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Preface

Et le quatrième mystère, non des moindres, est celui de la
structure mathématique du monde: pourquoi et quand
apparaît-elle, comment peut-on la modéliser, et comment le
cerveau parvient-il à l’élaborer, à partir du chaos dans lequel
nous vivons?1

E. Abécassis, Le palimpseste d’Archimède

The Nobel laureate Eugene Wigner coined the phrase of the “unreasonable effec-
tiveness of mathematics” in explaining the physical world, while the novelist Eliette
Abécassis expressed this phenomenon in a more literary fashion, calling it one of
the four great mysteries of the world. Indeed, whether viewed from the scientist’s or
the artist’s vantage point, there is no dispute about the applicability of broad parts of
mathematics. On the other hand, number theory—the purest of pure mathematics—
has long resisted the temptation to become applicable, except for trivial applications
such as Pythagorean triples for the construction of right angles and very simple
cryptosystems. In 1940, the prominent number theorist G.H. Hardy confidently
asserted in his book A Mathematician’s Apology that he had never done anything
useful and that no discovery of his was likely to make the least difference to the
amenity of the world.

But things changed dramatically in the second half of the twentieth century when,
driven by the impetus of science and technology, entirely new areas of mathematics
relying heavily on number theory were created. Today, number theory is implicitly
present in everyday life: in supermarket barcode readers, in our cars’ GPS systems,
in the error-correcting codes at work in our smartphones, and in online banking, to
mention but a few examples.

From our perspective, there are four major areas of application where number
theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte
Carlo methods, and pseudorandom number generation. Excellent textbooks are
available for each of these areas. This book presents the first unified account of all
these applications. This allows us to delineate the manifold links and interrelations
between these areas. Chapters 2–5 cover the four main areas of application, while

1Authors’ translation: And the fourth mystery, and not the least, is that of the mathematical
structure of the world: why and when does it arise, how can one model it, and how does the brain
manage to work it out, starting from the chaos in which we live?

v



vi Preface

the last chapter reviews various additional applications of number theory, ranging
from check-digit systems to quantum computation and the organization of raster-
graphics memory. We hope that this panorama of applications will inspire further
research in applied number theory. In order to enhance the accessibility of the
book for undergraduates, we have included a brief introductory course on number
theory in Chap. 1. The last section of each of Chaps. 2–5 offers a glimpse of
advanced results that are stated without proof and require a somewhat higher level
of mathematical maturity.

We have sought to minimize the prerequisites for the book. A background in
number theory is not necessary, although it is certainly helpful. Elementary facts
from calculus are used as a matter of course. Linear algebra appears only in a
limited context, and the important special case of linear algebra over finite fields
is developed from scratch. The chapters on coding theory and quasi-Monte Carlo
methods are quite extensive, so that they could be used to teach separate courses
on each of these topics. But we believe that a single course stressing the unity of
applied number theory is in better conformity with the philosophy of the book.

Writing a book is not possible without the help of many. We are particularly
indebted to Professor Friedrich Pillichshammer of the University of Linz for his
assistance with the figures, to Professors Sheldon Axler and Ken Ribet for their
comments on a preliminary version of the book, to our institutions for providing
excellent research facilities, and to Edward Lear for developing limericks into a
veritable art form. The limericks at the beginning of each chapter are not credited
since they were written by the first author (our apologies if you find them silly).
We also wish to extend our special gratitude to Ruth Allewelt and Martin Peters
at Springer-Verlag for their unfailing support of our project and to our families for
their patience and indulgence.

Linz, Austria Harald Niederreiter
March 2015 Arne Winterhof
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Chapter 1
A Review of Number Theory and Algebra

This theory of the old Greeks,
the first mathematical geeks,

is a marvel of charm and beauty,
it’s number theory, this cutie,
and we are its devoted freaks.

1.1 Integer Arithmetic

Elementary number theory may be regarded as a prerequisite for this book, but since
we, the authors, want to be nice to you, the readers, we provide a brief review of
this theory for those who already have some background on number theory and
a crash course on elementary number theory for those who have not. Apart from
trying to be friendly, we also follow good practice when we prepare the ground for
the coming attractions by collecting some basic notation, terminology, and facts in
an introductory chapter, like a playwright who presents the main characters of the
play in the first few scenes. Basically, we cover only those results from elementary
number theory that are actually needed in this book. For more information, there
is an extensive expository literature on number theory, and if you want to read the
modern classics, then we recommend the books of Hardy and Wright [61] and of
Niven, Zuckerman, and Montgomery [151].

The beginning of our story is nice and easy: you count 1; 2; 3; : : : ad infinitum and
thereby you create the set N of all positive integers (also called natural numbers). If
you throw in 0 and the negative integers �1;�2;�3; : : :, then you arrive at the
set Z of all integers with its arithmetic operations of addition, subtraction, and
multiplication. You start doing number theory when you realize that there are even
integers like 6 and �8 and odd integers like 9 and �5. Of course, an integer is even
if and only if it is twice an integer, and from this observation it is an obvious step to
the general concept of divisibility.

Definition 1.1.1 Let a and b be integers with b ¤ 0. Then a is divisible by b, or
equivalently b divides a, if there is an integer c such that a D bc.

There are further ways of expressing the fact that a is divisible by b, namely, a is
a multiple of b and b is a divisor of a. The integers 1 and �1 are not very exciting
divisors since they divide every integer. Any nonzero integer a has the trivial divisors
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2 1 A Review of Number Theory and Algebra

1, �1, a, and �a. Since an integer b divides a 2 Z if and only if �b divides a, one
often concentrates on the positive divisors (or the factors) of an integer a. If b 2 N

divides a 2 N and b < a, then b is called a proper divisor of a; if also b > 1, then b
is called a nontrivial divisor (or a nontrivial factor) of a. The divisibility relation is
transitive, in the sense that if b divides a and c divides b, then c divides a. We note
again and emphasize that in divisibility relations as in Definition 1.1.1, it always
goes without saying that the divisor is a nonzero integer.

Let a 2 Z and b 2 N. Even if a is not divisible by b, we can still divide a by b, and
then we get a quotient q 2 Z and a remainder r 2 Z with 0 � r < b. Furthermore,
we can write a D qb C r. The numbers q and r are uniquely determined. This
procedure is called division with remainder or the division algorithm.

Example 1.1.2 Let us take a D 17 and b D 5. Then division with remainder yields
the quotient q D 3 and the remainder r D 2, and we can write 17 D 3 � 5 C 2. If
your intelligence is insulted by this example, then please ignore it.

Definition 1.1.3 For two integers a and b that are not both 0, the largest integer that
divides both a and b is called the greatest common divisor of a and b and is denoted
by gcd.a; b/. Generally, for k � 2 integers a1; : : : ; ak that are not all 0, their greatest
common divisor gcd.a1; : : : ; ak/ is the largest integer that divides each of a1; : : : ; ak.

It is obvious that gcd.a1; : : : ; ak/ exists, for if without loss of generality a1 ¤ 0,
then every divisor d of a1 satisfies d � ja1j.
Example 1.1.4 If a D 12 and b D 18, then the positive common divisors of a and
b are 1, 2, 3, and 6, and so gcd.12; 18/ D 6.

Proposition 1.1.5 If a; b 2 Z are not both 0, then there exist a1; b1 2 Z such that

gcd.a; b/ D aa1 C bb1:

Proof Let d be the smallest element of the nonempty set

L D fau C bv W u; v 2 Z; au C bv > 0g:

Then d D aa1 C bb1 > 0 for some a1; b1 2 Z. By division with remainder, we can
write a D qd C r with q; r 2 Z and 0 � r < d. Then

r D a � qd D a � q.aa1 C bb1/ D a.1� qa1/� bqb1:

If we had r > 0, then r 2 L, a contradiction to the definition of d. Thus r D 0, that
is, d divides a. Similarly, one shows that d divides b.

Now let e be an arbitrary common divisor of a and b. Then e divides aa1Cbb1 D
d, and so e � d. Thus, d is the greatest common divisor of a and b. �

Corollary 1.1.6 If a, b, and d are integers such that d divides ab and gcd.a; d/ D 1,
then d divides b.
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Proof From gcd.a; d/ D 1 we get aa1 C dd1 D 1 for some a1; d1 2 Z by
Proposition 1.1.5. Multiplying by b, we obtain aba1 C dbd1 D b. Now d divides
aba1 and dbd1, and so d divides b. �

Instead of looking at the common divisors of given integers, we can also consider
their common multiples. If the given integers are nonzero, then they have arbitrarily
large common multiples, so here the meaningful notion is the least positive common
multiple.

Definition 1.1.7 For k � 2 nonzero integers a1; : : : ; ak, their least common multiple
lcm.a1; : : : ; ak/ is the smallest positive common multiple of a1; : : : ; ak.

Example 1.1.8 Let us take a D 12 and b D 18. The positive multiples of
12 are 12; 24; 36; : : : and the positive multiples of 18 are 18; 36; 54; : : :, hence
lcm.12; 18/ D 36.

You have definitely run into prime numbers like 2, 3, and 11 before, so here is
the formal definition for the sake of completeness.

Definition 1.1.9 An integer p � 2 is called a prime number (or a prime) if its only
positive divisors are 1 and p. If an integer b � 2 is not a prime number, then b is
called a composite number.

Note that the integer 1 is neither a prime number nor a composite number. The
prime numbers are the building blocks of the integers greater than 1, in the sense
that every integer greater than 1 can be expressed in an essentially unique way as
a product of prime numbers. The proof of this fundamental fact is based on the
following lemma.

Lemma 1.1.10 If a prime number p divides a product a1 � � � as of integers, then p
divides ai for at least one i.

Proof We proceed by induction on s. The case s D 1 is obvious. Now suppose that p
divides a product a1 � � � asC1 of s C 1 integers for some s � 1. If p divides asC1, then
we are done. Otherwise gcd.asC1; p/ D 1, which implies by Corollary 1.1.6 that p
divides a1 � � � as, and then an application of the induction hypothesis completes the
proof. �

Theorem 1.1.11 (Fundamental Theorem of Arithmetic) Every integer b � 2

can be written as a product of prime numbers and this factorization of b is unique
up to the order of the prime factors.

Proof For the proof, we include b D 1 which we write as an empty product. The
existence of the factorization is proved by induction on b. The case b D 1 is already
settled. For b � 2, let d be the least divisor of b that is greater than 1. Then d is a
prime number, and we apply the induction hypothesis to b=d.

In order to prove the uniqueness of the factorization into prime numbers, we
again use induction on b. The case b D 1 is trivial. Now let b � 2 and suppose that

b D p1 � � � pr D q1 � � � qs;
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where p1; : : : ; pr; q1; : : : ; qs are prime numbers. Then p1 divides q1 � � � qs, and so
Lemma 1.1.10 implies that p1 divides qi for some i with 1 � i � s. Since qi is a
prime number, we must have p1 D qi. Thus, we can cancel p1 against qi and we get

p2 � � � pr D q1 � � � qi�1qiC1 � � � qs:

By the induction hypothesis, the prime factors agree on both sides up to their order,
and so the prime factors of b agree up to their order. �

By collecting identical prime factors, we can write the factorization of the integer
b � 2 in the form

b D pe1
1 � � � pek

k D
kY

jD1
p

ej

j

with distinct prime numbers p1; : : : ; pk and exponents e1; : : : ; ek 2 N. This is often
called the canonical factorization of b.

Theorem 1.1.11 and the following theorem are contained in Euclid’s Elements,
the famous treatise written around 300 BC that founded geometry and number
theory as rigorous mathematical disciplines.

Theorem 1.1.12 There are infinitely many prime numbers.

Proof We paraphrase Euclid’s original proof which is a classical gem of mathemat-
ics. Suppose there were only finitely many prime numbers and let p1; : : : ; pr be the
complete list of prime numbers. Then we consider the integer n D p1 � � � pr C 1. By
Theorem 1.1.11, n has a prime factor p, and by assumption we must have p D pi for
some i with 1 � i � r. Then pi divides n and p1 � � � pr, hence pi divides 1, which is
impossible. A different proof will be presented in Remark 2.7.20. �

If we write
Q

p for a product over all prime numbers, then the factorization of

the integer b � 2 into prime factors can also be written in the form b D Q
p pep.b/

with uniquely determined exponents ep.b/ � 0, where only finitely many ep.b/ can
be positive. The case b D 1 can be formally included by putting ep.1/ D 0 for all
prime numbers p. If d 2 N is written as d D Q

p pep.d/, then d divides b if and only if
ep.d/ � ep.b/ for all prime numbers p. It follows that if a1; : : : ; ak 2 N with k � 2,
then

gcd.a1; : : : ; ak/ D
Y

p

pmin.ep.a1/;:::;ep.ak//: (1.1)

Similarly, we obtain

lcm.a1; : : : ; ak/ D
Y

p

pmax.ep.a1/;:::;ep.ak//: (1.2)
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If k D 2 and the canonical factorizations of a1 and a2 are not readily available,
then it is more efficient to compute gcd.a1; a2/ by the Euclidean algorithm (see [151,
Section 1.2] and Exercise 1.9). For k � 3 one uses the identity

gcd.a1; : : : ; ak/ D gcd.gcd.a1; : : : ; ak�1/; ak/

and iterations of the Euclidean algorithm.

Example 1.1.13 Let a D 12 and b D 18 as in Examples 1.1.4 and 1.1.8. Then
a D 22 � 31 and b D 21 � 32. Thus, (1.1) shows that gcd.12; 18/ D 21 � 31 D 6,
and (1.2) shows that lcm.12; 18/ D 22 � 32 D 36.

1.2 Congruences

Congruences were introduced by the “prince of mathematics” Carl Friedrich Gauss
(1777–1855) in his seminal monograph Disquisitiones Arithmeticae written at age
24. (A personal note: The second author passed the Gauss memorial every day
on his way to the Technical University of Braunschweig until he was 24, which
may be considered the first steps towards this book. The Gauss statue holds the
Disquisitiones Arithmeticae, the second author was reading easier lecture notes.)
Congruences are an excellent tool for studying questions about divisibility and
remainders.

Definition 1.2.1 Let a; b 2 Z and let m 2 N. Then a is congruent to b modulo m,
written a � b .mod m/, if m divides the difference a � b. If a � b is not divisible by
m, then we say that a is incongruent to b modulo m and we write a 6� b .mod m/.

The positive integer m in Definition 1.2.1 is called the modulus of the congruence
a � b .mod m/. The modulus m D 1 is not very exciting since a � b .mod 1/ for all
a; b 2 Z. Therefore, interesting congruences will always involve a modulus m � 2.

Example 1.2.2 For the modulus m D 2, the congruence a � b .mod 2/ just says
that the integers a and b have the same parity, that is, they are either both even or
both odd.

Congruences occur in everyday life, though often in an unobtrusive form. Just
take the realm of clocks and calendars as an example. If it is now 10 a.m., then five
hours later it will be 3 p.m. and the reason is the congruence 10C 5 � 3 .mod 12/.
If today is March 29, then six days later the date will be April 4 because of the
congruence 29 C 6 � 4 .mod 31/. We promise that you will see more significant
applications of congruences later in the book.

To a large extent, congruences can be manipulated like equations. Given a
congruence a � b .mod m/, we are allowed to add or subtract the same integer on
both sides and we can multiply both sides by the same integer. More generally, two
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congruences with the same modulus can be combined according to the following
proposition.

Proposition 1.2.3 If a � b .mod m/ and c � d .mod m/ with a; b; c; d 2 Z and
m 2 N, then

a C c � b C d .mod m/;

a � c � b � d .mod m/;

ac � bd .mod m/:

Proof The statements about addition and subtraction of congruences are obvious
from Definition 1.2.1. Finally, we note that

ac � bd D a.c � d/C .a � b/d;

and so m divides ac � bd whenever m divides a � b and c � d. �

It is a consequence of the third part of Proposition 1.2.3 that we can raise a
congruence to a power. For instance, a � b .mod m/ implies a3 � b3 .mod m/. It is
also easily seen that congruences are transitive, in the sense that if a � b .mod m/
and b � c .mod m/, then a � c .mod m/. Thus, formulations like a � b �
c .mod m/ are legitimate.

For a 2 Z and m 2 N, division with remainder (see Sect. 1.1) yields a D qm C r
with uniquely determined q; r 2 Z satisfying 0 � r < m. It follows that a �
r .mod m/. The integer r is called the least residue of a modulo m. Every integer is
thus congruent modulo m to a unique one among the integers 0; 1; : : : ;m � 1. This
set of integers deserves a special name.

Definition 1.2.4 Let m be a positive integer. The set

Zm WD f0; 1; : : : ;m � 1g � Z

is called the least residue system modulo m.

There are exactly m integers in Zm and they are pairwise incongruent modulo m.
More generally, for m 2 N we say that a set Sm � Z is a complete residue system
modulo m if Sm contains exactly m elements and if these elements are pairwise
incongruent modulo m. We again have the property that every integer is congruent
modulo m to a uniquely determined element of a complete residue system modulo m.

Example 1.2.5 For an odd integer m � 1, the set fa 2 Z W �.m � 1/=2 � a �
.m�1/=2g forms a complete residue system modulo m which is symmetric around 0.
This does not work quite as well for an even integer m � 2, but in this case the set
fa 2 Z W �m=2 < a � m=2g is a complete residue system modulo m which is nearly
symmetric around 0.
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Proposition 1.2.6 If m 2 N and a 2 Z with gcd.a;m/ D 1, then there exists a
unique c 2 Zm with ac � 1 .mod m/.

Proof According to Proposition 1.1.5, there exist a1;m1 2 Z such that aa1Cmm1 D
1. It follows that aa1 � 1 .mod m/. If c 2 Zm is the least residue of a1 modulo m,
then ac � aa1 � 1 .mod m/.

Let d 2 Zm be such that ad � 1 .mod m/. Then a.c�d/ � ac�ad � 0 .mod m/,
that is, m divides a.c � d/. Now Corollary 1.1.6 implies that m divides c � d. Since
�.m � 1/ � c � d � m � 1, this is possible only if c D d. �

Example 1.2.7 Let m D 7 and a D 3. Then c D 5 2 Z7 satisfies ac � 15 �
1 .mod 7/. In general, the integer c in Proposition 1.2.6 can be computed by means
of the Euclidean algorithm (see [151, Section 1.2] and Exercise 1.12).

Definition 1.2.8 Two integers a and b that are not both 0 are said to be coprime (or
relatively prime) if gcd.a; b/ D 1.

The following result was already known to mathematicians in ancient China and
India. The formulation in the language of congruences is due to Gauss.

Theorem 1.2.9 (Chinese Remainder Theorem) If m1; : : : ;mk 2 N with k � 2

are pairwise coprime moduli and r1; : : : ; rk 2 Z are arbitrary, then there exists a
unique a 2 Zm with m D m1 � � � mk such that

a � rj .mod mj/ for 1 � j � k:

Proof The existence of the integer a is shown by a construction. The condition
on m1; : : : ;mk implies that gcd.m=mj;mj/ D 1 for 1 � j � k. Hence by
Proposition 1.2.6, for each j with 1 � j � k there exists a cj 2 Z with .m=mj/cj �
1 .mod mj/. Clearly, .m=mj/cj � 0 .mod mi/ for 1 � i; j � k with i ¤ j. We put

a0 D
kX

jD1
.m=mj/cjrj: (1.3)

Then

a0 � .m=mj/cjrj � rj .mod mj/ for 1 � j � k:

The same holds if we replace a0 by a 2 Zm, the least residue of a0 modulo m.
If b 2 Zm with b ¤ a also satisfies b � rj .mod mj/ for 1 � j � k, then

a � b .mod mj/ for 1 � j � k. This implies that mj divides ja � bj for 1 � j � k.
As in Sect. 1.1, let us write m D Q

p pep.m/ and similarly for other positive integers.
Since m1; : : : ;mk are pairwise coprime, we conclude that for each prime number p
we have ep.m/ D ep.mj/ for some j with 1 � j � k. Therefore ep.m/ D ep.mj/ �
ep.ja � bj/, and so m divides ja � bj. But 0 < ja � bj < m, and thus we arrive at a
contradiction. �
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Example 1.2.10 The following is a version of a popular puzzle. You have a basket
of eggs. When you take out three, four, or five eggs at a time, there is always one
egg left, while with seven eggs at a time no egg is left. What is the least number of
eggs in the basket? This word problem is equivalent to the system of congruences
a � 1 .mod 3/, a � 1 .mod 4/, a � 1 .mod 5/, and a � 0 .mod 7/. The moduli
3, 4, 5, and 7 are pairwise coprime, and so we can apply the method in the proof of
Theorem 1.2.9 with m D 3 � 4 � 5 � 7D 420. Note that m=m1 D 420=3 D 140, and so
we can take c1 D 2 since 140 � 2 � 2 � 2 � 1 .mod 3/. Similarly, m=m2 D 105 and
c2 D 1, and furthermore m=m3 D 84 and c3 D 4. We do not need c4 since r4 D 0

in (1.3). Thus, (1.3) yields a0 D 140 � 2C 105 � 1C 84 � 4 D 721. The least residue
of 721 modulo 420 is a D 301, and this is the answer to the puzzle. We hope that
your chickens laid more than 301 eggs because, you know, you shouldn’t put all
your eggs in one basket.

Another giant of mathematics, namely Leonhard Euler (1707–1783), introduced
and employed the following number-theoretic function.

Definition 1.2.11 For m 2 N, the number of elements of Zm that are coprime to m
is denoted by �.m/. The function � is called Euler’s totient function.

Example 1.2.12 For small m, we can compute �.m/ by counting. For m D 12, for
instance, the elements of Z12 D f0; 1; : : : ; 11g that are coprime to 12 are 1, 5, 7, and
11, and so �.12/ D 4. An easy general case occurs when m D p is a prime number.
Then all numbers 1; 2; : : : ; p � 1 in Zp D f0; 1; : : : ; p � 1g are coprime to p, while
0 is not, and so �.p/ D p � 1.

By definition, �.m/ is the number of elements of the set

Rm WD fa 2 Zm W gcd.a;m/ D 1g: (1.4)

The number �.m/ can be easily computed once the canonical factorization of m � 2

is known, as the following result shows. We note that evidently �.1/ D 1.

Proposition 1.2.13 If m D Qk
jD1 p

ej

j is the canonical factorization of the integer
m � 2, then

�.m/ D
kY

jD1

�
p

ej

j � p
ej�1
j

� D m
kY

jD1

�
1 � p�1

j

�
:

Proof We first consider the case where m is a prime power, say m D pe with a prime
number p and e 2 N. The elements of Zpe that are not coprime to pe are exactly the
multiples of p, and there are pe�1 of them in Zpe . Hence �.pe/ D pe � pe�1.

Now let m D Qk
jD1 p

ej

j be as in the proposition and set mj D p
ej

j for 1 � j � k.
We consider the map  W Rm ! Rm1 � � � � � Rmk given by

 .a/ D . 1.a/; : : : ;  k.a// for all a 2 Rm;
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where  j.a/ is the least residue of a modulo mj for 1 � j � k. The Chinese
remainder theorem (see Theorem 1.2.9) shows that  is bijective, and so Rm and
Rm1 � � � � � Rmk have the same number of elements. Therefore

�.m/ D
kY

jD1
�.mj/ D

kY

jD1

�
p

ej

j � p
ej�1
j

� D m
kY

jD1

�
1 � p�1

j

�
;

which is the desired result. �

Example 1.2.14 The last expression in Proposition 1.2.13 shows that in order to
compute �.m/, we actually need to know only the different prime factors of m and
not the full canonical factorization of m. For instance, if m D 12, then 2 and 3 are
the different prime factors of 12, and so �.12/ D 12.1� 1=2/.1� 1=3/ D 4, which
agrees with the result in Example 1.2.12.

As the first application of the number-theoretic function �, we present the
following classical theorem from the eighteenth century. Later on in Sect. 1.3, we
will recognize this result as a special instance of a general principle in group theory.

Theorem 1.2.15 (Euler’s Theorem) If m 2 N and a 2 Z with gcd.a;m/ D 1,
then

a�.m/ � 1 .mod m/:

Proof We write Rm D fr1; : : : ; r�.m/g. We multiply all elements of Rm by a to obtain
the integers ar1; : : : ; ar�.m/. We claim that ar1; : : : ; ar�.m/ are pairwise incongruent
modulo m. For if ari � arj .mod m/ for some 1 � i; j � �.m/, then multiplying
the congruence by the integer c in Proposition 1.2.6, we get ri � rj .mod m/ and so
i D j. Moreover ar1; : : : ; ar�.m/ are coprime to m because of gcd.a;m/ D 1, hence
the least residues of ar1; : : : ; ar�.m/ modulo m run through the set Rm in some order.
Thus, modulo m we can compute the product of all elements of Rm in two ways to
obtain

.ar1/ � � � .ar�.m// � r1 � � � r�.m/ .mod m/:

This means that m divides r1 � � � r�.m/
�
a�.m/ � 1�. But m and r1 � � � r�.m/ are coprime,

and so m divides a�.m/ � 1 by Corollary 1.1.6. �

Corollary 1.2.16 (Fermat’s Little Theorem) If p is a prime number and a 2 Z is
not divisible by p, then

ap�1 � 1 .mod p/:

Proof This follows immediately from Theorem 1.2.15 and the observation in
Example 1.2.12 that �.p/ D p � 1 (or the formula in Proposition 1.2.13). �
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For m 2 N and a 2 Z with gcd.a;m/ D 1, we see from Theorem 1.2.15 that
there is some power of a that is congruent to 1modulo m. It is of interest to consider
the smallest positive exponent for which this works.

Definition 1.2.17 For m 2 N and a 2 Z with gcd.a;m/ D 1, the least positive
integer h such that ah � 1 .mod m/ is called the multiplicative order of a modulo m.

Example 1.2.18 Consider the prime modulus p D 13. Then for a D 5 we obtain
51 � 5 .mod 13/, 52 � 12 .mod 13/, 53 � 8 .mod 13/, and 54 � 1 .mod 13/.
Thus, the multiplicative order of 5 modulo 13 is equal to 4. If we carry out the same
calculation with a D 2, then we find that the multiplicative order of 2 modulo 13
is equal to 12, hence equal to p � 1. In view of Corollary 1.2.16, this is the largest
possible multiplicative order that can appear modulo the prime number p D 13, and
this situation deserves special attention.

Definition 1.2.19 Let p be a prime number and let g 2 Z with gcd.g; p/ D 1. If the
multiplicative order of g modulo p is equal to p � 1, then g is called a primitive root
modulo p.

Remark 1.2.20 By Example 1.2.18, the integer 2 is a primitive root modulo 13. A
more general principle will imply (see Corollary 1.4.33) that for every prime number
p there exists a primitive root modulo p, but we will not use this result before we
actually prove it.

Definition 1.2.21 Let p be an odd prime number and let a be an integer with
gcd.a; p/ D 1. Then a is called a quadratic residue modulo p if there exists an
integer b such that a � b2 .mod p/. If there is no such b 2 Z, then a is called a
quadratic nonresidue modulo p.

Statements about quadratic residues can be formulated in an elegant manner
by using the following notation introduced by the eminent mathematician Adrien-
Marie Legendre (1752–1833).

Definition 1.2.22 Let p be an odd prime number. For all a 2 Z, the Legendre
symbol

�
a
p

�
is defined as follows. If p divides a, then

�
a
p

� D 0. If gcd.a; p/ D 1,

then
�

a
p

� D 1 if a is a quadratic residue modulo p and
�

a
p

� D �1 if a is a quadratic
nonresidue modulo p.

Proposition 1.2.23 If p is an odd prime number, then

�a

p

�
� a.p�1/=2 .mod p/ for all a 2 Z:

Proof The result is trivial if p divides a, and so we can assume that gcd.a; p/ D 1.
The argument in the proof of Theorem 1.2.15 with m D p shows that for every c 2
Rp D f1; : : : ; p � 1g, the least residues of c; 2c; : : : ; .p � 1/c modulo p run through
Rp in some order. Therefore there exists a unique c0 2 Rp with cc0 � a .mod p/. We
pair off c with c0, and then c D c0 occurs if and only if

�
a
p

� D 1. Thus, if
�

a
p

� D �1,
then we can form .p � 1/=2 distinct pairs .c; c0/ with c ¤ c0 and cc0 � a .mod p/,
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and so .p � 1/Š � a.p�1/=2 .mod p/. We write this congruence in the form

.p � 1/Š � �
�a

p

�
a.p�1/=2 .mod p/: (1.5)

If
�

a
p

� D 1, then b2 � a .mod p/ for some b 2 Rp. Then d2 � a � b2 .mod p/
implies that p divides .d � b/.d C b/, and so d D b or d D p � b by Lemma 1.1.10.
Now we can form .p � 3/=2 distinct pairs .c; c0/ with c ¤ c0 and cc0 � a .mod p/
as well as the pair .b; p � b/ with b.p � b/ � �b2 � �a .mod p/. Therefore the
congruence (1.5) holds again. With a D 1 in (1.5) we get .p � 1/Š � �1 .mod p/,
and so

1 �
�a

p

�
a.p�1/=2 .mod p/

for all a 2 Z with gcd.a; p/ D 1. Multiplying the last congruence by
�

a
p

�
yields the

final result. �

Proposition 1.2.24 If p is an odd prime number, then

�ab

p

�
D
�a

p

��b

p

�
for all a; b 2 Z:

Proof Proposition 1.2.23 shows that

�ab

p

�
� .ab/.p�1/=2 � a.p�1/=2b.p�1/=2 �

�a

p

��b

p

�
.mod p/:

Now both extreme sides of this congruence have the value 0 or ˙1, and so the
congruence holds if and only if equality holds (note that p � 3). �

Example 1.2.25 Let p be an odd prime number and let a D �1. From Proposi-
tion 1.2.23 we obtain

��1
p

�
� .�1/.p�1/=2 .mod p/:

Both sides of this congruence have the value ˙1, and so we get the equality

��1
p

�
D .�1/.p�1/=2:

Thus, �1 is a quadratic residue modulo p if and only if p � 1 .mod 4/. For instance,
if p D 13, then �1 � 64 � 82 .mod 13/.

Remark 1.2.26 For an odd prime number p, the argument after (1.5) shows that
if
�

a
p

� D 1, then there exists a unique b 2 Z with b2 � a .mod p/ and 1 �
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b � .p � 1/=2. Hence we find all incongruent quadratic residues modulo p in the
set fb2 W b D 1; : : : ; .p � 1/=2g. Therefore, there are exactly .p � 1/=2 quadratic
residues modulo p in f1; : : : ; p�1g, and consequently there are also exactly .p�1/=2
quadratic nonresidues modulo p in f1; : : : ; p � 1g.

1.3 Groups and Characters

1.3.1 Abelian Groups

If you expect that in this section on groups and characters we provide a psycho-
logical study of how the character of people is affected by their social groups, then
we have to disappoint you. The groups we are considering here are abelian groups
in the sense of abstract algebra and the characters we are investigating are special
maps between abelian groups and the set C of complex numbers. Moreover, we
focus on abelian groups that are of number-theoretic relevance. There will be no
need to consider groups that are not abelian.

If you had a course on abstract algebra, then you already know all you need to
know about abelian groups for this book. For the novices in group theory, we offer
a brief introduction. The study of abstract algebraic structures is best initiated with
some illustrative examples.

For the theory of abelian groups, we just start with the basic set for number
theory, namely the set Z of all integers. On Z we consider the binary operation of
ordinary addition which assigns to every ordered pair .a; b/ 2 Z

2 the sum aCb 2 Z.
The associative law a C .b C c/ D .a C b/ C c holds for all a; b; c 2 Z and the
commutative law a C b D b C a is valid for all a; b 2 Z. The integer 0 plays a
special role since a C 0 D a for all a 2 Z. Furthermore, for every a 2 Z there is the
integer �a that can be added to it to produce 0, that is, such that a C .�a/ D 0.

In abstract algebra we abstract (isn’t that where the name of the area comes
from?) from special examples, and this is what we do now. Instead of Z we take
some set G and instead of ordinary addition in Z we take a binary operation 	 on
G, that is, a map that assigns to every ordered pair .a; b/ of elements a; b 2 G an
element a 	 b 2 G. The properties of ordinary addition in Z listed in the preceding
paragraph are now put forth as the axioms of an abelian group G. In particular, there
must be an element of G playing the role of the integer 0, and so G will automatically
be nonempty.

Definition 1.3.1 An abelian group is a set G together with a binary operation 	 on
G such that the following axioms hold:

(i) a 	 .b 	 c/ D .a 	 b/ 	 c for all a; b; c 2 G (associative law);
(ii) a 	 b D b 	 a for all a; b 2 G (commutative law);

(iii) there is an identity element (or neutral element) � 2 G such that a 	 � D a for
all a 2 G;

(iv) for each a 2 G, there exists an inverse element a�1 2 G such that a 	 a�1 D �.
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Remark 1.3.2 If �1; �2 2 G are identity elements (or neutral elements) of the abelian
group G, then on the one hand �1 	 �2 D �1 by axiom (iii) and on the other hand
�1 	 �2 D �2 	 �1 D �2 by axioms (ii) and (iii). It follows that �1 D �2. In other words,
there is exactly one identity element (or neutral element) of G and we can speak
of the identity element (or the neutral element) of G. The terminology “identity
element” may suggest something like the number 1, but for instance in the case of
the abelian group Z under ordinary addition the identity element is the integer 0.
Therefore we offer also the alternative terminology “neutral element” if you feel
misled by “identity element”, although one has to admit that the usage of “identity
element” is much more common.

Remark 1.3.3 Let a 2 G be given and suppose that b; c 2 G are inverse elements
of a in the abelian group G. By using all axioms for the abelian group G, we obtain
b D b 	 � D b 	 .a 	 c/D .b 	 a/	 c D .a 	 b/	 c D �	 c D c 	 � D c. Thus, there is
exactly one inverse element of a in G and we can speak of the inverse element of a.

The notation � for the neutral element of an abelian group G is a bit awkward
and we use it only temporarily. In practice, one often employs the additive notation
a C b instead of a 	 b for the binary operation on G; but it must be emphasized
that by doing so it is not assumed that the operation actually is ordinary addition of
numbers. With the additive notation, it is reasonable to denote the neutral element
of G by 0 2 G. Similarly, one may write �a 2 G for the inverse element of a 2 G
with the additive notation. The expression aC.�b/ for a; b 2 G is often abbreviated
by a � b.

Possibly to confuse students, some authors prefer multiplicative notation, that
is, they write ab instead of a 	 b for the binary operation on G. In this case, it is
plausible to write 1 2 G for the neutral element of G, or sometimes 1G to stress the
dependence on G. Again, the use of the multiplicative notation does not necessarily
imply that the operation is ordinary multiplication of numbers.

Example 1.3.4 Here is an example with the multiplicative notation where the binary
operation is indeed ordinary multiplication. Let m 2 N and let Um be the set of
complex mth roots of unity. Concretely, this means that Um consists of the complex
numbers e2� ij=m with j D 0; 1; : : : ;m � 1, where i D p�1 is the imaginary unit.
You may want to remember here that e2� iy D cos.2�y/ C i sin.2�y/ for all real
numbers y. The binary operation on Um is multiplication of complex numbers. Then
it is easily checked that the four axioms in Definition 1.3.1 are satisfied. The identity
element of the abelian group Um is the number 1. This is our first example of a finite
abelian group, according to the following definition.

Definition 1.3.5 The abelian group G is called a finite abelian group if it has only
finitely many elements. The number of elements of the finite abelian group G is
called the order of G.

Example 1.3.6 Let us take a second look at the finite abelian group Um of order m
in Example 1.3.4. We put �j D e2� ij=m for j 2 Zm D f0; 1; : : : ;m � 1g. Then Euler’s



14 1 A Review of Number Theory and Algebra

identity e2� i D 1 yields

�j�k D e2� i.jCk/=m D e2� ir=m D �r

for all j; k 2 Zm, where r is the least residue of j C k modulo m. This means that
the binary operation on Um can be carried out also by adding the elements of Zm

modulo m. We thus arrive at another finite abelian group of order m, namely Zm

with the binary operation being addition modulo m. The identity element of the
group Zm is 0 2 Zm.

Example 1.3.7 For a positive integer m, let Rm be as in (1.4). We consider the binary
operation 	 on Rm given by multiplication modulo m, that is, for r; s 2 Rm we let
r 	 s be the least residue of the ordinary product rs modulo m. Since gcd.r;m/ D
gcd.s;m/ D 1 implies that gcd.rs;m/ D 1, we get indeed r 	 s 2 Rm. It is easily
checked that the first three axioms in Definition 1.3.1 are satisfied, with the identity
element being the number 1 2 Rm. The validity of the axiom (iv) follows from
Proposition 1.2.6. Thus, Rm is a finite abelian group of order �.m/, where � is
Euler’s totient function.

Now that we know a few examples of finite abelian groups, we return to the
general theory of abelian groups. For elements a1; a2; : : : ; an of an abelian group
G with the multiplicative notation, the expression a1a2 � � � an is unambiguous, since
no matter how we insert parentheses, the expression will always represent the same
element of G (thanks to the associative law). If aj D a for 1 � j � n with an element
a 2 G, then we arrive at the nth power

an D aa � � � a„ƒ‚…
n factors

of a. It is customary to put a0 D 1 2 G. With the additive notation, we get the n-fold
sum

na D a C a C � � � C a„ ƒ‚ …
n summands

of a, with the convention 0a D 0 2 G. Usually, group theorists prefer to speak of
the nth power rather than the n-fold sum.

Here is a basic result that generalizes Theorem 1.2.15. We formulate this result
with the multiplicative notation.

Proposition 1.3.8 If G is a finite abelian group of order t, then

at D 1G for all a 2 G:

Proof We use the same idea as in the proof of Theorem 1.2.15. Let b1; : : : ; bt be
the elements of G and fix a 2 G. Then ab1; : : : ; abt run again through G, for if
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abi D abj for some 1 � i; j � t, then multiplying by the inverse element a�1 of a
we get bi D bj. It follows that

.ab1/ � � � .abt/ D b1 � � � bt;

and so

atb1 � � � bt D b1 � � � bt:

Multiplying by the inverse element of b1 � � � bt, we obtain at D 1G. �

If we apply Proposition 1.3.8 to the finite abelian group Rm in Example 1.3.7, then
we arrive at Theorem 1.2.15. According to Proposition 1.3.8, for a finite abelian
group G there is always some power of a 2 G that is equal to 1G, and so the
following definition makes sense.

Definition 1.3.9 Let G be a finite abelian group and let a 2 G. Then the least
positive integer h such that ah D 1G is called the order of the element a and denoted
by ord.a/.

Lemma 1.3.10 Let G be a finite abelian group, let a 2 G, and let n 2 N. Then
an D 1G if and only if ord.a/ divides n.

Proof With h D ord.a/ we use division with remainder to write n D qh C r with
q; r 2 Z and 0 � r < h. Then

an D aqhCr D .ah/qar D ar;

and so an D 1G if and only if ar D 1G. By the definition of ord.a/, the latter
condition holds if and only if r D 0, that is, if and only if ord.a/ divides n. �

Proposition 1.3.11 If G is a finite abelian group of order t, then ord.a/ divides t
for all a 2 G.

Proof This follows from Proposition 1.3.8 and Lemma 1.3.10. �

Remark 1.3.12 Let G be the finite abelian group Rm in Example 1.3.7. Then for
every a 2 Rm, the order ord.a/ of a according to Definition 1.3.9 is the same as the
multiplicative order of a modulo m (see Definition 1.2.17). It follows therefore from
Proposition 1.3.11 that the multiplicative order of a modulo m always divides �.m/.

Definition 1.3.13 A finite abelian group G is called cyclic if there exists an element
g 2 G such that every element of G is a power of g. The element g is called
a generator of the finite cyclic group G. We also say that G is the cyclic group
generated by g and we write G D hgi.

Remark 1.3.14 If G is a finite cyclic group of order t and g is a generator of G, then
ord.g/ D t. The group G consists exactly of the elements g0 D 1G; g; g2; : : : ; gt�1.
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A power gn with n � 0 is a generator of G if and only if gcd.n; t/ D 1. It follows
that G has exactly �.t/ different generators, where � is Euler’s totient function.

Example 1.3.15 For every m 2 N, the finite abelian group Zm in Example 1.3.6 is
cyclic since it is additively generated by the integer 1. The finite abelian group Um in
Example 1.3.4 is cyclic since it is multiplicatively generated by the complex number
e2� i=m.

Cyclic groups often arise in the way that we take a finite abelian group G and an
element a 2 G, and we consider the finite cyclic group hai generated by a. Since hai
is both a cyclic group and a subset of G, it is plausible to call hai a cyclic subgroup
of G. More generally, we have the following standard terminology.

Definition 1.3.16 Let G be an abelian group. A subset H of G that forms by itself
a group when the binary operation on G is restricted to H is called a subgroup of G.

Example 1.3.17 Every abelian group G has the trivial subgroups f1Gg and G. If Um

with m 2 N is the finite abelian group in Example 1.3.4, then Ud is a subgroup of
Um whenever d 2 N divides m.

Another important concept in group theory is that of a factor group. Let G be an
abelian group, not necessarily finite, and let H be a subgroup of G. In the context of
factor groups, we usually prefer the additive notation for the binary operation on G.
For every a 2 G, we form the coset (with respect to H)

a C H WD fa C h W h 2 Hg:

In the multiplicative notation, we would write aH D fah W h 2 Hg. For a; b 2 G, the
cosets a C H and b C H agree as sets if and only if a � b 2 H. If a C H and b C H
do not agree, then they are disjoint, for if c 2 .a C H/ \ .b C H/, then c � a 2 H
and c � b 2 H, and so a C H D c C H D b C H.

Now we take the set of all cosets with respect to H and we introduce a binary
operation on it (in the additive notation we call it the sum of cosets) as follows. For
two cosets a C H and b C H with a; b 2 G, their sum is defined by

.a C H/C .b C H/ D .a C b/C H: (1.6)

Thus, the sum of the two cosets is another coset with respect to H, as it should be.
However, we need to check whether this sum is well defined, that is, if we choose
arbitrary representatives c 2 a C H and d 2 b C H of the two given cosets, do we
get the same sum? According to (1.6), we obtain

.a C H/C .b C H/ D .c C H/C .d C H/ D .c C d/C H:

But

.c C d/� .a C b/ D .c � a/„ƒ‚…
2H

C .d � b/„ ƒ‚ …
2H

2 H



1.3 Groups and Characters 17

since H is a subgroup of G, and so indeed .c C d/C H D .a C b/C H. It is easy to
verify that the binary operation in (1.6) satisfies all four axioms in Definition 1.3.1.
The identity element is the coset 0C H, which is of course the subgroup H itself.

Definition 1.3.18 Let H be a subgroup of the abelian group G. Then the set of all
cosets with respect to H, together with the binary operation in (1.6), forms an abelian
group which is called the factor group G=H.

Example 1.3.19 Just for a change, let us consider an example with infinite abelian
groups. The set R of real numbers with the binary operation of ordinary addition of
real numbers is obviously an abelian group. The set Z of integers is a subgroup of R.
Thus, we can form the factor group R=Z. The distinct cosets with respect to Z are
given in their canonical form by u C Z with the real number u running through the
half-open interval Œ0; 1/. The sum of two cosets uCZ and vCZ with u; v 2 Œ0; 1/ is
given by .u C v/CZ according to (1.6). If u C v < 1, then the coset .u C v/CZ is
in canonical form. If u Cv � 1, then by the theory of cosets we have .u Cv/CZ D
.u C v � 1/ C Z and the latter is in canonical form since 0 � u C v � 1 < 1.
Thus, the cosets making up R=Z are added by adding their representatives modulo
integers. The factor group R=Z and its multidimensional versions will play a role in
the theory of quasi-Monte Carlo methods (see Sect. 4.3.2).

Example 1.3.20 Let us now start from the abelian group Z in Example 1.3.19 (see
also the beginning of this section) and fix m 2 N. Then the set .m/ WD fkm W k 2 Zg
of all multiples of m is a subgroup of Z, and so we can form the factor group Z=.m/.
We again have a canonical form for the distinct cosets with respect to .m/, namely
r C .m/ with r 2 Zm D f0; 1; : : : ;m � 1g. Now we take a look at how the binary
operation on Z=.m/works. The sum of two cosets rC.m/ and sC.m/ with r; s 2 Zm

is given by r C s C .m/ according to (1.6). If r C s < m, then the coset r C s C .m/ is
in canonical form. If r C s � m, then r C s C .m/ D r C s � m C .m/ and the latter is
in canonical form since 0 � rCs�m < m. Thus, the addition of cosets with respect
to .m/ is the same as addition modulo m of their representatives. We can therefore
think of Z=.m/ as another incarnation of the abelian group Zm in Example 1.3.6. In
elementary number theory, a coset with respect to .m/ is also called a residue class
modulo m.

A really fundamental application of cosets is the following beautiful result from
group theory, named after the mathematician and theoretical physicist Joseph-Louis
Lagrange (1736–1813).

Theorem 1.3.21 (Lagrange’s Theorem) Let G be a finite abelian group and let
H be a subgroup of G. Then the order jGj of G, the order jHj of H, and the order
jG=Hj of the factor group G=H are related by the identity

jGj D jHj � jG=Hj:

In particular, the order of every subgroup of G divides the order of G.
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Proof We pick a coset a1 C H for some a1 2 G. If a1 C H does not exhaust G,
then we choose a2 2 G n .a1 C H/. The cosets a1 C H and a2 C H do not agree,
since a2 … a1 C H and a2 2 a2 C H. Thus, by an observation about cosets above,
a1 C H and a2 C H are disjoint. If the union V D .a1 C H/ [ .a2 C H/ is G, then
we stop. Otherwise, we choose a3 2 G n V . Since G is finite, this procedure stops
after a certain number s of steps, and so we arrive at cosets a1 C H; : : : ; as C H
that are pairwise disjoint and whose union is G. In other words, these cosets form a
partition of G. By counting elements, we see that jGj D jHjs, and it is obvious that
s D jG=Hj. �

We obtain Proposition 1.3.11 as a special case of Lagrange’s theorem if we
choose for H the cyclic subgroup hai of G. The following notion will lead, in
Corollary 1.3.25 below, to a refinement of Proposition 1.3.8.

Definition 1.3.22 The exponent E D E.G/ of the finite abelian group G is defined
by

E D max
a2G

ord.a/:

In words, the exponent of G is the maximum order of elements of G.

Remark 1.3.23 In view of Proposition 1.3.11, the exponent E of a finite abelian
group G always divides the order t of G. Moreover, E D t if and only if G is cyclic.
As an example for E < t, consider the special case R8 D f1; 3; 5; 7g of the family
of abelian groups Rm in Example 1.3.7. Then ord.1/ D 1 and ord.3/ D ord.5/ D
ord.7/ D 2, and so E D 2, but obviously t D 4.

Proposition 1.3.24 If G is a finite abelian group of exponent E, then ord.a/ divides
E for all a 2 G.

Proof We consider a fixed element a 2 G. Let p be any prime number. Then we can
write E D pef with integers e � 0 and f � 1 satisfying gcd.p; f / D 1. It suffices to
show that if pr divides ord.a/ for some integer r � 0, then we must have r � e.

We use the multiplicative notation. By Definition 1.3.22, there exists an element
b 2 G with ord.b/ D E. Put c D aord.a/=pr

and d D bpe
. Then ord.c/ D pr and

ord.d/ D f . It follows that

.cd/p
rf D cprf dprf D �

cpr �f �
df
�pr D 1G:

Therefore Lemma 1.3.10 shows that k WD ord.cd/ divides prf . Next we note that
1G D .cd/kf D ckf dkf D ckf . Then Lemma 1.3.10 implies that pr divides kf .
Now gcd.pr; f / D 1, and so pr divides k by Corollary 1.1.6. Similarly, we see
that f divides k. Using again gcd.pr; f / D 1, we deduce that prf divides k, and
so ord.cd/ D prf . Finally, we invoke Definition 1.3.22 to obtain ord.cd/ D prf �
E D pef , and so r � e as desired. �
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Corollary 1.3.25 If G is a finite abelian group of exponent E, then

aE D 1G for all a 2 G:

Proof This follows from Lemma 1.3.10 and Proposition 1.3.24. �

1.3.2 Characters

Now we know enough about group theory to talk about characters of abelian groups.
An important abelian group in this context is U D fz 2 C W jzj D 1g, the unit circle
in the complex plane, with the binary operation being ordinary multiplication of
complex numbers. The abelian groups Um in Example 1.3.4 are of course subgroups
of U.

Let G be an abelian group with the multiplicative notation. Then a character of
G is a map � W G ! U satisfying

�.ab/ D �.a/�.b/ for all a; b 2 G: (1.7)

With the additive notation we require that

�.a C b/ D �.a/�.b/ for all a; b 2 G: (1.8)

On the right-hand sides of (1.7) and (1.8), the operation is of course ordinary
multiplication of complex numbers. There are no good or bad characters of abelian
groups, but there are trivial and nontrivial characters. The trivial character �0 of G
is defined by �0.a/ D 1 for all a 2 G. Every character � of G for which �.b/ ¤ 1

for at least one element b 2 G is called a nontrivial character of G.

Example 1.3.26 Let G be the abelian factor group R=Z in Example 1.3.19. For
every h 2 Z, we define the map �h W R=Z ! U by

�h.v C Z/ D e2� ihv for all v 2 R:

This map is well defined, for if u C Z D v C Z for some u 2 R, then u � v 2 Z,
and so e2� ihu D e2� ihv since e2� ihn D 1 for all n 2 Z. It is obvious that (1.8) holds,
and therefore �h is a character of R=Z. For h D 0 we get the trivial character �0 of
R=Z, whereas any �h with h ¤ 0 is a nontrivial character of R=Z. These characters
will play a role in the theory of uniformly distributed sequences (see Sect. 4.1.1).

Example 1.3.27 For every m 2 N, let Um be the finite abelian group in Exam-
ple 1.3.4. Characters of Um are ridiculously easy to find. Just take �1.z/ D z for all
z 2 Um. More generally, choose an integer h with 0 � h � m �1 and put �h.z/ D zh

for all z 2 Um. Then (1.7) is clearly satisfied. The character �0 is the trivial character
of Um, and for 1 � h � m � 1 the characters �h are nontrivial.
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Example 1.3.28 Let p be an odd prime number and let Rp D f1; : : : ; p � 1g
be the finite abelian group in Example 1.3.7 with multiplication modulo p. For
a 2 Rp, define �.a/ D �

a
p

�
to be the Legendre symbol in Definition 1.2.22. Then

Proposition 1.2.24 shows that � is a character of Rp. In view of Remark 1.2.26, � is
a nontrivial character of Rp.

Proposition 1.3.29 Let � be a character of the abelian group G with identity
element 1G. Then �.1G/ D 1 and �.a�1/ D �.a/ for every a 2 G, where the
bar denotes complex conjugation.

Proof With the multiplicative notation, we have 1G1G D 1G, hence �.1G/�.1G/ D
�.1G/ by (1.7), and so �.1G/ D 1. Furthermore, since aa�1 D 1G for every a 2 G,
we obtain

�.a/�.a�1/ D �.aa�1/ D �.1G/ D 1:

The complex number �.a/ has absolute value 1, and so �.a�1/ D �.a/. �
Let us now focus on characters of finite abelian groups. The values of such

characters are restricted by the following result.

Proposition 1.3.30 Let G be a finite abelian group of exponent E. Then the values
of every character of G are Eth roots of unity.

Proof If a 2 G, then aE D 1G by Corollary 1.3.25. Hence, using Proposition 1.3.29,
we get 1 D �.1G/ D �.aE/ D �.a/E for every character � of G. �

In the case of a finite cyclic group, the characters are easy to determine, as the
following example demonstrates.

Example 1.3.31 Let G be a finite cyclic group of order t and let g be a generator
of G. According to Remark 1.3.14, G consists exactly of the powers gj with j D
0; 1; : : : ; t � 1. Proposition 1.3.30 shows that the value of a character at g is a tth
root of unity, hence it is equal to e2� ih=t for some integer h with 0 � h � t � 1. This
value at g determines the character completely, hence we get the character �h of G
given by

�h.g
j/ D e2� ihj=t for j D 0; 1; : : : ; t � 1:

Note that there are exactly t different characters of G.

It is a general fact that the number of different characters of a finite abelian group
G is equal to the order of G (see Theorem 1.3.36), but it requires an additional
effort to establish this result. We tread carefully and we first aim to show that
there are sufficiently many characters of G to separate distinct elements of G (see
Lemma 1.3.33).
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Lemma 1.3.32 Let H be a subgroup of the finite abelian group G and let  be a
character of H. Then  can be extended to a character of G, that is, there exists a
character � of G with �.b/ D  .b/ for all b 2 H.

Proof We use the multiplicative notation. We can suppose that H ¤ G, for
otherwise there is nothing to prove. Choose a 2 G with a … H. Then H1 D fajb W
j � 0; b 2 Hg is a subgroup of G with H � H1 since a 2 H1. Let m be the order
of the coset aH in the factor group G=H and choose z 2 C such that zm D  .am/;
note that jzj D 1. Now we define a map  1 on H1 by taking b1 2 H1 with b1 D ajb,
j � 0, b 2 H, and putting  1.b1/ D zj .b/. We first have to show that  1 is well
defined. Thus, suppose that also b1 D akc, k � 0, c 2 H, where we can assume that
k > j. Then ak�j D bc�1 2 H, and so m divides k � j by Lemma 1.3.10. It follows
that zk�j D  .ak�j/. Therefore

zk .c/ D zjzk�j .c/ D zj .ak�j/ .c/ D zj .ak�jc/ D zj .b/;

and so  1 is indeed well defined.
It is obvious that  1 is a character of H1 and that  1.b/ D  .b/ for all b 2 H.

If H1 D G, then we are done. Otherwise, we can continue the process above until,
after finitely many steps, we obtain an extension of  to G. �

Lemma 1.3.33 Let G be a finite abelian group and let a1; a2 2 G with a1 ¤ a2.
Then there exists a character � of G with �.a1/ ¤ �.a2/.

Proof It suffices to show that for a D a1a�1
2 ¤ 1G, there exists a character � of G

with �.a/ ¤ 1. The cyclic subgroup H D hai of G has order t � 2. Now let  be the
character �1 of H in Example 1.3.31; then  .a/ D e2� i=t ¤ 1. By Lemma 1.3.32,
 can be extended to a character � of G. �

Now we introduce a binary operation for the characters of a fixed finite abelian
group G. For two characters � and � of G, their product �� is defined by

.��/.a/ D �.a/�.a/ for all a 2 G:

It is evident that �� is again a character of G. Let OG be the set of all characters
of G. Then with this product as a binary operation on OG, the axioms (i) and (ii)
in Definition 1.3.1 are satisfied since the associative law and the commutative law
hold for ordinary multiplication of complex numbers. The trivial character �0 of G
serves as an identity element for the product of characters. Given � 2 OG, its inverse
element with respect to the product of characters is the character � of G defined
by �.a/ D �.a/ for all a 2 G (compare with Proposition 1.3.29). Altogether, OG
forms an abelian group under this binary operation, and since there are only finitely
many choices for the values of characters of G on account of Proposition 1.3.30, OG
is finite. The finite abelian group OG is called the character group (or the dual group)
of G.

Among the results for characters, the following theorem will be most frequently
used in this book.
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Theorem 1.3.34 (Orthogonality Relations for Characters) If � is a nontrivial
character of the finite abelian group G, then

X

a2G

�.a/ D 0: (1.9)

If b 2 G with b ¤ 1G, then

X

�2 OG
�.b/ D 0: (1.10)

Proof We use multiplicative notation. Since � is nontrivial, there exists an element
c 2 G with �.c/ ¤ 1. Then

�.c/
X

a2G

�.a/ D
X

a2G

�.c/�.a/ D
X

a2G

�.ca/ D
X

a2G

�.a/;

because if a runs through G, then so does ca. It follows that

.�.c/ � 1/
X

a2G

�.a/ D 0;

which already implies (1.9) since �.c/ ¤ 1.
For the second part, we introduce the function Ob on OG by Ob.�/ D �.b/ for all

� 2 OG. Then Ob is a character of OG. Furthermore, Ob is a nontrivial character since, by
Lemma 1.3.33, there exists a � 2 OG with Ob.�/ D �.b/ ¤ �.1G/ D 1 (recall that
b ¤ 1G). Now we apply (1.9) to the group OG and we obtain

X

�2 OG
�.b/ D

X

�2 OG
Ob.�/ D 0;

thus proving (1.10). �

Example 1.3.35 For an odd prime number p, let � be the quadratic character of the
finite abelian group Rp in Example 1.3.28. Then (1.9) yields

X

a2Rp

�.a/ D 0:

This says that the number of quadratic residues modulo p in Rp is the same as the
number of quadratic nonresidues modulo p in Rp, and thus we arrive again at the
result in Remark 1.2.26.

Theorem 1.3.36 For every finite abelian group G, the number of different charac-
ters of G is equal to the order of G.
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Proof This follows from

j OGj D
X

a2G

X

�2 OG
�.a/ D

X

�2 OG

X

a2G

�.a/ D jGj;

where we used (1.10) in the first identity and (1.9) in the last identity. �

1.4 Finite Fields

1.4.1 Fundamental Properties

This section is not a diversion into agriculture as the title may suggest, but an
excursion to an area of abstract algebra called field theory which is about as
important as group theory. The peculiar terminology “field” for the underlying
algebraic structure is not used in all languages. For instance, in French one says
corps and in German Körper, both of which mean “body”. It is of course a matter
of taste whether “body” captures the algebraic concept better than “field”.

So, to come to the point of this section, what is a field? As for the theory of
abelian groups (see Sect. 1.3), we start with some examples that are familiar to you.
We observed in Example 1.3.19 that the set R of real numbers forms an abelian
group under the ordinary addition of real numbers. But there is of course a second
basic operation on R, namely multiplication, and the set R� of nonzero real numbers
is an abelian group under this binary operation. Addition and multiplication are
linked by the distributive law u.v C w/ D uv C uw for all u; v;w 2 R. There you
already have all ingredients of a field. Analogously, the set C of complex numbers
forms a field under the usual addition and multiplication of complex numbers.
Definitely, R and C are the most popular fields in all of mathematics. Here is a
third example from the hit parade of fields, namely the set Q of rational numbers,
again of course with the ordinary addition and multiplication of rational numbers
(note that the sum and the product of rational numbers are rational numbers and that
the reciprocal of a nonzero rational number is again a rational number).

As in the case of abelian groups, we now take the step of abstraction. We
are given a set F with two binary operations which, for simplicity, we call
addition and multiplication (although they are not necessarily ordinary addition and
multiplication of numbers). For the result of the addition of a; b 2 F we write a C b
and for the result of the multiplication we write ab. On the basis of the definition of
an abelian group (see Definition 1.3.1), we need only three axioms to define a field.

Definition 1.4.1 A field is a set F together with the binary operations of addition
and multiplication such that the following axioms hold:
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(i) F is an abelian group under addition with identity element 0 2 F;
(ii) F� WD F n f0g is an abelian group under multiplication with identity element

1 2 F;
(iii) a.b C c/ D ab C ac for all a; b; c 2 F (distributive law).

It should be obvious by now that when we write 0 and 1 for an abstract field F, we
do not necessarily mean the integers 0 and 1. We emphasize that every field contains
at least two elements, namely the different identity elements 0 and 1. It is customary
to write �a for the additive inverse of a 2 F and a�1 for the multiplicative inverse
of a 2 F�. Here are two simple properties that you use without thinking for real and
complex numbers, but which hold in any field.

Lemma 1.4.2 Let F be a field. Then:

(i) a0 D 0 for all a 2 F;
(ii) if ab D 0 for some a; b 2 F, then a D 0 or b D 0.

Proof

(i) If a 2 F, then a0 D a.0C 0/ D a0C a0 by the distributive law, and so a0 D 0.
(ii) If ab D 0 and a ¤ 0, then multiplication by a�1 yields b D a�10, and so b D 0

by part (i). �

Example 1.4.3 We noted that every field contains at least the two elements 0 and
1. It is stunning, when you see this for the first time, that one can construct a field
out of these two elements alone, because conventionally one thinks of fields like
Q, R, and C which have infinitely many elements. Consider the set Z2 D f0; 1g
and introduce binary operations on Z2 by the following addition and multiplication
tables.

C 0 1

0 0 1

1 1 0

� 0 1
0 0 0

1 0 1

Actually, both operation tables are forced on us by the general properties of a
field. Three entries in the addition table stem from the defining property of the
additive identity element 0 and the fourth entry is dictated by the need for 1 to
have an additive inverse. Similarly, three entries in the multiplication table stem
from Lemma 1.4.2(i) and the fourth entry is due to the defining property of the
multiplicative identity element 1. A second look at the addition table shows that
this binary operation of addition can also be interpreted as addition modulo 2 in
the set Z2 according to Example 1.3.6. Surprisingly, this tiny set satisfies all axioms
of a field (four axioms for the additive group, four axioms for the multiplicative
group, plus the distributive law, so altogether nine axioms!). We already know
from Example 1.3.6 that Z2 is an abelian group under addition modulo 2. Next
Z�
2 D f1g is the trivial abelian group just consisting of the identity element 1.

Finally, the distributive law a.b C c/ D ab C ac for all integers a; b; c implies
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a.b C c/ � ab C ac .mod 2/, which is the distributive law for Z2. This is our first
example of a finite field, according to the following definition.

Definition 1.4.4 A field F is called a finite field if it has only finitely many elements.
The number of elements of a finite field F is called the order of F.

Every positive integer occurs as the order of some finite abelian group (see for
instance Examples 1.3.4 and 1.3.6). For finite fields, there is a restriction on the
possible orders: a finite field of order q exists if and only if q is a prime power. It will
take some doing to prove this result. Let us start modestly by producing examples of
finite fields for which the order is a prime number. To this end, we simply generalize
Example 1.4.3 in an obvious manner.

Theorem 1.4.5 For every prime number p, the least residue system modulo p given
by Zp D f0; 1; : : : ; p � 1g forms a finite field of order p under addition and
multiplication modulo p.

Proof We know from Example 1.3.6 that Zp is an abelian group under addition
modulo p. Furthermore, Z�

p D f1; : : : ; p � 1g D Rp is an abelian group under
multiplication modulo p by Example 1.3.7. Finally, the distributive law a.b C c/ D
ab C ac for all integers a; b; c implies a.b C c/ � ab C ac .mod p/, which is the
distributive law for Zp. �
Remark 1.4.6 A finite field for which the order is a prime number is called a finite
prime field. For the finite prime field Zp we use also the symbol Fp, in line with the
later notation Fq for a finite field of prime-power order q.

Example 1.4.7 Just for the fun of it, here are the operation tables for the finite prime
field F3 D Z3 D f0; 1; 2g.

C 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

� 0 1 2
0 0 0 0

1 0 1 2

2 0 2 1

For the next step forward, we consider n-fold sums of the multiplicative identity
element 1 of a field F. Concretely, for all n 2 N we write

n � 1 D 1C 1C � � � C 1„ ƒ‚ …
n summands

2 F:

Proposition 1.4.8 For every finite field F, there exists a least positive integer p such
that p � 1 D 0 2 F, and this integer p is a prime number.

Proof Consider the elements n � 1 of F for n 2 N. Since F is finite, we must have
m �1 D n �1 for some m; n 2 N with m > n. It follows that .m�n/ �1 D m �1�n �1 D
0 2 F. Hence there exists a least positive integer p with p � 1 D 0 2 F. Note that
p � 2 since 1 � 1 D 1 ¤ 0 2 F. Now assume that p were a composite number. Then
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p D hk with h; k 2 N and 1 < h; k < p, and so 0 D p � 1 D .hk/ � 1 D .h � 1/.k � 1/.
Lemma 1.4.2(ii) implies that either h � 1 D 0 or k � 1 D 0, but both alternatives yield
contradictions to the minimality of p. �

Definition 1.4.9 The prime number p in Proposition 1.4.8 is called the characteris-
tic of the finite field F. More generally, if for an arbitrary field F there exists a prime
number p such that p � 1 D 0 2 F, then p is called the characteristic of F.

Example 1.4.10 For every prime number p, the finite field Zp D Fp in Theo-
rem 1.4.5 has characteristic p. We remark for the sake of completeness that the
fields Q, R, and C have characteristic 0 by definition, but there will be no need for
us to use this terminology.

Let us consider not only n � 1, but more generally, for every field F, for every
n 2 N, and for every a 2 F, let us put

n � a D a C a C � � � C a„ ƒ‚ …
n summands

2 F

and furthermore 0 � a D 0 2 F.
The following theorem provides an important necessary condition for the order

of a finite field. Later on in this section, we will prove that this condition is also
sufficient. First we note a simple consequence of the definition of the characteristic.

Lemma 1.4.11 If F is a field of characteristic p, then

p � a D a C a C � � � C a„ ƒ‚ …
p summands

D 0 2 F for all a 2 F:

Proof If a 2 F, then

p � a D a C a C � � � C a„ ƒ‚ …
p summands

D a.1C 1C � � � C 1„ ƒ‚ …
p summands

/ D a0 D 0 2 F

by the distributive law and Lemma 1.4.2(i). �

Theorem 1.4.12 If F is a finite field, then the order of F is a prime power pr, where
the prime number p is the characteristic of F and r is a positive integer.

Proof We view F as a finite abelian group under addition. The cyclic group h1i
generated by 1 2 F is a subgroup of F of order p. Therefore there exists a largest
power pr of p with r 2 N which is the order of some subgroup H of F. Assume
that H ¤ F. Then we can choose an element a 2 F n H. A computation in the
factor group F=H shows that p.a C H/ D p � a C H D 0 C H by Lemma 1.4.11.
Thus, ord.a C H/ divides p by Lemma 1.3.10, and since p is a prime number and
a C H ¤ 0C H, it follows that ord.a C H/ D p. By a similar argument, we obtain
ord.a/ D p. Now we consider the subgroup H1 D fj � a C h W j 2 Zp; h 2 Hg of F.
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If j � a C g D k � a C h with j; k 2 Zp and g; h 2 H, then j.a C H/ D k.a C H/, hence
j D k since ord.a C H/ D p, and so g D h. It follows that jH1j D jZpjjHj D prC1,
and we get a contradiction to the definition of pr. Thus H D F, and the proof is
complete. �

We collect further elementary properties of a finite field F. We recall from
Definition 1.4.1 that F� denotes the multiplicative group of nonzero elements of F.

Proposition 1.4.13 Let F be a finite field of order q. Then aq�1 D 1 2 F for all
a 2 F� and aq D a for all a 2 F.

Proof Since F� is a finite abelian group of order q � 1, the first property follows
from Proposition 1.3.8. Multiplying aq�1 D 1 2 F by a 2 F�, we get aq D a. For
a D 0 2 F, the identity 0q D 0 follows from Lemma 1.4.2(i). �

Proposition 1.4.14 Let F be a field of characteristic p. If a; b 2 F and n 2 N, then

.a C b/p
n D apn C bpn

and .a � b/p
n D apn � bpn

:

Proof We first take n D 1. In exactly the same way as for real numbers, one proves
the binomial theorem

.a C b/p D
pX

jD0

 
p

j

!
� ap�jbj D ap C

p�1X

jD1

 
p

j

!
� ap�jbj C bp:

Now
 

p

j

!
D p.p � 1/ � � � .p � j C 1/

1 � 2 � � � � � j
� 0 .mod p/

for j D 1; : : : ; p � 1 since the prime factor p in the numerator cannot be canceled.
Then Lemma 1.4.11 implies that .a C b/p D ap C bp. For arbitrary n 2 N, the first
identity in the proposition is proved by induction. By what we have just shown, we
obtain

apn D ..a � b/C b/p
n D .a � b/p

n C bpn
;

and the second identity follows. �

1.4.2 Polynomials

You are of course familiar with polynomials over the real numbers and the complex
numbers. The general theory of polynomials proceeds in complete analogy. For an
arbitrary field F, a polynomial (over F) in the variable (or indeterminate) x is a
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formal expression

f .x/ D
nX

jD0
ajx

j D anxn C � � � C a1x C a0 (1.11)

with an integer n � 0 and coefficients aj 2 F for 0 � j � n. The set of all
polynomials over F in the variable x is denoted by FŒx	. If aj D 0 2 F for 0 � j � n
in (1.11), then we get the zero polynomial 0 2 FŒx	. If an ¤ 0 2 F in (1.11), then
an is called the leading coefficient of f .x/. If an D 1 2 F, then the polynomial f .x/
is called monic. The coefficient a0 in (1.11) is the constant term of f .x/. If we write
a nonzero polynomial f .x/ 2 FŒx	 as in (1.11) with leading coefficient an ¤ 0 2 F,
then the degree of f .x/ is defined by deg.f .x// D n. Various conventions are in
use for the degree of the zero polynomial 0 2 FŒx	. For the time being, we put
deg.0/ D �1. Later on in the book, we will utilize other conventions for deg.0/.

Polynomials over F are added and multiplied just like polynomials over R, the
only difference being that the arithmetic of coefficients is the arithmetic in F. If we
then inspect the axioms for a field (see Definitions 1.4.1 and 1.3.1), then we realize
that only one of the axioms fails, namely the existence of a multiplicative inverse.
For instance, the multiplicative inverse of x 2 RŒx	 would be 1

x , but this is a rational
function and not a polynomial.

An algebraic structure that satisfies all axioms for a field except the existence of
a multiplicative inverse is called a commutative ring with identity, or simply a ring.
Thus, we speak of the polynomial ring FŒx	. Another famous example of a ring that
is not a field is the ring Z of integers, with the binary operations being ordinary
addition and multiplication of integers. Here, for instance, the multiplicative inverse
of 2 2 Z would be 1

2
, but this is not an integer. We get a field if we pass from Z to Q.

The product of polynomials behaves very nicely with respect to the degree. For
nonzero polynomials f .x/; g.x/ 2 FŒx	 with leading coefficients an of xn and bm of
xm, respectively, the coefficient of xnCm in f .x/g.x/ is anbm ¤ 0 2 F and this is the
leading coefficient of f .x/g.x/. Therefore

deg.f .x/g.x// D deg.f .x//C deg.g.x//: (1.12)

If at least one of f .x/ and g.x/ is 0 2 FŒx	, then this formula holds as well,
with the obvious interpretation n C .�1/ D �1 for all n 2 N [ f0;�1g. It
follows from (1.12) that if f .x/ ¤ 0 2 FŒx	 and g.x/ ¤ 0 2 FŒx	, then also
f .x/g.x/ ¤ 0 2 FŒx	. In other words, the polynomial ring FŒx	 satisfies the property
in Lemma 1.4.2(ii). A ring with this additional property is called an integral domain.
Clearly, the ring Z of integers is also an integral domain.

There is no good analog of (1.12) for the sum of polynomials. The best we can
say is that

deg.f .x/C g.x// � max.deg.f .x//; deg.g.x///
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for all f .x/; g.x/ 2 FŒx	, with the obvious interpretation if some of the degrees
are �1.

Example 1.4.15 Let F be the finite prime field F3 and let f .x/ D x3 C1 2 F3Œx	 and
g.x/ D 2x3CxC1 2 F3Œx	. OverR we would have f .x/g.x/ D 2x6Cx4C3x3CxC1,
but since now the coefficients have to be computed modulo 3, we obtain

f .x/g.x/ D 2x6 C x4 C x C 1 2 F3Œx	:

We observe that (1.12) is of course satisfied. Similarly, overR we would have f .x/C
g.x/ D 3x3 C x C 2, but over F3 we get

f .x/C g.x/ D x C 2 2 F3Œx	:

Here we see a case where deg.f .x/ C g.x// D 1 is smaller than max.deg.f .x//;
deg.g.x/// D 3.

There is a theory of divisibility for polynomials over F similar to that for integers
(see Sect. 1.1). We say that a nonzero polynomial g.x/ 2 FŒx	 divides a polynomial
f .x/ 2 FŒx	 if there exists a polynomial h.x/ 2 FŒx	 such that f .x/ D g.x/h.x/. We
employ the same alternative ways of expressing divisibility as in Definition 1.1.1 and
the paragraph following it; for instance, we speak of the divisor g.x/ of a polynomial
f .x/ if g.x/ divides f .x/. Moreover, g.x/ is a proper divisor of f .x/ if g.x/ divides
f .x/ and deg.g.x// < deg.f .x//. We see in this last definition that the analog of the
condition b < a for integers is the condition deg.g.x// < deg.f .x// for polynomials.
From this it is clear how the division algorithm (or division with remainder) works
for polynomials: for any nonzero g.x/ 2 FŒx	 and any f .x/ 2 FŒx	, there exist
uniquely determined polynomials l.x/; r.x/ 2 FŒx	 such that f .x/ D l.x/g.x/C r.x/
and deg.r.x// < deg.g.x//.

We have to be a bit careful when we define the greatest common divisor of
polynomials. It is not enough to say that “greatest” means “largest degree” in the
context of polynomials, for if g.x/ divides f .x/ in FŒx	 and c 2 F�, then cg.x/ also
divides f .x/.

Definition 1.4.16 Let F be a field. For k � 2 polynomials f1.x/; : : : ; fk.x/ 2
FŒx	 that are not all 0, their greatest common divisor gcd.f1.x/; : : : ; fk.x// is the
uniquely determined monic polynomial over F of largest degree that divides each of
f1.x/; : : : ; fk.x/. If k D 2 and gcd.f1.x/; f2.x// D 1, then we say that f1.x/ and f2.x/
are coprime (or relatively prime).

We can be brief with the greatest common divisor of polynomials because the
statements and proofs are completely analogous to those for the greatest common
divisor of integers in Sect. 1.1.
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Proposition 1.4.17

(i) For all f .x/; g.x/ 2 FŒx	 that are not both 0, there exist f1.x/; g1.x/ 2 FŒx	 such
that

gcd.f .x/; g.x// D f .x/f1.x/C g.x/g1.x/:

(ii) Let f .x/; g.x/; h.x/ 2 FŒx	. If h.x/ divides f .x/g.x/ and gcd.f .x/; h.x// D 1,
then h.x/ divides g.x/.

Proof

(i) Instead of the set L in the proof of Proposition 1.1.5, we consider

M D ff .x/l.x/C g.x/m.x/ W l.x/;m.x/ 2 FŒx	g:

By the hypothesis, M contains a nonzero polynomial over F, and so we can
choose a monic polynomial d.x/ 2 M of least degree. In fact, d.x/ is uniquely
determined, for if there were a monic d1.x/ 2 M with deg.d1.x// D deg.d.x//
and d1.x/ ¤ d.x/, then d.x/ � d1.x/ 2 M and 0 � deg.d.x/ � d1.x// <
deg.d.x//, hence multiplying d.x/ � d1.x/ by the multiplicative inverse of its
leading coefficient we get a contradiction to the choice of d.x/. As in the proof
of Proposition 1.1.5, one shows that d.x/ divides f .x/ and g.x/. Similarly, any
common divisor of f .x/ and g.x/ divides d.x/, and so d.x/ D gcd.f .x/; g.x// D
f .x/f1.x/ C g.x/g1.x/ for some f1.x/; g1.x/ 2 FŒx	. This argument shows also
that gcd.f .x/; g.x// is uniquely determined. In an analogous way, it can be seen
that the greatest common divisor of k � 2 polynomials over F, not all 0, is
uniquely determined.

(ii) Proceed as in the proof of Corollary 1.1.6. �

Definition 1.4.18 Let F be a field. For k � 2 nonzero polynomials f1.x/; : : : ; fk.x/ 2
FŒx	, their least common multiple lcm.f1.x/; : : : ; fk.x// is the uniquely determined
monic polynomial over F of least degree that is a common multiple of
f1.x/; : : : ; fk.x/.

The role of the prime numbers in the ring Z of integers is played by the
irreducible polynomials in the ring FŒx	.

Definition 1.4.19 Let F be a field. A polynomial p.x/ 2 FŒx	 with deg.p.x// � 1 is
said to be irreducible over F (or irreducible in FŒx	) if it allows no factorization
p.x/ D f .x/g.x/ with f .x/; g.x/ 2 FŒx	, 1 � deg.f .x// < deg.p.x//, and
1 � deg.g.x// < deg.p.x//. A polynomial in FŒx	 of positive degree that is not
irreducible over F is called reducible over F (or reducible in FŒx	).

Remark 1.4.20 It is important to emphasize irreducible (or reducible) over F since
the irreducibility or reducibility of a given polynomial depends heavily on the field
under consideration. For instance, the polynomial x2 � 2 2 QŒx	 is irreducible over
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the field Q of rational numbers, but x2 � 2 D .x C p
2/.x � p

2/ is reducible over
the field R of real numbers.

Example 1.4.21 A linear polynomial, that is, a polynomial of degree 1, over any
field F is always irreducible over F. Now consider the polynomial p.x/ D x2CxC1
over the finite prime field F2. The only possibility for a nontrivial factorization
of p.x/ over F2 is p.x/ D f .x/g.x/ with f .x/; g.x/ 2 F2Œx	 and deg.f .x// D
deg.g.x// D 1. Since there are only two linear polynomials over F2, namely x
and x C 1, we can simply try all choices for f .x/ and g.x/. We have x � x D x2,
x.x C 1/ D x2 C x, and .x C 1/2 D x2 C 1, and consequently p.x/ D x2 C x C 1

is irreducible over F2. Extensive tables of monic irreducible polynomials over the
finite prime fields F2, F3, F5, and F7 can be found in the books [101, Chapter 10]
and [102, Chapter 10].

Theorem 1.4.22 For every field F, each polynomial f .x/ 2 FŒx	 with deg.f .x// � 1

has a canonical factorization

f .x/ D c
kY

jD1
pj.x/

ej ;

where c 2 F�, e1; : : : ; ek 2 N, and p1.x/; : : : ; pk.x/ are distinct monic irreducible
polynomials in FŒx	. This factorization is unique up to the order of the factors.

Proof Proceed as in the proof of Theorem 1.1.11, using in particular Proposi-
tion 1.4.17(ii) in the proof of uniqueness. �

Example 1.4.23 The factorizations x6C1 D .x3C1/2 and x3C1 D .xC1/.x2CxC1/
are valid in F2Œx	. Then x6C1 D .xC1/2.x2CxC1/2 is the canonical factorization of
x6C1 in F2Œx	 since xC1 and x2CxC1 are irreducible overF2 (see Example 1.4.21).

Analogs of the formulas (1.1) and (1.2) can be established on the basis of the
canonical factorization for polynomials over a field F. If we write

Q
p.x/ for a product

over all monic irreducible polynomials over F, then the factorization of a nonzero
polynomial f .x/ 2 FŒx	 into monic irreducible factors over F can be written in the
form

f .x/ D c
Y

p.x/

p.x/ep.x/.f .x//

with c 2 F� and exponents ep.x/.f .x// � 0, where only finitely many ep.x/.f .x// can
be positive. If f1.x/; : : : ; fk.x/ 2 FŒx	 are k � 2 nonzero polynomials, then

gcd.f1.x/; : : : ; fk.x// D
Y

p.x/

p.x/min.ep.x/.f1.x//;:::;ep.x/.fk.x///
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and

lcm.f1.x/; : : : ; fk.x// D
Y

p.x/

p.x/max.ep.x/.f1.x//;:::;ep.x/.fk.x///:

For two fields F and K for which F 
 K and the addition and multiplication in
F are the addition and multiplication in K restricted to F, we say that F is a subfield
of K or that K is an extension field of F. For instance, Q is a subfield of R and C

is an extension field of R. Because of Lagrange’s theorem (see Theorem 1.3.21),
a finite prime field (see Remark 1.4.6) cannot contain any strictly smaller subfield.
For f .x/ 2 FŒx	 and an element ˛ in some extension field K of F, the function value
f .˛/ 2 K is obtained by the substitution x D ˛.

Now the discussion becomes even more agricultural since we will talk about
roots in fields and stoop down to count the roots in a field.

Definition 1.4.24 Let F be a field. Then an element ˛ in an extension field of F is
called a root (or a zero) of f .x/ 2 FŒx	 if f .˛/ D 0 2 F.

Lemma 1.4.25 Let F be a field and let K be an extension field of F. Then ˛ 2 K is
a root of f .x/ 2 FŒx	 if and only if the linear polynomial x � ˛ divides f .x/ in KŒx	.

Proof By the division algorithm in KŒx	, we can write f .x/ D l.x/.x � ˛/C ˇ with
l.x/ 2 KŒx	 and ˇ 2 K. Therefore f .˛/ D ˇ, and the desired result follows from this
identity. �

If ˛ 2 K and f .x/ 2 FŒx	 are as in Lemma 1.4.25 and ˛ is a root of f .x/, then it
can happen that not only x �˛, but also a higher power of x �˛ divides f .x/ in KŒx	.
For a nonzero polynomial f .x/ 2 FŒx	, there is a largest power .x � ˛/m that divides
f .x/ in KŒx	, and then m is called the multiplicity of the root ˛. If m D 1, then ˛
is called a simple root (or a simple zero) of f .x/, and if m � 2, then ˛ is called a
multiple root (or a multiple zero) of f .x/.

Example 1.4.26 Let f .x/ D x6C1 2 F2Œx	. Then Example 1.4.23 shows that .xC1/2
divides f .x/ in F2Œx	, but .x C 1/3 does not. Therefore ˛ D 1 2 F2 is a multiple root
of f .x/ with multiplicity 2.

Theorem 1.4.27 Let F be a field and let f .x/ 2 FŒx	 with deg.f .x// D n � 0.
Then in every extension field of F, the polynomial f .x/ has at most n roots, counting
multiplicities.

Proof The case n D 0 is trivial since then f .x/ consists only of a nonzero constant
term. Now let n � 1 and let the distinct elements ˛1; : : : ; ˛r 2 K be roots of
f .x/ in an extension field K of F, with respective multiplicities m1; : : : ;mr . Then
.x � ˛1/

m1 ; : : : ; .x � ˛r/
mr occur as factors in the canonical factorization of f .x/ in

KŒx	, and so
Qr

jD1.x � ˛j/
mj divides f .x/ in KŒx	. By comparing degrees, we getPr

jD1 mj � n. �

A characterization of multiple roots of polynomials is obtained by borrowing the
concept of derivative from calculus. For f .x/ 2 FŒx	 given by (1.11), its derivative
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f 0.x/ is defined in the expected way as

f 0.x/ D
nX

jD1
.j � aj/x

j�1 2 FŒx	;

where j � aj is the j-fold sum of aj for 1 � j � n. The usual rules for derivatives, such
as the product rule, hold for every field F.

Proposition 1.4.28 Let F be a field and let K be an extension field of F. Then ˛ 2 K
is a multiple root of the nonzero polynomial f .x/ 2 FŒx	 if and only if ˛ is a root of
both f .x/ and f 0.x/.

Proof If ˛ 2 K is a root of f .x/, then f .x/ D .x � ˛/g.x/ for some g.x/ 2 KŒx	
by Lemma 1.4.25. The product rule yields f 0.x/ D g.x/ C .x � ˛/g0.x/, and so
f 0.˛/ D g.˛/. By definition, ˛ is a multiple root of f .x/ if and only if g.˛/ D 0, and
so the desired result follows. �

Corollary 1.4.29 Let F be a field. Then a nonzero polynomial f .x/ 2 FŒx	 with
gcd.f .x/; f 0.x// D 1 has only simple roots in every extension field of F.

Proof This is an immediate consequence of Proposition 1.4.28. �

1.4.3 Constructions of Finite Fields

Now we are ready to construct general finite fields, following in the footsteps of
Evariste Galois (1811–1832). Galois is the romantic hero of mathematics: a brilliant
mathematician who revolutionized algebra, who passionately engaged in French
politics, and who died at age 21 in what seemed to be a duel. If you want to read
a really good book on a mathematical genius, then we recommend the biographical
novel on Galois by Petsinis [158]. An excellent source book on the work of Galois
is [122]. The major achievements of Galois were Galois theory in algebra and the
theory of finite fields (also called “Galois fields” in his honor) in number theory and
algebra.

So far, the only finite fields we know are finite prime fields (see Theorem 1.4.5),
and this was also the state of affairs before Galois came along. An arbitrary
finite field F has a prime number p as its characteristic (see Proposition 1.4.8 and
Definition 1.4.9) and it must contain the n-fold sums n � 1 for all n 2 N. Therefore
F has a copy of Fp D Zp as a subfield. Galois posits a universe in which to operate,
and in the modern interpretation this would be the algebraic closure Fp of Fp, that
is, the field Fp consisting of all roots of all polynomials over Fp of positive degree.
This is analogous to the step from R to C which is taken in order to accommodate
all roots of all polynomials over R of positive degree. We refer to [172, Chapter 2]
for more information on the algebraic closure F of an arbitrary field F. In particular,
we use the fact that each polynomial over F of positive degree always has a root
in F.
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We know from Theorem 1.4.12 that the order of a finite field is necessarily a
prime power. The following result of Galois provides the crucial converse.

Theorem 1.4.30 For every prime power q, there exists a finite field of order q.

Proof Let q D pr with a prime number p and r 2 N. Consider the polynomial
f .x/ D xq � x 2 FpŒx	 and let F be the set of all roots of f .x/ in Fp. Note that
f 0.x/ D .q � 1/xq�1 � 1 D �1 since q � 1 D 0 2 Fp, and therefore gcd.f .x/; f 0.x// D
gcd.xq � x;�1/ D 1. It follows then from Corollary 1.4.29 that f .x/ has only simple
roots in Fp, and so F has exactly deg.f .x// D q elements.

It remains to verify that F is a subfield of Fp. We proceed by Definition 1.4.1 and
we show first that F is a subgroup of the additive group Fp. For this it suffices to
prove that if ˛; ˇ 2 F, then also ˛ � ˇ 2 F. Indeed, Proposition 1.4.14 yields

.˛ � ˇ/q D .˛ � ˇ/p
r D ˛pr � ˇpr D ˛q � ˇq D ˛ � ˇ;

and so ˛ � ˇ 2 F. Finally, we show that the set F� of nonzero elements of F
is a subgroup of the multiplicative group Fp

�
. Again, it suffices to prove that if

˛; ˇ 2 F�, then ˛ˇ�1 2 F�. Now .˛ˇ�1/q D ˛q.ˇ�1/q D ˛q.ˇq/�1 D ˛ˇ�1, and
the proof is complete. �

In a paper published posthumously, Gauss criticized the approach by Galois
and disparaged “the liberty that some younger mathematicians have taken by intro-
ducing imaginary quantities”. Therefore alternative approaches to the construction
of finite fields were developed, and we will present one such approach later in
Remark 1.4.44.

Somehow the question of how to best construct finite fields is moot since it is a
theorem (see [102, Theorem 2.5]) that all finite fields of the same order are basically
identical, in the sense that they have the same algebraic structure and just differ by
the names or symbols that we assign to their elements. Therefore we can speak of
the finite field Fq of order q. For the manifold applications of finite fields that we
will encounter in the present book, it is in principle immaterial which description of
Fq is used. All that matters is that there exists a set Fq of size q which forms a field.
Next we note a simple relationship between finite fields.

Proposition 1.4.31 Let q be a prime power and let n 2 N. Then Fq is a subfield of
Fqn , or in other words, Fqn is an extension field of Fq.

Proof In view of the proof of Theorem 1.4.30, it suffices to show that the polynomial
xq � x 2 FpŒx	 divides the polynomial xqn � x 2 FpŒx	, where p is the characteristic
of Fq. But this is readily seen: the integer q � 1 divides the integer qn � 1, hence
xq�1 � 1 2 FpŒx	 divides xqn�1 � 1 2 FpŒx	, and so xq � x 2 FpŒx	 divides xqn � x 2
FpŒx	. �

Here is a remarkable property of finite fields which is useful in many applications
of finite fields. We remind you that we defined cyclic groups in Definition 1.3.13.

Theorem 1.4.32 For every finite field Fq, the multiplicative group F
�
q of nonzero

elements of Fq is cyclic.
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Proof Let E D E.F�
q / be the exponent of the finite abelian group F

�
q (see

Definition 1.3.22). Then Corollary 1.3.25 shows that aE D 1 2 Fq for all
a 2 F

�
q , that is, every a 2 F

�
q is a root of the polynomial xE � 1 2 FqŒx	.

Theorem 1.4.27 implies that q � 1 � E. On the other hand, it is trivial that
E � q � 1. Hence E D q � 1, which means that there exists an element g 2 F

�
q with

ord.g/ D q � 1. �

Corollary 1.4.33 For every prime number p, there exists a primitive root modulo p.

Proof The group F
�
p is cyclic by Theorem 1.4.32, and (the least residue modulo p

of) a primitive root modulo p is nothing else but a generator of the cyclic group
F

�
p . �

Definition 1.4.34 For a finite field Fq, every generator of the cyclic group F
�
q is

called a primitive element of Fq.

Remark 1.4.35 It follows from Remark 1.3.14 that, for every prime power q, there
are exactly �.q � 1/ primitive elements of Fq, where � is Euler’s totient function.
In particular, there are exactly �.p �1/ primitive roots modulo p in the least residue
system modulo p.

Now we offer some relaxation with a brief interlude about general fields. For a
given field F, let ˛ be an element of an extension field of F such that ˛ is a root of
a polynomial over F of positive degree; we call such an element algebraic over F.
We are interested in the set of all polynomials over F that have ˛ as a root. This set
contains a polynomial that is singled out by the following result.

Proposition 1.4.36 Let F be a field and let ˛ be an element of an extension field of
F such that ˛ is algebraic over F. Then there exists a uniquely determined monic
polynomial m.x/ 2 FŒx	 of least degree having ˛ as a root.

Proof Since ˛ is algebraic over F, there exists a polynomial f .x/ 2 FŒx	 with
deg.f .x// � 1 and f .˛/ D 0. Among all such polynomials f .x/, we can choose
one called m.x/ 2 FŒx	 of least degree and we can make m.x/ monic. It remains to
show that if g.x/ 2 FŒx	 is monic with g.˛/ D 0 and deg.g.x// D deg.m.x//, then
g.x/ D m.x/. But if we had g.x/ ¤ m.x/, then we get an easy contradiction to the
construction of m.x/ by considering the polynomial c�1.g.x/� m.x// 2 FŒx	, where
c is the leading coefficient of g.x/� m.x/. �

Definition 1.4.37 Let F be a field and let ˛ be an element of an extension field
of F such that ˛ is algebraic over F. Then the uniquely determined polynomial
m.x/ 2 FŒx	 in Proposition 1.4.36 is called the minimal polynomial of ˛ over F.

Proposition 1.4.38 Let F be a field, let ˛ be an element of an extension field of F
such that ˛ is algebraic over F, and let m.x/ 2 FŒx	 be the minimal polynomial of ˛
over F. Then a polynomial f .x/ 2 FŒx	 satisfies f .˛/ D 0 if and only if m.x/ divides
f .x/ in FŒx	.

Proof By the division algorithm, we can write f .x/ D l.x/m.x/ C r.x/ with
l.x/; r.x/ 2 FŒx	 and deg.r.x// < deg.m.x//. This implies that f .˛/ D 0 if and
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only if r.˛/ D 0. The definition of m.x/ shows that r.˛/ D 0 if and only if r.x/ is
the zero polynomial, that is, if and only if m.x/ divides f .x/ in FŒx	. �

Proposition 1.4.39 Let F be a field and let ˛ be an element of an extension field
of F such that ˛ is algebraic over F. Then the minimal polynomial of ˛ over F is
irreducible over F.

Proof If m.x/ 2 FŒx	 is the minimal polynomial of ˛ over F and if we had
m.x/ D f .x/g.x/ with f .x/; g.x/ 2 FŒx	, 1 � deg.f .x// < deg.m.x//, and
1 � deg.g.x// < deg.m.x//, then 0 D m.˛/ D f .˛/g.˛/, and so f .˛/ D 0 or
g.˛/ D 0 by Lemma 1.4.2(ii); but this is in any case a contradiction to the definition
of m.x/. �

Remark 1.4.40 Let F D Fq and consider the extension field Fqn with n 2 N. Then
every ˛ 2 Fqn satisfies ˛qn D ˛ by Proposition 1.4.13, or in other words, ˛ is a root
of the polynomial xqn � x 2 FqŒx	. Therefore ˛ is algebraic over Fq. Consequently,
the results in Propositions 1.4.38 and 1.4.39 apply to all elements of all finite fields.

Suppose that F is again an arbitrary field and let the elements ˛1; : : : ; ˛k from
some extension field of F be algebraic over F. Then F.˛1; : : : ; ˛k/ is by definition
the smallest field containing F; ˛1; : : : ; ˛k; more precisely, we take an extension
field K of F with ˛1; : : : ; ˛k 2 K and then F.˛1; : : : ; ˛k/ is the intersection of all
subfields of K that contain F; ˛1; : : : ; ˛k. If k D 1, that is, if we form F.˛/ with an
algebraic element ˛ 2 K over F, then F.˛/ is called a simple extension field of F.

Example 1.4.41 Let F D Fq and Fqn with n 2 N be as in Remark 1.4.40. As an
algebraic element ˛ 2 Fqn over Fq, we choose a primitive element ˛ of Fqn which
exists by Theorem 1.4.32 and Definition 1.4.34. Then the field Fq.˛/ is a subfield
of Fqn containing Fq and all powers of ˛. But the powers of ˛ exhaust F�

qn , and so
Fq.˛/ D Fqn . Therefore in the world of finite fields, every finite extension field of
every finite field is a simple extension field.

The situation described in Example 1.4.41 arises quite frequently in applications,
and so the following special terminology is used in this case.

Definition 1.4.42 Let Fq be a finite field. A polynomial over Fq is called a primitive
polynomial over Fq if it is the minimal polynomial over Fq of some primitive
element of some finite extension field of Fq.

We note that since a primitive polynomial over Fq is a minimal polynomial over
Fq, a primitive polynomial over Fq is automatically monic and irreducible over Fq. It
is comforting to know that there exist primitive polynomials of any positive degree.

Proposition 1.4.43 For every finite field Fq and for every n 2 N, there exists a
primitive polynomial over Fq, and so in particular a monic irreducible polynomial
over Fq, of degree n.

Proof Choose a primitive element ˛ of the extension field Fqn and let p.x/ 2 FqŒx	
be the minimal polynomial of ˛ over Fq. Put d D deg.p.x// and consider the
subset K of Fqn consisting of all elements

Pd�1
jD0 cj˛

j with c0; c1; : : : ; cd�1 2 Fq. It is
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obvious that K is a subgroup of the group Fqn under addition. Actually, we want to
prove that K is a subfield of Fqn . First we show that if ˇ; 
 2 K, then also ˇ
 2 K.
We can write ˇ D f .˛/ and 
 D g.˛/ with f .x/; g.x/ 2 FqŒx	, deg.f .x// < d,
and deg.g.x// < d. By the division algorithm, f .x/g.x/ D l.x/p.x/ C r.x/ with
l.x/; r.x/ 2 FqŒx	 and deg.r.x// < d. Then ˇ
 D f .˛/g.˛/ D r.˛/ since p.˛/ D 0,
and so ˇ
 2 K. Next we prove that if ˇ 2 K with ˇ ¤ 0, then ˇ�1 2 K. We
write ˇ D f .˛/ with a nonzero polynomial f .x/ 2 FqŒx	 satisfying deg.f .x// < d.
Then gcd.f .x/; p.x// D 1 since p.x/ is irreducible over Fq by Proposition 1.4.39.
Thus, Proposition 1.4.17(i) shows that we can write 1 D f .x/f1.x/C p.x/p1.x/ with
f1.x/; p1.x/ 2 FqŒx	, where we can achieve deg.f1.x// < d by subtracting a suitable
multiple of p.x/. Substituting x D ˛, we get 1 D ˇf1.˛/, and so ˇ�1 D f1.˛/ 2 K.
Hence K is indeed a subfield of Fqn .

Note that K contains Fq and ˛, and therefore Fq.˛/ 
 K 
 Fqn . Now Fq.˛/ D
Fqn by Example 1.4.41, and so K D Fqn . Next we observe that for every ˇ 2 K, the
representation ˇ D Pd�1

jD0 cj˛
j with c0; c1; : : : ; cd�1 2 Fq is unique, for if ˇ also had

a different representation of this type, then we would get an immediate contradiction
to the definition of p.x/ as the minimal polynomial of ˛ over Fq. Thus, K has exactly
qd elements, hence qd D qn, and so d D n and deg.p.x// D d D n. �

We present a table listing for each n D 1; : : : ; 15 a primitive polynomial p.x/ over
F2 of degree n. This table is extracted from [102, Chapter 10, Table D]. Many more
examples of primitive polynomials can be found in the tables in [102, Chapter 10].

n p.x/

1 x C 1

2 x2 C x C 1

3 x3 C x C 1

4 x4 C x C 1

5 x5 C x2 C 1

6 x6 C x C 1

7 x7 C x C 1

8 x8 C x4 C x3 C x2 C 1

9 x9 C x4 C 1

10 x10 C x3 C 1

11 x11 C x2 C 1

12 x12 C x6 C x4 C x C 1

13 x13 C x4 C x3 C x C 1

14 x14 C x5 C x3 C x C 1

15 x15 C x C 1

Remark 1.4.44 Here is the long-awaited alternative construction of general finite
fields. Basically, we find all ingredients of this construction in the proof of
Proposition 1.4.43. There is also an analogy with the factor group Z=.m/ in
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Example 1.3.20. Let q D pr with a prime number p and r 2 N. According to
Proposition 1.4.43, we can choose an irreducible polynomial f .x/ 2 FpŒx	 over Fp

of degree r. Note that FpŒx	 is an abelian group with the binary operation being
addition of polynomials and that the set .f .x// WD fl.x/f .x/ W l.x/ 2 FpŒx	g of all
multiples of f .x/ is a subgroup of FpŒx	. Therefore we can form the factor group
FpŒx	=.f .x//. The distinct elements of this factor group are the cosets g.x/C .f .x//,
where g.x/ 2 FpŒx	 and deg.g.x// < r. Hence FpŒx	=.f .x// is a finite abelian group
of order pr. Now we make a field out of FpŒx	=.f .x// by introducing a multiplication
for cosets in the obvious manner: we define

.g.x/C .f .x///.h.x/C .f .x/// D g.x/h.x/C .f .x// (1.13)

for all g.x/; h.x/ 2 FpŒx	. Using the trick in the proof of Proposition 1.2.3, we
see that this multiplication is well defined. The same argument as in the proof of
Proposition 1.4.43, now with f .x/ in the role of p.x/, shows that every nonzero
element of FpŒx	=.f .x// has an inverse element with respect to the binary operation
in (1.13). Therefore FpŒx	=.f .x// forms a finite field of order q D pr. Gauss would
have been satisfied with this construction of finite fields, as it involves no “imaginary
quantities”. By the way, the existence of an irreducible polynomial f .x/ 2 FpŒx	 over
Fp of degree r can be shown also by a combinatorial method (see [102, Section 3.2]),
without recourse to the arguments in the proof of Proposition 1.4.43.

Example 1.4.45 Let us construct the finite field F4 according to the procedure in
Remark 1.4.44. As the irreducible polynomial f .x/ over F2 we take f .x/ D x2 C
x C 1 2 F2Œx	 (see Example 1.4.21). There are exactly four cosets in F2Œx	=.f .x//,
namely 0C .f .x//, 1C .f .x//, x C .f .x//, and x C 1C .f .x//, which we abbreviate
by 0, 1, x, and x C 1, respectively. By recalling how the arithmetic operations with
cosets work, we obtain the following addition and multiplication tables.

C 0 1 x x C 1

0 0 1 x x C 1

1 1 0 x C 1 x
x x x C 1 0 1

x C 1 x C 1 x 1 0

� 0 1 x x C 1

0 0 0 0 0

1 0 1 x x C 1

x 0 x x C 1 1

x C 1 0 x C 1 1 x

For instance, the entry in the lower right corner of the multiplication table is obtained
by noting that .x C 1/ � .x C 1/ D x2 C 1 and x2 C 1 C .f .x// D x C .f .x// since
f .x/ divides x2 C 1� x D x2 C x C 1 in F2Œx	. The set f0; 1g represents the subfield
F2 of F4.

Remark 1.4.46 The approach in Remark 1.4.44 can be used also for the construc-
tion of finite extension fields of an arbitrary finite field Fq. Given a positive integer
k, we can choose an irreducible polynomial f .x/ 2 FqŒx	 over Fq of degree k (see
Proposition 1.4.43). With .f .x// being the set of all multiples of f .x/ in FqŒx	,
we form the factor group FqŒx	=.f .x//. This is a finite abelian group of order qk,
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and by introducing a multiplication of cosets as in (1.13), we obtain a finite field
of order qk. We can identify each coset with respect to .f .x// with a uniquely
determined polynomial r.x/ 2 FqŒx	 satisfying deg.r.x// < k, and the operations
for these polynomials are carried out modulo f .x/. We speak of the residue class
field FqŒx	=.f .x//.

A theory of congruences (see Sect. 1.2) for polynomials overFq can be developed
with every nonzero modulus m.x/ 2 FqŒx	. We say that g1.x/ 2 FqŒx	 is congruent
to g2.x/ 2 FqŒx	 modulo m.x/, and we write g1.x/ � g2.x/ .mod m.x//, provided
that m.x/ divides the difference g1.x/�g2.x/ in FqŒx	; otherwise we say that g1.x/ is
incongruent to g2.x/ modulo m.x/. Obviously, the basic properties of congruences
in Proposition 1.2.3 hold here as well. A coset in FqŒx	 with respect to .m.x// WD
fl.x/m.x/ W l.x/ 2 FqŒx	g is also called a residue class modulo m.x/. This explains
the terminology “residue class field” in Remark 1.4.46. By defining addition and
multiplication of residue classes modulo m.x/ in the obvious manner (compare with
Remarks 1.4.44 and 1.4.46), we obtain the residue class ring FqŒx	=.m.x//.

If g.x/ � r.x/ .mod m.x// with deg.r.x// < deg.m.x//, then r.x/ 2 FqŒx	 is
called the least residue of g.x/ 2 FqŒx	 modulo m.x/ 2 FqŒx	. A set of qdeg.m.x//

polynomials over Fq that are pairwise incongruent modulo m.x/ is called a complete
residue system modulo m.x/. An easy example of a complete residue system modulo
m.x/ is given by the least residue system modulo m.x/, that is, the set of all r.x/ 2
FqŒx	 with deg.r.x// < deg.m.x//.

It is a remarkable phenomenon that once we know a root of a polynomial over
a finite field Fq, then further roots of that polynomial can be generated in a very
simple manner. Concretely, let f .x/ D Pn

jD0 cjxj 2 FqŒx	 with cj 2 Fq for 0 � j � n
and deg.f .x// D n � 1, and let ˛ be a root of f .x/ in some extension field of Fq.
Then using Propositions 1.4.14 and 1.4.13, we get

0 D f .˛/q D � nX

jD0
cj˛

j
�q D

nX

jD0
cq

j ˛
jq D

nX

jD0
cj˛

jq D f .˛q/;

and so ˛q is also a root of f .x/. If we feed ˛q into this formula, then we obtain that
.˛q/q D ˛q2 is a root of f .x/. In the end, all elements ˛qs

with s D 0; 1; : : : are
roots of f .x/. Obviously, these elements cannot all be distinct since f .x/ has at most
n roots by Theorem 1.4.27. A particularly nice situation occurs in the case where
f .x/ is irreducible over Fq, because then the different ones among the elements ˛qs

,
s D 0; 1; : : :, yield exactly all roots of f .x/.

Proposition 1.4.47 Let Fq be a finite field and let f .x/ 2 FqŒx	 be irreducible over
Fq with deg.f .x// D k. Then f .x/ has a root ˛ in the finite extension field Fqk , all
roots of f .x/ are simple, and the roots of f .x/ are exactly the k distinct elements
˛; ˛q; ˛q2 ; : : : ; ˛qk�1

of Fqk .

Proof As a model for the finite field Fqk we take the residue class field FqŒx	=.f .x//
in Remark 1.4.46. Let ˛ denote the coset x C H with respect to H WD .f .x//. Then
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by the way the arithmetic operations in FqŒx	=.f .x// are defined, we obtain

f .˛/ D f .x C H/ D f .x/C H D 0C H;

and so ˛ 2 Fqk is a root of f .x/. As we have seen, it follows that ˛; ˛q; ˛q2 ; : : : ; ˛qk�1

are roots of f .x/. Since f .x/ can have at most k roots by Theorem 1.4.27, it suffices
now to show that ˛; ˛q; ˛q2 ; : : : ; ˛qk�1

are distinct. So suppose we had ˛qi D ˛qj

for some i; j 2 Z with 0 � i < j � k � 1. By raising this identity to the power
qk�j, we get ˛qd D ˛qk D ˛ with d D k C i � j, where we used ˛ 2 Fqk and
Proposition 1.4.13 in the second step. We infer from the proof of Theorem 1.4.30
that ˛ 2 Fqd , and so Fq.˛/ 
 Fqd . On the other hand, the definition of ˛ as the
coset x C H shows that Fq.˛/ D FqŒx	=.f .x// D Fqk , and so Fqk 
 Fqd . This is a
contradiction to d D k C i � j < k. �

1.4.4 Trace Map and Characters

We introduce an important map from a finite field to a subfield which will turn out
to be useful, for instance, in the construction of characters of finite fields later in this
subsection. In order to simplify the notation, we write F D Fq for a given finite field
and K D Fqn with n 2 N for a finite extension field of F. We start from an element
˛ 2 K and we consider the element 
 D Pn�1

jD0 ˛qj
which, as it stands, lies in K. But

now we observe that by Propositions 1.4.14 and 1.4.13 we obtain


q D � n�1X

jD0
˛qj�q D

n�1X

jD0
˛qjC1 D

n�1X

jD1
˛qj C ˛qn D

n�1X

jD1
˛qj C ˛ D 
;

and so the argument in the proof of Theorem 1.4.30 shows that 
 2 Fq D F.

Definition 1.4.48 Let F D Fq be an arbitrary finite field and let K D Fqn with
n 2 N be a finite extension field of F. Then the trace TrK=F.˛/ of ˛ 2 K over F is
defined by

TrK=F.˛/ D
n�1X

jD0
˛qj 2 F:

Example 1.4.49 Let q D 2 and n D 2 in Definition 1.4.48, so that F D F2 and
K D F4. Then by the addition and multiplication tables in Example 1.4.45, we
obtain

TrK=F.x/ D x C x2 D x C x C 1 D 1 2 F:
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Theorem 1.4.50 For F D Fq and K D Fqn with n 2 N, the trace map TrK=F W K !
F has the following properties:

(i) TrK=F.˛ C ˇ/ D TrK=F.˛/C TrK=F.ˇ/ for all ˛; ˇ 2 K;
(ii) TrK=F.c˛/ D c TrK=F.˛/ for all c 2 F and ˛ 2 K;

(iii) for every c 2 F, there are exactly qn�1 elements ˛ 2 K with TrK=F.˛/ D c, and
so in particular the map TrK=F is surjective.

Proof

(i) This is an immediate consequence of Proposition 1.4.14.
(ii) This follows from cqj D c for all c 2 F and all integers j � 0, which is in turn

deduced from Proposition 1.4.13.
(iii) For every c 2 F, let N.c/ be the number of ˛ 2 K with TrK=F.˛/ D c. Note

that TrK=F.˛/ D Pn�1
jD0 ˛qj D c if and only if ˛ is a root of the polynomial

Pn�1
jD0 xqj � c 2 FŒx	 of degree qn�1. Hence Theorem 1.4.27 shows that N.c/ �

qn�1 for all c 2 F. Consequently, we obtain

qn D
X

c2F

N.c/ �
X

c2F

qn�1 D q � qn�1 D qn:

It follows that we must have equality throughout, and so N.c/ D qn�1 for all
c 2 F. �

The last task we set ourselves in this chapter is to determine the characters of a
given finite field Fq. According to the definition of a field in Definition 1.4.1, there
are actually two abelian groups that are relevant in this context, namely the additive
group Fq (that is, Fq with the binary operation being addition) and the multiplicative
group F

�
q (that is, the set F�

q of nonzero elements of Fq with the binary operation
being multiplication). Both abelian groups Fq and F

�
q are of course finite, and so the

general theory of characters of finite abelian groups in Sect. 1.3.2 applies.
Let us first consider the additive group Fq. A character of this group G D Fq is

a map � W G ! U D fz 2 C W jzj D 1g satisfying (1.8). The basic tool for the
construction of such a character is the trace map TrFq=Fp W Fq ! Fp, where p is the
characteristic of Fq and Fp is the finite prime field contained in Fq. In order to avoid
awkward notation, we abbreviate this trace map by Tr in the following discussion.
As usual, we identify Fp with Zp D f0; 1; : : : ; p � 1g � Z under the arithmetic
modulo p. Now we choose an element c 2 Fq and we put

�c.a/ D e2� iTr.ca/=p for all a 2 Fq: (1.14)

Then it follows from Theorem 1.4.50(i) that the map �c W Fq ! U is a character
of the additive group Fq. Instead of “character of the additive group Fq”, we shall
henceforth use the terminology additive character of Fq.
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Theorem 1.4.51 The additive characters of the finite field Fq are exactly given by
the maps �c in (1.14) with c running through Fq.

Proof We have already seen that each map �c with c 2 Fq is an additive character
of Fq. Furthermore, we know from Theorem 1.3.36 that there are exactly q different
additive characters of Fq. Therefore it suffices to prove that the maps �b and �c are
different whenever b; c 2 Fq with b ¤ c. By Theorem 1.4.50(iii) there exists an
element d 2 Fq with Tr.d/ D 1 2 Fp. With a D .b � c/�1d 2 Fq we then deduce
from (1.14) that

�b.a/

�c.a/
D e2� iTr..b�c/a/=p D e2� iTr.d/=p D e2� i=p ¤ 1;

and so �b.a/ ¤ �c.a/. �

Now we turn to the multiplicative group F
�
q , a character of which is called a

multiplicative character of Fq. This is actually the easier case since we can just
collect the fruits of earlier labor. The point is that F�

q is a finite cyclic group of order
q � 1 by Theorem 1.4.32 and that the characters of all finite cyclic groups were
already determined in Example 1.3.31.

Theorem 1.4.52 Let g be a fixed primitive element of the finite field Fq. Then for
each integer h D 0; 1; : : : ; q � 2, the map  h W F�

q ! U given by

 h.g
j/ D e2� ihj=.q�1/ for j D 0; 1; : : : ; q � 2

defines a multiplicative character of Fq, and every multiplicative character of Fq is
obtained in this way.

Proof This follows immediately from Example 1.3.31. �

Remark 1.4.53 If q is a power of an odd prime, then the multiplicative character h

of Fq in Theorem 1.4.52 with h D .q � 1/=2 is the quadratic character � of Fq.
Note that for a 2 F

�
q we have �.a/ D 1 if a is the square of an element of F�

q and
�.a/ D �1 otherwise. It is sometimes convenient to put �.a/ D 0 for a D 0 2 Fq.
If q is an odd prime number p, then � agrees with the Legendre symbol for the
modulus p (see Definition 1.2.22), that is, �.a/ D �

a
p

�
for a 2 Zp D Fp.

If your appetite for results on finite fields is not yet stilled, then you will find
a lot of food for thought in the textbooks [73] and [102] and in the encyclopedic
monographs [101] and [180]. The Handbook of Finite Fields edited by Mullen and
Panario [117] contains over 80 survey articles on all imaginable aspects of finite
fields. The aficionados of finite fields will encounter many applications of these
beautiful structures in the present book.
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Exercises

1.1 For all nonzero integers a and b, prove that

gcd.a; b/ lcm.a; b/ D jabj:

1.2 For all nonzero integers a; b; c, prove that

gcd.ab; ac; bc/ lcm.a; b; c/ D jabcj:

1.3 Given k � 2 integers a1; : : : ; ak that are not all 0, prove that there exist integers
b1; : : : ; bk such that

gcd.a1; : : : ; ak/ D
kX

jD1
ajbj:

1.4 Let a; b; k 2 N with k � 2 be such that gcd.a; b/ D 1 and ab is a kth power of
a positive integer. Prove that a and b are kth powers of positive integers.

1.5 Show that nŠC 1 and .n C 1/ŠC 1 are coprime for all n 2 N.
1.6 Prove that the product of any four consecutive integers is divisible by 24.
1.7 Modify Euclid’s trick in the proof of Theorem 1.1.12 in order to prove that

there are infinitely many prime numbers that are congruent to 3 modulo 4.
1.8 Compute the least residue of 234 modulo 5.
1.9 The Euclidean algorithm for the computation of gcd.a; b/ for a; b 2 N

proceeds as follows. We can assume that a > b and that b does not divide
a. Then we carry out repeated divisions with remainder: a D q1b C r1
(1 � r1 < b), b D q2r1 C r2 (0 � r2 < r1), r1 D q3r2 C r3 (0 � r3 < r2), and
so on. Prove that this algorithm terminates after finitely many steps and that
the last nonzero remainder rj is equal to gcd.a; b/. (Hint: show by induction
that gcd.a; b/ D gcd.ri�1; ri/ for 1 � i � j, where r0 WD b.)

1.10 Prove that the number of steps in the Euclidean algorithm in the preceding
exercise is at most C log b with an absolute constant C > 0.

1.11 Compute gcd.123; 45/ by the Euclidean algorithm in Exercise 1.9.
1.12 For m; b 2 N with gcd.m; b/ D 1, the Euclidean algorithm (see Exercise 1.9)

for the computation of gcd.m; b/ can be used to find an integer c with bc �
1 .mod m/. We can assume that 1 < b < m. Now start from the identity
rj�2 D qjrj�1 C rj (with r�1 WD m if j D 1) and note that rj D 1. Hence
1 D rj�2�qjrj�1. Then show that we can run backwards through the Euclidean
algorithm until we get 1 as a linear combination of b and m.

1.13 Use the method in Exercise 1.12 to determine the unique integer c 2 Z97 for
which 36c � 1 .mod 97/.

1.14 Let a; b;m 2 Z with m � 1. Prove that there exists an integer c with ac �
b .mod m/ if and only if gcd.a;m/ divides b.

1.15 Prove that if ab � ac .mod m/ with a; b; c 2 Z, m 2 N, and gcd.a;m/ D d,
then b � c .mod m=d/.
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1.16 Prove that if a � b .mod m/ for a; b 2 Z and m 2 N, then gcd.a;m/ D
gcd.b;m/.

1.17 If a; b 2 Z with a � 0 and b � 3, prove that 2a C 1 is not divisible by 2b � 1.
1.18 Prove that there is no right triangle with all side lengths being integers and

such that the lengths of the two sides forming the right angle are odd.
1.19 For odd m 2 N, prove that the sum of the elements of every complete residue

system modulo m is divisible by m.
1.20 For m; n 2 N with gcd.m; n/ D 1, prove that Euler’s totient function� satisfies

�.mn/ D �.m/�.n/.
1.21 For m; n 2 N with gcd.m; n/ > 1, prove that �.mn/ > �.m/�.n/.
1.22 Let m; n 2 N be such that every prime factor of m is also a prime factor of n.

Prove that �.mn/ D m�.n/.
1.23 Prove that �.m/ is even for all integers m � 3.
1.24 Find the least positive integer a such that a � 4 .mod 7/, a � 2 .mod 11/,

and a � 11 .mod 13/.
1.25 Find all quadratic residues modulo 13 in the least residue system modulo 13.
1.26 For every prime number p � 5, prove that the sum of the quadratic residues

modulo p in any complete residue system modulo p is divisible by p.
1.27 Let p be an odd prime number and let a be a quadratic residue modulo p. Prove

that for every k 2 N there exists an integer bk with b2k � a .mod pk/.
1.28 For a prime number p ¤ 3, an integer a with gcd.a; p/ D 1 is called a cubic

residue modulo p if there exists an integer b such that a � b3 .mod p/. Prove
that if p � 2 .mod 3/, then all integers coprime to p are cubic residues modulo
p, whereas if p � 1 .mod 3/, then there are exactly .p � 1/=3 cubic residues
modulo p in the least residue system modulo p.

1.29 Let G be a finite abelian group with the multiplicative notation and let
a; b 2 G. Prove that ord.ab/ D ord.a/ ord.b/ whenever ord.a/ and ord.b/
are coprime.

1.30 Prove that ord.a�1/ D ord.a/ for all elements a of a finite abelian group.
1.31 Prove that the finite abelian group Rm in Example 1.3.7 is not cyclic if m D 2k

with an integer k � 3.
1.32 Let H be a subgroup of the finite abelian group G. Prove that there are exactly

jGj=jHj characters � of G with the property that �.h/ D 1 for all h 2 H.
1.33 For characters � and � of the finite abelian group G of order t, prove that

X

a2G

�.a/�.a/ D
(

t if � D �;

0 if � ¤ �;

where the bar denotes complex conjugation.
1.34 If  is a nontrivial multiplicative character and � a nontrivial additive

character of Fq, then the Gauss sum G. ; �/ is defined by

G. ; �/ D
X

c2F�

q

 .c/�.c/:



1.4 Finite Fields 45

Prove that jG. ; �/j D q1=2. (Hint: start from jG. ; �/j2 D G. ; �/G. ; �/,
where the bar denotes complex conjugation.)

1.35 For a nontrivial additive character � of Fq with q odd and for a 2 F
�
q and

b 2 Fq, put

S.�I a; b/ D
X

c2Fq

�.ac2 C b/:

(a) Prove that

S.�I a; b/ D �.b/�.a/G.�; �/;

where � is the quadratic character of Fq in Remark 1.4.53.
(b) Deduce that jS.�I a; b/j D q1=2.
(c) Prove jS.�I a; b/j D q1=2 also directly without the use of Gauss sums.

(Hint: start from jS.�I a; b/j2 D S.�I a; b/S.�I a; b/, where the bar denotes
complex conjugation.)

1.36 For nontrivial multiplicative characters and � of Fq, the Jacobi sum J. ; �/
is defined by

J. ; �/ D
X

c2Fqnf0;1g
 .c/�.1 � c/:

Prove that if  � is also a nontrivial multiplicative character of Fq, then

J. ; �/ D G. ; �/G.�; �/

G. �; �/
;

where � is any nontrivial additive character of Fq. (Hint: start from the product
G. ; �/G.�; �/ of Gauss sums.)

1.37 Prove that if  , � , and  � are nontrivial multiplicative characters of Fq, then
the Jacobi sum J. ; �/ satisfies jJ. ; �/j D q1=2.

1.38 Let  be a nontrivial multiplicative character of Fq and let S be a subset of Fq

with h � 1 elements. Prove that

X

c2Fq

ˇ̌
ˇ
X

a2S

 .c C a/
ˇ̌
ˇ
2 D h.q � h/;

where we put  .0/ D 0.
1.39 Prove Theorem 1.4.22 in detail.
1.40 Let f .x/ and g.x/ be monic polynomials over an arbitrary field. Prove that

gcd.f .x/; g.x// lcm.f .x/; g.x// D f .x/g.x/:
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1.41 Let f1.x/; : : : ; fk.x/ be k � 2monic polynomials over an arbitrary field that are
pairwise coprime. Prove that

lcm.f1.x/; : : : ; fk.x// D f1.x/ � � � fk.x/:

1.42 Let F be a field and let f .x/; g.x/;m.x/ 2 FŒx	 with m.x/ ¤ 0 2 FŒx	. Prove
that the congruence f .x/h.x/ � g.x/ .mod m.x// has a solution h.x/ 2 FŒx	 if
and only if gcd.f .x/;m.x// divides g.x/ in FŒx	.

1.43 Consider the polynomial ring FŒx	 for an arbitrary field F. Prove the Chinese
remainder theorem for FŒx	: if k � 2 pairwise coprime nonzero polyno-
mials m1.x/; : : : ;mk.x/ 2 FŒx	 and arbitrary polynomials f1.x/; : : : ; fk.x/ 2
FŒx	 are given, then there exists a polynomial g.x/ 2 FŒx	 with g.x/ �
fj.x/ .mod mj.x// for 1 � j � k and g.x/ is uniquely determined modulo
m1.x/ � � � mk.x/.

1.44 Prove the product rule for the derivative of polynomials over an arbitrary field.
1.45 Prove in detail that there are exactly �.q�1/ primitive elements in every finite

field Fq.
1.46 Set up addition and multiplication tables for the finite field F9.
1.47 Determine all primitive elements of F9.
1.48 Prove that if p is a prime number and n 2 N, then n divides �.pn � 1/. (Hint:

consider the primitive elements of the finite field Fpn .)
1.49 Prove that for q � 3, the sum of all elements of Fq is equal to 0.
1.50 Prove that x2 C x C 4 2 F11Œx	 is irreducible over F11.
1.51 Find all irreducible polynomials over F2 of degree 4.
1.52 Let Fq be a finite field of characteristic p. Prove that the derivative f 0.x/ of

f .x/ 2 FqŒx	 is the zero polynomial if and only if f .x/ is the pth power of some
polynomial in FqŒx	.

1.53 Determine the minimal polynomial of ˛ D .1C p
5/=2 over Q.

1.54 For F D Fq and K D Fqn with n 2 N, prove that TrK=F.˛
q/ D TrK=F.˛/ for

all ˛ 2 K.
1.55 Let K be a finite extension field of the finite field F of characteristic p. Prove

that

TrK=F.˛
pn
/ D .TrK=F.˛//

pn
for all ˛ 2 K and n 2 N:

1.56 Prove the transitivity of the trace, that is, if F 
 K 
 E are finite fields, then

TrE=F.˛/ D TrK=F
�
TrE=K.˛/

�
for all ˛ 2 E:

1.57 Let ˛ be algebraic over F D Fq, let m.x/ 2 FqŒx	 be the minimal polynomial
of ˛ over Fq, and suppose that deg.m.x// D n. Then show that TrK=F.˛/ D
�cn�1 with K D Fqn , where cn�1 is the coefficient of xn�1 in m.x/.

1.58 Let K be a finite extension field of F D Fq and let ˛ 2 K. Prove that
TrK=F.˛/ D 0 if and only if ˛ D ˇq � ˇ for some ˇ 2 K.



Chapter 2
Cryptography

Don’t shed any tears for Bob,
this blundering bungling slob.

He mixed up n, p, and q,
giving RSA hackers a clue,

no wonder he’s lynched by a mob.

2.1 Classical Cryptosystems

2.1.1 Basic Principles

Cryptology in the modern sense is the theory of data security and data integrity.
Cryptology as a practical craft can be traced back several thousand years as it was
already used in one form or other in the ancient civilizations of Egypt, Mesopotamia,
China, Greece, and Rome. It would lead us too far astray if we were to delineate the
colorful history of cryptology here, but we will occasionally mention some tidbits.
A systematic account of the history of cryptology up to 1967 is given in the book
of Kahn [74]. The more recent treatment by Singh [186] offers very stimulating
reading.

Cryptology splits up into cryptography, that is, the design of secure data and
communication systems, and cryptanalysis, that is, the breaking of such systems.
Cryptanalysis is slippery territory: if we provide too much information here, we
will be accused of giving a tutorial on hacking and cybercrime. Therefore we
focus on cryptography and discuss only in general terms what is involved in
cracking certain cryptographic schemes. Cryptography has various important facets,
such as confidentiality (guaranteeing that sensitive messages cannot be read by
eavesdroppers), data integrity (guaranteeing that the contents of messages cannot
be tampered with), authentication (proving the identity of legitimate users), and
nonrepudiation (guaranteeing that actions such as sending messages and signing
electronic documents cannot be denied later). In this chapter, we examine those
aspects of cryptography where number theory plays a significant role. It would
be tempting to treat also some curious angles of cryptography like hiding secret
messages in pictures (a technique that is called steganography) or in poems (no
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48 2 Cryptography

special designation here, so we offer cryptopoetry), but we guess we have to show
some restraint.

Let us first of all address a primary concern of cryptography, namely the
protection of confidential communication. We use the technical term channel for
a communication medium. A channel can, for instance, be a computer network,
a satellite link, the Internet, or a telephone line. An important player in our
scenario is the adversary, who also goes by other terms of endearment like the
opponent, the enemy, the eavesdropper, the attacker, and the bad guy. The adversary
wants to overhear our confidential communication and/or steal our sensitive data.
Adversaries can, for instance, be your boss, the NSA, a hacker, or the parents of
your lover. We speak of an insecure channel if we want to signalize that there is an
adversary lurking around the channel.

The basic tool for the protection of confidential communication is encryption,
that is, the transformation of given data (or messages) into disguised data (or
messages) that do not give any clue about the original meaning. The reverse process
of recovering the original data/messages from the encrypted data/messages is called
decryption. A secure communication system is described by the following model
(Fig. 2.1).

The message in its original form, also called the plaintext, is first encrypted
before it is sent over the insecure channel. Thus, the sender takes the plaintext
M, applies an encryption function (or an encryption algorithm) E to it, and then
transmits the ciphertext C D E.M/ over the channel. Upon receipt of C, the receiver
decrypts the ciphertext C by computing D.C/ D D.E.M// D M with the help of
a decryption function (or a decryption algorithm) D, thus recovering the plaintext
M. In this way, the secure communication is completed. Obviously, the encryption
function E must be injective so that there is no ambiguity about recovering the
original message correctly. Note that E and D are inverse functions of each other.
Often, E and D belong to a parametrized family of functions. The parameters K and
K0 specifying E and D, respectively, are called the encryption key and the decryption
key, respectively. Sometimes one writes EK and DK0 instead of E and D for the sake
of clarity.

It is a generous and also prudent assumption in cryptology that the adversary
has information about the general form of the encryption and decryption algorithms
and can access the ciphertext. Cynics like to say that the hacker can gain all this
knowledge by charming or bribing the secretary. Consequently, the security of the
system is based on carefully protecting the only data that are not assumed to be

adversary
↓

Message M −→ E(M) −→ channel −→ D(E(M)) −→ Message M

↑↑
encryption decryption

Fig. 2.1 A secure communication system
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available to the adversary, namely the keys. This is neatly summarized in the so-
called Kerckhoff principle: the security resides in the secret key. For a secure system,
the set of possible keys (the key space) must be very large in order to prevent a brute-
force attack by exhaustive search for the key. The important part in the design of a
secure communication system is the choice of the encryption algorithm and of the
key space.

Definition 2.1.1 A cryptosystem (or a cipher) consists of an encryption algorithm
(including the encryption keys) and a decryption algorithm (including the decryp-
tion keys) together with the plaintext source, that is, the set of all possible plaintexts.

In early cryptography, the security of a cryptosystem was based on a key
exchanged by a reliable method such as a face-to-face meeting or a dispatch via a
trusted courier. In modern cryptography, for example when transferring confidential
information via the Internet, such a basic and simple key exchange is usually
assumed to be impracticable.

There are two fundamentally different techniques for encrypting information:
symmetric encryption, also called secret-key (or private-key) encryption, and asym-
metric encryption, also called public-key encryption. In a symmetric cryptosystem
the encryption and decryption keys are identical or easy to obtain from each other.
Examples are block ciphers and stream ciphers. In an asymmetric cryptosystem the
encryption and decryption keys are hard to obtain from each other without insider
knowledge. Examples are the RSA cryptosystem and the ElGamal cryptosystem.

Number theory is involved in the construction of many cryptosystems. We will
present quite a few such cryptosystems in this chapter. In spite of the very long
history of cryptology, the serious applications of number theory (and of mathematics
in general for that matter) to this area are a very recent phenomenon. In fact, the
decade of the 1970s can be pinpointed as the period when these applications began
in earnest. We will elaborate on the circumstances of this remarkable development
in Sect. 2.3.

Cryptology touches many areas, such as mathematics, information theory,
computer science, electrical engineering, and espionage, and so there is wide
interest in the subject. This is reflected also in the large number of textbooks that
have been written on cryptology. The Renaissance scholar Johannes Trithemius
was possibly the first textbook author in the history of cryptology with his
Polygraphiae published in the early sixteenth century. Modern readers will probably
prefer more recent offerings such as Stinson [192] and van Tilborg [193]. The
books of Buchmann [15] and Koblitz [81] emphasize number-theoretic aspects of
cryptography, whereas Trappe and Washington [195] cover cryptography together
with coding theory. An extensive treatment of cryptography from the viewpoint of
computer science is given in the monograph [159]. A milestone is the Handbook of
Applied Cryptography edited by Menezes, van Oorschot, and Vanstone [115], which
may be regarded as the encyclopedia of cryptography.
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2.1.2 Substitution Ciphers

When one thinks about encryption, probably the first idea that comes to mind is to
encrypt a message letter by letter according to a prescribed scheme. This is what a
substitution cipher does. Formally, the set of all possible plaintexts in a substitution
cipher is the 26-letter English alphabet {A,B,C,. . . ,X,Y,Z}. The encryption function
E is a permutation of the 26 alphabetic characters. The permutation is secret, that is,
it is known only to the legitimate users of the system, and it is the key of the cipher.
The decryption function D is the inverse permutation of E. Messages containing
more than one letter are encrypted by applying E to each individual letter of the
message.

Example 2.1.2 Here is an example of a substitution cipher. The encryption function
E is given by the table

A B C D E F G H I J K L M
X N Y A H P O G Z Q W B T

N O P Q R S T U V W X Y Z
S F L R C V M U E K J D I

and the decryption function D is given by the table

A B C D E F G H I J K L M
D L R Y V O H E Z X W P T

N O P Q R S T U V W X Y Z
B G F J Q N M U S K A C I

The encryption and decryption algorithms are permutations of the 26 letters and the
keys (here the tables of function values) specify the permutations. This substitution
cipher encrypts the message cum desperate plea DAD SEND MONEY into AXA
VHSA TFSHD.

Remark 2.1.3 There are altogether 26Š (� 4�1026) permutations of the 26 alphabetic
characters. Thus, the key space has size � 4�1026. This is too large to find the correct
key by hand. However, if we use a powerful computer, then it is quite manageable to
determine the key, particularly if we use additional information such as the fact that
the letters of the alphabet appear with different frequencies in natural languages.
For instance, in English the most frequent letter is E, the second most frequent letter
is T, and so on. Therefore, if in a long ciphertext from a substitution cipher the
letter Q occurs most frequently, then we can deduce with good confidence that Q is
the encryption of E, and similarly for other frequent letters. The original message
can then be recovered by using the redundancy of natural languages and some
combinatorial skill. Because of this vulnerability, substitution ciphers are only of
historical and didactic interest.

The affine cipher is a special case of the substitution cipher and it is based on
modular arithmetic with the modulus m D 26.
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Algorithm 2.1.4 (Affine Cipher) The plaintext source is the set of the 26 English
letters, identified with the least residue system Z26 modulo 26 via the correspon-
dence

A $ 0;B $ 1; : : : ;Z $ 25:

The encryption key consists of a positive integer a with gcd.a; 26/ D 1 and an
integer b, both considered modulo 26, and the encryption algorithm is given by the
function e W Z26 ! Z26 determined by e.m/ � am C b .mod 26/ for all m 2 Z26.
The decryption key consists of the integer c 2 Z26 with ac � 1 .mod 26/ and b,
and the decryption algorithm is given by the function d W Z26 ! Z26 with d.r/ �
c.r � b/ .mod 26/ for all r 2 Z26.

Remark 2.1.5 Here we clearly see the general structure of a cryptosystem described
in Sect. 2.1.1. The encryption and decryption functions belong to the family of affine
functions modulo 26 and the keys K D .a; b/ and K0 D .c; b/ specify these affine
functions.

Remark 2.1.6 Affine ciphers with a D 1 are called shift ciphers since the encryption
function is then a cyclic shift in the alphabet by b letters. The choice a D 1 and
b D 3 yields the Caesar cipher, which was used by the Roman emperor Julius
Caesar according to his biographer Suetonius. Many scholars regard this as the first
concretely and explicitly recorded cipher in the history of cryptology, while vague
references to shift ciphers can be found also in earlier documents. (The first author
named his first dog Caesar as a tribute to the pioneer cryptographer Julius Caesar.)

Remark 2.1.7 There are movie fans who believe that the name of the computer HAL
in the Stanley Kubrick film 2001: A Space Odyssey was obtained by using a shift
cipher. Indeed, if you take the shift cipher with b D 25, which is a shift backward
by one letter in the alphabet, and apply it to IBM, then voilà you get HAL.

