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Preface

While Fubini’s theorem states that the integral of a function on the s-dimensional
unit cube can be computed simply by computing iterated integrals, the attempt of
doing so for a function for which those integrals cannot be given by closed-form
formulas is in most cases doomed to fail, if s, say, is greater than 10. The reason for
this is that by iteration of a one-dimensional integration rule the number of function
evaluation needed for the corresponding product rule grows exponentially in s.

This constraint on the practical computation of integrals led to the development
of probabilistic methods. Here, the integral is interpreted as the expected value of
the integrand evaluated at a random variable that is uniformly distributed on the
s-dimensional unit cube. These methods were first applied by E. Fermi, S. Ulam
and J. von Neumann, the latter also being the originator of the name “Monte Carlo
simulation”.

In contrast to Monte Carlo integration rules, which sample the integrand at
random points, so-called quasi-Monte Carlo rules use deterministic sample points.
The relationship between Monte Carlo and quasi-Monte Carlo corresponds to the
relationship between two notions of “uniform distribution” in mathematics. The first
is the probabilistic notion of a random variable for which the probability of taking
values in a given subset of the unit cube is precisely the volume of that set. The
second notion is that of a sequence of points, for which the proportion of points of
the sequence lying in a given s-dimensional sub-interval of the unit cube equals the
volume of the sub-interval.

While the notion of uniformly distributed sequences and examples thereof had
been coined earlier, the birth of the theory of “Uniform Distribution Modulo One”
is marked by H. Weyl’s seminal paper “Über die Gleichverteilung mod. Eins”, first
published in the year 1916. It was already known by then that, at least in principle,
uniformly distributed sequences could be used to integrate Riemann-integrable
functions. However, under the weak assumptions the convergence of the sample
mean to the integral can be arbitrarily slow, making the “method” impractical.

As the starting point for the analysis of quasi-Monte Carlo methods for numerical
integration one can consider the establishment of the Koksma-Hlawka inequality,
which was shown by J.F. Koksma in 1942 for the one-dimensional case and
by E. Hlawka in 1961 for arbitrary dimensions. Since then the Koksma-Hlawka
inequality is the prototypical error estimate for quasi-Monte Carlo integration. Its
main feature is that it bounds the integration error by the product of two terms, the

vii



viii Preface

variation of the function and the star discrepancy of the underlying sample nodes.
The second notion is related to that of uniform distribution of a sequence, but while
the latter is an asymptotic quality, the star discrepancy allows to assess the quality of
uniformity of a finite number of points. Knowing how well the points can be chosen
with respect to that measure means – thanks to the Koksma-Hlawka inequality –
knowing the possible convergence of the integration error. This is where concepts
from Discrepancy Theory enter the game.

From the early 1960s on several people, among these N.M. Korobov, E. Hlawka,
I.M. Sobol’, J. Halton, H. Faure, H. Niederreiter and C.P. Xing provided con-
structions of point sets and sequences with excellent distribution properties, i.e.,
with low star discrepancy or related/alternative quality measures. The point sets
and sequences constructed in this way are therefore suitable sample points for
quasi-Monte Carlo rules. However, a certain disadvantageous dependence of the
discrepancy bounds on the dimension led to the belief that quasi-Monte Carlo
rules can only be applied in very moderate dimensions. Contrary to these opinions,
quasi-Monte Carlo rules are nowadays used for numerical integration of functions
in hundreds or even thousands of dimensions, and since recently there is also a
stream of research which studies infinite-dimensional integration. The motivation
for this paradigm change lies in results of numerical experiments published in 1995
by S.H. Paskov and J.F. Traub, who studied quasi-Monte Carlo rules for functions
in 360 dimensions coming from Mathematical Finance. But, despite their apparent
effectivity even for those very high-dimensional problems, the question of exactly
why quasi-Monte Carlo rules should give these good results is still not completely
resolved. In 2010, at the MCQMC meeting in Warsaw, I.H. Sloan spoke in this
context about “The unreasonable effectiveness of quasi-Monte Carlo”. Although
in the meantime some partial answers come from the study of weighted function
spaces and from tractability theory, the quest for an explanation of this unreasonable
effectiveness of quasi-Monte Carlo is still a very active part of research.

As suggested by its title, this book is an introductory text to quasi-Monte Carlo
methods and some of their applications, and it aims at giving a comprehensible
treatment of the subject with detailed explanations of the basic concepts. Originating
from a 2-h one semester undergraduate course, it should be accessible to students in
mathematics or computer science with basic knowledge of algebra, calculus, linear
algebra, and probability theory. Although the main focus is on the theory behind the
concepts of quasi-Monte Carlo, several practical applications with an emphasis on
financial problems are discussed.

The topics of the book roughly retrace the history of quasi-Monte Carlo methods
as sketched above, but do so using up-to-date concepts and notations. Thus we
start with the classical multi-dimensional integration problem and its first high-
dimensional alternative, Monte Carlo integration. Chapter 2 is devoted to uniform
distribution of sequences and several concepts of discrepancy. We give a discrepancy
estimate for one of the oldest specimens of low discrepancy sequences, the Halton
sequence. In Chap. 3 we introduce the modern framework of reproducing kernel
Hilbert spaces for obtaining bounds on the integration error for functions in those
spaces. The Koksma-Hlawka inequality, though not in its most general form,
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appears as a special case of that theory. The next two chapters are mostly devoted to
constructions of low-discrepancy point sets and sequences, namely lattice point sets,
.t;m; s/-nets and .t; s/-sequences. The chapter on lattice rules includes a section on
integration in weighted Korobov spaces. The concept of weighted spaces has some
bearing on the issue of effectiveness of quasi-Monte Carlo methods for very high-
dimensional problems. Chapter 6 concludes the theoretical part by providing more
information about the curse of dimensionality and tractability of discrepancy.

The last two chapters constitute the application part of the book. Chapter 7
gives a very condensed introduction to concepts from Mathematical Finance, in
particular derivative pricing. We introduce some models and derivatives that can
serve as specimens for trying out the simulation methods provided in Chap. 8.
This last chapter covers some of the basics of simulation, like generation of non-
uniform random variables and generation of Brownian paths. The emphasis is on
(fast-)orthogonal transforms for speeding up convergence. Several examples serve
to illustrate the methods.

The compilation of a textbook demands a great deal not only from the authors,
but also from their families, colleagues, and students, some of the common time
of which has to be diverted to the project. We want to thank all of them for their
support and understanding.

We appreciate valuable comments, suggestions and improvements from several
colleagues which we would like to mention here: Josef Dick, Aicke Hinrichs,
Peter Kritzer, Gerhard Larcher, Harald Niederreiter, Klaus Ritter and Wolfgang Ch.
Schmid.

We hope that the book will turn out to be useful for teaching, self-study, and
as a reference, and that it will encourage many people to study quasi-Monte Carlo
methods and/or apply them to problems from Mathematical Finance or other areas.

Linz, Austria Gunther Leobacher
October 2013 Friedrich Pillichshammer
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1Introduction

1.1 The Univariate and Multivariate Integration Problem

In this book we consider the problem of numerical integration over the
s-dimensional unit cube Œ0; 1�s ,

Z
Œ0;1�s

f .x/ dx D
Z 1

0

� � �
Z 1

0

f .x1; : : : ; xs/ dx1 : : : dxs: (1.1)

Here the dimension s may be large in practical applications. The restriction to
integration problems over the unit cube Œ0; 1�s is mostly for simplicity and in
many cases does not impose a big limitation, since most integrals over bounded
or unbounded regions can be transformed into integrals over the unit cube (although
one has to be careful in choosing suitable transformations which, of course, have
influence on the behavior of the transformed integrand).

For most functions arising in practice the integral (1.1) cannot be solved
analytically since, for instance, the given integrand does not have an antiderivative or
its antiderivative, if existent, is not expressible as a finite combination of elementary
functions. Hence we must solve such integrals numerically, that is, we want to find
an algorithm which enables us to approximate the true value of the integral to any
prescribed level of accuracy.

We will always assume that for a function f we can compute its function
values at finitely many points in Œ0; 1�s . However, we remark here already that the
knowledge of finitely many function values is not enough to solve the integration
problem, since in this case the integral still could be any number. So we will need
further “global” information, as for example the smoothness of f , which restricts
the class of integrands to certain function classes.

In the one-dimensional case there are many classical quadrature rules available,
such as, for instance, the rectangle rule (midpoint rule), the trapezoidal rule,
Simpson’s rule, or the Gauss rule, which all have the general form

G. Leobacher and F. Pillichshammer, Introduction to Quasi-Monte Carlo Integration and
Applications, Compact Textbooks in Mathematics, DOI 10.1007/978-3-319-03425-6 1,
© Springer International Publishing Switzerland 2014
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2 1 Introduction

Tm.f / D
mX
nD0

qnf .xn/ (1.2)

with quadrature points x0; : : : ; xm from Œ0; 1� and with weights q0; : : : ; qm 2 R.
As an example, we mention the trapezoidal rule for which q0 D qm D 1=.2m/,
qn D 1=m for n D 1; : : : ; m�1 and xn D n=m for n D 0; : : : ; m. If f 2 C2.Œ0; 1�/,
the error of the trapezoidal rule is of orderO.m�2/ (cf. Exercise 1.2).

In the multi-dimensional case the classical methods use Cartesian products of
one-dimensional quadrature rules which are then often called product rules. This
means that one applies a one-dimensional quadrature rule of the form (1.2) to each
one-dimensional integral in (1.1), which results in the product rule of the form

mX
n1D0

� � �
mX

nsD0
qn1 � � �qnsf .xn1 ; : : : ; xns /:

When recasting this product rule in the form

MX
nD0

wnf .xn/;

then the set of quadrature points fx0; : : : ;xM g is just the s-fold product of the
one-dimensional quadrature points fx0; : : : ; xmg. Hence the total number of nodes
of a product rule is N D M C 1 D .m C 1/s , which grows dramatically with the
dimension s. For example, if s D 30, a product rule based on a one-dimensional
rule with only two points involves already N D 230 � 109 nodes. But if s D 500,
then a product rule based on a 2-element one-dimensional rule already requires 2500

nodes and the time until the end of our universe will not suffice to compute that
many function evaluations.

The error analysis of product rules follows immediately from that for the under-
lying one-dimensional quadrature rule. For instance, the error of approximating
an s-dimensional integral by a product rule based on the trapezoidal rule is of
order O.m�2/, where m C 1 is the number of nodes used in the underlying
one-dimensional rule, provided that all partial derivatives of order two in each
variable are continuous on Œ0; 1�s . This looks quite promising on first sight, but
in terms of the actual number N D M C 1 of integration nodes, this error is of
orderO.N�2=s/. For large dimensions, which might be in the hundreds for practical
problems, such an error convergence is less than satisfying. This phenomenon is
often called the curse of dimensionality. The expression “curse of dimensionality”
was coined already in 1957 by R. Bellman and means in our context that the minimal
number of function values needed to compute an "-approximation to multivariate
integrals is an exponential function in s.
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Example 1.1

Let FLip D ff W Œ0; 1�s ! R W Lip.f / � Lg denote the class of Lipschitz continuous functions
with Lipschitz constant of at most L, i.e., for f 2 FLip we have jf .x/� f .y/j � Lkx � yk1,
where kxk1 D maxjD1;:::;s jxj j for x D .x1; : : : ; xs/. Assume we want to use the Cartesian
product of the one-dimensional midpoint rule for the integration of functions f 2 FLip. Then the
set of integration nodes is

�m;s D
�

xk D
�
2k1 C 1

2m
; : : : ;

2ks C 1

2m

�
W k D .k1; : : : ; ks/ 2 f0; 1; : : : ; m� 1gs

�
:

Denote the integration error of the product midpoint rule for f 2 FLip by

e.f; �m;s/ D
Z
Œ0;1�s

f .x/ dx � 1

ms

m�1X
k1;:::;ksD0

f .xk/

and put Qk D Qs
jD1

h
kj

m
;
kj C1

m

�
for k D .k1; : : : ; ks/ 2 f0; 1; : : : ; m� 1gs . Then

je.f; �m;s/j D
ˇ̌
ˇ̌
ˇ̌

m�1X
k1;:::;ksD0

Z
Qk

.f .x/� f .xk// dx

ˇ̌
ˇ̌
ˇ̌ � L

X
k2N

s
0

kkk1<m

Z
Qk

kx � xkk1 dx:

For x 2 Qk we have

kx � xkk1 D max
jD1;:::;s

ˇ̌
ˇ̌xj � 2kj C 1

2m

ˇ̌
ˇ̌ � 1

2m
;

and hence we find that

je.f; �m;s/j � L

2m
D L

2

1

N 1=s
;

where N D #�m;s D ms is the number of employed integration nodes.
This result cannot be significantly improved. For example, consider the function

g.x1; x2; : : : ; xs/ D L

2�m
.1C cos.2�mx1//:

It is easy to see that g 2 FLip and that

Z
Œ0;1�s

g.x/ dx D L

2�m
D L

2�

1

N 1=s
and

1

ms

m�1X
k1;:::;ksD0

g.xk/ D 0:

Hence e.g; �m;s/ D L
2�

1
N1=s . This means that

L

2�

1

N 1=s
� sup

f2FLip

je.f; �m;s/j � L

2

1

N 1=s
:

The question arises whether there are algorithms for multivariate integration
for which the error convergence does not show such a poor dependence on the
dimension s. This question can be answered in the affirmative, which can be seen
by the following considerations.



4 1 Introduction

1.2 Monte Carlo Integration

We aim at approximating the integral of a function f W Œ0; 1�s ! R by an equal
weight quadrature rule of the form

1

N

N�1X
nD0

f .xn/;

where the quadrature points P D fx0; : : : ;xN�1g are from Œ0; 1/s. We are interested
in the integration error

e.f;P/ WD
Z
Œ0;1�s

f .x/ dx � 1

N

N�1X
nD0

f .xn/:

But how should we choose the quadrature points? One idea is to choose realisations
of N independent and uniformly distributed random variables X0; : : : ; XN�1 in
Œ0; 1�s and to check what we can expect for the resulting error. This means that
we use

QN;s.f / WD 1

N

N�1X
nD0

f .Xn/ (1.3)

as an estimator for the integral. Note that a measurable function f W Œ0; 1�s !
R can be considered as a random variable on the probability space .Œ0; 1�s;B; �s/
where B is the Borel �-algebra on Œ0; 1�s and �s the Lebesgue measure. Then the
expectation of this random variable equals the integral we want to compute, i.e.,
EŒf � D R

Œ0;1�s
f .x/ dx. Using the linearity of the expected value we have

EŒQN;s.f /� D 1

N

N�1X
nD0

EŒf � D EŒf � D
Z
Œ0;1�s

f .x/ dx;

and hence QN;s.f / is an unbiased estimator for the integral
R
Œ0;1�s

f .x/ dx. The
strong law of large numbers guarantees that

P

�
lim
N!1QN;s.f / D

Z
Œ0;1�s

f .x/ dx

�
D 1;

where PŒ�� is the probability on an arbitrary probability space supporting an inde-
pendent sequence .Xn/n2N0 of random variables uniformly distributed on Œ0; 1�s .

The variance of f is given by VarŒf � WD R
Œ0;1�s

.f .x/ � R
Œ0;1�s

f .y/ dy/2 dx.
Since X0; : : : ; XN�1 are independent, we obtain from the Bienaymé formula the
following result for the variance of the estimator QN;s.f /.
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Theorem 1.2. Let f 2 L2.Œ0; 1�s/. Then for any N 2 N we have

VarŒQN;s.f /� D VarŒf �

N
:

Note that

VarŒQN;s.f /� D EŒ.QN;s.f /� EŒf �/2� D EŒe2.f; �/�;

where e.f; �/ is the error estimator

e.f; �/ WD
Z
Œ0;1�s

f .x/ dx � 1

N

N�1X
nD0

f .Xn/:

Hence it follows from Theorem 1.2 that

EŒje.f; �/j� �
p
EŒe2.f; �/� D �Œf �p

N
;

where �Œf � D .VarŒf �/1=2 denotes the standard deviation of f . This means that
the absolute value of the integration error is, on average, bounded by �Œf �=

p
N .

It is remarkable that the convergence rate of the expected integration error does
not depend on the dimension s. We have N�1=2 < N�1=s for s > 2. Hence,
roughly speaking, for s > 2 it is on average better to use random points for the
approximation of the integral of f than classical product rules. Here f does not
even have to be continuous if one chooses random samples.

The method of using random sample points is called (plain) Monte Carlo (MC)
method and the integration rule (1.3) is called a Monte Carlo rule (or algorithm).
The phrase “Monte Carlo” goes back to J. von Neumann, who chose it as a code
name for this method when he worked on a secret project together with S. Ulam in
1946 at Los Alamos Scientific Laboratory.

To summarize, the advantages of the MC method are:
• It suffices that the integrands are quadratic integrable.
• The convergence rate of order O.N�1=2/ is independent of the dimension s.

This is a surprising fact, although it does not mean that MC breaks the curse of
dimensionality, because the standard deviation �Œf � is in general not independent
of s.

On the other hand, the MC method also has some disadvantages, which are:
• The error bound is only “probabilistic”, that is, in any one instance one cannot

be sure of the integration error. However, further probabilistic information is
obtained from the central limit theorem, which states that, if 0 < �Œf � < 1, then

lim
N!1P

�
je.f; fX0; : : : ; XN�1g/j � c �Œf �p

N

�
D 2ˆ.c/ � 1;
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for any c > 0, where ˆ.x/ D 1p
2�

R x
�1 exp.�t2=2/ dt is the cumulative

distribution function of the standard normal distribution.
If we would like to have

P Œje.f; fX0; : : : ; XN�1g/j > "� < ˛

for small "; ˛ > 0, then we need to require

1 � ˛ < P Œje.f; fX0; : : : ; XN�1g/j � "�

D P

"
�"

p
N

�Œf �
� p

N
e.f; fX0; : : : ; XN�1g/

�Œf �
� "

p
N

�Œf �

#

� 2ˆ

 
"
p
N

�Œf �

!
� 1:

This means that 1 � ˛
2
< ˆ

	
"
p
N

�Œf �

�
, or

N >
VarŒf �

"2

	
ˆ�1

	
1 � ˛

2

��2
:

Note that VarŒf � is in general not explicitly known. However, it can be estimated
per MC by using the same function evaluations as for the MC integration of f .
This will be explained in more detail shortly.

• A second problem is that the generation of random samples is difficult. This
problem is a topic on its own which cannot be further discussed in this book.
References for reading in this direction are provided at the end of this chapter.

• For some applications the convergence rate of O.N�1=2/ is too slow.
• The convergence rate of O.N�1=2/ does not reflect some possible regularity of

the integrand.

Example 1.3

A popular first example for the MC method is the approximation of the number � . The idea is
to distribute a certain number of points independently and uniformly in the unit-square and to
count the number of them which lie distance at most 1 from the origin; see Fig. 1.1. This number,
normalized by the total number of distributed points, is an approximation for the number �=4,
which is the area of a quadrant with radius 1.

Let f W Œ0; 1�2 ! R, f .x1; x2/ D 1 if x21 C x22 � 1 and 0 otherwise. Obviously,R 1
0

R 1
0 f .x1; x2/ dx1 dx2 D �

4
. Then the method described above for the approximation of

�=4 amounts to calculating the MC mean 1
N

PN�1
nD0 f .Xn/ with N independent and uniformly

distributed random variables X0; : : : ; XN�1 in Œ0; 1�2. Performing for fixed N 100 random
experiments and plotting the mean MC error for this random experiments leads to a picture as
shown in Fig. 1.2.



1.2 Monte Carlo Integration 7

Fig. 1.1 2000 random points in Œ0; 1�2
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Fig. 1.2 Average MC error (blue) for N D 1; : : : ; 1500 and 100 random experiments per given
N compared to �Œf �=

p
N (red)

A practical error estimate for the MC method can be obtained from the estimator

VN D 1

N � 1
N�1X
nD0

.f .Xn/�QN;s.f //
2

for the variance VarŒf � whenever f 2 L2.Œ0; 1�s/. This estimator is unbiased, since

VN D 1

N � 1

N�1X
nD0

.f .Xn/� EŒf �/2 � N

N � 1
.EŒf � �QN;s.f //

2;

and hence, by using Theorem 1.2
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EŒVN � D 1

N � 1
N�1X
nD0

EŒ.f .Xn/ � EŒf �/2� � N

N � 1EŒ.EŒf � �QN;s.f //
2�

D 1

N � 1
N�1X
nD0

VarŒf � � N

N � 1

VarŒf �

N

D VarŒf �:

Hence,

VN

N
D 1

N.N � 1/

 
N�1X
nD0

f 2.Xn/�N.QN;s.f //
2

!

provides an unbiased estimator for VarŒQN;s.f /� D EŒe2.f; �/�. Note that this
estimator requires only O.N/ function evaluations and hence it is very efficient
for practical implementation.

As already mentioned, one of the disadvantages of MC is the slow convergence
rate of order O.N�1=2/. Although in practice one can use variance reduction
techniques such as, e.g., importance sampling, stratified sampling, or correlated
sampling, these techniques usually do not improve the rate of error convergence.
One very simple variance reduction technique for dimension s D 1 is discussed in
Exercise 1.10. This is the main motivation for the following strategy:

The aim is to find deterministic constructions of quadrature points which are at
least as good as the average. This method is then called quasi-Monte Carlo (QMC)
method, as opposed to MC, where one uses randomly chosen quadrature points, and

QN;s.f / D 1

N

N�1X
nD0

f .xn/

with deterministic quadrature points x0; : : : ;xN�1 in Œ0; 1/s is called a quasi-
Monte Carlo (QMC) rule (or algorithm). Hence in the deterministic case we need
quadrature points which are in some sense “well” distributed in Œ0; 1/s . To this end
we need to clarify what we mean by “well” distributed. This question is subject
to the theory of Uniform Distribution Modulo One, which is the topic of our next
chapter.

1.3 Further Reading and Exercises

Further Reading

A coherent theory underlying numerical quadrature is provided in the book of Brass and
Petras [10]. An excellent introduction to the Monte Carlo method is provided by the book of
Müller-Gronbach, Novak and Ritter [67]. We also recommend the books of Niederreiter [69],
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Lemieux [61], and Glasserman [31], where the latter deals with the application of the Monte Carlo
method to financial problems. Information concerning the generation of (pseudo) random samples
can be found in the books of Knuth [54, Chapter 3], Niederreiter [69, Chapter 7–10], Tezuka [91],
and in the survey articles of L’Ecuyer and Hellekalek [59].

Exercises

1.1 Let f 2 C1.Œ0; 1�/. For m 2 N the trapezoidal rule is given by

Tmf WD
m�1X
nD0

f .n=m/C f ..n C 1/=m/

2m
D

mX
nD0

qnf
	 n
m

�
;

where q0 D qm D 1=.2m/ and qn D 1=m for n D 1; : : : ; m� 1. Show that

Z 1

0

f .x/ dx � Tmf D
Z 1

0

K.t/f 0.t / dt; (1.4)

where K.t/ D n
m

C 1
2m

� t for n
m
< t � nC1

m
and n D 0; : : : ; m � 1. Deduce from (1.4)

that the integration error is of order O.m�1/. Hint: Consider first the term

Z .nC1/=m

n=m

f .x/ dx � f .n=m/C f ..nC 1/=m/

2m

and use that f .x/ D f .n=m/C R x
n=m f

0.t / dt for n=m � x � .nC 1/=m.

1.2 Assume that f 2 C2.Œ0; 1�/. Show that then the integration error of the trapezoidal rule is of
order O.m�2/. Hint: Use (1.4) and integration by parts on Œ n

m
; nC1

m
�.

1.3 Let f W Œ0; 1�s ! R have continuous second order partial derivatives @2f=@x2i for all i D
1; : : : ; s. Consider the product trapezoidal rule of the form

T .s/m f D
mX

n1D0

: : :

mX
nsD0

wn1 � � � wns f
	n1
m
; : : : ;

ns

m

�
:

Show that if f depends only on one variable and is constant with respect to the remaining
s� 1 variables, then the integration error is of order O.m�2/. Is this result satisfactory if we
consider the number of required integration nodes?

1.4 Let f W Œ0; 1�2 ! R, f .x1; x2/ D 1 if x21 C x22 � 1 and f .x1; x2/ D 0 otherwise, be the
function from Example 1.3. Write a computer program for MC integration and run several
experiments. Compare the MC error with 1=

p
N , where N denotes the number of nodes

involved.
1.5 Let f W Œ0; 1�3 ! R, f .x; y; z/ D x2y � exp.2y C z/. Compute

Z
Œ0;1�3

f .x; y; z/ dx dy dz

as well as VarŒf � and EŒe2.f;P/�.
1.6 Compute the integral from Exercise 1.5 with the MC method. Run for fixed N 100

experiments and compare the average MC error with EŒe2.f;P/�.
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1.7 Let f; g W Œ0; 1� ! R, f .x/ D x�1=4 and g.x/ D x�3=4. Use the MC method to estimate the
integrals

R 1
0 f .x/ dx and

R 1
0 g.x/ dx. Repeat the random experiment for fixed N 100 times

and plot the average error for N 2 f1; : : : ; 5000g against N (for example in steps of 50).
Why is there such a big difference between the results for f and g? Remark: This example
is taken from [67], where one can find a very detailed discussion of it.

1.8 Let f 2 L2.Œ0; 1�
s/ and let X1; : : : XN be independent and uniformly distributed random

variables in Œ0; 1�s .
(a) Show that

P

ˇ̌
QN;s.f /� EŒf �

ˇ̌ � "
� � VarŒf �

N"2
:

(b) Let ı > 0 and N 2 N. Determine confidence intervals of the form IN;ı D

QN;s.f /� LN ;QN;s.f /C LN

�
such that

P


EŒf � 2 IN;ı

� � 1� ı:

1.9 Show that the estimator 1
N

PN
nD1

�
f .Xn/�QN;s

2
for VarŒf � is not unbiased.

1.10 Let f W Œ0; 1� ! R be continuous and monotone. Put g.x/ D .f .x/C f .1� x//=2. Show
that

R 1
0 f .x/ dx D R 1

0 g.x/ dx and

VarŒg� � 1

2
VarŒf �:

Hint: A proof of this simple variance reduction technique can be found in [69, Proposi-
tion 1.3].



2Uniform Distribution Modulo One

The theory of Uniform Distribution Modulo One is a branch of Number Theory
which goes back to the seminal work of H. Weyl from 1916. For us the main
motivation to study this topic lies in its application for numerical integration based
on QMC rules.

2.1 Definition and Basic Properties

On first sight, it is not immediately clear what it should mean that a finite point set
P is uniformly distributed in the unit cube. Intuitively one may suppose that every
region contains a proper portion of elements from P , that there are no accumulations
of points, and that there are no big gaps between the points from P . In other words,
every region should contain a number of elements from P that is proportional
to the size of the region. To put this intuition into exact mathematical terms we
consider infinite sequences instead of finite point sets. Since a sequence is a discrete
object, it is clear that we need some restriction on the demand “every region”. In
Uniform Distribution Theory these regions are usually restricted to intervals of the
form Œa;b/, where a D .a1; : : : ; as/, b D .b1; : : : ; bs/ are elements of Œ0; 1�s and
Œa;b/ D Œa1; b1/ � � � � � Œas ; bs/. See Fig. 2.1 for a memorable picture.

For a sequence S D .xn/n2N0 in Œ0; 1/s and an interval Œa;b/ � Œ0; 1/s ,
the number of indices n 2 f0; : : : ; N � 1g for which xn 2 Œa;b/ is denoted
by A.Œa;b/;S; N / (or in short by A.Œa;b/; N /, if there is no risk of confusion).
Precisely,

A.Œa;b/;S; N / D #fn 2 N0 W 0 � n � N � 1 and xn 2 Œa;b/g:
We use this notion also for finite point sets P D fx0; : : : ;xN�1g, which we always
interpret in the sense of the combinatorial notion of “multiset”, i.e., a set where the
multiplicity of elements matters. Precisely,

A.Œa;b/;P ; N / D #fn 2 N0 W 0 � n � N � 1 and xn 2 Œa;b/g:

G. Leobacher and F. Pillichshammer, Introduction to Quasi-Monte Carlo Integration and
Applications, Compact Textbooks in Mathematics, DOI 10.1007/978-3-319-03425-6 2,
© Springer International Publishing Switzerland 2014

11
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1

0
10

E

Fig. 2.1 Every interval
should contain the proper
portion of points

Let �s denote the s-dimensional Lebesgue measure. For intervals of the form Œa;b/

this reduces to �s.Œa;b// D Qs
jD1.bj � aj /.

Definition 2.1
An infinite sequence S in Œ0; 1/s is said to be uniformly distributed modulo one
(or equidistributed), if for every interval of the form Œa;b/ � Œ0; 1/s we have

lim
N!1

A.Œa;b/;S; N /
N

D �s.Œa;b//: (2.1)

We will encounter sequences which enjoy this property later on.
Let �J be the characteristic function of a set J � R

s , i.e., �J .x/ D 1 if x 2 J ,
and 0 otherwise. Then we can write

A.Œa;b/;S; N / D
N�1X
nD0

�Œa;b/.xn/;

and hence (2.1) is equivalent to

lim
N!1

1

N

N�1X
nD0

�Œa;b/.xn/ D
Z
Œ0;1�s

�Œa;b/.x/ dx: (2.2)

Relation (2.2) leads to the following characterization of uniform distribution
modulo one:

Theorem 2.2. A sequence .xn/n2N0 in Œ0; 1/s is uniformly distributed modulo
one if and only if for every Riemann integrable function f W Œ0; 1�s ! R we have

lim
N!1

1

N

N�1X
nD0

f .xn/ D
Z
Œ0;1�s

f .x/ dx: (2.3)
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Observe that Theorem 2.2 gives the link to QMC integration. It is now clear that
in order to obtain a QMC rule which converges to the actual value of the integral,
the underlying nodes must come from a uniformly distributed sequence.

I Remark 2.3 There is no sequence which satisfies (2.3) for all Lebesgue
integrable functions. Moreover, it is known that for every Lebesgue integrable
function which is not integrable in the Riemann sense there exists a uniformly
distributed sequence for which (2.3) does not hold true.

Proof of Theorem 2.2. Assume that (2.3) holds for any Riemann integrable function
f W Œ0; 1�s ! R. But then (2.2) holds true as well, since for any sub-interval J
of Œ0; 1�s the characteristic function �J is Riemann integrable. Thus the sequence
.xn/n2N0 is uniformly distributed modulo one.

In the opposite direction, assume that the sequence .xn/n2N0 is uniformly
distributed modulo one. We will show in a first step that then (2.3) holds for
every step function on Œ0; 1/s (i.e., every finite linear combination of characteristic
functions of intervals of the form Œa;b/). Let the intervals E1; : : : ; Em form a
partition of Œ0; 1�s and put

g.x/ D
mX
iD1

di�Ei .x/;

where di 2 R for i D 1; 2; : : : ; m. Then we have

lim
N!1

1

N

N�1X
nD0

g.xn/ D lim
N!1

1

N

N�1X
nD0

mX
iD1

di�Ei .xn/

D
mX
iD1

di lim
N!1

1

N

N�1X
nD0

�Ei .xn/ D
mX
iD1

di �.Ei / D
Z
Œ0;1�s

g.x/ dx:

Hence (2.3) holds for all step functions on Œ0; 1�s .
Now we consider a Riemann integrable function f W Œ0; 1�s ! R. According to

the definition of the Riemann integral, for every " > 0 there exist step functions g1
and g2 defined on Œ0; 1�s such that g1 � f � g2 and

R
Œ0;1�s

.g2.x/ � g1.x// dx < ".
Hence we have

Z
Œ0;1�s

f .x/ dx � " �
Z
Œ0;1�s

g1.x/ dx D lim
N!1

1

N

N�1X
nD0

g1.xn/

� lim inf
N!1

1

N

N�1X
nD0

f .xn/ � lim sup
N!1

1

N

N�1X
nD0

f .xn/
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� lim
N!1

1

N

N�1X
nD0

g2.xn/ D
Z
Œ0;1�s

g2.x/ dx �
Z
Œ0;1�s

f .x/ dx C ":

Since " can be chosen arbitrarily close to zero, the result follows. ut

In the same manner one can prove the following result:

Theorem 2.4. A sequence .xn/n2N0 in Œ0; 1/s is uniformly distributed modulo
one if and only if (2.3) holds for every continuous one-periodic and complex-
valued function f W Œ0; 1�s ! C.

Proof. The necessity follows from applying Theorem 2.2 to the real and imaginary
parts of f . The sufficiency of (2.3) for every continuous one-periodic and complex-
valued function f W Œ0; 1�s ! C follows from the elementary fact that the
characteristic function of every interval Œa;b/ � Œ0; 1/s can be approximated from
above and below by continuous one-periodic functions, i.e., for all " > 0 there
exist continuous one-periodic f1; f2 on Œ0; 1�s such that f1 � �Œa;b/ � f2 and
0 � R

Œ0;1�s .f2.x/� f1.x// dx < ". We leave the details as an exercise. ut

In the already mentioned paper entitled Über die Gleichverteilung von Zahlen
mod. Eins H. Weyl proved the following criterion for uniform distribution modulo
one, which can be considered as a simplification of Theorem 2.4 in the sense that
it is sufficient to check condition (2.3) for trigonometric functions of the form
exp.2�ih � x/ for integer vectors h 6D 0, rather than for all continuous one-periodic
and complex-valued functions.

Theorem 2.5 (Weyl’s criterion). A sequence .xn/n2N0 in Œ0; 1/s is uniformly
distributed modulo one if and only if

lim
N!1

1

N

N�1X
nD0

exp.2�ih � xn/ D 0 (2.4)

for all vectors h 2 Z
s n f0g. Here x � y denotes the usual inner product of two

elements x;y 2 R
s .

Proof. If the sequence .xn/n2N0 is uniformly distributed modulo one, then Theo-
rem 2.4 with the special choice f .x/ D exp.2�ih � x/ implies (2.4).

Now let f W Œ0; 1�s ! C be a continuous one-periodic and complex-valued
function. According to the trigonometric version of Weierstrass’ approximation
theorem, f can be uniformly approximated as closely as desired by a finite linear
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combination of functions exp.2�ih�x/, h 2 Z
s , with complex coefficients. In other

words, for any " > 0 there exists a trigonometric polynomial of the form

P.x/ D
X
h2Zs

khk1<R

ah exp.2�ih � x/

with complex coefficients ah, such that

kf � P kL1
< "=3;

where R D R."/. Here for h D .h1; : : : ; hs/ we put khk1 D jh1j C � � � C jhsj, and
for a function g W Œ0; 1�s ! C we put kgkL1

WD supx2Œ0;1�s jg.x/j. Then we have

ˇ̌
ˇ̌
ˇ
Z
Œ0;1�s

f .x/ dx � 1

N

N�1X
nD0

f .xn/

ˇ̌
ˇ̌
ˇ �

ˇ̌
ˇ̌
Z
Œ0;1�s

f .x/ dx �
Z
Œ0;1�s

P.x/ dx

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌
ˇ
Z
Œ0;1�s

P.x/ dx � 1

N

N�1X
nD0

P.xn/

ˇ̌
ˇ̌
ˇ

C
ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

P.xn/ � 1

N

N�1X
nD0

f .xn/

ˇ̌
ˇ̌
ˇ :

We have
ˇ̌
ˇ̌Z
Œ0;1�s

f .x/ dx �
Z
Œ0;1�s

P.x/ dx

ˇ̌
ˇ̌ � kf � P kL1

< "=3

and

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

P.xn/� 1

N

N�1X
nD0

f .xn/

ˇ̌
ˇ̌
ˇ � kf � P kL1

< "=3:

Furthermore, it follows from (2.4), that

lim
N!1

1

N

N�1X
nD0

P.xn/ D
X
h2Zs

khk1<R

ah lim
N!1

1

N

N�1X
nD0

exp.2�ih � xn/ D a0

and
Z
Œ0;1�s

P.x/ dx D
X
h2Zs

khk1<R

ah

Z
Œ0;1�s

exp.2�ih � x/ dx D a0:
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Hence, for large enoughN ,

ˇ̌
ˇ̌
ˇ
Z
Œ0;1�s

P.x/ dx � 1

N

N�1X
nD0

P.xn/

ˇ̌
ˇ̌
ˇ < "=3:

Altogether, for large enoughN , we obtain

ˇ̌
ˇ̌
ˇ
Z
Œ0;1�s

f .x/ dx � 1

N

N�1X
nD0

f .xn/

ˇ̌
ˇ̌
ˇ < "

and the result follows. ut

Based on Weyl’s criterion we can give a first example of a uniformly distributed
sequence.

Proposition 2.6. Let ˛ D .˛1; : : : ; ˛s/ 2 R
s . The sequence .fn˛g/n2N0 , where

the fractional part f�g is applied component-wise, is uniformly distributed modulo
one if and only if the numbers 1; ˛1; : : : ; ˛s are linearly independent over the
rationals. In particular, the one-dimensional sequence .fn˛g/n2N0 is uniformly
distributed modulo one if and only if ˛ 2 R n Q.

Proof. Let h 2 Z
s n f0g. Since the function x 7! exp.2�ih � x/ is one-periodic,

we have

1

N

N�1X
nD0

exp.2�ih � fn˛g/ D 1

N

N�1X
nD0

exp.2�ih � ˛/n:

If the numbers 1; ˛1; : : : ; ˛s are linearly independent over the rationals, then h � ˛ 62
Q and therefore exp.2�ih � ˛/ 6D 1. Using the formula for geometric sums we
obtain

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.�ih � ˛/n

ˇ̌
ˇ̌
ˇ D 1

N

ˇ̌
ˇ̌exp.2�iNh � ˛/� 1

exp.2�ih � ˛/� 1

ˇ̌
ˇ̌

� 1

N

2

j exp.2�ih � ˛/ � 1j :

An application of Weyl’s criterion shows that the sequence is uniformly distributed
modulo one. The other direction is left as an exercise. ut

I Remark 2.7 The sequences considered in Proposition 2.6 are sometimes called
Kronecker sequences or n˛-sequences.
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We provide another example of a uniformly distributed sequence. To this end we
need the following definition:

Definition 2.8
Let b 2 N, b � 2.

• The b-adic radical inverse function is defined as �b W N0 ! Œ0; 1/,

�b.n/ D n0

b
C n1

b2
C n2

b3
� � � ;

for n 2 N0 with b-adic digit expansion n D n0 C n1b C n2b
2 C � � � , where

ni 2 f0; 1; : : : ; b � 1g. In other words, �b.n/ is the reflection of the b-adic digit
expansion of n at the comma.

• The van der Corput sequence in base b is defined as .xn/n2N0 with xn D �b.n/.

Example 2.9

For example, for b D 2 we have

n 0 1 2 3 4 5 6 7 8

.n/2 0: 1: 10: 11: 100: 101: 110: 111: 1000:

.�2.n//2 :0 :1 :01 :11 :001 :101 :011 :111 :0001

�2.n/ 0 1
2

1
4

3
4

1
8

5
8

3
8

7
8

1
16

Proposition 2.10. The van der Corput sequence in base b is uniformly dis-
tributed modulo one.

Proof. Fixm 2 N. For every a 2 f0; 1; : : : ; bm�1g with b-adic digit expansion a D
a0b

m�1Ca1bm�2C� � �Cam�2bCam�1 we consider the so-called elementary interval
in base b of the form Ja D 


a
bm
; aC1
bm


. For n 2 N0 with b-adic digit expansion

n D n0 C n1b C n2b
2 C � � � , the element xn D �b.n/ belongs to Ja if and only if

a

bm
� n0

b
C n1

b2
C n2

b3
C � � � < a C 1

bm
:

Multiplying by bm gives

a � n0b
m�1 C n1b

m�2 C � � � C nm�1„ ƒ‚ …
2N0

C nm

b
C � � �

„ ƒ‚ …
2Œ0;1/

< aC 1:

This is equivalent to a D n0b
m�1 C � � � C nm�1 or, in terms of b-adic digits of a, to

n0 D a0; n1 D a1; : : : ; nm�1 D am�1:
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This, in turn, is equivalent to

n 	 a0 .mod bm/; where a0 D a0 C a1b C � � � C am�1bm�1:

Since the congruencex 	 a0 .mod bm/ has a unique solution modulo bm, it follows
that exactly one of bm consecutive elements of the van der Corput sequence belongs
to Ja. Hence, for N 2 N, it holds that

A.Ja;N / D
�
N

bm

�
C 	;

with 	 2 f0; 1g. Therefore, and since limN!1 1
N

�
N
bm

˘ D 1
bm

, we obtain

lim
N!1

A.Ja;N /

N
D 1

bm
D �1.Ja/;

where �1 denotes the one-dimensional Lebesgue measure.
Now let J D Œ˛; ˇ/ � Œ0; 1/ and let

J D
[

aWJa�J
Ja and J D

[
aWJa\J 6D;

Ja:

Then we have J � J � J and �1.J / � �1.J / � 2=bm, and consequently

A.J ;N /

N
� �1.J / � A.J;N /

N
� �1.J / � A.J ;N /

N
� �1.J /: (2.5)

Note that for arbitrary x; y; z 2 R and ı > 0 we have

y � ı � x � z C ı ) jxj � ı C max.jyj; jzj/: (2.6)

Therefore, (2.5) yields

ˇ̌
ˇ̌A.J;N /

N
� �1.J /

ˇ̌
ˇ̌

� �1.J /� �1.J /C max

( ˇ̌
ˇ̌A.J ;N /

N
� �1.J /

ˇ̌
ˇ̌ ;
ˇ̌
ˇ̌
ˇ
A.J ;N /

N
� �1.J /

ˇ̌
ˇ̌
ˇ
)

� 2

bm
C max

( ˇ̌
ˇ̌A.J ;N /

N
� �1.J /

ˇ̌
ˇ̌ ;
ˇ̌
ˇ̌
ˇ
A.J ;N /

N
� �1.J /

ˇ̌
ˇ̌
ˇ
)
:
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Since

lim
N!1

ˇ̌
ˇ̌A.J ;N /

N
� �1.J /

ˇ̌
ˇ̌ �

X
aW Ja�J

lim
N!1

ˇ̌
ˇ̌A.Ja;N /

N
� �1.Ja/

ˇ̌
ˇ̌ D 0

and, in the same manner, limN!1
ˇ̌
ˇA.J ;N /N

� �1.J /
ˇ̌
ˇ D 0, it follows that

lim
N!1

ˇ̌
ˇ̌A.J;N /

N
� �1.J /

ˇ̌
ˇ̌ � 2

bm
:

Since m 2 N was arbitrary we obtain

lim
N!1

ˇ̌
ˇ̌A.J;N /

N
� �1.J /

ˇ̌
ˇ̌ D 0:

This means that the van der Corput sequence in base b is uniformly distributed
modulo one. ut

I Remark 2.11 It is not difficult to show that every uniformly distributed sequence
in Œ0; 1/s is dense in Œ0; 1�s . The converse is not true. A proof of these facts is left
as an exercise. In particular, a Kronecker sequence .fn˛g/n2N0 is dense in Œ0; 1�s if
the numbers 1; ˛1; : : : ; ˛s are linearly independent over the rationals. This is a well-
known result from Number Theory known as Kronecker’s approximation theorem.

2.2 Discrepancy

In this section we introduce quantitative measures for the assessment of the quality
of uniform distribution. For a;b 2 Œ0; 1�s with a D .a1; : : : ; as/ and b D
.b1; : : : ; bs/, the inequality a � b means that aj � bj for all j D 1; : : : ; s.

Definition 2.12
Let P be an N -element point set in Œ0; 1/s . The extreme discrepancy DN of this
point set is defined as

DN .P/ D sup
a;b2Œ0;1�s

a�b

ˇ̌
ˇ̌A.Œa;b/;P ; N /

N
� �s.Œa;b//

ˇ̌
ˇ̌ :

For an infinite sequence S the discrepancyDN.S/ is the discrepancy of the first
N elements of S.

Often it is enough to consider a slightly simplified notion of discrepancy:
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Definition 2.13
Let P be an N -element point set in Œ0; 1/s. The star discrepancy D�

N of this
point set is defined as

D�
N .P/ D sup

a2Œ0;1�s

ˇ̌
ˇ̌A.Œ0; a/;P ; N /

N
� �s.Œ0; a//

ˇ̌
ˇ̌ :

For an infinite sequence S the star discrepancyD�
N .S/ is the star discrepancy of

the first N elements of S.

We have the following relation between extreme and star discrepancy:

Proposition 2.14. For every N -element point set P in Œ0; 1/s ,

D�
N .P/ � DN.P/ � 2s D�

N .P/:

Proof. The left inequality is clear from the definitions of extreme and star discrep-
ancy. We prove the right-hand inequality for dimension s D 1 and s D 2 only. The
case s � 3 can be shown in the same manner. Let first s D 1 and Œ˛; ˇ/ � Œ0; 1/.
Then Œ˛; ˇ/ D Œ0; ˇ/ n Œ0; ˛/,

A.Œ˛; ˇ/;N / D A.Œ0; ˇ/;N / �A.Œ0; ˛/;N /;
and

�1.Œ˛; ˇ// D �1.Œ0; ˇ// � �1.Œ0; ˛//:
Consequently,

A.Œ˛; ˇ/;N /

N
� �1.Œ˛; ˇ// DA.Œ0; ˇ/;N /

N
� �1.Œ0; ˇ//�

�
�
A.Œ0; ˛/;N /

N
� �1.Œ0; ˛//

�
:

Taking the absolute value and applying the triangle inequality leads to
ˇ̌
ˇ̌A.Œ˛; ˇ/;N /

N
� �1.Œ˛; ˇ//

ˇ̌
ˇ̌ � 2D�

N .P/

and therefore we get

DN .P/ � 2D�
N .P/;

as claimed.
In the case s D 2 for J D Œ˛1; ˇ1/ � Œ˛2; ˇ2/ we have the following inclusion-

exclusion principle (see also Fig. 2.2):
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α1 β1 10

β2

α2

0

1Fig. 2.2 Inclusion-exclusion
principle

J D .Œ0; ˇ1/ n Œ0; ˛1// � .Œ0; ˇ2/ n Œ0; ˛2//

D
�
.Œ0; ˇ1/ � Œ0; ˇ2// n ˚.Œ0; ˛1/ � Œ0; ˇ2//[ .Œ0; ˇ1/ � Œ0; ˛2//

��

[ .Œ0; ˛1/ � Œ0; ˛2//

and hence

A.J;N / DA.Œ0; ˇ1/ � Œ0; ˇ2/; N /
�A.Œ0; ˛1/ � Œ0; ˇ2/; N /� A.Œ0; ˇ1/ � Œ0; ˛2/; N /
C A.Œ0; ˛1/ � Œ0; ˛2/; N /:

A similar equality is true for �2. Now the result follows as for the case s D 1. ut

Based on the notions of discrepancy we can give the following criterion for
uniform distribution modulo one:

Theorem 2.15. Let S be a sequence in Œ0; 1/s . The following assertions are
equivalent:

(a) S is uniformly distributed modulo one;
(b) limN!1D�

N .S/ D 0;
(c) limN!1DN .S/ D 0.

