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The just, then, is a species of the proportionate . . .. For proportion is equality of
ratios, and involves four terms at least . . .; and the just, too, involves at least four

terms, and the ratio between one pair is the same as that between the other pair;
for there is a similar distinction between the persons and between the things. As
the term A, then, is to B, so will C be to D, and therefore, alternando, as A is to

C, B will be to D. . . .

This, then, is what the just is—the proportional; the unjust is what violates the
proportion. Hence one term becomes too great, the other too small, as indeed

happens in practice; for the man who acts unjustly has too much, and the man
who is unjustly treated too little, of what is good. . . .

This, then, is one species of the just.

Aristotle, Nichomachean Ethics, Book V, Chapter 3.

Translated and Introduced by Sir David Ross, 1953.
The World’s Classics 546, Oxford University Press.





Foreword

The virtue of parliamentary democracy rests on the representative capability of its

institutions. Even mature democratic states cannot take the strength of its represen-

tative institutions for granted. Newer democracies seek practicable ways and means

on which to build lasting structures of governance which will command the affinity of

the people they are set up to serve. The debate about the structural reform of parlia-

mentary democracies is never far away. Nor should it be. The powers and composition

of parliamentary chambers, their rules and working methods, the organisation and di-

rection of the political parties which compete for votes and seats, the electoral systems

(who to register, how to vote, how to count), the size and shape of constituencies—all

these and more are rightly subject to continual appraisal and are liable to be reformed.

Electoral reform is a delicate business: handled well, it can be the basis on which

new liberal democracies spread their wings; it can refresh the old, tired democracies.

Handled badly, electoral reform can distort the people’s will, entrench the abuse of

power and sow the seeds of destruction of liberty. Electoral systems are central to

the debate in the emerging democracies, and the relatively new practice of election

observation by third parties highlights the need for elections to be run not only fairly

but also transparently. Voting and counting should be simple, comprehensible and open

to scrutiny—qualities which are too often lacking even in old established democracies.

Electoral reform is also very difficult to achieve. Those who must legislate for it

are those very same people who have a vested interest in the status quo. That Turkeys

don’t vote for Christmas is amply demonstrated in the United Kingdom, where reform

of the House of Lords has been a lost cause for over a century. Advocates of reform

need to stack up their arguments well, be persistent and enjoy long lives.

Friedrich Pukelsheim has written a definitive work on electoral reform. He takes

as his starting point the simple premise that seats won in a parliamentary chamber

must represent as closely as possible the balance of the votes cast in the ballot box.

Rigorous in his methodology, the author knows that there is no single perfect electoral

system: indeed, in their quirky details every system affects the exact outcome of an

election. We are fortunate indeed that this Professor of Mathematics is a profound

democrat. He ably brings to the service of politicians the science of the mathematician.
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viii FOREWORD

Dr Pukelsheim was an indispensable participant at the meeting in Cambridge in

2011, chaired by Geoffrey Grimmett, which devised “CamCom”—the best consensual

solution to the problem of how to apportion seats in the European Parliament. As the

Parliament’s rapporteur for electoral procedure, I am happy that our ideas are now

taken forward in this publication.

THE EUROPEAN PARLIAMENT

The European Parliament presents unusual challenges both to the scientist and practi-

tioner. It is one chamber of the legislature of the European Union with a lot of power

but little recognition. It reflects a giant historical compromise between the interna-

tional law principle of the equality of states and the democratic motto of “One person,

one vote”.

Proportional representation at the EU level needs to bear in mind not only party

but also nationality. The European Parliament is the forum of the political single

market where the different political cultures and constitutional practices of the 28

member states meet up. MEPs are constitutionally representatives of the Union’s

citizens but they are elected not by a uniform electoral procedure but by different

procedures under which separate national political parties and candidates fight it out,

largely untroubled by their formal affiliation to European political parties.1 Efforts

to make more uniform the election of the world’s first multi-national parliament to be

directly elected by universal suffrage have been frustrated.

Voter turnout, as we know, has declined at each election to the European Par-

liament from 62 percent in 1979 to 43 percent in 2009, although these overall figures

disguise sharp contrasts among the states and between elections. The long financial

and economic crisis since 2008 has brought to a head a crisis of legitimacy for the Eu-

ropean Parliament. If the euro is to be salvaged, and the EU as a whole is to emerge

strengthened from its time of trial, transnational democracy needs to work better.

Banking union and fiscal union need the installation of federal government. That fed-

eral government must be fully accountable to a parliament which connects directly to

the citizen and with which the citizen identifies. That parliament must be composed in

a fair and logical way best achieved in accordance with a settled arithmetical formula

and not as a result of unseemly political bartering which borders on gerrymandering

and sparks controversy.

It is probable that in spring 2015 there will be a new round of EU constitutional

change. This will take the form of a Convention in which heads of government and

the European Commission will talk things through with members of the European

and national parliaments. Part of the complex negotiations must include the electoral

reform of the European Parliament. This will be the chance to progress CamCom for

the apportionment of state seats alongside an ambitious proposal for the creation of a

1Article 14(2), Treaty on European Union.
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pan-European constituency for which a certain number of MEPs will be elected from

transnational party lists.2

There is no reason to doubt that the notion of degressive proportionality, which

strikes mathematicians as odd, will survive these negotiations because it expresses

quite well the broadly understood belief that in a federal polity the smaller need to be

protected from subordination to the larger. CamCom copes logically with degressive

proportionality in a way which should satisfy even the austere requirements of the

Bundesverfassungsgericht at Karlsruhe.

Nevertheless, as Friedrich Pukelsheim recognises, fully-fledged CamCom means

radical adjustments to the number of MEPs elected in several states. It is important,

therefore, that changes to the electoral system for one chamber of the legislature are

balanced by changes to the electoral system in the other. Here the Jagiellonian Com-

promise, which uses the square root as the basis for weighing the votes of the member

states in the Council, deserves a good hearing.

In June 2013 the Council and European Parliament eventually agreed that the new

Member State of Croatia should have 11 MEPs in the Parliament which is to be elected

in May 2014. We worked hard to ensure that the re-apportionment of seats would not

contradict the logic of CamCom. There is a first, albeit clumsy, legal definition of

degressive proportionality. More importantly, the European Union has now formally

decided to pursue the objective of a formulaic approach to the future distribution of

seats in the Parliament, coupled with a commitment to revisit the matter of qualified

majority voting (QMV) in the Council.

The decision of the European Council, now agreed by the European Parliament,

lays down that a new system will be agreed in good time before the 2019 elections

which in future will make it possible, before each fresh election to the European Par-

liament, to allocate the seats between Member States in an objective, fair, durable and

transparent way, translating the principle of degressive proportionality as laid down in

Article 1, taking account of any change in their number and demographic trends in their

population, as duly ascertained thus respecting the overall balance of the institutional

system as laid down in the Treaties.

So perhaps CamCom and JagCom are destined to surface together in the next EU

treaty. Legislators who care to understand the maths should start with this book.

Andrew Duff MEP

Cambridge, United Kingdom

September 2013

2For a full exposition of this proposal see Spinelli Group, A Fundamental Law of the European
Union, Bertelsmann Stiftung 2013.
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Preface

Proportional representation systems determine how the political views of individual

citizens, who are many, mandate the Members of Parliament, who are but a few. The

same techniques apply when in Parliament the political groups are to be represented

in a committee of a size much smaller than Parliament itself. There are many similar

examples all showing that proportional representation inevitably culminates in the task

of translating numbers into numbers—large numbers of those to be represented into

small numbers of those serving as representatives. The task is solved by procedures

called apportionment methods. Apportionment methods and their applications are the

theme of this work. A more detailed Outline of the Book follows the Table of Contents.

By profession a mathematician rather than a politician, I have had the privilege of

getting involved in several proportional representation reform projects in recent years.

These include the introduction of a double-proportional electoral system in several

Swiss cantons since 2006, the amendment of the German Federal Election Law during

2008–2013, and the discussion of the future composition of the European Parliament.

The practical challenges and the teaching experience of many lectures and seminars on

the subject of proportional representation and apportionment methods have shaped

my view and provided the basis for this book.

Apportionment methods may become quite complex. However, these complexities

are no ends in themselves. They are reflections of the historical past of a society, its

constitutional framework, its political culture, its identity. On occasion the complex-

ities are due to partisan interests of the legislators responsible. This mélange turns

the topic into a truly interdisciplinary project. It draws on such fields as constitu-

tional law, European law, political sciences, medieval history, modern history, discrete

mathematics, stochastics, computational algorithms, to name but a few. I became

increasingly fascinated by the interaction of so many disciplines. My fascination grew

when I had the pleasure of conducting student seminars jointly with colleagues from

the humanities on topics of common interest. These experiences made me realize that

proportional representation and apportionment methods are a wonderful example to

illustrate the universitas litterarum, the unity of arts and sciences.

xi
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In retrospect I find it much easier to conduct an interdisciplinary seminar than to

author an interdisciplinary textbook. Nevertheless I hope that the present book may

prove a useful reference work for apportionment methods, for scholars of constitutional

law and political sciences as well as for other electoral system designers. The many

apportionment methods studied span a wide range of alternatives in Germany, the

European Union, and elsewhere. The book not only describes the mechanics of each

method, but also lists the method’s properties: biasedness in favor of stronger parties

at the expense of weaker parties, preferential treatments of groups of stronger parties

at the expense of groups of weaker parties, optimality with respect to goodness-of-

fit or stability criteria, reasonable dependence on such variables as house size, vote

ratios, size of the party system, and so on. These properties are rigorously proved and,

whenever possible, substantiated by appropriate formulae.

Since the text developed from notes that I compiled for lectures and seminars, I

am rather confident that it can be utilized for these purposes. The material certainly

suffices for a lecture course or a student seminar in a curriculum of mathematics,

quantitative economics, computational social choice, or electoral system design in the

political sciences. I have used parts of the text with particular success in classes for

students who are going to be high-school teachers. The chapters presuppose readers

with an appreciation for rigorous derivations, and with a readiness to accept arguments

from scientific fields other than their own. Most chapters can then be mastered with

a minimum knowledge of basic arithmetic. Three chapters involve more technically

advanced approaches. Chapters 6 and 7 use some stochastic reasoning, and Chapter 14

discrete optimization and computer algorithms.

The subject of the book is restricted to the quantitative and procedural rules that

must be employed when a proportional representation system is implemented; as a

consequence the book does not explicate the qualitative and normative foundations

that would be called for when developing a comprehensive theory of proportional rep-

resentation. As in all sciences, the classification of quantitative procedures starts with

basic methods that later get modified to allow for more ambitious settings. The basic

issue is to calculate seat numbers proportionately to vote counts. This task is resolved

by divisor methods or by quota methods. Later, geographical subdivisions of the elec-

toral region come into play, as do guarantees for small units to obtain representation

no matter how small they are, as do restrictions for stronger groups to limit their

representation lest they unduly dominate their weaker partners. In order to respond

to these requirements the basic methods are modified into variants that may achieve

an impressive degree of complexity.

When teaching the topic I soon became convinced that its intricacies can be ap-

preciated only by contemplating real data. That is, data from actual elections in the

real world, rather than imaginary data from contrived elections in the academic ivory

tower. My Augsburg students responded enthusiastically and set out to devise an

appropriate piece of software, BAZI. BAZI has grown considerably since 2000, and
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has proved an indispensable tool for carrying out practical calculations and theoretical

investigations. I would like to encourage readers of this book to use the program to

retrace the examples and to form their own judgment. BAZI is freely available from

the website www.uni-augsburg.de/bazi.
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Outline of the Book

CHAPTERS 1, 2: APPORTIONMENT METHODS IN PRACTICE

The initial chapters present an abundance of apportionment methods used in practice.

Chapter 1 reviews the European Parliament elections 2009. They provide a rich source
of empirical examples. Chapter 2 deals with the German Bundestag election 2009. Em-
phasis is on the interplay between procedural steps and constitutional requirements.
The presentation introduces vital concepts of proportional representation systems be-

yond their use in European or German elections. Concepts and terminology introduced
in these chapters set the scene for the methodological approach that follows.

CHAPTERS 3, 4, 5: DIVISOR METHODS AND QUOTA METHODS

A rigorous apportionment methodology needs to appeal to rounding functions and
rounding rules. They are introduced in Chapter 3. Chapters 4 and 5 discuss the two

dominant classes of apportionment methods: divisor methods, and quota methods.
Usually the sum of all vote counts is much larger than the number of seats available in a
parliamentary body. Therefore, a first step converts vote counts into interim quotients

of an appropriate order of magnitude. A second step rounds interim quotients to
integers. Divisor methods use a flexible divisor for the first step, and a preordained
rounding rule for the second. Quota methods employ a formulaic divisor—the quota—

for the first step, and a flexible rounding rule for the second.

CHAPTERS 6, 7, 8: DEVIATIONS FROM PROPORTIONALITY

Many apportionment methods deviate from perfect proportionality in a systematic

fashion. Chapters 6 and 7 investigate seat biases, that is, averages of the deviations
between actual seat numbers and the ideal share of seats assuming that the vote shares
follow the uniform distribution or some absolutely continuous distribution. Chapter 8

offers a deterministic comparison of two apportionment methods under the assumption
that the vote counts are fixed. The majorization relation is a partial order among
apportionment methods indicating whether one method is more beneficial to groups

of stronger parties—and hence more disadvantageous to the complementary group of
weaker parties—than the other.

xix



xx OUTLINE OF THE BOOK

CHAPTERS 9, 10, 11: COHERENCE, OPTIMALITY, SPECIFICS

Proportional representation aims at fairly representing voters in terms of their party

preferences. Chapter 9 explores the idea that a fair division should be such that every
part of it is fair, too. This requirement is captured by the notion of coherence. Divisor
methods are coherent, quota methods are not. Chapter 10 evaluates the deviations be-

tween actual seat numbers and ideal shares of seats by means of goodness-of-fit criteria.
The optimization of particular criteria is shown to lead to particular apportionment
methods. Chapter 11 reverses the role of input and output. Given the seat numbers,

the range of vote shares is determined that leads to the prespecified number of seats.
As a matter of fact it may happen that a straight majority of votes fails to lead to a
straight majority of seats. For this reason many electoral laws include an extra major-

ity preservation clause. Three majority clauses are discussed, and their practical usage
is illustrated by example.

CHAPTERS 12, 13: PRACTICAL IMPLEMENTATIONS

Many proportional representation systems go beyond abstract proportionality by im-
posing concrete restrictions. Chapter 12 shows how to handle minimum-maximum

restrictions, and empirical examples illustrate their relevance. The most prominent
example is the composition of the European Parliament, that is, the allocation of the
seats of the European Parliament between the Member States of the Union. Chap-

ter 13 describes the 2013 amendment of the German Federal Election Law. The law
achieves impeccable proportionality by adjusting the Bundestag size beyond the nom-
inal level of 598 seats. The system realizes practical equality of the success values of

all voters’ votes in the whole country. Mild deviations from proportionality may occur
when apportioning the seats of a party to its lists of nominees.

CHAPTER 14: DOUBLE PROPORTIONALITY

Chapter 14 treats double-proportional divisor methods. Double-proportionality aims
at a fair representation of the geographical division of the electorate as well as of the

political division of the voters. The methods achieve this two-way fairness by appor-
tioning seats to districts proportionately to population figures, and seats to parties
proportionately to vote counts. The core is the sub-apportionment of seats to each

party in each district in such a way that for every district the seats are summing to the
given district magnitude, and for every party the seats are summing to their overall
proportionate due. To this end two sets of electoral keys are required, district divi-

sors and party divisors. While it is laborious to determine the electoral keys, their
publication makes it rather easy to verify the double-proportional seat apportionment.
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x � y majorization of vectors, 111
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• multi-purpose eye-catcher in tables
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C H A P T E R 1

Exposing Methods: The 2009
European Parliament Elections

The multitude of apportionment methods that is available for the translation of vote
counts into seat numbers is exemplified. The examples are taken from the 2009 Euro-
pean Parliament elections. For each of the 27 Member States the vote counts that enter
the apportionment calculations are given, and the computational steps to convert them
into seat numbers are described. The exposition is interspersed with conceptual remarks
and technical comments concerning proportional representation systems at large.

1.1. THE 27 MEMBER STATES OF THE 2009 UNION

The 2009–2014 European Parliament (EP) was elected in 2009. In this chapter we

review the apportionment methods applied by the 27 Member States. Their 27 electoral

laws are so distinct that we henceforth refer to the event in the plural, “elections”.

The domestic differences aptly demonstrate the many apportionment methods used to

translate vote counts into seat numbers. Although the elections took place in the past,

the properties of the apportionment methods do not depend on the particular instance

of their application, and so we use the present tense throughout.

The Union’s Interinstitutional Style Guide decrees a protocol order for the Member

States that includes three identifiers for each state: an official name, a short name,

and a two-letter code. The official names and the short names depend on which of

the Union’s official languages is used. We choose to list the Member States in the

alphabetical order of their two-letter codes, shown in Table 1.1.

The table also includes the seat allocations assigned to the Member States for the

2009 election. The seat allocations have been modified since then, and will be modified

again as further states accede. The exposition is restricted to the 27 Member States

present in 2009. We group them into batches of three, in the sequence of Table 1.1.

Each batch is complemented—somewhat arbitrarily—with general comments. The

comments pertain to the procedures used in the Union, the presentation chosen in this

book, and the problems addressed in the sequel.
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2 CHAPTER 1. EXPOSING METHODS: THE 2009 EUROPEAN PARLIAMENT ELECTIONS

Two-Letter Code Short Name Official Name Seats

AT Austria Republic of Austria 17
BE Belgium Kingdom of Belgium 22
BG Bulgaria Republic of Bulgaria 17

CY Cyprus Republic of Cyprus 6
CZ Czech Republic Czech Republic 22
DE Germany Federal Republic of Germany 99

DK Denmark Kingdom of Denmark 13
EE Estonia Republic of Estonia 6
EL Greece Hellenic Republic 22

ES Spain Kingdom of Spain 50
FI Finland Republic of Finland 13
FR France French Republic 72

HU Hungary Hungary 22
IE Ireland Ireland 12
IT Italy Italian Republic 72

LT Lithuania Republic of Lithuania 12
LU Luxembourg Grand Duchy of Luxembourg 6
LV Latvia Republic of Latvia 8

MT Malta Republic of Malta 5
NL Netherlands Kingdom of the Netherlands 25
PL Poland Republic of Poland 50

PT Portugal Portuguese Republic 22
RO Romania Romania 33
SE Sweden Kingdom of Sweden 18

SI Slovenia Republic of Slovenia 7
SK Slovakia Slovak Republic 13
UK United Kingdom United Kingdom of Great Britain and Northern Ireland 72

Sum 736

TABLE 1.1 The 2009 European Union. The 27 Member States are listed alphabetically by their
two-letter codes. The seat allocations are those pertaining to the 2009 elections.

Acronym Political Group in the 2009 EP

EPP European People’s Party
S&D Progressive Alliance of Socialists and Democrats
ALDE Alliance of Liberals and Democrats for Europa
GREENS/EFA European Greens / European Free Alliance
ECR European Conservatives and Reformists
EFD Europe of Freedom and Democracy
GUE/NGL Gauche unitaire européenne / Nordic Green Left
NA Non-Attached Members of the EP

TABLE 1.2 Political Groups in the 2009 EP. In the 2009 EP seven Political Groups were formed.

We treat the non-attached Members of the EP as an eighth pseudo-group, NA.

In the 2009 EP elections political parties campaigned under their domestic names.

We inject a European dimension by correlating a domestic party with the Political

Group it joined after the election. This is illegal, strictly speaking. Political Groups

carry the parliamentary business, and are barred from campaigning in elections. Al-

though invisible in the 2009 EP elections, European Parties do exist. They were

invented for funneling money from the Union’s budget into political channels. But this

book is about apportionment methodology, not money. Neglecting mundane subtleties,

we audaciously replace the invisible European Parties by the visible Political Groups.



1.2. AUSTRIA–BELGIUM–BULGARIA: ELECTORAL KEYS 3

EP2009AT Political Group Votes Quotient DivDwn

ÖVP EPP 858 921 6.1 6
SPÖ S&D 680 041 4.9 4
Martin NA 506 092 3.6 3
FPÖ NA 364 207 2.6 2
GRÜNE GREENS/EFA 284 505 2.03 2
BZÖ NA 131 261 0.9 0

Sum (Divisor) 2 825 027 (140 000) 17

TABLE 1.3 Austria, 2009 EP election. Of the valid votes, 2 825 027 become effective and let six

parties participate in the apportionment calculations. Every 140 000 votes justify roughly one seat

out of the Austrian allocation of 17 seats, up to downward rounding of the interim quotients.

The seven Political Groups that formed in the 2009 EP are listed in Table 1.2,

together with their acronyms. The last line is devoted to those Members of the EP

not joining a group, coded “NA”. The labeling “NA” is fortunate since it is standard

statistical jargon for items that are Not Available, Not Applicable, Not Active or, for

the present purpose, Not Attached to one of the existing Political Groups.

1.2. AUSTRIA–BELGIUM–BULGARIA: ELECTORAL KEYS

Austria has an allocation of 17 seats to fill, of the overall 736 EP seats. The Austrian

voters cast 2 864 621 valid votes. However, not all of these become effective to partici-

pate in the apportionment calculations. The Austrian law sets an electoral threshold,

at four percent of the valid votes. This means that a valid vote becomes effective to

enter into the apportionment calculations only when cast for a party drawing at least

four percent of all valid votes. Four percent of the Austrian valid votes is 114 584.8

vote fractions. Hence a valid vote becomes effective provided it is cast for a party that

draws at least 114 585 votes. Of the eight parties campaigning, two fail the threshold,

and the 39 594 votes for them turn ineffective. The apportionment of the 17 seats

among the remaining six parties is shown in Table 1.3.

The right-most column in the table contains the final seat numbers and could

be labeled “Seats”. But the focus is on the procedure how to calculate these seat

numbers, whence we label the column with the acronym of the apportionment method

used. Since Austria employs the divisor method with downward rounding, the column

is labeled “DivDwn”. The apportionment methods form the main theme of this book

to be treated in great detail, later. The present chapter provides only rudimentary

method descriptions to set the scene.

Belgium subdivides the country into what we call electoral districts. Of its allo-

cation of 22 seats, the Belgian electoral provisions assign 13 to District 1: Nederlands

kiescollege, 8 to District 2: Collège électoral français, and 1 to District 3: Deutsch-

sprachiges Wahlkollegium. Since Belgium does not use an electoral threshold, all valid

votes become effective. Seats are apportioned using the divisor method with downward

rounding except that now the method is applied three times, separately in each of the

three districts. The apportionment is exhibited in Table 1.4.
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EP2009BE Political Group Votes Quotient DivDwn

District 1: Nederlands kiescollege
CD&V EPP 948 123 3.8 3
Open VlD ALDE 837 884 3.4 3
Vl. Belang NA 647 170 2.6 2
sp.a S&D 539 393 2.2 2
N-VA GREENS/EFA 402 545 1.6 1
Groen! GREENS/EFA 322 149 1.3 1
LDD ECR 296 699 1.2 1
SLP GREENS/EFA 26 541 0.1 0
3 Others NA 55 440 — 0

Sum (Divisor) 4 075 944 (250 000) 13

District 2: Collège électoral français
PS S&D 714 947 3.1 3
MR ALDE 640 092 2.8 2
ECOLO GREENS/EFA 562 081 2.4 2
cdH EPP 327 824 1.4 1
8 Others NA 212 234 — 0

Sum (Divisor) 2 457 178 (230 000) 8

District 3: Deutschsprachiges Wahlkollegium
CSP EPP 12 475 1.2 1
PFF ALDE 7 878 0.8 0
ECOLO GREENS/EFA 6 025 0.6 0
PS S&D 5658 0.6 0
3 Others NA 6 644 — 0

Sum (Divisor) 38 680 (10 000) 1

TABLE 1.4 Belgium, 2009 EP election. Belgium establishes three electoral districts, each evaluated

by the divisor method with downward rounding. No threshold is imposed and all valid votes become

effective. Of course, parties drawing too few votes fail to obtain representation.

The establishment of separate districts serves a double purpose. It accounts for

the existence of distinct language groups, and it secures minority representation. Note

that the three divisors vary significantly. To justify roughly one Belgian seat, 250 000

votes are needed in District 1 and 230 000 in District 2, while 10 000 suffice in District 3.

Bulgaria tells a story of its own. The threshold demands that a party secures at

least as many votes as the average of valid votes per seat. With 2 576 434 valid votes

and an allocation of 17 seats, the average amounts to 151 554.9 vote fractions per seat.

Six parties miss the threshold, and their 389 911 votes are discarded as ineffective.

The threshold of 151 555 votes amounts to 5.8 percent of votes cast. This percentage

share violates the norm set by the European Union. The norm stipulates that the

threshold may not exceed five percent of votes cast. Relative to the 2 601 677 votes

cast in Bulgaria, five percent is but 130 084 votes. As a consequence the LIDER party,

whose 146 984 votes would have justified a seat, is denied representation. Remarkably,

nobody complained. No complaint, no redress.

The apportionment method used is the Hare-quota method with residual fit by

greatest remainders, HaQgrR. The method relies on a quantity called the Hare-quota

that is defined to be the votes-per-seats ratio. In the present instance the Hare-quota

happens to be an integer, 2 186 523/17 = 128 619. Division of the Hare-quota 128 619

into the parties’ vote counts produces the interim quotients shown in the “Quotient”

column of Table 1.5.
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EP2009BG Political Group Votes Quotient HaQgrR

GERB EPP 627 693 4.880 5
BSP S&D 476 618 3.706 4
DPS ALDE 364 197 2.832 3
ATAKA NA 308 052 2.395 2
NDSV ALDE 205 146 1.595 2
SDS-DSB EPP 204 817 1.592 1

Sum (Split) 2 186 523 (.594) 17

TABLE 1.5 Bulgaria, 2009 EP election. With the Hare-quota method with residual fit by greatest

remainders, every 2 186 523/17 = 128 619 votes justify one seat, thus allocating 13 seats. The four

residual seats are given to the parties with the greatest remainders, that is, with remainders above .594.

Each quotient is split into its integral part and its fractional part. The integral

parts are instrumental to carry out the first stage of the apportionment, called main

apportionment. Every full satisfaction of the quota is taken to justify one seat. The

strongest party is apportioned 4 seats, while the weaker parties get 3, 2, 2, 1 and 1

seats. Thus the main apportionment allocates 13 seats representing 4 × 128 619 +

3×128 619+2×128 619+2×128 619+1×128 619+1×128 619 = 13×128 619 = 1 672 047

voters. The second stage of the apportionment, the residual apportionment, deals with

the 2 186 523− 1 672 047 = 514 476 remaining votes and the four remaining seats. For

the strongest party there are 113 217 (= 627 693−4×128 619) remaining votes, for the

others, 90 761, 106 959, 50 814, 76 527, and 76 198. In terms of the votes-per-seats ratio,

the remaining votes correspond to the interim quotients’ fractional parts .880, .706,

.832, .395, .595, and .592. The four greatest claims are 113 217, 106 959, 90 761, and

76 527 votes, or equivalently .880, .832, .706, and .595 quota fractions. Each of these

parties is awarded a residual seat. The two smallest remainders are left empty-handed.

Electoral keys: Divisors. An electoral key is a numerical quantity enabling

a quick double-check of a published apportionment. We believe that the option to

quickly check a result enhances its acceptance with the electorate, and so we take

pains to always quote an electoral key.

The electoral key for a divisor method is a divisor. Austria provides an instructive

example. A divisor of 140 000 means that every 140 000 votes justify roughly one

seat. The qualification roughly is needed because, literally, the measure of 140 00

votes would justify 6.1 seat fractions for the strongest party, 4.9 seat fractions for the

second-strongest party, and so on. The seat fractions, labeled “Quotient” in Table 1.3,

are interim quantities deserving only passing attention. Members of Parliament are

human beings, whence fractional quotients must always be rounded to whole numbers.

Different ways of rounding induce different divisor methods. The method used in

Austria is the divisor method with downward rounding. Downward rounding means

that all quotients get rounded downwards to the integer below. In other words fractions

are simply neglected. Thus the “Quotient” column documents the interim quantities

that, after being rounded downwards, yield the seat numbers in the “DivDwn” column.

Caution must be exercised when utilizing divisors as indicators for representative

equality. Not meant to serve this purpose, they provide no more than a meek measure

of representativeness. In fact, there is some leeway which divisor to pick. Sometimes

this is emphasized by speaking of a flexible divisor or, alternatively, of a sliding divisor.
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EP2009CY Political Group Votes Quotient HQ3grR

DISY EPP 109 209 2.139 2
AKEL GUE/NGL 106 922 2.094 2
DI.KO S&D 37 625 0.737 1
EDEK S&D 30 169 0.591 1
EVROKO ALDE 12 630 0.247 0
Ineffective votes 9 770 — —

Sum (Split) 306 325 (.5) 6

TABLE 1.6 Cyprus, 2009 EP election. The Hare-quota variant-3 relies on the votes-per-seats ratio

by rounding it downwards, HQ3 = �306 325/6� = �51 054.2� = 51 054. The two residual seats go to

the parties that have a quotient with a remainder above the quoted split .5.

For instance, in Belgium the apportionments in Districts 1 and 2 use divisors

250 000 and 230 000 (Table 1.4). A common divisor 238 000 would be equally feasible.

To see this, consider District 1. If the divisor were smaller than 948 123/4 = 237 030.75,

the strongest party’s quotient would grow greater than four, such as 948 123/237 000 =

4.0005. Hence the party would be awarded a fourth seat and the seats would sum to

14 or more, even though there are only 13. If the divisor were larger than 539 393/2 =

269 696.5, the fourth-strongest party would lose a seat, and the number of seats would

fall to 12 or fewer. The given allotment of 13 seats is exhausted if and only if the

divisor belongs to the divisor interval [237 030.75; 269 696.5] that is delimited by the two

critical divisor values given above. Similarly District 2 hands out exactly eight seats if

and only if the divisor lies in the interval pertaining to this district, [213 364; 238 315.7].

Feasibility of 238 000 follows since it is included in both the intervals.

We exploit the flexible nature of divisors by picking from the divisor interval a value

that eases communication. The divisors quoted in our tables are calculated by starting

from the midpoint of the divisor interval and reducing it to as few digits as the interval

permits. For example, in District 1 the midpoint 253 500.1 of the divisor interval

[237 030.75; 269 696.5] is reduced to 250 000. For District 2 the midpoint 225 839.8 of

the interval [213 364; 238 315.7] leads to 230 000.

Electoral keys: Splits. The electoral key for a quota method with residual fit by

greatest remainders is called a split, that is, a remainder value separating the parties

that are awarded one of the residual seats from those that are not. Generally the

term “quota” is indicative of a fixed divisor, a well-defined and unique quantity that

serves to scale down (large) vote counts into (smaller) interim quotients of the size of

the seat numbers. Hare-quota methods obtain their interim quotients by dividing the

vote counts by the Hare-quota, the votes-per-seats ratio. We use the term “divisor”

when the divisor is flexible, as opposed to “quota” when it is fixed; the distinction

is technical jargon, but useful. Divisor methods employ a flexible divisor and a fixed

rounding rule. Quota methods combine a fixed divisor with a flexible rounding rule.

The prime example of how quota methods round interim quotients to whole

numbers is the residual fit by greatest remainders. In essence this means that the

method uses a flexible rounding rule. This fact becomes evident when looking at

numbers. In Bulgaria the quotients with the fourth- and fifth-greatest remainders are

205 146/128 619 = 1.594 990 and 204 817/128 619 = 1.592 432. Hence every remainder

splitting point—split, for short—in the split interval [.592 432; .594 990] splits all parties

into those that receive one of the residual seats, and those that do not. The strategy
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EP2009CZ Political Group Votes Quotient DivDwn

ODS ECR 741 946 9.9 9
ČSSD S&D 528 132 7.04 7
KSČM GUE/NGL 334 577 4.5 4
KDU-ČSL EPP 180 451 2.4 2

Sum (Divisor) 1 785 106 (75 000) 22

TABLE 1.7 Czech Republic, 2009 EP election. Twenty-nine parties fail the threshold, and their

573 828 votes turn ineffective. The Czech allocation of 22 seats is apportioned among the remaining

four parties by means of the divisor method with downward rounding.

which split to quote is the same as with divisors. Here we reduce the midpoint of the

split interval, .593 711, to .594. This is the value quoted in Table 1.5. The publication

of a split facilitates checking whether a particular quotient is rounded downwards or

upwards. All that is needed is to compare the quotient’s remainder to the split quoted.

The party receives one of the residual seats if only if its remainder exceeds the split.

Quoting a split circumvents the labor of ranking all parties by the size of their interim

quotients’ remainders when double-checking the seat numbers.

1.3. CYPRUS–CZECH REPUBLIC–GERMANY: TABLE DESIGN

Cyprus, referring its electoral threshold to valid votes, requires a peculiar level of 1.8

percent. Thus the 306 325 valid votes entail a threshold of 5 514 votes. Eight parties fail

the threshold, and 9 770 valid votes become ineffective. The 296 555 effective votes are

evaluated by means of a variant of the Hare-quota method with residual fit by greatest

remainders. The variant is that the quota is based on the sum of all valid votes, not

on the sum of all effective votes. Moreover, it is not precisely equal to the votes-per-

seats ratio, but to the integer obtained from rounding the average downwards. In our

classification we refer to this quota as the Hare-quota variant-3, HQ3. Here it amounts

to �306 325/6� = �51 054.2� = 51 054. The residual apportionment is a fit by greatest

remainders. Since the rounding of the quotients comes out to be the same as with

standard rounding, we prefer to quote the split .5. See Table 1.6.

The Czech Republic has an electoral threshold of five percent of valid votes.

With 2 358 934 valid votes the threshold amounts to 117 947 votes. Twenty-nine parties

miss it, and the 573 828 votes cast for them turn ineffective. The 22 Czech seats are

apportioned according to the remaining 1 785 106 effective votes. The apportionment

is carried out using the divisor method with downward rounding. See Table 1.7.

Germany employs an electoral threshold of five percent of valid votes. There

are 26 333 444 valid votes, and so the threshold is 1 316 673 votes. Twenty-six parties

fail it, and 2 840 893 votes are discarded as ineffective. Remarkably, somebody com-

plained. In November 2011 the German Federal Constitutional Court ruled that the

five percent threshold is unconstitutional. Of course, the court’s opinion sets no bind-

ing precedent for other judiciaries nor for the Court of Justice of the European Union.

The opinion does not mean that the Union’s permission for domestic provisions to

include a five percent threshold violates the Union’s primary law. It only says is that

it is unconstitutional to apply the Union’s permission to the EP election in Germany.
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EP2009DE Political Group Votes Quotient DivStd

CDU EPP 8 071 391 34.3 34
SPD S&D 5472 566 23.3 23
GRÜNE GREENS/EFA 3 194 509 13.6 14
FDP ALDE 2 888 084 12.3 12
LINKE GUE/NGL 1 969 239 8.4 8
CSU EPP 1 896 762 8.1 8

Sum (Divisor) 23 492 551 (235 000) 99

District Votes Quotient DivStd

Sub-apportionment to districts: CDU
Schleswig-Holstein 308 368 1.3 1
Mecklenburg-Vorpommern 201 447 0.8 1
Hamburg 128 443 0.54 1
Niedersachsen 962 510 4.0 4
Bremen 45 886 0.2 0
Brandenburg 140 616 0.6 1
Sachsen-Anhalt 213 731 0.9 1
Berlin 208 395 0.9 1
Nordrhein-Westfalen 2 091 945 8.7 9
Sachsen 567 231 2.4 2
Hessen 596 878 2.49 2
Thüringen 304 858 1.3 1
Rheinland-Pfalz 660 252 2.8 3
Baden-Württemberg 1 478 135 6.2 6
Saarland 162 696 0.7 1

Sum (Divisor) 8 071 391 (240 000) 34

TABLE 1.8 Germany, 2009 EP election. The divisor method with standard rounding is used,

DivStd, wherein quotients are rounded downwards when their fractional part is below one half, and

upwards when above. Only the CDU with its fifteen district lists calls for a sub-apportionment.

Germany has 99 seats to apportion. All parties present their candidates on a

single federal list, except for the CDU. The CDU submits fifteen state-lists, one for

each state of the Federation where the party campaigns. As a consequence there

are two calculatory stages. The first stage, the super-apportionment, evaluates the

effective votes across all of Germany. The second stage is the CDU sub-apportionment.

It apportions the 34 CDU seats to the fifteen CDU state-lists. Both stages use the

divisor method with standard rounding, DivStd. A quotient is rounded upwards when

its fractional part is larger than one-half, and downwards when it is smaller; if the

fractional part were exactly equal to one-half then lots would be drawn. The divisor

is adjusted so that all of the available seats are handed out. See Table 1.8.

Table design. Some general remarks on the design of tables may be in order.

Usually, the column “Votes” lists the effective votes. In a rare case when it is valid

votes that determine the electoral key, as in Cyprus, a line with the aggregate number

of ineffective votes is adjoined. They do not otherwise participate in the calculations,

and so dashes are entered into the “Quotient” and seats columns.

In the “Quotient” column, the number of decimal digits shown is contingent on

the apportionment method used. For divisor methods, mostly a single digit suffices to

see whether the rounding operation goes upwards or downwards. If not, then as many

digits are exhibited as are needed for a clear decision. For quota methods with a resid-

ual fit by greatest remainders, the idea is to compare quotients’ fractional parts. Three

digits usually suffice. The electoral key, whether a divisor or a split, is parenthetically

recorded in the bottom line of a table.
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EP2009DK Political Group Votes Quotient DivDwn

Alliance 1 975 136 6.1 6
Alliance 2 785 036 4.9 4
O EFD 357 942 2.2 2
Alliance 3 224 014 1.4 1

Sum (Divisor) 2 342 128 (160 000) 13

Party Political Group Votes Quotient DivDwn

Alliance 1: Sub-apportionment
A S&D 503 439 4.03 4
F GREENS/EFA 371 603 2.97 2
B NA 100 094 0.8 0

Sum (Divisor) 975 136 (125 000) 6

Alliance 2: Sub-apportionment
V ALDE 474 041 3.2 3
C EPP 297 199 1.98 1
I NA 13 796 0.1 0

Sum (Divisor) 785 036 (150 000) 4

Alliance 3: Sub-apportionment
N GUE/NGL 168 555 1.7 1
J NA 55 459 0.6 0

Sum (Divisor) 224 014 (100 000) 1

TABLE 1.9 Denmark, 2009 EP election. Three alliances are registered. The state-wide super-

apportionment treats each of them as a virtual entity. It is only in the sub-apportionment that the

share of seats of an alliance is apportioned among its partners.

The tables rank parties by decreasing voter support in the current election. Elec-

toral bureaus sometimes rely on the party ranking of the previous legislative period.

Formerly this helped to prepare the record sheets for the upcoming election. Nowadays

modern computing equipment makes it easy to sort parties by their current vote counts.

Moreover, we always include a final “Sum” line showing column sums. The sums are

informative by themselves, such as the number of seats to be apportioned. Column

sums provide a helpful and simple check on whether column entries got corrupted by

copying, pasting, or any other editorial operation.

Multiple boxes in the tables point to multiple calculations. For example, the two

boxes in Table 1.8 show the super-apportionment in the whole country, and the dis-

trictwise sub-apportionment for the CDU. The three boxes in Table 1.4 exhibit the ap-

portionments in the three Belgian districts. The nature of a box is context-dependent.

In the German example, the super-apportionment needs to be completed before its

results can be handed down to the sub-apportionment. In the Belgian example, the

three calculations are independent of one another.

1.4. DENMARK–ESTONIA–GREECE: ALLIANCES AND INDEPS

Denmark introduces a new twist into the exposition: alliances, also known as electoral

cartels, or as list apparentements. Alliances 1 and 2 comprise three parties each, and

Alliance 3 has two. Every alliance induces multiple stages into the apportionment

calculations. In the first stage, that again is called the super-apportionment, an alliance

is treated as a virtual unity that is allocated its due share of seats. The second stage

consists of the sub-apportionment of the alliance’s seats among its partners. In the
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EP2009EE Political Group Votes Quotient DivDwn

KE ALDE 103 506 2.9997 2
Indep Indrek Tarand GREENS/EFA 102 460 2.97• 1
ER ALDE 60 877 1.8 1
IRL EPP 48 492 1.4 1
SDE S&D 34 508 1.0001 1
ERR GREENS/EFA 10 851 0.3 0
ERL ECR 8 860 0.3 0
EÜUP GREENS/EFA 3 519 0.1 0
LEE EFD 2 206 0.1 0
8 Others NA 21 703 — 0

Sum (Divisor) 396 982 (34 505) 6

TABLE 1.10 Estonia, 2009 EP election. The independent candidate—Indep, for short—Indrek

Tarand draws so many votes that the quotient 2.97 would have justified two seats. However, an indep

can occupy at most one seat (•).

Danish election three sub-apportionment calculations are called for, one for each of the

three alliances. See Table 1.9.

Estonia apportions its six seats on the basis of 396 982 valid votes. There is

no electoral threshold. The apportionment uses the divisor method with downward

rounding. It turns out that 34 505 votes justify roughly one seat. The Estonian election

features an indep, an independent candidate who stands in the election with no party

affiliation nor party support. See Table 1.10.

Greece employs a unique quota method, HQ3-EL, unrivaled for its complexity.

An electoral threshold of three percent of valid votes applies. With 5 127 537 valid votes

altogether, the threshold amounts to 153 827 votes. Twenty-one parties fail it, and the

377 997 votes for them are discarded as ineffective. Six parties pass the threshold, and

share the Greek allocation of 22 seats. The calculations are carried out in three stages:

the main apportionment, the initial residual apportionment, and the final residual

apportionment. The main apportionment is based on the Hare-quota variant-3, HQ3,

as in Cyprus. In the Greek election, HQ3 equals �5 127 537/22� = 233 069 votes per

seat. Table 1.11 exhibits the resulting quotients and the ensuing main apportionment

of 18 seats.

The remaining four seats are taken care of in the two residual apportionments.

They refer to Unused Voting Power, UVP. It is determined as follows. In the main ap-

portionment the strongest party is allocated eight seats and thus uses up 8×233 069 =

1 864 552 of its power of 1 878 982 votes, leaving an UVP of 14 430 votes. The unused

voting powers of the other parties are found similarly. The aggregate UVP is taken to

be the sum of the parties’ unused voting powers plus the number of ineffective votes,

932 295. Now a new quota is introduced with reference to the aggregate UVP. Ap-

plied to 4 seats the quota is DQ5 = �932 295/(4 + 1)� = 186 459, called Droop-quota

variant-5 in Section 1.6. The resulting quotients of UVP per DQ5 are shown in the

penultimate column of Table 1.11. They are used to apportion the four residual seats.

In the initial residual apportionment, every party with a quota exceeding unity gets

a seat and drops out from further consideration (here just K.K.E.). Three seats and

five parties make it into the final stage. The seats left are allocated to the parties left

according to the greatest remainders of their quotients.
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EP2009EL Political Group Votes Quotient-1 Main UVP Quotient-2 HQ3-EL

Pa.So.K S&D 1878 982 8.062 8 14 430 0.077 8
N.D. EPP 1 655 722 7.104 7 24 239 0.130 8
K.K.E. GUE/NGL 428 282 1.838 1 195 213 1.– 2
LA.O.S EFD 366 637 1.573 1 133 568 0.716 2
SY.RIZ.A GUE/NGL 240 930 1.034 1 7 861 0.042 1
OP GREENS/EFA 178 987 0.768 0 178 987 0.960 1
Ineffective votes 377 997 — — 377 997 — —

Sum (Quotas HQ3, DQ5) 5 127 537 (233 069) 18 932 295 (186 459) 22

TABLE 1.11 Greece, 2009 EP election. Greece applied the method HQ3-EL, unrivaled for its

complexity. The main apportionment leaves Unused Voting Power as listed in column “UVP”. It is

assessed using the Droop-quota variant-5, DQ5 = 186 459.

EP2009ES Political Group Votes Quotient DivDwn

PP EPP 6 670 377 23.8 23
PSOE S&D 6141 784 21.9 21
CpE ALDE 808 246 2.9 2
IU-ICV-EU/IA-BA GUE/NGL, GREENS/EFA 588 248 2.1 2
UPyD NA 451 866 1.6 1
EdP-V GREENS/EFA 394 938 1.4 1
II NA 178 121 0.6 0
28 Others, each below 90 000 votes 381 716 — 0

Sum (Divisor) 15 615 296 (280 000) 50

TABLE 1.12 Spain, 2009 EP election. The divisor method with downward rounding is used. The

two representatives of the fourth-strongest party join two different Political Groups, GUE/NGL and

GREENS/EFA.

Alliances and indeps. Alliances are peculiar dispositions that came into being as

a consequence of the divisor method with downward rounding. The method is notorious

for awarding stronger parties an overproportional share of seats at the expense of

weaker parties. Hence it is desirable for weaker parties to become stronger by joining

together. This is what alliances are meant to achieve. However, once an electoral law

allows formation of alliances, stronger parties may also join into an alliance and thus

grow stronger yet. We shall see that alliances fail to serve their purpose of neutralizing

the bias that marks the divisor method with downward rounding.

The term “indep” for an independent, individual candidate is the sole neologism

in this book, a kind of antipode to an alliance. An alliance gathers a large ensemble of

nominees who make do with a small common denominator politically. An indep boasts

a maximum of individuality. Since an individual cannot fill more than one seat, the

apportionment calculation imposes a maximum restriction of one seat per indep. In

case the restriction is active we earmark the relegated interim quotient by a trailing

dot •. The indep Indrek Tarand in Table 1.10 provides an example.

1.5. SPAIN–FINLAND–FRANCE: VOTE CATEGORIES

Spain aggregates the votes across all of its fifty provinces. No threshold applies, and

the divisor method with downward rounding is used to apportion 50 seats. Every

280 000 votes justify roughly one seat. The votes for the fourth-strongest party justify

two Members of the EP who, however, join distinct Political Groups. See Table 1.12.
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EP2009FI Political Group Votes Quotient DivDwn

KOK EPP 386 416 3.9 3
KESK ALDE 316 798 3.2 3
SDP S&D 292 051 2.9 2
Alliance 1 232 388 2.3 2
VIHR GREENS/EFA 206 439 2.1 2
SFP(RKP) ALDE 101 453 1.01 1
VAS GUE/NGL 98 690 0.99 0
6 Others NA 30 596 — 0

Sum (Divisor) 1 664 831 (100 000) 13

Party Political Group Votes Plurality

Alliance 1: Sub-apportionment
PS EFD 162 930 1
KD EPP 69 458 1

Sum 232 388 2

TABLE 1.13 Finland, 2009 EP election. The super-apportionment uses the divisor method with

downward rounding. In the sub-apportionment to Alliance 1 the two seats go to the candidates with

the most personal votes. One of them joined the EFD group, the other, EPP.

Finland features an alliance of two parties. There is no electoral threshold. The

super-apportionment uses the divisor method with downward rounding. In the sub-

apportionment for the alliance, the two seats are allotted by plurality. The candidates

with the most votes receive the seats. The PS top-runner draws 130 715 votes, followed

by others with fewer than 10 000 votes each. The strongest KD candidate has 53 803

votes. Hence the first seat falls to PS, the second to KD. See Table 1.13.

France subdivides the country into eight districts. The 72 French seats are as-

signed to the districts well ahead of the election, with district magnitudes 10, 9, 9,

10, 13, 5, 13, and 3. The electoral threshold is set at five percent of valid votes, voix

exprimées, and pertains to each district separately. In all districts the seat apportion-

ment is carried out using the divisor method with downward rounding, DivDwn. The

results are displayed in Table 1.14.

The apportionment of the three seats of District 8: Outre-Mer has to follow cer-

tain rules to secure a fair geographical representation. The district is subdivided into

three sections, Atlantique, Océan Indien, and Pacifique. Each section is guaranteed

representation in the EP. To this end the candidate lists of the parties are obliged to

include at least one nominee from each section. The seats allocated to the strongest

party are filled with the nominees from the sections where the strongest party performs

best. The seat of the second-strongest party goes to that section among the remaining

sections where the second-strongest party scores best. In case the third-strongest party

gets a seat it is allocated to the section remaining.

Vote categories. An electoral system generally operates with various categories

of voters, and of votes. The all-embracing reference set is the entire citizenry. The

citizens who have the franchise to vote form the electorate. Those of the electorate who

go to the polls are the voters. As the term “electorate” is a singular, many experts

also refer to a singular, “the voter”, when they really mean many people who vote.

We find the typifying singular misleading. If there were only one voter we would not

have to deal with numbers.
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EP2009FR Div-
Party Political Group Votes QuotientDwn

District 1: Nord-Ouest
UMP EPP 601 556 4.002 4
PS S&D 449 533 2.99 2
EuÉco GREENS/EFA 300 579 1.9999 1
FN NA 253 009 1.7 1
MoDem ALDE 215 482 1.4 1
FG GUE/NGL 169 813 1.1 1
NPA NA 143 967 0.96 0

Sum (Divisor) 2 133 939 (150 300) 10

District 3: Est
UMP EPP 635 016 4.04 4
PS S&D 374 971 2.4 2
EuÉco GREENS/EFA 310 620 1.98 1
MoDem ALDE 205 256 1.3 1
FN NA 164 672 1.05 1
NPA NA 122 767 0.8 0

Sum (Divisor) 1 813 302 (157 000) 9

District 5: Sud-Est
UMP EPP 862 556 5.4 5
EuÉco GREENS/EFA 537 151 3.4 3
PS S&D 426 043 2.7 2
FN NA 249 695 1.6 1
MoDem ALDE 216 630 1.4 1
FG GUE/NGL 173 576 1.1 1

Sum (Divisor) 2 465 651 (160 000) 13

District 7: Ile-de-France
UMP EPP 828 172 5.9 5
EuÉco GREENS/EFA 583 690 4.2 4
PS S&D 379 908 2.7 2
MoDem ALDE 238 341 1.7 1
FG GUE/NGL 176 862 1.3 1

Sum (Divisor) 2 206 973 (140 000) 13

Div-
Party Political Group Votes QuotientDwn

District 2: Ouest
UMP EPP 680 829 3.4 3
PS S&D 433 309 2.2 2
EuÉco GREENS/EFA 417 449 2.1 2
Lib. EFD 257 437 1.3 1
MoDem ALDE 212 524 1.1 1
NPA NA 128 641 0.6 0

Sum (Divisor) 2 130 189 (200 000) 9

District 4: Sud-Ouest
UMP EPP 705 900 4.2 4
PS S&D 465 076 2.7 2
EuÉco GREENS/EFA 415 457 2.4 2
MoDem ALDE 225 917 1.3 1
FG GUE/NGL 214 079 1.3 1
FN NA 155 806 0.9 0
NPA NA 147 422 0.9 0

Sum (Divisor) 2 329 657 (170 000) 10

District 6: Massif-Central / Centre
UMP EPP 382 632 3.2 3
PS S&D 238 806 1.99 1
EuÉco GREENS/EFA 182 311 1.5 1
MoDem ALDE 109 369 0.9 0
FG GUE/NGL 108 194 0.9 0
NPA NA 73 162 0.6 0
FN NA 68 665 0.6 0

Sum (Divisor) 1 163 139 (120 000) 5

District 8: Outre-Mer
UMP EPP 103 247 1.7 1
AOM GUE/NGL 73 110 1.2 1
PS S&D 70 514 1.2 1
EuÉco GREENS/EFA 56 502 0.9 0
MoDem ALDE 32 322 0.5 0

Sum (Divisor) 335 695 (60 000) 3

TABLE 1.14 France, 2009 EP election. France establishes eight districts. Each district uses the

divisor method with downward rounding, with geographical restrictions on District 8: Outre-Mer.

The votes cast are categorized into valid votes or good votes, versus invalid votes

or rejected votes. The valid votes subdivide into the effective votes that enter into the

apportionment calculations, and the ineffective votes that though valid are nevertheless

discarded. For the purpose of analyzing the diversity of apportionment methods we

mostly rely on effective votes, and refer to valid votes or votes cast only occasionally.

Weak parties not getting a seat nor affiliated with a Political Group are aggregated

into the category “Others”.

Ballot design in the 27 Member States is by no means uniform. In most states

voters cast their votes for party lists. Before the election every party publicizes the list

of their nominees. Later, any party seats are filled in the sequence of this list. Closed

lists, with a definite sequence of nominees, are practiced in Germany. Open lists, where

the terminal ranking relies on the personal votes for the nominees, are employed in

Finland. Passing over these subtleties we assume that the vote counts as reported by

the domestic electoral bureaus are all of a comparable quality.
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EP2009HU Political Group Votes Quotient DivDwn

FIDESZ-KDNP EPP 1 632 309 14.8 14
MSZP S&D 503 140 4.6 4
JOBBIK NA 427 773 3.9 3
MDF ECR 153 660 1.4 1

Sum (Divisor) 2 716 882 (110 000) 22

TABLE 1.15 Hungary, 2009 EP election. The threshold of five percent of valid votes shuts out four

parties and turns 179 297 votes ineffective. For the four remaining parties, every 110 000 votes justify

roughly one seat.

1.6. HUNGARY–IRELAND–ITALY: QUOTAS

Hungary is assigned 22 seats. There is an electoral threshold of five percent of valid

votes. Four parties miss the threshold, and 179 297 votes become ineffective. The seat

apportionment is carried out by means of the divisor method with downward rounding.

Four parties take part in the apportionment, with every 110 000 votes justifying roughly

one seat. See Table 1.15.

Ireland is assigned 12 seats. There is no electoral threshold. The country is

divided into four separately evaluated districts with three seats each: Dublin, East,

North-West, and South. In each district the Droop-quota DrQ = �v+/(3 + 1)�+ 1 is

calculated, where v+ designates the valid vote total in that district. A single trans-

ferable vote (STV) scheme is used. In brief it works as follows. On the ballot sheet

voters mark the candidates as first preference, second preference, and so on downwards.

When the first-preference tally for a candidate reaches the Droop-quota, the candidate

is declared elected. The ballots in excess of the Droop-quota are transferred to the

candidate who is next according to the voter’s preferences. The decision which ballots

are in excess is random, as they happen to be filed in their pile. We label the system

with the acronym STVran. See Table 1.16.

An effect of the accumulation of lower-order preferences is seen in District 1:

Dublin. Fourth-ranked socialist Joe Higgins has fewer first preferences than third

ranked Fianna Fáil candidate Eoin Ryan, but is elected by means of the additional

votes transferred to him during the evaluation process. Another effect emerges in

District 4: South. The data given in Table 1.16 are not sufficient to reconstruct these

vote transfers and to double-check the final seat apportionment. The vote transfer

process is time-consuming. Evaluation of an STV scheme —extends over several days,

even in a smaller state such as Ireland. The evaluation with an apportionment method

is finished within a few hours.

Generally, STV schemes are considered to be viable proportional representation

systems. At first glance an STV scheme links those voting and those being elected in

a more direct way. Mediating parties seem to be circumvented. At a second glance it

transpires that the differences are minute. Consider an alternative evaluation whereby

the divisor method with standard rounding apportions the district’s seats in proportion

to the parties’ aggregated first-preference scores, and seats are filled with the parties’

candidates who did best. With the data in Table 1.16 voters in Districts 2 and 3 elect

the same candidates. In Districts 1 and 4 only the third seat is allocated differently. In

District 1 the pooled first preferences for the two Fianna Fáil nominees would secure a
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EP2009IE Party Political Group 1st Pref STVran

District 1: Dublin
Gay Mitchell FG EPP 96 715 1
Proinsias de Rossa Lab. S&D 83 471 1
Eoin Ryan Jnr FF ALDE 55 346 0
Joe Higgins SP GUE/NGL 50 510 1
Mary Lou McDonald SF GUE/NGL 47 928 0
Deirdre de Burca Green/Comhaontas Glas GREENS/EFA 19 086 0
Eibhlin Byrne FF ALDE 18 956 0
Caroline Simons Libertas EFD 13 514 0
2 Others Indeps NA 21 104 0

Sum (Droop-quota) (101 658) 406 630 3

District 2: East
Mairead McGuinness FG EPP 110 366 1
Nessa Childers Lab. S&D 78 338 1
Liam Aylward FF ALDE 74 666 1
John Paul Phelan FG EPP 61 851 0
Thomas Byrne FF ALDE 31 112 0
Kathleen Funchion SF GUE/NGL 26 567 0
Tomas Sharkey SF GUE/NGL 20 932 0
Ray O’Malley Libertas EFD 18 557 0
3 Others Indeps NA 6 860 0

Sum (Droop-quota) (107 313) 429 249 3

District 3: North-West
Marian Harkin Indeps ALDE 84 813 1
Pat Gallagher FF ALDE 82 643 1
Jim Higgins FG EPP 80 093 1
Declan Ganley Libertas EFD 67 638 0
Padraig MacLochlainn SF GUE/NGL 45 515 0
Paschal Mooney FF ALDE 42 985 0
Joe O’Reilly FG EPP 37 564 0
Susan O’Keeffe Lab. S&D 28 708 0
5 Others Indeps NA 25 348 0

Sum (Droop-quota) (123 827) 495 307 3

District 4: South
Brian Crowley FF ALDE 118 258 1
Sean Kelly FG EPP 92 579 1
Toireasa Ferris SF GUE/NGL 64 671 0
Alan Kelly Lab. S&D 64 152 1
Colm Burke FG EPP 53 721 0
Ned O’Keeffe FF ALDE 16 596 0
Dan Boyle Green/Comhaontas Glas GREENS/EFA 15 499 0
3 Others Indeps NA 72 651 0

Sum (Droop-quota) (124 532) 498 127 3

TABLE 1.16 Ireland, 2009 EP election. Ireland uses the Single Transferable Vote scheme. The
decision which votes for a candidate exceed the Droop-quota and are transferred to lower preferences

is random (STVran). By and large party seats are in proportion to party votes.

seat for Eoin Ryan. In District 4 the 64 671 first preferences for Toireasa Ferris would

win over the 64 152 votes for Alan Kelly.

Italy is assigned 72 seats. A threshold of four percent of valid votes applies,

except for a minority protection clause. A minority party gets a seat if it registers

an alliance with a party standing in all five districts, and if one of its candidates

draws at least 50 000 votes. In 2009 the Südtiroler Volkspartei (SVP) is allied with

Partito democratico, the Vallee d’Aoste party with Il Popolo della libertà, and the

party Autonomie liberté et démocratie with Di Pietro Italia dei Valori. The protection

clause secures a seat for Herbert Dorfmann (SVP) who received 84 361 votes. The
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EP2009IT Political Group Votes Quotient HQ1grR

PdL+VA EPP 10 828 525 29.348 29
PD+SVP S&D 8140 766 22.063 22
LN EFD 3 125 418 8.471 9
IdV+Ald ALDE 2 476 695 6.712 7
UDC EPP 1 994 813 5.406 5

Sum (Split) 26 566 217 (.44) 72

District Votes Quotient HQ1grR

Sub-apportionment to districts: PdL+VA
Nord-Occidentale+VA 2 935 126 7.861 8
Nord-Orientale 1 777 869 4.761 5
Italia Centrale 2 344 306 6.278 6
Italia Meridionale 2 869 765 7.686 8
Italia Insulare 901 459 2.414 2

Sum (Split) 10 828 525 (.5) 29

Sub-apportionment to districts: PD+SVP
Nord-Occidentale 2 002 790 5.412 5
Nord-Orientale+SVP 1 915 846 5.177 5
Italia Centrale 2 030 062 5.486 6
Italia Meridionale 1 575 928 4.259 4
Italia Insulare 616 140 1.665 2

Sum (Split) 8 140 766 (.45) 22

Sub-apportionment to districts: LN
Nord-Occidentale 1 684 842 4.852 5
Nord-Orientale 1 204 785 3.469 3
Italia Centrale 186 988 0.538 1
Italia Meridionale 39 521 0.114 0
Italia Insulare 9 282 0.027 0

Sum (Split) 3 125 418 (.5) 9

Sub-apportionment to districts: IdV+Ald
Nord-Occidentale+Ald 663 495 1.875 2
Nord-Orientale 454 801 1.285 1
Italia Centrale 483 471 1.366 1
Italia Meridionale 688 368 1.946 2
Italia Insulare 186 560 0.527 1

Sum (Split) 2 476 695 (.5) 7

Sub-apportionment to districts: UDC
Nord-Occidentale 460 487 1.154 1
Nord-Orientale 353 714 0.887 1
Italia Centrale 341 612 0.856 1
Italia Meridionale 582 421 1.460 1
Italia Insulare 256 579 0.643 1

Sum (Split) 1 994 813 (.5) 5

TABLE 1.17 Italy, 2009 EP election. The state-wide super-apportionment is followed by a sub-

apportionment for each party. The resulting sums of seats per district fail to meet the district mag-

nitudes that are guaranteed in the electoral law.

overall threshold amounts to 1 224 615 votes. Eight parties fail the threshold, discarding

4 049 147 votes as ineffective. Five parties with three allied minority parties pass it.

Italy forms five districts. The apportionment takes place in two stages. The

first stage is the super-apportionment of all 72 seats among the five parties and their

alliance partners. The second stage consists of five sub-apportionments to allocate the

state-wide seats of a party to the five districts. All calculations use the Hare-quota

variant-1 method with residual fit by greatest remainders, HQ1grR. See Table 1.17.
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EP2009LT Political Group Votes Quotient HQ2gR1

TS-LKO EPP 147 756 3.918 4
LSDP S&D 102 347 2.714 3
TT EFD 67 237 1.783 2
DP ALDE 48 368 1.283 1
LLRA(AWPL) ECR 46 293 1.228 1
ULRls ALDE 40 502 1.074 1

Sum (Split) 452 503 (.5) 12

TABLE 1.18 Lithuania, 2009 EP election. The quota method HQ2gR1 is used. Participation in

the residual apportionment gR1 requires HQ2 = 37 709 votes, that is, close to seven percent of the

564 803 votes cast.

The Italian electoral system does not agree with the Italian electoral law. The law

guarantees every district a certain number of seats based on census figures. The 2009

EP election misses the guaranteed district magnitudes in each case. Nord-Occidentale

is guaranteed 19 seats but gets 21; Nord-Orientale is guaranteed 13 but gets 15; Italia

Centrale is guaranteed 14 but gets 15; Italia Meridionale is guaranteed 18 but gets 15;

and Italia Insulare is guaranteed 8 but gets 6. The deficiencies were pointed out to the

public by academics, yet nobody filed a complaint in court. No complaint, no redress.

Quotas. The number of seats to be apportioned is denoted by h, the house size.

Here is an overview over various quota definitions:

HaQ = effective votes
h

, DrQ =

⌊
effective votes

h+ 1

⌋
+ 1,

HQ1 =

⌊
effective votes

h

⌋
∨ 1, DQ1 =

⌊
effective votes

h+ 1

⌋
∨ 1,

HQ2 =

⌈
effective votes

h

⌉
, DQ2 =

⌈
effective votes

h+ 1

⌉
,

HQ3 =

⌊
valid votes

h

⌋
∨ 1, DQ3 =

〈
effective votes

h+ 1

〉
∨ 1,

HQ4 =

⌈
valid votes

h

⌉
, DQ5 =

⌊
unused voting power

r + 1

⌋
∨ 1.

The missing link, the unrounded Droop-quota DQ4, is adjoined in Section 5.8. Quotas,

being employed as fixed divisors, must not be zero. When the rounding may yield zero

the definition forces the quota to stay positive, by setting t∨ 1 := max{t, 1} ≥ 1; these

cases are of no practical interest. Variants 1 and 2 of the Droop-quota were applied in

the Swiss Canton Solothurn in 1896–1977 and 1981–1993, but are absent in the 2009

EP elections.

As an example we consider District 4: South in Table 1.16. With 498 127 effective

votes the default Hare-quota amounts to 166 042.3 vote fractions. Its variant-1 rounds

the number downwards, 166 042, variant-2 upwards, 166 043. The default Droop-quota

divides 3+ 1 = 4 into the vote count, then rounds the quotient 124 531.75 downwards,

and finally adds 1, resulting in 124 532 votes. Variant-1 of the Droop-quota equals

124 531 votes, variant-3 uses commercial rounding and yields 124 532. Commercial

rounding rounds downwards when the first digit after the decimal point is 0, 1, 2, 3,

or 4; it rounds upwards when the first digit is 5, 6, 7, 8, or 9.
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EP2009LU Political Group Votes Quotient DivDwn

CSV EPP 353 094 3.2 3
LSAP S&D 219 349 1.99 1
DP ALDE 210 107 1.9 1
déi gréng GREENS/EFA 189 523 1.7 1
4 Others NA 153 959 — 0

Sum (Divisor) 1 126 032 (110 000) 6

TABLE 1.19 Luxembourg, 2009 EP election. Every voter has up to six votes. On average, a ballot

sheet contains 5.7 votes. The numbers shown ought to be scaled by 5.7 in order to appreciate the size

of the Luxembourg electorate.

1.7. LITHUANIA–LUXEMBOURG–LATVIA: RESIDUAL FITS

Lithuania implements three rules for the electoral threshold. First, an explicit thresh-

old is set at five percent of the 564 803 votes cast, 28 241 votes. Nine parties fail the

threshold, and the 97 514 votes for them turn ineffective. Second, a salvation clause

says that, if need be, the percentage is lowered so that at least sixty percent of the

valid votes become effective. In the 2009 election 452 503 of the 550 017 valid votes

are effective, more than eighty percent. Hence the second rule is dormant. The 12

Lithuanian seats are apportioned using the method HQ2gR1. It combines the Hare-

quota variant-2, HQ2 = �452 503/12� = 37 709, with a full-seat restricted residual fit

by greatest remainders, gR1. That is, parties with a quotient smaller than a full quota

of votes are excluded from the residual apportionment. In Lithuania, gR1 excludes

parties with fewer than 37 709 votes, thus embodying a third threshold. The third

threshold exceeds the five percent threshold. Hence one may wonder whether it is

permissible under the Union’s norm that the threshold may not exceed five percent of

the votes cast. But nobody complained. No complaint, no redress. See Table 1.18.

Luxembourg gives every voter six votes. The six votes may be distributed across

party lines. Two of the six votes may be accumulated on a single candidate. There are

1 126 032 votes marked on the 198 364 valid ballot sheets. On average, there are 5.7

marks per ballot. The vote numbers would need to be scaled by the marks-per-ballot

average in order to mirror the number of people who back the parties. There is no

electoral threshold. The seat apportionment is carried out by means of the divisor

method with downward rounding, DivDwn. See Table 1.19.

Latvia has a threshold of five percent of the 791 597 votes cast. Eleven parties fail

the threshold of 39 580 votes, whence of the 777 084 valid votes 182 144 are discarded

as ineffective. The eight Latvian seats are apportioned among the six parties that pass

the threshold using the divisor method with standard rounding, DivStd. One hundred

thousand votes constitute a feasible electoral key. See Table 1.20.

Residual fits. The Lithuanian full-seat restricted residual fit by greatest remain-

ders, gR1, must be seen in connection with the rationale that underlies quota methods.

The seats allocated in the main apportionment are understood to be fully justified, be-

cause each of these seats is backed by a full quota of citizens who voted in their favor.

In contrast, the residual seats are no longer justified by a full quota of voters, and are

awarded only to parties deserving them. The argument is felt to provide a sufficient

reasoning to exclude parties supported by so few voters that the one and only seat of

the party would be a remainder seat.
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EP2009LV Political Group Votes Quotient DivStd

PS EPP 192 537 1.9 2
SC S&D, GUE/NGL 154 894 1.55 2
PCTVL GREENS/EFA 76 436 0.8 1
LPP/LC ALDE 59 326 0.6 1
TB/LNNK ECR 58 991 0.6 1
JL EPP 52 751 0.53 1

Sum (Divisor) 594 935 (100 000) 8

TABLE 1.20 Latvia, 2009 EP election. Latvia uses the divisor method with standard rounding,

DivStd. It so happens that every one hundred thousand votes justify roughly one seat. The appor-

tionment of the eight seats becomes as transparent as could possibly be.

EP2009MT Party Political Group 1st Pref STVran

Simon Busuttil PN EPP 68 782 1
Louis Grech PL(MLP) S&D 27 753 1
Edward Scicluna PL(MLP) S&D 24 574 1
Joseph Cuschieri PL(MLP) S&D 19 672 0
Marlene Mizzi PL(MLP) S&D 17 724 0
John Montalto Attard PL(MLP) S&D 12 880 1
Baldacchino Abela PL(MLP) S&D 12 309 0
David Casa PN EPP 6 539 1
26 further nominees — NA 57 936 —

Sum (Droop-quota) (41 362) 248 169 5

TABLE 1.21 Malta, 2009 EP election. Malta uses the Single Transferable Vote scheme. The

decision which votes exceed a candidate’s Droop-quota and are transferred to lower preferences is

random (STVran). By and large party seats are in proportion to party votes.

Yet another residual apportionment procedure was in operation in former times.

During 1896–1917 the Swiss Canton Solothurn allocated all remaining seats to the

strongest party. We abbreviate this winner-take-all directive by WTA. In summary,

here is an overview of the variety of residual apportionment procedures used in the

2009 EP elections and elsewhere:

grR The remaining seats are allocated, one by one via greatest remainders,

among all eligible parties.

gR1 The remaining seats are allocated, one by one via greatest remainders,

among those parties drawing at least one full quota of votes.

WTA Winner-take-all: All remaining seats go to the strongest party.

-EL The remaining seats are allocated as in the Greek EP election 2009.

1.8. MALTA–NETHERLANDS–POLAND: NESTED STAGES

Malta bases its election on the same single transferable vote scheme that is used in

Ireland, STVran. If first preferences are pooled per party, hypothetically as in Sec-

tion 1.6 for Ireland, the Partit Laburista would have been apportioned three seats, the

Partit Nazzjonalista two. If these seats are filled with the most successful candidates

then just a single seat would have been allocated differently, to Joseph Cuschieri rather

than to John Montalto Attard. As in Ireland, the STV result in Malta can be regarded

as coming close to what a divisor or quota method would produce. See Table 1.21.



20 CHAPTER 1. EXPOSING METHODS: THE 2009 EUROPEAN PARLIAMENT ELECTIONS

EP2009NL Political Group Votes Quotient DivDwn

Alliance 1 1 223 773 7.7 7
Alliance 2 1 034 065 6.6 6
Alliance 3 952 711 6.03 6
PV NA 772 746 4.9 4
SP GUE/NGL 323 269 2.05 2
PD NA 157 735 0.998 0
Libertas EFD 14 612 0.1 0
De Groenen GREENS/EFA 8 517 0.1 0
6 Others NA 66 436 — 0

Sum (Divisor) 4 553 864 (158 000) 25

Party Political Group Votes Quotient HaQgrR

Alliance 1: Sub-apportionment
CDA EPP 913 233 5.224 5
CU-SGP ECR,EFD 310 540 1.776 2

Sum (Split) 1 223 773 (.5) 7

Alliance 2: Sub-apportionment
VVD ALDE 518 643 3.009 3
D66 ALDE 515 422 2.991 3

Sum (Split) 1 034 065 (.5) 6

Alliance 3: Sub-apportionment
PvdA S&D 548 691 3.456 3
GL GREENS/EFA 404 020 2.544 3

Sum (Split) 952 711 (.5) 6

TABLE 1.22 Netherlands, 2009 EP election. The super-apportionment uses the divisor method

with downward rounding, the sub-apportionments for the three alliances the Hare-quota method with

residual fit by greatest remainders.

The Netherlands has no electoral threshold. Three alliances are registered,

of two parties each. This calls for a super-apportionment, followed by three sub-

apportionments. The super-apportionment uses the divisor method with downward

rounding, DivDwn. The sub-apportionments apply the Hare-quota method with resid-

ual fit by greatest remainders, HaQgrR. See Table 1.22.

Poland also evaluates the election in two stages, but for the reason of secur-

ing regional representation. The electoral threshold amounts to 368 239 votes, five

percent of the 7 364 763 valid votes. Eight parties miss it, and 650 393 votes turn in-

effective. Four parties pass the threshold and become eligible to participate in the

apportionment calculation. In the first stage all 50 Polish seats are apportioned pro-

portionately to the parties’ state-wide vote counts. The calculation uses the divisor

method with downward rounding, DivDwn. The second stage consists of the per-party

sub-apportionments, and allocates a party’s seats to the district lists in proportion to

the votes in that district. All sub-apportionments use the Hare-quota method with

residual fit by greatest remainders, HaQgrR. See Table 1.23.

Nested stages. The selective use of apportionment procedures is due to the fact

that some methods are notorious for being biased in favor of stronger parties at the

expense of weaker parties, such as DivDwn and DrQgrR. Other methods are known

to be unbiased, such as DivStd and HaQgrR. Weaker parties might be reluctant

to join an alliance that would expose them to a disadvantageous bias. Hence an

alliance becomes more attractive when it promises its partners an unbiased procedure.
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EP2009PL Political Group Votes Quotient DivDwn

PO EPP 3 271 852 25.3 25
PiS ECR 2 017 607 15.6 15
SLD-UP S&D 908 765 7.02 7
PSL EPP 516 146 3.99 3

Sum (Divisor) 6 714 370 (129 400) 50

District Votes Quotient HaQgrR

Sub-apportionment to districts: PO
Gdańsk 285 268 2.180 2
Bydgoszcz 162 556 1.242 1
Olsztyn 159 943 1.222 1
Warszawa 1 434 421 3.319 3
Warszawa 2 114 000 0.871 1
�Lódź 204 798 1.565 2
Poznań 289 442 2.212 2
Lublin 112 221 0.857 1
Rzeszów 107 092 0.818 1
Kraków 327 854 2.505 2
Katowice 523 602 4.001 4
Wroc�law 347 617 2.656 3
Gorzów Wielkopolski 203 038 1.551 2

Sum (Split) 3 271 852 (.53) 25

Sub-apportionment to districts: SLD-UP
Gdańsk 50 427 0.388 0
Bydgoszcz 79 400 0.612 1
Olsztyn 59 194 0.456 0
Warszawa 1 84 740 0.653 1
Warszawa 2 30 225 0.233 0
�Lódź 62 923 0.485 0
Poznań 94 180 0.725 1
Lublin 24 725 0.190 0
Rzeszów 27 147 0.209 0
Kraków 95 277 0.734 1
Katowice 117 884 0.908 1
Wroc�law 93 172 0.718 1
Gorzów Wielkopolski 89 471 0.689 1

Sum (Split) 908 765 (.5) 7

Votes Quotient HaQgrR

PiS
105 946 0.788 1
73 183 0.544 1

121 921 0.906 1
196 720 1.463 1
129 165 0.960 1
134 947 1.003 1
121 216 0.901 1
136 986 1.018 1
153 661 1.142 1
383 631 2.852 3
207 429 1.542 1
163 197 1.213 1
89 605 0.666 1

2 017 607 (.543) 15

PSL
13 170 0.077 0
38 092 0.221 0
38 012 0.221 0
22 899 0.133 0
72 551 0.422 1
32 390 0.188 0
52 716 0.306 1
51 954 0.302 0
45 685 0.266 0
60 846 0.354 1
23 566 0.137 0
41 975 0.244 0
22 290 0.130 0

516 146 (.304) 3

TABLE 1.23 Poland, 2009 EP election. The super-apportionment uses the divisor method with
downward rounding, the sub-apportionments the Hare-quota method with residual fit by greatest
remainders.

Alliances lose their appeal, though, when seen with the eyes of the voters. In a one-

stage calculation, without alliances, people know that a vote for party A directly helps

party A, rather than being re-interpreted as an indirect support for party B. With

alliances, the dedication of the votes is determined not directly by the citizens, but

also indirectly by “the system”. In the Netherlands, a vote for Alliance 1 may be felt

to be supportive of any of three Political Groups: EPP, ECR, or EFD.

The Netherlands and Poland implement two-stage systems consisting of a super-

apportionment at the top level, followed by several sub-apportionments on a lower

level. The two states entertain two-stage systems for quite different reasons. In the

Netherlands, political parties join into an alliance in order to increase their weights in

the calculations. In Poland, geographical divisions of the same party are aggregated

so as to combine local representativeness with state-wide uniformity.



22 CHAPTER 1. EXPOSING METHODS: THE 2009 EUROPEAN PARLIAMENT ELECTIONS

EP2009PT Political Group Votes Quotient DivDwn

PPD/PSD EPP 1 129 243 8.9 8
PS S&D 946 475 7.5 7
BE GUE/NGL 382 011 3.01 3
CDU(PCP-PEV) GUE/NGL 379 707 2.99 2
CDS-PP EPP 298 057 2.3 2
8 Others NA 189 934 — 0

Sum (Divisor) 3 325 427 (127 000) 22

TABLE 1.24 Portugal, 2009 EP election. There is no electoral threshold. The divisor method

with downward rounding is used. Every 127 000 votes justify roughly one seat, out of the Portuguese

allocation of 22 seats.

EP2009RO Political Group Votes Quotient DivDwn

PSD+PC S&D 1504 218 11.2 11
PD-L EPP 1 438 000 10.7 10
PNL ALDE 702 974 5.2 5
UDMR EPP 431 739 3.2 3
PRM NA 419 094 3.1 3
Indep Elena Băsescu EPP 204 280 1.5 1

Sum (Divisor) 4 700 305 (134 000) 33

TABLE 1.25 Romania, 2009 EP election. The threshold that applies to parties is five percent of

valid votes, 242 002 votes. Another threshold is for indeps, the Hare-quota variant-4 HQ4 = 146 668.

Five parties and one indep pass the thresholds.

1.9. PORTUGAL–ROMANIA–SWEDEN: METHOD OVERVIEW

Portugal is assigned 22 seats. There is no electoral threshold. The divisor method

with downward rounding is used. Every 127 000 votes justify roughly one seat. Eight

parties are too weak to obtain representation. See Table 1.24.

Romania uses two electoral thresholds. The first threshold applies to parties,

and is five percent of valid votes. The second threshold applies to indeps, and is the

Hare-quota variant-4. Since there are 4 840 033 valid votes and 33 seats, the quota is

HQ4 = �4 840 033/33� = 146 668. Four parties and five indeps fail their thresholds,

and the 139 728 votes for them are discarded. Five parties and one indep enter into

the apportionment calculation. The apportionment method used is the divisor method

with downward rounding. See Table 1.25.

Sweden uses a threshold of four percent of valid votes. With 3 168 546 valid votes

it amounts to 126 742 votes. Six parties fail the threshold, and their 292 172 votes

become ineffective. The apportionment of the 18 seats among the eight eligible parties

is carried out using the Swedish modification of the divisor method with standard

rounding. The modification applies a special prescription only for quotients between

zero and unity, by replacing the standard rounding point 0.5 by the Swedish rounding

point 0.7. That is, if a quotient stays below 0.7 it is rounded downwards to zero, if it is

larger than 0.7 it is rounded upwards to unity. Our acronym for this method is Div0.7.

The special prescription does not take effect for the 2009 EP data. See Table 1.26.

Method overview. Before turning to the last batch of states we classify the

apportionments methods met so far. Divisor methods follow the motto “Divide and

round”. Many electoral system designers favor the divisor method with downward

rounding, DivDwn. It is the procedure of choice in 16 of the 27 Member States. We
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EP2009SE Political Group Votes Quotient Div0.7

S S&D 773 513 4.8 5
M EPP 596 710 3.7 4
FP ALDE 430 385 2.7 3
MP GREENS/EFA 349 114 2.2 2
PP GREENS/EFA 225 915 1.4 1
V GUE/NGL 179 182 1.1 1
C ALDE 173 414 1.1 1
KD EPP 148 141 0.9 1

Sum (Divisor) 2 876 374 (160 000) 18

TABLE 1.26 Sweden, 2009 EP election. The divisor method with standard rounding is used, except
that a quotient below unity is rounded upwards to unity if it lies above 0.7, and downwards to zero
otherwise. Because of this modification we use the acronym Div0.7.

may put forward at least three reasons for its dominant position. First, the divisor

method with downward rounding originates from the early days of the proportional

representation movement in the late nineteenth century. Endorsed by the leading

protagonists of the movement, the Belgian Victor D’Hondt and the Swiss Eduard

Hagenbach-Bischoff, it is distinguished by history. Second, its technical instructions

are elementary. Whoever calculates the quotients of votes and divisor may drop their

pen when reaching the decimal point. The missed fractional parts do not matter

since they are rounded downwards to zero anyway. Superficially, downward rounding

conveys the impression that no rounding operation is going on at all. Presumably the

third reason is most tempting for parliamentary actors and their helpers. The divisor

method with downward rounding produces seat numbers that are biased in favor of

stronger parties at the expense of weaker parties. Usually a parliamentary majority

involves stronger parties. When they have to bow to a proportional representation

system, the divisor method with downward rounding is a favorite choice to secure an

advantage. Advantages promise to accumulate as soon as the electoral regions are

subdivided into districts that are separately evaluated.

The unbiased alternative is the divisor method with standard rounding, DivStd.

It implements the rounding rule that has stood the test of time. To round downwards

or upwards according as fractions are smaller or larger than one-half has proved to

treat partners fairly, and this is true for commerce and business as much as it is true

for electoral systems.

The differences between various divisor methods point towards the general theory.

To see this, just contemplate interim quotients in the first interval [0; 1]. Standard

rounding compares them with the decision point—generally termed signpost—one-half.

The Swedish modification moves the signpost to 0.7. Downward rounding moves the

signpost yet further up, to unity. Generally the theory equips every integer interval

[n − 1;n] with a signpost s(n), and these signposts become the decision points of an

induced rounding rule. The location of the signposts within their intervals determines

the properties of the corresponding divisor method.