For a given encryption key K D .a; b/ in an affine cipher, determining the
decryption key amounts to finding the integer c 2 Z26 with ac � 1 .mod 26/ as
specified in Algorithm 2.1.4. This can be easily done by using Euler’s theorem (see
Theorem 1.2.15) and the square-and-multiply algorithm described in Sect. 2.3.2
below. Alternatively and somewhat more efficiently, we can use the Euclidean
algorithm which is discussed in [151, Section 1.2] (see also Exercise 1.12). Thus,
the affine cipher is a symmetric cryptosystem.

Remark 2.1.8 Since the affine cipher has a very small key space of size �.26/ �26 D
312, it can be broken easily, with some patience even by hand, using exhaustive key
search.

Remark 2.1.9 The substitution and affine ciphers are called monoalphabetic ciphers
because every single alphabetic character is mapped to a unique alphabetic character
for a fixed encryption key. If we collect blocks of n � 2 letters together and encrypt
each such block, then we get a polyalphabetic cipher. A well-known historical
example of a polyalphabetic cipher dating back to the sixteenth century is the
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Vigenère cipher in which n shift ciphers are applied in parallel and the keys for
these n shift ciphers are chosen independently of each other. Therefore the size of
the key space is 26n. This is definitely an improvement on the affine cipher, and we
can indeed get very large key spaces by this method if we are willing to make n
large.

Polyalphabetic ciphers were mechanized in the twentieth century, and a cipher
machine that became famous was the Enigma. The Enigma cipher and its implemen-
tation on the Enigma machine were used by the German military from the 1920s on.
During World War II the Allies raised a monumental effort to crack the Enigma
cipher, based on earlier progress made by Polish cryptanalysts, and they succeeded
fairly early in the war. Some historians claim that this achievement had a major
impact on the outcome of the war. The breaking of the Enigma cipher is a story
full of drama and suspense, and so it is not surprising that two blockbuster movies
were made on this subject: Enigma starring Kate Winslet and Dougray Scott and
The Imitation Game starring Keira Knightley as well as Benedict Cumberbatch in
the role of the brilliant mathematician and pioneer computer scientist Alan Turing
(1912–1954) who was a decisive factor in the cracking of Enigma.

2.2 Symmetric Block Ciphers

2.2.1 Data Encryption Standard (DES)

Now we move from historical cryptosystems to a family of ciphers that are widely
utilized in our present age, namely symmetric block ciphers. This family includes
the industry standards DES and AES. Cryptochips running the DES algorithm or the
AES algorithm are omnipresent in the automatic teller machines (ATMs) that supply
us with our daily cash. The point is that the communication between an ATM and
the server of the bank is highly confidential and therefore has to be protected by
encryption. The encryption algorithm must be able to process large amounts of data
at a very high speed, and this is where DES and AES shine.

Definition 2.2.1 A block cipher splits up the plaintext into blocks of symbols of
fixed length (for example n bits) and encrypts each block in a manner that is
independent of past input blocks. The ciphertext depends only on the current input
block and on the key. In a symmetric block cipher, the encryption and decryption
keys are identical or easy to obtain from each other, and they are kept secret.

In every practical implementation of a symmetric block cipher, the plaintext is
given as a string of bits. If the plaintext has some other format, it first has to be
transformed into a string of bits before applying a symmetric block cipher.
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Example 2.2.2 The Vigenère cipher in Remark 2.1.9 can be viewed as a bit-based
symmetric block cipher if letters are transformed into blocks of bits by using for
example the ASCII code.

The Data Encryption Standard (DES) is a symmetric block cipher that was
developed by IBM and endorsed by the U.S. National Bureau of Standards in 1977.
It has been widely used ever since, for example in the banking industry as mentioned
above, and its design details are available to the public.

DES encrypts plaintext blocks of 64 bits. The user first chooses a key consisting
of 56 random bits, which is then split into eight blocks of seven bits each. For error
control (compare with Sect. 6.1), a parity-check bit is added to each block of seven
bits, that is, the check bit is 0 or 1 depending on whether the number of 1’s in the
previous seven bits is even or odd, respectively. Thus, the actual key K has length
64, but only 56 bits (now in positions 1; 2; : : : ; 7; 9; : : : ; 15; : : : ; 57; : : : ; 63) have
been chosen by the user. The same key is applied in both the encryption and the
decryption and is of course kept secret. The effective size of the key space is 256.

Let M D m1m2 : : :m64 be a given plaintext block of 64 bits mj, 1 � j � 64. The
DES encryption algorithm first applies a fixed permutation P to M, namely

P.M/ D m�.1/m�.2/ : : :m�.64/

with a permutation � of f1; : : : ; 64g given by

�.i/ �
(
58i .mod 66/ for i D 1; 2; : : : ; 32;

58.i � 32/� 1 .mod 66/ for i D 33; 34; : : : ; 64:

Then 16 iterations of a function f are applied to P.M/. Finally, the inverse
permutation P�1 operates on the last output, and this produces the ciphertext. Note
that for i D 1; : : : ; 64, the image ��1.i/ under the inverse permutation ��1 of � is

��1.i/ D
(

r33.4i/ if i is even;

r33.4i C 3/C 33 if i is odd;

where r33.a/ denotes the least residue of the integer a modulo 33. The function f
combines substitution and transposition. A typical operation in the calculation of f
proceeds as follows. If Ti D t1t2 : : : t64 (with bits tj for 1 � j � 64) is an intermediate
result, then split up Ti into the left half Li and the right half Ri, that is, Ti D LiRi

with

Li D t1 : : : t32; Ri D t33 : : : t64:

Then

LiC1 D Ri; RiC1 D Li ˚ g.Ri;Ki/;
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Fig. 2.2 A typical round of
DES

Li+1 Ri+1

Li Ri

Ki
�

� �

g

⊕

where g is a known function with range F
32
2 and Ki is an intermediate key derived

from the key K. Here ˚ denotes bit by bit addition in F2 of two blocks of 32 bits.
For the full details of the algorithm we refer to [115, Section 7.4]. Decryption
is performed by essentially the same algorithm, except that the order of the
intermediate keys is reversed (Fig. 2.2).

Over time, several weaknesses of DES were discovered by cryptanalysts. The
key of 56 bits is now considered too short. A better variant still in current use is
Triple DES. Here a plaintext block M is encrypted as

C D DESK1 .DES�1
K2
.DESK1 .M///

with an obvious notation, that is, M is encrypted, decrypted, and then encrypted
again by DES, using a key K1 for the encryptions and a different and independently
chosen key K2 for the decryption. The effective size of the key space is now 2112

and this yields a higher security level compared to DES.

2.2.2 Advanced Encryption Standard (AES)

The increasing dissatisfaction with DES, which stood more and more for Deficient
Encryption Scheme, called for remedial action. The U.S. National Institute of
Standards and Technology (NIST) ran a competition to find a state-of-the-art
symmetric block cipher succeeding DES. Submissions were received in 1998 and
15 of them met the criteria of NIST. Five finalists were selected in 1999 and
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the winner was announced in 2000. The winning design was from Belgium and
was called Rijndael at the time of submission, after the names of the designers
Rijmen and Daemen. It seems that Rijndael is also a play on words in the Dutch
language since Rijndal means Rhine valley in Dutch. Rijndael became the Advanced
Encryption Standard (AES) in 2001. There are actually slight design differences
between Rijndael and the officially adopted Advanced Encryption Standard, but
only AES will be discussed here.

The plaintext block length in AES is 128 bits and the key length can be 128, 192,
or 256 bits. Many operations in AES are based on bytes. A byte, that is, a string
a0a1 : : : a7 of eight bits, is identified with the polynomial a0 C a1x C � � � C a7x7 2
F2Œx	. This polynomial is in turn interpreted as an element of the finite field F256

which is viewed as the residue class field F2Œx	=.x8C x4C x3C x C1/. Note that the
polynomial x8 C x4 C x3 C x C 1 2 F2Œx	 is irreducible over F2, and so the residue
class ring F2Œx	=.x8 C x4 C x3C x C1/ is indeed a finite field of order 28 D 256 (see
Sect. 1.4.3).

A given plaintext block of 128 bits is split up into 16 blocks of eight bits, that
is, into 16 bytes. Each byte is interpreted as an element of F256 as above. The 16
bytes are arranged into a 4� 4 array. Thus, the plaintext block is finally viewed as a
4 � 4 array of elements of F256. The rows and columns of the array are indexed by
0; 1; 2; 3 (Fig. 2.3).

The AES encryption algorithm has a number of rounds, each consisting of four
operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey. In the standard
case of key length 128, the number of rounds is 10.

SubBytes has two steps: (i) each array element is replaced by its multiplicative
inverse in F256, with 0 being mapped to 0; (ii) the array undergoes a fixed affine
transformation over F256.

ShiftRows cyclically shifts the elements of the ith row (i D 0; 1; 2; 3) of the array
by i elements to the left.

MixColumns views each column of the array as a polynomial over F256 of degree
at most 3 and multiplies this polynomial by a fixed polynomial over F256 that is
coprime to x4 C 1 2 F2Œx	, with reduction modulo x4 C 1 in the case of overflow.
The new polynomial yields the new column.

AddRoundKey adds the array bit by bit, using addition in F2, to another array of
the same format, where the latter array depends on an intermediate key.

Fig. 2.3 A 4� 4 array
representing a plaintext
block. Each bij is a byte and
also an element of F256

b00 b01 b02 b03

b10 b11 b12 b13

b20 b21 b22 b23

b30 b31 b32 b33
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Decryption in AES is carried out by using the inverses of the steps and reversing
their order. Note that this is feasible since each step represents an injective map. All
you ever want to know about Rijndael and AES can be found in the book [33] which
was written by the designers themselves.

Being number theorists, we like to think of AES as a smarter cipher than DES
since it relies much more heavily on number theory than DES does. It remains
to be seen how long AES will survive. It is a known phenomenon that once
a cryptographic scheme is elevated to the rank of a standard, then hordes of
cryptanalysts assail it and seek the fame that is gained by breaking it.

Remark 2.2.3 Consider the permutation f of the finite field F2r with r 2 N that is
defined by f .y/ D y�1 for y 2 F

�
2r and f .0/ D 0. This function is used in the first

step of SubBytes with the choice r D 8. The function f has the following property:
for all a 2 F

�
2r and b 2 F2r , the equation

f .y/C f .y C a/ D b

has at most two solutions y 2 F2r if r is odd. (Note that y C a is a solution
whenever y is a solution.) Such a function is called almost perfect nonlinear (APN).
APN functions are the functions that best resist the so-called differential attacks on
cryptosystems, see for example [19]. If r is even and b D a�1, then the equation
above has four solutions y D 0; a; ca; .c C 1/a, where c 2 F4 
 F2r is a root of the
polynomial x2 C x C 1 2 F2Œx	.

2.3 Public-Key Cryptosystems

2.3.1 Background and Basics

All the cryptosystems we have discussed so far satisfy the property that the
decryption key is the same as the encryption key or is easily derived from the
encryption key. In other words, they are all symmetric cryptosystems. But in many
modern communication systems, the big difficulty with symmetric cryptosystems is
how to get the common key from user A to user B if A and B can communicate only
over an insecure channel, for example by email over the Internet. This problem is
solved by using public-key cryptosystems.

The idea of a public-key cryptosystem goes back to the paper of Diffie and
Hellman [39] from 1976 with the prophetic title “New directions in cryptography”.
Their fundamental insight was that a secret key is needed only for decryption! Thus,
the roles of the encryption and decryption keys can be separated: use a public key
for encryption and a private (secret) key for decryption. Of course, the public key
and the private key must be completely different (this is why we speak also of an
asymmetric cryptosystem). In a nutshell, a public-key cryptosystem is built on the
following new principle: anybody can encrypt, but only the legitimate receiver can
decrypt.
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The paper of Diffie and Hellman was a watershed in the history of cryptology,
or a paradigm change to use a fancy term from the philosophy of science. It is
generally acknowledged that cryptology as a serious mathematical discipline began
only in 1976, while before that it was more like an art or a craft. The Diffie-Hellman
paper triggered a burst of creativity that led to the design of many cryptographic
schemes in the late 1970s and throughout the 1980s. Interestingly enough, many
pure mathematicians entered the game of inventing cryptographic schemes during
that period. Several of these schemes are still in practical use today. It is a curious
footnote to the history of cryptology that the priority for the invention of public-key
cryptography was later claimed by the British secret service.

The personal story behind the Diffie-Hellman paper is quite remarkable. Whit-
field Diffie came to Stanford University in the mid 1970s as a mature graduate
student (he was born in 1944). He was an autodidact in the field of cryptology since
this subject was not taught at universities at that time. He met a congenial partner
in Martin Hellman who was then an assistant professor at Stanford and actually
younger than Diffie. Formally, Hellman was the Ph.D. adviser of Diffie, but their
style of work was collaboration rather than a professor-student relationship. Their
story is told in fascinating detail in the book of Levy [99], which reads like a thriller.

For a public-key cryptosystem, the encryption algorithm E and the decryption
algorithm D should satisfy the following properties.

PKC1: The encryption and decryption algorithms are fast.
PKC2: D.E.M// D M for all plaintexts M in the plaintext source.
PKC3: Given the encryption key, it must be computationally infeasible to

determine the decryption key.

We can set up a public-key cryptosystem in the following way. A typical user
A chooses an encryption key KA and the corresponding decryption key K0

A. Then
A makes the encryption key KA public for all users and keeps the decryption key
K0

A secret. The encryption key is called also the public key and the decryption
key is called also the private key. Because of the property PKC3 of a public-key
cryptosystem, other users cannot figure out the decryption key from the public key.

Suppose that a user A wants to send a confidential message M to another user
B. Before we proceed any further, we personalize the scenario: user A is in reality
called Alice and user B is in reality called Bob. So it is Alice who wants to send
the message M to Bob. She proceeds as follows. She looks up the encryption key
KB D KBob of Bob in a directory and then she encrypts the plaintext M into the
ciphertext

C D EKB.M/:

The ciphertext C is sent to Bob through the insecure channel. Everyone may read
C, but only Bob can decrypt the ciphertext C by calculating

DK0

B
.C/ D DK0

B
.EKB.M// D M:
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This completes the confidential communication. People other than Bob cannot
decrypt the ciphertext because they cannot determine K0

B from KB.

Remark 2.3.1 We describe a “hardware” analog of a public-key cryptosystem
which may help to better understand how public-key cryptosystems work. The
principal tools of this analog are padlocks. Note that anybody can lock a padlock
(just push it until the lock clicks), but that it can be opened only with the correct key.
Now suppose that Alice wants to send a confidential document to Bob. She puts the
document in a strongbox and then she goes to a sort of post office where padlocks
of all users of the communication system are available. She locks the strongbox
with Bob’s padlock and posts the strongbox plus padlock. When Bob receives this
delivery, he unlocks the padlock with his key and retrieves the document from
the strongbox. We see again the guiding principle of public-key cryptosystems in
operation: anybody can encrypt (lock the padlock), but only the legitimate receiver
(Bob) can decrypt (unlock the padlock) (Fig. 2.4).

Public-key cryptosystems can be used not only for the communication of
secret messages, but also for the distribution of keys in symmetric cryptosystems.
Before the encryption by a symmetric cryptosystem starts, the necessary keys are
distributed by a public-key cryptosystem. This makes sense because encryption by a
symmetric cryptosystem is usually much faster than by a public-key cryptosystem.
Note that the distribution of keys is needed only once in a communication session.
Key distribution by public-key cryptosystems is a huge advantage because the
parties in the communication do not even have to know each other! A scheme that
uses a public-key cryptosystem for key distribution and a symmetric cryptosystem
for message encryption is called a hybrid cryptosystem. A well-known example of
a hybrid cryptosystem is Pretty Good Privacy (PGP), a popular tool for encrypting
email messages.

The difficulty in designing a public-key cryptosystem is to satisfy the property
PKC3 above. An important step in the design of a public-key cryptosystem is to use
one-way functions as encryption functions. As usual, we write f �1 for the inverse
function of an injective function f .

Definition 2.3.2 A one-way function is an injective function f W A ! B with a
domain A and a range B for which the following properties hold:

(i) f .a/ is easy to evaluate for all a 2 A;
(ii) given f , it is computationally infeasible to compute f �1.b/ for almost all b in

the image of f .

Fig. 2.4 A strongbox with a
padlock
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Example 2.3.3 As a simple example from everyday life, consider the telephone
directory of any big city. It is easy to look up the phone number of any specific
person. On the other hand, given an arbitrarily chosen phone number, it is in general
pretty hopeless to find the person with this number by just using the directory. In
this sense, the function f W person 7! phone number can be viewed as a one-way
function.

Remark 2.3.4 An important application of one-way functions is the password file of
a computer. It is obviously too dangerous to store passwords as plaintexts. Therefore
a password P is stored as f .P/, where f is a one-way function. The inverse function
f �1 is not needed in this application, for if a password P is entered, then the
computer simply checks whether the image f .P/ coincides with the stored value.
On the other hand, an intruder reading the password file has to know f �1 in order to
deduce the password from the stored value, but f �1 is hard to compute.

You will concede that the definition of a one-way function is not really rigorous.
What do “easy” and “computationally infeasible” mean precisely? It is generally
agreed that a function evaluation is “easy” (or “efficient”) if it can be carried out
in polynomial time, that is, the number of required arithmetic operations (or bit
operations as the case may be) is a polynomial in the number of bits of the input.
“Computationally infeasible” is then somehow the opposite, but in practice it is
extremely difficult to prove that it is not possible to compute a mathematical quantity
efficiently. Furthermore, we use “almost all” in part (ii) of Definition 2.3.2 only in
an intuitive sense; you may interpret it as “a very high percentage of”.

Another big problem remains: if we use a one-way function f for encryption,
then at least one person has to know how to invert f , namely the intended recipient
of the message! The solution of this dilemma is to use trapdoor one-way functions,
which are one-way functions such that with additional information (the trapdoor
information) the function f can be inverted and so the ciphertext can be decrypted.
The trapdoor information is known only to the authorized person who generates
the encryption key and the decryption key. This authorized person can be the
legitimate user who will own the keys, but also a trusted third party. In the following,
we will see various ways of how to produce trapdoor information. As for many
cryptographic terms, the name “trapdoor” is well chosen: it suggests a ciphertext
caught helplessly in a trap, but somebody has a key for the trapdoor and frees
(decrypts) the ciphertext.

2.3.2 The RSA Cryptosystem

The RSA cryptosystem is named after its inventors Rivest, Shamir, and Adle-
man and was published in the paper [170] in 1978, hence fairly soon after the
Diffie-Hellman paper [39]. The fact that a powerful and convincing public-key
cryptosystem was designed shortly after Diffie and Hellman propounded their ideas
gave a big boost to public-key cryptography.
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The RSA cryptosystem is a public-key cryptosystem based on the presumed
difficulty of finding the factorization of large integers into prime numbers. Actually,
only a special case of the factorization problem is considered: given two distinct big
prime numbers p and q, it is easy to find the product n D pq; however, given the
product n, it is believed to be very hard in general to find the prime factors p and
q. This belief is considered reasonable at present since up to now no deterministic
polynomial-time factorization algorithm for integers is known. The situation will of
course change dramatically once somebody finds such an algorithm. Consequently,
there is no absolute guarantee for the security of the RSA cryptosystem, and a
similar state of affairs prevails for other public-key cryptosystems.

In order to set up the RSA cryptosystem, our typical user Bob chooses two
distinct big prime numbers p and q. Furthermore, Bob computes

n D pq and �.n/ D .p � 1/.q � 1/:

Then Bob chooses an integer e � 2 with gcd.e; �.n// D 1 and computes a positive
integer d such that ed � 1 .mod �.n//. Note that d can be obtained efficiently by
the Euclidean algorithm (see [151, Section 1.2] and Exercise 1.12).

Algorithm 2.3.5 (RSA Cryptosystem) The public key of Bob is the ordered pair
.n; e/ and the private key of Bob is the ordered triple .p; q; d/. The plaintext source
is Zn D f0; 1; : : : ; n � 1g, that is, the least residue system modulo n.

Encryption: Suppose that Alice wants to send a plaintext m 2 Zn to Bob.
She looks up Bob’s public key .n; e/, computes the integer c 2 Zn with c �
me .mod n/, and sends c as the ciphertext to Bob.

Decryption: Upon receiving the ciphertext c, Bob computes the least residue of
cd modulo n, which is the plaintext m.

It remains to verify that the least residue of cd modulo n is indeed the plaintext
m. Note that cd � med .mod n/, and so it suffices to prove the following lemma.

Lemma 2.3.6 If ed � 1 .mod �.n// as above, then

med � m .mod n/ for all m 2 Z:

Proof Since ed � 1 .mod �.n//, we can write ed D k�.n/C 1 with some positive
integer k. If gcd.m; n/ D 1, then m�.n/ � 1 .mod n/ by Theorem 1.2.15. This
implies mk�.n/ � 1 .mod n/, hence

med � mk�.n/C1 � m .mod n/:

If gcd.m; n/ D p or q, say p, then mq�1 � 1 .mod q/ by Theorem 1.2.15. We infer
that m�.n/ � 1 .mod q/, so as above we get med � m .mod q/. But p divides m,
so med � 0 � m .mod p/. Together with the last congruence modulo q this yields
med � m .mod n/ by the Chinese remainder theorem (see Theorem 1.2.9). The
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remaining case is gcd.m; n/ D n. But then med � 0 � m .mod n/, and we have
settled all cases. �

The security of the RSA cryptosystem is based on the presumed difficulty of
finding d from n and e. If the opponent can factor n D pq, then he (the bad guy
is always male) can easily compute �.n/ D .p � 1/.q � 1/ and consequently the
integer d. There is no other known efficient way of getting d than by factoring n. In
this sense, the security of the RSA cryptosystem is founded on the belief that the
factorization problem for large integers is difficult. The trapdoor information that
allows Bob to compute d is the knowledge of the prime factors p and q. According
to current standards, each of p and q should have about 150 decimal digits, so n
should have about 300 decimal digits. Experts like to speak of a 1024-bit RSA
modulus. The problem of finding large prime numbers will be discussed in Sect. 2.7.
It was shown by May [111] that breaking the RSA cryptosystem is deterministic
polynomial-time equivalent to factoring if p and q have the same bit size.

Remark 2.3.7 The RSA cryptosystem is so easy to understand that even criminals
can use it. A psychopath terrorized Austria in the 1990s with threatening messages
encrypted by the RSA cryptosystem and with letter bombs. He teased the police by
including the public key .n; e/ in the messages, but he made the stupid mistake of
choosing prime numbers p and q that are very close together. This case is quickly
broken: just compute bp

nc and look for prime numbers in the vicinity of this integer
(see also Algorithm 2.3.11 below).

A practical issue that needs to be addressed in Algorithm 2.3.5 is how to compute
the powers me and cd modulo n for very large exponents e and d in an efficient
manner. We phrase this problem in a more general form since we will run into
it again in other contexts. Thus, let S be any algebraic structure in which an
associative product is defined. Then for all a 2 S and all exponents e 2 N, the
power ae is defined unambiguously. The high-school method of computing powers
by successive multiplication, that is,

ae D a � a � � � a„ ƒ‚ …
e factors

;

needs e � 1 multiplications. This can be practically infeasible in an RSA setting
where e may have several hundred decimal digits. A much faster way is provided by
the square-and-multiply algorithm. We first explain this algorithm in an example.

Example 2.3.8 We want to compute a25. We write the exponent 25 in its binary
representation

25 D 1C 0 � 2C 0 � 22 C 1 � 23 C 1 � 24 D 1C 8C 16:

Then

a25 D a � a8 � a16:
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We first calculate a2, a4 D .a2/2, a8 D .a4/2, a16 D .a8/2 by repeated squaring.
Then we multiply together a, a8, and a16 to obtain a25. Instead of 24 multiplications
by the high-school method, we need just six multiplications by the square-and-
multiply algorithm.

Algorithm 2.3.9 (Square-and-Multiply Algorithm) Let S be an algebraic struc-
ture in which an associative product is defined, let a 2 S, and let e 2 N. Compute ae.

Step 1: Write e in its binary representation

e D 2k1 C 2k2 C � � � C 2kr with 0 � k1 < k2 < � � � < kr:

Step 2: Compute the powers a2; a4; : : : ; a2
kr by repeated squaring.

Step 3: Multiply together a2
k1
; a2

k2
; : : : ; a2

kr to obtain ae.

Proposition 2.3.10 For all a 2 S and e 2 N, the computation of ae by the
square-and-multiply algorithm needs at most 2 log2 e multiplications in S, where
log2 denotes the logarithm to the base 2.

Proof Let h 2 N be such that 2h�1 � e < 2h. Then in Step 2 of Algorithm 2.3.9 we
have to calculate a2; a4; : : : ; a2

h�1
. This needs h � 1 multiplications in S. For Step 3

in Algorithm 2.3.9, in the worst case we have to multiply

a � a2 � a4 � � � a2
h�1

:

This needs again h � 1 multiplications in S. Altogether, we require at most 2.h � 1/
multiplications in S. The proof is completed by noting that h � 1 � log2 e. �

Returning to the RSA cryptosystem, we observe that even if the exponents e and d
in Algorithm 2.3.5 have about 1000 bits, then encryption and decryption would each
require at most about 2000 multiplications modulo n by the square-and-multiply
algorithm. This is an easy task for a modern computer.

2.3.3 Factorization Methods

We initially assume in this subsection that n is a product of two distinct odd prime
numbers, say n D pq with p > q. We pointed out that the RSA cryptosystem can
be broken once n is factored. We note that this is equivalent to knowing the value of
�.n/. First, if n D pq is factored, then �.n/ D .p�1/.q�1/ is obtained immediately.
Conversely, if �.n/ is known, then it is easy to check that p and q are the roots of
the quadratic equation

x2 � .n � �.n/C 1/x C n D 0:
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We now discuss some classical factorization methods. A joyful and up-to-
date account of factoring is given in the book of Wagstaff [198]. A factorization
algorithm using quantum computers will be presented in Sect. 6.5.1.

The first method is named after the famous seventeenth century mathematician
Pierre de Fermat and applies if the two prime factors p and q of n are close. Then
s WD .p � q/=2 is a small number.

Algorithm 2.3.11 (Fermat Factorization) Given n D pq with close prime
numbers p > q � 3, we see from

n D
�

p C q

2

�2
�
�p � q

2

�2

that t WD .p C q/=2 is an integer slightly larger than
p

n having the property that
t2 � n D s2 is a perfect square. By testing the successive integers t >

p
n, one will

soon find t and s. Then t C s and t � s are the two prime factors of n.

Example 2.3.12 For n D 35 we try t D dp
35e D 6 and get s D p

t2 � n D 1.
Hence p D t C s D 7 and q D t � s D 5.

The second method is based on the following result.

Lemma 2.3.13 Let x, y, and n be positive integers. If x2 � y2 .mod n/ but x 6�
˙y .mod n/, then gcd.x � y; n/ and gcd.x C y; n/ are nontrivial divisors of n.

Proof Note first that n divides x2 � y2 D .x � y/.x C y/. However, n divides neither
x � y nor x C y. Hence gcd.n; x ˙ y/ > 1. �

Example 2.3.14 For n D 35 we easily find the congruence 122 � 22 .mod 35/, and
then gcd.12 � 2; 35/ D 5 and gcd.12C 2; 35/ D 7 are the prime factors of 35.

The following lemma guarantees the existence of x and y.

Lemma 2.3.15 Let n be a product of two distinct odd prime numbers and let a 2 Z

with gcd.a; n/ D 1. Then x2 � a2 .mod n/ has exactly four solutions x 2 Zn; two of
them are the trivial solutions x � ˙a .mod n/.

Proof For odd prime numbers p and q, the congruences x2 � a2 .mod p/ and x2 �
a2 .mod q/ have exactly two incongruent solutions x � ˙a .mod p/ and x �
˙a .mod q/, respectively. If p ¤ q, then by the Chinese remainder theorem (see
Theorem 1.2.9) there are exactly four solutions of x2 � a2 .mod n/ in Zn with
n D pq. �

Example 2.3.16 For n D 35 and a D 2, the congruence x2 � 4 .mod 35/ has
the four solutions x � ˙2;˙12 .mod 35/ in Z35, that is, x D 2; 12; 23; 33. The
solutions x D 2 and x D 33 are the trivial ones.

The crucial step for this method is to find a nontrivial solution of x2 � y2 .mod n/.
We now describe a technique for dealing with the latter task.
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Algorithm 2.3.17 (Square-Root Factoring) Given n D pq as above, find a
nontrivial solution of x2 � y2 .mod n/.

Step 1: Choose S D fp1; p2; : : : ; pkg, where pj is the jth prime in the natural order,
and select an integer c slightly larger than k.

Step 2(a): For i D 1; 2; : : : ; c choose (randomly) ai 2 f0; 1: : : : ; n � 1g and
calculate bi � a2i .mod n/.

Step 2(b): Write (if possible)

bi D
kY

jD1
p

eij

j with integers eij � 0:

Otherwise choose a new ai.
Step 3: Find a set T 
 f1; : : : ; cg such that

Q
i2T bi is a square by deter-

mining a nontrivial linear combination over F2 of the c binary vectors vi �
.ei1; : : : ; eik/ .mod 2/, 1 � i � c, which yields 0 2 F

k
2.

Step 4: Compute x D Q
i2T ai and y D �Q

i2T bi
�1=2

.
Step 5: If x 6� ˙y .mod n/, then stop with success. If x � ˙y .mod n/, then take

a different set T or increase the value of c by 1.

The following two algorithms are due to the prolific algorithm designer John
Pollard and they apply to any composite integer n. For a positive integer B, an integer
n � 2 is said to be B-smooth if all its prime factors are less than or equal to B.

Algorithm 2.3.18 (Pollard p � 1 Algorithm) Find a nontrivial factor of the
composite integer n.

Step 1: Select a smoothness bound B.
Step 2: Select a random integer a with 2 � a � n�1 and compute d D gcd.a; n/.

If d � 2, then return the nontrivial factor d of n.
Step 3: If d D 1, then for each prime number r � B perform the following

iteration: compute l.r/ D b.log n/= log rc and replace the current value of a by
the least residue of arl.r/

modulo n (use Algorithm 2.3.9 to compute this least
residue efficiently).

Step 4: Compute e D gcd.b � 1; n/, where b is the last output in Step 3.
Step 5: If 1 < e < n, then e is a nontrivial factor of n. Otherwise return to Step 2

and choose another integer a.

Note that in Step 3 we are calculating the least residue b of aQ modulo n, where

Q D
Y

r�B

rl.r/:

If for some prime factor p of n the number p � 1 is B-smooth, then p � 1 divides Q
(observe that rl.r/ is the largest power of r that is � n). Since ap�1 � 1 .mod p/, we
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obtain aQ � 1 .mod p/, and so

e D gcd.b � 1; n/ D gcd.aQ � 1; n/ � p

in Step 4. Thus, Step 5 is successful unless we are very unlucky and e D n.
A good value of B has to be selected by a careful trade-off. If B is small, then

the computations in the algorithm are faster, but the probability of success will be
low. If B is not too small, then the likelihood of p � 1 being B-smooth is quite large.
Practitioners say that with experience and feng shui one gets the knack for the proper
choice of B.

Finally, we describe the Pollard rho algorithm. Let S be a finite set with m � 2

elements, let f W S ! S be a self-map of S, and let s0; s1; : : : be a sequence of
elements of S defined recursively by si D f .si�1/ for i D 1; 2; : : : with an arbitrary
initial value s0. Since S is finite, this sequence is ultimately periodic. In particular,
there exist subscripts i and j with 0 � i < j such that si D sj, and so there are
repeated terms.

Lemma 2.3.19 For a real number � > 0 put ` D 1C bp
2�mc. Then the fraction

of ordered pairs .f ; s0/ such that all elements s0; s1; : : : ; s` are different is smaller
than e��.

Proof We may assume that ` < m. The total number of all ordered pairs .f ; s0/
is mmC1 and the number of ordered pairs .f ; s0/ with different s0; s1; : : : ; s` is
mm�`Q`

jD0.m � j/. Hence the fraction in question is

h.m; `/ WD m�`�1 Ỳ

jD0
.m � j/ D

Ỳ

jD0

�
1 � j

m

�
:

Because of log.1 � u/ < �u for 0 < u < 1, we get

log h.m; `/ D
X̀

jD0
log

�
1 � j

m

�
< � 1

m

X̀

jD0
j D �`.`C 1/

2m
< � `2

2m
< ��

and thus h.m; `/ < e��. �

Lemma 2.3.20 The expected value of the smallest integer ` � 1 with s` D s2` has
an order of magnitude at most m1=2.

Proof Denote by `1 and `2 the length of the preperiod and the length of the period
of the sequence s0; s1; : : :, respectively. Then for ` D `2.1 C b`1=`2c/ > `1 we
obtain s` D s2`. By Lemma 2.3.19, the expected value of ` � `1 C `2 has an order
of magnitude at most m1=2. �

Now let p be a prime factor of a given composite integer n. The Pollard rho
algorithm tries to find repeated terms in the sequence a0; a1; : : : of elements of
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S D Zp D f0; 1; : : : ; p � 1g generated by a0 D 2 and ai D f .ai�1/ for i D 1; 2; : : :,
where f .s/ 2 Zp is determined by f .s/ � s2 C 1 .mod p/ for all s 2 Zp. Since p
divides n but is unknown, this is effected by carrying out the analogous computation
in Zn and testing whether gcd.ai � a2i; n/ > 1. If also gcd.ai � a2i; n/ < n, then
a nontrivial factor of n has been found. In the implementation, the terms ai and
bi WD a2i are computed in parallel.

Algorithm 2.3.21 (Pollard Rho Algorithm) Find a nontrivial factor of the com-
posite integer n.

Step 1: Put a0 D 2, b0 D 2.
Step 2: For i D 1; 2; : : : do the following:

(a) Compute ai � a2i�1 C 1 .mod n/ and bi � .b2i�1 C 1/2 C 1 .mod n/ with
ai; bi 2 Zn.

(b) Compute di D gcd.ai � bi; n/.
(c) If 1 < di < n, then di is a nontrivial factor of n and stop with success. If

always di D 1 or n for i up to a prescribed bound, then stop with failure.

Remark 2.3.22 Under the assumption that x2 C 1 behaves like a random function
modulo p, we can apply Lemma 2.3.20 with m D p. Since there always exists a
prime factor p of n with p � n1=2, we can therefore expect that Algorithm 2.3.21
terminates with success after O.n1=4/ steps. Here and later, g.n/ D O.h.n// is
equivalent to the existence of a positive constant C such that jg.n/j � Ch.n/ for all
positive integers n, where g is a real-valued function and h is a nonnegative function
on N. In the rare case where the algorithm fails, we replace x2 C 1 by a function
x2 C c with a new value for the constant c, such as c D 2 or c D 3.

Example 2.3.23 Let us factor n D pq D 1927 by the Pollard rho algorithm. We
summarize the computation in the following table.

i 0 1 2 3 4 5 6 7

ai 2 5 26 677 1631 902 411 1273

bi 2 26 1631 411 1850 1005 205 535

di � 1 1 1 1 1 1 41

Therefore n has the prime factor 41, and by division we obtain n D 41 � 47.

Can you guess where the name “rho algorithm” comes from? This is not exactly
a million dollar question, but still the answer is not obvious. Let us return to
Example 2.3.23 and compute the ai modulo the prime factor 47. This initially
yields the terms 2; 5; 26; 19; 33; 9; 35; 4; 17; 8; 18; 43; 17.From then on the sequence
cycles since a12 � a8 � 17 .mod 47/. If you picture the situation starting for
example from 19 (see Fig. 2.5), then you see the Greek letter rho appearing! No
kidding, this is the reason for the name of the algorithm.
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Fig. 2.5 The Pollard rho
algorithm
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2.4 Cryptosystems Based on Discrete Logarithms

2.4.1 The Cryptosystems

The factorization problem for large integers is not the only number-theoretic
problem that serves as the basis for a public-key cryptosystem. The discrete
logarithm problem also gets top billing in the area. Let us introduce the discrete
logarithm function for finite fields without further ado. A crucial role is played by
the concept of a primitive element of a finite field (see Definition 1.4.34).

Definition 2.4.1 Let Fq be a finite field and let g 2 F
�
q be a primitive element of Fq.

For each a 2 F
�
q , the unique integer h with 0 � h � q � 2 such that gh D a is called

the discrete logarithm (or the index) indg.a/ of a to the base g.

Example 2.4.2 Note that 2 2 F
�
5 is a primitive element of F5, and in this case the

discrete logarithm has the following values:

ind2.1/ D 0; ind2.2/ D 1; ind2.3/ D 3; ind2.4/ D 2:

It would of course be more natural to denote the discrete logarithm function
by “log”, but since this notation is already reserved for the logarithm function in
calculus, we use “ind” instead. The discrete logarithm problem is the problem of
computing indg.a/ for a finite field Fq of large order q. There are easily obtained
values of the discrete logarithm like indg.1/ D 0 and indg.g/ D 1, but in general the
discrete logarithm problem is believed to be difficult. In fact, practical experience
shows that the discrete logarithm problem for Fq is about as hard as factoring an
integer that has roughly the same size as q.
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The discrete logarithm for Fq has similar properties as the ordinary logarithm, but
identities have to be replaced by congruences modulo q � 1. In detail, if a; b 2 F

�
q

and n 2 N, then

indg.ab/ � indg.a/C indg.b/ .mod q � 1/;

indg.a
n/ � n indg.a/ .mod q � 1/:

If the discrete logarithm problem for Fq is presumed to be difficult, then we can
view the discrete exponential function h 2 Zq�1 7! gh 2 F

�
q as a one-way function

(compare with Definition 2.3.2). Note that the computation of gh, even for very large
exponents h, can be carried out quickly by Algorithm 2.3.9. Therefore the discrete
exponential function can serve as a basis for public-key cryptosystems.

The first cryptographic scheme of this type that we discuss (and also historically
the first) is actually not a public-key cryptosystem for encryption, but a key-
exchange (or key-agreement) scheme which can be part of a hybrid cryptosystem
(see Sect. 2.3.1). This scheme was introduced in the seminal paper of Diffie and
Hellman [39]. The objective is to exchange (or agree on) a cryptographic key, for
instance for a symmetric block cipher, over an insecure channel. All participants of
a communication system share a large finite field Fq and a primitive element g of
Fq. Let us describe how the participants Alice and Bob establish a common key.

Algorithm 2.4.3 (Diffie-Hellman Key Exchange) Alice and Bob want to estab-
lish a common key, given the large finite field Fq and the primitive element g of Fq.

Step 1: Alice chooses a random integer h with 2 � h � q � 2 and Bob chooses a
random integer k with 2 � k � q � 2.

Step 2: Alice sends gh 2 Fq to Bob over the channel, while Bob sends gk 2 Fq to
Alice over the channel.

Step 3: The common key is ghk 2 Fq, which Alice computes as .gk/h and Bob
computes as .gh/k.

An observer of the communication sees gh and gk going over the channel. If he
is a malicious adversary, then he will try to figure out ghk, given gh and gk. But
according to the current know-how, the only way to do that is to first compute h and
k, and so he has to solve the discrete logarithm problem for Fq. If q is large (say
q has at least 300 decimal digits), then the Diffie-Hellman key-exchange scheme is
considered secure.

There is also a public-key cryptosystem based on the presumed difficulty of the
discrete logarithm problem, but it was designed almost a decade after the Diffie-
Hellman paper [39] since it is not so obvious here how to build trapdoor information
into the system. Actually, a new idea was needed, namely to use a random quantity
in the encryption algorithm. Just like the work of Diffie, this cryptosystem is also
the achievement of a graduate student at Stanford University.

Our typical user Bob chooses a large finite field Fq and a primitive element g
of Fq. Then he selects an integer h with 2 � h � q � 2 and efficiently computes
a D gh 2 F

�
q by Algorithm 2.3.9.
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Algorithm 2.4.4 (ElGamal Cryptosystem) The public key of Bob is the ordered
triple .q; g; a/ and the private key of Bob is h D indg.a/. The plaintext source is F�

q .

Encryption: Suppose that Alice wants to send a plaintext m 2 F
�
q to Bob. She

looks up Bob’s public key .q; g; a/, chooses a random integer r with 2 � r �
q � 2, and computes c1 D gr 2 F

�
q and c2 D mar 2 F

�
q . The ordered pair .c1; c2/

is sent as the ciphertext to Bob.
Decryption: Upon receiving the ciphertext .c1; c2/, Bob computes c2.ch

1/
�1 D m

and thus recovers the plaintext.

The security analysis for the ElGamal cryptosystem is similar to that for the
Diffie-Hellman key-exchange scheme. The result is that this public-key cryptosys-
tem is considered secure if q has at least 300 decimal digits.

Remark 2.4.5 In practical implementations of the Diffie-Hellman key-exchange
scheme and the ElGamal cryptosystem, one usually takes for Fq a finite prime field
Fp with a prime number p (see Theorem 1.4.5 and Remark 1.4.6). The primitive
element g then becomes a primitive root modulo p. However, for the theory it does
not make any difference whether we use a general finite field or a finite prime field.
This brings to mind a famous saying by the legendary baseball coach Yogi Berra:
“In theory there is no difference between theory and practice, in practice there is.”

2.4.2 Computing Discrete Logarithms

For special prime powers q or prime powers q that are not too large, discrete
logarithms for Fq can be computed. We present three algorithms of this type.

A first rather simple algorithm for computing discrete logarithms for Fq uses
about q1=2 operations in Fq. It is known by the colorful name baby-step giant-step
algorithm. For all c 2 F

�
q and all integers n � 0, we use the notation c�n WD .c�1/n.

Algorithm 2.4.6 (Baby-Step Giant-Step Algorithm) Let a 2 F
�
q and let g be a

primitive element of the finite field Fq. Compute indg.a/.

Step 1: Put m WD dp
q � 1e and set up the table (this is the baby step)

j 0 1 2 : : : m � 1
gj g0 g1 g2 . . . gm�1

Step 2: Compute g�m and put a0 WD a.
Step 3: For i D 0; 1: : : : ;m � 1 do the following:

(a) Check whether ai occurs in the second row of the above table and read the
corresponding j above it.

(b) If yes, put indg.a/ D im C j and stop. Otherwise put aiC1 WD aig�m (this is
the giant step) and return to (a).
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It remains to show that the algorithm really calculates the discrete logarithm
indg.a/. By division with remainder, we can write indg.a/ D im C j with integers
0 � i � m � 1 and 0 � j � m � 1. Then from gimCj D a we obtain

gj D ag�im D a0g
�im D a1g

�.i�1/m D � � � D ai�1g�m D ai;

and so in Step 3(a) the element ai corresponds to j.
Since a discrete logarithm h D indg.a/ for Fq satisfies 0 � h � q � 2, it suffices

to compute h modulo q � 1. The case q D 2 is trivial, and so we can assume that
q � 3. By the Chinese remainder theorem (see Theorem 1.2.9), we can proceed by
determining h modulo all prime powers in the canonical factorization of q � 1. This
is the strategy of the Silver-Pohlig-Hellman algorithm. Let

q � 1 D
kY

jD1
p

ej

j

be the canonical factorization of q � 1 and let a 2 F
�
q and a primitive element g of

Fq be given.
We take a typical prime factor p D pj of q � 1. The idea is to first compute the

least residue of h D indg.a/modulo p, which is h0, say. Then h D h0 C kp for some
k 2 Z, and so

q � 1
p

h � q � 1
p

.h0 C kp/ � q � 1

p
h0 .mod q � 1/:

Therefore

g.q�1/h0=p D g.q�1/h=p D .gh/.q�1/=p D a.q�1/=p:

Thus, we compute b WD g.q�1/=p and then b0; b1; b2; : : : until we get a.q�1/=p. This
will happen at bh0 , where 0 � h0 � p � 1, and so h0 is determined.

If there are higher powers of p dividing q � 1, say p2 divides q � 1, then we
determine the least residue of h modulo p2, which has the form h0 C h1p with some
h1 2 Zp. To do this, we put a1 D ag�h0 and compute the exponent h1 2 Zp such

that bh1 D a.q�1/=p2

1 . For even higher powers of p dividing q � 1, we continue this
procedure in a similar way. Finally, h is determined modulo all prime powers in the
canonical factorization of q � 1, and so h is uniquely determined by the Chinese
remainder theorem.

In each of the above steps we have to compute at worst b0; b1; : : : ; bp�1, so if
all prime factors p of q � 1 are relatively small, then the Silver-Pohlig-Hellman
algorithm is feasible.

Example 2.4.7 Here is a toy example for the Silver-Pohlig-Hellman algorithm with
q D 19, g D 2, and a D 6. Note that q � 1 D 18 D 2 � 32. We first consider the
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more involved case of the prime factor p D 3. We determine b D g.q�1/=p from
b � 26 � 64 � 7 .mod 19/, and so b D 7 2 F19. Next we compute a.q�1/=p by

a.q�1/=p � 66 � .62/3 � .�2/3 � �8 � 11 .mod 19/;

and so a.q�1/=p D 11 2 F19. Now we calculate b0; b1; b2; : : : in F19 until we obtain
a.q�1/=p. We get b0 D 1, b1 D 7, b2 D 11, and so h0 D 2. Since 32 divides q � 1,
another step is needed. If h D indg.a/, then

h � h0 C h1p � 2C 3h1 .mod 9/:

Note that a1 D ag�h0 D 11 2 F19 and that h1 2 Z3 is the exponent such that

bh1 D a.q�1/=p2

1 D 112 D 7 2 F19. Hence h1 D 1 since b D 7. Therefore h �
2C 3 � 1 � 5 .mod 9/. The case of the prime factor p D 2 is easy since now

a.q�1/=p � 69 � .62/4 � 6 � .�2/4 � 6 � 1 .mod 19/;

and so h � 0 .mod 2/. Since 0 � h � 17, the congruence h � 5 .mod 9/ implies
that h D 5 or 14, and so h � 0 .mod 2/ yields h D indg.a/ D ind2.6/ D 14.

Finally, we present a somewhat more elaborate algorithm for computing discrete
logarithms, the index-calculus algorithm. We restrict the discussion to the case of a
finite prime field Fp, but see Remark 2.4.9 below. Let p be a prime number and let g
be a primitive root modulo p (or equivalently a primitive element of Fp). Let B be an
integer with 2 � B < p and recall the notion of a B-smooth integer from Sect. 2.3.3.

In the first step of the index-calculus algorithm, we determine indg.r/ for all
prime numbers r � B. To do this, we choose a random integer m with 1 � m � p�2
and compute the least residue of gm modulo p. If this least residue is B-smooth, then

gm �
Y

r�B

re.r/ .mod p/:

Otherwise, we pick a new m. By the rules for discrete logarithms, we obtain

m �
X

r�B

e.r/ indg.r/ .mod p � 1/:

This is a linear congruence for the unknowns indg.r/. By producing sufficiently
many of these congruences, we hope that the resulting system will have a unique
solution modulo p � 1.

In the second step of the index-calculus algorithm, let a be an integer with
gcd.a; p/ D 1 for which we want to calculate indg.a/. (Strictly speaking, we are
really talking about the least residue of a modulo p, viewed as an element of F�

p , but
this does not make any difference in the computations.) We choose a random integer
s with 0 � s � p � 2 and compute the least residue of ags modulo p. If this least
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residue is B-smooth, then

ags �
Y

r�B

rf .r/ .mod p/:

Otherwise, we pick a new s. By the rules for discrete logarithms, we get

indg.a/C s �
X

r�B

f .r/ indg.r/ .mod p � 1/:

Since all discrete logarithms indg.r/ for prime numbers r � B have been computed
in the first step, this determines indg.a/ uniquely.

The index-calculus algorithm is feasible if p is not too large, since then there is a
higher chance that the least residues modulo p we have to calculate are B-smooth.

Example 2.4.8 We compute ind2.6/ in Example 2.4.7 by the index-calculus algo-
rithm. Since a D 6 D 2 � 3, it suffices to take B D 3. In the first step, we have
to compute ind2.2/ and ind2.3/. Clearly ind2.2/ D 1. For the determination of
ind2.3/, we are obliged to find a suitable power gm D 2m for which the least residue
modulo 19 is 3-smooth. Now the least residues of 2, 22, 23, and 24 modulo 19
are 3-smooth, but they do not involve the number 3. Next 25 � 13 .mod 19/,
26 � 7 .mod 19/, and 27 � 14 .mod 19/ yield least residues modulo 19 that
are not 3-smooth. But 28 � 9 .mod 19/ has a 3-smooth least residue modulo
19. Taking the discrete logarithm to the base 2 in 28 D 32 in F19, we obtain
8 � 2 ind2.3/ .mod 18/, and so ind2.3/ � 4 .mod 9/. The value ind2.3/ D 4

is not possible since 24 � 16 6� 3 .mod 19/, and so necessarily ind2.3/ D 13. The
second step of the index-calculus algorithm is easy in this case. We simply choose
s D 0, then ags � 6 � 2 � 3 .mod 19/, and taking the discrete logarithm to the base
2 we obtain

indg.a/ � ind2.2 � 3/ � ind2.2/C ind2.3/ � 14 .mod 18/:

Thus, the final answer is indg.a/ D ind2.6/ D 14 as in Example 2.4.7.

Remark 2.4.9 For a finite field Fq where q is not a prime number, say q D pk with
a prime number p and an integer k � 2, there is also an index-calculus algorithm.
The computations are then carried out not in Z, but in the polynomial ring FpŒx	.
Furthermore, Fq is identified with the residue class field FpŒx	=.v.x//, where v.x/ 2
FpŒx	 is irreducible over Fp with deg.v.x// D k (compare with Sect. 1.4.3). We refer
to [102, Section 9.3] for details of the algorithm.
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2.5 Digital Signatures

2.5.1 Digital Signatures from Public-Key Cryptosystems

Let us consider confidential communication between two users A and B with
encryption by a public-key cryptosystem. Since the encryption key of B is public,
anybody can send an encrypted message to B. How can B be sure that the message
really came from A? This question is very important in highly sensitive areas such as
legal and financial matters. The recipient (for example a bank) has to be absolutely
sure that the message (asking for example for a money withdrawal) comes from
an authorized person (for example the owner of the bank account). Conventionally,
one uses handwritten signatures for this purpose. In electronic communications one
employs digital signatures. Thus, digital signatures are essential in e-banking, e-
commerce, e-government, and anything else starting with “e-”.

Digital signatures are provided by signature schemes. A signature scheme
consists of two algorithms:

(i) a signing algorithm sigK , depending on a signature key K, which computes
for each possible message m a corresponding signature s D sigK.m/ that is
appended to the message;

(ii) a verification algorithm verK which checks, for all possible messages m and all
possible signatures s, whether s D sigK.m/. Thus,

verK.m; s/ D
(

true if s D sigK.m/;

false if s ¤ sigK.m/:

The signing and verification algorithms should be fast. The signature key K,
and so the function sigK , are secret, whereas verK is a public function, with a
public verification key K, so that anybody can check digital signatures. It should
be computationally infeasible to forge a digital signature on a message m. That is,
given m, only the authorized user A should be able to compute the signature s such
that verK.m; s/ D true.

It is worth emphasizing that a handwritten signature is independent of the
document to be signed, whereas a digital signature depends on the message m. The
reason for the latter is that the physical link between document and handwritten
signature has to be replaced by a logical link between message and digital signature.

Certain public-key cryptosystems can be used to produce digital signatures. The
public-key cryptosystem must satisfy the following condition, in addition to PKC1,
PKC2, and PKC3 in Sect. 2.3.1.

PKC4: The decryption algorithm D can be applied to every plaintext M and
E.D.M// D M for all M.

Note that normally the decryption algorithm is applied only to ciphertexts,
so PKC4 is an additional property that needs to be checked. An example of a
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public-key cryptosystem that does not satisfy PKC4 is the ElGamal cryptosystem
in Algorithm 2.4.4, since there the plaintexts are elements of F�

q and the ciphertexts
are ordered pairs of elements of F�

q .
If a public-key cryptosystem satisfies PKC4, then we get a signature scheme as

follows. We consider again our two acquaintances Alice and Bob. Suppose that Bob
wants to sign the message M that he sends to Alice. Then the following two steps
are executed, with the notation in Sect. 2.3.1.

(i) Signing algorithm: Bob takes his secret decryption key K0 and computes the
message-dependent signature S D DK0.M/.

(ii) Verification algorithm: Alice looks up the public encryption key K of Bob. Then
she takes the signature S and computes EK.S/ D EK.DK0.M//. If the result is
M, then the signature is verified, otherwise it is rejected. Alice can be satisfied
that the message M came from Bob since no other person would have used the
secret key K0 of Bob to compute S D DK0.M/.

An important example is provided by the RSA cryptosystem. Remember that
we have to check the property PKC4 above. In the RSA cryptosystem, decryption
is achieved by the map that sends c 2 Zn to the least residue of cd modulo n.
Obviously, this decryption algorithm can be applied to every plaintext m 2 Zn.
Furthermore, the corresponding encryption algorithm computes c � me .mod n/
with ed � 1 .mod �.n//. Then

E.D.m// � E.md/ � .md/e � med � m .mod n/

for all m 2 Zn, where the last step follows by Lemma 2.3.6. Thus, the RSA
cryptosystem satisfies the property PKC4 and can be used for digital signatures.

In order to set up the RSA signature scheme, the prime numbers p and q and the
integers n D pq, e, and d are chosen as in the RSA cryptosystem, and the public and
private keys are now those of Bob in the role of the signer.

Algorithm 2.5.1 (RSA Signature Scheme) The public key of Bob is the ordered
pair .n; e/ and the private key of Bob is the ordered triple .p; q; d/.

Signing: Bob signs a plaintext m 2 Zn by computing s 2 Zn with s � md .mod n/
and sends the ordered pair .m; s/ to Alice.

Verification: Upon receiving .m; s/, Alice looks up Bob’s public key .n; e/,
computes the least residue of se modulo n, and checks whether it agrees with m.

Clearly, the security level of the RSA signature scheme is exactly the same as
for the RSA cryptosystem. Note that we have just turned the tables: encryption has
become verification and decryption has become signing.

The ElGamal cryptosystem cannot be used directly for digital signatures since we
have already noted that it does not satisfy PKC4, but there is a slight modification
that works. In order to set up the ElGamal signature scheme, the signer Bob chooses
a large prime number p, a primitive root g modulo p, and an integer h with 2 � h �
p � 2. Then Bob computes a 2 Zp with a � gh .mod p/.
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Algorithm 2.5.2 (ElGamal Signature Scheme) The public key of Bob is the
ordered triple .p; g; a/ and the private key of Bob is h.

Signing: Bob signs a plaintext m 2 Zp by choosing a random integer r with
2 � r � p � 2 and gcd.r; p � 1/ D 1, computing b 2 Zp with b � gr .mod p/,
and sending the ordered triple .m; b; c/ to Alice, where c 2 Zp�1 is the unique
solution of the congruence

rc � m � bh .mod p � 1/:

Verification: Upon receiving .m; b; c/, Alice looks up Bob’s public key .p; g; a/,
computes the least residue of abbc modulo p, and checks whether it agrees with
the least residue of gm modulo p.

It remains to prove that abbc � gm .mod p/. This holds since

abbc � ghbgrc � ghbgm�bh � gm .mod p/:

As for the ElGamal cryptosystem, the security of the ElGamal signature scheme is
based on the presumed difficulty of the discrete logarithm problem, in this case for
the finite prime field Fp.

In practice, one wants to combine signing and public-key encryption. The crucial
question is about the proper order of these operations: do you first sign or first
encrypt? The answer becomes obvious once you pose the question in the analog
world: when you mail for example a confidential contract like a job contract, would
you first sign the contract and then put it into an envelope that you seal, or would
you put the unsigned contract into an envelope and then sign the sealed envelope?
Consequently, you first sign and then you encrypt the combined plaintext and
signature. The legitimate receiver Alice undoes these operations in the correct order:
she first decrypts and then she verifies the signature attached to the plaintext. If you
carry out these steps in the wrong order, that is, if you first encrypt and then sign,
then an adversary having access to the insecure channel can replace your signature
by his own signature and send the ciphertext-signature pair to Alice. When Alice
applies the verification algorithm of the adversary, everything checks and Alice will
conclude that the message originated with the adversary.

2.5.2 DSS and Related Schemes

The Digital Signature Standard (DSS) is a signature scheme that was adopted as
a standard by the U.S. Government in 1994, thus sanctioning a design by one of
its own agencies. The DSS is a modification of the ElGamal signature scheme in
Algorithm 2.5.2.

Note that the signature in the ElGamal signature scheme is an ordered pair .b; c/,
where b and c are integers modulo p and p � 1, respectively. In 1994 it was already
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necessary to choose p as a 512-bit prime number in order to make the ElGamal
signature scheme secure. Thus, an ElGamal signature can be expected to have up to
1024 bits. This is too long for typical applications such as smart cards. Nowadays
it would be preferable to choose a 1024-bit prime modulus p, leading to even
longer 2048-bit ElGamal signatures in the worst case. For this reason, the ElGamal
signature scheme was not used directly.

The DSS signs 160-bit messages with 320-bit signatures, but the computations
are performed with a prime modulus p that has between 512 and 1024 bits. This
is achieved by replacing the primitive root g modulo p in the ElGamal signature
scheme by a nonzero integer g1 2 Zp such that the multiplicative order of g1 modulo
p is equal to p1, where p1 is a 160-bit prime number dividing p�1. If a primitive root
g modulo p is known, then such an integer g1 can be obtained by the congruence
g1 � g.p�1/=p1 .mod p/. The signer Bob chooses an integer h with 2 � h � p1 � 2

and computes a 2 Zp with a � gh
1 .mod p/.

Algorithm 2.5.3 (Digital Signature Standard) The public key of Bob is the
ordered quadruple .p; p1; g1; a/ and the private key of Bob is h.

Signing: Bob signs a 160-bit plaintext m by choosing a random integer r with
2 � r � p1 � 2, computing the least residue of gr

1 modulo p, and then computing
the least residue b of that number modulo p1. Next Bob determines the unique
solution c 2 Zp1 of the congruence

rc � m C bh .mod p1/:

In the rare case where c D 0, a new random integer r is chosen. Finally Bob
sends the ordered triple .m; b; c/ to Alice.

Verification: Upon receiving .m; b; c/, Alice looks up Bob’s public key
.p; p1; g1; a/ and finds the solutions e1; e2 2 Zp1 of the congruences ce1 �
m .mod p1/ and ce2 � b .mod p1/. Then she computes the least residue of ge1

1 ae2

modulo p, then the least residue of that number modulo p1, and finally she checks
whether the latter number agrees with b.

It remains to prove that ge1
1 ae2 � gr

1 .mod p/. Note that

ge1
1 ae2 � ge1

1 ghe2
1 � ge1Che2

1 .mod p/:

Furthermore,

c.e1 C he2/ � m C bh � cr .mod p1/:

From gcd.c; p1/ D 1 we obtain e1 C he2 � r .mod p1/, and since the multiplicative
order of g1 modulo p is p1, we get indeed ge1

1 ae2 � gr
1 .mod p/.

Remark 2.5.4 We can sign only 160-bit messages with the DSS, but in practice
messages can be megabytes in size. This raises the question of how to sign long
messages with the DSS. Of course, we could split up a long message into 160-bit
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chunks and then sign each chunk separately. But this has several disadvantages: (i)
the resulting signature is enormous, namely about twice as long as the message; (ii)
the communication is slowed down by the time it takes to compute many signatures;
(iii) a loss of security is possible since an adversary could rearrange or remove
various chunks of a signed message and the resulting message plus signature would
still be verified. The preferred solution for the signing of long messages with the
DSS is to “hash” the message to a 160-bit message digest and then to sign this
message digest with the DSS. In the communication, the original message is sent
together with the signed message digest. For the purpose of “hashing”, we need a
hash function, that is, a function mapping long strings of symbols into much shorter
strings of symbols. In the present case, the hash function must be publicly known
so that everyone can compute the message digest in order to verify the signature.
For security reasons, hash functions with special cryptographic properties have to
be used. We refer to [115, Chapter 9] and [159, Chapter 6] for information on hash
functions.

It seems that the DSS is unnecessarily complicated (maybe this is typical of
something produced by a huge bureaucracy), and so several simpler digital signature
schemes using the same basic idea were proposed. We describe a particularly
elegant alternative, the Nyberg-Rueppel signature scheme. The setup for the Nyberg-
Rueppel signature scheme is the same as for the DSS, except that there are no
constraints on the sizes of p and p1 and that the value of p1 need not be part of
Bob’s public key.

Algorithm 2.5.5 (Nyberg-Rueppel Signature Scheme) The public key of Bob is
the ordered triple .p; g1; a/ and the private key of Bob is h.

Signing: Bob signs a plaintext m 2 Fp by choosing a random integer r with
2 � r � p1 � 2, computing b D mg�r

1 2 Fp, and sending the ordered triple
.m; b; c/ to Alice, where c D bh C r 2 Fp1 .

Verification: Upon receiving .m; b; c/, Alice looks up Bob’s public key .p; g1; a/,
computes bgc

1a
�b 2 Fp, and checks whether it agrees with m.

It remains to prove that bgc
1a

�b D m in Fp. This holds since

bgc
1a

�b D bgbhCr
1 g�bh

1 D bgr
1 D m:

2.6 Threshold Schemes

The need for threshold schemes is best explained by an example. The following is
a standard operating principle in banks (the “four-eyes principle”): in order to open
the bank’s vault, at least two senior employees have to cooperate; one person is
not enough. Thus, we require a scheme to distribute the vault’s lock combination
such that two authorized persons can generate the lock combination, but one person
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cannot. The four-eyes principle is used also in other sensitive areas, such as the
control of nuclear weapons.

In a more general and abstract setting, the relevant cryptographic scheme is
described as follows. Let n be the number of users of the scheme. Let S be the
secret that needs to be protected, for example the key for a cryptosystem or a
lock combination. The n users receive data S1; : : : ; Sn, respectively, which may be
thought of as partial information about S and are called the “shares”. The idea is
that certain coalitions of users can reconstruct the secret S from their shares. Such
a general scheme is called a secret-sharing scheme. The shares are customarily
generated by a trusted authority which also distributes them to the users. A threshold
scheme is a special type of secret-sharing scheme.

Definition 2.6.1 Let k and n be integers with 2 � k � n. A secret-sharing scheme
with threshold k and n users is called a .k; n/-threshold scheme if it has the following
properties:

(i) any k or more users can reconstruct the secret from their shares;
(ii) for k � 1 or fewer users it is impossible to reconstruct the secret.

Remark 2.6.2 In the above example from banking, the threshold is k D 2 and n
is the number of employees authorized to open the vault. Thus, we need a .2; n/-
threshold scheme to implement the four-eyes principle.

Remark 2.6.3 Here is a simplistic threshold scheme, say for k D 2 and n D 2.
Let us be concrete and assume that the lock combination of the vault consists
of six decimal digits. We give the first three digits to the president of the bank
and the other three digits to the vice-president. On first glance, it looks as if the
definition of a .2; 2/-threshold scheme were satisfied. However, if say the vice-
president is dishonest, then he has to guess only the first three digits of the lock
combination rather than the full six digits. It is feasible for him to try the 103

possibilities during a long night session or over a weekend, but it is impossible
for him to try 106 possibilities unless he is unbelievably lucky and beats the chance
of 10�6 within a manageable time span. Hence this simplistic scheme does not work
since it dramatically reduces the time that is needed for an exhaustive search. In a
well-designed threshold scheme, the shares should contain about as much unknown
information or uncertainty as the secret.

Example 2.6.4 Threshold schemes can be used also to protect against loss of
information. If S is a piece of information that we want to protect, then we can
use a .k; n/-threshold scheme to distribute partial information about S to n users.
Even if n � k of these shares are lost or destroyed, we can still recover S from
the remaining k shares. The threshold k also allows up to k � 1 of the shares to
be disclosed by breaches of security, without compromising S. This has obvious
applications in highly exposed or dangerous environments such as a battle field.

We describe a number-theoretic .k; n/-threshold scheme, the Shamir threshold
scheme, which is named after its designer Adi Shamir (who is also the S in RSA).
Let p be a large prime number. We identify the secret S with an element of the
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finite prime field Fp. Similarly, we identify the n users of the scheme with n distinct
nonzero elements c1; : : : ; cn of Fp. For this we must of course take p > n.

Algorithm 2.6.5 (Shamir Threshold Scheme) Let n � 2 be the number of users,
let p > n be a large prime number, let c1; : : : ; cn 2 F

�
p be the user identifiers, let k

be the threshold, and let S 2 Fp be the secret. A trusted authority chooses random
elements a1; : : : ; ak�1 2 Fp and sets up the polynomial

f .x/ D ak�1xk�1 C � � � C a1x C S 2 FpŒx	

of degree at most k � 1. The shares are obtained by Si D f .ci/ for 1 � i � n and
then distributed to the users.

In order to prove that this is indeed a .k; n/-threshold scheme, we need to verify
two properties: (i) any k function values of f .x/ determine f .x/ uniquely; (ii) k �
1 function values of f .x/ do not determine f .x/. The second property is easy: if
f .b1/; : : : ; f .bk�1/ are given function values, then the polynomial

g.x/ D f .x/C c.x � b1/ � � � .x � bk�1/ 2 FpŒx	

with an arbitrary c 2 Fp has degree at most k � 1 and the same function values at
b1; : : : ; bk�1, that is, g.bj/ D f .bj/ for 1 � j � k � 1. Note also that S D f .0/ and

g.0/ D S C c.�b1/ � � � .�bk�1/ D S C cd

for some nonzero d 2 Fp if b1; : : : ; bk�1 are nonzero, and so g.0/ contains no
information about S since S C cd runs through Fp if c runs through Fp.

For the verification of the first property and the reconstruction of the secret, there
are two methods that we can use. In the first method, we start from the given data
f .b1/; : : : ; f .bk/ for distinct b1; : : : ; bk 2 Fp, say f .bj/ D fj 2 Fp for 1 � j � k. By
writing down f .x/ in detail, we get

ak�1bk�1
j C � � � C a1bj C S D fj for 1 � j � k:

This can be viewed as a system of k linear equations for the k unknowns
ak�1; : : : ; a1; S. The determinant D of the coefficient matrix is a Vandermonde
determinant (we assume here that you are familiar with determinants), and by the
well-known formula for Vandermonde determinants we obtain

D D
Y

1�h<j�k

.bj � bh/:

Since bj � bh ¤ 0 for 1 � h < j � k, we have D ¤ 0, and so the system of linear
equations can be solved uniquely in Fp.
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In the second method, we are again given f .bj/ D fj 2 Fp for 1 � j � k. Here
f .x/ is explicitly computed by the Lagrange interpolation formula

f .x/ D
kX

jD1
fj

kY

hD1
h¤j

.bj � bh/
�1.x � bh/:

The secret S is obtained from S D f .0/. It is easy to check that f .bj/ D fj for
1 � j � k, since the above product over h is 1 at x D bj and 0 at x D br for
r ¤ j. The uniqueness of f .x/ can be proved independently of the first method, for
if v.x/ 2 FpŒx	 is an arbitrary polynomial of degree � k � 1 with v.bj/ D fj for
1 � j � k, then .v � f /.bj/ D 0 for 1 � j � k. Thus, the polynomial v.x/ � f .x/
of degree at most k � 1 has k distinct roots b1; : : : ; bk. But this is possible only if
v.x/ � f .x/ is the zero polynomial (see Theorem 1.4.27), and then v.x/ D f .x/.

It is important to observe that the security of the Shamir threshold scheme does
not rely on any unproved assumptions, unlike that of many other cryptographic
schemes. In other words, the Shamir threshold scheme offers unconditional security.

The Shamir threshold scheme has several other nice properties. For instance, it is
easy to add new users without changing the shares of the existing users. The trusted
authority just chooses a nonzero identifier cnC1 2 Fp that has not been utilized
before and assigns the share SnC1 D f .cnC1/ to the .n C 1/st user. This does not
affect the existing shares. Similarly, we can implement various levels of control. If
the user Alice is higher up in the hierarchy, she can be provided with multiple shares
corresponding to several different user identifiers. This gives more weight to Alice
in coalitions of users.

On the other hand, the Shamir threshold scheme can be applied only once with
a fixed set of shares. As soon as the members of a coalition of at least k users have
disclosed their shares to recover the secret, these shares and the polynomial f .x/ are
compromised. The trusted authority then has to choose a new random polynomial
f .x/ and distributes new shares accordingly.

2.7 Primality Tests

2.7.1 Fermat Test and Carmichael Numbers

Large prime numbers are needed in several cryptographic schemes, as we have
seen in this chapter, and are also required in pseudorandom number generation
(see Chap. 5). This raises the issue of how to decide whether a given large
integer is a prime number or a composite number, and this is what primality
tests are all about. Because of their importance for areas such as cryptography,
there is an extensive literature on primality tests. Exemplary treatments of the
subject are given in the standard monographs of Bach and Shallit [6], Crandall and
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Pomerance [29], and Riesel [168]. Just to satisfy your curiosity, we briefly discuss
some classical primality tests and we mention an important more recent achievement
in Remark 2.7.12.

There is a basic dichotomy between probabilistic primality tests (also called
pseudoprime tests) and deterministic primality tests. In a probabilistic primality test,
as in any probabilistic algorithm, we are allowed to make random choices in various
steps of the algorithm. A typical probabilistic algorithm (though for factoring and
not for primality testing) is Algorithm 2.3.18. Probabilistic primality tests tend
to be faster, but there is no absolute guarantee of success. Indeed, there can be
composite numbers that pass the primality test even after many random choices
in the algorithm.

A simple deterministic primality test is based on the observation that is as old
as the hills, namely that a composite number n has a divisor d with 2 � d � n1=2.
Thus, we test whether any of the integers 2; 3; : : : ; bn1=2c divides the given integer
n � 4, and if this is not the case, then we know for sure that n is a prime number.
However, this primality test is futile for integers n of cryptographic relevance, that
is, for n of the order of magnitude 10150 or even larger. We need vastly more efficient
algorithms for such n.

When designing a primality test, whether deterministic or probabilistic, it is a
good idea to look for a condition that a prime number must necessarily satisfy. If this
condition fails to hold for an integer n � 2, then we can infer that n is composite.
A simple and elegant necessary condition for primality is given by Fermat’s little
theorem (see Corollary 1.2.16), and this is the basis for the following primality test.
Recall that Fermat’s little theorem says that if n is a prime number, then an�1 �
1 .mod n/ for all a 2 Z with gcd.a; n/ D 1. Thus, if an arbitrary integer n � 2

is given and we can find an integer a with an�1 6� 1 .mod n/ and gcd.a; n/ D 1,
then n must be composite. The Fermat test proceeds by randomly picking integers
a with gcd.a; n/ D 1, where we can assume also that 1 � a � n � 1, and checking
whether an�1 � 1 .mod n/ or not. If n is very large, then the power an�1 can be
computed by the efficient square-and-multiply algorithm (see Algorithm 2.3.9). We
may of course be tempted to conclude that if an�1 � 1 .mod n/ for all a 2 Z with
gcd.a; n/ D 1, then n is a prime number. But we are in for a bad surprise!

Example 2.7.1 Let n D 561 D 3 � 11 � 17. Now we take an arbitrary a 2 Z with
gcd.a; 561/ D 1. Then gcd.a; 3/ D gcd.a; 11/ D gcd.a; 17/ D 1, and so Fermat’s
little theorem yields a2 � 1 .mod 3/, a10 � 1 .mod 11/, and a16 � 1 .mod 17/.
By raising these congruences to suitable powers, we obtain a560 � 1 .mod 3/,
a560 � 1 .mod 11/, and a560 � 1 .mod 17/, and so a560 � 1 .mod 561/ for
all a 2 Z with gcd.a; 561/ D 1. This means that no matter which integer a with
gcd.a; n/ D 1 we try, the condition an�1 � 1 .mod n/ is satisfied for n D 561, but
nevertheless 561 is a composite number. Thus, the Fermat test fails for this n. We
give a special name to these bad guys n.

Definition 2.7.2 A composite number n satisfying an�1 � 1 .mod n/ for all a 2 Z

with gcd.a; n/ D 1 is called a Carmichael number.
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Therefore 561 is a Carmichael number and it is in fact the smallest Carmichael
number. Here are some properties of Carmichael numbers.

Proposition 2.7.3 Every Carmichael number is squarefree, that is, it is not divisible
by the square of a prime number.

Proof Assume that n is a Carmichael number with p2 dividing n for some prime
number p. The multiplicative group Rp2 is cyclic by [151, Theorem 2.41], and so
there exists an element g 2 Rp2 of order jRp2 j D �.p2/ D p.p � 1/. By the Chinese
remainder theorem (see Theorem 1.2.9), we can choose a 2 Z with a � g .mod p2/
and gcd.a; n/ D 1. Then 1 � an�1 � gn�1 .mod p2/, and so p.p � 1/ divides n � 1

by Lemma 1.3.10. In particular, p divides n � 1, a contradiction. �
Theorem 2.7.4 Let n be a squarefree composite number. Then n is a Carmichael
number if and only if p � 1 divides n � 1 for every prime factor p of n.

Proof If p � 1 divides n � 1 for every prime factor p of n, then n is a Carmichael
number by the same argument as in Example 2.7.1. Conversely, suppose that n is a
Carmichael number and let p be a prime factor of n. For a primitive root g modulo
p, we choose a 2 Z with a � g .mod p/ and a � 1 .mod n=p/ by the Chinese
remainder theorem. Then gcd.a; n/ D 1, hence gn�1 � an�1 � 1 .mod p/, and so
p � 1 divides n � 1 by Lemma 1.3.10. �

By using Theorem 2.7.4, you can check again that 561 D 3 � 11 � 17 is a
Carmichael number. In the same way, you can verify that 1729 D 7 � 13 � 19 is
a Carmichael number. Fans of mathematical anecdotes know 1729 as Hardy’s cab
number. Here is the story. The famous number theorist Hardy, the first author of
the book [61] and the author of A Mathematician’s Apology (see the preface of the
present book), took a cab to visit his hospitalized friend Ramanujan, another famous
number theorist. Being an avid collector of numbers, Hardy noted the cab number
and told Ramanujan by way of conversation that he had come in a cab with the
dull number 1729. Ramanujan, an advocate of equal opportunity for all numbers,
protested and pointed out that 1729 is interesting because it is the smallest positive
integer that can be expressed in two different ways as the sum of two cubes of
positive integers, namely 1729 D 123 C 13 D 103 C 93. But Ramanujan failed to
mention that 1729 is interesting as well because it is the third Carmichael number (in
the natural order). His excuse is that he was sick. By the way, the second Carmichael
number (in the natural order) is 1105 D 5 � 13 � 17.

You have noticed that each of the three concrete Carmichael numbers we have
mentioned has three distinct prime factors. There is a general result behind this
observation.

Proposition 2.7.5 Every Carmichael number has at least three distinct prime
factors.

Proof Each Carmichael number n is squarefree by Proposition 2.7.3. Assume
that n D pq with two primes p < q. Then q � 1 .mod q � 1/, hence
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n � 1 � p � 1 6� 0 .mod q � 1/, and so q � 1 does not divide n � 1. This is a
contradiction to Theorem 2.7.4. �

One could have the vague hope that the existence of Carmichael numbers is a
phenomenon for small integers and that sufficiently large composite numbers are
not Carmichael numbers. But it was shown in the deep paper of Alford, Granville,
and Pomerance [2] that there are infinitely many Carmichael numbers. Thus, we
have to live with Carmichael numbers when performing the Fermat test. If we know
that a given composite number is not a Carmichael number, then the analysis of the
Fermat test is easy.

Proposition 2.7.6 If the composite number n is not a Carmichael number, then
there are at most �.n/=2 different integers a with 1 � a � n �1, gcd.a; n/ D 1, and
an�1 � 1 .mod n/.

Proof The set

Tn D fa 2 Rn W an�1 � 1 .mod n/g 
 Rn D fa 2 Zn W gcd.a; n/ D 1g

is a subgroup of the multiplicative group Rn. Since n is not a Carmichael number,
Tn is a proper subgroup of Rn, and the result follows from Lagrange’s theorem (see
Theorem 1.3.21). �

Remark 2.7.7 If the composite number n is not a Carmichael number, then for a
random choice of a 2 Z with gcd.a; n/ D 1, the probability that an�1 6� 1 .mod n/
is at least 1

2
according to Proposition 2.7.6. Thus, after a few random choices of a it

is detected with high probability that n is composite. For a very large n which is not
a Carmichael number, we can use only a small fraction of the candidates a 2 Rn in
practice, and even if for all these a we have an�1 � 1 .mod n/, there is no guarantee
that n is a prime number, but there is a high probability for it. In this case, the experts
speak of a “probable prime”.

2.7.2 Solovay-Strassen Test

Since the Fermat test fails for the infinitely many Carmichael numbers, we need a
more sophisticated primality test. The test suggested by Solovay and Strassen [190]
is based on the theory of quadratic residues. Since every even integer greater than 3
is composite, we can assume that the number n to be tested for primality is odd.

The necessary condition for primality that we use now is obtained from
Proposition 1.2.23: if n is an odd prime number, then a.n�1/=2 � �

a
n

�
.mod n/ for

all a 2 Z with gcd.a; n/ D 1. The Solovay-Strassen test for an odd integer n � 3 is
performed by randomly picking integers a with gcd.a; n/ D 1 and 1 � a � n � 1

and by checking whether a.n�1/=2 � �
a
n

�
.mod n/ or not. If you are an attentive

reader, then you notice that we have not yet defined the symbol
�

a
n

�
for composite
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numbers n. However, it is a simple step from the Legendre symbol
�

a
p

�
to the Jacobi

symbol
�

a
n

�
for odd composite numbers n � 3. We take the canonical factorization

n D Qk
jD1 p

ej

j of n and then the Jacobi symbol is given by

�a

n

�
D

kY

jD1

� a

pj

�ej

for all a 2 Z:

The actual computation of the Jacobi symbol
�

a
n

�
does not use this definition,

because we would run around in a circle if for a primality test for n we required the
canonical factorization of n. In fact, for large n the Jacobi symbol

�
a
n

�
is efficiently

computed by means of the law of quadratic reciprocity without recourse to the
canonical factorization of n. This law says that if a � 3 and n � 3 are odd integers
with gcd.a; n/ D 1, then

�a

n

��n

a

�
D .�1/.a�1/.n�1/=4: (2.1)

We refer to [151, Theorem 3.8] for a proof of the law of quadratic reciprocity and
to [29, Algorithm 2.3.5] for an efficient algorithm for the calculation of Jacobi
symbols. The power a.n�1/=2 in the Solovay-Strassen test is computed by the square-
and-multiply algorithm (see Algorithm 2.3.9).

The big advantage of the Solovay-Strassen test over the Fermat test is that there
is no analog of Carmichael numbers for the Solovay-Strassen test. In other words,
there is a criterion for primality based on the Solovay-Strassen test, and this criterion
can in fact be proved quite easily.

Theorem 2.7.8 The odd integer n � 3 is a prime number if and only if a.n�1/=2 ��
a
n

�
.mod n/ for all a 2 Z with gcd.a; n/ D 1.

Proof The necessity of the condition follows from Proposition 1.2.23. Conversely,
let n be composite with a.n�1/=2 � �

a
n

�
.mod n/ for all a 2 Z with gcd.a; n/ D 1.

Then an�1 � 1 .mod n/ for all such a, and so n is a Carmichael number. Therefore
n is squarefree by Proposition 2.7.3. Hence we can write n D pr with an odd prime
number p, an odd integer r � 3, and gcd.p; r/ D 1. Let h be a quadratic nonresidue
modulo p and choose a 2 Z by the Chinese remainder theorem such that a �
h .mod p/ and a � 1 .mod r/. Then by assumption,

a.n�1/=2 �
�a

n

�
�
�a

p

��a

r

�
�
�h

p

��1
r

�
� �1 .mod n/;

and so a.n�1/=2 � �1 .mod r/. This is a contradiction to a � 1 .mod r/. �
Thus, if n is an odd composite number, then the Solovay-Strassen test will

ultimately detect this fact. The probabilistic analysis of the Solovay-Strassen test
proceeds as in Remark 2.7.7 for the Fermat test, on the basis of the following result.
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In view of Theorem 2.7.8, the condition that n is not a Carmichael number can be
dropped in the present case.

Proposition 2.7.9 If n is an odd composite number, then there are at most �.n/=2
different integers a with 1 � a � n � 1, gcd.a; n/ D 1, and a.n�1/=2 � �

a
n

�
.mod n/.

Proof Use Theorem 2.7.8 and the argument in the proof of Proposition 2.7.6, with
Tn replaced by Vn D fa 2 Rn W a.n�1/=2 � �

a
n

�
.mod n/g. �

Remark 2.7.10 There is a fascinating connection between the extended Riemann
hypothesis (ERH) and the Solovay-Strassen test. By assuming the validity of the
ERH, the Solovay-Strassen test can be turned into a deterministic primality test
which runs in polynomial time, that is, the number of bit operations required to test
an odd integer n � 3 for primality is at most of the order of magnitude .log n/c

for some known constant c > 0. The crucial number-theoretic result here is the
following one: under the ERH, for any odd composite number n there is a positive
integer a � 2.log n/2 for which either gcd.a; n/ ¤ 1 or a.n�1/=2 6� �

a
n

�
.mod n/. We

refer to [6, Section 9.5] and [116] for the details.

A test due to Miller [116] and Rabin [162] refines the Solovay-Strassen test. It is
based on the following necessary condition for primality.

Proposition 2.7.11 Let p be an odd prime number and write p � 1 D 2sr with an
integer s � 1 and an odd integer r. Then for every a 2 Z with gcd.a; p/ D 1, either
ar � 1 .mod p/ or a2

jr � �1 .mod p/ for some j 2 Z with 0 � j � s � 1.

Proof Fermat’s little theorem yields ap�1 � a2
sr � 1 .mod p/. If a2

jr � 1 .mod p/
for some j 2 Z with 1 � j � s, then a2

j�1r � ˙1 .mod p/. Hence either a2
jr �

�1 .mod p/ for some 0 � j � s � 1 or a2
jr � 1 .mod p/ for all 0 � j � s. �

Actually, the necessary condition in Proposition 2.7.11 is also sufficient for an
odd integer n � 3 to be a prime number (see [6, Lemma 9.4.4]). In other words, there
is a criterion for primality analogous to Theorem 2.7.8. The Miller-Rabin test for an
odd integer n � 3 proceeds by first writing n �1 D 2sr with an integer s � 1 and an
odd integer r, then picking a random integer a with 1 � a � n�1 and gcd.a; n/ D 1,
and then successively computing a0 � ar .mod n/, a1 � a20 .mod n/; : : : ; ak �
a2k�1 .mod n/ until k D s or ak � 1 .mod n/. For the probabilistic analysis of the
Miller-Rabin test, we need an analog of Proposition 2.7.9. This result for the Miller-
Rabin test is actually stronger than the corresponding one for the Solovay-Strassen
test, in the sense that the upper bound �.n/=2 in Proposition 2.7.9 can, in a first step,
be changed to the upper bound .n�1/=4 for the number of a 2 Z with 1 � a � n�1,
gcd.a; n/ D 1, and either ar � 1 .mod n/ or a2

jr � �1 .mod n/ for some j 2 Z

with 0 � j � s � 1. Unfortunately, the proof of this result is quite involved, and so
we refer again to [6, Lemma 9.4.4] for the details. For n > 9 the bound .n � 1/=4

can be improved to �.n/=4 (see [29, Theorem 3.4.4]). These results mean that, in
general, the Miller-Rabin test has a higher chance of detecting composite numbers
than the Solovay-Strassen test.
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Remark 2.7.12 The AKS test named after Agrawal, Kayal, and Saxena [1] is an
important breakthrough. It is a deterministic polynomial-time primality test in
the sense of Remark 2.7.10, but no unproved hypothesis like the ERH is needed
for the complexity analysis of the AKS test. The AKS test is therefore the first
unconditional deterministic polynomial-time primality test in history. The starting
point of the AKS test is the simple observation that for every prime number p the
identity .xC1/p D xpC1 holds in the polynomial ring FpŒx	. For every integer n � 2,
we now view Zn as a finite ring with addition and multiplication modulo n, and we
can then form the polynomial ring ZnŒx	 in the same way as we construct FpŒx	. The
next step is then to prove that n is a prime number if and only if .x C 1/n D xn C 1

in ZnŒx	. Checking this condition for large n is too costly, and so a shortcut has
to be found. The crucial idea is that if .x C 1/n D xn C 1 holds in ZnŒx	, then
also .x C 1/n � xn C 1 .mod f .x// for every polynomial f .x/ 2 ZnŒx	 of positive
degree, where congruences in ZnŒx	 have the obvious meaning. For f .x/ we take
f .x/ D .x C a/h � 1 with a 2 Zn and h 2 N suitably restricted so that we still
get a correct primality test, but on the other hand a polynomial-time algorithm.
In particular, the number of choices for a and h has to be at most of the order of
magnitude .log n/c for some constant c > 0. Mastering this balancing act is the
beauty of the paper [1]. A detailed presentation of the AKS test starting from first
principles is given in the recent book of Rempe-Gillen and Waldecker [166].

2.7.3 Primality Tests for Special Numbers

The primality tests we have discussed so far can take any (odd) integer n � 2 as the
input. It should not come as a surprise that if n has a very special form, then effective
primality tests geared to the special nature of n can be designed. Specifically, we
study the case where n ˙ 1 is a power of 2. We start with n D 2s � 1 for some
integer s � 2.

Definition 2.7.13 A number of the form 2s � 1 with an integer s � 2 is called a
Mersenne number. If 2s � 1 is a prime number, then it is called a Mersenne prime.

Example 2.7.14 The Mersenne numbers 22 � 1 D 3, 23 � 1 D 7, 25 � 1 D 31,
and 27 � 1 D 127 are Mersenne primes. On the other hand, the Mersenne numbers
24 � 1 D 15, 26 � 1 D 63, and 211 � 1 D 2047 D 23 � 89 are not Mersenne primes.
Mersenne primes are of great practical value in pseudorandom number generation:
the Mersenne prime 231 � 1 is a popular modulus in the linear congruential method
(see Sect. 5.2.1) and the Mersenne prime 219937 � 1 plays an important role in the
Mersenne twister (see Sect. 5.5).

You notice in Example 2.7.14 that in the cases where 2s �1 is a Mersenne prime,
the exponent s is always a prime number. Actually, it is a trivial general fact that
2s � 1 is a Mersenne prime only if s is a prime number (the converse does not hold:
consider 211 � 1 in Example 2.7.14). Just note that if s has the nontrivial divisor
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d � 2, then 2s � 1 has the nontrivial divisor 2d � 1. Therefore we consider now only
Mersenne numbers of the form 2s � 1 with a prime number s. Then the following
astonishing criterion for primality can be established, where we omit the trivial case
s D 2.

Theorem 2.7.15 Let n D 2s � 1 with a prime number s � 3. Then n is a prime
number if and only if the sequence u0; u1; : : : of elements of Zn defined recursively by

u0 D 4; ukC1 � u2k � 2 .mod n/ for k D 0; 1; : : : ;

satisfies us�2 D 0.

Proof Let q be a prime factor of n and consider the polynomial

f .x/ D x2 � 2.sC1/=2x � 1 2 FqŒx	

with roots ˛; ˇ 2 Fq2 . Then

˛ C ˇ D 2.sC1/=2 and ˛ˇ D �1:

We view the uk as elements of Fq and we show by induction that

uk D ˛2
kC1 C ˇ2

kC1

for all k � 0: (2.2)

This holds for k D 0 since 2s � 1 .mod q/ and

˛2 C ˇ2 D .˛ C ˇ/2 � 2˛ˇ D 2sC1 C 2 D 4 D u0:

If (2.2) holds for some k � 0, then

ukC1 D u2k � 2 D .˛2
kC1 C ˇ2

kC1

/2 � 2 D ˛2
kC2 C ˇ2

kC2 C 2.˛ˇ/2
kC1 � 2

D ˛2
kC2 C ˇ2

kC2 C 2.�1/2kC1 � 2 D ˛2
kC2 C ˇ2

kC2

;

and the induction is complete.
If n is a prime number, then q D n. We have

�
2
n

� D 1 since
�
2.sC1/=2

�2 �
2sC1 � 2 .mod n/. From n � .�1/s � 1 � 1 .mod 3/ and n � 3 .mod 4/ we get
n � 7 .mod 12/. Now the law of quadratic reciprocity in (2.1) shows that 3 is a
quadratic residue modulo a prime number p � 5 if and only if p � ˙1 .mod 12/.
Hence

�
3
n

� D �1, and then Proposition 1.2.24 yields
�
6
n

� D �
2
n

��
3
n

� D �1. The
discriminant�.f / of the quadratic polynomial f 2 FnŒx	 is given by�.f / D 2sC1 C
4 D 6 2 Fn, which is a quadratic nonresidue modulo n. Therefore the usual formula
for the roots of a quadratic polynomial shows that ˛; ˇ … Fn, and so f is irreducible
over Fn. Hence ˛ D ˇn and ˇ D ˛n by Proposition 1.4.47, and thus

˛nC1 D ˇnC1 D ˛ˇ D �1:
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Now (2.2) yields

�2 D ˛nC1 C ˇnC1 D ˛2
s C ˇ2

s D us�1 D u2s�2 � 2

in Fn, and so us�2 D 0.
Conversely, assume that us�2 D 0 with a composite n and let q be any prime

factor of n with q2 � n. Then ˛2
s�1 C ˇ2

s�1 D 0 2 Fq by (2.2), and so

˛2
s C .˛ˇ/2

s�1 D 0 2 Fq. Thus ˛2
s D �1 2 Fq and ˛2

sC1 D 1 2 Fq. It follows
that ord.˛/ D 2sC1 in the multiplicative group F

�
q2

, and so 2sC1 divides q2 � 1 by

Proposition 1.3.11. But this is impossible since q2 � 1 < n < 2sC1. �

The primality test for Mersenne numbers based on Theorem 2.7.15 is called the
Lucas-Lehmer test. Since s D log2.n C 1/, it is a deterministic polynomial-time
algorithm.

Example 2.7.16 Just for illustration, consider the toy example n D 2s � 1 with
s D 7. The numbers uk, k D 0; 1; : : : ; 5, from Theorem 2.7.15 are computed in the
following table.

k 0 1 2 3 4 5

uk 4 14 67 42 111 0

Since u5 D 0, we infer from Theorem 2.7.15 that n is a prime number. This can also
be verified directly since n D 27 � 1 D 127.

For several centuries there is a competition about explicitly finding larger and
larger prime numbers. For a long time now, the new world records are Mersenne
primes since for them we have very efficient deterministic primality tests such as
the Lucas-Lehmer test. In the media a new world record is sometimes reported as
“such and such is the largest prime number”, which is of course nonsense since there
are infinitely many prime numbers. The gripping story of the quest for large prime
numbers is told at length in [6, Section 1.2].

Now we consider numbers of the form 2s C 1 with an integer s � 1. If d is
a divisor of s and s=d � 3 is odd, then 2d C 1 is a nontrivial divisor of 2s C 1.
Therefore 2s C 1 is a prime number only if s is a power of 2.

Definition 2.7.17 A number Nk of the form Nk D 22
k C 1 with an integer k � 0 is

called a Fermat number, and it is called a Fermat prime if it is a prime number.

Example 2.7.18 The first five Fermat numbers N0 D 21C1 D 3, N1 D 22C1 D 5,
N2 D 24 C 1 D 17, N3 D 28 C 1 D 257, and N4 D 216 C 1 D 65537 are Fermat
primes, which led Fermat to conjecture that all Fermat numbers are prime numbers.
It caused quite a stir in the eighteenth century when Euler discovered the nontrivial
prime factor 641 of the Fermat number N5 D 232 C 1, thus demolishing Fermat’s
conjecture.

Some people believe that there are no Fermat primes beyond 216 C 1, and indeed
none have been found so far. The following is an easy criterion for Fermat primes.
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Theorem 2.7.19 The Fermat number Nk D 22
k C 1 with k � 1 is a prime number

if and only if

3.Nk�1/=2 � �1 .mod Nk/: (2.3)

Proof We note that Nk � .�1/2k C 1 � 2 .mod 3/ and Nk � 1 .mod 4/ for k � 1,
and so Nk � 5 .mod 12/. If Nk is a prime number, then the criterion for the quadratic-
residue behavior of 3 mentioned in the proof of Theorem 2.7.15 shows that 3 is a
quadratic nonresidue modulo Nk. Hence (2.3) follows from Proposition 1.2.23.

Conversely, if (2.3) holds for some k � 1, then 3Nk�1 � 1 .mod Nk/. Since Nk �1
is a power of 2, we infer that 3 has order Nk � 1 in the multiplicative group RNk of
order jRNk j D �.Nk/ � Nk � 1. Hence �.Nk/ D Nk � 1, which implies that Nk is a
prime number. �

Remark 2.7.20 It is a curious fact that Euclid’s theorem on the infinitude of prime
numbers (see Theorem 1.1.12) can be proved by means of Fermat numbers. From
NkC1 D .Nk � 1/2 C 1 D Nk.Nk � 2/ C 2 for all k � 0, we derive by induction
that NkC1 D N0 � � � Nk C 2 for all k � 0. We claim that gcd.Nk;Nm/ D 1 whenever
0 � k < m. For if d is a positive common divisor of Nk and Nm, then d divides both
N0 � � � Nm�1 and Nm, and so d divides Nm �N0 � � � Nm�1 D 2. But all Fermat numbers
are odd, and so d D 1. Thus, if for each k D 0; 1; : : : we choose a prime factor pk of
Nk, then we get an infinite sequence p0; p1; : : : of distinct prime numbers.

2.8 A Glimpse of Advanced Topics

Although we presented several algorithms to solve the number-theoretic problems
that form the basis of most public-key cryptosystems, namely the factorization
problem for integers and the discrete logarithm problem, none of these algorithms is
efficient enough to endanger, say, the RSA cryptosystem or the Diffie-Hellman key
exchange if the parameters are carefully chosen. However, not much is known when
we ask for the complexity of these problems in the rigorous sense of complexity
theory in computer science. The book of Shparlinski [181] introduces new ways of
using number theory in cryptography for the purpose of deriving lower bounds on
the complexity of these number-theoretic problems. In particular, the book contains
lower bounds on the degrees or orders of polynomials, algebraic functions, Boolean
functions, and linear recurring sequences coinciding with the discrete logarithm for
the finite prime field Fp at sufficiently many points. Just to whet the appetite, we
state a sample result (see [181, Theorem 8.1]): let f .x/ 2 FpŒx	, let g be a primitive
element of Fp, and let S 
 F

�
p be such that indg.a/ D f .a/ in Fp for all a 2 S; then

deg.f .x// � 2jSj � p, where we put deg.0/ D 0.
It is obvious that the definition of the discrete logarithm in Definition 2.4.1 makes

sense in any finite cyclic group. The index-calculus algorithm (see Sect. 2.4.2) uses
some special features of finite fields and is, with a proper choice of parameters,
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essentially faster than any so-called generic algorithm, that is, an algorithm such as
the baby-step giant-step algorithm that can be easily extended from F

�
q to any finite

cyclic group. This can be considered a disadvantage for cryptographic schemes
based on the discrete logarithm problem for finite fields. Therefore cryptologists
have looked around for finite cyclic groups, and more generally finite abelian
groups, other than F

�
q that can be used as the basis for cryptographic schemes.

The points on an elliptic curve over a finite field form a finite abelian group
for which the discrete logarithm problem is believed to be harder than the discrete
logarithm problem for finite fields of a similar size because of the lack of an analog
of the index-calculus algorithm for elliptic curves. Elliptic curves can be employed
in versions of cryptographic schemes based on the discrete logarithm problem, as
for example the Diffie-Hellman key exchange. We emphasize that elliptic curves are
not ellipses. Elliptic curves received their name from integrals in calculus that arise
in the computation of the arc length of ellipses.

An elliptic curve E over a finite field Fq of characteristic different from 2 and 3
is the set of solutions .x; y/ 2 F

2
q of a cubic polynomial equation of the form

y2 D x3 C ax C b; a; b 2 Fq; 4a3 C 27b2 ¤ 0; (2.4)

together with a further point O called the point at infinity. We turn E into a finite
abelian group with the additive notation by stipulating first of all that O serves as
the identity element of E. Next we describe how the inverse element �P of a point
P on E is defined. If P D O, then �O D O by the rules for abelian groups. If
P D .x; y/ ¤ O, then we put �P D .x;�y/. The axioms for abelian groups force
us to define P C O D O C P D P and P C .�P/ D .�P/ C P D O for all points
P on E. It remains to define the sum P C Q for two points P and Q on E that are
different from O and satisfy Q ¤ �P. We first express the definition geometrically.
We consider the line in F

2
q through P and Q if P ¤ Q, and the tangent line to E at

P if P D Q. This line intersects E in a unique third (respectively second) point R,
and then by definition P C Q D �R. The arithmetic definition says that if P ¤ O,
Q ¤ O, and Q ¤ �P, then the sum of P D .x1; y1/ and Q D .x2; y2/ is given by
P C Q D .x3; y3/ with

x3 D c2 � x1 � x2; y3 D c.x1 � x3/ � y1;

where

c D
(
.y2 � y1/.x2 � x1/�1 if P ¤ Q;

.3x21 C a/.2y1/�1 if P D Q:

It requires some nontrivial computations to verify that E is indeed a finite abelian
group under this addition (see the books on elliptic-curve cryptography cited below).
The order N.E/ of E satisfies

jN.E/� q � 1j � 2q1=2
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according to the celebrated Hasse-Weil bound (see [46, Theorem 3.61] and [199,
Theorem 4.2]).

Now we can describe the analog of the Diffie-Hellman key exchange (see
Algorithm 2.4.3) for elliptic curves over a finite field. In a nutshell, we replace the
large cyclic group F

�
q by a large cyclic subgroup of the finite abelian group E. We

use the abbreviation nP D P C P C � � � C P„ ƒ‚ …
n summands

for all positive integers n and all points

P on E. All participants of a communication system share now a point P of large
order t on an elliptic curve E over a finite field. In the first step, Alice chooses a
random integer h with 2 � h � t � 1 and Bob chooses a random integer k with
2 � k � t � 1. In the second step, Alice sends hP to Bob over the channel, while
Bob sends kP to Alice over the channel. The common key is .hk/P, which Alice
computes as h.kP/ and Bob computes as k.hP/.

It should be obvious how to design, for example, an analog of the ElGamal
cryptosystem (see Algorithm 2.4.4) in the framework of elliptic curves over finite
fields. For more details on elliptic-curve cryptography, we refer first and foremost
to the Handbook of Elliptic and Hyperelliptic Curve Cryptography [27]. There are
also quite a number of monographs on this subject; we mention Blake, Seroussi,
and Smart [12], Enge [46], Menezes [114], Washington [199], and two books by
Koblitz [81, 82]. It is remarkable that elliptic curves can be used also for factoring
integers and for primality tests (see [12, Chapter IX] and [81, Chapter VI]).

Groups derived from more complicated curves than elliptic curves have also been
studied and may be attractive alternatives. For more information about this fascinat-
ing area, we refer again to the handbook [27] as well as to the books [12, 82, 146],
and [147].

Stream ciphers represent an approach to symmetric encryption different from
block ciphers. In a stream cipher the message is represented as a (usually finite)
sequence m1;m2; : : : of bits and the message is encrypted by combining it with
another (usually finite) sequence k1; k2; : : : of bits, the keystream. One possibility
to encrypt the message is to view bits as elements of the finite field F2 and to add
the message bits and the keystream bits term by term in F2. Thus, the ciphertext is
the sequence c1; c2; : : : given by ci D mi C ki 2 F2 for all i � 1. The receiver can
recover the message by adding the keystream to the ciphertext term by term, that is,
by computing mi D ci Cki 2 F2 for all i � 1. This is extremely fast and has the nice
feature that the same device can be used for encryption and decryption. In theory we
could play the same game over any finite field, where in general decryption means
subtracting the keystream from the ciphertext, but as so often in cryptology the Yogi
Berra principle in Remark 2.4.5 applies again and motivates us to stick to F2.

If the keystream is a truly random sequence of bits, then we get the one-time
pad or Vernam cipher, the latter named after the engineer Gilbert Vernam who got
a U.S. patent for this cipher in 1919. The one-time pad is theoretically supported
by the Shannon theorem (see [192, Chapter 2]) which says that the ciphertext in
a one-time pad does not leak any information and so cannot be decrypted by an
adversary. Thus, the one-time pad would be the Holy Grail of cryptography, but the
trouble is that nobody knows how to generate a truly random sequence of bits in
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practice (see Sects. 5.1 and 5.4 for discussions of this issue). Therefore the one-time
pad is an idealization and stream ciphers attempt to imitate this ideal as best as they
can. By the way, the name “one-time pad” stems from the requirement that the same
keystream should not be reused to encrypt a second message. Indeed, if ki is used to
encrypt mi and m0

i, then by adding the identities ci D mi C ki and c0
i D m0

i C ki we
obtain ci C c0

i D mi C m0
i. The adversary can compute ci C c0

i for as many values of
i as desired, and this leaks information about mi and m0

i for that many values of i.
Stream ciphers can be considered the practical versions of the one-time pad

where the keystream is now a deterministically generated and often periodic
sequence of bits with certain desirable features of randomness. Such a sequence is
called a sequence of pseudorandom bits. We will say more about such sequences
in Sect. 5.4. Keystreams generated by number-theoretic methods are discussed
at length in the monograph [31]. Because of the difficulty of generating good
keystreams and the practical problem of how to get the keystream from the sender
to the receiver, stream ciphers are nowadays used only in contexts where a very
high level of security is demanded and where a hierarchical organizational structure
exists, for instance in military and diplomatic communications. The practicality of
stream ciphers is also hampered by the fact that the keystream needs to be as long
as the plaintext message, which causes problems when encrypting big data sets.

We mention a particularly elegant number-theoretic sequence of pseudorandom
bits, where we again view bits as elements of F2. Let p be a large (and therefore
odd) prime number and define k1; k2; : : : by ki D 1 if i is a quadratic nonresidue
modulo p and ki D 0 otherwise. This sequence is periodic with least period length
p. In a full period, there are .p�1/=2 terms equal to 1 and .pC1/=2 terms equal to 0
(compare with Remark 1.2.26). The sequence satisfies the obvious linear recurrence
relation kiCp D ki for all i � 1. This raises the interesting question of the least
order of a linear recurrence relation that generates the sequence. This least order
is called the linear complexity of a periodic sequence (see also Sect. 5.4). If L is
the linear complexity of the given sequence k1; k2; : : :, then there exist coefficients
c0; c1; : : : ; cL 2 F2 with cL D 1 such that

LX

lD0
clkiCl D 0 for all i � 1:

If i is not divisible by p, then .�1/ki is the Legendre symbol
�

i
p

�
, and so we obtain

LY

lD0

� i C l

p

�cl D 1 for 1 � i � p � L � 1:

If we use the quadratic character � of Fp in Remark 1.4.53, then this can be written as

�
� LY

lD0
.i C l/cl

�
D 1 for 1 � i � p � L � 1:
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Therefore we get

p � L � 1 D
p�L�1X

iD1
�
� LY

lD0
.i C l/cl

�

�
ˇ̌
ˇ

p�1X

iD0
�
� LY

lD0
.i C l/cl

�ˇ̌
ˇC L C 1 � Lp1=2 C L C 1:

In the last step we applied the Weil bound stated later in (6.8) in Sect. 6.1.3. We
conclude that

Lp1=2 C 2.L C 1/ � p;

and so L � 1
2
p1=2 for p � 11. Using a different method (see [31, Theorem 9.3.2]),

one can determine the exact value of L, and in particular one obtains the lower
bound L � .p � 1/=2 for all odd prime numbers p. However, the method we have
employed can be extended to produce lower bounds on the linear complexity for
parts of the period (see [181, Theorem 9.2]), with an appropriate definition for the
linear complexity of a finite sequence.

It is noteworthy that cryptosystems can also be utilized for the generation of
keystreams. Let us start with DES. Take an arbitrary block M1 of 64 bits. In the
standard application of DES as a block cipher, M1 would be a plaintext, but now
M1 is viewed as the initial value of a recursion. In detail, we recursively generate a
sequence M1;M2; : : : of 64-bit blocks by

MiC1 D DESK.Mi/ for i D 1; 2; : : : ;

where K is a fixed DES key. The sequence M1;M2; : : : of 64-bit blocks is then
regarded in an obvious manner as a sequence of bits and so as a keystream. We
can play the same game with AES, but of course the blocks Mi consist then of 128
bits. It is difficult to carry out a theoretical analysis of the keystreams generated
by DES and AES, but particularly for AES the keystreams perform satisfactorily
under statistical tests for randomness. For the RSA cryptosystem, we again use the
idea of repeated encryption. With the notation in Algorithm 2.3.5, we start from an
initial value m1 2 Zn and generate a sequence m1;m2; : : : of elements of Zn by the
recursion

miC1 � me
i .mod n/ for i D 1; 2; : : : :

Trivial initial values such as m1 D 0; 1; n � 1 have to be excluded. A sequence
k1; k2; : : : of bits is obtained by the formula

ki � mi .mod 2/ for i D 1; 2; : : : ;

and this is a keystream produced by the RSA cryptosystem.
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Cryptography is such a wide area that a lot more can be said about it, but we
have to respect certain limits. The books cited in Sect. 2.1.1 will certainly satisfy
your curiosity. A few more topics related to cryptography will be discussed in
the following chapters, including code-based cryptosystems (see Sect. 3.6) and the
possible impact of quantum computers on cryptography (see Sect. 6.5.1).

Exercises

2.1 Use the decryption function D given in Example 2.1.2 to decrypt YCDLMF
ZV PUS.

2.2 Consider the affine cipher determined by e.m/ � 7m C 12 .mod 26/. We
identify the English alphabet with Z26 by A $ 0; B $ 1; : : : ;Z $ 25.

(a) Encrypt the word BECKENBAUER using this substitution.
(b) Which word was encrypted to 4 1 12 25 4 11? (Hint: the solution is the

name of an Austrian football player who would have become less famous
if Franz Beckenbauer had attended the World Cup 1978.)

2.3 For a linear substitution e.m/ � am C b .mod 31/ with a; b 2 Z31, we know
e.2/ D 5 and e.3/ D 10.

(a) Determine a and b.
(b) Determine the inverse map e�1.

2.4 Verify that the permutations� and ��1 used in DES satisfy ��1.�.i// D i for
all i D 1; : : : ; 64.

2.5 Verify that all steps in AES are invertible.
2.6 Prove the assertions in Remark 2.2.3 in detail.
2.7 Show that f .x/ D x3 is an APN function over every finite field F2r with r 2 N.
2.8 (a) Encrypt the messages m D 5 and m D 7 with the RSA cryptosystem and

the public key .n; e/ D .35; 5/.
(b) Calculate the private key d.

2.9 Determine all possible encryption exponents e � 60 for the RSA modulus
n D 77.

2.10 Determine the number of multiplications modulo n that are required for an
RSA encryption with modulus n and encryption exponent e D 218 C 28 C 1 if
an efficient algorithm is used for this purpose.

2.11 A plaintext m 2 Zn in the RSA cryptosystem with public key .n; e/ is said to
be fixed if me � m .mod n/. Prove that the number of fixed plaintexts is given
by

.gcd.p � 1; e � 1/C 1/.gcd.q � 1; e � 1/C 1/:

2.12 Show that the encryption exponent e D �.n/=2C 1 is unsuitable in the RSA
cryptosystem since then me � m .mod n/ for all m 2 Z.
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2.13 (a) Suppose that the same plaintext m 2 Zn is encrypted twice with the RSA
cryptosystem using two public keys .n; e/ and .n; f / with gcd.e; f / D 1.
Show that m can be recovered from the two ciphertexts ce � me .mod n/
and cf � mf .mod n/.

(b) Consider the special case n D 77, e D 13, and f D 17. The two
ciphertexts are ce D 3 and cf D 5. Find the plaintext m.

2.14 Consider the RSA cryptosystem with public key .n; e/.

(a) Prove that there exists a positive integer k such that mek � m .mod n/ for
all m 2 Z.

(b) For an integer k in part (a), prove that cek�1 � m .mod n/ for the ciphertext
c corresponding to the plaintext m.

(c) Suppose that a small integer k with the property in part (a) can be found.
Argue that this endangers the security of this RSA cryptosystem.

2.15 Does an analog of the RSA cryptosystem work if n is the product of more than
two distinct prime numbers? What is the disadvantage if we take more than
two prime factors? Why is n D p2 a bad choice?

2.16 Suppose that m 2 N is divisible by the square of a prime number. Prove that
there exist integers a1 and a2 such that a1 6� a2 .mod m/, but ak

1 � ak
2 .mod m/

for all integers k � 2.
2.17 The Rabin cryptosystem works with a modulus n D pq, where p and q are

distinct prime numbers with p � 3 .mod 4/ and q � 3 .mod 4/. Furthermore,
an integer b with 0 � b � n � 1 is chosen. The public key is the ordered pair
.n; b/, while p and q form the private key. A plaintext m 2 Zn is encrypted by
computing c 2 Zn with

c � m.m C 2b/ .mod n/:

(a) Show that the least residues of w.m C b/ � b modulo n encrypt to the
same ciphertext, where w is any of the four solutions of x2 � 1 .mod n/
provided by Lemma 2.3.15. This is a rare example of an encryption
function which is not injective.

(b) For a prime number p � 3 .mod 4/ and a quadratic residue a modulo p,
show that x � a.pC1/=4 .mod p/ is a solution of x2 � a .mod p/.

(c) In order to decrypt a Rabin ciphertext c, the quadratic congruence x2 C
2bx � c .mod n/ has to be solved. By standard substitutions from the
theory of quadratic equations, this is equivalent to solving x2 � a .mod n/
for some a 2 Z. Show that the latter congruence can be solved in a
straightforward manner by the legitimate receiver if the encryption was
performed correctly. (Note: Among the up to four possible plaintexts,
the one which is most plausible is taken as the correct one. The sender
may also deliberately create redundancy in the plaintext to facilitate
decryption.)
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2.18 Try to factor 1927, 7721, 11413, 17111, and 200819 using:

(a) trial division, that is, checking whether one of the first prime numbers
2; 3; 5; 7; 11; : : : is a divisor;

(b) Fermat factorization;
(c) the Pollard rho algorithm;
(d) square-root factoring.

2.19 Find all solutions x 2 Z105 of the congruence x2 � 16 .mod 105/. (Note that
Lemma 2.3.15 does not apply since 105 has three distinct prime factors.)

2.20 Let f W S ! S be a self-map of a set S and let s0; s1; : : : be a sequence of
elements of S generated by si D f .si�1/ for i D 1; 2; : : : with an arbitrary
initial value s0. Suppose that s0; s1; : : : ; s15 are distinct, but that s16 D s9. Find
the least integer ` � 1 with s` D s2`.

2.21 For q D 53, g D 2, h D 29, and k D 19, describe the Diffie-Hellman key
exchange. Work out the common key of Alice and Bob.

2.22 Let Fq be a finite field and let g be a primitive element of Fq. Prove that

indg.�a/ � indg.a/C q � 1

2
.mod q � 1/ for all a 2 F

�
q :

2.23 Let Fq be a finite field and let g and h be primitive elements of Fq. Prove that

indh.a/ � indg.a/ � indh.g/ .mod q � 1/ for all a 2 F
�
q :

2.24 Compute the discrete logarithm modulo 113 of a D 57 to the base 3 using the
baby-step giant-step algorithm.

2.25 Compute the discrete logarithm modulo 29 of a D 18 to the base 2 using the
Silver-Pohlig-Hellman algorithm.

2.26 Compute the discrete logarithm modulo 229 of a D 13 to the base 6 using the
index-calculus algorithm. (Hint: choose B D 11.)

2.27 Use the data in Example 2.4.8 to solve the power congruence 3k � 6 .mod 19/
for the integer k.

2.28 The public key of Bob in an ElGamal signature scheme is .p; g; a/ D
.107; 2; 80/. He signs his message with .b; c/ D .9; 93/. Show that the
message m D 17 can be sent by him with this signature being accepted as
valid, but that m D 10 and m D 83 are forged.

2.29 Suppose that Bob is using the ElGamal signature scheme and that he signs two
plaintexts m1 and m2 with signatures .b; c1/ and .b; c2/, respectively, so that
the same value of b occurs in the first entry of both signatures. Suppose also
that gcd.c1 � c2; p � 1/ D 1.

(a) Describe how r can be computed efficiently given this information.
(b) Show that the signature scheme can then be broken.
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2.30 Suppose that in a Shamir threshold scheme the parameters are p D 19, k D 3,
and n D 6, and shares are given by f .2/ D 8, f .3/ D 18, and f .6/ D 11.
Calculate the secret S D f .0/.

2.31 Prove that every Carmichael number is odd.
2.32 Prove Wilson’s theorem that an integer n � 2 is a prime number if and only if

.n � 1/Š � �1 .mod n/.
2.33 For all odd integers n � 3 and all a; b 2 Z, prove that

�ab

n

�
D
�a

n

��b

n

�
:

2.34 For all odd integers m; n � 3 and all a 2 Z, prove that

� a

mn

�
D
� a

m

��a

n

�
:

2.35 For all odd integers n � 3, prove that

��1
n

�
D .�1/.n�1/=2:

2.36 Show that 211�1 is not a Mersenne prime by verifying that 211 � 1 .mod 23/.
2.37 Prove by using the law of quadratic reciprocity in (2.1) that 5 is a quadratic

residue modulo the odd prime number p if and only if p � ˙1 .mod 5/.
2.38 Prove that the Fermat number Nk D 22

k C 1 with k � 2 is a prime number
if and only if 5.Nk�1/=2 � �1 .mod Nk/. (Hint: use the result of the preceding
exercise.)

2.39 Let p be an odd prime number. Prove that p is a Fermat prime if and only if
every quadratic nonresidue modulo p is a primitive root modulo p.

2.40 (a) Verify that c2ab D c.aCb/2c�a2c�b2 for all c 2 F
�
q and a; b 2 N.

(b) Note that 2 is a quadratic residue modulo p if and only if p � ˙1 .mod 8/
(see [151, Theorem 3.3]). For a prime number p � 5 .mod 8/ and a
quadratic residue a modulo p, show that

x �
�

a.pC3/=8 .mod p/ if a.p�1/=4 � 1 .mod p/;
pC1
2
.4a/.pC3/=8 .mod p/ if a.p�1/=4 � �1 .mod p/;

is a solution of x2 � a .mod p/. (Note: since square-root finding in finite
fields is an easy task, the Diffie-Hellman map D.ga; gb/ � gab .mod p/
could be efficiently evaluated if the univariate map d.ga/ � ga2 .mod p/
can be represented by a low-degree polynomial.)

(c) Let p be a prime number and let f .x/ 2 FpŒx	 with f .ga/ D ga2 in Fp

for all a 2 S 
 f0; 1; : : : ; p � 2g, where g is a primitive element of
Fp. Prove a lower bound on the degree of f .x/ in terms of p and jSj.
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(Hint: estimate the number of roots of the polynomial m.x/ WD f .gx/ �
gx2f .x/ with deg.m.x// D deg.f .x//C 2.)

2.41 Let F be a field. Show that the three roots of x3 C ax C b 2 FŒx	 are distinct if
and only if 4a3 C 27b2 ¤ 0.

2.42 Prove that the number of ordered pairs .a; b/ 2 F
2
q with 4a3 C 27b2 ¤ 0 is

equal to q2 � q.
2.43 Consider the elliptic curve E over F11 defined by y2 D x3 C 8x. Show that

P D .8; 9/ and Q D .9; 3/ are points on E and compute P C Q and 2P.
2.44 Consider the elliptic curve E over F7 defined by y2 D x3 C 5x C 4. Show that

E is a cyclic group. (Hint: determine the 10 points on the curve and show that
P D .3; 2/ is a point of order 10.)

2.45 Let E be the elliptic curve over Fq given by (2.4) and let � be the quadratic
character of Fq with �.d/ D 0 for d D 0 2 Fq. Prove that the order N.E/ of E
is given by

N.E/ D q C 1C
X

c2Fq

�.c3 C ac C b/:

2.46 Describe the analog of the ElGamal cryptosystem for elliptic curves.
2.47 Let g be a primitive root modulo a prime number p > 2 and consider the

periodic sequence k1; k2; : : : of elements of F2 with period length p � 1 that is
defined by ki D 1 if and only if gi C 1 is a quadratic residue modulo p. Prove
a lower bound on the linear complexity of this sequence.



Chapter 3
Coding Theory

If you select the codes of Reed
and Solomon or kindred breed

with shrewdness and not badly,
you will be coding gladly
as they meet every need.

3.1 Introduction to Error-Correcting Codes

3.1.1 Basic Definitions

Life is a comedy of errors, at least in the opinion of William Shakespeare, but you
can make a concentrated effort to reduce the number of errors that you commit and
thus increase the quality of your life. There is probably no panacea for all human
errors and mishaps, but in the setting of communication technology, number theory
and finite fields can help to prevent errors and ensure the quality of communication.
The aim of this chapter is to explain in sufficient detail how this is achieved.

We consider the transmission of information through a communication medium,
and as in Chap. 2 we use the convenient term channel for a communication medium.
A channel can, for instance, be a computer network, a satellite link, the Internet, or
even the interface between a storage medium (like a compact disk) and its reading
device. In practice, channels are subject to various types of disturbance, distortion,
and interference. This may cause transmission errors, and so the information that is
received may not coincide with the information that was sent. Engineers speak of
a noisy channel to designate a channel that may produce transmission errors. The
frequency of transmission errors depends on the physical nature of the channel. For
instance, one expects that in communications over very long distances, such as they
occur in space missions, the error probability will be rather high.

A fundamental requirement in modern communication systems is reliability,
meaning that information is received as sent. Reliability does not come for free.
Indeed, special features and algorithms have to be built into a communication
system to guarantee that transmission errors are eliminated. This is exactly where
coding schemes and coding theory enter the scene. In simple terms, a coding scheme
is an algorithm and/or a device for detecting and correcting transmission errors that
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occur in noisy channels. At the core of a coding scheme is the mathematical concept
of an error-correcting code, or simply a code. Coding schemes are nowadays
omnipresent in communication systems and also in storage systems. They are
normally fully integrated into these systems, and then the user is actually not aware
that error control is taking place.

In practice, channels are both noisy and insecure. But the protection against noisy
channels and the protection against insecure channels are different as mathematical
problems, and so it is customary to treat these issues separately. We also follow this
tradition, and therefore we discussed the protection against insecure channels, that
is cryptography, in Chap. 2 and we deal with the protection against noisy channels,
that is error-correcting codes, in the present chapter. In the real world, security and
reliability have to be provided concurrently in our communication.

Example 3.1.1 The message DAD SEND MONEY in Example 2.1.2 is now sent
over a noisy channel. If the noisy channel is in addition a malicious channel, then
it may deliver DAD SEND HONEY to the recipient, thus causing considerable
confusion. The lesson is again that important messages should not only be encrypted
so as to frustrate eavesdroppers, but should also be protected against transmission
errors by using an error-correcting code.

Coding theory (that is, the theory of coding schemes) is a broad subject at
the interface of discrete mathematics and information theory. One may therefore
distinguish between the part of coding theory oriented more towards discrete and
structural mathematics (this part is often called algebraic coding theory) and the
information-theoretic part which studies channels from a probabilistic viewpoint.
Both parts are covered very well in the book of McEliece [112].

The history of coding theory has a well-marked beginning with the seminal
paper of Shannon [178] from 1948 which introduced the basic information-theoretic
model for coding theory and established fundamental existence results. Claude
Shannon (1916–2001) was a brilliant mathematician and also a quirky character
who liked to ride a unicycle in the halls of the AT&T Bell Laboratories at night. He
built not only coding theory, but also juggling machines and one of the first chess
computers.

Shortly after the publication of Shannon’s paper [178], various explicit error-
correcting codes were constructed, some of which still belong to the standard
repertoire of coding theory. We will meet these classical codes, such as the
Hamming codes and the Golay codes, later in this chapter. The 1950s and 1960s
saw dramatic progress in coding theory, so that by the end of the latter decade
coding theory was already a rich and well-founded subject. Significantly, the very
influential monograph of Berlekamp [10] on algebraic coding theory appeared near
the end of the 1960s. Other milestones in the expository literature on coding theory
are the book of MacWilliams and Sloane [107] and the Handbook of Coding Theory
edited by Pless and Huffman [161].

In line with the general perspective of this book, we focus on the number-
theoretic aspects of coding theory. Number theory plays indeed a major role in the
construction of efficient error-correcting codes. The basic structure for this purpose
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is that of a finite field (see Sect. 1.4). Besides finite fields, we use also elementary
linear algebra and simple facts about rings and ideals. With these tools, the coverage
of algebraic coding theory can be pushed quite far, and so we will be able to treat
the fundamentals of algebraic coding theory and the most important specific codes
in this chapter.

In order to formalize coding schemes, we start by considering the data to be
transmitted. We assume that these data are formatted as a string of symbols from a
chosen alphabet. Since modern communication is digital, it is reasonable to select a
finite alphabet. Frequently, the alphabet consists of the bits 0 and 1, but sometimes
it is more efficient to use an alphabet of larger size. From the theoretical point of
view, it is preferable to choose an alphabet with mathematical structure. In fact, we
assume that the alphabet is a finite field Fq of order q for some prime power q. Thus,
the data are formatted as a string of elements of Fq. The next step in the preparation
for coding is to split up this string into blocks of fixed length, let us say of length
k � 1. Some padding (say by zero elements) may be needed at the end to arrive at
a partition into complete blocks of length k. The coding scheme now processes the
data block by block.

From now on, we will thus assume that the input of the coding scheme is a block
of length k of elements of Fq, or in other words a k-tuple .a1; : : : ; ak/ with ai 2 Fq

for i D 1; : : : ; k. We use the standard notation F
k
q for the set of all these k-tuples.

An element of F
k
q is also called a word (over Fq) of length k. The essential idea

of a coding scheme is to take an input a D .a1; : : : ; ak/ 2 F
k
q and add redundant

information to allow for error correction. We assume that this transforms a into an
n-tuple c 2 F

n
q with n � k. In fact, in nontrivial situations we suppose that n > k.

Example 3.1.2 Let k D 1 and let n be of the form n D 2rC1 for some integer r � 1.
An input block of the coding scheme consists thus of a single element a 2 Fq. We
create redundancy by repeating this element n times. In other words, we set up the
map

 W a 2 Fq 7! .a; : : : ; a/ 2 F
n
q:

We send c D  .a/ over the noisy channel. Assume that at most r errors can occur
in this transmission. The receiver will then get an n-tuple v D .v1; : : : ; vn/ 2 F

n
q

where at least n � r D r C 1 coordinates vj are equal to a. Hence by looking at
the coordinates of v and observing that a is the most frequent one, the receiver can
recover the correct element a 2 Fq although up to r errors may have occurred in the
transmission. For instance, if r D 2, n D 5, and the quintuple v D .1; 0; 1; 1; 0/ 2 F

5
q

is received, then a D 1 since 1 is the most frequent coordinate of v. This is a very
simple scheme, and its shortcoming is that it incurs data expansion by a factor n � 3

and thus a corresponding loss of speed in the data transmission. The task of coding
theory is to design more efficient schemes.

In general, the passage from the input a 2 F
k
q (also called the message) to c 2 F

n
q

is described by an injective map  W S ! F
n
q from some nonempty subset S of Fk

q to
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F
n
q. The image of  is called a code, and this leads to the following simple formal

definition.

Definition 3.1.3 A code (over Fq) is a nonempty subset C of Fn
q. The integer n � 1

is called the length of the code C. An element of C is called a codeword in C.

With this terminology, we thus have an injective map  which takes a message
a 2 S 
 F

k
q to a codeword c D  .a/ 2 F

n
q, where normally n > k. The map  is

called an encoder.

Example 3.1.4 Consider the encoder  in Example 3.1.2. The corresponding
code is

C D f.a; : : : ; a/ 2 F
n
q W a 2 Fqg

and its length is n D 2rC1. As we have seen in Example 3.1.2, this code can correct
up to r D .n � 1/=2 errors in a word of length n. For obvious reasons, C is called a
repetition code.

A code over F2 is also called a binary code and a code over F3 is also called a
ternary code. Similarly, one may speak of a quaternary code for a code over F4, and
so on, and in general a code over Fq is sometimes referred to as a q-ary code.

3.1.2 Error Correction

A primary characteristic of a code is its error-correction capability, that is, the
number of errors that it can correct in a word of length n, where n is the length
of the code. If we think of c 2 F

n
q as a sent word and v 2 F

n
q as a received word, then

the number of errors is equal to the number of coordinates in which c and v differ.
Thus, the following notion is highly relevant in this context.

Definition 3.1.5 For c D .c1; : : : ; cn/ 2 F
n
q and v D .v1; : : : ; vn/ 2 F

n
q, the

Hamming distance d.c; v/ is defined to be the number of coordinates in which c
and v differ, that is,

d.c; v/ D # f1 � j � n W cj ¤ vjg:

The Hamming distance is defined for pairs of words over Fq of any (but equal)
length, and so in particular for pairs of words of length 1. If, for the moment, we
let d1 denote the Hamming distance for pairs of words of length 1, then with the
notation in Definition 3.1.5 we can write

d.c; v/ D d1.c1; v1/C � � � C d1.cn; vn/: (3.1)

Note that for c; v 2 Fq we have d1.c; v/ D 0 if c D v and d1.c; v/ D 1 if c ¤ v.
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Proposition 3.1.6 The Hamming distance d has the following properties for all
c;u; v 2 F

n
q:

(i) 0 � d.c;u/ � n (nonnegativity and upper bound);
(ii) d.c;u/ D 0 if and only if c D u (identity of indiscernibles);

(iii) d.c;u/ D d.u; c/ (symmetry);
(iv) d.c; v/ � d.c;u/C d.u; v/ (triangle inequality).

Proof The properties (i), (ii), and (iii) are trivial. In view of (3.1), it suffices to
prove (iv) for n D 1, that is, for the Hamming distance d1. We take c; u; v 2 Fq and
distinguish two cases. If c D v, then (iv) is obvious since d1.c; v/ D 0. If c ¤ v,
then either c ¤ u or u ¤ v, and (iv) is again true for d1. �
Example 3.1.7 Let q D 2 and let

c D .1; 1; 1; 0; 1/ 2 F
5
2; u D .0; 1; 0; 0; 1/ 2 F

5
2; v D .0; 1; 0; 1; 0/ 2 F

5
2:

Then d.c;u/ D 2, d.c; v/ D 4, d.u; v/ D 2, and so (iv) in Proposition 3.1.6 is
verified immediately. This example demonstrates that equality in (iv) can occur in a
nontrivial situation.

Remark 3.1.8 If you had a course on analysis or topology, then you will recognize
(ii), (iii), and (iv) in Proposition 3.1.6, together with the first inequality in (i), as the
axioms for a distance function in a metric space. Thus, Proposition 3.1.6 shows that
the pair .Fn

q; d/ forms a metric space. This metric space is called a Hamming space.

Definition 3.1.9 For a code C containing at least two codewords, the minimum
distance d.C/ of C is defined by

d.C/ D min fd.c1; c2/ W c1; c2 2 C; c1 ¤ c2g:

In words, d.C/ is the closest that two distinct codewords in C can come together
in terms of the Hamming distance.

Example 3.1.10 Let q D 2 and let the binary code C of length 5 consist of the
codewords

c1 D .0; 0; 0; 0; 0/; c2 D .1; 1; 0; 0; 0/; c3 D .1; 1; 1; 1; 1/:

Then d.c1; c2/ D 2, d.c1; c3/ D 5, d.c2; c3/ D 3, and so d.C/ D 2.

Example 3.1.11 Consider the repetition code in Example 3.1.4. Then any two
distinct codewords in C differ in all n coordinates, and so d.C/ D n.

The minimum distance is a crucial parameter of a code since it governs the error-
correction capability of a code, as we shall see in Theorem 3.1.14 below.

Let us now take a closer look at the issue of error correction. We recall that
in our model for communication we start with a word a over Fq of length k (the
message) and transform it by the encoder into a codeword c over Fq of length n,
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c = ψ(a) −→ v = c+ e −→ c′ ∈ C −→ a′ = ψ−1(c′)
↑ ↑ ↑ ↑

encoder noisy channel error processor decoder

Fig. 3.1 The model for error correction

where typically n > k. The codeword c is sent over the noisy channel. On the
other side of the channel we get a received word v over Fq of length n which may be
different from c. The problem of error correction is how to recover c from v, if this is
at all possible. The following diagram represents the general situation in our model
and introduces two more devices, the error processor and the decoder (Fig. 3.1).

The error processor serves the purpose of error correction. It takes the input v
and attempts to find the most likely codeword c0 corresponding to it, by applying
what is called a decoding algorithm. Again, c0 may be different from the original
codeword c. The decoder applies the inverse map  �1 of the encoder  to c0 and
produces the output a0 D  �1.c0/. In the case of a successful communication, we
should have c0 D c and a0 D a. The decoder raises no fundamental issues as it
simply requires the application of the inverse map of a given injective map. On the
other hand, the design of efficient decoding algorithms is a nontrivial problem which
has received a lot of attention in coding theory.

An important mathematical task for the model above is to find sufficient condi-
tions for a successful communication. The following terminology is convenient in
connection with this task.

Definition 3.1.12 For an integer t � 0, a code C 
 F
n
q is called t-error-correcting

if for every v 2 F
n
q there is at most one c 2 C such that d.v; c/ � t.

Every code is trivially 0-error-correcting, and so the concept in Definition 3.1.12
is of practical interest only for t � 1.

The standard principle used by the error processor is nearest neighbor decoding.
It is based on the admittedly optimistic assumption that few rather than many errors
occur in the transmission over the noisy channel.

Algorithm 3.1.13 (Nearest Neighbor Decoding) Let C be a code over Fq of
length n.

Input: a received word v 2 F
n
q.

Output: a codeword c0 2 C that is closest to v in terms of the Hamming distance,
that is,

d.v; c0/ D min
c2C

d.v; c/:

The actual procedure of passing from the input v to the output c0 depends on the
nature of the code C, and more will be said about this later in this chapter. This
procedure is the core of decoding algorithms, and from a practical point of view it
is an essential requirement that it be reasonably efficient.
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Fig. 3.2 Unique error
correction

c1 c2
v

t t

If c 2 C is sent over the noisy channel and at most t transmission errors occur in
this word of length n, then d.v; c/ � t for the received word v. If we know that C is
t-error-correcting, then d.v; z/ > t for all other codewords z ¤ c in C, which means
that c is closest to v (in terms of the Hamming distance) among all codewords in
C and nearest neighbor decoding gives the correct result. The missing link is the
following result (Fig. 3.2).

Theorem 3.1.14 If C is a code with at least two codewords and with minimum
distance d.C/, then C is t-error-correcting with t D b.d.C/� 1/=2c.

Proof We proceed by contradiction. Let C 
 F
n
q and suppose that, for some v 2 F

n
q,

there exist two codewords c1; c2 2 C with c1 ¤ c2 such that d.v; c1/ � t and
d.v; c2/ � t. Then the triangle inequality yields

d.c1; c2/ � d.c1; v/C d.v; c2/ � 2t � d.C/ � 1;

a contradiction to the definition of d.C/. �

Example 3.1.15 Consider again the repetition code C in Examples 3.1.2, 3.1.4,
and 3.1.11. We noted in Example 3.1.11 that d.C/ D n D 2r C 1, and so
Theorem 3.1.14 implies that C is r-error-correcting. This agrees with the result of
the simple analysis we carried out in Example 3.1.2.

Example 3.1.16 Let C be the binary code of length 5 consisting of the codewords

c1 D .0; 0; 0; 0; 0/; c2 D .0; 0; 1; 1; 1/; c3 D .1; 1; 0; 1; 1/; c4 D .1; 1; 1; 0; 0/:

It is straightforward to verify that d.C/ D 3. Therefore C is 1-error-correcting by
Theorem 3.1.14.

