1− x2
(2.93)

The ideal sliding dynamics corresponding to the zero value of the out-
put function σ(x), yielding x1 = X̄1, is, after some algebraic manipulations,
given by

ẋ2 = −x2 −X2

Q

[
1− x2 −X2

]
(2.94)

Note that the factor 1 − x2 −X2 is strictly positive due to the fact that
x2 < 0 and X2 < 0. It is easy to verify that the unique equilibrium point of
this zero dynamics, or ideal sliding dynamics, is asymptotically stable.

Indeed take as a Lyapunov function candidate the function

V(x2) =
1

2

(
x2 −X2

)2
(2.95)

which is globally strictly positive except at x2 = X2 where it is zero. The
time derivative of this function, along the trajectories of the zero dynamics is
given by

V̇(x2) = − 1

Q
(x2 −X2)

2
[
1− x2 −X2

]
(2.96)

This quantity is zero at x2 = X2 and strictly negative in the operating region
of the converter x2 < 0. The equilibrium point x2 = X2 is asymptotically
stable.

According to the developed theory, the sliding surface is reachable or ac-
cessible and the sliding motion is feasible due to internal stability reasons.
The switching policy which reaches the sliding surface and sustains the slid-
ing motion on this manifold is given by

u =

{
1 if (x1 − X̄1) < 0
0 if (x1 − X̄1) > 0

(2.97)
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2.12.3 Simulations

Taking as the converter parameters the following ones,

L = 20 [mH], C = 20 [μF ],

R = 30 [Ω], E = 15 [V ]

we obtain after normalization,

Q = 0.9487,
√
LC = 6.3246× 10−4 [s]

It is desired to control the average output voltage to the following desired
equilibrium value

Vd = −22.5 [V ]

The corresponding equilibrium current is just

Id = 1.875 [A]

Figure 2.6 depicts the sliding mode controlled responses of the buck-boost
converter from zero initial conditions. The inductor current grows initially
towards its desired value with a fixed position of the switch. Meanwhile he
capacitor voltage remains constant at the value zero. Once the sliding surface
is reached, the ideal sliding dynamics commands the output capacitor voltage
to negatively rise towards the desired constant value. The sliding mode is
sustained from there on while the switch characteristically exhibits “bang-
bang” behavior (of, theoretically, infinite frequency).
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Fig. 2.6. Sliding mode controlled responses of the buck-boost converter
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2.13 Sliding on a circle

The possibilities of sliding regime creation may be analyzed in the natural
state space of the system. The system, however, may be described using in-
convenient state coordinates. The sliding mode creation problem may be con-
siderably simplified in transformed coordinates that exploit the most salient
features of the system. The following example considers this issue.

Consider the following nonlinear system,

ẋ1 = x2 + x1(x
2
1 + x2

2 −R2)

ẋ2 = −x1 + x2(x
2
1 + x2

2 −R2)

where the control variable R > 0 takes one of two possible values R ∈ {R1, R2}
with R1 > R2. Let R

2 = (R2
1 + u(R2

2 −R2
1)), so that R = R1 when u = 0 and

R = R2 when u = 1. We first analyze the sliding mode creation problem in
the state space of cartesian coordinates (x1, x2). Then we proceed with the
same analysis using the more natural, polar coordinates: (ρ =

√
x2
1 + x2

2),
θ = arctan(x2/x1).

For u = 0, the system exhibits an unstable limit cycle consisting of a circle
of radius R1, centered at the origin of coordinates. Similarly, a second unstable
limit cycle is obtained when u is set to permanently adopt the value u = 1.

Suppose the control objective is to achieve a desired constant state vector
magnitude Rd i.e., it is desired to have: x2

1 + x2
2 = R2

d in finite time. The
sliding surface interpreting the control objective is given by

S = {(x1, x2) ∈ R
2 | σ(x) = x2

1 + x2
2 −R2

d = 0 } (2.98)

The vector fields involved are given by

f(x) =

[
x2 + x1(x

2
1 + x2

2 −R2
1)

−x1 + x2(x
2
1 + x2

2 −R2
1)

]
, g(x) =

[
−x1(R

2
2 −R2

1)

−x2(R
2
2 −R2

1)

]
(2.99)

In this case,

Lfσ(x) = 2(x2
1+x2

2−R2
1)(x

2
1+x2

2), Lgσ(x) = −2(x2
1+x2

2)(R
2
2−R2

1) (2.100)

Clearly Lfσ > 0 since R2 < R1. The equivalent control defined on the circle,
σ(x) = 0, or equivalently on, x2

1 + x2
2 = R2

d, is found to be given by

ueq = −Lfσ

Lgσ
=

(R2
d −R2

1)R
2
d

R2
d(R

2
2 −R2

1)
=

R2
1 −R2

d

R2
1 −R2

2

(2.101)

A sliding regime exists for those values of Rd such that

0 <
R2

1 −R2
d

R2
1 −R2

2

< 1 (2.102)
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which implies that R2
2 < R2

d < R2
1. A sliding regime is locally confined to exist

on the annular region: {(x1, x2) ∈ R
2 | R2

1 < x2
1 + x2

2 < R2
2}.

In polar coordinates the system is described by

ρ̇ = ρ(ρ2 −R2
1 − u(R2

2 −R2
1)), θ̇ = −1 (2.103)

The sliding surface coordinate function is now linear in ρ, given by σ(ρ, θ) =
ρ − Rd. The problem becomes a one-dimensional problem. The vector fields
involved are f(ρ, θ) = ρ(ρ2 −R2

1)∂/∂ρ, g(ρθ) = −ρ(R2
2 −R2

1)∂/∂ρ. The quan-
tities Lfσ and Lgσ are computed as

Lfσ = Rd(R
2
d −R2

1) Lgσ = −Rd(R
2
2 −R2

1)) (2.104)

The equivalent control is

ueq =
R2

d −R2
1

R2
2 −R2

1

=
R2

1 −R2
d

R2
1 −R2

2

(2.105)

just the same as before.

2.14 Trajectory tracking

When the control objective, in a switched system of the form ẋ = f(x)+g(x)u,
x ∈ R

n, u ∈ {0, 1} is one of having a certain variable in the system to track a
given smooth reference trajectory, the control objective is usually synthesized
in terms of a time-varying sliding surface, i.e. one which explicitly depends
on time.

S(t) = {x ∈ R
n | σ(x, t) = 0, ∀ t} (2.106)

Consider the space of vectors of the form zT = [xT , t]. The system equation
adopts then the following form

ż =
d

dt

[
x
t

]
=

[
f(x)
1

]
+

[
g(x)
0

]
u = f̃(z) + g̃(z)u (2.107)

Note that Lg̃σ(z) = Lgσ(x, t) and Lf̃σ(z) = Lfσ(x, t) +
∂σ(x,t)

∂t .
The equivalent control on σ(z) = 0 is then found to be

ueq(x, t) = −Lfσ(x, t)

Lgσ(x, t)
−
[

1

Lgσ(x, t)

]
∂σ(x, t)

∂t
(2.108)
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The sliding mode existence condition 0 < ueq(x, t) < 1 is specified by
taking the worst possible case on the values that the partial time derivative
of σ(x, t) may take

sup
(t,x∈S)

∣∣∣∣
[

1

Lgσ(x, t)

]
∂σ(x, t)

∂t

∣∣∣∣ < −Lfσ(x, t)

Lgσ(x, t)

< 1− sup
(t,x∈S)

∣∣∣∣
[

1

Lgσ(x, t)

]
∂σ(x, t)

∂t

∣∣∣∣
Generally speaking, the region of existence of a sliding mode depends on

the magnitude of the velocity of variation of the sliding surface coordinate
function. The faster this variation, the smaller the region of existence. The
time dependence of the sliding surface coordinate function, introduced by
the trajectory tracking control objective, is translated into a limitation of
the region of existence. Thus, the variation of the trajectory to be tracked
must be limited to smaller values in order to guarantee the existence of the
sliding regime. This is an indication of a frequency bandwidth of the controlled
system.

Example 2.12. Consider the normalized model of a buck converter

ẋ1 = −x2 + u, ẋ2 = x1 − x2

Q
, y = x2 (2.109)

In customary applications, the converter is a step down converter reducing
the constant voltage value of the source (here normalized to the value 1) to
a constant fraction voltage at the output. Consider the trajectory tracking
problem where a reference output voltage trajectory is given in the form of a
biased sinusoidal signal centered around the constant voltage x2 = 0.5, with
amplitude, A, and normalized angular frequency ω:

y∗(τ) =
1

2
(1 +A sin(ωτ)) (2.110)

Naturally, the corresponding nominal reference signal for the current x1 is
just obtained from the second equation of the converter as

x∗
1(τ) = ẏ∗(τ) +

1

Q
y∗(τ) (2.111)

the nominal control input u∗(t) is given, from the first equation of the con-
verter, by

u∗(τ) = ẋ∗
1(τ) + y∗(τ) = ÿ∗(τ) +

1

Q
ẏ∗(τ) + y∗(τ) (2.112)

It is not difficult to establish the relation between the equivalent control and
the nominal control input in a suitable sliding mode scheme. They are equal in
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steady state. For instance, if an indirect sliding mode approach is adopted, a
suitable time-varying sliding surface may be proposed in terms of the nominal
current signal

σ(x1, τ) = x1 − x∗
1(τ) = x1 − (ẏ∗(τ) +

1

Q
y∗(τ)) (2.113)

Hence,

σ̇ = −x2 + u− (ÿ∗(τ) +
1

Q
ẏ∗(τ)) (2.114)

Under ideal sliding conditions σ = 0, σ̇ = 0, one has

ueq(τ) = ÿ∗(τ) +
1

Q
ẏ∗(τ) + y∗(τ) (2.115)

The existence condition: 0 < ueq(τ) < 1 actually represents the bandwidth
limitations. Indeed, for the specific desired signal y∗(τ), one finds

0 <
1

2
+

A

2

[
(1− ω2) sin(ωτ) +

ω

Q
cos(ωτ)

]
< 1 (2.116)

Letting φ = arctan(ω/(Q(1− ω2))), the above restriction is equivalent to

− 1 < A

√
(1− ω2)2 + (

ω

Q
)2 sin(ωt+ φ) < 1 (2.117)

i.e., the following amplitude frequency relation is obtained:

∣∣∣∣A
√

(1− ω2)2 + (
ω

Q
)2
∣∣∣∣ < 1 (2.118)

Notice that a value of A larger than 1 violates the existence condition. Given
a desired normalized frequency ω, the amplitude A is necessarily restricted by
the relation

A <
1√

(1− ω2)2 + ( ωQ )2
(2.119)

Conversely, given a desired value for A, such that A < 1, the range of nor-
malized frequencies, for which a sliding regime exists and output reference
trajectory tracking is feasible, is limited by the corresponding relation,

(1− ω2)2 + (
ω

Q
)2 <

1

A2
(2.120)

Exercise 2.13. In the previously considered buck converter example, a
time-varying sliding surface coordinate function: σ(x2, x1, τ), inducing an
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asymptotic, exponential closed loop convergence of the converter voltage to
the desired output voltage signal, may be prescribed as follows:

σ =

(
x1 − x2

Q
− Aω

2
cos(ωτ)

)
+ λ

(
x2 − 1

2
(1 +A sin(ωτ))

)
(2.121)

with λ > 0. Show that, in steady state, the bandwidth limitation is precisely
the same as the one derived in the example.

Explicit determination of the frequency bandwidth limitations in the case
of nonlinear systems is particularly complex and not straightforward even
for the simplest of examples. Graphical assessment is always a much simpler
route.

Exercise 2.14. Consider the liquid height evolution on a tank of area A with
liquid losses at the bottom and filed either at a constant rate, U [m3/s] or 0.

ẋ = − c

A

√
x+

(
U

A

)
u, u ∈ {0, 1} (2.122)

The sliding surface coordinate function σ = x−H∗(t) is used, along with the
switching policy u = (1/2)(1− signσ). The equivalent control is given by

ueq =

[
c

U

√
H∗(t) +

A

U
Ḣ∗(t)

]
(2.123)

For H∗(t) = H + α sin(ωt) with H > α > 0, assess amplitude-frequency
tradeoffs in the space (α, ω), for the existence of a sliding regime that lets the
control liquid height, x, track the biased sinusoidal signal H∗(t).

2.15 Invariance conditions under matched perturbations

One of the main features of the sliding regimes is their robustness with respect
to certain external perturbation inputs affecting the system behavior. In this
section, we explore what conditions should be satisfied for such perturbations
to be automatically rejected from the ideal sliding dynamics.

2.15.1 Drift field perturbation

Consider the nonlinear additively perturbed system: ẋ = f(x)+g(x)u+ξ(x, t),
controlled by a single switch and let S be a smooth sliding surface over which
we may create a local sliding regime in spite of the presence of the time-
varying perturbation. The perturbation field ξ(x, t) is an unknown function
of the state and time and it is assumed that its values are uniformly bounded.

Suppose then that it is possible to create a sliding regime over the sliding
surface, S = {x | σ(x) = 0}, in spite of the presence of the perturbation
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field ξ(x, t). The existence of such a sliding regime implies the existence of
an equivalent control, ueq(x, t), which ideally, locally, sustains the state tra-
jectories on the smooth manifold S. The equivalent control is, necessarily, a
function of the unknown perturbation field ξ(x, t) and it is given by

ueq(x, t) = −Lfσ(x) + Lξσ(x)

Lgσ(x)
(2.124)

The ideal sliding dynamics, with x ∈ S, is then obtained to be

ẋ = f(x)− g(x)
Lfσ(x) + Lξσ(x)

Lgσ(x)
+ ξ(x, t)

=

[
I − 1

Lgσ(x)
g(x)

∂σ

∂xT

]
f(x)

+

[
I − 1

Lgσ(x)
g(x)

∂σ

∂xT

]
ξ(x, t) (2.125)

The projection operator M(x) over the tangent space to S, along the span
of g(x), acts over the addition of the vector fields: f(x)+ξ(x, t), in the creation
of the local sliding regime on S.

Clearly, the ideal sliding dynamics is totally independent of the influence
of the perturbation vector ξ(x, t) if the vector field ξ(x, t) is in the null space
of M(x) for all t, i.e.,

[
I − 1

Lgσ(x)
g(x)

∂σ

∂xT

]
ξ(x, t) = 0 (2.126)

Recall that the null space of M(x) coincides with the span g(x). In other
words, the sliding motions are invariant with respect to the perturbation if
the vector field ξ(x, t) is in the span of g(x) for all t, i.e. there exists a nonzero
scalar function α(x, t) such that

ξ(x, t) = α(x, t)g(x) (2.127)

We have then that M(x)ξ(x, t) = α(x, t)M(x)g(x) = 0. The perturbation
field ξ(x, t) does not affect the ideal sliding dynamics as long as it is uniformly
aligned with the control vector field g(x). Such perturbations receive the name
of matched perturbations and the previous condition is known as the matching
condition .

We can also establish that this alignment, or matching, condition is a
necessary condition to have the ideal sliding motions completely independent
of the perturbation field ξ(x, t). Indeed, let ξ(x, t) be such that

[
I − 1

Lgσ(x)
g(x)

∂σ

∂xT

]
ξ(x, t) = 0 (2.128)
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Then we can write ξ(x, t) in the following manner

ξ(x, t) =
Lξσ(x)

Lgσ(x)
g(x) (2.129)

i.e. ξ(x, t) is in the span of g(x).
We have thus demonstrated the validity of the following theorem:

Theorem 2.15. Let the drift field perturbed system: ẋ = f(x)+g(x)u+ξ(x, t),
with ξ(x, t) being a uniformly bounded time-varying vector field, exhibit a local,
or global, sliding motion on the sliding surface S = {x | σ(x) = 0}. Then, the
ideal sliding dynamics is locally, or globally, uniformly invariant with respect
to ξ(x, t) if and only if

ξ(x, t) ∈ span g(x), for all t (2.130)

Example 2.16. Consider the normalized description of a pendulum system,
including an external torque perturbation input of the Coulomb friction type.

θ̈ = − sin θ + ρ(2u− 1)− ν sign θ̇ (2.131)

where ν > 0 is the unknown amplitude of the perturbation torque term de-
noted by τ .

The state space description of the system is readily obtained by defining
the state variables as the phase variables as follows: x1 = θ, x2 = θ̇. We have

d

dt

[
x1

x2

]
=

[
x2

− sinx1 − ρ

]
+

[
0
2ρ

]
u+

[
0

−ν sign x2

]
(2.132)

The matching condition is clearly satisfied in this case, as the vector field
characterizing the perturbation torque is aligned with the control input field.
In our notation we have

ξ(x) =

[
0

ν sign x2

]
, g(x) = g =

[
0
2ρ

]
(2.133)

A sliding surface coordinate function σ(x) is given by our objective of lineariz-
ing the ideal sliding motions towards a desired constant equilibrium, x1 = Θ,
on the sliding surface S = {x ∈ R

2 | σ(x) = 0}. We have

σ(x) = x2 + λ(x1 −Θ), λ > 0 (2.134)

The reachability of the sliding surface is now clearly affected by the un-
known perturbation torque amplitude in the following manner:

σ̇ = − sinx1 + ρ(2u− 1)− ν sign x2 + λx2 (2.135)

The equivalent control is given by an expression that includes the unknown
perturbation torque input. Indeed,
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ueq(x) =
1

2
+

1

2ρ
[sinx1 + ν sign x2 − λx2] (2.136)

The ideal sliding dynamics, given by ẋ1 = −λ(x1−Θ) is clearly unaffected by
the torque perturbation input. The sliding mode existence conditions, 0 <
ueq < 1, must be assessed under the worst possible circumstances of influence
of the unknown friction torque summand. A sliding regime is guaranteed to
exist in the region delimited by

− ρ+ ν < sinx1 − λx2 < ρ− ν (2.137)

which is to be contrasted against the region defined by the existence conditions
when no perturbation exists, which is recalled to be

− ρ < sinx1 − λx2 < ρ (2.138)

Evidently, the region of existence in the phase space for the perturbed system
is diminished with respect to that of the unperturbed case. Assuming ρ > ν,
i.e., the available torque input is capable of overcoming the friction effects,
then a sliding motion exists which drives the system towards the desired equi-
librium point, x1 = Θ, x2 = 0. In the simulations we have set Θ = 2.5 rad
(Fig. 2.7).

Example 2.17. The most typical example where the matching condition is not
satisfied, and, hence, the ideal sliding motions cannot be made independent of
the perturbation input τL, is represented by the classical DC motor system.

Consider the following model of a dc motor subject to unknown load torque
perturbations
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u(t) 

.

x (t)= n sign(x) 
.

Fig. 2.7. Sliding mode control of pendulum perturbed by unknown Coulomb friction
torque
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L
di

dt
= u−Ri−Kω

J
dω

dt
= Ki− τL (2.139)

where i is the armature circuit current, ω is the angular velocity of the motor
shaft, u, the control input is representing the armature circuit input voltage,
and τL is the load torque perturbation input, of unknown nature.

The state space description of the system is readily obtained by letting
x1 = i, x2 = ω. We have

d

dt

[
x1

x2

]
=

[−R
Lx1 − K

L x2
K
J x1

]
+

[
1
L
0

]
u+

[
0

− 1
J

]
τL (2.140)

The matching condition is, evidently, not satisfied.
A sliding surface that reflects our desire to achieve a constant angular

velocity is given by

σ(x) = [Kx1 + λJ(x2 −Ω)] , λ > 0 (2.141)

This choice, however, leads to the ideal sliding motions for the angular velocity
which depend on the unknown input torque

ω̇ = −λ(ω −Ω)− τL
J

(2.142)

For constant load torques, the ideal equilibrium point depends on τL since,
on the sliding surface, ω → Ω − τL/(λJ).

2.15.2 Control field perturbations

We consider now control field perturbed switched systems of the form,

ẋ = f(x) + [g(x) + ξ(x, t)]u (2.143)

We find a strikingly similar result to that of the previous theorem.

Theorem 2.18. Consider the perturbed switched system ẋ = f(x) + [g(x) +
ξ(x, t)]u, with ξ(x, t) being an uniformly bounded, smooth, time-varying vector
field. Suppose that the controlled system exhibits a local, or global, sliding
regime on the sliding surface S = {x ∈ R

n | σ(x) = 0}. Then, the ideal sliding
dynamics is independent of ξ(x, t), if and only if, locally or globally,

ξ(x, t) ∈ span g(x), for all t (2.144)

The ideal sliding dynamics associated with S is given now by the expression

ẋ =

[
I − 1

Lg+ξσ
(g(x) + ξ(x, t))

∂σ

∂xT

]
f(x) (2.145)
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Let ξ(x, t) ∈ span g(x), then, there exists a non zero smooth bounded
scalar signal α(x, t) such that ξ(x, t) = α(x, t)g(x). The ideal sliding dynamics
turns out to be given by

ẋ =

[
I − (1 + α)

L(1+α)gσ
g(x)

∂σ

∂xT

]
f(x) =

[
I − 1

Lgσ
g(x)

∂σ

∂xT

]
f(x) (2.146)

i.e., the ideal sliding dynamics is completely independent of the function
α(x, t) and, hence, it is independent of ξ(x, t).

To prove necessity, suppose that the time-varying control perturbation
field ξ(x, t) is such that the ideal sliding dynamics is independent of it, i.e.,

ẋ =

[
I − 1

Lg+ξσ
(g(x) + ξ(x, t))

∂σ

∂xT

]
f(x) =

[
I − 1

Lgσ
g(x)

∂σ

∂xT

]
f(x)

We are led to the following equality

ξ(x, t) =

[
Lξσ(x)

Lgσ(x)

]
g(x) (2.147)

i.e., ξ(x, t) is uniformly contained in the span of g(x).

2.15.3 Control and drift fields perturbations

Consider now the following switched regulated perturbed system

ẋ = f(x) + [g(x) + ξ(x, t)]u+ ζ(x, t) (2.148)

and assume there exists a local sliding regime on the sliding surface, S =
{x | σ(x) = 0}, in spite of the presence of the uniformly bounded, but other-
wise unknown, smooth, time-varying vector fields ξ(x, t) and ζ(x, t).

It is easy to see that the invariance of the ideal sliding dynamics, with
respect to the perturbation fields ξ(x, t) and ζ(x, t), is verified if and only if
the following matching conditions are satisfied,

ζ(x, t) ∈ span g(x), ξ(x, t) ∈ span g(x), for all t (2.149)

Using Theorem 2.15, we find that the ideal sliding motions on S are unaf-
fected by ζ(x, t) if and only if

ζ(x, t) ∈ span [g(x) + ξ(x, t)] (2.150)
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Thus, the system is now, for some bounded scalar function α(x, t), of the form

ẋ = f(x) + [g(x) + ξ(x, t)]u+ α(x, t)[g(x) + ξ(x, t)] (2.151)

and the ideal sliding dynamics on S is independent of α(x, t). In other words,
the ideal sliding motions are identically described by the ideal sliding motions
of the following system,

ẋ = f(x) + [g(x) + ξ(x, t)]u (2.152)

It follows, using Theorem 2.18, that the ideal sliding dynamics of the previous
system, on the manifold S, is invariant with respect to the perturbation ξ(x, t)
if and only if

ξ(x, t) ∈ span g(x) for all t. (2.153)

Then, under this condition we have that also ζ(x, t) ∈ span g(x) for all t.

2.15.4 The equivalent control of a perturbed system

We examine a particularly simple issue related to the interpretation of the
ideal sliding motions invariance condition with respect to a matched pertur-
bation field in a drift vector field perturbed system.

Consider the switched nonlinear system (f, g, σ0) with σ0(x) a given slid-
ing surface coordinate function on which a local sliding regime exists for an
appropriate switching policy u ∈ {0, 1}. Denote the equivalent control by
u0
eq(x) = −Lfσ0/Lfσ0. Clearly 0 < u0

eq(x) < 1 in the region of existence of
the sliding regime. Let us address such an equivalent control, the nominal
equivalent control.

Consider now the perturbed system

ẋ = f(x) + g(x)u+ ξ(x, t), ξ(x, t) = g(x)uh(x, t) (2.154)

i.e., ξ(x, t) is a time-varying vector field which satisfies the matching condition
for all t. uh(x, t) plays the role of a bounded disturbance control input given by
an unknown state feedback law. We assume boundedness of the disturbance
input, i.e., a strictly positive scalar constant, Kh, exists, such that |uh(x, t)| ≤
Kh, for all t and x. Assume, also, that the transversal condition, Lgσ0 > 0,
is locally valid on a region containing the region of existence of the sliding
regime.

Suppose a sliding regime is accomplished by the switching law u = 1
2 (1−

signσ0(x)) in spite of the presence of the disturbance field ξ(x, t).
From the invariance condition, σ̇0 = 0, on σ0 = 0 we have

σ̇0(x) = Lfσ0 + Lgσ0u+ Lgσ0uh(x, t) = 0. (2.155)
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The equivalent control is found to be

ueq = −Lfσ0

Lgσ0
− uh(x, t) = u0

eq(x)− uh(x, t) (2.156)

The equivalent control ueq exhibits a counteracting effect, −uh(x, t), to the
unknown disturbance input in the form of an additive input to the nomi-
nal equivalent control annihilating the effects of the disturbance input. This
explains the origin of the robustness of the sliding regime with respect to
matched perturbation inputs.

However, the region of existence of a sliding regime on the sliding surface,
S = {x|σ0(x) = 0}, is clearly reduced thanks to the possible adverse effect
of the unknown disturbance input. Notice that we still have: 0 < ueq(x) < 1
which, in terms of the nominal equivalent control, u0

eq(x), reads:

Kh < u0
eq(x) < 1−Kh (2.157)

The region of existence of a sliding regime, on S, is thus reduced by the pres-
ence of the bounded disturbance input. Necessarily,Kh < 0.5, since, otherwise,
the region of existence of a sliding regime may become empty. Disturbances,
even if matched, may prevent the existence of a sliding regime on a region
of the sliding surface where one may have existed when no perturbation was
present.

2.16 Sliding surface design

Before discussing some general aspects of sliding mode controller design in
multi-variable systems, we revisit some structural aspects of SISO systems
which may be generalized to the multi-variable case and, furthermore, pro-
vide a systematic procedure for sliding surface design in switched systems
whose natural output stabilization, or tracking, errors do not directly con-
form to appropriate sliding surfaces thanks to a lack of explicit dependence
on the control input of the sliding surface coordinate function first order time
derivative σ̇.

Consider the smooth SISO system

ẋ = f(x) + g(x)u, x ∈ R
n, u ∈ {0, 1}

y = h(x), y ∈ R

Notice that we now emphasize that y = h(x) is the measured output of the
system which needs to be zeroed in order to satisfy a control objective (output
stabilization errors and even output trajectory tracking errors can be handled
in a similar fashion). The generality to be addressed next assumes that the
first order time derivative of y may not explicitly depend on the control in-
put u. The output function h(x) is not per se a sliding surface coordinate
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function and, hence, the transversal condition, Lgh(x) 
= 0, may no longer be
locally valid for h(x). The above system is addressed as the triple (f, g, h). The
following considerations and definitions are based on the geometric approach
masterfully laid out and clearly explained in Isidori’s book [13].

Definition 2.19. Let r be a positive integer such that r ≤ n, where n is the
order of the system. We say the system (f, g, h) is relative degree r around a
point x0 ∈ R

n, if the following two conditions are satisfied

1) Lgh(x) = LgLfh(x) = · · · = LgL
r−2
f h(x) = 0,

∀x ∈ N (x0)

2) LgL
r−1
f h(x0) 
= 0

where N (x0) stands for an open neighborhood around the point x0.

The previous statement is completely equivalent to saying that the time
derivatives of the output function y = h(x), along the trajectories of the
controlled system do not exhibit an explicit dependence upon the control in-
put in the first r−1 time derivatives, computed around the point x0, but only
the r-th time derivative does exhibit such a dependence.

Indeed, the time derivatives of y, up to order r−1, may be seen to coincide
with a scalar functions of x alone;

y = h(x)

ẏ =
∂h

∂xT
ẋ = Lfh(x) + (Lgh(x))︸ ︷︷ ︸

=0

u = Lfh(x)

ÿ =
∂Lfh(x)

∂xT
ẋ = Lf (Lfh(x)) + Lg(Lfh(x))︸ ︷︷ ︸

=0

u

= L2
fh(x)

y(i) =
∂Li−1

f h(x)

∂xT
ẋ = Li

fh(x) + Lg(L
i−1
f h(x))︸ ︷︷ ︸
=0

u

= Li
fh(x)

...

y(r−1) = Lr−1
f h(x)

y(r) =
∂Lr−1

f h(x)

∂xT
ẋ = Lr

fh(x) + [LgL
r−1
f h(x)]u

The input-output, state dependent, relation

y(r) = Lr
fh(x) + (LgL

r−1
f h(x))u (2.158)
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serves as the basis for the sliding surface design inasmuch as driving y to 0 is
concerned (hence our surface specification procedure still has to resolve the
issue of having a convenient, stable, corresponding zero dynamics).

Consider therefore the sliding surface coordinate function, written in terms
of the output function time derivatives:

σ = y(r−1) + αr−2y
(r−2) + · · ·+ α0y (2.159)

Evidently, this specification can also be written in terms of the state x of the
system as the following nonlinear scalar function:

σ(x) = Lr−1
f h(x) + αr−2L

r−2
f h(x) + · · ·+ α1Lfh(x) + α0h(x) (2.160)

It should be clear why the choice of such σ(x) as the sliding surface coor-
dinate function.

The invariance condition, σ = 0, yields the following closed loop dynamics
for the output y

y(r−1) + αr−2y
(r−2) + · · ·+ α0y = 0 (2.161)

hence an appropriate choice of the parameter set {α0, · · · , αr−2} causes the
differential equation satisfied by the output y to exhibit the origin of the
subspace coordinatized by y, ẏ, · · · , yr−1 to be asymptotically exponentially
stable. This is achieved by setting the parameter set to conform a set of
Hurwitz coefficients.

To obtain the equivalent control, ueq(x), we compute σ̇, in terms of the
state variables, and obtain

σ̇(x) = Lr
fh(x) + (LgL

r−1
f h(x))u+

r−2∑
i=0

αiL
i+1
f h(x)

which on σ(x) = 0 yields, with Lr−1
f h(x) = −αr−2L

r−2
f h(x)− · · · − α0h(x)

σ̇(x) = Lr
fh(x) + (LgL

r−1
f h(x))ueq(x) +

r−2∑
i=0

(αi−1 − αiαr−2)L
i
fh(x) = 0

with α−1 = 0.
We have

ueq(x) = −Lr
fh(x) +

∑r−2
i=0 (αi−1 − αiαr−2)L

i
fh(x)

LgL
r−1
f h(x)
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Notice that from the definition of σ(x) and the assumption that the system
is relative degree r, we have

Lgσ(x) = LgL
r−1
f h(x)

Lfσ(x) = Lr
f + αr−2L

r−1
f h(x) + · · ·+ α0Lfh(x)

Hence, on σ(x) = 0 we have, as it is known to be true in general terms,

ueq(x) = −Lfσ(x)

Lgσ(x)

∣∣∣∣
σ=0

(2.162)

For switched systems, we may readily establish the switching policy for
local sliding surface reachability. Consider the product σσ̇,

σ(x)σ̇(x) = σ(x)Lr
fh(x) + σ(x)(LgL

r−1
f h(x))u+ σ(x)

[
r−2∑
i=0

αiL
i+1
f h(x)

]

The switching policy

u =

{
1 for σ(x)(LgL

r−1
f h(x)) < 0

0 for σ(x)(LgL
r−1
f h(x)) > 0

(2.163)

represents the feasible control actions geared towards obtaining a negative
value for the product σ(x)σ̇(x), along the trajectories of the state in the
immediate vicinity of σ(x) = 0. Clearly, the sliding motion is, at best, locally
valid.

2.17 Some further geometric aspects

Before establishing the ideal sliding dynamics corresponding with the condi-
tion h(x) = 0, reachable in an asymptotically exponential fashion, we establish
some classical formulae following [13]:

Consider the quantity

LfLgh(x)− LgLfh(x) (2.164)

commuting the compositions of the operators Lf and Lg. This expression is
clearly an expression involving iterations of directional derivatives and can be
regarded as a difference of “second order” directional derivative. The inter-
esting fact is that such an expression is a “first order” directional derivative
for some vector field arising from f(x) and g(x).
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We first write LfLgh explicitly as

LfLgh =
∂

∂xT

[
∂h

∂xT
g

]
f

= gT
∂2h

∂xT∂x
f +

∂h

∂xT

∂g

∂xT
f

and, clearly

LgLfh =
∂

∂xT

[
∂h

∂xT
f

]
g

= fT ∂2h

∂xT∂x
g +

∂h

∂xT

∂f

∂xT
g

In both expressions the first summands are identical since, being scalar
quantities, one is formally obtained from the other by transposing the triple
products and also the involved Hessian matrix is clearly symmetric. Hence,
only the second summands are involved in the difference:

LfLgh− LgLfh =
∂h

∂xT

∂g

∂xT
f − ∂h

∂xT

∂f

∂xT
g

=
∂h

∂xT

[
∂g

∂xT
f − ∂f

∂xT
g

]

We address the vector: [
∂g

∂xT
f − ∂f

∂xT
g

]
= [f, g] (2.165)

as the Lie bracket of f and g and denote it by either [f, g] or by the operator
adfg.

We have then that

LfLgh− LgLfh =
∂h

∂xT
[f, g] = L[f,g]h = Ladfgh (2.166)

The composite Lie bracket

[f, adfg] = [f, [f, g]] (2.167)

can be written as ad2fg. The motivation for this notation comes from,

[f, adfg] = [f, [f, g]] = adf (adfg) = ad2fg (2.168)

We can recursively establish that

[f, adj−1
f g] = adjfg, j = 1, 2, . . . (2.169)

with ad0fg = g.
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Note that

Lad2
fg
h = L[f,adfg]h = LfLadfgh− LadfgLfh

= Lf (LfLgh− LgLfh)

−LfLg(Lfh) + LgLf (Lfh)

= L2
fLgh− 2LfLgLfh+ LgL

2
fh

Note that if Lgh = 0 locally around x0 then from the equality

LfLgh− LgLfh = Ladfgh (2.170)

we have that
Ladfgh = −LgLfh (2.171)

and, therefore, if LgLfh = 0, then

Ladfgh = 0 (2.172)

Similarly, from the fact that Lgh = 0 and LgLfh = 0 it follows from the
equality

Lad2
fg
h = L2

fLgh− 2LfLgLfh+ LgL
2
fh (2.173)

that
Lad2

fg
h = LgL

2
fh (2.174)

and, therefore LgL
2
fh = 0 implies that Lad2

fg
h = 0.

Thus, the set of conditions Lgh = LgLfh = · · · = LgL
r−2
f h = 0 imply that

Lgh = Ladfgh = Lad2
fg
h = · · · = Ladr−2

f gh = 0 (2.175)

and the fact that LgL
r−1
f h 
= 0 implies that

Ladr−1
f gh 
= 0 (2.176)

The first set of conditions simply says that

∂h

∂xT

[
g, adfg, ad

2
fg, · · · , adr−2

f g
]
= 0 (2.177)

The set of vectors {g, adfg, . . . adr−2
f g} conforms a set of linearly indepen-

dent vectors. To verify this consider, contrary to what we want to prove that
there exists a linear combination of this set of vectors which renders the vector
zero as a result.

Let there exist a set of nonzero scalars {α0, · · ·αr−2} such that

α0g(x) + α1adfg(x) + · · ·+ αr−2ad
r−2
f g(x) = 0
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Take the Lie bracket of this linear combination of vector fields with the
vector field f(x) to obtain:

[
f, α0g(x) + · · ·+ αr−2ad

r−2
f g(x)

]
(2.178)

to obtain:
α0adfg + α1ad

2
fg + · · ·+ αr−2ad

r−1
f g = 0 (2.179)

Pre-multiplying the entire previous expression by the gradient of h(x), we
obtain

α0Ladfgh+ · · ·+ αr−3Ladr−2
f gh+ αr−2Ladr−1

f gh = αr−2Ladr−2
f gh = 0

Since Ladr−1
f gh 
= 0 around x0, it follows that, necessarily, αr−2 = 0. The

linear combination is then reduced in one summand and we have from the
previous expression

α0adfg + α1ad
2
fg + · · ·+ αr−3ad

r−2
f g = 0 (2.180)

Taking the Lie bracket with f and pre-multiplying again by ∂h/∂xT , we obtain
by virtue of the relative degree assumption:

αr−3Ladr−1
f gh = 0 (2.181)

from where it follows that αr−3 = 0. Continuing in this fashion we conclude
that all the constants are zero. This is a contradiction and the only linear
combination that renders the sum identically zero is the trivial linear combi-
nation.

The gradient vector of h simultaneously annihilates the set of independent
vector fields: {g, adfg,. . . ,adr−2

f g}. It is easy to see that this gradient also
annihilates the Lie bracket of any two vector fields in this collection. Indeed,
consider [adifg, ad

j
fh] for 0 ≤ i, j ≤ r − 2. We have

L[adi
fg,ad

j
fg]

h = Ladi
fg
(Ladj

fg
h)− Ladj

fg
(Ladi

fg
h)

= Ladi
fg
0− Ladj

fg
0 = 0

i.e.
∂h

∂xT

[
adifg, ad

j
fg
]
= 0 (2.182)

The collection of vectors

Rr−2 = {g, adfg, ad2fg, . . . , adr−3
f g, adr−2

f g} (2.183)

conforms an integrable distribution whose integral is the scalar function h.
The collection is also said to be an involutive distribution.



80 2 SISO sliding mode control

The vector adr−1
f g has a nonzero projection along the gradient vector

dh(x), i.e.,

Ladr−1
f gh =

〈
dh, adr−1

f g
〉
= b(x) 
= 0 (2.184)

Since the co-vector dh (or the gradient ∂h/∂xT ) annihilates all the vectors in
the distribution Rr−2, then the vector adr−1

f g cannot be in the span of this

collection of vectors. In other words, adr−1
f g is a locally linearly independent

of the rest of vector fields in the distribution Rr−2 around the point x0

The set of vectors

{g, adfg, ad2fg, · · · , adr−2
f g, adr−1

f g} (2.185)

is a set of linearly independent vectors locally around x0. Arranged as an n×r
matrix the set of column vectors constitutes a locally rank r matrix,

[
g, adfg, ad

2
fg, · · · , adr−1

f g
]

(2.186)

We may conclude this part by saying that the system (f, g, h) has relative
degree r if and only if the following two conditions are satisfied:

1. {g, adfg, · · · , adr−2
f g} is an involutive distribution

2. {g, adfg, · · · , adr−2
f g, adr−1

f g} constitutes a set of linearly independent
vectors.

Using this result we examine the rank of the matrix product

⎡
⎢⎢⎢⎣

dh
dLfh

...
dLr−1

f h

⎤
⎥⎥⎥⎦ [g, adfg, · · · , adr−1

f g] (2.187)

We have, using the definition of b(x) previously introduced:

⎡
⎢⎢⎢⎣

dh
dLfh

...
dLr−1

f h

⎤
⎥⎥⎥⎦ [g, adfg, · · · , adr−1

f g] =

⎡
⎢⎢⎢⎣

0 0 · · · 0 b(x)
0 0 · · · b(x) �
...

...
. . .

...
...

b(x) � · · · � �

⎤
⎥⎥⎥⎦ (2.188)

Since the rank of the product is r, due to its triangular structure, and nonzero
character of the anti-diagonal elements, it follows that

rank

⎡
⎢⎢⎢⎣

dh
dLfh

...
dLr−1

f h

⎤
⎥⎥⎥⎦ = r (2.189)
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This implies, in turn, that the set of functions h, Lfh, · · · , Lr−1
f h are all func-

tionally independent and their row gradients conform a maximum rank, r,
matrix. The map

Φr(x) =

⎡
⎢⎣

h(x)
...

Lr−1
f h(x)

⎤
⎥⎦ =

⎡
⎢⎣
φ1(x)

...
φr(x)

⎤
⎥⎦ (2.190)

is, therefore, full rank r.
Let φr+1(x), φr+2(x), · · · , φn(x) be a set of locally functionally indepen-

dent scalar functions (their gradient row vectors are all linearly independent
around x0) so that the set of co-vector fields {dφ1, · · · , dφr, dφr+1, · · · , dφn}
are locally linearly independent.