Quota methods with residual fit by greatest remainders are captured by the motto

“Divide and rank”. It is tempting to believe that there ought to be a fixed quota of

votes justifying a seat, a kind of certified measure how many voters are represented

by every Member of Parliament. However, the EP elections demonstrate that there

is a bewildering variety of quotas to choose from. There is the Hare-quota, and its
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EP2009SI Political Group Votes Quotient DivDwn

SDS EPP 123 563 2.9 2
SD S&D 85 407 2.03 2
N.Si. EPP 76 866 1.8 1
LDS ALDE 53 212 1.3 1
Zares ALDE 45 238 1.1 1
DeSUS NA 33 292 0.8 0

Sum (Divisor) 417 578 (42 000) 7

TABLE 1.27 Slovenia, 2009 EP election. There is a four percent threshold, but we are unable to

ascertain whether it refers to votes cast or to valid votes. Every 42 000 votes justify roughly one seat.

many variants, as well as the Droop-quota, with yet more variants. Furthermore,

the main apportionment leaves some residual seats to be looked after. Most residual

apportionments rank the parties by decreasing magnitude of the fractional parts of

their quotients. Lithuania imposes an additional full-seat restriction, Greece uses a

peculiar approach of its own. Quota methods address the seat apportionment issue in

a somewhat eclectic manner.

The third category of apportionment methods is the STV schemes. In Ireland

and Malta surplus votes are transferred to lower-order preferences using a random

procedure, STVran. In the Northern Ireland district of the United Kingdom, yet to

be discussed, surplus votes are redistributed in a deterministic fashion according to

the fractions of votes in favor of lower preferences, STVfra. We do not know of any

initiative to export STV schemes to the EP elections at large, whence we forgo a

theoretical study of their computational aspects. We find the available empirical data

encouraging that, for the purposes of the EP elections, the results from STV schemes

can be virtually duplicated with the divisor method with standard rounding.

1.10. SLOVENIA–SLOVAKIA–UNITED KINGDOM:

LOCAL REPRESENTATION

Slovenia is assigned 7 seats. The electoral threshold is set at four percent, but we do

not know whether it pertains to votes cast or valid votes. Either way the threshold

removes six parties, and discards 45 894 votes as ineffective. The divisor method with

downward rounding is used. Every 42 000 votes justify roughly one seat. See Table 1.27.

Slovakia uses a threshold of five percent of valid votes. With 826 782 valid votes,

the threshold amounts to 41 340 votes. Eleven parties fail it, and 117 778 votes are

discarded as ineffective. The allocation of the 13 Slovakian seats uses DQ3grR, the

Droop-quota variant-3 method with residual fit by greatest remainders. Hence the

quota is DQ3 = 〈709 004/(13 + 1)〉 = 〈50 643.1〉 = 50 643. See Table 1.28.

The United Kingdom subdivides its area into 12 districts. The 72 seats are

assigned to the districts well ahead of the election. Each district is evaluated separately.

Eleven districts apply the divisor method with downward rounding, DivDwn. The

twelfth district, Northern Ireland, uses the STV scheme with fractional vote transfer,

STVfra, based on the Droop-quota, DrQ. There is no electoral threshold. Table 1.29

shows Districts 1–8, Table 1.30 continues with Districts 9–12.
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EP2009SK Political Group Votes Quotient DQ3grR

SMER S&D 264 722 5.227 5
SDKÚ-DS EPP 140 426 2.773 2
SMK-MKP EPP 93 750 1.851 2
KDH EPP 89 905 1.775 2
LS-HZDS ALDE 74 241 1.466 1
SNS EFD 45 960 0.908 1

Sum (Split) 709 004 (.774) 13

TABLE 1.28 Slovakia, 2009 EP election. The Droop-quota variant-3 is used, DQ3 = 〈709 004/
(13 + 1)〉 = 〈50 643.1〉 = 50 643. Ten seats are allocated in the main apportionment, the three

remaining seats by greatest remainders.

Local representation. Electoral districts are meant to strengthen the local ties

between the electorate and those elected. To this end the electoral area is divided

into two or more districts, to which the seats of a Member State are allocated prior

to election day. The evaluation of districts varies. Belgium, France, Ireland, and the

United Kingdom choose to evaluate them separately, each in its own right. In Germany

and Poland districts are incorporated with a kind of nested evaluation. Yet another

approach is to employ a double-proportional apportionment method (Section 14).

As a matter of fact local representativeness is the historical origin of parliamentary

elections. In former days the country was divided into single-seat constituencies, and in

each constituency the electorate voted a candidate into Parliament to represent them

and their constituency. The person-to-person relationship was the natural ideal at a

time when a constituency’s electorate embraced fewer people than it does today.

In modern democracies voters may count into the millions. Political parties inter-

vene and provide the institutional link that mediates between the many voters and the

few parliamentarians. A candidate who is nominated by a party communicates to the

electorate in both ways, through personal standing as well as through party affiliation.

Current proportional representation systems shift the focus towards the electorate’s

division along party lines, and aim at fairly mapping the voter support of a party into

this party’s parliamentary seats.

Yet electoral systems provide various means to maintain the original intention of

local representativeness. To this end we need a hierarchy of geographical notions for use

in proportional representation systems. Since no standardized set of terms is available

we use the following classification. The electoral region is the largest possible territorial

extension where the election takes place. The electoral region may be composed of

various electoral areas. An electoral area may be further subdivided into electoral

districts. On occasion, an electoral district is split into electoral sections, the finest

level we consider for proportional representation systems.

For EP elections the electoral region is the aggregation of the territories of the

27 Member States. Each Member State constitutes an electoral area. Some Member

States subdivide their area into electoral districts: Belgium, France, Germany, Ireland,

Poland, and the United Kingdom. The French Outre-Mer district features electoral

sections: Atlantique, Océan Indien, and Pacifique. When the electoral region is smaller

than that of the European Union, often two levels suffice: the electoral region and, if

applicable, its subdivision into electoral districts.
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EP2009UK Div-
Party Political Group Votes QuotientDwn

District 1: East
Cons. ECR 500 331 3.3 3
UKIP EFD 313 921 2.1 2
LD ALDE 221 235 1.5 1
Lab. S&D 167 833 1.1 1
Greens GREENS/EFA141 016 0.9 0
BNP NA 97 013 0.6 0
9 Others NA 161 991 — 0

Sum (Divisor) 1 603 340 (150 000) 7

District 3: London
Cons. ECR 479 037 3.4 3
Lab. S&D 372 590 2.7 2
LD ALDE 240 156 1.7 1
Greens GREENS/EFA190 589 1.4 1
UKIP EFD 188 440 1.3 1
BNP NA 86 420 0.6 0
13 Others NA 193 794 — 0

Sum (Divisor) 1 751 026 (140 000) 8

District 5: North West
Cons. ECR 423 174 3.2 3
Lab. S&D 336 831 2.6 2
UKIP EFD 261 740 1.998 1
LD ALDE 235 639 1.8 1
BNP NA 132 094 1.01 1
Greens GREENS/EFA127 133 0.97 0
7 Others NA 135 214 — 0

Sum (Divisor) 1 651 825 (131 000) 8

District 7: South West
Cons. ECR 468 742 3.1 3
UKIP EFD 341 845 2.3 2
LD ALDE 266 253 1.8 1
Greens GREENS/EFA144 179 0.96 0
Lab. S&D 118 716 0.8 0
BNP NA 60 889 0.4 0
11 Others NA 149 084 — 0

Sum (Divisor) 1 549 708 (150 000) 6

Div-
Party Political Group Votes QuotientDwn

District 2: East Midland
Cons. ECR 370 275 2.6 2
Lab. S&D 206 945 1.5 1
UKIP EFD 201 984 1.4 1
LD ALDE 151 428 1.1 1
BNP NA 106 319 0.8 0
Greens GREENS/EFA 83 939 0.6 0
7 Others NA 107 175 — 0

Sum (Divisor) 1 228 065 (140 000) 5

District 4: North East
Lab. S&D 147 338 1.5 1
Cons. ECR 116 911 1.2 1
LD ALDE 103 644 1.04 1
UKIP EFD 90 700 0.9 0
BNP NA 52 700 0.5 0
Greens GREENS/EFA 34 081 0.3 0
6 Others NA 44 488 — 0

Sum (Divisor) 589 862 (100 000) 3

District 6: South East
Cons. ECR 812 288 4.95 4
UKIP EFD 440 002 2.7 2
LD ALDE 330 340 2.01 2
Greens GREENS/EFA271 506 1.7 1
Lab. S&D 192 592 1.2 1
BNP NA 101 769 0.6 0
9 Others NA 186 361 — 0

Sum (Divisor) 2 334 858 (164 000) 10

District 8: West Midlands
Cons. ECR 396 847 2.8 2
UKIP EFD 300 471 2.1 2
Lab. S&D 240 201 1.7 1
LD ALDE 170 246 1.2 1
BNP NA 121 967 0.9 0
Greens GREENS/EFA 88 244 0.6 0
6 Others NA 95 060 — 0

Sum (Divisor) 1 413 036 (140 000) 6

TABLE 1.29 Districts 1–8, United Kingdom, 2009 EP election. The United Kingdom subdivides

its area into twelve districts. Its 72 seats are allocated to the district prior to the election. Districts
are evaluated separately, eleven of them use the divisor method with downward rounding, DivDwn.

1.11. DIVERSITY VERSUS UNIFORMITY

Ever since its inception the EP has confirmed its intention to standardize the proce-

dures that the Member States employ for EP elections. Electoral systems comprise

more than just counting votes. They determine who stands in the election, how they

register, if they are given access to the media, whether they are reimbursed for their

expenses, which ballot design is submitted to the voters and much more. But even

when the view is narrowed down to what happens with the resulting vote counts, the

multitude of procedures in the 27 Member States is perplexing.

Many States do not subdivide their area into electoral districts. Some do and

evaluate the districts separately. Others do too, but handle districts through nested

calculations of a super-apportionment followed by several sub-apportionments. Some

states admit alliances, others do not. Some states forgo an electoral threshold or even
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EP2009UK (continued) Div-
Party Political Group Votes QuotientDwn

District 9: Yorkshire and Humber
Cons. ECR, NA 299 802 2.5 2
Lab. S&D 230 009 1.9 1
UKIP EFD 213 750 1.8 1
BNP NA 120 139 1.001 1
LD ALDE 161 552 1.3 1
Greens GREENS/EFA 104 456 0.9 0
6 Others NA 96 472 — 0

Sum (Divisor) 1 226 180 (120 000) 6

Div-
Party Political Group Votes QuotientDwn

District 10: Scotland
SNP GREENS/EFA 321 007 2.9 2
Lab. S&D 229 853 2.1 2
Cons. ECR 185 794 1.7 1
LD ALDE 127 038 1.2 1
Greens GREENS/EFA 80 442 0.7 0
UKIP EFD 57 788 0.5 0
BNP NA 27 174 0.2 0
6 Others NA 75 416 — 0

Sum (Divisor) 1 104 512 (110 000) 6

Party Political Group Votes Quotient DivDwn

District 11: Wales
Cons. ECR 145 193 1.8 1
Lab. S&D 138 852 1.7 1
PC GREENS/EFA 126 702 1.6 1
UKIP EFD 87 585 1.1 1
LD ALDE 73 082 0.9 0
Greens GREENS/EFA 38 160 0.5 0
BNP NA 37 114 0.5 0
4 Others NA 37 832 — 0

Sum (Divisor) 684 520 (80 000) 4

Candidate Party Political Group 1st Pref STVfra

District 12: Northern Ireland
Bairbre de Brún SF GUE/NGL 126 184 1
Diane Dodds DUP NA 88 346 1
Jim Nicholson UUP ECR 82 893 1
Alban Maginness SDLP S&D 78 489 0
Steven Agnew Greens (NI) GREENS/EFA 15 764 0
2 Others — NA 92 896 0

Sum (Droop-quota) (121 144) 484 572 3

TABLE 1.30 Districts 9–12, United Kingdom, 2009 EP election. In District 12: Northern Ireland,

the STVfra system is used. Surplus votes are redistributed in fractions as given by the distribution

of lower preferences.

declare it unconstitutional. Others install a threshold but refer to distinct ensembles,

votes cast or valid votes or something else, relative to the whole electoral area or

relative to separate electoral districts. The seat apportionment methods vary to an

extent that it is even hard to tell how many of them are in use. Ten? Twelve? The

states’ electoral systems excel in diversity, not in uniformity. See Table 1.31.

Does it matter? After all, the Union may be viewed as a timely political construc-

tion allowing the citizenries of its Member States to preserve their domestic identities

and idiosyncrasies in a diverse world. On the other hand, all parliaments in this world

derive their political legitimization from the way how they get elected, and uniformity

is always part of the underlying electoral principles. We will have more to say about

electoral principles in the next chapter. As far as the EP is concerned, the Union’s

electoral principles are enshrined in its primary law and, to some extent, promise that

all citizens of the Union are treated equally.

Electoral equality can be reliably gauged only when the European Parties start

functioning on the Union level and give rise to a political system in which the many

domestic parties agree to find their place. Certainly this scenario does not apply

to the 2009 elections. We opt for replacing the invisible European Parties in the
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Member Separate Nested Electoral Apportionment
State Apportionments Evaluations Threshold Method(s)

AT 1 — 4% of valid votes DivDwn
BE 3 — — DivDwn
BG 1 — (See Sect. 1.2) HaQgrR
CY 1 — 1.8% of valid votes HQ3grR
CZ 1 — 5% of valid votes DivDwn
DE 1 16 districts 5% of valid votes DivStd
DK 1 3 alliances — DivDwn
EE 1 — — DivDwn
EL 1 — 3% of valid votes HQ3-EL

ES 1 — — DivDwn
FI 1 1 alliance — DivDwn+plurality
FR 8 — 5% of valid votes DivDwn
HU 1 — 5% of valid votes DivDwn
IE 4 — — STVran
IT 1 5 districts 4% of valid votes HQ1grR
LT 1 — (See Sect. 1.7) HQ2gR1
LU 1 — — DivDwn
LV 1 — 5% of votes cast DivStd

MT 1 — — STVran
NL 1 3 alliances — DivDwn+HaQgrR
PL 1 13 districts 5% of valid votes DivDwn+HaQgrR
PT 1 — — DivDwn
RO 1 — (See Sect. 1.9) DivDwn
SE 1 — 4% of valid votes Div0.7
SI 1 — (See Sect. 1.10) DivDwn
SK 1 — 5% of valid votes DQ3grR
UK 12 — — DivDwn+STVfra

TABLE 1.31 Electoral indices of the 27 Member States. Belgium, France, Ireland, and the United

Kingdom subdivide their area into districts that are evaluated separately. Germany, Italy and Poland

handle their districts by means of a super-apportionment and the induced sub-apportionments.

Union by the visible Political Groups in the EP. To this end Tables 1.3–1.30 mention

for every domestic party the Political Group it joined. In Spain, Italy, Latvia, the

Netherlands, and the United Kingdom some parties split their seats between several

Political Groups; we split their votes accordingly. The Luxembourg counts are scaled

by the marks-per-ballot average to obtain figures signifying human beings. In Ireland,

Malta, and the Northern Ireland district of the United Kingdom, where STV schemes

are used, the vote aggregation process is restricted to the first preferences shown in

the tables. Domestic parties not affiliated to a Political Group nor obtaining a seat are

neglected. The resulting union-wide aggregation of vote counts by Political Groups is

exhibited in Table 1.32.

The table confronts the actual seat allocation with a hypothetical union-wide

solution. The hypothetical apportionment yields a mirror image of the division of

the Union’s citizens along the political dimension. Using the divisor method with

standard rounding every 196 000 votes would justify roughly one of the 736 seats.

The actual allocation deviates from the hypothetical apportionment by twenty seat

transfers, ranging from fifteen seats more than are indicated by proportionality up to

seven seats fewer. The actual result exhibits a discordant seat assignment, in that

the EFD group features more votes but fewer seats than the GUE/NGL group. The

hypothetical allocation is concordant. However, due to the bold and artificial vote
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Political Group Actual Seats Votes Quotient DivStd Difference

EPP 265 52 324 413 267.0 267 −2
S&D 184 36 776 044 187.6 188 −4
ALDE 84 16 058 094 81.9 82 2
GREENS/EFA 55 12 070 029 61.6 62 −7
ECR 54 7 610 712 38.8 39 15
EFD 32 7 153 584 36.498 36 −4
GUE/NGL 35 6 280 876 32.0 32 3
NA 27 5 970 692 30.46 30 −3

Sum (Divisor) 736 144 244 444 (196 000) 736 20− 20

TABLE 1.32 Actual seats by Political Groups versus hypothetical seat apportionment, 2009 EP

election. The hypothetical apportionment is based on the groups’ aggregate vote counts. The two

seat vectors differ by a transfer of twenty seats.

aggregation rule the hypothetical solution is by no means authoritative. Yet Table 1.32

is indicative of a comprehensive view that would aid uniformity.

While a single union-wide apportionment faithfully reflects the political division

of the electorate, it misses out on the geographical dimension of how citizens relate to

the 27 Member States of the Union. Divisor methods can be adapted to honor both

dimensions: the geographical distribution of the Union’s citizens across Member States,

and the political division as expressed through their party votes. These methods come

under the heading of double proportionality, and are treated in Chapter 14.

Double proportionality merges the two approaches how to handle districts. The

first approach is separate district evaluations. It relies on prespecified district mag-

nitudes and, in each district, apportions the district magnitude proportionally among

parties. The second approach is nested district evaluations. It relies on a super-

apportionment to determine overall party-seats and, for each party, sub-apportions

its seats locally in the districts. An iterative merger of the two approaches preserves

the merits of both. The result is a double-proportional seat apportionment achieving

proportionality relative to party votes as well as relative to district populations.

All seat apportionment methods have to be calibrated against what is required by

a state’s constitution or, in the case of the EP, by the Union’s primary law. As for the

European Union, its legal ramifications are still in flux. The Court of the European

Union has yet to specify to what extent the treaty articles bind the electoral provisions.

As a substitute, we exemplify the embedding of the electoral procedures into a con-

stitutional framework with one of the Union’s Member States, Germany. Chapter 2

describes the 2009 election to the German Parliament. The description includes an

outline how the Federal Election Law responds to the five electoral principles that are

set forth in the German Basic Law.
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Imposing Constitutionality:
The 2009 Bundestag Election

Electoral systems veer between constitutional demands and political desires on the one
hand side, and procedural rules and practical manageability on the other. The diverse
requirements are exemplified by the 2009 election of the German Bundestag and its
underlying Federal Election Law. The law provides citizens with two votes: a first
vote to elect a constituency representative by plurality, and a second vote to mirror the
electorate’s division along party lines by proportionality. As Germany is a federation
of sixteen states, federal components are also included. The Bundestag electoral system
exemplifies the five electoral principles that underly Europe’s electoral heritage: to elect
the Members of the Bundestag by direct and universal suffrage in a free, equal, and
secret ballot.

2.1. THE GERMAN FEDERAL ELECTION LAW

The Federal Election Law (Bundeswahlgesetz, BWG) defines the electoral system for

the Bundestag (Federal Diet), Germany’s parliament. The Bundestag is one of the

five constitutional organs of the country. The other four are the Federal President

(Bundespräsident), the Federal Government (Bundesregierung), the Federal Council

(Bundesrat), and the Federal Constitutional Court (Bundesverfassungsgericht). The

Federal Election Law is designed to implement a proportional representation system

that is combined with the election of persons (eine mit der Personenwahl verbundene

Verhältniswahl). The law’s aims and instructions grow out of the country’s history.

Parliamentary representation in Germany began with the North-German Con-

federation 1867–1871. It was established through the impetus and under the leadership

of Prussian Prime Minister Otto von Bismarck. Impressed by the effectiveness of

the franchise in Napoléon III’s Second Republic, Bismarck had the members of the

Confederate Reichstag (Diet) elected in single-seat constituencies by straight majority,

with a second-round runoff if the straight majority was missed in the first round.

Like many electoral system designers after him, Bismarck wanted to secure a safe

majority for the ruling government. Trusting that the masses would support monarchic

needs more enthusiastically than the upper class, Bismarck extended the franchise to

universal male suffrage, practically a novum in Europe.
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With the formation of the Imperial Reich in 1871, in the aftermath of waging a

war against France, the confederate electoral system was copied into the new Consti-

tution, with a noticeable exception. In order to admonish the members of the Imperial

Reichstag to serve the Reich’s interests and not just those of their local constituencies,

and also to shield them from the evolving influence of political parties that Bismarck

distrusted wholeheartedly, the Constitution’s Article 29 obliged them to represent the

whole people (das ganze Volk). The constitutional obligation that every Member of Par-

liament represents the whole people has since been upheld, in the Weimar Republic

1919–1933 as well as in the present Federal Republic.

In the Confederate Reichstag and in the Imperial Reichstag, candidates were

elected on the basis of their personal standing. As parliamentary politics grew in

its importance, the members of the Reichstag informally assembled in groups, and

later formally aligned in political parties. In addition, the sheer number of voters un-

der a universal male franchise necessitated an elaborate coordination of party politics.

Eventually candidates were perceived as party nominees as much as they stood as in-

dividuals. They were presented to the electorate as one name among many on lists of

nominees, submitted by a particular party and identified with this party.

The developing party system met with the disapproval of those who feared that it

would corrupt the purpose of an election to select persons who would act as represen-

tatives of the people. The deficiency was strongly felt and widely discussed during the

Weimar Republic. By then a proportional representation system had been adopted

with every 60 000 votes justifying one seat, called the automatic system. With a large

electoral turnout the Reichstag would have many seats. When people stayed away

from the polls, the number of seats would decrease. The house size of the Republican

Reichstag varied between a low of 459 seats in the elections 1920–1922, and a high

of 647 seats in 1933. Variability of the house size was deemed inefficient when the

Reichstag of one legislative period handed business over to its successor.

Yet the bigger issue was how parties filled the seats they won. Parties strictly

followed the lists of nominees they had submitted prior to the election. Voters could

neither delete nor add names. A party’s list of nominees was definitive for the sequence

how seats were filled. Critics maintained that the rigid lists put voters at the mercy

of party bosses rather than encouraging the election of dedicated individuals. Strong

candidates with a leadership personality, unwilling to submit to the intervention of a

party’s nomination assembly, would turn away from the political life of the Republic.

Such problems had been foreseen much earlier. Already Siegfried Geyerhahn

(1902) had proposed a system to combine proportional representation with the election

of persons. Essentially his system was built on two ingredients. First, the electoral

region was to be subdivided into equal-sized constituencies, half as many as there

were seats to fill. In every constituency voters would elect a representative by plural-

ity. Second, the proposed ballot design was what might be called a double-evaluated

single vote. On their ballot sheets voters would mark a candidate of a party. These

marks would be evaluated twice. One count would be country-wide and by parties, to

determine the number of seats a party would deserve proportionally.
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The other count would be per constituency and by candidates. Locally, in each

constituency, the candidate with the most votes would be declared elected. Overall,

across the whole electoral region, the non-elected candidates of a party would be ranked

by the number of votes they drew in their constituencies. This would generate ex post

candidate lists based on the voters’ say, as an alternative to lists of nominees submitted

by the parties. The overall seat allotment of a party would be reduced by its number

of constituency seats. The remaining seats would be filled in the sequence given by

the party’s ex post candidate list.

Geyerhahn also addressed the possibility that a party would win more constituency

seats than entitled to by proportionality. Nowadays a surplus seat is called an overhang

seat (Überhangmandat). Dismissed by Geyerhahn as a rare eventuality, the occurrence

of overhang seats has become a common event. They have emerged in all Bundestag

elections over the last thirty years, and in ever increasing numbers. Overhang seats are

at the core of the difficulties arising with the current Federal Election Law. Geyerhahn’s

pamphlet was published in a prestigious series edited by prominent law scholars. The

author did not enter into an academic career, though, and his name is absent from

the debate during the Weimar Republic. A system similar to his was proposed in a

1925 newspaper article by Richard Thoma, a renowned law professor. Thoma opted

for a ballot with two votes, a first vote for the election of a constituency representative,

and a second vote for the election of a party list. A year later Thoma’s contribution

triggered a response article by Wilhelm Heile.

After the Second World War the Allied Powers installed a Parliamentary Council

with the mission to draft a constitution for a new, democratic Germany. The Council

decided that the constitution was to include just the electoral principles that were

deemed fundamental, but no procedural particulars. Indeed Article 38 of the Basic

Law stipulates that the Members of the Bundestag are elected by direct and universal

suffrage in a free, equal, and secret ballot. The Members of the Bundestag are repre-

sentatives of the whole people. They are not bound by orders or directives, and shall

submit solely to their conscience.

The task of designing an electoral system for the Bundestag was relegated to a sub-

committee of the Parliamentary Council, the Committee on Electoral Procedure. The

committee invited the expert witness Richard Thoma to review the electoral systems

past and present. Wilhelm Heile, who had commented on Thoma’s 1925 newspaper

article, was among the deputy committee members. After extensive deliberations the

committee proposed an electoral system with a double-evaluated single vote, with rigid

party lists to be registered before the election, and with a separate apportionment in

every state of the Federal Republic. The common ground with Geyerhahn’s pamphlet

is striking, but regrettably we lack evidence on how the proposal came about. It

eventually found its way into the Federal Election Law, and was used in the first two

Bundestag elections in 1949 and 1953. In 1956 the law was amended substantially

by introducing the two-votes ballot design. Furthermore, the seat apportionment cal-

culations were arranged in a way persisting until 2009. The first stage is the super-

apportionment, that is, the apportionment of all Bundestag seats among the eligible

parties proportionate to their country-wide vote counts. The second stage consists

of the per-party sub-apportionments, that is, the apportionment of the country-wide

seats of a party among its state-lists.
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Current Bundestag ballot sheets, printed and issued by the election authorities,

consist of one piece of paper displaying two columns. The left column, in black print,

is the voter’s first vote (Erststimme). This is the vote to elect a constituency represen-

tative. The right column, in blue print, is the voter’s second vote (Zweitstimme). The

second vote serves to elect one of the candidate lists that parties register in each of the

sixteen states. The header of the right column includes a small-print hint, awkwardly

worded, reminding voters that the second vote is the decisive vote for the distribution of

the seats altogether among the distinct parties (maßgebende Stimme für die Verteilung

der Sitze insgesamt auf die einzelnen Parteien).

The two-votes electoral system has grown into an export hit of democratic Ger-

many. For instance New Zealand converted to it from first-past-the-post plurality in

1993, and the Scottish Parliament has been using it since its establishment in 1998.

When adapted, the name may change, of course. New Zealand’s acronym MMP is in-

dicative of a mixed member proportional parliament. The Scottish AMP is short for an

additional member proportional parliament. In Germany, the name two-votes system

(Zweistimmensystem) is input-oriented. It places all the emphasis on offering voters

a dual choice, in fulfillment of the law’s aim to combine proportional representation

with the election of persons.

2.2. COUNTRY-WIDE SUPER-APPORTIONMENT 2009

The Federal Election Law introduces an electoral threshold consisting of three compo-

nents. A valid second vote becomes effective provided it is cast for a party (1) drawing

at least five percent of the country-wide valid second votes, or (2) winning at least

three constituencies, or (3) representing a national minority. The three components

honor second votes (1), first votes (2), and minority representation (3).

The law is exemplified with the election of the Members of the 17th Bundestag,

on 27 September 2009. We begin with the proportionality part of the system, the

evaluation of the decisive second votes. The 40 764 288 effective second votes are cast

for six parties. Of the six parties, five stand in two or more states. The SPD, FDP,

LINKE, and GRÜNE present candidate lists in all sixteen states. The CDU stands

in fifteen states, but not in Bavaria. The CSU campaigns in Bavaria, only. For every

party, the second votes for their state-lists are aggregated into a country-wide count of

second votes. The Federal Election Law decrees a notional Bundestag size of 598 seats,

with the proviso that it may be modified by subsequent sections of the law. Indeed,

the 2009 election generates 24 overhang seats and leads to 622 seats eventually. The

last time when the notional house size persisted was the election to the 8th Bundestag

in 1976. In any case the apportionment process begins with the allocation of 598

seats proportionate to second votes. This stage is called the super-apportionment. The

divisor method with standard rounding, DivStd, is used to translate second votes into

seats. See Table 2.1.

The 2009 numbers easily reveal the pertinent divisor interval. A divisor much

below 68 196 would lead to more seats than 598. More precisely, the SPD is clos-

est to acquire the next seat and determines the critical lower limit for the divisor,

9 990 488/146.5 = 68 194.46. On the other extreme, if the divisor were much larger

than 68 196 then fewer seats would result. Clearly the party securing the last seat



34 CHAPTER 2. IMPOSING CONSTITUTIONALITY: THE 2009 BUNDESTAG ELECTION

17BT2009 Second Votes Quotient DivStd

Super-apportionment
CDU 11 828 277 173.4 173
SPD 9 990 488 146.497 146
FDP 6 316 080 92.6 93
LINKE 5 155 933 75.6 76
GRÜNE 4 643 272 68.1 68
CSU 2 830 238 41.502 42

Sum (Divisor) 40 764 288 (68 196) 598

TABLE 2.1 Super-apportionment of 598 seats by second votes, election to the 17th Bundestag 2009.

Every 68 196 votes justify roughly one seat. The seat apportionment is carried out using the divisor

method with standard rounding, DivStd. The notional house size of 598 seats is subsequently modified.

is the CSU. Hence the upper limit for the divisor is 2 830 238/41.5 = 68 198.50. Any

number in the interval [68 194.46; 68 198.50] may serve as a viable divisor. For ease

of reference we pick the midpoint, 68 196.48, and reduced it to as few digits as the

interval permits, 68 196. This is the divisor quoted in Table 2.1.

As the CSU campaigns only in one state, Bavaria, its result may be finalized right

away. The super-apportionment awards the CSU 42 proportionality seats. On the

other hand the CSU wins 45 direct seats, because all of the 45 Bavarian constituencies

are won by the CSU candidate. The law stipulates that in such a case the notional

house size of 598 seats is enlarged by three seats, referred to as overhang seats. Each of

the other parties calls for a sub-apportionment so that a party’s super-apportionment

seats are handed down to that party’s state-lists.

2.3. PER-PARTY SUB-APPORTIONMENTS 2009

Parties present their nominees on state-lists (Landeslisten) when they campaign in more

than a single state. Thus a state functions as a lower-level electoral district. The names

for such districts vary greatly. It is Land in Germany, kiescollege and circonscription

électorale in Belgium, circonscription in France, constituency in Ireland, circoscrizione

in Italy, okrȩgach in Poland, and electoral region in the United Kingdom. To evade

language barriers we uniformly refer to these units as districts. Districts are usually

listed in some standard order. In Germany, the Federal Election Officer sorts the

sixteen states from North to South by their northern-most latitude. The states’ names

are abbreviated by two-letter codes, see the top box of Table 2.2.

Every party with multiple state-lists calls for a sub-apportionment. Hence the

2009 election features five sub-apportionments, as shown in Table 2.2. Column “Dir.”

contains the number of direct seats a party wins in the state, column “Second Votes”

lists the per-district counts of second votes. The overall party-seats from the super-

apportionment are apportioned on the basis of the per-district second votes, again by

means of the divisor method with standard rounding. The interim quotients for the

CDU are included in the table. For lack of space they are omitted for SPD, FDP,

LINKE and GRÜNE. The proportionality seats are exhibited in column “DivStd”.

The final step relates direct seats to proportionality seats. If in a district a party’s

number of direct seats exceeds its number of proportionality seats, then the direct

seats persist and the proportionality seats become moot, as marked by a trailing dot •
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17BT2009 (continued) Dir. Second Votes Quotient DivStd Overhang

Sub-apportionment to districts: CDU
SH Schleswig-Holstein 9 518 457 7.51 8• 1
MV Mecklenburg-Vorpommern 6 287 481 4.2 4• 2
HH Hamburg 3 246 667 3.6 4 0
NI Niedersachsen 16 1 471 530 21.3 21 0
HB Bremen 0 80 964 1.2 1 0
BB Brandenburg 1 327 454 4.7 5 0
SA Sachsen-Anhalt 4 362 311 5.3 5 0
BE Berlin 5 393 180 5.7 6 0
NW Nordrhein-Westfalen 37 3 111 478 45.1 45 0
SN Sachsen 16 800 898 11.6 12• 4
HE Hessen 15 1 022 822 14.8 15 0
TH Thüringen 7 383 778 5.6 6• 1
RP Rheinland-Pfalz 13 767 487 11.1 11• 2
BY Bayern — — — — —
BW Baden-Württemberg 37 1 874 481 27.2 27• 10
SL Saarland 4 179 289 2.6 3• 1

Sum (Divisor) 173 11 828 277 (69 000) 173 21

District Dir. Second Votes DivStd Overhang

Sub-apportionment to districts: SPD
SH 2 430 739 6 0
MV 0 143 607 2 0
HH 3 242 942 4 0
NI 14 1 297 940 19 0
HB 2 102 419 2 0
BB 5 348 216 5 0
SA 0 202 850 3 0
BE 2 348 082 5 0
NW 27 2 678 956 39 0
SN 0 328 753 5 0
HE 6 812 721 12 0
TH 0 216 593 3 0
RP 2 520 990 8 0
BY 0 1 120 018 16 0
BW 1 1 051 198 15 0
SL 0 144 464 2 0

Sum 64 9 990 488 146 0

Dir. Second Votes DivStd Overhang

Sub-apportionment to districts: FDP
0 261 767 4 0
0 85 203 1 0
0 117 143 2 0
0 588 401 9 0
0 35 968 1 0
0 129 642 2 0
0 124 247 2 0
0 198 516 3 0
0 1 394 554 20 0
0 299 135 4 0
0 527 432 8 0
0 120 635 2 0
0 364 673 5 0
0 976 379 14 0
0 1 022 958 15 0
0 69 427 1 0

0 6 316 080 93 0

District Dir. Second Votes DivStd Overhang

Sub-apportionment to districts: LINKE
SH 0 127 203 2 0
MV 1 251 536 4 0
HH 0 99 096 1 0
NI 0 380 373 6 0
HB 0 48 369 1 0
BB 4 395 566 6 0
SA 5 389 456 6 0
BE 4 348 661 5 0
NW 0 789 814 11 0
SN 0 551 461 8 0
HE 0 271 455 4 0
TH 2 354 875 5 0
RP 0 205 180 3 0
BY 0 429 371 6 0
BW 0 389 637 6 0
SL 0 123 880 2 0

Sum 16 5 155 933 76 0

Dir. Second Votes DivStd Overhang

Sub-apportionment to districts: GRÜNE
0 203 782 3 0
0 47 841 1 0
0 138 454 2 0
0 475 742 7 0
0 52 283 1 0
0 84 567 1 0
0 61 734 1 0
1 299 535 4 0
0 945 831 14 0
0 151 283 2 0
0 381 948 6 0
0 73 838 1 0
0 211 971 3 0
0 719 265 10 0
0 755 648 11 0
0 39 550 1 0

1 4 643 272 68 0

TABLE 2.2 Sub-apportionments of party-seats to districts, election to 17th Bundestag 2009. For
the CDU, the direct seats (column “Dir.”) overrule the proportionality seats (column “DivStd”) in

seven states (marked •), thus giving rise to 21 overhang seats. For the other four parties, all direct
seats in all states can be incorporated into the corresponding proportionality seats.
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in Table 2.2. In all other cases the proportionality seats persist. As an example we

examine the CDU results. Its candidates win nine Schleswig-Holstein constituencies

while Schleswig-Holstein’s share of the 173 country-wide CDU seats is only eight seats.

Thus one overhang seat is created, as recorded in column “Overhang”. More over-

hang seats are brought into being in Mecklenburg-West Pommerania (2), Saxony (4),

Thuringia (1), Rheinland-Palatinate (2), Baden-Württemberg (10), and Saarland (1).

Thus the notional house size of the Bundestag increases by 21 CDU overhang seats.

For the other four parties all direct seats are carried by the corresponding pro-

portionality seats, if only barely so for the SPD in the Free Hanseatic City of Bremen

(HB: 2 direct seats and 2 proportionality seats) and in the State of Brandenburg (BB:

5 seats in either category). Nevertheless, the proportionality seats suffice to seat the

constituency winners. Any remaining seats are filled from the parties’ state-lists. In

summary, the 17th Bundestag 2009 started out with 622 seats, 598 notional seats plus

an additional 24 overhang seats, 3 for the CSU and 21 for the CDU. The seats are

shared between the six parties CDU : SPD : FDP : LINKE : GRÜNE : CSU in the

relation 194 : 146 : 93 : 76 : 68 : 45.

2.4. NEGATIVE VOTING WEIGHTS

Does the Bundestag seat apportionment fairly represent the whole people on the basis

of the voters’ ballots on election day? As a matter of fact on 3 July 2008 the Federal

Constitutional Court ruled that the seat apportionment procedure, as described in the

previous sections, violated the electoral principles of an equal and direct suffrage. Ac-

knowledging that any amendment of the Federal Election Law poses a major challenge

to the Bundestag, the court allowed the subsequent 2009 election to be conducted ac-

cording to the prevalent law despite its unconstitutionality. However, the court ordered

the Bundestag to restore the law’s constitutionality by 30 June 2011. The government

majority tabled a proposal on 28 June 2011, and later voted it into law against a ve-

hemently dissenting opposition. The amended law entered into force on 3 December

2011. The opposition minority and a group of dedicated citizens, maintaining that

the amended law still violated the electoral principles of an equal and direct suffrage,

took the amended law to the Federal Constitutional Court. The court ruled that the

amended law was indeed incompatible with the electoral principles in the Basic Law,

and declared it null and void. As of ten o’clock on 25 July 2012, when the court read

its opinion, Germany had no valid Federal Election Law.

The bone of contention is a bizarre effect called negative (or inverse) voting

weights. The name indicates a discordant behavior of votes and seats. A party may

profit from fewer votes by getting more seats, other things being equal. In other words

voters may support the party of their choice by not casting their votes for this party.

Conversely, more votes may be detrimental because of entailing fewer seats. For exam-

ple, in 2009 the CDU might have profited from losing 18 000 second votes in Saxony

(782 898 instead of 800 898), thereby winning an additional Bundestag seat (195 in-

stead of 194). How? The loss of votes releases a proportionality seat of the CDU in

Saxony, that instantly resurfaces for the CDU in Lower Saxony. But CDU seats in

Saxony are sealed as direct seats. Hence the CDU in Saxony stays put, and the CDU

in Lower Saxony increases their seats by one. The final tally is fewer votes, more seats.
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What seems a mere hypothetical possibility turned into reality during the election

to the 16th Bundestag in 2005. The main election took place on 18 September 2005. In

the constituency Dresden I in Saxony, however, a candidate had died too suddenly for

the party to nominate a substitute candidate for the main election. Thus a by-election

had to be called that took place two weeks later, on 2 October 2005. The scenario then

was of the same type as that in the previous paragraph. The Dresden I by-election

leaves no doubt that about ten thousand CDU supporters withheld their second votes

from the CDU in order not to harm the party of their choice.

This incident proved to the Federal Constitutional Court that the Federal Election

Law makes voters speculate whether casting their votes for the party of their choice

helps its cause, or hinders it. The fact that casting a vote may prove detrimental

undermines the legitimizing function of democratic elections, and fools voters to a

degree that is unacceptable. The court ruled the law unconstitutional in as far as

it leads to negative vote weights, and called upon the Bundestag to amend these

provisions. The story continues in Chapter 13.

2.5. DIRECT AND UNIVERSAL SUFFRAGE

The reasoning in the Constitutional Court’s decision builds on the constitution of

course. Article 38, Section 1, of the German Basic Law specifies five electoral principles:

Die Abgeordneten des Deutschen Bundestages werden in allgemeiner, unmittel-

barer, freier, gleicher und geheimer Wahl gewählt. Sie sind Vertreter des ganzen

Volkes, an Aufträge undWeisungen nicht gebunden und nur ihrem Gewissen unter-

worfen.

The Members of the German Bundestag are elected in a universal, direct, free,

equal, and secret election. They are representatives of the whole people, not bound

to orders nor instructions, and accountable solely to their conscience.

The five principles of a direct and universal suffrage in a free, equal, and secret ballot

also constitute Europe’s electoral heritage, according to the 2002 Code of Good Practice

in Electoral Matters of the European Commission for Democracy Through Law (Venice

Commission) of the Council of Europe. It is beyond the scope of this book to analyze

the principles’ meaning in full depth. We restrict ourselves to some brief comments to

elucidate the principles’ meanings.

The principle of direct suffrage demands that the translation of votes into seats

is not hampered by any intervention. A prototype indirect election is the election

of a President of the United States. The electorate is called to the polls to elect the

President, but their votes are filtered through the actions of the Electoral College. The

President is elected by the electors in the Electoral College, not directly by the people.

Indirect, stratified electoral systems were common in the multi-layered stratified

societies of the Middle Ages. In medieval times Augsburg, a financial center of Europe,

was a Free Imperial City in the Holy Roman Empire of the German Nation. The

proceedings for the election of the Augsburg Mayor were somewhat circumstantial.

Every male Augsburg citizen was a member of a guild, and his franchise was bound

to the guild. In other words the electorate was subdivided into districts on the basis



38 CHAPTER 2. IMPOSING CONSTITUTIONALITY: THE 2009 BUNDESTAG ELECTION

of social, rather than geographical, membership. As a guild member a man voted

to elect his guild’s Council of Twelve (Zwölferrat). The Councils of Twelve of all

Augsburg guilds elected the Great Council (Großer Rat). The Great Council elected

the Governing Council (Kleiner Rat). The Governing Council elected the Mayor. Part

of the layered structure of the society was the claim of the upper level to be the sounder

part (sanior pars), the political board that knew better than the lower level. When in

1502 the Augsburg carpenter Marx Neumüller was elected to the Great Council and

he came to take his seat, he was sent home again (wider haim), because the council’s

majority did not approve of his election. In contrast, the principle of a direct election

leaves no leeway for any political body to claim to be the sounder part, nor to interfere

otherwise in the translation of votes into seats.

The principle of universal suffrage grants the franchise to every German. The

meaning of “every German” has expanded over time. In imperial Germany it meant

every male German of age twenty-five years and older, excluding the military, people

living on welfare payments, and a few other groups of society. Nowadays the notion of

every German embraces all male and female Germans who are at least eighteen years

old. Exclusions from the franchise are kept to a minimum.

In the Middle Ages the concept of universal elections was unknown. All elections

were limited to small electoral colleges. The archetype has always been the College

of Cardinals to elect the Pope of the Roman Catholic Church. In addition many low

level clerical institutions conducted elections to select their leaders. So did the secular

world, again always limiting the electorate to an ensemble of privileged individuals.

For example the King of the Holy Roman Empire of the German Nation was elected by

the Electoral College of the seven Prince Electors. The inception and enforcement of

direct and universal elections are an achievement of modern and contemporary history,

growing out of the Era of Enlightenment, the independence of the United States, the

French Revolution, and the times thereafter.

2.6. FREE, EQUAL, AND SECRET BALLOTS

The Middle Ages pondered already how electors could cast a free, equal, and secret

ballot. In those days the term “electors” meant the members of a small, distinguished,

and well-defined electoral college. In 1299, the Catalan philosopher Ramon Llull (1232–

1316) elaborated on the pros and cons of open versus secret votes. In 1433, the German

clergyman Nicolaus Cusanus (1401–1464), later promoted Cardinal of the Roman Cu-

ria, argued forcefully in favor of secret balloting to secure a free vote. It would keep

electors from offering their votes for sale to the candidates, and it would prevent can-

didates from frightening the electors and exerting undue pressure on them. Moreover

Cusanus held that a secret ballot was a necessity for all votes to acquire an equal

impact on the final outcome. The historical sources prove that a free, equal, and secret

ballot always has been considered a prerequisite for the validity of an election.

The principle of a free ballot means that voters are not subjected to any pressures

about whom to vote for, that individuals may stand as candidates at their own discre-

tion without anybody hindering them to do so, and that parties may participate with

a minimum of bureaucratic requirements.
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The principle of a secret ballot serves the same purpose today as it did in Cusanus’s

time. It shields voters from being frightened or pressured by those who stand in the
election, and it keeps them from selling their votes to candidates or parties.

The principle of an equal ballot constitutes the essence of contemporary demo-

cratic elections. The German Federal Constitutional Court has developed a comprehen-
sive jurisdiction concerning the issue of electoral equality in proportional representation
systems. Of course, the court’s rulings are binding only within Germany. We feel that

they may radiate beyond, in view of their inner consistency of what parliamentary
elections are supposed to accomplish.

Equality is a relation among many subjects, not a property of a single item. It

depends on the reference set within which it applies. In Sections 2.7–2.9 we explicate
three distinct sets: voters, Members of Parliament, and political parties. In each set,
equality may be captured by a precise numerical quantity. These quantities would be in

a one-to-one relationship if seats were continuously divisible and could be fractionated.
This is not so, seats are discrete entities and come in whole numbers. For this reason
it makes a difference whether equality is referred to the voters, to the Members of

Parliament, or to the parties, as emphasized in Section 2.10.
The equality principle is missing from the parts in the 2010 Treaty of Lisbon

(Treaty on European Union) that deal with the election of the EP. Article 14, Section 3,

reads:

The members of the European Parliament shall be elected for a term of five years
by direct universal suffrage in a free and secret ballot.

Is the inclusion, or omission, of electoral equality at the discretion of the legislator?
Every Member State of the European Union is among the 47 members of the Council

of Europe and, as such, endorses the Venice Commission’s Code of Good Practice in
Electoral Matters. However, it is a challenge to fill the abstract principle of electoral
equality with a concrete meaning that would limit the margin of discretion of the

legislator. Hence varied interpretations, not disagreement on its importance, may have
prevented inclusion of the equality principle into the Treaty of Lisbon.

2.7. EQUALITY OF THE VOTERS’ SUCCESS VALUES

The German Federal Constitutional Court uses the notion of success value equality
(Erfolgswertgleichheit) of the voters’ votes to asses electoral equality in proportional

representation systems. The court coined the notion right at the beginning of its
functioning, in a decision of 5 April 1952 that refers to a similar decision of the Bavarian
State Constitutional Court a month earlier. The subjects on whom this notion of

electoral equality focuses are the voters:

. . .; alle Wähler sollen mit der Stimme, die sie abgeben, den gleichen Einfluss auf
das Wahlergebnis haben.

. . .; all voters shall have the same influence on the result of the election with the

vote they cast.

Ever since, success value equality for all voters has been the central reference point for
constitutional jurisdiction on proportional representation in Germany.
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Since the voters are the main protagonists on election day it appears utterly

adequate to focus on them, and not on the candidates elected, nor on the parties

mediating between those voting and those elected. In fact, the goal was formulated

decades earlier in 1910 by André Sainte-Laguë (1910a):

Pour que l’égalité des bulletins de vote soit aussi complète que possible, chacun

des électeurs doit avoir la même part d’influence.

For the equality of the ballots to be as complete as possible, each voter must have

an equal part in influence.

Similarly George Pólya put voters ahead of political parties rather explicitly in his 1919

writings on proportional representation systems:

Das Prinzip des gleichen Wahlrechts fordert die möglichst gleichmäßige Berück-

sichtigung der Wünsche aller Wähler, aber nicht der Parteien, als solcher.

The principle of equal suffrage demands observing as evenly as possible the wishes

of all voters, but not of the parties, as such.

The reference to Members of Parliament, or to parties, justifies alternative manifesta-

tions of electoral equality, as explicated in subsequent sections.

Pursuant to its initial definition of success value equality of the voters’ votes, the

German Federal Constitutional Court has developed a consistent body of jurisdiction

on the principle of electoral equality. The jurisdiction is in text form, of course, but it is

precise to a degree that it lends itself to a unique and compelling form of quantification.

The electoral success manifests itself through the number of seats apportioned to the

party of the voter’s choice, party P . Any voter of party P shares the individual success

equally with the other voters who cast their vote for the same party. Hence the success

share of a voter of party P is given by the ratio of seats relative to votes,

seat number of party P

vote count for party P
.

For example, in Table 2.1 the success share of a CDU voter amounts to 173/11 828 277

= 0.000 014 626. Since the vote counts may range into the millions, a success share

is a minute quantity. Besides being of an awkward order of magnitude numerically,

success shares do not tell the full story. The impact of 173 seats is contingent on how

many seats are available altogether. For instance, in a house of size 300 they constitute

a straight majority, while in a house of size 598 they account for a bit more than a

quarter of the seats. Similarly, the vote count of a party exhibits its true weight only

when referred to the overall vote total. Thus the success value of a voter’s vote for

party P is defined to be the ratio of seat shares relative to vote shares,

seat number of party P / house size

vote count for party P / vote total
.

The definition turns the success values into manageable quantities. Theoretically, if all

votes would enjoy the same success value, seat shares would coincide with vote shares.

All voters would enjoy the success value unity, a one-hundred percent success.



2.8. EQUALITY OF REPRESENTATIVE WEIGHTS 41

Practically, deviations from theoretical equality are unavoidable. For example, in

Table 2.1 the success value of a CDU voter turns out to be 0.997, while an SPD voter

has success value 0.996. In other words, a CDU voter realizes a 99.7 percent success,

an SPD voter a 99.6 percent success. The complete picture of the success values in the

2009 Bundestag election is as follows:

Voter Success value [in%] Deviation from 100%

CDU voter 99.7 −0.3
SPD voter 99.6 −0.4
FDP voter 100.4 0.4
LINKE voter 100.5 0.5

GRÜNE voter 99.8 −0.2
CSU voter 101.2 1.2

Some voters stay short of a one-hundred percent success, others reach beyond. Imme-

diately the question comes to mind whether the observed deviations from ideal equality

can be reduced any further, or not. We return to this question later, in Chapter 10.

At present the point is more modest, to enable us to ask such questions. We may do

so because the success value of a voter’s vote, while originally introduced as a norma-

tive, qualitative standard of constitutional law, may be identified with a quantitative,

procedural concept that is amenable to a conceptual analysis.

2.8. EQUALITY OF REPRESENTATIVE WEIGHTS

Another group of electoral protagonists are those elected, the Members of Parliament.

They enjoy the constitutional right of statutory equality. From the viewpoint of Mem-

bers of Parliament the election is equal provided every Member of Parliament repre-

sents the same number of voters. To this end we define the representative weight of a

Member of Parliament of party P to be the average number of voters per seat,

vote count for party P

seat number of party P
.

Representative weights are measured in vote fractions. They indicate the number of

people represented by a party’s Member of Parliament. Representative weights are

interpretable without further standardization. Ideally, if they are all equal to each

other, then they would coincide with the votes-per-seats ratio.

For example, it is straightforward to evaluate the representative weight of a Mit-

glied des Bundestages (MdB, Member of Parliament) in Table 2.1. The weight of a

CDU MdB amounts to 11 828 277/173 = 68 371.5 vote fractions. An SPD MdB carries

a weight that is a bit heavier, 9 990 488/146 = 68428 votes. The ideal representative

weight, the votes-per-seats ratio, is 40 764 288/598 = 68 167.7 vote fractions. Alto-

gether the numbers come out as follows:
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MdB Representative weight Deviation from 68 167.7

CDU MdB 68 371.5 203.8
SPD MdB 68 428.0 260.3
FDP MdB 67 914.8 −252.9
LINKE MdB 67 841.2 −326.5
GRÜNE MdB 68 283.4 115.7
CSU MdB 67 386.6 −781.1

When looking for numerical evidence the German Federal Constitutional Court

calculates representative weights and rounds them to whole numbers. In this way the

court evades the reference to vote fractions, and replaces them by numbers of voters.

While the court’s practice is convenient for communication purposes, it distracts from

the technical difficulties of having to deal with interim quotients that are not whole

numbers, in a context where only whole numbers make sense. In this book we stick to

the original definition. Representative weights are votes-per-seats quotients, and hence

generally are fractional numbers.

2.9. SATISFACTION OF THE PARTIES’ IDEAL SHARES OF SEATS

Usually a parliament features just a handful or so of political parties, in contrast to

hundreds of its members, and even millions of its voters. In view of the size of the

numbers it may seem that parties are simplest to deal with. They are not the most im-

portant group in an electoral system, though. From a constitutional viewpoint parties

rank only third in importance, behind voters, and behind Members of Parliament.

In a proportional representation system a party may claim its ideal share of seats,

that is, the share of seats going along with its share of votes,

vote count for party P

vote total
× house size.

For example, if a party gets 12.3 percent of the votes then it would claim 12.3 percent

of the seats. Since an arbitrary percentage of the house size usually yields a fractional

number of seats, ideal shares are measured in seat fractions.

For the 2009 Bundestag election in Table 2.1, the actual seats of a party, its ideal

share of seats, and their difference, its seat excess, are as follows:

Party Actual seats Ideal share Seat excess

CDU 173 173.5173 −0.5173
SPD 146 146.5575 −0.5575
FDP 93 92.6550 0.3450
LINKE 76 75.6360 0.3640

GRÜNE 68 68.1154 −0.1154
CSU 42 41.5188 0.4812

Within each of the three groups—voters, candidates, and parties—the qualitative

message is the same. For example, a CSU voter enjoys a success value that is larger

than the ideal success value, by 1.2 percentage points. A CSU MdB is better off with

a representative weight that is lighter than the ideal representative weight, by 781.1

voter fractions. The CSU as a party is allocated a seat number that exceeds the ideal

share of seats, by 0.4812 seat fractions. What about these quantitative indices?
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2.10. CONTINUOUS FITS VERSUS DISCRETE APPORTIONMENTS

Let us hypothetically imagine an ideal world where Members of Parliament are divisible

into continuous fractions. Then the ideal share of seats of a party P would constitute
the solution. In terms of a formula, party P would be allocated an amount of seats
given by the formula

yP =
vP
v+

h,

where vP denotes the vote count for party P , v+ designates the total of all effective

votes, and h signifies the house size. The outcome yP on the left-hand side is the
amount of seat fractions sought.

This assignment would comply perfectly well with all equality standards men-

tioned. The success values of all voters turn out to be equal to unity and signal a
uniform one-hundred percent success,

yP /h

vP /v+
= 1.

The representative weights of all Members of Parliament would become equal,

vP
yP

=
v+
h
.

The ideal share of seats of all parties coincides with the seat allocation, by the very

definition of yP . The ideal world has no problems in coping with ideal equality.
But the world is real, not ideal. Members of Parliament are human beings who

are entitled to be treated discretely, each in her or his own right. The problem is not

to calculate continuous seat fractions. Rather, the discrete charm of each seat must be
honored. The task is to determine a discrete apportionment, a procedure respecting
the discrete character of the seats. Whatever continuous quantities are calculated

in-between, in the end they must be rounded to whole numbers.
It seems easy enough to round fractional quotients to whole numbers. Rounding

unfolds an enigmatic complexity, however, when it concerns parliamentary seats. This

is no different from every-day life where we round in various ways to meet various
sentiments. When asked for age we round downwards until the very last minute when
on our birthday we grow a year older. When paying a bill in a restaurant the sole

accepted rounding method is upward rounding, if only because of its implied expression
of appreciation. When business partners negotiate contracts or convert currencies they
use commercial rounding because experience has shown that it treats both partners in

a fair and symmetric fashion. To cope with these issues in a systematic way, Chapter 3
develops a theory of rounding functions, and rounding rules.
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From Reals to Integers:
Rounding Functions,
Rounding Rules

A rounding function is a function mapping positive quantities into integers. Prominent
examples are the floor function, the ceiling function, the commercial rounding function,
and the even-number rounding function. Every rounding function induces a sequence
of jumppoints, called signposts, where it advances from one integer to the next. In
contrast, a rounding rule is more liberal, in that it maps into subsets of integers. A non-
signpost is always mapped into a singleton. However, a signpost is mapped into a two-
element subset comprising two neighboring integers. Thus rounding rules are elusive
whether a signpost is rounded to one integer or to the other. Prominent examples are
the rules of downward rounding, of standard rounding, and of upward rounding. Of
particular interest are the rounding rules that belong to the one-parameter family of
stationary signposts, or to the one-parameter family of power-mean signposts.

3.1. ROUNDING FUNCTIONS

All seat apportionment methods need to map interim quotients of some sort into whole

numbers. This is achieved by rounding functions, and by rounding rules. We begin by

introducing rounding functions.

Definition. A rounding function f is an increasing function mapping the non-

negative half-axis [0;∞) onto the set of natural numbers � := {0, 1, 2, 3, . . .},

f : [0;∞)→ �, f increasing and onto.

The qualifiers “increasing” and “onto” mean that the function starts at f(0) = 0

and, as the arguments t grow from zero towards infinity, the values f(t) = n grow from

an integer n to its successor n + 1 unboundedly. The specific requirement that the

rounded value f(t) is an integer near t is postponed until Section 3.10. Four rounding

functions are of particular interest: the floor function, the ceiling function, and the

commercial and even-number rounding functions, as detailed in the following sections.
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3.2. FLOOR FUNCTION

The mother of all rounding functions is the floor function, defined for all t ≥ 0 through

�t� := max
{
n ∈ � ∣∣ n ≤ t

}
.

The value �t� is the natural number just below t, called the integral part of t. From

�t� ≤ t < �t� + 1, that is t − 1 < �t� ≤ t, we see that �t� is the unique integer in

the half-open interval (t − 1; t]. The remainder t − �t� ∈ [0; 1) is the fractional part

of t. The floor function is instrumental to decompose a non-negative number into its

integral part and its fractional part,

t = �t�+ (t− �t�).
Thus 12.34 has integral part �12.34� = 12, and fractional part 12.34− �12.34� = .34.

The floor function acts as the truncation operator that ignores all digits after

the decimal point; this is why it is particularly suited for computing machinery. The

function dates back to Gauss (1808) who denoted it by [t]; some authors refer to this

notation as Gauss brackets. In this book the brackets [·] signify a general rounding

function which we do not want to specify to a particular one.

3.3. TIES AND THE NEED FOR ROUNDING RULES

Seat apportionment problems involve the side condition that the sum of all seats must

be equal to the preordained house size. The handling of these problems calls for a

modification of rounding functions into rounding rules. We illustrate the insufficiency

of rounding functions by means of the floor function. To this end we manipulate the

data in the EP 2009 election in Austria (Table 1.3) so that they exhibit the cause of

irritation, ties. Table 3.1 lowers party A to 840 000 votes, and raises party B to 700 000

votes. Thus both vote counts become integral multiples of the divisor 140 000.

In a first attempt we stick to the divisor 140 000, and obtain the interim quotients

in the fifth column of Table 3.1. The floor function rounds party A’s quotient 6.0 to

6 seats, and B’s quotient 5.0 to 5 seats (not shown as a separate column in Table 3.1).

The other parties get 3 : 2 : 2 : 0 seats. A total of 18 seats are handed out, one seat

too many compared to the Austrian allocation of 17 seats.

In a second attempt we increase the divisor to 140 001, so as to decrease the number

of seats apportioned. Naturally, all interim quotients decrease. Party A’s quotient

becomes genuinely smaller than 6.0 and is rounded downwards to 5 seats. Party B’s

quotient falls strictly below 5.0 and is rounded downwards to 4 seats. Adjoining the

3 : 2 : 2 : 0 seats of the others only 16 seats are alloted, one seat too few.

There are two options how to proceed. Either we declare the problem of ap-

portioning 17 seats to be unsolvable and turn away, with weird implications for the

Austrian EP allocation. Or we surmise that the solution lies in-between the first at-

tempt that divides eleven seats between parties A and B according to 6 : 5, and the

second attempt that divides nine seats according to 5 : 4. The solution sought ought

to handle ten seats, and divide them into 6 : 4 or 5 : 5. The handling of ten seats,

in either way, is the pragmatic conclusion to be adopted. It is common sense that a

competition may terminate with some of the contestants tied, if only rarely so.
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(EP2009AT) Votes Quotient DivDwn Quotient DivDwn Quotient DivDwn

A 840 000 5.999 96 5 6.0 6− 6.000 04 6
B 700 000 4.999 96 4 5.0 4+ 5.000 04 5
C 506 092 3.6 3 3.6 3 3.6 3
D 364 207 2.6 2 2.6 2 2.6 2
E 284 505 2.03 2 2.03 2 2.03 2
F 131 261 0.9 0 0.9 0 0.9 0

Sum (Divisor) 2 826 065 (140 001) 16 (140 000) 17 (139 999) 18

TABLE 3.1 Occurrence of ties. The vote counts of the two strongest parties in Table 1.3 are

manipulated until they are tied. For house size 17 it is equally justified to allocate either 6 and 4

seats, or 5 seats each. The two options are indicated by means of the trailing plus- and minus-signs.

To save space we code ties by trailing plus-signs and trailing minus-signs. In

Table 3.1, the notation 6− and 4+ indicates two-element sets of feasible seat numbers,

6− := {5, 6} and 4+ := {4, 5}. Every choice of seat numbers from these sets is

legitimate provided the sum of all seats exhausts the preordained house size. With two

parties tied there are two equally justified apportionments, 6 : 4 and 5 : 5. Generally

the number of tied apportionments is given by a binomial coefficient, see Section 4.7.

3.4. RULE OF DOWNWARD ROUNDING

Rounding rules pave the way to handle ties in an efficient manner. They are set-valued

mappings, admitting at their jumppoints the two-element set comprising the integer

before the jump, and the integer after the jump. We denote rounding rules by double

brackets, as a reminder that they embrace two feasible rounded values. The rule of

downward rounding is defined for all t ≥ 0 through

��t�� :=
{{�t�} in case t �= 1, 2, 3, . . .,{

t− 1, t
}

in case t = 1, 2, 3, . . ..

The expression n ∈ ��t�� reads as “n results from t via downward rounding”, or “t is

rounded downwards to n”. For instance, in Table 3.1 we get for the first three parties⌊⌊840 000
140 000

⌋⌋
= ��6�� = {5, 6},

⌊⌊700 000
140 000

⌋⌋
= ��5�� = {4, 5},

⌊⌊506 092
140 000

⌋⌋
= ��3.6�� = {3}.

That is, downward rounding of the quotient of the first party yields 6 or 5, of the

second party 5 or 4, of the third party 3.

The information inherent in the rule of downward rounding is the same as that

provided by the floor function in cases when t is a non-integer. In these cases the floor

function yields �t�, while downward rounding is more circumstantial by packaging the

same answer into a one-element set, {�t�}. However, in cases when t = 1, 2, 3, . . . is

an integer the floor function results in a unique value, �t� = t, whereas downward

rounding yields a two-element set, ��t�� = {t− 1, t}. Rounding rules are more laborious

to deal with, but the added labor is worth the gain. The exposition provides persuasive

evidence that rounding rules capture the occurrence of ties in a rather practical manner.
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3.5. CEILING FUNCTION AND RULE OF UPWARD ROUNDING

The counterpart of the floor function is the ceiling function, defined for all t ≥ 0

through

�t� := min
{
n ∈ � ∣∣ n ≥ t

}
.

The value n = �t� is the natural number just above t. From �t� − 1 < t ≤ �t�, that is
t ≤ �t� < t+1, we see that �t� is the unique integer in the half-open interval [t; t+1).

Hence positive reals are mapped to positive integers, t > 0 ⇒ �t� ≥ 1. Or, the other

way around, only zero is mapped into zero, �t� = 0⇒ t = 0.

The rule of upward rounding that goes along with the ceiling function is given by

��t�� :=
{{�t�} in case t �= 1, 2, 3, . . .,{

t, t+ 1
}

in case t = 1, 2, 3, . . ..

The distinct orientation of downward rounding versus upward rounding becomes evi-

dent at the jumppoints t = 1, 2, 3, . . . where ��t�� = {t− 1, t}, but ��t�� = {t, t+ 1}.

3.6. COMMERCIAL ROUNDING FUNCTION

A rounding function with a neutral orientation is the commercial rounding function.

Fractional parts are rounded downwards when strictly smaller than one-half, and up-

wards otherwise. The commercial rounding function is defined for all t ≥ 0 through

〈t〉 :=
{ �t� in case t− �t� ≥ 1

2 ,

�t� in case t− �t� < 1
2 .

A mechanical prescription refers to the decimal representation of t. If its first digit

after the decimal point is 0, 1, 2, 3 or 4, then the fractional part is considered to be

a minor fraction and t gets rounded downwards. If the first decimal place is 5, 6,

7, 8 or 9, then the fractional part is taken to be a major fraction and t is rounded

upwards. In particular a fractional part exactly equal to one-half is rounded upwards;

this prescription leaves a residue of an upward drift that lacks symmetry.

The missing symmetry is restored by the even-number rounding function. By

definition it coincides with the commercial rounding function except that numbers

with a fractional part of one-half are rounded to the nearest even integer:

〈t〉∗ :=

{ �t� in case t− �t� > 1
2 , or t− �t� = 1

2 and �t� even,
�t� in case t− �t� < 1

2 , or t− �t� = 1
2 and �t� even.

Hence the jumppoints 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 etc. are rounded to 0, 2, 2, 4, 4, 6

etc. The even-number rounding function is the default round command implemented

in the popular statistics software R. Here the reader may well ask Why even? Why

not odd? A good question with no good answer.
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EXHIBIT 3.1 The rule of standard rounding. If the fractional part of t is equal to one-half, standard
rounding is undecided and may round either way, downwards and upwards (•). Otherwise t is rounded

downwards if its fractional part is smaller than one-half, and upwards if larger.

3.7. RULE OF STANDARD ROUNDING

The commercial and even-number rounding functions both jump at the midpoint n−
1/2 of the integer interval [n − 1;n]. For this reason they induce the same rounding

rule, the rule of standard rounding. It is defined for all t ≥ 0 through

〈〈t〉〉 :=

⎧⎪⎪⎨⎪⎪⎩
{�t�} in case t− �t� > 1

2 ,{�t�, �t�} in case t− �t� = 1
2 ,{�t�} in case t− �t� < 1
2 .

That is, if the fractional part of t is smaller than one-half, then standard rounding

rounds downwards. If the fractional part is larger than one-half, then standard round-

ing rounds upwards. If the fractional part is exactly equal to one-half then standard

rounding is undecided and may turn either way, downwards or upwards.

It is unambiguous to extend the rule of standard rounding from the half-axis [0;∞)

to the whole real line �. To this end multiplication and translation of real subsets is

indicated by −{a, b, . . .} := {−a,−b, . . .}, and {a, b, . . .}+ z := {a+ z, b+ z, . . .}. The
definition of standard rounding is extended to the nonpositive half-axis via 〈〈−t〉〉 :=
−〈〈t〉〉, for all t ≥ 0. With this extension all real numbers t ∈ � and all integers z ∈ �
obey the identity

〈〈t+ z〉〉 = 〈〈t〉〉+ z.

Standard rounding is the only rounding rule that is equivariant under reflections and

equivariant under translations. This is a pleasing feature of standard rounding; see

Exhibit 3.1. In contrast, a general rounding rule has an extension by reflection that

differs from the extension by translation. For this reason the domain of definition of

general rounding rules remains restricted to the positive half-axis [0;∞).
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EXHIBIT 3.2 Rounding rules. Given a jumppoint sequence s(0) = 0 ≤ s(1) < s(2) < · · ·, an

argument t in an open interval
(
s(n); s(n + 1)

)
is rounded to n, [[t]] = {n}. The jumppoints s(n)

themselves are rounded to a two-element set, [[s(n)]] = {n−1, n}, except for the initial value [[0]] = {0}.

3.8. GENERAL ROUNDING RULES

A rounding rule allows a jumppoint to be rounded downwards or upwards and thus
admits two values. A rounding function, being single-valued, cannot be so liberal and
must turn either one way, or else the other way. Given a rounding function f , its nth

jumppoint s(n) is retrieved from the formula

s(n) := inf
{
t ≥ 0

∣∣ f(t) ≥ n
}
.

This formula does not depend on whether f rounds the jumppoint s(n) downwards to
n − 1, or upwards to n. Since this is the type of freedom aimed at, the definition of

rounding rules starts out from jumppoint sequences rather than rounding functions.

Definition. A jumppoint sequence s(0), s(1), s(2), . . . is defined to be an unbound-

ed sequence of nonnegative numbers satisfying s(0) = 0 ≤ s(1) < s(2) < · · ·. A jump-
point sequence defines a rounding rule [[·]] by setting, for all t ≥ 0 and n ∈ �,

[[t]] :=

⎧⎪⎪⎨⎪⎪⎩
{0} in case t = 0,

{n} in case t ∈ (s(n), s(n+ 1)
)
,

{n− 1, n} in case t = s(n) > 0.

A rounding rule is called pervious when s(1) > 0. A rounding rule is called impervious
when s(1) = 0.

The definition ensures that zero is always and unambiguously rounded to zero,
[[0]] = {0}. In other words, all rounding rules obey the no input–no output law.

In the empirical examples parties with vote count zero are not even mentioned as
they certainly do not get a seat. For impervious rules these are the only have-
nots. For pervious rules, it is possible that rounding annihilates very small quantities,

t ∈ [
0; s(1)

) ⇒ [[t]] = {0}. Its functioning may be compared to a sieve that loses
quantities too small to get hold of. The attribute “pervious” (German: durchlässig) is
meant to be indicative of annihilating a positive input that is too small. A pervious

rounding rule is sketched in Exhibit 3.2.
In most instances a rounding rule returns a singleton, [[t]] = {n}. These unam-

biguous instances apply whenever t lies strictly between the nth jumppoint and its

successor, s(n) < t < s(n+1). They may be paraphrased by saying that “t is rounded
to n”. All empirical examples in Chapters 1 and 2 fall into this category.

The remaining instances are two-way ties. A tie arises when t hits a positive

jumppoint, t = s(n) > 0 for some n ≥ 1. Then a rounding rule delivers the two-
element set {n − 1, n}. The rule considers it equally justified to round a tied input
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t = s(n) > 0 downwards to n− 1, or upwards to n. The ambivalence that a tie may be

rounded either way, downwards or upwards, is indispensable for realistically modeling
practical electoral systems, as pointed out in Section 3.3.

How do rounding rules relate to rounding functions? A rounding function [·] is
said to be compatible with the rounding rule [[·]] when the rounding function maps to
values that are feasible for the given rounding rule,

[t] ∈ [[t]] for all t ≥ 0.

For example, the commercial rounding function is compatible with the rule of standard

rounding, and so is the even-number rounding function. Evidently the relation of
rounding rules to rounding functions is one-to-many. In contrast, the correspondence
between rounding rules and jumppoint sequences is one-to-one.

The definition requires rounding functions to be increasing and onto (Section 3.1).
Rounding rules share these properties in the sense of set-valued mappings. A rounding
rule is set-monotonic in the sense of

t < T =⇒ [[t]] ≤ [[T ]],

where the right-hand side means that all n ∈ [[t]] and all N ∈ [[T ]] satisfy n ≤ N .
Moreover, a rounding rule maps onto the set � in the sense that the union of its image
sets is equal to the set of all natural numbers,

⋃
t≥0[[t]] = �.

In order not to overload the presentation we identify a rounding rule with its
jumppoint sequence without any explicit reference. Hence we may start with a round-
ing rule [[·]], and instantly refer to its underlying jumppoint sequence s(n), n ≥ 0.

Or we name a specific jumppoint sequence, and then immediately apply the induced
rounding rule. The identification often makes use of the fundamental relation

n ∈ [[t]] ⇐⇒ s(n) ≤ t ≤ s(n+ 1)

that holds for all t ≥ 0 and for all n ∈ �. The left-hand side refers to the rounding
rule, the right-hand side to its jumppoint sequence. The fundamental relation is a

direct consequence of the definition, and is going to be called upon again and again.

3.9. GENERALIZED JUMPPOINT SEQUENCES

In the definition of a rounding rule [[·]] we allow a jumppoint sequence to initially stay
put, 0 = s(0) = s(1), but insist that it is strictly increasing thereafter, s(n) < s(n+1)
for all n ≥ 1. This level of generality is sufficient for the inclusion of the special

rounding rules mentioned earlier. For example upward rounding has the jumppoints
s(n) = n− 1 for all n ≥ 1, and hence satisfies s(0) = s(1) = 0.

More generality would be achieved by admitting unbounded sequences that are

only weakly increasing, s(0) = 0 ≤ s(1) ≤ s(2) ≤ · · ·. The definition of the induced
rounding rule would have to be amended to admit multi-way ties,

[[t]] :=

{ {n} in case t ∈ (s(n), s(n+ 1)
)
,

{m− 1, . . . , n} in case s(m− 1) < t = s(m) = · · · = s(n) < s(n+ 1),

so that the mapping remains onto �. We are unaware of any empirical relevance of

this level of generality. Most applications rely on jumppoint sequences that are more
specific rather than more general, and have the structure of signpost sequences.
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EXHIBIT 3.3 Signpost sequences. Signpost sequences are specific jumppoint sequences obeying the
localization requirement s(n) ∈ [n − 1;n]. The exhibit sketches a signpost sequence with signposts

s(1) = 0.3, s(2) = 1.6, s(3) = 2.7, s(n) = n− 1/2, and s(n+ 1) = n+ 1/2.

As to be defined next, signpost sequences localize the nth jumppoint within the

nth integer interval, [n − 1;n]. There are at least two electoral systems failing to
satisfy this provision. The first is the rounding rule used for parliamentary elections
in Estonia, with jumppoints s(n) = n0.9 for all n ≥ 1. Hence 7.5, lying between

s(9) = 90.9 = 7.2 and s(10) = 100.9 = 7.9, is rounded to 9. The other electoral system
is that for parliamentary elections in Macau. Its jumppoint sequence is s(n) = 2n for
n ≥ 1. Hence t ∈ (0; 2) is rounded to 0, while t ∈ (2; 4) is rounded to 1, and t ∈ (4; 8)

to 2, and so on. We note that the truncated rounding rules [[·]]ba of Section 12.3 may
be expressed by means of the generalized jumppoints

sba(n) :=

⎧⎨⎩
∞ in case n ≥ b,

s(n) in case n = a+ 1, . . . , b,

0 in case n ≤ a.

Since not much seems to be gained by this type of generalization we restrict attention

to specific jumppoint sequences that qualify as signpost sequences, in the following
sense.

3.10. SIGNPOST SEQUENCES

Definition. A signpost sequence s(0), s(1), s(2), . . . is characterized by the three prop-
erties a, b, and c:

a. (Initialization) The starting signpost is fixed at zero, s(0) = 0.

b. (Localization) All subsequent signposts belong to consecutive integer intervals,

s(n) ∈ [n− 1;n] for all n = 1, 2, . . . .

c. (Left-right disjunction) If there exists a signpost hitting a left limit of its localiza-

tion interval then all signposts stay away from their right limits, and if there is a
signpost hitting a right limit then all signposts stay away from their left limits,

s(n) = n− 1 for some n ≥ 1 =⇒ s(n) < n for all n ≥ 1,

s(n) = n for some n ≥ 1 =⇒ s(n) > n− 1 for all n ≥ 1.

Every signpost sequence is strictly increasing, with the sole exception that im-

pervious sequences start out with s(0) = s(1) = 0. Indeed, the localization property
implies that non-strictness s(n) = s(n+ 1) actually entails s(n) = n = s(n+ 1). Then
s(n) hits the right limit of its interval and s(n + 1) its left limit. This constellation

is excluded by the left-right disjunction. This proves strict monotonicity, and verifies
that signpost sequences are special jumppoint sequences.
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A signpost sequence decomposes the non-negative half-axis [0;∞) into successive

intervals,
[
0; s(1)

)
,
[
s(1); s(2)

)
,
[
s(2); s(3)

)
, etc. For impervious sequences the initial

interval
[
0; s(1)

)
= [0; 0) is empty and dispensable, yet is retained for the sake of

notational uniformity. The intervals are localized according to n ∈[s(n); s(n+1)
]
. That

is, the interval
[
s(n); s(n + 1)

]
is the domain of attraction to round to the integer n.

See Exhibit 3.3.

The name “signpost” is borrowed from Balinski /Young (1982 [62]). It nicely

alliterates with Sprungstellen in German, and seuils in French. It is convenient to refer

to s(n) as the nth signpost. Aside from the starting signpost s(0) = 0, the labeling

indicates that the first signpost s(1) lies in the first integer interval [0; 1], the second

signpost s(2) in the second integer interval [1; 2], and so on. The signpost sequences

of the rounding rules mentioned earlier are as follows:

Downward rounding, ��·��: 0, 1, 2, 3, . . . ,

Standard rounding, 〈〈·〉〉: 0, 0.5, 1.5, 2.5, . . . ,

Upward rounding, ��·��: 0, 0, 1, 2, . . . .

The multitude of signpost sequences comprises a pair of one-parameter families that

deserve special attention because of their relevance for the subsequent development.

The first is the family of stationary signposts with split parameter r, the second is the

family of power-mean signposts with power parameter p.

3.11. STATIONARY SIGNPOSTS

Definition. The sequence of stationary signposts with split r ∈ [0; 1] is defined through

sr(0) := 0 and, for all n ≥ 1, through

sr(n) := n− 1 + r.

That is, the sequence with split r is 0, r, 1 + r, 2 + r, 3 + r etc. Within the

integer intervals [n−1;n], the relative position of the signposts sr(n) = n−1+ r stays

the same. The distance to the lower limit is r, to the upper limit it is 1 − r. The

attribute “stationary” alludes to the stability of the signposts under shifts from one

integer interval to the next. For stationary signpost sequences all domains of attraction

for rounding to a positive integer n ≥ 1 have the same length unity, sr(n+1)−sr(n) =

(n+ r)− (n−1+ r) = 1. However, the length of the domain of attraction for rounding

to zero is sr(1)− sr(0) = r. It equals unity if and only if the split is unity, r = 1. All

other splits r < 1 start with a first interval of length less than unity. This boundary

effect has to be kept in mind.

The family of stationary signposts starts from upward rounding (r = 0), passes

through standard rounding (r = .5), and finishes with downward rounding (r = 1).

It thus affords a smooth transition and embeds the three rounding rules into a wider

family. A similar embedding is provided by the family of power-mean signposts. While

more elaborate notationally they embrace another two rules of traditional interests,

harmonic rounding and geometric rounding.
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3.12. POWER-MEAN SIGNPOSTS

Definition. The sequence of power-mean signposts with power parameter p ∈ [−∞;

∞] is defined through s̃p(0) := 0 and, for all n ≥ 1, through

s̃p(n) :=

(
(n− 1)p + np

2

)1/p

in case p �= −∞, 0,∞,

s̃−∞(n) = n− 1, s̃0(n) =
√

(n− 1)n, s̃∞(n) = n.

The expression (n−1)p is nonsensical for n = 1 and p < 0, and so we set s̃p(1) := 0
for p ∈ (−∞; 0). The power-mean sequences with powers p ∈ [−∞; 0] have s̃p(1) = 0
and hence are impervious. Those with p ∈ (0;∞] satisfy s̃p(1) > 0, they are pervious.

The signpost s̃p(n) is the power-mean with power parameter p of the limits n− 1
and n of the integer interval [n− 1;n]. Generally, power-means are an average of two
positive quantities a, b > 0, (

ap + bp

2

)1/p

.

The exponents p �= −∞, 0,∞ are immediately applicable. Since the expression is
convergent as p tends to −∞, 0,∞, the three exceptional cases fit in. Moreover, con-

vergence takes place as a or b tend to zero. The limits give rise to the case distinctions
in the definition of power-mean signposts. It is worth remembering that the parame-
terization is continuous, limq→p s̃q(n) = s̃p(n), for all n ∈ � and all p ∈ [−∞;∞].

The family of power-mean signposts retrieves the special rules of upward rounding
(p = −∞), of standard rounding (p = 1), and of downward rounding (p = ∞). For
p = −1, 0 it adjoins another two rules of traditional interest. The signpost s̃−1(n) =(
(n− 1)−1/2 + n−1/2

)−1
is the harmonic mean of n− 1 and n, whence the rule with

power p = −1 is called harmonic rounding. The signpost s̃0(n) =
√
(n− 1)n designates

the geometric mean of n − 1 and n, whence the rule with power parameter p = 0 is

called geometric rounding. While the stationary family picks up three special rules,
the power-mean family includes each of the five traditional rounding rules:

Split r Power p

Downward rounding: 1 ∞
Standard rounding: 1/2 1

Geometric rounding: — 0

Harmonic rounding: — −1
Upward rounding: 0 −∞

Finally note that l’Hôpital’s rule yields limn→∞
(
s̃p(n)− (n− 1/2)

)
= 0 whenever

p ∈ (−∞;∞). Thus all power-mean rules for which the power parameter is finite
converge to standard rounding as n tends to infinity. The diversity inherent in the

power-mean family evaporates and reduces to the special rules of upward, standard, and
downward rounding. However, the transition to the limit n→∞ models a parliament
with an infinite number of seats, whereas practical seat apportionment problems mostly

deal with smallish seat numbers. Both families merit attention, stationary signposts
as well as power-mean signposts.
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1975 Population Proportion Percent

Asia 2 295 000 000 0.57289 57
Europe 734 000 000 0.18323 18
Americas 540 000 000 0.13480 13
Africa 417 000 000 0.10409 10
Australia and Oceania 20 000 000 0.00499 0

Sum 4 006 000 000 1.00000 98

TABLE 3.2 Insufficiency of simple rounding. The percentages, obtained via commercial rounding

of the proportions, sum to 98 percent only. The discrepancy of −2 percent, of a world population of

four billion, accounts for more than eighty million people, a country of the size of Germany.

3.13. SIMPLE ROUNDING DOES NOT SUFFICE!

While rounding rules succeed in mapping a single quotient into a whole number, they

need not achieve a collective side condition that often forms an indispensable part of

an apportionment problem. For example when quotients are rounded to percentages,

the mere mention of the term “percentages” promises that the total is equal to 100.

It is rather likely though that the promise does not come true, and that the sum

misses the target value 100 by a discrepancy of some percentage points too few or

too many. Chapter 6 investigates the discrepancy distribution in detail. For now

we satisfy ourselves with an example. Table 3.2 exhibits the 1975 World Population,

see Kopfermann (1991 [109]). The percentage total equals 98, not 100, and leaves a

discrepancy of −2 percent. The missing two percents of a population of 4 006 000 000

does away with more than 80 million people, a country of the size of Germany.