Remark 3.1.17 A simpler problem than error correction is error detection, where
we want to recognize by looking at the received word v whether transmission errors
have occurred or not. For an integer u � 1, a code C 
 F

n
q is called u-error-

detecting if the property 1 � d.v; c/ � u with v 2 F
n
q and c 2 C always implies

that v … C. For such a code C, if c 2 C is sent over the noisy channel and at most
u transmission errors occur in this word of length n, then there are two possible
cases for the received word v: either (i) v 2 C, then v D c and the transmission
is error-free; or (ii) v … C, then we have detected that transmission errors have
happened. To decide whether we are in case (i) or in case (ii) is a simple matter
of going through the list of codewords in C, and there may even be more efficient
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ways of deciding this in situations where C has a nice structural description. If C
has at least two codewords and minimum distance d.C/ � 2, then it is clear that C
is u-error-detecting with u D d.C/ � 1, for if v 2 F

n
q, c 2 C, and 1 � d.v; c/ �

u D d.C/ � 1, then v … C by the definition of d.C/. In the remaining part of this
chapter, we will interpret results about the minimum distance of a code in terms of
the error-correction capability of the code, but the discussion above shows that an
interpretation in terms of the error-detection capability of the code is possible as
well.

We summarize the desirable properties of a good code and equivalently of a good
coding scheme:

(i) large minimum distance of the code to guarantee a high error-correction
capability (see Theorem 3.1.14);

(ii) not too much loss of speed in the data transmission caused by the code (a
negative example is the repetition code in Example 3.1.2 with large n);

(iii) the computational procedures in the coding scheme (that is, the encoder, the
decoding algorithm, and the decoder) are fast.

The goals (i) and (ii) are usually not compatible, as we will see in Sect. 3.4.2.
Therefore, in general one has to settle for a trade-off between (i) and (ii).

3.2 Linear Codes

3.2.1 Vector Spaces Over Finite Fields

The Hamming space F
n
q in Remark 3.1.8 can be endowed with additional structure,

namely that of a vector space. You have learned about vector spaces in a course
on linear algebra, but most likely you have seen only vector spaces over the real
numbers and over the complex numbers in that course. In abstract linear algebra
one can consider vector spaces over any field, and so in particular over a finite field,
which is the relevant case for the theory of linear codes. The theory of vector spaces
works basically in the same way for any field of scalars. For your benefit, we briefly
review the fundamentals of vector spaces over finite fields.

A vector space (or linear space) V overFq has two operations: addition of vectors
from V and multiplication of a vector from V by a scalar from Fq. These operations
have to satisfy certain properties. To begin with, V is an abelian group with respect
to vector addition. The identity element of this group is called the zero vector and
denoted by 0. Multiplication by scalars is distributive with regard to both vector
addition and scalar addition, that is, c.a Cb/ D ca Ccb and .c1Cc2/a D c1a Cc2a
for all a;b 2 V and c; c1; c2 2 Fq. There is an associative law of the form .c1c2/a D
c1.c2a/ for all a 2 V and c1; c2 2 Fq, and finally we must have 1a D a for the
multiplicative identity 1 2 Fq and all a 2 V .
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Definition 3.2.1 Let V be a vector space over Fq. The vectors b1; : : : ;bk 2 V are
linearly independent over Fq if

c1b1 C � � � C ckbk D 0

with c1; : : : ; ck 2 Fq implies that ci D 0 for 1 � i � k. The vectors b1; : : : ;bk 2 V
are linearly dependent over Fq if they are not linearly independent over Fq.

Definition 3.2.2 Let V be a vector space over Fq. The vectors a1; : : : ; am 2 V
generate V if for every v 2 V there exist c1; : : : ; cm 2 Fq such that

c1a1 C � � � C cmam D v: (3.2)

If there exist vectors a1; : : : ; am 2 V that generate V , then V is called finite-
dimensional.

The identity (3.2) is often expressed by saying that v is a linear combination (over
Fq) of a1; : : : ; am. Suppose now that a1; : : : ; am generate V ¤ f0g. Let fb1; : : : ;bkg
be a subset of fa1; : : : ; amg of minimal size such that b1; : : : ;bk generate V . Then
b1; : : : ;bk are linearly independent over Fq, for if we had

c1b1 C � � � C ckbk D 0

with c1; : : : ; ck 2 Fq and some ci ¤ 0, then either k D 1 and b1 D 0, a
contradiction to V ¤ f0g, or otherwise k � 2 and bi is a linear combination over
Fq of b1; : : : ;bi�1;biC1; : : : ;bk, which implies that the latter set of k � 1 vectors
already generates V , a contradiction to the minimality condition above. Thus, for
every finite-dimensional vector space V ¤ f0g there exists a set of vectors with the
properties enunciated in the following definition.

Definition 3.2.3 The vectors b1; : : : ;bk 2 V form a basis of the finite-dimensional
vector space V ¤ f0g over Fq if b1; : : : ;bk are linearly independent over Fq and
generate V .

Proposition 3.2.4 The number of vectors in a basis of a finite-dimensional vector
space V ¤ f0g over Fq depends only on V, or in other words, any two bases of V
contain the same number of vectors.

Proof Suppose that b1; : : : ;bk 2 V form a basis of V . Then every v 2 V can be
written as a linear combination

c1b1 C � � � C ckbk D v (3.3)

with c1; : : : ; ck 2 Fq. We claim that this representation is unique. Assume we have
also

c0
1b1 C � � � C c0

kbk D v
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with c0
1; : : : ; c

0
k 2 Fq. By subtracting these two identities, we obtain

.c1 � c0
1/b1 C � � � C .ck � c0

k/bk D 0:

Since b1; : : : ;bk are linearly independent over Fq, it follows from Definition 3.2.1
that ci � c0

i D 0 for 1 � i � k, that is, ci D c0
i for 1 � i � k. Thus, the

claim concerning the unique representation in (3.3) is established. Consequently, the
number of vectors in V is equal to the number of k-tuples .c1; : : : ; ck/ of elements
of Fq, and so it is equal to qk. It remains to observe that k is uniquely determined
by V . �

Definition 3.2.5 The dimension dim.V/ of a finite-dimensional vector space V ¤
f0g over Fq is the number of vectors in any basis of V . The dimension dim.V/ of
V D f0g is defined to be 0.

Proposition 3.2.6 The number of vectors in a finite-dimensional vector space V
over Fq is equal to qdim.V/.

Proof This is trivial for dim.V/ D 0, and for dim.V/ � 1 it was shown in the proof
of Proposition 3.2.4. �

Let V ¤ f0g be a k-dimensional vector space over Fq and let b1; : : : ;bk 2 V form
a basis of V . If we fix the order of the basis vectors, then we speak of the ordered
basis fb1; : : : ;bkg of V overFq. We have shown in the proof of Proposition 3.2.4 that
there is a one-to-one correspondence provided by (3.3) between the vectors v 2 V
and the vectors .c1; : : : ; ck/ 2 F

k
q. The vector .c1; : : : ; ck/ is called the coordinate

vector of v relative to the ordered basis fb1; : : : ;bkg.

Remark 3.2.7 For a positive integer k, the finite field Fq is a subfield of Fqk (see
Proposition 1.4.31). It is of interest to observe that Fqk can be viewed as a vector
space over Fq, by letting the addition of vectors be the addition in Fqk and by letting
the multiplication of a vector by a scalar from Fq be the multiplication in Fqk . It is
straightforward to check that all properties of a vector space are satisfied. According
to Proposition 3.2.6, the dimension of the vector space Fqk over Fq is k. A basis of
Fqk can be obtained as follows. Let f .x/ 2 FqŒx	 be an irreducible polynomial over
Fq of degree k. Then Fqk can be identified with the residue class field FqŒx	=.f .x//
(see Remark 1.4.46). Thus, the elements of Fqk can be taken to be the polynomialsPk�1

jD0 ajxj, with all aj 2 Fq, in the least residue system modulo f .x/. Given this
description of Fqk , it is obvious that 1; x; x2; : : : ; xk�1 form a basis of Fqk . Since
f .x/ D 0 in FqŒx	=.f .x//, we can think of x also as a root ˛ 2 Fqk of f .x/. Then a
basis of Fqk is formed by 1; ˛; ˛2; : : : ; ˛k�1, and f .x/ is the minimal polynomial of
˛ over Fq if it is monic.

Definition 3.2.8 Let V be a vector space over Fq. A subset W of V is a (linear)
subspace of V if W is a vector space over Fq under the operations inherited from V .

Remark 3.2.9 A subspace of V must always contain the zero vector 0 of V . There
are two trivial subspaces of V , namely f0g (the zero subspace) and V itself. If V is a
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finite-dimensional vector space over Fq and W is a subspace of V , then dim.W/ �
dim.V/ by Proposition 3.2.6.

3.2.2 Fundamental Properties of Linear Codes

After these preparations, let us shift into a higher gear and move on to the important
family of linear codes. The basic vector spaces for the theory of linear codes are
the Hamming spaces F

n
q, where n is some positive integer. The two operations in

the vector space F
n
q are defined coordinatewise. Thus, if u D .u1; : : : ; un/ 2 F

n
q and

v D .v1; : : : ; vn/ 2 F
n
q, then the vector addition is defined by

u C v D .u1 C v1; : : : ; un C vn/ 2 F
n
q;

and the multiplication by a scalar c 2 Fq is defined by

cv D .cv1; : : : ; cvn/ 2 F
n
q:

It is straightforward to verify that, with these operations, Fn
q satisfies all properties

of a vector space over Fq.
Since F

n
q contains exactly qn vectors, it follows from Proposition 3.2.6 that

dim.Fn
q/ D n. Thus, every basis of F

n
q consists of n vectors. The standard basis

of F
n
q is formed by the vectors s1; : : : ; sn 2 F

n
q, where sj, j D 1; : : : ; n, has jth

coordinate equal to 1 and all other coordinates equal to 0.

Definition 3.2.10 A linear code C over Fq is a nonzero subspace of Fn
q for some

positive integer n. The dimension dim.C/ of C as a vector space over Fq is called
the dimension of the linear code C.

If C 
 F
n
q is a linear code over Fq of length n, then it follows from Remark 3.2.9

that the dimension k of C satisfies 1 � k � n. It is convenient to call C a linear Œn; k	
code over Fq. If we want to point out in addition that the minimum distance of C is
d, then we speak of a linear Œn; k; d	 code over Fq.

Example 3.2.11 The repetition code C D f.a; : : : ; a/ 2 F
n
q W a 2 Fqg in

Example 3.1.4 has dimension 1 and a basis of C is formed by the single all-one
vector .1; : : : ; 1/. Therefore we can say that C is a linear Œn; 1	 code over Fq. By
Example 3.1.11 we know that d.C/ D n, and so C is a linear Œn; 1; n	 code over Fq.

Example 3.2.12 Consider the binary code C in Example 3.1.16. It is clear that C is
a linear code over F2 with basis c2; c3. Therefore dim.C/ D 2, and so C is a linear
Œ5; 2; 3	 code over F2.

Let C be a linear Œn; k	 code over Fq. Then by Proposition 3.2.6, C contains
exactly qk codewords. In the setting described in Sect. 3.1, we can then take F

k
q as

the set of messages. Furthermore, it is common practice to let the encoder  be a
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linear transformation from F
k
q into F

n
q. We recall from linear algebra that if V1 and

V2 are arbitrary vector spaces over Fq, then a linear transformation from V1 into V2
is a map � W V1 ! V2 such that �.a C b/ D �.a/ C �.b/ for all a;b 2 V1 and
�.ca/ D c�.a/ for all c 2 Fq and a 2 V1.

If we choose the encoder  W F
k
q ! F

n
q to be a linear transformation, then

encoding (that is, the computation of  .a/ for a 2 F
k
q) becomes a simple task.

Let s1; : : : ; sk be the standard basis of Fk
q. Then we precompute  .s1/; : : : ;  .sk/.

For an arbitrary input a D .a1; : : : ; ak/ 2 F
k
q of the encoder, we can write

a D a1s1 C � � � C aksk;

and so the properties of a linear transformation imply that

 .a/ D a1 .s1/C � � � C ak .sk/: (3.4)

We will see a bit later that this computation can also be conveniently described in
terms of matrix algebra.

Life is easier with linear codes, and this holds not only for encoding, but also
for most other computational tasks for codes. Consider, for instance, the problem
of determining the minimum distance of a code. This is greatly facilitated by the
following concept and the subsequent theorem valid for all linear codes.

Definition 3.2.13 The Hamming weight w.v/ of v D .v1; : : : ; vn/ 2 F
n
q is defined

to be the number of nonzero coordinates of v, that is,

w.v/ D # f1 � j � n W vj ¤ 0g:

By comparing this definition with the definition of the Hamming distance in
Definition 3.1.5, we see that if u; v 2 F

n
q, then

w.v/ D d.v; 0/ and d.u; v/ D w.u � v/: (3.5)

Theorem 3.2.14 If C is a linear code over Fq, then its minimum distance d.C/
satisfies

d.C/ D w.C/ WD min
c2Cnf0g

w.c/;

that is, d.C/ is equal to the minimum Hamming weight of a nonzero codeword in C.

Proof By definition, there exist distinct codewords c1; c2 2 C such that d.C/ D
d.c1; c2/. We apply the second identity in (3.5) and get

d.C/ D d.c1; c2/ D w.c1 � c2/ � w.C/
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since c1�c2 2 C for a linear code C. Conversely, there exists a codeword c 2 Cnf0g
with w.C/ D w.c/, and then the first identity in (3.5) yields

w.C/ D w.c/ D d.c; 0/ � d.C/

since 0 2 C for a linear code C. �

Remark 3.2.15 The number w.C/ introduced in Theorem 3.2.14 is called the
Hamming weight of the linear code C. The Hamming weight w.C/ is defined in
exactly the same way for every nonlinear code C that contains at least one nonzero
codeword. The minimum distance and the Hamming weight of a nonlinear code can,
for a suitable choice of the code, be as far apart as we desire. For instance, take an
arbitrary prime power q and an integer n � 2 and let C 
 F

n
q be the nonlinear code

consisting of the two codewords

c1 D .1; : : : ; 1/ 2 F
n
q; c2 D .1; : : : ; 1; 0/ 2 F

n
q:

Then d.C/ D 1 and w.C/ D n � 1.

Suppose that a linear code C for which we want to determine the minimum
distance contains exactly s codewords. If we calculate d.C/ by its definition in
Definition 3.1.9, then we have to compute .s2�s/=2Hamming distances between all
pairs of distinct codewords in C. If we calculate d.C/ by Theorem 3.2.14, then we
have to compute only the s � 1 Hamming distances between the nonzero codewords
in C and 0 2 C. Therefore the minimum distance of a linear code is usually
calculated by means of Theorem 3.2.14.

Example 3.2.16 The binary linear code C of length 6 is given by its basis

b1 D .1; 0; 0; 1; 1; 0/;

b2 D .0; 1; 0; 1; 0; 1/;

b3 D .0; 0; 1; 0; 1; 1/:

We obtain all codewords in C by forming all linear combinations over F2 of
b1;b2;b3. Besides 0;b1;b2;b3, this yields the codewords

b1 C b2 D .1; 1; 0; 0; 1; 1/;

b1 C b3 D .1; 0; 1; 1; 0; 1/;

b2 C b3 D .0; 1; 1; 1; 1; 0/;

b1 C b2 C b3 D .1; 1; 1; 0; 0; 0/:

For the nonzero codewords in C, only the Hamming weights 3 and 4 appear, and so
d.C/ D w.C/ D 3 by Theorem 3.2.14. Thus, C is a linear Œ6; 3; 3	 code over F2, and
C is 1-error-correcting by Theorem 3.1.14.
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3.2.3 Matrices Over Finite Fields

Before we begin with matrix algebra and its importance for linear codes, we
introduce an operation on F

n
q which yields an element of Fq as the output.

Definition 3.2.17 The dot product (or standard inner product) of u D
.u1; : : : ; un/ 2 F

n
q and v D .v1; : : : ; vn/ 2 F

n
q is defined by

u � v D u1v1 C � � � C unvn 2 Fq:

Proposition 3.2.18 The dot product on F
n
q has the following properties:

(i) u � v D v � u for all u; v 2 F
n
q;

(ii) u � .v1 C v2/ D u � v1 C u � v2 for all u; v1; v2 2 F
n
q;

(iii) u � .cv/ D c.u � v/ for all u; v 2 F
n
q and c 2 Fq.

Proof All properties are obvious from the definition of the dot product. �

Proposition 3.2.18 implies that the dot product u � v is bilinear, that is, it is linear
in both the first vector u and the second vector v.

Remark 3.2.19 The dot product of two nonzero vectors can turn out to be 0. For
instance, in F

2
3 we have

.1; 1/ � .2; 1/ D 1 � 2C 1 � 1 D 0:

Two vectors u; v 2 F
n
q with u � v D 0 are said to be orthogonal.

Matrix algebra is standard material in a course on linear algebra, but often only
real and complex matrices are treated. Here we briefly review matrices over finite
fields. A k � n matrix over Fq is a rectangular array consisting of k rows and n
columns, where k and n are positive integers and each entry of the array is an element
of Fq. For a k � n matrix A over Fq, the .i; j/ entry of A, that is, the entry in the ith
row and jth column of A, is usually denoted by aij, and the whole matrix can be
written as A D .aij/1�i�k; 1�j�n.

There are various operations that can be performed for matrices over finite fields,
and they are completely analogous to those for real and complex matrices. The k �n
matrix A D .aij/1�i�k; 1�j�n over Fq is multiplied by a scalar c 2 Fq by multiplying
each entry of A by c, that is,

cA D .caij/1�i�k; 1�j�n:

Two k � n matrices A D .aij/1�i�k; 1�j�n and B D .bij/1�i�k; 1�j�n over Fq are added
by adding corresponding entries, that is,

A C B D .aij C bij/1�i�k; 1�j�n:
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Two matrices A and B over Fq can be multiplied if they have compatible sizes, that
is, if the number of columns of A is equal to the number of rows of B. Accordingly,
let A be a k�n matrix over Fq and let B be an n�m matrix over Fq. Then the product
AB is a k � m matrix over Fq, and the .i; j/ entry of AB is equal to the dot product
ai � bj, where ai is the ith row of A, bj is the jth column of B, and both are viewed as
vectors in F

n
q. As for real and complex matrices, multiplication of matrices overFq is

associative, but in general not commutative. Matrix multiplication and addition are
linked by (left and right) distributive laws. Scalar multiplication of matrices behaves
in the expected way when combined with matrix multiplication and addition. For
instance, A.cB/ D c.AB/ for all matrices A and B over Fq of compatible sizes and
for all c 2 Fq.

We can turn every matrix A over Fq on its side by defining its transpose A>. In
detail, if A is a k � n matrix over Fq, then A> is the n � k matrix over Fq that is
obtained by letting the ith row of A (for 1 � i � k) become the ith column of A>,
or equivalently by letting the jth column of A (for 1 � j � n) become the jth row
of A>.

Proposition 3.2.20 The transpose of matrices has the following properties:

(i) .cA/> D cA> for every c 2 Fq and every matrix A over Fq;
(ii) .A C B/> D A> C B> for all matrices A and B over Fq of the same size;

(iii) .AB/> D B>A> for all matrices A and B over Fq of compatible sizes;
(iv) .A>/> D A for every matrix A over Fq.

Proof This is a straightforward verification. �

Vectors can be viewed as special cases of matrices. Thus, a row vector from F
n
q is

interpreted as a 1�n matrix over Fq and a column vector from F
n
q is interpreted as an

n � 1 matrix over Fq. An operation that occurs frequently in the theory and practice
of linear codes is that of multiplication of a matrix and a vector. This operation is
a special case of matrix multiplication, and so it is possible only if the sizes are
compatible. In detail, if A is a given k � n matrix over Fq, then we can multiply it
from the left by a 1 � k matrix over Fq and from the right by an n � 1 matrix over
Fq. In other words, the product aA makes sense for a row vector a 2 F

k
q and the

product Ab makes sense for a column vector b 2 F
n
q. In order to pass from row

vectors to column vectors, we can use the transpose. It is common practice to let
vector symbols like a;b; : : : denote only row vectors, and then column vectors are
obtained by forming the transposes a>;b>; : : : . Thus, for the vector-matrix products
and the matrix-vector products above, we typically write aA and Ab>, respectively.
The dot product u � v in Definition 3.2.17 can then be expressed also as the product
uv>. If we view a vector as a special matrix, then it is consistent to write a vector
.a1; : : : ; ak/ 2 F

k
q in matrix notation .a1 : : : ak/ without commas.
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3.2.4 Generator Matrix

Supplied with all these tools from linear algebra, we can now return to the theory
of linear codes. Let us first reconsider the issue of encoding for linear codes. We
have seen earlier that if the encoder  is a linear transformation, then for a message
a D .a1; : : : ; ak/ 2 F

k
q, the corresponding codeword  .a/ 2 F

n
q is given by the

formula in (3.4). Now we set up the k � n matrix G over Fq whose row vectors are
 .s1/; : : : ;  .sk/ in this order. Then the expression on the right-hand side of (3.4)
is the vector-matrix product aG, and so we obtain

 .a/ D aG for all a 2 F
k
q: (3.6)

Let C 
 F
n
q be the linear code over Fq corresponding to  , that is, C is the image

of  by definition. Then it is clear from (3.4) that  .s1/; : : : ;  .sk/ generate C.
Since  is injective, C contains exactly qk codewords, and so dim.C/ D k by
Proposition 3.2.6. Hence  .s1/; : : : ;  .sk/ form a basis of C. This leads to the
following terminology for the matrix G in (3.6).

Definition 3.2.21 Let C be a linear Œn; k	 code over Fq. Then a k � n matrix over Fq

whose row vectors form a basis of C is called a generator matrix of C.

Consequently, efficient encoding for a linear code proceeds by the following
simple algorithm.

Algorithm 3.2.22 (Encoding for Linear Codes) Let C be a linear Œn; k	 code over
Fq.

Step 1: choose a basis of C.
Step 2: set up a k � n generator matrix G of C by writing the basis vectors of C

as row vectors of G.
Step 3: the codeword c 2 C corresponding to the message a 2 F

k
q is computed as

c D  .a/ D aG.

Given the linear code C, a generator matrix G of C can be precomputed by Steps 1
and 2 of the algorithm above. If many codewords have to be computed for a concrete
data transmission over a noisy channel, then only Step 3 in the algorithm needs to
be carried out repeatedly.

Example 3.2.23 A generator matrix G of the linear Œ6; 3	 code over F2 introduced
in Example 3.2.16 is given by

G D
0

@
1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

1

A :
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For the message a D .1 0 1/ 2 F
3
2, we use our encoding algorithm to compute the

corresponding codeword

c D  .a/ D .1 0 1/

0

@
1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

1

A D .1 0 1 1 0 1/:

A generator matrix of a linear code is usually not unique (this is why we speak
of a generator matrix and not of the generator matrix), since a linear code can have
many different bases in general.

Example 3.2.24 It is easily checked that another generator matrix G0 of the binary
linear code in Examples 3.2.16 and 3.2.23 is given by

G0 D
0

@
1 0 0 1 1 0

1 1 0 0 1 1

0 0 1 0 1 1

1

A :

Some linear codes have a generator matrix that is of a special form which turns
out to be unique. Before we introduce this special form in the following definition,
we recall that an identity matrix is a square matrix (that is, the number of rows is
equal to the number of columns) for which the entries on the main diagonal (that is,
the diagonal running from the upper left corner to the lower right corner) are equal
to 1 and all other entries are equal to 0.

Definition 3.2.25 A k � n generator matrix G over Fq of the form

G D .Ik j A/

with the k � k identity matrix Ik over Fq and some k � .n � k/ matrix A over Fq is
said to be in standard form.

For instance, the 3 � 6 generator matrix G over F2 in Example 3.2.23 is in
standard form. A k � n generator matrix G in standard form affords a speedup in
encoding, since the fact that the first k columns of G come from an identity matrix
implies that the word consisting of the first k coordinates of  .a/ is equal to a.
Thus, only n�k coordinates of  .a/ have to be computed. This feature is illustrated
by Example 3.2.23 where the first three coordinates of c are for free since they are
equal to the coordinates of a in the same order. Unfortunately, not every linear code
has a generator matrix in standard form.

Example 3.2.26 Let C be the binary linear Œ3; 2	 code with basis b1 D .1; 0; 0/,
b2 D .1; 0; 1/. Then C has six possible generator matrices:

�
1 0 0

1 0 1

�
;

�
1 0 1

1 0 0

�
;

�
0 0 1

1 0 0

�
;

�
1 0 0

0 0 1

�
;

�
0 0 1

1 0 1

�
;

�
1 0 1

0 0 1

�
:

None of these generator matrices is in standard form.
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Remark 3.2.27 A generator matrix in standard form can always be obtained if we
consider linear codes up to a notion of equivalence. Two linear Œn; k	 codes C and
C0 over Fq are called equivalent if the codewords in C can be transformed into the
codewords in C0 by applying a fixed permutation of the coordinates. Then we claim
that every linear code C is equivalent to a linear code C0 such that C0 has a generator
matrix in standard form. This is proved by a simple procedure in matrix theory,
namely that of transforming a matrix (in this case a generator matrix of C) into
reduced echelon form by elementary row operations. Recall that an elementary row
operation is any one of the following three operations: (i) interchanging two rows;
(ii) multiplying a row by a nonzero scalar; (iii) replacing a row by its sum with a
scalar multiple of another row. The resulting matrix G in reduced echelon form is
still a generator matrix of C. By a suitable permutation of the columns of G (and
thus by passing to an equivalent linear code C0), we get a generator matrix G0 of C0
in standard form.

Example 3.2.28 Consider the linear code C in Example 3.2.26. By interchanging
the second and third coordinates of all codewords in C, we get an equivalent linear
code C0. If we apply this permutation of the coordinates to the fourth generator
matrix in Example 3.2.26, then we obtain the generator matrix

G0 D
�
1 0 0

0 1 0

�

of C0 which is in standard form.

Example 3.2.29 Let C be the binary linear Œ5; 3	 code with generator matrix

G D
0

@
1 1 1 0 1

1 0 1 1 0

1 1 0 1 0

1

A :

We transform G into reduced echelon form by elementary row operations. To start
with, the second row of G and the third row of G are changed by adding the first
row of G to them. This yields

G1 D
0

@
1 1 1 0 1

0 1 0 1 1

0 0 1 1 1

1

A :

Now the first row of G1 is changed by adding the sum of the second and third rows
of G1 to it. This yields

G2 D
0

@
1 0 0 0 1

0 1 0 1 1

0 0 1 1 1

1

A :

Then G2 is a generator matrix of C in standard form.
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In the case where the linear Œn; k	 code C over Fq has a generator matrix G in
standard form, we know that the encoder  W F

k
q ! C operates by adding n � k

coordinates from Fq to a message a 2 F
k
q; these coordinates depend on G and a. The

decoder  �1 W C ! F
k
q is then trivial, for all we have to do for a given codeword

c 2 C is to delete its last n�k coordinates, and this already yields the corresponding
message a 2 F

k
q. For instance, in Example 3.2.23 we delete the last n � k D 3

coordinates of c D .1 0 1 1 0 1/ to obtain a D .1 0 1/.

3.2.5 The Dual Code

The dot product introduced in Definition 3.2.17 serves as the basic tool in the duality
theory for linear codes.

Definition 3.2.30 The dual space V? of a subspace V of Fn
q is given by

V? D fu 2 F
n
q W u � v D 0 for all v 2 Vg:

Proposition 3.2.31 The dual space V? of a subspace V of Fn
q is again a subspace

of Fn
q.

Proof It is obvious that 0 2 V?. Furthermore, it follows from properties of the dot
product (see Proposition 3.2.18) that u 2 V? implies cu 2 V? for all c 2 Fq, and
u1;u2 2 V? implies u1 C u2 2 V?. �

Example 3.2.32 For V D f0g it is obvious that V? D F
n
q. If V D F

n
q, u D

.u1; : : : ; un/ 2 V?, and s1; : : : ; sn is the standard basis of Fn
q, then uj D u � sj D 0

for 1 � j � n, and so V? D f0g.

There is a trivial linear code C over Fq of length n, namely C D F
n
q. It has

minimum distance d.C/ D 1, and so this code is useless since it can neither correct
nor detect errors. We emphasize that a linear Œn; k	 code over Fq is nontrivial if and
only if its dimension k satisfies 1 � k � n � 1.

Definition 3.2.33 If C is a nontrivial linear code over Fq, then the dual space C?
of C is called the dual code of C.

Theorem 3.2.34 If C is a nontrivial linear Œn; k	 code over Fq, then its dual code
C? is a linear Œn; n � k	 code over Fq.

Proof Proposition 3.2.31 shows that C? is a subspace of Fn
q. It remains to determine

dim.C?/. Since passing to an equivalent linear code does not change dim.C/ and
dim.C?/, we can assume that C has a generator matrix in standard form (compare
with Remark 3.2.27). Thus, if dim.C/ D k, then C has a basis c1; : : : ; ck of the form

ci D .si;di/ for 1 � i � k
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with suitable d1; : : : ;dk 2 F
n�k
q , where s1; : : : ; sk is the standard basis of F

k
q.

Consider a fixed b 2 F
n�k
q . Let u 2 F

n
q be of the form

u D .u1; : : : ; uk;b/

for some u1; : : : ; uk 2 Fq. Then u 2 C? if and only if u � ci D 0 for 1 � i � k.
Because of the special form of the ci, the latter condition is equivalent to ui D �b �di

for 1 � i � k. Hence for every fixed b 2 F
n�k
q , the coordinates u1; : : : ; uk of

u D .u1; : : : ; uk;b/ 2 C? are uniquely determined. It follows that C? contains
exactly qn�k vectors, and so dim.C?/ D n � k by Proposition 3.2.6. �

Corollary 3.2.35 Every nontrivial linear code C over Fq satisfies .C?/? D C.

Proof From Theorem 3.2.34 we obtain

dim..C?/?/ D n � dim.C?/ D n � .n � dim.C// D dim.C/:

We complete the proof by showing that C 
 .C?/?. In order to prove that c 2 C
implies c 2 .C?/?, we have to verify that c � u D 0 for all u 2 C?. But this follows
from the definition of C?. �

3.2.6 Parity-Check Matrix

Besides a generator matrix, there is another important type of matrix attached to a
linear code (on condition that the linear code is nontrivial), namely a parity-check
matrix.

Definition 3.2.36 Let C be a nontrivial linear Œn; k	 code over Fq. Then an .n�k/�n
matrix over Fq is a parity-check matrix of C if it is a generator matrix of the dual
code C?.

Theorem 3.2.37 Let H be a parity-check matrix of a nontrivial linear Œn; k	 code C
over Fq and let v 2 F

n
q. Then v 2 C if and only if vH> D 0.

Proof Note that, by definition, the row vectors h1; : : : ;hn�k of H form a basis of
C?. Moreover, h>

1 ; : : : ;h
>
n�k are the column vectors of H>. If v 2 C, then v � hj D 0

and so vh>
j D 0 for 1 � j � n � k. This means that vH> D 0. Conversely, if

vH> D 0, then vh>
j D 0 and so v � hj D 0 for 1 � j � n � k. Since h1; : : : ;hn�k

generate C?, we deduce that v � u D 0 for all u 2 C?. This yields v 2 .C?/? D C
by Corollary 3.2.35. �

Corollary 3.2.38 Let C be a nontrivial linear Œn; k	 code over Fq. Then for every
generator matrix G of C and every parity-check matrix H of C, the identity GH> D
Ok�.n�k/ holds, where Ok�.n�k/ is the k � .n � k/ zero matrix over Fq.
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Proof For every row vector v of G, we obtain vH> D 0 by Theorem 3.2.37, and
this shows the desired result. �

Remark 3.2.39 By using the property of the transpose stated in Proposi-
tion 3.2.20(iii), we see that the condition vH> D 0 in Theorem 3.2.37 can be
written also as Hv> D 0>. This can be interpreted as saying that the linear code
C in Theorem 3.2.37 forms what is called in linear algebra the null space (or the
kernel) of the matrix H. In view of the same property of the transpose, the identity
GH> D Ok�.n�k/ in Corollary 3.2.38 is equivalent to HG> D O.n�k/�k.

How can we obtain a parity-check matrix of a given nontrivial linear code C
explicitly? By turning to an equivalent linear code, we can assume that C has a
generator matrix in standard form (compare with Remark 3.2.27). Then a formula
for a parity-check matrix of C is provided by the following theorem. We note that
once we know a parity-check matrix H of C, we have also an explicit description
of the dual code C? of C, since C? consists of all linear combinations of the row
vectors of H.

Theorem 3.2.40 If C is a nontrivial linear Œn; k	 code over Fq with generator matrix
G D .Ik j A/ in standard form, then H D .�A> j In�k/ is a parity-check matrix
of C.

Proof It is clear from the form of H that the n � k row vectors of H are linearly
independent over Fq. In order to prove that H is a parity-check matrix of C (or, by
definition, that H is a generator matrix of C?), it remains to verify that each row
vector of H is orthogonal to each row vector of G. Now

HG> D .�A> j In�k/

�
Ik

A>
�

D �A>Ik C In�kA> D �A> C A> D O.n�k/�k;

and this implies the desired property. �

Definition 3.2.41 An .n � k/ � n parity-check matrix H over Fq of the form

H D .B j In�k/

with the .n � k/ � .n � k/ identity matrix In�k over Fq and some .n � k/ � k matrix
B over Fq is said to be in standard form.

Remark 3.2.42 It follows from Remark 3.2.27 and Theorem 3.2.40 that for every
nontrivial linear code there exists an equivalent linear code which has a parity-check
matrix in standard form.

Example 3.2.43 Consider the binary linear Œ5; 3	 code C in Example 3.2.29. We
have seen in that example that C has a generator matrix

G2 D
0

@
1 0 0 0 1

0 1 0 1 1

0 0 1 1 1

1

A
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in standard form. Theorem 3.2.40 now yields a parity-check matrix

H D
�
0 1 1 1 0

1 1 1 0 1

�

of C in standard form. By forming the four possible linear combinations over F2 of
the row vectors of H, we find out that the list of all codewords in the dual code C?
is given by

c1 D .0 0 0 0 0/; c2 D .0 1 1 1 0/;

c3 D .1 1 1 0 1/; c4 D .1 0 0 1 1/:

A parity-check matrix of a nontrivial linear code comes in handy when deter-
mining the minimum distance of a linear code. This application is based on the
following two results.

Theorem 3.2.44 Let C be a nontrivial linear code over Fq with parity-check matrix
H and let d � 2 be an integer. Then d.C/ � d if and only if any d �1 column vectors
of H are linearly independent over Fq.

Proof Let h>
1 ; : : : ;h

>
n be the column vectors of H. Recall from Theorem 3.2.37 that

the codewords c D .c1; : : : ; cn/ 2 C are characterized by the property cH> D 0,
that is,

c1h1 C � � � C cnhn D 0:

Thus, if any d � 1 column vectors of H are linearly independent over Fq, then
there is no c 2 C n f0g of Hamming weight w.c/ � d � 1, and so d.C/ � d by
Theorem 3.2.14. Similarly, if there are d � 1 column vectors of H that are linearly
dependent over Fq, then w.c/ � d � 1 for some nonzero c 2 C, and therefore
d.C/ � d � 1. �
Corollary 3.2.45 Let C be a nontrivial linear code over Fq with parity-check
matrix H and let d � 2 be an integer. Then d.C/ D d if and only if any d � 1

column vectors of H are linearly independent over Fq and there exist d column
vectors of H that are linearly dependent over Fq.

Proof This is an immediate consequence of Theorem 3.2.44. �

Example 3.2.46 Let C be the linear Œ6; 3	 code over F2 with generator matrix

G D
0

@
1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 0 1

1

A



3.2 Linear Codes 121

in standard form. By Theorem 3.2.40, a parity-check matrix of C is given by

H D
0

@
1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1

1

A :

It is easily verified that any two column vectors of H are linearly independent over
F2. On the other hand, the third column of H is the sum of the first and second
column of H, and so d.C/ D 3 by Corollary 3.2.45. Thus, this code is 1-error-
correcting.

3.2.7 The Syndrome Decoding Algorithm

We have learned that linear codes allow fast encoders and decoders. Now we look
at the remaining computational procedure in a coding scheme with a linear code,
namely the decoding algorithm. It will transpire that reasonably efficient decoding
algorithms can be designed for linear codes, and so linear codes achieve goal (iii)
stated at the end of Sect. 3.1.2.

We study decoding algorithms for linear codes in the framework of nearest
neighbor decoding described in Algorithm 3.1.13. Let C be a nontrivial linear code
over Fq of length n. If the codeword c 2 C is sent over the noisy channel and the
word v 2 F

n
q is received, then

e D v � c (3.7)

is the error word (or error pattern). If the received word v is given, then finding c
is equivalent to finding e. Many decoding algorithms are thus focusing on the error
word e. A general property of e that immediately follows from (3.7) is e 2 v C C,
where the latter set is the coset

v C C D fv C c W c 2 Cg

which can be defined for all v 2 F
n
q. This terminology stems from group theory

(compare with Sect. 1.3). Note that Fn
q, like any vector space, is an abelian group

under vector addition. The linear code C is a subgroup of Fn
q. The set v C C above

is exactly the coset (in the sense of group theory) of v with respect to the subgroup
C. As in the general theory of abelian groups, cosets have the following properties
which we prove in detail in the present context for your convenience.

Proposition 3.2.47 Let C be a nontrivial linear code over Fq of length n. Then:

(i) two cosets of C are either identical or they have empty intersection;
(ii) if v;w 2 F

n
q, then v � w 2 C if and only if v and w are in the same coset of C.
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Proof

(i) Consider two cosets v C C and w C C and suppose that u 2 .v C C/\ .w C C/.
From u 2 v C C we deduce that u D v C c0 for some c0 2 C, and so

u C C D fu C c W c 2 Cg D fv C c0 C c W c 2 Cg D v C C:

Similarly, u 2 w C C implies that u C C D w C C. Therefore the cosets v C C
and w C C are identical since they are both equal to u C C.

(ii) If v � w 2 C, then v D w C c0 for some c0 2 C, and so v 2 w C C. Also
w 2 w C C since 0 2 C, and so v and w are in the same coset of C. Conversely,
if v and w are in the same coset u C C for some u 2 F

n
q, then v � u 2 C and

w � u 2 C, hence v � w D .v � u/ � .w � u/ 2 C. �

Let C be a nontrivial linear Œn; k	 code over Fq. Then Proposition 3.2.47(i) implies
that the different cosets of C form a partition of Fn

q. Since each coset of C contains
exactly qk vectors, it follows that there are exactly qn�k different cosets of C.

Let v 2 F
n
q again be the received word. We have realized that the unknown error

word e belongs to the coset v C C. In conformity with the philosophy of nearest
neighbor decoding, we assume that few rather than many errors have occurred in the
transmission over the noisy channel. Concretely, we suppose that e has the smallest
Hamming weight within the coset v C C. This leads to the following concept.

Definition 3.2.48 Let C be a nontrivial linear code. A word of minimum Hamming
weight within a coset vCC is called a coset leader of vCC. If several words in vCC
have minimum Hamming weight within v C C, we choose one of them arbitrarily
as coset leader.

At this stage, we already have a preliminary version of a decoding algorithm for
a nontrivial linear code C over Fq of length n. For a received word v 2 F

n
q, we

consider the corresponding coset v CC. The coset leader e0 of v CC is a most likely
error word, and a most likely sent codeword c0 is obtained from (3.7) as c0 D v � e0.

Consequently, the crucial objects in this context are the coset leaders. Given a
nontrivial linear code C 
 F

n
q, the coset leaders can in principle be precomputed by

inspecting all cosets of C and picking from each coset a word of minimum Hamming
weight. This yields the list of all coset leaders. The remaining issue is to figure out
the coset leader e0 to which a given v 2 F

n
q belongs. Note that e0 and v are in the

same coset v C C, and so it is a matter of finding an efficient way of deciding which
word from a given list of words (the list of all coset leaders) belongs to a given coset
of C (the coset v C C determined by the received word v). This is achieved by the
following notion.

Definition 3.2.49 Let C be a nontrivial linear Œn; k	 code over Fq with parity-check
matrix H. Then the word S.v/ D vH> 2 F

n�k
q is called the syndrome of v 2 F

n
q.

Remark 3.2.50 Strictly speaking, since the syndrome depends on the choice of
the parity-check matrix H, it would be more precise to denote the syndrome of
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v by SH.v/ to signalize this dependence. However, for simplicity of notation, the
subscript H is dropped as we tacitly assume that H is fixed in the decoding algorithm
for a given nontrivial linear code.

Proposition 3.2.51 Let C be a nontrivial linear Œn; k	 code over Fq. Then the
syndromes of v;w 2 F

n
q satisfy:

(i) S.v/ D 0 if and only if v 2 C;
(ii) S.v/ D S.w/ if and only if v and w are in the same coset of C.

Proof

(i) This follows from Theorem 3.2.37.
(ii) By Proposition 3.2.47(ii), v and w are in the same coset of C if and only if

v � w 2 C. The latter condition is equivalent to S.v � w/ D 0 by part (i), and
this is the same as saying that S.v/ D S.w/. �

It follows from Proposition 3.2.51 that there is a one-to-one correspondence
between the different cosets of C and the different syndromes of words from F

n
q.

Each coset of C can thus be uniquely identified with the syndrome of its coset leader.
This principle is used in the following refined version of the preliminary decoding
algorithm described earlier.

Algorithm 3.2.52 (Syndrome Decoding Algorithm for Linear Codes) Let C be
a nontrivial linear code over Fq of length n and assume that a parity-check matrix of
C is known.

Precomputation: compute all coset leaders and the syndrome of each coset
leader.

Step 1: for a received word v 2 F
n
q, compute the syndrome S.v/.

Step 2: in the list of syndromes of coset leaders, find the coset leader e0 with
S.e0/ D S.v/; then e0 is a most likely error word.

Step 3: compute a most likely sent codeword c0 as c0 D v � e0.

Example 3.2.53 Let C be the linear Œ7; 4	 code over F2 with generator matrix

G D

0

BB@

1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 1

0 0 0 1 1 1 0

1

CCA

in standard form. Then Theorem 3.2.40 yields a parity-check matrix

H D
0

@
0 1 1 1 1 0 0

1 0 1 1 0 1 0

1 1 1 0 0 0 1

1

A
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of C. There are exactly 27�4 D 8 different cosets of C. Next we determine the coset
leaders. It turns out that, for this code C, each coset of C has a unique coset leader.
The following table lists the coset leaders and their syndromes.

coset leader syndrome
(0 0 0 0 0 0 0) (0 0 0)
(1 0 0 0 0 0 0) (0 1 1)
(0 1 0 0 0 0 0) (1 0 1)
(0 0 1 0 0 0 0) (1 1 1)
(0 0 0 1 0 0 0) (1 1 0)
(0 0 0 0 1 0 0) (1 0 0)
(0 0 0 0 0 1 0) (0 1 0)
(0 0 0 0 0 0 1) (0 0 1)

Suppose that the received word is v D .0 1 1 0 1 1 0/ 2 F
7
2. Its syndrome is

S.v/ D vH> D .0 1 1 0 1 1 0/

0

BBBBBBBBB@

0 1 1

1 0 1

1 1 1

1 1 0

1 0 0

0 1 0

0 0 1

1

CCCCCCCCCA

D .1 0 0/:

This syndrome agrees with the syndrome of the coset leader e0 D .0 0 0 0 1 0 0/.
Hence e0 is a most likely error word, and a most likely sent codeword is

c0 D v � e0 D .0 1 1 0 1 1 0/ � .0 0 0 0 1 0 0/ D .0 1 1 0 0 1 0/:

We can check that c0 is indeed a codeword in C as it is the sum of the second
row and the third row of G. By inspecting the parity-check matrix H and using
Corollary 3.2.45, we see that d.C/ D 3, and so C is a 1-error-correcting code. If
we assume that the noisy channel allows at most one transmission error in a word
of length 7, then we can conclude that c0 is in fact the correct codeword that was
sent and that a transmission error occurred in the fifth coordinate of c0. Since G is
in standard form, the original message a 2 F

4
2 is then obtained by deleting the last

three coordinates of c0, that is, a D .0 1 1 0/.

3.2.8 The MacWilliams Identity

We now return to the subject of dual codes (see Definition 3.2.33) which offers many
fascinating aspects. We know that a crucial parameter of a code is its minimum
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distance, which in the case of a linear code is equal to the minimum Hamming
weight of a nonzero codeword (see Theorem 3.2.14). It is of interest to determine
not only this minimum Hamming weight, but also the complete weight distribution
of the linear code. This information is captured by the following notion.

Definition 3.2.54 Let C be a linear code of length n. Then the weight enumerator
of C is the polynomial

A.x/ D
nX

jD0
Ajx

j 2 ZŒx	

over the ring Z of integers, where Aj for 0 � j � n is the number of codewords in C
of Hamming weight j.

There is a famous identity that links the weight enumerator of a nontrivial linear
code and the weight enumerator of its dual code. This identity was proved by
Jessie MacWilliams, one of several prominent female coding theorists, in her Ph.D.
thesis [106], and this is no mean achievement for a graduate student.

Theorem 3.2.55 (MacWilliams Identity) If C is a nontrivial linear Œn; k	 code
over Fq with weight enumerator A.x/, then the weight enumerator A?.x/ of the dual
code C? is given by

A?.x/ D q�k.1C .q � 1/x/nA

�
1 � x

1C .q � 1/x

�
:

Proof Since the dual code C? is defined in terms of the dot product on F
n
q, it is

not surprising that the proof employs properties of the dot product. Fix a nontrivial
additive character � of Fq. For u 2 C we introduce the polynomial gu.x/ over the
field of complex numbers by putting

gu.x/ D
X

v2Fn
q

�.u � v/xw.v/;

where w.v/ is the Hamming weight of v 2 F
n
q. Then

X

u2C

gu.x/ D
X

u2C

X

v2Fn
q

�.u � v/xw.v/ D
X

v2Fn
q

xw.v/
X

u2C

�.u � v/:

Consider the inner sum in the last expression. For fixed v 2 F
n
q, the map � W u 2

C 7! �.u � v/ is a character of the finite abelian group C. If v 2 C?, then the inner
sum is qk. If v … C?, then � is a nontrivial character, and so the inner sum is 0 by
the orthogonality relation (1.9). Therefore

X

u2C

gu.x/ D qk
X

v2C?

xw.v/ D qkA?.x/: (3.8)
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Now we compute the left-hand side of (3.8) in a different way. For v D
.v1; : : : ; vn/ 2 F

n
q, we write

w.v/ D w1.v1/C � � � C w1.vn/

in analogy with (3.1), where w1 is the Hamming weight for words of length 1. Then
for u D .u1; : : : ; un/ 2 C we infer from the definition of gu.x/ that

gu.x/ D
X

v1;:::;vn2Fq

�.u1v1 C � � � C unvn/x
w1.v1/C���Cw1.vn/

D
X

v1;:::;vn2Fq

�.u1v1/x
w1.v1/ � � ��.unvn/x

w1.vn/

D
nY

jD1

�X

v2Fq

�.ujv/x
w1.v/

�
:

In the last expression, the inner sum is equal to 1C .q�1/x if uj D 0, and for uj ¤ 0

it is equal to

1C � X

a2F�

q

�.a/
�
x D 1C �X

a2Fq

�.a/� 1
�
x D 1 � x;

again by the orthogonality relation (1.9). Therefore

gu.x/ D .1C .q � 1/x/n�w.u/.1 � x/w.u/ D .1C .q � 1/x/n
�

1 � x

1C .q � 1/x

�w.u/

:

It follows that

X

u2C

gu.x/ D .1C .q � 1/x/n
X

u2C

�
1 � x

1C .q � 1/x

�w.u/

D .1C .q � 1/x/nA

�
1 � x

1C .q � 1/x
�
:

By invoking (3.8), we arrive at the desired formula for A?.x/. �
Example 3.2.56 Let C be the binary linear Œ6; 3; 3	 code in Example 3.2.16. From
the complete list of codewords in C given in Example 3.2.16, we see that A0 D 1,
A1 D A2 D A5 D A6 D 0, A3 D 4, and A4 D 3 in the notation of Definition 3.2.54.
Therefore the weight enumerator of C is the polynomial

A.x/ D 1C 4x3 C 3x4 2 ZŒx	:
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The MacWilliams identity in Theorem 3.2.55 shows that

A?.x/ D 2�3.1C x/6A

�
1 � x

1C x

�

D 1

8
.1C x/6

"
1C 4

�
1 � x

1C x

�3
C 3

�
1 � x

1C x

�4#

D 1

8

	
.1C x/6 C 4.1 � x/3.1C x/3 C 3.1� x/4.1C x/2



:

A straightforward algebraic manipulation yields

A?.x/ D 1C 4x3 C 3x4 2 ZŒx	

as the weight enumerator of the dual code C?. This is an example where C and C?
have the same weight enumerator and thus the same weight distribution, although
the two linear codes C and C? are different. For instance, the vector

.0; 0; 0; 1; 1; 1/ 2 F
6
2

belongs to C?, but not to C.

3.2.9 Self-Orthogonal and Self-Dual Codes

We briefly consider nontrivial linear codes for which any two codewords are
orthogonal to each other, or where we have the even stronger property that the
nontrivial linear code is equal to its dual code.

Definition 3.2.57 A nontrivial linear code C over Fq is self-orthogonal if C 
 C?
and it is self-dual if C D C?.

Proposition 3.2.58 Let C be a nontrivial linear Œn; k	 code over Fq. If C is self-
orthogonal, then k � n=2, and if C is self-dual, then k D n=2. In particular, if C is
self-dual, then its length n must be even.

Proof If C is self-orthogonal, then C 
 C? by definition, and a comparison of
dimensions yields k � n � k by Theorem 3.2.34. This implies k � n=2. If C is
self-dual, then an analogous argument yields k D n � k, and so k D n=2. �

Example 3.2.59 A simple example of a binary self-dual code is given by the linear
code of length 4 with basis vectors .1; 0; 1; 0/ and .0; 1; 0; 1/. A simple example of
a ternary self-dual code is given by the linear code of length 4 with basis vectors
.1; 0; 1; 1/ and .0; 1; 1; 2/.
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Example 3.2.60 Let q be a prime power with q � 1 .mod 4/ and let k be a positive
integer. We construct a self-dual code C over Fq of length 2k as follows. Choose
an element a 2 F

�
q and a primitive element g of Fq (see Definition 1.4.34). Put

c D g.q�1/=4. The linear code C is given by its basis fb1; : : : ;bkg. Here for 1 � i � k,
we put

bi D .0; : : : ; 0; a; ca; 0; : : : ; 0/ 2 F
2k
q ;

where the entry a is in position 2i�1 and the entry ca is in position 2i. It is clear that
b1; : : : ;bk are linearly independent over Fq, and so dim.C/ D k. For 1 � i < j � k,
it is immediately seen that bi � bj D 0. Furthermore, for 1 � i � k we have

bi � bi D a2 C c2a2 D 0

since c2 D g.q�1/=2 D �1. The bilinearity of the dot product implies that c � d D 0

for all c;d 2 C, and so C 
 C?. A comparison of dimensions shows that C D C?,
hence C is indeed self-dual.

Example 3.2.61 It is easy to construct self-orthogonal codes that are not self-dual,
especially if the dimension of the code is low. For instance, take any nonzero vector
b 2 F

n
q with b �b D 0 and let C be the one-dimensional linear code with basis vector

b. Then C is self-orthogonal, but for n � 3 this code is not self-dual.

Further examples of self-orthogonal codes will be presented in Theorems 3.5.18
and 3.5.19. For further examples of self-dual (and thus self-orthogonal) codes, we
refer to Example 3.5.4, Example 3.5.6, Proposition 3.5.21, and Theorem 3.5.27.

3.3 Cyclic Codes

3.3.1 Cyclic Codes and Ideals

It is a plausible principle that the more structure we have for a family of codes, the
nicer a theory we can develop for it. In this section, we consider linear codes that
have the additional property of being invariant under cyclic shifts. This is why they
are called cyclic codes, but maybe they are named also after Shannon’s unicycle
(see Sect. 3.1.1). The rich theory of cyclic codes involves a fascinating interplay
with polynomials over finite fields. First we introduce a convenient notation for
cyclic shifts of vectors from F

n
q.

Definition 3.3.1 For every v D .v0; v1; : : : ; vn�1/ 2 F
n
q and every integer t with

0 � t � n � 1, the cyclic shift vt by t positions is defined by

vt D .vn�t; vn�tC1; : : : ; vn�1; v0; v1; : : : ; vn�t�1/ 2 F
n
q:



3.3 Cyclic Codes 129

Note that we have taken it for granted that the cyclic shift is by t positions to the
right. Cyclic shifts to the left are also covered by this definition: vn�1 is the cyclic
shift by one position to the left, vn�2 is the cyclic shift by two positions to the left,
and so on. Note also that v0 D v for all v 2 F

n
q. Formally, we may put also vn D v0,

vnC1 D v1, and so on.

Definition 3.3.2 A linear code C 
 F
n
q is cyclic if c 2 C implies ct 2 C for 1 � t �

n � 1.

Remark 3.3.3 For n � 2 it suffices to request in Definition 3.3.2 that c 2 C implies
c1 2 C, for then c2 D .c1/1 2 C, c3 D .c2/1 2 C, and in general ct 2 C
for 1 � t � n � 1. A linear code over Fq of length 1 (the only such code is in
fact Fq itself) is automatically cyclic since the condition in Definition 3.3.2 is then
vacuously satisfied.

Example 3.3.4 The following are easy examples of cyclic codes:

(i) the binary linear code of length 4 given by

f.0; 0; 0; 0/; .1; 0; 1; 0/; .0; 1; 0; 1/; .1; 1; 1; 1/gI

(ii) every repetition code (see Example 3.1.4);
(iii) the trivial linear code Fn

q.

A basic device for the analysis of cyclic codes is a correspondence between
vectors from F

n
q and polynomials from FqŒx	<n, the set of polynomials over Fq of

degree less than n. This correspondence is furnished by the map � W Fn
q ! FqŒx	<n

which is defined by

�.v/ D
n�1X

jD0
vjx

j for all v D .v0; v1; : : : ; vn�1/ 2 F
n
q: (3.9)

Note that FqŒx	<n is a vector space over Fq, with the vector addition and the
multiplication by scalars given by the ordinary addition of polynomials and the
multiplication of polynomials by elements of Fq, respectively. Then � W F

n
q !

FqŒx	<n is a bijective linear transformation, and so in the language of linear algebra
the vector spaces F

n
q and FqŒx	<n are isomorphic. A linear code C 
 F

n
q is a

nonzero subspace of Fn
q, and so �.C/ is a nonzero subspace of FqŒx	<n with the

same dimension as C.

Example 3.3.5 Let C be the binary cyclic code in Example 3.3.4(i). Then

�.C/ D f0; 1C x2; x C x3; 1C x C x2 C x3g � F2Œx	<4:

It is clear that �.C/ is a subspace of F2Œx	<4 of dimension 2, with 1C x2 and x C x3

forming a basis.
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If a linear code C 
 F
n
q has the additional property of being cyclic, then this

property can be captured by endowing FqŒx	<n with an additional operation of
multiplication. In the polynomial ring FqŒx	 we have the ordinary multiplication
of polynomials. If two polynomials from FqŒx	<n are multiplied, this may yield an
overflow in the sense that the product has degree � n, and then the product does
not belong to FqŒx	<n. In order to obtain a product that is again in FqŒx	<n, we need
to modify the ordinary multiplication of polynomials in FqŒx	. This is accomplished
by first computing the ordinary product of polynomials in FqŒx	, dividing it by a
fixed polynomial over Fq of degree n, and then taking the remainder as the modified
product. Note that the remainder is a polynomial over Fq of degree less than n and
hence an element of FqŒx	<n. In the theory of cyclic codes, the fixed polynomial
over Fq of degree n is xn � 1. In the terminology of abstract algebra, we are
thus turning FqŒx	<n into the residue class ring FqŒx	=.xn � 1/ (see Sect. 1.4.3).
Formally, FqŒx	=.xn � 1/ consists of residue classes modulo xn � 1, but we can
identify each residue class modulo xn � 1 with a unique element from the least
residue system FqŒx	<n modulo xn � 1, and this is done in the following. Note that,
with this identification, addition in FqŒx	=.xn � 1/ agrees with ordinary addition
of polynomials in FqŒx	 since there is no possibility of overflow with addition.
The arithmetic operations in FqŒx	=.xn � 1/ can be expressed also by means of
congruences modulo xn � 1 (see again Sect. 1.4.3).

Example 3.3.6 Let q D 3 and n D 4, so that we are looking at the residue class ring
F3Œx	=.x4�1/ identified with F3Œx	<4. Since �1 D 2 in F3, we consider equivalently
the residue class ring F3Œx	=.x4 C 2/. Let the two elements f1.x/ D x2 C x C 1 and
f2.x/ D x3 C 2x C 1 of F3Œx	=.x4 C 2/ be given. Then addition in F3Œx	=.x4 C 2/

yields

f1.x/C f2.x/ D x3 C x2 C 2;

just like for ordinary addition of polynomials in F3Œx	. To multiply f1.x/ and f2.x/ in
F3Œx	=.x4 C 2/, we first compute the ordinary product

f1.x/f2.x/ D .x2 C x C 1/.x3 C 2x C 1/ D x5 C x4 C 1 2 F3Œx	:

Here we have an overflow, hence we need to divide x5 C x4 C 1 by x4 C 2. This
division with remainder in F3Œx	 yields

x5 C x4 C 1 D .x C 1/.x4 C 2/C x C 2:

Therefore in F3Œx	=.x4 C 2/ we obtain f1.x/f2.x/ D x C 2, the remainder in the
division above. As noted before, the arithmetic operations in F3Œx	=.x4 C 2/ can be
expressed also in the language of congruences modulo x4 C 2, so that we can write
f1.x/f2.x/ � x C 2 .mod x4 C 2/.
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After the identification of FqŒx	<n with FqŒx	=.xn � 1/, the map � in (3.9) is now
viewed as a map � W Fn

q ! FqŒx	=.xn � 1/. It is still a bijective linear transformation
between these two vector spaces over Fq.

In order to proceed further, we need the concept of an ideal of a commutative
ring with identity. As in Sect. 1.4.2, we simply say “ring” instead of “commutative
ring with identity”. Recall that a ring is in particular an additive group, that is, an
abelian group with respect to the binary operation of addition.

Definition 3.3.7 An ideal of a ring R is a subgroup J of the additive group R such
that ab 2 J whenever a 2 R and b 2 J.

Example 3.3.8 Every ring R has two trivial ideals, namely J D f0g (called the zero
ideal) and J D R. Now let Z be the ring of integers. We noted in Example 1.3.20 that
for every m 2 N, the set .m/ WD fkm W k 2 Zg is a subgroup of the additive group Z.
It is obvious that .m/ is in fact an ideal of Z. Similarly, for every field F and every
f .x/ 2 FŒx	, the set .f .x// WD fg.x/f .x/ W g.x/ 2 FŒx	g is an ideal of the polynomial
ring FŒx	. In general, for every ring R and every b 2 R, the set .b/ WD fab W a 2 Rg
is an ideal of R. An ideal of this type is called a principal ideal, and if we want to
lay stress on the special role of the element b, then we say that .b/ is the principal
ideal generated by b.

Remark 3.3.9 Every ideal of Z is a principal ideal. If J D f0g, then J is the principal
ideal generated by 0. If there are nonzero integers in J, then J contains positive
integers by the property of being an additive group, and so there is a least positive
integer m in J. Now it is easily seen that J D .m/. Obviously .m/ 
 J, and if on the
other hand h 2 J is arbitrary, then division with remainder yields h D km C r with
k; r 2 Z and 0 � r < m; then r D h � km 2 J by the definition of an ideal, and so
r D 0 by the minimality property of m, which shows that h 2 .m/. Similarly, since
there is a division with remainder in the polynomial ring FŒx	 for an arbitrary field
F, every ideal of FŒx	 is principal.

In the theory of cyclic codes over Fq, the notion of an ideal is applied to a residue
class ring FqŒx	=.xn � 1/. We start out nice and easy with an example.

Example 3.3.10 Consider �.C/ in Example 3.3.5, viewed as a subset of the ring
R D F2Œx	<4 D F2Œx	=.x4 � 1/. We claim that �.C/ is an ideal of R. First we note
that �.C/ is closed under addition since it is a vector space over F2, and so �.C/
is a subgroup of the additive group R. The verification of the remaining property in
Definition 3.3.7 needs a bit of work. In a first step, we show that if c.x/ 2 �.C/,
then also xc.x/ 2 �.C/. Since �.C/ has only four elements, this can be done by
direct computation. Note that x � 0 D 0 2 �.C/ and x.1 C x2/ D x C x3 2 �.C/.
Furthermore, x.x C x3/ D x2C x4 D x2C1 2 �.C/ since x4 D 1 in R, and similarly

x.1C x C x2 C x3/ D x C x2 C x3 C x4 D x C x2 C x3 C 1 2 �.C/:
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Thus, the first step is achieved. Now if c.x/ 2 �.C/, then x2c.x/ D x.xc.x// 2 �.C/
by what we have just proved, and similarly x3c.x/ D x.x2c.x// 2 �.C/. Finally, an
arbitrary f .x/ 2 R is a sum of some of the monomials 1, x, x2, x3, hence f .x/c.x/ is
a sum of some of the elements c.x/, xc.x/, x2c.x/, x3c.x/ of �.C/, and now the fact
that �.C/ is closed under addition shows that f .x/c.x/ 2 �.C/. This completes the
proof of the claim that �.C/ is an ideal of R.

Example 3.3.10 is an instance of a general fact, namely that for a cyclic code C
over Fq of length n, the corresponding set �.C/ is an ideal of the residue class ring
FqŒx	=.xn � 1/. We recall that linear codes have, by definition, a dimension at least
1, and so the zero ideal mentioned in Example 3.3.8 cannot be of the form �.C/ for
some cyclic code C.

Theorem 3.3.11 Let � W Fn
q ! FqŒx	=.xn � 1/ be the map defined in (3.9). Then a

subset C of Fn
q is a cyclic code if and only if �.C/ is a nonzero ideal of the residue

class ring FqŒx	=.xn � 1/.

Proof We generalize the argument in Example 3.3.10. Let C be a cyclic code. Since
� is a linear transformation, �.C/ is a subspace of R D FqŒx	=.xn �1/ of dimension
at least 1. In particular, �.C/ is closed under addition. Now let c.x/ D Pn�1

jD0 cjxj 2
�.C/ be arbitrary. Then �.c/ D c.x/ with c D .c0; c1; : : : ; cn�1/ 2 C and

ct D .cn�t; : : : ; cn�1; c0; : : : ; cn�t�1/ 2 C for 0 � t � n � 1

since C is cyclic. Noting that xn D 1 in R, we get

�.ct/ D cn�t C � � � C cn�1xt�1 C c0x
t C � � � C cn�t�1xn�1

D cn�tx
n C � � � C cn�1xnCt�1 C c0x

t C � � � C cn�t�1xn�1

D xt.c0 C � � � C cn�t�1xn�t�1 C cn�tx
n�t C � � � C cn�1xn�1/

D xtc.x/:

Therefore xtc.x/ D �.ct/ 2 �.C/ for 0 � t � n � 1. Now let f .x/ D Pn�1
tD0 ftxt 2 R

with f0; f1; : : : ; fn�1 2 Fq be arbitrary. Then, recalling that �.C/ is a vector space
over Fq, we obtain f .x/c.x/ D Pn�1

tD0 ftxtc.x/ 2 �.C/, and so �.C/ is a nonzero
ideal of R.

Conversely, suppose that�.C/ is a nonzero ideal of R. Since� is a bijective linear
transformation, C is a subspace of Fn

q of dimension at least 1. By Remark 3.3.3, it
remains to show that c 2 C implies c1 2 C, and we can assume that n � 2. By
the computation above, �.c1/ D xc.x/ 2 �.C/ since �.C/ is an ideal of R, and so
c1 2 ��1.�.C// D C. �
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3.3.2 The Generator Polynomial

It is evident from Theorem 3.3.11 that in order to delve deeper into the structure of
cyclic codes, we should study the nonzero ideals of FqŒx	=.xn � 1/.
Theorem 3.3.12 Every ideal J of FqŒx	=.xn �1/ is principal, and for every nonzero
ideal J there exists a unique monic polynomial g.x/ 2 FqŒx	=.xn � 1/ such that J
is the principal ideal generated by g.x/. The polynomial g.x/ is a proper divisor of
xn � 1 in FqŒx	.

Proof It suffices to consider a nonzero ideal J. Then there is a monic polynomial
g.x/ of least degree in J. By Definition 3.3.7, every multiple of g.x/ is in J. We
claim that conversely, if f .x/ 2 J, then f .x/ must be a multiple of g.x/. By the
division algorithm, we can write f .x/ D a.x/g.x/ C r.x/ with a.x/; r.x/ 2 FqŒx	
and deg.r.x// < deg.g.x//. Now r.x/ D f .x/ � a.x/g.x/ 2 J, and the minimality
property of g.x/ implies that r.x/ is the zero polynomial. Thus, f .x/ is a multiple of
g.x/, and so J consists exactly of all multiples of g.x/.

If g1.x/ 2 FqŒx	=.xn � 1/ is an arbitrary monic polynomial such that J is the
principal ideal generated by g1.x/, then from g.x/; g1.x/ 2 J we infer that g.x/
divides g1.x/ and g1.x/ divides g.x/. Since g.x/ and g1.x/ are both monic, this
implies g1.x/ D g.x/ and shows the uniqueness of g.x/.

Note that xn � 1 is the zero element of FqŒx	=.xn � 1/, thus it belongs to J and is
therefore a multiple of g.x/. Moreover, deg.g.x// < n by construction, and so g.x/
is a proper divisor of xn � 1 in FqŒx	. All statements in the theorem have now been
proved. �

Definition 3.3.13 For a nonzero ideal J of FqŒx	=.xn � 1/, the uniquely determined
polynomial g.x/ in Theorem 3.3.12 is called the generator polynomial of J. For
a cyclic code C, the generator polynomial of the nonzero ideal �.C/ is called the
generator polynomial of C.

Example 3.3.14 We determine the generator polynomials g.x/ of the cyclic codes
C listed in Example 3.3.4. By the proof of Theorem 3.3.12, in each case it suffices
to find the monic polynomial g.x/ of least degree in �.C/.

(i) If C is as in Example 3.3.4(i), then it was shown in Example 3.3.5 that

�.C/ D f0; 1C x2; x C x3; 1C x C x2 C x3g:

Therefore g.x/ D x2 C 1. Note that g.x/ divides x4 � 1 D x4 C 1 in F2Œx	 since
x4 C 1 D .x2 C 1/2.

(ii) For the repetition code C over Fq of length n, it is clear that

�.C/ D fa.1C x C x2 C � � � C xn�1/ W a 2 Fqg:
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Therefore g.x/ D xn�1 C � � � C x2 C x C 1. Again, g.x/ divides xn � 1 in FqŒx	
since

xn � 1 D .xn�1 C � � � C x2 C x C 1/.x � 1/:

(iii) For C D F
n
q we get �.C/ D FqŒx	=.xn � 1/, and so g.x/ D 1.

Theorem 3.3.15 There is a one-to-one correspondence between the nonzero ideals
of FqŒx	=.xn � 1/, and so of the cyclic codes over Fq of length n, and the monic
proper divisors of xn � 1 in FqŒx	.

Proof To each nonzero ideal of FqŒx	=.xn � 1/ there corresponds a unique monic
proper divisor of xn � 1 in FqŒx	, according to Theorem 3.3.12. On the other hand,
if g.x/ is a monic proper divisor of xn � 1 in FqŒx	, then the multiples of g.x/ form a
nonzero ideal of FqŒx	=.xn � 1/. Furthermore, Theorem 3.3.12 implies that different
nonzero ideals of FqŒx	=.xn � 1/ correspond to different monic proper divisors of
xn � 1 in FqŒx	. �

Example 3.3.16 We determine all cyclic codes over F3 of length 4. In view of
Theorem 3.3.15, this is equivalent to finding all monic proper divisors of x4 � 1 D
x4 C 2 in F3Œx	. We start from the canonical factorization

x4 C 2 D .x C 1/.x C 2/.x2 C 1/

into monic irreducible polynomials over F3. Therefore the monic proper divisors of
x4 C 2 in F3Œx	 are given by

1; x C 1; x C 2; .x C 1/.x C 2/; x2 C 1; .x C 1/.x2 C 1/; .x C 2/.x2 C 1/:

Thus, there are exactly seven different cyclic codes over F3 of length 4, each having
a generator polynomial from the list of seven polynomials above. Let us explicitly
describe, for instance, the cyclic code C with generator polynomial g.x/ D x2 C 1.
By computing all multiples of g.x/ in F3Œx	=.x4 C 2/, we get the ideal

�.C/ D f0; 1C x2; 2C 2x2; x C x3; 1C x C x2 C x3; 2C x C 2x2 C x3;

2x C 2x3; 2C 2x C 2x2 C 2x3; 1C 2x C x2 C 2x3g:

By applying the inverse ��1 of the map � to each element of �.C/, we obtain the
cyclic code

C D f.0000/; .1010/; .2020/; .0101/; .1111/; .2121/; .0202/; .2222/; .1212/g

over F3 of length 4.

An important issue for a cyclic code, as for any linear code, is the determination
of the dimension of the code. Since a cyclic code is often given via its generator
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polynomial, the question is how we can read off the dimension from the generator
polynomial. The following theorem provides the answer.

Theorem 3.3.17 If g.x/ is the generator polynomial of the cyclic code C over Fq of
length n, then

dim.C/ D n � deg.g.x//:

Proof In view of Proposition 3.2.6 and since � is a bijection, it suffices to show that
the ideal J D �.C/ corresponding to C has exactly qn�deg.g.x// elements. Recall that
J consists of the multiples of g.x/ in FqŒx	=.xn �1/. Let f .x/g.x/ be such a multiple.
With m D deg.g.x// and by the division algorithm, we can write

f .x/ D a.x/
xn � 1

g.x/
C r.x/

with a.x/; r.x/ 2 FqŒx	 and deg.r.x// < n � m. Then

f .x/g.x/ D a.x/.xn � 1/C r.x/g.x/ D r.x/g.x/

in FqŒx	=.xn � 1/ since xn � 1 D 0 in FqŒx	=.xn � 1/. Thus,

J D fr.x/g.x/ W deg.r.x// < n � mg:

Now we claim that distinct choices of r.x/ yield distinct elements of J. So take r1.x/
and r2.x/ with deg.r1.x// < n � m and deg.r2.x// < n � m such that r1.x/g.x/ D
r2.x/g.x/ in FqŒx	=.xn � 1/. Then xn � 1 divides r1.x/g.x/ � r2.x/g.x/ D .r1.x/ �
r2.x//g.x/, and so .xn �1/=g.x/ divides r1.x/� r2.x/. By comparing degrees, we see
that r1.x/ D r2.x/, hence the claim is demonstrated. It follows that the number of
elements of J is equal to the number of choices for r.x/, which is qn�m D qn�deg.g.x//.

�

Example 3.3.18 Consider the cyclic code C over F3 in Example 3.3.16. This code
has length n D 4 and generator polynomial g.x/ D x2 C 1. Hence dim.C/ D
n � deg.g.x// D 2 by Theorem 3.3.17. A basis of C is formed by the codewords
.1 0 1 0/ and .0 1 0 1/.

3.3.3 Generator Matrix

We recall from Sect. 3.2.4 that every linear code has a generator matrix. If C is a
cyclic code over Fq of length n and with dim.C/ D k, then a generator matrix of C
must be a k �n matrix over Fq whose row vectors form a basis of C. If C is given via
its generator polynomial g.x/ 2 FqŒx	, then deg.g.x// D n � k by Theorem 3.3.17.
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Let us write

g.x/ D g0 C g1x C � � � C gn�kxn�k 2 FqŒx	 (3.10)

with g0; g1; : : : ; gn�k 2 Fq and gn�k D 1. Then a generator matrix of C can be
immediately derived from g.x/.

Theorem 3.3.19 Let g.x/ in (3.10) be the generator polynomial of a cyclic code
C 
 F

n
q with deg.g.x// D n � k. Then the k � n matrix

G D

0

BBBBBBB@

g0 g1 : : : gn�k 0 0 0 : : : 0

0 g0 g1 : : : gn�k 0 0 : : : 0

: :

: :

: :

0 0 : : : g0 g1 : : : : : gn�k

1

CCCCCCCA

over Fq is a generator matrix of C.

Proof Note that

��1.g.x// D .g0 g1 : : : gn�k 0 0 0 : : : 0/

belongs to C. Since C is cyclic, all cyclic shifts of this vector are codewords in C.
In particular, all row vectors of G belong to C. Since gn�k D 1, it is clear that the
row vectors of G are linearly independent over Fq. The number of row vectors of G
is k D dim.C/, and so the row vectors of G form a basis of C. �

Example 3.3.20 Let C be the ternary cyclic code in Example 3.3.16 with generator
polynomial g.x/ D 1C x2 2 F3Œx	. Then a generator matrix of C is given by

G D
�
1 0 1 0

0 1 0 1

�
:

We observe that g0 ¤ 0 in (3.10) since g.x/ divides xn � 1 by Theorem 3.3.12.
Therefore the matrix G in Theorem 3.3.19 can be transformed into standard form
(see Definition 3.2.25) by elementary row operations. Consequently, every cyclic
code has a generator matrix in standard form, whereas in general a linear code need
not have a generator matrix in standard form (see Example 3.2.26). We have seen
in Sect. 3.2.4 that linear codes with a generator matrix in standard form have fast
encoders and decoders.

It is a natural question to ask whether the unique generator matrix in standard
form of a cyclic code can be derived from its generator polynomial by polynomial
manipulations. This is indeed the case, and one proceeds as follows. Let C 
 F

n
q be

a cyclic code with dim.C/ D k. The case k D n is trivial, and so we can assume that
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k < n. Let g.x/ 2 FqŒx	 with deg.g.x// D n � k be the generator polynomial of C.
For every integer j � 0, we can use the division algorithm to write

xj D aj.x/g.x/C rj.x/ (3.11)

with aj.x/; rj.x/ 2 FqŒx	 and deg.rj.x// < n � k. Let the map � W Fn�k
q ! FqŒx	<n�k

be as in (3.9), but with n replaced by n � k.

Theorem 3.3.21 Let C 
 F
n
q be a cyclic code with dim.C/ D k < n. Let

G D .Ik j � T/;

where the k � .n � k/ matrix T over Fq is defined as follows: for 1 � i � k, the
ith row of T is ��1.rn�k�1Ci.x// with the notation in (3.11). Then G is the unique
generator matrix of C in standard form.

Proof It suffices to show that the rows of G are codewords in C. It follows
from (3.11) that xj � rj.x/ is a multiple of g.x/, and so

cj.x/ WD xk.xj � rj.x// 2 �.C/ 
 FqŒx	=.x
n � 1/

for all integers j � 0. Using the fact that xn D 1 in FqŒx	=.xn � 1/, we deduce that

cn�k�1Ci.x/ D xk.xn�k�1Ci � rn�k�1Ci.x// D xn�1Ci � xkrn�k�1Ci.x/

D xi�1 � xkrn�k�1Ci.x/ 2 �.C/

for 1 � i � k. This implies that ��1.cn�k�1Ci.x//, the ith row of G, is a codeword
in C. �

Example 3.3.22 Since g.x/ D x3 C x2 C 1 2 F2Œx	 divides x7 � 1 D x7 C 1 2 F2Œx	,
there exists a binary cyclic code C of length 7 with generator polynomial g.x/. Note
that dim.C/ D 4 by Theorem 3.3.17. In order to find the generator matrix G of
C in standard form, it suffices, by Theorem 3.3.21, to determine the polynomials
r3.x/; r4.x/; r5.x/; r6.x/. These are obtained from (3.11) by computing x3; x4; x5; x6

modulo g.x/. This computation in the residue class ring FqŒx	=.g.x// can be carried
out using congruences modulo g.x/ (see Sect. 1.4.3), and this yields

x3 � x2 C 1 .mod g.x//;

x4 � x3 C x � x2 C x C 1 .mod g.x//;

x5 � x3 C x2 C x � x C 1 .mod g.x//;

x6 � x2 C x .mod g.x//:

Therefore r3.x/ D 1C x2, r4.x/ D 1C x C x2, r5.x/ D 1C x, r6.x/ D x C x2. From
the coefficients of these polynomials we obtain the matrix T in Theorem 3.3.21, and
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the final result is the generator matrix

G D

0

BB@

1 0 0 0 1 0 1

0 1 0 0 1 1 1

0 0 1 0 1 1 0

0 0 0 1 0 1 1

1

CCA :

3.3.4 Dual Code and Parity-Check Matrix

In Definition 3.2.33, we introduced for every nontrivial linear code C, that is, for
every linear Œn; k	 code C with 1 � k � n � 1, its dual code C?. In the following,
we study the dual code of a nontrivial cyclic code.

Proposition 3.3.23 The dual code of a nontrivial cyclic code is again cyclic.

Proof A nontrivial cyclic code C automatically has length n � 2, and so by
Remark 3.3.3 it suffices to show that u D .u0; u1; : : : ; un�1/ 2 C? implies u1 2 C?.
If c D .c0; c1; : : : ; cn�1/ 2 C, then

u1 � c D un�1c0 C u0c1 C � � � C un�2cn�1 D u � cn�1 D 0

since u 2 C? and cn�1 2 C. Hence u1 2 C? as required. �

Since the dual code C? of a nontrivial cyclic code C is cyclic, C? has a uniquely
determined generator polynomial. How is the generator polynomial of C? related to
the generator polynomial of C? The answer is given in the following theorem. First
we need a simple definition.

Definition 3.3.24 Let h.x/ 2 FqŒx	 be a polynomial of degree k � 1. Then the
reciprocal polynomial h�.x/ of h.x/ is defined by h�.x/ D xkh.1=x/ 2 FqŒx	.

Example 3.3.25 For h.x/ D x3 C 2x2 C 4x C 3 2 F5Œx	, its reciprocal polynomial is

h�.x/ D x3h.1=x/ D x3Œ.1=x/3 C 2.1=x/2 C 4.1=x/C 3	

D 3x3 C 4x2 C 2x C 1:

In general, the reciprocal polynomial of h.x/ 2 FqŒx	 is obtained by reading the
coefficients of h.x/ in reverse order.

Theorem 3.3.26 Let C be a nontrivial cyclic Œn; k	 code over Fq with generator
polynomial g.x/. Put h.x/ D .xn � 1/=g.x/ 2 FqŒx	. Then the generator polynomial
of the dual code C? is h�1

0 h�.x/, where h0 is the constant term of h.x/.

Proof First we note that g.x/ divides xn � 1 by Theorem 3.3.12, and so h.x/ D
.xn � 1/=g.x/ is indeed a polynomial over Fq. Let m.x/ 2 FqŒx	 be the generator
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polynomial of C?. Then by Theorems 3.3.17 and 3.2.34,

deg.m.x// D n � dim.C?/ D n � .n � k/ D k:

Note that deg.h.x// D n � deg.g.x// D k by Theorem 3.3.17. Furthermore, we
observe that h0 ¤ 0 since h.x/ divides xn�1, and so deg.h�.x// D k. Thus, h�1

0 h�.x/
is a monic polynomial of degree k. If we can show that h�.x/ 2 �.C?/, then we can
conclude that m.x/ D h�1

0 h�.x/ since there is exactly one monic polynomial of
degree k in the ideal �.C?/.

Let g.x/ be as in (3.10) and let

g D .g0; g1; : : : ; gn�1/ 2 F
n
q

be the first row vector of the generator matrix G of C in Theorem 3.3.19, where
gj D 0 for n � k < j � n � 1. Let h.x/ D Pn�1

jD0 hjxj and

u D .hn�1; hn�2; : : : ; h0/ 2 F
n
q;

where hj D 0 for k < j � n�1. Note that g.x/h.x/ D xn�1 in FqŒx	 by the definition
of h.x/. By comparing the coefficients of xn�1 in this identity, we get

g0hn�1 C g1hn�2 C � � � C gn�1h0 D 0;

and so g � u D 0. Similarly, by comparing the coefficients of xn�t for 1 � t � k,
we get gt�1 � u D 0 for 1 � t � k with the notation in Definition 3.3.1, and so
u 2 C?. Since C? is cyclic by Proposition 3.3.23, we have ukC1 2 C?. Now
�.ukC1/ D h�.x/, and so h�.x/ 2 �.C?/ as desired. �

Remark 3.3.27 For a nontrivial cyclic code C, it is convenient to use the terminol-
ogy parity-check polynomial of C for the generator polynomial h�1

0 h�.x/ of C? in
Theorem 3.3.26. The parity-check polynomial of C divides again xn � 1, where n is
the length of C.

Example 3.3.28 Let C be the ternary cyclic code of length 8 with generator
polynomial g.x/ D x2 C 1 2 F3Œx	. Then

h.x/ D .x8 � 1/=g.x/ D .x8 � 1/=.x2 C 1/ D x6 C 2x4 C x2 C 2 2 F3Œx	:

Furthermore, h�.x/ D 2x6 C x4 C 2x2 C 1 and h0 D 2, and so by Theorem 3.3.26
the generator polynomial of the dual code C?, or in other words the parity-check
polynomial of C, is h�1

0 h�.x/ D 2h�.x/ D x6 C 2x4 C x2 C 2 2 F3Œx	.

We are now in a position to determine a parity-check matrix of a given nontrivial
cyclic code C over Fq of length n. We note that the generator polynomial of the
dual code C? is obtained from Theorem 3.3.26, and so a generator matrix of C?
can be set up by Theorem 3.3.19. But now this generator matrix of C? serves by
Definition 3.2.36 as a parity-check matrix of C.
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Example 3.3.29 Let C be the ternary cyclic code in Example 3.3.28. Then the
generator polynomial of C? is x6 C 2x4 C x2 C 2 2 F3Œx	. The corresponding
generator matrix of C? is

H D
�
2 0 1 0 2 0 1 0

0 2 0 1 0 2 0 1

�

according to Theorem 3.3.19, and so H is a parity-check matrix of C.

3.3.5 Cyclic Codes from Roots

Cyclic codes over Fq can be introduced also by means of roots of polynomials over
Fq. Let ˛1; : : : ; ˛s be nonzero elements in some finite extension field of Fq. For
i D 1; : : : ; s, let mi.x/ 2 FqŒx	 be the minimal polynomial of ˛i over Fq. Put

g.x/ D lcm.m1.x/; : : : ;ms.x// 2 FqŒx	: (3.12)

Let n be a positive integer such that ˛n
i D 1 for 1 � i � s. Then g.x/ divides xn � 1

in FqŒx	 by Proposition 1.4.38. If we assume that deg.g.x// < n, then g.x/ is the
generator polynomial of a cyclic code over Fq of length n. The codewords in this
cyclic code can be characterized as follows.

Theorem 3.3.30 Let C 
 F
n
q be the cyclic code with the generator polynomial g.x/

in (3.12) satisfying deg.g.x// < n and let v 2 F
n
q. Then v 2 C if and only if the

polynomial v D �.v/ 2 FqŒx	 given by (3.9) satisfies v.˛i/ D 0 for 1 � i � s.

Proof If v 2 C, then g.x/ divides v.x/ in FqŒx	 by the definition of the generator
polynomial of C. For each i D 1; : : : ; s, the polynomial mi.x/ divides g.x/ in FqŒx	,
and so mi.x/ divides v.x/ in FqŒx	. Now mi.˛i/ D 0, and thus v.˛i/ D 0. Conversely,
if v.˛i/ D 0 for 1 � i � s, then mi.x/ divides v.x/ in FqŒx	 for 1 � i � s by
Proposition 1.4.38, and so g.x/ divides v.x/ in FqŒx	. This shows that v 2 C. �

Example 3.3.31 Let ˛1 2 F4 be a root of the irreducible polynomial x2Cx C1 over
F2 and let ˛2 2 F8 be a root of the irreducible polynomial x3 C x C 1 over F2. Then
˛31 D 1 and ˛72 D 1, hence ˛211 D ˛212 D 1. Thus, from ˛1 and ˛2 we obtain a cyclic
code C over F2 of length 21. The generator polynomial of C is

g.x/ D lcm.x2 C x C 1; x3 C x C 1/ D .x2 C x C 1/.x3 C x C 1/ D x5 C x4 C 1:

The cyclic code C has dimension 16 by Theorem 3.3.17. A polynomial v.x/ 2 F2Œx	
belongs to the ideal �.C/ if and only if v.˛1/ D v.˛2/ D 0.

There is no easy general formula for the minimum distance of a cyclic code,
but there are various results that yield lower bounds on the minimum distance. The
following considerations lead to useful tools for establishing such bounds.
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Let Fq be a finite field and let n � 2 be an integer with gcd.n; q/ D 1. Then
there exists a finite extension field of Fq containing a primitive nth root of unity.
Indeed, the condition gcd.n; q/ D 1 implies by Theorem 1.2.15 that there exists a
positive integer k with qk � 1 .mod n/. Let ˇ be a primitive element of Fqk and put


 D ˇ.q
k�1/=n. Then 
 is an element of order n in the multiplicative group F

�
qk ; in

other words, 
 is a primitive nth root of unity.
We recall that to each v 2 F

n
q we can associate a polynomial v D �.v/ 2 FqŒx	

according to (3.9). Here is another polynomial associated to v.

Definition 3.3.32 Let n � 2 be an integer with gcd.n; q/ D 1 and let 
 be a
primitive nth root of unity in a finite extension field of Fq. Then for every v 2 F

n
q,

the Mattson-Solomon polynomial Mv.x/ of v is defined by

Mv.x/ D
nX

jD1
v.
 j/xn�j;

where v.x/ 2 FqŒx	 is the polynomial corresponding to v according to (3.9).

Note that if 
 2 Fqk , then Mv.x/ is a polynomial over Fqk . The Mattson-Solomon
polynomial may depend also on the specific choice of 
 , but we think of 
 as being
fixed and thus suppress this dependence in the notation. The coordinates of v can be
recovered from Mv.x/ in the following way.

Lemma 3.3.33 Let n � 2 be an integer with gcd.n; q/ D 1 and let 
 be a primitive
nth root of unity in a finite extension field of Fq. If v D .v0; v1; : : : ; vn�1/ 2 F

n
q, then

vi D n�1Mv.

i/ for i D 0; 1; : : : ; n � 1;

where n�1 is the multiplicative inverse of n considered as an element of the prime
subfield of Fq.

Proof For i D 0; 1; : : : ; n � 1, we obtain

Mv.

i/ D

nX

jD1
v.
 j/
 i.n�j/ D

nX

jD1
v.
 j/
�ij

D
nX

jD1

�ij

n�1X

hD0
vh


hj D
n�1X

hD0
vh

n�1X

jD0

.h�i/j D nvi;

since the formula for geometric sums shows that
Pn�1

jD0 
.h�i/j D 0 for h 2
f0; 1; : : : ; n � 1g with h ¤ i. �

We are now ready to prove a classical lower bound on the minimum distance of
cyclic codes.
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Theorem 3.3.34 Let C 
 F
n
q be a cyclic code with n � 2, gcd.n; q/ D 1, and

generator polynomial g.x/. Let 
 be a primitive nth root of unity in a finite extension
field of Fq. Assume that there exist integers b and d with b � 0 and 2 � d � n such
that g.
bCi/ D 0 for 0 � i � d � 2. Then the minimum distance of C is at least d.

Proof Let v 2 F
n
q be a nonzero codeword in C. Then the corresponding polynomial

v.x/ 2 FqŒx	 is nonzero and satisfies deg.v.x// < n. Since the n distinct elements 
 j,
j D 1; : : : ; n, cannot all be roots of v.x/, the Mattson-Solomon polynomial Mv.x/ is
nonzero. By multiplying Mv.x/, if necessary, by a suitable power of x modulo xn �1,
we can assume that b D 1. Then g.
 j/ D 0 for 1 � j � d � 1 by the hypothesis,
and since g.x/ divides v.x/ in FqŒx	, we deduce that v.
 j/ D 0 for 1 � j � d � 1. It
follows then from Definition 3.3.32 that deg.Mv.x// � n � d. By Lemma 3.3.33 the
Hamming weight w.v/ satisfies w.v/ D n � r, where r is the number of nth roots of
unity that are roots of Mv.x/. Now trivially r � deg.Mv.x//, and so r � n � d. This
implies w.v/ D n � r � d, and since this holds for every nonzero v 2 C, the desired
result follows from Theorem 3.2.14. �
Remark 3.3.35 If you are familiar with determinants, then you will appreciate the
following alternative proof of Theorem 3.3.34. We proceed by contradiction and
suppose that there exists a nonzero codeword c 2 C with Hamming weight w D
w.c/ < d. Let u D �.c/ 2 FqŒx	 be the corresponding polynomial. Then g.x/
divides u.x/ in FqŒx	, and so u.
bCi/ D 0 for 0 � i � d � 2. Since w D w.c/, we
can write

u.x/ D
wX

jD1
ujx

aj

with uj 2 F
�
q for 1 � j � w and integers 0 � a1 < a2 < � � � < aw < n. The property

u.
bCi/ D 0 for 0 � i � d � 2 implies that u.
bCi/ D 0 for 0 � i � w � 1. This can
be put in the form Ku> D 0>, where u D .u1; : : : ; uw/ and K is the w � w matrix

K D

0

BBB@


a1b 
a2b : : : 
awb


a1.bC1/ 
a2.bC1/ : : : 
aw.bC1/
:::

:::
:::


a1.bCw�1/ 
a2.bCw�1/ : : : 
aw.bCw�1/

1

CCCA :

A basic property of determinants yields det.K/ D 
.a1Ca2C���Caw/b det.L/, where L
is the Vandermonde matrix

L D

0
BBB@

1 1 : : : 1


a1 
a2 : : : 
aw

:::
:::

:::


a1.w�1/ 
a2.w�1/ : : : 
aw.w�1/

1
CCCA :
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Now 
a1 ; 
a2 ; : : : ; 
aw are distinct since 
 is a primitive nth root of unity, hence
det.L/ ¤ 0, and so det.K/ ¤ 0. Thus, Ku> D 0> implies that u D 0. This
contradiction completes the alternative proof of Theorem 3.3.34.

Example 3.3.36 Let C be the binary cyclic code in Example 3.3.31. With a suitable
primitive 21st root of unity 
 2 F64, we can take ˛1 D 
7 and ˛2 D 
3 in
Example 3.3.31. Then by Proposition 1.4.47, the roots of the generator polynomial
g.x/ D x5C x4 C1 2 F2Œx	 are 
7; 
14; 
3; 
6, and 
12. Thus, with b D 6 and d D 3

we get g.
bCi/ D 0 for 0 � i � d � 2. It follows then from Theorem 3.3.34 that
d.C/ � 3. Since g.x/ corresponds to a codeword in C of Hamming weight 3, we
conclude that d.C/ D 3.

3.3.6 Irreducible Cyclic Codes

Now we consider a special family of cyclic codes that allow a nice explicit
description of the codewords. As in the discussion prior to Definition 3.3.32, we
take a finite field Fq and let n � 2 be an integer with gcd.n; q/ D 1. Let k be the
least positive integer such that qk � 1 .mod n/. Then there exists a primitive nth
root of unity 
 2 Fqk . Let f .x/ 2 FqŒx	 be the minimal polynomial of 
 over Fq.
Then f .x/ is a monic irreducible polynomial over Fq of degree k. We note that f .x/
divides xn � 1 in FqŒx	 since 
n D 1 (see Proposition 1.4.38). Hence there exists
a cyclic Œn; k	 code C over Fq with parity-check polynomial f .x/ (compare with
Remark 3.3.27). Such a cyclic code is called an irreducible cyclic code with parity-
check polynomial f .x/. Here is the promised explicit description of the codewords
in C. We use the trace map for finite fields that we introduced in Definition 1.4.48
and the basic properties of the trace map in Theorem 1.4.50.

Theorem 3.3.37 Let n � 2 be an integer with gcd.n; q/ D 1 and let C be the
irreducible cyclic Œn; k	 code over Fq with parity-check polynomial f .x/, where f .x/
is the minimal polynomial of the primitive nth root of unity 
 2 Fqk over Fq. Then
the codewords in C are exactly the words

c./ D .Tr./;Tr.
/;Tr.
2/; : : : ;Tr.
n�1// 2 F
n
q;

where  runs through the finite field Fqk and Tr denotes the trace map from Fqk

onto Fq.

Proof By definition, f .x/ D Pk
jD0 fjxj 2 FqŒx	 with all fj 2 Fq is the generator

polynomial of the dual code C?. A parity-check matrix of C is a generator matrix
of C?, and so a parity-check matrix H of C is obtained from Theorem 3.3.19 as the
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.n � k/ � n matrix

H D

0

BBBBBBB@

f0 f1 : : : fk 0 0 0 : : : 0
0 f0 f1 : : : fk 0 0 : : : 0
: :

: :

: :

0 0 : : : f0 f1 : : : : : fk

1

CCCCCCCA

over Fq. For v D .v0; v1; : : : ; vn�1/ 2 F
n
q, Theorem 3.2.37 shows that v 2 C if and

only if vH> D 0 2 F
n�k
q . In view of the special form of H, the latter condition

means that

kX

jD0
fjvjCi D 0 for 0 � i � n � k � 1: (3.13)

If v D c./, then vi D Tr.
 i/ for 0 � i � n � 1, and so

kX

jD0
fjvjCi D

kX

jD0
fjTr.
 jCi/ D Tr

� kX

jD0
fj


jCi
�

D Tr.
 if .
// D 0

for 0 � i � n � k � 1 since f .
/ D 0. Thus, v D c./ satisfies the condition (3.13),
and so c./ 2 C for all  2 Fqk . Since C has exactly qk codewords, it now suffices
to prove that the linear transformation  2 Fqk 7! c./ 2 F

n
q is injective. This boils

down to showing that c./ D 0 2 F
n
q only for  D 0. If we had c./ D 0 2 F

n
q for

some  2 F
�
qk , then Tr.
 i/ D 0 for 0 � i � k � 1. Since 1; 
; 
2; : : : ; 
 k�1 form a

basis of Fqk over Fq (compare with Remark 3.2.7), this implies that Tr.ˇ/ D 0 for
all ˇ 2 Fqk , which is a contradiction to the fact that Tr W Fqk ! Fq is a surjective
map by Theorem 1.4.50(iii). �

The explicit formula for the codewords in C given by Theorem 3.3.37, in
conjunction with the following simple estimation of character sums, leads to a lower
bound and an upper bound on the Hamming weight of each nonzero codeword in C.

Lemma 3.3.38 If � is a nontrivial additive character of the finite field Fq and a 2
F

�
q has multiplicative order t, then

ˇ̌
ˇ

t�1X

iD0
�.bai/

ˇ̌
ˇ � .q � t/1=2 for all b 2 F

�
q :
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Proof We write s.b/ for the given character sum and put s.0/ D t. The sequence
.bai/1iD0 is periodic with period length t. Thus, for every integer j � 0 we obtain

s.b/ D
t�1X

iD0
�.baiCj/ D

t�1X

iD0
�.bajai/ D s.baj/:

The elements b; ba; ba2; : : : ; bat�1 of F�
q are distinct, hence

tjs.b/j2 D
t�1X

jD0
js.baj/j2 �

X

c2F�

q

js.c/j2:

Now by expanding js.c/j2 via jzj2 D zz for all z 2 C and by the orthogonality
relation (1.9) for characters, we get

X

c2F�

q

js.c/j2 D
X

c2Fq

js.c/j2 � js.0/j2 D
X

c2Fq

t�1X

i;jD0
�.c.ai � aj//� t2

D
t�1X

i;jD0

X

c2Fq

�.c.ai � aj//� t2 D qt � t2:

This yields tjs.b/j2 � qt � t2, and so js.b/j � .q � t/1=2 as desired. �
Theorem 3.3.39 If C is an irreducible cyclic Œn; k	 code over Fq as in Theo-
rem 3.3.37, then the Hamming weight w.c/ of every nonzero codeword c 2 C
satisfies

q � 1

q

�
n � .qk � n/1=2

� � w.c/ � q � 1
q

�
n C .qk � n/1=2

�
:

Proof By Theorem 3.3.37, a nonzero codeword c 2 C is given by c D c./ with
 2 F

�
qk . We write

w.c.// D n � N.c.//;

where N.c.// is the number of integers i with 0 � i � n � 1 and Tr.
 i/ D
0. Choose a nontrivial additive character � of Fq. Then by the orthogonality
relation (1.9) for characters we get

N.c.// D
n�1X

iD0

1

q

X

b2Fq

�.bTr.
 i// D 1

q

X

b2Fq

n�1X

iD0
�.Tr.b
 i//:
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Now �k.˛/ D �.Tr.˛// for ˛ 2 Fqk defines a nontrivial additive character of Fqk ,
and so we obtain

N.c.// D 1

q

X

b2Fq

n�1X

iD0
�k.b


i/ D n

q
C 1

q

X

b2F�

q

n�1X

iD0
�k.b


i/:

It follows that

ˇ̌
ˇ̌w.c.// � .q � 1/n

q

ˇ̌
ˇ̌ � 1

q

X

b2F�

q

ˇ̌
ˇ

n�1X

iD0
�k.b


i/
ˇ̌
ˇ:

The last sum is a character sum as in Lemma 3.3.38, with q in that lemma replaced
by qk. By applying the bound in that lemma, we arrive at the desired result. �

Corollary 3.3.40 If C is an irreducible cyclic Œn; k	 code over Fq as in Theo-
rem 3.3.37, then the minimum distance of C satisfies

d.C/ � q � 1

q
.n � .qk � n/1=2/:

Proof This follows from Theorems 3.2.14 and 3.3.39. �

The lower bound on d.C/ in Corollary 3.3.40 is positive whenever n > qk=2. We
note that since n is the multiplicative order of the element 
 2 F

�
qk , the value of n

can potentially be as large as qk � 1.

3.3.7 Decoding Algorithms for Cyclic Codes

Since cyclic codes form a special family of linear codes, we can apply the syndrome
decoding algorithm (see Algorithm 3.2.52) to cyclic codes. Because of the special
structure of cyclic codes, there is some hope that simplifications in this decoding
algorithm can be achieved. This is indeed the case if one works with a suitable
parity-check matrix of the given cyclic code.

Let C 
 F
n
q be a nontrivial cyclic code with generator polynomial g.x/ 2 FqŒx	

of degree n � k (note that 1 � k � n � 1). Then dim.C/ D k and the syndromes are
elements of Fn�k

q . We construct a parity-check matrix H of C via its transpose H>,
which is an n � .n � k/ matrix over Fq. First we introduce the linear transformation
% W FqŒx	<n ! FqŒx	=.g.x// which assigns to each f .x/ 2 FqŒx	<n the least residue
of f .x/ modulo g.x/, that is, the remainder of f .x/ after division by g.x/. Then we
set up the vector space isomorphism � W FqŒx	=.g.x// ! F

n�k
q which sends each

least residue modulo g.x/ (which is a polynomial of degree less than n � k) to its
coefficient vector, in analogy with the inverse of the map � in (3.9). The composite
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map � ı % W FqŒx	<n ! F
n�k
q is again a linear transformation between vector spaces

over Fq.
Now we construct the matrix H> by letting its jth row be .� ı %/.xj�1/ for 1 �

j � n. For v 2 F
n
q and its corresponding polynomial v D �.v/ 2 FqŒx	<n, we obtain

the logical equivalences

v 2 C , %.v/ D 0 2 FqŒx	=.g.x// , .� ı %/.v/ D 0 2 F
n�k
q , vH> D 0 2 F

n�k
q :

Furthermore, the first n � k rows of H> form the identity matrix In�k, and so the
column vectors of H> are linearly independent overFq. Consequently, H is a parity-
check matrix of C.

It is convenient to carry out the syndrome decoding algorithm for cyclic codes
in the language of polynomials. To this end, we translate syndromes in F

n�k
q into

polynomials, by applying the inverse ��1 W Fn�k
q ! FqŒx	=.g.x// of the vector space

isomorphism � introduced above. For every v D .v0; v1; : : : ; vn�1/ 2 F
n
q and its

syndrome S.v/ D vH>, an application of ��1 to S.v/ amounts to multiplying v by
the n � .n � k/ matrix P whose jth row is %.xj�1/ for 1 � j � n. Therefore

��1.S.v// D vP D
n�1X

jD0
vj%.x

j/ D %
� n�1X

jD0
vjx

j
�

D %.v/;

where v D v.x/ D Pn�1
jD0 vjxj 2 FqŒx	<n is the polynomial corresponding to v. Thus,

in the context of the syndrome decoding algorithm for cyclic codes, it is convenient
to speak of the received polynomial v.x/ 2 FqŒx	<n instead of the received word v 2
F

n
q, and the corresponding syndrome can then be viewed as ��1.S.v// D %.v/, that

is, the least residue of v.x/ modulo g.x/. As in Sect. 3.3.1, we identify FqŒx	<n with
the residue class ring FqŒx	=.xn � 1/. We summarize this in the following definition.

Definition 3.3.41 Let C 
 F
n
q be a nontrivial cyclic code with generator polynomial

g.x/. Then for a received polynomial v D v.x/ 2 FqŒx	=.xn � 1/, its syndrome
polynomial S.v/ 2 FqŒx	=.g.x// is the least residue of v.x/ modulo g.x/.

Note that S.v/ is well defined for v 2 FqŒx	=.xn�1/ because g.x/ divides xn�1 in
FqŒx	 by Theorem 3.3.12. Since the syndrome S.v/ in the sense of Definition 3.2.49
and the syndrome polynomial S.v/ in the sense of Definition 3.3.41 correspond to
each other via a vector space isomorphism, it is clear that S.v/ shares the properties
of S.v/ in Proposition 3.2.51.

For consistency, we interpret an error word e D .e0; e1; : : : ; en�1/ 2 F
n
q also as a

polynomial, namely as the error polynomial e.x/ D Pn�1
jD0 ejxj 2 FqŒx	. From (3.7)

and with a received polynomial v.x/, we then obtain the code polynomial c.x/ D
v.x/ � e.x/ which belongs to the ideal of FqŒx	=.xn � 1/ consisting exactly of all
multiples of the generator polynomial g.x/. The following is an easy situation in
which a most likely error polynomial can be obtained immediately.
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Proposition 3.3.42 Let C be a nontrivial cyclic Œn; k; d	 code over Fq. If for a
received polynomial v D v.x/ 2 FqŒx	=.xn�1/ the syndrome polynomial S.v/ has at
most b.d �1/=2c nonzero coefficients, then S.v/ is the most likely error polynomial.

Proof By Definition 3.3.41, S.v/� v is a multiple of the generator polynomial g.x/
of C and so a code polynomial. In other words, S.v/ and v are in the same coset of
C. We are done if we can prove that S.v/ is the unique coset leader of this coset.
Suppose that w 2 FqŒx	=.xn � 1/ is a polynomial in this coset with at most b.d �
1/=2c nonzero coefficients. Then S.v/ � w is a code polynomial. But S.v/ � w has
� 2b.d � 1/=2c � d � 1 nonzero coefficients, that is, it corresponds to a codeword
c 2 C of Hamming weight at most d�1. Since C has minimum distance d, it follows
that c D 0 2 F

n
q, hence w D S.v/. �

Example 3.3.43 Let C be the binary cyclic code of length 7 in Example 3.3.22.
From the generator matrix G in Example 3.3.22 we can easily determine all
codewords in C and check that d.C/ D 3. Suppose that the received polynomial
is v.x/ D x C x2 C x4 C x5. Dividing v.x/ by the generator polynomial g.x/ D
1Cx2Cx3 2 F2Œx	, we get the quotient x2 and the remainder x. Therefore S.v/ D x.
This syndrome polynomial satisfies the condition in Proposition 3.3.42, and so the
most likely error polynomial is e.x/ D x. The most likely sent code polynomial is
c.x/ D v.x/�e.x/ D x2Cx4Cx5, which corresponds to the codeword .0 0 1 0 1 1 0/
in C.

In preparation for a more refined version of the syndrome decoding algorithm for
cyclic codes, we study how the syndrome polynomial changes under a cyclic shift
of the input.

Lemma 3.3.44 Let C be a nontrivial cyclic Œn; k	 code over Fq with generator
polynomial g.x/. Let S.v/ D S.v.x// be the syndrome polynomial of a received
polynomial v D v.x/ 2 FqŒx	=.xn � 1/. Then

S.xv.x// D xS.v.x//� sn�k�1g.x/;

where sn�k�1 is the coefficient of xn�k�1 in the polynomial S.v/.

Proof By the definition of S.v.x//, we can write v.x/ D a.x/g.x/ C S.v.x// for
some a.x/ 2 FqŒx	, where deg.S.v.x/// < deg.g.x// D n � k. Then

xv.x/ D xa.x/g.x/C xS.v.x// D .xa.x/C sn�k�1/g.x/C xS.v.x//� sn�k�1g.x/:

Furthermore,

deg.xS.v.x//� sn�k�1g.x// � max .deg.xS.v.x///; deg.sn�k�1g.x/// � n � k:
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The coefficient of xn�k in xS.v.x//� sn�k�1g.x/ is sn�k�1� sn�k�1 �1 D 0 since g.x/
is a monic polynomial. Therefore

deg.xS.v.x//� sn�k�1g.x// < n � k;

and so xS.v.x//� sn�k�1g.x/ is the least residue of xv.x/ modulo g.x/. �

Remark 3.3.45 Given the syndrome polynomial of the cyclic shift xtv.x/ of a
received polynomial v.x/ 2 FqŒx	=.xn � 1/, the syndrome polynomial of xtC1v.x/
can be computed by means of Lemma 3.3.44. Thus, the syndrome polynomials of
xv.x/; x2v.x/; : : : can be computed recursively.

Definition 3.3.46 A word u D .u0; u1; : : : ; un�1/ 2 F
n
q has a cyclic run of zeros of

length ` � 1 if it has a succession of ` cyclically consecutive zero coordinates.

Example 3.3.47 The word u D .0; 0; 1; 0; 0; 0; 1; 0; 0/ 2 F
9
2 has a cyclic run of

zeros of length 4.

Here is another auxiliary result that we need for a refined syndrome decoding
algorithm for cyclic codes.

Lemma 3.3.48 Let C be a nontrivial cyclic Œn; k	 code over Fq. Suppose that for
some received polynomial v.x/ 2 FqŒx	=.xn � 1/ there is an error word e 2 F

n
q

which has a cyclic run of zeros of length at least k. Then there exists an integer
t � 0 such that for h D h.x/ D xtv.x/ 2 FqŒx	=.xn � 1/ the syndrome polynomial is
given by S.h/ D r.x/, where r.x/ 2 FqŒx	=.xn � 1/ is the polynomial corresponding
to the cyclic shift et. Furthermore, the number of nonzero coefficients of r.x/ is equal
to the Hamming weight w.e/.

Proof Since e has a cyclic run of zeros of length at least k, there exists an integer
t � 0 such that the last k coordinates of the cyclic shift et are all equal to 0. Thus, if
r.x/ 2 FqŒx	=.xn � 1/ is as in the lemma, then deg.r.x// < n � k. Since deg.g.x// D
n � k, it follows from Definition 3.3.41 that S.r.x// D r.x/. If e.x/ 2 FqŒx	=.xn � 1/
is the polynomial corresponding to e, then

h.x/ � xtv.x/ � xte.x/ � r.x/ .mod g.x//;

and so S.h/ D S.r.x// D r.x/. The last part of the lemma is trivial since a cyclic
shift does not change the Hamming weight of a word. �

We are now ready to describe a syndrome decoding algorithm for cyclic codes
which is applicable under less restrictive conditions than those in Proposition 3.3.42.
This algorithm goes by a colorful name suggesting that we want to capture the
devious error in a trap.

Algorithm 3.3.49 (Error-Trapping Decoding Algorithm for Cyclic Codes) Let
C be a nontrivial cyclic Œn; k; d	 code over Fq. For a received word v 2 F

n
q, suppose

that the error word e 2 F
n
q has Hamming weight w.e/ � b.d � 1/=2c and a cyclic

run of zeros of length at least k.
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Step 1: For the received polynomial v.x/ 2 FqŒx	=.xn�1/ corresponding to v, com-
pute the syndrome polynomials of v.x/; xv.x/; x2v.x/; : : : by Lemma 3.3.44
until an integer t with 0 � t � n � 1 is obtained for which the syndrome
polynomial of xtv.x/ 2 FqŒx	=.xn � 1/ has at most b.d � 1/=2c nonzero
coefficients. Such an integer t exists by Lemma 3.3.48.

Step 2: By Proposition 3.3.42, et.x/ WD S.xtv.x// is the most likely error poly-
nomial for the received polynomial xtv.x/. Let et 2 F

n
q be the word

corresponding to et.x/. A cyclic shift of et by n � t positions yields the
most likely error word e.

Step 3: Compute the most likely sent codeword c as c D v � e.

Example 3.3.50 Let C be the cyclic Œ7; 4; 3	 code overF2 with generator polynomial
g.x/ D x3 C x2 C 1 considered in Examples 3.3.22 and 3.3.43. Let the received
polynomial be v.x/ D 1Cx2Cx3Cx4. As in the error-trapping decoding algorithm
above, we assume that the error word e 2 F

7
2 has Hamming weight w.e/ � 1. Then

e must have a cyclic run of zeros of length at least 6, and so all conditions in the
algorithm above are satisfied. Dividing v.x/ by g.x/, we get

v.x/ D xg.x/C 1C x C x2;

and so S.v.x// D 1 C x C x2. The condition in Step 1 of the algorithm is thus not
satisfied for t D 0. Therefore we proceed to t D 1. According to Lemma 3.3.44, we
obtain

S.xv.x// D x.1C x C x2/ � 1 � .1C x2 C x3/ D 1C x:

The condition in Step 1 of the algorithm is thus not satisfied for t D 1. Therefore
we proceed to t D 2. Again by Lemma 3.3.44, we compute

S.x2v.x// D x.1C x/ � 0 � .1C x2 C x3/ D x C x2:

The condition in Step 1 of the algorithm is thus not satisfied for t D 2. But we are
not discouraged since we know from Lemma 3.3.48 that a suitable value of t must
exist. Hence we proceed to t D 3. Again by Lemma 3.3.44, we obtain

S.x3v.x// D x.x C x2/� 1 � .1C x2 C x3/ D 1:

Now the condition in Step 1 of the algorithm is satisfied. In Step 2 of the algorithm
we get e3.x/ D 1 and e3 D .1 0 0 0 0 0 0/ 2 F

7
2. A cyclic shift of e3 by n � t D

7� 3 D 4 positions yields e D .0 0 0 0 1 0 0/ 2 F
7
2. The most likely sent codeword

is therefore

c D .1 0 1 1 1 0 0/ � .0 0 0 0 1 0 0/ D .1 0 1 1 0 0 0/:

A transmission error occurred most likely in the fifth coordinate.
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3.4 Bounds in Coding Theory

3.4.1 Existence Theorems for Good Codes

There are some general theoretical results that establish the existence of good codes
provided that the parameters satisfy certain bounds. As usual, we write jAj for the
cardinality (that is, the number of elements) of a finite set A.

Theorem 3.4.1 (Sphere-Covering Bound) If Fq is a finite field and n and d are
integers with 1 � d � n, then there exists a code C 
 F

n
q with minimum distance d

and

jCj
d�1X

iD0

 
n

i

!
.q � 1/i � qn:

Proof For fixed n, d, and q, let C 
 F
n
q be a code of maximum size with d.C/ D d.

If w 2 F
n
q were such that d.c;w/ � d for all c 2 C, then the larger code C [ fwg

would still have minimum distance d. Thus, there can be no such w 2 F
n
q. In other

words, for every v 2 F
n
q there is a c 2 C with d.c; v/ � d � 1. Hence

F
n
q D

[

c2C

B.c; d � 1/;

where B.c; d � 1/ is the ball with center c and radius d � 1 in the Hamming space
F

n
q defined by

B.c; d � 1/ D fv 2 F
n
q W d.c; v/ � d � 1g:

By considering cardinalities, we get

qn D
ˇ̌
ˇ
[

c2C

B.c; d � 1/
ˇ̌
ˇ �

X

c2C

jB.c; d � 1/j D jCj
d�1X

iD0

 
n

i

!
.q � 1/i;

which is the desired result. Note that the formula for jB.c; d � 1/j above is obtained
by first fixing the number i of coordinates where c and v differ (with 0 � i � d � 1),
then choosing the

�n
i

�
actual coordinate positions where c and v differ, and finally

observing that for i fixed coordinate positions this leaves exactly .q�1/i possibilities
for v. �

Example 3.4.2 Let q D 2, n D 9, and d D 3. Then Theorem 3.4.1 ensures the
existence of a binary code C of length 9 with minimum distance 3 and jCj �
512=46, that is, with jCj � 12.
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The proof of Theorem 3.4.1 provides no guarantee that the code in this theorem
is linear. However, there is the following result of roughly comparable quality for
linear codes.

Theorem 3.4.3 (Gilbert-Varshamov Bound) Let n, k, and d be integers with 1 �
k < n, 2 � d � n, and

d�2X

iD0

 
n � 1

i

!
.q � 1/i < qn�k: (3.14)

Then there exists a linear Œn; k	 code over Fq with minimum distance at least d.

Proof We first observe that

qd�2 D
d�2X

iD0

 
d � 2

i

!
.q � 1/i �

d�2X

iD0

 
n � 1

i

!
.q � 1/i < qn�k

by (3.14), and so d � 1 � n � k. Now we construct a certain .n � k/ � n matrix
H0 over Fq columnwise. We choose the first d � 1 column vectors of H0 as linearly
independent vectors from F

n�k
q (this is possible since d � 1 � n � k). Now suppose

that the first j � 1 column vectors of H0 (with d � j � n) have already been
constructed and satisfy the property that any d � 1 of them are linearly independent
over Fq. There are at most

d�2X

iD0

 
j � 1

i

!
.q � 1/i �

d�2X

iD0

 
n � 1

i

!
.q � 1/i

vectors from F
n�k
q that can be obtained as linear combinations over Fq of d � 2 or

fewer of these j � 1 column vectors. Since (3.14) holds, it is possible to choose a jth
column vector of H0 that is linearly independent of any d �2 of the first j�1 column
vectors of H0. When this inductive construction is complete, we arrive at an .n�k/�n
matrix H0 over Fq with the property that any d � 1 column vectors of H0 are linearly
independent over Fq. The null space of H0 (see Remark 3.2.39) is a linear code C0
over Fq of length n with dim.C0/ � k. Furthermore, the argument in the proof of
Theorem 3.2.44 shows that d.C0/ � d. Now let C be an arbitrary k-dimensional
subspace of C0. Since passing to a subspace cannot decrease the minimum distance,
we see that C is a linear code of the desired type. �
Example 3.4.4 Let q D 2, n D 7, k D 4, and d D 3. Then the inequality (3.14)
is satisfied, and so Theorem 3.4.3 shows the existence of a binary linear Œ7; 4	 code
with minimum distance at least 3. A simple explicit construction of such a code was
given in Example 3.2.53.
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Example 3.4.5 Let q D 3, n D 10, k D 7, and d D 3. Then the inequality (3.14) is
satisfied, and so Theorem 3.4.3 guarantees the existence of a linear Œ10; 7	 code over
F3 with minimum distance at least 3.

The procedure in the proof of Theorem 3.4.3 can, in principle, be implemented to
construct good linear codes. However, it should be noted that, for large values of d,
this method is usually impracticable. We will present efficient explicit constructions
of families of good linear codes later in this chapter.

3.4.2 Limitations on the Parameters of Codes

The parameters of codes cannot be chosen independently of each other. For instance,
it is obvious that for a linear Œn; k; d	 code the bounds 1 � k � n and 1 � d � n are
valid. In the following, we will discuss less trivial limitations on the parameters of
codes.

Theorem 3.4.6 (Hamming Bound) Every t-error-correcting code C 
 F
n
q satis-

fies

jCj
tX

iD0

 
n

i

!
.q � 1/i � qn:

Proof For all c 2 C, let B.c; t/ 
 F
n
q be the ball with center c and radius t

(compare with the proof of Theorem 3.4.1). For distinct c1; c2 2 C, it follows
from Definition 3.1.12 that B.c1; t/ and B.c2; t/ are disjoint. Thus, by comparing
cardinalities in

[

c2C

B.c; t/ 
 F
n
q

and referring again to the proof of Theorem 3.4.1, we obtain the desired
inequality. �

Corollary 3.4.7 Every code C 
 F
n
q with jCj � 2 and minimum distance d satisfies

jCj
b.d�1/=2cX

iD0

 
n

i

!
.q � 1/i � qn: (3.15)

Proof This follows from Theorems 3.1.14 and 3.4.6. �

Definition 3.4.8 A code C 
 F
n
q with jCj � 2 and minimum distance d which

achieves equality in (3.15) is called perfect.
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Example 3.4.9 The trivial code C D F
n
q is obviously perfect. For q D 2, the

repetition code of odd length n (see Example 3.1.4) is easily seen to be perfect.
A simple computation shows that the binary linear Œ7; 4; 3	 code constructed in
Example 3.2.53 is perfect. The last example will be generalized in Theorem 3.5.7.
Further examples of perfect codes will be presented in Sect. 3.5.2.

An inspection of the proof of Theorem 3.4.6 reveals that a perfect code C 
 F
n
q

has the intriguing geometric property that the balls of radius b.d.C/� 1/=2c around
the codewords in C are disjoint and fill up the whole space F

n
q. This is like tightly

packing oranges in F
n
q as if they were cubes; in R

n we can do this only with orange
juice. Because of this interpretation in terms of packing, the bound in Theorem 3.4.6
is called also the sphere-packing bound.

The following bound provides another important restriction on the parameters
of a code. The name of this bound has nothing to do with “singleton” in the sense
of a one-element set, but rather with the coding theorist Richard Singleton and his
paper [187].

Theorem 3.4.10 (Singleton Bound) Every code C 
 F
n
q with jCj � 2 and

minimum distance d satisfies

jCj � qn�dC1:

Proof In each codeword in C we delete the last d � 1 coordinates. The resulting
words over Fq of length n � d C 1 are distinct since C has minimum distance d.
Therefore jCj � qn�dC1, the total number of words over Fq of length n � d C 1.

�

Corollary 3.4.11 (Singleton Bound for Linear Codes) Every linear Œn; k; d	 code
over Fq satisfies

d � n � k C 1:

Proof This follows from Theorem 3.4.10 since a linear Œn; k; d	 code C over Fq

satisfies jCj D qk. �

Remark 3.4.12 There is a simple alternative proof of Corollary 3.4.11 in which we
turn to an equivalent linear code with a generator matrix G0 in standard form (see
Remark 3.2.27) and then note that all row vectors of G0 have Hamming weight at
most n � k C 1.

Theorem 3.4.10 substantiates a remark we made at the end of Sect. 3.1.2, namely
that there is a trade-off between the desiderata of a large minimum distance of a code
C 
 F

n
q and a large data transmission rate of C (which can be expressed by saying

that the ratio jCj=qn is relatively large). Indeed, Theorem 3.4.10 demonstrates that
if the minimum distance d of C is large, then the ratio jCj=qn is necessarily small.
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Definition 3.4.13 A linear Œn; k; d	 code over Fq with d D n � k C 1 is called an
MDS code.

The acronym MDS stands for maximum distance separable, which is suggestive
of the fact that an MDS code is a linear Œn; k	 code that achieves the largest minimum
distance n�kC1 allowed by the Singleton bound for linear codes. After listing some
easy examples of MDS codes, we discuss basic properties of MDS codes.

Example 3.4.14 The trivial code C1 D F
n
q and the linear Œn; 1; n	 code C2 over Fq

with basis vector b D .b1; : : : ; bn/ 2 F
n
q, where bj ¤ 0 for 1 � j � n, are MDS

codes. For every n � 2, the linear Œn; n � 1; 2	 code C3 over Fq with basis vectors
b1; : : : ;bn�1 2 F

n
q is an MDS code, where for i D 1; : : : ; n � 1 the vector bi has

coordinate 1 in positions i and i C 1 and coordinate 0 elsewhere.

Proposition 3.4.15 Let C be a nontrivial linear Œn; k	 code over Fq with parity-
check matrix H. Then C is an MDS code if and only if any n � k column vectors of
H are linearly independent over Fq.

Proof In view of Corollary 3.4.11, C is an MDS code if and only if d.C/ � n�kC1.
The rest follows from Theorem 3.2.44. �
Theorem 3.4.16 If the nontrivial linear code C is an MDS code, then its dual code
C? is also an MDS code.

Proof Let C be a nontrivial linear Œn; k	 code over Fq which is an MDS code and
let H be a parity-check matrix of C. Then C? is a linear Œn; n � k	 code over Fq by
Theorem 3.2.34. If d D d.C?/, then d � k C 1 by Corollary 3.4.11. In order to
make sure that C? is an MDS code, it therefore suffices to prove that the minimum
Hamming weight w.C?/ is at least k C 1 (compare with Theorem 3.2.14). Take
a codeword u D .u1; : : : ; un/ 2 C? with w.u/ � k. Then there exist integers
1 � j1 < j2 < � � � < jn�k � n with

uj1 D uj2 D � � � D ujn�k D 0: (3.16)

Since H is a generator matrix of C?, there is some a 2 F
n�k
q for which u D aH.

If h>
1 ; : : : ;h

>
n are the column vectors of H, then (3.16) implies that a � hj1 D a �

hj2 D � � � D a � hjn�k D 0. Now hj1 ;hj2 ; : : : ;hjn�k are linearly independent over
Fq by Proposition 3.4.15, and so these vectors form a basis of Fn�k

q . It follows that
a � v D 0 for all v 2 F

n�k
q , hence a D 0 2 F

n�k
q and u D 0 2 F

n
q. This shows that

w.C?/ � k C 1. �

Proposition 3.4.17 Let C be a linear Œn; k	 code over Fq with generator matrix
G. Then C is an MDS code if and only if any k column vectors of G are linearly
independent over Fq.

Proof This is trivial for k D n. If 1 � k � n � 1, then Proposition 3.4.15 shows that
any k column vectors of G are linearly independent over Fq if and only if C? is an
MDS code (since G is a parity-check matrix of C? and dim.C?/ D n � k). Now
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.C?/? D C by Corollary 3.2.35, and so we deduce from Theorem 3.4.16 that C?
is an MDS code if and only if C is an MDS code. �

Example 3.4.18 Let C be the linear Œ4; 2	 code over F3 with generator matrix

G D
�
1 0 1 1

0 1 1 2

�
:

Then any two column vectors of G are linearly independent over F3, and so C is an
MDS code by Proposition 3.4.17.

An important family of MDS codes, namely that of Reed-Solomon codes, will be
introduced in Sect. 3.5.3. Now we present another bound on code parameters. Since
our focus in this chapter is on linear codes, we establish the bound here only for
these codes. There is an analogous bound for arbitrary codes (see [105, Section 5.5]
and Theorem 6.4.13).

Theorem 3.4.19 (Plotkin Bound for Linear Codes) Every linear Œn; k; d	 code
over Fq satisfies

d � n.q � 1/qk�1

qk � 1
:

Proof For a given linear Œn; k; d	 code C over Fq and for j D 1; : : : ; n, let �j be the
linear transformation

�j W .c1; : : : ; cn/ 2 C 7! cj 2 Fq:

If w1 denotes the Hamming weight of words over Fq of length 1, then

X

c2C

w.c/ D
X

c2C

nX

jD1
w1.�j.c// D

nX

jD1

X

c2C

w1.�j.c//:

If the image of �j is f0g, then the last inner sum is equal to 0. Otherwise, for every
b 2 Fq there are exactly qk�1 codewords c 2 C with �j.c/ D b, and so the last inner
sum is equal to .q � 1/qk�1. Altogether, we get

X

c2C

w.c/ � n.q � 1/qk�1:

On the other hand, it is trivial that

X

c2C

w.c/ � .qk � 1/d;

and so the desired bound follows. �



3.5 Some Special Linear Codes 157

Remark 3.4.20 The ternary linear Œ4; 2; 3	 code in Example 3.4.18 is not only an
MDS code, but it also achieves equality in the Plotkin bound. In general, if a linear
Œn; k; d	 code C over Fq achieves equality in the Plotkin bound, then

P
c2C w.c/ D

.qk �1/d, as we see from the proof of Theorem 3.4.19. This means that w.c/ D d for
all nonzero codewords c 2 C. Since d.u; v/ D w.u � v/ for all u; v 2 F

n
q by (3.5),

it follows that d.c1; c2/ D d for any two distinct codewords c1; c2 2 C. For obvious
reasons, such a code is called an equidistant code.

Example 3.4.21 Given a finite field Fq and an integer k with qk � 3, let f .x/ be
the minimal polynomial of a primitive element 
 2 Fqk over Fq. Let C be the
irreducible cyclic Œqk � 1; k	 code over Fq with parity-check polynomial f .x/ (see
Theorem 3.3.37). Every nonzero c 2 C has the form c./ in Theorem 3.3.37 for
some  2 F

�
qk . It follows that w.c/ is equal to the number of ˇ 2 F

�
qk with Tr.ˇ/ ¤ 0.

Since Tr.0/ D 0 and the map Tr W Fqk ! Fq attains each value in Fq equally often
(namely qk�1 times by Theorem 1.4.50(iii)), we deduce that w.c/ D .q � 1/qk�1 for
every nonzero c 2 C. Therefore C is an equidistant code and it achieves equality in
the Plotkin bound.

3.5 Some Special Linear Codes

3.5.1 Hamming Codes

For every finite field Fq, there is an infinite family of perfect linear codes over Fq,
namely that of Hamming codes over Fq. These codes are named after the work of
Hamming in his article [60], which is one of the early fundamental papers on coding
theory, and they are obtained by an elegant construction. For ease of explanation,
we commence with the simpler binary case.

For an integer r � 2, consider an r � .2r � 1/ matrix Hr over F2 whose column
vectors are exactly all 2r � 1 nonzero vectors from F

r
2. For instance, for r D 3 we

can take

H3 D
0

@
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

1

A :

Here we have arranged the columns in lexicographic order, with the rule that 0
precedes 1, but this is not necessary. Another possible matrix Hr for r D 3 is the
matrix H in Example 3.2.53. For every r � 2, we find among the column vectors of
Hr in particular all vectors of Hamming weight 1, and so the row vectors of Hr are
linearly independent over F2. Therefore Hr can be chosen as a parity-check matrix
of a binary linear code. The length of the resulting code is n D 2r � 1 and its
dimension is n � r D 2r � 1� r.
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Definition 3.5.1 For an integer r � 2, let Hr be an r � .2r � 1/ matrix over F2
whose column vectors are exactly all 2r � 1 nonzero vectors from F

r
2. Then the

linear Œ2r �1; 2r �1� r	 code over F2 with parity-check matrix Hr is called a binary
Hamming code Ham.r; 2/.

The order of the columns of Hr has not been fixed, and so Ham.r; 2/ is well
defined only up to equivalence of codes (see Remark 3.2.27 for the latter notion).
Therefore we speak of a binary Hamming code Ham.r; 2/ and not of the binary
Hamming code Ham.r; 2/, and similarly for related codes. The minimum distance
of Ham.r; 2/ can be easily determined by Corollary 3.2.45. Note that all column
vectors of Hr are nonzero and different, and so any two column vectors of Hr

are linearly independent over F2. On the other hand, the three column vectors
.1 0 0 : : : 0/>, .0 1 0 : : : 0/>, and .1 1 0 : : : 0/> of Hr are linearly dependent
over F2, and so Ham.r; 2/ has minimum distance 3.

Remark 3.5.2 For every integer r � 2, a suitable code Ham.r; 2/ in the equivalence
class is cyclic with generator polynomial g.x/ 2 F2Œx	, where g.x/ is the minimal
polynomial of a primitive element ˛ 2 F2r over F2. In order to prove this claim,
we set up the r � .2r � 1/ matrix H over F2 such that, for j D 1; : : : ; 2r � 1, the
jth column vector of H is the transpose of the coordinate vector of ˛j�1 relative to
the ordered basis f1; ˛; : : : ; ˛r�1g of F2r over F2. Since ˛ is a primitive element
of F2r , the column vectors of H run exactly through all nonzero vectors in F

r
2, and

so H is a matrix of the form Hr in Definition 3.5.1 and a parity-check matrix of a
code Ham.r; 2/. Furthermore, if v D .v0; v1; : : : ; vn�1/ 2 F

n
2 with n D 2r � 1 and

v.x/ D v0Cv1xC� � �Cvn�1xn�1 2 F2Œx	, then vH> is the coordinate vector of v.˛/
relative to the ordered basis f1; ˛; : : : ; ˛r�1g. By Theorem 3.2.37, v 2 Ham.r; 2/ if
and only if vH> D 0. The latter condition is equivalent to v.˛/ D 0, and this is
in turn equivalent to g.x/ dividing v.x/ in F2Œx	 by Proposition 1.4.38. Our claim is
thus established.

Remark 3.5.3 There is a variant of Ham.r; 2/, namely an extended binary Hamming
code Ham.r; 2/. For every integer r � 2 and each choice of Ham.r; 2/ from the
equivalence class, such an extended code is defined by

Ham.r; 2/ D
n�

c1; : : : ; cn;

nX

jD1
cj

�
2 F

nC1
2 W .c1; : : : ; cn/ 2 Ham.r; 2/

o

with n D 2r � 1. The length of Ham.r; 2/ is n C 1 D 2r. It is easily seen that
Ham.r; 2/ is again a linear code. Since the codes Ham.r; 2/ and Ham.r; 2/ have the
same number of codewords, their dimensions agree, and so Ham.r; 2/ has dimension
2r �1�r. If .c1; : : : ; cn/ 2 Ham.r; 2/ has the minimum nonzero Hamming weight 3,
then

�
c1; : : : ; cn;

Pn
jD1 cj

�
has Hamming weight 4, and so Ham.r; 2/ has minimum

distance 4. In summary, Ham.r; 2/ is a binary linear Œ2r; 2r � 1 � r; 4	 code.

Example 3.5.4 Consider Ham.r; 2/ with r D 3 which is a binary linear Œ7; 4; 3	
code. As we have noted, this code was already discussed in Example 3.2.53. From
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this example we get a generator matrix

G D

0

BB@

1 0 0 0 0 1 1

0 1 0 0 1 0 1

0 0 1 0 1 1 1

0 0 0 1 1 1 0

1

CCA

of Ham.3; 2/. By construction, a generator matrix G of C D Ham.3; 2/ is then
given by

G D

0
BB@

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 1 0

0 0 0 1 1 1 0 1

1
CCA :

By Remark 3.5.3, C is a binary linear Œ8; 4; 4	 code. If b1;b2;b3;b4 2 F
8
2 are the

four row vectors of G, then it is easily verified that bi � bj D 0 for all i; j D 1; 2; 3; 4,
and so the bilinearity of the dot product implies that u � v D 0 for all u; v 2 C.
This shows that C 
 C?. Furthermore, dim.C/ D 4 D 8 � 4 D dim.C?/ by
Theorem 3.2.34, and so C D C?. In other words, C D Ham.3; 2/ is a self-dual code
(see Definition 3.2.57).

How can we generalize Hamming codes from the binary case to the q-ary case
for any prime power q? Obviously, we should set up a suitable parity-check matrix
over Fq. In a simple-minded generalization of the construction in Definition 3.5.1,
we would list all nonzero vectors from F

r
q as columns. For instance, if q D 3 and

r D 2, this would yield the parity-check matrix

H D
�
0 0 1 1 1 2 2 2

1 2 0 1 2 0 1 2

�
:

But since the second column vector of H is a scalar multiple of the first column
vector of H, the resulting linear code has minimum distance 2 by Corollary 3.2.45.
However, we prefer a code with minimum distance 3 like a binary Hamming code
since this guarantees that the code is 1-error-correcting. The way to achieve this is to
avoid scalar multiples of already chosen column vectors in the parity-check matrix.

