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INTRODUCTION 

Bloinformatics: 
Mystery, Astrology or Service Technology? 

Frank Eisenhaber* 

Abstract 

M athematical interpretation and integration of experimental data for the goal of 
biological theory development has had litde, if no, impact on previous progress 
in life sciences compared with the sophistication of experimental approaches them­

selves. The genesis of recent spectacular breakthroughs in molecular biology that led to the 
discovery of the enzymatic function of several nonmetabolic enzymes illustrates that this rela­
tionship is beginning to change. 

The development of high-throughput technologies, for example of complete genome se­
quencing, leads to large amounts of quantified data on biological systems without direct link to 
biological function that require formalized and complex mathematical approaches for their 
interpretation. The research success in life sciences depends increasingly on the ability of re­
searchers in experimental and theoretical biology to jointly focus on important questions. Cur-
rendy, theoretical methods have best chances to contribute to new biological insight indepen­
dently of experiments in the area of genome text interpretation and especially for gene function 
prediction. Experimental studies can help progress in the development of theoretical methods 
by providing verified, sufFiciendy large and variable sequence datasets for the exploration of 
sequence-function relationships. 

Introduction 
To caricature, the typical research process in life sciences consists of periodic repetitions 

of weeks/months of bench work by a PhD or postdoctoral student followed by an hour of 
looking at the results by the lab head after which the coworker again disappears into the cold 
room or behind the microscope with new directives. Generations of life scientists have been 
educated that the most important goal consists in producing "hard", quantitative experi­
mental data describing biological structures and processes. Pure theoretical efforts directed 
at biological data analysis are believed to add little more than intellectual speculation or a 
colorful illustration in the form of a graph or an alignment. The biological theory itself has 
remained logically simple and with little or no mathematics or formal structure. Typically, all 
creativity has been directed into sophistication and rationalization of experimental proce­
dures and techniques for the wet lab. This type of life science has successfully produced 
breakthroughs and will, apparently, continue to stay the major source of new biological 
insight in the near future. 

*Frank Eisenhaber—Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 
Vienna, Republic Austria. Email: Frank.Eisenhaber@imp.univie.ac.at 

Discovering Biomolecular Mechanisms with Computational Biology, 
edited by Frank Eisenhaber. ©2006 Landes Bioscience and Springer Science+Business Media. 
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This situation is especially astonishing for people that come from more formalized sci­
ences such as physics where a typical experiment is preceded by months of calculations and 
computer simulations. Such research is necessary in this area to derive the most interesting 
research targets and to check the consistency of new hypotheses with existing knowledge. 
There had been several waves of efforts to inject mathematics into life sciences, for example 
statistics (beginning with MendeFs ratios), kinetics (of enzymes and ligand binding, of trans­
port systems, in population dynamics) or 3D biomolecular structure modeling (together 
with quantum chemistry, QSAR studies and molecular dynamics; especially in context with 
the hypothesis of DNA double-helical structure). Although each of these waves have en­
riched life sciences in aspects, neither one has become a continuous source of qualitatively 
new biological knowledge or has made biology a truly theoretical, a quantitative and predic­
tive science. 

Beginning with the 1960s, yet another stream of efforts focused on the esoteric topic of 
analysis of text strings representing the monomer sequences of proteins and nucleic acids 
and of the evolution of these strings after multiple single-point mutations. ̂ '̂  Thanks to 
these pioneering efforts, theoretical concepts, computational methods and sequence data­
bases have been established that allow the prediction of function for experimentally 
uncharacterized genes from their sequence, most importantly, together with the quantifica­
tion of the prediction error (prediction reliability) in probabilistic terms.^ The impact of this 
development is perceived in different ways by various parts of the generally wet lab-focused 
life science community depending on personal background and experience: as mystery^ astrol­
ogy or service technology. None of these three ways is a really appropriate assessment for the 
recent step in the difficult development of life sciences towards a formalized theory of living 
systems as the discussion below will attempt to show. 

Mystery 
Sometimes, success stories are sensed euphorically as a mystery by those scientists that re­

ceive a tremendous boost in their experimental work from a function prediction. At the back­
ground of general weakness of theory in life sciences, it is indeed perceived as a bolt from the 
blue by the experimental life science research community that a number of recent scientific 
breakthroughs in biology have originated from theoretical studies for gene function prediction. 
Several instances of discoveries of enzyme activities for a number nonmetabolic proteins, typi­
cally without any previous hint or suspicion from experimental findings, are remarkable evi­
dence for the growing predictive power of theoretical biology. 

Important science-organizational and cognitive aspects of this process towards new biologi­
cal knowledge can be illuminated by viewing some recent examples of enzymatic function 
assignment to nonmetabolic enzymes. Three stories with considerable biological impact, namely 

1. the discovery of the molecular function of Fringe in Notch signaling, 
2. the determination of the protease domain of separin triggering the transition from metaphase 

to anaphase during the cell cycle, and 
3. the understanding of heterochromatin formation as initiated by the histone methyltransferase 

activity of the Su(var)3-9 homologues, are described in brief in Boxes 1, 2 and 3. 
There are more of such nontrivial findings, and it is not possible to give a complete list here. 

For example, a C-terminal domain in yeast protein dotlp was assigned to the SAM sequence 
family with suggested methyltransferase activity. The loss-of-function phenotype of the dotl 
gene (disruption of telomere silencing) implied a possible role in the posttranslational modifi­
cation of histones. Indeed, a biochemical assay was able to show that dotlp does methylate 
histone H3 at Lys79. As the authors acknowledge, the previously published theoretical report 
was critical for their decision to launch the experimental test. 

In another case, the yeast protein ecolp was found critical for the establishment of cohe­
sion between sister chromatids, but the biological experiments did not give any hint with 
respect to a possible molecular function of ecolp. Sequence analysis studies pointed to an 
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Box 1. T h e Fringe Story 
As early as January 1997, Peer Bork and three of his collegues'̂ '̂  reported that a sequence 

domain in the D. melanogaster Fringe and Brainiac proteins as well as in their vertebrate homo-
logues might have glycosyltransferase activity. Relying on simplified but statistically rigorous 
models of molecular sequence evolution implemented in the BLAST^ and MoST"^^ programs, 
they could show that there is negligibly small probability of error if the corresponding sequence 
domains of Fringe are considered members of the same protein family together with a number 
of bacterial monosaccharide transferases including, for example, Lexl firom H. influenzae. 

Whereas the sequentially close neighbors have been collected with BLAST (a pairwise 
sequence comparison tool), the link between the eukaryan and bacterial subfamilies has been 
quantitatively assessed with MoST (an early sequence profile technique). The collection of 
families of homologous sequence segments was much more difficult, labour intensive, and 
less straightforward in summer 1996 than with today's more automated alignment and pro­
file generation tools such as PSI-BLAST^^'^^ Based on statistical measures of sequence simi­
larity and taking into account the conserved sequence pattern of hydrophobic/hydrophilic 
residues and secondary structure predictions. Peer Bork and colleagues finally concluded that 
all proteins involved share certainly the same type of 3D structural fold. But whether the 
same type of catalytically active center is attached to this scaffold remained hypothetical 
although the conservation of sequence motifs with functional residues and the molecular 
biological context suggested this as highly probable.'^'^ 

This finding was completely surprising for the field. The Notch gene was one of the first 
genes to be identified in D. melanogaster being discovered by T H . Morgan and colleagues in 
1916. Its role in the spatial control of tissue-patterning events and in developmental signaling 
through the cytolemma has long been known. More recently, the secreted protein Fringe^^'^^ 
was shown to differentially modulate Notch sensitivity towards the ligands Delta and Ser­
rate/Jagged.^^'^ Although the phenomenon was well described at the phenotypic and cellu­
lar level, nothing was understood with respect to molecidar mechanisms. We do not know 
about the scales of hypothesis-driven research generated by the prediction of Fringe's cata­
lytic activity but, only three years after the paper of Bork et al, the authors of two reports^^'^ 
admitted that they had been inspired by the theoretical finding and presented convincing 
evidence that Fringe does indeed change the glycosylation status of Notch during the latter's 
passage through the Golgi apparatus. 

acetyl-coenzyme A binding site in the C-terminal domain of eco lp . It was this finding that 
changed the priorities in the wet lab, and the subsequent experiments showed that e c o l p 
indeed has acetyltransferase activity and, apparently, is part of a yet unknown mitotic path­
way that involves acetylation of some cohesion complex proteins. 

Wha t can be learned from these stories? 
i. A hypothesis derived from an extensive theoretical analysis suggested a previously unknown 

direction of thought and creatively enriched biological theory, not only in details but, for 
the given field of research, in a principal aspect. This happens everyday in formalized sci­
ences, but it is new in biology, 

ii. There is an increasing need for an altogether time- and resource-consuming effort of theo­
retical analysis of biological experimental data accompanying life science research projects 
from the outset. If completed successfully, it can lead to nontrivially new, creative direc­
tions of experimentation or direcdy to new biological insight. The new role of theory 
represents a qualitative change residting from quantitative progress in the experimental 
method accumulated over decades. Large amounts of quantitative data without direct link 
to known biological processes at different levels of organizational hierarchy are now pro­
duced with high-throughput techniques and require a nontrivial effort for interpretation. 
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Box 2 . T h e Protease for Cohesins 
Cellular and nuclear divisions (mitosis) have been known since the early days of studying 

biological tissue with microscopes. The arrangement of sister chromosomes in the metaphase 
plate is shown in every cytology textbook. Nevertheless, we have learned about the molecu­
lar "glue** holding sister chromatids together and about the molecular release mechanism at 
the onset of anaphase only during the last few years.^^ Using yeast genetic and molecular 
biological methods as well as cellular microscopy, the "glue" was shown to represent a com­
plex of four types of proteins (scclp, scc3p, smclp, smc3p) which dissociates from sister 
chromatids under the influence of a protein named esplp at the onset of anaphase. '̂ ^ Even 
more, scclp was shown to be proteolytically digested in an esplp-dependent manner in an 
in vitro assay for reconstituting the chromatid dissociation reaction using cell extracts.^^ The 
nature of the protease involved remained obscure and no obvious experimental approach for 
finding it was in sight. 

The alignment of C-terminal sequence segments of several esplp homologues was ana­
lyzed and the strict conservation of two potentially fimctional residues, a histidine and a 
cysteine (HI505 and CI531 in espl respectively), was observed throughout species. To­
gether with considerations based on secondary structure predictions and applying encyclope­
dic knowledge of protease families, Eugene Koonin suggested but cautiously that the 
C-terminus of esplp itself might belong to a new group of proteases which is distandy related 
to other members the C D clan of cysteine endopeptidases with the same type of catalytic 
dyad. Indeed, subsequent experiments for esplp enzyme inhibition with site-directed 
mutations and with specifically designed peptide drugs demonstrated convincingly that it is 
the esplp protease activity resulting in the cohesin cleavage "̂  at the onset of anaphase. 

Not incidentally, it is the area of gene function prediction where, for the first time, theoreti­
cal data analysis has become a widely indispensable activity for planning experimental strat­
egies affecting increasingly research efficiency in evermore more branches of life sciences. 
Sequencing of biomolecules has been the first high-throughput technology in life sciences. 
During the last decade of the 20th century, electronic sequence databases coupled with 
scientific literature sources have reached such a dimension and representation for different 
biological subfields that the theoretical meta-analysis of this data without any additional 
experimentation can lead to surprising new biological insight. 
This bioinformatics activity is the truly integrating factor for the life sciences as whole. 
Different subfields interact with each other via their entries in databases which are analyzed 
as one body of data in bioinformatics research efforts. For example, mammalian signaling 
was connected with bacterial biochemistry in the Fringe story and the functional character­
ization of the SET domain became possible with information on plant enzymes. 
In many instances, theoretical analysis ended up in weak hypotheses that they could not be 
published direcdy due to lack of intrinsic logical rigor in their derivation. Therefore, many 
of such hints will never appear in computer-generated public sequence database annota­
tions since a considerable theoretical and/or experimental effort is required to judge the 
significance of a below-threshold hit. At the same time, pure experimental approaches would 
have hardly uncovered the catalytically active domains in the near future. The true partner­
ship between both approaches (and people from different groups and complementing back­
grounds) was the major precondition of success. However, strong hierarchies and star-centered 
organizations typical for many life science research units will have difficulties accommodat­
ing such an interdisciplinary research style. 

Efforts in applied mathematical and biophysical research for biological sequence analysis 
which have been smiled at in the biological community have matured and, often, reliable 
predictions or, at least, useful hints for fijrther experimental studies can be made. The most 
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Box 3 . T h e SET D o m a i n Funct ion 
After more than 5 years of studying the ftinction of mice and human suv39hl (and of the 

later identified testis-specific suv39h2), the vertebrate homologues of the D. melanogaster 
Su(var)3-9 proteins, with genetic and cellular biological methods, it was possible to describe 
in great detail their phenotypic ftinction (a role in heterochromatin formation and stabiliza­
tion) at the level of the whole organism and in each of the tissues. ^ Additionally, all genes 
involved have been cloned and single- and double-knockout mice have been produced. ' 
Nevertheless, the SET sequence domain contained in all suv-proteins resisted any attempts 
for molecular ftinctional characterization. 

After collecting the sequence family of SET domain homologues with a variety of profile 
techniques, more than 140 members including six plant sequences were found. At about this 
time, PSI-BLAST^^ became a routine tool in sequence family collection. This search could be 
carried out in a simpler manner by starting a PSI-BLAST run, for example, with the S. pomhe 
sequence SPAC3c7.09. Surprisingly, one of those proteins found (in P. sativum) was experi­
mentally characterized as rubisco methyltransferase. Unfortunately, all six plant sequences 
were closely similar to each other except for their N-terminus. Thus, the catalytic activity 
could be represented likewise by the SET domain, by a long insert dividing the plant SET 
domain into two parts, by the C-terminal domain, or even by a combination of those. In any 
of the latter three cases, we would have learned little new about suv-protein function. 

Since experimental considerations did not provide more attractive alternatives, in vitro 
assays with suv-proteins, labelled S-adenosyl-methionine and potential substrates were set 
up. The positive outcome of the first tests agreeing with the hypothesis of mouse suv39hl 
methylating histone H3 marked the beginning of a race of discoveries: Experimental evi­
dence for the role of posttranslational methylation of histone tails in heterochromatin forma­
tion has been obtained. ^ This event triggered the functional characterization of the 
Chromodomain known to coexist with the SET domain in many proteins as binding do­
main. There is now convincing evidence that the chromodomain segment of the manmialian 
heterochromatin binding protein (HPl) binds to methylated histone H 3 with high affinity 
and targets H P l to nucleosomes with Lys9-methylated H 3 tails. ' Now, histone tail me­
thylation has become a still expanding field of research with more than 1700 papers in 
PUBMED by beginning of 2005. 

important hallmark (but not the only one) is represented by the technique of sequence 
alignment and the evaluation of mutual substitution rates of amino acids during evolution 
in form of substitution matrices. This advance allowed the quantification of sequence simi­
larity in rigorous probabilistic terms, essentially a distance measure between sequences.^ 
The concept of protein homology with the postulate of a common evolutionary ancestor 
for a family with sequentially similar gene segments is the basis for structure and function 
prediction by annotation transfer to uncharacterized proteins from experimentally ana­
lyzed homologues.^'^ 

The feeling of the mysterious appearance of the biological insights results from the cultural 
collision of the world of experimental life scientists not trained in thinking with statistical or 
physical categories because of the previous lack of necessity. The back story is the expectation of 
repeated amazing predictions with new sequence targets, an expectation that can hardly be 
satisfied in all instances. There are a large number of full sequences and sequence segments (as 
a rule of thumb, one third of an eukaryote proteome) where currently computational biology 
has to lay down its arms. The situation is even grimmer if the whole genome instead of the 
protein-coding part (only ca. 1.5% of the genome) is considered. 

Self-critically, the bioinformatics community has to acknowledge that, especially in early 
work, the way that the theoretical conclusion was achieved was described superficially and, for 
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those who are not in the know it can be difficult to repeat the deduction and to evaluate the 
judgments. The incomplete description of procedures is a general problem in life sciences. 
Repetition of published experimental recipes typically ends in failure. Sadly, the traditional 
methods section in scientific articles was moved from the place following the introduction to 
the end of the text and typed in small font signaling its relative insignificance. 

Astrology 
Multiple views of the same topic have a right for existence. Since biological sequence analy­

sis is not a ftmdamental science in the same sense as, for example, physics, it is sometimes 
jokingly called "sequence astrology". This has several reasons: 

Although Anfinsen^^ has shown with renaturation experiments that the information con­
tained in the protein sequence is generally sufficient to determine the protein structure, 
attempts to derive native structures ab initio (with fundamental physical principles) from 
protein sequences alone without additional high-resolution experimental information (mac-
romolecular X-ray crystallography and NMR) have practically failed due to the system's 
complexity. If the assumption basis is less restrictive and includes atomic force fields empiri­
cally fitted to observation from small molecules, the protein-modeling problem is more trac­
table but the intramolecular energy criteria become too inaccurate to distinguish between 
native and nonnative structures. Thus, ab initio approaches trying to compute a protein's 
structure directly from its sequence with fundamental physical principles are of little help in 
structure and, even more, in function predictions for real life examples. 

Thus, computational sequence analyses in biological application studies rely on empirically 
established sequence-structure and sequence-function relationships: 

i. The possibility of extrapolation of such correlation to uncharacterized sequences cannot 
fully be proven in principle, but it is tacidy assumed in practical applications. Considerable 
published research is devoted to establish statistical, physical and/or biological criteria to 
assess the reliability and limits of such extrapolations, (for example see refs. 11-14). 

ii. Further, dramatic simplifications are often necessary to treat the problems rigorously with 
mathematical means. For example, the sequence evolution models underlying current se­
quence comparison and alignment techniques do, as a rule, ignore the generally weak but 
possibly existing mutual dependence among sequence positions, 

iii. At the beginning of working on a new prediction algorithm, the researcher compiles a so-called 
learning set of sequences with experimentally verified stmctural/funaional properties. Usu­
ally, he encounters the first problem here: Since only the first discovery is granted with a 
high-impact publication, the experimental community pays litde attention to increasing the 
list of verified examples and the resulting learning set is (a) small and, probably, (b) does not 
represent the full variety of naturally occurring sequences with the same feature.̂ 5'̂ ^ To 
conclude, even if the researcher honesdy tries not to fool himself and his colleagues in the 
field with prediction rate cosmetics, the estimates of accuracy have a tendency to be too good 
looking, both with respect to false positive and false negative predictions. 

This causes a perception problem of sequence analysis-based predictions: Experimental 
researchers seeing all the advertised 'well-working' prediction techniques around get disap­
pointed since, for their specific target, the straightforwardly applied methods (especially if 
used with a restrictive parameter setting) appear not applicable or, in the other extreme, 
seem to produce obviously false output; thus, the seed of interest in nonexperimental ap­
proaches is nipped in the bud. 

The typical experimental researcher also has difficulties distinguishing valuable suggestions 
from false hints. Here, we compare two examples of false predictions to make a frequendy 
important point: The protein kinase activity suggested for scc2p might be argued with the 
incomplete conservation of a short sequence motif typical for kinases but can be ruled out by 
structural considerations showing scc2p being a HEAT-repeat protein. ̂ '̂̂ ^ Generally, conserved 
short motifs involving only a handful of residues, especially with incomplete conservation of 
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functionally important residues, are not indicative of evolutionary retained function if there is 
no additional argument. Thus, a kinase assay for scc2p appears not indicated. 

In contrast, the suspected ras-binding activity of myr-5 is based on the significant sequence 
similarity over a specific ca. 100 AA-long domain to proteins known from experimental reports 
to interact with ras in that region.^^ Indeed, the structural similarity was further substantiated 
but the binding activity could not be. Nevertheless, the extrapolation of function from fam­
ily members leads to a reasonable, productive hypothesis since no contrary arguments such as 
nonconservation of known functional motifs or additional experimental data could be found. 

For some people having a strong background in mathematical and physical sciences, all 
this combination of formally not proven sequence-function correlation, of function extrapo­
lation and of intuition for still correct borderline cases in sequence studies seems intellectually 
unpleasing. Nevertheless, relatively simple sequence pattern recognition techniques produce 
surprisingly many reliable predictions. In this context, it appears necessary to emphasize the 
importance of evolutionary history in biology. As a result, the search space of real sequence 
alternatives appears dramatically limited compared to the theoretically imaginable set of vari­
ants compatible with fundamental laws. 

It should also be noted here that experiments cannot be considered the final word in every 
instance either. ̂ ^ Iyer et al list half a dozen cases where the molecular function predicted 
using well tested, statistically sound computational means is in direct contradiction to experi­
mental results arguing for another enzymatic function (typically originally predicted from short 
motifs or with a threading approach). Whereas execution of an enzyme activity by 
nonhomologous proteins implies an (possibly unlikely) unusual chemistry, over-interpretation 
of experimental data or lack of additional controls might have led to the contradictory conclu­
sion. 

Service Technology 
This is the third point of view with respect to bioinformatics. It is typically followed by 

computer science-driven researchers and by experienced leaders of large experimental units 
(especially in the pharmaceutical industry) who want to extract value from complete genome 
sequencing and other high-throughput activities for research in their field of life sciences. 
Bioinformatics is considered a service effort to store and retrieve biological information, to 
create integrated software solutions and to apply existing suites of programs in a routine man­
ner and to supply the necessary output immediately after a request from an experimentalist is 
issued. This view received additional backing with the availability of WWW-servers for se­
quence analyses (especially BLAST servers) that appear useable like TV-sets, without necessar­
ily understanding of the algorithms applied. 

Organizationally, such an attitude results in a part-time bioinformatics person equipped 
with a PC linked to the internet in academia or a small service group with a high budget for 
ever larger and complete database and software license purchases in industry. Often, this per­
sonnel becomes dissatisfied after being overloaded with a large number of scientifically and 
methodically disconnected requests when, at the same time, they have to maintain their local 
working environment themselves. Of course, it is a serious limitation that not all necessary 
methods are available at WWW-servers; many respond slowly or not at all and most have to be 
navigated individually which causes an extensive loss of time. Not surprisingly, most nontrivial 
discoveries based on sequence analysis considerations have been made at other places. Special­
ized researchers who work at academic bioinformatics research centers with sufficient comput­
ing power and a local, well-maintained database and software environment, who have spent 
significant periods of their life analyzing sequence data and accumulated experience, who have 
taken part in methodological developments and interact with their colleagues in the field clearly 
have greater chances of success.^^ 

Already the unfortunate notion "bioinformatics" is derived from the superficial view of 
doing something in biology with computers whereas the essence consists in research aimed at 
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understanding the complex genotype-to-phenotype transformation relying on sequences, ex­
pression profiles, other types of high-throughput experimental data and the electronically avail­
able scientific literature. Only the complexity of theoretical concepts and the large amount of 
data require the use of computers as a tool. It is ever more important to understand that se­
quence analysis and computational biology comprise a field of ongoing research with many 
problems still unsolved. Except for obvious cases of sequence homology and sequence domain 
matches, considerable creativity is required for nontrivial application of existing methods to 
squeeze a hint on structure/function of a target considered out of its sequence. Since many 
fiinctionally important sequence signatures still remain hidden, the development of new tech­
niques recognizing more distandy related sequence family members or other biological features 
such as posttranslational modifications or localization signals continue to have important aca­
demic and practical relevance. 

Finally, who is servicing whom? Is it more important for new biological insight to generate 
a new hypothesis based on theoretical data analysis or to create an experimental setup for its 
verification? Running simple BLAST searches or standard electrophoresis gels are equally rou­
tine (service?) activities. I think that such a discussion is counterproductive and distracts from 
the main issue, the scientific search coordinated among researchers with complementary pro­
fessional background that strive for a common success. 

The development of high-throughput experimental technologies and its first major break­
through, the complete sequencing of the genomes of organisms ranging from viruses over 
bacteria, lower eukaryotes to human, has changed life science research qualitatively. For the 
first time in history, the biological object can be studied in its totality at the molecular level. 
The immediate task for the coming decade consists in assigning functions to all genes known 
by sequence. Apparendy, sensible, quantitative gene network studies will be possible only aft:er 
most of the genes have been assigned a function qualitatively and all major players of processes 
and their interaction topology are known. Since the new data are so large and their biological 
interpretation requires complex approaches, theoretical science can and must contribute deci­
sively to research progress. Hints from theoretical studies may shorten experimental searches 
and save postdoc years. 

Obviously, there is a new division of labour in the cognition process in life sciences. Both 
sides have to learn to translate prediction results into new experimental designs and to formu­
late new theoretical tasks based on the existing experimental data. There are now many ex­
amples of computational biology helping experimental science and more decisive support can 
be expected in the future. However, the interaction cannot remain a one-way street. The value 
of experimental work will be increasingly measured via its effect on the improvement of meth­
ods in computational biology and the increased power of extrapolation into the unknown part 
of the genome. For example, this includes the experimental generation of learning sets for 
sequence-function correlations with reliable methods to boost prediction method develop­
ment, an aspect that has not received sufficient attention yet. Only an iterative interaction 
promises to produce maximal research progress. The experimental community should not worry: 
The gaps in theory are still and will remain large. 

This book Discovering Biomolecular Mechanisms with Computational Biology unites a col­
lection of articles by researchers in theoretical biology showing areas of life science where 
theory has contributed with considerable impact. Martijn A. Huynen et al, Karin Schleinkofer, 
Thomas Dandekar and I review methodical approaches for analyzing biomolecular sequences 
and structures in Section I, accompanying the text with examples of research breakthroughs. 
Since the scientific literature is dramatically expanding and, at the same time, becomes in­
creasingly electronically accessible, dedicated text analysis tools for biomedical reports can 
link them to genomic features and contribute decisively for prioritizing research targets. 
Hong Pan et al and Carolina Perez-Iratxeta et al summarize the state of the art in Section II. 
Gene and protein network analysis is still in its infancy since many network nodes remain 
unknown and the quantitative characterization of most gene/protein functions is missing. 
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Nevertheless, studies of regulatory and metabolic networks already produce important in­
sights with theoretical work alone, as Harmen Bussemaker and Stefan Schuster et al show in 
Section III. Finally, Edward N. Trifonov, Christian Schlotterer, Saurabh Astana and Shamil 
Sunyaev and Yuri I. Wolf et al present compelling evidence in Section IV that the evolution­
ary viewpoint is indispensable for understanding function and interaction of todays genes 
and proteins. This book will fulfill its task if the examples described here encourage the 
readers to find new areas in life science research where theoretical research can qualitatively 
change the rate of progress in understanding biomolecular mechanisms and help to move 
towards a quantitative and predictive biology. 
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CHAPTER 1 

Reliable and Specific Protein Function 
Prediction by Combining Homology 
with Genomic(s) G)ntext 
Martijn A. Huynen,* Berend Snel and Toni Gabaldon 

Abstract 

Completely sequenced genomes and other types of genomics data provide us with new 
information to predict protein function. While classical, homology-based function 
prediction provides information about a proteins' molecidar function (what does the 

protein do at a molecular scale?), the analysis of the sequence in the context of its genome or in 
other types of genomics data provides information about its functional context (what are the 
proteins' interaction partners, and in which biological process does it play a role?) Genomic 
context data are however inherently noisy. Only by combining different types of genomic(s) 
context data (vertical comparative genomics) or by combining the same type of genomics data 
from different species (horizontal comparative genomics) do they become sufFiciendy reliable 
to be used for protein function prediction. Homology-based function prediction and 
context-based function prediction provide complementary information about a protein's func­
tion and can be combined to make predictions that are specific enough for experimental testing. 
Here we discuss the genomic coverage and reliability of combining genomics data for protein 
function prediction and sm^ey predictions that have actually led to experimental confirmation. 
Using a number of examples we illustrate how combining the information from various types of 
genomics data can lead to specific protein function predictions. These include the prediction 
that the Ribonuclease L inhibitor (RLI) is involved in the maturation of ribosomal RNA. 

Introduction 
Genome sequencing provides us with an abundance of genes whose functions are not 

determined experimentally and have to be predicted by bioinformatics. The classic tool to 
do so, homology detection, is mainly suited to predict the molecular function of a protein. 
Having complete genome sequences we would also like to know protein function at a higher 
level, like the pathway or complex a protein belongs to.^ Bioinformatics supplies us with a 
growing number of so-called genomic context methods that exploit the genomics data them­
selves to predict such interactions. These methods exploit the fact that the genes of func­
tionally interacting proteins tend to be associated with each other in genomes or in other 
types of genomics data. At the level of genome sequences, gene fusion," '̂ the conservation of 
gene order, ' the co-occurrence of genes among sequenced genomes, or genes having a 
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complementary distribution, the sharing of regulatory elements, and methods that use 
sequence information of the proteins itself. ̂ '̂ have been proposed and implemented (Fig. 
1). These methods have in common that they exploit the availability of multiple sequenced 
genomes to increase an in itself weak signal for functional interaction between proteins. To 
give one example, that two genes are neighbors in one bacterial species is only a weak signal 
that they functionally interact, but when that gene order is conserved among many genomes 
it does become a strong signal, even of physical interaction between the proteins. ̂ ^ 
Genomic-context methods are becoming well established and have been the subject of many 
reviews already. ' ' Presently the focus is on combining and integrating them with each 
other and with other types of genomics data. As is the case of methods based on comparing 
genomes, also using the evolutionary conservation of coexpression,^^'^^ or of physical inter­
action as measured with yeast-2-hybrid^^'^^'^^ leads to a drastic increase in the reliability of 
the results. Another way of combining genomics data, detecting the same interaction in 
different types of data, e.g., two genes tend to be coexpressed in Saccharomyces cerevisiae and 
their proteins interact in a yeast-2-hybrid experiment in the same species, increases the like­
lihood of that interaction. ' In this book chapter we will focus on the practical applicabil­
ity of these methods: can we use these tools to make predictions that are not only reliable, 
but that are also specific enough to design experiments to test them, and therewith complete 
a research "circle" from (genomics) experiment to theory to experiment? 

We survey the predictions that were actually experimentally verified and make a number of 
new ones. The latter will illustrate that, notwithstanding all the advances in making the data 
and tools available on the web, making specific predictions still requires manual intervention 
and creativity to integrate the different types of information and make specific predictions. 

Types of Genomic Context 

Gene Fusion 
The finding of two or more proteins encoded by separate genes of which orthologs in a 

different species are encoded in a single gene (Fig. lA), reveals a gene fusion or gene fission 
event. This is the most direct form of genomic context and, from a functional point of view, 
the fusion of two proteins can result in an enhancement of the interaction between their re­
spective biochemical activities to facilitate, for example, the channelling of a substrate.'^^ Using 
this approach to predict functional interactions in complete genomes was introduced in 1999 
by Marcotte et al̂  and Enright et al.^ In concordance with the above mentioned substrate 
channelling effect, most of the observed fusions events involve metabolic enzymes, although 
the fusions do not always involve subsequent steps in the pathway. ' In Escherichia coli three 
quarters of the total of gene fusions affect metabolic genes. 

Conservation of Gene Order in Prokaryotes 
The first pairwise genome-wide sequence comparisons revealed that even closely related 

species lack large scale conservation of gene order, ' indicating that in the course of evolu­
tion genomes are rapidly rearranged and shuffled. Yet in prokaryotes some clusters of genes 
appear conserved in evolution (Fig. IB), including the relative location of the genes within 
them, over large evolutionary distances. Further inspection of these genes revealed that they 
tend to encode proteins that functionally interact, ' and that they tend to be part of the same 
operon.^ As in the case of gene fusion, since conservation of chromosomal proximity has 
functional meaning it can be used to predict functional interaction between the components of 
conserved gene clusters. This was proposed in 1998 by Overbeek et al and Dandekar et al, 
by measuring conservation of genes in runs (sets of genes encoded in the same strand and 
separated by less than 300 bases) and conservation of neighboring genes respectively. Although 
there are some hints of chromosomal clustering of functionally interacting genes in eukaryotes, 
e.g., in polycistronic transcripts in Nematodes these do not appear strong enough to predict 
functional interactions with any level of confidence. 
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Figure 1. Types of genomic context between two genes of a certain genome (centre of the figure) that indicate 
a functional interaction between the encoded protein. A) Gene fijsion: the proteins are encoded in a single 
gene in another genome. B) Gene-order conservation: the genes are close in the chromosome and tran­
scribed in the same direction in several, distandy related species. C) Sharing of a regulatory sequence: the 
genes share a regulatory sequence indicating coregulation. D) 1. Similar evolutionary pattern: the genes have 
a similar pattern in terms of the distance matrix of the homologs. E) Phylogenetic pattern: 1) co-occurrence: 
the genes have a similar pattern of presence/absence across species or 2) complementary distribution: the 
genes have an anti-correlated pattern in their presence across species. F) Matrix alignment (similar to D): 
to predict, from two protein families, which protein from family A interacts with which protein from family 
B one can align the distance matrices of the two families with each other. After alignment, proteins in 
corresponding columns are predicted to interact. 

Sharing of a Regulatory Sequence 
In eukaryotes, but also in prokaryotes, genes do not have to be neighbors to be coregulated: 

they can be part of the same regulon without being part of the same operon by sharing the same 
transcription factor binding sites (Fig. IC) . Prediction of coregulation based on comparative 
genome analysis is being used to predict protein function.^^ Comparative genome analysis 
does play an even more essential role here than in gene order conservation or gene fusion, as it 
can help in determining what the regulatory sequences are in the first place, by identifying 
conserved D N A sequences upstream of orthologous genes. These regulatory sequences can 
then subsequently be searched for in complete genomes to identify regtdons, and therewith 
potentially interacting proteins. 

Co-Occurrence of Genes in Genomes 
Although the fact that two genes are encoded together in one genome provides only a very 

weak signal that they to interact, when they are encoded in a considerable number of genomes, 
and are both absent from others this signal becomes strong enough for function prediction 
(Fig. IE). This technique, called gene co-occurrence or phylogenetic profiles, was proposed '"̂  
and verified by studies showing that proteins with a similar distribution across species have a 



16 Discovering Biomolecular Mechanisms with Computational Biobgy 

high tendency to functionally interact. '̂ '̂ '̂ The use of gene co-occurrence to predict protein 
interactions is continuously undergoing technical improvements, among others to filter out 
the phylogenetic bias in the sequenced genomes by using evolutionary information to measure 
the distance between profiles or collapsing into a single node parts of the profile that repre­
sent related species that share the presence or absence of a certain gene. A reverse use of 
phylogenetic profiles to predict function is the identification of proteins with complementary 
or anti-correlated profiles (Fig. IE) to detect nonorthologous gene displacements. In gen­
eral, the detection of nonorthologous gene displacement by complementary phylogenetic pro­
files is combined with gene-order conservation to increase the signal: i.e., does the "new" gene 
occur in conserved operons with the other genes with which it is supposed to interact, replac­
ing the old gene not only in terms of functional context but also in terms of genomic context. 

Coevolution of Sequences 
Another variant of the use of coevolution to predict protein interaction uses the evolution­

ary information that is contained at the level of the sequences themselves. For specific cases of 
protein families known to interact, such as insulin and its receptors or the chemokine-receptor 
system,^ ' their phylogenetic trees are relatively similar compared to other protein families 
(Fig. 1D). Valencia and colleagues ' made use of this property to search for interaction part­
ners within the E. colt proteome by measuring the correlation between the distance matrices 
used to build the phylogenetic trees. Ramani and Marcotte^^ used a similar approach to predict 
the binding specificities among members of 18 ligand and receptor families that posses many 
paralogs in the human genome (Fig. IF). The coevolution of interacting partners can be fol­
lowed more closely by searching for mutations that are correlated in both protein families (they 
occur in the same species), these positions may correspond to residues on the interface that 
undergo compensatory mutations in one protein to compensate the effects of mutations in the 
other. This method has been used for the prediction of interacting partners based on the find­
ing of pairs of proteins with correlated mutations. ' It has the advantage that provides not 
only the prediction of interacting partners but also of potentially interacting residues. 

Accuracy and Genomic Coverage of Context Based Predictions 
Analyses of the reliability of genomic context methods to predict fijnctional interactions 

indicate that it is generally high, specifically for gene fiision (72%)28'^^'50 ^ j £^j. 
gene-order 

conservation (80%). One should keep in mind however that the benchmarks that are used 
to estimate this reliability are often quite general: proteins are regarded as interacting when 
they have a similar set of SWISS-PROT keywords, or fall on the same metabolic map in 
KEGG, and thus the predictions that can be made tend to be general too. The availability of 
genomics-scale yeast-2-hybrid or identification of protein complexes by mass spectrometry 
analyses^^ should allow more systematic benchmarking of the genomic context methods for 
the prediction of physical interaction, were it not that these data themselves are not always of 
high quality: By comparing experimental genomics' techniques, mRNA correlated expression, 
and genomic context predictions to a classic set of "trusted" physical interactions, it was shown 
that genomic context predictions actually had both a higher coverage and a higher accuracy 
than not only mRNA coexpression, but also than direct experimental techniques like 
yeast-2-hybrid or high-throughput mass-spectrometric protein complex identification 
(HMS-PCI). As the combination of genomic context data with experimental data increases 
the reliability of the predictions, genomic context can also be used as a filter, to improve the 
quality of the experimental data,"̂  ' albeit at a loss of coverage. 

Genomic-context based predictions cover a large fraction of the genome. Based on gene-order 
conservation, gene fusion and gene co-occurrence we can presendy predict with 80% confi­
dence functional links for the majority of the proteome of prokaryotes {GA% in Mycoplasma 
genitalium and 60% in E.coli) and for a substantial fraction of the proteome of the eukaryote 
Saccharomyces cerevisiae (26%). It should thereby be noted that some hypothetical proteins 
with a significant genomic context are only linked to other hypothetical proteins. Links 
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between hypothetical proteins cannot be used for function prediction, but they are relevant 

because they provide information about the topology of the network of interactions in a cell. 

Using genomic context we can thus already obtain a view on the network of interactions within 

a cell, even if we do not know the functions of all the individual elements of that network. 