The procedure applied may be called simple rounding or näıve rounding. Quan-

tities are individually rounded, without regard to a collective side condition. Since

simple rounding makes no provisions to fulfill the side condition, the resulting round-

ings generally fail to do so. For this reason many statistical publications contain a

disclaimer, somewhere in the small print, that any percentages quoted may fail to sum

to 100 “due to rounding effects”. However, when the 100 units signify parliamentary

seats rather than percentage points, nobody would dare to suggest that some seats

disappear “due to rounding effects. The way-out of the dilemma is to introduce appor-

tionment methods. Chapter 4 is devoted to a class of apportionment methods called

divisor methods, Chapter 5 deals with another class called quota methods.
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Divisor Methods of
Apportionment:
Divide and Round

Apportionment methods are procedures to allocate a preordained number of seats propor-
tionately to vote counts, census figures, or similar quantities. Apportionment methods
must be anonymous, balanced, concordant, decent, and exact. Beyond these organizing
principles the central issue is proportionality. The chapter focuses on the family of
divisor methods; they follow the motto “Divide and round”. The properties of general
divisor methods are elaborated in detail. Five divisor methods are of particular tradi-
tional interest: the divisor methods with downward rounding, with standard rounding,
with geometric rounding, with harmonic rounding, and with upward rounding.

4.1. APPORTIONMENT RULES

The standard setting for seat apportionment problems presumes that a preordained

number of seats h, called house size, must be allocated. The house size is taken to be a

natural number, h ∈ �. The h seats are to be apportioned among � political parties in

proportion to the parties’ vote weights v1, . . . , v�. Usually the weights are vote counts.

At times, it is convenient to take them to be vote shares. Vote counts are integers, of

course, while vote shares are fractions. To cover both cases we allow vote weights to

be arbitrary positive values, vj ∈ (0;∞). We assemble them into the vote vector

(v1, . . . , v�) ∈ (0;∞)�.

Because component sums of vectors keep occurring in the sequel we abbreviate them

by a subscript plus-sign, v+ := v1+· · ·+v�. The output is a seat vector x = (x1, . . . , x�)

for house size h, that is, a vector with integral components that are summing to h. A

convenient shorthand notation for the set of all seat vectors for house size h is

�
�(h) :=

{
(x1, . . . , x�) ∈ ��

∣∣ x+ = h
} ⊆ {0, 1, . . . , h− 1, h}�.

Since the last set is finite, so is its subset ��(h). The component xj of a seat vector

x ∈ ��(h) signifies the seat number of party j ≤ �.
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The problem is the same when seats are apportioned among several states in

proportion to their census figures. Then j indicates a state, and the weight vj is its

apportionment population. In other applications we may be given a set of items whose

measurements are rounded to integral percentages 0, 1/100, . . . , 99/100, 1. Then j is

the name of the item, the weight vj is its measured score, and the h = 100 apportion-

ment units are percentage points. Since the task of apportioning seats to parties of a

political body is a core issue, we continue to orient the terminology towards this type

of application. It is obvious how to re-interpret the results for other applications.

A spontaneous definition of an apportionment function A would demand that A

maps a house size h ∈ � and a vote vector v ∈ (0;∞)� into a seat vector x ∈ ��(h).

However, a lasting definition must support the occurrence of ties, as pointed out in

Section 3.3. This is achieved by switching from a single-valued function to a set-valued

rule. Hence A is assumed to map the input (h; v1, . . . , v�) into a subset of seat vectors

that is nonempty, ∅ �= A(h; v) ⊆ ��(h). However, this notion defies reality because

it is contingent on the size of the party system, �. Nobody distinguishes between

the divisor method with downward rounding for � = 6 parties as in the Austrian EP

election (Table 1.3), and the divisor method with downward rounding for � = 25 parties

as in the Spanish EP election (Table 1.12). It is common practice to quote the method

without any reference to the size of the party system. Hence it remains to ensure that

the definition does not involve the number of participating parties, �.

To this end we denote by V the union of all vote vectors and by W the union

of the power sets of ��, that is, V :=
⋃

�≥2(0;∞)� and W :=
⋃

�≥2 2
�

�

. For a given

input (h; v), the set of seat vectors aimed at is an element in the range space W . For

a vector v ∈ V we designate the number of its components by �(v). Now we are in a

position to provide a definition of apportionment rules that conforms with their usage.

Definition. An apportionment rule A maps house sizes h ∈ � and vote vec-

tors v ∈ V into nonempty subsets of seat vectors for house size h,

A : �× V →W such that ∅ �= A(h; v) ⊆ ��(v)(h).

A solution set A(h; v) is called tie-free when it is a singleton, A(h; v) = {x}. In

this case it is unambiguous to identify the solution set {x} with its element x. In the

general case the notation x ∈ A(h; v) says that the seat vector x is an apportionment

of h seats according to the vote vector v. For an abstract apportionment rule to prove

practically useful it must satisfy five general principles.

4.2. ORGANIZING PRINCIPLES

A reasonable apportionment rule must be anonymous, balanced, concordant, decent,

and exact. We discuss the five principles one after the other.

Anonymity. An apportionment rule A is called anonymous when every rear-

rangement of the vote weights goes along with the same rearrangement of the seat

numbers. Whether a party is listed first or last has no effect on its seat number.

Chapters 1 and 2 make use of anonymity in that parties are ranked by decreasing vote

counts. On the other hand districts usually follow a fix geographical order. Whichever

order applies, the resulting seat numbers are carried along.
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Balancedness. An apportionment rule A is called balanced when the seat num-

bers of equally strong parties differ by at most one seat. Formally, all seat vectors

(x1, . . . , x�) ∈ A(h; v1, . . . , v�) and all parties j, k = 1, . . . , � are required to satisfy

vj = vk =⇒ ∣∣xj − xk

∣∣ ≤ 1.

It would be tempting to insist that equally strong parties get the same number of seats.

But when two parties with the same vote counts must share a house size that is odd, a

one-seat imbalance is unavoidable. Balancedness ascertains that in tied instances the

spread does not grow beyond the inevitable minimum, one seat.

Concordance. An apportionment rule A is called concordant when of two parties

the stronger party does not get fewer seats than the weaker party. Formally, all seat

vectors (x1, . . . , x�) ∈ A(h; v1, . . . , v�) and all parties j, k = 1, . . . , � satisfy

vj > vk =⇒ xj ≥ xk.

Concordance is easy to check visually provided parties are listed by decreasing vote

counts, because then the corresponding seat numbers must be non-increasing too.

When vote counts are ordered otherwise, as with districts, a visual check cannot be

relied upon and needs to be supplemented by a computer program. One would tend to

believe that a discordant result, that is a non-concordant results, is an academic artifact

and does not occur in practice. This is not so. They emerge in electoral systems that

use a succession of several computational stages. The formation of alliances gives rise

to many examples of discordant seat apportionments, see Section 7.11.

Decency. An apportionment rule A is called decent, or positively homogeneous

of degree zero, when its results for vote weights (αv1, . . . , αv�) stay the same for all

scale factors α > 0. In particular, a scaling with the vote total v+ =
∑

j≤� vj affords

a passage from the raw vote counts vj to the induced vote shares wj = vj/v+. This

transition gives the apportionment problem a probabilistic twist. Since vote shares

sum to unity, w+ = 1, they may be interpreted as probabilities. Because of the

usually large size of the denominator v+, the vote shares wj are virtually continuous

probability weights. In contrast, the output signifies probabilities x1/h, . . . , x�/h that

are distinguished by the discrete character of the numerators, xj ∈ {0, 1, . . . , h− 1, h}.
Hence from a stochastic viewpoint a probability distribution with continuous weights

is to be approximated by a probability distribution with discrete weights.

Exactness. An apportionment rule A is called exact when any integer input with

the desired component sum reproduces itself as the unique output,

A(h;x1, . . . , x�) = {(x1, . . . , x�)}

for all (x1, . . . , x�) ∈ ��(h). Hence the results of an exact rule cannot be changed,

let alone be improved, by repeated apportionment cycles. For rules that are decent

and exact we may even insert scaled vote weights (αx1, . . . , αx�), with any scale factor

α > 0, without jeopardizing uniqueness of the solution (x1, . . . , x�).
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4.3. APPORTIONMENT METHODS

Definition. An apportionment method is an apportionment rule A (Section 4.1) that
is anonymous, balanced, concordant, decent, and exact.

The five organizing principles say nothing about the main issue we are aiming at,
the preservation of proportionality. Perfect proportionality would require the existence

of a proportionality constant D > 0 satisfying xj = vj/D for all j ≤ �. On the
left-hand side the seat numbers xj are markedly discrete items. On the right-hand
side the quotients vj/D are practically continuous quantities. Perfect proportionality

is generally beyond reach, and we must be satisfied with some sort of approximate
proportionality, xj ≈ vj/D. This is where the multitude of apportionment methods
comes into play. There are plenty of methods purporting to achieve approximate

proportionality in a satisfactory manner.
A family of apportionment methods amenable to a fairly comprehensive analysis

are divisor methods. They follow the motto “Divide and round”. The essential ingre-

dient to generate a divisor method is a rounding rule [[·]] as introduced in Section 3.8.

4.4. DIVISOR METHODS

Definition. The divisor method A that is induced by the rounding rule [[·]] maps a
house size h ∈ � and a vote vector (v1, . . . v�) ∈ (0;∞)� into the set of seat vectors

A(h; v) :=
{
(x1, . . . , x�) ∈ ��(h)

∣∣∣ x1 ∈
[[v1
D

]]
, . . . , x� ∈

[[v�
D

]]
for some D > 0

}
.

In other words the seat numbers xj are obtained by applying the rounding rule [[·]]
to the quotients of the vote weight vj and some common divisor D > 0. The divisor D
is such that the seat numbers exhaust the given house size, x+ = h. A divisor method
is called pervious when the underlying rounding rule is pervious, s(1) > 0. It is called

impervious when the rounding rule is impervious, s(1) = 0.
Often the input quantities are not vote counts vj , but vote shares wj = vj/v+.

Since vote shares sum to unity, w+ = 1, they must be scaled up to reach the house

size h. It is then conducive to talk of multiplier methods rather than divisor methods.
Divisors D for vj , and multipliers μ for wj are related through the evident identity

v+
D

wj = μwj , that is, μ =
v+
D

.

Both views could be subsumed under the neutral heading of scaling methods, but
“divisor methods” is the term firmly established.

If seats were divisible items then the divisor v+/h, the votes-per-seats ratio, would
work and the ideal shares of seats (vj/v+)h would provide perfectly proportional so-
lutions. But seats are not divisible, and a final rounding step is unavoidable. For this

reason divisor methods admit some leeway to adjust the divisor appropriately. This is
incorporated into the definition by saying that “some” divisor D > 0 will do the job.
Nevertheless it is safe to predict that a feasible divisor D lies in the vicinity of the

votes-per-seats ratio v+/h. That is, a feasible multiplier μ for the vote shares wj will
be close to the house size h.
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The class of divisor methods comprises five traditional divisor methods of past

and present prominence. They go along with the five traditional rounding rules (Sec-
tion 3.12), and warrant a substitution of the generic symbol A. We propose six-letter
identifiers that help memorizing the multitude of methods:

Identifier Name of method

Traditional divisor methods
DivDwn Divisor method with downward rounding
DivStd Divisor method with standard rounding
DivGeo Divisor method with geometric rounding
DivHar Divisor method with harmonic rounding
DivUpw Divisor method with upward rounding
Families of divisor methods

DivPwrp Divisor method with power-mean rounding, p ∈ [−∞;∞]
DivStar Divisor method with stationary rounding, r ∈ [0; 1]

The divisor methods with downward and standard rounding are pervious, those with
geometric, harmonic, and upward rounding are impervious.

The remainder of the section verifies that divisor methods are well-defined, and
that they obey the five principles required by definition. Verification is straightforward,
though a bit lengthy. Skipping these details now incurs no lasting loss later, since the

arguments used resurface in various disguises again and again.

First and foremost we show that a divisor method A is well-defined, that is, that the sets A(h; v)

are nonempty. Fixing a positive vote vector v = (v1, . . . , v�) we use induction on the house

size h. We distinguish two cases, whether A is pervious or impervious.

In the pervious case the first signpost is positive, s(1) > 0. We begin with house size h = 0. Let

the parties i whose quotient vi/s(1) is maximum be assembled in the set

I :=

{
i ≤ �

∣∣ vi

s(1)
= max

j≤�

vj

s(1)

}
.

We select the divisor to be D = vi/s(1). The quotients vj/D of the parties j �∈ I are smaller

than the signpost s(1) and hence are rounded downwards, xj = 0. The parties i ∈ I have

tied quotients, vi/D = s(1). The rounding rule offers two rounding options, downwards to zero

or upwards to unity. The house size h = 0 enforces the first option and excludes the second.

Thus h = 0 starts out with an apportionment set that is nonempty, A(0; v) = {(0, . . . , 0)}. For

the induction step we assume that the house size h ∈ � has a nonempty apportionment set,

(x1, . . . , x�) ∈ A(h; v). The definition of divisor methods guarantees the existence of some divisor

D > 0 such that for all j ≤ � we have xj ∈ [[vj/D]]. The fundamental relation says that the

inclusion holds true if and only if s(xj) ≤ vj/D ≤ s(xj + 1), or equivalently,

vj

s(xj + 1)
≤ D ≤ vj

s(xj)
.

The inequalities remain intact when D is pushed down to its minimum value, d := maxj≤� vj/

s(xj+1). Let i be a party attaining the maximum, vi/s(xi+1) = d. Its quotient vi/d = s(xi+1)

may be rounded downwards or upwards. Since we wish to progress from house size h to house

size h + 1, we round upwards to obtain the seat numbers yi := xi + 1 and yj := xj for j �= i.

The construction identifies the seat vector (y1, . . . , y�) as a member of the apportionment set

A(h+ 1; v). Hence the set is nonempty. The induction proof for the pervious case is complete.
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The impervious case has s(1) = 0 < s(2). We begin with house size h = �. Let the parties i

whose quotient vi/s(2) is maximum be assembled in the set

I :=

{
i ≤ �

∣∣ vi

s(2)
= max

j≤�

vj

s(2)

}
.

We select the divisor to be D = vi/s(2). The quotients vj/D of the parties j �∈ I are smaller than

the signpost s(2). Hence they are rounded to unity, xj = 1. The parties i ∈ I have tied quotients,

vi/D = s(2). The rounding rule offers two options, to round downwards to unity or upwards

to two. The preordained house size h = � enforces the first option and excludes the second.

Thus h = � starts out with an apportionment set that is nonempty, A(�; v) = {(1, . . . , 1)}. The

inductive step is literally the same as for the pervious case. Hence the induction proof for the

impervious case is complete, but covers house sizes h ≥ � only.

Admittedly the definition is deficient and needs to be amended. It fails to be applicable when

the divisor method is impervious and the house size is smaller than the size of the party system,

h < �. The amendment is obvious. The seats are allocated to the h strongest parties, one

seat each. We trust that the omission of the deficient instances is a minor sin, in view of their

practical irrelevance. From now on we leave these irrelevant instances unattended.

It remains to show that every divisor method fulfills the five organizing principles. (A) A divisor

method is anonymous because a rearrangement of vote counts entails the same rearrangement

of seat numbers. (B) It is balanced since equal vote counts, vj = vk, imply equal rounding

sets, [[vj/D]] = [[vk/D]], that contain at most two consecutive integers. (C) Concordance is a

consequence of the fact that all rounding rules are set-monotonic, vj > vk ⇒ [[vj/D]] ≥ [[vk/D]]

(Section 3.8). (D) Decency is immediate since a scaling of the vote weights vj into αvj is matched

by scaling the divisors D into αD.

(E) Exactness is established as follows. Let x = (x1, . . . , x�) be a seat vector in ��(h). We have

s(xj) ≤ xj ≤ s(xj + 1), that is, xj ∈ [[xj ]]. With divisor D(x) = 1 the vector x is seen to be

a member of its own apportionment set, x ∈ A(h;x). Let us assume that the set contains a

second seat vector y �= x. If y has divisor D(y) < 1 = D(x) then the components of y are no

less than those of x, and the side condition x+ = h = y+ lets the vectors coincide contradicting

the assumption y �= x. A similar argument excludes D(y) > 1. Hence we get D(y) = 1, too.

Because of x �= y and x+ = h = y+ there exist two parties i �= k with xi < yi and xk > yk.

But xj , yj ∈ [[xj ]] entails xi + 1 = yi = s(xi + 1) and xk − 1 = yk = s(xk). Hence in the

signpost sequence one term hits its right limit and another its left limit, s(xi + 1) = xi + 1 and

s(xk) = xk − 1. This contradicts the left-right disjunction 3.10.c, whence exactness obtains.

Therefore, divisor methods are well-defined and obey the five organizing principles is complete.

The following result offers an easy check whether a candidate seat vector x belongs
to the apportionment set of a divisor method under consideration or not. The check
circumvents an explicit appeal to divisors. As usual, we set vj/0 =∞ for vj > 0.

4.5. MAX-MIN INEQUALITY

Theorem. Let the divisor method A be induced by the rounding rule with signpost

sequence s(0), s(1), s(2) etc. Then a seat vector x ∈ ��(h) belongs to the apportionment
set of a vote vector v ∈ (0;∞)�,

x ∈ A(h; v),

if and only if

max
j≤�

vj
s(xj + 1)

≤ min
j≤�

vj
s(xj)

.
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Proof. We have x ∈ A(h; v) if and only if there exists a divisor D > 0 satisfying xj ∈ [[vj/D]] for

all j ≤ �. The fundamental relation s(xj) ≤ vj/D ≤ s(xj+1) yields vj/s(xj+1) ≤ D ≤ vj/s(xj).

Hence the existence of D entails the Max-Min Inequality. Conversely, every number D between

the left maximum and the right minimum is a feasible divisor.

As mentioned in the previous section it is often instructive to re-interpret divisor
methods for vote counts vj as multiplier methods for vote shares wj = vj/v+. Since

divisors and multipliers are inversely related, the multiplier version of the Max-Min
Inequality reads

x ∈ A(h;w) ⇐⇒ max
j≤�

s(xj)

wj
≤ min

j≤�

s(xj + 1)

wj
.

In the remainder of this book we refer to either version as “the” Max-Min Inequality.

Whether the reference is to the divisor version in the theorem, or to the multiplier
version in the current paragraph, will be clear from the context.

The Max-Min Inequality is extremely fruitful, and at the heart of divisor methods.

It designates three sets that are of pertinent importance:

D(v, x) :=

[
max
j≤�

vj
s(xj + 1)

; min
j≤�

vj
s(xj)

]
,

I(v, x) :=

{
i ≤ �

∣∣∣∣ vi
s(xi + 1)

= max
j≤�

vj
s(xj + 1)

}
,

K(v, x) :=

{
k ≤ �

∣∣∣∣ vk
s(xk)

= min
j≤�

vj
s(xj)

}
.

The divisor interval D(v, x) comprises the divisors feasible for house size h and vote
vector v. The set of increment options I(v, x) assembles the parties i eligible to receive
the (h + 1)st seat as soon as the divisor falls below the smallest feasible value. The

set of decrement options K(v, x) consists of the candidate parties k that give up the
hth seat when the divisor grows beyond the largest feasible value and only h− 1 seats
are available. Hence a seat vector x ∈ A(h; v) for house size h allows an immediate

passage to seat vectors for house sizes h+ 1 and h− 1,

(x1, . . . , xi−1, xi + 1, xi+1, . . . , x�) ∈ A(h+ 1; v) for all i ∈ I(v, x),

(x1, . . . , xk−1, xk − 1, xk+1, . . . , x�) ∈ A(h− 1; v) for all k ∈ K(v, x).

These relations entail a rather efficient way to carry out the calculations.

4.6. JUMP-AND-STEP CALCULATIONS

Given a house size h and a vote vector v ∈ (0;∞)� we now tackle the task of calculat-

ing the apportionment set A(h; v). Unfortunately no closed formula is available, yet
a simple jump-and-step algorithm suffices to get the job done. As with all algorithms
its initialization is crucial. With a good initialization the jump-and-step algorithm

produces the apportionment in a few steps. With a bad initialization, the algorithm
takes longer to produce the same answer. It is a misconception to believe that differ-
ent initializations breed different methods. Nor is somebody who starts from a bad

initialization and works diligently towards the result more serious about the problem
than somebody else who uses a clever initialization and gets the job finished sooner.
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5BT1965 Second Votes Quotient DivDwn Quotient DivStd

SPD 12 813 186 202.9 202 202.2 202
CDU 12 387 562 196.1 196 195.4997 195
CSU 3 136 506 49.7 49 49.5001 50
FDP 3 096 739 49.03 49 48.9 49

Sum (Divisor) 31 433 993 (63 160) 496 (63 363.6) 496
Divisor interval [63 119.2; 63 198.7] [63 363.5; 63 363.7]

TABLE 4.1 A narrow divisor interval. The divisor method with downward rounding has a divisor

interval large enough to contain the user-friendly divisor 63 160. The divisor interval of the divisor

method with standard rounding is so narrow that all divisors are fractional, such as 63 363.6.

Feasible divisors are likely to be close to the votes-per-seats ratio (Section 4.4).

Trusting that v+/h is a promising divisor initialization we jump to an initial seat

vector y with seat numbers yj ∈ [[(vj/v+)h]]. One of following cases a–c applies:

a. The component sum of y exhausts the house size, y+ = h. In this case the initial

seat vector is a solution, x = y. No further step is needed.

b. The component sum of y stays below the house size, y+ < h. In this case a further

seat is handed out to some increment option i ∈ I(v, y). The increment step is

repeated until the incremented seat vector x satisfies x+ = h.

c. The component sum of y exceeds the house size, y+ > h. In this case a seat

is retracted from some decrement option k ∈ K(v, y). The decrement step is

repeated until the decremented seat vector x satisfies x+ = h.

The jump-and-step algorithm terminates with a seat vector x in the apportionment set

A(h; v). Calculations conclude by selecting a user-friendly divisor D that encourages

users to verify the relations xj ∈ [[vj/D]]. If the divisor interval is degenerate, D(v, x) =

[D;D], then there is no other choice than D. If the divisor interval is non-degenerate,

D(v, x) = [a; b] with a < b, then every number in the interval would be feasible. The

choice is to commercially round the interval’s midpoint (a+ b)/2 to as few significant

digits as the interval’s interior permits. This selection yields the user-friendly divisorsD

quoted in Chapters 1 and 2.

The solution may be succinctly paraphrased: Every D votes justify roughly one

seat . The adverb “roughly” reminds us that the seat numbers x1, . . . , x� undergo a final

rounding step. True, the user-friendly divisor D is also a rounded quantity. However,

the two rounding operations have a distinct meaning. For seat numbers rounding is

imperative, they cannot be but whole numbers. For divisors it is not essential and

only a matter of aesthetics. The limits a and b of the divisor interval are rounded

before they fit to print so that the rounded limits remain inside the interval. The left

limit a is rounded upwards to six significant digits (or more if necessary for the sake

of clarity), and the right limit b is rounded downwards.

The quoted divisor D is often a multiple of a power of ten. On rare occasions it is

unavoidable to quote a fractional divisor. For example, in the 1965 Bundestag election

the legal apportionment method was the divisor method with downward rounding. Its

divisor interval is [63 119.2; 63 198.7]. The midpoint 63 158.9 may be rounded to become

a multiple of ten, 63 160. In contrast, the divisor method with standard rounding yields

the divisor interval [63 363.5; 63 363.7]. The interval is so narrow that the best we can

do is to quote a divisor with one digit after the decimal point, 63 363.6. See Table 4.1.
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Four questions suggest themselves. First, what does the set of all solutions look

like? So far we have identified only one of its elements, a seat vector x. Section 4.7 scru-
tinizes the apportionment set A(h; v) in its entirety. Second, how are ties to be handled
whenever they occur? Section 4.8 comments on how to resolve ties. Third, how are the

calculations carried out in practice? We discuss three initializations and illustrate them
with the data of the Austrian EP election 2009: a good initialization (Section 4.9),
a better initialization (Section 4.10), and a bad initialization (Section 4.11). Regret-

tably the bad initialization is the favorite of legislators and political scientists. Fourth,
determination of a better initialization deserves a closer look. For stationary divisor
methods the recommendation is quite constructive. Given a split r ∈ [0; 1], Section 6.1

argues in favor of the recommended divisor v+/
(
h+ �(r − 1/2)

)
.

4.7. UNIQUENESS, MULTIPLICITIES, AND TIES

Uniqueness of an apportionment result x, and uniqueness of a feasible divisor D are
complementary events: The apportionment is unique if and only if the divisor is not

unique. That is, the apportionment is not unique if and only if the divisor is unique.
Since divisors are characterized by the Max-Min Inequality, the statements are ex-
pressed through

{x} = A(h; v) ⇐⇒ max
j≤�

vj
s(xj + 1)

< min
j≤�

vj
s(xj)

,

{x}⊂�=A(h; v) ⇐⇒ max
j≤�

vj
s(xj + 1)

= min
j≤�

vj
s(xj)

.

Evidently the two statements are equivalent; we prove the second.

For the direct implication assume that x, y ∈ A(h; v) are two distinct solutions,
x �= y. Let D(x) be a divisor for x, and D(y) be a divisor for y. If D(x) > D(y),
monotonicity entails xj ≤ yj for all j ≤ �. Because of equal component sums, x+ =

h = y+, the two vectors coincide, x = y, contradicting the assumption that they are
distinct. A similar argument excludes D(x) < D(y). Thus both vectors share the
same divisor, D(x) = D(y) = D, implying xj , yj ∈ [[vj/D]] for all j ≤ �. Because of

x �= y and x+ = h = y+ there are two components i �= k with xi < yi and xk > yk.
But xi, yi ∈ [[vi/D]] implies xi + 1 = yi and the tie vi/D = s(xi + 1). Similarly
xk, yk ∈ [[vk/D]] entails xk − 1 = yk and the tie vk/D = s(xk). Altogether we get

D =
vi

s(xi + 1)
≤ max

j≤�

vj
s(xj + 1)

≤ min
j≤�

vj
s(xj)

≤ vk
s(xk)

= D.

This establishes equality in the Max-Min Inequality. The direct implication is proved.
For the converse implication we assume that the two sides of the Max-Min In-

equality share the same value, D. Since the increment options i ∈ I(v, x) are tied,

vi/D = s(xi + 1), they round to [[vi/D]] = {xi, xi + 1}. The decrement options
k ∈ K(v, x) are also tied, vk/D = s(xk), and round to [[vk/D]] = {xk − 1, xk}. In
the present case the option sets are disjoint, I(v, x) ∩ K(v, x) = ∅, since otherwise

some component j with vj/s(xj + 1) = D = vj/s(xj) would violate the fact that
all signpost sequences are strictly increasing. Hence we may fix two distinct compo-
nents, i ∈ I(v, x) and k ∈ K(v, x), and define the seat vector y through yi := xi + 1,

yk := xk−1, and yj := xj for all j �= i, k. Then y is distinct from x, but still a member
of the apportionment set A(h; v). This proves the converse implication.
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(EP2009AT) Votes Quotient Fifteen equally justified apportionments, DivDwn
#1 #2 #3 #4 #5 #6 #7 #8 #9#10#11#12#13#14#15

A 840 000 6 6− 6− 6− 6− 6− 5+ 5+ 5+ 5+ 5+ 5+ 5+ 5+ 5+ 5+
B 700 000 5 5− 4+ 4+ 4+ 4+ 5− 5− 5− 5− 4+ 4+ 4+ 4+ 4+ 4+
C 560 000 4 3+ 4− 3+ 3+ 3+ 4− 3+ 3+ 3+ 4− 4− 4− 3+ 3+ 3+
D 420 000 3 2+ 2+ 3− 2+ 2+ 2+ 3− 2+ 2+ 3− 2+ 2+ 3− 3− 2+
E 280 000 2 1+ 1+ 1+ 2− 1+ 1+ 1+ 2− 1+ 1+ 2− 1+ 2− 1+ 2−
F 140 000 1 0+ 0+ 0+ 0+ 1− 0+ 0+ 0+ 1− 0+ 0+ 1− 0+ 1− 1−
Sum(Div.) 2 940 000 (140 000) 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

TABLE 4.2 Manufactured ties. All parties are tied since the quotients of votes and divisor 140 000

hit some downward-rounding signpost, s(n) = n. Trailing plus-signs indicate increment options (4),

trailing minus-signs decrement options (2). There are
(
4+2
4

)
= 15 equally justified apportionments.

The proof of the converse implication also shows how an identified member x

relates to the other seat vectors in the apportionment set A(h; v). Let a := #I(v, x)

be the number of increment options of x, and let b := #K(v, x) be the number of

decrement options. The seat vector x has a + b parties tied to signposts. When all

parties are rounded to their higher level, the resulting component sum is h + a and

exceeds the target value by a seats. Hence a of the a+ b ties must be resolved at the

lower level, and the remaining b ties at the upper level. Thus the cardinality of the

apportionment set is given by the binomial coefficient,

#A(h;x) =

(
a+ b

a

)
.

Table 4.2 pushes the example to an extreme by having all vote counts tied to a

signpost. To compactify the notation we append to a natural number n a trailing plus-

sign to indicate an upward tie, n+ := {n, n + 1}, or a trailing minus-sign to indicate

a downward tie, n− := {n − 1, n}. With four increment options and two decrement

options, the apportionment set DivDwn(17, v) consists of the
(
6
2

)
= 15 equally justified

seat vectors that are enumerated in the table. Each seat vector with its trailing plus-

or minus-signs is sufficiently informative to recover the other fourteen.

4.8. RESOLUTION OF TIES

In popular elections vote counts reach into the thousands or millions, and ties occur

rather rarely. Yet many electoral laws include a provision how to resolve ties. The

provision contains a message beyond dealing with a rare oddity. It documents the

legislator’s intention to design an electoral system such that the seat apportionment is

definitive and determinate.

A common tie resolution procedure is to draw a lot. The example in Table 4.2

shows that the lot may be cast over the equally justified apportionments (in Table 4.2:

fifteen), or by choosing the required number of parties from those in the tie group by

simple random sampling without replacement (four out of six, in this example). There

is a variety of other tie resolution procedures, particularly when a single seat is tied

between two parties: the seat goes to the larger party, or to the smaller party, or to

the party that registered earlier, or to the party with the oldest candidate, or with the

candidate with the most personal votes, or with the candidate with the most children.

Other provisions grant the election officer a deciding vote, or call a run-off election.
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2006UsterZhCH Party Votes Quotient DivStd Voter Count Quotient DivStd

01 SP 71 847 10.7 11 1 996 10.7 11
02 SVP 64 728 9.6 10 1 798 9.7 10
03 FDP 36 613 5.4 5 1 017 5.47 5
04 EVP 13 600 2.0 2 378 2.0 2
05 CVP 9 756 1.45 1 271 1.46 1
06 SD 5 745 0.9 1 160 0.9 1
07 EDU 3 353 0.499 0 93 0.5 1−
08 SEDU 3 752 0.6 1 104 0.6 1
09 GP 13 369 2.0 2 371 2.0 2
10 GLP 16 476 2.45 2 458 2.46 2
11 JEDU 3 365 0.501 1 93 0.5 0+

Sum (Divisor) 242 604 (6720) 36 6 739 (186) 36

TABLE 4.3 Uster, tied 2006 city council election. With reference to voter counts a tie emerges

between the seventh and eleventh list, EDU and JEDU. By taking recourse to party votes, the tie is

resolved in favor of the JEDU that outperforms the EDU by a margin of 12 party votes.

A tie problem emerged during the 2006 election of the 36-seat city council of the

City of Uster in the Swiss Canton of Zurich. The particulars of the incident entail a

particular tie resolution decision. The pertinent electoral law governs all elections in

the Canton of Zurich, including some with multiple districts. The number of seats to

be filled in a district is known as the district magnitude. In each district, a voter may

mark as many candidates on the ballot sheet as is given by the preordained district

magnitude. Summing raw votes over multiple districts would aim at equality among

ballot marks, not at equality among voters. In order to measure the support of a party

with reference to human beings and not with reference to ballot marks, a party’s vote

total is converted into the party’s voter count (Wählerzahl). It is defined to be the

commercially rounded quotient of party votes and district magnitude,

voter count =

〈
party votes

district magnitude

〉
.

For example, in Table 4.3 the SP voter count is 〈71 847/36〉 = 〈1 995.8〉 = 1996. The

formula does not allow for voters not exhausting all the votes they have, or spreading

their votes over several lists (panachage). Judging from past elections in Zurich, there

is no evidence that cross voting entails a bias of any significance. The proposed voter

count definition seems to serve all practical needs.

The law decrees the conversion of party votes into voter counts even when there is

just a single district, as is the case in Uster. It so happens that a seat is tied between

EDU and JEDU, in terms of voter counts. Both lists have voter count 93. The seats

are apportioned using the divisor method with standard rounding. With divisor 186,

gave both lists obtain the interim quotient 0.5. Hence one of the two quotients has to

be rounded upwards, the other one downwards. See Table 4.3.

In the 2006 election, the election officer cast a lot and gave the seat to the EDU.

An attentive voter complained by pointing out that, in terms of party votes, the JEDU

ranked above the EDU by a margin of 12 votes. The electoral authorities overruled

the lot decision, and awarded the tied seat to the JEDU.
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4.9. GOOD INITIALIZATION OF THE JUMP-AND-STEP

CALCULATIONS

In the next four sections we illustrate the calculatory scheme for divisor methods with

the data from Table 1.3, the 2009 EP election in Austria. The example uses the

divisor method with downward rounding; its signposts are s1(n) = n, n ≥ 0. We stick

to the notation s1(n), thus indicating how to handle other signpost sequences. Three

variants of the jump-and-step algorithm of Section 4.6 are presented. They differ in

their divisor initializations. Variant 1 initializes the divisor with the votes-per-seats

ratio, D = v+/h. The Austrian data call for two increment steps to obtain the final

seat vector. Variant 2 uses the recommended initialization, D = v+/(h + �/2), and

instantly jumps to the final result (Section 4.10). Variant 3 starts out with divisor

D = ∞. From start to finish it needs a maximum of increment steps, seventeen

(Section 4.11). Variant 3 may be compressed into a table of highest comparative

figures (Section 4.12). Use of comparative figures needs less ink for the print, but an

advanced understanding of what the print means.

Variant 1 is displayed below. The divisor is initialized with the votes-per-seats

ratio, D = 2825 027/17 = 166 178.1. When the counts in the “Votes” line are divided

by D, the quotients in the next line are obtained. Rounding them downwards we jump

to the “Initial Seats” vector y = (5, 4, 3, 2, 1, 0). It stays below the house size by two

seats, y+ = 15 < 17, and thus calls for two increment steps.

According to Section 4.5 the increment options I(v, y) are identified by computing

the figures vj/s(yj +1). The computation is documented in the line labeled “Seat 16”.

Then these figures are compared. The highest comparative figure is marked with a

dot (•). It tells us to allocate the sixteenth seat with the ÖVP.

The increment from the sixteenth to the seventeenth seat follows the same recipe,

but is less laborious. Undotted comparative figures are copied, from the “Seat 16” line

into the “Seat 17” line. Only the dotted ÖVP figure needs to be re-calculated. The

highest comparative figure in the line “Seat 17”, again dotted, allocates the seventeenth

seat with the GRÜNE. The “Final Seats” vector x = (6, 4, 3, 2, 2, 0) meets the house

size, x+ = 17. It is the solution sought. For those who trust that all calculations are

correct the job is done.

Variant 1 ÖVP SPÖ Martin FPÖ GRÜNE BZÖ Sum (Divisor)
Votes 858 921 680 041 506 092 364 207 284 505 131 261 2 825 027

Quotient 5.2 4.1 3.05 2.2 1.7 0.8 (166 178.1)
Initial Seats 5 4 3 2 1 0 15

Seat 16
/(5+1)= /(4+1)= /(3+1)= /(2+1)= /(1+1)= /(0+1)= Increment:

143 153.5• 136 008.2 126 523 121 402.3 142 252.5 131 261 ÖVP

Seat 17
/(6+1)=

122 703 136 008.2 126 523 121 402.3 142 252.5• 131 261 GRÜNE

Final Seats 6 4 3 2 2 0 17

Appendix
/(2+1)=

122 703 136 008.2• 126 523 121 402.3 94 835 131 261
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For those who wish to check the result a line “Appendix” is added. If there were an

eighteenth seat, it would go to the SPÖ. The implied lower limit of the divisor interval

is relevant, not the seat itself. The interval extends from 680 041/5 = 136 008.2 to

284 505/2 = 142 252.5. Its midpoint is (136 008.2 + 284 505/2)/2 = 139 130.4. The

midpoint is rounded to two significant digits to stay in the interval’s interior, D =

140 000. Hence the solution may be paraphrased by saying that every 140 000 votes

justify roughly—up to downward rounding—one seat. This is the information conveyed

in Table 1.3.

The increment steps compare the figures vj/s1(xj + 1). Since the divisor method

with downward rounding has signposts s1(n) = n a typical comparative figure happens

to turn into vj/(xj + 1). This quotient has the form of an average of votes and seats,

under the hypothesis that party j increases its current seat number xj by being awarded

the next seat. Actually, the next seat is awarded to the party whose votes-per-(seats+1)

average is highest. For this reason the divisor method with downward rounding is also

called the highest average method.

For a general divisor method the ratio vj/s(xj + 1) fails to be interpretable as a

votes-per-seats average, however, and cannot be addressed as such. Instead we refer

to the ratio vj/s(xj + 1) as a comparative figure, as is common practice in Sweden.

4.10. RECOMMENDED INITIALIZATION OF THE JUMP-AND-

STEP CALCULATIONS

Variant 2 starts out with the initialization recommended in Section 6.1, D = 2825 027/

(17+6/2) = 141 251.4. The interim quotients vj/D are rounded downwards, and yield

the initial seat vector y = (6, 4, 3, 2, 2, 0). Since it fits, y+ = 17, the initial seat vector

is the final solution, x = y. No increment or decrement steps are needed. For those

who trust that the calculations are error-free the job is done.

Variant 2 ÖVP SPÖ Martin FPÖ GRÜNE BZÖ Sum (Divisor)
Votes vj 858 921 680 041 506 092 364 207 284 505 131 261 2 825 027

Quotient 6.1 4.8 3.6 2.6 2.01 0.9 (141 251.4)
Seats xj 6 4 3 2 2 0 17

vj/(xj+1) 122 703 136 008.2• 126 523 121 402.3 94 835 131 261 (• = max)
vj/xj 143 153.5 170 010.3 168 697.3 182 103.5 142 252.5• ∞ (• = min)

For those who wish to check the result two lines are appended. In the line la-

beled “vj/(xj + 1)” the highest figure is marked. This is the critical divisor where

the house size increases by one seat, from 17 to 18. In line “vj/xj” the lowest figure

is marked. This is the critical divisor where the house size decreases by one seat,

from 17 down to 16. The marked quantities provide the limits of the divisor inter-

val, [136 008.2; 142 252.5]. Again the user-friendly divisor is determined by rounding

the interval midpoint 139 130.35 to two significant digits, D = 140 000. This is the

information presented in Table 1.3.
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4.11. BAD INITIALIZATION OF THE JUMP-AND-STEP CALCULA-

TIONS
Variant 3 carries out an increment process of marathon length, from no seat to all

seats. Effectively it starts with a huge initial divisor D =∞, whence initially all seat
numbers are rounded downwards to zero. For a start, nobody gets anything. From
there on the calculations work their way via 1, 2, 3, . . . seats up to the target house

size 17. The determination of the divisor interval [136 009; 142 252] and the selection
of the divisor D = 140 000 proceed as in Section 4.9.

Variant 3 ÖVP SPÖ Martin FPÖ GRÜNE BZÖ Sum
Votes 858 921 680 041 506 092 364 207 284 505 131 261 2 825 027

Seat 1
/(0 + 1) = /(0 + 1) = /(0 + 1) = /(0 + 1) = /(0 + 1) = /(0 + 1) = Increment:

858 921• 680 041 506 092 364 207 284 505 131 261 ÖVP

Seat 2
/(1 + 1) =

429 460.5 680 041• 506 092 364 207 284 505 131 261 SPÖ

Seat 3
/(1 + 1) =

429 460.5 340 020.5 506 092• 364 207 284 505 131 261 Martin

Seat 4
/(1 + 1) =

429 460.5• 340 020.5 253 046 364 207 284 505 131 261 ÖVP

Seat 5
/(2 + 1) =

286 307 340 020.5 253 046 364 207• 284 505 131 261 FPÖ

Seat 6
/(1 + 1) =

286 307 340 020.5• 253 046 182 103.5 284 505 131 261 SPÖ

Seat 7
/(2 + 1) =

286 307• 226 680.3 253 046 182 103.5 284 505 131 261 ÖVP

Seat 8
/(3 + 1) =

214 730.3 226 680.3 253 046 182 103.5 284 505• 131 261 GRÜNE

Seat 9
/(1 + 1) =

214 730.3 226 680.3 253 046• 182 103.5 142 252.5 131 261 Martin

Seat 10
/(2 + 1) =

214 730.3 226 680.3• 168 697.3 182 103.5 142 252.5 131 261 SPÖ

Seat 11
/(3 + 1) =

214 730.3• 170 010.3 168 697.3 182 103.5 142 252.5 131 261 ÖVP

Seat 12
/(4 + 1) =

171 784.2 170 010.3 168 697.3 182 103.5• 142 252.5 131 261 FPÖ

Seat 13
/(2 + 1) =

171 784.2• 170 010.3 168 697.3 121 402.3 142 252.5 131 261 ÖVP

Seat 14
/(5 + 1) =

143 153.5 170 010.3• 168 697.3 121 402.3 142 252.5 131 261 SPÖ

Seat 15
/(4 + 1) =

143 153.5 136 008.2 168 697.3• 121 402.3 142 252.5 131 261 Martin

Seat 16
/(3 + 1) =

143 153.5• 136 008.2 126 523 121 402.3 142 252.5 131 261 ÖVP

Seat 17
/(6 + 1) =

122 703 136 008.2 126 523 121 402.3 142 252.5• 131 261 GRÜNE

Final Seats 6 4 3 2 2 0 17

Appendix
/(2 + 1) =

122 703 136 008.2• 126 523 121 402.3 94 835 131 261
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With almost twenty seats this example requires a table of about a page’s length.

The seats of the German EP allocation (Table 1.8) would fill five pages, and the roughly

six hundred seats in the German Bundestag (Table 2.1) thirty. The space required by

Variant 3 grows linearly with the house size h. In contrast the complexities of Variants 1

and 2 do not depend on the house size h at all (Section 6.2). They are bounded by

the number of participating parties or half of it, � (Variant 1) or �/2 (Variant 2), see

Sections 6.2 and 6.3.

4.12. HIGHEST COMPARATIVE FIGURES

The excessive growth of Variant 3 may be curbed by leaping over the repetitive ap-

pearances of non-dotted and hence non-active comparative figures. Only the dotted

figures are relevant. Hence Variant 3 boils down to the sufficient extract shown below.

Variant 3A is obtained by elevating the former table body (the comparative figures

vj/s(xj + 1)) to become table rows, and by moving the former rows (seats) into the

current table body. In the table body the seventeen seats are allocated in the succession

of highest comparative figures as indicated by the italicized numbers 1, . . ., 17 :

Variant 3A ÖVP SPÖ Martin FPÖ GRÜNE BZÖ
Votes vj 858 921 680 041 506 092 364 207 284 505 131 261

vj/1 858 921-1 680 041-2 506 092-3 364 207-5 284 505-8 131 261
vj/2 429 461-4 340 021-6 253 046-9 182 104-12 142 257-17
vj/3 286 307-7 226 680-10 168 697-15 121 402 94 835
vj/4 214 730-11 170 010-14 126 523
vj/5 171 784-13 136 008
vj/6 143 154-16
vj/7 122 703

Seats 6 4 3 2 2 0

Variant 3A compactifies the information, but its growth is still linear in the house

size. It needs about w1h rows of comparative figures, where w1 is the vote share of the

strongest party and h is the house size. Variant 3A is a mechanical recipe conveying

only little insight into the structure of apportionment methods. If you do not know

what is going on, Variant 3A will not teach you.

4.13. AUTHORITIES

Experts often prefer a somewhat cryptic jargon by naming a seat apportionment

method after an authority who fought for it. Unfortunately there exists no interna-

tional agreement who deserves the honor most. For example the divisor method with

downward rounding is the Jefferson method or the D’Hondt method or the Hagenbach-

Bischoff method, you choose. Here is a list of celebrities associated with the five

traditional divisor methods:
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DivDwn Thomas Jefferson (1743–1826), principal author of the US Declaration of

Independence, third US President 1801–1809
Victor D’Hondt (1841–1901), Professor of Law, Ghent University,

co-founder of the Belgian L’Association réformiste pour l’adoption
de la Représentation Proportionnelle 1881

Eduard Hagenbach-Bischoff (1833–1910), Professor of Physics,
University of Basel, and cantonal politician

DivStd Daniel Webster (1782–1852), US statesman, Senator from Massachusetts,
US Secretary of State

Jean-André Sainte-Laguë (1882–1950), Professor of Mathematics,
Conservatoire national des arts et métiers, Paris

Hans Schepers (b. 1928), Physicist, Head of the Data Processing Unit,
Scientific Services of the German Bundestag

DivGeo Joseph Adna Hill (1860–1938), Statistician, Assistant Director of the

Census, US Bureau of the Census
Edward Vermilye Huntington (1874–1952), Professor of Mathematics,

Harvard University, Cambridge, Massachusetts

DivHar James Dean (1776–1849), Professor of Astronomy and Mathematics,

University of Vermont, Burlington, Vermont

DivUpw John Quincy Adams (1767–1848), US diplomat and statesman,
sixth US President 1825–1829

Chapter 5 introduces another important family of apportionment methods, quota

methods. In a way quota methods may be viewed as procedures complementary to
divisor methods. Divisor methods fix the rounding rule and adjust the divisor. Quota
methods fix the divisor and adjust the rounding rule.



C H A P T E R 5

Quota Methods of
Apportionment:
Divide and Rank

Another important family of apportionment methods is quota methods. Relying on
a fixed divisor of some intrinsic persuasiveness, called quota, they follow the motto
“Divide and rank”. The most prominent member of the family, the Hare-quota method
with residual fit by greatest remainders, is discussed in the first part of the chapter.
The second part addresses various variants of the quota, and various variants of the
residual apportionment step. As a whole, the family of quota methods offers a more
eclectic approach to apportionment problems than the family of divisor methods.

5.1. QUOTA METHODS

Quota methods solve the same seat apportionment problem to which divisor methods

are applied: h seats are to be apportioned among parties j ≤ � in proportion to their

vote counts vj > 0 (Section 4.1). Again a divisor is used to downscale the vote counts

into the vicinity of the final seat numbers xj . The point is that quota methods consider

the divisor to be fixed, justified by its intrinsic persuasiveness. To emphasize this point

the fixed divisor is called quota, and designated by the letter Q. A quota that appears

compelling to some may appear debatable to others. Section 5.8 lists a variety of

quotas that have found their way into electoral laws in former and present times.

Quota methods are two-step procedures. The first step is called the main ap-

portionment. It calculates an interim quotient vj/Q, and apportions its integral part

yj = �vj/Q� to party j. Let m := y+ denote the number of seats allotted by the

main apportionment. The quota Q is supposed to be such that it hands out no more

seats than are available, m ≤ h, and that it misses no more than one seat per party,

h−m ≤ �. The second step, the residual fit, allocates the h−m ∈ {0, . . . , �} residual

seats left. The most popular procedure is the residual fit by greatest remainders. It

ranks the fractional parts (vj/Q) − �vj/Q� by decreasing size, and allocates one seat

to each of the h−m greatest remainders. For this reason quota methods are captured

by the motto “Divide and rank”.

DOI 10.1007/978-3-319-03856-8_5, © Springer International Publishing Switzerland 2014
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5.2. HARE-QUOTA METHOD WITH RESIDUAL FIT BY

GREATEST REMAINDERS

The dominant quota method is the Hare-quota method with residual fit by greatest

remainders. We abbreviate it by HaQgrR. The quota used is the votes-per-seats ratio,

v+/h, called Hare-quota in the context of quota methods. The induced quotients with

the vote counts are the ideal shares of seats, vj/(v+/h) = (vj/v+)h.

The main apportionment allocates to party j ≤ � the integral part of its ideal

share of seats, yj := �(vj/v+)h�. Hence the number of seats accounted for in the main

apportionment stays below the house size,

m =
∑
j≤�

⌊
vj
v+

h

⌋
≤
∑
j≤�

vj
v+

h = h.

The main apportionment exhausts the house size, m = h, if and only if all vote counts

vj are integer multiples of the Hare-quota v+/h. As this is highly unlikely to happen,

the method usually enters the second step, the fit of h−m residual seats.

Since all fractional parts are strictly less than unity, (vj/v+)h − �(vj/v+)h� < 1,

the number of residual seats is strictly smaller than the number of parties,

h−m =
∑
j≤�

(
vj
v+

h−
⌊
vj
v+

h

⌋)
< �.

Since the numbers involved are integers the inequality tightens to h−m ≤ �− 1. That

is, the main apportionment takes care of at least h + 1 − � seats. In most practical

applications the house size is much larger than the number of parties whence the vast

majority of seats is dealt with.

For example in the German Bundestag with h = 598 seats and � = 6 parties (Ta-

ble 2.1), the main apportionment step would settle at least 593 seats, and hence would

leave at most 5 seats for the residual fit. In case of the Bulgarian EP election where

the method was applied with h = 17 and � = 6 (Table 1.5), the main apportionment

step is guaranteed to account for at least 12 seats, and to leave at most 5 seats. With

the 2009 data it actually allocates 13 seats in the main apportionment, and leaves 4

seats for the residual fit.

The second step, the residual fit by greatest remainders, ranks the ideal shares’

fractional parts, and adds for the h −m largest of them one seat to the preliminary

seat numbers of the main apportionment. Thus the final seat numbers are xi = yi + 1

for the parties i with a larger remainder, and xk = yk for the parties k with a smaller

remainder. Ties emerge if and only if several parties share the same remainder and this

particular remainder is the split to separate larger remainders from smaller remainders.

The Hare-quota method with residual fit by greatest remainders is anonymous,

balanced, concordant, decent, and exact, as is easily verified. Hence it qualifies as an

apportionment method in the sense of Section 4.3.
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5.3. GREATEST REMAINDERS CALCULATIONS

We illustrate the pertinent calculations with the Bulgarian 2009 EP election. The

main apportionment rests on the ideal shares of seats listed in the column “Quotient’

in Table 1.5. Their integral parts provide the preliminary seat numbers yj :

yGERB = 4, yBSP = 3, yDPS = 2, yATAKA = 2, yNDSV = 1, ySDS-DSB = 1.

Thus m = 13 of the h = 17 seats are dealt out in the main apportionment, and four are

left to be allocated in the residual fit. After ranking the ideal shares’ fractional parts

f(j) := (vj/v+)h − �(vj/v+)h� in decreasing order, the four parties with the largest

remainders have their preliminary seat numbers increased by one seat, while the two

smallest parties stay as is:

f(GERB) = .880, f(DPS) = .832, f(BSP) = .706, f(NDSV) = .595⇒ xi = yi + 1,

f(SDS-DSB) = .592, f(ATAKA) = .395⇒ xk = yk.

This verifies the seat numbers in the last column of Table 1.5:

xGERB = 5, xBSP = 4, xDPS = 3, xATAKA = 2, xNDSV = 2, xSDS-DSB = 1.

The same result is obtained using the stationary divisor method with split r = .594.

In fact, every split from the interval

[f(SDS-DSB); f(NDSV)] = [.592 432; .594 989]

separates the fractional parts of those that do not profit from the residual fit, from

those that do. The strategy for selecting a user-friendly split r is the same as selecting

a communicable divisor D (Section 4.6), with one extra rule. If the interval happens

to contain the value .5, then we select r = .5; the extra rule emphasizes that standard

rounding would do the job. Otherwise the midpoint of the interval is rounded to as

few significant digits as the interval’s interior permits. In the Bulgarian example we

thus publish the split value .594, as shown in the bottom line of Table 1.5.

The examples indicates that the results of the Hare-quota method with residual fit

by greatest remainders can be replicated by means of some stationary divisor method.

The replication approach extends to the large class of quotas called shift-quotas. They

perturb the Hare-quota just a little bit so that the second apportionment step can still

be carried out via a residual fit by greatest remainders.

5.4. SHIFT-QUOTA METHODS

The shift-quota with shift s ∈ [−1; 1), denoted by Q(s), is defined by

Q(s) :=
v+

h+ s
.

The shift-quota method with residual fit by greatest remainders and with shift s is

abbreviated as shQgrRs. The shift s = 0 retrieves the Hare-quota method with residual

fit by greatest remainder, shQgrR0 = HaQgrR.
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Although there is no practical interest in negative shifts, s < 0, all shift-quotas

Q(s), s ∈ [−1; 1), allow the main apportionment to be paired with a residual fit by
greatest remainders. Indeed, the main allocation for party j is

yj =

⌊
vj

Q(s)

⌋
=

⌊
vj
v+

(
h+ s

)⌋
.

Hence the main apportionment allocates at most y+ ≤
∑

j≤�(vj/v+)(h+ s) = h+ s <

h+1 seats. Because of integrality the inequality tightens to y+ ≤ h. The lower bound
y+ >

∑
j≤�

(
(vj/v+)(h + s) − 1

)
= h + s − � ≥ h − � − 1 tightens to y+ ≥ h − �. The

range h− � ≤ y+ ≤ h confirms feasibility of a residual fit by greatest remainders.

The next theorem presents a Max-Min Inequality similar to that for divisor meth-
ods (Section 4.5). The theorem’s charm lies in avoiding a direct appeal to remainders.

5.5. MAX-MIN INEQUALITY

Theorem. Consider a shift-quota method shQgrRs with shift s ∈ [−1; 1). Then a seat
vector x ∈ ��(h) belongs to the apportionment set of a vote vector v ∈ (0;∞)�,

x ∈ shQgrRs(h; v),

if and only if

max
j≤�

(
vj
v+

(
h+ s

)− xj

)
≤ min

j≤�

(
vj
v+

(
h+ s

)
+ 1− xj

)
.

Proof. It is convenient to switch to the vote shares wj = vj/v+. The shift-quota Q(s) =

v+/(h+ s) then yields interim quotients vj/Q(s) = wj(h+ s).

For the proof of the direct implication, let x be a solution vector in shQgrRs(h; v). We assemble

the parties that receive no seat in the residual apportionment in the set I. The complement

K := I′ comprises the parties that are awarded one of the residual seats,

I :=
{
i ≤ �

∣∣ xi = �wi(h+ s)�
}
, K :=

{
k ≤ �

∣∣ xk = �wk(h+ s)�+ 1
}
.

In the left maximum of the Max-Min Inequality parties i ∈ I have a nonnegative difference,

wi(h+ s)− xi = wi(h+ s)− �wi(h+ s)� =: f(i) ≥ 0, the fractional part of the interim quotient

wi(h+ s). Parties k ∈ K have a negative difference and drop out. Hence we get

max
j≤�

(
wj(h+ s)− xj

)
= max

i∈I

(
wi(h+ s)− xi

)
= max

i∈I
f(i).

The right minimum equals minj≤�

(
wj(h+s)+1−xj

)
= mink∈K f(k). The residual fit by great-

est remainders entails that the maximum stays below the minimum, maxi∈I f(i) ≤ mink∈K f(k).

For the proof of the converse implication, the Max-Min Inequality is spelled out as

wi(h+ s)− xi ≤ wk(h+ s) + 1− xk for all i, k ≤ �.

Summation over k �= i gives (�− 1)
(
wi(h+ s)− xi

)
≤ (1− wi)(h+ s) + (�− 1)− (h− xi), for

all i ≤ �. This simplifies to wi(h+ s)− xi ≤ (�− 1 + s)/� < 1. Summation over i �= k yields an

inequality leading to 0 ≤ wk(h+ s) + 1− xk, for all k ≤ �. Together we get

wj(h+ s)− 1 < xj ≤ wj(h+ s) + 1 for all j ≤ �.

The inequality string leaves just two possibilities, xj = �wj(h+ s)� or xj = �wj(h+ s)�+1. Let

the set I assemble the parties i with xi = �wi(h+ s)�, and K := I′ the others. The first part of

the proof shows that the Max-Min Inequality takes the form maxi∈I f(i) ≤ mink∈K f(k). Hence

the parties i ∈ I that are stuck with their seats from the main apportionment have an interim

quotient with a fractional part less than or equal to that of the parties k ∈ K that are awarded

one of the residual seats. This establishes x ∈ shQgrRs(h; v).
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The Max-Min Inequality gives rise to the split interval

R(v, x) :=

[
max
j≤�

(
vj
v+

(h+ s)− xj

)
; min

j≤�

(
vj
v+

(h+ s) + 1− xj

)]
.

The preceding proof reveals that R(v, x) assembles the splits r ∈ [0; 1] that separate

the fractional part f(i) of the interim quotient of a party i that has to make do with

the main apportionment, xi = �vi/Q(s)�, from the fractional part f(k) of the interim

quotient of a party k that gets one of the residual seats, xk = �vk/Q(s)� + 1. The

attitude is complementary to divisor methods. Divisor methods fix the rounding rule

and adjust the divisor. Quota methods fix the divisor and adjust the rounding rule.

5.6. SHIFT-QUOTA METHODS AND
STATIONARY DIVISOR METHODS

Corollary. Consider a shift-quota method shQgrRs with shift s ∈ [−1; 1). For all

house sizes h ∈ � and for all vote vectors (v1, . . . , v�) ∈ (0;∞)� there is a split r∗ ∈
[0; 1], generally depending on s, h, and v, such that the shift-quota method with shift s

and the stationary divisor method with split r∗ have the same solution sets,

shQgrRs(h; v) = DivStar∗(h; v).

Proof. The proof of the Max-Min Inequality 5.5 shows that, given an arbitrary seat vector

x ∈ shQgrRs(h; v), every split r∗ in the split interval R(v, x) establishes the assertion.

The corollary mitigates the motto “Divide and rank”. The ranking of parties by

decreasing fractional parts of their interim quotients is no more than a transient step

of the calculations. The persisting step is the partition of parties into a group with

smaller fractional parts where quotients are rounded downwards, and a complementary

group with larger fractional parts where quotients are rounded upwards. The partition

is succinctly specified by publishing a split r∗. Once r∗ is made known it is no longer

needed to establish the ranking of the fractional parts. The motto “Divide and split”

would subsume quota methods more pointedly.

5.7. AUTHORITIES

The Hare-quota method with residual fit by greatest remainders carries the name of

Thomas Hare (1806–1891), an English barrister and proponent of proportional repre-

sentation systems. In his writings Hare repeatedly referred to the votes-per-seats ratio;

hence it may rightly be called the Hare-quota. However, the system that Hare fought

for was a single transferable vote (STV) scheme. In terms of achieving proportion-

ality the STV scheme is close to the apportionment methods discussed in this book.

Nevertheless, the philosophy underlying STV schemes is rather different from quota

methods, as are ballot structure and vote counting. Hence referring the “Hare-quota

method with residual fit by greatest remainders” to Hare is a misnomer of sorts.
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In the United States of America the Hare-quota method with residual fit by great-

est remainders is called the Hamilton method, after Alexander Hamilton (1755–1804).

Hamilton successfully proposed the method to the House of Representatives, only to

then see it vetoed by President George Washington. In Germany the method is asso-

ciated with the name of the mathematician Horst Friedrich Niemeyer (1931–2007).

The Hare-quota method with residual fit by greatest remainders often comes under

the alternative name of largest remainder method (or LR method, for short). The name

emphasizes the second step of the method, the residual fit by greatest remainders. It

entirely neglects the main apportionment step although this is where most of the seats

are apportioned. For this reason we maintain the acronyms of the type HaQgrR, even

though they are somewhat bulky. Proponents of the short name LR method would

presumably argue that there is no need to explicate the main apportionment step

because it is natural and self-evident. History teaches otherwise.

5.8. QUOTA VARIANTS

A “quota”, as the term is used by Hare, signifies a number of voters who justify the

allocation of a seat to their representative. With this understanding a quota must be

a whole number. Accordingly the original Hare-quota is not the votes-per-seats ratio

itself, but its integral part. With a hopefully pardonable inversion of the historical roots

we refer to the integral part of the votes-per-seats ratio as the Hare-quota variant-1,

HQ1. On occasion legislators were in the mood for rounding the votes-per-seats ratio

upwards, thus giving rise to the Hare-quota variant-2, HQ2. In summary the default

Hare-quota HaQ is accompanied by the variants HQ1 and HQ2,

HaQ =
v+
h
, HQ1 =

⌊v+
h

⌋
, HQ2 =

⌈v+
h

⌉
.

Another set of quotas is associated with the name of Henry Richmond Droop

(1831–1884). Droop (1881) proposed what came to be called the Droop-quota, DrQ

:= �v+/(h+1)�+1. In all applications the Droop-quota is smaller than the Hare-quota.

Hence it increases the number of seats allocated in the main apportionment, whence

fewer seats are passed on to the residual fit. Since more seats are justified by a full

quota of votes, the main apportionment reinforces its persuasive power.

Four Droop-quota variants may be met in practice and theory. Variant-1 omits

the addition of unity, variant-2 revives it almost surely by rounding upwards instead

of downwards, variant-3 uses standard rounding, and variant-4 remains unrounded,

DrQ =

⌊
v+

h+ 1

⌋
+ 1, DQ1 =

⌊
v+

h+ 1

⌋
, DQ2 =

⌈
v+

h+ 1

⌉
,

DQ3 =

〈
v+

h+ 1

〉
, DQ4 =

v+
h+ 1

.

Variant 1 of the Hare-quota, and variants 1 and 3 of the Droop-quota may theoretically

become to zero and invalidate their use as divisors. As a remedy they are then assigned

the smallest possible positive integer, unity (Section 1.6).
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The first seven quota variants are practically relevant. They are in current use,

or have been used in the past:

HaQ Bulgaria, EP 2009 election (Table 1.5)
HQ1 Italy, EP 2009 election (Table 1.17)
HQ2 Lithuania, EP 2009 election (Table 1.18)

DrQ Ireland, EP 2009 election (Table 1.16)
DQ1 Solothurn, cantonal elections 1896–1977
DQ2 Solothurn, cantonal elections 1981–1993
DQ3 Slovakia, EP 2009 election (Table 1.28)

The Droop-quota variant-4 serves as a kind of fractional approximation to the integral

Droop-quota DrQ and its variants 1–3. Moreover, it is a kind of a closure of the

shift-quota family, lims→1 Q(s) = DQ4.

5.9. RESIDUAL FIT VARIANTS

At least three alternatives are available to substitute for the residual fit by greatest

remainders, as mentioned already in Section 1.7.

The variant gR1 relies on the greatest remainders of the parties’ interim quotients,

but includes only those parties that receive at least one seat in the main apportionment.

We refer to gR1 as the full-seat restricted residual fit by greatest remainders. The

variant WTA follows the imperative “winner take all” by awarding all residual seats to

the strongest party. The variant -EL is peculiar to Greece (Section 1.4). All variants

are or were used:

grR Bulgaria, EP 2009 election (Table 1.5)
gR1 Lithuania, EP 2009 election (Table 1.18)
WTA Solothurn, cantonal elections 1896–1917
-EL Greece, EP 2009 election (Table 1.11)

While the Greek version is one of a kind, the other three variants reflect the transi-

tion from plurality voting systems to proportional representation systems. In 1896 the

Swiss Canton of Solothurn moved from plurality to proportionality. It implemented

DQ1WTA, the Droop-quota variant-1 method with residual fit by winner-take-all.

While from today’s viewpoint the winner-take-all imperative appears unacceptably

biased, it is likely that at the time the effect was considered negligible. In the abol-

ished plurality system all seats succumbed to the winner-take-all rule, in the novel

proportional system the rule diverted a few residual seats only.

In 1917 Solothurn adopted the residual variant gR1. By eliminating parties that

receive no seat in the main apportionment the variant implements a kind of polar

imperative, loser-get-nil. Naturally it is a widespread game for stronger parties to

devise stumbling stones for weaker parties to enter parliament. However, it is hard

to defend such hurdles from a conceptual viewpoint. Quota methods presuppose that

the quota represents voters, and so do quota remainders. It is human beings who are

being treated by different standards, not just fractional parts of interim quotients.
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For example Section 5.3 displays the fractional parts of the interim quotients for

the Bulgarian 2009 EP election. These fractional numbers are indicative of human

beings. Indeed the Hare-quota signifies batches of 128 619 voters. The four main

apportionment seats of the GERB party thus represent 4 × 128 619 = 514 476 voters.

This leaves 627 693 − 514 476 = 113 217 GERB voters unaccounted for in the main

apportionment, to be looked after in the residual fit. In summary the voter numbers

unaccounted for in the main apportionment, u(j), are as follows:

u(GERB) = 113 217, u(DPS) = 106 959, u(BSP) = 90 761, u(NDSV) = 76 527,

u(SDS-DSB) = 76 198, u(ATAKA) = 50 814.

Fractional parts and unaccounted voters are related through the elementary formula

f(j) = u(j)/128 619 of course. The point is that the present display signifies human

beings more readily than the fractional parts in Section 5.3. Since the residual fit

commands four seats, the four strongest of the six support groups are able to achieve

representation. Regrettably no seats are left to represent the two weakest voter groups.

The full-seat restricted variant gR1 would look at these groups conditional on whether

their fellow voters have secured representation or not.

5.10. QUOTA METHOD VARIANTS

The present book keeps the focus on the unabridged residual fit by greatest remainders,

grR. Still we encounter difficulties. The reason is that most of the quota variants in

Section 5.7 produce a whole number, and hence involve a rounding step. Therefore

the ensuing quota methods with residual fit by greatest remainders, HQ1grR and so

on, fail to be decent in the sense of Section 4.2. By abuse of terminology we continue

to speak of “apportionment methods” and thus stretch the term’s meaning beyond its

proper limits.

We claim that only the three Hare-quotas and the genuine Droop-quota—HaQ,

HQ1, HQ2, and DrQ—are such that their main apportionment always can be paired

with a residual fit by greatest remainders. Second we claim that the four Droop-quota

variants DQ1–4 are so small that the main apportionment occasionally allocates more

seats than are available. Hence the residual apportionment would have to retract seats,

not to hand out yet more.

To verify the two claims we sort Hare- and Droop-quotas by decreasing magnitude,

HQ2 =
⌈v+
h

⌉
≥ HaQ =

v+
h
≥ HQ1 =

⌊v+
h

⌋
,

DrQ =

⌊
v+

h+ 1

⌋
+ 1 ≥ DQ2 =

⌈
v+

h+ 1

⌉
≥ DQ3 =

〈
v+

h+ 1

〉
≥ DQ1 =

⌊
v+

h+ 1

⌋
.

The Droop-quota variant-4, DQ4 = v+/(h+ 1), may be inserted in place of DQ3.
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In all practical applications the vote total v+ is so large that it obeys the condition

v+ ≥ h(h+ 1), that is,
v+
h
≥ v+

h+ 1
+ 1. (*)

An application of the floor function shows that the Hare-quota variant-1 stays above

the Droop-quota, HQ1 ≥ DrQ. Thus the first inequality string runs into the second,

HQ2 ≥ HaQ ≥ HQ1 ≥ DrQ ≥ DQ2 ≥ DQ3–4 ≥ DQ1.

We now invoke the shift-quotas of Section 5.4. Condition (*) implies Q(−1) = v+/
(h − 1) ≥ v+/h + 1 > �v+/h� = HQ2. On the other hand the Droop-quota satisfies
DrQ > v+/(h + 1) = Q(1). Therefore, there exists an admissible shift s∗ < 1 with
DrQ = Q(s∗). Hence the first half of the inequality string is framed by shift-quotas,

Q(−1) > HQ2 ≥ HaQ ≥ HQ1 ≥ DrQ = Q(s∗).

Let yj(Q) = �vj/Q� denote the seats allocated to party j in the main apportionment

that uses quota Q. Because of the framing the main apportionment totals y+(Q)
inherit the feasibility bounds of the shift-quota totals (Section 5.4),

h− � ≤ y+(HQ2) ≤ y+(HaQ) ≤ y+(HQ1) ≤ y+(DrQ) ≤ h.

This proves the first claim that the four larger quotas are such that their main ap-
portionments always may be completed with a residual fit by greatest remainders.
Moreover, all eight quotas respect the lower feasibility bound h− �. The quotas never

overcharge the residual fit with more than � seats.
The four smaller quotas can lead to seat totals beyond the upper bound h. To see

this take a vote total of the form v+ = n(h+1), for some n ∈ �. Then the Droop-quota

variant-2 equals DQ2 = �v+/(h+1)� = n. If all vote counts vj happen to be multiples
of n, then the main apportionment hands out one seat too many,

y+(DQ2) =
∑
j≤�

⌊vj
n

⌋
=
∑
j≤�

vj
n

= h+ 1.

Illustrative figures are easily contrived, h = 9 and v = (40, 30, 20, 10). This proves

the second claim that the four Droop-quota variants DQ1–4 are infeasible. Additional
instructions are required whenever the main apportionment hands out too many seats.

Such instructions are incompatible with the philosophy of quota methods. A

quota of votes is perceived as a sacrosanct measure telling how many voters must
come together to be guaranteed a Member of Parliament to represent them. Suddenly
a deficiency in the electoral system revokes the guarantee. Some seat is declared to be

one too many, and is retracted. The only way-out is to soften the sacrosanct status of
the quota, and to inject some dose of flexibility. However, if a sensible invocation of
flexibility is what is asked for then the answer is divisor methods, not quota methods.
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Targeting the House Size:
Discrepancy Distribution

Technical aspects are discussed that are common to divisor methods and to quota meth-
ods. The methods start with an initial seat apportionment possibly missing the target
house size by some discrepancy. The range of variation of the discrepancy is analyzed.
For stationary divisor methods, an efficient divisor initialization is recommended. The
ensuing discrepancy distribution is determined in two complementary stochastic mod-
els. Either the vote shares are assumed to be uniformly distributed and the house
size is allowed to be finite, or the vote shares follow an arbitrary absolutely continu-
ous distribution and the house size grows to infinity. An invariance principle emerges
showing that the limit discrepancy distribution is a convolution of uniformly distributed
rounding residuals irrespective of the underlying vote share distribution.

6.1. SEAT TOTAL AND DISCREPANCY

Apportionment methods operate in two steps. The initial step jumps to some reason-

able seat vector y = (y1, . . . , y�) without guaranteeing that its component sum y+ is

equal to the house size h. The finalizing step advances from y to a final seat vector

x = (x1, . . . , x�) ∈ ��(h) by adjoining or removing individual seats until the house size

is met. The present chapter investigates the properties of the initial seat assignment y.

Divisor methods choose some initial divisor D, divide it into the vote counts vj ,

and obtain the interim quotients vj/D. The underlying rounding rule [[·]] then yields

the initial seat numbers

yj(D) ∈
[[vj
D

]]
for all j ≤ �.

The resulting seat vector is denoted by y(D) =
(
y1(D), . . . , y�(D)

)
. The question is

how the seat total y+(D) :=
∑

j≤� yj(D) compares to the target house size h.

Definition. The difference y+(D)− h is called discrepancy.

Quota methods constitute a special case. The divisorD is replaced by the quotaQ,

and the rounding rule applied is downward rounding, yj(Q) ∈ ��vj/Q��. To maintain a

maximum level of generality the development focuses on divisor methods.
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In the case of a vanishing discrepancy, y+(D)−h = 0, we are in the lucky situation

that the initial seat vector represents a final solution, x = y(D) ∈ ��(h). Unfortunately

there is no divisor D that fits all vote vectors v = (v1, . . . , v�). For every divisor D

there exists a vote vector v whose discrepancy is nonzero. Yet some initial divisors

perform better than others.

A bad initialization is the choice D = ∞, with initial seat vector y(∞) = 0. For

a start nobody gets anything. The discrepancy y+(∞) − h = −h means that there

remains a deficiency of h seats, that is, all seats. The finalizing step then passes

through a great many rounds to allocate one seat after the other until all h seats

are dealt out. This marathon effort is the favorite approach of many legislators and

political scientists. Section 4.11 exemplifies its inefficiency.

A good, universal initialization is the votes-per-seats ratio, D = v+/h. For a start

every party is allocated its ideal share of seats except for some rounding inaccuracy.

The ensuing discrepancy y+(v+/h)−h is bounded by ±� (Section 6.2). Hence at most

� seats remain to be handled. The gain in efficiency is spectacular, from h down to at

most � seats. Section 4.9 illustrates the pertinent calculations.

Stationary divisor methods permit an even more efficient divisor initialization.

Given a split r ∈ [0; 1] the recommended divisor is

D(r) :=
v+
hr

, where hr := h+ �

(
r − 1

2

)
.

The recommended divisors D(r) resemble the shift-quotas Q(s) = v+/(h + s) (Sec-

tion 5.4). The term hr is called the adjusted multiplier. The discrepancy y+
(
D(r)

)−h

is seen to be bounded by ±�/2, whence its removal touches upon at most ��/2� seats
(Section 6.3). This is the smallest possible range, the probability of a zero discrepancy

is largest, and the discrepancy values ±z turn rapidly unlikely as z moves away from

zero (Theorems 6.7 and 6.11). Section 4.10 presents one of the many instances where

initial and final solutions coincide right away.

6.2. UNIVERSAL DIVISOR INITIALIZATION

Consider a general divisor method, with an arbitrary underlying rounding rule [[·]]. Let
D > 0 be an arbitrary initial divisor. The initial seat numbers yj(D) ∈ [[vj/D]] and

the interim quotients vj/D satisfy −1 ≤ yj(D)− vj/D ≤ 1. Summation yields

−� ≤ y+(D)− v+
D
≤ �.

With universal divisor D = v+/h the difference y+(v+/h) − h coincides with the

discrepancy. In view of the inequalities it attains values between ±�,

y+

(v+
h

)
− h ∈ {−�, . . . , �}.

The initial seat assignment to party j is its rounded ideal share, yj(v+/h) ∈ [[(vj/v+)h]].
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Item Proportion A Percentage A Proportion B Percentage B

Item 1 28.39 28 28.59 29
Item 2 20.42 20 20.52 21
Item 3 14.47 14 13.67 14
Item 4 12.48 12 12.58 13
Item 5 11.38 11 11.58 12
Item 6 7.41 7 7.51 8
Item 7 5.45 5 5.55 6

Sum 100.00 97 100.00 103

TABLE 6.1 Discrepancy range. Proportions with a hundredth-of-a-percent accuracy are rounded to

percentages using standard rounding and its recommended divisor, 100.00/100 = 1. The discrepancies

are extreme, −�7/2� = −3 percentage points for set A, and �7/2� = 3 percentage points for set B.

6.3. RECOMMENDED DIVISOR INITIALIZATION

A stationary rounding rule [[·]]r with split r ∈ [0; 1] bounds the difference of initial seat

numbers yj(D) and interim quotients vj/D in an asymmetric fashion, −r ≤ yj(D) −
vj/D ≤ 1− r. Summation and symmetrization yield

−�r ≤ y+(D)− v+
D
≤ �(1− r), that is, − �

2
≤ y+(D)− v+

D
+ �r − �

2
≤ �

2
.

The universal divisor v+/h leads to the discrepancy range [−�r; �−�r], according to the

left display. The right symmetrization suggests the divisorD(r) = v+/hr recommended

in Section 6.1. Because of v+/D(r) − �(r − 1/2) = h the discrepancy y+
(
D(r)

) − h

then ranges through the interval [−�/2; �/2] that is symmetric around zero. Due to

integrality the interval can be tightened,

y+
(
D(r)

)− h ∈
{
−
⌊
�

2

⌋
, . . . ,

⌊
�

2

⌋}
.

The recommended divisor D(r) is more successful than the universal divisor v+/h. It

involves the house size h, the number of parties �, and the split r. The sensitivity pays

off by halving the width of the discrepancy range of the universal divisor.

This is the narrowest discrepancy range generally possible. For example, Table 3.2

lists � = 5 continents and assigns h = 100 percentage points to them. The tabled

percentages yj(v+/h) = 〈〈(vj/v+)h〉〉 leave a discrepancy of 98− 100 = −2 percentage

points. Thus the lower bound of the discrepancy range is attained, −�5/2� = −2.
Table 6.1 presents another example from Happacher (1996 [5]). Seven fractional

percentages, with an accuracy of a hundredth of a percent, are commercially rounded to

whole percentages. Presumably most people would spot little exciting differences when

glancing over proportions A and B. All first and last digits are the same. The second

digit differs only for item 3, but both numbers are properly rounded to the common

value 14. Could anything go astray? In terms of whole percentages, set A forfeits

three percentage points and drops to the minimum possible discrepancy, −�7/2� = −3.
Set B fabricates three percentage points in excess and raises to the maximum possible

discrepancy, �7/2� = 3.
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For standard rounding (r = 1/2), universal and recommended divisors coincide

and agree with the votes-per-seats ratio, v+/h. The coincidence is indicative of the
distinguished role played by standard rounding. For upward rounding (r = 0) the
recommended divisor is

D0 =
v+

h− �/2
,

a quantity somewhat larger than the votes-per-seats ratio. Hence the divisor is on
the frugal side and balances the generous upward rounding of the finishing step. For
downward rounding (r = 1) the recommended divisor

D1 =
v+

h+ �/2

is smaller than the votes-per-seats ratio. It hands out seats more generously and
thereby counterbalances the final downward rounding. The divisor D1 was recom-
mended already more than a century ago by the Swiss proportional representation

activist Jules Gfeller (1890):

. . . on obtiendra le diviseur au moyen de la division du total des suffrages par le
nombre des candidats plus la moitié du nombre des listes.

. . . one obtains the divisor by means of the division of the total of the votes by
the number of seats plus half of the number of parties.

The chapter’s remainder is devoted to the determination of the discrepancy dis-
tribution. Without extra effort the results are derived for seat totals y+(D) with a

general divisor D > 0. Section 6.7 returns to specific divisors and their discrepancy.

6.4. DISTRIBUTIONAL ASSUMPTIONS

How likely is it that the seat total attains a given value, y+(D) = m? Of course, the
seat total distribution depends on the distributional assumptions for the vote counts.
The set of all vote counts is the orthant (0;∞)�, an unbounded set. It is advantageous

to normalize the vote counts vj into the vote shares wj = vj/v+. The set of all weight
vectors w = (w1, . . . , w�) constitutes the probability simplex

Ω� :=
{
(w1, . . . , w�) ∈ (0; 1)�

∣∣∣ w+ = 1
}
,

an open and bounded set in the affine subspace of vectors with component sum unity.
Let λ�−1 denote (�−1)-dimensional Lebesgue measure over the probability simplex Ω�.

(The total mass is well-known to be λ�−1(Ω�) =
√
�/
(
(�−1)!

)
, but the exposition makes

no use of this formula.) The subsequent results assume the distribution of the weight
vectors to be (a) uniform or, more generally, (b) absolutely continuous.

Definition.

a. The weight vectors w are said to follow the uniform distribution when their dis-

tribution is given by normalized Lebesgue measure,

P (B) =
λ�−1(B)

λ�−1(Ω�)
for all Borel subsets B ⊆ Ω�.
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b. The weight vectors w are said to follow an absolutely continuous distribution when

their distribution is given by a Lebesgue-integrable density function f ,

P (B) =

∫
B

f dλ�−1 for all Borel subsets B ⊆ Ω�.

The uniform distribution is the particular absolutely continuous distribution that
has a constant density function, f(w) = 1/λ�−1(Ω�). An important consequence of

absolutely continuous distributions is that the occurrence of ties disappears in null-
sets. Given a multiplier μ > 0, a scaled weight μwj is a tie if and only if it hits a
signpost, μwj = s(n). Hence the vectors (w1, . . . , w�) ∈ Ω� with a fixed component

wj = s(n)/μ lie in a lower-dimensional subspace and have λ�−1-measure zero. It is safe
to neglect ties, in the remainder of the present chapter.

In the absence of ties the set-valued rounding rule [[·]] is substituted by a compatible

rounding function [·] : [0;∞) �→ � (Section 3.8). The set-oriented notion yj(D) ∈
[[vj/D]] is replaced by the number-oriented notion yj(D) = [vj/D]. Recall that divisors
for vote counts vj , and multipliers for vote shares wj = vj/v+ are related through

vj
D

=
v+
D

vj
v+

= μwj , μ =
v+
D

.

The seat total attains the format y+(D) =
∑

j≤�[μwj ]. It visibly displays the pertinent

variables: �, μ, and wj . The event that the seat total attains a given value m is

B(m) :=

{
(w1, . . . , w�) ∈ Ω�

∣∣∣∣ ∑
j≤�

[μwj ] = m

}
.

The probabilities of the events B(m) for m ∈ � constitute the seat total distribution.

From now on we restrict attention to stationary divisor methods with split r ∈
[0; 1]. The bounds v+/D − �r ≤ y+(D) ≤ v+/D + �(1 − r) from Section 6.3 translate
into μ− �r ≤∑j≤�[μwj ]r ≤ μ+ �(1− r), where μ > 0. Under the specific assumption
of a uniform distribution we determine the seat total distribution (Lemma 6.5), and

the discrepancy distribution for a fixed house size h (Theorem 6.7).
The distributions prove dramatically practical. They apply to apportionment

methods in electoral systems, to the transformation into percentages or the like, to

the fitting of contingency tables, as well as to a wealth of other rounding problems.
Their practicality comes as a surprise since a weight distribution that is uniform would
appear to be a bold model to capture the peculiarities of this fan of applications. The

reason for the wide applicability is that the distributions depend on their input only
through the rounding residuals (Lemma 6.9). When the house size grows to infinity,
the rounding residuals become exchangeable and uniformly distributed even under the

rather general and very mild assumption that the weights follow an arbitrary absolutely
continuous distribution (Invariance Principle 6.10).

In the subsequent formulas we write

tpos :=
t+ |t|
2

= max{t, 0}
for the positive part of the real number t ∈ �, and shorten (tpos)

n to tnpos. The following
lemma calculates the seat total distribution for a given multiplier μ. We assume that

the multipliers are not too close to zero, μ > �r. The assumption guarantees that the
seat total is positive, and leapfrogs the irrelevant event that the seat total is zero.
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Lemma. Consider the stationary divisor method with split r ∈ [0; 1], and a multiplier
μ > �r. If the weights are uniformly distributed then the seat total attains the values

m = �μ− �r�, . . . , �μ+ �− �r� with probabilities

P

({
(w1, . . . , w�) ∈ Ω�

∣∣∣ ∑
j≤�

[μwj ]r = m

})

=
�∑

k=0

(−1)k
μ�−1

(
�

k

) �−k∑
i=0

(
�− k

i

)(
m+ k − 1

i+ k − 1

)(
μ−m+ i(1− r)− kr

)�−1

pos
.