For the proof of this result we need the following lemma:

Lemma 2.16. For j D 1; : : : ; s let uj ; vj 2 Œ0; 1� with juj � vj j � ı. Then

ˇ̌
ˇ̌
ˇ̌
sY

jD1
uj �

sY
jD1

vj

ˇ̌
ˇ̌
ˇ̌ � 1 � .1 � ı/s � s ı:
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Proof. We use induction on s. Trivially, the assertion holds true for s D 1. Assume
that it holds true for s 2 N. Without loss of generality we may assume that usC1 �
vsC1. Then we have

ˇ̌
ˇ̌
ˇ̌
sC1Y
jD1

uj �
sC1Y
jD1

vj

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌.usC1 � vsC1/

sY
jD1

uj C vsC1

0
@ sY
jD1

uj �
sY

jD1
vj

1
A
ˇ̌
ˇ̌
ˇ̌

� jusC1 � vsC1j � 1C vsC1.1 � .1 � ı/s/
D usC1 � vsC1.1 � ı/s

D usC1.1 � .1 � ı/s/C .usC1 � vsC1/.1 � ı/s
� 1 � .1 � ı/s C ı.1� ı/s

D 1 � .1 � ı/sC1:

Hence the left-hand inequality is shown.
According to the Mean Value Theorem, we have for all y; z 2 R with z � y that

ys � zs D s
s�1.y � z/ for some 
 2 .z; y/. Choosing y D 1 and z D 1 � ı yields
the right-hand inequality of the lemma. ut

Proof of Theorem 2.15. The equivalence of (b) and (c) follows from Proposi-
tion 2.14.
(c) ) (a): Assume that limN!1DN.S/ D 0, i.e.,

lim
N!1 sup

a;b2Œ0;1�s

a�b

ˇ̌
ˇ̌A.Œa;b/;S; N /

N
� �s.Œa;b//

ˇ̌
ˇ̌ D 0:

Then obviously

lim
N!1

A.Œa;b/;S; N /
N

D �s.Œa;b//

for all intervals of the form Œa;b/ � Œ0; 1/s, and so the sequence S is uniformly
distributed modulo one.
(a) ) (b): Assume that the sequence S is uniformly distributed modulo one. Let
J be a sub-interval of Œ0; 1/s of the form Œ0; a/ and choose m 2 N, m � 2. Now
we proceed in a similar way to what we did in the proof of Proposition 2.10. For

k D .k1; : : : ; ks/ 2 f0; 1; : : : ; m � 1gs, put Qk WD Qs
jD1

h
kj
m
;
kjC1
m

�
and define

J D
[

kWQk�J
Qk and J D

[
kWQk\J 6D;

Qk:
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Obviously, J and J are intervals anchored at the origin (J may be empty) which
satisfy J � J � J and corresponding edge-lengths of J and J differ by at most
1=m. Hence we obtain from Lemma 2.16 that

�s.J / � �s.J / � s

m
:

Now we have

A.J ;S; N /
N

� �s.J / � A.J;S; N /
N

� �s.J / � A.J ;S; N /
N

� �s.J /;

whence

A.J;S; N /
N

� �s.J /
( � A.J ;S;N /

N
� �s.J / � .�s.J /� �s.J //;

� A.J ;S;N /
N

� �s.J /C .�s.J /� �s.J //:

Using (2.6) we obtain
ˇ̌
ˇ̌A.J;S; N /

N
� �s.J /

ˇ̌
ˇ̌ ��s.J /� �s.J /

C max

 ̌̌
ˇ̌A.J ;S; N /

N
� �s.J /

ˇ̌
ˇ̌ ;
ˇ̌
ˇ̌
ˇ
A.J ;S; N /

N
� �s.J /

ˇ̌
ˇ̌
ˇ
!

� s

m
C max

k2f0;1;:::;mgs

ˇ̌
ˇ̌
ˇ
A.Œ0; 1

m
k/;S; N /
N

� �s

��
0;
1

m
k

��ˇ̌ˇ̌
ˇ :

Note that the final term does not depend on J .
Since the sequence S is uniformly distributed modulo one we have, for every

k 2 f0; 1; : : : ; mgs,

lim
N!1

ˇ̌
ˇ̌
ˇ
A.Œ0; 1

m
k/;S; N /
N

� �s

��
0;
1

m
k

��ˇ̌ˇ̌
ˇ D 0;

and thus also

lim
N!1 max

k2f0;1;:::;mgs

ˇ̌
ˇ̌
ˇ
A.Œ0; 1

m
k/;S; N /
N

� �s

��
0;
1

m
k

��ˇ̌ˇ̌
ˇ D 0:

Consequently,

0 � lim sup
N!1

D�
N .S/ � s

m
;

and since m can be chosen arbitrarily large, the result follows. ut
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I Remark 2.17 We learn from the proof of Theorem 2.15 that for the star
discrepancy of every N -element point set in Œ0; 1/s and for every m 2 N, m � 2,
we have

D�
N .P/ � s

m
C max

k2f0;1;:::;mgs

ˇ̌
ˇ̌
ˇ
A.Œ0; 1

m
k/;P ; N /
N

� �s

��
0;
1

m
k

��ˇ̌ˇ̌
ˇ :

This means that the supremum in the definition of star discrepancy can be replaced
by a maximum over a finite set consisting of .mC 1/s elements with an error of at
most s=m.

Theorem 2.15 shows that a sequence is uniformly distributed modulo one if and
only if its (star) discrepancy converges to zero as N approaches infinity. We now
show that the order of convergence to zero cannot be faster than 1=N .

Proposition 2.18. For every N -element point set P in Œ0; 1/s we have

DN .P/ � 1

N
and D�

N .P/ � 1

2sN
:

Proof. Choose 0 < " � 1=N and let x D .x1; : : : ; xs/ be an element of the point
set P . Put

J D �
Œx1; x1 C "1=s/ � � � � � Œxs; xs C "1=s/

 \ Œ0; 1�s :

Since x 2 J , it follows that

DN .P/ � A.J;N /

N
� �s.J / � 1

N
� ":

Since " can be chosen arbitrarily close to zero, it follows that DN .P/ � 1
N

. The
result for the star discrepancy can be obtained from Proposition 2.14. ut

If one thinks of a point set whose elements are evenly distributed in the unit cube,
on first sight one might have a regular lattice in mind. By a regular lattice in Œ0; 1/s

consisting of ms elements, where m 2 N, m � 2, we mean the point set

�m;s D
��

2n1 C 1

2m
; : : : ;

2ns C 1

2m

�
W n1; : : : ; ns 2 f0; : : : ; m � 1g

�
: (2.7)

Sometimes one also speaks of a centered regular lattice.
However, for dimension s � 2 it turns out that this is not a good choice.
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Theorem 2.19. Let s;m 2 N, m � 2. For the star discrepancy of the regular
lattice �m;s with N D ms elements in Œ0; 1/s it holds that

D�
N .�m;s/ D 1 �

�
1� 1

2m

�s
:

Proof. Since �m;s � Œ0; 1 � 1=.2m/�s DW Bm;s , we find that

D�
N .�m;s/ �

ˇ̌
ˇ̌A.Bm;s; �m;s; N /

N
� �s.Bm;s/

ˇ̌
ˇ̌ D 1 �

�
1 � 1

2m

�s
:

To prove an upper bound, let J D Œ0; ˛1/�� � �� Œ0; ˛s/ � Œ0; 1/s . If minjD1;:::;s ˛j <
1
2m

, then

A.J; �m;s; N / D 0 and �s.J / � 1

2m
� 1 �

�
1 � 1

2m

�s
:

Otherwise, let aj 2 f0; : : : ; m � 1g for j D 1; : : : ; s be such that 2ajC1
2m

< ˛j �
2ajC3
2m

. Then we have A.J; �m;s; N / D Qs
jD1.aj C 1/ and

0 � A.J; �m;s; N /

N
� �s.J / �

sY
jD1

aj C 1

m
�

sY
jD1

2aj C 1

2m
:

Therefore and by Lemma 2.16 we obtain

ˇ̌
ˇ̌A.J; �m;s ; N /

N
� �s.J /

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌
ˇ̌
sY

jD1

aj C 1

m
�

sY
jD1

2aj C 1

2m

ˇ̌
ˇ̌
ˇ̌ � 1 �

�
1 � 1

2m

�s
:

Since this upper bound is independent of the specific choice of the interval J , we
obtain that

D�
N .�m;s/ � 1 �

�
1 � 1

2m

�s
:

Hence the result follows. ut

I Remark 2.20 For s D 1 we obtainD�
N .�m;1/ D 1=.2N /, which is best possible,

as we can see from Proposition 2.18. Hence in dimension s D 1 we have found, for
any N 2 N, the N -element point set with lowest star discrepancy. Unfortunately,
this is not true for dimensions s � 2. We have

1

2N 1=s
D 1

2m
� 1 �

�
1 � 1

2m

�s
� s

2m
D s

2N 1=s
;
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and so

D�
N .�m;s/ 
s

1

N 1=s
:

For large dimensions s this convergence rate is rather weak, as we shall see in
Sect. 2.4, where we will encounter point sets with much lower discrepancy.

The star discrepancy of a point set P may also be defined as the supremum norm
of the function�P ;N W Œ0; 1�s ! R,

�P ;N .y/ D A.Œ0;y/;P ; N /
N

� �s.Œ0;y//;

i.e.,

D�
N .P/ D k�P ;N kL1

:

The function �P ;N is sometimes called local discrepancy or discrepancy function
of the point set P . From this point of view it is near at hand to also consider other
norms of the local discrepancy, e.g., the Lp-norm for p � 1.

Definition 2.21
Let P be an N -element point set in Œ0; 1/s and let p 2 Œ1;1/. The Lp
discrepancy (sometimes also referred to as Lp star discrepancy) of P is defined
as

Lp;N .P/ D k�P ;N kLp D
�Z

Œ0;1�s

ˇ̌
ˇ̌A.Œ0;y/;P ; N /

N
� �s.Œ0;y//

ˇ̌
ˇ̌p dy

�1=p
:

For an infinite sequence S the Lp discrepancy Lp;N .S/ is the Lp discrepancy of
the first N elements of S.

From the monotonicity of the Lp-norm it follows immediately that Lp1;N .P/ �
Lp2;N .P/ whenever p1 � p2. Also there is a relation between the star- and the Lp
discrepancy which we state here without proof.

Proposition 2.22. For every N -element point set P in Œ0; 1/s we have

Lp;N .P/ � D�
N .P/ � c.s; p/L

p
pCs

p;N .P/;

where the positive quantity c.s; p/ only depends on s and p, but not on N .
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As a consequence we obtain a further criterion for uniform distribution modulo
one of infinite sequences.

Corollary 2.23. Let p 2 Œ1;1/. A sequence S in Œ0; 1/s is uniformly distributed
modulo one if and only if limN!1Lp;N .S/ D 0.

2.3 Bounds on the Discrepancy

The lower bound on the star discrepancy from Proposition 2.18 is rather weak,
at least for large dimensions. Only for dimension one it is best possible. Now we
present a much stronger result, which was first shown by K. F. Roth in 1954.

Theorem 2.24 (Roth). For every dimension s 2 N there exists a quantity cs > 0
with the following property: for every N -element point set P in Œ0; 1/s,

DN .P/ � D�
N .P/ � L2;N .P/ � cs

.logN/
s�1
2

N
:

For the proof of this result we use the method of Roth, but we follow the
exposition in [65]. For the sake of simplicity, we restrict ourselves to the case of
dimension s D 2. The general case can be shown in the same manner, but with
more technical effort. The proof is technical and can be skipped by beginners.

Proof of Theorem 2.24. For x 2 Œ0; 1�2 let

D.x/ D N�2.Œ0;x//� A.Œ0;x/;P ; N /:

By the Cauchy-Schwarz-inequality, for any function F W Œ0; 1�2 ! R

Z
Œ0;1�2

F .x/D.x/ dx �
�Z

Œ0;1�2
F 2.x/ dx

�1=2 �Z
Œ0;1�2

D2.x/ dx

�1=2
;

and hence, provided that
R
Œ0;1�2 F

2.x/ dx > 0,

NL2;N .P/ D
�Z

Œ0;1�2
D2.x/ dx

�1=2
�
R
Œ0;1�2 F .x/D.x/ dx	R
Œ0;1�2

F 2.x/ dx
�1=2 :

Now it is our aim to chose the function F such that
R
Œ0;1�2

F 2.x/ dx D O.logN/,

but
R
Œ0;1�2 F .x/D.x/ dx is at least of the order of magnitude logN .
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The function F will depend on the given point set P . For x 2 R define

 .x/ D
�

1 if x 2 Œk; k C 1=2/ for some k 2 Z;

�1 if x 2 Œk C 1=2; k C 1/ for some k 2 Z:

Note that for i 2 N0 and a 2 f0; : : : ; 2i � 1g we have

Z .aC1/=2i

a=2i
 .2iy/ dy D 1

2i

Z aC1

a

 .y/ dy D 0:

Choose m 2 N such that 2N � 2m < 4N . For j 2 f0; 1; : : : ; mg define functions
fj W Œ0; 1�2 ! f�1; 0; 1g in the following way: let

R
.j /

a;b D
�

a

2m�j ;
a C 1

2m�j

�
�
�
b

2j
;
b C 1

2j

�
;

where a 2 f0; 1; : : : ; 2m�j �1g and b 2 f0; 1; : : : ; 2j �1g. Then, for y D .y1; y2/ 2
R
.j /

a;b , we set

fj .y/ D
(
0 if R.j /a;b \ P 6D ;;
 .2m�j y1/ .2j y2/ if R.j /a;b \ P D ;:

(2.8)

Now we show that the functions fj are mutually orthogonal. For i < j there
exists some b 2 f0; : : : ; 2i � 1g such that either
�
a

2j
;
aC 1

2j

�
�
�
b

2i
;
b

2i
C 1

2iC1

�
; or

�
a

2j
;
a C 1

2j

�
�
�
b

2i
C 1

2iC1
;
b C 1

2i

�
:

Hence .2iy/ D c 2 f�1; 0; 1g is constant on the intervals


a=2j ; .a C 1/=2j


and

therefore

Z .aC1/=2j

a=2j
 .2j y/ .2iy/ dy D c

Z .aC1/=2j

a=2j
 .2j y/ dy D 0:

For a 2 f0; : : : ; 2m�i � 1g and b 2 f0; : : : ; 2j � 1g let

R
.i;j /

a;b D
�
a

2m�i ;
aC 1

2m�i

�
�
�
b

2j
;
b C 1

2j

�
:

Note that i < j implies that R.i;j /a;b � R
.i/

a;bb2i�j c. Hence if R.i;j /a;b \ P 6D ;, then also

R
.i/

a;bb2i�j c \ P 6D ;. This implies that fi .y/ D 0 for all y 2 R
.i/

a;bb2i�j c which in

turn yields fi .y/ D 0 for all y 2 R.i;j /a;b . Consequently,
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Z
Œ0;1�2

fi .y/fj .y/ dy

D
2m�i�1X
aD0

2j�1X
bD0

Z
R
.i;j /
a;b

fi .y/fj .y/ dy

D
2m�i�1X
aD0

2j�1X
bD0„ ƒ‚ …

R
.i;j /

a;b \PD;

Z
R
.i;j /
a;b

 .2m�i y1/ .2iy2/ .2m�j y1/ .2j y2/ dy1 dy2

D
2m�i�1X
aD0

2j�1X
bD0„ ƒ‚ …

R
.i;j /

a;b \PD;

Z .aC1/=2m�i

a=2m�i
 .2m�i y1/ .2m�j y1/ dy1

Z .bC1/=2j

b=2j
 .2iy2/ .2

j y2/ dy2

D 0;

i.e., the fj are mutually orthogonal.
Now we put

F.x/ D f0.x/C f1.x/C � � � C fm.x/: (2.9)

Using the orthogonality of the fj and the fact that 2m < 4N it follows that

Z
Œ0;1�2

F 2.x/ dx D
mX

i;jD0

Z
Œ0;1�2

fi .x/fj .x/ dx D
mX
iD0

Z
Œ0;1�2

f 2
i .x/ dx

�
mX
iD0

1 D mC 1 < log2.4N /C 1 D log2 N C 3:

Next we show that for all j 2 f0; 1; : : : ; mg we have

Z
Œ0;1�2

fj .x/D.x/ dx � 1

28
: (2.10)

To this end we consider fjD on the rectangles R.j /a;b from the definition of the

function fj . We only have to consider empty R.j /a;b , since otherwise fj .x/ D 0 for

every x 2 R
.j /

a;b . Here and in the following we speak of an empty rectangle R.j /a;b
wheneverR.j /a;b \ P D ;.

In total, there are 2m � 2N rectangles R.j /a;b , of which at most N contain a point

from P . Hence, there are at least N empty rectangles R.j /a;b . Thus it suffices to show

that for every empty rectangle R.j /a;b we have
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Rul

R

Rur

x + a +x b+ b

b

x

Rll

x + a

Rlr

a

Fig. 2.3 An empty rectangle
R
.j/

a;b with quadrants
Rll; Rlr; Rul; Rur

Z
R
.j /
a;b

fj .x/D.x/ dx � 1

28N
: (2.11)

LetR.j /a;b be an empty rectangle and letRll the lower left quadrant of this rectangle
and accordinglyRlr; Rul; Rur (see Fig. 2.3).

Let a;b be given as in Fig. 2.3. Then

Z
R
.j /
a;b

fj .x/D.x/ dx

D
Z
Rll

D.x/ dx �
Z
Rlr

D.x/ dx �
Z
Rul

D.x/ dx C
Z
Rur

D.x/ dx

D
Z
Rll

ŒD.x/�D.x C a/�D.x C b/CD.x C a C b/� dx:

Since

�2.Rll/ D �2.Œx;x C a C b//

D �2.Œ0;x// � �2.Œ0;x C a//� �2.Œ0;x C b//C �2.Œ0;x C a C b//;

and since

0 DA.Œx;x C a C b/;P ; N /
DA.Œ0;x/;P ; N /� A.Œ0;x C a/;P ; N /

� A.Œ0;x C b/;P ; N /C A.Œ0;x C a C b/;P ; N /;

it follows that

D.x/ �D.x C a/�D.x C b/CD.x C a C b/ D N�2.Rll/:
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Hence
Z
R
.j /
a;b

fj .x/D.x/ dx D
Z
Rll

N�2.Rll/ dx D N�2.Rll/
2 D N

22mC4 >
1

2mC6 >
1

28N
:

Hence (2.11) as well as (2.10) are shown.
From (2.10) we obtain

Z
Œ0;1�2

F .x/D.x/ dx � mC 1

28
� log2 N

28
:

Altogether it follows that

NL2;N .P/ � log2 N

28
p

log2 N C 3
�
p

log2 N

29
;

as claimed. ut

It is known that Roth’s lower bound is best possible for the L2 discrepancy in
the sense that for every s;N 2 N, N � 2, there exists an N -element point set P in
Œ0; 1/s with

L2;N .P/ � Qcs .logN/
s�1
2

N
;

where the positive Qcs depends on the dimension s, but not on N . A first explicit
construction of such point sets in arbitrary dimension s was provided by W.W.L.
Chen and M.M. Skriganov in 2002. Recently, J. Dick and F. Pillichshammer
presented an alternative construction.

On the other hand, Roth’s lower bound is not best possible for the star
discrepancy. In 2008 D. Bilyk, M.T. Lacey and A. Vagharshakyan proved in a joint
work that, for every dimension s 2 N, s � 2, there exist quantities cs > 0 and
�s 2 .0; 1

2
/ with the property that for every N -element point set P in Œ0; 1/s we

have

D�
N .P/ � cs

.logN/.s�1/=2C�s

N
:

This result is currently the best lower estimate for the star discrepancy of finite point
sets in dimension s � 3. For dimension s D 2 W.M. Schmidt proved the following
result in 1972:

Theorem 2.25 (Schmidt). There exists a constant c > 0 such that for the star
discrepancy of any N -element point set P in Œ0; 1/2 we have

D�
N .P/ � c

logN

N
:
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We shall prove this result in Exercise 2.15. Schmidt’s lower bound in dimension
two is best possible in the order of magnitude in N . For s � 3 the exact asymptotic
order of star discrepancy is still unknown. Although it is conjectured that the lower
bound on the star discrepancy is significantly larger than Roth’s lower bound, there
is presently no consensus among the experts about its sharp form. There are many
people who conjecture that the sharp exponent of the logarithm for s � 3 should be
s � 1. But there are also other opinions such as, for example, s=2. Both conjectures
are consistent with Schmidt’s lower bound in dimension s D 2. From above we
know constructions of N -element point sets in dimension s with star discrepancy
of order .logN/s�1=N . We will encounter such constructions later on. However,
the exact determination of the sharp lower bound on star discrepancy seems to be a
very difficult problem.

For infinite sequences the situation is slightly different. The following lower
bound can be deduced from Roth’s result for finite point sets:

Theorem 2.26. For every s 2 N there exists a quantity c0
s > 0 such that for

every infinite sequence S in Œ0; 1/s we have

D�
N .S/ � c0

s

.logN/s=2

N
for infinitely many N 2 N:

Proof. Let S D .xn/n2N0 , where xn D .xn;1; : : : ; xn;s/. For fixed N 2 N we
consider the N -element point set P D fy0; : : : ;yN�1g in Œ0; 1/sC1 given by

yn WD .xn;1; : : : ; xn;s ; n=N /; for n D 0; : : : ; N � 1:

According to Theorem 2.24, there exist a1; : : : ; asC1 2 Œ0; 1� such that

ˇ̌
ˇ̌
ˇ̌
A.
QsC1
jD1Œ0; aj /;P ; N /

N
�

sC1Y
jD1

aj

ˇ̌
ˇ̌
ˇ̌ � csC1

.logN/s=2

N
:

Choose m 2 N such that m�1
N

< asC1 � m
N

or, equivalently, �1 < NasC1 �m � 0.

By definition A.
QsC1
jD1Œ0; aj /;P ; N / is the number of all n 2 f0; : : : ; N � 1g for

which we have xn;j 2 Œ0; aj / for all j D 1; : : : ; s and n
N

2 Œ0; asC1/. Here the latter
condition is equivalent to n 2 f0; : : : ; m � 1g. Therefore,

A

0
@sC1Y
jD1

Œ0; aj /;P ; N
1
A D A

0
@ sY
jD1

Œ0; aj /;S; m
1
A :
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From this and the triangle inequality we obtain

ˇ̌
ˇ̌
ˇ̌A
0
@ sY
jD1

Œ0; aj /;S; m
1
A �ma1 � � �as

ˇ̌
ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
ˇ̌A
0
@sC1Y
jD1

Œ0; aj /;P ; N
1
A�N a1 � � �asC1

ˇ̌
ˇ̌
ˇ̌� jNa1 � � �asC1 �ma1 � � �asj

� csC1 .logN/s=2 � a1 � � �as jNasC1 �mj � csC1 .logN/s=2 � 1:

It follows that for c0
s < csC1 and N 2 N large enough there exists some m 2

f1; : : : ; N g such that

mD�
m.S/ �

ˇ̌
ˇ̌
ˇ̌A
0
@ sY
jD1

Œ0; aj /;S; m
1
A �ma1 � � �as

ˇ̌
ˇ̌
ˇ̌ > c0

s .logN/s=2 � c0
s.logm/s=2:

Now we show that the inequality

mD�
m.S/ > c0

s.logm/s=2 (2.12)

holds true for infinitely many m 2 N. Assume, on the contrary, that (2.12) only
holds for finitely manym 2 N and letm� be the maximal integer with this property.
Then choose N 2 N such that

c0
s.logN/s=2 > max

1�k�m�

kD�
k .S/:

For this N it is possible, as shown above, to find an m 2 f1; : : : ; N g with the
property that

mD�
m.S/ > c0

s.logN/s=2 � c0
s.logm/s=2:

If m � m�, then we would have a contradiction, since

mD�
m.S/ > c0

s.logN/s=2 > max
1�k�m�

kD�
k .S/:

Hence,m > m�. But sincemD�
m.S/ � c0

s.logm/s=2, this contradicts the maximality
of m�. Therefore, (2.12) is true for infinitely manym 2 N. ut

For dimension s D 1 there is an improvement due to W.M. Schmidt from 1972
whose proof we leave as an exercise (cf. Exercise 2.16).
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Theorem 2.27 (Schmidt). There exists a constant c > 0 such that for every
infinite sequence S in Œ0; 1/ we have

D�
N .S/ � c

logN

N
for infinitely many N 2 N:

Schmidt’s lower bound in dimension s D 1 is best possible in the order of
magnitude in N . For dimensions s � 2 it is conjectured that the sharp lower bound
for the star discrepancy is significantly larger than the result from Theorem 2.26.
Corresponding to the conjectures for finite point sets, there are some opinions that s
is the correct exponent of the logN term, and others that sC1

2
is the correct exponent.

Again, both conjectures are consistent with Schmidt’s result for dimension s D 1.

One can extend the method of proof of Theorem 2.26 to show that for every
s 2 N there exists a quantity c00

s > 0 such that for every infinite sequence S in
Œ0; 1/s we have

L2;N .S/ � c00
s

.logN/s=2

N
for infinitely many N 2 N:

This was first shown by P.D. Proinov in 1985. Recently J. Dick and
F. Pillichshammer presented the first explicit construction of an infinite sequence
whose L2 discrepancy is of order of magnitude .logN/s=2=N , which proves that
Proinov’s lower bound is asymptotically best possible in N .

Now we turn our attention to inequalities which are often useful for proving
upper bounds on the star discrepancy of point sets and sequences. The first result that
we mention, though without proof, is the so-called Erdős-TurKan-Koksma inequality.
This fundamental inequality connects the behavior of discrepancy with that of
exponential sums of the form as they appear in the Weyl Criterion. This way, the
Erdős-TurKan-Koksma inequality can be viewed as quantitative version of the Weyl
Criterion.

Theorem 2.28 (Erdős-Turán-Koksma Inequality). For every s 2 N there
exists a cs > 0, such that for every N -element point set P D fx0; : : : ;xN�1g
in Œ0; 1/s we have

DN.P/ � cs

0
@ 1

mC 1
C

X
0<khk1�m

1

r1.h/

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�ih � xn/

ˇ̌
ˇ̌
ˇ
1
A ;

where m 2 N and where r1.h/ D Qs
jD1 max.1; jhj j/ and khk1 D

maxjD1;:::;s jhj j for h D .h1; : : : ; hs/ 2 Z
s .

References for the proof of this result can be found at the end of this section.
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Example 2.29

For N 2 N let P D f0; 1=N; 2=N; : : : ; .N � 1/=N g. For all h D 1; : : : ; N � 1 we havePN�1
nD0 exp.2�ihn=N / D 0. Hence, with the choice m D N � 1, from Theorem 2.28 we obtain

DN.P/ � c1=N:

Sometimes one has to estimate the star discrepancy of point sets whose compo-
nents are rational numbers. In 1977 H. Niederreiter proved a discrepancy estimate
for such point sets which is related to the Erdős-Turán-Koksma inequality. To state
Niederreiter’s result we have to introduce some notation.

For M 2 N, M � 2, put C.M/ D .�M=2;M=2� \ Z and Cs.M/ D C.M/s,
the s-fold Cartesian product of C.M/. Further, write C �

s .M/ D Cs.M/ n f0g. For
h 2 C.M/ put

r.h;M/ D
�
M sin.�jhj=M/ if h 6D 0;

1 if h D 0;

and for h D .h1; : : : ; hs/ 2 Cs.M/ put r.h;M / D Qs
jD1 r.hj ;M/:

Theorem 2.30 (Niederreiter). For an integer M � 2 and y0; : : : ;yN�1 2 Z
s ,

let P D fx0; : : : ;xN�1g be the point set consisting of the fractional parts xn D
fyn=M g for n D 0; : : : ; N � 1. Then

DN .P/ � 1 �
�
1 � 1

M

�s
C

X
h2C�

s .M/

1

r.h;M /

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�ih � yn=M/

ˇ̌
ˇ̌
ˇ :

Proof. For k D .k1; : : : ; ks/ 2 Z
s , let

A.k/ WD #fn 2 N0 W 0 � n < N and yn 	 k .modM/g;

where a congruence between vectors is understood component wise. We have

1

M

X
h2C.M/

exp.2�iha=M/ D
�
1 if a 	 0 .modM/;

0 if a 6	 0 .modM/;

and therefore

N�1X
nD0

1

M s

X
h2Cs.M/

exp.2�ih � .yn � k/=M/
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D
N�1X
nD0

sY
jD1

0
@ 1

M

X
hj2C.M/

exp.2�ihj .yn;j � kj /=M/

1
A

„ ƒ‚ …
D
8<
:
1 if yn;j 	 kj .modM/;

0 otherwise;

D A.k/:

Consequently,

A.k/ � N

Ms
D 1

Ms

X
h2C�

s .M/

exp.�2�ih � k=M/

N�1X
nD0

exp.2�ih � yn=M/:

Now let J D Qs
jD1Œuj ; vj / � Œ0; 1/s . For j D 1; : : : ; s let aj 2 Z be minimal

such that uj � aj =M and bj 2 Z maximal such that bj =M < vj . In particular, we
have Œaj =M; bj =M � � Œuj ; vj /.

If Œaj =M; bj =M � D ; for some j 2 f1; : : : ; sg, then A.J;P ; N / D 0 and
vj � uj < 1=M . Therefore,

ˇ̌
ˇ̌A.J;P ; N /

N
� �s.J /

ˇ̌
ˇ̌ D �s.J / <

1

M
� 1 �

�
1 � 1

M

�s
:

Now assume that Œaj =M; bj =M � 6D ; for all j D 1; : : : ; s. We have

A.J;P ; N / D
X

a�k�b

A.k/ and
X

a�k�b

1

Ms
D 1

Ms

sY
jD1

.bj � aj C 1/;

where a � k � b means summation over all k 2 Z
s for which aj � kj � bj for

all j D 1; 2; : : : ; s, and hence

A.J;P ; N /
N

� �s.J / D
X

a�k�b

�
A.k/

N
� 1

Ms

�
C 1

Ms

sY
jD1

.bj � aj C 1/��s.J /

D 1

Ms

X
h2C�

s .M/

0
@ X

a�k�b

exp.�2�ih � k=M/

1
A 1

N

N�1X
nD0

exp.2�ih � yn=M/

C
sY

jD1

bj � aj C 1

M
�

sY
jD1

.vj � uj /:

For all j 2 f1; : : : ; sg we have

ˇ̌
ˇ̌bj � aj C 1

M
� .vj � uj /

ˇ̌
ˇ̌ < 1

M
;
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and so it follows from Lemma 2.16 thatˇ̌
ˇ̌
ˇ̌
sY

jD1

bj � aj C 1

M
�

sY
jD1

.vj � uj /

ˇ̌
ˇ̌
ˇ̌ � 1 �

�
1 � 1

M

�s
:

Consequently,
ˇ̌
ˇ̌A.J;P ; N /

N
� �s.J /

ˇ̌
ˇ̌ � 1 �

�
1 � 1

M

�s

C 1

Ms

X
h2C�

s .M/

ˇ̌
ˇ̌
ˇ̌
X

a�k�b

exp.�2�ih � k=M/

ˇ̌
ˇ̌
ˇ̌

„ ƒ‚ …
DWr�.h;M/

�
ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�ih � yn=M/

ˇ̌
ˇ̌
ˇ :

Since jzj D jzj for any complex number z and j exp.2�it/j D 1 for any real
number t , we obtain

r�.h;M / D
sY

jD1

ˇ̌
ˇ̌
ˇ̌

bjX
kjDaj

exp.2�ihj kj =M/

ˇ̌
ˇ̌
ˇ̌

D
sY

jD1

ˇ̌
ˇ̌
ˇ̌
bj�ajX
kjD0

exp.2�ihj kj =M/ exp.2�ihj aj =M/

ˇ̌
ˇ̌
ˇ̌

D
sY

jD1

ˇ̌
ˇ̌
ˇ̌
bj�ajX
kjD0

exp.2�ihj kj =M/

ˇ̌
ˇ̌
ˇ̌ :

If hj D 0, then

ˇ̌
ˇ̌
ˇ̌
bj�ajX
kjD0

exp.2�ihj kj =M/

ˇ̌
ˇ̌
ˇ̌ D bj � aj C 1 � M D M

r.hj ;M/
:

If now hj 2 C �.M/, then

ˇ̌
ˇ̌
ˇ̌
bj�ajX
kjD0

exp.2�ihj kj =M/

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌exp.2�ihj .bj � aj C 1/=M/� 1

exp.2�ihj =M/� 1
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌sin.�hj .bj � aj C 1/=M/

sin.�hj =M/

ˇ̌
ˇ̌

� 1

sin.�jhj j=M/
D M

r.hj ;M/
:
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In any case,

r�.h;M / �
sY

jD1

M

r.hj ;M/
D Ms

r.h;M /
;

and therefore
ˇ̌
ˇ̌A.J;P ; N /

N
� �s.J /

ˇ̌
ˇ̌ � 1 �

�
1 � 1

M

�s

C
X

h2C�

s .M/

1

r.h;M /

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�ih � yn=M/

ˇ̌
ˇ̌
ˇ :

The right-hand side of this inequality is independent of the specific choice of the
interval J and hence the result follows. ut

We close this section with a formula for the star discrepancy of finite one-
dimensional point sets. This formula was first proved in 1972 by H. Niederreiter.

Proposition 2.31 (Niederreiter). Let P D fx1; : : : ; xN g be a point set in the
unit interval Œ0; 1/ satisfying x1 � x2 � � � � � xN . Then

D�
N .P/ D 1

2N
C max

nD1;2;:::;N

ˇ̌
ˇ̌xn � 2n � 1

2N

ˇ̌
ˇ̌ :

(We remark that the requirement x1 � x2 � � � � � xN does not impose any
restriction on the point set.)

I Remark 2.32 Applying Proposition 2.31 to the regular lattice �m;1 D f 2n�1
2N

W
n D 1; : : : ; N g we find again that D�

N .�m;1/ D 1=.2N /, and this is best possible
for any N -element point set in dimension s D 1 (cf. Remark 2.20).

Proof. Put x0 WD 0 and xNC1 WD 1. We have

D�
N .P/ D sup

0<˛�1

ˇ̌
ˇ̌A.Œ0; ˛/;N /

N
� ˛

ˇ̌
ˇ̌ D max

nD0;:::;N
xn<xnC1

sup
xn<˛�xnC1

ˇ̌
ˇ̌A.Œ0; ˛/;N /

N
� ˛

ˇ̌
ˇ̌

D max
nD0;:::;N
xn<xnC1

sup
xn<˛�xnC1

ˇ̌
ˇ n
N

� ˛
ˇ̌
ˇ : (2.13)

Assume that xn < xnC1. The function gn.x/ D ˇ̌
n
N

� x
ˇ̌

is convex and hence it
achieves its maximum on the compact interval Œxn; xnC1� in one of the end-points of
this interval. Therefore,
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D�
N .P/ D max

nD0;:::;N
xn<xnC1

max
	ˇ̌
ˇ n
N

� xn
ˇ̌
ˇ ;
ˇ̌
ˇ n
N

� xnC1
ˇ̌
ˇ
�
: (2.14)

Now we show that we may omit the condition xn < xnC1 in the first of the above
maxima. Assume that

xn < xnC1 D xnC2 D : : : D xnCr < xnCrC1;

with some r � 2. Hence the indices nC j for j D 1; : : : ; r � 1 do not appear in the
above maximum. We show that

ˇ̌
ˇ̌nC j

N
� xnCj

ˇ̌
ˇ̌ and

ˇ̌
ˇ̌nC j

N
� xnCjC1

ˇ̌
ˇ̌

for 1 � j � r � 1 are always less or equal to some number which already appears
in the first maximum in (2.14). Indeed, let 1 � j � r � 1. Then

ˇ̌
ˇ̌nC j

N
� xnCj

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌nC j

N
� xnC1

ˇ̌
ˇ̌ � max

�ˇ̌
ˇ n
N

� xnC1
ˇ̌
ˇ ;
ˇ̌
ˇ̌nC r

N
� xnC1

ˇ̌
ˇ̌
�

D max

�ˇ̌
ˇ n
N

� xnC1
ˇ̌
ˇ ;
ˇ̌
ˇ̌nC r

N
� xnCr

ˇ̌
ˇ̌
�
:

However, both terms in the latter maximum already appear in the first maximum in

(2.14). The same can be shown for the term
ˇ̌
ˇ nCj
N

� xnCjC1
ˇ̌
ˇ. Hence,

D�
N .P/ D max

nD0;:::;N max
	ˇ̌
ˇ n
N

� xn
ˇ̌
ˇ ;
ˇ̌
ˇ n
N

� xnC1
ˇ̌
ˇ
�

D max
nD1;:::;N max

�ˇ̌
ˇ n
N

� xn

ˇ̌
ˇ ;
ˇ̌
ˇ̌n � 1

N
� xn

ˇ̌
ˇ̌
�

D max
nD1;:::;N max

�ˇ̌
ˇ̌2n � 1
2N

� xn C 1

2N

ˇ̌
ˇ̌ ;
ˇ̌
ˇ̌2n� 1

2N
� xn � 1

2N

ˇ̌
ˇ̌
�

D 1

2N
C max

nD1;:::;N

ˇ̌
ˇ̌2n � 1
2N

� xn

ˇ̌
ˇ̌ ;

since max.ja � bj; jaC bj/ D jaj C jbj. ut

2.4 A Classical Construction: The Halton Sequence

In Sect. 2.1 we introduced the one-dimensional van der Corput sequence in base
b and showed its uniform distribution modulo one. This sequence is in fact
the prototype of many uniformly distributed sequences and point sets with low
star discrepancy, even in higher dimensions. In this section we introduce two



40 2 Uniform Distribution Modulo One

Fig. 2.4 The first 1000
elements of the Halton
sequence S2;3

generalizations of the van der Corput sequence which are already classical. The
first is the infinite Halton sequence and the second is its finite version, the so-called
Hammersley point set.

The Halton Sequence

We construct an infinite sequence by component-wise concatenation of correspond-
ing elements of van der Corput sequences in different bases. Recall that �b.n/
denotes the b-adic radical inverse function as defined in Definition 2.8.

Definition 2.33
Let s 2 N and let b1; : : : ; bs � 2 be integers. The Halton sequence in bases
b1; : : : ; bs is the sequence Sb1;:::;bs D .xn/n2N0 whose nth element is given by

xn WD .�b1 .n/; �b2.n/; : : : ; �bs .n// for n 2 N0:

For s D 1 we recover the van der Corput sequence .�b.n//n2N0 in base b D b1.

Example 2.34

For example, in dimension s D 2 with bases b1 D 2 and b2 D 3, we have x0 D .0; 0/, x1 D
.1=2; 1=3/, x2 D .1=4; 2=3/, x3 D .3=4; 1=9/, x4 D .1=8; 4=9/, : : :. Figure 2.4 shows the first
1000 elements of this sequence.

Theorem 2.35. Let s 2 N, and let b1; : : : ; bs � 2 be pairwise coprime integers.
For the star discrepancy of the Halton sequence Sb1;:::;bs in bases b1; : : : ; bs we
have

D�
N .Sb1;:::;bs / �

0
@ sY
jD1

bj log.bjN /

log bj

1
A 1

N
for N 2 N:

Hence, asymptotically for N ! 1 we haveD�
N .Sb1;:::;bs / D O..logN/s=N /.
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For the proof of Theorem 2.35 we require the following lemmas:

Lemma 2.36. Let a; n;m 2 Z. The congruence x 	 a .mod m/ has exactly
b n
m

c C 	 solutions x 2 f0; : : : ; n � 1g, where 	 is either 0 or 1.

Proof. The result follows from the elementary fact that among any m consecutive
integers the congruence has exactly one solution. ut

We also need the Chinese Remainder Theorem, which we recall here without
proof.

Lemma 2.37 (Chinese Remainder Theorem). Let m1; : : : ; ms be pairwise
coprime integers. Then the system of congruences

x 	 a1 .mod m1/;

x 	 a2 .mod m2/;

:::

x 	 as .mod ms/;

has exactly one solution modulom1m2 � � �ms .

Now we prove Theorem 2.35 for dimensions s D 1 and s D 2. The general case
follows by the same arguments. The proof presented here follows [46].

Proof of Theorem 2.35. For N < maxjD1;2;:::;s bj the bound on the right-hand side
is always larger than 1 and therefore the assertion trivially holds true. Hence we may
assume in the following that N � maxjD1;2;:::;s bj .

The case s D 1: Let b D b1. Let ˛ 2 .0; 1� with infinite b-adic expansion

˛ D ˛0

b
C ˛1

b2
C ˛2

b3
C � � � :

If the b-adic expansion of ˛ is finite, say ˛ D .0; ˛0˛1 : : : ˛M /b with ˛M 6D 0,
then we switch to the infinite expansion by writing

˛ D .0; ˛0 : : : ˛M�1˛0
M˛

0
MC1 : : :/b

with ˛0
M D ˛M � 1 and ˛0

i D b � 1 for i � M C 1.
Let k 2 f0; : : : ; N � 1g with b-adic expansion
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k D k0 C k1b C k2b
2 C � � � C kmb

m;

where km 6D 0. Then bm � k < bmC1 and hence m D b log k
log b c. This means that k

has exactly mC 1 D b log k
log b c C 1 � M C 1 digits in its b-adic expansion, where

M D b logN
log b c. Hence for k 2 f0; : : : ; N � 1g we have

k D k0 C k1b C � � � C kMb
M

with b-adic digits k0; k1; : : : ; kM 2 f0; : : : ; b � 1g, and the corresponding value
of the b-adic radical inverse function equals

�b.k/ D k0

b
C k1

b2
C � � � C kM

bMC1 :

Let us determine the number

A.Œ0; ˛/;Sb; N / D #fk 2 f0; : : : ; N � 1gW �b.k/ 2 Œ0; ˛/g

of indices k 2 f0; : : : ; N � 1g for which xk D �b.k/ belongs to the interval
Œ0; ˛/. According to the definition of the radical inverse function �b.k/, we have
�b.k/ < ˛ if and only if one of the following conditions is satisfied:

(1) k0 < ˛0
(2) k0 D ˛0, k1 < ˛1
(3) k0 D ˛0, k1 D ˛1, k2 < ˛2

:::

(M+1) k0 D ˛0, : : :, kM�1 D ˛M�1, kM < ˛M
(M+2) k0 D ˛0, : : :, kM�1 D ˛M�1, kM D ˛M

Note that conditions (1), . . . , (M+2) are mutually exclusive. Now recast these
M C 2 conditions as congruences in the following way:

(1) k 	 k0 .mod b/; 0 � k0 < ˛0
(2) k 	 ˛0 C k1b .mod b2/; 0 � k1 < ˛1
(3) k 	 ˛0 C ˛1b C k2b

2 .mod b3/; 0 � k2 < ˛2
:::

(M+1) k 	 ˛0 C � � � C ˛M�1bM�1 C kMb
M .mod bMC1/; 0 � kM < ˛M

(M+2) k 	 ˛0 C � � � C ˛Mb
M .mod bMC2/

By Lemma 2.36, the number of solutions of the respective congruences in
f0; : : : ; N � 1g equals
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(1) ˛0 .bN=bc C 	0/

(2) ˛1
�bN=b2c C 	1


:::

(M+1) ˛M
�bN=bMC1c C 	M


(M+2) bN=bMC2c C 	MC1 D 	MC1

with appropriate 	j 2 f0; 1g for j D 0; : : : ;M C 1. For the last line we mention
that bM � N < bMC1 implies bN=bMC2c D 0. Now we have

A.Œ0; ˛/;Sb; N / D
MX
iD0

˛i

��
N

biC1

�
C 	i

�
C 	MC1

and

ˇ̌
ˇ̌
ˇA.Œ0; ˛/;Sb; N / �N

MX
iD0

˛i

biC1

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
MX
iD0

˛i

��
N

biC1

�
C 	i � N

biC1

�
C 	MC1

ˇ̌
ˇ̌
ˇ

�
MX
iD0

˛i

ˇ̌
ˇ̌ N
biC1

�
�
N

biC1

�
� 	i

ˇ̌
ˇ̌C 1

�
MX
iD0

˛i C 1

� .M C 1/.b � 1/C 1;

since ˛i � b � 1. Therefore,

jA.Œ0; ˛/;Sb; N /� ˛N j � .M C 1/.b � 1/C 1CN

1X
iDMC1

˛i

biC1
:

Using again the fact that ˛i � b � 1, we obtain

N

1X
iDMC1

˛i

biC1
� N

b � 1

bMC2
1X
iD0

1

bi
D N

bMC1 < 1; (2.15)

and hence

jA.Œ0; ˛/;Sb; N / � ˛N j � .M C 1/.b � 1/C 2:

For the final term we have
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.M C 1/.b � 1/C 2 �
�

logN

log b
C 1

�
.b � 1/C 2

D b
log.Nb/

log b
C 2 � log.Nb/

log b

� b
log.Nb/

log b
; (2.16)

since

2 � log.Nb/

log b
D log b2 � log.Nb/

log b
< 0

for N � b. Thus we have shown that for all ˛ 2 .0; 1� and all N � b

ˇ̌
ˇ̌A.Œ0; ˛/;Sb; N /

N
� ˛

ˇ̌
ˇ̌ � b

N

log.Nb/

log b
:

Since this bound is independent of the specific choice of ˛ the result follows for
s D 1.

The case s D 2: We write b D b1 and c D b2. Let ˛; ˇ 2 .0; 1� with infinite digit
expansions

˛ D .0; ˛0˛1 : : :/b and ˇ D .0; ˇ0ˇ1 : : :/c;

in bases b and c, respectively. Put

M WD
�

logN

log b

�
and L WD

�
logN

log c

�
:

The numberA.Œ0; ˛/� Œ0; ˇ/;Sb;c ; N / is the number of indices k 2 f0; : : : ; N �
1g with

�b.k/ < ˛ and �c.k/ < ˇ:

Let

k D l0 C l1c C � � � C lLc
L;

with 0 � li � c � 1, be the c-adic expansion of k. Then we have �b.k/ < ˛ and
�c.k/ < ˇ if and only if, in addition to the conditions (1), (2), . . . , (M+2) for the
first component from the case s D 1 also one of the following conditions for the
second component is satisfied:
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(1) k 	 l0 .mod c/; 0 � l0 < ˇ0
(2) k 	 ˇ0 C l1c .mod c2/; 0 � l1 < ˇ1

(3) k 	 ˇ0 C ˇ1c C l2c
2 .mod c3/; 0 � l2 < ˇ2
:::

(LC 1) k 	 ˇ0 C � � � C ˇL�1cL�1 C lLc
L .mod cLC1/; 0 � lL < ˇL

(LC 2) k 	 ˇ0 C � � � C ˇLc
L .mod cLC2/

Recall that by our global assumption we have gcd.b; c/ D 1 and thus also
gcd.bm; cl / D 1 for m; l 2 N. According to Lemmas 2.36 and 2.37, the number
of k 2 f0; : : : ; N � 1g which satisfy the congruences .m/ and .l/ for
• m 2 f1; : : : ;M C 1g and l 2 f1; : : : ; LC 1g equals

˛m�1ˇl�1
��

N

bmcl

�
C 	m�1;l�1

�
;

where 	m�1;l�1 2 f0; 1g,
• For m 2 f1; : : : ;M C 1g and l D LC 2 equals

˛m�1	m�1;

where 	m�1 2 f0; 1g,
• For m D M C 2 and l 2 f1; : : : ; LC 1g equals

ˇl�1	l�1;

where 	l�1 2 f0; 1g, and
• For m D M C 2 and l D LC 2 equals 	MC1;LC1 2 f0; 1g.
Therefore,

A.Œ0; ˛/ � Œ0; ˇ/;Sb;c ; N / D
MC1X
mD1

LC1X
lD1

˛m�1ˇl�1
��

N

bmcl

�
C 	m�1;l�1

�
C

C
MC1X
mD1

˛m�1	m�1 C
LC1X
lD1

ˇl�1	l�1 C 	MC1;LC1:

We obtain

ˇ̌
ˇ̌
ˇA.Œ0; ˛/ � Œ0; ˇ/;Sb;c ; N /�

MC1X
mD1

LC1X
lD1

˛m�1ˇl�1
N

bmcl

ˇ̌
ˇ̌
ˇ

�
MC1X
mD1

LC1X
lD1

˛m�1ˇl�1 C
MC1X
mD1

˛m�1 C
LC1X
lD1

ˇl�1 C 1
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D
 
MC1X
mD1

˛m�1 C 1

! 
LC1X
lD1

ˇl�1 C 1

!
;

and further, using (2.15) and (2.16),

jA.Œ0; ˛/ � Œ0; ˇ/;Sb;c ; N / � ˛ˇN j

�
 
MC1X
mD1

˛m�1 C 1

! 
LC1X
lD1

ˇl�1 C 1

!

CN
1X

mDMC2

˛m�1
bm

CN

1X
lDLC2

ˇl�1
cl

CN

1X
mDMC2

1X
lDLC2

˛m�1
bm

ˇl�1
cl

� ..b � 1/.M C 1/C 1/..c � 1/.LC 1/C 1/C 3

� ..b � 1/.M C 1/C 2/..c � 1/.LC 1/C 2/

� b log.bN /

log b

c log.cN /

log c
;

since N � b and N � c. This proves also the case s D 2 and indicates how the
proof works for arbitrary dimensions s � 3. ut

Theorem 2.35 shows that the star discrepancy of the Halton sequence is
asymptotically of the order of magnitude .logN/s=N for N ! 1 and this is
the best we can show. In the course of time it has become customary to speak
of low-discrepancy sequences in case where their star discrepancy is of order of
magnitude .logN/s=N . Later, we will become acquainted with other examples
of low-discrepancy sequences. Recall from Sect. 2.3 that many people conjecture,
though without proof, that .logN/s=N is the best that one achieve at all for the
star discrepancy. In dimension s D 1 the Halton result shows that Schmidt’s lower
bound from Theorem 2.27 is exact.