Under this construction, the map

z = Φ(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1(x)
φ2(x)

...
φr(x)

φr+1(x)
...

φn(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h(x)
Lfh(x)

...
Lr−1
f h(x)

φr+1(x)
...

φn(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.191)

is a locally full rank, n, map, which qualifies as a locally invertible state
coordinate transformation, z = Φ(x). Hence, uniquely, and locally around x0,
x = Φ−1(z).

The transformed state coordinates ξ = [z1, · · · , zr]T = [ξ1, · · · , ξr], satisfy:

ż1 = Lfh(x) = z2

ż2 = L2
fh(x) = z3

...

żr−1 = Lr−1
f h(x) = zr

żr = Lr
fh(Φ

−1(z)) + [LgL
r−1
f h(Φ(z))]u

while the remaining coordinates η = [zr+1, · · · , zn]T do not exhibit any partic-
ularly special structure in their time derivative, except for the fact of, possibly,
being linear in u. i.e.

η̇ = q(z) + p(z)u = q(ξ, η) + p(ξ, η)u (2.192)
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We, therefore, have that the transformed system has the following struc-
ture in ξ and η coordinates,

ξ̇1 = ξ2

ξ̇2 = ξ3
...

ξ̇r−1 = ξr

ξ̇r = Lr
fh(Φ

−1(ξ, η)) + [LgL
r−1
f h(Φ(ξ, η))]u

η̇ = q(ξ, η) + p(ξ, η)u

y = ξ1

We can also choose the coordinate functions η = {φr+1(x), · · · , φn(x)} in
such a manner that, locally around x0, Lgφj(x) = 0 for j = r + 1, · · · , n, i.e.,
such that any control input influence is blocked from the last n−r transformed
coordinates. In such a case, the transformed system has the simpler structure

ξ̇1 = ξ2

ξ̇2 = ξ3
...

ξ̇r−1 = ξr

ξ̇r = Lr
fh(Φ

−1(ξ, η)) + [LgL
r−1
f h(Φ−1(ξ, η))]u

η̇ = q(ξ, η)

y = ξ1

which is addressed as Isidori’s canonical form (see [13]).
Let y and its first r time derivatives be identically zero on an open interval

of time. The dynamics corresponding to such a (possibly forced) condition is
evidently ruled by the nonlinear equation:

η̇ = q(0, η) = θ(η) (2.193)

Let η = η be an isolated equilibrium point for the above uncontrolled dynam-
ics. We say that the system output y is locally minimum phase at the given
equilibrium point, η, if the trajectories of the above differential equation lo-
cally converge towards the equilibrium point. In other words, locally around
the given equilibrium point, the linearized dynamics with ηδ = η − η:

η̇δ =
∂θ

∂ηT

∣∣∣∣
η=η

ηδ (2.194)



2.17 Some further geometric aspects 83

has all its eigenvalues located in the left half of the complex plane. If, on the
other hand, the given local equilibrium point is unstable, then the system
output is said to be locally non-minimum phase at such an equilibrium point.

In matrix notation the system exhibits the following structure:

ξ̇ = Aξ + ψ(ξ, η) + ρ(ξ, η)u, η̇ = q(ξ, η), y = cT ξ (2.195)

with

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦
, ψ(z) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

Lr
fh(Φ

−1(z))

⎤
⎥⎥⎥⎥⎥⎦
, ρ(z) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

LgL
r−1
f h(Φ(z))

⎤
⎥⎥⎥⎥⎥⎦
,

(2.196)

cT =
[
1 0 · · · 0 ] (2.197)

As before, we let a(z) = Lr
fh(Φ

−1(z)) and b(z) = LgL
r−1
f h(Φ(z))

The previously proposed sliding surface coordinate can now be expressed
as a transformed linear surface in terms of the coordinates ξ,

σ(ξ) = ξr + αr−2ξr−1 + · · ·+ α0ξ1 (2.198)

On σ = 0, the transformed closed loop system is linear and governed by:

d

dt

⎡
⎢⎢⎢⎣

ξ1
ξ2
...

ξr−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−α0 −α1 −α3 · · · −αr−2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ξ1
ξ2
...

ξr−1

⎤
⎥⎥⎥⎦ (2.199)

and, on σ = 0, the zero dynamics corresponding to the asymptotic exponential
convergence to zero of the output y = ξ1 and of its first r time derivatives, is
represented by the following nonlinear dynamics.

η̇ = q(0, η) = θ(η) (2.200)

It is clear that, in general, it may not be entirely trivial to assess the local
stability of the zero dynamics associated with the n − r dimensional system
characterized by the reduced vector field θ(η) in transformed coordinates.
The fundamental limitation is that, as it was previously seen in some DC
to DC converter examples, intuitively natural output errors may indeed lead
to closed loop system instability due to the non-minimum phase character of
the chosen output. There are, however, instances where the instability of the
nonzero dynamics can be easily cut-off.

It should also be clear that for switched systems where u ∈ {0, 1}, or any
other finite set, the creation of a sliding motion on a given sliding surface may
not be possible at all, from arbitrary initial conditions.
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2.18 A soft landing example

Consider the model of a thrusted vehicle attempting a soft landing on a planet
characterized by gravity acceleration g. The dynamics of the vehicle indeed
corresponds to that of a switched system when regarded as controlled by a
motor which can be turned on and off.

ẋ1 = x2

ẋ2 = g −
(
αW

x3

)
u

ẋ3 = −Wu

The coordinate x1 represents the height to the ground, measured negatively
from the zero level at the ground. x2 is the corresponding velocity which is
positive when the vehicle goes downwards and x3 is the total mass of the
spacecraft including the mass fuel that is spent when u = 1, and saved when
u = 0. The thrust spends W Kg/s of fuel mass when the motor is “on.”

It is desired to softly approach a small height H < 0, typically 1 m, above
the ground and hover over it for a while until a safe landing is attained by
switching the motor off, and letting the spacecraft to land under a free fall
condition from the small height. Clearly, an output error naturally associated
with the system operation is represented by y = x−H.

Consider the following invertible state coordinate transformation

z1 = x1

z2 = x2

z3 = x2 − α lnx3

x1 = z1
x2 = z2
x3 = exp

(
z2−z3

α

) (2.201)

The Isidori’s canonical form of the system is just

ż1 = z2

ż2 = g −Wα exp

(
z3 − z2

α

)
u

ż3 = g

Clearly, the output y = z1 −H is a non-minimum phase output, since the
variable z3 is unstable and grows without limit. This instability causes the
steady state mass behavior to evolve as

x3 = exp(−z3/α) (2.202)

i.e., the sustained hovering depletes the fuel mass in a finite time.
Naturally, the motor may be shut off much before the residual fuel mass,

needed for safely returning to the mother ship, is depleted. The mass remains
constant from thereon and the short free fall landing is executed.
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In this example, a natural sliding surface coordinate is clearly provided by

σ = z2 + λ(z1 −H), λ > 0 (2.203)

which causes a desired exponentially stable closed loop dynamics:

ż1 = −λ(z1 −H), z1 → H (2.204)

The time derivative of the sliding surface coordinate function σ is just

σ̇ = g − αW exp

(
z3 − z2

α

)
u+ λz2 (2.205)

and the switching policy is clearly given by

u =
1

2
(1 + sign (σ)) (2.206)

The equivalent control is, in this case, obtained as

ueq(z) =

(
g − λ2(z1 −H)

)
αW

exp

(
−λ(z1 −H) + z3

α

)
(2.207)

As the hovering altitude is reached, z1 → H while z3 is growing. The equiva-
lent control tends towards the value:

ueq →
( g

αW

)
e
−z3

α (2.208)

The equivalent control ultimately tends to the constant value g/(αW ). The
non-minimum phase behavior is stopped by shutting off the main thruster of
the landing vehicle.

Exercise 2.20. The following are the nonlinear equations of an orbiting satel-
lite:

ẋ1 = x2

ẋ2 = x1x
2
4 −

k

x2
1

ẋ3 = x4

ẋ4 = −2x2x4

x1
+

(
1

Mx2
1

)
u

where x1 is the distance r from the center of the earth, x2 is the corresponding
radial velocity, x3 = α is the angular displacement with respect to an arbitrary
fixed direction. x4 is the corresponding angular velocity. M is the mass of the
satellite and k is the gravitational constant. The control u is the tangential
thrust force acting on the satellite. Design a controller that stabilizes the
system around an orbit characterized by x1 = R, x3 = ωt, x4 = ω with
u ∈ {−W, 0,+W}. Assume ω2 = k/R3
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2.19 The exactly linearizable case

Clearly, when the relative degree of the system (f, g, h), at x0, equals the
dimension, n, of the state, we have

Lgh(x) = LgLfh(x) = LgL
n−2
f h(x) = 0, x ∈ N (x0)

and
LgL

n−1
f h(x0) 
= 0 (2.209)

In this case, the equivalent conditions yield (see Isidori [13])

1. The distribution {g, adfg, · · · , adn−2
f g} is involutive:

2. The set of vector fields:

{g, adfg, · · · , adn−2
f g, adn−1

f g}
is linearly independent.

The full rank (invertible) state coordinate transformation map that ex-
hibits the integration structure between the input and the output of the sys-
tem is just given by

z = ξ = Φ(x) =

⎡
⎢⎢⎢⎣

h(x)
Lfh(x)

...
Ln−1
f h(x)

⎤
⎥⎥⎥⎦ (2.210)

and the transformed system is now given by

ξ̇1 = ξ2

ξ̇2 = ξ3
...

ξ̇n−1 = ξn

ξ̇n = Ln
fh(Φ

−1(ξ)) + LgL
n−1
f h(Φ−1(ξ)) u

y = ξ1

Suppose the output y = h(x) = ξ1 represents a variable (or a stabilization
error) that needs to be zeroed. Since, in this case, the output y has maximal
relative degree, there is no need for concern about the corresponding zero
dynamics because, simply, it does not exist.

In this case, we call y a linearizing output or simply a flat output (See
Chapter 6).

A natural sliding surface may be designed on the basis of the transformed
system:

σ(ξ) = ξn + αn−2ξn−1 + · · ·+ α0ξ1 (2.211)
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yielding a closed loop system governed by

y(n−1) + αn−2y
(n−2) + · · ·+ α0y = 0 (2.212)

Back in original coordinates, we are synthesizing a nonlinear sliding surface
given by:

σ(x) = Ln−1
f h(x) + αn−2L

n−2
f h(x) + · · ·+ α0h(x) (2.213)

The switching policy may be determined from the expression of σσ̇ as
follows:

σ(x)σ̇(x) = σ(x)

[
Ln
fh(x) + LgL

n−1
f h(x)u+

n−2∑
i=0

αiL
i+1
f h(x)

]

We must choose

u =
1

2

(
1− sign

(
σLgL

n−1
f h(x)

))
(2.214)

On σ = 0, the equivalent control is, upon substitution of Ln−1
f h(x) by the

expression:
Ln−1
f h(x) = −αn−2L

n−2
f h(x)− · · · − α0h(x) (2.215)

given by

ueq(x) = −Ln
fh(x) +

∑n−2
j=0 (αi−1 − αiαn−2)L

i
fh(x)

LgL
n−1
f h(x)

(2.216)

with a−1 = 0.

Exercise 2.21. Consider the following normalized controlled version of the
famous Chua’s circuit

ẋ1 = p(−x1 + x2 − f(x1))

ẋ2 = x1 − x2 − x3

ẋ3 = −qx2 + u

y = x1

where p and q are known parameters and f(x1) is in fact a piecewise linear
function depicting the fact that the circuit locally exhibits a negative resis-
tance. We may, however, use a smooth polynomial function for f(x1) such as,
f(x1) = x1(1− x2

1).
Control the system from u ∈ {−A, 0, A} so as to exhibit a sustained sinu-

soidal output signal with constant amplitude and fixed frequency. Determine
a convenient value for A
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Delta-Sigma Modulation

3.1 Introduction

Delta modulation was actively developed for communication purposes in
the sixties and seventies. It has also had applications in consumer audio
equipment, industrial electronics devices, and precision measurement devices
(see Jarman [14]). It consisted in an underlying analog-to-fixed sampling
frequency pulse-width-modulation encoding transformation of the signal to
be transmitted. Delta modulation was actually used for voice encoding and
transmission in the first manned space flights. Its implications in analog to
digital conversion schemes were recognized early and a rapid development
followed in terms of suitable electronic circuits in countless applications of
early computer oriented control of processes. A complete classical account
of Delta-modulators, and their simplest modification: Delta-Sigma modula-
tors, extensively used in analog signal encoding, which never benefited from
the theoretical basis of sliding mode control, is found in the classical book
by Steele [29] and in the excellent book by Norsworthy et al. [17]. A rather
complete and informative survey on Delta-Sigma modulation, rich in tutorial
material and perspectives, may be found in Reiss [18].

We may address this variant of Delta modulation as the digital idealiza-
tion which has long served a magnificent purpose in Analog to Digital conver-
sion circuits in computer based signal processing and computer based control
of dynamic systems. However, a second idealization, the analog idealization
is still possible and it naturally contains interesting interpretations and a
reformulation of sliding mode control in a large class of switched systems.
It is our purpose to explore such idealization in the realm of devising feed-
back controllers for switched controlled systems, analyze their implications in
their underlying sliding motions, and explore the possibilities of using such
modulators as suitable translators of average, continuous, controller designs
to the, otherwise, restricted possibilities of switch controlled dynamics.

© Springer International Publishing Switzerland 2015
H. Sira-Ramı́rez, Sliding Mode Control, Control Engineering,
DOI 10.1007/978-3-319-17257-6 3
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In this second variant of Delta modulation, and, specifically, in its
associated Delta-Sigma modulation scheme, we first dispense of the finite,
periodic, sampling process, typical of the digital idealization. We allow this
sampling to approach an infinite sampling rate idealization i.e., continuous
signals will stay continuous. Secondly, the switch associated with the Delta
modulator is idealized to be an infinitely fast switch. These idealizations
allow us to quickly envision sliding regimes on a suitably extended state
space of the system where sliding motions occur under relatively mild ass-
umptions. The underlying closed loop dynamics is then interpreted as an
average zero dynamics corresponding with the sliding motion created on the
one-dimensional state extension. In essence, all continuous feedback controller
design techniques become readily available, and easily implementable, for the
control of switched systems. The theoretical implications demonstrate that
the Delta-Sigma modulation approach is largely equivalent to the recently
introduced integral sliding mode control approach, but far simpler and more
natural.

A warning: Delta-Sigma modulation is also called Sigma Delta modulation.
Here I quote a rather clever observation by U. Beis in his internet article [1]:

Delta Sigma Converters or Sigma Delta Converters? Mankind does
not seem to agree on one notation. Both notations are used equally
often when you search via Google. I decided to stay with that guy
who told he is living in the Mississippi Delta, so deltas mean some-
thing to him - and for him only the Sigma River may have a Sigma
Delta. . . good point. Later I found out that the original name “Delta
Sigma” was coined by the inventors Inose and Yasuda and “Sigma
Delta” is actually not correct. I was lucky. . .

3.2 Delta Modulation

An idealized Delta modulator is a system which accepts, as an input, an
analog signal, here denoted by ξ(t), which needs to be, somehow, encoded and
transmitted to a remote decoder in the form of an infinite frequency pulsed
signal q. The pulses are all of the same amplitude. The pulsed signal q is viewed
as the output of the local encoding system. The encoding process consists in a
quantization device that assigns, depending on the sign, a certain quantization
level with values on the discrete set {−W,W} to the error signal e. The error
signal is conformed by a comparator establishing the difference between the
incoming analog signal ξ(t) and the integral of the produced encoding signal,
q, here denoted by x. The integrator is addressed as the local decoder. Delta
modulation is based on the behavior of the circuit shown in Fig. 3.1.

The fundamental idea is to have a tracking of the incoming signal ξ(t) by
the feedback signal x, also called the locally decoded signal. Once the error
is driven to zero the signal q exhibits an active (ideally infinite frequency)
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switching behavior which may be transmitted to a remote decoder consisting,
much as the local decoder, on a time integration process. Thus, the obtained
remotely decoded signal ideally coincides with the local feedback signal x.

Fig. 3.1. Delta-modulator

The equations describing the Delta modulator circuit are given by

e = ξ(t)− x

ẋ = q

q = W signe (3.1)

While the output of the system is the signal q, it resembles the behavior of a
control input undergoing sliding mode behavior. The error e may be identified
with a sliding surface coordinate function, σ = e, which is to be driven to zero
in finite time by the negative feedback of the integrated quantized output. The
output of the quantization process takes values on the discrete set: {W,−W}.
It may be, undoubtedly, related a switch position function, u, taking values
in {0, 1} by setting u = 1

2W [q +W ] i.e., q = W (2u− 1). All the elements of a
sliding mode controlled system are therefore present in the Delta modulator
dynamics. Indeed, rewrite the equations 3.1 in the more compact manner,

σ̇ = ξ̇(t)− ẋ = ξ̇(t)− q = ξ̇(t)−W signσ (3.2)

If σ > 0, the controlled evolution of σ satisfies σ̇ = ξ̇(t) −W . To have σ
approach the desired objective, σ = 0, then one should have that σ̇ < 0. This
translates into the condition ξ̇(t) < W for the incoming signal ξ(t). On the
other hand, if σ < 0, then σ̇ = ξ̇+W . The growth of σ implies that one should
have −W < ξ̇(t). The existence of a sliding motion on σ = 0 is summarized
then in the following limitation for the time derivative of ξ(t):

−W < ξ̇(t) < W (3.3)

Under ideal sliding motions (σ = 0, σ̇ = 0), the average value of the
signal q (called for consistency qeq) satisfies: qeq = ξ̇. On the average, the
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Delta modulator produces the time derivative of the incoming signal. Delta
modulation constitutes a time differentiator of analog inputs, with a binary
coded differentiation signal at the output.

The amplitude limitation condition, (3.3), on ξ̇(t) induces an equivalent
condition to be imposed on the equivalent control, ueq, as obtained from the
invariance conditions: σ = 0, σ̇ = 0, in the light of (3.2). Indeed,

ξ̇(t)−W (2ueq − 1) = 0, ueq =
1

2W

[
W + ξ̇(t)

]
(3.4)

The time derivative of the incoming signal ξ(t) determines the equivalent
control and it should be limited to the open interval (−W,W ) implying that
0 < ueq < 1.

Naturally, the condition σσ̇ < 0 is satisfied for arbitrary nonzero values
of σ provided −W < ξ̇(t) < W when u is chosen as u = 1

2W (q + W signσ).
Indeed,

σσ̇ = σ(ξ̇(t)−W signσ) = σξ̇(t)−W |σ|

= −W |σ|(1− ξ̇(t)

W
signσ) < 0 (3.5)

Exercise 3.1. The normalized equations for the Delta modulator entitle
scaling the incoming signal ξ(t) by the quantization level W and letting the
quantized signal q take values on the set {−1, 1}. The remote decoding process
simply multiplies the pulsed signal q ∈ {−1, 1} by the quantization level W .
Work out the details.

Example 3.2. Consider a second order integration system ÿ = u which is to be
stabilized to the equilibrium point: y = Y , ẏ = 0. A proportional derivative
(PD) controller of the form: u = −2ζωnẏ − ω2

n(y − Y ) with ζ, ωn > 0, may
be synthesized with the help of a Delta modulator, acting as a differentiator for
the output signal y. Thus a Delta modulator based PD controller is given by

u = −2ζωnq − ω2
n(y − Y ), q = W signσ, σ = y − x, ẋ = q (3.6)

Clearly, this scheme is feasible thanks to the low pass filtering features of the
given system. The above controller yields a discontinuous control input u.
A customary continuous substitution for the sign function is provided by the
following high gain continuous saturation function:

q = W
σ

|σ|+ ε
, (3.7)

with ε being a very small positive constant (ε << 1).

3.3 Second order Delta modulation

Second order Delta modulation is represented in the block diagram of Fig-
ure 3.2. The analysis of this circuit, under ideal sliding motions, allows for the
derivation of its properties and the possibilities of using it as a differentiator.
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Fig. 3.2. Second order Delta-modulator

The equations describing the second order Delta modulator, with a > 0,
are given by

ẋ1 = x2

ẋ2 = q

q = W signσ

σ = ξ(t)− (x1 + ax2) (3.8)

The output signal, q, takes values on the discrete set, {−W,+W}, and it
plays an analogous role to a switched control input u in sliding mode control.
One may view the modulator circuit as one in which σ needs to reach the
zero value with q = u ∈ {−W,W} being the available switched control input
signal, helping to accomplish this invariance condition. Notice that

σ̇ = ξ̇(t)− x2 − au (3.9)

Hence,
σ̇ = (ξ̇(t)− x2)− aW signσ (3.10)

A sliding motion exists on σ = 0 provided

− aW < ξ̇(t)− x2 < aW (3.11)

The equivalent control, obtained from: σ̇ = 0 on σ = 0, yields

ueq =
1

a
(ξ̇(t)− x2) (3.12)

and its time derivative yields

u̇eq =
1

a
(ξ̈(t)− ueq) = −1

a
(ueq − ξ̈(t)) (3.13)

The equivalent control (or, more properly, equivalent output) is a low pass
filtering of the second order time derivative of ξ(t).
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Under the ideal sliding condition, σ = 0 one has that x2 = 1
a (ξ(t) − x1)

and, hence, ẋ1 = − 1
a (x1 − ξ(t)). In other words, x1 is the low pass filtering of

the input signal ξ(t). Since x2 is the time derivative of x1, it follows that x2

is the low pass filtering of the signal ξ̇(t).

Let L[ψ(t)] and ψ̂(s), both, denote the Laplace transform of the signal ψ(t).
In the frequency domain, one obtains the following set of relations

x1(s) =
1/a

s+ 1/a
L[ξ(t)], x2(s) =

1/a

s+ 1/a
L[ξ̇(t)], ueq(s) =

1/a

s+ 1/a
L[ξ̈(t)]
(3.14)

All these are unit gain low pass filters with cut-off frequency given by ωc = 1/a.
The choice of the parameter a depends on the frequency content of the signal
ξ(t) when the modulator is to be used as a differentiator. The common low
pass filter transfer function is taken to represent the characterization of the
second order modulator in the frequency domain.

From equation (3.8) and under ideal sliding conditions the input signal ξ(t)
can be obtained as a linear combination of the modulator variables x1 and x2.
We address this linear combination as an estimate of ξ(t) (a redundant one)

and denote it by ξ̂(t). Similarly, the invariance conditions: σ̇ = 0 and σ = 0
yield ξ̇(t) = x2 + aueq. One further differentiation leads to ξ̈(t) = ueq + au̇eq.
These are all estimates of the consecutive time derivatives of the input signal.
Summarizing

ξ̂(t) = (x1 + ax2),
ˆ̇
ξ(t) = x2 + aueq,

ˆ̈
ξ(t) = ueq + au̇eq (3.15)

The equivalent output signal qeq = ueq needs to be estimated from the
switched output signal q. An ideal low pass filtering of the infinite frequency
switched signal q would exactly render the equivalent signal qeq. A realizable
approximation is thus necessary. Suppose we want to obtain qeq from a low
pass filter that coincides with the second order modulator fundamental trans-
fer function. Let, in equation (3.14) an estimate of ueq(s) be approximated by

ueq(s) =
1/a

s+ 1/a
q(s) (3.16)

and take this relation as valid, i.e.,

ueq(s) =
1/a

s+ 1/a
q(s) =

1/a

s+ 1/a
L[ξ̈(t)] (3.17)

The low pass filtering of the second order time derivative of the input to the
modulator coincides with the same low pass filtering of the switched output
signal. Based on this engineering justification, we advocate, in general, for the
estimation of qeq, the use of low pass filters which are coincident with the
fundamental transfer function characterizing the second order modulator.

The use of this differentiator has some interest in the average control of
second order systems with available output y = ξ(t) and no measurement of
the velocity signal ẏ.
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Example 3.3. Suppose it is desired to regulate the second order linear system,

ż1 = z2, ż2 = u, y = z1 (3.18)

so that the output y of the plant stabilizes at the constant value Y = 1.
Using the second order delta modulator, in equation (3.8), as a state

estimator, with the input signal to the modulator, ξ(t), provided by the plant
system output y(t), one synthesizes the needed output time derivative term ẏ
in the linear classical feedback control law:

u = −2ζωnẏ − ω2
n(y − Y ), ζ, ωn > 0, (3.19)

The estimate of the velocity, ẏ, is obtained with the help of equation (3.15)
and of a low pass filter of the second order Delta modulator output switched
signal q, as follows:

ˆ̇y(t) = x2 + aqeq, q̇eq = −1

a
(qeq − q) (3.20)

A full state feedback control law entitles the use of the measured velocity
z2 = ẏ in (3.19).

Figure 3.3 depicts the controlled response under, both, a full feedback
control law and a feedback control law of the form 3.19 for different values of
the cut-off frequency ωc = 1 [rad/s], ωc = 10 [rad/s] and ωc = 100 [rad/s].
As the bandwidth of the Delta modulator is increased the performance of
the controller is found to be better and sufficiently close to the performance
under full state feedback. Increased bandwidth makes the estimation scheme
sensitive to output noise measurements.

3.4 Higher order Delta modulation

The preceding Delta modulation scheme may be generalized in a rather direct
manner, as depicted in Figure 3.4. The system is described by the following
set of equations,

ẋ1 = x2

ẋ2 = x3

... (3.21)

ẋn−1 = xn

ẋn = q = W signσ

σ = ξ(t)− (x1 + a1x2 + · · ·+ an−1xn)
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Fig. 3.3. Performance of second order delta modulation estimator in a feedback
loop for several cut-off frequencies.

The time derivative of σ is given by

σ̇ = ξ̇ − (x2 + a1x3 + · · ·+ an−2xn + an−1W sign(σ)) (3.22)

A sliding regime exists on σ = 0 if and only if

− an−1W < ξ̇ − (x2 + a1x3 + · · ·+ an−2xn) < an−1W (3.23)

The equivalent output qeq(t) is just

qeq(t) =
1

an−1

(
ξ̇ − (x2 + a1x3 + · · ·+ an−2xn)

)
(3.24)

Let L[ξ(j)(t)] denote the Laplace transform of the j-th time derivative
of ξ(t). Taking n − 1 time derivatives in (3.24), it follows that all the Delta
modulator states satisfy the following relation in the frequency domain

q̂eq(s) =
L[ξ(n)(t)]/an−1

sn−1 +
(

an−2

an−1

)
sn−2 + · · ·+

(
a1

an−1

)
s+

(
1

an−1

) (3.25)



3.4 Higher order Delta modulation 97

Fig. 3.4. An n-th order Delta modulator.

Using the modulator’s state equations and the expression for qeq(t) in (3.24)
one establishes the validity of the following expressions:

x̂j(s) =
L[ξ(j−1)(t)]/an−1

sn−1 +
(

an−2

an−1

)
sn−2 + · · ·+

(
a1

an−1

)
s+

(
1

an−1

) , j = 1, . . . , n

(3.26)

The modulator states xj ,j = 1, 2, . . . , n represent the same, unit gain, low
pass filtering operation on the (j − 1)-th time derivatives of the input signal
ξ(t) for j = 1, 2, . . . , n. The ideal average output signal, qeq(t), represents the
low pass filtering of the n-th order time derivative of the input signal ξ(t).

Example 3.4. In this example, we propose a third order Delta modulator to
generate the first and second order time derivatives of the output of a third
order system. These time derivatives will be used as part of the feedback law.
The system, or plant, to be considered is a normalized linear compartmental
model of a heating system representing

ẋ1 = x2 − x1

ẋ2 = x1 − 2x2 + x3

ẋ3 = x2 − 2x3 + u

y = x1 (3.27)

The output y = x1 is a privileged output in the sense that all variables may
be expressed in terms of y and its time derivatives ẏ, ÿ. Indeed by inspection
on the set of equations (3.27), we have

x1 = y, x2 = ẏ + y, x3 = ÿ + 3ẏ + y, u = y(3) + 5ÿ + 6ẏ + y (3.28)

It is desired to have the output, y = x1, track a desired given rest-to-rest
sufficiently smooth temperature profile y∗(t) by means of the continuous con-
trol input u. An output trajectory tracking feedback law may be synthesized
by generating the first and second order time derivatives of y by means of a,
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say, third order Delta modulator. From the input-output relation in (3.28), a
suitable full state feedback tracking controller, in terms of the tracking error
ey = y − y∗(t), is then given by

u = u∗(t)− (5 + k2)ëy − (6 + k1)ėy − (1 + k0)ey (3.29)

with u∗(t) = [y∗(t)](3) + 5ÿ∗(t) + 6ẏ∗(t) + y∗(t). This yields a closed loop
tracking error dynamics characterized by

e(3)y + k2ëy + k1ėy + k0ey = 0 (3.30)

A classical, stabilizing, choice for the gains {k2, k1, k0} is just

k2 = 2ζcωnc + pc, k1 = ω2
nc + 2ζcωncpc, k0 = ω2

ncpc

with ζc and ωnc and pc to be chosen in accordance with the bandwidth of
the modulator and of the low pass filter generating the equivalent output
signal qeq.

Consider now the third order Delta modulator with input signal repre-
sented by the output y of the plant.

ẋ1 = x2, ẋ2 = x3, ẋ3 = q, q = W signσ

σ = y − (x1 + a1x2 + a2x3) (3.31)

Under ideal sliding mode conditions, the invariance conditions σ = σ̇ = 0
translate into

y = x1 + ax2 + a2x3, ẏ = x2 + a1x3 + a2qeq, ÿ = x3 + a1qeq + a2q̇eq (3.32)

where the average signal qeq and its time derivative q̇eq will be generated via
the dynamics of the low pass filter built using the characterizing fundamental
modulator transfer function under ideal sliding dynamics:

G(s) =

(
1
a2

)

s2 +
(

a1

a2

)
s+

(
1
a2

)

We have then the following state space representation of the unit gain low
pass filter dynamics

q̇1eq = q2eq, q̇2eq = −2ζfωnfq2eq − ω2
nf (q1eq − q), qeq = q1eq. (3.33)

i.e., a2 = 1/ω2
nf and a1 = 2ζf/ωnf .

The expressions in (3.32) will serve as estimators of the phase variables y, ẏ,
and ÿ. The first one being redundantly generated. So, we have

ŷ = x1+ax2+a2x3, ˆ̇y = x2+a1x3+a2q1eq, ˆ̈y = x3+a1q1eq+a2q2eq (3.34)
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Similarly one may generate the estimates of the plant states, z1, z2, z3 via the
expressions (3.28). We have

x1 = y, x̂2 = ˆ̇y + y, x̂3 = ˆ̈y + 3ˆ̇y + y, (3.35)

Figure 3.5 depicts the performance of a 3d order Delta modulator based
trajectory tracking controller for the previously described third order heating
system described via Newton’s heat propagation model in a compartmental
fashion. The first set of graphs depicts the estimation of the phase variables
associated with the system output. The second set of graphs in Figure 3.6
depicts the evolution of the states representing each compartment of the plant.
The estimates of these states are also shown for comparison of the performance
of the third order Delta modulator as a state estimator.

The parameters for the Delta modulator and the low pass filter, used in
the simulations, were set as follows:

W = 3.0, ωnf = 12.0 [rad/s], ζf = 1.0,

The parameters of the controller were chosen as

ζc = 1.0 ωnc = 2.0 [rad/s], pc = 2 [rad/s],

A rest-to-rest maneuver plays the rôle of the output reference signal y∗(t).
The specification of this signal was made using a classical Bèzier interpolating
polynomial, with initial (normalized) temperature z1,init = 1.0 before t = t1 =
10 (time units), and final temperature z1,final = 3 after time t = t2 = 20 (time
units).

3.5 Delta-Sigma modulation

Delta-Sigma modulation is an important tool that will allow us to translate
continuous (i.e., average) feedback controller design options into imple-
mentable switch controlled strategies with practically the same closed loop
behavior.

The switched output signal, q(t), of a Delta modulator reproduces, on the
average, the first order time derivative of the input signal ξ(t) provided the
encoding condition: −W < ξ̇(t) < W is satisfied. Clearly, if the input signal to
the Delta modulator undergoes a time integration before being processed by
a Delta modulator, the switched output now reproduces, in an average sense,
the original input signal. The equations governing the system are

ż = ξ

ẋ = q = u = W signσ

σ = z − x
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Fig. 3.5. Performance of 3d order Delta modulator based trajectory tracking con-
troller for a compartmental control problem. Phase variables estimation.

Hence, σ̇ = ξ(t) − W sign(σ) and a sliding regime exists on σ = 0 provided
−W < ξ(t) < W . The ideal sliding dynamics is given by σ = 0, i.e., z(t) = x(t)
and σ̇ = 0, which is equivalent to ξ(t) = ueq(t). The average output in an
equivalent control sense equals the original input ξ(t).

The integrator affecting the input signal ξ(t) and the feedback integrator
of the local decoder, producing the feedback signal x(t), may be merged into
a single integrator placed in the forward path just before the quantization
unit representing the ideal switch. Also, in order to relate the Delta-Sigma
modulator to average feedback designs in switched governed systems, we may
use as quantization levels the values 0 and 1 instead of the values −W and W .
This gives rise to the block diagram given in Figure 3.7.

Consider the basic block diagram of Figure 3.7, reminiscent of a traditional
Delta-Sigma modulator block used in early communications systems theory
and analog to digital conversion schemes, but this time provided with a binary
valued forward nonlinearity, taking values in the discrete set {0, 1}. The fol-
lowing theorem summarizes the relation of the considered modulator with
sliding mode control while establishing the basic features of its input-output
performance.
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Fig. 3.7. Delta-Sigma modulator

Theorem 3.5. In reference to the Delta-Sigma modulator of Figure 3.7.
Given a sufficiently smooth, bounded, signal μ(t), then the integral error sig-
nal, e(t), converges to zero in a finite time, th, and, moreover, from any
arbitrary initial value, e(t0), a sliding motion exists on the perfect encoding
condition surface, represented by e = 0, for all t > th, provided the following
encoding condition is satisfied for all t,

0 < μ(t) < 1 (3.36)

Proof. From the figure, the variables in the Delta-Sigma modulator
satisfy the following relations:

ė = μ(t)− u, u =
1

2
[1 + sign(e)] (3.37)
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The quantity eė is given by

eė = e

[
μ− 1

2
(1 + sign(e))

]
= −|e|

[
1

2
(1 + sign(e))− μsign(e)

]
(3.38)

For e > 0 we have eė = −e(1 − μ), which, according with to assump-
tion in (3.36), leads to eė < 0. On the other hand, when e < 0, we have
eė = −|e|μ < 0. A sliding regime exists then on e = 0 for all time t after
the hitting time th (see [31]). Under ideal sliding, or encoding, conditions,
e = 0, ė = 0, we have that the, so-called, equivalent value of the switched
output signal, u, denoted by ueq(t) satisfies ueq(t) = μ(t).

An estimate of the hitting time th is obtained by examining the modulator
system equations with the worst possible bound for the input signal μ(t) in
each of the two conditions: e > 0 and e < 0, along with the corresponding
value of u. Consider then e(t0) > 0 at time t = t0. We have for all t0 < t ≤ th,

e(t) = e(t0) +

∫ t

t0

(μ(σ)− u(σ))dσ ≤ e(t0) + (t− t0)

[
sup

t∈[0,t]

μ(t)− 1

]

< e(t0) + (th − t0)

[
sup
t

μ(t)− 1

]
. (3.39)

Since e(th) = 0, we have

th ≤ t0 +
e(t0)

1− supt μ(t)
(3.40)

Similarly, for e(t0) < 0 one obtains

th ≤ t0 +
|e(t0)|
inft μ(t)

(3.41)

The expressions of the last two estimates of the hitting time th may be con-
densed into a single expression, regardless of the sign of the initial condition,
e(t0), as follows:

th ≤ t0 +
2|e(t0)|

[1− supt μ(t)](1 + sign e(t0)) + inft μ(t)(1− sign e(t0))
(3.42)

��
The average Delta-Sigma modulator output ueq ideally yields the

modulator’s input signal μ(t) in an equivalent control sense ([31]).
To illustrate, by means of simulations, the feature just stated about Delta-

Sigma modulation, we let μ(t) = 0.5(1+A sin(ωt)) with A = 0.8, ω = 3 rad/s.
At the output of the modulator we place a second order low pass filter of the
form,

y =

[
ω2
n

s2 + 2ζωns+ ω2
n

]
u (3.43)
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with ζ = 0.81 and ωn = 30. We may compare the filter output signal y(t)
with the input signal μ(t): modulo a small time delay and modulo the second
order transient of the filter response starting from zero initial conditions.
The low pass filtering of the switched output signal, u(t), represented by the
variable y(t), approximately reproduces the sinusoidal input to the modulator.
Figure 3.8 depicts the results.
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Fig. 3.8. Performance of Delta-Sigma modulator and tracking properties of the low
pass filtered switched output.

The rôle of the above described Delta-Sigma modulator in sliding mode
control schemes, avoiding full state measurements, and using average based
controllers will be clear from its relations to integral sliding mode control
schemes.

3.5.1 Two simple properties of Delta-Sigma modulators

Consider a Delta-Sigma modulator with symmetric quantization levels around
the origin, i.e., q ∈ {−W,W}.

Property 1 Notice that in the local encoding nonlinearity, producing
the Delta-Sigma modulator output q = W signσ, the amplitude W may be
a time-varying signal W (t). Sliding motions are not precluded to exist, as
long as this time-varying switch amplitude modulation signal remains strictly
positive and the input signal ξ(t) continues to satisfy: −W (t) < ξ(t) < W (t)
for all t. Indeed,

σ̇ = μ(t)−W (t)signσ (3.44)
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Since W (t) > 0 for all t, consider the time scaling dτ = W (t)dt. One has

d

dτ
σ = μ̃(t)− signσ (3.45)

for μ̃(t) = μ/W (t). A sliding regime exists on σ = 0 provided −1 < μ̃(t) < 1,
i.e., −W (t) < μ(t) < W (t).

Property 2 A similar property holds if a block, characterized by the
strictly positive gain function a(x) > 0, is located in the forward integration
block of the Delta-Sigma modulator. In this case,

σ̇ = a(x)[μ(t)− u], u = W signσ (3.46)

The time scaling, dτ = a(x)dt, yields

dσ

dτ
= μ(τ)−W signσ (3.47)

A sliding regime exists on σ = 0, provided −W < μ(τ) < W for all τ .

3.5.2 High gain Delta-Sigma modulation

In non-switched controlled systems provided with saturation controllers,
average feedback controller designs may also be implemented using high gain
versions of the switched governed Delta-Sigma modulator. Here we examine
two classical high gain continuous replacements of the switching nonlinearity
characterizing a Delta-Sigma modulator.

Consider then the underlying encoding error dynamics,

σ̇ = uav − 1

2
(1 + signσ) = −1

2
signσ +

(
uav − 1

2

)
(3.48)

A switch function of the form: u = 1
2 (1 + signσ) may be smoothed by an

approximation of the sign function via a piecewise linear function character-
ized by a high slope on the ‘boundary layer”.‘|σ| < ε, with ε > 0 being an
arbitrarily small parameter satisfying ε << 1. Indeed,

u =

⎧⎨
⎩

1
2 (1 + signσ) for |σ| > ε

1
2 (1 +

σ
ε ) for |σ| ≤ ε

(3.49)

For |σ| > ε the output u of the modulator satisfies exactly the same dynam-
ics as the switched modulator. The condition σσ̇ < 0, viewed as the time
derivative of the Lyapunov function candidate V (σ) = σ2/2, implies that the
function σ globally uniformly converges towards the boundary layer, described
by |σ| ≤ ε, provided the encoding condition 0 < uav(t) < 1 is uniformly valid.
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For |σ| < ε the governing equations of the Delta-Sigma modulator are
given by

u =
1

2
(1 +

σ

ε
), σ̇ = uav − u

i.e.,

σ̇ = − 1

2ε
σ +

(
uav − 1

2

)
(3.50)

Taking V (σ) = σ2/2 as a natural Lyapunov function candidate, its time
derivative along the solution trajectory of the differential equation for σ yields

V̇ (σ) = − 1

2ε
σ2 + σ

(
uav − 1

2

)

≤ − 1

2ε
σ2 +

1

2

(
σ2 + (uav − 1

2
)2
)

(3.51)

= −1

2

(
1− ε

ε

)
σ2 +

1

2

(
uav − 1

2

)2

where we have used Young’s inequality (also known as the “Peter Paul”
inequality) from the first line to the second. Thus, provided ueq(t) ∈ (0, 1)

for all t, it is not difficult to see that V̇ (σ) is strictly negative for all σ outside
the interval,

|σ| ≤ 1

2

√
ε

1− ε
(3.52)

The trajectories of σ are stably attracted towards a neighborhood of the origin
but they do not converge to σ = 0.