Proof. I. The seat total is bounded according to μ − �r ≤
∑

j≤�
[μwj ]r ≤ μ + �(1 − r) (Sec-

tion 6.3). Hence its values m range between �μ− �r� and �μ+ �− �r�. The assumption μ > �r

secures m ≥ 1, and bypasses the trivial singleton ��(0) = {0}.
The domain of attraction A(y) of a seat vector y ∈ ��(m) is defined to consist of the weight

vectors w so that μw gets rounded to y,

A(y) :=

{
(w1, . . . , w�) ∈ Ω�

∣∣∣ [μw1]r = y1, . . . , [μw�]r = y�

}
.

The intersection of two such domains consists of ties and hence is a null-set. Therefore, the

probability sought is the sum of the probabilities of the domains of attraction,

P

({
(w1, . . . , w�) ∈ Ω�

∣∣∣∑
j≤�

[μwj ]r = m

})
=

∑
y∈��(m)

P
(
A(y)

)
=

∑
y∈��(m)

λ�−1

(
A(y)

)
λ�−1(Ω�)

.

II. We fix a vector y = (y1, . . . , y�) ∈ ��(m). A component yj attracts all values in the interval

[aj ; bj ]. The limits are aj := yj−1+r in case yj > 0 and aj := 0 in case yj = 0, and bj := yj+r.

The rectangle [a; b] := [a1; b1]×· · ·× [a�; b�] with South-West corner a = (a1, . . . , a�) and North-

East corner b = (b1, . . . , b�) assembles the vectors v ∈ (0;∞)� that are rounded to y. Introducing

for a set B ⊆ �� the scaled set μB := {μv | v ∈ B}, we get μA(y) =
(
μΩ�

)
∩ [a; b].

The set of corner vectors of the rectangle [a; b] is partitioned into subsets Ek(y), for k = 0, . . . , �.

The set Ek(y) is defined to contain the corner vectors c such that k components come from b

and �−k from a. Every corner vector c induces an orthant [c;∞) := [c1;∞)×· · ·× [c�;∞). The

inclusion-exclusion principle yields

λ�−1

(
A(y)

)
=

1

μ�−1
λ�−1

(
μA(y)

)
=

1

μ�−1

�∑
k=0

∑
c∈Ek(y)

(−1)k λ�−1

(
(μΩ�) ∩ [c;∞)

)
.

In case μ ≥ c+ the intersection is (μΩ�) ∩ [c;∞) = c + (μ − c+)Ω�. It originates from the

probability simplex Ω� through a translation by the vector c and a scaling by the factor μ− c+.

Lebesgue measure λ�−1 is invariant under translation, and scales with power �−1. In case μ < c+
the intersection is empty. Both cases combine into the volume formula λ�−1

(
(μΩ�) ∩ [c;∞)

)
=

(μ− c+)�−1
pos λ�−1(Ω�). Hence we obtain

∑
y∈��(m)

λ�−1

(
A(y)

)
λ�−1(Ω�)

=

�∑
k=0

(−1)k

μ�−1

∑
y∈��(m)

∑
c∈Ek(y)

(
μ− c+

)�−1

pos
.
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III. The corner vector set Ek(y) is further partitioned into the subsets Ek
i (y), for i = 0, . . . , �−k.

The set Ek
i (y) is defined to contain the vectors c ∈ Ek(y) wherein the �− k components from a

are such that i belongs to yj > 0, and �− k − i to yj = 0. With a seat vector y ∈ ��(m) fixed,

the set Ek
i (y) contains

(
�
k

)(
�−k
i

)
many vectors that are permutations of the generator having

k initial components equal to yj + 1− (1− r), where yj ≥ 0,

i middle components equal to yj − (1− r), where yj > 0,

�− k − i remaining components equal to 0, where yj = 0.

As the seat vector y varies through ��(m), there are as many distinct generators as there are

ways for y+ + k = m + k indistinguishable objects to occupy i + k cells leaving none of the

cells empty. This occupancy problem is well-known to have
(
m+k−1
i+k−1

)
solutions. The vectors

c ∈ Ek
i (y) share the same component sum, c+ = m− i(1− r) + kr.

The double sum comprises at most (� + 1)(� + 2)/2 terms and lends itself to

rapid machine computation. For values m smaller or larger than the indicated range

the double sum can be shown to be zero. In order to deduce the distribution of the

discrepancy y+
(
D(r)

)−h we pass from the recommended divisor D(r) = v+/hr to the

adjusted multiplier v+/D(r) = h + �(r − 1/2) = hr. Thus the discrepancy of interest

is
(∑

j≤�[hrwj ]r
)− h, to be pursued in Theorem 6.7.

6.6. HAGENBACH-BISCHOFF INITIALIZATION

We briefly digress to appreciate the contributions of Eduard Hagenbach-Bischoff. As

the leading proportional representation proponent in the Great Council of the Canton

of Basel in Switzerland, he fought for the introduction of the divisor method with down-

ward rounding, and succeeded. By profession a physics professor at Basel University,

his numerous writings on the topic are still today a fruitful and reliable source. The 28-

page pamphlet Hagenbach-Bischoff (1905 [15, 26]) is the first to calculate discrepancy

probabilities.

Hagenbach-Bischoff remarks that the divisor method with downward rounding

executes faster when the initial divisor is chosen somewhat smaller than the votes-per-

seats ratio v+/h. His choice is �v+/(h+1)�+1. This divisor coincides with the Droop-

quota. (In view of this coincidence some authors erroneously file Hagenbach-Bischoff ’s

work under the heading of quota methods.) The feasibility bounds h−� ≤ y+(DrQ) ≤ h

of Section 5.10 mean that the discrepancy is non-positive, −� ≤ y+(DrQ)−h ≤ 0. How

likely is it that the discrepancy equals z = −1 and one seat must be adjoined, or that

it equals z = −2 and two seats are needed, and so on?

For the calculation of these probabilities Hagenbach-Bischoff makes two vital as-

sumptions that are specified in the appendix “Mathematische Ergänzungen”. First,

the initial divisor is stripped off the rounding step and is simplified to v+/(h + 1).

With this simplification, the divisor induces the multiplier μ = h+ s with shift s = 1.

Second, he interprets the discrepancies via rounding residuals (as we do in Lemma 6.9).

In our terms this means that the house size h grows beyond limits.
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Hence Hagenbach-Bischoff ’s results follow from Lemma 6.5 when r = 1, m = h+z,

μ = h+ s, and h→∞. The limit of the inner sum is determined by the term i = �−k
and converges to (�− 1)!, as we show in the proof of Theorem 6.7.a. Thus we obtain

lim
h→∞

P

({
w ∈ Ω�

∣∣∣ (∑
j≤�

⌊
(h+ s)wj

⌋)− h = z

})
=

�∑
k=0

(−1)k
(�− 1)!

(
�

k

)(
s− z − k

)�−1

pos
.

With s = 1, the formula yields the probabilities given by Hagenbach-Bischoff :

If three parties are present, then the probability is

1/2 that the discrepancy equals zero and the initial seat vector is final,
1/2 that the discrepancy equals −1 and is removed by adding one seat.

If four parties are present, then the probability is

1/6 that the discrepancy equals zero and the initial seat vector is final,
2/3 that the discrepancy equals −1 and is removed by adding one seat,
1/6 that the discrepancy equals −2 and is removed by adding two seats.

If five parties are present, then the probability is
1/24 that the discrepancy equals zero and the initial seat vector is final,
11/24 that the discrepancy equals −1 and is removed by adding one seat,

11/24 that the discrepancy equals −2 and is removed by adding two seats,
1/24 that the discrepancy equals −3 and is removed by adding three seats.

Section 6.1 recommends the divisor v+/(h + �/2). The shift s = �/2 responds
to the size of the party system, in contrast to Hagenbach-Bischoff ’s constant choice

s = 1. The multiplier that is associated with the recommended divisor is the adjusted
multiplier h + �/2. An application of the above formula with s = �/2, for � = 3, 4, 5,
yields discrepancy distributions more favorable than those of Hagenbach-Bischoff :

If three parties are present, then the probability is
3/4 that the discrepancy equals zero and the initial seat vector is final,

1/8 that the discrepancy equals −1 and is removed by adding one seat,
1/8 that the discrepancy equals +1 and is removed by retracting one seat.

If four parties are present, then the probability is

2/3 that the discrepancy equals zero and the initial seat vector is final,
1/6 that the discrepancy equals −1 and is removed by adding on seat,
1/6 that the discrepancy equals +1 and is removed by retracting one seat.

If five parties are present, then the probability is
115/192 that the discrepancy equals zero and the initial seat vector is final,
19/96 that the discrepancy equals −1 and is removed by adding one seat,

19/96 that the discrepancy equals +1 and is removed by retracting one seat,
1/384 that the discrepancy equals −2 and is removed by adding two seats,
1/384 that the discrepancy equals +2 and is removed by retracting two seats.

The variation of the shift parameter, from 1 over 3/2 and 2 to 5/2, may appear
negligible, but actually is significant. The event that the discrepancy vanishes acquires

maximum likelihood, and the probability of a discrepancy z �= 0 decreases rapidly as z
moves away from zero. The general formulas that govern this behavior are as follows.
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6.7. DISCREPANCY PROBABILITIES: FORMULAS

Theorem. Consider the stationary divisor method with split r ∈ [0; 1], and a house

size h > �/2. With adjusted multiplier hr = h+ �(r − 1/2) let

p�,r,h(z) := P

({
(w1, . . . , w�) ∈ Ω�

∣∣∣ (∑
j≤�

[hrwj ]r

)
− h = z

})
denote the probability that the discrepancy attains the values z = −��/2�, . . . , ��/2�.

a. (Double-Sum Formula) If the weight vectors w are uniformly distributed then

p�,r,h(z) =
�∑

k=0

(−1)k
h�−1
r

(
�

k

) �−k∑
i=0

(
�−k

i

)(
z+h+k−1

i+ k − 1

)(
�

2
−z−k−(�−k−i)(1−r)

)�−1

pos

.

b. (Single-Sum Formula) For large house sizes the probabilities p�,r,h(z) have a limit,

lim
h→∞

p�,r,h(z) =

�∑
k=0

(−1)k
(�− 1)!

(
�

k

)(
�

2
− z − k

)�−1

pos

=: g�(z).

c. (Approximation Formula) For large numbers of parties the limits g�(z) converge,

lim
�→∞

√
�

12
g�

(√
�

12
z

)
=

1√
2π

e−z2/2, that is, g�(z) ≈
√

6

�π
e−6z2/�.

Proof. a. The Double-Sum Formula is Lemma 6.5 with μ = hr and m = z + h.

b. In the Double-Sum Formula, the ratio
(
z+h+k−1
i+k−1

)/
h�−1
r is of order hi+k−�. Hence the inner

sum has all ratios with i < �− k tending to zero. (The terms originate from corner vectors with

�− k − i > 0 many zeros.) The last ratio with i = �− k converges to 1/(�− 1)!. (These are the

corner vectors with no zeros.) Hence the Double-Sum Formula has limit g�(z). A reference to

the split parameter is no longer needed because the limit is the same for all r.

c. Let the random variables U1, . . . , U� be stochastically independent and uniformly distributed

over the interval [−1/2; 1/2]. The sum U+ has a density that for u ∈ [−�/2; �/2] is given by

g�(u) =

∫
g�−1(t)g1(u− t) dt =

∫ u+ 1
2

u− 1
2

g�−1(t) dt =

�∑
k=0

(−1)k

(�− 1)!

(
�

k

)(
�

2
− u− k

)�−1

pos
.

The last identity is proved by induction, see Feller (1971 [28]). The sum U+ has expectation

zero and variance �/12. Hence
√

�/12 g
(√

�/12 z
)
is the density of the standardized sum, and

the Central Limit Theorem applies. An Edgeworth expansion details the speed of convergence,

see Happacher (1996 [90, 95]):∣∣∣∣ g�(z)−(1− 3

20�
+

18z2

5�2
− 36z4

5�3

)√
6

�π
e−6z2/�

∣∣∣∣ ≤ �−5/2.

According to the Invariance Principle 6.10 the Single-Sum Formula continues to
hold true even when the weight vector w follows an arbitrary absolutely continuous

distribution, rather than being restricted to the uniform distribution. Yet we pause
before accumulating more theory, and contemplate some practical aspects.



6.8. DISCREPANCY PROBABILITIES: PRACTICE 89

6.8. DISCREPANCY PROBABILITIES: PRACTICE

Discrepancy examples abound. In December 1999 a public German television station

conducted a telephone poll to rank five pop music groups. The top group was fortunate

to win by the narrow margin of one percentage point. However, the five percentages

that flashed over the television screen implied a discrepancy of one percentage point,(
29 + 28 + 25 + 13 + 6

)− 100 = 1.

This discrepancy point hit the press. The tabloid Bild am Sonntag made a mockery

of the television people’s inability to count to one hundred. In a subsequent press

release the television company reaffirmed the public that the excess point had not

been instrumental to determine the winner. What they wanted to say is that simple

rounding, though deficient, still is concordant (Section 4.2). Simple rounding is all too

likely to miss the target house size (Section 3.13). The probabilities that troubled the

television people are given by the Double-Sum Formula (� = 5, r = 1/2, h = 100):

Discrepancy z −2 −1 0 1 2 Sum

Double-Sum Formula [in %] 0.3 20.2 59.8 19.4 0.3 100.0

The television station risked a sizable chance of forty percent to encounter a nonzero

discrepancy and to ridicule themselves.

The extreme discrepancies ±3 in Table 6.1 are much less likely, occurring just

twice per a hundred thousand instances. With reference to this setting (� = 7, r =

1/2, h = 100) Theorem 6.7 yields the following probabilities [in %]:

Discrepancy z −3 −2 −1 0 1 2 3 Sum

a. Double-Sum 0.002 1.652 23.591 51.093 22.176 1.484 0.002 100.000
b. Single-Sum 0.002 1.567 22.880 51.102 22.880 1.567 0.002 100.000
c. Approximation 0.023 1.694 22.166 52.234 22.166 1.694 0.023 100.000

The three formulas send the same qualitative message. Since they are evaluated equally

fast by modern computing equipment, we consider them interchangeable.

We note that the Double-Sum Formula yields a skewed distribution, with slightly

more weight on negative discrepancies than on their positive counterparts. The skew-

ness is caused by the scaled simplex in the proof of Lemma 6.5, μΩ�, that cuts the

nonnegative orthant (0;∞)� into two pieces. The piece towards the origin is a relatively

compact pyramid, the piece away from the origin is a truncated pyramid receding to

infinity. On lower-dimensional faces (in Lemma 6.5 for i < �− k, when corner vectors

have components that are zero) the orientation matters; negative discrepancies (to-

wards the origin) are more likely than positive discrepancies (away from the origin),

see Happacher (1996 [55]). Within the relative interior (i = � − k) the two directions

look locally alike, whence the limit Single-Sum distribution is symmetric.

The discrepancy distributions conform rather satisfactorily with empirical data,

as we illustrate with the 1996 United States and Russian presidential elections. In

both instances the vote counts are rounded to a tenth of a percent (h = 1000) using

standard rounding (r = 1/2). For the 1996 US election the International Herald

Tribune of 7 November 1996 reported the vote counts for the three leading candidates

(� = 3) within the 50 states, the District of Columbia, and the whole country. This
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Discrepancy z 0 ±1 ±2 ±3 ±{4, . . . } Sum

� = 2 100 0 100
3 76 12 100
4 66 17 0 100
5 60 20 0 100

10 44 24 4 0 0 100
20 30 23 10 2 0 100
30 26 21 11 4 1 100
40 22 19 12 6 2 100
50 20 17 12 7 4 100

100 14 13 11 8 11 100

TABLE 6.2 Discrepancy distributions for increasing numbers of party. The Single-Sum probabilities

6.7.b are listed after being symmetrized around zero [in %]. The distributions spread out and flatten
as � grows. The probability of a vanishing discrepancy tends to zero of order 1.4/

√
�.

provides a sample of size N = 52. The observed counts of the discrepancy values

−1, 0, 1 corroborate the theoretically predicted counts:

Discrepancy z −1 0 1 N

Observed counts 5 39 8 52
Predicted counts 7 39 6 52

The predicted counts—which are integers—are obtained from the expected values

Np3,1/2,1000(z)—which are reals—using the divisor method with standard rounding.

The 1996 Russian presidential election data were reported in the Rossijskaja

Gazeta of 1 July 1996. The Russian people could vote for one of ten candidates,

or against all of them (� = 11). The 89 Constitutional Subjects of the Russian Feder-

ation, the votes abroad, and the country-wide totals provide a sample of size N = 91.

Discrepancy values as extreme as ±5 and ±4 did not materialize.

Discrepancy z −3 −2 −1 0 1 2 3 N

Observed counts 0 9 18 37 20 6 1 91
Predicted counts 0 4 23 38 22 4 0 91

Again the counts observed agree with those predicted.

The most desired event is that the discrepancy is zero, so that the target house

size is met. This probability decreases as the size of the party system increases. For

the American data (� = 3) the percentages duly sum to one hundred in 39 out of

52 instances, that is, in seventy-five cases out of a hundred. With the Russian data

(� = 11) this occurs in 37 out of 91 instances, that is, only in forty of a hundred cases.

Theorem 6.7.c says that the probability of exhausting the house size converges to zero,

P
({

(w1, . . . , w�) ∈ Ω�

∣∣∣ ∑
j≤�

[hrwj ]r = h
})
≈ g�(0) =

1.4√
�
.

As a rather simplistic rule of thumb we equate 1.4/
√
� to one half for all one-digit

system sizes � ≤ 9. In other words the target house size is likely to be hit right away

in about half of all applications. The other half misses the target by one seat too few

or too many (or two or more seats, but very rarely so).
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Whether nonzero discrepancies are judged irritating or not depends on the con-

text. A nonzero discrepancy is entirely unacceptable when the apportionment concerns

parliamentary seats. The public would not agree to some seats remaining vacant or

others being brought to life on the ground of rounding effects. A nonzero discrepancy

may still be a cause for ridicule when the allocation units are percentage points that

eventually stay below or exceed one hundred, as experienced by the television company.

But a nonzero discrepancy is increasingly tolerable when it accrues after the decimal

point in the last digit where it is clearly attributable to rounding effects.

Yet some people take pains to secure impeccable totals. For example, vote share

percentages in the Augsburger Allgemeine newspaper always sum to 100.0, not to 99.9

nor to 100.1. The newspaper prints electoral results by quoting vote counts along with

vote shares. Vote shares are given in tenths of a percent, nj/1000, in such a way that

they persistently fit the correct total,
∑

j≤� nj = 1000. Persistent fits cannot result

from simple rounding. So what do the journalists do to balance the field? They fit the

strongest party last. All other parties have their vote shares commercially rounded to

a tenth of a percent, nj := 〈1000vj/v+〉 for all j = 2, . . . , �. The strongest party makes

up for a possible imbalance, n1 := 1000−∑�
j=2 nj .

The journalists’ apportionment method may be classified as a “Hare-quota method

with standard rounding and with a residual fit by winner-take-all”. Indeed, it relies on

the quota Q = v+/1000 to calculate interim quotients vj/Q. Then standard rounding

is applied, not downward rounding. The residual fit implements the winner-take-all

rule, n1 := 1000 −∑�
j=2 nj , meaning that a few tenths of a percent are added or

subtracted according to whether the discrepancy is negative or positive. An obvious

variant to ensure a fitting total is the loser-take-all rule, n� := 1000−∑j<� nj .

The following lemma builds on a similar strategy, to temporarily deal with all but

one party, and to eventually revive the omitted party to complete the field. The lemma

expresses the discrepancy in terms of rounding residuals uj(h). Out of all � parties,

�− 1 are dealt with and one is omitted.

6.9. DISCREPANCY AND ROUNDING RESIDUALS

Lemma. Consider the stationary divisor method with split r ∈ [0; 1]. Let hr = h +

�(r− 1/2) denote the adjusted multiplier. For weights w = (w1, . . . , w�) ∈ Ω� such that

hrw is tie-free, the rounding residual of party j ≤ � is given by

uj(h) :=
〈
hrwj − r +

1

2

〉
−
(
hrwj − r +

1

2

)
∈
[
−1

2
;
1

2

]
.

Then, omitting an arbitrary party j, the discrepancy satisfies(∑
i≤�

[hrwi]r

)
− h = u+(h) =

〈∑
i�=j

ui(h)

〉
.

Proof. The fundamental relation for stationary rounding, n− 1+ r ≤ t ≤ n+ r, translates into

the fundamental relation for standard rounding, n−1/2 ≤ t−r+1/2 ≤ n+1/2. Thus stationary

rounding is always expressible through standard rounding, [[t]]r = 〈〈t− r+1/2〉〉. In the presence
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of tie-freeness we revert to rounding functions, and equate [hrwj ]r = 〈hrwj − r + 1/2〉 =:

yj . Summation over the defining relation for the rounding residuals yields the first identity,

u+(h) = y+ − hr + �(r − 1/2) = y+ − h.

As for the second identity we note that the rounding residuals (left) are continuous variables

while the discrepancy (right) is a discrete variable. The breach of measurement levels is easily

mended. Setting z := y+ − h ∈ � we separate the rounding residual of party j from the other

rounding residuals,

∑
i�=j

ui(h) = z − uj(h) ∈
[
z − 1

2
; z +

1

2

]
, that is,

〈∑
i�=j

ui(h)

〉
= z.

The last statement employs the extended definition of standard rounding (Section 3.7).

With the discrepancy exhibited as a function of the rounding residual and nothing

else, the search for the discrepancy distribution raises an intermediate question: What

is the distribution of the rounding residuals? If we assume that the house size grows

large, then the answer is simple. The joint distribution of the rounding residuals is

exchangeable, with uniform marginals. This is the main message of the following In-

variance Principle. It interprets the quantities of interest to be random. The change of

viewpoint is indicated by capital letters, such as Wj or Uj(h). The Invariance Principle

states that, almost invariably, large house sizes make the rounding residuals look like

random variables U1, . . . , U� that are exchangeable. In addition, they are stochastically

independent of the underlying weights W1, . . . ,W�. The common distribution of the

limit variables Uj is the uniform distribution over their range [−1/2; 1/2].

6.10. INVARIANCE PRINCIPLE FOR ROUNDING RESIDUALS

Theorem. Consider the stationary divisor method with split r ∈ [0; 1], and assume

that the weights W1, . . . ,W� follow an arbitrary absolutely continuous distribution over

the probability simplex Ω�. Let hr = h+ �(r − 1/2) denote the adjusted multiplier.

Then the rounding residuals Uj(h) := 〈hrWj − r + 1/2〉 − (hrWj − r + 1/2) ∈
[−1/2; 1/2] and the weights Wj, for j ≤ �, jointly converge in distribution,(

U1(h), . . . , U�(h),W1, . . . ,W�

) in distribution−−−−−−−−−→
h→∞

(U1, . . . , U�,W1, . . . ,W�),

with limit variables U1, . . . , U� being uniformly distributed over the interval [−1/2; 1/2],
exchangeable, and stochastically independent of W1, . . . ,W�. Omitting any limit vari-

able Uj, the remaining �− 1 variables Ui, i �= j, are stochastically independent.

Proof. Initially the proof omits the last component, j = �. Setting k := �−1 the components are

assembled into the vectors U(h) = (U1(h), . . . , Uk(h)) and W = (W1, . . . ,Wk). By assumption

the random vector W admits a Lebesgue density f on the k-dimensional simplex
{
(w1, . . . , wk)

∈ (0; 1)k |
∑

j≤k
wj < 1

}
. Convergence in distribution is verified via the Lévy continuity

theorem for characteristic functions, as in Janson (2012). A prime signifies the scalar product

of two vectors, s′t :=
∑

j≤k
sjtj , and i :=

√−1 is the imaginary unit.
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The random variables 2πUj(h) fall into the interval [−π;π]. Since the trigonometric system over

the unit circle is complete, integer coefficients suffice. With integer vector s = (s1, . . . , sk) ∈ �k

and real vector t = (t1, . . . , tk) ∈ �k we introduce the characteristic functions

ϕh(s, t) := E
(
e2πi s′U(h)+i t′W ).

The claim is that these characteristic functions converge to the characteristic function of the

limit distribution,

lim
h→∞

ϕh(s, t) =

(∏
j≤k

E
(
e2πisjUj

))
· E
(
ei t

′W ).
The claim is trivially true in case s = 0. Otherwise, when some component sj is nonzero, the

factor E
(
e2πisjUj

)
= 0 annihilates the right-hand side. Hence the claim simplifies,

s �= 0 =⇒ lim
h→∞

ϕh(s, t) = 0.

The periodicity e2πiz = 1 obliterates the integer 〈hrWj −r+1/2〉, and leaves exp
(
2πis′U(h)

)
=

exp
(
−2πi

∑
j≤k

sj(hrWj − r + 1/2)
)
= exp

(
−2πihr s′W + 2πi(r − 1/2)s+

)
. Thus ϕh(s, t) is

determined by the Fourier transform f̂ of the density f ,

ϕh(s, t) = E
(
ei (t−2πhr s)′W ) e2πi(r−1/2)s+ = f̂(t− 2πhr s) e

2πi(r−1/2)s+ .

Now the Riemann /Lebesgue Lemma is invoked stating that Fourier transforms of Lebesgue

densities vanish at infinity,

lim
h→∞

‖t− 2πhr s‖ = ∞ =⇒ lim
h→∞

f̂(t− 2πhr s) = 0,

see, for example, Bauer (1991 [196]). This proves the convergence of
(
U(h),W

)
to (U,W ) where

the components of U := (U1, . . . , Uk) are stochastically independent of each other, and of W .

Independence evidently extends to the omitted weightW� = 1−
∑

j<�
Wj . The omitted rounding

residual is U�(h) =
〈∑

j<�
Uj(h)

〉
−
∑

j<�
Uj(h), by Lemma 6.9. The transformation is almost

surely continuous, whence the Continuous Mapping Theorem applies. As h → ∞, the rounding

residuals U�(h) now converge in distribution to U� := 〈
∑

j<�
Uj〉 −

∑
j<�

Uj . Clearly U� is

stochastically independent of W1, . . . ,W�.

Finally the proof repeats the whole argument while omitting a component j other than the last,

j < �. Then the convergence is to random variables Ũk, k �= j, and the missing component to

be filled in is Ũj :=
〈∑

k �=j
Ũk

〉
−
∑

k �=j
Ũk. Since the limit distribution is unique, we conclude

that it is characterized by two properties. First, every (� − 1)-element subset of U1, . . . , U� is

such that its components are stochastically independent and identically distributed according to

a uniform distribution over [−1/2; 1/2]. Second, the total component sum is a whole number,

U+ ∈ �. As both properties are invariant under permutations, the random variables U1, . . . , U�

are exchangeable.

The Invariance Principle exposes the essence of the problem. It invariably applies

whatever density governs the weights W . It overcomes diverting technicalities owed to
finite house sizes. Its result is the same for all divisor methods that are stationary.

As a first application we establish the universal validity of the discrepancy prob-

abilities g�(z) of the Single-Sum Formula 6.7.b. More applications of the Invariance
Principle are to be met in Theorems 7.3 and 7.14, in the next chapter.
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6.11. DISCREPANCY LIMIT DISTRIBUTION

Theorem. Consider the stationary divisor method with split r ∈ [0; 1], and assume

that the weights W1, . . . ,W� follow an arbitrary absolutely continuous distribution over
the probability simplex Ω�. Let hr = h+ �(r − 1/2) denote the adjusted multiplier.

Then, for all z = −��/2�, . . . , ��/2�, the discrepancy probabilities are convergent,

lim
h→∞

P

({(∑
j≤�

[hrWj ]r

)
− h = z

})
= g�(z),

with limit probabilities g�(z) defined through the Single-Sum Formula 6.7.b.

Proof. Lemma 6.9 and the Invariance Principle 6.10 imply that the discrepancy converges in

distribution to
〈∑

i<�
Ui

〉
, with random variables U1, . . . , U�−1 that are stochastically indepen-

dent and identically distributed according to a uniform distribution over [−1/2, 1/2]. The limit

probabilities P
({〈∑

i<�
Ui

〉
= z
})

= P
({∑

i<�
Ui ∈ [z − 1/2; z + 1/2]

})
are g�(z), as is

verified in the proof of Theorem 6.7.c.

This concludes the excursion into some more technical aspects of apportionment
methodology. We are now ready to return to the main topic, what apportionment
methods can achieve and how their merits respond to practical needs. The next chapter

investigates whether a method produces seat numbers that are unbiased or biased, that
is, whether on average parties receive their ideal shares of seats or not.



C H A P T E R 7

Favoring Some at the Expense
of Others: Seat Biases

A party’s seat bias is a quantitative measure assessing the deviation of the number of
seats apportioned to the party from the party’s ideal share of seats. Seat bias formulas
for stationary divisor methods are calculated when parties are ordered by their vote
strengths. The formulas are rather telling, and entail manifold consequences. The
divisor method with standard rounding emerges as the unique stationary divisor method
treating all parties in an unbiased fashion. In the presence of party alliances the seat
bias formulas turn inscrutable. It becomes practically impossible to predict whether it
is advantageous or disadvantageous for a party to join an alliance.

7.1. A PARTY’S SEAT EXCESS

Electoral laws are amended only occasionally, they commonly stay the same over quite

some time. The question arises whether repeated applications of the same seat appor-
tionment method entail systematic effects that are of interest to the electorate. For
example, the divisor method with downward rounding is among the oldest procedures

for proportional representation systems. Early on it was recognized that this particular
method is biased, in that it favors stronger parties at the expense of weaker parties.
This chapter offers detailed formulas for the calculation of seat biases.

Seat biases provide a measure whether, on average, the allocated seats deviate
from the ideal share of seats. In contrast, the term “seat excess” captures the behavior
in a particular realization. Before turning to the discussion of seat biases in Section 7.4,

we begin the inquiry with an analysis of seat excesses. Again we denote by xj and wj

the number of seats and the vote share of party j, and by h the house size.

Definition. The seat excess of party j is the difference between the number of

seats apportioned to the party and its ideal share of seats, xj − wjh.

The intention is to average the seat excesses over all vote share vectors w in
the probability simplex Ω� =

{
(w1, . . . , w�) ∈ (0; 1)�

∣∣ w+ = 1
}
. The distributional

assumptions allow us to concentrate on tie-free instances (Section 6.4). The approach
is restricted to stationary divisor methods. The following lemma states that seat
excesses comprise three terms, a systematic effect, a contribution to the discrepancy

removal, and a rounding residual. Let the sign function sgn(t) attain the values −1, 0,
or 1 according as t is negative, zero, or positive.
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7.2. SEAT EXCESS TRISECTION

Lemma. Consider the stationary divisor method with split r ∈ [0; 1]. Then, for every
party j ≤ �, a tie-free seat vector x ∈ DivStar(h;w) has seat excess

xj − wjh = �

(
r − 1

2

)(
wj − 1

�

)
+
(
xj − yj

)
+ uj(h),

where yj := [hrwj ]r is the seat number belonging to the adjusted multiplier hr = h +
�(r − 1/2) , and uj(h) := yj − (hrwj − r + 1/2) is the associated rounding residual.

Furthermore, the modulus |xj − yj | is equal to the count how often party j appears

among the |u+(h)| smallest entries of the matrix

ani :=
n− 1/2− sgn

(
u+(h)

)
ui(h)

wi
for all n ≤

⌊
�

2

⌋
and i ≤ �.

Proof. The seat numbers yi(h) are obtainable via standard rounding, yi = 〈hrwi − r+1/2〉 for
all i ≤ �, and satisfy y+ − h = u+(h) (Lemma 6.9). The trisection identity follows from the fact

that the rounding residual uj(h) satisfies

yj − wjh = �

(
r − 1

2

)(
wj − 1

�

)
+ uj(h).

Furthermore, if the discrepancy is zero, u+(h) = 0, then the initial seat vector is final, x = y. If

the discrepancy is positive, u+(h) = y+−h ∈ {1, . . . , ��/2�}, then it is removed by decrementing

every party j by yj − xj many seats. This forces the multiplier hr to shrink. As described in

Section 4.6, party j contributes as many seats to the discrepancy removal as often as it appears

among the u+(h) highest comparative figures of the array

sr(yi − n+ 1)

wi
, with n ≤

⌊
�

2

⌋
and i ≤ �.

The common shift −hr = −(hrwi)/wi does not change the order. The numerators turn into

yi − n+ r − hrwi = −
(
n− 1

2

)
+ yi −

(
hrwi − r +

1

2

)
= −

(
n− 1

2

)
+ ui(h).

Reversing the sign and invoking sgn
(
u+(h)

)
= 1, we thereafter look for the u+(h) smallest

among the values ani. This establishes the assertion, if the discrepancy is positive.

If the discrepancy is negative, u+(h) = y+ − h < 0, then we need to adjoin |u+(h)| seats;

xj −yj seats got to party j. With the multiplier growing beyond hr, party j is awarded as many

additional seats as it features among the |u+(h)| lowest comparative figures of

sr
(
yi + n

)
wi

, with n ≤
⌊
�

2

⌋
and i ≤ �.

The same shift as before unifies the format of the numerators,

yi + n− 1 + r − hrwi =

(
n− 1

2

)
+ yi −

(
hrwi − r +

1

2

)
=

(
n− 1

2

)
+ ui(h).

Since sgn
(
u+(h)

)
= −1, the proof is complete.
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The seat excess trisection reflects the problem’s complexity. The first term, mea-

suring a method’s response to the vote share wj , is decisive. It is further analyzed
in subsequent sections. The second term is party j’s contribution to the discrepancy
removal. These terms sum to the negative discrepancy,

∑
j≤�(xj − yj) = h − y+.

The third term is the individual rounding effect of party j; their sum is the initial
discrepancy, u+(h) = y+ − h (Lemma 6.9). The two sums cancel each other.

Theorem 7.3 proves that the second and third terms vanish when the house size

grows large and the rounding residuals are averaged out. We use capital letters, Xj −
hWj , to indicate consideration of all conceivable vote shares Wj and all ensuing seat
numbers Xj , rather than reporting the lone realization of a single instance. As in the

Invariance Principle 6.10 we treat the vote shares W = (W1, . . . ,W�) as a random
vector with values in the probability simplex Ω�. Likewise X = (X1, . . . , X�) is a
random vector, with values in the finite solution range ��(h).

7.3. SYSTEMATIC SEAT EXCESS OF A PARTY

Theorem. Consider the stationary divisor method with split r ∈ [0; 1], and assume

that the vote share vector W = (W1, . . . ,W�) follows an arbitrary absolutely continuous
distribution over the probability simplex Ω�.

Then, for every party j ≤ �, the conditional expectations of the seat excess Xj −
Wjh given the vote shares W = w converge in distribution,

E
(
Xj − hWj

∣∣∣W1 = w1, . . . ,W� = w�

)
in distribution−−−−−−−−−→

h→∞
�

(
r − 1

2

)(
wj − 1

�

)
.

Proof. In view of the absolutely continuous vote share distribution all seat vectors are almost

surely tie-free. Hence the Seat Excess Trisection 7.2 applies. The first term determines the limit,

E

(
�

(
r − 1

2

)(
Wj − 1

�

) ∣∣∣∣W = w

)
= �

(
r − 1

2

)(
wj − 1

�

)
.

The second term is the seat adjustment Zj(h) := Xj − Yj . The Invariance Principle 6.10, with

its variables U = (U1, . . . , U�) and W , lets Zj(h) converge to Zj(U,W ) := sgn(U+)Nj(U,W )

where Nj(U,W ) counts how often party j appears among the |U+| smallest entries of the array

bni :=
n− 1/2− sgn(U+)Ui

Wi
, with n ≤

⌊
�

2

⌋
and i ≤ �.

Due to the independence of U andW the limit of the conditional expectations is the unconditional

expectation of Zj(U,w),

E

(
Zj(h)

∣∣∣W = w

)
in distribution−−−−−−−−−−−→

h→∞
E

(
Zj(U,W )

∣∣∣W = w

)
= E
(
Zj(U,w)

)
.

The variables Z1(U,w), . . . , Z�(U,w) inherit exchangeability from U1, . . . , U�. Their common

expectation is �E
(
Zj(U,w)

)
= E
(
Z+(U,w)

)
= −E(U+) = 0, thus entailing E

(
Zj(U,w)

)
= 0.

The third term is the rounding residual Uj(h). Its limit Uj is stochastically independent of W .

Hence the conditional expectation vanishes in the limit,

E
(
Uj(h)

∣∣W = w
) in distribution−−−−−−−−−−−→

h→∞
E
(
Uj

∣∣W = w
)
= E(Uj) = 0.
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The systematic seat excess admits an appealing heuristic explanation. Within the

integer intervals [n−1;n], the rounding operation takes place at the split point r rather

than at 1/2, and party j misses its due share by −(r−1/2) seat fractions. Every other

party meets the same fate, and so a total of �(r − 1/2) seat fractions accrue. After

regaining its proportional share wj from the total, party j is left with the balance

wj�(r− 1/2)− (r− 1/2) = �(r− 1/2)(wj − 1/�), its systematic seat excess. Altogether

the systematic seat excesses even out, because of
∑

j≤�(wj − 1/�) = 0. If some parties

are advantaged then others are disadvantaged. If some parties are disadvantaged then

others are advantaged. One man’s meat is another man’s poison.

Only the divisor method with standard rounding (r = 1/2) has systematic seat

excesses that vanish for all parties under the provision that the house size is sufficiently

large (h → ∞). A single realization must endure a rounding effect simply because it

is unavoidable that an interim quotient must be rounded to a whole number. But on

average the method apportions to all parties as many seats as the ideal shares demand.

No party gains a systematic profit, and no party falls victim to a systematic deficit.

Stationary divisor methods with a split larger than one-half, r > 1/2, behave

differently. Parties above average strength, with a vote share wj > 1/�, enjoy a positive

seat excess. Barring rounding effects the methods promise them more seats than their

ideal shares justify. For an extremely strong party, with wj ≈ 1, the excess comes close

to (�−1)(r−1/2) seat fractions. It increases with the number of participating parties, �.

These bonus seats are counterbalanced by seat losses of below-average parties. Below-

average parties, with vote shares wj < 1/�, face deficits of up to half a seat. The deficit

bound −1/2 is immediate from inserting an extremely weak party, wj ≈ 0:

�

(
r − 1

2

)(
wj − 1

�

)
≥ −

(
r − 1

2

)
≥ −1

2
.

For example consider the divisor method with downward rounding (r = 1). A

party with one-third of the votes, wj = 1/3, may look forward to an excess of (�−3)/6

seat fractions. In a system with nine parties, � = 9, the party may look forward to an

excess of a full seat. The bonus seat is counterbalanced by two or more parties with

less than one-ninth of the votes that miss their ideal shares by up to half a seat.

Stationary divisor methods with split point r < 1/2 exhibit a complementary

behavior. Above-average parties encounter a seat deficit that grows linearly with the

number of participants, �. Below-average parties are advantaged, but their predicted

surpluses are bounded from above by half a seat.

The bipartition of the ensemble of all parties into two groups, namely the stronger

group of parties with an above-average vote share and the complementary weaker group

of parties with a below-average vote share, is a bit crude. A more sensitive approach

is to rank parties according to their vote strengths, and then look at them separately.

Ranking parties by vote strength is also more informative from a practical viewpoint.
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7.4. RANK-ORDER OF PARTIES BY VOTE SHARES

It is of great practical interest whether an apportionment method possesses a system-

atic trend to handle stronger and weaker parties differently. The attributes “strong”

and “weak” solely refer to voter support, in terms of vote counts or vote shares. Other

conceivable indices are neglected, such as party budget, number of party members,

campaign contributions, media presence, or the like.

We order parties by their vote shares from strongest to weakest, w1 ≥ · · · ≥ w�.

As a visual reminder we replace the otherwise favored party subscript j by the letter k

when denoting rank-ordered vote shares wk. Thus the subscript k turns into the party’s

rank-score: k = 1 is the strongest party, k = 2 is the second-strongest party, and the

weakest party is last, k = �. Naturally the parties’ rank-order can be ascertained only

retrospectively, when all vote counts are available. Moreover, a party’s rank-order

generally varies from one election to the next. It may not be the same party that turns

out strongest in one election or the other.

7.5. SEAT BIASES

Definition. The seat bias of the kth-strongest party is the conditionally expected seat

excess of party k given that the parties are rank-ordered,

E(0)
(
Xk − hWk

)
:= E

(
Xk − hWk

∣∣W1 ≥ · · · ≥W� ≥ 0
)
,

for all k ≤ �. The superscripted notation E(0) reminds us of the conditioning event

{W1 ≥ · · · ≥W� ≥ 0}.
The seat bias of a party is the average of its seat excesses. The average is taken

over the vote shares that preserve the party’s rank-score. With a positive seat bias,

a party expects to be alloted more seats than justified by its ideal share. A negative

seat bias tells the party that on average its seat numbers fall short of the ideal share.

Seat biases are averages, and so they are measured in fractions, not in whole

numbers. Theorem 7.7 shows that in a three-party system the divisor method with

downward rounding entails seat biases of 5/12 seat fractions for the strongest party,

−1/12 for the middle party, and −4/12 for the weakest party. Thus the strongest party

may expect five seats on top of its ideal share in the course of twelve elections. The

five bonus seats are gathered together at the expense of the middle party that has to

give up one seat, and of the weakest party that faces a loss of four seats.

The sum of the seat biases of all parties vanishes,

�∑
k=1

E(0)
(
Xk − hWk

)
= E(0)

(
X+ − hW+

)
= h− h = 0.

Hence either all seat biases are zero; in this case we call the apportionment method

unbiased. Or else the method is biased, meaning that some parties enjoy a positive

seat bias and other parties suffer from a negative seat bias. Favoritism of some spawns

distress for others. Our wording always acknowledges the existence of both groups,

those advantaged and those disadvantaged.
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Seat bias formulas are laborious to obtain when the house size is finite. The labor

is dispensable, and we skip the details. Empirical data and computational evidence are

sufficiently reassuring that the limit formula for infinite house size is also applicable

for finite house sizes. Theorem 7.3 yields the formula

lim
h→∞

E(0)
(
Xk − hWk

)
= �

(
r − 1

2

)(
E(0)

(
Wk

)− 1

�

)
for all k ≤ �. Evidently the seat bias formula inherits the structure of the systematic

seat excess. A seat excess inserts the realized vote share wk and can be evaluated ex

post only. Quite differently, the seat bias relies on the average over all conceivable vote

shares of a party with rank-order k, and thus constitutes an ex ante index.

7.6. PERCENTAGE HURDLES FOR VOTE EFFECTIVENESS

A last practical issue needs to be addressed. Some electoral systems impose a thresh-

old t that vote shares must meet or exceed in order to participate in the apportionment

process,

wj ≥ t for all j ≤ �.

In the presence of � parties the threshold t = 1/� makes all vote shares equal, wj = 1/�

for all j ≤ �, and is of no practical interest. Values greater than 1/� are impossible.

Therefore, thresholds are restricted to lie in the right-open interval [0; 1/�).

Vote share thresholds are a model for the type of percentage hurdles encountered

in practice. For example, Table 1.31 lists instances of no threshold (t = 0), and

thresholds of 1.8 percent, or three, four, or five percent. The percentages refer to votes

cast, or to valid votes. Since the modeling level always operates with effective votes,

we no longer distinguish between votes cast, valid votes, and effective votes. We trust

that the change of reference sets is negligible.

It should be emphasized that a vote share threshold excludes not just some parties

from the apportionment calculations. Rather, it is a number of voters who are deprived

from obtaining representation in parliament. Chapter 1 documents the calamity by

recording the number of voters who fall victim to an imposed vote share threshold.

Theorem 7.7 calculates the seat bias of the kth-strongest party in the presence of

a t-threshold, indicated by the superscripted notation E(t),

E(t)
(
Xk − hWk

)
:= E

(
Xk − hWk

∣∣W1 ≥ · · · ≥W� ≥ t
)
.

The vote share vector W is assumed to be uniformly distributed. More precisely,

the uniformity assumption is needed on the ordered and truncated subset {W1 ≥
· · · ≥ W� ≥ t} only, not on the full probability simplex Ω�. The restricted uniformity

assumption delimits the vote share of the kth-strongest party to lie between those of

its two neighbors, Wk ∈ [Wk−1;Wk+1]. The smaller range of variation promises an

expectation more stable with respect to a deviation from uniformity. This reasoning

may explain the surprisingly vast domain of validity of the seat bias formula.
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7.7. SEAT BIAS FORMULA

Theorem. Consider the stationary divisor method with split r ∈ [0; 1] and a threshold
t ∈ [0; 1/�), and assume the vote share vector W = (W1, . . . ,W�) to be uniformly
distributed over the sub-simplex {W1 ≥ · · · ≥W� ≥ t}.

Then the seat bias of the kth-strongest party converges to

B(t)
r (k) := lim

h→∞
E(t)

(
Xk − hWk

)
=

(
r − 1

2

)(
H�

k − 1
)(

1− �t
)

for all k ≤ �, where H�
k :=

∑�
n=k(1/n) is a partial sum of the harmonic series.

Proof. Section 7.5 provides the formula B
(t)
r (k) = �(r − 1/2)

(
E(t)(Wk) − 1/�

)
. Setting Vk :=

(Wk−t)/(1−�t) for all k ≤ �, the vector V := (V1, . . . , V�) has non-negative components summing

to unity. Since W generates V by translation and scaling, V inherits the uniform distribution over

its range {V1 ≥ · · · ≥ V� ≥ 0}. Substitution of Wk by Vk yields E(t)(Wk) = t+(1− �t) E(0)(Vk),

that is, the threshold for V is zero. The expectation of V is the centroid of its range and hence

emerges as the arithmetic mean of the range’s vertices,

E(0)
(
V
)
=

1

�

⎛⎜⎜⎜⎜⎜⎝
1

0

0
.
..

0

⎞⎟⎟⎟⎟⎟⎠+
1

�

⎛⎜⎜⎜⎜⎜⎝
1/2

1/2

0
.
..

0

⎞⎟⎟⎟⎟⎟⎠+
1

�

⎛⎜⎜⎜⎜⎜⎝
1/3

1/3

1/3
..
.

0

⎞⎟⎟⎟⎟⎟⎠+ · · ·+ 1

�

⎛⎜⎜⎜⎜⎜⎝
1/�

1/�

1/�
..
.

1/�

⎞⎟⎟⎟⎟⎟⎠ =
1

�

⎛⎜⎜⎜⎜⎜⎝
H�

1

H�
2

H�
3

.

..

H�
�

⎞⎟⎟⎟⎟⎟⎠ .

This yields E(0)(Vk) = (1/�)H�
k, and E(t)(Wk)−1/� = t+(1/�− t)H�

k −1/� = (H�
k −1)(1/�− t).

Insertion into the formula of Section 7.5 completes the proof.

Since the factor that depends on the split point r satisfies r−1/2 = −((1−r)−1/2),
the mirror image 1− r has a seat bias of opposite sign,

B(t)
r (k) = −B(t)

1−r(k).

Hence the stationary divisor method with split r is paired with the stationary divisor
method with split 1− r. While the method with a split larger than one-half, r > 1/2,

favors stronger parties at the expense of weaker parties, the method with split r < 1/2
favors weaker parties at the expense of stronger parties. The unique unbiased method
is the divisor method with standard rounding, B

(t)
1/2(k) = 0 for all k ≤ �. Every

party may expect its due share of seats. No party is advantaged, nor is any party
disadvantaged.

The last factor 1 − �t is linear in the threshold parameter t. It discounts the

seat biases of all parties in a like manner. Practical thresholds are so small that the
factor is insignificant numerically. In the sequel we neglect the vote share threshold
and interpret the seat bias formula with t = 0,

B(0)
r (k) =

(
r − 1

2

)(
H�

k − 1
)
.
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7.8. BIASEDNESS VERSUS UNBIASEDNESS

A prominent pair of biased apportionment methods are the divisor methods with down-

ward rounding (r = 1), and the divisor method with upward rounding (r = 0). The

noticeable seat bias of the divisor method with downward rounding has been appreci-

ated ever since the inception of the method, in the eighteenth century in the United

States of America, and in the nineteenth century in continental Europe. The mono-

graph Balinski /Young (1982) tells the tale of the New World, how arguments swayed

back and forth to promote a preferred apportionment method over its competitors.

Among the plot’s protagonists we meet illustrious figures such as Thomas Jefferson,

Alexander Hamilton, Daniel Webster, to name but a few.

In the Old World the divisor method with downward rounding was resolutely

advocated by the Belgian activist Victor D’Hondt and his Swiss contemporary Eduard

Hagenbach-Bischoff. Once the method got firmly rooted in the minds of proportional

representation protagonists, it was praised with all sorts of fanciful claims: that it

is the only apportioning method existing, that it is the simplest method, that it is

the method most widely used. Of these claims, the last is correct. The frequency

in Table 1.31 is indicative of the method’s predominance. Sixteen of the 27 Member

States of the European Union use it for their EP elections.

George Pólya (1918) was first to investigate seat biases in a formal manner. For

the divisor method with downward rounding (r = 1) in a three-party system he found

the biases of the strongest, middle, and weakest parties to be

B
(0)
1 (1) =

5

12
, B

(0)
1 (2) = − 1

12
, B

(0)
1 (3) = − 4

12
.

Pólya emphasized that he considered his calculations

das wichtigste Resultat dieser Abhandlung.

the most important result of this treatise.

He also pointed to the availability of unbiased procedures, such as the divisor method

with standard rounding, or the Hare-quota method with residual fit by greatest re-

mainders.

Unbiased apportionment methods are often preferred in the second stage of a two-

stage systems, as evidenced in the Netherlands and in Poland (Section 1.8). In the

Netherlands, sub-apportionments become necessary when parties join into an alliance.

The promise of an unbiased sub-apportionment makes it easier for stronger parties to

persuade weaker parties to join into a prospective alliance. Quantitatively, though,

the weaker partners amplify the strength of the stronger partner. The irrationalities

of alliances are discussed in Section 7.11.

In Poland the seats from the super-apportionment are passed on to the vari-

ous district lists of the parties. Within a party it would seem strange to bias the

sub-apportionment in favor of larger districts at the expense of smaller ones. As a

consequence the sub-apportionments use an unbiased apportionment method. The

within-party (sub-)apportionments strictly obey the motto “One person, one vote”,

while the between-party (super-)apportionment exerts noticeable seat biases. Quod

licet Iovi, non licet bovi. Whether double standards are allowed or forbidden is ulti-

mately decided by constitutional law rather than formal analyzes.
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More variation is met when the seats of a house are apportioned among regional

districts in proportion to census figures. The seats of the French Assemblée nationale

are allocated to the 101 Départements using the divisor method with upward round-

ing, see Balinski (2004 [92]). The method is biased in favor of sparsely populated

(rural) districts at the expense of densely populated (urban) districts. The bias has a

straightforward explanation in terms of power politics. All that is needed is that the

parliamentary majority finds their voter support in the countryside outnumbering that

in the cities. Then over-representation of smaller districts and underrepresentation of

larger districts appears to be the method of choice.

A glaring contraposition of smaller versus larger districts materialized in impe-

rial Germany. Members of the Reichstag were elected in single-seat constituencies.

While the constituencies were initially of almost equal size, industrialization and rural

depopulation eventually led to blatant differences in size. However, the induced bias

accorded with political cleavages. Typically the character of smaller constituencies was

rural, of larger constituencies, metropolitan. Since the conservative Reichstag major-

ity catered to the need of agrarian freeholders more than to the interests of industrial

masses, there was no political incentive for them to redraw constituency boundaries.

Unbiasedness is not a virtue by itself. The central issue is its status in the relevant

constitution, how much nonzero bias is constitutionally tolerable. While the tasks of

apportioning seats among political parties, or of apportioning seats among geographical

districts are the same formally, their constitutional appraisal may differ significantly.

Many countries encompass some sparsely populated districts that, under standard

rounding or downward rounding or any other pervious rounding rule, would end up with

no parliamentary representation at all. For this reason many constitutions guarantee

every district a minimum representation.

For example, Article I, Section 2 of the Constitution of the United States stipulates

that each state shall have at least one representative. The clause may be understood to

inject a mild dose of biasedness in favor of smaller states at the expense of larger states.

Indeed, the 435 seats of the United States House of Representatives are apportioned to

the 50 states of the Union using the divisor method with geometric rounding. Geomet-

ric rounding is impervious and guarantees every state at least one seat, as demanded

by the Constitution. In the family power-mean divisor methods, geometric rounding

(p = 0) and standard rounding (p = 1) are quite close to each other. Their differences

are captured by the majorization order, to be discussed in Chapter 8.

For infinite house sizes the diversity of the power-mean family reduces to the three

stationary divisor methods that are based on upward rounding, standard rounding, and

downward rounding (Section 3.12). Thus the asymptotic results of Theorem 7.7 are

inconclusive for distinguishing between the divisor methods with geometric rounding,

and with standard rounding. Both methods are asymptotically unbiased. But the

application is to the house size h = 435 that is finite, not asymptotic. This raises the

question which house sizes h appear to be large enough for the asymptotic seat bias

formulas B
(t)
r (k) to acquire validity.
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7.9. HOUSE SIZE RECOMMENDATION

In this section we argue in support of the following house size recommendation:

The seat bias formula B
(t)
r (k) is applicable for all practical purposes provided the

house size meets or exceeds twice the number of parties, h ≥ 2�, even though

Theorem 7.7 requires the assumption of large house sizes, h→∞.

Seat biases promptly approach the limit value B
(t)
r (k) for house sizes h ≥ 2�. Hence

each deployment of the method incurs a bias of constant size. Each time the method

is used the kth-strongest party faces a bias of B
(t)
r (k) seat fractions.

Empirical data reinforce the house size recommendation. Schuster /Pukelsheim /

Drton /Draper (2003 [657]) present empirical three-party seat excess distributions cal-

culated from N = 49 parliamentary elections in the German State of Bavaria. During

1966–1998 Bavaria conducted nine elections of its diet. In seven elections just three

parties pass the five percent threshold and qualify for the seat apportionment. Since

Bavaria is subdivided into seven electoral districts the data provide a sample of size

N = 7 × 7 = 49. House sizes varied between 19 and 65 seats. The voting attitudes

of the electorate may be considered stable enough to allow the assumption that the

seat excesses originate from the same distribution. The theoretical seat biases B
(t)
r (k)

are shown to conform rather satisfactorily with the empirical data. Another data set

provided by those authors is from the Swiss Canton of Solothurn. During the period

1896–1997, the ten Solothurn districts provide a sample of N = 143 three-party elec-

tions, with house sizes ranging from 7 to 29 seats. Again theoretically calculated seat

biases agree exceedingly well with the empirically observed seat biases. The remaining

deviations are plausibly attributed to rounding effects and random variation.

The recommendation excludes house sizes below 2�. With too small a house size

the seat excesses xk−hwk vary erratically. Even their averages inhibit the identification

of a systematic trend. The lamento of Riker (1982 [260]) of what happens when h = 10

seats are apportioned among � = 12 parties is void.

The exclusion of house sizes h < 2� is an example of the many boundary ef-

fects that are present in apportionment methodology. Section 4.4 mentions special

provisions when an impervious divisor method meets too small a house sizes, h < �.

Section 5.10 compares various quota definitions by restricting attention to sufficiently

large vote totals, v+ > h(h+1). Lemma 6.5 calculates seat total distributions assuming

multipliers μ > �r large enough in order not to dilute an already longish proof.

7.10. TOTAL POSITIVE BIAS: THE STRONGER THIRD,
THE WEAKER TWO-THIRDS

The discriminating power for the seat biases B
(t)
r (k) emanates from the factor H�

k − 1,

whereH�
k =

∑�
n=k(1/n). If the factor is positive, the kth-strongest party is advantaged

for splits r > 1/2, and disadvantaged for splits r < 1/2. If it is negative, the advantages

switch sign. The sign switches when H�
k = 1. The logarithmic approximation

H�
k =

�∑
n=k

1

n
≈
∫ �

k

1

x
dx = log �− log k
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determines the approximate no-bias rank-score k� := 〈�/e〉 = 〈0.37�〉 ∈ {1, . . . , � − 1}.
Roughly the stronger third of the parties has a positive rank-score factor. The weaker

two-thirds have a negative factor. Hence the stronger third enjoys positive seat biases,

while the weaker two-thirds is exposed to negative seat biases. The trend is familiar

from other areas of life: a minority of well-to-do enjoy a surplus, at the expense of a

majority of not-so-well-to-do who must come to grips with less than their fair share.

The approximation H�
k ≈ log(� + 1/2) − log(k − 1/2) ≈ log � − log k implies

that the seat biases decrease logarithmically as a function of the rank-scores k ≤ �.

Conversely we may fix the rank-score, k, and consider a growing number of competing

parties, �. For example we may be interested in the front runner, k = 1, when more and

more weaker competitors join the campaign. Then seat biases increase logarithmically,

according to log �.

An index that captures the aggregate seat biases of a system of � parties is the

total positive bias, TPB. It is the sum of all positive seat biases accumulating among �

parties under a stationary divisor method with split r ∈ [0; 1],

TPB(�, r) :=

(
r − 1

2

) k�∑
k=1

(
H�

k − 1
)
≈
(
r − 1

2

)(
�

e
− 1

)
.

The approximate equality is established under the assumption � ≥ 5, whence k� ≥ 2.

For k ≤ k� we have H�
k = Hk�−1

k +H�
k�
, and get

k�∑
k=1

(
Hk�−1

k +H�
k�
− 1
)
≈
(

k�−1∑
n=1

n∑
k=1

1

n

)
+ k�

(
log �− log

�

e

)
− k� = k� − 1.

Approximating the no-bias rank-score k� = 〈�/e〉 by �/e yields the term �/e − 1. In

summary, the trisection by party strength maximizes the system’s total positive bias.

It is employed for discriminatory purposes already by Balinski /Young (1982 [75, 126]).

7.11. ALLIANCES OF LISTS

The advocates of the divisor method with downward rounding recognized early on that

the method is compromised by being biased in favor of stronger parties at the expense of

weaker parties. To console weaker participants, Hagenbach-Bischoff (1896) devised the

construct of an alliance of lists (German: Listenverbindung, French: apparentement

des listes). His intention was to allow weaker parties to gather strength by joining

their lists into an alliance, and thereby to evade or at least to lessen any threatening

seat biases. In electoral systems with multiple districts it may well happen that in one

district parties A and B join into a first alliance and parties C and D into a second

alliance, while in another district parties A and C register an alliance and parties B

and D stand alone, and in a third district yet another partition is realized. It is more

to the point to speak of alliances of lists rather than of alliances of parties.
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BY2008Friedberg Votes Quotient DivDwn

Alliance {2, 3, 5} 194 141 16.04 16
List 1 150 615 12.4 12
List 4 28 428 2.4 2
List 6 12 010 0.99 0
Sum (Divisor) 385 194 (12 100) 30

Partners Votes Quotient DivDwn
Alliance {2, 3, 5}: Sub-apportionment
List 2 145 292 13.2 13
List 3 30 558 2.8 2
List 5 18 291 1.7 1

Sum (Divisor) 194 141 (11 000) 16

TABLE 7.1 Discordance victory via an alliance, divisor method with downward rounding. The al-

liance gets 16 seats; 13 of them go to party 2. The end result is discordant: List 2 has fewer votes but

more seats than list 1. Without alliance the divisor is 12 000, and party 2 is allotted 12 seats.

Many electoral laws permit parties to register alliances, in particular when the

law stipulates the notoriously biased divisor method with downward rounding. The

stipulations persist even when an unbiased apportionment method is used. It is a

safe bet that such laws have precursors that formerly used the divisor method with

downward rounding, and that the unbiased method was adopted only later on. The

legislators who prepared the amendment lacked insight and forgot to ban alliances.

Alliances radiate a seductive charm for party officials, as a smart lever to divert the

electoral outcome into a more desirable direction. From the voters’ viewpoint alliances

interfere with the principle of a direct election since calculations get obscured by a

sizable dose of indirectness. The functioning of alliances is non-transparent indeed.

An alliance triggers a two-stage apportionment calculation. In a first stage, called

super-apportionment in Chapter 1, the seats are apportioned among the alliances that

are registered with the electoral bureau, and among the lists that stand alone. Ev-

ery alliance then calls for a second stage. This is a separate calculation, called sub-

apportionment, in order to distribute the alliance’s joint seats among its partners. The

superposition of the biases accounts for the lack of transparency.

The 2008 local election in the Bavarian City of Friedberg may serve as an example,

see Table 7.1. Six parties campaigned for the city council. As usual we rank-order the

parties from 1 (strongest) to 6 (weakest). The second-, third-, and fifth-strongest lists

registered an alliance, {2, 3, 5}. The other parties stood for themselves. In technical

language the other parties formed a singleton alliance each: {1}, {4}, and {6}. The

vote count aggregate for the alliance {2, 3, 5} exceeded the vote count for party 1,

parties 4 and 6 trailed behind. Hence the four alliances finished in the rank-order

{2, 3, 5}, {1}, {4}, {6}. The final seat apportionment admits three views.

First, party 2 emerged as the ultimate winner. In the super-apportionment be-

tween alliances, the alliance {2, 3, 5} finished with 16 seat compared to the cumulative

15 seats they would have won separately. In the within-partner sub-apportionment the

bonus seat went to the strongest of the three partners, party 2. Thus party 2 won a

seat it would not have won without the alliance. The end result is a discordant seat

assignment. Party 2 ended up having fewer votes but more seats than party 1. Second,

Hagenbach-Bischoff nurtured the consoling view that the purpose of the alliance was

to move parties 3 and 5 from back to front. It did, but it made no difference. They
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received as many seats with the alliance as they would have received without. Third,

there is the desolate experience of the trailing party 6. Without an alliance, party 6
would have won a seat to obtain representation in the council. Alas, the alliance
pocketed its seat. Party 6 did nothing but look on, yet had to pay the bill.

In the general set-up an alliance L is a subset of parties, L ⊆ {1, . . . , �}. Each
stand-alone party j constitutes a singleton alliance, {j}. The ensemble of all alliances
yields a partition of the party system {1, . . . , �}. Let a be the number of alliances,

that is, the number of elements in the partition. In the example, the six-party system
{1, 2, 3, 4, 5, 6} is partitioned into a = 4 alliances, namely L1 = {2, 3, 5}, L2 = {1},
L3 = {4}, and L4 = {6}. The following seat bias formula disregards the vote share

threshold by setting t = 0.

7.12. SEAT BIAS FORMULA AND ALLIANCES OF LISTS

Corollary to Theorem 7.7. Suppose the party system {1, . . . , �} is partitioned into a
alliances of lists L1, . . . , La. If the kth-strongest of the � parties is among the p partners

of the alliance L, that is k ∈ L and #L = p, then the seat bias of the kth-strongest
party is practically approximated by

Br

(
k
∣∣ L, a) := (r − 1

2

)((a
�
+

p− 1∑
i∈L H�

i

)
H�

k − 1

)
.

Proof. Theorem 7.7 provides the formula limh→∞ E(0)(Xk−hWk) = (r−1/2)
(
�E(0)(Wk)−1

)
.

Let WL :=
∑

i∈L
Wi denote the aggregated vote shares of alliance L. The super-apportionment

entails for alliance L the seat bias

E(0)
(
XL − hWL

)
≈
(
r − 1

2

)(
aE(0)

(
WL

)
− 1

)
.

Of this bias, party k carries its proportionate share E(0)(Wk/WL). Within alliance L, the sub-

apportionment has XL :=
∑

i∈L
Xi seats to allocate. With a view towards its p partners,

party k is exposed to the seat bias

E(0)
(
Xk −XL

Wk

WL

)
≈
(
r − 1

2

)(
pE(0)

(
Wk

WL

)
− 1

)
.

The two stages yield the aggregate bias

E(0)
(
Wk

WL

)(
r − 1

2

)(
aE(0)

(
WL

)
− 1

)
+

(
r − 1

2

)(
pE(0)

(
Wk

WL

)
− 1

)
=

(
r − 1

2

)(
aE(0)

(
Wk

WL

)
E(0)

(
WL

)
+ (p− 1)E(0)

(
Wk

WL

)
− 1

)
.

Under the uniformity assumption of Theorem 7.7 the random variables Wk/WL and WL are

stochastically dependent to such a low degree that the dependence may be neglected, for all

practical purposes. Approximate independence entails

E(0)
(
Wk

WL

)
E(0)

(
WL

)
≈ E(0)

(
Wk

)
=

1

�
H�

k, and E(0)
(
Wk

WL

)
≈

E(0)
(
Wk

)
E(0)

(
WL

) =
H�

k∑
i∈L

H�
i

.

Insertion of these approximations yields Br(k |L, a).
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The cases a = 1 and a = � are instructive though irrelevant. When there is a

single alliance, a = 1, there are p = � partners and the super-apportionment becomes
redundant. Accordingly the seat biases stay the same, Br(k | {1, . . . , �}, 1) = B

(0)
r (k),

since
∑

i≤� H
�
i = �. When all alliances are singletons, a = �, then each party stands

on its own, p = 1, and it is the sub-apportionment that is redundant. Again the seat
biases stay put, Br(k | {k}, �) = B

(0)
r (k).

The relevant cases have 1 < a < �. There are several alliances, and at least one of

them has two or more partners. The number of feasible partitions grows rapidly. In a
system with six parties there are 201 partitions, with seven parties it is 875. The mere
information which alliances are registered, often tucked away in a small-print footnote

on the ballot sheet, does not tell voters whether the party of their choice is going to
gain or lose. Party officials would not know either (unless they evaluate the above
formula), but they are destined to play the game.

Here are the rules of the game, tailored to the divisor method with downward
rounding (r = 1).

Rule 1: If you and your partners are the only alliance, you win. With just one

non-singleton alliance L, all of its p ≥ 2 partners k ∈ L increase their seat biases,

B1(k | L, 1 + �− p) = B
(0)
1 (k) +

p− 1

2

(
1∑

i∈L Hk
i

− 1

�

)
H�

k > B
(0)
1 (k).

A positive seat bias grows more positive, a negative seat bias becomes less negative.

For example, in the 2008 communal elections in Bavaria alliances got registered in
668 communities. Two-thirds of the communities (456) saw just one non-singleton
alliance. Rule 1 says that the alliances’ partners could look forward to bonus seats

simply because their competitors were napping.
Rule 2: If you refrain from joining an alliance, you lose. A party that maintains

its independence and does not join into an alliance, k ∈ {k}, decreases its seat bias,

B1

(
k | {k}, a) = B

(0)
1 (k)− 1

2

(
1− a

�

)
H�

k < B
(0)
1 (k).

A stronger party loses some of its positive seat bias, a weaker party exacerbates its
negative seat bias. The seats thus released benefit competing parties.

Rule 3: If there are competing alliances, you gamble. In the presence of several

non-singleton alliances party officials need to evaluate the seat bias formula B1(k | L, a)
to get a feeling of what to expect. The bias to which the party is exposed to may be
beneficial, disadvantageous, or neutral. It is a lottery.

7.13. SEAT BIASES OF SHIFT-QUOTA METHODS

Pólya (1918) already pointed out that the Hare-quota method with residual fit by
greatest remainders is unbiased, as is the divisor method with standard rounding (Sec-

tion 7.8). The following proof runs parallel to the analysis of stationary divisor meth-
ods. The arguments gain in lucidity by considering the larger family of shift-quota
methods, shQgrRs, with shift s ∈ [−1; 1) (Section 5.4). Recall that the shift-quota is

Q(s) = v+/(h + s). Specifically, the Hare-quota method with residual fit by greatest
remainders emerges for a vanishing shift, shQgrR0 = HaQgrR.
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Theorem. Consider the shift-quota method with shift s ∈ [−1; 1).
a. A tie-free solution x ∈ shQgrRs(h;w) has seat excess trisection

xj − wjh = s

(
wj − 1

�

)
+

(
xj − yj −

(1
2
− s

�

))
+ uj(h),

where yj := �wj(h + s)� = 〈wj(h + s) − 1/2〉 is the number of seats allocated

to party j by the main apportionment, and uj(h) := yj −
(
(h + s)wj − 1/2

) ∈
[−1/2; 1/2] is the associated rounding residual.

b. If the vote share vector W follows an absolutely continuous distribution, then the
systematic seat bias of party j ≤ � is given by

E
(
Xj − hWj

∣∣∣W1 = w1, . . . ,W� = w�

)
in distribution−−−−−−−−−→

h→∞
s

(
wj − 1

�

)
.

c. If the vote share vector W follows uniform distribution, then the seat bias of the

k-strongest party has limit

lim
h→∞

E
(
Xk − hWk

∣∣∣W1 ≥ · · · ≥W� ≥ 0
)
=

s

�

(
H�

k − 1
)
.

Proof. a. The trisection follows from the identity yj −wjh = s
(
wj −1/�

)
− (1/2−s/�)+uj(h).

b. Again Xj and Wj are taken to be random variables with ranges ��(h) and Ω�. The first

term of the trisection determines the systematic part of the seat bias. As for the second term,

the difference Zj(h) := Xj − Yj ∈ {0, 1} is an indicator function signaling whether party j

benefits from the residual apportionment. The negative discrepancy tells the number of seats

to be handled by the residual fit, h − Y+ = �/2 − s − U+(h). Party j gets one of them if

and only if its fractional part Wj(h + s) − Yj = 1/2 − Uj(h) is among the h − Y+ greatest

fractional parts 1/2−U1(h), . . . , 1/2−U�(h). The Invariance Principle 6.10 allows us to replace

the rounding residuals Uj(h) by their limits Uj . Thus the conditional expectations converge to

random variables Zj(U,w), for all j ≤ �. They inherit exchangeability from U1, . . . , U�. The

sum of their expectations is �E
(
Zj(U,w)

)
= E

(
Z+(U,w)

)
= E(�/2 − s − U+) = �/2 − s. This

entails E
(
Zj(U,w)− (1/2− s/�)

)
= 0 whence the limit expectation of the second term vanishes.

The third term is seen to have conditional expectation zero as in the proof of Theorem 7.3.

c. The seat biases are obtained as in the proof of Theorem 7.7.

In summary the family of shift-quota methods contains a unique member that is
unbiased, s = 0, the Hare-quota method with residual fit by greatest remainders. The
limiting extreme s = 1 attests to the bias of the Droop-quota method with residual

fit by greatest remainders. It favors stronger parties at the expense of weaker parties.
Since its coefficient 1/� is smaller than the coefficient 1/2 of the seat biases of the
divisor method with downward rounding, the Droop seat biases are less pronounced.

So far we have investigated how a fixed apportionment method behaves under
repeated applications. Repetitions motivate the study of a method’s average behavior,
the average being taken over all possible vote shares. In a nutshell: one method, many

vote share vectors. The next chapter reverts the emphasis: many methods, one vote
share vector. The comparison invokes the majorization order, a relation with fruitful
applications in many fields of the natural and behavioral sciences.
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Preferring Stronger Parties to
Weaker Parties: Majorization

Majorization provides a partial order of apportionment methods. When passing from
one method to another, every group of stronger parties gets more seats and the comple-
mentary group of weaker parties fewer seats, or they keep what they have. Specifically,
one divisor method majorizes another if and only if their signpost ratios are strictly
increasing. The family of stationary divisor methods is shown to be monotonically pa-
rameterized, as is the family of power-mean divisor methods. Thus the five traditional
divisor methods are ordered by majorization, from upward rounding, via harmonic,
geometric and standard rounding, to downward rounding.

8.1. BIPARTITIONS BY VOTE STRENGTHS

Majorization is a well-established order to compare two seat vectors x = (x1, . . . , x�)

and y = (y1, . . . , y�) when both of them apportion the house size h among � parties.

Party i’s isolated interest is whether the passage from x to y does any good, xi < yi.

Since the component sums of x and y are equal to h, some other party j must be

off worse, xj > yj . Hence some party is better off, another party worse. Moreover,

consideration of just two parties disregards the other � − 2 parties. Pairwise party

comparisons are insufficient to order two seat vectors x and y.

Majorization takes a broader view. It divides the party system into complementary

subsets, I ⊆ {1, . . . , �} and I ′ := {1, . . . , �}\I. A bipartition is exhaustive of the entire

system, every party features either in I or in I ′. Interest is in bipartitions that confront

stronger parties with weaker parties. As always in this book, the strength of party j is

reflected by its vote count vj , or equivalently, by its vote share wj = vj/v+. A group

of stronger parties is a subset of parties, I, such that all of its members are at least as

strong as the parties in the complementary set I ′,

vi ≥ vj for all i ∈ I and for all j ∈ I ′.

This leaves just � − 1 bipartitions to look at: the strongest party versus the � − 1

weaker parties, the two strongest parties versus the � − 2 weaker parties, and so on

until the �−1 strongest parties versus the weakest party. Bookkeeping turns easy when

we rank-order the parties from strongest to weakest, v1 ≥ · · · ≥ v�, as in Section 7.4.
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The group of the k strongest parties then constitutes the top section 1, . . . , k, and its

complement is the tail section of the �− k weakest parties k + 1, . . . , �.

Let A be a general apportionment method (Section 4.3). Since the method is

anonymous the re-arrangement by rank-order does no harm. Moreover the method is

concordant, whence all seat vectors x ∈ A(h; v) have components ordered by decreasing

magnitude provided the parties’ rank-order is strict, v1 > · · · > v� ⇒ x1 ≥ · · · ≥ x�.

For notational convenience we introduce the set of the seat vectors that have their

components arranged in decreasing order,

N �
≥(h) :=

{
x ∈ ��(h)

∣∣∣ x1 ≥ · · · ≥ x�

}
.

The group of the k strongest parties thus accumulates x1 + · · ·+ xk seats.

8.2. MAJORIZATION OF TWO SEAT VECTORS

Definition. A vector x ∈ ��
≥(h) is said to be majorized by a vector y ∈ ��

≥(h),
denoted by x � y, when the sum of the k largest components of x is less than or equal

to the sum of the k largest components of y,

x1 + · · ·+ xk ≤ y1 + · · ·+ yk, for all k < �.

Hence when passing from x to y, every group of stronger parties gets more seats

or stays put. Consequently, every group of weaker parties is allocated fewer seats or

stays put. In other words the passage from x to y is beneficial for stronger parties and

disadvantageous for weaker parties. The definition forgoes the sum of all components,

k = �, since they are equal anyway, x+ = y+ = h. Vector majorization equips the

set ��
≥(h) with a partial order. That is, the relation is reflexive (x � x), transitive

(x � y and y � z ⇒ x � z), and antisymmetric (x � y and y � x⇒ x = y).

A transitivity example for house size h = 100 is provided by the seat vectors

x = (40, 30, 20, 10) � y = (41, 29, 20, 10) � z = (41, 29, 21, 9).

The example illustrates the superiority of the majorization order over pairwise party

comparisons. The passage from x to y involves the two strongest parties only, (40, 30) �
(41, 29). The second-strongest party must give up a seat to the strongest party. The

passage from y to z makes the fourth-strongest party give up a seat to the third-

strongest party, (20, 10) � (21, 9). So far, so good. However, the passage from x to z

affects all four parties and invites
(
4
2

)
= 6 pairwise comparisons. Sometimes a weaker

party has to give up a seat to a stronger party, but not always. Take a look at the

second- and third-strongest parties, with (30, 20) seats in x, and (29, 21) seats in z.

The stronger party has to give up a seat that is transferred to the weaker party. The

pairwise give-up relation from weaker to stronger parties fails to be transitive. However,

the relation provides a sufficient condition to verify majorization.
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8.3. A SUFFICIENT CONDITION VIA PAIRWISE COMPARISONS

Lemma. Let the vectors x, y ∈ ��
≥(h) be given. If in all pairwise comparisons the

stronger party grows or the weaker party shrinks then x is majorized by y,(
xi ≤ yi or xk ≥ yk for all i < k

)
=⇒ x � y.

Proof. The proof is indirect. Assume x not to be majorized by y. Then some party i is first to

violate the defining inequalities,
∑

j≤k
xj ≤

∑
j≤k

yj for all k < i, but
∑

j≤i
xj >

∑
j≤i

yj .

The ith terms must satisfy xi > yi. Due to equal component sums some later party k > i must

have xk < yk. Thus the two parties i < k fulfill xi > yi and xk < yk.

Next we extend the majorization relation to the set of all apportionment methods.

Majorization demands that all seat vectors of the first method are majorized by all
seat vectors of the second method whenever the rank-order of the parties is strict.

8.4. MAJORIZATION OF TWO APPORTIONMENT METHODS

Definition. An apportionment method A is said to be majorized by an apportionment

method B, denoted by A ≺ B, when the two methods are distinct and when, for all house
sizes h, for any number of parties �, and for every weight vector (v1, . . . , v�) ∈ (0;∞)�

the methods satisfy

v1 > · · · > v� =⇒ A(h; v) � B(h; v),

where the set-notation A(h; v) � B(h; v) means x � y for all seat vectors x ∈ A(h; v)
and y ∈ B(h; v).

The following theorem provides a check whether of two divisor methods A �= B

one majorizes the other. Recall that a divisor method is characterized by a signpost
sequence s(0), s(1), s(2), . . . (Section 3.10). Since every signpost sequence starts with
s(0) = 0, the only significant terms are s(n) with n ≥ 1. The theorem uses the

conventions 0/0 = 0 and ε/0 =∞ for ε > 0. They may become relevant when n = 1.

8.5. MAJORIZATION OF DIVISOR METHODS

Theorem. Suppose that A is a divisor method with signpost sequence s(n), n ∈ �,
and B is a divisor method with signpost sequence t(n), n ∈ �. Then method A is

majorized by method B if and only if the signpost ratios s(n)/t(n), n ≥ 1, are strictly
increasing,

A ≺ B ⇐⇒ s(n)

t(n)
<

s(n+ 1)

t(n+ 1)
for all n ≥ 1.

Proof. The proof of the direct implication is by contraposition, assuming that some N ≥ 1

satisfies
s(N)

t(N)
≥ s(N + 1)

t(N + 1)
, that is,

s(N + 1)

s(N)
≤ t(N + 1)

t(N)
.
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This implies s(N) > 0. Setting a := s(N + 1)/s(N) we get 1 < a ≤ t(N + 1)/t(N). For � = 2

parties with weights v1 := a/(a + 1) > v2 := 1/(a + 1) we claim that x := (N + 1, N − 1) is a

solution vector in A(2N ; v1, v2). Indeed, the applicable Max-Min Inequality

max

{
s(N + 1)

v1
,
s(N − 1)

v2

}
≤ min

{
s(N + 2)

v1
,
s(N)

v2

}
is verified simply by comparing each term on the left with each term on the right. Similarly the

Max-Min Inequality

max

{
t(N)

v1
,
t(N)

v2

}
≤ min

{
t(N + 1)

v1
,
t(N + 1)

v2

}
shows that the vector y := (N,N) lies in B(2N ; v1, v2). Since x is not majorized by y the proof

of the direct implication is complete.

For the proof of the converse implication consider any house size h, some ordered weights v1 >

· · · > v�, and arbitrary seat vectors x ∈ A(h; v) and y ∈ B(h; v). Strict monotonicity of the

signpost ratios enables us to establish the desired majorization relation, A(h; v) � B(h; v), by

referring to Lemma 8.3. (The argument implies that divisor methods are immune against the

lack of transitivity of the pairwise give-up relation mentioned in Section 8.2.) Verification of the

premise of Lemma 8.3 is by contraposition, assuming that for two parties i > k the stronger

party i and the weaker party k satisfy xi > yi and xk < yk. The integer inequalities imply xi−1 ≥
yi and xk + 1 ≤ yk. Due to concordance vi > vk entails yi ≥ yk. We get xk + 1 ≤ xi − 1 < xi.

Hence strict monotonicity of the signpost ratios yields s(xk + 1)/t(xk + 1) < s(xi)/t(xi). Now

we select multipliers μ and ν satisfying xj ∈ [[μvj ]] and yj ∈ [[νvj ]] for all j ≤ �. The signpost

estimates νvi ≤ t(yi + 1) and t(yk) ≤ νvk, and s(xi) ≤ μvi and μvk ≤ s(xk + 1) combine into

vi

vk
=

νvi

νvk
≤ t(yi + 1)

t(yk)
≤ t(xi)

t(xk + 1)
<

s(xi)

s(xk + 1)
≤ μvi

μvk
=

vi

vk
,

a contradiction.

Signpost ratio sequences always converge to unity, limn→∞ s(n)/t(n) = 1, since

the localization property s(n) ∈ [n − 1;n] entails (n − 1)/n ≤ s(n)/t(n) ≤ n/(n − 1).

Monotone convergence as in the Theorem implies s(n) < t(n) for all n ≥ 1. Thus, if a

method A is majorized by another method B, all signposts of A are shifted to larger

values before reaching the signposts of B.

A signpost shift to larger values increases the likelihood that interim quotients are

rounded downwards, and decreases the likelihood of rounding them upwards. Never-

theless, the effects of a signpost shift retain a dose of randomness as far as just a single

party is concerned, whether strong or weak. However, for groups of stronger parties

any randomness evaporates. Majorization delivers deterministic facts, not stochastic

predictions. Every group of stronger parties does at least as well when an apportion-

ment method A is replaced by a method B that majorizes A. No group of stronger

parties will ever do worse, no group of weaker parties will ever do better.

Majorization is easily recognized among the stationary divisor methods DivStar
by means of their split parameter r ∈ [0; 1]. An analogous result holds for the power-

mean divisor methods DivPwrp in terms of their power parameter p ∈ [−∞;∞]. An

increase of the parameter reflects an increase in the majorization order.
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8.6. MAJORIZATION-INCREASING PARAMETERIZATIONS

Theorem.

a. (Stationary methods) A stationary divisor method DivStar is majorized by another

stationary divisor method DivStaR if and only if r < R.

b. (Power-mean methods) A power-mean divisor method DivPwrp is majorized by

another power-mean divisor method DivPwrP if and only if p < P .