On the other hand, the bound from Theorem 2.35 has a slightly defective
appearance. To explain this, we consider the quantity

d�.S/ WD lim sup
N!1

ND�
N .S/

.logN/s
(2.17)

for Halton sequences Sb1;:::;bs . From Theorem 2.35 it follows that

d�.Sb1;:::;bs / �
sY

jD1

bj

log bj
DW cs:

This bound cs is large and grows very fast to infinity as the dimension s grows.
For example, assume that b1; : : : ; bs are the first s prime numbers, which is the
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“smallest” choice in order to keep the bases pairwise coprime. The prime number
theorem implies that bj � j log j for large j and hence

cs D
sY

jD1

bj

log bj
�

sY
jD1

j log j

log.j log j /
�

sY
jD1

j log j

log j
D sŠ:

In 2004, Atanassov [5] was able to overcome this particular disadvantage of the
bound in Theorem 2.35. We state his result without proof here:

Theorem 2.38 (Atanassov). Let s 2 N, and let b1; : : : ; bs � 2 be pairwise
coprime integers. Then for the star discrepancy of the Halton sequence Sb1;:::;bs
in bases b1; : : : ; bs for N � 2 we have

D�
N .Sb1;:::;bs /

�
2
4 1
sŠ

sY
jD1

�bbj =2c logN

log bj
C s

�
C

s�1X
kD0

bkC1
kŠ

kY
jD1

�bbj =2c logN

log bj
C k

�3
5 1

N
:

This result implies that

d�.Sb1;:::;bs / � 1

sŠ

sY
jD1

bbj =2c
log bj

:

If again b1; : : : ; bs are the first s prime numbers, then it can be shown that
1
sŠ

Qs
jD1

bbj =2c
log bj

� 7
2ss

, and hence

lim sup
s!1

logd�.Sb1;:::;bs /
s

� � log 2: (2.18)

This shows that d�.Sb1;:::;bs / tends to zero at an exponential rate as s ! 1.

The discrepancy bounds for the Halton sequence suggest to choose the bases
b1; : : : ; bs as small as possible such that they are still pairwise coprime. Hence,
the best we can do is to choose them to be the first s prime numbers. However, in
higher dimensions already this “minimal” choice leads to the problem that the initial
segments of the Halton sequence, or, more exact, projections to lower dimensional
faces thereof, have very poor distribution properties. For many practical applications
such a behavior is not desirable. Just as an example, consider the projection of
a Halton sequence in dimension s � 36 with prime bases b1; b2; : : : ; bs to the
components with numbers 35 and 36, that is, with b35 D 149 and b36 D 151.
Then most points of the initial segment are concentrated around the main diagonal
and very large areas of the unit square contain no point; see Fig. 2.5 where we
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Fig. 2.5 The projection of
the first 1000 elements of the
Halton sequence to the
coordinates 35 and 36

plotted the first 1000 elements. Similar pictures appear when we consider other two-
dimensional projections to “high” coordinates. There are two ways to overcome this
problem, at least to a certain extent: the first one is the concept of generalised Halton
sequences, which uses s sequences of permutations .�j;k/k2N0 for j D 1; 2; : : : ; s,
where �j;k is a permutation of f0; 1; : : : ; bj � 1g for each k 2 N0. Then the j th
component of the nth element of a generalised Halton sequence in bases b1; : : : ; bs
is given by

xn;j D
1X
kD0

�j;k.nj;k/

bkC1
j

whenever n D nj;0 C nj;1bj C nj;2b
2
j C � � � (2.19)

for j D 1; 2; : : : ; s and n 2 N0. A second possibility is a generalisation of
the Halton sequence to digital .t; s/-sequences (see Chap. 5) which use for all s
components the same fixed base b in the digital construction. However, also in this
case there might appear some defects in lower dimensional projections.

The Hammersley Point Set

We use the infinite Halton sequence to construct for every N 2 N, N � 2, an
N -element point set with low star discrepancy.

Definition 2.39
Let s 2 N, and let b1; : : : ; bs�1 � 2 be pairwise coprime integers. TheN -element
Hammersley point set HN;b1;:::;bs�1 in bases b1; : : : ; bs�1 is the finite point set
fx0; : : : ;xN�1g in Œ0; 1/s where

xn WD
	 n
N
; �b1.n/; : : : ; �bs�1 .n/

�
for n D 0; : : : ; N � 1:

Example 2.40

For example, in dimension s D 2withN D 8 and b D 2 the Hammersley point set H8;2 consists of
the elements x0 D .0; 0/, x1 D .1=8; 1=2/, x2 D .2=8; 1=4/, x3 D .3=8; 3=4/, x4 D .4=8; 1=8/,
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Fig. 2.6 The 128-element
Hammersley point set H128;2

in base 2

x5 D .5=8; 5=8/, x6 D .6=8; 3=8/ and x7 D .7=8; 7=8/. A further example is illustrated in
Fig. 2.6.

Theorem 2.41. For the star discrepancy of theN -element Hammersley point set
HN;b1;:::;bs�1 in Œ0; 1/s with pairwise coprime bases b1; : : : ; bs�1 we have

D�
N .HN;b1;:::;bs�1 / � 1

N

0
@ s�1Y
jD1

bj log.bjN /

log bj
C 1

1
A :

Hence, the Hammersley point set in pairwise coprime bases satisfies

D�
N .HN;b1;:::;bs�1 / D O

�
.logN/s�1

N

�
:

Note that this is a substantial improvement compared to the discrepancy of the
regular lattice, which is of the order of magnitude N�1=s only. It has become
customary to speak of low-discrepancy point sets in the case where their star
discrepancy is of order of magnitude .logN/s�1=N in dimension s, with N � 2

being the cardinality of the considered point set.
For the proof of Theorem 2.41 we use the following general principle which is

usually attributed to Roth.

Lemma 2.42. Let s 2 N, s � 2, and let S D .yn/n2N0 be an infinite sequence
in Œ0; 1/s�1 with star discrepancy D�

M .S/ for M 2 N. Let N 2 N and let P D
fx0; : : : ;xN�1g, where xn WD �

n
N
;yn


for n D 0; 1; : : : ; N � 1. Then

D�
N .P/ � 1

N

�
max

MD1;2;:::;N MD
�
M.S/C 1

�
:
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Proof. Consider an interval of the form J WD Qs
jD1Œ0; ˛j / � Œ0; 1/s . An element

xn from P belongs to J if and only if

0 � n

N
< ˛1 and yn 2

sY
jD2

Œ0; ˛j / DW QJ :

Now we have A.J;P ; N / D A. QJ ;S;M /, whereM D dN˛1e. Consequently,

jA.J;P ; N /�N�s.J /j
� jA. QJ ;S;M /�M�s�1. QJ /j C jM�s�1. QJ / �N�s.J /j:

Since jM�s�1. QJ /�N�s.J /j D j.dN˛1e �N˛1/
Qs
jD2 ˛j j � 1, it follows that

jA.J;P ; N /�N�s.J /j � jA. QJ ;S;M /�M�s�1. QJ /j C 1

� MD�
M.S/C 1

� max
MD1;2;:::;N MD

�
M .S/C 1;

and the result follows. ut

Proof of Theorem 2.41. Let Sb1;:::;bs�1 be an .s�1/-dimensional Halton sequence in
pairwise coprime bases b1; : : : ; bs�1. Then we obtain from Theorem 2.35

MD�
M.Sb1;:::;bs�1 / �

s�1Y
jD1

bj log.bjM/

log bj
;

whence

max
MD1;2;:::;N MD

�
M.Sb1;:::;bs�1 / �

s�1Y
jD1

bj log.bjN /

log bj
:

Now the result follows from Lemma 2.42. ut

2.5 Further Reading and Exercises

Further Reading

The theory of Uniform Distribution Modulo One was initiated by the seminal work of Weyl [95].
A standard reference is the book of Kuipers and Niederreiter [56]. Furthermore, the book of
Matoušek [65] offers a readable introduction to discrepancy theory. Also the books of Beck and
Chen [7], Dick and Pillichshammer [18], Drmota and Tichy [25], and Hlawka [43] can be warmly
recommended. The survey article [8] of Bilyk and Lacey gives an overview on recent results
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concerning the sharp order of magnitude for the smallest possible value of star discrepancy and
the survey [19] discusses constructions of point sets with best order of L2 discrepancy. A proof of
Proposition 2.22 can be found in [25] and of the inequality of Erdős-Turán-Koksma (Theorem 2.28)
in [25] or in [56] (for s D 1). The current best value for cs follows from Cochrane [14]. The proof
of Theorem 2.30 follows the exposition in [69]. More information on the Halton sequence can be
found in the books of Hua and Wang [46], Niederreiter [69], and Dick and Pillichshammer [18].
The currently best asymptotic estimate for the star discrepancy of the Halton sequence was shown
by Atanassov [5]. The presented version of this result (Theorem 2.38) is due to [18, Theorem 3.36].
The problem of defects in lower dimensional projections of Halton sequences and other sequences
based on digit expansions is discussed, e.g., by Lemieux [61] and Schmid [84].

Known approaches and algorithms to compute discrepancy measures of point sets are surveyed
in the book chapter [24] by Doerr, Gnewuch and Wahlström. Information concerning applications
of discrepancy theory to a wide variety of topics in computer science can be found in the book by
Chazelle [13].

Exercises

2.1 Let S be a sequence in Œ0; 1/s . Provide a Lebesgue integrable function f W Œ0; 1� ! R for
which (2.3) does not hold.

2.2 Show that an infinite sequence S in Œ0; 1/s is uniformly distributed modulo one if and only if
for every closed interval of the form Œa; b� � Œ0; 1/s we have

lim
N!1

A.Œa; b�;S; N /
N

D �s.Œa; b�/;

where for a D .a1; : : : ; as/, b D .b1; : : : ; bs/ we write Œa; b� D Œa1; b1� 	 � � � 	 Œas; bs �. An
analogous assertion can be shown for open intervals .a; b/.

2.3 Give a detailed proof of Theorem 2.4.
2.4 Show that a necessary condition for the uniform distribution of .fn˛g/n2N0 , where ˛ D

.˛1; : : : ; ˛s/ 2 R
s , is that 1; ˛1; : : : ; ˛s are linearly independent over the rationals.

2.5 Let b; c � 2 be integers satisfying gcd.b; c/ D 1. Show directly, i.e., without the knowledge
of the Halton result, that the two-dimensional sequence given by xn D .�b.n/; �c.n// for
n 2 N0 is uniformly distributed modulo one.

2.6 Determine both the L1 discrepancy and the star discrepancy of the following point sets:
(a) P D fn=N W n D 0; : : : ; N � 1g.
(b) P D fn=.2N / W n D 0; : : : ; N � 1g.

2.7 Show the so-called Warnock formula

.L2;N .P//2 D 1

3s
� 2

N

N�1X
nD0

sY
jD1

1� x2n;j

2
C 1

N 2

N�1X
n;mD0

sY
jD1

min.1� xm;j ; 1� xn;j /

for the squared L2 discrepancy of a point set P D fx0; : : : ;xN�1g in Œ0; 1/s , where xn;j
denotes the j th component of the point xn.

2.8 Determine the L2 discrepancy of the point sets from Exercise 2.6.
2.9 Determine the L1 discrepancy and the L2 discrepancy of the one-dimensional centered

regular lattice �N;1 D f.2nC 1/=.2N / W n D 0; : : : ; N � 1g.
2.10 Compute

R
Œ0;1�sN ŒL2;N .ft1; : : : ; tN g/�2 dt1 : : : dtN and interpret the result.

2.11 Let Ts;N .˛/ be the set of all N -tuples .t1; : : : ; tN / 2 Œ0; 1/sN for which



52 2 Uniform Distribution Modulo One

L2;N .ft1; : : : ; tN g/ � ˛p
N

�
1

2s
� 1

3s

�1=2
:

Show that for all ˛ � 1 we have �sN .Ts;N .˛// > 1� ˛�2:

2.12 For s; m 2 N, m � 2, let

��

m;s D
n	n1
m
; : : : ;

ns

m

�
W n1; : : : ; ns 2 f0; : : : ; m� 1g

o
:

(a) Show that D�

N .�
�

m;s/ D 1� .1� 1=m/s and deduce D�

N .�
�

m;s/ 
s N
�1=s.

(b) Determine the L2 discrepancy L2;N .��

m;s/ and deduce from the obtained formula that
L2;N .�

�

m;s/ 
s N
�1=s.

2.13 Let m1; : : : ; ms � 2 be integers and let

�m1;:::;ms D
��

k1

m1

; : : : ;
ks

ms

�
W kj 2 f0; : : : ; mj � 1g for j D 1; : : : ; s

�

be a regular lattice consisting of N D m1 � � �ms elements in Œ0; 1/s . Show that

D�

N .�m1;:::;ms / D 1�
sY

jD1

�
1� 1

mj

�
:

2.14 For i D 1; : : : ; k let Pi be an Ni -element point set with discrepancy DNi .Pi /. Let P be a
superposition of the point sets Pi , i D 1; : : : ; k and put N D N1 C � � � C Nk . Show the
so-called triangle inequality for the discrepancy:

DN.P/ �
kX

iD1

Ni

N
DNi .Pi /;

and similarly for the star discrepancy.
2.15 We prove Theorem 2.25: The proof is based on that of Theorem 2.24. Choose n 2 N such

that 2n�1 < 2N � 2n. For i D 0; : : : ; n define the functions fi W Œ0; 1/s ! f�1; 0; 1g as in
(2.8). Furthermore, for ˛ 2 .0; 1=2/ define the auxiliary function H W Œ0; 1/2 ! R by

H.x/ D
nY

iD0

.1C f̨i .x//� 1:

Put D.x/ D Nx1x2 � A.Œ0;x/;P; N /, where x D .x1; x2/. We split the proof into several
steps:

(a) Show the following lemma:

Lemma 2.43. For any set of integers fi1; : : : ; ikg satisfying 0 � i1 < � � � < ik � n

we have
R
Œ0;1�2 fi1 .x/ � � � fik .x/ dx D 0:

Hint: Partition the square Œ0; 1/2 into 2n�i1Cik rectangles by dividing Œ0; 1/ on the x-
axes into 2ik and on the y-axes into 2n�i1 intervals of the same length. Then argue as in
the case k D 2.
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(b) Show that
nY

iD0

.1C f̨i .x// D 1C ˛F.x/C
nC1X
kD2

˛kFk.x/;

where the function F is defined as in (2.9) and, for k D 2; : : : ; nC 1,

Fk.x/ D X
0�i1<:::<ik�n

fi1 .x/ � � � fik .x/:

(c) Prove that
R
Œ0;1�2 jH.x/j dx � 2: Hint: From ˛ < 1=2 we obtain jH.x/j � Qn

iD0.1 C
f̨i .x//C 1. Now use Lemma 2.43.

(d) Show the following lemma:

Lemma 2.44. For any set of integers fi1; : : : ; ikg satisfying 0 � i1 < � � � < ik � n

we have ˇ̌
ˇ̌Z
Œ0;1�2

fi1 .x/ � � � fik .x/D.x/ dx

ˇ̌
ˇ̌ � N2�nCi1�ik�4:

Hint: Let R be one of the 2n�i1Cik rectangles from the proof of Lemma 2.43. Show
that j R fi1 � � � fikD dxj D .�2.R/=4/

2 . Proceed as in the special case k D 1 in the proof
of Theorem 2.24.

(e) Show the following lemma:

Lemma 2.45. For every k D 2; : : : ; nC 1 we have

ˇ̌
ˇ̌
Z
Œ0;1�2

Fk.x/D.x/ dx

ˇ̌
ˇ̌ �

n�kC1X
iD0

n�iX
hD1

N

2nChC4

 
h� 1

k � 2

!
:

Hint: Use Lemma 2.44 and put i1 D i 2 f0; : : : ; n� k C 1g and ik D i C h, where
h 2 f1; : : : ; n� ig.

(f) Show that
ˇ̌
ˇPnC1

kD2 ˛
k
R
Œ0;1�2 Fk.x/D.x/ dx

ˇ̌
ˇ � ˛2N n

2nC2 .

(g) Show that for sufficiently small ˛ 2 .0; 1=2/ there exists a constant C > 0 such thatˇ̌
ˇRŒ0;1�2 H.x/D.x/ dx

ˇ̌
ˇ � C logN: Hint: From the triangle inequality it follows thatˇ̌R

HD
ˇ̌ � ˛

ˇ̌R
FD

ˇ̌�
ˇ̌
ˇPnC1

kD2 ˛
k
R
FkD

ˇ̌
ˇ.

(h) Deduce from Exercises 2.15c and 2.15g that

ND�

N .P/ D sup
x2Œ0;1�2

jD.x/j > c logN

for some positive constant c.
2.16 Deduce Theorem 2.27 from Theorem 2.25. Hint: Use Lemma 2.42.
2.17 Let S…1;:::;…s

b1;:::;bs
be the generalised Halton sequence in pairwise coprime bases b1; : : : ; bs and

with s sequences of permutations …j D .�j;k /k2N0 of f0; 1; : : : ; bj � 1g with �j;k.0/ D 0

for j D 1; 2; : : : ; s and k 2 N0, as defined in (2.19). Show that the star discrepancy of
S…1;:::;…s

b1;:::;bs
satisfies the bound from Theorem 2.35,

D�

N .S
…1;:::;…s

b1;:::;bs
/ �

0
@ sY
jD1

bj log.bj N /

log bj

1
A 1

N
for all N 2 N:



3QMC Integration in Reproducing Kernel Hilbert
Spaces

We return to the problem of numerical integration of multivariate functions. As
already mentioned in Sect. 1.1, we normalize the integration domain to be the
compact unit cube Œ0; 1�s , and hence the integrals considered are of the form (1.1).
We aim at approximating such integrals by QMC rules of the form QN;s.f / D
1
N

PN�1
nD0 f .xn/ with fixed integration nodes x0; : : : ;xN�1 taken from Œ0; 1/s, i.e.,

Z
Œ0;1�s

f .x/ dx � QN;s.f /:

On first sight this approach looks quite simple, but the crux of this method is the
choice of underlying nodes. On the other hand, as already mentioned, the knowledge
of the integration nodes is insufficient for solving the integration problem in full
generality. It is easy to construct two functions f; g W Œ0; 1�s ! R for which we have
f .xn/ D g.xn/ for all n D 0; 1; : : : ; N � 1, but

R
Œ0;1�s

f .x/ dx � R
Œ0;1�s

g.x/ dx

can be any number. This means that we require some global information on the
functions to be integrated. To tackle this problem we consider function classes with
certain smoothness properties and study the worst-case integration error of QMC
rules therein. Based on this error analysis, we find criteria for point sets to be used
as underlying nodes of QMC rules for the specific function class.

3.1 Univariate QMC Integration

To begin with, we consider QMC integration of univariate real valued functions
f W Œ0; 1� ! R with continuous first derivative on Œ0; 1�. For such functions we
obtain from the fundamental theorem of calculus that for any x 2 Œ0; 1�

f .x/ D f .1/ �
Z 1

x

f 0.y/ dy:

G. Leobacher and F. Pillichshammer, Introduction to Quasi-Monte Carlo Integration and
Applications, Compact Textbooks in Mathematics, DOI 10.1007/978-3-319-03425-6 3,
© Springer International Publishing Switzerland 2014
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For the error

e.f;P/ D
Z 1

0

f .x/ dx � 1

N

N�1X
nD0

f .xn/

of a QMC rule based on sample nodes P D fx0; : : : ; xN�1g from Œ0; 1/ we now
have

e.f;P/ D 1

N

N�1X
nD0

Z 1

xn

f 0.y/ dy �
Z 1

0

Z 1

x

f 0.y/ dy dx

D
Z 1

0

1

N

N�1X
nD0

�.xn;1�.y/f
0.y/ dy �

Z 1

0

Z y

0

f 0.y/ dx dy

D
Z 1

0

f 0.y/
"
1

N

N�1X
nD0

�.xn;1�.y/� y

#
dy:

Since

N�1X
nD0

�.xn;1�.y/ D
N�1X
nD0

�Œ0;y/.xn/ D A.Œ0; y/;P ; N /

is the number of indices n 2 f0; : : : ; N � 1g for which xn belongs to Œ0; y/, we find
that

1

N

N�1X
nD0

�.xn;1�.y/� y D �P ;N .y/;

i.e., the local discrepancy of P in y. Hence,

e.f;P/ D
Z 1

0

f 0.y/�P ;N .y/ dy: (3.1)

Taking the absolute value and applying first the triangle inequality for integrals and
then the Hölder inequality, we get

je.f;P/j �
Z 1

0

jf 0.y/jj�P ;N .y/j dy

�
�Z 1

0

jf 0.y/jq dy

�1=q �Z 1

0

j�P ;N .y/jp dy

�1=p

D kf 0kLqk�P ;N kLp ; (3.2)

where, as usual, p; q 2 Œ0;1� with 1
p

C 1
q

D 1.
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The estimate in (3.2) separates the influence of the integrand f and of the
underlying point set P on the absolute integration error. Hence, for QMC integration
of functions f for which kf 0kLq < 1, one should choose sample nodes P with
low Lp discrepancy Lp;N .P/ D k�P ;N kLp .

Note that kf 0kLq is just a semi-norm of the function f , while

kf k1;q WD
�

jf .1/jq C
Z 1

0

jf 0.y/jq dy

�1=q
(3.3)

is a proper norm. For this reason, (3.2) is often stated in the form

je.f;P/j � kf k1;q Lp;N .P/ for p; q � 1 and
1

p
C 1

q
D 1:

For p D 1 and q D 1 this is a simplified version of the inequality of Koksma.

Theorem 3.1 (Koksma inequality). For any f 2 C1.Œ0; 1�/ and any N -
element point set P in Œ0; 1/ we have

je.f;P/j � kf k1;1D�
N .P/:

Now we aim at developing a similar theory for multivariate functions. This can
be done in a very elegant way by using the notion of reproducing kernel Hilbert
space.

3.2 Reproducing Kernel Hilbert Spaces

For an integrable function f defined on Œ0; 1�s and a point set P D fx0; : : : ;xN�1g
in Œ0; 1/s we use the notation

e.f;P/ D
Z
Œ0;1�s

f .x/ dx � 1

N

N�1X
nD0

f .xn/;

in full analogy to the univariate case.
We want to introduce the notion of the worst-case error of a QMC rule in a Hilbert

space of functions. We denote the inner product in a Hilbert space H by h�; �i and
the corresponding norm by k � k D h�; �i1=2.

Definition 3.2
The worst-case error of a QMC rule based on a point set P D fx0; : : : ;xN�1g
in Œ0; 1/s in a Hilbert space H of integrable functions on Œ0; 1�s is defined as
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e.H;P/ D sup
f 2H;kf k�1

je.f;P/j:

One can develop a particularly nice error theory by using a reproducing kernel
for H.

Definition 3.3
A Hilbert space H of functions on Œ0; 1�s is called a reproducing kernel Hilbert
space on Œ0; 1�s if there exists a functionK W Œ0; 1�s � Œ0; 1�s ! C such that

K1: K.�;y/ 2 H for all y 2 Œ0; 1�s and
K2: hf;K.�;y/i D f .y/ for all y 2 Œ0; 1�s and for all f 2 H.

The functionK is called the reproducing kernel of H.

Note that in K1 and K2 we consider the reproducing kernel K as a function
of the first variable, denoted by �, and in hf;K.�; y/i we apply the inner product
with respect to the first variable of K . The second property K2 is the so-called
reproducing property, i.e., the evaluation of the function f can be expressed as the
inner product of the function and the kernel function.

A function which satisfies the properties K1 and K2 is automatically symmetric,
uniquely defined and positive semi-definite:

K3 (symmetry): K.x;y/ D K.y ;x/ for all x;y 2 Œ0; 1�s;
K4 (uniqueness): for any function QK satisfying K1 and K2 we have QK D K;
K5 (positive semi-definiteness): for any choice of a0; : : : ; aN�1 2 C and

x0; : : : ;xN�1 2 Œ0; 1�s we have
PN�1

m;nD0 amanK.xm;xn/ � 0.

Proof. K3: K.x;y/ D hK.�;y/;K.�;x/i D hK.�;x/;K.�;y/i D K.y;x/;

K4: QK.x;y/ D h QK.�;y/;K.�;x/i D hK.�;x/; QK.�;y/i D K.y;x/ D K.x;y/;

K5:

N�1X
m;nD0

amanK.xm;xn/ D
N�1X
m;nD0

amanhK.�;xn/;K.�;xm/i

D
*
N�1X
nD0

anK.�;xn/;
N�1X
mD0

amK.�;xm/
+

D
�����
N�1X
mD0

amK.�;xm/
�����
2

� 0:

ut

Conversely, one can show that a function K satisfying properties K3 and K5
uniquely determines a Hilbert space of functions for which K1 and K2 hold (and
hence also K4). Therefore, it makes sense to speak of a reproducing kernel without
explicitly specifying the corresponding Hilbert space of functions.
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Now we revisit Sect. 3.1 and consider the one-dimensional integration problem
in the light of reproducing kernel Hilbert spaces.

For f; g 2 C1.Œ0; 1�/ define an inner product by

hf; gi1 WD f .1/g.1/C
Z 1

0

f 0.x/g0.x/ dx: (3.4)

The corresponding norm kf k1;2 WD phf; f i1 is exactly the norm considered in
(3.3) for q D 2. We have kf k1;2 < 1 whenever the first derivative f 0 is in
L2.Œ0; 1�/. Based on this norm we define a Hilbert space H1 by

H1 D ff W Œ0; 1� ! R W f absolutely continuous and kf k1;2 < 1g:
Recall that a function f W Œ0; 1� ! R is called absolutely continuous, if for all
" > 0 there exists a ı > 0 such that for all n 2 N and any choice of pairwise
disjoint intervals .xk; yk/, k D 1; : : : ; n, in Œ0; 1� with

Pn
kD1.yk � xk/ < ı we

have
Pn

kD1 jf .xk/ � f .yk/j < ". For example, any Lipschitz continuous function
is absolutely continuous. In particular, if f W Œ0; 1� ! R is differentiable on Œ0; 1�
with bounded first derivative f 0, then f is absolutely continuous.

The definition of an absolutely continuous function is a bit unwieldy, but there is
a well-known equivalent condition that is more suited to our purpose: one can show
that a function f W Œ0; 1� ! R is absolutely continuous, if and only if there exists a
Lebesgue integrable function g W Œ0; 1� ! R such that f can be written in the form

f .x/ D f .0/C
Z x

0

g.t/ dt D f .1/ �
Z 1

x

g.t/ dt for all x 2 Œ0; 1�:

In this case f is almost everywhere differentiable and g D f 0 almost everywhere.

Now we show that the functionK1 defined by

K1.x; y/ D 1C min.1 � x; 1 � y/ (3.5)

is the reproducing kernel of H1. For fixed y 2 Œ0; 1� we have

K1.x; y/ D
�
2 � x if x > y;
2 � y if x � y;

and

@K1.x; y/

@x
D
� �1 if x > y;

0 if x � y:

Thus with g W Œ0; 1� ! R defined by

g.x/ D
� �1 if x > y;

0 if x � y;
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we obtain

K1.1; y/�
Z 1

x

g.t/ dt D 1C
Z 1

max.x;y/
dt D 1C min.1 � x; 1 � y/ D K1.x; y/:

Therefore, the function K1.�; y/ is absolutely continuous. In particular, K1.�; y/ is
also integrable. Furthermore,

hK1.�; y/;K1.�; y/i1 D K1.1; y/
2 C

Z 1

0

�
@K1.x; y/

@x

�2
dx

D 1C
Z 1

y

dx D 2 � y < 1;

and hence kK1.�; y/k1;2 < 1. This implies that K1.�; y/ 2 H1. It remains to check
the reproducing property of K1. We have

hf;K1.�; y/i1 D f .1/K1.1; y/C
Z 1

0

f 0.x/
@K1.x; y/

@x
dx

D f .1/ �
Z 1

y

f 0.x/ dx D f .y/:

Altogether, we have shown that K1 is the reproducing kernel of the space H1.

Let us consider QMC integration for the Hilbert space H1. Using the reproducing
kernelK1 we can write the integration functional as

Z 1

0

f .y/ dy D
Z 1

0

hf;K1.�; y/i1 dy

D
Z 1

0

�
f .1/K1.1; y/C

Z 1

0

f 0.x/
@K1.x; y/

@x
dx

�
dy

D f .1/

Z 1

0

K1.1; y/ dy C
Z 1

0

f 0.x/
Z 1

0

@K1.x; y/

@x
dy dx

D f .1/

Z 1

0

K1.1; y/ dy C
Z 1

0

f 0.x/
d

dx

�Z 1

0

K1.x; y/ dy

�
dx

D
�
f;

Z 1

0

K1.�; y/ dy

�
1

;

where we used Fubini’s theorem to change the order of integration, and where the
interchange of integration and differentiation can be justified by direct calculation

of the terms
R 1
0
@K1.x;y/

@x
dy and d

dx

	R 1
0
K1.x; y/ dy

�
. In a similar manner we can

write the QMC functionalQN;1.f / as



3.2 Reproducing Kernel Hilbert Spaces 61

QN;1.f / D 1

N

N�1X
nD0

f .xn/ D 1

N

N�1X
nD0

hf;K1.�; xn/i1 D
*
f;
1

N

N�1X
nD0

K1.�; xn/
+

1

:

Put

h.x/ D
Z 1

0

K1.x; y/ dy � 1

N

N�1X
nD0

K1.x; xn/:

Note that h 2 H1, since K1.�; y/ 2 H1 as well as
R 1
0
K1.�; y/ dy 2 H1. Now we

have

e.f;P/ D
Z 1

0

f .y/ dy �QN;1.f / D hf; hi1

and hence, using the Cauchy-Schwarz inequality,

je.f;P/j D jhf; hi1j � kf k1;2 khk1;2 : (3.6)

In (3.6) we have equality if f .x/ D h.x/.
Due to the linearity of the inner product we obtain for f 2 H1 with kf k1;2 ¤ 0

that

je.f;P/j
kf k1;2 D je.f=kf k1;2;P/j � khk1;2 D jhh; hi1j

khk1;2 D je.h;P/j
khk1;2 ;

with equality if f D h. Consequently,

e.H1;P/ D je.h;P/j
khk1;2 D jhh; hi1j

khk1;2 D khk1;2:

Observe that for x … P

�P ;N .x/ D d

dx

 Z 1

0

K1.x; y/ dy � 1

N

N�1X
nD0

K1.x; xn/

!
D h0.x/

(a proof of this fact is left as Exercise 3.8), and hence

L2;N .P/ D khk1;2 :

This implies that

e.H1;P/ D L2;N .P/; (3.7)
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i.e., the worst-case error is exactly the L2 discrepancy of the underlying point set.
Furthermore, among all functions from the unit ball of H1 the function h=khk1;2 is
the hardest to integrate (using the point set P), since for h we have equality in (3.6).

3.3 The Worst-Case Error in Reproducing Kernel Hilbert
Spaces

Let H be a Hilbert space of integrable functions f W Œ0; 1�s ! C, equipped with
inner product h�; �i and corresponding norm k � k D h�; �i1=2.

Recall from the general theory of normed spaces that a linear functional T on H
is called bounded if there existsM < 1 such that jT .f /j � M for all f satisfying
kf k � 1, and that for linear functionals boundedness is equivalent to continuity.

Recall further from Definition 3.2 that the worst-case error of a QMC rule based
on a point set P D fx0; : : : ;xN�1g in Œ0; 1/s in H is defined as

e.H;P/ D sup
f 2H;kf k�1

je.f;P/j;

where

e.f;P/ D
Z
Œ0;1�s

f .x/ dx � 1

N

N�1X
nD0

f .xn/

for f 2 H. A priori it is not clear that e.H;P/ is finite, or, in other words, that
the linear functional e.�;P/ is continuous. In the following we shall find conditions
under which this is the case.

For y 2 Œ0; 1�s consider the linear functional Ty which evaluates f 2 H at y ,
i.e.,

Ty.f / D f .y/ for f 2 H:

Ty is called the evaluation functional in y. If Ty is continuous for all y 2 Œ0; 1�s ,
then so is every QMC rule.

It turns out that continuity of the evaluation functionals is equivalent to the
existence of a reproducing kernel. For the proof of this remarkable fact we use a
well-known result for continuous linear functionals from functional analysis, the
Fréchet-Riesz representation theorem.

Theorem 3.4 (Fréchet-Riesz Representation Theorem). Let X be a Hilbert
space equipped with inner product h�; �i and let T W X ! C be a continuous
linear functional. Then there exists exactly one element z 2 X with the property
that

T .x/ D hx; zi for all x 2 X :
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Theorem 3.5. Let H be a Hilbert space of functions on Œ0; 1�s . Then H is
a reproducing kernel Hilbert space on Œ0; 1�s if and only if the evaluation
functionals

Ty.f / D f .y/ for f 2 H; y 2 Œ0; 1�s
are continuous.

Proof. If the evaluation functionals are continuous, then the Fréchet-Riesz repre-
sentation theorem guarantees, for every y , the existence of a uniquely determined
function ky 2 H with the property that

Ty.f / D hf; kyi for all f 2 H:

If we now defineK.x;y/ D ky.x/ for x;y 2 Œ0; 1�s , thenK satisfies the properties
K1 and K2 and thus H is a reproducing kernel Hilbert space with reproducing
kernelK .

Conversely, assume that K is a reproducing kernel for H and let y 2 Œ0; 1�s .
Using the Cauchy-Schwarz inequality, we get for every f 2 H

jTy.f /j D jf .y/j D jhf;K.�;y/ij � kf k kK.�;y/k:

From the reproducing property we get kK.�;y/k2 D hK.�;y/;K.�;y/i D K.y;y/,
so that jTy.f /j � M for every f with kf k � 1, where M D p

K.y ;y/. That
means that Ty is continuous. ut

Next consider the integration functional I.f / D R
Œ0;1�s

f .x/ dx. If H has a
reproducing kernelK , then for any f 2 H with kf k � 1

ˇ̌
ˇ̌Z
Œ0;1�s

f .y/ dy

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌Z
Œ0;1�s

Ty.f / dy

ˇ̌
ˇ̌ �

Z
Œ0;1�s

jTy.f /j dy �
Z
Œ0;1�s

p
K.y ;y/ dy :

Hence if the kernel K satisfies the condition
C:

R
Œ0;1�s

p
K.y ;y/ dy < 1,

then the integration functional I is continuous.

We can summarize: if H has a reproducing kernel K which satisfies condition
C, then function evaluation and integration are continuous linear functionals, and
so is e.�;P/ for any point set P . Moreover, under these conditions e.H;P/ is a
well-defined finite number.

I Remark 3.6 After studying a couple of examples of reproducing kernel Hilbert
spaces, the property that the evaluation functionals are continuous becomes increas-
ingly natural. So one may justly ask the question whether there exist any examples
at all of Hilbert spaces of functions for which function evaluation is not continuous.
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Such an example can indeed be constructed, however, this example makes use of
the fact that any linear subspace of a vector space has an algebraic complement.
Thus the example is rather non-constructive and we may state informally that
all “natural” examples of Hilbert spaces of functions have continuous evaluation
functionals.

The example cited above also serves as an example of a Hilbert space of functions
where the integration functional is defined on the whole space, but is not continuous.

I Remark 3.7 Condition C is not strictly necessary for continuity of the integration
functional. In fact, under our global assumption that we have a Hilbert space
of integrable functions, continuity of the evaluation functionals is sufficient for
continuity of the integration functional. The proof for this uses the closed graph
theorem and can be found in [76, Section 23.4]. In the notes on the same section
one can find an example of a reproducing kernel Hilbert space for which K.�;y/ is
integrable for every y, but which contains functions that are not integrable.

In the last section we used the important property that for the specific kernel
K1.x; y/ D 1C min.1� x; 1� y/ one can interchange the order of integration and
the inner product, i.e.,

Z 1

0

hf;K1.�; y/i1 dy D
�
f;

Z 1

0

K1.�; y/ dy

�
1

: (3.8)

There, this interchange reduced to a change of the order of integration and of the
order of integration and differentiation. Property (3.8) is essential for our error
analysis, and in the following we show that it holds for any reproducing kernel
Hilbert space for which the integration functional is continuous.

Lemma 3.8. Let H be a reproducing kernel Hilbert space with reproducing
kernel K and inner product h�; �i. Assume that the mapping

I.f / D
Z
Œ0;1�s

f .y/ dy for f 2 H

is a continuous linear functional on H. Then

Z
Œ0;1�s

hf;K.�;y/i dy D
�
f;

Z
Œ0;1�s

K.�;y/ dy

�
:

Proof. Since I is continuous, the Fréchet-Riesz representation theorem guarantees
the existence of a unique functionR 2 H, such that

Z
Œ0;1�s

f .y/ dy D I.f / D hf;Ri for all f 2 H:
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Since R 2 H, the evaluation of R at some x can be expressed in terms of the inner
product with the kernel functionK.�;x/, and hence

R.x/ D hR;K.�;x/i D hK.�;x/; Ri D
Z
Œ0;1�s

K.y;x/ dy:

Thus we have
Z
Œ0;1�s

hf;K.�;y/i dy D
Z
Œ0;1�s

f .y/ dy D hf;Ri

D
*
f;

Z
Œ0;1�s

K.y; �/ dy

+
D
�
f;

Z
Œ0;1�s

K.�;y/ dy

�
:

ut

From now on we will always tacitly assume that K satisfies condition C.

With this assumption we can proceed in our worst-case error analysis as in the
special case from the previous section. We have

I.f / D
Z
Œ0;1�s

hf;K.�;y/i dy D
�
f;

Z
Œ0;1�s

K.�;y/ dy

�

and

QN;s.f / D 1

N

N�1X
nD0

hf;K.�;xn/i D
*
f;
1

N

N�1X
nD0

K.�;xn/
+
:

Therefore, the integration error of the QMC rule QN;s in H can again be expressed
as an inner product

e.f;P/ D hf; hi ; (3.9)

where

h.x/ D
Z
Œ0;1�s

K.x;y/ dy � 1

N

N�1X
nD0

K.x;xn/:

This function is often called the representer of the integration error. Taking the
absolute value and applying the Cauchy-Schwarz inequality leads to

je.f;P/j � kf k khk:
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Moreover, it follows from (3.9) that among all functions in the unit ball of H the
normalized representer h=khk is the hardest to integrate. Therefore, the worst-case
error can be written as

e.H;P/ D khk:

From this result we obtain for the squared worst-case error the formula e2.H;P/ D
hh; hi, which is very convenient for the calculation of the worst-case error of QMC
rules in specific reproducing kernel Hilbert spaces.

Theorem 3.9. Let H be a reproducing kernel Hilbert space with reproducing
kernelK that satisfies condition C and let P D fx0; : : : ;xN�1g be anN -element
point set in Œ0; 1/s . Then

e2.H;P/ D
Z
Œ0;1�s

Z
Œ0;1�s

K.x;y/ dx dy � 2

N

N�1X
nD0

Z
Œ0;1�s

K.xn;y/ dy

C 1

N 2

N�1X
n;mD0

K.xn;xm/:

In the next section we apply the theory developed here to show some classical
results for the QMC integration error.

3.4 The Koksma-Hlawka Inequality

The Koksma-Hlawka inequality is the fundamental error estimate for QMC rules
which separates the influence of the integrand f and of the underlying integration
nodes on the integration error. It was proved by J.F. Koksma in 1942 for dimension
s D 1 and later, in 1961, generalized by E. Hlawka to arbitrary dimensions s 2
N. The Koksma-Hlawka inequality is a very general error estimate valid for all
functions of finite variation in the sense of Hardy and Krause, which reduces to
the total variation in dimension s D 1.

We consider the reproducing kernelKs W Œ0; 1�s � Œ0; 1�s ! R given by

Ks.x;y/ D
sY

jD1
K1.xj ; yj / D

sY
jD1

.1C min.1 � xj ; 1 � yj //; (3.10)

where x D .x1; : : : ; xs/ 2 Œ0; 1�s , y D .y1; : : : ; ys/ 2 Œ0; 1�s , and K1 is defined as
in (3.5). The corresponding inner product is given by
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hf; gis D
X
u�Œs�

Z
Œ0;1�juj

@jujf
@xu

.xu; 1/
@jujg
@xu

.xu; 1/ dxu; (3.11)

where Œs� D f1; : : : ; sg. For u � Œs� and x D .x1; : : : ; xs/ 2 Œ0; 1�s we put .xu; 1/ D
.z1; : : : ; zs/, where

zj D
�
xj if j 2 u;

1 if j 62 u:

Furthermore @juj=@xu denotes the mixed first partial derivative with respect to the
components of x whose index belongs to u.

Now let Hs be the reproducing kernel Hilbert space with reproducing kernel Ks

and norm k�ks;2 D h�; �i1=2s . We call Hs an anchored Sobolev space with anchor in 1.
This function space contains all functions f on Œ0; 1�s whose mixed partial

derivatives @jujf=@xu up to order one in each variable belong to L2.Œ0; 1�s/ and
that are expressible in the form

f .x/ D hf;Ks.�;x/is

D
X
u�Œs�

.�1/juj
Z
Œ0;1�juj

@jujf
@yu

.yu; 1/�Œ0;.yu;1//.x/ dyu for x 2 Œ0; 1�s:

In Sect. 3.2 we already considered the one-dimensional case H1 and learned
that it consists of all absolutely continuous functions f with square integrable first
derivative. For s > 1 one can show that Hs is the s-fold tensor product of the spaces
H1, i.e.,

Hs D H1 ˝ : : :˝ H1„ ƒ‚ …
s-fold

D clos span

8<
:x 7!

sY
jD1

fj .xj / W fj 2 H1

9=
;

where x D .x1; : : : ; xs/ and where the closure clos is taken with respect to the norm
k � ks;2.

We have

Z
Œ0;1�s

p
Ks.y ;y/ dy D

�Z 1

0

p
2 � y dy

�s
D
 
2.

p
8 � 1/

3

!s
< 1;

and so Ks satisfies condition C. Thus it follows from (3.9), that

e.f;P/ D hf; his
for all f 2 Hs and all N -element point sets P in Œ0; 1/s , where h is the representer
of the integration error in Hs . We have
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h.x/ D
Z
Œ0;1�s

Ks.x;y/ dy � 1

N

N�1X
nD0

Ks.x;xn/

D
sY

jD1

�Z 1

0

.1C min.1 � xj ; 1 � yj // dyj

�

� 1

N

N�1X
nD0

sY
jD1

.1C min.1 � xj ; 1 � xn;j //

D
sY

jD1

3� x2j

2
� 1

N

N�1X
nD0

sY
jD1

.1C min.1 � xj ; 1 � xn;j //:

For u � Œs� we have

@juj

@xu
h.xu; 1/ D.�1/juj

0
@Y
j2u

xj � 1

N

N�1X
nD0

Y
j2u

�Œ0;xj /.xn;j /

1
A

D.�1/juj
0
@Y
j2u

xj � 1

N

N�1X
nD0

�Œ0;.xu;1//.xn/

1
A

D.�1/jujC1�P ;N .xu; 1/;

where xn D .xn;1; : : : ; xn;s/ and where �P ;N denotes the local discrepancy of the
N -element point set P . Note that �P ;N .x;; 1/ D �P ;N .1/ D 0.

From these considerations we obtain a formula for the integration error in Hs

which is known as Hlawka’s identity or as Zaremba’s identity.

Theorem 3.10 (Hlawka’s identity, Zaremba’s identity). For f 2 Hs and P
in Œ0; 1/s we have

e.f;P/ D
X

;6Du�Œs�
.�1/juj

Z
Œ0;1�juj

@jujf
@xu

.xu; 1/�P ;N .xu; 1/ dxu:

Taking absolute values on both sides of the equality in Theorem 3.10 and using
the estimate

j�P ;N .xu; 1/j � sup
x2Œ0;1�s

j�P ;N .x/j D D�
N .P/;

we immediately end up with the desired special case of the Koksma-Hlawka
inequality. For a function f W Œ0; 1�s ! R for which all partial mixed derivatives up
to order one in each variable are continuous on Œ0; 1�s we define the norm
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kf ks;1 D
X
u�Œs�

Z
Œ0;1�juj

ˇ̌
ˇ̌
ˇ
@jujf
@xu

.xu; 1/

ˇ̌
ˇ̌
ˇ dxu:

Theorem 3.11 (Koksma-Hlawka inequality). Let P be an N -element point
set in Œ0; 1/s . Then for all functions f on Œ0; 1�s with kf ks;1 < 1 we have

je.f;P/j � kf ks;1D�
N .P/:

This fundamental error estimate separates the influence of the function f and of
the integration nodes P on the integration error. The Koksma-Hlawka inequality in
its original, more general form states that je.f;P/j � V.f /D�

N .P/, where V.f /
denotes the variation in the sense of Hardy and Krause. We do not give the definition
of the latter notion here, but we mention that if all partial mixed derivatives of f up
to order one in each variable are continuous on Œ0; 1�s , then

V.f / D
X

;6Du�Œs�

Z
Œ0;1�juj

ˇ̌
ˇ̌
ˇ
@jujf
@xu

.xu; 1/

ˇ̌
ˇ̌
ˇ dxu:

3.5 Further Reading and Exercises

Further Reading

This chapter is mainly based on [18, Chapter 2], to which we refer for more detailed information.
A very recent overview can be found in the survey by Dick, Kuo, and Sloan [22]. For an
introduction to the theory of reproducing kernel Hilbert spaces we refer to the paper [4] of
Aronszajn. The foundations of the theory of Hilbert spaces and of absolutely continuous functions
can be found, for example, in [82]. Hickernell [35] was the first who introduced reproducing kernel
Hilbert spaces in the context of QMC. A proof of the Koksma-Hlawka inequality in its general form
can be found in the original paper by Hlawka [42] and in the book by Kuipers and Niederreiter [56].

Exercises

3.1 Let x0; x1; : : : ; xN�1 2 Œ0; 1/ and let  be an arbitrary real number. Construct two continuous
functions f; g W Œ0; 1� ! R such that f .xn/ D g.xn/ for all n D 0; 1; : : : ; N � 1, butR 1
0 f .x/ dx D  C R 1

0 g.x/ dx. Can you find f; g that are infinitely smooth, but still have
this property?

3.2 Let

Br D fp.x/ D a0 C a1x C � � � C arx
r W a0; : : : ; ar 2 R; x 2 Œ0; 1�g

be the space of all polynomials on Œ0; 1� of degree at most r 2 N0. Define the inner product
of p.x/ D a0 C a1x C � � � C arx

r and q.x/ D b0 C b1x C � � � C brx
r in Br by
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hp; qi D a0b0 C � � � C arbr :

Determine the reproducing kernel K.x; y/ for this space and show directly that K is
symmetric, uniquely determined, and positive semidefinite.

3.3 Let

Cr D fa0 C a1 exp.2�ix/C � � � C ar exp.2�irx/ W a0; : : : ; ar 2 C; x 2 Œ0; 1�g
be the space of all trigonometric polynomials on Œ0; 1� of degree at most r 2 N0. Define
the inner product of f .x/ D a0 C a1 exp.2�ix/ C � � � C ar exp.2�irx/ and g.x/ D
b0 C b1 exp.2�ix/C � � � C br exp.2�irx/ in Cr by

hf; gi D a0b0 C � � � C arbr :

Determine the reproducing kernel K.x; y/ for this space and show directly that K is
symmetric, uniquely determined, and positive semidefinite.

3.4 Show that the function K.x; y/ D min.1� x; 1� y/ is the reproducing kernel for the space

H D ff W Œ0; 1� ! R W f absolutely continuous, kf k < 1; and f .1/ D 0g;

where kf k D hf; f i1=2 and hf; gi D R 1
0 f

0.x/g0.x/ dx:
3.5 For an integer b � 2 let !b D exp.2�i=b/. Let k 2 N0 with b-adic expansion k D

�0 C �1b C � � � C �a�1b
a�1 . The kth b-adic Walsh function bwalk W R ! C, periodic with

period one, is, defined for x 2 Œ0; 1/, as

bwalk.x/ D !
�0
1C�1
2C���C�a�1
a
b ;

where x D 
1b
�1 C 
2b

�2 C 
3b
�3 C � � � is the b-adic expansion of x (unique in the sense

that infinitely many of the digits 
i must be different from b � 1).
The system f bwalk W k 2 N0g is a complete orthonormal basis of L2.Œ0; 1�/ and it is

called the b-adic Walsh function system.
For ˛ > 1 we define the Hilbert space Hwal;b;˛ � L1.Œ0; 1�/ consisting of all functions f

with absolutely convergent Walsh series

f .x/ D
1X
kD0

Ofwal.h/ bwalk.x/; where Ofwal.h/ D
Z 1

0

f .x/ bwal.x/ dx;

and with finite norm kf kwal;b;˛ D hf; f i1=2wal;b;˛ , where the inner product is

hf; giwal;b;˛ D
1X
kD0

rwal;b;˛.h/ Of .h/ Og.h/;

with rwal;b;˛.0/ D 1 and, rwal;b;˛.k/ D b�˛.1Cblogb kc/, for k 2 N.
Show that Hwal;b;˛ is a reproducing kernel Hilbert space with kernel

Kwal.x; y/ D
1X
kD0

rwal;b;˛.k/ bwalk.x/ bwalk.y/ for x; y 2 Œ0; 1/:

3.6 Show that the worst-case error of QMC integration in Br from Exercise 3.2 based on a point
set P D fx0; : : : ; xN�1g in Œ0; 1/ is given by
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e2.Br ;P/ D
rX

lD0

 
1

l C 1
� 1

N

N�1X
nD0

xln

!2
:

Assume that P is given by xn D n=N for n D 0; : : : ; N � 1. Show that then e.Br ;P/ 
r

1=N .
3.7 Show that the worst-case error of QMC integration in Cr from Exercise 3.3 based on a point

set P D fx0; : : : ; xN�1g in Œ0; 1/ is given by

e2.Cr ;P/ D
rX

lD1

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�ilxn/

ˇ̌
ˇ̌
ˇ
2

:

LetN > r be a prime number and assume that P is given by xn D n=N for n D 0; : : : ; N �
1. Show that then e.Cr ;P/ D 0.