Experimentally Verified Context Predictions 
Applicability of genomic context methods for protein function prediction can, in the 

long run, only be established by experimental confirmation of their predictions. We have 

identified 22 cases where functional interactions and function were predicted to a varying 

level of specificity and either published before or along with the experimental verification 

(Table 1). In these cases gene fusion, gene-order conservation, gene co-occurrence, a comple­

mentary distribution of genes over species, and the sharing of regulatory elements have been 

used successfully to predict new protein functions. Gene-order conservation contributes the 

largest share of the predictions (Fig. 2), covering on its own more than half of all successful 

predictions. Its use is however limited to genes that (also) occur in prokaryotes. Note that 

using genomic context methods to design an experiment is not trivial because the indica­

tions of function or of functional interaction are not very specific. The methods do not 

predict what the type of interaction between the proteins is, it could e.g., be regulatory, 

physical or being part of the same pathway or process (Table 1). ^ The exception to this is 

Table 1. Experimental verification of context predictions 

Protein/Gene 

Mt-K 
GniK 

PH0272 
PrpD 

arok 
ComB 
KynB 

PvlArgDC 
FabK 
FabM 

COG0042 
Yfh1 
YchB 
SmpB 
ThyX 
ThiN 
Prx 
YgbB 
SeIR 
FadE 
TogMNAB 

MetD 

Context 

gene order 
gene order 

gene order 
gene order 
gene order 
gene order 
gene order 
gene order 
gene order 
gene order 
gene order 

co-occurrence 
co-occurrence 
co-occurrence 
complement 
complement 
fusion 
fusion/order 

fus./ord./co-o 
reg. sequence 
reg. sequence 
reg. sequence 

Type of 
Interaction 

physical interaction 
physical interaction 

metabolic pathway 
metabolic pathway 

metabolic pathway 
metabolic pathway 
metabolic pathway 
metabolic pathway 
metabolic pathway 
metabolic pathway 
tRNA modification 
process 
metabolic pathway 
process 
enzymatic activity 
enzymatic activity 
pathway 
metabolic pathway 
enzymatic activity 
metabolic pathway 
metabolic pathway 
metabolic pathway 

Function 

double-stranded DNA repair^'^ 
signal transduction for ammonium 

transport^^'^^ 
methylmalonyl-CoA racemase^° 

2-methylcitrate dehydratase"^^'^^ 
shikimate kinase^^ 
2-phosphosu-lfolactate phosphatase^^ 
kynurenine formamidase^"^ 
arginine decarboxylase^^ 
enoyl-ACP reductase^^ 
trans-2-decenoyl ACP isomerase^'^ 

tRNA-dihydrouridine synthase^^ 
iron-sulfur protein maturation^^'^°° 
terpenoid synthesis^^^ 
trans-translation^'^ °^ 
thymidilate synthase^'^^^ 
thiamine phosphate synthase^'''^^ 
peroxiredoxin^^"* 

terpenoid synthesis^°^ 
methionine sulfoxide reductase^''*^'^^^ 

acyl CoA dehydrogenase^^'''^^^ 
Oligogalacturonide transport^°^'^^° 
Methionine transport''^'^^^ 

In all cases genomic context was used to predict a functional interaction between proteins, and was 
this interaction subsequently experimentally verified. In the cases where more than one reference is 
given the functional link was published separately and before the experimental verification. 
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Figure 2. Quantitative coverage of various types of genomic context in terms experimentally confirmed 
protein functions that were predicted by various genomic context methods. Gene-order conservation alone 
covers 50% of the confirmed predictions, the remaining ones are more or less equally divided among the 
other types of genomic context. The data are fi"om Table 1. 

when genes have a complementary phylogenetic distribution. In that case the proteins, rather 
than just interact, should actually have the same function as they replace each other in the 
genome and the function prediction can be specific, provided that the function of one of the 
proteins is known.^^ 

One way to increase the prediction specificity is to include the degree to which the genomic 
context is conserved. The stronger the evolutionary conservation of a genomic context pattern 
(e.g., the more often that the genes are neighbors), the more likely that the proteins not only 
functionally interact, but also that they interact in the most direct way: i.e., by being involved 
in the same reaction and forming a protein complex. Another promising direction of research 
to increase the specificity of the predictions is to include the local topology of the network. 
Locally densely connected networks reflect physical complexes, while less connected ones cor­
relate with signaling pathways. Generally however, it is left to the researcher to combine the 
genomic context information with data on homology relations and with data on e.g., the phe-
notypic effects of deletion of the protein or on missing steps in a pathway, to make a specific, 
testable prediction about the proteins function, see also reference 38. We will illustrate these 
principles with a number of examples of using and combining various types of genomic infor­
mation to arrive at specific predictions. 

Practical Examples of New Protein Function Predictions Based 
on Genomics Data 

A Hypothetical Protein Involved in Bacterial DNA Repair 
The orthologous group of proteins that has been classified as COG0718 in the COG 

database (www.ncbi.nlm.nih/COG),^^ and is present in virtually all sequenced Bacterial ge­
nomes has at the sequence level no detectable homolog with known function. A structure 
has recently been determined, but also by comparisons at the structure level no homology 
could be detected. In such a situation, although a hypothesis about a specific function is 
hard to obtain, genomic context can at least pinpoint the biological process in which the 
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Figure 3. A hypothetical protein, COG0718 (red), which is present throughout the baaeria has a conserved 
gene order with the recombinationai repair protein RecR (orange) and with DNA polymerase subunits 
gamma and tau, encoded by de DnaX gene (brown). Such strong conservation of gene order tends to indicate 
a physical interaction between the encoded proteins, implicating COG0718 in recombinationai repair. 
Data from STRING (http://string.embl.de). A color version of this figure is available online at 
www.Eurekah.com. 

protein plays a role. Examination of the STRING database (http://string.embl.de) shows 
that the genes from COG0718 have a strong conservation of gene order with both the re­
combinationai repair protein RecR and the DNA polymerase subunits gamma and tau (en­
coded by a single gene, dnaX ) (Fig. 3). This is consistent with the finding that they are 
CO transcribed, and suggests a role for COG0718 in recombinationai repair. ^ Although 
having the structure of the protein does in this case not give information via homology to 
proteins with known functions, Lim and coworkers did note that the conserved, negatively 
charged residues of this orthologous protein do cluster on one side of the protein. They 
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suggest that the protein could have a regulatory role, with the negatively charged residues 
competing with the DNA for the binding of DNA-binding proteins in the DNA replication 
fork repair process. 

FMN Binding Proteins in Trehalose Metabolism 
An example of a case in which we can use both sequence homology as well as conservation 

of coexpression for function prediction is the S.cerevisiae hypothetical gene YBR052c. Exami­
nation of the SMART domain detection tool (smart.embl.de) indicates that YBR052C is a 
hypothetical protein that contains a flavin mononucleotide (FMN) binding domain known to 
be involved in redox-reactions. YBR052ciscoexpressedwithYDR074w/TPS2 (trehalose-6-phosphate 
synthase) in a laige set of yeast experiments (r, the uncentered correlation coefficient of their expression 
levels in expression data of Hughes and coworkers is larger than 0.6). Furthermore, this 
coexpression is conserved: both proteins have a homolog in SxerevisiaCy and these homologs, 
YCR004C and TPSl, are again coexpressed with each other (r > 0.6). This type of evolutionary 
conservation coexpression after parallel gene duplication leads to a similar increase in the reli­
ability as the conservation of coexpression after speciation.'^^ YBR052C and YCR004C are 
thus likely to play a role in trehalose metabolism, possibly, given their FMN binding capacity, 
in its role as antioxidant. 

Interaction between Bola and a Mono-Thiol Glutaredoxin in Oxidative Stress 
The orthologous group COG0271 that contains the Escherichia colt protein Bola has a 

wide phylogenetic distribution, including almost all alpha, beta and gamma-proteobacteria 
and eukaryotes, including Homo sapiens (Fig. 4A). Although the molecular ftinction of Bola is 
not known, it has been implicated in cell division, and is expressed under stress conditions. 
A role in defense against (oxidative) stress is supported by data on an Schizosaccharomycespombe 
ortholog of BolA, UVR31, that is upregulated under UV radiation. The conservation of gene 
order with a monothiol glutaredoxin-like protein (COG0278), as well as an almost identical 
phylogenetic distribution with the monothiol glutaredoxin-like protein indicate an interaction 
between the two (Fig. 4A,B). Interaction with a monothiol glutaredoxin-like protein is also 
observed in genomics protein interaction data: examination of the BIND database 
(www.blueprint.org/bin/bind.php) indicates that in S.cerevisiae the ortholog of Bola and an 
ortholog of the glutaredoxin-like protein GRX3 have been observed to interaa in ayeast-2-hybrid 
screen, as well as in Tandem AiFinity Purification.^^ Furthermore, this interaction is con­
served, it is also present in the yeast-2-hybrid screens o^ Drosophila melanogaster. ^ 

These data all indicate that Bola interacts with a mono-thiol glutaredoxin in its role in 
defense against oxidative stress. The role of this interaction cannot be revealed from 
genomic-context data, a hint does however come from homology. The structure of Bola has 
recendy been described, and it is sufFiciendy similar to that of another protein involved in 
defense against oxidative stress, Osmc,^^ that they are classified in the same fold in the DALI 
protein structure database. "̂^ OsmC is a reductase that has been proposed to use cysteine thiol 
groups to reduce substrates that cause or result from oxidative stress. Bola does not have any 
conserved thiol groups. Combining context information about the interaction with the 
mono-thiol glutaredoxin with the homologous relation to OsmC suggests that Bola acts as a 
reductase, using the thiol group of mono-thiol glutaredoxin as reducing equivalents. 

COG2835 Is Involved in Lipopolysaccharide Synthesis 
For the predicted human protein MGC14156 (Refseq: NP_116295) no ftinctional charac­

terized homologous protein can be detected by homology searches. Besides two sequences in 
mouse, the most similar homologs of this protein are bacterial sequences that belong to the 
cluster of orthologous genes COG2835. A hint about the proteins' location in the cell comes 
from the proteins N-terminus where a mitochondrial-targeting signal is detected. The mito­
chondrial localization of this protein is supported with high probabilities by different targeting 
predictors such as MITOP (0.99), Target-P (0.96) or Predotar (0.99). Moreover, the 
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Figure 4. Bola (red), a stress induced-morphogen whose molecular function is unknown has a strong genomic 
association with a mono-thiol glutaredoxin (green). It has both an almost identical phylogenetic distribution 
with the mono-thiol glutaredoxin (A) as a well as a strong gene-order conservation (B). This indicates a 
functional interaction between the proteins. Acolor version of this figure is available online atwww.Eurekah.com. 
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Figure 5. COG2835, a hypothetical protein whose molecular funaion is unknown has a conserved gene 
order with two genes involved in lipo-polysaccharide synthesis, COG 1663 (Tetraacyldisaccharide-1 -P 4-Ki­
nase) and COG 1212 (CMP-2-keto-3-deoxyoctulosonic acid synthetase. This implicates a role of COG2835 
in lipo polysaccharide synthesis as well. The lipopolysaccharide synthesis pathway is on the right. 

alpha-proteobacterial origin of this protein, determined by phylogenetic analyses/^ suggests 
that its mitochondrial localization has an ancient origin. The genome context analysis of 
COG2835 carried out on the STRING server (Fig. 5) reveals a significant association with two 
other orthologous groups: COG 1663 (Tetraacyldisaccharide-1-P 4-Kinase) and COG 1212 
(CMP-2-keto-3-deoxyoctulosonic acid synthetase). These two orthologous groups have enzy­
matic activities acting in the same biochemical pathway: the synthesis of lipopolysaccharides 
(LPS) (Fig. 5). The strong association observed in terms of conserved gene order and neighbor­
hood with two genes involved in the same pathway strongly supports an implication of 
COG2835 in lipopolysaccharyde synthesis or metabolism in bacteria. Its role in Homo sapiens 
is less clear, as that species does not synthesize lipopolysaccharides. 

RNase L Inhibitor in Ribosome Biogenesis 
In the final example we will show a wealth of evidence from genomic context data and 

homology relations suggesting that the protein RNase L inhibitor (RLI) is involved in ribo­
some biogenesis through an interaction with ribosomal RNA. In //. sapiens RLI has been 
implicated in the 2'-5' oligoadenylate pathway, an interferon inducible RNA degradation path­
way responsible for many of the antiviral and antiproliferative effects of interferon. In this 
pathway the RLI reversibly associates with the endoribonuclease RNase L which it inhibits, 
thus preventing the degradation of viral RNA. RLI has also been implicated in a very different 
activity: it is recruited by the HIV-1 protein GAG and required for capsid assembly.'''̂  These 
two reported activities of RLI, interaction with RNAse L or with HIV-1 proteins are not likely 
to be the whole story about RLFs function. First of all because RLI itself is present in all 
eukaryotes and all Archaea that have been sequenced so far (Fig. 6), but an examination of the 
SMART database'^ indicates that only mammals have proteins with the domain organization 
of its interaction partner in human, RNase L. Secondly because a role in the assembly of HIV-1 
capsids can hardly be the original reason of the proteins existence outside HIV genomes. We 
therefore examined information from genomic context data and from homology to derive a 
hypothesis about the function of RLI besides the roles described above. 
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Figure 6. A combination of genomic context and sequence data implicate the RNAse L inhibitor in 
ribosome synthesis, specifically in ribosomal RNA maturation. A) The domain organization of RLI from 
SMART (smart.embl.de), and an alignment of the N-terminal, cysteine rich domains of a representative 
set of sequences, constructed with clustalx. In each sequence both sets of 4 cysteines contain at least one 
intercysteine loop with a positively charged residue (Lysine or Arginine). B) The phylogenetic distribu­
tion of RLI from STRING (string.embl.de): the orthologous group is present in all (sequenced) Archaea 
and Eukaryotes and is absent from the Bacteria. C) Conserved coexpression from (cmgm.stanford.edu/ 
--kimlab/multiplespecies): The genes that are conservedly coexpressed with RLI (P value < 0.001) and for 
whom functional information is available can all be linked to transcription and processing of rRNA. 
Reprinted from reference 113, with permission. 
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Co-Occurrence of RLI with Ribosome (Biogenesis) Genes 
First we examined whether there are other orthologous groups that specifically tend to 

cooccur with RLI in genomes, indicating a possible fiinctional interaction between the pro­
teins. An examination of the SMART tool (http://www.smart.embl.de) indicates that RLI con­
tains two 4-cysteine domains and two ATPse domains (Fig. 6A), and indicates that genes with 
an identical domain composition as RLI, although widespread in evolution, only occur once 
per species. There appears not to have been any gene duplication in the evolution of this family, 
making RLI part of a very well-defined orthologous group. Indeed in the COG database as 
implemented in STRING (http://www.string.embl.de) indicates all proteins with the RLI do­
main composition are part of the same orthologous group. Further examination indicates that 
only 55 orthologous groups have a phylogenetic distribution that is identical to RLI (Fig. 6B). 
For the orthologous groups in this set of which we know the function (44), nearly all are either 
involved in translation or ribosome biogenesis 33 (60%), in transcription 7 (13%) and in 
DNA replication, recombination and repair 3(5%). These correlations point to a role of RLI in 
DNA duplication/transcription or RNA processing. 

Conserved Coexpression of RLI with Ribosome (Biogenesis) Genes 
From a second type of genomic context, the conservation of coregulation,^^'^'^ comes a 

prediction that is consistent with this observation, but that is more specific. Among four 
species from which extensive RNA-expression data are available {S.cerevisiaey C.eleganSy D. 
melanogastery H. sapiens) RLI is conservedly coexpressed with a number of proteins involved 
in the transcription or processing of rRNA (Fig. 6C), data from the conserved coexpression 
web-site (http:/cmgm.Stanford.edu/cgi-bin/cgiwrap/kimlab/ multiplespecies/search.pl). Some 
of the proteins that are conservedly coexpressed with RLI in four species have an identical 
phylogenetic distribution to it over all sequenced genomes. They include the nucleolar pro­
tein SIKl (NOP56) from yeast that is involved in rRNA methylation^^) and the B and C 
subunits of RNA polymerase I. The combination of gene co-occurrence and conserved 
coexpression indicates a role of RLI in the ribosome or ribosome biogenesis, specifically in 
the processing of ribosomal RNA. 

Physical Interaction of RLI with HCRl 
Large-scale analyses of physical interaction between proteins have been published for a 

couple of species, and also here one observes an increase in the likelihood that proteins interact 
when that interaction has been observed in multiple species.^ '̂̂  For RLI no evolutionary 
conserved physical interaction can be observed however. Within S. cerevisiae another type of 
"conservation" is however present. As indicated by the GRID database (biodata.mshri.on.ca/ 
yeast_grid), two independent physical interaction detection techniques, yeast-2-hybrid as 
well as Affinity Purification directed towards ribosome biogenesis detect interaction of RLI 
with the same protein, HCRl. Consistent with the observations above, HCRl is involved in 
the processing of ribosomal RNA,^^ as well as in translation initiation.^^ 

Cytoplasmatic Localization of RLI 
Data on the location of a protein can be indicative of interactions with other proteins in the 

case that there are few proteins in that compartment, and the probability that they do inter­
act is thus relatively large. In S. cerevisiae RLI 1 appears to be located in the cytoplasm, which is, 
given the large number of proteins in that cell compartment not indicative of any specific 
pathway. For a role in ribosome biogenesis, as is indicated by other genomics data, localization 
in the nucleolus would appear more likely. In S.cerevisiaey the last steps of ribosome biogenesis 
do however take place in the cytoplasm,^^ where RLI's interaction partner HCRl is also lo­
cated. ̂ ^ So the localization evidence, although it does not specifically support RLFs role in 
ribosome biogenesis, it is not inconsistent with it either. 
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Phenotype Data: A Delayed Slowdown of Protein Synthesis 
Knockouts of RLI in yeast are lethal, and are therefore nor very informative for its function 

other than that RLI is essential for the cell,^^ while over expression of the protein leads to a 
mild inhibition of growth. Recendy, inducable depletion of RLI in Trypanosoma hrucei was 
established with RNAi. Although one might expect that, given its role as an RNAse inhibitor, 
depletion of RLI would lead to decreased levels of mRNA no such effect was observed. Rather, 
after a delay of 48 hours, protein synthesis appeared to be reduced,^ which is consistent with 
a role of RLI in ribosome biogenesis. 

Domain Composition of RLI Hints at Interaction with RNA 
RLI does contain domains whose separate molecular functions are quite well known, al­

though they have not been found in combination with each other. At its N-terminus the pro­
tein contains two domains with four conserved cysteines each, one unique to RLI, and one a 
4Fe-4S binding domain. It ftirthermore contains 2 ATPase domains (Fig. 6A). One possibility 
to link this domain organization to the role in ribosome biogenesis that was indicated by the 
co-occurrence and genomic context analyses, lies in the 4Fe-4S binding domain. Aside from 
playing a role in redox reactions, these domains have also been observed in DNA binding 
proteins endonuclease III^^ and the DNA glycosylase MutY.^ The 4Fe-4S cluster is hypoth­
esized to stabilize the fold, presenting a loop that extends from the protein to the backbone of 
the DNA.^^ Consistent with a role of both the 4-cysteine domains of RLI in binding the 
backbone of the double stranded rRNA (negatively charged) is that they both contain con­
served Lysines (positively charged), the first domain between its first two cysteines, the second 
one between its third and fourth cysteine. 

Discussion 
Examples like the ones above show the potential and limits of using comparative genomics 

in protein fiinction prediction. We can pinpoint to a role in a process, but cannot always 
predict what exacdy that role is. In the case of a metabolic pathway, a molecular function like 
enzymatic activity and a context function like the pathway can often be matched to obtain a 
specific prediction. In the case of the RNase L inhibitor case the situation is less obvious, 
although a lot can be gained from combining various types of genomics and nongenomics 
information. The idiosyncratic nature of the case stories of function prediction discussed above 
is a reflection of the idiosyncratic nature of bio tic systems. This is not to downplay the role of 
bioinformatics: combining the information either along vertical lines (between different types 
of experiments) or along horizontal lines (between different species) such that it becomes reli­
able and presenting the information in a comprehensive way is essential for optimal exploita­
tion. Turning all that information into a specific, testable function prediction does require 
human creativity. 
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Clues from Three-Dimensional Structure 
Analysis and Molecular Modelling: 
New Insights into Cytochrome P450 Mechanisms 
and Functions 
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Abstract 

Cytochrome P450 is a focus of attention as it comprises one of the largest superfamilies 
of enzyme proteins. MetaboUzation of many drugs is affected by cytochrome P450. It 
is an attractive drug target, e.g., cytochrome P450s o^Mycobacterium tuberculosis are 

promising targets in the fight against tuberculosis. The structure provides new insights for 
investigation of structure/mechanism of cytochrome P450, and for rational design of inhibitor 
molecules. We will illustrate how biocomputing and bioinformatical techniques reveal details, 
functions and Rirther secrets of this exciting molecule. Molecular modelling along with 
site-directed mutagenesis of P450 2B1 elucidated the molecular determinants of substrate 
specifity. Regioselectivity of progesterone hydroxylation by cytochrome P450 2B1 was 
reengineered based on the X-ray structure of cytochrome 2C5. Docking approaches rational­
ized the regioselectivity of the reengineered cytochrome P450 2B1. Furthermore, by methods 
of molecular dynamic simulations, routes were identified by which substrates may enter into 
and products exit from the active site of cytochrome P450. 

Introduction 
Cytochrome P450 enzymes^'^ form an ubiquitous heme protein monooxygenase family 

(EC: 1.14.14.1). They play an important role in the synthesis and degradation of many physi­
ologically important compounds such as steroid hormones, cholesterol, bile acids and in the 
detoxification of xenobiotics in many species of microorganisms, plants and animals. 

P450 are of great medical relevance: Mutations in P450 genes are triggers of human diseases 
such as primary congenital glaucoma and there are evidences for associations between cyto­
chrome P450 enzyme-polymorphism and cancer. Some P450 enzymes are able to activate 
procarcinogens to genotoxic intermediates. They play a major role in drug-metabolism, for 
example the P450 3A family of enzymes are able to metabolize the majority of commercially 
available drugs such as Codeine (narcotic), Diazepam (Valium), Erythromycin (antibiotic). 
Drug metabolism polymorphism or interactions with other drugs can cause severe sideeflFects 
in patients. 
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Figure 1. The active site molecular surface and the outer molecular surface of cytochrome P450eryF 
(CYP107A1) are not connected with each other. A substrate molecule, 6-deoxyerythonolide, is shown in 
the aaive site above the heme. The molecular surface was computed with the PyMOL program. ̂ ^ 

P450 are heme-thiolate containing proteins where the ligand of the heme iron is delivered by 
a q^steine residue in a highly conserved region of the enzyme. The active site is buried at the 
center of the enzyme (Fig. 1). They are named P450 for the absorption band at 450 nm of their 
carbon-monoxide-bound form. The reactions carried out by cytochrome P450 molecules are 
very diverse and include hydroxylation, N-, O- and S-dealkylation and oxidation of heteroatoms. 

According to their sequence similarity P450 enzymes are subdivided into families (sequence 
identity greater than 40%) and subfamilies (sequence identity greater than 55%). In humans 
57 CYP genes are sequenced (and 58 pseudogenes) which are subdivided into 18 families and 
43 subfamilies. 

In prokaryotes P450 are soluble proteins whereas in eukaryotes P450 are usually 
membrane-associated within the inner mitochondrial membrane or endoplasmic reticulum. 

Because of their physiological importance and medical relevance the P450 enzymes are an 
emerging field of research. Major unresolved issues are structurefiinction relationships such as 
the understanding of substrate specificity, the catalytic mechanism of multi-step reactions, the 
dynamical properties that allow substrates to enter the active site and products to leave the 
active site or the identification of essential determinants of drug metabolism or tolerance. In 
the following paragraphs methods of computational biology are presented which aid our un­
derstanding of this interesting enzyme. However the presented methods are applicable to a 
variety of biomolecules. 

Modelling 
The gap between the high number of known protein sequences and the only limited avail­

able 3-dimensional protein-structures is increasing rapidly. Molecular modelling techniques 
are valuable tools to fill this gap. ' In the field of cytochrome P450 research this technique is of 
high interest. Up to now more than 3700 cytochrom P450 (different named) sequences of 
different species are known, the determination of all these protein structures is a tedious work, 
because crystallization of some P450 enzymes, especially of the membrane-associated ones is 
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Figure 2. Structure of cytochrome P450 2C5 bound to a substrate. A substrate molecule, 
4-methyl-7V-methyl-A^-(2-phenyl-2//-pyrazol-3-yl)benzenesulfonamide, is shown in the active site above 
the heme. The principal helices and the NH2-terminal are labelled. P450 2C5 is membrane-associated 
by its N-terminal tip. 

difFicult. So far more than 120 P450s structures are in the brookhaven protein database. Among 
them two mammalian P450 enzymes (2C5 and 2B4), the first two structures of 
membrane-associated P450s which were solved recendy (Fig. 2). The overall fold of P450s is 
conserved despite their low sequence identity (as low as 10%). 

Homology Modelling 
Although the amino acid sequence must finally determine a proteins three dimensional 

structure and despite of intensive research the development of an algorithm to determine the 
accurate 3D-structure from amino acid sequence has yet not been achieved. 

The most promising approach is the modelling based on structures of homologue pro­
teins. The progress within the field of protein structure predicition by NMR or X-ray crys­
tallography enhances the probability to find a homologue protein of which the 3-dimen-
sional structure is known. 

Experimentally determined protein and DNA/RNA structures can be found in the 
brookhaven protein databank (http://www.pdb.org). To compute a good model of the un­
known structure the protein homologue should have a sequence identity of more than 30%. 
The prerequiste of a good model is the generation of an alignment between sequence of the 
experimentally determined template structure and the protein which has to be modeled. To 
generate a satisfactory alignment, experimental data should also be taken into account such as 
site-directed mutagenesis data of residues known to be involved in substrate binding, binding 
to redox partners; anibody recognition sequences which indicate whether certain residues are 
located on the surface of a protein. 

The prediction of the secondary structure elements is usually reasonable accurate (--75%) 
for a three state prediction using sequence alignments whereas the prediction within the 
loop-region and of dynamic sidechains could be problematic. In order to refine the structure 
the model should be energy minimized using molecular mechanics. 
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There are comparative modelling servers on the web such as SWISS-MODEL,^^ 
CPHmodels.^^ Software packages for detailed protein structure analysis include Modeller/^ 
WHATIF,^^ Insight^^ and Sybyl.^^ 

The automated SWISS-MODEL software works in several steps as follows: 
• superposition of homologue 3D-structures 
• generation of a multiple alignment 
• calculation of peptidchain form the averaged coordinates 
• reconstruction of loops based on a coordinate library 
• addition and correction of sidechains 
• validation of the structure (checking of stereochemical quality) 

Substrate specificity and type of reactions catalyzed are governed by less conserved regions 
of P450s and are therefore not well understood. In this context the prediction of the 
regioselectivity of an enzymatic reaction is of particular interest. In a regioselective reaction one 
possible product out of two or more is formed preferentially (it is often the case that addition 
and elimination reactions may, in principle, proceed to more than one product—these are 
often isomers of each other). 

In the following approach based on the 3 D model of P450 2B1 it was shown that active site 
residues are responsible for regioselectivity. P450 2B1 belongs to the 2B subfamily compris­
ing enzymes with a broad range of substrates, including drugs, environmental carcinogens and 
steroids. A model of 2B1 was built using the X-ray structure of P450 2C5 as a template. The 
location of the active site residues within the 3 D P450 model of 2B1 can be visualized. The 
active site residues of 2B1 could be deduced from the 2C5 structure and were verified experi­
mentally by site-directed mutagenesis. 2B1 has progesterone 16a-hydroxylase activity whereas 
2C5 has progesterone 21-hydroxylation activity. By replacing seven active site residues of 2B1 
by the corresponding active site residues of 2C5 a novel progesterone 21-hydroxylation activity 
was confered to 2B1. The mutated 2B1 showed 80% regioselectivity for progesterone 21-hy­
droxylation. 

Threading 
In case that there is no homologue protein or the sequence identity is very low (e.g., a novel 

cytochrome from Archaebacteria) the threading approach is a good alternative. ̂ '̂ '̂ ^ The start­
ing point of a threading approach are protein folds. It is known that proteins having no se­
quence similarity can have similar 3D-structures. Examples are actin and hexokinase which 
exhibit the same Ribonuclease H-like folding topology, despite having different sequences. 
In the course of evolution only a limited number of protein folds emerged (^1000).^^ The 
sequence for which a prediction is required is threaded onto all known protein folds. As current 
databases have already covered a large part of protein folds generally used in nature, this ap­
proach is successful. Useful Webservers include: genThreader^^'^^ and 3D-PSSM. 

Ab Initio Modelling 
Even novel protein folds could be predicted by ab initio modelling. Ab initio structure 

prediction requires only the sequence of a protein to generate a 3-dimensional model. This 
approach is computationally demanding, there are several algorithms which for example rely 
on physicochemical energetics, or on methods that use predicted secondary structure in com­
bination with distance constraints. The catalytic arrangement of the cytochrome P450 
center provides useful distance constraints and can be confirmed by conserved residues in 
these positions. This technique could be used to improve ab initio models of cytochromes 
P450 with completely novel folds. 

Assessing Tertiary Structure Prediction 
N o matter which method was used to establish a structural model, it is essential to assess the 

validity of the generated model by checking how well the new model conforms to protein 
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stereochemical quality. There is some agreement about which measurements are good indica­
tors of stereochemical quality; these include planarity; chirality; phi/psi preferences; chi angles; 
nonbonded contact distances; unsatisfied donors and acceptors. The ProCheck package com­
prises a number of complementary procedures for evaluating protein structures and identifies 
regions of the modeled protein which may require further refinement. The following webservers 
are very useful: Whatcheck, ProCheck. These tools can be used to check the model quality 
in the study on cytochrome regioselectivity as residue positions are critical here. 

Modelling of Protein-Ligand Complexes 
An important and useful area of molecular modelling is the modelling of protein-ligand 

complexes. Comparative methods and docking approaches can be applied. Protein docking 
methods help understanding the mecanism of molecular interaction and are also useful in the 
development of novel pharmaceutical agents because it helps to screen out unfavorable ligands 
at an early stage. 

A docking procedure^'' can be subdivided into three processes: identification of the bind­
ing site, sampling of possible ligand orientations and positions in the binding site and scoring 
of the possible sampled solutions. The rigid-body model is historically the first docking ap­
proach where the flexibility of the interaction partners is not considered. However most of the 
current rigid-body methods could address ligand flexibilty by accounting an ensemble of ligand 
conformations or allowing some intermolecular interactions. 

Software programs carrving out docking calculations are for example DOCK, GRID,^ '̂ ^ 
AutoDock,^^ FTDOCK.^^ The DOCK program suite is one of the oldest and best known 
ligand-protein docking programs. In newer versions of DOCK the ligand flexibility is 
incooperated. 

In a first step a 'negative image' of the binding site is constructed by overlapping spheres of 
varying radii. In a second step the ligand atoms are matched to these sphere centres to position 
the molecule within the binding site. GRID allows the identification of ligand binding sites of 
a protein. The protein is put into a 3-dimensional grid, at each point of the grid the molecular 
mechanics interaction energy between the protein and a series of probe molecules is computed. 
Probe molecules are a series of chemical functional groups such as phosphate, methyl, hy-
droxyl, carboxyl. Auto Dock identifies the binding site by a genetic algorithm search. Estimated 
binding free energies can also be computed. 

Many computational methods used for modelling of protein-ligand complexes can also be 
applied to model protein-protein-complexes. For example the DOCK program has been used 
to model protein-protein complexes. To accelerate the search for the best geometric fit between 
two proteins, Fourier transform methods are appUed, a shape recognition algorithm in which 
molecules are discretised onto grid. All possible translations of the molecules are scanned by 
superposition of the grid points. The program FTDock is based on Fourier transform proce­
dure and a method to determine electrostatic complemenarity. 

Docking of inhibitors or substrate molecules into the active site of P450 aid understanding 
the key enzyme-substrate-interactions as well as the role of particular residues in catalysis. Steric 
considerations as well as orientating the site of metabolism toward heme and ferryl oxygen has 
to be taken into account. 

In the following we describe one particular drug target and how docking methods can help 
in the development of new therapeuticals. Cytochrom P450 (CYP121) of Mycobacterium 
tuberculosis (Mtb) is a promising drug target to combat the multidrug-resistant strains of 
Mycobacterium tuberculosis. The genome of Mycobacterium tuberculosis reveals an excep­
tional high number of 20 different encoded P450—the highest number in any bacterium. 
Several azole drugs which are known inhibitors of cytochrome P450 have been shown to have 
potent antimycobacterial activity, especially high affinity for CYP121. But many azol anti-fungal 
drugs show cross-reactivity with human P450 isoforms. Docking studies should help to ratio­
nalize the key determinant that dictate tight CYP121-drug interactions in order to design 
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novel azole-based drugs diat have high selectivity for CYP121. First docking studies could 
rationalize binding of certain azole drugs, e.g., miconazole whereas bulkier azole drugs failed to 
dock into the active site. 

Molecular Dynamic Simulation 
Molecular dynamic simtdations '̂ have become a standard tool for the investigation of 

biomolecules. Simulations give insights into the natural dynamics of biomolecules and thereby 
aid our understanding of biochemical processes. Especially in protein-ligand interaction the 
flexibility of the interaction partners is of great importance. In order to fit in the active site of 
the protein the ligand has to adopt a certain 3-dimensional conformation. However, a protein 
is despite being a rigid entity not completely stiff. Especially the positions of the amino acid 
side chains can be very flexible and change their positions while the protein is „at work": For 
lots of enzymatic processes and binding of ligands this flexibility is essential for a proteins 
specific function. These subtle movements are the basis for all metabolic processes and thus are 
a key process of what life, a living protein "breathes". Even protein domains can change their 
position relatively to each other. The experimental approaches to study biomolecular dynamics 
are still limited. With continuing advances in the speed of computers and the methodology of 
molecular dynamic simulations the time scales that are becoming available are making it pos­
sible to study phenomena of biological interest in real time. 

For the optimization of crystal structures and NMR structures molecular dynamic simula­
tions are applied as a standard tool. The principle of the molecular dynamic simulation is to 
record the movement of atoms under the influence of a selected force field (OPLS, CHARMM, 
GROMOS96^^ or AMBER^^). It is assumed diat die movement of the atoms follows classical 
mechanics. The theoretical basis of a molecular dynamic simidation is Newtons equation of 
motion {Fi(t) = mi • ^X )̂, where F is the force acting on atom i at time t, m is the mass of atom i, 
a the acceleration acting on atom i at time t), which is solved numerically for each atom. Forces 
between the atoms are neglected during the molecular dynamic simtdation. The initial point of 
a simulation is a starting structure, which is in most cases an experimentally determined struc­
ture. To simulate the dynamics of a whole protein it is solvated with water molecules. At the start 
of a simulation a velocity is assigned to each atom, which corresponds to the selected tempera­
ture of the simulation. Newton's equation of motion is solved for each atom taking these initial 
values into account and the computed coordinates are saved periodically. 

In the P450 research molecular dynamic simulations were applied to address the question 
how substrates enter or exit the isolated cavity of the enzyme. To allow substrate access and 
product exit the enzyme must undergo structural motions. The understanding of these mo­
tions woidd also help to explain why P450s have such a broad diversity of substrates and such 
a wide variation in degree of specificity. Furthermore the enzyme kinetic of P450 was shown to 
be influenced by protein dynamics. In the following we describe two molecular dynamics simu­
lation methods elucidating potential ligand exit pathways in P450s. Steered molecular dy­
namic simulations (SMD)^^"^^ of testosterone exit suggested a functional role for the residues 
in the N-terminal portion of the cytochrome P450 2B1 I helix. These data are confirmed by 
site-directed mutagenesis data within the I-helix as these alter the enzymatic activity of the 
enzyme. SMD is an extended MD simulation method mimicking the principle of the atomic 
force microscopy (AFM). In SMD simulations, time-dependent external forces are applied to 
the ligand to facilitate its dissociation from the protein by movement along a trajectory. Be­
cause position restraints are removed from the entire protein-ligand complex, the SMD simu­
lation allows the protein to be repositioned in response to the accelerated dissociation process 
of the ligand. 

By random expulsion molecular dynamic simulations (REMD) the substrate exit of 
different P450 enzymes could be identified. An investigation by REMD of mammalian cy­
tochrome P450 showed that the substrate egress is diflPerent from that of soluble, bacterial 
P450. In REMD the probability of spontaneous substrate exit in the time range amenable 
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Figure 3. In REMD, routes by which a ligand can exit from an interior cavity in a protein are identified (here 
the active site of a cytochrome P450 with a substrate molecule above the heme is shown). An artificial 
randomly orientated force is applied to the center of mass of the ligand. 

to molecular dynamic simulation is enhanced by an artificial force with random direction 
imposed upon the substrate in addition to the standard force field (Fig. 3). The direction of 
the additional force acting on the center of mass of the ligand is chosen randomly. The 
direction of the force is kept for a chosen number of time steps, N. During this time period, 
a specified distance fmin* should be covered by the substrate molecule: the substrate is re­
quired to travel at an average threshold velocity v during the time period NxAt, where At is 
the time step of the molecular dynamic simulation. If the substrate encounters relatively 
rigid parts of the cavity its average velocity will fall below the preset threshold. In this case a 
new direction is chosen randomly and maintained, as long as the substrate moves in the new 
direction with an average velocity larger than the preset value. In this way, the substrate 
probes different regions of the protein during the simulation until it exits. 

References 
1. Schuler MA, Werck-Reichhart D. Functional genomics of P450s. Annu Rev Plant Biol 2003; 

54:629-667. 
2. Werck-Reichhart D, Feyereisen R. Cytochromes P450: A success story. Genome Biol 2000; 1(6):RE-

VIEWS3003. 
3. Graham-Lorence S, Peterson JA. P450s: Structural similarities and functional differences. FASEB J 

1996; 10(2):206-214. 
4. Mueller EJ, Loida PJ, Sligar SG. In: Ortiz de Montellano PR, ed. Cytochrome P450: Structure, 

Mechanism, and Biochemistry. New York and London: Plenum Press, 2003:83-124. 
5. David Nelson's homepage. http://drnelson.utmem.edu/CytochromeP450.html. 
6. Russell RB, Sternberg MJ. Structure prediction. Hov̂ r good are we? Curr Biol 1995; 5(5):488-490. 
7. Sali A, Overington JP, Johnson MS et al. From comparisons of protein sequences and structures to 

protein modelling and design. Trends Biochem Sci 1990; 15(6):235-240. 
8. Wester MR, Johnson EF, Marques-Soares C et al. Structure of a substrate complex of mammalian 

cytochrome P450 2C5 at 2.3 A resolution: Evidence for multiple substrate binding modes. Bio­
chemistry 2003; 42(21):6370-6379. 

9. Scott EE, White MA, He YA et al. Structure of mammalian cytochrome P450 2B4 complexed 
with 4-(4-chlorophenyl)imidazole at 1.9-A resolution: Insight into the range of P450 conforma­
tions and the coordination of redox partner binding. J Biol Chem 2004; 279(26):27294-27301. 

10. Guex N, Peitsch MC. SWISS-MODEL and the swiss-Pdbviewer: An environment for comparative 
protein modeling. Electrophoresis 1997; 18(15):2714-2723. 

11. Lund O, Nielsen M, Lundegaard P et al. CPH models 2.0:X3M a computer program to extract 
3D models. Abstract at the CASP5 conference 2002; A102. 



Clues from Three-Dimensional Structure Analysis and Molecular Modelling 37 

12. Marti-Renom MA, Stuart AC, Fiser A et al. Comparative protein structure modeling of genes and 
genomes. Annu Rev Biophys Biomol Struct 2000; 29:291-325. 