A second possible replacement of the sign function is constituted by a con-
tinuous function, characterized also by a small but strictly positive parameter ε

signσ ≈ σ

|σ|+ ε
(3.53)

A disadvantage of this approximation is that it never quite adopts the satu-
rating values −1 or +1.

Under this last approximation, the dynamics for σ in the Delta-Sigma
modulator is globally governed by

σ̇ = −1

2

(
σ

|σ|+ ε

)
+

(
uav − 1

2

)
(3.54)

Exercise 3.6. Estimate the region of attraction of the origin, σ = 0, for the
above differential equation whenever 0 < uav(t) < 1.
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3.6 Two level Delta-Sigma modulation

It is possible to extend the previously presented Delta-Sigma modulation
scheme to deal with switch control inputs u taking values in the discrete
set {−1, 0, 1}. To this category of switched systems can be reduced the
great majority of switched controlled mechanical systems as well as some
power electronics devices provided with “double bridges.” The theoretical
details of sliding mode existence in cases where the switch is characterized
by u ∈ {−W, 0,+W} are left as an exercise.

Figure 3.9 depicts a redundant arrangement of two Delta-Sigma modula-
tors, one with a single positive encoding level and the other with a symmetri-
cally negative encoding level. Clearly, such an arrangement is justified by the
result in Theorem 3.7. A definite arrangement is shown in Figure 3.10.

Fig. 3.9. Two level Delta-Sigma modulation (redundant arrangement)

Suppose that the continuous input signal, μ(t), takes values on the closed
interval [−1, 1] of the real line. The system equations are governed by

ė = μ(t)− u

u =

{
1
2 (1 + signe) for μ > 0
− 1

2 (1− sign(e)) for μ < 0
(3.55)

A sliding regime exists on e = 0 in any of the two cases (μ > 0 and μ < 0),
and the two level Delta-Sigma modulation equations may be summarized as
follows:

ė = μ(t)− u, u =
1

2
(signμ(t) + signe) (3.56)

Figure 3.11 shows a typical response of a two level Delta-Sigma modulator
to an input signal of varying polarity, like a sinusoid function. The switchings
actively commute between 0 and 1 when the input signal μ is positive and
between 0 and -1 when the input signal μ is negative.
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Fig. 3.10. Two level Delta-Sigma modulation
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Fig. 3.11. Two level Delta-Sigma modulation circuit responses

3.6.1 Delta-Sigma modulation with an arbitrary
quantization levels

In the preceding considerations, the output signal of the Delta-Sigma
modulator is constituted by an (infinite frequency) succession of pulses
of values 1 and 0. The considerations for describing the behavior of a Delta-
Sigma modulator with output signal represented by pulses of arbitrary values:
{Wmin,Wmax}, with Wmax > Wmin are not too different (see Figure 3.12).
Indeed, in such a case, we have

ė = μ(t)− q, q = u(Wmax −Wmin) +Wmin (3.57)

with u representing a switch position function taking values in the set {0, 1}.
The switching strategy is aimed at creating a sliding regime on e = 0. We now
investigate the properties under which such a sliding regime exists.
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Fig. 3.12. Delta-Sigma modulator with arbitrary quantization levels

Consider the product eė,

eė = e (μ(t)− [u(Wmax −Wmin) +Wmin]) (3.58)

The switching strategy u = 1/2(1+sign(e)) produces the desired effect: eė < 0
provided μ(t) satisfies the intermediacy condition: Wmin < μ(t) < Wmax for
all t.

Indeed, if e > 0, then eė = e(μ(t)−Wmax). This expression is negative as
long as μ(t) < Wmax. On the other hand, if e < 0, then eė = (μ(t) −Wmin).
This expression is negative provided μ(t) > Wmin. Thus Wmin < μ(t) < Wmax.

Under ideal sliding motions, the invariance condition, ė = 0, implies μ(t) =
qeq(t) where qeq is the average value of the output signal q.

The equivalent control ueq(t) for the switch position function is obtained
from the invariance conditions: ė = 0, e = 0. We have

μ(t)− [ueq(Wmax −Wmin) +Wmin] = 0 (3.59)

and, therefore

ueq =
μ(t)−Wmin

Wmax −Wmin
(3.60)

Since the existence of a sliding regime demands that the necessary and suf-
ficient condition 0 < ueq < 1 be satisfied, the conditions on the input signal
μ(t) follow.

We have demonstrated the following result:

Theorem 3.7. Given the Delta-Sigma modulator with input signal μ(t) with
arbitrary quantization levels: Wmax, Wmin satisfying, Wmax > Wmin. Then, a
sliding regime exists on e = 0 if and only if the input signal μ(t) satisfies

Wmin < μ(t) < Wmax.

The average value qeq(t) of the modulator output signal q(t) taking values in
the binary set: {Wmin,Wmax}, entirely coincides with μ(t).

The result in Theorem 3.7 is independent of whether Wmin is positive or
negative. This result conforms the basis for multilevel Delta-Sigma modulation
to be explored next.
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3.7 Multilevel Delta-Sigma modulation

A further generalization of the Delta-Sigma modulation encoding technique
can be obtained by considering several “levels of coding” or “levels of digital
quantization.” Suppose we would like to have N positive levels of discontinu-
ous encoding of a strictly positive signal ξ(t). In other words, let W be a fixed
positive real number representing a quantization, or granularity, level. Assume,
moreover that the given positive signal ξ(t) satisfies the following bound
maxt ξ(t) ≤ NW for some finite integer N . We would like to produce a discon-
tinuous signal taking values on the finite set {0,W, 2W, · · · , (N − 1)W,NW}
and which switches between two adjacent values (j − 1)W and jW when the
signal ξ(t) ∈ [(j − 1)W, jW ] for every j.

The following generalization of the Delta-Sigma modulator produces an N
level quantization, of width W , of a strictly positive signal bounded between
0 and NW .

ė = ξ(t)− y

y =
W

4

⎧⎨
⎩

N∑
j=1

[2j − 1 + sign(e)] [sign (ξ(t)− (j − 1)W )− sign (ξ(t)− jW )]

⎫⎬
⎭

The idea behind this formula is quite elementary. Consider a signal fj
defined by

fj =
1

2
[(sign (ξ(t)− (j − 1)W )− sign (ξ(t)− jW ))] (3.61)

This signal takes the value 1, only when the signal ξ(t) lies in the interval
[(j − 1)W, jW ], otherwise, it takes the value 0. We consider then functions
of the form

∑
j yjfj . Once the proper summand is activated and the rest are

inhibited, it is necessary to create a sliding regime on the manifold e = 0.
Notice that eė = e(ξ − ∑N

k ykfk) = e(ξ − yj) is guaranteed to be always
negative, whenever ξ(t) ∈ [(j − 1)W, jW ], provided we choose the following
switching strategy for the signal yj , using as binary inputs the real numerical
values in the discrete set, {(j − 1)W, jW}:

yj =

{
(j − 1)W for e < 0
jW for e > 0

, (3.62)

which may also be synthesized as

yj = j
W

2
(1 + sign(e)) + (j − 1)

W

2
(1− sign(e))

=
W

2
[2j − 1 + sign(e)]

This last switching policy creates a sliding regime on e = 0 while the signal
ξ(t) takes values in the interval [(j − 1)W, jW ].
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Clearly, the sums of products of yj and fj , in the expression y =
∑

j yjfj ,
yield the proposed formula.

Figure 3.13 depicts in its upper graph a six-level sliding mode quantization
of a biased sinusoidal signal of amplitude 1.5 centered around 1.5, with levels
of quantization of 0.5. The lower graph depicts the low pass filtering yf (t) of
the signal y(t) in comparison with the original signal. The low pass filter is
a Butterworth second order filter with a damping factor of 0.8 and a cut-off
frequency of 100 [rad/s].
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Fig. 3.13. Six-level Delta-Sigma modulation encoding of a positive signal

Finally, we leave it to the reader to show that for any signal bounded within
the interval [−NW,NW ], the following multilevel Delta-Sigma modulation
scheme renders a complete quantization of the system into 2N levels of width
W with switchings taking place between the numerical values of the bounding
levels of the quantization intervals.

ė = ξ(t)− y

y =
W

4

{
N∑

−N+1

[2j − 1 + sign(e)] [sign (ξ(t)− (j − 1)W )− sign (ξ(t)− jW )]

}

3.8 Average feedbacks and Delta-Sigma-Modulation

Suppose we have a smooth nonlinear system of the form ẋ = f(x) + ug(x)
with u being a (continuous) control input signal that, due to some physi-
cal limitations, requires to be bounded by the closed interval [0, 1]. Suppose,
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furthermore, that we have been able to specify a dynamic output feedback
controller of the form u = −κ(y, ξ), ζ̇ = ϕ(y, ξ), with desirable closed loop
performance features. Assume, furthermore, that for some reasonable set of
initial states of the system (and of the dynamic controller), the values of the
generated feedback signal function, u(t), are uniformly strictly bounded by
the closed interval [0, 1].

If an additional implementation requirement entitles now that the control
input u of the system no longer be allowed to continuously take values within
the interval [0, 1], but that it may only take values in the discrete set, {0, 1},
the natural question is: How can we now use, in view of the newly imposed
actuator restriction, the derived continuous controller, so that we can recover,
possibly in an average sense, its desirable features?

The answer is clearly given by the average differentiating features of the
input signals in the previously considered Delta modulator. Recall, inciden-
tally, that the output signal of such a modulator is restricted to take values,
precisely, in the discrete set {0, 1}.

Thus, if the time integral of the output of the designed continuous
controller, call it uav(t), is fed into the proposed Delta modulator, the out-
put signal of the modulator reproduces, on the average, the required control
signal uav. Figure 3.14 shows the switch based implementation of an output
feedback controller, through a Delta-Sigma modulator, which reproduces, in
an average sense, the features of a designed continuous controller.

Theorem 3.8. Consider the following smooth nonlinear single input, n-
dimensional system: ẋ = f(x) + ug(x), with the smooth scalar output
map, y = σ(x). Assume the dynamic smooth output feedback controller
u = −κ(y, ζ), ζ̇ = ϕ(y, ζ), with ζ ∈ Rp, locally (globally, semi-globally) asymp-
totically stabilizes the system towards a desired constant equilibrium state,
denoted by X. Assume, furthermore, that the control signal, u, is uniformly
strictly bounded by the closed interval [0, 1] of the real line. Then the closed
loop system:

ẋ = f(x) + ug(x)

y = σ(x)

uav(y, ζ) = −κ(y, ζ,X)

ζ̇ = ϕ(y, ζ,X)

u =
1

2
[1 + sign z]

ż = uav(y, ζ)− u

exhibits an ideal sliding dynamics which is locally (globally, semi-globally)
asymptotically stable to the same constant state equilibrium point, X, of the
system.
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Fig. 3.14. Sliding mode implementation of a designed continuous output feedback
controller through a Delta-modulator with integrated input

Proof
The proof of this theorem is immediate upon realizing that under the

hypothesis on the average control input, uav, the previous theorem establishes
that a sliding regime exists on the manifold z = 0. Under the invariance condi-
tions, z = 0, ż = 0, which characterize ideal sliding motions (see Sira-Ramı́rez
[25]), the corresponding equivalent control, ueq, associated with the system
satisfies: ueq(t) = uav(t). The ideal sliding dynamics is then represented by

ẋ = f(x) + uavg(x)

y = σ(x)

uav(y, ζ) = −κ(y, ζ,X)

ζ̇ = ϕ(y, ζ,X)

which is assumed to be locally (globally, semi-globally) asymptotically stable
towards the desired equilibrium point.

Note that the Delta-Sigma modulator state, z, can be initialized at the
value z(t0) = 0. This implies that the induced sliding regime exists uniformly
for all times after t0. Hence, no reaching time of the sliding surface, z = 0, is
required. This practical feature is adopted throughout this book.

3.8.1 Control of the Double Bridge Buck Converter

Consider the normalized buck converter equations, given in 2.109

ẋ1 = −x2 + u, x2 = x1 − x2

Q
, y = x2 (3.63)
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The factor of 1 multiplying the switch control input u represents the normal-
ized (positive) constant external source voltage. As a consequence of the sign
of the source the achievable voltages are necessarily positive and so are the
inductor currents. If the voltage of the source is allowed to change its sign
(appropriately flipping the source terminals), the normalized equations are
simply

ẋ1 = −x2 − u, x2 = x1 − x2

Q
, y = x2 (3.64)

and now the achievable output voltages and currents are, both, negative.
The double bridge buck converter allows this with the use of a diode bridge.
The control input switch function, u, takes values now on the set {−1, 0, 1}. As
a consequence of this, output reference signals y∗(τ) of changing polarity can
now be tracked. For signals of positive polarity, sliding motions exist provided
the well-known limitation: 0 < ueq < 1, is valid, on the equivalent control. For
the tracking of signals with negative polarity, sliding motions exist whenever
−1 < ueq < 0. For signals of varying polarity, the equivalent control of this
converter yields the existence condition: −1 < ueq < 1, or |ueq(τ)| < 1. Recall
that this necessary and sufficient condition for existence of sliding regimes
determines the bandwidth limitations.

The Delta-Sigma modulation approach allows us to translate any con-
tinuous tracking controller design in a rather simple manner by inserting the
Delta-Sigma modulator between the output of the controller and the switched
input channel of the plant. For illustrative purposes, let us carry out a clas-
sical continuous output feedback controller design with the reference signal:
y∗(τ) = A sin(ωτ). We first establish the bandwidth limitations.

The nominal control input u∗(t) satisfies the input-output relation

u∗(τ) = ÿ∗(τ) +
1

Q
ẏ∗(τ) + y∗(τ) (3.65)

If the output tracking is achievable via sliding mode control, the equivalent
control coincides with the nominal control in steady state conditions (after
the time-varying surface is reached and the tracking error transients die out).
Hence, using φ = arctan((ω/Q)/(1− ω2)), we have

|u∗(τ)| = A sin(ωτ + φ)

√
(1− ω2)2 +

(
ω

Q

)2

≤ A

√
(1− ω2)2 +

(
ω

Q

)2

< 1 (3.66)

or simply, given a desired normalized frequency ω for the sinusoidal output
reference voltage, the allowable sinusoid signal amplitude A must satisfy

A <
1√

(1− ω2)2 +
(

ω
Q

)2 (3.67)
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Not surprisingly, the frequency-amplitude tradeoff relation of the buck
converter coincides with that of the double bridge buck converter (see
equation 2.118).

Consider the continuous, average, lead tracking error compensator, abu-
sively described in a combination of time domain and frequency domain
signals,

uav(s) = u∗(τ)−
[
ms+ n

s+ p

]
(y − y∗(τ)) (3.68)

with

m =
1

Q
(
1

Q
−K2) + (1−K1), n = (

1

Q
−K2) +K0, p = K2 − 1

Q

Let ey = y − y∗(t). The linear closed loop tracking error dynamics coincides
with

e(3)y +K2ëy +K1ẏ +K0ey = 0 (3.69)

The choice p > 0 ensures a stable lead compensator while m and n either both
positive or both negative, ensure a minimum phase behavior of the controller.
This requirement is easily achieved. The choice of the parameters: K0,K1,K2

must be made satisfying, K2 > 0, K0 > 0, and K2K1 > K0. This demand
ensures exponential asymptotic convergence of the tracking error ey to zero.
To obtain a characteristic polynomial, in the complex variable s, with known
stable roots location, one equates the characteristic polynomial of (3.69) to
the product of the following two stable polynomials: s2+2ζωns+ω2

n and s+r.
We then set K2 = 2ζωn + r, K1 = ω2

n + 2ζωnr, and K0 = ω2
nr.

The dynamic average output tracking controller is easily synthesized, in a
state space form, as,

θ̇ = −pθ + ey, u = u∗(t) + (mp− n)θ −mey (3.70)

with θ being an auxiliary variable with arbitrary initial conditions.
Figure 3.15 depicts the responses of the normalized buck system to the

above designed two level Delta-Sigma modulation based classical output track-
ing feedback control. The chosen sinusoid signal, with amplitude A = 0.6 and
normalized angular frequency ω = 0.3, respects the normalized bandwidth
limitation of the sliding mode existence condition. We used the following
parameters for the lead controller,

m = −0.914 n = −0.493 p = 0.583

The average controller is characterized by K2 = 0.9, K1 = 0.27, and K0 =
0.09. These parameters correspond to the choice ζ = 1, ωn = 0.3, r = 0.3

Exercise 3.9. Let W > 0 be a constant parameter. Let m, g, and L denote
constants representing, respectively, the mass of a pendulum bob, the accel-
eration of gravity, and the length of the pendulum inelastic rod. Consider the
problem of controlling the actuated pendulum,
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Fig. 3.15. Two level Delta Sigma based control of the buck converter

θ̈ = −mgL sin θ +Wτ (3.71)

with a switched control input, τ , taking values in the discrete set, {−1, 0, 1}, as
it corresponds to the possibilities of using a positive fixed torque, its opposite
value, or no torque at all.

Device a sliding mode controller that allows the accurate tracking of a
pre-specified smooth reference trajectory for the angular position θ.

Exercise 3.10. Consider the mechanical system shown in Figure 3.16 consti-
tuted by a mass and a spring. It is assumed that the friction forces on the
wheels are negligible.

The force input, f , is only allowed to take values in the discrete set
f ∈ {0, F}. We assume that x0 is the equilibrium position for which the force
in the spring is zero when f = 0.

• Verify that the equations of motion are given by

Mẍ+ k(x− x0) = f (3.72)

• Assume that a safety region for spring elongation is to be enforced beyond
which the spring characteristics are permanently damaged. This region is
given by

− Lmin < x− x0 < Lmax (3.73)
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Fig. 3.16. Mass-spring system

• Devise a feedback switching controller that drives and sustains the motions
of the mass at a feasible constant position value X.

• Discuss the nature of the ideal control that would smoothly sustain the
motions at the constant value x = X.

• Devise a trajectory tracking controller for an arbitrary smooth reference
position trajectory x∗(t) respecting the spring elongation constraints.

• Device a feedback switching controller that uses a sliding surface
coordinate function expression entitling only measurements of the input
and the output and their integrals, but which does not use the measure-
ment of the mass velocity.

3.9 Multilevel Sliding Mode control
of mechanical systems

Multilevel Delta-Sigma modulation was seen to reproduce, in a convenient
quantized switched manner, any continuous signal provided at the input of
the modulator. This feature has important implications in the control of a
mechanical system. As it is widely known, sliding mode control of mechanical
systems is limited due to the chattering phenomenon. When the switching
levels of forces and torques (usually opposite in sign and of symmetric nature)
are widely separated, the induced chattering is severely increased. Switching
between reduced force or torque levels makes the induced chattering slightly
more acceptable. We illustrate this by means of a simulation example on a
rather simple one degree of freedom controlled pendulum.

Example 3.11. Consider the one degree of freedom controlled pendulum, of
bob mass m, length L, with negligible link mass described by,

mL2θ̈ = −mgL sin θ + τ (3.74)
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where τ is the applied torque input. A feedback linearizing controller is easily
devised as

τ = mL2[
g

L
sin θ − 2ζωnθ̇ − ω2

n(θ −Θ)] (3.75)

where Θ is the desired angular position.
Figure 3.17 depicts, in three columns, the evolutions of the angular

position and the angular velocity responses, along with the applied designed
torque input. In the first column the available torques take values in the set
{−T,+T}. In the second column a two level Delta-Sigma modulation comple-
ments the average feedback controller with switched torques taking values in
the set {−T, 0,+T}. The third column corresponds to a 10 level Delta-Sigma
modulator implementing the average control torque input τav. In this case the
switch takes values in the set:
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Fig. 3.17. Chattering reduction on a mechanical system via multilevel sliding mode
control
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The chattering reduction is quite significant, as seen from the phase plots in
the second row.

In this example, the following numerical values were used for the
simulations:

m = 1 [Kg], L = 1 [mt], g = 9.8 [m/s
2
], Θ =

3π

2
[rad]

The controller design parameters were set to be

ζ = 1, ωn = 1 [rad/s], T = 10 [N−m]

3.10 Second order Delta-Sigma modulation

Second and higher order Delta-Sigma modulation have been found useful in
several applications due to their enhanced signal to noise ratio features (see
Jarman [14]) . In our sliding mode context, second order Delta-Sigma mod-
ulators may be analyzed by establishing a relationship with second order
Delta modulators. The general relation between higher order Delta-Sigma
modulations and the corresponding higher order Delta modulators may be
easily established.

Consider the second order Delta-Sigma modulator shown in Figure 3.18,
with input signal ξ(t) and output signal q(t) ∈ {−W,W}. The positive
constant factor a > 0 will be important in determining a low pass filter band-
width.

Fig. 3.18. Second order Delta-Sigma modulator

The equations characterizing the system are easily obtained from the block
diagram

σ̇ = x− aq

ẋ = ξ(t)− q

q = W signσ (3.76)

From the first equation in (3.76), it is clear that a sliding regime exists on
σ = 0 provided −aW < x < aW . The average output signal qeq is simply
given by qeq = x/a and the average evolution of x is, according to the second
equation in (3.76), governed by
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ẋ = −1

a
(x− aξ(t)) (3.77)

On average, the signal x is a low pass filtering of the signal aξ(t). However,
given that the average output signal qeq satisfies qeq = x/a, and using (3.77),
the time evolution of qeq is given by

q̇eq = −1

a
(qeq − ξ(t)) (3.78)

i.e., the average output signal is a unity gain low pass filtering of the input
signal. In other words:

q̂eq(s) =
1/a

s+ 1/a
ξ̂(s) (3.79)

The average output of the second order Delta-Sigma modulator represents a
second order integration of that produced by the second order Delta modulator
(see equation 3.14).

The previous statement is easily proved by a rather straightforward block
diagram manipulation. It should be clear that the Delta modulator (which
is an ideal differentiator) preceded by a single integration operator is trans-
formed into a Delta-Sigma modulator. The following Figure 3.19 depicts the
transformation of a double Delta-Sigma modulator into a double Delta inte-
grator preceded by two integration operators.

The first step is to pull out the integrator producing the variable x and
replace it by two integrators, one located on the input path of the modulator
and the other in the outer feedback loop leading to the first comparator. Next,
the integrator producing the variable σ is replaced by two integrators, one in
the forward path leading to the second comparator and the other in the inner
feedback loop of the modulator, leading towards the second comparator. Now
the two integrators leading to the two comparators are replaced by a single
integrator in the feedback loop emerging from the output variable q. Finally,
the integrator remaining in the forward path leading to the second comparator
is replaced by two integrators, one located in the input path to the modulator
and the other in the outer feedback loop path leading to the first comparator.

Exercise 3.12. Show that an n-th order Delta-Sigma modulator is equivalent
to an n-th order Delta modulator preceded by n integration operators at the
input.

Example 3.13. The use of higher order Delta-Sigma modulators in sliding
mode control is to serve as analog to switched converters with some com-
mand on the noise attenuation capabilities of the underlying low pass filter
describing the average behavior of the modulator.

Consider then a simple illustrative example, consisting of a single link
actuated pendulum with a bob mass m, of length L, controlled by a torque u
taking values in the set {W,−W}. The controlled pendulum is described by
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Fig. 3.19. Equivalence of second order Delta-Sigma modulator with a second order
Delta modulator including two input integrations.

θ̈ = − g

L
sin θ +

u

mgL
(3.80)

Suppose it is desired to stabilize the pendulum, from its stable equilibrium
position, around a desired constant value Θ.

An average feedback linearizing controller is readily designed to be,

uav = mgL
[ g
L
sin θ − 2ζcωcθ̇ − ω2

c (θ −Θ)
]

(3.81)

However, when uav is produced some piecewise constant noise signal
process s(t) represented by a sequence of independent gaussian random vari-
ables is added due to output measurement noises, or production of the time
derivative of the angular position, friction phenomena, etc. The average con-
troller is implemented through a second order Delta-Sigma modulator with
cut-off frequency ω = 1/a.

Figure 3.20 depicts the deterioration of the controlled response for low
bandwidth filtering while the quality of the responses increases with the
enlargement of the cut-off frequency, ω, characterizing the low pass filter
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present in the second order Delta-Sigma modulator. The chattering associated
with the modulator’s sliding surface coordinate evolution, σ(t), is substantially
reduced as the cut-off frequency increases. However, the cut-off frequency
cannot be arbitrarily increased since then the bandwidth limitation of the
second order Delta-Sigma modulator is violated.
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Fig. 3.20. Performance, under various cut-off frequencies ω, of switched controlled
pendulum, using the low pass filtering capabilities of a second order Delta-Sigma
modulator.

The parameters for the pendulum, the controller and the second order
Delta-Sigma modulator were set to be:

m = 1 [Kg], L = 1.0 [m], g = 9.8 [m/s2], W = 12 [N−m]

ζc = 0.707, ωc = 1.0 [rad/s], Θ =
3π

2
[rad]
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3.11 Delta-Sigma modulation and integral
sliding mode control

3.11.1 Sliding on the integral control input error

We first explore a variant of sliding mode control centered around the idea of
forcing the actual average control input to ideally behave as a nominal control
input found in correspondence with a nominal desired state trajectory defined
on a unperturbed system. (See Orlov [28] for a similar development detached
from Delta-Sigma modulation considerations.)

Consider the following general switched controlled system described in
state space,

ẋ = f(x, u), x ∈ R
n, u ∈ {0, 1} (3.82)

It is desired to have the state x track a given smooth trajectory x∗(t).
Suppose that, under the temporary assumption that u is a continuous control
input, an average full state feedback controller design uav is worked out which
guarantees the accurate asymptotic tracking of x∗(t) while uav takes values
in the compact interval [0, 1] of the real line. The average control input, cor-
responding to the desired state reference trajectory is denoted by u∗(t). The
average feedback controller is, generally speaking, of the form

uav = ϕ(x, x∗(t), u∗(t)) ∈ [0, 1] (3.83)

Consider the sliding surface coordinate function σ given by

σ =

∫ t

0

[ϕ(x(λ), x∗(λ), u∗(λ))− u] dλ (3.84)

This choice of a sliding surface, and its corresponding switched controller
design leading to a sliding regime is related to what is known in the literature
as integral sliding mode. We deal with the original formulation further below.

The invariance conditions σ = 0, σ̇ = 0 define the equivalent control ueq

from the expression

σ̇ = ϕ(x(t), x∗(t), u∗(t))− ueq = 0 (3.85)

i.e., the equivalent control, as an ideal feedback control law, entirely coincides
with the average feedback controller design, uav, i.e., ueq = uav .

Notice that, in general, before the sliding motions occur, one has

σ̇σ = (ϕ(x, x∗(t), u∗(t))− u)σ (3.86)

with u being either 0 or 1. Clearly, a sliding mode exists on σ = 0 with the
switched control policy:

u =
1

2
(1 + signσ) (3.87)



3.11 Delta-Sigma modulation and integral sliding mode control 123

since under such a control switching policy, σσ̇ < 0 is satisfied. Indeed, with
uav = ueq = ϕ ∈ [0, 1], and u ∈ {0, 1}, whenever σ > 0, then u = 1 and
σσ̇ = (ϕ− 1)σ < 0. Similarly, when σ < 0, then u = 0 and σσ̇ = ϕσ < 0.

The controller can be summarized as follows:

σ̇ = uav − u

u =
1

2
(1 + signσ)

these equations coincide with those of a Delta-Sigma modulator with an analog
input μ(t) given by the average control input signal, uav(t), the switched
output coinciding with u ∈ {0, 1} and the error signal given by the difference
between the input and the switched output.

3.11.2 Integral sliding modes: surface and control modification

Integral sliding modes were introduced by Utkin and Shi in [34]. Further
developments can be found in the literature and the references in the book by
Fridman et al. (see [11] and also in the book by Shtessel et al. [22]) . A more
complete formulation of integral sliding mode controls is now examined under
the switched control input restriction in a control input affine representation
of the controlled system. We warn the reader that this class of sliding mode
control technique is more suitable for systems with continuous although amp-
litude limited control inputs.

Consider then unperturbed nonlinear system given by

ẋ = f(x) + g(x)u, y = σ0(x) x ∈ R
n, u ∈ {0, 1} (3.88)

Let σ0(x) be a nominal sliding surface coordinate function for which a sliding
regime exists on an open region of the sliding surface, S = {x ∈ R

n|σ0(x) = 0}.
The corresponding equivalent control, denoted by u0

eq(x) = −Lfσ0/Lgσ0,
defined on σ0 = 0, satisfies: 0 < u0

eq(x) < 1, thus determining the region
of existence of a sliding regime on S. Notice that if an additive matched
perturbation, φ(x, t) = g(x)uh(x, t) arises in the system and a sliding regime
still exists on σ0 = 0, the equivalent control, is defined as

ueq(x) = −Lfσ0(x)

Lgσ0(x)
− uh(x, t)

∣∣∣∣
σ0=0

= u0
eq(x)− uh(x, t) (3.89)

Thus, although the invariance conditions σ0 = 0, σ̇0 = 0, and the ideal sliding
dynamics are unaffected by the perturbation, the equivalent control virtu-
ally cancels, or counteracts, the (unknown) disturbance input uh(x) in an
automatic manner. The region of existence of the sliding regime, nominally
characterized by 0 < u0

eq(x) < 1, is now modified by

0 < u0
eq(x)− uh(x, t) < 1, or uh(x, t) < u0

eq(x) < 1 + uh(x, t) (3.90)
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Integral sliding mode control attempts to make the nominal existence condi-
tions to remain invariant with respect to the disturbance input.

Consider then a perturbed nonlinear system given by

ẋ = f(x) + g(x)u+ ξ(x, t), x ∈ R
n, u ∈ {0, 1} (3.91)

The disturbance vector ξ(x, t) is assumed to satisfy the matching condition
i.e., ξ(x, t) ∈ span{g} for all t. There exists then a scalar disturbance input,
uh(x, t), such that ξ(x, t) = g(x)uh(x, t).

In order to deal with the perturbed system, and above all to free the nom-
inal region of existence from effects of perturbations induced modifications,
consider the following sliding surface coordinate function σ(x) = σ0(x)+σ1(x)
where σ1(x) is an auxiliary sliding surface coordinate function, yet to be deter-
mined, aimed at absorbing the counterproductive control input arising from
the perturbation field.

Additionally, the equivalent control corresponding to the sliding surface
coordinate function σ(x), for the perturbed system, is assumed to be of the
form: ueq(x) = u0

eq(x) + u1eq(x). The actual control input is synthesized as
u = u0

eq(x) + u1.
The invariance conditions σ = 0, σ̇ = 0 demand that, for all x and t,

σ1(x) = −σ0(x), σ̇(x) = Lfσ0 + (Lgσ0)u
0
eq(x) + (Lgσ0)uh(x, t) + σ̇1 = 0

(3.92)

Let the following equality be enforced,

σ̇1 = − [Lfσ0 + (Lgσ0)u
0
eq

]
, σ1(x(0)) = −σ0(x0) (3.93)

i.e.,

σ1(x(t)) = −σ0(x0)−
∫ t

0

[
Lfσ0(x(λ)) + (Lgσ0)u

0
eq(x(λ))

]
dλ, (3.94)

The sliding surface coordinate function for the perturbed system ideally
satisfies

σ̇(x) = [Lgσ0(x)](u1eq + uh(x, t))

∣∣∣∣
σ=0

= 0 (3.95)

If σ(x) and σ̇(x) are both driven to zero by an appropriate switching strategy
on u ∈ {0, 1}, while the transversal condition, Lgσ0(x) > 0, is being nec-
essarily respected, then under ideal sliding mode conditions, on σ(x) = 0,
u1eq(x(t)) = −uh(x, t) for all t. The equivalent control u1eq(x), associated
with the sliding surface characterized by σ(x), ideally cancels the unknown
disturbance input. The nominal equivalent control u0

eq(x) remains largely un-
affected.

The advantages of integral sliding mode control entitle the preservation of
the region of existence of a sliding regime on the sliding surface S.
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It is easy to reinterpret Integral Sliding Modes in terms of a nominal design
(yielding the signal σ1) plus a Delta-Sigma modulation controller, defined on
σ(x), watching over the unexpected appearance of the matched disturbances.
Recall that the above analysis is particularized under ideal sliding motions on
σ = 0 and that uh(x, t) is unknown.

With the help of the defined σ1, the dynamics sliding surface coordinate,
σ(x), satisfies, in general:

σ̇(x) = (Lgσ0(x))u = (Lgσ0(x))(u
0
eq(x) + u1) (3.96)

The signal u0
eq(x(t) is the input to the Delta-Sigma modulator and the switch-

ing signal −u1 is the locally decoded signal being subtracted from u0
eq(x).

Since Lgσ0(x) > 0 it follows that Property 2 applies (see equation (3.46))
and, therefore, (3.96) indeed represents a Delta-Sigma modulation process.



4

Multi-variable sliding mode control

4.1 Introduction

Sliding mode control of multi-variable nonlinear systems has arisen special
interest due to its potential for many applications in interesting technological
areas such as robotics, aerospace, power electronics, and multi-phase drive
position control. The essential difficulties of sliding mode in multi-variable
(addressed here as MIMO) systems arise from the fact that several smooth sur-
faces have to be considered. In fact, there should exist as many sliding surfaces
as independent control inputs. This fact already creates a first decision prob-
lem. Should each control input try to induce sliding motions on a particular
one of the surfaces in a decoupled fashion? If the answer is yes, which one
of the surfaces in the given finite set? If the answer is no, should then some
‘teaming” of controllers be necessary to induce sliding motions in a particular
sliding surface? What if this cannot be readily accomplished with the binary
valued control input available to each commanded switch? Moreover, what
if the achieved sliding motions, on each manifold, do not lead the trajectory
towards the intersection of the set of sliding surfaces where all the desired
state restrictions are satisfied? To make things worse, it is widely known that
a sliding motion may exist on the intersection of a number of smooth sliding
surfaces without necessarily locally existing on some, or any, of the sliding
surfaces.

Many of these imprecisely formulated problems occupied the minds of
control theorists, working in sliding mode control, for a long, long, time.
Some very interesting techniques emerged as highly reasonable, but with some
lack of systematic procedural recipes for the several applications areas which
were in line waiting for clear theoretical results. This was the case of the
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“method of the hierarchy of controls” originally proposed by Utkin in [31] and
which enjoyed popularity specially in initial applications to the robotics area.
The picture has become clearer in recent years with the advent of, both, geo-
metric and algebraic theories of nonlinear systems. The understanding of the
structural aspects of nonlinear systems is the key that has allowed to propose
and solve, with relative simplicity, the MIMO nonlinear sliding mode con-
trol problem. The concept of flatness, to our belief, completely answers the
fundamental questions for a class of widespread, and particularly interesting,
switched nonlinear systems. This development will be examined in detail in
Chapter 6.

In this chapter, we use some elementary notions of differential geometry
to address the problem of sliding mode creation in MIMO systems. We pro-
vide a number of illustrative examples, of physical significance, to which the
technique can be applied.

4.2 Multiple Input Multiple Output case

The general description of systems controlled by multiple independent
switches corresponds, within the framework of the state space representation,
to the following form:

ẋ = f(x) +G(x)u, y = σ(x) (4.1)

where x ∈ R
n, u ∈ {0, 1}m, and y ∈ R

m. The notation u ∈ {0, 1}m indicates
that each component ui, i = 1, . . . ,m, of the input vector u takes values in the
binary set {0, 1} representing an independent switch position function. The
function f(x) is a smooth vector field defined over the tangent space to R

n

and usually addressed as the drift vector field. G(x) is a matrix whose entries
are smooth functions of the state x of the system and its dimensions are
n×m, i.e., n rows and m columns. The columns of G(x), denoted by means
of gi(x), i = 1, 2, . . . ,m also represent smooth vector fields. The matrix G(x)
is called the input matrix. The output function σ(x) is a smooth map taking
values in R

m. We refer to the point x ∈ R
n as the state vector of the system,

while u is the input vector and y is the output vector.

Example 4.1. The following circuit shown in Figure 4.1 represents a multi-
input DC to DC power converter controlled by two switches and known as
the “boost-boost” converter. This converter clearly has two stages, each one
controlled by means of an independent switch position function,

The differential equations describing the system are the following:

L1
di1
dt

= −u1v1 + E

C1
dv1
dt

= u1i1 − 1

R1
v1 − i2
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Fig. 4.1. Boost-Boost converter circuit

L2
di2
dt

= −u2v2 + v1

C2
dv2
dt

= u2i2 − 1

RL
v2 (4.2)

where i1 is the input current, v1 is the output voltage of the first stage, i2 is
the input current to the second stage, and v2 represents the output voltage of
the second stage.

In matrix terms, the mathematical description of the system is given by

d

dt

⎡
⎢⎢⎣
i1
v1
i2
v2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 0 0 0
0 − 1

R1C1
− 1

C1
0

0 1
L2

0 0

0 0 0 − 1
RLC2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
i1
v1
i2
v2

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
− v1

L1
0

i1
L1

0

0 − v2

L2

0 i2
C2

⎤
⎥⎥⎦
[
u1

u2

]
+

⎡
⎢⎢⎣

E
L1

0
0
0

⎤
⎥⎥⎦

Here, evidently, letting x = [i1 v1 i2 v2]
T yields the following expressions

for the drift vector field f(x) and the input matrix G(x),

f(x) =

⎡
⎢⎢⎣
0 0 0 0
0 − 1

R1C1
− 1

C1
0

0 1
L2

0 0

0 0 0 − 1
RLC2

⎤
⎥⎥⎦x+

⎡
⎢⎢⎣

E
L1

0
0
0

⎤
⎥⎥⎦ , G(x) =

⎡
⎢⎢⎣
− x2

L1
0

x1

L1
0

0 − x4

L2

0 x3

C2

⎤
⎥⎥⎦ (4.3)

4.3 Sliding surfaces

In the context of n dimensional controlled systems regulated by m indepen-
dent switches and where m sliding surface coordinate functions are defined
as system outputs, a sliding surface is represented by the simultaneous satis-
faction of m smooth algebraic state restrictions summarized in the equation:
σ(x) = 0 which represents the intersection manifold:

S = {x ∈ R
n | σi(x) = 0, i = 1, 2, . . . ,m } =

m⋂
i=1

Si (4.4)
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The fundamental assumption is the following: The simultaneous satisfac-
tion of the m restrictions, σi(x) = 0,i = 1, 2, · · · ,m, on the part of the con-
trolled state vector trajectory x(t), ideally produces a desired closed loop behav-
ior for the system. These restrictions are represented by a smooth intersection
manifold, S, locally of dimension n − m. The condition x ∈ S is achieved
thanks to the control actions which, in turn, are restricted by: u ∈ {0, 1}m,
i.e., ui ∈ {0, 1} for i = 1, 2, · · · ,m.

The smooth algebraic restrictions, σi(x) = 0, i = 1, . . . ,m, define m
smooth manifolds in R

n, each one of dimension n−1. We denote each smooth
manifold by Si, and define it as

Si = {x ∈ R
n | σi(x) = 0} (4.5)

The intersection of the m smooth manifolds Si is denoted by S and it is
defined as follows:

S = {x ∈ R
n | x ∈ Si, i = 1, 2, · · · ,m} (4.6)

One of the primordial facets of the design of feedback control laws for
MIMO switch regulated systems is given by the fact that the m smooth
functions, sigmai(x), constitute an integral part of the control design problem.
The choice of the outputs and, therefore, of the restrictions σi(x) = 0, i.e., of
S =

⋂Si, depend entirely on our control objective.
In order to avoid parallelism between the zero level sets of the sliding

surfaces, we enforce the assumption that the map σ : Rn → R
m is full rank m.

In other words, the set of row gradients ∂σi(x)/∂x
T , i = 1, 2, · · · ,m, are

locally linearly independent around an arbitrary operating point, x0.