3.8 Let K1.x; y/ D 1 C min.1 � x; 1 � y/. Show that the local discrepancy of a point set
P D fx0; : : : ; xN�1g satisfies

�P ;N .y/ D d

dy

 Z 1

0

K1.x; y/ dx � 1

N

N�1X
nD0

K1.xn; y/

!
(3.12)

for all y … P , so that in particular (3.12) holds for almost all y 2 Œ0; 1�.
3.9 Let H be the reproducing kernel Hilbert space with kernel

K.x;y/ D
sY

jD1

min.1� xj ; 1� yj /;

for x D .x1; : : : ; xs/ and y D .y1; : : : ; ys/ in Œ0; 1�s and the inner product

hf; gi D
Z
Œ0;1�s

@sf

@x
.x/

@sg

@x
.x/ dx:

Show that for every N -element point set P in Œ0; 1/s we have e.H;P/ D L2;N .P/.
3.10 Use Theorem 3.9 to compute e.H;P/ from Exercise 3.9 and show in this way the formula

from Exercise 2.7.
3.11 Let Hs be the reproducing kernel Hilbert space with reproducing kernel (3.10) and inner

product (3.11). Show that

e2.Hs ;P/ D X
;¤u�Œs�

.L2;N .Pu//
2

D 4s

3s
� 2

N

NX
nD1

sY
jD1

3� x2n;j

2
C 1

N 2

NX
n;mD1

sY
jD1

Œ1C min.1� xn;j ; 1� xm;j /�;

where Pu stands for the projection of the points in P onto the coordinates in u and L2;N .Pu/

stands for the L2 discrepancy of Pu. Remark: Note that this result is the multi-dimensional
version of (3.7).

3.12 Let H be a Hilbert space of functions f W Œ0; 1�s ! C with inner product h�; �i and norm
k � k D h�; �i1=2, and with a reproducing kernel K .

For every i D 1; : : : ; k let Pi be an Ni -element point sets in Œ0; 1/s . Let P be the
superposition of the Pi , where repeated elements are allowed. Let N D N1 C � � � C Nk .
Show the so-called triangle inequality for the worst-case error:
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e.H;P/ �
kX

iD1

Ni

N
e.H;Pi /:

3.13 Let K be a reproducing kernel. Show that condition C implies that
Z
Œ0;1�2s

K.x;y/ dx dy < 1:

3.14 Let H be a Hilbert space of functions f W Œ0; 1� ! C with inner product h�; �i and norm
k � k D h�; �i1=2, and with a reproducing kernel K that satisfies condition C. The so-called
initial error is defined as

e.H; 0/ D sup
f2H;kf k�1

ˇ̌
ˇ̌Z
Œ0;1�s

f .x/ dx

ˇ̌
ˇ̌ :

Show that

e.H; 0/ D
Z
Œ0;1�2s

K.x;y/ dx dy:

Remark: The initial error is often used as a reference value for the worst-case error.
3.15 Let H be a Hilbert space of functions f W Œ0; 1� ! C with inner product h�; �i and norm

k � k D h�; �i1=2, and with a reproducing kernel K satisfying condition C.
Rather than QMC rules, we now consider more general so-called linear integration rules

of the form

QP ;w.f / D
N�1X
nD0

wnf .xn/;

where w D .w0; : : : ;wN�1/ 2 R
N and P D fx0; : : : ;xN�1g � Œ0; 1/s are given. Note that

a QMC rule is obtained by choosing w D .N�1; : : : ; N�1/. The worst-case integration error
for a linear rule is defined as

e.H;P;w/ D sup
f2H;kf k�1

ˇ̌
ˇ̌Z
Œ0;1�s

f .x/ dx �QP ;w.f /

ˇ̌
ˇ̌ :

Show that

e2.H;P;w/ D
Z
Œ0;1�2

K.x;y/ dx dy � 2

N�1X
nD0

wn

Z
Œ0;1�s

K.xn;y/ dy

C
N�1X
n;mD0

wnwmK.xn;xm/:

3.16 Let H be a reproducing kernel Hilbert space with reproducing kernel K satisfyingR
Œ0;1�s K.x;x/ dx < 1. As integration nodes P choose realisations of N independent

and uniformly distributed random variables X0; : : : ; XN�1 in Œ0; 1�s . Show that the QMC
mean square worst-case error EŒe2.H;P/� is given by

EŒe2.H;P/� D 1

N

�Z
Œ0;1�s

K.x;x/ dx �
Z
Œ0;1�2s

K.x;y/ dx dy

�
:
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4.1 Definition and Discrepancy Estimates

We have shown in Proposition 2.6 that the infinite sequence .fn˛g/n2N0 is uniformly
distributed modulo one under a certain condition on the vector ˛ 2 R

s . In this
chapter we consider “finite” versions of such sequences which are referred to as
lattice point sets.

Definition 4.1
Let s;N 2 N,N � 2, and let g 2 Z

s . The point set P.g; N / D fx0; : : : ;xN�1g,
with

xn WD
n n
N

g
o

for n D 0; 1; : : : ; N � 1;

where the fractional part f�g is applied component-wise, is called a lattice point
set. The vector g is called the generating vector of the lattice point set.

An example of a two-dimensional lattice point set consisting of N D 987

elements is illustrated in Fig. 4.1.
Every element of a lattice point set P.g; N / D fx0; : : : ;xN�1g with generating

vector g 2 Z
s is of the form xn D f.1=N /yng with yn D ng 2 Z

s . Hence, for a
discrepancy estimate we can apply Theorem 2.30. In this way we obtain

DN.P.g; N // � 1�
�
1 � 1

N

�s
C

X
h2C�

s .N /

1

r.h; N /

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�inh � g=N/

ˇ̌
ˇ̌
ˇ :

Using the formula for geometric sums we obtain the following important property
of lattice point sets:

N�1X
nD0

exp.2�inh � g=N/ D
�
N if h � g 	 0 .mod N/;
0 if h � g 6	 0 .mod N/:

(4.1)

G. Leobacher and F. Pillichshammer, Introduction to Quasi-Monte Carlo Integration and
Applications, Compact Textbooks in Mathematics, DOI 10.1007/978-3-319-03425-6 4,
© Springer International Publishing Switzerland 2014
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Fig. 4.1 A two-dimensional
lattice point set with
N D 987 elements and
generating vector
g D .1;610/

Definition 4.2
The set

L.g; N / D fh 2 Z
s W h � g 	 0 .mod N/g

is called the dual lattice of the lattice point set P.g; N /.

Hence the above discrepancy estimate for lattice point sets reduces to

DN .P.g; N // � 1 �
�
1 � 1

N

�s
C

X
h2C�

s .N /\L.g;N /

1

r.h; N /
: (4.2)

For h 2 Z we define r1.h/ D max.1; jhj/ and for h D .h1; : : : ; hs/ 2 Z
s we

define r1.h/ D Qs
jD1 r1.hj /. Then for any h 2 C �

s .N / we have r.h; N / � 2r1.h/.
This inequality follows from the fact that sin.�t/ � 2t for 0 � t � 1=2. Now we
define

RN.g/ WD
X

h2C�

s .N /\L.g;N /

1

r1.h/
: (4.3)

Summing up we get the following estimate for the discrepancy of lattice point sets.

Proposition 4.3. The discrepancy of a lattice point set P.g; N / in Œ0; 1/s with
g 2 Z

s and N � 2 satisfies

DN.P.g; N // � s

N
C 1

2
RN .g/:

Now, for givenN , we aim at finding a generating vector g with low value for the
quantityRN . Such generating vectors yield a low discrepancy for the corresponding
lattice point set.

One way of finding generating vectors with small value of RN is a computer
search. Note that it follows from the definition ofRN that it is enough to search for g

within the finite set f0; : : : ; N �1gs . Nevertheless, apart from small values ofN and
s, an exhaustive search for g is practically not feasible, since one still has to check
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Ns integer vectors. At this point we use an idea that was first used by N.M. Korobov
in the 1960s and which was later re-invented by I.H. Sloan and A.V. Reztsov in 2002.
This basic idea is to construct a generating vector component-by-component (CBC).
That is, for given N , one starts with a sufficiently good one-dimensional generator
.g1/. To this generator one appends a second component g2 which is chosen as to
minimize a desired figure of merit, in our case the quantity RN . In a next step, one
appends to the now two-dimensional generator .g1; g2/ a third component g3 which
is again chosen so as to minimize the desired figure of merit. This procedure is
repeated until one obtains an s-dimensional generating vector. In each of the s steps
the search space f0; : : : ; N�1g has cardinalityN and hence the overall search space
for the component-by-component method reduces to a size of sN . Therefore, this
provides a feasible way of finding a generating vector which is (hopefully) “good”
with respect to the involved figure of merit.

It is obvious that we may exclude the element 0 from the search space. Let in the
followingGN WD f1; : : : ; N � 1g.

Algorithm 4.4 (CBC algorithm). Let s;N 2 N.
1. Choose g1 D 1.
2. For d D 2; 3; : : : ; s, choose gd 2 GN to minimize RN..g1; : : : ; gd�1; z// as a

function of z 2 GN .

Having formulated a construction algorithm, there is still the question whether
the resulting generating vector is good in the sense that it yields a sufficiently
small value for the figure of merit RN , and hence also for the discrepancy of
the corresponding lattice point set. This question is answered in the affirmative in
Theorem 4.5. For technical reasons we restrict ourselves to integers N which are
prime numbers.

Theorem 4.5. Let N be a prime number. If the lattice point g D .g1; : : : ; gs/ is
constructed using Algorithm 4.4, then for all d 2 f1; : : : ; sg

RN .gd / � 1

N � 1
.1C SN /

d ;

where SN D P
h2C�

1 .N /
jhj�1 and where gd D .g1; : : : ; gd /.

Proof. Since N is a prime number it follows that RN.z/ D 0 for all z 2 GN , which,
in particular, applies for g1 D 1. Let d 2 N and assume that

RN.g/ � 1

N � 1.1C SN /
d ;

where g D .g1; : : : ; gd /. Now, with some abuse of notation, we consider the .d C
1/-dimensional lattice point .g; gdC1/ WD .g1; : : : ; gd ; gdC1/.
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According to Algorithm 4.4, gdC1 is a minimizer of the functionRN..g; �// over
GN . Therefore,

RN..g; gdC1// � 1

N � 1

N�1X
gdC1D1

X
.h;hdC1/2C

�

dC1
.N /

h�gChdC1gdC1�0 .mod N/

1

r1.h/

1

r1.hdC1/

D
X

.h;hdC1/2C�

dC1
.N /

1

r1.h/

1

r1.hdC1/
1

N � 1

X
gdC12GN

h�gChdC1gdC1�0 .mod N/

1;

where we just interchanged the order of summation. Decomposing the range of
summation according to C �

dC1.N / D .C �
d .N / � f0g/ [ .Cd.N / � C �

1 .N // we
obtain

RN ..g; gdC1//

� RN.g/C
X

h2Cd .N/

1

r1.h/

X
hdC12C�

1 .N /

1

r1.hdC1/
1

N � 1
X

gdC12GN
hdC1gdC1��h�g .mod N/

1:

Now we use that N is a prime number. In this case we have that the congruence
hdC1gdC1 	 �h � g .mod N/ has exactly one solution gdC1 2 GN whenever
h � g 6	 0 .mod N/ and no solution in GN whenever h � g 	 0 .mod N/. This
leads to

RN..g; gdC1// � RN.g/C 1

N � 1
X

h2Cd .N/

1

r1.h/

X
hdC12C�

1 .N /

1

r1.hdC1/

D RN .g/C SN

N � 1
X

h2Cd .N/

1

r1.h/

D RN .g/C SN

N � 1.1C SN/
d

� 1

N � 1
.1C SN /

d C SN

N � 1.1C SN /
d

D 1

N � 1.1C SN /
dC1;

where from line three to four of this displayed formula we applied the induction
hypothesis for RN.g/. Hence the desired result follows by induction on d . ut

Using a straightforward estimate we have

SN � 2

bN=2cX
hD1

1

h
� 2

 
1C

Z N=2

1

dt

t

!
D 2.logN C 1 � log 2/: (4.4)



4.1 Definition and Discrepancy Estimates 77

Hence Algorithm 4.4 yields lattice points g 2 Gs
N with

RN.g/ � 1

N � 1
.1C 2.logN C 1 � log 2//s

� 2sC1

N
.logN C 1/s D Os

�
.logN/s

N

�
:

This estimate is best possible in the order of magnitude in N , as was shown by
G. Larcher in 1987, and stated in the following theorem.

Theorem 4.6 (Larcher). For every dimension s � 2 there exists a cs > 0,
depending only on s, such that for all g 2 Z

s and every N 2 N we have

RN.g/ > cs
`.log.N=`//s

N

with ` D gcd.g1; g2; : : : ; gs; N /.

The sophisticated proof of this result is based on the theory of continued
fractions, which is beyond the scope of this introductory book.

Combining Proposition 4.3 and Theorem 4.5 we obtain the following estimate
for the discrepancy of lattice point sets whose generating vector is constructed by
Algorithm 4.4.

Corollary 4.7. LetN be a prime number. If the lattice point g D .g1; : : : ; gs/ is
constructed with Algorithm 4.4, then, for all d 2 f1; : : : ; sg,

DN.P.gd ; N // � d

N
C 2d

N
.logN C 1/d ;

where gd D .g1; : : : ; gd /.

Hence the CBC algorithm yields lattice points g 2 Gs
N for which the correspond-

ing lattice point set P.g; N / satisfies

DN.P.g; N // D Os

�
.logN/s

N

�
:

Using a different approach, it was shown by V.A. Bykovskii in 2012 that for every
s;N 2 N, s � 2 and N � 3, there exists a generating vector g 2 Z

s for which

DN .P.g; N // D Os

�
.logN/s�1 log logN

N

�
: (4.5)
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For dimension s D 2 this result was already obtained by G. Larcher in 1986. It
is currently the best result for the discrepancy of lattice point sets. In contrast to
Corollary 4.7, this is a pure existence result.

4.2 The Fast CBC Construction

In the last section we learned that, for givenN and s, we can construct a generating
vector g with low discrepancy component-by-component. So far we did not think
about the construction cost of the CBC algorithm. Is the CBC algorithm reasonably
fast to construct generating vectors also for large N and large dimensions s? We
will answer this question in the affirmative in this section.

First, let us think about the computation of the figure of merit RN which is
required in each step of the algorithm. Using (4.1) we have

RN.g/ D
X

h2C�

s .N /\L.g;N /

1

r1.h/

D
X

h2C�

s .N /

1

r1.h/

1

N

N�1X
nD0

exp.2�inh � g=N/

D �1C 1

N

N�1X
nD0

sY
jD1

2
4 X
h2C.N/

1

r1.h/
exp.2�inhgj =N /

3
5

D �1C 1

N

N�1X
nD0

sY
jD1

�
	ngj
N

�
;

where

�.x/ D
X

h2C.N/

1

r1.h/
exp.2�ihx/:

Observe that � .ng=N/ for n D 0; 1; : : : ; N � 1 and g 2 GN takes on at most N
different values, � .ng=N/ D �.k=N/ for some k 2 f0; 1; : : : ; N�1g. The possible
values for � can be precomputed and stored, and the computational cost for this is
at most O.N2/.

Once we have available the values �.k=N/ for k 2 f0; 1; : : : ; N � 1g, we can
compute the quantity RN.g/ for a vector g 2 Gs

N at a cost of at most O.sN /
elementary operations. Algorithm 4.4 needs at most sN evaluations of the quantity
RN in order to find the minimizer in GN for all dimensions d D 1; 2; : : : ; s.
Therefore, we find that the construction cost of Algorithm 4.4 is at most of order
O.s2N 2/. The order in which s appears can in fact be easily reduced to 1: After
each step of the CBC construction we may store the values

Qd
jD1 �.

ngj
N
/, for all n 2
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f0; 1; : : : ; N �1g, which are needed for the computation ofRN..g1; : : : ; gd ; z//, z 2
f0; 1; : : : ; N � 1g in the next step. Thus the computation of the values

QdC1
jD1 �.

ngj
N
/

for all n 2 f0; 1; : : : ; N � 1g needs only N multiplications for every value of gdC1,
so that the total cost for computing the next component isO.N2/. Note that updating
the values

Qd
jD1 �.

ngj
N
/ to

QdC1
jD1 �.

ngj
N
/, for all n 2 f0; 1; : : : ; N �1g only requires

another N operations. Therefore, the cost of computing a generating vector using
Algorithm 4.4 is O..s C 1/N 2 C sN / D O.sN 2/.

The quadratic occurrence of N in the cost means that the CBC algorithm in the
form of Algorithm 4.4 can only be used for moderate values of N . However, we are
interested in lattice point sets with a large number of points. Thus, we need to reduce
the factor N2 in the construction cost to get an applicable construction method also
for large values of N .

A breakthrough regarding this problem was obtained by D. Nuyens and R. Cools
in 2006 using fast Fourier transform (FFT) methods for the construction of lattice
point sets. This way it is possible to construct, for a given prime number N , an s-
dimensional generating vector g inO.sN logN/ operations, compared toO.s2N 2/

operations for the usual CBC algorithm. In the following we explain this so-called
fast CBC construction.

First, the values �.k=N/ for k 2 f0; 1; : : : ; N � 1g can be computed using only
O.N logN/ operations. Consider the vector

�N D
�
�

�
0

N

�
; �

�
1

N

�
; : : : ; �

�
N � 1
N

��>
;

where

�

�
k

N

�
D

X
h2C.N/

1

r1.h/
exp

�
2�i

hk

N

�

D
N�1
2X

hD0

1

r1.h/
exp

�
2�i

hk

N

�
C

N�1X
hDNC1

2

1

r1.h �N/ exp

�
2�i

hk

N

�

for k D 0; 1; : : : ; N � 1 (recall that N is an odd number).
For m 2 N, let !m D exp.2�i=m/ and let Fm WD 1p

m

�
!klm

m�1
k;lD0 be the Fourier

matrix of order m. Note that Fm is symmetric and that FmFm D Im, where Im
denotes the m � m identity matrix and Fm denotes the complex conjugate of the
matrix Fm.

With this notation we can write

�N D p
NFNx;

where
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x D
 
r1.0/

�1; : : : ; r1
�
N � 1
2

��1
; r1

�
N � 1

2

��1
; : : : ; r1.1/

�1
!>

:

Using FFT the matrix-vector product FNx for the computation of �N requires only
O.N logN/ operations. The procedure of the FFT will be explained later on in this
section (see Theorem 4.10). Note that for the storage of the vector �N we require a
memory space of size O.N/.

Now we turn to the actual CBC algorithm. Using Algorithm 4.4 we construct,
component-by-component, a generating vector g D .g1; : : : ; gs/ 2 Gs

N such that
for all d D 1; : : : ; s, the quantity RN..g1; : : : ; gd�1; z// is minimized with respect
to z 2 GN for fixed g1; : : : ; gd�1.

Thus, assume that the components g1; : : : ; gd�1 have already been constructed,
and that the values �d�1.n/ D Qd�1

jD1 �.
ngj
N
/ have been computed for all n 2

f0; 1; : : : ; N � 1g (in the case d D 1 we set �0.n/ D 1).
We have to find z 2 GN which minimizes

RN.z/ WD RN ..g1; : : : ; gd�1; z// D �1C 1

N

N�1X
nD0

�
	nz

N

�
�d�1.n/:

For n D 0we have �
�
ng

N

 D �.0/, which does not depend on z. Hence we can write

RN .z/ D �1C �.0/d

N
C 1

N

N�1X
nD1

�
	nz

N

�
�d�1.n/: (4.6)

In formula (4.6) only the terms under the sum depend on z, so minimizing RN.z/ is
equivalent to minimizing

TN .z/ D
N�1X
nD1

�
	nz

N

�
�d�1.n/: (4.7)

Now a key observation is that formula (4.7) does express the column vector
T N D .TN .1/; : : : ; TN .N � 1//> as the product of the .N � 1/ � .N � 1/ matrix

�N WD
	
�
	nz

N

��
zD1;:::;N�1
nD1;:::;N�1

with the vector �d�1 D .�d�1.1/; : : : ; �d�1.N � 1//>:

T N D �N�d�1:

Now, while the cost of general matrix-vector multiplication is quadratic in the
dimension, it can by much lower for special matrices. Fortunately, it turns out that
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�N is such a special matrix, and we will show in the remainder of this section that
the cost for computing T N D �N�d�1 is O.N logN/.

Algorithm 4.8. 1. Compute the vector �N .
2. Set �0 D 1 D .1; : : : ; 1/>
3. For d D 1; : : : ; s do:

(i) Compute T N D �N�d�1, where T D .TN .1/; : : : ; TN .N � 1//>;
(ii) Set gd WD argminz2GN TN .z/;

(iii) Set �d .n/ WD �d�1.n/�
�
ngd
N


for all n 2 f1; : : : ; N � 1g ;

(iv) If d < s, increase d by 1, otherwise exit;

It is now evident that, provided T N D �N�d�1 can be computed inO.N logN/
operations, the total cost of computing g D .g1; : : : ; gs/ using Algorithm 4.8 is
O.sN logN/.

Now let us investigate the matrix-vector product �N�. The entries of �N are
of the form �

�
nz
N


, where the product of the nonzero integers z and n has to be

evaluated modulo N . Since N is a prime number, there exists a primitive root q
modulo N , that is, there is a q 2 f1; : : : ; N � 1g such that fqk .mod N/ W k D
0; : : : ; N � 2g D f1; : : : ; N � 1g. Thus, any product of nonzero integers z and n can
be written – modulo N – as a power of q. Now we aim at permuting the rows of
�N by the positive powers of the primitive root q and the columns by the negative
powers of q.

We describe this procedure, which is often called Rader transform, in detail. Let
q be a primitive root modulo N . Define an .N � 1/ � .N � 1/ matrix ….q/ D
.�k;l .q//k;lD1;:::;N�1 by

�k;l .q/ D
�
1 if k 	 ql .mod N/;
0 otherwise:

Since q is a primitive root modulo N , it follows that each row and each column
of ….q/ has exactly one entry which is 1 and the remaining entries are 0. Further,
….q/….q/> D IN�1, the .N � 1/ � .N � 1/ identity matrix. In fact, ….q/ is a
permutation matrix. That is, for any .N�1/�.N�1/matrixC ,….q/C just changes
the order of the rows of C and C….q/ only changes the order of the columns of C .

Let C D .ck;l /k;lD1;:::;N�1, where

C D ….q/�N….q
�1/:

Then

ck;l D
N�1X

u;vD1
�u;k.q/�

	uv

N

�
�v;l .q

�1/ D �

�
qkq�l

N

�
:
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Let cr D � .qr=N /. Note that cr D cr 0 for all r; r 0 2 Z with r 	 r 0 .mod N � 1/,
since qN�1 	 1 .mod N/. Then ck;l D ck�l and therefore we obtain

C D

0
BBBBBBBBB@

c0 c�1 : : : : : : c2 c1
c1 c0 c�1 : : : : : : c2
:::
: : :

: : :
: : :

:::
:::

: : :
: : :

: : :
:::

c�2 : : : : : : c1 c0 c�1
c�1 c�2 : : : : : : c1 c0

1
CCCCCCCCCA
: (4.8)

Matrices of the form C are called circulant. In general, a circulant matrix Cm D
circ.c/ of order m is an m � m matrix defined by the m elements of a vector c D
.c0; c1; : : : ; cm�1/> as

Cm D

0
BBBBBBBBB@

c0 cm�1 : : : : : : c2 c1

c1 c0 cm�1 : : : : : : c2
:::

: : :
: : :

: : :
:::

:::
: : :

: : :
: : :

:::

cm�2 : : : : : : c1 c0 cm�1
cm�1 cm�2 : : : : : : c1 c0

1
CCCCCCCCCA
:

For such a matrix we set ck0 D ck for all k; k0 2 Z such that k 	 k0 .mod m/.
Note that the circulant matrix Cm is fully determined by its first column c. Such

matrices have a similarity transform which has the Fourier matrix as its eigenvectors.
We shall prove this in the next lemma. Before we do so, recall that the Fourier
matrix of order m is defined as Fm D 1p

m

�
!klm

m�1
k;lD0 with !m D exp.2�i=m/.

Let diag.a1; : : : ; am/ be the m � m diagonal matrix .Ai;j /mi;jD1 with Ai;i D ai for
i D 1; : : : ; m and Ai;j D 0 for i 6D j .

Lemma 4.9. A circulant matrix Cm D circ.c/ of order m, with first column
c D .c0; cm�1; cm�2; : : : ; c1/>, has a similarity transform Cm D FmDFm, with
a diagonal matrix D D diag.pc.1/; pc.!m/; : : : ; pc.!

m�1
m //, where pc.z/ WD

c0 C c1z C � � � C cm�1zm�1.

Proof. Let D D .dk;l /k;lD0;:::;m�1 be given by D D FmCmFm. Then

dk;l D 1

m

m�1X
u;vD0

!ku
m cu�v!�lv

m D 1

m

m�1X
uD0

!u.k�l/
m

m�1X
vD0

cu�v!l.u�v/
m :
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We have
Pm�1

vD0 cu�v!l.u�v/
m D pc.!

l
m/, and therefore

dk;l D pc.!
l
m/
1

m

m�1X
uD0

!u.l�k/
m :

The result now follows since 1
m

Pm�1
uD0 !

u.l�k/
m D 1 if l D k and 0 otherwise. ut

Thus, we have shown that

�N D ….q/>FN�1DFN�1….q�1/>;

where ….q/>;….q�1/> are permutation matrices, FN�1 is a Fourier matrix, FN�1
its complex conjugate, and D is a diagonal matrix.

For any vector x D .x1; : : : ; xN�1/> with xj 2 C for j D 1; : : : ; N � 1 the
matrix-vector multiplications….g/>x, Dx, and….g�1/>x can be done in at most
O.N/ operations. Hence it only remains to show that FN�1x and FN�1x can be
computed inO.N logN/ operations. Since FN�1x D FN�1x, it is enough to show
that FN�1x can be computed in O.N logN/ operations. Again this can be done
using the FFT.

We illustrate this in the following. The Fourier matrix considered here is of size
N � 1 (for the computation of the vector �N it is of size N , but this case can be
handled analogously). The FFT is most efficient for Fourier matrices whose size is
a power of 2. Hence we first aim at transforming the matrix-vector product of size
N � 1 into a related one of size 2hC1.

Note that the matrix C given in (4.8) is a .N � 1/ � .N � 1/ matrix. Let h 2 N

such that 2h�1 < N � 1 � 2h and let k 2 f0; : : : ; 2h�1 � 1g with N � 1C k D 2h.
We extend C by k rows and k columns to obtain the 2h � 2h matrix

T D

0
BBBBBBBBBBBBBBBBBBBBBBB@

c0 c�1 : : : : : : c2 c1 0 0 : : : 0

c1 c0 c�1 : : : : : : c2 c1 0 : : :
: : :

:
:
:

: : :
: : :

: : :
:
:
: c2 c1

: : :
: : :

:
:
:

: : :
: : :

: : :
:
:
:

:
:
:

:
:
:
: : :

: : :

c�2 : : : : : : c1 c0 c�1

:
:
:

:
:
:
: : :

c�1 c�2 : : : : : : c1 c0 c�1 c�2

: : :
: : :

0 c�1 c�2 : : : : : : c1 c0 c�1

: : :
: : :

0 0 c�1 c�2 : : : : : : c1 c0
: : :

: : :
:
:
:

: : :
: : :

: : :
: : :

: : :
: : :

0
: : :

: : :
: : :

: : :
: : : c1 c0

1
CCCCCCCCCCCCCCCCCCCCCCCA

:

T is no longer a circulant matrix, but it is still a Toeplitz matrix. To obtain a circulant
matrix again, let
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R D

0
BBBBBBBBBBBBBBBBB@

0 : : : 0 c�1 : : : : : : c2 c1
:
:
:

: : :
: : :

: : :
: : :

: : :
: : :

: : :

0
: : : 0

: : : 0 c�1

: : :
: : :

c1
: : :

: : :
: : :

: : :
: : :

: : :
: : :

:
:
:

: : :
: : :

: : :
: : :

: : :
: : : c�1

:
:
:

: : : c1
: : :

: : :
: : :

: : : 0

c�2

: : :
: : :

: : :
: : :

: : :
: : :

: : :

c�1 c�2

: : :
: : : c1 0

: : : 0

1
CCCCCCCCCCCCCCCCCA

of size 2h � 2h. Then

C 0 D
�
T R

R T

�

is a circulant matrix of size 2hC1 � 2hC1.
Let x D .x1; : : : ; xN�1/> be a complex column vector and assume we want to

multiply the .N � 1/ � .N � 1/ matrix C given by (4.8) by x. Then we can do so
by multiplying the matrix C 0 by the vector

x0 D .x1; : : : ; xN�1; 0; : : : ; 0„ ƒ‚ …
kC2h zeros

/>

of length 2hC1. Let y 0 D .y1; : : : ; y2hC1 /> D C 0x0. Then y D .y1; : : : ; yN�1/> D
Cx. Hence we can use Lemma 4.9 with n D 2hC1 (rather than n D N � 1). This
simplifies the FFT algorithm. The following result was shown by J.W. Cooley and
J.W. Tukey in 1965.

Theorem 4.10 (Cooley and Tukey). Let F2hC1D2�.hC1/=2.!kl
2hC1 /k;lD0;:::;2hC1�1

be a Fourier matrix. Let u D .u0; : : : ; u2hC1�1/> be a given complex vector of
length 2hC1. Then the matrix-vector product F2hC1u can be computed inO..hC
1/2hC1/ operations.

Proof. Let z D .z0; : : : ; z2hC1�1/> D F2hC1u, where u D .u0; : : : ; u2hC1�1/>. Then

zk D 2� hC1
2

2hC1�1X
lD0

!kl
2hC1ul for k D 0; : : : ; 2hC1 � 1:

We compute the above sum recursively. Let k D �0 C �12 C � � � C �h2
h and l D

�0 C �12C � � � C �h2
h, with dyadic digits �0; : : : ; �h; �0; : : : ; �h 2 f0; 1g. Put
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G0.�0; : : : ; �h�1; �0/ D
1X

�hD0
!
�0�h
2 u�0C�12C���C�h2h ; (4.9)

and, for r 2 f1; : : : ; hg, put

Gr.�0; : : : ; �h�r�1; �0; : : : ; �r/ (4.10)

D
1X

�h�rD0
!
.�0C���C�r2r /�h�r

2rC1 Gr�1.�0; : : : ; �h�r ; �0; : : : ; �r�1/:

Now we show by induction on r that for all r D 1; : : : ; h we have

Gr.�0; : : : ; �h�r�1; �0; : : : ; �r/

D
1X

�h�rD0
� � �

1X
�hD0

!
.�0C���C�r 2r /.�h�rC���C�h2r /
2rC1 u�0C���C�h2h : (4.11)

For r D 1 we have

G1.�0; : : : ; �h�2; �0; �1/ D
1X

�h�1D0
!
.�0C�12/�h�1

4

1X
�hD0

!
�0�h
2 u�0C���C�h2h :

Now note that !�0�h2 D !
2�0�h
4 D !

2�0�hC4�1�h
4 D !

.�0C2�1/2�h
4 , and hence

G1.�0; : : : ; �h�2; �0; �1/ D
1X

�h�1D0

1X
�hD0

!
.�0C�12/.�h�1C�h2/
4 u�0C���C�h2h :

Thus (4.11) holds for r D 1. Assume that (4.11) holds for the index r . Then

GrC1.�0; : : : ; �h�r�2; �0; : : : ; �rC1/

D
1X

�h�r�1D0
!
.�0C���C�rC12

rC1/�h�r�1

2rC2 Gr.�0; : : : ; �h�r�1; �0; : : : ; �r /

D
1X

�h�r�1D0
!
.�0C���C�rC12

rC1/�h�r�1

2rC2

�
1X

�h�rD0
� � �

1X
�hD0

!
.�0C���C�r 2r /.�h�rC���C�h2r /
2rC1 u�0C���C�h2h :

Since
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!
.�0C���C�r 2r /.�h�rC���C�h2r /
2rC1 D !

.�0C���C�r2rC�rC12
rC1/.�h�rC���C�h2r /

2rC1

D !
.�0C���C�rC12

rC1/.�h�r 2C���C�h2rC1/

2rC2 ;

we obtain

GrC1.�0; : : : ; �h�r�2; �0; : : : ; �rC1/

D
1X

�h�r�1D0
� � �

1X
�hD0

!
.�0C���C�rC12

rC1/.�h�r�1C���C�h2rC1/

2rC2 u�0C���C�h2h

and hence (4.11) is shown.
In particular, (4.11) leads with the choice r D h to the desired formula

zk D 2� hC1
2 Gh.�0; : : : ; �h/;

for all k D �0 C � � � C �h2
h 2 f0; : : : ; 2hC1 � 1g.

For the computation of the zk we compute Gr recursively. For r D 0; : : : ; h

compute

Gr.�0; : : : ; �m�r�1; �0; : : : ; �r/

for all �0; : : : ; �h�r�1; �0; : : : ; �r 2 f0; 1g using (4.9) and the recursion for-
mula (4.10). For each r this requiresO.2hC1/ operations.

Overall we require O..h C 1/2hC1/ operations to compute Gh. Hence, we can
compute z in O..hC 1/2hC1/ operations. ut

Recall that we have chosen h such that 2h�1 < N � 1 � 2h and hence h <
1C log2 N . Thus we obtain the following result.

Corollary 4.11. Let �N be defined as above and let x be a complex column
vector of lengthN �1. Then the matrix-vector product�Nx can be computed in
O.N logN/ operations.

Therefore Algorithm 4.8 requires only O.sN logN/ operations by using O.N/
memory space (compared to O.sN 2/ operations). This is a significant speed-up
compared to a straightforward implementation of Algorithm 4.8. Only through this
reduction of the construction cost does the CBC algorithm become applicable for
the generation of lattice point sets with reasonably large cardinality.
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4.3 Numerical Integration in Korobov Spaces

If we use a lattice point set as constructed by means of Algorithm 4.4 as underlying
sample points of a QMC rule for functions f W Œ0; 1�s ! R with bounded variation
in the sense of Hardy and Krause, then Corollary 4.7 together with the inequality
of Koksma and Hlawka guarantee a convergence rate of order O..logN/s=N /.
For the Koksma-Hlawka inequality no additional information on the smoothness of
the integrand was required. On the other hand, for functions of higher smoothness
we would certainly expect a better convergence rate of the integration error. This,
however, is not reflected in the error estimate via the Koksma-Hlawka inequality.

Originally, lattice point sets were introduced for the integration of smooth and
one-periodic functions. Such functions will be considered in the following.

Definition 4.12
A QMC-rule that uses a lattice point set as underlying sample nodes is called a
lattice rule.

We will see that lattice rules are particularly suitable for the integration of
periodic functions of sufficient smoothness. We define reproducing kernel Hilbert
spaces of smooth one-periodic functions and analyze the worst-case error of lattice
rules in these function spaces.

We begin with the one-dimensional case. The smoothness in this function space
will be described by the so-called smoothness parameter ˛ > 1, which controls the
decay of the Fourier coefficients of the functions. Let � > 0 be a real number. The
value of � does not have any influence on the one-dimensional analysis and may be
chosen equal to one in that case. However, it will play a crucial role in the multi-
dimensional case, where every dimension will be assigned its own � . We define
the Hilbert space H˛;� � L1.Œ0; 1�/ consisting of all one-periodic functions f with
absolutely convergent Fourier series

f .x/ D
X
h2Z

Of .h/ exp.2�ihx/

with Fourier coefficients

Of .h/ D
Z 1

0

f .x/ exp.�2�ihx/ dx

and with finite norm kf k˛;� D hf; f i1=2˛;� , where the inner product is defined by

hf; gi˛;� D
X
h2Z

r˛;� .h/ Of .h/ Og.h/
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and

r˛;� .h/ D
�
1 if h D 0;

��1jhj˛ if h 6D 0:

Definition 4.13
The space H˛;� is called the Korobov space of smoothness ˛ (with weight � ).

We now show that the reproducing kernel of H˛;� is given by

K˛;� .x; y/ D
X
h2Z

1

r˛;� .h/
exp.2�ih.x � y//: (4.12)

First, note that since ˛ > 1, the series in (4.12) is uniformly convergent, so
K˛;� .�; y/ is integrable and

OK˛;� .�; y/.h/ D
Z 1

0

K˛;� .x; y/ exp.�2�ihx/ dx

D
X
k2Z

1

r˛;� .h/
exp.�2�iky/

Z 1

0

exp.2�i.k � h/x/ dx

D exp.�2�ihy/
r˛;� .h/

:

Thus

kK˛;� .�; y/k2˛ D hK˛;� .�; y/;K˛;� .�; y/i˛;� D
X
h2Z

r˛;� .h/
1

r2˛;� .h/
D 1C 2��.˛/;

where �.˛/ D P1
hD1 h�˛ denotes the Riemann zeta function. For ˛ > 1 we have

�.˛/ < 1, and therefore we obtain K˛;� .�; y/ 2 H˛;� . Furthermore,

hf;K˛;� .�; y/i˛;� D
X
h2Z

r˛;� .h/ Of .h/exp.2�ihy/

r˛;� .h/
D f .y/

and hence also the reproducing property of K˛;� holds. This shows that K˛;� is
indeed the reproducing kernel of H˛;� .

The smoothness parameter ˛ is linked to the actual smoothness of functions
in the sense that a periodic function f which is sufficiently often continuously
differentiable belongs to the space H˛;� .

Proposition 4.14. Let ˛ � 2 be an integer and assume that f W Œ0; 1� ! R is
one-periodic and f 2 C˛.Œ0; 1�/. Then f 2 H˛;� .
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Proof. The function f and its derivatives f .1/; f .2/; : : : ; f .˛�1/ are continuously
differentiable and one-periodic, and the derivative f .˛/ is continuous and one-
periodic. Let h 6D 0 be an integer. Integration by parts then yields

Of .h/ D
Z 1

0

f .x/ exp.�2�ihx/ dx

D f .x/
exp.�2�ihx/

�2�ih
ˇ̌
ˇ̌1
0

C 1

2�ih

Z 1

0

f .1/.x/ exp.�2�ihx/ dx

D 1

2�ih

Z 1

0

f .1/.x/ exp.�2�ihx/ dx

D 1

2�ih
bf .1/.h/:

Now we can repeat this with bf .1/.h/ in place of Of .h/ and obtain

Of .h/ D 1

.2�ih/2
bf .2/.h/:

After ˛ steps we finally obtain

Of .h/ D 1

.2�ih/˛
bf .˛/.h/:

Consequently,

j Of .h/j � 1

.2�jhj/˛
Z 1

0

jf .˛/.x/j dx D c

jhj˛ ;

where c WD 1
.2�/˛

R 1
0 jf .˛/.x/j dx < 1, since f .˛/ is continuous. Thus we obtain

kf k2˛;� D hf; f i˛;� D
X
h2Z

r˛;� .h/j Of .h/j2 � j Of .0/j2 C 2��1c�.˛/ < 1

and this implies f 2 H˛;� . ut

On the other hand, every function in H˛;� has some smoothness which will be
shown in Proposition 4.17 for arbitrary dimension s 2 N.

Now we turn to the s-dimensional case where s 2 N. Let � D .�j /j2N be a
sequence of positive weights. We consider the s-fold tensor product Hs;˛;� of the
spaces H˛;�1 ;H˛;�2 ; : : : ;H˛;�s , i.e.,

Hs;˛;� D H˛;�1 ˝ H˛;�2 ˝ � � � ˝ H˛;�s D clos span

8<
:x 7!

sY
jD1

fj .xj / W fj 2 H˛;�j

9=
;;
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where x D .x1; : : : ; xs/ and where the closure clos is taken with respect to the norm
induced by the inner product

hf; gis;˛;� D
X
h2Zs

r˛;�.h/ Of .h/ Og.h/;

and where r˛;�.h/ D Qs
jD1 r˛;�j .hj /. The reproducing kernelKs;˛;� of Hs;˛;� is the

s-fold product of the one-dimensional kernelsK˛;�j , for j D 1; : : : ; s, i.e.,

Ks;˛;�.x;y/ D
sY

jD1
K˛;�j .xj ; yj /;

where x D .x1; : : : ; xs/ and y D .y1; : : : ; ys/. Then we have

Ks;˛;�.x;y/ D
X

h1;:::;hs2Z

exp.2�ih1.x1 � y1// � � � exp.2�ihs.xs � ys//

r˛;�1 .h1/ � � � r˛;�s .hs/

D
X
h2Zs

exp.2�ih � .x � y//

r˛;�.h/
:

The proof that Ks;˛;� is the reproducing kernel of H˛;s;� follows along the same
lines as in the one-dimensional case.

Definition 4.15
The space Hs;˛;� is called a weighted Korobov space of smoothness ˛ with
weights � .

We present a multivariate version of Proposition 4.14, but without a proof. For
ˇ D .ˇ1; ˇ2; : : : ; ˇs/ 2 N

s
0 denote by

Dˇf D @ jˇj

@x
ˇ1
1 @x

ˇ2
2 � � � @xˇss

f

the operator of partial differentiation, where jˇj D ˇ1 C ˇ2 C � � � C ˇs .

Proposition 4.16. Let ˛ � 2 be an integer and assume that f W Œ0; 1�s ! R is
one-periodic in each of its s variables and thatDˇf exists and is continuous for
all ˇ 2 f0; : : : ; ˛gs . Then f 2 Hs;˛;� .

On the other hand, every function in Hs;˛;� has some smoothness.

Proposition 4.17. If f 2 Hs;˛;� , then Dˇf exists and is continuous for all
ˇ 2 f0; 1; : : : ; d ˛�1

2
e � 1gs.
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Proof. We have

Dˇf .x/ D
X
h2Zs

2
4 Of .h/ .2�i/jˇj

sY
jD1

h
ˇj
j

3
5 exp.2�ih � x/;

where, by convention, we take 00 D 1. The last series is convergent as long as
max1�j�s ˇj < ˛�1

2
. Indeed,

jDˇf .x/j D
ˇ̌
ˇ̌
ˇ̌
X
h2Zs

h Of .h/r1=2˛;� .h/
i 24r�1=2

˛;� .h/.2�i/jˇj
sY

jD1
h
ˇj
j

3
5 exp.2�ih � x/

ˇ̌
ˇ̌
ˇ̌

� kf ks;˛;�
2
4X

h2Zs
.2�/2jˇj

sY
jD1

jhj j2ˇj
r˛;�j .hj /

3
5
1=2

D kf ks;˛;�
2
4.2�/2jˇj

sY
jD1

X
hj2Z

jhj j2ˇj
r˛;�j .hj /

3
5
1=2

D kf ks;˛;�
2
4.2�/2jˇj

sY
jD1

2�j

1X
hjD1

h
2ˇj
j

h˛j

3
5
1=2

D .2�/jˇj2s=2kf ks;˛;�
2
4 sY
jD1

�j �.˛ � 2ˇj /
3
5
1=2

< 1:

ut

Now we study QMC integration in Hs;˛;� for ˛ > 1. We have

Ks;˛;�.y ;y/ D
sY

jD1
.1C 2�j �.˛// < 1:

Hence condition C is satisfied and we can therefore use the formula for the worst-
case error from Theorem 3.9. We have

Z
Œ0;1�s

Z
Œ0;1�s

Ks;˛;�.x;y/ dx dy D
sY

jD1

Z 1

0

Z 1

0

K˛;�j .xj ; yj / dxj dyj

D
sY

jD1

 X
h2Z

1

r˛;�j .h/

Z 1

0

Z 1

0

exp.2�ih.xj � yj // dxj dyj

!
D 1:
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In the same way one can show that for any fixed xn 2 Œ0; 1/s
Z
Œ0;1�s

Ks;˛;�.xn;y/ dy D 1:

Now from Theorem 3.9 we obtain for any P D fx0; : : : ;xN�1g in Œ0; 1/s

e2.Hs;˛;� ;P/ D � 1C 1

N 2

N�1X
n;mD0

X
h2Zs

exp.2�ih � .xn � xm//

r˛;�.h/

D
X

h2Zsnf0g

1

r˛;�.h/

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�ih � xn/

ˇ̌
ˇ̌
ˇ
2

: (4.13)

For lattice point sets P.g; N /, i.e., xn D fng=N g, where g 2 Z
s , the above

formula yields

e2.Hs;˛;� ;P.g; N // D
X

h2Zsnf0g

1

r˛;�.h/

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�inh � g=N/

ˇ̌
ˇ̌
ˇ
2

:

Now, using property (4.1) and the notion L.g; N / of the dual lattice of P.g; N /
(Definition 4.2) we obtain the following result.

Theorem 4.18. The worst-case error of a lattice rule in the weighted Korobov
space Hs;˛;� is given by

e2.Hs;˛;� ;P.g; N // D
X

h2L.g;N /nf0g

1

r˛;�.h/
:

I Remark 4.19 If ˛ � 2 is an even integer, then the Bernoulli polynomial B˛ of
degree ˛ has the Fourier expansion

B˛.x/ D .�1/.˛C2/=2˛Š
.2�/˛

X
h2Z

h6D0

exp.2�ihx/

jhj˛ for all x 2 Œ0; 1/:

Hence in this case we obtain

e2.Hs;˛;� ;P.g; N // D �1C 1

N

N�1X
kD0

sY
jD1

 
1C �j

.�1/.˛C2/=2.2�/˛

˛Š
B˛

��
kgj

N

��!
;

so that e2.Hs;˛;� ;P.g; N // can be calculated in O.Ns/ operations.
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4.4 Existence Results for the Unweighted Case

In this section we restrict ourselves to the unweighted case where all weights are
equal to 1. In this case we omit the weights in our notations from the previous
section and just write Hs;˛, Ks;˛, r˛, etc. Note that in the unweighted case we have

r˛.h/ D max.1; jhj˛/ D r1.h/
˛:

First we show a result which brings the quantityRN as defined in (4.3) in relation
to the worst-case error of a lattice rule in the Korobov space.

Lemma 4.20. Let ˛ > 1 and let N be a prime number. Then for all g 2 Gs
N

e2.Hs;˛;P.g; N // � .1C 2�.˛//s
�
1

N˛
CRN .g/

˛

�
:

Proof. By Theorem 4.18,

e2.Hs;˛;P.g; N // D
X

h2L.g;N /nf0g

1

r˛.h/
DW †1 C†2;

where †1 is the sum over all h such that h D Nk with k 2 Z
s n f0g. In this case

we obviously have h � g 	 0 .mod N/. In †2 we sum over the remaining h from
L.g; N / n f0g.

For h D Nk with k 2 Z
s n f0g we have

1

r˛.h/
D 1

r˛.Nk/
� 1

N˛

1

r˛.k/
;

and so

†1 � 1

N˛

X
k2Zs

1

r˛.k/
D 1

N˛

 X
k2Z

1

r˛.k/

!s
D 1

N˛
.1C 2�.˛//s :

The remaining h which appear in †2 can be uniquely represented in the form
h D h� C Nk, where k 2 Z

s and h� D .h�
1 ; : : : ; h

�
s / 2 C �

s .N / with h� � g 	 0

.mod N/. Hence

†2 D
X
k2Zs

X
h�

2C�
s .N /

h�
�g�0 .mod N/

1

r˛.h
� CNk/

:

Now we show that
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r1.h
� CNk/ � r1.h

�/r1.k/: (4.14)

To this end it suffices to verify that

max.1; jh�
j CNkj j/ � max.1; jh�

j j/max.1; jkj j/

for all j D 1; 2; : : : ; s. If h�
j D 0 or kj D 0, then this inequality is obviously

satisfied. If h�
j 6D 0 and kj 6D 0, then

jh�
j CNkj j � N jkj j � jh�

j j � N jkj j � N

2
D N

2
.2jkj j � 1/ � jh�

j j � jkj j;

and the inequality follows as well. Hence (4.14) is shown.
From (4.14) we obtain r˛.h

� CNk/ � r˛.h
�/r˛.k/. Using this estimate we find

that

†2 �
X
k2Zs

1

r1.k/˛

X
h�

2C�
s .N /

h�
�g�0 .mod N/

1

r1.h
�/˛

D .1C 2�.˛//s
X

h�
2C�

s .N /

h�
�g�0 .mod N/

1

r1.h
�/˛

� .1C 2�.˛//sRN .g/
˛:

Now the result follows by adding the estimates for†1 and †2. ut

It should be pointed out that the quantityRN .g/ does not depend on the smooth-
ness parameter ˛. Assume now that g 2 Gs

N is constructed with Algorithm 4.4.
Then it follows from Theorem 4.5 in combination with (4.4) that

RN.g/ � 2sC1
.1C logN/s

N
:

Inserting the bound onRN.g/ into the bound from Lemma 4.20 yields the following
result, which goes back to work by E. Hlawka.