13. Rodriguez R, Chinea G, Lopez N et al. Homology modeling, model and software evaluation: Three 
related resources. Bioinformatics 1998; l4(6):523-528. 

14. Insightll. San Diego, CA: Accelerys. 
15. SYBYL 6.5. South Hanley Rd., St. Louis, Missouri, USA: Tripos Inc., 1699:63144. 
16. Kumar S, Scott EE, Liu H et al. A rational approach to Reengineer cytochrome P450 2B1 

regioselectivity based on the crystal structure of cytochrome P450 2 C 5 . J Biol Chem 2003; 
278(19):17178-17184. 

17. Jones D T , Thornton JM. Potential energy functions for threading. Curr Opin Struct Biol 1996; 
6(2):210-216. 

18. Jones D T . Progress in protein structure prediction. Curr Opin Struct Biol 1997; 7(3):377-387. 
19. Sippl MJ, Flockner H . Threading thrills and threats. Structure 1996; 4(1):15-19. 
20. Murzin AG, Brenner SE, Hubbard T et al. SCOP: A structural classification of proteins database 

for the investigation of sequences and structures. J Mol Biol 1995; 247:536-540. 
2 1 . Koonin EV, Wolf YI, Karev GP. The structure of the protein universe and genome evolution. 

Nature 2002; 420(6912):218-223. 
22. Jones D T . GenTHREADER: An efficient and reliable protein fold recognition method for ge­

nomic sequences. J Mol Biol 1999; 287(4):797-815. 
23 . McGuffin LJ, Jones D T . Improvement of the GenTHREADER method for genomic fold recogni­

tion. Bioinformatics 2003; 19(7):874-881. 
24. Kelley LA, MacCallum RM, Sternberg MJ. Enhanced genome annotation using structural profiles 

in the program 3D-PSSM. J Mol Biol 2000; 299(2):499-520. 
25. Aloy P, Stark A, Hadley C et al. Predictions without templates: New folds, secondary structure, 

and contacts in CASP5. Proteins 2003; 53(Suppl 6):436-456. 
26. Kinch LN, Wrabl J O , Krishna SS et al. CASP5 assessment of fold recognition target predictions. 

Proteins 2003; 53(Suppl 6):395-409. 
27. Tramontane A, Morea V. Assessment of homology-based predictions in CASP5. Proteins 2003; 

53(Suppl 6):352-368. 
28. Dandekar T , Argos P. Applying experimental data to protein fold prediction with the genetic algo­

rithm. Protein Eng 1997; 10(8):877-893. 
29. Hooft RW, Vriend G, Sander C et al. Errors in protein structures. Nature 1996; 381(6580):272. 
30. Laskowski RA, MacArthur M W , Moss DS et al. PROCHECK: A program to check the stere­

ochemical quality of protein structures. J Appl Cryst 1993; 26:283-291. 
31 . Halperin I, Ma B, Wolfson H et al. Principles of docking: An overview of search algorithms and a 

guide to scoring functions. Proteins 2002; 47(4):409-443. 
32. Smith GR, Sternberg MJ. Prediction of protein-protein interactions by docking methods. Curr 

Opin Struct Biol 2002; 12(l):28-35. 
33. Abagyan R, Totrov M. High-throughput docking for lead generation. Curr Opin Chem Biol 2001; 

5(4):375-382. 
34. Shoichet BK, McGovern SL, Wei B et al. Lead discovery using molecular docking. Curr Opin 

Chem Biol 2002; 6(4):439-446. 
35. Ewing TJ, Makino S, Skillman AG. D O C K 4.0: Search strategies for automated molecular dock­

ing of flexible molecule databases. J Comput Aided Mol 2001 ; 15(5):411-428. 
36. Goodford PJ. A computational procedure for determining energetically favorable binding sites on 

biologically important macromolecules. J Med Chem 1985; 28(7):849-857. 
37. Wade RC, Goodford PJ. Further development of hydrogen bond functions for use in determining 

energetically favorable binding sites on molecules of known structure. 2. Ligand probe groups with 
the ability to form more than two hydrogen bonds. J Med Chem 1993; 36(1): 148-156. 

38. Morris C M , Goodsell DS, Halliday RS et al. Automated docking using a lamarckian genetic algo­
rithm and and empirical binding free energy function. J Comput Chem 1998; 19:1639-1662. 

39. Gabb HA, Jackson RM, Sternberg MJ. Modelling protein docking using shape complementarity, 
electrostatics and biochemical information. J Mol Biol 1997; 272(1): 106-120. 

40. Munro AW, McLean KJ, Marshall KR et al. Cytochromes P450: Novel drug targets in the war 
against multidrug-resistant Mycobacterium tuberculosis. Biochem Soc Trans 2003; 31(Pt 3):625-630. 

4 1 . Hansson T , Oostenbrink C, van Gunsteren W. Molecular dynamics simulations. Curr Opin Struct 
Biol 2002; 12(2):190-196. 

42. Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol 
2002; 9(9):646-652. 

43. Jorgensen W, Tirado-Rives J. The OPLS potential functions for proteins. Energy minimizations 
for crystals of cyclic peptides and crambin. J Am Chem Soc 1988; 110:1657-1666. 



38 Discovering Biomolecular Mechanisms with Computational Biology 

44. Brooks B, Bruccoleri R, Olafson B et al. C H A R M M : A program for macromolecular energy, mini­
mization, and dynamics calculations. Comp Chem 1983; 4:187-217. 

45. Schuler LD, Daura X, van Gunsteren W F . An improved G R O M O S 9 6 force field for aliphatic 
hydrocarbons in the condensed phase. J Comp Chem 2001; 22:1205. 

46. Cornell W D , Cieplak P, Payly CI et al. A second generation force field for the simulation of 
proteins, nucleic acids and organic molecules. J Am Chem Soc 1995; 117:5179-5197. 

47. GrubmuUer H, Heymann B, Tavan P. Ligand binding: Molecular mechanics calculation of the 
streptavidin-biotin rupture force. Science 1996; 271(5251):997-999. 

48. Isralewitz B, Gao M, Schulten K. Steered molecular dynamics and mechanical functions of pro­
teins. Curr Opin Struct Biol 2001; l l (2) :224-230. 

49. Izrailev S, Stepaniants S, Balsera M et al. Molecular dynamics study of unbinding of the avidin-biotin 
complex. Biophys J 1997; 72(4): 1568-1581. 

50. Scott EE, Liu H, Qun He Y et al. Mutagenesis and molecular dynamics suggest structural and 
functional roles for residues in the N-terminal portion of the cytochrome P450 2B1 I helix. Arch 
Biochem Biophys 2004; 423(2):266-276. 

51 . Ludemann SK, Lounnas V, Wade RC. How do substrates enter and products exit the buried active 
site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand 
access channels and mechanisms. J Mol Biol 2000; 303(5):797-811. 

52. Wade RC, Winn PJ, Schlichting I et al. A survey of active site access channels in cytochromes 
P450. J Inorg Biochem 2004; 98(7):1175-1182. 

53. DeLano WL. The PyMOL molecular graphics system on world wide web http://www.pymol.org.; 
2002. 



CHAPTER 3 

Prediction of Protein Function: 
Two Basic Concepts and One Practical Recipe 

Frank Eisenhaber'" 

Abstract 

The analysis of uncharacterized biomolecular sequences obtained as a result of genetic 
screens, expression profile studies, etc. is a standard task in a life science research 
environment. The understanding of protein function is typically the main difficulty. 

This chapter intends to give practical advise to students and researchers that have only intro­
ductory knowledge in the field of protein sequence analysis. 

Applicable theoretical approaches range from (1) textual analyses, interpretation in terms of 
patterns of physical properties of amino acid side chains and (2) the extrapolation of empiri­
cally established relationships between local sequence motifs with known structural and ftmc-
tional properties to the collection of sequence segment families with sequence distance metrics 
and protein function derivation with annotation transfer (concept of homologous families). 
Here, the impact of different techniques for the biological interpretation of targets is discussed 
from the practitioner s point of view and illustrated with examples from recent research re­
ports. Although sequence similarity searching techniques are the most powerful instruments 
for the analysis of high-complexity regions, other techniques can supply important additional 
evaluations including the assessment of applicability of the sequence homology concept for the 
given target segment. 

Introduction 
The genome has become the integrating principle for the various fields of biology and the 

clarification of pathways that lead to the realization of genome information into phenotypes 
under varying environmental conditions has become the central task for life sciences. As a first 
step, it is critical to understand the function of genes at least in qualitative terms; i.e., to name 
the molecular function of encoded proteins and to uncover the topology of interactions of 
networks involving them. Given that, currendy, the molecular function of at least two thirds of 
all genes in completely sequenced eukaryote genomes remains more or less clouded, this would 
represent a dramatic progress. At the same time, it should be noted that real theoretical predict­
ability of biological systems above the level of educated guesses (for example, for drug engineer­
ing) typically requires quantitative characterization of gene and protein activity and modeling 
of biological networks, which will be, in most cases, not a matter of the coming handful of 
years. Possibly, this is even an optimistic assessment. 

With the central role of the genome in the functioning of biological systems, it is not 
surprising that experimental screens for genes relevant for the processes investigated are a stan­
dard approach in todays experimental biology; for example, expression profiling with DNA 
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microarrays, yeast two hybrid screens, etc. If the biological phenomenon has not been well 
described in already published research, the screens lead typically to sequence tags of yet 
uncharacterized genes. Their sequence information has then to be interpreted in functional 
terms within the given physiological context. Stereotypically, the sequence is submitted to a 
similarity search in sequence databases. As a rule, the amount of insight produced by such a 
direct approach is indirecdy proportional to the novelty of the gene target. In this tractate, we 
want to discuss the few fundamental principles that underlie state-of-the-art protein sequence 
analysis approaches. Then, we propose a general recipe for the practitioner who looks for re­
search hints in his target sequences. We will give interpretation guides for sequence analytic 
findings and emphasize limitations where appropriate. 

The Beginning: Deriving the Protein Sequence and the Definition 
of Protein Function 

Typically, the starting point is a partial nucleic acid sequence representing a piece of mRNA. 
Whereas the experimental extension of the sequence to a full transcript was mandatory before 
the era of large-scale sequencing, this step can often be avoided now. In this case, it is necessary 
to find (1) a longer expressed sequence tag (EST), (2) a cluster of ESTs with a consensus 
sequence or, luckily, (3) a complete cDNA in the databases that obviously contains the reliably 
sequenced segment of the partial sequence obtained in the screen. The completeness of the 
putative transcript sequence can be investigated by mapping relevant ESTs onto the genome 
sequence. Especially in the case of incomplete transcripts involving only 3' untranslated re­
gions, searching for the closest predicted gene upstream in the genome might yield the desired 
gene. ̂  '̂  Searches for ESTs that bridge the distance between the detected gene and the mapped 
site are a possible reliability check and can also discriminate cases of alternative splicing. Fur­
ther, the possibility of stumbling onto a pseudogene must be ruled out.^' 

Whereas all the steps leading to the protein sequences possibly encoded in the given tran­
script (in this essay, we do not consider untranslated RNAs) are sometimes complicated by 
sequencing errors (frameshifts, single point exchanges, genome fusion errors) but, in most 
cases, are just a technical exercise, the insufficient understanding of biological function for 
proteins known only as conceptual translations has become the major botdeneck in sequence 
data interpretation. 

A few words on protein function: Protein function requires a hierarchical concept for the 
description of its many aspects that reflects the complexity of living systems. The proteins 
function at the molecular level is rather a list of potential capabilities determined by its primary 
and tertiary structure. Molecular junction description includes qualitative and quantitative as­
pects of diffusion properties in solution and membrane environments, conformational flexibil­
ity, allosteric conformational changes, possible ligand-binding (or catalytic) activities and abil­
ity for posttranslational modifications. Depending on cellular context (subcellular localization), 
different features of the molecular ftinction may become important. A set of many cooperating 
proteins is responsible for a cellular junction (metabolic pathway, signal transduction cascade, 
cytoskeletal complex, etc.). Since gene expression is regulated in a time- and tissue-dependent 
manner, regulatory sequences in the genomic environment of the gene considered come addi­
tionally into play at this level. Finally, the presence and activity of a gene product may be 
direcdy associated with 2. phenotypic junction at the organism or population level. Typically, 
only some aspects of molecular or cellular function are in the reach of sequence analytic studies. 

Concept No. 1: Function Inheritance from a Common Ancestor Gene 
The most widely known, the evolutionary (historic) approach for inferring protein func­

tion with nonexperimental means is based on the frequent observation of similarity between 
biomolecular sequences coding proteins with similar molecular function. Since the early ex­
amples were typically metabolic enzymes or transporters (such as hemoglobin) for which the 
3D structure was available, the insight materialized soon in the paradigm of both equal/similar 
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three-dimensional structural fold and molecular function as a consequence of similarity of 
protein sequence. Within this concept, a family of homologous gene/protein sequences is hy­
pothesized to appear evolutionary during radiation of species (rarely via horizontal gene trans­
fer) from an ancestor gene in the founding species via multiple mutations and, sometimes, 
gene duplications. In this context, the closest homologue of a gene in another organism ("the 
same gene") with most likely the same function is called orthologue, more distandy related 
homologues that, probably, arise from gene duplications and might assume new functions are 
named paralogues. Nevertheless, distant sequence similarity as a result of functional pressure or 
physicochemical constraints (analogous sequences in a scenario of convergent evolution) can­
not always be excluded but, from the viewpoint of protein function prediction, the evolution­
ary pathway is not the major issue. 

Functional annotation available from experimental studies of one family member is thought 
to be fully or partially transferable to all other members in the family. Therefore, considerable 
research effort has been focused on method development for more and more distandy related 
homologue detection to increase the likelihood of having experimentally studied family mem­
bers. Except for obvious alignments with high sequence identity, it is not trivial to decide 
whether the similarity between sequences is significant in a statistical sense. The sequence ho­
mology approach is unthinkable without a mathematical function for measuring the similarity 
of two sequences quantitatively; i.e., a distance metric for the sequence space. 

At the level of nucleic acids (genes and transcripts), the only possible measure is the count of 
identical positions in an optimal alignment. In this way, only relatively close sequence neigh­
bors can be detected. Whereas the transcript sequence itself is just a redundant four-letter text, 
the translation into an amino acid sequence yields a more informative 20-letter message that 
often can be direcdy interpreted in physical and structural terms. Matrices of likelihood of 
amino acid type exchanges have been determined from experimentally established sequence 
families of globular proteins including some representatives with known tertiary structure. For 
example, amino acid type exchanges without changes of residue polarity/hydrophobicity or 
secondary structural preference impair protein structures less and are, therefore, more likely. 
Typically, such an exchange matrix enters the pairwise sequence similarity score function to­
gether with an empirical expression for the evaluation of evolutionary costs of deletions/inser­
tions. For convenience of statistical evaluation, the score is recalculated into the probability 
(E-value) of incidentally reaching an alignment with the same or better score with a sequence 
taken randomly from a database of the same size. If this E-value is low, the predicted alignment 
is considered statistically significant. As probabilities, E-values should be always smaller than or 
equal to unity but analytically simplified computations of E-values, for example in the BLAST 
suite, may lead to meaningless results above one for nonsignificant alignments with a low 
similarity score. 

When a group of related proteins is known, then profiles that describe the likelihood of 
amino acid type occurrence at alignment positions can be extracted (see Step 5 in the Recipe 
below for detail). In turn, they allow the determination of ever more distantly related homo­
logues in iterative cycles of profile extraction from growing alignments. Modern sequence pro­
file techniques are the 'super-weapon' for collecting families of distandy related homologues 
and for assigning functions to globular domains via annotation transfer. Application of this 
technique lead to a number of breakthroughs in biology essentially with theoretical data analy­
sis alone; (e.g., see refs. 7-14). 

Limitations of the Homology Search Concept 
The deduction of the sequence distance metric has consequences for the applicability of 

homology searches in databases, for example with the BLAST/PSI-BLAST suite: '̂ ^ 
1. The sequence distance metrics have been derived from alignments of globular proteins; 

more accurately, from alignments of secondary structural elements (e.g., BLOSUM62^ '̂̂ '̂ ). 
Obviously, such similarity functions may fail for other types of sequences; for example, for 
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cases having amino acid compositions that differ drastically from those of globular proteins. 
For example, long hydrophobic stretches with many transmembrane regions regardless of 
origin have a general tendency to appear similar. The same problem create long polar nms, 
sequences with systematic periodicities (coiled coils, collagen, etc.) as well as sequence seg­
ments with many cysteines, prolines or tryptophanes, amino acid types that are typically rare 
in globular proteins and the match of which is given high weight in the similarity measure. 
Thus, a sequence needs to be preprocessed to filter out all probable nonglobular segments 
before its submission to homology searches in sequence databases. Essentially, the term "dis-
tandy related sequence homologue" is not really applicable for nonglobular regions. 

2. Each alignment position contributes a summand in the total score independent of all other 
position. Thus, the mutual independence of sequence positions in their mutation ability is 
assumed in contrast to well-known examples of correlated mutations not only in globular 
proteinŝ '̂̂ ® but also in some shorter motifs.̂ *'̂ "̂  Thus, sequences that fit alignments some­
how at all positions but do not comply with yet hidden inter-positional constraints may 
nevertheless pass the sequence similarity significance criterion. This effect is practically not 
important for long regions of homology since the number of correlating sites is small com­
pared with the length. In contrast, this is one of the reasons why hits with shorter alignment 
length are often false. 

3. Yet another problem is created by the modular structure of proteins that results from se­
quence segment recombination at the genomic level. Often, the homology relationship exists 
rather at the level sequence segments than for whole proteins. Therefore, it becomes impor­
tant to delineate these homology segments and collect their families individually. 

4. Alignment length and sequence identity are of critical importance for the transferability of 
functional annotation. Only about 50 positions and more allow reliably assuming simi­
larity in 3D structure.^^ With decreasing sequence identity (especially below 40%), at­
tributes such as enzyme class, binding sites or cellular function can be transferred only 
with caution.-̂ "̂  

Concept No. 2: Lexical Analysis, Physical Interpretation 
and Sequence Motif-Function Correlations 

A biomolecidar sequence may be analyzed in the same way as a text in a foreign language by 
studying occurrences/absences of certain letters (amino acid types) in the total sequence and in 
subsegments, by analyzing combinations of letters as well as their relative order, especially the 
repetitions of clusters of letters. As simple as the arithmetics of pure letter occurrences may 
appear, important conclusions can be drawn from such a study. The results receive a biological 
interpretation with the knowledge of physicochemical properties of amino acids and 
oligopeptides. For example, long stretches of hydrophobic amino acids may indicate secondary 
structural elements buried intramolecuJarly, within protein complexes or in lipid membranes. 
Runs with many polar residues are likely not to have the potential to form a hydrophobic core 
for a tertiary, native structure. The general relationship of hydrophobic and hydrophilic resi­
dues in larger segments might be, at least qualitatively, informative with respect to solubility 
and total charge. Such information can be helpful for the design of deletion mutants since 
those consisting mostly of hydrophobic segments are likely to produce false positive hits in a 
yeast two-hybrid screen and to aggregate after over-expression. 

The concept of compositional bias towards certain amino acid types can be generalized 
with the notion of sequence complexity (information content, sequence entropy) as imple­
mented, for example, in the SEG program."^^ Low complexity regions (LCRs) are common in 
sequence database proteins (-25% of all residues in sequence databases).^ '̂ '̂  Sometimes, LCRs 
compose almost the whole protein as in the case of brakeless, a protein important for optical 
axon guidance in D. melanogaster?^ Despite their wide spread and expected functional impor­
tance, the characterization of many LCRs, especially of those with many polar residues, still 
remains poor. 
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LCRs are almost absent in known 3D structures of globular proteins ( -0 .5% of all residues 
in the protein structure database).2^'^^Thus, the concept of sequence complexity is a powerful 
quantitative measure for the distinction between globular (typically high complexity) and 
nonglobular (low complexity) regions (see ref. 29 for review). Only the high complexity re­
gions represent good targets for sequence homology searches in database. 

Many biological properties (helical transmembrane regions, coiled coils, N-terminal target­
ing signals, several posttranslational modifications, etc.; see Step 3 in the Recipe) are predicted 
from sequence with knowledge-based predictors: From a learning set of protein sequences, 
which are known to possess a biological feature, the encoding sequence pattern is extracted in 
a mathematically formalized way. Then, this pattern is searched for in query sequences, a con­
cordance score is calculated and, in the most advanced techniques, the probability of false 
positive prediction is calculated. The quality of the predictor depends, first of all, on the learn­
ing set. Sometimes, it is small and does not reflect the true sequence variability in the pattern. 
Also, the various proteins in the learning set are typically not of the same quality with respect to 
their experimental verification status. 

When the number of known sequences was small, a number of properties encoded in pro­
tein sequences could be associated with short amino acid type motifs ('sequence words'), which 
have been collected in databases, for example in PROSITE. Todays sequence databases populate 
the available sequence space much more evenly. Therefore, short sequence motifs have a dra­
matically reduced predictive power (for example, the N-terminal myristoylation, see also 
Step 2 in the Recipe). 

A Recipe for Analyzing Protein Sequences 
The following section is a description of a series of steps that, if executed sequentially, will 

typically lead to insight into structural and functional features associated with an otherwise 
uncharacterized protein sequence if this is achievable with existing techniques at all. With our 
comments below, we want to show what is generally possible but also where are the today's 
limits and where we have to settle for lesser goals until methodical advances move the horizons 
further. As practical illustration of the recipe, we invite the reader to repeat the analysis of the 
pds5p sequence together with us (see also Fig. 1). To avoid spoiling of the text with many 
W W W links that change anyhow with time, this information has been collected in a regularly 
maintained WWW-page associated with this article (http://mendel.imp.univie.ac.at/RECIPE/). 

The basic paradigm in protein sequence analysis requires the dissection of the total se­
quence into segments (regions, domains), each of which has its own molecular functional 
features. The function of the whole protein is then obtained as superposition of the segments' 
elementary functions. 

Functional sequence regions of a protein can be classified with respect to their intrinsic 
structural preference in a physiological environment. Some segments have a native structure 
(globular domains, nonglobular helical regions in coiled coil and transmembrane regions, col-
lagens etc.); others have not. This distinction is critical for assessing interaction capabilities: 
Segments with intrinsic structural preference can supply specific, stable surface recognition 
sites for interactions with ligands (therefore, they have a large variety of specific functions); 
unstructured regions cannot. As we have seen above, various types of segments require different 
methods for their analysis. First, nonglobular regions (phase one, steps 1-3) and, then, seg­
ments belonging to already known families of globular domains (phase two, step 4) are deter­
mined. Finally, the remaining segments are expected to represent yet unknown globular do­
mains and are subjected to sequence family search procedures (phase three, step 5). The final 
step involves analysis and synthesis of the sequence analytic findings. 

Step 1: Linguistic Analysis 
At the beginning, it is necessary to check for linguistic particularities in the query protein 

sequence or its fragments. Such a textual analysis can be carried out by visual inspection or with 
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Sequence of PdsSp 
VlAK(iAVIKl KFNSPIlSISIX^LlSTNh:LI,I)RlKAl.llKhl.ASLIX^DNIDI.r(U.I)KYRlUI,VSRKI.LKIlKI)V(imAKTACCI.SI)ILRl,YAPI)APYIl)A 
(A'llIWIYI.IIKl I hYRSIVI.I A()ll'SSNNLLir;i.H{(KYI)l'NKSKPARrr\VKKiir(iKVrSKhl>SVPrr:VI Rl.irNKKI.rYNPNJ;iIM.(H.N 
Sr;inn;AlNI)UNNSRLl.IA'VVKl.nKLVLRLW[nA'Pia,lNAVIGIlYnLLSSr;Ni;LFRKLATKlJOQILTSYSDLNrVSTIISDrFKAWISKIADISPDVRVi:wrtSl^ 
yAIAKI>II)SDPRVRRTSVVIIhNKVPVrHlWK\n>;KAIYrSl.l.HLARKKIIKKVRhl.CINTMAKKYSNSl.NKli:RrYQNKKIWHllDni>Sn YNLYYI^ 

PI)NI)KRVHRI I IVI SMKI)KKAKISFKAFNAROKISFAlSKYII)KSKFl.NNQHSMSSS(XiPIVMNKYNQII.yWI ASGI.SDSTKAIIMI.HTIKQKNDKRIKYI I NACV^I^ 
NFI.VSKI QFPtH FKKYNISr(;ASIMPRl)IAKViyll I.FRASPIIYNVSSISVl l.NFSNNSDAKyi 1)1 KRRII.l)l)ISKVNPri FKIX^IRIl KrnKI)FI)I)PI)AFKNI)\I.SI HFAl KF 
KIFKWVI)FI)mrFFTKI.YWAVFSKPFFrKYArKLIAFSPKAFiriKKIKIRIFPFDLQKDKYFTSMIIVlV«F;iFKKFPIIVFNI)nsnMISYl IKFVl I.S^ 
S|yrKYSAl(iNKVFTI.KLKI>iKFRSIAPI)VPRl)FI.AFSFn;KTMKIFFYLlASCKaLISFFNKFFYPri>SNYOFKlRCVAC;igVFKl,ARISNl,NNFIKI>SmiKI.INI,Vi;iM^^^ 
yFKI)YVANFFISIKFFPI VFFFAYFPnVFLK 1 FI KIWINF FFCM.KSFKKĈ I IFFRALPRLIllAlAIIHPI)IVCi(;i.l)SF,Cil)AYl,NAF Fl All)YFI.FYFI)SIAAyF;NFSI.FYYl.SFRVKNYy 
l)KFVII)FII)FIFtil\)KFFAPKKllRPY(K^KMYlKa;FSOMIFFNI.KFKKNWOIlSAYKiKFNFPSI)FFKPFAl\QF:AQFSFKrYlPF;SFrF;KIONNIKAk:it.Rll^^ 

AllKNNFSyKICKKi;villlARSQAOI)FKCilXiDRFSDSDDDSYSI>SNICNHTKKCillFMVMKKFRVRKKVDYKOI)KDDDIFMr 

1. Linguistic analysis 

Only 2.7% glycine; i.e., rigid backbone 
Segment 1190-1277: charged low 
complexity region (with 44 DEKR, shown 
as blue ellipsoid) 

2. Known functional motifs 
and 3. Non-globular structured regions 
None hit to PROSITE motifs, none known 
cellular localization targeting signals or 
posttranslational modification site 
Non-significant hits for helical TM regions 

4. Libraries of known domains 
Four hits to HEAT repeat HMM model 
with positive score 
Diffuse spread over sequence 

5.1 Sequence Database Searches 
Segment 1-620 shows significant similarity 
to > 100 helical repeat proteins 
Example: regulatory subunit of PP2A 

query segment • 

5.2 Secondary structure 
More than 60% a-helix content, helices are 
distributed over whole sequence length 
Repeated occurrence of sections long helix 
- short loop - long helix interconnected 
with a long loop 

6.1 Interpretation of domain architecture 
' Pds5p seems a repeat protein with up to 26 

HEAT-repeats of ca. 40 A A length 
' The C-terminus is charged and may support 

a non-specific interaction. 

• MM i l l ! I l l I N 

6.2 3D-structural model 
The three-dimensional structure of lb3u has 
been used as template. Pds5p is hypothesized to 
have the form of a super-helical band. 

6.3 Hypothesis for function 
Pds5p may function as molecular docking 
station for the spatial organization/interaction 
of globular domains of other proteins having a 
role in chromosome segregation. 

^̂^̂ %̂% 

Figure 1. Sequence analysis of yeast pds5p. When the sequence-analytic study of yeast pds5p was started, only 
its sequence (top of the figure, 1277 amino acid residues) and its knock-out phenotype in mitosis were 
known.̂ "̂  Searches for nonglobular regions detected only a strongly charged region at the C-terminus. Com­
positional studies revealed a surprisingly low content of glycines indicating a generally rigid backbone. Three 
arguments (comparison with known domain profiles of helical repeats, distant similarity with the regulatory 
subunit of PP2A and predicted helical secondary structure including also the pattern of two helices intercon­
nected by a short loop and a long loop between helix pairs) support the view that FiEAT-repeats occupy the 
major part of the sequence. The reliability of these predictions decreases towards the C-terminal part. The 
FiEAT-repeat region is suggested to fold into a super-helical band with interaction sites for other proteins, the 
charged C-terminal region has, apparently, a role for unspecific amplification of some binding reaction. 
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computerized tools such as SAPS. This program incorporates also rigorous statistical criteria 
for finding significant differences of the query's lexical properties from averages of SWISS-Prot 
sequences. 

Regions of low sequence complexity, another important lexical property, can be determined 
with tools such as SEG or CAST. The SEG program has three recommended parametrizations 
with sequence windows of w = Xl^l'b or 45 residues. In standard applications, only the smallest 
window, the most stringent criterion, is applied. Personal experience shows that the larger 
window (w = 25) helps detecting less obvious LCRs, although SEG marks sometimes also 
globular regions as LCRs if applied with maximal window size (w = 45). The final output of 
SEG should be preprocessed for further analysis: (1) Sometimes, SEG leaves a small segment 
(with length below window size) between two neighboring LCRs unassigned. Such a segment 
can often be fused with the two LCRs into a single larger LCR. (2) Evaluation of polarity of 
LCRs is helpful for their functional assessment. Hydrophobic LCRs (rarely longer than 30 
residues) often have a role in membrane attachment or are buried internally in protein com­
plexes. Functional assignment of polar LCRs, especially those with more than 100 residues 
length, is more problematic. Polar LCRs are thought to be intrinsically unstructured and in 
contact with the aqueous phase. Some serve as mechanical linkers between domains, have a 
role in electrostatic interactions or carry sites for posttranslational modifications. The specific 
molecular function of polar LCRs is typically unclear except for rare cases.̂ '̂ '̂"^^ 

Step 2: Motifs for Subcellular Targeting and Posttranslational 
Modifications 

A number of functional motifs for posttranslational modifications or targeting to subcellu­
lar localizations are located within sequence regions without intrinsic structural preference. 
Specialized predictors can test the occurrence of these motifs. Several N-terminal signals in­
volving typically 20-40 residues encode targeting to organelles: SIGNALP recognizes the 
signal leader peptide for export to the endoplasmic reticulum. CHLOROP^^ searches for chlo-
roplast- and another tool^ for mitochondrion-targeted proteins. SIGNALP in its recent ver­
sion has very reasonable prediction accuracy above 80% for true predictions for large sequence 
sets and a low rate (--14-19%) for false-positive hits and compares favorably with alternative 
tools. ̂ ^ Prediction of chloroplast- and mitochondrial targeting are not comparable in this re­
spect, first of all, because the available sets of experimentally learning sequences are less com­
prehensive and reliable. TARGETP represents a unified version of all three predictors. A new 
predictor for the C-terminal PTSl signal (with a length of about 12 residues) that encodes 
pex5-dependent peroxysomal localization has a sensitivity >95% and a selectivity below 0.5%. 

Several lipid posttranslational modifications of proteins can now be reliably predicted from 
sequence. (1) N-terminal N-myristoylation is encoded by a signal of about 17 residues. It is 
recognized with >95% for true sites and with less than 0.5% for unrelated sequences by a 
recently developed tool.^ '̂̂ ^ In some cases of posttranslational processing, internal glycines 
become N-terminal and myristoylated. This program analyzes also a number of such scission 
patterns. N-terminal N-myristylation with subsequent palmytoylation (if there are cysteines 
close to the N-terminus) might hint at a noncanonical export mechanism. (2) 
Glycosylphosphatidylinositol (GPI) lipid anchoring is a posttranslational modification of pro­
tein C-termini carrying the respective recognition signal of ca. 40 residues. The anchor is at­
tached after proteolytic scission of a propeptide. The big-II predictor predicts GPI lipid anchor 
attachment (-80% accuracy for truly anchored animal proteins with --0.2% false positives) and 
computes also the one or two most probable attachment sites.^^' (3) A recently released 
predictor for farnesylation and geranylgeranylation, the two types of prenylation at protein 
C-termini, is accessible from the WNJC'W-page associated with this article. 

The localization and lipid modification signals discussed above involve 12-50 residues from 
the respective termini. Typically, they are not characterized by amino acid type preferences 
alone but also by sequence context involving a strong pattern of physical properties and, par­
tially, by some inter-positional correlations within the motif. Only this additional information 
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allows reliable motif detection in uncharacterized sequences and the assessment of the possible 
prediction error in tests involving dozens of thousands of sequences. ^ 

It shoidd be emphasized that conservation of a handful of residues in a short motif alone 
does not imply function correlation and, barely, supports more than a working hypothesis. 
Typically, short, polar oligopeptides do not have intrinsic structural preferences; they cannot 
supply a stable interface for intermolecular interactions. Even in the case of true function em­
bedding into an unstructured region of a protein that interacts with a globidar domain of 
another protein, a functional motif requires a sequential environment involving residues for 
less specific interactions and linker function. ' ' 

To illustrate, a number of short PROSITE motifs^^ are also used for characterizing post-
translational modification sites (for example, for phosphorylation, N-glycosylation and 
myristoylation) but with a high rate of false hits.^^ Other arguments (e.g., experimental data) 
are needed to support the relevance of predicted sites. There are alternative neural network 
based predictors for phosphorylation,^^ O- and N-glycosylation^ ̂ '̂ ^ but their prediction accu­
racy is not yet sufficient for unsupervised sequence annotation. 

Similarly, many other, scarcely described and yet insufficiently understood sequence sig­
nals, e.g., for nuclear import and export or the PEST degradation signature, circulate 
widely in the literature but their predictive significance for sequence analysis is still low since 
the correlation between protein sequence variability and function remains ambiguous. Often, 
the biological mechanisms for read-out of these signals are poorly understood. 

Step 3: Nonglohular Regions with Intrinsic Structural Preference 
At early stages of sequence studies, it is important to recognize a-helical transmembrane 

regions and coiled coil segments. Both have compositional bias, which is often not recognized 
by sequence complexity computing programs, and, consequently, these segments should also 
be removed from the sequence before submission to searches for distant relatives in sequence 
databases. 

Coiled coil regions can be predicted from sequence with the updated COILS algorithm of 
Lupas.5^ Typically, WWW- server versions run COILS only with standard parametrization and, 
sometimes, predict coiled coils wrongly in regions with many polar residues without any hy­
drophobic amino acids in *a and *d' positions of the heptade repeat. A second COILS run with 
a changed weighting for polar residues as recommended in the manual diagnoses many of 
those doubtful assignments. To notify, there are also versions of COILS in the public domain 
erroneously deviating from the original implementation of algorithm and resulting in fewer 
and shorter predicted coiled coil segments for some proteins. 

There may be other fibrillar segments in proteins. For example, collagen segments are rec­
ognized by typical glycine- and proline-rich repeats and this property is incorporated in an 
HMM of the PFAM domain PF01391.^^ 

The prediction of membrane attachment of integral membrane proteins via protein seg­
ments immersed into the lipid bilayer is still problematic. If transmembrane helical regions are 
present, they are readily recognized by prediction tools like TMHMM or DAS-TMfilter, a 
recent update of DAS, as well by a number of other programs. With less accuracy, the 
protein topology with respect to the membrane is predicted (mostly based on the 
positive-inside-rule ). Since the motif description rests almost entirely on the requirement of 
long hydrophobic stretches (except for a minimum length), false positive prediction, especially 
of single membrane-pass proteins is frequent. TMHMM and DAS-TMfilter have a better 
selectivity than the competing programs but they also fail for proteins with long helical, hydro­
phobic repeats (for example, ARM/HEAT repeat proteins such as tis7 (gi321269) or inscuteable 
(gil079094)). 

The architectural diversity of proteins attached to membranes involves more than just 
transmembrane helical regions but these configurations cannot be predicted with available 
TM region prediction tools. For example, there is an interesting class of amphipatic helices 
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embedded into the membrane parallel to the bilayer surface (monotopic membrane pro­
teins). Further, transmembrane helix formation is not entirely determined locally by the 
hydrophobic stretch itself but may depend on the rest of the protein sequence or even 
complex formation. 

Step 4: Knoum Sequence Families of Globular Domains 
Globular domains are the main structural and functional building blocks of proteins. Vari­

ous defmitions of the notion 'domain' differ but their content is overlapping. From the view­
point of three-dimensional structure, a domain is a compact, spatially distinct unit with its 
own hydrophobic core, the fundament of its native tertiary structure. In the kinetic sense, a 
native structure implies that conformational fluctuations are locally confined (i.e., are smaller 
than the size of the three-dimensional structure). Thus, globular domains can supply stable 
interfaces and recognition sites for other molecules, even for those without intrinsic structural 
preference. Thermodynamically, a domain is melting independendy. Often, a domain is con­
sidered an autonomous folding unit. At the same time, a structural unit might not be continu­
ous in the sequence. In the evolutionary perspective and in sequence comparisons, a domain is 
a family of significandy similar sequences that are related by their mutational history. From the 
functional viewpoint, domains may be promiscuous with different active sites and binding 
capabilities for various sequence family members but the degree of diversity is uneven among 
domains. A typical globular domain involves 100-150 amino acid residues; thus, much 
longer segments can be supposed to involve several independent domains. To avoid confti-
sions, it is advised to use the term "domain" in the sense of globular domain and to apply 
sequence region or segment in other context. 

At this stage of analysis, it is a good decision to compare the target sequence with entries in 
public domain databases. There are traditional profile-based (PROSITE,^^ BLOCKS,^^ 
PRINTS^^); hidden Markov model (HMM)-based (PFAM,^^ SMART,^^ significance thresh­
old typically E-0.1); combined tools (PANAL^^) and RPS-BLAST profile-based (CDD 
search, significance threshold typically E-O.Ol) collections. There are at least two reasons: 
The given sequence might be so distandy related to a known family that a simple pairwise 
similarity search with the query or any of the family members would not detect that relation­
ship. Profiles describing whole families are much more sensitive. Second, one domain in 
multi-domain targets may have so many close relatives in the sequence database that the 
output list from a BLAST search with the full sequence would be obliterated with those hits 
alone. It makes sense to compare a query with all available domain libraries since definitions 
of even actually the same domain may slightly differ and numerical noise can lead to hits in 
one but not in another library. 

Currendy, there are two major primary domain libraries. PFAM is unprecedented in se­
quence coverage. At the same time, the domain definitions may contain slight inconsisten­
cies mosdy concerning boundaries of domains. Sometimes, signal peptides, fibrillar protein 
segments or helical transmembrane regions are included into the profile or the domain defini­
tion contains actually several domains. SMART is a very carefully curated but much smaller 
domain databases that focuses on certain classes of signaling, nuclear and extracellular pro­
teins. SMART domain boundaries typically define the core of a single globular domain. 