Having clarified our goal, we now proceed as follows. For an integer r � 2 and a
finite field Fq, we consider two nonzero vectors from F

r
q equivalent if one is a scalar

multiple of the other. This yields exactly .qr �1/=.q�1/ corresponding equivalence
classes. We set up an r � Œ.qr � 1/=.q � 1/	 matrix Hr;q over Fq by choosing as its
column vectors one vector from each of the .qr � 1/=.q � 1/ equivalence classes.
Among the column vectors of Hr;q we find in particular r nonequivalent vectors of
Hamming weight 1, and so the row vectors of Hr;q are linearly independent over
Fq. Therefore Hr;q can be taken as a parity-check matrix of a linear code over Fq.
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The length of the resulting code is n D .qr � 1/=.q � 1/ and its dimension is
n � r D .qr � 1/=.q � 1/� r. This construction can be expressed equivalently in the
following form.

Definition 3.5.5 For an integer r � 2 and a finite field Fq, let Hr;q be an r � Œ.qr �
1/=.q � 1/	 matrix over Fq that is obtained by choosing as its column vectors one
nonzero vector from each of the .qr�1/=.q�1/ different one-dimensional subspaces
of Fr

q. Then the linear Œ.qr � 1/=.q � 1/; .qr � 1/=.q � 1/ � r	 code over Fq with
parity-check matrix Hr;q is called a Hamming code Ham.r; q/ over Fq.

The order of the columns of Hr;q and the specific choices of vectors from the
one-dimensional subspaces of Fr

q have not been fixed, and so Ham.r; q/ actually
represents a family of codes with the same basic properties. A practical way to write
down Hr;q is to choose as its column vectors all nonzero vectors from F

r
q whose first

nonzero entry is 1.

Example 3.5.6 Take r D 2 and q D 3. We list all nonzero vectors from F
2
3 whose

first nonzero entry is 1 and obtain

H2;3 D
�
1 1 1 0

2 1 0 1

�
:

The code Ham.2; 3/ with parity-check matrix H2;3 is a linear Œ4; 2	 code over F3.
Since H2;3 is in standard form, a generator matrix of Ham.2; 3/ is given by

G D
�
1 0 2 1

0 1 2 2

�
:

One shows as in Example 3.5.4 that Ham.2; 3/ is a self-dual code.

Theorem 3.5.7 For every integer r � 2 and every finite field Fq, any Hamming
code Ham.r; q/ has minimum distance 3 and is perfect.

Proof By construction, C D Ham.r; q/ satisfies d.C/ � 3 on account of
Theorem 3.2.44. Among the column vectors of Hr;q we find h>

1 , h>
2 , and h>

3 , where
h1 D .a; 0; 0; : : : ; 0/ 2 F

r
q, h2 D .0; b; 0; : : : ; 0/ 2 F

r
q, and h3 D .c; c; 0; : : : ; 0/ 2

F
r
q for some a; b; c 2 F

�
q . Then a�1h1 C b�1h2 � c�1h3 D 0, and so h1, h2, and h3

are linearly dependent over Fq. Therefore d.C/ D 3 by Corollary 3.2.45.
According to Definition 3.4.8, C is perfect if

1X

iD0

 
n

i

!
.q � 1/i D qn�k; (3.17)

where n D .qr �1/=.q�1/ and k D .qr �1/=.q�1/�r. The left-hand side of (3.17)
is equal to 1C n.q � 1/ D qr, and this agrees with the right-hand side of (3.17). �
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The parameters of Ham.r; q/ in Definition 3.5.5 indicate that Ham.r; q/ has
exactly qr cosets. Note that in F

n
q with n D .qr � 1/=.q � 1/, there are exactly

1Cn.q�1/ D qr words of Hamming weight at most 1. Different words of Hamming
weight at most 1 are in different cosets of Ham.r; q/ since Ham.r; q/ has minimum
distance 3 by Theorem 3.5.7. Therefore the unique coset leaders of Ham.r; q/ are
exactly the words 0 2 F

n
q and ej;b 2 F

n
q for 1 � j � n and b 2 F

�
q , where ej;b is the

word whose jth coordinate is b and all other coordinates are 0.
The syndrome decoding algorithm (see Algorithm 3.2.52) now attains a partic-

ularly simple form for Hamming codes. In view of the preceding discussion, all
possible syndromes of Ham.r; q/ are given by 0 2 F

r
q and S.ej;b/ D bh>

j 2 F
r
q for

1 � j � n and b 2 F
�
q , where hj denotes the jth column vector of Hr;q.

Algorithm 3.5.8 (Syndrome Decoding Algorithm for Hamming Codes) Let a
Hamming code Ham.r; q/ over Fq with parity-check matrix Hr;q and length n D
.qr � 1/=.q � 1/ be given.

Step 1: for a received word v 2 F
n
q, compute the syndrome S.v/ D vH>

r;q.
Step 2: if S.v/ D 0, then assume that no errors have occurred and v is the most

likely sent codeword.
Step 3: if S.v/ ¤ 0, then find the unique column vector hj of Hr;q such that S.v/

is a scalar multiple of h>
j , say S.v/ D bh>

j with b 2 F
�
q .

Step 4: with j and b from Step 3, ej;b is the most likely error word and c0 D v�ej;b

is the most likely sent codeword.

Example 3.5.9 Consider the Hamming code Ham.2; 3/ over F3 in Example 3.5.6.
Suppose that the received word is v D .0 1 1 0/ 2 F

4
3. Then S.v/ D vH>

2;3 D
.2 1/ 2 F

2
3, and so S.v/ is a scalar multiple of the transposed first column vector h>

1

of H2;3, namely S.v/ D 2h>
1 . It follows that e1;2 D .2 0 0 0/ 2 F

4
3 is the most likely

error word and

c0 D v � e1;2 D .0 1 1 0/ � .2 0 0 0/ D .1 1 1 0/

is the most likely sent codeword.

Remark 3.5.10 This syndrome decoding algorithm is even simpler for binary
Hamming codes Ham.r; 2/, since then in Step 3 of Algorithm 3.5.8 we must
have b D 1 2 F2, and so S.v/ D h>

j for a uniquely determined integer j with
1 � j � 2r � 1. If the columns of the parity-check matrix Hr are arranged in
lexicographic order as in the matrix H3 at the beginning of this subsection, then
S.v/ corresponds to the binary representation of the integer j. The most likely error
word is then the word ej whose jth coordinate is 1 and all other coordinates are 0.

Example 3.5.11 Consider the binary Hamming code Ham.3; 2/ with parity-check
matrix

H3 D
0

@
0 0 0 1 1 1 1

0 1 1 0 0 1 1

1 0 1 0 1 0 1

1

A :
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Note that the first column vector .0 0 1/> of H3 corresponds to the binary
representation of 1 D 0 � 22 C 0 � 2 C 1 � 1, the second column vector .0 1 0/>
of H3 corresponds to the binary representation of 2 D 0 � 22 C 1 � 2 C 0 � 1, and
so on. Suppose that the received word is v D .0 1 1 1 0 0 0/ 2 F

7
2. Then

S.v/ D vH>
3 D .1 0 1/ 2 F

3
2, which corresponds to the binary representation

of j D 5 D 1 � 22 C 0 � 2 C 1 � 1. Therefore the most likely error word is
e5 D .0 0 0 0 1 0 0/ 2 F

7
2 and

c0 D v � e5 D .0 1 1 1 0 0 0/ � .0 0 0 0 1 0 0/ D .0 1 1 1 1 0 0/

is the most likely sent codeword.

The dual codes of the Hamming codes also have interesting properties. These
codes run under a special name as well.

Definition 3.5.12 The dual code of a Hamming code Ham.r; q/ over Fq is called a
simplex code S.r; q/ over Fq.

Proposition 3.5.13 For every integer r � 2 and every finite field Fq, any simplex
code S.r; q/ is a linear Œ.qr � 1/=.q � 1/; r	 code over Fq.

Proof This follows by using the values of the length and of the dimension of
Ham.r; q/ in Definition 3.5.5 and then applying Theorem 3.2.34. �

The name “simplex code” stems from the remarkable property of the codes
S.r; q/ shown in the following theorem, which is reminiscent of the geometric
characteristic of a regular simplex in Euclidean space.

Theorem 3.5.14 For every integer r � 2 and every prime power q, any simplex
code S.r; q/ is an equidistant code. In fact, every nonzero codeword in S.r; q/ has
Hamming weight qr�1. In particular, S.r; q/ has minimum distance qr�1.

Proof By definition, an r�n matrix Hr;q of the form in Definition 3.5.5 is a generator
matrix of S.r; q/, where n D .qr �1/=.q�1/. Let h>

1 ; : : : ;h
>
n be the column vectors

of Hr;q. Now we fix a nonzero codeword c D .c1; : : : ; cn/ 2 S.r; q/. Then c D aHr;q

for some a 2 F
r
q with a ¤ 0. It follows that cj D a � hj for 1 � j � n. Thus, the

number of j with 1 � j � n and cj D 0 is equal to the number of hj 2 U WD fu 2
F

r
q W a � u D 0g. From a ¤ 0 we deduce that U is an .r � 1/-dimensional subspace

of Fr
q, and so U contains exactly .qr�1 � 1/=.q � 1/ one-dimensional subspaces.

Therefore

w.c/ D n � qr�1 � 1

q � 1
D qr � 1

q � 1 � qr�1 � 1

q � 1
D qr�1:

The last part of the theorem follows from Theorem 3.2.14. �
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Example 3.5.15 Consider the Hamming code Ham.2; 3/ in Example 3.5.6. Its dual
code S.2; 3/ has a generator matrix

H2;3 D
�
1 1 1 0

2 1 0 1

�
:

By forming all linear combinations over F3 of the row vectors of H2;3, we obtain
all codewords in S.2; 3/. In this way it can be verified directly that all nonzero
codewords in S.2; 3/ have Hamming weight 3. Since Ham.2; 3/ is self-dual, we
have S.2; 3/ D Ham.2; 3/ in this case.

Remark 3.5.16 In the binary case q D 2, we have demonstrated in Remark 3.5.2
that, for every integer r � 2, a suitable code Ham.r; 2/ is cyclic with generator poly-
nomial g.x/ 2 F2Œx	, where g.x/ is the minimal polynomial of a primitive element of
F2r over F2. Its dual code S.r; 2/ is therefore also cyclic by Proposition 3.3.23, and
the parity-check polynomial of S.r; 2/ is g.x/ according to Remark 3.3.27. In other
words, S.r; 2/ is an irreducible cyclic code over F2 of length 2r � 1 (compare with
Sect. 3.3.6). It was already proved in Example 3.4.21 with q D 2 and by a different
method that S.r; 2/ is an equidistant code.

Remark 3.5.17 According to Definition 3.2.54 and Theorem 3.5.14, the weight
enumerator A.x/ of any simplex code S.r; q/ is given by

A.x/ D 1C .qr � 1/xqr�1 2 ZŒx	:

Since the dual code of S.r; q/ is a Hamming code Ham.r; q/, the MacWilliams
identity in Theorem 3.2.55 yields the formula

A?.x/ D q�r.1C .q � 1/x/n
h
1C .qr � 1/

� 1 � x

1C .q � 1/x
�qr�1i

D q�r
	
.1C .q � 1/x/n C .qr � 1/.1� x/q

r�1

.1C .q � 1/x/n�qr�1


for the weight enumerator A?.x/ of Ham.r; q/, where n D .qr � 1/=.q � 1/. This
formula can be used to determine the number of codewords in Ham.r; q/ of a given
Hamming weight.

Binary and ternary simplex codes yield interesting examples of self-orthogonal
codes. We recall from Definition 3.2.57 that a nontrivial linear code C is self-
orthogonal if C 
 C?.

Theorem 3.5.18 Every binary simplex code S.r; 2/ with r � 3 is self-orthogonal.

Proof Since S.r; 2/ is the dual code of Ham.r; 2/, we have to prove that
Ham.r; 2/? 
 Ham.r; 2/ for r � 3. By Remark 3.5.2, we can assume that
Ham.r; 2/ is cyclic with generator polynomial g.x/ 2 F2Œx	, where g.x/ is the
minimal polynomial of a primitive element ˛ 2 F2r over F2. Theorem 3.3.26



164 3 Coding Theory

implies that Ham.r; 2/? is cyclic with generator polynomial h�.x/ 2 F2Œx	, where
h�.x/ is the reciprocal polynomial of h.x/ D .xn � 1/=g.x/ with n D 2r � 1.
Now g�.x/ is irreducible over F2 and g.˛/ D 0 implies g�.˛�1/ D 0. If
˛�1 were a root of g.x/, then ˛�1 D ˛2

j
for some j D 0; 1; : : : ; r � 1 by

Proposition 1.4.47, and so ˛2
jC1 D 1. It follows that 2r � 1 divides 2j C 1.

But 2j C 1 � 2r�1 C 1 < 2r � 1 for r � 3, a contradiction. Thus g.˛�1/ ¤ 0,
and so the two irreducible polynomials g.x/ and g�.x/ over F2 are coprime. Now
g.x/ divides xn � 1 D .1 � xn/� D .xn � 1/� D g�.x/h�.x/ in F2Œx	, and so g.x/
divides h�.x/ in F2Œx	 by Proposition 1.4.17(ii). This shows that Ham.r; 2/? 

Ham.r; 2/. �

Note that Theorem 3.5.18 cannot hold for r D 2 since S.2; 2/ has dimension 2,
whereas S.2; 2/? has dimension 1. We now turn to ternary simplex codes.

Theorem 3.5.19 Every ternary simplex code S.r; 3/ with r � 2 is self-orthogonal.

Proof Since S.r; 3/ is the dual code of Ham.r; 3/, the code S.r; 3/ has a generator
matrix of the form Hr;3 in Definition 3.5.5. Let its row vectors be b.r/1 ; : : : ;b

.r/
r . We

note that w.b.r/i / D 3r�1 for 1 � i � r by Theorem 3.5.14. Together with a2 D 1

for all a 2 F
�
3 , this implies that b.r/i � b.r/i D 3r�1 D 0 2 F3 for 1 � i � r. In order

to prove that S.r; 3/ is self-orthogonal, it remains to show that b.r/i � b.r/j D 0 for
1 � i < j � r. For this purpose, we can assume that in each column of Hr;3 the first
nonzero entry is 1, again because of a2 D 1 for all a 2 F

�
3 . Permuting columns of

Hr;3 will not change the dot products b.r/i � b.r/j , and so we can write the columns of
Hr;3 in any order. Now we proceed by induction on r. For r D 2 we can take

H2;3 D
�
1 1 1 0

0 1 2 1

�
;

and then it is clear that b.2/1 � b.2/2 D 0. Suppose that the property b.r/i � b.r/j D 0 for
1 � i < j � r has been shown for some r � 2 and consider the matrix HrC1;3. There

are exactly 3r column vectors of HrC1;3 of the form
�

1
u>

�
, where u> is an arbitrary

column vector over F3 of length r, and the remaining 1
2
.3r � 1/ column vectors of

HrC1;3 are of the form
�
0

v>

�
, where v> is a column vector of Hr;3. For the sake of

concreteness, we choose the first row vector of HrC1;3 as

b.rC1/
1 D .1 : : : 1 0 : : : 0/;

where the first 3r coordinates are 1 and the remaining 1
2
.3r � 1/ coordinates are

0. For 2 � j � r C 1, the dot product b.rC1/
1 � b.rC1/

j is equal to the sum of the
.j � 1/st coordinates of all u 2 F

r
3, which is 3r�1.0 C 1 C 2/ D 0 2 F3. For

2 � i < j � r C 1, we write b.rC1/
i D .c.rC1/

i ;d.rC1/
i / and b.rC1/

j D .c.rC1/
j ;d.rC1/

j /,

where c.rC1/
i , respectively c.rC1/

j , is formed by the first 3r coordinates of b.rC1/
i ,
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respectively b.rC1/
j . Then

b.rC1/
i � b.rC1/

j D c.rC1/
i � c.rC1/

j C d.rC1/
i � d.rC1/

j D c.rC1/
i � c.rC1/

j

by the induction hypothesis since d.rC1/
i and d.rC1/

j are row vectors of Hr;3.
Furthermore,

c.rC1/
i � c.rC1/

j D 3r�2 X

a;b2F3
ab D 3r�2�X

a2F3
a
�2 D 0 2 F3:

Therefore b.rC1/
i � b.rC1/

j D 0 and the induction is complete. �

3.5.2 Golay Codes

Golay codes are very pretty flowers in the garden of coding theory. There are,
up to equivalence, only four (extended) Golay codes, namely the binary Golay
code G23, the extended binary Golay code G24, the ternary Golay code G11, and
the extended ternary Golay code G12. The subscripts indicate the lengths of these
codes. Golay codes were introduced in the brilliant one-page paper [56], but see
also Example 6.3.27. The Golay codes G23 and G11 belong to the exclusive club of
perfect codes.

In order to define G23, we start from the factorization

x23�1 D .x C1/.x11Cx9Cx7Cx6Cx5Cx C1/.x11Cx10Cx6Cx5Cx4Cx2C1/

(3.18)

in F2Œx	 into irreducible polynomials over F2 (recall that �1 D 1 in F2). The
irreducibility over F2 of the two factors of degree 11 in (3.18) can be verified
by consulting published tables of irreducible polynomials (see for example [102,
Chapter 10, Table C]).

Definition 3.5.20 The binary Golay code G23 is the cyclic code over F2 of length
23 with generator polynomial g23.x/ D x11 C x9 C x7 C x6 C x5 C x C 1 2 F2Œx	.

We may also take the second factor of degree 11 in (3.18), which is the reciprocal
polynomial of g23.x/, as the generator polynomial of a binary cyclic code of length
23, but this yields an equivalent code. It follows from Theorem 3.3.17 that G23 is a
binary cyclic Œ23; 12	 code.

The extended binary Golay code G24 is obtained from G23 in the same way as an
extended binary Hamming code is obtained from a binary Hamming code, namely

G24 D
n�

c1; : : : ; c23;
23X

jD1
cj

�
2 F

24
2 W .c1; : : : ; c23/ 2 G23

o
:
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It is clear that G24 is a binary linear Œ24; 12	 code. The code G24 was used in
the Voyager space probes that were launched towards Jupiter and Saturn in 1977.
Remarkably, Voyager 1 became the first human-made object that left the solar
system and entered interstellar space.

It requires some work to determine the minimum distances of G23 and G24. We
first study the extended binary Golay code G24 in more detail.

Proposition 3.5.21 The extended binary Golay code G24 is self-dual.

Proof The generator polynomial g23.x/ of G23 yields a generator matrix of G23

according to Theorem 3.3.19. For i D 1; : : : ; 12, let bi 2 F
23
2 be the ith row vector

of this generator matrix. Then it is easily verified that b1 � bi D 1 for 1 � i � 12.
Since each bi is a cyclic shift of b1, it follows that bi � bj D 1 for 1 � i � j � 12.
By construction, the vectors b0

i D .bi; 1/ 2 F
24
2 , i D 1; : : : ; 12, are the row vectors

of a generator matrix of G24. These vectors satisfy b0
i � b0

j D bi � bj C 1 D 0 for
1 � i � j � 12, and hence c � d D 0 for all c;d 2 G24 by the bilinearity of the
dot product. This means that G24 
 G?

24. Since dim.G24/ D dim.G?
24/ D 12, we

conclude that G24 D G?
24. �

Lemma 3.5.22 For every integer n � 1 and all u D .u1; : : : ; un/ 2 F
n
2 and v D

.v1; : : : ; vn/ 2 F
n
2, put

u ? v D .u1v1; : : : ; unvn/ 2 F
n
2:

Then the Hamming weight w.u C v/ of u C v satisfies

w.u C v/ D w.u/C w.v/� 2w.u ? v/:

Proof As for similar results, it suffices to give the proof for n D 1 (compare with the
proof of Proposition 3.1.6(iv)). For this case, an easy calculation for all four ordered
pairs .u; v/ 2 F

2
2 verifies the desired formula. �

Lemma 3.5.23 The Hamming weight of every codeword in G24 is a multiple of 4.

Proof Every nonzero codeword in G24 is a sum of some of the vectors b0
1; : : : ;b

0
12

in the proof of Proposition 3.5.21. For a single vector b0
i, it is clear that w.b0

i/ D 8

for 1 � i � 12. For a sum b0
i C b0

j (1 � i � j � 12) of two vectors, we obtain
w.b0

i C b0
j/ D w.b0

i/C w.b0
j/ � 2w.b0

i ? b0
j/ by Lemma 3.5.22, hence

w.b0
i C b0

j/ � 2w.b0
i ? b0

j/ .mod 4/:

Now b0
i � b0

j D 0 by Proposition 3.5.21, thus w.b0
i ? b0

j/ is even, and so w.b0
i C

b0
j/ � 0 .mod 4/. We then continue by induction to get the result for any number of

summands. �

Theorem 3.5.24 The extended binary Golay code G24 is a self-dual Œ24; 12; 8	
code.
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Proof It remains to show that d.G24/ D 8. It follows from (3.18) that g23.x/ has a
root ˛ 2 F211 which is a primitive 23rd root of unity. Since g23.x/ is irreducible over
F2, all roots of g23.x/ are given by Proposition 1.4.47, that is, the roots of g23.x/ are

˛; ˛2; ˛4; ˛8; ˛16; ˛32 D ˛9; ˛18; ˛36 D ˛13; ˛26 D ˛3; ˛6; ˛12:

Then Theorem 3.3.34 with C D G23, b D 1, and d D 5 yields d.G24/ � d.G23/ � 5,
and so d.G24/ � 8 by Lemma 3.5.23. On the other hand, there are codewords in G24

of Hamming weight 8 (see the proof of Lemma 3.5.23), and so d.G24/ D 8. �
Theorem 3.5.25 The binary Golay code G23 is a perfect cyclic Œ23; 12; 7	 code.

Proof In order to determine d.G23/, we note that Theorem 3.5.24 and the rela-
tionship between G23 and G24 imply that d.G23/ � 7. On the other hand, there
are codewords in G23 of Hamming weight 7 (for instance b1 in the proof of
Proposition 3.5.21), and so d.G23/ D 7.

In order to show that G23 is perfect, we need to check equality in (3.15) with
q D 2, n D 23, jCj D jG23j D 212, and d D 7. Note that

 
23

0

!
C
 
23

1

!
C
 
23

2

!
C
 
23

3

!
D 1C 23C 253C 1771 D 2048 D 211;

and this yields the desired result. �

We introduce the ternary Golay code G11 by starting from the factorization

x11 � 1 D .x C 2/.x5 C 2x3 C x2 C 2x C 2/.x5 C x4 C 2x3 C x2 C 2/ (3.19)

in F3Œx	 into irreducible polynomials over F3 (recall that �1 D 2 in F3). The
irreducibility over F3 of the two factors of degree 5 in (3.19) can be checked in [102,
Chapter 10, Table C].

Definition 3.5.26 The ternary Golay code G11 is the cyclic code over F3 of length
11 with generator polynomial g11.x/ D x5 C 2x3 C x2 C 2x C 2 2 F3Œx	.

An equivalent code is obtained by taking the second factor of degree 5 in (3.19)
as the generator polynomial of a ternary cyclic code of length 11. Theorem 3.3.17
shows that G11 is a ternary cyclic Œ11; 6	 code. The extended ternary Golay code G12

is defined by

G12 D
n�

c1; : : : ; c11;�
11X

jD1
cj

�
2 F

12
3 W .c1; : : : ; c11/ 2 G11

o
:

Then G12 is a ternary linear Œ12; 6	 code.

Theorem 3.5.27 The extended ternary Golay code G12 is a self-dual Œ12; 6; 6	 code.
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Proof In order to show that G12 is self-dual, we proceed as in the proof of
Proposition 3.5.21. The generator polynomial g11.x/ of G11 yields a generator
matrix of G11 according to Theorem 3.3.19. For i D 1; : : : ; 6, let bi 2 F

11
3 be the ith

row vector of this generator matrix. Then bi � bj D 2 for 1 � i � j � 6. The vectors
b0

i D .bi; 1/ 2 F
12
3 , i D 1; : : : ; 6, are the row vectors of a generator matrix of G12.

These vectors satisfy b0
i � b0

j D bi � bj C 1 D 0 for 1 � i � j � 6, and we conclude
as in the proof of Proposition 3.5.21 that G12 is self-dual.

From (3.19) we see that g11.x/ has a root ˛ 2 F35 which is a primitive 11th
root of unity. Since g11.x/ is irreducible over F3, all roots of g11.x/ are given by
Proposition 1.4.47, that is, the roots of g11.x/ are

˛; ˛3; ˛9; ˛27 D ˛5; ˛15 D ˛4:

Then Theorem 3.3.34 with C D G11, b D 3, and d D 4 yields d.G12/ � d.G11/ � 4.
Since c � c D 0 for all c 2 G12 and a2 D 1 for a 2 F

�
3 , the Hamming weight of every

c 2 G12 is divisible by 3, and so d.G12/ � 6. On the other hand, since w.b0
1/ D 6

and b0
1 2 G12, we get d.G12/ D 6. �

Theorem 3.5.28 The ternary Golay code G11 is a perfect cyclic Œ11; 6; 5	 code.

Proof Theorem 3.5.27 and the relationship between G11 and G12 imply that
d.G11/ � 5. On the other hand, there are codewords in G11 of Hamming weight
5 (for instance b1 in the proof of Theorem 3.5.27), and so d.G11/ D 5.

In order to show that G11 is perfect, we need to check equality in (3.15) with
q D 3, n D 11, jCj D jG11j D 36, and d D 5. Note that

 
11

0

!
C
 
11

1

!
� 2C

 
11

2

!
� 22 D 1C 22C 220 D 243 D 35;

and this yields the desired result. �

3.5.3 Reed-Solomon Codes and BCH Codes

We consider further interesting families of linear codes. We start with Reed-
Solomon codes, which are employed, for instance, in CD players. A Reed-Solomon
code over F256 is part of the CCSDS (Consultative Committee for Space Data
Systems) standard for space communications. Reed-Solomon codes were first
constructed in different incarnations by Bush [17] and Reed and Solomon [164].

Definition 3.5.29 Let q � 3 be a prime power, let c 2 F
�
q be a primitive element of

Fq, and let b and d be integers with b � 0 and 2 � d � q � 1. Then the cyclic code
over Fq of length q � 1 with generator polynomial g.x/ D QbCd�2

jDb .x � cj/ 2 FqŒx	
is called a Reed-Solomon code over Fq and denoted by RSq.b; c; d/.
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Theorem 3.5.30 The Reed-Solomon code RSq.b; c; d/ is a cyclic Œq � 1; q � d; d	
code over Fq and an MDS code.

Proof For C D RSq.b; c; d/, Theorem 3.3.17 implies that dim.C/ D q � 1 �
deg.g.x// D q�1�.d�1/D q�d. Since a primitive element of Fq is a primitive nth
root of unity with n D q�1, we can apply Theorem 3.3.34 and obtain d.C/ � d. On
the other hand, the Singleton bound for linear codes (see Corollary 3.4.11) shows
that d.C/ � q � 1 � .q � d/ C 1 D d, and so d.C/ D d. Moreover, C is an MDS
code according to Definition 3.4.13. �

Example 3.5.31 Put q D 7, b D 1, and d D 3. Then we can take c D 3 2 F
�
7 as a

primitive element of F7. The cyclic Œ6; 4; 3	 code over F7 with generator polynomial

g.x/ D .x � 3/.x � 32/ D .x � 3/.x � 2/ D x2 C 2x C 6 2 F7Œx	

is the Reed-Solomon code RS7.1; 3; 3/.

The Reed-Solomon codes RSq.b; c; d/ with b D 1 can be represented in the
following alternative form. We recall that FqŒx	<n denotes the set of polynomials
over Fq of degree less than n.

Theorem 3.5.32 Let q � 3 be a prime power, let c 2 F
�
q be a primitive element of

Fq, and let d be an integer with 2 � d � q � 1. Then

RSq.1; c; d/ D f�f .1/; f .c/; f .c2/; : : : ; f .cq�2/
� 2 F

q�1
q W f 2 FqŒx	<q�dg: (3.20)

Proof Let C be the set on the right-hand side of (3.20). It is clear that C is a linear
code over Fq of length q � 1. Since the linear transformation

f 2 FqŒx	<q�d 7! uf WD �
f .1/; f .c/; f .c2/; : : : ; f .cq�2/

� 2 C

is bijective, we obtain dim.C/ D dim.FqŒx	<q�d/ D q � d. Furthermore, C is a
cyclic code since for every f 2 FqŒx	<q�d the cyclic shift u1f is equal to uh with
h.x/ D f .c�1x/ 2 FqŒx	<q�d .

Let v.x/ 2 FqŒx	 be the generator polynomial of C and let ��1.v.x// D v D
.v0; v1; : : : ; vq�2/ 2 F

q�1
q be the vector corresponding to v.x/ according to (3.9).

Then v D uf for some f 2 FqŒx	<q�d . Lemma 3.3.33 shows that the Mattson-
Solomon polynomial Mv.x/ of v satisfies

Mv.c
i/ D �vi D �f .ci/ for i D 0; 1; : : : ; q � 2:

Hence the polynomial Mv.x/C f .x/ of degree at most q � 2 has q � 1 distinct roots,
and so Mv.x/ D �f .x/. Consequently deg.Mv.x// � q�d�1, and Definition 3.3.32
implies that v.cj/ D 0 for j D 1; : : : ; d � 1. Therefore

Qd�1
jD1 .x � cj/ divides v.x/ in

FqŒx	. Now deg.v.x// D q �1� dim.C/ D d �1 by Theorem 3.3.17, and so v.x/ DQd�1
jD1 .x � cj/. This means that C D RSq.1; c; d/ according to Definition 3.5.29. �
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Remark 3.5.33 The fact that RSq.1; c; d/ has minimum distance d can be deduced
also from Theorem 3.5.32. For every nonzero f 2 FqŒx	<q�d , the number of its roots
is at most q � d � 1, and so with the notation in the proof of Theorem 3.5.32 we get
w.uf / � q � 1� .q � d � 1/ D d. Therefore d.RSq.1; c; d// � d. On the other hand,
the Singleton bound for linear codes shows as in the proof of Theorem 3.5.30 that
d.RSq.1; c; d// � d, and so d.RSq.1; c; d// D d.

Remark 3.5.34 The code in (3.20) can be generalized in a straightforward manner.
Let q be a prime power, let n be an integer with 2 � n � q, and let k be an integer
with 1 � k � n. Choose distinct elements c1; : : : ; cn 2 Fq and arbitrary nonzero
elements a1; : : : ; an 2 Fq. Then we introduce the linear code

C D f.a1f .c1/; : : : ; anf .cn// 2 F
n
q W f 2 FqŒx	<kg:

A code of this type is called a generalized Reed-Solomon code. It is shown as in
Remark 3.5.33 and the proof of Theorem 3.5.32 that C is a linear Œn; k; n � k C 1	

code overFq. Consequently, every generalized Reed-Solomon code is an MDS code.

Remark 3.5.35 For a Reed-Solomon code RSq.1; c; d/ as in Theorem 3.5.32, the
extended Reed-Solomon code is defined by

RSq.1; c; d/D
n�

c0; c1; : : : ; cq�2;�
q�2X

jD0
cj

�
2F

q
q W .c0; c1; : : : ; cq�2/ 2 RSq.1; c; d/

o
:

By Theorem 3.5.30 it is obvious that RSq.1; c; d/ is a linear Œq; q � d	 code over Fq.
Since

Pq�2
jD0 f .cj/ D �f .0/ for all primitive elements c of Fq and all f 2 FqŒx	<q�d ,

it follows from Theorem 3.5.32 that every codeword in RSq.1; c; d/ has the form

�
f .1/; f .c/; f .c2/; : : : ; f .cq�2/; f .0/

� 2 F
q
q for some f 2 FqŒx	<q�d :

It is then proved as in Remark 3.5.33 that RSq.1; c; d/ has minimum distance d C 1,
and so RSq.1; c; d/ is an MDS code. Alternatively, the parameters of RSq.1; c; d/
can be obtained by noting that this code is a generalized Reed-Solomon code (see
Remark 3.5.34).

Now we generalize Reed-Solomon codes in a different direction. We noted in
Sect. 3.3.5 that cyclic codes over Fq can be defined by means of roots of polynomials
over Fq. The Reed-Solomon code RSq.b; c; d/ in Definition 3.5.29 is determined via
the roots cb; cbC1; : : : ; cbCd�2 of its generator polynomial g.x/, where c 2 F

�
q is a

primitive element of Fq, that is, a primitive .q � 1/st root of unity. For an arbitrary
finite field Fq and an integer n � 2 with gcd.n; q/ D 1, let now 
 be a primitive nth
root of unity in a finite extension field of Fq (see Sect. 3.3.5). For given integers b
and d with b � 0 and 2 � d � n, we consider the cyclic code over Fq determined
by the roots 
b; 
bC1; : : : ; 
bCd�2. More precisely, for i D b; b C 1; : : : ; b C d � 2,
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let mi.x/ 2 FqŒx	 be the minimal polynomial of 
 i over Fq; then the generator
polynomial of the cyclic code is obtained from (3.12).

Definition 3.5.36 Let q be an arbitrary prime power and let n � 2 be an integer
with gcd.n; q/ D 1. Let b and d be integers with b � 0 and 2 � d � n. Then the
cyclic code over Fq of length n with generator polynomial

g.x/ D lcm.mb.x/;mbC1.x/; : : : ;mbCd�2.x// 2 FqŒx	; (3.21)

where we assume that deg.g.x// < n, is called a BCH code over Fq of designed
distance d. Here mi.x/ 2 FqŒx	 is the minimal polynomial of 
 i over Fq for b � i �
b C d � 2 and 
 is a primitive nth root of unity in a finite extension field of Fq.

The acronym BCH stems from the initials of the inventors of BCH codes, namely
Bose and Ray-Chaudhuri [13] and Hocquenghem [64]. BCH codes over Fq are very
popular in practical applications since they permit an efficient decoding algorithm
and, for every fixed q, we can achieve an arbitrarily large minimum distance by a
suitable choice of the parameters.

Theorem 3.5.37 Every BCH code C of designed distance d has minimum distance
d.C/ � d.

Proof This follows immediately from Theorem 3.3.34 and Definition 3.5.36. �

Example 3.5.38 Let q D 2, n D 15, b D 1, and d D 5. A suitable primitive 15th
root of unity is obtained by choosing a root 
 2 F16 of the irreducible polynomial
x4 C x C 1 over F2. Then with the notation of Definition 3.5.36, we get m1.x/ D
m2.x/ D m4.x/ D x4 C x C 1 2 F2Œx	 and m3.x/ D x4 C x3 C x2 C x C 1 2 F2Œx	.
Thus, the corresponding binary BCH code C is the binary cyclic code of length 15
with generator polynomial

g.x/ D m1.x/m3.x/ D x8 C x7 C x6 C x4 C 1 2 F2Œx	

obtained by (3.21). It follows from Theorem 3.3.17 that dim.C/ D 7. Furthermore,
Theorem 3.5.37 shows that d.C/ � 5. Since the codeword in C corresponding to
g.x/ according to (3.9) has Hamming weight 5, it follows that d.C/ D 5. Therefore
C is a 2-error-correcting code by Theorem 3.1.14.

Example 3.5.39 The true minimum distance of a BCH code can be larger than
its designed distance. Let q D 2, n D 23, b D 1, and d D 5. It was noted in
the proof of Theorem 3.5.24 that a primitive 23rd root of unity is obtained as a
root of the polynomial g23.x/ 2 F2Œx	 in Definition 3.5.20. Again by the proof of
Theorem 3.5.24, we have m1.x/ D m2.x/ D m3.x/ D m4.x/ D g23.x/, and so
the corresponding binary BCH code C is the binary cyclic code of length 23 with
generator polynomial g23.x/ according to (3.21). In other words, C is the binary
Golay code G23 (see Definition 3.5.20). The designed distance of C is 5, but its true
minimum distance is 7 according to Theorem 3.5.25.
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Theorem 3.5.40 The dimension k of a BCH code over Fq of length n and designed
distance d satisfies k � n � .d �1/h, where h is the multiplicative order of q modulo
n. If q D 2, d D 2t C 1 is odd, and b D 1, then k � n � th.

Proof In view of Theorem 3.3.17, it suffices to prove that the polynomial g.x/
in (3.21) satisfies deg.g.x// � .d � 1/h in the first case and deg.g.x// � th in
the second case. It was shown in the beginning of Sect. 3.3.6 that there exists a
primitive nth root of unity 
 2 Fqh . Then for every integer i � 0, the element 
 i is
also in Fqh , and so deg.mi.x// � h. It follows that

deg.g.x// �
bCd�2X

iDb

deg.mi.x// � .d � 1/h:

In the second case, with every 
 i the element 
2i is also a root of mi.x/ (see
Proposition 1.4.47), and so m2i.x/ D mi.x/. Therefore

g.x/ D lcm.m1.x/;m3.x/;m5.x/; : : : ;m2t�1.x//;

hence

deg.g.x// �
t�1X

iD0
deg.m2iC1.x// � th;

and the theorem is proved in all cases. �

Remark 3.5.41 We demonstrated in Remark 3.5.2 that for every integer r � 2, a
suitable binary Hamming code Ham.r; 2/ is cyclic with generator polynomial g.x/ 2
F2Œx	, where g.x/ is the minimal polynomial of a primitive nth root of unity over F2
with n D 2r � 1. If with q D 2 and n D 2r � 1 we put b D 1 and d D 3 in
Definition 3.5.36, then m1.x/ D m2.x/ D g.x/, and so Ham.r; 2/ can also be viewed
as a binary BCH code of length 2r � 1 and designed distance 3. For q � 3, some
Hamming codes over Fq can again be interpreted as BCH codes. Let r � 2 be an
integer with gcd.r; q � 1/ D 1 and put n D .qr � 1/=.q � 1/. Then

n D
r�1X

sD0
qs �

r�1X

sD0
1 � r .mod q � 1/;

and so gcd.n; q � 1/ D 1. We choose a primitive element ˇ of Fqr , and then 
 D
ˇq�1 2 Fqr is a primitive nth root of unity. We claim that for each choice of integers
u and w with 0 � u < w � n � 1, there is no c 2 F

�
q with 
w D c
u. For otherwise


w�u D c, hence 
.w�u/.q�1/ D cq�1 D 1, and so n must divide .w � u/.q � 1/. But
gcd.n; q�1/ D 1, which implies that n divides w�u, a contradiction. Consequently,
the r�n matrix Hr;q with columns 1; 
; 
2; : : : ; 
n�1 is of the type in Definition 3.5.5,
where by a column 
 j (with 0 � j � n � 1) we mean the transpose of the coordinate
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vector of 
 j relative to a fixed ordered basis of Fqr over Fq. The linear code over
Fq with parity-check matrix Hr;q is thus a Hamming code Ham.r; q/ over Fq. Now
we consider the BCH code C over Fq of length n with b D 1, d D 2, and primitive
nth root of unity 
 . Then C is cyclic with generator polynomial g.x/ 2 FqŒx	, where
g.x/ is the minimal polynomial of 
 over Fq. For v D .v0; v1; : : : ; vn�1/ 2 F

n
q,

the identity vH>
r;q D 0 holds if and only if the corresponding polynomial v.x/ D

v0 C v1x C � � � C vn�1xn�1 2 FqŒx	 satisfies v.
/ D 0, and this is in turn equivalent
to g.x/ dividing v.x/ in FqŒx	 by Proposition 1.4.38. Therefore Ham.r; q/ is equal to
the BCH code C. Note that for q D 2 the condition gcd.r; q � 1/ D 1 is satisfied for
all integers r � 2, and so for every r � 2 a suitable code Ham.r; 2/ can always be
interpreted as a BCH code.

3.6 A Glimpse of Advanced Topics

There are various generalizations of the concept of a cyclic code. A linear code
C 
 F

n
q is constacyclic if there exists a constant element a 2 F

�
q such that, for every

.c0; c1; : : : ; cn�1/ 2 C, the word .acn�1; c0; : : : ; cn�2/ is also in C. Cyclic codes
correspond to the special case a D 1 2 F

�
q . The analog of Theorem 3.3.11 says

that a subset C of Fn
q is a constacyclic code (for the element a 2 F

�
q ) if and only

if �.C/ is a nonzero ideal of the residue class ring FqŒx	=.xn � a/. A discussion
of constacyclic codes can be found in Aydin and Asamov [5]. For a length n � 2

and a proper divisor l of n, a linear code C 
 F
n
q is quasicyclic (of index l) if the

cyclic shift cl is in C for every c 2 C. The case l D 1 yields cyclic codes. The
family of quasicyclic codes is much larger than that of cyclic codes and contains
many good codes. A structure theory of quasicyclic codes was developed by Ling
and Solé [104] (see also [92] and [103]). An expository account of quasicyclic codes
is given in the recent book of Baldi [8, Chapter 3].

A substantial part of coding theory is devoted to finding bounds for the
parameters of codes, especially for linear codes. Besides the bounds in Sect. 3.4,
another classical bound is the Griesmer bound which says that every linear Œn; k; d	
code over Fq satisfies

n �
k�1X

iD0
dd=qie:

A proof of this bound is given in [105, Section 5.7]. Since dd=q0e D d and dd=qie �
1 for i D 1; : : : ; k � 1, the Griesmer bound implies the Singleton bound for linear
codes (see Corollary 3.4.11 for the latter bound). The linear Œ.qr �1/=.q�1/; r; qr�1	
simplex code S.r; q/ over Fq (see Definition 3.5.12) and Reed-Solomon codes over
Fq show that we can have equality in the Griesmer bound. Surveys of various other
bounds, such as the so-called linear programming bounds based on optimization
methods, are presented in [107, Chapter 17] and [161, Chapter 4].
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Another direction in which bounds in coding theory have been explored is the
asymptotic theory of codes. Here one studies the behavior of code parameters as the
length of the underlying codes tends to infinity. One may consider arbitrary codes
in this theory, but we focus on the case of linear codes. It is customary in this theory
to relate the dimension k.C/ and the minimum distance d.C/ of a linear code C to
the length n.C/ of C, and so we speak of the information rate k.C/=n.C/ and the
relative minimum distance d.C/=n.C/ of C. Obviously, the information rate and the
relative minimum distance belong to the unit interval Œ0; 1	. The basic object in the
asymptotic theory of linear codes is the following set of ordered pairs of asymptotic
relative minimum distances and asymptotic information rates. For a fixed prime
power q, let Uq be the set of points .ı;R/ in the unit square Œ0; 1	2 for which there
exists a sequence C1;C2; : : : of linear codes over Fq with n.Ci/ ! 1 as i ! 1 and

lim
i!1

d.Ci/

n.Ci/
D ı; lim

i!1
k.Ci/

n.Ci/
D R:

Then the function ˛q on Œ0; 1	 is defined by

˛q.ı/ D sup fR 2 Œ0; 1	 W .ı;R/ 2 Uqg for 0 � ı � 1:

Thus, ˛q.ı/ is the largest asymptotic information rate that can be achieved for a
given asymptotic relative minimum distance ı of linear codes over Fq of increasing
length. It can be shown that Uq is the set of points in the first quadrant of the
Euclidean plane lying under or on the graph of ˛q. Consequently, Uq is completely
determined by the function ˛q.

The study of the function ˛q is a fascinating topic in coding theory. It is known
that ˛q is a nonincreasing continuous function on Œ0; 1	 with ˛q.0/ D 1. It follows
from the Plotkin bound in Theorem 3.4.19 that ˛q.ı/ D 0 for .q � 1/=q < ı � 1,
and the continuity of ˛q yields ˛q..q � 1/=q/ D 0. The function ˛q is not known
explicitly on the open interval .0; .q � 1/=q/. The next best thing is then to give
lower bounds on ˛q.ı/ for 0 < ı < .q � 1/=q, so that for a given ı in this range
we can identify at least some asymptotic information rates that are attainable. The
classical lower bound on ˛q is the asymptotic Gilbert-Varshamov bound

˛q.ı/ � 1 � ı logq.q � 1/C ı logq ı C .1� ı/ logq.1 � ı/ for 0 < ı <
q � 1

q
;

(3.22)

where logq denotes the logarithm to the base q. A derivation of the asymptotic
Gilbert-Varshamov bound from the Gilbert-Varshamov bound in Theorem 3.4.3 is
presented for example in [147, Section 5.3]. The only way that is currently known
to improve on the bound (3.22) is by means of the sophisticated theory of algebraic-
geometry codes (see below). Standard families of elementary linear codes such as
BCH codes yield good codes of relatively short lengths, but they tend to be useless
in the asymptotic theory (compare with [107, Section 9.5]).
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We mentioned in Sect. 3.5.3 that BCH codes permit an efficient decoding algo-
rithm. In fact, the structure of BCH codes yields information about the syndromes
of received words. For instance, in a suitable interpretation the coordinates of
the syndrome satisfy a linear recurrence relation. The coefficients of this linear
recurrence relation allow the determination of the error locations. The computation
of the desired linear recurrence relation is accomplished by the Berlekamp-Massey
algorithm or by the Euclidean algorithm for polynomials over finite fields. We refer
to [102, Sections 8.2 and 8.3], [107, Section 9.6], and [161, Chapter 19] for detailed
descriptions of the decoding algorithm for BCH codes.

The binary Golay code G23 and the ternary Golay code G11 belong to the
family of quadratic-residue codes. Consider first the cyclic code G23 with generator
polynomial g23.x/ 2 F2Œx	 given in Definition 3.5.20. The roots of g23.x/ are powers
of the primitive 23rd root of unity ˛ 2 F211 and they are listed in the proof of
Theorem 3.5.24. The exponents on ˛ that yield roots of g23.x/ are, in increasing
order, given by 1; 2; 3; 4; 6; 8; 9; 12; 13; 16; 18. The crucial observation is now that
these numbers are exactly all quadratic residues modulo 23 in the least residue
system modulo 23. Similarly, for G11 with generator polynomial g11.x/ 2 F3Œx	
given in Definition 3.5.26, the exponents on the primitive 11th root of unity ˛ 2 F35

that yield roots of g11.x/ are 1; 3; 4; 5; 9 (see the proof of Theorem 3.5.27). These
numbers are exactly all quadratic residues modulo 11 in the least residue system
modulo 11. The general definition of a quadratic-residue code is now as follows.
The length of a quadratic-residue code over Fq is an odd prime number n with
gcd.n; q/ D 1. Furthermore, it is assumed that q is a quadratic residue modulo
n. Let Sn be the set of all quadratic residues modulo n in the least residue system
modulo n and let ˛ be a primitive nth root of unity in a finite extension field of Fq.
Since q is a quadratic residue modulo n, it is easily seen that the polynomial

g.x/ D
Y

s2Sn

.x � ˛s/

belongs to FqŒx	. The cyclic code over Fq of length n and with generator polynomial
g.x/ is, by definition, a quadratic-residue code. It is a cyclic Œn; .n C1/=2	 code. The
same construction works if Sn is replaced by the set Nn of all quadratic nonresidues
modulo n in the least residue system modulo n. Expositions of the theory of
quadratic-residue codes can be found in [105, Section 8.3] and [107, Chapter 16].

Another important family of special linear codes is that of Reed-Muller codes,
which is considered mainly in the binary case. Binary Reed-Muller codes are
defined for every order m � 1. A binary first-order Reed-Muller code R.1; r/
with an integer r � 2 is simply the dual code of an extended binary Hamming
code Ham.r; 2/ (see Remark 3.5.3 for the latter codes). For r D 1 we formally put
R.1; 1/ D F

2
2. Every code R.1; r/ is a linear Œ2r; r C 1	 code. Generator matrices
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of (suitable choices of) R.1; r/ can be obtained recursively. For r D 1 a generator
matrix of R.1; 1/ is

G1 D
�
1 1

0 1

�
:

If the .r C1/�2r matrix Gr over F2 is a generator matrix of R.1; r/ for some r � 1,
then a generator matrix of R.1; r C 1/ is the .r C 2/ � 2rC1 matrix

GrC1 D
�

Gr Gr

0 1

�

over F2, where 0 D .0; : : : ; 0/ 2 F
2r

2 and 1 D .1; : : : ; 1/ 2 F
2r

2 . For every r � 1, the
minimum distance of R.1; r/ is 2r�1, and in fact all codewords in R.1; r/ except 0
and 1 have Hamming weight 2r�1. A binary Reed-Muller code R.1; 5/ was used in
the Mariner space probes that were launched towards Mars in 1969 and 1971. The
binary Reed-Muller codes R.m; r/ of order m � 2 are defined by a double recursion
on m and r. For all integers m � 1 and r � m, R.m; r/ is a linear Œ2r; k; 2r�m	 code
over F2 with k D Pm

jD0
�r

j

�
. We refer to [107, Chapters 13–15] and [161, Chapter 16]

for informative accounts of Reed-Muller codes.
A far-reaching generalization of Reed-Solomon codes leads to the family of

algebraic-geometry codes. As our starting point we take the generalized Reed-
Solomon code C in Remark 3.5.34 with aj D 1 2 Fq for 1 � j � n. The jth
coordinate of a typical codeword in C is f .cj/ with cj 2 Fq. Note that f .x/ � f .cj/

is divisible by x � cj in FqŒx	, and indeed f .cj/ is the unique element b 2 Fq such
that x � cj divides f .x/ � b in FqŒx	, or equivalently �x�cj.f .x/ � b/ � 1. Here �x�cj

is the valuation of the rational function field Fq.x/ (that is, the field of fractions
of polynomials over Fq) defined as follows: �x�cj.0/ D 1, and for a nonzero
f .x/ 2 Fq.x/ we put �x�cj.f .x// D e, where e is the unique integer such that
f .x/ D .x � cj/

eh.x/ with h.x/ 2 Fq.x/ and x � cj dividing neither the numerator
nor the denominator of h.x/. This definition can be generalized by replacing the
linear polynomial x � cj by any monic irreducible polynomial p.x/ over Fq, and
this yields the valuation �p.x/ of Fq.x/. There are two conditions in the definition
of the code C, namely f .x/ 2 FqŒx	 and deg.f .x// � k � 1. The first condition
can be expressed in terms of valuations, namely �p.x/.f .x// � 0 for all valuations
�p.x/ of Fq.x/. The second requirement can be formulated in terms of the valuation
�1 of Fq.x/ that is defined as follows: �1.0/ D 1 and �1.f .x// D � deg.f .x//
for a nonzero f .x/ 2 Fq.x/. Then deg.f .x// � k � 1 is of course equivalent to
�1.f .x// � �.k � 1/. The upshot of this discussion is that the code C can be
completely described by means of the language of valuations.

Now we proceed from rational function fields to more general global function
fields and we formally define valuations. A global function field F over Fq is a finite
extension (in the sense of field theory) of the rational function field Fq.x/. The step
from Fq.x/ to F is analogous to the step from the field Q of rational numbers to an
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algebraic number field. We call Fq the full constant field of F if every element of F
which is a root of a nonzero polynomial over Fq is actually in Fq. We write F=Fq

to signify that F is a global function field with full constant field Fq. A valuation �
of F is a map � W F ! R [ f1g satisfying the following axioms: (i) �.f / D 1
if and only if f D 0; (ii) �.fh/ D �.f / C �.h/ for all f ; h 2 F; (iii) �.f C h/ �
min.�.f /; �.h// for all f ; h 2 F; (iv) the image of � contains more than the two
elements 0 and 1. It is a simple consequence of the axioms that �.c/ D 0 for all
c 2 F

�
q . Furthermore, it is easily verified that the maps �p.x/ and �1 in the previous

paragraph are indeed valuations of Fq.x/. A place of the global function field F is
an equivalence class of valuations of F, where two valuations of F are considered
equivalent if one is obtained from the other by multiplying by a positive constant.
Every place P of F contains a uniquely determined normalized valuation �P, that
is, the image of the map �P is Z [ f1g. Let PF denote the set of all places of
F. For F D Fq.x/ there is a one-to-one correspondence between PF and the set
fp.x/ 2 FqŒx	 W p.x/ monic irreducibleg [ f1g; in other words, the normalized
valuations of Fq.x/ are exactly given by �p.x/ with p.x/ 2 FqŒx	 monic irreducible
and �1.

For a global function field F=Fq and a place P 2 PF , we introduce its valuation
ring OP D ff 2 F W �P.f / � 0g, its unique maximal ideal MP D ff 2 F W
�P.f / � 1g, and its residue class field OP=MP which can be identified with a finite
extension field of Fq. The degree of this extension is called the degree of the place
P and denoted by deg.P/. If deg.P/ D 1, then P is called a rational place. For a
rational place P of F=Fq and every f 2 OP, the residue class of f modulo MP can be
identified with a unique element of Fq which is denoted by f .P/. A divisor D of F
is a formal sum

D D
X

P2PF

zP P

with coefficients zP 2 Z for all P 2 PF and all but finitely many zP D 0. Divisors of
F can be added by adding corresponding coefficients. We write D � 0 if zP � 0 for
all P 2 PF. The degree deg.D/ of D is defined by

deg.D/ D
X

P2PF

zP deg.P/:

The principal divisor div.f / of f 2 F
� is given by

div.f / D
X

P2PF

�P.f /P:

The Riemann-Roch space

L.D/ D ff 2 F� W div.f /C D � 0g [ f0g
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associated with the divisor D is a finite-dimensional vector space over Fq. Much
more information on global function fields can be found in the books [147]
and [191].

We have now assembled all the tools that are needed for the introduction of
algebraic-geometry codes. First we return once more to the special case of the code
C in Remark 3.5.34 with aj D 1 2 Fq for 1 � j � n. Let P1 be the place of
Fq.x/ containing the normalized valuation �1. Consider the divisor D D .k �1/P1
of Fq.x/. Then by an earlier discussion it is clear that f 2 FqŒx	<k if and only if
f 2 L.D/. For 1 � j � n, let Pj be the place of Fq.x/ corresponding to the monic
irreducible polynomial x � cj 2 FqŒx	. As we have seen earlier, for f 2 L.D/ we
have f � f .cj/ 2 MPj , and so f .Pj/ D f .cj/. Therefore the code C can be described as

C D f.f .P1/; : : : ; f .Pn// 2 F
n
q W f 2 L.D/g:

It is now pretty obvious how to generalize this construction. Let n be the length
of the code to be constructed and let F=Fq be a global function field with at least n
distinct rational places. Choose distinct rational places P1; : : : ;Pn of F and a divisor
D D P

P2PF
zP P of F with zPj D 0 for 1 � j � n. Then

C.P1; : : : ;PnI D/ WD f.f .P1/; : : : ; f .Pn// 2 F
n
q W f 2 L.D/g

is an algebraic-geometry code. It is easily seen to be a subspace of F
n
q. In order

to guarantee that it has a positive dimension (and thus is a linear code in the
sense of Definition 3.2.10), conditions on the divisor D are needed. Here the
genus g of F, a nonnegative integer g depending only on F, is involved. If now
g � deg.D/ < n, then C.P1; : : : ;PnI D/ has dimension k � deg.D/ C 1 � g. Its
minimum distance d satisfies d � n�deg.D/. We refer to the books [147] and [191]
for detailed treatments of algebraic-geometry codes. You may wonder why we speak
of an “algebraic-geometry code” and not of a “global-function-field code”. This
has historical reasons: the first constructions of algebraic-geometry codes used the
theory of algebraic curves over finite fields which belongs to algebraic geometry. As
a matter of fact, the theory of algebraic curves over finite fields has close links to
the theory of global function fields (for an in-depth explanation of this connection
see [147, Chapter 3]). Consequently, algebraic-geometry codes can be completely
described via global function fields.

Algebraic-geometry codes have important implications for the asymptotic theory
of codes. For every prime power q and every integer g � 0, let Nq.g/ be the
maximum number of rational places that a global function field F=Fq of genus g
can have. Furthermore, we put

A.q/ D lim sup
g!1

Nq.g/

g
:
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It is known that 0 < A.q/ � q1=2 � 1 for all q and that A.q/ D q1=2 � 1 if q is a
square (see [146, Chapter 5]). By using algebraic-geometry codes, we get a lower
bound on the function ˛q in (3.22) for all prime powers q, namely

˛q.ı/ � 1� 1

A.q/
� ı for 0 < ı <

q � 1
q

: (3.23)

A comparison of the right-hand sides of (3.22) and (3.23) shows that, at least for
squares q � 49, the lower bound in (3.23) is larger than the lower bound in (3.22)
for all ı in a subinterval of .0; .q � 1/=q/ containing the number .q � 1/=.2q � 1/.
If one considers arbitrary (hence also nonlinear) codes, then the positive constant
logq.1 C q�3/ can be added on the right-hand side of (3.23). For a proof of this
result and of the bound (3.23), we refer to [147, Section 5.3].

We already encountered character sums for finite fields in Sect. 3.3.6 on
irreducible cyclic codes. There are quite a number of other fascinating applications
of character sums to coding theory. These concern mainly BCH codes, the dual
codes of BCH codes, and the theory of perfect codes. A nice survey of applications
of character sums to coding theory is presented in [161, Chapter 13].

It is a remarkable fact that codes can be used for the construction of cryptographic
schemes. Historically the first code-based cryptographic scheme was the McEliece
cryptosystem, a public-key cryptosystem that still remains unbroken in its general
form. As usual in cryptography, we describe the scheme from the perspective of two
users Alice and Bob. Let C be a linear Œn; k; d	 code over Fq and let G be a generator
matrix of C. The matrix G is part of the private key of Bob. Next, Bob chooses
two more matrices over Fq, namely a nonsingular k � k matrix N and an n � n
matrix Q that is obtained from a nonsingular n � n diagonal matrix by arbitrary row
permutations. The matrices G, N, and Q form Bob’s private key. The public key of
Bob is the k�n matrix G0 D NGQ which may be viewed as a scrambled version of G.
The admissible plaintexts in the McEliece cryptosystem are vectors u 2 F

k
q. If Alice

wants to encrypt the plaintext u 2 F
k
q destined for Bob, she chooses a random vector

v 2 F
n
q with Hamming weight w.v/ � t WD b.d�1/=2c and uses Bob’s public key G0

to compute the ciphertext y D uG0Cv 2 F
n
q. If Bob receives the ciphertext y, he first

computes y0 D yQ�1 D uNG C vQ�1. Now w.y0 � uNG/ D w.vQ�1/ D w.v/ � t
and uNG D .uN/G is a codeword in C. Therefore y0 is like a received word that
can be corrected by the code C to produce the original word uN. From this, Bob
recovers the plaintext u D .uN/N�1.

A related public-key cryptosystem is the Niederreiter cryptosystem. Given the
linear code C as above, Bob chooses a parity-check matrix H of C as part of his
private key. Furthermore, Bob selects a matrix Q as in the McEliece cryptosystem
as well as a nonsingular .n�k/�.n�k/matrix M over Fq. The matrices H, M, and Q
form Bob’s private key, whereas his public key is the .n � k/� n matrix H0 D MHQ
which may be regarded as a scrambled version of H. The admissible plaintexts
in the Niederreiter cryptosystem are column vectors x> 2 F

n
q with Hamming

weight at most t WD b.d � 1/=2c. Alice encrypts x> by computing the ciphertext
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z> D H0x> using Bob’s public key H0. The decryption proceeds again by using
a decoding algorithm for C. With corresponding choices of code parameters, the
McEliece and Niederreiter cryptosystems have basically equivalent security levels
(see [147, Theorem 6.4.1]). The Niederreiter cryptosystem has the advantage that a
digital signature scheme (called the CFS scheme) can be derived from it. Detailed
discussions of the McEliece and Niederreiter cryptosystems and of various other
code-based cryptographic schemes can be found in the book [8] and in the survey
article [155]. It turns out that certain quasicyclic codes (see the first paragraph of
this section) are eminently suitable for code-based cryptography (see again [8]).

Exercises

3.1 Prove that a code C with minimum distance d.C/ cannot correct more than
b.d.C/� 1/=2c errors in general.

3.2 Prove that a code C with minimum distance d.C/ cannot detect more than
d.C/� 1 errors in general.

3.3 Consider the binary code C of length 4 consisting of the codewords

c1 D .0; 0; 0; 0/; c2 D .0; 0; 0; 1/; c3 D .0; 0; 1; 1/;

c4 D .1; 0; 0; 0/; c5 D .1; 0; 0; 1/; c6 D .1; 1; 0; 0/:

Suppose that the word v D .1; 1; 1; 0/ 2 F
4
2 is received. Use nearest neighbor

decoding to determine the most likely codeword in C that was sent.
3.4 Let V be a vector space over Fq. Prove that a nonempty subset W of V is a

subspace of V if and only if cu C w 2 W for all u;w 2 W and all c 2 Fq.
3.5 Prove that if V is a vector space over Fq, then the intersection of any collection

of subspaces of V is a subspace of V .
3.6 Prove that if V1 and V2 are subspaces of Fn

q, then V1 C V2 WD fv1 C v2 W v1 2
V1; v2 2 V2g is also a subspace of Fn

q.
3.7 Prove that if V1 and V2 are subspaces of Fn

q, then .V1 C V2/? D V?
1 \ V?

2 .
3.8 Prove that if V1 and V2 are subspaces of Fn

q, then .V1 \ V2/? D V?
1 C V?

2 .
3.9 Prove in detail that multiplication of matrices over finite fields is associative.

3.10 Prove in detail that A.B C C/ D AB C AC and .A C B/C D AC C BC for
matrices A, B, and C over Fq of compatible sizes.

3.11 Prove that equivalent linear codes have the same parameters n, k, and d.
3.12 Prove that if two nontrivial linear codes C1 and C2 are equivalent, then their

dual codes C?
1 and C?

2 are equivalent.
3.13 Prove that for a nontrivial linear code C, a parity-check matrix of C? is given

by a generator matrix of C.
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3.14 Consider the binary linear code C with generator matrix

G D
0

@
1 0 0 1 1 0

0 1 0 0 1 1

0 0 1 1 1 1

1

A :

(a) Determine a parity-check matrix of C.
(b) Set up a table of coset leaders and syndromes for C. (Note that here not

every coset has a unique coset leader, so for cosets with several possible
coset leaders you can make an arbitrary choice among the candidate coset
leaders.)

(c) Suppose that the received word is v D .1 1 0 0 1 0/ 2 F
6
2. Use the

syndrome decoding algorithm to determine the most likely codeword in
C that was sent.

3.15 Consider the binary linear code C with generator matrix

G D
0

@
1 1 0 0 1

0 1 1 1 0

1 0 1 0 0

1

A :

Determine the weight enumerators of C and C? and check the MacWilliams
identity.

3.16 Prove that equivalent linear codes have the same weight enumerator.
3.17 Prove that every nonzero subspace of a self-orthogonal code is self-

orthogonal.
3.18 Let C be a ternary self-orthogonal code. Prove that the Hamming weight of

each codeword in C is divisible by 3.
3.19 For an odd integer n � 3, let C be a binary self-orthogonal Œn; .n � 1/=2	

code. Prove that a generator matrix of the dual code C? is obtained from a
generator matrix of C by appending as a new row vector the all-one vector
.1; : : : ; 1/ 2 F

n
2.

3.20 Prove that if a binary linear code C has the property that the Hamming weight
of each codeword in C is divisible by 4, then C is self-orthogonal.

3.21 Find a formula for the number of cyclic codes over Fq of given length n in
terms of the canonical factorization of xn � 1 2 FqŒx	 over Fq.

3.22 For cyclic codes C1 and C2 over Fq of the same length and with generator
polynomials g1.x/ and g2.x/, respectively, prove that C1 
 C2 if and only if
g2.x/ divides g1.x/ in FqŒx	.

3.23 Let xn � 1 D g.x/h.x/ in FqŒx	 with deg.g.x// � 1 and deg.h.x// � 1. Prove
that the cyclic code over Fq with generator polynomial g.x/ is self-orthogonal
if and only if the reciprocal polynomial of h.x/ divides g.x/ in FqŒx	.
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3.24 Given the binary cyclic code C of length 6 with generator polynomial g.x/ D
x4 C x3 C x C 1 2 F2Œx	, determine a generator matrix of C and a parity-check
matrix of C.

3.25 Let C be the binary cyclic code of length 7 with generator polynomial g.x/ D
x3 C x C 1 2 F2Œx	.

(a) Determine the minimum distance of C.
(b) Decode the received word .0 1 1 1 1 1 0/ 2 F

7
2 with the code C.

3.26 Let C be the binary cyclic code of length 15with generator polynomial g.x/ D
x8 C x7 C x6 C x4 C 1 2 F2Œx	.

(a) Determine the minimum distance of C, for instance by considering a
parity-check matrix of C.

(b) Decode the received word

.1 1 0 0 1 1 1 0 1 1 0 0 0 1 0/ 2 F
15
2

with the code C by using Algorithm 3.3.49.

3.27 Prove that there is no cyclic self-dual code over Fq when q is odd.
3.28 Prove that the Mattson-Solomon polynomial of the all-one vector .1; : : : ; 1/ 2

F
n
q is the constant polynomial n, where n is considered as an element of the

prime subfield of Fq.
3.29 Let Mv.x/ be the Mattson-Solomon polynomial of v 2 F

n
q, where n � 2 and

gcd.n; q/ D 1, and let 
 be a primitive nth root of unity in a finite extension
field of Fq. Prove that for every integer t with 0 � t � n � 1, the Mattson-
Solomon polynomial of the cyclic shift vt is given by Mv.


�tx/.
3.30 Generalize the hypotheses in Theorem 3.3.34 by assuming that for some r 2 N

with gcd.r; n/ D 1 we have g.
bCir/ D 0 for 0 � i � d � 2. Show again that
the minimum distance of C is at least d.

3.31 Show by an example that a code equivalent to a cyclic code need not be cyclic.
3.32 Prove that the following is the complete list of binary MDS codes: (i) C1 D F

n
2

for n � 1; (ii) C2 D f0; 1g with 0 2 F
n
2 and the all-one vector 1 D .1; : : : ; 1/ 2

F
n
2 for n � 1; (iii) every code C3 equivalent to C?

2 for n � 2. (Hint: consider
generator matrices in standard form.)

3.33 Prove the following version of the Gilbert-Varshamov bound: if n, k, and d are
integers with 1 � k � n, 1 � d � n, and

d�1X

iD0

 
n

i

!
.q � 1/i < qn�kC1;

then there exists a linear Œn; k; d	 code over Fq.
3.34 Decode the received word .1 1 0 0 0 0 1/ 2 F

7
2 with the Hamming code

Ham.3; 2/.



3.6 A Glimpse of Advanced Topics 183

3.35 Prove that G?
23 
 G23, or in other words that G?

23 is self-orthogonal. (Hint:
consider the generator polynomials of these cyclic codes.)

3.36 Prove that G?
11 
 G11, or in other words that G?

11 is self-orthogonal. (Hint:
consider the generator polynomials of these cyclic codes.)

3.37 Let ˛ 2 F16 be a root of x4 C x C 1 2 F2Œx	. Find the minimal polynomial of
˛11 over F2.

3.38 Determine the generator polynomial of a Reed-Solomon code over F16 of
dimension 11 and find a parity-check matrix of such a code.

3.39 Prove that the dual code of a Reed-Solomon code is again a Reed-Solomon
code.

3.40 Determine the generator polynomials of all binary BCH codes of length 31
and designed distance 5.



Chapter 4
Quasi-Monte Carlo Methods

Good lattice points and nets
are so much better bets

in tough numerical integration
since they beat stochastic simulation

hands down and in straight sets.

4.1 Numerical Integration and Uniform Distribution

4.1.1 The One-Dimensional Case

There are many scientific as well as real-world applications where we run into the
problem of computing a definite integral. In calculus courses you are taught that
a definite integral

R b
a f .u/du is evaluated by the fundamental theorem of integral

calculus which says that

Z b

a
f .u/du D F.b/� F.a/; (4.1)

where the function F is an antiderivative of the integrand f . What you are often not
told is that there are many cases where F cannot be expressed in finite terms by
means of elementary functions, and in such situations the formula (4.1) is useless
for computational purposes. Examples are

R 1
0

e�u2du and
R 1
0
.sin u/.u C 1/�1du.

We then have to settle for numerical approximations of
R b

a f .u/du. The process of
approximately computing definite integrals with a sufficient degree of precision is
called numerical integration.

We start with the one-dimensional case, that is, the case considered in (4.1) where
the integrand f is a real-valued function of a single variable u. One-dimensional
numerical integration is an area of numerical analysis with a long tradition, and
indeed some very effective one-dimensional numerical integration techniques are
known for several centuries. Classical numerical integration rules, such as the
midpoint rule, the trapezoidal rule, and Simpson’s rule, are based on approximations
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of the form

Z b

a
f .u/du �

NX

nD1
wnf .xn/;

where the integration nodes (or simply nodes) x1; : : : ; xN are points lying in the
integration domain Œa; b	 and the coefficients w1; : : : ;wN are “weights” associated
with these points. It is usually assumed that

PN
nD1 wn D b � a since this condition

guarantees that at least constant functions f are integrated correctly by the numerical
integration scheme. Particularly simple and attractive rules are equal-weight rules
where wn D .b � a/=N for 1 � n � N. We assume in the following that the
integration domain is the unit interval Œ0; 1	; this is achieved by a simple change of
variable.

An equal-weight rule for the interval Œ0; 1	 has the form

Z 1

0

f .u/du � 1

N

NX

nD1
f .xn/ (4.2)

with nodes x1; : : : ; xN 2 Œ0; 1	. A prominent equal-weight rule is the already
mentioned midpoint rule which is given by

Z 1

0

f .u/du � 1

N

NX

nD1
f
�2n � 1

2N

�
: (4.3)

The name stems from a way of interpreting this rule, namely we split up Œ0; 1	 into
the N subintervals Œ0; 1=N	; Œ1=N; 2=N	; : : : ; Œ.N � 1/=N; 1	, and then we take the
midpoint of each subinterval as a node (Fig. 4.1).

It is essential for practical computations that every numerical integration rule be
accompanied by an upper bound on the error that is committed by the approximation
to the given definite integral. As a simple illustration, we present an error bound for
the midpoint rule under a smoothness condition on the integrand.

Proposition 4.1.1 Let f be a real-valued function on Œ0; 1	 which has a continuous
second derivative f 00 on Œ0; 1	. Then for every integer N � 1,

ˇ̌
ˇ̌
ˇ

Z 1

0

f .u/du � 1

N

NX

nD1
f
�2n � 1

2N

�
ˇ̌
ˇ̌
ˇ � 1

24N2
max
0�u�1 jf 00.u/j: (4.4)

Proof We write

Z 1

0

f .u/du � 1

N

NX

nD1
f
�2n � 1
2N

� D
NX

nD1

Z n=N

.n�1/=N

�
f .u/� f

�2n � 1

2N

��
du: (4.5)
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Fig. 4.1 The midpoint rule

Since
R n=N
.n�1/=N.u � 2n�1

2N /du D 0 for 1 � n � N, we obtain

Z n=N

.n�1/=N

�
f .u/ � f

�2n � 1

2N

��
du D

Z n=N

.n�1/=N

�
f .u/� f

�2n � 1

2N

� � f 0�2n � 1

2N

�

��u � 2n � 1

2N

��
du;

and so
ˇ̌
ˇ̌
ˇ

Z n=N

.n�1/=N

�
f .u/� f

�2n � 1

2N

��
du

ˇ̌
ˇ̌
ˇ �

Z n=N

.n�1/=N

ˇ̌
ˇf .u/� f

�2n � 1

2N

� � f 0�2n � 1

2N

�

��u � 2n � 1
2N

�ˇ̌
ˇdu:

By Taylor’s theorem,

ˇ̌
ˇf .u/� f

�2n � 1

2N

�� f 0�2n � 1

2N

��
u� 2n � 1

2N

�ˇ̌
ˇ � m

2

�
u� 2n � 1

2N

�2
for 0 � u � 1

with m D max0�u�1 jf 00.u/j. It follows that

ˇ̌
ˇ̌
ˇ

Z n=N

.n�1/=N

�
f .u/� f

�2n � 1
2N

��
du

ˇ̌
ˇ̌
ˇ � m

2

Z n=N

.n�1/=N

�
u � 2n � 1

2N

�2 D m

24N3
:
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Summing over n D 1; : : : ;N and taking into account (4.5), we arrive at the desired
bound. �

Remark 4.1.2 The error bound in (4.4) is in general best possible, in the sense that
we can have equality in (4.4). Just take f .u/ D u2 on Œ0; 1	, then a straightforward
calculation shows that

Z 1

0

f .u/du � 1

N

NX

nD1
f
�2n � 1
2N

� D 1

12N2
;

which agrees with the right-hand side of (4.4).

For a fixed integrand f satisfying the smoothness condition in Proposition 4.1.1,
the error bound in (4.4) becomes smaller as the number N of nodes increases.
Moreover, the error bound tends to 0 as N ! 1. We express the latter fact by saying
that the midpoint rule converges. Any reasonable numerical integration scheme
should have this property. We will not pursue classical numerical integration rules
any further since we want to focus on the applications of number theory to numerical
integration. We refer to the standard monograph by Davis and Rabinowitz [34] and
to the more recent book by Brass and Petras [14] for a detailed coverage of classical
numerical integration rules.

Now we return to the general equal-weight rule (4.2). We try to obtain a
convergent numerical integration scheme by constructing a sequence x1; x2; : : : of
points in Œ0; 1	 such that

lim
N!1

1

N

NX

nD1
f .xn/ D

Z 1

0

f .u/du

for a given integrand f . In fact, there are sequences x1; x2; : : : for which this limit
relation holds not only for a single integrand f , but for a broad family of integrands.
Such sequences are called “uniformly distributed” in number theory. For the formal
definition of a uniformly distributed sequence, we work with the family of Riemann-
integrable functions. It is customary to consider sequences of points from the
half-open interval Œ0; 1/ since all classical constructions of uniformly distributed
sequences produce points from this interval.

Definition 4.1.3 A sequence x1; x2; : : : of points in the interval Œ0; 1/ is uniformly
distributed (in Œ0; 1/) if

lim
N!1

1

N

NX

nD1
f .xn/ D

Z 1

0

f .u/du (4.6)

for every real-valued Riemann-integrable function f on Œ0; 1	.
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Remark 4.1.4 If you know Lebesgue integrals, then you will understand that the
limit relation (4.6) cannot hold for all Lebesgue-integrable functions on Œ0; 1	. Let
x1; x2; : : : be any sequence of points in Œ0; 1/ and consider the set S D fx1; x2; : : :g �
Œ0; 1	. Then with f being the characteristic function of S, that is, f .u/ D 1 if u 2 S
and f .u/ D 0 if u 2 Œ0; 1	 n S, it is trivial that the left-hand side of (4.6) is equal to
1, whereas the right-hand side of (4.6) is equal to 0.

There are various other characterizations of uniformly distributed sequences in
Œ0; 1/ that use different families of functions for which we require the validity of
the limit relation (4.6). The following approximation principle is convenient in this
context.

Lemma 4.1.5 Let x1; x2; : : : be a sequence of points in Œ0; 1/ and let G be a
nonempty family of real-valued Riemann-integrable functions on Œ0; 1	 such that

lim
N!1

1

N

NX

nD1
g.xn/ D

Z 1

0

g.u/du for all g 2 G:

Let f be a real-valued Riemann-integrable function on Œ0; 1	 such that for every
" > 0 there exist functions g1;"; g2;" 2 G with g1;".u/ � f .u/ � g2;".u/ for all
u 2 Œ0; 1	 and

Z 1

0

.g2;".u/� g1;".u//du � ":

Then

lim
N!1

1

N

NX

nD1
f .xn/ D

Z 1

0

f .u/du:

Proof For every " > 0 we obtain the chain of inequalities and identities

Z 1

0

f .u/du � " �
Z 1

0

g1;".u/du D lim
N!1

1

N

NX

nD1
g1;".xn/

� lim inf
N!1

1

N

NX

nD1
f .xn/ � lim sup

N!1
1

N

NX

nD1
f .xn/

� lim
N!1

1

N

NX

nD1
g2;".xn/ D

Z 1

0

g2;".u/du �
Z 1

0

f .u/du C ":

Letting " ! 0C, we get the desired result. �
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For a subinterval J of Œ0; 1	, we write cJ for the characteristic function of J, that
is, cJ.u/ D 1 if u 2 J and cJ.u/ D 0 if u 2 Œ0; 1	 n J.

Theorem 4.1.6 A sequence x1; x2; : : : of points in Œ0; 1/ is uniformly distributed if
and only if

lim
N!1

1

N

NX

nD1
cJ.xn/ D �.J/ (4.7)

for every subinterval J of Œ0; 1	, where �.J/ is the length of the interval J.

Proof The necessity is trivial by (4.6) since cJ is Riemann-integrable and

Z 1

0

cJ.u/du D �.J/:

In order to prove the sufficiency, we note that, by linearity, the limit relation (4.6)
holds for all real-valued step functions on Œ0; 1	 (that is, for all finite R-linear
combinations of characteristic functions of subintervals of Œ0; 1	). Let G be the
family of all real-valued step functions on Œ0; 1	. Then a given real-valued Riemann-
integrable function f on Œ0; 1	 satisfies the condition in Lemma 4.1.5 by the definition
of the Riemann integral, and so an application of this lemma completes the proof.

�

Theorem 4.1.7 A sequence x1; x2; : : : of points in Œ0; 1/ is uniformly distributed if
and only if

lim
N!1

1

N

NX

nD1
f .xn/ D

Z 1

0

f .u/du

for every real-valued continuous function f on Œ0; 1	.

Proof The necessity is trivial since every real-valued continuous function on Œ0; 1	
is Riemann-integrable. In order to prove the sufficiency, we show (4.7) for every
subinterval J of Œ0; 1	. We assume in fact that J D Œa; b	 with 0 < a < b < 1;
the remaining case is treated with obvious modifications. Let G be the family of all
real-valued continuous functions on Œ0; 1	. In view of Lemma 4.1.5, it suffices to
construct, for 0 < " < min.2a; 2� 2b; b � a/, two functions g1;"; g2;" 2 G such that
the condition in Lemma 4.1.5 is satisfied for f D cJ. Let g1;" be the piecewise linear
continuous function which agrees with cJ on the set Œ0; a/[ŒaC"=2; b�"=2	[.b; 1	;
on the interval Œa; aC"=2	 the graph of g1;" is the line segment connecting the points
.a; 0/ and .a C "=2; 1/ in R

2; on the interval Œb � "=2; b	 the graph of g1;" is the line
segment connecting the points .b�"=2; 1/ and .b; 0/ in R

2. Let g2;" be the piecewise
linear continuous function which agrees with cJ on the set Œ0; a�"=2/[ Œa; b	[.bC
"=2; 1	; on the interval Œa � "=2; a	 the graph of g2;" is the line segment connecting
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Fig. 4.2 The graphs of g1;" and g2;"

the points .a � "=2; 0/ and .a; 1/ in R
2; on the interval Œb; b C "=2	 the graph of g2;"

is the line segment connecting the points .b; 1/ and .b C"=2; 0/ in R
2 (see Fig. 4.2).

Then g1;".u/ � cJ.u/ � g2;".u/ for all u 2 Œ0; 1	 and

Z 1

0

.g2;".u/� g1;".u//du D ":

Thus, we have obtained suitable functions g1;"; g2;" 2 G. �

In number theory one often arrives at the situation where a sequence of points
in Œ0; 1/ is obtained by taking fractional parts in a sequence of real numbers. The
fractional part fxg of a real number x is defined by fxg D x � bxc. The following
definition refers to this situation.

Definition 4.1.8 A sequence x1; x2; : : : of real numbers is uniformly distributed
modulo 1 if the sequence fx1g; fx2g; : : : of fractional parts is uniformly distributed
in Œ0; 1/.

There is a famous criterion for uniform distribution modulo 1, the Weyl criterion,
which goes back all the way to the celebrated paper of Weyl [200] from 1916 in
which he introduced the general theory of uniformly distributed sequences. Her-
mann Weyl (1885–1955) later moved on to even bigger things, doing fundamental
work in functional analysis, differential geometry, and mathematical physics.
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Theorem 4.1.9 (Weyl Criterion) The sequence x1; x2; : : : of real numbers is
uniformly distributed modulo 1 if and only if

lim
N!1

1

N

NX

nD1
e2� ihxn D 0 for all h 2 N: (4.8)

Proof Let the sequence x1; x2; : : : be uniformly distributed modulo 1 and consider
the function f .u/ D cos 2�hu on R for a fixed h 2 N. Then by Definition 4.1.3,

lim
N!1

1

N

NX

nD1
cos 2�hxn D lim

N!1
1

N

NX

nD1
cos 2�hfxng D

Z 1

0

cos 2�hu du D 0:

Similarly, we obtain

lim
N!1

1

N

NX

nD1
sin 2�hxn D 0;

and the fundamental identity e2� ihu D cos 2�hu C i sin 2�hu for all u 2 R yields
the limit relation in (4.8).

Conversely, suppose that the sequence x1; x2; : : : satisfies (4.8). Since e�2� ihu is
the complex conjugate of e2� ihu, the limit relation in (4.8) holds also for all negative
integers h. Let " > 0 be given and let f be any one of the two functions g1;" and g2;"
in the proof of Theorem 4.1.7. Then f .0/ D f .1/ D 0, and so f can be extended
to a real-valued continuous function on R with period 1. Hence by the Weierstrass
approximation theorem, for every ı > 0 there exists a trigonometric polynomial
‰ı.u/, that is, a finite linear combination of functions of the type e2� ihu, h 2 Z, with
complex coefficients, such that

max
u2R jf .u/�‰ı.u/j � ı: (4.9)

Now for every positive integer N,

ˇ̌
ˇ
Z 1

0

f .u/du � 1

N

NX

nD1
f .xn/

ˇ̌
ˇ �

ˇ̌
ˇ
Z 1

0

.f .u/�‰ı.u// du
ˇ̌
ˇ

C
ˇ̌
ˇ
Z 1

0

‰ı.u/du � 1

N

NX

nD1
‰ı.xn/

ˇ̌
ˇ

C
ˇ̌
ˇ
1

N

NX

nD1
.‰ı.xn/ � f .xn//

ˇ̌
ˇ:
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Because of (4.9), the first term and the third term on the right-hand side are both
� ı for all N. In view of (4.8), the second term on the right-hand side is � ı for
sufficiently large N. Therefore

lim
N!1

1

N

NX

nD1
f .fxng/ D lim

N!1
1

N

NX

nD1
f .xn/ D

Z 1

0

f .u/du:

Then the proof of Theorem 4.1.7 shows that the sequence fx1g; fx2g; : : : of fractional
parts is uniformly distributed in Œ0; 1/, and so the sequence x1; x2; : : : is uniformly
distributed modulo 1. If you don’t like this proof via the Weierstrass approximation
theorem, for instance because you have not seen this theorem before, then you can
read the alternative proof in the last part of the proof of Theorem 4.1.14. �

The Weyl criterion affords an elegant way of proving that the sequence of
multiples of an irrational number is uniformly distributed modulo 1. In fact, the
following simple characterization can be established.

Theorem 4.1.10 Let ˛ be a real number. Then the sequence ˛; 2˛; : : : of multiples
of ˛ is uniformly distributed modulo 1 if and only if ˛ is irrational.

Proof Let ˛ be rational, say ˛ D a=b with a; b 2 Z and b � 1. Then none of the
fractional parts xn D fn˛g with n 2 N can be in the open interval J D .0; 1=b/, and
so (4.7) is not satisfied for J. Therefore the sequence x1; x2; : : : is not uniformly
distributed in Œ0; 1/, and so the sequence ˛; 2˛; : : : is not uniformly distributed
modulo 1.

Now let ˛ be irrational and let h 2 N. Then e2� ih˛ ¤ 1 and by the summation
formula for geometric sums we get

ˇ̌
ˇ

NX

nD1
e2� ihn˛

ˇ̌
ˇ D

ˇ̌
ˇ

N�1X

nD0

�
e2� ih˛�n

ˇ̌
ˇ D

ˇ̌
e2� ihN˛ � 1

ˇ̌
ˇ̌
e2� ih˛ � 1

ˇ̌ � 2ˇ̌
e2� ih˛ � 1

ˇ̌ :

It follows that

lim
N!1

1

N

NX

nD1
e2� ihn˛ D 0:

Therefore the sequence ˛; 2˛; : : : is uniformly distributed modulo 1 by the Weyl
criterion. �

The sequence f˛g; f2˛g; : : : of fractional parts of the multiples of an irrational
number ˛ is called a Kronecker sequence and was historically the first example of
a uniformly distributed sequence. Kronecker sequences are named after Leopold
Kronecker (1823–1891) who proved the first nontrivial result on them, namely that
every Kronecker sequence is dense in the interval Œ0; 1	 (that is, the points of a given
Kronecker sequence come arbitrarily close to any point of Œ0; 1	). The property of
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a Kronecker sequence of being uniformly distributed is of course stronger than that
of being dense in Œ0; 1	. Kronecker is famous also for the saying: “God made the
integers, all else is the work of man.”

Now that we know examples of uniformly distributed sequences, we can employ
them in (4.6) to obtain convergent numerical integration schemes. In fact, we will
see many more examples of uniformly distributed sequences in this chapter. The
question of error bounds for the numerical integration scheme (4.6) leads to the
concept of discrepancy which we introduce below.

As a matter of fact, there are two common notions of discrepancy, the star
discrepancy D�

N.P/ and the (extreme) discrepancy DN.P/ of a point set P con-
sisting of N points in Œ0; 1/, and an easy connection exists between the two (see
Proposition 4.1.12 below). The terminology point set designates what you would
expect, namely a (finite) set of points, but there is the additional provision that the
points can occur with a certain (finite) multiplicity. For instance, in the point set
consisting of the four points 0; 1

2
; 1
2
; 3
4
, the points 0 and 3

4
occur with multiplicity

1 and the point 1
2

occurs with multiplicity 2. The corresponding set (as opposed
to point set) is f0; 1

2
; 3
4
g. The order in which the points of a point set are listed is

irrelevant.
It is convenient to introduce a simple notation for the sum occurring in (4.7);

namely, for a point set P consisting of x1; : : : ; xN 2 Œ0; 1/ and for a subinterval J of
Œ0; 1	, we write

A.JIP/ D
NX

nD1
cJ.xn/:

In words, A.JIP/ is the number of integers n with 1 � n � N such that xn 2 J. Note
that the multiplicities of points in P are taken into account when computing the
counting function A.JIP/. For instance, for the point set P consisting of 0; 1

2
; 1
2
; 3
4

as above and for J D Œ0; 3
4
/, the point 0 with multiplicity 1 and the point 1

2
with

multiplicity 2 lie in J, and so A.JIP/ D 1C 2 D 3.

Definition 4.1.11 Let P be the point set consisting of the N points x1; : : : ; xN 2
Œ0; 1/. Then the star discrepancy D�

N.P/ of P is defined by

D�
N.P/ D sup

0<u�1

ˇ̌
ˇ
A.Œ0; u/IP/

N
� u

ˇ̌
ˇ

and the (extreme) discrepancy DN.P/ of P is defined by

DN.P/ D sup
0�u<v�1

ˇ̌
ˇ
A.Œu; v/IP/

N
� .v � u/

ˇ̌
ˇ:

The idea of the star discrepancy and of the (extreme) discrepancy can be com-
prehended in terms of the limit relation (4.7), since for finite N these discrepancies
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tell us how close we are to the limit on the right-hand side of (4.7) in the worst case.
It is trivial that always D�

N.P/ � 1 and DN.P/ � 1.

Proposition 4.1.12 Every point set P consisting of N points in Œ0; 1/ satisfies

D�
N.P/ � DN.P/ � 2D�

N.P/:

Proof The first inequality follows immediately from the definitions. Next we note
that A.Œu; v/IP/ D A.Œ0; v/IP/� A.Œ0; u/IP/, where 0 � u < v � 1, and therefore

ˇ̌
ˇ
A.Œu; v/IP/

N
� .v � u/

ˇ̌
ˇ �

ˇ̌
ˇ
A.Œ0; v/IP/

N
� v

ˇ̌
ˇC

ˇ̌
ˇ
A.Œ0; u/IP/

N
� u

ˇ̌
ˇ:

Taking suprema yields the second inequality in the proposition. �

In practice one is often interested in the order of magnitude of D�
N.P/ and DN.P/

as a function of N. Proposition 4.1.12 shows that from this perspective it does not
matter which of the two discrepancies we consider.

Probably the most important result on the discrepancy in terms of the number
of applications it allows is the following bound on the discrepancy by means of
exponential sums. This bound can be viewed as a quantitative version of the Weyl
criterion in Theorem 4.1.9.

Theorem 4.1.13 (Erdős-Turán Inequality) If P is the point set consisting of the
N points x1; : : : ; xN 2 Œ0; 1/, then

DN.P/ � 6

H C 1
C 4

�

HX

hD1

�1
h

� 1

H C 1

�ˇ̌
ˇ
1

N

NX

nD1
e2� ihxn

ˇ̌
ˇ

for all positive integers H.

Proof We introduce the function

R.u/ D A.Œ0; u/IP/
N

� u D 1

N

NX

nD1
cŒ0;u/.xn/ � u for 0 � u � 1:

Since R.0/ D 0 D R.1/, we can extend this function to R with period 1. Next we
put

r.u/ D R.u/�
Z 1

0

R.u/du for all u 2 R

and we note that

Z 1

0

r.u/du D 0: (4.10)
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A straightforward computation shows that for every nonzero integer h,

Z 1

0

r.u/e2� ihudu D 1

N

NX

nD1

Z 1

0

cŒ0;u/.xn/e
2� ihudu �

Z 1

0

ue2� ihudu

D 1

N

NX

nD1

Z 1

xn

e2� ihudu � 1

2�ih

D 1

N

NX

nD1

1

2�ih
.1 � e2� ihxn/� 1

2�ih
D � Sh

2�ih

with Sh D .1=N/
PN

nD1 e2� ihxn .
Fix a positive integer H and let a be a real number to be determined later.

By forming an appropriate linear combination of the last displayed identity and
using (4.10), we obtain

�
HX�

hD�H

.H C 1 � jhj/e�2� iha Sh

2�ih
D
Z 1

0

r.u/
� HX

hD�H

.H C 1 � jhj/e2� ih.u�a/
�

du

D
Z 1�a

�a
r.u C a/

� HX

hD�H

.H C 1 � jhj/e2� ihu
�

du;

where the asterisk indicates that h D 0 is deleted from the range of summation.
Because of the periodicity of the integrand, the last integral may also be taken over
the interval Œ� 1

2
; 1
2
	, and so we can write

Z 1=2

�1=2
r.u C a/

� HX

hD�H

.H C 1 � jhj/e2� ihu
�

du D �
HX�

hD�H

.H C 1 � jhj/e�2� ihaSh

2�ih
:

(4.11)

Elementary trigonometry shows that

e�� iHu
HX

hD0
e2� ihu D sin.H C 1/�u

sin�u
;

where the right-hand side is interpreted as H C 1 if u 2 Z. By squaring this identity,
we obtain

sin2.H C 1/�u

sin2 �u
D e�2� iHu

� HX

hD0
e2� ihu

�2 D
HX

hD�H

.H C 1 � jhj/e2� ihu: (4.12)
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Now we insert this formula into (4.11) and apply the triangle inequality to get

ˇ̌
ˇ̌
ˇ

Z 1=2

�1=2
r.u C a/

sin2.H C 1/�u

sin2 �u
du

ˇ̌
ˇ̌
ˇ � 1

2�

HX�

hD�H

�H C 1

jhj � 1
�
jShj:

We observe that jS�hj D jShj for every h 2 N, and so

ˇ̌
ˇ̌
ˇ

Z 1=2

�1=2
r.u C a/

sin2.H C 1/�u

sin2 �u
du

ˇ̌
ˇ̌
ˇ � 1

�

HX

hD1

�H C 1

h
� 1

�
jShj: (4.13)

Next we put

M D sup
u2R

jr.u/j:

The function r is continuous from the left, has only positive jumps, and is piecewise
linear with slope �1. This implies that either r.b/ D �M or r.b C 0/ D M for some
b 2 R. We treat only the second alternative, the first one being completely similar.
For b < t � b C M, the properties of the function r yield

r.t/ D M C r.t/ � r.b C 0/ � M C b � t:

Now we choose a D b C 1
2
M (see Fig. 4.3). Then the inequality above with

t D b C 1
2
M C u implies that

r.u C a/ � 1

2
M � u for juj < 1

2
M:

Fig. 4.3 The graph of r

�
a = b + 1

2M b + Mb

r

M
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This shows in particular that M � 1. Consequently, we get

Z 1=2

�1=2
r.u C a/

sin2.H C 1/�u

sin2 �u
du

D
 Z M=2

�M=2
C
Z �M=2

�1=2
C
Z 1=2

M=2

!
r.u C a/

sin2.H C 1/�u

sin2 �u
du

�
Z M=2

�M=2

�
1

2
M � u

�
sin2.H C 1/�u

sin2 �u
du

�M
Z �M=2

�1=2
sin2.H C 1/�u

sin2 �u
du � M

Z 1=2

M=2

sin2.H C 1/�u

sin2 �u
du:

Now we use the evenness of the function .sin2.H C 1/�u/=.sin2 �u/ to obtain

Z 1=2

�1=2
r.u C a/

sin2.H C 1/�u

sin2 �u
du

� M
Z M=2

0

sin2.H C 1/�u

sin2 �u
du � 2M

Z 1=2

M=2

sin2.H C 1/�u

sin2 �u
du

D M
Z 1=2

0

sin2.H C 1/�u

sin2 �u
du � 3M

Z 1=2

M=2

sin2.H C 1/�u

sin2 �u
du:

By applying again the evenness of the function .sin2.H C 1/�u/=.sin2 �u/ as well
as (4.12), we get

Z 1=2

0

sin2.H C 1/�u

sin2 �u
du D 1

2

Z 1=2

�1=2
sin2.H C 1/�u

sin2 �u
du D H C 1

2
;

and so

Z 1=2

�1=2
r.u C a/

sin2.H C 1/�u

sin2 �u
du � H C 1

2
M � 3M

Z 1=2

M=2

du

sin2 �u
:

Now sin�u � 2u for 0 � u � 1
2
, and this yields

Z 1=2

M=2

du

sin2 �u
�
Z 1=2

M=2

du

4u2
D 1

2M
� 1

2
:
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Therefore

Z 1=2

�1=2
r.u C a/

sin2.H C 1/�u

sin2 �u
du � H C 1

2
M � 3

2
:

By combining this with (4.13), we arrive at the bound

M � 3

H C 1
C 2

�

HX

hD1

�1
h

� 1

H C 1

�
jShj:

We note that

DN.P/ D sup
u;v2R

jR.v/� R.u/j D sup
u;v2R

jr.v/ � r.u/j � 2M;

and this proves the Erdős-Turán inequality. �

For a sequence S of real numbers x1; x2; : : :, we will now often write S D
.xn/

1
nD1. If the xn are in Œ0; 1/, then for every positive integer N let D�

N.S/,
respectively DN.S/, be the star discrepancy, respectively discrepancy, of the first
N terms x1; : : : ; xN of S. There is a simple relationship between the uniform
distribution of S and the asymptotic behavior of these discrepancies.

Theorem 4.1.14 The following properties of a sequence S of points in Œ0; 1/ are
equivalent:

(i) S is uniformly distributed in Œ0; 1/;
(ii) limN!1 D�

N.S/ D 0;
(iii) limN!1 DN.S/ D 0.

Proof The properties (ii) and (iii) are equivalent since D�
N.S/ � DN.S/ � 2D�

N.S/
for every N 2 N by Proposition 4.1.12. Thus, it remains to show that (i) and (iii) are
equivalent. The fact that (iii) implies (i) is trivial in view of Theorem 4.1.6. Finally,
suppose that (i) is satisfied, so that S D .xn/

1
nD1 is uniformly distributed in Œ0; 1/.

Then Theorem 4.1.9 yields

lim
N!1

1

N

NX

nD1
e2� ihxn D 0 for all h 2 N:

Now we fix an integer H � 1 and we let N ! 1 in the Erdős-Turán inequality (see
Theorem 4.1.13). This yields

0 � lim inf
N!1 DN.S/ � lim sup

N!1
DN.S/ � 6

H C 1
:

Since H can be arbitrarily large, we infer that limN!1 DN.S/ D 0. �
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We continue with some simple observations about the star discrepancy, which is
the main tool for obtaining error bounds in (4.2).

Lemma 4.1.15 Let P1 be the point set consisting of x1; : : : ; xN 2 Œ0; 1/ and let P2
be the point set consisting of y1; : : : ; yN 2 Œ0; 1/. Suppose that for some " > 0 the
inequality jxn � ynj � " holds for 1 � n � N. Then

ˇ̌
D�

N.P1/� D�
N.P2/

ˇ̌ � ":

Proof Consider any interval J D Œ0; u/ 
 Œ0; 1/. Whenever yn 2 J, then xn 2 J1 WD
Œ0;min.u C "; 1//; hence

A.JIP2/
N

� �.J/ � A.J1IP1/
N

� �.J1/C " � D�
N.P1/C ":

Whenever xn 2 J2 WD Œ0;max.u � "; 0//, then yn 2 J; hence

A.JIP2/
N

� �.J/ � A.J2IP1/
N

� �.J2/ � " � �D�
N.P1/� ":

Thus D�
N.P2/ � D�

N.P1/ C ". By interchanging the roles of P1 and P2, we obtain
D�

N.P1/ � D�
N.P2/C ", and so

ˇ̌
D�

N.P1/� D�
N.P2/

ˇ̌ � ". �

The following is a nice explicit formula for the star discrepancy. Since the star
discrepancy of a point set does not depend on the order in which the points of the
point set are listed, we can arrange them in nondecreasing order.

Proposition 4.1.16 Let P be the point set consisting of x1; : : : ; xN 2 Œ0; 1/ and
suppose that x1 � x2 � � � � � xN. Then

D�
N.P/ D 1

2N
C max

1�n�N

ˇ̌
ˇxn � 2n � 1

2N

ˇ̌
ˇ:

Proof Since D�
N.P/ is a continuous function of x1; : : : ; xN by Lemma 4.1.15, we

can assume that 0 < x1 < x2 < � � � < xN < 1. Put x0 D 0 and xNC1 D 1. Then
simple considerations show that

D�
N.P/ D max

0�n�N
sup

xn<u�xnC1

ˇ̌
ˇ
A.Œ0; u/IP/

N
� u

ˇ̌
ˇ

D max
0�n�N

sup
xn<u�xnC1

ˇ̌
ˇ

n

N
� u

ˇ̌
ˇ

D max
0�n�N

max
�ˇ̌
ˇ

n

N
� xn

ˇ̌
ˇ;
ˇ̌
ˇ

n

N
� xnC1

ˇ̌
ˇ
�

D max
1�n�N

max
�ˇ̌
ˇ

n

N
� xn

ˇ̌
ˇ;
ˇ̌
ˇ
n � 1

N
� xn

ˇ̌
ˇ
�
:
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Now

max
�ˇ̌
ˇ

n

N
� xn

ˇ̌
ˇ;
ˇ̌
ˇ
n � 1

N
� xn

ˇ̌
ˇ
�

D 1

2N
C
ˇ̌
ˇxn � 2n � 1

2N

ˇ̌
ˇ for 1 � n � N;

and this yields the desired formula for D�
N.P/. �

Corollary 4.1.17 Every point set P consisting of N points in Œ0; 1/ satisfies

D�
N.P/ � 1

2N
:

Proof This follows immediately from Proposition 4.1.16. �

Remark 4.1.18 The formula for D�
N.P/ in Proposition 4.1.16 implies also that

D�
N.P/ D 1

2N if and only if the points x1; : : : ; xN form a permutation of the points
1
2N ;

3
2N ; : : : ;

2N�1
2N . It is of interest to observe that the latter points are exactly the

nodes of the midpoint rule with N nodes.

By using a different approach, we can prove a lower bound on DN.P/ as well,
and thus we get the following companion result to Corollary 4.1.17.

Proposition 4.1.19 Every point set P consisting of N points in Œ0; 1/ satisfies

DN.P/ � 1

N
:

Proof Let x 2 Œ0; 1/ be any point of P . We choose " > 0 and consider the half-open
interval J D Œx � "; x C "/\ Œ0; 1/. Since x 2 J, we get

A.JIP/
N

� �.J/ � 1

N
� �.J/ � 1

N
� 2";

and so DN.P/ � 1
N � 2". The desired bound is obtained by letting " ! 0C. �

Example 4.1.20 For the point set P in Remark 4.1.18 consisting of 1
2N ;

3
2N ; : : : ;

2N�1
2N ,

we obtain DN.P/ � 2D�
N.P/ D 1

N , and so DN.P/ D 1
N by Proposition 4.1.19.

There are further examples of N points in Œ0; 1/ with discrepancy 1
N , for instance,

the equidistant points 0; 1N ; : : : ;
N�1

N .

We now return to the general form of an equal-weight rule for Œ0; 1	 which,
according to (4.2), provides the approximation

Z 1

0

f .u/du � 1

N

NX

nD1
f .xn/

with nodes x1; : : : ; xN 2 Œ0; 1	. This numerical integration scheme is also called
quasi-Monte Carlo integration since it is a simple instance of a quasi-Monte Carlo
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method, that is, a deterministic version of a Monte Carlo method (see Sect. 4.1.2).
Error bounds for quasi-Monte Carlo integration can be given in terms of the star
discrepancy of the nodes. Historically the first such error bound is the following
inequality of Koksma [83] for integrands of bounded variation. Recall that for a
real-valued function f on Œ0; 1	, its variation V.f / is defined to be

V.f / D sup
m�1X

iD0
jf .yiC1/� f .yi/j;

where the supremum is extended over all real numbers 0 D y0 < y1 < � � � < ym D 1

with an arbitrary m 2 N, and f has bounded variation if V.f / < 1.

Theorem 4.1.21 (Koksma Inequality) If the real-valued function f has bounded
variation V.f / on Œ0; 1	 and x1; : : : ; xN 2 Œ0; 1/ are arbitrary, then

ˇ̌
ˇ̌
ˇ

Z 1

0

f .u/du � 1

N

NX

nD1
f .xn/

ˇ̌
ˇ̌
ˇ � V.f /D�

N.P/;

where D�
N.P/ is the star discrepancy of the point set P consisting of x1; : : : ; xN.

Proof We can assume that x1 � x2 � � � � � xN . Put x0 D 0 and xNC1 D 1. Using
integration by parts and summation by parts, we obtain

Z 1

0

f .u/du � 1

N

NX

nD1
f .xn/ D �

Z 1

0

udf .u/C
NX

nD0

n

N
.f .xnC1/� f .xn//

D
NX

nD0

Z xnC1

xn

� n

N
� u

�
df .u/:

For fixed n with 0 � n � N, we get

ˇ̌
ˇ

n

N
� u

ˇ̌
ˇ � max

�ˇ̌
ˇxn � n

N

ˇ̌
ˇ;
ˇ̌
ˇxnC1 � n

N

ˇ̌
ˇ
�

� D�
N.P/ for xn � u � xnC1

by Proposition 4.1.16, and so the desired inequality follows. �

Remark 4.1.22 If f has a continuous first derivative f 0 on Œ0; 1	, then we can use
df .u/ D f 0.u/du in the proof of Theorem 4.1.21. Then the proof can be written in
terms of ordinary Riemann integrals, namely

ˇ̌
ˇ̌
ˇ

Z 1

0

f .u/du � 1

N

NX

nD1
f .xn/

ˇ̌
ˇ̌
ˇ �

NX

nD0

ˇ̌
ˇ̌
Z xnC1

xn

� n

N
� u

�
f 0.u/du

ˇ̌
ˇ̌

�
NX

nD0
D�

N.P/
Z xnC1

xn

jf 0.u/jdu D D�
N.P/

Z 1

0

jf 0.u/jdu:
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Now
R 1
0

jf 0.u/jdu D V.f / under the given condition on f , and so we obtain the same
bound as in Theorem 4.1.21.

Remark 4.1.23 If S D .xn/
1
nD1 is a uniformly distributed sequence in Œ0; 1/ and

PN is the point set consisting of the first N terms x1; : : : ; xN of S, then D�
N.PN/ D

D�
N.S/ ! 0 as N ! 1 by Theorem 4.1.14. Hence the error bound V.f /D�

N.PN/ in
Theorem 4.1.21 also tends to 0 as N ! 1.

Continuous functions need not be of bounded variation; for instance, the function
f with f .u/ D u sin.1=u/ for 0 < u � 1 and f .0/ D 0 is continuous on Œ0; 1	, but not
of bounded variation on Œ0; 1	. Therefore it is of interest to establish also an error
bound for quasi-Monte Carlo integration with continuous integrands. Such an error
bound was shown in [123] and it uses the modulus of continuity of the integrand. For
a real-valued continuous function f on Œ0; 1	, its modulus of continuity is defined by

M.f I t/ D sup
u;v2Œ0;1	
ju�vj�t

jf .u/� f .v/j for all t � 0:

Theorem 4.1.24 If f is a real-valued continuous function on Œ0; 1	 and x1; : : : ; xN 2
Œ0; 1/ are arbitrary, then

ˇ̌
ˇ̌
ˇ

Z 1

0

f .u/du � 1

N

NX

nD1
f .xn/

ˇ̌
ˇ̌
ˇ � M.f I D�

N.P//;

where D�
N.P/ is the star discrepancy of the point set P consisting of the points

x1; : : : ; xN.

Proof We can assume that x1 � x2 � � � � � xN . The mean-value theorem for
integrals allows us to write

Z 1

0

f .u/du D
NX

nD1

Z n=N

.n�1/=N
f .u/du D 1

N

NX

nD1
f .�n/

with .n � 1/=N � �n � n=N for 1 � n � N. Therefore

Z 1

0

f .u/du � 1

N

NX

nD1
f .xn/ D 1

N

NX

nD1
.f .�n/� f .xn//:

For every n with 1 � n � N, we obtain

j�n � xnj � max
�ˇ̌
ˇxn � n � 1

N

ˇ̌
ˇ;
ˇ̌
ˇxn � n

N

ˇ̌
ˇ
�

� D�
N.P/
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by Proposition 4.1.16, and so

ˇ̌
ˇ̌
ˇ

Z 1

0

f .u/du � 1

N

NX

nD1
f .xn/

ˇ̌
ˇ̌
ˇ � 1

N

NX

nD1
jf .�n/� f .xn/j � M.f I D�

N.P//

as desired. �

Remark 4.1.25 Every real-valued continuous function f on the compact interval
Œ0; 1	 is uniformly continuous, and so its modulus of continuity satisfies M.f I t/ ! 0

as t ! 0C. Therefore in the situation considered in Remark 4.1.23, the error bound
M.f I D�

N.PN// in Theorem 4.1.24 tends to 0 as N ! 1.

4.1.2 The Multidimensional Case

Numerical integration in the one-dimensional case is considered essentially a solved
problem since classical numerical integration rules do a good job for most of the
one-dimensional integrals arising in practice. The greater challenge in numerical
integration is the multidimensional case, particularly if the dimension is high. There
are important practical applications where the dimension of the integral to be
computed goes into the hundreds or even thousands, with computational finance
perhaps being the area that produces the greatest number of high-dimensional
numerical integration problems. The main task of computational finance is the
calculation of the monetary values of sophisticated financial instruments such as
stock options. A coverage of computational finance is beyond the scope of this book;
we refer instead to the comprehensive treatise by Glasserman [54].

We standardize the multidimensional numerical integration problem by con-
sidering, for a given dimension s � 2, a definite integral

R
Œ0;1	s

f .u/du over
the s-dimensional unit cube Œ0; 1	s with integration variable u D .u1; : : : ; us/.
The classical approach to this multidimensional numerical integration problem
uses Cartesian products of one-dimensional integration rules. In such multidimen-
sional integration rules, the node set is a Cartesian product of one-dimensional
node sets and the weights are products of corresponding weights taken from the
one-dimensional rules. These multidimensional integration rules are obtained by
viewing the given s-dimensional integral

Z

Œ0;1	s
f .u/du D

Z 1

0

� � �
Z 1

0

f .u1; : : : ; us/du1 � � � dus

as an iteration of one-dimensional integrals and by applying a one-dimensional
integration rule in each iteration.

We illustrate this procedure with the s-fold Cartesian product of the midpoint
rule (4.3). If we apply the midpoint rule with m � 1 nodes, then the s-fold Cartesian
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product attains the form

Z

Œ0;1	s
f .u/du � 1

ms

mX

k1D1
� � �

mX

ksD1
f
�2k1 � 1

2m
; : : : ;

2ks � 1
2m

�
: (4.14)

The total number of nodes in (4.14) is N D ms. From the error bound for the
midpoint rule in (4.4) it follows easily that the error in (4.14) is O.m�2/, provided
that the partial derivatives @2f=@u2i are continuous on Œ0; 1	s for 1 � i � s. In order to
see that the error in (4.14) need not, in general, be smaller than the one-dimensional
integration error, it suffices to apply (4.14) with a function f on Œ0; 1	s that depends
on only one variable, in which case (4.14) reduces to (4.3).

In terms of the total number N D ms of nodes in (4.14), the error bound O.m�2/
in (4.14) is in fact O.N�2=s/. With increasing dimension s, the utility of the error
bound O.N�2=s/ declines drastically. Specifically, in order to guarantee a prescribed
level of accuracy, say an error that is in absolute value at most 10�2, we must use
roughly 10s nodes. Therefore the required number of nodes increases exponentially
with the dimension s, so that even for moderately large s the computation may
become infeasible. This phenomenon is often called the curse of dimensionality.
The curse of dimensionality manifests itself in an analogous way for the Cartesian
product of any one-dimensional integration rule. For an s-fold Cartesian product,
the order of magnitude of the error bound, in terms of the total number of nodes, is
the sth root of the order of magnitude of the error bound for the one-dimensional
integration rule.

A technique to overcome the curse of dimensionality is the Monte Carlo method.
Just to be sure, this is not a foolproof scheme to win at roulette in Monte Carlo,
but a numerical method based on random sampling. The Monte Carlo method has
a fascinating history which goes back at least to the 1940s and involves famous
mathematicians like John von Neumann and Stanislaw Ulam; see [59, Section 1.2]
for a brief history of the Monte Carlo method and [41] for an account of the work of
von Neumann and Ulam on the Monte Carlo method at the Los Alamos Scientific
Laboratory. Since the Monte Carlo method was developed in the United States, it
could just as well have been called the Las Vegas method, but several of the co-
inventors of the method were of European origin (for instance, von Neumann came
from Hungary and Ulam from Poland) and they preferred Monte Carlo to Las Vegas.

The Monte Carlo method is a widely applicable computational tool, but we
consider it only in the context of numerical integration. Informative textbooks on
the general Monte Carlo method are Fishman [50] and Kalos and Whitlock [75]
(and also [118] if you know German), while Glasserman [54], Lemieux [96], and
Leobacher and Pillichshammer [97] discuss applications to computational finance.

In the Monte Carlo method for the numerical integration of our standard
s-dimensional integral

R
Œ0;1	s

f .u/du, we use the Monte Carlo estimate

Z

Œ0;1	s
f .u/du � 1

N

NX

nD1
f .xn/; (4.15)
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where x1; : : : ; xN are independent and uniformly distributed random samples from
Œ0; 1	s (in the sense of statistics). In the language of statistics, if f is Riemann-
integrable (or even only Lebesgue-integrable) on Œ0; 1	s, then the left-hand side
of (4.15) is the expected value of f as a random variable and the right-hand
side of (4.15) is the sample average. Approximating an expected value by a
sample average as in (4.15) is a plausible principle in statistics, supported by what
statisticians call the law of large numbers. This law was poetically expressed by
the writer Tom Stoppard in his play Rosencrantz and Guildenstern Are Dead:
“[This law] related the fortuitous and the ordained into a reassuring union which
we recognized as nature. The sun came up about as often as it went down, in the
long run.”

It should be evident that the error analysis for the Monte Carlo estimate will,
due to its statistical nature, proceed by statistical and probabilistic arguments. Since
statistics and probability theory are not prerequisites for this book, we state the
results of the error analysis informally and without proof (see the textbooks on the
Monte Carlo method mentioned above for rigorous statements and proofs). First of
all, if f is (Lebesgue-)integrable, then with probability 1 we get the limit relation

lim
N!1

1

N

NX

nD1
f .xn/ D

Z

Œ0;1	s
f .u/du;

that is, the Monte Carlo method converges. If not only f , but also f 2 is integrable,
then with positive probability the error bound

Z

Œ0;1	s
f .u/du � 1

N

NX

nD1
f .xn/ D O.N�1=2/ (4.16)

is valid, and we can push the probability as close to 1 as we want if we choose the
implied constant on the right-hand side of (4.16) sufficiently large. The remarkable
feature of the order of magnitude N�1=2 of the error bound in (4.16) is that it does
not depend on the dimension s. Consequently, the Monte Carlo method allows us to
beat the curse of dimensionality.

The number-theoretic approach to multidimensional numerical integration pro-
ceeds, as in the one-dimensional case described in Sect. 4.1.1, by the theory of
uniform distribution of sequences. Let us start the ball rolling by generalizing
Definition 4.1.3 to the multidimensional case.

Definition 4.1.26 A sequence x1; x2; : : : of points in the half-open s-dimensional
unit cube Œ0; 1/s is uniformly distributed (in Œ0; 1/s) if

lim
N!1

1

N

NX

nD1
f .xn/ D

Z

Œ0;1	s
f .u/du

for every real-valued Riemann-integrable function f on Œ0; 1	s.
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The criteria for uniform distribution in Œ0; 1/ established in Sect. 4.1.1 can
be extended to the multidimensional case in a straightforward manner (see [40,
Subsection 1.1.1] and [90, Section 1.6] for the details). For a subinterval J of Œ0; 1	s,
we write cJ for the characteristic function of J, that is, cJ.u/ D 1 if u 2 J and
cJ.u/ D 0 if u 2 Œ0; 1	s n J. Let �s.J/ denote the s-dimensional volume of J (if
you are familiar with the Lebesgue measure, then you may also think of �s as the
s-dimensional Lebesgue measure).

Theorem 4.1.27 A sequence x1; x2; : : : of points in Œ0; 1/s is uniformly distributed
in Œ0; 1/s if and only if

lim
N!1

1

N

NX

nD1
cJ.xn/ D �s.J/

for every subinterval J of Œ0; 1	s.

Theorem 4.1.28 A sequence x1; x2; : : : of points in Œ0; 1/s is uniformly distributed
in Œ0; 1/s if and only if

lim
N!1

1

N

NX

nD1
f .xn/ D

Z

Œ0;1	s
f .u/du

for every real-valued continuous function f on Œ0; 1	s.

For a point x D .x1; : : : ; xs/ 2 R
s, the fractional part fxg is defined by

fxg D .fx1g; : : : ; fxsg/ 2 Œ0; 1/s;

where fxg D x�bxc denotes as in Sect. 4.1.1 the fractional part of the real number x.

Definition 4.1.29 A sequence x1; x2; : : : of points in R
s is uniformly distributed

modulo 1 in R
s if the sequence fx1g; fx2g; : : : of fractional parts is uniformly

distributed in Œ0; 1/s.

The Weyl criterion in Theorem 4.1.9 can also be generalized to the multidimen-
sional case (see [40, Theorem 1.19] and [90, Section 1.6] for the details). For points
x D .x1; : : : ; xs/ and y D .y1; : : : ; ys/ in R

s, we write

x � y D x1y1 C � � � C xsys

for the dot product (or standard inner product) on R
s. It is again convenient to

abbreviate a sequence x1; x2; : : : of points in R
s by .xn/

1
nD1.
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Theorem 4.1.30 (Weyl Criterion in R
s) A sequence .xn/

1
nD1 of points in R

s is
uniformly distributed modulo 1 in R

s if and only if

lim
N!1

1

N

NX

nD1
e2� ih�xn D 0

for every lattice point h 2 Z
s with h ¤ 0.

Corollary 4.1.31 A sequence .xn/
1
nD1 of points in R

s is uniformly distributed
modulo 1 in R

s if and only if, for every lattice point h 2 Z
s with h ¤ 0, the sequence

.h � xn/
1
nD1 of dot products is uniformly distributed modulo 1.

Proof This follows immediately from Theorems 4.1.30 and 4.1.9. �

We use Corollary 4.1.31 to prove the following multidimensional version of
Theorem 4.1.10.

Theorem 4.1.32 For ˛ D .˛1; : : : ; ˛s/ 2 R
s, the sequence .n˛/1nD1 of multiples of

˛ is uniformly distributed modulo 1 in R
s if and only if the real numbers 1; ˛1; : : : ; ˛s

are linearly independent over the field Q of rational numbers.

Proof Put xn D n˛ for n D 1; 2; : : : . Suppose first that 1; ˛1; : : : ; ˛s are linearly
independent over Q. For every h 2 Z

s with h ¤ 0, we obtain h � xn D h � .n˛/ D
n.h � ˛/ for all n � 1. By the given linear independence property, h � ˛ is an
irrational number, and so the sequence .h � xn/

1
nD1 is uniformly distributed modulo

1 by Theorem 4.1.10. It follows therefore from Corollary 4.1.31 that the sequence
.xn/

1
nD1 is uniformly distributed modulo 1 in R

s.
Now suppose that 1; ˛1; : : : ; ˛s are linearly dependent over Q, say

r1˛1 C � � � C rs˛s D r

with r1; : : : ; rs; r 2 Q and at least one ri, 1 � i � s, different from 0. By clearing
the denominators of r1; : : : ; rs, we deduce that h0 � ˛ 2 Q for some h0 2 Z

s with
h0 ¤ 0. From h0 � xn D h0 � .n˛/ D n.h0 � ˛/ for all n � 1 and Theorem 4.1.10
we infer that the sequence .h0 � xn/

1
nD1 is not uniformly distributed modulo 1, and

so Corollary 4.1.31 shows that the sequence .xn/
1
nD1 is not uniformly distributed

modulo 1 in R
s. �

For ˛ D .˛1; : : : ; ˛s/ 2 R
s with 1; ˛1; : : : ; ˛s linearly independent over Q,

the sequence .fn˛g/1nD1 of fractional parts is called an s-dimensional Kronecker
sequence.

Example 4.1.33 For a given dimension s � 1, let g be an irreducible polynomial
over Q of degree s C 1 which has a real root ˛. Then for ˛ D .˛1; : : : ; ˛s/ 2 R

s

with ˛i D ˛i for 1 � i � s, the irreducibility of g over Q implies immediately
that 1; ˛1; : : : ; ˛s are linearly independent over Q. Therefore the sequence .n˛/1nD1
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is uniformly distributed modulo 1 in R
s by Theorem 4.1.32 and the sequence

.fn˛g/1nD1 of fractional parts is an s-dimensional Kronecker sequence.

Example 4.1.34 Recall that an integer m � 2 is called squarefree if it is a product
of distinct prime numbers. Now, for a given integer s � 2, we choose squarefree
integers m1; : : : ;ms that are pairwise coprime. We claim that 1;

p
m1; : : : ;

p
ms are

linearly independent over Q. We show even more, namely that

p
mi … Q.

p
m1; : : : ;

p
mi�1/ for 1 � i � s; (4.17)

where Q.
p

m1; : : : ;
p

mi�1/ is the smallest subfield of R containing Q;
p

m1; : : : ;p
mi�1 (compare with Sect. 1.4.3). We proceed by induction on i. For i D 1 we

have to verify that
p

mi D p
m1 … Q.

p
m1; : : : ;

p
mi�1/ D Q, but this is a trivial

fact. Suppose that we have proved (4.17) for some i with 1 � i � s � 1 and any
pairwise coprime squarefree integers m1; : : : ;mi. Now we consider i C 1 and we
assume, on the contrary, that

p
miC1 2 Q.

p
m1; : : : ;

p
mi/ D F.

p
mi/ with F

being the field Q.
p

m1; : : : ;
p

mi�1/. Then we can write
p

miC1 D 1 C 2
p

mi

with 1; 2 2 F. If we had 1 D 0, then
p

miC1mi D 2mi 2 F, a contradiction
to the induction hypothesis (4.17) applied with the squarefree integer miC1mi

instead of mi. If we had 2 D 0, then
p

miC1 D 1 2 F, again a contradiction
to (4.17). Thus 12 ¤ 0, and so by squaring the identity

p
miC1 D 1 C 2

p
mi

we obtain
p

mi D .212/
�1.miC1 � 21 � 22mi/ 2 F, another contradiction

to (4.17). The proof of (4.17) by induction is now complete. As we have already
observed, this implies that 1;

p
m1; : : : ;

p
ms are linearly independent over Q. With

˛ D .
p

m1; : : : ;
p

ms/ 2 R
s, the sequence .n˛/1nD1 is uniformly distributed modulo

1 in R
s by Theorem 4.1.32 and the sequence .fn˛g/1nD1 of fractional parts is an

s-dimensional Kronecker sequence. The special case where m1; : : : ;ms are distinct
prime numbers is often considered in practice.

We have seen in Sect. 4.1.1 that the (star) discrepancy plays a crucial role in error
bounds for one-dimensional quasi-Monte Carlo integration. The same holds true in
the multidimensional case. For a point set P consisting of N points x1; : : : ; xN in
Œ0; 1/s and every subinterval J of Œ0; 1	s, we write

A.JIP/ D
NX

nD1
cJ.xn/;

that is, A.JIP/ is the number of integers n with 1 � n � N for which xn 2 J.

Definition 4.1.35 For a point set P consisting of N points in Œ0; 1/s, the (extreme)
discrepancy DN.P/ of P is defined by

DN.P/ D sup
J

ˇ̌
ˇ
A.JIP/

N
� �s.J/

ˇ̌
ˇ; (4.18)



210 4 Quasi-Monte Carlo Methods

where the supremum is extended over all intervals J D Qs
iD1Œyi; zi/ with 0 � yi <

zi � 1 for 1 � i � s. If the supremum is extended only over the intervals J with
yi D 0 for 1 � i � s, then we obtain the star discrepancy D�

N.P/ of P . For an
infinite sequence S of points in Œ0; 1/s, we write DN.S/, respectively D�

N.S/, for the
discrepancy, respectively star discrepancy, of the point set consisting of the first N
terms of S.

The s-dimensional generalization of Proposition 4.1.12 says that

D�
N.P/ � DN.P/ � 2sD�

N.P/

for every point set P consisting of N points in Œ0; 1/s. In analogy with Theo-
rem 4.1.14, the following criterion for uniform distribution of sequences holds in
dimension s (see [40, Theorem 1.6 and Lemma 1.7] and [97, Theorem 2.15]).

Theorem 4.1.36 The following properties of a sequence S of points in Œ0; 1/s are
equivalent:

(i) S is uniformly distributed in Œ0; 1/s;
(ii) limN!1 D�

N.S/ D 0;
(iii) limN!1 DN.S/ D 0.

Remark 4.1.37 There is a simple projection principle for (star) discrepancies. For
dimensions r and s with 1 � r < s, consider a projection �s;r W Œ0; 1/s ! Œ0; 1/r onto
a subset of r coordinates. By using a suitable permutation of coordinates, we can
assume without loss of generality that the projection is onto the first r coordinates.
Thus, for y D .y1; : : : ; ys/ 2 Œ0; 1/s we define

�s;r.y/ D .y1; : : : ; yr/ 2 Œ0; 1/r:

Let P be the point set comprising the points x1; : : : ; xN 2 Œ0; 1/s and let P .r/ be the
point set consisting of the projected points�s;r.x1/; : : : ; �s;r.xN/ 2 Œ0; 1/r. Let J.r/ 

Œ0; 1/r be an interval occurring in the definition of DN.P .r// according to (4.18)
and put J D J.r/ � Œ0; 1/s�r 
 Œ0; 1/s. Then for every y 2 Œ0; 1/s, it is clear that
�s;r.y/ 2 J.r/ if and only if y 2 J, and so A.J.r/IP .r// D A.JIP/. It follows that

ˇ̌
ˇ
A.J.r/IP .r//

N
� �r.J

.r//
ˇ̌
ˇ D

ˇ̌
ˇ
A.JIP/

N
� �s.J/

ˇ̌
ˇ � DN.P/;

and by forming the supremum over all intervals J.r/ on the left-hand side we
obtain DN.P .r// � DN.P/. In the same way it is shown that D�

N.P .r// � D�
N.P/.

In particular, every s-dimensional (star) discrepancy is bounded from below by
a corresponding one-dimensional (star) discrepancy. It follows therefore from
Proposition 4.1.19 that always DN.P/ � 1=N and from Corollary 4.1.17 that always
D�

N.P/ � 1=.2N/.
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Better lower bounds on DN.P/ and D�
N.P/ can be established for dimensions

s � 2 by using sophisticated methods. A classical lower bound is due to Roth [175]
and it says that

DN.P/ � D�
N.P/ � csN

�1.log N/.s�1/=2 (4.19)

for every point set P of N points in Œ0; 1/s, where cs is a positive constant depending
only on the dimension s. In the case s D 2, the factor .log N/1=2 can be replaced by
log N according to a result of Schmidt [176], that is,

DN.P/ � D�
N.P/ � cN�1 log N (4.20)

for every point set P of N points in Œ0; 1/2 with an absolute constant c > 0. Proofs of
these bounds can be found in the book of Kuipers and Niederreiter [90, Section 2.2].
Minor improvements on the exponent .s�1/=2 of log N have been obtained recently
for s � 3; we refer to the book of Dick and Pillichshammer [38, Section 3.2] for a
survey of these improvements.

These results clearly imply lower bounds on the (star) discrepancy of infinite
sequences. For instance, (4.19) shows that every sequence S of points in Œ0; 1/s

satisfies D�
N.S/ � csN�1.log N/.s�1/=2 for all N � 1. However, there is a simple

trick based on the following lemma which allows us to establish a better lower bound
for infinitely many N.

Lemma 4.1.38 Let s � 1 and N � 1 be integers and let S D .xn/
1
nD1 be a sequence

of points in Œ0; 1/s. Let P be the point set consisting of the N points ..n�1/=N; xn/ 2
Œ0; 1/sC1 for n D 1; : : : ;N. Then

ND�
N.P/ � max

1�M�N
MD�

M.S/C 1:

Proof For an arbitrary interval J 
 Œ0; 1/sC1 of the form J D QsC1
iD1 Œ0; zi/, it is

obvious that ..n � 1/=N; xn/ 2 J if and only if xn 2 J0 WD QsC1
iD2 Œ0; zi/ and n <

Nz1 C 1. If M is the largest integer< Nz1 C 1, then A.JIP/ D A.J0IPM/, where PM

is the point set consisting of the first M terms of S. Therefore

jA.JIP/� N�sC1.J/j � jA.J0IPM/� M�s.J
0/j C jM�s.J

0/ � N�sC1.J/j
� MD�

M.S/C jM�s.J
0/ � N�sC1.J/j:

Now Nz1 � M < Nz1 C 1, hence

0 � M�s.J
0/� N�sC1.J/ � .Nz1 C 1/

sC1Y

iD2
zi � N

sC1Y

iD1
zi D

sC1Y

iD2
zi � 1;

and the desired result follows. �
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Theorem 4.1.39 For every dimension s � 1 there exists a constant c0
s > 0,

depending only on s, such that every sequence S of points in Œ0; 1/s satisfies

DN.S/ � D�
N.S/ � c0

sN
�1.log N/s=2

for infinitely many positive integers N.

Proof By Lemma 4.1.38 and (4.19) (with s replaced by s C 1), for every integer
N � 1 there exists an integer M with 1 � M � N such that

MD�
M.S/ � csC1.log N/s=2 � 1:

Thus, for a suitable constant c0
s with 0 < c0

s < csC1 and for sufficiently large N we
get

MD�
M.S/ � c0

s.log N/s=2 � c0
s.log M/s=2:

It remains to prove that there are infinitely many values of M for which the last
lower bound on MD�

M.S/ holds. Suppose there were only finitely many possible
choices for M and let M� be the maximal choice. Then there exists a sufficiently
large integer N with

c0
s.log N/s=2 > max

1�M�M�

MD�
M.S/: (4.21)

For this N there exists again an integer M1 with 1 � M1 � N such that

M1D
�
M1
.S/ � c0

s.log N/s=2 � c0
s.log M1/

s=2:

We must have M1 � M� by the definition of M�, and so (4.21) implies that
M1D�

M1
.S/ < c0

s.log N/s=2, which is a contradiction. �

Theorem 4.1.40 There exists an absolute constant c0 > 0 such that every sequence
S of points in Œ0; 1/ satisfies

DN.S/ � D�
N.S/ � c0N�1 log N

for infinitely many positive integers N.

Proof This is shown in the same way as Theorem 4.1.39, but with the bound (4.20)
instead of (4.19). �

To what extent are these lower bounds on the (star) discrepancy best possible?
We will see in Sect. 4.2.2 that for every dimension s � 1 there is a construction of a
sequence S of points in Œ0; 1/s for which

D�
N.S/ D O.N�1.log N/s/ for all N � 2; (4.22)
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where the implied constant is independent of N. An s-dimensional sequence S
satisfying (4.22) is called a low-discrepancy sequence. We conclude that the lower
bound in Theorem 4.1.40 for s D 1 is best possible. For s � 2 there is a gap in the
exponent of log N when one compares the lower bound in Theorem 4.1.39 and the
upper bound in (4.22). The determination of the best possible exponent of log N for
s � 2 is the big open problem in discrepancy theory.

In the case s D 1 we observed in Remark 4.1.18 that for every N � 1 we can
easily construct a point set P of N points in Œ0; 1/ that achieves the minimum value
D�

N.P/ D 1=.2N/ of the star discrepancy of any N points in Œ0; 1/. For s � 2 it
follows immediately from (4.22) and Lemma 4.1.38 that for every N � 2 we can
construct a point set P of N points in Œ0; 1/s for which

D�
N.P/ D O.N�1.log N/s�1/ (4.23)

with an implied constant independent of N (in fact, we like a constant depending
only on s). For every s � 1, a point set P consisting of N points in Œ0; 1/s and
satisfying (4.23) is called a low-discrepancy point set. It is clear from what has been
said above that the order of magnitude in (4.23) is best possible for s D 1 and s D 2.
For s � 3 we run again into the big open problem of discrepancy theory concerning
the best possible exponent of log N, in this case the version for point sets.

We already mentioned one-dimensional quasi-Monte Carlo integration in
Sect. 4.1.1. The full power of this approach is achieved in the multidimensional case
where it can outperform Cartesian products of one-dimensional integration rules and
even the Monte Carlo method. Numerical integration by means of multidimensional
quasi-Monte Carlo integration uses the approximation

Z

Œ0;1	s
f .u/du � 1

N

NX

nD1
f .xn/ (4.24)

with nodes x1; : : : ; xN 2 Œ0; 1/s. This looks formally like the Monte Carlo esti-
mate (4.15), but the viewpoint is different: whereas (4.15) employs random samples
x1; : : : ; xN , the approximation (4.24) works with carefully chosen deterministic
points x1; : : : ; xN . The underlying idea is that the Monte Carlo method captures
the average performance of node sets, whereas in quasi-Monte Carlo integration
we look for node sets that perform better than average. There is also a major
difference in the analysis of these numerical integration techniques: the error bounds
in the Monte Carlo method are probabilistic, whereas the error bounds for quasi-
Monte Carlo integration are deterministic and typically involve some concept of
discrepancy.

Quasi-Monte Carlo integration is an example of a quasi-Monte Carlo method,
that is, a deterministic version of a Monte Carlo method. Quasi-Monte Carlo
methods can be applied to other computational tasks, for instance, to optimization
problems (see Sect. 4.5). Monte Carlo methods are an invention of the 1940s, as we
already mentioned earlier, and multidimensional quasi-Monte Carlo integration was
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introduced shortly thereafter in the early 1950s. Indeed, the Los Alamos technical
report of Richtmyer [167] from 1951 already coined the term “quasi-Monte Carlo
method” and it proposed s-dimensional Kronecker sequences for quasi-Monte Carlo
integration. In the one-dimensional case, the paper of Koksma [83] that established
the Koksma inequality (see Theorem 4.1.21) can be considered a precursor of this
work. Systematic research on quasi-Monte Carlo methods was begun in the Soviet
Union in the late 1950s and the first book on quasi-Monte Carlo methods, namely
that of Korobov [86], was published there in 1963. A comprehensive account of the
work on quasi-Monte Carlo methods up to 1978 is presented in the survey article of
Niederreiter [126]. More contemporary expository treatments of quasi-Monte Carlo
methods can be found in the books of Dick and Pillichshammer [38], Leobacher and
Pillichshammer [97], and Niederreiter [133]. It is remarkable that much of the basic
research on quasi-Monte Carlo methods was carried out by number theorists.