4.4 Some notation

Let f(x) be a smooth vector field, defined on the tangent space to R
n and

let G(x) be a smooth matrix constituted by m columns representing smooth
vector fields, gi(x), i = 1, 2, · · · ,m. We assume that dim {span G(x)} = m,
i.e., that span G(x) is a proper m-dimensional subspace of the tangent space
to R

n. Also, we say that the range of G(x) is m. Let σ(x) be a smooth
m dimensional map, i.e., one taking values in R

m. We represent σ(x) as an
m vector of components σi(x), i = 1, 2, · · · ,m. The matrix of row gradient
vectors ∂σ/∂xT is an m× n matrix and assumed to be locally full rank m.

We define the directional derivative of a smooth vector function σ(x),
along the direction of the vector field f(x), as the m column vector quan-
tity: (∂σ/∂xT )f(x). Each entry of the preceding column vector is of the form:
(∂σi(x)/∂x

T )f(x)= Lfσi(x).

Lfσ(x) =

⎡
⎢⎣

Lfσi(x)
...

Lfσm(x)

⎤
⎥⎦ (4.7)
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Similarly, we denote by LGσ(x), the following m×m matrix:

LGσ(x) =
∂σ

∂xT
G(x) =

∂σ

∂xT
[g1(x), · · · , gm(x)]

= [Lg1σ(x), Lg2σ(x), · · · , Lgmσ(x)] (4.8)

Notice that

LGσ(x) =

⎡
⎢⎢⎢⎣

Lg1σ1(x) Lg2σ1(x) · · · Lgmσ1(x)
Lg1σ2(x) Lg2σ2(x) · · · Lgmσ2(x)

...
...

. . .
...

Lg1σm(x) Lg2σm(x) · · · Lgmσm(x)

⎤
⎥⎥⎥⎦ (4.9)

The simplest possible inputs-to-sliding surface coordinate functions
relation occurs when the m × m matrix, LGσ(x) is locally invertible. This
means that the first order time derivatives of each one of the sliding surface
vector components: σj(x), j = 1, 2, · · · ,m, depends on at least one, or some,
of the control inputs but in a linearly independent manner. The invertibility
assumption on LGσ(x) corresponds to a slight generalization of the “relative
degree one” assumption in the scalar case. In the MIMO case, we say that
the vector relative degree of σ(x) is the m vector: 1m = (1, 1, . . . , 1) .

Example 4.2. Consider the following simplified model of an n-link robotic
manipulator

M(q)q̈ = C(q, q̇)q̇ + τ (4.10)

where q ∈ R
n are the link positions and q̇ ∈ R

n are the link velocities. M(q) ∈
R

n×n is a symmetric, positive definite matrix (i.e., it is globally invertible).
The vector τ is the vector of independent control inputs τ = (τ1, . . . , τn). Let
σ(q, q̇) be given by the n vector σ = q̇ + Λ(q − q∗) with Λ a full rank n × n
positive definite symmetric matrix and q∗ is a desired constant link position
vector.

Clearly x = (qT , q̇T )T = (xT
1 , x

T
2 )

T , u = τ , σ = x2 + Λ(x1 − q∗) and,

f(x) =

(
x2

M−1(x1)C(x1, x2)x2

)
, G(x) =

(
0

M−1(x1)

)
(4.11)

The gradient matrix of the vector σ is ∂σ/∂xT = [Λ; I]. The column vector
Lfσ and the matrix LGσ are given by

Lfσ =
(
Λ+M−1(x1)C(x1, x2)

)
x2, LGσ = [Λ; I]

(
0

M−1(x1)

)
= M−1(x1)

(4.12)

i.e., LGσ is invertible and σ is, globally, vector relative degree: 1n =
(1, 1, . . . , 1).
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4.5 Equivalent control and ideal sliding dynamics

Let us assume that, somehow, through the application of suitable feedback
control laws that define the position of the switches, we manage to make the
condition: x ∈ S valid, even if this is only a local achievement. In other words,
by appropriate commutations, we force the state x to evolve on the intersection
of all the smooth manifolds Si, that represent the desired algebraic state
restrictions which force the system to satisfy the specified control objectives.

We define the equivalent control as the smooth feedback control law,
denoted by ueq(x), which, ideally, locally sustains the state evolution on the
smooth manifold S, provided the initial state of the system happens to be
located on S. The equivalent control enforces upon any state trajectory start-
ing on S the invariance conditions: σ = 0, σ̇ = 0.

Let LGσ(x) be locally invertible. The vector of sliding surface coordinate
functions, σ(x), satisfies, on σ = 0, then:

σ̇(x) =
∂σ

∂xT
(f(x) +G(x)ueq(x)) = 0 (4.13)

i.e.,

Lfσ(x) + [LGσ(x)]ueq(x)

∣∣∣∣
σ=0

= 0 (4.14)

and, therefore, the equivalent control is expressed, in a unique fashion as:

ueq(x) = −[LGσ(x)]
−1Lfσ(x)

∣∣∣∣
σ=0

(4.15)

The closed loop controlled vector field evolving on the manifold S is
expressed as:

ẋ = f(x)−G(x)[LGσ(x)]
−1Lfσ(x) (4.16)

Note that for any other initial condition which is not located on the smooth
manifold S, the state of the system, under the influence of the control u =
−[LGσ(x)]

−1Lfσ(x), evolves in such a manner that σ(x) remains a constant
vector function. Clearly, this constant value adopts the value 0 only when the
initial state x0 satisfies x0 ∈ S. The closed loop system, virtually controlled
by the equivalent control, may be alternatively written as

ẋ =

{
I −G(x)[LGσ(x)]

−1 ∂σ

∂xT

}
f(x)

∣∣∣∣
σ=0

= M(x)f(x)

∣∣∣∣
σ=0

(4.17)

Proposition 4.3. The square n × n, matrix M(x), is a projection oper-
ator, onto the tangent space of S, whose null space is represented by the
span G(x). In other words, M(x) projects any smooth vector field lying in the
tangent space to R

n onto the tangent subspace to S along the span of G(x),
or in a parallel fashion to spanG(x).
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Indeed, let v be a vector field defined in the tangent space to R
n such that

v ∈ span G(x) i.e. , v may be expressed as v(x) = G(x)α(x) for a certain
m-dimensional smooth vector field α(x). Then,

M(x)v(x) =

{
I −G(x)[LGσ(x)]

−1 ∂σ

∂xT

}
G(x)α(x)

=

{
G(x)−G(x)[LGσ(x)]

−1 ∂σ

∂xT
G(x)

}
α(x)

=
{
G(x)−G(x)[LGσ(x)]

−1LGσ(x)
}
α(x)

= [G(x)−G(x)]α(x) = 0 (4.18)

Additionally, the n-dimensional row vectors of the matrix ∂σ
∂xT are all or-

thogonal to the images under M(x) of the vector fields lying in the tangent
space to R

n. To see this, it is enough to demonstrate that any 1-form lying
in the span de ∂σ

∂xT annihilates all the vector fields constituting the matrix,
M(x).

A 1-form in the span of ∂σ
∂xT is written as: ξT (x) ∂σ

∂xT , where ξT (x) is a
nonzero, completely arbitrary, m-dimensional vector field.

Indeed:

ξT (x)
∂σ

∂xT
M(x) = ξT (x)

∂σ

∂xT

{
I −G(x)[LGσ(x)]

−1 ∂σ

∂xT

}

= ξT (x)

[
∂σ

∂xT
− LGσ(x)[LGσ(x)]

−1 ∂σ

∂xT

]

= ξT (x)

[
∂σ

∂xT
− ∂σ

∂xT

]
= 0 (4.19)

The images under M(x) of any vector lying in the tangent space of Rn

is in the null space of ∂σ
∂xT . In other words, they are in the tangent subspace

to S.
It is clear that M2(x) = M(x) given that M(x)G(x) = 0.

Example 4.4. In the n link manipulator example described above, on σ = 0,
one has x2 = −Λ(x1 − q∗). The equivalent control is given by

ueq(x) = −(LGσ)
−1Lfσ = −(M(x1)Λ+ C(x1, x2))x2 (4.20)

and the ideal sliding dynamics is found to be

d

dt

(
x1

x2

)
=

(
I −

(
0

M−1(x1)

)
M(x1)[Λ; I]

)(
x2

M−1(x1)C(x1, x2)x2

)

=

(
x2

M−1(x1)C(x1, x2)x2

)
−
(
0 0
Λ I

)(
x2

M−1(x1)C(x1, x2)x2

)

=

(
x2

−Λx2

)
=

(−Λ(x1 − q∗)
−Λx2

)
(4.21)
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i.e., on σ(x) = 0, the link positions are ideally governed by

ẋ1 = −Λ(x1 − q∗), x2 = −Λ(x1 − q∗) (4.22)

The equilibrium position vector, q∗, is a globally asymptotically exponentially
stable equilibrium in R

n.

4.6 Invariance with respect to matched perturbations

Consider the treated MIMO nonlinear system, additively perturbed by an
unknown, possibly state dependent, vector field, of unknown nature denoted
by, ξ(x), affecting the system as follows: ẋ = f(x)+G(x)u+ ξ(x). The system
is assumed to be controlled by a set of m independent switches acting as
control inputs. Let S be a sliding surface, obtained as the intersection of
m smooth manifolds represented by the algebraic conditions: hi(x) = 0 for
i = 1, 2, · · · ,m. Over this sliding surface, S, we want to induce a forced
trajectory of the system state as that obtained through the creation of a
sliding regime, even if this achievement is only locally valid. The perturbation
field ξ(x) is assumed to be a bounded function of the state of the system.

Assume we may create a sliding motion on the sliding surface: S in spite
of the presence of the perturbation field ξ(x). The existence of such a sliding
regime implies the existence of a smooth control, the perturbed equivalent
control, still denoted by: ueq, which in an ideal fashion would maintain the
trajectories of the system constrained to the manifold S.

Necessarily, the equivalent control in this case is a function of the unknown
vector field ξ(x) and it would be given by

ueq(x) = −[LGσ(x)]
−1 (Lfσ(x) + Lξσ(x)) (4.23)

The corresponding ideal sliding dynamics is given by

ẋ = f(x)−G(x)[LGσ(x)]
−1 (Lfσ(x) + Lξσ(x))

=

[
I −G(x)[LGσ(x)]

−1 ∂σ

∂xT

]
f(x)

+

[
I −G(x)[LGσ(x)]

−1 ∂σ

∂xT

]
ξ(x) (4.24)

The projection operator M(x) over the tangent space to S, parallel to the
span of G(x), acts over the sum of vector fields f(x)+ ξ(x), in the creation of
a sliding regime on S.

Clearly, the ideal sliding dynamics is totally independent of the perturba-
tion input vector ξ(x), if and only if the vector field ξ(x) lies in the null space
of M(x), i.e., [

I −G(x)[LGσ(x)]
−1 ∂σ

∂xT

]
ξ(x) = 0 (4.25)
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The ideal sliding dynamics is invariant with respect to the perturbation field
if and only if the vector ξ(x) belongs to the span of G(x). There exists then
a nonzero vector function taking values in Rm, denoted by α(x), such that

ξ(x) = G(x)α(x) (4.26)

The perturbation field ξ(x) is contained in the span of the columns of G(x).
Such perturbations receive the name of matched perturbations and the previ-
ous condition is known as the matching condition.

4.7 Reachability of the sliding surface

Consider the scalar quantity:

V (y) =
1

2
yT y =

1

2
σT (x)σ(x) ≥ 0 (4.27)

This quantity represents a sort of instantaneous sliding surface “output
error energy” quadratically measuring the distance from the representative
point x in the state space to the smooth manifold S. The quantity V (y)
is identically zero precisely over the manifold S and it represents a positive
semi-definite function of the multi-variable sliding surface coordinate function
y = σ.

Therefore, a plausible strategy to reach the sliding surface from a neigh-
borhood of the manifold S which allows us to satisfy the desired restriction
σ(x) = 0 is to exercise control actions u ∈ {0, 1}m that result in a strict
decrease of the quantity V (σ(x)).

This is achieved influencing the system in such a manner that the velocity
of variation of V (σ(x)) be strictly negative. This means

d

dt
(V (σ(x))) =

1

2

d

dt

(
σT (x)σ(x)

)
= σT (x)σ̇(x) < 0 (4.28)

Using the relation, σ̇(x) = Lfσ(x)+LGσ(x)u and realizing that Lfσ(x)+
LGσ(x)ueq = 0 for any x /∈ S and further adding and subtracting the quantity:
LGσ(x)ueq to the first order time derivative of σ(x) in the previous expression,
we have the following relations:

σT (Lfσ(x) + LGσ(x)u) = σT (Lfσ(x) + LGσ(x)(u− ueq)

+LGσ(x)ueq)

= σTLGσ(x)(u− ueq) < 0 (4.29)

This inequality may be expressed in the following manner:

σT [Lg1σ]u1 + σT [Lg2h]u2 + · · ·σT [Lgmσ]um <

σT [Lg1σ]u1eq + σT [Lg2σ]u2eq + · · ·σT [Lgmσ]umeq (4.30)
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A sufficient condition to achieve this last inequality is to apply one of the
two possible values for uj , j = 1, . . . ,m, according to the sign of the factor
multiplying the control input uj represented by σTLgjh. We use then

uj =

{
1 if σTLgjσ(x) < 0
0 if σTLgjσ(x) > 0

(4.31)

In other words,

uj =
1

2

[
1− sign

(
σTLgjσ(x)

)]
(4.32)

As usual, let 1m be an m dimensional column vector constituted by 1’s,
i.e., 1m = [1, 1, . . . , 1]T . The suggested control law is written as follows:

u =
1

2

[
1m − SIGN

(
σTLGσ(x)

)T ]
(4.33)

4.8 Control of the Boost-Boost converter

We retake the multi-variable “Boost-Boost” example with the following sim-
plification: L1 = L2 = L y C1 = C2 = C. We also carry out the follow-
ing normalization of the state variables, the time and a redefinition of the
resistances

x1 =
i1
E

√
L

C
, x2 =

v1
E
, x3 =

i2
E

√
L

C
, x4 =

v2
E
,

τ =
t√
LC

, Q = R

√
C

L
, QL = RL

√
C

L

The normalized model results then in the following set of differential equations

ẋ1 = −u1x2 + 1

ẋ2 = u1x1 − 1

Q
x2 − x3

ẋ3 = −u2x4 + x2

ẋ4 = u2x3 − x4

QL
(4.34)

Using the previously introduced notation, of vector fields, we have

f(x) =

⎡
⎢⎢⎣

1
−x3 − 1

Qx2

x2

− 1
QL

x4

⎤
⎥⎥⎦ , G(x) =

⎡
⎢⎢⎣
−x2 0
x1 0
0 −x4

0 x3

⎤
⎥⎥⎦ (4.35)
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The control objective is to have the normalized average capacitor voltages
x2 and x4 to adopt the following desired values X2, X4, respectively. We try
the following sliding surface coordinate functions:

σ1(x) = x2 −X2, σ2(x) = x4 −X4 (4.36)

Clearly, forcing to zero the vector of sliding surface coordinate func-
tions means that the capacitor voltages reach the desired equilibrium values.
We must nevertheless establish the nature and stability of the corresponding
zero dynamics.

In our case we have

Lfσ(x) =
∂σ

∂xT
f(x) =

[−x3 − 1
Qx2

− 1
QL

x4

]
,

LGσ(x) =
∂σ

∂xT
G(x) =

[
x1 0
0 x3

]
(4.37)

and the equivalent control is given by

ueq(x) = −[LGσ(x)]
−1Lfσ(x) =

⎡
⎢⎢⎣
x3 + (1/Q)x2

x1
1

QL

(
x4

x3

)
⎤
⎥⎥⎦ (4.38)

The ideal sliding dynamics occurs when ueq(x) acts over the system and
this satisfies the conditions: x2 = X2 and x4 = X3. We then have

ẋ1 = −
(
x3 + (1/Q)X2

x1

)
X2 + E

ẋ3 = − 1

QL

(
X

2

4

x3

)
+X2 (4.39)

It is not difficult to see that these set of dynamics is unstable around the
desired equilibrium point.

The alternative is then to use as coordinate functions of the sliding surfaces
other functions which stably reproduce the desired output voltages when
forced to be zero. These alternative functions are represented by the sta-
bilization errors of the input inductor currents in each stage of the cascaded
system.

σ1(x) = x1 −X1, σ2(x) = x3 −X3 (4.40)

To specify these functions we compute the state and input equilibrium
points in terms of the desired average output equilibrium voltages,

X1 =
1

Q
X

2

2 +
1

QL
X

2

4, X3 =
1

QL

(
X

2

4

X2

)
(4.41)
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We now have

Lfσ(x) =

[
1
x2

]
, LGσ(x) =

[−x2 0
0 −x4

]
(4.42)

The equivalent control is thus given by

ueq(x) =

⎡
⎢⎢⎣

1

x2

x2

x4

⎤
⎥⎥⎦ (4.43)

The ideal sliding dynamics corresponding to X1 = X1, x3 = X3 is given by

ẋ2 =
X1

x2
− x2

Q
−X3

ẋ4 =
x2

x4
X3 − x4

QL
(4.44)

It is easy to verify that the obtained zero dynamics have the desired average
output equilibrium voltages as asymptotically stable equilibria.

According to the developed theory, the intersection of the sliding surfaces
is reachable by means of the following switching policy:

u1 =

{
1 if (x1 −X1)x2 > 0
0 if (x1 −X1)x2 < 0

u2 =

{
1 if (x3 −X3)x4 > 0
0 if (x3 −X3)x4 < 0

(4.45)

4.8.1 Simulations

We take a typical converter with the following parameters

L1 = L2 = L = 0.01 [H], C1 = C2 = 10−4 [F], R1 = RL = 100 [Ω]

It is desired to control the capacitor voltages to the values:

V1d = 60.03 [V], V2d = 238.80 [V].

The equilibrium values of the average input inductor currents to each stage
correspond approximately to the following values:

I1d = 20.40 [A], I2d = 9.59 [A]

Figures 4.2 and 4.3 depict the sliding mode controlled responses of the
multi-variable boost-boost converter.



4.9 Control of the double buck-boost converter 139

4.9 Control of the double buck-boost converter

Consider the composite converter constituted by the cascade connection of two
stages of the “buck-boost” converter, which we address as the double buck-
boost converter, shown in the Figure 4.4. This is clearly a MIMO converter
regulated by two independent switches.

The set of differential equations describing the converter dynamics is read-
ily obtained from the use of Kirchoff’s laws, considering the four possible cases
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Fig. 4.2. State variable responses of sliding mode controlled boost-boost converter
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Fig. 4.3. Sliding surfaces, control inputs trajectories of sliding mode controlled
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Fig. 4.4. Double buck-boost converter circuit

for the constant values of the control inputs: (u1, u2) and proceeding to obtain
a traditional state model combining the four possibilities. The switched model
is then given by

L1
di1
dt

= (1− u1) υ1 + u1E

C1
dυ1
dt

= − (1− u1) i1 − υ1
R1

L2
di2
dt

= u2υ1 + (1− u2) υ2

C2
dυ2
dt

= − (1− u2) i2 − υ2
RL

(4.46)

where i1 is the current in the first stage input inductor. υ1 is the output
capacitor voltage at the first stage. i2 is the input current to the second stage
inductor and υ2 is the second stage output capacitor voltage.

We carry out, as usual, the following normalization of the state variables
and the time variable:

x1 =
i1
E

√
L1

C1
, x2 =

υ1
E

, x3 =
i2
E

√
L1

C1
, x4 =

υ2
E

(4.47)

τ =
t√

L1C1

, Q1,L = R1,L

√
C1

L1
, α1 =

L2

L1
, α2 =

C2

C1
(4.48)

The normalized model results then in

ẋ1 = (1− u1)x2 + u1

ẋ2 = − (1− u1)x1 − 1

Q1
x2

α1ẋ3 = u2x2 + (1− u2)x4

α2ẋ4 = − (1− u2)x3 − 1

QL
x4 (4.49)

In steady state conditions u1 = U1 and u2 = U2 we obtain the following
operating, or state equilibrium, point

X̄1 =
1

Q1

U1

(1− U1)
2 , X̄2 = − U1

(1− U1)
(4.50)
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where

X̄3 = − 1

QL

U1U2

(1− U1) (1− U2)
2

X̄4 =
U1U2

(1− U1) (1− U2)
(4.51)

In terms of vector fields and input matrices we clearly have the following
identification:

f (x) =

⎡
⎢⎢⎢⎣

x2

−x1 − 1
Q1

x2
1
α1

x4

− 1
α2

(
x3 +

1
QL

x4

)

⎤
⎥⎥⎥⎦

G (x) =

⎡
⎢⎢⎣
1− x2 0
x1 0
0 1

α1
(x2 − x4)

0 1
α2

x3

⎤
⎥⎥⎦

4.9.1 Direct control

The control objective consists in stably regulating the average normalized
output voltages, υ2 and υ4, towards the desired equilibrium values: X̄2 and
X̄4 respectively. We first try the following sliding surface coordinate functions:

σ1 (x) = x2 − X̄2, σ2 (x) = x4 − X̄4 (4.52)

Forcing these functions to zero means that the output capacitor voltages
coincide with the desired values. We must establish the nature of the stability
of the corresponding zero dynamics.

For this system we have

Lfσ (x) =
∂σ

∂xT
f (x) =

⎡
⎣ −

(
x1 +

1
Q1

x2

)

− 1
α2

(
x3 +

1
QL

x4

)
⎤
⎦

LGσ (x) =
∂σ

∂xT
G (x) =

[
x1 0
0 x3

α2

]
(4.53)

The equivalent control is then given by

ueq (x) = − [LGσ (x)]
−1

Lfσ (x) =

⎡
⎢⎢⎣
1 +

1

Q1

x2

x1

1 +
1

QL

x4

x3

⎤
⎥⎥⎦ (4.54)
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The ideal sliding dynamics occurs whenever ueq(x) acts on the system and
this is satisfying the sliding conditions: x2 = X2 and x4 = X4. We then have

ẋ1 = − 1

Q1

(
X̄2 − 1

x1

)
X̄2 + 1

α1ẋ3 = − 1

QL

(
X̄4 − X̄2

x3

)
X̄4 + X̄2 (4.55)

It is not difficult to see that this dynamics is unstable around the equili-
brium point. We show this fact below by means of approximate linearization.

The ideal sliding dynamics, or the zero dynamics, represents a decoupled
system in the state variable x1. We carry out the stability analysis for this
variable around the equilibrium point. We have

X̄1 =
(
X̄2 − 1

) X̄2

Q1
(4.56)

The incremental model, or tangent linearization model, of the normalized
input current is derived to be

ẋδ =
Q1(

X̄2 − 1
)
X̄2

xδ (4.57)

where xδ = x1 − X̄1. The linearized system is evidently unstable for being a
linear system with a characteristic polynomial with a zero in the right hand
of the complex plane, given that X̄2 < 0. The zero dynamics is therefore
unstable regardless of the stability characteristics of the variable x3.

4.9.2 Indirect control

The alternative is then to use as sliding surface coordinate functions which
reproduce the desired values of the inductor currents when they become zero.

h1 (x) = x1 − X̄1, h2 (x) = x3 − X̄3 (4.58)

To specify these functions we compute the equilibrium points of the system
under ideal sliding conditions, rewriting the corresponding currents X̄1 and
X̄3 in terms of the desired output voltage values at the stages 1 and 2.

X̄1 =
(
X̄2 − 1

) X̄2

Q1
, X̄3 =

(
X̄4

X̄2
− 1

)
X̄4

QL
(4.59)

We now have

Lfσ (x) =

[
x2
1
α1

x4

]
, LGσ (x) =

[
1− x2 0

0 1
α1

(x2 − x4)

]



4.9 Control of the double buck-boost converter 143

The equivalent control is then given by

ueq (x) = − [LGσ (x)]
−1

Lfσ (x) =

[ x2

x2−1
x4

x4−x2

]
(4.60)

In this case, the ideal sliding dynamics corresponding to x1 = X̄1, x3 = X̄3

is given by

dx2

dτ
=

(
1− X̄2

1− x2

)
X̄2

Q1
− x2

Q1

α2
dx4

dτ
= −

(
x2

x2 − x4

)(
X̄4

X̄2
− 1

)
X̄4

QL
− x4

QL
(4.61)

It is easy to verify that the equilibrium points of this zero dynamics are
asymptotically stable.

According to the developed theory, the intersection of the sliding surfaces
is reachable by means of the following switching policy

u1 =

{
1 if

(
x1 − X̄1

)
(1− x2) < 0

0 if
(
x1 − X̄1

)
(1− x2) > 0

u2 =

{
1 if

(
x3 − X̄3

)
(x2 − x4) < 0

0 if
(
x3 − X̄3

)
(x2 − x4) > 0

(4.62)

In other words, the control policy is given by

u1 =
1

2

[
1− sign

((
x1 − X̄1

)
(1− x2)

)]

u2 =
1

2

[
1− sign

((
x3 − X̄3

)
(x2 − x4)

)]
(4.63)

4.9.3 Simulations

Simulations were carried out with the following design parameter values:

L1 = 20 [mH], C1 = 20 [μF ], L2 = 20 [mH],

C2 = 10 [μF ], R1 = RL = 30 [Ω], E = 15 [V ].

which implies

Q1 = QL = 0.9487,
√

L1C1 = 6.3246× 10−4 [s]

α1 = 1, α2 = 1
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It is desired to regulate the voltage variables to the values

V1d = −22.5 [V ], V2d = 22.5 [V ]

The corresponding equilibrium currents are given by

I1d = 1.875 [A], I2d = −1.5 [A]
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Fig. 4.5. Sliding mode controlled state variable responses of double buck-boost
converter
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Fig. 4.6. Sliding surfaces and control inputs trajectories in sliding mode controlled
double buck-boost converter

Figures 4.5 and 4.6 depict the sliding mode controlled responses of the
multi-variable double buck-boost converter circuit.
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4.10 The fully actuated rigid body

Consider the dynamic model of a fully actuated rigid body classically related
to the Euler equations:

I1ω̇1 = (I2 − I3)ω2ω3 + u1

I2ω̇2 = (I3 − I1)ω3ω1 + u2

I3ω̇3 = (I1 − I2)ω1ω2 + u3

where the ω variables stand for the angular velocities around the principal
axes of inertia (Fig. 4.7). Ij , j = 1, 2, 3, correspond to the principal moments of
inertia. The torque input variables are represented by uj ∈ {0, 1}, j = 1, 2, 3.
These are of the form:uj = W (2vj − 1) with vj ∈ {0, 1}, j = 1, 2, 3.

Fig. 4.7. The fully actuated rigid body

Suppose it is desired to bring the angular velocities of the rigid body to
a complete rest. This maneuver is known as “de-tumbling.” Let ω stand for
the vector of angular velocities. A plausible vector of sliding surfaces may be
chosen to be

σ =

⎡
⎣σ1(ω)
σ2(ω)
σ3(ω)

⎤
⎦ =

⎡
⎣ω1

ω2

ω3

⎤
⎦ (4.64)

Thus σ = 0 represents the desired stabilizing (de-tumbling) control objective.
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Consider the quadratic function

V (σ) =
1

2
σTσ =

1

2

[
ω2
1 + ω2

2 + ω2
3

]
(4.65)

Therefore,

V̇ = ω1ω̇1 + ω2ω̇2 + ω3ω̇3 = ω1u1 + ω2u2 + ω3u3

The multi-variable torque input policy can therefore be synthesized as

u1 = −W1 sign(ω1), u2 = −W2 sign(ω2), u3 = −W3 sign(ω3)

i.e., the switching policies are just

vj =
1

2
(1− signωj), j = 1, 2, 3. (4.66)

This policy renders

V̇ = −W1|ω1| −W2|ω2| −W3|ω3| ≤ 0 (4.67)

The choice of this policy makes use of the controllers full range of torque
amplitude. Simulations next page show the performance of such a discontin-
uous control policy.

4.10.1 Simulations

For the simulations in Fig. 4.8, we used the following parameter values:

I1 = 1 [N−m− s2], I2 = 0.5 [N−m− s2], I3 = 0.2 [N−m− s2]

W1 = W2 = W3 = 0.3 [N−m],
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Fig. 4.8. Sliding mode controlled responses of rigid body angular velocities
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4.10.2 A computed torque controller via Δ − Σ modulation

The fully actuated average rigid body system is linearizable via static state
feedback, with the three linearizing outputs being the angular velocities, ω1,
ω2, and ω3.

Under the assumption of perfect knowledge of the moments of inertia, I1,
I2, and I3, a stabilizing, or de-tumbling, multi-variable feedback strategy is
given by the following prescription of a control law, which includes integral
compensation terms counteracting a possible, unknown, constant moment per-
turbation vector.

u1 = −(I2 − I3)ω2ω3 + I1

(
−λ11ω1 − λ01

∫ t

0

ω1(σ)dσ

)

u2 = −(I3 − I1)ω3ω1 + I2

(
−λ12ω2 − λ02

∫ t

0

ω2(σ)dσ

)

u3 = −(I1 − I2)ω1ω2 + I3

(
−λ13ω3 − λ03

∫ t

0

ω3(σ)dσ

)

The closed loop system evolves in accordance with the following set of
linear decoupled dynamics,

ω̇1 = −λ11ω1 − λ01

∫ t

0

ω1(σ)dσ

ω̇2 = −λ12ω2 − λ02

∫ t

0

ω2(σ)dσ

ω̇2 = −λ13ω3 − λ03

∫ t

0

ω3(σ)dσ

which can be made to have the origin as an asymptotically exponentially stable
equilibrium point under suitable choice of the controller design parameters
λ1i, λ0,i, i = 1, 2, 3.

4.10.3 Simulations

The numerical values, used in the simulations, for the moments of inertia, and
for the design parameters were set to be

I1 = 1 [N−m− s2], I2 = 0.5 [N−m− s2], I3 = 0.2 [N−m− s2]

λ1i = 2ζiωni, λ0i = ω2
ni, ζi = 0.707, ωni = 0.5, i = 1, 2, 3

The performance of the proposed average feedback controller, addressed
as the computed torque controller, is depicted in Fig. 4.9.

A two level multi-variable Σ−Δmodulation implementation of the average
feedback control law is achieved via (see Fig. 4.10)

ui =
Wi

2
[sign(uiav) + sign(zi)] , żi = uiav − ui (4.68)
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Fig. 4.9. Closed loop response of average controlled rigid body
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Fig. 4.10. Closed loop response of switched controlled rigid body via two level
Δ−Σ modulation implementation of average computed torque control law

4.11 The multi-variable relative degree

For ease of reference, we denote by (f,G,H) the square system,

ẋ = f(x) +G(x)u, x ∈ R
n, u ∈ {0, 1}m,

y = H(x), y ∈ Rm

with G(x) = [g1(x), · · · , gm(x)] and H(x) = [h1(x), h2(x), . . . , hm(x)]T .
Since we will be generalizing below the idea of vector relative degree for a

multi-variable system, the relative degree 1m case is circumscribed primarily
to sliding surface coordinate functions in their simplest possible input-output
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relationship. In general, we consider output functions yi = hi(x) which will
not necessarily qualify per se as sliding surface functions.

Definition 4.5. (Isidori[13]) A system (f,G,H) has a vector relative degree
(r1, r2, · · · , rm) at x0 if

1. LgjL
k
fhi(x) = 0, 1 ≤ j ≤ m, k < ri − 1,

1 ≤ i ≤ m, ∀ x ∈ N (x0)
2. The m×m matrix

⎡
⎢⎢⎢⎣

Lg1L
r1−1
f h1(x) · · · LgmLr1−1

f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmLr2−1

f h2(x)
...

...
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎥⎥⎦ (4.69)

is non-singular at x0.

It is clear that this definition generalizes that of SISO systems. Each integer
ri is tied to the i-th output. The dependence upon any one of the components
of u of the successive derivatives of this output does not become manifest until
ri time derivatives have been taken. Thus

y
(ki)
i = Lki

f hi(x) (4.70)

whenever ki < ri − 1.
For ki = ri − 1,

y
(ri)
i = Lri

f hi(x) + Lg1L
ri−1
f hi(x)u1 + · · ·

· · ·+ Lg2L
ri−1
f hi(x)u2 + · · ·+ LgmLri−1

f hi(x)um

= Lri
f hi +

[
Lg1L

r1−1
f hi Lg2L

ri−1
f hi · · · LgmLri−1

f hi

]
u

= Lri
f hi(x) +

[
LGL

ri−1
f hi

]
u (4.71)

where it is implied that at least one of the factors LgjL
ri−1
f hi(x) is nonzero

for 1 ≤ j ≤ m and that the rows LGL
ri
f hi are linearly independent of all other

rows of the form LGL
rj
f hj , j 
= i.

In our simplified notation, things resemble the scalar case in a man-
ner that may not be devoid of confusion. Let r denote the multi-index:
r = (r1, r2, . . . , rm) or, simply, the vector of integer indices ri and let
r− 1 = (r1 − 1, . . . , rm − 1). The expression

y(r) = Lr
fH(x) + LGL

r−1
f H(x)u (4.72)
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is a shorthand notation for the more complex expression,
⎡
⎢⎢⎢⎢⎢⎢⎣

y
(r1)
1

y
(r2)
2
...

y
(rm)
m

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

Lr1
f h1(x)

Lr2
f h2(x)

...
Lrm
f hm(x)

⎤
⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎣

Lg1L
r1−1
f h1(x) · · · LgmLr1−1

f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmLr2−1

f h2(x)
...

...
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1

u2

...
um

⎤
⎥⎥⎥⎦

Example 4.6. The system represents a kinematic model of an object moving
on the cartesian plane (x1, x2)

T ,

ẋ1 = cos(x3)u1, ẋ2 = sin(x3)u1, ẋ3 = u2 (4.73)

with u1 being the forward velocity and u2 being the turning rate. x3 is the
orientation angle with respect to the x1 axis. Set the outputs y = H(x) =
[y1 y2] = [x1 x2]. These outputs have an ill-defined vector relative degree.
Since the first order time derivatives of the components of y already depend
on the control input u1, but they do not depend on u2, the matrix LGH(x)
is not invertible. Notice that f(x) = 0 in this case.

Example 4.7. It will be shown further ahead that the previous third order
example is equivalent, via dynamic feedback, to the following sixth order
system

ẋ11 = x12

ẋ12 = cos(x3)v1 − z1 sin(x3)v2

ż1 = v1

ẋ21 = x22

ẋ22 = sin(x3)v1 + z1 cos(x3)v2

ẋ3 = v2

where v1 and v2 are the control inputs (in fact, v1 = u̇1, v2 = u2, and z1 = u1

is a new state). Setting the output vector to be y = H(x) = (x11, x22)
T , one

finds that

LGH(x) =

[
cos(x3) −z1 sin(x3)
sin(x3) z1 cos(x3)

]
(4.74)

The determinant of LGH(x) is just z1, the forward velocity. As long as this
velocity is nonzero, the vector relative degree of the output y is r = (2, 2)

4.12 Sliding surface vector design

The previous input-output relation, along with the invertibility of the matrix
LGL

r−1
f H(x), motivates the following choices of the components of the vector

of sliding surface coordinate functions:
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σ(x) =

⎡
⎢⎢⎢⎣

σ1(x)
σ2(x)

...
σm(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Lr1−1
f h1 + α1

r1−2L
r1−2
f h1 + · · ·+ α1

1Lfh1 + α1
0h1

Lr2−1
f h2 + α2

r2−2L
r2−2
f h2 + · · ·+ α2

1Lfh2 + α2
0h2

...

Lrm−1
f hm + αm

rm−2L
rm−2
f hm + · · ·+ αm

0 hm

⎤
⎥⎥⎥⎦

This choice guarantees that in closed loop, with σ(x) = 0 being perma-
nently sustained, the output vector components satisfy the following set of
linear time-invariant differential equations,

y1
(r1−1) + α1

r1−2y
(r1−2)
1 + · · ·+ α1

1ẏ1 + α1
0y1 = 0

y2
(r2−1) + α2

r2−2y
(r2−2)
2 + · · ·+ α2

1ẏ2 + α2
0y2 = 0

...

ym
(rm−1) + αm

rm−2y
(rm−2)
m + · · ·+ αm

1 ẏm + αm
0 ym = 0

(4.75)

The choice of the coefficients {ajrj−2, · · · aj1, aj0} for 1 ≤ j ≤ m as Hurwitz
coefficients guarantees the asymptotic convergence of the outputs yj to zero.

The time derivative of the vector of surface coordinate functions σ̇ is
given by

σ̇ =

⎡
⎢⎢⎢⎣

Lr1
f h1 + α1

r1−2L
r1−1
f h1 + · · ·+ α1

1L
2
fh1 + α1

0Lfh1

Lr2
f h2 + α2

r2−2L
r2−1
f h2 + · · ·+ α2

1L
2
fh2 + α2

0Lfh2

...

Lrm
f hm + αm

rm−2L
rm−1
f hm + · · ·+ αm

1 L2
fhm + αm

0 Lfhm

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

Lg1L
r1−1
f h1(x) · · · LgmLr1−1

f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmLr2−1

f h2(x)
...

...
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1

u2

...
um

⎤
⎥⎥⎥⎦

Notice that, from the assumption made about the output vector relative
degree, the quantities LgjL

ri−1
f hi coincide with Lgjσi for all j and i. We have

σ̇ = Lfσ + (LGσ) u (4.76)

where LGσ = [Lg1σ, · · · , Lgmσ].
Since, according to the vector relative degree definition, LGσ is invertible

we have

LGσ =

⎡
⎢⎢⎢⎣

Lg1σ1 Lg2σ1 · · · Lgmσ1

Lg1σ2 Lg2σ2 · · · Lgmσ2

...
...

. . .
...

Lg1σm Lg2σm · · · Lgmσm

⎤
⎥⎥⎥⎦ (4.77)
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The invertibility of LGσ implies that each row of the matrix LGσ con-
tains, at least, a nonzero element. This clearly says that the vector relative
degree of the chosen sliding surface coordinate functions vector is, therefore,
(1, 1, · · · , 1).

On σ = 0 the time derivative of σ is just

σ̇ =

⎡
⎢⎢⎢⎢⎣

Lr1
f h1 +

∑r1−2
i=0

(
α1
i−1 − α1

iα
1
r1−2

)
Li
fh1(x)

Lr2
f h2 +

∑r2−2
i=0

(
α2
i−1 − α2

iα
2
r2−2

)
Li
fh2(x)

...

Lrm
f hm +

∑rm−2
i=0

(
αm
i−1 − αm

i αm
rm−2

)
Li
fhm(x)

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

Lg1L
r1−1
f h1(x) · · · LgmLr1−1

f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmLr2−1

f h2(x)
...

...
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

u1eq

u2eq

...
umeq

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

a1(x)
a2(x)

...
am(x)

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

b11(x) · · · b1m(x)
b21(x) · · · b2m(x)

...
. . .

...
bm1(x) · · · bmm(x)

⎤
⎥⎥⎥⎦ueq

= a(x) +B(x)ueq

and, therefore,

ueq =

⎡
⎢⎢⎢⎣

u1 eq

u2 eq

...
um eq

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎣

Lg1L
r1−1
f h1(x) · · · LgmLr1−1

f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmLr2−1

f h2(x)
...

...
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎥⎥⎦

−1

×

⎡
⎢⎢⎢⎢⎣

Lr1
f h1 +

∑r1−2
i=0

(
α1
i−1 − α1

iα
1
r1−2

)
Li
fh1(x)

Lr2
f h2 +

∑r2−2
i=0

(
α2
i−1 − α2

iα
2
r2−2

)
Li
fh2(x)

...

Lrm
f hm +

∑rm−2
i=0

(
αm
i−1 − αm

i αm
rm−2

)
Li
fhm(x)

⎤
⎥⎥⎥⎥⎦

= −(LGσ)
−1Lfσ = −B−1(x)a(x)

The previous developments point to the fact that it is always possible
to choose sliding surface coordinate functions, σi(x), i = 1, · · · ,m, whose
joint zero level sets result in an asymptotically exponential convergence of
the output vector components to zero (this also applies to output error vectors
with respect to constant reference values.)
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As before, the inherent possible limitations are twofold: The first one is
the determination of the appropriate switching actions, on the part of the
individual control inputs, to guarantee local reachability of the intersection
manifold: σ(x) = 0, and the second limitation is represented by the nature of
the zero dynamics corresponding to the simultaneous zeroing of the output
vector components.