There are two modes for searching the occurrence of domains in query sequences with 
HMMs and profiles. In the so-called global mode, the presence of only complete domains is 
assumed and the optimal alignment of a query segment with the complete domain profile is 
searched. This mode is typically more sensitive that the fragmented domain search where also 
partial hits of the domain profile in the query are reported. In the ideal case, both regimes 
deliver the same result. Most hits from the fragmented domain search are meaningless in the 
absence of full-domain matches but if they coincide with known binding sites for ligands or 
otherwise functionally relevant parts of the domain, careful sequence inspection may lead to a 
discovery of very distandy related sequence homologues. 
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A fragmented domain search with the profile of the histone acetyitransferase family has hit 
ecolp, a yeast protein for the establishment of cohesion between chromatids during mitosis, in 
the region of the acetyl-CoA binding site. The partial hit was extended with arguments based 
on secondary structure prediction and the conservation of a hydrophobic pattern. This finding 
stimulated experimental analysis and finally led to the discovery of a new family of acetyl-CoA 
binding and acetyl-transferring enzymes with a role in cohesion.^ 

The domains with multiple internal structural repeats are difficult to detect; therefore, this 
domain class requires special attention."^ Such repeats are known as closed structures (e.g., 
p-propellers) or as semi-closed forms, for example the superhelical armadillo or heat repeats. 
Many repeat proteins have scaffolding functions for protein-protein interactions. For repeat 
detection, the query should be cleaned from compositionally biased regions in accordance with 
steps 1-3 of the recipe. The PROSPERO tooF^ is designed for recognizing even subde internal 
sequence repeats. Since it operates with rigorous statistical criteria, the validity of the finding can 
be assessed in probabilistic terms. The REP tooF^ compares the query sequence with an HMM 
library of known repeats. Unfortunately, the evolutionary pressure for sequence conservation 
within repeats is typically low and reduced to the requirement of packing and maintenance of 
the hydrophobic core. Therefore, even hits with low statistical significance deserve attention. 

Step 5: Sequence Database Searches 
Searches for similar sequences in databases can be applied in two different contexts. Full 

sequence searches are reasonably aimed only at finding closely related sequential neighbors 
where the methodical details of deriving the sequence distance metric do not have a major 
impaa on the search result (typically, log {E - value) < - 10 for BLAST). 

A search in sequence databases for similar but distandy related proteins with the target 
under study is in fact the last step of sequence analysis. Only sequence segments without low 
complexity, transmembrane and coiled coil regions, peptide segments for f)osttranslational modi­
fications and cellular targeting, and known domains can routinely be subjected to such searches. 
Now, the effort is aimed at collecting the complete sequence family. The larger the family, the 
higher is the probability of hitting a fiinctionally annotated family member. Additionally, it is 
necessary to understand the sequence variability within the sequence. 

Traditionally, this a process of repeated application of pairwise sequence comparison tech­
niques such as BLAST and general profile-searching techniques relying on manually or auto­
matically constructed alignments (PSI-BLAST with inclusion E-values up to --0.01, 
SAM-T99,'^^'^^ or a combination of Clustalx^^'^^ with a profile searching technique). Both the 
primary query as well as any new family members is subjected to such searches. The optimal 
search heuristics are a matter of continued scientific discussion. Large sequence families have 
an internal structure consisting of clusters of sequentially (and, often, functionally) more simi­
lar proteins with statistically significant links between them. 

Three aspects deserve additional comments: First, borderline hits require visual inspection 
before inclusion into the family or their final rejection. An excellent review of physical and 
structural criteria for nonstatistical evaluation of alignment significance (based on consider­
ations of protein structural architecture) has been supplied by Bork and Gibson.^^ Reoccur­
rence of some motif conserved within the family might indicate correct assignment. Finally, 
the correct inclusion into the family should be verified by a reciprocal database search (started 
with the doubtful sequence segment) that collects already verified family members with statis­
tical significance. It must be noted that many database search programs are not 100% commu­
tative with respected to starting and hit sequences due to algorithmic simplifications that save 
computing time. Second, manually constructed alignments may be superior over those auto­
matically generated, especially if 3D structural information for at least one family member is 
available. In the case of the pleckstrin homology (PH) domain sequences, sequence identities 
had been very low but reliable alignments applicable for further rounds of profile searches were 
obtained with manual adjustment emphasizing the conserved hydrophobic patterns and a 
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conserved tryptophane position. ' Third, the probability of finding hits can be increased if 
EST and genome databases are six-frame translated on the fly and included into the search for 
relatives.^ In a few cases, some relaxation of search thresholds leads to the necessary intermedi­
ate sequence hits during family collection. Fourth, since most amino acid substitution matrices 
give high weights to matches of rare residues such as cysteine, database searches with such a 
sequence segment to database searches may result in spurious hits with underestimated E-values, 
which may become close to standard selection thresholds. This has happened in the case of the 
C-terminal domain of wingless/wnt-1 that was incorrectly suggested to be related to the 
lipid-binding domain of phospholipase A2.^^ This possibility was later ruled out by structural 
arguments (completeness of the hydrophobic core, satisfaction of disulphid bonds).^^ 

Until recendy, it was very difficult to find routinely so distantly related family members 
with known 3D structures that have no recognizable sequence similarity with pure 
sequence-based approaches but, nevertheless, have the same fold. Higher sensitivity is achieved 
in comparisons of two profiles, one extracted from the query's sequence family and the other 
from a family of proteins of similar 3D structure and their sequential homologues. In addition 
to information from amino acid letter comparison, some structural information can be mobi­
lized: The alignment of query sequences with structural templates, the mapping of sequence 
positions to structural positions, allows, for example, scoring of the agreement between pre­
dicted secondary structure of the query with the secondary structure of the template or the 
polarity of amino acid residues of the query with the accessibility of template sites. Different 
strategies have been implemented in 3D-PSSM,^^ bioinbqu,^ DOE FOLD predictor,^^ FFAS,^^ 
PSIPRED,^^ SAMP SDSCl^^ and SUPERFAMILY,^^ ^^^^i^ ^^ available as WWW-servers. 
Generally, their predictions have to be viewed with caution. Similar predictions for various 
sequence family members are indicative for higher significance. Some of these techniques have 
been equipped with methods for assessing the probability of false positive prediction. There are 
cases where the prediction of the 3D-structure with fold predictors has produced the decisive 
hint. For example, the predicted P-propeller structure of the globular domain of PIG-T can 
explain its molecular fiinction as gate mechanism for protein substrates of the transamidase 
PIG-K in the GPI lipid anchor biosynthesis pathway.^ 

Yet another approach for enlarging the sequence family focuses on sequence architecture, 
the linear order of functional segments in a protein. Sub-threshold similarity in some sequence 
segment combined with similar length and order of other architectural elements can indicate 
on the existence of homologues in other species, even if the evolutionary divergence has be­
come high.^ '̂98 

After having the sequence family completed, the family sequence alignment, known struc­
tures of family members, the available sequence annotation and the scientific literature for all 
family members have to be studied. First, conservation patterns of hydrophilic/hydrophobic 
residues and of secondary structural elements (indicating fold conservation), or of motifs with 
fiinctional residues (giving a hint at conserved ligand binding and active sites) have to be taken 
into account.^^ The secondary structure predicted with JPRED^^^ or PSIPRED^^ for the se­
quence family can help in the interpretation of the data. Second, details of known structures of 
family members that do not depend on the sequence-variable positions should be searched for. 
For example, the distribution of the electrostatic potential at the protein surface is sometimes 
invariant within a family and may explain the binding behavior. Searches for proteins with the 
same fold^^^ can give lead to functional information on other proteins with the same fold. 
Third, the taxonomic distribution^^^ of the family is informative with respect to the evolution 
of the cellular processes involving the sequence domain studied. Sometimes, evolutionary trees 
constructed from all family members may yield additional insight. 

The scientific literature must be searched for experimental evidence of biological function 
that can be linked with the sequence segment in some family members. The degree of possible 
annotation transfer from family members to the target under consideration depends on many 
aspects. As a rule, the similarity with respect to the 3D fold can be determined with greater 
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reliability but molecular and, the more, cellular functional descriptors cannot always be trans­
ferred with the same confidence due to considerable plasticity of protein fUnction.5'103 For 
example, a large family of proteins has in common a domain responsible for ras-binding in the 
case of many family members.^ This information was extrapolated to the whole family in­
cluding the Rho-GTPase-activating protein myr-5. For the latter one, it turned out that the 
presence of this domain and its fold was predicted correctly, but the actual function was not.^^ 

Step 6: Analysis of Sequence Analytic Findings and Synthesis 
of Molecular Function 

First, it is necessary to evaluate the reliability of predictions and annotations for overlapping 
sequence segments and to resolve possible contradictions. Then, the prediction results should 
allow segmentation of the query sequence into sequence regions, to which the collected struc­
tural and functional annotation can be attached. Often, some experimental data for the protein 
analyzed is available from the cooperating experimental researchers, which has to be discussed 
now in context with the sequence-analytic findings. Synthesis of the segments* functions into the 
protein function is the most creative step in the whole procedure where the biological knowledge 
of the researcher and his experience in using sequence analytic methods come together. It is 
possible that the collected evidence is so strong that there is no doubt (see ref 106 for discussion). 
In most cases, the thought concentrates on consequences for the further experimental strategy. 
For example, clear directives can be given for mutant design: Deletion mutants should follow the 
derived segmental structure; point mutation should focus on conserved sequence positions. 

Protein structure and function are encrypted in the protein sequence; thus, they can be pre­
dicted relying on amino acid sequence information in principle. Sometimes, molecular and cel­
lular properties can be predicted. Phenotypic functions are usually outside the predictive power 
of sequence analytic studies (only in cases of clear homology). It should be emphasized that there 
are aspects of molecular function that strongly resist theoretical treatment. It is highly unlikely 
that theoretical methods will predict biological features without any analogy to experimentally 
studied cases since all procedures finally rely on observed sequence-function correlation. 

Even if the 3D structures of two individual subunit proteins are known, it is still not pos­
sible to reliably predict the specific protein-protein interaction in a complex. In the general 
case, there is no way to predict even the fact of complex formation from sequence alone. Poten­
tial hints can be obtained from homology considerations but, as in the case of the putative 
ras-binding activity of myr-5, with low reliability. Sometimes, conservation of gene order 
or regulatory genomic neighborhood, gene fusion events or the conserved cooccurrence of 
genes in different genomes might be supportive for interaction^^^'^^^ but not more. With 
large-scale mass spectrometric analysis, list of proteins in complexes have been compiled that 
can be looked up as well as interactions from two-hybrid screens.^^ '̂̂ ^ 

Concluding Remarks 
The development of high-throughput experimental technologies and its first major break­

through, the complete sequencing of the genomes of organisms ranging from viruses over 
bacteria, lower eukaryotes to human, has changed life science research qualitatively. For the 
first time, the biological object can be studied in its totality at the molecular level. The imme­
diate task for the coming decade consists in assigning functions to all genes known by se­
quence. Since the new data are so large and their the biological interpretation require complex 
approaches, theoretical science can and must contribute decisively to the research progress. The 
research success in life sciences depends increasingly on the ability of researchers in experimen­
tal and theoretical biology to joindy focus on relevant questions. 

Modern protein sequence analysis relies on two major approaches: protein homology searches 
based on the concept of statistically significant sequence similarity and textual analysis with 
physical interpretation and the extrapolation of empirical relationships established between 
local sequence motifs and patterns with structural and functional properties. 
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Abstract 

O ne of the emerging technologies in computational biology is text-mining which 
includes natural language processing. This technology enables extraction of parts of 
relevant biological knowledge from a large volume of scientific documents in an au­

tomated fashion. We present several systems which cover different facets of text-mining bio­
logical information with applications in transcription control, metabolic pathways, and bacte­
rial cross-species comparison. We demonstrate how this technology can efficiendy support 
biologists and medical scientists to infer function of biological entities and save them a lot of 
time, paving way for more focused and detailed follow-up research. 

Introduction 
Text-mining of biomedical literature has received an increased attention in the past several 

years. ̂  This is caused by several reasons: 
a. a huge volume of the scientific documents available over internet to an average user; 
b. inability of an average user to keep track of all relevant documents in a specific domain of 

interest; 
c. inability of humans to keep track of associations usually contained in, or implied by, scien­

tific texts; these associations could be either explicidy stated, such as 'interaction of A and 
B*, or they need not necessarily be explicidy spelled out in a single sentence; 

d. inability of humans to simultaneously deal with a large volume of terms and their 
cross-referencing; 

f necessity to search a number of different documents (or sometimes resources) to extract a 
set of relevant information; 

e. inability of a single user to acquire the required information in a relatively short (accept­
able) time. 

As an illustration, currendy PubMed repository (http://www.ncbi.nlm.nih.gov/entrez) con­
tains over 14 million indexed documents. It is common that searches of PubMed frequendy 
provide several hundreds or more returned documents. Studying these large document sets is 
not an easy task for a single user. If the analysis has to be repeated several times with different 
selection of documents, then such a task is usually not feasible. 
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Text-mining is seen as an interesting and powerful supporting technology to complement 
research in biology and medicine. A number of text-mining systems which tackle different 
problems aimed at supporting biological and medical research, and which focus on different 
aspects of genomics, proteomics, or relations to diseases, have been reported/'^ ̂  

Computational biology produces answers, which form the bases and lead to better designs 
for further experimentation. Among the various computational biology approaches, text-mining 
systems provide a unique front where large quantum of knowledge put out by experimental 
biologists can be efFiciendy screened using "vocabularies'* or standard terms adopted and used 
widely by biologists. Hence, such systems analyze the existing knowledge and uncover poten­
tial associations among biological entities or phenomena that can lead to further experimenta­
tion. In effect, text-mining-based approaches allow biologists to focus on certain unique as­
pects of information that would have been reported independendy thus not lending them for 
establishment of readily recognizable associations or correlations. Many such associations in 
biology go unnoticed till more directed studies are done to address the specific associations. 
Text mining approaches, therefore, have the inherent capacity to help speed-up the rate of 
biological discovery. 

In this chapter we present several text-mining systems developed in our Knowledge Extrac­
tion Lab at the Institute for Infocomm Research, Singapore, two of which are the result of an 
on-going collaboration with Department of Biological Sciences, National University of 
Singapore. We show how these systems can assist an average (nonexpert) user to better under­
stand specific problems in biology and bring them closer to the answers about functions of 
biological entities inferred on the basis of an in silico method. Before we present these systems, 
we also define the problem we intend to deal with and describe some of the general features 
that text-mining system should provide to the end-users. 

Scope and Nature of Text-Mining in Biomedical Domain 
By automated knowledge extraction, we understand an automated extraction of names of 

entities, such as genes, gene products, metabolites, pathways, etc., which appear in biomedical 
and molecular biology literature, as well as the relationships between these entities. The basic 
relation between two entities is characterized by the cooccurrence of their names in the same 
document, or in a specific segment of the document. However, the actual relation between these 
entities is not easy to characterize by the computer program. It is customary to leave it to the user 
to assess the actual nature of such relations based on the associated documents. To the best of our 
knowledge, very few text-mining systems exist which can accurately extract such relations. 

Characteristics of Text-mining Systems 
There are several basic features that text-mining systems should provide. These systems 

should: 
a. be easy to use; 
b. be interactive; 
c. allow several ways of submitting data; 
d. allow user to select categories of terms to be used in the analysis; 
e. provide suitable interactive summary reports; 
£ show association maps in suitable graphical format; 
g. preferably have built-in intelligence to filter out irrelevant documents; 
h. preferably be able to extract large-volume of useful information in reasonable timeframes. 

While, in principle, any free text document can be analyzed, for the purposes of discussion 
here, we will assume that documents are abstracts of scientific articles, such as those contained 
in PubMed^ repository. Then, generally speaking, there could be three levels at which text 
analysis can be conducted: the Abstract level', the 'Sentence level', the 'Relation level'. At the 
Abstract level', the system analyzes the whole abstract to determine if it contains relations 
between the utilized biological entities or not. At the 'Sentence level', the system assesses whether 
the abstract analyzed contains sentences that explicidy claim relations between the entities or 



Extracting Information for Meaningful Function Inference through Text-Mining 59 

not; here, the individual sentences are analyzed as a whole. Finally, at the ^Relation level', the 
system attempts to extract specific entities and relations they are subjected to form the sen­
tences that are assessed to contain such relations. 

The systems, which we describe here, possess different combinations of these characteristics. 

Focus of Our Text-Mining Systems 
Regulatory systems in different organisms perform key functions of synchronizing events in 

the organism at different hierarchical levels. Networks of genes, proteins and metabolites acti­
vate and operate under different intra-cellular and extra-cellular conditions in order to provide 
proper responses of the organism to various stimulatory signals. Understanding the 
cause-consequence relations between entities in such complex systems and their relations to 
particular pathways can help us to understand ways of how the organism functions. This can 
also help us to find out how to control behavior of such regulatory networks and ultimately 
develop more efficient drugs or reduce problems of genetic-based diseases. Text-mining sys­
tems that we have developed aim at helping individual researchers to elucidate and partially 
reconstruct segments of such networks. Our text-mining systems focus on three general do­
mains: transcription control, metabolic networks and gene networks. These are explained in 
more detail below. 

Supporting Text-Mining Systems for Gene Regulatory 
Networks Reconstruction 

Transcription control is the key mechanism for activation of genes and gene groups under 
different ceflidar conditions. Transcriptional regulatory networks provide information neces­
sary to study different modalities of gene activation, such as tissue-specificity, timing, and rate 
of gene transcription. To infer parts of these control networks, we need to know the relations 
between different transcription factors (TFs) involved in the process of transcription initiation. 
For example, let us assume that hypothetical TF A and TF B are both gene products of genes 
GA and GB, respectively, and that a gene G requires a complex formed by A and B to bind to 
its promoter in order that transcription of G in a particular tissue can be activated. Then, if in 
the nucleus of the target cells there is no complex A/B, gene G will not activate. The necessary 
condition obviously is that both genes GA and GB produce A and B in sufficient quantities so 
that A/B complex can be generated. Thus, activation of G requires activity of GA and GB. 
Also, in order that GA and GB be activated another set of TF would be required, and so on. In 
this way, one can step by step reconstruct parts of the necessary gene networks which induce 
activation of gene G. However, we also notice that due to interaction of A and B a synchronous 
action of GA and GB would be expected, meaning that such two genes should be able to 
coexpress under particular specific conditions in some tissues. This, again, suggests that their 
promoters should share some degree of similarity in terms of promoter context (the type of TF 
binding sites, their ordering and pardy spacing).'̂ ^ Thus analysis of promoters of one of these 
genes, say GA, may reveal part of the information about the promoters of GB. As can be seen 
in this hypothetical, but very common case, information about relation between A and B (they 
form a complex A/B) and information that A/B binds to promoter of G, provides many addi­
tional clues what to look for in reconstructing gene network which control activation of G in 
the target tissue. Text-mining tools can assist us tremendously in such tasks. 

Relations between TFs are thus one of the key sources of information for reconstruction of 
parts of gene transcriptional regulatory networks. The TR/ySJSCompel database"^^ is a re­
source which contains several hundreds experimentally verified relations between TFs col­
lected manually from the literature. These relations need not always be of the form of interac­
tions. For example, it is possible to have information of the form: *if both present, A and B 
affect transcription of G\ These forms of cause-consequence relations may generally show 
synergistic effect on G when they enhance G*s transcription, or antagonistic effect when they 
negatively impact transcription of G. Unfortunately, the content of TRANSCompel database 
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Transcription Factor interaction Extraction Result 

Tran«Fector1 *^jjjj2" TransFactor2 PMiD Sentence 

PThe transcription factor Spl binding to the lyyo Spl 
recognition motifs residing at-158 to 150 bp and -123 to 

Sp1 bind Sp1 14518567 114 bp in the gene promoter is found to be essential for 
both EGF-and PMA-lnduced gene expression of human 
12(S)-lipoxygenase 
Since both of the transcription factors c-Jun and Sp1 

/. i..» w^^^^f «.Ni ^A'^^Q^^fn are prerequisite for EGF and PMA response, interaction 
c Jun interact :Sp1 T4518567 ^^^^^ ^^^^ ^^^ ^^^ ^^ accountfor the functional 

regulation of human 12(S)-lipoxygenase gene regulation 

c-Jun cooperate Sp1 "Hie direct and cooperative interaction bet̂ veen c-Jun 
14518567 and Sp1 induced by EGF or PMA activates the 

c-Jun interact Sp1 expression of the human 12(S)-lipoxygenase gene 
Based on the data presented, we hypothesized that in 
the presence of prothymosin alpha. ER alpha activates 

CO «i,»u* i«» r̂« f̂ o * - ^ 1 '̂ ÂQ>l̂ < its direct target genes and increases cell proliferation. 
ERalpha interact Stat3 12702435 y^ereas In ttie presence of high levels of TGF-alpha.ER 

alpha preferentially interacts with Stat3 and causes cell 
differentiation 

Figure 1. A snapshot of the report page generated in the analysis of two PubMed documents is shown. First 
and third columns show the names of TFs, the second column shows the relation word, the fourth column 
gives a link to the PubMed document from which information is extracted. The column 'Sentence' shows 
the sentence from which the relation has been extracted with important words highlighted. 

represents only a fraction of TF relations which is documented. It is a great challenge to collect 
this information and make it available to researchers in gene regulatory networks field. One of 
our systems, Dragon TF Relation Extractor, allows such direct extraction of actual relations. 

Dragon TF Relation Extractor (DTFRE) 
This section describes DTFRE, a system that extracts the actual TF names and the type of 

relation(s) between them. The system is available for public and nonprofit use at http:// 
research.i2r.a-star.edu.sg/DRAGON/TFRE/. DTFRE is developed based on manually cleaned 
large corpus of data. Within 8 months, five trained biologists and a chemist have read, analyzed 
and classified more than 3000 PubMed abstracts related to transcription control in eukaryotes. 
Based on this information we have generated a database of classified sentences about TF rela­
tions. This database (TFRD) contains 5244 sentences. Out of these, 2402 sentences have been 
classified positive, i.e., as those which contain explicit statements about TF relations; 1766 
sentences have been classified as negative entries, while there have been 1076 entries classified 
as ambiguous. To the best of our knowledge, TFRD represent the largest, manually cleaned 
dataset to date used for developing specialized text-mining systems for extracting TF relations 
from biomedical literature. 

The system allows user to submit data and to obtain report which lists individual TFs and 
the extracted relations between them, as detected from the supplied data. Data to be submitted 
are simply the PubMed abstracts obtained as results of the search of PubMed database by the 
Entrez system and saved or copied in the text form. Generated reports are interactive. To sim­
plify analysis of extracted relations for users, we provided visualization of the actual sentence 
from which the relation is extracted, as well as a link to PubMed original document and to such 
a document with marked crucial words and sentences. Users have to provide e-mail address to 
which the link to their result files will be given. In Figure 1, we give a snapshot of a report 
generated from the analysis of PubMed docmnents ID = 14518567 and ID = 12709435, while 
in Figure 2, we show the first document with colored segments, as explained above. 
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PMID: 14518567 

TITLE • Celj signaling and gene regulation of human 12(S)-IJpoxygenase expression. 

ABSTRACT: Human 12(S)-llpoxygenase is a platelet-type 12(S)-lipoxyenase. Its expression is detected in human 
erythroieukemla cells, human skin epidermal cells and human epldemnoid carcinoma A431 cells. Treatment of A431 
cells with EGF or PMA induces the gene expression of human 12(S)-lipoxygenase. The induction of gene expression 
is mediated through the cell signaling of MARK activation, followed by the induction of c^un expression. The 
transcripfiOT factor Spl binding to the two Spl recognition moSfs residing at -158 to 160 bp and -123 to 114 bp In 
the gene promoter is found to be essejntial for both EGF- and PMA4nduced gene expression of human 12(S^ 
lipoxygenase. However, no change of Sp1 binding to GC-rich sequence was observed while no AP-1-binding site 
can be found in the responsive region of the promoter in EGF- and PMA-induced promoter activation of the human 
12(S)-lipoxygenase gene. Since both of the transcription factors c-Jun and Spl are prerequisite for EGF and PMA 
response, interaction between c-Jun and Spl may account for the functional regulation of human 12(S)-
lipoxygenase gene regulation. The direct and cooperative interaction between c-^un and Spl Induced by EGF or 
PMA activates tiie expression of tiie human 12(S>-8p0)(ygenase gene. Therefore. Spl may serve at least in part as a 
earner to bring c-Jun to the promoter, thu's transact!vating the transcriptional activity of the human 12(S)-
lipoxygenase gene.. 

Transcription Factor List 

c-Jun 
AP-1 
Spl 

Figure 2. An example of a colored PubMed document with identified TF names highlighted in red, with 
marked sentences from which TF relations are extracted, and with relation words highlighted in blue. At 
the bottom of the page the list of identified TF names in the analyzed document are shown. A color version 
of this figure is available online at http://www.Eurekah.com. 

Sentence | ^ 
V 

TF name taggln^^ [̂  Rulematching 

^ • ' ' ^ ' ' ^ ' ^ ' • ^ • ' • ^ ^ • ' ' ^ • ^ ^ • ^ ^ ' ' • ' ^ " . . ^ . . • . • ^ . • • • • . • • • • • . ; ; . - : ^ ^ ' . ^ . . 

^Ilfgl^^ ili;l|i||||;||iiiS:i:̂ ^^ 

^:\ TF Relations 

Figure 3. Conceptual structure of DTFRE. 

DTFRE is a rule-based system. Given a sentence, the system first tags TF names in the 
input sentences using a prebuilt TF dictionary. Then the sentences are matched with the rules 
in a rulebase. For every match, slots containing TFs and relation are extracted and presented to 
the user (Fig. 3). 

Rulebase Construction 
A crucial component of the system is the rulebase that captures the knowledge about the 

TF-TF relation patterns in the sentences. Construction of the rulebase is a nontrivial task. 
Traditional method is to hand-code the rules with the help of experts.^ However, hand-coding 
is a tedious task and is error-prone, especially when there are a lot of abstracts to be analyzed. 
Automatically learning the rules from abstracts is an attractive alternative. Learning extraction 
rules could help automate the rulebase construction or at least ease the hand-coding process, 
e.g., by letting the learning method generate seed rules that could be manually refined. 

Rule learning from text is an active topic investigated by the Information Extraction (IE) 
community. Though a number of rule learning systems have been proposed, directly 
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Inf(interact) - 2 - between - 15 - TF - 2 - and - 2 - TF 

V 

TF - 15 - lnf(interact) - 4 - with - 8 - TF 

V 

Figure 4. Sample rules for 'interact' relation. 

applying them to extract biological interactions has produces only moderate results.'̂ ^ The 
reason is that the complexities in biomedical literature demand learning algorithms custom­
ized for the biomedical domain. We have developed one such learning algorithm for con­
structing the rulebase of our system. 

Rule Representation 
Our rule learning algorithm uses a disjunctive rule representation. An example of the rule 

for the "interact" relation is shown in Figure 4. As observed in the figure, the rule consists of 
several regular patterns connected by the disjunction operator. The regular patterns follow a 
specific format as below. Every pattern: 

• Has exacdy two TFs and one relation word (possibly an inflexion). 
• Has connector words (optional). 
• Has intra term distance limits. 

For example, consider the first regular pattern in Figure 4. It has two TF names and an 
inflexion of the relation word "interact". The connector word is "with" which appears between 
the relation word and the second TF name. The distances between the adjacent terms stand for 
the maximum number of wildcard words that could be tolerated between the respective terms, 
for a rule match. 

Learning Algorithm 
Figure 5 presents an outline of our algorithm for learning the disjunctive rules from a train­

ing sentence corpus. The algorithm picks a random positive example and attempts to identify 
a candidate rule pattern that has support and confidence above minimum specified values. All 
positive examples covered by this pattern are removed and more candidate rules are generated 
until all positive examples are covered. The candidate list is then pruned to remove insignifi­
cant rules and the remaining rules represent the learned rules. The algorithm is run for each 
relation separately and hence there is at least one rule for every relation. The rulebase is simply 
a collection of all the learned rules. 

The learned rules were evaluated using 3-fold cross validation. We obtained over 90% pre­
cision and 75% recall on average for the seven types of relation words ('interact', 'complex', 
'bind', 'associate', 'synergise', 'cooperate', 'inhibit') we used in this system. We spent about 300 
man hours to manually tune the learned rules and obtained significant increase in accuracy 
reflected in 93% precision and 88% recall. For comparison, SUISEKI's reported perfor­
mance in extraction of protein-protein interactions is 46% precision and 40% recall, while 
PreBIND^^ performed at 92% precision and 92% recall, but only for a restricted problem of 
classifying sentences as describing protein-protein interactions or not. PreBIND does not ex­
tract the actual relations. 

DTFRE is the first public system for TF relation extraction. It achieves accuracy characterized 
by 93% precision and 88% recall on our test data, which is very similar in performance to that of 
single-pass manual curation. However, it will be dangerous to extrapolate this performance to an 
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Training 
Sentences 

Pick a random +ve example 

\ / 
identify a regular pattern around ̂ e relation word 

that contains at least two TF's 

Add this to the candidate list if meets the 
minimum support & confidence 

Remove all +ve examples covered by this rule 

Yes 

Any uncovered +ve example? 

_ ;̂2 
Prune candidate list to remove Insignificant rules 

...s.: 
Output remaining as learned rules 

End 

Figure 5. Structure of the rule-learning algorithm. 

arbitrary set of documents, since the volume of the data used in training and testing is still very 
small (although it is the largest corpus of manually curated data used for similar tasks in biomedi­
cal text-mining). The system is based on a combination of automatic learning for the generation 
of extraction rules and manual rule tuning. The learning method uses a representation that is 
human comprehensible and hence the learned rules are easy to manually verify and tune to 
achieve best performance. With the rule learning algorithm, we were able to cut down the 
hand-crafting time considerably. However, the rule representation is shallow and cannot accu­
rately recognize relations expressed in complex sentence structures, e.g., through coreferences. 
We are addressing this issue as part of our current work. 

Mining Associations of Transcription Factors by Dragon TF 
Association Miner 

While DTFRE aims at identifying and actually extracting specific relations and TFs sub­
jected to such relations, the goal of Dragon TF Association Miner (DTFAM) is different. It 
aims at providing more broad information about potential association of TFs with concepts 
from Gene Ontology (GO),^^ as well as with diseases, in order to help biologists and medical 
researchers to infer unusual functional associations. The system uses five well-controlled vo­
cabularies. Three vocabularies are related to GO (biological process, molecular function, and 
cellular component), while the fourth one is related to different disease states. The fifth vo­
cabulary contains TF names. Functional associations of TFs to any term from the four catego­
ries (GO and diseases) can be focused to any combination of these terms, such as biological 
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Figure 6. Schematic presentations of DTFAM structural modules 

process, or biological process and diseases, etc., depending on the user's selection. All GO 
vocabularies are general. Disease vocabulary is focused to human diseases, while the TF vo­
cabulary contains over 10,000 TF names and their synonyms collected for various species, 
mainly eukaryotes, but also including E. coliy B. subtilis and some other prokaryotes. Some 
necessary data cleaning has been done with all vocabularies in order to enable more efficient 
text-mining. 

DTFAM can be accessed fieely for academic and nonprofit users at http://researcLi2r.a-star.edu.sg/ 
DRAGON/TFM/. The system is trained and tested on the previously described corpus of 3000 PubMed 
documents which were manually classified. The system attempts to assess at the Abstiaa level' whether 
the document analyzed contains information about TF relations or not. The user has possibility to selea 
the level of filtering out irrelevant documents. This fimction reduces the *noise' (i.e., usage of irrel­
evant documents) considerably for the generation of final reports. However, it cannot elimi­
nate the irrelevant documents completely. 

There are several modules which operate within the system (see Fig. 6): 
• The first module analyses the submitted text, makes necessary indexing of terms and gener­

ates features for the intelligent module. 
• The second module analyses the content of the processed document and applies one of 65 

previously derived models in assessing whether the analyzed document should be retained 
or rejected. If the model signals that the document contains information about TF rela­
tions, the document is accepted for the final analysis, otherwise it is rejected. The selection 
of models is automatic and it is determined by the selected sensitivity on the systems main 
page. The higher the sensitivity, the more documents will be selected for the analysis, but 
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this may also include a large number of irrelevant documents. These 65 models are devel­
oped and tuned based on specific feature selection, signal processing, nonlinear modeling, 
artificial neural networks and discriminant analyses. 

• The third module generates interactive tabular reports. 
• The fourth module analyses the connections (associations) between the terms and gener­

ates interactive association map networks of these terms. The association of terms is based 
on their cooccurrence in the same PubMed document. The nodes of the generated graphs 
represent the terms from the selected vocabularies. Different shapes and coloring is used to 
make it easy for users to analyze these graphs. All nodes are interactive and by clicking on 
the node a set of related PubMed dociunents with color-marked terms will be opened for 
user's inspection and assessment of the relevance of proposed associations. 

The main characteristics of DTFAM system are: 
1. It is focused on exploring potential association of TFs with other important fiinctional 

categories such as GO terms and diseases. 
2. It provides suitable interactive reports both tabular and graphical. 
3. Its module for filtering irrelevant document has been trained on a unique large 

manually-curated corpus of data. 
4. It uses five manually-curated vocabularies (one for TF names and synonyms, three for GO 

categories, one for diseases). 
This system is unique in the combinations of features and utility it provides to the users. 

The most distinctive features are its focus on transcriptional regulation, its module for filter­
ing out irrelevant documents trained on manually-curated large data corpus related to rela­
tions between TFs, and possibility for the user to select the stringency of filtering irrelevant 
documents. 

To illustrate how, in a simple way, users can extract useful information by this system, we 
will assume that it is of interest to find out what are TFs potentially involved in the toll-like 
receptor mediated activation of signaling pathway which induces an antimicrobial innate im­
mune reaction. We also want to find out what are the biological processes, molecular fiinc-
tions, cellular components and diseases that could be associated with the found TFs. Antimi­
crobial peptides are constitutive ingredients of innate immunity and they take role of the first 
layer of defense of the host against invading pathogens. Some of these peptides are gene prod­
ucts and can be transcriptionally activated. For example, in Drosophila, Toll signaling pathway 
regulates rapid production of antimicrobial peptides in response to infection by pathogens. We 
will perform this exploration by selecting a query 'toll antimicrobial'. We will also select Sensi­
tivity of 0.95, and all four vocabularies at the main page. As a part of the analysis and reports, 
the system will generate two association map networks. Analysis of the first network depicted 
in Figiu-e 7, reveals that DFTAM detected inhibitor kappaB (IkappaB), NF-kappaB and c-Jun 
as TFs relevant for this signaling pathway. The roles of these three TFs in this pathway are 
documented in.̂ ^'^^ All other entities found and presented in the network relate to proper GO 
categories, immune response and diseases. We also observe that Drosophila TFs, Cactus and 
Dorsal, have been found. Cactus is IkappaB-like TF, while Dorsal is NF-kappaB-like TF. This 
shows that DTFAM is capable of extracting relevant biological knowledge. We suggest, how­
ever, that a user should not blindly accept results of the analysis and should evaluate the rel­
evance of detected associations by consulting the references used by the system. Since the sys­
tem provides interactive graphs with links to the documents used, as well as color-highlighted 
the terms used in the analysis, this task is made easier for the user. 

Exploring Metabolome oi Arabidopsis thaliana and Other Plant 
Species by Dragon Metabolome Explorer 

The largest category of gene functions in all the eukaryotic genomes sequenced thus far is 
that of metabolism, which can comprise almost 25% of all genes.^^ Metabolome, in its com­
plete sense, includes all metabolic pathways and their components, including the enzymes 
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and the regulators. In this section we present a system, Dragon Metabolome Explorer (DME), 
for the exploration of metabolic subsystems in plants and their associations with genes and 
all the GO categories summarized in ontologies adopted by the Arabidopsis research com­
munity (www.tair.org). In addition to general GO categories, such as biological processes, 
molecular functions, and cellular components, Arabidopsis specific ontologies which DME 
uses are related to anatomic parts and developmental stages. The exploratory analysis of 
associations of the GO terms/entities can suggest meaningful functional links and pave way 
for a more detailed and focused analysis using experimental approaches. The system is free 
for academic and nonprofit users and can be accessed at http://research.i2r.a-star.edu.sg/ 
DRAGON/ME_v2/. 

Metabolic processes control body functions through highly complex networked pathways. 
Many small molecules associated with such pathways act as regulators of genes and diverse 
cellular functions. Understanding metabolic processes, therefore, is one of the key issues of 
modern biology and requires a systems approach due to their complex nature. The limits of 
metabolic complexity are found in plants due to their extensive secondary metabolism net­
works; therefore, they form excellent resources for developing knowledge extraction tools which 
target metabolic pathways. The model plant, Arabidopsis thaliana, has 185 metabolic pathways 
documented, including over 700 different compounds and nearly 525 enzymes. '̂ ^ However, 
the information about pathways is not complete, which explains the fact that there are approxi­
mately 900 known metabolites found experimentally in Arabidopsis, which are not assigned to 
any of the known metabolic pathways. 

The currendy available public resources on metabolic pathways are almost exclusively de­
voted towards representing the metabolic pathways. Some of these are, MetaCyc,^ ENZYME, ̂ '̂  
BRENDA,^^IntEnz,^^ KEGG,^PadiDB [http://www.ncgr.org/research/padidb/], UM-BBD.^^ 
WIT2.^2 soj^g of ^ g ^^^^^ 

recent resources such as AraCyc additionally link the pathway 
information to the genome resources.^^ However, to the best of our knowledge, there are cur­
rendy no resources for extracting knowledge of the function of metabolites and pathways from 
the existing literature with the aim to complement the pathway related information. Our sys­
tem, DME, is one such bioinformatic tool that can support research in this direction and can 
simplify task for individual biologists. It has sufficient flexibility and provides comprehensive 
summarized information in a form suitable for simple use by biologists. The information pro­
vided is also with the high coverage, attempting to include much of the known knowledge. 

The algorithm is based on text analysis of PubMed documents. The system uses several 
highly controlled vocabularies and matches cooccurrence of terms from these dictionaries within 
a set of documents, and determines significance of each of these terms. It provides users com­
prehensive listings of three categories of metabolome components found in the analyzed docu­
ments—pathways, enzymes, metabolites, and any of the categories from the additional three 
vocabularies specific iot Arabidopsis thaliana (related to anatomy, developmental stages, genes), 
as well as those related to cellular component, biological process, and molecular function. 
DME attempts to detect potential associations between the terms form these vocabularies and 
produces different reports including networks of associations. All reports including graphical 
ones are interactive and contain hyperlinked nodes to provide PubMed abstracts direcdy. 

There are three possible ways a user can submit documents for the analysis. Documents 
can be selected by forming any query acceptable for Entrez search engine of PubMed reposi­
tory, or the user can perform PubMed search in advance and save selected documents in the 
text format, and then submit such saved documents to the program for the analysis. The 
second mode is preferable. The system possesses great flexibility as it allows arbitrary query 
to be submitted for the abstract selection. The tabular report presents every term from the 
selected vocabularies found in the document set and links of the PubMed documents where 
the terms have been found. These terms are also provided in three colors (green, red and blue 
for pathways, metabolites and enzymes, respectively) for easier visual inspection. Graphical 
report may contain several association networks that depict the terms found in the analysis. 
Each term is represented by an oval node (green nodes denoting pathways, yellow node with 
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Figure 8. Part of the interactive tabular report of DME using the term "dihydrokaempferol" 

red letters denoting metabolites, and blue nodes denoting enzymes). Again, dififerent colors 
help easier inspection of the generated association networks. 