Now we lead up to the standard error bound for multidimensional quasi-Monte
Carlo integration which formally looks like Theorem 4.1.21, but where we have to
be more careful about the definition of the variation V.f /. For a real-valued function
f on Œ0; 1	s and a subinterval J of Œ0; 1	s, let �.f I J/ be an alternating sum of the
values of f at the vertices of J (that is, function values at adjacent vertices have
opposite signs). The variation of f on Œ0; 1	s in the sense of Vitali is defined by

V.s/.f / D sup
R

X

J2R
j�.f I J/j;

where the supremum is extended over all partitions R of Œ0; 1	s into subintervals.
This is the straightforward generalization of the definition of the variation of a
function on Œ0; 1	. In the multidimensional case s � 2, we must take into account
also the variation of projections of f since we encounter the phenomenon that
V.s/.f / D 0 if f depends on fewer than s variables. In detail, for integers 1 � k � s
and 1 � i1 < i2 < � � � < ik � s, let V.k/.f I i1; : : : ; ik/ be the variation in the sense of
Vitali of the restriction of f to the k-dimensional face

f.u1; : : : ; us/ 2 Œ0; 1	s W uj D 1 for j ¤ i1; : : : ; ikg

of the s-dimensional unit cube Œ0; 1	s. Then

V.f / WD
sX

kD1

X

1�i1<i2<���<ik�s

V.k/.f I i1; : : : ; ik/

is called the variation of f on Œ0; 1	s in the sense of Hardy and Krause. If V.f / is
finite, then we say that f has bounded variation on Œ0; 1	s in the sense of Hardy
and Krause. There is a useful sufficient condition for f to have bounded variation
on Œ0; 1	s in the sense of Hardy and Krause, namely that the partial derivative
@sf=@u1 � � � @us exists and is continuous on Œ0; 1	s. For later use, we record the
convenient formula for V.f / in the two-dimensional case under this smoothness
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condition, namely

V.f / D
Z 1

0

Z 1

0

ˇ̌
ˇ
@2f .u1; u2/

@u1@u2

ˇ̌
ˇdu1du2 C

Z 1

0

ˇ̌
ˇ
df .u1; 1/

du1

ˇ̌
ˇdu1 C

Z 1

0

ˇ̌
ˇ
df .1; u2/

du2

ˇ̌
ˇdu2:

(4.25)

With this notion of variation, the following inequality due to Hlawka [62] is valid
in the multidimensional case (see also [90, Section 2.5] for a different proof).

Theorem 4.1.41 (Koksma-Hlawka Inequality) If the real-valued function f has
bounded variation V.f / on Œ0; 1	s in the sense of Hardy and Krause and x1; : : : ; xN 2
Œ0; 1/s are arbitrary, then

ˇ̌
ˇ
Z

Œ0;1	s
f .u/du � 1

N

NX

nD1
f .xn/

ˇ̌
ˇ � V.f /D�

N.P/;

where D�
N.P/ is the star discrepancy of the point set P consisting of x1; : : : ; xN.

In view of the Koksma-Hlawka inequality, the strategy in quasi-Monte Carlo
integration is now evident: we have basically no control over the given integrand
f , but we can choose the point set P so as to make the star discrepancy D�

N.P/,
and therefore the bound on the integration error, as small as possible. This suggests
to choose P as a low-discrepancy point set in the sense of (4.23). Then in terms
of the number N � 2 of nodes, the integration error is O.N�1.log N/s�1/ for
integrands of bounded variation on Œ0; 1	s in the sense of Hardy and Krause,
which in the asymptotic regime is significantly smaller than the Monte Carlo error
bound O.N�1=2/ in (4.16). Thus, we can expect that the quasi-Monte Carlo method
outperforms the Monte Carlo method for many types of integrands, and this is borne
out by numerical experiments and practical experience. For instance, the monetary
values of various sophisticated financial instruments can be computed in real time
by means of quasi-Monte Carlo integration, whereas the Monte Carlo method would
take very much longer for this task (see Paskov and Traub [157] for a famous
case study). Would number theorists of past generations have dreamed that number
theory will one day become relevant on Wall Street?

The basic difference between the Monte Carlo method and the quasi-Monte Carlo
method can be elucidated pictorially. We compare a plot of random points in the
unit square Œ0; 1	2 with a plot of a low-discrepancy point set in Œ0; 1	2 (see Fig. 4.4).
The constellation of random points exhibits clusters (that is, points coming close
together) and holes (that is, relatively large regions without points), and this is
how it should be for truly random points. On the other hand, the points of a low-
discrepancy point set avoid clusters and tend to fill the holes. Overall, random points
show a somewhat chaotic behavior and low-discrepancy point sets display a pleasing
regular pattern. Numerical integration of good quality seems to favor nodes with an
equitable and nicely structured distribution on the integration domain, and so the
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Fig. 4.4 128 random points (left) and the 128-element Hammersley point set in the base 2 (right)

quasi-Monte Carlo method is better geared to numerical integration than the Monte
Carlo method.

In practice it can be convenient to have some flexibility in the choice of the
number N of nodes. For instance, we may initially work with a moderately large
value of N and decide later to increase N in order to achieve a higher accuracy in the
computation of the given integral. From the viewpoint of efficiency, it is desirable
to be able to reuse the previously computed function values in this scenario. This
suggests that we utilize a low-discrepancy sequence and take its first N terms as the
integration nodes whenever a value of N has been selected. In this way, N can be
increased while all data from an earlier computation with a smaller N can still be
used. There is a relatively small price to pay for this convenience, namely the factor
log N by which the discrepancy bounds (4.22) and (4.23) differ.

4.2 Classical Low-Discrepancy Sequences

4.2.1 Kronecker Sequences and Continued Fractions

When you read the previous section carefully, you realize that the remaining major
issue in quasi-Monte Carlo integration is the construction of low-discrepancy point
sets and sequences. In view of Lemma 4.1.38, we can focus on the construction
of low-discrepancy sequences. In the one-dimensional case, Kronecker sequences
.fn˛g/1nD1 are low-discrepancy sequences for certain irrational numbers ˛. Suitable
˛ can be determined by means of continued fractions, as we shall see below.

Continued fractions are a standard tool in number theory, and for the sake of
convenience we review the basic facts about the continued fraction algorithm for
irrational numbers. We start from an irrational number ˛ D ˛0, and further numbers
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˛1; ˛2; : : : are obtained by the recursion

˛kC1 D 1

f˛kg for k D 0; 1; : : : :

Note that all ˛k are irrational, hence the fractional part f˛kg satisfies f˛kg ¤ 0, and
so the definition of ˛kC1 makes sense. The partial quotients of ˛ are defined by

ak D b˛kc for k D 0; 1; : : : :

Then a0 D b˛c 2 Z and ak 2 N for k � 1. We can write

˛k D ak C f˛kg D ak C 1

˛kC1
for k D 0; 1; : : : : (4.26)

By iterating the formula (4.26), we obtain

˛ D ˛0 D a0 C 1

˛1
D a0 C 1

a1 C 1
˛2

D � � � ;

and this leads to the infinite expansion

˛ D a0 C 1=.a1 C 1=.a2 C � � � // DW Œa0I a1; a2; : : :	 (4.27)

called the continued fraction expansion of ˛. If for some k � 0 we terminate this
expansion after the partial quotient ak, then we get the kth convergent rk 2 Q to
˛. We write rk D pk=qk with pk; qk 2 Z and qk � 1. The numerators pk and the
denominators qk can be computed by the recursions

p�2 D 0; p�1 D 1; pk D akpk�1 C pk�2 for k � 0;

q�2 D 1; q�1 D 0; qk D akqk�1 C qk�2 for k � 0:

Note that 1 D q0 � a1 D q1 < q2 < � � � .

Lemma 4.2.1 For all integers k � �1, the numerators and denominators of the
convergents to ˛ satisfy

pk�1qk � pkqk�1 D .�1/k:

Proof This is trivial for k D �1. Suppose that for some k � 0 the identity is shown
for k � 1. Then

pk�1qk � pkqk�1 D pk�1.akqk�1 C qk�2/� .akpk�1 C pk�2/qk�1
D �.pk�2qk�1 � pk�1qk�2/ D �.�1/k�1 D .�1/k;

and the induction is complete. �
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Lemma 4.2.1 implies that gcd.pk; qk/ D 1 for k � 0, and so pk=qk yields
the rational number rk in reduced form. We need two more facts about continued
fractions.

Lemma 4.2.2 The identity

˛ D pk˛kC1 C pk�1
qk˛kC1 C qk�1

holds for all integers k � �1.

Proof We proceed again by induction on k. The formula is trivial for k D �1.
Suppose that it is shown for some k � �1. Then by (4.26),

˛ D pk˛kC1 C pk�1
qk˛kC1 C qk�1

D
pk
�
akC1 C 1

˛kC2

�C pk�1
qk
�
akC1 C 1

˛kC2

�C qk�1

D
pkC1 C pk

˛kC2

qkC1 C qk
˛kC2

D pkC1˛kC2 C pk

qkC1˛kC2 C qk
;

and so the formula holds for k C 1. �

Lemma 4.2.3 The inequality

j˛ � rkj < .qkqkC1/�1

holds for all integers k � 0.

Proof By first applying Lemma 4.2.2 and then Lemma 4.2.1, we get

˛ � rk D pk˛kC1 C pk�1
qk˛kC1 C qk�1

� pk

qk

D pk�1qk � pkqk�1
qk.qk˛kC1 C qk�1/

D .�1/k
qk.qk˛kC1 C qk�1/

:

Using ˛kC1 > b˛kC1c D akC1, we immediately obtain the desired inequality. �

Since limk!1 qk D 1, Lemma 4.2.3 implies that limk!1 rk D ˛. This justifies
a posteriori the first identity in (4.27) and the terminology “kth convergent” for rk.

We note the following simple principle pertaining to a superposition P of point
sets P1; : : : ;Pm, that is, a point set P obtained by listing in some order the points
of P1; : : : ;Pm with the correct multiplicities. In the present subsection we need this
principle only in the one-dimensional case, but it holds for any dimension.

Lemma 4.2.4 Let m � 1 and s � 1 be integers. For j D 1; : : : ;m, let Pj be a point
set of Nj points in Œ0; 1/s. Let P be the superposition of P1; : : : ;Pm which contains
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N D Pm
jD1 Nj points. Then

NDN.P/ �
mX

jD1
NjDNj.Pj/

and also

ND�
N.P/ �

mX

jD1
NjD

�
Nj
.Pj/:

Proof Let J 
 Œ0; 1/s be an interval appearing in the supremum in (4.18). Then
A.JIP/ D Pm

jD1 A.JIPj/ by the definition of P , and so

jA.JIP/� N�s.J/j D
ˇ̌
ˇ

mX

jD1
.A.JIPj/ � Nj�s.J//

ˇ̌
ˇ

�
mX

jD1
jA.JIPj/� Nj�s.J/j �

mX

jD1
NjDNj.Pj/:

Taking the supremum on the left-hand side completes the proof of the first
inequality. The inequality for the star discrepancy is shown similarly. �

We are now ready to establish a discrepancy bound for one-dimensional Kro-
necker sequences. We use the notation for continued fractions introduced above.
In particular, the positive integers ak, k D 1; 2; : : :, denote partial quotients in the
continued fraction expansion (4.27) of an irrational number ˛.

Theorem 4.2.5 Let ˛ be an irrational number and let S D .fn˛g/1nD1 be the
corresponding Kronecker sequence. Every integer N � 1 can be represented in
the form N D Pl.N/

kD0 ckqk, where l.N/ is the unique nonnegative integer with
ql.N/ � N < ql.N/C1 and where the ck are integers with 0 � ck � akC1 for
0 � k � l.N/. Then

NDN.S/ <
l.N/X

kD0
ck�1

.ck C 1/ �
l.N/C1X

kD1
ak:

Proof Since 1 D q0 � q1 < q2 < � � � , the existence and uniqueness of l.N/ is
guaranteed. We can write N D cl.N/ql.N/ C d with integers cl.N/ � 1 and 0 � d <
ql.N/. If we had cl.N/ > al.N/C1, then

N � cl.N/ql.N/ � al.N/C1ql.N/ C ql.N/ � ql.N/C1;
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a contradiction. Therefore cl.N/ � al.N/C1. If d � 1, then we apply this procedure to
d instead of N and, continuing in this manner, we arrive at the desired representation
for N.

Given this representation for N, we decompose the point set P consisting of the
first N terms of S into blocks of consecutive terms, namely ck blocks of length qk

for 0 � k � l.N/. Of course, we need to consider only those k with ck � 1. Take
such a block of length qk for a fixed k with ck � 1; it is a point set Pk consisting of
the fractional parts fn˛g, n D nk; nk C 1; : : : ; nk C qk � 1, for some integer nk � 1.
Let pk=qk be the kth convergent to ˛. Then on account of Lemma 4.2.3 we can write

˛ D pk

qk
C ık

qkqkC1
with jıkj < 1:

Thus, if n D nk C j, j D 0; 1; : : : ; qk � 1, as above, then

fn˛g D
n jpk

qk
C nk˛ C jık

qkqkC1

o
:

Since gcd.pk; qk/ D 1, the fractional parts fjpk=qk C nk˛g, j D 0; 1; : : : ; qk � 1,
form a point set Qk of qk equidistant points in Œ0; 1/ with distance 1=qk, and so
Dqk.Qk/ D 1=qk. Because

ˇ̌
ˇ

jık

qkqkC1

ˇ̌
ˇ <

1

qkC1
for j D 0; 1; : : : ; qk � 1;

the point set Pk is obtained by displacing modulo 1 the points of Qk in one direction
(which depends on the sign of ık) by distances < 1=qkC1. Therefore

Dqk .Pk/ <
1

qk
C 1

qkC1
:

From Lemma 4.2.4 and the way in which we decomposed P , we obtain

NDN.S/ D NDN.P/ <
l.N/X

kD0
ck�1

ck

�
1C qk

qkC1

�
�

l.N/X

kD0
ck�1

�
ck C akC1qk

qkC1

�
�

l.N/X

kD0
ck�1

.ck C 1/;

which is the first bound for NDN.S/ in the theorem.
If c0 � 1, then in the last step of the algorithm at the beginning of the proof we

have d D c1q1 C c0 with 1 � c0 < q1, and so c0 C 1 � q1 D a1. If ck D akC1
for some k � 1, then we claim that ck�1 D 0. Indeed, if qk � d < qkC1 and
d D ckqk C d1 with ck D akC1, then

d1 D d � ckqk D d � akC1qk < qkC1 � akC1qk D qk�1;
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and so ck�1 D 0. Using these properties of the ck, we deduce the second bound for
NDN.S/ in the theorem from the first bound. �

The order of magnitude of the discrepancy bound in Theorem 4.2.5 depends on
the size of the partial quotients of ˛. A particularly attractive case occurs if ˛ has
bounded partial quotients, which means that the partial quotients of ˛ are uniformly
bounded.

Theorem 4.2.6 Let ˛ be an irrational number for which there exists a positive
integer K such that the partial quotients ak of ˛ satisfy ak � K for all k � 1. Then
the corresponding Kronecker sequence S D .fn˛g/1nD1 satisfies the discrepancy
bound

DN.S/ < G.K/N�1 log.N C 1/ for all N � 1;

where G.K/ D .K C 1/= log.K C 1/ for K ¤ 2 and G.2/ D 2= log 2.

Proof In view of Theorem 4.2.5, it suffices to show that

s.N/ WD
l.N/X

kD0
ck�1

.ck C 1/ � G.K/ log.N C 1/ for all N � 1: (4.28)

Here s.N/ is well defined if we use the coefficients ck produced by the algorithm at
the beginning of the proof of Theorem 4.2.5. We formally put s.0/ D 0.

We establish (4.28) by induction on the value of l.N/. If q0 < q1, then the least
possible value of l.N/ is 0 and a corresponding N satisfies 1 � N < q1 D a1 � K.
If q0 D q1 D 1, then the least possible value of l.N/ is 1 and a corresponding N
satisfies 1 � N � q2 � 1 D a2 � K. Since s.N/ D N C 1 for these N, it suffices to
verify for the first step in the induction that

N C 1 � G.K/ log.N C 1/ for 1 � N � K: (4.29)

But this follows from the fact that G.K/ D max1�u�K .u C 1/= log.u C 1/.
Now we consider an arbitrary l with ql > 1 and a corresponding N with l.N/ D l,

hence with ql � N < qlC1. We write N D clql C d with 0 � d < ql. Then
s.N/ D cl C 1C s.d/, and the induction hypothesis yields

s.N/ � cl C 1C G.K/ log.d C 1/;

which holds also for d D 0. Now N C 1 D clql C d C 1 � .cl C 1/.d C 1/ and
1 � cl � alC1 � K. Thus by (4.29),

s.N/ � G.K/ log.cl C 1/C G.K/ log.d C 1/ � G.K/ log.N C 1/

and (4.28) is shown by induction. �
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Example 4.2.7 A famous example of an irrational number with bounded partial
quotients is ˛ D .

p
5 � 1/=2 D 0:618 : : :, or one may also take the golden ratio

˛ C 1 D .
p
5 C 1/=2. Note that ˛ satisfies ˛2 C ˛ D 1. Here a0 D b˛c D 0.

Next we get ˛1 D ˛�1 D ˛ C 1, and so f˛1g D ˛. Therefore in the next step
˛2 D ˛�1 D ˛ C 1 and f˛2g D ˛. Hence it is clear that ˛k D ˛ C 1 and
ak D b˛kc D 1 for all k � 1. Thus, ˛ has the periodic continued fraction expansion

˛ D Œ0I 1; 1; 1; : : :	:

The Kronecker sequence S D .fn˛g/1nD1 D .fn.
p
5 � 1/=2g/1nD1 is a low-

discrepancy sequence with

DN.S/ <
2

log 2
N�1 log.N C 1/ for all N � 1

by Theorem 4.2.6. More generally, if ˇ is any quadratic irrational, then ˇ has a
periodic continued fraction expansion according to a classical theorem of Lagrange
(see [171, Section III.1] for two different proofs of this result), and so ˇ has bounded
partial quotients. Therefore .fnˇg/1nD1 is also a low-discrepancy sequence. If you
want to learn more about the beautiful theory of continued fractions, we refer again
to the book of Rockett and Szűsz [171].

In the multidimensional case, the theory of Kronecker sequences is much less
satisfactory. There is of course the criterion in Theorem 4.1.32 for Kronecker
sequences, but it is much harder to get strong discrepancy bounds for multidi-
mensional Kronecker sequences, mainly because it is not known how to design a
multidimensional continued fraction algorithm that is every bit as good as the one-
dimensional continued fraction algorithm. A probabilistic result due to Beck [9]
says the following: for a given dimension s � 1, pick a point ˛ at random from the
probability space Œ0; 1	s supplied with the s-dimensional Lebesgue measure; then
with probability 1 the sequence S.˛/ WD .fn˛g/1nD1 is a Kronecker sequence and
for every " > 0 its discrepancy satisfies

DN.S.˛// D O.N�1.log N/s.log log N/1C"/ for all N � 3;

where the implied constant depends only on " and ˛. Thus with probability 1,
Kronecker sequences are “almost” low-discrepancy sequences in the sense of (4.22).
However, for s � 2 not a single explicit ˛ is known for which the above discrepancy
bound for S.˛/ holds. There is a weaker deterministic result for an interesting
family of Kronecker sequences: if ˛ D .˛1; : : : ; ˛s/ 2 R

s with algebraic numbers
˛1; : : : ; ˛s such that 1; ˛1; : : : ; ˛s are linearly independent over Q, then for every
" > 0 the discrepancy bound DN.S.˛// D O.N�1C"/ holds for all N � 1, where
the implied constant depends only on " and ˛ (see [123]). This discrepancy bound
applies, for instance, to the points ˛ constructed in Examples 4.1.33 and 4.1.34.
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4.2.2 Halton Sequences

Historically the first construction of low-discrepancy sequences for arbitrary dimen-
sions was devised by Halton [57] in 1960 and it is based on elementary number
theory. For an integer b � 2, we again write Zb D f0; 1; : : : ; b � 1g for the least
residue system modulo b. Every integer n � 0 has a unique digit expansion

n D
1X

jD0
zj.n/b

j (4.30)

in base b, where zj.n/ 2 Zb for all j � 0 and zj.n/ D 0 for all sufficiently large j.
The radical-inverse function �b in base b is defined by

�b.n/ D
1X

jD0
zj.n/b

�j�1 2 Œ0; 1/ for n D 0; 1; : : : :

Since the set of nonnegative integers is the natural domain of radical-inverse
functions, it is reasonable to commence the enumeration of the terms of sequences
derived from radical-inverse functions with the index n D 0.

Definition 4.2.8 For a dimension s � 1 and integers b1; : : : ; bs � 2 that are
pairwise coprime if s � 2, the Halton sequence in the bases b1; : : : ; bs is the
sequence .xn/

1
nD0 with

xn D .�b1 .n/; : : : ; �bs.n// 2 Œ0; 1/s for n D 0; 1; : : : :

Remark 4.2.9 In the case s D 1 and with b1 D b, the sequence .�b.n//1nD0
is called the van der Corput sequence in base b. This one-dimensional low-
discrepancy sequence was already introduced, at least for the base b D 2, by van
der Corput [196] in 1935.

Example 4.2.10 We compute the first eight terms of the van der Corput sequence
.�2.n//1nD0 in base 2. In the table below, we first list n in its decimal form, then n in
binary, then �2.n/ in binary, and finally �2.n/ as a rational number in reduced form.

n 0 1 2 3 4 5 6 7

binary n 000 001 010 011 100 101 110 111

binary �2.n/ 0:000 0:100 0:010 0:110 0:001 0:101 0:011 0:111

�2.n/ 0 1
2

1
4

3
4

1
8

5
8

3
8

7
8

For the proof of the property that every Halton sequence is a low-discrepancy
sequence (see Theorem 4.2.14 below), we need several auxiliary results.
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Lemma 4.2.11 Let b � 2 and n � 0 be integers and let v and f be positive integers
with v � bf . Then �b.n/ 2 Œ0; vb�f / if and only if n 2 [h

kD1Qk, where 1 � h � bf ,
each Qk is a residue class in Z with modulus mk, the residue classes Q1; : : : ;Qh are
disjoint and independent of n, and

Ph
kD1 m�1

k D vb�f .

Proof We write .v � 1/b�f D Pf �1
jD0 djb�j�1 with dj 2 Zb for 0 � j � f � 1. Then

�b.n/ 2 Œ0; vb�f / if and only if

f �1X

jD0
zj.n/b

�j�1 �
f �1X

jD0
djb

�j�1;

with the notation in (4.30). This condition holds if and only if one of the following
f mutually exclusive conditions is satisfied: (C1) z0.n/ � d0 � 1; (C2) z0.n/ D d0
and z1.n/ � d1 � 1; (C3) z0.n/ D d0, z1.n/ D d1, and z2.n/ � d2 � 1;: : :; (Cf )
z0.n/ D d0; : : : ; zf �2.n/ D df �2, and zf �1.n/ � df �1. These conditions can be
translated into the following congruence conditions on n: (C0

1) n � g0 .mod b/ for
some 0 � g0 � d0 � 1; (C0

2) n � d0 C g1b .mod b2/ for some 0 � g1 � d1 � 1;
(C0

3) n � d0 C d1b C g2b2 .mod b3/ for some 0 � g2 � d2 � 1;: : :; (C0
f ) n �

d0 C d1b C � � � C df �2bf �2 C gf �1bf �1 .mod bf / for some 0 � gf �1 � df �1. This
yields disjoint residue classes Q1; : : : ;Qh in which n must lie. The number h of
residue classes satisfies

h D
f �2X

jD0
dj C df �1 C 1 � .b � 1/f C 1 � bf :

As to the moduli m1; : : : ;mh of Q1; : : : ;Qh, respectively, we have d0 moduli equal
to b, d1 moduli equal to b2,: : :, df �2 moduli equal to bf �1, and df �1C1moduli equal
to bf . Therefore

hX

kD1
m�1

k D
f �2X

jD0
djb

�j�1 C .df �1 C 1/b�f D .v � 1/b�f C b�f D vb�f ;

and all assertions are shown. �

Lemma 4.2.12 For a dimension s � 1, let b1; : : : ; bs � 2 be integers that are
pairwise coprime if s � 2 and let n � 0 be an integer. Let v1; : : : ; vs and f1; : : : ; fs
be positive integers with vi � bfi

i for 1 � i � s. Then

xn D .�b1 .n/; : : : ; �bs.n// 2 J WD
sY

iD1
Œ0; vib

�fi
i /
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if and only if n 2 [H
kD1Rk, where 1 � H � b1 � � � bsf1 � � � fs, each Rk is a residue class

in Z with modulus mk, the residue classes R1; : : : ;RH are disjoint and independent
of n, and

PH
kD1 m�1

k D �s.J/.

Proof The case s D 1 was proved in Lemma 4.2.11, and so we can assume that
s � 2. Note that xn 2 J if and only if �bi.n/ 2 Œ0; vib

�fi
i / for 1 � i � s. For

each fixed i D 1; : : : ; s, we apply Lemma 4.2.11 and this yields the condition
n 2 [hi

kD1Q
.i/
k for disjoint residue classes Q.i/

1 ; : : : ;Q
.i/
hi

with respective moduli

m.i/
1 ; : : : ;m

.i/
hi

. Furthermore, hi � bifi and
Phi

kD1.m
.i/
k /

�1 D vib
�fi
i for 1 � i � s.

Since b1; : : : ; bs are pairwise coprime, we can combine these conditions for i D
1; : : : ; s by the Chinese remainder theorem to arrive at the condition n 2 [H

kD1Rk in
the lemma, where 1 � H D h1 � � � hs � b1 � � � bsf1 � � � fs. Furthermore, the new moduli
m1; : : : ;mH are exactly all products m.1/

k1
� � � m.s/

ks
with 1 � ki � hi for 1 � i � s.

Therefore

HX

kD1
m�1

k D
sY

iD1

� hiX

kD1
.m.i/

k /
�1
�

D
sY

iD1
vib

�fi
i D �s.J/;

as claimed. �

Lemma 4.2.13 If ui;wi 2 Œ0; 1	 for 1 � i � s, then

ˇ̌
ˇ

sY

iD1
ui �

sY

iD1
wi

ˇ̌
ˇ �

sX

iD1
jui � wij:

Proof We proceed by induction on s. The case s D 1 is trivial. If the inequality is
shown for some s � 1, then

ˇ̌
ˇ

sC1Y

iD1
ui �

sC1Y

iD1
wi

ˇ̌
ˇ D

ˇ̌
ˇ.usC1 � wsC1/

sY

iD1
ui C wsC1

� sY

iD1
ui �

sY

iD1
wi

�ˇ̌
ˇ

� jusC1 � wsC1j C wsC1
sX

iD1
jui � wij �

sC1X

iD1
jui � wij;

and the induction is complete. �

Theorem 4.2.14 Let s � 1 be a given dimension and let b1; : : : ; bs � 2 be integers
that are pairwise coprime if s � 2. Then the star discrepancy of the Halton sequence
S in the bases b1; : : : ; bs satisfies

D�
N.S/ � C.b1; : : : ; bs/N

�1.log N/s for all N � 2

with a constant C.b1; : : : ; bs/ > 0 depending only on b1; : : : ; bs.
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Proof We fix N � 2 and let PN be the point set consisting of the first N terms
x0; x1; : : : ; xN�1 of S. We introduce the positive integers

fi D
�

log N

log bi

�
for 1 � i � s: (4.31)

We first consider an interval J 
 Œ0; 1/s of the form

J D
sY

iD1
Œ0; vib

�fi
i /

with integers v1; : : : ; vs satisfying 1 � vi � bfi
i for 1 � i � s. Then applying

Lemma 4.2.12 and its notation, we obtain

A.JIPN/ D
HX

kD1
BN.Rk/;

where BN.Rk/ is the number of integers n with 0 � n � N � 1 lying in the residue
class Rk with modulus mk. Since any mk consecutive integers contain exactly one
element of Rk, we can write BN.Rk/ D bN=mkc C N.k/ with N.k/ being either 0
or 1, and so BN.Rk/ D N=mk C ˇN.k/ with jˇN.k/j � 1. It follows that

jA.JIPN/� N�s.J/j D
ˇ̌
ˇ

HX

kD1

� N

mk
C ˇN.k/

�
� N

HX

kD1

1

mk

ˇ̌
ˇ

D
ˇ̌
ˇ

HX

kD1
ˇN.k/

ˇ̌
ˇ � H � b1 � � � bsf1 � � � fs

by Lemma 4.2.12. This bound holds trivially if some vi are 0, that is, if J is empty.
Now we consider an arbitrary interval J D Qs

iD1Œ0;wi/ 
 Œ0; 1/s appearing in
the definition of the star discrepancy. We choose integers v1; : : : ; vs such that .vi �
1/b�fi

i � wi � vib
�fi
i and 1 � vi � bfi

i for 1 � i � s. We introduce the intervals

J1 D
sY

iD1
Œ0; .vi � 1/b�fi

i /; J2 D
sY

iD1
Œ0; vib

�fi
i /:

Then J1 
 J 
 J2, and so

A.J1IPN/ � N�s.J1/C N.�s.J1/� �s.J2//

� A.JIPN/ � N�s.J/

� A.J2IPN/� N�s.J2/C N.�s.J2/� �s.J1//:
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By what we have already shown for the intervals J1 and J2, we get

jA.JIPN/ � N�s.J/j � b1 � � � bsf1 � � � fs C N.�s.J2/� �s.J1//;

and an application of Lemma 4.2.13 yields

ND�
N.S/ D ND�

N.PN/ � b1 � � � bsf1 � � � fs C N
sX

iD1
b�fi

i :

By using the definition of f1; : : : ; fs in (4.31), we arrive at the final result. �

An explicit form of the discrepancy bound in Theorem 4.2.14 can be found in [38,
Theorem 3.36]. Typically, the constant C.b1; : : : ; bs/ in Theorem 4.2.14 becomes
smaller for smaller values of the bases b1; : : : ; bs. Thus, a popular choice is to take
b1; : : : ; bs as the first s prime numbers, that is, b1 D 2, b2 D 3, b3 D 5, and so
on. We observe that every s-dimensional Halton sequence is uniformly distributed
in Œ0; 1/s by Theorems 4.1.36 and 4.2.14.

For dimensions s � 2, we can construct low-discrepancy point sets in the
sense of (4.23) by using Halton sequences and the idea in Lemma 4.1.38. Let
b1; : : : ; bs�1 � 2 be integers that are pairwise coprime if s � 3. For an integer
N � 2, let P be the point set consisting of the points

yn D
� n

N
; �b1 .n/; : : : ; �bs�1 .n/

�
2 Œ0; 1/s for n D 0; 1; : : : ;N � 1: (4.32)

Such a point set P is called a Hammersley point set, after the work of Hammers-
ley [58]. If we want to stress the role of the integers b1; : : : ; bs�1 in this construction,
then we speak of a Hammersley point set in the bases b1; : : : ; bs�1.

Theorem 4.2.15 The star discrepancy of the Hammersley point set P in (4.32)
satisfies

D�
N.P/ � C1.b1; : : : ; bs�1/N�1.log N/s�1

with a constant C1.b1; : : : ; bs�1/ > 0 depending only on b1; : : : ; bs�1.

Proof This follows immediately from Lemma 4.1.38 and Theorem 4.2.14. �

4.3 Lattice Rules

4.3.1 Good Lattice Points

The discrepancy of a point set is easier to analyze if the point set possesses some
structure. There are two popular structures in discrepancy theory, the lattice (or grid)
structure considered in this section and the net structure in the sense of Sect. 4.4.
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Fig. 4.5 The centered regular
lattice with s D 2 and m D 6

We already encountered a point set with an obvious lattice (or grid) structure in
dimension s, namely the set of nodes of the s-fold Cartesian product of a midpoint
rule. If we start from the midpoint rule for the interval Œ0; 1	 with m � 1 nodes,
then according to (4.14) the corresponding set of s-dimensional nodes is the point
set Pm;s consisting of the points

�2k1 � 1

2m
; : : : ;

2ks � 1

2m

�
2 Œ0; 1/s (4.33)

with k1; : : : ; ks running independently through the integers 1; : : : ;m. The point set
Pm;s contains exactly N D ms points and is called a centered regular lattice.
Figure 4.5 illustrates the centered regular lattice with s D 2 and m D 6.

Intuitively, one may think that the points of Pm;s are very evenly distributed over
Œ0; 1	s, but it turns out that Pm;s is by no means a low-discrepancy point set in the
multidimensional case s � 2. For an " with 0 < " � 1=.2m/, consider the interval
J" D Œ0; 1�1=.2m/C"/s 
 Œ0; 1/s occurring in the definition of the star discrepancy.
Since all points of Pm;s are contained in J", it is obvious that

D�
N.Pm;s/ �

ˇ̌
ˇ
A.J"IPm;s/

N
� �s.J"/

ˇ̌
ˇ D 1 �

�
1 � 1

2m
C "

�s

;

and letting " ! 0C we obtain

D�
N.Pm;s/ � 1 �

�
1 � 1

2m

�s

:

Since 0 < 1� 1
2m < 1, we get .1� 1

2m /
s � 1� 1

2m , and so D�
N.Pm;s/ � 1

2m D 1
2
N�1=s.

Hence for s � 2, the star discrepancy of Pm;s is asymptotically much larger (in terms
of N) than that of a Hammersley point set in dimension s, for instance, with the same
number N of points (compare with Theorem 4.2.15).

Therefore we launch another approach in order to arrive at point sets with lattice
structure that have a reasonably small (star) discrepancy. Let us start from the
Kronecker sequences .fn˛g/1nD1 in Sect. 4.1.2; here ˛ D .˛1; : : : ; ˛s/ 2 R

s with
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1; ˛1; : : : ; ˛s linearly independent over Q. Now we replace ˛ by a point in R
s which

is in a sense at the other extreme in terms of linear independence over Q, namely a
point all of whose coordinates are rational numbers (we may think of such a point
also as a discrete approximation of ˛). By putting all its coordinates on the same
positive common denominator, such a point can be written in the form .1=N/g with
an integer N � 1 and g 2 Z

s. The corresponding sequence is then the sequence
.f.n=N/gg/1nD1 of fractional parts. It is obvious that this sequence is periodic with
period length N, and so we consider only the points in the first period, that is, the
points f.n=N/gg with n D 1; : : : ;N. We denote this point set by P.g;N/. Clearly,
the lattice point g matters only modulo N, and so the positive integer N is called
the modulus of P.g;N/. We say informally that g is a good lattice point modulo N
if the (star) discrepancy of P.g;N/ is in some sense small. The point sets P.g;N/
were first introduced by the number theorist Korobov [84] in 1959 and were also
proposed independently by Hlawka [63]. Figure 4.6 shows the point set P.g;N/
with g D .1; 21/ 2 Z

2 and N D 34.
We want to avoid the trivial case N D 1, and so we always assume that N � 2.

The first major issue is to derive a discrepancy bound for the point sets P.g;N/. This
is accomplished by a principle of discrete Fourier analysis for residue class rings of
Z. The philosophy of this principle is connected also with the Weyl criterion in R

s

(see Theorem 4.1.30).
We need some notation for the formulation and the proof of this principle. For

an integer M � 2, let C.M/ D .�M=2;M=2	 \ Z and put C�.M/ D C.M/ n f0g.
Note that C.M/ is a complete residue system modulo M which is, as far as possible,
symmetric around 0. Furthermore, let Cs.M/ be the Cartesian product of s copies of
C.M/ and put C�

s .M/ D Cs.M/ n f0g. We set

r.h;M/ D
(

M sin.�jhj=M/ for h 2 C�.M/;
1 for h D 0:

Fig. 4.6 A good lattice point
set
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For h D .h1; : : : ; hs/ 2 Cs.M/, we put

r.h;M/ D
sY

iD1
r.hi;M/:

Proposition 4.3.1 For an integer M � 2 and for z1; : : : ; zN 2 Z
s, let P be the point

set consisting of the fractional parts fM�1z1g; : : : ; fM�1zNg. Then

DN.P/ � s

M
C

X

h2C�

s .M/

1

r.h;M/

ˇ̌
ˇ
1

N

NX

nD1
�M.h � zn/

ˇ̌
ˇ;

where �M.z/ D e2� iz=M for all z 2 Z.

Proof For k D .k1; : : : ; ks/ 2 Z
s, let A.k/ be the number of integers n with

1 � n � N and zn � k .mod M/, where a congruence between vectors is meant
componentwise. Then

A.k/ D
NX

nD1

1

Ms

X

h2Cs.M/

�M.h � .zn � k//;

since the inner sum has the value Ms if zn � k .mod M/ and the value 0 otherwise.
Therefore

A.k/ � N

Ms
D 1

Ms

X

h2C�

s .M/

�M.�h � k/
NX

nD1
�M.h � zn/: (4.34)

Now let J D Qs
iD1Œui;wi/ 
 Œ0; 1/s be an arbitrary interval occurring in the

definition of DN.P/. For each i D 1; : : : ; s, let Œai=M; bi=M	 be the largest closed
subinterval of Œui;wi/ with integers 0 � ai � bi � M � 1. The case where for
some i there is no such subinterval of Œui;wi/ can be easily dealt with, since then
A.JIP/ D 0 and wi � ui < 1=M, hence

ˇ̌
ˇ
A.JIP/

N
� �s.J/

ˇ̌
ˇ D �s.J/ <

1

M
� s

M
: (4.35)

In the remaining case, the integers a1; : : : ; as and b1; : : : ; bs are well defined and we
can write

A.JIP/
N

� �s.J/ D
X

k2Zs
ai�ki�bi

�A.k/
N

� 1

Ms

�
C 1

Ms

sY

iD1
.bi � ai C 1/� �s.J/:
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Now by the choice of the ai and bi we obtain

ˇ̌
ˇ
bi � ai C 1

M
� .wi � ui/

ˇ̌
ˇ � 1

M
for 1 � i � s;

and so an application of Lemma 4.2.13 yields

ˇ̌
ˇ
A.JIP/

N
� �s.J/

ˇ̌
ˇ � s

M
C
ˇ̌
ˇ
X

k2Zs
ai�ki�bi

�A.k/
N

� 1

Ms

�ˇ̌
ˇ: (4.36)

Furthermore, (4.34) shows that

ˇ̌
ˇ
X

k2Zs
ai�ki�bi

�A.k/
N

� 1

Ms

�ˇ̌
ˇ � 1

Ms

X

h2C�

s .M/

ˇ̌
ˇ
X

k2Zs
ai�ki�bi

�M.h � k/
ˇ̌
ˇ
ˇ̌
ˇ
1

N

NX

nD1
�M.h � zn/

ˇ̌
ˇ:

(4.37)

For fixed h D .h1; : : : ; hs/ 2 C�
s .M/, we can write

ˇ̌
ˇ
X

k2Zs
ai�ki�bi

�M.h � k/
ˇ̌
ˇ D

ˇ̌
ˇ

X

k2Zs
0�ki�bi�ai

�M.h � k/
ˇ̌
ˇ D

sY

iD1

ˇ̌
ˇ

bi�aiX

kiD0
�M.hiki/

ˇ̌
ˇ:

If hi D 0, then

ˇ̌
ˇ

bi�aiX

kiD0
�M.hiki/

ˇ̌
ˇ D bi � ai C 1 � M D M

r.hi;M/
:

For hi 2 C�.M/, the summation formula for geometric series and simple trigonom-
etry yield

ˇ̌
ˇ

bi�aiX

kiD0
�M.hiki/

ˇ̌
ˇ D

ˇ̌
ˇ
�M.hi.bi � ai C 1//� 1

�M.hi/ � 1
ˇ̌
ˇ D

ˇ̌
ˇ
sin.�hi.bi � ai C 1/=M/

sin.�hi=M/

ˇ̌
ˇ

� 1

sin.�jhij=M/
D M

r.hi;M/
:

Therefore

ˇ̌
ˇ
X

k2Zs
ai�ki�bi

�M.h � k/
ˇ̌
ˇ �

sY

iD1

M

r.hi;M/
D Ms

r.h;M/
:
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We use this in (4.37) and arrive at the inequality

ˇ̌
ˇ
X

k2Zs
ai�ki�bi

�A.k/
N

� 1

Ms

�ˇ̌
ˇ �

X

h2C�

s .M/

1

r.h;M/

ˇ̌
ˇ
1

N

NX

nD1
�M.h � zn/

ˇ̌
ˇ:

By inserting this bound into (4.36), we obtain

ˇ̌
ˇ
A.JIP/

N
� �s.J/

ˇ̌
ˇ � s

M
C

X

h2C�

s .M/

1

r.h;M/

ˇ̌
ˇ
1

N

NX

nD1
�M.h � zn/

ˇ̌
ˇ:

In view of (4.35), this inequality holds for all intervals occurring in the definition of
DN.P/, and so the desired result follows. �

The second step towards a discrepancy bound for the point sets P.g;N/ is
to apply Proposition 4.3.1 to these point sets. As we will see in the proof
of Theorem 4.3.3 below, this leads to the quantity introduced in the following
definition. It is convenient to put

r.h/ D
sY

iD1
max.1; jhij/ (4.38)

for all h D .h1; : : : ; hs/ 2 Z
s.

Definition 4.3.2 For all g 2 Z
s and all integers N � 2, we put

R.g;N/ D
X

h

1

r.h/
;

where we sum over all h 2 C�
s .N/ with h � g � 0 .mod N/. We use the standard

convention that an empty sum is equal to 0.

Theorem 4.3.3 For all g 2 Z
s and all integers N � 2, the discrepancy of the point

set P.g;N/ satisfies

DN.P.g;N// � s

N
C 1

2
R.g;N/:

Proof By Proposition 4.3.1 with M D N and zn D ng for 1 � n � N, we obtain

DN.P.g;N// � s

N
C

X

h2C�

s .N/

1

r.h;N/

ˇ̌
ˇ
1

N

NX

nD1
�N.nh � g/

ˇ̌
ˇ:
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The last sum is easily evaluated: it is equal to N if h � g � 0 .mod N/ and, by the
summation formula for geometric series, equal to 0 otherwise. This immediately
yields the bound

DN.P.g;N// � s

N
C

X

h2C�

s .N/
h�g�0 .mod N/

1

r.h;N/
:

The final result is obtained from r.h;N/ � 2r.h/ for all h 2 C�
s .N/, which follows

in turn from sin.�u/ � 2u for 0 � u � 1
2
. �

Now that we know a discrepancy bound for the point sets P.g;N/, we can utilize
these point sets in quasi-Monte Carlo integration and we get an error bound by
means of the Koksma-Hlawka inequality (see Theorem 4.1.41); note that trivially
D�

N.P.g;N// � DN.P.g;N//.
There is another approach to error bounds for the point sets P.g;N/ that exploits

the special structure of these point sets. In order to describe this approach, we first
embark on a brief excursion into Fourier analysis. The classical setting of Fourier
analysis is the one-dimensional case where one considers real-valued periodic
functions f on R with a period that we normalize to be 1. The unit interval Œ0; 1	
is thus a period interval of f . Under a reasonable regularity assumption on f , let us
say continuity, we can introduce the Fourier coefficient Of .h/ for every h 2 Z by

Of .h/ D
Z 1

0

f .u/e�2� ihudu:

Then we associate with f its formal Fourier series
X

h2Z
Of .h/e2� ihu for all u 2 R:

Under an additional hypothesis on f , for instance that the second derivative of
f exists and is continuous on R, it can be shown that the Fourier series of f is
absolutely convergent and represents f . Hence in this case we get a true identity

f .u/ D
X

h2Z
Of .h/e2� ihu D lim

m!1

mX

hD�m

Of .h/e2� ihu for all u 2 R:

Remark 4.3.4 If the second derivative f 00 of f exists and is continuous on R, then
the absolute convergence of the Fourier series of f can be proved easily by using
integration by parts. To begin with,

Of .h/ D
Z 1

0

f .u/e�2� ihudu D
h
f .u/

e�2� ihu

�2�ih

i1
uD0 �

Z 1

0

f 0.u/
e�2� ihu

�2�ih
du

D 1

2�ih

Z 1

0

f 0.u/e�2� ihudu
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for every nonzero h 2 Z. Another integration by parts yields

Of .h/ D 1

.2�ih/2

Z 1

0

f 00.u/e�2� ihudu:

Therefore

jOf .h/j � .2�jhj/�2 max
0�u�1

ˇ̌
f 00.u/

ˇ̌
;

and the absolute convergence of the Fourier series of f follows from the convergence
of the series

P1
hD1 h�2.

We proceed analogously for an arbitrary dimension s � 1. Instead of the
basic functions e2� ihu (with h 2 Z) in one-dimensional Fourier analysis, we use
the functions e2� ih�u (with h 2 Z

s) in the s-dimensional case. The given real-
valued function f on R

s is now periodic of period 1 in each variable, and so the
s-dimensional unit cube Œ0; 1	s is a period interval of f . Let us assume right away
that the function f is sufficiently smooth. For an integer k � 2, let Ck.Rs=Zs/ be the
function class consisting of the real-valued periodic functions f on R

s of period 1 in
each variable for which all partial derivatives

@k1C���Cks f

@uk1
1 � � � @uks

s

with 0 � ki � k for 1 � i � s

exist and are continuous on R
s. For f 2 Ck.Rs=Zs/ and h 2 Z

s, we introduce the
Fourier coefficient

Of .h/ D
Z

Œ0;1	s
f .u/e�2� ih�u du:

It can be shown by a similar method as in Remark 4.3.4 (but using multidimensional
integration by parts when s � 2) that

jOf .h/j � c.f /r.h/�k for all h 2 Z
s; (4.39)

where the constant c.f / � 0 depends only on f and where r.h/ is as in (4.38). We
refer to Zaremba [205], [206, Section 2] for the details. The bound (4.39) readily
implies that the Fourier series

X

h2Zs

Of .h/e2� ih�u

of f is absolutely convergent. It also represents f , and so we arrive at the identity

f .u/ D
X

h2Zs

Of .h/e2� ih�u D lim
m!1

X

hD.h1;:::;hs/2Zs

jhij�m

Of .h/e2� ih�u for all u 2 R
s:
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Now we examine quasi-Monte Carlo integration for an integrand f 2 Ck.Rs=Zs/

with a point set P.g;N/. The quasi-Monte Carlo approximation is

Z

Œ0;1	s
f .u/du � 1

N

NX

nD1
f
�n n

N
g
o�

D 1

N

NX

nD1
f
� n

N
g
�
;

where we are allowed to drop the fractional parts since f has period 1 in each
variable.

Theorem 4.3.5 Let s � 1 be an arbitrary dimension. Let f 2 Ck.Rs=Zs/ for some
integer k � 2, let N � 2 be an integer, and let g 2 Z

s. Then

ˇ̌
ˇ
Z

Œ0;1	s
f .u/du � 1

N

NX

nD1
f
� n

N
g
�ˇ̌
ˇ � c.f /Pk.g;N/;

where c.f / � 0 is the constant in (4.39) and where

Pk.g;N/ D
X

h

r.h/�k

with the summation running over all nonzero h 2 Z
s with h � g � 0 .mod N/.

Proof Since f is represented by its Fourier series and since the value of the integral
of f over Œ0; 1	s is the Fourier coefficient Of .0/, we can write

1

N

NX

nD1
f
� n

N
g
�

�
Z

Œ0;1	s
f .u/du D 1

N

NX

nD1

X

h2Zs

Of .h/e2� i.n=N/h�g � Of .0/

D 1

N

X

h2Zs

Of .h/
NX

nD1
e2� i.n=N/h�g � Of .0/

D 1

N

X

h2Zs; h¤0

Of .h/
NX

nD1
e2� i.n=N/h�g:

Now using the bound (4.39), we obtain

ˇ̌
ˇ
Z

Œ0;1	s
f .u/du � 1

N

NX

nD1
f
� n

N
g
�ˇ̌
ˇ � c.f /

N

X

h2Zs; h¤0

r.h/�k
ˇ̌
ˇ

NX

nD1
�N.nh � g/

ˇ̌
ˇ

with the notation in Proposition 4.3.1. By an observation in the proof of Theo-
rem 4.3.3, the last sum is equal to N if h � g � 0 .mod N/ and equal to 0 otherwise.
This leads immediately to the desired result. �
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As it stands, Theorem 4.3.5 holds only for periodic integrands, but there are
periodization techniques by which it can be extended to nonperiodic integrands.
The simplest idea in the one-dimensional case is to take a function f on Œ0; 1	 and
replace it by the function f1 given by

f1.u/ D 1

2
.f .u/C f .1 � u// for 0 � u � 1:

Since f1.0/ D f1.1/, the function f1 can be extended periodically to R with period 1.
Furthermore, if f is Riemann-integrable on Œ0; 1	, then so is f1 and

Z 1

0

f1.u/du D
Z 1

0

f .u/du:

Therefore the numerical integration problem for f is the same as that for f1, but f1
is periodic. In this sense, periodicity is not a serious restriction in numerical inte-
gration. More sophisticated periodization techniques, also for the multidimensional
case, are covered in Sloan and Joe [188, Section 2.12] and Zaremba [206, Section 3].
Another approach to using the method of good lattice points for nonperiodic
integrands is based on modified vertex weights (see [143] and [188, Chapter 8]).

We have now two quantities governing the error in quasi-Monte Carlo integration
with a point set P.g;N/: the number R.g;N/ furnishing the discrepancy bound in
Theorem 4.3.3 and the number Pk.g;N/ yielding the error bound for integrands
in Ck.Rs=Zs/ according to Theorem 4.3.5. In order to obtain a small value of
R.g;N/, and thus a small discrepancy bound, we have to choose the lattice point
g 2 Z

s in such a way that all summands r.h/�1 in the definition of R.g;N/ (see
Definition 4.3.2) are small, or equivalently, that the values of r.h/ are large for all
h 2 C�

s .N/ with h � g � 0 .mod N/. A similar strategy applies to Pk.g;N/ in view
of its definition in Theorem 4.3.5: in order to make Pk.g;N/ small, choose g 2 Z

s

in such a way that r.h/ is large for all nonzero h 2 Z
s with h � g � 0 .mod N/. This

analogy between these quantities makes it plausible that Pk.g;N/ can be bounded
in terms of R.g;N/. The proof of the following inequality from [133, Theorem 5.5]
is quite technical, and so we state this result without proof.

Proposition 4.3.6 Let k � 2, s � 1, and N � 2 be integers, and let g 2 Z
s be such

that each coordinate of g is coprime to N. Then

Pk.g;N/ � R.g;N/k C c.k; s/N�k

with a constant c.k; s/ > 0 depending only on k and s.

There is a crucial issue remaining, namely how small, for given integers s � 1

and N � 2, we can make R.g;N/ by a suitable choice of the lattice point g 2 Z
s.

Such an advantageous choice of g corresponds to what we earlier called a good



4.3 Lattice Rules 237

lattice point modulo N. The trouble is that, except for easy low-dimensional cases
(see Example 4.3.15 below), no explicit constructions of good lattice points modulo
N are available. Finding such explicit constructions in arbitrary dimensions is indeed
the outstanding open problem in the theory of good lattice points, and it seems to be
a hard nut to crack.

One way around this difficulty is to randomize the problem in some sense, that is,
we investigate the average quality of the lattice points g 2 Z

s (in terms of R.g;N/)
for fixed s and N. Thus, instead of trying to reach for the absolute minimum of
R.g;N/ for fixed s and N, we are less ambitious and settle for the average value of
R.g;N/. To our great relief, this average value is reasonably small. The case s D 1

is trivial since then g has only one coordinate which we take to be 1 (or any integer
coprime to N); then R.g;N/ D 0 by the convention in Definition 4.3.2. The analysis
of the average value of R.g;N/ is considerably easier if N is a prime number. Since
g matters only modulo N, it suffices to average R.g;N/ over g 2 Cs.N/.

Theorem 4.3.7 Let s � 2 be a dimension and let N be a prime number. Then

Ms.N/ WD 1

Ns

X

g2Cs.N/

R.g;N/ <
1

N
.2 log N C 2/s:

Proof By the definition of R.g;N/ in Definition 4.3.2, we get

Ms.N/ D 1

Ns

X

g2Cs.N/

X

h2C�

s .N/
h�g�0 .mod N/

1

r.h/
D 1

Ns

X

h2C�

s .N/

S.h/
r.h/

;

where S.h/ is the number of g 2 Cs.N/ with h � g � 0 .mod N/. If we write
h D .h1; : : : ; hs/ and g D .g1; : : : ; gs/, then the last condition means that

h1g1 C � � � C hsgs � 0 .mod N/: (4.40)

If h 2 C�
s .N/, then hi 6� 0 .mod N/ for some i with 1 � i � s. Thus, for every choice

of g1; : : : ; gi�1; giC1; : : : ; gs 2 C.N/, the value of gi 2 C.N/ is uniquely determined
by (4.40) since N is a prime number. Therefore S.h/ D Ns�1 for all h 2 C�

s .N/ and

Ms.N/ D 1

N

X

h2C�

s .N/

1

r.h/
<
1

N

X

h2Cs.N/

1

r.h/
:

By invoking (4.38), we get

X

h2Cs.N/

1

r.h/
D
� X

h2C.N/

1

max .1; jhj/
�s
:
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For N � 3, we use the standard method of comparing sums and integrals to obtain

X

h2C.N/

1

max .1; jhj/ D 3C 2

.N�1/=2X

hD2

1

h
� 3C 2

Z .N�1/=2

1

du

u

D 3C 2 log
N � 1
2

< 2 log N C 2:

This bound holds trivially for N D 2. A combination of the inequalities and
identities above yields the theorem. �

Corollary 4.3.8 For every dimension s � 2 and every prime number N, there exists
a lattice point g 2 Z

s with

R.g;N/ <
1

N
.2 log N C 2/s:

Proof This follows immediately from Theorem 4.3.7. �

Corollary 4.3.9 For every dimension s � 2 and every prime number N, there exists
a lattice point g 2 Z

s for which the discrepancy of the point set P.g;N/ satisfies

DN.P.g;N// <
1

2N
.2 log N C 2/s C s

N
:

Proof This follows immediately from Theorem 4.3.3 and Corollary 4.3.8. �
Corollary 4.3.10 For every dimension s � 2 and every prime number N, there
exists a lattice point g 2 Z

s for which

Pk.g;N/ � c1.k; s/N
�k.log N/ks for all integers k � 2;

where the constant c1.k; s/ > 0 depends only on k and s.

Proof By averaging in Theorem 4.3.7 not over all g 2 Cs.N/, but only over the
.N � 1/s lattice points g 2 Cs.N/ with all coordinates nonzero, we get such a g with
R.g;N/ D O.N�1.log N/s/, where the implied constant depends only on s. The rest
follows from Proposition 4.3.6. �

Let us now ponder the practical implications of the last two corollaries. Corol-
lary 4.3.9 yields point sets consisting of N points in Œ0; 1/s, with a prime number
N, for which the discrepancy, and therefore also the star discrepancy, is at most
of the order of magnitude N�1.log N/s. These point sets are not necessarily low-
discrepancy point sets in the technical sense of (4.23), but their star discrepancy is
off by at most a factor log N from the bound in (4.23). These point sets are therefore
serviceable for quasi-Monte Carlo integration and they have the sympathetic feature
that their points are very easy to compute once the lattice point g is known.
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Corollary 4.3.10 shows that there are good lattice points g 2 Z
s modulo a prime

number N for which the quasi-Monte Carlo method in Theorem 4.3.5 has a rate
of convergence N�k.log N/ks for integrands f 2 Ck.Rs=Zs/. The exponent ks of
log N can be improved to k.s � 1/ by a refined argument due to Bakhvalov [7]. The
rate of convergence N�k (up to logarithmic factors) for f 2 Ck.Rs=Zs/ is really
gratifying since it says that the convergence is faster for smoother integrands. This
phenomenon is well known in the one-dimensional case (see [34, Chapter 2]). The
method of good lattice points extends this phenomenon to the multidimensional case
in an elegant fashion. All this is in sharp contrast to the Monte Carlo method where
the rate of convergence is N�1=2 no matter how smooth the integrand is.

Remark 4.3.11 We restricted the discussion of existence theorems for good lattice
points to prime moduli N since this case is much easier to handle. However,
existence theorems for good lattice points of the same quality in terms of the orders
of magnitude are available also for composite moduli N. This generalization was
achieved by Niederreiter [125]. The basic step is to consider, for every integer
N � 2, the set

Gs.N/ D fg D .g1; : : : ; gs/ 2 Cs.N/ W gcd.gi;N/ D 1 for 1 � i � sg (4.41)

of lattice points. The set Gs.N/ has exactly �.N/s elements, where � is Euler’s
totient function. Then the analog of Theorem 4.3.7 says that for all integers s � 2

and N � 2, the corresponding average value As.N/ satisfies

As.N/ WD 1

�.N/s
X

g2Gs.N/

R.g;N/ D O.N�1.log N/s/

with an implied constant depending only on s. An even sharper result providing an
asymptotic expansion for As.N/ can be found in [133, Theorem 5.10]. This yields
right away analogs of Corollaries 4.3.8 and 4.3.9 for all integers N � 2. Since the
condition on g in Proposition 4.3.6 is satisfied for all g 2 Gs.N/, we also get an
analog of Corollary 4.3.10, namely that for all integers s � 2 and N � 2 there exists
a lattice point g 2 Gs.N/ for which

Pk.g;N/ D O.N�k.log N/ks/ for all integers k � 2;

where the implied constant depends only on k and s. For many values of N, the
exponent ks of log N can be improved to k.s � 1/C 1 or even k.s � 1/ (see [134]).

All existence theorems for good lattice points presented so far are nonconstruc-
tive, since they are based on the argument that there must exist a lattice point g0 for
which R.g0;N/ is at least as small as the average of R.g;N/ over a set of candidate
lattice points g. But no information is given in the proofs about how to obtain such
a good lattice point g0. For a long time, good lattice points were produced by brute-
force computer search, and this approach is feasible as long as the dimension s
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and the modulus N are not too large. Note that if we search for an s-dimensional
good lattice point modulo N in the set Cs.N/, then a priori we have to consider Ns

candidates.
There is a more constructive strategy that builds an s-dimensional good lattice

point coordinate by coordinate, starting with the first coordinate and ending with
the sth coordinate. The corresponding algorithm is known in the literature as the
CBC (for component-by-component) algorithm. It is a type of greedy algorithm
which proceeds by finding, in a certain sense, local minima of the quantity R.g;N/.
It is convenient to put

G.N/ D fg 2 C.N/ W gcd.g;N/ D 1g:

Algorithm 4.3.12 (CBC Algorithm) Let the integers s � 2 and N � 2 be given.

Step 1: choose g1 D 1.
Step 2: Suppose that for some dimension d with 1 � d � s � 1, the coordinates
g1; : : : ; gd 2 G.N/ have already been constructed. Then find an integer gdC1 2
G.N/ that minimizes R..g1; : : : ; gd; b/;N/ as a function of b 2 G.N/. This
recursive procedure stops once the coordinate gs has been obtained.

The final output of the CBC algorithm is a lattice point g D .g1; : : : ; gs/ 2
G.N/s D Gs.N/, in the notation of (4.41). In the course of the CBC algorithm we
compute .s � 1/�.N/ values of R.�;N/, whereas in a brute-force search over the
whole set Gs.N/ we compute �.N/s values of R.�;N/. Therefore the CBC algorithm
is much more efficient than brute-force search.

What can we say about the lattice point g 2 Gs.N/ produced by the CBC
algorithm? The following result provides an answer for the simplest case where
N is a prime number.

Theorem 4.3.13 Let s � 2 be a given dimension and let N be a prime number.
Then the lattice point g 2 Gs.N/ produced by the CBC algorithm satisfies

R.g;N/ <
1

N � 1.2 log N C 2/s:

Proof We prove by induction on d D 1; : : : ; s that

R..g1; : : : ; gd/;N/ <
1

N � 1
.2 log N C 2/d: (4.42)

This is trivial for d D 1 since R.g1;N/ D R.1;N/ D 0. Suppose that (4.42) has
been shown for some d with 1 � d � s � 1. Note that G.N/ D C�.N/ since N is a
prime number. Therefore by Step 2 in Algorithm 4.3.12 with gd D .g1; : : : ; gd/ and
h 2 Cd.N/,

R..gd; gdC1/;N/ � 1

N � 1

X

b2C�.N/

R..gd; b/;N/
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D 1

N � 1

X

b2C�.N/

X

.h;k/2C�

dC1
.N/

.h;k/�.gd ;b/�0 .mod N/

1

r.h/max.1; jkj/

D 1

N � 1

X

.h;k/2C�

dC1.N/

1

r.h/max.1; jkj/
X

b2C�.N/
.h;k/�.gd ;b/�0 .mod N/

1:

The contribution of the terms with k D 0 in the last double sum is equal to .N �
1/R.gd;N/. By splitting off these terms, we get with gdC1 D .g1; : : : ; gd; gdC1/,

R.gdC1;N/ � R.gd;N/C 1

N � 1

X

h2Cd.N/

1

r.h/

X

k2C�.N/

1

jkj
X

b2C�.N/
.h;k/�.gd ;b/�0 .mod N/

1:

For fixed h 2 Cd.N/ and k 2 C�.N/, the congruence .h; k/ � .gd; b/ D h � gd C kb �
0 .mod N/ has at most one solution b 2 C�.N/ since N is a prime number. Hence
using the induction hypothesis (4.42) and bounds in the proof of Theorem 4.3.7, we
obtain

R.gdC1;N/ � R.gd;N/C 1

N � 1

X

h2Cd.N/

1

r.h/

X

k2C�.N/

1

jkj

<
1

N � 1
.2 log N C 2/d C 1

N � 1.2 log N C 2/d.2 log N C 1/

D 1

N � 1
.2 log N C 2/dC1:

This completes the proof of (4.42) by induction, and putting d D s in (4.42) yields
the result of the theorem. �

It is remarkable that Theorem 4.3.13 is practically of the same quality as the
nonconstructive existence result in Corollary 4.3.8. Clearly, Corollary 4.3.9 with 1

2N

replaced by 1
2.N�1/ and Corollary 4.3.10 hold also for the lattice point g 2 Gs.N/

in Theorem 4.3.13. An extension of Theorem 4.3.13 to composite moduli N was
achieved by Sinescu and Joe [185] and it yields again the order of magnitude
N�1.log N/s for the quantity R.g;N/ with g 2 Gs.N/ being the lattice point
produced by the CBC algorithm.

Now we come to another fruitful idea in the search for good lattice points, namely
to reduce the size of the search space by restricting the form of the lattice points.
The most popular special form is

g.a/ WD .1; a; a2; : : : ; as�1/ 2 Z
s (4.43)

which is called the Korobov form because it was proposed by Korobov [85]. The
lattice point g.a/ depends also on s, but for the sake of simplicity we suppress this
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dependence in the notation; the dimension s will always be clear from the context.
Since g.a/ matters only modulo a given integer N � 2, we can confine the integer
a to a complete residue system modulo N, say a 2 ZN D f0; 1; : : : ;N � 1g or
a 2 C.N/. Hence there are only N candidates g.a/ in the search space, as opposed
to Ns candidates when the lattice points run through the set Cs.N/. The following
result, which is an analog of Theorem 4.3.7, guarantees that the strategy of limiting
the search to lattice points of Korobov form is successful, at least in the case of
prime moduli.

Theorem 4.3.14 Let s � 2 be a dimension and let N be a prime number. Then

Ks.N/ WD 1

N

N�1X

aD0
R.g.a/;N/ <

s � 1
N

.2 log N C 2/s:

Proof By inserting the definition of R.g.a/;N/ into the expression for Ks.N/, we
obtain as in the proof of Theorem 4.3.7 that

Ks.N/ D 1

N

X

h2C�

s .N/

T.h/
r.h/

;

where T.h/ is the number of a 2 ZN with h � g.a/ � 0 .mod N/. If we write
h D .h1; : : : ; hs/, then the last condition means that

h � g.a/ D h1 C h2a C h3a
2 C � � � C hsa

s�1 � 0 .mod N/:

For fixed h 2 C�
s .N/, this is a polynomial congruence modulo N in the unknown a

with a nonzero polynomial of degree at most s � 1. Since N is a prime number, it
follows that T.h/ � s � 1 (apply Theorem 1.4.27 to the finite field FN). We infer
that

Ks.N/ � s � 1

N

X

h2C�

s .N/

1

r.h/
<

s � 1

N
.2 log N C 2/s

by a bound in the proof of Theorem 4.3.7. �

In terms of N, the upper bound in Theorem 4.3.14 has the same order of
magnitude N�1.log N/s as that in Theorem 4.3.7. Therefore Theorem 4.3.14 has
consequences like Corollaries 4.3.8, 4.3.9, and 4.3.10 for lattice points of Korobov
form, with upper bounds of the same order of magnitude in N as in those corollaries.

Example 4.3.15 Except for the trivial one-dimensional case, there is only the two-
dimensional case in which general explicit constructions of good lattice points
are known. The nicest such construction uses Fibonacci numbers. Recall that the
sequence F1;F2; : : : of Fibonacci numbers is the sequence of positive integers
defined recursively by F1 D F2 D 1 and FkC2 D FkC1 C Fk for k � 1. Thus
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F3 D 2, F4 D 3, F5 D 5, F6 D 8, and so on. The Fibonacci sequence is closely
connected with the irrational number ˛ D .

p
5�1/=2 considered in Example 4.2.7.

We showed in that example that ˛ has the periodic continued fraction expansion

˛ D Œ0I 1; 1; 1; : : :	:

Then by the recursions stated prior to Lemma 4.2.1, the numerators pk and the
denominators qk of the convergents pk=qk to ˛ are given by pk D Fk and qk D FkC1
for all k � 1. This suggests the following construction of two-dimensional good
lattice points. As a modulus we take N D Fm for some integer m � 3. Note that
there are composite numbers among the Fibonacci numbers, for example F6 D 8

and F8 D 21, and so the restriction to prime moduli as in most of our discussion
of good lattice points is not needed here. The lattice point corresponding to the
modulus N D Fm is g D .1;Fm�1/. This lattice point is of Korobov form. We
will show that g is a good lattice point modulo N in the strong sense that P.g;N/
is actually a two-dimensional low-discrepancy point set. First we consider the
sequence S D .fnFm�1=Fmg/1nD0. We make the crucial observation that in the
proof of the discrepancy bound in Theorem 4.2.5, the fact that ˛ is irrational is
not used explicitly, but only the properties of the convergents to ˛ are relevant. This
entails that the argument in the proof of Theorem 4.2.5 applies also to the first M
terms of the sequence S as long as M � N D Fm. Therefore the consequence of
Theorem 4.2.5 stated in Theorem 4.2.6 applies as well for this range of M. Since in
our case K D 1 in Theorem 4.2.6, we obtain

DM.S/ <
2

log 2
M�1 log.M C 1/ for 1 � M � N:

Next we recall that P.g;N/ consists of the points .fn=Fmg; fnFm�1=Fmg/ 2 Œ0; 1/2

with n D 1; : : : ;N D Fm. Note that for n D Fm we get .fn=Fmg; fnFm�1=Fmg/ D
.0; 0/, and so P.g;N/ can be described also as the point set consisting of the points

� n

Fm
;
nnFm�1

Fm

o�
2 Œ0; 1/2 for n D 0; 1; : : : ;N � 1 D Fm � 1:

Therefore we can apply Lemma 4.1.38, and using the trivial fact that D�
M.S/ �

DM.S/ for all M � 1 we get

D�
N.P.g;N// <

2

log 2
� log.N C 1/

N
C 1

N
:

Thus, P.g;N/ is indeed a two-dimensional low-discrepancy point set in the sense
of (4.23). This is excellent news since it yields an improvement on the quality
of lattice points promised by the existence result in Corollary 4.3.9 and by the
CBC algorithm in Theorem 4.3.13 for s D 2. A detailed analysis of the special
two-dimensional point sets P.g;N/ built on Fibonacci numbers can be found in
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Zaremba [204]. The case where N D F9 D 34 is illustrated in Figure 4.6. Unfortu-
nately, nobody has managed to extend this elegant construction to higher dimensions
in such a way that it at least matches the existence result in Corollary 4.3.9.

4.3.2 General Lattice Rules

The issue here is to generalize the method of good lattice points so as to bring out
its salient features. We commence by regarding this method from a group-theoretic
perspective. For a given dimension s � 1, the Euclidean space R

s is an abelian
group under addition (of real numbers for s D 1 and of vectors for s � 2). Since Zs

is a subgroup of Rs, we can form the factor group R
s=Zs which is sometimes called

the s-dimensional torus group. For s D 1 the set R=Z is geometrically similar to a
circle since the endpoints 0 and 1 of the unit interval Œ0; 1	 belong to the same coset
0 C Z 2 R=Z and can therefore be identified. Similarly for s D 2, we can think
of the set R2=Z2 as being obtained by identifying opposite sides of the unit square
Œ0; 1	2, and then we arrive at the geometric shape of a doughnut (or a torus in the
technical jargon). For s � 3 we get higher-dimensional tori (not to be confused with
torii which, as everybody knows, is a gateway of a ShintNo shrine) .

Now let us consider a point set P.g;N/ in Sect. 4.3.1 with a dimension s � 1, a
lattice point g 2 Z

s, and a modulus N � 2. By definition, the points of P.g;N/ are
the fractional parts xn WD f.n=N/gg with n D 1; : : : ;N. The corresponding cosets in
R

s=Zs are given by

xn C Z
s D

n n

N
g
o

C Z
s D n

N
g C Z

s D n
� 1

N
g C Z

s
�

for n D 1; : : : ;N:

For n D N we have xN C Z
s D g C Z

s D 0 C Z
s, the identity element of the

group R
s=Zs. Therefore the cosets xn C Z

s for n D 1; : : : ;N form the finite cyclic
subgroup of Rs=Zs generated by .1=N/g C Z

s.
If the point set P.g;N/ is viewed in this way, then the following generalization is

obvious. Let L=Zs be any finite subgroup of Rs=Zs and let yn CZ
s with yn 2 Œ0; 1/s

for n D 1; : : : ;N be the distinct cosets making up the group L=Zs. The point set
consisting of the points y1; : : : ; yN is called a lattice point set and the corresponding
quasi-Monte Carlo approximation

Z

Œ0;1	s
f .u/du � 1

N

NX

nD1
f .yn/ (4.44)

is called a lattice rule.
The name “lattice rule” stems from a geometric interpretation of the group-

theoretic approach above. If we envisage the union L D [N
nD1.yn C Z

s/ of cosets as
a subset of Rs, then L is an s-dimensional lattice. Here by an s-dimensional lattice
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we mean a discrete additive subgroup of R
s that is not contained in any proper

linear subspace of Rs. Equivalently, an s-dimensional lattice is obtained by taking s
linearly independent vectors b1; : : : ;bs 2 R

s (hence a basis of the vector space R
s)

and forming the set

L D
n sX

iD1
kibi W ki 2 Z for 1 � i � s

o
(4.45)

of all linear combinations of b1; : : : ;bs with coefficients that are integers. The
lattices corresponding to lattice rules must have an additional property stipulated
in the following definition.

Definition 4.3.16 An s-dimensional lattice is called an s-dimensional integration
lattice if it contains Zs as a subset.

Instead of a finite subgroup L=Zs of Rs=Zs, we can then take an s-dimensional
integration lattice L as the starting point. The intersection L \ Œ0; 1/s is a finite set
since L is discrete, and this finite set of points in Œ0; 1/s forms again a lattice point
set.

The cornerstone for the analysis of the discrepancy of general lattice point sets is
again Proposition 4.3.1, as in the special case of the point sets P.g;N/. This leads
naturally to the following concept.

Definition 4.3.17 The dual lattice L? of the s-dimensional integration lattice L is
defined by

L? D fh 2 Z
s W h � y 2 Z for all y 2 Lg:

Example 4.3.18 Let us consider the special case of the integration lattice L corre-
sponding to a point set P.g;N/. We know that

L D
N[

nD1

� n

N
g C Z

s
�
:

Thus, the elements y 2 L are exactly given by y D .n=N/g C k for some n D
1; : : : ;N and some k 2 Z

s. For h 2 Z
s we therefore obtain h 2 L? if and only if

.n=N/h � g C h � k 2 Z for all n D 1; : : : ;N and all k 2 Z
s. But h � k is automatically

an integer, and so the last condition is equivalent to .n=N/h �g 2 Z for n D 1; : : : ;N.
It suffices to require this for n D 1, hence the condition says that .1=N/h � g 2 Z,
and therefore

L? D fh 2 Z
s W h � g � 0 .mod N/g:
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It is no accident that we have already seen this condition in the analysis of the point
sets P.g;N/, for instance in Definition 4.3.2 and Theorem 4.3.5. The dual lattice
plays a crucial role in the analysis of general lattice point sets as well.

Lemma 4.3.19 Let y1; : : : ; yN 2 Œ0; 1/s be the points of the lattice point set
corresponding to the s-dimensional integration lattice L, or equivalently to the finite
subgroup L=Zs of Rs=Zs. If h 2 Z

s, then

NX

nD1
e2� ih�yn D

(
N for h 2 L?;
0 for h … L?:

Proof The group A WD L=Zs is finite and also abelian as a subgroup of R
s=Zs.

Therefore we can talk about characters of A. For fixed h 2 Z
s we put

�h.y C Z
s/ D e2� ih�y for all y 2 L:

The map �h is well defined since the right-hand side does not depend on the
representative that we pick from the coset y C Z

s. Furthermore, �h is obviously
a character of the additive group A. Now we can write

NX

nD1
e2� ih�yn D

X

a2A

�h.a/:

The last sum, being a character sum for the finite abelian group A of order N, is
equal to N if the character �h is trivial and equal to 0 if �h is nontrivial (compare
with Theorem 1.3.34). Moreover, �h is trivial if and only if h � y 2 Z for all y 2 L,
that is, if and only if h 2 L?. �

The following definition generalizes Definition 4.3.2 and the subsequent result
generalizes Theorem 4.3.3. We avoid a trivial case by assuming from now on that a
lattice point set contains at least two points.

Definition 4.3.20 For an s-dimensional integration lattice L with N WD jL=Zsj � 2,
we put

R.L/ D
X

h2F.L/

1

r.h/

with F.L/ D C�
s .N/\ L?. We again use the convention that an empty sum is equal

to 0.

Theorem 4.3.21 Let L be an s-dimensional integration lattice and let P be the
corresponding lattice point set with N � 2 points. Then

DN.P/ � s

N
C 1

2
R.L/:
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Proof Let y1; : : : ; yN be the points of P . From the fact that the group L=Zs has order
N, it follows that Nyn 2 Z

s for 1 � n � N. Therefore we can apply Proposition 4.3.1
with M D N, which yields

DN.P/ � s

N
C

X

h2C�

s .N/

1

r.h;N/

ˇ̌
ˇ
1

N

NX

nD1
e2� ih�yn

ˇ̌
ˇ:

Lemma 4.3.19 shows that

DN.P/ � s

N
C

X

h2F.L/

1

r.h;N/
:

The final step of the proof is the same as in the proof of Theorem 4.3.3. �
It should be quite obvious that there is a complete analog of Theorem 4.3.5 for

general lattice rules, namely that for integrands f 2 Ck.Rs=Zs/ for some integer
k � 2 and for an s-dimensional integration lattice L, the error in (4.44) satisfies the
bound

ˇ̌
ˇ
Z

Œ0;1	s
f .u/du � 1

N

NX

nD1
f .yn/

ˇ̌
ˇ � c.f /Pk.L/;

where

Pk.L/ D
X

h2L?nf0g
r.h/�k:

The proof of this bound is again based on Lemma 4.3.19. An analog of Propo-
sition 4.3.6, that is, a bound on Pk.L/ in terms of R.L/, can be found in [133,
Theorem 5.26].

For the proof of the following theorem, we need a notion from group theory. Let
A be a finite abelian group with the additive notation and let G and H be subgroups
of A. Then A is said to be the direct sum of G and H, written A D G ˚ H, if every
element a 2 A can be written as a D g C h with uniquely determined g 2 G and
h 2 H (or equivalently, if for every a 2 A there is a representation a D g C h
with some g 2 G and h 2 H and if G \ H D f0g). Each of G and H is called a
direct summand of A. We proceed similarly for more than two direct summands,
using the characterization in terms of the unique sum representation. We refer to
Definition 1.3.22 for the concept of the exponent of A.

Lemma 4.3.22 Let A be a finite abelian group and let E D E.A/ be the exponent
of A. Then every cyclic subgroup of A of order E is a direct summand of A.
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Proof We proceed by induction on the order of A. The case A D f0g is trivial. Now
we take a finite abelian group A of order greater than 1 and we assume that the
lemma is already shown for all finite abelian groups of smaller order than A.

Let C D hci be a cyclic subgroup of A of order E. If C D A, then A D C ˚ f0g
and C is a direct summand of A. If C ¤ A, then we choose b 2 AnC such that ord.b/
is minimal among all elements of A n C. Now b ¤ 0 2 A implies that ord.b/ � 2,
and so we can talk about prime factors of ord.b/. Take any prime factor p of ord.b/
and consider the p-fold sum d D pb. Then ord.d/ D ord.b/=p < ord.b/, and in
view of the definition of b we must have d 2 C. Therefore d D nc for some n 2 N.
Now

ord.b/n

p
c D ord.b/

p
.nc/ D ord.b/

p
d D 0 2 A;

and so E divides ord.b/n=p by Lemma 1.3.10. But ord.b/ divides E by Proposi-
tion 1.3.24, and therefore p divides n, say n D jp for some j 2 N. For the element
b � jc … C (recall that b … C D hci) we obtain

p.b � jc/ D pb � .jp/c D d � nc D d � d D 0 2 A;

and so ord.b � jc/ D p. The minimality property of ord.b/ implies that ord.b/ �
ord.b � jc/ D p. Since p is a prime factor of ord.b/, it follows that ord.b/ D p.

We introduce the cyclic subgroup B D hbi of A of order p. The intersection B\C
is a subgroup of B, and we deduce from Lagrange’s theorem (see Theorem 1.3.21)
and b … C that B \ C D f0g. Now we consider the factor group A WD A=B. Let m be
the order of the element cCB 2 A. Then m.cCB/ D 0 2 A, that is, mcCB D 0CB,
and so mc 2 B. But also mc 2 C, hence mc D 0 2 A since B \ C D f0g, and so
E divides m by Lemma 1.3.10. Furthermore E.c C B/ D Ec C B D 0 C B, and so
m D E.

Thus, we arrive at the following situation: A is a finite abelian group of smaller
order than A, it contains the cyclic subgroup C WD hc C Bi of order E, and E is the
exponent of A since the exponent of a factor group of A cannot be larger than the
exponent of A. Therefore we can apply the induction hypothesis to A. This yields a
subgroup H of A with A D C ˚ H. Now H gives rise to the subgroup H of A that
consists of all h 2 A with h C B 2 H. Note that B 
 H. It is then clear that every
a 2 A can be written in the form a D g C h with some g 2 C and h 2 H. We obtain
A D C ˚ H if we can show that C \ H D f0g. So let tc 2 H for some t 2 N. Then
tcCB 2 H, but also tcCB D t.cCB/ 2 C, and so tcCB 2 C\H. This intersection
consists only of the coset 0CB, and therefore tc 2 B. This implies tc 2 B\C D f0g
as desired. �

Now we return to the finite abelian group L=Zs and we apply the theory of finite
abelian groups, and in particular Lemma 4.3.22, in order to derive a canonical form
of lattice point sets.
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Theorem 4.3.23 For every dimension s � 1 and every integer N � 2, an
s-dimensional lattice point set with N points consists exactly of all fractional parts

n rX

iD1
.ki=ni/gi

o
with ki 2 Z; 0 � ki < ni for 1 � i � r;

where the integer r with 1 � r � s and the integers n1; : : : ; nr � 2 with niC1 dividing
ni for 1 � i � r � 1 and n1 � � � nr D N are uniquely determined. Furthermore, the
lattice points g1; : : : ; gr 2 Z

s are linearly independent and for each i D 1; : : : ; r the
greatest common divisor of all coordinates of gi and of ni is equal to 1.

Proof Let A WD L=Zs be the finite abelian group of order N corresponding to the
given lattice point set. First we establish a suitable direct sum decomposition of
A by the following procedure. Let n1 � 2 be the exponent of A and let C1 be a
cyclic subgroup of A of order n1. If C1 D A, then we stop. Otherwise, we apply
Lemma 4.3.22 and obtain A D C1 ˚ A2 with a subgroup A2 of A of order at least
2. Let n2 � 2 be the exponent of A2. Then n2 divides n1 by Proposition 1.3.24.
Furthermore, A2 has a cyclic direct summand C2 of order n2 by Lemma 4.3.22.
Continuing in this way, we arrive after finitely many steps at a decomposition A D
C1 ˚ � � � ˚ Cr , where Ci is a cyclic group of order ni � 2 for 1 � i � r and
niC1 divides ni for 1 � i � r � 1. A comparison of orders yields N D n1 � � � nr. The
number r and the orders n1; : : : ; nr of the direct summands in this decomposition are
uniquely determined by the multiset (that is, the set with multiplicities of elements
taken into account) of orders of all elements of A.

For i D 1; : : : ; r, let ci 2 R
s be such that ci CZ

s is a generator of the cyclic group
Ci. Since Ci has order ni, we get nici 2 Z

s, and so ci D .1=ni/gi for some gi 2 Z
s.

Since ci C Z
s 2 Ci has order ni, the greatest common divisor of all coordinates of

gi and of ni is equal to 1. Furthermore, it follows from A D C1 ˚ � � � ˚ Cr that the
points of the given lattice point set are as indicated in the theorem.

If c1; : : : ; cr were linearly dependent, then 0 2 R
s could be written as a

nontrivial linear combination of c1; : : : ; cr with rational coefficients. By clearing
denominators, we get

Pr
iD1 jici D 0 with integers j1; : : : ; jr not all 0 and satisfying

gcd.j1; : : : ; jr/ D 1. This yields the identity

rX

iD1
ji.ci C Z

s/ D 0 C Z
s

in the group A. The direct sum decomposition A D C1 ˚ � � � ˚ Cr implies that
ji.ci C Z

s/ is the identity element of Ci for 1 � i � r, and so ni divides ji for
1 � i � r. Since nr divides all ni, we infer that nr � 2 divides j1; : : : ; jr. But this
is a contradiction to gcd.j1; : : : ; jr/ D 1. Therefore c1; : : : ; cr, and so g1; : : : ; gr,
are linearly independent. In particular, it follows that r � s. Now all claims in the
theorem are proved. �
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Definition 4.3.24 The uniquely determined integer r in Theorem 4.3.23 is called
the rank of the lattice point set and the uniquely determined integers n1; : : : ; nr in
Theorem 4.3.23 are called the invariants of the lattice point set.

Example 4.3.25 Consider a point set P.g;N/ from Sect. 4.3.1 with g D
.g1; : : : ; gs/ 2 Z

s satisfying gcd.g1; : : : ; gs;N/ D 1. Then according to
Definition 4.3.24, P.g;N/ is a lattice point set of rank 1 and its only invariant
is n1 D N. If d WD gcd.g1; : : : ; gs;N/ > 1, then all points of P.g;N/ occur with the
same multiplicity d, and so this case is not interesting in practice.

Example 4.3.26 Take the centered regular lattice in (4.33) with m � 2 and shift it
so that the origin belongs to the shifted point set. The points of the shifted point set
are

�k1
m
; : : : ;

ks

m

�
2 Œ0; 1/s

with k1; : : : ; ks running independently through the integers 0; 1; : : : ;m � 1. We refer
to Fig. 4.7 for an illustration with s D 2 and m D 6. The corresponding subgroup A
of Rs=Zs is obviously the direct sum A D C ˚ � � � ˚ C of s copies of a cyclic group
C of order m. The uniqueness of the rank and of the invariants of lattice point sets
implies that our lattice point set has rank s and invariants n1; : : : ; ns with ni D m
for 1 � i � s. The lattice corresponding to this example is L D .1=m/Zs. The dual
lattice of L is L? D mZ

s.

Example 4.3.27 The preceding example suggests the following general procedure.
Let L be an s-dimensional integration lattice and let m � 2 be an integer. Then the
scaled version .1=m/L of L is again an s-dimensional integration lattice which can
be thought of as a copy of L with scaling factor 1=m. The corresponding lattice rule
is called a copy rule. If y1; : : : ; yN are the points of L in Œ0; 1/s, then all points of L
are given by yn Ck with 1 � n � N and k running throughZs. The points of .1=m/L
are therefore given by .1=m/yn C .1=m/k with 1 � n � N and k running through
Z

s. It is now easy to find the points of .1=m/L belonging to Œ0; 1/s, and indeed the

Fig. 4.7 A shifted centered
regular lattice
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lattice point set corresponding to .1=m/L consists of the msN points

1

m
yn C 1

m
.k1; : : : ; ks/ 2 Œ0; 1/s;

where 1 � n � N and k1; : : : ; ks run independently through the integers
0; 1; : : : ;m � 1. This point set can be viewed geometrically as follows: subdivide
the s-dimensional unit cube into ms smaller cubes each of side length 1=m, and
in each smaller cube choose an appropriately shifted and scaled-down version (by
the factor 1=m) of the points y1; : : : ; yN . Sloan and Joe [188, Sections 6.4 and 6.5]
make a good case for the choice m D 2 which can improve the performance of
certain lattice rules.

Much more is known about general lattice rules, and we refer you to [133,
Chapter 5] and [188] if you want to learn more about them.

4.4 Nets and .t; s/-Sequences

4.4.1 Basic Facts About Nets

We continue with the investigation of one of the key problems in quasi-Monte Carlo
integration, namely the construction of low-discrepancy point sets. A rich source
of low-discrepancy point sets is supplied by the theory of so-called nets or more
precisely .t;m; s/-nets. The philosophy behind the concept of a net is very simple.
In view of the definition of the discrepancy of a point set P consisting of N points in
Œ0; 1/s (see Definition 4.1.35), it is clear that in order to arrive at a low-discrepancy
point set P , we need to make the counting function A.JIP/ roughly equal to N�s.J/
for all half-open subintervals J of Œ0; 1/s. In an ideal world, A.JIP/would be exactly
equal to N�s.J/ for all such intervals J, but this is impossible because of the lower
bounds on DN.P/ stated in Sect. 4.1.2, or because of the even simpler reason that
A.JIP/ is an integer and N�s.J/ is not always an integer. However, what is in fact
feasible is to request the identity A.JIP/ D N�s.J/ for a large finite family of
intervals J. The intuitive idea is then that if A.JIP/ D N�s.J/ for many intervals J,
then P should overall be a low-discrepancy point set. This expectation is borne out
by the results to be described below.

Some care has to be taken concerning the actual form of the intervals J for which
we request that A.JIP/ D N�s.J/. The following examples provide a clue and lead
to the notion introduced in Definition 4.4.3 below.

Example 4.4.1 For integers b � 2 and m � 0, consider the equidistant point set P
consisting of the bm rational numbers 0; 1=bm; 2=bm; : : : ; .bm �1/=bm in Œ0; 1/. If we
want A.JIP/ D N�s.J/ D bm�.J/, then the length �.J/ of the interval J 
 Œ0; 1/

must of course be a rational number with denominator bm. The smallest intervals of
this type have length b�m. Indeed, every half-open interval Ja WD Œab�m; .aC1/b�m/
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with a 2 Z and 0 � a < bm satisfies A.JaIP/ D bm�.Ja/ since A.JaIP/ D 1, that is,
Ja contains exactly one point of the point set P . Furthermore, the intervals Ja form a
partition of Œ0; 1/ and any union J of intervals Ja satisfies again A.JIP/ D bm�.J/.
The same holds if we replace P by the first bm terms of the van der Corput sequence
S D .�b.n//1nD0 in base b (see Remark 4.2.9), since the first bm terms of S are just
a rearrangement of the numbers 0; 1=bm; 2=bm; : : : ; .bm � 1/=bm.

Example 4.4.2 For integers b � 2 and m � 1, let P be the two-dimensional
Hammersley point set in (4.32) with N D bm and b1 D b, that is, P consists of
the bm points

yn D
� n

bm
; �b.n/

�
2 Œ0; 1/2 for n D 0; 1; : : : ; bm � 1:

Clearly, if A.JIP/ D N�s.J/ D bm�2.J/, then the area �2.J/ of the interval (in this
case the rectangle) J must be a rational number with denominator bm. The smallest
rectangles of this type have area b�m. In view of the b-adic nature of the points yn

of P , it is natural to consider b-adic rectangles

J D Œa1b
�d1 ; .a1 C 1/b�d1 / � Œa2b�d2 ; .a2 C 1/b�d2 / 
 Œ0; 1/2 (4.46)

with a1; a2; d1; d2 2 Z, d1 � 0, d2 � 0, 0 � a1 < bd1 , and 0 � a2 < bd2 . The
condition �2.J/ D b�m means that d1 C d2 D m. We claim that each rectangle J
in (4.46) with d1Cd2 D m contains exactly one point of P . For n D 0; 1; : : : ; bm �1,
it is obvious that yn 2 J if and only if a1bm�d1 D a1bd2 � n < .a1 C 1/bd2 and
�b.n/ 2 Œa2b�d2 ; .a2 C 1/b�d2/. The last condition amounts to saying that the first
d2 b-adic digits of �b.n/ are prescribed, or equivalently that in the digit expansion
n D P1

jD0 zj.n/bj of n in (4.30) the digits z0.n/; z1.n/; : : : ; zd2�1.n/ are prescribed.
But in the range a1bd2 � n < .a1 C 1/bd2 there is exactly one value of n with these
prescribed digits, and so we get indeed A.JIP/ D 1 D bm�2.J/. The intervals J
in (4.46) with fixed d1 and d2 form a partition of Œ0; 1/2 and any disjoint union J1 of
these intervals with d1 C d2 D m satisfies again A.J1IP/ D bm�2.J1/.

Definition 4.4.3 Let b � 2 and s � 1 be integers. A half-open subinterval J of
Œ0; 1/s of the form

J D
sY

iD1
Œaib

�di ; .ai C 1/b�di/ (4.47)

with ai; di 2 Z, di � 0, and 0 � ai < bdi for 1 � i � s is called an elementary
interval in base b.

Now we can let the cat out of the bag: the idea behind the concept of a net P in
base b is that we request that each elementary interval in base b with a prescribed
volume gets the same share of points of P . The following general definition of nets
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Fig. 4.8 A .0; 4; 2/-net in base 2; every two-dimensional elementary interval in base 2 of area 2�4

contains exactly one point of the net

was introduced by Niederreiter [129], while special cases were considered earlier
by Sobol’ [189] and Faure [48] (Fig. 4.8).

Definition 4.4.4 Let b � 2 and s � 1 be integers and let t and m be integers with
0 � t � m. A .t;m; s/-net in base b is a point set P consisting of bm points in Œ0; 1/s

such that A.JIP/ D bm�s.J/ D bt for every elementary interval J 
 Œ0; 1/s in base
b with �s.J/ D bt�m.

Example 4.4.5 The point set in Example 4.4.1 is a .0;m; 1/-net in base b. The point
set in Example 4.4.2 is a .0;m; 2/-net in base b.

Example 4.4.6 Every point set of bm points in Œ0; 1/s is a .t;m; s/-net in base b with
t D m. For m � 1 we claim that we get a .t;m; s/-net in base b with t D m � 1 by
taking the points

�n

b
;

n

b
; : : : ;

n

b

�
2 Œ0; 1/s for n D 0; 1; : : : ; b � 1

on the main diagonal of the s-dimensional unit cube, each with multiplicity bt D
bm�1. To begin with, this yields a point set P of bm points in Œ0; 1/s. According to
Definition 4.4.4, we have to consider elementary intervals J 
 Œ0; 1/s in base b with
�s.J/ D bt�m D b�1. Because of the symmetry in the points of P , it suffices to
look at intervals J of the form J D Œab�1; .a C 1/b�1/ � Œ0; 1/s�1 with a 2 Z and
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0 � a < b. It is clear that .n=b; n=b; : : : ; n=b/ 2 J if and only if n D a. Therefore
A.JIP/ D bt and P is indeed an .m � 1;m; s/-net in base b.

Example 4.4.7 The centered regular lattice in (4.33) can, in certain cases, be
considered in a nontrivial way as a net. For integers b � 2, r � 1, and s � 1,
let P be the point set consisting of the points

xk1;:::;ks D
�2k1 � 1

2br
; : : : ;

2ks � 1

2br

�
2 Œ0; 1/s

with k1; : : : ; ks running independently through the integers 1; : : : ; br. With m D rs
the number of points in P is .br/s D bm. We claim that P is an .m � r;m; s/-net in
base b. Let J 
 Œ0; 1/s be an elementary interval in base b with �s.J/ D b�r. Then
J has the form (4.47) with d1 C � � � C ds D r, and so in particular 0 � di � r for
1 � i � s. Now xk1;:::;ks 2 J if and only if

2ki � 1 2 Œ2aib
r�di ; .2ai C 2/br�di/ for 1 � i � s:

For fixed i D 1; : : : ; s, this condition holds exactly for ki D aibr�di C1; : : : ; aibr�di C
br�di , that is, for exactly br�di values of ki. Therefore

A.JIP/ D
sY

iD1
br�di D brs�.d1C���Cds/ D bm�r;

and the claim is established.

Proposition 4.4.8 Let b � 2, s � 1, and 0 � t � m be integers. If P is a .t;m; s/-
net in base b, then P is also a .v;m; s/-net in base b for every integer v with t �
v � m.

Proof It suffices to show that if t < m, then P is also a .t C 1;m; s/-net in base b.
Let J 
 Œ0; 1/s be an elementary interval in base b with �s.J/ D btC1�m. Then J has
the form (4.47) with d1C� � �Cds D m � t �1. For c D 0; 1; : : : ; b �1, we introduce
the elementary interval Jc in base b given by

Jc D Œa1b
�d1 C cb�d1�1; a1b�d1 C .c C 1/b�d1�1/ �

sY

iD2
Œaib

�di ; .ai C 1/b�di/:

Then �s.Jc/ D bt�m, and so A.JcIP/ D bt for 0 � c � b � 1 by the definition of a
.t;m; s/-net in base b. Since J is the disjoint union of J0; J1; : : : ; Jb�1, we obtain

A.JIP/ D
b�1X

cD0
A.JcIP/ D btC1

as desired. �
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Three of the four parameters t, m, s, and b of a .t;m; s/-net in base b are easy
to determine: b is the base, s is the dimension, and m can be read off from the
number of points in the net (which is bm). The parameter t is also crucial since it
tells us how small we can make an elementary interval J in base b and still get
the perfect equidistribution property A.JIP/ D bm�s.J/ in Definition 4.4.4. The
number t is called the quality parameter of a .t;m; s/-net in base b. Definition 4.4.4
and Proposition 4.4.8 indicate that t should be small in order to get strong
equidistribution properties of the net.

Proposition 4.4.8 is a simple instance of what is called a propagation rule for
nets, that is, a rule that starts from one net or several nets and produces a net with
new parameters. Here are two more propagation rules for nets that are simple but
useful.

Proposition 4.4.9 Let b � 2, s � 2, and 0 � t � m be integers and let r be an
integer with 1 � r < s. If P is a .t;m; s/-net in base b andP .r/ is as in Remark 4.1.37
the projection of P onto the first r coordinates, then P .r/ is a .t;m; r/-net in base b.

Proof The argument is similar to that in Remark 4.1.37. Let J.r/ 
 Œ0; 1/r be an
elementary interval in base b with �r.J.r// D bt�m and put J D J.r/ � Œ0; 1/s�r 

Œ0; 1/s. Then J is an elementary interval in base b with �s.J/ D bt�m. Since
a projected point is in J.r/ if and only if the original point is in J, we obtain
A.J.r/IP .r// D A.JIP/ D bt by the definition of a .t;m; s/-net in base b, and so
we are done. �

Proposition 4.4.10 Let b � 2, s � 1, and 0 � t � m be integers. Then given a
.t;m; s/-net in base b, we can construct a .t; k; s/-net in base b for every integer k
with t � k � m.

Proof Let P be the given .t;m; s/-net in base b and fix an integer k with t � k � m.
Consider the elementary interval J0 D Œ0; bk�m/ � Œ0; 1/s�1 
 Œ0; 1/s in base b with
�s.J0/ D bk�m. Note that P is a .k;m; s/-net in base b by Proposition 4.4.8, and so
A.J0IP/ D bk by the definition of a .k;m; s/-net in base b. Let x1; : : : ; xbk be the
points of P that belong to J0. Let � W J0 ! Œ0; 1/s be the map defined by

�.u1; u2; : : : ; us/ D .bm�ku1; u2; : : : ; us/ for .u1; u2; : : : ; us/ 2 J0:

Now we claim that the point set R consisting of the points �.x1/; : : : ; �.xbk / is a
.t; k; s/-net in base b. Take an elementary interval J 
 Œ0; 1/s in base b with �s.J/ D
bt�k. Then for 1 � n � bk, it is clear that �.xn/ 2 J if and only if xn 2 ��1.J/ 

J0, and furthermore ��1.J/ is an elementary interval in base b with �s.�

�1.J// D
bk�m�s.J/ D bt�m. It follows that A.JIR/ D A.��1.J/IP/ D bt by the definition
of a .t;m; s/-net in base b, and the proof is complete. �

The quality parameter t of a .t;m; s/-net in base b should be as small as
possible in order to optimize the equidistribution properties of the net. Since t is,
by definition, a nonnegative integer, the most favorable value of t is t D 0. This
raises the question of whether we can always achieve t D 0 for any choice of the
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remaining parameters m, s, and b of a net. Unfortunately, the answer is no, and this
provides further support for the conjecture that we are not living in the best of all
possible worlds. In fact, the following theorem imposes a serious restriction on the
existence of .0;m; s/-nets in base b.

Theorem 4.4.11 Let b � 2 and m � 2 be integers. Then a .0;m; s/-net in base b
can exist only if s � b C 1.

Proof We proceed by contradiction and assume that there exists a .0;m; s/-net in
base b for some integers m � 2 and s � b C 2. Then Proposition 4.4.9 implies that
there exists a .0;m; b C 2/-net in base b and Proposition 4.4.10 shows that there
exists a .0; 2; b C 2/-net P in base b. Let x1; : : : ; xb2 be the points of P and put

xn D �
x.1/n ; : : : ; x.bC2/

n

� 2 Œ0; 1/bC2 for n D 1; : : : ; b2:

For i D 1; : : : ; b C 2 and n D 1; : : : ; b2, we set

a.i/n D bbx.i/n c 2 Zb D f0; 1; : : : ; b � 1g:

We take these integers a.i/n and form the .b C 2/ � b2 array

a.1/1 a.1/2 : : : a.1/
b2

a.2/1 a.2/2 : : : a.2/
b2

:::
:::

:::

a.bC2/
1 a.bC2/

2 : : : a.bC2/
b2

Now we consider a pair of rows of this array, say the ith row and the jth row with
1 � i < j � b C 2. For an ordered pair .z1; z2/ 2 Z2b , we obtain .a.i/n ; a

.j/
n / D .z1; z2/

if and only if x.i/n 2 Œz1=b; .z1 C 1/=b/ and x.j/n 2 Œz2=b; .z2 C 1/=b/, that is, if and
only if xn lies in the interval J D QbC2

kD1 Ik 
 Œ0; 1/bC2 with Ii D Œz1=b; .z1 C 1/=b/,
Ij D Œz2=b; .z2 C 1/=b/, and Ik D Œ0; 1/ for k 2 f1; : : : ; b C 2g n fi; jg. Now J is
an elementary interval in base b with �bC2.J/ D b�2, and so the definition of a
.0; 2; b C 2/-net in base b implies that A.JIP/ D b2�bC2.J/ D 1. In other words,
there is a one-to-one correspondence between the ordered pairs .a.i/n ; a

.j/
n / from Z2b

and the integers n D 1; : : : ; b2. The b2 ordered pairs .a.i/n ; a
.j/
n /, n D 1; : : : ; b2, run

exactly through Z2b . We express this by saying that the ith row and the jth row of our
array are orthogonal. Since this holds for any distinct i and j, we use the terminology
that the rows of our array are mutually orthogonal.

It is a consequence of the mutual orthogonality of the rows of our array that each
element of Zb occurs exactly b times in each row of the array. Now we normalize the
array in the following way. For each i D 1; : : : ; b C 2, we choose a permutation  i

of Zb such that  i.a
.i/
1 / D 0, and then we transform the ith row .a.i/1 : : : a.i/

b2
/ of the

array into the row . i.a
.i/
1 / : : :  i.a

.i/
b2
//, that is, we apply  i to each entry of the ith

row. This amounts to a renaming of the elements, and so the mutual orthogonality
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of the rows of the array is preserved. Furthermore, in the new normalized array all
entries in the first column are equal to 0.

Finally, we take the normalized array, delete its first column, and thus obtain a
.b C 2/ � .b2 � 1/ subarray. In each row of this subarray, exactly b � 1 entries are
equal to 0, and so the total number of 0’s in the subarray is .b C 2/.b � 1/. On the
other hand, consider any of the b2 � 1 columns of the subarray and suppose that
it contains the element 0, say in the ith row. If there were a second entry 0 in this
column, say in the jth row with j ¤ i, then this would violate the orthogonality of
the ith row and the jth row of the normalized array (recall that the first entry in each
row of the normalized array is equal to 0). Hence each of the b2 � 1 columns of the
.b C 2/� .b2 � 1/ subarray contains at most one entry equal to 0. It follows that the
total number of 0’s in the subarray is � b2 � 1 D .b C 1/.b � 1/ < .b C 2/.b � 1/,
which is the desired contradiction. �

Remark 4.4.12 The condition m � 2 is needed for the validity of Theorem 4.4.11
since Example 4.4.6 shows that there exists a .0; 0; s/-net in base b and also a
.0; 1; s/-net in base b for every b � 2 and every dimension s � 1.

Remark 4.4.13 Theorem 4.4.11 can be refined for various values of b by using the
combinatorial theory of latin squares. A latin square of order b � 2 is a b � b array
of elements from Zb (or from any other set with b elements) such that each row
and each column is a permutation of Zb. A well-known example from the puzzle
pages of newspapers is a sudoku which is a latin square of order 9 with Z9 replaced
by f1; : : : ; 9g and with additional requirements (see Fig. 4.9). Two latin squares
S1 D .s.1/ij /1�i;j�b and S2 D .s.2/ij /1�i;j�b of order b are orthogonal if the b2 ordered

pairs .s.1/ij ; s
.2/
ij / 2 Z2b , i; j D 1; : : : ; b, are all distinct. A collection S1; : : : ; Sk of

latin squares of order b is mutually orthogonal if Sg and Sh are orthogonal for all
1 � g < h � k. There is a maximum cardinality for a collection of mutually
orthogonal latin squares of order b and this maximum cardinality is denoted by
M.b/. Then it was proved in [129] that if b � 2 and m � 2 are integers, then a
.0;m; s/-net in base b can exist only if s � M.b/ C 2. Since M.b/ � b � 1 for all
b � 2, Theorem 4.4.11 is a consequence of the result in [129]. We have M.b/ D b�1
if b is a prime power, but there are values of b for which M.b/ is unexpectedly small,
for instance M.b/ D 1 for b D 6. Thus, for m � 2 a .0;m; s/-net in base 6 can exist

Fig. 4.9 A sudoku, a latin
square of order 9

9 2 4 3 8 6 1 5 7
3 8 5 7 1 2 4 6 9
6 7 1 4 5 9 2 3 8
2 1 9 8 4 3 5 7 6
7 5 3 6 9 1 8 2 4
8 4 6 5 2 7 3 9 1
4 9 8 2 6 5 7 1 3
5 6 7 1 3 8 9 4 2
1 3 2 9 7 4 6 8 5
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only if s � 3. A book on latin squares that includes the connection with nets was
written by Laywine and Mullen [93].

The first discrepancy bound for general .t;m; s/-nets in base b was established
in [129] (see also [133, Theorem 4.10]), and it shows that a .t;m; s/-net in base b
is a low-discrepancy point set if t is small compared to m, for instance if t D 0.
Various improvements on the constants in this discrepancy bound were achieved
later. We state without proof the following discrepancy bound which is obtained by
combining results from [88] and [49].

Theorem 4.4.14 Let b � 2, s � 1, and m � 1 be integers and let t be an integer
with 0 � t � m. Then the star discrepancy D�

N.P/ of a .t;m; s/-net P in base b with
N D bm satisfies

ND�
N.P/ � bb2=2c

b2 � 1 � bt

.s � 1/Š
� b � 1

2 log b

�s�1
.log N/s�1 C B.b; s/bt.log N/s�2;

where the constant B.b; s/ > 0 depends only on b and s.

It is again evident from Theorem 4.4.14 that we prefer small values of the
quality parameter t in a .t;m; s/-net in base b. This is in conformity with an
earlier observation that smaller values of t imply stronger equidistribution properties
of a .t;m; s/-net in base b. Because of the exponential dependence on t of the
discrepancy bound in Theorem 4.4.14, even a small decrease in the value of t yields
a considerable payoff in the discrepancy bound. Therefore it is worthwhile to work
hard on the minimization of the value of t.

4.4.2 Digital Nets and Duality Theory

Apart from some simple illustrations of the concept of a net in the preceding subsec-
tion, we have not yet seen concrete examples of good nets in arbitrary dimensions.
What is still lacking in our presentation is an effective general instrument for the
construction of nets. Such a tool is available in the case where the base b is a prime
power, and in agreement with earlier practice in this book we write then q for the
prime power. It should not come as a surprise that the reason why prime-power bases
are special is that for a prime power q there exists a finite field with q elements, or
of order q in the terminology of Sect. 1.4. The construction principle for nets that
we will describe in the following is called the digital method and it is based on
the theory of vector spaces and matrices over finite fields. We refer to Sects. 3.2.1
and 3.2.3 for a brief account of this theory. For the sake of completeness, it should
be mentioned that versions of the digital method are available also for bases that are
not prime powers (see [129] and [133, Section 4.3]), but the method is much more
powerful for prime-power bases.
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We focus on a simplified version of the digital method for prime-power bases
and refer to [129] and [133, Section 4.3] for the more general original version. Let
q be an arbitrary prime power and let Fq be the finite field of order q. Let s � 1

be a given dimension and let m � 1 be an integer. In order to obtain a .t;m; s/-net
in base q, we have to construct qm suitable points in Œ0; 1/s. The crucial step in the
construction is to choose m � m matrices C.1/; : : : ;C.s/ over Fq, that is, one matrix
for each of the s coordinate directions of points in Œ0; 1/s. Next we set up the map
Tm W Fm

q ! Œ0; 1/ by putting

Tm.h/ D
mX

jD1
 .hj/q

�j (4.48)

for every column vector h D .h1; : : : ; hm/
> 2 F

m
q , where  W Fq ! Zq is a fixed

bijection from Fq onto the least residue system Zq modulo q. For each column vector
v 2 F

m
q , we compute the matrix-vector products C.i/v 2 F

m
q for 1 � i � s, and then

we associate with the vector v the point

.Tm.C
.1/v/; : : : ;Tm.C

.s/v// 2 Œ0; 1/s: (4.49)

By letting v range over all qm possibilities in F
m
q , we arrive at a point set consisting

of qm points in Œ0; 1/s.

Definition 4.4.15 The point set P consisting of the qm points in (4.49) is called
a digital net over Fq. If P forms a .t;m; s/-net in base q for some integer t with
0 � t � m, thenP is called a digital .t;m; s/-net over Fq. The matrices C.1/; : : : ;C.s/

are the generating matrices of P .

Example 4.4.16 Let s D 1, let q be an arbitrary prime power, and let m � 1 be
an integer. We choose C.1/ to be the m � m identity matrix over Fq. Then for any
bijection  W Fq ! Zq in (4.48), the corresponding digital net P over Fq agrees
with the equidistant point set in Example 4.4.1 for b D q. This point set P is a
.0;m; 1/-net in base q by Example 4.4.5, and so P is a digital .0;m; 1/-net over Fq

and C.1/ is its generating matrix.

Example 4.4.17 Let s D 2, let q be an arbitrary prime power, and let m � 1 be
an integer. We choose C.1/ to be the m � m identity matrix over Fq. Let C.2/ D
.cij/1�i;j�m be the m�m antidiagonal matrix over Fq with cij D 1 if iCj D mC1 and
cij D 0 otherwise. Then for any bijection  W Fq ! Zq in (4.48), the corresponding
digital net P agrees with the point set in Example 4.4.2 for b D q. This point set P
is a .0;m; 2/-net in base q by Example 4.4.5, and so P is a digital .0;m; 2/-net over
Fq and C.1/ and C.2/ are its generating matrices.

We know from Example 4.4.6 that t D m is always a possible value of the
quality parameter for a digital net over Fq consisting of qm points. Hence every
s-dimensional digital net over Fq with qm points is a digital .t;m; s/-net over Fq for
some value of t. We want to figure out by all means how we can obtain values of t
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smaller than m. It transpires that the quality parameter of a digital net depends only
on its generating matrices and in fact on a certain linear independence property of
the rows of the generating matrices. The following definition is convenient in this
context.

Definition 4.4.18 Let q be a prime power, let m � 1 and s � 1 be integers, and let
d be an integer with 0 � d � m. The system fh.i/j 2 F

m
q W 1 � j � m; 1 � i � sg of

vectors is a .d;m; s/-system over Fq if for all nonnegative integers d1; : : : ; ds withPs
iD1 di D d, the system fh.i/j 2 F

m
q W 1 � j � di; 1 � i � sg is linearly independent

over Fq. Here an empty system (which occurs for d D 0) is considered linearly
independent over Fq.

It is clear from this definition that the property of being a .d;m; s/-system over
Fq is the stronger the larger the value of d. We now inspect the m � m generating
matrices C.1/; : : : ;C.s/ over Fq of a digital net over Fq. For 1 � i � s and 1 � j � m,

let c.i/j 2 F
m
q denote the jth row vector of the matrix C.i/.

Theorem 4.4.19 Let q be a prime power, let m � 1 and s � 1 be integers, and let
t be an integer with 0 � t � m. Then a digital net over Fq with m � m generating
matrices C.1/; : : : ;C.s/ over Fq is a digital .t;m; s/-net over Fq if and only if the

system fc.i/j 2 F
m
q W 1 � j � m; 1 � i � sg of row vectors of C.1/; : : : ;C.s/ is a

.d;m; s/-system over Fq with d D m � t.

Proof Let

J D
sY

iD1
Œaiq

�di ; .ai C 1/q�di/ 
 Œ0; 1/s

be an elementary interval in base q of the form (4.47) with b D q. Put d D Ps
iD1 di,

so that �s.J/ D q�d. We can assume that d � 1, for otherwise we have the trivial
case J D Œ0; 1/s. For a column vector v 2 F

m
q , the corresponding point in (4.49) lies

in J if and only if

Tm.C
.i/v/ 2 Œaiq

�di ; .ai C 1/q�di/ for 1 � i � s:

This condition means that for 1 � i � s the first di q-adic digits of Tm.C.i/v/ and
aiq�di agree, and this amounts to saying that Cd;mv D b for some column vector
b 2 F

d
q depending only on J, where Cd;m is a d � m matrix over Fq whose row

vectors are given by the row vectors c.i/j , 1 � j � di, 1 � i � s, of the generating
matrices in some order. If the given digital net is a digital .t;m; s/-net over Fq, then
with d D m � t the equation Cd;mv D b has exactly qt solutions v 2 F

m
q for every

b 2 F
d
q. This implies that the system fc.i/j 2 F

m
q W 1 � j � di; 1 � i � sg is linearly

independent over Fq, and since this holds for all choices of nonnegative integers

d1; : : : ; ds with
Ps

iD1 di D m � t D d, we infer that the system fc.i/j 2 F
m
q W 1 � j �
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m; 1 � i � sg is a .d;m; s/-system over Fq with d D m � t. The converse holds for
the same reasons. �

If we want to minimize the value of t for given generating matrices of a digital
net, then according to Theorem 4.4.19 we have to maximize the value of d, and this
leads naturally to the following concept.

Definition 4.4.20 The figure of merit %.C.1/; : : : ;C.s// of m � m matrices
C.1/; : : : ;C.s/ over Fq is defined to be the largest integer d such that the system
of row vectors of C.1/; : : : ;C.s/ is a .d;m; s/-system over Fq.

Corollary 4.4.21 A digital net over Fq with m � m generating matrices
C.1/; : : : ;C.s/ over Fq is a digital .t;m; s/-net over Fq with

t D m � %.C.1/; : : : ;C.s//;

and this is the least value of t for this digital net.

Proof This follows from Theorem 4.4.19 and Definition 4.4.20. �

It is an obvious consequence of Definitions 4.4.18 and 4.4.20 that the figure of
merit %.C.1/; : : : ;C.s// of m � m matrices C.1/; : : : ;C.s/ over Fq always satisfies 0 �
%.C.1/; : : : ;C.s// � m. Corollary 4.4.21 signalizes that we should design generating
matrices with a large figure of merit in order to obtain digital nets with a small
quality parameter.

Example 4.4.22 Let P be the digital net over Fq in Example 4.4.16. Its generating
matrix C.1/ is the m � m identity matrix over Fq. Since the row vectors of C.1/

are linearly independent over Fq, it is evident that %.C.1// D m. Therefore
Corollary 4.4.21 implies that P is a digital .0;m; 1/-net over Fq, and this agrees
with the result in Example 4.4.16.

Example 4.4.23 Consider the digital net P over Fq in Example 4.4.17 with the
generating matrices C.1/ and C.2/ stipulated there. We claim that %.C.1/;C.2// D m.
For k D 1; : : : ;m, let sk be the kth unit vector in F

m
q , that is, the vector with kth

coordinate equal to 1 and all other coordinates equal to 0. Now we take two integers
d1 � 0 and d2 � 0 with d1 C d2 D m. The first d1 row vectors of C.1/ are the unit
vectors s1; s2; : : : ; sd1 and the first d2 D m�d1 row vectors of C.2/ are the unit vectors
sm; sm�1; : : : ; sd1C1. Therefore the system fc.i/j 2 F

m
q W 1 � j � di; 1 � i � 2g of

row vectors of C.1/ and C.2/ consists exactly of all unit vectors s1; : : : ; sm in F
m
q , and

these unit vectors are obviously linearly independent over Fq. Thus, we have indeed
%.C.1/;C.2// D m. Hence Corollary 4.4.21 implies that P is a digital .0;m; 2/-net
over Fq, in accordance with the result in Example 4.4.17.

Remark 4.4.24 It follows from Theorem 4.4.11 and Corollary 4.4.21 that for
integers m � 2 and s � q C 2, there cannot exist m � m matrices C.1/; : : : ;C.s/

over Fq with figure of merit %.C.1/; : : : ;C.s// D m. This can be proved also directly
by the theory of vector spaces. If there were such matrices C.1/; : : : ;C.s/, then their
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row vectors would form an .m;m; s/-system S D fc.i/j 2 F
m
q W 1 � j � m; 1 � i � sg

over Fq. Then fc.1/1 ; : : : ; c
.1/
m g is a basis of the vector space Fm

q . In the representation

of each vector c.i/1 , 2 � i � s, as a linear combination of these basis vectors, the

coefficient of c.1/m must be nonzero by the definition of an .m;m; s/-system over Fq.

Thus for each i D 2; : : : ; s, there exists a nonzero fi 2 Fq such that fic
.i/
1 � c.1/m is

a linear combination of c.1/1 ; : : : ; c
.1/
m�1. Let bi 2 Fq be the coefficient of c.1/m�1 in the

last linear combination. Since s � q C 2, two of the elements b2; : : : ; bs of Fq must
be identical, say bh D bk for some subscripts h and k with 2 � h < k � s. Then
by subtraction we see that fhc.h/1 � fkc.k/1 is a linear combination of c.1/1 ; : : : ; c

.1/
m�2 (or

equal to 0 2 F
m
q if m D 2), and this is a contradiction to S being an .m;m; s/-system

over Fq.

Remark 4.4.25 At this stage we can already observe some connections between
digital nets and linear codes. Let C be a linear Œs; k	 code over Fq with 1 � k �
s � 1 and with minimum distance d.C/ � d C 1 for some integer d � 1. Then
a parity-check matrix H of C is an .s � k/ � s matrix over Fq, say with column
vectors c.1/; : : : ; c.s/. Hence by Theorem 3.2.44, any d of the vectors c.1/; : : : ; c.s/ are
linearly independent over Fq. Thus, the construction of a good linear code obliges
us to find a list of s vectors c.1/; : : : ; c.s/, that is, a 1 � s array of vectors, with the
indicated linear independence property for a large value of d. The construction of a
good digital .t;m; s/-net over Fq challenges us to find an m�s array of vectors c.i/j 2
F

m
q , 1 � j � m, 1 � i � s, with the linear independence property captured by the

definition of a .d;m; s/-system over Fq with a large value of d (see Definition 4.4.18
and Theorem 4.4.19). In this sense, we can think of the construction of good digital
nets over Fq as being a harder problem than the construction of good linear codes
over Fq. We will see further links between digital nets and linear codes in the duality
theory for digital nets described below and later on in Theorem 4.4.35.

A basic fact about linear codes is the connection between minimum distance and
Hamming weights in Theorem 3.2.14. There is an equally fundamental relationship
between the quality parameter of a digital net and generalizations of Hamming
weights, and this is the pivot of the duality theory for digital nets developed by
Niederreiter and Pirsic [138].

Let q be a prime power and let m � 1 be an integer. We introduce a weight
function vm on F

m
q by putting vm.b/ D 0 if b D 0 2 F

m
q , and for b D .b1; : : : ; bm/ 2

F
m
q with b ¤ 0 we let vm.b/ be the largest value of j with 1 � j � m such that

bj ¤ 0.

Definition 4.4.26 Let q be a prime power and let m � 1 and s � 1 be integers.
Write a vector B 2 F

ms
q as the concatenation of s vectors of length m, that is, B D

.b.1/; : : : ;b.s// 2 F
ms
q with b.i/ 2 F

m
q for 1 � i � s. Then the NRT weight Vm.B/ of

B is defined by

Vm.B/ D
sX

iD1
vm.b.i//:
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The NRT weight is named after the work of Niederreiter, Rosenbloom, and
Tsfasman. The NRT weight was first introduced by Niederreiter [128] in the context
of research on low-discrepancy point sets, and it was later applied in coding theory
by Rosenbloom and Tsfasman [173]. If the distance dm.A;B/ of A;B 2 F

ms
q is

defined by dm.A;B/ D Vm.A � B/, then the pair .Fms
q ; dm/ forms a metric space

(compare with Remark 3.1.8) called the NRT space. For m D 1 the NRT space
reduces to the Hamming space .Fs

q; d1/ with d1 being the Hamming distance on F
s
q

(see again Remark 3.1.8).

Example 4.4.27 Let q D 2, m D 5, s D 2, and consider the vector

B D .0; 0; 1; 1; 0; 1; 0; 1; 0; 0/ 2 F
10
2 :

Then B D .b.1/;b.2// with b.1/ D .0; 0; 1; 1; 0/ 2 F
5
2 and b.2/ D .1; 0; 1; 0; 0/ 2 F

5
2.

Clearly v5.b.1// D 4 and v5.b.2// D 3, and therefore V5.B/ D v5.b.1//Cv5.b.2// D
7 by Definition 4.4.26. Note that if we keep the same vector B, but change m and s
to m D 2 and s D 5, then an easy computation shows that V2.B/ D 6. Thus, on the
same vector space F

ms
q the NRT weight function Vm depends on m, and this is why

we write m in the subscript of V .

The following definition of minimum distance is inspired by Theorem 3.2.14 in
coding theory. For the reason given in Example 4.4.27, it is important to point out
the dependence on m in the notation for this minimum distance.

Definition 4.4.28 Let q be a prime power and let m � 1 and s � 1 be integers. Then
the minimum distance ım.N / of a nonzero linear subspace N of Fms

q is defined by

ım.N / D min
B2Nnf0g

Vm.B/:

It is trivial that always ım.N / � 1. As to an upper bound, it is remarkable that the
classical Singleton bound for linear codes (see Corollary 3.4.11) can be generalized
to the minimum distance ım.N /. The Singleton bound corresponds to the case m D
1 in the following proposition. As in Chap. 3, we write dim.N / for the dimension
of a finite-dimensional vector space N over Fq.

Proposition 4.4.29 Let q be a prime power and let m � 1 and s � 1 be integers.
Then every nonzero linear subspace N of Fms

q satisfies

ım.N / � ms � dim.N /C 1:

Proof Put k D dim.N / and let � W N ! F
k
q be the linear transformation that maps

B 2 N to the k-tuple of the last k coordinates of B. If � is surjective, then there
exists a nonzero B1 2 N with

�.B1/ D .1; 0; : : : ; 0/ 2 F
k
q:
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Then Vm.B1/ � ms � k C 1. If � is not surjective, then it follows from dim.N / D
dim.Fk

q/ that there exists a nonzero B2 2 N with �.B2/ D 0 2 F
k
q. Hence Vm.B2/ �

ms � k, and so in both cases we get the desired bound. �

Now we come to the gist of the duality theory for digital nets. Let P be a digital
net over Fq with m � m generating matrices C.1/; : : : ;C.s/ over Fq. We set up an
m � ms matrix M over Fq, which depends only on C.1/; : : : ;C.s/, by proceeding
as follows: for j D 1; : : : ;m, the jth row of M is obtained by concatenating the
transposes of the jth columns of C.1/; : : : ;C.s/. Equivalently, the transpose M> of
M is the ms � m matrix over Fq that is produced by putting the m � m matrices
C.1/; : : : ;C.s/ on top of each other.

Example 4.4.30 Let q D 3, m D 3, and s D 2, and let P be the digital net over F3
with generating matrices

C.1/ D
0

@
1 1 1

0 1 2

0 0 1

1

A ; C.2/ D
0

@
1 2 1

0 1 1

0 0 1

1

A :

It is easily checked that %.C.1/;C.2// D 3, and so P is a digital .0; 3; 2/-net over F3
by Corollary 4.4.21. The matrix M associated with P is

M D
0

@
1 0 0 1 0 0

1 1 0 2 1 0

1 2 1 1 1 1

1

A :

Note that the transpose M> of M can be formally written as

M> D
�

C.1/

C.2/

�
:

We continue with the m � ms matrix M over Fq and define the row space of
the digital net P over Fq to be the linear subspace M of Fms

q generated by the row
vectors of M; that is, M consists of all linear combinations over Fq of the row
vectors of M. Next we take the row space M and form its dual space M?, which
according to Definition 3.2.30 is given by

M? D fB 2 F
ms
q W B � M D 0 for all M 2 Mg;

where � denotes the dot product on F
ms
q (see Definition 3.2.17). It is obvious that

dim.M/ � m, and so M? is a linear subspace of Fms
q with dim.M?/ D ms �

dim.M/ � ms � m by Theorem 3.2.34 (the excluded cases k D 0 and k D n in
Theorem 3.2.34 are trivial). The case of the dimension s D 1 is not of interest in
the theory of digital nets over Fq since we know from Example 4.4.16 that for every
integer m � 1 there exists a digital .t;m; 1/-net over Fq with the optimal value t D 0
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of the quality parameter. Hence we can focus on the case s � 2, and then M? is
a nonzero linear subspace of Fms

q since dim.M?/ � ms � m � m � 1. We can
therefore talk about the minimum distance ım.M?/. The following theorem is the
keystone of the duality theory for digital nets.

Theorem 4.4.31 Let q be a prime power and let m � 1 and s � 2 be integers. Let
P be an s-dimensional digital net over Fq with m � m generating matrices over Fq

and let M 
 F
ms
q be its row space. Then an integer t with 0 � t � m is a quality

parameter of P if and only if the dual space M? of M satisfies

ım.M?/ � m � t C 1:

Proof Let C.1/; : : : ;C.s/ be the generating matrices of P . As usual, we write c.i/j

for the jth row vector of C.i/, where 1 � j � m and 1 � i � s. In view of
Theorem 4.4.19, we have to prove that the system fc.i/j 2 F

m
q W 1 � j � m; 1 � i �

sg is a .d;m; s/-system over Fq if and only M? satisfies ım.M?/ � d C 1.
Let M be the m �ms matrix over Fq constructed from C.1/; : : : ;C.s/ as above. We

take any vector B 2 F
ms
q and write it as B D .b.1/; : : : ;b.s// with

b.i/ D .b.i/1 ; : : : ; b
.i/
m / 2 F

m
q for 1 � i � s:

Then a linear dependence relation

sX

iD1

mX

jD1
b.i/j c.i/j D 0 2 F

m
q (4.50)

can be put in the form BM> D 0 2 F
m
q (recall the description of M> prior to

Example 4.4.30). Furthermore, the identity BM> D 0 holds if and only if B is
orthogonal to each column vector of M> (or in other words to each row vector of
M), that is, if and only if B 2 M?.

Now assume that fc.i/j 2 F
m
q W 1 � j � m; 1 � i � sg is a .d;m; s/-system over

Fq. Consider any nonzero vector B D .b.1/; : : : ;b.s// 2 M?. Then from the above
we get the linear dependence relation (4.50). Put vm.b.i// D ei for 1 � i � s. Then

sX

iD1

eiX

jD1
b.i/j c.i/j D 0 2 F

m
q :

Since not all coefficients b.i/j are 0, the system fc.i/j 2 F
m
q W 1 � j � ei; 1 � i � sg is

linearly dependent overFq. Thus, the definition of a .d;m; s/-system over Fq implies
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that
Ps

iD1 ei � d C 1. Therefore

Vm.B/ D
sX

iD1
vm.b.i// D

sX

iD1
ei � d C 1;

and so ım.M?/ � d C 1.
Conversely, assume that ım.M?/ � d C 1. We have to verify that every system

fc.i/j 2 F
m
q W 1 � j � di; 1 � i � sg with nonnegative integers d1; : : : ; ds satisfyingPs

iD1 di D d is linearly independent over Fq. Suppose, on the contrary, that such a

system were linearly dependent over Fq, that is, that there exist coefficients b.i/j 2 Fq,
not all 0, such that

sX

iD1

diX

jD1
b.i/j c.i/j D 0 2 F

m
q :

Define b.i/j D 0 for di < j � m, 1 � i � s. Then

sX

iD1

mX

jD1
b.i/j c.i/j D 0 2 F

m
q :

This is a linear dependence relation of the form (4.50), and by what was demon-
strated earlier in the proof, this leads to a nonzero vector B 2 M?. Hence
ım.M?/ � d C 1 implies that Vm.B/ � d C 1. On the other hand, vm.b.i// � di for
1 � i � s by the definition of the b.i/j , and so

Vm.B/ D
sX

iD1
vm.b.i// �

sX

iD1
di D d:

This is the desired contradiction. �

Corollary 4.4.32 Let q be a prime power and let m � 1 and s � 2 be integers.
Then from every linear subspace N of Fms

q with dim.N / � ms�m we can construct
a digital .t;m; s/-net over Fq with

t D m � ım.N /C 1:

Proof Put M D N? 
 F
ms
q . Then dim.M/ D ms � dim.N / � m. By using basis

vectors of M as row vectors and supplementing them by zero vectors from F
ms
q as

needed, we can set up an m � ms matrix M over Fq whose row vectors generate
M. In the same way as m � m generating matrices C.1/; : : : ;C.s/ over Fq led to an
m � ms matrix over Fq, we can start from the matrix M and recover m � m matrices
C.1/; : : : ;C.s/ over Fq. Let P be the digital net over Fq with generating matrices
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C.1/; : : : ;C.s/. Then by construction, M is the row space of P . Theorem 4.4.31
shows that the possible values of the quality parameter t of P satisfy t � m �
ım.M?/C 1 D m � ım.N / C 1. The least possible value is t D m � ım.N / C 1,
but we have to ascertain that it satisfies 0 � t � m. The inequality t � m is trivial
since ım.N / � 1. Furthermore, Proposition 4.4.29 implies that

t D m � ım.N /C 1 � m � ms C dim.N / � 0

since dim.N / � ms � m by assumption. �

Example 4.4.33 We return to the digital .0;m; 2/-net P over Fq in Example 4.4.17
and discuss it from the viewpoint of duality theory. Since the generating matrices
C.1/ and C.2/ of P are symmetric, we can write the m � 2m matrix M over Fq in an
obvious notation as M D �

C.1/ j C.2/
�
. Therefore the row space M of P consists of

all vectors

C D .c1; c2; : : : ; cm; cm; : : : ; c2; c1/ 2 F
2m
q (4.51)

with c1; : : : ; cm running independently through Fq. Now we take a vector B of the
form

B D .b1; b2; : : : ; bm;�bm; : : : ;�b2;�b1/ 2 F
2m
q (4.52)

with arbitrary b1; : : : ; bm 2 Fq. Then for every vector C in (4.51) we get B � C D
0, and so B 2 M?. Note that dim.M?/ D 2m � dim.M/ D m, and so the
vectors B in (4.52) yield exactly the dual space M? of M. We want to deduce
from Theorem 4.4.31 that t D 0 is a quality parameter of the digital net P over
Fq. To this end, we have to prove that ım.M?/ � m C 1. Consequently, we take
any nonzero vector B in (4.52) and we write as usual B D .b.1/;b.2//, here with
b.1/ D .b1; b2; : : : ; bm/ 2 F

m
q and b.2/ D .�bm; : : : ;�b2;�b1/ 2 F

m
q . We must

have b.1/ ¤ 0 2 F
m
q , so let us say that vm.b.1// D j � 1. Then bj ¤ 0, so in the

vector b.2/ we find the coordinate �bj ¤ 0 in the position m � j C 1. Therefore
vm.b.2// � m � jC1, and so Vm.B/ D vm.b.1//Cvm.b.2// � jCm � jC1 D m C1.
Thus, we get indeed ım.M?/ � m C 1.

Example 4.4.34 Consider the digital .0; 3; 2/-net P over F3 in Example 4.4.30. The
matrix M associated with P is given in that example, and so the row space M of P
consists of all linear combinations over F3 of the row vectors of M. The vectors

B1 D .2; 2; 2; 1; 0; 0/ 2 F
6
3;

B2 D .0; 2; 1; 0; 1; 0/ 2 F
6
3;

B3 D .0; 0; 2; 0; 0; 1/ 2 F
6
3
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are orthogonal to all row vectors of M, and so B1;B2;B3 2 M?. Since dim.M?/ D
6�dim.M/ D 3 and B1;B2;B3 are linearly independent over F3, the subspace M?
of F63 consists of all linear combinations over F3 of B1;B2;B3. We want to show by
Theorem 4.4.31 that t D 0 is a quality parameter of the digital net P over F3.
This will be achieved if we prove that ı3.M?/ � 4. We take any nonzero vector
B 2 M? and write as usual B D .b.1/;b.2// with b.1/ 2 F

3
3 and b.2/ 2 F

3
3. Note that

for every nontrivial linear combination over F3 of B1;B2;B3, we obtain v3.b.1// � 1

and v3.b.2// � 1. If V3.B/ D 2, then necessarily v3.b.2// D 1. But then B D aB1
for some a 2 F

�
3 , hence V3.B/ D 4, a contradiction. If V3.B/ D 3, then again we

cannot have v3.b.2// D 1, and so we must have v3.b.2// D 2 and v3.b.1// D 1.
We deduce from v3.b.2// D 2 that B D bB1 C cB2 with b; c 2 F3 and c ¤ 0.
But then v3.b.1// � 2 and V3.B/ � 4, again a contradiction. Thus, we must have
ı3.M?/ � 4, and since V3.B1/ D 4, we get in fact ı3.M?/ D 4.