Example 4.8. Consider the permanent magnet synchronous motor (PMSM)
model,

L
dia
dt

= va −Ria +Kmω sin(Nrθ)

L
dib
dt

= vb −Rib −Kmω cos(Nrθ)

J
dω

dt
= Kmib cos(Nrθ)−Kmia sin(Nrθ)−Bω

dθ

dt
= ω

Let x = (ia, ib, ω, θ)
T , u1 = va, u2 = vb. It is readily seen that

f(x) =

⎡
⎢⎢⎣

(−Rx1 +Kmx3 sin(Nrx4))/L
(−Rx2 −Kmx3 cos(Nrx4))/L

(Kmx2 cos(Nrx4)−Kmx1 sin(Nrx4)−Bx3)/J
x3

⎤
⎥⎥⎦ (4.78)

and

g1(x) =

⎡
⎢⎢⎣
1/L
0
0
0

⎤
⎥⎥⎦ , g2(x) =

⎡
⎢⎢⎣

0
1/L
0
0

⎤
⎥⎥⎦ , G(x) =

⎡
⎢⎢⎣
1/L 0
0 1/L
0 0
0 0

⎤
⎥⎥⎦ (4.79)

Consider as the outputs of the PMSM: the angular position y1 = θ = x4

and one of the currents, say y2 = ia = x1.
Then, the input-output relation satisfies

y
(3)
1 =

Km

JL
vb cos(Nrx4)− Km

JL
va sin(Nrx4) + ξ(x1, x2, x3, x4)

ẏ2 =
1

L
(va −Rx1 +Kmx3 sin(Nrx4))

where ξ(x1, x2, x3, x4) is a function of the state vector alone. The system is of
the form:

[
y
(3)
1

ẏ2

]
=

[
ξ(x1, x2, x3, x4)

R
L
x1 +

Km
L

x3 sin(Nrx4)

]
+

[−Km
JL

sin(Nrx4)
Km
JL

cos(Nrx4)
1
L

0

] [
va
vb

]
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The system has a well-defined vector relative degree, r = (3, 1), in the
open region: −π/(2Nr) < θ < π/(2Nr).

Assume we are interested in tracking a given reference trajectory, θ∗(t),
for the rotor angular position y1 = θ = x4, while keeping the current, y2 =
ia = x1, say, at the constant value Ia. Let e1 = y1 − θ∗(t) be the tracking
error associated with the angular position y1 = θ. A set of sliding surfaces,
compatible with the control objective, may be proposed as follows:

σ1 = ë1 + a11ė1 + a10e1 =
Km

J
x2 cos(Nrx4)− Km

J
x1 sin(Nrx4)− B

J
x3 − θ̈∗(t)

+ a11(x3 − θ̇∗(t)) + a10(x4 − θ∗(t))
σ2 = x1 − Ia

Considering now the currents, y1 = ia and y2 = ib, as the outputs, these
also have a well-defined vector relative degree since,

[
ẏ1
ẏ2

]
=

[−R
Lx1 +

Km

L x3 sin(Nrx4)

−R
Lx2 − Km

L x3 cos(Nrx4)

]
+

[
1
L 0

0 1
L

][
va

vb

]
(4.80)

Notice that while in the previous case the vector relative degree is r =
(3, 1) in a constrained region of the state space, then no zero dynamics is
associated with the outputs y = (x4, x1)

T = (θ, ia)
T since the sum of the

components of r equals the order of the system. However, in the last case
where y = (x1, x2)

T = (ia, ib)
T , the vector relative degree is r = (1, 1) and

the sum of its components is 2, i.e., smaller than the order of the system.
A second order zero dynamics exists. Notice that r is globally well defined.

4.13 Further notation

From the definitions in Chapter 2, it is not difficult to show that the iterated
directional derivative LfLgihj(x)−LgiLfhj(x) may be written as a directional
derivative in the direction of the Lie bracket of the vector fields f(x) and
gj(x), i.e.

LfLgihj(x)− LgiLfhj(x) = L[f,gi]hj(x) (4.81)

where

[f, gi] =
∂gi
∂xT

f(x)− ∂f

∂xT
gi(x). (4.82)

We extend this definition to the case of the iterated vectors of directional
derivatives of the form LfLGhj(x) − LGLfhj(x) with G = [g1, . . . , gm] an
n×m matrix.

Consider LfLGhj(x) = [LfLg1hj(x), . . . , LfLgmhj(x)] while LGLfhj(x)
is given by [Lg1Lfhj(x), . . . , LgmLfhj(x)]. Then, ignoring the argument x,
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LfLGhj − LGLfhj = [LfLg1hj − Lg1Lfhj , . . . , LfLgmhj − LgmLfhj ]

= [L[f,g1]hj , . . . , L[f,gm]hj ] = L[f,G]hj

The row vector, L[f,G]hj(x), may also be denoted as: LadfGhj(x), with the
identification: [f(x), gi(x)] = adfgi(x), and [f(x), G(x)] = adfG(x).

The iteration of Lie brackets, as in [f, [f, gj ]] is denoted by ad2fgj . The iter-

ation [f, [f,G]] is then just given by [f, adfG] = ad(adfG) = ad2fG. In general
we define

[f, adk−1
f G] = adkfG, with ad0fG = G (4.83)

Further extending the above notation, we may include expressions such
as: LfLGH(x) − LGLfH(x) in the form L[f,G]H(x) with H an m vector of
smooth functions. Clearly

LfLGH(x)− LGLfH(x) =

⎡
⎢⎣
L[f,G]h1(x)

...
L[f,G]hm(x)

⎤
⎥⎦ = L[f,G]H(x) ∈ R

m×m (4.84)

Similarly we denote L[f,G]H(x) as LadfGH(x)
The possibility of determining a state coordinate transformation, where

the underlying multi-variable integration structure of the system is clearly
exhibited, requires establishing the functional independence of the proposed
new state coordinates. To this respect, we have the following proposition (see
Isidori [13]):

Proposition 4.9. Suppose that the system (f,G,H) has vector relative degree
r = {r1, r2, · · · , rm} at x0. Then, the matrix of row gradients:

Q(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dh1(x)
dLfh1(x)

...

dLr1−1
f h1(x)

dh2(x)
...

dLr2−1
f h2(x)

...
dLfhm(x)

...
dLrm

f hm(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.85)

is full rank r = r1 + r2 + · · ·+ rm ≤ n around x0.

The proof of this proposition may be found in the book by Isidori [13]
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Suppose the system has a vector relative degree {r1, · · · , rm} at the
point x0. Then the set of coordinate functions

φi
1(x) = hi(x)

φi
2(x) = Lfhi(x)
...

φi
ri(x) = Lri−1

f hi(x)

(4.86)

for 1 ≤ i ≤ m, with r = r1 + r2 + · · · + rm < n qualifies as a partial state
coordinate transformation map which can be complemented with n−∑

ri =
n− r additional functionally independent maps φr+1, · · ·φn such that

Φ(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1
1(x)
...

φ1
r1(x)
...

φ2
1(x)
...

φm
rm(x)

φr+1(x)
...

φn(x)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.87)

has a full rank Jacobian matrix at x0. Moreover, if the input distribution
span{g1, · · · , gm} is involutive around x0, we can block-off the presence of the
control inputs from the last n− r transformed equations.

Let, for 1 ≤ i ≤ m

ξi =

⎡
⎢⎢⎢⎣

ξi1
ξi2
...
ξiri

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

φi
1(x)

φi
2(x)
...

φi
ri(x)

⎤
⎥⎥⎥⎦ , and ξ =

⎡
⎢⎢⎢⎣

ξ1

ξ2

...
ξm

⎤
⎥⎥⎥⎦ (4.88)

while

η =

⎡
⎢⎢⎢⎣

η1
η2
...

ηn−r

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

φr+1(x)
φr+2(x)

...
φn(x)

⎤
⎥⎥⎥⎦ (4.89)

Then, defining: bi(ξ, η) = Lri
f hi(Φ

−1(ξ, η))

aij(ξ, η) = LgjL
ri−1
f hi(Φ

−1(ξ, η)), 1 ≤ i, j ≤ m (4.90)
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The transformed system equations, for 1 ≤ i ≤ m, are then of the form:

ξ̇i1 = ξi2
...

ξ̇iri−1 = bi(ξ, η) +

m∑
j=1

aij(ξ, η)uj

yi = ξi1

The rest of the n−∑
ri = n− r equations are of the form

η̇ = q(ξ, η) (4.91)

provided the distribution {g1, · · · , gm} is involutive. Otherwise, the differential
equation for the components of η exhibits the influence of the control inputs
in an affine manner:

η̇ = q(ξ, η) + p(ξ, η)u (4.92)

4.14 The under-actuated rigid body

Consider now the same dynamic model of a rigid body which lacks a control
input for the third axis (Fig. 4.11)

Fig. 4.11. The under-actuated rigid body.
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I1ω̇1 = (I2 − I3)ω2ω3 + u1

I2ω̇2 = (I3 − I1)ω3ω1 + u2

I3ω̇3 = (I1 − I2)ω1ω2

As before, the available control inputs ui are assumed to take values in
{−Wi, 0,+Wi}, i = 1, 2. They are the pulsed control input torques.

If we consider as the system outputs y1 = ω1 and y2 = ω3, the vector
relative degree r of the outputs is

r = {1, 2}
Since the sum of the components of the relative degree vector adds up to

the system dimension, the system can be put in normal form without any zero
dynamics.

Indeed, let ξ11 = ω1 and ξ21 = ω3. We have, by virtue of

ξ22 = ω̇3 = (
I1 − I2

I3
)ω1ω2 (4.93)

that the following map qualifies as a full state coordinate transformation, away
from ω1 = 0 ⎡

⎢⎢⎢⎢⎣

ξ11

ξ21

ξ22

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ ω1

ω3

( I1−I2
I3

)ω1ω2

⎤
⎦ (4.94)

The inverse transformation is just

⎡
⎣ω1

ω2

ω3

⎤
⎦ =

⎡
⎢⎢⎣

ξ11(
I3

I1−I2

)
ξ22
ξ11

ξ21

⎤
⎥⎥⎦ (4.95)

The transformed system can be written in Isidori’s canonical form (see
[13]), as

ξ̇11 =

[
(I2 − I3)I3
I1(I1 − I2)

]
(ξ22)

2

ξ11
+ u1

ξ̇21 = ξ22

ξ̇22 =

[
(I2 − I3)I3
I1(I1 − I2)

]
(ξ22)

4

(ξ11)
2
(ξ11 + ξ21) +

[(
I3

I1 − I2

)
ξ22
ξ11

]
u1 + ξ11u2

y1 = ξ11 , y2 = ξ21

Suppose it is desired to bring the three angular velocities of the rigid body
to a complete rest. Let, as before, ω stand for the vector of angular velocities.

Given that the new system only has two control inputs, u1, u2, we should
only have two sliding surfaces.
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Evidently the previously used Lyapunov function does not provide a solu-
tion to our problem since

V (e) =
1

2

[
I1ω

2
1 + I2ω

2
2 + I3ω

2
3

]
(4.96)

leads to

V̇ = ω1u1 + ω2u2 (4.97)

The same policy as before u1 = −W1sign(ω1) and u2 = −W2sign(ω2)
yields

V̇ = −W1|ω1| −W2|ω2| ≤ 0 (4.98)

which is not negative definite, but only negative semi-definite. The asymptotic
stability of the origin of the sliding surface space is not assured.

Consider the set of rather “natural” sliding surfaces:

[
σ1

σ2

]
=

[
ω1

ω̇3 + λ2ω3

]
(4.99)

We have

σ̇1 =

(
I2 − I3

I1

)
ω2ω3 +

u1

I1

σ̇2 =

(
I1 − I2

I3

)
(ω̇1ω2 + ω1ω̇2) + λ2

(
I1 − I2

I3

)
ω1ω2

=

(
I1 − I2

I3

)[(
I2 − I3

I1

)
ω2
2ω3 +

(
I3 − I1

I2

)
ω2
1ω3

]

+ λ2

(
I1 − I2

I3

)
ω1ω2 +

(
I1 − I2

I3

)[
u1

I1
ω2 +

u2

I2
ω1

]

Since σ1 = ω1 is relative degree 1, the control policy u1 = −W1signσ1

drives ω1 to zero in finite time whenever W1 overcomes (I2 − I3)ω2ω3. This
ideally results in a blocking of the control actions due to u2 and, hence, σ2

remains uncontrolled from there on.
The problem is then that of driving σ2 to zero faster than σ1. In other

words, if ω3 and ω̇3 converged to zero faster than ω1, then ω2 would also
converge to zero. In this case however, the control actions due to u1 would be
blocked from the dynamics of σ2.

Besides the above inconvenient situation, the obstacle resides in the fact
that ω3 can only approach zero in an exponential manner which, theoretically,
takes infinite time. The scheme will surely not produce the desired result as
it can be verified from Figure 4.12.

In order to bestow some exponential decay on ω1, which could be controlled
through the imposed eigenvalue on the closed loop dynamics of ω1 we propose
the rather “unnatural” set of sliding surface coordinate functions
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σ1 = ω̇1 + λ1ω1

σ2 = ω̇3 + λ2ω3

The first sliding surface coordinate function time derivative immediately
involves the first order time derivative of the control input u1. We consider
then the extension of the control variable u1, u̇1, as the actual control input
while u1 plays the role of an additional available state of the system.

We use the switching policy

u̇1 = −W1sign(σ1), u2 = −W2sign(σ2) (4.100)
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Fig. 4.12. Stabilization of ω1 and ω3 via static feedback
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Fig. 4.13. Sliding surface coordinate functions and control inputs corresponding to
the stabilization of ω1 and ω3

The evolution of the sliding surfaces coordinate functions and that of the
corresponding control inputs is shown in Figure 4.13.
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The switch controlled angular velocities are depicted in Figure 4.14.
The steady state values for the angular velocities obtained in the simulations
turned out to be

ω1(∞) = 5.07× 10−4, ω2(∞) = −4.53× 10−5, ω3(∞) = 7.72× 10−8

i.e., they are practically zero.
From the physical viewpoint, the above solution is not entirely satisfactory

either. The control input u1 actually represents a binary-valued torque. Since
the extended control input, u̇1, was unjustifiably allowed to be binary valued,
then u1 results in a continuous signal which violates the initial assumption.
The control of this system requires a more precise approach. The Delta-Sigma

0 5 10

0

0.2

0.4

0 5 10

0

0.2

0.4

0 5 10
−0.2

−0.1

0

0.1

0 5 10
−0.1

0

0.1

0.2

0 5 10
−0.4

−0.2

0

0.2

0.4

0 5 10
−0.5

0

0.5

w1(t)

w2(t)

w3(t)

s1(t)

s2(t)

u1(t), du1/dt

u2(t)

Fig. 4.14. Stabilization of under-actuated rigid body via dynamic extension

modulation approach is clearly suitable since an average (smooth) stabilizing
policy is entirely possible by means of linearizing feedback which guarantees
any desirable slow stabilization for ω1 while respecting the suitably bounded
character of the average input torques u1 and u2. Delta-Sigma modulation
translates then this average designed control feedback law into a set of corre-
sponding switching inputs for the actual u1 and u2. We leave the details as
an exercise for the reader.



162 4 MIMO sliding mode control

4.15 Two cascaded buck converters

As we have already seen, the buck converter is a SISO system whose aver-
age model is linear. However, the cascade connection of two independently
controlled buck converters conforms an interesting nonlinear multi-variable
system. Consider the normalized average model of two buck converters con-
nected in cascade.

d

dt
i1 = −v1 + u1

d

dt
v1 = i1 − v1

Q1
− u2i2

d

dt
i2 = −v2 + u2v1

d

dt
v2 = i2 − v2

Q2

Let the outputs of the system be given by y1 = v1, y2 = v2, i.e., the system
outputs coincide with the output voltages.

Note that

[
v̇1
v̈2

]
=

⎡
⎣

i1 − v1

Q1

−(1− 1
Q2

2
)v2 − 1

Q2
i2

⎤
⎦+

[
0 −i2
0 v1

] [
u1

u2

]
(4.101)

The vector relative degree of (y1, y2) = (v1, v2) is (1, 2) and it is clearly ill
defined since the decoupling matrix is singular. A suitable dynamic extension
of the system yields

[
v̈1

v
(3)
2

]
=

[
ξ1(i1, v1, i2, v2, u2)
ξ2(i1, v1, i2, v2, u2)

]
+

[
1 −i2
0 v1

] [
u1

u̇2

]

=

⎡
⎣
−v1 − 1

Q1
(i1 − v1

Q1
− u2i2)− u2(−v2 + u2v1)

(i2 − v2

Q2
)(1− 1

Q2
2
) + u2(i1 − v1

Q1
− u2i2)− 1

Q2
(−v2 + u2v1)

⎤
⎦

+

[
1 −i2
0 v1

] [
u1

u̇2

]

The extended input-output system has a well-defined relative degree where
the condition v1 
= 0 is satisfied (in fact the voltage v1 is strictly positive due
to physical reasons).

A traditional approach to sliding mode control of the above extended sys-
tem fails for a simple reason. The time derivative, u̇2, of the control input u2,
is the formal control input to the extended system. The actual input u2 should
be a switched signal taking values in {0, 1}. This is possible only via a complex
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impulsive control prescription for u̇2. The traditional sliding mode control ap-
proach is therefore not feasible. A practical solution rests on considering the
extended system as an average system and proceeding to specify an average
feedback control law, via Delta-Sigma modulation, that respects the bounded
character of the average control input u1, and of the newly created state u2. In
fact, the average restriction: u2 ∈ [0, 1] is an extended state restriction which
is far easier to handle by the methods of Chapter 6.

Suppose we are interested in tracking the given pair of smooth voltage
reference signals: (v∗1(t), v

∗
2(t)). An average feedback control for u1 and u̇2 is

readily synthesized as

[
u1

u̇2

]
=

1

v1

[
v1 i2
0 1

](
−
[
ξ1(i1, v1, i2, v2, u2)
ξ2(i1, v1, i2, v2, u2)

]
+

[
ϑ1

ϑ2

])
(4.102)

with

ϑ1 = v̈∗1(t)− λ1(v̇1 − v̇∗1(t))− λ0(v1 − v∗1(t))
ϑ2 = [v∗2(t)]

(3) − γ2(v̈3 − v̈∗2(t))− γ1(v̇2 − v̇∗2(t))− γ0(v2 − v∗2(t))
(4.103)

The procedure consists in specifying output reference trajectories, v∗1(t)
and v∗2(t), that result in suitably bounded average control input signals
u1, u2 ∈ [0, 1]. While the first restriction is an input restriction, the second is a
state restriction in the extended state space. Again, the methods of Chapter 6
easily handle the trajectory planning required to respect physical input and
state constraints.



5

An Input-Output approach to Sliding
Mode Control

5.1 Introduction

One of the disadvantages of classical sliding mode control resides in the need
to feedback the entire state to synthesize the controller. Traditionally, state
observers are used for this requirement. However, the lack of a separation
principle in nonlinear systems makes it difficult to assess the closed loop sta-
bility of an observer based sliding mode controlled system. Even in the case
of linear sliding mode controlled systems, the use of a linear observer may be
subject to careful analysis and noise bandwidth considerations.

In the following pages we introduce Generalized Proportional Integral
(GPI) control. A technique introduced by M. Fliess and his colleagues in
Fliess et al. [9] for linear systems. The fundamental idea is to produce struc-
tural estimates of the states via finite linear combinations of iterated integra-
tions of input and output variables. The result is valid for mono-variable and
multi-variable linear systems. However, some class of nonlinear systems may
benefit from the possibility of integral reconstructors (namely those systems
where the nonlinearities are functions of the output variables alone). These
reconstructors are, invariably, faulty with respect to the actual state values
since the technique purposefully neglects the initial conditions. The effect of
the neglected initial conditions propagates through the input-output dynam-
ics in the form of classical time polynomial perturbations (constant, ramps,
quadratic, etc. functions of time). The effect of this perturbation is easily
compensated via suitable iterated integrals of the output error.

© Springer International Publishing Switzerland 2015
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5.2 GPI control of chains of integrators

In this section, we discuss the output feedback control of a particular class of
linear systems constituted by finite chains of integrators. The problem is basic
in the control of systems via linear output time-varying feedback control laws.
The basic tool is constituted by integral reconstructors which also constitute
the basic element in GPI control. The technique is explored here in the context
of output trajectory tracking problems.

5.2.1 A double integrator

In order to introduce the fundamental ideas, we start by considering a second
order integrator of the form

ÿ = u (5.1)

where it is desired to track a smooth trajectory y∗(t). Clearly, if there exists
an open loop control input, u∗, that ideally achieves the tracking of y∗(t) for
suitable initial conditions, it satisfies the relation

ÿ∗(t) = u∗(t) (5.2)

The tracking error ey = y−y∗(t) satisfies then the corresponding second order
dynamics

ëy = eu (5.3)

where eu = u− u∗(t).
A feedback controller that exponentially regulates to zero the tracking

error ey, and it is robust with respect to unknown constant perturbations, is
given by

eu = −k2ėy − k1ey − k0

∫ t

0

ey(σ)dσ (5.4)

where k2, k1, and k0 are design constants to be determined so that the closed
loop characteristic polynomial p(s) = s3 + k2s

2 + k1s+ k0 is a Hurwitz poly-
nomial.

However, the controller requires the time derivative of e which is not avail-
able for measurement.

Consider the following relation obtained by integrating once the tracking
error dynamics

ėy = ėy(0) +

∫ t

0

eu(σ)dσ (5.5)

We define the integral reconstructor of ė as the integral of the control input

̂̇ey =

∫ t

0

eu(σ)dσ (5.6)
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The integral reconstructor of ė differs from the actual value of ėy by an
unknown constant. Moreover, such an integral reconstructor is quite easy to
synthesize as it only requires the integration of the known input signal. Since
the proposed controller is robust with respect to unknown constant perturba-
tions we can use such a faulty estimate of ẏ in the feedback control law. We
propose then the following feedback control law

eu = −k2̂̇ey − k1ey − k0

∫ t

0

ey(σ)dσ

= −
∫ t

0

[k2eu(σ) + k0ey(σ)] dσ − k1ey (5.7)

Naturally, the closed loop dynamics of the system, controlled by the feed-
back law (5.7), after using (5.5), is given by

ëy + k2ėy + k1ey + k0

∫ t

0

ey(σ)dσ = k2ėy(0) (5.8)

which clearly has the origin as an asymptotically, exponentially stable equili-
brium point, independently of the values of the initial conditions of the system.
To see this, simply define

ρ =

∫ t

0

ey(σ)dσ − k2
k0

ey(0) (5.9)

to obtain the linear system,

ëy + k2ėy + k1ey = −k0ρ

ρ̇ = ey (5.10)

which has as characteristic polynomial, precisely, the Hurwitz polynomial p(s).
Note that the proposed controller

eu = −
∫ t

0

[k2eu(σ) + k0ey(σ)] dσ − k1ey (5.11)

can be written, in terms of Laplace transforms in the following manner.

(
1 +

k2
s

)
eu(s) = −

(
k1 +

k0
s

)
ey(s) (5.12)

Combining, with an abuse of notation, the time domain expressions with
the operational calculus notation, we write the controller as

u = u∗(t)−
[
k1s+ k0
s+ k2

]
(y − y∗(t)) (5.13)
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It is instructive to examine the nature of the classical compensation filter
constituting the GPI controller. From the Hurwitz nature of the polynomial
p(s) = s3+k2s

2+k1s+k0 and the use of the Routh-Hurwitz stability criterion
it follows that the coefficients must satisfy

k2k1 − k0 > 0, k2 > 0, k0 > 0 (5.14)

It follows that k2 > k0

k1
and, hence, −k2 < −k0

k1
. This means that the zero

of the compensation network transfer function is closer to the imaginary axis
than its pole. The compensation network is then a classical lead compensator
(see Figure 5.1).

Fig. 5.1. GPI control of double integrator plant as a lead compensator for trajectory
tracking

Notice that the implicit nature of the expression (5.11) admits the inter-
pretation of the feedback scheme shown in Figure 5.2.

5.2.2 A third order integrator

Consider the third order system:

y(3) = u

which admits the following integral input-output parametrization

̂̈y =

∫ t

0

u(τ)dτ, ̂̇y =

∫ t

0

∫ τ

0

u(λ)dλ

The relation between the structural estimates and the actual values of the
states of the system are given by

ÿ = ̂̈y + ÿ0

ẏ = ̂̇y + ẏ0 + ÿ0 t

Suppose that the problem is to have the system output, y(t), track a given
output reference signal, y∗(t).
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Fig. 5.2. An alternative interpretation for GPI control of second order plant

An output feedback controller achieving the trajectory tracking task, when
all phase variables are known, is given by

u = [y∗(t)](3) − k4(ÿ − ÿ∗(t))− k3(ẏ − ẏ∗(t))
−k2(y − y∗(t))

If we use the structural estimates, plus integral error compensation in the
controller synthesis, we obtain

u = [y∗(t)](3) − k4(̂̈y − ÿ∗(t))− k3(̂̇y − ẏ∗(t))

−k2(y − y∗(t))− k1

∫ t

0

(y − y∗(τ))dτ −

k0

∫ t

0

∫ τ

0

(y − y∗(λ))dλdτ

The closed loop tracking error, e(t) = y − y∗(t), is then governed by

e(3) + k4ë+ k3ė+ k2e+ k1

∫ t

0

e(τ)dτ

+k0

∫ t

0

∫ τ

0

e(λ)dλdτ = k4ÿ0 + k3(ẏ0 + ÿ0 t)
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Define

ξ2 = −k3
k0

ÿ0 +

∫ t

0

e(τ)dτ (5.15)

ξ1 =

∫ t

0

e(τ)dτ +
k0
k1

∫ t

0

ξ2(τ)dτ − k4ÿ0 + k3ẏ0
k1

(5.16)

Clearly, the closed loop tracking error e(t) = y − y∗(t), obeys,

e(3) + k4ë+ k3ė+ k2e = −k1ξ1

ξ̇1 = e+
k0
k1

ξ2, ξ1(0) = −k4ÿ0 + k3ẏ0
k1

ξ̇2 = e, ξ2(0) = −k3ÿ(0)

k0

which exhibits the following characteristic polynomial,

p(s) = s5 + k4s
4 + k3s

3 + k2s
2 + k1s+ k0 = 0

Let us reconsider the proposed controller:

u = [y∗(t)](3) − k4(̂̈y − ÿ∗(t))− k3(̂̇y − ẏ∗(t))

−k2(y − y∗(t))− k1

∫ t

0

(y − y∗(τ))dτ −

k0

∫ t

0

∫ τ

0

(y − y∗(λ))dλdτ

Note that, from the model; u∗(t) = [y∗(t)](3). Define: eu = u − u∗(t) y ey =
y − y∗(t). Then we have

u = u∗ − k4

∫ t

0

eu(τ)dτ − k3

∫ t

0

∫ τ

0

eu(λ)dλdτ

−k2ey − k1

∫ t

0

ey(τ)dτ − k0

∫ t

0

∫ τ

0

ey(λ)dλdτ

In the frequency domain, the proposed controller satisfies the following
relation: (

1 +
k4
s

+
k3
s2

)
eu = −

(
k2 +

k1
s

+
k0
s2

)
ey (5.17)

This frequency expression is readily interpreted as the block diagram
shown in Figure 5.3.

The GPI controller also admits the following expression,

u = u∗(t)−
[
k2s

2 + k1s+ k0
s2 + k4s+ k3

]
(y − y∗(t)) (5.18)
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Fig. 5.3. GPI control of a third order unperturbed integrating plant

Fig. 5.4. Alternative interpretation of GPI control of a third order unperturbed
integrating plant

which is interpreted as in Figure 5.4.
The origin of the tracking error space e = y − y∗(t) is an exponentially

asymptotically stable equilibrium point, for the closed loop system, provided
the design gains, k4, · · · , k0, are chosen so that the closed loop characteristic
polynomial

p(s) = s5 + k4s
4 + k3s

3 + k2s
2 + k1s+ k0 (5.19)

becomes a Hurwitz polynomial.

Exercise 5.1. The derived GPI controller is not robust with respect to con-
stant perturbation inputs. Suitably modify the compensation network to have
a robust output feedback control scheme with respect to this simple class of
perturbations.
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Fig. 5.5. GPI control of an n-th order unperturbed integrating plant

5.2.3 N-th order integrator

It is not difficult to see that an unperturbed n-th order integrator plant can
be controlled to asymptotically exponentially track a given smooth reference
trajectory y∗(t), using the following classical compensation network (Fig. 5.5):

u = u∗(t)−
[
kn−1s

n−1 + kn−2s
n−2 + · · ·+ k0

sn−1 + k2n−2sn−2 + · · ·+ kn

]
(y − y∗(t)) (5.20)

where u∗(t) = [y∗(t)](n), and the set of design coefficients:

{k2n−2, k2n−3, . . . , k0},

are chosen so that the closed loop characteristic polynomial,

p(s) = s2n−1 + k2n−2s
2n−2 + · · ·+ k1s+ k0 (5.21)

has all its roots in the left portion of the complex plane (i.e., it is a Hurwitz
polynomial).

Exercise 5.2. In the next subsection we address the problem of GPI control
under classical perturbations. Show that if a constant perturbation affects the
previously considered n-th order integrator, then an integral action is required
for global exponential asymptotic stability. Show that the compensator is then
of the form;

u = u∗(t)−
[
kns

n + kn−1s
n−1 + · · ·+ k1s+ k0

s(sn−1 + k2n−1sn−2 + · · ·+ kn+1)

]
(y − y∗(t)) (5.22)

The set of design coefficients, {k2n−1, k2n−2, . . . , k0}, are chosen so that
the closed loop characteristic polynomial,

p(s) = s2n + k2n−1s
2n−1 + · · ·+ k1s+ k0 (5.23)

is a Hurwitz polynomial.
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5.2.4 Robustness with respect to classical perturbations

The previous GPI control schemes are, unfortunately, not robust with respect
to the presence of classical perturbation inputs. To see how the scheme may
be modified to exhibit the required robustness we examine the first previous
example but subject now to a constant, unknown, perturbation input.

5.2.5 A perturbed double integrator plant

Consider the following perturbed second order integrator system,

ÿ = u+ ζ (5.24)

where ζ is an unknown constant perturbation signal. A feedback controller
of the PID type as the one initially proposed above would be sufficient to
overcome the influence of the constant perturbation thanks to the included
integral correction action. However, the estimation of the unavailable signal
ẏ requires one integration of the perturbed dynamics. This yields an error
between the actual value of the velocity and the estimated value (which is
computed neglecting the initial conditions and the perturbation input) which
grows linearly in time, with unknown slope. To overcome this type of pertur-
bation the controller requires an iterated integral tracking error action, i.e., a
double integration of the tracking error.

The output tracking error e is now governed by

ëy = eu + ζ (5.25)

where, as before, eu = u − u∗(t) = u − ÿ∗(t). We propose then the following
feedback controller,

eu = −k3̂̇e− k2ey − k1

∫ t

0

ey(σ)dσ − k0

∫ t

0

∫ σ1

0

ey(σ2)dσ2dσ1 (5.26)

where the estimate ̂̇ey is computed, as before, in the form:

̂̇ey =

∫ t

0

ey(σ)dσ (5.27)

which is related to the actual value of ėy by the relation

ėy = ̂̇ey + ζt+ ėy(0) (5.28)

The closed loop system using the proposed controller satisfies the following
integro-differential equation

ëy + k3ėy + k2ey + k1

∫ t

0

ey(σ)dσ+ k0

∫ t

0

∫ σ1

0

ey(σ2)dσ2dσ1 = k3ėy(0) + k3ζt

(5.29)
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Define

ρ1 =

∫ t

0

ey(σ)dσ +

∫ t

0

ρ2(σ)dσ

ρ2 =
k0
k1

∫ t

0

ey(σ)dσ − k3
k1

ζ (5.30)

It follows that the closed loop system can be written as a linear system with
unknown initial conditions as follows:

ëy + k3ėy + k2ey = −k1ρ1

ρ̇1 = ey + ρ2, ρ1(0) = −k3
k1

ėy(0)

ρ̇2 =
k0
k1

ey, ρ2(0) = −k3
k1

ζ (5.31)

The characteristic polynomial of the closed loop system is then given by
the following fourth order polynomial

p(s) = s4 + k3s
3 + k2s

2 + k1s+ k0 (5.32)

whose roots are assignable at will, by proper choice of the design coefficients
{k3, k2, k1, k0}.

We rewrite the output feedback controller (5.26) as follows:

eu = −k3

∫ t

0

eu(σ)dσ − k2ey − k1

∫ t

0

ey(σ)dσ − k0

∫ t

0

∫ σ1

0

ey(σ2)dσ2dσ1

(5.33)

In Laplace transform terms we obtain the following relation for the proposed
output error feedback controller

(
1 +

k3
s

)
eu(s) = −

[
k2 +

k1
s

+
k0
s2

]
ey(s) (5.34)

The transfer function relating e(s) and eu(s) is therefore given by

eu(s) = −
[
k2s

2 + k1s+ k0
s(s+ k3)

]
ey(s) (5.35)

The controller is then given, in a combined time and frequency domain
notation, by

u = u∗(t)−
[
k2s

2 + k1s+ k0
s(s+ k3)

]
(y(t)− y∗(t)) (5.36)

The new controller clearly exhibits an integral action which is characteris-
tic of compensator networks that robustly perform against unknown constant
perturbation inputs.
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Fig. 5.6. Closed loop responses of perturbed second order integrator and GPI com-
pensator with integral action

Figure 5.6 depicts the controlled trajectories of the perturbed second order
integrator under the actions of the designed GPI feedback controller. The ref-
erence signal was taken to be a sinusoid y∗(t) = sin(ωt) with ω = 2 rad/s.
The designed constants were obtained from the desired characteristic polyno-
mial p(s) = (s+ p)4 with p = 2. A constant perturbation input ζ appears at
time t = 8. The controller is shown to be robust with respect to this kind of
perturbation inputs.

5.2.6 The presence of noises

Consider the following noise perturbed system,

ẋ1 = x2 + η1

ẋ2 = u+ η2

y = x1 + η0 (5.37)

with η0 being a zero-mean normally distributed noise, and η1 and η2, possibly,
being biased noises.

Suppose it is desired to execute an output reference trajectory tracking
task involving a finite time rest-to-rest maneuver for the output variable y.

A GPI controller may be proposed to be of a form motivated by the pres-
ence of constant biases in the noisy perturbation inputs;

u = −k2y −
∫ t

0

[k3u(τ) + k1y(τ)] dτ − k0

∫ t

0

∫ σ

0

y(λ)dλ (5.38)
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Fig. 5.7. Performance of GPI controller on a highly noise contaminated second
order integrator plant.
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Fig. 5.8. GPI synthesized control input for a noisy second order integrator plant.

This control scheme can be proven to work reasonably well on the average. as
the following simulations depict on Figure 5.7

The noisy control input evolution is shown in Figure 5.8.
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5.2.7 A perturbed third order integration plant

Consider the following perturbed third order integrator system

y(3) = u+ ζ, (5.39)

where ζ is an unknown, constant, perturbation input signal.
The estimation of the unavailable signals ẏ, ÿ require two and one

integrations, respectively, of the perturbed dynamics. This yields an error
between the actual value of the velocity and the estimated values (which is
computed neglecting the initial conditions and the perturbation input) which
grows quadratically in time. To overcome this type of perturbation the aver-
age GPI controller requires a suitable iterated integral tracking error action,
i.e., a triple integration of the tracking error.

The output tracking error e is now governed by

e(3) = eu + ζ (5.40)

where, as before, eu = u−u∗(t) = u−[y∗(t)](3). We propose then the following
feedback controller,

eu = −k5̂̈e− k4̂̇e− k3e− k2

∫ t

0

e(σ)dσ − k1

∫ t

0

∫ σ1

0

e(σ2)dσ2dσ1

−k0

∫ t

0

∫ σ1

0

∫ σ2

0

e(σ3)dσ3dσ2dσ1 (5.41)

where the estimates ̂̇e and ̂̈e are computed in the form:

̂̈e =
∫ t

0

eu(σ)dσ, ̂̇e =
∫ t

0

∫ σ1

0

eu(σ1)dσ1dσ. (5.42)

These are related to the actual value of ė and ë by the relations

ė = ̂̇e+ 1

2
ζt2 + ë(0)t+ ė(0)

ë = ̂̈e+ ζt+ ë(0)

The closed loop system using the proposed controller satisfies the following
integro-differential equation

e(3) + k5ë+ k4ė+ k3e+ k2

∫ t

0

e(σ)dσ + k1

∫ t

0

∫ σ1

0

e(σ2)dσ2dσ1

+k0

∫ t

0

∫ σ1

0

∫ σ2

0

e(σ3)dσ3dσ2dσ1

= k5[ζt+ ë(0)] + k4[
1

2
ζt2 + ë(0)t+ ė(0)]
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whose characteristic polynomial is just given by

p(s) = s6 + k5s
4 + k4s

3 + k2s
2 + k1s+ k0

A suitable choice of the set of coefficients {k5, . . . , k0} provides an asymp-
totically exponentially stable tracking design.

The feedback controller is then given by

eu = −k5

(∫ t

0

eu(σ)dσ

)
− k4

(∫ t

0

∫ σ1

0

eu(σ1)dσ1dσ

)
− k3e− k2

∫ t

0

e(σ)dσ

−k1

∫ t

0

∫ σ1

0

e(σ2)dσ2dσ1 − k0

∫ t

0

∫ σ1

0

∫ σ2

0

e(σ3)dσ3dσ2dσ1 (5.43)

Taking Laplace transforms one obtains

(
1 +

k5
s

+
k4
s2

)
eu(s) = −

(
k3 +

k2
s

+
k1
s2

+
k0
s3

)
e (5.44)

i.e.,

eu = −
[
k3s

3 + k2s
2 + k1s+ k0

s(s2 + k5s+ k4)

]
e

or, combining frequency domain notations with time domain quantities:

u = u∗(t)−
[
k3s

3 + k2s
2 + k1s+ k0

s(s2 + k5s+ k4)

]
(y − y∗(t))

The controller clearly exhibits an integral action which is characteristic of
compensator networks that robustly perform against unknown constant per-
turbation inputs.

A state space realization of the controller may be proposed to be

u = u∗(t)− (k2 − k5k3)z3 − (k1 − k4k3)z2

−k0z1 − k3(y − y∗(t))
ż1 = z2

ż2 = z3

ż3 = −k5z3 − k4z2 + (y − y∗(t)) (5.45)

Figure 5.9 depicts the controlled trajectories of the perturbed third or-
der integrator under the actions of the designed GPI feedback controller. The
reference signal was taken to be a sinusoid y∗(t) = A sin(ωt) with ω = 1.885
rad/s, A = 0.1. The designed constants were obtained from the desired cha-
racteristic polynomial p(s) = (s2+2ζnωns+ω2

n)
3 with ζn = 0.81 and ωn = 2.

A constant perturbation input ζ = K = 0.5 appears at time t = 8. The track-
ing controller is shown to be robust with respect to this kind of perturbation
inputs.
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Fig. 5.9. Closed loop responses of perturbed third order integrator and GPI com-
pensator with integral action

Exercise 5.3. Show that, in general, the GPI control procedure yields a
compensator of the form:

u = u∗(t)−
[
kn+rs

n+r + kn+r−1s
n+r−1 + · · ·+ k1s+ k0

sr+1(sn−1 + k2n+r−1sn−2 + · · ·+ kn+r+1)

]
(y − y∗(t))

(5.46)

for an n-th order integrator plant which needs to be robust with respect to
unknown time polynomial perturbation inputs of order up to r. The controller
design coefficients {k2n+r−1, · · · , k1, k0} are chosen so that the closed loop
characteristic polynomial

p(s) = s2n+r + k2n+r−1s
2n+r−1 + · · ·+ k1s+ k0 (5.47)

is a Hurwitz polynomial.

5.3 Relations with classical compensator design

Evidently, the GPI control based on integral reconstructors of the state is
intimately related to traditional, or classical, compensating network design.
In the case of pure integration systems this is particularly easy to demonstrate
in rather general terms.