Proof. a. With stationary signposts sr(n) = n−1+ r, signpost ratio monotonicity (n−1+ r)/

(n− 1 +R) < (n+ r)/(n+R) instantly reduces to r < R.

b. The power-mean signposts s̃p(n) are the mean of order p of the interval endpoints n−1 and n

(Section 3.12). Verification of signpost ratio monotonicity reduces to proving that the function

g(p) :=

(
(n− 1)p + np

np + (n+ 1)p

)1/p

is strictly increasing, from g(−∞) = (n − 1)/n to g(∞) = n/(n + 1). The proof follows from

Proposition 5.B.3 in Marshall /Olkin (1979 [130]).

Applying the result to the power-mean divisor methods with powers −∞, −1, 0,
1, and ∞, the five traditional divisor methods are seen to be ordered by majorization,

DivUpw ≺ DivHar ≺ DivGeo ≺ DivStd ≺ DivDwn.

From left to right the methods are more supportive of groups of stronger parties, and

detrimental to groups of weaker parties.

8.7. MAJORIZATION PATHS

The family of stationary divisor methods generates a sequence of seat vectors, and so

does the family of power-mean divisor methods. In these sequences every seat vector

is majorized by its successor. Although the parameter increases continuously, the

evolving sequence of seat vectors is finite because of the inherent discretization step.

Both paths start with DivUpw (= DivSta0 = DivPwr−∞), pass through DivStd (=

DivSta.5 = DivPwr1), and finish with DivDwn (= DivSta1 = DivPwr∞).

Table 8.1 presents an example. The top portion displays the path in the stationary

family. The bottom part shows the path in the power-mean family. Both paths happen

to feature eight seat vectors each. They have six seat vectors in common, while the

third and the seventh are peculiar to just one path. Every seat vector is majorized by

its successor. From left to right, groups of stronger parties accumulate more seats or

maintain what they have. Groups of weaker parties do worse or stay put. The fate

of a single party is less deterministic. The strongest party never loses a seat since it

is a singleton group. The weakest party never wins a seat. Parties in-between may

oscillate, as does the fifth strongest party.
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Majorization path of stationary divisor methods, DivStar
Rank Votes r = 0 .3 .44 .47 .5 .8 .97 1

1 42 919 41 +1 42 42 +1 43 43 +1 44 44 +1 45
2 13 048 13 13 13 13 13 13 13 13
3 10 879 11 11 11 11 11 11 11 11
4 10 581 10 10 +1 11 11 11 11 11 11
5 9 547 10 −1 9 9 9 +1 10 −1 9 +1 10 10
6 5 708 6 6 6 6 6 6 −1 5 5
7 2 502 3 3 3 3 −1 2 2 2 2
8 1 898 2 2 2 2 2 2 2 −1 1
9 1 461 2 2 2 −1 1 1 1 1 1
10 1 457 2 2 −1 1 1 1 1 1 1

Sum 100 000 100 100 100 100 100 100 100 100

Majorization path of power-mean divisor methods, DivPwrp
Rank Votes p = −∞ 0 .4 .6 1 18 50 ∞
1 42 919 41 +1 42 +1 43 43 43 +1 44 44 +1 45
2 13 048 13 13 13 13 13 13 13 13
3 10 879 11 11 11 11 11 11 11 11
4 10 581 10 10 10 +1 11 11 11 11 11
5 9 547 10 −1 9 9 9 +1 10 −1 9 +1 10 10
6 5 708 6 6 6 6 6 6 6 −1 5
7 2 502 3 3 3 3 −1 2 2 2 2
8 1 898 2 2 2 2 2 2 −1 1 1
9 1 461 2 2 2 −1 1 1 1 1 1
10 1 457 2 2 −1 1 1 1 1 1 1

Sum 100 000 100 100 100 100 100 100 100 100

TABLE 8.1 Majorization paths. Top: Stationary divisor methods. Bottom: Power-mean divisor

methods. Both paths start with DivUpw, pass through DivStd, and finish with DivDwn. In contiguous

seat columns, a seat is given up from a weaker party (−1) to a stronger party (+1).

A seat transfer to a party i from a party k can occur only when the two are tied,

s(xi + 1)

vi
=

s(xk)

vk
.

The tie equation is instrumental to verify that the paths in Table 8.1 are complete.

For the stationary family, the tie equation and its solution are

xi + r

vi
=

xk − 1 + r

vk
, that is, r1(i, k) :=

xivk − (xk − 1)vi
vi − vk

.

In the presence of majorization we know that the receiving party i must be stronger

than the donor k, that is, i < k and vi > vk. As the split point r increases from r0 = 0

onwards, the smallest of the solutions r1(i, k) is encountered first,

r1 := min
i<k

r1(i, k) = r1(1, 5) =
1289

8343
≈ .155.

At the change-point r1, a seat is transferred from the fifth strongest party to the

strongest party, thus giving rise to the second seat vector. Beyond r1 calculations start

afresh. The second seat vector persists until the next change-point r2 is reached,

r2 := min
i<k

r2(i, k) = r2(4, 10) =
3989

9124
≈ .437.

The interval of constancy is [.155; .437]; Table 8.1 quotes the convenient value .3.

(A traditional parameter value is preferred whenever possible.) The change-points

r3, . . . , r7 are obtained in the same manner.
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For the family of power-mean divisor methods the tie equation takes the form(
xp
i + (xi + 1)p

(xk − 1)p + xp
k

)1/p

=
vi
vk

.

No explicit solution is available, but a numerical solution p is easily obtained by ma-

chine calculation. The change-points p1, . . . , p7 yield the path shown in Table 8.1.

Finally we show that the parameterization of the shift-quota methods (Section 5.4)

is majorization-increasing, too, and that they are also framed by the divisor method

with upward rounding and by the divisor method with downward rounding.

8.8. MAJORIZATION OF SHIFT-QUOTA METHODS

Theorem. Two shift-quota methods with shifts s < S satisfy

DivUpw ≺ shQgrRs ≺ shQgrRS ≺ DivDwn.

Proof. For house size h and vote vector v ∈ (0;∞)� fixed, Corollary 5.6 provides splits r∗ and R∗

that reproduce the shift-quota solution sets, shQgrRs(h; v) = DivStar∗ (h; v) and shQgrRS(h; v)

= DivStaR∗ (h; v). Let x be a seat vector in the first set, y, in the second. Unless the two vectors

are equal, there exists a party j with seat numbers xj > yj . From xj − 1 + r∗ ≤ vj/Q(s) and

vj/Q(S) ≤ yj +R∗ we get

vj

Q(S)
+ 1−R∗ ≤ yj + 1 ≤ xj ≤ vj

Q(s)
+ 1− r∗.

Insertion of the shift-quotas Q(s) = v+/(h+ s) yields 0 < (S− s)vj/v+ = vj/Q(S)− vj/Q(s) ≤
R∗ − r∗. Hence the splits are ordered, r∗ < R∗. Theorem 8.6.a yields DivUpw(h; v) �
DivStar∗ (h; v) � DivStaR∗ (h; v) � DivDwn(h; v).

Seat biases in favor of some parties at the expense of others, and the preferential

treatment of groups of stronger parties as compared to groups of weaker parties are

important characteristics of an apportionment method, but do not exhaustively tell

how sensibly it behaves in practice. The next chapter judges the resulting seat vectors

from a wholistic viewpoint. The whole vector and its parts must fit together in a

coherent way that is devoid of irritating paradoxes.
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Securing System Consistency:
Coherence and Paradoxes

Apportionment methods are assessed from the collective viewpoint whether all variables
act together in a consistent manner. A decisive requirement is coherence, demanding
that the solution for an apportionment problem as a whole agrees with the solutions
of all embedded subproblems. Coherence is achieved only by divisor methods. Further-
more, divisor methods respond sensibly to variations of particular variables such as
house size, vote weights, or number of parties. In contrast, quota methods may exhibit
a counterintuitive behavior of a seemingly paradoxical nature.

9.1. THE WHOLE AND ITS PARTS

The more parties participate in the seat apportionment, the more daunting becomes

the apportionment problem. An established strategy to attack a large problem with

many variables is to perceive it as a union of partial problems with fewer variables. A

viable solution for the whole problem should comprise viable solutions for its partial

problems. Balinski /Young (1982 [141]) put it this way: An inherent principle of any

fair division is that every part of a fair division should be fair. Conversely the whole

solution should be retrievable by concatenating solutions of partial problems. The

whole and its parts must fit together in a coherent way.

A proportional representation system is taken to be coherent when all of its

partial systems remain proportional. If the seat vector (xj)j=1,...,� is a solution for

the apportionment of x+ seats in a large system of � parties, then a party subsys-

tem I ⊂ {1, . . . , �} ought to admit the sub-vector (xi)i∈I as a solution for the appor-

tionment of
∑

i∈I xi seats among the parties in I. The definition includes a kind of

converse to the effect that concatenated partial solutions retrieve a grand solution. We

denote partial sums by xI :=
∑

i∈I xi, and complementary sets by I ′ := {1, . . . , �} \ I.
Definition. An apportionment method A is called coherent when, for all system

sizes � ≥ 2 and all vote vectors v ∈ (0;∞)�, every seat vector x ∈ A(x+; v) fulfills the

following two properties a and b for all party subsets I ⊂ {1, . . . , �}:
a. (Coherence of partial solutions) (xi)i∈I ∈ A

(
xI ; (vi)i∈I

)
.

b. (Concatenation coherence) All seat vectors (yi)i∈I ∈ A
(
xI ; (vi)i∈I

)
and (zk)k∈I′ ∈

A
(
xI′ ; (vk)k∈I′

)
satisfy

(
(yi)i∈I , (zk)k∈I′

) ∈ A
(
x+;

(
(vi)i∈I , (vk)k∈I′

))
.
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Coherence of partial solutions (a) means that all partial vectors that can be ex-

tracted from a grand seat vector are solutions of the associated partial problems.

Concatenation coherence (b) says that two disjoint partial solutions with fitting com-

ponent sums, xI and xI′ , concatenate to form a grand seat vector. If the partial

solutions are singletons then they arise from x, A
(
xI ; (vi)i∈I

)
= {(xi)i∈I} and A

(
xI′ ;

(vk)k∈I′
)
= {(xk)k∈I′}, and retrieve the given seat vector x uniquely. If at least one of

the partial problems admits multiple solutions then the grand problem does so, too.

Apportionment methods are stipulated to be anonymous, balanced, concordant,

decent, and exact (Section 4.3). The five organizing principles imply that every coher-

ent apportionment method must be a divisor method.

9.2. COHERENCE THEOREM

Theorem. An apportionment method A is coherent if and only if A is a divisor

method.

Proof. The theorem is due to Balinski /Young (1982 [141–148]) where the term uniformity

is used in place of coherence. The proof of the direct implication requires the construction of

a signpost sequence that discloses A as a divisor method. The authors accomplish the task

via a detailed analysis of the larger class of rank-index methods. Since the argument is fairly

complicated and lengthy we abstain from reproducing it here.

The proof of the converse implication is immediate. Let A be a divisor method. Coherence of

partial solutions holds since any divisor D that works for a grand seat vector x also works for

all partial solutions (xi)i∈I . Concatenation coherence follows since if the partial solution set

A
(
xI ; (vi)i∈I

)
comprises two or more solution vectors then the divisor is unique (Section 4.7).

Hence the divisor for (xi)i∈I also applies for all other vectors in the partial solution set. Thus

every divisor method is seen to be coherent.

The theorem confirms the superiority of divisor methods. Other methods fail to be

coherent. In particular, the Hare-quota method with residual fit by greatest remainders

is incoherent. Its results often coincide with the results of the divisor method with

standard rounding. Hence incoherence can surface only when the two methods yield

distinct solutions. This hint makes it easy to locate instances of incoherence.

To this end Table 9.1 reconsiders the 2009 Bundestag election data of Table 2.1.

The solution of the divisor method with standard rounding embraces the two-party

subsystem of SPD and CSU coherently. The parties split their aggregate 188 seats

146 : 42 no matter whether the six parties are evaluated altogether, or whether SPD

and CSU are treated as a separate two-party system. In contrast, the Hare-quota

method with residual fit by greatest remainders provides two solutions, one in the

whole ensemble (147 : 41) and one that considers the two parties separately (146 : 42).

The two solutions differ, thus illustrating the incoherence the Hare-quota method with

residual fit by greatest remainders.
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(17BT2009) Votes Quotient DivStd Quotient HaQgrR

CDU 11 828 277 173.4 173 173.517 173
SPD 9 990 488 146.497 146• 146.558 147•
FDP 6 316 080 92.6 93 92.655 93
LINKE 5 155 933 75.6 76 75.636 76
GRÜNE 4 643 272 68.1 68 68.115 68
CSU 2 830 238 41.502 42• 41.519 41•
Sum (Divisor, Split) 40 764 288 (68 196) 598 (.54) 598

TABLE 9.1 Coherence of DivStd, and incoherence of HaQgrR. Both methods give the same answer
to the partial problem of allocating 188 seats to SPD (146) and CSU (42). This partial solution is part
of the grand DivStd apportionment, but distinct from the grand HaQgrR apportionment (147 : 41).

Quite generally, two-party problems always admit seat vectors x = (x1, x2) that

most people would agree to accept as the natural two-party apportionment of H seats,

x1 ∈
〈〈 v1
v1 + v2

H
〉〉
, x2 ∈

〈〈 v2
v1 + v2

H
〉〉
.

This solution is delivered by the divisor method with standard rounding as well as by

the Hare-quota method with residual fit by greatest remainders. In fact, for two-party
systems the two methods always agree,

DivStd(H; v1, v2) = HaQgrR(H; v1, v2),

for all house sizes H ∈ � and for all vote pairs (v1, v2) ∈ (0;∞)2.
An obvious question is whether the natural two-party apportionments allow a

coherent extension to arbitrarily large party systems. It turns out that the unique
answer is the divisor method with standard rounding.

9.3. COHERENCE EXTENSION FROM TWO PARTIES TO MANY

Theorem. The unique coherent extension of the natural two-party apportionments to
party systems of arbitrary size � ≥ 2 is the divisor method with standard rounding.

Proof. Evidently DivStd is a coherent extension of the natural two-party apportionments. We

need to prove uniqueness: If A is a coherent extension then A = DivStd. That is, for all house

sizes h ∈ �, all system sizes � ≥ 2, and all vote vectors v ∈ (0,∞)� we claim

A(h; v) = DivStd(h; v).

As for the direct inclusion, A(h; v) ⊆ DivStd(h; v), we assume indirectly that some seat vector

z ∈ A(h; v) is not contained in DivStd(h; v). For arbitrary seat vectors y ∈ DivStd(h; v) let c(y)

be the count of components j ≤ � with yj �= zj . We select a vector x ∈ DivStd(h; v) such that

c(x) is minimum. By assumption we have c(x) ≥ 2. Let the parties i and k be such that xi > zi
and xk < zk. Of the two sums xi+xk and zi+zk one is less than or equal to the other. Without

loss of generality we treat the case H := xi + xk ≤ zi + zk =: H̃. Since all rounding rules are

set-monotonic (Section 3.8) we get〈〈
vi

vi + vk
H

〉〉
≤
〈〈

vi

vi + vk
H̃

〉〉
.
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Because of coherence of DivStd the left set contains xi; due to coherence of A the right set

includes zi. In view of xi > zi this is possible only when the rounding sets are equal to {xi, zi}.
It follows that H = H̃, whence 〈〈vkH/(vi + vk)〉〉 = {xk, zk}. Thus (xi, xk) and (zi, zk) are

tied solutions for apportioning H seats proportionally to the two-party vote vector (vi, vk).

Concatenation coherence implies that the vector

y := (x1, . . . , xi−1, zi, xi+1, . . . , xk−1, zk, xk+1, . . . , x�)

lies in DivStd(h; v). Evidently y differs from z in two fewer components than x. This contradicts

the minimality of x, thereby verifying the direct inclusion A(h; v) ⊆ DivStd(h; v). A similar

reasoning establishes the converse inclusion. Thus the proof of uniqueness is complete.

In summary coherence captures an intrinsic consistency aspect of apportionment

methods. The notion appears innocuous, but entails remarkably strong consequences.

The vast class of all apportionment methods is constricted to the smaller class of divisor

methods. Conformity with the natural two-party apportionments leaves just a single

procedure, the divisor method with standard rounding.

Next we turn to other consistency aspects of proportional representation systems.

How does an apportionment method respond to an increase of the house size? To

the growth of one party relative to another party? To an enlargement of the party

system? Whichever question is asked, the answer points in the same direction. Divisor

methods always behave reasonably. Quota methods mostly do too, but occasionally

deliver solutions that seem paradoxical. We consider each question in greater detail.

9.4. HOUSE SIZE MONOTONICITY

An apportionment method is called house size monotone when an increase of the house

size never leads to a decrease of some party’s seat number. If x is a seat vector for house

size h and an extra seat becomes available then some party i gets xi + 1 seats and all

other parties j �= i retain the xj seats they already have. Formalities to properly track

ties are more tedious. For two seat vectors x and y we write x ≤ y when all components

are non-decreasing, xj ≤ yj for all j ≤ �. Formally, house size monotonicity of an

apportionment method A demands that for all seat vectors x ∈ A(h; v) there exists a

seat vector y ∈ A(h+ 1; v) satisfying x ≤ y.

It would be tempting to want the inequality x ≤ y to hold true for all vectors

y ∈ A(h+1; v). But this is asking too much, and it is not hard to see why. The example

in Table 4.2 displays fifteen tied seat vectors x for house size 17. Every vector y that

componentwise dominates all fifteen vectors x satisfies y ≥ (6, 5, 4, 3, 2, 1) and has a

component sum of y+ ≥ 21. This would inhibit any comparisons with house sizes 18,

19, and 20. The definition demands that there exists a vector y ∈ A(h + 1; v) that

improves upon a given seat vector x ∈ A(h; v).

Every divisor method is house size monotone. Indeed, the monotone progression

from house size h with seat vector x, to house size h+ 1 with some seat vector y ≥ x

is part of the argument that divisor methods are well-defined (Section 4.4).
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A non-monotone apportionment method B is prone to a disconcerting behavior.

When two seat vectors x ∈ B(h; v) and y ∈ B(h + 1; v) violate the componentwise

inequality x ≤ y, some party i gets fewer seats than before, xi > yi, even though

there are more seats to go around, x+ = h < h + 1 = y+. Janson /Linusson (2012)

construct a striking example. In a five-party system with vote vector v = (280, 275,

270, 90, 85), the Hare-quota method with residual fit by greatest remainders produces

seat vector x = (1, 1, 1, 1, 1) for house size five, but y = (2, 2, 2, 0, 0) for house size

six. The extra seat works wonders. Three parties double their representation, and two

parties disappear from the scene. The example shows that the Hare-quota method

with residual fit by greatest remainders fails to be house size monotone. Violation of

monotonicity was observed during the 1880 United States census when it was dubbed

the Alabama paradox, see Section 9.7. Lack of house size monotonicity raises suspicions

whether the apportionment method harbors other awkward peculiarities.

9.5. VOTE RATIO MONOTONICITY

Vital input quantities of an apportionment problem are the vote counts. From one

election to the next they generally vary, of course. We consider a profile where the

house size and the number of parties stay the same. Let the two consecutive elections be

recorded in the vote vectors u = (u1, . . . , u�) ∈ (0;∞)� and v = (v1, . . . , v�) ∈ (0;∞)�,

with ensuing seat vectors x ∈ A(h;u) and y ∈ A(h; v).

How would party i assess its performance relative to a competing party k? A

natural approach is to measure the votes of party i in multiples of the votes of party k,

that is, to compare the ratio ui/uk in the first election with the ratio vi/vk in the

second. If the vote ratio is increasing, party i improves its standing relative to party k.

A sensible method should react to the improvement by a potential increase of the seats

of party i or a potential decrease of the seats of party k,

ui

uk
<

vi
vk

=⇒ xi ≤ yi or xk ≥ yk.

An apportionment method A is called vote ratio monotone when the implication holds

for all house sizes h, vote vectors u, v ∈ (0;∞)�, seat vectors x ∈ A(h;u) and y ∈
A(h; v), and parties i, k ≤ �. The implication inhibits the case xi > yi and xk < yk,

entailing xi/xk > yi/yk. Lack of vote ratio monotonicity means that, while party i

does better than party k in terms of vote ratios, it does worse in terms of seat ratios.

All divisor methods are vote ratio monotone. To prove the claim we consider two

cases. In case xi ≤ yi the conclusion is evidently true. In case xi > yi the scaled vote

counts satisfy μui ≥ νvi, where μ and ν are appropriate multipliers for x and y. This

gives μ/ν ≥ vi/ui > vk/uk. Since μuk > νvk implies xk ≥ yk, the claim is proved.

Quota methods fail to be vote ratio monotone. This is shown by the Hare-quota

example in Table 9.2. The table lists all concordant seat vectors obtained by rounding

the ideal shares upwards or downwards. In the first election party A receives at least

five seats, in the second at most four seats. Party D fares better. In the first election

it gets no seat, in the second one seat. In any case party A loses a seat, and party D

wins a seat. On the other hand party A gathers strength relative to party D. It is

717/93 = 7.7 times stronger in the first election, but 570/73 = 7.8 times stronger in

the second. This behavior contradicts vote ratio monotonicity.
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Party Votes Quotient #1 #2 Votes Quotient #3 #4 #5

A 717 5.019 6 5 570 3.990 4 4 3
B 96 0.672 1 1 285 1.995 2 1 2
C 94 0.658 0 1 72 0.504 0 1 1
D 93 0.651 0 0 73 0.511 1 1 1

Sum (HaQ) 1000 (1000/7) 7 7 1000 (1000/7) 7 7 7

TABLE 9.2 Lack of vote ratio monotonicity of Hare-quota methods with a concordant residual fit.

Party A’s vote ratio relative to D improves from 717/93 = 7.7 (left) to 570/73 = 7.8 (right). Yet A

loses a seat and D gains a seat, in every pairing of the seat vectors #1–#2 (left) and #3–#5 (right).

9.6. SYSTEM SIZE CONFORMITY

Does it matter whether in a system with � parties those that are too weak to obtain

representation are carried along until the end, or put aside at the beginning? The EP

election in Spain is an instance to exemplify the issue. Table 1.12 includes a line of 28

“Others”. The line comprises an aggregation of 28 weak parties each drawing fewer

than 90 000 votes, and each failing to win representation. In Chapter 1 the figures are

displayed solely for descriptive purposes, so as to record all effective votes and not just

those that justified one or more seats. However, descriptive purposes are one thing,

computational steps another. Hence we should specify: Does it matter computationally

whether have-nots are carried along or not?

For divisor methods the answer is No, it does not matter. In Table 1.12 the

divisor 280 000 stays the same irrespective of whether the 28 Others are included in

the calculations or not.

For quota methods the answer is elusive, It depends. For the Spanish data in

Table 1.12, the answer is Yes, it matters. Table 9.3 presents the details. Including

the 28 have-nots, the Hare-quota is 312 305.9. Without them, the Hare-quota drops

down to 304 671.6 and all interim quotients grow larger. The interim quotient of the

strongest party leaps forwards substantially by half a seat, from 21.358 to 21.894. The

progression of the fifth-strongest party is minute, from 1.447 to 1.483. While its former

remainder earns a seat (.447 > .4), the latter remainder does not (.483 < .5). The

seat is transferred from the fifth-strongest party to the strongest party. The transfer

comes as a surprise since vote relations among the top seven parties remain the same

as before, and have nothing to do with the 28 have-nots at the end of the field.

A vexing seat transfer of this sort troubled the 1993 Council of the Free and

Hanseatic City of Hamburg. The council comprised four party groups of sizes 58 :

36 : 20 : 5 and two indeps. The task was to allocate the 15 seats of the Committee of

Advisory Deputies. Surprisingly, it mattered whether the two indeps were included in

the calculations, or not. The apportionment method used was the Hare-quota method

with residual fit by greatest remainder. The seat allocation was 7 : 4 : 3 : 1 : 0 : 0

when the indeps were included in the calculation, but 7 : 5 : 2 : 1 when they were

omitted. Thus the procedural standing of indeps proved decisive for the second- and

third strongest parties to divide their seven seats as 4 : 3, or 5 : 2.

The problem is not bound to parties receiving no seats. We chose have-nots for a

start only because they facilitate the exposition. The phenomenon also arises when new

parties that join are accompanied by new seats to proportionally enlarge the prevailing
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(EP2009ES) Votes Quotient HaQgrR Quotient HaQgrR
Including 28 Others Without 28 Others

PP 6 670 377 21.358 21 21.894 22•
PSOE 6 141 784 19.666 20 20.159 20
CpE 808 246 2.588 3 2.653 3
IU-ICV-EU/IA-BA 588 248 1.884 2 1.931 2
UPyD 451 866 1.447 2 1.483 1•
EdP-V 394 938 1.265 1 1.296 1
II 178 121 0.570 1 0.585 1
28 Others 381 716 — 0 —

Sum (Split) 15 615 296 (.4) 50 (.5) 50
Hare-Quota 312 305.9 304 671.6

TABLE 9.3 System size conformity. The Hare-quota method with residual fit by greatest remainders
swaps a seat between the strongest and the fifth-strongest parties contingent on the inclusion or
exclusion of the 28 Others, each having fewer than 90 000 votes and remainders below .3.

house size. Such instances do occur. For example, the German Democratic Republic

acceded to the Federal Republic of Germany in 1990 while the Bundestag’s legislative

period was in full swing. The apportionment method then in use was the Hare-quota

method with residual fit by greatest remainders. The Bundestag decided to enlarge

its house size and the sizes of its committees by proportionally adding new seats. Had

the apportionments been recalculated from scratch, the old parties would have had to

swap some seats for no other reason than the purportedly proportional enlargement.

All examples in this section fit under the heading of coherence. While coherence

requires the apportionment method to treat all party subsets in a consistent manner,

the troublesome examples highlight instances where some particular subset falls victim

to incidences of incoherence. The remedy is offered by Theorem 9.1, stating that

breaches of coherence are avoided when the procedure used is a divisor method.

9.7. QUOTA METHOD PARADOXES

A breach of house size monotonicity of the Hare-quota method with residual fit by

greatest remainders first came to light in the United States of America. The Consti-

tution decrees to conduct a census every ten years, and to apportion the seats in the

House of Representatives among the States of the Union accordingly. However, it does

not specify the apportionment method to be used. In the aftermath of every census

fierce debates erupted in the House of Representatives which method to use. The

discussions produced a wealth of political arguments and statistical ramifications ad-

vertising proposed methods, and criticizing counter-proposals. Balinski /Young (1982)

tell the tale, in a vivid and enlightening manner.

The size of the House of Representatives has been fixed at 435 members by statute

since Arizona and New Mexico became states in 1912. Until then the determination of

the house size was part of the agenda of the decennial apportionment legislation. The

Bureau of the Census would prepare tables for different house sizes for the purpose of

aiding the decision-making process. After the 1880 census Charles Wesley Seaton, chief

clerk of the Census Office, computed apportionments for all house sizes between 275

and 350 using the Hare-quota method with residual fit by greatest remainders (overseas
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called Hamilton method). As reported by Balinski /Young (1982 [38]), Seaton noted a

startling effect that he described in a letter to Congress dated 25 October 1881:

While making these calculations I met with the so-called “Alabama” paradox

where Alabama was alloted 8 Representatives out of a total of 299, receiving

but 7 when the total became 300.

The label Alabama paradox conquered a firm place in the field, as a synonym for

a breach of house size monotonicity. Use of the term “paradox” is but an invitation

to pause and ask what is going on. On the way from house size 299 to 300 all interim

quotients grow larger, of course. Since growth is proportional to size, the larger states

Illinois and Texas leap forwards substantially and pass the split point .6715. The

progression of small Alabama is much smaller and lets it fall below the split point.

Thus Alabama loses the residual seat won earlier, while Illinois and Texas pick up an

extra seat each. The data of the 1880 census are shown in Table 9.4.

In the present context vote ratio monotonicity turns into population monotonicity,
wi

vi
>

wk

vk
=⇒ xi ≤ yi or xk ≥ yk.

The inequality in the premise is logically equivalent to vi/vk < wi/wk, but allows a

more persuasive interpretation in terms of population growth. The ratio wi/vi ex-

presses the current census figure wi of state i as a multiple of its previous figure vi.

If the ratio is larger than the ratio of another state k, as assumed in the premise,

then the population of state i grows at a rate faster than that of state k. The con-

clusion demands that state i meets or exceeds its former representation and thereby

does potentially better, or that state k does worse or stays put. The notion of popula-

tion monotonicity plays a pivotal role in the exposition of Balinski /Young (1982 [108,

117]). Lack of monotonicity is what the authors term the population paradox. That is,

state i grows faster than state k and yet state i loses one or more seats to state k.

Vote ratio monotonicity and population monotonicity pose problems that are iden-

tical as far as numbers are concerned. However, political perceptions and practical

consequences of the concepts differ. While the translation of votes into seats remains

the prerogative of the political legislator, the representation of geographical districts

involves considerable administrative expertise. All modern states entertain statistical

offices updating census figures and monitoring population mobility meticulously and

laboriously. It would seem counterproductive to belittle these efforts by eventually

employing an apportionment method flawed by paradoxes. This is the reason why

the German Bundestag disposed of the Hare-quota method with residual fit by great-

est remainders. The lack of population monotonicity was considered irritating when

apportioning the 299 constituencies to the sixteen German States. In 2008 the Bundes-

tag adopted the divisor method with standard rounding for the allocation of the 299

constituencies as well as for the apportionment of the notional 598 Bundestag seats.

The expansion of the United States from formerly 15 to currently 50 states gives

rise to profiles with a growing number of participants. As discussed in Section 9.6

quota methods may trigger strange seat transfers when a new state accedes the Union.

Balinski /Young (1982 [44]) term the lack of conformity the new states paradox. They

illustrate the problem with the accession of Oklahoma in 1907. Giving Oklahoma its

ideal share of five seats, New York and Maine would have to swap a seat if the Hamilton

apportionment were calculated from scratch.
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US1880Census Population Quotient HaQgrR Quotient HaQgrR

New York 5 082 871 30.783 31 30.886 31
Pennsylvania 4 282 891 25.938 26 26.025 26
Ohio 3 198 062 19.368 19 19.433 19
Illinois 3 077 871 18.640• 18 18.702• 19
Missouri 2 168 380 13.132 13 13.176 13
Indiana 1 978 301 11.981 12 12.021 12
Massachusetts 1 783 085 10.799 11 10.835 11
Kentucky 1 648 690 9.985 10 10.018 10
Michigan 1 636 937 9.914 10 9.947 10

Iowa 1 624 615 9.839 10 9.872 10
Texas 1 591 749 9.640• 9 9.672• 10
Tennessee 1 542 359 9.341 9 9.372 9
Georgia 1 542 180 9.340 9 9.371 9
Virginia 1 512 565 9.160 9 9.191 9
North Carolina 1 399 750 8.477 8 8.505 8
Wisconsin 1 315 497 7.967 8 7.993 8
Alabama 1 262 505 7.646• 8 7.671• 7
Mississippi 1 131 597 6.853 7 6.876 7

New Jersey 1 131 116 6.850 7 6.873 7
Kansas 996 096 6.033 6 6.053 6
South Carolina 995 577 6.029 6 6.050 6
Louisiana 939 946 5.692 6 5.711 6
Maryland 934 943 5.662 6 5.681 6
California 864 694 5.237 5 5.254 5
Arkansas 802 525 4.860 5 4.876 5
Minnesota 780 773 4.728 5 4.744 5
Maine 648 936 3.930 4 3.943 4

Connecticut 622 700 3.771 4 3.784 4
West Virginia 618 457 3.745 4 3.758 4
Nebraska 452 402 2.740 3 2.749 3
New Hampshire 346 991 2.101 2 2.108 2
Vermont 332 286 2.012 2 2.019 2
Rhode Island 276 531 1.675 2 1.680 2
Florida 269 493 1.632 1 1.638 1
Colorado 194 327 1.177 1 1.181 1
Oregon 174 768 1.058 1 1.062 1

Delaware 146 608 0.888 1 0.891 1
Nevada 62 266 0.377 1 0.378 1

Sum (Split) 49 371 340 (.643) 299 (.6715) 300
Hare-Quota 165 121.5 164 571.1

TABLE 9.4 Alabama paradox, US census 1880. An increase of the house size from 299 to 300

increases all interim quotients, for the larger states Illinois and Texas more so than for Alabama (•).
With its remainder falling below the split point .6715, Alabama loses its residual seat from before.

Another detail of Table 9.4 is worth mentioning. The bottom line features Nevada,

a state so small receiving no seat in the main apportionment nor in the residual fit.

Yet the table lists a seat for Nevada. The seat is owed to the constitutional warranty

that each state shall have at least one representative, mentioned in Section 7.8. The

constitutional order is executed as follows. The lacking seats are filled-in from the

residual seats before entering the residual apportionment stage. For house sizes 299

and 300 the main apportionment provides all states with at least one representative

except Delaware and Nevada. Hence from the residual seats Delaware and Nevada

receive one seat each, and only the remaining residual seats are fed into the residual fit

by greatest remainders. Chapter 12 has more to say how to handle seat restrictions.
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Appraising Electoral Equality:
Goodness-of-Fit Criteria

Perfect electoral equality is a conceptual ideal defying reality, a certain degree of in-
equality must be practically tolerated. Ways and means are discussed how to numeri-
cally evaluate the residue of disproportionality that apportionment methods inevitably
carry along. Three approaches are explored. A first approach is based on all-embracing
goodness-of-fit criteria, that is, functions that map a system’s deviations from ideal
equality into a real number. Different criteria are seen to justify different methods.
A second approach utilizes stability criteria based on pairwise comparisons. The aim
is to reduce a pending imbalance by way of a seat transfer from some party that is
advantaged to another party that is disadvantaged. A third approach examines whether
realized and ideal shares of seats of all parties come to lie as near as may be.

10.1. OPTIMIZATION OF GOODNESS-OF-FIT CRITERIA

It is an established approach of all sciences to explore a complex system by means of

real functions. Naturally a single number cannot possibly mirror the full complexity

of a multi-dimensional system. Yet valuable information may be retrieved when the

criterion function is geared to the essentials of the system.

Apportionment methods aim at achieving proportionality between the input vote

counts (v1, . . . , v�), and the output seat numbers (x1, . . . , x�). Usually the vote to-

tal v+ is much larger than the sum of all seats, x+ = h. Therefore, the vectors are

standardized so that their component sum is the same, unity. Goodness-of-fit criteria

measure how the output, the seat share vector x/h = (x1/h, . . . , x�/h), conforms to

the input, the vote share vector v/v+ = (v1/v+, . . . , v�/v+).

Perfect proportionality would require the two vectors to be equal. Because of

the discreteness of the seat numbers, however, equality is almost always beyond reach

and some degree of inequality must be tolerated. The question is, which inequality?

Inequality among whom? An election features at least three groups of protagonists

who may claim a constitutional right to equality among their group members. The

largest group is the v+ voters. A middle size group is the h Members of Parliament

who are elected by the voters. The smallest, institutional group is the � parties that

mediate between the first group, those voting, and the second group, those elected.

DOI 10.1007/978-3-319-03856-8_10, © Springer International Publishing Switzerland 2014
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For each of these groups there exists an adequate criterion function to measure

a lack of group inherent equity. Minimization of different criteria points to differ-
ent apportionment methods, though. The voter-oriented criterion justifies the divisor
method with standard rounding (Section 10.2). The criterion that minimizes parlia-

mentary inequity yields the divisor method with geometric rounding (Section 10.3).
Minimization of inequality among parties leads to the Hare-quota method with residual
fit by greatest remainders (Section 10.4).

People are not generally agreed about the relative merits of one criterion function
versus the other. There is no obligation to dispose of other apportionment methods
in favor of the one that optimizes some specific criterion. Every criterion mirrors but

a partial view of the whole system. On the other hand, if an apportionment method
is optimal with respect to some criterion, the method evidently harmonizes well with
the aspects that are captured by the given criterion.

10.2. VOTER ORIENTATION: DivStd

The group of voters comes first among all actors in an election. We consider an
arbitrary seat vector x = (x1, . . . , x�) ∈ ��(h), and relate it to a given vote vector

v = (v1, . . . , v�) ∈ (0;∞)�. How do we appraise the disproportionality that is present
in the seat vector x, from the voters’ viewpoint? A single voter who casts a vote for
party j is just one individual among vj supporters of party j. Together all vj voters

secure a success of xj seats. Hence a single voter contributes the success share xj/vj .
Standardization leads to the success value attributable to an individual voter,

xj/h

vj/v+
,

see Section 2.7. If perfect proportionality were possible, seat shares and vote shares

would coincide. The ideal success values would equal unity. However, realized success
values differ from the ideal value unity almost always. If the ratio is larger than
unity, voters enjoy a bit of good luck and are more successful than promised by pure
proportionality. If smaller, voters have to endure a bit of bad luck. In order to

neutralize the direction of the deviation, the difference between the realized success
value of a voter of party j and the ideal success value unity is squared,(

xj/h

vj/v+
− 1

)2

.

This per-voter index is counted once for each of the vj voters of party j,

vj

(
xj/h

vj/v+
− 1

)2

.

An aggregation of these terms over all groups of voters, j ≤ �, gives rise to a criterion
accounting for each voter in the entire electorate,

fh,v(x) :=
∑
j≤�

vj

(
xj/h

vj/v+
− 1

)2

.

A seat vector that minimizes this goodness-of-fit criterion may be claimed to minimize
electoral inequality, from the voters’ viewpoint.
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Theorem. A seat vector x ∈ ��(h) minimizes the above goodness-of-fit criterion

if and only if x belongs to the divisor method with standard rounding,

fh,v(x) ≤ fh,v(y) for all y ∈ ��(h) ⇐⇒ x ∈ DivStd(h; v).

Proof. With wj = vj/v+, plain algebra yields fh,v(x) = (v+/h2)
(∑

j≤�
x2
j/wj

)
− v+. Hence

the function to be minimized simplifies to F (x) :=
∑

j≤�
x2
j/wj .

For the proof of the direct implication let x be minimum. A seat transfer from a party i with

xi ≥ 1 to a party k �= i yields a new seat vector y with components yi := xi − 1, yk := xk + 1,

and yj := xj for all j �= i, k. Minimality secures F (x) ≤ F (y). This inequality reduces to

x2
i /wi + x2

k/wk ≤ (xi − 1)2/wi + (xk + 1)2/wk, that is, (xi − 1/2)/wi ≤ (xk + 1/2)/wk. A

passage to the maximum (left) and the minimum (right) verifies the Max-Min Inequality 4.5 of

the divisor method with standard rounding, establishing x ∈ DivStd(h;w) = DivStd(h; v).

The proof of the converse implication starts with a vector x ∈ DivStd(h;w). For a seat vector

y ∈ ��(h) other than x, y �= x, we assemble the parties with differing seat numbers in the sets

I := {i ≤ � | yi < xi} = {i ≤ � | yi ≤ xi − 1}, and K := {k ≤ � | yk > xk} = {k ≤ � | xk + 1 ≤
yk}. For all i ∈ I and k ∈ K the definitions and the Max-Min Inequality yield

(xi + yi)/2

wi
≤ xi − 1/2

wi
≤ xk + 1/2

wk
≤ (xk + yk)/2

wk
.

It follows that δ := maxi∈I(xi+yi)/wi−mink∈K(xk+yk)/wk ≤ 0. As surpluses balance deficits

we get
∑

i∈I
(xi − yi) =

∑
k∈K

(yk − xk) =: S > 0. We obtain

(∑
j≤�

x2
j

wj

)
−
(∑

j≤�

y2j

wj

)
=

(∑
i∈I

xi + yi

wi
(xi − yi)

)
−
(∑

k∈K

xk + yk

wk
(yk − xk)

)
≤ δS ≤ 0.

This establishes F (x) ≤ F (y).

With vote shares wj = vj/v+, the criterion function admits the alternative form

fh,v(x) =
v+
h

∑
j≤�

(xj − wjh)
2

wjh
.

The sum is the familiar chi-square statistic. However, an allusion to the chi-square

distribution is inappropriate. The prevalent assumption is that the vote share vector

(W1, . . . ,W�) is uniformly distributed (Section 6.4). Then the sums
∑

j≤�(Xj−hWj)
2/

(hWj) converge in distribution (as h → ∞, then � → ∞, with a proper standardiza-

tion). But the limit is a Lévy-stable distribution, not a chi-square distribution.

Yet the rationale for the coexistence of numerator and denominator remains the

same as with the chi-square statistic. It is illustrated best with a toy example. Suppose

the house size is h = 100 and the electorate divides into three parties with vote counts

v = (45, 35, 20). Because of exactness every apportionment method comes up with the

same answer, the seat vector (45, 35, 20). Being exact the solution is devoid of any

disproportionality, fh,v(45, 35, 20) = 0.
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How about seat vectors that suffer from a malapportionment of two seats for the

strongest party? The two seats may be allocated (1) to the middle party, or (2) to the
middle and the weakest parties, or (3) to the weakest party. The three alternatives
incur the following disproportionality indices:

(1) fh,v(45− 2, 35 + 2, 20 + 0) = 0.089 + 0.114 + 0 = 0.203,

(2) fh,v(45− 2, 35 + 1, 20 + 1) = 0.089 + 0.029 + 0.05 = 0.168,

(3) fh,v(45− 2, 35 + 0, 20 + 2) = 0.089 + 0 + 0.2 = 0.289.

The index is 0.203 when the two diverted seats benefit the middle party (1). It is ag-
gravated to 0.289 when they boost the weakest party (3). The increase appears quite
reasonable since a two-seat surplus weighs heaviest with the weakest party. Dispro-

portionality is least, 0.168, when the two seats are shared by the middle and weakest
party (2). This is appealing since a kind of local equity is realized in a state missing
exactness. As Gauss (1821) argued when advertising the method of least squares: The

squared-error function weighs deviations in a quite natural manner

indem man sich gewiss lieber den einfachen Fehler zweimal als den doppelten
einmal gefallen läßt.

as one certainly bears the simple error twice more willingly than the double error
once.

Thus the divisor method with standard rounding, minimizing the sum of the squared
deviations of the voters’ realized success values from the ideal success value unity,
harmonizes exceedingly well with equality among the individuals in the electorate.

10.3. PARLIAMENTARY ORIENTATION: DivGeo

The next group of electoral protagonists to consider is those elected. How would
Members of Parliament assess any disproportionality in a given seat vector x? The
representative weight of each of the xj Members of Parliament of party j is the average

number of voters he or she represents,

vj
xj ,

see Section 2.8. When the denominator is zero the usual convention applies, vj/0 =∞.
Ideally all Members of Parliament enjoy the same representative weight, vj/xj = v+/h
for all j ≤ �. Practically, deviations from the votes-per-seats ratio are unavoidable.

Again the sign of a deviation is neutralized by squaring,(
vj
xj
− v+

h

)2

.

This per-seat index is counted once for each of the xj representatives of party j,

xj

(
vj
xj
− v+

h

)2

.
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The sum of these terms over all groups of representatives, j ≤ �, results in a criterion

incorporating every Member of Parliament,

fh,v(x) :=
∑
j≤�

xj

(
vj
xj
− v+

h

)2

.

A seat vector that minimizes this goodness-of-fit criterion may be claimed to minimize
electoral inequality, from the viewpoint of the Members of Parliament.

Theorem. A seat vector x ∈ ��(h) minimizes the above goodness-of-fit criterion
if and only if x belongs to the divisor method with geometric rounding,

fh,v(x) ≤ fh,v(y) for all y ∈ ��(h) ⇐⇒ x ∈ DivGeo(h; v).

Proof. Simple algebra yields fh,v(x) =
(∑

j≤�
v2j /xj

)
− v2+/h. Hence the function that needs

to be minimized is F (x) :=
∑

j≤�
v2j /xj . Recall the convention ε/0 = ∞ for ε > 0.

For the proof of the direct implication let x be minimal. When the seat vector y is obtained by a

seat transfer from party i with xi ≥ 1 to some other party k �= i, minimality F (x) ≤ F (y) implies

v2i /xi + v2k/xk ≤ v2i /(xi − 1) + v2k/(xk + 1), that is, v2k/
(
xk(xk + 1)

)
≤ v2i /

(
(xi − 1)xi

)
. Now

the Max-Min Inequality 4.5 that goes along with the divisor method with geometric rounding

establishes x ∈ DivGeo(h; v).

For the proof of the converse implication we assume x ∈ DivGeo(h; v). Given a vector y ∈ ��(h),

y �= x, we again use the sets I := {i ≤ � | yi ≤ xi − 1} and K := {k ≤ � | xk + 1 ≤ yk}. For all

k ∈ K and i ∈ I the definitions and the Max-Min Inequality yield

vk√
xkyk

≤ vk√
xi(xk + 1)

≤ vi√
(xi − 1)xi

≤ vi√
xiyi

.

It follows that δ := maxk∈K v2k/(xkyk) − mini∈I v
2
i /(xiyi) ≤ 0. With

∑
i∈I

(yi − xi) =∑
k∈K

(xk − yk) =: S > 0 we get(∑
j≤�

v2j

xj

)
−
(∑

j≤�

v2j

yj

)
=

(∑
k∈K

v2k
xkyk

(yk − xk)

)
−
(∑

i∈I

v2i
xiyi

(xi − yi)

)
≤ δS ≤ 0.

This establishes F (x) ≤ F (y).

With the vote shares wj = vj/v+ the criterion takes the form

fh,v(x) =
(v+

h

)2 ∑
j≤�

(xj − wjh)
2

xj
.

The sum is a modification of the chi-square statistic where the denominator is the
realized seat number xj , not the ideal share of seats wjh. As an illustration we recon-
sider the toy example from the previous section. The transfer of two seats from the

strongest party to the others leads to the following criterion values:

(1) fh,v(45− 2, 35 + 2, 20 + 0) = 0.093 + 0.108 + 0 = 0.201,

(2) fh,v(45− 2, 35 + 1, 20 + 1) = 0.093 + 0.028 + 0.048 = 0.169,

(3) fh,v(45− 2, 35 + 0, 20 + 2) = 0.093 + 0 + 0.182 = 0.275.

The new denominator does not hamper the rationale for the criterion’s usefulness.
Qualitatively the numbers send the same message as in the previous section.
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The divisor method with geometric rounding secures electoral equality among the

Members of Parliament. It does so by minimizing the sum of the squared deviations
of the deputies’ realized representative weights from the votes-per-seats ratio.

10.4. PARTY ORIENTATION: HaQgrR

The third relevant group in an election system is the parties. They constitute the polit-

ical institutions mediating between the people voting and the representatives elected.
The success of party j is expressed through the number of seats apportioned to it,

xj .

With wj denoting party j’s vote share, perfect proportionality would promise the party

the ideal share of seats wjh. Practically some deviation between the realized seat
number xj and the ideal share wjh is unavoidable, and a nonzero seat excess xj −wjh
must be tolerated. The seat excess can be positive, or negative. The direction of the

deviation may again be neutralized by squaring,(
xj − wjh

)2
.

Aggregation of the squared seat excesses of all parties gives rise to the criterion function∑
j≤�

(
xj − wjh

)2
.

Minimization of the squared-error criterion generalizes considerably. The structural
form of the goodness-of-fit criteria covered by the following theorem is

fh,v,ϕ(t)(x) :=
∑
j≤�

ϕ

(
xj − vj

v+
h

)
,

where the score function ϕ(t), t ∈ �, is assumed to be such that its slope function

ψ(t) :=
ϕ(t)− ϕ(t− 1)

t− (t− 1)
= ϕ(t)− ϕ(t− 1)

is non-decreasing on � and strictly increasing on [0; 1]. Feasible score functions are all

functions that are convex and have a unique minimum at zero, such as the square t2

and the modulus |t|. Also every strictly convex function on � is feasible, such as t2,
et and e−t. The following theorem is due to Pólya (1919d).

Theorem. A seat vector x ∈ ��(h) minimizes a goodness-of-fit criterion fh,v,ϕ(t)

that is specified by a score function ϕ(t) as defined above if and only if x belongs to the
Hare-quota method with residual fit by greatest remainders,

fh,v,ϕ(t)(x) ≤ fh,v,ϕ(t)(y) for all y ∈ ��(h) ⇐⇒ x ∈ HaQgrR(h; v).
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Proof. In the objective function the terms ϕ(xj − wjh) telescope via the slope function into

ϕ(−wjh) +
∑xj

n=1
ψ(n − wjh), whence fh,v,ϕ(t)(x) =

∑
j≤�

(
ϕ(−wjh) +

∑xj

n=1
ψ(n − wjh)

)
.

The function to be minimized is seen to be

F (x) :=
∑
j≤�

xj∑
n=1

ψ(n− wjh).

The proof of the direct implication is in two steps. The first step delivers bounds for the entries

of a seat vector x ∈ ��(h) that is assumed to be minimum,

xj ≥ �wjh� for all j ≤ �, (1)

xj ≤ �wjh�+ 1 for all j ≤ �. (2)

We demonstrate (1), by contraposition. Assuming that there is a component k with xk < �wkh�
we show that x is non-minimum. It is impossible that all other components i �= k fulfill xi ≤
�wih� as this would lead to the contradiction h = x+ < �wkh�+

∑
i�=k

�wih� ≤ h. Hence some

component i �= k satisfies xi > �wih�. Transferring a seat from i to k we generate a rival seat

vector y with entries yi := xi − 1, yk := xk + 1, and yj := xj for all j �= i, k. We get

F (x)− F (y) = ψ(xi − wih)− ψ(xk + 1− wkh). (3)

But xk < �wkh� entails xk + 1 − wkh ≤ 0, while xi > �wih� implies xi − wih > 0. The

monotonicity behavior of ψ yields ψ(xk + 1 − wkh) ≤ ψ(0) < ψ(xi − wih). It follows that

F (x) > F (y), whence x is non-minimum. A similar reasoning demonstrates (2).

The second step verifies the Max-Min Inequality 5.5 that belongs to HaQgrR. Let x continue to

be minimum. We fix an arbitrary component i with xi ≥ 1, and again generate a rival vector y

by transferring a seat from i to an arbitrary component k �= i. Minimality implies F (x) ≤ F (y).

We claim that the following implication holds true:

F (x) ≤ F (y) =⇒ xi − wih ≤ xk + 1− wkh. (4)

The implication is shown by contraposition. Assuming that xi−wih > xk+1−wkh, the bounds

(1) and (2) imply 0 ≤ �wkh� + 1 − wkh ≤ xk + 1 − wkh < xi − wih ≤ �wih� + 1 − wih ≤ 1.

Thus the arguments lie in the interval [0; 1] where the slope function is strictly increasing,

ψ(xk + 1 − wkh) < ψ(xi − wih). From (3) we get F (x) > F (y), thus proving (4). Now (4)

provides the inequality xi − wih ≤ xk + 1− wkh, to begin with for all i with xi ≥ 1 and for all

k �= i. Clearly the inequality holds true also for k = i, and for those components i that have

xi = 0. This leads to the Max-Min Inequality 5.5, and establishes x ∈ HaQgrR(h; v).

The proof of the converse implication runs along the pattern of the previous proofs. Consider

a seat vector x ∈ HaQgrR(h; v), a competitor y ∈ ��(h), y �= x, and the subscripts where the

two vectors differ, I := {i ≤ � | yi < xi} and K := {k ≤ � | yk > xk}. We get
∑

i∈I
(xi − yi) =∑

k∈K
(yk − xk) =: S > 0. Monotonicity of the slope function ψ and the Max-Min Inequality

imply δ := maxi∈I ψ(xi − wih)−mink∈K ψ(xk + 1− wkh) ≤ 0. We obtain

F (x)− F (y) =

(∑
i∈I

xi∑
n=yi+1

ψ(n− wih)

)
−
(∑

k∈K

yk∑
n=xk+1

ψ(n− wkh)

)

≤
(∑

i∈I

(xi − yi)ψ(xi − wih)

)
−
(∑

k∈K

(yk − xk)ψ(xk + 1− wkh)

)
≤ δS ≤ 0.

Thus minimality of x is established, F (x) ≤ F (y).
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Despite the theorem’s ostensible generality of admitting a wide range of score

functions ϕ(t), the results are impaired by a lack of sensitivity. For the toy example of
the previous sections we get

(1) fh,v,ϕ(t)(45− 2, 35 + 2, 20 + 0) = ϕ(−2) + ϕ(2) + ϕ(0),

(2) fh,v,ϕ(t)(45− 2, 35 + 1, 20 + 1) = ϕ(−2) + ϕ(1) + ϕ(1),

(3) fh,v,ϕ(t)(45− 2, 35 + 0, 20 + 2) = ϕ(−2) + ϕ(0) + ϕ(2).

Whatever the score function ϕ(t), the criterion function fh,v,ϕ(t) fails to sense whether
the two extra seats benefit the middle party or the weakest party. A conventional score

function is the modulus function, ϕ(t) = |t|. It induces the goodness-of-fit criterion

f|t|,h,v(x) =
∑
j≤�

∣∣∣∣xj − vj
v+

h

∣∣∣∣ .
This criterion assigns the common weight 4 to all three cases of the toy example and
thus fails to detect any distinctions whatsoever. Moreover, the lack of discriminating
power jumps to the eye when in Sections 10.2–10.4 the square is replaced by the

modulus, ∑
j≤�

vj

∣∣∣∣ xj/h

vj/v+
− 1

∣∣∣∣ =∑
j≤�

xj

∣∣∣∣ vjxj
− v+

h

∣∣∣∣ = v+
h

∑
j≤�

∣∣∣∣xj − vj
v+

h

∣∣∣∣ .
No matter whether voters, or Members of Parliament, or parties constitute the refer-

ence set where to measure inequality: the score is the same (up to the votes-per-seats
constant). Gauss had good reasons why he discarded the modulus as less informative,
and praised the high-level sensitivity of squared-error criteria.

10.5. CURTAILMENT OF OVERREPRESENTATION: DivDwn

Voters with a success value larger than unity point to some kind of overrepresentation
of their party. The extreme overshoot amounts to

fh,v(x) := max
j≤�

xj/h

vj/v+
.

Minimization of this goodness-of-fit criterion curtails worst-case overrepresentation.

Theorem. If a seat vector x ∈ ��(h) belongs to the divisor method with downward

rounding then x minimizes the above goodness-of-fit criterion,

x ∈ DivDwn(h; v) =⇒ fh,v(x) ≤ fh,v(y) for all y ∈ ��(h).

Proof. Given a seat vector x ∈ DivDwn(h; v) and a competing vector y ∈ ��(h), y �= x, we set

K := {k ≤ � | xk + 1 ≤ yk}. The following inequality string establishes the assertion:

fh,v(x) = max
j≤�

xj

vj

(1)

≤ min
j≤�

xj + 1

vj

(2)

≤ min
k∈K

xk + 1

vk

(3)

≤ min
k∈K

yk

vk

(4)

≤ max
k∈K

yk

vk

(5)

≤ max
j≤�

yj

vj
= fh,v(y).

Inequality (1) is the Max-Min Inequality for DivDwn, (2) restricts the minimum to the subset K,

(3) invokes the definition of K, (4) switches from a minimum to the maximum, and (5) extends

the maximum to the superset of all � parties.
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Generally the converse implication may fail to hold true. To see this consider the

apportionment of four seats among three parties that are equally strong. The divisor

method with downward rounding yields the tied solution (2−, 1+, 1+), that is, it offers

the three equally justified seat vectors (2, 1, 1), (1, 2, 1), and (1, 1, 2). All of them attain

the objective criterion’s minimum, 3/2. However, the seat vector z = (2, 2, 0) ∈ �3(4)

does so, too, even though it does not belong to DivDwn. In fact, z is unbalanced and

belongs to no apportionment method at all.

To appreciate the workings of the criterion we evaluate the criterion function for

the toy example of the previous section:

(1) fh,v(45− 2, 35 + 2, 20 + 0) = max{0.956, 1.057, 1} = 1.057,

(2) fh,v(45− 2, 35 + 1, 20 + 1) = max{0.956, 1.029, 1.05} = 1.05,

(3) fh,v(45− 2, 35 + 0, 20 + 2) = max{0.956, 1, 1.1} = 1.1.

The criterion tends to spotlight weaker parties more than stronger parties. The reason

is that quotients of weaker parties have smaller denominators vj/v+ and hence respond

to changes in the numerator with bigger leaps than do quotients of stronger parties.

In the example the stepsize of the strongest party is 1/45 = 0.02, of the middle party,

1/35 = 0.03, of the weakest party, 1/20 = 0.05. For this reason the minimization of

the criterion is more likely to push the quotients of weaker parties down to unity or

even below. The consequence is that the divisor method with downward rounding is

biased in favor of stronger parties at the expense of weaker parties (Chapter 7). For

the same reason the method is more preferential towards stronger party groups than

towards weaker party groups in terms of majorization (Chapter 8).

10.6. ALLEVIATION OF UNDERREPRESENTATION: DivUpw

Voters with a success value smaller than unity are subject to underrepresentation. The

lowest success value is

fh,v(x) := min
j≤�

xj/h

vj/v+
.

Maximization of this goodness-of-fit criterion alleviates worst-case underrepresenta-

tion. The motivation is akin to the strain of welfare economics that aims at maximizing

the income of the poorest person in order to reduce the unequal distribution of wealth.

Theorem. If a seat vector x ∈ ��(h) belongs to the divisor method with upward

rounding then x maximizes the above goodness-of-fit criterion,

x ∈ DivUpw(h; v) =⇒ fh,v(x) ≥ fh,v(y) for all y ∈ ��(h).

Proof. The proof runs parallel to the proof of Theorem 10.5.

The converse implication does not hold true in general; an example is contained

in Pukelsheim (1993 [312]).
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The above criterion, of maximizing the smallest success value, is the counterpart

of the goal in Section 10.5, of minimizing the largest success value. The success values

for weaker parties are now moved upwards towards unity or even above. The current

criterion advantages weaker parties more than stronger parties. Therefore, the divisor

method with upward rounding is biased in favor of weaker parties at the expense of

stronger parties (Chapter 7). In terms of majorization the method is more preferential

towards groups of weaker parties than towards groups of stronger parties (Chapter 8).

The preceding sections exhibit, and delimit, the scope of an optimization ap-

proach to apportionment problems. The plethora of goodness-of-fit criteria divulge an

impression of arbitrariness. All are attractive, none is mandatory. Moreover , the set

of optimality candidates ��(h) is intimidatingly large, perhaps too large. It contains

proposals markedly impractical for the apportionment problem, such as allotting all

seats to one party and none to the others, or such “optimal” solutions that upon second

glance turn out to be unacceptable for lack of balancedness (Section 10.5). Occasion-

ally optimality fully characterizes a method (Theorems 10.2–10.4). On other occasions

a method implies optimality but not vice versa (Theorems 10.5–10.6).

Despite these reservations the optimization approach involves arguments inviting

further scrutiny. In the apportionment problem the value in dispute is one seat at

the least, whether it stays where it is or whether it is transferred to another party.

It takes two to quarrel. The idea suggests a path of improvement by way of pairwise

comparisons: Does the transfer of a seat promise an improvement? If so, carry it out,

and investigate further transfers.

10.7. OPTIMIZATION OF STABILITY CRITERIA

The concept of pairwise comparisons is exemplified with the 2009 Bundestag election

data (Table 2.1). Can the seat apportionment be improved by swapping a seat from one

party to another? Or does the apportionment prove to be stable? The answer depends

on the precise meaning of the notion of “stability”. From the voters’ viewpoint (and

from the viewpoint of the German Federal Constitutional Court, see Section 2.7) the

stability criterion ought to be based on the voters’ success values. The success value

of a voter of the weakest party, CSU, is found to be

42/598

2 830 238/40 764 288
=

0.070234

0.069429
= 101.2 percent.

The success values of the voters of the five stronger parties are, 99.7 percent for CDU

voters, 99.6 for SPD voters, 100.4 for FDP voters, 100.5 for LINKE voters, and 99.8

for GRÜNE voters.

In this election the CSU voters are most successful. Their 42 CSU-seats secure

a 101.2 percent success. The SPD voters are least successful, their 146 seats mean a

success of only 99.6 percent. The success-value stability disparity between a CSU voter

and an SPD voter amounts to

gh,v;CSU,SPD(42, 146) = |101.16− 99.62| = 1.54 percentage points.

The disparity is the difference in absolute terms, of the individual success values of a

CSU voter and an SPD voter.
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It is tempting to try and decrease the disparity by swapping a seat from the

overrepresented CSU to the underrepresented SPD. However, the test is negative,

gh,v;CSU,SPD(41, 147) = |98.75− 100.30| = 1.55 percentage points.

The seat transfer makes the success-value disparity grow, not shrink. In fact, there

are
(
6
2

)
= 15 pairings that can be drawn from the six parties. Whichever seat transfer

is examined the criterion function is seen to increase and deteriorate, rather than to

decrease and improve. In this sense the apportionment in Table 2.1 is seen to be stable.

The general definition of stability is as follows.

Definition. A seat vector x ∈ ��(h) stabilizes the criterion functions gh,v,i,k(xi,

xk) when for all parties i, k ≤ � with xi ≥ 1 and i �= k it fulfills

gh,v,i,k(xi, xk) ≤ gh,v,i,k(xi − 1, xk + 1).

The remainder of the chapter shows that success-value stability is a concept dis-

tinguishing the divisor method with standard rounding (Section 10.8). Of course, other

stability criteria are conceivable. Representative-weight stability characterizes the di-

visor method with harmonic rounding (Section 10.9). Some stability criteria turn out

to be unworkable, and all relative stability criteria go along with the divisor method

with geometric rounding (Section 10.10).

10.8. SUCCESS-VALUE STABILITY: DivStd

For a general seat vector x ∈ ��(h), the success-value criterion of a voter of party i

and a voter of party k is given by

gh,v,i,k(xi, xk) :=

∣∣∣∣ xi/h

vi/v+
− xk/h

vk/v+

∣∣∣∣ .
A stabilizing seat vector x inhibits any desire to allocate one of its seat differently

because any such transfer impairs the criterion function.

Theorem. A seat vector x ∈ ��(h) stabilizes the success-value criterion if and

only if x belongs to the divisor method with standard rounding,

gh,v,i,k(xi, xk) ≤ gh,v,i,k(xi − 1, xk + 1) for all i, k ≤ � ⇐⇒ x ∈ DivStd(h; v).

Proof. The stability definition refers to parties i, k ≤ � with xi ≥ 1 and i �= k, only. The

theorem also admits the cases xi = 0 and i = k. No harm is done though. The case xi = 0 implies

gh,v,i,k(0, xk) = (xk/h)/(vk/v+) < (1/h)/(vi/v+)+
(
(xk+1)/h

)
/(vk/v+) = gh,v,i,k(0−1, xk+

1). The case i = k evidently yields gh,v,i,i(xi, xi) = 0 < (2/h)/(vi/v+) = gh,v,i,i(xi − 1, xi +1).

It is notationally convenient to work with the vote shares wj = vj/v+. For the direct implication

assume x to be stable. Any two parties i and k fulfill either xi/wi ≤ xk/wk; in this case the

inequality (xi − 1/2)/wi ≤ (xk + 1/2)/wk is obvious. Or they have xi/wi > xk/wk. In this

case the assumption forces gh,v,i,k(xi, xk) = xi/(wih) − xk/(wkh) ≤ gh,v,i,k(xi − 1, xk + 1) =

(xk +1)/(wih)− (xi −1)/(wkh). Thus the inequality (xi −1/2)/wi ≤ (xk +1/2)/wk holds true,

in any case. Now the appropriate Max-Min Inequality establishes x ∈ DivStd(h; v).

For the converse implication we assume x ∈ DivStd(h; v). Any two parties i and k with xi/wi ≤
xk/wk fulfill gh,v,i,k(xi, xk) = xk/(wkh) − xi/(wih) ≤ (xk + 1)/(wkh) − (xi − 1)/(wih) =

gh,v,i,k(xi−1, xk+1). The complementary case xi/wi > xk/wk refers to the Max-Min Inequality

to extract (xi−1/2)/wi ≤ (xk+1/2)/wk, that is, xi/wi−xk/wk ≤ (xk+1)/wk−(xi−1)/wi. We

get gh,v,i,k(xi, xk) = xi/(wih)−xk/(wkh) ≤ gh,v,i,k(xi−1, xk+1). This establishes stability.
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Thus the divisor method with standard rounding is the unique method that is

success-value stable. This provides yet another justification of the method, beyond the

optimization of the success-value oriented goodness-of-fit criterion in Section 10.2.

10.9. REPRESENTATIVE-WEIGHT STABILITY: DivHar

Stability from the parliamentary viewpoint justifies the divisor method with harmonic

rounding, not the divisor method with geometric rounding (Section 10.3). For a general

seat vector x ∈ ��(h) the representative-weight criterion for a representative of party i

and a representative of party k is given by

gh,v,i,k(xi, xk) :=

∣∣∣∣ vixi
− vk

xk

∣∣∣∣ .
Representative-weight stability conforms to electoral equality from the viewpoint of

the Members of Parliament.

Theorem. A seat vector x ∈ ��(h) stabilizes the representative-weight criterion

if and only if x belongs to the divisor method with harmonic rounding,

gh,v,i,k(xi, xk) ≤ gh,v,i,k(xi − 1, xk + 1) for all i, k ≤ � ⇐⇒ x ∈ DivHar(h; v).

Proof. The harmonic signposts are s̃−1(0) = s̃−1(1) = 0, and s̃−1(n) = 2
(
(n− 1)−1 +n−1

)−1

for n ≥ 2, see Section 3.12.

For the proof of the direct implication we assume x to be stable. Any two parties i and k satisfy

either xi/vi ≤ xk/vk; this case yields s̃−1(xi)/vi ≤ s̃−1(xk +1)/vk. Or we have xi/vi > xk/vk;

in this case we obtain gh,v,i,k(xi, xk) = vk/xk − vi/xi ≤ gh,v,i,k(xi − 1, xk + 1) = vi/(xi − 1)−
vk/(xk + 1). In any case we get vk/s̃−1(xk + 1) ≤ vi/s̃−1(xi). Now the appropriate Max-Min

Inequality establishes x ∈ DivHar(h; v).

For the proof of the converse implication we assume x ∈ DivStd(h; v). Any two parties i and k

with xi/vi ≤ xk/vk fulfill gh,v,i,k(xi, xk) = vi/xi − vk/xk ≤ vi/(xi − 1) − vk/(xk + 1) =

gh,v,i,k(xi − 1, xk +1). The complementary case xi/vi > xk/vk uses the Max-Min Inequality to

establish stability.

In summary, parliament-oriented equality is such that distinct specifications justify

distinct methods. Optimization of the goodness-of-fit criterion in Section 10.3 advances

the divisor method with geometric rounding. Representative-weight stability fosters

the divisor method with harmonic rounding. It seems only natural that different

questions have different answers. The rare occurrence of identical answers is what is

truly remarkable. Voter-oriented equality points to one and the same procedure, the

divisor method with standard rounding (Sections 10.2 and 10.8).
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10.10. UNWORKABLE STABILITY CRITERIA

Other stability criteria for pairwise comparisons are readily invented. However, some
turn out to be unworkable. They lead into a never ending circle of improvements. For
instance the constitutional courts of the German states of Bavaria (1961) and Lower

Saxony (1978) propose in passing that electoral equality requires the seat numbers of
two parties to be in the same ratio as their vote counts. The courts’ proposal sounds
persuasive, but fails practically. Their wording points to the disparity criterion

gh,v,i,k(xi, xk) :=

∣∣∣∣ xi

xk
− vi

vk

∣∣∣∣ .
Here is an example of a vicious circle, the apportionment of 16 seats among three
parties proportionate to the vote counts v = (729, 534, 337). With votes-per-seats

ratio 1600/16 = 100, the ideal shares of seats are v/100 = (7.29, 5.34, 3.37). The
ideal shares point to three seat vectors of interest, x = (8, 5, 3), y = (7, 6, 3), and
z = (7, 5, 4). The search for a stable vector loops endlessly from x to y to z, to x to y

to z, ad infinitum:

gh,v;1,2(x1, x2) =

∣∣∣∣85 − 729

534

∣∣∣∣ = 0.24 > 0.20 =

∣∣∣∣76 − 729

534

∣∣∣∣ = gh,v;1,2(y1, y2),

gh,v;2,3(y2, y3) =

∣∣∣∣63 − 534

337

∣∣∣∣ = 0.42 > 0.34 =

∣∣∣∣54 − 534

337

∣∣∣∣ = gh,v;2,3(z2, z3),

gh,v;3,1(z3, z1) =

∣∣∣∣47 − 337

729

∣∣∣∣ = 0.11 > 0.09 =

∣∣∣∣38 − 337

729

∣∣∣∣ = gh,v;3,1(x3, x1).

None of the solutions is stable, but each has its merits. The vector x belongs to
the divisor methods with standard rounding, y to the divisor method with geometric

rounding, and z to the divisor method with harmonic rounding.
The example is taken from Huntington (1928). The paper champions comparison

tests, that is, pairwise comparisons by means of a stability criterion. The goal is to

improve a given seat vector, or to identify it as a stable solution. A plethora of thirty-
two criteria is presented. Twelve of them turn out to be unworkable, in the sense that
they may entail endless circles of improvement. The other twenty stability criteria are

shown to lead to five procedures, namely the five traditional divisor methods listed in
Section 4.4. Huntington classifies these findings as a confusion of miscellaneous results,
and dismisses the twenty workable stability criteria as undesirable.

Huntington disposes of the thirty-two stability criteria for the good reason that
he has a better criterion in the offering. His remedy is to divide a stability criterion
by the smaller of its terms, and thus to create a relative stability criterion. In this way

every (absolute) stability criterion gets matched with a relative companion variant. For
instance, the relative success-value stability criterion and the relative representative-
weight stability criterion are given by∣∣∣∣∣ xi/h

vi/v+
− xk/h

vk/v+

∣∣∣∣∣
min

{
xi/h

vi/v+
,
xk/h

vk/v+

} ,

∣∣∣∣∣ vixi

− vk

xk

∣∣∣∣∣
min

{
vi

xi

,
vk

xk

} .



10.11. IDEAL-SHARE STABILITY: DivStd 139

Sparing his readers the sight of bulky formulas throughout his exposition, Huntington

assures them of his belief that in the present problem it is clearly the relative or per-

centage difference, rather than the mere absolute difference, which is significant. The

author’s persuasive technical result says that the relative variants of the thirty-two

stability measures justify one and the same procedure, the divisor method with geo-

metric rounding. This is Huntington’s desirable apportionment method, successfully

promoted under the winning label method of equal proportions.

Unfortunately we fear that any rescaling blemishes the relative stability criteria

to become almost surely unconstitutional. No constitution includes provisions that

computational unambiguity is sufficient to equip a vote for party i with two (or more)

distinct weights, some weight when it is compared to a vote for a second party j, and

another weight when it is compared to a vote for a third party k. Exaggerating Hun-

tington’s classification, twelve stability criteria are unworkable, twenty are undesirable,

and thirty-two are unconstitutional. The crux is that any claim to exclusiveness is

futile. Electoral systems are complex systems. They have plenty of facets, and admit

a great many criteria highlighting one aspect or another.

10.11. IDEAL-SHARE STABILITY: DivStd

The stability concept extends to the parties’ ideal shares of seats. Consider a situation

where party i’s seat number xi exceeds the ideal share of seats by more than half a

seat, xi > wih + 1/2, and party k’s seat number xk falls short by more than half a

seat, xk < wkh−1/2. The transfer of a seat from party i to party k generates a vector

y, via yi = xi − 1, yk = xk + 1, and yj = xj for all j �= i, k, such that parties i and k

both move closer to their ideal shares of seats while the other parties maintain their

status. For a seat vector to be enduring it ought to be immune against this kind of

betterment.

Generally, given a house size h and a vote share vector (w1, . . . , w�), a seat vec-

tor x ∈ ��(h) is said to be ideal-share stable when(
xj ≤ wjh+

1

2
for all j ≤ �

)
or

(
xj ≥ wjh− 1

2
for all j ≤ �

)
.

A seat vector x fails to be ideal-share stable if and only if some parties i and k satisfy

xi > wih+1/2 and xk < wkh−1/2, as discussed in the previous paragraph. Ideal-share

stability is a trait of the divisor method with standard rounding.

Theorem. The divisor method with standard rounding is the only divisor method

for which all solution vectors are ideal-share stable.

Proof. Let x ∈ DivStd(h;w) be a solution vector of the divisor method with standard rounding.

With an appropriate multiplier μ the Max-Min Inequality yields (xj − 1/2)/wj ≤ μ ≤ (xj +

1/2)/wj , that is, xj ≤ wjμ+ 1/2 and xj ≥ wjμ− 1/2, for all j ≤ �. The case μ ≤ h entails the

first stability inequality, the case h ≤ μ the second. This proves ideal-share stability of DivStd.

Let A �= DivStd be another divisor method that is ideal-share stable. Since divisor methods are

coherent (Theorem 9.2) it suffices to consider two-party systems. For some house size h and some
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vote share vector w = (w1, w2) we get A(h;w) �= DivStd(h;w). Hence we may select a seat vector

x ∈ A(h;w) not belonging to DivStd, x �∈ DivStd(h;w). The negation of the Max-Min Inequality

for DivStd is (x1+1/2)/w1 < (x2−1/2)/w2. This yields x1 = w1(x1+1/2)+w2(x1+1/2)−1/2 <

w1(x1+1/2)+w1(x2−1/2)−1/2 = w1h−1/2 and, similarly, x2 > w2h+1/2. Hence x ∈ A(h;w)

is not ideal-share stable.

This book calls the seat fractions wjh—to which a party with vote share wj were
entitled if seats were divisible and fractional seats could be realized—the “ideal share
of seats” of party j. Other authors speak of the “exact quota of seats” of party j. We

close the chapter by contemplating the merits of nomenclature.

10.12. IDEAL SHARE OF SEATS VERSUS EXACT QUOTA OF SEATS

In a parliament of size h a party with vote share wj has associated with it the ideal
share of seats wjh. This section philosophizes on the meaning of the terminology

chosen. The ideal share of seats is the fractional number of seats a party could claim
if fractional seats were available. But seats are indivisible. The seat fractions wjh
become practical only when rounded to integral values. The integers framing wjh are

its floor, �wjh�, and its ceiling, �wjh�.
The party’s seat number xj is said to stay within the ideal frame when it coincides

with either one of the neighboring whole numbers of the ideal share,

xj ∈
{
�wjh�, �wjh�

}
.

This restricts xj to be one of two consecutive integers. The integers collapse to a

singleton in the rare instances when the ideal share happens to be a whole number.
When xj fails to stay within the ideal frame, it is said to violate the ideal frame.

The ideal share of seats is often termed the exact quota of seats. Our substitutions

of “ideal” for “exact”, and of “share” for “quota” are intentional. The attribute “exact”
subsists as one of the organizing principles of apportionment methods (Section 4.2).
If for all parties the ideal shares of seats are whole numbers, xj = wjh ∈ � for all

j ≤ �, then they are the only acceptable solution to the apportionment problem and
the attribute “exact” is to the point. Otherwise the seat fractions wjh are idealized
quantities that are continuous and in no way exact.

The term “quota”, too, has its place in electoral parlance. There is the Hare-quota
and the Droop-quota and a whole lot of quota variants (Section 5.8). They signify a
quota of votes, a bunch of votes or voters needed to justify a seat. A typical phrase

would read like The candidate was just 99 votes short of the quota, indicating a decreed,
non-negotiable number of 99 votes lacking to meet the quota. The same understanding
underlies the usage of a fishing quota, sales quota, production quota, women’s quota,

and the like. Once decreed, somebody is held responsible when the quota is missed.
Applying the term “quota” to seats imposes a non-negotiable entitlement. Non-

adherence to a “quota of seats” would create a tenuous position. In contrast, the term

share of seats offers more leeway. Reference to a “share” indicates the size of the seat
allotment only broadly. An apportionment method is called for to turn the broad
meaning of seat shares into a precise whole number. Anybody who owns some shares

in a company is in a similar situation. The shares disclose their precise value in euros
and cents only when sold, traded, or subjected to some other financial transaction.
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Party Votes Ideal share Divisor method with standard rounding Ideal share
of h = 95 for house sizes from 95 to 104 of h = 104

A 5 023 47.7185 50 50 50 50 50 50 50 50 50 50 52.2392
B 557 5.2915 5 6• 6 6 6 6 6 6 6 6 5.7928
C 556 5.2820 5 5 6• 6 6 6 6 6 6 6 5.7824
D 555 5.2725 5 5 5 6• 6 6 6 6 6 6 5.7720
E 554 5.2630 5 5 5 5 6• 6 6 6 6 6 5.7616
F 553 5.2535 5 5 5 5 5 6• 6 6 6 6 5.7512
G 552 5.2440 5 5 5 5 5 5 6• 6 6 6 5.7408
H 551 5.2345 5 5 5 5 5 5 5 6• 6 6 5.7304
I 550 5.2250 5 5 5 5 5 5 5 5 6• 6 5.7200
K 549 5.2155 5 5 5 5 5 5 5 5 5 6• 5.7096

Sum 10 000 95.0000 95 96 97 98 99 100 101 102 103 104 104.0000

TABLE 10.1 Violations of the ideal frame. Party A violates its ideal frame of seats, by +2 seats for

house size 95 and by −2 seats for house size 104. The intermediate seats go to the equally weak nine

parties B–K to promptly raise their level by one seat.

Violation of the ideal shares of seats loses its offensiveness when looking at concrete

numbers. Typical examples juxtapose a single strong party with many weak parties.

The contrived data in Table 10.1 use the divisor method with standard rounding. For

house size 95 the strongest party A may claim an ideal share of 47.7 seat fractions but

is awarded an excess of two seats, 50. For house size 104 the party gets 50 seats, two

seats below its ideal share of 52.2 seat fractions. Violation of the ideal frame of the

strongest party is counterbalanced by fairly looking after the nine mini-parties B–K

to raise them promptly from five seats to six, one after the other. The example in

Table 10.1 is an artifact, as are all other examples that can be found in the literature.

The divisor method with standard rounding violates the ideal frames of seats only very

rarely. None of the empirical data sets in this book lends itself as an illustration that

the divisor method with standard rounding violates the ideal frame of seats.

In conclusion the term “exact quota” is too narrow, and promises a rigorousness

that fails to materialize in the light of real data. The notions of “ideal share of seats”

and “ideal frame of seats” are wider, and more appropriate to serve practical needs.

Staying within the ideal frame of seats does not guarantee flawless apportionments.

The Hare-quota method with residual fit by greatest remainders always stays within

the ideal frames. Yet it suffers from limitations, as outlined in Section 9.7.

Optimization of goodness-of-fit or stability criteria originate from a view towards

the whole system. A complementary view investigates some of the particular variables

separately and thus highlights isolated system properties. This is the topic of the next

chapter.
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Tracing Peculiarities:
Vote Thresholds and
Majority Clauses

Various sorts of vote thresholds are studied in detail. The minimum vote share and the
maximum vote share that are compatible with a given number of seats are determined.
Particular cases are the threshold of representation, and the threshold of exclusion.
Amendments are presented ensuring that a party with a straight majority of votes,
however narrow, is guaranteed a straight majority of seats. A specific amendment, the
majority-minority partition clause, applies to a majority of votes of a single party, as
well as to a majority of aggregated votes of a coalition of parties. The issue is illustrated
with an example from the Bundestag-Bundesrat Conference Committee in Germany.

11.1. VOTE SHARE VARIATION FOR A GIVEN SEAT NUMBER

The apportionment task determines a seat vector x = (x1, . . . , x�) suitable for the vote

counts vj or vote shares wj = vj/v+ of the parties j ≤ �. A converse task is to find all

vote shares wj that possibly lead to a given seat number xj . If the vote shares are too

small, they entail fewer than xj seats. If too large, they produce too many seats. Hence

the feasible vote shares form an interval [a(xj); b(xj)], extending from the minimum

vote share given xj seats, a(xj), to the maximum vote share given xj seats, b(xj).

Two indices are of particular interest. The minimum vote share given one seat is

the lowest vote share such that a party may win a seat and obtain parliamentary repre-

sentation. Therefore, a(1) is called the threshold of representation. The maximum vote

share given no seat is the highest vote share such that a party is excluded from par-

liament because of too few votes. Hence b(0) is termed threshold of exclusion. Clearly

the threshold of representation lies below the threshold of exclusion, a(1) ≤ b(0).

Generally the interval [a(xj); b(xj)] captures the vote shares wj that potentially

lead to precisely xj seats. It is called the support interval given xj seats. (In the

stochastic jargon of Theorem 7.3 it is the support interval of the conditional distribution

of the random vote shares Wj given the event {Xj = xj}.) First we derive upper and

lower bounds for the seat excesses xj −wjh that later, in Theorem 11.5, are converted

into formulas for a(xj) and b(xj).

DOI 10.1007/978-3-319-03856-8_11, © Springer International Publishing Switzerland 2014
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11.2. SEAT EXCESS BOUNDS: GENERAL DIVISOR METHODS

Lemma. Let A be a divisor method with associated signpost sequence s(0), s(1) etc.

For every seat vector x ∈ A(h;w) the seat excess of a party j ≤ � satisfies

− (1− wj)
(
s(xj + 1)− xj

)
− wj

∑
i �=j

(
xi − s(xi)

)
≤ xj − wjh, (1)

xj − wjh ≤ (1− wj)
(
xj − s(xj)

)
+ wj

∑
i �=j

(
s(xi + 1)− xi

)
. (2)

The lower bound (1) holds with equality if and only if w = (v1, . . . , v�)/v+ where vj :=

s(xj + 1), and vi := s(xi) for i �= j. The upper bound (2) holds with equality if and

only if w = (v1, . . . , v�)/v+ where vj := s(xj), and vi := s(xi + 1) for i �= j.

Proof. The quantification “for every seat vector x ∈ A(h;w)” is a lazy version meaning, in full

length, that the statement holds true for every house size h, for every number � of parties, for

every vote share vector w ∈ (0; 1)�, w+ = 1, and, finally, for every seat vector x ∈ A(h;w).

The divisor method A results in seat numbers xi satisfying s(xi) ≤ μwi ≤ s(xi + 1), where μ

is a multiplier such that the house size is met, x+ = h. With residuals ui := μwi − xi ∈
[s(xi)− xi; s(xi + 1)− xi], the seat numbers turn into xi = μwi − ui, for all i ≤ �. Summation

gives h = μ− u+. Subtracting from xj = μwj − uj the identity wjh = wjμ− wju+ we get

xj − wjh = −uj + wju+ = −(1− wj)uj + wj

∑
i �=j

ui.