We illustrate here how this system can be used to infer function related to metabolic path­
ways. To do so, we take the example of the pathways, metabolites, enzymes and plant anatomy 
terms associated with the activity of the metabolite, dihydrokaempferol. The query was 
dihydrokaempferol. The selected vocabularies were: pathways, metabolites, enzymes and 
anatomy. System produced an interactive tabular report, part of which is shown in Figure 8, 
and an interactive association map network depicted in Figure 9. 

DME found anthocyanin biosynthesis pathway of which dihydrokaempferol is part. It 
also found 18 compounds, 9 enzymes and 8 anatomy parts where this metabolite is found. 
From components of the anthocyanin biosynthesis pathway, DME identified 5 out of 8 
metabolites and 2 out of 3 enzymes. DME also displayed 5 out of 10 metabolites and 3 out 
of 9 enzymes which are present in flavonoid biosynthesis pathway. Some of these metabolites 
and enzymes are shared between these two pathways, suggesting links between anthocyanin 
biosynthesis and flavonoid biosynthesis pathways. These two pathways fall under more gen­
eral phenylpropanoid pathway. Also, for example, DME has found that flower is related to 
dihydroflavonol 4-reductase, flavonoid 3'-hydroxylase, dihydrokaempferol, leucopelargonidin, 
anthocyanin biosynthesis. It is, however, documented that anthocyanin biosynthesis path­
way is involved in flower pigmentation. Additionally, the above mentioned enzymes and 
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Figure 9. A part of the DME association map network generated by the query shown in Figure 8. Pathways, 
enzymes, metaboHtes and plant anatomy terms are shown in different shaped and colored nodes. 

metabolites from anthocyanin biosynthesis are involved in flower pigmentation 
(dihydroflavonol 4-reductase does not show pigmentation of flower due to the accumulation 
of dihydrokaempferol; flavonoid 3'-hydroxylase shows pigmentation of anthocyanins; 
leucopelargonidin gives the orange color to flowers). Moreover, Dihydroflavonol 4-reduc­
tase inefficiently reduces dihydrokaempferol in anthocyanin biosynthesis and DME linked 
these together. These several extracts from the reports of DME are used to illustrate that one 
can infer many specific issues related to function of metabolic subsystems. 

Comparative Analysis of Bacterial Species 
One of the interesting possibilities is the use of text-mining in the cross-species studies. The 

aim of such tasks is to find out in an automated fashion the facts common to two or more 
species, as well as those specific for individual species or group of species. For example, we may 
be interested in finding common parts of complex regulatory networks and pathways which 
are preserved in various species (and thus common), as well as to find out gene networks 
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characteristic of separate species development related to the same or similar pathways. Due to 
the putative nature of text-mining, this approach is highly useful in suggesting functional asso­
ciations between the entities searched in a given framework. 

Our system, Dragon Explorer of Bacterial Genomes (DEBG), has currently data for two 
bacteria, Pseudomonas aeruginosa and Escherichia colt. We plan to extend it to other microbes 
shortly. DEBG contains species-specific vocabularies of genes (and their synonyms), each 
containing several thousand entries. The system analyses cooccurrence of terms from these 
vocabularies in several groups of carefully selected documents from Pub Med repository, and 
summarizes results obtained. Then it provides interactive graphical and tabular presenta­
tions of the associations found. DEBG relies on a local installation of PubMed. 

Users can supply up to three concepts to be used in the selection of documents. One of the 
concepts should be broad, while the other two should be more specific. DEBG will automati­
cally form several queries to collect documents required for the analysis. We will illustrate this 
through a panicular example. 

To illustrate the use of DEBG, let us assume that we are interested in exploring the 
diff̂ erences in gene networks controlling flagellar motility and twitching motility in our 
two bacterial species. We can select ^motility* as the broad category, while *flagella and Witch­
ing OR fimbriae OR pili* can be selected for the more specific categories. The reason we 
added Timbriae' and *pili' is because twitching motility in E. coli is commonly associated 
with fimbriae, while in P. aeruginosa^ it is the type VI pili. Example of queries which DEBG 
forms are as follows: 

Ql: (Pseudomonas OR 'Escherichia colt) AND flagella 
Q2: (Pseudomonas OR 'Escherichia colt) AND (twitching OR fimbriae OR pili) 
Q3: (Pseudomonas OR 'Escherichia colt) AND motility 

After the documents are collected the system identifies the existing terms from the vocabu­
laries used, index all found terms as belonging to one or another organism, or both, and also 
the category (motility, flagella, twitching). Based on these summary results, the system gener­
ates interactive tabular and graphical reports. 

The system provides a colored output for the different groups of genes found in documents 
specific to queries Q l and Q2. In the gene association networks, the nodes represent the genes. 
Genes specific to one species are shown with one shape of nodes, while those form the other 
species with different shape of nodes. Genes found in the documents in response to query Q3 
are also depicted as a separate shaped nodes and in different color. This different coloring and 
shapes of nodes related to categories and species make inspection and analysis of the found 
networks much easier for biologists. 

For example, in Figure 10, one may observe that genes in generated network appear in 
three big groups, one yellow-colored corresponding to twitching motility, the other 
magenta-colored corresponding to flagellar motility, and the third one green colored corre­
sponding to genes contained in documents related to 'motility', but not directly related to 
flagellar or twitching motility. One can easily track the association of genes to species, as 
well as potential associations of other found genes supposedly involved in motility, but not 
necessarily associated with the two specific types of movement. An interesting observation 
is t\i2X fliC (Fig. 10 bottom panel), the most abundant structural component of the flagellar 
apparatus, is linked extensively to other genes in the network, indicating its importance in 
the formation of the flagella. Also, genes with related functions are likely to be located in 
close proximity, for example, the che genes involved in chemotaxis are clustered together in 
the network. 

The conclusions of this in silico experiment, which included 3522 documents in total, are 
that in a relatively simple fashion and in a short time, we are capable to summarize a part of 
information regarding to these two types of movements in two bacteria and obtain rich mate­
rial for further detailed analysis. 



Extracting Information for Meaningful Function Inference through Text-Mining 71 

Figure 10. A part of a complex network of gene associations based on textual searches and related to motility', 
'flagellar motility' and 'twitching motility' in P. aeruginosa and E. coli. The flagellar struaural protein FliC 
and its associations with some other flagellar structures is shown in the close-up panel at bottom. 

Conclusions 
We show here that text-mining is a useful technology that can support research in life-sciences 

and allow easier inferences of function of examined entities. The strength of this approach is its 
comprehensiveness and ability to present sometimes unexpected associations of categories and 
terms based on analysis of large sets of documents. This is not feasible for a single user. How­
ever, this also is a weakness, since very few text-mining systems have built-in intelligence to 
automatically determine the relevance from the document context. The accuracy of such intel­
ligent blocks is currendy not sufficiendy high, which requires that users carefully analyze the 
results obtained. However, the developments of natural language processing will make crucial 
contributions to this growing field in the future. ^ 
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CHAPTER 5 

Literature and Genome Data Mining 
for Prioritizing Disease-Associated Genes 
Carolina Perez-Iratxeta,* Peer Bork and Miguel A* Andrade 

Abstract 

The first step in understanding the molecular biology of an inherited disease is to identify 
which gene or genes are carrying variants. This process starts with locating the 
mutations in a chromosomal band, as narrow as possible, and follows with the manual 

analysis of all the genes mapping in this region. Usually this is not an easy task, but it can be 
facilitated by complementary computational approaches that evaluate all genes in a region of 
interest. We present here a method that combines literature mining, gene annotations, and 
sequence homology searches to prioritize candidate genes involved in a given genetic disorder. 
The method progresses in two steps. Firstly, we compute associations of molecular and pheno-
typic features as taken from MEDLINE. Secondly, for a disease with a given phenotype and 
linked to a chromosomal region, sequence homology based searches are carried on the chromo­
somal region to identify potential candidates that are scored using the precomputed associa­
tions. The scoring of associations between biological concepts using links across databases can 
be extended to other databases in Molecular Biology and to nondisease phenotypes. 

Introduction 
Some inherited mutations affecting one or more genes can produce exceptionally grave 

disorders that affect a high proportion of the population. Well known examples are asthma, 
diabetes or cancer. Finding out which genes contribute to the phenotypes can open the floor 
for better therapies, proper diagnosis and prognosis, and even prevention in some cases. Find­
ing genes related to other more rare inherited pathologies has also a high biological and medical 
importance, because their identification may provide us with new insights about molecular 
mechanisms, and propitiate medical advances in related areas. 

Many genes associated with (mostly monogenic) diseases have been identified and charac­
terized in the past. To date, around 1200 of these are stored in the OMIM database (http:// 
www.ncbi.nlm.nih.gov/omim/). The usual procedure to identify the molecular basis of a mo­
nogenic disease is to start by positioning the mutation in the genome by linkage analysis using 
data from families of affected individuals. The result is a more or less narrow cytogenetic loca­
tion that is later screened for mutations in genes mapping to the region, often manually se­
lected based on gene function and possible relation to the disease phenotype. 

Complex diseases are much harder to position. Weaker linkage correlation signals to loci 
and the lack of homogeneity within the affected (usually very large) population produce im­
precise association to several and larger chromosomal regions. Alternative experimental ways, 
as the use of polymorphisms, are ongoing (for review see re£ 6). 
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Typically, after positional cloning, researchers have to face manual analysis of tens to hun­
dreds of candidate genes, trying to establish possible mechanistical relationships between the 
ethiology of the disorder and the function of those genes. Even in the case of monogenic 
diseases, where positional cloning may result in a reasonably narrow band, it can happen that 
the affected gene has not yet been characterized and ftmctionally annotated, or, in the worst 
case, has not even been predicted as a gene. Moreover, many diseases are still far from being 
understood. This means that the molecular biology underlying the particular phenotype is not 
known, and consequently not described in the biomedical literature. 

With the advent of functional genomics approaches, alternative or complementary meth­
odology is frequendy used on large sets of genes, for example gene expression analysis using 
DNA microarrays.^ Yet, the interpretation of such results is difFicult. 

We have proposed a computational approach that helps to overcome the three major ham­
pering factors mentioned above, namely, the large size of the cytogenetic bands, the presence of 
uncharacterized genes therein, and poorly known molecular mechanisms that prevent a 
straight-forward expert-based selection of candidates. ̂ ^ 

Our system mines the existing literature and current knowledge about genes, and maps this 
information to the completed sequence of the human genome. The procedure starts with the 
phenotype associated to a disease and tries to relate this to molecular functions of the genes in 
the region. It then scores this information based on a corpus of precomputed links taken from 
more than 10 Million abstracts in the MEDLINE database. Then it compares the region of 
interest against annotated proteins by homology search using BLASTX ^ and produces a rank­
ing according to their scored associations. 

Mapping Symptoms to Gene Functions 
The first step in our method is to find out automatically which gene functions could be 

associated to a particular disease phenotype. Both the disease phenotype and the gene function 
can be summarized with a few keywords describing their main features. Our method is mainly 
based on detecting the associations between phenotype keywords and gene function keywords. 

Our first source of information are the abstracts of literature reports stored in MEDLINE. 
Each MEDLINE reference is manually annotated with keywords, commonly around a dozen, 
at the National Library of Medicine (http://www.nlm.nih.gov/). These keywords are organized 
as an ontology called MeSH (Medical Subjects Headlines, http://www.nlm.nih.gov/mesh/). 
The MeSH terms are hierarchically organized in eight main categories. The *C' category, corre­
sponds to 'Diseases'. Then, given a disease, we take as its keywords the MeSH C terms anno­
tated in the MEDLINE references dealing with that disease. 

For the genes we use the RefSeq gene database of annotated and validated genes and 
Gene Ontology as the keyword system. Gene Ontology terms (GO terms, http:// 
www.geneontology.org) constitute an ontology that has become very popular for functional 
annotation in molecular biology databases. We take as gene keywords all the GO terms 
associated to a gene in the RefSeq database. 

To estimate the degree of relatedness between every MeSH C term, representing a symp­
tom, and every GO term, representing a gene feature, a simple approach could consist of 
counting how often a given MeSHC term appears in any of the MEDLINE references linked 
to those gene entries in the RefSeq database annotated with a given GO term. 

However, most of the papers linked to RefSeq genes are dealing more with the biochemical 
characterization of the gene than with clinical matters. Even in the whole MEDLINE there is 
not enough literature about molecular medicine to permit us to relate symptoms directly to 
molecular functions. We solve this problem by taking into account that genes relate to pheno-
types by means of molecules. Accordingly, we enhance the signal strength of the relations by 
using an intermediate association step through another MeSH category: the D category con­
sisting of'Chemicals & Drugs' (see Fig. 1). Then, firsdy we count all cooccurrences of MeSH 
C and MeSH D terms in references of the whole MEDLINE. For example, the MeSH terms 
'Brain Ischemia' (C) and 'Glutamic Acid' (D) are mentioned together frequendy in MEDLINE 
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Figure 1. Mapping symptoms to gene features through chemicals. 

references. That means that the composed (C,D) pair ('Brain Ischemia,'Glutamic Acid') will 
receive a high value of association. Secondly, we compute the associations between MeSH D 
terms and GO terms, considering all the bibliography linked in RefSeq. Most of those refer­
ences will be dealing with the biochemical characterization of the gene. For example, in this 
way we could find, that 'Glutamic Acid' is strongly associated to the molecular function GO 
term *N-methyl-D-aspartate selective glutamate receptor'. The cause for this relation is that 
many annotations of genes in RefSeq with the GO term 'N-methyl-D-aspartate selective 
glutamate receptor' are linked to a MEDLINE reference annotated with the MeSH D term 
'Glutamic Acid'. 

The result of this procedure are two sets of relations: the first one between symptoms and 
chemicals, and the second one between chemicals and gene function. By combining both sets 
of relations, it is possible to find associations between phenotypes and gene functions. For 
formal details about the computation refer to reference 13. Following the example, we could 
automatically conclude that 'Brain Ischemia' is related to the 'N-methyl-D-aspartate selective 
glutamate receptor', and the pair receives a high association value. Moreover, the strength of 
the association can be enhanced by the relation of the symptoms to other terms. In this ex­
ample, we find that 'Brain Ischemia is also pointing to the MeSH D term 'Receptors, 
N-Methyl-D-Aspartate', which turns out to be, logically, highly associated to the 
'N-methyl-D-aspartate selective glutamate receptor' GO term. 

Once the mapping between keywords is computed, upon collection of the MEDLINE 
references dealing with a disease, we can extract the most prevailing MeSH C terms (more 
frequendy found in that set of references), and obtain a scoring for all GO terms, according to 
the learned relation, to the symptoms. We can use the scores to sort all the genes in Refseq, by 
their annotation with QO terms (for example, with the average of the scores of their GO 
terms). The resulting score for a gene (GO-score), is giving an indication of the likelihood of 
the gene of being associated to the given disease (see re£ 13 for details). 

Sequence Homology Based Searches 
To link a given a chromosomal region to the genes and their associations, we perform 

BLASTX searches (Altschul et al, 1997) of the region against all the genes in the RefSeq data­
base (Fig. 2). All hits in the region with an E-value below lOe-10 are registered and sorted 
according to the GO-score of the RefSeq gene they hit. Note that hits in the genome might 
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Figure 2. Sequence homology BLASTX searches are performed in the chromosomal region of interest, using 
the scored genes as queries. 

correspond to either known or unknown genes or they might hit a pseudogene. The implica­
tions of this fact are discussed below. 

If the hits found in the band correspond to genes in RefSeq with the best GO-scores, those 
tend to correspond with obvious genes that a human expert would point out through manual 
examination. But it is also possible that none of the genes with high GO-scores gives a hit in 
the band. In such cases, the first hit can correspond to a gene whose association to the disease 
is pointed at by a small number of literature references, even a single one. Also, the hit can be 
obtained by weaker but plausible associations, such as a transcription factor that can be associ­
ated with any disease through the gene whose transcription it regulates. To reflect the variable 
strength of the association of a candidate, we use a relative score (R-score) for the genes in 
RefSeq that takes into account the distribution of GO-scores. It is computed as the ranking of 
the gene by GO-score divided by the total number of sequences in RefSeq (1/N for best, and 1 
for last, being N the total number of sequences in RefSeq). Homologous genes in the band 
with an R-score closer to zero indicate "highly anticipated candidates" according to the current 
knowledge (as extracted from databases by us). 

Performance of the System 
In order to benchmark the performance of our system, we randomly selected from the 

LocusLink database^ "̂  100 genes for which disease-causing mutations had already been re­
ported. In order to obtain the phenotypic terms describing the disease, a set of bibliographic 
references related to each one was derived, by querying MEDLINE with the name of the 
disease. However, the associations from these phenotypic terms to chemical terms were com­
puted on a version of MEDLINE from which we removed the 100 sets of references altogether. 
This was done in order to ensure that we would not find the relation direcdy from the refer­
ences that described the connection of a gene to the corresponding disease. A chromosomal 
region of 30Mb (corresponding to the average size of the regions where unresolved monogenic 
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Figure 3. Performance of the system in a benchmark of 100 resolved monogenic diseases. The responsible 
gene was discovered in 66 cases (represented). The graph displays the relative position of the gene responsible 
of the disease in the list of candidates versus the R-score of the gene. There is a good correspondence between 
good (low) R-scores and good rankings. For example, in all but one of the 49 cases where the target gene 
was scored with an E-score < 0.021, the target gene was deteaed among the top 2% of the candidates. 

diseases were mapped) was taken around each of die 100 genes and the procedure introduced 
above was applied. All regions with homologues in the RefSeq set that had significant GO-scores 
were recorded. In an early version of the method, we obtained the following results. The 
disease-related gene was identified in 55 cases. Of these the disease related gene was among the 
best 8 scoring genes in 25% of the cases and among the best scoring 30 in 50% of the cases. ̂ ^ 
Recendy, we have repeated the same benchmark using updated versions of all the involved 
databases (manuscript in preparation). Out of the 100 disease-related genes, 61 were identi­
fied. In all, the gene was among the 8 best scoring genes in the 43% of the cases, and among the 
30 best scoring genes in the last 54% (Fig. 3). We found that the improvement was mainly due 
to the use of a much more accurate assembly of the human genome (the hg l2 , build 30, 
assembly of the human genome sequence contains nearly ^7% finished sequence and 94%-97% 
coverage) (http://genome.ucsc.edu/). 

Examples on How the System V^brks 
We analyzed and made available through the G2D web server (see below) a total of 455 

analyses of monogenic diseases. We took some examples of candidates proposed by the system 
as an illustration of the systems performance. 

Often, the prioritization of candidates is straightforward. The obvious criteria are based on 
the similarity between the prioritized gene and another gene known to produce a slighdy dif­
ferent variant of the disease. For example, one of the 455 diseases analyzed was the 
Charcot-Marie-Tooth disease, axonal, type 2B1 (LocusLink id 65214). It has been linked to 
chromosome Iq21.2-q21.3. The two equally scoring top candidates are two connexins, the 
gap junction protein alpha 5 (connexin 40) GJA5 (genbank identifier, gi|6631083) and the 
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gap junction protein alpha 8 (connexin 50) GJA8 (gi|4885275). Both are highly similar to the 
gap junction protein beta 1 (gi|4504005) which in turn, is known to be responsible of an 
X-linked Charcot-Marie-Tooth neuropathy.^ Context analysis reveals that GJA8 is uniquely 
expressed in eye lense, leaving GJA5 as the most likely candidate. 

In other cases, the strong association becomes evident after consulting the literature (yet not 
easy to retrieve, given the average 300 genes per mapped region). One example is the predicted 
candidate gene for spinocerebellar ataxia-8 (LocusLink id 3648). The MeSH C most frequendy 
associated to references about this disease is "Spinocerebellar Degenerations". The mapped 
ftmction terms refer to the neurotransmitter glutamate because glutamate dehydrogenase (GDH), 
an enzyme central to glutamate metabolism, is significandy reduced in patients with neuro­
logical disorders affecting the cerebellum and its connections. Accordingly, the top candidate 
is human glutamate dehydrogenase 1 located in this region (gi|4885281). 

In many cases, however, the criteria for the selection of a candidate gene are less obvious 
because the potential links in the literature are scarce. One illustrative example was found 
during our analysis of the dilated cardiomyopathy IF (LocusLink id 1222), a disease affecting 
cardiac muscle. The best candidate proposed by the system is a recently cloned cAMP-specific 
phosphodiesterase 7B (gi|9506959); the relation of the enzyme to the phenotype of the dis­
ease is not apparent. The association was originated because inhibitors of phosphodiesterases 
are used to treat chronic heart failure. Indeed, it has been shown that the decreased gene expres­
sion of a cAMP phosphodiesterase is related to dilated cardiomyopathy.^^* 

Sometimes, the associations are weak and may only be based on the similarity of a domain 
within the protein. Nevertheless given the background of worse associations of other genes in the 
region, they call for ftirther exploration. An example is the X-linked mental retardation-9 (LocusLink 
id 4373). Amidst a background of low score hits in the region, the best association to a predicted 
gene is originated by a strong similarity (and likely orthology) to a murine RNA binding motif 
protein (gi|6755298). The product of one gene mutated in another X- Hnked mental retardation 
disease, the FMRl gene, is also an RNA binding protein. Although, mechanistic insights into 
the connection between an RNA- binding function and mental retardation are still missing, the 
detected candidate gene seems the only reasonable starting point in this region. 

A possible example of detection of unknown genes could be the case of a form of epilepsy 
that is accompanied by mental retardation (LocusLink id 1941). The best-scoring GO terms 
included references to the neurotransmitter gamma-amino butyric acid (GABA) which, in 
turn, has been associated to the disease because its levels are affected in several mental retarda­
tion diseases (e.g., see ref. 12). Thus, the best-scoring candidate was identified by similarity to 
GABA receptors. The respective region did not seem to overlap with either a human gene from 
RefSeq or a predicted gene at the time of the analysis (August 2001). However, since the region 
matched the entire homologue, did not contain any in-frame stop codon, and was not pre­
dicted as a pseudogene, it looked like a plausible candidate. Interestingly, in later assemblies of 
the human genome sequence, the candidate is overlapping with a gene prediction provided by 
the Ensembl consortium, ̂ ^ in agreement with our previous prediction using homology. 

Limitations, Scope, and Further Directions 
The major known limitations of our method concern mainly incomplete phenotypical de­

scriptions and the lack or relatively low number of suitable GO annotations for many genes. To 
overcome the latter, GO terms originating from semi-automatic massive annotation projects 
such as GOA (Gene Ontology Annotation, ) could be used. Another limitation, the some­
times insufficient assembly quality of the genome, seems not to play a big role anymore given 
the accuracy reached by the current publicly available human genome sequence (http:// 
genome.ucsc.edu/). 

Tandem duplications of disease-associated genes are also a factor that hampers a clear assign­
ment as the scoring system introduced here is likely to treat both duplicated genes similarly. 
Further analysis on the candidates may help, as for example, some Expressed Sequence Tags 
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Figure 4. Entry page of the G2D server (http://www.bork.embl.de/g2cl2). 

(ESTs) or array expression analysis of the duplicated genes might indicate differences in tissue 
expression helping to identify the correct candidate. Tissue expression based on EST evidence will 
be provided in the upcoming version of G2D (manuscript in preparation). 

It is important to remember that classical pitfalls in fiinction assignment by homology also 
apply to the procedure presented here. For example, the results of our procedure can occasion­
ally be affected by the "domain problem", that is, a reported high similarity between two se­
quences is based only on a single shared domain that might cover only a minor portion of both 
genes. As this can lead to the incorrect assumption that both genes have the same function, the 
domain organization of the protein has to be considered. Nevertheless, a common domain 
might be sufficient to capture a true assignment of a candidate gene. 

The sequence homology searches may identify unknown and unpredicted genes since it 
does not rely on the still varying and partially consei^ative gene prediction pipelines.^ How­
ever, noncoding regions with homology to real genes, such as pseudo-genes, can be wrongly 
identified as candidates. To discriminate between pseudogenes and undiscovered genes, we are 
filtering in the upcoming version of G2D for 20,000 predicted human pseudogenes. 
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Finally, we want to note that in the next version of the system, we oflFer the users the possi­
bility of scanning any chromosomal region for genes related to disorders present in OMIM. 
This enables the application of the procedure to complex diseases through the separate analysis 
of each of several loci. Future work will be devoted to filter the candidate lists using features 
relating the candidates from multiple loci such as cell pathways, interaction networks, or gene 
expression data. We plan to integrate other genomic features and new versions of the databases 
used in future updates of the system. Our goal is to accelerate the path leading geneticists from 
the genetic linkage of a disease to the characterization of the related gene or genes. Extensive 
usage of our system and feedback from users will be key to facilitate the evolution of G2D to an 
optimal tool from the point of view of experimental groups and to take advantage from dy­
namically evolving resources. 

The G2D Web Server 
We have developed a publicly accessible web site called G2D (from Genes to Diseases) 

accessible at the URL http://www.bork.embl.de/g2d/ (Fig. 4). It contains the analysis for up to 
500 mendelian inherited diseases that have been linked to a region of the genome but for 
which the particular associated gene is still unknown. Updated versions of G2D will be placed 
at the same web site. 
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CHAPTER 6 

Model-Based Inference of Transcriptional 
Regulatory Mechanisms from DNA 
Microarray Data 
Harmen J. Bussemaker* 

Abstract 

The development of DNA microarray technology has made it possible to monitor the 
mRNA abundance of all genes simultaneously (the transcriptome) for a variety of 
cellular conditions. In addition, microarray-based genomewide measurements of pro­

moter occupancy (the occupome) are now available for an increasing number of transcription 
factors. With this data and the complete genome sequence of many important organisms, it is 
becoming possible to quantitatively model the molecular computation performed at each pro­
moter, which has as input the nuclear concentration of the active form of various regulatory 
proteins (the regidome) and as output a transcription rate, which in turn determines mRNA 
abundance. In this chapter, we describe how our group has used multivariate linear regression 
methods to: (i) discover cis-regulatory elements in upstream regulatory regions in an unbiased 
manner; (ii) infer a regulatory activity profile across conditions for each transcription factor; 
and (iii) determine whether the mRNA expression level of a gene whose promoter is occupied 
by a particular transcription factor is truly regulated by that factor, through integrated model­
ing of expression and promoter occupancy data. Together, these results show model-based 
analysis of functional genomics data to be a versatile conceptual and practical framework for 
the elucidation of regulatory circuitry, and a powerful alternative to the currendy prevalent 
clustering-based methods. 

Introduction 
The recent development of high-throughput genomics technologies has had a major impact 

on the gene expression regulation field. It has become feasible to study the cell from a systems 
point of view, as a network of interacting genes and their protein products. The genomes of many 
important model organisms, as well as that of Homo sapiens^ have been sequenced. ' This has 
given rise to the development of DNA microarravs as a tool for monitoring the mRNA transcript 
abundance of all genes in a cell simultaneously, ' and more recendy for performing genomewide 
profiling of the occupancy of noncoding DNA by transcription factors (TFs) using ChIP ' or 
DamlD.^ The genomewide mRNA expression pattern is commonly referred to as the 
"transcriptome", while we here propose to refer to the set of genomewide TF occupancies (the 
terms "binding data" and "location data" are less accurate, in our opinion) as the "occupome". 

*Harmen J. Bussemaker—Department of Biological Sciences, and Center for Computational 
Biology and Bio informatics, Columbia University, New York, New York, U.S.A. 
Email: Harmen.Bussemaker@columbia.edu 
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For higher organisms only a small fraction of the genome codes for proteins. The function 
of the remaining noncoding DNA is largely unknown. It is widely believed that the complexity 
of an organism crucially depends on the way its genes interact. The unexpectedly low number 
of protein encoding genes foimd in the human genome supports this view.̂ ^ However, our 
imderstanding of the molecular mechanisms underlying the control of gene expression by regu­
latory proteins such as transcription factors that bind to noncoding DNA is still very limited, 
especially for higher eukaryotes. Through integrated analysis of mRNA expression data, tran­
scription factor occupancy data and genome sequence, advances are likely to be made in the 
mechanistic understanding of the genomewide regulatory network. ' 

Two Classes of Tools for Finding Motifs from Expression Data 
Knowing the mRNA expression level and the promoter sequence of each gene makes it 

possible to use computational methods to identify cis-regulatory elements (CREs). Among the 
various tools used to link gene expression data to cis-regulatory motifs, a fundamental distinc­
tion between two classes can be made: 

• Feature enrichment scoring methods ("Class A") define a subset of genes of interest based on 
expression data (e.g., all genes upregulated above noise, or the output of a hierarchical 
clustering algorithm) and subsequendy analyze the promoter regions of these genes for 
overrepresentation of specific sequence panerns. 

• Expression-based fiature scoring methods ("Class B") first define a subset of genes based on a 
expression-independent feature (e.g., genes whose promoter region contains a specific mo­
tif) and subsequendy score this feature by comparing the average expression level of the 
genes containing the feature to the genomewide distribution of expression levels. 

Most currendy used motif-finding approaches belong to Class A. ' The regression-based 
methods developed by our laboratory, discussed below, can all be viewed as belonging to Class 
B. By combining the signals of multiple genes on the microarray. Class B tools have greatly 
enhanced statistical power to detect differential expression at the level of multi-gene pathways. 
A change in activity for given transcription factor may be scored as highly significant even if no 
single gene controlled by that factor shows a change in mRNA expression above noise level. 

A similar distinction can be made among methods that aim to combine functional annota­
tion information from Gene Ontology with gene expression data: set enrichment scoring 
using the ciunulative hypergeometric distribution belongs to class A, while methods that 
score the average expression of genes in each GO category '̂̂ '̂ ^ belong to class B, and are there­
fore more sensitive. 

REDUCE: Motif-Based Regression Analysis of the Transcriptome 
As a first step towards the goal of "reverse engineering" the cell-wide regulatory network 

from large functional genomics data sets, we recendy developed a motif-based regression analy­
sis method named REDUCE, an acronym for "regulatory element detection using correlation 
with expression**. Class A motif finding tools rely on the clustering of genes based on their 
expression profile across a large number of experimental conditions. By contrast, REDUCE 
fits a simple model for transcriptional control to a single genome-wide expression pattern mea­
sured using DNA microarrays. It not only identifies cis-regulatory elements (CREs) in noncoding 
DNA, but also infers changes in the nuclear concentration of the transcription factors that 
bind these CREs. Another unique feature of REDUCE is that it naturally takes into account 
the combinatorial nature of gene expression regulation by allowing multiple factors to control 
each gene in a unique way, defined by its promoter sequence. Several other groups have adopted 
and extended our model-based approach. 

At the core of REDUCE is the following linear model for transcriptional regulation: 

A'"''""' lPn.Nr„r (1) 
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Here the dependent variable Ag equals the logarithm of the mRNA abundance for gene g, 
while the independent variable N^g is defined as the number of matches of motif m to the 
promoter sequence of gene g. For simplicity, A and Â  are assumed to be normalized to have 
zero mean. The slopes Fmy estimating the effect that each occurrence of a motif m in the pro­
moter of a gene has on its expression level, are determined by minimizing the deviance Z), 
defined as 

^-^LW -^ ] (2) 
g 

The set of motifs M on which the model is based can be determined without any prior 
knowledge by using forward selection of parameters.^^ Motifs are selected from a large search 
space (e.g., all oligonucleotides up to 8 base pairs). Each motif is tried as a model parameter, 
and the motifs are ranked by the value of 7?̂ , the fraction of the total variance explained by the 
model. The motif with the largest 7r is then selected as the first motif in the set Af, and the 
procedure is iterated: At each step the residuals based on the current model are calculated, and 
each motifs in the search space is tested for correlation with the residuals. To avoid over-fitting, 
a P-value measuring the significance of the increase in i r is calculated at each step. The fact 
that multiple motifs are tested in parallel is accounted for by applying a Bonferroni correc­
tion, i.e., by multiplying the single-motif P value by the total number of motifs. 

The selection of motifs that correlate with expression may reveal novel motifs or uncover an 
unexpected role of a known transcription factor in a particular experiment. The latter illus­
trates the ability of REDUCE to extract condition-dependent information about regulation, 
which sets it apart from other microarray analysis methods. For instance, REDUCE analysis of 
a time course for the developmental process of sporulation in S. cerevisiaP' not only confirmed 
the regulatory role of the known sporulation motifs URSl and MSE, but also revealed an 
unexpected role of the mitotic regulator MBF, a heterodimer of Mbplp and Swi6p binding to 
the MCB element; ̂ ^ the involvement of MBF during meiosis was confirmed by an indepen-
dendy performed genome-wide binding study for MBF and SBF.̂  When used to analyze ex­
pression data for a metabolic switch from glucose to oleate in 5. cerevisiae, REDUCE revealed 
an unexpected role for the stress-related transcription factors Msn2/4p and Yaplp. The 
time-dependent subcellular localization of these factors was determined experimentally using a 
fusion of Msn2p with green fluorescent protein (GFP). The observed transport of this protein, 
first from the nucleus to the cytoplasm, and later back to the nucleus, was consistent with the 
transient decrease in regulatory activity predicted for the stress response element (STRE). 

These results illustrate the ability of REDUCE to infer condition-specific, protein-level 
activities of transcription factors, independent of the mRNA-level expression of theTF gene. 
REDUCE can infer changes in TF activity even if the control is exerted purely 
post-translationally, e.g., through phosphorylation of the TF. This is a significant advantage 
over methods that represent activities of transcription factors by mRNA expression levels."^ 
It is interesting that transcription factor concentrations, which are often as low as 1-10 cop­
ies/cell and are therefore hard to measure experimentally, can be more accurately inferred 
from microarray data using our model-based analysis than the mRNA expression level of 
individual genes. 

From Central Dogma to "Omes Law" 
The Central Dogma of biology states that information in the cell flows from DNA to 

mRNA to protein. Regulatory control is exerted at various levels, including transcription, mRNA 
turnover and splicing, translation, and protein turnover. The modeling described in this paper 
is restricted to the very first level of control—i.e., that of transcription initiation—but the 
regulation of mRNA stability through cis-regulatory elements in the untranslated regions (UTRs) 
of mRNA has also be addressed within our regression framework (B.C. Foat and H.J. Bussemaker, 
manuscript in preparation). 
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Figure 1. REDUCE as a reverse engineering problem. The transcriptome can be viewed as the output of a 
complex molecular computation performed at each promoter region (governed by "Omes Law") and 
dependent on the state of the cell, as represented by the nuclear concentrations of various transcription 
factors (the "regulome"). When the transcriptome is known experimentally, the unknown regulome param­
eters can be estimated by fitting the model of Eq. (1). 

Equation (1) also ties together information at the level of DNA (as represented by the motif 
counts NmX mRNA (as represented by the mRNA expression log-ratios A^, and protein (as 
represented by the inferred nuclear transcription factor concentrations F;;,). But imlike in the 
Central Dogma, where the proteins are downstream of the mRNA molecules that encode them, 
in Eq. (1) the proteins are upstream of the mRNA transcribed from the genes whose promoters 
they control. 

Figure 1 shows how REDUCE can be viewed as an inverse problem for a process with two 
inputs and one output: We refer to the regulatory logic of the molecular computation per­
formed by the proteins that occupy each promoter as Omes Law. The analogy with the 
well-known law in electricity does make some sense: the current through a resistor (transcrip­
tion rate) in response to a voltage difference (transcription factor concentration) depends on 
the resistance (the strength of binding sites in the promoter region). On a genomewide scale, 
the transcriptome can be viewed as a consequence of the regulatory state of the cell as repre­
sented by transcription factor levels in the nucleus (for which we have previously coined the 
term "regulome" ) and the genome sequence. Analyzing microarray expression data using 
REDUCE corresponds to a situation where only one of the inputs (i.e., the static genome 
sequence) and the output (i.e., the dynamic transcriptome) are known, and the other unknown 
input (i.e., the dynamic regulome) needs be inferred. 

Three Different Ways of Using Regression Analysis 
As described above, REDUCE uses regression analysis to explain mRNA abundances in 

terms of motif counts in noncoding regions (black arrow in Fig. 2). The recent emergence of 
Chip and DamID for genomewide profiling of transcription factor binding has added a third 
level of experimental information, and thereby two novel ways of using regression analysis. 
First, by applying REDUCE to ChIP or DamID log-ratios instead of mRNA expression 
log-ratios, binding motifs can be found for the profiled transcription factors (bottom arrow in 
Fig. 2). The value of the regression coefficient, is depends both on the affinity of the factor for 
the motif and the concentration of the (DNA-binding form of the) factor in the nucleus in the 
condition under which the ChIP or DamID experiment was performed. This approach has 
been used in references 30 and 31. Second, it is possible to use regression analysis to direcdy 
relate mRNA expression data to measured TF occupancies (right arrow in Fig. 2). In this case. 
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Figure 2. Regression analysis can be used in three different ways to causally link mRNA expression log-ratios, 
Chip transcription factor occupancy log-ratios, and motif counts: Cis-regulatory motifs can explain mRNA 
expression (left arrow) or transcription factor occupancy (bottom arrow); alternatively, transcription factor 
occupancies can explain mRNA expression directly (right arrow). 

the regression coefficient F models the nuclear concentration of theTF under the conditions of 
the mRNA expression experiment relative to the nuclear concentration under the conditions of 
the ChlP/DamID experiment. This approach forms the basis of the MA-Networker algorithm 
described below. 

MA-Networker: Integrating Occupome and Transcriptome Data 
As was shown above, when transcript abundances are compared between experimental 

conditions in a single microarray experiment, multivariate regression analysis of the mRNA 
log-ratios can quantify to what extent each transcription factor is responsible for the ob­
served changes in mRNA expression. We have recently generalized the regression approach 
of REDUCE to infer the genetic regulatory network of the cell from libraries of expression 
data.^^ We used "ChlP-chip" transcription factor binding data, rather than motif occurrence 
in promoter regions, as a predictor. If the regression procedure is performed for a large num­
ber of conditions ("Step 1" in Fig. 3A), the inferred TF activities can be combined into a 
highly specific regulatory signature, or transcription factor activity profile (TFAP), for each 
transcription factor (Fig. 3B). 

One expects the mRNA expression profile of a gene that is regulated by a specific transcription 
factor to be similar to the TFAP of that factor. We therefore investigated whether the linear 
correlation across the experiment library between a TFAP and the mRNA expression profile of a 
gene whose promoter is bound by the factor could be interpreted as a regulatory coupling strength 
and used to improve the specificity of target prediction. To this end, we constructed a matrix of 
regulatory coupling strengths between all transcription factors and all genes ("Step 2" in Fig. 3A). 
When this information is combined with the original ChIP data for a given TF, the ChIP log-ratio 
and coupling strength for each gene can be shown simultaneously in a 2D scatter plot (Fig. 3B). 