4.4.3 Constructions of Digital Nets

We have already seen some examples of digital nets in the preceding subsection,
and now we present several systematic constructions of larger families of digital
nets. We start with an intriguing application of linear codes to the theory of digital
nets. The broad impact of coding theory on digital nets is in fact a remarkable
phenomenon, and it can be expected that more links between these areas will be
discovered in the future. We use the standard notation for linear codes from Sect. 3.2,
namely that a linear Œn; k; d	 code over Fq is a linear code over Fq of length n,
dimension k, and minimum distance d.

Theorem 4.4.35 Let q be a prime power and let n, k, and d be integers with 3 �
d � n and 1 � k � n � 1. Then from a linear Œn; k; d	 code over Fq we can derive a
digital .n � k � d C 1; n � k; s/-net over Fq, where s D b2n=.d � 1/c if d is odd and
s D b.2n � 2/=.d � 2/c if d is even.

Proof We first note that we always have n � k � d C 1 � 0 by the Singleton bound
for linear codes in Corollary 3.4.11. Furthermore, the definition of s implies that
s � 2.

Let H be a parity-check matrix of a given linear Œn; k; d	 code over Fq. Then
H is an .n � k/ � n matrix over Fq whose column vectors h1; : : : ;hn 2 F

n�k
q

have the property that any d � 1 of them are linearly independent over Fq (see
Theorem 3.2.44). In view of Theorem 4.4.19, it suffices to derive a .d � 1; n � k; s/-
system fc.i/j 2 F

n�k
q W 1 � j � n � k; 1 � i � sg over Fq.

We commence with the case where d � 3 is odd and we put a D .d �1/=2. Note
that then s D bn=ac. Now we determine the vectors c.i/j 2 F

n�k
q , 1 � j � 2a D d�1,

1 � i � s, according to the following table. The vectors c.i/j for 2a C 1 D d � j �
n � k and 1 � i � s can be chosen arbitrarily in F

n�k
q . The largest subscript r of a
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i D 1 i D 2 i D 3 . . . i D s

c.i/1 h1 haC1 h2aC1 . . . h.s�1/aC1

c.i/2 h2 haC2 h2aC2 . . . h.s�1/aC2

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

c.i/a ha h2a h3a . . . hsa

c.i/aC1 h2a ha ha . . . ha

c.i/aC2 h2a�1 ha�1 ha�1 . . . ha�1

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

c.i/2a haC1 h1 h1 . . . h1

vector hr in the table above is r D sa D bn=aca � n, and so all entries in the table
make sense.

We claim that fc.i/j 2 F
n�k
q W 1 � j � n�k; 1 � i � sg is a .d �1; n�k; s/-system

over Fq. For any nonnegative integers d1; : : : ; ds with
Ps

iD1 di D d � 1 D 2a, we
have to show that the system

S D Sd1;:::;ds D fc.i/j 2 F
n�k
q W 1 � j � di; 1 � i � sg

is linearly independent over Fq. Note first that all vectors hr in the upper a � s
subarray of the table above have different subscripts r, and so any d � 1 of them
are linearly independent over Fq by the given linear independence property of the
vectors h1; : : : ;hn. Consequently, if di � a for 1 � i � s, then the system S is
linearly independent over Fq. In the remaining case, di > a holds for some i, and
since

Ps
iD1 di D 2a, this holds for exactly one i D i0. If i0 D 1, then d1 D a C b

with 1 � b � a, and from the column i D 1 in the table above we pick the vectors

h1;h2; : : : ;ha;h2a;h2a�1; : : : ;h2a�bC1:

From the other columns we select altogether a�b vectors, and in the entire collection
of the chosen vectors hr all subscripts r are different. Hence again the corresponding
system S is linearly independent over Fq. Finally, if i0 � 2, then di0 D a C b with
1 � b � a, and from the column i D i0 in the table above we pick the vectors

h.i0�1/aC1;h.i0�1/aC2; : : : ;hi0a;ha;ha�1; : : : ;ha�bC1:

From the other columns we select altogether a�b vectors, and for the same reason as
before the corresponding system S is linearly independent over Fq. This completes
the proof for the case where d is odd.

Now we consider the case where d � 4 is even and we put a D .d � 2/=2. Note
that then s D b.n � 1/=ac. We determine the vectors c.i/j 2 F

n�k
q , 1 � j � 2a C 1 D

d � 1, 1 � i � s, according to the following table. The vectors c.i/j for 2a C 2 D d �
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i D 1 i D 2 i D 3 . . . i D s

c.i/1 h1 haC1 h2aC1 . . . h.s�1/aC1

c.i/2 h2 haC2 h2aC2 . . . h.s�1/aC2

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

c.i/a ha h2a h3a . . . hsa

c.i/aC1 hsaC1 hsaC1 hsaC1 . . . hsaC1

c.i/aC2 h2a ha ha . . . ha

c.i/aC3 h2a�1 ha�1 ha�1 . . . ha�1

:
:
:

:
:
:

:
:
:

:
:
:

:
:
:

c.i/2aC1 haC1 h1 h1 . . . h1

j � n � k and 1 � i � s can be chosen arbitrarily from F
n�k
q . The largest subscript r

of a vector hr in the table above is r D sa C 1 D b.n � 1/=aca C 1 � n, and so all
entries in the table make sense.

We claim that fc.i/j 2 F
n�k
q W 1 � j � n�k; 1 � i � sg is a .d �1; n�k; s/-system

over Fq. For any nonnegative integers d1; : : : ; ds with
Ps

iD1 di D d � 1 D 2a C 1,
we have to verify that the system

T D Td1;:::;ds D fc.i/j 2 F
n�k
q W 1 � j � di; 1 � i � sg

is linearly independent over Fq. As before, the case where di � a for 1 � i � s
is obvious. In the remaining case, there is again exactly one i D i0 with di > a. A
similar analysis as in the case d odd shows that the system T is linearly independent
over Fq. The only new potential problem is that we may pick the vector hsaC1 twice,
but since this vector appears only in row aC1 of the table above and since

Ps
iD1 di D

2a C 1 < 2.a C 1/, this cannot happen. �

Example 4.4.36 If we want to achieve the optimal value t D 0 of the quality
parameter in Theorem 4.4.35, then we have to use a linear Œn; k; d	 code over Fq

with d D n � k C 1, that is, an MDS code over Fq (see Definition 3.4.13). An
interesting family of MDS codes is formed by the generalized Reed-Solomon codes
in Remark 3.5.34. In particular, for every prime power q and every integer k with
1 � k � q, we obtain a linear Œq; k; q � k C 1	 code over Fq from Remark 3.5.34.
We first choose q � 3 and k D q � 2. Then d D q � k C 1 D 3 is odd, and
so s D b2q=2c D q in Theorem 4.4.35. Therefore Theorem 4.4.35 yields a digital
.0; 2; q/-net over Fq. Next we choose q � 4 and k D q�3. Then d D q�kC1 D 4 is
even, and so s D b.2q�2/=2c D q�1 in Theorem 4.4.35. Therefore Theorem 4.4.35
yields a digital .0; 3; q �1/-net over Fq. By similar arguments, the choice q � 5 and
k D q�4 yields a digital .0; 4; bq=2c/-net over Fq, and many other examples of this
type can be derived from Theorem 4.4.35 and generalized Reed-Solomon codes.

A rather large family of digital nets is that of hyperplane nets introduced by
Pirsic, Dick, and Pillichshammer [160]. The construction of hyperplane nets is
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based on the duality theory for digital nets described in Sect. 4.4.2. Let q be a
prime power and let m � 1 and s � 2 be integers. Together with the finite field
Fq we consider also its extension field Fqm with qm elements. Let W D F

s
qm be

the standard s-dimensional vector space over Fqm . Then W can be viewed also as a
vector space over Fq, and since W contains exactly .qm/s D qms vectors, it follows
from Proposition 3.2.6 that W has dimension ms as a vector space over Fq. Next we
choose an ordered basis B of Fqm over Fq, for instance as in Remark 3.2.7. Now let
ˇ D .ˇ1; : : : ; ˇs/ 2 W be arbitrary. For each i D 1; : : : ; s, the element ˇi 2 Fqm has
a coordinate vector �.ˇi/ 2 F

m
q relative to the ordered basis B. Then

�.ˇ/ D .�.ˇ1/; : : : ; �.ˇs// 2 F
ms
q for all ˇ 2 W

defines a bijective linear transformation � W W ! F
ms
q from W onto F

ms
q .

For the construction of a hyperplane net, we fix a vector ˛ 2 W and we put

W˛ WD fˇ 2 W W ˛ � ˇ D 0g;

where � is the dot product on W. It is clear that W˛ is a linear subspace of W, both
for W as a vector space over Fqm and over Fq. If ˛ D 0 2 W, then W˛ D W, and
so dim.W˛/ D ms as a vector space over Fq. If ˛ ¤ 0, then W˛ contains exactly
.qm/s�1 D qms�m vectors, and so dim.W˛/ D ms�m as a vector space over Fq. Note
that if ˛ ¤ 0, then W˛ may be interpreted geometrically as a hyperplane, and this
explains the terminology “hyperplane net”. In any case, we can say that dim.W˛/ �
ms � m. Next we let N˛ D �.W˛/ 
 F

ms
q be the image of W˛ under � . Since � is

a bijective linear transformation, N˛ is a linear subspace of Fms
q with dim.N˛/ D

dim.W˛/ � ms � m, and so we are in a position to apply Corollary 4.4.32.

Definition 4.4.37 Let q be a prime power and let m � 1 and s � 2 be integers. For
a given ˛ 2 W D F

s
qm , the digital net P˛ over Fq obtained from Corollary 4.4.32

by using the linear subspace N˛ of Fms
q constructed above is called a hyperplane net

over Fq.

It follows from Corollary 4.4.32 that P˛ is a digital .t;m; s/-net over Fq with
t D m�ım.N˛/C1. As usual in the duality theory for digital nets, we strive to make
the minimum distance ım.N˛/ as large as possible. The following result establishes
a lower bound on ım.N˛/ that can always be satisfied by a suitable choice of ˛ 2 W.

Theorem 4.4.38 For every prime power q and all integers m � 1 and s � 2, there
exists an ˛ 2 W D F

s
qm such that

ım.N˛/ � m C 1 � d.s � 1/ logq.m C 1/e;

where logq denotes the logarithm to the base q.
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Proof We proceed by an elimination method: we weed out those ˛ 2 W for which
ım.N˛/ � m � d.s � 1/ logq.m C 1/e and we show that there is still an ˛0 2 W left
over, which then necessarily satisfies ım.N˛0 / � m C 1 � d.s � 1/ logq.m C 1/e.

For every integer d with 0 � d � m, the number of b 2 F
m
q with vm.b/ D d is

given by "dqd, where "0 D 1 and "d D .q � 1/=q for 1 � d � m. Thus, for a fixed
integer k with 1 � k � ms and for .d1; : : : ; ds/ 2 Z

s with 0 � di � m for 1 � i � s
and

Ps
iD1 di D k, the number of B D .b.1/; : : : ;b.s// 2 F

ms
q with vm.b.i// D di for

1 � i � s is equal to
Qs

iD1 "di q
di . This number is at most

.q � 1/qd1C���Cds�1 D .q � 1/qk�1

since at least one di is positive. Furthermore, the number of .d1; : : : ; ds/ 2 Z
s with

0 � di � m for 1 � i � s and
Ps

iD1 di D k is bounded from above by .m C 1/s�1,
since for each of d1; : : : ; ds�1 there are at most m C 1 possibilities and there is at
most one choice for ds for any given d1; : : : ; ds�1, and k. Altogether, we have shown
that the number Aq.k;m; s/ of B 2 F

ms
q with Vm.B/ D k satisfies

Aq.k;m; s/ � .q � 1/.m C 1/s�1qk�1:

Next we estimate the number of ˛ D .˛1; : : : ; ˛s/ 2 W with ım.N˛/ D k. For
such an ˛, there exists a vector B 2 N˛ with Vm.B/ D k. We take such a B 2 N˛ and
note that by the definition of N˛ there exists a unique ˇ D .ˇ1; : : : ; ˇs/ 2 W˛ n f0g
with �.ˇ/ D B. Now ˇ 2 W˛ means that

˛ � ˇ D ˛1ˇ1 C � � � C ˛sˇs D 0:

Since at least one ˇi ¤ 0, the number of ˛ 2 W with ˛ � ˇ D 0 is exactly qm.s�1/. It
follows that the number of ˛ 2 W with ım.N˛/ D k is at most

Aq.k;m; s/q
m.s�1/ � .q � 1/.m C 1/s�1qm.s�1/Ck�1:

Finally, we put K D m � d.s � 1/ logq.m C 1/e and we note that we can assume
K � 1, for otherwise the theorem is trivial. Then by what we have already shown,
the number of ˛ 2 W with ım.N˛/ � K is at most

.q � 1/.m C 1/s�1qm.s�1/
KX

kD1
qk�1 < .m C 1/s�1qm.s�1/CK

� .m C 1/s�1qm.s�1/Cm�.s�1/ logq.mC1/ D qms:

The set W has qms elements, and so there exists an ˛0 2 W with ım.N˛0 / � K C 1.

�
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Corollary 4.4.39 For every prime power q and all integers m � 1 and s � 2, there
exists an ˛ 2 W D F

s
qm such that the hyperplane net P˛ in Definition 4.4.37 is a

digital .t;m; s/-net over Fq with

t � d.s � 1/ logq.m C 1/e:

Proof This follows from Corollary 4.4.32 and Theorem 4.4.38. �

If we choose an ˛ 2 W according to Corollary 4.4.39, then it follows from
Theorem 4.4.14 that the star discrepancy D�

N.P˛/ of the corresponding hyperplane
net P˛ with N D qm satisfies

D�
N.P˛/ � c.q; s/N�1.log N/2s�2

with a constant c.q; s/ > 0 depending only on q and s. It turns out that for s � 3

one can find even better hyperplane nets by using the general principle of the CBC
algorithm for good lattice points (see Algorithm 4.3.12). In the present context, the
idea is to construct a good vector ˛ D .˛1; : : : ; ˛s/ 2 W coordinate by coordinate,
by starting with ˛1 D 1 2 Fqm and computing ˛dC1 2 Fqm , 1 � d � s � 1, by
minimizing a certain quantity that depends on the previously computed coordinates
˛1; : : : ; ˛d and a variable element 
 ranging over Fqm . This has the effect that in the
bound on D�

N.P˛/ above we can replace the exponent 2s � 2 of log N by s, provided
that we use a vector ˛ 2 W obtained from this CBC algorithm. We refer to [38,
Section 11.3] for the details.

We mentioned good lattice points in the paragraph above, and there is actually an
analog of lattice point sets in the context of digital nets. The construction of lattice
point sets in Sect. 4.3 is based on the arithmetic of rational numbers, whereas the
analog for digital nets employs the arithmetic of rational functions over a finite field.
Let Fq.x/ be the field of rational functions over Fq which consists of all fractions
g.x/=f .x/ of polynomials with a numerator g.x/ 2 FqŒx	 and a nonzero denominator
f .x/ 2 FqŒx	. Here q is as usual an arbitrary prime power. The arithmetic in Fq.x/ is
as expected; the only difference compared to classical rational functions, say over
the real numbers, is that the arithmetic for the coefficients is performed in the finite
field Fq.

We need a technical tool, namely the expansion of a rational function over Fq

into a sort of power series. We will require the same tool again in Sect. 4.4.5 on the
construction of .t; s/-sequences. So bear with us in a brief interlude about expanding
rational functions into formal Laurent series. For a rational function g.x/=f .x/ 2
Fq.x/ as above, let the leading term of f .x/ be axm with a 2 F

�
q and an integer

m D deg.f .x// � 0. Then we can write

f .x/ D axm.1 � b1x
�1 � � � � � bmx�m/
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for some b1; : : : ; bm 2 Fq. By proceeding in a purely formal way, we obtain

g.x/

f .x/
D g.x/

axm.1 � b1x�1 � � � � � bmx�m/

D a�1x�mg.x/
1X

kD0
.b1x

�1 C � � � C bmx�m/k;

and so finally

g.x/

f .x/
D

1X

rDw

erx
�r (4.53)

with coefficients er 2 Fq and an integer w. The formal expression
P1

rDw erx�r is
called a formal Laurent series over Fq in the variable x�1. It can contain infinitely
many powers x�1; x�2; : : : with negative exponents, but only finitely many powers
of x with nonnegative exponents. In contrast to power series in real and complex
analysis, there is no issue of convergence for formal Laurent series. Two formal
Laurent series over Fq are identical if for all powers of x (with arbitrary exponents
from Z) the two corresponding coefficients agree. Formal Laurent series over Fq

can be added and multiplied just like polynomials, or as you learned to do for
power series in real and complex analysis. There is also division for formal Laurent
series, but we do not need this operation. Altogether, the set Fq..x�1// of all formal
Laurent series over Fq in the variable x�1 forms a field. The fact that there exists the
expansion g.x/=f .x/ D P1

rDw erx�r in (4.53) can be interpreted as saying that Fq.x/
is a subfield of Fq..x�1//. We note in passing that if deg.g.x// < deg.f .x//, then we
can take w � 1 in (4.53).

Example 4.4.40 Let q D 3 and consider the rational function .x C 1/=.x2 C 1/ 2
F3.x/. By proceeding as in the computation leading to (4.53), we obtain

x C 1

x2 C 1
D x C 1

x2.1 � 2x�2/
D x�2.x C 1/.1C 2x�2 C x�4 C 2x�6 C � � � /

D .x C 1/.x�2 C 2x�4 C x�6 C 2x�8 C � � � /
D x�1 C x�2 C 2x�3 C 2x�4 C x�5 C x�6 C � � � 2 F3..x

�1//:

Since deg.x C 1/ < deg.x2 C 1/, only powers of x with negative exponents appear
in the formal Laurent series expansion of .x C 1/=.x2 C 1/.

Next we introduce a degree map � on Fq..x�1// which is a natural extension of
the degree map on the polynomial ring FqŒx	. We put �.f / D deg.f / for a nonzero
f 2 FqŒx	 as well as �.0/ D �1 for the zero polynomial 0 2 FqŒx	. For a nonzero
rational function g=f 2 Fq.x/ with nonzero g; f 2 FqŒx	, we put �.g=f / D �.g/ �
�.f /. Note that in this definition it does not matter whether g=f is in reduced form
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or not. Finally, if a nonzero E D P1
rDw erx�r 2 Fq..x�1// is given, then we can

assume that ew ¤ 0. Then by definition �.E/ D �w, that is, �.E/ is the largest
exponent of x that actually appears in the expression for E. This is of course in line
with the general idea of a degree. So, for instance, if E D x�3 C x�5 C x�6 C � � � 2
F2..x�1//, then �.E/ D �3. The computation leading to (4.53) demonstrates that
if E D g=f is a nonzero rational function over Fq, then the definition of �.E/ and
the earlier definition of �.g=f / agree. We have the usual rules for degrees, such as
�.E1E2/ D �.E1/C �.E2/ for all E1;E2 2 Fq..x�1//.

Now that we are familiar with formal Laurent series expansions of rational
functions over Fq, we employ this device in a construction of digital nets over
Fq which is due to Niederreiter [132]. As promised, these digital nets will by and
large be analogous to lattice point sets, although this is not evident at the outset. As
often in the construction of digital nets, we assume that the dimension s satisfies
s � 2 since the one-dimensional case is trivial (see Example 4.4.16). We choose a
polynomial f 2 FqŒx	 with deg.f / D m � 1. This polynomial plays a similar role
as the modulus N in the point set P.g;N/ defined in Sect. 4.3.1. Furthermore, we
choose polynomials g1; : : : ; gs 2 FqŒx	 with deg.gi/ < m for 1 � i � s and we
collect them in the s-tuple g D .g1; : : : ; gs/ 2 FqŒx	s. The polynomial f and the
s-tuple g are the basic ingredients of the construction. It is convenient to use again
a notation that we introduced in Sect. 3.3 on cyclic codes, namely for an integer
m � 1 we write FqŒx	<m for the set of all polynomials g 2 FqŒx	 with deg.g/ < m.
Consequently, we will often write g 2 FqŒx	s<m for an s-tuple g as above.

The actual construction of the digital net proceeds by defining its s generating
matrices C.1/; : : : ;C.s/ over Fq. For each i D 1; : : : ; s, we consider the rational
function gi.x/=f .x/ 2 Fq.x/. Since deg.gi/ < m D deg.f / by assumption, its formal
Laurent series expansion has the form

gi.x/

f .x/
D

1X

rD1
e.i/r x�r (4.54)

with coefficients e.i/r 2 Fq for all r � 1. These coefficients serve as entries of the

m � m generating matrix C.i/ D .c.i/j;k/1�j�m; 0�k�m�1 over Fq. In detail, we set

c.i/j;k D e.i/jCk 2 Fq for 1 � i � s; 1 � j � m; 0 � k � m � 1: (4.55)

With these generating matrices C.1/; : : : ;C.s/, we apply the digital method and we
obtain the point set P.g; f / called a polynomial lattice point set. According to
Corollary 4.4.21, P.g; f / is a digital .t;m; s/-net over Fq with quality parameter

t D m � %.C.1/; : : : ;C.s//:

We want to find out how the figure of merit %.C.1/; : : : ;C.s// depends on the
inputs g and f of P.g; f /. According to Definitions 4.4.18 and 4.4.20, we have to
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study linear independence properties of the row vectors c.i/j , 1 � j � m, of the

matrices C.i/, 1 � i � s. Note that

c.i/j D .c.i/j;0; c
.i/
j;1; : : : ; c

.i/
j;m�1/ 2 F

m
q for 1 � j � m; 1 � i � s; (4.56)

where the coordinates c.i/j;k are given by (4.55). For the sake of convenience, we
introduce the “dot product” h � g for h D .h1; : : : ; hs/ 2 FqŒx	s by putting

h � g D
sX

iD1
higi 2 FqŒx	:

Lemma 4.4.41 The vectors c.i/j in (4.56) satisfy

sX

iD1

mX

jD1
hi;jc

.i/
j D 0 2 F

m
q (4.57)

with all hi;j 2 Fq if and only if f divides h�g in FqŒx	, where h D .h1; : : : ; hs/ 2 FqŒx	s

with

hi.x/ D
mX

jD1
hi;jx

j�1 2 FqŒx	 for 1 � i � s:

Proof By comparing coordinates, we see that the linear dependence relation (4.57)
is equivalent to

sX

iD1

mX

jD1
hi;je

.i/
jCk D 0 for 0 � k � m � 1: (4.58)

For each i D 1; : : : ; s, we obtain by (4.54) that

hi.x/gi.x/

f .x/
D
� mX

jD1
hi;jx

j�1
�� 1X

rD1
e.i/r x�r

�
D

mX

jD1

1X

rD1
hi;je

.i/
r xj�1�r

D
mX

jD1
hi;j

1X

kD1�j

e.i/jCkx�k�1:

Thus for k � 0, the coefficient of x�k�1 in higi=f is
Pm

jD1 hi;je
.i/
jCk. Therefore the

condition (4.58) is equivalent to the property that for 0 � k � m � 1, the coefficient
of x�k�1 in

Ps
iD1 higi=f is 0. This means that

1

f
h � g D P C E;
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where P 2 FqŒx	 and E 2 Fq..x�1// with �.E/ < �m. The last identity is
equivalent to

h � g � Pf D Ef :

The left-hand side is a polynomial over Fq, whereas on the right-hand side �.Ef / D
�.E/C �.f / < 0 since �.f / D deg.f / D m. This is possible if and only if Ef D 0,
that is, if and only if f divides h � g in FqŒx	. �
Remark 4.4.42 If integers s � 2 and m � 1 and an s-tuple g D .g1; : : : ; gs/ 2
FqŒx	s<m are given, then there always exists a nonzero s-tuple h 2 FqŒx	s<m such that
h � g D 0. This is trivial if gi D 0 for 1 � i � s. If at least one gi is nonzero,
say without loss of generality g1 ¤ 0, then h D .g2;�g1; 0; : : : ; 0/ 2 FqŒx	s<m is
a suitable nonzero s-tuple h. This simple argument shows that the minimum in the
following theorem is extended over a nonempty set.

Theorem 4.4.43 Let q be a prime power and let s � 2 and m � 1 be integers.
Let f 2 FqŒx	 with deg.f / D m and let g 2 FqŒx	s<m. Then the figure of merit of
the generating matrices C.1/; : : : ;C.s/ of the polynomial lattice point set P.g; f / is
given by

%.C.1/; : : : ;C.s// D %.g; f / WD s � 1C min
h

sX

iD1
deg.hi/;

where the minimum is extended over all nonzero s-tuples h D .h1; : : : ; hs/ 2 FqŒx	s<m
with f dividing h � g in FqŒx	. Here we use the convention deg.0/ D �1.

Proof By Definitions 4.4.18 and 4.4.20, there exist integers d1; : : : ; ds with 0 �
di � m for 1 � i � s and

sX

iD1
di D %.C.1/; : : : ;C.s//C 1

such that the system fc.i/j 2 F
m
q W 1 � j � di; 1 � i � sg is linearly dependent over

Fq. Hence there exist coefficients hi;j 2 Fq, 1 � j � di, 1 � i � s, not all 0, such
that

sX

iD1

diX

jD1
hi;jc

.i/
j D 0 2 F

m
q :

By putting hi;j D 0 for di < j � m, 1 � i � s, we obtain a linear dependence
relation as in (4.57) in Lemma 4.4.41. This lemma implies that f divides h � g in
FqŒx	, with a nonzero s-tuple h D .h1; : : : ; hs/ 2 FqŒx	s as in the lemma. Note also
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that deg.hi/ � di � 1 < m, and so the definition of %.g; f / in the theorem shows that

%.g; f / � s � 1C
sX

iD1
deg.hi/ � s � 1C

sX

iD1
.di � 1/ D %.C.1/; : : : ;C.s//:

In order to prove the converse inequality, we observe that by the definition of
%.g; f / in the theorem, there exists a nonzero s-tuple h D .h1; : : : ; hs/ 2 FqŒx	s<m
with f dividing h � g in FqŒx	 and with

%.g; f / D s � 1C
sX

iD1
deg.hi/:

Then Lemma 4.4.41 yields a linear dependence relation

sX

iD1

diX

jD1
hi;jc

.i/
j D 0 2 F

m
q ;

where not all hi;j 2 Fq are 0 and where di D deg.hi/ C 1 for 1 � i � s
(here the convention deg.0/ D �1 is used). It follows now from the definition of
%.C.1/; : : : ;C.s// that

%.C.1/; : : : ;C.s// �
sX

iD1
di � 1 D

sX

iD1
.deg.hi/C 1/� 1 D %.g; f /;

and so we are done. �

Corollary 4.4.44 Let q be a prime power and let s � 2 and m � 1 be integers. Let
f 2 FqŒx	 with deg.f / D m and let g 2 FqŒx	s<m. Then the polynomial lattice point
set P.g; f / is a digital .t;m; s/-net over Fq with

t D m � %.g; f /;

where %.g; f / is as in Theorem 4.4.43.

Proof This follows from Corollary 4.4.21 and Theorem 4.4.43. �
Example 4.4.45 Let q be an arbitrary prime power and let f0.x/; f1.x/; : : : be the
sequence of Fibonacci polynomials over Fq defined recursively by f0.x/ D 1,
f1.x/ D x, and fkC2.x/ D xfkC1.x/ C fk.x/ for k � 0. It is obvious that deg.fk/ D k
for all k � 0. Now for the dimension s D 2 and for an integer m � 1, we take f D fm
and g D gm D .1; fm�1/ 2 FqŒx	2<m in the construction of polynomial lattice point
sets. In this case by definition

%.gm; fm/ D 1C min
.h1;h2/¤0

.deg.h1/C deg.h2//;
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where .h1; h2/ 2 FqŒx	2<m and fm divides h1 C h2fm�1. We claim that %.gm; fm/ D m
for all m � 1. Since we can take .h1; h2/ D .fm�1;�1/, it is clear that %.gm; fm/ � m.
Hence we want to prove that for every nonzero ordered pair .h1; h2/ 2 FqŒx	2<m with
fm dividing h1 C h2fm�1, the inequality deg.h1/C deg.h2/ � m � 1 is satisfied. This
is trivial for m D 1. Now we proceed by induction and suppose that the assertion
is true for some m � 1. Then we consider a nonzero ordered pair .h1; h2/ 2 FqŒx	2

with deg.h1/ � m, deg.h2/ � m, and fmC1 dividing h1Ch2fm. We have to verify that
deg.h1/ C deg.h2/ � m. Since obviously h2 ¤ 0, we can assume that deg.h1/ �
m�1. Let us write h1Ch2fm D PfmC1 for some P 2 FqŒx	. A comparison of degrees
shows that deg.h2/Cm D deg.P/Cm C1, and so deg.P/ D deg.h2/�1. Therefore
0 � deg.P/ � m � 1. Next we note that

h1.x/C h2.x/fm.x/ D P.x/fmC1.x/ D P.x/xfm.x/C P.x/fm�1.x/;

and so fm divides h1�Pfm�1. Hence by the induction hypothesis deg.h1/Cdeg.P/ �
m � 1, which implies that deg.h1/ C deg.h2/ � m and completes the induction. It
follows now from Corollary 4.4.44 that for all m � 1 the polynomial lattice point
set P.gm; fm/ is a digital .0;m; 2/-net over Fq. This example may be perceived as
an analog for polynomial lattice point sets of the construction of two-dimensional
good lattice points in Example 4.3.15.

For higher dimensions s, the situation for polynomial lattice point sets is
similar to that for good lattice points and for hyperplane nets, meaning that
there are theoretical existence results for good parameters, but no known explicit
constructions of good polynomial lattice point sets. We establish such an existence
result for good polynomial lattice point sets by using the same elimination method
as in the proof of Theorem 4.4.38 for hyperplane nets. This similarity is not too
surprising since it is known that polynomial lattice point sets belong to the family
of hyperplane nets (see [38, Section 11.1]).

Theorem 4.4.46 Let q be a prime power and let s � 2 and m � 1 be integers. Let
the polynomial f 2 FqŒx	 be irreducible over Fq with deg.f / D m. Then there exists
an s-tuple g 2 FqŒx	s<m with

%.g; f / � m � d.s � 1/ logq.m C 1/e;

where %.g; f / is as in Theorem 4.4.43 and where logq denotes the logarithm to the
base q.

Proof We write

%.g; f /C 1 D min
h

sX

iD1
.deg.hi/C 1/;

where the minimum is extended over all nonzero s-tuples h D .h1; : : : ; hs/ 2
FqŒx	s<m with f dividing h � g in FqŒx	. We recall the convention deg.0/ D �1.
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For every integer d with 0 � d � m, the number of h 2 FqŒx	with deg.h/C1 D d
is given by "dqd, where "0 D 1 and "d D .q �1/=q for 1 � d � m. We can therefore
use the same arguments as in the proof of Theorem 4.4.38 to show that for every
integer k with 1 � k � m, the number Bq.k;m; s/ of h D .h1; : : : ; hs/ 2 FqŒx	s withPs

iD1.deg.hi/C 1/ D k satisfies

Bq.k;m; s/ � .q � 1/.m C 1/s�1qk�1:

For a fixed h D .h1; : : : ; hs/ 2 FqŒx	s counted by Bq.k;m; s/, we determine the
number of g D .g1; : : : ; gs/ 2 FqŒx	s<m with f dividing h � g in FqŒx	. Since f is
irreducible over Fq by the hypothesis, the residue class field FqŒx	=.f .x// is a finite
field of order qm (compare with Remark 1.4.46). The condition that f divides h � g
in FqŒx	 can be expressed as the equation

h � g D h1g1 C � � � C hsgs D 0

in FqŒx	=.f .x//. From 1 � k � m we infer that hi ¤ 0 in FqŒx	=.f .x// for at least
one i with 1 � i � s, and since we are in a finite field of order qm, it follows that
the number of solutions g 2 FqŒx	s<m of h � g D 0 is equal to qm.s�1/. Therefore the
number of g 2 FqŒx	s<m for which there exists an h 2 FqŒx	s counted by Bq.k;m; s/
such that f divides h � g in FqŒx	 is at most

Bq.k;m; s/q
m.s�1/ � .q � 1/.m C 1/s�1qm.s�1/Ck�1:

Now we put K D m � d.s � 1/ logq.m C 1/e as in the proof of Theorem 4.4.38 and
we sum from k D 1 to k D K. Since there are qms candidate s-tuples g 2 FqŒx	s<m,
we conclude as in the proof of Theorem 4.4.38 that there is one such g0 2 FqŒx	s<m
with %.g0; f /C 1 � K C 1, that is, with %.g0; f / � K. �

Corollary 4.4.47 Let q be a prime power and let s � 2 and m � 1 be integers. Let
the polynomial f 2 FqŒx	 be irreducible over Fq with deg.f / D m. Then there exists
an s-tuple g 2 FqŒx	s<m such that the polynomial lattice point set P.g; f / is a digital
.t;m; s/-net over Fq with

t � d.s � 1/ logq.m C 1/e:

Proof This follows from Corollary 4.4.44 and Theorem 4.4.46. �

Corollary 4.4.47 has the same consequence for the star discrepancy of P.g; f /
as in the statement in the paragraph following the proof of Corollary 4.4.39. In
the context of polynomial lattice point sets, the order of magnitude N�1.log N/2s�2
in that discrepancy bound can be improved for s � 3 to N�1.log N/s by two
different methods: a CBC algorithm for polynomial lattice point sets (see [38,
Subsection 10.2.2]) and an analog for polynomial lattice point sets of the averaging
technique in Theorem 4.3.7 (see [133, Theorem 4.43]).
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We conclude the discussion of polynomial lattice point sets by presenting a
description of these point sets which is completely analogous to that of the lattice
point sets P.g;N/ in Sect. 4.3.1. The essential tool is an analog of the map Tm

in (4.48). For an integer m � 1, the map Um W Fq..x�1// ! Œ0; 1/ is given by

Um.

1X

rDw

erx
�r/ D

mX

rDmax.1;w/

 .er/q
�r

for every formal Laurent series
P1

rDw erx�r 2 Fq..x�1//, where  W Fq ! Zq is the
same bijection as in (4.48).

Theorem 4.4.48 Let q be a prime power and let s � 2 and m � 1 be integers. Let
f 2 FqŒx	 with deg.f / D m and let g D .g1; : : : ; gs/ 2 FqŒx	s<m. Then the polynomial
lattice point set P.g; f / consists of the points

.Um.vg1=f /; : : : ;Um.vgs=f // 2 Œ0; 1/s;

where v runs through the qm polynomials in FqŒx	<m.

Proof We fix an integer i with 1 � i � s and a polynomial v.x/ D Pm�1
jD0 vjxj 2

FqŒx	<m with v0; v1; : : : ; vm�1 2 Fq. Using the expansion in (4.54), we obtain

v.x/gi.x/

f .x/
D
� m�1X

jD0
vjx

j
�� 1X

kD1
e.i/k x�k

�
D

m�1X

jD0

1X

kD1
vje

.i/
k xj�k

D
1X

rD2�m

� m�1X

jDmax.1�r;0/

vje
.i/
jCr

�
x�r:

The definition of the map Um yields

Um.vgi=f / D
mX

rD1
 
� m�1X

jD0
vje

.i/
jCr

�
q�r:

If we associate with the polynomial v 2 FqŒx	<m the column vector

v D .v0; v1; : : : ; vm�1/> 2 F
m
q

and take into account (4.48) and the formula (4.55) for the entries of the generating
matrix C.i/ of P.g; f /, then we easily see that Um.vgi=f / D Tm.C.i/v/. The
proof is completed by referring to (4.49) and the fact that there is a one-to-one
correspondence between the polynomials v 2 FqŒx	<m and the column vectors
v 2 F

m
q . �



282 4 Quasi-Monte Carlo Methods

The last construction of digital nets in this subsection is based on polynomial
arithmetic over finite fields. These digital nets were introduced quite recently by
Hofer and Niederreiter [66] and they are called Vandermonde nets since their
structure is reminiscent of that of Vandermonde matrices .˛j�1

i /1�i;j�m in linear
algebra. The construction of Vandermonde nets works with the residue class ring
FqŒx	=.f .x// for a polynomial f .x/ 2 FqŒx	 of degree m � 1. We set up the map
�f W FqŒx	 ! F

m
q as follows. Every h 2 FqŒx	 has a unique representative h 2 FqŒx	<m

in its residue class modulo f , namely the least residue h of h modulo f . Here FqŒx	<m

denotes as before the set of all polynomials over Fq of degree less than m. Now
h.x/ D Pm�1

rD0 erxr with e0; e1; : : : ; em�1 2 Fq, and we put

�f .h/ D .e0; e1; : : : ; em�1/ 2 F
m
q :

It is obvious that �f is a linear transformation between vector spaces over Fq.
The actual construction of Vandermonde nets proceeds by defining m � m

generating matrices C.1/; : : : ;C.s/ over Fq. We exclude the trivial one-dimensional
case and assume that the dimension s satisfies s � 2. The basic constituents of a
Vandermonde net are the same as for a polynomial lattice point set. We choose a
polynomial f 2 FqŒx	 with deg.f / D m � 1 and an s-tuple g D .g1; : : : ; gs/ 2
FqŒx	s<m. The first generating matrix C.1/ has the row vectors c.1/1 ; : : : ; c

.1/
m with

c.1/j D �f .g
j�1
1 / 2 F

m
q for 1 � j � m. For i D 2; : : : ; s, the jth row vector c.i/j

of C.i/ is given by c.i/j D �f .g
j
i/ for 1 � j � m. The Vandermonde net V.g; f / is the

digital net over Fq with generating matrices C.1/; : : : ;C.s/.
In order to determine the figure of merit %.C.1/; : : : ;C.s// (see Definition 4.4.20)

of the generating matrices C.1/; : : : ;C.s/ of V.g; f /, we introduce some more
notation. We put

Hq;m D xFqŒx	<m D fh 2 FqŒx	 W deg.h/ � m; h.0/ D 0g:
Furthermore, we write h ı g for the composition of two polynomials h; g 2 FqŒx	,
that is, .h ı g/.x/ D h.g.x//. Next, for f 2 FqŒx	 with deg.f / D m and
g D .g1; : : : ; gs/ 2 FqŒx	s<m as above, we let L.g; f / be the set of all s-tuples
h D .h1; : : : ; hs/ 2 FqŒx	<m � Hs�1

q;m such that f divides
Ps

iD1.hi ı gi/ in FqŒx	. Let
us accentuate the interesting fact that there is some similarity with a condition in
Theorem 4.4.43 for polynomial lattice point sets: there we had f dividing

Ps
iD1 higi

in FqŒx	 and now we require that f divides
Ps

iD1.hi ı gi/ in FqŒx	.

Remark 4.4.49 Under the usual conditions s � 2 and m � 1, the set L.g; f / contains
at least one nonzero s-tuple h. In order to see this, we start from the obvious fact that
the m C 1 vectors �f .1/; �f .g1/; �f .g21/; : : : ; �f .gm�1

1 /; �f .g2/ in F
m
q must be linearly

dependent over Fq. Hence for some b0; b1; : : : ; bm 2 Fq, not all 0, we obtain

m�1X

jD0
bj�f .g

j
1/C bm�f .g2/ D 0 2 F

m
q :
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Since �f is a linear transformation, this can also be written as

�f

� m�1X

jD0
bjg

j
1 C bmg2

�
D 0 2 F

m
q :

The definition of �f implies that f divides
Pm�1

jD0 bjg
j
1 C bmg2 in FqŒx	. Now we

introduce the polynomials

h1.x/ D
m�1X

jD0
bjx

j; h2.x/ D bmx; hi.x/ D 0 for 3 � i � s:

Then h D .h1; : : : ; hs/ 2 FqŒx	<m � Hs�1
q;m is a nonzero s-tuple belonging to L.g; f /.

In view of Remark 4.4.49, the set L0.g; f / WD L.g; f / n f0g is nonempty. We have
to utilize two different degree functions on FqŒx	, but they differ only in the way
they are defined at the zero polynomial 0 2 FqŒx	. First, there is the standard degree
function deg on FqŒx	 with the convention deg.0/ D �1 in Theorem 4.4.43. Second,
we use the degree function deg� defined by deg�.h/ D deg.h/ for h 2 FqŒx	 with
h ¤ 0 and deg�.0/ D 0.

Theorem 4.4.50 Let q be a prime power and let s � 2 and m � 1 be integers. Let
f 2 FqŒx	 with deg.f / D m and let g 2 FqŒx	s<m. Then the figure of merit of the
generating matrices C.1/; : : : ;C.s/ of the Vandermonde net V.g; f / is given by

%.C.1/; : : : ;C.s// D �.g; f / WD min
.h1;:::;hs/2L0.g;f /

�
deg.h1/C

sX

iD2
deg�.hi/

�
:

Proof Let d1; : : : ; ds be integers with 0 � di � m for 1 � i � s and
Ps

iD1 di � 1

such that there exists a linear dependence relation

sX

iD1

diX

jD1
bi;jc

.i/
j D 0 2 F

m
q ; (4.59)

where all bi;j 2 Fq and not all of them are 0. Here we can assume that bi;di ¤ 0 if

di � 1. By the definition of the row vectors c.i/j of the generating matrices, (4.59) is
equivalent to

d1X

jD1
b1;j�f .g

j�1
1 /C

sX

iD2

diX

jD1
bi;j�f .g

j
i/ D 0 2 F

m
q :
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Because of the linearity of �f , this is in turn equivalent to

�f

� d1X

jD1
b1;jg

j�1
1 C

sX

iD2

diX

jD1
bi;jg

j
i

�
D 0 2 F

m
q :

This means that f divides
Ps

iD1.hi ı gi/ in FqŒx	, where

h1.x/ D
d1X

jD1
b1;jx

j�1 2 FqŒx	<m; hi.x/ D
diX

jD1
bi;jx

j 2 Hq;m for 2 � i � s:

Therefore (4.59) is equivalent to h D .h1; : : : ; hs/ belonging to L0.g; f /. Further-
more, by the definitions of the degree functions deg and deg�, it is evident that
deg.h1/ D d1 � 1 and deg�.hi/ D di for 2 � i � s, and so

deg.h1/C
sX

iD2
deg�.hi/ D

sX

iD1
di � 1: (4.60)

By the definition of %.C.1/; : : : ;C.s//, there exist d1; : : : ; ds as above withPs
iD1 di D %.C.1/; : : : ;C.s// C 1. Consequently, there is an h 2 L0.g; f / with the

left-hand side of (4.60) equal to %.C.1/; : : : ;C.s//. Hence the definition of �.g; f /
in the theorem implies that �.g; f / � %.C.1/; : : : ;C.s//. Conversely, there exists an
h 2 L0.g; f / with the left-hand side of (4.60) equal to �.g; f /. This yields a linear
dependence relation (4.59) with

Ps
iD1 di D �.g; f /C 1, and so %.C.1/; : : : ;C.s// �

�.g; f /. �

Corollary 4.4.51 Let q be a prime power and let s � 2 and m � 1 be integers. Let
f 2 FqŒx	 with deg.f / D m and let g 2 FqŒx	s<m. Then the Vandermonde net V.g; f /
is a digital .t;m; s/-net over Fq with

t D m � �.g; f /;

where �.g; f / is as in Theorem 4.4.50.

Proof This follows from Corollary 4.4.21 and Theorem 4.4.50. �

Remark 4.4.52 You may wonder why there is a certain asymmetry in the definition
of the row vectors c.i/j of the generating matrices of V.g; f /. Remember that we

defined c.1/j D �f .g
j�1
1 / for 1 � j � m, but c.i/j D �f .g

j
i/ for 2 � i � s and 1 � j � m.

A symmetric definition, which would also produce a perfect Vandermonde structure,
would be c.i/j D �f .g

j�1
i / for 1 � i � s and 1 � j � m. But with this definition we

would obtain

c.i/1 D �f .1/ D .1; 0; : : : ; 0/ 2 F
m
q for 1 � i � s;
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and so in particular c.1/1 and c.2/1 would be linearly dependent over Fq. Therefore
%.C.1/; : : : ;C.s// D 1, and we would get an uninteresting digital .m � 1;m; s/-net
over Fq.

There are several parallels between Vandermonde nets and polynomial lattice
point sets. For instance, there is an existence result for large values of the figure
of merit �.g; f / comparable to Theorem 4.4.46, there is an existence theorem for
Vandermonde nets with small star discrepancy by an averaging technique, and there
is a CBC algorithm for computing parameters of good Vandermonde nets. All this
can be found in the paper [66].

We have one more card up our sleeve, namely an explicit construction of
Vandermonde nets with optimal quality parameter t D 0 that goes beyond the
two-dimensional case. For polynomial lattice point sets, an explicit construction
yielding t D 0 for arbitrary m and q is known only for the dimension s D 2

(see Example 4.4.45). This explicit construction of Vandermonde nets is also due
to Hofer and Niederreiter [66] and proceeds as follows. Let q be an arbitrary prime
power, let s be a dimension with 2 � s � qC1, and let m � 2 be an integer. As usual,
we choose a polynomial f 2 FqŒx	 with deg.f / D m. For simplicity we assume that
f is irreducible over Fq, but the astute reader will observe that more general choices
of f are possible as well. Next we select s � 1 distinct elements c2; : : : ; cs of Fq.
This is feasible since s � 1 � q. Finally, we put g1.x/ D x 2 FqŒx	<m and, for each
i D 2; : : : ; s, let gi.x/ 2 FqŒx	<m be the polynomial that is uniquely determined by
the congruence

gi.x/.x � ci/ � 1 .mod f .x//:

Note that gi.x/ exists since FqŒx	=.f .x// is a field. With these polynomials g1; : : : ; gs,
we set up the s-tuple g D .g1; : : : ; gs/ 2 FqŒx	s<m.

Theorem 4.4.53 Let q be a prime power and let s and m be integers with 2 � s �
q C 1 and m � 2. Let f 2 FqŒx	 be irreducible over Fq with deg.f / D m and let
g 2 FqŒx	s<m be the s-tuple of polynomials constructed above. Then the Vandermonde
net V.g; f / is a digital .0;m; s/-net over Fq.

Proof According to Corollary 4.4.51, we have to show that �.g; f / D m. We prove
this by contradiction and suppose that �.g; f / � m � 1. Then by the definition of
�.g; f / in Theorem 4.4.50, there exists an s-tuple h D .h1; : : : ; hs/ 2 L0.g; f / withPs

iD1 di � m � 1, where d1 D deg.h1/ and di D deg�.hi/ for 2 � i � s. Put
hi.x/ D Pdi

jD1 hi;jxj for 2 � i � s with all hi;j 2 Fq. Then f .x/ divides

sX

iD1
.hi ı gi/.x/ D h1.x/C

sX

iD2

diX

jD1
hi;jgi.x/

j
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in FqŒx	. Multiplying by
Qs

kD2.x � ck/
dk , we deduce that f .x/ divides

h1.x/
sY

kD2
.x � ck/

dk C
sX

iD2

� diX

jD1
hi;jgi.x/

j
�
.x � ci/

di

sY

kD2
k¤i

.x � ck/
dk

in FqŒx	. Now gi.x/j.x � ci/
j � 1 .mod f .x// for 2 � i � s and j � 1, and so by

working with congruences modulo f .x/ we see that f .x/ divides

M.x/ WD h1.x/
sY

kD2
.x � ck/

dk C
sX

iD2

� diX

jD1
hi;j.x � ci/

di�j
� sY

kD2
k¤i

.x � ck/
dk

in FqŒx	. Now we consider deg.M/. The first term of M.x/ has degree � Ps
kD1 dk �

m�1. In the sum
Ps

iD2 in the expression for M.x/, a term appears only if di � 1 and
such a term has degree � Ps

kD2 dk � 1 � Ps
kD1 dk � m � 1 since d1 D deg.h1/ �

�1. Altogether we obtain deg.M/ � m � 1 < deg.f /. Since f .x/ divides M.x/ in
FqŒx	, it follows that M.x/ is the zero polynomial in FqŒx	. If we assume that dr � 1

for some r 2 f2; : : : ; sg, then substituting x D cr in M.x/ we get

0 D M.cr/ D
drX

jD1
hr;j.cr � cr/

dr�j
sY

kD2
k¤r

.cr � ck/
dk D hr;dr

sY

kD2
k¤r

.cr � ck/
dk :

Since the last product is nonzero, we deduce that hr;dr D 0. But this is a contradiction
to deg�.hr/ D dr. Thus we have shown that di D 0 for 2 � i � s, and so hi D 0 2
FqŒx	 for 2 � i � s. Since M D 0 2 FqŒx	, it follows that also h1 D 0 2 FqŒx	. This
is the final contradiction, since h 2 L0.g; f / means in particular that h is a nonzero
s-tuple. �

Remark 4.4.54 In principle, the construction in Theorem 4.4.53 works also in the
case s D 1. The vectors �f .g

j�1
1 / D �f .xj�1/ 2 F

m
q for 1 � j � m are then just the

row vectors of the m � m identity matrix over Fq, and so the construction coincides
with that in Example 4.4.16. The remarkable fact about Theorem 4.4.53 is that the
condition s � q C 1 is best possible. This follows from Theorem 4.4.11 which
implies that if m � 2, then a .0;m; s/-net in base q can exist only if s � q C1. Thus,
for a prime power q and an integer m � 2, we can say that a .0;m; s/-net in base q
exists if and only if s � q C 1, and if it exists, then we can even construct a digital
.0;m; s/-net over Fq.
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4.4.4 .t; s/-Sequences

We have seen that the theory of .t;m; s/-nets provides a systematic way of obtaining
point sets with small discrepancy. An analogous approach to the construction of low-
discrepancy sequences is afforded by the theory of .t; s/-sequences. In a nutshell:
what .t;m; s/-nets are for point sets, .t; s/-sequences are for (infinite) sequences.
Note that in this chapter we have not yet advanced very far with the construction
of low-discrepancy sequences in the sense of the discrepancy bound (4.22). Up
to now we encountered only one construction of low-discrepancy sequences that
works in any dimension, namely that of Halton sequences in Sect. 4.2.2. Many
more examples of low-discrepancy sequences are furnished by the theory of .t; s/-
sequences.

Informally, a .t; s/-sequence in base b is a sequence of points in Œ0; 1/s such that
certain blocks of terms form .t;m; s/-nets in base b with t independent of m. Since a
.t;m; s/-net in base b consists of bm points, the lengths of the blocks taken from the
sequence must be powers of b. The formal definition is as follows. We again use the
abbreviation .xn/

1
nD0 for the sequence of points x0; x1; : : : .

Definition 4.4.55 Let b � 2, s � 1, and t � 0 be integers. A .t; s/-sequence in base
b is a sequence .xn/

1
nD0 of points in Œ0; 1/s with the property that, for all integers

k � 0 and m > t, the point set consisting of the xn with kbm � n < .k C 1/bm is a
.t;m; s/-net in base b.

Example 4.4.56 For an arbitrary base b � 2 and the dimension s D 1, let us
consider the van der Corput sequence .xn/

1
nD0 in base b given by xn D �b.n/ for all

n � 0 (see Remark 4.2.9). We claim that this sequence is a .0; 1/-sequence in base
b. We prove this by taking integers k � 0 and m � 1 and looking at the bm points xn

with kbm � n < .kC1/bm. We have to show that these bm points form a .0;m; 1/-net
in base b. We proceed by the definition of such a net in Definition 4.4.4 and consider
any one-dimensional elementary interval J D Œab�m; .a C 1/b�m/ in base b with
a 2 Z and 0 � a < bm. Note that �b.n/ 2 Œab�m; .a C 1/b�m/ means that the first
m b-adic digits of �b.n/ are prescribed, or equivalently that in the digit expansion
n D P1

jD0 zj.n/bj of n in (4.30) the digits z0.n/; z1.n/; : : : ; zm�1.n/ are prescribed.
But in the range kbm � n < .k C 1/bm there is exactly one value of n with these
prescribed digits, and so J contains exactly one point xn with kbm � n < .k C 1/bm.
Thus, we have verified that the van der Corput sequence in base b is a .0; 1/-
sequence in base b. Historically, the van der Corput sequence in base b served as
the model for the definition of a .t; s/-sequence in base b.

As for .t;m; s/-nets in base b, the parameter t of a .t; s/-sequence in base b is
called the quality parameter, and we want this parameter to be as small as possible.
We have trivial consequences of two results in Sect. 4.4.1. First, Proposition 4.4.8
implies that if b � 2, s � 1, and t � 0 are integers and if S is a .t; s/-sequence in
base b, then S is also a .v; s/-sequence in base b for every integer v � t. Second,
Proposition 4.4.9 shows that if b � 2, s � 2, and t � 0 are integers and if a
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.t; s/-sequence in base b is given, then by projection we get a .t; r/-sequence in base
b for every dimension r with 1 � r < s.

It is inherent in Definition 4.4.55 that once we get hold of a .t; s/-sequence in base
b, then we automatically obtain .t;m; s/-nets in base b for infinitely many values of
m. By a simple trick that we already used in Lemma 4.1.38 and (4.32), we can
actually construct infinitely many .s C 1/-dimensional nets.

Proposition 4.4.57 Let b � 2, s � 1, and t � 0 be integers. If .xn/
1
nD0 is a .t; s/-

sequence in base b, then for every integer m � t the points

yn D .nb�m; xn/ 2 Œ0; 1/sC1 for n D 0; 1; : : : ; bm � 1

form a .t;m; s C 1/-net in base b.

Proof Let P be the point set consisting of y0; y1; : : : ; ybm�1. Let

J D
sC1Y

iD1
Œaib

�di ; .ai C 1/b�di/ 
 Œ0; 1/sC1

with ai; di 2 Z, di � 0, and 0 � ai < bdi for 1 � i � sC1 be an .sC1/-dimensional
elementary interval in base b with �sC1.J/ D bt�m, that is, with

PsC1
iD1 di D m � t.

Now yn 2 J if and only if a1bm�d1 � n < .a1 C 1/bm�d1 and

xn 2 J0 WD
sC1Y

iD2
Œaib

�di ; .ai C 1/b�di/:

Since m � d1 D t CPsC1
iD2 di � t and .xn/

1
nD0 is a .t; s/-sequence in base b, the point

set P 0 consisting of the xn with a1bm�d1 � n < .a1 C 1/bm�d1 is a .t;m � d1; s/-net
in base b (note that this holds trivially if m � d1 D t). Now J0 is an s-dimensional
elementary interval in base b with �s.J0/ D bt�.m�d1/, and so A.J0IP 0/ D bt by the
definition of a .t;m � d1; s/-net in base b. Therefore A.JIP/ D bt as desired. �
Theorem 4.4.58 Let b � 2 be an integer. Then a .0; s/-sequence in base b can exist
only if s � b.

Proof Let s � 1 be a dimension for which there exists a .0; s/-sequence in base
b. Then Proposition 4.4.57 yields a .0; 2; s C 1/-net in base b. It follows now from
Theorem 4.4.11 that s C 1 � b C 1, and so s � b. �

A discrepancy bound for .t;m; s/-nets in base b was formulated in Theo-
rem 4.4.14. By using this bound and Definition 4.4.55, one can derive a discrepancy
bound for .t; s/-sequences in base b. The following bound, which we state without
proof, is obtained by combining results from [88] and [49].
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Theorem 4.4.59 Let b � 2, s � 1, and t � 0 be integers. Then the star discrepancy
D�

N.S/ of a .t; s/-sequence S in base b satisfies

ND�
N.S/ � bb2=2c

b2 � 1 � bt

sŠ

� b � 1
2 log b

�s
.log N/s C C.b; s/bt.log N/s�1

for all N � 2, where the constant C.b; s/ > 0 depends only on b and s.

It is a striking consequence of the discrepancy bound in Theorem 4.4.59 that
any .t; s/-sequence in base b is a low-discrepancy sequence in the technical sense
of (4.22), and so is in particular uniformly distributed in Œ0; 1/s by Theorem 4.1.36.
Theorem 4.4.59 indicates again that small values of the quality parameter t are
preferable in a .t; s/-sequence in base b. If the base b � 2 is fixed, then
Theorem 4.4.58 shows, regrettably, that the optimal value t D 0 can be achieved
only for finitely many dimensions s.

The only example of a .t; s/-sequence in base b that we encountered so far is
the simple .0; 1/-sequence in base b described in Example 4.4.56. In general, the
construction of .t; s/-sequences in base b for dimensions s � 2 is a challenging task
since the requirements in Definition 4.4.55 are quite severe. What we need, first of
all, is a systematic way of approaching the problem of constructing .t; s/-sequences,
and we take our cue from the digital method for the construction of nets presented in
Sect. 4.4.2. There the basic ingredients were generating matrices over a finite field.

The digital method for the construction of .t; s/-sequences works again with
generating matrices, but now the generating matrices are of infinite size, in line
with the aim that we want to construct an infinite sequence rather than a finite point
set. What complicates matters further is the fact that we need to exercise more care
about the order in which the points of the sequence are listed. For a finite point
set and its (star) discrepancy, the order of the points is irrelevant. For an infinite
sequence, not only its (star) discrepancy but even its distribution properties depend
a lot on the way the points of the sequence are listed, as the following easy example
demonstrates.

Example 4.4.60 Let S D .xn/
1
nD1 be any uniformly distributed sequence of distinct

points in Œ0; 1/, such as a Kronecker sequence. Then Theorem 4.1.6 implies that
there are infinitely many xn in the interval Œ0; 1

2
/ and infinitely many xn in the interval

Œ 1
2
; 1/. Let n1 < n2 < � � � be all those subscripts n for which xn 2 Œ0; 1

2
/ and let

m1 < m2 < � � � be all those subscripts n for which xn 2 Œ 1
2
; 1/. Now we rearrange

the sequence S into a sequence S 0 D .yn/
1
nD1 as follows. We put y1 D xn1 , y2 D xn2 ,

y3 D xm1 , y4 D xn3 , y5 D xn4 , y6 D xm2 , and so on in an obvious fashion; that is, we
always pick the two still unused xn 2 Œ0; 1

2
/ with the least subscripts and then the

one still unused xn 2 Œ 1
2
; 1/ with the least subscript. Then it is obvious that for every

integer N � 1 and for J D Œ0; 1
2
/ we get

P3N
nD1 cJ.yn/ D 2N, and so

lim
N!1

1

3N

3NX

nD1
cJ.yn/ D 2

3
¤ �.J/:
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Hence by Theorem 4.1.6, the sequence S 0 is not uniformly distributed in Œ0; 1/. Note
that S and S 0 coincide as sets, but they differ as sequences since the same points are
listed in a different order. The lesson of this example is that a changed order can
completely change the distribution behavior.

After these preparations, we get down to business and describe the digital method
for the construction of .t; s/-sequences in detail. Let q be an arbitrary prime power
and let Fq be the finite field of order q. Let F!q be the set of all sequences of elements
of Fq with only finitely many nonzero terms. We think of these sequences also as
column vectors of infinite length. We set up the map T1 W F!q ! Œ0; 1/, which is an
analog of the map Tm in (4.48), by putting

T1.h/ D
1X

jD1
 .hj/q

�j (4.61)

for every column vector h D .h1; h2; : : :/> 2 F
!
q , where  W Fq ! Zq is a fixed

bijection with  .0/ D 0. Note that T1.h/ is always a number in Œ0; 1/ with a finite
digit expansion in base q.

For a given dimension s � 1, we choose 1 � 1 matrices C.1/; : : : ;C.s/ over Fq,
where by an 1 � 1 matrix we mean a matrix with denumerably many rows and
columns. Each matrix C.i/, i D 1: : : : ; s, must have the property that each column
of C.i/ contains only finitely many nonzero entries. Remember that we want to
construct a sequence x0; x1; : : : of points in Œ0; 1/s. In order to define xn, we take
an integer n � 0 and let

n D
1X

rD1
zr.n/q

r�1 (4.62)

be its unique digit expansion in base q, where zr.n/ 2 Zq for all r � 1 and zr.n/ D 0

for all sufficiently large r. Next we fix a bijection � W Zq ! Fq with �.0/ D 0. Then
we associate with the integer n the column vector

n D .�.z1.n//; �.z2.n//; : : :/
>

of infinite length. Because of the conditions on the zr.n/ and on �, we can guarantee
that n 2 F

!
q .

For a fixed i with 1 � i � s, we form now the matrix-vector product C.i/n. This
is again a column vector of infinite length and its jth entry is the “dot product” of the
jth row of C.i/ with n. This “dot product”, defined in analogy with Definition 3.2.17,
is formally an infinite sum. This may cause a problem since there is no concept of
convergence in Fq, but the fact that �.zr.n// D 0 for all sufficiently large r implies
that the “dot product” is just a finite sum and therefore meaningful. We actually want
to make sure that C.i/n belongs to F

!
q ; recall that this means that this column vector

has only finitely many nonzero coordinates. Let r0 2 N be such that �.zr.n// D 0



4.4 Nets and .t; s/-Sequences 291

for all r > r0. For all j � 1, the jth coordinate of C.i/n is the “dot product” of the jth
row .c.i/j1 ; c

.i/
j2 ; : : :/ of C.i/ with n, and so it is given by

r0X

rD1
c.i/jr �.zr.n// 2 Fq: (4.63)

Now we consider the first r0 columns of C.i/. By assumption, each of these columns
contains only finitely many nonzero entries, and so there exists a j0 2 N such that
c.i/jr D 0 for all j � j0 and 1 � r � r0. Consequently, the element in (4.63) is equal

to 0 for j � j0, and so we get indeed C.i/n 2 F
!
q . Therefore it makes sense to define

xn D .T1.C.1/n/; : : : ;T1.C.s/n// 2 Œ0; 1/s for n D 0; 1; : : : ; (4.64)

where T1 is the map in (4.61).

Definition 4.4.61 The sequence S D .xn/
1
nD0 defined in (4.64) is called a digital

sequence over Fq and the matrices C.1/; : : : ;C.s/ are the generating matrices of S.
If S is a .t; s/-sequence in base q for some integer t � 0, then S is called a digital
.t; s/-sequence over Fq.

Example 4.4.62 Let s D 1, let q be an arbitrary prime power, and let the bijections
 W Fq ! Zq and � W Zq ! Fq be inverse maps of each other. We choose the
generating matrix C.1/ to be the 1 � 1 identity matrix over Fq which is defined in
the obvious fashion. Then it is easily seen that the corresponding digital sequence
over Fq is the van der Corput sequence in base q. We learned in Example 4.4.56 that
this sequence is a .0; 1/-sequence in base q, and so the van der Corput sequence in
base q is a digital .0; 1/-sequence over Fq.

Every s-dimensional digital net overFq with m�m generating matrices is a digital
.t;m; s/-net over Fq for some value of t, in the worst case for t D m. The analogous
statement for digital sequences over Fq is not correct. There are bad choices of the
1�1 generating matrices that do not produce .t; s/-sequences in base q, no matter
how large we make t; for instance, let s � 2 and let the s generating matrices all be
equal. The following theorem provides insight into the condition that the 1 � 1
generating matrices C.1/; : : : ;C.s/ have to satisfy in order to obtain a digital .t; s/-
sequence over Fq. For i D 1; : : : ; s and every integer m � 1, we write C.i/

m for
the upper left m � m submatrix of C.i/. Furthermore, we use the figure of merit
introduced in Definition 4.4.20.

Theorem 4.4.63 Let q be a prime power, let s � 1 be an integer, and let
C.1/; : : : ;C.s/ be the 1 � 1 generating matrices over Fq of a digital sequence
S over Fq. If

t WD sup
m2N

.m � %.C.1/
m ; : : : ;C.s/

m //

is finite, then S is a digital .t; s/-sequence over Fq.
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Proof We have to verify the various net properties in Definition 4.4.55, and so we
fix integers k � 0 and m > t and we consider the points xn in (4.64) with kqm �
n < .k C 1/qm. In this range, the q-adic digits zr.n/ of n in (4.62) are prescribed for
r > m, whereas the zr.n/ with 1 � r � m can range freely over Zq. In order to prove
the desired net property, we take an elementary interval

J D
sY

iD1
Œaiq

�di ; .ai C 1/q�di/ 
 Œ0; 1/s

in base q with ai; di 2 Z, di � 0, and 0 � ai < qdi for 1 � i � s and with
�s.J/ D qt�m, that is, with

Ps
iD1 di D m � t. Then (4.64) shows that xn 2 J if and

only if

T1.C.i/n/ 2 Œaiq
�di ; .ai C 1/q�di/ for 1 � i � s:

Since C.i/n 2 F
!
q and  .0/ D 0, the q-adic expansion of T1.C.i/n/ in (4.61) is

finite, and so the condition above means that for 1 � i � s the first di q-adic digits
of T1.C.i/n/ and aiq�di agree. For each j � 1, the jth coordinate of C.i/n is the
“dot product” of the jth row c.i/j of C.i/ with n. Now in the given range kqm � n <
.kC1/qm, the coordinates �.zr.n// of n are fixed for r > m, and so the jth coordinate
of C.i/n can be written as

c.i/j;m � .�.z1.n//; : : : ; �.zm.n///C b.i/k;m

with c.i/j;m being the jth row vector of the submatrix C.i/
m of C.i/ and with b.i/k;m 2 Fq

depending only on k, m, and C.i/, but not on n. Thus, with

v D .�.z1.n//; : : : ; �.zm.n///
> 2 F

m
q ;

the condition that for 1 � i � s the first di q-adic digits of T1.C.i/n/ and aiq�di

agree is equivalent to Cm�t;mv D b for some column vector b 2 F
m�t
q independent

of n, where Cm�t;m is an .m � t/ � m matrix over Fq whose row vectors are the

c.i/j;m with 1 � j � di, 1 � i � s. The definition of t in the theorem implies that

%.C.1/
m ; : : : ;C.s/

m / � m � t, and so by the definition of the figure of merit the system
fc.i/j;m 2 F

m
q W 1 � j � m; 1 � i � sg is an .m � t;m; s/-system over Fq. Therefore

the system fc.i/j;m 2 F
m
q W 1 � j � di; 1 � i � sg is linearly independent over Fq, and

so the equation Cm�t;mv D b has exactly qt solutions v 2 F
m
q . Since � is a bijection,

this yields exactly qt integers n with kqm � n < .k C 1/qm such that xn 2 J, and the
desired net property is established. �
Example 4.4.64 We return to Example 4.4.62 and consider the generating matrix
C.1/ there. For every integer m � 1, the upper left m�m submatrix C.1/

m of C.1/ is the
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m � m identity matrix over Fq. It is trivial that %.C.1/
m / D m, and so the value of t in

Theorem 4.4.63 is t D 0. This is consistent with the conclusion in Example 4.4.62.

We conclude this subsection by establishing an analog of Proposition 4.4.57 for
digital .t; s/-sequences over Fq.

Proposition 4.4.65 Let q be a prime power and let s � 1 and t � 0 be integers. If
a digital .t; s/-sequence over Fq is given, then for every integer m � max.1; t/ we
can construct a digital .t;m; s C 1/-net over Fq.

Proof We fix the integer m � max.1; t/. As we can see from the proof of
Theorem 4.4.63, the property of being a digital .t; s/-sequence over Fq depends
only on its generating matrices and not on the bijections  and �. Thus, we are free
to choose  W Fq ! Zq and � W Zq ! Fq as inverse maps of each other. Now
let .xn/

1
nD0 be a digital .t; s/-sequence over Fq with 1 � 1 generating matrices

C.1/; : : : ;C.s/ over Fq. Then by Proposition 4.4.57, the points

yn D .nq�m; xn/ 2 Œ0; 1/sC1 for n D 0; 1; : : : ; qm � 1

form a .t;m; s C 1/-net in base q. The definition of such a net and also the proof
of Proposition 4.4.57 show that for the verification of this net property, we need to
consider only .s C 1/-dimensional elementary intervals J in base q as in the proof
of Proposition 4.4.57 with

PsC1
iD1 di D m � t (where we write q for b), and so in

particular with di � m for 1 � i � s C 1. For checking whether xn 2 J, only the
first m q-adic digits of each coordinate matter. Thus, if pn 2 Œ0; 1/s is the point that
is obtained by truncating each coordinate of xn after the first m q-adic digits, then
the points

wn D .nq�m;pn/ 2 Œ0; 1/sC1 for n D 0; 1; : : : ; qm � 1

form again a .t;m; s C 1/-net in base q.
Now we construct m�m generating matrices D.1/; : : : ;D.sC1/ over Fq as follows.

For i D 1 we let D.1/ D .cij/1�i;j�m be the antidiagonal matrix with cij D 1 if

i C j D m C 1 and cij D 0 otherwise. For 2 � i � s C 1 we put D.i/ D C.i�1/
m with

the notation in Theorem 4.4.63. If we write the column vector v 2 F
m
q in (4.49) in

the form

v D .�.z1.n//; : : : ; �.zm.n///
>

with z1.n/; : : : ; zm.n/ running independently through Zq and representing n for
0 � n � qm � 1 via (4.62), then it is straightforward to verify that the points
w0;w1; : : : ;wqm�1 form a digital .t;m; s C 1/-net over Fq with generating matrices
D.1/; : : : ;D.sC1/. �
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4.4.5 A Construction of .t; s/-Sequences

We describe a construction that, for every dimension s � 1 and every prime power
q, produces a digital .t; s/-sequence over Fq for some value of the quality parameter
t. This construction is due to Niederreiter [130], and it was historically the first
construction achieving this task. We present a special case of this construction that
is sufficient for our purposes, and we refer to the paper [130] for the general case.

Given a dimension s � 1 and a prime power q, the basic ingredients of the
construction are s distinct monic polynomials p1; : : : ; ps 2 FqŒx	 that are irreducible
over the finite field Fq. We put li D deg.pi/ for 1 � i � s. The essential technical
device is the expansion of rational functions over Fq into formal Laurent series over
Fq that we already employed in Sect. 4.4.3 in the context of polynomial lattice point
sets. Concretely, for 1 � i � s and for integers j and k with j � 1 and 0 � k < li,
we consider the rational function xk=pi.x/j 2 Fq.x/. Since deg.xk/ D k < li � jli D
deg.pi.x/j/, its formal Laurent series expansion has the form

xk

pi.x/j
D

1X

rD1
e.i/.j; k; r/x�r 2 Fq..x

�1// (4.65)

with coefficients e.i/.j; k; r/ 2 Fq. From these coefficients we derive the entries of

the 1 � 1 generating matrices C.1/; : : : ;C.s/ over Fq. We write C.i/ D .c.i/jr /j�1; r�1
for 1 � i � s. For given i; j; r with 1 � i � s, j � 1, and r � 1, we determine the
entry c.i/jr as follows. We express the integer j�1 uniquely as j�1 D Q.i; j/li Ck.i; j/
with integers Q.i; j/ and k.i; j/ satisfying Q.i; j/ � 0 and 0 � k.i; j/ < li. Then we
put

c.i/jr D e.i/.Q.i; j/C 1; k.i; j/; r/ 2 Fq for 1 � i � s; j � 1; r � 1: (4.66)

There is a condition that we need to check, namely that each column of C.i/,
i D 1; : : : ; s, contains only finitely many nonzero entries. If we fix i and an integer
r � 1, then the entries in the rth column of C.i/ are the elements c.i/jr for j D 1; 2; : : :.
With � denoting again the degree map on Fq..x�1// introduced in Sect. 4.4.3, we
obtain

�.xk=pi.x/
j/ D deg.xk/ � deg.pi.x/

j/ D k � jli < li � jli;

and so �.xk=pi.x/j/ ! �1 as j ! 1. This means that e.i/.j; k; r/ D 0 for all
sufficiently large j, and so (4.66) implies that c.i/jr D 0 for all sufficiently large j.

The resulting generating matrices C.1/; : : : ;C.s/ yield an s-dimensional digital
sequence over Fq, called a Niederreiter sequence with generating polynomials
p1; : : : ; ps 2 FqŒx	. It is remarkable that this construction always produces a digital
.t; s/-sequence over Fq with a known value of t.
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Theorem 4.4.66 Let q be a prime power, let s � 1 be an integer, and let
p1; : : : ; ps 2 FqŒx	 be distinct monic irreducible polynomials over Fq. Then a
Niederreiter sequence with generating polynomials p1; : : : ; ps is a digital .t; s/-
sequence over Fq with

t D
sX

iD1
.deg.pi/ � 1/:

Proof With the given value of t, it suffices to show by Theorem 4.4.63 that
%.C.1/

m ; : : : ;C.s/
m / � m � t for all m 2 N. This is trivial for m � t, and so we

can assume that m > t. If

c.i/j;m D .c.i/j1 ; : : : ; c
.i/
jm/ 2 F

m
q

denotes the jth row vector of C.i/
m , then we have to verify that the system fc.i/j;m W 1 �

j � di; 1 � i � sg is linearly independent over Fq for any integers d1; : : : ; ds � 0

with
Ps

iD1 di D m � t. Let ni D ddi=lieli for 1 � i � s be the least multiple of li
that is greater than or equal to di. Then we prove even more, namely that the system
fc.i/j;m W 1 � j � ni; 1 � i � sg is linearly independent over Fq.

Thus, suppose that

sX

iD1

niX

jD1
bi;jc

.i/
j;m D 0 2 F

m
q

for some bi;j 2 Fq. A comparison of coordinates yields

sX

iD1

niX

jD1
bi;jc

.i/
jr D 0 for 1 � r � m: (4.67)

Consider the rational function

R WD
sX

iD1

niX

jD1
bi;j

xk.i;j/

pi.x/Q.i;j/C1
D

1X

rD1

� sX

iD1

niX

jD1
bi;jc

.i/
jr

�
x�r;

where we used (4.65) and (4.66) in the second identity. Note that �.R/ < �m
by (4.67). For 1 � i � s we can write

niX

jD1
bi;j

xk.i;j/

pi.x/Q.i;j/C1
D

ni=liX

hD1

hliX

jD.h�1/liC1

bi;jxj�1�.h�1/li
pi.x/h

D
ni=liX

hD1

1

pi.x/h

li�1X

kD0
bi;.h�1/liCkC1xk D

ni=liX

hD1

fih.x/

pi.x/h
;
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where

fih.x/ D
li�1X

kD0
bi;.h�1/liCkC1xk 2 FqŒx	 for 1 � h � ni=li: (4.68)

If we put g.x/ D Qs
iD1 pi.x/ni=li , then Rg is a polynomial. On the other hand,

�.Rg/ < �m C deg.g/ D �m C
sX

iD1
ni � �m C

sX

iD1
.di C li � 1/

D �m C m � t C
sX

iD1
.li � 1/ D 0:

This is possible only if Rg D 0, and so R D 0. Hence we obtain

sX

iD1

ni=liX

hD1

fih
ph

i

D R D 0: (4.69)

If we can show that fih D 0 2 FqŒx	 for 1 � h � ni=li, 1 � i � s, then all bi;j D 0

and we are done. There is nothing to prove if ni D 0, and so we consider only those i
with ni � 1, that is, with ni � li. We multiply (4.69) by g and obtain the polynomial
identity

sX

iD1

� ni=liX

hD1
fihp.ni=li/�h

i

� sY

aD1
a¤i

pna=la
a D 0: (4.70)

Now we fix an integer i with ni � li. Then pi divides the right-hand side of (4.70),
and so pi must divide the left-hand side. It follows that pi divides

� ni=liX

hD1
fihp.ni=li/�h

i

� sY

aD1
a¤i

pna=la
a :

Since pi does not divide the last product, pi must divide the last sum by Proposi-
tion 1.4.17(ii), and so pi divides fih for h D ni=li. But deg.fih/ < li D deg.pi/

by (4.68), and so fih D 0 for h D ni=li. This means that the terms in (4.69)
corresponding to h D ni=li with ni � li drop out. By repeating this argument
sufficiently often, we arrive at the desired conclusion that fih D 0 for 1 � h � ni=li,
1 � i � s. �
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Remark 4.4.67 The result of Theorem 4.4.66 is best possible since it was proved by
Dick and Niederreiter [37] that a Niederreiter sequence with generating polynomials
p1; : : : ; ps 2 FqŒx	 cannot be a digital .v; s/-sequence over Fq for an integer v <Ps

iD1.deg.pi/ � 1/.
Example 4.4.68 For every prime power q, there are exactly q distinct monic linear
polynomials over Fq which are of course automatically irreducible over Fq. Hence
for every dimension s with 1 � s � q, we can choose distinct monic linear
polynomials p1; : : : ; ps 2 FqŒx	. Then by Theorem 4.4.66, a Niederreiter sequence
with these generating polynomials p1; : : : ; ps is a digital .0; s/-sequence over Fq.
This result is noteworthy since Theorem 4.4.58 says that s � q is a necessary
condition for the existence of a .0; s/-sequence in base q. Therefore we get the
elegant statement that for a prime power q, a .0; s/-sequence in base q exists if
and only if s � q, and if s � q holds, then we can even construct a digital .0; s/-
sequence over Fq. For the Niederreiter sequences that are digital .0; s/-sequences
over Fq, the generating matrices can be written down in a nice explicit form (see
[133, Remark 4.52]). With the approach via these explicit generating matrices, these
digital .0; s/-sequences over Fq were constructed earlier by Faure [48] for prime
numbers q and by Niederreiter [129] for arbitrary prime powers q.

Example 4.4.69 If we combine the construction in Example 4.4.68 with Proposi-
tion 4.4.65, then for every prime power q, for every dimension s with 2 � s � qC1,
and for every integer m � 1 we obtain a digital .0;m; s/-net over Fq. Such digital
nets were also constructed in Theorem 4.4.53 by a different method. The existence
of these digital nets over Fq for s D 1 is known from Example 4.4.16. As soon as
m � 2, the condition s � q C 1 is best possible in the light of Theorem 4.4.11.

Remark 4.4.70 Given a prime power q and a dimension s � 1, the problem of
minimizing the value of the quality parameter t in Theorem 4.4.66 is easy to solve.
We just have to choose for p1; : : : ; ps distinct monic irreducible polynomials of
least degrees. More formally, we list all monic irreducible polynomials over Fq

(there are infinitely many of them by Proposition 1.4.43) in a sequence according to
nondecreasing degrees and then we let p1; : : : ; ps be the first s terms of this sequence.
With such a choice for p1; : : : ; ps, we put

Pq.s/ D
sX

iD1
.deg.pi/� 1/:

The polynomials p1; : : : ; ps are not uniquely determined since we are not saying
anything about the order in which monic irreducible polynomials over Fq of the
same degree are listed, but the number Pq.s/ is well defined. For instance, for q D 2

and s D 6 we can take p1.x/ D x, p2.x/ D x C 1, p3.x/ D x2 C x C 1, p4.x/ D
x3 C x C 1, p5.x/ D x3 C x2 C 1, p6.x/ D x4 C x C 1, and so P2.6/ D 8. For every
prime power q and every integer s � 1, we get a digital .Pq.s/; s/-sequence over Fq
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by Theorem 4.4.66. For 1 � s � q we obtain Pq.s/ D 0 by Example 4.4.68, and for
s > q we know the bound

Pq.s/ < s.logq s C logq logq s C 1/;

where logq denotes the logarithm to the base q (see [133, Theorem 4.54] for a proof
of this bound).

Theorem 4.4.66 has an appealing consequence that we already advertised at the
beginning of this subsection, namely that for every prime power q and every integer
s � 1, there exists a digital .t; s/-sequence over Fq for some value of t. From the
practical point of view, there is great interest in the least value of t that can be
achieved by any kind of construction with the digital method, and this leads to the
following definition.

Definition 4.4.71 For every prime power q and every integer s � 1, let dq.s/ be the
least value of t for which there exists a digital .t; s/-sequence over Fq.

Example 4.4.68 shows that dq.s/ D 0 for 1 � s � q and Theorem 4.4.58 implies
that dq.s/ � 1 for s � q C 1. For a fixed prime power q, the following theorem says
that dq.s/ grows at least linearly as a function of s as s tends to 1. The proof of this
result uses concepts and facts from coding theory (see Chap. 3).

Theorem 4.4.72 The lower bound

dq.s/ � s

q
� logq

.q � 1/s C q C 1

2

holds for all prime powers q and all integers s � 1.

Proof We fix q and s and observe that for t D dq.s/ there exists a digital .t; s/-
sequence over Fq. Then Proposition 4.4.65 shows that for every integer m > t there
is a digital .t;m; s C 1/-net over Fq. We put h D b.q � 1/s=qc C 1 and consider
m D t C h. If s C 1 � m, then

dq.s/ D t D m � h � s C 1 � .q � 1/s=q � 1 D s=q

and we are done. Thus, we can assume that s C 1 > m. By Theorem 4.4.19, our
digital .t;m; s C 1/-net over Fq with m D t C h yields an .h;m; s C 1/-system

fc.i/j 2 F
m
q W 1 � j � m; 1 � i � s C 1g over Fq. We apply the definition of

an .h;m; s C 1/-system over Fq (see Definition 4.4.18) only to the vectors c.i/j with

j D 1. Then we infer that any h of the vectors c.i/1 , 1 � i � s C 1, are linearly
independent over Fq.

Now we set up the m � .s C 1/ matrix H over Fq with the column vectors

c.1/1 ; : : : ; c
.sC1/
1 . Then we consider the subspace fv 2 F

sC1
q W vH> D 0 2 F

m
q g of

F
sC1
q . This is a linear code over Fq of length s C 1, of dimension at least s C 1 � m,
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and with minimum distance at least h C 1 (see the proof of Theorem 3.2.44). By
passing to an .s C 1 � m/-dimensional subspace of this linear code, we arrive at a
linear Œs C 1; s C 1� m	 code C over Fq with minimum distance d.C/ � h C 1. We
apply the Plotkin bound in Theorem 3.4.19 to the linear code C, and this yields

h C 1 � d.C/ � .s C 1/.q � 1/qs�m

qsC1�m � 1 :

A straightforward manipulation using m D t C h shows that

qtCh�s � .h C 1/q � .s C 1/.q � 1/

h C 1
;

and by taking logarithms to the base q we obtain

dq.s/ D t � s � h C logq

�
q � .s C 1/.q � 1/

h C 1

�
:

Next we note that h D b.q � 1/s=qc C 1 � .q � 1/s=q C 1, hence

dq.s/ � s

q
� 1C logq

�
q � .s C 1/.q � 1/

h C 1

�
:

Furthermore h � s � s=q C 1=q, therefore

q � .s C 1/.q � 1/

h C 1
� 2q

.q � 1/s C q C 1
;

and the desired lower bound on dq.s/ follows. �

With Pq.s/ as in Remark 4.4.70, we obviously have dq.s/ � Pq.s/ for all prime
powers q and all integers s � 1. The upper bound on Pq.s/ in Remark 4.4.70 implies
that, for fixed q, the quantity dq.s/ is at most of the order of magnitude s log s. On
the other hand, Theorem 4.4.72 shows that dq.s/ is at least of the order of magnitude
s. Actually, dq.s/ has the order of magnitude s as a function of s as s tends to 1, but
this can be proved only by deeper methods which are beyond the scope of this book
(see Sect. 4.5 for a sketch of these methods).

4.5 A Glimpse of Advanced Topics

There are various notions of discrepancy besides the extreme discrepancy and the
star discrepancy. For a point set P consisting of N points in Œ0; 1/s, we introduce a
function of u D .u1; : : : ; us/ 2 Œ0; 1	s by

RP.u/ D N�1A
� sY

iD1
Œ0; ui/IP

�
� u1 � � � us:
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Then the star discrepancy D�
N.P/ of P is the supremum norm of the function RP on

Œ0; 1	s. For a real number p � 1, the Lp norm of the function RP on Œ0; 1	s is called
the Lp discrepancy of P . The case p D 2 has received special attention. The lower
bound of Roth [175] in (4.19) is actually a lower bound on the L2 discrepancy of P .
Other concepts of discrepancy are obtained by extending the supremum in (4.18) not
only over subintervals of Œ0; 1	s, but over more general sets such as convex subsets
of Œ0; 1	s. This leads then also to error bounds for quasi-Monte Carlo integration for
larger classes of integration domains, for instance for convex integration domains or
for Jordan-measurable integration domains. We refer to [126, Sections 2 and 3] and
[133, Chapter 2] for discussions of these topics.

Quasi-Monte Carlo methods can be applied not only to numerical integration, but
to a variety of other tasks in computational mathematics. We mention the numerical
solution of integral equations, of integro-differential equations, and of linear partial
differential equations. Perhaps more surprising are applications to approximation
theory and to the computation of eigenvalues of matrices. We refer to [40, Chapter 3]
for some of these applications. A theory that is quite well developed is that of the
quasi-Monte Carlo method for the computation of maxima and minima of real-
valued functions, also called quasirandom search (see [133, Chapter 6]).

Much more can be said about lattice rules, and there is even a book devoted
entirely to lattice rules (see [188]). With every s-dimensional lattice L we can
associate an s � s generator matrix B whose row vectors b1; : : : ;bs form a basis
of L in the sense of (4.45). If L is an integration lattice, then the absolute value of
the determinant of B is equal to 1=N, where N is the number of points in the lattice
point set corresponding to L. Furthermore, a generator matrix of the dual lattice L?
of the integration lattice L is given by .B>/�1, that is, the inverse of the transpose
of B. We proved existence theorems for good lattice rules of rank 1 in Sect. 4.3.1,
and there are also existence theorems for good lattice rules of higher rank (see [133,
Section 5.4] and [188]). An important development for the practical computation of
good lattice points is the fast CBC algorithm of Nuyens and Cools [153] which is
based on fast Fourier transform techniques (see also [97, Section 4.2] for a detailed
description of this algorithm).

There are more constructions of nets and .t; s/-sequences than those presented in
Sects. 4.4.3 and 4.4.5. A detailed expository account of further constructions can be
found in the book of Dick and Pillichshammer [38]. A fascinating issue is that of the
exact order of magnitude of the quantity dq.s/ introduced in Definition 4.4.71, where
we fix the prime power q and consider dq.s/ as a function of the dimension s. A
lower bound on dq.s/ of the order of magnitude s was established in Theorem 4.4.72.
This is actually the exact order of magnitude of dq.s/, but to prove this we need also
an upper bound on dq.s/ of the same order of magnitude. This means that for every
s � 1 we have to construct a digital .t; s/-sequence over Fq with t growing linearly
as a function of s. All the known constructions that achieve this rate of growth use
the theory of global function fields outlined in Sect. 3.6.

The family of Niederreiter-Xing sequences was the first family of constructions
that produced an upper bound on dq.s/ of the order of magnitude s. The main papers
here are [145] and [203], and accounts of these constructions are also given in the
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books [38, Chapter 8] and [146, Chapter 8]. There is a minor technical issue that
arises in these and several other constructions, namely that it cannot be guaranteed
any more that the 1 � 1 generating matrices C.1/; : : : ;C.s/ over Fq have the
property that each column of each generating matrix contains only finitely many
nonzero entries. This situation is remedied by slightly modifying the definition of
a .t; s/-sequence in base b. Let Œx	b;m 2 Œ0; 1/s denote the point that is obtained by
the coordinatewise m-digit truncation in base b of the point x 2 Œ0; 1	s. Then we say
that for integers b � 2, s � 1, and t � 0, a sequence .xn/

1
nD0 of points in the closed

s-dimensional unit cube Œ0; 1	s is a .t; s/-sequence in base b in the broad sense if,
for all integers k � 0 and m > t, the points Œxn	b;m with kbm � n < .k C 1/bm

form a .t;m; s/-net in base b. A .t; s/-sequence in base b satisfying the original
Definition 4.4.55 is then called a .t; s/-sequence in base b in the narrow sense.
Analogously, we speak of digital .t; s/-sequences over Fq in the broad sense and in
the narrow sense. The main results on .t; s/-sequences in base b in the narrow sense,
such as the discrepancy bound in Theorem 4.4.59 with an obvious notion of star
discrepancy for sequences of points in Œ0; 1	s, hold just as well for .t; s/-sequences
in base b in the broad sense.

Now we sketch a construction from the family of Niederreiter-Xing sequences,
namely the construction in [145] using rational places. For a given prime power q
and a given integer s � 1, we choose a global function field F=Fq containing at
least s C 1 rational places. Let P1;P1; : : : ;Ps be s C 1 distinct rational places of F.
Furthermore, we choose a divisor D � 0 of F with dim.L.D C jPi// D j C 1 for
1 � i � s and all integers j � 0. Then for each i D 1; : : : ; s and j � 1, there is an
element

f .i/j 2 L.D C jPi/ n L.D C .j � 1/Pi/:

Next we pick an element y 2 F with �P
1

.y/ D 1. Recall that in the rational function
field Fq.x/ there is an expansion into formal Laurent series in terms of powers of x
(see Sect. 4.4.3). There is an analogous expansion in the global function field F in
terms of powers of y. For the elements f .i/j above, these expansions can be written in
the form

f .i/j D y�v
1X

rD0
b.i/j;r yr for 1 � i � s and j � 1;

where all coefficients b.i/j;r 2 Fq and where the integer v � 0 is the coefficient of P1
in the representation of the divisor D as a formal linear combination of places. For
i D 1; : : : ; s, we now set up the 1 � 1 generating matrix C.i/ D .c.i/j;r/j�1; r�0 over
Fq by putting

c.i/j;r D
(

b.i/j;r for j � 1 and 0 � r � v � 1;
b.i/j;rC1 for j � 1 and r � v:
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These generating matrices C.1/; : : : ;C.s/ yield a digital .t; s/-sequence over Fq in the
broad sense with t D g, the genus of the global function field F.

The problem of optimizing this construction of Niederreiter-Xing sequences
leads naturally to the quantity Vq.s/ which, for every prime power q and every
integer s � 1, is defined as the least integer g � 0 for which there exists a
global function field F=Fq of genus g containing at least s C 1 rational places. Then
obviously dq.s/ � Vq.s/, where we include digital .t; s/-sequences over Fq in the
broad sense in the definition of dq.s/. The quantity Vq.s/ can be bounded by means
of the so-called class field theory of global function fields. As a consequence, for
every prime power q we get the bound

dq.s/ � cs

log q
C 1 for all s � 1;

where c > 0 is an absolute constant. This bound settles the problem of the exact
order of magnitude of dq.s/ as a function of s. Various other bounds on dq.s/ can
be derived from Niederreiter-Xing sequences. For instance, the agreeable bound
dq.s/ � 5s for all prime powers q and all s � 1 is an immediate consequence
of [203, Theorem 3]. For special values of q some better bounds are possible; for
instance if q is a square, then

dq.s/ � ps

q1=2 � 1
for all s � 1;

where p is the unique prime factor of q. Detailed information on these and other
bounds for dq.s/ is available in [146, Sections 8.3 and 8.4].

There are other constructions based on global function fields that yield digital
.g; s/-sequences over Fq, just like the Niederreiter-Xing sequence described above.
A relatively simple one is that of Hofer and Niederreiter [65] which does not require
the auxiliary divisor D in the Niederreiter-Xing construction. The construction by
Niederreiter and Yeo [148] stands out because it is the only known construction
of .t; s/-sequences that operates for every dimension s and that is not based on the
digital method. In fact, this construction is a relative of the construction of Halton
sequences in Sect. 4.2.2, in the sense that it uses a sort of radical-inverse function in
the context of global function fields.

We presented the details and the proof for only one construction of .t; s/-
sequences that works for every dimension s, namely the construction of Niederreiter
sequences in Sect. 4.4.5. This construction can be applied only for prime-power
bases q. What can be said about bases b that are not prime powers? The approach for
such a base b is to use again a digital method, but instead of a finite field one employs
a finite commutative ring R with identity and of cardinality b as the underlying
algebraic structure. A convenient choice is obtained by writing b D Qr

hD1 qh as a
product of pairwise coprime prime powers q1; : : : ; qr and by letting R be the direct
product R D Qr

hD1 Fqh of finite fields. Then constructions that work over finite fields
can be extended to R by a direct-product procedure.
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A quantity that is more general than dq.s/ is the number tb.s/ which is defined,
for all integers b � 2 and s � 1, as the least value of t for which there exists a .t; s/-
sequence in base b (in the broad sense, say). It is obvious that for prime powers q the
inequality tq.s/ � dq.s/ holds for all s � 1. By using the direct-product procedure
mentioned above, together with the Niederreiter-Xing construction, it was shown
in [145] that for every base b � 2 the upper bound

tb.s/ � cs

log q.b/
C 1

is valid for all s � 1, where c > 0 is an absolute constant and where q.b/ is the
smallest prime power in the factorization of b into pairwise coprime prime powers.
On the other hand, there is a lower bound on tb.s/ which, for fixed b, is also linear
in s, and so tb.s/ has the exact order of magnitude s just like dq.s/. We refer to [146,
Chapter 8] for more information on .t; s/-sequences in arbitrary bases b.

Exercises

4.1 Prove that a sequence .xn/
1
nD1 of points in Œ0; 1/ is uniformly distributed if and

only if (4.7) holds for every subinterval J of Œ0; 1	 with rational endpoints.
4.2 Prove that if finitely many terms of a sequence that is uniformly distributed

modulo 1 are deleted or changed in an arbitrary manner, then the resulting
sequence is still uniformly distributed modulo 1.

4.3 Prove that if the sequences .xn/
1
nD1 and .yn/

1
nD1 are uniformly distributed

modulo 1, then the “mixed” sequence x1; y1; x2; y2; : : : ; xn; yn; : : : is uniformly
distributed modulo 1.

4.4 Prove that the sequence 0
1
; 0
2
; 1
2
; 0
3
; 1
3
; 2
3
; : : : ; 0k ;

1
k ; : : : ;

k�1
k ; : : : constructed in

an obvious blockwise manner is uniformly distributed.
4.5 Let m be a nonzero integer and let c be a real number. Prove that if the sequence

.xn/
1
nD1 is uniformly distributed modulo 1, then so is the sequence .mxn C

c/1nD1.
4.6 Let .xn/

1
nD1 and .yn/

1
nD1 be two sequences of real numbers such that

limn!1.xn � yn/ D c for some c 2 R. Prove that if .xn/
1
nD1 is uniformly

distributed modulo 1, then so is .yn/
1
nD1. (Hint: use Theorem 4.1.9.)

4.7 Prove that if .xn/
1
nD1 is uniformly distributed modulo 1 and the sequence

.yn/
1
nD1 of real numbers satisfies

lim
N!1

1

N

NX

nD1
jynj D 0;

then .xnCyn/
1
nD1 is uniformly distributed modulo 1. (Hint: use Theorem 4.1.9.)
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4.8 For a point set P consisting of N points in Œ0; 1/s with s � 1, show that any
given point in Œ0; 1/s can occur at most bNDN.P/c times in P .

4.9 Let x1; : : : ; xN 2 Œ0; 1/ be such that, for some constants c > 0 and C1 > 0,
the bound

ˇ̌PN
nD1 e2� ihxn

ˇ̌ � C1hc holds for all integers h with 1 � h �
N1=.cC1/. Prove that the point set P consisting of x1; : : : ; xN satisfies DN.P/ �
C2N�1=.cC1/ with a constant C2 > 0 depending only on c and C1.

4.10 Establish an s-dimensional version of Lemma 4.1.15 for every s � 2.
4.11 Theorem 4.1.21 implies that, with the notation in this theorem,

ˇ̌
ˇ
1

N

NX

nD1
xn � 1

2

ˇ̌
ˇ � D�

N.P/

for all x1; : : : ; xN 2 Œ0; 1/. Prove that this is best possible in the sense that
for every constant c < 1 there exist points x1; : : : ; xN 2 Œ0; 1/, where N may
depend on c, such that

ˇ̌
ˇ
1

N

NX

nD1
xn � 1

2

ˇ̌
ˇ � cD�

N.P/:

(Hint: consider point sets of the form

0; : : : ; 0„ ƒ‚ …
m

;
1

N
;
2

N
; : : : ;

N � m

N
;

where m 2 N with m � N is suitably chosen.)
4.12 Let x1; : : : ; xN be real numbers and let D�

N be the star discrepancy of their
fractional parts. Prove that

ˇ̌
ˇ

NX

nD1
e2� ixn

ˇ̌
ˇ � 4ND�

N :

4.13 For every point set P consisting of N points in Œ0; 1/2, prove that DN.P/ �
4D�

N.P/. (Hint: express an arbitrary half-open subinterval of Œ0; 1/2 in terms
of half-open subintervals anchored at the origin.)

4.14 Generalize the preceding exercise and show that DN.P/ � 2sD�
N.P/ for every

point set P consisting of N points in Œ0; 1/s with s � 2.
4.15 Prove in detail that if the real-valued function f on Œ0; 1	s with s � 2 depends

on fewer than s variables, then the variation V.s/.f / of f on Œ0; 1	s in the sense
of Vitali satisfies V.s/.f / D 0.

4.16 With the notation for continued fractions in Sect. 4.2.1, prove that

pkqk�2 � pk�2qk D .�1/kak for all k � 0:
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4.17 Prove that the star discrepancy of the point set Pm;s in Sect. 4.3.1 is equal to
1 � �

1 � 1
2m

�s
.

4.18 Let m � 2 and s � 1 be integers and let P be the point set consisting of the
N D ms points

�k1
m
; : : : ;

ks

m

�
2 Œ0; 1/s

with k1; : : : ; ks running independently through the integers 0; 1; : : : ;m � 1.
Prove that D�

N.P/ D 1 � �
1 � 1

m

�s
.

4.19 For every g 2 Z
s with s � 2 and every integer N � 2, define

%.g;N/ D min
h

r.h/;

where the minimum is extended over all nonzero h 2 Z
s with h � g �

0 .mod N/ and where r.h/ is given by (4.38). Prove that 1 � %.g;N/ � N=2.
4.20 Let g, N, and %.g;N/ be as in the preceding exercise. Prove that

D�
N.P.g;N// � Cs

%.g;N/

with a constant Cs > 0 depending only on s. This shows that %.g;N/ must be
large for a good lattice point g modulo N. (Hint: apply Theorem 4.1.41 with a
function f of the form f .u/ D cos .2�h � u/ for a suitable h 2 Z

s.)
4.21 Let L be the two-dimensional lattice corresponding to P.g;N/ with g D

.1; 5/ 2 Z
2 and N D 8. Determine the dual lattice L? explicitly and compute

the number %.g;N/ in Exercise 4.19.
4.22 Consider the two-dimensional lattice point set consisting of the six points

given by the fractional parts
˚
j1
�
1
2
; 0
� C j2

�
1
3
; 1
3

�
with j1 2 f0; 1g and

j2 2 f0; 1; 2g. Determine the rank and the invariants of this lattice point set.
4.23 Prove that if there exists a .t;m; s/-net in base b, then for every integer h � 1

there exists a .t C h;m C h; s/-net in base b.
4.24 Prove that if there exists a digital .t;m; s/-net over Fq, then for every integer

h � 1 there exists a digital .t C h;m C h; s/-net over Fq.
4.25 Prove that every .ht; hm; s/-net in base b with an integer h � 1 is a .t;m; s/-net

in base bh.
4.26 Prove that if there exists a .t1;m1; s1/-net in base b and a .t2;m2; s2/-net in

base b, then there exists a .t;m1 C m2; s1 C s2/-net in base b with

t D max .m1 C t2;m2 C t1/:

(Hint: consider the .s1 C s2/-dimensional direct product of the s1-dimensional
net and the s2-dimensional net.)

4.27 Prove that in Definition 4.4.18 we can replace the condition
Ps

iD1 di D d byPs
iD1 di � d and we still have the stated linear independence property.
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4.28 Prove that if C.1/ is the 4� 4 identity matrix over F2 and the matrices C.2/ and
C.3/ over F2 are given by

C.2/ D

0
BB@

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCA ; C.3/ D

0
BB@

1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

1
CCA ;

then C.1/, C.2/, and C.3/ are generating matrices of a digital .0; 4; 3/-net
over F2.

4.29 There is an analog of the Korobov form (4.43) of lattice points in the context
of polynomial lattice point sets. Choose f ; g 2 FqŒx	 with deg.f / D m � 1 and
determine g D .g1; : : : ; gs/ 2 FqŒx	s<m by gi � gi�1 .mod f / and deg.gi/ < m
for 1 � i � s. Under the assumption that f is irreducible over Fq, prove an
analog of Theorem 4.4.46 for s-tuples g 2 FqŒx	s<m of Korobov form.

4.30 Show first that f .x/ D x3 C 2x C 1 2 F3Œx	 is irreducible over F3 and then
construct explicitly a quadruple g 2 F3Œx	4<3 that yields a digital .0; 3; 4/-net
over F3 according to Theorem 4.4.53.

4.31 Compute the quantity Pq.s/ in Remark 4.4.70 for q D 2 and s D 10.
4.32 Compute the quantity Pq.s/ in Remark 4.4.70 for q D 3 and s D 8.



Chapter 5
Pseudorandom Numbers

Random numbers, pseudo or true,
better look like out of the blue.

But what to do on a day
when the sky is black or gray,
there we don’t have any clue.

5.1 General Principles

5.1.1 Random Number Generation

We pointed out in Sect. 4.1.2 that the Monte Carlo method for numerical integration
uses random samples, but we did not say anything about how to produce random
samples. Maybe we were wise to keep quiet, because nobody really knows how to
generate honest-to-goodness random samples in practice. On the other hand, the
purely theoretical framework for random sampling is clear: we have a set with
at least two elements, we are given a probability distribution (or a probability
measure) on this set, and we want to pick elements from this set that fairly represent
the probability distribution. But how do we decide whether the sampling is fair?
Normally in mathematics there is a definition to which we refer for the verification
of a property, but here no generally accepted definition of a fair random sample is
codified, unless we deceive ourselves and tolerate tautologies like “a random sample
is a collection of elements chosen at random”.

Notwithstanding this conundrum about random samples, the procedure of ran-
dom sampling is widely used in many walks of life. It is of course the mainstay
of applied statistics where information on large populations is obtained by drawing
and investigating a relatively small random sample. A typical example is an opinion
poll in which only a tiny percentage of the populace is queried. This small group
of people should form, as the statisticians say, a “representative sample” in terms
of demographic categories like age, gender, and social class. Therefore it loosely
captures the idea of a “fair random sample” mentioned earlier. However, when one
considers how often pollsters err, it is evident that the emphasis here is more on
“loosely” than on “captures”. At any rate, the craft of polling is a good case in point
for the difficulty of practical random sampling.

© Springer International Publishing Switzerland 2015
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Let us stay with the serious applications of random sampling for a short while
before we turn to the frivolous ones. In the realm of scientific computing, the
Monte Carlo method has a great demand for random samples, and this not only
for numerical integration, but also for solving integral equations, boundary-value
problems with partial differential equations, and linear-algebra problems involving
matrices of large size, as well as for the optimization of functions and for many
other tasks. Ever since the invention of the Monte Carlo method, problems of
computational physics were treated by this method, a prominent example being
particle transport through a solid medium in nuclear physics. This problem is of
crucial importance for the safety of nuclear reactors.

Monte Carlo methods belong to the broader family of simulation methods,
which strive to gain information about complex and large-scale systems by random
sampling. For instance, you may think of the management of production processes
in a big factory or flight-scheduling problems for a global airline. In these examples,
the supply of resources, the demand for the company’s products, or the preferences
and frequency of passengers are random processes that have to be simulated.

There is also the area of probabilistic algorithms in scientific computing and
computer science where random samples are required. A probabilistic algorithm
is basically like any other computational procedure inasmuch as it follows well-
defined steps that can be programmed in software, but in certain steps of the
algorithm we are allowed to make random choices. These choices come from a
specified set and are produced by random sampling. For some computational tasks,
probabilistic algorithms tend to arrive at the desired answer faster than conventional
deterministic algorithms. In this book, you can find examples of probabilistic
algorithms in Sects. 2.3.3, 2.4.2, 2.7.1, 2.7.2, and 6.5.1.

But believe it or not, the biggest consumer of random samples nowadays is the
gaming industry, by which we mean not only things like slot machines in casinos,
but also computer games. Take the typical slot machine: it contains an electronic
device that selects “at random” one out of the several thousand possible combina-
tions of fruits and other objects on the display. As a matter of fact, somebody has
programmed this device and it runs through an algorithm that produces the suppos-
edly random outcomes in real time. If you can hack this algorithm, then you could
make millions at your local casino, provided the management does not become
suspicious of your lucky streak and bans you from the premises. Similar features
appear in computer games where various scenarios are selected “randomly”, but in
reality according to a deterministic algorithm unbeknown to the user.

With these numerous applications of random sampling, it is evident that much
thought has been spent on the actual generation of random samples. At the beginning
of this subsection, we described the framework for random sampling in an abstract
manner, namely a set with at least two elements and a probability distribution on it.
In practice, the set from which the random samples are drawn will be of a concrete
nature, for instance, the set f0; 1g of bits, a finite set of integers, the set R of real
numbers, or a set of points in a Euclidean space. The problem of sampling from
such typical concrete sets can usually be reduced to that of sampling from R. In the
latter case, we speak of random number generation.
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Using statistical terminology, the task of random number generation presents
itself in the following form: given a target distribution function F on R, generate
a sequence of real numbers that simulates a sequence of independent and iden-
tically distributed random variables with distribution function F. You may think
of a distribution function F as a real-valued nondecreasing function on R with
limx!�1 F.x/ D 0 and limx!1 F.x/ D 1. The intuitive meaning of the distribution
function F is that, for all x 2 R, the probability Pr.r � x/ that a random number
r satisfies r � x is equal to F.x/. We do not specify the mathematical definition of
“independent” and rather appeal again to intuition: independence signifies that the
choice of a random sample or of a random number is not influenced by previous
choices of random samples or of random numbers in the same sampling procedure.
Just think of so-called fair coin tosses for an illustration: if you know the outcomes
of a run of fair coin tosses, then this should not give you any clue about the outcome
of the next fair coin toss.

It is customary to break up the task of random number generation into two steps:
(i) generate random numbers for an easy standardized distribution function on R;
(ii) transform the random numbers in step (i) into random numbers with the given
target distribution function F on R. As the easy standardized distribution function
we choose the uniform distribution function U on R defined by U.x/ D 0 for x < 0,
U.x/ D x for 0 � x � 1, and U.x/ D 1 for x > 1 (see Fig. 5.1). Random numbers
whose target distribution function is U are called uniform random numbers. For
uniform random numbers r we have Pr.r < 0/ � Pr.r � 0/ D U.0/ D 0 and
Pr.r > 1/ D 1 � Pr.r � 1/ D 1 � U.1/ D 0, and so we can assume that
uniform random numbers belong to the interval Œ0; 1	. We emphasize that uniform
random numbers satisfy the property that, for all 0 < x � 1, the probability of
a uniform random number from Œ0; 1	 falling into the subinterval Œ0; x	 is equal
to x. There is of course a formal similarity here with the concept of a uniformly
distributed sequence (compare with Theorem 4.1.6), and this explains why the
theory of uniform distribution of sequences plays a role in the analysis of uniform
(pseudo)random numbers as we shall see.

Fig. 5.1 The graph of U
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In this book, we focus on uniform (pseudo)random numbers since it is in this
area where the applications of number theory occur. The transformation step (ii)
listed above involves the theory of special functions and elementary statistics, but
no number theory. Therefore we just say a few words about step (ii). Consider the
case where the target distribution function F is strictly increasing and continuous
on R. Then it is clear that the image of F is the open interval .0; 1/ and that the
inverse function F�1 W .0; 1/ ! R exists. Since uniform random numbers attain
the values 0 and 1 with probability 0, we can assume here that the uniform random
numbers r1; r2; : : : generated in step (i) above lie in the open interval .0; 1/. Now
we determine a sequence x1; x2; : : : of real numbers by xn D F�1.rn/ for all n � 1.
Then

Pr.xn � x/ D Pr.F�1.rn/ � x/ D Pr.rn � F.x// D F.x/

for all x 2 R, and so x1; x2; : : : can be viewed as a sequence of random numbers
with target distribution function F. For obvious reasons, this transformation method
is called the inversion method.

Example 5.1.1 Consider a so-called Cauchy distribution function F which is
defined by

F.x/ D 1

2
C 1

�
arctan.x=�/ for all x 2 R;

where � is a positive constant. Then F is strictly increasing and continuous on R,
limx!�1 F.x/ D 0, and limx!1 F.x/ D 1. Hence F is a distribution function for
which we can apply the inversion method. The inverse function F�1 of F is given
by

F�1.x/ D � tan

�
�

�
x � 1

2

��
for 0 < x < 1:

In this case, the function values of F�1 can be efficiently computed by using
standard mathematical software.

There are many situations where there is no nice closed-form expression for
the inverse function F�1 of a given distribution function F, and in such cases the
inversion method is not practical. However, various other methods for transforming
uniform random numbers into random numbers with a prescribed nonuniform
target distribution function are available. Methods geared to common distribution
functions such as the family of normal distribution functions were extensively
studied and can be very efficient. The voluminous book [35] is devoted entirely
to these transformation methods, and a more recent treatment of this topic can be
found in [70].
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The first attempts to generate (uniform) random numbers on a large scale used
physical devices such as automated roulette wheels, gadgets producing white noise,
and counts of the emission of radiated particles. There was the legendary machine
ERNIE (Electronic Random Number Indicator Equipment) that picked the winning
numbers in the British Premium Bonds lottery for many years. Some machine-
generated random numbers were even published in the form of tables, such as those
in the RAND tables [163] that were widely employed in their time, but printing
random numbers on paper and thus codifying them for eternity somehow seems to
defeat the conventional idea of random numbers. An account of physical methods
for the generation of random numbers is given in the book edited by Shreider [184,
Chapter VI].

However, the utilization of physically generated random numbers is problematic.
In the first place, the generated random numbers may have a small bias because of
measurement errors due to imperfect equipment or because the underlying physical
process is not sufficiently well understood and actually follows a probability
distribution that is somewhat different from the anticipated one. Extensive statistical
testing is mandatory in order to detect a possible bias (see Sect. 5.1.2 for such tests).
Then there is the crucial issue of reproducibility: just like laboratory experiments,
scientific computations must be reproducible by other experts for the purpose of
verification. For computations involving physically generated random numbers, this
means that the random numbers have to be stored so that they are available when
the same computation is repeated. A high-level Monte Carlo computation with many
runs may consume up to 1012 random numbers, and the storage of so many random
numbers can be cumbersome and error-prone.

In view of the inconvenience of physically generated random numbers, prac-
titioners switched to deterministic algorithms that generate random numbers in
a quick and user-friendly way in a computer and depend only on a few input
parameters. Even large bulks of random numbers can then be produced “on the
fly” as one says, that is, in real time as they are needed, and so the problems of
reproducibility and storage are vanquished. It is an additional advantage of such
computer-generated random numbers that they can often be subjected to a rigorous
theoretical analysis, and this will be illustrated in the present chapter. Suitable
theoretical results may alleviate to some extent the need for time-consuming
statistical testing of computer-generated random numbers. To be sure, it is of
course an oxymoron to speak of random numbers generated by a deterministic
algorithm. Therefore the terminology pseudorandom numbers is frequently used
for computer-generated random numbers. We follow this terminology as it allows
for a tidy differentiation from “true” random numbers (whatever these may be).
Furthermore, we restrict the usage to uniform pseudorandom numbers. Thus, in this
book, pseudorandom numbers are numbers that are generated by a deterministic
algorithm and that attempt to simulate the uniform distribution function U on R.

The deterministic algorithms for generating pseudorandom numbers, and often
also certain parameters in these algorithms, have to be chosen very carefully in
order to arrive at pseudorandom numbers of good quality. There is a long history
of bad choices of algorithms and parameters in this area, and we will of course
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steer away from these known bad choices. A memorable lesson about the judicious
choice of algorithms is contained in the title of the classical paper [28]: “Random
number generation is too important to be left to chance”. Or to quote the leading
computer scientist Donald Knuth [80, Section 3.1]: “Random numbers should not
be generated with a method chosen at random. Some theory should be used.”

5.1.2 Testing Pseudorandom Numbers

Pseudorandom numbers are generated by deterministic algorithms, and from this
angle there is a priori absolutely no guarantee that they will do what they are
supposed to do, namely to simulate the uniform distribution function U on R and
to possess desirable statistical independence properties. Therefore quality control is
indispensable in the business of pseudorandom number generation. As the famous
dictum ascribed alternately to Mark Twain or to Lenin or to Ronald Reagan says:
“Confidence is good, but control is better.”

There are several categories according to which we can assess the quality of
pseudorandom numbers, such as statistical, structural, and complexity-theoretic
criteria. One may also add ease of implementation and speed of the algorithm
producing pseudorandom numbers, but in the age of high-speed computers the
time spent on generating pseudorandom numbers is minuscule. Already in 1990 the
computer expert Fred James at the nuclear research center CERN in Geneva noted
in his paper [72]: “This [efficiency] was considered very important in the early days,
but with the kind of computations being performed now, both the computer time and
memory space taken by random number generation are increasingly insignificant
and can almost always be neglected.” We will discuss several statistical tests for
pseudorandom numbers in this subsection. Structural criteria refer to aspects such
as period length and lattice structure, and we will investigate such properties
for specific methods of pseudorandom number generation. Complexity-theoretic
requirements are not so important for pseudorandom numbers used in Monte
Carlo methods and simulation methods, but they are essential in pseudorandom bit
generation for cryptography (see Sect. 5.4).

The statistical testing of pseudorandom numbers operates in a setting where
we are given a sequence x0; x1; : : : of pseudorandom numbers in the interval Œ0; 1/
and a large integer N. The statistical tests use the first N terms x0; x1; : : : ; xN�1 of
the sequence or a slightly longer initial segment of the sequence. In each test we
compute a certain test quantity and compare it with a benchmark, namely the value
of the test quantity for a “truly random” sequence. The benchmark value is usually
obtained by probability theory.

An absolute must is the uniformity test (or equidistribution test) which checks
whether the given pseudorandom numbers really follow our standardized target
distribution function, namely the uniform distribution function U on R. To this
end, we calculate the star discrepancy D�

N of the numbers x0; x1; : : : ; xN�1. Note
that the definition of the star discrepancy in Definition 4.1.11 indicates that D�

N
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represents the maximal deviation between the actual distribution of the numbers
x0; x1; : : : ; xN�1 and the ideal distribution function U. There is a law of the iterated
logarithm for the star discrepancy due to Chung [25] which says that

lim sup
N!1

.2N/1=2D�
N.S/

.log log N/1=2
D 1

with probability 1, that is, for a “truly random” sequence S of points in Œ0; 1/. In
particular D�

N.S/ D O
�
N�1=2.log log N/1=2

�
for all N � 3, where the implied

constant may depend on the sequence S. For some algorithms for pseudorandom
number generation, the star discrepancy D�

N can be bounded by means of a
mathematical theorem, and then no computations have to be performed for the
uniformity test.

The permutation test examines the relative ordering among successive pseudo-
random numbers. We choose an integer s � 2 and form the s-tuples

.xn; xnC1; : : : ; xnCs�1/ for n D 0; 1; : : : ;N � 1:

Note that here the first N C s � 1 terms of the given sequence of pseudorandom
numbers are needed, and similar statements hold for the following statistical tests.
There are sŠ possible relative orderings among the entries of such an s-tuple and
these orderings are equiprobable. We determine the frequency of each ordering,
with some convention for breaking ties of entries, and we use the maximal deviation
of these frequencies from the expected number of occurrences as the basis for a
statistical test.

A very popular test, not only for pseudorandom numbers but also in other
applications of statistics, is the serial correlation test. This is a test for the
interdependence between xn and xnCh, where h � 1 is a given integer. The test
is performed by calculating the serial correlation coefficient

�
.h/
N WD MN.xnxnCh/� .MN.xn//

2

MN.x2n/� .MN.xn//2
;

where MN.vn/ D N�1PN�1
nD0 vn denotes the mean value of real numbers

v0; v1; : : : ; vN�1 and where we assume that the denominator is nonzero. If xn

and xnCh are statistically almost independent, then the absolute value j�.h/N j is small.
It is a drawback of this test that the converse does not necessarily hold. The serial
correlation test is widely used since serial correlation coefficients can be computed
quickly.

The serial test is a more severe test for the statistical independence of successive
pseudorandom numbers and is a multidimensional version of the uniformity test
(see above). For a fixed dimension s � 2, we put

xn D .xn; xnC1; : : : ; xnCs�1/ 2 Œ0; 1/s for n D 0; 1; : : : ;N � 1:



314 5 Pseudorandom Numbers

Let P .s/
N be the point set consisting of the points x0; x1; : : : ; xN�1. Then we consider

the star discrepancy D�
N.P

.s/
N / of this point set. The appropriate statistical benchmark

result is the s-dimensional law of the iterated logarithm for the star discrepancy due
to Kiefer [78]. This law affirms that

lim sup
N!1

.2N/1=2D�
N.S/

.log log N/1=2
D 1

with probability 1, that is, for a “truly random” sequence S of points in Œ0; 1/s.
In particular D�

N.S/ D O
�
N�1=2.log log N/1=2

�
for all N � 3, where the implied

constant may depend on the sequence S. As for the uniformity test, we can establish
theoretical bounds on the star discrepancy D�

N.P
.s/
N / in some cases.

Remark 5.1.2 It is intuitively clear that the serial test is stronger than the serial
correlation test, in the sense that a small star discrepancy implies a small serial
correlation coefficient, and we can also support this by a formal argument. For
simplicity, we consider only the serial correlation coefficient �.h/N with h D 1, but we
can proceed similarly for any integer h � 1. Let x0; x1; : : : ; xN�1 be pseudorandom
numbers in Œ0; 1/ with small star discrepancy D�

N , say D�
N � 1

100
. First we inspect

the denominator

Den.�.1/N / D MN.x
2
n/ � .MN.xn//

2

of �.1/N . By simple algebraic manipulations, we get

Den.�.1/N / D 1

N

N�1X

nD0
x2n �

� 1
N

N�1X

nD0
xn

�2

D 1

12
C
� 1

N

N�1X

nD0
x2n � 1

3

�
�
� 1

N

N�1X

nD0
xn � 1

2

�
�
� 1

N

N�1X

nD0
xn � 1

2

�2
:

The last three bracketed expressions can be bounded by the Koksma inequality (see
Theorem 4.1.21). Note that an increasing function g on Œ0; 1	 has bounded variation
V.g/ D g.1/� g.0/, and so the functions g1.x/ D x and g2.x/ D x2 on Œ0; 1	 satisfy
V.g1/ D V.g2/ D 1. Consequently,

Den.�.1/N / � 1

12
� 2D�

N � .D�
N/
2 � 1

12
� 2

100
�
�
1

100

�2
>
1

16
: (5.1)
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For the numerator Num.�.1/N / of �.1/N we obtain

jNum.�.1/N /j D jMN.xnxnC1/ � .MN.xn//
2j

�
ˇ̌
ˇMN.xnxnC1/ � 1

4

ˇ̌
ˇC

ˇ̌
ˇ.MN.xn//

2 � 1

4

ˇ̌
ˇ

�
ˇ̌
ˇMN.xnxnC1/ � 1

4

ˇ̌
ˇC 3

2

ˇ̌
ˇMN.xn/ � 1

2

ˇ̌
ˇ

�
ˇ̌
ˇMN.xnxnC1/ � 1

4

ˇ̌
ˇC 3

2
D�

N :

We can bound the term
ˇ̌
MN.xnxnC1/� 1

4

ˇ̌
by the Koksma-Hlawka inequality (see

Theorem 4.1.41). We introduce the point set P .2/
N consisting of the points

xn D .xn; xnC1/ 2 Œ0; 1/2 for n D 0; 1; : : : ;N � 1

and the function f .x; y/ D xy on Œ0; 1	2. The variation V.f / of f on Œ0; 1	2 in the
sense of Hardy and Krause is given by

V.f / D
Z 1

0

Z 1

0

ˇ̌
ˇ
@2f .x; y/

@x@y

ˇ̌
ˇdxdy C

Z 1

0

ˇ̌
ˇ
df .x; 1/

dx

ˇ̌
ˇdx C

Z 1

0

ˇ̌
ˇ
df .1; y/

dy

ˇ̌
ˇdy D 3

according to (4.25), and so the Koksma-Hlawka inequality produces the bound

ˇ̌
ˇMN.xnxnC1/� 1

4

ˇ̌
ˇ D

ˇ̌
ˇ
1

N

N�1X

nD0
f .xn/ �

Z 1

0

Z 1

0

f .x; y/dxdy
ˇ̌
ˇ � 3D�

N.P
.2/
N /:

If we use also the inequality D�
N � D�

N.P
.2/
N / which is derived from the projection

principle in Remark 4.1.37, then we obtain

jNum.�.1/N /j � 3D�
N.P

.2/
N /C 3

2
D�

N � 9

2
D�

N.P
.2/
N /:

Together with the lower bound on Den.�.1/N / in (5.1), this yields

j�.1/N j D jNum.�.1/N /j
jDen.�.1/N /j

< 16 � 9
2

D�
N.P

.2/
N / D 72D�

N.P
.2/
N /:

Hence a small star discrepancy D�
N.P

.2/
N / implies a small serial correlation coeffi-

cient �.1/N .

There are many more statistical tests for pseudorandom numbers, and some
experts have even designed entire batteries of tests such as the DIEHARD test
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battery (see [53, Section 6.2]). The name of this test battery is an amusing pun
since DieHard is a popular brand of car batteries in the United States, but maybe it
refers also to the eponymous series of action movies starring Bruce Willis in which
his stamina is tested in the extreme. The classical treatment of statistical tests for
pseudorandom numbers is given in the book of Knuth [80, Section 3.3].

It should be evident that a deterministic sequence of numbers cannot perform
well under all conceivable tests for randomness. Therefore the user of pseudo-
random numbers should be aware of the specific desirable statistical properties
of the random numbers for the computational task at hand and should choose
pseudorandom numbers that are known to pass the corresponding statistical tests.
For instance, if all that is needed is the statistical independence of any two
successive uniform random numbers, then pseudorandom numbers passing the two-
dimensional serial test are quite sufficient for this particular purpose.

5.2 The Linear Congruential Method

5.2.1 Basic Properties

It is striking that practically all currently employed methods for generating uniform
pseudorandom numbers use number-theoretic or algebraic techniques. One of the
first methods in the history of pseudorandom number generation was the linear
congruential method, which was introduced by the number theorist Derrick H.
Lehmer at a conference at Harvard University in 1949 (see [95]). This method
is still popular because of its simplicity. We need only two parameters for this
method, namely a large integer m and an integer a with gcd.a;m/ D 1. Let
Zm D f0; 1; : : : ;m � 1g again denote the least residue system modulo m. Then
we choose an initial value z0 2 Zm with gcd.z0;m/ D 1 and we generate a sequence
z0; z1; : : : of elements of Zm by the recursion

znC1 � azn .mod m/ for n D 0; 1; : : : : (5.2)

From this sequence, we derive the linear congruential pseudorandom numbers

xn D zn

m
2 Œ0; 1/ for n D 0; 1; : : : : (5.3)

In this context, m is referred to as the modulus and a as the multiplier. Since a
matters only modulo m, we assume that a 2 Zm.

These definitions immediately yield some simple consequences. For instance, the
recursion (5.2) for the integers zn implies the explicit formula

zn � anz0 .mod m/ for n D 0; 1; : : : : (5.4)
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Then the pseudorandom numbers xn are given by the fractional parts

xn D
n 1

m
anz0

o
for n D 0; 1; : : : : (5.5)

Let T be the multiplicative order of a modulo m, that is, T is the least positive integer
h such that ah � 1 .mod m/. Then znCT D zn for all n � 0, and so the sequence
.zn/

1
nD0 is purely periodic with period length T. Since gcd.z0;m/ D 1, the number T

is actually the least period length. The numbers xn are obtained from the integers zn

by multiplying by the constant 1=m, and so the sequence .xn/
1
nD0 has the same least

period length. In general, for a periodic sequence .wn/
1
nD0 we write per.wn/ for the

least period length of .wn/
1
nD0. We summarize the information about the least period

length of .xn/
1
nD0 as follows.

Proposition 5.2.1 Let .xn/
1
nD0 be a sequence of linear congruential pseudorandom

numbers with modulus m and multiplier a. Then per.xn/ D T, where T is the
multiplicative order of a modulo m.

One may question whether it is prudent to admit pseudorandom numbers that are
rational numbers with the same denominator m. Certainly, such numbers would be
unlikely if we were to draw truly random samples from the uniform distribution on
the interval Œ0; 1	. However, there is the pragmatic viewpoint that once we entrust
a computer with the generation of pseudorandom numbers, then we have to live
with the fact that such a machine can represent real numbers only with a finite
precision. From this perspective, it is legitimate to work with rational pseudorandom
numbers having a finite precision. For instance, if your computer has a 32-bit
processor, then it is reasonable and practical to generate only rational numbers with
denominator 232.

Another issue is that of the periodicity of sequences of linear congruential
pseudorandom numbers. Again, truly random samples would definitely not exhibit
periodic patterns, so there is a problem here from a scrupulous statistical point
of view. But as before we adopt a pragmatic stance and we concede that if the
period length is significantly larger than the number of pseudorandom numbers
actually consumed in a computation, then the user will not “notice” the periodicity
of the sequence of pseudorandom numbers. In the case of linear congruential
pseudorandom numbers, we have per.xn/ D T � m on account of Proposition 5.2.1,
and so the modulus m should be considerably larger than the total number of linear
congruential pseudorandom numbers used in a computation. It must be added that
every algorithm currently utilized in practice for pseudorandom number generation
produces periodic sequences, and so this issue of periodicity is not something
particular for the linear congruential method.

Now we address the question of the choice of the two parameters m and a in the
linear congruential method. We already observed that the modulus m should be quite
large, for reasons of a fine discretization of the interval Œ0; 1	 and of a sufficiently
large period length. On the other hand, for ease of implementation it is convenient
for the modulus to fit into the word size of the processor. For instance, for a 32-bit
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processor it is preferable to have m � 232. Furthermore, the theory of the linear
congruential method is nicer if m is a prime number or a power of 2. Again for a 32-
bit processor, popular choices for the modulus are the Mersenne prime m D 231 � 1
(see Sect. 2.7.3 for Mersenne primes) or m D 232. For higher precision and period
length, one may take m D 248 or m D 264 or the prime numbers m D 248 � 59,
m D 263 � 25, or m D 264 � 59.

The selection of good multipliers a is a subtler affair. The primary requirement is
of course that the generated sequence of linear congruential pseudorandom numbers
should have a large period length, and this means in view of Proposition 5.2.1 that
the multiplicative order T of a modulo m should be large. Once m has been fixed, it
is therefore reasonable to choose a such that T is as large as possible for this value
of m. This is easy if m is a prime number, for then the largest possible value of T
is �.m/ D m � 1 and this value of T is attained if and only if a is a primitive root
modulo m (see Definition 1.2.19). In the other interesting case, namely when m is a
power of 2, the following result provides the desired information. Note that we can
ignore very small values of m since they are irrelevant for our purpose.

Proposition 5.2.2 Let m D 2k with an integer k � 3. Then the largest value of a
multiplicative order modulo m is 2k�2. For k � 4, an integer a has multiplicative
order 2k�2 modulo m if and only if a � ˙3 .mod 8/.

Proof For every integer k � 1 and every odd integer a, let tk.a/ be the multiplicative
order of a modulo 2k. Then atk.a/ D 2kb C 1 for some b 2 Z, hence by squaring we
get

a2tk.a/ D 22kb2 C 2kC1b C 1 � 1 .mod 2kC1/;

and so

tkC1.a/ � 2tk.a/: (5.6)

Since t3.a/ � 2 for all odd a 2 Z, it follows from (5.6) that tk.a/ � 2k�2 for all
k � 3. For odd a 6� 1 .mod 8/ it is trivial that t3.a/ D 2, and so we can assume that
k � 4 from now on. Every a � ˙1 .mod 8/ satisfies t4.a/ � 2, and so (5.6) implies
in this case that tk.a/ � 2k�3 for all k � 4. From �.2k/ D 2k�1 we infer that tk.a/ is
always a power of 2 (compare with Remark 1.3.12). Thus, we can finish the proof
by showing that a2

k�3 6� 1 .mod 2k/ for a � ˙3 .mod 8/. In fact, we prove for such
a that

a2
k�3 � 2k�1 C 1 .mod 2k/ for all k � 4:

This is trivial for k D 4. If the assertion is shown for some k � 4, then a2
k�3 D

2kd C 2k�1 C 1 D 2k�1.2d C 1/C 1 for some d 2 Z, and so by squaring we obtain

a2
k�2 D 22k�2.2d C 1/2 C 2k.2d C 1/C 1 � 2k C 1 .mod 2kC1/;

which completes the induction. �
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Remark 5.2.3 In the literature one has also considered the so-called inhomogeneous
case in the linear congruential method where the recursion (5.2) is replaced by

znC1 � azn C c .mod m/ for n D 0; 1; : : : : (5.7)

Here m is again a large integer and we choose a; c 2 Zm with gcd.a;m/ D 1 and
c ¤ 0. The pseudorandom numbers xn are again obtained by (5.3). This case adds
of course a slight complication, but it is of interest since we can sometimes achieve
per.xn/ D per.zn/ D m. For instance, let m D 2k with an integer k � 3, let a �
5 .mod 8/, and let c be odd. Then it follows from (5.7) by induction on n that

zn � anz0 C an � 1

a � 1 c .mod 2k/ for n D 0; 1; : : : :

This implies that

zn � z0 � an � 1

a � 1 ..a � 1/z0 C c/ .mod 2k/ for n D 0; 1; : : : :

Since .a �1/z0C c is odd, we have zn D z0 for some positive integer n if and only if
2k divides .an�1/=.a�1/. Now a�1 is divisible by 4 but not by 8, and so zn D z0 for
some n 2 N if and only if an � 1 .mod 2kC2/. The least n 2 N for which this holds
is n D 2.kC2/�2 D 2k by Proposition 5.2.2, and so per.xn/ D per.zn/ D 2k D m.

The performance of linear congruential pseudorandom numbers under the
uniformity test in Sect. 5.1.2 is easy to describe if we apply this test to the full
period and if the least period length is close to the modulus. Let S D .xn/

1
nD0 be a

sequence of linear congruential pseudorandom numbers with modulus m and least
period length T D per.xn/. Let D�

T .S/ be the star discrepancy of the first T terms
of S, that is, D�

T.S/ is the star discrepancy of the pseudorandom numbers in the
full period. The simplest case is T D m, which can sometimes be achieved by
using the inhomogeneous recursion (5.7) as shown in Remark 5.2.3. If T D m,
then it is evident that the numbers x0; x1; : : : ; xT�1 in the full period run exactly
through all rational numbers in Œ0; 1/ with denominator m in some order. Therefore
D�

T.S/ D 1=m by Proposition 4.1.16.
From now on, unless stated explicitly otherwise, we discuss only linear con-

gruential pseudorandom numbers derived from the original homogeneous recur-
sion (5.2). If m is a prime number and T D m � 1, then the numbers x0; x1; : : : ; xT�1
are 1=m; 2=m; : : : ; .m � 1/=m in some order. Therefore again D�

T.S/ D 1=m by
Proposition 4.1.16. Another interesting case is m D 2k with an integer k � 4 and
a � 5 .mod 8/. Then T D 2k�2 D m=4 by Proposition 5.2.2. Furthermore, (5.4)
implies that zn � z0 .mod 4/ for all n � 0, and so the point set consisting of
x0; x1; : : : ; xT�1 is equal to the point set consisting of all rational numbers in Œ0; 1/
of the form b=m with an integer b � z0 .mod 4/. Since z0 � ˙1 .mod 4/, a
straightforward computation based on Proposition 4.1.16 shows that D�

T.S/ D 3=m.
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If T is considerably smaller than the modulus m, then we cannot expect such
simple explicit formulas for D�

T.S/, but we can provide upper bounds on D�
T.S/.

We focus on the case where the modulus is a prime number, and we write as usual
p for a prime number. Results for other moduli can also be obtained, but they are
more complicated (see [124]). We need the following bound on exponential sums.
For M 2 N we put �M.z/ D e2� iz=M for all z 2 Z.

Lemma 5.2.4 Let p be a prime number and let a; b; d 2 Z with gcd.a; p/ D
gcd.b; p/ D 1. Let T be the multiplicative order of a modulo p. Then

ˇ̌
ˇ

T�1X

nD0
�p.ban/�T .dn/

ˇ̌
ˇ �

(
.p � T/1=2 if d � 0 .mod T/;

p1=2 otherwise.