Consider the block diagram of Figure 5.10 depicting a classical compensa-
tion scheme for the plant system represented by the transfer function G(s).
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Fig. 5.10. Classical compensator design scheme

In our particular case, consider G(s) = s−n to be an n-th order integrator
and H(s) is a compensator to be designed. Let ey = y − y∗(t) and eu =
u − u∗(t). The closed loop system expression is obtained from the following
relations, where we abusively combine time domain expressions with frequency
domain expressions,

y = G(s)u = G(s)(eu + u∗(t)) = G(s)eu + y∗(t),
eu = H(s)(y∗(t)− y) = −H(s)ey

We have, that the output tracking error, ey, is governed by

(1 +G(s)H(s))ey = 0 (5.48)

The exponentially asymptotic convergence of ey to zero is guaranteed as long
as the numerator of the rational transfer function expression: (1 +G(s)H(s))
is a Hurwitz polynomial.

Assume we desire a compensator, with integral action, of the form

H(s) =
kns

n + · · ·+ k1s+ k0
s(sn−1 + k2n−1sn−2 + · · ·+ kn+1)

(5.49)

The numerator of the rational transfer function expression 1 + G(s)H(s) is
given by

s2n + k2n−1s
2n−1 + · · ·+ kn+1s

n+1 + kns
n + · · ·+ k1s+ k0 (5.50)

The compensator design problem boils down to locate the poles of a 2n-th
order polynomial.

Both design procedures yield the same controller structure, depending on
the type of perturbations one desires to reject in the closed loop operation
of the system and they both boil down to locate the poles of a higher order
characteristic polynomial.

It is still instructive to go through the details of a GPI compensator when
the system is not a pure integration system. We propose to view this, and the
equivalence with classical compensator designs, via a simple, second order,
example.
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Example 5.4. Consider the following second order plant

y(s)

u(s)
=

1

s2 + a1s+ a0
(5.51)

It is desired to track a smooth reference signal y∗(t). The system and the
tracking error system may be written, in the time domain, as

ÿ + a1ẏ + a0y = u, ëy + a1ėy + a0ey = eu (5.52)

where ey = y− y∗(t) and eu = u−u∗(t) are, respectively, the output tracking
error and the input tracking error. A PID feedback controller, specifying the
input tracking error, is given by

eu = (a1 − k2)ėy + (a0 − k1)ey − k0

∫ t

0

ey(σ)dσ (5.53)

This yields, evidently, a closed loop system represented by an integro differ-
ential equation for the output tracking error given by

ëy + k2ėy + k1ey + k0

∫ t

0

ey(σ)dσ = 0 (5.54)

The characteristic polynomial, associated with this equation is easily shown
to be

p(s) = s3 + k2s
2 + k1s+ k0 (5.55)

Thus, the design problem reduces to an appropriate choice of the feedback
controller gains so as to make the above polynomial Hurwitz.

The signal ėy needed in the controller is, unfortunately, not available.
We resort to an integral reconstructor of such a signal, aware of the fact that
such a reconstructor differs from the actual signal by an unknown constant
quantity fixed by the unchangeable initial conditions. Our provisions for an
integral term in the compensator counteracts this constant estimation bias in
the velocity tracking error. We propose, based on the plant error dynamics:

̂̇ey = −a1ey +

∫ t

0

(eu(σ)− a0ey(σ))dσ (5.56)

Substituting this expression in the proposed PID controller and collecting the
terms on eu on the left-hand side and those of ey in the right-hand side, we ob-
tain, after some elementary algebraic manipulations, the following expression
for the compensator written in the frequency domain

eu(s) = −
[
(k1 − a0 − a1(k2 − a1))s+ (k0 − a0(k2 − a1)

s+ k2 − a1

]
ey(s) (5.57)
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The control input to the system is then obtained as

u(t) = u∗(t)−
[
(k1 − a0 − a1(k2 − a1))s+ (k0 − a0(k2 − a1)

s+ k2 − a1

]
(y − y∗(t))

(5.58)

The compensator, based on integral reconstructors and GPI, is of the form

eu = −
[
β1s+ β0

s+ β2

]
ey

β2 = k2 − a1, β1 = k1 − a0 − a1(k2 − a1), β0 = k0 − a0(k2 − a1)

The classical compensator procedure may be carried out proposing a lead
network of the form

H(s) =
β1s+ β0

s+ β2
(5.59)

The stability condition on the closed loop expression (1 +G(s)H(s)) leads to
the following characteristic polynomial

p(s) = s3 + (a1 + β2)s
2 + (a0 + a1β2 + β1)s+ a0β2 + β0 = 0 (5.60)

equating the corresponding coefficients of the closed loop characteristic poly-
nomial p(s) with those of a desired third order Hurwitz polynomial, given by
s3 + k2s

2 + k1s+ k0, we obtain that the compensator is given by

eu = −
[
β1s+ β0

s+ β2

]
ey

β2 = k2 − a1, β1 = k1 − a0 − a1(k2 − a1), β0 = k0 − a0(k2 − a1)

i.e., exactly the same compensator found before by GPI control procedures.

5.4 A DC motor controller design example

Consider the following model of a DC motor

L
di

dt
= −Ri−Kθ̇ + v

J
dθ̇

dt
= −Bθ̇ +Ki

where θ̇ denotes the angular velocity, i is the armature current, and v is the
armature voltage input. The output of the system is regarded to be the angular
position θ.
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The input-output model of the motor is readily obtained as

θ(3) +

(
B

J
+

R

L

)
θ̈ +

(
RB

LJ
+

K2

LJ

)
θ̇ =

K

LJ
v (5.61)

The transfer function description of the system between the input error
ev = v − v∗(t) and the output tracking error eθ = θ − θ∗(t) is given by

eθ(s) =

[
K
LJ

s3 +
(
B
J + R

L

)
s2 +

(
RB
LJ + K2

LJ

)
s

]
ev(s) (5.62)

where v∗(t) is the nominal control input corresponding to a desired angular
position trajectory θ∗(t), given by

v∗(t) =
LJ

K
[θ∗(t)](3) +

(
LB

K
+

RJ

K

)
θ̈∗(t) +

(
RB

K
+K

)
θ̇∗(t) (5.63)

We propose a compensation network, with integral action, specified by

H(s) =
ev(s)

eθ(s)
=

k3s
3 + k2s

2 + k1s+ k0
s(s2 + k5s+ k4)

(5.64)

where the design coefficients {k5, k4, . . . , k0} will be determined by equating
the characteristic polynomial, p(s), of the closed loop system with a desired
polynomial of the form:

pd(s) = (s2 + 2ξωns+ ω2
n)

3

= s6 + 6ξωns
5 + ω2

n

(
3 + 12ξ2

)
s4 + ω3

n

(
12ξ + 8ξ3

)
s3

+ω4
n

(
3 + 12ξ2

)
s2 + 6ω5

nξs+ ω6
n (5.65)

We have the following closed loop characteristic polynomial

p(s) = s6 +

(
B

J
+

R

L
+ k5

)
s5 +

[
k4 +

(
B

J
+

R

L

)
k5 +

K2

LJ
+

BR

JL

]
s4

+

[
K

JL
k3 +

(
B

J
+

R

L

)
k4 +

(
K2

LJ
+

BR

LJ

)
k5

]
s3

+

[
K

LJ
k2 +

(
K2

LJ
+

BR

LJ

)
k4

]
s2 +

K

LJ
k1s+

K

LJ
k0 (5.66)

We obtain the following semi-implicit expressions for the output error feed-
back controller design parameters

k5 = −
(
B

J
+

R

L

)
+ 6ξωn

k4 = −
(
BR

JL
+

K2

JL

)
−
(
B

J
+

R

L

)[
6ξωn −

(
B

J
+

R

L

)]
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Fig. 5.11. Classical compensator design for DC motor tracking task

+ω2
n(3 + 12ξ2)

k3 =
LJ

K

[
−
(
B

J
+

R

L

)
k4 −

(
K2

LJ
+

BR

LJ

)
k5 + ω3

n(12ξ + 8ξ3)

]

k2 =
LJ

K

[
−
(
K2

LJ
+

BR

JL

)
k4 + ω4

n(3 + 12ξ2)

]

k1 = 6
LJ

K
ω5
nξ

k0 =
LJ

K
ω6
n

We used the previously designed output feedback controller in a DC motor
(Fig. 5.11) characterized by the following parameters:

L = 0.71 H R = 10 Ω, K = 77.5355 V − s/rad, J = 0.0550 N−m− s2/rad,

B = 0.2203 N−m− s/rad

with design parameters chosen so that the closed loop characteristic polyno-
mial exhibited a damping factor, ξ = 1, and a natural frequency ωn = 18.

It is desired to achieve a rest-to-rest maneuver from the initial position of 0
rad towards the end position of 2.5 rad in a time interval of 1 second, starting
at t = 1.0 s. As depicted in Figure 5.12, the closed loop trajectories exhibit an
accurate trajectory tracking feature while being robust with respect to sudden
load torques. In the figure a constant torque τ = 0.25 N-m was devised at
time t = 2.0 s.

GPI control can be used as an average feedback control for a switched
plant. The following design example illustrates this possibility in a popular
two level switched system.
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Fig. 5.12. Closed loop performance of perturbed GPI controlled DC motor.

5.5 Control of the Double Bridge Buck Converter

In reference to Figure 5.13 the several electronic switches take position values
according to⎧⎨

⎩
u = 1 , S1 = ON,S2 = ON,S3 = OFF, S4 = OFF
u = −1 , S1 = OFF, S2 = OFF, S3 = ON,S4 = ON
u = 0 , S1 = S4 = ON,S2 ( or S3) = OFF

(5.67)

Consider the following average model of a double bridge buck-converter:

Lẋ1 = −x2 + uavE

Cẋ2 = x1 − x2

R
y = x2

where x1 is the inductor current, x2 represents the capacitor voltage, uav is the
average control input assumed to take values in the closed interval: u ∈ [−1, 1]
of the real line. The parameters L,C,R, and E are assumed to be known.

An input-output model of the system is obtained by simply eliminating
the state variable x1 from the system equations, we have

LCÿ +
L

R
ẏ + y = uavE (5.68)

This relation may be written as

ÿ +
1

RC
ẏ +

1

LC
y = uav

E

LC
(5.69)
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Fig. 5.13. The double bridge buck converter.

We rewrite the system as follows:

ÿ + γ2ẏ + γ1y = γ3uav (5.70)

and we proceed to design a GPI tracking controller under the assumption
that the parameters γ1, γ3, are all perfectly known (γ2 = 1/RC, γ1 = 1/LC,
γ3 = E/LC)

The average system is represented in transfer function form as

y =

[
γ3

s2 + γ2s+ γ1

]
uav (5.71)

We formulate the problem as follows:
Given a desired output voltage signal y∗(t), it is required to design an

output feedback controller, possibly of dynamic nature, which induces an
exponentially asymptotic convergence of the output signal y towards the
desired reference signal y∗(t).

In other words, we want

y → y∗(t) exponentially (5.72)

The nominal input-output relation is clearly written as

y∗(s) =
[

γ3
s2 + γ2s+ γ1

]
u∗(s) (5.73)

and, hence, defining e = y − y∗ and eu = uav − u∗

e(s) =

[
γ3

s2 + γ2s+ γ1

]
eu(s) (5.74)

We propose the following GPI controller,

eu = − 1

γ3

[
k2s

2 + k1s+ k0
s(s+ k3)

]
e (5.75)
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A state space realization of such a GPI controller is readily obtained as

uav = u∗(t)−
(
k1
γ3

− k3k2
γ3

)
z2 − k0

γ3
z1 − k2

γ3
(y − y∗)

ż1 = z2

ż2 = −k3z2 + (y − y∗(t)) (5.76)

The closed loop characteristic polynomial governing the average tracking
error is given, after following the classical compensation design methodol-
ogy, by

p(s) = s4 + (γ2 + k3) s
3 + (γ1 + k3γ2 + k2) s

2 + (k3γ1 + k1) s+ k0

By equating, term by term, this closed loop characteristic polynomial to a
desired characteristic polynomial of the form,

pd(s) = (s2 + 2ζωns+ ω2
n)

2

= s4 + (4ζωn) s
3 +

(
4ζ2ω2

n + 2ω2
n

)
s2 +

(
4ζω3

n

)
s+ ω4

n (5.77)

we obtain the following output feedback controller design:

k3 = 4ζωn − γ2

k2 = 4ζ2ω2
n + 2ω2

n − γ1 − γ2(4ζωn − γ2)

k1 = 4ζω3
n − γ1 (4ζωn − γ2)

k0 = ω4
n

Simulations were performed with the following set of parameters:

L = 10−3H, C = 1.0 μF, R = 39.52 Ohm, E = 30 V

It is desired to track a rest-to-rest output voltage reference trajectory
smoothly changing between two different constant values over a finite time
interval. The smooth transition trajectory is specified by means of a Bézier
polynomial.

We first simulate the average system behavior of the GPI controlled model
with uav taking values in [−1, 1] (Fig. 5.14).

A two level Delta-Sigma modulation was used for the implementation of
the average output feedback controller (Fig. 5.15). We used the following two
level Delta-Sigma modulator

u =
1

2
[sign(uav(t)) + signz] , ż = uav − u (5.78)
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Fig. 5.14. Closed loop average converter response to GPI controller.
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Fig. 5.15. Closed loop switched converter response

5.6 GPI control for systems in State Space Form

Direct derivation of integral state reconstruction is also possible in linear sys-
tems and some nonlinear systems written in the traditional state space form
with the benefit of GPI control and a GPI based sliding mode control option
for the particular class of switched systems. We start by a simple illustrative
example considering the integral input-output parametrization of a normal-
ized state model representing a heating system in compartmental form.
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Fig. 5.16. Schematic Diagram of heating system in compartmental form

Example 5.5. Consider the compartmental model of a normalized heating
system (Fig. 5.16),

ẋ1 = x2 − x1

ẋ2 = x1 − 2x2 + x3

ẋ3 = x2 − 2x3 + u (5.79)

The system is controllable and it is also observable from y = x1. We easily
obtain the following differential parametrization of all system state variables,

x1 = y

x2 = ẏ + y

x3 = ÿ + 3ẏ + y (5.80)

From the observability property with respect to the chosen output, we
directly obtain the following integral parametrization of the state variables:

(∫ ∫
x1

)
=

(∫ ∫
y

)

(∫ ∫
x2

)
=

(∫
y

)
+

(∫ ∫
y

)

(∫ ∫
x3

)
= y + 3

(∫
y

)
+

(∫ ∫
y

)
(5.81)

From the system state equations we obtain

x1 =

(∫
x2

)
−
(∫

x1

)

x2 =

(∫
x1

)
− 2

(∫
x2

)
+

(∫
x3

)

x3 =

(∫
x2

)
− 2

(∫
x3

)
+

(∫
u

)
(5.82)

Iterating once:

x1 = 2(

∫ ∫
x1)− 3(

∫ ∫
x2) + (

∫ ∫
x3)

x2 = −3(

∫ ∫
x1) + 6(

∫ ∫
x2)− 4(

∫ ∫
x3) + (

∫ ∫
u)
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x3 = (

∫ ∫
x1)− 4(

∫ ∫
x2) + 5(

∫ ∫
x3)− 2(

∫ ∫
u) + (

∫
u) (5.83)

Eliminating the double integrals in the previous expression with the
corresponding expressions in (5.81), we obtain the following integral recon-
structors of the state variables :

x̂1 = y

x̂2 = −4y − 6(

∫
y)− 5(

∫ ∫
y) + (

∫ ∫
u)

x̂3 = 5y + 2(

∫
y) + 11(

∫ ∫
y)− 2(

∫ ∫
u) + (

∫
u) (5.84)

which is an integral input-output parametrization of the state vector compo-
nents, modulo initial conditions and their effects.

Notice that x̂2 and x̂3 are off by a linear function of time with respect
to the actual values of the corresponding state variables x2 and x3. Hence,
any feedback controller based on these integral reconstructors requires second
order iterated integral output error compensation.

To design a GPI stabilizing controller, it is necessary to establish first
the equilibrium state of the system. From (5.79) it is clear that the equili-
brium values for the variables, x1, x2, and x3 coincide, i.e., x1= x2= x3 = x.
Moreover, u = x.

Exercise 5.6. Consider a traditional stabilizing state feedback controller of
the form: u = u − k2(x1 − x) − k3(x2 − x) − k4(x3 − x). This controller, in
terms of the state vector reconstruction variables, needs to be additionally
(integrally) compensated as follows:

u = u− k2(x̂1 − x)− k3(x̂2 − x)− k4(x̂3 − x)− k1

∫ t

0

(y(λ)− x)dλ

−k0

∫ t

0

∫ λ

0

(y(ρ)− x)dρdλ (5.85)

Determine a set of suitable constant gains {k0, k1, . . . , k4} to achieve a sta-
bilization of the state vector towards a desired equilibrium. Simulate the state
responses and evaluate the performance of the proposed GPI state controller.

5.7 Generalization to MIMO linear systems

Consider the observable, time-invariant, linear system of m inputs and p out-
puts:

ẋ = Ax+Bu, x(0) = x0, y = cx, x ∈ R
n, u ∈ R

m, u ∈ R
p (5.86)
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Taking Laplace transforms and integrating the system expression, one
obtains

x(s) = A
x(s)

s
+B

u(s)

s
(5.87)

Iterating on this functional relation we have

x(s) = A2x(s)

s2
+AB

u(s)

s2
+B

u(s)

s

Iterating n− 1 times, we have

x(s) = An−1

(
x(s)

sn−1

)
+

n−1∑
i=1

Ai−1B
u(s)

si

On the other hand, consider the output y and its successive derivatives,
written also in the Laplace transform domain:

⎛
⎜⎜⎜⎝

I
sI
...

s(n−1)I

⎞
⎟⎟⎟⎠ y(s) =

⎛
⎜⎜⎜⎝

C
CA
...

CAn−1

⎞
⎟⎟⎟⎠x(s)

+

⎛
⎜⎜⎜⎝

0 0 · · · 0
CB 0 · · · 0
...

...
. . . 0

CAn−2B · · · · · · CB

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

I
sI
...

s(n−2)I

⎞
⎟⎟⎟⎠u(s)

Integrating n− 1 times, we have

⎛
⎜⎜⎜⎜⎜⎜⎝

I

sn−1

I

sn−2

...
I

⎞
⎟⎟⎟⎟⎟⎟⎠

y(s) =

⎛
⎜⎜⎜⎝

C
CA
...

CAn−1

⎞
⎟⎟⎟⎠

x(s)

sn−1
+M

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I

sn−1

I

sn−2

...
I

s

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

u(s) (5.88)

Thanks to the observability of the system, one has

x(s)

sn−1
= [OTO]−1OT

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

I
sn−1

I
sn−2

...
I

⎞
⎟⎟⎟⎠ y(s)−M

⎛
⎜⎜⎜⎝

I
sn−1

I
sn−2

...
I
s

⎞
⎟⎟⎟⎠u(s)

⎤
⎥⎥⎥⎦ (5.89)
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We can now combine this expression with the preceding one to obtain

x(s) = An−1

(
x(s)

sn−1

)
+

n−1∑
i=1

Ai−1B
u(s)

si
(5.90)

Finally, we have, combining frequency domain notation and time domain no-
tation, that

x(t) = P(s−1)y(t) +Q(s−1)u(t) (5.91)

We address this expression, which does not take into account the influ-
ence of the initial states, as the integral state reconstructor based on iterated
integrals of inputs and outputs.

The integral state reconstructor may be used, in principle, on any linear
state feedback control law u = −kTx(t) as long as it is complemented with
additional compensation which counteracts the effect of the neglected initial
conditions in the integral reconstructors,

u = −kT
[P(s−1)y(t) +Q(s−1)u(t)

]
+ v

Such a compensator only requires iterated integrations of the outputs (or
output tracking errors) and of the inputs (or of the input tracking errors).

Example 5.7. Consider the nonlinear model of the Planar Vertical Take-off
and Landing Aircraft (PVTOL)

ẍ = −u1 sin θ + εu2 cos θ

z̈ = u1 cos θ + εu2 sin θ − g

θ̈ = u2

Linearization around the equilibrium:

x = x, z = z, θ = 0, u1 = g, u2 = 0 (5.92)

yields

ẍδ = −gθδ + εu2δ, z̈δ = u1δ, θ̈δ = u2δ (5.93)

Notice that xδ is a non-minimum phase output. Indeed, it is not difficult to
establish the following unstable zero dynamics for xδ acting as an output

θ̈δ = (g/ε)θδ (5.94)

The linearized system outputs are given by

F = xδ − εθδ, L = zδ (5.95)
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The system is equivalent to the following two independent chains of inte-
grations,

u1δ = L̈, u2δ = −1

g
F (4) (5.96)

A pole assignment based compensator is readily suggested as

u1δ = −γ2L̇− γ1L

u2δ = −1

g

[
−k5F

(3) − k4F̈ − k3Ḟ − k2F
]

Consider the system outputs :

y1δ = xδ, y2δ = zδ (5.97)

and the following integral state reconstructors associated with the chosen
outputs,

θδ = (

∫ ∫
u2δ), xδ = y1δ, zδ = y2δ

θ̇δ = (

∫
u2δ), ẋδ = −g(

∫ ∫ ∫
u2δ) + ε(

∫
u2),

żδ = (

∫
u1δ)

One proceeds to propose the following control law based on integral recon-
structors involving only inputs, outputs, and iterated integrals of inputs and
outputs,

u1δ = −γ2(

∫
u1δ)− γ1y2δ − γ0(

∫
y2δ)

u2δ = −1

g

[
− k5F̂

(3) − k4
̂̈F − k3

̂̇F − k2F̂ − k1(

∫
y1δ)− k0(

∫ ∫
y1δ)

]

Using the reconstructed outputs and their reconstructed time derivatives, the
GPI controller, with due compensation of the effects of the neglected initial
states, is then given by

u1δ = −
∫

[γ2u1δ − γ0y2δ]− γ1y2δ

u2δ −1

g

[
(k5gu2δ − k1y1δ)− k2y1δ +

∫ ∫
[(k4g + k2ε)u2δ − k0y1δ]

+

∫ ∫ ∫
(k3gu2 − k2y1δ)

]

(5.98)

Figure 5.17 depicts the performance of the proposed GPI controller on the
incremental state and control input variables when the controller acts on the
full nonlinear system model.
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,

Fig. 5.17. Performance of GPI based controller for the PVTOL system

5.8 GPI and Sliding Mode Control

The philosophy of GPI control establishes that integral reconstructors of the
states are sufficient to obtain an asymptotically stable unperturbed controlled
system provided a suitable iterated integral error compensation is employed in
the feedback law. This scheme is particularly appropriate for linear systems
and a rather restricted class of nonlinear systems. Sliding mode control of
linear systems makes the closed loop system nonlinear although its average
features may be still deduced from a linear ideal sliding dynamic system.

Here we suitably modify GPI control so as to obtain a sliding mode control
design for switched systems. An alternative, of course, is to resort to Delta-
Sigma modulation after an average design has been achieved. We explore a
direct extension of GPI control for sliding mode creation in linear plants.

5.8.1 Compensated sliding surface coordinate functions
based on integral reconstructors

We begin by the following elementary example. Consider a second order plant,
with inaccessible velocity variable, of the form

ÿ = u (5.99)

with u ∈ {−W,W} with W > 0. Suppose it is desired to stabilize y to zero.
An integral reconstructor for the velocity variable is simply synthesized as

̂̇y =

∫ t

0

u(λ)dλ (5.100)
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A traditional sliding surface, achieving the desired objective, is, as it is by
now well known, given by

S = {(y, ẏ) ∈ R
2 | σ = ẏ + k1y = 0} (5.101)

A sliding mode exists on the intersection of S with the rectangular region:

{(y, ẏ) ∈ R
2 | W/k1 < ẏ < W/k1, W/k21 < y < W/k21} (5.102)

The basic idea is to replace the sliding surface coordinate function σ by a
suitably integral compensated structural estimate of such switching function.
In other words, we propose

σ̂ =

∫ t

0

u(λ)dλ+ k1y + k0

∫ t

0

y(λ)dλ = 0 (5.103)

i.e.,

σ̂ =

∫ t

0

[u(λ) + k0y(λ)] dλ+ k1y = 0 (5.104)

In view of the fact that ẏ = ̂̇y + ẏ(0), the invariance condition, σ̂ = 0, is
equivalent to the following expression:

σ̂ = ẏ + k1y + k0

∫ t

0

y(λ)dλ− ẏ(0) = 0 (5.105)

This perturbed dynamics is, evidently, exponentially asymptotically stable to
zero provided the coefficients k1 and k0 are Hurwitz coefficients. The characte-
ristic polynomial of this ideal dynamics is none other than p(s) = s2+k1s+k0.
The second invariance condition ˙̂σ = 0 results in the following equivalent
control:

ueq = −k1ẏ − k0y (5.106)

A sliding mode exists on σ̂ = 0 if and only if the following (bandwidth)
limitation is satisfied,

−W < k1ẏ + k0y < W (5.107)

The region of existence of sliding motions, projected onto the plane (y, ẏ),
extends now to infinity with longitudinal axis represented by the straight
line, ẏ = −(k0/k1)y, and characterized by the band:

− W

k1
−
(
k0
k1

)
y < ẏ <

W

k1
−
(
k0
k1

)
y (5.108)

Figure 5.18 depicts the GPI control scheme rendering a stabilizing sliding
motion for the second order plant with switching control inputs. Only input
and output measurements are thus required.
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Fig. 5.18. GPI sliding mode stabilization of a second order switched integrator
plant

Fig. 5.19. GPI sliding mode output reference trajectory tracking scheme for a
second order switched integrator plant

Exercise 5.8. Consider the previous illustrative example and assume it is
desired to have the output y of the plant asymptotically track a given refer-
ence trajectory, y∗(t), with the limited control action: u ∈ {−W,W}. Suitably
modify the previous stabilizing control scheme to accomplish the desired ob-
jective. Show that the diagram in Fig. 5.19 is the suitable modification.

Execute a computer simulation program and verify that the obtained
closed loop responses conform to those shown in Figure 5.20. The numeri-
cal values used in the simulation correspond to

k0 = 2ζωn, k1 = ω2
n, ζ = 0.707, ωn = 1.0, W = 2, y∗(t) = sin(t)

5.8.2 A GPI based sliding mode control of a perturbed system

Consider the elementary second order perturbed linear system,

ÿ = u+ ζ (5.109)
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Fig. 5.20. Second order plant responses to GPI sliding mode output reference
trajectory tracking

where ζ is an unknown constant perturbation input and u takes values in the
set {-1,+1}. It is desired to robustly track the given trajectory y∗(t) for an
indefinite period of time.

The nominal (unperturbed) system satisfies the unperturbed dynamics

ÿ∗(t) = u∗(t) (5.110)

Hence, the tracking error e = y−y∗(t) is obtained via the perturbed dynamics
controlled by the control input error eu = u− u∗(t).

ë = eu + ζ (5.111)

A traditional sliding surface coordinate function, in the error space, is
proposed as

σ = ė+ k2e, k2 > 0 (5.112)

However, since the integral reconstructor of the tracking error time derivative
ė is given by

̂̇e =
∫ t

0

eu(τ)dτ (5.113)

and due to the presence of the unknown constant perturbation input ζ, and
the presence of possible initial conditions, the error velocity estimation error
is of the form:

ė = ̂̇e+ ė(0) +Kt (5.114)
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Thus, the use of an estimated sliding surface, synthesized in terms of the
integral reconstruction of ė, induces a polynomial error of first degree in t
which needs to be counteracted via a compensation including up to a second
order output error integration

σ̂ = ̂̇e+ k2e+ k1

∫ t

0

e(τ)dτ + k0

∫ t

0

∫ τ

0

e(τ1)dτ1dτ (5.115)

Under ideal sliding conditions we have that σ̂ = ˙̂σ = 0. From the invariance
condition, ˙̂σ = 0, we obtain, after replacing in the expression for σ̂ the term̂̇e by the integral term,

eu + k2ė+ k1e+ k0

∫ t

0

e(τ)dτ = 0 (5.116)

The equivalent control error is thus ideally given by

eu = −k2ė− k1e− k0

∫ t

0

e(τ)dτ (5.117)

The corresponding ideal sliding dynamics is then governed by

ë = −k2ė− k1e− k0

∫ t

0

e(τ)dτ + ζ, (5.118)

whose characteristic polynomial is given by

p(s) = s3 + k2s
2 + k1s+ k0 (5.119)

This shows that the ideal sliding dynamics is robust with respect to the un-
known, constant, perturbation input ζ.

If a Delta-Sigma modulation based control approach needs to be avoided,
we can still synthesize a discontinuous feedback control law based on the slid-
ing surface coordinate function expression involving the integral reconstructor.
We have

d

dt
σ̂ = u− u∗(t) + k2ė+ k1e+ k0

∫ τ

0

e(τ)dτ (5.120)

A suitable switching policy is given then by

u = −sign σ̂ (5.121)

Clearly, it is assumed that u∗(t), the nominal average control input, is
strictly bounded within the interval [−1, 1], i.e., the demanded trajectory y∗(t)
satisfies ÿ∗(t) ∈ [−1, 1]. This condition is only necessary but not sufficient
to guarantee existence of a sliding regime during the transient phase of the
control process.
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Fig. 5.21. GPI sliding mode control of a second order perturbed integrating plant.

Simulations were performed under the assumption that it is desired to
track a rest-to-rest trajectory, specified by means of a suitable Bézier poly-
nomial, defined on the output space which takes the output signal from an
initial value of y(tinit) = −0.5 towards a final value of y(tfinal) = 0.5, within
a time interval of 10 s. i.e., with tinit = 10, tfinal = 20 (Fig. 5.21). The ideal
sliding dynamics characteristic polynomial is set to be given by the third order
polynomial:

p(s) = (s2 + 2ζnωns+ ω2
n)(s+ pn) (5.122)

with ζn = 0.81, ωn = 1, pn = 1. i.e.,

k2 = 2ζnωn + pn, k1 = ω2
n + 2ζnωnpn, k0 = ω2

npn (5.123)

Notice a small overshoot of the sliding surface coordinate function around
zero and the corresponding change in the control action. A sliding regime
exists after the transient response involves small excursions from the initial
stabilizing reference value thanks to the extra room conceded by the nominal
control input u∗(t) = 0 during the transient.

Example 5.9. Consider the following benchmark example proposed by Wie
and Bernstein [35] (see Figure 5.22). The perturbed differential equations
describing the system are given by

m1ẍ1 = −k(x1 − x2 + L) + u

m2ẍ2 = k(x1 − x2 + L) + ω

y = x2 (5.124)

where x1 and x2 are, respectively, the positions of the first and second mass, v
is the control input force with limited amplitude values given by u = W (2v−1)
with W > 0 and v ∈ {0, 1}, i.e., u ∈ {−W,+W}. The measured displacement
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Fig. 5.22. Mass spring benchmark system.

is given by y = x2. The input ω is an unknown disturbance and L is the length
of the spring which produces no contraction, or expansion, forces.

It is desired to stabilize the system around the equilibrium value x1 = 0,
x2 = L, after the system has subject to a unit impulse, through the force
input ω, at time t = 0.

Thanks to the linearity of the system we may first proceed to design a GPI
controller on the basis of integral reconstructors for the unperturbed system.
The compensation in the controller will take into account the effect of the
neglected disturbance and those of the initial states, with due consideration
of the number of integrations that would have endured, both, the perturba-
tion and the initial conditions, if they had been present in the manipulated
expressions. The system is evidently controllable and observable from y = x2.

The unperturbed input-output relation in the system is readily obtained as

y(4) =
k

m1m2
[u− (m1 +m2)ÿ] (5.125)

The perturbed input-output relation is, however, given by

y(4) =
k

m1m2
[u− (m1 +m2)ÿ] +

1

m2
ω̈ +

k

m1m2
ω (5.126)

An uncompensated sliding surface coordinate function would be
traditionally defined, in this case, as a suitable (Hurwitz) linear combi-
nation of the output and its time derivatives up to third order. However,
the synthesis of such a sliding surface coordinate function entitles the use of
integral reconstructors for all the involved sequence of time derivatives of y.
The integral reconstruction requiring the largest number of integrations, of
the perturbed input-output relation, is evidently the first order time derivative
of y. Three integrations of the impulse disturbance will generate a quadratic
polynomial in time. The effect of neglected initial conditions will also produce
at most a second degree time polynomial error in the reconstruction effort.
The sliding surface coordinate function thus requires a linear combination of
iterated integral errors up to the third order of integration. We have
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σ̂ = ŷ(3) + k5̂̈y + k4 ˆ̇y + k3(y − L) + k2

∫ t

0

(y(λ)− L)dλ

+k1

∫ t

0

∫ λ

0

(y(ρ)− L)dρ+ k0

∫ t

0

∫ λ

0

∫ ρ

0

(y(θ)− L)dθ (5.127)

The integral reconstructors of the phase variables ẏ, ẏ, y(3) are obtained as

ŷ(3) =
k

m1m2
(

∫
u)− k2(m1 +m2)

m2
1m

2
2

(

∫ (3)

u) +
k2(m1 +m2)

2

m2
1m2r

(

∫
y)

̂̈y =
k

m1m2
(

∫ (2)

u)− k(m1 +m2)

m1m2
y

̂̇y =
k

m1m2
(

∫ (3)

u)− k(m1 +m2)

m1m2
(

∫
y) (5.128)

The switching control policy is given by u = −W signσ̂, or, u = W (2v− 1)
with v = 0.5(1− signσ̂).

The invariance conditions: σ̂ = 0 and d
dt

ˆsigma = 0, respectively, define
the closed loop dynamics for y and the corresponding dynamics satisfied by
the equivalent control input.

We specify the set of coefficients, {k5, . . . , k0}, by equating, term by term,
the closed loop characteristic polynomial, p(s)= s6+k5s

5+ · · ·+k1s+k0, to a
desired characteristic polynomial of the form: (s2+2ζωns+ω2

n)
3. One obtains

k5 = 6ζωn

k4 = 3ω2
n + 12ζ2ω2

n

k3 = 8ζ3ω3
n + 12ζω3

n

k2 = 12ζ2 ∗ ω4
n + 3ω4

n

k1 = 6ζω5
n

k0 = ω6
n (5.129)

Figure 5.23 depicts the stabilization of the mass-spring benchmark system
towards its equilibrium point (x1, x3, x2, x4) = (0, 0, 0.1, 0) after an impulsive
disturbance input is applied to the second car in the system at time t = 0.
The accomplished settling time is below the 15 [s] demanded on the perfor-
mance specification of the benchmark. The switching force amplitude does
not exceed 1 [N].

The following parameter values, suggested in [35], were used for the
simulations:

m1 = m2 = 1.0 [Kg], k = 1.0 [N/m], L = 0.1 [m]

The sliding mode controller parameters were set to be

ζ = 0.707, ωn = 1.05 [rad/s], W = 1 N
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Fig. 5.23. Performance of GPI sliding mode control stabilization of the benchmark
example.

5.9 GPI control of some nonlinear systems

In this section, we apply the GPI sliding mode control method for the trajec-
tory tracking problem in two challenging nonlinear systems describing electric
motors.

5.9.1 A permanent magnet stepper motor

A nonlinear dynamical system model describing a stepper motor is represented
by the following set of differential equations,

L
d

dt
ia = −Ria +Kmω sin(npθ) + va

L
d

dt
ib = −Rib −Kmω cos(npθ) + vb

J
d

dt
ω = −Kmia sin(Nrθ) +Kmib cos(npθ) + τ

d

dt
θ = ω (5.130)
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where ia and ib are the phase currents, va and vb are the voltages acting as the
control inputs, θ is the angular position, and ω is the corresponding angular
velocity.

We make the following assumptions:

• All motor parameters are known.
• Motor system is initially at rest on θ = 0.
• τ is the unknown but constant torque. It appears unexpectedly.
• No measurements are available for the angular position and the angular

velocity.

A sensorless control scheme, avoiding the measurement of the mechanical
variables θ, and ω, is then required.

In view of the integrability of the nonlinear part of the current equations,
one may readily propose an integral reconstructor for the position variable θ.
Indeed, integrating the phase current equations and neglecting the effect of
the initial conditions, one obtains

Lia =

∫ t

0

(va −Ria)dσ − Km

np
[cos(npθ)− 1]

Lib =

∫ t

0

(vb −Rib)dσ − Km

np
sin(npθ) (5.131)

The set of expressions, (5.131), directly leads to the following integral
reconstructor,

θ̂ = θ =
1

np
arctan

⎡
⎣

∫ t

0
[vb(σ)−Rib(σ)] dσ − Lib∫ t

0
[va(σ)−Ria(σ)] dσ − Lia +

Km

np

⎤
⎦ (5.132)

Figure 5.24 depicts a block diagram for the integral reconstructor of the
angular position in the stepper motor.

Note that the sine and cosine functions of the angular position variable
are given by the following linear expressions:

cos(npθ) =
np

Km

[∫ t

0

[va(σ)−Ria(σ)] dσ − Lia +
Km

np

]

sin(npθ) =
np

Km

[∫ t

0

[vb(σ)−Rib(σ)] dσ − Lib

]
(5.133)

Using the expressions in (5.133) in the angular velocity equation of the
machine leads to the following nonlinear integral reconstructor of the angular
velocity,
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Fig. 5.24. Block diagram for the nonlinear integral reconstructor of the angular
position in a stepper motor.

Fig. 5.25. Block diagram of nonlinear integral reconstructor of the angular velocity
and the angular position in a stepper motor

ω̂ = ω =
np

J

∫ t

0

[
− ia(σ)

∫ σ

0

(vb(ρ)−Rib(ρ)) dρ

+ib(σ)

(∫ σ

0

(va(ρ)−Ria(ρ)) dρ+
Km

np

)]
dσ (5.134)

A diagram for the nonlinear integral reconstructor of the angular velocity
is shown in Figure 5.25.

Note that if the initial angular displacement, θ(0), is nonzero, and nonzero
initial values of the current are observed, with no external torque being ap-
plied to the motor axis, the initial angle can be computed, modulo an integer
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number of π/2 radians, as follows:

θ̂0 =
1

np
arctan

(
ib(0)

ia(0)

)
(5.135)

If the angle is nonzero while zero currents are initially observed, then the
external torque is necessarily zero, and the initial angle may be taken as the
new zero reference.

We now develop a GPI-sliding mode control approach for the tracking of
a given angular position reference trajectory.

Let v be an auxiliary input voltage. Assume that the field currents are
given by the following field oriented expressions

[
ia
ib

]
= − J

Km

[
sin(npθ)
−cos(npθ)

]
v (5.136)

Then, the angular velocity is seen to satisfy the following closed loop (pos-
sibly perturbed) linear dynamics,

d

dt
ω =

d2θ

dt2
= v +

1

J
τ (5.137)

We proceed to force, via sliding mode control, the phase currents, ia and
ib, to satisfy the linearizing algebraic restriction given by equation (5.136).

Define, as sliding surface coordinate functions, the following expressions,

σa = ia +
J

Km
sin(npθ)v

σb = ib − J

Km
cos(npθ)v (5.138)

Using the linear expressions for the integral reconstructors for the sine and
cosine functions, given in equation (5.133), we have

σa = ia +
Jnp

K2
m

[∫ t

0

[vb(σ)−Rib(σ)] dσ − Lib

]
v

σb = ib − Jnp

K2
m

[∫ t

0

[va(σ)−Ria(σ)] dσ − Lia +
Km

np

]
v (5.139)

The discontinuous feedback control policies

va = −Wa sign (σa), Wa > 0

vb = −Wb sign (σb), Wb > 0 (5.140)

locally create a sliding regime on the sliding surfaces σa = 0 and σb = 0, thus
imposing the desired linearizing algebraic restrictions:

ia = − J

Km
sin(npθ)v
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Fig. 5.26. GPI sliding mode control scheme for the permanent magnet stepping
motor

ib =
J

Km
cos(npθ)v

The auxiliary control input v is specified as the following GPI controller,

v = θ̈∗(t)− k3

(
ω̂ − θ̇∗(t)

)
− k2(θ̂ − θ∗(t))

−k1

∫ t

0

(θ(σ)− θ∗(σ)) dσ − k0

∫ t

0

∫ σ

0

(
θ̂(λ)− θ∗(λ)

)
dλdσ

with ω̂ and θ̂, respectively, representing the proposed integral reconstructors
of the position and angular velocity variables.

The GPI controller counteracts the possible ramp function in the angular
velocity reconstruction error, appearing when an unknown external torque is
present (Fig. 5.26).