The biological implications of our results are highlighted in the case of divergently tran­
scribed genes that share a common promoter region, represented as a single microarray probe 
in the ChIP experiments of reference 33. In this case, our results allow us to identify which 
genes are controlled by which factors, as shown in Figure 4. Indeed, we found the functional 
annotation of the protein encoded by the coupled targets to be consistent with what was 
known about the fiinction of the bound TF in most cases analyzed. 

The MA-Networker algorithm outlined in Figure 3 generalizes the linear regression 
approach of Eq. (1) by taking into account expression data from multiple experimental 
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Figure 3. A) Overview of MA-Networker, our method for determining regulatory coupling strengths 
between transcription factors and their putative target genes. Inputs are (i) a library of microarray expression 
data for a large number of conditions and (ii) genomewide (ChIP) occupancy data for one or more tran­
scription factors. In the first step of our algorithm, a matrix of transcription factor activities is inferred by 
using regression analysis to explain the mRNA expression pattern under each condition in terms of the ChIP 
data for each transcription factor. In the second step, a matrix of regulatory coupling strengths is determined 
by computing the correlation between each transcription factor activity profile (TFAP) and the mRNA 
expression profile of each gene. B) Examples of transcription factor activity profiles. Significant changes in 
aaivity of theTCA cycle regulator Hap4p occur mosdy in metabolic stress conditions, while changes in the 
activity of the cell cycle regulator Nddlp and the pheromone-dependent regulator Stel2p are associated 
with the cell cycle and signal transduction experiments, respectively. C) Scatter plots of ChIP binding 
log-ratio versus coupling faaor. Black dots denote unbound (B-) genes, red dots denote bound and coupled 
genes (B+/C+), while green dots denote genes that are bound but not coupled (B+/C-). Reproduced from 
reference 32. A color version of this figure is available online at http://www.Eurekah.com. 
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Figure 4. Assigning direaionality to divergently transcribed promoters. For pairs of divergently transcribed 
genes sharing a single promoter region occupied by one or more transcription factors, our method can be 
used to determine which gene is regulated by which factor. In the diagrams, genes are represented as squares 
with arrows showing the transcription direaion; transcription factors are shown as ovals. The numbers 
shown are significance scores for the coupling between the transcription factor and the gene, equal to the 
negative 10-based logarithm of the P-value. Significant regulatory relationships are shown as arrows to 
colored boxes. Reproduced fi^om reference 32. 

conditions simultaneously. To see this, consider the following model for the expression log-ratio 
Agt for gene g under condition t\ 

/ 
(3) 

Here /^models the activity of transcription factor/under condition t, while CĴ  represents 
the extent to which factor/contributes to the regulation of gene g. Note that the matrix F is 
gene independent. This allows us to determine the TF activities i ^ for a given condition t by 
performing a least-squares fit to the expression data A. A prerequisite for this is that an initial 
estimate for Cj^ is available. One possibility is to assume that C^ = Af^^ where w is a D N A 
motif to which the factor/ is known to bind, and M^^g is the number of occurrences of this 
motif in the promoter region of gene g—this is exactly the assumption that was used in the 
"standard" version ofREDUCE^^(left arrow in Fig. 2). Another possibility is to assume that 
Cjg= Bj^ where i?^stands for the ChlP/DamID log-ratio for gene^in an experiment in which 
the genomewide binding of factor/is measured (bottom arrow in Fig. 2). 

Unlike F, the matrix C is condition-independent. Therefore, once we have estimated each 
element in the matrix Ffy by performing a least-squares fit for each individual condition, we can 
improve our initial guess for the values of Cfg by performing a least-squares fit for each gene in 
which Cjg is now treated as a regression coefficient, while F\s treated as constant. When this is 
done for the couplings between a specific transcription factor/and all genes, CJ îs proportional 
to the Pearson correlation between the transcription activity profile (TFAP) for/—i.e., the f-th 
row from matrix F—and the mRNA profile of gene ^—i.e., the^-th row of matrix ^^ In other 



92 Discovering BiomoUcular Mechanisms with Computational Biobgy 

Table 1. Glossary 

DNA Microarray 

Transcription Factor 
(TF) 

Chip 

DamID 

GO 

CRE 

TFAP 

Transcriptome 

Occupome 

Regulome 

Two-dimensional array of spots consisting of imnnobilized single-stranded 
DNA probes, which hybridize to fluorescently labeled RNA extracted from 
a cell culture; the intensity of each spot represents the mRNA abundance 
for a single gene. 
DNA-binding protein that helps recruit the RNA polymerase complex to 
the start of a gene, and thereby controls the rate at which the gene is 
transcribed. 
Chromatin Immuno-Precipitation; experimental technique that produces a 
mixture of genomic fragments enriched for DNA sequences bound by a 
specific TF by using antibodies; when used in combination with 
microarrays ("ChlP-chip"), it can be used to measure protein-DNA 
interactions on a genomewide scale. 
DNA adenine methyltransferase jDentification; experimental technique 
that produces data very similar to ChIP, but instead of antibodies uses a 
fusion between the TF of interest and a DNA adenine methyltransferase 
(Dam) domain from E. colito obtain an enriched mixture of genomic 
fragments. 
Gene Ontology; an organism-independent, hierarchical classification of all 
genes based on function, process, and location within the cell; see http^/ 
www.geneontology.org. 
Cis-regulatory element; a short DNA region that acts as a transcription 
factor binding site and plays a role in controlling the transcription of a 
nearby gene. 
Transcription Factor Activity Profile; a profile of the regulatory activity of a 
transcription factor across different experimental conditions; these "hidden 
variables" can be inferred from mRNA expression data using our regression 
methods. 
The combined mRNA abundances of all genes for a specific experimental 
condition. 
The combined TF occupancies at all promoter regions for a specific 
transcription factor, obtained under a specific reference condition (often 
rich media, mid-log phase). 
The combined TF activities inferred from the transcriptome for a specific 
experimental condition. 

words, the iterative use of regression analysis to determine Fand C, respectively, is equivalent to 
the method summarized in Figure 3. 

Conclusion 
Analysis of microarray data based on predictive models, as presented here, represents a 

powerful new paradigm, in which the quality of fit to the data can be used to guide a 
hypothesis-driven process of model development. Since regulation of chromatin state, tran­
scription initiation, transcript stability, and the interaction between the various regulatory pro­
teins involved in these processes are all amenable to regression analysis, we expect to be able to 
develop a unified conceptual framework for inferring the structure of the genomewide regula­
tory network and predicting how the cell responds to changes in environmental conditions or 
genetic perturbations. We believe our model-based approach is more naturally suited to 
decyphering the logic of promoter regions than clustering-based methods^ ' since it models 
the molecular computation performed at each promoter direcdy, rather than relying on the 
existence of sets of similarly expressed genes. 
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CHAPTER 7 

The Predictive Power of Molecular 
Network Modelling: 
Case Studies of Predictions widi Subsequent 
Experimental Verification 

Stefan Schuster,* Edda Klipp and Marko Marhl 

Abstract 

S ince the 1960s, the mathematical modelling of intracellular systems, such as metabolic 
pathways, signal transduction cascades and transport processes, is an ever-increasing field 
of research. The results of most modelling studies in this field are in good qualitative or 

even quantitative agreement with experimental results. However, a widely held view among 
many experimentalists is that modelling and simulation only reproduce what has been known 
before from experiment. A true justification of theoretical biology would arise if theoreticians 
could predict something unknown, which would later be found experimentally. Theoretical 
physics has achieved this justification by making many right predictions, for example, on the 
existence of positrons. Here, we review three cases where experimental groups that were inde­
pendent of the theoreticians who had made the predictions confirmed theoretical predictions 
on features of intracellular biological systems later. The three cases concern the optimal time 
course of gene expression in metabolic pathways, the operation of a metabolic route involving 
part of the tricarboxylic acid cycle and glyoxylate shunt, and the decoding of calcium oscilla­
tions by calcium-dependent protein kinases. 

Introduction 
The mathematical modelling and simulation of intracellular biological systems, such as 

metabolic networks, signalling cascades and transport processes, has become a flourishing field 
of biological research. This field can be traced back to the work by Henri and Michaelis and 
Men ten on enzyme kinetics, yet the proper start of it should probably be dated in the 1960s, 
with the work by Garfinkel and Hess,^ Higgins and others. 

Modelling and simulation has manifold purposes, the most important being 
• Fitting of experimental data by phenomenological equations 
• Fitting of experimental data by equations based on mechanistic knowledge and, thus, ex­

planation of these data 
• Planning of experiments 
• Replacement of expensive or ethically problematic experiments 
• Prediction of hitherto unknown phenomena. 

*Corresponding Author: Stefan Schuster—Friedrich Schiller University Jena, Faculty of Biology 
and Pharmaceutics, Section of Bioinformatics, Ernst-Abbe-Platz 2, D-07743 Jena, Germany. 
Email: schuster@minet.uni-jena.de 
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The latter purpose is obviously the most ambitious goal. However, it is achieved relatively 
rarely in theoretical biology. Although the acceptance of theoretical (in particular, mathemati­
cal) biology appears to increase, as witnessed by the increasing number of such papers in 
high-ranking journals, experimentalists are often somewhat hesitant with respect to modelling. 
Many of them believe that it only reproduces what has been known before from experiment. 
On the other hand, all biochemists make use of the Michaelis-Menten kinetics, which is a form 
of modelling. 

By contrast, theoretical physics is a much more established discipline because it has allowed 
the prediction of many phenomena that have been found later by experiment. For example, the 
positron was predicted by P.A.M. Dirac in 1931 and found by C D . Anderson in 1932 (cf. ref. 
5). More recendy, powerful methods of theoretical physics, in particular using analogies, en­
abled a considerable progress in the field of liquid crystals. The analogy between superconduc­
tors and the liquid crystal smectic-A phase, found by Nobel Prize winner P.G. de Gennes, 
turned out to be an extremely powerful tool. By knowing the properties of the normal metal— 
superconductor phase transition, several properties of the nematic—smectic-A phase transi­
tion could be foreseen. The use of the analogy led to the prediction and theoretical description 
of the twist grain boundary phases^ (TGB phases). This phase is a liquid crystal analog to the 
Abrikosov (Nobel Prize winner in 2003) lattice in superconductors.^ One year after the TGB 
phase was predicted, an unusual phase was observed in smectic-A liquid crystals.^ It turned out 
that the theoretically predicted TGB phase had been discovered experimentally. 

In theoretical biology, the successftil prediction of phenomena unknown earlier is much less 
frequent than in physics. What comes to mind is the prediction of three-dimensional struc­
tures of proteins, which is often successftil, but often it is not. However, this prediction only 
assigned well-known structure elements such as a-helix and P-sheet to proteins for which the 
structure had not been known before rather than yielding completely new structures. 

Here, we review three cases where theoretical predictions of phenomena or features in intra­
cellular biological systems have indeed been verified later by experimentalists that worked in-
dependendy of the theoreticians who made the predictions. 

The first reported case concerns the prediction of properties of metabolic systems from 
optimality principles. Biological systems developed through evolution by mutation and selec­
tion. Evolution is often considered as an optimisation process that took place over millions of 
years. However, evolution is almost always coevolution, that is, different species interact so that 
they cannot optimise their properties in isolation. Therefore, to explain the unlimited possible 
forms and strategies, approaches more complex than simple optimisation, such as evolutionary 
game theory, should be used. '̂ ^ Evolutionary game theory has, for example, been applied to 
biochemical systems. ̂ ^ Fortunately, there are cases where the game-theoretical problem can be 
transformed into an optimisation problem. ̂  Indeed, it seems that many present-day intracel­
lular systems show properties that are optimal with respect to certain selective conditions. '̂ ^ 
Hence, system properties may be predicted from mathematical models based on optimality 
criteria. Several optimality criteria have been proposed. For cellular reaction systems they in­
volve, for example: (i) maximisation of steady-state fluxes,^ ' '̂ ^ (ii) minimisation of the con­
centrations of metabolic intermediates, (iii) minimisation of transition times, (iv) 
maximisation of sensitivity to an external signal, ̂ ^ (v) optimisation of thermodynamic efficien­
cies,^^ and (vi) minimisation of total enzyme concentration.'^^ Here, we discuss the prediction 
of temporal expression profiles for genes coding for the enzymes of a pathway from the crite­
rion of minimal time required for the conversion of the pathway's substrate into its product. As 
a side constraint, the limited capacity of the cell to produce and store proteins is taken into 
account. 

The second case is in the field of Metabolic Pathway Analysis. The set of linear pathways in 
biochemistry textbooks often does not capture the full range of possible behaviours of a meta­
bolic network. A well-known pathway is the tricarboxylic acid (TCA) cycle. It has frequently 
been realized that in many organisms only part of this cycle is operative, always or under 
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specific conditions. The question arose how the full set of potential pathways in the system 
could be determined in a systematic way. Various methods have been developed to answer this 
question (for reviews, c£ refs. 23 and 24). By these methods, a plethora of pathways have been 
predicted, some of which had been unknown before or had attracted litde interest. Here, we 
report the prediction of one specific pathway involving part of the TCA cycle that has later 
been verified in experiment. 

The third case is in the field of calcium oscillations. In living cells, upon cell stimulation 
by an agonist, like a hormone or neurotransmitter, often oscillatory changes in free cytosolic 
calcium concentration are evoked. The so-called Ca^^ oscillations play an important role in 
intra- and intercellular signalling. Many cellular processes like cell division, cell secretion, 
and egg fertilisation are regulated by Ca ^ oscillations. Soon after the discovery of such oscil­
lations in nonexcitable cells^^ (in excitable cells such as neurons they had been known for a 
longer time), it has been shown that the response of a cell stimulated by different concentra­
tions of a hormone is characterised by different frequencies of Ca"̂ ^ oscillations. The idea 
of frequency-encoded Ca ^ signals was born and the mechanism of information encoding in 
the frequency of Ca^^ oscillations has been studied theoretically, starting already by the first 
model of Ca ^ oscillations in nonexcitable cellŝ "̂  (for reviews of later models see refs. 28,29). 

The result caused by the oscillatory Ca^^ signal is, in most cases, a (nearly) stationary out­
put, for example, the enhancement of the expression of a gene. For a long time, it had been 
unclear how this transformation is brought about. Here, we discuss a mathematical model for 
explaining this and the subsequent experimental proof 

Optimal Time Course of Gene Expression 
One of the authors studied, by mathematical modelling, the time course of the adaptation 

of enzyme concentrations for a pathway that can be regulated depending on the actual require­
ments.^^ The product, P, of the pathway is considered to be important, but not essential for the 
reproduction of the cell. The calculation is based on the widely used assumption that during 
evolution, pathway flux has been maximized. ' ' ^ ^ The faster the initial substrate, SQ, can be 
converted into P, the more efficiendy the cell may reproduce and out-compete other individu­
als. If So is available, then the cell produces the enzymes of the pathway to make use of the 
substrate. If the substrate is not available, then the cell does not synthesize the respective en­
zymes for economical reasons. This scenario is studied theoretically by starting with a resting 
pathway, i.e., although the genes for the enzymes are present, they are not expressed due to lack 
of the substrate. Suddenly SQ appears in the environment (by feeding or change of place). How 
can the cell make use of So as soon as possible? 

For simplicity's sake, linear rate laws are used. The system of differential equations describ­
ing the dynamics of the pathway then reads 

(la) 

•5,. (; = 1,...,«-!) (lb) 

(Ic) 

Moreover, it is assumed that the cell can synthesize the enzymes instantaneously when nec­
essary (neglecting the time necessary for transcription and translation), but that the total amount 
of enzyme is limited due to limited capacity of the cell to produce and store proteins. The time 
necessary to produce P from So is measured by the transition time 
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Figure 1. Optimal enzyme profiles and metabolite concentrations for a linear pathway of five reactions. A) 
Enzymes are switched on and off̂  consecutively {Ei, enzyme concentrations, with the numbering starting 
at the enzyme converting the initial substrate, SQ). Afi:er the last switch, all enzymes get a share of the total 
enzyme amount. B) The respective optimal time courses of metabolite concentrations, 5,. Comparison to 
panel A shows that the enzymes are always present, when there is metabolite to degrade. C) Time courses 
of metabolite concentrations for the reference case that all enzymes get the same share of the total enzyme 
amount, £,(/) = EtoJ'b. Comparison to panel B shows that the production of the final metabolite 85=? is 
much slower than in the optimal case. 

The optimisation problem to be solved is to find a temporal profile of enzyme concentra­
tions that allows for 

T = min subject to E^^f - ^Ei(t) - const. (3) 

Varner and Ramkrishna had proposed a similar optimisation criterion, though math-

deriv 
icallv less elaborate. By standard optimisation techniques, optimal enzyme profiles can be 
ed.^ Figure 1 shows the optimal enzyme profiles and the time courses of metabolite Figur( optimal enzyme profiL 
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concentrations for the optimal case and for the case of even distribution of enzyme concentra­
tions among reactions. The optimal enzyme profiles have the following characteristics: within 
successive time intervals, only a single enzyme is fully active whereas all others are shut off. At 
the beginning of the process, the whole amount of available protein is spent exclusively on the 
first enzyme of the chain. Each of the following switches turns off the active enzyme and 
allocates the total amount of protein to the enzyme that catalyses the following reaction. The 
last switch allocates a finite fraction of protein to all enzymes with increasing amounts from the 
first one to the last one. This scenario ensures that the enzymes are present when their sub­
strates are present. 

Bacterial amino acid production pathways seem to be regulated in the same manner: Zaslaver 
and colleagues investigated experimentally the amino-acid biosynthesis systems oi Escherichia 
coli, identified the temporal expression pattern and showed a hierarchy of expression that matches 
the enzyme order predicted for unbranched pathways.^^ 

Well-characterized enzymatic pathways carry out amino-acid biosynthesis in E. coli. To 
study design principles of metabolic regulation, the promoter activity of about 100 genes have 
been measured in parallel using GFP and Lux reporter libraries. The dynamics of pathway 
activation has been analysed by diluting the cells in a defined medium that contains all amino 
acids except one (e.g., arginine, serine, or methionine). A temporal order of expression has 
been found with delays of the order of 10 min between different promoters. This temporal 
order matches the functional enzyme order in the different unbranched pathways of amino-acid 
biosynthesis. 

In addition, it has been found that the closer an enzyme is to the upper end of the pathway, 
the higher its maximal promoter activity will be. This is in accordance with the theoretical 
prediction^^'^^ that in optimal time-independent states (maximal flux at fixed total enzyme 
concentration or, in this case equivalently, minimal total enzyme concentration ensuring a 
fixed flux) the total amount of enzyme along a pathway is distributed to the individual enzymes 
according to the flux control of these enzymes. Under the simplifying assumption that all 
enzymes would have similar kinetic properties, enzymes located at the beginning of the path­
way have more flux control then those at more downstream positions and should, hence, 
have a higher concentration. 

A Previously Unknown Metabolic Pathway 
A basic concept in Metabolic Pathway Analysis is that of elementary flux modes. ̂  El­

ementary flux modes are minimal sets of enzymes that can operate together at steady state such 
that the irreversible enzymes involved are used in the right direction. Schilling and coworkers '̂̂  
proposed the related concept of extreme pathways. Elementary modes can be described by flux 
vectors, V, fulfilling three properties: 

i. They allow the system to be at steady state. This means, in mathematical terms, that the 
product of the stoichiometry matrix and the flux vector equals the null vector, N V = 0. 

ii. The components of the flux vector corresponding to irreversible reactions are nonnegative. 
iii. There is no flux vector satisfying conditions (i) and (ii) corresponding to a proper subset of 

the enzymes that correspond to the flux vector V in question. 
One of the authors was involved in a study of the pathway structure in the central metabo­

lism of ̂ . coli. We analysed a reaction system involving 24 reactions. They correspond to the 
TCA cycle, glyoxylate shunt and some adjacent reactions of amino acid synthesis. The system 
gives rise to 26 elementary modes. One of these (mode 6 according to the numbering in ref. 
35) involves the enzymes shown in Figure 2. This mode is a combination of the glyoxylate 
shunt (isocitrate lyase and malate synthase) with part of the TCA cycle and involves, in addi­
tion, phosphoenolpyruvate (PEP) carboxykinase. The oxaloacetate (OAA) produced by malate 
dehydrogenase is used in equal proportions by PEP carboxykinase and citrate synthase. The 
overall reaction is 

ADP + FAD + 4 NAD + 2-phosphoglycerate -> ATP + FADH2 + 4 NADH + 3 CO2. 
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Figure 2. Pathway involving enolase (Eno), pyruvate kinase (Pyk), pyruvate dehydrogenase (AceEF), citrate 
synthase (GltA), aconitase (Acn), isocitrate lyase (Icl), malate synthase (Mas), succinate dehydrogenase 
(Sdh), fumarase (Fum), malate dehydrogenase (Mdh), and phosphoenolpyruvate carboxykinase (Pck). 
Thick arrows correspond to fluxes that are double as high as the other fluxes. 2-Phosphoglycerate (PG) is 
considered as external metabolite (a source in this case). Cofactors and CO2 are not displayed. 

Fischer and Sauer have found experimentally the above-mentioned pathway in E. colt 
under conditions of glucose hunger (suboptimal supply of the nutrient, glucose). Note that 
carbohydrates can be oxidized completely to CO2 and water by this pathway. Thus, in contrast 
to earlier views, PEP carboxykinase is not only used for anaplerosis, nor is the glyoxylate shunt 
used for gluconeogenesis only. As the enzymes involved in the new metabolic cycle are present 
in many microorganisms, it can be speculated that it operates also in other microbes. Its ATP 
yield per mole of phosphoglycerate is smaller than that of the usual TCA cycle (1 instead of 2). 
The advantage appears to be the higher NADH yield (4 rather than 3). 

The pathway in question is part of a larger pathway predicted for E. colt earlier by Liao and 
coworkers.^^ They studied the synthesis of DAHP, a precursor of aromatic amino acids. The 
larger pathway involves, in addition, the pentose phosphate pathway and DAHP synthase. 
Liao and coworkers^^ observed that the enzymes of the glyoxylate shunt and PEP carboxykinase 
are not highly expressed under glucose-rich conditions and speculated that their levels in 
nongrowing cells may be higher. This was confirmed by Fischer and Sauer. 

Decoding of Calcium Oscillations 
At the end of the 1980s, researchers in the field of Ca^^ oscillations thought about the 

question how frequency encoded signals can be decoded into a frequency-dependent cellular 
response by the targets in nonexcitable cells. This question was first tackled by Goldbeter and 
coworkers, inspired by earlier ideas concerning activation of the calcium/calmodidin-dependent 
protein kinase type II by repeated Ca^^ peaks in nerve cells. ' ^ This kinase (CaM kinase II, 
EC 2.7.1.123) is a ubiquitous, multifunctional enzyme. In the pioneering studies on decoding 
of Ca^^ oscillations, Goldbeter and coworkers '̂ ^ suggested protein phosphorylation to be a 
possible mechanism for frequency decoding of Ca ^ oscillations. 

The general model for frequency decoding of Ca ^ oscillations takes into account a 
phosphorylation-dephosphorylation cycle with a Ca^^-activated kinase and a (normally 
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Figure 3. Protein phosphorylation regulated by Ca ^ oscillations. Protein (Pr) is phosphorylated by a 
Ca^ -̂activated kinase (K). The phosphorylated protein (Pr-P) is dephosphorylated by a phosphatase (Ph). 

Ca'^^-independent) phosphatase (Fig. 3). The role of CaMKII in decoding Ca^^ oscillations has 
been studied by theoretical models, which have predicted that the level of activity of CaMKII 
(or of other suitable proteins) increases with the frequency of Ca^^ oscillations due to a sort of 
time integration of the oscillatory signal. ^' '^ 

Although those theoretical studies have predicted that CaMKII could act as a frequency 
decoder of Ca ^ oscillations, experimental evidence was lacking. De Koninck and Schulman 
were the first who tested this prediction experimentally, demonstrating that CaMKII is indeed 
able to decode the frequency of Ca"̂ ^ oscillations. The importance of this finding and the exact 
relation between the experimental study and the theoretical models have been discussed (in 
refs. 49 and 50). 

Whereas the basic theoretical studies consider a phosphorylation-dephosphorylation cycle 
with a Ca^^-dependent kinase and a phosphatase (see above), the results by DeKoninck and 
Schulman ^ show that the isolated CaMKII itself can act as a frequency decoder, at least over a 
limited period of time. Nevertheless, phosphatases are important in determining the asymp­
totic sensitivity of a Ca ^ decoding system because of the mass balance of phosphorylated 
protein.^^'^^ Moreover, it should be noted that the experimental study by DeKoninck and 
Schidman ^ is an in vitro study, which does not take into account a counteracting role played 
in vivo by the phosphatases. The effect of phosphatases has been studied theoretically by Hanson 
and coworkers^ and, again, their results shoidd stimidate further experimental studies to verify 
the model predictions about the frequency decoding of Ca ^ oscillations in vivo. 

Discussion 
Here, we have discussed three cases of theoretical predictions in cell biology which were 

later proved by experiment. These cases concern different phenomena in cell physiology: gene 
expression, metabolism, and signalling. Our case studies illustrate the importance of math­
ematical modelling. None of the predictions discussed here would have been possible without 
it. For example, although the concept of biochemical pathway has been used by biochemists 
for a long time on an intuitive basis, the prediction of stoichiometrically and thermodynami-
cally feasible routes in metabolism only became possible when mathematical methods had 
been introduced in the field. 

Of course, many theoretical predictions have been made that still await their experimental 
confirmation. One example is the role of phosphatases mentioned in the previous section. 
Moreover, experimental studies are needed to verify predictions about the bistability behaviour 
of the CaMKII. The switch between a low activity state and a high activity state, once the Ca^^ 
stimidation exceeds a threshold, could be physiologically very important, in particular, in the 
brain for the long-term storage of information. '̂ The occurrence of an all-or-none switch 
between ON and OFF states of CaMKII activity is predicted to depend on the frequency of 
Ca'̂ ^ oscillations. ^ 
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The first case discussed here—die opdmal regime of gene expression—can be considered as 
a proof of concept of the optimality principle in biology. This principle has sometimes been 
criticized by saying it can finally be reduced to a tautology. Indeed, to any observed, quantifi­
able phenomenon, one can define, a posteriori^ a mathematical function that is maximized by 
this phenomenon. If, however, verifiable theoretical predictions can be derived from optimality 
principles, reasoning in terms of optimality must be more than a tautology. 
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CHAPTER 8 

Theory of Early Molecular Evolution: 
Predictions and Confirmations 

Edward N. Trifonov* 

Abstract 

A new theory of early molecular evolution is described, proceeding from original 
speculations to specific predictions and their confirmations. This classical cycle is then 
repeated generating the earliest picture of evolving Life. First, a consensus temporal 

order ("chronology") of appearance of amino acids and their respective codons on evolutionary 
scene is reconstructed on the basis of 60 different criteria, resulting in the order: G, A, D, V, P, 
S, E, L, T, R, I, Q, N, K, H, C, F, Y, M, W. It reveals two fundamental features: the amino acids 
synthesized in experiments imitating primordial conditions appeared first, while the amino 
acids associated with codon capture events came last. The reconstruction of codon chronology 
then follows based on the above consensus temporal order, supplemented by the stability and 
complementarity rules first suggested by M. Eigen and P. Schuster, and on earlier established 
processivity rule. The derived genealogy of all 64 codons suggests several important predictions 
that are confirmed: Gradual decay of glycine content in protein evolution; traces of the most 
ancient 6-residue long gly-rich and ala-rich minigenes in extant sequences; and manifestations 
of a fundamental binary code of protein sequences. 

Introduction 
Hot rocks and boiling water—that, presumably, was the "weather" on the planet Earth 

when 3.9 billion years ago the LIFE started (ref 1, and references therein). It would not be 
fair if a skeptical reader had asked: what exactly is life? There are many answers to that 
question though only one is needed. But it would be equally unfair to claim that the emerg­
ing life was as complex and omnipotent as today. It was surely primitive, even, perhaps, 
trivial, but what was it? 

The one who knows what was the most primitive start is Stanley Miller who thought, in 
1953, that perhaps in a primordial atmosphere a mere chemistry would take a chance. The 
imitation experiments^' brought a spectacular result: among many other substances 10 amino 
acids were synthesized, half of the amino-acid repertoire of modern proteins: alanine, glycine, 
aspartate, valine, leucine, glutamate, serine, isoleucine, proline, and threonine (A, G, D, V, L, 
E, S, I, P, T). The earliest attempt of this kind, with the same thought, was the work of Lob in 
1913 (see also re£ 6). Analytical chemistry of that time was able to detect only one amino acid 
in the mixture—glycine. 

Those 10 amino acids were not life yet, but a good chemical beginning, on the long way 
from primitive to simple, and from simple to complex. There are many dramatic stations in 
this journey: formation of first very small proteins, formation of the membranes and cells, 
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development of replicating molecules and systems, emergence of nucleic acids, invention of 
the triplet code, formation of the last common ancestor, first bifurcations of the tree of Life. 
Each step is a mystery, and it is not clear at all what was the sequence of the events. 

First Move Towards a New Theory 
Let us make a jump straight to the origin of the genetic code, a pretty early stage anyway, 

not far from the very beginning. Within last few years my colleagues and I were lucky to have 
asked several very pointed, turned-to-be-right questions, and find tantalizing answers. In par­
ticular, given the earliest small proteins and nucleic acids (perhaps, RNA)—^what were the very 
first RNA triplets (codons), and what were the amino acids they encoded? There are many 
speculations on that matter, including our own attempt.^ This work, however, was not just yet 
another one of the speculative kind. It had an element of reconstruction of early biomolecular 
history, based on specific prediction that was confirmed. Such reconstruction was later ex­
panded and turned, actually, in a vibrant theory of early molecular evolution, that suggested 
new predictions, followed by confirmations. The development of the theory is described in the 
following sections in all its logical and some technical details. 

The first clue was thrown in by Thomas Bettecken, who in 1996 overviewed a group of 
so-called triplet expansion diseases. These neurodegenerative diseases are associated with re­
peating sequences located around certain genes. The repeats are of the type CUGCUGCUG or 
(CUG)n where n is the number of the repeats, normally 20 - 50. The repeat number all of a 
sudden changes to a much larger one, of the order of few hundreds, and that results in a disease. 
What Thomas noticed is that the most of the observed seemingly different expansions, as 
documented in literature, actually, correspond to the same structure. E.g., repeats (CAG)n, 
(GCU)n and the above (CUG)n, obviously, correspond to the same repeating duplex 
(GCU)n-(AGC)n. As it turned out, the repeats (GCU)n and (GCC)n make a majority of all 
known triplet expansions. In other words, these two triplets are most expandable, whatever the 
reason. This is also confirmed in prokaryotic system. This observation per se is not yet enlight­
ening. To make the bell ring one needs another important piece of information of which we 
were in possession already in 1987, being unaware of its explosive value. This is the (GNN)n 
periodicity hidden in all modern protein coding sequences. Later analysis allowed to refine the 
pattern to (GCU)n.^^ Thus, the hidden mRNA consensus would be (GCU)n, - probably, re­
flection of an ancient mRNA pattern (GCU)n (and, perhaps, (GCC)n as well?). 

A thrilling thought then burst in: the (GCU)n and/or (GCC)n, readily expanding sequences, 
could be indeed the first coding sequences that later evolved to the modern sequences, where 
the original pattern is almost lost. An obvious advantage of these sequences at that time was 
their exceptional ability to expand, i.e., to become longer. The relendess (GCU)n and (GCC)n 
repeats are still in labor—in the modern diseases. 

If, thus, the GCU and GCC were the very first codons, they could only code for two amino 
acids. Several more amino acids should have been accommodated, probably, by single point 
mutations of the generic GCU and GCC triplets which gives total 15 different triplets (codons). 

But which amino acids came first? One only could speculate about it, and we picked up 
three most natural speculations: (1) The very first amino acids were chemically simplest. (2) 
They would be expected to appear in the Miller's imitation mix; and (3) They would be likely 
to have been served by more ancient of known two classes of aminoacyl-tRNA synthetases. 
By a consensus of these three criteria the amino acids alanine, aspartic acid, glycine, proline, 
serine and threonine (A, D, G, P, S, T) should have been the very first amino acids, to be served 
by those first 15 triplets above. Remarkably, 13 of the triplets do, indeed, encode today the 
speculated six earliest amino acids. Correspondence of the 13 predicted earliest codons to 6 
predicted earliest amino acids confirms both speculations, and may be considered as a first very 
promising step in the possible full reconstruction of the origin and evolution of the triplet 
code. Encouragingly, the match between these two sets is in fiill agreement with present-day 
code. That is, being set up once, the code probably never changed. 
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Consensus Temporal Order of Amino Acids 
There are much more than just three ways to speculate about the temporal order of ap­

pearance of the amino acids. Of these rather conflicting theories and views none is conclu­
sive or convincing enough to become generally accepted. One could try, however, to derive a 
consensus of various opinions. Note that the obvious way of arguing and persuading the 
educated parties to an acceptable common view would be an impossible task. Speculations 
are difficult to challenge, if one is armed by just another speculation. There is, however, one 
way to arrive to the consensus—by expressing the speculations in standard way, as 20D 
ranking vectors, highest rank for the earliest amino acid, and averaging the vectors. Thus, all 
published speculations, theories, thoughts, estimates and experiments each suggesting cer­
tain amino-acid chronology are collected (currently, 60 such "opinions" are available) and 
expressed in form of the ranking vectors. Lead by scientific common sense and knowledge 
they can not be all completely out of blue. Some relevance to truth should be here and there, 
and simple mathematics of correlations showed that only 11 of 60 criteria did not positively 
correlate with the rest.^^ That is, most of the opinions, after all, resemble each other, at least 
distantly. After the "voting" (averaging) the commonality emerges in form of the following 
consensus order, the quintessence of current thought and knowledge: G (gly), A (ala), D 
(asp), V (val), P (pro), S (ser), E (glu), L (leu), T (thr), R (arg), I (ile), Q (gin), N (asn), H 
(his), K (lys), C (cys), F (phe), Y (tyr), M (met), W (trp).^^ 

Apart from having a merit of consensus, the order is remarkable, in more than one way. 
First, the highest rank amino acids of the list (G, A, D, V, P, S, E, L, T, R) include the six earliest 
ones (A, D, G, P, S, T) according to our initial reconstruction with expansion triplets and three 
criteria of amino acid chronology (see above). What is more important—all 10 amino acids of 
Miller's mix (A, G, D, V, L, E, S, I, P, T) are on the top, one next to another, except for 
isoleucine which is 11 th in the consensus chronology. That result does not change when the 
criteria based on the imitation experiments are excluded from the calculations.^^ A conceptual 
meaning of this observation is hard to underestimate. It says that all the long period of time 
until the triplet code reached its halfway, the amino acids incorporated in the code were just 
those ones that were available in the primordial chemical environment. It is amazing to see how 
opportunistic was Life already in the beginning. It also suggests, without even a grain of vital­
ism, that the opportunism is, perhaps, much more than anthropomorphic metaphor, when 
applied to the life processes. 

Yet another very important feature of the consensus amino acid chronology is special nature 
of the amino acids appearing at the bottom of the list. These are of a "burglar" type—their 
codons appear to be actually captured from the repertoires established earlier. ̂ ^ For example, 
tryptophan, cysteine and tyrosine are believed to be served by codons that previously belonged 
to termination repertoires. Methionine is suggested to acquire its codon from isoleucine reper­
toire, lysine—from asparagines. Histidine and phenylalanine are also believed to belong to 
that team. Here as well, very early Life demonstrates its opportunism—if codons are not avail­
able anymore—take those that are in excessive possession of others. 

Reconstruction of the Origin and Evolution of the Triplet Code 
It is hard to believe that such astonishingly simple and appealing temporal order of amino 

acids would not reflect at least some of the past realities. If it does, then the next daring task 
would be to try to reconstruct the early history of the triplet code, that is temporal order of 
codons as well. 

The consensus amino acid chronology is taken as a basis for the reconstruction. It is supple­
mented by three most natural rules: thermostability, complementarity and processivity. The 
first two rules have been originally suggested by Eigen and Schuster,^ who noted that the 
earliest amino acids were most likely alanine and glycine, which are the highest yield amino 
acids in the Miller's imitation mix. Among their respective codons the triplets GCC and GGC 
make the most stable complementary contact of 32 possible complementary triplet pairs. These 
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two first codon assignments, thus, had to be introduced simultaneously, suggesting that, per­
haps, all other codons would enter as complementary pairs as well. The processivity rule says 
that new codons are not created de novo (as, e.g., the very first codon pair GGC-GCC) but 
rather are simple mutational versions of the codons already present. 

The result of the reconstruction is presented in Figure 1. Here the lines correspond to 
complementary pairs of codons. The order from left to right corresponds to the consensus 
temporal order of amino acids. The order from top to bottom corresponds to the temporal 
order of appearance of the 32 complementary codon pairs that also goes with monotonically 
descending order of their thermostability, experimental error bars respected (see the left-most 
column). 

According to the reconstruction chart, the pair gly (GGC) and ala (GCC) are the very 
first, generic elements in the evolution of the codon table. Next in amino acid chronology 
are asp and val, with their complementary codons GAG and GUC. The processivity rule 
requires that these codons would be formed from the GGC and/or GCC. Indeed, it is real­
ized by transitions G to A or C to U, and subsequent complementary copying (GGC -^ 
GAC -* GUC, and/or GCC —̂  GUC —>• GAG). Next in the amino acid order is proline. 
The most stable codon of its present-day repertoire is GCC. It is, obviously, derived from 
already present glycine codon GGC by mutation in the redundant third position, and comple­
mentary copying (GGC -> GGG -^ CCC). This simple scheme of derivation of new codons 
is repeated then all the way to the bottom of the chart. When all 64 triplets are exhausted, 
the codon capture stage starts. The capture is rather violent. It does not follow neither the 
thermostability rule, nor complementarity rule. The capture cases do, however, follow the 
amino acid chronology and the rule of processivity. 

The most striking characteristic of the reconstruction is its absolute loyalty to the most 
basic simple rules (thermostability, complementarity and processivity), given the consensus 
temporal order of amino acids. If the order is violated by swapping positions of, say, proline 
and methionine, the consistency of the chart is ruined. Only small changes would be allowed, 
within the error bars of the stability values and error limits in the rankings in the amino acid 
order. These are, typically, less than one rank unit. 

Another astounding feature is that at no step in the reconstruction any unusual codon 
assignment or unusual amino acid was suggested. That simply means that even at the earliest 
stages of the evolution of the triplet code it was largely the same as the present-day universal 
code, only of smaller repertoire. 

The chart has several features that suggest very specific predictions. 

