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Preface

Many control problems can be naturally formulated, analyzed, and solved in a
set-theoretic context. Sets appear naturally when three aspects, which are crucial
in control systems design, are considered: constraints, uncertainties, and design
specifications. Furthermore, sets are the most appropriate language to specify
several system performances, for instance when we are interested in determining
the domain of attraction, in measuring the effect of a persistent noise in a feedback
loop or in bounding the error of an estimation algorithm.

From a conceptual point of view, the peculiarity of the material presented in this
book lies in the fact that sets are not only terms of the formulation, but they play an
active role in the solution of the problems as well. Generally speaking, in the control
theory context, all the techniques which are theoretically based on some properties
of subsets of the state-space could be referred to as set-theoretic methods. The most
popular and clear link is that with the Lyapunov theory and positive invariance.
Lyapunov functions are positive-definite energy-type functions of the state variables
which have the property of being decreasing in time and are a fundamental tool to
guarantee stability. Besides, their sublevel sets are positively invariant and thus their
shape is quite meaningful to characterize the system dynamics, a key point which
will be enlightened in the present book. The invariance property will be shown to be
fundamental in dealing with problems such as saturating control, noise suppression,
model-predictive control, and many others.

The main purpose of this book is to describe the set-theoretic approach for
the control and analysis of dynamic systems from both a theoretical and practical
standpoint. The material presented in the book is only partially due to the authors’
work. Most of it is derived from the existing literature starting from some seminal
works of the early 70s concerning a special kind of dynamic games. By its nature,
the book has many intersections with other areas in control theory including
constrained control, robust control, disturbance rejection, and robust estimation.
None of these is fully covered, but for each of them we will present a particular view
only. However, when necessary, the reader will be referred to specialized literature
for a complementary reading.
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viii Preface

The present work could be seen as a new book on Lyapunov methods, but this
would not be an accurate classification. Although Lyapunov’s name, as well as the
string “set,” will appear hundreds of times, our aim is that of providing a different
view with respect to the existing excellent work, which typically introduces the
invariance concept starting from that of Lyapunov function. Here, we basically do
the opposite: We show how to synthesize Lyapunov functions starting from sets
which are specifically constructed to face relevant problems in control.

Although the considered approach is based on established mathematical and
dynamic programming concepts, it is apparent that the approach is far from being
considered obsolete. The reason is that these methods, proposed several decades
ago, were subsequently abandoned because they were clearly unsuitable for the
limited computer technology of the time.

In the authors’ mind, it was important to revise those techniques in a renewed
light, especially in view of the modern computing possibilities. Besides, many
connections with others theories which have been developed in recent years (often
based on the same old ideas) have been pointed out.

Concerning the audience, the book is mostly oriented towards faculty and
advanced graduate students. A good background on control-and-system theory is
necessary to the reader to access the book. Although, for the sake of completeness,
some of its parts are mathematically involved, the “hard-to-digest” initial mathemat-
ical digressions can be left to an intuitive level without compromising the reading
and understanding of the sequel. To this aim, an introduction has been written to
simplify as much as possible the comprehension of the book. In such chapter, the
reasons for dealing with non-differentiable Lyapunov functions are discussed and
preliminary examples are proposed to make the (scaring) notations of the following
sections more reader-friendly. In the same spirit, many exercises have been put at
the end of each chapter.

The present second edition is identical in spirit, but deeply revised in many parts.
In particular, it includes new examples and ideas1. Many changes are due to the
precious and constructive comments of many colleagues. The new edition presents
a new chapter about switching systems, which was only a section of the chapter
related topics.

The outline of the new book, depicted in the figure at the end of the present
section, is as follows.

Basic mathematical notations and acronyms, an intuitive description of the main
book content and the link with Lyapunov theory and Nagumo’s theorem, are
provided in Chapter 1.

In Chapter 2, Lyapunov’s methods, including non-smooth functions and converse
stability results, are detailed together with their connections with invariant set
theory. Some links with differential games and differential inclusion theories are
also indicated.

1And hopefully less mistakes.



Preface ix

Background material on convex sets and convex analysis, used in the rest of the
book, is presented in Chapter 3.

Set invariance theory fundamentals are developed in Chapter 4 along with
methods for the determination of appropriate invariant sets, essentially ellipsoids
and polytopes, for dynamic systems analysis and design.

Dynamic programming ideas and techniques are presented in Chapter 5 and some
algorithms for backward computation of Lyapunov functions are derived.

The ideas presented in Chapters 4 and 5 are at the basis of the following three
chapters.

Their application to dynamic system analysis is reported in Chapter 6, where it is
shown how to compute reachable sets and how these tools result extremely helpful
in the stability and performance analysis of polytopic systems.

The control of parameter-varying systems by means of robust or gain-scheduled
controllers is looked at in Chapter 7, where it is shown how to derive such controllers
starting from quadratic or polytopic functions.

Time constraints are dealt with in Chapter 8. Special emphasis is put on
controllability and reachability issues and on the computation of a domain of
attraction under bounded or rate constrained inputs. An extension of such techniques
to tracking problems is presented.