Robustness of the proposed feedback control scheme was tested by using
the proposed GPI sliding mode controller on the following perturbed model,
including an un-modeled detent torque term,

L
d

dt
ia = −Ria +Kmω sin(npθ) + va

L
d

dt
ib = −Rib −Kmω cos(npθ) + vb

J
d

dt
ω = −Kmia sin(Nrθ) +Kmib cos(npθ)−Bω −KD sin(4npθ) + τ

d

dt
θ = ω (5.141)

The desired reference trajectory, θ∗(t), was specified as a rest-to-rest
maneuver entitling an increase of the angular position from an initial zero
value towards a final constant value θfinal, during a finite interval of time
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[t0, tf ]. The varying portion of the angular position reference trajectory, in
[t0, tf ], was specified by means of the following 10-th order Bèzier polynomial:

θ∗(t) =
(

t− t0
tf − t0

)5
[
r1 − r2

(
t− t0
tf − t0

)
+ · · · − r6

(
t− t0
tf − t0

)5
]
θfinal

(5.142)

with

r1 = 252, r2 = 1050, r3 = 1800, r4 = 1575, r5 = 700, r6 = 126

The system parameters for the motor were set to be

R = 19.1388, L = 0.040, Km = 0.1349

J = 4.1295× 10−4, B = 13× 10−4, np = 50,

KD = 0.07Kmibd, θfinal = 0.015 [rad]

The ideal fourth order closed loop characteristic polynomial was chosen to
be of the form,

p(s) = (s2 + 2ζωns+ ω2
n)

2 (5.143)

with: ζ = 0.707, ωn = 80 and Wa = 10, Wb = 10. [V]
To avoid excessive chattering a smoothed (high-gain) controller was im-

plemented, instead of the sign function based sliding mode controller,

ua = −Wa
σa

| σa |+ ε
, ub = −Wb

sb
| sb |+ ε

with ε << 1.
Figure 5.27 depicts the performance of the sensorless GPI sliding mode

controller for the prescribed output reference trajectory tracking task.

5.9.2 An induction motor

Consider the following a− b model of the induction motor:

J
d

dt
ω =

npM

Lr
(Ψaib − Ψbia)− τL

Lr
d

dt
Ψa = −RrΨa − LrnpωΨb +RrMia

Lr
d

dt
Ψb = −RrΨb + LrnpωΨa +RrMib

σLs
d

dt
ia =

MRr

L2
r

Ψa +
npM

Lr
ωΨb −

(
M2Rr + L2

rRs

L2
r

)
ia + ua
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Fig. 5.27. Performance of the GPI sliding mode controller on a trajectory tracking
task for a permanent magnet stepping motor.

σLs
d

dt
ib =

MRr

L2
r

Ψb − npM

Lr
ωΨa −

(
M2Rr + L2

rRs

L2
r

)
ib + ub (5.144)

where ia and ib represent the phase currents while Ψa and Ψb represent
the unmeasured fluxes. The control inputs are the voltages ua and ub. It is
assumed that the angular velocity is not measured. In other words, we wish
to establish a sensorless control scheme for the angular velocity reference
trajectory tracking on an induction motor described by the above model.

The basis of the GPI sliding mode control approach to the output refer-
ence trajectory tracking problem in this system consists in proposing a linear
integral reconstructor for the flux variables.

Simple algebraic manipulations of the motor equations lead to the follow-
ing linear integral reconstructor for the rotor fluxes, which are independent of
the rotor resistance Rr,

Ψa(t) = −σLsLr

M
ia(t) +

Lr

M

∫ t

0

[ua(λ)−Rsia(λ)] dλ (5.145)

and

Ψb(t) = −σLsLr

M
ib(t) +

Lr

M

∫ t

0

[ub(λ)−Rsib(λ)] dλ (5.146)

The flux integral reconstructors are exact for zero initial conditions.
Otherwise, they are biased by an unknown constant. Using the flux integral
reconstructors into the angular velocity equation leads to a nonlinear integral
reconstructor for the angular velocity. Indeed,
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ω =
np

J

∫ t

0

[
ib(λ)

∫ λ

0

[ua(ρ)−Rsia(ρ)] dρ− ia(λ)

∫ λ

0

[ub(ρ)−Rsib(ρ)] dρ

]
dλ

(5.147)

The above integral reconstructors may be used in the feedback control of
the induction motor. In such an endeavor high gain, or sliding mode control,
proves to be rather useful.

We use sliding surfaces motivated by the following field oriented control
scheme, [

σa

σb

]
=

[
ib
ia

]
+

(
JLr

npM

)
1

Ψ2
a + Ψ2

b

[−Ψa

Ψb

]
v (5.148)

Note that if σa = σb = 0 then, ideally,

dω

dt
= v − τ

J
(5.149)

For the auxiliary control input v, we propose a PI controller of the form:

v = −k2 (ω̂ − ω∗(t))− k1

∫ t

0

(ω̂(λ)− ω∗(λ)) dλ (5.150)

where ω̂ is the integral reconstructor for the angular velocity variable.
A sliding mode control is readily obtained as

ua = −Wasign (σa) , ub = −Wbsign (σb) (5.151)

with Wa > 0, Wb > 0.
Note that since Ψ2

a + Ψ2
b = 0, for zero initial conditions the singularity

makes the controller momentarily undefined if the motor is started from rest
conditions. As customary, an open loop “starter” must be used in connection
with the proposed controller. The flux integral reconstructors are left “on”
from the beginning (Fig. 5.28).

Simulations were performed to assess the performance of the sensor-less
GPI sliding mode controller for a reference trajectory tracking task on the
part of the unmeasured angular velocity. Sudden constant torques, of opposite
signs, were provided, respectively, at two different time instants: t = 2.0 [sec]
and t = 8 [sec]. Figure 5.29 depicts the rest-to-rest reference trajectory, one of
the phase currents (ia) and one of the integrally reconstructed fluxes Ψa. The
control input ua is also shown. The effect of the permanent disturbance torque
inputs on the angular velocity tracking task is also depicted in the figure.
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Fig. 5.28. A nonlinear integral reconstructor for the angular velocity
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Fig. 5.29. Performance of GPI sliding mode controller for sensorless tracking in an
induction motor subject to constant load torque inputs
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Differential flatness and sliding mode control

6.1 Introduction

A system is said to be differentially flat if there exists a set of independent
differential functions of the state (i.e., they do not satisfy any differential equa-
tions and, additionally, they are functions of the state and of a finite number of
their time derivatives), called the flat outputs. The set of flat outputs exhibits
the same number of elements as that found on the input set. The nature of
the flat outputs is such that all variables in the system: i.e., states, outputs,
and inputs, are, in turn, expressible as differential functions of the flat output.
Flatness was introduced, by M. Fliess and his colleagues in a series of remark-
able articles ([5–7]) where the reader is referred for theoretical issues and many
illustrative examples. Contrary to unwarranted belief, flatness is not just an-
other way to do feedback linearization. For SISO systems, indeed, flatness and
feedback linearizability are equivalent but flatness goes beyond feedback lin-
earization, specially in the MIMO case. Generally speaking, flatness is, in fact,
a structural property of the system that allows one to establish all the salient
features which are needed for the application of a particular feedback con-
troller design technique (like back-stepping, passivity, sliding, and, of course,
feedback linearization). Thus flatness is also an analysis tool naturally related
to equilibria, control limitations, state restrictions, and singularity avoidance.
Flatness, in its more popular conception, is a property that readily trivializes
the exact linearization problem in a nonlinear system, whether or not the
system is mono-variable. Moreover, flatness may be present on any type of
nonlinear controlled system, regardless of the nonlinear, or affine, nature of
the control inputs in the system equations. Flatness, thanks to its relations
with invertibility, immediately yields the required open loop (nominal) be-
havior of the system for a particular desired trajectory tracking task. It is,
therefore, most suitable for trajectory planning, controller saturation avoid-
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ance, the handling of state restrictions and predictive control, specially for
those cases involving non-minimum phase outputs (see [27] and [9]). One
of the distinctive features of flatness lies in the possibilities of differentially
parameterizing all system variables. States, inputs, actual system’s (non-flat)
outputs are all expressible as functions of the flat outputs and a finite num-
ber of their time derivatives. In mono-variable cases, this allows for a natural
specification of the sliding surface coordinate function in terms of a stable
linear differential polynomial acting on the flat output. In multi-variable sys-
tems, flatness naturally leads to inputs-to-flat outputs decoupling via static
or dynamic feedback (see Charlet et al. [2], Rouchon [9]). Flat outputs are,
generally speaking, physically meaningful variables in the system. Thus, their
control to specific values or reference time functions is immediately related to
a control objective whose feasibility may be readily assessed. We shall assume
that the flat output variables are all measurable for feedback purposes.

In this chapter, we examine the relations between differential flatness and
sliding mode control for MIMO nonlinear systems. We do not pay special
attention to the SISO case since it can be viewed as a particular case with far
less complications, as evidenced by some examples here treated. The interested
reader is referred to the articles by Fliess et al. [5, 6] and [7], or the rigorous
book by Levine [16] and that by Sira-Ramı́rez and Agrawal [26]. Excellent
books, devoted to infinite dimensional systems, are those of Rudolph [20] and
Rudolph et al. [21].

In this chapter, we explore two possibilities of designing a sliding mode
feedback control strategy on a given finite dimensional nonlinear MIMO flat
system. If a switched system formally exhibits the flatness property, then the
differential parametrization of the inputs directly leads to a decoupled design
of the sliding surface coordinate functions. The term formally above suggests
the second design route. If the system is found to be flat, the underlying
temporary assumption is that the control inputs are not limited to take values
on discrete sets, but, rather, they are assumed to take values on cartesian
products of a collection of compact sets of the real line. Thus flatness may be
immediately exploited on an average feedback design strategy complemented
by a Delta-Sigma modulation implementation. Delta-Sigma modulation and
average feedback designs are then directly related to the use of the flatness
property.

6.2 Flatness in Multi-variable Nonlinear systems

We consider systems of the general form,

ẋ = f(x, u), x ∈ R
n, u ∈ R

m (6.1)

where f = (f1, . . . , fn) is a regular function of x and u and the rank of the
Jacobian matrix with respect to u, ∂f/∂u is maximal, i.e. it is m.
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Definition 6.1. We say, in general, that φ is a differential function of x if

φ = φ(x, ẋ, ẍ, . . . , x(β)) (6.2)

where β = (β1, . . . βn) is a multi-index, i.e., it is a vector of finite integers,
each one depicting the order of differentiation of the corresponding component
of the vector x. Thus,

x(β) = [x
(β1)
1 , . . . , x(βn)

n ]T (6.3)

The expression x(β+1) is understood to imply the addition of the vector β with
a vector of 1’s of the same dimension.

If x is governed by a set of controlled differential equations of the form (6.1)
then, necessarily, the higher order time differentiation specified in the defini-
tion of a differential function leads to consider derivatives of the components
of the control input vector u. In other words,

φ(x, ẋ, . . . , x(β)) = ψ(x, u, u̇, ü, . . . , u(β+1)) (6.4)

Definition 6.2. A system of the form (6.1) is said to be differentially flat if
there exist m differentially independent functions1 denoted by the vector y,
constituted by a set of differential functions of the state vector x

y = h(x, u, u̇, ü, . . . , u(α)) (6.5)

such that the inverse system, expressing the vector of inputs u = (u1, . . . , um)
in terms of the vector of outputs, y = (y1, . . . , ym), does not exhibit any
dynamics. In other words, the inputs u are determined solely in terms of the
outputs y and a finite number of their time derivatives, with no need for solv-
ing differential equations for u. The quantities constituting the components of
the vector y are referred to as the “flat outputs.”

Generally speaking, the set of flat outputs does not coincide with the set of
outputs of the system. These last are addressed as the actual outputs and
they are denoted by z ∈ R

p. Usually, z = θ(x), in some cases, z = θ(x, u)
or even z = θ(x, u, u̇, . . . , u(μ)). We seldom consider outputs which are not
purely functions of the state, or outputs which are non-flat outputs.

Example 6.3. The simple linear system, ÿ = u, is evidently flat since y qualifies
as a flat output. The inverse system u = ÿ with y as input and u as the
output clearly does not have any dynamics. No differential equations have to
be solved to find u under perfect knowledge of y. Notice that the velocity
variable ẏ which is one of the states of the system is trivially differentially
parameterized by the flat output y.

1 i.e., they do not satisfy any algebraic restrictions nor any set of differential
equations.
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In flat system of the form ẋ = f(x, u), z = θ(x), all variables (i.e., states,
inputs, actual outputs) may be written as differential functions of the compo-
nents of the flat output vector y, i.e.,

x = F (y, ẏ, . . . , y(γ)), u = G(y, ẏ, . . . , y(γ+1)), z = θ(y, ẏ, . . . , y(γ)) (6.6)

where γ is a multi-index. We refer to the above expressions as the differential
parametrization of the system variables in terms of the flat outputs.

Example 6.4. Consider the following nonlinear SISO example

ẋ1 = x2

ẋ2 = −a sin(x1)− b(x1 − x3)

ẋ3 = x4

ẋ4 = c(x1 − x3) + du (6.7)

where a, b, c, and d are constant parameters.
The system is found to be differentially flat, as the variable y = x1 differ-

entially parameterizes all the variables in the system. Indeed, it is not difficult
to see that

x1 = y

x2 = ẏ

x3 =
1

b
(ÿ + a sin y) + y

x4 =
1

b

(
y(3) + aẏ cos y

)
+ ẏ

u =
1

d

[
1

b

(
y(4) + aÿ cos y − a(ẏ)2 sin y

)
+ ÿ +

c

b
(ÿ + a sin y)

]
(6.8)

The fundamental relation between the flat output highest derivative, y(4), and
the control input u is of the form

y(4) = (bd)u+ q(y, ẏ, ÿ) (6.9)

with q(·) representing all the nonlinearities affecting the flat output dynamics.
This quantity may be either known or unknown. The preferred route in sliding
mode control is to overcome this quantity under the assumption, or educated
assessment, that such a quantity is globally or at least locally bounded in the
region of interest. This type of relation is fundamental in sliding mode creation
problems for a control objective defined on the basis of the flat output.

If a stabilization is desired around an equilibrium point y = Θ, ẏ = ÿ =
y(3) = 0, a sliding surface may be readily proposed to be

σ(y, ẏ, ÿ, y(3)) = y(3) + κ2ÿ + κ1ẏ + κ0(y −Θ) (6.10)
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with the coefficients κi,i = 0, 1, 2 chosen so that the associated characteristic
polynomial : p(s) = s3 + κ2s

2 + κ1s+ κ0 is a Hurwitz polynomial.
Notice that the following state dependent input coordinate transformation

(written for simplicity in terms of y and its derivatives),

u =
1

d

[
1

b

(
v + aÿ cos y − a(ẏ)2 sin y

)
+ ÿ +

c

b
(ÿ + a sin y)

]
(6.11)

yields the following simple linear controllable system in Brunovsky’s canonical
form (see Isidori [13]),

y(4) = v (6.12)

The relation of single input flat systems with systems linearizable by means
of static state feedback and state dependent input coordinates transformations
(static state feedback linearizable in short, or even shorter; feedback lineariz-
able) is quite interesting: they are equivalent.

Example 6.5. The kinematic model of a mono-cycle is given by

ẋ1 = x4 cosx3, ẋ2 = x4 sinx3, ẋ3 = u2, ẋ4 = u1 (6.13)

where (x1, x2) represent the position of the point of contact of the wheel with
the coordinate plane (x1, x2), The variable x3 is the angle of orientation of
the plane of the wheel with respect to the x1 axis. The wheel is assumed to
be always perpendicular to the plane (x1, x2). u1 is the forward acceleration
and u2 is the turning rate.

The flat outputs are just: y1 = x1, y2 = x2. Indeed,

x4 =
√

ẏ21 + ẏ22 , x3 = arctan

(
ẏ2
ẏ1

)
, u2 =

ÿ2ẏ1 − ẏ2ÿ1
ẋ2
1 + ẋ2

2

, u1 =
ẏ1ÿ1 + ẏ2ÿ2√

ẏ21 + ẏ22

Knowledge of y1, y2 allows for the computation of the control inputs u1, u2

without solving differential equations. The inverse system has no dynamics.
The input-to flat output relation and the controlled dynamics for the flat

outputs are obtained as

[
u1

u2

]
=

⎡
⎢⎢⎣

ẏ1√
ẏ21 + ẏ22

ẏ2√
ẏ21 + ẏ22

− ẏ2
ẏ21 + ẏ22

ẏ1
ẏ21 + ẏ22

⎤
⎥⎥⎦
[
ÿ1
ÿ2

]
,

[
ÿ1
ÿ2

]
=

⎡
⎢⎢⎣

ẏ1√
ẏ21 + ẏ22

−ẏ2

ẏ2√
ẏ21 + ẏ22

ẏ1

⎤
⎥⎥⎦
[
ÿ1
ÿ2

]
=

[
cosx3 −x4 sinx3

sinx3 x4 cosx3

] [
u1

u2

]

Clearly, x4 = 0, blocks out all control efforts and it corresponds with
zero forward velocity of the point of contact of the wheel with the plane
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(x1, x2). Trajectory tracking of a desired path in the plane: y∗1(t), y
∗
2(t) may

be accomplished with the following set of sliding surfaces defined in terms of
the reference tracking errors: e1 = y1 − y∗1(t), e2 = y2 − y∗2(t)

σ1 = ė1 + κ1e1, σ2 = ė2 + κ2e2 (6.14)

Exercise 6.6. Notice that a more traditional kinematic model of the mono-
cycle involves only forward velocity and turning rate as control input variables.
The model is then customarily given by

ẋ1 = u1 cosx3, ẋ2 = u1 sinx3, ẋ3 = u2 (6.15)

Work out the details and convince yourself that a a dynamic extension of the
control input u1 is necessary to obtain a proper input-output dynamics.

6.3 The rolling penny

A homogeneous disk rolls vertically over a horizontal plane without slipping,
skidding, or tilting (Fig. 6.1). In spite of the non-physical nature of the example
it constitutes a good example to study a multi-variable system subject to non-
holonomic restrictions.

Fig. 6.1. The rolling penny

The configuration space is constituted by

q = (x, y, ϕ, θ) ∈ R2 × S1 × S1 (6.16)

which describes the position of the contact point with the plane, the angle of
rotation, and the orientation of the disk.

We assume the mass of the disk is m, the radius is R, and the moments
of inertia I and J , respectively, with respect to the axes perpendicular to the
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plane of the disk which passes through its center and with respect to a vertical
axis containing also the center of the disk. There are two control inputs uθ

and uϕ which regulate the motions of the disk on the plane.
The Lagrangian of the disk is given by

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2 (6.17)

The non-holonomic restrictions of rolling without slipping are just

ẋ = R(cosϕ)θ̇, ẏ = R(sinϕ)θ̇ (6.18)

These two equations conform the restriction functions of the vector type.
They are thus given by

[
f̂1(ẋ, ϕ, θ̇)

f̂2(ẏ, ϕ, θ̇)

]
=

[
ẋ−R(cosϕ)θ̇

ẏ −R(sinϕ)θ̇

]
= 0 (6.19)

The system dynamics, in general terms, is given by

d

dt

(
∂L

∂q̇

)
=

⎡
⎢⎢⎣

0
0
uϕ

uθ

⎤
⎥⎥⎦+ λ1

∂f̂1
∂q̇

+ λ2
∂f̂2
∂q̇

(6.20)

In specific terms, we have:

m
d

dt

(
R cosϕθ̇

)
= λ1

m
d

dt

(
R sinϕθ̇

)
= λ2

Jϕ̈ = uϕ

Iθ̈ = uθ − λ1R cosϕ− λ2R sinϕ

Using the last two equations in the restrictions we have

λ1 = m
d

dt

(
R cosϕθ̇

)
, λ2 = m

d

dt

(
R sinϕθ̇

)
, (6.21)

Note that
− λ1R cosϕ− λ2R sinϕ = −mR2θ̈ (6.22)

We now have, using the restrictions:

ẋ = R(cosϕ)θ̇

ẏ = R(sinϕ)θ̇

Jϕ̈ = uϕ

(I +mR2)θ̈ = uθ
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The first two equations represent the kinematics of the system and the last two
the dynamics of the system. Note that θ does not intervene in the equations,
only the angular rolling rate θ̇.

The typical problem consists in controlling the system from the torque
control inputs: uϕ, uθ, in such a manner that the point of contact of the
disk with the horizontal plane follows a pre-specified trajectory, given by:
x∗(t), y∗(t).

The independent variables: x e y, play an important role in the under-
standing of the structure of this non-holonomic system and in the design of
a feedback controller for the tracking of the smooth trajectories specified on
the plane for the coordinates x, y.

Certainly, all system variables are expressible in terms of x, y and a finite
number of its time derivatives. Indeed,

θ̇ =
1

R

√
ẋ2 + ẏ2

ϕ = arctan

(
ẏ

ẋ

)

uθ =
(I +mR2)

R

[
ẋẍ+ ẏÿ√
ẋ2 + ẏ2

]

uϕ = J

[
y(3)ẋ− ẏx(3)

(ẋ)2 + (ẏ)2
− 2

ÿẍ(ẋ)2 + ẋẏ((ÿ)2 − (ẍ)2)− (ẏ)2ẍÿ

((ẋ)2 + (ẏ)2)2

]

The relation between the inputs and the highest order derivatives of x and
y is not invertible. Clearly a dynamic extension of first order is needed on
uθ to achieve a well-defined input to flat outputs highest derivative relation.
We have

[
uϕ

u̇θ

]
=

⎡
⎢⎢⎢⎢⎣

−J
ẏ

(ẋ)2 + (ẏ)2
J

ẋ

(ẋ)2 + (ẏ)2

(
I +mR2

R

)
ẋ√

(ẋ)2 + (ẏ)2

(
I +mR2

R

)
ẏ√

(ẋ)2 + (ẏ)2

⎤
⎥⎥⎥⎥⎦
[
x(3)

y(3)

]

+

⎡
⎢⎢⎢⎢⎢⎣

−2J

[
ÿẍ(ẋ)2 + ẋẏ((ÿ)2 − (ẍ)2)− (ẏ)2ẍÿ

((ẋ)2 + (ẏ)2)2

]

I +mR2

R

[
(ẍ)2 + (ÿ)2√
(ẋ)2 + (ẏ)2

− (ẋẍ+ ẏÿ)2

((ẋ)2 + (ẏ)2)
3
2

]

⎤
⎥⎥⎥⎥⎥⎦

The Hagenmeyer Delaleau controller design procedure [12] calls for a linear
controller design on the set of independent chains of integrators,

x(3) = vx, y(3) = vy (6.23)
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and the use of the time-varying relation:

[
uϕ

u̇θ

]
=

⎡
⎢⎢⎢⎢⎣

−J
ẏ∗

(ẋ∗)2 + (ẏ∗)2
J

ẋ∗

(ẋ∗)2 + (ẏ∗)2

(
I+mR2

R

) ẋ∗√
(ẋ∗)2 + (ẏ∗)2

(
I+mR2

R

) ẏ∗√
(ẋ∗)2 + (ẏ∗)2

⎤
⎥⎥⎥⎥⎦
[
vx
vy

]

+

⎡
⎢⎢⎢⎢⎢⎣

−2J

[
ÿ∗ẍ∗(ẋ∗)2 + ẋ∗ẏ∗((ÿ∗)2 − (ẍ∗)2)− (ẏ∗)2ẍ∗ÿ∗

((ẋ∗)2 + (ẏ∗)2)2

]

I+mR2

R

[
(ẍ∗)2 + (ÿ∗)2√
(ẋ∗)2 + (ẏ∗)2

− (ẋ∗ẍ∗ + ẏ∗ÿ∗)2

((ẋ∗)2 + (ẏ∗)2)
3
2

]

⎤
⎥⎥⎥⎥⎥⎦

where x∗ and y∗ stand, respectively, by x∗(t) and y∗(t), the desired reference
trajectories for x and y.

The controllers for the chains of integrators are simply

vx = [x∗(t)](3) −
[
kx3s

3 + kx2s
2 + kx1s+ kx0

s(s2 + kx5s+ kx4 )

]
(x− x∗(t))

vy = [y∗(t)](3) −
[
ky3s

3 + ky2s
2 + ky1s+ ky0

s(s2 + ky5s+ ky4)

]
(y − y∗(t))

Substitution of these expression into the expressions for uϕ, u̇θ leads to

[
uϕ

u̇θ

]
=

[
u∗
ϕ(t)

u̇∗
θ(t)

]

+

⎡
⎢⎢⎢⎢⎣

−J
ẏ∗(t)

(ẋ∗(t))2 + (ẏ∗(t))2
J

ẋ∗(t)
(ẋ∗(t))2 + (ẏ∗(t))2

(
I +mR2

R

)
ẋ∗(t)√

(ẋ∗(t))2 + (ẏ∗(t))2

(
I+mR2

R

) ẏ∗(t)√
(ẋ∗(t))2 + (ẏ∗(t))2

⎤
⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣

−
[
kx3s

3 + kx2s
2 + kx1s+ kx0

s(s2 + kx5s+ kx4 )

]
(x− x∗(t))

−
[
ky3s

3 + ky2s
2 + ky1s+ ky0

s(s2 + ky5s+ ky4)

]
(y − y∗(t))

⎤
⎥⎥⎥⎥⎦

Exercise 6.7. Under the assumption of suitable binary-valued torque inputs,
implement the derived average control laws by means of an appropriate Delta-
Sigma modulation scheme. Assume that the unicycle is to move forwards
always (i.e., no backing up).
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6.4 Single axis car

Consider the model of a cart provided with a single axis joining two wheels.
Each one of the wheels is independently actuated by means of a motor that
provides the required torque. We name these torques τ1 and τ2 and they are
considered as control inputs (Fig. 6.2).

Fig. 6.2. A single axis car

Wheel No. 1 rolls with angular velocity φ̇1 while the second wheel does it
with angular velocity φ̇2. This causes the linear tangential velocities of each
wheel to be

v1 = Rφ̇1, v2 = Rφ̇2 (6.24)

The velocity of the point (x, y), which is located at the center of mass of the
car, is given then by

v =
v1 + v2

2
=

R

2

[
φ̇1 + φ̇2

]
(6.25)

The projected velocities of the center of mass, along each cartesian coordinate
axes, are consequently:

ẋ =
R

2

[
φ̇1 + φ̇2

]
cos θ, ẏ =

R

2

[
φ̇1 + φ̇2

]
sin θ (6.26)

Let ρ be the turning radius of the slowest wheel (say, wheel No. 2 in
accordance with the figure). The lengths of the arcs covered by wheel No. 2
and wheel No. 1, during a differential interval of time dt, are given by:

ds2 = ρdθ, ds1 = (ρ+ L)dθ, ds = (ρ+
L

2
)dθ (6.27)
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where ds is the arc length covered by the center of mass. But,

ds2 = v2dt, ds1 = v1dt, ds = vdt (6.28)

i.e.,

ds2 = Rφ̇2dt, ds1 = Rφ̇1dt, ds =
R

2
(φ̇1 + φ̇2)dt (6.29)

We have then

ρθ̇ = Rφ̇2, (ρ+ L)θ̇ = Rφ̇1

ρ

ρ+ L
=

φ̇2

φ̇1

⇒ ρ = L
φ̇2

φ̇1 − φ̇2

and

θ̇ =
R

L

(
φ̇1 − φ̇2

)
(6.30)

We count with three non-holonomic restrictions,

f̂1 = ẋ− R

2

[
φ̇1 + φ̇2

]
cos θ = 0

f̂2 = ẏ − R

2

[
φ̇1 + φ̇2

]
sin θ = 0

f̂3 = θ̇ − R

L

(
φ̇1 − φ̇2

)
= 0

The Lagrangian of the system is given by

L =
1

2
mẋ2 +

1

2
mẏ2 +

1

2
J0φ̇

2
1 +

1

2
J0φ̇

2
2 +

1

2
Iθ̇2

+τ1φ1 + τ2φ2

The equations of motion of the system are obtained from the expression:

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= λ1

∂f̂1
∂q̇

+ λ2
∂f̂2
∂q̇

+ λ3
∂f̂3
∂q̇

(6.31)

where q = (x, y, θ, φ1, φ2)
T .

We have then the following expressions:

m
d

dt

[
R

2
(φ̇1 + φ̇2) cos θ

]
= λ1

m
d

dt

[
R

2
(φ̇1 + φ̇2) sin θ

]
= λ2

IR

L

[
φ̈2 − φ̈1

]
= λ3

J0φ̈1 = τ1 − λ1
R

2
cos θ − λ2

R

2
sin θ + λ3

R

L

J0φ̈2 = τ2 − λ1
R

2
cos θ − λ2

R

2
sin θ − λ3

R

L
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Eliminating the λ’s and taking the restrictions as system equations that must
be satisfied we obtain the following complete model of the system:

ẋ =
R

2
(φ̇1 + φ̇2) cos θ

ẏ =
R

2
(φ̇1 + φ̇2) sin θ

θ̇ =
R

L
(φ̇2 − φ̇1)⎡

⎢⎣J0 +
mR2

4
+

IR2

L2

mR2

4
− IR2

L2

mR2

4
− IR2

L2
J0 +

mR2

4
+

IR2

L2

⎤
⎥⎦
[
φ̈1

φ̈2

]
=

[
τ1
τ2

]

The set of (privileged) outputs, or flat outputs, is constituted by the center
of mass of the wheel system at the center of the axis, i.e., the coordinates x
and y.

We have

θ = arctan

(
ẏ

ẋ

)
, θ̇ =

ÿẋ− ẏẍ

ẋ2 + ẏ2
(6.32)

In order to find the parametrization of the coordinates φ̇1 and φ̇2 we use the
parameterizations for φ̇2 − φ̇1 and the one for θ̇:

φ̇2 + φ̇1 =
2

R

√
(ẋ)2 + (ẏ)2, φ̇2 − φ̇1 =

L

R

(
ÿẋ− ẏẍ

(ẋ)2 + (ẏ)2

)

We have

φ̇1 =
1

R

√
(ẋ)2 + (ẏ)2 − L

2R

[
ÿẋ− ẏẍ

(ẋ)2 + (ẏ)2

]

φ̇2 =
1

R

√
(ẋ)2 + (ẏ)2 +

L

2R

[
ÿẋ− ẏẍ

(ẋ)2 + (ẏ)2

]

φ̈1 =
1

R

ẋẍ+ ẏÿ√
(ẋ)2 + (ẏ)2

− L

2R

[
y(3)ẋ− ẏx(3)

(ẋ)2 + (ẏ)2
− 2

(ÿẋ− ẏẍ)(ẋẍ+ ẏÿ)

((ẋ)2 + (ẏ)2)2

]

φ̈2 =
1

R

ẋẍ+ ẏÿ√
(ẋ)2 + (ẏ)2

+
L

2R

[
y(3)ẋ− ẏx(3)

(ẋ)2 + (ẏ)2
− 2

(ÿẋ− ẏẍ)(ẋẍ+ ẏÿ)

((ẋ)2 + (ẏ)2)2

]

Exercise 6.8. Under the assumption of suitable binary-valued torque inputs
τ1, τ2, implement the derived average control laws by means of an appropriate
Delta-Sigma modulation scheme.
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Fig. 6.3. The planar rigid body

6.5 The planar rigid body

This example is a simplified version of the hovercraft and is modeled as follows:

Jθ̈ = −hu2

mẍ = u1 cos θ − u2 sin θ

mÿ = u1 sin θ + u2 cos θ

where x and y are the coordinates of the center of mass (Fig. 6.3). The variable
θ describes the orientation of the main axis of the body with respect to the x
axis. The control inputs u1 and u2 are the components of the applied force,
respectively, along the main axis and its transversal axis.

Consider the following special outputs

F = x+ α cos θ, L = y + α sin θ (6.33)

The successive time derivatives of F and L result in

Ḟ = ẋ− αθ̇ sin θ

F̈ = ẍ− α
(
θ̈ sin θ + θ̇2 cos θ

)

= (
u1

m
− αθ̇2) cos θ − (1− α

hm

J
)
u2

m
sin θ

L̇ = ẏ + αθ̇ cos θ

L̈ = ÿ + α(θ̈ cos θ − θ̇2 sin θ)

= (
u1

m
− αθ̇2) sin θ − (α

hm

J
− 1)

u2

m
cos θ
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Choosing α = J/(hm), we get

F̈ = (
u1

m
− J

hm
θ̇2) cos θ, L̈ = (

u1

m
− J

hm
θ̇2) sin θ (6.34)

We let

ξ =
u1

m
− J

hm
θ̇2 (6.35)

and, hence,

F̈ = ξ cos θ, L̈ = ξ sin θ (6.36)

Further differentiating the expressions for F̈ , L̈, we find

F (3) = ξ̇ cos θ − θ̇ξ sin θ

F (4) = ξ̈ cos θ − 2ξ̇θ̇ sin θ − θ̈ξ sin θ − θ̇2ξ cos θ

= ξ̈ cos θ +
J

h
ξ sin θu2 − 2ξ̇θ̇ sin θ − θ̇2ξ cos θ

L(3) = ξ̇ sin θ + ξθ̇ cos θ

L(4) = ξ̈ sin θ + 2ξ̇θ̇ cos θ + ξθ̈ cos θ − ξθ̇2 sin θ

= ξ̈ sin θ − J

h
ξ cos θu2 + 2ξ̇θ̇ cos θ − ξθ̇2 sin θ

[
F (4)

L(4)

]
=

[
cos θ J

h ξ sin θ
sin θ −J

h ξ cos θ

] [
ξ̈
u2

]
+

[−2ξ̇θ̇ sin θ − θ̇2ξ cos θ

2ξ̇θ̇ cos θ − θ̇2ξ sin θ

]

The auxiliary controls vF and vL control the two independent fourth order
chains of integrations F (4) = vF , L

(4) = VL by means of classical compensa-
tion networks

vF = [F �(t)](4) −
[
kF4 s

4 + kF3 s
3 + kF2 s

2 + kF1 s+ kF0
s(s3 + kF7 s

2 + kF6 s+ kF5 )

]
(F − F ∗(t)) (6.37)

vL = [L�(t)](4) −
[
kL4 s

4 + kL3 s
3 + kL2 s

2 + kL1 s+ kL0
s(s3 + kL7 s

2 + kL6 s+ kL5 )

]
(L− L∗(t)) (6.38)

Note that F and L parameterize all the system variables. Indeed,

θ = arctan

(
F̈

L̈

)
, ξ =

√
(F̈ )2 + (L̈)2,

u1 = mξ +
J

h
θ̇2 = m

√
(F̈ )2 + (L̈)2 +

J

h

(
F (3)L̈− F̈L(3)

(F̈ )2 + (L̈)2

)2

x = F − J

hm

⎡
⎣ F̈√

(F̈ )2 + (L̈)2

⎤
⎦ , y = L− J

hm

⎡
⎣ L̈√

(F̈ )2 + (L̈)2

⎤
⎦
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u2 = −J

h

{
F (4)L̈− F̈L(4)

[F̈ ]2 + [L̈]2

}
− 2

J

h

⎧⎪⎨
⎪⎩

F (3)L̈− F̈L(3)

[
[F̈ ]2 + [L̈]2

]2
⎫⎪⎬
⎪⎭
(
F̈F (3) + L̈L(3)

)

A possibility for devising the required flat output based linear time-varying
feedback control is as follows:

From the relations

F (4) = ξ̈ cos θ +
J

h
ξ sin θu2 − 2ξ̇θ̇ sin θ − θ̇2ξ cos θ

L(4) = ξ̈ sin θ − J

h
ξ cos θu2 + 2ξ̇θ̇ cos θ − ξθ̇2 sin θ

we let F (4) = vF and L(4) = vL, as before, and eliminate ξ̈ multiplying
out the first expression by sin θ, and subtracting from it the second equation
multiplied by cos θ. We find, using the expression for ξ,

u1 = mξ +
J

h
θ̇2

u2 =
h

Jξ

[
vF sin θ − vL cos θ + 2ξ̇θ̇

]

Multiplying now the first by cos θ and the second by sin θ we find a differential
equation for ξ,

ξ̈ = (vF cos θ + vL sin θ + θ̇2ξ) (6.39)

A linear time-varying controller, known as a GPI controller (see details on
this class of controllers in Chapter 5), is synthesized as follows:

u1 = mξ +
J

h
[θ̇∗(t)]2

u2 = u∗
2(t)−

h

Jξ∗(t)
sin θ∗(t)

[
kF4 s

4 + kF3 s
3 + kF2 s

2 + kF1 s+ kF0
s(s3 + kF7 s

2 + kF6 s+ kF5 )

]
(F−F ∗(t))

+
h

Jξ∗(t)
cos θ∗(t)

[
kL4 s

4 + kL3 s
3 + kL2 s

2 + kL1 s+ kL0
s(s3 + kL7 s

2 + kL6 s+ k5L)

]
(L− L∗(t))

u∗
2(t) =

h

Jξ∗(t)

{
[F ∗(t)](4) sin θ∗(t)− [L∗(t)](4) cos θ∗(t) + 2ξ̇∗(t)θ̇∗(t)

}

with ξ being the solution of the linear time-varying system (Fig. 6.4)

ξ̈ = ξ̈∗(t)

− cos θ∗(t)
[
kF4 s

4 + kF3 s
3 + kF2 s

2 + kF1 s+ kF0
s(s3 + kF7 s

2 + kF6 s+ kF5 )

]
(F − F ∗(t))

− sin θ∗(t)
[
kL4 s

4 + kL3 s
3 + kL2 s

2 + kL1 s+ kL0
s(s3 + kL7 s

2 + kL6 s+ k5L)

]
(L− L∗(t))

+[θ̇∗(t)]2(ξ − ξ∗(t))
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Fig. 6.4. Dynamic feedback control scheme for the planar rigid body

Exercise 6.9. Under the assumption of suitable binary-valued force compo-
nents u1, u2, implement the derived average control laws by means of an
appropriate Delta-Sigma modulation scheme.

6.5.1 The Rocket Example

This example is included to illustrate the flatness property in a classical
and challenging nonlinear example with no relation to sliding mode control.
The developments parallel those in Fliess et al. [6] and may also be found
in Sira-Ramı́rez and Agrawal [26]. Consider the following simplified and nor-
malized model of a rocket flying in the plane xy, without considering the fuel
mass expenditure.

ẍ = u1

ÿ = u2

εθ̈ = −u1 cos θ + (u2 + 1) sin θ

where x and y are, respectively, the horizontal and the vertical coordinates of
the rocket center of mass. The angle θ is the inclination of the rocket’s main
axis with respect to the vertical direction. The control inputs u1 and u2 are
the components of the thrust force, respectively, in the x and y directions,
with u2 already including the control of the gravity effect.

We hypothesize that the flat outputs are represented by coordinates of a
point located on the main longitudinal axis of the rocket.

F = x+ α sin θ, L = y + α cos θ (6.40)

Taking successive time derivatives of this quantity we find

Ḟ = ẋ+ αθ̇ cos θ

F̈ = u1 +
α

ε
(−u1 cos θ + (u2 + 1) sin θ) cos θ − αθ̇2 sin θ

= u1(1− α

ε
cos2 θ) +

α

ε
(u2 + 1)u1 cos θ sin θ − αθ̇2 sin θ
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L̇ = ẏ − αθ̇ sin θ

L̈ = u2 − α

ε
(−u1 cos θ + (u2 + 1) sin θ) sin θ − αθ̈2 cos θ

= (1− α

ε
sin2 θ)(u2 + 1) +

α

ε
u1 sin θ cos θ − αθ̇2 cos θ − 1

Letting α = ε and

ζ = u1 sin θ + (1 + u2) cos θ − εθ̇2 (6.41)

we find that

F̈ = ζ sin θ, L̈ = ζ cos θ

Taking further derivatives of F and L one obtains

F (3) = ζ̇ sin θ + ζθ̇ cos θ

F (4) = ζ̈ sin θ + 2ζ̇ θ̇ cos θ + ζθ̈ cos θ − ζθ̇2 sin θ

L(3) = ζ̇ cos θ − ζθ̇ sin θ

L(4) = ζ̈ cos θ − 2ζ̇ θ̇ sin θ − ζθ̈ sin θ − ζθ̇2 cos θ

Let

F (4) = vF and L(4) = vL (6.42)

Eliminating ζ̈ first and then eliminating θ̈ we find

vF cos θ − vL sin θ = 2ζ̇ θ̇ + ζθ̈

vF sin θ + vL cos θ = ζ̈ − ζθ̇2

Substituting θ̈ from the system equations, in the previous equations, and
using the expression for ζ, we obtain the following system of equations for the
control inputs u1 and u2 + 1:

−u1 cos θ + (1 + u2) sin θ =
ε

ζ

[
vF cos θ − vL sin θ − 2ζ̇ θ̇

]

u1 sin θ + (1 + u2) cos θ = ζ + εθ̇2

with ζ being the solution of:

ζ̈ = vF sin θ + vL cos θ + ζθ̇2 (6.43)

6.6 Sliding surface design for flat systems

Flat outputs are known to have the distinctive property of representing phys-
ically meaningful variables. These statement, with some notable exception, is
made on the basis of a rather large collection of physically oriented examples
(see Sira-Ramı́rez and Agrawal [26]). A reasonable assumption is then that
the flat output is available for measurement and that a sliding mode control
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scheme would primarily be devoted to regulate this set of variables in trajec-
tory tracking or in stabilization tasks. If, on the contrary, system variables,
other than the flat outputs, are required to be directly regulated so as to
satisfy a property that may be translated into a sliding mode control design,
then such an objective can be equally handled in terms of the flat output via a
suitable use of the differential parametrization relating those system variables
with the flat outputs.