Prediction I. Early Proteins Were Glycine-Rich 
That would follow from the earliest steps of the chart, during which the composition of 

glycine dropped from 50% at the first step to about 33% at step 6 (considering the codons 
equally frequent). At later stages the glycine composition gradually dropped further to mod­
ern level of 7 - 8%. One, thus, would expect that the ancient proteins were rather glycine-rich. 
One more possible reason for the dominance of glycine in the early stages is high flexibility 
of glycine-rich chains, to ensure greater conformational diversity of the early proteins. That 
factor may have been interwound with the logic of consecutive introduction of new codons 
and amino acids. The glycine-richness would be a strong prediction if we only would have 
the specimen of the ancient protein, to check the amino acid composition of the ancient 
sample and compare it with modern proteins. The problem is that the oldest fossils date 
back only one billion years and are, thus, rather "young". Those modern proteins that are 
thought to have longest evolutionary history, are not a good sample since all proteins, of all 
modern organisms, are of the same age. The same time passed for all of them since whatever 
common time reference. Thus, the full sequences of the ancient proteins proper are not 
available. However, small patches of the ancient patterns seem to survive in some modern 
sequences. For example, functionally similar sequences from eukaryotes and prokaryotes 
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(time of separation about 3.5 billion years) do show sequence similarities. Collecting those 
patches that are identical in the pairs compared, one can calculate their amino acid compo­
sition. Such calculation demonstrates that the surviving pieces of ancient protein sequences 
are, indeed, glycine-rich (14%). 

Moreover, comparing in similar way proteins of Eubacteria, Archaea, Protoctista, Fungi, 
Plants and Animals, one can derive the respective values of glycine content for every 
Icingdom-to-kingdom pair. That results in the reconstruction of rooted tree of 6 major king­
doms, fully consistent with current knowledge. The prediction, thus, is well confirmed. 

Predicdon II. The Earliest Protein Sequences Were a Mosaic 
of Two Independent Alphabets 

The genealogy of the triplet code presented in Figure 1 contains a wealth of information 
to explore. It says, for example, that the very first genes could be (GGC)n and, complemen­
tary, (GCC)n repeats, encoding monotonous chains of two types consisting either of glycine 
residues only, or of alanine only. That view is supported by the expandability of the repeats 
(see above). Later replacements, according to the genealogy, diluted this domination of gly­
cine and alanine, but, perhaps, at least in the earliest evolution the glycine-rich and the 
alanine-rich pieces remained. How long were these first protein molecules? Just on the basis 
of solubility of these oligoglycines and oligoalanines one can say that they were not longer 
than 7-8 residues. The longer ones would aggregate, thus, excluding themselves from all 
molecular interactions required by the early life. Today protein chains are as long as typically 
100 - 200 amino acids. They are soluble due to a balanced proportion of polar residues. 
Those original short pieces, after acquiring first charged amino acids, aspartic (D) and glutamic 
(E) acids, coidd fuse, making larger molecules, well soluble due to the added charges. In this 
case the alanine-rich and glycine-rich sections would frequently alternate. Inspection of the 
chart reveals one additional feature to describe the hypothetical short sections. The RNA 
strand originally encoding only glycines first acquired additional codon GAG, for aspartate, 
then GAG, for glutamate, CGC for arginine, and so on, keeping always the purine nucle­
otide, G or A, in the middle of the codons. That is, the "glycine strand" during all the 
evolution of the triplet code carried only codons with middle purines. Similarly, the comple­
mentary "alanine strand" carried only codons with middle pyrimidines. That splits 20 amino 
acids in two practically independent alphabets, Gly-alphabet (G, D, E, R, S, Q, N, K, H, C, 
Y, W) and Ala-alphabet (A, P, S, L, T, I, F, M). Only one amino acid, serine, is shared. Thus, 
both before and after fusion of the original minigenes, they represented Gly-strand seg­
ments, encoding Gly-alphabet, and Ala-strand segments, encoding Ala-alphabet. The muta­
tions, all in redundant third positions, have lead to complementary changes in the first posi­
tions, while the middle positions stayed unchanged, thus, keeping alphabet identity of the 
original minigenes and of their later mutational versions unchanged. The prediction follows: 
one may hope, as we did, that such hypothetical ancient alternating motif Ala-alphabet/ 
Gly-alphabet may still be recognized in modern protein sequences, despite billions of years 
of mutational changes. To our delight this prediction was, indeed, confirmed by massive 
analysis of completely sequenced full sets of proteins of 23 different bacteria. The earliest 
unit size, the minigene, was determined as well. It was 6 amino acid residues, fitting well to 
the solubility limit estimate. 

Prediction III. Fundamental Binary Code of Protein Sequences 
The two alphabets, as oudined above, had to be maintained in pure form during all the 

time until the time-wise uncertain stage when the original double-stranded coding molecules 
switched to coding in only one strand, as today. All sequence patterns that painfully developed 
during that time to their best performance, were transferred to the single-strand coding form, 
so that from this moment on, the obligatory pressure of alphabet purity was lost. It is worth 
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A F I L M P T ViC D E G H K N Q R W Y 
A 1 1 1 1 4 
F i 
I 1 1 3 1 

A la L 1 3 11 
a l p h a b e t M 1 3 1! 

P I i 
T 1 1 
V 3 1 1 1 
C ! 
D 1 3 2 1 
E i 3 1 2 
G 1 1 

Gly H 1 2 3 1 
a l p h a b e t K j 1 2 

N 1 2 1 2 1 
Q 1 1 2 3 1 
R 1 1 2 1 1 
W 1 1 2 
Y 4 1 ^ 

Figure 2. PAM-120 matrix, as presented in reference 17, is rearranged here in form emphasizing two 
alphabets. The strongest matrix elements (in bits) are shown, as in reference 17. 

noting, however, that since the most frequent type of point mutations is transition 
(purine-to-purine and pyrimidine-to-pyrimidine) the ancient patterns expressed as sequences 
in two-letter alphabets would continue to be maintained at least for some time. Hopeftdly, the 
patterns may still be recognizable in the modern sequences. Descendants of the same original 
pattern, expressed in traditional 20-letter alphabet, may appear rather different, while their 
binary presentations woidd suggest close relatedness. The prediction is: the nonmatching resi­
dues in related protein sequences (20-letter form) should rather match when the sequences are 
presented in the binary form. 

There is a simple and straightforward way to check the prediction. Large collections of the 
related sequences have been already compared for the purpose of finding out which residues 
more frequendy change to which. The changes were tabulated in form of well known PAM and 
BLOSSUM matrices broadly used in the calculations of sequence relatedness. All what remains 
to be done is to simply check whether these matrices, actually, demonstrate mosdy the changes 
within the same alphabet. 

In Figure 2, the PAM-120 matrix^ "̂  that shows only most frequent replacements, is reorga­
nized in such a way that all amino acids are ordered in the two separate groups, according to the 
two generic Ala- and Gly-alphabets. The resulting new matrix clearly shows two separate boxes, 
demonstrating the expected within-the-alphabet replacements. Similarly, in Figure 3, the 
BLOSSUM matrix^ ̂  after such rearrangement shows the same strong effect: the replacements 
occur with dominant preference to the amino acids of the same alphabet, either Ala-type or 
Gly-type, as expected. 

This observation, predicted on the basis of the chart of codons presented in Figure 1, has 
important consequences. First, it would allow to outline the most ancient sequence patterns 
and to trace very early evolutionary moves. Second, more to earth, it would help to identify 
and classify related sequences in those cases when the 20-letter comparisons fail to detect the 
relatedness. 
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A F I L M P T V!C D E G H K N Q R W Y 
A 1 
F 1 ^ ^ 
I 2 1 3i 

Ala L 2 2 l i 
a l p h a b e t M 1 2 1 | 

P 1 
T 1 
V 3 1 1 1 
C I 
D 1 2 1 
E 1 2 1 2 
G 1 

Gly H 1 1 2 
a l p h a b e t K 1 1 1 2 

N 1 1 1 
Q 1 2 1 1 
R 1 2 1 
W 1 1 2 
Y 3 1 2 2 

Figure 3. BLOSSUM matrix^* rearranged here in the same form as above in Figure 2. The strongest matrix 
elements (in bits) are shown, as in original. 

Prediction IV. Domestication of Life? 
From the very onset of Life (3.9 billion years ago), which was presumably purely chemical, 

as in the imitation experiments of S. Miller, until the first major separation of already devel­
oped life forms, eukaryotes and prokaryotes (3.5 billion years back), good 400 million years 
passed. Within that span the triplet code emerged and evolved to its close-to-complete form. 
The reconstruction of the evolution of the code, presented in Figure 1, originally a sophisti­
cated speculation, is now fortified by several confirmed predictions, that upgrades it to a theory. 
The theory provides the deepest top-down view into the Life's past. The time gap between first 
abiotically synthesized biologically relevant substances, and the first codons, GGC and GCC, 
is still to be filled by unknown specifics, and that would be, perhaps, the most difficult part of 
reconstruction of the origin of Life. Before that, however, one could try to explore and, possi­
bly, to further expand the picture provided by the above reconstruction of the early evolution 
of the codons. 

The very first codons, GGC and GCC, can only deliver monotonous unchanging oligo­
mers: (GGC)n, (GCC)n, (gly)n and (ala)n. But as soon as two more codons are mutationally 
introduced, GAC and GUC (see Fig. 1), for asp (D) and val (V), respectively, the homo-oligomers 
would turn into hetero-oligomers, with a variety of sequence possibilities. Some of the variants 
under pressure of survival would do better than original monotonous GGGGGG and AAAAAA. 
It appears then, that the very border between pure chemistry (constancy only) and life (con­
stancy and variability) passes between the first and second lines of the codon genealogy. This 
gives another good reason to try to explore experimentally this earliest transition from nonliving 
to living matter. 

The hexamers (GGC)6 and (GCC)6, together with peptides (ala)6 and (gly)6j niay be con­
sidered as sort of composite replicator that may work as such, supplemented of course with 
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monomer units GGC, GCC, ala and gly as building material, some source of energy, mineral 
catalyzers, and other conditions, still to find (littp://research.haifa.ac.il/'-genom/Trifonov/Ori-
gin/index.litm). To get even mere replication of some components in the mixture would be a 
major achievement. The prediction is that it may work! One day, driven by logic of the devel­
opments of the new theory, somebody will pick up the idea, find necessary support and set the 
fire of the domesticated Life. 

Linking the Codon Chronology with Other Events of Early Evolution 
The very first "proteins", according to the confirmed prediction based on the chart of the 

codons (Fig. 1) were 6 residue long oligopeptides. After fusion of their respective minigenes 
longer chains could be formed. It is at this stage when the first structural features would appear. 
In particular, the polymer chain statistics suggests that at certain optimal length of the chain, 
2 5 - 3 0 amino acid residues, its ends would frequendy engage in contacts, making closed 
loops. The contacts fortified by van der Waals interactions between the residues at the ends 
woidd render the loops stability, an obvious selective advantage in the early evolution of pro­
teins. It appears that the 25 - 30 residue loop modules are the major elements of modern 
proteins, and many of them can be traced far back to their ancestry. '̂̂ '̂̂ ^ Is that important 
stage in the evolution of proteins reflected somehow in the chart of the evolution of the triplet 
code (Fig. 1)? The initial 18 or so base-pair long RNA duplexes with the advance of the reper­
toire of codons and amino acids were growing, either due to triplet expansion (slippage) or by 
minigene fusion. The encoded protein chains grew as well. Since the size of 25-30 amino acids 
was optimal, further elongation of the encoded sequences should have stopped at this stage of 
evolution. One way to ensure the length limitation would be to introduce either initiation or 
stop codons. RNA strands beyond these codons would be excessive, in both coding strands. 
That is, RNA duplexes as well would be limited to the length about 75 - 90 base pairs. Inspec­
tion of Figure 1 reveals that the first four termination codons of the UGX family appeared at 
steps 9 to 18. This puts tentative limits to the loop closure stage in the protein evolution—soon 
after incorporation of arginine into the triplet code, but before acquirement of isoleucine. The 
above reasoning is, of course, a speculation. Future developments of the theory will show how 
fruitful this speculation is. 

The next stage of the protein evolution, ' as originally suggested by studies on the 
sizes of modern proteins^ ' is fusion of the 75 - 90 base pair long genes to the size 350 -
450 base pairs, optimal for DNA circularization.^^ This size corresponds to the typical 
protein fold sizes, 100 - 150 amino acid residues. The RNA fragments encoding the stan­
dard closed loop proteins (continuing the speculation above) could increase their length by 
fusion only after appearance of the first initiation triplets, to ensure the initiation within 
the molecule rather than just at its ends. That would allow the fusion of the short RNA 
duplexes into longer ones carrying several small genes, each one with its own initiation and 
termination signals (steps 19 to 31 of the chart). The next stage would be fusion of the 
short coding sequences within the long RNA duplexes. The short 25-30 codon genes would 
require more initiation and termination triplets than the 100 - 150 codon genes. Respec­
tively, the fusion of the short coding sequences can be projected to the codon capture stage 
when the terminators UGX and UAX yielded to cysteine and tyrosine, and AUG became 
practically the sole initiation signal (Fig. 1). The transition from RNA coding (steps 1 to 
32) to DNA coding, presumably, occured at the onset of the codon capture stage, with 
appearance of histidine and lysine. 

Many more early molecular events can be tentatively placed within the codon evolution 
chart. It opens a whole new fertile field for further speculations and predictions towards de­
tailed reconstruction of the Life's distant past. 
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CHAPTER 9 

Hitchhiking Mapping: 
Limitations and Potential for the Identification 
of Ecologically Important Genes 

Christian Schlotterer* 

Abstract 

A recent series of publications demonstrated that identification of genomic regions 
subjected to positive selection (hitchhiking mapping) is possible and could be applied 
in an ecological context. This review focuses on the use of microsatellite markers in 

genome scans for the identification of beneficial mutations. The pitfalls and potential of the 
lnR6 test statistic are discussed as well as different approaches for the identification of the 
molecular change(s) underlying an observed selective sweep. 
Introduction 

Ecological genomics encapsulates a recent trend to apply high-throughput genomic tools to 
questions in ecology and evolution.^ Progress in genomics technology has shifted the focus 
from the analysis of a small number of candidate genes to multiple genomic regions in several 
populations. While this research area is still in its infancy, already a considerable number of 
studies have demonstrated the enormous potential of multilocus approaches for the identifica­
tion of genomic regions bearing ecologically important loci/alleles. '̂  

This approach, which has been termed hitchhiking mapping ' or selection mapping, re­
lies on a very simple population genetic principle. Theory predicts that a beneficial mutation is 
either lost quickly due to genetic drift or becomes fixed in the population. Importandy, not 
only the beneficial mutation increases in frequency, but also other, neutral variants linked to 
the target of selection (hitchhiking ). Thus, as a consequence of the spread of a beneficial 
mutation in a population, the allele frequency spectrum is significantly distorted from neutral 
expectations in a genomic region around the target of selection. Population genetics has de­
vised a range of different approaches to use this change in allele frequency spectrum for the 
identification of past episodes of nonneutral evolution/' 

Many of these classic neutrality tests, such as Tajima's D,^ are affected by demographic 
effects, such as botdenecks and admixture, preventing the use of a nominal P-value for the 
identification of selected loci. When a large number of loci are surveyed, however, it is pos­
sible to build an empirical distribution of any test statistic used to quantify the distortion in 
allele frequency. ̂ ^ Rather than relying on a nominal P-value, genomic regions possibly sub­
jected to selective forces are then identified as loci in the tails of the empirical distribution. 
While this approach eliminates the effects of demographic events, its disadvantage is that even 
in the absence of selection, genomic regions will be (falsely) identified as targets of selection, 
due to their location in the tail of the distribution. 
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Wien, A-1210 Wien, Austria, Europe. Email: Christian.schloetterer@vu-wien.ac.at 
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Here, statistical approaches of hitchhiking mapping using microsateUite variation will be 
introduced. The general limitations of the hitchhiking mapping approach will be demonstrated 
using microsateUite data and possible approaches to overcome them will be discussed. 

Microsatellites—A Widely Used Genetic Marker 
Since their introduction in 1989^^' microsatellites have developed into one of the most 

commonly used genetic markers. ̂ ^ A microsateUite consists of a tandem repetition of one 
repeat motif, such as (GT)n or (GAC)n. Due to DNA replication slippage, a mutation process 
specific to tandemly repeated DNA, the copy number of the repeat units changes at a high rate 
(up to 10'^). Using locus-specific PCR primers flanking a microsateUite, the variation in 
repeat number can be easily detected. 

Most microsateUite mutations encompass either the gain or loss of a single repeat unit, but 
larger changes in repeat number have also been described. Nevertheless, the mutation process 
of microsateUites can be well-approximated by the stepwise mutation model, which was origi­
nally introduced to describe the evolution of proteins. ̂ ^ The interpretation of microsateUite 
variability data, in particular the comparison across loci, is significandy complicated by pro­
nounced locus specific mutation rates.^ '̂̂ ^ 

The InRe Statistic 

The Concept 
One of the possible consequences of a selective sweep is a reduction in variability at a 

genomic region subjected to a selective sweep. Thus, genome scans for targets of selection 
can aim for the identification of genomic regions bearing microsatellites that have less 
variability than expected under neutrality. The large variation in microsateUite mutation 
rates, however, significantly complicates the interpretation of variability patterns, as it is 
not possible to distinguish whether a locus has low levels of variability due to a selective 
sweep or a low mutation rate. In an attempt to overcome the problem of locus specific 
mutation rates, lnR8 has been proposed as a means of identifying microsateUite loci, which 
show a more pronounced reduction in variability.^^'^^ Rather than analyzing microsateUite 
variability in one population only, the lnR6 statistic requires polymorphism data from two 
populations. Assuming that the microsateUite mutation rate does not differ among popu­
lations, the expectation for lnR9 is the same for all microsateUite loci, independent of the 
mutation rate. 
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Two different estimators for 0 could be used: variance in repeat number (V) and gene diver­
sity (//, expected heterozygosity): 

Xi is the repeat number of allele /'. 
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(ref.23) (2) 

(ref. 18) (3) 

6 estimates based on the variance in repeat number have a larger variance and are thus less 
sensitive to identify loci subjected to a selective sweep than 6 estimates based on gene diversity. 
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Furthermore, the variance in repeat number is strongly affected by indel mutations in the 
flanking sequence of a microsatellite, but gene diversity is not.^ On the other hand, 6 esti­
mates based on gene diversity are biased and tmderestimate 0, in particular, for large 0-values.^ 
Nevertheless, the identification of selective sweeps based on gene diversity seems not to be 
affected by this bias. 

Identification of Selected Loci 
Computer simulations indicate that lnR9 values are, to a very good approximation, nor­

mally distributed."^ '̂" '̂̂  Given that the mean and standard deviation depends on the choice of 
populations, it is advised to standardize the distribution of lnR8 values. The preferred method 
of standardization is to use a set of neutral loci from the same populations in order to obtain 
the mean and standard deviation of the distribution of lnR6 values. After standardization of 
the InRB values, the probability that a single locus deviates from neutral expectations can be 
obtained from the density function of a standard normal distribution. Note that X-linked and 
autosomal loci have different effective population sizes. Thus, the standardization is compli­
cated if the loci used for standardization are located on different chromosomes than the loci, 
which should be analyzed (see also Box 1). 

In the absence of a neutral set of loci, for studies based on a large number of loci it is 
possible to use the full data set for standardization as long as only a small fraction of loci is 
affected by selection. In the case that a considerable fraction of the analyzed loci has been 
subjected to directional selection, only a bad fit to the normal distribution is obtained. If the 
removal of oudier loci improves the fit to a normal distribution, this can be regarded as very 
strong evidence for a nonneutral evolution of these loci (see also Box 1). 

Influence of Demography and Choice of Populations 
To a very good approximation the distribution of InRO values remains normal, even if 

one of the populations has been exposed to demographic events, such as bottlenecks or 
admixture from a third population.*^ '̂  While the power to detect deviations from neutral­
ity is affected by demographic events, the overall applicability of the lnR8 statistic to popu­
lations with an unknown demographic past is a particularly strong advantage compared to 
many other neutrality tests. The application of the lnR9 statistic is not necessarily confined 
to the analysis of two distinct populations. It is also possible to split members of a popula­
tion according to phenotype. Thus, a population can be grouped into diseased and healthy 
individuals or insecticide resistant and sensitive individuals. If one of the traits has emerged 
(and/or increased in frequency) recently, then the lnR6 statistic could be used to identify 
markers associated with the trait. 

Mapping the Target of Selection 
Genome scans for the identification of selected regions are usually carried out at a low 

density. The power to detect the signature of selection decreases with increasing genetic dis­
tance from the target of selection. ' Thus, depending on the density of the markers, a con­
siderable fraction of the genomic regions subjected to directional selection may be missed. 
Strong selection and low recombination rates will require a lower marker density than weak 
selection and high recombination. The drawback of strong selection and low recombination is 
that the identification of the target of selection is more difficult: '̂ ''̂  as a large genomic region 
is affected by a sweep, the microsatellite identified as a nonneutrally evolving locus, may be 
located several kilobases (kb) away from the actual target of selection. 

Nevertheless, once a candidate region has been targeted in a primary screen, it is possible 
to analyze additional microsatellites mapping to the identified region. Recently, Harr et al 
(2002) typed several microsatellites mapping to a candidate region for a selective sweep. To 
map the target of selection the authors relied on a recently developed analytical frame­
work. ̂ "̂  Assuming that a selective sweep has just been completed, it is possible to predict 
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the reduction in variability at a linked microsatellite. If more than a single microsatellite is 
affected by the selective sweep, it is possible to predict the position of the selected site. 
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X is the distance of the microsatellite with the strongest reduction in variability (locus 1), w is the 
microsatellite mutation rate and n is the number of neutral microsatellite alleles, r is the recombi­
nation rate per base pair and k is the distance between the two microsatellite loci (in bp). Popl is 
the population representing the ancestral variation, while Pop2 is the population, which experi­
enced the selective sweep. A slight modification of this equation could be used for the case in 
which the selected site is assumed to be located between the two characterized microsatellite loci. 

Nevertheless, similar to other approaches attempting to map the target of selection using 
DNA sequence polymorphism data, the greatest weakness of this microsatellite based method is 
that it relies on the expected reduction in variability. As shown in the next paragraph, the actual 
realization of a selective sweep may differ substantially from the expectation, thus the map posi­
tion determined by the expectation for a selective sweep may not always be very accurate. 

Large Variation in the Realization of Selective Sweeps 
The power of hitchhiking mapping depends to a large degree on the extent to which the 

signal of a selective sweep is reflected in the surveyed genomic region. Figure 1. shows the 
variance in repeat number averaged over 200 independent simulation runs. In the middle of 
the chromosome a selective sweep occurred, which results in a pronounced reduction in vari­
ability. This genomic region with the marked loss in variability could be easily distinguished 
from the flanking loci, which are not affected by selection (Fig. 1). 

For comparison, the average variance in repeat number around the selected site is plotted 
together with three individual realizations of the selective sweep (Fig. 2). In simulation run 1 a 
very broad window of reduced variability is obtained, which would not permit mapping the 
selected site with moderate precision. Run 2 also results in a broad window of reduced variabil­
ity, but the locus with the most pronounced reduction in variability coincides with the target of 
selection, thus this run would have resulted in an acceptable map position. Run 3 in contrast, 
also shows several loci with reduced variability, but the locus with the most pronounced reduc­
tion in variability does not correspond to the target of selection. Thus, a wrong genomic region 
would have been implied as the target of selection. Overall, the computer simulations clearly 
indicate that a single realization of a selective sweep may not always result in the accurate 
determination of the position of the selected site. 

Increasing the Precision of Hitchhiking Mapping 
Given that the realization of a single selective sweep has a large variance, an improved 

mapping strategy would rely on multiple selective sweeps rather than on a single sweep. 
Figure 3 indicates the mean over 10 independent computer simulations. Each of the five 
means quite accurately maps the position of the selective sweep, strongly supporting the idea 
that multiple independent realizations of the same sweep are clearly superior for hitchhiking 
mapping than single sweeps. Independent selective sweeps could be obtained if different, 
geographically isolated populations are exposed to the same selective force. Clines provide an 
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Figure 1. Mean variance in repeat number determined for 50 evenly spaced microsateilites over 200 simu­
lation runs. For each of the simulations a selective sweep was assumed to have occurred at the microsatellite 
No. 25, which shows the most pronounced reduaion in variability. Computer simulations were performed 
with a computer program written by Y. Kim and modified for microsateilites by T. Wiehe. Simulation 
parameters were: microsatellite spacing = 12 kb, tau = 0.001, s = 0.002, 6 = 5, r = 5 x 10" .̂ 
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Figure 2. Three individual realizations of a selective sweep and the mean over 200 independent simulation runs. 



122 Discovering Biomolecular Mechanisms with Computational Biology 

JS3 5 
E 
3 
«= 3 

%. 
21 2.5 
C 

A 
/ \ 

(' V 
\ y^ 
s^^/* 
\ »V 

— • — s e t 1̂  
- -— -set 2 
—A—set 3 
—X— set 4: 
— * — set 5 

7 8 9 10 11 

chromosomal position 

Figure 3. The mean variance in repeat number determined over 10 independent simulation runs. Each of 
the five sets includes data from 10 independent simulations. 

example for selective forces operating on geographically isolated populations. Indeed, for 
allozymes, several parallel patterns of clinal variation have been described in Drosophila 
melanogaster. Also selection for milk and meat production traits in cattle may provide an 
excellent example for parallel selection in genetically distinct populations. Nevertheless, the 
cases where such a mapping strategy could be applied are certainly limited. Furthermore, 
with epistasis different chromosomal regions may be selected in different populations, even 
though selective forces remain the same. 

Alternatively, almost independent sweeps of the same beneficial mutation could be pro­
duced in populations connected by low levels of geneflow. Assuming that in one of the popu­
lations a beneficial mutation arises and sweeps through the population, this creates one selec­
tive sweep. For low rates of geneflow the beneficial mutation is exported to a neighboring 
population at a very low frequency. Thus, only a very small number of chromosomes with the 
beneficial mutation initiate a novel selective sweep in the next population. This could be re­
garded as a second realization of the spread of the same beneficial mutation. Naturally, the 
pattern of the sweep depends on several parameters, such as the rate of geneflow among the 
populations and the selection coefficient of the beneficial mutation. Furthermore, the muta­
tion is assumed to have the same beneficial effect in all populations. Whether these conditions 
are met in natural populations still remains to be seen. 

Identification of the Beneficial Mutation 
For mutations shared among populations, it is possible that a mutation is beneficial in one 

population, but neutral or deleterious in another. The above model of subsequent sweeps in 
populations connected by low levels of geneflow, however, assumes that a new mutation arises 
in one population first and subsequendy migrates to others. In order to spread in other popu­
lations it is required that the mutation has the same/similar beneficial effect as in the original 
population. Assuming that the beneficial mutation has recendy arisen, it is possible to identify 
the underlying molecular change by comparing sequences of the two groups of populations. 
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Box 1. H i t chh ik ing Mapping: Case Studies 
For several species, Drososphila melanogaster^ D. simulansy maize, and humans multiple, 

unlinked microsatellites have been analyzed and a number of candidate loci were identi-
important aspects emerged from these studies: first, the large number of 

loci analyzed results in a multiple testing problem; second, a large fraction of the loci sur­
veyed were suspected to deviate from neutral expectations. 

The analysis of midtiple linked markers covering a genomic region that has been puta-
tively subjected to directional selection could be used to distinguish between a selective and 
neutral scenario. While under neutrality alleles at linked markers are only weakly correlated 
(i.e., low linkage disequilibrium), after a recent selective sweep more linkage disequilibrium is 
expected (higher correlation). Nevertheless, a high density of markers may be required to 
detect the genomic region, which is affected by the selective sweep. Plasmodium falciparum 
offers a unique situation to study the consequences of a selective sweep. Natural populations 
have recently acquired resistance to antimalaria drugs and the molecular basis of the resis­
tance is already understood. Furthermore, the microsatellite density in Plasmodium falciparum 
is extremely high, averaging one microsatellite/kb genomic sequence. Nair et al (2003) stud­
ied microsatellite variability around the dihydrofolate reductase gene, which is conferring 
resistance to the antimalaria drug pyrimethamine. As shown in Figure 4, a strong reduction 
in variability is observed around the target of selection (indicated by an arrow). The high 
density of microsatellites resulted in a correlated pattern at multiple loci flanking the target of 
selection. While the authors did not explore the range of neutral scenarios that could poten­
tially also cause such a strong reduction at multiple flanking loci, it appears unlikely that such 
a pattern would be expected under neutrality. Formal test statistics based on the pattern of 
variability at flanking loci could be devised, which significantly reduce the rate of false posi­
tives compared to a single locus analysis (Wiehe, Nolte & Schlotterer, unpublished results). 

The second problem, emerging from previous hitchhiking mapping studies, is that mul­
tiple loci may have been subjected to directional selection. Interestingly, for several species, 
which originated in Africa and colonized the rest of the world only recendy, a higher number 
of selective sweeps has been proposed for the X-chromosome of nonAfrican popula­
tions.'^ .35,37-39 jj^ £) melanogaster 2n6. D. simulans, approximately 10% of the analyzed loci 
deviate from neutral expectations.^ '̂ '̂̂ ^ Thus, if the full X-chromosomal data set is used for 
standardization in the lnR6 test, the power to detect loci affected by a selective sweep is dra­
matically reduced (as the mean is shifted towards negative values and the variance is increased). 
It has been proposed to use autosomal microsatellites as a reference data set for standardiza­
tion.^ The rationale is that the ratio of effective populations sizes in two populations is ex­
pected to be the same for autosomes and X-chromosomes. Nevertheless, if one of the sexes has 
a higher variance in reproductive success (e.g., a small number of males mate with all females), 
the effective population size of X-chromosomes and autosomes deviates fi-om the expected 3:4 
ratio. Also population size changes have a different effect on both sets of chromosomes. Schofl 
& Schlotterer (2004) used another approach for the identification of loci deviating from neu­
tral expectations. Given that under neutrality lnR6 values are normally distributed, they itera-
tively removed oudiers until no improved fit to a Gaussian distribution could be achieved. 
While the removal of 7 outUers improved the fit to a normal distribution for the X-chromosomal 
data set, not a single locus could be removed for the autosomal data set. 

one with—and one without—a selective sweep. The beneficial mutation is expected to be 
absent (or at a low frequency) in the population without the selective sweep, but should be 
fixed or at a high frequency in populations showing the signature of a selective sweep. Fience, 
selective sweeps that occurred in several populations will not only provide a more accurate 
position of the target of selection, but they will also make the identification of the selected site 
easier, as this mutation is expected to be consistendy at a high frequency in all populations 
showing the signature of a selective sweep. 



124 Discovering Biomolecular Mechanisms with Computational Biology 

-r—[—I—I—I—I—I—I—I—I—I—I—I I I t i ^ i ^ i T i W i W i ^ i \ \w\—I—I—I—I—I—I I I I I — I 

^5co^^ococN•«-o)coor^<Dln(No>cNT-(^JC^loou^^-.c^O)c^^•>r-coo)^050coo5 

Marker distance (kb) from dhfr 

Figure 4. Pattern of microsatellite variability around dhfr in Plasmodium falciparum. The black and dotted lines 
show the expeaed heterozygosity (based on the deterministic hitchhiking model of^ using difFerent mutation 
parameters. Figure reproduced from reference 40, with kind permission of Oxford University Press. 
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CHAPTER 10 

Understanding the Functional Importance 
of Human Single Nucleotide Polymorphisms 
Saurabh Asthana and Shamil Sunyaev* 

Abstract 

S ingle nucleotide polymorphisms (SNPs) are the major source of human genetic 
variation, and the functional subset of SNPs, predominandy in protein coding regions, 
contributes to phenotypic variation. However, much of the variation in coding regions 

may not produce any functional effects. There are two broad strategies for classifying poly­
morphism as functional or neutral: sequence-based methods predict functional significance 
based on conservation scores calculated from alignments of homologous gene sequences; 
structure-based methods map variations to known protein structures and predict likely effects 
based on properties of proteins. Several tools have been developed to classify polymorphism as 
functional or neutral based on these methods. It was shown that most of functional SNPs are 
evolutionarily deleterious. Though the utility of the tools has not yet been adequately demon­
strated, they may have important applications in the area of medical genetics. 

Introduction 
The observation that organisms differ from each other extends back to the earliest human 

history. Aristode developed taxonomic systems to categorize diverse populations into hierar­
chies, recognizing that the degree of differentiation between organisms corresponds to the 
degree of their separation by familial relationships. By now we have come to understand that 
inherited differences are transmitted via genetic material, and that the differences between 
individuals must ultimately translate into differences in their genetic sequence. One of the 
enduring puzzles of biology is understanding variation—^what is it that makes sister different 
from sister? How do these changes in genetic material manifest as changes in outward appear­
ance, behavior or biochemical makeup? 

At its most basic level, genetic variation consists of simple changes in sequence—base-pair 
substitutions, insertions and deletions. What is commonly understood by the term "allele", 
i.e., two functionally divergent forms of the same gene, in the end might consist of only a 
single differing nucleotide base-pair. The vast majority (90%) of genetic variation in humans 
consists of single nucleotide polymorphisms (SNPs).^ But all of this variation need not translate 
into observable phenotypic variation; most of it will be functionally neutral. The majority of 
SNPs occur in intergenic or intronic noncoding regions of the genome. Most noncoding 
SNPs are unlikely to have a functional impact; only a small minority is believed to have 
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functional significance, predominantly due to the effect on gene expression. Of the fraction 
of SNPs that does occur in coding sequence approximately half are synonymous substitu­
tions, which rarely produce an observable effect on phenotype. Even the remainder, which is 
guaranteed to result in amino acid variations, does not necessitate functionally divergent 
protein products. 

Although some variants in noncoding regions could have phenotypic effects, the great ma­
jority of functional variation likely falls in coding regions. The structure of intergenic regions 
are also so poorly understood that they are largely impenetrable to analysis at the moment. For 
this reason, we limit our consideration of variation to nonsynonymous coding SNPs. 

Identifying functional variation might be valuable in several contexts. First, we would ex­
pect the majority of functional variation to be detrimental (since beneficial variation is believed 
to be rare). Specifying functionally significant sequence divergence could therefore provide 
avenues to understanding disease susceptibility. Second, pinpointing the functional signifi­
cance of nucleotide substitutions between species may shed light on the basic mechanisms of 
evolution, and reveal how genetic variation is translated into phenotypic variation. 

There are a number of strategies we may follow to answer this question. 

Comparative Sequence Analysis 
Because purifying selection will eliminate variation at functionally important positions, as 

genes evolve and diverge functionally important positions will show greater conservation be­
tween species. Since selection operates exactly on the basis of phenotypic significance, conser­
vation should be expected to be an excellent guide to functionality. 

The availability of sequence information from hundreds of species allows the quick retrieval 
of many protein homologs of a gene of interest. A number of standard techniques exist for 
constructing multiple alignments of homologous sequences. 

A very rude measure of conservation can be obtained simply by examining the degree of 
entropy at a particular position in a multiple sequence alignment of homologous protein se­
quences. Low entropy, i.e., high conservation, would suggest the position is important. This 
simple measure has been shown to be an effective discriminator for functionality.^ 

A more sophisticated measure based on multiple sequence alignments uses position-specific 
scoring matrices. A probability measure of the likelihood that a variant is permissible (profile 
score) may be generated for each amino acid at each position. This profile score accounts for 
phylogenetic history and amino acid frequency as well as conservation. Profile scores are em­
ployed in two tools that predict functional variation based on multiple sequence alignments, 
PolyPhen^ and SIFT.^ 

Any set of homologous sequences is presumably descended from a common ancestral se­
quence. Accordingly, common sequence identity may be the result of common descent, making 
it necessary to segregate the effects of phylogeny from the effects of selection on conservation. 

Most profile scores employ sequence-weighting techniques to discriminate between the 
effect of selection and simple phylogenetic proximity, so that closely related sequences are 
downweighted. In the ideal each sequence is weighted according to the information it adds to 
the alignment with regard to the effect of selection. Sequences that are phylogenetically more 
distant from the others in the alignment will provide the most information—if an amino acid 
has been conserved across a huge evolutionary distance it is highly likely to be important. Two 
basic strategies exist for determining evolutionary distance. One is to weight the sequences 
according to a reconstruction of their phylogenetic tree. The other is to weight sequences ac­
cording to some metric based on sequence divergence, e.g., pairwise identity or from the de­
gree of identity at aligned positions.^ Most sequence-weighting techniques apply the same 
weight to the entire sequence, but some give position-specific weight. 

A separate strategy for quantifying conservation is also based on phylogeny, counting the 
minimum number of amino acid substitutions from an ancestral sequence required to produce 
the pattern of variation in a multiple sequence alignment.^ 
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However, this strategy does not include any information about amino acid frequencies; the 
pattern of variation at a locus can also provide meaningful information. For example, if an 
amino acid occurs frequendy at a particular position in an alignment it is unlikely to have a 
deleterious effect; a rare variant is still likely to be tolerated. Amino acids that do not occur in 
the alignment are much more likely to have deleterious effects. An alternative, broader measure 
is to compare amino acids by class (e.g., if no hydrophobic amino acids occur in the alignment, 
a hydrophobic variant is likely to be deleterious). This property has been shown to be quite an 
effective classifier of variation on its own. 

Multiple sequence alignments may also suffer from a paucity of informative sequences. 
Consider the case of a sequence with a meager two homologs; in this instance conservation 
may be misapprehended simply because there are not enough sequences to allow the full range 
of variation. This lack may be retrieved by adding Bayesian pseudocounts to profile scores 
based on background levels of variation. 

Conservation becomes more significant as evolutionary time of divergence increases. How­
ever, conservation (or lack of it) is only meaningful to the extent that fiincdon is preserved. For 
example, HIV-1 protease aligns well against the proteases from Rous Sarcoma Virus and Avian 
Myeloblastosis Virus; however, because the substrate specificity of these proteins has changed 
relative to HIV-1 protease, excluding these two sequences from the alignment can improve the 
predictive ability of the method. Since there is no simple way to recognize funcdonal divergence 
from sequence, it is necessary to inspect alignments by hand and cull problemadc sequences. 

Additionally sequence comparison-based methods will not deal well with compensatory 
substitutions. A certain variation in one phylogenetic line might be tolerated simply because 
there is a compensatory mutation at another site; however, the same variant in a different 
phylogenetic line that lacks the compensatory mutation might prove deleterious. However, 
since the variant is apparendy "tolerated" according to the pattern of variation at that position, 
the above methods will judge it to be benign.^ 

Structure-Based Methods 
Ultimately a gene expresses its function through its protein product. Examination of the 

three-dimensional structure of a protein can reveal aspects of a particular variation that are not 
readily evident from the sequence itself Many of the insights gained from the study of protein 
structure can be applied to this problem. 