Proof We use a method from the proof of Lemma 3.3.38. It is convenient to put

s.b; d/ D
T�1X

nD0
�p.ban/�T.dn/:

The general term of this sum, viewed as a function of n, is periodic with period
length T. Hence for every integer r � 0 we can write

s.b; d/ D
T�1X

nD0
�p.banCr/�T.d.n C r//;

and so

js.b; d/j D
ˇ̌
ˇ

T�1X

nD0
�p.baran/�T.dn/

ˇ̌
ˇ D js.bar; d/j:

Since the integers b; ba; : : : ; baT�1 are pairwise incongruent modulo p and not
divisible by p, it follows by putting s.0; d/ D PT�1

nD0 �T.dn/ that

Tjs.b; d/j2 D
T�1X

rD0
js.bar; d/j2

�
p�1X

gD1
js.g; d/j2 D

p�1X

gD0
js.g; d/j2 � js.0; d/j2

D
T�1X

h;jD0
�T .d.h � j//

p�1X

gD0
�p.g.a

h � aj//� js.0; d/j2

D pT � js.0; d/j2:
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Here in the penultimate step, we expanded js.g; d/j2 by using juj2 D uu for all
u 2 C. Note also that in the last step, in the double sum over h and j only the terms
with h D j yield a nonzero contribution. Now s.0; d/ D T if d � 0 .mod T/ and
s.0; d/ D 0 otherwise, and so we arrive at the desired bounds. �

Now we can establish an upper bound on the discrepancy DT.S/, and therefore
also on the star discrepancy D�

T.S/, for a sequence S of linear congruential
pseudorandom numbers with prime modulus.

Theorem 5.2.5 Let S D .xn/
1
nD0 be a sequence of linear congruential pseudoran-

dom numbers with prime modulus p � 3 and let T D per.xn/. Then

DT.S/ <
.p � T/1=2

T

�
log p C 1

3

�
C 1

p
:

Proof We use Proposition 4.3.1 with s D 1 and M D p together with the explicit
formula (5.5) to obtain

DT.S/ � 1

p
C 1

T

X

h2C�.p/

1

r.h; p/

ˇ̌
ˇ

T�1X

nD0
�p.hz0a

n/
ˇ̌
ˇ:

Now T is the multiplicative order of the multiplier a modulo p by Proposition 5.2.1,
and so Lemma 5.2.4 with d D 0 yields

ˇ̌
ˇ

T�1X

nD0
�p.hz0a

n/
ˇ̌
ˇ � .p � T/1=2 for all h 2 C�.p/:

We conclude that

DT.S/ � 1

p
C .p � T/1=2

T

X

h2C�.p/

1

r.h; p/
:

We recall that r.h; p/ D p sin.�jhj=p/ for h 2 C�.p/, and so

X

h2C�.p/

1

r.h; p/
D 2

p

.p�1/=2X

hD1

1

sin.�h=p/
�

.p�1/=2X

hD1

1

h

since sin.�u/ � 2u for 0 � u � 1
2
. Now

.p�1/=2X

hD1

1

h
D 1C

.p�1/=2X

hD2

1

h
� 1C

Z .p�1/=2

1

du

u
D 1C log

p � 1
2

;
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and therefore

X

h2C�.p/

1

r.h; p/
< log p C 1

3
: (5.8)

This completes the proof. �

We realize that the discrepancy bound in Theorem 5.2.5 does not yield an
improvement on the trivial bound DT.S/ � 1 if T is too small. In fact, T should
be significantly larger than p1=2 in order to obtain a nontrivial discrepancy bound.
If T has the order of magnitude p, say T D .p � 1/=2 or T D .p � 1/=4, then the
discrepancy bound in Theorem 5.2.5 is of the order of magnitude p�1=2 log p, which
is in good accordance with the law of the iterated logarithm for the uniformity test
(see Sect. 5.1.2).

In applications of sequences of linear congruential pseudorandom numbers in
Monte Carlo methods and simulation methods, we should use initial segments of
the sequence that are shorter than the full period, since periodicity is excessively
nonrandom and any influence of the periodicity property on the computation could
prove ruinous. Therefore it is imperative that we study the discrepancies DN.S/ and
D�

N.S/ also for N strictly less than the least period length T of the sequence S of
linear congruential pseudorandom numbers. We now require a bound on exponential
sums with N < T terms.

Lemma 5.2.6 Let p � 3 be a prime number and let a; b 2 Z with gcd.a; p/ D
gcd.b; p/ D 1. Let T be the multiplicative order of a modulo p and assume that
T � 2. Then

ˇ̌
ˇ

N�1X

nD0
�p.ban/

ˇ̌
ˇ < p1=2

�
log T C 1

3

�
C N

T
.p � T/1=2 for 1 � N < T:

Proof Our starting point is the identity

N�1X

nD0
�p.ban/ D

T�1X

nD0
�p.ban/

N�1X

rD0

1

T

T�1X

dD0
�T .d.n � r// (5.9)

which holds since the innermost sum is equal to T if n D r and equal to 0 if n ¤ r.
We rewrite this identity in the form

N�1X

nD0
�p.ban/ D 1

T

T�1X

dD0

� N�1X

rD0
�T.�dr/

�� T�1X

nD0
�p.ban/�T .dn/

�
:
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By taking absolute values, we get

ˇ̌
ˇ

N�1X

nD0
�p.ban/

ˇ̌
ˇ � 1

T

T�1X

dD0

ˇ̌
ˇ

N�1X

rD0
�T .dr/

ˇ̌
ˇ
ˇ̌
ˇ

T�1X

nD0
�p.ban/�T .dn/

ˇ̌
ˇ;

and an application of Lemma 5.2.4 yields

ˇ̌
ˇ

N�1X

nD0
�p.ban/

ˇ̌
ˇ � p1=2

T

T�1X

dD1

ˇ̌
ˇ

N�1X

rD0
�T .dr/

ˇ̌
ˇC N

T
.p � T/1=2: (5.10)

Now for 1 � d � T � 1,

ˇ̌
ˇ

N�1X

rD0
�T.dr/

ˇ̌
ˇ D

ˇ̌
ˇ

N�1X

rD0
.e2� id=T/r

ˇ̌
ˇ D je2� idN=T � 1j

je2� id=T � 1j � 1

sin.�d=T/
;

and so

T�1X

dD1

ˇ̌
ˇ

N�1X

rD0
�T .dr/

ˇ̌
ˇ �

T�1X

dD1

1

sin.�d=T/
� 2

bT=2cX

dD1

1

sin.�d=T/
:

Next we use sin.�u/ � 2u for 0 � u � 1
2
, and then as in the proof of Theorem 5.2.5

we obtain

T�1X

dD1

ˇ̌
ˇ

N�1X

rD0
�T .dr/

ˇ̌
ˇ � T

bT=2cX

dD1

1

d
< T.log T C 1

3
/:

By plugging this bound into (5.10), we arrive at the desired inequality. �

Theorem 5.2.7 Let S D .xn/
1
nD0 be a sequence of linear congruential pseudo-

random numbers with prime modulus p � 3 and let T D per.xn/ � 2. Then for
1 � N < T,

DN.S/ <
p1=2

N

�
log p C 1

3

��
log T C 1

3

�
C .p � T/1=2

T

�
log p C 1

3

�
C 1

p
:

Proof We proceed in analogy with the proof of Theorem 5.2.5. First of all,
Proposition 4.3.1 now yields

DN.S/ � 1

p
C 1

N

X

h2C�.p/

1

r.h; p/

ˇ̌
ˇ

N�1X

nD0
�p.hz0a

n/
ˇ̌
ˇ:
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Next Lemma 5.2.6 implies that

DN.S/ <
1

p
C 1

N

�
p1=2

�
log T C 1

3

�
C N

T
.p � T/1=2

� X

h2C�.p/

1

r.h; p/
:

Finally, an application of (5.8) produces the desired bound. �

Since always T � p � 1, the discrepancy bound in Theorem 5.2.7 can be written
in the simplified form DN.S/ D O.N�1p1=2.log p/2/. If T is equal to or close to p�1
and if N is of the same order of magnitude as T (for example if N is about one percent
of T), then DN.S/ D O.p�1=2.log p/2/, which is in reasonably good accordance with
the law of the iterated logarithm for the uniformity test (see Sect. 5.1.2).

5.2.2 Connections with Good Lattice Points

The uniformity test for linear congruential pseudorandom numbers discussed in the
preceding subsection is not a severe judge of multipliers. Note that the only way
the multiplier enters into the formulas and bounds for the (star) discrepancy there is
via the least period length T of the sequence of linear congruential pseudorandom
numbers, or equivalently via the multiplicative order T of the multiplier a modulo
m. However, for a fixed value of T there can be many multipliers with that
multiplicative order modulo m, but the uniformity test does not discriminate between
them. Even in the common case where the modulus is a prime number p and T has
the largest possible value T D p�1 for this modulus, very bad choices of multipliers
a with T D p � 1 are possible (see Example 5.2.12 below).

We have to employ a more demanding statistical test in order to detect good
multipliers and weed out bad ones, and such a test is the serial test (see Sect. 5.1.2).
We focus on the case of a prime modulus p and a multiplier a that is a primitive
root modulo p. Then the least period length T is equal to p � 1 by Proposition 5.2.1.
Let S D .xn/

1
nD0 be a corresponding sequence of linear congruential pseudorandom

numbers. For a given integer s � 2, we analyze the s-dimensional serial test for
these pseudorandom numbers. To this end, we form the points

xn D .xn; xnC1; : : : ; xnCs�1/ 2 Œ0; 1/s for n D 0; 1; : : : :

Since xn D zn=p by (5.3), we can write xn D .1=p/zn with

zn D .zn; znC1; : : : ; znCs�1/ 2 Zs
p for n D 0; 1; : : : :

By using (5.4) and interpreting a congruence between vectors componentwise, we
obtain

zn � .anz0; a
nC1z0; : : : ; anCs�1z0/ � anz0 g.a/ .mod p/ for n D 0; 1; : : : ;

(5.11)
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where

g.a/ D .1; a; a2; : : : ; as�1/ 2 Z
s:

Now we get a feeling of déjà vu because this lattice point is an old acquaintance:
it is a lattice point of Korobov form introduced in (4.43) in Sect. 4.3.1. This
observation is the beginning of an interesting story about the relationship between
linear congruential pseudorandom numbers and good lattice points.

Let us follow this story further. First of all, we examine the full period of the
given sequence S D .xn/

1
nD0 of linear congruential pseudorandom numbers, that is,

we consider the first p � 1 terms of S. Consequently, we take n D 0; 1; : : : ; p � 2

in (5.11). Now a is a primitive root modulo p and gcd.z0; p/ D 1, and so for n D
0; 1; : : : ; p � 2 the coefficients anz0 of g.a/ on the right-hand side of (5.11) run
modulo p through the set f1; : : : ; p � 1g in some order. It follows that the point
set consisting of x0; x1; : : : ; xp�2 agrees with the point set comprising the fractional
parts

nn

p
g.a/

o
2 Œ0; 1/s for n D 1; : : : ; p � 1: (5.12)

The point set (5.12), which we denote by P�.g.a/; p/, is nothing else but the point
set P.g;N/ introduced in Sect. 4.3.1, with g D g.a/ and N D p, though with the
origin deleted. Since P�.g.a/; p/ and P.g.a/; p/ differ by only one point, it is fairly
obvious that the discrepancies of these two point sets should be basically the same.
The following lemma puts this in a quantitative form.

Lemma 5.2.8 The point set P�.g.a/; p/ in (5.12) satisfies

Dp�1.P�.g.a/; p// � p

p � 1Dp.P.g.a/; p//C 1

p � 1
:

Proof Since P�.g.a/; p/ is P.g.a/; p/ with the origin 0 deleted, we obtain

A.JIP�.g.a/; p// D A.JIP.g.a/; p//� ".J/

for every subinterval J of Œ0; 1/s, where ".J/ D 1 if 0 2 J and ".J/ D 0 if 0 … J.
Therefore

A.JIP�.g.a/; p//� .p � 1/�s.J/ D .A.JIP.g.a/; p//� p�s.J//C �s.J/� ".J/;

and so

jA.JIP�.g.a/; p//� .p � 1/�s.J/j � pDp.P.g.a/; p//C 1;

which yields the desired result. �
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Consequently, we are in the agreeable situation that we can exploit all results on
lattice point sets in Sect. 4.3.1. With R.g.a/; p/ given by Definition 4.3.2, we arrive
for instance at the following discrepancy bound that pertains to the s-dimensional
serial test for the full period of a sequence of linear congruential pseudorandom
numbers with prime modulus p and with the multiplier a being a primitive root
modulo p.

Theorem 5.2.9 Let p be a prime number and let a be a primitive root modulo
p. Then for every dimension s � 2, the discrepancy of the point set P�.g.a/; p/
in (5.12) satisfies

Dp�1.P�.g.a/; p// � s C 1

p � 1 C p

2p � 2
R.g.a/; p/:

Proof This follows from Theorem 4.3.3 and Lemma 5.2.8. �

Remember that we apply the s-dimensional serial test to our given sequence
of linear congruential pseudorandom numbers because we want to discriminate
between the various multipliers a that are primitive roots modulo p. The quantity
R.g.a/; p/ is such a discriminator and it is small only for good choices of a. We
could be tempted to apply Theorem 4.3.14 which implies that for every dimension
s � 2 and every prime number p there exists an integer a 2 Zp D f0; 1; : : : ; p � 1g
such that R.g.a/; p/ D O.p�1.log p/s/. But unfortunately there is no guarantee that
a is a primitive root modulo p. Thus, we have to prove a version of Theorem 4.3.14
where a is confined to be a primitive root modulo p. We recall from Remark 1.4.35
that there are exactly �.p � 1/ primitive roots modulo p in the least residue system
Zp modulo p.

Theorem 5.2.10 Let s � 2 be a dimension and let p be a prime number. Then

As.p/ WD 1

�.p � 1/

X

a2Q.p/

R.g.a/; p/ <
s � 1

�.p � 1/
.2 log p C 2/s;

where Q.p/ is the set of primitive roots modulo p in the least residue system
modulo p.

Proof Trivial modifications of the proof of Theorem 4.3.14 yield the result. �

Corollary 5.2.11 For every dimension s � 2 and every prime number p, there exists
a primitive root a modulo p such that the discrepancy of the point set P�.g.a/; p/
in (5.12) satisfies

Dp�1.P�.g.a/; p// <
s C 1

p � 1 C .s � 1/p
.2p � 2/�.p � 1/

.2 log p C 2/s:

Proof This follows from Theorems 5.2.9 and 5.2.10. �
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Since for every prime number p � 3 the bound �.p � 1/ � cp=.log log p/
holds with an absolute constant c > 0 (see [61, Chapter 18]), Corollary 5.2.11
demonstrates the existence of a primitive root a modulo p for which the discrepancy
of P�.g.a/; p/ is at most of the order of magnitude p�1.log p/s log log p. In fact,
since this discrepancy bound is derived from an upper bound on the average value
As.p/ in Theorem 5.2.10, it can be expected that a good proportion of the primitive
roots a modulo p will lead to this order of magnitude for the discrepancy bound.

Example 5.2.12 There are many prime numbers p for which the integer 2 is a
primitive root modulo p, for instance p D 3; 5; 11; 13; 19; 29; 37; 53, and so on. It
follows in fact from a result of Hooley [67], which was proved under the assumption
of the extended Riemann hypothesis, that for a positive proportion of all prime
numbers p the integer 2 is a primitive root modulo p. Let us now take a prime
number p for which 2 is a primitive root modulo p. Then we consider a sequence of
linear congruential pseudorandom numbers with modulus p and multiplier a D 2.
The least period length T of this sequence has the largest possible value T D p � 1

for the modulus p. Now we apply the two-dimensional serial test to the full period
of this sequence. This means that we study the discrepancy of the point set P D
P�.g.a/; p/ in (5.12) with s D 2 and g.a/ D g.2/ D .1; 2/ 2 Z

2. Thus, P consists
of the points .n=p; f2n=pg/ 2 Œ0; 1/2 with n D 1; : : : ; p � 1. We observe that the
interval J D Œ 1

4
; 1
2
/ � Œ0; 1

2
/ does not contain any point of P , for if n

p 2 Œ 1
4
; 1
2
/, then

2n
p 2 Œ 1

2
; 1/. It follows that

Dp�1.P/ �
ˇ̌
ˇ
A.JIP/
p � 1

� �2.J/
ˇ̌
ˇ D �2.J/ D 1

8

for all possible values of p. Hence the behavior of these linear congruential
pseudorandom numbers under the two-dimensional serial test, and a fortiori under
every higher-dimensional serial test, is really awful, whereas the behavior under the
uniformity test is perfectly satisfactory. These pseudorandom numbers also yield
catastrophic results in certain Monte Carlo computations. As an example, take the
simple function f .u1; u2/ D cos 2�.2u1 � u2/ for .u1; u2/ 2 Œ0; 1	2. The integral of
f over Œ0; 1	2 is equal to 0. On the other hand, f .x/ D 1 for all points x of P . Thus,
if we use as pseudorandom samples some points from P , then the sample average
is always equal to 1, no matter how many points we take. This very bad behavior
is the fault of the multiplier since Corollary 5.2.11 shows that for the prime moduli
considered in this example, there certainly exist very good choices for the multiplier.
A rule of thumb can be deduced from this example, namely that a good multiplier
should not be too small compared to the modulus.

Now we return to the point set P�.g.a/; p/ in (5.12). By an argument in the
beginning of Sect. 4.3.2, all points of P�.g.a/; p/ lie on the s-dimensional lattice

Ls.a; p/ D
p[

nD1

�n

p
g.a/C Z

s
�
: (5.13)
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Fig. 5.2 The point set
P�.g.a/; p/ with
g.a/ D .1; 3/ and p D 17

Thus, the points of P�.g.a/; p/ form a very regular pattern in the sense that they all
fall on the lattice Ls.a; p/ (see Fig. 5.2 for an illustration). In everyday language you
could call this the structure of a grid. Marsaglia [109] expressed this memorably
by the phrase “Random numbers fall mainly in the planes”, a clever pun on a
popular song from the musical My Fair Lady. Obviously, this lattice structure or
grid structure is not at all what one would expect from truly random numbers and
points. On account of this phenomenon, some practitioners are shying away from
using linear congruential pseudorandom numbers in really challenging simulation
problems.

The lattice Ls.a; p/ in (5.13), like any s-dimensional lattice, can be represented in
the form (4.45) with s linearly independent vectors b1; : : : ;bs 2 R

s. In fact, for the
specific lattice Ls.a; p/we can take b1 D .1=p/g.a/ and bi D ei for 2 � i � s, where
ei is the ith vector in the standard ordered basis of Rs, that is, e2 D .0; 1; 0; : : : ; 0/ 2
R

s; : : : ; es D .0; : : : ; 0; 1/ 2 R
s. This information is very helpful when plotting, and

also when analyzing, the lattice Ls.a; p/. Some researchers investigated the lattices
of the form Ls.a; p/ and the point sets P�.g.a/; p/ from a geometric viewpoint
and made recommendations of good multipliers a for the modulus p on this basis.
Typical geometric criteria are the following: (i) the minimum number of parallel
hyperplanes on which all points of P�.g.a/; p/ lie (this number should be as large
as possible); (ii) the maximum distance between adjacent hyperplanes taken over all
families of parallel hyperplanes that contain all points of P�.g.a/; p/ (this distance
should be as small as possible). An easily readable account of this approach is given
in [80, Section 3.3.4].

We emphasized in the context of the uniformity test for a sequence of linear
congruential pseudorandom numbers that the discrepancy has to be investigated also
for parts of the period of the sequence. The same holds of course for the serial test.
The appropriate discrepancy bound can be established also for the case where the
least period length T is less than p � 1, and the full period can be included in that
case as well.

Theorem 5.2.13 Let .xn/
1
nD0 be a sequence of linear congruential pseudorandom

numbers with prime modulus p � 3 and let T D per.xn/ � 2. For a given dimension
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s � 2 and for an integer N with 1 � N � T, let P be the point set consisting of the
points

xn D .xn; xnC1; : : : ; xnCs�1/ 2 Œ0; 1/s for n D 0; 1; : : : ;N � 1:

Then

DN.P/ <
p1=2

N

�
log p C 4

3

�s�
log T C 4

3

�
C 1

2
R.g.a/; p/C s

p
:

Proof We start from the explicit formula

xn D
n1

p
anz0g.a/

o
for n D 0; 1; : : : ;N � 1I

compare with (5.11). Then we apply Proposition 4.3.1 with M D p and we obtain

DN.P/ � s

p
C 1

N

X

h2C�

s .p/

1

r.h; p/

ˇ̌
ˇ

N�1X

nD0
�p.a

nz0h � g.a//
ˇ̌
ˇ:

If h � g.a/ � 0 .mod p/, then the last exponential sum is equal to N. Otherwise, we
can use Lemmas 5.2.4 and 5.2.6 to get

ˇ̌
ˇ

N�1X

nD0
�p.a

nz0h � g.a//
ˇ̌
ˇ < p1=2

�
log T C 1

3

�
C N

T
.p � T/1=2 < p1=2

�
log T C 4

3

�
:

Therefore

DN.P/ <
s

p
C p1=2

N

�
log T C 4

3

� X

h2C�

s .p/
h�g.a/6�0 .mod p/

1

r.h; p/
C

X

h2C�

s .p/
h�g.a/�0 .mod p/

1

r.h; p/
:

Furthermore by (5.8),

X

h2C�

s .p/
h�g.a/6�0 .mod p/

1

r.h; p/
<

X

h2Cs.p/

1

r.h; p/
D
�
1C

X

h2C�.p/

1

r.h; p/

�s
<
�

log p C 4

3

�s
:

Finally, as in the proof of Theorem 4.3.3 we obtain

X

h2C�

s .p/
h�g.a/�0 .mod p/

1

r.h; p/
� 1

2

X

h2C�

s .p/
h�g.a/�0 .mod p/

1

r.h/
D 1

2
R.g.a/; p/;

and this completes the proof. �
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We conclude from Theorem 5.2.13 that the multiplier a for the modulus p should
be chosen in such a way that the quantity R.g.a/; p/ is small. An analogous rule
holds for prime-power moduli. We refer to [127] for an in-depth discussion of the
serial test for linear congruential pseudorandom numbers.

Example 5.2.14 Modern mathematical software typically advocates and employs
good parameters in the linear congruential method. For instance, the GNU Scien-
tific Library recommends among others the CRAY-system pseudorandom number
generator RANF which uses the linear congruential method with modulus m D 248

and multiplier

a D 44485709377909:

This multiplier satisfies a � 5 .mod 8/, and so we get least period length 246

by Propositions 5.2.1 and 5.2.2. If we use this multiplier in the inhomogeneous
recursion (5.7) with an odd integer c, then we can achieve least period length 248

according to Remark 5.2.3. This least period length exceeds by far the total number
of pseudorandom numbers utilized in a routine simulation problem.

5.3 Nonlinear Methods

5.3.1 The General Nonlinear Method

The lattice structure produced by linear congruential pseudorandom numbers (see
Sect. 5.2.2) can be perceived as a deficiency of these pseudorandom numbers.
This shortcoming becomes particularly pronounced if we make a bad choice of
the multiplier, as we have seen with dramatic effect in Example 5.2.12. But even
if we select the multiplier with care, the lattice structure is still there and can
cause problems in Monte Carlo computations. For instance, consider the following
generalization of Example 5.2.12.

Example 5.3.1 Let S D .xn/
1
nD0 be a sequence of linear congruential pseudo-

random numbers with a prime modulus p and an arbitrary multiplier a satisfying
gcd.a; p/ D 1. For an arbitrary dimension s � 2, let h D .h1; : : : ; hs/ 2 Z

s be such
that h ¤ 0 and h � g.a/ � 0 .mod p/. With u D .u1; : : : ; us/, we introduce the
function F on Œ0; 1	s given by

F.u/ D cos 2�.h1u1 C � � � C hsus/ for all u 2 Œ0; 1	s:

Then the integral of F over Œ0; 1	s is equal to 0. On the other hand, at all points

xn D .xn; xnC1; : : : ; xnCs�1/; n D 0; 1; : : : ;
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we get the function value F.xn/ D 1 by (5.11), and so every sample average with
these pseudorandom points has the value 1.

Further flaws of linear congruential pseudorandom numbers were pointed out in
the literature. A case in point is the paper [42] where plausible geometric measures
for the distribution of pseudorandom points in the unit square are studied and
where it is revealed that pseudorandom points obtained from linear congruential
pseudorandom numbers have a completely skew distribution with regard to these
geometric measures. The book of Ripley [169, Sections 3.1 and 3.2] exposes
some strange phenomena that arise when we use linear congruential pseudorandom
numbers as inputs in certain algorithms for transforming uniform pseudorandom
numbers into nonuniform pseudorandom numbers.

The problems with the linear congruential method stem from the simple linear
nature of the recursion (5.2) at the heart of the method. In order to eliminate defects
like the lattice structure, some features of nonlinearity should be introduced in
the algorithms generating pseudorandom numbers. So why not replace the linear
function of zn on the right-hand side of (5.2) by a nonlinear function? This is the
starting point of nonlinear methods for pseudorandom number generation. You may
have heard of fractal geometry (its stars are the Mandelbrot set and Julia sets) which
builds on a similar philosophy: iterating linear maps is boring, but iterating nonlinear
maps can be exciting.

Let us now get down to business and implement this idea of a nonlinear method
for generating pseudorandom numbers. For simplicity we choose a prime modulus
p (which should again be large), and then we generalize (5.2) and generate elements
z0; z1; : : : of Zp by choosing an initial value z0 2 Zp and using the recursion

znC1 �  .zn/ .mod p/ for n D 0; 1; : : :

with a map  W Zp ! Z. Since the values of  matter only modulo p, it suffices to
view  as a map  W Zp ! Zp, that is,  is a self-map of Zp. The recursion can then
be written in the simpler form znC1 D  .zn/ for n D 0; 1; : : : . How do we figure out
to what extent  is nonlinear? Here it is convenient to view the least residue system
Zp modulo p as the finite field Fp with p elements. Then there is the following nice
description of self-maps of Fp which works in fact for any finite field Fq.

Proposition 5.3.2 Let q be a prime power and let  W Fq ! Fq be a self-map of the
finite field Fq. Then there exists a uniquely determined polynomial f 2 FqŒx	 with
deg.f / < q such that  .c/ D f .c/ for all c 2 Fq.

Proof We consider the polynomial

f .x/ D
X

b2Fq

 .b/
�
1 � .x � b/q�1� 2 FqŒx	:

Since 1 � aq�1 has the value 1 for a D 0 2 Fq and the value 0 for a 2 F
�
q , we

get  .c/ D f .c/ for all c 2 Fq. It is obvious that deg.f / < q. If g 2 FqŒx	 is an
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arbitrary polynomial with deg.g/ < q such that  .c/ D g.c/ for all c 2 Fq, then
.f � g/.c/ D 0 for all c 2 Fq. Hence the polynomial f � g has at least q distinct
roots. But deg.f � g/ < q, thus f � g must be the zero polynomial, and so f D g. �

We are now ready to describe the final form of the nonlinear (congruential)
method for the generation of pseudorandom numbers. Let p be a large prime number
and select a polynomial f 2 FpŒx	. Then we generate a sequence .zn/

1
nD0 of elements

of Fp by choosing an initial value z0 2 Fp and using the recursion

znC1 D f .zn/ for n D 0; 1; : : : : (5.14)

Since we do not want a linear method, we assume that 2 � deg.f / < p. Now we
identify Fp with Zp and we derive nonlinear (congruential) pseudorandom numbers
by setting

xn D zn

p
2 Œ0; 1/ for n D 0; 1; : : : : (5.15)

As for the linear congruential method, the first issue is again the least period
length. Since per.xn/ D per.zn/, it suffices to study the periodicity properties of the
sequence .zn/

1
nD0. Note that in a full period of .zn/

1
nD0 all terms are distinct because

of the recursion (5.14), and so always per.zn/ � p. There is no simple criterion in
terms of f for getting per.zn/ D p. Contrary to the situation in the linear congruential
method, the sequence .zn/

1
nD0 may now have a preperiod.

Example 5.3.3 We can achieve per.zn/ D p by cheating a little bit. We put the
cart before the horse, in the sense that we first construct a sequence .zn/

1
nD0 and

determine the polynomial f 2 FpŒx	 afterwards. Let z0; z1; : : : ; zp�1 be a list of all
elements of Fp. By periodic continuation with period p we get the sequence .zn/

1
nD0.

In this way we guarantee that per.zn/ D p. Now let  be the self-map of Fp defined
by  .zn/ D znC1 for 0 � n � p � 1. By Proposition 5.3.2,  can be represented by
a polynomial f 2 FpŒx	 with deg.f / < p. It is clear from this construction that with
this polynomial f , the recursion (5.14) generates the sequence .zn/

1
nD0. Obviously,

this example is only of academic interest, but at least it demonstrates that the value
per.zn/ D p is attained for every prime number p with a suitable choice of f .

It is trivial that per.zn/ D p if and only if the full period of .zn/
1
nD0 contains

all elements of Fp. In view of (5.14), this yields the simple necessary condition
that the polynomial f must attain all values in Fp. In other words, the self-map
c 2 Fp 7! f .c/ 2 Fp of Fp must be surjective. Since this is a self-map of a finite
set, it is surjective if and only if it is injective, and consequently it is surjective if
and only if it is bijective. When it is injective, then it follows from (5.14) that the
sequence .zn/

1
nD0 is purely periodic, that is, there is no preperiod. Such bijective

self-maps of finite fields are interesting in several applications, and so we introduce
the following concept for arbitrary finite fields.
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Definition 5.3.4 Let q be a prime power. A polynomial f 2 FqŒx	 for which the map
c 2 Fq 7! f .c/ 2 Fq is bijective is called a permutation polynomial of Fq.

Example 5.3.5 It is obvious that every linear polynomial over Fq is a permutation
polynomial of Fq. A power xk 2 FqŒx	 with k � 1 is a permutation polynomial of
Fq if and only if it maps a primitive element b of Fq into another primitive element
of Fq. Now bk is a primitive element of Fq if and only if gcd.k; q � 1/ D 1, and
so xk is a permutation polynomial of Fq if and only if gcd.k; q � 1/ D 1. Since
compositions of permutation polynomials of Fq are again permutation polynomials
of Fq, any polynomial axk C c with a 2 F

�
q , c 2 Fq, k � 1, and gcd.k; q � 1/ D 1 is

a permutation polynomial of Fq.

Remark 5.3.6 We recall that it is a necessary condition for per.zn/ D p that the
polynomial f in (5.14) is a permutation polynomial of Fp. However, this is not a
sufficient condition. For a prime number p � 5, consider the polynomial f .x/ D
xp�2 2 FpŒx	. Then f is a permutation polynomial of Fp by Example 5.3.5. The map
 W c 2 Fp 7! f .c/ 2 Fp representing f satisfies  .0/ D 0 and  .c/ D c�1 for
c 2 F

�
p . Therefore znC2 D  . .zn// D zn for all n � 0, and so per.zn/ � 2.

It is, on first glance, somewhat surprising that certain degrees are excluded from
the degrees of permutation polynomials of a given finite field.

Proposition 5.3.7 Let q be a prime power. Then a polynomial f 2 FqŒx	 with
deg.f / D d � 2 and d dividing q � 1 cannot be a permutation polynomial of
Fq.

Proof First we show that

X

c2Fq

ck D 0 for k D 0; 1; : : : ; q � 2: (5.16)

This is trivial for k D 0with the standard convention 00 D 1 2 Fq. For 1 � k � q�2
we choose a primitive element b of Fq, and using bk ¤ 1 2 Fq for 1 � k � q � 2

we obtain

X

c2Fq

ck D
X

c2F�

q

ck D
q�2X

jD0
.bj/k D

q�2X

jD0
.bk/j D bk.q�1/ � 1

bk � 1 D 0:

Now we suppose that f 2 FqŒx	 with deg.f / D d � 2 and d dividing q � 1 were a
permutation polynomial of Fq. Then

X

c2Fq

f .c/.q�1/=d D
X

c2Fq

c.q�1/=d D 0
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by (5.16). We write f .x/.q�1/=d D axq�1Cg.x/with a 2 F
�
q , g 2 FqŒx	, and deg.g/ �

q � 2. Then again by (5.16),

X

c2Fq

f .c/.q�1/=d D
X

c2Fq

�
acq�1 C g.c/

� D a
X

c2Fq

cq�1:

Finally,

X

c2Fq

cq�1 D
X

c2F�

q

cq�1 D
X

c2F�

q

1 D �1;

and we arrive at a contradiction. �

Now we return to the recursion (5.14) with 2 � d WD deg.f / < p and we note
again that if per.zn/ D p, then necessarily f must be a permutation polynomial of
Fp. By Proposition 5.3.7, the degrees d D 2 and d D p � 1 are excluded, and so d
satisfies 3 � d � p � 2.

Next we discuss the uniformity test for nonlinear pseudorandom numbers. If
the sequence S D .xn/

1
nD0 of nonlinear pseudorandom numbers given by (5.15)

is purely periodic and per.xn/ D per.zn/ D p, then the first p terms x0; x1; : : : ; xp�1
of S run exactly through the rational numbers 0; 1=p; : : : ; .p � 1/=p in some order.
Hence in this case we get the simple formula Dp.S/ D D�

p .S/ D 1=p for the
discrepancy and the star discrepancy. But for parts of the period and also for
the case where per.xn/ D per.zn/ < p, results on the (star) discrepancy of the
sequence S are much harder to obtain. In principle, one tries to apply the same
method as in Sect. 5.2.1, that is, to establish bounds on exponential sums as in
Lemma 5.2.6, but now more powerful tools have to be utilized. In particular, we need
the following celebrated and deep result due to André Weil (1906–1998), one of the
leading mathematicians of the twentieth century (see [101, Section 5.4] and [147,
Section 4.4] for two different proofs of this result). Rumor has it that he found this
bound while he was detained by the German occupation forces in France during
World War II.

Proposition 5.3.8 (Weil Bound) If p is a prime number and f 2 FpŒx	 is a
polynomial with deg.f / � 1, then

ˇ̌
ˇ
X

c2Fp

�p.f .c//
ˇ̌
ˇ � .deg.f / � 1/p1=2:

There is also an analog of Proposition 5.3.8 for arbitrary finite fields (see
the two references above), but we do not require this general Weil bound. The
following bound on exponential sums and the subsequent discrepancy bound were
derived from the Weil bound by Niederreiter and Shparlinski [140], and a slight
improvement was given later in [144].
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Lemma 5.3.9 Let p � 3 be a prime number and let f 2 FpŒx	 with 2 � d WD
deg.f / < p. Let .zn/

1
nD0 be a purely periodic sequence of elements of Fp generated

by the recursion (5.14). Then for every h 2 F
�
p and every integer N with 1 � N �

per.zn/, the bound

ˇ̌
ˇ

N�1X

nD0
�p.hzn/

ˇ̌
ˇ � C1.log d/1=2N1=2p1=2.log p/�1=2

holds with an absolute constant C1 > 0.

Proof We use a method called “shift and average”. We fix h 2 F
�
p and put �.c/ D

�p.hc/ for c 2 Fp. For every integer m � 0,

N�1X

nD0
�.zn/ D

N�1X

nD0
�.znCm/C m

with jmj � 2m since the two sums differ in at most 2m terms of absolute value 1.
Now we choose an integer M � 1 and we sum over m D 0; 1; : : : ;M � 1 to obtain

M
ˇ̌
ˇ

N�1X

nD0
�.zn/

ˇ̌
ˇ � W C

ˇ̌
ˇ

M�1X

mD0
m

ˇ̌
ˇ < W C M2 (5.17)

with

W D
ˇ̌
ˇ

M�1X

mD0

N�1X

nD0
�.znCm/

ˇ̌
ˇ �

N�1X

nD0

ˇ̌
ˇ

M�1X

mD0
�.znCm/

ˇ̌
ˇ:

By the Cauchy-Schwarz inequality we get

W2 � N
N�1X

nD0

ˇ̌
ˇ

M�1X

mD0
�.znCm/

ˇ̌
ˇ
2

:

Next we introduce the polynomials f0; f1; : : : in FpŒx	 by f0.x/ D x and fm.x/ D
f .fm�1.x// for m � 1. Then znCm D fm.zn/ for all n � 0 and m � 0, and so we can
write

W2 � N
N�1X

nD0

ˇ̌
ˇ

M�1X

mD0
�.fm.zn//

ˇ̌
ˇ
2

:
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Since the sequence .zn/
1
nD0 is purely periodic and N � per.zn/, the elements

z0; z1; : : : ; zN�1 of Fp are distinct, and therefore

W2 � N
X

c2Fp

ˇ̌
ˇ

M�1X

mD0
�.fm.c//

ˇ̌
ˇ
2

:

By expanding the square of the absolute value via juj2 D uu for all u 2 C, we obtain

W2 � N
X

c2Fp

M�1X

m;rD0
�.fm.c/ � fr.c// � N

M�1X

m;rD0

ˇ̌
ˇ
X

c2Fp

�..fm � fr/.c//
ˇ̌
ˇ:

For the ordered pairs .m; r/ with m D r, the inner sum has the value p and there
are M such ordered pairs. For the ordered pairs .m; r/ with m ¤ r (there are less
than M2 of these ordered pairs), we apply Proposition 5.3.8 and we note that 2 �
deg.fm � fr/ � dM�1 since deg.f / D d � 2. Therefore

W2 < MNp C dM�1M2Np1=2:

Now we choose

M D
�
2 log p

5 log d

�
:

Since M � 1 < .2 log p/=.5 log d/, we deduce that

W2 <
�2 log p

5 log d
C 1

�
Np C

�2 log p

5 log d
C 1

�2
Np9=10

<
7 log p

5 log d
Np C 49.log p/2

25.log d/2
Np9=10:

Now log p < p1=10 for sufficiently large p, and so there exists an absolute constant
C2 > 0 such that

W2 � C2Np.log p/=.log d/:

Together with the consequence

ˇ̌
ˇ

N�1X

nD0
�.zn/

ˇ̌
ˇ < WM�1 C M

of (5.17), this leads to the final bound. �
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Theorem 5.3.10 Let p � 3 be a prime number and let f 2 FpŒx	 with 2 �
d WD deg.f / < p. Let S D .xn/

1
nD0 be a purely periodic sequence of nonlinear

pseudorandom numbers obtained by (5.14) and (5.15). Then for 1 � N � per.xn/,
the discrepancy bound

DN.S/ � C.log d/1=2N�1=2p1=2.log p/�1=2 log log p

holds with an absolute constant C > 0.

Proof By the Erdős-Turán inequality (see Theorem 4.1.13),

DN.S/ � 6

H C 1
C 4

�N

HX

hD1

1

h

ˇ̌
ˇ

N�1X

nD0
�p.hzn/

ˇ̌
ˇ

for every integer H � 1. If also H � p�1, then we can apply Lemma 5.3.9 to obtain

DN.S/ � 6

H C 1
C C3.log d/1=2N�1=2p1=2.log p/�1=2

HX

hD1

1

h

� 6

H C 1
C C3.log d/1=2N�1=2p1=2.log p/�1=2.1C log H/

with an absolute constant C3 > 0. Now we choose

H D ˙
N1=2p�1=2.log p/1=2

�
:

Then 1 � H � p � 1 and the desired bound on DN.S/ follows immediately. �

Remark 5.3.11 You may wonder why we used the Erdős-Turán inequality in the
proof of Theorem 5.3.10 and not Proposition 4.3.1 as in some other proofs of
discrepancy bounds (see for instance the proof of Theorem 5.2.5). Actually, if we
apply Proposition 4.3.1 with s D 1 and M D p, then we obtain

DN.S/ � 1

p
C 1

N

X

h2C�.p/

1

r.h; p/

ˇ̌
ˇ

N�1X

nD0
�p.hzn/

ˇ̌
ˇ:

Together with Lemma 5.3.9 and (5.8), this yields

DN.S/ � 1

p
C C1.log d/1=2N�1=2p1=2.log p/�1=2

�
log p C 1

3

�
:

Since N � per.zn/ � p, this discrepancy bound is at least of the order of
magnitude .log p/1=2. But then this discrepancy bound is useless since DN.S/ � 1

is always a trivial discrepancy bound. Therefore we need the more powerful Erdős-
Turán inequality in the proof of Theorem 5.3.10 in order to arrive at a nontrivial
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discrepancy bound. If d is small and N is of the order of magnitude p, then we have
a scenario in which the bound on DN.S/ in Theorem 5.3.10 is nontrivial.

Now we revert to the situation where per.zn/ attains the maximum value for fixed
p, namely per.zn/ D p. Then the map n 2 Fp 7! zn 2 Fp is well defined and,
by Proposition 5.3.2, it can be represented by a uniquely determined polynomial
g 2 FpŒx	 with deg.g/ < p. In other words, we can write

zn D g.n/ 2 Fp for n D 0; 1; : : : ; (5.18)

where n is also viewed as an element of Fp. We can say a bit more since g, considered
as a self-map of Fp, must be injective if per.zn/ D p, and so g has to be a permutation
polynomial of Fp.

This leads to the idea of the explicit nonlinear (congruential) method for
pseudorandom number generation. Let p be a large prime number and choose a
permutation polynomial g of Fp with 3 � deg.g/ � p�2. We generate the sequence
.zn/

1
nD0 of elements of Fp by (5.18) and we note that per.zn/ D p. Then we identify

Fp with Zp and we derive explicit nonlinear (congruential) pseudorandom numbers
x0; x1; : : : by (5.15).

If S D .xn/
1
nD0 is a sequence of explicit nonlinear pseudorandom numbers, then

it follows from per.xn/ D per.zn/ D p that the first p terms x0; x1; : : : ; xp�1 of S run
exactly through the rational numbers 0; 1=p; : : : ; .p �1/=p in some order. Therefore
as in an earlier case we get Dp.S/ D D�

p .S/ D 1=p for the discrepancy and the star
discrepancy. For parts of the period, we apply a method that is similar to that for
linear congruential pseudorandom numbers (see Lemma 5.2.6 and Theorem 5.2.7).

Lemma 5.3.12 If p is a prime number and g is a polynomial over Fp with deg.g/ �
2, then

ˇ̌
ˇ

N�1X

nD0
�p.g.n//

ˇ̌
ˇ < .deg.g/� 1/p1=2

�
log p C 4

3

�

for all integers N with 1 � N < p. If g is a permutation polynomial of Fp with
deg.g/ � 2, then this bound can be slightly improved to

ˇ̌
ˇ

N�1X

nD0
�p.g.n//

ˇ̌
ˇ < .deg.g/� 1/p1=2

�
log p C 1

3

�
for 1 � N < p:

Proof We can assume that p � 3. We start from an obvious analog of the
identity (5.9), namely

N�1X

nD0
�p.g.n// D

p�1X

nD0
�p.g.n//

N�1X

rD0

1

p

p�1X

cD0
�p.c.n � r//:
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We rewrite this identity in the form

N�1X

nD0
�p.g.n// D 1

p

p�1X

cD0

� N�1X

rD0
�p.�cr/

�� p�1X

nD0
�p.g.n/C cn/

�
:

By taking absolute values, we get

ˇ̌
ˇ

N�1X

nD0
�p.g.n//

ˇ̌
ˇ � 1

p

p�1X

cD0

ˇ̌
ˇ

N�1X

rD0
�p.cr/

ˇ̌
ˇ
ˇ̌
ˇ

p�1X

nD0
�p.g.n/C cn/

ˇ̌
ˇ:

For all c 2 Fp, the polynomial f .x/ D g.x/Ccx 2 FpŒx	 satisfies deg.f / D deg.g/ �
2, and so we can apply Proposition 5.3.8 to the last exponential sum to obtain

ˇ̌
ˇ

N�1X

nD0
�p.g.n//

ˇ̌
ˇ � .deg.g/� 1/p�1=2

p�1X

cD0

ˇ̌
ˇ

N�1X

rD0
�p.cr/

ˇ̌
ˇ:

Finally, by proceeding as in the proof of Lemma 5.2.6, we get

p�1X

cD0

ˇ̌
ˇ

N�1X

rD0
�p.cr/

ˇ̌
ˇ D N C

p�1X

cD1

ˇ̌
ˇ

N�1X

rD0
�p.cr/

ˇ̌
ˇ < p

�
log p C 4

3

�
;

and so we arrive at the first bound in the lemma.
In order to obtain the second bound in the lemma, we simply note that for c D 0

the identity

p�1X

nD0
�p.g.n/C cn/ D

p�1X

nD0
�p.g.n// D

p�1X

nD0
�p.n/ D 0

holds whenever g is a permutation polynomial of Fp. �

Theorem 5.3.13 Let p � 5 be a prime number and let g 2 FpŒx	 be a permutation
polynomial of Fp with 3 � deg.g/ � p � 2. Let S D .xn/

1
nD0 be the sequence of

explicit nonlinear pseudorandom numbers obtained by (5.18) and (5.15). Then the
discrepancy bound

DN.S/ < .deg.g/� 1/N�1p1=2
�

log p C 1

3

�2 C 1

p

is valid for all integers N with 1 � N < p.
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Proof From Proposition 4.3.1 with s D 1 and M D p we get

DN.S/ � 1

p
C 1

N

X

h2C�.p/

1

r.h; p/

ˇ̌
ˇ

N�1X

nD0
�p.hg.n//

ˇ̌
ˇ:

Now we apply Lemma 5.3.12 to obtain

DN.S/ <
1

p
C .deg.g/� 1/N�1p1=2

�
log p C 1

3

� X

h2C�.p/

1

r.h; p/
:

We conclude the proof by invoking the inequality (5.8). �

We deduce from Theorem 5.3.13 that if the degree of the polynomial g is small
compared to p and if N is of the order of magnitude p, then the upper bound
on DN.S/, and therefore on D�

N.S/, is of the order of magnitude N�1=2.log N/2.
This is in reasonably good accordance with the law of the iterated logarithm for
the star discrepancy (see Sect. 5.1.2). Results analogous to Theorem 5.3.13 can
be established also for the serial test for explicit nonlinear pseudorandom numbers
(see [131] and Exercises 5.13 and 5.14).

5.3.2 Inversive Methods

The discrepancy bound for nonlinear pseudorandom numbers shown in Theo-
rem 5.3.10 is nontrivial, but nevertheless very weak. The poor quality of this result
stems from the nature of the recursion (5.14) and from the fact that if we iterate
a polynomial f over Fp with deg.f / � 2, then the degrees of the iterates grow
exponentially. We can remedy this situation if we can find interesting functions
on Fp that do not exhibit this phenomenon of the explosion of degrees under
iteration. Such a family of functions is given by linear fractional transformations
on Fp, which are rational functions of the form r.x/ D .a1 C b1x/=.a2 C b2x/
with a1; a2; b1; b2 2 Fp and a1b2 � a2b1 ¤ 0. An easy computation shows that
the composition of two linear fractional transformations on Fp is again a linear
fractional transformation on Fp. We are thus led to consider the recursion (5.14)
with the polynomial f .x/ replaced by the rational function r.x/. In order to avoid
a linear recursion, we assume that b2 ¤ 0. Then with a linear substitution, we can
simplify the form of r.x/ to r.x/ D .a C bx/=x D ax�1 C b with a ¤ 0.

Now we come to the formal definition of this method which, since it utilizes
multiplicative inverses in Fp, is called the inversive (congruential) method. We stay
away from trivial cases by taking a prime number p � 5, but in practice p will
of course be a large prime number such as p D 231 � 1. We choose a; b 2 Fp

with a ¤ 0 and consider the recursion znC1 D r.zn/ for n D 0; 1; : : : with r.x/ D
ax�1 C b. There is a slight technical problem here since r.0/ is not defined. But we
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may introduce a sort of pseudo-inverse of 0 2 Fp by brute force: it is reasonable to
define the pseudo-inverse of 0 to be 0 since this is the only element of Fp that does
not show up as a multiplicative inverse of an element of F�

p . Concretely, for every
c 2 Fp we introduce the notation

c D
(

c�1 2 Fp if c ¤ 0;

0 2 Fp if c D 0:

Finally, we now generate a sequence .zn/
1
nD0 of elements of Fp by choosing an initial

value z0 2 Fp and proceeding by the recursion

znC1 D azn C b for n D 0; 1; : : : : (5.19)

Then we identify Fp with Zp and we obtain inversive (congruential) pseudorandom
numbers by the normalization

xn D zn

p
2 Œ0; 1/ for n D 0; 1; : : : : (5.20)

These pseudorandom numbers were proposed by Eichenauer and Lehn [42], even
before the general nonlinear method was defined. Since zn is uniquely determined
by znC1 in (5.19) in view of a ¤ 0, the sequence .zn/

1
nD0 is purely periodic, and

so is the sequence .xn/
1
nD0. As in the general nonlinear method, it is evident that

per.xn/ D per.zn/ � p.

Remark 5.3.14 If you prefer, you can write c D cp�2 for all c 2 Fp. This is trivial
for c D 0, whereas for c ¤ 0 we observe that Proposition 1.4.13 yields 1 D cp�1 D
c.cp�2/, and so c D c�1 D cp�2. However, in the proofs it will be more useful to
think of c as being basically the multiplicative inverse of c.

There are choices of the parameters a and b in (5.19) that yield small period
lengths. A really bad choice is b D 0, for then it is readily seen that znC2 D zn for
n D 0; 1; : : :, and so per.xn/ D per.zn/ � 2. On the other hand, we can always select
a and b in such a way that we get the theoretically largest possible least period length
per.xn/ D per.zn/ D p for fixed p, as we shall see below. The property per.zn/ D p
is connected with the roots ˛ and ˇ of the polynomial f .x/ D x2 � bx � a 2 FpŒx	.
Since deg.f / D 2, the roots ˛ and ˇ lie in the extension field Fp2 of Fp. Furthermore,
x2 � bx � a D .x � ˛/.x � ˇ/ implies that ˛ˇ D �a ¤ 0, and so ˛ˇ�1 2 F

�
p2

.

Lemma 5.3.15 Let ˛; ˇ 2 Fp2 be the roots of f .x/ D x2�bx�a 2 FpŒx	 with a ¤ 0

and assume that ˛ ¤ ˇ. Let k be the order of ˛ˇ�1 in the multiplicative group F
�
p2

.
Then the sequence .zn/

1
nD0 generated by (5.19) with the initial value z0 D b satisfies

per.zn/ D k � 1.
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Proof By the definition of k we can say that ˛n ¤ ˇn for 1 � n � k � 1 and
˛k D ˇk. We claim that

zn D ˛nC2 � ˇnC2

˛nC1 � ˇnC1 for n D 0; 1; : : : ; k � 2: (5.21)

For n D 0 we get .˛2 � ˇ2/=.˛ � ˇ/ D ˛ C ˇ D b D z0, and so (5.21) holds.
Suppose that (5.21) is shown for some n with 0 � n � k � 3. Then zn ¤ 0 and the
recursion (5.19) yields

znC1 D az�1
n C b D a

˛nC1 � ˇnC1

˛nC2 � ˇnC2 C b

D �˛ˇ.˛nC1 � ˇnC1/C .˛ C ˇ/.˛nC2 � ˇnC2/
˛nC2 � ˇnC2 D ˛nC3 � ˇnC3

˛nC2 � ˇnC2 :

Hence the proof of (5.21) by induction is complete. Now (5.21) implies that zn ¤ 0

for 0 � n � k � 3 and zk�2 D 0. Then as a consequence of (5.19) we get zn ¤ b for
1 � n � k � 2 and zk�1 D b. Therefore per.zn/ D k � 1 since the sequence .zn/

1
nD0

is purely periodic. �

Lemma 5.3.15 is the crucial step in the proof of the following theorem that
provides an attractive criterion for the property per.xn/ D per.zn/ D p.

Theorem 5.3.16 Let p � 5 be a prime number and let a; b 2 Fp with a ¤ 0. Let
˛; ˇ 2 Fp2 be the roots of f .x/ D x2 � bx � a 2 FpŒx	. Then a sequence .zn/

1
nD0

generated by (5.19) satisfies per.zn/ D p if and only if the order of ˛ˇ�1 in the
multiplicative group F

�
p2

is equal to p C 1.

Proof Let us first analyze the degenerate case where ˛ D ˇ. Then a D �˛2 and
b D 2˛. If we had per.zn/ D p, then zm D ˛ for some m � 0. But then (5.19) yields
zmC1 D az�1

m C b D �˛2˛�1 C 2˛ D ˛ D zm, a contradiction. Hence in this case
we have per.zn/ < p and also the order of ˛ˇ�1 D 1 in F

�
p2

is 1 and not p C 1.
Thus, it remains to treat the case where ˛ ¤ ˇ. If per.zn/ D p, then zh D b for

some h � 0. Now we consider the shifted sequence .yn/
1
nD0 defined by yn D znCh

for all n � 0. Then .yn/
1
nD0 satisfies the recursion (5.19) as well as y0 D b and

per.yn/ D p. Hence it follows from Lemma 5.3.15 that the order k of ˛ˇ�1 in F
�
p2

satisfies k � 1 D per.yn/ D p, and so k D p C 1. Conversely, suppose that the order
of ˛ˇ�1 in F

�
p2

is p C 1. Let .wn/
1
nD0 be the sequence generated by (5.19) with the

initial value w0 D b. Then per.wn/ D p by Lemma 5.3.15. Therefore wj D z0 for
some j � 0, hence the sequence .zn/

1
nD0 is a shifted version of .wn/

1
nD0, and so also

per.zn/ D p. �

Example 5.3.17 Let f .x/ D x2�bx �a 2 FpŒx	 be a primitive quadratic polynomial
over Fp. Then the roots of f are ˇ 2 F

�
p2

and ˛ D ˇp (see Proposition 1.4.47) and ˇ

is a primitive element of Fp2 . Now ˛ˇ�1 D ˇp�1 has order pC1 in the multiplicative
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group F�
p2

since ˇ has order p2�1 in F
�
p2

. Thus, if a; b 2 Fp are chosen in such a way

that x2 � bx � a is a primitive quadratic polynomial over Fp, then Theorem 5.3.16
shows that every sequence .zn/

1
nD0 generated by (5.19) with these values of a and b

satisfies per.zn/ D p. Note that a primitive quadratic polynomial over Fp exists for
every prime number p (see Proposition 1.4.43).

As we found out in Sect. 5.2.2, the points of the point set P�.g.a/; p/ obtained
from linear congruential pseudorandom numbers “fall mainly in the planes”, and
this can have devastating effects on Monte Carlo computations with these points
(see Examples 5.2.12 and 5.3.1). It is a splendid feature of inversive pseudorandom
numbers that the corresponding points derived from them exhibit the contrary
behavior and “avoid the planes”, in the fitting words of the paper [43]. The setting
for this result is the vector space F

s
p of dimension s � 2. Just as in the Euclidean

space R
s, we can talk about hyperplanes in F

s
p; namely, a hyperplane in F

s
p is a set

of the form H D fv 2 F
s
p W h � v D cg with a fixed nonzero vector h 2 F

s
p and a fixed

c 2 Fp.

Theorem 5.3.18 Let p � 5 be a prime number and let s � 2 be an integer. Let
.zn/

1
nD0 be a sequence generated by (5.19) with per.zn/ D p. Then every hyperplane

in F
s
p contains at most s of the points

zn D .zn; znC1; : : : ; znCs�1/ 2 F
s
p

with n D 0; 1; : : : ; p � 1 and zn � � � znCs�2 ¤ 0.

Proof Let .yn/
1
nD0 be the sequence generated by (5.19) with the initial value y0 D 0.

Then .yn/
1
nD0 is a shifted version of .zn/

1
nD0, and so per.yn/ D p. We put dj D

�ayj 2 Fp for j � 0. It follows from fy0; y1; : : : ; yp�1g D Fp that d0; d1; : : : ; dp�1
are distinct. Define  .n/ D an C b 2 Fp for n 2 Fp and let  j be the jth iterate of
the map  , with  0 being the identity map on Fp. By a straightforward induction
on j it is proved that

 j.n/ D yj
n � dj

n � dj�1
for 1 � j � p � 1 (5.22)

and whenever n ¤ di for 0 � i � j � 1. Since the theorem is trivial for s � p, we
can assume that s < p. From per.zn/ D p we infer that

fzn W 0 � n � p � 1g D f� 0.n/;  1.n/; : : : ;  s�1.n/
� W 0 � n � p � 1g: (5.23)

It follows from (5.22) that the condition zn � � � znCs�2 ¤ 0 amounts to the condition
n ¤ di for 0 � i � s � 2 in the second set in (5.23).

Now let a hyperplane H in F
s
p be given. Concretely, let H D fv 2 F

s
p W h � v D cg

with a fixed nonzero h D .h1; : : : ; hs/ 2 F
s
p and a fixed c 2 Fp. Then (5.22) shows



344 5 Pseudorandom Numbers

that if n ¤ di for 0 � i � s�2, then
�
 0.n/;  1.n/; : : : ;  s�1.n/

� 2 H if and only if

h1n C
sX

jD2
hjyj�1

n � dj�1
n � dj�2

D c:

Clearing denominators, we see that this is equivalent to g.n/ D 0, where the
polynomial g 2 FpŒx	 is given by

g.x/ D .h1x � c/
sY

jD2
.x � dj�2/C

sX

jD2
hjyj�1.x � dj�1/

sY

iD2
i¤j

.x � di�2/:

Since deg.g/ � s, the final result follows from Theorem 1.4.27 if we can verify that
g is not the zero polynomial. If g were the zero polynomial, then by considering the
coefficient of xs we would get h1 D 0. Furthermore, for 2 � k � s we would obtain

0 D g.dk�2/ D hkyk�1.dk�2 � dk�1/
sY

iD2
i¤k

.dk�2 � di�2/:

We know that all factors on the right-hand side except possibly hk are nonzero, and
so we would get hk D 0. This is a contradiction to .h1; : : : ; hs/ ¤ 0. �

Remark 5.3.19 As in the Euclidean space R
s, for any s given points in F

s
p there is

a hyperplane passing through these points. Therefore Theorem 5.3.18 is optimal, in
the sense that for sufficiently large p there do exist hyperplanes in F

s
p that contain

exactly s of the points zn considered in this theorem. Since fz0; z1; : : : ; zp�1g D Fp

and per.zn/ D p, the condition zn � � � znCs�2 ¤ 0 eliminates exactly s � 1 of the
points zn in the range 0 � n � p � 1.

Remark 5.3.20 Let us check what happens in Theorem 5.3.18 if we replace the
sequence .zn/

1
nD0 there by a sequence obtained from the linear congruential method

with the prime modulus p. Then (5.4) shows that zn D anz0 in Fp for n D 0; 1; : : :,
where a 2 F

�
p and z0 2 F

�
p . Consequently, for every s � 2 we get

zn D .zn; znC1; : : : ; znCs�1/ D �
anz0; a

nC1z0; : : : ; anCs�1z0
� 2 F

s
p

for n D 0; 1; : : : . It follows that all points zn lie in the hyperplane H D fv 2 F
s
p W

h � v D 0g in F
s
p with h D .a;�1; 0; : : : ; 0/ 2 F

s
p. The lesson is that in terms of

structural properties, inversive pseudorandom numbers are vastly superior to linear
congruential pseudorandom numbers.

Now we turn to the uniformity test for inversive pseudorandom numbers. Let
S D .xn/

1
nD0 be a sequence of inversive pseudorandom numbers given by (5.19)

and (5.20), and we again focus on the case where per.xn/ D per.zn/ D p. Then as
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for the general nonlinear method in Sect. 5.3.1, we get Dp.S/ D D�
p .S/ D 1=p for

the discrepancy and the star discrepancy. For parts of the period, we could try to
utilize the discrepancy bound for the general nonlinear method in Theorem 5.3.10.
Note that the inversive method is the nonlinear method with the special polynomial
f .x/ D axp�2 C b 2 FpŒx	 (see Remark 5.3.14). But then d D p � 2 in the notation
of Theorem 5.3.10, and so log d has the order of magnitude log p. It follows that the
discrepancy bound in Theorem 5.3.10 is at least of the order of magnitude log log p,
and so it is useless.

In fact, it was an open problem for many years to prove a nontrivial bound on the
discrepancy DN.S/ for 1 � N < p. This was finally achieved by Niederreiter and
Shparlinski in the paper [141]. As a technical tool, we need a bound for a classical
family of exponential sums called Kloosterman sums. We state this bound in the
following proposition and we refer to [101, Section 5.5] for a proof.

Proposition 5.3.21 If p is a prime number and a1; a2 2 Fp are not both 0, then

ˇ̌
ˇ
X

c2F�

p

�p.a1c
�1 C a2c/

ˇ̌
ˇ � 2p1=2:

Lemma 5.3.22 Let p � 5 be a prime number, let .zn/
1
nD0 be a sequence of elements

of Fp generated by the recursion (5.19) with per.zn/ D p, and let h 2 F
�
p . Then

ˇ̌
ˇ

N�1X

nD0
�p.hzn/

ˇ̌
ˇ < 3N1=2p1=4 C .3p=2/1=2 (5.24)

for all integers N with 1 � N < p.

Proof We again use the method “shift and average” that we already employed in
the proof of Lemma 5.3.9. Since the right-hand side of (5.24) is greater than 5 for
all N � 1 and p � 5, we can assume that p � 7. We fix h 2 F

�
p and put �.c/ D

�p.hc/ for all c 2 Fp. By repeating the argument in the beginning of the proof of
Lemma 5.3.9, we get

ˇ̌
ˇ

N�1X

nD0
�.zn/

ˇ̌
ˇ < WM�1 C M (5.25)

and

W2 � N
N�1X

nD0

ˇ̌
ˇ

M�1X

mD0
�.znCm/

ˇ̌
ˇ
2

;

where M is an arbitrary positive integer. Let  W Fp ! Fp be defined by  .c/ D
acCb for all c 2 Fp. Then (5.19) implies that znCm D  m.zn/ for all n � 0 and m �
0, where  m is the mth iterate of  (compare with the proof of Theorem 5.3.18).
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Hence we obtain

W2 � N
N�1X

nD0

ˇ̌
ˇ

M�1X

mD0
�. m.zn//

ˇ̌
ˇ
2

:

Since N < p D per.zn/, the elements z0; z1; : : : ; zN�1 of Fp are distinct, and so

W2 � N
X

c2Fp

ˇ̌
ˇ

M�1X

mD0
�. m.c//

ˇ̌
ˇ
2

:

By expanding the square of the absolute value, we get

W2 � N
X

c2Fp

M�1X

m;rD0
�. m.c/�  r.c//

� N
M�1X

m;rD0

ˇ̌
ˇ
X

c2Fp

�. m.c/�  r.c//
ˇ̌
ˇ

D MNp C 2N
M�1X

m;rD0
m>r

ˇ̌
ˇ
X

c2Fp

�. m.c/ �  r.c//
ˇ̌
ˇ:

The last exponential sum can be written in the form

X

c2Fp

�. m.c/�  r.c// D
X

c2Fp

�. m�r. r.c//�  r.c//:

Since  r is a permutation of Fp, we can take  r.c/ as a new summation variable
over Fp, and this yields

X

c2Fp

�. m.c/�  r.c// D
X

c2Fp

�. m�r.c/� c/:

It is therefore reasonable to combine the contributions of all ordered pairs .m; r/
with fixed difference m�r D k � 1. There are M �k such ordered pairs in the given
range for m and r, and so we arrive at the inequality

W2 � MNp C 2N
M�1X

kD1
.M � k/

ˇ̌
ˇ
X

c2Fp

�. k.c/ � c/
ˇ̌
ˇ: (5.26)

Now we study the last exponential sum for a fixed k with 1 � k � M � 1 and
we assume that M � p. We can then apply the formula (5.22) to  k.c/ as long as
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c … Ek WD fd0; d1; : : : ; dk�1g. Since Ek has k elements, we obtain

ˇ̌
ˇ
X

c2Fp

�. k.c/� c/
ˇ̌
ˇ �

ˇ̌
ˇ
X

c2FpnEk

�
�

yk
c � dk

c � dk�1
� c

�ˇ̌
ˇC k

�
ˇ̌
ˇ

X

c2Fpnfdk�1g
�
�

yk
c � dk

c � dk�1
� c

�ˇ̌
ˇC 2k � 1:

In the last exponential sum we introduce w D c�dk�1 as a new summation variable.
This yields

ˇ̌
ˇ

X

c2Fpnfdk�1g
�
�

yk
c � dk

c � dk�1
� c

�ˇ̌
ˇ D

ˇ̌
ˇ
X

w2F�

p

�
�

yk
w C dk�1 � dk

w
� w � dk�1

�ˇ̌
ˇ

D
ˇ̌
ˇ
X

w2F�

p

�.yk.dk�1 � dk/w
�1 � w/

ˇ̌
ˇ:

The last exponential sum is a Kloosterman sum, and so we can apply Proposi-
tion 5.3.21 to obtain

ˇ̌
ˇ
X

c2Fp

�. k.c/ � c/
ˇ̌
ˇ � 2p1=2 C 2k � 1:

By plugging this bound into (5.26), we get

W2 � MNp C 2N
M�1X

kD1
.M � k/.2p1=2 C 2k � 1/:

A straightforward computation shows that

M�1X

kD1
.M � k/.2k � 1/ D M.M � 1/

�M

3
� 1

6

�
<
1

3
M3:

Thus, we arrive at the bound

W2 < MNp C 2M2Np1=2 C 2

3
M3N:

Now we put M D b.3p=2/1=2c which is a permitted value since obviously 1 � M �
p. With this choice for M we get W2 < .3 C p

6/Np3=2. Recalling that p � 7, we
deduce that

W

M
<
.3C p

6/1=2N1=2p3=4

.3p=2/1=2 � 1
D .3C p

6/1=2N1=2p1=4p
3=2� p�1=2 � .3C p

6/1=2p
3=2�p

1=7
N1=2p1=4:
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After having some fun with computing square roots, we get WM�1 < 3N1=2p1=4,
and in view of (5.25) we arrive at the bound in (5.24). �

Theorem 5.3.23 Let p � 5 be a prime number and let S D .xn/
1
nD0 be a sequence

of inversive pseudorandom numbers obtained by (5.19) and (5.20) with per.xn/ D p.
Then the discrepancy bound

DN.S/ <
�
3N�1=2p1=4 C .3p=2/1=2N�1� � log p C 1

3

�
C 1

p

holds for all integers N with 1 � N < p.

Proof This bound is derived from Lemma 5.3.22 in the same way as Theorem 5.3.13
was derived from Lemma 5.3.12. �

The discrepancy bound in Theorem 5.3.23 is nontrivial as soon as N is somewhat
larger than p1=2, say at least of the order of magnitude p.1=2/C" with an " > 0

independent of p. If N has the order of magnitude p, then DN.S/ D O
�
p�1=4 log p

�

with an absolute implied constant. It is an open problem whether this can be
improved to DN.S/ D O

�
p�1=2.log p/c

�
for some absolute constant c � 0. Results

on the serial test for inversive pseudorandom numbers are summarized in the survey
article of Niederreiter and Shparlinski [142].

For the general nonlinear method, we discussed an explicit counterpart to
the recursive procedure for generating pseudorandom numbers (see Sect. 5.3.1).
There is also an explicit version of the inversive method which was proposed by
Eichenauer-Herrmann [44]. By the way, Eichenauer and Eichenauer-Herrmann is
the same person, before and after marriage. Let p � 5 be a prime number. We recall
the notation c 2 Fp for c 2 Fp which stands for c D 0 if c D 0 and c D c�1 if
c 2 F

�
p . Now we choose a; b 2 Fp with a ¤ 0 and we generate the sequence .zn/

1
nD0

by the explicit formula

zn D an C b 2 Fp for n D 0; 1; : : : : (5.27)

Then we identify Fp with Zp and we obtain explicit inversive (congruential)
pseudorandom numbers by putting

xn D zn

p
2 Œ0; 1/ for n D 0; 1; : : : : (5.28)

It is obvious that per.xn/ D per.zn/ D p.
The analysis of explicit inversive pseudorandom numbers is much easier than

that of the inversive pseudorandom numbers generated by (5.19) and (5.20). If S D
.xn/

1
nD0 is a sequence of explicit inversive pseudorandom numbers, then Dp.S/ D

D�
p .S/ D 1=p as in earlier cases. For parts of the period, we proceed by a method

that we already utilized before.
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Lemma 5.3.24 Let p � 5 be a prime number, let .zn/
1
nD0 be a sequence of elements

of Fp defined by (5.27) with a; b 2 Fp and a ¤ 0, and let h 2 F
�
p . Then

ˇ̌
ˇ

N�1X

nD0
�p.hzn/

ˇ̌
ˇ <

�
2p1=2 C 1

� �
log p C 1

3

�
for 1 � N < p:

Proof As in the proof of Lemma 5.3.12 we can write

N�1X

nD0
�p.hzn/ D

p�1X

nD0
�p.hzn/

N�1X

rD0

1

p

p�1X

dD0
�p.d.n � r//

D 1

p

p�1X

dD0

� N�1X

rD0
�p.�dr/

�� p�1X

nD0
�p.hzn C dn/

�
:

Therefore

ˇ̌
ˇ

p�1X

nD0
�p.hzn/

ˇ̌
ˇ � 1

p

p�1X

dD0

ˇ̌
ˇ

N�1X

rD0
�p.dr/

ˇ̌
ˇ
ˇ̌
ˇ
X

n2Fp

�p.h an C b C dn/
ˇ̌
ˇ:

We can take the outer sum from d D 1 to d D p �1 since the contribution for d D 0

is equal to 0. With the substitution c D an C b 2 Fp in the last exponential sum, we
obtain

ˇ̌
ˇ
X

n2Fp

�p.h an C b C dn/
ˇ̌
ˇ D

ˇ̌
ˇ
X

c2Fp

�p.hc C da�1.c � b//
ˇ̌
ˇ

D
ˇ̌
ˇ
X

c2Fp

�p.hc C da�1c/
ˇ̌
ˇ:

Now an application of Proposition 5.3.21 yields

ˇ̌
ˇ
X

c2Fp

�p.hc C da�1c/
ˇ̌
ˇ � 1C

ˇ̌
ˇ
X

c2F�

p

�p.hc�1 C da�1c/
ˇ̌
ˇ � 1C 2p1=2:

Therefore

ˇ̌
ˇ

N�1X

nD0
�p.hzn/

ˇ̌
ˇ � 2p1=2 C 1

p

p�1X

dD1

ˇ̌
ˇ

N�1X

rD0
�p.dr/

ˇ̌
ˇ:
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As in the proof of Lemma 5.2.6 we get

p�1X

dD1

ˇ̌
ˇ

N�1X

rD0
�p.dr/

ˇ̌
ˇ < p

�
log p C 1

3

�
;

and this concludes the argument. �
Theorem 5.3.25 Let p � 5 be a prime number and let S D .xn/

1
nD0 be a sequence

of explicit inversive pseudorandom numbers obtained by (5.27) and (5.28) with
a; b 2 Fp and a ¤ 0. Then the discrepancy bound

DN.S/ < N�1 �2p1=2 C 1
� �

log p C 1

3

�2 C 1

p

holds for all integers N with 1 � N < p.

Proof This bound is derived from Lemma 5.3.24 in the same way as Theorem 5.3.13
was derived from Lemma 5.3.12. �

Further results on explicit inversive pseudorandom numbers, including results on
the serial test, can be found in the survey article [135]. More recent survey papers
containing a lot of relevant information on nonlinear pseudorandom numbers are
those of Topuzoǧlu and Winterhof [194] and Winterhof [202].

5.4 Pseudorandom Bits

So far we have concentrated on random and pseudorandom numbers for Monte
Carlo methods and simulation methods. But we should not lose sight of the fact that
there are other types of random objects that are consumed on a grand scale, namely
random bits. Let us recall, for instance, that encryption by means of stream ciphers is
based on the use of sequences of random bits as keystreams (see Sect. 2.8). We may
be tempted to produce the required random bits by coin flips (for example, “head”
for 0 and “tail” for 1), but then we run into the same kinds of practical problems
as those for physically generated random numbers that we discussed in Sect. 5.1.1.
Therefore it is advisable to switch right away to computer-generated random bits
called pseudorandom bits.

In the utilization of sequences of pseudorandom bits as keystreams, just as in
many other applications of pseudorandom bits, we want to avoid any bias between
0 and 1. Thus, the probability of picking 0 should be 1

2
and the probability of picking

1 should be 1
2
. Furthermore, the choices of bits should be independent in the sense

that the current choice of a bit is not influenced by previous choices of bits; think
again of fair coin tosses as an illustration. Probability theorists call this a stochastic
model for Bernoulli trials, but we will not use this fancy terminology.
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Being typical mathematicians, we succumb to the impulse to generalize and we
move from the set of bits to an arbitrary finite set S with b � 2 elements. The
generalized stochastic model stipulates now that we pick each element of S with
probability 1

b and that the choices of elements of S should be independent. We
stick to this fair and democratic stochastic model throughout this section. You may
think of this model as the discrete analog of the model for uniform pseudorandom
numbers employed previously in this chapter. The finite sets S of number-theoretic
interest are the least residue system modulo b given by Zb D f0; 1; : : : ; b � 1g and
the finite field Fq with q elements in the case where b is a prime power q. The most
important special case b D 2 corresponding to the set of bits is represented by both
Z2 and F2.

There is a profusion of plausible properties that we may request for a sequence
of pseudorandom elements of S on the basis of the stochastic model above. Many
of these properties can be unified into a framework that was popularized by the
seminal book of Knuth [80, Section 3.5]. For a sequence A D .an/

1
nD1 of elements

of S, for integers k � 1 and N � 1, and for a k-tuple s D .s0; s1; : : : ; sk�1/ 2 Sk of
elements of S, let A.s;NIA/ denote the number of integers n with 1 � n � N such
that the k-tuple .an; anC1; : : : ; anCk�1/ of consecutive terms of A is equal to s. You
can picture A.s;NIA/ as follows: slide a window of length k over the sequence A,
starting with the window showing .a1; a2; : : : ; ak/, and count the number of times
you see the k-tuple s in the window among the first N windows.

Definition 5.4.1 Let S be a finite set with b � 2 elements and let k be a positive
integer. Then a sequence A of elements of S is k-distributed in S if

lim
N!1

A.s;NIA/
N

D 1

bk
for all s 2 Sk:

A sequence of elements of S is 1-distributed (or completely uniformly distributed)
in S if it is k-distributed in S for all integers k � 1.

Remark 5.4.2 There is an appealing relationship between Definition 5.4.1 and a
concept for real numbers, namely that of normality. For an integer b � 2 and a real
number ˛, let

f˛g D
1X

nD1
anb�n

be the unique b-adic expansion of the fractional part f˛g of ˛, where an 2 Zb for
all n � 1 and an < b � 1 for infinitely many n. Then we can associate with the
real number ˛ a unique sequence A D .an/

1
nD1 of elements of Zb, the sequence A

of b-adic digits of f˛g. In the language of Definition 5.4.1, the number ˛ is called
normal to the base b if the sequence A is 1-distributed in Zb. The theory of normal
numbers is a classical and well-studied branch of number theory; see for instance
the books [90, Section 1.8] and [150, Chapter 8]. There is an elegant criterion
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for normality in terms of uniform distribution modulo 1 (see Definition 4.1.8 for
the latter notion), according to which the real number ˛ is normal to the base b
if and only if the sequence .bn˛/1nD1 is uniformly distributed modulo 1 (see [90,
Chapter 1, Theorem 8.1] and [150, Theorem 8.15]). Another noteworthy result says
that “almost all” real numbers are normal to the base b (and in fact simultaneously
normal to all bases b � 2), in the sense that if we pick a real number randomly
from the interval Œ0; 1/ equipped with the Lebesgue measure, then with probability
1 this number is normal to the base b (and in fact simultaneously normal to all bases
b � 2); see [90, Chapter 1, Corollaries 8.1 and 8.2] and [150, Theorem 8.11] for
different proofs of this result. Thus, in a certain sense, “almost all” sequences of
elements of Zb are 1-distributed in Zb.

Example 5.4.3 According to the last part of Remark 5.4.2, there must be a huge
variety of sequences of elements of Zb that are 1-distributed in Zb. Nevertheless, it
is a nontrivial task to construct such a sequence explicitly. Historically the first con-
struction of an 1-distributed sequence in Zb was given by Champernowne [21]. In
fact, he constructed a normal number to the base 10, but according to Remark 5.4.2
this is the same as constructing an 1-distributed sequence in Z10. The sequence C is
obtained by concatenating the digit expansions in base 10 of all positive integers in
their natural increasing order. For instance, if you have reached the integer 143, then
this yields the three terms 1; 4; 3 of the sequence C. The beginning of the sequence
C looks like

1; 2; 3; 4; 5; 6; 7; 8; 9; 1; 0; 1; 1; 1; 2; 1; 3; 1; 4; : : : :

It is an elementary, but rather boring exercise to show that C is 1-distributed in Z10.
If you are eager to see the proof, then you are referred to [150, Section 8.4]. More
general constructions of this type can be found in [40, Subsection 1.4.4]. It is not
known whether interesting numbers such as

p
2, Euler’s number e, or � are normal

to any base, and such questions belong to the collection of famous open problems
in number theory.

We now present the preliminaries of a construction of 1-distributed sequences
in an arbitrary finite field Fq. This construction is of interest since it is based on an
important family of periodic sequences with remarkable properties. For an integer
d � 1, we consider the extension field Fqd of Fq. Let ˇd be a primitive element of
Fqd and let ˛d 2 F

�
qd . We note that the trace map Trd W Fqd ! Fq is a surjective

linear transformation between the vector spaces Fqd and Fq over Fq (this follows
from Theorem 1.4.50). We introduce the sequence Bd D .an/

1
nD1 of elements of Fq

by

an D Trd.˛dˇ
n
d/ for n D 1; 2; : : : : (5.29)
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Since ˇqd�1
d D 1, it is clear that Bd is a purely periodic sequence with period length

qd � 1. The following proposition enunciates impressive equidistribution properties
of the sequence Bd in its full period.

Proposition 5.4.4 If k and d are integers with 1 � k � d and s 2 F
k
q, then

A.s; qd � 1IBd/ D
(

qd�k � 1 if s D 0;

qd�k if s ¤ 0:

Proof We first prove the result for k D d. We introduce the linear transformation
L W Fqd ! F

d
q defined by

L.
/ D �
Trd.˛d
/;Trd.˛dˇd
/; : : : ;Trd.˛dˇ

d�1
d 
/

� 2 F
d
q for 
 2 Fqd

and we claim that L is injective. Thus, let 
 2 Fqd be such that L.
/ D 0 2 F
d
q.

Then Trd.˛dˇ
j
d
/ D 0 for 0 � j � d � 1. Since 1; ˇd; ˇ

2
d ; : : : ; ˇ

d�1
d form a basis of

Fqd over Fq (see Remark 3.2.7), it follows that Trd.˛d
ı/ D 0 for all ı 2 Fqd . This
is possible only if ˛d
 D 0 because Trd is surjective. Now ˛d ¤ 0, and so 
 D 0,
showing that the linear transformation L is indeed injective. Since Fqd and F

d
q have

the same number of elements, L is even bijective. Note that

.an; anC1; : : : ; anCd�1/ D L.ˇn
d/ for all n � 1

by (5.29). Thus A.s; qd � 1IBd/ D 0 for s D 0 2 F
d
q. If s 2 F

d
q with s ¤ 0, then

there exists a unique 
 2 F
�
qd with L.
/ D s, and so a unique n with 1 � n � qd � 1

such that L.ˇn
d/ D s. This proves that A.s; qd � 1IBd/ D 1.

Now we examine the case where 1 � k < d. If �.v/ 2 F
k
q denotes the projection

of v 2 F
d
q onto its first k coordinates, then for every s 2 F

k
q we get the formula

A.s; qd � 1IBd/ D
X

v2F
d
q

�.v/Ds

A.v; qd � 1IBd/:

The proof is completed by using the result that we have already shown for the case
k D d. �

We need also a result on the counting function A.s;NIBd/ for parts of the period,
that is, for 1 � N < qd � 1. We can take recourse to earlier methods in this chapter
in order to obtain such a result.

Proposition 5.4.5 If k and d are integers with 1 � k � d and s 2 F
k
q, then

jA.s;NIBd/ � Nq�kj < qd=2.log qd C 1/ for 1 � N < qd � 1:
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Proof This case can arise only if qd � 3, and so we assume this inequality. We fix
an integer N with 1 � N < qd � 1, a nontrivial additive character � of Fq, and
s D .s0; s1; : : : ; sk�1/ 2 F

k
q. We put

an D .an; anC1; : : : ; anCk�1/ 2 F
k
q for n D 1; 2; : : : ;

where a1; a2; : : : are the terms of the sequence Bd. Then, using the dot product on
F

k
q, we can write

A.s;NIBd/ D
NX

nD1

k�1Y

jD0

�1
q

X

c2Fq

�.c.anCj � sj//
�

D q�k
NX

nD1

X

c2Fk
q

�.c � an � c � s/

D q�k
X

c2Fk
q

�.�c � s/
NX

nD1
�.c � an/:

By splitting off the contribution from c D 0 2 F
k
q and using the triangle inequality,

we obtain

jA.s;NIBd/ � Nq�kj � q�k
X

c2Fk
qnf0g

ˇ̌
ˇ

NX

nD1
�.c � an/

ˇ̌
ˇ: (5.30)

For c D .c0; c1; : : : ; ck�1/ 2 F
k
q with c ¤ 0 2 F

k
q, we use (5.29) to get for all n � 1,

c � an D c0an C c1anC1 C � � � C ck�1anCk�1
D Trd.˛d.c0 C c1ˇd C � � � C ck�1ˇk�1

d /ˇn
d/ D Trd.
ˇ

n
d/

with some 
 2 Fqd . It is important to observe that 
 ¤ 0 since k � 1 < d. Now
�.ı/ D �.Trd.ı// for all ı 2 Fqd defines a nontrivial additive character � of Fqd ,
and so we can write

NX

nD1
�.c � an/ D

NX

nD1
�.
ˇn

d/: (5.31)

The character sum on the right-hand side of (5.31) is treated by the method in the
proof of Lemma 5.2.6. For T D qd � 1 we put �T.z/ D e2� iz=T for all z 2 Z as in
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the proof of that lemma. Then we arrive at the bound

ˇ̌
ˇ

NX

nD1
�.
ˇn

d/
ˇ̌
ˇ � 1

T

T�1X

hD0

ˇ̌
ˇ

N�1X

rD0
�T.hr/

ˇ̌
ˇ
ˇ̌
ˇ

T�1X

nD0
�.
ˇn

d/�T .hn/
ˇ̌
ˇ:

We consider the contribution from h D 0, use (1.9), and obtain

T�1X

nD0
�.
ˇn

d/ D
X

ı2F�

qd

�.ı/ D
X

ı2Fqd

�.ı/ � 1 D �1: (5.32)

Noting also that N < T, we get

ˇ̌
ˇ

NX

nD1
�.
ˇn

d/
ˇ̌
ˇ < 1C 1

T

T�1X

hD1

ˇ̌
ˇ

N�1X

rD0
�T.hr/

ˇ̌
ˇ
ˇ̌
ˇ

T�1X

nD0
�.
ˇn

d/�T .hn/
ˇ̌
ˇ: (5.33)

For the last sum, we proceed as in the proof of Lemma 5.2.4, with Fp replaced by
Fqd and �p replaced by � . This yields

ˇ̌
ˇ

T�1X

nD0
�.
ˇn

d/�T.hn/
ˇ̌
ˇ � qd=2 for 1 � h � T � 1:

By using this inequality in (5.33), we obtain

ˇ̌
ˇ

NX

nD1
�.
ˇn

d/
ˇ̌
ˇ < 1C qd=2

T

T�1X

hD1

ˇ̌
ˇ

N�1X

rD0
�T .hr/

ˇ̌
ˇ:

The sum over h was bounded in the proof of Lemma 5.2.6, and thus we get

ˇ̌
ˇ

NX

nD1
�.
ˇn

d/
ˇ̌
ˇ < 1C qd=2

�
log T C 1

3

�
< qd=2.log qd C 1/:

Now we combine this inequality with (5.30) and (5.31) and we arrive at the desired
result. �

Remark 5.4.6 The terms an in (5.29) of the sequence Bd can be computed effi-
ciently. Let f 2 FqŒx	 be the minimal polynomial of ˇd over Fq, which is thus a
primitive polynomial over Fq of degree d. We write f .x/ D xd � Pd�1

jD0 ejxj with
ej 2 Fq for 0 � j � d � 1. Then

anCd �
d�1X

jD0
ejanCj D Trd

�
˛dˇ

n
d

�
ˇd

d �
d�1X

jD0
ejˇ

j
d

��
D Trd.˛dˇ

n
d f .ˇd// D Trd.0/ D 0
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for all n � 1, and so the an satisfy the linear recurrence relation over Fq (of order d)

anCd D
d�1X

jD0
ejanCj for n D 1; 2; : : : :

Once the initial values a1; : : : ; ad have been computed, the remaining terms of
the sequence Bd can be quickly generated by this linear recurrence relation.
Proposition 5.4.4 shows that the d-tuples .an; anC1; : : : ; anCd�1/, n D 1; : : : ; qd � 1,
run exactly through all nonzero d-tuples in F

d
q. This implies that qd � 1 is the least

period length of Bd. Any linear recurrence relation over Fq of order d generates a
periodic sequence with least period length at most qd � 1, and for this reason the
sequence Bd is called a maximal period sequence over Fq.

Now we are ready to describe the construction of 1-distributed sequences in an
arbitrary finite field Fq, following the paper [137]. For each positive integer d, let Bd

be the maximal period sequence over Fq constructed above and let Td be the block
(or the initial segment) consisting of the first qd �1 terms of Bd, that is, Td is the first
full period of Bd. By concatenating T1; T2; : : :, we get the sequence B of elements
of Fq.

Theorem 5.4.7 The sequence B obtained by concatenating the blocks T1; T2; : : : is
1-distributed in Fq.

Proof We put Mh D Ph
dD1.qd �1/ for integers h � 1, so that Mh is the total number

of terms after the concatenation of T1; : : : ; Th. We select an integer k � 1 and we
want to prove that B is k-distributed in Fq. Choose s 2 F

k
q and an integer N > Mk.

Then there exists a unique integer r � kC1 with Mr�1 < N � Mr. The first N terms
of B consist therefore of T1; : : : ; Tr�1 and the first N � Mr�1 terms of Tr. Hence

A.s;NIB/ D
r�1X

dD1
A.s; qd � 1IBd/C A.s;N � Mr�1IBr/C O.kr/:

The correction term O.kr/, where here and in the rest of the proof all implied
constants are absolute, reflects the possible errors in the counts at the interfaces
between Td and TdC1 for d D 1; : : : ; r. For d � k we can apply Proposition 5.4.4,
which we write in the form

A.s; qd � 1IBd/ D .qd � 1/q�k C O.1/:

For 1 � d < k it is trivial that

A.s; qd � 1IBd/ D .qd � 1/q�k C O.qd/:

Therefore

A.s;NIB/ D Mr�1q�k C A.s;N � Mr�1IBr/C O.kr C qk/:



5.4 Pseudorandom Bits 357

Next an application of Proposition 5.4.5 yields

A.s;N � Mr�1IBr/ D .N � Mr�1/q�k C O.qr=2 log qr/:

It follows that

A.s;NIB/ D Nq�k C O.kr C qk C rqr=2 log q/:

Now N � Mr�1 C 1 � qr�1, and so

A.s;NIB/
N

D q�k C O.krq1�r C qkC1�r C rq1�r=2 log q/:

If we now let N ! 1, then r ! 1, and we infer that B is indeed k-distributed in
Fq. Since k 2 N is arbitrary, it follows that B is 1-distributed in Fq. �

For a purely periodic sequence A D .an/
1
nD1 of elements of Fq with least period

length T, it is customary to consider the correlation coefficient

Ch.A/ D
TX

nD1
�.an � anCh/;

where � is a fixed nontrivial additive character of Fq and h is a positive integer.
Correlation coefficients are special instances of autocorrelation functions which
will be introduced in Definition 6.4.15. For a good sequence A of pseudorandom
elements of Fq, the absolute value of the correlation coefficient Ch.A/ should be
small compared to T for many values of h. The maximal period sequences Bd

constructed above are particularly well behaved in this respect.

Theorem 5.4.8 For a maximal period sequence Bd over Fq with least period length
T D qd � 1, its correlation coefficients are given by

Ch.Bd/ D
(

T if h � 0 .mod T/;

�1 otherwise:

Proof The case h � 0 .mod T/ is trivial since Bd has period length T. If h 6�
0 .mod T/, then (5.29) yields

Ch.Bd/ D
TX

nD1
�.Trd

�
˛dˇ

n
d/� Trd.˛dˇ

nCh
d /

� D
TX

nD1
�
�
Trd.˛d.1 � ˇh

d/ˇ
n
d/
�
:



358 5 Pseudorandom Numbers

Now ˇh
d ¤ 1, and so 
 WD ˛d.1 � ˇh

d/ 2 F
�
qd . With � as in the proof of

Proposition 5.4.5, we obtain

Ch.Bd/ D
TX

nD1
�.
ˇn

d/ D �1

by (5.32). �

Maximal period sequences over the binary field F2 are the building blocks
for keystreams that are used in practice in stream ciphers. Since maximal period
sequences can be generated by linear recurrence relations (see Remark 5.4.6), their
structure is too simple for keystreams, and so some features of nonlinearity have
to be introduced. A common procedure is to combine several maximal period
sequences over F2 by a nonlinear combining function. So if m � 2 maximal period
sequences over F2 are combined, the combining function is a nonlinear function
g W Fm

2 ! F2. For n D 1; 2; : : :, the nth term of the keystream is g.a.1/n ; : : : ; a
.m/
n /,

where a.j/n is the nth term of the jth maximal period sequence for 1 � j � m. A
discussion of the choice of combining functions can be found in [115, Section 6.3].

Keystreams for stream ciphers should have good statistical properties, for
instance in the sense of being k-distributed in F2 for large values of k. But they
should also have properties that can be roughly described by saying that the
keystream is patternless and unpredictable, so that attackers cannot figure out
the algorithm (or crucial parameters in the algorithm) by which the keystream is
generated. These types of properties are analyzed by complexity theory, which is
a big and fundamental branch of theoretical computer science. In this area, various
complexity measures have been devised in order to assess how close to random a
sequence of bits is. The general idea is to measure the level of complexity of the
simplest algorithm (or equivalently of the simplest machine) that can generate the
given sequence of bits. The concrete complexity measure depends on which family
of algorithms (or machines) one allows in the competition. The most ambitious
approach considers all machines that are relevant for computer science, namely
all (self-delimiting) Turing machines, and this leads to the concept of the (self-
delimiting) Kolmogorov complexity of a sequence of bits. Intuitively, you may think
of the Kolmogorov complexity of a sequence of bits as the length of the shortest
computer program for generating the sequence or an initial segment thereof. A rich
and beautiful theory of the Kolmogorov complexity and of its relationship with
randomness properties of sequences of bits was developed by computer scientists
(see [100] for a survey). The only hitch in this theory is that it can be proved that
the Kolmogorov complexity is in general not efficiently computable, and this is of
course a severe blow to the practical utility of this complexity measure.

At the other end of the hierarchy of complexity measures is one where the only
algorithms we allow are linear recurrence relations. This leads to the concept of the
linear complexity of a periodic sequence of bits, which is simply the least order of a
linear recurrence relation that generates the sequence (compare also with Sect. 2.8).
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The linear complexity of an initial segment of an arbitrary sequence of bits is defined
analogously. The linear complexity has the great advantage over the Kolmogorov
complexity that it can be computed by a polynomial-time algorithm, which happens
to be the Berlekamp-Massey algorithm originally designed for coding theory (see
Sect. 3.6). Surveys of the linear complexity and of related complexity measures
can be found in the articles [113] and [201]. The monograph [31] is devoted to the
complexity analysis of sequences generated by number-theoretic methods.

5.5 A Glimpse of Advanced Topics

One of the disadvantages of sequences of linear congruential pseudorandom
numbers is that their least period length cannot exceed the modulus. We can
overcome this drawback by replacing the first-order linear recurrence relation (5.2)
by a linear recurrence relation of higher order r � 2, thus arriving at the multiple-
recursive method. We choose a large prime number p as the modulus and coefficients
c0; c1; : : : ; cr�1 2 Zp D f0; 1; : : : ; p � 1g. Then we generate a sequence .zn/

1
nD0 of

elements of Zp by the linear recurrence relation

znCr �
r�1X

jD0
cjznCj .mod p/ for n D 0; 1; : : : : (5.34)

It is assumed that not all initial values z0; z1; : : : ; zr�1 are 0. In analogy with (5.3), a
sequence .xn/

1
nD0 of multiple-recursive pseudorandom numbers is obtained by xn D

zn=p 2 Œ0; 1/ for n D 0; 1; : : : . In order to maximize the least period length of this
sequence, we consider the so-called characteristic polynomial f .x/ D xr �Pr�1

jD0 cjxj

of the linear recurrence relation as a polynomial over the finite field Fp and we
suppose that f is a primitive polynomial over Fp. Then per.xn/ D per.zn/ D pr � 1

and the sequence .zn/
1
nD0 is a maximal period sequence over Fp in the sense of

Remark 5.4.6. Therefore the excellent equidistribution properties of maximal period
sequences established in Propositions 5.4.4 and 5.4.5 apply to the sequence .zn/

1
nD0

for dimensions k � r.
Because of the linearity of the recurrence relation generating the sequence

.zn/
1
nD0, multiple-recursive pseudorandom numbers still show a lattice structure or

grid structure, just like linear congruential pseudorandom numbers (compare with
Sect. 5.2.2). There are tools such as the so-called spectral test that allow us to dis-
criminate between good and bad parameters for multiple-recursive pseudorandom
numbers, and the spectral test can also be applied to pick out good multipliers in the
linear congruential method. An excellent account of the spectral test and of related
structural and statistical tests is given in the survey article [94].

What you gain on the roundabouts, you lose on the swings, and here for multiple-
recursive pseudorandom numbers we win handsomely with the least period length,
but we pay a price in terms of poor discretization and discrepancy. For per.xn/ D
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pr � 1 as above, we would expect a discretization roughly of size p�r, but the xn

are rational numbers with denominator p and therefore yield a discretization of
size p�1. Consequently, the star discrepancy of any initial segment of the sequence
.xn/

1
nD0 has at least the order of magnitude p�1, which in most cases is too big to be

anywhere near the law of the iterated logarithm for the star discrepancy.
A smart way to go is to combine large least period length with fine discretization,

and this is carried out in the digital multistep method. Here we choose p D 2 and
a large order r of the linear recurrence relation (5.34). We use (5.34) to generate a
maximal period sequence .zn/

1
nD0 over F2 with per.zn/ D 2r � 1. Note that it is no

problem to achieve huge least period lengths like 21000�1 or 25000�1 since r can be
chosen independently of the available processor and only the extremely fast binary
arithmetic is needed for generating the zn. In contrast, the choice of practical moduli
and therefore of least period lengths in the linear congruential method is limited by
the word size of the processor (compare with the discussion in Sect. 5.2.1). But how
do we produce pseudorandom numbers in Œ0; 1/ from the sequence .zn/

1
nD0 of bits?

Well, we choose an integer k with 2 � k � r and gcd.k; 2r � 1/ D 1 and we put

xn D
kX

iD1
zknCi�12�i 2 Œ0; 1/ for n D 0; 1; : : : : (5.35)

In words, the numbers xn are obtained by splitting up the sequence .zn/
1
nD0 into

contiguous blocks of length k and then interpreting each block as the dyadic
expansion of a number in Œ0; 1/. The numbers xn defined by (5.35) are called digital
multistep pseudorandom numbers. The condition gcd.k; 2r �1/ D 1 guarantees that
per.xn/ D 2r � 1. The discretization is 2�k and we can choose very large values
for k. Almost perfect equidistribution holds for dimensions s � r=k (see [133,
Theorem 9.2]).

There is an astonishing connection between digital multistep pseudorandom
numbers and the theory of digital nets presented in Sect. 4.4.2. For a dimension
s > r=k, we introduce the points

xn D .xn; xnC1; : : : ; xnCs�1/ 2 Œ0; 1/s for n D 0; 1; : : : ;

where the sequence .xn/
1
nD0 is given by (5.35). Then it can be verified that the 2r

points 0; x0; x1; : : : ; x2r�2 form a digital .t; r; s/-net over F2 with a quality parameter
t that depends in a known way on r, k, and the characteristic polynomial f of the
linear recurrence relation generating the sequence .zn/

1
nD0 (see [129] and [133,

Theorem 9.5]). There are results guaranteeing that, by an appropriate choice of
the characteristic polynomial f , the quality parameter t of the digital net and
the star discrepancy of the points x0; x1; : : : ; x2r�2 can be made small (see [133,
Theorems 9.7 and 9.8]).

The basic idea of the digital multistep method, namely to create
(pseudo)randomness by combining finite-field arithmetic and real arithmetic
via (5.34) and (5.35), is exploited also in the digital inversive method due to
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Eichenauer-Herrmann and Niederreiter [45]. We select an integer k � 1 which
serves as the precision (like k D 32 or k D 64) and we consider the finite field Fq

with q D 2k elements. For all 
 2 Fq, we use the notation 
 D 
�1 2 Fq if 
 ¤ 0

and 
 D 0 2 Fq if 
 D 0. Now we proceed in analogy with (5.19), but we work
in the finite field Fq rather than in Fp. Concretely, we choose parameters ˛; ˇ 2 F

�
q

and an initial value 
0 2 Fq, and then we generate the sequence .
n/
1
nD0 of elements

of Fq by the recursion


nC1 D ˛
n C ˇ for n D 0; 1; : : : :

Next, for n D 0; 1; : : :, let .y.1/n ; : : : ; y
.k/
n / 2 F

k
2 be the coordinate vector of 
n relative

to a fixed ordered basis of Fq over F2. Finally, we identify F2 with Z2 D f0; 1g and
we introduce a sequence .xn/

1
nD0 of digital inversive pseudorandom numbers by

xn D
kX

iD1
y.i/n 2

�i 2 Œ0; 1/ for n D 0; 1; : : : :

Under similar conditions as in Theorem 5.3.16, we get per.xn/ D q D 2k.
Digital inversive pseudorandom numbers possess agreeable properties with regard
to the uniformity test and the serial test (see [45] and [142]). Furthermore, these
pseudorandom numbers allow an efficient implementation. For general finite fields
Fq (including finite prime fields Fp), the computation of the multiplicative inverse
in Fq requires O.log q/ multiplications in Fq; simply note that 
�1 D 
q�2 for all

 2 F

�
q and apply the square-and-multiply algorithm in Algorithm 2.3.9. But in

the special case q D 2k, a clever algorithm due to Itoh and Tsujii [71] permits the
computation of the multiplicative inverse in Fq with O.log log q/ multiplications in
Fq, and this is of course an enormous speedup. For values of q of practical interest
such as q D 232, the Itoh-Tsujii algorithm computes the multiplicative inverse in Fq

basically in constant time.
Parallelized Monte Carlo methods and simulation methods employ sequences of

pseudorandom vectors. The analog of the linear congruential method in this context
is the matrix method. For a given dimension k � 2, we choose a large prime number
p and a nonsingular k � k matrix A over the finite field Fp. Then we generate a
sequence z0; z1; : : : of row vectors in F

k
p by starting from an initial vector z0 ¤ 0 2

F
k
p and using the recursion

znC1 D znA for n D 0; 1; : : : :

Now we identify Fp with Zp D f0; 1; : : : ; p � 1g and we derive the sequence of
pseudorandom vectors

xn D 1

p
zn 2 Œ0; 1/k for n D 0; 1; : : : :
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It is obvious that the sequence .xn/
1
nD0 is purely periodic with per.xn/ � pk � 1. We

get per.xn/ D pk � 1 if and only if the characteristic polynomial of the matrix A is
primitive over Fp (see [133, Theorem 10.2]).

From a sequence z0; z1; : : : of pseudorandom vectors in F
k
p we can also obtain a

sequence of pseudorandom numbers in Œ0; 1/. To this end, we choose p D 2 and let
the integer k be a precision, say k D 32 or k D 64. We write

zn D .z.1/n ; : : : ; z
.k/
n / 2 F

k
2 for n D 0; 1; : : :

and then we produce the pseudorandom numbers

xn D
kX

iD1
z.i/n 2

�i 2 Œ0; 1/ for n D 0; 1; : : : :

If we use a sophisticated method for pseudorandom vector generation such as
the so-called multiple-recursive matrix method (the vector analog of the multiple-
recursive method), then we obtain a sequence .xn/

1
nD0 of pseudorandom numbers

with many desirable properties (see [136]). A special instance of this approach
yields the famous Mersenne twister invented by Matsumoto and Nishimura [110].
The Mersenne twister is a marvel of design: it produces periodic sequences of
pseudorandom numbers with the least period length being the huge Mersenne prime
219937 � 1 and with almost perfect equidistribution properties all the way up to
the dimension 623. The sequences of pseudorandom numbers generated by the
Mersenne twister pass numerous statistical tests for randomness and they are now
widely used in practice. You can find some information on Mersenne primes in
Sect. 2.7.3.

Exercises

5.1 For an integer m � 3, generate a sequence z0; z1; : : : of elements of Zm by
znC2 � znC1 C zn .mod m/ for n D 0; 1; : : : with arbitrary initial values z0 and
z1. Derive a sequence .xn/

1
nD0 of pseudorandom numbers by putting xn D zn=m

for all n � 0. Show that the sequence .xn/
1
nD0 badly fails the three-dimensional

permutation test, in the sense that the ordering xn < xnC2 < xnC1 never occurs
in this sequence.

5.2 For an integer m � 2, let .an/
1
nD0 and .bn/

1
nD0 be purely periodic sequences

of elements of Zm such that per.an/ and per.bn/ are coprime. Prove that the
sequence .zn/

1
nD0 of elements of Zm defined by zn � an C bn .mod m/ for all

n � 0 satisfies per.zn/ D per.an/ per.bn/.
5.3 Let m D Qk

jD1 p
ej

j be the canonical factorization of the integer m � 2 and let
a; z0 2 Z with gcd.a;m/ D gcd.z0;m/ D 1. Prove that the least period length
of .anz0/1nD0 considered as a sequence modulo m is lcm.T1; : : : ;Tk/, where Tj
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for 1 � j � k is the least period length of .anz0/1nD0 considered as a sequence
modulo p

ej

j .
5.4 For every integer m � 2 and every map W Zm ! Zm, prove that any sequence

z0; z1; : : : of elements of Zm generated by znC1 D  .zn/ for n D 0; 1; : : :

with an arbitrary initial value z0 is ultimately periodic. Provide a reasonable
sufficient condition for the sequence to be purely periodic.

5.5 Consider the inhomogeneous case of the linear congruential method in
Remark 5.2.3 for m D pk with a prime number p and an integer k � 1.
Assume also that a 6� 1 .mod p/ and that .a � 1/z0 C c ¤ 0. Let r be the
largest integer such that pr divides .a �1/z0C c and suppose that k � r. Prove
that per.zn/ is equal to the multiplicative order of a modulo pk�r.

5.6 Consider the linear congruential method in Remark 5.2.3 for m D pk with
a prime number p and an integer k � 2, where we allow also the case c D
0. Let T, respectively T1, be the least period length of the sequence .zn/

1
nD0

considered as a sequence modulo m, respectively modulo pk�1, and suppose
that T D pT1. Prove that

T�1X

nD0
�m.bzn/ D 0 for all integers b 6� 0 .mod p/:

5.7 Let � be a nontrivial additive character of the finite field Fq. Let G. ; �/ be
the Gauss sum defined in Exercise 1.34 and put G. 0; �/ D �1 for the trivial
multiplicative character  0 of Fq. Prove that

�.c/ D 1

q � 1

X

 

G. ; �/ .c/ for all c 2 F
�
q ;

where the sum is extended over all multiplicative characters of Fq and where
the bar denotes complex conjugation.

5.8 Prove the following version of Lemma 5.2.4 for an arbitrary finite field Fq. Let
� be a nontrivial additive character of Fq, let a; b 2 F

�
q , and let T be the order

of a in the multiplicative group F
�
q . Then

ˇ̌
ˇ

T�1X

nD0
�.ban/

ˇ̌
ˇ � q1=2 � T.q1=2 C 1/�1:

(Hint: use the preceding exercise and Exercise 1.34.)
5.9 Let p be an odd prime number, let a 2 Z with gcd.a; p/ D 1, and assume that

the multiplicative order T of a modulo p satisfies T � N WD .p � 1/=2. Prove
that there exists an integer b with gcd.b; p/ D 1 such that

ˇ̌
ˇ

N�1X

nD0
�p.ban/

ˇ̌
ˇ � 1

2
.p C 1/1=2:
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This shows that Lemma 5.2.6 is in general best possible up to the logarithmic
factor. (Hint: consider

Pp�1
bD1

ˇ̌PN�1
nD0 �p.ban/

ˇ̌2
.)

5.10 Let p, a, T, and N be as in the preceding exercise. Prove that there exists an
integer b with gcd.b; p/ D 1 such that the star discrepancy D�

N of the point set
consisting of the fractional parts fanb=pg with n D 0; 1; : : : ;N � 1 satisfies

D�
N � .p C 1/1=2

8N
:

This shows that Theorem 5.2.7 is in general best possible up to the logarithmic
factors.

5.11 Let m D 2k with an integer k � 1 and generate a sequence z0; z1; : : : of
elements of Zm by znC2 � znC1 C zn .mod m/ for n D 0; 1; : : : with initial
values z0 and z1 that are not both even. Prove that per.zn/ D 3 � 2k�1.

5.12 Let p be a prime number, let s 2 N with s < p, and let g.x/ 2 FpŒx	 with s �
deg.g.x// < p. Prove that for every nonzero vector .h0; h1; : : : ; hs�1/ 2 F

s
p,

the polynomial
Ps�1

jD0 hjg.x C j/ 2 FpŒx	 has positive degree.
5.13 Let p � 5 be a prime number and let .xn/

1
nD0 be a sequence of explicit

nonlinear pseudorandom numbers generated by (5.15) and (5.18) with 3 �
deg.g/ � p�2. For a dimension s � deg.g/, let P .s/

p be the point set consisting
of the points

xn D .xn; xnC1; : : : ; xnCs�1/ 2 Œ0; 1/s for n D 0; 1; : : : ; p � 1:

Prove that the discrepancy Dp.P .s/
p / of P .s/

p satisfies

Dp.P .s/
p / D O

�
p�1=2.log p/s

�

with an implied constant depending only on deg.g/. (Hint: use Proposi-
tion 4.3.1 and Exercise 5.12.)

5.14 Let the sequence .xn/
1
nD0 be as in the preceding exercise. For a dimension

s � deg.g/ � 1 and for an integer N with 1 � N < p, let P .s/
N be the point set

consisting of the points

xn D .xn; xnC1; : : : ; xnCs�1/ 2 Œ0; 1/s for n D 0; 1; : : : ;N � 1:

Prove that the discrepancy DN.P .s/
N / of P .s/

N satisfies

DN.P .s/
N / D O

�
N�1p1=2.log p/sC1

�

with an implied constant depending only on deg.g/.
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5.15 Let p be a prime number and let g.x/ 2 FpŒx	 with 0 � deg.g.x// D d < p.
Prove that there exists an element c 2 Fp such that

dX

jD0
.�1/d�j

 
d

j

!
g.x C j/ D c:

(Hint: proceed by induction on d.)
5.16 Show that the results in Exercises 5.13 and 5.14 do not hold for the dimension

t D deg.g/C 1 since there exists a constant Ct > 0 depending only on t such
that, with the obvious meaning of P .t/

N , we get

DN.P .t/
N / � Ct for 1 � N � p:

(Hint: use Exercise 5.15 as well as Theorem 4.1.41 with a suitable function f .)
5.17 Let p be a prime number and put

K.a/ D
X

c2F�

p

�p.ac�1 C c/ for all a 2 F
�
p :

(a) Prove that K.a/ is a real number for all a 2 F
�
p .

(b) Prove that

X

a2F�

p

K.a/2 D p2 � p � 1:

(c) Deduce from part (b) that the bound in Proposition 5.3.21 is in general best
possible up to an absolute constant.

5.18 Let p � 5 be a prime number and let .xn/
1
nD0 be a sequence of explicit inversive

pseudorandom numbers generated by (5.27) and (5.28). Let P .2/ be the point
set consisting of the points

xn D .xn; xnC1/ 2 Œ0; 1/2 for n D 0; 1; : : : ; p � 1:

Prove that the discrepancy Dp.P .2// of P .2/ satisfies Dp.P .2// D
O
�
p�1=2.log p/2

�
with an absolute implied constant. (Hint: use Proposi-

tion 5.3.21.)
5.19 Let m D 2k with an integer k � 2 and generate a sequence .zn/

1
nD0 of elements

of Zm by the linear congruential method (5.2).

(a) Show that it is not a good idea to generate a sequence .bn/
1
nD0 of

pseudorandom bits by letting bn be the least significant bit of zn for all
n � 0.
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(b) What can be said if we replace bn by cn, where cn is the coefficient of 2k�1
in the binary representation of zn?

5.20 Prove that if a real number ˛ is normal to the base b for some integer b � 2,
then m˛ is normal to the base b for every nonzero integer m. (Hint: use the
theory of uniformly distributed sequences in Sect. 4.1.)

5.21 Prove that if a real number ˛ is normal to the base bk for some integers b � 2

and k � 2, then ˛ is normal to the base b.
5.22 Let f .x/ 2 FqŒx	 be a monic irreducible polynomial over the finite field Fq of

degree d with f .x/ ¤ x. Prove that f .x/ is a primitive polynomial over Fq if
and only if qd � 1 is the least positive integer k such that f .x/ divides xk � 1 in
FqŒx	.

5.23 Let m.x/ D x4 C x3 C 1 2 F2Œx	.

(a) Verify that m.x/ is a primitive polynomial over F2.
(b) Compute the terms of a corresponding maximal period sequence B4 over

F2 explicitly.
(c) Verify by a direct computation that Ch.B4/ D �1 for h D 1; 2; 3; 4.

5.24 Let Bd be a maximal period sequence over the finite field Fq with least period
length qd � 1. List the terms in the first period of Bd in reverse order and
continue periodically. Prove that the resulting sequence is again a maximal
period sequence over Fq with least period length qd � 1.

5.25 For every maximal period sequence .an/
1
nD0 over the finite field Fq with least

period length qd � 1 and for every r 2 N with gcd.r; qd � 1/ D 1, prove that
.arn/

1
nD0 is again a maximal period sequence over Fq with least period length

qd � 1.
5.26 Let .an/

1
nD0 be a maximal period sequence over the finite field Fq with least

period length qd � 1. Prove that for every c 2 F
�
q , the sequence .an C c/1nD0

has again least period length qd � 1, but it is not a maximal period sequence
over Fq.



Chapter 6
Further Applications

The set Z, says a proverb in Finnish,
is infinite and cannot diminish.

Every integer is applicable,
no matter how weird or despicable,

so this book’s story will never finish.

6.1 Check-Digit Systems

6.1.1 Definition and Examples

Check-digit systems and error-correcting codes (see Chap. 3 for the latter) are birds
of a feather, but it must be conceded that error-correcting codes are the more colorful
birds. Just like error-correcting codes, check-digit systems help to eliminate errors
in data, but their aims are more modest than those of error-correcting codes. In
a check-digit system we extend an identification number, as for example a bank
account number, by a control symbol primarily to detect any single error. A check-
digit system can be formally defined over any finite abelian group.

Definition 6.1.1 A check-digit system over a finite abelian group G (with the
additive notation) consists of n � 2 permutations f1; : : : ; fn of G and an element
c 2 G. A word a1 � � � an�1 2 Gn�1 of length n � 1 is extended to a word of length n
by appending to it a check digit an such that

f1.a1/C � � � C fn.an/ D c: (6.1)

In practice very often the finite abelian group G D Zm consisting of the
least residue system modulo m with addition modulo m is used (compare with
Example 1.3.6).

Example 6.1.2 The Universal Product Code (UPC) is a barcode widely used in the
United States, Canada, and many other countries for tracking trade items in stores.
Its most common form UPC-12 consists of 12 decimal digits forming the word

© Springer International Publishing Switzerland 2015
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a1 � � � a12 2 Z1210 , where a12 is a check digit chosen such that it satisfies the control
equation (6.1) given by

3.a1 C a3 C a5 C a7 C a9 C a11/C a2 C a4 C a6 C a8 C a10 C a12 � 0 .mod 10/:

Thus, for the UPC-12 only two types of permutations fi, i D 1; : : : ; 12, of G D Z10
are employed in Definition 6.1.1, namely a 2 Z10 7! 3a 2 Z10 and the identity map
a 2 Z10 7! a 2 Z10. Similarly, a European Article Number (EAN) or International
Article Number a1 � � � a13 2 Z1310 consists of one more decimal digit and has to satisfy
the control equation

3.a2Ca4Ca6Ca8Ca10Ca12/Ca1Ca3Ca5Ca7Ca9Ca11Ca13 � 0 .mod 10/:

For instance, a package of frozen peas of a well-known Austrian brand bears the
EAN

9008695928723

and it is a nice little exercise in arithmetic modulo 10 to verify the control equation.

Example 6.1.3 The International Standard Book Number (ISBN) identifies books,
as the name suggests. The version ISBN-10 was used until 2007. It starts with one
or more leading digits for the language area. For books published in most English-
speaking countries, the first digit is either 0 or 1, whereas for German-speaking
countries the first digit is 3. The country prefix is followed by digits for publisher
and book title and a check digit. An ISBN-10 is given by Definition 6.1.1 with
G D Z11, fi.a/ D ia for a 2 Z11 and i D 1; : : : ; 10, and furthermore c D 0, where
the symbol X is used for 10. Since 2007, ISBNs contain 13 decimal digits with an
additional prefix 978 or 979. An ISBN-13 a1 � � � a13 2 Z1310 has to satisfy

a1Ca3Ca5Ca7Ca9Ca11Ca13C3.a2Ca4Ca6Ca8Ca10Ca12/ � 0 .mod 10/:

An ISBN-10 can be easily converted to an ISBN-13 by adding the prefix 978 or 979
and calculating the new check digit. For example, the ISBN-10 of the book [52] is
1-4020-5333-9 which is converted to the ISBN-13 978-1-4020-5333-7.

Example 6.1.4 The International Bank Account Number (IBAN) is used in the
European Union and in many countries outside the EU for the purpose of standard-
izing payments. An IBAN typically comprises 20 to 34 alphanumeric characters. It
starts with two letters representing the country code, such as AT for Austria, FI for
Finland, and DE for Germany. The country code is followed by two decimal check
digits and then by alphanumeric characters specifying the bank and the account
number. Checking the validity of an IBAN is more cumbersome than for a UPC,
an EAN, or an ISBN. First of all, the first four alphanumeric characters of the
IBAN (that is, the country code and the check digits) are moved to the end of the
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string. Then all letters in the IBAN are converted to integers according to the scheme
A $ 10;B $ 11; : : : ;Z $ 35. The resulting string of decimal digits is interpreted
as the decimal representation of a positive integer N. Finally, it is checked whether
this integer N is congruent to 1 modulo 97. This falls into the pattern of the control
equation (6.1) with G D Z97 and c D 1. The permutations fi of Z97 in (6.1) are
given by the multiplication modulo 97 of an element of Z97 by a suitable power of
10 (in the present case, the fi are applied only to the elements 0; 1; : : : ; 9 of Z97). We
had planned to offer the IBANs of our secret Swiss bank accounts for practicing the
validation of IBANs, but we decided against it at the very last minute. So we are
afraid you have to use your own IBAN for this exercise.

6.1.2 Neighbor Transpositions and Orthomorphisms

The most common errors that should be eliminated by a check-digit system are
single errors (a 7! b with b ¤ a), and they are always detected since the fi
in Definition 6.1.1 are permutations. Another type of common errors, occurring
particularly in long words such as IBANs, is formed by neighbor transpositions
(ab 7! ba with b ¤ a). However, many check-digit systems do not detect this
kind of error. For example, the UPC-12 does not detect the neighbor transposition
aiaiC1 7! aiC1ai if ai � aiC1 .mod 5/ for some i D 1; : : : ; 11.

By the control equation (6.1), the neighbor transposition aiaiC1 7! aiC1ai (with
i D 1; : : : ; n � 1) is detected if and only if

fi.ai/C fiC1.aiC1/ ¤ fi.aiC1/C fiC1.ai/: (6.2)

Put a D fi.ai/, b D fi.aiC1/, and Fi D fiC1 ı f �1
i . Then (6.2) is equivalent to

Fi.a/� a ¤ Fi.b/� b for a; b 2 G; a ¤ b:

Therefore Fi must be a permutation of G with the additional property in the
following definition.

Definition 6.1.5 A permutation f of the finite abelian group G is an orthomorphism
of G if f � idG is also a permutation of G, where idG denotes the identity map on G.

Example 6.1.6 The map f W a 2 Zm 7! ca 2 Zm with a fixed c 2 Zm is an
orthomorphism of Zm if and only if gcd.c;m/ D gcd.c � 1;m/ D 1. Such an
orthomorphism is called a linear orthomorphism of Zm.

Example 6.1.7 For the ISBN-10 we get Fi.a/ D fiC1.f �1
i .a// D .i C 1/i�1a for

i D 1; : : : ; 9 and all a 2 Z11. Therefore all Fi are linear orthomorphisms of Z11 and
all neighbor transpositions are detected.
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Theorem 6.1.8 There exists a check-digit system over the finite abelian group G
that detects all neighbor transpositions if and only if there exists an orthomorphism
of G.

Proof As we have seen, each permutation Fi of G defined above is an ortho-
morphism of G if all neighbor transpositions are detected. Conversely, let f be
an arbitrary orthomorphism of G and define f0 D idG and fiC1 D f ı fi for
i D 0; 1; : : : ; n � 1. Then we get fiC1 ı f �1

i D f and (6.2) is satisfied since f is
an orthomorphism of G. Hence all neighbor transpositions are detected. �

In many practical applications of check-digit systems, the finite abelian group
G is chosen to be Zp with a prime number p (see the ISBN-10 in Example 6.1.3
and the IBAN in Example 6.1.4). As we know, we can view Zp as the finite prime
field Fp (see Theorem 1.4.5 and Remark 1.4.6). Now by Proposition 5.3.2, any
self-map of Fp can be represented by a polynomial over Fp of degree less than
p, and if the considered self-map of Fp is a permutation of Fp, then the representing
polynomial over Fp is a permutation polynomial of Fp (see Definition 5.3.4).
Hence if G is the additive group Fp, then the maps fi in Definition 6.1.1 can
be taken to be permutation polynomials of Fp. In the examples ISBN-10 and
IBAN, these permutation polynomials of Fp are linear polynomials over Fp. Linear
orthomorphisms f of Zp D Fp (see Example 6.1.6) are given by f .x/ D cx 2 FpŒx	
with c 2 Fp n f0; 1g.

Next we study the slightly more complicated class of quadratic orthomorphisms
of Fp in (6.3) below, which are connected with quadratic residues and nonresidues
(see Definition 1.2.21).

Proposition 6.1.9 Let p be an odd prime number and let

fa;b.x/ D a � b

2
x.pC1/=2 C a C b

2
x 2 FpŒx	 for a; b 2 Fp; a ¤ b: (6.3)

If r 2 Fp, then

fa;b.r/ D

8
ˆ̂<

ˆ̂:

ar if r is a quadratic residue modulo p;

br if r is a quadratic nonresidue modulo p;

0 if r D 0:

Furthermore, fa;b is a permutation polynomial of Fp if and only if ab is a quadratic
residue modulo p and an orthomorphism of Fp if and only if additionally .a�1/.b�
1/ is a quadratic residue modulo p.

Proof The formula for fa;b.r/ follows from

fa;b.r/ D r
�a � b

2
r.p�1/=2 C a C b

2

�
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and Proposition 1.2.23. If ab is a quadratic residue modulo p, then
�

a
p

� D �
b
p

�

by Proposition 1.2.24, that is, a and b have the same quadratic-residue behavior
modulo p, and then the same proposition and the formula for fa;b.r/ show that fa;b
is a permutation polynomial of Fp. On the other hand, if ab D 0 2 Fp, then fa;b
is clearly not a permutation polynomial of Fp, and if ab is a quadratic nonresidue
modulo p, then fa;b.1/ D a D b.b�1a/ D fa;b.b�1a/ since then also b�1a ¤ 1 2 Fp

is a quadratic nonresidue modulo p, and so fa;b is not a permutation polynomial of
Fp. Finally, we see from (6.3) that

fa;b.x/� x D a � b

2
x.pC1/=2 C

�a C b

2
� 1

�
x D fa�1;b�1.x/;

and so fa;b is an orthomorphism of Fp if and only if both ab and .a � 1/.b � 1/ are
quadratic residues modulo p. �

Theorem 6.1.10 Let p be an odd prime number. Then the number of ordered pairs
.a; b/ 2 F

2
p with a ¤ b such that fa;b is a permutation polynomial of Fp is

.p � 1/.p � 3/

2
:

The number of ordered pairs .a; b/ 2 F
2
p with a ¤ b such that fa;b is an

orthomorphism of Fp is

.p � 3/.p � 5/

4
:

Proof We take any of the p�1 possibilities for a 2 F
�
p and choose b 2 Fp with b ¤ a

such that ab is a quadratic residue modulo p (see Proposition 6.1.9). According to
Remark 1.2.26, there are exactly .p � 1/=2� 1 D .p � 3/=2 choices for b.

For counting the orthomorphisms fa;b of Fp, we can assume by Proposition 6.1.9
that a; b 2 F

�
p . The number of orthomorphisms fa;b of Fp with a ¤ b equals the

number of orthomorphisms fa;ab of Fp with b ¤ 1. Now fa;ab is an orthomorphism
of Fp if and only if a2b and .a � 1/.ab � 1/ D b.a � 1/.a � b�1/ are both quadratic
residues modulo p, which is true if and only if b and .a � 1/.a � b�1/�1 are both
quadratic residues modulo p. The number of quadratic residues b D 2; : : : ; p � 1

modulo p is .p � 3/=2. If a runs through all elements of F�
p n f1; b�1g, then .a �

1/.a � b�1/�1 runs through all elements of F�
p n f1; bg. So for any fixed b it runs

through .p � 1/=2 � 2 D .p � 5/=2 different quadratic residues modulo p, and the
result follows. �

Remark 6.1.11 We deduce from Theorem 6.1.10 that for a large prime number
p, a random choice of .a; b/ 2 F

2
p yields a permutation polynomial fa;b of Fp,

respectively an orthomorphism fa;b of Fp, with probability about 1
2
, respectively

about 1
4
.
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6.1.3 Permutations for Detecting Other Frequent Errors

The detection of several other types of frequent errors is guaranteed only if the
permutations f1; : : : ; fn of G in Definition 6.1.1 satisfy additional conditions. Besides
single errors and neighbor transpositions, these types of errors are:

• jump transpositions acb 7! bca (with b ¤ a);
• twin errors aa 7! bb (with b ¤ a);
• jump twin errors aca 7! bcb (with b ¤ a).

We examine the case where fi D f .i/ for i D 1; : : : ; n is the ith iterate of a fixed
permutation f of G, that is, f0 D idG and fiC1 D f ı fi for i D 0; 1; : : : ; n � 1.
All single errors are detected since f is a permutation of G, and by the proof of
Theorem 6.1.8 all neighbor transpositions are detected if and only if f � idG is a
permutation of G. It is easy to see that all twin errors, jump transpositions, and jump
twin errors are detected whenever f C idG, f2 � idG, and f2 C idG, respectively, is a
permutation of G.

Example 6.1.12 Let p be an odd prime number. Consider the self-map f of Fp

represented by the polynomial f .x/ D cx 2 FpŒx	 with c 2 Fp. Then all three
polynomials f .x/ and f .x/ ˙ x are permutation polynomials of Fp if and only if
c … f0; 1;�1g. With the notation above, we get f2.x/ D f .f .x// D c2x, and so
f2.x/ � x D .c2 � 1/x is a permutation polynomial of Fp if and only if c … f1;�1g.
Furthermore, f2.x/ C x D .c2 C 1/x is a permutation polynomial of Fp if and only
if c2 ¤ �1. We recall from Example 1.2.25 that �1 is a quadratic residue modulo
p if and only if p � 1 .mod 4/. Now we inspect for which values of c 2 Fp all
five polynomials f .x/, f .x/˙ x, and f2.x/˙ x are permutation polynomials of Fp. If
p � 3 .mod 4/, then this happens precisely for all c … f0; 1;�1g, and so there are
exactly p � 3 choices for c. If p � 1 .mod 4/, then we have to exclude also the two
roots d 2 Fp and �d 2 Fp of x2 C 1 2 FpŒx	, and so there are exactly p � 5 choices
for c.

Example 6.1.13 We see from Example 6.1.3 that ISBN-10 does not detect errors
of the form a5a6 7! .a5 C b/.a6 C b/ with b 2 Z11 n f0g, including twin
errors, at positions 5 and 6 for instance. After the fixed coordinate permutation
ai 7! a2i .mod 11/ for i D 1; : : : ; 10, the modified ISBN-10 can be considered a check-
digit system over F11 defined by f .x/ D 2x 2 F11Œx	 and fi D f .i/ for i D 1; : : : ; 10.
Hence by Example 6.1.12, the modified version of ISBN-10 detects all five types of
errors mentioned above.

We recall from the discussion above that a check-digit system based on the
iterates fi D f .i/ of a fixed permutation f of G corrects all twin errors whenever
f C idG is also a permutation of G. This property is captured by the following
definition.

Definition 6.1.14 A permutation f of the finite abelian group G is a complete
mapping of G if f C idG is also a permutation of G.
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Remark 6.1.15 A permutation f of G is a complete mapping of G if and only if �f
is an orthomorphism of G. A check-digit system defined by the permutation f of G
and fi D f .i/ for i D 1; : : : ; n can detect all single errors, neighbor transpositions,
twin errors, jump transpositions, and jump twin errors whenever f and f2 are both
complete mappings and orthomorphisms of G. According to a definition given in
Evans [47], f is a strong complete mapping of G if f is both a complete mapping
and an orthomorphism of G.

Remark 6.1.16 Complete mappings are also pertinent to the construction of orthog-
onal latin squares. We refer to Remark 4.4.13 for the definition of latin squares and
orthogonal latin squares of order b � 2. Let f be a complete mapping of Zb. Then
we claim that S1 D .aij/1�i;j�b with aij � i C j .mod b/ and S2 D .cij/1�i;j�b with
cij � f .j/� i .mod b/ are orthogonal latin squares of order b. It is trivial that S1 is a
latin square, and S2 is a latin square since f is a permutation of Zb. Now assume that
.aij; cij/ D .ak`; ck`/, or equivalently

i C j � k C ` .mod b/ and f .j/� i � f .`/ � k .mod b/:

Adding these congruences yields f .j/C j � f .`/C ` .mod b/ and thus j D ` since f
is a complete mapping of Zb. Then also i D k and the result follows. Orthogonal
latin squares have many applications, for instance to the design of agricultural
experiments (see [93, Section 1.4 and Chapter 16]). The authors once attended a
talk on this topic with the funny title “Applications of finite fields to fields”.

We consider again the polynomials fa;b 2 FpŒx	 defined by (6.3). In Theo-
rem 6.1.20 below we prove an asymptotic formula for the number of .a; b/ 2 F

2
p

with a ¤ b such that the five polynomials f .x/, f .x/ ˙ x, and f .f .x// ˙ x with
f D fa;b are all permutation polynomials of Fp and can thus be used to design
check-digit systems that detect all the above five types of frequent errors. Let

�
a
p

�
be

the Legendre symbol introduced in Definition 1.2.22.

Corollary 6.1.17 Let p be an odd prime number, let a; b 2 Fp with a ¤ b, and let
fa;b.x/ 2 FpŒx	 be defined by (6.3). Then the three polynomials fa;b.x/ and fa;b.x/˙ x
are all permutation polynomials of Fp if and only if a; b … f�1; 0; 1g,

�a

p

�
D
�b

p

�
;
�a � 1

p

�
D
�b � 1

p

�
; and

�a C 1

p

�
D
�b C 1

p

�
: (6.4)

Proof This follows immediately from Proposition 6.1.9. �

Lemma 6.1.18 Let p be an odd prime number, let a; b 2 Fp with a ¤ b, and let
fa;b.x/ 2 FpŒx	 be defined by (6.3). If

�
a
p

� D �
b
p

� ¤ 0, then for r 2 F
�
p ,

fa;b.fa;b.r// D

8
<̂

:̂

a2r if
�

a
p

� D �
r
p

� D 1;

b2r if
�

a
p

� D �� r
p

� D 1;

abr if
�

a
p

� D �1:
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Proof We distinguish four cases, according to the four possible combinations of
values of

�
a
p

�
and

�
r
p

�
. If

�
a
p

� D �
r
p

� D 1, then by Proposition 6.1.9 we get fa;b.r/ D
ar. Furthermore

�
ar
p

� D 1, and so another application of Proposition 6.1.9 yields

fa;b.fa;b.r// D fa;b.ar/ D a2r. The other three cases are treated in an analogous
way. �

Lemma 6.1.19 Let p be an odd prime number, let a; b 2 F
�
p with

a ¤ b and a2; b2 … f�1; 1g; (6.5)

and let fa;b.x/ 2 FpŒx	 be defined by (6.3). If the three polynomials fa;b.x/ and
fa;b.x/˙x are permutation polynomials of Fp, then the two polynomials fa;b.fa;b.x//˙
x are permutation polynomials of Fp if and only if

�
a2 C 1

p

�
D
�

b2 C 1

p

�
and

�
a

p

�
D 1 (6.6)

or
�

a

p

�
D �1: (6.7)

Proof If
�

a
p

� D 1, then Lemma 6.1.18 shows that for r 2 Fp,

fa;b.fa;b.r// D
(

a2r if
�

r
p

� D 1;

b2r otherwise:

Hence fa;b.fa;b.x//˙ x are both permutation polynomials of Fp if and only if

�
a2 � 1

p

�
D
�

b2 � 1

p

�
and

�
a2 C 1

p

�
D
�

b2 C 1

p

�
:

The first condition is already covered by (6.4). If
�

a
p

� D �1, then the result follows
immediately from Lemma 6.1.18. �

Theorem 6.1.20 Let p be an odd prime number and let fa;b.x/ 2 FpŒx	 be defined
by (6.3). Let N be the number of ordered pairs .a; b/ 2 F

2
p with a ¤ b such that

the five polynomials fa;b.x/, fa;b.x/ ˙ x, and fa;b.fa;b.x// ˙ x are all permutation
polynomials of Fp. Then

N D 3p2

32
C O.p/;

where the implied constant is absolute.
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Proof Let N1 and N2 be the numbers of ordered pairs .a; b/with a; b 2 F
�
p satisfying

(6.4); (6.5); and (6.6);

(6.4); (6.5); and (6.7);

respectively. Then N D N1 C N2:
For typographic convenience we now write �.a/ D �

a
p

�
for a 2 Fp, that is, �

is the quadratic character of Fp (see Remark 1.4.53) with the additional stipulation
�.0/ D 0. Then for a; b 2 F

�
p satisfying (6.5) we obtain

�1.a; b/ WD 1

32
.1C �.a//.1C �.b//.1C �..a � 1/.b � 1///

.1C �..a C 1/.b C 1///.1C �..a2 C 1/.b2 C 1///

D
�
1 if .a; b/ satisfies (6.4) and (6.6);
0 otherwise;

and so

N1 D
X

a;b2Fp

�1.a; b/C O.p/;

since the number of ordered pairs .a; b/ 2 F
2
p that do not satisfy (6.5) or with ab D 0

is O.p/. Hence we get

N1 D 1

32

1X

j1;j2;j3;j4;j5D0
Sj1;j2;j3;j4;j5 C O.p/;

where

Sj1;j2;j3;j4;j5 WD
X

a2Fp

�.aj1.a � 1/j3 .a C 1/j4 .a2 C 1/j5 /

X

b2Fp

�.bj2 .b � 1/j3 .b C 1/j4.b2 C 1/j5 /

with the convention 00 D 1 2 Fp. We note that S0;0;0;0;0 D p2, and furthermore

S1;0;0;0;0 D p
X

a2Fp

�.a/ D 0 and S0;1;0;0;0 D p
X

b2Fp

�.b/ D 0

by Example 1.3.35.
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In Proposition 5.3.8 we formulated the Weil bound for additive characters of
Fp. There is also a Weil bound for multiplicative characters of Fp (see [101,
Theorem 5.41]), and we use the following special case thereof: if f .x/ 2 FpŒx	 is
a monic polynomial of positive degree which is not a square of another polynomial,
then

ˇ̌
ˇ
X

c2Fp

�.f .c//
ˇ̌
ˇ � .deg.f /� 1/p1=2: (6.8)

In the remaining O.1/ cases, both monic polynomials

xj1 .x � 1/j3 .x C 1/j4 .x2 C 1/j5 and xj2 .x � 1/j3 .x C 1/j4 .x2 C 1/j5

are not squares and we can apply the Weil bound to the sums over a and b to get

Sj1;j2;j3;j4;j5 D O.p/:

Collecting everything we obtain

N1 D p2

32
C O.p/

with an absolute implied constant.
Next we observe that

N2 D
X

a;b2Fp

�2.a; b/C O.p/;

where

�2.a; b/ D 1

16
.1� �.a//.1� �.b//.1C �..a � 1/.b � 1///.1C �..a C 1/.b C 1///:

It follows that

N2 D 1

16

1X

j1;j2;j3;j4D0
Sj1;j2;j3;j4 C O.p/;

where

Sj1;j2;j3;j4 WD .�1/j1Cj2
X

a2Fp

�.aj1 .a � 1/j3 .a C 1/j4/
X

b2Fp

�.bj2 .b � 1/j3.b C 1/j4 /:



6.2 Covering Sets and Packing Sets 377

We note that S0;0;0;0 D p2 and S1;0;0;0 D S0;1;0;0 D 0. In the remaining cases, we can
apply the Weil bound (6.8) and we get

N2 D p2

16
C O.p/

with an absolute implied constant, which finishes the proof. �
Remark 6.1.21 If p is large, then Theorem 6.1.20 shows that the probability that
fa;b.x/, fa;b.x/ ˙ x, and fa;b.fa;b.x// ˙ x are all permutation polynomials of Fp for
randomly chosen a; b 2 Fp with a ¤ b is close to 3

32
.