Suppose that the system ẋ = f(x, u), u ∈ R
m is flat, with flat output

variables given by the vector y. Then, the differential parametrization of the
input vector u is given by

u = B(y, ẏ, · · · , y(γ+1)) (6.44)

It is important to realize the multi-index nature of γ, i.e. γ = (γ1, · · · , γm).
Thus, modulo some reordering of the flat outputs, we can write the following
set of relations:

u1 = B1(y, ẏ, · · · , y(γ1+1)
1 )

...

um = Bm(y, ẏ, · · · , y(γm+1)
m ) (6.45)

A set of independent sliding surfaces can then be readily proposed with the
idea of achieving an exact linearization of the ideal sliding dynamics. Such
linearization may be induced in the stabilization error dynamics or in a track-
ing error dynamics context. In the stabilization case, one proceeds to define
the sliding surface coordinate functions as

σ1 =

γ1∑
j=0

α1,jy
(j)
1

...

σm =

γm∑
j=0

αm,jy
(j)
m

with the coefficients, for each one of the linear combinations above, chosen so
that the corresponding closed loop characteristic polynomials,

pk(s) = sγk + αk,γk−1s
γk−1 + · · ·+ αk,0 (6.46)

are guaranteed to be Hurwitz polynomials.
We present some illustrative examples so as to clarify the little specificity,

which allows us, the generality of the previous formulae.
Being a structural property of the system, flatness is to be examined when

the system is free of disturbances. However, in some instances, it may be
convenient to carry along the perturbations in the system description as if
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they were seemingly known functions. This allows one to obtain a perturbed
differential parametrization of all system variables with a clear assessment of
the distribution of the effects of the disturbances on the state space variables,
on the actual outputs and on the input space components.

6.6.1 A stepping motor example

Consider the following, rather popular, model of a stepping motor

L
d

dt
ia = −Ria +Kmω sin(npθ) + va

L
d

dt
ib = −Rib −Kmω cos(npθ) + vb

J
d

dt
ω = −Kmia sin(npθ) +Kmib cos(npθ)− τ(t)

d

dt
θ = ω

where ia and ib represent measurable phase currents, ω is the angular velocity
of the axis of the motor while θ represents the angular position. The control
input variables are represented by the phase voltages va and vb. We assume
that all motor parameters are perfectly known and that the motor system is
initially at rest on θ = 0. The signal τ(t) represents the unknown but constant
load torque. It appears quite unexpectedly and it constitutes an unknown
perturbation.

The system is differentially flat, with flat outputs given by the angular
position θ and one of the phase currents, say ia. Indeed, if θ and ia are known,
we can compute the rest of the system variables in terms of these two variables
and a finite number of their time derivatives. We have, for τ = 0

ω = θ̇

va = L
dia
dt

+Ria −Kθ̇ sin(npθ)

ib =
1

Km cos(npθ)

[
Jθ̈ +Kmia sin(npθ)

]

vb =
L

Km

[(Jθ(3) +Km
dia
dt

sin(npθ) +Kmianp cos
2(npθ)

)

cos(npθ)

+

(
Jθ̈ +Kmia sin(npθ)

)
np sin(npθ)

cos2(npθ)

]

+
R

Km cos(npθ)

[
Jθ̈ +Kmia sin(npθ)

]
+Kmθ̇ cos(npθ) (6.47)

Given a set of nominal trajectories for θ and ia, all nominal evolutions
of the state variables and inputs are readily determined from the above
expressions.
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Before prescribing a set of sliding surfaces to accomplish a desired
objective, consider the perturbed differential parametrization of the sys-
tem by including the presence of the load torque perturbation signal τ(t). We
have

ω = θ̇

va = L
dia
dt

+Ria −Kθ̇ sin(npθ)

ib =
1

Km cos(npθ)

[
Jθ̈ +Kmia sin(npθ) + τ(t)

]

vb =
L

Km

[(Jθ(3) +Km
dia
dt

sin(npθ) +Kmianp cos
2(npθ) + τ̇(t)

)

cos(npθ)

+

(
Jθ̈ +Kmia sin(npθ) + τ(t)

)
np sin(npθ)

cos2(npθ)

]

+
R

Km cos(npθ)

[
Jθ̈ +Kmia sin(npθ) + τ(t)

]
+Kmθ̇ cos(npθ)

(6.48)

The expressions describing the perturbed dynamics for the flat outputs,
in a simplified manner, are of the form:

dia
dt

=

(
1

L

)
va + qia(ia, θ, θ̇)

θ(3) =

(
Km

LJ

)
vb cos(npθ) + qθ(θ, θ̇, ia,

dia
dt

, τ, τ̇)

where qθ(·) and qia(·) are considered as perturbation inputs. Only the angular
position dynamics exhibits an explicit dependence on the load perturbation
input signal τ(t). A sliding regime created on a set of sliding surfaces, seek-
ing either stabilization or trajectory tracking for the flat outputs, will have
to face this combination of endogenous (state) and exogenous (load torque)
uncertainties. The presence of the factor cos(npθ), affecting the control input
vb in a multiplicative manner, represents a limitation on the feasible angular
position trajectories or angular position equilibria. To avoid singularities, the
angle θ is to be restricted to the open interval:

− π

2np
< θ <

π

2np
(6.49)

Flatness reveals the structure of the problem and the basic limitations asso-
ciated therewith.

Assume one is interested in a stabilization of the current ia around a
given equilibrium value, Ia and, simultaneously, a stabilization of the mo-
tor shaft position around a constant angular position θ = Θ. Assume the
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voltages va and vb may take values, respectively, in the discrete sets {−Va, Va}
and {−Vb, Vb}, where Va, Vb represent maximum allowable magnitude voltage
inputs to the motor. As discussed in the introduction of this chapter, there
are, generally speaking, two procedures for the sliding mode control of non-
linear switched systems which are specially endowed with flatness. We call
these methods, the “direct method” and the “average based method,” which
is based on Delta-Sigma modulation.

A direct method would try to directly create, via switched inputs va and
vb a sliding regime on the prescribed sliding surfaces reflecting the control obj-
ectives. For this one would prescribe the sliding surface coordinate functions:

σ1 = ia − Ia, σ2 = θ̈ + κ1θ̇ + κ0(θ −Θ) (6.50)

Clearly, ideal sliding regimes on the surfaces

S1 = {x ∈ R
4 | σ1 = ia−Ia = 0}, S2 = {x ∈ R

4 | σ2 = θ̈+κ1θ̇+κ0(θ−Θ) = 0}
(6.51)

with x = (ia, ib, θ̇, θ), accomplishes the desired objective, provided a sliding
regime exists on these surfaces. Here the fundamental assumption is that the
time-varying quantities qi and qθ, defined above, are uniformly absolutely
bounded

sup
t

|qi(ia(t), θ(t), θ̇(t))| ≤ K1, sup
t

|qθ(θ(t), θ̇(t), ia(t), dia(t)
dt

, τ(t), τ̇(t))| ≤ K2

(6.52)

In general, these bounds are not easy to establish in an analytic fashion.
In this particular case, given that qθ(·) explicitly depends on an unknown input
signal represented by the load torque τ(t) and its time derivative, the task of
producing an adjusted estimate of K2 is specially difficult. Flatness allows,
however, an assessment of the nominal trajectories of this quantity via off-line
simulations using typical load torque realizations (constant, periodic, etc.).

Additionally, notice that the load torque perturbations affect the sliding
surface coordinate function σ2 itself. Indeed, if only states are measurable
from the system (so that the need to produce the angular acceleration, θ̈, is
sidestepped), then σ2 is synthesized as

σ2 = −Km

J
ia sin(npθ) +

Km

J
ib cos(npθ)− 1

J
τ(t) + κ1ω + κ0(θ −Θ) (6.53)

The scheme results in a perturbation dependent sliding surface which may
be inconvenient. One option is to ignore such a perturbation dependence and
relegate the load torque effects to a larger switching gain authority. This
may result in excessive chattering. Another option, which is becoming quite
popular, is to attempt an on-line disturbance estimation scheme, based on
the mechanical part of the system dynamics and the knowledge of the state
variables, in order to adaptively inject this (asymptotic or finite time conver-
gent) estimate into the sliding surface expression. This requires knowledge of
a substantial set of parameters in the system (Km, L, J).
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The switching policy is of the form

va = −1

2
LWiasignσ1, vb = − LJ

Km
Wθsignσ2 (6.54)

with Wia chosen so that LWia > K1 and Wiθ is chosen so that
(LJ/Km cos(npθ))Wθ > K2.

The average approach is based on feedback linearization for the current
and the angular position dynamics.

6.7 The feed-forward controller

Hagenmeyer and Delaleau (see [12]), have proposed a class of controllers for
nonlinear systems addressed as feed-forward linearizing controllers. The con-
trollers, for the most common case of affine in the control systems, turn out to
be linear, time-varying controllers which are to be used in combination with
some complementary feedback method designed for controlling a chain of int-
egrators of the same order as the system. The developments are based on the
following ideas which, we show, bring about a rather popular control method
for nonlinear systems, the approximate linearization method, but with a twist.

Suppose a given SISO nonlinear system of the form ẋ = f(x, u) is differ-
entially flat, with flat output given by the variable y. The results we expose
below extend, quite directly, to the MIMO case as well. The system, being
flat, has then the following differential parametrization of the control input u,
in terms of a differential function of y,

u = B(y, ẏ, ÿ, . . . , y(n)) (6.55)

In [12], the authors propose the following control scheme for tracking any
smooth trajectory y∗(t), with corresponding nominal control input given by
u∗(t) = B(y∗(t), . . . , [y∗(t)](n)):

Set:
u = B(y∗(t), ẏ∗, . . . , [y∗(t)](n−1), v) (6.56)

with v being a GPI controller that renders the origin of the tracking error
space e = y − y∗(t) into an exponentially asymptotically stable equilibrium
point for the n-th order integrator system

y(n) = v (6.57)

Using the results in the previous section about GPI control of chains of
integrators, the Hagenmeyer-Delaleau controller [12] yields the following feed-
back control scheme for the system ẋ = f(x, u)

u(t) = B(y∗(t), ẏ∗(t), . . . , [y∗(t)](n−1), v)

v = [y∗(t)](n) −
[
kn−1s

n−1 + kn−2s
n−2 + · · ·+ k0

sn−1 + k2n−2sn−2 + · · ·+ kn

]
(y − y∗(t))

(6.58)
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In particular, for the most common case of systems which are affine in the
control input, i.e. of the form: ẋ = f(x) + g(x)u, it is easy to show that the
control input differential parametrization, provided by the flatness property,
is also affine in the highest order time derivative of the flat output. We have

u = φ(y, ẏ, · · · , y(n−1)) +
[
η(y, ẏ, · · · , y(n−1))

]
y(n) (6.59)

For these systems, the output feedback controller is clearly linear and
time-varying. Indeed, we have

u = φ(y∗(t), ẏ∗(t), · · · , [y∗(t)](n−1)) +
[
η(y∗(t), ẏ∗(t), · · · , [y∗(t)](n−1))

]
v

= α(t) + β(t)v

v = [y∗(t)](n) −
[
kn−1s

n−1 + kn−2s
n−2 + · · ·+ k0

sn−1 + k2n−2sn−2 + · · ·+ kn

]
(y − y∗(t)) (6.60)

It is rigorously shown in [12] that such an output feedback controller locally
stabilizes the controlled flat output trajectory towards the desired given ref-
erence trajectory y∗(t). Indeed, if we substitute the GPI controller expression
for v into the first equation in (6.60), we readily obtain

u = u∗(t)− β(t)

[
kn−1s

n−1 + kn−2s
n−2 + · · ·+ k0

sn−1 + k2n−2sn−2 + · · ·+ kn

]
(y − y∗(t)) (6.61)

i.e., we are controlling the nonlinear system with a variant of the classical
approximate linearization philosophy which injects the nominal control input
u∗(t) and complements it with the output of a classical compensation network
controller acting on the incremental output tracking error. The only difference
with the classical feedback control scheme of approximate linearization based
control is the presence of the time-varying modulation factor β(t) affecting
the incremental classical controller.

This result, which has been known for several decades and used extensively
in the control of industrial processes in various forms, is at the heart of the
possibilities of designing linear, time-varying, output feedback controllers for
switched systems whose models are, formally, differentially flat. Naturally, the
idea is to use a Delta-Sigma modulation control scheme on the basis of the
average control design represented by (6.61).

6.8 Flatness guided design in switched systems

The implications of flatness and the possibility of designing a suitable sliding
surface for the system are rather direct but it requires some caution if the
underlying actual system, from whose formal model flatness was established,
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is switched or not switched. If continuous controls are available, we defend
the viewpoint by which sliding modes are rendered unnecessary or even
superfluous. The interesting situation is when the system is switched, the
model happens to be flat, and flatness has guided our average design. We
examine these issues in the context of another example which besides illustrat-
ing the flatness property allows us to come up with a switched implementation
of the flatness based controller design.

Example 6.10. Consider the normalized switch regulated boost converter
circuit, given by

ż1 = −uz2 + 1

ż2 = uz1 − 1

Q
z2 (6.62)

where z1 represents the normalized inductor current, z2 is the normalized
capacitor voltage, and u, the control input, is a switch position function taking
values in {0, 1}. For the moment, we disregard the binary valued nature of the
control input and treat the model as an average model with no restrictions
whatsoever on u.

The total normalized stored energy, given by

y =
1

2

(
z21 + z22

)
(6.63)

qualifies as a flat output. The state coordinate transformation (z1, z2) = (y, ẏ)
places the system in controllable canonical form.

The flat output and its time derivative are given by

y =
1

2

(
z21 + z22

)
, ẏ = z1 − z22

Q
(6.64)

Notice that the flat output y completely differentially parameterizes the
system variables z1, z2, and u. Indeed,

z1 = −Q

2
+

√
Q2

4
+ 2y +Qẏ

z2 =

√
−Qẏ − Q2

2
+

√
Q4

4
+Q2 (2y +Qẏ)

u =
Q

(2z1(y, ẏ) +Q)z2(y, ẏ)

[
1 +

2

Q2
z22(y, ẏ)− ÿ

]
(6.65)

Suppose it is desired to have the normalized output capacitor voltage z2 to
track a given trajectory specified by the smooth function z∗2(t). Suppose, fur-
thermore, that the desired trajectory for z2 is a rest-to-rest maneuver starting
at some initial time tinit and ending at some later time tfinal and taking the
value of z2 from an initial equilibrium z2(tiniti) to the final value z2(tfinal).
The flat output y exhibits a corresponding behavior that transfers the initial
value
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yinit =
1

2
z2

2(tinit)

(
1 +

z2
2(tinit)

Q2

)
(6.66)

towards the final value

yfinal =
1

2
z2

2(tfinal)

(
1 +

z2
2(tfinal)

Q2

)
(6.67)

Knowledge of the required initial and final equilibrium points for the flat
output allows us to prescribe an arbitrary smooth trajectory for y that joins
these two equilibrium points while prescribing constant values, coinciding with
the computed equilibria, valid after tfinal and before tinit. Let this off-line
computed trajectory be denoted by y∗(t) with y∗(t) = yinit for t < tinit,
y∗(t) = yfinal for t > tfinal, and, during the equilibrium to equilibrium trans-
fer interval [tinit, tfinal], the pre-computed flat output y∗(t) is given by

y∗(t) = yinit + ψ(t, tfinal, tinit)[yfinal − yinit] (6.68)

with ψ(t, tfinal, tinit) being a smooth interpolating polynomial of the Bézier
type with. ψ(tinit, tfinal, tinit) = 0 and ψ(tfinal, tfinal, tinit) = 1.

We propose the following time-varying feed-forward controller of the GPI
type:

u =
Q

(2z1(y∗(t), ẏ∗(t)) +Q)z2(y∗(t), ẏ∗(t))

[
1 +

2

Q2
z22(y

∗(t), ẏ∗(t))− v

]

(6.69)

where

z1(y
∗(t), ẏ∗(t)) = −Q

2
+

√
Q2

4
+ 2y∗(t) +Qẏ∗(t)

z2(y
∗(t), ẏ∗(t)) =

√
−Qẏ∗(t)− Q2

2
+

√
Q4

4
+Q2 (2y∗ +Qẏ∗(t))

(6.70)

and v is synthesized as a GPI controller of the form

v = ÿ∗(t)−
[
k1s+ k0
s+ k2

]
(y − y∗(t)) (6.71)

Figure 6.5 depicts the performance of the feed-forward flatness based
controller for a desired equilibrium to equilibrium transfer for the average
normalized capacitor voltage.

The parameter values used in the simulation were set to be

Q = 1.0, k2 = 2ζωnp, k1 = 2ζωn + p, k0 = ω2
np

with ζ = 0.707, ωn = 1, p = 1.5. The initial and final times were set to be
tinit = 10, tfinal = 30 while z2(tinit) = 1.5 and z2(tfinal) = 2.5
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A switched implementation of the average designed controller is possible
using a Σ −Δ modulator, as follows:

ż = uav − u

u =
1

2
(1 + signz) (6.72)

where uav is the control input produced by the flatness based controller that
we have just designed in (6.68) and u is the actual switched input applied
to the converter. The state z of the Σ − Δ modulator may be conveniently
initialized in z(0) = 0. In this fashion the modulator starts exhibiting a sliding
regime on the “extended space,” S = {z ∈ R | z = 0}.

The simulations depicting the responses of the switch controlled system
are shown in Figure 6.6.
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Fig. 6.5. Average performance of feed-forward flatness and GPI based smooth
controller

A second illustration of the use of flatness based feedback controller in
connection with sliding modes in switched systems, consider the following
tank system constituted by three identical tanks.

Example 6.11. Consider the following model of a three-tank system, assumed
for simplicity to be identical.

ẋ1 = − c

A

√
x1 +

1

A
ϑ

ẋ2 = − c

A

√
x2 +

c

A

√
x1
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Fig. 6.6. Performance of feed-forward flatness and GPI based average controller
implemented through a Σ −Δ modulator

ẋ3 = − c

A

√
x3 +

c

A

√
x2

y = x3 (6.73)

where x1, x2, and x3 are the liquid heights in the tanks, ϑ is the control input,
assumed to take values only in the discrete set {0, U}, the constant coefficients
c and A are assumed to be known and they represent a friction coefficient and
the area of the bottom of any of the tanks.

A normalization of the system is easily accomplished by introducing a time
scale and a redefinition of the control input as follows:

t′ = t
( c

A

)
, ϑ =

(
U

c

)
u (6.74)

The new control input u takes values in the discrete set {0, 1}. The normalized
system is written as

ẋ1 = −√
x1 +

U

c
u

ẋ2 = −√
x2 +

√
x1

ẋ3 = −√
x3 +

√
x2

y = x3 (6.75)
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The system is flat, with flat output F = x3 = y. The differential
parametrization of all system variables and the control input is given by

x3 = y

x2 = (ẏ +
√
y)2

x1 =

[
(ẏ +

√
y) + 2 (ẏ +

√
y)

(
ÿ +

ẏ

2
√
y

)]2

= (ẏ +
√
y)2

[
1 + 2

(
ÿ +

ẏ

2
√
y

)]2
(6.76)

u =
c

U

[
(ẏ +

√
y)

(
1 + 2

(
ÿ +

ẏ

2
√
y

))]
×

{(
1 + 2

[
ÿ +

ẏ

2
√
y

])2

+ 2(ẏ +
√
y)

(
2y(3) +

2yÿ − (ẏ)2

2y
√
y

)}

The previous differential parametrization allows one to parameterize all
equilibria in terms of the equilibrium value of the flat output

x1 = x2 = x3 = y, u =
c

U

√
y (6.77)

Thus, the three tanks have exactly the same height as equilibrium height.
Suppose it is desired to transfer the system from an initial equilibrium to

a final equilibrium. We then prescribe a nominal trajectory y∗(t) smoothly
taking the flat output, during a finite time interval of the form [tinit, tfinal],
from an initial value y∗(tinit) = yinit to a final desired value y∗(tfinal) =
yfinal. We set, for instance,

y∗(t) = yinit + (yfinal − yinitial)ψ(t, tfinal, tinit) (6.78)

with ψ(t, tfinal, tinit) being a Bézier polynomial smoothly interpolating
between 0 and 1 in the time interval [tinit, tfinal]. We choose a 16th order
Bézier polynomial:

ψ(t, tinit, tfinal) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t < tinit

[
t− tinit

tfinal − tinit

]8 [
r1 − r2

(
t− tinit

tfinal − tinit

)
+ · · ·+ r9

(
t− tinit

tfinal − tinit

)8
]

for t ∈ [tinit, tfinal]

1 for t > tfinal
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where

r1 = 12870, r2 = 91520, r3 = 288288, r4 = 524160, r5 = 600600,

r6 = 443520, r7 = 205920, r8 = 54912, r9 = 6435

The feed-forward linearizing controller design technique for this system
results in the following linear time-varying controller:

u =
c

U

[(
ẏ∗(t) +

√
y∗(t)

)(
1 + 2

(
ÿ∗(t) +

ẏ∗(t)
2
√
y∗(t)

))]
×

{(
1 + 2

[
ÿ∗(t) +

ẏ∗(t)
2
√

y∗(t)

])2

+ 2(ẏ∗(t) +
√
y∗(t))×

(
2v +

2y∗(t)ÿ∗(t)− (ẏ∗(t))2

2y∗(t)
√

y∗(t)

)}

where v, which evidently satisfies v = y(3), is synthesized as a GPI controller
for trajectory tracking given by

v = [y∗](3) −
[
k2s

2 + k1s+ k0
s2 + k4s+ k3

]
(y − y∗(t)) (6.79)

The set of design coefficients {k4, k3, · · · , k0} are chosen so as to render
the closed loop characteristic polynomial,

p(s) = s5 + k4s
4 + k3s

3 + k2s
2 + k1s+ k0 (6.80)

a Hurwitz polynomial.
Figure 6.7 shows the closed loop performance of the proposed linear time-

varying controller in the trajectory tracking task. The maneuver interval has
been adjusted so that the control input is fitted into the interval [0, 1]. As
a desired characteristic polynomial, used for establishing the desired design
parameters, we have used p(s) = (s+p)5 with p = 2. The values of the system
parameters were set to be U = 0.3, c = 0.15 and tinit = 2, tfinal = 25.

The Delta−Sigma implementation of the designed average feedback con-
troller is shown in Figure 6.8. Note that the combination of a GPI controller
with the Hagenmeyer-Delaleau controller allows the flatness based controller
to be a truly linear time-varying output feedback average controller.

6.8.1 Control of a two degrees of freedom robot

Consider the mechanism shown in figure 5.6. We use as generalized coordinates
the angular displacements, θ and φ shown in the figure.
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Fig. 6.7. Average closed loop response of the three tanks system to Hagenmeyer-
Delaleau feed-forward controller combined with GPI controller

Two control inputs τ1 and τ2 are considered which take values in the
discrete sets {T1, 0,−T1} and {T2, 0,−T2}, respectively. For reasons that will
become apparent we restrict T1 and T2 to be of the form

Ti = Wi(m2gl2), Wi > 1 (6.81)

The first torque input acts over the angular position θ and the second over
the angular displacement φ (Figs. 6.9, 6.10 and 6.11).
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Fig. 6.8. Closed loop response of the three tanks system to Hagenmeyer-Delaleau
feed-forward controller combined with GPI controller and Σ −Δ modulator

The natural coordinates for defining the arm movement are the spherical
coordinates with a fixed radius of value l2. The kinetic energy of the system
is given by

K =
1

2
m2

(
dl

dt

)2

=
1

2
m2l

2
2

(
φ̇2 + sin2 φ θ̇2

)
(6.82)

The potential energy, on the other hand, is just

U = m2g(l1 + l2 cosφ) (6.83)

We then have

L =
1

2
m2l

2
2

(
φ̇2 + sin2 φ θ̇2

)
−m2g(l1 + l2 cosφ) (6.84)

The equations of motion are

[
m2l

2
2 sin

2 φ 0
0 m2l

2
2

] [
θ̈

φ̈

]

+

[
m2l

2
2φ̇ sinφ cosφ m2l

2
2 θ̇ sinφ cosφ

−m2l
2
2 θ̇ sinφ cosφ 0

] [
θ̇

φ̇

]

+

[
0

−m2gl2 sinφ

]
=

[
τ1
τ2

]
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The normalized equations of the system can be obtained from the normal-
ized Lagrangian obtained by dividing L by the quantity m2l

2
2. We get

L′ =
1

2

(
φ̇2 + sin2 φ θ̇2

)
− (

l1
l2

+ cosφ) (6.85)

Using the Euler Lagrange equations we obtain[
sin2 φ 0
0 1

] [
θ̈

φ̈

]

+

[
φ̇ sinφ cosφ θ̇ sinφ cosφ

−θ̇ sinφ cosφ 0

] [
θ̇

φ̇

]

+

[
0

− sinφ

]
=

[
ϑ1

ϑ2

]

where time differentiation is taken with respect to the normalized time t′ and
the control inputs are given by

t′ = t

√
g

l2
, ϑi =

τi
m2gl2

, i = 1, 2 (6.86)

The normalized control inputs ϑi, i = 1, 2 take values now on the sets,
{W1, 0,−W1} and {W2, 0,−W2}, respectively. We write the normalized sys-
tem equations in the following manner:

sin2 φ θ̈ + 2φ̇θ̇ sinφ cosφ = W1u1

φ̈− θ̇2 sinφ cosφ− sinφ = W2u2

where ϑi = Wiui, ui ∈ {−1, 0, 1}, i = 1, 2.
The system is flat with flat outputs given by φ and θ. Neglecting for the

time being the switched character of the normalized and scaled control inputs
u1 and u2 we proceed to design a feedback controller as if these control signals
were continuously valued.

From the system equations, we readily obtain the following set of differen-
tial parametrization of the (average) inputs u1, u2 in terms of the flat outputs

u1 =
1

W1

[
sin2 φ θ̈ + 2φ̇θ̇ sinφ cosφ

]

u2 =
1

W2

[
φ̈− θ̇2 sinφ cosφ− sinφ

]

Given desired trajectories for the position variables θ and φ, in the form,
θ∗(t) and φ∗(t), we can immediately propose an average feedback control laws
of a multi-variable version of the Hagenmeyer-Delaleau feedback controllers
combined with GPI controllers:

u1 av =
1

W1

[
sin2 φ∗(t) v1 + 2φ̇∗(t)θ̇∗(t) sinφ∗(t) cosφ∗(t)

]

v1 = θ̈∗(t)−
[
k1 θs+ k0 θ

s+ k2 θ

]
(θ − θ∗(t))
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u2 av =
1

W2

[
v2 −

(
θ̇∗(t)

)2
sinφ∗(t) cosφ∗(t)− sinφ∗(t)

]

v2 = φ̈∗(t)−
[
k1 φs+ k0 φ

s+ k2 φ

]
(φ− φ∗(t)) (6.87)

where the design coefficients: k2 θ, k1 θ, k0 θ and k2 φ, k1 φ, k0 φ are chosen so
that the closed loop characteristic polynomials

pθ(s) = s3 + k2 θs
2 + k1 θs+ k0 θ

pφ(s) = s3 + k2 φs
2 + k1 φs+ k0 φ (6.88)

are both Hurwitz.
Note that the normalized coordinates of the end effector, (x, y, z), as a

function of the angles θ, φ are given by

xn = sinφ sin θ

yn = sinφ cos θ

zn = ε+ cosφ

where xn = x/l2, yn = y/l2, zn = z/l2 y ε = l1
l2
.

From the previous relations, any trajectory of the angular positions of the
system given by the evolution of the angular trajectories: θ∗(t) and φ∗(t),
necessarily satisfies, at each instant t, the equation of the surface of a sphere:

x∗2(t) + y∗2(t) + (z∗(t)− l1
l2
)2 = l (6.89)

As an example, we propose the task of designing a switched controller that
allows one to draw over the normalized sphere, centered around zn = 1 and
of unit radius, a spiral that starts close to the north pole and evolves towards
the south pole with a constant angular velocity around the origin of the plane
xn, yn.

We propose the following desired trajectory in the robot angular position
coordinates,

θ∗(t) = ωt

φ∗(t) = φinit + (φfinal − φinit)ϕ(t, t0, T )

with ϕ(t, t0, T ) a polynomial function smoothly interpolating between 0 and 1.
We take φinit = 0.1 [rad], φfinal = 3.04159 . . ., t0 = 0, T = 40 [t.u.], ω = 2

[r/t.u.], ([t.u.] where “[t.u.]” stands for “time units.”
The desired closed loop characteristic polynomials were chosen to be equal

for the two controllers and of the form

p(s) = s3 + (2ζωn + p)s+ (2ζωnp+ ω2
n)s+ ω2

np (6.90)

with ζ = 0.81, ωn = 0.4 and p = 0.4.
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The switching control inputs are synthesized by means of “two-sided”
Σ −Δ modulation schemes,

ėθ = u1 av − u1

u1 =

{
1
2 (1 + sign(eθ)) for u1 av > 0

− 1
2 (1− sign(eθ)) for u1 av < 0

=
1

2
(sign(u1 av) + sign(eθ))

ėφ = u2 av − u2

u2 =

{
1
2 (1 + sign(eφ)) for u2 av > 0

− 1
2 (1− sign(eφ)) for u2 av < 0

=
1

2
(sign(u2 av) + sign(eφ)

(6.91)

where eθ = θ − θ∗(t), and eφ = φ− φ∗(t).

6.8.2 A “chained” mass-spring system

Consider the following chain of n cascaded identical moving masses attached
through ideal springs of elasticity constant K as shown in Figure 6.12.
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Fig. 6.9. Controlled trajectories of a two degree of freedom robot
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Mẍ1 = K(x2 − x1) + f

Mẍ2 = −K(x2 − x1) +K(x3 − x2)

Mẍ3 = −K(x3 − x2) +K(x4 − x3)

...

Mẍn−1 = −K(xn−1 − xn−2) +K(xn − xn−1)

Mẍn = −K(xn − xn−1)

The system may be rewritten, after a time scale and input coordinate
transformation, as the following normalized system:

ẍ1 = −x1 + x2 + u

ẍ2 = x1 − 2x2 + x3

ẍ3 = x2 − 2x3 + x4

...

ẍn−1 = xn−2 − 2xn−1 + xn

ẍn = xn−1 − xn

where u = f/K and the “dot” notation now stands for differentiation with
respect to

τ = t

√
M

K
(6.92)

Clearly, the flat output is constituted by the position of the n-th car, xn.
The differential parametrization of some of the state variables is given by
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xn−1 = ẍn + xn

xn−2 = x(4)
n + 3ẍn + xn

xn−3 = x(6)
n + 5x(4)

n + 6ẍn + xn

xn−4 = x(8)
n + 7x(6)

n + 15x(4)
n + 10ẍn + xn

...

The differential parametrization of the control input, in terms of the flat
output, is given by an expression of the form:

Fig. 6.12. Chained mass-spring system

u = x(2n)
n + αnx

(2n−1)
2n−2 + · · ·+ α1ẍn + α0xn

The important fact of this parametrization relies on the fact that for tra-
jectory tracking purposes, we can use the previous ideas of exact feed-forward
linearization to propose the following flat output feedback controller:

u = u∗ −
[

k2n−1s
2n−1 + · · ·+ k1s+ k0

s2n−1 + k4n−2s2n−2 + · · ·+ k2n

]
(xn − x∗

n(t)) (6.93)
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The coefficients of the controller are chosen so that the polynomial

p(s) = s4n−1+k4n−2s
4n−2+ · · ·+k2ns

2n+k2n−1s
2n−1+ · · ·+k1s+k0 (6.94)

is a Hurwitz polynomial.
If an integral control action is deemed necessary, we use instead

u = u∗ −
[

k2ns
2n + · · ·+ k1s+ k0

s(s2n−1 + k4n−1s2n−2 + · · ·+ k2n+1)

]
(xn − x∗

n(t)) (6.95)

and choose the coefficients of the polynomial:

p(s) = s4n + k4n−1s
4n−1 + · · ·+ k2ns

2n + k2n−1s
2n−1 + · · ·+ k1s+ k0 (6.96)

so that it becomes a Hurwitz polynomial.
In the simulations shown in Figure 6.13 we used a three mass example

and set the normalized model to perform, for the last mass, a rest-to-rest
maneuver from an initial 0 [m] position towards a final position of 0.10 [m] in
7.5 normalized time units. The controller parameters were chosen using the
following polynomial:

p(s) = (s2 + 2ζωns+ ω2
n)

6 (6.97)

i.e.,

k11 = 12ζω

k10 = 60ζ2ω2 + 6ω2

k9 = 160ζ3ω3 + 60ζω3

k8 = 240ζ4ω4 + 240ζ2ω4 + 15ω4

k7 = 480ζ3ω5 + 120ζω5 + 192ζ5ω5

k6 = 20ω6 + 64ζ6ω6 + 360ζ2ω6 + 480ζ4ω6

k5 = 120ζω7 + 192ζ5ω7 + 480ζ3ω7

k4 = 15ω8 + 240ζ2ω8 + 240ζ4ω8

k3 = 60ζω9 + 160ζ3ω9

k2 = (6ω10 + 60ζ2ω10

k1 = 12ζω11

k0 = ω12

with ζ = 0.81, ωn = 1. The nominal control input was found to be

u∗(t) = x
(6)
3 (t) + 4x

(4)
3 (t) + 3ẍ3(t) (6.98)
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Fig. 6.13. Closed loop performance of mass-spring system

6.8.3 A single link-DC motor system

Consider the following combined model of a rigid link manipulator and a DC
motor actuator.

[J +mlc1 + I] θ̈ +mlc1g sin θ = kti

L
di

dt
= uV −Ri− λ0θ̇ (6.99)

It is desired to track a pre-specified angular position trajectory given by θ∗(t).
The applied control input voltage to the motor’s armature circuit takes values
in the discrete set {−V, 0, V }. Thus, the switched control signal u takes val-
ues in {−1, 0, 1}. We first design an average GPI controller combined with a
Hagenmeyer-Delaleau exact feed-forward controller assuming u is continuous
valued over the real line.

The system is flat, with flat output given by the angular position θ. The
input to flat output relation is obtained as

u =
L

V kt
[J +mlc1 + I] θ(3) +

R

V kt
[J +mlc1 + I] θ̈ +

[
mlc1gL

V kt

]
θ̇ cos θ +

+

[
mglc1R

V kt

]
sin θ +

λ0

V
θ̇ (6.100)
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A linear time-varying output feedback controller producing the average
control is thus given by

uav =
L

V kt
[J +mlc1 + I] v +

[
mlc1gL

V kt

]
θ̇∗(t) cos θ∗(t)

+
R

V kt
[J +mlc1 + I] θ̈∗(t) +

[
mlc1gR

V kt

]
sin θ∗(t) +

λ0

V
θ̇∗(t)

v = [θ∗(t)](3) −
[
k2s

2 + k1s+ k0
s2 + k4s+ k3

]
(θ − θ∗(t)) (6.101)

This controller is expressed in a simpler form as follows:

uav = u∗(t) +
[
k2s

2 + k1s+ k0
s2 + k4s+ k3

]
(θ∗(t)− θ) (6.102)

The switched control is implemented via a two-sided Σ −Δ modulator

ė = uav(t)− u

u =
1

2
(sign(uav(t)) + sign(e)) (6.103)

For the computer simulation, shown in Figure 6.14, we used the following
parameter values for the robot and for the motor. The DC motor parameters
were taken from Utkin et al. [33].

I = 0.02, lc1 : 0.3, g = 9.8, m = 0.5, L = 10−3, R = 0.5,

J = 10−3, kt = 8× 10−3, λ0 = 10−3

6.8.4 A multilevel Buck DC to DC converter controller design

Consider the following normalized model of a double bridge multilevel Buck
converter

ẋ1 = −x2 + u

ẋ2 = x1 − x2

Q

y = x2 (6.104)

where the switched control input u takes values in the discrete set
{−3W,−2W,−W, 0,W, 2W, 3W} with W being a fixed real number satis-
fying: 3W ≤ 1 and, hence −3W ≥ −1, which represents the granularity of
the multilevel switch u.

It is desired to produce, by means of an output voltage trajectory tracking
task, a sinusoidal wave of amplitude bounded by the normalized voltage 1
and of a suitable frequency which does not cause saturation of the hard limits
imposed on the switching controller.
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Fig. 6.14. Sliding mode controlled DC motor-link system

We tackle the problem in an average context first by assuming the control
input uav takes values continuously in the interval [−1, 1] and consider the
average system with the obvious abuse of notation:

ẋ1 = −x2 + uav

ẋ2 = x1 − x2

Q

y = x2 (6.105)

Once the trajectory tracking problem is solved, without average control
input saturations, we proceed to implement the average feedback law by means
of a multilevel Σ −Δ modulator

The average input-output normalized description of the system is given by

ÿ +
1

Q
ẏ + y = u (6.106)

Let u∗(τ) denote the average nominal control input given by

u∗(τ) = ÿ∗(τ) +
1

Q
ẏ∗(τ) + y∗(τ) (6.107)

For the particular case of a sinusoidal signal of the form y∗(t) = A sin(ωτ)
the nominal average control input, u∗

av(τ), is computed to be

u∗
av(τ) = A(1− ω2) sin(ωτ) +

Aω

Q
cos(ωτ) = M sin(ωτ + φ) (6.108)
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where

M = A
√
(1− ω2)2 + ω2/Q2 (6.109)

and

φ = arctan

(
ω

Q(1− ω2)

)
(6.110)

As usual in this DC to AC power conversion schemes, we have the following
tradeoff between the normalized output voltage amplitudes and the desired
normalized angular frequency of the desired sinusoidal output:

A2

[
(1− ω2)2 +

ω2

Q2

]
< 1 (6.111)

The choice of the normalized amplitude, A, and the normalized angular fre-
quency, ω, satisfying the above restriction, leads to a nominal average input
signal u∗

av which does not saturate the controller in steady state operation
(Fig. 6.15).
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Fig. 6.15. GPI average controlled multilevel DC to AC Buck converter using a
six-level Σ −Δ modulator for implementation
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We propose the following GPI controller

uav = u∗
av(τ)−

[
k2s

2 + k1s+ k0
s(s+ k3)

]
(y − y∗(τ)) (6.112)

The characteristic polynomial associated with the average closed loop sys-
tem is found to be

p(s) = s4 + (k3 +
1

Q
)s3 + (k2 +

k3
Q

+ 1)s2 + (k3 + k1)s+ k0 (6.113)

One readily obtains the design coefficients {k3, k2, k1, k0} by a term by
term identification of this polynomial with the desired polynomial:

pd(s) = (s2 + 2ζωns+ ω2
n)

2 = s4 + 4ζωns
3 + (2ω2

n + 4ζ2ω2
n)s

2 + 4ω3
nζs+ ω4

n

(6.114)

A six-level, two-phase,Σ−Δmodulator is proposed for the implementation
of the switched input u on the basis of the GPI designed average feedback
control input uav. We use

ė = uav(τ)− u

u =
W

2

{
3∑
−2

[2j − 1 + sign(e)] fj(τ)

}

fj =
1

2
[sign (uav(τ)− (j − 1)W )− sign (uav(τ)− jW )] (6.115)
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