Structural information can help identify functional sites and sites in proximity to function­
ally important regions. However, systematic studies demonstrate that the great majority of func­
tional mutations affect protein stability.^ As accurate computational methods for predicting the 
effect of amino acid substitutions on protein stability are not available yet, a number of empiric 
parameters related to protein stability have been proposed as predictors. These included acces­
sible surface area coupled with hydrophobic propensities, packing parameters, hydrogen bond­
ing, conformational propensities, crystallographic B-factors and others. All parameters were shown 
to correlate with the effect of substitutions. Many of the parameters did not result in improve­
ment of the prediction because of an unacceptable rate of false-positives, whereas a few were 
shown to produce a small number of false-positives and thus appear to be usefiil predictors. 

However, in general structural classification is notoriously weak compared to 
sequence-conservation based classification. For this reason few methods rely solely on struc­
tural methods; many more combine both types of analysis. 

Combined Methods 
A number of predictive methods combine structure and sequence-based methods, includ­

ing the PolyPhen tooP and the MutDB tool.^^ 
Because information derived from structural properties of genes is wholly independent of 

information derived from sequence conservation, the combination can be vastly improved in 
performance. In addition the failings of either method may be orthogonal; e.g., structurebased 
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methods will not misjudge a compensatory mutation as comparative-sequence-based methods 
will (discussed above). 

Systematic analysis by Saunders and Baker confirms that errors in the functional classifica­
tion of variants can be significandy reduced by combining structural and comparative sequence 
information. They assess the performance of the SIFT tool when augmented with various combi­
nations of structural rules and find strong improvements in classification errors when compared 
to the performance of SIFT alone. The most effeaive combination according to their analysis 
included two structural features: the density of (P atoms around a residue (a measure of how 
deeply buried the site is), and a normalized ^factor (a measure of side-chain flexibility at a site). 

Methods of Validation 
Two validation strategies have been proposed for testing the methods for predicting the 

fimctional significance of polymorphic variants. The first approach utilizes data on genetic 
variants that are already known to be fimctionally significant. There are several compendiums 
of such information, including the Online Mendelian Inheritance in Man (OMIM) database 
(http://www.ncbi.nlm.nih.gov/omim/), which catalogues human disease alleles; the Human 
Gene Mutation Database (HGMD), a catalogue of mutations in human nuclear genes caus­
ing disease; and the Human Genome Variation Database (HGVBase),^ which is a general 
catalogue of genotype/phenotype associations. 

Disease mutations will only encompass a specific range of fimctional variation, since only 
fiiUy penetrant genes with Mendelian inheritance will produce disease phenotypes. Such datasets 
can therefore not be assumed to be free of bias towards particular mutations. 

As a result of validation experiments on this dataset, the PolyPhen tool, for example, was 
shown to correcdy predict 82% of disease mutations (57% under a more stringent threshold). 
The test was performed on proteins with available multiple homologs and 3D-structure, there­
fore the accuracy of the method might be slighdy lower when applied to all human amino acid 
polymorphisms. 

To estimate the rate of false-positive predictions, substitutions between human proteins and 
closely related mammalian orthologues are examined as putatively neutral variants. PolyPhen 
produces 8% false-positives on this dataset (3% under a more stringent threshold). 

A second, complementary validation strategy relies on site-directed mutagenesis experi­
ments.^^ Systematic in vitro mutation screens can identify specific point mutations that dis­
rupt the fiinction of model proteins. Since these screens can cover the fiill sequence, they are 
often taken to be devoid of bias towards any particular class of mutations; they will encompass 
severe mutations as well as less fijnctional ones. However, since such screens rely on gross 
biochemical effects and do not place the mutation in its full context, they will miss subtler 
effects on phenotype that will be covered by disease mutations. Additionally such screens rely 
on a small number of proteins that may not be representative of all possible protein structures, 
and may not come from the organism of interest. If the model protein is biased towards par­
ticular features (e.g., a hydrophobic interface), the importance of certain functional classes of 
mutations might be overrepresented. 

These data sources may also be used in combination with machine-learning methods as 
training sets to select the best classifiers from a wide variety of structural and sequence com­
parative metrics.^ 

Analysis of natural selection acting on deleterious variants (discussed below) can be also 
used as an independent validation of the prediction techniques. 

Detecting the EflFects of Selection 
The functional significance of variation is precisely the characteristic that selection oper­

ates; thus, identifying exactly where selection has acted should be an exceptional method of 
determining significance. Unfortunately, it is extraordinarily difficult to determine whether 
selection has acted on specific positions. For example, the effects of population history are 
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often indistinguishable from the effects of selection. However, identifying the effects of se­
lection can be used to validate putative functional SNPs. Additionally genome-wide studies 
of selection can provide quantitative assessment of the proportion of SNPs expected to be 
important. 

That the genome is under selection is immediately obvious. A straightforward compari­
son of amino-acid polymorphism rate to synonymous polymorphism rate reveals that 
amino-acid polymorphisms occur at 1/3-1/5 the frequency of synonvmous polymorphism, 
suggesting that 70-80% of amino-acid polymorphisms are deleterious. Comparison of varia­
tion in allele frequency between human subpopulations demonstrates that the allele fre­
quency spectrum is shifted towards rare (low and high frequency) variants, indicating the 
influence of selection. 

The distribution of allele frequency for polymorphic loci further demonstrates the effect 
of selection on the genome. A comparison of the frequency of amino-acid polymorphism to 
synonymous (presumably neutral) polymorphism shows that the mean frequency of 
amino-acid polymorphism is significantly lower, suggesting that many of these loci are expe­
riencing purifying selection. Analysis of the distribution of polymorphic variants among 
major human subpopulations using the ^57-statistic also showed that many genes are under 
selective pressure. 

Comparison of polymorphism with species divergence and analysis of allele frequency dis­
tribution suggests that nonsynonymous SNPs predicted to be functional by methods described 
above are evolutionarily deleterious, i.e., most of them are under negative selective pressure. 
This observation logically links effects on protein function and stability with effects on evolu­
tionary fitness. 

Genome-Wide Analysis of Functional Polymorphic Variants 
The primary ingredient in identifying functionally important variation is a comprehensive 

catalogue of genetic variation in general. Human variation, though not exhaustively enumer­
ated, has been significandy covered; at present some 4.3 million SNPs have been validated. 
This data is available in the dbSNP database (http://www.ncbi.nlm.nih.gov/SNP/). The bulk 
of SNP data comes from two sources. About half is taken from overlapping sequence produced 
in the course of the human genome sequencing project; accordingly, these SNPs are not ran­
domly distributed in the genome and are therefore sometimes excluded from experiments. The 
bulk of remaining SNPs come from The SNP Consortium (TSC),^° which attempts to exhaus­
tively enumerate SNPs by resequencing the genomes of 24 unrelated individuals. TSC SNPs 
are randomly distributed and also often have associated allele frequency information available. 
SNPs have been contributed by many other sources as well. 

Methods for predicting functional effect of nonsynonymous SNPs and methods to detect 
natural selection were both applied to SNPs from public databases. Though these SNPs are 
taken from generally healthy individuals, it was shown that individual human genomes have a 
large number of potentially deleterious polymorphic variants. Estimates of the standing num­
ber of deleterious mutations in an individual genome mosdy reach a consensus of--500-2000^^' 
mutations, although a much higher estimate of--6000-13,000 mutations was reported^ (though 
the latter is probably an overestimate, since it does not account for the depressed allele frequen­
cies of deleterious mutations). 

Significance for Medical Genetics 
Understanding functional variation is a potential goldmine in the study of inherited dis­

ease. Many genetic diseases with simple Mendelian patterns of inheritance are well understood, 
but increasingly research efforts are running up against complex diseases. Though there has 
been no demonstration of the utility of the above predictive methods, they may prove useful in 
elucidating the genetic basis of complex diseases. 

Two different hypotheses exist regarding the nature of the genetic basis of common human 
disease phenotypes. 
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The CD/CV (common disease - common variant)^^'^^ hypothesis postulates that most dis­
ease susceptibility variants are common, and in the majority of cases, a limited number of 
alleles in a limited number of loci account for the majority of disease susceptibility. In the 
extreme case, even a single common allelic variant in a single locus may be responsible for a 
common disease phenotype. 

A possible evolutionary basis for the CD/CY hypothesis is provided by the trade-off (antago­
nistic pleiotropy) model. This model suggests that deleterious disease susceptibility alleles can 
spread in the population because of a favorable effect on another trait. Since many human 
common diseases are late-onset phenotypes, the pressure of negative selection against them is 
reduced, and it is hypothesized that the same allele may have a positive effect at an early age. 

The alternative, the CD/RV (common disease - rare variant) hypothesis, states that most of 
the common human diseases are due to a large number of possibly rare variants in many loci. 
The CD/RV hypothesis can most easily be explained by a mutation accumulation model, which 
assumes that the genetic basis of a common disease can be explained by the accumulation of 
many allelic variants, each under low selective pressure. The accumulation of these variants, with 
some of them reaching significant frequencies, is possible for two reasons. First, the intensity of 
selection may be low, especially for late-onset diseases. Second, multiple variants in multiple loci 
contribute to disease susceptibility, and thus can be kept in a mutation-selection balance. 

The accumulation of slighdy deleterious variants in multiple interacting loci produces a 
complex picture of common disease susceptibility inheritance under the CD/RV hypothesis. 
Differences between the CD/CV and CD/RV hypotheses are critical to the design of studies 
aimed at the identification of disease susceptibility alleles. 

The studies described in previous sections show that computational methods are able to 
predict and quantify deleterious SNP alleles kept under mutation- selection balance, which are 
important in the inheritance of common disease under the mutation accumulation model. The 
observation of a large number of these alleles may be considered as indirecdy supporting the 
mutation accumulation model. Obviously, effects on molecular function are an essential fea­
ture of susceptibility alleles under both models. 

Linkage studies have proven very successful in mapping the loci responsible for Mendelian 
diseases, but are much less efficient when studying complex phenotypes with non-Mendelian 
patterns of inheritance.^^ Association studies that test allele frequencies in disease populations 
versus healthy controls are hypothesized to be better suited for complex phenotype analysis.^^ 
Under the CD/CV hypothesis, whole-genome association studies might prove useful. These 
studies can be based on linkage disequilibrium between marker SNPs and causative alleles in 
the same haplotype blocks. Possible allelic and nonallelic heterogeneity and the presence of 
epistatic interactions are the major complications of this approach. 

An alternative approach, which might work even in complex situations, is based on candi­
date genes or candidate genomic regions. In addition to the careful selection of candidate genes 
(or loci) in this approach, proper prioritization of SNPs for the analysis is essential. This 
prioritization might be achieved via computational methods. 

Testing SNP alleles on a genome-wide scale requires a massive amount of genotyping and, 
most importandy, strongly reduces the statistical efficiency of association studies because of 
multiple test corrections. Focusing on potentially functional SNPs first will help to overcome 
both of these problems. Conversely, a group of SNPs in linkage disequilibrium might be found 
to be statistically associated with a phenotype of interest, but identification of the causative 
variant among them may present a challenge. Computational methods could be used to pre­
dict the functional variant. 

Under the CD/RV hypothesis, association studies testing for the frequency of individual 
alleles might fail in many cases.^ '̂̂ ^ However, if a good set of multiple candidate genes is 
available with a reasonable degree of confidence by using methods for predicting the functional 
effect of SNPs, it is possible to test whether the number of alleles predicted to be deleterious is 
higher in all of these genes in patients as opposed to controls. This might provide a direct test 
for accumulation of deleterious mutations responsible for a specific phenotype. 
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CHAPTER 11 

O)rrelations between Quantitative 
Measures of Genome Evolution, 
Expression and Function 
Yuri I. Wolf, Liran Carmel and Eugene V. Koonin* 

Abstract 

I n addition to multiple, complete genome sequences, genome-wide data on biological 
properties of genes, such as knockout eflPect, expression levels, protein-protein interactions, 
and others, are rapidly accumulating. Numerous attempts were made by many groups to 

examine connections between these properties and quantitative measures of gene evolution. The 
questions addressed pertain to the most fundamental aspects of biology: what determines the 
effect of the knockout of a given gene on the phenotype (in particular, is it essential or not) and 
the rate of a gene's evolution and how are the phenotypic properties and evolution connected.'* 
Many significant correlations were detected, e.g., positive correlation between the tendency of a 
gene to be lost during evolution and sequence evolution rate, and negative correlations between 
each of the above measures of evolutionary variability and expression level or the phenotypic 
effect of gene knockout. However, most of these correlations are relatively weak and explain a 
small fraction of the variation present in the data. We propose that the majority of the relation­
ships between the phenotypic ("input") and evolutionary ("output") variables can be described 
with a single, composite variable, the genes "social status in the genomic community", which 
reflects the biological role of the gene and its mode of evolution. "High-status" genes, involved 
in house-keeping processes, are more likely to be higher and broader expressed, to have more 
interaction partners, and to produce lethal or severely impaired knockout mutants. These genes 
also tend to evolve slower and are less prone to gene loss across various taxonomic groups. 
"Low-status" genes are expected to be weakly expressed, have fewer interaction partners, and 
exhibit narrower (and less coherent) phyletic distribution. On average, these genes evolve faster 
and are more often lost during evolution than high-status genes. The "gene status" notion may 
serve as a generator of null hypotheses regarding the connections between phenotypic and evo­
lutionary parameters associated with genes. Any deviation from the expected pattern calls for 
attention—to the quality of the data, the nature of the analyzed relationship, or both. 

Introduction 
Quantitative genomics involves numerous measures reflecting different aspects of the evo­

lutionary history and the physiological role of a given gene (protein). One can estimate the 
evolution rate of a gene, measured in different organisms; its expression level in different tissues 
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Table 1. Connections between various measures of sequence evolution rate, gene 
loss, expression, and fitness effecf 

l̂ aa '̂ N Ks Ks K3 PGL EH ^ H ^ £Y EY 

1 protein evolution x 
rate (Kaa) 

2 CDS non-synonymous + x 
evolution rate (/CN) 

3 CDS synonymous + X 
evolution rate {Ks) 

4 5'-UTR evolution + + x 
rate (/C5) 

5 3'-UTR evolution + + + x 
rate (/C3) 

6 propensity for gene + x 
loss (PGL) 

7 expression level in - - - 0 - - x 
human {EH) 

8 expression breadth - - - 0 - + x 
in human {B^) 

9 expression level in - - + x 
C elegans (fc) 

10 expression level in - - + + x 
S. cereviseae (Ey) 

11 viability of gene + + - - - - x 
disruption in 
5. cereviseae (fy) 

^ The data was from referencesi 5, 16. 

and in different taxonomic groups; the tendency of a gene to be lost during evolution of differ­
ent lineages of organisms or its tendency to produce paralogous copies via duplication; its 
position in the metabolic, signaling and protein interaction networks; and a variety of other 
quantities (e.g., refs. 1-4). Not unexpectedly, many of such measures are not independent. The 
literature on the subject (see specific references below) reports numerous positive and negative 
correlations: between the synonymous and nonsynonymous evolution rates within a gene; 
between evolution rate and expression level; between propensity of gene loss and fitness effect; 
and many more (Table 1). Some of these correlations are very strong for quite obvious reasons, 
such as evolution rates in different lineages or expression levels of orthologous genes; others are 
less trivial, e.g., the correlation between the degree of conservation of a genes presence in 
different lineages and the degree of conservation of its sequence; yet others are remarkably low 
or absent, sometimes running contrary to expectations (evolution rate vs. number of 
protein-protein interactions or conservation of gene sequence and that of expression profiles). 

Diverse as they are, all these purported correlations, except for the most obvious ones, share 
one somewhat disturbing feature: although they may be highly statistically significant due to 
the large number of data points, they typically explain only a small fraction of the variance of 
the analyzed quantities. Hence considerable debate around many of these observations, which 
is further compounded by problems with the completeness and quality of much of the data 
involved, particularly that coming from genome-scale analyses of gene expression, protein-protein 
interactions, and other aspects of gene fiimctioning. For example, the argument about the link— 
or lack thereof—between the connectivity of a protein in protein-protein interaction networks 
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and its evolutionary rate has already gone through at least three q^cles of opposing claims, and 
there is still no definitive solution in sight. ̂ '̂ ^ Even when the existence of a link is not seriously 
questioned, as is, e.g., the case with the negative correlation between a gene's expression level 
and sequence evolution rate, the nagging question remains as to the ultimate importance of 
these observations. Given that the nontrivial correlations, however statistically significant they 
might be, are all relatively weak, it is quite legitimate and, probably, prudent to ask whether 
one should emphasize the existence of a particular link or the fact that the effect of one of the 
analyzed variables on the other(s) is only modest. Answering these questions is not easy, and 
yet, they are pressing because the higher-level problems addressed in this area of research are, 
arguably, among the most fundamental ones in biology, e.g., what determines the fitness effect 
of a gene's knockout or the rate of its evolution. 

Quantitative genomics is a very young discipline which started in earnest only at the brink 
of the 21st century, when genome-wide data beyond the sequences themselves (gene expres­
sion, protein-protein interaction etc) began to accumulate. Nevertheless, in these few years, a 
fairly complex maze of observations on connections—or lack thereof—between all kinds of 
quantities has emerged. We believe that the field is in rather urgent need of a coherent concep­
tual framework that would allow one, simply put, to make sense of these diverse and often 
contradictory bits and pieces of information. Here, we present a brief overview of the available 
results on genomic correlations and discuss some preliminary glimpses of a would-be synthesis. 

Evolution Rate, Expression Level and Expression Breadth 
Numerous reports, including our own research, point to a significant correlation between 

the measures of evolutionary conservation of a protein and measures of its expression^ ̂  (Table 
1). Several notable conclusions emerge from these analyses. Firsdy, there is a strong cohesion 
between measures of the same quantity obtained for different, in many cases, phylogenetically 
distant species. Despite obvious biological differences between, e.g., mammals, nematodes, 
and yeasts, expression levels of orthologous proteins from these species display positive correla­
tions with r-values of 0.3-0.5 (with many hundreds of proteins in the dataset, the correlations 
are significant at/>-values «10'^^). Likewise, evolution rates estimated for different lineages 
and across different ranges of distances tend to show even greater concordance (r-values of 
0.7-0.9 between distantly related bacterial lineages). '̂̂  Secondly, expression breadth, defined as 
the number of different tissues where a gene is significantly expressed, and the connectivity 
(node degree) in the gene coexpression network behave in essentially the same way as the 
expression level in expression vs. evolution rate comparisons. Specifically, there is a highly sig­
nificant negative correlation between each of these parameters of gene expression and sequence 
evolution rate; in other words, highly and widely expressed genes, which have numerous 
coexpression partners, tend to evolve slowly (Fig. 1). Finally, while this negative correlation 
between evolution rate and expression parameters holds for the great majority of the relevant 
data, a notable exception breaks this nearly universal pattern. Analysis of mammalian microarray 
data shows that, while the synonymous and non-synonymous nucleotide evolution rates within 
the coding sequence and the nucleotide sequence evolution rate in the 3'-UTR behave as ex­
pected, the evolution rate of the 5'-UTR shows no correlation with expression. This apparent 
discrepancy probably points to a distinct mode of evolution and/or a specific and still not 
understood connection between the sequence and its expression for the 5'-UTRs of (at least) 
mammalian genes (Fig. 1). 

Evolution Rate, Gene Loss and Fitness EfFect 
The statement that sequence evolution rate and the tendency of a gene to be lost during 

evolution are correlated at first glance seems almost trivial—after all, it should be expected 
that evolutionarily conserved (i.e., slowly evolving) genes are also phylogenetically conserved, 
i.e., their orthologs more densely populate the tree of life than those of fast-evolving genes. 
In support of this straightforward line of reasoning, a highly significant correlation between 
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Figure 1. Correlation between evolution rate, expression breadth and expression level. Human microarray 
data from GEO database (GDSI81.soft) were analyzed to determine expression breadth (a; number of 
tissues with expression level ^200 AD) and expression level (b; the sum of the log2 normalized AD values 
over all tissues) as described previously.̂  Evolutionary distance between the human gene and its mouse 
ortholog was determined in nonsynonymous (dN) and synonymous (dS) sites of the coding region, 5-UTRs 
(5'UTR d) and 3'-UTRs (3'UTR d). Genes were grouped according to the evolutionary distances (which, 
for orthologs, can be used as proxy for rates) in bins of approximately equal size; mean and variance of 
expression level and expression breadth were calculated for each bin. 

these parameters has been observed (Table 1, Fig. 2). However, these two faces of evolu­
tionary conservation are not linked directly via a cause and effect relationship. Most likely, 
the strongest factor affecting the connection is the local (i.e., species-specific) fitness effect of 
the gene, usually measured as gene dispensability in knock-out experiments. It has been 
pointed out that genes experimentally shown to be essential tend to evolve slower than non­
essential ones^^' although, again, the causal relationship between these parameters has been 
questioned.^^ Obviously, the gene dispensability over short evolutionary intervals entirely 
depends on the fitness effect of the gene loss (genes with a lethal knock-out phenotype in a 
particular species, by definition, cannot be lost in that species), while long-range loss pro­
pensity is more subtly determined by the evolution of the whole genome (changes in avail­
ability of a complementing gene, availability of an alternative pathway or acquisition and 
loss of entire modules of the molecular machinery). It is noteworthy that, despite the high 
significance of the observed correlations between the long-term (as captured in a gene's phyl-
etic patterns) and short-term (determined in actual knockout experiments) propensities for 
gene loss, the actual dependence is relatively weak. The strength of correlation between nominal 
variables can be represented in terms of mutual entropy, i.e., the amount of information that 
can be gained when the data on gene phyletic pattern is added to the data on gene knockout 
effect (Appendix 1). For C. elegans and S. cerevisiae, the relative information gain, i.e., the 
improvement in the prediction of the outcome of the genome-wide gene knockout experi­
ment, from using phyletic patterns was calculated to be -10 .5% and -15%, respectively. It 
seems notable that the link between the phyletic pattern (which represents the history of 
gene losses across the eukaryotic crown group) and the knockout effect are 1.5 times stron­
ger for yeast than for the nematode; this probably reflects the greater complexity and the 
associated partial redundancy of the metazoan cellular machinery. 
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Figure 2. Correlation between sequence evolution rate and gene loss. The data was taken from reference 15. 
Horizontal axis—propensity for gene loss; vertical axis—evolution rate (distance from Arabidopsis protein 
to fungal or metazoan ortholog). Spearman rank correlation coefficient R = 0.40 (significant at/>«10'^^. 

Gene Duplications and Evolution Rate 
The crucial role gene duplications play in evolution had been recognized since the early 

days of modern evolutionary biology^ ' and was molded into a coherent concept by Susumu 
Ohno in the classical 1970 book "Evolution by Gene Duplication.**^^ A largely underappreciated 
aspect in the relationships between gene duplication and evolution of function is that several 
evolutionary forces, acting on a freshly duplicated pair of genes, seem to work in opposite 
directions. Duplication creates functional redundancy, which results in an immediate decrease 
of the purifying selection pressure. However, with the frequency of deleterious mutations being 
much higher than that of advantageous mutations, the loss of selective pressure leads to rapid 
"pseudogenization", making the Ohno-style neofunctionalization^ an unlikely event. Several 
theoretical explanations have been proposed to resolve this apparent paradox, in particular, the 
subfunctionalization model, whereby young duplicate genes undergo partial loss of function, 
leading first to retention of both copies necessary for genetic complementation between them 
and, later, to functional divergence; dosage effect, postulating direct selective advantage of 
the increase of gene (product) dosage brought about by duplication, and tissue- or develop­
ment stage-specific epigenetic silencing of one of the duplicates, which exposes both copies to 
purifying selection. The observed reduction of species-wide sequence polymorphism in re­
cently duplicated genes in Arabidopsis suggests a role of selection sweeps in initial fixation of 
duplications. Interestingly, as a counter-point to the common notion of the creative role of 
gene duplication, a gene loss that "compressed" functions of two paralogs into a single copy has 
been suggested as the main event that "unlocked" the evolutionary path to flowering plants.^^ 

Regardless of the exact nature of the relationships between gene duplication and evolution 
mode and rate, complex dependencies are seen in quantitative comparisons. The initial in­
crease of evolution rate (but apparendy not to the level of the neutral expectation) has been 
widely observed"^ '̂̂ '̂̂ ^ although reports differ on whether the two duplicated copies typically 
evolve at similar^^ or significandy different^ '̂̂ ^ rates. Apparently, the asymmetry in the evolu­
tionary fates of the duplicated copies extends to the patterns of expression and protein-protein 
interactions, and the response to environmental stress and gene disruption. Large-scale stud­
ies indicate, however, that genes which have close paralogs, on average, evolve slower than 
singletons;^^'^ this probably reflects the stronger tendency of slower-evolving essential genes 
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to retain a duplication for an extended period of time. Interestingly, duplication itself tends to 
diminish experimentally detectable fitness effect of gene disruption due to the very reaspn of 
introducing redimdancy into the genetic makeup of the organism.^^' 

Interactions between Three and More Parameters: 
More Than the Sum of the Parts? 

Considering more than two parameters gives an additional insight into the quantitative-gpnomic 
relationships. Fbr example, there appears to be a weak but detectable nat ive correlation between the 
evolution rate and experimentally determined number of protein-protein interactions.^' Both 
of these parameters are correlated with expression level—highly expressed proteins tend to 
evolve slower and have more interactions. Accounting for the expression level brings the (al­
ready weak) correlation between the evolutionary rate and protein interactions below the sig­
nificance level. There is a convincing argument that the experimental detection of 
protein-protein interactions is strongly affected by the protein abundance; thus, the interac­
tion data set is biased towards having an artificially high number of interaction partners for 
highly expressed proteins. This suggests that there might be no direct connection between the 
position of the protein in the interaction network and its rate of evolution. The debate that 
foUowed'̂ '̂ '̂̂ '̂  failed, so far, to provide a definitive answer beyond the general agreement that 
"the large-scale data sets remain woefully noisy and incomplete." 

Rocha and Danchin applied multiple regression and partial correlation analysis to the data on 
evolution rate, expression level, functional category, essentiality and metabolic cost of genes in 
two model bacteria. Bacillus subtilis and Escherichia coU}^ They showed that an indirect measure 
of expression level, the Codon Adaptation Index (CAI), is responsible for the major part (91-94%) 
of the variance in the evolution rate of bacterial genes, which is explained by multiple linear 
regression. Rocha and Danchin argue that, when controlled for CAI contribution, the other 
factors play "minor (if any) role" in determining the evolution rate of bacterial genes and explain 
the correlations reported by other researchers^ ' b y indirect influence of differences in expres­
sion level. While their analysis is very similar in spirit to that of Bloom and Adami,^'^^ there 
seems to be an important distinction: Bloom and Adami invoke an experimental bias as an 
explanation of the observed connection between the number of protein-protein interactions and 
protein abundance which indirecdy explains the apparent correlation between the number of 
interactions and evolution rate; by contrast, Rocha and Danchin consider real correlations be­
tween three (more or less) independent variables. The former case, if solid, seems to warrant the 
dismissal of the observed correlations as artificial; the latter calls for development of a conceptual 
model taking into account the full complexity of multi-dimensional, inter-correlated data. 

The "Sodal Status" Model 
We would like to propose an idealized model that might help in developing biologically 

relevant null hypotheses for observed connections between quantitative measures of genome 
evolution and function. Firsdy, let us note that it seems useful to make a distinction between 
"phenotypic" and "evolutionary" variables. The former, e.g., gene expression level or viability of 
a knock-out mutant, reflect the biology of extant organisms; by contrast, the latter, e.g., se­
quence evolution rate or propensity for gene loss, reflect various aspects of genome conservation 
and change over the course of evolution. The relationship between the phenotypic and evolu­
tionary variables appears to have a distinct polarity: the former affect the latter because natural 
selection constraints or drives the evolutionary change by "testing" the organisms phenotype 
for fitness, but not vice versa. Phenotypic parameters direcdy interact with each other (e.g., 
codon bias of a gene affects its expression level) whereas evolutionary parameters are indirecdy 
correlated (e.g., in accord with the neuttal theory of evolution,^^ the evolutionary rates of orthologs 
in different lineages tend to be similar inasmuch as they perform similar functions in the respec­
tive organisms). In a sense, the phenotypic parameters provide the "input" and the evolutionary 
parameters represent the "output" of a biological system. Evolutionary parameters are readily 
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produced by comparative genomic techniques (although systematic error may creep in, e.g., in 
calculations of evolutionary rates over long time spans) whereas most phenotypic parameters 
can be obtained, on genome scale, only through cosdy and, at this stage, highly error-prone 
large-scale experiments. 

We suggest that the majority of the relationships between the input parameters (and, indi-
recdy, between the output parameters) can be described with a single, composite variable which 
reflects the role of the gene in the cell physiology and its mode of evolution. This variable is 
akin to the gene's "social status in the genomic community" and relates to the importance of its 
functions in the overall scheme of things. "High-status" genes, which are involved in key 
house-keeping processes, are more likely to be higher and broader expressed, to have more 
interaction partners, and to produce lethal or severely impaired knockout mutants. These genes 
also tend to evolve slower and are less prone to gene loss across various phylogenetic lineages. 
"Low-status" genes are expected to be weakly expressed, have fewer interaction partners, and 
exhibit narrower (and less coherent) phyletic distribution. They also, on average, evolve faster 
and are more often lost during evolution than high-status genes. 

Parameters that contribute to the status with the same sign are expected to show positive 
correlation between each other, whereas those that contribute in the opposite direction are 
expected to be negatively correlated. Thus, input parameters, which all make a positive con­
tribution to the status (high-status genes are, generally, highly expressed, their products inter­
act with many other proteins, their knockouts have severe fitness effects etc), are positively 
correlated with each other but negatively correlated with output parameters (the fast-evolving 
genes typically have a low status). The notion of gene status may provide a useftil generator of 
null hypotheses regarding the connections between variables associated with functioning and 
evolution of genes (Fig. 3). Any deviation from the expected pattern calls for attention—to 
the quality of the data, the nature of the analyzed relationship, or both. 

"STATUS" 

"phenotypic" 
measures 

"evolutionary" 
measures 

Figure 3. The "gene social status" model. Blue arrows—direct interactions between "phenotypic" (input) 
variables; black arrows—influence of "phenotypic" (input) variables on "evolutionary" (output) variables; 
red arrows—manifestation of "social status" in the "phenotypic" variables. A color version of this figure is 
available online at http://www.Eurekah.com. 
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Figure 4. Principal Component Analysis of phenotypic (input) and evolutionary (output) variables associ­
ated with eukaryotic KOGs. The values of 7 variables were obtained as previously described: ̂  ̂  (i) evolution 
rate (measured as distance from an Arabidopsis protein to fungal or metazoan ortholog), (ii) number of losses 
in the KOG history (reconstruaed using DoUo parsimony), (iii) propensity for gene loss (essentially, 
number of losses, normalized for the lengths of the corresponding branches), (iv) expression level in yeast, 
(v) expression level in C elegans, (vi) expression level in humans, and (vii) viability of yeast knock-out 
mutant. A) Distribution of variance among principal components. Horizontal axis—principal compo­
nents; vertical axis—fraction of total variance. B) Loadings plot for the original variables in the plane of the 
first two principal components. Note the positive contribution of the expression level (associated with high 
status) and the negative contribution of evolution rate, gene loss, and viability of gene disruption mutants 
(associated with low status) to the first principal component. The data was firom references 15 and 16. 

Multi-Dimensional Structure of Expression, Evolution Rate, 
and Gene Loss Data 

We investigated the multi-dimensional structure of expression, evolution rate, and gene loss 
data for a set of orthologous gene families and the correlations of these parameters with the 
viability of yeast knockout mutants. The principal component analysis (PCA) shows (Fig. 4) that 
the major direaion of the data scatter, which accounts for nearly 4 0 % of the entire variance, is 
formed by positive contribution from various measures of expression level (EST data for human 
genes and microarray data for yeast and worm orthologs) and the negative contribution from 
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different measures of evolutionary rate (evolutionary distances between Arabidopsis proteins and 
their fungal or animal orthologs) and gene loss (propensity for gene loss calculated as previously 
described or, simply, the number of losses). A coordinate on such an axis can be direcdy inter­
preted as a measure of the gene's "social status"; the fact that it is the most significant direction in 
terms of the data variance indicates that the "status" defined in this fashion is, indeed, important 
in determining the place of a gene in the data space. 

Importandy, despite the fact that all pairwise correlations between the parameters are highly 
significant and follow the predictions of the "status" model in their signs, the overall level of 
interdependence between the parameters is quite low. We used the above data on the gene 
expression, evolutionary rate,and gene loss to predict an outcome of a gene knockout experi­
ment in yeast (Appendix 2). As expected, slowly evolving, evolutionarily stable,and highly 
expressed genes are more likely to produce a nonviable phenotype compared to the genes from 
the opposite side of the "status" spectrum. However, the contribution of all these factors is 
remarkably low—using this information, the Bayesian Linear Discriminator removed only 
0.5-5% from the original entropy of the gene knockout data. 

Conclusions 
The opportunity to analyze, systematically and quantitatively, the connections between 

numerous measures of genome evolution and fiinction is one of the most alluring avenues of 
study opened up by the development of genomics and systems biology. Under an optimistic 
scenario, this might be the key to the main point of entire systems biology enterprise, trans­
forming biology "from stamp collection to physics". Yet, it seems that any researcher who 
attempts to examine and evaluate the wealth of literature that has accumulated in this area in 
the last few years hardly can avoid a feeling of uneasiness. There seem to be too many contra­
dicting reports on the same issue and too many high claims based on rather weak (even if 
statistically significant) evidence. One can easily think of at least four, certainly not exclusive, 
causes of this situation: (i) lack of a general conceptual framework for analysis of connections 
between genomic variables, (ii) the low and nonuniform quality of many types of data, (iii) 
inadequacy of the presendy analyzed variables for understanding the connections between evo­
lution and phenotype (we are barking on a wrong tree), (iv) the current parameters are, more or 
less, the best that can be measured, but they are intrinsically of limited importance for under­
standing those connections, which simply cannot be adequately captured by quantitative analysis 
(we are barking on the right tree but it is a small one). 

Here we made a preliminary attempt to address problem (i) by introducing the notion of 
the "social status" of a gene and the distinction between "input" and "output" parameters. 
These are simplistic attempts on a synthesis of the information on genome-evolution-phenotype 
connections but they seem to work in the sense that the status concept gives unequivocal 
predictions on the nature of the connection (negative or positive correlation) between any two 
variables, and these predictions hold for the great majority of the available trials. Thus, any 
deviations can be construed as a signal of alarm and/or interest. 

The apparent utility of the "status" concept is the flip side of the coin. The flop side comes 
up when we determine how much all the available information on the values of input and 
output parameters can improve the prediction of the outcome of a genome-scale gene knock­
out experiment. The improvement that could be achieved with the best possible combination 
of these parameters was almost shockingly small. This suggests that some combination of fac­
tors (ii)-(iv) defines the situation. The problem with the data (ii) surely is transient; there is no 
doubt that, within the next few years, we will witness a dramatic improvement in the com­
pleteness and accuracy of genome-wide measurements of expression, protein interactivity, and 
other input parameters. There is a chance that this dramatically improves the predictive power 
of the "genes social status". If not, the choice will be between (iii) and (iv). The latter possibil­
ity, while perhaps discouraging, is not at all unimaginable: the principal determinants of the 
output values (e.g., evolutionary rate) may well lie in the features of gene and protein structure 
and function that cannot be captured in simple, numerical values. 
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Table A1. Connection between gene knockout data 
for C. elegans and S. cerevisiae 

C elegans 

Total entropy, bit 0.5554 
Mutual entropy, bit 0.0585 
Relative gain 10.52% 

and phyletic patterns 

S. cerevisiae 

0.8437 
0.1252 
14.84% 

Appendix 1. Mutual Entropy of Gene Knockout Data 
and Phyletic Patterns 

Let />L be the fraction of genes tJiat produce lethal knockout mutants (obviously, there is a 
fraction of 1-/>L genes producing a viable mutant phenotype). Taking PL and 1-PL as estimates 
of the probability of a gene to be lethal or nonlethal, respectively; then, the total entropy that 
can be associated with gene knockout data is 

M) = -/>Llog2(/>L)-(l-/>L)log2(l-/̂ L) 

Now, let us group the genes according to their phyletic patterns, and let^ be the frequency 
of the /-th pattern. Let us denote the fraction of genes with lethal knockouts in the /-th pattern 
hyp'i. If we think of the knockout lethality of a gene as one random variable and of its phyletic 
pattern as a second random variable, we can compute the conditional entropy of knockout 
lethality given the phyletic pattern from 

/ / , = 2/i[-/''Llog2(/>'L)-(l-;''L)log2(l-/''L)] 

The mutual entropy between these two random variables is defined as Ho-Hy, this is an 
accepted measure for the amount of information that each random variable carries about the 
other. Here, we shall use the relative gain, which is a normalized version of the mutual en­
tropy, defined as {HQ-H\)IHQ. 

The data on viability of gene knockout mutants were obtained from reference 41 for C. 
elegans and from reference 42 for S. cerevisiae. Phyletic patterns for KOGs were taken from the 
eukaryotic KOG database. ^ 

Appendix 2. Expression Level, Evolution Rate, and Gene Loss 
as Predictors of Viability of Gene Knockout Mutants 

We attempt to predict the viability of gene knockout mutants '̂ ^ using the data on expres­
sion level, evolution rate and gene loss. We employed Bayesian Linear Discriminant Analy­
sis to find an optimal linear discriminant function. In brief, we compute a linear function 
^A), where X is a vector of variables (namely, expression level in yeast, nematode, and human, 
minimum and average evolutionary distance from Arabidopsis to fungi and metazoan, PGL, 
and number of gene losses in a KOG). For a given X, the gene knockout is predicted to be 
lethal if^-A) > 0 and nonlethal if^A) < 0. The ftmction^A) is the linear fiinction that guaran­
tees minimum classification error on the training dataset. 

As with associating the mutant phenotype with phyletic patterns, we define the entropy of 
the gene knockout data as 

Ho = -/»Llog2(;'L)-(l-/>L)log2(l-/>L) 

where/>L is the total fraction of lethal mutants. With the prediction, obtained using Bayesian 
Linear Discriminator, let us define the fraction of predicted lethals a s / , fraction of lethal 
phenotypes observed among predicted lethals as /> L (true positives), and fraction of lethal 
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Table A2. Prediction of gene knockout phenotype from expression level, evolution rate 
and gene loss forC. elegans andS. cerevisiae 

C elegans 5. cerevisiae 

Total initial entropy, bit 0.7635 0.9125 
Mutual entropy, bit 0.0034 0.0484 
Relative information gain 0.0044 0.0530 

phenotypes observed among predicted nonlethals as/> L (false positives). The entropy, given 
the prediction, is 

/ / l = / - [ - A l o g 2 ( / ' M - ( l - / L ) l o g 2 ( l - / L ) ] + ( l - / - ) [ - A l o g 2 ( ? \ ) - ( l - A ) l o g 2 ( l - / ' ' L ) ] 

Again, the mutual entropy is defined as (HQ-HI) and the relative gain is {Ho-H\)lHQ 
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