Because of the opposing signs the residuals uj and ui are estimated in opposite directions to

obtain the bounds (1) and (2).

Equality holds in (1) if and only if μwj −xj = uj = s(xj +1)−xj and μwi−xi = ui = s(xi)−xi

for all i �= j. This means wj = s(xj + 1)/μ, and wi = s(xi)/μ for i �= j, as asserted. Equality

in (2) follows similarly. Note that the equality characterization admits vanishing weights, wi = 0,

beyond the convention of assuming all weights to be positive. Vanishing weights emerge if some

party gets no seats, xi = 0, or if the signpost sequence is impervious, s(1) = 0.

The reference to a general signpost sequence makes the result look rather abstract.

Its message becomes concrete when specialized. For example in a two-party system

with parties i and j the inequalities xj−s(xj) ≤ 1 and s(xi+1)−xi ≤ 1 are such that

one of them is strict, because the left-right disjunction rules out that both hold with

equality (Section 3.10.c). Thus the above bounds (1) and (2) entail −1 < xj−wjh < 1.

The seat numbers must be of the form

xj = �wjh� or xj = �wjh�.

This proves that, in two-party systems, all divisor methods stay within the ideal frames

of seats (Section 10.12). More can be said when the divisor method is stationary.
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11.3. SEAT EXCESS BOUNDS: STATIONARY DIVISOR METHODS

Theorem. Let DivStar be a stationary divisor method with split r ∈ [0; 1]. For every
seat vector x ∈ DivStar(h;w) the seat excess of a party j ≤ � satisfies

−(1− wj)r − wj(1− r)M ≤ xj − wjh ≤ (1− wj)(1− r)I + wjr(�− 1),

where I := 1 when xj ≥ 1 and I := 0 when xj = 0, and where M := min{�−1, h−xj}.

Proof. The differences s(xi + 1) − xi = r are all constant. The differences xi − s(xi) = 1 − r

are also constant as long as xi ≥ 1. The initial value xi = 0 has 0− s(0) = 0. The distinction is

captured by the indicator function I, thus establishing the upper bound.

The lower bound involves the sum S :=
∑

i�=j

(
xi − s(xi)

)
that remains after attending to

party j. If sufficiently many seats are left, h− xj ≥ �− 1, then all competing parties can obtain

representation, S = (1 − r)(� − 1). Otherwise at most h − xj parties may be allocated a seat

each, S = (1− r)(h− xj). The distinction combines into S = (1− r)M .

From a practical viewpoint the case h− xj < �− 1 may be neglected. It requires
an unrealistically small house size h (Section 7.9). Or it awards party j close to all
seats; this is equally unrealistic. The realistic case h− xj ≥ �− 1 has M = �− 1.

For the divisor method with standard rounding (r = 1/2) the theorem implies

−1

2
− �− 2

2
wj ≤ xj − wjh ≤ 1

2
+

�− 2

2
wj .

In three-party systems we have �−2 = 1. In view of wj < 1 we get −1 < xj−wjh < 1.
Thus the divisor method with standard rounding stays within the ideal frames of seats

not just for two-party systems, but also for three-party systems. However, no divisor
method stays within the ideal frames for all system sizes �.

11.4. DIVISOR METHODS AND IDEAL FRAMES

Theorem.

a. Every divisor method A is such that every seat vector x ∈ A(h;w) has either all

its components staying above the lower ideal frame, xj ≥ �wjh� for all j ≤ �, or
all its components staying below the upper ideal frame, xj ≤ �wjh� for all j ≤ �.

b. The divisor method with downward rounding is the only divisor method that always
stays above the lower ideal frame, that is, every seat vector x ∈ DivDwn(h;w) and

all parties j ≤ � satisfy xj ≥ �wjh�.
c. The divisor method with upward rounding is the only divisor method that always

stays below the upper ideal frame, that is, every seat vector x ∈ DivUpw(h;w) and
all parties j ≤ � satisfy xj ≤ �wjh�.

d. No divisor method A stays within the ideal frame at all times, that is, there exist

a house size h, a system size �, a vote share vector w ∈ (0; 1)�, w+ = 1, a seat
vector x ∈ A(h;w), and a party j ≤ � that satisfy xj < �wjh� or xj > �wjh�.

Proof. a. Let the seat vector x ∈ A(h;w) belong to a divisor method A with signpost sequence

s(n). We assume that some parties i and k satisfy xi < �wih� and xk > �wkh�. Let μ be a

multiplier for x. From xi ∈ [[μwi]] we get μwi ≤ s(xi + 1) ≤ xi + 1 ≤ �wih� ≤ wih, and μ ≤ h.

Similarly xk ∈ [[μwk]] gives μwk ≥ s(xk) ≥ xk − 1 ≥ �wkh� ≥ wkh, and μ ≥ h. Since the



11.5. VOTE SHARES FOR GIVEN SEAT NUMBERS: STATIONARY DIVISOR METHODS 145

multiplier μ = h is unique, s(xi + 1) = xi + 1 and s(xk) = xk − 1 are tied. The ties contradict

the left-right disjunction (Section 3.10.c), whence the assumption must be discarded.

b. The divisor method with downward rounding has r = 1. The first inequality of Theorem 11.3

yields the middle step in the string −1 < −(1 − wj) ≤ xj − wjh ≤ xj − �wjh�. Integrality

tightens the inequality to 0 ≤ xj − �wjh�. Hence the divisor method with downward rounding

always stays above the lower ideal frame.

It remains to establish uniqueness. Let A be a divisor method with signpost sequence s(n).

Assuming A �= DivDwn, there exist a house size h and a vote share vector w such that some

seat vector x ∈ A(h;w) does not belong to the divisor method with downward rounding, x �∈
DivDwn(h;w). Violation of the Max-Min Inequality means that two parties i and k have (xi +

1)/wi < xk/wk, that is, wixk − wk(xi + 1) > 0. Now we construct a new problem, with

L := 1 +

⌈
wi

wixk − wk(xi + 1)

⌉
≥ 2

parties, weights v1 := wi and v2 = · · · = vL := wk, and house size H := xi + (L − 1)xk.

Method A yields the seat vector y ∈ A(h; v) with components y1 := xi and y2 = · · · = yL := xk

since the Max-Min Inequality for x ∈ A(h;w), implies the Max-Min Inequality for y ∈ A(h; v),

max
J≤L

s(yJ )

vJ
≤ max

j≤�

s(xj)

wj
≤ min

j≤�

s(xj + 1)

wj
≤ min

J≤L

s(yJ + 1)

vJ
.

The first party’s ideal share of seats fulfills (v1/v+)H = wi(xi + (L− 1)xk)/(wi + (L− 1)wk) ≥
xi + 1, that is, L− 1 ≥ wi/(wixk − wk(xi + 1)). Integrality tightens the inequality to L− 1 ≥
�wi/(wixk − wk(xi + 1))� by choice of L. The first party stays strictly below its lower ideal

frame, y1 = xi < xi + 1 ≤ �(v1/v+)H�. Hence the apportionment method A does not stay

above the lower ideal frames at all times.

c. Part c is established by an analogous construction as in part b.

d. Part d follows since parts b and c determines two distinct methods.

This ends the diversion in how far divisor methods meet or violate the ideal frames.
We now revert to vote shares wj proper, and exhibit their support interval when the
seat number xj is given.

11.5. VOTE SHARES FOR GIVEN SEAT NUMBERS:

STATIONARY DIVISOR METHODS

Theorem. Let DivStar be a stationary divisor method with split r ∈ [0; 1]. For every
seat vector x ∈ DivStar(h;w) a party with xj seats has vote share wj obeying

a(xj) :=
xj − (1− r)I

h− (1− r)I + r(�− 1)
≤ wj ≤ xj + r

h+ r − (1− r)M
=: b(xj),

where I := 1 when xj ≥ 1 and I := 0 when xj = 0, and where M := min{�−1, h−xj}.

Proof. The seat excess bounds of Theorem 11.3 are easily rearranged into the present bounds.

We specialize the formulas when M = � − 1 ≤ h − xj . These are the only cases
of practical interest. Then the minimum vote share given one seat, a(1), and the
maximum vote share given zero seats, b(0), are

a(1) =
r

h− 1 + r�
, b(0) =

r

h+ 1− (1− r)�
.

Occasionally the legislator concocts modifications making it more difficult to obtain a
first seat. Such modifications have repercussions on the support intervals.
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11.6. VOTE SHARES FOR GIVEN SEAT NUMBERS:

MODIFIED DIVISOR METHODS

The divisor method with standard rounding is sometimes modified by raising the first

signpost above one-half, s(1) ≥ 1/2, while maintaining the other signposts, s(n) =
n − 1/2 for all n ≥ 2. The goal is to keep “very weak” parties out of parliament.
The signpost s(1) = 0.7 is in use in Sweden, whence we term this variant the Swedish

modification of the divisor method with standard rounding. The modification s(1) = 1
has also been tried. Then the first seat must be “fully earned”, in the sense that it
cannot arise from upward rounding of quotients below unity. The motto “Below one

is none” sounds persuasive to those not affected by it. We call the procedure the full-
seat modification of the divisor method with standard rounding. The following lines
illustrate the derivation of the minimum and maximum vote shares given xj seats.

It is instructive to examine a more general setting. We start from a stationary
divisor method with split r ∈ [0; 1], but modify it by raising the first signpost above its
regular level, t := s(1) ∈ [r; 1]. The minimum vote share given one seat is tackled first.

With xj = 1 the upper bound of Lemma 11.2 reads 1−wjh ≤ (1−wj)(1−t)+wjS where
the sum S :=

∑
i �=j

(
s(xi+1)−xi

)
is the decisive term. The furthest spread of the sum

materializes when some party i �= j is allotted the rest of the seats, xi = h−xj = h−1,

and the other �− 2 parties k �= i, j get nothing, giving S = r + (�− 2)t. It remains to
solve for wj . Thus the minimum vote share given one seat, for the stationary divisor
method with first signpost modified into t ≥ r, is

a(1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t

h− (1− r) + t(�− 1)
generally when t = s(1) ∈ [r; 1],

0.7

h− 1.2 + 0.7�
specifically for t = 0.7 and r =

1

2
,

1

h− 1.5 + �
specifically for t = 1 and r =

1

2
.

The maximum vote share given zero seats is dealt with similarly. With xj = 0
the lower bound in Lemma 11.2 yields wjh ≤ t − wjt + wjS, now with sum S :=∑

i�=j

(
xi − s(xi)

)
. The sum involves vanishing terms xi − s(xi) = 0 for xi = 0, small

terms xi − s(xi) = 1− t for xi = 1, and large terms xi − s(xi) = 1− r for xi ≥ 2. The
sum is maximum provided all parties i �= j can get two or more seats, S = (�−1)(1−r).

Hence assuming h ≥ 2(�−1) the maximum vote share given no seat, for the stationary
divisor method with first signpost modified into t ≥ r, is

b(0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t

h+ t− (1− r)(�− 1)
generally when t = s(1) ∈ [r; 1],

0.7

h+ 1.2− 0.5�
specifically for t = 0.7 and r =

1

2
,

1

h+ 1.5− 0.5�
specifically for t = 1 and r =

1

2
.

The assumption h ≥ 2(� − 1) conforms with the house size recommendation h ≥ 2�
from Section 7.9, and so we omit the pathological cases h < 2(�− 1).

Before discussing practical implications in Section 11.8, we derive the correspond-

ing results for the shift-quota methods. We recall from the definition in Section 5.4
that all shift-quota methods are combined with a residual fit by greatest remainders.
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11.7. VOTE SHARES FOR GIVEN SEAT NUMBERS:

SHIFT-QUOTA METHODS

Theorem. Let shQgrRs be a shift-quota method, with shift s ∈ [−1; 1). For every seat
vector x ∈ shQgrRs(h;w) the seat excess of party j ≤ � satisfies

s

(
wj − 1

�

)
−
(
1− 1

�

)
≤ xj − wjh ≤ s

(
wj − 1

�

)
+

(
1− 1

�

)
.

Proof. A party with vote share wi has interim quotient vi/Q(s) = wi(h+s). These quotients are

rounded downwards or upwards according as their remainders are small or large. Let r∗ ∈ [0; 1]

be a split that decides about smallness or largeness (Corollary 5.6). The remaining arguments

are adapted from the proof of Lemma 11.2. The residuals ui := (h+ s)wi − xi ∈ [−(1− r∗); r∗]
turn the seat excesses into xi −wih = swi −ui. Summation gives 0 = s−u+. Subtracting from

xj − wjh = swj − uj the identity 0 = s/�− u+/� we get

xj − wjh = s

(
wj − 1

�

)
− uj +

1

�
u+ = s

(
wj − 1

�

)
−
(
1− 1

�

)
uj +

1

�

∑
i�=j

ui.

Because of the opposing signs the residuals uj and the �− 1 terms ui are estimated in opposite

directions to obtain the lower and upper bounds.

The seat excess inequalities are easily rearranged to exhibit the minimum and

maximum vote shares given xj seats:

a(xj) :=
xj − 1 + (1 + s)/�

h+ s
≤ wj ≤ xj + 1− (1− s)/�

h+ s
=: b(xj),

Hence the minimum vote share given one seat, a(1), and the maximum vote share
given no seat, b(0), of the shift-quota method with shift s are given by

a(1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1 + s)/�

h+ s
,

1/�

h
,

2/�

h+ 1
;

and b(0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1− (1− s)/�

h+ s
for general s ∈ [−1; 1) (shQgrRs),

1− 1/�

h
specifically for s = 0 (HaQgrR),

1

h+ 1
specifically for s = 1 (DQ4grR).

Specifically, for the Hare-quota method with residual fit by greatest remainders
(s = 0) the seat excess bounds simplify,∣∣∣xj − wjh

∣∣∣ ≤ 1− 1

�
.

A first consequence is that the method’s ideal shares of seats are rounded down-
wards when too close to their floor, and upwards when too far away,

wjh < �wjh�+ 1

�
=⇒ xj = �wjh�,

wjh > �wjh�+ 1− 1

�
=⇒ xj = �wjh�+ 1.

A second consequence is that the identity HaQgrR(h; v) = DivStar∗(h; v) in Corol-

lary 5.6 holds true with a split r∗ from the sub-interval [1/�; 1−1/�]. The edge regions
of the full generic interval [0; 1] are superfluous.
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A third consequence is that within an �-party system the method majorizes the

stationary divisor method with split 1/�, and is majorized by the stationary divisor

method with split 1− 1/�,

DivSta1/� ≺ HaQgrR ≺ DivSta1−1/�.

Since apportionment rules are required to admit party systems of arbitrary size � ≥ 2

(Section 4.1), the passage to the limit �→∞ recovers the corner points DivUpw and

DivDwn from Section 8.8. The vote threshold discussion concludes with an overview.

11.8. OVERVIEW OF VOTE THRESHOLDS

Authors use the term “threshold” in various meanings. Generally, thresholds serve to

exclude groups of voters from representation in parliament. One such provision is the

percentage threshold discussed in Section 7.6. Percentage thresholds are taken to form

a first category of thresholds; we call them explicit thresholds. They are most visible

to the public, and they are most explicitly appreciated by party whips.

A second category consists of implicit thresholds. They are stashed somewhere in

the electoral law, but are neither easily recognized nor widely publicized. An example

is the Romanian threshold for indeps, see Section 1.9.

A third category are natural thresholds. They present representation hurdles pe-

culiar to the apportionment method used. Two indices suggest themselves to map the

idea into a quantitative measure. First, should the definition be based on the smallest

vote share enabling representation, a(1)? Second, should it build on the smallest vote

share guaranteeing representation, that is, the largest vote share when representation

is possibly denied, b(0)?

The Swiss Federal Court deliberated on the issue in a 2003 case. The court arrived

at the clear decision that the constitutionally mandated natural threshold is b(0), the

smallest vote share above which representation is guaranteed. The other option, a(1),

only indicates when representation is possible but not certain. This vagueness is in-

sufficient to substantiate a constitutional right. Thus it is the rightmost column in

Table 11.1 that shows the constitutionally binding natural threshold, b(0).

Every method has its own formula for the natural threshold. Yet there are some

common qualitative dependencies. The decisive variable in the denominators is the

house size, h. The more seats become available, the smaller is the natural threshold.

This antitonic trend is certainly what common sense would expect to happen. Tech-

nically some of the formulas require the house size to be not too small, h ≥ �− 1 or

h ≥ 2(�− 1), as explicated in the previous sections. All these requirements are met

by the general recommendation that the house size should meet or exceed twice the

number of parties, h ≥ 2� (Section 7.11). The other variable in the denominator is

the size of the party system, �. The dependence on � is only weak, and sometimes not

at all present (DivDwn, DQ4grR). If present, a growing party system is accompanied

with a growing natural threshold. This behavior sounds plausible, too.
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Apportionment method a(1) b(0)

Natural threshold

DivStd: Divisor method with standard rounding
0.5

h− 1 + 0.5�

0.5

h+ 1− 0.5�

• Swedish modification, with s(1) = 0.7
0.7

h− 1.2 + 0.7�

0.7

h+ 1.2− 0.5�

• Full-seat modification, with s(1) = 1
1

h− 1.5 + �

1

h+ 1.5− 0.5�

DivDwn: Divisor method with downward rounding
1

h− 1 + �

1

h+ 1

HaQgrR: Hare-quota method with grR
1/�

h

1− 1/�

h

DQ4grR: Droop-quota variant-4 method with grR
2/�

h+ 1

1

h+ 1

TABLE 11.1 Threshold formulas. The minimum vote share given one seat, a(1), is the threshold
enabling representation. The maximum vote share given no seat, b(0), is the threshold guaranteeing
representation. The formulas depend on the method, the house size, and the size of the party system.

The natural thresholds are illustrated with two examples for the full-seat modifica-

tion of the divisor method with standard rounding. The modification was written into

the electoral law of the German State of North Rhine-Westphalia, only to be retracted

almost instantaneously. According to a 2009 decision of the state’s constitutional court

the full-seat modification violates the principle of electoral equality to an extent that

it is unconstitutional. The following examples are taken from the 2004 local elections

that preceded the court’s decision.

Four communes had councils with h = 20 seats and with � = 4 parties campaign-

ing. The natural threshold of the full-seat restricted variant of the divisor method with

standard rounding is 1/19.5 = 5.1 percent. It exceeds the five percent threshold. Once

recognized it is easy to illustrate the effect with numbers close to the North Rhine-

Westphalian 2004 local elections. The vote vector v = (2 501, 701, 501, 199) results in

the seat vector x = (13, 4, 3, 0). A feasible divisor is D = 200, the divisor interval

is D(v, x) = [199; 200.8]. The fourth party does not obtain representation, their 199

votes of a total of 3 902 votes constitute a share of 5.1 percent.

Three communes had a twenty-seat council and � = 5 parties standing in the

election. The natural threshold increases to 1/19 = 5.3 percent. Again the pre-

dicted threshold is easily demonstrated by appropriate data. Indeed, the vote vector

v = (1 381, 301, 301, 181, 119) leads to the seat vector x = (12, 3, 3, 2, 0). A feasible

divisor is 120, the divisor interval is D(v, x) = [119; 120.086]. The fifth party is left

out although their 119 votes out of a total of 2 283 votes are a share of 5.2 percent.

The Constitutional Court for the State of North Rhine-Westphalia, having previously

barred the five percent threshold from communal elections, decided that the full-seat

modification is also unconstitutional.

11.9. PRESERVATION OF A STRAIGHT MAJORITY

Thresholds deal with weak parties whether they achieve parliamentary representation

or not. At the other end of the scale one may worry whether strong parties are appor-
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Party Votes HaQgrR=DivHar=DivGeo=DivStd=DivDwn

A 18 594 670 248
B 12 950 200 173
C 3 664 459 49
D 1 980 006 26

Sum 37 189 335 496

TABLE 11.2 Majority preservation failure. Party A wins a straight majority of 18 594 670 votes

versus their opponents’ 18 594 665 votes. All common methods apportion to party A only 248 seats,

and fail to award it a straight seat majority in parliament.

tioned their due share of seats. An issue of political interest is majority preservation.

Does an apportionment method always ensure that a party with a straight majority

of votes—that is, a party that wins more votes than all its competitors together—is

apportioned a straight majority of seats? People might want to insist that sensible

methods are majority preserving. Alas, the opposite is true. No reasonable apportion-

ment method is majority preserving.

Table 11.2 quotes an intriguing example from the 1982 Bundestag records (Bun-

destagsdrucksache 9/1913 of 12 August 1982). The example was manufactured to

demonstrate that the Hare-quota method with residual fit by greatest remainders may

fail to preserve the majority. Party A wins a straight majority of votes, 18 594 670.

Its opponents get five votes less, 18 594 665. Yet HaQgrR awards party A only half

of the seats, 248 of 496, and not a straight majority. The example is reproduced in

textbooks such as Nohlen (2009 [123]) as if the deficiency were peculiar to this partic-

ular apportionment method. However, other commonly used methods apportion the

496 seats in exactly the same fashion. Hence if the example were to invalidate one

method, it would invalidate all of them. The sobering message is that no reasonable

apportionment method is always majority preserving.

The divisor method with downward rounding, DivDwn, is a prime candidate for a

majority preservation procedure. It is biased in favor of stronger parties at the expense

of weaker parties (Section 7.8), and it prefers groups of stronger parties to groups of

weaker parties (Theorem 8.6). Yet it may fail to preserve a straight majority, as

evidenced in Table 11.2. The reason is that the house size in the table is even, 496. If

the house size h is odd, then DivDwn is indeed majority preserving.

More precisely, the divisor method with downward rounding is the only stationary

divisor method that is majority preserving for odd house sizes, h = 2n+1. To see this

we evaluate b(n), the maximum vote share given n seats. With house size 2n + 1 an

allotment of n seats misses a straight majority by just one seat. A method is majority

preserving if and only if no vote share that is leading to n seats exceeds one-half,

b(n) ≤ 1/2. By Theorem 11.5 a stationary divisor method with split r has

b(n) =
n+ r

2n+ 1 + r − (�− 1)(1− r)
=

n+ r

2(n+ r)− (�− 2)(1− r)
.

For two-party systems we get b(n) = 1/2; in this case all stationary divisor methods

are majority preserving. For larger systems, � ≥ 3, the inequality b(n) ≤ 1/2 holds true

if and only if r = 1. This excludes all stationary divisor methods except DivDwn. For

odd house sizes the divisor method with downward rounding is the unique stationary

method that is majority preserving.
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NW2009Coesfeld Vote Counts Quotient DivStd Quotient HaQgrR

CDU 54 233 27.1 27 27.043 27
SPD 23 648 11.8• 12 11.792 12
GRÜNE 11 798 5.9• 6 5.883 6
FDP 10 329 5.2 5 5.150 5
VWG 5303 2.7• 3 2.644 3
LINKE 2 983 1.49 1 1.487 1

Sum (Divisor|Split) 108 294 (2000) 54 (.5) 54

TABLE 11.3 Council election, Coesfeld county, 2009. Despite a straight majority of votes the CDU

received but half the seats, 27 of 54. Of the quotients that are rounded upwards (SPD, GRÜNE,

VWG), the one with the least claim (VWG, remainder .7) loses a seat that is redirected to the CDU.

11.10. RESIDUAL SEAT REDIRECTION CLAUSE

A majority clause expresses the legislator’s definitive intention that the electoral law

delivers a parliamentary majority for all vote margins no matter how small. Conversely,

it is conceivable that a party with fewer than half of the votes is awarded more than

half of the seats by nothing else than pure computational luck. A legislator who feels

obliged to implement a majority denial clause has yet to be found.

An acute majority preservation failure occurred during the 2009 communal elec-

tions in the German State of North Rhine-Westphalia. In the election of the council

of the County of Coesfeld, 54 233 citizens voted for the CDU, versus 54 061 who cast

their votes for other lists. Although the CDU beat their competitors by a margin of

172 voters, the divisor method with standard rounding would have apportioned them

just half of the seats, 27 out of 54, rather than a straight majority. The same seat

apportionment would have resulted from the Hare-Quota method with residual fit by

greatest remainders. The North Rhine-Westphalian law for communal elections rec-

tifies the failure by granting the CDU an additional seat that is redirected from one

of the competing lists whose interim quotient is rounded upwards (SPD, GRÜNE,

VWG). The seat is taken away from the list whose quotient has a fractional part that

is smallest (VWG: .7). The smallest remainder signals the feeblest claim to be rounded

upwards. Thus the seat apportionment that was put into effect was (28, 12, 6, 5, 2, 1),

not the unmodified seat vector (27, 12, 6, 5, 3, 1). See Table 11.3.

This residual seat redirection clause serves its majority preservation purpose well

only for the Hare-quota method with residual fit by greatest remainders. Indeed, a

straight majority of votes for party j forces the ideal share of seats to exceed h/2,

vj/v+ > 1/2 ⇒ (vj/v+)h > h/2, although ever so little. With a tiny remainder the

main apportionment does not suffice, yj = �(vj/v+)h� < h/2. The clause augments it

by a residual seat, xj = yj + 1 > h/2. In Table 11.3 the CDU has quotient 27.043.

Since the fractional part .043 is too small the clause redirects a residual seat from

VWG to CDU in order to provide the CDU with a straight majority of 28 seats.

This majority clause was put forward already by Gfeller (1890). It got reinvented

by Horst Friedrich Niemeyer, as reported by Niemeyer /Niemeyer (2008). The term

Hare/Niemeyer procedure that is popular in Germany embraces not only the Hare-

quota method with residual fit by greatest remainders, but also its modification by the

residual seat redirection clause.
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SH2013Boostedt Second Votes Quotient DivStd

CDU 2 815 8.49 8
SPD 2 155 6.503 7
FWG 549 1.7 2

Sum (Divisor) 5 519 (331.4) 17

TABLE 11.4 Council election, Boostedt community, 2013. A straight majority of the electorate

voted CDU, yet the party fell short of a straight majority of seats. The law fails to provide for a

majority clause. The case generated some sardonic press comments.

When an electoral law is amended to introduce a new apportionment method an

existing majority clause must be reassessed. The reassessment occasionally evades the

attention of the legislator. In North Rhine-Westphalia the former Hare-quota method

with residual fit by greatest remainders was replaced by the current divisor method

with standard rounding. The residual seat redirection clause was left untouched. It

happened to work out fine in the case of Coesfeld (Table 11.3). We illustrate its

potential deficiency with the contrived data from Table 10.1, for house size 104. The

divisor method with standard rounding awards the majority party A only 50 seats. The

residual seat redirection clause swaps just one residual seat from party K to party A.

But 51 seats in a house of 104 seats still stay below a straight majority. The seat

redirection clause cannot be recommended. It may serve its purpose, or not.

11.11. HOUSE SIZE AUGMENTATION CLAUSE

In Schleswig-Holstein the former divisor method with downward rounding was replaced

by the current divisor method with standard rounding. Trusting that house sizes would

be mostly odd the old law had no need for a majority clause. No majority clause was

written into the new law either. During the 2013 communal elections the community

of Boostedt experienced a majority preservation failure. A straight majority of the

electorate voted CDU, yet the party was apportioned only eight of seventeen seats, see

Table 11.4. The case received considerable press coverage. Evidently majority clauses

do have some relevance. We present two clauses that both perform flawlessly whatever

apportionment method is used.

A viable majority clause is to augment the house size if necessary. Additional

seats are created on behalf of the majority party until it reaches a straight majority

of seats. This house size augmentation clause has the advantage of not retracting a

seat from a party that was looking forward to receiving it. The clause responds rather

mechanically to the objective of translating a straight majority of votes into a straight

majority of seats. It presupposes that there is some leeway for the house size to be

augmented if called for by extraordinary circumstances. In Boostedt (Table 11.4) the

CDU would have received two extra seats to establish a straight majority, with ten of

nineteen seats.

In Table 10.1 the last column with house size 104 depicts a majority preservation

failure. The majority party’s 50 seats lag behind the aggregated allotment of its nine

opponents (54 seats) by a margin of four seats. The house size augmentation clause

would create five additional seats so that the majority party is granted a straight

majority of 55 seats. The clause would raise the house size from the notional level of
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104 seats to a terminal level of 109 seats. If the house size had been 109 from the very

beginning then the resulting seat allocation would have been just the same: 55 seats

for party A, and six seats for each party B–K. Hence even though the clause looks

mechanical, it often yields a proportional end result. It does so in the present example

and in many others, but not always (try h = 100 in Table 10.1).

11.12. MAJORITY-MINORITY PARTITION CLAUSE

Another viable majority clause maintains partial proportionality in a more principled

fashion. If the underlying apportionment method produces a seat vector that grants

the majority party a straight majority of seats, then there is no need to interfere.

Otherwise the clause starts afresh and separates the seat apportionment for the ma-

jority party from the seat apportionment for the minority parties. The majority party

gets as many seats as needed to establish the smallest possible straight majority of

seats. The remaining seats are apportioned among the remaining parties using the

underlying apportionment method. We call this modification the majority-minority

partition clause. In Boostedt (Table 11.4) the CDU would have received nine seats

and the remaining eight seats would have been shared proportionally among the two

minority parties (SPD 6, FWG 2).

The majority-minority partition clause extends from a single majority party to a

coalition of parties with an aggregate vote majority. Suppose that there is a coalition

of parties whose partners altogether win a straight majority of votes so narrow that the

apportionment method denies them a straight majority of seats. Then the generalized

variant of the majority-minority partition clause proceeds in two steps. The first step

is to apportion the smallest possible straight majority of seats among the coalition

partners. The second step apportions the remaining seats among the remaining parties.

Both steps are calculated using the pertinent apportionment method.

If the underlying apportionment method is a divisor method then the clause re-

sults in seat vectors that are house size monotone (Section 9.6). To see this we note

that the clause merges two apportionment strings. The first string is the sequential

apportionment of seats among the majority parties, the second, the sequential appor-

tionment of seats among the minority parties. Neither of the two sequences violates

house size monotonicity. Since the two strings are joined together in a coherent fashion

(Theorem 9.2) monotonicity is maintained. Table 11.5 provides an example.

The majority-minority partition clause has a historical precursor known under its

Latin name itio in partes, separation into parts. The clause was an inventive novelty

of parliamentary decision-making first codified in the Peace of Westphalia 1648. It

stipulated that a resolution would be carried by the plenum only if carried separately

by either part of the plenum. Thus it secured procedural parity between two unequal

parts that were anxious to safeguard their constitutional identities. In those days

the two parts were the opposing blocs of the contracting states, the Catholic bloc

(Corpus catholicorum) and the Protestant bloc (Corpus evangelicorum). Nowadays, in

the context of proportional representation systems in contemporary democracies, the

two parts are the government majority and the opposition minority.
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Political Group Size DivStd MMP DivStd MMP DivStd MMP DivStd

Government majority parties
SPD 249 5 6• 6 7• 7 7 7
B90/GRÜNE 55 1 1 1 1 1 2• 2
Opposition minority parties

CDU/CSU 247 4 4• 5 5• 6 6• 7
FDP 47 1 1 1 1 1 1 1

Sum 598 11 12 13 14 15 16 17
Divisor 55 45|55 45 38.2|45 38.2 35|38.2 35

TABLE 11.5 Majority-minority partition clause for small committees, 15th German Bundestag
2002. For committee sizes 12, 14, 16, the majority-minority partition (MMP) clause carries out two
apportionments. The smallest possible seat majority is apportioned among the government majority
parties. The remaining committee seats are apportioned among the remaining parties.

11.13. THE 2002 GERMAN CONFERENCE COMMITTEE DILEMMA

The 2002 German Bundestag faced a majority preservation problem that we use to

illustrate the majority-minority partition clause. The Bundestag had to apportion the

16 seats of the Conference Committee among its four Political Groups. The Conference

Committee mediates between the Bundestag (Federal Diet, First Chamber) and the

Bundesrat (Federal Council, Second Chamber) in cases of disagreement. Existence

and functions of the Conference Committee are set forth in the Basic Law, and are not

at the discretion of the sitting parliament. The Bundesrat nominates one committee

member per each of the 16 Federal states. They are referred to as the Bundesrat bench.

The Basic Law stipulates that the Bundestag bench has the same size, 16. The number

cannot be changed without amending the Basic Law.

In the 2002 Bundestag the government majority was formed by the Political

Groups of SPD (249 seats, as of 1 February 2005), and of BÜNDNIS 90/Die GRÜNEN

(55). The opposition minority consisted of CDU/CSU (247), and of FDP (47). The

divisor method with standard rounding allocates the 16 committee seats in the divi-

sion 7 : 1 to both, SPD and GRÜNE, and to CDU/CSU and FDP. Hence the govern-

ment majority and the opposition minority were tied, with eight seats each. Facing a

troubled apportionment decision the Bundestag habitually tables the alternative ap-

portionments of the divisor method with downward rounding, and of the Hare-quota

method with residual fit by greatest remainders. For the 2002 data both methods re-

produced the troublesome tie and offered no help. The government majority, displeased

with the failure to preserve its majority, decided to apportion 15 seats proportionately,

and to allocate the 16th seat with the strongest Political Group, SPD. Hence the im-

plemented seat allocation was 8 and 1 for the government majority, versus 6 and 1 for

the opposition minority.

The opposition complained to the Federal Constitutional Court since they per-

ceived the allotment an act of caprice. In an opaque decision the court ruled that the

minutes of the Bundestag’s Ways and Means Committee gave insufficient evidence of

the reasonings underlying the apportionment of the 16 seats. The court ordered the

Bundestag to reconsider the issue, and to document its decision-making process more

fully in order to enable the court to assess its constitutional merits.
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Table 11.5 illustrates the majority-minority partition clause with the 2005 Bundes-

tag data. For committee size h = 11, the regular method gives six seats to the gov-

ernment majority, and five seats to the remaining parties. The majority is preserved,

and the majority-minority partition clause remains dormant. It gets activated for

committee size h = 12, since otherwise the two parts were tied with six seats each.

Instead, seven seats are apportioned among the majority parties and, separately, five

seats among the remaining parties. The differentials relative to the regular method are

marked by a dot (•). For committee size h = 13, the regular method again preserves

the majority, thereby re-balancing the over-all imbalance of the previous step.

The case spurring the discussion was the apportionment of the 16 seats of the

Conference Committee’s Bundestag bench. The implemented allocation was 8 and 1

seats for the coalition government, versus the division of 6 and 1 for the opposition

parties. The majority-minority partition clause differs, with 7 and 2 seats for the

coalition parties, versus the same 6 and 1 division for the remaining parties. Hence

the opposition’s litigation might have resulted in the junior coalition partner doubling

their representation, from one to two committee seats. However, before further action

was taken the Bundestag adjourned early. The issue was closed unresolved, as were all

other pending issues, and filed away in the archives.

Another type of system restrictions is upper and lower limits for the eventual seat,

and to these we turn next.
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Truncating Seat Ranges:
Minimum-Maximum
Restrictions

Some electoral systems restrict the eventual seat numbers to respect a guaranteed mini-
mum or, occasionally, to obey a preordained maximum. Minimum restrictions or max-
imum restrictions form an obstacle for quota methods, but are accommodated easily
by divisor methods. Restrictions commonly apply when representing geographical dis-
tricts. They also arise when proportional representation of political parties is combined
with the election of persons in single-seat constituencies. The varied incorporation of
restrictions is exemplified with election data from the United Kingdom and Germany,
and with the composition of the EP.

12.1. MINIMUM REPRESENTATION FOR
ELECTORAL DISTRICTS

The Constitution of the United States of America guarantees every state of the Union at

least one representative when the seats of the House of Representatives are apportioned

among the various states (Section 7.8). Other countries follow suit. France allocates a

minimum parliamentary representation to their Départements, the Swiss Confederation

to their Cantons, the European Union to their Member States. Clearly it is reasonable

to ensure that the territorial units that are subject to the legislation of a parliament

are represented in this parliament.

Generally it is not automatic that an apportionment method secures a minimum

representation. There is a sole exception. If the minimum restriction is one seat, then it

is satisfied by every divisor method that is impervious (Section 4.4). Even tiny interim

quotients guarantee at least one seat because of being rounded upwards to unity.

The exceptional setting applies to the United States House of Representatives. The

legally decreed apportionment method is the divisor method with geometric rounding,

advertised by Huntington (1928) under the winning label “method of equal propor-

tions” (Section 10.10). Being impervious the divisor method with geometric rounding

is compatible with the United States Constitution. No further action is needed to

make sure that each state has at least one representative.
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In other settings the minimum restriction asks for two seats or more. For instance,

the composition of the EP guarantees every Member State at least six seats. Moreover,

a state’s seat allocation must obey a maximum restriction, 96 seats. In electoral

systems that combine proportional representation with the election of persons in single-

seat constituencies, the seats a party’s candidates win in the constituencies are called

direct seats. They impose a minimum restriction on this party’s seat allocation in the

proportionality calculations. As the direct-seat restrictions are known only when the

election is over, they come with a more dynamic flavor than static restrictions that are

decreed beforehand. Whether static or dynamic, observance of restrictions can only

be guaranteed provided the apportionment methods are appropriately modified.

The modifications called for by minimum or maximum restrictions are difficult

to achieve with quota methods (Section 12.2), but easy to implement with divisor

methods (Section 12.3). For this reason divisor methods become the uncontested

methods of choice in the presence of seat restrictions. The direct-seat restricted variant

of the divisor method with downward rounding is exemplified with the 2012 election of

the London Assembly (Section 12.4). The direct-seat restricted divisor method with

standard rounding is illustrated with a re-evaluation of the 2009 Bundestag election

(Section 12.5). The simultaneous observance of minimum and maximum restrictions

is explicated with the allocation of the seats of the EP between the Member States of

the European Union (Sections 12.6–12.8).

12.2. QUOTA METHOD AMBIGUITIES

As for the Hare-quota method with residual fit by greatest remainders, a pragmatic

modification to handle minimum restrictions has been met already in Table 9.4. With

the 1880 census data, the main apportionment of 300 seats allocates no seat to Delaware

nor to Nevada. It is a gamble whether the two states would profit from the 18 seats that

remain for the residual fit, Delaware would, Nevada would not. Hence the modification

interrupts the transition from the main apportionment to the residual fit. First the

endangered states receive one seat each out of the allocation of the 18 remaining seats,

thus satisfying the one-seat minimum restriction for all 38 states. Thereafter the

residual fit continues with the reduced number of remaining seats, 16 instead of 18,

and with only 36 states after setting aside Delaware and Nevada.

In general the pragmatic modification utilizes the seats remaining after the main

apportionment as a reservoir to tap for the correction of any deficiencies still persisting.

In the presence of maximum restrictions, the pragmatic modification would fill the

reservoir with the seat overflows emerging after the main apportionment. Clearly

the strategy lacks severity. The reservoir may contain too few seats to even out all

minimum restrictions, or it may be flooded with too many overflow seats so that

a residual fit by greatest remainders is no longer practicable. Such difficulties are

unlikely to materialize in settings as in Table 9.4, with many participants and with the

lowest non-trivial restriction of one seat each. But the pragmatic modification would

usually be unable to handle a six-seat minimum restriction as in the EP, or with a

dynamic direct-seat restrictions as in Section 12.4.
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A principled modification with a sound numerical base is proposed by Balinski /

Young (1982 [133]). The idea is to modify the Hare-quota in such a way that it honors

the presence of minimum or maximum restrictions. More precisely, let party j ≤ � be

restricted to be allocated at least aj seats and at most bj seats. It goes without saying

that the restrictions are taken to be compliant with a view towards lower and upper

levels, aj ≤ bj , and with a view towards the house size, a+ ≤ h ≤ b+, lest the problem

becomes void. By convention the middle of three numbers aj , vj/Q, bj is the quantity

middle in value,

med

(
aj ,

vj
Q
, bj

)
:=

⎧⎪⎨⎪⎩
bj in case vj/Q > bj ,

vj/Q in case vj/Q ∈ (aj ; bj ],

aj in case vj/Q ≤ aj .

Evidently the median comes to lie in the interval [aj ; bj ]. The modified quota Q is

defined to be the particular value that solves the equation

∑
j≤�

med

(
aj ,

vj
Q
, bj

)
= h.

The term med (aj , vj/Q, bj) is interpreted as the ideal share of seats of party j subject

to all restrictions being met. Its floor constitutes the main apportionment for party j.

The remaining seats are handed out via a residual fit by greatest remainders among

the parties that strictly stay below the maximum restriction bj . The only drawback is

the determination of the solution Q which is laborious.

Unfortunately the first, pragmatic modification, and the second, principled mod-

ification, may produce two solutions that are distinct. As a consequence the question

of how to incorporate restrictions into a quota method admits no clear and unique an-

swer. No harm is done, as far as we know none of the contemporary electoral systems

employs either of the two modifications.

The two modifications retrieve the Hare-quota method with residual fit by greatest

remainders in case no restrictions prevail, aj = 0 and bj = h for all j ≤ �. In all

other cases it is a gamble whether the pragmatic modification is applicable, while the

principled modification treats the quota as a flexible quantity to solve an appropriate

equation. But if a sensible invocation of flexibility is what is asked for, then the answer

is divisor methods, not quota methods (Section 5.10).

12.3. MINIMUM-MAXIMUM RESTRICTED VARIANTS
OF DIVISOR METHODS

Divisor methods adapt to minimum-maximum restrictions more easily. They simply

truncate the underlying rounding rule as need be. That is, the rounding rule never

reaches below the lower level aj nor beyond the upper level bj . It’s all very well to say

that, yet a precise description requires a few notational prerequisites.
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Suppose the divisor method A relies on the rounding rule [[·]] with signpost se-

quence s(n), n ∈ �. We consider the apportionment of h seats to � parties. The vector

a = (a1, . . . , a�) ∈ �� is taken to embody the minimum restrictions, b = (b1, . . . , b�) ∈
�

� the maximum restrictions. The restrictions are assumed to be compliant, aj ≤ bj

for all j ≤ � and a+ ≤ h ≤ b+. In this setting the truncated rounding rule [[·]]bjaj

adapts the notion of a median to the set-oriented language of rounding rules. It maps

a positive number t > 0 into the set [[t]]
bj
aj defined as

[[t]]bjaj
:=

⎧⎪⎪⎨⎪⎪⎩
{bj} in case t > s(bj),

[[t]] in case t ∈ (s(aj); s(bj)],
{aj} in case t ≤ s(aj).

For t = 0 the no input–no output law continues to hold true, [[0]]
bj
aj := {0}.

Now the divisor method A is modified into the minimum-maximum restricted

variant Ab
a by mapping a vote vector (v1, . . . v�) ∈ (0;∞)� into the set of seat vectors

Ab
a(h; v) :=

{
(x1, . . . , x�) ∈ ��(h)

∣∣∣ x1 ∈
[[v1
D

]]b1
a1

, . . . , x� ∈
[[v�
D

]]b�
a�

for some D > 0

}
.

This means that an interim quotient vj/D is rounded to the seat number xj ∈ [[vj/D]],

except when the minimum restriction warrants more seats, xj = aj in case vj/D ≤
s(aj), or when the maximum restriction imposes fewer seats, xj = bj in case vj/D >

s(bj). The divisor D ensures that all available seats are handed out, x+ = h.

The phrase that describes the solution recalls that the rounding of an interim

quotient is possibly overruled by a restriction: Every D votes justify roughly one seat,

except when a minimum restriction warrants more seats or a maximum restriction

imposes fewer seats. The examples that follow furnish evidence that the minimum-

maximum restricted variant of a given divisor method is carried out with ease.

12.4. DIRECT-SEAT RESTRICTED VARIANT OF DivDwn

The 2012 election of the London Assembly makes use of the direct-seat restricted vari-

ant of the divisor method with downward rounding. The assembly size is 25 seats;

fourteen of them are filled from single-seat constituencies by plurality vote. In a plu-

rality vote system candidates of stronger parties are likely to come in first. In fact,

eight direct seats are gained by candidates of the Labour Party, the other six direct

seats by candidates of the Conservative Party. These direct seat wins persist and

restrict the final proportional apportionment of the overall 25 seats.

Proportionality calculations are based on London-wide list votes. A five percent

threshold applies to the 2 215 008 valid votes, amounting to 110 751. As a consequence

255 614 valid votes are rejected and nine parties and indeps are eliminated, leaving

1 959 394 votes and four parties for consideration in the apportionment process. The

divisor method with downward rounding is used, subject to safeguarding the direct seat

gains. In 2012, the restrictions remain inactive. Every 73 000 votes justify roughly one

seat. The Labour Party wins twelve seats, thus carrying their eight direct seats plus
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LondonAssembly2012 Direct Seats List Votes Quotient DivDwn

Labour Party 8 911 204 12.5 12
Conservative Party 6 708 528 9.7 9
Green Party 0 189 215 2.6 2
Liberal Democrats 0 150 447 2.1 2

Sum (Divisor) 14 1 959 394 (73 000) 25

TABLE 12.1 London Assembly, election 2012. In order to safeguard the 14 direct seats that are

elected by plurality vote in single-seat constituencies, the direct-seat restricted variant of the divisor

method with downward rounding is employed. With the 2012 data, the restrictions remain inactive.

filling four seats from their list of nominees. Similarly the nine final seats for the

Conservative Party support their six direct seats. See Table 12.1.

Since all direct seats are considered seeded, the seat vector y = (8, 6, 0, 0) provides

an initialization of the jump-and-step algorithm shortcutting the laborious tabulation

that people usually go through (Section 4.11). Thereafter the comparative figures

vj/s(yj + 1) are evaluated as usual:

London 2012 Labour Cons Green LibDem Sum
Direct Seats 8 6 0 0 14
List Votes 911 204 708 528 189 215 150 447 1 959 394

Seat 15
/(8 + 1) = /(6 + 1) = /(0 + 1) = /(0 + 1) = Increment:
101 244.9 101 218.3 189 215• 150 447 Green

Seat 16
/(1 + 1) =

101 244.9 101 218.3 94 607.5 150 447• LibDem

Seat 17
/(1 + 1) =

101 244.9• 101 218.3 94 607.5 75 223.5 Labour

Seat 18
/(9 + 1) =

91 120.4 101 218.3• 94 607.5 75 223.5 Cons

Seat 19
/(7 + 1) =

91 120.4 88 566 94 607.5• 75 223.5 Green

Seat 20
/(2 + 1) =

91 120.4• 88 566 63 071.7 75 223.5 Labour

Seat 21
/(10 + 1) =

82 836.7 88 566• 63 071.7 75 223.5 Cons

Seat 22
/(8 + 1) =

82 836.7• 78 725.3 63 071.7 75 223.5 Labour

Seat 23
/(11 + 1) =

75 933.7 78 725.3• 63 071.7 75 223.5 Cons

Seat 24
/(9 + 1) =

75 933.7• 70 852.8 63 071.7 75 223.5 Labour

Seat 25
/(12 + 1) =

70 092.6 70 852.8 63 071.7 75 223.5• LibDem

Final Seats 12 9 2 2 25

Appendix
/(2 + 1) =

70 092.6 70 852.8• 63 071.7 50 149

In every line the party with the highest comparative figure is flagged (•) to receive

the next seat. An appendix for a twenty-sixth seat reveals the entire divisor interval

[70 852.8; 75 223.5]; Table 12.1 quotes the user-friendly divisor 73 000.



12.4. DIRECT-SEAT RESTRICTED VARIANT OF DivDwn 161

SP2011Lothian Direct Seats Votes Quotient DivDwn•
Scottish National Party 8 110 953 6.9• 8
Labour 1 70 544 4.4 4
Conservatives 0 33 019 2.1 2
Green 0 21 505 1.3 1
Indep Margo MacDonald 0 18 732 1.2 1
Liberal Democrats 0 15 588 0.97 0

Sum (Divisor) 9 270 341 (16 000) 16

TABLE 12.2 Lothian district, Scottish Parliament election 2011. The direct-seat restricted variant

of the divisor method with downward rounding allocates to parties as many seats as indicated by the

quotient’s integral part or, if larger, by the direct seat gains. The proviso applies to the SNP.

The variant is publicized under the name of an additional member system. In view

of the English history of plurality elections, the fourteen direct seats are well understood

and need not be further explained to the public. The other nine “additional” seats

are installed to achieve or at least to move towards proportionality. The attribute

“additional member” may be interpreted mischievously as if the direct seat deputies

were the true representatives of the people, while the additional members are seen as

decorative add-ons. This view is untenable. All parliamentary members are guaranteed

their right to statutory equality. The alternate labelmixed member proportional system

is a bit more remote from such misgivings.

Generally the direct-seat restricted variant may produce a seat apportionment

distinct from that of the unrestricted parent method. An example occurred in the

2011 general election for the Scottish Parliament. For the purpose of the election the

Scottish territory is divided into eight electoral districts. In Scotland they are referred

to as regions. The districts comprise between eight to ten single-seat constituencies.

Voters cast two votes, a constituency vote and a regional vote. Every constituency

returns a Member of the Scottish Parliament by plurality of constituency votes. In

our parlance they figure as direct seats. The district magnitude is obtained by adding

seven seats to the number of the district’s constituencies. Every district evaluates its

regional votes separately, using the direct-seat restricted variant of the divisor method

with downward rounding. In seven districts the restrictions remain inactive. The seats

allocated are the same as when employing the usual, unrestricted divisor method with

downward rounding.

The restriction is activated in just one district, Lothian, see Table 12.2. With

nine constituencies, it has a district magnitude of 16 seats. The Scottish National

Party gains eight direct seats, Labour one. Every 16 000 votes justify roughly one

seat, except when the direct seats warrant more. Hence the eight direct seats of the

Scottish National Party prevail, even though the proportionality calculations yield but

six seats. To highlight the intervention of the direct-seat restriction, the quotient is

marked by a dot, 6.9•, and so is the header of the final seat column, “DivDwn•”.
The seat apportionment may be determined just as in the previous 2012 London

Assembly example. That is, the distribution of the direct seats provides the initializa-

tion (8, 1, 0, 0, 0, 0). Thereafter seats 10, 11, . . ., 16 are incremented one after the other

as determined by the highest value of the comparative figures vj/(yj + 1), j ≤ �.
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Alternatively, a faster calculation starts with the recommended divisor D =

v+/(h + �/2) = 270 341/19 = 14 228.5 of Section 4.10. Since the Scottish National

Party’s eight direct seats dominate their proportionate due, �7.8� = 7, the initial seat

distribution comes out to be y = (8, 4, 2, 1, 1, 1). Its sum is 17, one seat too many. The

relevant comparative figures are vj/yj . The lowest comparative figure points to the

party to decrement, Liberal Democrats. Now the seat vector x = (8, 4, 2, 1, 1, 0) meets

the house size h = 16, whence it is final. The line “Appendix” shows that a divisor

above 16 509.5 decrements the next seat, this time of the Conservatives. Thus the

divisor interval is [15 588; 16 509.5]; Table 12.2 quotes the user-friendly value 16 000.

Lothian 2011 SNP Labour Cons Green Indep LibDem Sum (Divisor)
Direct Seats 8 1 0 0 0 0 9
List Votes vj 110 953 70 544 33 019 21 505 18 732 15 588 270 341

Quotient 7.8• 4.96 2.3 1.5 1.3 1.1 (14 228.5)
Initial Seats 8 4 2 1 1 1 17

/8= /4= /2= /1= /1= /1=

Seat 16 13 869.1 17 636 16 509.5 21 505 18 732 15 588• (Decrement •)
8 4 2 1 1 0 16

Appendix vj/xj — 17636 16 509.5• 21 505 18 732 ∞

The seat vector of the direct-seat restricted variant is x = (8, 4, 2, 1, 1, 0). In

contrast, the seat vector of the unrestricted parent method, the divisor method with

downward rounding, is z = (7, 4, 2, 1, 1, 1). The difference between the two vectors

exposes the impact of the restrictions, x − z = (1, 0, 0, 0, 0,−1). The strongest party

exceeds its proportionate due by one seat, the weakest party falls short by one seat.

Let |x− z| signify the L1-norm of the difference vector,

|x− z| :=
∑
j≤�

|xj − zj |.

Generally the count of transfers needed to pass back and forth between two vectors

x, z ∈ ��(h) equals |x − z|/2. We interpret the transfer count |x − z|/2 as the un-

proportionality index of x because it assesses the deviation from the proportionality

solution z. The index is measured in terms of concrete parliamentary seats, not by

means of some abstract goodness-of-fit criterion as in Chapter 10.

12.5. DIRECT-SEAT RESTRICTED VARIANT OF DivStd

The unproportionality index proves particularly enlightening in the electoral system

for the German Bundestag. Direct seat gains based on first votes have to be matched

with the proportionate success derived from second votes. Table 2.2 shows the 2009

evaluation according to the then valid Federal Election Law. The sub-apportionments

for SPD, FDP, LINKE, and GRÜNE support their direct seats (if any) without further

ado. Solely the seat apportionment for the CDU is special. The CDU receives 173 seats

by the (unrestricted) the divisor method with standard rounding. In seven states the

CDU wins more direct seats than allotted to its state list, thus creating 21 overhang

seats. The lasting number of CDU seats is 173 + 21 = 194.
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(17BT2009) Direct Seats Second Votes Quotient DivStd• DivStd Difference

Sub-apportionment to districts: CDU
Schleswig-Holstein 9 518 457 7.51• 9 9 0
Mecklenburg-Vorpommern 6 287 481 4.2• 6 5 1
Hamburg 3 246 667 3.6 4 4 0
Niedersachsen 16 1 471 530 21.3 21 24 −3
Bremen 0 80 964 1.2 1 1 0
Brandenburg 1 327 454 4.7 5 5 0
Sachsen-Anhalt 4 362 311 5.3 5 6 −1
Berlin 5 393 180 5.7 6 6 0
Nordrhein-Westfalen 37 3 111 478 45.1 45 51 −6
Sachsen 16 800 898 11.6• 16 13 3
Hessen 15 1 022 822 14.8 15 17 −2
Thüringen 7 383 778 5.6• 7 6 1
Rheinland-Pfalz 13 767 487 11.1• 13 13 0
Baden-Württemberg 37 1 874 481 27.2• 37 31 6
Saarland 4 179 289 2.6• 4 3 1

Sum (Divisor) 173 11 828 277 (69 000) 194 194 12− 12

TABLE 12.3 Direct-seat restricted sub-apportionment of CDU seats to districts. In the restricted

variant the better performance is decisive, direct seats or proportionate seats. Marked quotients (•)
are overruled by direct seats. The unproportionality index amounts to 12 seats.

As an alternative Table 12.3 uses the direct-seat restricted variant to apportion the

194 CDU seats among the fifteen CDU district lists, DivStd• = x. These seat numbers

are identical to the final results in Table 2.2, DivStd+Overhang, simply because of how

minimum restrictions take effect. In order to determine the unproportionality index

of x, Table 12.3 adjoins a penultimate column with the unrestricted apportionment of

194 seats, DivStd = z (divisor 60 700). The ultimate column contains the difference

between the actual apportionment and proportional solution, x − z. The unpropor-

tionality index amounts to |x− z|/2 = 12 seats. That is, the realized apportionment x

is twelve seats away from the proportionate optimum z.

The merger of direct seats and proportionate seats is an asset of the Bundestag

electoral system. If the two categories of votes—first votes and second votes—and the

two types of seats—direct seats and list seats—are to be reconciled, the creation of

additional seats must be brought from back to front. This is what the 2013 amendment

of the Federal Election Law achieves. It includes a house size adjustment step that is

likely to raise the Bundestag size beyond the notional level of 598 seats. The adjusted

multiplier secures a flawless applicability of the direct-seat restricted variant.

The Federal Election Law 2013 is the topic of the next chapter whence full details

are postponed. Here we only illustrate how the unproportionality levels depend on the

strategy that is adopted for the house size adjustment step. The following overview

lists the unproportionality indices of the CDU sub-apportionment for the adjustment

strategies (a)–(f) that are detailed below:

Strategy for the Bundestag CDU Unproportionality Index,
House Size Adjustment Step Size 2009 Seats CDU Sub-apportionment

(a) Notional size 598 173 21
(b) Direct seats +10% 653 190 15
(c) Quota-based estimates 658 191 15
(d) Status quo CDU seats 666 194 12
(e) Federal Election Law 2013 671 195 12
(f) Zero unproportionality 801 233 0
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Different adjustment strategies yield different Bundestag sizes and different CDU seat

numbers. The unproportionality index compares two apportionments, the direct-seat

restricted variant and its parent method, the divisor method with standard rounding.

The index counts by how many seats the two CDU sub-apportionments differ.

Strategy (a) apportions the 598 notional seats proportional to second votes, re-

sulting in 173 CDU seats (Table 2.1). As there are 173 direct seats, the direct-seat

restricted variant simply confirms the direct seat wins and otherwise cannot move at

all. The allocation’s unproportionality index is found to be 21 seats.

Strategy (b) adds a ten percent buffer to a party’s direct seat wins. In order to

produce 173 + 17 = 190 CDU seats, the Bundestag size is raised to 653. The buffer

seats enter the proportionality part. The unproportionality index decreases to 15 seats.

Strategy (c) determines the Bundestag size from first and second votes. When

in district i party j wins dij direct seats and vij second votes, the seat estimate is

taken to be max{dij , �(vij/v++)598�}. The overall party estimates are met when the

Bundestag size grows to 658 seats. The CDU unproportionality index stays at 15 seats.

Strategy (d) reproduces the same CDU seat total they actually received in 2009,

173 + 21 = 194. The pertinent calculations are presented in Table 12.3. The unpro-

portionality index of the direct-seat restricted CDU sub-apportionment is 12 seats.

Strategy (e) results from using the 2013 Federal Election Law, to be detailed in

Chapter 13. The unproportionality index remains unchanged, 12 seats. This option

exceeds the status quo seats of the CDU, providing 195 seats rather than 194.

Strategy (f) shows the ultimate Bundestag size of 801 seats, when the direct

seat gains of the CDU fit into the sub-apportionment calculation and all direct-seat

restrictions remain inactive. The unproportionality index would be zero.

The political and constitutional impact of active restrictions can only be appre-

ciated within the entire electoral system. In Germany an active restriction transfers

seats between district lists within the same party. The electorate’s division along party

lines remains untouched. Active restrictions do not change the political composition of

the Bundestag. They affect only the personal composition of the Bundestag. More di-

rect seats of a party in a district entail more representatives from this district, whence

the party sends from other districts fewer representatives than perfect proportionality

would indicate. Since every Member of the Bundestag is a representative of the whole

people (Section 2.5), it would appear to be of secondary importance whether a party’s

deputy originates from one district or the other.

In Scotland active restrictions cause seat transfers between parties (Section 12.4).

If one party sends more Members to the Scottish Parliament than proportionality indi-

cates, another party’s allotment comprises fewer members. The political composition

of the Scottish Parliament differs from what is warranted by perfect proportionality.

On the other hand active restrictions do not interfere with the agreed balance be-

tween districts. The prespecified district magnitudes are observed meticulously. Every

district sends seven representatives in addition to its direct seats. Regional represen-

tation is often considered a more sensitive issue than party representation, not just in

Scotland. A similar sensitivity emerges when considering the composition of the EP.
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12.6. COMPOSITION OF THE EP: CONSTRAINTS

The term composition of the EP refers to the allocation of the EP seats between the

Member States of the European Union. The house size of the EP comprises 751 seats.

With the July 2013 accession of Croatia the Union has 28 Member States. So far the

task sounds identical to the apportionment of the 435 seats of the United States House

of Representatives among the 50 states of the Union. The two problems differ in the

restrictions they have to obey. The United States Constitution solely demands that

each state shall have at least one representative.

The restrictions on the composition of the EP are more delicate. Article 14 Sec-

tion 2 of the 2010 Treaty of Lisbon, part of the Union’s primary law, imposes three

constitutional constraints. The first two are numerical, the third is structural:

There is a minimum threshold of six members per Member State.

No Member State shall be allocated more than ninety-six seats.

Representation of citizens shall be degressively proportional.

The remainder of this section digresses and explicates the rationale underlying the

triple constraints. We also comment on the population figures to be used in the cal-

culations. Then two principled methods are described that provably comply with

the legal stipulations, the Cambridge Compromise (Section 12.7) and its downgraded-

population variant (Section 12.8). The two allocations arising from the methodological

approach are compared with the actually enacted allocation for the 2014–2019 legisla-

tive period that emerged from political negotiations in the EP (Section 12.9). Finally

we sketch the Jagiellonian Compromise, a qualified majority voting system for the Eu-

ropean Council honoring the constitutional promise that all Union citizens are equal

(Section 12.10).

Minimum threshold. The minimum threshold of six members per Member

State enables a Member State’s seat allocation to reflect the political division of its

citizenry. This could barely be achieved with a minimum of one or two seats when

only the strongest party would obtain representation and, possibly, the second strongest

party. In 2009 Cyprus spreads its six representatives among four domestic parties and

three EP Political Groups (Table 1.6), Estonia among four parties plus one indep and

four Political Groups (Table 1.10), Luxembourg among four parties as well as four

Political Groups (Table 1.19), and Malta among two parties and two Political Groups

(Table 1.21). The relevance of a minimum threshold may fade away once the European

Political Parties start performing, but at present this is wishful thinking.

Maximum allocation. The limiting maximum prevents large Member States

from getting so many seats that would dominate the others. A similar restriction

was part of the 1919 Weimar Constitution in Germany. For the representation of the

German states in the Reichsrat (Second Chamber) Article 61 decreed that no state

was to be allotted more than two fifth of all seats. Throughout the functioning of the

Reichsrat 1919–1934 the restriction applied to the largest German state, Prussia.

The EP cap of ninety-six seats out of 751 is in absolute numbers, not relative

terms. Originally the limit was ninety-nine seats, expressing a common agreement that

no seat allocation would reach into the three-digit range. In view of the growth of the

Union the composition of the EP became a central topic of the 2000 Intergovernmental

Conference in Nice. Members of the negotiating teams classify the final outcome on the
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EP composition to be one of the most illogical and arbitrary decisions of the meeting,

see Gray / Stubb (2001). They report that the Presidency handed out seats like loose
change. No written explanation nor oral statement was issued why the maximum cap
was reduced from ninety-nine to ninety-six seats.

With 28 Member States and a house size of 751, every seat allocation procedure
that is reasonably proportionate to census figures will activate the ninety-six seat limit
only for Germany. The accession of further Member States, for instance of a large

country like Turkey, might render the maximum restriction inactive. If some Member
States were to leave the Union, the limit may affect other large states besides Germany.
In any case it is worth remembering that demographic mobility may interfere and

re-order the Member States’ populations in a manner different from now. With 28
members the ranking of census figures is inevitably dynamic and changing.

Degressive proportionality. The term “degressive proportionality” is a neo-
logism of unknown origin. It emerged during the political debates in the times of
the European Union’s precursors. Politicians welcomed degressive proportionality as

a rhetorical phrase of some persuasion without defining the term in any more precise
way. It expressed a vague and non-technical understanding that larger Member States
have lesser representative privileges than smaller Member States. Despite its opaque

ambiguity degressive proportionality was included into the text of a Treaty establishing
a Constitution for Europe that was drafted by the 2002–2003 Convention on the Future
of Europe in Rome. While the treaty never entered into force, degressive proportional-

ity flourished and struck roots in the 2010 Treaty of Lisbon. According to the Union’s
legal proceedings the obligation to finally equip the term with a precise operational
meaning lies with the EP.

The EP’s first attempt was a failure, generally speaking. A 2007 parliament
resolution defines degressive proportionality to mean the following:

[Parliament] considers that the principle of degressive proportionality means that

the ratio between the population and the number of seats of each Member State
must vary in relation to their respective populations in such a way that each
Member from a more populous Member State represents more citizens than each

Member from a less populous Member State and conversely, but also that no less
populous Member State has more seats than a more populous Member State.

The definition has two parts. The first part, up to the comma, addresses the represen-

tative weight of the xi seats of a Member State i with population pi. The representative
weight is the population-per-seats average, pi/xi (Section 2.8). The definition requires
the representative weights to be monotone. That is, two Member States i and j with

decreasing population figures must exhibit non-increasing representative weights,

pi > pj =⇒ pi
xi
≥ pj

xj
.

The second part, after the comma, demands that decreasing population figures entail
non-increasing seat numbers,

pi > pj =⇒ xi ≥ xj .

In our terminology this says that degressive proportionality implies concordance.
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The concordance requirement is a condition essential to democratic represen-

tation. Its denial would admit allocations awarding to a larger state fewer seats
than to a smaller state, an unacceptable absurdity. Concordance is one of the or-
ganizing principles of apportionment methods (Section 4.2). In contrast the first

requirement, representative-weight monotonicity, does not stand up to scrutiny and
cannot be sustained even though it sounds plausible and innocuous. Concordance
and representative-weight monotonicity may exclude each other, typically when sev-

eral Member States get the same number of seats. The 2007 seat allocation, negoti-
ated by the resolution’s rapporteurs and used to substantiate their proposal, verified
representative-weight monotonicity by pure coincidence.

The EP’s second attempt will be a success. In 2013 the EP decreed its composition
for the upcoming elections in 2014. The resolution amends the flawed 2007 definition
of degressive proportionality by injecting the words before rounding to whole numbers:

[. . .] the ratio between the population and the number of seats of each Member
State before rounding to whole numbers must vary in relation to their respective
populations [. . .]

The 2013 allocation, still emerging from negotiations, includes no evidence that any
rounding to whole numbers is going on whence it cannot be checked for compliance
with the 2013 definition of degressive proportionality. However, other sections of the

2013 resolution express the commitment that, next time, the EP will establish a seat
allocation system that is objective, fair, durable and transparent.

The attributes “objective, fair, durable and transparent” meticulously capture the

spirit of the Cambridge Compromise and its variants. These methods have in common
that their seat numbers are of the form

xi ∈ b+
[[pti
D

]]
.

Here b ∈ � is a preordained number of base seats, t ≤ 1 is an exponent to downgrade

the population figures, and the divisor D > 0 is determined so that the house size
is met, x+ = h. The 2013 degressive proportionality definition neglects the rounding
step [[·]], and simply requires the population-per-(seats before rounding) average to be

monotone. The representative-weight-before-rounding function is

f(p) =
p

b+ pt/D
=

1

bp−1 + (1/D)pt−1
.

It is increasing in p > 0, whence monotonicity is immediate, pi > pj ⇒ f(pi) ≥ f(pj).
Monotonicity is strict, or the function is constant. It is constant if and only if there is

no base seat nor downgrading, b = 0 and t = 1.
All citizens are treated equally if and only if the underlying divisor method is

unmodified. Otherwise, with modifications b ≥ 1 or t < 1, the allocation obeys strict

degressive proportionality. In plain words every allocation method is degressively pro-
portional, in the sense of the 2013 definition, provided it first hands out some base
seats or it evaluates exponentially downgraded population figures by means of a divi-

sor method. Degressivity is no longer a concern to worry about, but is promoted from
the odd constraint to a natural matter of fact.
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Population figures. Population figures are the key input for the composition of

the EP. It sounds a triviality that Member States announce their population figures

accurately and consistently. However, the triviality transpires to be a daunting task

garnished with immense obstacles and unexpected traps. Whom to count? When to

count? When to estimate? How to estimate? The determination of population figures

is a challenge that needs to be resolved by the Union’s 28 Member States in unison.

Instead we import the figures from elsewhere. The three constitutional organs of

the Union are the EP, the European Council, and the European Commission. The

Treaty of Lisbon decrees a QMV rule for council decisions. If a member of the council

so requests, it must be verified that the Member States constituting the qualified

majority represent at least 62 percent of the total population of the Union. The QMV-

population that is relevant for council’s QMV decisions during the calender year 2013

was published in the Official Journal of the European Union L16, 16–17 EN (19.1.2013).

Croatia’s population figure was adjoined in a Note de Transmission 9855/13 JUR 260

INST 246 (23.5.2013).

Irritatingly the QMV-population figures in the Official Journal suffer from a pre-

posterous format. Populations are quoted as fractional numbers, in batches of a tenth

of a thousand. For example Germany’s 81 843 743 citizens are disfigured into a QMV-

population of 81 843.7 cohorts of a thousand. The fault does not lie with EuroStat, the

Statistical Office of the European Union. Being aware that they count human beings

all statistical offices exhibit population figures in whole numbers. The least we can do

is to revert council’s cohorts to whole numbers, such as 81 843 700 for Germany. These

are the numbers displayed in Tables 12.4–6.

12.7. CAMBRIDGE COMPROMISE

The Cambridge Compromise derives its name from a workshop at the University of

Cambridge as reported by Grimmett et al. (2011). The label to be adopted for it is

“5+Upw”. The label is indicative of the base stage and the proportionality stage that

together establish the composition of the EP:

Each Member State receives five base seats.

The remaining seats are apportioned in proportion to population figures using the

divisor method with upward rounding with a maximum cap of 91 seats.

Technically this means that a Member State i with population pi is allocated

xi ∈ 5 +
⌈⌈pi
D

⌉⌉91
1

seats; the divisor D > 0 is determined so that the house size is met, x+ = 751.
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This dual-stage procedure obeys both, the minimum threshold and the maximum

allocation. Every state gets at least one proportionality seat since the divisor method

with upward rounding is impervious. This seat plus the five base seats verify the min-

imum threshold of six seats per Member State. The maximum allocation of 96 seats is

met since every Member State gets five base seats plus at most 91 proportionality seats.

Degressive proportionality is realized (Section 12.6). The Cambridge Compromise is a

legitimate allocation method for the composition of the EP.

Furthermore, the dual-stage construction of the Cambridge Compromise adequate-

ly fits the spirit of the Treaty of Lisbon. The treaty’s implicit message is that the Union

comprises two kinds of constitutional subjects, the Member States and the Union’s

citizens. There is a potential ambiguity in the term “Member State” over whether it

refers to a state’s citizenry or to a state’s government. The states’ governments are

represented in the European Council. The meaning applicable to the EP’s compo-

sition is “citizenry”. Thus the dual-stage Cambridge Compromise realizes a kind of

dual electoral equality. The base stage ascertains equality among the Member States’

citizenries, and the proportionality stage ensures equality among the Union’s citizens.

The proportionality stage of the Cambridge Compromise employs the divisor

method with upward rounding. It does so because the method is notorious for be-

ing biased in favor of smaller Member States at the expense of larger Member States

(Section 7.8). Thus biasedness resurfaces as a manifestation of a broadly understood

notion of degressive proportionality. In terms of majorization, the method treats groups

of smaller Member States at least as well as other methods (Sections 8.6 and 8.8). If

degressive proportionality admonishes larger states to leave an advantage to smaller

states, then the divisor method with upward rounding is superior to other methods.

As for the implementation of the minimum threshold of six seats two options

suggest themselves. The first option is incorporated into the Cambridge Compromise

by handling the maintenance of the threshold as a separate stage. Since an impervious

method is to be used it is sufficient to provide every Member State with five base seats.

With 28 Member States a total of 140 base seats are taken care of. This leaves 611 seats

for the proportionality stage. The second option would use the minimum-maximum

restricted variant of the divisor method with upward rounding (Section 12.3). It is not

hard to see that the result is less degressively proportional, in whatever broad sense.

We exemplify the differentials of the two options by comparing the top and bot-

tom thirds of the Member States (Section 7.10). Omitting Germany since it hits the

maximum cap, the top third of the Member States ranges from France to Belgium, the

bottom third from Ireland to Malta. The Cambridge Compromise (with allocations

xi ∈ 5 + ��pi/D��911 ) supplies the top and bottom thirds with 446 versus 73 seats. The

minimum-maximum restricted variant (with allocations xi ∈ ��pi/D��966 ) assigns to the

top and bottom thirds 489 versus 56 seats. Evidently the the Cambridge Compromise

is more favorable to smaller states than the minimum-maximum restricted variant.

Moreover, the Cambridge Compromise deviates from the decreed 2013 composition

less than the minimum-maximum restricted variant.
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12.8. DOWNGRADED-POPULATION VARIANT

This variant evades an activation of the maximum restriction. In cases when the

Cambridge Compromise is such that the maximum cap is inactive the variant remains

silent. In cases of an active capping the variant re-distributes the ensuing overshoot

in a non-linear fashion that benefits the smaller states more than the larger states.

The effect is easy to appreciate with the above example. The downgraded-population

variant awards the top and bottom thirds of the Member States 435 versus 76 seats.

The result favors the smaller states yet more than the Cambridge Compromise, and

also comes yet closer to the 2013 composition.

The downgraded-population variant involves an additional parameter, an expo-

nent t, whence we label it 5+Upwt. A Member State i with population pi is allocated

xi(t) ∈ 5 +
⌈⌈pti
D

⌉⌉
seats. When the pure Cambridge Compromise is such that the maximum cap is inac-

tive, the exponent is set to unity, t = 1, and the Cambridge Compromise allocation

persists. Otherwise an exponent t < 1 is calculated to downgrade all population figures

to pti until the largest state i = 1 fits the maximum cap, x1(t) = 96. The divisor D > 0

is determined so that the house size is met, x+(t) = 751. Use of the exponent makes

the maximum restriction in the seat formula for xi(t) dispensable.

Usually several exponents t1 < · · · < tn satisfy the definition. The correspond-

ing seat vectors are ordered by majorization, x(t1) � · · · � x(tn), as is shown in the

following theorem. Majorization means that the lowest seat vector is less preferential

to groups of larger states and more preferential to groups of smaller states. Abiding

to the philosophy of degressive proportionality the downgraded-population variant se-

lects the seat vector x(t1) lowest in the majorization order. For instance, the 2013

QMV-populations admit the seat vectors x(.927) � x(.928) � x(.93) � x(.9345). The

downgraded-population variant selects the vector x(.927) that is shown in Table 12.4.

Theorem. Let the divisor method A be based on an impervious signpost sequence

s(n), n ≥ 0. Then, for all base seats b ∈ � and house sizes h ∈ � that are jointly

feasible, the weighted population vectors (pt1, . . . , p
t
�) ∈ (0;∞)� with exponents t > 0

satisfy the following two statements:

a. The seat vectors x(t) ∈ b+A(h; pt1, . . . , p
t
�), t > 0, are increasing in the majoriza-

tion order, that is, 0 < t < T ⇒ x(t) � x(T ).

b. The downgraded-population variant is well-defined, that is, there exists an exponent

t ≤ 1 such that the largest Member State is allocated 96 seats.

Proof. a. It suffices to consider a seat vector y(t) ∈ A(h− �b; pt1, . . . , p
t
�). It is accompanied by

the Max-Min Inequality maxj≤�

(
s
(
yj(t)

)
/ptj

)
≤ mini≤�

(
s
(
yi(t) + 1

)
/pti

)
(Theorem 4.5). For

all i ≤ � and j ≤ � we get t log(pi/pj) ≤ log
(
s
(
yi(t) + 1

))
/s
(
yj(t)

)
. Imperviousness guarantees

s
(
yi(t) + 1

)
≥ 1; in case s

(
yj(t)

)
= 0 we set the right-hand side equal to infinity. With ordered

populations p1 > · · · > p� the sign of log(pi/pj) determines the exponent interval[
max
i>j

(
log

s
(
yi(t) + 1

)
s
(
yj(t)

) /
log

pi

pj

)
; min

i<j

(
log

s
(
yi(t) + 1

)
s
(
yj(t)

) /
log

pi

pj

)]
.
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All values T in this interval reproduce the seat vector y(t). Let T be equal to the upper limit,

and let i < j be two states with T = log
(
s
(
yi(t)+1

)
/s
(
yj(t)

)/
log(pi/pj). The equation implies

a tie, s
(
yi(t) + 1

)
/pTi = s

(
yj(t)

)
/pTj . Hence the transfer of a seat from the smaller state j to

the larger state i gives rise to the next seat vector y(T ). Lemma 8.3 shows that the sequence of

vectors thus obtained increasing in the majorization order, y(t) � y(T ).

b. Majorization implies that the largest state i = 1 never loses a seat, 0 < t < T ⇒ y1(t) ≤ y1(T )

(Section 8.7). Since advancement is by transfers of single seats, the seat numbers y1(t), t > 0,

form a discrete interval. The interval starts with limt→0 y1(t) = �h/��− b. Indeed, as t tends to

zero all weighted population become almost uniform. Hence larger states are allocated �h/��− b

seats and smaller states �h/��− b seats, where the division into larger and smaller states is such

that the house size h − �b is met. The interval finishes with limt→∞ y1(t) = h − �b − (� − 1).

Indeed, as t tends to infinity the largest state turns dominant. Hence the finishing seat vector

allocates just one seat to the �− 1 smaller states, and gives all other seats to the largest state.

Let M ∈ � be a preordained maximum cap that satisfies limt→0 y1(t) ≤ M ≤ limt→∞ y1(t).

(Table 12.4 has 22 ≤ M = 91 ≤ 584.) Then the equation y1(t) = M is solvable. In case the

ordinary Cambridge Compromise solution suffices, y1(1) ≤ M , no action is taken. In case the

ordinary Cambridge Compromise exceeds the maximum cap, y1(1) > M , all solutions of the

equation y1(t) = M fulfill t < 1. (The exponent interval in part a suggests an algorithm how to

step down from 1 to t.) Hence the downgraded-population variant is well-defined.

The elaborate weighting of populations causes citizens from different Member

States to be treated unequally. Although long ago there existed electoral systems

granting priests and professors multiple votes, under the courteous premise that they

were wiser creatures than the rest of the electorate, contemporary democracies strive

for equality. The proportionality stage of the downgraded-population variant is not in

line with the motto “One person, one vote” because it converts the true population

figures into population indices of dubious constitutional legitimacy. On the other

hand it offers a formulaic passage from the negotiated 2013 composition to the more

principled Cambridge Compromise.

12.9. COMPOSITION OF THE EP: ALLOCATIONS

Table 12.4 compares the Cambridge Compromise and its downgraded-population

variant with the 2013 composition enacted for the 2014–2019 legislative period, with

QMV-population as explained in Section 12.6. The data provide simple examples that

in the 2007 definition of degressive proportionality concordance and representative-

weight monotonicity may become incompatible. For instance both Ireland (QMV-

population 4 582 800) and Croatia (4 398 150) have eleven seats. If the two states

become eligible for another seat, concordance forces it to go to Ireland. But a twelfth

seat lowers Ireland’s representative weight (381 900) below the representative weight of

Croatia (399 832). This is forbidden by representative-weight monotonicity. The 2007

definition lacks general validity. Even the 2013 composition features six discordant

pairs of states wherein the smaller carries the larger representative weight (FR-DE,

UK-DE, ES-IT, ES-DE, IE-FI, IE-SK). Every pair violates degressive proportional-

ity as defined in 2007. In contrast, the allocations of the Cambridge Compromise

and of its downgraded-population variant conform to the 2013 definition of degressive

proportionality (Section 12.6).
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EP2013 Cambridge Compromise Downgraded-Pop.Variant (t = .927) 2013
Composition QMV-Pop. 5+Quotient 5+Upw• QMV-Pop.t 5+Quotient 5+Upwt Seats

Germany 81 843 700 5+97.4• 96 21 643 990.3 5+90.3 96 96
France 65 397 900 5+77.9 83 17 580 355.2 5+73.3 79 74
United Kingdom 62 989 600 5+74.99 80 16 979 395.5 5+70.8 76 73
Italy 60 820 800 5+72.4 78 16 436 764.1 5+68.5 74 73
Spain 46 196 300 5+54.996 60 12 737 695.7 5+53.1 59 54
Poland 38 538 400 5+45.9 51 10 767 712.3 5+44.9 50 51
Romania 21 355 800 5+25.4 31 6 229 614.7 5+25.98 31 32
Netherlands 16 730 300 5+19.9 25 4 968 072.9 5+20.7 26 26
Greece 11 290 900 5+13.4 19 3 450 478.9 5+14.4 20 21

Belgium 11 041 300 5+13.1 19 3 379 712.3 5+14.1 20 21
Portugal 10 541 800 5+12.5 18 3 237 740.2 5+13.5 19 21
Czech Republic 10 505 400 5+12.5 18 3 227 375.3 5+13.5 19 21
Hungary 9 957 700 5+11.9 17 3 071 096.3 5+12.8 18 21
Sweden 9 482 900 5+11.3 17 2 935 110.6 5+12.2 18 20
Austria 8 443 000 5+10.1 16 2 635 497.0 5+10.99 16 18
Bulgaria 7 327 200 5+8.7 14 2 310 987.4 5+9.6 15 17
Denmark 5 580 500 5+6.6 12 1 795 419.7 5+7.5 13 13
Slovakia 5 404 300 5+6.4 12 1 742 807.7 5+7.3 13 13

Finland 5 401 300 5+6.4 12 1 741 910.8 5+7.3 13 13
Ireland 4 582 800 5+5.5 11 1 495 782.2 5+6.2 12 11
Croatia 4 398 150 5+5.2 11 1 439 830.4 5+6.004 12 11
Lithuania 3 007 800 5+3.6 9 1 012 364.2 5+4.2 10 11
Slovenia 2 055 500 5+2.4 8 711 335.5 5+2.97 8 8
Latvia 2 041 800 5+2.4 8 706 939.5 5+2.9 8 8
Estonia 1 339 700 5+1.6 7 478 339.2 5+1.99 7 6
Cyprus 862 000 5+1.03 7 317 844.9 5+1.3 7 6
Luxembourg 524 900 5+0.6 6 200 683.2 5+0.8 6 6
Malta 416 100 5+0.5 6 161 806.6 5+0.7 6 6

Sum (Divisor) 508 077 850 (840 000) 751 — (239 800) 751 751

TABLE 12.4 Cambridge Compromise, and its downgraded-population variant. The two methods

allocate five base seats plus proportionality seats. Using the divisor method with upward rounding

proportionality is referred to the QMV-populations, or to the downgraded QMV-populations. The

QMV-populations are the official 2013 figures, including Croatia, for qualified majority decisions in

the council. The last column lists the seat allocations actually enacted in June 2013.

Table 12.4 invokes the 2013 QMV-population (Section 12.6). The Cambridge

Compromise and its sibling set out by awarding five base seats to each Member State.