Theorem 4.21. Let ˛ > 1 and let N be a prime number. Assume that g 2 Gs
N

is constructed by Algorithm 4.4. Then

e2.Hs;˛;P.g; N // � .1C 2�.˛//s
1C 2˛.sC1/.1C logN/˛s

N ˛
:

Theorem 4.21 shows the existence of lattice rules for which the convergence rate
for the worst-case error in the Korobov space Hs;˛ is of order



4.4 Existence Results for the Unweighted Case 95

e.Hs;˛;P.g; N // D Os;˛

�
.logN/˛s=2

N ˛=2

�
:

This bound reflects the smoothness of the problem. Higher smoothness ˛ leads
to improved convergence rates for the worst-case integration error. Furthermore,
as Algorithm 4.4 is independent of the parameter ˛, it is clear that the output
vector g is independent of ˛ as well. Hence the lattice rule that is constructed by
Algorithm 4.4 adjusts itself to the smoothness of a given integrand.

We next present a lower bound on the integration error for numerical integration
in the Korobov space which shows that the result from Theorem 4.21 is, up to
some .logN/-powers, best possible in the order of magnitude in N . For reasons
of simplicity we restrict ourselves to the QMC case and remark that in fact the
following result holds even for more general quadrature rules.

Theorem 4.22. Let P be an arbitrary N -element point set in Œ0; 1/s . For any
˛ > 1 we have

e2.Hs;˛;P/ � C.s; ˛/
.logN/s�1

N ˛
;

where C.s; ˛/ > 0 depends on ˛ and s, but not on N .

The proof of this theorem is technical and can be skipped by beginners.

Proof. Let P D fx0; : : : ;xN�1g be an arbitrary N -element point set in Œ0; 1/s . Let
f W R ! Œ0; 1� be an infinitely differentiable function such that f .x/ > 0 for
x 2 .0; 1/ and f .r/.x/ D 0 for x 2 R n .0; 1/ for all 0 � r � a WD d˛=2e C 1. For
instance choose f .x/ D xaC1.1 � x/aC1 for x 2 .0; 1/, and f .x/ D 0 otherwise.
For m 2 N0 let fm.x/ D f .2mC2x/ and for m D .m1; : : : ; ms/ 2 N

s
0 put

fm.x/ D
sY

jD1
fmj .xj /;

where x D .x1; : : : ; xs/. Let kmk1 D m1C� � �Cms and I.f / D R 1
0
f .y/ dy. Then

Ofm.0/ D
sY

jD1

Z 1

0

f .2mjC2x/ dx D
sY

jD1

�
1

2mjC2

Z 1

0

f .y/ dy

�
D 1

2kmk1C2s I
s.f /:

(4.15)

Let t be such that 2N � 2t < 4N , let F.y/ D PN�1
nD0 fm.xn � y/, and let

Bm D fy 2 Œ0; 1�s W F.y/ D 0g :
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Notice that the support of fm.xn � y/ (as a function of y) is contained in the
interval

Qs
jD1.xn;j � 2�mj�2; xn;j / and hence the support of F.y/ is contained

in
SN�1
nD0

Qs
jD1.xn;j � 2�mj�2; xn;j /. Therefore the volume of the support of F is

at most N2�kmk1 . Thus for all m such that kmk1 D t we have

�s.Bm/ � 1 � N

2kmk1 D 1 � N

2t
>
1

4
:

For the QMC rule QN;s based on P

QN;s.fm.� � y//� Ofm.0/

D
X

h2Zsnf0g

 
Ofm.h/

1

N

N�1X
nD0

exp.2�ih � xn/

!
exp.�2�ih � y/

and, for y 2 Bm, QN;s.fm.� � y// D 1
N
F.y/ D 0. Therefore,

�s.Bm/j Ofm.0/j2 D
Z
Bm

jQN;s.fm.� � y//� Ofm.0/j2 dy

�
Z
Œ0;1�s

jQN;s.fm.� � y// � Ofm.0/j2 dy

D
X

h2Zsnf0g
j Ofm.h/j2

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�ih � xn/

ˇ̌
ˇ̌
ˇ
2

; (4.16)

where for the last line we applied Parseval’s identity.
We have

Ofm.h/ D
Z 1

0

f .2mC2x/ exp.�2�ihx/ dx D 1

2mC2 Of .h2�m�2/:

Since, by assumption, f is infinitely differentiable, integration by parts shows that
for any m 2 N0 we have

j Ofm.h/j � 1

2mC2 j Of .h2�m�2/j � Ca
1

2mC2 min

�
1;
2a.mC2/

ha

�
;

where Ca > 0 depends only on a and f . Then for m with kmk1 D t we have

j Ofm.h/j � C.a; s/

sY
jD1

�
1

2mj
min

�
1;

2amj

ra.hj /

��

D C.a; s/2.˛=2�1/t
sY

jD1

�
1

2˛mj =2
min

�
1;

2amj

ra.hj /

��
:



4.4 Existence Results for the Unweighted Case 97

Taking the square and summing over all choices of m with kmk1 D t we obtain

X
m2N

s
0

kmk1Dt

j Ofm.h/j2 � 2.˛�2/tC 2.a; s/
X
m2N

s
0

kmk1Dt

sY
jD1

�
1

2˛mj
min

�
1;
22amj

r2a .hj /

��

� 2.˛�2/tC 2.a; s/

sY
jD1

 1X
mD0

1

2˛m
min

�
1;

22am

r2a.hj /

�!
: (4.17)

The last sum can now be estimated by

1X
mD0

1

2˛m
min

�
1;

22am

r2a .hj /

�
D

X
0�m�.log2 ra.hj //=a

2.2a�˛/m

r2a.hj /
C

X
m>.log2 ra.hj //=a

1

2˛m

� r2a�˛.hj /22a�˛ � 1

22a�˛ � 1

1

r2a.hj /
C 2˛

2˛ � 1
1

r˛.hj /

� 1

r˛.hj /

�
1C 2˛

2˛ � 1
�

� 3

r˛.hj /
: (4.18)

Thus, combining (4.17) and (4.18), we have

C1.a; s/

2.˛�2/t
X
m2N

s
0

kmk1Dt

j Ofm.h/j2 � 1

r˛.h/
(4.19)

with some suitable C1.a; s/ > 0 depending only on a and s. Using the formula for
the worst-case error from (4.13), in conjunction with (4.19), (4.16) and (4.15) we
finally get

e2.Hs;˛;P/ D
X

h2Zsnf0g

1

r˛.h/

ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�ih � xn/

ˇ̌
ˇ̌
ˇ
2

� C1.a; s/

2.˛�2/t
X
m2N

s
0

kmk1Dt

X
h2Zsnf0g

j Ofm.h/j2
ˇ̌
ˇ̌
ˇ
1

N

N�1X
nD0

exp.2�ih � xn/

ˇ̌
ˇ̌
ˇ
2

� C1.a; s/

2.˛�2/t
X
m2N

s
0

kmk1Dt

�s.Bm/j Ofm.0/j2

� C2.a; s/
22t

N ˛

X
m2N

s
0

kmk1Dt

2�2t�4sI 2s.f /
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� C3.a; s/
1

N˛

 
t C s � 1

s � 1

!
� C4.a; s/

t s�1

N ˛
� C5.a; s/

.logN/s�1

N ˛
;

since t � log2 N , with suitable Cj .a; s/ > 0 depending only on a and s. ut

In this section we have shown that the best convergence rate of QMC rules in the
Korobov space of smoothness ˛ is O.N�˛=2/, up to some logN factors, and this
rate can be achieved with a lattice rule. However, it is not clear how long we have
to wait to see this nice asymptotic behavior, especially for large dimension s. In
practical applications s can be huge, for example, in the hundreds or even thousands
for problems from mathematical finance. The dependence of the worst-case error
on the dimension s is the subject of tractability, which is the topic of the next
section.

4.5 Tractability

To systematically analyse the dependence of the worst-case integration error on
the dimension one considers the following quantities. For an arbitrary reproducing
kernel Hilbert space H.K/we denote by e.H.K/;P/ the worst-case error of a QMC
rule based on the point set P in Œ0; 1/s. The N th minimal (worst-case) error is
given by

e.N; s/ WD inf
P
e.H.K/;P/;

where the infimum is taken over all N -element point sets P in Œ0; 1/s. For N D 0

we set the QMC rule to be zero, and define the initial error by

e.0; s/ D sup
f2H.K/

kf kH.K/�1

ˇ̌
ˇ̌
Z
Œ0;1�s

f .x/ dx

ˇ̌
ˇ̌ :

The initial error is used as a reference value.
When studying QMC rules, we do not only want to control how the error depends

onN , but also how it depends on the dimension s, which is of particular importance
for high-dimensional problems (see also Chap. 6 for a discussion of this topic). To
this end, we define, for " 2 .0; 1� and s 2 N, the information complexity by

NH.K/."; s/ D minfN 2 N W e.N; s/ � " e.0; s/g

i.e., as the minimal number of information evaluations needed to reduce the initial
error by a factor of ".

The subject of tractability deals with the question in which way the information
complexity depends on "�1 and s. Roughly speaking, tractability means that the



4.5 Tractability 99

information complexity lacks a certain disadvantageous dependence on "�1 and
s. Usually, one is interested in situations where NH.K/."; s/ depends at most
polynomially on s and "�1, and frequently the following notions of tractability are
studied.

Definition 4.23
We say that we have:

• The curse of dimensionality if there exist positive numbers C ,  and "0 such that

NH.K/."; s/ � C.1C /s for all " � "0 and infinitely many s:

• Polynomial (QMC) tractability if there exist non-negative numbersC; 1; 2 such
that

NH.K/."; s/ � Cs1"�2 for all s 2 N; " 2 .0; 1/:

• Strong polynomial (QMC) tractability if there exist non-negative numbersC and
 such that

NH.K/."; s/ � C"� for all s 2 N; " 2 .0; 1/:
The exponent � of strong polynnomial tractability is defined as the infimum over
all  for which strong polynomial tractability holds.

I Remark 4.24 Usually in tractability theory one studies the class of arbitrary
algorithms using N information evaluations rather than only QMC rules as we do
here. For this reason we added in the above notation the term “(QMC)”. However,
as we only deal with QMC rules, we will omit this term in the following.

It is known that many multivariate problems defined over standard spaces of
functions suffer from the curse of dimensionality, as, for example, integration of
Lipschitz functions (cf. Example 1.1), of functions from the unweighted Korobov
space Hs;˛ , of monotone functions, of convex functions, of smooth functions, etc.
The reason for this disadvantageous behaviour may be found in the fact that for
standard spaces all variables and groups of variables are equally important. As a
way out, I.H. Sloan and H. Woźniakowski suggested to consider weighted spaces,
in which the importance of successive variables and groups of variables is monitored
by corresponding weights, to vanquish the curse of dimensionality and obtain
polynomial or even strong polynomial tractability, depending on the decay of the
weights.

For this reason we now switch again to the weighted setting and study tractability
for the weighted Korobov space Hs;˛;� .

Theorem 4.25. For any prime number N , any dimension s, and any � 2
.1=˛; 1� there exists a generating vector g 2 Gs

N such that
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e2.Hs;˛;� ;P.g; N // � 1

.N � 1/1=�

0
@�1C

sY
jD1

.1C 2��j �.�˛//

1
A
1=�

:

Proof. Let av.N; s/ denote the average squared worst-case error over all g 2 Gs
N ,

av.N; s/ D 1

.N � 1/s
X

g2GsN
e2.Hs;˛;� ;P.g; N //:

Then we have

av.N; s/ D 1

.N � 1/s

X
g2GsN

X
h2L.g;N /nf0g

1

r˛;�.h/

D 1

.N � 1/s

X
h2Zsnf0g

1

r˛;�.h/
#fg 2 Gs

N W h � g 	 0 .mod N/g:

Let h D .h1; : : : ; hs/ 2 Z
s n f0g. Assume first that h1 6D 0. Then, for arbitrary

g2; : : : ; gs 2 GN , the condition h � g 	 0 .mod N/ is equivalent to

h1g1 	 �.h2g2 C � � � C hsgs/ .mod N/:

Since N is prime, there exists at most one g1 2 GN which satisfies this congruence.
Consequently,

#fg 2 Gs
N W h � g 	 0 .mod N/g � .N � 1/s�1:

The same argument applies if hj 6D 0 for any j 2 f1; 2; : : : ; sg. Now it follows that

av.N; s/ � 1

N � 1

X
h2Zsnf0g

1

r˛;� .h/
D 1

N � 1

0
@�1C

sY
jD1

.1C 2�j �.˛//

1
A :

However, since the average square worst-case error over Gs
N satisfies this bound,

there must exist at least one particular g 2 Gs
N for which the worst-case error

satisfies this bound as well. Hence we have shown the existence of g 2 Gs
N for

which we have

e2.Hs;˛;� ;P.g; N // � 1

N � 1

0
@�1C

sY
jD1

.1C 2�j �.˛//

1
A : (4.20)

Now we use a popular trick to improve the convergence rate of this existence result.
To this end we require, for any � 2 .0; 1� and non-negative reals ak , the inequality
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 X
k

ak

!�
�
X
k

a�k (4.21)

which can be proved as follows: We have 0 � aj =
�P

k ak
 � 1 and hence, since

� 2 .0; 1�,
ajP
k ak

�
�

ajP
k ak

��
:

Summation over all j implies

1 D
P

j ajP
k ak

�
P

j a
�
j�P

k ak
�

which finally yields (4.21).
Inequality (4.21) applied to the formula for the square worst-case error yields

e2�.Hs;˛;� ;P.g; N // D
0
@ X

h2L.g;N /nf0g

1

r˛;�.h/

1
A
�

�
X

h2L.g;N /nf0g

1

r˛;�.h/�
;

where we have to restrict � to � 2 .1=˛; 1� in order to guarantee the convergence
of the series

P
h2Z r˛;� .h/��. For h 2 Z n f0g we have r˛;� .h/� D ���jhj�˛ D

r�˛;��.h/. Therefore,

r˛;�.h/
� D r�˛;��.h/;

where �� D .��j /j2N, and we obtain

e2�.Hs;˛;� ;P.g; N // �
X

h2L.g;N /nf0g

1

r�˛;��.h/
D e2.Hs;�˛;�� ;P.g; N //:

Applying the existence result (4.20) to e2.Hs;�˛;�� ;P.g; N // we finally obtain the
existence of g 2 Gs

N such that

e2�.Hs;˛;� ;P.g; N // � 1

N � 1

0
@�1C

sY
jD1

.1C 2��j �.�˛//

1
A :

Note that �.�˛/ < 1 since � 2 .1=˛; 1�. Hence the desired result follows. ut

Since � can be chosen arbitrarily close to 1=˛, we obtain a convergence rate
of O.N� ˛

2Cı/ for ı > 0. This is in accordance with Theorem 4.21. The result of
Theorem 4.25 can even be made explicit with a CBC algorithm.
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If we estimate the bound from Theorem 4.25 further we obtain the following
result for the N th minimal error in the weighted Korobov space Hs;˛;� :

Corollary 4.26. Let N be a prime number, let s 2 N, ˛ > 1 and let e.N; s/ be
the N th minimal error in the weighted Korobov space Hs;˛;� .
1. For some � 2 .1=˛; 1� assume

�� WD
1X
jD1

��j < 1: (4.22)

Then

e.N; s/ � 21=.2�/

N 1=.2�/
exp

�
�.�˛/

�
��

�
for all s 2 N:

This bound is independent of the dimension s and can be achieved by a lattice
rule.

2. Assume that

A WD lim sup
s!1

Ps
jD1 �j
log s

< 1: (4.23)

Then for any ı > 0 there exists a cı > 0 such that

e.N; s/ � cıs
�.˛/.ACı/
p
N

for all s 2 N:

This bound depends only polynomially on the dimension s and can be achieved
by a lattice rule.

3. We have e.0; s/ D 1.

Proof. To begin with, for the bound from Theorem 4.25 we have

e2.Hs;˛;� ;P.g; N // � 21=�

N 1=�
exp

0
@ 1
�

log

0
@ sY
jD1

.1C 2��j �.�˛//

1
A
1
A

D 21=�

N 1=�
exp

0
@ 1
�

sX
jD1

log.1C 2��j �.�˛//

1
A

� 21=�

N 1=�
exp

0
@2�.�˛/

�

sX
jD1

��j

1
A ; (4.24)

where we used the estimate log.1 C x/ � x. Now assertion 1 follows immediately
from (4.24) and the condition (4.22) on the weights.
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We turn to assertion 2: Since A < 1, there exists, for any ı > 0, a positive sı
such that

sX
jD1

�j � .AC ı/ log s for all s � sı:

From (4.24) with � D 1 we obtain for s � sı that

e.N; s/ �
r
2

N
s
�.˛/

Ps
jD1 �j

log s �
r
2

N
s�.˛/.ACı/:

Hence there exists a cı > 0 such that e.N; s/ � cıs
�.˛/.ACı/p
N

for all s 2 N.

Finally, to show that e.0; s/ D 1 is left as an exercise (cf. Exercise 4.7). ut

If
P1

jD1 �j < 1, then there exists a � 2 .1=˛; 1� which satisfies (4.22). Put
C˛;�;� WD 2 exp .2�.�˛/��/. For " > 0, let N be the smallest prime larger or equal
to dC˛;�;�"�2�e DW M . Then e.N; s/ � " and hence

NHs;˛;� ."; s/ � N < 2M D 2dC˛;�;�"�2�e;
where we used Bertrand’s postulate which tells us that M � N < 2M . Hence
multivariate integration in Hs;˛;� is strongly polynomially tractable with "-exponent
at most 2�0, where �0 is the infimum over all � 2 .1=˛; 1� such that (4.22) holds.

In the same way one can show that polynomial tractability holds under the
condition (4.23). The proof for this result is left as an exercise (cf. Exercise 4.8).

Now we turn to necessary conditions for (strong) polynomial tractability. Let
� 0
j D min.�j ; 1=.2�.˛/// and � 0 D .� 0

j /j2N. From � 0
j � �j we obtain kf ks;˛;� 0 �

kf ks;˛;� and hence

ff 2 Hs;˛;� 0 W kf ks;˛;� 0 � 1g � ff 2 Hs;˛;� W kf ks;˛;� � 1g:
This implies that integration in Hs;˛;� 0 is no harder than integration in Hs;˛;� , that
is, e.Hs;˛;� 0 ;P/ � e.Hs;˛;� ;P/ for anyN -element point set in Œ0; 1/s . Furthermore,
according to the definition of � 0, we have that Ks;˛;� 0 is non-negative.

Now let us estimate e.Hs;˛;� ;P/ from below. We have

e2.Hs;˛;� ;P/ �e2.Hs;˛;� 0 ;P/ D �1C 1

N 2

N�1X
h;iD0

Ks;˛;� 0.xh;xi /

� � 1C 1

N 2

N�1X
hD0

Ks;˛;� 0.xh;xh/
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D � 1C 1

N 2

N�1X
hD0

sY
jD1

	
1C 2� 0

j �.˛/
�

D � 1C 1

N

sY
jD1

	
1C 2� 0

j �.˛/
�
: (4.25)

We summarize the result in the following lemma.

Lemma 4.27. For any N -element point set P in Œ0; 1/s we have

e2.Hs;˛;� ;P/ � �1C 1

N

sY
jD1

�
1C min.2�.˛/�j ; 1/



and hence

NHs;˛;� .s; "/ �
Qs
jD1

�
1C min.2�.˛/�j ; 1/


1C "2

:

Suppose there exists a �� > 0 such that �j � �� for all j 2 N. Then

NHs;˛;� .s; "/ � .1C min.2�.˛/��; 1//s

1C "2
;

which implies the curse of dimensionality. This shows that limj!1 �j D 0 is a
necessary condition for tractability.

Now suppose that limj!1 �j D 0, but
Ps

jD1 �j D 1. Then for growing s we
have

sY
jD1

�
1C min.2�.˛/�j ; 1/

 � 1C
sX

jD1
min.2�.˛/�j ; 1/ ! 1:

Hence lims!1NHs;˛;� .s; "/ D 1, which means that we cannot have strong
polynomial tractability. Thus

P1
jD1 �j < 1 is a necessary condition for strong

polynomial tractability.
Finally, suppose that limj!1 �j D 0 and lim sups!1

Ps
jD1 �j = log s D 1.

Note that for x 2 Œ0; 2�.˛/ supj �j � we have log.1 C x/ � cx for some c > 0.
Hence

log
sY

jD1

�
1C min.2�.˛/�j ; 1/

 D
sX

jD1
log

�
1C min.2�.˛/�j ; 1/

 � c

sX
jD1

min.2�.˛/�j ; 1/

and therefore
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sY
jD1

�
1C min.2�.˛/�j ; 1/

 � exp

0
@c

sX
jD1

min.2�.˛/�j ; 1/

1
A D s

c
log s

Ps
jD1 min.2�.˛/�j ;1/:

This implies that NHs;˛;� .s; "/ goes to infinity faster than any power of s and we
cannot have polynomial tractability. Hence we have shown that (4.23) is a necessary
condition for polynomial tractability.

Summing up we have shown the following result.

Corollary 4.28. Numerical integration in Hs;˛;� is
1. strongly polynomially tractable if and only if

P1
jD1 �j < 1. If �0 is the

infimum over all � 2 .1=˛; 1� such that (4.22) holds, then the "-exponent �
of strong polynomial tractability is at most 2�0;

2. polynomially tractable if and only if (4.23) holds.

I Remark 4.29 The above if and only if conditions for (strong) polynomial
tractability also hold for more general algorithms than for QMC rules as considered
here. This is clear for the sufficient conditions. For the necessary conditions this was
proved by F.J. Hickernell and H. Woźniakowski in 2001.

4.6 Further Reading and Exercises

Further Reading

Standard references for the theory of lattice point sets and lattice rules are the books of Niederreiter
[69] and Sloan and Joe [85], both warmly recommended for further reading. Further books dealing
with lattice rules are the ones by Hua and Wang [46] and by Korobov [55], the latter being available
in Russian language only. For technical reasons we often restricted ourselves to prime N within
this section. We remark that most existence results also hold for arbitrary integers N � 2 and
refer to [69] for further information. Theorem 4.5 was first shown by Joe in [51]. The proof of
Theorem 4.6 can be found in [58]. The currently best existence result (4.5) for lattice point sets
with low discrepancy was proved by Larcher [57] for s D 2 and by Bykovskii [11] for general s.
The CBC construction of lattice point sets was introduced by Korobov [55] and later re-invented
by Sloan and Reztsov [86]. More information on the fast CBC algorithm can be found in [78] and
implementations of the fast CBC algorithm can be found in [77, 79]. Lattice rules for functions
which are not necessarily periodic are discussed in the papers by Hickernell [36] and by Dick,
Nuyens and Pillichshammer [23]. Our exposition of the proof of Theorem 4.22 is based on the
proof of [90, Lemma 3.1] by Temlyakov. A proof of Theorem 4.22 for linear algorithms can be
found in [20], see also Bakhvalov [6] and Temlyakov [90]. More information on tractability for the
weighted Korobov space can be found in the paper by Sloan and Woźniakowski [88]. The current
state of the art concerning tractability is summarized in the three volumes [74–76] by Novak and
Woźniakowski (in particular, [75, Chapter 16] is devoted to multivariate integration for Korobov
spaces). The curse of dimensionality for the integration of monotone functions and of convex
functions was shown by Hinrichs, Novak and Woźniakowski [41] and for smooth functions by
Hinrichs, Novak, Ullrich and Woźniakowski [39, 40]. The necessity of the conditions for (strong)
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polynomial tractability from Corollary 4.28 for arbitrary algorithms using N function evaluations
was shown by Hickernell and Woźniakowski [37].

A software tool called “Lattice Builder” (see [60]) for constructing lattice rules is available at:
https://github.com/mungerd/latbuilder#readme

Exercises

4.1 Consider lattice points of the form vs.g/ D .g1; g2; : : : ; gs/ 2 Z
s , where gi � gi�1

.mod N/ with g 2 GN . Such generating vectors are called Korobov vectors. Define RN
as in (4.3) and let N be a prime number. Show that

1

N � 1

X
g2GN

RN .vs.g// � s � 1

N � 1
.1C SN /

s ; where SN WD X
h2C�

1 .N /

jhj�1:

4.2 Let N be a prime number. Show that for all " 2 Œ0; 1/ there exist more than "jGN j elements
g 2 GN , such that

DN.P.vs .g/; N // � s

N
C 1

1� "

s � 1

N � 1
.1� SN /

s:

4.3 Let g W Œ0; 1� ! R, g.x/ D x2 � x
2

if x 2 Œ0; 1=2� and g.x/ D 3x
2

� x2 � 1
2

if x 2 Œ1=2; 1�.
Show that g 2 H2;� but g 62 C2.Œ0; 1�/.

4.4 Show that the QMC mean square worst-case error in Hs;˛;� is

EŒe2.Hs;˛;� ;P/� D 1

N

2
4�1C

sY
jD1

.1C 2�j �.˛//

3
5 :

4.5 Prove the formula for the Fourier expansion of the Bernoulli polynomials given in
Remark 4.19 for the second Bernoulli polynomial B2.x/ D x2 � x C 1

6
.

4.6 Use the Fourier expansion of B˛.x/ from Remark 4.19 to show the formula for
e2.Hs;˛;P.g; N // for all for even ˛ � 2 as stated in the same remark.

4.7 Use Exercise 3.14 to show that the initial error e.0; s/ in Hs;˛;� equals one.
4.8 Show that integration in Hs;˛;� is polynomially tractable if (4.23) holds.
4.9 Besides polynomial and strong polynomial tractability, there are many other notions of

tractability such as, e.g., weak tractability. We say that we have weak tractability if the
information complexity NH.K/."; s/ satisfies

lim
"�1

Cs!1

logNH.K/."; s/

"�1 C s
D 0:

Show that weak tractability means that NH.K/."; s/ is asymptotically much smaller than

q"
�1

Cs for any q > 1. Remark: Problems that are not weakly tractable are said to be
intractable. This means that the information complexity depends exponentially on "�1 or
s, whereas the curse of dimensionality means that the information complexity depends
exponentially on s.

4.10 Consider integration in the weighted Korobov space Hs;˛;� . Show that a sufficient condition
for weak tractability is lims!1

1
s

Ps
jD1 �j D 0. Remark: This condition is also necessary.

https://github.com/mungerd/latbuilder#readme
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5.1 Definition and Existence

We are interested in point sets with very low star discrepancy. This means that we
aim on finding point sets P for which the absolute local discrepancy,

j�P ;N .y/j D
ˇ̌
ˇ̌A.Œ0;y/;P ; N /

N
� �s.Œ0;y//

ˇ̌
ˇ̌ ;

is as small as possible for all y 2 .0; 1�s . Our strategy for achieving this goal is to
discretize the problem and to investigate point sets P for which

A.J;P ; N / D N�s.J / (5.1)

for all J from a sufficiently large class of intervals J , and hope that this already
implies a low star discrepancy of P . If (5.1) holds, then we say that P is fair with
respect to J . It is obvious that a given point set P cannot be fair with respect to
all intervals since, for example, for any N -element point set P in Œ0; 1/s we have
D�
N .P/ � .2N /�1.
Now we try to find classes of intervals with the property that fairness of a point

set P with respect to all intervals from this class implies low star discrepancy of P .

1. Attempt: On first sight, it is near at hand to consider the class of intervals of
the form

J D
sY

jD1

�
aj

b
;
aj C 1

b

�
; (5.2)

where aj 2 f0; 1; : : : ; b � 1g for j D 1; : : : ; s. Assume that we are given a fair
point set P with respect to these intervals. This means that each of the intervals
of the form (5.2) contains the same number of elements from P , and hence the

G. Leobacher and F. Pillichshammer, Introduction to Quasi-Monte Carlo Integration and
Applications, Compact Textbooks in Mathematics, DOI 10.1007/978-3-319-03425-6 5,
© Springer International Publishing Switzerland 2014
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Fig. 5.1 The point set �3;2
with fair intervals

cardinality of P is a multiple of bs . Here we observe that the regular lattice �b;s
also satisfies these requirements (see Fig. 5.1). But the discrepancy of �b;s is
of order 1=b, which is rather large. Hence fairness with respect to the class of
intervals of the form (5.2) does not necessarily lead to small discrepancy. This
means that this class is in some sense too small to achieve our goal.

2. Attempt: We have seen that we have to demand fairness for a larger and, in
some sense, finer class of intervals to find point sets with low discrepancy. This
class will consist of intervals of a special shape which we define now:

Definition 5.1
Let b 2 N, b � 2. An elementary interval in base b is an interval of the form

J D
sY

jD1

�
aj

bdj
;
aj C 1

bdj

�
;

where dj 2 N0 and aj 2 f0; 1; : : : ; bdj � 1g for all j D 1; 2; : : : ; s.

Now we consider finite point sets which are fair with respect to all elementary
intervals of prescribed volume. This leads to the following definition:

Definition 5.2
Let m; s; b 2 N, b � 2. A .0;m; s/-net in base b is a bm-element point set in
Œ0; 1/s which is fair with respect to all s-dimensional elementary intervals in base
b having volume b�m.

Let us provide an example.

Example 5.3

A .0; 4; 2/-net in base 2 is a 24 D 16-element point set P in Œ0; 1/2 for which every 2-dimensional
elementary interval in base 2 of area 2�4 D 1=16 contains exactly one element of P (see Fig. 5.2).

We will show later that .0;m; s/-nets are in fact point sets with low discrepancy.
Before we do so, we should be concerned with the existence of .0;m; s/-nets, i.e.,
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Fig. 5.2 A .0; 4; 2/-net in base 2; every 2-dimensional elementary interval in base 2 of area 2�4

contains exactly one point

with the question for which parameters m; s; b 2 N, where b � 2, a .0;m; s/-net
in base b exists. For the moment we will only show a necessary condition. As we
will see, this condition is independent of the choice of m, but depends on a relation
between s and b. A sufficient condition, and even an explicit construction, for the
case of prime power bases b will be provided in Sect. 5.4.

We prove a series of lemmas which finally lead to the necessary condition
for the existence of .0;m; s/-nets in base b. In the first lemma we show that
from a given .0;m; s/-net in base b one can always construct a .0;m; r/-net in
base b of dimension r � s. For x D .x1; : : : ; xs/ and for r 2 f1; : : : ; sg let
�r.x/ WD .x1; : : : ; xr / be the projection of x onto the first r components of x.
For a point set P , the projection �r .P/ is defined element-wise.

Lemma 5.4. Let P be a .0;m; s/-net in base b. Then for every r 2 f1; : : : ; sg
the point set �r.P/ is a .0;m; r/-net in base b.

Proof. Let J 0 be an r-dimensional elementary interval in base b of volume b�m.
Then the interval J D J 0 � Œ0; 1/s�r is an s-dimensional elementary interval in base
b which also has volume b�m. By the .0;m; s/-net property, J contains exactly one
element of P and therefore J 0 contains exactly one element of P 0 as well. ut

Lemma 5.5. If a .0;m; s/-net in base b with m � 2 exists, then there exists a
.0; 2; s/-net in base b.
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Proof. Let P be a .0;m; s/-net in base b. Then the interval

J D
�
0;

1

bm�2

�
�

sY
iD2
Œ0; 1/ D

b2�1[
kD0

��
k

bm
;
k C 1

bm

�
� Œ0; 1/s�1

�

contains exactly b2 elements of P . We denote these elements by z0; : : : ; zb2�1.
Multiplying the first component of each of these b2 points by bm�2 gives a point
set fy0; : : : ;yb2�1g in Œ0; 1/s . We show that this point set is a .0; 2; s/-net in base b.
To this end we have to prove that every elementary interval of the form

E D
sY

jD1

�
aj

bdj
;
aj C 1

bdj

�

of volume b�2 contains exactly one element of the set fy0; : : : ;yb2�1g. The number
of indices n 2 f0; 1; : : : ; b2 � 1g satisfying yn 2 E equals the number of indices
n 2 f0; 1; : : : ; b2 � 1g, for which zn 2 E 0, where

E 0 D
�

a1

bd1bm�2 ;
a1 C 1

bd1bm�2

�
„ ƒ‚ …

�Œ0;b�mC2/

�
sY

jD2

�
aj

bdj
;
aj C 1

bdj

�
:

This, however, is exactly the number of points of P which belong to the intervalE 0.
Since P is a .0;m; s/-net in base b and sinceE 0 is an elementary interval of volume
b�m, this number is exactly one and the proof is finished. ut

Lemma 5.6. A .0; 2; b C 2/-net in base b cannot exist.

Proof. Assume that there exists a .0; 2; b C 2/-net P D fx0; : : : ;xb2�1g in base
b. Every point xn D .xn;1; : : : ; xn;bC2/ in P corresponds to a (b C 2)-dimensional
vector

xn $

0
B@
a
.1/
n

:::

a
.bC2/
n

1
CA ;

where a.j /n D bbxn;j c 2 f0; 1; : : : ; b�1g is chosen so that xn belongs to the intervalQbC2
jD1Œa

.j /
n =b; .a

.j /
n C1/=b/. Hence the b2 elements of P correspond to the following

.b C 2/ � b2 array:
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x0 x1 : : : xb2�1
l l l
a
.1/
0 a

.1/
1 : : : a

.1/

b2�1
:::

:::
:::

a
.bC2/
0 a

.bC2/
1 : : : a

.bC2/
b2�1

(5.3)

We prove that this array satisfies the following “orthogonality property”: For any
two rows of this array, say

a
.i/
0 a

.i/
1 : : : a

.i/

b2�1;
a
.j /
0 a

.j /
1 : : : a

.j /

b2�1;

where i 6D j , the b2 two-dimensional columns

 
a
.i/

k

a
.j /

k

!

kD0;:::;b2�1

attain any possible value
�
A
B


, with A;B 2 f0; : : : ; b � 1g, exactly once.

Assume to the contrary that some
�
A
B


appears more than once. Then the

elementary interval

Œ0; 1/i�1 �
�
A

b
;
AC 1

b

�
� Œ0; 1/j�i�1 �

�
B

b
;
B C 1

b

�
� Œ0; 1/bC2�j

of volume b�2 does not contain exactly one element of P , which contradicts the
.0; 2; bC2/-net property in base b of P . Hence the orthogonality property is proven.

In particular, any possible valueA 2 f0; : : : ; b�1g must occur in any row of (5.3)
exactly b-times. This, however, cannot be satisfied for all possible pairs of rows
of (5.3) as we show now:

Assume that any two of the bC2 rows of (5.3) satisfy the orthogonality property.
We may assume that in array (5.3) the values of the first column all equal 1, since a
permutation of the values A 2 f0; : : : ; b � 1g in a single row of the array does not
affect the orthogonality property.

Then, by the orthogonality property, in any of the remaining b2 � 1 columns, 1
can occur at most once. But in each row, 1 must occur b-times, and hence we would
require a place for the .b � 1/.b C 2/ remaining 1’s in these b2 � 1 columns. Since
.b � 1/.b C 2/ D b2 C b � 2 > b2 � 1, we have a contradiction. ut

Now we come to the desired necessary condition for the existence of .0;m; s/-
nets in base b.
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Theorem 5.7 (Niederreiter). Let s; b 2 N, b � 2. Assume that for m 2 N with
m � 2 there exists a .0;m; s/-net in base b. Then s � b C 1.

Proof. Assume that a .0;m; s/-net in base b where m � 2 and s � b C 2 exists.
Then, according to Lemmas 5.4 and 5.5, there exists a .0; 2; b C 2/-net in base b,
which contradicts Lemma 5.6. ut

In other words, a .0;m; s/-net in base b with m � 2 cannot exist as long as
s � b C 2. For example, there is no .0;m; s/-net in base 2 for m � 2 and s � 4.

As .0;m; s/-nets in base b do not exist for all parameters s; b 2 N, b � 2, we
now weaken the condition from their definition.

Definition 5.8
Let m; s; b 2 N, b � 2, and let t 2 f0; : : : ; mg. A .t;m; s/-net in base b is a bm-
element point set P in Œ0; 1/s which is fair with respect to every s-dimensional
elementary interval in base b having volume b�mCt . The parameter t is called
the quality parameter of the net. Moreover, P is called a strict .t;m; s/-net in
base b, if t is the smallest number u 2 f0; : : : ; mg such that P is a .u; m; s/-net
in base b.

Some remarks on the definition of .t;m; s/-nets in base b are appropriate:

I Remark 5.9
1. An s-dimensional elementary interval in base b of volume b�mCt is an interval

of the form

E D
sY
iD1

�
ai

bdi
;
ai C 1

bdi

�
;

where d1 C � � � C ds D m � t . Every such interval contains exactly bt elements
of a .t;m; s/-net in base b. The larger t is, the larger are the intervals under
consideration and the smaller is the class of considered intervals. For such
intervals we have A.E;P ; bm/ D bt D bm�s.E/.

2. Every bm-element point set in Œ0; 1/s is a .t;m; s/-net in base b for some t 2
f0; : : : ; mg. In the worst case it is a .m;m; s/-net in base b.

3. Every .0;m; s/-net in base b is strict by definition.
4. Every elementary interval in base b of volume b�mCt is a disjoint union of bt

elementary intervals in base b of volume b�m. Hence, every .0;m; s/-net in base
b is also a .t;m; s/-net in base b for every t 2 f0; : : : ; mg.

5. Similarly, every .t;m; s/-net in base b is also a .u; m; s/-net in base b for every
u 2 ft; : : : ; mg.

6. From Lemma 5.5 we know that from a .0;m; s/-net in base b with m � 2 one
can construct a .0; 2; s/-net in base b. More generally, but in the same way, from
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a .t;m; s/-net in base b one can construct a .t; u; s/-net in base b for every u 2
ft; : : : ; mg.

7. From Lemma 5.4 we know that from a .0;m; s/-net in base b a .0;m; r/-net in
base b with r 2 f1; : : : ; sg can be constructed. More generally, but in the same
way, from a .t;m; s/-net in base b one can construct a .t;m; r/-net in base b for
any r 2 f1; : : : ; sg.

8. It can be shown that, for all s; b 2 N, b � 2, there exists a number tb.s/ 2 N0

such that for every m � tb.s/ there exists a .tb.s/;m; s/-net in base b. It is a
remarkable result by H. Niederreiter and C.P. Xing that tb.s/ 
b s asymptotically
for s ! 1.

Example 5.10

The regular lattice �n;s as defined in (2.7) with n D bL (i.e., with bsL elements) is a strict .sL�
L; sL; s/-net in base b.

Proof. The structure of the regular grid �bL;s is such that every interval of the form

Mk D
sY

jD1

�
kj

bL
;
kj C 1

bL

�
;

where k D .k1; : : : ; ks/ 2 f0; : : : ; bL � 1gs, contains exactly one element. Let

J D
sY

jD1

�
aj

bdj
;
aj C 1

bdj

�

be an elementary interval of volume b�L. Then we can write J as a disjoint union
of intervalsMk in the following way:

J D
bL�d1 .a1C1/�1[
k1DbL�d1a1

: : :

bL�ds .asC1/�1[
ksDbL�ds as

Mk with d1 C � � � C ds D L:

Since each of the intervals Mk contains exactly one element of the regular lattice,
it follows that J contains exactly bsL�L elements of the regular lattice. This shows
that the regular lattice with bsL elements is an .sL � L; sL; s/-net in base b.

It remains to show strictness. To this end we consider the elementary interval

J 0 D
�
0;

1

bLC1

�
� Œ0; 1/s�1:

This interval has volume b�.LC1/ and contains no elements of the regular lattice.
Therefore A.J 0; �bL;s; bsL/ � bsL�s.B/ D �b.s�1/L�1 6D 0. ut
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A disadvantage of nets in base b is that the number of points is restricted to a
power of b. At first glance one could argue that we can always choose b arbitrarily
large andm D 1, which would mean that there is no restriction at all. However, it is
intuitively obvious (and is supported by the discrepancy estimates in Sect. 5.2) that
the structure of a .t;m; s/-net in base b becomes strong only ifm is large compared
to b. Hence, for a given number N of points, it is sometimes better to realize the
point set with a small base b, i.e., a larger value form, and with a suboptimal quality
parameter t , instead of choosing a large base b (e.g., b D N ) (and therefore a small
m, for instance m D 1), with optimal quality parameter.

To overcome this problem one considers infinite sequences which have a certain
“net structure” in the sense that the elements of certain finite subsequences form
.t;m; s/-nets in base b. This leads to the definition of .t; s/-sequences.

Definition 5.11
Let s; b 2 N, b � 2, and let t 2 N0. An infinite sequence .xn/n2N0 of points
in Œ0; 1/s is called a .t; s/-sequence in base b if for all integers m > t and k �
0, the point set consisting of the points xkbm;xkbmC1; : : : ;xkbmCbm�1 forms a
.t;m; s/-net in base b. The parameter t is called the quality parameter of the
.t; s/-sequence.

Definition 5.12
A .t; s/-sequence in base b with t � 1 is called a strict .t; s/-sequence in base
b if it is not a .t � 1; s/-sequence in base b. A .0; s/-sequence is called strict by
definition.

We give a first example.

Example 5.13

The van der Corput sequence in base b is a .0; 1/-sequence in base b. This follows from the proof
of Proposition 2.10, where we have shown that for every m 2 N0 every elementary interval in base
b of length b�m contains exactly one of bm consecutive elements of the van der Corput sequence
in base b.

We have shown in Proposition 2.10 that the van der Corput sequence is uniformly
distributed modulo one. This result can be generalised in the following sense.

Theorem 5.14. A .t; s/-sequence in base b is uniformly distributed modulo one.

For the proof of this result we require the following lemma.
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Lemma 5.15. Let P be a .t;m; s/-net in base b. Let J1; : : : ; Jr be disjoint s-
dimensional elementary intervals in base b of volume bt�m and let J D J1 [
: : : [ Jr . Then

A.J;P ; bm/ D bm�s.J /:

Proof. For every Jl we have A.Jl ;P ; bm/ D bt D bm�s.Jl /, and hence

A.J;P ; bm/ D
rX
lD1

A.Jl ;P ; bm/ D bm
rX
lD1

�s.Jl / D bm�s.J /:

ut

Proof of Theorem 5.14. Let S D .xn/n2N0 be a .t; s/-sequence in base b. Further,
let J WD Qs

jD1Œ˛j ; ˇj / with 0 � ˛j < ˇj � 1, be an arbitrary subinterval of
Œ0; 1/s , and let " > 0 be given.

Let r 2 N be fixed and such that 2sb�r < "=2, let l D rs and letm be fixed such
that m � t � l . Let Aj ;Bj 2 f0; 1; : : : ; br � 1g be such that

Aj
br

� ˛j <
AjC1
br

and Bj
br

� ˇj <
BjC1
br

for j D 1; : : : ; s:

Then for

J1 WD
sY

jD1

�
Aj C 1

br
;
Bj

br

�
and J2 WD

sY
jD1

�
Aj

br
;
Bj C 1

br

�

we have

J1 � J � J2 � Œ0; 1/s;

and, by Lemma 2.16, �s.J2 n J1/ � 2sb�r . Furthermore,

J1 D
B1�1[

a1DA1C1
: : :

Bs�1[
asDAsC1

sY
jD1

�
aj

br
;
aj C 1

br

�
;

i.e., J1 is a union of at most bl elementary intervals of volume b�rs D b�l .
In the same way, J2 is a union of at most bl elementary intervals of volume
b�rs D b�l . Hence, by Lemma 5.15 and since m � t � l , the point sets
fxkbm;xkbmC1; : : : ;xkbmCbm�1g are fair with respect to the intervals J1 and J2.
Therefore, for all N 2 N, we have
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A.J;S; N / �N�s.J / � A.J2;S; N / �N�s.J2/CN
2s

br

� A.J2;S; bNb�mcbm/ � bNb�mc bm�s.J2/C bm CN
2s

br

D bm CN
2s

br

and

A.J;S; N / �N�s.J / � A.J1;S; N / �N�s.J1/ �N 2s
br

� A.J1;S; dNb�mebm/� dNb�me bm�s.J1/ � bm �N
2s

br

D �bm �N 2s
br
;

so that
ˇ̌
ˇ̌A.J;S; N /

N
� �s.J /

ˇ̌
ˇ̌ � bm

N
C 2s

br
< "

for N large enough. Hence the result follows. ut

As for .0;m; s/-nets in base b, it is clear that a .0; s/-sequence in base b
cannot exist for all dimensions s. A necessary condition for the existence of .0; s/-
sequences in base b can be obtained from Theorem 5.7.

Theorem 5.16 (Niederreiter). Let s; b 2 N, b � 2. The existence of a .0; s/-
sequence in base b implies s � b.

For the proof of Theorem 5.16 we need the following lemma, which shows that
if a .t; s/-sequence in base b exists, then, for every m � t , also a .t;m; s C 1/-net
in base b exists.

Lemma 5.17. Let .xn/n2N0 be a .t; s/-sequence in base b. Then, for every m,
the point set fy0;y1; : : : ;ybm�1g with yk WD .kb�m;xk/, is a .t;m; s C 1/-net
in base b.

Proof. Let J D QsC1
jD1

h
Aj

b
dj
;
AjC1
b
dj

�
be an elementary interval of volume b�mCt .

Then yk 2 J if and only if
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k

bm
2
�
A1

bd1
;
A1 C 1

bd1

�
and xk 2

sC1Y
jD2

�
Aj

bdj
;
Aj C 1

bdj

�
:

The first condition implies

A1b
m�d1 � k < A1b

m�d1 C bm�d1 :

Since .xn/n2N0 is a .t; s/-sequence in base b, the points xA1bm�d1Cl for l D
0; : : : ; bm�d1 � 1, form a .t;m � d1; s/-net in base b. The interval

sC1Y
jD2

�
Aj

bdj
;
Aj C 1

bdj

�

has volume b�d2�����dsC1 D b�mCd1Ct and therefore contains exactly bt of the points
xA1bm�d1Cl for l D 0; : : : ; bm�d1�1. Consequently J contains exactly bt of the yk’s
and the result follows. ut

Proof of Theorem 5.16. Assume that there exists a .0; s/-sequence in base b. Then,
according to Lemma 5.17, there also exists a .0;m; s C 1/-net in base b. Then it
follows from Theorem 5.7 that s C 1 � b C 1, and hence s � b. ut

5.2 Star Discrepancy of .t; m; s/-Nets and .t; s/-Sequences

In this section we will show that .t;m; s/-nets and .t; s/-sequences defined above
have in fact the desired property of having low discrepancy.

First we consider .t;m; s/-nets in base b, for which the following fundamental
discrepancy estimate holds.

Theorem 5.18. For the star discrepancy of a .t;m; s/-net P in base b we have

D�
bm.P/ � 1

bm�t
s�1X
kD0

 
m � t
k

!
.b � 1/k:

For the proof of this estimate we require the following lemma.

Lemma 5.19. For s;m 2 N we have

X
k1;:::;ks2N

k1C���Cks�m

1 D
 
m

s

!
:



118 5 .t; m; s/-Nets and .t; s/-Sequences

Proof. We have

X
k1;:::;ks2N

k1C���Cks�m

1 D
mX
lDs

X
k1;:::;ks2N

k1C���CksDl

1:

For l � s the number of solutions of the equation k1 C � � � C ks D l with ki 2 N

equals the number of solutions of the equation k1 C � � � C ks D l � s with ki 2 N0,
which in turn equals

�
l�1
s�1

. consequently,

X
k1;:::;ks2N

k1C���Cks�m

1 D
mX
lDs

 
l � 1

s � 1

!
D
 
m

s

!
;

where the last equality can be shown by induction onm. ut

Proof of Theorem 5.18. We only consider the case t D 0; the general case can be
proven along the same lines by considering the same b-adic expansions, only up to
m � t instead of m.