6.2 Covering Sets and Packing Sets

6.2.1 Covering Sets and Rewriting Schemes

A flash memory is an electronic storage medium that can be erased and rewritten.
Erasures can be performed only on a blockwise basis, and this limitation of flash
memories leads to interesting number-theoretic problems.

We consider a set of n flash memory cells, each capable of storing an element of
the finite prime field Fp, and a set S D fs1; : : : ; sng 
 Fp of size n. We identify S
with the vector s D .s1; : : : ; sn/ 2 F

n
p. We store a value v 2 Fp in the n memory cells

by first choosing a vector x D .x1; : : : ; xn/ 2 F
n
p for which the dot product x � s D

x1s1 C � � � C xnsn satisfies x � s D v and then storing xi in the ith cell for 1 � i � n.
For rewriting v by some v0 2 Fp, we have to choose x0 D .x0

1; : : : ; x
0
n/ 2 F

n
p with

x0 � s D v0 and x0
i 2 fxi � �; xi � � C 1; : : : ; xi C �g due to the limitation of flash

memory mentioned above, where � and� are prescribed small nonnegative integers.
For the sake of efficiency, we want to leave as many cells as possible unchanged,
and in the extreme case we allow only a single cell to change. These considerations
lead to the following concept.

Definition 6.2.1 Let p be a prime number. For a given set M D f��;�� C
1; : : : ; �g n f0g with �;� 2 Zp D Fp not both 0, a nonempty subset S of Zp D Fp is
called a .�; �I p/-covering set if

MS WD fms 2 Fp W m 2 M; s 2 Sg D Fp:

If S is a .�; �I p/-covering set, then with the notation above we can write v0�v D
msi for some m 2 M and si 2 S, and so it suffices to change xi to xi Cm to derive x0
from x. Again for the sake of efficiency, we are interested in .�; �I p/-covering sets
of smallest possible size. The lower bound

jSj �
�

p

�C �

�
(6.9)
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holds for every .�; �I p/-covering set S, since obviously p D jMSj � .�C �/jSj.
For very small values of � and �, it is easy to find covering sets with equality
in (6.9).

Example 6.2.2 The case � C � D 1 is trivial since then S D Zp is a .�; �I p/-
covering set meeting the bound (6.9). Let p be a prime number with p �
˙3 .mod 8/. Then 2 is a quadratic nonresidue modulo p according to [151,
Theorem 3.3]. It is easily checked that the set of quadratic residues modulo p in
Zp together with 0 2 Zp forms a .2; 0I p/-covering set of minimal size .p C 1/=2.
If p � 3 .mod 4/, then �1 is a quadratic nonresidue modulo p by Example 1.2.25.
Then the set of quadratic residues modulo p in Zp together with 0 2 Zp yields a
.1; 1I p/-covering set of minimal size .p C 1/=2.

Although the approach in Example 6.2.2 can be extended to higher-order residues
such as cubic residues modulo p (compare with Exercise 1.28), it provides small
covering sets only for very small values of � and �. However, there is a general
construction due to Chen, Shparlinski, and Winterhof [22] which is best possible up
to a multiplicative constant.

Theorem 6.2.3 For all prime numbers p � 3 and all �;� 2 Zp with max.�; �/ �
2, there is a .�; �I p/-covering set S with

jSj D 2 d.p � 1/=max.�; �/e C 1:

Proof Note that whenever S is a .�; �I p/-covering set, then so is �S D f�s W
s 2 Sg. Hence we may restrict ourselves to the case � � � and we note that
f1; : : : ; �g 
 M.

Put H D d.p � 1/=�e and

S D f˙j�1 2 Fp W 1 � j � Hg [ f0g:

Note that ˙j�1 D ˙k�1 for 1 � j; k � H precisely if k D ˙j in Fp. Since H �
.p � 1/=2, this can hold only if the plus sign applies and k D j. Therefore

jSj D 2H C 1 D 2 d.p � 1/=�e C 1:

Let a 2 Fp be arbitrary. We want to show that a D ms in Fp for some m 2 f1; : : : ; �g
and s 2 S. For a D 0 we take m D 1 and s D 0. If a ¤ 0, then we consider a as
an integer in f1; : : : ; p � 1g. We form the H C 1 distinct least residues modulo p of
the integers ca with c D 0; 1; : : : ;H. We partition the interval Œ0; p � 1	 into the H
disjoint intervals

h
0;

p � 1
H

i
;
�p � 1

H
;
2.p � 1/

H

i
; : : : ;

� .H � 1/.p � 1/
H

; p � 1
i
:
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By the pigeon-hole principle, one of these intervals must contain at least two of the
considered least residues modulo p. Hence there exist c1; c2 2 f0; 1; : : : ;Hg with
c1 ¤ c2 such that the least residue r1 of c1a modulo p and the least residue r2 of c2a
modulo p satisfy

1 � r1 � r2 � p � 1

H
� �:

Now

r1 � r2 � c1a � c2a � .c1 � c2/a .mod p/;

and so

a D .r1 � r2/.c1 � c2/
�1 2 Fp: (6.10)

Since r1 � r2 2 f1; : : : ; �g and .c1 � c2/�1 2 S, we are done. �
Remark 6.2.4 In the symmetric case � D � of Theorem 6.2.3, we can improve the
result to jSj D d.p � 1/=�e C 1. We proceed as in the proof of Theorem 6.2.3, but
we put

S D fj�1 2 Fp W 1 � j � Hg [ f0g:

After the application of the pigeon-hole principle we can choose c1 > c2 and we
write 1 � jr1 � r2j � �. Then again (6.10) holds, now with r1 � r2 2 M D
f��;��C 1; : : : ; �g n f0g and .c1 � c2/�1 2 S.

6.2.2 Packing Sets and Limited-Magnitude Error Correction

Here is a related concept which is of relevance for communication channels in which
only errors of limited magnitude occur.

Definition 6.2.5 Let p be a prime number. For a given set M D f��;�� C
1; : : : ; �g n f0g with �;� 2 Zp D Fp not both 0, a nonempty subset S of Zp D Fp is
a .�; �I p/-packing set if

jMSj D jMjjSj:

Remark 6.2.6 In a .�; �I p/-limited-magnitude error channel, an element a 2 Fp

may be changed into any element a Ce 2 Fp with e 2 M D f��;��C1; : : : ; �g n
f0g. For a set S D fs1; : : : ; sng 
 Fp with n � 2, we define the linear code

C D f.c1; : : : ; cn/ 2 F
n
p W c1s1 C � � � C cnsn D 0g:
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If a single error e 2 M occurs at position j, that is, we receive .v1; : : : ; vn/ D
.c1; : : : ; cj C e; : : : ; cn/, then we get the syndrome (see Definition 3.2.49)

nX

iD1
visi D esj:

Hence the set of possible syndromes is MS. If S is a .�; �I p/-packing set, then the
syndromes are distinct and C can correct any single limited-magnitude error e 2 M
since the syndrome uniquely determines e and j.

Since any nonempty subset of a .�; �I p/-packing set is again a .�; �I p/-packing
set, we are mainly interested in large packing sets. For every .�; �I p/-packing set
S, the inequality p � jMSj D .�C �/jSj holds, and thus

jSj �
�

p

�C �

�
:

Example 6.2.7 In analogy with Example 6.2.2, we get the following packing sets. If
p is a prime number with p � ˙3 .mod 8/, then the set of quadratic residues modulo
p in Zp is a .2; 0I p/-packing set of maximal size .p � 1/=2. If p � 3 .mod 4/, then
the set of quadratic residues modulo p in Zp is a .1; 1I p/-packing set of maximal
size .p � 1/=2.

Again this approach works only for very small values of � and �. A general, but
not optimal construction is given in the next result.

Proposition 6.2.8 Let p be a prime number and let �;� 2 Zp D Fp with 1 �
�C � < p. Then

S D
�
1C j.�C �C 1/ 2 Zp D Fp W j D 0; 1; : : : ;

�
p � � � � � 1

.�C �/.�C �C 1/

��

is a .�; �I p/-packing set.

Proof Let M be as in Definition 6.2.5 and assume that m1s1 D m2s2 in Fp, that is,
m1s1 � m2s2 .mod p/, for some m1;m2 2 M and s1; s2 2 S. Since s < p=.�C �/

for all s 2 S, we get �� p
�C� < ms < � p

�C� for all m 2 M and s 2 S, and so
m1s1 D m2s2 2 Z. Therefore

m1 � m1s1 � m2s2 � m2 .mod �C �C 1/;

which implies m1 D m2 and thus s1 D s2. Hence S is a .�; �I p/-packing set. �
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6.3 Waring’s Problem for Finite Fields

6.3.1 Waring’s Problem

In 1770 Edward Waring conjectured the following in his Meditationes Algebraicae:
each positive integer is the sum of at most nine cubes, 19 fourth powers, and so on.
It was earlier conjectured by Bachet in the seventeenth century that each positive
integer is the sum of at most four squares. This led to the following definition.

Definition 6.3.1 For every integer k � 2, let g.k/ be the smallest number s of
summands such that for each integer n � 1 there exist integers h1; : : : ; hs � 0 with

hk
1 C � � � C hk

s D n:

The problem of determining g.k/ is called Waring’s problem (for integers).
Actually, it is not evident that g.k/ is always finite, but this was proved by the
mathematical all-rounder David Hilbert (1862–1943) who is famous in particular
for the list of 23 problems that he presented at the International Congress of
Mathematicians in Paris in 1900. This result of Hilbert that g.k/ < 1 for all k � 2

was classified as one of the three pearls of number theory by Khinchin [76]. We
easily get a lower bound on g.k/.

Proposition 6.3.2 The bound

g.k/ � 2k C �
.3=2/k

˘ � 2 (6.11)

holds for all integers k � 2.

Proof The integer

n D .
�
.3=2/k

˘ � 1/2k C .2k � 1/1k

is smaller than 3k and therefore has to be represented as a sum of summands 1k and
2k only. The 2k �1 summands 1k cannot be substituted by a summand 2k, and so the
representation is minimal and takes 2k C �

.3=2/k
˘ � 2 summands. �

It is conjectured that we always have equality in (6.11). This was proved for all
sufficiently large k by Mahler [108] and it was verified for a large finite range of
values of k in [89]. In particular, it is known that g.2/ D 4 (a celebrated result
of Lagrange, the four-square theorem), g.3/ D 9, and g.4/ D 19, as predicted by
Bachet and Waring. A detailed discussion of Waring’s problem for integers can be
found in the survey article [197].

Analogs of Waring’s problem can be stated for any ring. In particular, Waring’s
problem for finite fields studied below has several applications.
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Definition 6.3.3 For a positive integer k and a prime power q, the Waring number
g.k; q/ over the finite field Fq is the smallest number s of summands such that every
element b 2 Fq is a sum of s kth powers in Fq, that is, there exist a1; : : : ; as 2 Fq

with

ak
1 C � � � C ak

s D b:

If there is an element b 2 Fq that cannot be represented as a sum of kth powers in
Fq, then we put g.k; q/ D 1.

Lemma 6.3.4 Let k 2 N, let q be a prime power, and put d D gcd.k; q � 1/. Then

g.k; q/ D g.d; q/:

Proof It suffices to show that fak W a 2 F
�
q g D fcd W c 2 F

�
q g. First we can write

ak D .ak=d/d for a 2 F
�
q , and so the first set is contained in the second set. Now

by Proposition 1.1.5, there exist integers u and v with d D ku C .q � 1/v, and thus
cd D .cu/k.cq�1/v D .cu/k for c 2 F

�
q by Proposition 1.4.13, which completes the

proof. �
In view of Lemma 6.3.4, we can now restrict the discussion to the case where k

divides q�1. The following example shows in particular that we can have g.k; q/ D
1, as opposed to Waring’s problem for integers where g.k/ < 1 for all k � 2

thanks to Hilbert.

Example 6.3.5 Let us start with the trivial positive divisors k of q � 1. For k D 1 it
is obvious that g.1; q/ D 1. Now let k D q � 1. If q is a prime number p, then

g.p � 1; p/ D p � 1

since fap�1 W a 2 Fpg D f0; 1g and b D 1C � � � C 1„ ƒ‚ …
b summands

for 1 � b � p � 1. If q D pr

with an integer r � 2, then faq�1 W a 2 Fqg D f0; 1g 
 Fp, and so the elements of
Fq n Fp cannot be represented as sums of .q � 1/st powers of elements of Fq. This
means by Definition 6.3.3 that g.q � 1; q/ D 1. Now we consider k D .q � 1/=2,
where q is a power of an odd prime. If q is a prime number p � 3, then

g
�p � 1

2
; p
�

D p � 1
2

since fa.p�1/=2 W a 2 Fpg D f�1; 0; 1g and b D 1C � � � C 1„ ƒ‚ …
b summands

D �1 � � � � � 1„ ƒ‚ …
p�b summands

in Fp

for 1 � b � p � 1. If q D pr with an integer r � 2, then fa.q�1/=2 W a 2 Fqg D
f�1; 0; 1g 
 Fp, and so g..q � 1/=2; q/ D 1.
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The following theorem characterizes the cases where g.k; q/ < 1. Actually,
it is more transparent to formulate the characterization for the opposite case
g.k; q/ D 1.

Theorem 6.3.6 Let q D pr with a prime number p and an integer r � 1 and let
k be a positive divisor of q � 1. Then g.k; q/ D 1 if and only if .q � 1/=.pd � 1/

divides k for some proper divisor d of r.

Proof It is obvious that the subset

Bk WD fak
1 C � � � C ak

s W a1; : : : ; as 2 Fq; s D 1; 2; : : :g

of Fq is closed under addition and multiplication. For every fixed b 2 Bk with b ¤ 0,
the elements bc with c 2 Bk run again through Bk, and since 1 2 Bk, it follows that
b�1 2 Bk. Therefore Bk is a subfield of Fq. Hence g.k; q/ D 1 if and only if Bk

is a proper subfield of Fq. This holds if and only if the multiplicative group Gk of
nonzero kth powers in Fq is a subgroup of F�

pd for some proper divisor d of r. Now

Gk is cyclic of order .q � 1/=k (note that Gk D fgkj W j D 0; 1; : : : ; .q � 1/=k � 1g
with a primitive element g of Fq) and is a subgroup of F�

pd if and only if .q � 1/=k

divides pd � 1, or equivalently if and only if .q � 1/=.pd � 1/ divides k. �

6.3.2 Addition Theorems

Additive number theory studies subsets of Z (or more generally of abelian groups)
and their behavior under addition (or under the binary operation on the abelian
group). The principal objects of additive number theory are sumsets

A C B WD fa C b W a 2 A; b 2 Bg;

where A and B are nonempty subsets of a given abelian group with the additive
notation.

Example 6.3.7 If A and B are nonempty finite sets of real numbers, then we claim
that

jA C Bj � jAj C jBj � 1:

If we write A D fa1; a2; : : : ; asg with a1 < a2 < : : : < as and B D fb1; b2; : : : ; btg
with b1 < b2 < : : : < bt, then

a1 C b1 < a1 C b2 < : : : < a1 C bt < a2 C bt < : : : < as C bt;
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and so at least sCt�1 elements of ACB are different. Thus, the claim is established.
This lower bound on jACBj is in general best possible: just take A D f0; 1; : : : ; s�1g
and B D f0; 1; : : : ; t � 1g for any s; t 2 N.

The analogous result for subsets of a finite field Fp of prime order p is the
Cauchy-Davenport theorem which can be used to prove a general bound on the
Waring number g.k; p/.

Theorem 6.3.8 (Cauchy-Davenport Theorem) Let p be a prime number and let
A and B be nonempty subsets of Fp. Then

jA C Bj � min.jAj C jBj � 1; p/:

Proof We present the proof of Alon, Nathanson, and Ruzsa [4]. First we deal with
the case where jAj C jBj � p C 1. Then for every c 2 Fp there is an element
a 2 A \ .c � B/, and thus A C B D Fp.

Now we may assume that jAj C jBj � p. We consider the space F of all maps
f W A � B ! Fp which is a vector space over Fp of dimension jAjjBj. Each such map
can be identified with a polynomial

f .x; y/ D
jAj�1X

iD0

jBj�1X

jD0
aijx

iyj

in the variables x and y with coefficients aij 2 Fp, and

B D fxiyj W 0 � i � jAj � 1; 0 � j � jBj � 1g

is a basis of F (here you may want to refer to [4, Lemma 2.2]). Put S D
B n fxjAj�1yjBj�1g and note that xjAj�1yjBj�1 is not a linear combination over Fp

of elements of S. However, all monomials xiyj (as maps from A � B to Fp) with
0 � i < jAj � 1 and j � jBj, or i � jAj and 0 � j < jBj � 1, are linear
combinations over Fp of elements of S since xk, k � jAj, is a linear combination
over Fp of fxi W 0 � i < jAjg and yk, k � jBj, is a linear combination over Fp of
fyj W 0 � j < jBjg.

Now suppose that jACBj � jAjCjBj�2. Then there is a set C � Fp of cardinality
jCj D jAj C jBj � 2 with A C B 
 C. We consider the function

f .x; y/ D
Y

c2C

.x C y � c/ D
 

jAj C jBj � 2

jAj � 1

!
xjAj�1yjBj�1 C � � � ;

which vanishes on A � B. However,

 
jAj C jBj � 2

jAj � 1

!
D .jAj C jBj � 2/Š
.jAj � 1/Š.jBj � 1/Š
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is not divisible by p (since the factors of the numerator are smaller than p) and we
get a contradiction. �

Remark 6.3.9 Here is an elementary alternative proof of the Cauchy-Davenport
theorem. Let jAj D s, say A D fa1; : : : ; asg, and jBj D t, say B D fb1; : : : ; btg.
We proceed by induction on t. The case t D 1 is trivial, and so we take t � 2. If we
put C D A C B, then the case jCj D p is trivial, so we can assume jCj < p. For
n D 0; 1; : : : ; p � 1, the elements a1 C b1 C n.bt � b1/ run through Fp (note that
bt ¤ b1), and for n D 0 and n D 1 we get elements in C. Since jCj < p, there exists
a least n0 2 N with a1Cb1Cn0.bt �b1/ … C. Then a1Cb1C .n0�1/.bt �b1/ 2 C.
With d WD a1 C b1 C n0.bt � b1/ C b1 we obtain d � b1 … C and d � bt 2 C. We
arrange the elements b1; : : : ; bt such that d � bi … C for 1 � i � r and d � bj 2 C
for r < j � t. Clearly 1 � r � t � 1. Now we consider the sumset

C0 WD fah C bi W 1 � h � s; 1 � i � rg 
 C:

Then d � bj 2 C for r < j � t, but d � bj … C0 for r < j � t, for if we had
d � bj D ah C bi for some 1 � h � s and 1 � i � r, then we get the contradiction
d � bi D ah C bj 2 C. Therefore jC0j � jCj � .t � r/. The induction hypothesis
yields jC0j � s C r � 1, and so jCj � jC0j C t � r � s C t � 1 as desired.

Basically the same example as in Example 6.3.7 shows that the Cauchy-
Davenport theorem is in general best possible. Now we extend the Cauchy-
Davenport theorem in some fashion to arbitrary finite fields. First we have to
characterize the binomial coefficients that are divisible by a prime number p via
the following congruence of Lucas. We use the standard convention

�m
n

� D 0 for
integers m; n � 0 with m < n.

Lemma 6.3.10 (Lucas Congruence) If m and n are nonnegative integers and p is
a prime number, then

 
m

n

!
�

kY

iD0

 
mi

ni

!
.mod p/;

where

m D mkpk C mk�1pk�1 C � � � C m1p C m0; 0 � m0; : : : ;mk < p;

and

n D nkpk C nk�1pk�1 C � � � C n1p C n0; 0 � n0; : : : ; nk < p;

are the digit expansions in base p of m and n, respectively.
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Proof A computation in the polynomial ring FpŒx	 shows that

mX

nD0

 
m

n

!
xn D .1C x/m D

kY

iD0

�
.1C x/p

i
�mi

D
kY

iD0

�
1C xpi

�mi D
kY

iD0

� miX

niD0

 
mi

ni

!
xnipi

�

D
kY

iD0

� p�1X

niD0

 
mi

ni

!
xnipi

�
D

mX

nD0

� kY

iD0

 
mi

ni

!�
xn;

and the result follows by comparing the coefficients of xn for n D 0; 1; : : : ;m. �

Remark 6.3.11 We see from Lemma 6.3.10 that
�m

n

� � 0 .mod p/ if and only if
ni > mi for some i D 0; 1; : : : ; k.

Corollary 6.3.12 Let q be a power of the prime number p and let A and B be
nonempty subsets of the finite field Fq. Then

jA C Bj � min.jAj C jBj � q=p; q/:

Proof The case q D p is the Cauchy-Davenport theorem, and so we can take q > p.
If jAj C jBj � q C 1, then for every c 2 Fq there is an element a 2 A \ .c � B/, and
thus A C B D Fq.

Now we consider the case where jAj C jBj � q. We can also assume that jAj >
q=p and jBj > q=p. Let 0 � s < q=p be defined by jAj � 1 � s .mod q=p/. For any
subset A0 of A of size jAj � s, the Lucas congruence yields

�jA0jCjBj�2
jA0j�1

� 6� 0 .mod p/.
As in the proof of Theorem 6.3.8 we get

jA0 C Bj � min.jA0j C jBj � 1; q/

and the result follows. �

Now we prove a general bound on g.k; q/ which is tight for the examples in
Example 6.3.5, but rather weak for most k.

Theorem 6.3.13 Let q be a prime power and let k be a positive divisor of q � 1. If
g.k; q/ < 1, then g.k; q/ � k.

Proof In the proof of Theorem 6.3.6 we noted that there are exactly .q � 1/=k
different nonzero kth powers in Fq. Now we write

As D fak
1 C � � � C ak

s W a1; : : : ; as 2 Fqg
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for all s 2 N. Then either As D Fq or there is an element b 2 AsC1 n As. In the latter
case we infer that cb 2 AsC1 n As for all c 2 A1 n f0g, and thus

jAsC1j � jAsj C jA1j � 1 D jAsj C q � 1

k
: (6.12)

We observe that if q is a prime number, then (6.12) follows directly from the
Cauchy-Davenport theorem. By induction we get jAsj � min.s q�1

k C 1; q/ for all
s 2 N, and thus Ak D Fq. �

Further variants and extensions of the Cauchy-Davenport theorem can be found
in the book of Nathanson [120], which is also a rich source of information on
additive number theory in general.

6.3.3 Sum-Product Theorems

Sum-product theorems have become a powerful tool for dealing with Waring’s
problem for finite fields. Roughly speaking, a sum-product theorem for a nonempty
subset A of a finite field Fq says that either the productset A � A D fab 2 Fq W a; b 2
Ag or the sumset A C A D fa C b 2 Fq W a; b 2 Ag is essentially larger than A,
provided that there is room to grow, that is, jAj is of smaller order of magnitude
than q. We will prove such a sum-product theorem due to Garaev and explain how
to derive bounds on g.k; q/ from it. Moreover, we will use a sum-product theorem
of Glibichuk and Rudnev, where we do not include the proof, to deduce an even
stronger result. First we establish the following extension of a result of Garaev [51,
Theorem 1].

Theorem 6.3.14 If A, B, and C are nonempty subsets of the finite field Fq with
0 62 B, then

jA � BjjA C Cj � 3 � p
5

2
min

�
qjAj; jAj2jBjjCj

q

�
:

Proof Let N be the number of solutions of the equation

sb�1 C c D t; b 2 B; c 2 C; s 2 A � B; t 2 A C C:

Each ordered triple .a; b; c/ 2 A � B � C produces a solution of this equation with
s D ab, t D a C c, and different ordered triples give rise to different solutions.
Therefore

N � jAjjBjjCj: (6.13)



388 6 Further Applications

If � is a nontrivial additive character of Fq, then by the orthogonality relation (1.9)
we obtain

N D 1

q

X

r2Fq

X

b2B; c2C; s2A�B; t2ACC

�.r.sb�1 C c � t//:

Separating the contribution of r D 0, we get

N � jBjjCjjA � BjjA C Cj
q

C 1

q

X

r2F�

q

ˇ̌
ˇ

X

b2B; s2A�B
�.rsb�1/

ˇ̌
ˇ
ˇ̌
ˇ
X

c2C

�.rc/
ˇ̌
ˇ
ˇ̌
ˇ
X

t2ACC

�.rt/
ˇ̌
ˇ:

Next we claim that
ˇ̌
ˇ
X

d2D; e2E

�.de/
ˇ̌
ˇ �

p
qjDjjEj

for all nonempty subsets D and E of Fq. Indeed, the Cauchy-Schwarz inequality and
the orthogonality relation (1.9) imply that

ˇ̌
ˇ
X

d2D; e2E

�.de/
ˇ̌
ˇ
2 �

�X

d2D

1 �
ˇ̌
ˇ
X

e2E

�.de/
ˇ̌
ˇ
�2 � jDj

X

d2D

ˇ̌
ˇ
X

e2E

�.de/
ˇ̌
ˇ
2

� jDj
X

r2Fq

ˇ̌
ˇ
X

e2E

�.re/
ˇ̌
ˇ
2 D jDj

X

e1;e22E

X

r2Fq

�.r.e1 � e2// D qjDjjEj;

and the claimed inequality follows.
We obtain

N � jBjjCjjA � BjjA C Cj
q

C
p

qjBjjA � Bj
q

�X

r2Fq

ˇ̌
ˇ
X

c2C

�.rc/
ˇ̌
ˇ
2�1=2�X

r2Fq

ˇ̌
ˇ
X

t2ACC

�.rt/
ˇ̌
ˇ
2�1=2

:

Again by (1.9), we get

X

r2Fq

ˇ̌
ˇ
X

c2C

�.rc/
ˇ̌
ˇ
2 D qjCj and

X

r2Fq

ˇ̌
ˇ
X

t2ACC

�.rt/
ˇ̌
ˇ
2 D qjA C Cj;

which together with (6.13) yields the bound

jAjjBjjCj � jBjjCjjA � BjjA C Cj
q

C
p

qjBjjCjjA � BjjA C Cj:
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Simple algebraic manipulations lead to the inequality

jA � BjjA C Cj �
0

@
s

q3

4jBjjCj C qjAj �
s

q3

4jBjjCj

1

A
2

: (6.14)

If we put u D q2=.4jAjjBjjCj/, then we can write (6.14) as

jA � BjjA C Cj � qjAj.pu C 1 � p
u/2 D qjAj

.
p

u C 1C p
u/2
:

If u � 1
4
, then

p
u C 1C p

u � .
p
5C 1/=2, and so

jA � BjjA C Cj � 4qjAj
.
p
5C 1/2

D 3 � p
5

2
qjAj:

If u > 1
4
, then

p
1C u�1 C 1 <

p
5C 1, and so

p
u C 1C p

u < .
p
5C 1/

p
u. It

follows that

jA � BjjA C Cj > qjAj
.
p
5C 1/2u

D 3 � p
5

2
� jAj2jBjjCj

q
:

Therefore the desired lower bound holds in all cases. �

Example 6.3.15 Let k be a positive divisor of q � 1, let A D C D fak W a 2 Fqg be
the set of kth powers in Fq, and let B D A n f0g. Then jAj D q�1

k C 1 and A � B D A,
and thus

jA C Aj � 3 � p
5

2
min

�
q;

jAj2jBj
q

�
� 3 � p

5

2
min

�
q;
.q � 1/2

k3

�

by Theorem 6.3.14. On the other hand, (6.12) yields jACAj � min
�
2 q�1

k C 1; q
�

D
2.q�1/

k C 1 for k � 2, which is a smaller bound if 8 � k � 1
3
.q � 1/1=2.

Example 6.3.16 Let q D p be a prime number and let H be an integer with 1 � H �
.pC1/=2. Then for A D B D C D f1; : : : ;Hg 
 Fp we get jACAj D 2H�1 < 2jAj,
and thus

jA � Aj > 3 � p
5

4
min

�
p;

H3

p

�

by Theorem 6.3.14.
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Corollary 6.3.17 For a positive integer s, put sA D fa1C� � �Cas W a1; : : : ; as 2 Ag
and As D fa1 � � � as W a1; : : : ; as 2 Ag for every nonempty set A 
 F

�
q . Then

jAsj � jsAj � min
�3 � p

5

2
qjAj;

�3 � p
5

2

�s jAj2s

qs�1
�
:

Proof The result follows inductively from Theorem 6.3.14 with B D As�1 and C D
.s � 1/A. �

Example 6.3.18 For a positive divisor k of q � 1, let A D fak W a 2 F
�
q g be the set

of kth powers in F
�
q . Corollary 6.3.17 implies that

jsAj � min
�3 � p

5

2
q;
�3 � p

5

2

�s .q � 1/2s�1

k2s�1qs�1
�

for all s 2 N:

In particular, we have jsAj � 3�p
5

2
q if k � csq.s�1/=.2s�1/ with an explicit constant

cs > 0 depending only on s. Now applying Corollary 6.3.12 twice, we obtain

j3sAj � min
��3.3 � p

5/

2
� 2

p

�
q; q

�
D q if k � csq

.s�1/=.2s�1/;

provided that q is a power of a prime number p � 17. This yields g.k; q/ � 3s under
the stated conditions on k and q.

Now we present a very strong result which is based on an elegant sum-product
theorem of Glibichuk and Rudnev [55].

Theorem 6.3.19 If k is a positive divisor of q �1 with k � p
q=2, then g.k; q/ � 8.

Proof By [55, Theorem 6], if A;B 
 Fq with jAjjBj � 2q, then

8AB D fa1b1 C � � � C a8b8 W a1; : : : ; a8 2 A; b1; : : : ; b8 2 Bg D Fq:

The result follows by applying this to A D B D fak W a 2 Fqg. �

Remark 6.3.20 For positive divisors k of q � 1 with k � q3=7, we can improve on
Theorem 6.3.19 by using a well-known result on the number of solutions of diagonal
equations obtained via bounds on Jacobi sums (see Exercises 1.36 and 1.37 for the
simplest Jacobi sums). For s 2 N and b 2 F

�
q , let Ns.b/ denote the number of

solutions .c1; : : : ; cs/ 2 F
s
q of

ck
1 C � � � C ck

s D b:

Then [101, Theorem 6.37] yields

jNs.b/� qs�1j < ksq.s�1/=2;
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and thus

Ns.b/ > qs�1 � ksq.s�1/=2 � 0 for k � q1=2�1=.2s/:

Therefore

g.k; q/ � s if k � q1=2�1=.2s/:

This is a trivial result for s D 1 and an improvement on Theorem 6.3.19 for 2 � s �
7 and the corresponding range for k.

Remark 6.3.21 A Waring graph is a directed graph whose vertex set is Fq and
where there is an edge leading from vertex a 2 Fq to vertex b 2 Fq precisely if the
difference b � a is a kth power in Fq, with k being a fixed positive divisor of q � 1.
If the Waring number g.k; q/ is finite, then g.k; q/ can be considered the diameter
of the Waring graph, that is, the least positive integer r such that any two distinct
vertices can be joined by a path consisting of at most r edges. If for suitable k the
Waring number g.k; q/ is small, then the Waring graph has relatively few edges, but
a small diameter. Such graphs are important for computer networks.

There is a profusion of further results on the Waring number g.k; q/, and we refer
to the survey article [20] for more details.

6.3.4 Covering Codes

We like codes so much that we return to them again and again. Now we are
covering an aspect that we have not yet covered at all, namely covering codes,
which surprisingly are connected with Waring numbers (see Theorem 6.3.29 below).
Chapter 3 was devoted to coding theory, and we adhere to the terminology and
notation established there.

A covering code is a code, that is, a nonempty subset of a Hamming space
.Fn

q; d/, with the property that every element of the Hamming space is within
a fixed (in the interesting cases small) Hamming distance of some codeword.
The standard monograph on covering codes is [26]. Covering codes have many
applications including football pool problems and speech coding. Whereas the
minimum distance d.C/ is the most important quality measure for an error-
correcting code C, the main quality measure for a covering code is the covering
radius.

Definition 6.3.22 The covering radius �.C/ of a code C 
 F
n
q is

�.C/ D max
v2Fn

q

min
c2C

d.v; c/:
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Remark 6.3.23 The football pool problem is based on football betting (or in some
countries called soccer betting) where the aim is to correctly predict at least r (with
1 � r � n) results of n football matches, that is, home win, draw, or away win, with
K bets. Thus, we need a ternary code C of length n and size K with covering radius
�.C/ � n � r in order to guarantee that at least one of K bets predicts at least r
results correctly.

Remark 6.3.24 In speech coding, S points have to be placed “uniformly” on
the surface of a sphere in the n-dimensional Euclidean space. For S � 2n, an
approximate solution can be obtained by taking the words of a binary code of size S
and length n with small covering radius.

There is a nice relationship between the covering radius �.C/ and the minimum
distance d.C/ of a code C, and as a bonus we get another characterization of perfect
codes (see Definition 3.4.8 for the concept of a perfect code).

Proposition 6.3.25 A code C is perfect if and only if d.C/ D 2�.C/C1. In general,
the bound d.C/ � 2�.C/C 1 holds whenever jCj � 2.

Proof Put d D d.C/. Then C is perfect if and only if

[

c2C

B.c; b.d � 1/=2c/ D F
n
q;

that is, for every v 2 F
n
q there is exactly one c 2 C with v in the ball B.c; b.d�1/=2c/

(compare with the proof of Theorem 3.4.6). This is possible only if d is odd. The
maximum distance of v 2 F

n
q to C is .d � 1/=2, and thus �.C/ D .d � 1/=2.

If the code C with jCj � 2 is not perfect, then we get the proper inclusion

[

c2C

B.c; b.d � 1/=2c/ � F
n
q:

Thus, there exists a word u 2 F
n
q that is not contained in any of the balls B.c; b.d �

1/=2c/ with c 2 C. In other words, d.u; c/ � b.d � 1/=2c C 1 for all c 2 C, and so
�.C/ � b.d � 1/=2c C 1 > .d � 1/=2. �

Example 6.3.26 Let

C D f.0; : : : ; 0/; .1; : : : ; 1/g 
 F
n
2

be the binary repetition code of length n � 2. Then �.C/ D bn=2c and d.C/ D n.

Example 6.3.27 Let us consider the ternary Golay code G11 introduced in Defi-
nition 3.5.26. By Theorem 3.5.28, G11 is a perfect linear Œ11; 6; 5	 code over F3.
Therefore �.G11/ D 2 by Proposition 6.3.25. Because of its small covering radius,
G11 is great for football betting (see Remark 6.3.23). In many football pools, the
results of 12 football matches have to be predicted every week and there are payouts
if at least 10 matches are predicted correctly. Now suppose that among the 12
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matches there is one “bank”, that is, a match for which you “know” the outcome
in your guts. For instance, in the current German Bundesliga a home match by
Bayern Munich is a “bank” on Bayern. Then there are only 11 matches left on
which you have to bet, and getting at least nine out of these right will earn a payout.
Thus, you have the situation in Remark 6.3.23 with the parameters n D 11 and
r D 9. If you are an astute football pool enthusiast, then you place 36 D 729 bets
corresponding to the codewords of G11 and you will thus hit the jackpot since the
condition �.G11/ � n � r D 2 is satisfied. This lucrative piece of advice by itself is
already worth the price of this book. The only hitch is that you should have enough
spare money for 729 bets. It is a truly astounding historical fact that in the context
of football betting, the sophisticated code G11 was already discovered in 1947

(that is, before Golay’s paper [56]) by the Finnish football pool specialist Juhani
Virtakallio who published the construction in a Finnish football pool magazine (see
[26, Section 15.3] for more details).

For the proof of the following theorem, it is useful to have an alternative
description of the covering radius of a linear code at hand.

Lemma 6.3.28 Let C be a nontrivial linear Œn; k	 code over Fq and let H be a
parity-check matrix of C. Then the covering radius �.C/ is the least positive integer
r such that every vector in F

n�k
q is a linear combination over Fq of at most r column

vectors of H.

Proof Every u 2 F
n�k
q can be written as u D vH> for some v 2 F

n
q. Let b 2 C be a

codeword with

d.v;b/ D min
c2C

d.v; c/ D r � �.C/

and let vi1 ; : : : ; vir denote the coordinates of v that differ from the corresponding
coordinates of b. Since bH> D 0 by Theorem 3.2.37, we get

u D vH> D .v � b/H> D .vi1 � bi1 /si1 C � � � C .vir � bir/sir ;

where si denotes the ith column vector of H and bi the ith coordinate of b. Hence
each u 2 F

n�k
q is a linear combination over Fq of at most �.C/ column vectors of H.

Conversely, suppose that every vector in F
n�k
q is a linear combination over Fq of

at most r column vectors of H. Let v 2 F
n
q be arbitrary and put u D vH> 2 F

n�k
q .

Then by assumption u D xH> for some x 2 F
n
q with Hamming weight w.x/ � r. It

follows that .v � x/H> D 0, and so v � x D b for some b 2 C by Theorem 3.2.37.
Therefore

min
c2C

d.v; c/ D min
c2C

w.v � c/ � w.v � b/ D w.x/ � r;

and so �.C/ � r. �
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Theorem 6.3.29 Let q be a prime power, let n � 2 be an integer with gcd.n; q/ D 1,
let h be the multiplicative order of q modulo n, and let ˛ 2 Fqh be a primitive nth
root of unity. Let m.x/ 2 FqŒx	 be the minimal polynomial of ˛ over Fq. Then the
cyclic code C 
 F

n
q with generator polynomial m.x/ satisfies

�.C/ � g..qh � 1/=n; qh/;

with equality for q D 2.

Proof We refer to Sect. 3.3.5 for the general construction of cyclic codes from roots.
For v D .v0; v1; : : : ; vn�1/ 2 F

n
q, Theorem 3.3.30 shows that v 2 C if and only if

Pn�1
jD0 vj˛

j D 0. This means that the matrix

H D .1 ˛ ˛2 : : : ˛n�1/

can be viewed as a parity-check matrix of C when each ˛j, j D 0; 1; : : : ; n � 1,
is replaced by its coordinate vector (written as a column vector) relative to a fixed
ordered basis of Fqh over Fq. Furthermore, we note that the cyclic subgroup of F�

qh

generated by ˛ agrees with the cyclic subgroup of F�
qh consisting of the nonzero kth

powers with k D .qh �1/=n. The rest follows from Lemma 6.3.28 and the definition
of the Waring number g.k; q/ in Definition 6.3.3. �

6.4 Hadamard Matrices and Applications

6.4.1 Basic Constructions

Hadamard matrices are fascinating combinatorial objects allowing several appli-
cations including error-correcting codes, mobile communication, radar/sonar, and
cryptography.

Definition 6.4.1 A Hadamard matrix H of order n � 1 is an n � n matrix over R
with entries 1 or �1 such that HH> D nEn, where En is the n � n identity matrix
over R.

Example 6.4.2 Examples of Hadamard matrices of the three least possible orders

are .1/,
�
1 1

1 �1
�

, and

0

BB@

1 1 1 1

1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1

CCA :
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Remark 6.4.3 If you are familiar with determinants, then you understand that

.det.H//2 D det.H/ det.H>/ D det.HH>/ D det.nEn/ D nn

for every Hadamard matrix H of order n, and so det.H/ D ˙nn=2. This is remarkable
in the light of a classical inequality of Jacques Hadamard (1865–1963) which says
that j det.M/j � nn=2 for every n � n matrix M over R with all entries of absolute
value at most 1. Therefore Hadamard matrices are optimal in this family of matrices
M in the sense that they meet this bound. By the way, Hadamard is famous in
number theory since he is one of the two mathematicians (the other one is de la
Vallée-Poussin) who first proved the prime number theorem, according to which
the number �.u/ of prime numbers not exceeding u 2 R is asymptotically equal to
u= log u as u ! 1.

Lemma 6.4.4 If H is a Hadamard matrix of order n � 3, then n is divisible by 4.

Proof This is basically a one-liner. Let H D .hij/1�i;j�n with n � 3. From HH> D
nEn we obtain

nX

jD1
.h1j C h2j/.h1j C h3j/ D

nX

jD1
h21j D n:

Every term in the first sum is either 0 or 4, hence the result follows. �

The Hadamard matrix conjecture claims that for every n 2 N divisible by 4 there
is a Hadamard matrix of order n. Currently, the smallest open cases are n D 668 and
n D 716.

Lemma 6.4.5 If H is a Hadamard matrix of order n, then

�
H H
H �H

�

is a Hadamard matrix of order 2n.

Proof The matrix computation

�
H H
H �H

��
H H
H �H

�>
D
�

HH> C HH> HH> � HH>
HH> � HH> HH> C HH>

�

D
�
2nEn 0

0 2nEn

�
D 2nE2n

shows the result. �
The matrices obtained by the iterative construction S0 D .1/ and

St D
�

St�1 St�1
St�1 �St�1

�
for t D 1; 2; : : :
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are called Sylvester matrices. They are all Hadamard matrices by Lemma 6.4.5.
Sylvester matrices solve the existence problem for Hadamard matrices for all orders
n D 2t, t D 0; 1; : : : : Here is a nice explicit formula for Sylvester matrices. Write
any two integers 0 � i; j � 2t � 1 in their unique binary representation

i D i0 C 2i1 C 4i2 C � � � C 2t�1it�1; i0; i1; i2; : : : ; it�1 2 f0; 1g;
j D j0 C 2j1 C 4j2 C � � � C 2t�1jt�1; j0; j1; j2; : : : ; jt�1 2 f0; 1g;

and then put

< i; j >WD i0j0 C i1j1 C � � � C it�1jt�1:

Theorem 6.4.6 Sylvester matrices have the explicit form

St D �
.�1/<i;j>

�
0�i;j<2t for all t � 0:

Proof Proceed by induction on t. �

Although Hadamard matrices are real matrices, there is a legendary construction
of Hadamard matrices due to Paley [156] which intriguingly enough uses finite
fields. Raymond Paley (1907–1933) died in a skiing accident in Banff the same
year his paper on orthogonal matrices was published. Standing at Paley’s grave near
the Banff International Research Station, the second author wondered whether this
should deter him from publishing a big result and then dying or from learning Alpine
skiing despite living in Austria for already 15 years.

The basic tool of Payley’s construction is the quadratic character � of a finite field
of odd order q (see Remark 1.4.53). We use the convention�.b/ D 0 for b D 0 2 Fq.
The following simple character sum identity plays a crucial role.

Lemma 6.4.7 If q is a power of an odd prime and � is the quadratic character of
Fq, then

X

c2Fq

�.c/�.c C a/ D �1 for all a 2 F
�
q :

Proof Simple manipulations show that

X

c2Fq

�.c/�.c C a/ D
X

c2F�

q nf�ag
�.c�1.c C a// D

X

c2F�

q nf�ag
�.1C ac�1/

D
X

c2F�

q nf1g
�.c/ D ��.1/ D �1

for all a 2 F
�
q . We used the orthogonality relation (1.9) in the penultimate step. �
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Theorem 6.4.8 Let q be a power of an odd prime. If q � 3 .mod 4/, then we can
construct a Hadamard matrix of order qC1. If q � 1 .mod 4/, then we can construct
a Hadamard matrix of order 2.q C 1/.

Proof Let � be the quadratic character of Fq. We set up the q � q matrix P D
.pa;b/a;b2Fq with pa;b WD �.b � a/. For q � 3 .mod 4/ we get a Hadamard matrix
H of order q C 1 by substituting the entries 0 in the main diagonal of P by �1
and appending a row and a column consisting of all 1 entries. The fact that H is
indeed a Hadamard matrix is shown by a straightforward computation using (1.9),
Lemma 6.4.7, and �.�1/ D �1 for q � 3 .mod 4/.

For q � 1 .mod 4/ we put

J D
�

0 1 : : : 1

.1 : : : 1/> P

�

and

H D
�

J C EqC1 J � EqC1
J � EqC1 �J � EqC1

�
:

A somewhat more involved computation shows that H is a Hadamard matrix of
order 2.q C 1/. �

The Hadamard matrices in the proof of Theorem 6.4.8 are called Paley matrices.
Here are examples for the two smallest possible values of q.

Example 6.4.9 Let q D 3. Then �.1/ D 1 and �.2/ D �1, hence

P D
0

@
0 1 �1

�1 0 1

1 �1 0

1

A ; H D

0
BB@

�1 1 �1 1
�1 �1 1 1
1 �1 �1 1
1 1 1 1

1
CCA ;

and H is a Hadamard matrix of order 4.

Example 6.4.10 Now let q D 5. Then �.1/ D �.4/ D 1 and �.2/ D �.3/ D �1.
Therefore

P D

0
BBBBB@

0 1 �1 �1 1

1 0 1 �1 �1
�1 1 0 1 �1
�1 �1 1 0 1

1 �1 �1 1 0

1
CCCCCA
; J D

0

BBBBBBB@

0 1 1 1 1 1
1 0 1 �1 �1 1

1 1 0 1 �1 �1
1 �1 1 0 1 �1
1 �1 �1 1 0 1

1 1 �1 �1 1 0

1

CCCCCCCA

:

A Hadamard matrix of order 12 is obtained from J as in the proof of Theorem 6.4.8.
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More on Hadamard matrices can be found in the book of Horadam [68], but not
all the information there is up-to-date because of the steady progress in this area. A
status report up to the year 2010 was given by the same author in [69].

6.4.2 Hadamard Codes

Hadamard matrices have applications to various aspects of information theory and
digital communication. We start with an application to coding theory. Recall that
the entries of Hadamard matrices have only two possible values 1 or �1, and so it
is pretty obvious that Hadamard matrices are relevant only to binary codes. We may
change �1 to 0 to get the standard alphabet F2 of a binary code. If an arbitrary (that
is, not necessarily linear) binary code C has length n, size M, and minimum distance
d, then we express this by saying that C is a binary .n;M; d/ code. We introduce an
interesting quantity that was not considered in Chap. 3 on coding theory.

Definition 6.4.11 For integers n and d with 1 � d � n, let A.n; d/ be the largest
possible integer M for which there exists a binary .n;M; d/ code. A binary .n;M; d/
code with M D A.n; d/ is called optimal.

The determination of A.n; d/ is a major problem in coding theory. Unfortunately,
only partial information on A.n; d/ is available, mainly in the form of lower and
upper bounds. Hadamard matrices are instrumental in determining certain values of
A.n; d/ (see the proof of Theorem 6.4.14). We set off with a simple inequality.

Lemma 6.4.12 If n and d are integers with 1 � d � n � 1, then

A.n; d/ � 2A.n � 1; d/:

Proof Let C be an arbitrary binary .n;M; d/ code, and for a 2 f0; 1g let Ma be
the number of codewords in C with last coordinate a. Then by deleting the last
coordinate we get .n � 1;Ma; d/ codes Ca for a 2 f0; 1g (we may assume that
M0 � 1 and M1 � 1). Obviously max.M0;M1/ � A.n � 1; d/, and thus M D
M0 C M1 � 2A.n � 1; d/. �

In Theorem 3.4.19 we established the Plotkin bound for linear codes. Here is a
version of the Plotkin bound for arbitrary binary codes.

Theorem 6.4.13 (Plotkin Bound) If n and d are integers with 1 � d � n and
n < 2d, then

A.n; d/ �
�

2d

2d � n

�
:
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Proof Let C be an arbitrary binary .n;M; d/ code and put

T D
X

c;c02C

d.c; c0/:

From the definition of the minimum distance we obtain

T � M.M � 1/d: (6.15)

For i D 1; : : : ; n and a 2 f0; 1g, let Ni;a be the number of codewords in C with ith
coordinate equal to a. Writing c D .c1; : : : ; cn/ and c0 D .c0

1; : : : ; c
0
n/, we get

T D
nX

iD1

� X

c;c02C

d.ci; c
0
i/
�

D
nX

iD1

X

a2f0;1g
Ni;a.M � Ni;a/

D M2n �
nX

iD1
.N2

i;0 C N2
i;1/ � M2n � 1

2

nX

iD1
.Ni;0 C Ni;1/

2 D M2n=2;

where we used the elementary inequality 2.u2 C v2/ � .u C v/2 for all u; v 2 R in
the penultimate step. Together with (6.15) the result follows. �
Theorem 6.4.14 If d is a positive integer for which there exists a Hadamard matrix
of order 4d, then

A.4d; 2d/ D 8d and A.4d � 1; 2d/ D 4d:

Proof Let H be a Hadamard matrix of order 4d. The 4d rows of H are in f�1; 1g4d.
Since HH> D 4dE4d, the standard inner product (on R

4d) of any two distinct rows
of H is 0, and so 2d entries of the two rows agree and 2d entries differ. Interpreted
in this way, the Hamming distance of any two distinct rows of H is 2d. The same
holds true for the matrix �H that we obtain by multiplying all entries of H by �1.

Now let C be the binary code of size 8d whose codewords are the rows of H
and �H, with �1 replaced by 0. Then the distinct codewords in C have (standard)
Hamming distance either 2d or 4d, with 2d actually appearing. Hence C is a binary
.4d; 8d; 2d/ code, and so A.4d; 2d/ � 8d. Lemma 6.4.12 implies 2A.4d � 1; 2d/ �
A.4d; 2d/ � 8d, and by the Plotkin bound in Theorem 6.4.13 we get A.4d�1; 2d/ �
4d and thus the result. �

The optimal code C in the proof of Theorem 6.4.14 is called a Hadamard code.
The binary Reed-Muller code R.1; 5/ mentioned in Sect. 3.6 is a Hadamard code
defined with a Hadamard matrix of order 32 and it is an optimal binary .32; 64; 16/
code..

We sketch an application of Hadamard matrices to wireless communication.
CDMA (code division multiple access) is a technology that allows several transmit-
ters to send information simultaneously over the same channel. It is one of the most
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widely used standards in mobile phone networks and in the GPS (Global Positioning
System). Suppose we have M participants P1; : : : ;PM in the network. Just to explain
the principle in simple terms, let us say that each participant Pi is assigned a periodic
signature sequence with full period

xi.1/; : : : ; xi.n/ for i D 1; : : : ;M:

The signal for the symbol a of participant Pi is the sequence with full period

axi.1/; : : : ; axi.n/:

The signals of different participants have to be distinguishable as much as possible.
The distinct rows of a Hadamard matrix H of order n � 2 differ in exactly n=2
entries, by the argument in the proof of Theorem 6.4.14, and so the rows of H
(periodically continued) are suitable signatures for at most M D n participants. For
example, the industry standard QUALCOMM uses a Hadamard matrix of order 64.

6.4.3 Signal Correlation

For radar or sonar, a signal is used to determine distances by comparing the original
signal s.0/; s.1/; : : : ; s.N � 1/ with its time-delayed (or shifted) signal s.t/; s.t C
1/; : : : ; s.N�1Ct/. Formally, we can think of these signals as periodically continued
sequences .s.n//1nD0 and .s.n C t//1nD0 with period length N. It is convenient to say
that a sequence is N-periodic if it is periodic with period length (not necessarily the
least period length) equal to N. The following concept is important in the context of
signal processing.

Definition 6.4.15 The autocorrelation function of an N-periodic sequence � D
.s.n//1nD0 of complex numbers is defined by

A� .t/ D
N�1X

nD0
s.n/s.n C t/ for t D 0; 1; : : : ;N � 1;

where the bar denotes complex conjugation.

In many practical applications the signal is a binary sequence, and in this case
links with number theory arise. We assume without loss of generality that the terms
of the binary sequence are 1 or �1. The aim is to construct N-periodic binary
sequences � for which jA� .t/j is small for 1 � t � N � 1. Note that we always
have A� .0/ D N.

Proposition 6.4.16 If � is an N-periodic binary sequence with terms ˙1, then

A� .t/ � N .mod 4/ for t D 0; 1; : : : ;N � 1:
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Proof Let t be fixed. For j; k D ˙1, let Dj;k be the number of integers n with 0 �
n � N � 1 and .s.n/; s.n C t// D .j; k/. Then

A� .t/ D D1;1 C D�1;�1 � D1;�1 � D�1;1:

By counting the number of 0 � n � N � 1 with s.n/ D 1 in two ways, we obtain

D1;�1 C D1;1 D D�1;1 C D1;1;

and this implies D1;�1 D D�1;1. Moreover,

N D D1;1 C D�1;�1 C D1;�1 C D�1;1 D D1;1 C D�1;�1 C 2D1;�1:

Hence

A�.t/ D D1;1 C D�1;�1 � 2D1;�1 D N � 4D1;�1

and the result follows. �

Example 6.4.17 The 4-periodic sequence � obtained by the periodic continuation
of the signal 1; 1; 1;�1 has autocorrelation function A� .0/ D 4 and A�.t/ D 0 for
t D 1; 2; 3.

Remark 6.4.18 If we write the N shifts of an N-periodic binary sequence � with
A� .t/ D 0 for t D 1; : : : ;N � 1 as rows of a matrix, then we get a circulant
Hadamard matrix. However, the circulant Hadamard matrix conjecture claims that
no circulant Hadamard matrix of order N > 4 exists. This conjecture has been
verified for a large finite range of values of N (see [98]).

A remarkable number-theoretic sequence with small autocorrelation function is
the Legendre sequence � D .`.n//1nD0 for the odd prime modulus p which is given
by `.n/ D 1 if n � 0 .mod p/ and `.n/ D �

n
p

� D �.n/ for n 6� 0 .mod p/, where�
n
p

�
is the Legendre symbol (see Definition 1.2.22) and � is the quadratic character

of Fp. It is obvious that � is a p-periodic binary sequence.

Theorem 6.4.19 The autocorrelation function A�.t/, 1 � t � p�1, of the Legendre
sequence � for the odd prime modulus p is given by

A�.t/ D
(
2�.t/� 1 if p � 1 .mod 4/;

�1 if p � 3 .mod 4/:

Proof For t D 1; : : : ; p � 1, we obtain

A�.t/ D �.t/C �.�t/C
X

n2Fp

�.n/�.n C t/ D �.t/C �.�t/ � 1
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by Lemma 6.4.7, and it remains to observe that �.�1/ D .�1/.p�1/=2 by Exam-
ple 1.2.25. �

Remark 6.4.20 For an integer d � 2, let Bd D .an/
1
nD1 be the maximal period

sequence over F2 introduced in (5.29) and Remark 5.4.6. Note that Bd is periodic
with least period length 2d �1. We can easily turn Bd into a .2d �1/-periodic binary
sequence �d D .s.n//1nD0 with terms ˙1 by putting

s.n/ D .�1/anC1 for n D 0; 1; : : : :

There is only one nontrivial additive character � of F2 and it is given by �.c/ D
.�1/c for c 2 F2 D f0; 1g. The autocorrelation function A�d .t/ of �d can be
computed for t D 1; : : : ; 2d � 2 by

A�d.t/ D
2d�2X

nD0
s.n/s.n C t/ D

2d�2X

nD0
.�1/anC1�anCtC1 D

2d�1X

nD1
�.an � anCt/ D �1;

where we used Theorem 5.4.8 in the last step. The binary sequences �d derived from
maximal period sequences over F2 have thus an extremely small autocorrelation
function. In fact, since A�.t/ � 2d � 1 � �1 .mod 4/ for every .2d � 1/-periodic
binary sequence � by Proposition 6.4.16, the values of A�d.t/ for 1 � t � 2d � 2 are
as close to 0 as possible. This optimality property explains why the binary sequences
�d are highly popular in signal processing.

6.4.4 Hadamard Transform and Bent Functions

Now we turn to connections between Hadamard matrices and cryptography, and in
particular block ciphers (see Sect. 2.2). We start with some basic concepts.

Definition 6.4.21 A Boolean function f (of n variables) is a map f W Fn
2 ! F2. The

associated binary function F with values ˙1 2 Z is defined by

F.u/ D .�1/f .u/ for all u 2 F
n
2:

The Boolean functions that are given by the dot products

lv.u/ D u � v D u1v1 C � � � C unvn 2 F2

with variable u D .u1; : : : ; un/ 2 F
n
2 and fixed v D .v1; : : : ; vn/ 2 F

n
2 are called

linear, and they are affine if a constant c 2 F2 is added to lv.u/. Boolean functions
suitable for cryptography should not be “close” to any affine Boolean function, in a
sense that can be made precise (see [159, Section 3.6]).
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Definition 6.4.22 The Hadamard transform of the binary function F on F
n
2 (or of

the corresponding Boolean function f of n variables) is the integer-valued function
OF on F

n
2 given by

OF.u/ D
X

v2Fn
2

.�1/u�vF.v/ for all u 2 F
n
2:

Note the close connection between the coefficients .�1/u�v in the Hadamard
transform and the entries of the Sylvester matrix Sn in Theorem 6.4.6. The hat
symbol was already used in Sect. 4.3 for Fourier coefficients of periodic functions on
R

s. In the present subsection it will be employed only for the Hadamard transform,
and so there should not be any danger of confusion.

Remark 6.4.23 We observe that OF.u/ can be written also as

OF.u/ D
X

v2Fn
2

.�1/u�vCf .v/;

and so OF.u/ is the difference of the numbers of v 2 F
n
2 for which u � v and f .v/

are equal or different, respectively. The Hadamard transform provides one way of
measuring how well f can be approximated by linear or affine Boolean functions.
For Boolean functions suitable for cryptography, the number

max
u2Fn

2

j OF.u/j

has to be small (see again [159, Section 3.6]).

Proposition 6.4.24 (Parseval Identity) Every binary function F on F
n
2 satisfies

X

u2Fn
2

OF.u/2 D 22n:

Proof An easy computation yields

X

u2Fn
2

OF.u/2 D
X

u2Fn
2

�X

v2Fn
2

.�1/u�vF.v/
�2

D
X

u2Fn
2

X

v;w2Fn
2

.�1/u�vCu�wF.v/F.w/

D
X

v;w2Fn
2

F.v/F.w/
X

u2Fn
2

.�1/u�.v�w/:



404 6 Further Applications

For v D w the inner sum is equal to 2n. For v ¤ w there exists a vector x 2 F
n
2

with x � .v � w/ D 1. Then �.u/ D .�1/u�.v�w/ for all u 2 F
n
2 defines a

nontrivial character of the finite abelian group F
n
2 under vector addition, and so the

orthogonality relation (1.9) implies that the inner sum vanishes. Therefore

X

v;w2Fn
2

F.v/F.w/
X

u2Fn
2

.�1/u�.v�w/ D
X

v2Fn
2

F.v/22n D 22n;

and the result follows. �

Corollary 6.4.25 Every binary function F on F
n
2 satisfies

max
u2Fn

2

j OF.u/j � 2n=2:

Proof This is an immediate consequence of Proposition 6.4.24. �

Corollary 6.4.25 imposes a restriction on how small we can make the quantity
maxu2Fn

2
j OF.u/j in Remark 6.4.23. If you are ambitious, then you will strive to

achieve equality in the lower bound in Corollary 6.4.25. This inflicts a serious
limitation, because then the Parseval identity shows that we must have OF.u/2 D 2n

for all u 2 F
n
2. These functions F are singled out by the following terminology.

Definition 6.4.26 The binary function F on F
n
2 (or the corresponding Boolean

function f of n variables) is called bent if

j OF.u/j D 2n=2 for all u 2 F
n
2:

Since the Hadamard transform is integer-valued, it is obvious that bent functions
can exist only if the number n of variables is even. Here is an appealing link between
bent functions and Hadamard matrices.

Theorem 6.4.27 Let f be a Boolean function of n variables and let F be the
associated binary function. Then the following three assertions are equivalent:

(i) f is bent;
(ii) .2�n=2 OF.u C v//u;v2Fn

2
is a Hadamard matrix of order 2n;

(iii) .F.u C v//u;v2Fn
2

is a Hadamard matrix of order 2n.

Proof Note that f is bent if and only if 2�n=2 OF.u/ D ˙1 for all u 2 F
n
2. For every

nonzero vector v 2 F
n
2 and every binary function F on F

n
2, we get

X

u2Fn
2

OF.u/ OF.u C v/ D 2n
X

w2Fn
2

.�1/v�wF.w/2 D 0

by similar arguments as in the proof of Proposition 6.4.24. Therefore (i) and (ii) are
equivalent.
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Now assume that (iii) is true, that is,

X

u2Fn
2

F.u/F.u C v/ D 0

for all nonzero vectors v 2 F
n
2. Then with x D v C w we get

OF.u/2 D
X

v;w2Fn
2

.�1/u�.vCw/F.v/F.w/ D
X

x2Fn
2

.�1/u�x X

w2Fn
2

F.w/F.w C x/ D 2n

and f is bent. Conversely, assume that f is bent, and thus (ii) holds. Then also the
Boolean function g defined by .�1/g.u/ D 2�n=2 OF.u/ for all u 2 F

n
2 is bent. Denote

by OG the Hadamard transform of g. Then F.u/ D 2�n=2 OG.u/ for all u 2 F
n
2, and so

(iii) follows from (ii). �

Example 6.4.28 Let n D 2m with m 2 N and consider the Boolean function

f .u1; : : : ; u2m/ D u1u2 C u3u4 C � � � C u2m�1u2m:

The value OF.u/ of the Hadamard transform of f at u D .u1; : : : ; u2m/ 2 F
2m
2 is given

by

OF.u/ D
X

v2F2m
2

.�1/u�v.�1/f .v/ D
mY

jD1

� X

v;w2F2
.�1/u2j�1vCu2jwCvw

�
:

By distinguishing the cases u2j�1 D u2j D 0, u2j�1 D u2j D 1, and u2j�1 ¤ u2j, we
see that the last double sum has the value ˙2. Therefore OF.u/ D ˙2m, and so f is
bent. An entire cottage industry is devoted to the construction of bent functions; we
refer to [77] for a recent survey.

There are several cryptographic quality measures for Boolean functions includ-
ing the algebraic degree and the nonlinearity. Very often it is rather easy to find
Boolean functions that are optimal with respect to one of these measures, as for
example bent functions. However, the best Boolean functions with respect to one
measure can be weak with respect to other measures. Hence Boolean functions that
guarantee good behavior with respect to all or at least many such measures are
in high demand. In this sense, finding a good cryptographic Boolean function is
somehow like finding a spouse where also a trade-off between different desirable
features is needed. (The wives of the authors are exceptions since they both have
all desirable features.) We will explain this more carefully—for Boolean functions
and not for spouses, where we recommend, say, the books of the world-famous
relationship counselor John Gray.
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Each Boolean function f of n variables can be uniquely represented by a
polynomial

P.x1; : : : ; xn/ D
1X

i1;:::;inD0
ai1;:::;in xi1

1 � � � xin
n 2 F2Œx1; : : : ; xn	; (6.16)

that is,

f .c1; : : : ; cn/ D P.c1; : : : ; cn/ for all .c1; : : : ; cn/ 2 F
n
2

with the convention 00 D 1 2 F2. This representation is called the algebraic normal
form (ANF) of f . The algebraic degree of a Boolean function f with ANF (6.16) is
defined by

deg.f / D max fi1 C � � � C in W ai1;:::;in D 1g;

where deg.f / D 0 if all ai1;:::;in D 0.
Boolean functions of small algebraic degree are predictable and the coefficients

of their ANF can be determined from a small system of linear equations. More
precisely, a Boolean function f of n variables and of algebraic degree d has at most
1C �n

1

�C �n
2

�C � � � C �n
d

�
nonzero coefficients and, for example, the values of f at all

.c1; : : : ; cn/ 2 F
n
2 with at most d coordinates ci D 1 define such a system of linear

equations. Hence a large algebraic degree is desirable for a cryptographic Boolean
function. Moreover, for n � 2 the number of Boolean functions of n variables and of
algebraic degree at most n � 2 is 2

Pn�2
iD0 .

n
i/ D 22

n�n�1, which is negligible compared
to the total number 22

n
of all Boolean functions of n variables if n is large. In this

sense, almost all Boolean functions of n variables are of algebraic degree n � 1 or n.
The nonlinearity NL.f / of a Boolean function f of n variables is defined by

NL.f / D 2n�1 � 1

2
max
u2Fn

2

j OF.u/j:

It is a measure for how different f is from all affine Boolean functions (compare
with Remark 6.4.23), and thus a Boolean function of small nonlinearity is again
predictable. We infer from Corollary 6.4.25 that

NL.f / � 2n�1 � 2n=2�1

for all Boolean functions f of n variables, and this upper bound is attained exactly
for bent functions. However, the algebraic degree of a bent function is at most n=2
for n � 4.
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Now we present a number-theoretic construction of a Boolean function of n
variables with algebraic degree at least n � 1 for which we can still prove an
interesting lower bound on its nonlinearity.

Let p be an odd prime number and put n D blog2 pc. We introduce the Boolean
function g of n variables given by

g.c1; : : : ; cn/ D
�
0 if c is a quadratic residue modulo p;
1 otherwise;

(6.17)

where c D c1 C 2c2 C � � � C 2n�1cn with c1; : : : ; cn 2 f0; 1g. We note that 2 is a
quadratic residue modulo p if and only if p � ˙1 .mod 8/ (see [151, Theorem 3.3]).

Theorem 6.4.29 Let p be a prime number with p � ˙3 .mod 8/ and let g be the
Boolean function defined by (6.17). Then deg.g/ � n � 1.

Proof The case n D 1 is trivial, and so we can assume that n � 2. Put

h.c1; : : : ; cn�1/ WD g.0; c1; : : : ; cn�1/C g.c1; : : : ; cn�1; 0/

for all .c1; : : : ; cn�1/ 2 F
n�1
2 . If c is a quadratic residue modulo p, then 2c is a

quadratic nonresidue modulo p and vice versa since by assumption 2 is a quadratic
nonresidue modulo p. Hence one of the two summands in the definition of h is 1 and
the other one is 0. Therefore

h.c1; : : : ; cn�1/ D
�
1 if .c1; : : : ; cn�1/ ¤ .0; : : : ; 0/;

0 if .c1; : : : ; cn�1/ D .0; : : : ; 0/;

which can be written in the form

h.c1; : : : ; cn�1/ D
n�1Y

iD1
.1C ci/C 1:

It follows that deg.g/ � deg.h/ D n � 1. �

Theorem 6.4.30 Let p be an odd prime number and let g be the Boolean function
defined by (6.17). Then

NL.g/ > 2n�1 � .n C 2/1=227n=8 � 1

2
:

Proof The bound is trivial for n D 1 and n D 2, and so we can assume that n � 3.
Let � be the quadratic character of Fp (see Remark 1.4.53). Since

�.v/ D .�1/g.v1;:::;vn/ for 1 � v � 2n � 1;
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the Hadamard transform OG of g can be written in the form

OG.u/ D
X

v2Fn
2

.�1/u�vCg.v/ D
2n�1X

vD0
�.v/.�1/u�v C .�1/g.0/;

where u 2 F
n
2 and v D .v1; : : : ; vn/ 2 F

n
2 if v D v1 C 2v2 C � � � C 2n�1vn. We

introduce the sum

S.u/ D
2n�1X

vD0
�.v/.�1/u�v

and note that j OG.u/j � jS.u/j C 1. We put

k D
�
3

4
.n C 1/

�
� n; N D 2k; M D 2n�k:

With w D .u1; : : : ; uk/ and x D .ukC1; : : : ; un/, that is, u D .w; x/ 2 F
k
2 � F

n�k
2 , we

can write

S.u/ D
N�1X

aD0

M�1X

bD0
�.a C Nb/.�1/a�wCb�x;

where a 2 F
k
2 corresponds to the integer a and b 2 F

n�k
2 corresponds to the integer

b in the way we have seen before. Then

jS.u/j �
N�1X

aD0

ˇ̌
ˇ

M�1X

bD0
�.a C Nb/.�1/b�x

ˇ̌
ˇ:

An application of the Cauchy-Schwarz inequality yields

jS.u/j2 �
� N�1X

aD0
1 �
ˇ̌
ˇ

M�1X

bD0
�.a C Nb/.�1/b�x

ˇ̌
ˇ
�2

� N
N�1X

aD0

ˇ̌
ˇ

M�1X

bD0
�.a C Nb/.�1/b�x

ˇ̌
ˇ
2

� N
M�1X

b1;b2D0

ˇ̌
ˇ

N�1X

aD0
�..a C Nb1/.a C Nb2//

ˇ̌
ˇ:

For the M ordered pairs .b1; b2/ with b1 D b2, the absolute value of the inner sum
is trivially bounded by N. For the remaining M.M � 1/ ordered pairs .b1; b2/ with
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b1 ¤ b2, the inner sum is of the form of the character sum in (6.8), but for parts of
the period. By a standard bound (see [181, Lemma 3.4]), the absolute value of the
inner sum is at most 2p1=2 log p. Collecting everything gives

jS.u/j2 � N.MN C 2M2p1=2 log p/ � 2k.2n C 22n�2kC12.nC1/=2.n C 1//

� 2nCk.n C 2/ < 4 � 27n=4.n C 2/:

The proof is completed by recalling that j OG.u/j � jS.u/j C 1 for all u 2 F
n
2. �

There are several other cryptographic measures for Boolean functions including
the nonlinearity of higher order, the m-resiliency, and the algebraic thickness. For
more details on Boolean functions and their cryptographic measures, we refer to the
monograph [32] and the survey article [18].

6.5 Number Theory and Quantum Computation

6.5.1 The Hidden Subgroup Problem

A quantum computer performs operations on data based on quantum-mechanical
phenomena. Although small-scale experiments for quantum computation have
already been carried out, such as factoring the number 15, large-scale quantum
computers are currently out of reach. However, several efficient algorithms for
large-scale quantum computers have already been developed, including the Shor
algorithm for factoring integers. In this subsection, we take a quantum algorithm
for solving the hidden subgroup problem as a black-box, that is, the specifics of the
quantum algorithm are not our concern, and we explain how it can be used to resolve
the factoring problem and the discrete logarithm problem. A detailed introduction
to quantum computation and quantum information theory is out of the scope of this
book and we refer instead to the monograph [149].

The hidden subgroup problem can be phrased as follows: let f be a function from
an abelian group G to a finite set X such that f is constant on the cosets of a subgroup
K of G and has distinct values on different cosets; then find K from evaluations of
f . We think of f as hiding the subgroup K. Although there is no classical algorithm
known for solving this problem efficiently, a quantum computer could crack the
hidden subgroup problem. We emphasize again that we use such an algorithm only
as a black-box and we refer to [149, Section 5.4] for the details.

The quantum computation part of the celebrated algorithm of Shor [179] for
factoring integers solves the following period-finding problem efficiently on a
quantum computer: let f be any periodic function from Z into a finite set X without
repetition in a period; then find r 2 N with f .m C r/ D f .m/ for all m 2 Z. Here the
hidden subgroup of Z is K D fnr W n 2 Zg. If X is a finite abelian group with the
multiplicative notation, a 2 X an element of order r, and f .m/ D am, then we get an
order-finding problem.
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Both the factoring problem and the discrete logarithm problem can be reduced to
an instance of the hidden subgroup problem. We discuss the factoring problem first
and we consider only the situation that arises when one attempts to break the RSA
public-key cryptosystem (see Sect. 2.3.2).

Algorithm 6.5.1 (Shor Algorithm) Let n D pq be the product of two different
odd prime numbers p and q. Find p and q.

Step 1: choose a random integer a with 1 � a < n, where we may assume that
gcd.a; n/ D 1 since otherwise gcd.a; n/ is either p or q.
Step 2: use the (quantum) order-finding algorithm to compute the multiplicative
order r of a modulo n.
Step 3: if r is even and ar=2 6� �1 .mod n/, then gcd.ar=2 � 1; n/ and gcd.ar=2 C
1; n/ are the prime factors of n; otherwise return to Step 1.

The confirmation of the efficiency of this probabilistic algorithm is based on
the following theorem. We recall from Example 1.3.7 that Rm denotes the finite
abelian group formed by the integers a with 0 � a < m and gcd.a;m/ D 1 under
multiplication modulo m, where m is any positive integer.

Theorem 6.5.2 Let n D pq be the product of two different odd prime numbers
p D 2s1d1 C 1 and q D 2s2d2 C 1 with integers 1 � s1 � s2 and odd integers d1 and
d2. Suppose that a 2 Rn is chosen uniformly at random. Then the probability that
the multiplicative order r of a modulo n is even and ar=2 6� �1 .mod n/ is

1 � 4s1 C 2

3 � 2s1Cs2
� 1

2
:

Proof First we note that for every positive divisor t of p � 1, the congruence at �
1 .mod p/ has exactly t solutions a 2 Rp, namely a � gj.p�1/=t .mod p/, j D
0; 1; : : : ; t � 1, if g is a primitive root modulo p. Moreover, if t is a positive divisor
of .p � 1/=2, then at � �1 .mod p/ has exactly t solutions a 2 Rp, namely a �
gj.p�1/=tC.p�1/=2t .mod p/, j D 0; 1; : : : ; t � 1.

We show that the probability that either r is odd or r is even and ar=2 �
�1 .mod n/ is

1

2s1Cs2
C 4s1 � 1
3 � 2s1Cs2

D 4s1 C 2

3 � 2s1Cs2
� 1

3
C 2

3 � 4s1
� 1

2
:

Let r1 and r2 be the multiplicative orders of a modulo p and modulo q, respectively.
First we prove that the probability that r is odd is 2�s1�s2 . The elements of odd
order in Rp are exactly the d1 elements a 2 Rp with ad1 � 1 .mod p/, and so the
probability that r1 is odd is d1=.p � 1/ D 2�s1 . Similarly, the probability that r2 is
odd is d2=.q � 1/ D 2�s2 . Now r is the least common multiple of r1 and r2. Hence
r is odd if and only if both r1 and r2 are odd, which occurs with probability 2�s1�s2 .
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Now we show that the probability that r is even and ar=2 � �1 .mod n/ is

4s1 � 1

3 � 2s1Cs2
:

If r D 2sd is even with an integer s � 1 and an odd integer d, and if ar=2 �
�1 .mod n/, then ar=2 � �1 .mod p/. Hence r1 does not divide r=2, but r1
divides r and 2s is the largest power of 2 dividing r1. Note that 1 � s � s1
since r1 divides p � 1. The elements a 2 Rp of such an order are characterized
by a2

s�1d1 � �1 .mod p/. Their number is 2s�1d1 and their probability is 2s�s1�1.
Similarly, 2s is also the largest power of 2 dividing r2 and the elements a 2 Rq of
such an order are characterized by a2

s�1d2 � �1 .mod q/. Their number is 2s�1d2
and their probability is 2s�s2�1. So the probability that a 2 Rn has an order of the
form r D 2sd is

4s�1

2s1Cs2
; s D 1; : : : ; s1;

which sums up to

4s1 � 1
3 � 2s1Cs2

;

and so we are done. �

Remark 6.5.3 You have certainly figured out the conclusion in Step 3 of Algo-
rithm 6.5.1, but since this point is important, we flog a dead horse and write
down the argument. If r is even, then since ar � 1 .mod n/, we know that
ar �1 D .ar=2�1/.ar=2C1/ is divisible by n. If ar=2 6� �1 .mod n/, then since also
ar=2 6� 1 .mod n/, one of the prime factors of n must divide ar=2 � 1 and the other
one ar=2 C 1.

Example 6.5.4 For n D 21 there are three elements a 2 R21 of odd order r and
three elements a 2 R21 with even order r and ar=2 � �1 .mod 21/. Since jR21j D
�.21/ D 12, the probability to get a random element a 2 R21 with even order
r and ar=2 6� �1 .mod 21/ is exactly 1

2
. The boldface numbers in the following

table are warning signs that highlight cases where one of the conditions in Step 3 of
Algorithm 6.5.1 is not satisfied.

a 1 2 4 5 8 10 11 13 16 17 19 20

r 1 6 3 6 2 6 6 2 3 6 6 2

ar=2 .mod 21/ � 8 � �1 8 �8 8 �8 � �1 �8 �1
gcd.ar=2 C 1; 21/ � 3 � 21 3 7 3 7 � 21 7 21

gcd.ar=2 � 1; 21/ � 7 � 1 7 3 7 3 � 1 3 1
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Another instance of the hidden subgroup problem solves the discrete logarithm
problem. The basic idea of this algorithm also goes back to the paper [179].

Algorithm 6.5.5 Let q be a prime power, let a 2 F
�
q be an element of order r, and

suppose we know that a given b 2 F
�
q satisfies b D as with s 2 Z and 0 � s < r.

Find s.

Step 1: take f W Z2r ! Fq with f .h1; h2/ D bh1ah2 for all .h1; h2/ 2 Z2r and find
the (hidden) subgroup

K D f.k;�ks/ W k 2 Zrg

of Z2r using the (quantum) algorithm for solving the hidden subgroup problem.

Step 2: choose an arbitrary element .k1; k2/ 2 K with gcd.k1; r/ D 1 and
determine s from the congruence k1s � �k2 .mod r/.

Remark 6.5.6 Since

f .h1 C k; h2 � ks/ D bh1Ckah2�ks D bh1bkah2b�k D f .h1; h2/

for all k 2 Zr, the function f is constant on each coset .h1; h2/C K of K. It remains
to show that two ordered pairs .h1; h2/; .j1; j2/ 2 Z2r with f .h1; h2/ D f .j1; j2/ belong
to the same coset of K. From bh1ah2 D bj1aj2 we get, with b D as and since r is the
order of a, that

h1s C h2 � j1s C j2 .mod r/:

Hence in the group Z2r this yields the identity

.h1 � j1; h2 � j2/ D .h1 � j1;�.h1 � j1/s/ 2 K;

and thus .h1; h2/C K D .j1; j2/C K.

Example 6.5.7 Take q D 7, a D 3, b D 4, and so r D 6. Then f W Z26 !
F7 is given by f .h1; h2/ � 4h13h2 .mod 7/ for all .h1; h2/ 2 Z26 . Here K D
f.0; 0/; .1; 2/; .2; 4/; .3; 0/; .4; 2/; .5; 4/g consists of the elements .c; d/ 2 Z26 with

f .h1 C c; h2 C d/ � 4h1Cc3h2Cd � 4h13h2 � f .h1; h2/ .mod 7/;

that is, 4c3d � 1 .mod 7/. Choose any .k1; k2/ 2 K with gcd.k1; 6/ D 1, say
.k1; k2/ D .5; 4/, and determine s from the congruence 5s � �4 .mod 6/. This
yields s D 4. You can check that as � 34 � 4 � b .mod 7/.

The upshot of Algorithms 6.5.1 and 6.5.5 is of course that as soon as large-
scale quantum computers are available, then cryptographic schemes based on the
presumed difficulty of factoring integers or on the presumed difficulty of solving
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the discrete logarithm problem will be seriously compromised. But cryptographers
are visionary people and they have thought for many years about alternative schemes
that may stand tall against the onslaught of quantum computers. An entire branch
of cryptography called post-quantum cryptography is devoted to the design of such
alternative schemes (see the book [11]). Examples of cryptographic schemes that
will, as far as one can tell at present, survive quantum computers are lattice-based
cryptosystems and code-based cryptosystems; the latter were briefly discussed in
Sect. 3.6.

6.5.2 Mutually Unbiased Bases

Mutually unbiased bases were introduced in the literature on quantum mechanics
by Schwinger [177]. They are important not only for quantum physics, but also for
applications to quantum information theory. Mutually unbiased bases are collections
of orthonormal bases of a complex vector space with a characteristic property
described in Definition 6.5.8 below.

The setting is the n-dimensional complex vector space Cn with n � 2. This vector
space is endowed with the Hermitian inner product

hyjzi D
nX

jD1
yjzj

for all y D .y1; : : : ; yn/ 2 C
n and z D .z1; : : : ; zn/ 2 C

n, where the bar denotes
complex conjugation. By the way, this is the definition of the Hermitian inner
product that is used in the theory of mutually unbiased bases and stems from
quantum mechanics. The standard definition in the mathematical literature takes
the complex conjugate thereof. A basis B D fw1; : : : ;wng of Cn is an orthonormal
basis of Cn if for 1 � j; k � n,

hwjjwki D
(
1 if j D k;

0 if j ¤ k:

For instance, the standard basis S D fs1; : : : ; sng of C
n is an orthonormal basis,

where sj, j D 1; : : : ; n, has jth coordinate equal to 1 and all other coordinates equal
to 0.

Definition 6.5.8 Two orthonormal bases B and B0 of Cn are mutually unbiased if

jhwjw0ij D 1p
n

for all w 2 B and w0 2 B0:
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For an integer m � 1, a collection B0;B1; : : : ;Bm of m C 1 orthonormal bases of Cn

is mutually unbiased if Bh and Bi are mutually unbiased for 0 � h < i � m.

It is known that any collection of mutually unbiased bases of Cn can contain at
most nC1 orthonormal bases of Cn. Maximal collections of nC1mutually unbiased
bases of Cn are of considerable interest.

Example 6.5.9 For n D 2, the orthonormal bases B0;B1;B2 of C2 given by

B0 D f.1; 0/; .0; 1/g;

B1 D
�
1p
2
.1; 1/;

1p
2
.1;�1/

�
;

B2 D
�
1p
2
.1; i/;

1p
2
.1;�i/

�

form a maximal collection of three mutually unbiased bases of C2. Here i D p�1
is as usual the imaginary unit.

Believe it or not, maximal collections of mutually unbiased bases can be
constructed with the help of finite fields, although the fields C and Fq are of a quite
different nature. This is another demonstration of the unity of mathematics.

Theorem 6.5.10 Let n D q be a power of an odd prime and let � be a nontrivial
additive character of Fq. For every h 2 Fq, define Bh D fwh;kgk2Fq by

wh;k D 1p
q

�
�.ha2 C ka/

�
a2Fq

2 C
q for all k 2 Fq:

Then the standard basis S of Cq and the Bh for h 2 Fq form a maximal collection of
q C 1 mutually unbiased bases of Cq.

Proof We already know that the standard basis S of Cq is an orthonormal basis of
C

q. Next we show that Bh is an orthonormal basis of C
q for every h 2 Fq. This

follows from

hwh;jjwh;ki D 1

q

X

a2Fq

�.ha2 C ja/�.ha2 C ka/ D 1

q

X

a2Fq

�..k � j/a/

for all j; k 2 Fq and the orthogonality relation (1.9). It is trivial that S and each Bh

with h 2 Fq are mutually unbiased. Finally, we consider Bh and Bi with h; i 2 Fq

and h ¤ i. Then

ˇ̌hwh;jjwi;ki
ˇ̌ D 1

q

ˇ̌
ˇ
X

a2Fq

�..i � h/a2 C .k � j/a/
ˇ̌
ˇ D 1

q

ˇ̌
ˇ
X

b2Fq

�..i � h/b2/
ˇ̌
ˇ
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for all j; k 2 Fq. In the last step we used the usual trick of completing the square
(which works since q is odd) and a suitable change of the summation variable. For
the absolute value of the last sum we get with c D i � h 2 F

�
q ,

ˇ̌
ˇ
X

b2Fq

�.cb2/
ˇ̌
ˇ
2 D

X

a;b2Fq

�.c.a2 � b2// D
X

b2Fq

X

a2Fq

�.c..a C b/2 � b2//

D
X

b2Fq

X

a2Fq

�.c.a2 C 2ab// D
X

a2Fq

�.ca2/
X

b2Fq

�.2cab/ D q;

and the result follows. Note that in the last step we again used (1.9) and the fact that
q is odd. �

Further constructions of maximal collections of mutually unbiased bases using
finite fields can be found in [79]. There is also a construction in [79] for dimensions
n that are powers of 2 based on so-called Galois rings, which are algebraic structures
that are somewhat more general than finite fields. Thus, maximal collections of nC1
mutually unbiased bases of Cn are known for all prime powers n. It is conjectured
that there are dimensions n for which collections of n C 1 mutually unbiased bases
of Cn do not exist. There is particularly strong evidence for this in the case n D 6

(see again [79]).

6.6 Two More Applications

6.6.1 Benford’s Law

We could go on and on with applications of number theory, such is the richness of
the subject, but who would read a textbook with over 1000 pages? So it is time to
reach an end, but nevertheless we cannot refrain from picking two more raisins (we
hope tasty ones) from the cake. We start with a discussion of digit distributions, and
in the next subsection we present an application of number theory to raster graphics.

Is it one of your favorite recreational activities to read long lists of bookkeeping
data? If so, then you may have noticed the rather skew distribution of the leading
digits in these data. Some attentive people observed this as an empirical fact, and the
physicist Frank Benford is credited for this discovery since he carried out a wide-
ranging study of data in the 1930s. This phenomenon, which is known as Benford’s
law or the first-digit law, occurs not only in accounting data, but also in large
collections of physical and mathematical constants, of stock prices, of geographic
data like lengths of rivers, and so on.

After rounding off and suitably scaling the data, we can assume that we are
talking about the leading digits in a sequence of positive integers. In the binary case,
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we have the extreme situation where the leading digit in the binary representation of
a positive integer is always 1. In the decimal case considered by Benford, he noticed
that the asymptotic proportion of 1 as a leading digit is equal to log10 2 (around
30:1%), the asymptotic proportion of 2 as a leading digit is equal to log10

3
2

(around
17:6%), and so on until the asymptotic proportion of 9 as a leading digit which is
log10

10
9

(around 4:6%). For every integer b � 2 and every positive integer k, we
denote by `b.k/ the leading digit in the digit expansion of k in base b. For instance,
`10.37/ D 3 and `10.143/ D 1.

Definition 6.6.1 For an integer b � 2, a sequence .kn/
1
nD1 of positive integers

satisfies Benford’s law (or the first-digit law) in the base b if

lim
N!1

#f1 � n � N W `b.kn/ D dg
N

D logb

�
1C 1

d

�
for d D 1; : : : ; b � 1;

where logb denotes the logarithm to the base b.

There is an important sufficient condition for Benford’s law which connects this
law with the theory of uniformly distributed sequences in Sect. 4.1.1.

Theorem 6.6.2 Let b � 2 be an integer and let .kn/
1
nD1 be a sequence of positive

integers. If the sequence .logb kn/
1
nD1 is uniformly distributed modulo 1, then the

sequence .kn/
1
nD1 satisfies Benford’s law in the base b.

Proof We fix the base b � 2. Then for k 2 N and d 2 f1; : : : ; b � 1g, it is obvious
that `b.k/ D d if and only if dbm � k < .d C 1/bm for some integer m � 0.
By taking logarithms, we obtain the equivalent condition m C logb d � logb k <
m C logb.d C 1/. This is the same as saying that the fractional part flogb kg satisfies

flogb kg 2 Œlogb d; logb.d C 1//:

Therefore

#f1 � n � N W `b.kn/ D dg D #f1 � n � N W flogb kng 2 Œlogb d; logb.d C 1//g

for all integers N � 1 and all d 2 f1; : : : ; b � 1g. The desired result follows now
from Definition 4.1.8 and Theorem 4.1.6. �

Example 6.6.3 For every integer a � 2 which is not a power of 10, the sequence
.an/1nD1 of powers of a satisfies Benford’s law in the base 10. This is a simple
consequence of Theorem 6.6.2. Note that log10 an D n log10 a for all n � 1.
The number log10 a is irrational, for if we had log10 a D r=s with r; s 2 N,
then as D 10r, which is impossible under the given condition on a. Therefore
the sequence .log10 an/1nD1 is uniformly distributed modulo 1 by Theorem 4.1.10.
Analogous examples can be constructed with 10 replaced by an arbitrary base b � 2.
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Example 6.6.4 It takes a bit more work to prove that the sequence .Fn/
1
nD1 of

Fibonacci numbers, which is defined recursively by F1 D F2 D 1 and FnC2 D
FnC1 C Fn for n D 1; 2; : : :, satisfies Benford’s law in every base b � 2. First we
show by straightforward induction that

Fn D 1p
5
.˛n � ˇn/ for n D 1; 2; : : : ; (6.18)

where ˛ D .1 C p
5/=2 and ˇ D .1 � p

5/=2. Now we put xn D n logb ˛ for
all n � 1. If we assume for the moment that logb ˛ is irrational, then the sequence
.xn/

1
nD1 is uniformly distributed modulo 1 by Theorem 4.1.10. Furthermore, (6.18)

implies that

lim
n!1.logb Fn � xn/ D lim

n!1 logb
1 � .ˇ=˛/np

5
D � logb

p
5:

Then an easy application of Theorem 4.1.9 shows that the sequence .logb Fn/
1
nD1

is uniformly distributed modulo 1, and so .Fn/
1
nD1 satisfies Benford’s law by

Theorem 6.6.2. It remains to prove that logb ˛ is irrational. If we had logb ˛ D r=s
with r; s 2 N, then .1C p

5/s D 2sbr. Now by induction .1C p
5/s D as C cs

p
5

with as; cs 2 N, hence cs

p
5 D 2sbr � as, an obvious contradiction to the fact thatp

5 is irrational. More general linear recurring sequences satisfying Benford’s law
are constructed in the paper [119]. It is shown in [91] that the sequence .nŠ/1nD1 of
factorials satisfies Benford’s law in the base 10, and the proof is again founded on
Theorem 6.6.2.

Example 6.6.5 Here is an interesting negative example. Let .n/1nD1 be the sequence
of positive integers in their natural order and consider the standard decimal case
b D 10. Among the first 20 terms of this sequence, 11 have leading digit 1, among
the first 200 terms of this sequence, 111 have leading digit 1, and in general among
the first 2�10r terms of this sequence with r 2 N, there are

Pr
iD0 10i D .10rC1�1/=9

numbers with leading digit 1. Therefore

lim
r!1

#f1 � n � 2 � 10r W `10.n/ D 1g
2 � 10r

D lim
r!1

10rC1 � 1

18 � 10r
D 5

9
:

But 5
9

D 0:555 : : : > log10 2 D 0:301 : : :, and so the sequence .n/1nD1 does not
satisfy Benford’s law in the base 10.

The recent book of Kossovsky [87] is a treasure trove for the history and the
applications of Benford’s law. As an example of an application, we mention that
Benford’s law can be utilized in fraud detection since deceitfully concocted data
may deviate from Benford’s law. Cheaters tend to use the uniform distribution of
leading digits rather than the distribution in Definition 6.6.1.
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Fig. 6.1 The standard
assignment of pixels to
memory cells

0 1 2 3 . . . M − 1 0 1 2 3 . . . M − 1 . . .
0 1 2 3 . . . M − 1 0 1 2 3 . . . M − 1 . . .
0 1 2 3 . . . M − 1 0 1 2 3 . . . M − 1 . . .
...
...
...
...

...
...
...
...
...

...
0 1 2 3 . . . M − 1 0 1 2 3 . . . M − 1 . . .

6.6.2 An Application to Raster Graphics

Let us come back to the Fibonacci numbers in Example 6.6.4. An intriguing applica-
tion of Fibonacci numbers was discovered by Chor, Leiserson, and Rivest [23] (see
also [24]). By the way, Rivest is also the R in the RSA public-key cryptosystem
(see Sect. 2.3.2). The approach and the proof of the main result in [23] can be
considerably simplified, as we show in the following.

The problem addressed in [23] is highly relevant for the efficient operation of
computer screens, TV screens, and videos. Let us talk simply about screens to
avoid cumbersome language. The pixels of a screen are controlled by random-access
memory cells, but in a high-resolution screen there are of course many more pixels
than memory cells. This raises the question of how to assign pixels to memory cells
so that large areas of the screen can be updated simultaneously. It is convenient
to label the rows and columns of pixels on the screen by nonnegative integers.
If there are M memory cells, then we label the memory cells by the elements of
ZM D f0; 1; : : : ;M � 1g, the least residue system modulo M.

Figure 6.1 shows the standard assignment of pixels to memory cells. In row 0 the
first M pixels are assigned to the memory cells 0; 1; : : : ;M �1 in that order, and this
assignment is repeated periodically with period length M. The same pattern is used
in all the other rows. The standard assignment is very efficient for rowwise updating
since any M consecutive pixels in any row are assigned to different memory cells and
can therefore be updated simultaneously. On the other hand, columnwise updating
is a stumbling block since all pixels in a given column are assigned to the same
memory cell, and so these pixels can be updated only one after the other and
parallelization is not possible.

There should be a better organization of raster graphics than the standard
assignment, and this is what the work of Chor, Leiserson, and Rivest [23] is all
about. The aim is to find an assignment of pixels to memory cells such that the
pixels in all rectangles of limited area can be updated simultaneously, that is, the
labels of the assigned memory cells in any such rectangle are different. When we
speak of a rectangle, we mean a rectangle with horizontal and vertical sides (that is,
no tilted rectangles are considered) and with positive integers as side lengths (on the
scale of the pixels), and the area of such a rectangle is defined to be the number of
pixels in the rectangle.

We describe the construction in [23] in an explicit and simplified form. For a
fixed integer n � 2, let M D F2nC1 be the Fibonacci number with index 2n C 1.
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Fig. 6.2 The Fibonacci
assignment for M D F7 D 13

0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 . . .
8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 . . .
3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 . . .
11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 0 . . .
6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 . . .
1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 . . .
9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 . . .
4 5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 . . .
12 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 . . .
7 8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 . . .
2 3 4 5 6 7 8 9 10 11 12 0 1 2 3 4 . . .
10 11 12 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .
5 6 7 8 9 10 11 12 0 1 2 3 4 5 6 7 . . .
0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 . . .
8 9 10 11 12 0 1 2 3 4 5 6 7 8 9 10 . . .
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

For all r; s D 0; 1; : : :, the pixel in row r and column s is assigned to the memory
cell with the label a.r; s/ 2 ZM that is uniquely determined by the congruence

a.r; s/ � F2nr C s .mod M/; (6.19)

where F2n is the Fibonacci number with index 2n. We may call this the Fibonacci
assignment. Row 0 of the Fibonacci assignment is identical with row 0 of the
standard assignment for the same number M of memory cells. The other rows of
the Fibonacci assignment are cyclic shifts of row 0, with the shift parameter in row
r given by the least residue of F2nr modulo M. Figure 6.2 shows the Fibonacci
assignment for n D 3, that is, with M D F7 D 13. It follows from Theorem 6.6.6
below that in this case, the memory-cell labels in every rectangle of area at most 11
are different. A few rectangles of this type are highlighted in the figure.

Theorem 6.6.6 For an integer n � 2, put M D F2nC1 and N D FnFnC1 C FnC2.
Then the Fibonacci assignment with M memory cells has the property that in every
rectangle of area at most N the memory-cell labels are different.

Proof The proof uses the theory of continued fractions (see Sect. 4.2.1) and
identities for Fibonacci numbers. First we show that N � M. Indeed,

N D FnFnC1 C FnC1 C Fn � FnFnC1 C FnC1Fn�1 C F2n

D FnC1.Fn C Fn�1/C F2n D F2nC1 C F2n D M;

where the last identity is obtained from (6.18). Now we take an arbitrary R � S
rectangle of area RS � N and we assume that two memory-cell labels in this
rectangle are equal. This means that a.r1; s1/ D a.r2; s2/ for some l � r1; r2 �
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lCR�1 and m � s1; s2 � mCS�1 and with some integers l;m � 0. We have to show
that r1 D r2 and s1 D s2. Note that (6.19) yields F2n.r1 � r2/ � s2 � s1 .mod M/. If
r1 D r2, then s1 � s2 .mod M/ and js1 � s2j � S � 1 < N � M. Therefore s1 D s2
and we are done.

Thus, we can assume by way of contradiction that r1 > r2. Putting h D r1 � r2
and j D s2 � s1, we obtain

F2nh � j .mod M/ (6.20)

with 1 � h � R � 1 and jjj � S � 1. In particular 1 � h < N � M D F2nC1, and
so there exists an integer i with 2 � i � 2n such that Fi � h < FiC1. Now we use
the fact noted in Example 4.3.15 that the rational number F2n=F2nC1 has the finite
continued fraction expansion

F2n

F2nC1
D Œ0I 1; 1; : : : ; 1„ ƒ‚ …

2n

	;

and if we terminate this expansion after the kth entry 1 with k � 2n, then we get
the continued fraction expansion of Fk=FkC1. Therefore [151, Theorem 7.13] shows
that for every t 2 Z the inequality

ˇ̌
ˇ

F2n

F2nC1
h � t

ˇ̌
ˇ �

ˇ̌
ˇ

F2n

F2nC1
Fi � Fi�1

ˇ̌
ˇ

is valid. According to (6.20), we can choose t 2 Z such that j D F2nh � F2nC1t,
and so

jjj � jF2nFi � F2nC1Fi�1j D F2nC1�i;

where the last identity is again obtained from (6.18); see also Exercise 6.32. It
follows that

N � RS � .h C 1/.jjj C 1/ � .Fi C 1/.F2nC1�i C 1/ WD G.i; n/:

Note that G.i; n/ makes sense also for i D 1. If we can show that

min
1�i�2n

G.i; n/ D G.n; n/; (6.21)

then we arrive at the desired contradiction since G.n; n/ D .Fn C 1/.FnC1 C 1/ D
N C 1.

In view of G.i; n/ D G.2n C 1 � i; n/ for 1 � i � 2n, we can guarantee (6.21)
by proving that G.i; n/ � G.i C 1; n/ for 1 � i � n � 1. Using another Fibonacci
identity obtained from (6.18) (see again Exercise 6.32), we get

G.i; n/� G.i C 1; n/ D .�1/iC1F2n�2i C F2n�i�1 � Fi�1;



6.6 Two More Applications 421

with the understanding that F0 D 0. If i is odd, then G.i; n/ � G.i C 1; n/ follows
from F2n�i�1 � Fi�1. If i is even, then

G.i; n/� G.i C 1; n/ D F2n�i�2 C F2n�i�3 � F2n�2i � Fi�1;

and also F2n�i�2 � F2n�2i and F2n�i�3 � Fi�1 since 2 � i � n �1. Therefore (6.21)
is shown. �

It is clear from the proof above that with minor modifications we can deal also
with the case where M D F2n with n � 2. Here is a small table of the corresponding
pairs of numbers M and N obtained from Theorem 6.6.6 with M � 1000.

M 5 13 34 89 233 610

N 5 11 23 53 125 307

As we said at the beginning of this section, there are many more applications
of number theory, but most of them are easy and require only elementary number
theory. Just to whet your appetite, we mention applications to visibility problems [3,
182, 183], to fast convolution algorithms [30, 152], to binary search trees [36], to
cable splicing [154, Section 12.8], to music theory [165], and to card tricks [117,
p. 632], [174]. The conference volumes [16] and [121] contain attractive selections
of applications of number theory that are out of the common. You may want to
explore some of these applications at your leisure.

Exercises

6.1 Consider the check-digit system over Z9 defined by the control equation

12X

iD1
ai � 8 .mod 9/:

The serial numbers of Euro banknotes, with a proper interpretation of letters,
are based on this check-digit system.

(a) Verify that 402387040034 satisfies the control equation.
(b) Show that this check-digit system detects neither neighbor transpositions

nor jump transpositions.
(c) Show that this check-digit system detects both twin errors and jump twin

errors.

6.2 (a) Show that the self-map of F7 defined by the polynomial f .x/ D x4 C 3x 2
F7Œx	 is a complete mapping of F7.

(b) Show that the self-map of F11 defined by the polynomial f .x/ D 2x6 C
7x 2 F11Œx	 is a complete mapping of F11.
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6.3 Prove that if f is a complete mapping of the finite abelian group G, then the
inverse map f �1 is also a complete mapping of G.

6.4 Let q � 5 be a power of an odd prime. Prove that if the self-map of Fq defined
by the polynomial f 2 FqŒx	 with deg.f / < q is a complete mapping of Fq,
then necessarily deg.f / � q � 3. (Hint: see [139].)

6.5 Show that for every odd prime number p, the set f0; 1; : : : ; .p � 1/=2g is a
.1; 1I p/-covering set of minimal size.

6.6 Show that for every odd prime number p, the set f1; 2; : : : ; .p � 1/=2g is a
.1; 1I p/-packing set of maximal size.

6.7 Let p be an odd prime number. For a positive divisor k of p�1
2

and s 2 N,
consider the set

Ak;s D fak
1 C a�k

1 C � � � C ak
s C a�k

s 2 Fp W a1; : : : ; as 2 F
�
p g:

(a) Show that jAk;1j D p�1
2k C 1.

(b) Show that Ak;2k D Fp.
(c) Verify that .ak C a�k/.bk C b�k/ D .ab/k C .ab/�k C .ab�1/k C .ab�1/�k

for all a; b 2 F
�
p .

(d) Show that Ak;16 D Fp if p � 8k2.

6.8 Let C be a nontrivial linear code. Prove that the covering radius �.C/ is equal
to the maximum Hamming weight of all coset leaders.

6.9 Suppose that the code C1 is a proper subset of the code C2. Prove that �.C1/ �
d.C2/.

6.10 (a) Construct a Hadamard matrix of order 8 in two different ways.
(b) Construct a Hadamard matrix of order 12 by a method that is different

from the one in Example 6.4.10.
6.11 If H D .hij/1�i;j�m is an m � m matrix and K an n � n matrix over R, then the

Kronecker product H ˝ K is the .mn/ � .mn/ matrix given by

H ˝ K D

0

BBB@

h11K h12K : : : h1mK
h21K h22K : : : h2mK
:::

:::
:::

hm1K hm2K : : : hmmK

1

CCCA :

Prove that if H and K are Hadamard matrices, then H ˝ K is a Hadamard
matrix. Thus, whenever Hadamard matrices of orders m and n exist, then there
exists a Hadamard matrix of order mn.

6.12 An n�n matrix M overR with n � 2 for which the entries on the main diagonal
are 0, all other entries are 1 or �1, and which satisfies MM> D .n � 1/En is
called a conference matrix of order n. Prove that the matrix J in the proof of
Theorem 6.4.8 is a conference matrix of order q C 1.

6.13 Prove that if a conference matrix of order n exists, then n must be even.
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6.14 Let A.n; d/ be as in Definition 6.4.11. Prove that A.n; 1/ D 2n and A.n; n/ D 2

for all integers n � 1.
6.15 Prove that A.n; d/ � 2n=

�Pd�1
iD0

�n
i

��
for 1 � d � n.

6.16 Prove that A.n; d/ � 2n=
�Pb.d�1/=2c

iD0
�n

i

��
for 1 � d � n.

6.17 Prove that A.n; d/ � 2n�dC1 for 1 � d � n.
6.18 Show in detail that the Boolean function g in the proof of Theorem 6.4.27 is

bent.
6.19 Show in detail that in the proof of Theorem 6.4.27 we have indeed F.u/ D

2�n=2 OG.u/ for all u 2 F
n
2.

6.20 Show that a Boolean function f of n variables is bent if and only if, for all
nonzero vectors v 2 F

n
2, the Boolean function fv defined by fv.u/ D f .u C

v/C f .u/ for all u 2 F
n
2 attains the values 0 and 1 equally often.

6.21 Let f D f .u/ be a bent function of m variables and let g D g.v/ be a bent
function of n variables. Prove that h.u; v/ D f .u/C g.v/ is a bent function of
m C n variables.

6.22 Show that the ANF exists for every Boolean function and is unique.
6.23 Determine the ANF and the algebraic degree of the Boolean function

f .x1; x2; x3/ given by the following table.

x1 x2 x3 f .x1; x2; x3/
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

6.24 Determine the nonlinearity of the Boolean functions f1.x1; x2/ D x1 C x2 C 1,
f2.x1; x2/ D x1x2, and f3.x1; x2; x3; x4/ D x1x2 C x3x4.

6.25 Let n 2 N be even and assume that the Boolean function f of n variables
satisfies NL.f / D 2n�1�2n=2�1. Show that deg.f / D 2 if n D 2 and deg.f / �
n=2 if n � 4.

6.26 Show that 2 is a quadratic residue modulo the odd prime number p if and only
if p � ˙1 .mod 8/.

6.27 Determine the exact value of the algebraic degree and of the nonlinearity of
the Boolean function g defined by (6.17) for p 2 f5; 7; 11g.

6.28 Factor the number 91 using the Shor algorithm. (Show first that the multiplica-
tive order of 4 modulo 91 is 6 and that 43 6� �1 .mod 91/.)

6.29 Let a � 2 and b � 2 be integers. Prove that logb a is a rational number,
say logb a D r=s with r; s 2 N and gcd.r; s/ D 1, if and only if there
exists an integer c � 2 such that a D cr and b D cs. This criterion yields
a generalization of Example 6.6.3.
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6.30 Prove that the sequence .Ln/
1
nD1 of integers defined by L1 D L2 D 1 and

LnC2 D 2LnC1 C Ln for n D 1; 2; : : : satisfies Benford’s law in every base
b � 2.

6.31 Prove the Fibonacci identity F2nC1C F2n D F2nC1 for every integer n � 1. This
identity was used in the proof of Theorem 6.6.6.

6.32 Prove the Fibonacci identity FiFj � FiC1Fj�1 D .�1/j�1Fi�jC1 for all integers
i � j � 1, where we put F0 D 0. Special cases of this identity were used in
the proof of Theorem 6.6.6.
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Canonical factorization, 4, 31
Carmichael number, 81
Cauchy-Davenport theorem, 384
CBC algorithm, 240, 273, 280, 285, 300
CCSDS, 168
CDMA. See Code division multiple access

(CDMA)
Centered regular lattice, 228, 250, 254
Channel, 48, 99

insecure, 48
noisy, 99

Character, 19
additive, 41
of finite field, 41

multiplicative, 42
nontrivial, 19
orthogonality relations, 22
quadratic, 42
trivial, 19

Character group, 21
Characteristic, 26
Check-digit system, 367
Chinese remainder theorem, 7
Cipher, 49

affine, 50
block, 52
Caesar, 51
Enigma, 52
monoalphabetic, 51
polyalphabetic, 51
shift, 51
stream, 91
substitution, 50
symmetric block, 52
Vernam, 91
Vigenère, 52

Ciphertext, 48
Circulant Hadamard matrix, 401
Code, 100, 102

q-ary, 102
t-error-correcting, 104
u-error-detecting, 105
algebraic-geometry, 178
BCH, 171, 174, 175
binary, 102
binary Golay, 165, 175
binary Hamming, 158
constacyclic, 173
covering, 391
cyclic, 129
dual, 117
equidistant, 157, 162
equivalent, 116
error-correcting, 100
error-detecting, 105
extended binary Golay, 165
extended binary Hamming, 158
extended Reed-Solomon, 170
extended ternary Golay, 167
generalized Reed-Solomon, 170, 270
Hadamard, 399
Hamming, 160, 172, 173
irreducible cyclic, 143
length of, 102
linear, 109
MDS, 155, 169, 170, 270
minimum distance of, 103
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optimal, 398
perfect, 153, 160, 167, 168, 392
quadratic-residue, 175
quasicyclic, 173, 180
quaternary, 102
Reed-Muller, 175, 399
Reed-Solomon, 168
repetition, 102, 103, 105, 109, 392
self-dual, 127, 159, 160, 166, 167
self-orthogonal, 127, 163, 164
simplex, 162, 173
ternary, 102
ternary Golay, 167, 175, 392

Code division multiple access (CDMA), 399
Code polynomial, 147
Codeword, 102
Coding scheme, 99
Communication system, 48
Commutative law, 12
Complete mapping, 372

strong, 373
Complete residue system, 6, 39
Complexity

Kolmogorov, 358
linear, 92

Composite number, 3
Conference matrix, 422
Confidentiality, 47
Congruent, 5, 39
Constacyclic code, 173
Constant term, 28
Continued fractions, 216

algorithm, 216
expansion, 217

Convergent, 217
Coordinate vector, 108
Coprime, 7, 29
Copy rule, 250
Correlation coefficient, 357
Coset, 16, 121

leader, 122
Covering code, 391
Covering radius, 391
Covering set, 377
Cryptanalysis, 47
Cryptography, 47
Cryptology, 47
Cryptosystem, 49

asymmetric, 49, 56
ElGamal, 69
hybrid, 58
McEliece, 179
Niederreiter, 179

public-key, 56
Rabin, 95
RSA, 60, 93, 410
symmetric, 49, 56

Cubic residue, 44
Curse of dimensionality, 205, 206
Cyclic code, 129

irreducible, 143
Cyclic group, 15, 20
Cyclic run of zeros, 149
Cyclic shift, 128

Data Encryption Standard (DES), 53, 93
Data integrity, 47
Decoder, 104
Decoding algorithm, 104
Decryption, 48

algorithm, 48
function, 48
key, 48

Degree
of divisor, 177
of place, 177
of polynomial, 28

Derivative, 32
DES. See Data Encryption Standard (DES)
Designed distance, 171
Diffie-Hellman key exchange, 68, 91
Digital .t;m; s/-net, 259
Digital .t; s/-sequence, 291
Digital inversive method, 360
Digital method, 258, 290
Digital multistep method, 360
Digital net, 259
Digital sequence, 291
Digital signature, 73
Digital Signature Standard, 75
Dimension

of linear code, 109
of vector space, 108

Direct sum, 247
Direct summand, 247
Discrepancy, 194, 199, 209

Lp, 300
extreme, 194, 209
star, 194, 199, 210

Discrete exponential function, 68
Discrete logarithm, 67

problem, 67, 412
Distance

designed, 171
Hamming, 102, 263
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minimum, 103, 120, 263
relative minimum, 174

Distribution function, 309
Distributive law, 24
Divides, 1, 29
Divisible, 1
Division algorithm, 2, 29
Division with remainder, 2, 29
Divisor of function field, 177

degree of, 177
principal, 177

Divisor of integer, 1
nontrivial, 2
proper, 2

Divisor of polynomial, 29
proper, 29

Dot product, 112, 207
DSS, 75
Dual code, 117
Dual group, 21
Dual lattice, 245, 300
Dual space, 117
Duality theory, 262, 264

EAN. See European Article Number (EAN)
Elementary interval, 252
Elementary row operation, 116
ElGamal cryptosystem, 69
ElGamal signature scheme, 74
Elliptic curve, 90
Encoder, 102
Encoding algorithm, 114
Encryption, 48

algorithm, 48
function, 48
key, 48

Enigma cipher, 52
Equal-weight rule, 186
Equidistant code, 157, 162
Equidistribution test, 312
Equivalent code, 116
Erdős-Turán inequality, 195
ERNIE, 311
Error-correcting code, 100
Error-detecting code, 105
Error pattern, 121
Error polynomial, 147
Error processor, 104
Error-trapping decoding algorithm, 149
Error word, 121
Euclidean algorithm, 5, 7, 43, 175
Euler’s theorem, 9
Euler’s totient function, 8

Euro banknotes, 421
European Article Number (EAN), 368
Expansion

continued fraction, 217
formal Laurent series, 274

Explicit inversive method, 348
Explicit nonlinear method, 338
Exponent of group, 18
Extension field, 32

simple, 36
Extreme discrepancy, 194, 209

Factor, 2
group, 17
nontrivial, 2
problem, 410

Fermat
factorization, 63
little theorem, 9
number, 88
prime, 88
test, 81

Fibonacci
assignment, 419
number, 242, 417, 418

Field, 23
characteristic of, 26
extension, 32
finite, 25
finite prime, 25
full constant, 177
Galois, 33
global function, 176
order of, 25
residue class, 39
simple extension, 36

Figure of merit, 261, 277, 283
Finite abelian group, 13
Finite-dimensional vector space, 107
Finite field, 25

character of, 41, 42
Finite prime field, 25
First-digit law, 416
Flash memory, 377
Football pool problem, 392
Formal Laurent series, 274
Four-eyes principle, 77
Fourier coefficient, 233, 234
Fourier series, 233, 234
Four-square theorem, 381
Fractional part, 191, 207
Full constant field, 177
Fundamental theorem of arithmetic, 3
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Galois field, 33
Gauss sum, 44, 363
Generate vector space, 107
Generating matrices, 259, 291
Generating polynomial, 294
Generator, 15
Generator matrix, 114, 137, 300

standard form of, 115
Generator polynomial, 133
Generic algorithm, 90
Gilbert-Varshamov bound, 152, 182

asymptotic, 174
Global function field, 176
Global Positioning System (GPS), 400
Golay code

binary, 165, 175
extended binary, 165
extended ternary, 167
ternary, 167, 175, 392

Good lattice point, 229, 237
modulus of, 229

GPS. See Global Positioning System (GPS)
Greatest common divisor, 2, 29
Griesmer bound, 173
Group

abelian, 12
cyclic, 15, 20
dual, 21
exponent of, 18
factor, 17
finite abelian, 13
order of, 13
torus, 244

Hadamard code, 399
Hadamard matrix, 394

circulant, 401
Hadamard matrix conjecture, 395

circulant, 401
Hadamard transform, 403
Halton sequence, 223
Hammersley point set, 227, 252
Hamming bound, 153
Hamming code, 160, 172, 173

binary, 158
extended binary, 158

Hamming distance, 102, 263
Hamming space, 103, 263
Hamming weight, 110, 111
Hardy’s cab number, 82
Hash function, 77
Hasse-Weil bound, 91
Hermitian inner product, 413

Hidden subgroup problem, 409
Hybrid cryptosystem, 58
Hyperplane net, 271, 279

IBAN. See International Bank Account
Number (IBAN)

Ideal, 131
principal, 131
zero, 131

Identity element, 12
Identity matrix, 115
Incongruent, 5, 39
Index, 67
Index-calculus algorithm, 71, 72
Inequality

Erdős-Turán, 195
Koksma, 202
Koksma-Hlawka, 215

Information rate, 174
Insecure channel, 48
Integral domain, 28
Integration lattice, 245
Integration nodes, 186
International Article Number, 368
International Bank Account Number (IBAN),

368
International Standard Book Number (ISBN),

368, 369, 372
Interval

elementary, 252
Invariants, 250
Inverse element, 12
Inversion method, 310
Inversive congruential method, 340
Inversive method, 340
Irreducible cyclic code, 143
Irreducible polynomial, 30
ISBN. See International Standard Book

Number (ISBN)

Jacobi sum, 45, 390
Jacobi symbol, 84
Jump transposition, 372
Jump twin error, 372

Kerckhoff principle, 49
Kernel of matrix, 119
Key

decryption, 48
encryption, 48
private, 57
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public, 57
space, 49

Keystream, 91
Kloosterman sum, 345
Koksma-Hlawka inequality, 215
Koksma inequality, 202
Kolmogorov complexity, 358
Korobov form, 241, 306, 325
Kronecker product, 422
Kronecker sequence, 193, 208, 209, 214, 216,

219, 221, 222

Lagrange’s theorem, 17
Latin square, 257, 373
Lattice, 244

centered regular, 228, 250, 254
dual, 245, 300
integration, 245
rule, 244

Lattice point
Korobov form, 241, 325
set, 244

Leading coefficient, 28
Least common multiple, 3, 30
Least residue, 6, 39

system, 6, 39
Legendre sequence, 401
Length of code, 102
Limited-magnitude error, 380

correction, 380
Linear Œn; k; d	 code, 109
Linear Œn; k	 code, 109
Linear Boolean function, 402
Linear code, 109

dimension of, 109
Linear combination, 107
Linear complexity, 92, 358
Linear congruential method, 316

inhomogeneous case, 319
modulus, 316
multiplier, 316

Linear congruential pseudorandom numbers,
316

Linear orthomorphism, 369
Linear space, 106
Linear subspace, 108
Linear transformation, 110
Linearly dependent vectors, 107
Linearly independent vectors, 107
Low-discrepancy point set, 213
Low-discrepancy sequence, 213
Lucas congruence, 385
Lucas-Lehmer test, 88

MacWilliams identity, 125
Matrix, 112

circulant Hadamard, 401
conference, 422
generator, 114, 137, 300
Hadamard, 394
identity, 115
kernel of, 119
null space of, 119
Paley, 397
parity-check, 118, 139
Sylvester, 396, 403
transpose of, 113

Matrix method, 361
Mattson-Solomon polynomial, 141
Maximal period sequence, 356, 402
Maximum distance separable, 155
McEliece cryptosystem, 179
MDS code, 155, 169, 170, 270
Mersenne number, 86
Mersenne prime, 86, 318, 362
Message, 101
Midpoint rule, 186, 201

Cartesian product of, 204
Miller-Rabin test, 85
Minimal polynomial, 35
Minimum distance, 103, 120, 263

relative, 174
Mixcolumns, 55
Modulus, 316

of congruence, 5
of continuity, 203

Monic polynomial, 28
Monoalphabetic cipher, 51
Monte Carlo estimate, 205
Monte Carlo method, 205
Multiple of integer, 1
Multiple-recursive method, 359
Multiple root, 32
Multiple zero, 32
Multiplicative character, 42
Multiplicative order, 10
Multiplicity of root, 32
Multiplier, 316
Mutually orthogonal latin squares, 257
Mutually unbiased bases, 413, 414

Nearest neighbor decoding, 104, 121
Neighbor transposition, 369
Net

.t;m; s/-, 253
digital, 259
digital .t;m; s/-, 259
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hyperplane, 271, 279
propagation rule for, 255
quality parameter of, 255
Vandermonde, 282

Neutral element, 12
Niederreiter cryptosystem, 179
Niederreiter sequence, 294, 297
Niederreiter-Xing sequence, 300, 301
Noisy channel, 99
Nonlinear congruential method, 332
Nonlinearity, 406
Nonlinear method, 332
Nonrepudiation, 47
Nontrivial character, 19
Nontrivial divisor, 2
Nontrivial factor, 2
Normal number, 351
Normalized valuation, 177
NRT space, 263
NRT weight, 262
Null space of matrix, 119
Numerical integration, 185
Nyberg-Rueppel signature scheme, 77

One-time pad, 91
One-way function, 58

trapdoor, 59
Optimal code, 398
Order

multiplicative, 10
of element, 15
of field, 25
of group, 13

Ordered basis, 108
Order-finding problem, 409
Orthogonal latin squares, 257, 373
Orthogonal vectors, 112
Orthogonality relations, 22
Orthomorphism, 369

linear, 369
quadratic, 370

Orthonormal basis, 413

Packing set, 379
Paley matrix, 397
Parity-check matrix, 118, 139

standard form of, 119
Parity-check polynomial, 139
Parseval identity, 403
Partial quotient, 217
Perfect code, 153, 160, 167, 168, 392
Period-finding problem, 409

Permutation polynomial, 333, 370
Permutation test, 313
PGP. See Pretty Good Privacy (PGP)
Place, 177

degree of, 177
rational, 177

Plaintext, 48
Plaintext source, 49
Plotkin bound, 156, 398
Point set, 194

Hammersley, 227, 252
lattice, 244
low-discrepancy, 213
polynomial lattice, 275

Pollard p � 1 algorithm, 64
Pollard rho algorithm, 66
Polyalphabetic cipher, 51
Polynomial, 27

canonical factorization of, 31
code, 147
degree of, 28
derivative of, 32
divisor of, 29
error, 147
generating, 294
generator, 133
irreducible, 30
Mattson-Solomon, 141
minimal, 35
monic, 28
parity-check, 139
permutation, 333, 370
primitive, 36
received, 147
reciprocal, 138
reducible, 30
root of, 32
syndrome, 147
zero, 28
zero of, 32

Polynomial lattice point set, 275
Polynomial ring, 28
Post-quantum cryptography, 413
Pretty Good Privacy (PGP), 58
Primality test, 80
Prime, 3
Prime number, 3
Prime number theorem, 395
Primitive element, 35
Primitive polynomial, 36
Primitive root, 10
Principal divisor, 177
Principal ideal, 131
Private key, 57
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Private-key encryption, 49
Probabilistic algorithm, 81, 308, 410
Productset, 387
Propagation rule, 255
Proper divisor, 2, 29
Pseudorandom bits, 92, 350
Pseudorandom numbers, 311

digital inversive, 361
digital multistep, 360
explicit inversive, 348
explicit inversive congruential, 348
explicit nonlinear, 338
inversive, 341
inversive congruential, 341
linear congruential, 316
multiple-recursive, 359
nonlinear, 332
nonlinear congruential, 332

Public key, 57
Public-key cryptosystem, 56
Public-key encryption, 49

Quadratic character, 42
Quadratic nonresidue, 10
Quadratic orthomorphism, 370
Quadratic reciprocity, 84
Quadratic residue, 10
Quadratic-residue code, 175
Quality parameter, 255, 287
Quantum computation, 409
Quantum computer, 409
Quasi-Monte Carlo integration, 201, 213
Quasi-Monte Carlo method, 202, 213
Quasicyclic code, 173, 180
Quasirandom search, 300
Quaternary code, 102

Rabin cryptosystem, 95
Radar, 400
Radical-inverse function, 223
Random number generation, 308
RANF, 330
Rank, 250
Raster graphics, 418
Rational place, 177
Received polynomial, 147
Reciprocal polynomial, 138
Reducible polynomial, 30
Reed-Muller code, 175, 399
Reed-Solomon code, 168

extended, 170
generalized, 170, 270

Relative minimum distance, 174
Relatively prime, 7, 29
Repetition code, 102, 103, 105, 109, 392
Residue class, 17, 39

field, 39
ring, 39

Residue system
complete, 6, 39
least, 6, 39

Riemann-Roch space, 177
Rijndael, 55
Ring, 28

residue class, 39
Root of polynomial, 32

multiple, 32
multiplicity of, 32
simple, 32

Row space, 264
RSA cryptosystem, 60, 93, 410
RSA signature scheme, 74

Secret-key encryption, 49
Secret-sharing scheme, 78
Self-dual code, 127, 159, 160, 166, 167
Self-orthogonal code, 127, 163, 164
Sequence

.t; s/-, 287
1-distributed, 351
k-distributed, 351
completely uniformly distributed, 351
digital, 291
digital .t; s/-, 291
Halton, 223
Kronecker, 193, 208, 209, 214, 216, 219,

221, 222
Legendre, 401
low-discrepancy, 213
maximal period, 356, 402
Niederreiter, 294, 297
Niederreiter-Xing, 300, 301
uniformly distributed, 188, 206
uniformly distributed modulo 1, 191
uniformly distributed modulo 1 in R

s, 207
van der Corput, 223, 252, 287, 291

Serial correlation coefficient, 313
Serial correlation test, 313
Serial test, 313
Shamir threshold scheme, 78
Shannon theorem, 91
Shift cipher, 51
ShiftRows, 55
Shor algorithm, 410
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Signature scheme, 73
ElGamal, 74
Nyberg-Rueppel, 77
RSA, 74

Signing algorithm, 73
Silver-Pohlig-Hellman algorithm, 70
Simple extension field, 36
Simple root, 32
Simplex code, 162, 173
Simple zero, 32
Simulation method, 308
Singleton bound, 154, 263
Smooth integer, 64
Solovay-Strassen test, 83
Sonar, 400
Space

dual, 117
Hamming, 103, 263
linear, 106
NRT, 263
Riemann-Roch, 177
row, 264
vector, 106

Speech coding, 392
Sphere-covering bound, 151
Sphere-packing bound, 154
Square-and-multiply algorithm, 61
Square-root factoring, 64
Standard basis, 109, 413
Standard form

of generator matrix, 115
of parity-check matrix, 119

Standard inner product, 112, 207
Star discrepancy, 194, 199, 210
Steganography, 47
Stream cipher, 91
Strong complete mapping, 373
SubBytes, 55
Subfield, 32
Subgroup, 16
Subspace, 108

linear, 108
zero, 108

Substitution cipher, 50
Sum-product theorem, 387
Sumset, 383
Sylvester matrix, 396, 403
Symmetric block cipher, 52
Symmetric cryptosystem, 49, 56
Syndrome, 122

decoding algorithm, 123, 161
polynomial, 147

System
.d;m; s/-, 260

Ternary code, 102
Ternary Golay code, 167, 175, 392

extended, 167
Test

AKS, 86
Fermat, 81
Lucas-Lehmer, 88
Miller-Rabin, 85
primality, 80
Solovay-Strassen, 83

Threshold, 78
Threshold scheme, 78

Shamir, 78
Torus group, 244
Totient function, 8
Trace, 40
Transpose of matrix, 113
Trapdoor information, 59
Trapdoor one-way function, 59
Triple DES, 54
Trivial character, 19
Twin error, 372

Uniform distribution function, 309
Uniformity test, 312
Uniform random number, 309
Universal Product Code (UPC), 367

Valuation, 177
normalized, 177

Van der Corput sequence, 223, 252, 287, 291
Vandermonde net, 282
Variation, 202

bounded, 202, 214
Hardy and Krause, 214
Vitali, 214

Vector
coordinate, 108
zero, 106

Vector space, 106
basis of, 107
dimension of, 108
finite-dimensional, 107
generate, 107

Verification algorithm, 73
Vernam cipher, 91
Vigenère cipher, 52

Waring graph, 391
Waring number, 382, 391
Waring’s problem
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for finite fields, 381
for integers, 381

Weight
enumerator, 125
Hamming, 110, 111
NRT, 262

Weil bound, 334, 376
Weyl criterion, 192, 208

in R
s, 208

Wilson’s theorem, 97

Word, 101

Zero ideal, 131
Zero of polynomial, 32

multiple, 32
simple, 32

Zero polynomial, 28
Zero subspace, 108
Zero vector, 106


	Preface
	Contents
	1 A Review of Number Theory and Algebra
	1.1 Integer Arithmetic
	1.2 Congruences
	1.3 Groups and Characters
	1.3.1 Abelian Groups
	1.3.2 Characters

	1.4 Finite Fields
	1.4.1 Fundamental Properties
	1.4.2 Polynomials
	1.4.3 Constructions of Finite Fields
	1.4.4 Trace Map and Characters

	Exercises

	2 Cryptography
	2.1 Classical Cryptosystems
	2.1.1 Basic Principles
	2.1.2 Substitution Ciphers

	2.2 Symmetric Block Ciphers
	2.2.1 Data Encryption Standard (DES)
	2.2.2 Advanced Encryption Standard (AES)

	2.3 Public-Key Cryptosystems
	2.3.1 Background and Basics
	2.3.2 The RSA Cryptosystem
	2.3.3 Factorization Methods

	2.4 Cryptosystems Based on Discrete Logarithms
	2.4.1 The Cryptosystems
	2.4.2 Computing Discrete Logarithms

	2.5 Digital Signatures
	2.5.1 Digital Signatures from Public-Key Cryptosystems
	2.5.2 DSS and Related Schemes

	2.6 Threshold Schemes
	2.7 Primality Tests
	2.7.1 Fermat Test and Carmichael Numbers
	2.7.2 Solovay-Strassen Test
	2.7.3 Primality Tests for Special Numbers

	2.8 A Glimpse of Advanced Topics
	Exercises

	3 Coding Theory
	3.1 Introduction to Error-Correcting Codes
	3.1.1 Basic Definitions
	3.1.2 Error Correction

	3.2 Linear Codes
	3.2.1 Vector Spaces Over Finite Fields
	3.2.2 Fundamental Properties of Linear Codes
	3.2.3 Matrices Over Finite Fields
	3.2.4 Generator Matrix
	3.2.5 The Dual Code
	3.2.6 Parity-Check Matrix
	3.2.7 The Syndrome Decoding Algorithm
	3.2.8 The MacWilliams Identity
	3.2.9 Self-Orthogonal and Self-Dual Codes

	3.3 Cyclic Codes
	3.3.1 Cyclic Codes and Ideals
	3.3.2 The Generator Polynomial
	3.3.3 Generator Matrix
	3.3.4 Dual Code and Parity-Check Matrix
	3.3.5 Cyclic Codes from Roots
	3.3.6 Irreducible Cyclic Codes
	3.3.7 Decoding Algorithms for Cyclic Codes

	3.4 Bounds in Coding Theory
	3.4.1 Existence Theorems for Good Codes
	3.4.2 Limitations on the Parameters of Codes

	3.5 Some Special Linear Codes
	3.5.1 Hamming Codes
	3.5.2 Golay Codes
	3.5.3 Reed-Solomon Codes and BCH Codes

	3.6 A Glimpse of Advanced Topics
	Exercises

	4 Quasi-Monte Carlo Methods
	4.1 Numerical Integration and Uniform Distribution
	4.1.1 The One-Dimensional Case
	4.1.2 The Multidimensional Case

	4.2 Classical Low-Discrepancy Sequences
	4.2.1 Kronecker Sequences and Continued Fractions
	4.2.2 Halton Sequences

	4.3 Lattice Rules
	4.3.1 Good Lattice Points
	4.3.2 General Lattice Rules

	4.4 Nets and (t,s)-Sequences
	4.4.1 Basic Facts About Nets
	4.4.2 Digital Nets and Duality Theory
	4.4.3 Constructions of Digital Nets
	4.4.4 (t,s)-Sequences
	4.4.5 A Construction of (t,s)-Sequences

	4.5 A Glimpse of Advanced Topics
	Exercises

	5 Pseudorandom Numbers
	5.1 General Principles
	5.1.1 Random Number Generation
	5.1.2 Testing Pseudorandom Numbers

	5.2 The Linear Congruential Method
	5.2.1 Basic Properties
	5.2.2 Connections with Good Lattice Points

	5.3 Nonlinear Methods
	5.3.1 The General Nonlinear Method
	5.3.2 Inversive Methods

	5.4 Pseudorandom Bits
	5.5 A Glimpse of Advanced Topics
	Exercises

	6 Further Applications
	6.1 Check-Digit Systems
	6.1.1 Definition and Examples
	6.1.2 Neighbor Transpositions and Orthomorphisms
	6.1.3 Permutations for Detecting Other Frequent Errors

	6.2 Covering Sets and Packing Sets
	6.2.1 Covering Sets and Rewriting Schemes
	6.2.2 Packing Sets and Limited-Magnitude Error Correction

	6.3 Waring's Problem for Finite Fields
	6.3.1 Waring's Problem
	6.3.2 Addition Theorems
	6.3.3 Sum-Product Theorems
	6.3.4 Covering Codes

	6.4 Hadamard Matrices and Applications
	6.4.1 Basic Constructions
	6.4.2 Hadamard Codes
	6.4.3 Signal Correlation
	6.4.4 Hadamard Transform and Bent Functions

	6.5 Number Theory and Quantum Computation
	6.5.1 The Hidden Subgroup Problem
	6.5.2 Mutually Unbiased Bases

	6.6 Two More Applications
	6.6.1 Benford's Law
	6.6.2 An Application to Raster Graphics

	Exercises

	Bibliography
	Index