The remaining 611 seats are handed out proportionally but in different ways. The

Cambridge Compromise allocates one non-base seat for every 840 000 citizens or part

thereof unless the maximum cap imposes 96 seats. The downgraded-population variant

builds on the calculatory indices p.927i . It allots one non-base seat for every 239 800

index units. The exponent .927 downgrades all population figures so that the largest

state ends up getting five base seats plus 91 proportionality seats. Hence it is no

longer necessary to mention the maximum cap explicitly, though implicitly its presence

determines the exponent .927.

A quantitative distance measure is the number of seat transfers needed to pass

back and forth between the two allocations (Section 12.4). The Cambridge Compromise

allocation and the 2013 composition are 29 seat transfers apart. The downgraded-

population allocation and the 2013 composition are closer, calling for only 18 transfers

of the 751 seats. Moreover, the downgraded-population allocation entails spacings

between the five largest states that appear to be more natural than the spacings of the

Cambridge Compromise (96, 79, 76, 74, 59 versus 96, 83, 80, 78, 60).
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EP2013 Cambridge Compromise Limited-Loss Variant 2013
Composition QMV-Pop. 5+Min..Max 5+Quotient 5+Upw• Seats

Germany 81 843 700 5+89..91 5+95.6• 96 96
France 65 397 900 5+67..91 5+76.4 82 74
United Kingdom 62 989 600 5+66..91 5+73.5 79 73
Italy 60 820 800 5+66..91 5+71.01 77 73
Spain 46 196 300 5+47..91 5+53.9 59 54
Poland 38 538 400 5+44..91 5+44.995 50 51
Romania 21 355 800 5+25..91 5+24.9 30 32
Netherlands 16 730 300 5+19..91 5+19.5 25 26
Greece 11 290 900 5+14..91 5+13.2 19 21

Belgium 11 041 300 5+14..91 5+12.9• 19 21
Portugal 10 541 800 5+14..91 5+12.3• 19 21
Czech Republic 10 505 400 5+14..91 5+12.3• 19 21
Hungary 9 957 700 5+14..91 5+11.6• 19 21
Sweden 9 482 900 5+13..91 5+11.1• 18 20
Austria 8 443 000 5+11..91 5+9.9• 16 18
Bulgaria 7 327 200 5+10..91 5+8.6• 15 17
Denmark 5 580 500 5+6..91 5+6.5 12 13
Slovakia 5 404 300 5+6..91 5+6.3 12 13

Finland 5 401 300 5+6..91 5+6.3 12 13
Ireland 4 582 800 5+4..91 5+5.4 11 11
Croatia 4 398 150 5+4..91 5+5.1 11 11
Lithuania 3 007 800 5+4..91 5+3.5 9 11
Slovenia 2 055 500 5+1..91 5+2.4 8 8
Latvia 2 041 800 5+1..91 5+2.4 8 8
Estonia 1 339 700 5+1..91 5+1.6 7 6
Cyprus 862 000 5+1..91 5+1.01 7 6
Luxembourg 524 900 5+1..91 5+0.6 6 6
Malta 416 100 5+1..91 5+0.5 6 6

Sum (Divisor) 508 077 850 — (856 500) 751 751

TABLE 12.5 Limited-loss variant of the Cambridge Compromise. Every Member State is allocated

five base seats. The remaining seats are apportioned proportionately to QMV-populations, with a

minimum restriction of the 2013 composition minus two seats, and a maximum cap of 91 seats.

The trouble with the downgraded-population variant is its dubious constitutional

status. Does the invocation of the calculatory indices p.927i violate the principle of a

direct election? What do the indices mean? The 416 100 Maltese citizens are trans-

formed into index 161 806.6. Is the ratio 161 806.6/416 100 ≈ .4 an indication that a

full citizen in Malta corresponds to a “forty percent citizen in the Union?

If the purpose of the downgraded-population variant is to dampen the losses of

the currently overrepresented middle-size Member States, then it might be worthwhile

to explicitly impose a limit to such losses and employ a minimum-maximum restricted

variant of the Cambridge Compromise. As an example we may insist that no Member

State loses more than two seats of its 2013 composition. The limited-loss variant adapts

the proportionality stage of the Cambridge Compromise as follows:

The remaining seats are apportioned in proportion to population figures using the

divisor method with upward rounding with a maximum cap of 91 seats and with

a minimum restriction of the status quo allocation minus two seats.

Table 12.5 shows the ensuing allocation. For instance the minimum restriction for

Hungary is 14 seats. Indeed, the addition of five base seats gives at least 19 seats, two

seats below the status quo allocation (21). Hungary would be one of seven states that

turn out to be shielded by the minimum restriction. The limited-loss variant evades
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dubious calculatory diversions and maintains a direct reference to population figures.

It allocates one non-base seat for every 856 500 citizens or part thereof, except when

the minimum restrictions warrant more seats or the maximum cap imposes fewer seats.

In Table 12.5 all exceptions are marked with a dot(•). The limitation of losses may

find its constitutional justification in the pragmatic principle of electoral continuity

that exempts the legislator from amending the electoral system too abruptly when a

gentle transition is also feasible.

12.10. JAGIELLONIAN COMPROMISE

The Jagiellonian Compromise proposes a qualified majority voting system for the Eu-

ropean Council. The council is the decision-making body of the Member States’ gov-

ernments. Hence the Jagiellonian Compromise does not belong to the systems for

representing people that are in the focus of this book. Yet the procedure pays due

attention to the status of the Union’s citizens. In this sense the Jagiellonian Compro-

mise is in agreement with the Cambridge Compromise, its later namesake. In view of

the philosophical affinity we take the space to briefly outline its essence.

In a QMV system, every Member State is equipped with a voting weight. A group

of Member States qualifies as a majority when their cumulative voting weights meet

or exceed a preordained quota.

The Jagiellonian Compromise derives its voting weights and quota directly from

the Member States’ population figures, and it does so in a remarkably transparent way.

The voting weight of Member State i simply is the square root of its QMV-population,√
pi. The quota q is calculated from the QMV-populations by averaging the sum of

the square roots and the square root of the sum,

q :=
1

2

⎛⎝∑
i≤28

√
pi +

√∑
i≤28

pi

⎞⎠ .

Table 12.6 exhibits weights and quota for the year 2013. For the sake of simplicity all

quantities are commercially rounded. The quota 60 723 amounts to 61.4 percent of the

sum of the voting weights.

In the past the council and its precursors agreed on weights and quota by negoti-

ation. The negotiated systems cast doubt on the expertise of European diplomats and

their advisers. In the European Economic Community 1958–1972, Germany, France

and Italy each had weight 4, the Netherlands and Belgium 2 each, and Luxembourg

one. The quota was set to be 12. This system gave Luxembourg no decision power

whatsoever. The other states commanded twelve votes or more, or ten votes or less.

Luxembourg was never decisive to reach the quota, or to fail it. In 1973 Luxembourg

was assigned two votes, and Ireland and Denmark three each. For the ten Member

States 1981–1985 the quota was set at 45. Among the 1024 possible voting profiles

Luxembourg was decisive as often as were Ireland and Denmark. The three states had

the same decision power despite of the ostensible distinctness of their voting weights.

Diplomatic good-will cannot substitute for factual expertise.
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EuropeanCouncil2013 QMV-Population Voting Weight Power Share

Germany 81 843 700 9 047 9.15
France 65 397 900 8 087 8.18
United Kingdom 62 989 600 7 937 8.02
Italy 60 820 800 7 799 7.89
Spain 46 196 300 6 797 6.87
Poland 38 538 400 6 208 6.28
Romania 21 355 800 4 621 4.67
Netherlands 16 730 300 4 090 4.14
Greece 11 290 900 3 360 3.40

Belgium 11 041 300 3 323 3.36
Portugal 10 541 800 3 247 3.28
Czech Republic 10 505 400 3 241 3.28
Hungary 9 957 700 3 156 3.19
Sweden 9 482 900 3 079 3.11
Austria 8 443 000 2 906 2.94
Bulgaria 7 327 200 2 707 2.74
Denmark 5 580 500 2 362 2.39
Slovakia 5 404 300 2 325 2.35

Finland 5 401 300 2 324 2.35
Ireland 4 582 800 2 141 2.16
Croatia 4 398 150 2 097 2.12
Lithuania 3 007 800 1 734 1.75
Slovenia 2 055 500 1 434 1.45
Latvia 2 041 800 1 429 1.44
Estonia 1 339 700 1 157 1.17
Cyprus 862 000 928 0.94
Luxembourg 524 900 724 0.73
Malta 416 100 645 0.65

Sum 508 077 850 98 905 100.00
Quota 60 723 61.40

TABLE 12.6 Jagiellonian Compromise proposal for the European Council. A Member State’s voting

weight is the square root of its QMV-population. A group of Member States qualifies as a majority

when their cumulative weights meet or exceed the quota, 60 723. The quota is the average of the sum

of the voting weights (98 905) and the square-root of the population total (
√
508 077 850). The system

gives all Union citizens the same power to contribute indirectly via their governments.

The number of voting profiles in which Member State i turns decisive by passing

from Yea to Nay or from Nay to Yea provides a meaningful measure for the state’s

decision power. The 28 Member States of the current Union allow 268 million profiles

of dividing into Yea and Nay camps. Diplomatic insight no longer suffices to count how

often a state is tipping the scales. Elaborate procedures are needed to carry out the

counting, in general. Specifically, the Jagiellonian Compromise comes with a surprise:

A state’s share of power is proportional to its voting weight! The proof of the statement

is difficult, but the statement itself makes life easy. All that is needed to determine the

power distribution among the 28 Member States is to normalize the voting weights.

The resulting power share βi :=
√
pi/

∑
j≤28

√
pj of Member State i is shown in the

last column of Table 12.6 (in percent). The power share βi is also called its normalized

Banzhaf index whence the use of the letter β.

The crux of the Jagiellonian Compromise is the quota formula. The formula

is due to S�lomczyński / Życzkowski (2006), two members of the Jagiellonian Univer-

sity Kraków, thus explaining the attribute “Jagiellonian”. The system is a veritable

“compromise” because it gently mediates between the decision power biases and other

characteristics of several QMV systems currently in use or under discussion. The
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seminal monograph of Felsenthal /Machover (1998) teaches how to comprehensively

analyze QMV systems. In particular it shows how to appraise a QMV system from
the citizens’ viewpoint.

The basic assumption is that decision-making is a repetitive business. Therefore,

system indices must be evaluated by their likely values, not by a single realization. The
citizens’ influence whether a proposal is carried is modeled by a thought experiment
in an idealized democracy. First a popular vote is taken, and then the government

executes the majority’s will. From an a priori viewpoint it appears constitutionally
compelling to assume that citizens cast their votes independently of each other. The
critical proposals are those that are supported or dismissed with the same likelihood,

one-half. Of course the influence of a single citizen tends to zero, particularly in a
state i where the population pi is large. On the other hand a large population of
voters gives rise to an almost infinite set of nip-and-tuck races where the last vote

becomes decisive. Since a limit of the form 0 ×∞ has no meaning, a more sensitive
analysis is called for. As the population grows, pi →∞, an individual citizen’s decision
power decreases as 1/

√
pi. This is a consequence of the Central Limit Theorem. Let

Xn = 1 indicate a Yea of citizen n, and Xn = 0 a Nay. The outcome is determined
by the Yea total,

∑
n≤pi

Xn, a divergent sum. It needs to be scaled by 1/
√
pi to be

stabilized; this is the point where the square root makes its appearance. It can then

be shown that if Member State i has a decision power βi on the government level, the
system conveys indirect power βi/

√
pi to every citizen.

The discussion of the Jagiellonian Compromise now is quickly concluded. As

mentioned above the government of Member State i has direct decision power βi =√
pi/

∑
j≤28

√
pj . Since βi/

√
pi = 1/

∑
j≤28

√
pj is the same constant for all Member

States i, the citizens of all Member States share the same indirect decision power.

This is the second surprise that comes with the Jagiellonian Compromise: All Union
citizens have the same indirect decision power!

The final conclusion is exceedingly gratifying. The Jagiellonian Compromise and

the Cambridge Compromise both boost the democratic foundations of the Union. The
Jagiellonian Compromise guarantees that all Union citizens participate with provable
equality in the decision-making processes of the European Council, even though partici-
pation is indirect through their governments. The Cambridge Compromise implements

a dual concept of equal representation in the EP by achieving equality of the Mem-
ber States’ citizenries as well as equality of the Union’s citizens. The next chapter
turns to a multi-goal problem of a different type, the reconciliation of proportional

representation and the election of persons.
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Proportionality and
Personalization: BWG 2013

The 2013 amendment of the German Federal Election Law (Bundeswahlgesetz 2013,
BWG 2013) is described by example. The Bundestag’s seat apportionment obeys strict
proportionality by political parties. All second votes in the country acquire practically
equal success values. Thereafter a party’s country-wide seats are allocated among its
various state-lists of nominees in a way granting precedence to the direct seats won via
first votes in single-seat constituencies. In this way the system combines proportional
representation with the election of persons. The per-party sub-apportionment uses the
direct-seat restricted variant of the divisor method with standard rounding. Its feasi-
bility is ensured by an initial house size adjustment that usually raises the Bundestag
size above the nominal level of 598 seats. The amended electoral system is exemplified
with the September 2013 election of the 18th Bundestag.

13.1. THE 2013 AMENDMENT OF THE FEDERAL ELECTION LAW

The success of Germany’s post-war Federal Election Law rests on its multi-purpose
character. The law serves three goals, to achieve proportionality between political

parties across the whole country, to proportionally divide a party’s seats among the
party’s various state-lists of nominees, and to combine the system’s proportional nature
with plurality elections of individual candidates in single-seat constituencies.

Until 1980 the combination of proportional representation with the election of
persons worked out alright because only two or three parties passed the five percent
threshold and participated in the apportionment calculations. The diversification of

the party system exacerbated the weaknesses of the old law, as reviewed in Sections 2.4
and 7.4. Eventually the Federal Election Law was amended in 2013. The amendment
was carried by the broad consensus of four of the five political groups in the German

Bundestag, with only the LINKE party abstaining.
The present chapter elucidates the new provisions with the election to the 18th

German Bundestag on 22 September 2013. The new law introduces two novel elements.

The first novelty is an initial calculation to adjust the size of the Bundestag. The
adjustment ensures that the two components, proportional representation and the
election of persons, can be combined successfully. In 2013 the Bundestag size is raised

to 631 seats. Thereafter the super-apportionment apportions the h = 631 seats to the
parties in proportion to their country-wide second votes (Section 13.2).
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18BT2013 Second Votes Quotient DivStd

Super-apportionment
CDU 14 921 877 255.4 255
SPD 11 252 215 192.6 193
LINKE 3 755 699 64.3 64
GRÜNE 3 694 057 63.2 63
CSU 3 243 569 55.52 56

Sum (Divisor) 36 867 417 (58 420) 631

TABLE 13.1 Super-apportionment of 631 seats by second votes, election to the 18th Bundestag 2013.

Every 58 420 votes justify roughly one seat. The seat apportionment is carried out using the divisor

method with standard rounding, DivStd. All second votes acquire practically equal success values.

The second novelty concerns the per-party sub-apportionments. They do not use

the unabridged divisor method with standard rounding, but its direct-seat restricted

variant (Section 13.3). This innovation classifies as a novelty within Germany only.

When adopting the German two-votes system other countries instantly rectified the

notorious deficiencies of the system by imposing minimum restrictions, see the examples

of Scotland and London in Section 12.4. The law’s house size adjustment strategy is

cumbersome and generous (Section 13.4). It is tempting to envision strategies that are

less complicated and more parsimonious (Section 13.5).

13.2. APPORTIONMENT OF SEATS AMONG PARTIES

The amended Federal Election Law’s very first action is to determine the definitive size

of the Bundestag. The September 2013 results entail an adjustment to a level of 631

seats. This is the size how the Bundestag officiates during the 2013–2017 legislative

period. The super-apportionment, that is, the apportionment of the 631 seats among

the political parties, is explained in this section.

The apportionment is proportionate to the parties’ country-wide totals of second

votes. A party’s vote total is the sum of second-votes over all sixteen German states,

except that the CDU campaigns in only fifteen states (all but Bavaria) and that the

CSU stands in just one state (Bavaria). The seat apportionment is carried out by

means of the divisor method with standard rounding. Every 58 420 second votes justify

roughly one seat, see Table 13.1.

The divisor method with standard rounding is distinguished by excellent proper-

ties guaranteeing that the second votes are dealt with as fairly as is practical. First, all

voters’ second votes enjoy a practically equal success value, in the sense of minimizing

the squared-error deviations from the ideal one-hundred percent success (Section 10.2).

Second, the seat apportionment is success-value stable since an attempted seat trans-

fer never entails an improvement of the success-value disparities but worsens them or

leaves them as is (Section 10.8). Third, all political parties receive their ideal share of

seats as far as is practically possible, because the apportionment is ideal-share stable

(Section 10.11). Fourth, the seat biases of all parties are zero. That is, on average the

unavoidable rounding operations entail seat profits and seat deficits that are entirely

random and not subject to a systematic trend (Theorem 7.7). Fifth, the verbalization

“Scale all vote counts by a common divisor and then round interim quotients to whole

numbers as in day-to-day life” arguably is the simplest instruction possible.
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18BT2013 (continued) Dir. Second Votes Quotient DivStd•
Sub-apportionment to state-lists: CDU

SH Schleswig-Holstein 9 638 756 10.7 11
MV Mecklenburg-Vorpommern 6 369 048 6.2 6
HH Hamburg 1 285 927 4.8 5
NI Niedersachsen 17 1 825 592 30.6 31
HB Bremen 0 96 459 1.6 2
BB Brandenburg 9 482 601 8.1• 9
SA Sachsen-Anhalt 9 485 781 8.1• 9
BE Berlin 5 508 643 8.52 9
NW Nordrhein-Westfalen 37 3 776 563 63.3 63
SN Sachsen 16 994 601 16.7 17
HE Hessen 17 1 232 994 20.7 21
TH Thüringen 9 477 283 8.0• 9
RP Rheinland-Pfalz 14 958 655 16.1 16
BY Bayern — — — —
BW Baden-Württemberg 38 2 576 606 43.2 43
SL Saarland 4 212 368 3.6 4

Sum (Divisor) 191 14 921 877 (59 700) 255

District Dir. Second Votes Quotient DivStd

Sub-apportionment to state-lists: SPD
SH 2 513 725 8.8 9
MV 0 154 431 2.6 3
HH 5 288 902 4.9 5
NI 13 1 470 005 25.1 25
HB 2 117 204 2.0 2
BB 1 321 174 5.49 5
SA 0 214 731 3.7 4
BE 2 439 387 7.51 8
NW 27 3 028 282 51.8 52
SN 0 340 819 5.8 6
HE 5 906 906 15.503 16
TH 0 198 714 3.4 3
RP 1 608 910 10.4 10
BY 0 1 314 009 22.46 22
BW 0 1 160 424 19.8 20
SL 0 174 592 3.0 3

Sum 58 11 252 215 (58 500) 193

Dir. Second Votes Quotient DivStd

LINKE
0 84 177 1.4 1
0 186 871 3.1 3
0 78 296 1.3 1
0 223 935 3.7 4
0 33 284 0.6 1
0 311 312 5.2 5
0 282 319 4.7 5
4 330 507 5.51 6
0 582 925 9.7 10
0 467 045 7.8 8
0 188 654 3.1 3
0 288 615 4.8 5
0 120 338 2.0 2
0 248 920 4.1 4
0 272 456 4.54 5
0 56 045 0.9 1

4 3 755 699 (60 000) 64

District Dir. Second Votes Quotient DivStd

Sub-apportionment to state-lists: GRÜNE
SH 0 153 137 2.53 3
MV 0 37 716 0.6 1
HH 0 112 826 1.9 2
NI 0 391 901 6.47 6
HB 0 40 014 0.7 1
BB 0 65 182 1.1 1
SA 0 46 858 0.8 1
BE 1 220 737 3.6 4
NW 0 760 642 12.6 13
SN 0 113 916 1.9 2
HE 0 313 135 5.2 5
TH 0 60 511 1.0 1
RP 0 169 372 2.8 3
BY 0 552 818 9.1 9
BW 0 623 294 10.3 10
SL 0 31 998 0.53 1

Sum 1 3 694 057 (60 600) 63

TABLE 13.2 Sub-apportionments of party-seats to state-lists, election to 18th Bundestag 2013. The
CDU direct seats (Dir.) overrule the interim quotient in three states (marked •), due to the direct-seat

restricted variant of the divisor method with standard rounding. For the other parties the direct seats
are supported by the proportionality seats whence the restrictions remain dormant.
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13.3. ASSIGNMENT OF CANDIDATES TO SEATS

Since the CSU stands only in one state, Bavaria, its seat apportionment is completed

instantly. The super-apportionment awards the party 56 seats (Table 13.1). Moreover

the party wins 45 direct seats on the basis of first votes. Therefore, the CSU sends

45 constituency winners into the Bundestag, plus the eleven nominees on its Bavarian

state-list that rank top apart from any constituency winners.

The other four parties stand in more states than just one. Again every direct-

seat winner is declared elected due to the first-vote plurality victory in her or his

constituency. These direct-seat wins impose a minimum restriction on the finalizing

sub-apportionment of a party’s country-wide seats. Therefore, the apportionment

method used is not the simple divisor method with standard rounding (DivStd), but

its direct-seat restricted variant (DivStd•). In every state the direct-seat winners get

their seats, and the remaining seats are assigned to the top-ranked nominees on the

state-list after removing the direct-seat winners. See Table 13.2.

The size adjustment procedure ensures that every per-party sub-apportionment

gets sufficiently many seats to support all direct seats. In the 2013 election the direct-

seat restrictions remain dormant in the three sub-apportionments for SPD, LINKE,

and GRÜNE whose seat allocations coincide with those from the (unabridged) divisor

method with standard rounding. Hence these seat allocations enjoy the method’s

excellent properties reviewed in the previous section. Note, however, that success-value

optimality has two distinct meanings, previously in the super-apportionment, and now

in the sub-apportionment. Previously, the super-apportionment evaluates second votes

by party affiliation for which the principle of electoral equality is paramount. Now,

the sub-apportionments re-evaluate second votes by federal provenance, whether they

are cast for the (same) party in one state, or in another state.

The CDU sub-apportionment is distinguished by having to cope with direct-seat

restrictions that are active. Every 59 700 second votes justify roughly one seat, except

when a direct-seat restriction warrants more seats. In Table 13.2 the quotients that are

superseded by direct-seat wins are marked with a dot (•). The unproportionality index

(Section 12.4) between the direct-seat restricted apportionment, x = DivStd•, and the

unrestricted apportionment, z = DivStd (not shown in the table), is |x − z|/2 = 3.

In plain words, the direct-seat restrictions have the effect that three CDU seats are

assigned to state-lists other than indicated by proportionality. The deviation from

proportionality serves two goals. First it is instrumental to evade overhang seats and

negative voting weights that formerly troubled the law. Second it allows to success-

fully combine the two characteristic components of the Bundestag electoral system,

proportional representation and the election of persons.

13.4. INITIAL ADJUSTMENT OF THE BUNDESTAG SIZE

A central novelty is the initial adjustment of the Bundestag size to ensure that the

system can accommodate the actual election results. Of course there are many ways to

achieve this goal. The way chosen is cumbersome. It carries some of the burden that is

inevitable when reaching a broad political consensus. The transient 2011 amendment

introduced separate apportionments in each of the states. These separate per-state
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18BT2013-Step 1 German Pop. 31.12.2012 Quotient DivStd

Schleswig-Holstein 2 686 085 21.7 22
Mecklenburg-Vorpommern 1 585 032 12.8 13
Hamburg 1 559 655 12.6 13
Niedersachsen 7 354 892 59.3 59
Bremen 575 805 4.6 5
Brandenburg 2 418 267 19.49 19
Sachsen-Anhalt 2 247 673 18.1 18
Berlin 3 025 288 24.4 24
Nordrhein-Westfalen 15 895 182 128.1 128
Sachsen 4 005 278 32.3 32
Hessen 5 388 350 43.4 43
Thüringen 2 154 202 17.4 17
Rheinland-Pfalz 3 672 888 29.6 30
Bayern 11 353 264 91.52 92
Baden-Württemberg 9 482 902 76.4 76
Saarland 919 402 7.4 7

Sum (Divisor) 74 324 165 (124 050) 598

TABLE 13.3 Step 1 of the house size adjustment calculations, election to the 18th Bundestag 2013.

The 598 nominal seats are allocated to the states by population figures as of 31 December 2012. Every

124 050 Germans justify roughly one seat.

apportionments resurface in the adjustment calculation not out of technical necessity,

but more as a face-saving device for futile former proposals.

The adjustment of the Bundestag size proceeds in three steps. Step 1 allocates the

598 nominal Bundestag seats to the sixteen states on the basis of population figures.

Step 2 evaluates each state separately by apportioning a state’s seats among parties

in proportion to second votes. The maximum of direct-seat wins and proportionality

seats is earmarked as the target seat number for this party in this state. Step 3 raises

the Bundestag size until every party gets at least as many seats as are called for by

the party’s total target seats.

Step 1: Allocation of nominal seats to states. The first step allocates the

598 nominal seats to the sixteen states on the basis of the German population of the

end of the previous year, 31 December 2012. The population figures are published by

the German Statistical Office usually during the summer. The divisor method with

standard rounding is applied, see Table 13.3.

It may happen that a direct-seat winner is not affiliated with a party or that the

affiliated party fails the five percent threshold. Such a seat is allotted to the winning

candidate, and simultaneously deducted from the allocation of the state where the

constituency is located. For example in 2002 two PDS candidates won their Berlin

constituencies, but the PDS failed the five percent threshold. The allocation for Berlin

would then have to be reduced from 24 to 22 seats, for use in the subsequent Step 2.

Step 2: Target seats. The second step consists of sixteen apportionment cal-

culations, one for each state. The seats from Step 1 are apportioned among the state’s

parties by second votes using the divisor method with standard rounding. In Table 13.4

the applicable state divisors are collected in the CDU box; they are also used in the

other boxes. For instance in Schleswig-Holstein, the 638 756 CDU votes are divided by

61 000. The interim quotient 10.47 is rounded to 10 seats. At this point the direct seat

wins come into play. The better result of direct seats (9) and of proportionality seats

(10) is earmarked as the target seat number, 10. For the CDU, the per-state target
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18BT2013-Step 2 CDU
State divisor Dir. Second Votes Quotient DivStd Target

SH 61 000 9 638 756 10.47 10 10
MV 60 000 6 369 048 6.2 6 6
HH 60 000 1 285 927 4.8 5 5
NI 66 000 17 1 825 592 27.7 28 28
HB 65 000 0 96 459 1.48 1 1
BB 60 000 9 482 601 8.0 8 9
SA 60 000 9 485 781 8.1 8 9
BE 62 000 5 508 643 8.2 8 8
NW 63 600 37 3 776 563 59.4 59 59
SN 61 000 16 994 601 16.3 16 16
HE 61 000 17 1 232 994 20.2 20 20
TH 60 000 9 477 283 8.0 8 9
RP 63 000 14 958 655 15.2 15 15
BY 58 300 — — — — —
BW 60600 38 2 576 606 42.52 43 43
SL 67 000 4 212 368 3.2 3 4

Total target seats 242

SPD
Dir. Sec. Votes Quotient DivStd Target

SH 2 513 725 8.4 8 8
MV 0 154 431 2.6 3 3
HH 5 288 902 4.8 5 5
NI 13 1 470 005 22.3 22 22
HB 2 117 204 1.8 2 2
BB 1 321 174 5.4 5 5
SA 0 214 731 3.6 4 4
BE 2 439 387 7.1 7 7
NW 27 3 028 282 47.6 48 48
SN 0 340 819 5.6 6 6
HE 5 906 906 14.9 15 15
TH 0 198 714 3.3 3 3
RP 1 608 910 9.7 10 10
BY 0 1 314 009 22.54 23 23
BW 0 1 160 424 19.1 19 19
SL 0 174 592 2.6 3 3

Total target seats 183

LINKE
Dir. Sec. Votes Quotient DivStd Target

0 84 177 1.4 1 1
0 186 871 3.1 3 3
0 78 296 1.3 1 1
0 223 935 3.4 3 3
0 33 284 0.51 1 1
0 311 312 5.2 5 5
0 282 319 4.7 5 5
4 330 507 5.3 5 5
0 582 925 9.2 9 9
0 467 045 7.7 8 8
0 188 654 3.1 3 3
0 288 615 4.8 5 5
0 120 338 1.9 2 2
0 248 920 4.3 4 4
0 272 456 4.496 4 4
0 56 045 0.8 1 1

60

GRÜNE
Dir. Sec. Votes Quotient DivStd Target

SH 0 153 137 2.51 3 3
MV 0 37 716 0.6 1 1
HH 0 112 826 1.9 2 2
NI 0 391 901 5.9 6 6
HB 0 40 014 0.6 1 1
BB 0 65 182 1.1 1 1
SA 0 46 858 0.8 1 1
BE 1 220 737 3.6 4 4
NW 0 760 642 12.0 12 12
SN 0 113 916 1.9 2 2
HE 0 313 135 5.1 5 5
TH 0 60 511 1.0 1 1
RP 0 169 372 2.7 3 3
BY 0 552 818 9.48 9 9
BW 0 623 294 10.3 10 10
SL 0 31 998 0.48 0 0

Total target seats 61

TABLE 13.4 Step 2 of the house size adjustment calculations, election to the 18th Bundestag 2013.
The evaluations operate per state, that is, rowwise. The state divisor that is shown in the top box is

applied to this state throughout the other three boxes. The maximum of the direct seats (Dir.) and
the proportionality seats (DivStd) yields the target seat numbers.
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18BT2013-Step 3 Min. Second Votes QuotientDivStd QuotientDivStd QuotientDivStd

CDU 242 14 921 877 241.8 242 255.3 255 255.4 255
SPD 183 11 252 215 182.4 182• 192.51 193 192.6 193
LINKE 60 3 755 699 60.9 61 64.3 64 64.3 64
GRÜNE 61 3 694 057 59.9 60• 63.2 63 63.2 63
CSU 56 3 243 569 52.6 53• 55.49 55• 55.52 56

Sum 602 36 867 417 (61 700) 598 (58 450) 630 (58 420) 631

TABLE 13.5 Step 3 of the house size adjustment calculations, election to the 18th Bundestag 2013.

A party’s total target seats constitute a minimum restriction (Min.). Up to house size 630 some

minima are missed (•), thereafter they are met. Hence the definitive Bundestag size is 631 seats.

seats sum to 242 target seats altogether. For the SPD, FDP, LINKE and GRÜNE the

total target seats are 183, 60, and 61 seats, respectively. The CSU is not shown in the

table. Its interim quotient 3 243 569/58 300 = 55.6 leads to 56 proportionality seats.

In view of 45 direct CSU seats, the earmarked target seat number is 56 seats.

Step 3: Adjustment of the Bundestag size. The final step interprets a

party’s country-wide target seats as the minimum number of seats to which the party

is entitled. If these minima are reached or exceeded with the 598 nominal seats, then

the nominal Bundestag size is also the final size. If not, the Bundestag size is raised.

The first house size supporting all minima constitutes the definitive Bundestag size.

The underlying apportionment method is the divisor method with standard rounding.

Table 13.5 exhibits the last house size that fails, 630, and the first house size that

complies, 631. The qualifiers “last” and “first” are to the point because of the house

size monotonicity of divisor methods (Section 9.4). Now the definitive Bundestag size

of 631 seats triggers the super-apportionment and the ensuing sub-apportionments as

explicated in Sections 13.2 and 13.3.

13.5. ALTERNATIVE HOUSE SIZE ADJUSTMENT STRATEGIES

Step 2 reacts too sensitively to the non-uniform voter turnouts in the sixteen states.

The differences are exacerbated by the heterogeneous distribution of ineffective votes.

The two effects manifest themselves through the state divisors’ variability in Table 13.4.

The divisors extend from 58 300 in Bavaria to 67 000 in Saarland. That is, in Bavaria

every 58 300 votes justify roughly one seat, in the Saarland every 67 000 votes. In Ta-

ble 13.5 the initial federal divisor 61 700 is lowered to the final value 58 420 close to the

Bavarian state divisor 58 300. The diminishment of the divisor forces an enlargement

of the house size. However, the diminishment is due to the variability of the voter

turnout and the uneven spread of ineffective votes. This is beside the point. The point

is to reconcile proportional representation and the election of persons.

Section 12.5 compares various strategies (a)–(f) for the adjustment of the Bundes-

tag size. With the 2013 data they produce the following results. In each instance the

particular strategy accounts for the size of the Bundestag. These seats are apportioned

among the parties, using the divisor method with standard rounding, and lead to the

seat number for the CDU as listed. In order to accommodate the 191 direct seats

of the CDU, the CDU sub-apportionment applies the direct-seat restricted variant of

the divisor method with standard rounding. The unproportionality index measures the
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effect of the restrictions when active. It is the number of seats that are apportioned dif-

ferently, due to active direct-seat restrictions, than what perfect proportionality would
indicate (that is, use of the unabridged divisor method with standard rounding).

Strategy for the Bundestag CDU Unproportionality Index,
House Size Adjustment Step Size 2013 Seats CDU Sub-apportionment

(a) Notional size 598 242 4
(b) Direct seats +10% 598 242 4
(c) Quota-based estimates 598 242 4
(d) BWG 2008 CDU seats 607 246 3
(e) BWG 2013 apportionment 631 255 3
(f) Zero unproportionality 661 268 0

It is evident that the complicated and laborious strategy (e) of the current law performs
poorly. The unproportionality index is lowered from 4 to 3 seats only insignificantly.
Here is a review how the strategies proceed.

Strategy (a) apportions the 598 nominal seats using the divisor method with
standard rounding. The CDU receives 242 seats. The sub-apportionment of these
seats must cope with the 191 direct seat wins of the CDU. Therefore the direct-seat

restricted variant is applied. It allocates four seats differently than compared to perfect
proportionality, whence its unproportionality index is 4 seats.

Strategy (b) makes sure that the CDU proportional allotment exceeds the number

of direct seats by ten percent. That is, the house size must guarantee the CDU at least
191 + 19 = 210 seats. Since this is achieved by the nominal house size of 598 seats, no
further action is needed. The end result is the same as with strategy (a).

Strategy (c) replaces the separate per-state evaluations in Step 2 by applying a
common divisor to all eighty state-lists of nominees. The divisor used is the votes-per-
seats ratio, 36 867 417/598 = 61 651.2. Interim quotients are truncated to their integral

part in order to obtain parsimonious seat estimates. With target seats taken to be the
maximum of direct seats and estimated seats, the target seat total for the CDU turns
out to be 241 seats. Again no further action is needed.

Strategy (d) argues that the CDU allotment with the old 2008 law would have
consisted of 242 proportionality seats plus 4 overhang seats. Hence the Bundestag size
is raised to 607 seats. Then the super-apportionment allocates 246 seats to the CDU.

Strategy (e) is the current 2013 law described above. Strategy (f) raises the
Bundestag size to 661 seats, which would have enabled the defunct 2008 law to ac-
commodate all direct seats into the proportionality calculations and to circumvent the

generation of overhang seats.
Adjustment strategies affect the balance of constituency seats and list seats. With

a nominal house size of 598 seats, there are 299 constituency seats and 299 list seats.

If the house size is enlarged then more list seats are brought to life. Therefore, another
option is to reduce the 299 constituencies to 275 say, and to adopt a nominal Bundestag
size of 550 seats. Under present conditions the adjustment strategy in the current 2013

law promises a Bundestag size of about 600 seats. In 2002 the Bundestag appointed a
reform committee to reduce the nominal house size from then 656 seats to below 600.
It would be easy to amend the current law so that it realizes the 2002 reduction goal.
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Representing Districts and
Parties: Double Proportionality

Double-proportional methods achieve fairness in two directions, the geographical divi-
sion of the country and the political division of the electorate. Initially all seats are
apportioned among districts proportionately to population figures and, independently,
among parties proportionately to vote counts. The core of double proportionality is the
finalizing sub-apportionment, the allotment of seats to districts and parties in a way
that each district meets its district magnitude and each party exhausts its overall seats.
Hence there are two sets of electoral keys, district divisors and party divisors. Once
the divisors are published the sub-apportionment is verified quite easily.

14.1. THE 2012 PARLIAMENT ELECTION IN THE CANTON OF
SCHAFFHAUSEN

When an electoral area is subdivided into regional districts the electoral system often is

expected to honor the subdivision of the electoral region by geographical districts in a

similar way as it honors the division of the electorate by political parties. Historically,

the idea that a Member of Parliament represents a local district precedes the view that

parliamentary representation provides a mirror image of the division along party lines,

see Sections 1.10 and 2.1. Procedures that successfully meet the double challenge are

double-proportional divisor methods. Because of the dual objective, the notational

requirements and abstract analysis of double-proportional apportionment methods are

more elaborate than those of simple-proportional apportionment methods.

It is instructive to begin with a concrete example, the September 2012 election

of the parliament of the Swiss Canton of Schaffhausen. The Cantonal Parliament

(Kantonsrat) comprises sixty seats. For its election the whole canton is subdivided into

six districts. The seat apportionment is carried out using the double-proportional vari-

ant of the divisor method with standard rounding. We show how the sixty seats are allo-

cated to the six districts, how the sixty seats are apportioned among the twelve parties

that stood in the 2012 election, and how the double-proportional sub-apportionment

works that finalizes the seat allotment.
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Prior allocation of seats to districts: District magnitudes. The number of

seats allocated to a district is called the district magnitude. The district magnitudes for

the 2012 election are obtained from the census figures as of 31 December 2010, using

the Hare-quota method with residual fit by greatest remainders and guaranteeing all

districts at least one seat. The seat guarantee holds without further ado, whence the

quota method ambiguities from Section 12.2 play no role. See Table 14.1.

The minimum restricted variant of the divisor method with standard rounding

yields the same allocation. Every 1 250 citizens justify roughly one seat. The dis-

trict magnitudes range from twenty-eight seats in the largest district, the City of

Schaffhausen, to a single seat in the smallest district, the exclave Buchberg-Rüdlingen.

The smallest district is a single-seat constituency where formerly the representative was

elected by plurality vote. Votes cast for candidates other than the constituency winner

were wasted. On the other hand the magnitude of the largest district exceeds twice the

number of parties, 28 > 2 × 12 = 24, whence the largest district obeys the house size

recommendation of Section 7.9. However, the volatility of district magnitudes loses its

importance when a double-proportional system is used.

In Schaffhausen, and in similar electoral systems, the district magnitude also fixes

the number of candidates that may be marked on the ballot sheet. Since parties, can-

didates, and election officials need time to make appropriate preparations, the district

magnitudes were publicized in January 2012 well ahead of the September election.

Super-apportionment of seats to parties: Overall party-seats. In every

district the votes of all candidates of a party are aggregated into the party votes (Partei-

stimmen). Since a voter in the City of Schaffhausen may mark up to 28 candidates

while a voter in Buchberg-Rüdlingen can mark only one, different districts yield party

votes on different scales. However, electoral equality pertains to human beings, not to

marks on the ballot sheets. Therefore party votes are converted into voter counts in

the same way as in the Canton of Zurich (Section 4.8). First they are divided by the

district magnitude, and then the resulting quotient is commercially rounded:

voter count =

〈
party votes

district magnitude

〉
.

Party votes and district magnitudes are conveniently documented in Table 14.3. In the

Schaffhausen district, 55 905 SVP party votes yield voter count 1 997 (since 55 905/28 =

1 996.6). In Buchberg-Rüdlingen, the 309 SVP votes stay put (since 309/1 = 309). The

sum of the SVP voter counts over the six districts is 6 740 (Table 14.2).

The reference to voter counts ensures that the super-apportionment honors all

voters equally, irrespective of the district where they reside. Since the seat appor-

tionment is carried out using the divisor method with standard rounding, the voters’

contributions to the political division of the cantonal parliament obey the principle of

electoral equality in a best possible fashion. That is, the success values of the voters

are as equal as is practically feasible (Section 10.2), the seat apportionment is success-

value stable (Section 10.8) as well as ideal-share stable (Section 10.11), and the seat

biases of all parties vanish identically (Theorem 7.7). The resulting seat number of a

party is referred to as their overall party-seats. For example, the strongest party SVP

is apportioned 16 overall party-seats, the weakest party JUSO one. See Table 14.2.
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Sh2012DistrictMagn. Population Min. Quotient HaQgrR

Schaffhausen 34 943 1 27.458 28
Klettgau 15 453 1 12.143 12
Neuhausen 10 185 1 8.003 8
Reiat 8 986 1 7.061 7
Stein 5 222 1 4.103 4
Buchberg-Rüdlingen 1 567 1 1.231 1

Sum (Split) 76 356 6 (.3) 60

TABLE 14.1 District magnitudes, Schaffhausen 2012. The 60 seats are allocated to districts pro-
portionately to the census figures as 31 December 2010 using the Hare-quota method with residual fit
by greatest remainders. The minimum restriction of at least one seat per district remains dormant.
The minimum restricted variant of the divisor method with standard rounding yields the same result.

Sh2012Super-app. Voter count Quotient DivStd

SVP 6 740 16.1 16
SP 5 314 12.7 13
FDP 3 778 9.0 9
AL 1 886 4.51 5
ÖBS 1 878 4.49 4
CVP 1 232 2.9 3

JSVP 1 117 2.7 3
EDU 889 2.1 2
JFSH 827 2.0 2
SVP Sen. 618 1.48 1
EVP 551 1.3 1
JUSO 384 0.9 1

Sum (Divisor) 25 214 (418) 60

TABLE 14.2 Super-apportionment, Schaffhausen 2012. The determination of the overall party-
seats is based on the parties’ canton-wide totals of the per-district voter counts. Every 418 voters

justify roughly one seat. Since the divisor method with standard rounding is used the resulting overall
party-seats realize practically equal success values for all voters in the whole canton.

Sh2012Sub-app. SVP SP FDP AL ÖBS CVP District
divisor

16 13 9 5 4 3
Schaffhausen 28 55 905-5 70 837-6 46 656-4 34 800-4 27 243-2 12 596-1 10 700
Klettgau 12 23 901-4 11 871-2 11 980-2 2 802-1 3 431-1 2 350-0 5 400
Neuhausen 8 4 493-2 5 252-3 3 309-2 781-0 1 003-0 2 054-1 2 000
Reiat 7 8 749-2 4 380-1 3 493-1 968-0 2 087-1 443-0 3 100
Stein 4 2 519-2 1 681-1 464-0 301-0 782-0 1 064-1 1 400
Buchberg-Rüdlingen 1 309-1 92-0 85-0 98-0 400
Party divisor 1.16 1.05 1 0.9 1.2 1

(continued) JSVP EDU JFSH SVPSen. EVP JUSO
District
divisor

3 2 2 1 1 1
Schaffhausen 28 8 214-1 9 204-1 11 126-1 5 031-1 7 178-1 5 617-1 10 700
Klettgau 12 5 650-1 3 952-1 1 336-0 1 348-0 3 006-0 917-0 5 400
Neuhausen 8 644-0 457-0 377-0 820-0 348-0 292-0 2 000
Reiat 7 1 241-1 936-0 1 106-1 1 033-0 318-0 3 100
Stein 4 201-0 159-0 202-0 149-0 100-0 1 400
Buchberg-Rüdlingen 1 45-0 63-0 38-0 400
Party divisor 0.8 1 0.7 0.9 1.2 1

TABLE 14.3 Sub-apportionment, Schaffhausen 2012. The Schaffhausen SVP party votes (55 905)
are divided by the Schaffhausen divisor (10 700) and SVP divisor (1.16). The resulting quotient 4.504
justifies 5 seats. The other seat numbers are obtained similarly. The published divisors guarantee

that each district meets its district magnitude and that each party exhausts its overall party-seats.
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Sub-apportionment: Joint allotment of seats to districts and parties.

The final sub-apportionment consists of the allocation of all 60 seats to the lists of

nominees presented to the electorate in the 6 districts by the 12 parties. The maximum

number of potential lists would be 6×12 = 72. But some parties do not stand in some

districts, and so only 65 lists materialize. The sub-apportionment delivers a joint

allotment of seats to districts and parties aiming at three goals:

(1) Each district meets its district magnitude.

(2) Each party exhausts its overall party-seats.

(3) Proportionality is observed among parties within a given district as well as

among districts within a given party.

The goals are achieved by the double-proportional variant of the divisor method with

standard rounding. Two sets of divisors are needed. The first consists of a district

divisor Ci > 0 for every district i. The second set contains a party divisor Dj > 0 for

every party j. The divisors ensure that goals (1) and (2) are satisfied meticulously.

Goal (3) is realized in that district divisors scale the party votes within a given district,

while party divisors scale the party votes within a given party. The way how these

divisors are determined is the theme of the subsequent sections.

Once the divisors are obtained and published it is rather easy to determine the

seat numbers. The party votes vij that in district i are cast for party j are divided

by the two associated divisors to obtain the interim quotient vij/(CiDj). Standard

rounding yields the double-proportional seat number xij . In the absence of ties we get

xij =

〈
vij

CiDj

〉
. (†)

Table 14.3 summarizes the double-proportional solution. The inner box shows party

votes and seat numbers separated by a hyphen “-”, for all districts i and for all parties j.

Appreciation and verification of the solution is aided by the information arranged on

the outside: district magnitudes on the left, overall party-seats along the top, district

divisors on the right, and party divisors along the bottom.

For instance, in the first district the Schaffhausen SVP’s 55 905 party votes are

divided by the Schaffhausen divisor (10 700) and the SVP divisor (1.16). The resulting

interim quotient, 4.504, is rounded to 5. The Schaffhausen list of the SVP is allocated

five seats. Similarly the JUSO’s 5 617 party votes in Schaffhausen are divided by

the Schaffhausen divisor and the JUSO divisor (1). The interim quotient is 0.52 and

justifies one seat. Across the whole table the seat numbers xij sum rowwise to the

district magnitude and columnwise to the overall party-seats. The seat apportionment

of the 2012 Cantonal Parliament election in the Canton of Schaffhausen is complete.

The merits of double proportionality vividly surface in the single-seat district

Buchberg-Rüdlingen. Formerly the election was by plurality vote, for the last time

in 2004. Voter turnout in 2004 amounted to 580/1 068 = 54 percent. The 2012

turnout of 730/1 136 = 64 percent is a significant increase of ten percentage points.

The increased turnout are people who voted for somebody else than the prospective

winner. Presumably these people have become aware that, though their candidates

can hardly overturn the traditional winner, their votes nevertheless contribute to the

canton-wide apportionment.
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In fact the 98 AL votes in Buchberg-Rüdlingen are instrumental to secure a fifth

seat. AL is canton-wide ahead of ÖBS by a narrow margin of eight votes only (Ta-

ble 14.2). With 8 votes fewer in Buchberg-Rüdlingen AL would be tied with ÖBS,

each with 1 878 votes, other things being equal. Hence 91 of the 98 AL voters are

decisive. With the old plurality system they would have had no say whatsoever. All

421 non-winning votes would have been wasted and useless. Now the voters in the

Buchberg-Rüdlingen district contribute to the canton-wide electoral success as much

as do the voters in all other districts.

14.2. FROM THE EXAMPLE TO THE GENERAL SET-UP

The example of the 2012 Schaffhausen Cantonal Parliament election features many

aspects of greater generality. We comment on some of them.

Organizing principles. The Schaffhausen example aptly illustrates which orga-

nizing principles (Section 4.2) extend to double-proportional divisor methods. Three

do, two do not. Anonymity applies since districts may be permuted at will, and so

may be parties. Decency holds true since in (†) a scaling of the numerator is instantly

matched by a scaling in the denominator. Exactness is established as in Section 4.4.

Balancedness may fail,

vij = vmn �⇒ ∣∣xij − xmn

∣∣ ≤ 1.

A violation of balancedness is easily constructed from the Schaffhausen data by raising

the Klettgau CVP party votes, 2 350, to the level of the Stein SVP party votes, 2 519.

The super-apportionment in Table 14.2 and the divisors in Table 14.3 stay the same.

The seat numbers, zero and two, violate balancedness.

Discordant seat assignments. Concordance may also fail,

vij > vmn �⇒ xij ≥ xmn.

As an example we raise the CVP party votes in Klettgau by yet another vote to 2 520,

or even to 4 668. Still they receive no seats, while the SVP in Stein gets two.

Discordant seat assignments also occur within a party. For a within-party com-

parison we switch to voter counts. The Klettgau SP voter count 989 gets two seats, the

Neuhausen SP voter count 657 receives three. This discordance pair may be explained

by relating voter counts to district totals. The Klettgau SP voter count 989 out of a

Klettgau total of 6 045 is a share of 16 percent. The Neuhausen SP voter count 657

out of a Neuhausen total of 2 482 is 26 percent. If five seats were to be apportioned

according to weights 16 and 26, the first participant would get two seats, the second

three. From this viewpoint this discordance pair looks somewhat reasonable.

Discordance pairs within the same district are more conspicuous. In Klettgau,

the 2 802 AL party votes produce one seat, the 3 006 EVP party votes yield none.

Fortunately, discordant seat assignments are rare due to the excellent mirror image

of votes and seats that results from double-proportionality. The few discordant seat

assignments that possibly emerge in a practical instance are unstructured and unpre-

dictable. They are caused by the externally prescribed district magnitudes and overall

party-seats that restrict the feasibility range of double-proportional seat matrices in a

queer way. Occasional discordances are unavoidable in general.
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Winner-take-one modification. Specifically, in single-seat districts, concor-

dance can be rescued. We recommend to do so. In fact, in a single-seat district

discordance is truly perplexing. It means that the only seat is allocated not to the

strongest party, but to the runner-up or another weaker party. Luckily this does not

happen in the 2012 Schaffhausen election. Nevertheless a discordance accident is eas-

ily manufactured by raising the AL votes in Buchberg-Rüdlingen from 98 to 262. In

the super-apportionment of Table 14.2 the overall party-seats remain unaffected. But

double-proportionality would award the sole Buchberg-Rüdlingen seat to the 262 AL

voters, not to the 309 SVP voters. The assignment would invert the former plurality

vote and thus irritate the public, press, and parties.

In single-seat districts concordance may be forced by way of the following winner-

take-one modification: In every district the strongest party is allocated at least one

seat. In recognition of the principle of electoral equality the wording addresses every

district, whether large or small. The ensuing seat guarantees in the sub-apportionment

have repercussions on the super-apportionment. Every party must receive at least as

many seats as this party accumulates by means of the seat guarantees. The induced

minimum restrictions in the super-apportionment are of no real worry though. Since

they concern stronger parties, in practice they are fulfilled automatically.

In the 2012 Schaffhausen election the strongest party in Klettgau, Reiat, Stein,

and Buchberg-Rüdlingen is the SVP, in Schaffhausen and Neuhausen the SP. Hence

the super-apportionment must impose the minimum restrictions of at least four seats

for the SVP, and at least two seats for the SP. They are visibly fulfilled since the SVP

actually is apportioned 16 seats and the SP 13 (Table 14.2). In the sub-apportionment,

larger districts automatically assign a seat to the strongest party and hence are un-

affected by the winner-take-one modification. However, in Buchberg-Rüdlingen the

modification matters. It makes sure that the single Buchberg-Rüdlingen seat goes to

the 309 SVP voters even when the number of AL voters increases to 262 as in the

previous paragraph, or even to 308, other things being equal.

The Schaffhausen electoral law omits the winner-take-one modification. We believe

that the modification is always recommendable when some of the district magnitudes

are as low as one or two seats. The extensive simulation studies of Maier (2009 [109])

strongly support the recommendation. In single-seat districts the winner-take-one

modification perpetuates the merits of the former plurality vote, and overcomes its

demerits of wasting all minority votes.

General set-up. Applicability of the winner-take-one modification is not bound

to the divisor method with standard rounding that Schaffhausen uses. The underlying

divisor method may be quite arbitrary. It may be distinct from the methods employed

in the prior allocation of seats to districts, or in the super-apportionment of seats to

parties. The two precursory steps precede the double-proportional final solely to fix

the marginals, the district magnitudes and the overall party-seats. We designate the

district magnitude of district i by ri, and the overall party-seats of party j by sj .

Generally assuming that there are k districts and � parties the seat numbers xij are

assembled into a k× � seat matrix x = ((xij)). As usual the rounding rule that belongs

to the underlying divisor method is denoted by [[·]] (Section 4.4).
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Definition. A seat matrix x is called a double-proportional seat apportionment

when there exist positive row divisors C1, . . . , Ck > 0 and positive column divisors

D1, . . . , D� > 0 such that for all rows i ≤ k and columns j ≤ � we have

xij ∈
[[ vij
CiDj

]]
, xi+ :=

∑
j≤�

xij = ri, x+j :=
∑

i≤k
xij = sj . (‡)

District magnitudes and overall party-seats provide the row marginals ri and col-

umn marginals sj (German: Spaltenmarginalien) that must be attained by the row

and column sums of a seat matrix x. The seat matrix x remains the same whether the

original weights vij are scaled, or the row-normalized weights vij/vi+, or the column-

normalized weights vij/v+j , or the overall-normalized weights vij/v++, or the un-

rounded voter counts vij/ri. This is easily seen by adjusting row or column divisors

appropriately. The definition also tolerates a truncated rounding rule [[·]]bijaij with min-

imum restrictions aij and maximum restrictions bij (Section 12.3). For instance the

winner-take-one modification is accommodated by setting the minimum restrictions

equal to unity when in district i party j is strongest, aij = 1, and otherwise aij = 0.

Since it is irrelevant how the prespecified marginals are calculated, we no longer

distinguish between voter counts and party votes. From now on we address the quan-

tities vij as vote weights, or simply as weights.

Definition. A weight matrix v is defined to be a nonnegative k × � matrix with

no row nor column vanishing,

v = ((vij)) ∈ [0;∞)k×�, vi+ > 0 for all i ≤ k, v+j > 0 for all j ≤ �.

The definition admits vanishing weights, vij = 0, but excludes the nonsensical

constellation that a whole row or column consists of zeros. The admission of vanishing

weights is a new feature of double-proportional problems that is structurally innocuous

but technically demanding. By contrast, simple-proportional apportionment problems

assume all weights to be positive (Section 4.1). The anonymity principle allows to

move vanishing weights to the end of the vote vector and forget about them. This

simplification is no longer feasible in double-proportional problems. It often happens

that some party j does not stand in some district i, entailing a vanishing vote weight

vij = 0. In the Schaffhausen example the weight matrix features seven structural zeros;

in Table 14.3 they show up as empty cells.

Uniqueness. The most important technical question is whether a double-propor-

tional seat apportionment is unique. The answer of the upcoming Uniqueness Theo-

rem 14.3 is Yes, except for ties. The exception of ties is harmless. Ties are theoretically

challenging but practically negligible. The Schaffhausen 2012 election is tie-free, as is

every other empirical data set we know of. Hence the double-proportional apportion-

ment in Table 14.3 is unique and final, and not up for discussion. There is no reason to

worry when somebody publishes other district and party divisors, or when program-

ming experts concoct lines of code they fancy will benefit the parties of their choice,

or when the computer code is flawed and erroneous. The only test to pass is that the

seat numbers and the published divisors satisfy the defining relations (‡).
Uniqueness does not hold for the district divisors Ci and the party divisors Dj as

we know from Section 4.7. The presence of two sets of divisors introduces yet another

degree of freedom. Evidently the scaled divisors C̃i = αCi and D̃j = Dj/α would do

the job, too, whatever the scaling constant α > 0.
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The new degree of freedom serves to embellish the final divisors Ci andDj from (‡)
into user-friendly divisors C̃i and D̃j apt for publication. First, the scaling constant

is set equal to the median of the final party divisors, D0 := med(D1, . . . , D�). If � is

even, we choose the lower median. Second, with weights v̂ij := vij/(CiD0) every party

is treated separately. Its sj seats are allocated to the districts 1, . . . , k in proportion

to (v̂1j , . . . , v̂kj). The user-friendly divisor from Section 4.6 is selected for publication,

D̃j . Third, with weights ṽij = vij/D̃j every district is treated separately. Its ri seats

are apportioned to parties 1, . . . , � according to (ṽi1, . . . , ṽi�). The user-friendly divisor

of Section 4.6 is selected for publication, C̃i.

As a result, one or more of the published party divisors equal unity and the others

vary above and below. In Table 14.3 four party divisors are unity, four lie above and

four below. The district divisors are of a size close to what would emerge if every

district were apportioned separately on its own.

Existence. The other technical question is that of existence. Can we be sure

that a set of double-proportional seat numbers satisfying (‡) exists? The answer is in

the affirmative. Existence is implied by the Optimality Theorem 14.5 below, which

builds on the Critical Inequalities 14.4. The inequalities characterize the solutions of

a double-proportional divisor method in the same way as the Max-Min Inequality 4.5

characterizes the solutions of a simple-proportional divisor method. While reassuring,

the abstract existence statement is dispensable in concrete instances. It plainly suffices

to publish district and party divisors that do the job. Table 14.3 is an example.

Algorithms. Even when we know that there exists a double-proportional seat

apportionment, there still remains the task of finding it. The task boils down to calcu-

lating district divisors C1, . . . , Ck and party divisors D1, . . . , D� that give rise to a seat

matrix x satisfying the defining relations (‡). The task is resolved by the Alternating

Scaling algorithm, or by the Tie-and-Transfer algorithm. For all practical purposes the

Alternating Scaling algorithm is generally fast, but it may stall in singular instances

when the scaling leads to a weight matrix exhibiting many ties in a weird pattern.

The Tie-and-Transfer algorithm is generally slow but always safe. The algorithms and

their ramifications are to be discussed in Sections 14.7 and 14.8.

The functioning of the Alternating Scaling algorithm is easy to understand. The

basic ingredient is a simple-proportional divisor method. The idea is to repeat the

method many times until a solution is reached. In the first step all districts are handled

separately. Such a step is called a scaling of rows. Then row marginals are met, column

marginals possibly not. In the second step the original weights are re-scaled with the

previous district divisors, and then all parties are handled separately. This step is

called a scaling of columns. Column marginals are met, row marginals possibly not. In

the third step the previous weights are re-scaled using the previous party divisors, and

again all districts are handled on their own. This constitutes another scaling of rows,

to be followed by another scaling of columns, and so on. The alternation terminates

as soon as row and column marginals are met simultaneously. Upon termination the

then current seat matrix is the desired double-proportional seat apportionment.

The Schaffhausen example in Table 14.3 requires five scalings of rows and columns.

The three odd scalings 1, 3, 5 concern rows and call for 3× 6 = 18 applications of the

simple-proportional divisor method with standard rounding. Scalings 2 and 4 treat

columns and need 2 × 12 = 24 simple-proportional apportionments. Altogether the
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Alternating Scaling algorithm applies the simple-proportional divisor method 18+24 =

42 times. It terminates with the double-proportional seat matrix that is displayed in

Table 14.3. The final divisors are embellished for publication as outlined above.

Proposed first by Balinski /Demange (1989a, 1989b) double-proportional divisor

methods are a rather recent addition to proportional representation methodology. The

quest that parliamentary representation simultaneously merges the geographical and

political divisions of the electorate is much older of course. The two most popular

approaches to preserving the regional and political dimensions grant one dimension

precedence over the other. These approaches are rudimentary applications of the Al-

ternating Scaling algorithm by instantly terminating after the first step.

The Alternating Scaling algorithm as introduced above starts with a scaling of

rows. Termination after the first step then means that the district magnitudes are

apportioned in each district separately. No attention is paid to overall party-seats.

Party divisors remain on their initialization level, Dj = 1, and disappear from the

defining relations (‡). The electoral area is perceived as an assembly of its districts,

the geographical subdivision predominates. This is the system used in the Canton

of Schaffhausen before the 2008 adoption of the double-proportional divisor method.

The system is still in use in other Swiss cantons. In the EP elections separate district

apportionments are applied in Belgium, France and Ireland, see Table 1.31.

Because of the symmetry between rows and columns, the Alternating Scaling

algorithm could also be specified by starting with a scaling of columns. Termination

after the first step then means that the overall party-seats are apportioned among the

districts, separately for each party. No attention is paid to the per-district seat totals.

District divisors remain on their initialization level, Ci = 1, and disappear from the

defining relations (‡). The predominant goal is to mirror the political division of the

country. The per-party sub-apportionments are familiar from the German Bundestag

elections. They are also employed in the EP election in Poland, see Table 1.23.

It is a political decision whether precedence is given to districts and their district

magnitudes, or to parties and their overall party-seats, or whether a third option is

preferred that strikes a balance between districts and parties. Double-proportional

divisor methods offer an attractive way to realize the third option. The improved

balance is paid for by a few more calculations than are usually called for. Since the

additional labor is executed by computer, the actual price is nil.

In the remainder of the chapter we embark on a more detailed investigation of the

technical questions raised above: uniqueness, existence, and algorithms.

14.3. UNIQUENESS OF A DOUBLE-PROPORTIONAL

SEAT APPORTIONMENT

For the general analysis the house size continues to be h. The electoral area is supposed

to be subdivided into k districts. The number of parties participating in the apportion-

ment calculations again is �. Double-proportionality makes sense only when there are at

least two districts and two parties, k ≥ 2 and � ≥ 2. The row marginals r = (r1, . . . , rk)

assemble the district magnitudes. The column marginals s = (s1, . . . , s�) signify the

overall party-seats. Both vectors are assumed to consist of positive integers that sum

to the preordained house size, r+ = h = s+.
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Helpful further notions are the set of feasible seat matrices �k×�(r, s), and the

solution set of double-proportional seat apportionments A(r, s; v), defined through

�
k×�(r, s) :=

{
x ∈ �k×�

∣∣ xi+ = ri, i ≤ k, and x+j = sj , j ≤ �
}
,

A(r, s; v) :=
{
x ∈ �k×�(r, s)

∣∣∣ xij ∈
[[ vij
CiDj

]]
, i ≤ k, j ≤ �,

for some C1, . . . , Ck, D1, . . . , D� > 0
}
.

The set of feasible seat matrices comprises the k × � integer matrices whose rows

are summing to the row marginals r and whose columns are summing to the column
marginals s. The solution set A(r, s; v) additionally depends on a given weight matrix
v ∈ [0;∞)k×�. It contains the feasible seat matrices x that result from a scaling of

the weights vij with row divisors Ci and column divisors Dj , and then rounding the
interim quotients vij/(CiDj) to the seat numbers xij . The underlying rounding rule
[[·]] is assumed to rely on the signpost sequence s(n), n ∈ � (Section 3.10).

The next theorem states a sufficient condition for a solution matrix x to be unique,
A(r, s; v) = {x}. The proof makes use of the notion of a cycle. In a general k× � array,
a cycle via (i1, . . . , iq) and (j1, . . . , jq) is defined to be a succession of cells where a

move in columns j1, . . . , jq alternates with a move in rows i1, . . . , iq,

(i1, j1), (i2, j1), (i2, j2), (i3, j2), . . . , (iq−1, jq−1), (iq, jq−1), (iq, jq), (i1, jq).

The q ≥ 2 rows are taken to be distinct, and so are the columns. Hence every row or

column is visited at most once.

Uniqueness Theorem. Consider a double-proportional seat apportionment x in

the solution set A(r, s; v). If at most three seat numbers xij have interim quotients
vij/(CiDj) hitting positive signposts, then the solution x is unique,

A(r, s; v) = {x}.

Proof. The proof is by contraposition. Let us assume that the set A(r, s; v) contains two distinct

matrices x �= y. The difference z := y − x is non-vanishing, but its rows and columns sum to

zero. We select q ≥ 2 distinct rows i1, . . . , iq and columns j1, . . . , jq so that along the cell cycle

(i1, j1), (i2, j1), (i2, j2), (i3, j2), . . . , (iq−1, jq−1), (iq , jq−1), (iq , jq), (i1, jq)

the entries of z alternate in sign, −,+, . . ., as follows. We start with a cell (i1, j1) where zi1j1 < 0.

In column j1 we pick a cell (i2, j1) with zi2j1 > 0. Next we search in row i2 a cell (i2, j2) where

zi2j2 < 0. Then we look for a row i3 such that zi3j2 > 0, etc. We finish when meeting a row or

column already visited. The succession of cells then consists of a cycle that is possibly preceded

by an initial section. Discarding the initial section the remaining cycle is preserved and relabeled.

We select this cycle provided its first cell has zi1j1 < 0. Otherwise its last cell satisfies zi1jq < 0;

then we select the cycle obtained from reversing the sequences of row and column indices. Along

the selected cycle, z has sign pattern −,+, . . . as desired. All vote weights along the cycle are

positive since otherwise vij = 0 implies xij = yij = 0 and zij = 0.

Denote the divisors of x by Ci and Dj , and those of y by Ei and Fj . The fundamental relation

(Section 3.8) turns the roundings xij ∈ [[vij/(CiDj)]] and yij ∈ [[vij/(EiFj)]] into the inequalities

s(xij)

vij
≤ 1

CiDj
≤ s(xij + 1)

vij
and

s(yij)

vij
≤ 1

EiFj
≤ s(yij + 1)

vij
.
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Along the selected cycle we form two strings of product inequalities, setting iq+1 := i1,

∏
p≤q

s(xipjp )

vipjp
≤
∏
p≤q

1

CipDjp

=
∏
p≤q

1

Cip+1Djp

≤
∏
p≤q

s(xip+1jp + 1)

vip+1jp

, (1)

∏
p≤q

s(yip+1jp )

vip+1jp

≤
∏
p≤q

1

Eip+1Fjp

=
∏
p≤q

1

EipFjp

≤
∏
p≤q

s(yipjp + 1)

vipjp
. (2)

The sign pattern of z yields yipjp < xipjp and yip+1jp > xip+1jp , that is, yipjp +1 ≤ xipjp and

xip+1jp + 1 ≤ yip+1jp . Due to signpost monotonicity the inequalities (1) and (2) intertwine,

∏
p≤q

s(xipjp )

vipjp
≤
∏
p≤q

s(xip+1jp + 1)

vip+1jp

≤
∏
p≤q

s(yip+1jp )

vip+1jp

≤
∏
p≤q

s(yipjp + 1)

vipjp
≤
∏
p≤q

s(xipjp )

vipjp
.

Hence equality holds throughout inequality (1). Because of
∏

p≤q
s(xip+1jp + 1)/vip+1jp > 0

the common value is positive. This entails equality in all factor inequalities and gives

s(xipjp ) =
vipjp

CipDjp

> 0 and s(xip+1jp + 1) =
vip+1jp

Cip+1Djp

> 0.

Since every cycle visits at least two rows and two columns, q ≥ 2, four or more interim quotients

that are associated with the seat matrix x are tied to positive signposts.

An equivalent formulation says that non-uniqueness forces at least four interim

quotients to be tied to positive signposts. This is why the statement is often para-

phrased by saying that the solution is “unique up to ties”.

A mere abundance of ties is not enough though. The ties must form a pattern

that includes a cycle alternating between decrement options and increment options,

[[s(xipjp)]] = {xipjp − 1, xipjp} = xipjp−,
[[s(xip+1jp + 1)]] = {xip+1jp , xip+1jp + 1} = xip+1jp + .

The trailing plus- and minus-signs indicate the rounding options (Section 4.7), they

are congruent with the sign pattern of the matrix z in the proof. It is extremely

unlikely that many ties arise and, in addition, exhibit such a particular pattern. Hence

double-proportional seat apportionments are unique, for all practical purposes.

14.4. CRITICAL INEQUALITIES

Generally we are interested only in cycles shunning zero entries of the weight matrix v.

These cycles deserve a distinctive name.

Definition. Given a weight matrix v ∈ [0;∞)k×�, a v-cycle is defined to be a cycle

via (i1, . . . , iq) and (j1, . . . , jq) such that in every cell the weight is positive, vipjp > 0

and vip+1jp > 0 for all p ≤ q, where iq+1 := i1.
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As an illustration we consider a 3 × 3 matrix with diagonal weights zero and

off-diagonal weights positive,

v =

⎛⎜⎝ 0 v12 v13
v21 0 v23
v31 v32 0

⎞⎟⎠ .

No cycle via two rows and columns is a v-cycle since it involves a zero of the diago-

nal. Yet the cycle via (2, 3, 1) and (1, 2, 3) is a v-cycle calling on the positive weights
v21, v31, v32, v12, v13, v23.

The next theorem is the double-proportional analogue of the Max-Min Inequal-

ity 4.5. It substitutes the Max-Min Inequality by the ensemble of critical inequalities∏
p≤q

s(xipjp)

vipjp
≤
∏
p≤q

s(xip+1jp + 1)

vip+1jp

that are induced by v-cycles. The restriction to v-cycles ascertains that all denomi-
nators are positive, vipjp > 0 and vip+1jp > 0. However, double proportional settings

permit scenarios with vanishing weights, vij = 0. The consequences are contingent on
whether the underlying divisor method is pervious (s(1) > 0) or impervious (s(1) = 0).
In case of perviousness the no input–no output law is imposed, vij = 0⇒ xij = 0. In

case of imperviousness we adjoin the no output–no input law, xij = 0⇒ vij = 0. The
two laws collapse into an equivalence, vij = 0 ⇔ xij = 0, that is, vij > 0 ⇔ xij > 0.
We merge the two scenarios into the single notion of “preserving the zeros of v”.

Definition. Given a weight matrix v ∈ [0;∞)k×�, a seat matrix x ∈ �k×� is said
to preserve the zeros of v when x obeys the no input–no output law and, in the presence

of an impervious rounding rule, when x also obeys the no output–no input law.

Critical Inequalities Theorem. Let the double-proportional divisor method be
induced by the rounding rule with signpost sequence s(n), n ∈ �. Then a seat matrix
x ∈ �k×�(r, s) belongs to the solution set for a weight matrix v ∈ [0;∞)k×�,

x ∈ A(r, s; v),

if and only if x preserves the zeros of v and for every v-cycle via (i1, . . . , iq) and
(j1, . . . , jq) the matrix x fulfills the inequality∏

p≤q

s(xipjp)

vipjp
≤
∏
p≤q

s(xip+1jp + 1)

vip+1jp

.

Proof. The direct implication follows from (1) in the proof of the Uniqueness Theorem 14.3.

The converse implication is more demanding. We need to find divisors Ci and Dj that satisfy

xij ∈ [[vij/(CiDj)]] or, equivalently, s(xij) ≤ vij/(CiDj) ≤ s(xij+1). The case vij = 0 instantly

verifies s(0) ≤ 0 ≤ s(1). In case vij > 0 we divide by vij and take logarithms,

log
s(xij)

vij
≤ αi + βj ≤ log

s(xij + 1)

vij
.

On the left-hand side we set log(0/vij) = −∞ when s(xij) = 0. The existence of αi := − logCi

and βj := − logDj is at issue.
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For a concise formulation we pass to the linear space �k×� of real k× � matrices. Let the linear

subspace L ⊂ �
k×� consist of the matrices a having entries aij = αi + βj for some αi, βj ∈ �.

Let the generalized rectangle R ⊂ �
k×� be the Cartesian product of the intervals

Iij :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
log

s(xij)

vij
; log

s(xij + 1)

vij

]
in case vij > 0 and s(xij) > 0, (I-1)(

−∞; log
s (xij + 1)

vij

]
in case vij > 0 and s(xij) = 0, (I-2)

(−∞;∞) in case vij = 0. (I-3)

The intervals are nonempty. This is evident in (I-1) and (I-3). In (I-2) it follows from s(xij +

1)/vij > 0 since x preserves the zeros of v. Hence the rectangle R is nonempty, too.

There are two possibilities. Either the sets L and R intersect. If so, there are numbers αi and βj

fulfilling αi + βj ∈ Iij . The divisors Ci := e−αi and Dj := e−βj yield the assertion.

Or the sets L and R are disjoint. But disjointness contradicts the validity of the critical inequal-

ities. To see this, we investigate the orthogonal complement L⊥. Orthogonality refers to the

Euclidean inner product 〈a, b〉 = trace a′b =
∑

i≤k

∑
j≤�

aijbij in the space �k×�. Denoting

by �� := (1, . . . , 1)′ ∈ �
� the unity vector in ��, the original space is L = {α�′� + �kβ

′ | α ∈
Rk, β ∈ ��}. The inner product with a matrix b ∈ �k×� turns into two inner products, in �k

and ��, namely 〈α�′� + �kβ′, b〉 = trace��α
′b+ trace β�′kb = 〈α, b��〉+ 〈b′�k, β〉. These vanish

for all α ∈ �k and β ∈ �� if and only if b�� = 0 and b′�k = 0. Thus the subspace L⊥ consists

of the matrices b whose rows and columns sum to zero, L⊥ = {b ∈ �k×� | b�� = 0, b′�k = 0}.
Such matrices loom behind the Uniqueness Theorem 14.3. For a cycle via i(q) := (i1, . . . , iq)

and j(q) := (j1, . . . , jq), the cycle matrix c(i(q), j(q)) is defined to be the k × � matrix with

entry −1 in cell (ip, jp) and +1 in cell (ip+1, jp) for all p ≤ q, and zeros elsewhere. The

negative of a cycle matrix is the cycle matrix belonging to the reverse cycle, that is, the cycle

via (i1, iq , iq−1, . . . , i4, i3, i2) and (jq , . . . , j1). All cycle matrices lie in L⊥. Moreover they are

elementary matrices, in the following sense.

The support of a matrix b ∈ �k×� is the subset of cells where the entries of b are nonzero. An

elementary matrix of the subspace L⊥ is defined to be a nonzero matrix in L⊥ whose support does

not properly include the support of any other nonzero matrix in L⊥. If b and b̃ are elementary

matrices in L⊥ with the same support then they are scalar multiples of each other, b̃ = γb for

some γ �= 0. Indeed, for some cell (i, j) in their common support consider the scalar γ := b̃ij/bij .

Then the matrix d := b̃− γb belongs to L⊥ and has its support properly included in the support

of b. This forces d = 0, and b̃ = γb. There are only finitely many distinct supports, and so the

subspace L⊥ has only finitely many elementary matrices, up to scalar multiples. Clearly the

elementary matrices of the subspace L⊥ are the cycle matrices, up to scalar multiples.

Now Theorem 22.6 in Rockafellar (1970 [203]) is applied. If L and R are disjoint, then there

exists an elementary matrix in L⊥, hence a cycle matrix c(i(q), j(q)), such that all a ∈ R fulfill

〈a,−c(i(q), j(q))〉 > 0, that is,
∑
p≤q

aipjp >
∑
p≤q

aip+1jp .

Since the left-hand sum is bounded from below by the right-hand sum, the terms aipjp ∈ Iipjp
stay finite and the intervals Iipjp stem from definition (I-1). The intervals Iip+1jp , being bounded

from above, may stem from (I-1) or (I-2). All weights occurring in (I-1) and (I-2) are positive

whence the current cycle is a v-cycle. Legitimate values in (3) are the limits of the intervals,

aipjp = log
(
s(xipjp )/vipjp

)
and aip+1jp = log

(
s(xip+1jp )/vip+1jp

)
. Exponentiation yields∏

p≤q

s(xipjp )

vipjp
>
∏
p≤q

s(xip+1jp + 1)

vip+1jp

.

This contradicts the validity of the critical inequalities. Hence L and R cannot be disjoint.
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The theorem provides a divisor-free check whether a feasible seat matrix is a

double-proportional solution. Verification of the critical inequalities may be laborious,

but at least there are only finitely many of them. The next section presents a fruitful

application. The double-proportional seat apportionments are characterized by attain-

ing the minimum of an objective function fv. Since the objective function is minimized

over the finite set of feasible seat matrices, �k×�(r, s), the existence of the minimum

is guaranteed and so is the existence of double-proportional seat apportionments.

14.5. EXISTENCE OF DOUBLE-PROPORTIONAL SEAT

APPORTIONMENTS

Chapter 10 appraises divisor methods through optimum properties relative to a variety

of objective functions that are responsive to basic concepts of proportional represen-

tation systems. In a similar vein the present section characterizes double-proportional

seat apportionments as optimum solutions of an appropriate objective function fv.

However, the merits of the objective function are less conceptual, but more technical.

Suppose a weight matrix v ∈ [0;∞)k×� is given. The objective function fv :

�
k×� → (0;∞] maps a k × � integer matrix x to a positive value or to infinity. In

case x preserves the zeros of v the definition is

fv(x) :=
∏

i≤k,j≤� : vij>0

( ∏
n≤xij : s(n)>0

s(n)

vij

)
.

The product over n has range 1, . . . , xij in case of perviousness, and 2, . . . , xij in case

of imperviousness. Empty products equal unity. If the products are nonempty then

the terms s(n)/vij are positive and finite, and so is the value of the objective function,

0 < fv(x) <∞. In case x does not preserve the zeros of v we define fv(x) :=∞. These

seat matrices are far from being of any real interest.

The objective function is going to be minimized over the set of feasible seat

matrices, �k×�(r, s), where rows are summing to the prespecified row marginals r

and columns to the prespecified column marginals s. This is a finite set, whence the

existence of the minimum is immediate. The minimum attains a finite value provided

there exists at least some feasible seat matrix z that preserves the zeros of v, because

of miny∈�k×�(r,s) fv(y) ≤ fv(z) <∞. The next result states that a feasible seat matrix

attains the minimum if and only if it is a double-proportional seat apportionment.

Optimality Theorem. Assume that for the given weight matrix v there exists

some seat matrix z ∈ �k×�(r, s) that preserves the zeros of v. Then a seat matrix x ∈
�

k×�(r, s) minimizes the objective function fv if and only if x is a double-proportional

seat apportionment,

fv(x) ≤ fv(y) for all y ∈ �k×�(r, s) ⇐⇒ x ∈ A(r, s; v).
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Proof. For the proof of the direct implication let x be a feasible seat matrix that attains the

minimum. Then x preserves the zeros of v since fv(x) ≤ fv(z) < ∞. Let an arbitrary v-cycle

via i(q) := (i1, . . . , iq) and j(q) := (j1, . . . , jq) be given. We need to verify the critical inequality∏
p≤q

s(xipjp )

vipjp
≤
∏
p≤q

s(xip+1jp + 1)

vip+1jp

.

The inequality is trivial if the left-hand side is zero. This is the case for a pervious rounding rule

if at least one of the seat numbers xipjp is zero, and for an impervious rounding rule if some seat

number xipjp is unity. Otherwise all seat numbers xipjp are large enough to allow a one-seat

decrement. We introduce the seat matrix y := x + c(i(q), j(q)) where c(i(q), j(q)) is the cycle

matrix of the given v-cycle. Minimality of x secures fv(x) ≤ fv(y). The second products in the

objective function fv differ because of yipjp = xipjp − 1 and yip+1jp = xip+1jp + 1. Either the

last term is too much and needs to be divided out, or it is missing and needs to be factored in,

fv(x) ≤ fv(y) =

∏
p≤q

s(xip+1jp + 1)

vip+1jp∏
p≤q

s(xipjp )

vipjp

fv(x).

After cancellation of fv(x) > 0 a rearrangement of terms verifies the critical inequality. Theo-

rem 14.4 states that x is a double-proportional seat apportionment, x ∈ A(r, s; v).

The converse implication claims that every double-proportional seat apportionment x ∈ A(r, s; v)

satisfies fv(x) ≤ fv(y) for all seat matrices y ∈ �k×�(r, s). We start a bit offside and substitute

for x a matrix z with no more than a scaling structure. No assumption is made on the row

and column sums of z. Given some divisors Ei and Fj we choose numbers zij ∈ [[vij/(EiFj)]]

to construct the matrix z. By construction z preserves the zeros of v. Let y ∈ �k×�(r, s) be a

competing seat matrix preserving the zeros of v. In every cell (i, j) with zij > yij or zij < yij
the weight is positive, vij > 0. In the definition of fv the second products are estimated using

signpost monotonicity, and the fundamental relation, s(zij)/vij ≤ E−1
i F−1

j ≤ s(zij + 1)/vij ,

(omitting the condition s(n) > 0 for ease of reading)

zij > yij ⇒
∏

n≤zij

s(n)

vij
=

( ∏
n≤yij

s(n)

vij

) zij∏
m=yij+1

s(m)

vij
≤
( ∏

n≤yij

s(n)

vij

)(
E−1

i F−1
j

)zij−yij
,

zij < yij ⇒
∏

n≤zij

s(n)

vij
=

( ∏
n≤yij

s(n)

vij

) yij∏
m=zij+1

vij

s(m)
≤
( ∏

n≤yij

s(n)

vij

)
(EiFj)

yij−zij .

If zij = yij or if vij = 0, then the exponent yij − zij is zero and the divisor terms may be

included for free. Upon application of the first product, the divisor terms combine into∏
i≤k,j≤� : vij>0

(EiFj)
yij−zij =

∏
i≤k

∏
j≤�

(EiFj)
yij−zij =

(∏
i≤k

E
ri−zi+
i

)(∏
j≤�

F
sj−z+j

j

)
.

The final comparison of fv(z) and fv(y) employs the inverse of the last expression,(∏
i≤k

E
zi+−ri
i

)(∏
j≤�

F
z+j−sj
j

)
fv(z) ≤ fv(y).

Only now is z reverted to x. Since row and column sums of x are fitted we get fv(x) ≤ fv(y).
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The main message of the Optimality Theorem is that it answers the existence ques-

tion in the affirmative. Since the set �k×�(r, s) is finite, it always contains a matrix x

that minimizes fv. Under the mild assumption that some feasible seat matrix preserves

the zeros of v, every minimizer x is certified to belong to the double-proportional so-

lution set,

x ∈ A(r, s; v),

which hence is nonempty. Practically, it suffices to produce a double-proportional seat

apportionment x. It verifies both, the input assumption and the output conclusion.

From a retrospective viewpoint no further action is needed.

From a prospective viewpoint it is of course reassuring to know that a solu-

tion exists before we set out to find it. Reassurance may be gained by applying a

greedy construction to verify the assumption. The construction is illustrated with the

Schaffhausen data in Table 14.3. Since the underlying divisor method with standard

rounding is pervious, only the no input–no output law must be heeded. The seven

empty cells force zij = 0. The construction consists of a prelude, and a finale. The

prelude plunders the largest district and saturates as many weak parties as possible.