Thus, let P be a .0;m; s/-net in base b. Consider an intervalB D Œ0; ˛.1//�� � ��
Œ0; ˛.s// with

˛.j / D a
.j /
1

b
C a

.j /
2

b2
C � � � C a

.j /
m

bm
C � � �

for j D 1; 2; : : : ; s. The fundamental idea of the proof is to approximate the interval
B from the interior and exterior by setsBs andB 0

s , respectively, which can be written
as disjoint unions of elementary intervals of volume b�m. Then we have Bs � B �
B 0
s such that

A.Bs;P ; bm/ � A.B;P ; bm/ � A.B 0
s ;P ; bm/

and, by Lemma 5.15,

b�mA.Bs;P ; bm/ D �s.Bs/ � �s.B/ � �s.B
0
s/ D b�mA.B 0

s ;P ; bm/:

Thus we get

jb�mA.B;P ; bm/ � �s.B/j � �s.B
0
s/ � �s.Bs/ D �s.B

0
snBs/;

and the theorem will be proven once we succeed in showing that Bs and B 0
s can

always be constructed in a way that guarantees

�s.B
0
snBs/ � b�m

s�1X
kD0

 
m

k

!
.b � 1/k:
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Of course, this is the hard part of the proof. We use induction on s.
• s D 1: Let

B1 D
"
0;
a
.1/
1

b
C � � � C a

.1/
m

bm

!
and B 0

1 D
"
0;
a
.1/
1

b
C � � � C a

.1/
m

bm
C 1

bm

!
:

Then

B1 D
bm�1a

.1/
1 C���Ca.1/m �1[
kD0

�
k

bm
;
k C 1

bm

�

is a disjoint union of elementary intervals of length b�m and the same is true
for B 0

1. Furthermore, we have B1 � B � B 0
1 and �1.B 0

1 n B1/ D 1
bm

D
1
bm

P0
kD0

�
m
k


.b � 1/k.

• For illustration purposes we give the step 1 ! 2 separately before showing the
general induction step: Let

I1 WD
"
0;
a
.1/
1

b

!
�
"
0;
a
.2/
1

b
C � � � C a

.2/
m�1
bm�1

!

J1 WD
"
0;
a
.1/
1

b

!
�
"
0;
a
.2/
1

b
C � � � C a

.2/
m�1
bm�1 C 1

bm�1

!
:

Then I1 � B and

I1 D
bm�2a

.2/
1 C���Ca.2/m�1�1[
kD0

"
0;
a
.1/
1

b

!
�
�

k

bm�1 ;
k C 1

bm�1

�
:

If a.1/1 6D 0, then I1 is a disjoint union of two-dimensional elementary intervals of

area b�m. If, however, a.1/1 D 0, then I1 D ; and is therefore trivially a disjoint
union of elementary intervals of area b�m. For the same reasons J1 is a disjoint
union of elementary intervals of area b�m.

For k 2 f2; : : : ; m � 1g put

Ik WD
"
a
.1/
1

b
C � � � C a

.1/

k�1

bk�1
;
a
.1/
1

b
C � � � C a

.1/

k

bk

!
�
"
0;
a
.2/
1

b
C � � � C a

.2/

m�k

bm�k

!
;

Jk WD
"
a
.1/
1

b
C � � � C a

.1/

k�1

bk�1
;
a
.1/
1

b
C � � � C a

.1/

k

bk

!
�
"
0;
a
.2/
1

b
C � � � C a

.2/

m�k

bm�k
C 1

bm�k

!
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and

Im WD
"
a
.1/
1

b
C � � � C a

.1/
m�1
bm�1 ;

a
.1/
1

b
C � � � C a

.1/
m

bm

!
� Œ0; 0/ D ;;

Jm WD
"
a
.1/
1

b
C � � � C a

.1/
m�1
bm�1 ;

a
.1/
1

b
C � � � C a

.1/
m

bm

!
� Œ0; 1/:

Again it can be checked that Ik; Jk are disjoint unions of elementary intervals of
area b�m.

Now let

B2 WD
m[
kD1

Ik and B 0
2 WD

m[
kD1

Jk [ .B 0
1 n B1 � Œ0; 1//;

where B1 and B 0
1 are defined as in the case for s D 1 to approximate the interval

Œ0; ˛.1//, such that

B 0
1 n B1 D

"
a
.1/
1

b
C � � � C a

.1/
m

bm
;
a
.1/
1

b
C � � � C a

.1/
m

bm
C 1

bm

!

and �1.B 0
1 n B1/ D 1

bm
. Then we have B2 � B � B 0

2 and

�2.B
0
2 n B2/ D

mX
kD1

�2.Jk n Ik/C �1.B
0
1 n B1/

D
mX
kD1

a
.1/

k

bk
1

bm�k C 1

bm

� m

bm
.b � 1/C 1

bm

D 1

bm

1X
kD0

 
m

k

!
.b � 1/k:

• s � 1 ! s: For k1; : : : ; ks�1 2 N with k1 C � � � C ks�1 � m put

Ik1;:::;ks�1 WD
s�1Y
lD1

"
a
.l/
1

b
C � � � C a

.l/

kl�1
bkl�1

;
a
.l/
1

b
C � � � C a

.l/

kl�1
bkl�1

C a
.l/

kl

bkl

!
:
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Furthermore, let

I 0
k1;:::;ks�1

WDIk1;:::;ks�1 �
"
0;
a
.s/
1

b
C � � � C a

.s/

m�k1�����ks�1
bm�k1�����ks�1

!
and

J 0
k1;:::;ks�1

WDIk1;:::;ks�1 �
"
0;
a
.s/
1

b
C � � � C a

.s/

m�k1�����ks�1
bm�k1�����ks�1 C 1

bm�k1�����ks�1

!

for k1 C � � � C ks�1 � m� 1, and

I 0
k1;:::;ks�1

WDIk1;:::;ks�1 � Œ0; 0/ D ; and

J 0
k1;:::;ks�1

WDIk1;:::;ks�1 � Œ0; 1/

for k1 C � � � C ks�1 D m.
It is readily checked that the intervals I 0

k1;:::;ks�1
are again disjoint unions of

elementary intervals of volume b�m. Furthermore,

I 0
k1;:::;ks�1

\ I 0
j1;:::;js�1

D ; D J 0
k1;:::;ks�1

\ J 0
j1;:::;js�1

for .k1; : : : ; ks�1/ ¤ .j1; : : : ; js�1/. Put

Bs WD
[

k1;:::;ks�12N

k1C���Cks�1�m

I 0
k1;:::;ks�1

;

B 0
s WD

[
k1;:::;ks�12N

k1C���Cks�1�m

J 0
k1;:::;ks�1

[ .B 0
s�1 n Bs�1/ � Œ0; 1/;

where Bs�1 and B 0
s�1 are the sets from the .s� 1/-dimensional case approximat-

ing Œ0; ˛.1// � � � � � Œ0; ˛.s�1// with

�s�1.B 0
s�1 n Bs�1/ � 1

bm

s�2X
kD0

 
m

k

!
.b � 1/k:

Then we have Bs � B � B 0
s and, like in the case s D 2, we obtain

�s.B
0
s n Bs/ D

mX
k1;:::;ks�1D1

k1C���Cks�1�m

�s.J
0
k1;:::;ks�1

n I 0
k1;:::;ks�1

/C �s�1.B 0
s�1 n Bs�1/

D
mX

k1;:::;ks�1D1
k1C���Cks�1�m

1

bm�k1�����ks�1

s�1Y
lD1

a
.l/

kl

bkl
C 1

bm

s�2X
kD0

 
m

k

!
.b � 1/k
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� .b � 1/s�1
bm

mX
k1;:::;ks�1D1

k1C���Cks�1�m

1C 1

bm

s�2X
kD0

 
m

k

!
.b � 1/k

D 1

bm

s�1X
kD0

 
m

k

!
.b � 1/k;

where we have used Lemma 5.19.
Thus the proof is finished. ut

Corollary 5.20. For the star discrepancy of a .t;m; s/-net P in base b withm �
2s � 2C t we have

D�
bm.P/ � bt

bm

�
1C .b � 1/s�1

.s � 2/Š
.m� t/s�1

�
:

Proof. For m � 2s � 2C t and k 2 f1; : : : ; s � 1g,

 
m � t
k

!
�
 
m� t

s � 1

!
D .m� t/.m � t � 1/ � � � .m � t � s C 2/

.s � 1/Š � .m � t/s�1

.s � 1/Š
:

Using this estimate in Theorem 5.18 gives the desired result. ut

Since m D .log bm/= logb, it follows that a .0;m; s/-net in base b has star
discrepancy of order of magnitude O..logN/s�1=N /, where N D bm with an
implied constant only depending on s and b. Furthermore, recall from Remark 5.9
that for all s; b 2 N, b � 2, there exists a tb.s/ such that for all m � tb.s/ a
.tb.s/;m; s/-net in base b exists and tb.s/ 
b s. Let tb.s/ � cs for c D c.b/ > 0

and let .Pm/m�tb.s/ be a sequence of .tb.s/;m; s/-nets in base b. Using Stirling’s
formula we find that nŠ � p

2�n.n=e/n for n 2 N, where e D exp.1/. Then we
have

lim sup
m!1

bmD�
bm
.Pm/

.log bm/s�1 � bcs.b � 1/s�1
.s � 2/Š.log b/s�1 � b2c.b � 1/p

2�.s � 2/.log b/s�1

�
ebc.b � 1/

s � 2
�s�2

:

This expression tends to zero at a superexponential rate as s ! 1.

Now we turn to discrepancy estimates for .t; s/-sequences in base b. To this end,
assume that �b.t;m; s/ is a number such that

bmD�
bm.P/ � �b.t;m; s/
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holds for the star discrepancy of any .t;m; s/-net P in base b. The star discrepancy
D�
N of the infinite .t; s/-sequence S D .xn/n2N0 in base b is by definition the

star discrepancy of the point set PN D fx0; : : : ;xN�1g consisting of the first N
elements of S. LetN have b-adic representationN D arb

r C � � � C a1bC a0. Then
we partition the point set PN into the disjoint point sets

Pm;a D fxar brC���CamC1b
mC1CabmCk W k D 0; : : : ; bm � 1g;

form D 0; : : : ; r and a D 1; : : : ; am. Hence,

PN D
r[

mD0

am�1[
aD0

Pm;a:

Every Pm;a is a .t;m; s/-net in base b and bm times its star discrepancy is
at most �b.t;m; s/. Using the triangle inequality for the star discrepancy (see
Exercise 2.14), we obtain the following result.

Lemma 5.21. Let S be a .t; s/-sequence in base b. Let N 2 N with b-adic
expansion N D arb

r C � � � C a1b C a0. Then

ND�
N .S/ �

rX
mD0

am�b.t;m; s/:

Theorem 5.18 shows that we can choose �b.t;m; s/ D bt
Ps�1

kD0
�
m�t
k


.b � 1/k .

Using this estimate in conjunction with Lemma 5.21 we obtain the following
estimate.

Theorem 5.22. For the star discrepancy of a .t; s/-sequence S in base b we
have

D�
N .S/ � bt .b � 1/

N

rX
mD0

s�1X
kD0

 
m � t

k

!
.b � 1/k;

where r D b.logN/=.logb/c.

For r ! 1 we have

rX
mD0

m�2s�2Ct

s�1X
kD0

 
m � t

k

!
.b � 1/k �

rX
mD0

m�2s�2Ct

�
1C ms�1

.s � 2/Š
.b � 1/s�1

�
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� r C 1
.b � 1/s�1

.s � 2/Š

rX
mD0

ms�1

D .b � 1/s�1.s � 1/

sŠ
rs CO.rs�1/

and

rX
mD0

m<2s�2Ct

s�1X
kD0

 
m � t

k

!
.b � 1/k D O.1/:

Hence we conclude from Theorem 5.22 that

D�
N .S/ � bt .b � 1/s.s � 1/

sŠ.log b/s
.logN/s

N
CO

�
.logN/s�1

N

�
:

To compare this estimate with the Halton sequences we study the quantity d� which
was introduced in (2.17). The above bound on the star discrepancy implies that

d�.S/ D lim sup
N!1

ND�
N .S/

.logN/s
� bt

.b � 1/s.s � 1/

sŠ.log b/s
� bt

.b � 1/s.s � 1/esp
2�s ss.log b/s

:

It is known that for any s; b 2 N, b � 2, one can construct a .tb.s/; s/-sequence S�
s

in base b with tb.s/ 
b s. For such sequences we obtain

lim sup
s!1

logd�.S�
s /

s log s
� �1;

and hence d�.S�
s / tends to zero at a superexponential rate as s ! 1. This result

should be compared with the analogous result for Halton sequences presented in
Sect. 2.4, Eq. (2.18).

5.3 Digital Nets and Sequences

In the last section we have shown that .t;m; s/-nets and .t; s/-sequences in base b
have the desired property of having a low star discrepancy (at least in an asymptotic
sense). Now the question arises how to construct concrete examples of .t;m; s/-nets
and .t; s/-sequences in base b with good equidistribution properties. The concept of
digital nets and sequences is a general framework for the construction of point sets
and sequences, and it is the basis for virtually all concrete constructions of .t;m; s/-
nets and .t; s/-sequences.

Although one can introduce digital nets and sequences in arbitrary integer bases
b � 2, we restrict our treatment to prime power bases b only. The reason for this
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restriction is that exactly for such b there exists a finite field Fb of order b and this
will be helpful in the construction. We denote the elements of Fb by 0; 1; : : : ; b � 1,
where 0 denotes the neutral element of addition in Fb . If b is a prime number, then
we identify Fb with Zb , the set of residue classes modulo b equipped with arithmetic
operations modulo b, which in turn we identify with the elements of f0; : : : ; b � 1g.

I Remark 5.23 (Some background on finite fields) Recall from Algebra that
a finite field of order b exists if and only if b is a prime power. Furthermore, a
finite field of prime power order b is uniquely determined up to isomorphisms.
The construction of a finite field uses irreducible polynomials and is based on the
following result: If K is a field and if f 2 KŒx� is irreducible (i.e., it cannot be
factored into the product of two or more non-trivial polynomials over K), then the
residue class ring KŒx�=.f / is also a field.

Hence, to construct a finite field with b D qm elements, where q is a prime
number and m 2 N, one can start with the finite field Fq (which we identify with
the set of residue classes modulo q equipped with arithmetic operations modulo
q) and an irreducible polynomial f 2 FqŒx� of degree m (whose existence is also
guaranteed by a result from algebra). Then FqŒx�=.f / is a field that contains exactly
b D qm elements which is usually denoted by Fb .

For example, to construct F4, the finite field with four elements, we start with
F2 D f0; 1g and choose f .x/ D x2 C x C 1 2 F2Œx�, which is irreducible over F2.
Then F2Œx�=.f / has the four elements 0; 1; Œx�; Œx C 1� and we obtain the following
operation tables for addition and multiplication, where we write A D Œx� and B D
Œx C 1� and where we use arithmetic operations modulo .f /, i.e., x2 D x C 1:

C 0 1 A B

0 0 1 A B

1 1 0 B A

A A B 0 1

B B A 1 0

and

� 0 1 A B

0 0 0 0 0

1 0 1 A B

A 0 A B 1

B 0 B 1 A

Digital .t; m; s/-Nets Over Fb

To construct a digital .t;m; s/-net in a prime power base b, we use the finite field
Fb with b elements and a bijection ' W f0; : : : ; b� 1g ! Fb which maps the set of b
adic digits onto Fb . We assume in the following that the elements of Fb are ordered
in such a way that '.a/ D a for a 2 f0; : : : ; b � 1g. If b is a prime number we
identify Fb with f0; : : : ; b � 1g and omit the bijection ' and the bar in this case.

Having set the stage, we now explain the digital method. Let s;m 2 N and let b
be a prime power. We aim at constructing a bm-element point set fx0; : : : ;xbm�1g
in Œ0; 1/s . To generate such a point set we first choose m � m matrices C1; : : : ; Cs
(one for each dimension) over Fb, that is, with entries from Fb.
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Digital method. To generate the point xn D .xn;1; : : : ; xn;s/ for n 2 f0; : : : ; bm �
1g we write n in its base b expansion

n D n0 C n1b C � � � C nm�1bm�1

with digits nj 2 f0; : : : ; b � 1g. Then take the m-dimensional column vector

En D

0
BBB@

'.n0/

'.n1/
:::

'.nm�1/

1
CCCA

with entries from Fb and multiply it by the matrix Cj , j D 1; 2; : : : ; s:

Cj En DW

0
BBB@

yn;j;1
yn;j;2
:::

yn;j;m

1
CCCA :

Transforming the entries of this vector with elements in Fb back into the set of
base b digits f0; 1; : : : ; b � 1g by applying the inverse map '�1 we obtain yn;j;l D
'�1.yn;j;l / for l D 1; 2; : : : ; m, which are taken as the base b digits of the j th
component of the point xn, i.e.,

xn;j WD yn;j;1

b
C yn;j;2

b2
C � � � C yn;j;m

bm
:

Finally, we put

xn WD .xn;1; : : : ; xn;s/:

Every point set constructed with the digital method is a .t;m; s/-net in base b for
some quality parameter t 2 f0; : : : ; mg since it is at least an .m;m; s/-net in base b.
This leads to the following definition:

Definition 5.24 (Digital net)

If the point set fx0; : : : ;xbm�1g constructed by the digital method is for some
t 2 f0; : : : ; mg a .t;m; s/-net in base b, then it is called a digital .t;m; s/-net over
the field Fb or, for short, a digital net with generating matrices C1; : : : ; Cs . It is
called a strict digital .t;m; s/-net over Fb if fx0; : : : ;xbm�1g is a strict .t;m; s/-
net in base b.
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In most cases the finite field Zb with b prime is chosen for practical applications,
and indeed Z2 is the most frequent choice.

Example 5.25

We want to construct a digital .t; 4; 2/-net over Z2. First we have to choose two 4	4matrices over
Z2, for instance

C1 D

0
BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA and C2 D

0
BB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCA : (5.4)

As an example we show how to construct the point x10. We have n D 10 D 0C1 �2C0 �22C1 �23
and therefore

C1En D

0
BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA

0
BB@
0

1

0

1

1
CCA D

0
BB@
0

1

0

1

1
CCA ;

C2En D

0
BB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCA

0
BB@
0

1

0

1

1
CCA D

0
BB@
1

0

1

0

1
CCA :

Hence, x10;1 D 1
4

C 1
16

D 5
16

and x10;2 D 1
2

C 1
8

D 5
8
, and thus x10 D �

5
16
; 5
8


.

We will show now how the (strict) quality parameter t is connected with the
choice of the generating matrices C1; : : : ; Cs . This can be answered with the help of
the following quantity � which, in some sense, “measures” the “linear independence
of the s matrices C1; : : : ; Cs”.

Definition 5.26
Let b be a prime power and let C1; : : : ; Cs be m �m matrices over Fb. Let � D
�.C1; : : : ; Cs/ be the largest integer such that for any choice of d1; : : : ; ds 2 N0

with

d1 C � � � C ds D �

the following holds:
The first d1 row vectors of C1 together with
the first d2 row vectors of C2 together with
:::

the first ds row vectors of Cs ,
(these are together � vectors in F

m
b ) are linearly independent over the finite field

Fb . We call � the linear independence parameter of the matrices C1; : : : ; Cs .
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Example 5.27

Consider C1 and C2 over Z2 from Example 5.25. Clearly, for these 4 	 4 matrices �.C1; C2/ is
at most 4. It is easy to see that in the present case �.C1; C2/ is indeed 4, since for any choice
of d1; d2 2 N0 with d1 C d2 D 4, the first d1 rows of C1 together with the first d2 rows of C2
provides the four canonical row-vectors .1; 0; 0; 0/; .0; 1; 0; 0/; .0; 0; 1; 0/; .0; 0; 0; 1/, which are
linearly independent over Z2. Hence, �.C1; C2/ D 4.

Now we can determine the strict quality parameter t of a digital net generated by
matrices C1; : : : ; Cs over Zb .

Theorem 5.28 (Niederreiter). Let s;m 2 N and let b be a prime power.
The point set constructed by the digital method with the m � m matrices
C1; : : : ; Cs over a finite field Fb is a strict .m � �;m; s/-net in base b,
where � D �.C1; : : : ; Cs/ is the linear independence parameter introduced in
Definition 5.26.

Proof. First we have to show that every s-dimensional elementary b-adic interval
of volume b�� contains exactly bm�� of the generated points. Let

J D
sY

jD1

�
aj

bdj
;
aj C 1

bdj

�

with d1; : : : ; ds 2 N0 such that d1 C � � � C ds D �, and aj 2 f0; : : : ; bdj � 1g for
j D 1; 2; : : : ; s. We have to count the number of indices n 2 f0; 1; : : : ; bm � 1g for
which xn belongs to J . We have xn 2 J if and only if

xn;j 2
�
aj

bdj
;
aj C 1

bdj

�
(5.5)

for all j D 1; 2; : : : ; s. Let aj D e
.j /

dj
C � � � C e

.j /
1 bdj�1 and hence

aj

bdj
D e

.j /
1

b
C � � � C

e
.j /

dj

bdj
:

Then (5.5) is equivalent to

e
.j /
1

b
C � � � C

e
.j /

dj

bdj
� xn;j <

e
.j /
1

b
C � � � C

e
.j /

dj

bdj
C 1

bdj
;

which, in turn, is equivalent to

xn;j D e
.j /
1

b
C � � � C

e
.j /

dj

bdj
C � � � :

Hence the condition (5.5) uniquely determines the first dj base b digits of xn;j .
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According to the digital construction scheme, the i th base b digit of xn;j is given

by '�1 applied to the product Ec .j /i En of the i th row vector Ec .j /i ofCj with the column
vector En, where ' is the bijection used in the construction. Hence xn 2 J if and only
if the following system of equations over Fb is satisfied:

Ec .1/1 En D '.e
.1/
1 /;

:::

Ec .1/d1
En D '.e

.1/

d1
/;

Ec .2/1 En D '.e
.2/
1 /;

::: (5.6)

Ec .2/d2
En D '.e

.2/

d2
/;

:::

Ec .s/1 En D '.e
.s/
1 /;

:::

Ec .s/ds
En D '.e

.s/

ds
/:

This system consists of exactly d1 C d2 C � � � C ds D � equations. Let A be the
� �m matrix over Fb with row vectors

Ec .1/1 ; : : : ; Ec .1/d1
; Ec .2/1 ; : : : ; Ec .2/d2

; : : : ; Ec .s/1 ; : : : ; Ec .s/ds
; (5.7)

and let

Ef > D .'.e
.1/
1 /; : : : ; '.e

.1/

d1
/; '.e

.2/
1 /; : : : ; '.e

.2/

d2
/; : : : ; '.e

.s/
1 /; : : : ; '.e

.s/

ds
// 2 F

�

b:

Then the linear system (5.6) can be rewritten into the system

AEn D Ef : (5.8)

Since the system of row vectors (5.7) by the definition of � is linearly independent
over Fb , the � �m matrix A has rank �. This implies that (5.8) is solvable and that
the nullspace of A has dimensionm��. Hence (5.8) has exactly bm�� solutions and
thus J contains bm�� elements from the digital net. This means that the matrices
C1; : : : ; Cs generate a digital .m � �;m; s/-net over Fb .

It remains to show the strictness of the quality parameter. If � D m, then there is
nothing to prove. If � � m� 1, then there are d1; : : : ; ds 2 N0 with d1 C � � � Cds D
�C 1, and such that the vectors
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Ec .1/1 ; : : : ; Ec .1/d1
; : : : ; Ec .s/1 ; : : : ; Ec .s/ds

are linearly dependent over Fb . But then the system (5.6) with '.e.j /i / D 0 for
i D 1; : : : ; dj and j D 1; : : : ; s, also has bm�� solutions En (although it consists
of � C 1 equations in m variables). This means that the corresponding elementary
interval

QJ WD
sY

jD1

�
aj

bdj
;
aj C 1

bdj

�

with aj D e
.j /

dj
C� � �Ce.j /1 bdj�1 for j D 1; 2; : : : ; s and of volume b�.�C1/ contains

bm�� points of the digital net. Consequently,

A. QJ ; bm/ � bm�s. QJ / D bm�� � bm���1 D .b � 1/bm���1 6D 0;

and so the matricesC1; : : : ; Cs generate a strict digital .m��;m; s/-net over Fb . ut

Digital .t; s/-Sequences Over Fb

To construct a .t; s/-sequence in a prime power base b by the digital method, we
again use a finite field Fb and a bijection ' W f0; : : : ; b � 1g ! Fb for which we
demand that '.0/ D 0.

First we have to choose N � N matrices C1; : : : ; Cs (one for each component)
over Fb. That is, matrices of the form

C D

0
BBB@

c11 c12 c13 : : :

c21 c22 c23 : : :

c31 c32 c33 : : :
:::

:::
:::
: : :

1
CCCA 2 F

N	N

b :

Digital method. To generate one of the points xn D .xn;1; : : : ; xn;s/ for n 2 N0 of
the .t; s/-sequence, we again write n in its base b expansion n D P1

iD0 ai bi with
ai 2 f0; : : : ; b � 1g and ai D 0 for all i large enough. Then take the column vector

En D

0
BBB@

'.a0/

'.a1/

'.a2/
:::

1
CCCA
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with entries in Fb and multiply it by Cj , j D 1; 2; : : : ; s:

Cj En D

0
B@
yn;j;1
yn;j;2
:::

1
CA :

Note that for the multiplication only finitely many of the entries of En are different
from zero, as we assumed that '.0/ D 0. Transforming the entries of Cj En back into
the set of base b digits f0; 1; : : : ; b � 1g by applying the inverse map '�1 we obtain

xn;j D '�1.yn;j;1/
b

C '�1.yn;j;2/
b2

C � � � :

Finally, we put
xn WD .xn;1; : : : ; xn;s/:

Definition 5.29
We call the sequence .xn/n2N0 constructed in this way a digital sequence over
Fb with generating matrices C1; : : : ; Cs , or short, a digital sequence.

I Remark 5.30 Depending on the matrices C1; : : : ; Cs , it may happen that the
vector Cj En DW Eyn;j contains infinitely many entries different from zero. For
practical purposes this requires an adaptation of the point generation. Usually the
vector Eyn;j is truncated at a suitable place.

Furthermore, another theoretical problem may arise. Namely, it should be
avoided that the vector Eyn;j contains only finitely many elements different from
'.b � 1/. Because of the nonuniqueness of representation of the b-adic real
numbers represented by such “digit vectors”, the net structure of the sequence under
consideration would be destroyed. This is the reason for the following additional
“finiteness” condition on the matrices C1; : : : ; Cs . Let

Cj D .c
.j /
i;r /i;r2N 2 F

N	N

b

for j D 1; : : : ; s.
F: We demand that for all j and r we have c.j /i;r D 0 for all i large enough.

To eliminate the problems with ambiguous digit expansions without insisting
on the finiteness condition F one can use a slightly modified definition of digital
sequences which is based on a certain truncation operator. Such sequences are then
occasionally called digital sequences in the broad sense.

We will show in the following that under certain conditions on the generating
matrices a digital sequence is a .t; s/-sequence in base b for some t 2 N0

which we then call a digital .t; s/-sequence over Fb . Before we do so we again
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have to introduce the quantities �m, which in some sense “measure” the “linear
independence” of the s infinite matrices C1; : : : ; Cs .

Definition 5.31
Let C1; : : : ; Cs be N�N matrices over the finite field Fb . For any j D 1; 2; : : : ; s

and m 2 N we denote by C .m/
j the left upperm �m sub-matrix of Cj . Then

�m D �m.C1; : : : ; Cs/ WD �.C
.m/
1 ; : : : ; C .m/

s /;

where � is the linear independence parameter defined for s-tuples of m � m

matrices over Fb in Definition 5.26.

Now we can determine the quality parameter t of a digital sequence.

Theorem 5.32 (Niederreiter). Let C1; : : : ; Cs be N � N matrices over Fb. If
there exists a t 2 N0 such that for eachm > t we have �m.C1; : : : ; Cs/ � m� t ,
then the digital sequence generated by C1; : : : ; Cs is a digital .t; s/-sequence
over Fb.

Proof. Let .xn/n2N0 denote the digital sequence generated by C1; : : : ; Cs . By the
definition of a .t; s/-sequence we have to show that for any m 2 N and any k 2 N0

the point set

Pk;m D fxkbm; : : : ;xkbmCbm�1g

is a .t;m; s/-net in base b. Indeed, for given k and m, and any l 2 f0; : : : ; bm � 1g
let k D �rC1brC� � �C�1 and l D �m�1bm�1C� � �C�0 be the base b representations
of k and l , respectively. For n D kbm C l we have

En D .�0; : : : ; �m�1; �1; : : : ; �rC1; : : :/>

and with the following representation of the matrices Cj ,

Cj D

0
BBBBBBB@

C
.m/
j F

.m/
j

H
.m/
j

1
CCCCCCCA

2 F
N	N

b ;
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where F .m/
j 2 F

m	N

b andH.m/
j 2 F

N	N

b , we have

Cj En D

0
BBBB@

C
.m/
j

El
0

0
:::

1
CCCCAC

0
BBBB@

F
.m/
j

Ek
0

0
:::

1
CCCCAC

0
BBBB@

0
:::

0

H
.m/
j En

1
CCCCA ;

where El D .�0; : : : ; �m�1/> and Ek D .�1; : : : ; �rC1; 0; 0; : : :/>.
In order to show that Pk;m is a .t;m; s/-net in base b we need to show that every

elementary interval of the form

J D
sY

jD1

�
aj

bdj
;
aj C 1

bdj

�

with d1; : : : ; ds 2 N0 such that d1C� � �Cds D m� t , and aj 2 f0; : : : ; bdj �1g for
j D 1; 2; : : : ; s contains exactly bt elements from Pk;m. So we count the number
of indices n 2 fkbm; kbm C 1; : : : ; kbm C bm � 1g for which xn 2 J , that is, the
number of l 2 f0; 1; : : : ; bm � 1g for which xkbmCl 2 J . Let

aj

bdj
D e

.j /
1

b
C � � � C

e
.j /

dj

bdj
:

Then we have, as in the proof of Theorem 5.28, that xn 2 J if and only if

xn;j D e
.j /
1

b
C � � � C

e
.j /

dj

bdj
C � � � :

With the above considerations, this is equivalent to

Ec .j /1
El D '.e

.j /
1 / � Ef .j /

1
Ek

:::

Ec .j /dj
El D '.e

.j /

dj
/ � Ef .j /

dj
Ek

where Ec .j /i denotes the i th row vector of the matrixC .m/
j and Ef .j /

i the i th row vector

of the matrix F .m/
j . For j D 1; 2; : : : ; s this gives a linear system of d1C� � � Cds D

m � t linear equations in the m variables �0; : : : ; �m�1 2 Fb .
Since the row vectors Ec .j /i for i D 1; : : : ; dj and j D 1; 2; : : : ; s are, by

the definition of �m, linearly independent over Fb , the linear system has exactly
bm�.m�t / D bt solution and hence J contains bt elements from Pk;m. ut
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Example 5.33

The van der Corput sequence can be generated by the digital construction scheme using the matrix

C1 D

0
BBBBBB@

1 0 0 0 : : :

0 1 0 0 : : :

0 0 1 0 : : :

0 0 0 1 : : :
:
:
:
:
:
:
:
:
:
:
:
:
: : :

1
CCCCCCA

over Fb . Since �m.C1/ D m for every m 2 N, it follows from Theorem 5.32 that the van der
Corput sequence in prime power base b is a digital .0; 1/-sequence over Fb .

Interestingly, the construction of a second generating matrix to obtain a, say
digital .0; 2/-sequence over Fb , is already nontrivial. This question is addressed in
the following section.

5.4 Special Constructions of Digital Nets and Sequences

Although I.M. Sobol’ was the first to construct digital .t; s/-sequences in base 2 in
1967 and H. Faure introduced constructions of digital .0; s/-sequences in prime
base b with b � s in 1982, it now seems most convenient to introduce digital
.t; s/-sequences using H. Niederreiter’s unifying approach based on polynomial
arithmetic over finite fields. By considering generalised Niederreiter sequences, the
constructions by Sobol’ and Faure appear as special cases.

For a prime power b, let Fb..x�1// be the field of formal Laurent series over Fb ,
that is, series of the form

L.x/ D
1X
lDw

tl x
�l ;

where w is an arbitrary integer and all tl 2 Fb. Note that Fb..x�1// contains the field
of rational functions over Fb as a subfield. Furthermore, let FbŒx� be the set of all
polynomials over Fb . The discrete exponential valuation � on Fb..x

�1// is defined
by �.L/ D �w if L 6D 0, where w is the least index with tw 6D 0. For L D 0 we set
�.0/ D �1. Observe that �.p=q/ D deg.p/ � deg.q/ for all nonzero polynomials
p; q 2 FbŒx� (cf. Exercise 5.15).

Classical Niederreiter Sequence

Let s 2 N, b a prime power and let p1; : : : ; ps 2 FbŒx� be distinct monic irreducible
polynomials over Fb. Recall that a polynomial p 2 FbŒx� is called irreducible if it
cannot be factored into the product of two or more non-trivial polynomials and it
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is called monic if its leading coefficient is equal to the identity 1 of Fb . Let ej D
deg.pj / for j D 1; 2; : : : ; s. For j 2 f1; : : : ; sg, i 2 N and k 2 f0; : : : ; ej � 1g,
consider the expansions

xk

pj .x/i
D

1X
rD0

a.j /.i; k; r/x�r (5.9)

over the field Fb..x
�1//. Then we define the matrix Cj D .c

.j /
i;r /i;r2N by

c
.j /
i;r D a.j /.QC 1; k; r/ 2 Fb for j 2 f1; : : : ; sg; i; r 2 N; (5.10)

where the parametersQ and k are uniquely determined by i and j via the Euclidean
division i � 1 D Qej C k with Q D Q.j; i/ 2 N0 and remainder k D k.j; i/ 2
f0; : : : ; ej � 1g. HenceQ.j; i/ D b.i � 1/=ej c.

Since the exponential evaluation � applied to the left-hand side of (5.9) gives
�.xk=pj .x/

i / D k�iej and this tends to �1 for growing i , it follows that c.j /i;r D 0

for i large enough. Thus condition F is satisfied.

Definition 5.34
A digital sequence over Fb generated by the N � N matrices Cj D .c

.j /
i;r /i;r2N

for j D 1; 2; : : : ; s, where the c.j /i;r are given by (5.10), is called a Niederreiter
sequence.

Theorem 5.35 (Niederreiter). The Niederreiter sequence with generating
matrices defined as above, is a digital .t; s/-sequence over Fb with

t D
sX

jD1
.ej � 1/:

Proof. According to Theorem 5.32, we need to show that for all integers m >Ps
jD1.ej � 1/ and all d1; : : : ; ds 2 N0 with 1 � Ps

jD1 dj � m �Ps
jD1.ej � 1/,

the vectors

Ec .j /i D .c
.j /
i;1 ; : : : ; c

.j /
i;m/ 2 F

m
b ; i D 1; : : : ; dj ; j D 1; 2; : : : ; s; (5.11)

are linearly independent over Fb. Suppose that

sX
jD1

djX
iD1

f
.j /
i Ec .j /i D E0 2 F

m
b
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for some f .j /
i 2 Fb , where, without loss of generality, we may assume that dj � 1

for all j D 1; 2; : : : ; s. By comparing components, we obtain

sX
jD1

djX
iD1

f
.j /
i c

.j /
i;r D 0 for r D 1; 2; : : : ; m: (5.12)

Consider the rational function

L WD
sX

jD1

djX
iD1

f
.j /
i

xk.j;i/

pj .x/Q.j;i/C1
D

1X
rD1

0
@ sX
jD1

djX
iD1

f
.j /
i c

.j /
i;r

1
Ax�r ;

where we used (5.9) and (5.10). From (5.12) we obtain that �.L/ < �m.
Recall that Q.j; i/ D b.i � 1/=ej c. Hence, if we put Qj D b.dj � 1/=ej c for

j D 1; 2; : : : ; s, then a common denominator of L is g.x/ D Qs
jD1 pj .x/QjC1,

which implies that Lg is a polynomial. On the other hand,

�.Lg/ < �mC deg.g/ D �mC
sX

jD1
.Qj C 1/ej � �mC

sX
jD1

.dj � 1C ej / � 0:

Thus Lg D 0, hence L D 0, and therefore

sX
jD1

djX
iD1

f
.j /
i

xk.j;i/

pj .x/Q.j;i/C1
D 0:

The left-hand side is a partial fraction decomposition of a rational function, and
because of its uniqueness all f .j /

i D 0. This means that the vectors given in (5.11)
are linearly independent over Fb and the proof is finished. ut

I Remark 5.36 It was shown by J. Dick and H. Niederreiter in 2008 that the quality
parameter t D Ps

jD1.ej � 1/ is even exact, i.e., the Niederreiter sequence is a strict
digital .

Ps
jD1.ej � 1/; s/-sequence over Fb .

Now we consider a special choice of polynomials p1; : : : ; ps . For fixed s and
b, list all monic irreducible polynomials over Fb in a sequence according to
nondecreasing degrees, and let p1; : : : ; ps be the first s terms of this sequence. Then
it has been shown by H. Niederreiter that for the strict quality parameter t of the
corresponding Niederreiter sequence we have

t �
�
0 for s � b;

s.logb s C logb logb s C 1/ for s > b:
(5.13)
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This shows that for prime power bases b the necessary condition from Theorem 5.16
for the existence of .0; s/-sequences in base b is also sufficient.

Corollary 5.37. Let s 2 N and let b be a prime power. Then a .0; s/-sequence
in base b exists if and only if s � b.

Furthermore, also the necessary condition from Theorem 5.7 is sufficient for
prime power bases.

Corollary 5.38. Let s 2 N and let b be a prime power. Then for m � 2 a
.0;m; s/-net in base b exists if and only if s � b C 1.

Proof. Assume that s � b C 1. Then Corollary 5.37 implies the existence of a
.0; s � 1/-sequence in base b. From this we obtain with Lemma 5.17 a .0;m; s/-net
in base b. The other direction is just Theorem 5.7. ut

Generalised Niederreiter Sequence

In 1993 S. Tezuka proposed a generalisation of Niederreiter’s sequence. This
sequence differs from the Niederreiter sequence introduced above, in that xk in (5.9)
are replaced by polynomials yj;i;k.x/, where j 2 f1; : : : ; sg, i 2 N, and k 2
f0; : : : ; ej � 1g. In order for Theorem 5.35 to apply to these sequences, for each
i 2 N and j D 1; 2; : : : ; s the set of polynomials fyj;i;k.x/ W 0 � k < ej g needs
to be linearly independent modulo pj .x/ over Fb . The generalised Niederreiter
sequence is then defined by the expansion

yj;i;k.x/

pj .x/i
D

1X
rD1

a.j /.i; k; r/x�r

over the field Fb..x
�1//. We then define the matrix Cj D .c

.j /
i;r /i;r2N by

c
.j /
i;r D a.j /.QC 1; k; r/ 2 Fb for j 2 f1; : : : ; sg; i; r 2 N; (5.14)

where i � 1 D Qej C k, with integers Q D Q.j; i/ and k D k.j; i/ satisfying
0 � k < ej .

Definition 5.39
A digital sequence over Fb generated by the matrices Cj D .c

.j /
i;r /i;r2N,

j D 1; 2; : : : ; s, where the c.j /i;r are given by (5.14), is called a generalised
Niederreiter sequence.
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The proof of Theorem 5.35 still applies, hence a generalised Niederreiter
sequence is a digital .t; s/-sequence over Fb with t D Ps

jD1.ej �1/. Under suitable
conditions this quality parameter can be shown to be strict.

Sobol’ Sequence

In 1967 I.M. Sobol’ was the first to introduce a construction of .t; s/-sequences. This
sequence, nowadays referred to as Sobol’ sequence, is the generalised Niederreiter
sequence where b D 2, p1.x/ D x, and, for j D 2; : : : ; s, pj .x/ is the .j � 1/th
primitive polynomial in a sequence of all primitive polynomials over F2 arranged
according to nondecreasing degrees. Further, there are polynomials gj;0; : : : ; gj;ej�1
with deg.gj;h/ D ej �hC1 such that yj;i;k D gj;k for all i 2 N, k 2 f0; : : : ; ej �1g,
and j 2 f1; : : : ; sg.

I Remark 5.40 Recall that a polynomial p 2 FbŒx� of degree m 2 N is called a
primitive polynomial over Fb if it is the minimal polynomial over Fb of a primitive
element of Fbm . In other words, p 2 FbŒx� of degreem 2 N is primitive if it is monic
and irreducible over Fb and it has a root ˛ 2 Fbm that generates the multiplicative
group F

�
bm of Fbm .

A Sobol’ sequence can also be generated in the following way: Let p1; : : : ; ps 2
F2Œx� be primitive polynomials ordered according to their degree, and let

pj .x/ D xej C a1;j x
ej�1 C a2;j x

ej�2 C � � � C aej �1x C 1 for j D 1; 2; : : : ; s:

Choose odd natural numbers 1 � m1;j ; : : : ; mej ;j such that mk;j < 2k for 1 �
k � ej , and for all k > ej define mk;j recursively by

mk;j D 2a1;jmk�1;j ˚ � � � ˚ 2ej�1aej �1mk�ejC1;j ˚ 2ej mk�ej ;j ˚mk�ej ;j ;

where ˚ is the bit-by-bit exclusive-or operator. The numbers

vk;j WD mk;j

2k

are called direction numbers. Then for n 2 N0 with base 2 expansion n D n0 C
2n1 C � � � C 2r�1nr�1 we define

xn;j D n0v1;j ˚ n1v2;j ˚ � � � ˚ nr�1vr;j and xn D .xn;1; : : : ; xn;s/:

The Sobol’ sequence is then the sequence of points .xn/n2N0 .
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Faure Sequence

In 1982 H. Faure introduced a construction of .0; s/-sequences over prime fields Fb
with s � b. This shows once more that for prime bases b the necessary condition
from Theorem 5.16 for the existence of .0; s/-sequences in base b is also sufficient.
These sequences, nowadays referred to as Faure sequences, correspond to the case
where the base b is a prime number such that b � s, pj .x/ D x � j C 1 for
j D 1; 2; : : : ; s and all yi;j;k.x/ D 1.

The generating matrices of Faure sequences can also be written down explicitly
in terms of the Pascal matrix, which is given by

P D

0
BBBBBB@

�
0
0

 �
0
1

 �
0
2


: : :�

1
0

 �
1
1

 �
1
2


: : :�

2
0

 �
2
1

 �
2
2


: : :

:::
:::

:::
: : :

1
CCCCCCA
;

where we set
�
k
l

 D 0 for l > k. The generating matrices C1; : : : ; Cs of the Faure
sequence are now given by

Cj D .P>/j�1 .mod b/ for j D 1; 2; : : : ; s: (5.15)

This yields Cj D .c
.j /
i;r /i;r2N, where

c
.j /
i;r D

�
0 if 1 � r < i;�
r�1
i�1

.j � 1/r�i if l � k;

where
�
r�1
i�1

.j � 1/r�i is evaluated modulo b and where 00 WD 1 by convention.

Example 5.41

In the case s D b D 2 we obtain the matrices

C1 D

0
BBBBBB@

1 0 0 0 : : :

0 1 0 0 : : :

0 0 1 0 : : :

0 0 0 1 : : :
:
:
:
:
:
:
:
:
:
:
:
:
: : :

1
CCCCCCA

2 Z
N	N

2
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Fig. 5.3 The first 1024
elements of the Faure
sequence for s D b D 2

and

C2 D

0
BBBBBBBBB@

�
0
0

 �
1
0

 �
2
0

 �
3
0


: : :

0
�
1
1

 �
2
1

 �
3
1


: : :

0 0
�
2
2

 �
3
2


: : :

0 0 0
�
3
3


: : :

:
:
:

:
:
:
: : :

: : :
: : :

1
CCCCCCCCCA

D

0
BBBBBBBB@

1 1 1 1 1 : : :

0 1 0 1 0 : : :

0 0 1 1 0 : : :

0 0 0 1 0 : : :

0 0 0 0 1 : : :
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
: : :

1
CCCCCCCCA

2 Z
N	N

2 :

The first 1024 points of the resulting Faure sequence are shown in Fig. 5.3.

5.5 Further Reading and Exercises

Further Reading

The theory of (digital) .t; m; s/-nets and .t; s/-sequences, respectively, was developed by Nieder-
reiter in 1980s. The original paper is [68]. The early development is very well presented in
Niederreiter’s book [69]. A more current reference is the book by Dick and Pillichshammer [18]
which, beside a detailed introduction, also describes the development since the early 1990s. An
introduction into the theory of finite fields can be found in the book by Lidl and Niederreiter [64].

For the proof of the result in Remark 5.9, item 6, we refer to [70] for the upper bound on tb.s/
and to [71] for the lower bound. The currently best asymptotic discrepancy bound for .t; m; s/-
nets and .t; s/-sequences was shown by Faure and Kritzer [28]. For the definition of digital
sequences in the broad sense we refer to the book [72] by Niederreiter and Xing. First examples of
digital sequences were already introduced, some years before Niederreiter’s unifying approach, by
Sobol’ in [89], called binary LP -sequences, and by Faure [27]. The currently best constructions
for digital nets and sequences with respect to the quality parameter are based on methods from
Algebraic Geometry. These constructions were developed in a series of papers by Niederreiter and
Xing. For an introduction into this subject and an overview we refer to the book by Niederreiter and
Xing [72, Chapter 8]. Section 5.4 is based on parts of [18, Chapter 8], to which we refer for further
constructions of digital sequences such as, e.g., the ones by Niederreiter and Xing. A discussion
of the quality parameter t of the digital sequences in Sect. 5.4 can be found in the paper [17] by
Dick and Niederreiter and a proof for the bound (5.13) on the quality parameter of Niederreiter
sequences can be found in [69, Theorem 4.54].
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An online database for optimal parameters of .t; m; s/-nets and .t; s/-sequences called “MinT”
is available under: http://mint.sbg.ac.at/index.php

Exercises

5.1 Construct “by hand” a .0; 2; 2/-net in base 3.
5.2 Let b 2 N, b � 2. Show that for anym; s 2 N, s � 2 andm � 2 there exists an .m�1;m; s/-

net in base b.
5.3 For j D 1; : : : ; r let Pj be a .tj ; mj ; s/-net in base b and let bm1 C � � � C bmr D bm. Show

that the point set P consisting of the elements of P1; : : : ;Pr is a .t; m; s/-net in base b with
quality parameter

t D m� min
jD1;2;:::;r

.mj � tj /:

5.4 Let b; k � 2 be integers. Show that every s-dimensional elementary interval in base bk is
also an s-dimensional elementary interval in base b.

5.5 Show that every .t; �k; s/-net in base b is also a .dt=ke; �; s/-net in base bk . Hint: Use
Exercise 5.4.

5.6 Deduce the assertion of Theorem 5.18 for the special case s D 1 and t D 0 from
Proposition 2.31.

5.7 Construct the finite field F25 with 25 elements and determine the operation tables for addition
and multiplication.

5.8 Show that the 4	 4 matrices

C1 D

0
BB@
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCA ; C2 D

0
BB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCA ;

C3 D

0
BB@
1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

1
CCA ; C4 D

0
BB@
0 1 1 0

1 1 0 1

0 0 0 1

0 0 1 0

1
CCA ;

over F2 generate a digital .1; 4; 4/-net over F2.
5.9 Let b be a prime power and let the m 	 m matrices C1; : : : ; Cs over Fb be the generator

matrices of a (strict) digital .t; m; s/-net over Fb . Let Z be a non-singular m	mmatrix over
Fb . Show that the matrices C 0

1 ; : : : ; C
0

s , where C 0

j WD CjZ for j D 1; 2; : : : ; s, generate
a (strict) digital .t; m; s/-net over Fb , namely the same net but with a different ordering of
points.

5.10 Let b be a prime power and ' W f0; : : : ; b � 1g ! Fb be a bijection with '.0/ D 0. For
x D P

1

iD1

i
bi

2 Œ0; 1/ and � D P
1

iD1
&i
bi

2 Œ0; 1/, where 
i ; &i 2 f0; : : : ; b � 1g, we
define the (b-adic) digital shifted point y by y D x ˚b;' � WD P

1

iD1
�i
bi

, where �i D
'�1.'.
i /C '.&i //, and where the “C” is addition in Fb .

For dimensions s > 1 let � D .�1; : : : ; �s/ 2 Œ0; 1/s . For x D .x1; : : : ; xs/ 2 Œ0; 1/s we
define the (b-adic) digital shifted point y by y D x ˚b;' � D .x1 ˚b;' �1; : : : ; xs ˚b;' �s/.

Let fx0; : : : ;xbm�1g be a (strict) .t; m; s/-net in base b and let � D .�1; : : : ; �s/ 2
Œ0; 1/s . Show that the digitally shifted point set formed by the points yn D xn ˚b;' � for
n D 0; : : : ; bm �1, is again a (strict) .t; m; s/-net in base b with probability one with respect
to the Lebesgue measure of � ’s. (If the �i ’s have only finitely many b-adic digits different
from zero, then the assertion is always true.) Hint: This is [18, Lemma 4.67].

http://mint.sbg.ac.at/index.php
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5.11 Assume that P D fx0;x1; : : : ;xbm�1g is a digital net over Fb and let ˚b;' be the addition
from Exercise 5.10. Show that .P;˚b;'/ is a group. If the points of P are pairwise different,
then this group is isomorphic to F

m
b .

5.12 Remember the definition of Walsh functions bwalk.x/ from Exercise 3.5. Let b be a prime
number and let fx0;x1; : : : ;xbm�1g be a digital net over Fb (which we identify withZb ) with
generating matrices C1; : : : ; Cs 2 F

m	m
b . Show that for all k1; : : : ; ks 2 f0; 1; : : : ; bm � 1g

we have

bm�1X
nD0

bwalk1 .xn;1/ � � � bwalks .xn;s/ D
(
bm if C>

1
Ek1 C � � � C C>

s
Eks D E0;

0 otherwise,

where xn;j denotes the j th component of xn and where for k D �0C�1bC� � �C�m�1b
m�1

we denote Ek D .�0; �1; : : : ; �m�1/
>. Hint: This is [18, Lemma 4.75] where one can find a

proof. Remark: This relation is a very crucial tool in the analysis of digital nets and their
application for numerical integration. Further information in this direction can be found in
[18].

5.13 Let b be a prime power. Show that every upper triangular N	N matrix over Fb with non-zero
diagonal entries generates a digital .0; 1/-sequence over Fb .

5.14 Let b be a prime power and let the N 	 N matrices C1; : : : ; Cs generate a digital .t; s/-
sequence over the finite field Fb . For anym 2 N consider the left upper m	m sub-matrices
C
.m/
1 ; : : : ; C

.m/
s . Take

C
.m/

sC1 WD E 0

m D

0
BBBBBB@

0 0 : : : 0 1

0 . .
.
1 0

:
:
: . .

.
. .

.
. .

. ::
:

0 1 . .
.

0

1 0 : : : 0 0

1
CCCCCCA

2 F
m	m
b :

Show that C.m/
1 ; : : : ; C

.m/
s ; C

.m/

sC1 generate a digital .t; m; s C 1/-net over Fb . Remark: Note
that this is a “digital version” of Lemma 5.17. Note also the increase of the dimension from
s to s C 1.

5.15 Prove that for the exponential discrete evaluation we have �.p=q/ D deg.p/�deg.q/ for all
nonzero polynomials p; q 2 Fb Œx�. In particular, �.p/ D deg.p/ for all nonzero p 2 Fb Œx�

5.16 Consider the first 24 points of a Niederreiter sequence in base 2 and dimension 3. Find the
smallest value of t such that these points form a digital .t; m; s/-net.

5.17 Show that the Sobol’ sequence defined via the recurrence relation is a special case of a
generalised Niederreiter sequence, as stated in the section on Sobol’ sequences.

5.18 Show that the generating matrices of a Faure sequence defined via the polynomials can be
written in terms of Pascal matrices as stated in (5.15).



6A Brief Discussion of the Discrepancy Bounds

6.1 The Curse of Dimensionality

In many applications the dimension s can be rather large. In this case, the
asymptotically almost optimal bounds on the discrepancy which we obtained, e.g.,
for the Hammersley point set or for .t;m; s/-nets soon become useless for a modest
number N of points. For example, assume that for every s;N 2 N we have a point
set Ps;N in the s-dimensional unit cube of cardinality N with star discrepancy of at
most

D�
N .Ps;N / � cs

.logN/s�1

N
; (6.1)

with some cs > 0 that is independent ofN . Hence for any ı > 0 the star discrepancy
behaves asymptotically like N�1Cı , which is the optimal rate of convergence since
for dimension s D 1 we already have D�

N .P1;N / � 1=.2N /. However, the function
N 7! .logN/s�1=N does not start to decrease to zero until N � exp.s � 1/. For
N � exp.s � 1/ this function is increasing, which means that for cardinality N
in this range our discrepancy bounds are useless. In fact, even for moderately large
dimension s, the value of exp.s � 1/ is huge, such that point sets with cardinality
N � exp.s�1/ cannot be used for practical applications. Therefore, the bound (6.1)
is useful only if N is large compared to the dimension s.

For practical applications one is interested in the discrepancy of point sets with
cardinalityN not too large (compared to s). To analyse this problem systematically
one considers the following quantity.

Definition 6.1
For s;N 2 N define the N th minimal star discrepancy by

disc1.N; s/ WD inf
P�Œ0;1/s

#PDN

D�
N .P/:

G. Leobacher and F. Pillichshammer, Introduction to Quasi-Monte Carlo Integration and
Applications, Compact Textbooks in Mathematics, DOI 10.1007/978-3-319-03425-6 6,
© Springer International Publishing Switzerland 2014

143
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For example, one may ask if

lim
s!1 disc1.2s; s/ D 0 ‹ (6.2)

In other words, do there exist point sets in dimension s of cardinality 2s (which is
already dramatically large for dimensions s � 30) for which the star discrepancy
approaches zero when s tends to infinity? For example, the discrepancy bound from
Corollary 5.20 for .t;m; s/-nets Ps in base 2 gives for m D s and t D t.s/ 
 s

(which is optimal)

D�
2s .Ps/ � 2t.s/

2s

�
1C ss�1

.s � 2/Š
�

� 2t.s/
	 e

2

�sr2s

�
! 1 as s ! 1:

So the asymptotically excellent discrepancy bounds for .0;m; s/-nets cannot help to
answer the question (6.2).

As another attempt, let s;m 2 N where m � 2 and consider the regular lattice
�m;s . According to Theorem 2.19, its star discrepancy is given by

D�
N .�m;s/ D 1 �

�
1 � 1

2m

�s
;

where N D ms . Let " 2 .0; 1/. Then to achieve a star discrepancy of at most " we
would require a regular lattice consisting of

N �
�

s

2j log.1 � "/j
�s

points (i.e., choose m � s
2j log.1�"/j ). This number grows super-exponentially in s.

For example, for " D 1=3 one requiresN � .1:23s/s . Hence, for a star discrepancy
of at most " we require a cardinality which is exponential in s. Such an exponential
dependence is called the curse of dimensionality, a notion coined by R. Bellman in
1957.

The above discussion shows that although we have excellent asymptotic results
for the star discrepancy of many sequences, these results do not help to answer
question (6.2). This means that, according to the classical theory, QMC methods
could not be expected to work for very high dimensions. Nevertheless, and
surprisingly, we know from practical applications that QMC rules often do very well
and even work much better than we have any right to expect. As already mentioned
in the preface, I.H. Sloan1 spoke in this context of “The unreasonable effectiveness
of QMC”. A spectacular and surprising example in this direction was reported by
S.H. Paskov and J.F. Traub in 1995. They valuated a financial derivative, a 30-year

1Talk at the MCQMC conference in Warsaw, August 15, 2010.
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Collateralized Mortgage Obligation, which required the computation of ten 360-
dimensional integrals. They tested two QMC rules based on Halton and Sobol’
sequences, and compared them with the MC rule. Their experiments showed that
both QMC rules outperform the MC rule and that the convergence of the QMC
rules is much smoother than that of the MC rule. Following the success of those
experiments it is nowadays an important stream of research to explain why QMC
rules do so well for many high-dimensional applications. Motivated by the idea
that perhaps the reason for the success of QMC is that some coordinate directions
are more important than others, I.H. Sloan and H. Woźniakowski began to study
weighted function spaces. The weights model the behavior of different coordinate
directions and under suitable conditions one can break the curse of dimensionality.
As an example we already discussed QMC integration in weighted Korobov spaces
in Sect. 4.5.

Furthermore, we nowadays also know that the situation for the star discrepancy
is not so bad as it seems from the discussion above. Actually the question (6.2) can
be answered in the affirmative, and even more is possible. This will be explained in
the following section.

6.2 Tractability of the Star Discrepancy

In 2001 S. Heinrich, E. Novak, G.W. Wasilkowski, and H. Woźniakowski estab-
lished the following very surprising result.

Theorem 6.2 (Heinrich, Novak, Wasilkowski, and Woźniakowski). There
exists a constant c > 0 with the property that

disc1.N; s/ � c

r
s

N
for all N; s 2 N: (6.3)

The proof of (6.3) uses deep results from probability theory and is beyond the
scope of this book. Later, Ch. Aistleitner showed by a simplified argument that
in (6.3) one can choose c D 10. Both proofs are unfortunately non-constructive,
and until now we do not know point sets for which the bound (6.3) holds. However,
using a probabilistic argument, it can be shown that many N -element point sets in
Œ0; 1/s satisfy the bound modulo a multiplicative factor greater than one.

Definition 6.3
For s 2 N and " > 0 the inverse of the star discrepancy is defined as

N1.s; "/ D min fN 2 N W disc1.N; s/ � "g ;



146 6 A Brief Discussion of the Discrepancy Bounds

i.e., the minimal cardinalityN that a point set in Œ0; 1/s must have so that we can
achieve a star discrepancy not larger than ".

It follows from (6.3) that

N1.s; "/ � Cs"�2 (6.4)

for some positive constant C (for which we may choose 100 according to the
result of Aistleitner). Hence, N1.s; "/ depends only polynomially on s and "�1. In
Information-Based Complexity (IBC) theory such a behaviour is called polynomial
tractability (cf. Definition 4.23).

Furthermore, it is known that the dependence on the dimension s of the inverse
of the star discrepancy in (6.4) cannot be improved. For example, it was shown by
A. Hinrichs in 2004 that there exist constants c; "0 > 0 such that

N1.s; "/ � cs"�1 for all " 2 .0; "0/; s 2 N

and disc1.N; s/ � min."0; cs=N/. The exact dependence ofN1.s; "/ on "�1 is still
an open question which seems to be very difficult.

We will prove a result which also implies polynomial tractability of the star dis-
crepancy, although it is slightly weaker than the one presented in Theorem 6.2. This
result was also first shown by Heinrich, Novak, Wasilkowski, and Woźniakowski in
2001.

Theorem 6.4 (Heinrich, Novak, Wasilkowski, and Woźniakowski). We have

disc1.N; s/ � 2
p
2p
N

 
s log

&
s
p
N

2.log 2/1=2

'
C log 2

!1=2
for all N; s 2 N;

(6.5)
and

N1.s; "/ � d8"�2.s log.d2s="e C 1/C log 2/e for all s 2 N and " > 0:

(6.6)

Again this is a pure existence result. The idea of the proof of Theorem 6.4 is to
show that the probability of randomly picking anN -element point set in Œ0; 1/s with
star discrepancy at most the right-hand side of (6.5) is positive. To this end we need
an auxiliary result from probability theory which we state here without proof.

Lemma 6.5 (Höffding’s inequality). Let X1; : : : ; XN be independent random
variables satisfying ui � Xi � vi for some ui < vi , and with expectation
EŒXi � D 0 for all i D 1; : : : ; N . Then
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P ŒjX1 C � � � CXN j � N�� � 2 exp

 
�2�2N 2=

NX
iD1
.vi � ui /

2

!
;

where PŒ�� is the probability on the probability space supporting X1; : : : ; XN .

Proof of Theorem 6.4. For given ı > 0 we define m D ds=ıe. Then Remark 2.17
implies that for every N -element point set P D ft0; : : : ; tN�1g in Œ0; 1/s we have

D�
N .P/ � max

x2Gm;s

ˇ̌
ˇ̌
ˇx1 � � �xs � 1

N

N�1X
iD0

1Œ0;x/.t i /

ˇ̌
ˇ̌
ˇC ı; (6.7)

where Gm;s D ˚
0; 1

m
; 2
m
; : : : ; m

m

�s
. Note that #Gm;s D .mC 1/s.

Let 0; : : : ; N�1 be independent and uniformly distributed random variables on
Œ0; 1/s . For x 2 Œ0; 1�s let

�.i/x D x1 � � �xs � 1Œ0;x/.i / for all i D 0; : : : ; N � 1:

Then EŒ�
.i/
x � D 0 and j�.i/x j � 1 for all i D 0; : : : ; N � 1. Thus we can apply

Lemma 6.5 to the sum of the �.i/x ’s, which yields

P

"ˇ̌
ˇ̌
ˇ
1

N

N�1X
iD0

�.i/x

ˇ̌
ˇ̌
ˇ � ı

#
� 2 exp

�
�ı

2N

2

�
for x 2 Œ0; 1�s:

Using the estimate (6.7) it follows that

P


D�
N .f0; : : : ; N�1g/ � 2ı

� � P

"
max

x2Gm;s

ˇ̌
ˇ̌
ˇx1 � � �xs � 1

N

N�1X
iD0

1Œ0;x/.i /

ˇ̌
ˇ̌
ˇ � ı

#

� 1 � 2.mC 1/s exp.�ı2N=2/:

The last term is strictly positive if

log 2C s log
	l s
ı

m
C 1

�
� ı2N

2
< 0:

This inequality is valid for all ı > ı0 D ı0.N; s/, where

ı20 D 2

N

�
s log

��
s

ı0

�
C 1

�
C log 2

�
: (6.8)
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This implies 1
ı0

�
	

N
4 log 2

�1=2
. Re-inserting into (6.8) leads to

ı20 � 2

N

 
s log

&
s
p
N

2.log 2/1=2

'
C log 2

!
: (6.9)

Thus we have shown that for all ı > ı0 there exist 0; : : : ; N�1 2 Œ0; 1/s such that
D�
N .f0; : : : ; N�1g/ � 2ı0. This shows disc1.N; s/ � 2ı0, which implies, together

with (6.9), the bound (6.5). The proof of (6.6) is left as exercise. ut

6.3 Further Reading and Exercises

Further Reading

Nice introductions to the topic are provided by the overview article by Novak [73] and the book
by Traub and Werschulz [92]. A report on the 360-dimensional experiment of Paskov and Traub
can be found in [81], see also [92, Section 4]. A warmly recommended introduction to the study
of weighted spaces in the context of QMC is the paper by Sloan and Woźniakowski [87]. The
original proof of Theorem 6.4 can be found in [34]. A simplified version according to Aistleitner
with an explicit constant can be found in [1]. The mentioned lower bound on the inverse of the
star discrepancy was shown by Hinrichs [38, Theorem 1]. The current state of the art of tractability
theory is summarized in the three volumes of Novak und Woźniakowski [74–76]. Concerning the
results presented in this chapter we particularly refer to [75, Chapter 9]. A proof of Höffding’s
inequality can be found in [44].

Exercises

6.1 Show that lims!1 D�

2s .�2;s / D 1.
6.2 Revisit the proof of Theorem 6.4 and show that the probability of randomly picking an

N -element point set PN;s in Œ0; 1/s with star discrepancy

D�

N .PN;s/ � 2
p
2p
N

 
s log

&
s
p
N

2.log 2/1=2

'
C log 2C �

!1=2

for arbitrary � > 0 is larger than 1� exp.��/.
6.3 Prove (6.6). Hint: The solution can be found in [18, Theorem 3.54].
6.4 For s; N 2 N define the N th minimal L2 discrepancy by

disc2.N; s/ WD inf
P�Œ0;1/s

#PDN

L2;N .P/:

Show that disc2.0; s/ D 3�s=2 and disc2.N; s/ � .2�s � 3�s/1=2 =N 1=2:

For " > 0 the inverse of the L2 discrepancy is defined as

N2.s; "/ D min fN 2 N W disc2.N; s/ � " disc2.0; s/g :
Show that N2.s; "/ � .3=2/s"�2: Remark: It is known that N2.s; "/ � .9=8/s .1� "2/. Hence
the L2 discrepancy suffers from the curse of dimensionality.



7Basics of Financial Mathematics

In this chapter we will give some background on mathematical finance, or, to be
precise, on the mathematical theory that lies behind derivative pricing. Since the
1980s, financial mathematics has become a huge field that uses methods from many
other branches of mathematics, most notably from probability theory. The reliance
on probability theory provides us with a wealth of applications for simulation
techniques.

We want to give a quick entry into topics of Monte Carlo and quasi-Monte Carlo
pricing of financial derivatives. Obviously, a rigorous treatment of the probabilistic
theory is well beyond the scope of this introductory text on QMC methods.

7.1 Bonds, Stocks and Derivatives

Since we want to discuss valuation of financial derivatives, we have to define at least
the most basic ones as well as some of the primary instruments from which they
“derive”. The explanations given below are more general than would be necessary
for a quick introduction to derivative pricing. But we do not want to hide from the
reader the fact that most mathematical models in finance are rather coarse, which is
done best by showing what does not enter the models.
• A bond is a financial instrument that pays its owner a fixed amount of money at a

pre-specified date in the future. The writer of the bond is usually a big company
or a government. The owner effectively becomes a creditor to the writer. If the
quality of the debtor is very high, as is the case for many government bonds,
the bond can be modeled as a deterministic payment. The bond usually sells at a
lower price than its payoff and thus pays interest.

Bond payments may be subject to credit risk, i.e., for some debtors the
probability that the debtor will not be able to make the payment in full at the
required date cannot be ignored. Fruitful theories have been put forward for
valuation of credit risky bonds, and those theories provide fields of applications
for simulation methods, too.

G. Leobacher and F. Pillichshammer, Introduction to Quasi-Monte Carlo Integration and
Applications, Compact Textbooks in Mathematics, DOI 10.1007/978-3-319-03425-6 7,
© Springer International Publishing Switzerland 2014
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However, we will not consider that topic and for us a bond will always be
non-defaultable. Nevertheless, in practice even then the price of the bond may
and will vary over time, due to a change in inflation and other parameters of the
general economy.

• A share is a financial instrument that warrants its holder ownership of a fraction
of a corporation. In particular, the shareholder participates in the business revenue
by the means of dividend payments.

However, dividend payments are not the only possible source of income
through a share. At least equally important is the possible gain due to a price
change: an investor may buy a share and sell it shortly afterwards if the price has
risen. The possible gain is usually one or two orders of magnitude higher than
that through interest payments. On the downside, the price change may as well
result in a loss. If the shares of a company are traded at a stock exchange, then
buying and selling them is particularly convenient and high frequency traders
may buy and sell large contingents of shares several times per second.

The value of a share depends on many things, such as the preferences of the
individual agent, the assets of the company, the state of the economy, the future
dividend payments, and future interest rates and inflation.

The so-called efficient market hypothesis assumes that the value of the share
at a given time is just the market price at that very time. Under this hypothesis it
does not make sense to compute the objective value of a share in a mathematical
model and compare it to the market price. The only way that a computed value of
a share can differ from its market price is that our preferences and/or expectations
differ from those of the majority of the market, thus giving a subjective price.

• A contingent claim is a financial instrument whose value at a future date can be
completely described in terms of the prices of other financial instruments, its so-
called underlyings. A typical example is an option on a share. A European call
option on a share with maturity T is a contract which gives its holder the right
(but not the obligation) to buy one share from the option writer at some fixed time
T in the future at the previously agreed price K . In exchange, the option writer
is paid a premium at the time of writing the option. One also says that the holder
has the long position of the option, while the writer has the short position.

Denote the price of the share at the future date T by ST . Since the option
holder may sell the share instantly at the stock exchange, the value of the option
at time T is ST �K if ST > K , and 0 if ST � K .

The left-hand side of Fig. 7.1 shows the payoff of a European call option
dependent on the price of the share at maturity. An important feature is the kink
at the strike price K . It introduces a non-differentiability that makes estimates of
the QMC error substantially more difficult.

Note that the buyer of the option swaps a fixed amount of money – the price
of the option at time 0, i.e., the premium – for an uncertain payment in the future.
This is a feature that an option shares with an insurance contract, and indeed
an option can be used to insure against “unfavorable” events. For example, an
investor who intends to buy a share in the future can buy an option now and is
therefore insured against any rise of the share price.
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Fig. 7.1 Payoff of a European call and put option

0
0

ST

Payoff

K

1

0
0

ST

Payoff

K

1

Fig. 7.2 Payoff of a digital cash-or-nothing call and put option

On the right-hand side of Fig. 7.1 we plot the payoff of a European put option.
This is an option which gives its holder the right (but not the obligation) to sell
one share to the option writer at some fixed time T in the future, at the previously
agreed price K . If the share price satisfies ST � K at time T , then the option
is worthless. But if ST < K , then the option holder may buy the share at the
stock exchange at price ST and sell it immediately to the writer at price K , thus
realizing a gain ofK � ST .

In Fig. 7.2 we show the payoff of another contingent claim, a so-called digital
cash-or-nothing call option. This option pays a fixed amount of cash at expiry if
at that time the price ST of the underlying is above the strike K . We also plot the
payoff of the corresponding put option. The digital option serves as an example
of a contingent claim with discontinuous payoff.
Since the value of an option is strongly tied to that of the underlying, and

in simple models is completely determined by the parameters of the model, an
objective value of the option can be computed in these models using arbitrage
arguments. Even in more general models a – not necessarily unique – value can be
computed with the property that trading the option at that price does not introduce
the possibility of arbitrage into the market, that is, the possibility of making risk-less
profit above the interest rate.
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7.2 Arbitrage and the No-Arbitrage Principle

Suppose you are given an option on a stock. You know the specifications of the
option and therefore you know the uncertain payoff at its maturity T , given the
uncertain value of the stock at that particular time. That is, the payoff is of the
form f .ST /, where ST is the share price at time T . One is tempted to model
ST as a random variable, then use statistical methods to estimate its parameters
from historical stock prices, and a fortiori estimate the value of the option as its
discounted expected value. Indeed this is exactly how one usually proceeds in
determining the fair stake in a game of chance. We will show in this section that
this reasonable program will in general yield a price that is unreasonable from a
more basic perspective, in that it allows for risk-less profit.

While general arbitrage theory is well beyond the scope of this book, the
underlying principle can be illustrated rather quickly. Assume the following simple
market model where we have only two times, 0 and 1, and three instruments, a
bond, a share, and a European call option with strike K D 1 and maturity T D 1.
Let B D .Bt /t2f0;1g; S D .St /t2f0;1g; C D .Ct /t2f0;1g denote the price processes of
the bond, share, option, respectively, and assume the following parameters: B0 > 0,
B1 D B0.1 C r/, r � 0, S0 > 0, S1 D S0u with probability p, and S1 D S0d

with probability 1 � p, where 0 < d < 1 C r < u. The value of the option at
time 1 is max.S1 � K; 0/, thus C1 D max.S0u � K; 0/ with probability p, and
C1 D max.S0d �K; 0/with probability 1�p. Suppose we know, for example from
statistical studies, the value of p.

Following the program proposed above, we would get as the price of the option
at time 0 the value

OC0 D B0

B1
EŒmax.S1�K; 0/� D 1

1C r
.pmax.S0u�K; 0/C.1�p/max.S0d�K; 0// :

However, this formula can give an unreasonable price. Suppose r D 0, u D 2,
d D 1

2
, S0 D K D 1 and p D 1

2
, for which the above formula gives OC0 D 1

2
.

Then as a trader we could do the following:
• At time 0, write 4 options and sell them for e 2, borrow one additional Euro to

buy three shares. Note that the net investment is zero.
• Now wait until time 1. Then

– If the share price has gone up, the shares are worth 6. We sell them to get
e 6 in Cash. Since the share price ST (which is 2) is bigger than the strike K
(which is 1), the options will be executed, costing us e 4 and we have to pay
e 1 back. Thus our strategy leaves us with a net profit of e 1.

– If the share price has gone down, the options have become worthless. We sell
the shares, giving us e 3

2
and thereby, after paying e 1 back, leaving us with a

profit of e 1
2
.
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Thus, whatever happens, we are left with a strictly positive profit without having
taken any risk and even without initial investment of capital. Such a situation is
called an arbitrage opportunity and it is usually assumed that such opportunities do
not exist in a viable market for the following reason: if you can make a riskless profit
of at least e 1

2
, without initial investment, then you can as well make a riskless profit

of a million Euros by simply scaling up the above strategy, that is by writing eight
million options and so on. In fact, in our model the riskless profit is not limited at
all. Obviously, a market with such a feature is useless.1

On the other hand, it can easily be shown that there is one and only one option
price in this model that does not allow for arbitrage, namely

C0 D 1

1C r

� Qpmax.S0u �K; 0/C .1 � Qp/max.S0d �K; 0/

;

where Qp D 1Cr�d
u�d . The distinctive feature of Qp is that 1

1Cr . QpS0u C .1 � Qp/S0d/ D
S0, that is, the discounted stock price process is a martingale with respect to this new
probability. We do not give a precise definition for this. Intuitively, a martingale is
a process X such that the conditional expectation of XtCs given the evolution of X
up to time s, is Xt . Thus a martingale is a model for the gain process of a player in
a fair game.

To summarize, the arbitrage-free price of an option can be written as the
discounted expected value of its payoff, but the expectation has to be taken under
a suitable probability measure equivalent – but in general not equal – to the
original one.

I Remark 7.1 No-arbitrage arguments usually make rather strong assumptions:
• Bonds can be bought and sold at the same rate and for every positive maturity. In

particular, an investor can lend and borrow money at the same rate.
• There is no restriction on short-selling. That is, an investor may borrow a share

and sell it in order to gain from falling prices. At a later time, she or he has to
buy the share back at the market price to be able to return it.

• There are no transaction costs.
• There are no liquidity effects: an investor can buy or sell unlimited numbers of

securities at the market price without changing the price. In particular, the bid
and ask prices coincide.

• All investors have the same information about the market.
• In continuous-time models, an investor may trade continuously at every point in

time.

1Note, however, that we have tacitly assumed that the strategy scales indefinitely and that, in
particular, our buying of shares does not change the market price.
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7.3 The Black-Scholes Model

The simple model in the preceding section can be extended to an n-step setup.
Again, the unique arbitrage-free price for a contingent claim is given as a discounted
expected value, under some equivalent probability measure, of the claim’s payoff at
expiry. It is now tempting to let n go to infinity to obtain a continuous-time model.
Indeed, this can be done in rigorous fashion so that we arrive at a model of the form

Bt D B0 exp.rt/;

St D S0 exp.�t C �Wt/ ;
(7.1)

t 2 Œ0; T �, whereW is a Brownian motion (sometimes also called “Wiener process”,
after the mathematician who first described the modern mathematical model for
this process), that is, a continuous-time stochastic process with specific properties.
The exact mathematical definition of Brownian motion will be given in section
“Brownian Motion: Definition and Properties” of Chap. 8, and we invite the reader
who is not already familiar with this concept to skip ahead and have a look at
Definition 8.15. The model described by (7.1) is often called the Black-Scholes
model.

As in the one-step model, there exists a probability measure QP, equivalent to the
original measure P, such that t 7! B�1

t St becomes a martingale. Under this new
probability measure

St D S0 exp

��
r � �2

2

�
t C � QWt

�
;

where QWt D Wt � 1
�
.r � � � �2

2
/t is a Brownian motion under QP. The measure QP

can in fact be explicitly given in terms of the Radon-Nikodým derivative, which is

given by dQP
dP D exp.�WT � �2

2
T /, with � D 1

�
.r � � � �2

2
/. That means that the

expected value QEŒX� of any bounded random variable measurable with respect to
fWs W 0 � s � T g can be computed by the formula

QEŒX� D E

�
exp

�
�WT � �2

2
T

�
X

�
;

where QE denotes expectation with respect to QP.
This new probability measure is now used to price derivatives in this model: if C

is some European contingent claim, that is, a derivative whose payoff CT at time T
is a function of St , 0 � t � T , then its arbitrage-free price at time 0 is given by

C0 D QEŒB�1
T CT �: (7.2)
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When CT depends only on finitely many Stj , j D 1; : : : ; m, then the expectation
in (7.2) can be written as an m-dimensional integral, which is where QMC enters
the game. The details of this will be given in Sect. 8.2.

In our continuous time model we assume that the option can be traded at any
time prior to its maturity T . For this, the time t analog of (7.2) is

B�1
t Ct D QEŒB�1

T CT �; (7.3)

or Ct D Bt QEŒB�1
T CT �.

Example 7.2

A European Call option on a share with price process .St /t�0 and with strike K and maturity T
has payoff CT D max.ST � K; 0/. The pricing equation (7.2) therefore gives the option price in
the Black-Scholes model at time t D 0 as

C0 D exp.�rT /QEŒmax.ST �K; 0/�:

Since

ST D S0 exp

��
r � �2

2

�
T C � QWT

�
;

and since .r � �2

2
/T C� QWT is a normal random variable with mean .r � �2

2
/T and variance �2T ,

we get

C0 D exp.�rT /p
2��2T

Z
1

�1

max.S0 exp.x/�K; 0/ exp

 
� .x � .r � �2

2
/T /2

2�2T

!
dx

D exp.�rT /p
2��2T

Z
1

log. KS0
/

.S0 exp.x/�K/ exp

 
� .x � .r � �2

2
/T /2

2�2T

!
dx :

It is a nice exercise to compute this integral. It turns out that its value is given by the famous
Black-Scholes option pricing formula

C0 D S0ˆ.d1/� exp.�rT /Kˆ.d2/; (7.4)

where ˆ.x/ D 1
p

2�

R x
�1

exp.�t 2=2/ dt ,

d1 D log S0
K

C .r C �2

2
/T

�
p
T

and d2 D log S0
K

C .r � �2

2
/T

�
p
T

: (7.5)

So in this case we get a closed-form formula and there is no need to apply simulation techniques.
The price Ct for 0 � t � T can be obtained from Eqs. (7.4) and (7.5) simply by substituting St
for S0 and T � t for T .
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Another class of examples for which there often exist closed-form formulas
are barrier- and lookback options, where the payoff depends on the maximum or
minimum of the price of a single share over a given interval.

We move on to a somewhat harder example.

Example 7.3

The payoff of an Asian option written on a share with price process .St /t2Œ0;T � depends on the
average price over some interval ŒT0; T �, T0 < T , where T is the expiry date of the option. The
payoff of a so-called fixed strike Asian call option is given by

C fix
T D max

�
1

T � T0

Z T

T0

S d �K; 0

�
;

and the payoff of a so-called floating strike Asian call option is given by

C flt
T D max

�
1

T � T0

Z T

T0

S d � ST ; 0

�
:

Up to now, nobody has found an explicit formula for either Asian option, but there are rather
efficient methods using partial differential equations (PDE) to compute the value. Nevertheless,
this example is a nice benchmark for simulation methods.

Because of its simplicity, the Black-Scholes model does not provide us with
many interesting examples for simulation. One step towards demanding problems is
to look at the m-dimensional Black-Scholes model.

Consider m shares S1; : : : ; Sm whose price processes are given by

S
j
t D S

j
0 exp

 
�j t C

kX
lD1

�jlW
l
t

!

t 2 Œ0; T �, where W 1; : : : ;W k are k independent Brownian motions and � D
.�jl /jl is an m � k matrix. In this model neither the existence, nor the uniqueness
of a probability measure that makes each process .B�1

t S
j
t /t2Œ0;T � a martingale is

granted. In fact, every solution � D .�1; : : : ; �k/
> with �j 2 R of the linear system

�� D r1 � � � 1

2
diag.��>/ (7.6)

gives rise to such a measure, where 1 is the m-dimensional column vector with
all entries equal to 1 and � D .�1; : : : ; �m/

>. To see this, consider that, if such
a solution exists, we can write QW j

t D W
j
t � �j t and we can construct a measure

equivalent to P such that QW j is a Brownian motion under the new measure, just as in
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the one-dimensional case. In fact we can find one measure QP such that QW 1; : : : ; QW k

are k independent Brownian motions. The Radon-Nikodým derivative is given by

d QP
dP

D
kY

jD1
exp

 
�jW

k
T � �2j

2
T

!
:

By substitution we see that the price processes now take on the form

S
j
t D S

j
0 exp

 �
r � 1

2
.��>/jj

�
t C

kX
lD1

�jl QW l
t

!
;

and hence the discounted price processes remain constant on average, i.e., they
are martingales. It can also be shown that no equivalent martingale measure exists
if (7.6) has no solution, but we will not attempt this here.

Them-dimensional Black-Scholes model is interesting from the point of view of
(optimal) portfolio selection, but it also provides us with practical high-dimensional
integration problems through derivative pricing. An arbitrage-free price for a
derivative with payoff CT can again be given as

C0 D exp.�rT / QE ŒCT � ;

where QE denotes expectation under a suitable equivalent martingale measure QP. As
mentioned above, every solution � of (7.6) gives rise to such a measure, and in
general different measures will give different prices.

In practice, one has to make a reasonable choice for the pricing measure, and
usually this is done by calibrating the model to market data. However, one must not
forget that only one of many possible arbitrage-free prices is computed and that a
different price in the market need not imply the existence of arbitrage.

Example 7.4

A classical basket option on shares with prices S1; : : : ; Sm and weights w1; : : : ;wm 2 R and strike
K has payoff

max
�
w1S1T C � � � C wmSmT �K; 0


:

More complicated dependencies on the price processes can be encountered in practice. In
particular, the payoff may depend on the time averages of the price processes. Then the option
also has some Asian characteristics. For basket options on several shares the PDE method for
pricing soon becomes intractable. Here, we really have to use simulation.
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7.4 SDE Models

In many models from financial mathematics, the share price process is not given
explicitly, but is described via a stochastic differential equation, in short SDE.

For example, the one-dimensional Black-Scholes model can also be described by
an SDE:

dSt D O�St dt C �St dWt;

S0 D s0 :

The term dWt is interpreted as an infinitesimal increment of a Brownian motion,
where a finite increment over the time interval Œt; t C h� of Brownian motion is a
Gaussian variable with mean 0 and variance h (and thus with standard deviationp
h). The almost surely unique solution2 to this SDE with initial value S0 is

St D s0 exp

�
O�t C �Wt � �2

2
t

�
;

so that for O� D �C �2

2
we recover the price process from (7.1).

More generally, a model could be defined by an mC 1-dimensional SDE

dSt D �.t; St / dt C �.t; St / dWt;

S0 D s0:
(7.7)

where S D .S0; : : : ; Sm/ is an m C 1-dimensional stochastic process and s0 D
.s0; : : : ; sm/ 2 R

mC1. In this general model not all the components need to
correspond to share prices or indeed to prices at all. For example, a coordinate
process might be a model for an exchange rate or an interest rate. It is assumed
that one coordinate is the price of an asset that can function as a numeraire in
that it is always positive. Without loss of generality we may assume that S0 is the
numeraire. Discounting now means dividing by S0, that is, the discounted process
is the m-dimensional process QS given by

t 7! .S0t /
�1.S1t ; : : : ; Smt / :

2This is a consequence of the famous Itô formula from stochastic analysis. In short, the Itô formula
states that for a function f which is C1 in the first variable and C2 in the second variable, we have

df .t;Wt / D @f

@t
.t; Wt / dt C @f

@W
.t;Wt/ dWt C 1

2

@2f

@W 2
.t; Wt/ dt :
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Only those components of QS that correspond to price processes of traded assets need
to be martingales under the equivalent martingale measure.

Example 7.5

Consider the so-called Heston model (already under an equivalent martingale measure):

dBt D rBt dt;

dSt D rSt dt C p
VtSt .� dW 1

t Cp
1� �2 dW 2

t /;

dVt D �.	 � Vt / dt C 

p
Vt dW 1

t ;

.B0; S0; V0/ D .b0; s0; v0/ :

Here, r; �; 	; 
 are positive constants, � is a real constant, and �1 < � < 1 is a correlation
coefficient. The third component of our process, V , is the so-called volatility of the share price and
is not a traded asset. The first process B models a bond price and thus serves as the numeraire. It
is worth mentioning that, while no explicit solution is known for the SDE, there is a semi-exact
formula for the price of a European call option in the Heston model using Laplace inversion.

We do not concern ourselves with the theory of SDEs, since this topic would
easily fill another book, and indeed there are many excellent books available on
SDEs and many of them cover applications in finance.

From the point of view of MC and QMC simulation it is mainly of interest to
know that under suitable regularity requirements on the coefficients of the SDE there
exists a unique solution and that under slightly stronger conditions this solution can
be approximated by discrete algorithms.

Let ST be the solution to the SDE at time T and let OSN be some approximation
to ST computed on the time grid 0 D t0 < t1 < � � � < tN D T with fineness
ı D max1�k�N .tk � tk�1/. We say that OSN converges to ST in the strong sense with
order � , if EŒjST � OSN j� D O.ı�/.

Sometimes it is enough to compute some characteristics of the solution, like
EŒf .ST /� for a function f belonging to some class C . This question is linked to the
concept of weak convergence of numerical schemes. The benefit is that the weak
order of an approximation scheme is usually higher than the strong order of the
same scheme.

The most straightforward solution method for SDEs is the Euler-Maruyama
method: given (7.7), we compute an approximate solution OS on the time nodes
0; h; : : : ; nh D T via

OS0 D S0

OSkC1 D OSk C �.kh; OSk/hC �.kh; OSk/�WkC1: (7.8)

where�WkC1 WD W.kC1/h�Wkh. It follows from the definition of Brownian motion,
Definition 8.15, that �WkC1 is a normal random vector with expectation 0 and
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covariance matrix
p
hImC1, where ImC1 is the .m C 1/ � .mC 1/ identity matrix.

Frequently, (7.8) is therefore stated in the form

OSkC1 D OSk C �.kh; OSk/hC �.kh; OSk/
p
hZkC1;

whereZ1;Z2; : : : is a sequence of standard normal vectors. However, we will prefer
the original form when using QMC.

Under suitable regularity conditions (Lipschitz continuous in the second variable,
sublinear growth with first variable, sufficient smoothness) on the coefficient
functions �; � of the SDE, the Euler-Maruyama scheme converges in the strong
sense with order 1

2
and in the weak sense with order 1, such that, for sufficiently

regular f , EŒf . OSN /� is a decent approximation to EŒf .ST /�, for sufficiently small h.
We report two other schemes for solving autonomous SDEs numerically, which

under appropriate conditions on the coefficients converge in the strong sense with
order 1. The first is the Milstein scheme,

OSkC1 D OSk C �. OSk/hC �. OSk/�WkC1 C 1

2
�. OSk/� 0. OSk/.�W 2

kC1 � h/ ;

where � 0 is the derivative of � . The second is an example of a Runge-Kutta scheme,
with the advantage of not requiring a derivative:

OSkC1 D OSk C �. OSk/hC �. OSk/�WkC1 C 1

2
.�.Yk/ � �. OSk//.�W 2

kC1 � h/ 1p
h
;

where the supporting value Yk is given by Yk D OSk C �. OSk/
p
h.

A problem that can occur in practice is that the simulated path can leave
the domain of definition, while the exact solution does not. For example, the
approximate stock price and/or the volatility process may become negative, even if
the theoretical process is always non-negative. Besides choosing small discretization
intervals, there are sophisticated methods for treating this problem, but for which we
have to refer the reader to the further reading section.

7.5 Further Reading and Exercises

Further Reading

The use of Brownian motion as a model for stock price evolution dates back to the dissertation
thesis of Louis Bachelier, “Théorie de la Spéculation”, from 1900. Bachelier is widely considered
to be the founding father of financial mathematics.

The Black-Scholes pricing equation for European call options was obtained by Black, Scholes
and Merton in the early 1970s, [9, 66]. They did not use the notions of martingales and
equivalent martingale measures, an idea proposed in the late 1970s by Harrison and Kreps [32],
but rather derived a partial differential equation (PDE) for the price by finding a replicating
strategy for the option. The corresponding PDE and its modern generalizations provide an
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alternative framework for valuing derivatives that is usually preferred for low dimensions. For a
comprehensive treatment of general arbitrage theory see Delbaen and Schachermayer [16]. A nice
introduction to quantitative financial mathematics is provided by the book by Albrecher, Binder,
Lautscham, and Mayer [2].

The standard reference for numerical treatment of SDEs is the book by Kloeden and Platen
[53]. This book also covers stochastic analysis for continuous processes and the theory of SDEs.
The regularity conditions needed for strong and weak convergence of the schemes provided in the
text together with corresponding proofs can also be found there.

For the problem of possible negativity of the volatility process in the Heston model see again
[53] and also [3].

The Black-Scholes model can also be generalized in a different direction: the “driving”
stochastic process can be chosen to be a Lévy process, which is a generalization of Brownian
motion allowing for jumps in prices. A good reference for Lévy models in finance is, for example,
the book by Cont and Tankov [15].

Exercises

7.1 A share can be viewed as a derivative on itself with maturity T > 0 and payoff equal to
ST . A bond with B0 D 1 can be viewed as a derivative on a share with deterministic payoff
BT D exp.rT / at time T . The payoff of a portfolio of derivatives on a share with the same
maturity is the sum of the single payoffs.

Draw the payoffs of the following derivatives/portfolios:
(a) 1 share;
(b) 1 share and �K bonds;
(c) 1 share and �1 call option with strike K;
(d) 1 call option and �1 put option, both with strike K;
(e) 1 share, �K bonds, �1 call option, 1 put option, both options with strike K .

7.2 Prove the so-called Put-Call-parity: Assume a market consisting of a share with price process
.St /t2Œ0;T �, European put- and call options on the share with the same strike K and same
expiry T , and a bond with deterministic price process .exp.rt//t2Œ0;T �, for some r 2 .0;1/.
Let .Pt /t2Œ0;T � and .Ct /t2Œ0;T � be the price processes of the put and call option, respectively.

Show that if for some t 2 Œ0; T / we have St � exp.�r.T � t //K ¤ Ct � Pt , then there
exists an arbitrage opportunity in this market that can be realized using a simple buy-and-hold
strategy. In other words: in an arbitrage-free market we have the put-call parity

St � exp.�r.T � t //K D Ct � Pt 8t 2 Œ0; T � :

7.3 A forward contract gives its holder the right and the obligation to buy one share at time T in
the future at a pre-arranged price, the “forward price”.

(a) Draw the payoff of a forward contract.
(b) Show that the forward price must equal exp.rT /S0 by constructing a buy-and-hold

arbitrage otherwise.
7.4 Using the definition ˆ.x/ D 1

p

2�

R x
�1

exp.�y2=2/ dy, and ˆ.1/ D 1 compute the
integrals

I1 D
Z x

�1

exp.	y/ exp.�y2=2/ 1p
2�

dy;

I2 D
Z

1

x

exp.	y/ exp.�y2=2/ 1p
2�

dy;
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I3 D
Z

1

�1

exp.	y/ exp.�y2=2/ 1p
2�

dy:

Hint: complete the square.
7.5 Let X be a standard normal variable, i.e., X has probability density function f .x/ D

1
p

2�
exp.�x2=2/. Show that for any 	 2 R we have

EŒexp.	X/� D exp.	2=2/:

Hint: Use Exercise 7.4.
7.6 Deduce from Exercise 7.5 that in the Black-Scholes model

E


St2 jSt1

� D exp.r.t2 � t1//St1 :

( EŒX jY � denotes conditional expectation of the random variableX with respect to the random
variable Y , which informally means that in evaluating the expectation Y can be treated like a
constant.)

7.7 Verify the Black-Scholes option pricing formula Eq. (7.4). Hint: use Exercise 7.4.



8Monte Carlo and Quasi-Monte Carlo
Simulation

Is this chapter we will learn the basics of pricing derivatives using simulation
methods. We will consider both Monte-Carlo and quasi-Monte Carlo but – of
course – with a special emphasis on the latter. The aim of our exposition is not
to provide a large toolbox for the quantitative analyst, but to help getting started
with the topic. QMC-pricing is an active area of research by its own and the reader
is encouraged to consult the specialized literature. We will, however, take a look at
some popular examples that frequently serve as benchmarks for refined simulation
techniques.

8.1 Non-Uniform Random Number Generation

Most random variables encountered in practical models are not uniformly dis-
tributed. We are therefore interested in methods for generating pseudo- or quasi-
random numbers with a given distribution from their uniform counterparts.

The most straightforward method is the so-called inversion method, which will
be presented in the first subsection.

We are also going to present the class of acceptance-rejection methods for
generating random numbers with a given distribution. These methods have the
reputation of being generally inapplicable for QMC. We try to give a more
differentiated view on that topic.

Inversion Method

We introduce this method for the special case of invertible cumulative distribution
functions and defer the general method to the exercises.

Consider a real random variable X . Its cumulative distribution function (CDF)
F W R ! Œ0; 1� is defined by F.x/ D PŒX � x� for all x 2 R. Let us assume that F

G. Leobacher and F. Pillichshammer, Introduction to Quasi-Monte Carlo Integration and
Applications, Compact Textbooks in Mathematics, DOI 10.1007/978-3-319-03425-6 8,
© Springer International Publishing Switzerland 2014
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is invertible, that is, there exists a function G W .0; 1/ ! R with G.F.x// D x for
all x 2 R and F.G.u// D u for all u 2 .0; 1/.

Suppose now that the random variable U is uniformly distributed on .0; 1/ and
consider the new real random variable Y D G.U /. Then Y has the same distribution
as X . To see this, let y 2 R. Then

PŒY � y� D PŒG.U / � y� D P


F.G.U // � F.y/

� D PŒU � F.y/� D F.y/;

as claimed.
A sufficient condition for a CDF to be invertible is that it has a positive

probability density function (PDF) on R (see Exercise 8.1).
For some distributions the inversion of the CDF is almost trivial. For example,

consider a Cauchy-distributed random variable X with parameters .x0; �/, which
has PDF

f .x/ D 1

�

�

.x � x0/2 C �2
for x 2 R:

The CDF is then given by

F.x/ D PŒX � x� D
Z x

�1
f .x/ dx D 1

�
arctan

�
x � x0

�

�
C 1

2
:

F is obviously invertible, with inverse F�1.u/ D x0 C � tan.�.u � 1
2
//. Thus if U

is uniformly distributed on .0; 1/, then x0 C � tan.�.U � 1
2
// is Cauchy distributed

with parameter .x0; �/.
For other distributions the inversion procedure can only be done numerically.

Definition 8.1
A random variable X is normally distributed with parameters � and � > 0 if it
has PDF

fX.x/ D 1p
2��2

exp

�
� .x � �/2

2�2

�
:

We write X � N.�; �2/. If, in addition, � D 0 and � D 1, then we call X a
standard normal variable.

The inverse of a normal CDF cannot be given by a formula using only
algebraic combinations of elementary functions. However, there are highly accurate
methods for approximating the standard normal CDF by rational functions, and
implementations are available in every sufficiently popular programming language.

If Z is a standard normal variable and �; � are real numbers with � > 0, then
X D �Z C � is a normal random variable with parameters � and � . So being able
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to sample from the standard normal distribution is all that is needed for sampling
from general normals.

Acceptance-Rejection Method

Inverting a CDF numerically can be computationally expensive. A very versatile
and cheap alternative method for generating a random variable with prescribed
PDF f is the acceptance-rejection method. For its implementation we need another
distribution for which it is cheap to sample from, e.g., via the inversion method. Let
g be the PDF of this distribution. Moreover, we need that, for some 0 < c � 1,
cf .x/ � g.x/ for all x 2 R.

The algorithm is as follows:

Algorithm 8.2 (Acceptance-rejection sampling). 1. Generate a sample Y with
PDF g and an independent uniform random variable U .

2. If U � cf .Y /

g.Y /
, set X D Y else go back to step 1.

We call f the target PDF and g the proposal PDF. We give a proof that the
algorithm indeed gives a random variable with the desired distribution, and that
c should be as big as possible, so that the algorithm stops after as few steps as
possible.

Theorem 8.3. Let X be the random variable generated by Algorithm 8.2 and
let N be the number of repetitions of Algorithm 8.2 before giving X . Then X
has PDF f , and N has geometric distribution with parameter c, i.e. PŒN D
k� D c.1 � c/k�1 for all k 2 N. In particular, the algorithm needs on average 1

c

repetitions to complete.

Proof. Let Y1; U1; Y2; U2; : : : be a sequence of independent random variables, where
each Yj is distributed according to PDF g and each Uj is uniformly distributed on
Œ0; 1�. Then for any measurable set A � R

P

�
Yk 2 A and Uk � cf .Yk/

g.Yk/

�
D
Z
A

P

�
Uk � cf .Yk/

g.Yk/

ˇ̌
ˇ̌Yk D y

�
g.y/ dy

D
Z
A

cf .y/

g.y/
g.y/ dy D c

Z
A

f .y/ dy:

In particular, P

h
Uk � cf .Yk/

g.Yk/

i
D P

h
Yk 2 R and Uk � cf .Yk/

g.Yk/

i
D c for every

k, so that the random variable N D min
n
k 2 N W Uk � cf .Yk/

g.Yk/

o
has geometric

distribution with parameter c.
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g

f
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1.5

1.0
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0.2 0.4 0.6 0.8 1.0

Fig. 8.1 Illustration of the acceptance-rejection algorithm where g � 1 and where 1000 random
points in the unit square have been used. On the right-hand side we see the histogram of the random
points so generated, compared with the probability PDF f

According to Algorithm 8.2 we have X D YN . Therefore,

PŒYk 2 A and N D k�

D P

�
Yk 2 A and U1 >

cf .Y1/

g.Y1/
and : : : Uk�1 >

cf .Yk�1/
g.Yk�1/

and Uk � cf .Yk/

g.Yk/

�

D P

�
Yk 2 A and Uk � cf .Yk/

g.Yk/

�
.1 � c/k�1 ;

thanks to the independence of U1; : : : ; Uk; Y1; : : : ; Yk. Now

PŒX 2 A� D
1X
kD1

PŒYk 2 A and N D k�

D
1X
kD1

c

Z
A

f .y/ dy .1 � c/k�1 D
Z
A

f .y/ dy;

simply by computing the geometric sum.
The average number of repetitions is EŒN � D P1

kD1 kc.1� c/k�1 D 1=c, which
is a simple exercise. ut

The method can be illustrated by a picture like the left-hand side of Fig. 8.1. Here
g 	 1 on the unit interval and c is a constant such that cf .u/ � 1 D g.u/ for all
u 2 Œ0; 1�. Random points are sampled in the unit square and those points which lie
below the graph of cf are projected onto the x-axis. The right-hand side of Fig. 8.1
shows a normalized histogram of the projected points together with the PDF f .
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Example 8.4

The PDF of a gamma distributed random variable X with parameters .a; b/, is given by

f .x/ D
(

1
�.a/

baxa�1 exp.�bx/ if x > 0;

0 if x � 0;

where � is Euler’s gamma function,

�.a/ D
Z

1

0

xa�1 exp.�x/ dx:

If we want to sample from a gamma distribution there is no loss of generality in restricting to the
case b D 1, since if X is gamma distributed with parameters .a; 1/ and b > 0, then bX is gamma
distributed with parameters .a; b/.