The 28 seats of the first district easily furnish the 22 seats wanted by AL (5), ÖBS (4),

CVP (3), JSVP (3), EDU (2), JFSH (2), SVP Sen. (1), EVP (1), and JUSO (1). The

finale attends to the 60 − 22 = 38 seats remaining. Luckily the three parties left do

not feature any empty cells. This leaves a problem of six districts, with row marginals

(6, 12, 8, 7, 4, 1), and three parties, with column marginals (16, 13, 9):

⎛⎜⎜⎜⎜⎜⎜⎝

16 13 9

6 ? ? ?

12 ? ? ?

8 ? ? ?

7 ? ? ?

4 ? ? ?

1 ? ? ?

⎞⎟⎟⎟⎟⎟⎟⎠ →

⎛⎜⎜⎜⎜⎜⎜⎝

16 13 9

6 6

12 10 2

8 8

7 3 4

4 4

1 1

⎞⎟⎟⎟⎟⎟⎟⎠
The greedy finale places as many seats in the first cell as is permitted by its marginals, 6.

This closes the first row. Next the first cell in the second row gets its largest permissible

number of seats, 10. This finishes the first column. Continuing, the displayed matrix

is obtained. Prelude and finale produce a matrix that preserves the zeros of v. The

Optimality Theorem 14.5 tells us that the Schaffhausen problem is solvable.

The finale of the greedy construction works fine because there are no zero weights

left to worry about. Therefore, if right from the beginning the weight matrix features

no zeros then the greedy construction guarantees existence:

If the weight matrix v has no zeros then a double-proportional seat apportionment

exists, A(r, s; v) �= ∅.
Or the other way round: The only troublemakers are the zeros in the weight matrix v.

Empirical election data are trouble-free for the reason that their vote matrices con-

tain few zeros or none. In no event are there enough zeros to cause upheaval. The

Schaffhausen example is typical.
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Yet it is a diverting intellectual exercise to conceive sparse matrices with many

zeros in intriguing patterns. The greedy construction runs into problems when not

ending with a finale where all zeros of v have been disposed of during the prelude (or

iterated preludes). Fortunately the theory of graphs and networks provides a check

that is completely versatile, under the heading of flow inequalities.

For pervious rounding rules the no input–no output law applies. For any row

subset I ⊆ {1, . . . , k} we denote the partial sum of the associated row marginals by

rI :=
∑

i∈I ri. Similarly sJ :=
∑

j∈J sj designates the partial sum of column marginals

for J ⊆ {1, . . . , �}. The flow scheme pretends that the seats enter “the system” via

the row marginals, possibly access nonzero cells of the weight matrix v, and leave the

system via the column marginals. For the part of the flow that enters through a row

subset I, the accessible columns form the set Jv(I) := {j ≤ � | vij > 0 for some i ∈ I},
called the set of columns connected in v with I. The columns in the complement Jv(I)

′

are inaccessible due to weights zero, vij = 0 for all i ∈ I and j ∈ Jv(I)
′. In this flow

scheme the sum of the seats that enter through the rows in I cannot exceed the sum

of the column marginals in Jv(I). This relation is captured by the flow inequalities:

rI ≤ sJv(I) for all I ⊆ {1, . . . , k}. (1)

The flow inequalities are not only necessary, but also sufficient:

There exists a feasible seat matrix x ∈ �k×�(r, s) that obeys the no input–no output

law for the weight matrix v if and only if r, s, and v satisfy the flow inequalities (1).

For a proof and a review of the pertinent literature see Oelbermann (2013 [35]). The

flow inequalities confirm the no zero–no problem conclusion of the greedy construction.

If the weight matrix v has no zeros, then a nonempty row subset I is connected in v

with all columns, and the inequality rI ≤ s+ = h turns into a triviality.

For impervious rounding rules the no output–no input law must be obeyed, too.

The law justifies the minimum restrictions aij = 1 when vij > 0, and aij = 0 otherwise.

Minimum restrictions may surface for other good reasons, such as the winner-take-one

modification. Similarly, the no input–no output law translates into the maximum

restrictions bij = 0 when vij = 0, and bij = h otherwise. In order not to deal with a

void problem we assume the restrictions to be compliant, aij ≤ bij , ai+ ≤ ri ≤ bi+,

and a+j ≤ sj ≤ b+j , for all rows i ≤ k and for all columns j ≤ �. The flow inequalities

acquire a form symmetric in the marginals r and s, and in the restrictions a and b,

rI + aI′×J ≤ sJ + bI×J ′ for all I ⊆ {1, . . . , k} and J ⊆ {1, . . . , �}. (2)

It goes without saying that aI′×J :=
∑

(i,j)∈I′×J aij denotes the sum of the entries of a

in the block I ′ × J . Again the flow inequalities are necessary and sufficient:

There exists a feasible seat matrix x ∈ �k×�(r, s) with aij ≤ xij ≤ bij for all i ≤ k

and j ≤ � if and only if r, s, a, and b satisfy the flow inequalities (2).

This version of the flow inequalities is given by Maier (2009 [35]). Either form, (1) or

(2), allows to check the flow inequalities by machine computation using the max-flow

min-cut theorem of graph theory. We may conclude that there are various ways to

check whether there exists a feasible seat matrix that preserves the zeros of v.
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Finally we remark that the Optimality Theorem suggests a redraft of the Unique-

ness Theorem 14.3. Suppose that x is a double-proportional seat apportionment in

the solution set A(r, s; v). If there exists another solution y �= x, then the proof of

the Uniqueness Theorem exhibits a v-cycle such that x fulfills the associated critical

inequality with equality. Conversely, if there is a v-cycle via i(q) and j(q) such that x

fulfills the critical inequality with equality, then the direct part of the proof of the Op-

timality Theorem shows that y := x+c(i(q), j(q)) is another optimal solution besides x.

Hence non-uniqueness relates to the critical inequalities in the following fashion:

The solution set A(r, s; v) contains another solution besides x if and only if there

exists a v-cycle such that x fulfills the critical inequality actually with equality.

The negation of the two statements characterizes uniqueness:

A solution x ∈ A(r, s; v) is unique if and only if x fulfills all critical inequalities

with strict inequality.

This characterization of double-proportional uniqueness is pleasing theoretically. It

runs parallel to what Section 4.7 establishes for simple-proportional divisor methods.

Nevertheless we prefer to word the Uniqueness Theorem 14.3 without a reference to

the critical inequalities, so as to stay closer to practical needs.

14.6. A DUAL VIEW

In this section we briefly digress and present some statements that are not necessary,

but enlightening. The Optimality Theorem breeds a dual approach aiding the under-

standing of the Alternating Scaling and Tie-and-Transfer algorithms. The Optimality

Theorem restricts the domain of action to the set of feasible seat matrices �k×�(r, s).

The task is to search this domain for a member x that has a scaling structure. The

tool to solve this primal problem is the primal objective function fv.

The dual view exchanges the roles of the protagonists. Now the domain of action

is the set of matrices that have a scaling structure. The task is to identify a member x

whose row sums match the row marginal r and whose column sums meet the column

marginals s. Not surprisingly, the tool to solve the dual problem is another objective

function, the dual objective function gv.

The set of matrices that have a scaling structure is parameterized by the pertinent

row and column divisors. Hence the domain of definition for the dual problem is

the positive orthant (0;∞)k+�. Suppose we are given a vector of row divisors E :=

(E1, . . . , Ek) ∈ (0;∞)k, and a vector of column divisors F := (F1, . . . , F�) ∈ (0;∞)�.

We choose integers zij ∈ [[vij/(EiFj)]] to construct the matrix z. The dual objective

function is defined through

gv(E,F ) :=

(∏
i≤k

E
zi+−ri
i

)(∏
j≤�

F
z+j−sj
j

)
fv(z).

The function gv is well-defined. If z is tied, then some cell has vij/(EiFj) = s(zij). The

factor EiFjs(zij)/vij = 1 emerges by absorbing the terms E
zi+
i and F

z+j

j into fv(z).

When spelling out gv(E,F ) to full length, the products over n may hence extend up

to zij , or stop short at zij − 1. Either way yields the same value gv(E,F ).



14.7. ALTERNATING SCALING ALGORITHM 203

The function gv appears inconspicuously in the course of the Optimality Theorem.

The second half of the proof shows that all feasible seat matrices y ∈ �k×�(r, s) satisfy

gv(E,F ) ≤ fv(y).

Thus the primal problem and the dual problem are intimately related. The dual objec-

tive function provides lower bounds for the primal objective function, and the primal

objective function provides upper bounds for the dual objective function. Moreover,

equality holds when inserting a double-proportional seat apportionment x ∈ A(r, s; v)

into the primal objective function, and any associated divisor vectors C and D into

the dual objective function. Hence we get a strong duality theorem,

gv(C,D) = max
E∈(0;∞)k

F∈(0;∞)�

gv(E,F ) = min
y∈�k×�(r,s)

fv(y) = fv(x).

Accordingly, there are two broad types of algorithms, primal algorithms and dual

algorithms. Primal algorithms maintain row and column marginals while approaching

the desired scaling structure. Dual algorithms maintain the scaling structure while

approaching the desired row and column marginals. Both algorithms to be discussed

are of dual type, the Alternating Scaling algorithm and the Tie-and-Transfer algorithm.

14.7. ALTERNATING SCALING ALGORITHM

The algorithms are discussed assuming that the solution set is nonempty, A(r, s; v) �= ∅
(Section 14.5). Again A denotes a fixed divisor method, with underlying rounding

rule [[·]], r and s are prespecified row and column marginals, and v is a given weight

matrix.

The Alternating Scaling algorithm constructs seat matrices x(t) and weight matri-

ces v(t). The seat matrices x(t) enjoy the desired scaling structure by means of row

and column divisors, but they alternate in the verification of the marginals. The weight

matrices v(t) record the interim quotients used. The starting values are x(0) := 0 and

v(0) := v. The algorithm advances in steps of two, t = 0, 2, 4 etc.

• Odd steps t+ 1 compose the seat matrix x(t+ 1) rowwise. If row i of the prede-

cessor matrix x(t) fits then it is copied into x(t + 1) and its row divisor is set to

unity, ρi(t+ 1) = 1. Otherwise row i of x(t + 1) is an apportionment of ri seats

proportionate to row i of the previous weight matrix v(t). With a selected divisor

ρi(t+1), the associated interim quotients are stored in the weight matrix v(t+1):

row i of x(t+ 1) ∈ A
(
ri; row i of v(t)

)
, (AS-1)

vij(t+ 1) :=
vij(t)

ρi(t+ 1)
, (AS-2)

for all rows i ≤ k and for all columns j ≤ �.
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• Even steps t + 2 compose the seat matrix x(t + 2) columnwise. If column j of

x(t + 1) fits then it is copied into x(t + 2) and its column divisor is set to unity,
σj(t + 2) = 1. Otherwise column j of x(t + 2) is an apportionment of sj seats
proportionate to column j of the weight matrix v(t+ 1). With a selected divisor

σj(t+ 2), the ensuing interim quotients are stored in the weight matrix v(t+ 2):

column j of x(t+ 2) ∈ A
(
sj ; column j of v(t+ 1)

)
, (AS-3)

vij(t+ 2) :=
vij(t+ 1)

σj(t+ 2)
, (AS-4)

for all columns j ≤ � and for all rows i ≤ k.

The products of incremental row divisors ρi(t + 1) generate cumulative row divisors,
and those of incremental column divisors σj(t+ 2) give cumulative column divisors,

ρi(1)ρi(3) · · · ρi(t+ 1) =: Ci(t+ 1) =: Ci(t+ 2),

σj(2)σj(4) · · ·σj(t+ 2) =: Dj(t+ 2) =: Dj(t+ 3).

The cumulative divisors equip all seat matrices x(t) with a scaling structure relative
to the original weight matrix v,

xij(t) ∈
[[ vij
Ci(t)Dj(t)

]]
for all i ≤ k, j ≤ �, and for all t ≥ 1.

As soon as a seat matrix x(T ) fits both marginals, rows and columns, it is a double-

proportional seat apportionment, x(T ) ∈ A(r, s; v). The terminal divisors Ci(T ) and
Dj(T ) are embellished as explained in the subsection on uniqueness in Section 14.2.

Generally, for any matrix z ∈ �k×�, failure to meet the marginals r and s is

measured by the L1-error function, or flaw count,

f(z) :=
∑
i≤k

|zi+ − ri|+
∑
j≤�

|z+j − sj |.

The flaw count says how many seats are malapportioned, from the point of view of the
target marginals. Every row of z that is overfitted, zi+ > ri, increases the flaw count
by its surplus seats, zi+ − ri, and every row that is underfitted, zi+ < ri, increases it

by its deficit seats ri − zi+, as do the columns. Flaw counts are always even because
every malapportioned seat is counted twice, once as a surplus seat and once as a deficit
seat. If the flaw count is zero, then both marginals are fitted. Hence the flaw counts of

the Alternating Scaling sequence x(1), x(2), . . . ought to decrease monotonically until
terminating with zero, f

(
x(T )

)
= 0.

Unfortunately ties may interfere and create problems. We demonstrate the obsta-

cle by example. Suppose there are two districts with 10 seats each, and four parties
with overall party-seats 6, 6, 4, 4. Suppose further that in an odd step when rows are
fitted part (AS-1) yields the tied seat vector 3+, 3−, 2+, 2− in both districts. Then

the 2× 4 seat matrix x with both rows equal to 3, 3, 2, 2 meets the marginals with flaw
count zero, f(x) = 0, and hits the target. However, in view of the ties the seat matrix y
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with both rows equal to 4, 2, 3, 1 is equally justified. It has a despicable flaw count,

f(y) = 8. In fact, there are
(
4
2

)(
4
2

)
= 36 equally justified choices for the seat matrix

(Section 4.7). It would seem erratic to allow the algorithm to propose a seat matrix

y(t) with many flaws, when the tied situation suggests to choose an equally justified

matrix x(t) with fewer flaws. The sound handling of ties calls for an amendment.

To this end a seat matrix z ∈ �k×� is said to be a tied variant of a seat matrix

x(t) in the Alternating Scaling algorithm, denoted by z ≡ x(t), when step t is odd and

all rows of both matrices solve the apportionment tasks (AS-1), or step t is even and

all columns of both matrices solve the apportionment tasks (AS-3). The amendment

to the Alternating Scaling algorithm decrees that the algorithm selects only such seat

matrices that minimize the flaw count among their tied variants:

• Every seat matrix x(t) that is produced in the course of the Alternating Scaling

algorithm has a flaw count that is minimum among its tied variants,

f
(
x(t)

)
= min

z≡x(t)
f(z). (AS-5)

The minimization problem that is defined by (AS-5) may be solved by direct

enumeration since the multiplicities of simple-proportional apportionment problems

are well explored (Section 4.7). Minimization can also be achieved by the construction

of paths to transfer seats from overfitted rows to underfitted rows (or columns), in

the spirit of the Tie-and-Transfer algorithm in the next section. Practically, empirical

data are tie-free. If no competing variant z exists that is distinct from x(t) then

amendment (AS-5) is trivially fulfilled. No action is needed, the condition may be

disbanded. Theoretically, amendment (AS-5) is reasonable. Its impact is visible in the

contrived example above, and in the proof of the Monotonicity Lemma below.

Monotonicity Lemma. The sequence of seat matrices x(1), x(2), . . . that is pro-

duced by the Alternating Scaling algorithm has non-increasing flaw counts, f
(
x(t)

) ≥
f
(
x(t+ 1)

)
for all t ≥ 1.

Proof. For an even step t the seat matrix x(t) has parties fitted. Its flaws come from districts,

f
(
x(t)
)
=
∑

i≤k
|xi+(t) − ri|. The next step t + 1 is odd and fits districts. Consider a fixed

district i ≤ k. We get ri = zi+ for all tied variants z of x(t + 1) including x(t + 1) itself. We

claim that there exists a tied variant z such that in every district i the � differences xi1(t)− zi1,

. . . , xi�(t)− zi� have the same sign. In case district i is fitted its row in x(t+ 1) is a copy of the

row in x(t) and all the differences are zero anyway.

In case district i is overfitted at time t, xi+(t) > ri, its row divisor ρi(t + 1) cannot possibly

be strictly smaller than unity lest the district becomes even more overfitted than before. This

leaves two possibilities, ρi(t + 1) > 1 or ρi(t + 1) = 1. If ρi(t + 1) > 1 then all interim

quotients decrease, vij(t) > vij(t)/ρi(t+1) = vij(t+1). Monotonicity of rounding rules implies

xij(t) ≥ zij ; all desired differences are nonnegative. If ρi(t+1) = 1 then row i must be tied. We

select a tied variant z such that in row i as many tied seat numbers, that is xij(t) ∈ xij(t)− =

{xij(t)−1, xij(t)}, are lowered to zij = xij(t)−1 as are needed to reach zi+ = ri. Such a choice

of z has all differences xij(t)− zij nonnegative.
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In case district i is underfitted, xi+(t) < ri, similar arguments allow to adjust the selected tied

variant z further so that all differences xij(t) − zij are nonpositive. With tied variant z so

selected, every district i ≤ k has the property that � the differences xi1(t)− zi1, . . . , xi�(t)− zi�
have the same sign. Now the triangle inequality justifies the first inequality,

f
(
x(t)
)
=
∑
i≤k

∣∣∣∑
j≤�

(
xij(t)− zij

)∣∣∣ =∑
i≤k

∑
j≤�

∣∣∣xij(t)− zij

∣∣∣
≥
∑
j≤�

∣∣∣∑
i≤k

(
xij(t)− zij

)∣∣∣ =∑
j≤�

∣∣∣z+j − sj

∣∣∣ = f(z)

≥ f
(
x(t+ 1)

)
.

The second inequality is a consequence of the amendment (AS-5). For an odd step t+ 1 mono-

tonicity is established in the same way.

The Schaffhausen example terminates in five steps, T = 5. On its way to the so-

lution shown in Table 14.3 the approximating seat matrices pass through flaw counts

10, 4, 2, 2, 0. Simulation studies show that, quite generally, the Alternating Scaling

algorithm produces seat matrices x(t) whose flaw counts decrease rapidly in the be-

ginning. It may need some time to work the few remaining flaws down to zero though.

Nevertheless the Alternating Scaling algorithm works fine in all empirical examples.

The Alternating Scaling algorithm becomes possibly inefficient only in the presence

of many ties. The following 3× 3 example is taken from Oelbermann (2013 [48]):

1 1 1
1
1
1

(
20 50 50
50 20 20
50 20 20

)
100
40
40

,

(
0.08 0.5 0.5
0.5 0.5 0.5
0.5 0.5 0.5

)
,

(
0 1− 0+
1− 0+ 0+
0+ 0+ 1−

)
.

2.5 1 1

The first matrix lists the vote weights. It is framed by unity marginals on the left

and the top, and by the row and column divisors for the divisor method with standard

rounding on the right and the bottom. The second matrix shows the interim quotients.

The third matrix exhibits the final seat numbers, with trailing plus- and minus signs

indicating the tie options. This particular tie pattern allows the completion of another

three cycles, whence the solution set A(r, s; v) contains four tied variants.

In this example it matters which incremental divisors ρi(t+ 1) and σj(t + 2) are

used. If the divisors are as described in Section 4.4 then the algorithm terminates in

step T = 33, with flaw counts f
(
x(1)

)
= · · · = f

(
x(32)

)
= 2 and f

(
x(33)

)
= 0. If for

overfitted rows and columns the largest feasible divisors are applied and for underfitted

rows and columns the smallest, then the algorithm reaches the solution faster (in this

example, but not in others), namely in step T = 12. However, if always the upper

limits of the divisor intervals are used then step 2 returns to step 1. The algorithm

stalls and oscillates endlessly without ever reaching the solution. We conclude that

the divisor choice makes a significant difference to the performance of the Alternating

Scaling algorithm, in the presence of ties. The remedy against long or endless spells of

constant flaw counts is the Tie-and-Transfer algorithm.
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14.8. TIE-AND-TRANSFER ALGORITHM

The Tie-and-Transfer algorithm operates on single seats that appear to be malap-

portioned. It removes a seat from a bad location and transfers it to a better place.
The algorithm may be set up quite generally to move all seats around. With a large
house size and many seats this takes a while. It is recommendable to start with an

initialization that promises to allocate many seats correctly.
The Tie-and-Transfer algorithm is initialized with a scaling of columns. We de-

note the resulting seat matrix by x(0), the column divisors used by σj(0), and the

accompanying interim quotients by vij(0) := vij/σj(0). Thus the initial seat matrix
fulfills x+j(0) = sj for all j ≤ �.

The algorithm maintains fitted columns for all subsequent seat matrices x(t),

t = 1, . . . , T . Hence the flaw count originates from rows only,

f
(
x(t)

)
=
∑
i≤k

|xi+(t)− ri| =
∑

i∈I+(t)

(
xi+(t)− ri

)
+

∑
i∈I−(t)

(
ri − xi+(t)

)
,

where the sums range over the overfitted rows and over the underfitted rows,

I+(t) := {i ≤ k | xi+(t) > ri}, I−(t) := {i ≤ k | xi+(t) < ri}.
The remaining rows are those fitted, I=(t) := {i ≤ k | xi+(t) = ri}.

The aim is to transfer seats from overfitted rows I+(t) to underfitted rows I−(t).
A path via (i1, . . . , iq) and (j1, . . . , jq−1) is defined to be a list of cells of the type

(i1, j1), (i2, j1), (i2, j2), (i3, j2), . . . , (iq−1, jq−1), (iq, jq−1).

The q rows ip are taken to be distinct, as are the q − 1 columns jp. That is, a path is
“a cycle without the last two cells”. It starts in row i1 and, after alternating through

rows and columns, it finishes in row iq.
The Tie-and-Transfer algorithm consists of a tie update to create a path for a

possible seat transfer, and the seat transfer proper. Consider step t = 0, 1, 2 etc.

• The tie update routine calculates row divisors ρi(t+1) and column divisors σj(t+1)
such that the new interim quotients

vij(t+ 1) :=
vij(t)

ρi(t+ 1)σj(t+ 1)

not only justify the old seat numbers, xij(t) ∈ [[vij(t+ 1)]], but also give rise to a
path via (i1, . . . , iq) and (j1, . . . , jq−1) that starts in an overfitted row i1 ∈ I+(t),

keeps alternating from a decrement option to an increment option,

vipjp(t+ 1) = s
(
xipjp(t)

)
and vip+1jp(t+ 1) = s

(
xip+1jp(t) + 1

)
for all p < q, and finishes in an underfitted row iq ∈ I−(t).

• The seat transfer routine updates the seat matrix from x(t) to x(t+1) by setting

xipjp(t+ 1) := xipjp(t)− 1 and xip+1jp(t+ 1) := xip+1jp(t) + 1

for all p < q, and xij(t+ 1) := xij(t) otherwise.
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The properties of the path constructed ensure that an overfitted row i1 has to give

up a seat and an underfitted row iq gains one, and that the net effect on all other rows

and on all columns is zero. Thus the flaw count is strictly decreasing, f
(
x(t + 1)

)
=

f
(
x(t)

)− 2. The algorithm terminates when no flaws are left, f
(
x(T )

)
= 0, of course.

In the sequel the two routines are discussed in greater detail, and then illustrated

by example. There is not much to say about the seat transfer routine. It simply

executes the seat transfer that is indicated by the path found in the tie update routine.

The core of the Tie-and-Transfer algorithm is the tie update routine. It follows a

philosophy somewhat complementary to what we have advertised so far. Up to now we

have taken pains to keep the user-friendly divisor in the interior of the divisor interval if

possible (Section 4.6). Hence the interim quotients vj/D of simple-proportional divisor

methods stay away from their framing signposts s(xj) and s(xj + 1). In contrast, the

tie update perturbs the divisors ever so little until some interim quotient does hit a

signpost. Eventually sufficiently many quotients agree with signposts to complete a

path. When a lower signpost is hit, vij(t) = s(xij), a decrement option emerges, xij−.
When an upper signpost is hit, vij(t) = s(xij + 1), an increment option xij+ is met.

The tie update routine consists of two subroutines, the path finding subroutine and

the tie creating subroutine. Usually they need to be iterated a few times. The language

suited best to describe the path finding subroutine is provided by graph theory. There,

the subroutine is called a breadth-first search. This search strategy is fast and finds

paths in which rows and columns appear at most once, as required by the notion of a

“path via (i1, . . . , iq) and (j1, . . . , jq−1)”. We skip the details because the underlying

idea is easily conveyed without turning to graph theory.

The path finding subroutine assembles two sets, the set of labeled rows IL that can

be reached by a path starting in some overfitted row in I+(t), and the set of labeled

columns JL that are visited by these paths. Initially all overfitted rows are labeled,

IL = I+(t), but no column, JL = ∅. Then, for every labeled row i ∈ IL, the unlabeled

columns j ∈ J ′
L are scanned whether the cell (i, j) contains a decrement option xij−;

if so, column j is adjoined to the set of labeled columns JL. Next, for every labeled

column j ∈ JL, the unlabeled rows i ∈ IL are checked whether the cell (i, j) features an

increment option xij+; if so, row i is adjoined to the set of labeled rows IL. Thereafter

the scanning process turns back to scan columns, then rows, etc. It pauses when the

sets of labeled rows and columns stall. There are two possibilities. Either the set of

labeled rows contains an underfitted row, IL ∩ I−(t) �= ∅. Then the labeling procedure

identifies a path from an overfitted row to an underfitted row. The job is done.

Or there is no such path, IL∩I−(t) = ∅. Then the tie creating subroutine is called

for help. Upon its invocation the state of affairs may be depicted as follows:

⎛⎜⎝
JL J ′

L

IL s
(
xij(t)

)
< vij(t)

I ′L vij(t) < s
(
xij(t) + 1

)
⎞⎟⎠

The block IL×JL comprises all rows and columns labeled so far. The presence of labels

indicates that here the path finding strategy works successfully. The block I ′L × J ′
L

conveys no particular information. The informative blocks are the two off-diagonal
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blocks. In the block IL×J ′
L all lower signposts are smaller than the interim quotients,

s
(
xij(t)

)
< vij(t). If this were not so, some column j ∈ J ′

L would contain a decrement
option xij(t)− and the column would have been labeled before the pause, j ∈ JL; this
is a contradiction. With a similar argument the nonzero interim quotients in the block

I ′L × JL are seen to be smaller than the upper signposts, vij(t) < s
(
xij(t) + 1

)
.

An off-diagonal block provides no information if a pertinent index set is empty or
if s
(
xij(t)

)
or vij(t) vanish throughout. For a pervious rounding rule a signpost is zero

if and only if its argument is zero, s
(
xij(t)

)
= 0 ⇔ xij(t) = 0; we omit the reasoning

for impervious rounding rules. An interim quotient is zero if and only if the weight
itself is zero, vij(t) = 0⇔ vij = 0. Hence a non-informative block has entries summing

to zero, xIL×J ′
L
(t) = 0 or vI′

L
×JL

= 0. If both sums are zero then they clash with the
flow inequalities, as is not hard to see. But the flow inequalities hold true since the
problem is assumed to be solvable, A(r, s; v) �= ∅ (Section 14.5). Therefore, at least one

of the two off-diagonal blocks is informative, and at least one of the following decisive
factors ρ0 and σ0 is positive and finite,

ρ0 := max

{
0,

s
(
xij(t)

)
vij(t)

∣∣∣∣ i ∈ IL, j ∈ J ′
L, s

(
xij(t)

)
> 0

}
∈ [0; 1),

σ0 := min

{
∞,

s
(
xij(t) + 1

)
vij(t)

∣∣∣∣ i ∈ I ′L, j ∈ JL, vij(t) > 0

}
∈ (1;∞].

The scene is now set for creating new ties. The case ρ0 ≥ 1/σ0 uses update
factor ρ0. The row divisors of labeled rows are divided by ρ0 and the column divisors

of labeled columns are multiplied by ρ0. The other divisors stay put. The effect on a
weight is block dependent. In blocks IL × JL and I ′L × J ′

L the interim quotients stay
as is because the update factor cancels out or equals unity. In block IL × J ′

L we get

s
(
xij(t)

) ≤ ρ0vij(t) ≤ vij(t) ≤ s
(
xij(t) + 1

)
, that is, xij(t) ∈ [[ρ0vij(t)]]. The first

inequality follows from the definition of ρ0; there is at least one equality s
(
xi0j0(t)

)
=

ρ0vi0j0(t). Therefore, a new decrement option xi0j0− surfaces in block IL × J ′
L. In

block I ′L × JL we get s
(
xij(t)

) ≤ vij(t) ≤ (1/ρ0)vij(t) ≤ σ0vij(t) ≤ s
(
xij(t) + 1

)
, that

is, xij(t) ∈ [[vij(t)/ρ0]]. Altogether the new weights still justify the old seats.
The case 1/σ0 ≥ ρ0 uses update factor 1/σ0. The updated quotients create a new

increment option xi0j0+ in block I ′L × JL. As soon as the tie creating subroutine is
finished control is returned to the path finding subroutine. In this way unlabeled rows
and columns are processed until a path is found allowing another flaw-reducing seat

transfer. This completes the general discussion of the Tie-and-Transfer algorithm.
As an illustration we apply the Tie-and-Transfer algorithm to the 3× 3 example

from Section 14.7. In the following display the first matrix recalls the input weights

and marginals, but now with the initializing column divisors at the bottom,

1 1 1
1
1
1

(
20 50 50
50 20 20
50 20 20

)
,

(
1/5 5/7 5/7
1/2 2/7 2/7
1/2 2/7 2/7

)
,

(
0 1 1
1− 0 0
0+ 0 0

)
.

100 70 70

The second matrix shows the interim quotients, v(0). The third matrix is the seat

matrix, x(0). Its columns are fitted, its rows are not. The first row is overfitted, the
third is underfitted. They yield two flaws, f

(
x(0)

)
= 2. The second row is alright.
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The tie update routine begins with its path finding subroutine. It labels the first

row, IL = I+(0) = {1}, but no column, JL = ∅. In the first row none of the unlabeled

columns j = 1, 2, 3 contains a decrement option. The sets IL and JL stall right away.

The path finding subroutine pauses and waits for new ties to be created.

The tie creating subroutine starts its first pass. The block IL×J ′
L = {1}×{1, 2, 3}

consists of the first row. The decisive factors are found to be ρ0 = 7/10 and σ0 =∞.

The divisor update in the first row yields the updated quotients and seats,(
7/50 1/2 1/2
1/2 2/7 2/7
1/2 2/7 2/7

)
,

(
0 1− 1−
1− 0 0
0+ 0 0

)
.

The two decrement options 1− in the first row are new. The path finding subroutine

resumes its work, labels the second and third column, JL = {2, 3}, and pauses again.

The tie creating subroutine takes over for its second pass. The decisive factors

turn out to be ρ0 = 0 and σ0 = 7/4. The updated quotients and seats are(
2/25 1/2 1/2
1/2 1/2 1/2
1/2 1/2 1/2

)
,

(
0 1− 1−
1− 0+ 0+
0+ 0+ 0+

)
.

Four increment options 0+ are new. Now the path finding subroutine labels the second

and third row, and the first column. The labeling of the underfitted third row stops

the tie update routine. A (shortest) path to be handed over to the seat transfer routine

runs via rows (1, 3) and column (3). The final seat matrix is the same as in Section 14.7.

Small examples like the preceding 3× 3 problem are transparent and instructive.

Calculations can be carried out by paper and pencil, and need not be tucked away

in a machine. However, such examples cannot provide more than a didactic crutch.

They are academic artifacts conveying only a faint feeling of the practical worth of

double-proportional methods. These methods prove their true value when the vote

counts are truly big, and when the political challenge is truly immense. As an instance

of larger numbers we turn to a 27 × 8 problem drawn from the EP elections 2009.

Although larger, the problem must also be classified as an academic toy example since

the institutional provisions of the EP do not (yet) support double proportionality.

14.9. DOUBLE PROPORTIONALITY FOR EP ELECTIONS

Electoral reform has been a permanent item on the EP’s agenda. The EP’s electoral

system must comply with two objectives, to represent the Union’s citizens, and to

reflect the diversity of Europe’s peoples. Andrew Duff (2011), the EP’s Committee on

Constitutional Affairs’ rapporteur on electoral procedure, proposes a supplement of an

additional 25 seats to be elected from a single, pan-EU constituency. A pan-European

perspective may also be realized by a double-proportional approach, as we illustrate

with the data of the 2009 EP elections.
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The sample evaluation of the 2009 EP elections is purely hypothetical and highly

speculative. Since votes were cast for domestic parties and not for European parties,

vote aggregation for the EP’s 2009 Political Groups is not authoritative. Neither are

the output seat numbers. Nevertheless we use the numbers to indicate the procedural

steps that need to be carried out in a double proportional electoral system.

Table 14.4 starts with the first step, the prior allocation of the house size of 751

seats to the 27 Member States. Croatia is left out because it was not present in the EP

elections 2009. The reference base is the QMV-population 2013, as in Table 12.4. The

non-synchronous data sources do not impair the sample calculations. Of course, in a

real election the population figures and the election results would be synchronized. The

Cambridge Compromise solution (Section 12.7) allocates to each Member State five

base seats, leaving 751−27×5 = 616 seats. These are allocated proportionately to the

QMV-populations, using the divisor method with upward rounding. The last column

“5+Upw•” shows the resulting seat numbers. In double-proportional terminology, the

last column contains the row marginals that are carried over into Table 14.6.

Table 14.5 continues with the second step, the super-apportionment of the 751

seats to the EP’s Political Groups. We include the non-attached Members of Parlia-

ment as the pseudo-group NA, since in the absence of proper parties we do not know

any better (Section 1.11). The column “Votes” copies the respective column from Ta-

ble 1.32 (where 736 seats are at issue). Vote aggregation by Political Groups is the weak

point of the illustration because at present voters must cast their votes for domestic

parties, and are not given a pan-European choice. Therefore, neither the union-wide

vote counts nor the resulting seat numbers are authoritative. Nevertheless we use

these numbers to proceed. The divisor method with standard rounding is employed

because of its excellent properties as reviewed in Section 13.2. In double-proportional

terminology, the last column “DivStd” contains the column marginals that reappear

in the heading of Table 14.6.

Table 14.6 finishes with the third step, the double-proportional apportionment.

The crux of the method are the row and column divisors (last column “State divisor”,

bottom line “Party divisor”) that allow an immediate verification of the apportion-

ment. Generally, a vote count is divided by the two corresponding divisors, and then

standard rounding of the quotient yields the seat number. Specifically, the German

EPP vote count (9 968 153) is divided by the divisor for Germany (251 000), and by

the EPP divisor (0.9575). The resulting quotient 41.48 justifies 41 seats. Double

proportionality guarantees that each Member State retains its seats allocated in the

prior apportionment (Table 14.4), and that each party (in this example: each Political

Group) exhausts its union-wide party seats from the super-apportionment (Table 14.5).

Some discordances are inevitable. In Ireland, the 254 669 S&D voters are rep-

resented by two deputies while the 256 123 GUE/NGL voters are awarded but one.

Such local inhomogeneities are the price for the global consistency that double pro-

portionality achieves. Since the union-wide S&D allotment of 191 seats is almost

six times larger than the 33 GUE/NGL seats, the domestic S&D lists do relatively

better than the domestic GUE/NGL lists. Determination of the divisors takes the

Alternating Scaling algorithm eight row scalings and eight column scalings. That is,

the final seat apportionment is reached after 8 × 27 + 8× 8 = 280 applications of the

simple-proportional divisor method with standard rounding.
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EP2009DoubleProp Cambridge Compromise
DistrictMagnitudes QMV-Pop. 5+Quot. 5+Upw•
DE Germany 81 843 700 5+99.6• 96
FR France 65 397 900 5+79.6 85
UK United Kingdom 62 989 600 5+76.7 82
IT Italy 60 820 800 5+74.03 80
ES Spain 46 196 300 5+56.2 62
PL Poland 38 538 400 5+46.9 52
RO Romania 21 355 800 5+25.99 31
NL Netherlands 16 730 300 5+20.4 26
EL Greece 11 290 900 5+13.7 19

BE Belgium 11 041 300 5+13.4 19
PT Portugal 10 541 800 5+12.8 18
CZ Czech Republic 10 505 400 5+12.8 18
HU Hungary 9 957 700 5+12.1 18
SE Sweden 9 482 900 5+11.5 17
AT Austria 8 443 000 5+10.3 16
BG Bulgaria 7 327 200 5+8.9 14
DK Denmark 5 580 500 5+6.8 12
SK Slovakia 5 404 300 5+6.6 12

FI Finland 5 401 300 5+6.6 12
IE Ireland 4 582 800 5+5.6 11
LT Lithuania 3 007 800 5+3.7 9
SI Slovenia 2 055 500 5+2.5 8
LV Latvia 2 041 800 5+2.5 8
EE Estonia 1 339 700 5+1.6 7
CY Cyprus 862 000 5+1.05 7
LU Luxembourg 524 900 5+0.6 6
MT Malta 416 100 5+0.5 6

Sum (Divisor) 503 679 700 (821 600) 751

TABLE 14.4 Prior allocation of 751 seats to 27 Member States. The Cambridge Compromise

apportionment shown in the table is based on the 2013 QMV-populations. Croatia is omitted since

it was not present in the 2009 elections; the omission explains the differences with Table 12.4.

EP2009DoubleProp
Super-apportionment

Votes Quotient DivStd

EPP 52 324 413 272.2 272
S&D 36 776 044 191.3 191
ALDE 16 058 094 83.55 84
GREENS/EFA 12 070 029 62.8 63
ECR 7 610 712 39.6 40
EFD 7 153 584 37.2 37
GUE/NGL 6 280 876 32.7 33
NA 5 970 692 31.1 31

Sum (Divisor) 144 244 444 (192 200) 751

TABLE 14.5 Super-apportionment of 751 seats among the eight 2009 Political Groups. The union-

wide votes of the Political Groups substitute for the non-existing pan-European ballots of the elec-

torate. Normally the group of non-attached seats (NA) would require a separate handling.

The pan-European dimension lies in the fact that, in the first place, votes con-

tribute to a party’s success on the European level. Voters in a Member State may

well be instrumental to secure a further seat for their European party, but the double-

proportional sub-apportionment may allocate this seat elsewhere. For instance, some

additional eighty thousand S&D voters in Italy would raise the Italian S&D votes

from 7 997 770 to 8 080 000. In the super-apportionment (Table 14.5) the S&D interim
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EP2009DP EPP S&D ALDE GRE/EFA ECR EFD GUE/NGL NA State

Sub-apportm. 272 191 84 63 40 37 33 31 divisor

DE 96 9968153-41 5472566-23 2888084-12 3194509-13 1969239-7 251000

FR 85 4799908-30 2838160-18 1455841-9 2803759-16 257437-2 915634-5 891847-5 169000

UK82 2460249-16 2080613-13 1767218-11 4131386-18 2498226-17 126184-1 1181845-6 162000

IT 80 12966334-39 7997770-24 2476695-7 3125418-10 350000

ES 62 6670377-28 6141784-25 808246-3 689062-3 294124-1 451866-2 253000

PL 52 3787998-33 908765-8 2017607-11 121000

RO31 2074019-14 1504218-10 702974-5 419094-2 150000

NL 26 913233-6 548691-4 1034065-6 412537-2 155270-1 169882-1 323269-2 772746-4 163500

EL 19 1655722-7 1878982-8 178987-1 366637-1 669212-2 261800

BE 19 1288422-4 1259998-4 1485854-4 1319341-4 296699-1 647170-2 350000

PT 18 1427300-8 946475-6 761718-4 178000

CZ 18 180451-2 528132-6 741946-6 334577-4 87000

HU18 1632309-11 503140-3 153660-1 427773-3 151000

SE 17 744851-5 773513-5 603799-3 575029-3 179182-1 172700

AT 16 858921-5 680041-4 284505-2 870299-5 170000

BG14 832510-5 476618-3 569343-4 308052-2 160000

DK12 297199-2 503439-3 474041-2 371603-2 357942-2 168555-1 200000

SK 12 324081-6 264722-4 74241-1 45960-1 61530

FI 12 455874-3 292051-2 418251-3 206439-2 162930-1 98690-1 136050

IE 11 532889-4 254669-2 525375-3 34585-0 99709-1 256123-1 158000

LT 9 147756-3 102347-2 88870-2 46293-1 67237-1 50000

SI 8 200429-4 85407-2 98450-2 50000

LV 8 245288-3 77447-1 59326-1 76436-1 58991-1 77447-1 80000

EE 7 48492-1 34508-1 164383-3 116830-2 8860-0 2206-0 60000

CY 7 109209-3 67794-2 12630-0 106922-2 40000

LU 6 62202-2 38641-2 37013-1 33387-1 26000

MT 6 100486-3 135917-3 5802-0 41000

Party div. 0.9575 0.9563 1 1.0114 1.45 0.934 1.085 1.13

TABLE 14.6 Hypothetical sub-apportionment, EP elections 2009. The double-proportional divisor

method with standard rounding is applied to the Political Groups’ vote counts (Chapter 1). The

divisors guarantee each Member State its seat allocation, and each Political Group its union-wide

party-seats. Sample calculation: The German EPP votes (9 968 153) are divided by the divisor for

Germany (251 000), and by the EPP divisor (0.9575). The resulting quotient 41.48 justifies 41 seats.

quotient is 191.3, while the divisor is 192 200. Hence a growth by eighty thousand votes

promises to raise the interim quotient beyond the next signpost, 191.5, and to secure

another seat for S&D. And so it happens. The additional S&D voters in Italy would

give rise to 192 seats in the pan-European super-apportionment. But the seat does

not go to the Italian S&D. This is not at all surprising, since roughly half of the large

Italian divisor 350 000 must be reached before a seat is transferred from one Italian

party to another. The additional seat would benefit Slovakia and equip the Slovakian

S&D with a fifth seat. When vote counts vary the induced seat transfer paths are

unpredictable and, by themselves, non-informative.

The merits of double proportionality lie in its behavior across the whole electoral

region. A double-proportional apportionment (Table 14.6) ensures all Union citizens

that domestic affiliations are respected as preordained by the prior seat allocation

to all Member States (Table 14.4), and that the pan-European representation of the

electorate’s political division honors the motto of “One person, one vote” (Table 14.5).
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The pertinent literature is reviewed, and further perspectives are mentioned.

Chapter 1. Exposing Methods: The 2009 European Parliament Elections

The 2009 EP election data are taken from the paper Oelbermann /Palomares /Pukels-

heim (2010). We do not know of any official source including the data of all 27 Member

States to the depth that the calculations for the translation of votes into seats could

be repeated. Available data in the Internet need to be treated with caution whether

they are still preliminary, still semi-official, or indeed official and final. Nor do the

27 Member States use a uniform terminology to describe their electoral systems. The

European Union speaks with 23 official languages and writes with three alphabets,

Latin, Greek, and Cyrillic. Some Member States exhibit their electoral provisions in

their mother tongues only. Others provide unofficial translations into English, occa-

sionally with an irritating lack of proficiency concerning the conversion of votes into

seats. Much of the European diversity reflects in the electoral provisions even though

it is one and the same political body that is being elected, the EP. Therefore, Chap-

ter 1 not only reports the data, but also attempts to identify a common terminological

ground for the many apportionment methods used.

Electoral systems are also a prime topic of the field of political science of course.

Many political science books and monographs are devoted to a systematic study of pro-

portional representation systems, such as Behnke (2007), Gallagher /Mitchell (2008),

Grofman /Lijphart (1986), Nohlen (2009), Rose (1974), Taagepera / Shugart (1989),

and many others. Naturally those authors aim at a unification of electoral terms as we

do. But the goals are different, and so is the outcome. The political science viewpoint

emphasizes the political consequences of electoral procedures. Central topics are po-

litical power and its distribution, and democratic government and its establishment.

The theme of the present book is more restrictive, methodological analysis. The aim

is to study apportionment methods in proportional representation systems, how they

function and which quantitative consequences they entail.
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Chapter 2. Imposing Constitutionality: The 2009 Bundestag Election

The definitive history of electoral experiences in imperial Germany 1871–1918 is told by

historian Margaret Anderson (2000). Recounting innumerable election incidents from

the time, the author develops her thesis that these decades prepared the ground for

German democracy to grow and strike roots after 1918. However, as soon as the rev-

olution of 1918 disposed of the leadership figure of the emperor, the newly introduced

proportional representation system was contested not to produce proper leaders, voiced

in articles with titles such as “Proportional Representation and the Selection of Lead-

ers” (Verhältniswahl und Führerauslese) of renowned jurist Walter Jellinek (1926) and

proportional representation activist Richard Schmidt (1929). Another activist, Hans

Gustav Erdmannsdörffer (1932), dreamed of a leader such as Thomas Mann.

The discussions of electoral matters during the Weimar Republic bore fruit when,

after the victory over the leader regime of Nazi Germany, the electoral system was to be

newly designed. The body to draft a new Basic Law was the Parliamentary Council. It

delegated the design of the electoral system to its Committee on Electoral Procedure,

Rosenbach (1994) meticulously reviews its records. Unfortunately they do not fully

explain how the current electoral system for the Bundestag came into being. The

German two-votes system has acquired a high reputation internationally. Shugart /

Wattenberg (2001) provocatively pose the question whether the system implements the

“best of both worlds”, of the world of proportional representation and of the world of

the election of persons.

The amended two-votes system was used for the first time in 1957, and right away

caused some irritation because of the occurrence of overhang seats. The 1957 incident

was convincingly explained by a malapportionment of constituencies among states.

Much of the ensuing discussion conveys the impression that, having been the cause

on one occasion, malapportionment was the only explanation conceivable. Other than

that, overhang seats were declared to be a “necessary consequence” (notwendige Folge)

of a proportional representation system that is combined with the election of persons.

No mentioning was made that already Geyerhahn (1902) had proposed options to

avoid overhang seats, nor that the export of the German system was accompanied by

amendments that did not produce any overhang seats, see the examples of Scotland

and London in Section 12.4. In Germany the issue of overhang seats grew particularly

virulent when the party system started to diversify and continued to do so after the

1990 re-unification.

The fascinating story of the electoral heritage over the last 2000 years is told

by Szpiro (2010). Elections in medieval Augsburg are studied by Rogge (1994) who

tells the story of the rejected election of carpenter Marx Neumüller (Section 2.5).

The material on Llull and Cusanus is taken from Hägele / Pukelsheim (2001, 2008).

An Internet edition of Llull’s three electoral tracts is provided by Drton /Hägele /

Haneberg /Pukelsheim /Reif (2004), see www.uni-augsburg.de/llull.

The role of electoral equality in the decisions of German constitutional courts is

studied by Pukelsheim (2000a, 2000b, 2000c). Emphasis is on equality of the success

values of the voters’ votes, equality of the representative weights of the Members of

Parliament, and equality of the ideal share of seats of the parties (Sections 2.7–2.9).

http://www.uni-augsburg.de/llull
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Chapter 3. From Reals to Integers: Rounding Functions, Rounding Rules

The task of rounding real numbers to integers is centuries-old. In a witty letter to the

editor Seal (1950) conjectures that for every allegedly novel result on rounding effects

one can find a prior reference that precedes it.

The floor brackets for downward rounding and the ceiling brackets for upward

rounding, �·� and �·�, are attributed to Iverson (1962 [12]). The angle brackets for

standard rounding, 〈·〉, are employed by Abramowitz / Stegun (1970 [223]).

Commercial rounding is the accepted rounding procedure for business and com-

merce; the term is a literal translation from German “kaufmännische Rundung”. We

find it convenient to use the term “commercial rounding” for the real-valued rounding

function; Kopfermann (1991 [108]) calls it “Standardrundung”. We reserve the term

“standard rounding” for the associated set-valued rounding rule. The even-number

rounding function is recommended by Wallis /Roberts (1956 [175]) specifically for sta-

tistical purposes, and by Bronstein / Semendjajew (1991 [98]) quite generally.

The inevitableness of ties necessitates the handling of set-valued rounding proce-

dures. For the sake of clarity we prefer to explicitly distinguish rounding functions

from rounding rules. Their distinct characters are visualized through simple and dou-

ble delimiting brackets. Double ceiling brackets for the rule of upward rounding proved

useful already in Pukelsheim (1993 [307]).

The name “signpost” stems from Balinski /Young (1982 [62]). The attribute “sta-

tionary” for the signpost family in Section 3.11 is due to Balinski /Rachev (1993, 1997).

Kopfermann (1991 [202]) and Janson (2012 [29]) speak of “linear” divisor methods.

Other authors use the term “parametric” divisor methods, such as Oyama (1991),

Oyama / Ichimori (1995), Palomares /Ramı́rez (2003). Balinski /Ramı́rez (2012) es-

tablish a property that characterizes stationary divisor methods within the class of all

divisor method: If voters swing from party A to party B while all other vote counts

remain the same, then at some point a seat is transferred from A to B without affecting

other parties. While this book restricts attention to the two families of stationary and

power-mean signposts, other such sequences can be constructed, see Dorfleitner /Klein

(1999) or Marshall /Olkin /Pukelsheim (2002). Janson (2012 [257, 263]) describes the

electoral systems of a large set of countries, including Estonia and Macau (Section 3.9).

Chapter 4. Divisor Methods of Apportionment: Divide and Round

Chapters 4 and 5 heavily rely on the seminal monograph Balinski /Young (1982).

The definition of a divisor method in Section 4.4 emphasizes the flexible nature of

the divisor. By contrast many authors derive the name “divisor” method from the

signpost sequence s(n), n ∈ �. The reason is that the signposts serve as divisors

in the calculation of the comparative figures vj/s(n), see Section 4.12. We remark

that the dividing points d(a) of Balinski /Young (1982 [99]) are related to the signpost

sequence by way of a shift of argument, d(a) = s(a+ 1).

The formulation of the jump-and-step algorithm in Section 4.6 is motivated by

work of Happacher /Pukelsheim (1996). However, the algorithm was known and dis-

cussed ever since the inception of the divisor method with downward rounding, see

Gfeller (1890), Hagenbach-Bischoff (1892 [20]).
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Chapter 5. Quota Methods of Apportionment: Divide and Rank

The multitude of quotas used is bewildering (Section 5.8). They received their three-

letter acronyms in the sequence how they came across in empirical data. For this

reason the labeling is somewhat at odds with the quotas’ order in Section 5.10. The

Max-Min Inequality 5.5 appears in Kopfermann (1991 [196]). The family of quotas that

we call shift-quotas, Q(s) = v+/(h + s), is studied also by Kopfermann (1991 [195])

and Janson (2012 [70]). Practically, only the shift s = 0 (Hare-quota) and the limiting

value s = 1 (Droop-quota variant-4) are of interest. Theoretically, the embedding of

the Hare- and Droop-quotas into a single one-parameter family is pleasing.

The original connotation of the term “quota” signifies a definitive number of voters

to be represented by a Member of Parliament, see Hare (1857, 1860, 1865), Droop

(1868, 1869, 1881), Hart (1992). The then novel proportional representation system

was pitted against the established plurality vote. Since a plurality winner is determined

by assessing whole numbers of votes, a “quota” originally had to be a whole number,

too. Fractions were deemed unacceptable:

. . . rejecting the fractional numbers of the dividend, in Hare (1857 [17]).

Les fractions ne comptent pas, in Morin (1862 [26]).

Brüche werden nicht gerechnet, in Getz (1864 [50]).

Nowadays the term “quota” signifies any quantity, possibly fractional, provided only

that it is computationally convenient. Section 10.12 has more to say on the ambiguous

usage of the term “quota”.

Chapter 6. Targeting the House Size: Discrepancy Distribution

The seat-total distribution in Section 6.5 and the discrepancy distribution in Theo-

rem 6.7 are due to Happacher (1996, 2001). For three-party systems and the divi-

sor method with downward rounding, Hagenbach-Bischoff (1905) carried out similar

calculations. Other related results may be found in Mosteller /Youtz / Zahn (1967),

Diaconis / Freedman (1979), Kopfermann (1991 [185]). The examples in Section 6.8

are taken from Happacher (2001) and Happacher /Pukelsheim (1998, 2000).

The statement that rounding residuals tend to a uniform distribution irrespective

of the underlying weight distribution is part of the folklore of the analysis of rounding

effects, see Seal (1950). Nevertheless we are unaware of a formal proof anywhere in

the literature. The Invariance Principle 6.10 is proved for Riemann-integrable densi-

ties by Heinrich /Pukelsheim / Schwingenschlögl (2004, 2005). The present version for

Lebesgue-integrable densities is due to Janson (2013).

Chapter 7. Favoring Some at the Expense of Others: Seat Biases

Pólya (1918, 1919a, 1919b, 1919c, 1919d) is first to derive seat bias formulas in three-

party systems. Pólya emphasizes that the seat biases vanish uniformly only for the

Hare-quota method with residual fit by greatest remainders and for the divisor method

with standard rounding.
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The interpretation of the systematic seat excess in Section 7.3 is given by Janson

(2013). The Seat Bias Formula 7.7 with no threshold, t = 0, is due to Schuster /

Pukelsheim /Drton /Draper (2003). Schwingenschlögl / Pukelsheim (2006) adjoin the

threshold factor 1−�t. A stringent proof for the whole formula is obtained by Heinrich /

Pukelsheim / Schwingenschlögl (2005). The seat bias results for list alliances are taken

from Pukelsheim /Leutgäb (2009). In these papers the notion of seat bias is interpreted

to be the average seat excess assuming that all vote shares are equally likely.

Other bias concepts are investigated by Balinski /Young (1982 [118–128]). Schwin-

genschlögl (2008) shows that those results conform with the Seat Bias Formula 7.7. In

essence, conformance is a consequence of the Invariance Principle 6.10. Janson (2013)

establishes a complementary asymptotic analysis. It includes the results in Sections 7.2

and 7.3, and the handling of the shift-quota methods in Section 7.13. His approach is

first to average over equally likely house sizes h in a finite range {0, . . . , H}, and then

to expand the range beyond limits, H →∞.

During the first half of the twentieth century the United States of America experi-

enced a fierce and at times vicious dispute over seat biases. By evaluating sample data

from previous apportionment instances, statistician Walter Francis Willcox from Cor-

nell University amassed overwhelming evidence that the divisor method with standard

rounding is unbiased and that the divisor method with geometric rounding is biased.

See Willcox (1911, 1916a, 1916b, 1950, 1951, 1952), Durand (1947), Leonhard (1961).

The empirical evidence meant nothing to mathematician Edward Vermilye Hunting-

ton from the Massachusetts Institute of Technology who continued to champion his

favorite choice, the divisor method with geometric rounding. See Huntington (1921,

1928, 1931, 1941), Balinski /Young (1977), Bartlow (2006).

Chapter 8. Preferring Stronger Parties to Weaker Parties: Majorization

The exposition follows Marshall /Olkin /Pukelsheim (2002). Table 8.1 elaborates an

example of Balinski /Rachev (1997). The majorization result for the shift-quota meth-

ods is inspired by Lauwers /Puyenbroeck (2006a, 2006b), our presentation follows Jan-

son (2012 [112]).

A majorization comparison always encompasses all parties. It splits the whole

party system into a group of stronger parties and into the complementary group of

weaker parties. The relation of one method favoring small states relative to another

method of Balinski /Young (1982 [118]), called the relation that one method gives-up

to another method in Balinski /Rachev (1997), compares two parties, a stronger party

versus a weaker party, but neglects the others. Either way monotone signpost ratios

constitute the crucial criterion to be checked. We find the majorization relation more

satisfying conceptually. It boasts an impressive range of applications, as recounted by

Marshall /Olkin (1979) and Marshall /Olkin /Arnold (2011).
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Chapter 9. Securing System Consistency: Coherence and Paradoxes

The term “coherence” is coined by Balinski (2003). Balinski /Young (1982 [141]) use

“uniformity” instead, Young (1994 [171]) “consistency”. Since “uniformity” and “con-

sistency” are employed often with other meanings, we abide by “coherence”. It nicely

alludes to the interaction of the whole and its parts, and to the logical compatibility

of abstract premises with concrete procedures. The extension by coherence from two

parties to many is presented in Young (1994 [50, 190]).

Incompatibility of abstract expectations with concrete outcomes is what is collo-

quially captured by the term “paradox”. Hence the chapter also reviews the paradoxes

generally attributed to quota methods, although paradoxes that can be explained as

easily as these hardly qualify to be paradoxes of any depth in the logical sense. Ta-

ble 9.2 shows that the quota methods and the concordance requirement outrule general

vote ratio monotonicity; the example is taken from Young (1994 [60]). Another exam-

ple is given by Brams / Straffin (1982). Vote ratio monotonicity plays a pivotal role in

the exposition of Balinski /Young (1982 [108, 117]).

Chapter 10. Appraising Electoral Equality: Goodness-of-Fit Criteria

The search for optimality properties of apportionment methods is as old as the propor-

tional representation movement. The optimality results for the divisor methods with

standard rounding (Section 10.2) and with geometric rounding (Section 10.3) are due

to Sainte-Laguë (1910a, 1910b). The author’s interests then moved on to other areas,

see Fouilhé (1950), Chastenet de Géry (1994), Gropp (1998).

Pólya (1919d) proved the optimality theorem for the Hare-quota method with

residual fit by greatest remainders (Section 10.4). Hagenbach-Bischoff (1882) promoted

the divisor method with downward rounding on the ground of its optimality property

in Section 10.5. Both authors published extensively on the subject, with an expressed

intention to reach out to the public, see the works of Pólya and Hagenbach-Bischoff

(1882, 1888, 1890, 1892, 1896, 1905, 1908). Yet the writings of these authors seem to

have fallen into oblivion. Eduard Hagenbach-Bischoff even has to endure the misfortune

to be quoted as a plural by Peter Felix Müller (1959 [79, 80]).

In 1905 Hagenbach-Bischoff succeeded to have the divisor method with downward

rounding installed for the election of the Great Council of the Canton of Basel. In

Switzerland the method is known as the Hagenbach-Bischoff procedure, or simply as

the Swiss procedure. Hagenbach-Bischoff (1891 [3]) did not approve of having the

system named after him, but pointed out that it is due to Victor D’Hondt (1878, 1882,

1883, 1885). D’Hondt spelled his name with a capital letter D, the University of Ghent

files his nachlass under letter H.

The pairwise comparison approach that substantiates success-value stability of the

divisor method with standard rounding (Section 10.8) is mentioned first by the German

statistician Ladislaus von Bortkiewicz (1919), see also Bortkiewicz (1920). Bortkiewicz

(1910) discusses paradoxes in the Prussian three-class franchise. The pairwise com-

parison approach was perfected by Huntington (1921). Apparently Huntington was

inspired by the report of statistician Joseph Adna Hill (1911). Huntington’s research

led him to favor the divisor method with geometric rounding (Section 10.10). In 1941
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the method became the legal procedure for the apportionment of the House of Repre-

sentatives seats among the States of the Union, see the narrative of Balinski /Young

(1982 [58]). The method is also known as the method of equal proportions, or as the

Huntingtonmethod, or as the Hill /Huntingtonmethod. Hill himself never claimed any

particular involvement in the apportionment discussion, see Hill (1910, 1929, 1935),

Goldenweiser (1939).

The result on ideal-share stability of the divisor method with standard rounding is

due to Balinski /Young (1982 [132]). Further optimization approaches are developed

by Grilli di Cortona /Manzi / Pennisi /Ricca / Simeone (1999) and many others. A

criterion motivated by statistical efficiency considerations and leading to the divisor

method with upward rounding may be found in Pukelsheim (1993 [304]).

Chapter 11. Tracing Peculiarities: Vote Thresholds and Majority Clauses

The results in Sections 11.1–11.8 are well-known and belong to the usual repertoire of

apportionment methodology. The arrangement of the material is a mixture of Balin-

ski /Young (1982), Kopfermann (1991), Balinski /Rachev (1997), Palomares /Ramı́rez

(2003), Janson (2012). The North Rhine-Westphalian examples in Section 11.8 are

from Pukelsheim /Maier / Leutgäb (2009). The discussion of the majority clauses in

Sections 11.9–11.13 follows Pukelsheim /Maier (2006, 2008). The residual seat redi-

rection clause was proposed long ago by Gfeller (1890) as mentioned in Section 11.10.

Chapter 12. Truncating Seat Ranges: Minimum-Maximum Restrictions

Balinski (2004 [192–193]) points out that it is ambiguous in which way quota methods

incorporate side restrictions, and emphasizes that the resulting seat apportionments

depend on the way chosen (Section 12.2).

The Cambridge Compromise (Section 12.7) emerged from a January 2011 work-

shop at the University of Cambridge, see the report Grimmett / Laslier /Pukelsheim /

Ramı́rez González /Rose / S�lomczyński / Zachariasen / Życzkowski (2011). The down-

graded-population variant is proposed by Grimmett /Oelbermann /Pukelsheim (2012);

Arndt (2008) advocates a similar approach (Section 12.8). Other ways to adjust to

the population figures are discussed by Mart́ınez Aroza /Ramı́rez González (2008),

S�lomczyński / Życzkowski (2012). As for the Jagiellonian Compromise see the references

in Section 12.10. Birkmeier (2011) extends the approach by admitting abstentions.

Chapter 13. Proportionality and Personalization: BWG 2013

For a review of the German electoral system including an analysis from the quantitative

viewpoint see Behnke (2007). Already Brams /Fishburn (1984) discuss proportional

representation in variable-size legislatures. For a compendium of the full history and

all details of the German Federal Election Law see Schreiber (2009). Constitutional

jurist Hans Meyer (2010) reviews the long and agonizing struggle to deal with overhang

seats in a satisfactory manner. English translations of major decisions of the German

Federal Constitutional Court are compiled by Kommers /Miller (2012 [238–268]).
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Our description of the 2013 amendment of the Federal Election Law follows

Pukelsheim /Rossi (2013). Section 13.5 proposes to set the minimum number of seats

for a party to be equal to the number of direct seats plus a ten percent overhead.

This proposal is due to Peifer / Lübbert /Oelbermann /Pukelsheim (2012) who call

it a direct-seat oriented proportionality adjustment (direktmandatsbedingte Proporz-

anpassung). Bochsler (2012) points out that the two-votes system with a variable-size

legislature bears a potential of misuse which he exemplifies with data from the election

of the Albanian parliament.

Chapter 14. Representing Districts and Parties: Double Proportionality

Pukelsheim / Schuhmacher (2004, 2011) review the introduction of the double-propor-

tional divisor method with standard rounding in the Swiss Cantons of Zurich, Aargau,

and Schaffhausen. In addition, double proportionality received an overwhelming sup-

port in a September 2013 referendum in the Canton of Zug, and in the Canton of

Nidwalden. For a general exposition of the critical interplay between territorial and

political representation see Bochsler (2010). The analysis of the critical inequalities in

Section 14.4 and the Optimality Theorem 14.5 is due to Gaffke /Pukelsheim (2008a).

The optimality theorem is based on an objective function that is akin to a criterion

investigated by Carnal (1993).

Quite a few papers illustrate the hypothetical usefulness of double proportionality,

see Gassner (2000) for Belgium, Balinski /Ramı́rez (1999) and Balinski (2002) for Mex-

ico, Zachariassen / Zachariassen (2006) for the Farœ Islands, Ramı́rez /Pukelsheim /

Palomares /Mart́ınez (2006) for Spain, Pennisi /Ricca / Simeone (2006, 2009) for Italy.

The application of double proportionality to the EP elections in Section 14.9 is one of

the ten steps towards a unified electoral system proposed by Oelbermann /Pukelsheim

(2011). Double-proportional divisor method are not the only way to give the idea of

biproportionality a concrete form. Alternative approaches are proposed by Cox /Ernst

(1982), Serafini (2012).

Double-proportional divisor methods of apportionment originate with the papers

Balinski /Demange (1989a, 1989b), and are further elaborated by Balinski /Rachev

(1993, 1997) and Balinski (2006). Balinski / Pukelsheim (2007) show that double pro-

portional apportionment methods are coherent. A generic structure of appropriate

algorithms is developed by Gaffke /Pukelsheim (2008b). Network flow algorithms

are studied by Rote / Zachariasen (2007), see also the overview Pukelsheim /Ricca /

Scozarri / Serafini / Simeone (2012).

The Tie-and-Transfer algorithm is succinctly described by Zachariasen (2006) and

Maier (2009). Maier (2009) and Maier / Zachariassen / Zachariasen (2010) demon-

strate the effectiveness of the Alternating Scaling algorithm and the Tie-and-Transfer

algorithm by means of an extensive real-life benchmark study. These two algorithms,

hybrid combinations of the two, and other algorithms are implemented in the free

software BAZI that is available from the Internet site www.uni-augsburg.de/bazi.

http://www.uni-augsburg.de/bazi
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bücher für Nationalökonomie und Statistik, Dritte Folge 39, 692–699. [219]

von Bortkiewicz, L. (1919): Ergebnisse verschiedener Verteilungssysteme bei der Verhältniswahl. An-
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rales en vue des applications. Pages 522–525 in: Les Professeurs du Conservatoire national des

arts et métiers, Dictionnaire biographique 1794–1955, Tome II. Paris. [219]

Cox, L.H. /Ernst, L.R. (1982): Controlled rounding. INFOR—Information Systems and Operational
Research 20, 423–432. [221]

Diaconis, P. / Freedman, D. (1979): On rounding percentages. Journal of the American Statistical
Association 74, 359–364. [217]

Dorfleitner, G. /Klein, T. (1999): Rounding with multiplier methods: An efficient algorithm and

applications in statistics. Statistical Papers 40, 143–157. [216]

Droop, H.R. (1868): On Methods of Electing Representatives. Macmillan, London. [217]

Droop, H.R. (1869): On the Political and Social Effects of Different Methods of Electing Represen-
tatives. Maxwell, London. [217]

Droop, H.R. (1881): On methods of electing representatives. Journal of the Statistical Society of

London 44, 141–196 (Reprinted in: Voting Matters 24 (2007) 7–46). [76, 217]
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Saxony, 36–37
scaling, 57–60, 85, 189–194, 199, 202–207, 211
Schaffhausen, 185–190, 200
Schepers, Hans (b. 1928), 70
Schleswig-Holstein, 152, 181
score function, 131–133
Scotland, 33, 161, 164, 178, 215
seat bias, 20, 23, 88–90, 93–95, 99, 100–109,

116, 134–135, 169, 178, 186, 217–218
alternative concepts, 218

seat excess, 42, 95, 96–100, 104, 109, 131,
142–147, 218

seat restrictions, 24, 125, 157–161, 164,
169–170, 180, 184–187, 190–191, 201

compliant, 158–159, 201
seat share, 40, 126–127, 140
seat total, 79–80, 83–85, 104, 164, 184, 193, 217
seat transfer routine, 207–210
Seaton, Charles Wesley (1831–1885), 123–124
second vote (Zweitstimme), 32–37, 162–164,

177–181
secret ballot, 32, 37–39
separate district apportionments, 4, 29, 32, 180,

193
set-monotonicity, 50, 60, 119, 205
shift-quota (shQ), 73, 74, 77–81, 108–109, 116,

146–147, 217–218
shift-quota method with residual fit by greatest

remainders (shQgrR), 73–75, 108–109, 116,
147, 218

sign function, 95
signpost sequence, 23, 50, 51, 52, 60, 63, 66,

112, 118, 143–145, 159, 170, 194–199, 216
simple rounding, 54, 89, 91
single transferable vote (STV) scheme, 14, 19,

24, 28, 75
with fractional vote transfers (STVfra), 24,

27–28
with random vote transfers (STVran), 14–15,

19, 24, 28
Slovakia, 2, 24, 77, 213
Slovenia, 2, 24
Solothurn, 17–19, 77, 104
Spain, 2, 11, 28, 56, 122, 221
split, 5–8, 52, 53, 63, 72–73, 81–85, 88, 91–98,

101, 104–105, 113–116, 124, 144–148, 150
split interval, 6–7, 75
squared-error criterion, 127–133, 178
stability criterion, 135, 136, 137–141
stationary divisor method (DivSta), see divisor

method with stationary rounding
stationary signposts, 52, 53, 114
statutory equality of Members of Parliament,

41, 161
straight majority, 30, 40, 150, 151–153
sub-apportionment, 8–10, 16, 20–21, 26, 32–34,

102, 106–108, 162–164, 178–180, 183–185,
188, 190, 193, 212

success share, 40, 127
success value, 39, 40, 41–43, 127–129, 133–138,

178–180, 186, 215, 219

success value equality (Erfolgswertgleichheit),
39–40, 178–180

super-apportionment, 8–9, 12, 16, 20, 26, 33–34,
102, 106–108, 177–180, 183–186, 189–190,
211–213

Sweden, 2, 22–23, 67, 146, 149
Swiss Federal Court, 148

target seats, 181–184
Thoma, Richard (1874–1957), 32
three-party system, 99, 102–104, 144, 217
threshold, 3–4, 7, 10–28, 33, 100–101, 104, 107,

142, 148–149, 159, 165, 169, 177, 181, 218
Thuringia, 36
tie, 45–46, 49–50, 56, 63–64, 84–85, 115, 188,

191–192, 195, 204–206, 209–210, 216
tie creating subroutine, 208–210
tie update routine, 208–210
Tie-and-Transfer algorithm, 192, 202–209, 221
tie-free apportionment, 56, 91–92, 95–97, 109,

191, 205
total positive bias, 105
traditional divisor methods, 52–53, 59, 69,

114–115, 138
trailing signs, 46, 64, 195, 206
Treaty of Lisbon (Treaty on European Union

2009), 39, 165, 168–169
trisection by party strength, 105
two-party system, 118–119, 139, 143–144, 150
two-votes system, 32–33, 178, 215, 221

unbiased apportionment method, 20, 23, 94,
99–103, 106–109, 218

underfitted row, 204, 205–210
uniform distribution, 83, 84, 88, 92–94, 101,

109, 217
uniqueness theorem, 191, 194, 195–197, 202
unique up to ties, 63, 195
United Kingdom, 2, 24–28, 34
United States of America, 37–38, 76, 89,

102–103, 121–124, 156, 165, 218
universal suffrage, 30–32, 37–39
unproportionality index, 162, 163–164, 180,

183–184
unused voting power, 10, 17
user-friendly divisor, 62, 67, 160–162, 192, 208
user-friendly split, 73

vote categories, 12, 13, 17
vote ratio monotonicity, 121, 124, 219
vote share, 40, 55–58, 61, 69, 74, 83–84, 91,

95–101, 107–110, 126–131, 136, 139–150,
218

voter count (Wählerzahl), 65, 186, 189–191
votes-per-seats ratio, 4–6, 17, 41–42, 58, 62,

66–67, 72, 75–76, 81–83, 129–133, 138
voting weight, 174–175

Webster, Daniel (1782–1852), 70, 102
weight matrix, 191, 192–204
Willcox, Walter Francis (1861–1964), 218


	Foreword
	THE EUROPEAN PARLIAMENT

	Preface
	ACKNOWLEDGMENTS

	Table of Contents
	Outline of the Book
	Notation
	C H A P T E R 1 Exposing Methods: The 2009 European Parliament Elections
	1.1. THE 27 MEMBER STATES OF THE 2009 UNION
	1.2. AUSTRIA–BELGIUM–BULGARIA: ELECTORAL KEYS
	1.3. CYPRUS–CZECH REPUBLIC–GERMANY: TABLE DESIGN
	1.4. DENMARK–ESTONIA–GREECE: ALLIANCES AND INDEPS
	1.5. SPAIN–FINLAND–FRANCE: VOTE CATEGORIES
	1.6. HUNGARY–IRELAND–ITALY: QUOTAS
	1.7. LITHUANIA–LUXEMBOURG–LATVIA: RESIDUAL FITS 
	1.8. MALTA–NETHERLANDS–POLAND: NESTED STAGES 
	1.9. PORTUGAL–ROMANIA–SWEDEN: METHOD OVERVIEW
	1.10. SLOVENIA–SLOVAKIA–UNITED KINGDOM: LOCAL REPRESENTATION
	1.11. DIVERSITY VERSUS UNIFORMITY

	C H A P T E R 2 Imposing Constitutionality: The 2009 Bundestag Election
	2.1. THE GERMAN FEDERAL ELECTION LAW
	2.2. COUNTRY-WIDE SUPER-APPORTIONMENT 2009
	2.3. PER-PARTY SUB-APPORTIONMENTS 2009
	2.4. NEGATIVE VOTING WEIGHTS
	2.5. DIRECT AND UNIVERSAL SUFFRAGE
	2.6. FREE, EQUAL, AND SECRET BALLOTS
	2.7. EQUALITY OF THE VOTERS’ SUCCESS VALUES
	2.8. EQUALITY OF REPRESENTATIVE WEIGHTS
	2.9. SATISFACTION OF THE PARTIES’ IDEAL SHARES OF SEATS
	2.10. CONTINUOUS FITS VERSUS DISCRETE APPORTIONMENTS

	C H A P T E R 3 From Reals to Integers: Rounding Functions, Rounding Rules
	3.1. ROUNDING FUNCTIONS
	3.2. FLOOR FUNCTION
	3.3. TIES AND THE NEED FOR ROUNDING RULES
	3.4. RULE OF DOWNWARD ROUNDING
	3.5. CEILING FUNCTION AND RULE OF UPWARD ROUNDING
	3.6. COMMERCIAL ROUNDING FUNCTION
	3.7. RULE OF STANDARD ROUNDING
	3.8. GENERAL ROUNDING RULES
	3.9. GENERALIZED JUMPPOINT SEQUENCES
	3.10. SIGNPOST SEQUENCES
	3.11. STATIONARY SIGNPOSTS
	3.12. POWER-MEAN SIGNPOSTS
	3.13. SIMPLE ROUNDING DOES NOT SUFFICE!

	C H A P T E R 4 Divisor Methods of Apportionment: Divide and Round
	4.1. APPORTIONMENT RULES
	4.2. ORGANIZING PRINCIPLES
	4.3. APPORTIONMENT METHODS
	4.4. DIVISOR METHODS 
	4.5. MAX-MIN INEQUALITY 
	4.6. JUMP-AND-STEP CALCULATIONS
	4.7. UNIQUENESS, MULTIPLICITIES, AND TIES
	4.8. RESOLUTION OF TIES
	4.9. GOOD INITIALIZATION OF THE JUMP-AND-STEP CALCULATIONS
	4.10. RECOMMENDED INITIALIZATION OF THE JUMP-ANDSTEP CALCULATIONS
	4.11. BAD INITIALIZATION OF THE JUMP-AND-STEP CALCULATIONS
	4.12. HIGHEST COMPARATIVE FIGURES
	4.13. AUTHORITIES

	C H A P T E R 5 Quota Methods of Apportionment: Divide and Rank
	5.1. QUOTA METHODS
	5.2. HARE-QUOTA METHOD WITH RESIDUAL FIT BY GREATEST REMAINDERS
	5.3. GREATEST REMAINDERS CALCULATIONS
	5.4. SHIFT-QUOTA METHODS
	5.5. MAX-MIN INEQUALITY 
	5.6. SHIFT-QUOTA METHODS AND STATIONARY DIVISOR METHODS
	5.7. AUTHORITIES
	5.8. QUOTA VARIANTS
	5.9. RESIDUAL FIT VARIANTS
	5.10. QUOTA METHOD VARIANTS

	C H A P T E R 6 Targeting the House Size: Discrepancy Distribution
	6.1. SEAT TOTAL AND DISCREPANCY
	6.2. UNIVERSAL DIVISOR INITIALIZATION
	6.3. RECOMMENDED DIVISOR INITIALIZATION
	6.4. DISTRIBUTIONAL ASSUMPTIONS
	6.5. SEAT-TOTAL DISTRIBUTIONS 
	6.6. HAGENBACH-BISCHOFF INITIALIZATION
	6.7. DISCREPANCY PROBABILITIES: FORMULAS 
	6.8. DISCREPANCY PROBABILITIES: PRACTICE
	6.9. DISCREPANCY AND ROUNDING RESIDUALS
	6.10. INVARIANCE PRINCIPLE FOR ROUNDING RESIDUALS 
	6.11. DISCREPANCY LIMIT DISTRIBUTION

	C H A P T E R 7 Favoring Some at the Expense of Others: Seat Biases
	7.1. A PARTY’S SEAT EXCESS
	7.2. SEAT EXCESS TRISECTION 
	7.3. SYSTEMATIC SEAT EXCESS OF A PARTY
	7.4. RANK-ORDER OF PARTIES BY VOTE SHARES
	7.5. SEAT BIASES
	7.6. PERCENTAGE HURDLES FOR VOTE EFFECTIVENESS
	7.7. SEAT BIAS FORMULA  
	7.8. BIASEDNESS VERSUS UNBIASEDNESS
	7.9. HOUSE SIZE RECOMMENDATION
	7.10. TOTAL POSITIVE BIAS: THE STRONGER THIRD, THE WEAKER TWO-THIRDS
	7.11. ALLIANCES OF LISTS
	7.12. SEAT BIAS FORMULA AND ALLIANCES OF LISTS
	7.13. SEAT BIASES OF SHIFT-QUOTA METHODS

	C H A P T E R 8Preferring Stronger Parties toWeaker Parties: Majorization
	8.1. BIPARTITIONS BY VOTE STRENGTHS
	8.2. MAJORIZATION OF TWO SEAT VECTORS
	8.3. A SUFFICIENT CONDITION VIA PAIRWISE COMPARISONS 
	8.4. MAJORIZATION OF TWO APPORTIONMENT METHODS 
	8.5. MAJORIZATION OF DIVISOR METHODS
	8.6. MAJORIZATION-INCREASING PARAMETERIZATIONS
	8.7. MAJORIZATION PATHS
	8.8. MAJORIZATION OF SHIFT-QUOTA METHODS

	C H A P T E R 9 Securing System Consistency: Coherence and Paradoxes
	9.1. THE WHOLE AND ITS PARTS
	9.2. COHERENCE THEOREM 
	9.3. COHERENCE EXTENSION FROM TWO PARTIES TO MANY
	9.4. HOUSE SIZE MONOTONICITY
	9.5. VOTE RATIO MONOTONICITY
	9.6. SYSTEM SIZE CONFORMITY
	9.7. QUOTA METHOD PARADOXES

	C H A P T E R 10 Appraising Electoral Equality: Goodness-of-Fit Criteria
	10.1. OPTIMIZATION OF GOODNESS-OF-FIT CRITERIA
	10.2. VOTER ORIENTATION: DivStd
	10.3. PARLIAMENTARY ORIENTATION: DivGeo
	10.4. PARTY ORIENTATION: HaQgrR
	10.5. CURTAILMENT OF OVERREPRESENTATION: DivDwn
	10.6. ALLEVIATION OF UNDERREPRESENTATION: DivUpw
	10.7. OPTIMIZATION OF STABILITY CRITERIA
	10.8. SUCCESS-VALUE STABILITY: DivStd
	10.9. REPRESENTATIVE-WEIGHT STABILITY: DivHar
	10.10. UNWORKABLE STABILITY CRITERIA
	10.11. IDEAL-SHARE STABILITY: DivStd
	10.12. IDEAL SHARE OF SEATS VERSUS EXACT QUOTA OF SEATS

	C H A P T E R 11 Tracing Peculiarities: Vote Thresholds and Majority Clauses
	11.1. VOTE SHARE VARIATION FOR A GIVEN SEAT NUMBER
	11.2. SEAT EXCESS BOUNDS: GENERAL DIVISOR METHODS
	11.3. SEAT EXCESS BOUNDS: STATIONARY DIVISOR METHODS
	11.4. DIVISOR METHODS AND IDEAL FRAMES
	11.5. VOTE SHARES FOR GIVEN SEAT NUMBERS: STATIONARY DIVISOR METHODS
	11.6. VOTE SHARES FOR GIVEN SEAT NUMBERS: MODIFIED DIVISOR METHODS
	11.7. VOTE SHARES FOR GIVEN SEAT NUMBERS: SHIFT-QUOTA METHODS
	11.8. OVERVIEW OF VOTE THRESHOLDS
	11.9. PRESERVATION OF A STRAIGHT MAJORITY
	11.10. RESIDUAL SEAT REDIRECTION CLAUSE
	11.11. HOUSE SIZE AUGMENTATION CLAUSE
	11.12. MAJORITY-MINORITY PARTITION CLAUSE
	11.13. THE 2002 GERMAN CONFERENCE COMMITTEE DILEMMA

	C H A P T E R 12 Truncating Seat Ranges: Minimum-Maximum Restrictions
	12.1. MINIMUM REPRESENTATION FOR ELECTORAL DISTRICTS
	12.2. QUOTA METHOD AMBIGUITIES
	12.3. MINIMUM-MAXIMUM RESTRICTED VARIANTS OF DIVISOR METHODS
	12.4. DIRECT-SEAT RESTRICTED VARIANT OF DivDwn
	12.5. DIRECT-SEAT RESTRICTED VARIANT OF DivStd
	12.6. COMPOSITION OF THE EP: CONSTRAINTS
	12.7. CAMBRIDGE COMPROMISE
	12.8. DOWNGRADED-POPULATION VARIANT
	12.9. COMPOSITION OF THE EP: ALLOCATIONS
	12.10. JAGIELLONIAN COMPROMISE

	C H A P T E R 13 Proportionality and Personalization: BWG 2013
	13.1. THE 2013 AMENDMENT OF THE FEDERAL ELECTION LAW
	13.2. APPORTIONMENT OF SEATS AMONG PARTIES
	13.3. ASSIGNMENT OF CANDIDATES TO SEATS
	13.4. INITIAL ADJUSTMENT OF THE BUNDESTAG SIZE
	13.5. ALTERNATIVE HOUSE SIZE ADJUSTMENT STRATEGIES

	C H A P T E R 14 Representing Districts and Parties: Double Proportionality
	14.1. THE 2012 PARLIAMENT ELECTION IN THE CANTON OF SCHAFFHAUSEN
	14.2. FROM THE EXAMPLE TO THE GENERAL SET-UP
	14.3. UNIQUENESS OF A DOUBLE-PROPORTIONAL SEAT APPORTIONMENT
	14.4. CRITICAL INEQUALITIES
	14.5. EXISTENCE OF DOUBLE-PROPORTIONAL SEAT APPORTIONMENTS
	14.6. A DUAL VIEW
	14.7. ALTERNATING SCALING ALGORITHM
	14.8. TIE-AND-TRANSFER ALGORITHM
	14.9. DOUBLE PROPORTIONALITY FOR EP ELECTIONS

	Comments and References
	Bibliography
	Index