Suppose now that a > 1. Our idea is to sample from the exponential distribution, which is
easy (Exercise 8.8). Thus we want to find some constants ˇ > 0 and 0 < c � 1 such that
cf .x/ � ˇ exp.�ˇx/ and take g.x/ D ˇ exp.�ˇx/ in Algorithm 8.2.

We need c
�.a/

xa�1 exp.�x/ � ˇ exp.�ˇx/ for all x � 0. For that, we maximize the function

h.x/ D xa�1 exp.�x/=.�.a/ˇ exp.�ˇx// using first-order conditions. We then set c D h.x0/
�1,

where x0 is the maximizer of h. It can be shown that ˇ D a gives the lowest rejection rate, i.e., the
biggest c.

The case where a < 1 is slightly more complicated and we leave it for the exercises. The
choice of g in the case a > 1 is not optimal in that the constant c may be comparatively small.
There are refined methods available for choosing good sampling densities for acceptance rejection
algorithms.

Box-Muller Method and Marsaglia-Bray Algorithm

In this section we will present two popular methods for generating standard normal
vectors. But first recall the definition of a normal (or Gaussian) random vector:

Definition 8.5
A random vectorX D .X1; : : : ; Xs/ is said to be normally distributed with mean
� 2 R

s and covariance matrix † > 0 if it has joint PDF

fX.x/ D 1p
.2�/s det.†/

exp

�
� .x � �/†�1.x � �/>

2

�
; .x 2 R

s/

that is, for every measurable set A � R
s

PŒX 2 A� D
Z
Rs

1A.x1; : : : ; xs/fX.x1; : : : ; xs/ dx1 : : : dxs:

Here, † > 0 means that † has to be positive definite, i.e., x†x> > 0 for all
x D .x1; : : : ; xs/ 2 R

snf0g.
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Consider a 2-dimensional standard normal vector .X; Y /, i.e., � D 0 and † D
Is , the identity matrix. Then

P

hp
X2 C Y 2 � r

i
D 1

2�

Z r

�r

Z p
r2�y2

�
p
r2�y2

exp.�.x2 C y2/=2/ dx dy

D 1

2�

Z r

0

Z 2�

0

� exp.��2=2/ d' d�

D 1 � exp.�r2=2/:

It follows that the modulus of .X; Y / has CDF FR.r/ D 1 � exp.�r2=2/. But
that means that we can generate a random radius by inversion of FR, F�1

R .u/ Dp�2 log.1 � u/. Since the PDF has rotational symmetry, this gives us a method for
generating independent pairs of standard normal variables.

Algorithm 8.6 (Box-Muller). 1. Generate two independentU Œ0; 1/ random sam-
ples U; V ;

2. Let R D p�2 log.1 � U /;
3. Let X D R cos.2�V / and Y D R sin.2�V /;
4. Return .X; Y /.

There is an acceptance-rejection-type variant of the Box-Muller method which is
known as Marsaglia-Bray algorithm:

Algorithm 8.7 (Marsaglia-Bray). 1. Generate two independent U Œ0; 1/ random
samples U; V ;

2. Let U1 D 2U � 1 and V1 D 2V � 1;
3. If U 2

1 C V 2
1 � 1 reject .U; V / and start from the beginning;

4. Else let S D U 2
1 C V 2

1 ;
5. If S D 0 set .X; Y / D .0; 0/;
6. Else set X D U1

p�2 log.S/=S and Y D V1
p�2 log.S/=S ;

7. Return .X; Y /.

Theorem 8.8. The vector .X; Y / generated by either of the Algorithms 8.6 or 8.7
has standard normal distribution.

We leave the proof that .X; Y / are independent standard normal variables to the
reader.

Both the Box-Muller method and the Marsaglia-Bray method are very appealing
due to their elegance. We will argue later that using acceptance-rejection methods
with QMC has its pitfalls. The Box-Muller method is a special kind of inversion
method, but it does not map one coordinate to one coordinate; rather, it generates
two coordinates at a time.
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Though the approximation of the inverse CDF by rational functions is probably
less elegant, and the corresponding algorithm is certainly harder to memorize, it is
computationally only marginally more demanding.

Importance Sampling

For some densities it is very hard – if not impossible – to invert the CDF exactly,
and frequently it is very expensive to do so numerically.

On the other hand, it is not always necessary to generate exactly from the given
distribution; rather, one samples from a distribution that is close (in some sense that
remains to be made precise) to it and adjusts for the error made. This method is
called importance sampling or, in the present context, smooth rejection.

We present the idea in a one-dimensional setup, the general case is straight-
forward. Consider a random variable X with PDF fX and suppose we want to
compute EŒh.X/� for some function h. Let FX denote the corresponding CDF,
FX.x/ D R x

�1 fX.
/ d
. Normally, we would compute

EŒh.X/� � 1

N

NX
nD1

h.F�1
X .Un//

using the inversion method, where U1; : : : ; UN is a uniform pseudo-random
sequence or a low-discrepancy sequence.

Suppose now that we do not know how to (cheaply) invert FX . However, assume
that there is another PDF g for which the corresponding CDF G, given by G.x/ DR x

�1 g.
/ d
, is easily inverted. Then

EŒh.X/� D
Z 1

�1
h.x/fX.x/ dx D

Z 1

�1
h.x/

fX .x/

g.x/
g.x/ dx D E

�
h.Y /

fX.Y /

g.Y /

�
;

where Y is a random variable with PDF g. Now the last expected value can be
computed by sampling from the PDF g using the inversion method:

E

�
h.Y /

fX.Y /

g.Y /

�
� 1

N

NX
nD1

h
�
G�1.Un/

 fX.G�1.Un//
g.G�1.Un//

:

When choosing the PDF g, one must take care not to make the integrand less
regular. For example, suppose we want to compute EŒsin.X/�, where X has a
hyperbolic distribution,

fX.x/ D
�Z

R

exp.�
p
1C t2/ dt

��1
exp

	
�
p
1C x2

�
:
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Let Y have standard normal distribution, g.y/ D exp.� y2

2
/=

p
2� . Then

EŒsin.X/� D E

�
sin.Y /

fX.Y /

g.Y /

�
;

but fX.y/=g.y/ grows like exp.y2=2/ as jyj ! 1. Thus we have sacrificed
boundedness of our integrand. Taking a double exponential PDF instead, i.e.,
g.x/ D 1

2
exp.jxj/ preserves boundedness. In turn, this particular g introduces a

kink into the integrand, i.e., a place where the integrand is not differentiable. Usually
that does less harm than unboundedness. If need arises, the kink can be dealt with
by using a PDF made of three different parts.

I Remark 8.9 When using Monte Carlo, one may also sample from the PDF g
using the rejection method. The goal of importance sampling is then to reduce the
variance of the integrand to speed up convergence.

I Remark 8.10 Importance sampling is particularly useful for sampling from a
random vector whose components have a complicated correlation structure.

Whether or Not – and How – to Use Acceptance-Rejection With QMC

We already mentioned that using acceptance-rejection algorithms with QMC is not
straightforward. Indeed, the view that those algorithms should not (or cannot) be
combined at all is not uncommon.

The question of whether or not acceptance-rejection algorithms can be used
together with QMC depends, of course, on the context. Before we approach an
answer to that question, we first discuss how the algorithm can be applied and –
equally important – how it cannot.

But first consider MC simulation. We are given a pseudo-random number
generator that gives us a sequence .Un/n2N0 of numbers in Œ0; 1/ which are,
ideally, indistinguishable from a truly random sequence of independent random
variables with uniform distribution on Œ0; 1/. From the sequence .Un/n2N0 we
now compute a sequence .Xn/n2N0 of independent random variables with given
distributions by using the acceptance-rejection algorithm with cf � g. According
to Theorem 8.3 we need on average N=c elements of the sequence .Un/n2N0 to
generate X0; : : : ; XN�1. Which of the uniform distributions will be used in the
generation of a particular Xn cannot be known in advance (and is not important
for MC). If in the simulation we need random d -dimensional vectors, this can be
done simply be groupingX0;X1; : : : into d -tuples.

For QMC the situation is quite different. We have a low-discrepancy sequence
.un/n2N0 in the s-dimensional unit cube. This sequence has inherently an s-
dimensional structure, and when generating a d -dimensional vector with given
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distribution and independent components from it, we need to take care not to loose
that structure. We provide different approaches as examples.

Example 8.11

The most straightforward transfer of the corresponding MC scheme would be to use a one-
dimensional low-discrepancy sequence, just like we use a one-dimensional random number
generator for MC. This will give very bad results: consider, for example, the case where we want
to construct two independent uniforms. Then the densities f and g in the acceptance-rejection
algorithms coincide with c D 1.

Thus, no pair is rejected. Hence, applying the acceptance-rejection algorithm to
the one-dimensional sequence .xn/n2N0 will result in the two-dimensional sequence
..x0; x2/; .x4; x6/; .x8; x10/; : : :/.

For example, if .xn/n2N0 is the van der Corput sequence in base 2, then x4k 2 Œ0; 1
4
/ and

x4kC2 2 Œ 1
4
; 1
2
/ for k D 0; 1; 2; : : :. Thus all points of the 2-dimensional sequence will lie in one

rectangle of area 2�4 and consequently are not even uniformly distributed.

Example 8.12

Another straightforward transfer of the corresponding MC scheme suggests to use a s D 2d -
dimensional low-discrepancy sequence, and check for every pair of coordinates whether it is
rejected. If no pair is rejected, we get a vector with the desired distribution.

We provide a simple example. Let f be the PDF of the gamma distribution with parameter a,
f .x/ D xa�1 exp.�x/=�.a/, and let g be the PDF of the exponential distribution with parameter
b, g.x/ D b exp.�bx/. If a D 1:2 and b D 0:85, then bf .x/ � g.x/. We apply the rejection
algorithm to some lattice rule in dimension 4, that is, the first two components are used to generate
the first gamma variable while the last two components will be used to generate the second one. If
rejection occurs in generating either of the components, the whole 4-dimensional point is rejected.

The resulting sequence .xn/n2N0 will have the distribution of two independent �.1:2; 0:85/
variables, so applying the corresponding CDF to the components gives a sequence .un/n2N0 which
is uniform in the unit square. However, there is no reason why it should have any additional
structure, like having low-discrepancy. Figure 8.2 compares a 2-dimensional point set generated
from a 4-dimensional lattice with the first and third component of the same lattice. Of course, the
whole number of points in the lattice must be greater than the number plotted so we can show an
equal number of points in both plots.

It can be seen that, while the points on the left still bear some similarities to the lattice on the
right, they also show some characteristics typical for random numbers, like the presence of clusters
and holes. Nevertheless, we may hope that the result is not worse than when using MC, especially
when c is close to 1.

What else could we do? A key observation is that the acceptance-rejection
algorithm does not require the densities f and g to be one-dimensional.

Example 8.13

Suppose we want to generate a d -dimensional vector with independent components, each
distributed according to the one-dimensional PDF f . So, the vector is distributed according to
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Fig. 8.2 Comparison of rejected and original lattice points

the d -dimensional PDF f .x1; : : : ; xd / D Qd
kD1 f .xk/. As usual, we assume that there exists a

one-dimensional PDF g from which it is easy to sample and for which there exists c with cf � g.
Then g.x1; : : : ; xd / D Qd

kD1 g.xk/ is a d -dimensional PDF from which it is easy to sample (just
do it coordinate-wise!) and for which cdf � g. By “easy to sample from” we now explicitly
mean that we have a function H such that H.U / is distributed according to g for uniform U .

Thus we may apply Algorithm 8.2 in the following way: take a low-discrepancy sequence
.xn/n2N0 in the s D .d C 1/-dimensional unit cube, compute Yn D .H.xn;1/; : : : ; H.xn;s// for
every n, and use only those points for which

xn;s � cdf .Yn/

g.Yn/
;

discard all others.
If we map the random vector obtained in this way back to the unit cube the picture is similar

to Fig. 8.2 (for d D 2). The benefit is that we need only a (d C 1)-dimensional low-discrepancy
sequence instead of a 2d -dimensional one.

Figure 8.3 shows graphs similar to those from Fig. 8.1, but with random points
replaced by points from the Sobol’ sequence. We see that the normalized histogram
matches the PDF very well compared to the same histogram for random points.
When the figures are compared, dismissing the use of QMC with acceptance-
rejection altogether does not seem justified.

An issue with the acceptance-rejection method is that it sometimes makes the
dependence of the result of a MC simulation on the model parameters less smooth.
It is clear that the result of a true MC simulation is by definition stochastic. If one
searches for model parameters which minimize (a function of) the integral that is
computed, then this has the practical drawback that, for example, Newton’s method
cannot be used. In practice it is therefore common to fix the random sequence
for the MC simulation, i.e., the random generator is started afresh for each set of
parameters. In this sense the MC method becomes similar to QMC in that the point
set is now deterministic.

However, if acceptance-rejection is used for the generation of random variables,
then the integral as a function of the model parameters can still become noisy.
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Fig. 8.3 Illustration of the acceptance-rejection algorithm where g � 1 and where 1000 points
from the Faure sequence have been used instead of random ones. On the right-hand side we see
the histogram of the points so generated, compared with the probability PDF function f . The
histogram should be compared to that in Fig. 8.1

Example 8.14

Let .X�
j /jD1;:::;s be a sequence of i.i.d. Gamma.�; 1/ random variables and Y � D Ps

jD1 X
�
j . Let

further � 2 R be fixed and f .y/ WD y � �s.
We want to approximate

˛.�/ D E


f .Y �/

�

by the estimator

ǪN .�/ D 1

N

N�1X
jD0

f .Y �
j /

for different values of �, � 2 .�� �; �C �/. We compare the following scenarios:
1. We use a MC method and acceptance-rejection with a suitable exponential distribution as

dominating function. The pseudo-random number generator is restarted for every choice of
�, so that in fact we use the same sequence for every integral evaluation.

2. We use a low-discrepancy QMC sequence (here: a Sobol’ sequence) together with the inverse
transform method.
We plot the function ǪN with s D 5; N D 1;024; � D 2 and � D 0:2, where � changes in

steps of 0:001. In the left plot of Fig. 8.4 one can see quite a bit of noise, while the right one is very
smooth.

Smoothness is of importance if, for example, one wants to minimize ˛.�/. An application
would be calibration of a financial model to market data.

Of course, this introduction of noise need not happen in any case. For example,
when one generates N.�; �2/ random variables using Marsaglia-Bray, one in fact
generates standard normal variables and transforms them into the required variables
afterwards. Thus, different parameters�; � do not result in different input variables
being rejected.
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Fig. 8.4 Acceptance-rejection method with a fixed MC point set compared to the inverse
transform method with a QMC point set. ǪN is plotted as a function of �

The observant reader will have noticed that the above reservation about the use
of acceptance-rejection algorithms is not confined to QMC, but holds for MC as
well.

So what is the answer to the questions posed in the title? Acceptance-rejection
algorithms destroy some of the structure of low-discrepancy sets/sequences. There
is no reason to believe that the resulting point set still has a particularly low
discrepancy. So the recommendation is to avoid acceptance-rejection if the random
variables can be generated by the inversion method with reasonable effort, or if
importance sampling can be used. A situation where this may fail to be the case is
when the PDF f is not explicitly known, or when f is only known up to a scalar
factor. In many cases there is still a good chance that QMC performs better than
MC.

8.2 Generation of Brownian Paths

Many problems from finance, but also from physics, encompass phenomena which
are modeled by Brownian motion. In this section we give the basic definition and
describe some methods for sampling from Brownian motion.

Brownian Motion: Definition and Properties

Definition 8.15
A standard Brownian motionW in R

m is a stochastic process in continuous time,
defined on some probability space .�;F ;P/, having the following properties:

1. W0 D 0 almost surely;
2. W has stationary increments, that is, for any t1; t2 � 0 the random variables
Wt2 �Wt1 and Wt2�t1 have the same distribution;
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3. W has independent increments, that is, for any d 2 N and any t1; : : : ; td 2 Œ0;1/

with t0 WD 0 < t1 < t2 < � � � < td , the random variables Wt1 � Wt0; : : : ;Wtd �
Wtd�1

are independent;
4.
p
1=tWt is a standard normal Rm-valued random variable for every t � 0;

5. W has continuous paths, that is, for each ! 2 � the mapping t 7! Wt.!/ is
continuous.

We concentrate on the case of one-dimensional Brownian motion, i.e., m D 1.
For applications we usually only need to evaluate the Brownian path at finitely many
nodes t1; : : : ; td . We therefore define a discrete Brownian path with discretization
0 < t1 < � � � < td as a Gaussian vector .Wt1 ; : : : ;Wtd / with mean zero and
covariance matrix

�
min.tj ; tk/

d
j;kD1 D

0
BBBBB@

t1 t1 t1 : : : t1
t1 t2 t2 : : : t2

t1 t2 t3 : : : t3
:::
:::
:::
: : :

:::

t1 t2 t3 : : : td

1
CCCCCA
:

Classical Constructions

There are three classical constructions of discrete Brownian paths:
• The forward method, also known as step-by-step method or piecewise method;
• the Brownian bridge construction or Lévy-Ciesielski construction;
• the principal component analysis construction (PCA construction).

The forward method is also the most straightforward one: given a standard
normal vector X D .X1; : : : ; Xd /, the discrete Brownian path is computed
inductively by

Wt1 D p
t1X1 ; WtkC1

D Wtk C p
tkC1 � tkXkC1 :

Using that EŒXjXk� D ıjk , it is easy to see that .Wt1; : : : ;Wtd / has the required
correlation matrix. Besides its simplicity, the main attractivity of the forward
method lies in the fact that it is very efficient: given that the values

p
tkC1 � tk are

pre-computed, generation of a path takes only generation of the standard normal
vector plus d multiplications and d � 1 additions.

An alternative construction is the Brownian bridge construction, which allows
the values Wt1; : : : ;Wtd to be computed in any given order. The main observation
that makes this possible is the following lemma, the proof of which is left to the
reader (Fig. 8.5).
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m

Fig. 8.5 Illustration of
Lemma 8.16. Z is a standard
normal variable

Lemma 8.16. Let W be a Brownian motion and let t1 < t2 < t3. Then the
conditional distribution of Wt2 givenWt1;Wt3 is N.�; �2/, with

� D t3 � t2
t3 � t1 Wt1 C t2 � t1

t3 � t1Wt3 and �2 D .t3 � t2/.t2 � t1/

t3 � t1
:

Suppose the elements of .Wt1; : : : ;Wtd / need to be computed in the order
Wt�.1/ ; Wt�.2/ ; : : : ;Wt�.d/ for some permutation � of d elements. In computingWt�.j /

we need to take into account the previously computed elements, and at most two of
those are of relevance, the one next to �.j / on the left and the one next to �.j / on
the right: define for every j 2 f1; : : : ; ng two sets,

L.j / WD fk W k < �.j / and ��1.k/ < j g;
R.j / WD fk W k > �.j / and ��1.k/ < j g :

Thus L contains all the indices k that are smaller than �.j / and for which Wtk

has already been constructed, whileR contains all the indices k that are greater than
�.j / and for whichWtk has already been constructed. Now define

l.j / WD
�
0 if L.j / D ;;
maxL.j / if L.j / ¤ ;;

r.j / WD
� 1 if R.j / D ;;

minR.j / if R.j / ¤ ;;
and set Wt0 D 0,

Wt�.j / WD

8̂
ˆ̂̂<
ˆ̂̂̂
:

Wtl.j / C p
t�.j / � tl.j /Xj if r.j / D 1;

tr.j /�t�.j /
tr.j /�tl.j / Wtl.j / C t�.j /�tl.j /

tr.j /�tl.j / Wtr.j /

C
q

.t�.j /�tl.j //.tr.j /�t�.j //
tr.j /�tl.j / Xj

if r.j / < 1;

where X D .X1; : : : ; Xd / is a standard normal random vector.
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It is easy to check that the vector .Wt1 ; : : : ;Wtd / constructed in that way has
again covariance matrix .min.tj ; tk//j;k. The functions l and r , as well as the
coefficients of Wtl.j / , Wtr.j / , Xj , do not depend on the random vector X , so they
can be pre-computed. In some special cases the functions l and r can be given
explicitly, for example if the �.tj / are the first n elements of the van der Corput
sequence. Therefore the Brownian bridge construction is also very efficient: besides
the generation of the vectorX , computation of one sample uses at most 2d additions
and 3d multiplications.

Moreover, we see that the forward construction is a special case of the Brownian
bridge construction where � is the identical permutation.

The PCA construction exploits the fact that the correlation matrix of
.Wt1 ; : : : ;Wtd / is positive definite and can therefore be written in the form VDV �1
for a diagonal matrixD with positive entries and an orthogonal matrix V . D can be
written as D D D

1
2D

1
2 , where D

1
2 is the element-wise positive square root of D.

Now the PCA construction from a standard normal random vector X is given by

.Wt1; : : : ;Wtd /
> D VD

1
2X>:

The proof that .Wt1 ; : : : ;Wtd / is a discrete Brownian path on the nodes t1; : : : ; td is
an easy consequence of the following lemma:

Lemma 8.17. Let A;† be any d � d matrices with AA> D † and let X be a
standard normal vector. Then Y > D AX> is a normal vector with covariance
matrix †, i.e., EŒYj Yk� D †jk .

Proof. Since every linear combination of independent normal random variables is
still normal, AX> is normal. We compute the covariance matrix:

E


.AX>/j .AX>/k

� D E

"
dX
lD1

AjlXl

dX
mD1

AkmXm

#

D
dX
lD1

dX
mD1

AjlAkmE ŒXlXm�

D
dX
lD1

AjlAkl D .AA>/jk D †jk:

ut

The disadvantage of the PCA for high-dimensional problems is that the matrix-
vector multiplication, having computational complexity O.d2/, becomes compara-
tively costly.
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What is Wrong About the Forward Construction?

We have provided three different constructions of Brownian paths with one standing
apart in that it is clearly the most simple one. So why not use the forward
construction for every application?

The answer is that theory predicts a big integration error for QMC if dimensions
are big and the number of integration nodes is of realistic order, like a couple of
millions only. But one can hope that if only a limited number of input parameters
have significant importance for the result, then QMC might behave very similarly to
a low-dimensional integration problem.

Figure 8.6 shows the influence of input parameters on the whole discrete path. We
compare the forward construction on the left with the Brownian bridge construction
on the right. In the two upper plots, all but the first input variables are held fixed.
We see that the influence of the first variable on the overall behavior of the path (in
an informal sense) is bigger for the Brownian bridge construction.

In the two lower plots all but the seventh input variables are held fixed. We see
that in the forward construction only values of the path after the seventh node are
influenced, but the overall influence is only slightly smaller than that of the first
variable. In contrast, the influence of the seventh variable in the Brownian bridge
construction is restricted to the third quarter and is much smaller than that of the
first variable.

The above notion of “behaving like a low-dimensional problem” can be made
precise using the notion of effective dimension. It must be added, though, that
despite its popularity, the concept of effective dimension alone does not fully explain
the success of the alternative constructions. An alternative approach is to use the
concept of weighted spaces as presented in Chap. 4. One can argue that dimensions
with higher index have a much smaller influence on the integrand than earlier
dimensions, thus the norm of the integrand in a suitable weighted space (and thus
the error of integration) is small. The problem is now to provide such a weighted
space, together with suitable weights. The Korobov spaces described in Chap. 4 are
spaces of periodic functions on the unit cube, while most problems in finance lead
to non-periodic integrands that are either unbounded or defined on all of Rs . We
cannot provide such a space, and while there are many authors who investigated this
problem, it remains largely unsolved at the present. So there is a gap in showing error
bounds like those provided for weighted Korobov spaces for financial problems.
Numerical experiments do however support the conjecture that similar bounds could
be proven.

To answer the question posed in the header: there is nothing wrong with the
forward construction, but for some classes of problems other constructions achieve
lower errors, at least empirically. For other problems the forward construction may
be just fine, presumably for the kind of problems for which the input variables
already have different influence on the integrand. Yet some other problems may
be such that they are intrinsically high-dimensional, i.e., any construction will yield
an integrand that is ill-suited for QMC integration.
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Fig. 8.6 Paths of Brownian motion obtained by the forward construction (left) and the Brownian
bridge construction (right). All but one parameters are fixed

Evenly Spaced Discretization Nodes

The case where the t1; : : : ; td are evenly spaced, i.e., where tj D jT

d
, j D 1; : : : ; d ,

is of special interest. First, for many applications even spacing is natural. Second, as
we will see below, we have a broader range of efficient constructions at our disposal
for even spacing. There is no loss in assuming that T D 1.

In this setup the covariance matrix equals

	 1
d

min.j; k/
�d
j;kD1 D 1

d

0
BBBBB@

1 1 1 : : : 1

1 2 2 : : : 2

1 2 3 : : : 3
:::
:::
:::
: : :

:::

1 2 3 : : : d

1
CCCCCA
:

We will denote this matrix by †.d/ or, if there is no danger of confusion, simply
by †.
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Note that we can compute the Cholesky decomposition of † rather easily:
†.d/ D SS>, where

S D S.d/ WD 1p
d

0
BBBBB@

1 0 0 : : : 0

1 1 0 : : : 0

1 1 1 : : : 0
:::
:::
:::
: : :

:::

1 1 1 : : : 1

1
CCCCCA
:

Note that if y D .y1; : : : ; yd / is a vector in R
d , then Sy> is the cumulative sum

over y divided by
p
d ,

Sy> D 1p
d
.y1; y1 C y2; : : : ; y1 C � � � C yd /

> :

We have the following two easy lemmas:

Lemma 8.18. LetA be any d�d matrix withAA> D † and letX be a standard
normal vector. ThenW > D AX> is a discrete Brownian path with discretization
1
d
; 2
d
; : : : ; d�1

d
; 1.

Proof. This is a special case of Lemma 8.17. ut

Lemma 8.19. Let A be any d � d matrix with AA> D †. Then there is an
orthogonal d �d matrix V with A D SV . Conversely, SV.SV /> D † for every
orthogonal d � d matrix V .

Proof. Suppose AA> D †, such that AA> D SS>. Note that S is invertible and
define V D S�1A. Then

V V > D S�1AA>.S�1/> D S�1SS>.S�1/> D Id ;

showing that V is orthogonal. The converse follows from the fact that for orthogonal
V we have V > D V �1. ut

For evenly spaced discretization nodes the orthogonal matrices corresponding
to the classical matrices can often be given explicitly. The orthogonal transform
corresponding to the forward method is the identity mapping on R

d . For d D 2k ,
the orthogonal transform corresponding to the Brownian bridge construction where
W is computed in the order W1;W1

2
;W1

4
;W3

4
;W1

8
;W3

8
;W5

8
; : : :, is given by the

inverse Haar transform. For the PCA, the orthogonal transform can be computed



8.2 Generation of Brownian Paths 181

using the fast discrete sine transform and thus the computation cost is O.d logd/.
The advantage of the representation of A in Lemma 8.19 is that there are many
orthogonal matrices that allow for fast matrix vector multiplication, that is, a path
of length d can be computed using O.d logd/ operations. Examples include the
Walsh transform, discrete sine/cosine transform, Hilbert transform and others.

In the case where the discrete Brownian path is used for solving an SDE, there is
one more thing to be noted: only the increments of the Brownian path are needed.
But for a discrete Brownian pathW on f 1

d
; : : : ; d

d
/, computing the increments means

multiplication by S�1. Thus, if W is generated using the orthogonal transformation
V , i.e.,

.W 1
d
; : : : ;Wd

d
/> D SV.X1; : : : ; Xd/

> ;

then

.W 1
d
;W 2

d
�W 1

d
: : : ;Wd

d
�Wd�1

d
/> D V.X1; : : : ; Xd /

> :

Example 8.20

Consider the problem of valuating an Asian option, i.e., an option with payoff function max
	

1
T�T0R T

T0
St dt �K; 0

�
, in the Heston model (cf. Example 7.5):

dBt D rBt dt;

dSt D rSt dt C p
VtSt .� dW .1/

t Cp
1� �2 dW .2/

t /;

dVt D �.	 � Vt / dt C 

p
Vt dW .1/

t ;

.B0; S0; V0/ D .b0; s0; v0/;

where r; �; �; 	; 
 are positive constants and W .1/; W .2/ are independent standard Brownian
motions. We solve the SDE using the simple Euler-Maruyama method given in (7.8), with
h D 2T=s (s 2 N will be the dimension of the resulting integration problem, and we take s to be
even so we can use half of the coordinates for each Brownian path): OB0 D b0; OS0 D s0; OV0 D v0
and

OB.kC1/ D OBk C r OBkh D b0.1C rh/kC1;

OS.kC1/ D OSk C r OSkhC
q

OVk OSk
	
��W

.1/

.kC1/ Cp
1� �2�W

.2/

.kC1/

�
;

OV.kC1/ D OVk C �.	 � OVk/hC 


q
OVkh�W .1/

.kC1/;

for k D 1; : : : ; s=2, where�W .j/

.kC1/ D W
.j/

.kC1/h �W .j/

kh , j D 1; 2. The payoff of the Asian option
is approximated by replacing the integral by a corresponding sum, i.e.,
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max

�
1

T � T0

Z T

T0

St dt �K; 0

�
� max

0
B@ h

T � T0

s=2X
kDb

T0
T

s
2 cC1

OSk �K; 0

1
CA :

Next we need �W
.j/

k for k D 1; : : : ; s
2
, j D 1; 2, the increments of the two Brownian

motions. First we apply the inverse standard normal CDF component-wise to every point of
an s-dimensional low-discrepancy sequence, giving us an s-dimensional sequence .Xn/n2N0 . Now
we can either partition each Xn into two s

2
-dimensional vectors and use each to generate the

increments of one of the Brownian motions using some orthogonal transformation. For example,
one could use the Brownian bridge construction to generate the first Brownian motion and the
PCA to generate the secon one. Alternatively, and more generally, we can use one s-dimensional
orthogonal transformation on Xn and use the first s

2
components as the increments of the first

Brownian motion and the remaining ones for the second one.

We test the different approaches numerically for a fixed set of parameters: let s0 D 100, v0 D
0:3, r D 0:03, � D 0:2, � D 2, 	 D 0:3, 
 D 0:5, be the model parameters and let the option
parameters be K D 100, T0 D 0, T D 1. Note that the approximate payoff simplifies to

max

0
@2
s

s=2X
kD1

OSk �K; 0

1
A :

To perform the integration, we use the classical 64-dimensional Sobol’ sequence with a random
64-dimensional shift added. We plot the log2 of the standard deviation over 64 integral evaluations
each using 2m points of the sequence, m D 2; : : : ; 10.

The left-hand graph of Fig. 8.7 shows the log2 of the standard deviation along m for four
different transforms: the identity, “Forward”, the orthogonal transform corresponding to the
Brownian bridge (i.e., the inverse Haar transform), “BB”, the one corresponding to PCA and the
Brownian bridge applied separately to the inputs of the two Brownian paths, “BB2”. On the x-axis
we plot the log2 of the number of integration points, i.e.,m, while along the y-axis we plot the log2
of the standard deviation of the result over 64 runs.

We can see that, as in many practical examples, the PCA performs best. Maybe surprisingly,
the idea of using two independent Brownian bridge constructions performs worse than the two
combined transforms, but still much better than the identical transform.

We complement this graph with the corresponding one for a “ratchet option” , that is, an option
with payoff

f .S T
d
; S 2T

d
; : : : ; ST / D 1

d

dX
jD1

1Œ0;1/

	
S jT

d
� S .j�1/T

d

�
S jT

d
:

The errors are plotted on the right-hand side of Fig. 8.7. We can see that the orthogonal transforms
that were so successful in the case of an Asian option now perform worse than the identity.

Thus the choice of a suitable orthogonal transform for generation of the Brownian paths
depends on the payoff function. Exactly how this transform should be chosen, and for which types
of payoffs it accelerates convergence, is still subject to research.

Coming back to the general case of unevenly spaced discretization nodes, we
note the following: suppose you have nodes 0 < t1 < � � � < td . We may compute
an evenly spaced path .W 1

d
;W 2

d
; : : : ;Wd

d
/ using our favorite orthogonal transform,

then compute
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Fig. 8.7 Left: Convergence of the price of an Asian option under different transforms. Right: same
graph for the ratchet option

QW D
p
d
	p

t1W 1
d
;
p
t2 � t1.W 2

d
�W 1

d
/; : : : ;

p
td � td�1.Wd

d
�Wd�1

d
/
�
:

Then QW is a discrete Brownian path with discretization 0 < t1 < � � � < td .

8.3 Multilevel (Quasi-)Monte Carlo

Suppose we want to approximate EŒY � for some random variable Y which has
finite expectation. Suppose further that we have a sequence of sufficiently regular
functions f ` W Rd` ! R such that

lim
`!1EŒf `.X`/� D EŒY �; (8.1)

where for each ` � 0, X` denotes a d`-dimensional standard normal vector. In most
cases the f ` will be the discrete version of a function defined on the Brownian paths
with d` discretization nodes, and typically d` D 2`. A standard example is provided
by the fixed strike Asian option, which has payoff

f .W / WD max

�
1

T

Z T

0

S0 exp

�
�

p
TWt=T C

�
r � �2

2

�
t

�
dt �K; 0

�
;

where W is a standard Brownian motion, S0 is the stock price at time 0, K is
the strike of the option, � is the volatility, and r is the interest rate. W will be
approximated by a discrete path of the form SV `X` where, for example, V ` is the
orthogonal transform corresponding to d` D 2`-dimensional PCA.

Equation (8.1) states that there exists a sequence of algorithms which approxi-
mate EŒY � with increasing accuracy. For example, if f `.X`/ has finite variance, we
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can approximate EŒY � by 1
N

PN�1
kD0 f `.X`

k/ using sufficiently large ` and N , where
.X`

k/k2N0 is a sequence of independent standard normal vectors.
Usually, evaluation of f `.X`

k/ becomes more costly with increasing `. Multilevel
methods sometimes help to save significant proportions of computation time by
computing more samples for the coarser approximations, which need less computa-
tion time but have higher variance.

We have, for large L,

EŒY � � E


f L.XL/

�

D E


f 0.X0/

�C
LX
`D1

E


f `.X`/

� � E


f `�1.X`�1/

�

D E


f 0.X0/

�C
LX
`D1

E


f `.X`/

 � E


f `�1
c .X`/

�

D E


f 0.X0/

�C
LX
`D1

E


f `.X`/� f `�1

c .X`/
�
;

(8.2)

where .f `
c /`2N0 is an arbitrary sequence of functions f `

c W R
d`C1 ! R with the

property that EŒf `�1
c .X`/� D EŒf `�1.X`�1/�. The “c” in f `

c stands for “coarse
level”.

The most basic example for f `
c is given for d` D m` by f `

c D f ` ı Cm;`, where
Cm;` is the linear map defined by the matrix

.Cm;`/i;j WD
(

1p
m

if .i � 1/mC 1 � j � i m ; 1 � i � m`;

0 else.

For example,

C2;` WD

0
BBBB@

1p
2

1p
2
0 0 0 : : : 0 0

0 0 1p
2

1p
2
0 : : : 0 0

:::
:::

:::
:::
:::

:::
:::

0 0 0 0 0 : : : 1p
2

1p
2

1
CCCCA :

In general, f `
c is chosen so as to get small variance for f `.X`/� f `�1

c .X`/.
Equation (8.2) becomes useful if, as is often the case in practice, the expectation

E


f `.X`/ � f `�1.Cm;`X`/

�
can be approximated to the required level of accuracy

using less function evaluations N` for bigger ` while the costs c` per function eval-
uation increases. Suppose the error of approximation of E



f `.X`/� f `�1

c .X`/
�

using N` points is e`.N`/. We choose N0; : : : ; NL so that
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Table 8.1 Multilevel (Q)MC using 210 time steps .L D 10/. The average and the standard
deviation of the option price are based on 1000 runs. The average computing time is given in
parentheses

Multilevel Multilevel QMC
Monte Carlo Forward PCA Regression

NL Average stddev Average stddev Average stddev Average stddev

2 7.717 0:41 	 100 7.735 0:19 	 10�1 7.736 0:16 	 10�1 7.739 0:10 	 10�1

(0.0057 s) (0.0057 s) (0.0088 s) (0.0069 s)
4 7.738 0:19 	 100 7.734 0:71 	 10�2 7.736 0:44 	 10�2 7.738 0:29 	 10�2

(0.0074 s) (0.0074 s) (0.0118 s) (0.0091 s)
8 7.748 0:54 	 10�1 7.737 0:30 	 10�2 7.737 0:14 	 10�2 7.736 0:10 	 10�2

(0.0101 s) (0.0100 s) (0.0165 s) (0.0124 s)

16 7.746 0:40 	 10�1 7.736 0:11 	 10�2 7.737 0:69 	 10�3 7.736 0:30 	 10�3

(0.0157 s) (0.0157 s) (0.0279 s) (0.0194 s)
32 7.728 0:31 	 10�1 7.736 0:49 	 10�3 7.737 0:21 	 10�3 7.736 0:10 	 10�3

(0.0266 s) (0.0265 s) (0.0585 s) (0.0326 s)
64 7.739 0:81 	 10�2 7.736 0:20 	 10�3 7.737 0:69 	 10�4 7.737 0:32 	 10�4

(0.0486 s) (0.0484 s) (0.1202 s) (0.0583 s)

e0.N0/C � � � C eL.NL/ � "

while minimizing the total cost

c D c0N0 C � � � C cLNL:

In this way the total computation cost is typically much lower than it would be if
EŒf L.XL/� would be computed directly.

We conclude with an example in which multilevel MC is combined with
orthogonal transforms and QMC.

Example 8.21

We compare multilevel MC with three multilevel QMC methods, forward, PCA, and the regression
algorithm from [50] numerically. For that we choose the parameters in a Black-Scholes model as
r D 0:04, � D 0:3, S0 D 100, and we aim to value an Asian call option with parameters K D 100

and T D 1. At the finest level we choose 210 discretization points and at each coarser level the
number of points is divided in by 2, i.e. L D 10 and m D 2. The number of sample points are
doubled at each level starting withNL sample points at the finest level L. For the QMC approaches
we take a Sobol’ sequence with a random shift. In Table 8.1 we compare for different values NL
both the average and the standard deviation of the price of the Asian call option based on 1000
independent runs. Moreover, the average computing time for one run is given in parentheses. As we
can see, the QMC methods generally give better results in terms of accuracy in this simple example.
In terms of computation times, the PCA suffers from its slightly more costly path construction and
is not better than the forward method with double number of samples. The results for the regression
method show that there is room for improvement beyond PCA.
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8.4 Further Reading and Exercises

Further Reading

The standard algorithm for sampling from the inverse normal CDF can be found in the article by
Wichura [94], and the corresponding source code in FORTRAN can be found online. Translations
into several other programming languages exist.

The standard reference for MC pricing of financial instruments is the book by Glasserman [31],
which also contains some material on QMC simulation.

The topic of non-uniform random variate generation is treated in quite some detail in the book
by Hörmann, Leydold, and Derflinger, [45]. There it is shown how the proposal PDF for a given
target PDF can be computed automatically with very small rejection rate.

Dick and Zhu [21] study the combination of a special class of acceptance-rejection algorithms
and QMC. They provide estimates for the discrepancy of the generated point set with respect to
the target PDF and they find that it is of lower order than that of random points.

Example 8.14 is taken from the article [26] by Eichler, Leobacher, and Zellinger. There the
problem of calibrating (financial) models is considered in some detail.

We noted in the text that the cost for generating Brownian paths using PCA is high due
to the general matrix vector multiplication involved. Keiner and Waterhouse [52] describe an
approximate PCA for which the cost of matrix-vector multiplication is O.d log d/.

The notion of effective dimension was first formalized by Caflisch, Morokoff, and Owen in
[12] using the concept of ANOVA decomposition. The latter has some interesting applications in
complexity analysis, see for example [74].

In the article [63], Leobacher reviews a number of orthogonal transforms that can be computed
using O.d log d/ operations. For example, one can find these a detailed algorithm for the use of
the fast discrete sine transform for fast computation of the PCA for evenly spaced nodes, which
has originally been proposed by Scheicher, see [83].

The example for which the Brownian bridge and other transforms perform worse than the
identical one, i.e., the ratchet option, was first considered in the context of QMC pricing by
Papageorgiou in [80]. Papageorgiou concludes that the effectivity of a transform is intimately tied
to the payoff structure. His results were formalized and generalized by Wang and Sloan [93]. In the
articles [49, 50] by Leobacher and Irrgeher, it is tried to choose the orthogonal transform in a way
that puts as much variance as possible into the dependence of the first input variable. To this end
the payoff is approximated by a linear function g (“regression”) and an orthogonal (Householder-
)transform V is computed such that g ı V only depends on X1. This V is taken as the orthogonal
transform for the original problem. See also Imai and Tan [47] for a different approach.

The idea of using orthogonal transforms on normal random vectors in order to obtain
constructions for paths can to a certain degree be extended to Lévy paths. It was first used in [62]
for the Brownian bridge construction and later, but independently, in [48] for general orthogonal
transforms.

Multilevel MC is a technique for speeding up MC simulation, especially for SDE models. It
has gained a lot of recognition over the last couple of years, starting with the pioneering work by
Giles [30] and Heinrich [33].

One of the many topics from quantitative finance that has been omitted from this book, but
which is very closely related to option pricing, is the computation of price sensitivities (the so-
called “Greeks”) with respect to model parameters. This concept and its significance is discussed
in any textbook on finance, see, for example, Albrecher et al. [2]. We mention this topic because
there are different ways for computing them using simulation, and usually the straightforward
approach is not the best one. See Glasserman [31] for MC computation of sensitivities using the
so-called likelihood ratio method. Fournier et al. provide an introduction to Malliavin calculus for
computing sensitivities using MC [29].
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Exercises

8.1 Let f W R ! R be a positive PDF, i.e.,
• f is measurable;
• f .x/ > 0 for all x 2 R;
•

R
R
f .x/ dx D 1.

Show that F W R ! .0; 1/; F.x/ D R x
�1

f .y/ dy is bijective.
8.2 Suppose f is a continuous positive PDF and F.x/ D R x

�1
f .y/ dy for all x 2 R. Show that

the inverse function G of F satisfies the ordinary differential equation G0.u/ D 1=f .G.u//.
8.3 Let F W R ! Œ0; 1� be a CDF, that is F is monotone, right-continuous with

limx!�1 F.x/ D 0 and limx!1 F.x/ D 1. Define the quasi-inverse of F by

F�.u/ D inffx 2 R W F.x/ � ug 8u 2 .0; 1/:

Show that
(a) F� is non-decreasing;
(b) F.F�.u// � u and F�.F.x// � x for all u 2 .0; 1/, and all x 2 R;
(c) Conclude that for all u 2 .0; 1/, and all x 2 R, we have F�.u/ � x if and only if

F.x/ � u;
(d) Conclude further that for any random variable U which is uniformly distributed on .0; 1/

we have thatF�.U / is a real random variable with CDF F , i.e.,PŒF�.U / � x� D F.x/;
(e) Show that F� coincides with F�1 if F is invertible.

8.4 Another special case of great practical interest is where X takes values in Z. What does the
quasi-inverse look like in that case? How can one write a computer program to sample from
the distribution of X?

8.5 Write a simple computer program that generates a geometric random variable with parameter
q using a variant of the inversion method.

8.6 A doubly exponential random variable X with parameters ˛; ˇ has PDF

f .x/ D 1
1
˛

C 1
ˇ

�
exp.˛x/ if ˛ < 0;
exp.�ˇx/ if ˇ � 0:

(a) Show that f is a PDF, i.e., f is measurable, f � 0 almost everywhere, and
R
R
f .x/

dx D 1.
(b) Show that the CDF of X is invertible.
(c) Compute the CDF of X .

8.7 Let X be a real random variable with values in I where I is either �.1; b�, or Œa; b� or
Œa;1/. Suppose that the restriction of F to I is invertible. Show that the inversion method
works analog to the case considered in the text.

8.8 The PDF of an exponential random variable X is given by f .x/ D � exp.��x/ for x � 0,
f .x/ D 0 for x � 0. Show that the CDF of X is invertible on Œ0;1/ and compute its
inverse.

8.9 The PDF of the arcsine distribution is given by f .x/ D 1

�
p

x.1�x/
for x 2 .0; 1/ and

f .x/ D 0 for x … .0; 1/. Compute the corresponding CDF, show that it is invertible on
Œ0; 1�, and compute the inverse.

8.10 Show that the Marsaglia-Bray algorithm indeed generates a 2-dimensional standard vector.
8.11 Find a continuous PDF for sampling from a gamma distribution with parameter a < 1 using

the acceptance-rejection method. Hint: first find a function g1 W .0; 1� ! R which is greater
than the target PDF in its domain, then find a function g2 W Œ1;1/ ! R for the other part.
c�1g equals g1 on .0; 1� and g2 on .0;1/, and c has to be computed by integration.

8.12 Show how to construct a discrete Brownian path on the nodes tj D jT

d
from a path on the

nodes 1
d
; : : : ; d

d
.

8.13 Prove Lemma 8.16.



Bibliography

1. Aistleitner, C.: Covering numbers, dyadic chaining and discrepancy. J. Complex. 27, 531–540
(2011)

2. Albrecher, H., Binder, A., Lautscham, V., Mayer, P.: Introduction to Quantitative Methods for
Financial Markets. Birkhäuser, Basel (2013)
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38. Hinrichs, A.: Covering numbers, Vapnik-Červonenkis classes and bounds for the star-
discrepancy. J. Complex. 20, 477–483 (2004)
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sequence, 131
.t; m; s/-net, 126
.t; s/-sequence, 131
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Geometric distribution, 165

Halton sequence, 40
generalised, 48

Hammersley point set, 48
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Hlawka’s Identity, 68
Hyperbolic distribution, 169

Importance sampling, 169
Inequality

Erdős-Turán-Koksma, 34
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Koksma, 57
Koksma-Hlawka, 69
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Initial error, 72, 98
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Intractable, 106
Inverse of the
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star discrepancy, 146

Itô formula, 158

Koksma-Hlawka inequality, 69
Korobov space, 88, 90
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Kronecker sequence, 16
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Linear independence parameter, 127, 128, 132
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Monte Carlo (MC) method, 5
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Quasi-Monte Carlo (QMC) method, 8

Rader transform, 81
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Representation theorem of Fréchet-Riesz, 62
Representer of the integration error, 65
Reproducing kernel, 58

Hilbert space, 58
Runge-Kutta scheme, 160
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Faure, 139
generalised Halton, 48
generalised Niederreiter, 137
Halton, 40
Kronecker, 16
low-discrepancy, 46
n˛-, 16
Niederreiter, 135
Sobol’, 138
strict .t; s/-, 114
.t; s/-, 114
van der Corput, 17, 40

Share, 150
Smooth rejection, 169
Sobol’ sequence, 138
Standard normal distribution, 164
Star discrepancy, 20

generalized Halton sequence, 53
Halton sequence, 40, 47
Hammersley point set, 49
inverse, 146
N th minimal, 143
regular lattice, 25
.t; m; s/-net, 117, 122
.t; s/-sequence, 123

Step-by-step method, 175
Stochastic differential equation, 158

.t; m; s/-net, 112
digital, 126
quality parameter, 112

star discrepancy, 117, 122
strict, 112

Tractability
exponent of strong polynomial, 99
polynomial, 99
strong polynomial, 99
weak, 106

Trapezoidal rule, 9
Triangle inequality

for the discrepancy, 52
for the worst-case error, 72

.t; s/-sequence, 114
digital, 131
quality parameter, 114
star discrepancy, 123
strict, 114

Uniformly distributed modulo one, 12, 114

Van der Corput sequence, 17, 40, 114

Walsh function, 70, 142
Warnock formula, 51
Weyl’s criterion, 14
Worst-case error, 57, 62

N th minimal, 98
QMC mean square, 72

Zaremba’s Identity, 68
.0;m; s/-net, 108
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