We dedicated a whole chapter to the problem of switching and switched systems.
Definitely the relevant theory in this topic is much wider than the material proposed
here. Still, we believe that the set-theoretic point of view of the subject can be
inspiring for the reader.

Chapter 10 presents a set-theoretic solution to different optimal and sub-optimal
control problems such as the minimum-time, the bounded disturbance rejection, the
constrained receding horizon, and the recent relatively optimal control.

Basic ideas in the set-theoretic estimation area are reported in Chapter 11,
where it is basically shown how it is possible to bound the error estimate via sets,
though paying a high price in terms of computational complexity, especially when
polytopes are to be considered.

Finally, some topics, which can be solved by set-theoretic methods, are presented
in Chapter 12: adaptive control, estimation of the domain of attraction, switched and
planar systems.

A concluding “Appendix” illustrates some interesting properties of the Euler
auxiliary system, the discrete-time dynamic system which is used throughout the
book in many proofs and the basic functioning of the numerical algorithm used for
the backward computation of polytopes for linear parameter-varying systems.

There are many people the authors should thank (including the members of their
own families) and a full citation would be impossible. Special thanks are due to
Dr. Sasa Raković and to Prof. Fabio Zanolin, for their help. We also thank Prof.
Maria Elena Valcher, Dr. Felice Andrea Pellegrino, Dr. Angelo Alessandri, Prof.
Fouad Mesquine, Dr. Mirko Fiacchini, Prof. Patrizio Colaneri, Prof. Sorin Olaru,
and Dr Sergio Grammatico for their constructive comments. We thank Dr. Carlo
Savorgnan, from the University of Udine, who wrote the appendix on the MAXIS-
G code. Finally the authors gratefully acknowledge the precious contribution of
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Dr. Giulia Giordano in proofreading and improving the quality of the book during
the writing of the second edition.

Udine, Italy Franco Blanchini
August 2014 Stefano Miani

Basics

Advanced/Optional

Techniques

Book description

Invariant
sets

Lyapunov
functions

Control
with

constraints

Set
theoretic
analysis

Control
of LPV
systems

Introduction

Chapt. 1

Chapt. 4

Chapt. 5

Chapt. 2

Convex
sets

Related
topics

Set
theoretic

estimation
Switching

and switched
systems

Chapt. 7 Chapt. 8Chapt. 6 Chapt. 9

Chapt. 11

Chapt. 10

Chapt. 12

Chapt. 3

Dynamic
programm.

(Sub−)
optimal
control



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Notations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Basic ideas and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 The spirit of the book .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Solving a problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Conservative or intractable?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.4 How to avoid reading this book .. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.5 How to benefit from reading this book . . . . . . . . . . . . . . . . . . . . 9
1.2.6 Past work referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Outline of the book .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 The link with Lyapunov theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Uncertain systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Constrained control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3.4 Required background .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Related topics and reading .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Lyapunov and Lyapunov-like functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.1 State space models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Differential inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.1.2 Model absorbing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.3 The pitfall of equilibrium drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Lyapunov derivative .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.1 Solution of a system of differential equations .. . . . . . . . . . . . 37
2.2.2 The beauty of Lyapunov theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2.3 The upper right Dini derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4 Derivative along the solution of a differential equation.. . 43
2.2.5 Special cases of directional derivatives .. . . . . . . . . . . . . . . . . . . 44

2.3 Lyapunov functions and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 Global stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Local stability and ultimate boundedness . . . . . . . . . . . . . . . . . 50

xi



xii Contents

2.4 Control Lyapunov function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.1 Associating a control law with a Control

Lyapunov Function: state feedback .. . . . . . . . . . . . . . . . . . . . . . . 53
2.4.2 Associating a control law with a Control

Lyapunov Function: output feedback .. . . . . . . . . . . . . . . . . . . . . 61
2.4.3 Finding a control Lyapunov function .. . . . . . . . . . . . . . . . . . . . . 62
2.4.4 Classical methods to find Control Lyapunov Functions . . 63
2.4.5 Polytopic systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4.6 The convexity issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.7 Fake Control Lyapunov functions . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.5 Lyapunov-like functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.6 Discrete-time systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.6.1 Converse Lyapunov theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
2.6.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3 Convex sets and their representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.1 Convex functions and sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.1.1 Operations between sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.1.2 Minkowski function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.1.3 The normal and the tangent cones . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 Ellipsoidal sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3 Polyhedral sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4 Other families of convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.5 Star-shaped sets and homogeneous functions . . . . . . . . . . . . . . . . . . . . . . . 117
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4 Invariant sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.2 Nagumo’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2.1 Proof of Nagumo’s Theorem for practical
sets and regular f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.2.2 Generalizations of Nagumo’s theorem . . . . . . . . . . . . . . . . . . . . 128
4.2.3 Examples of application of Nagumo’s Theorem . . . . . . . . . . 131
4.2.4 Contractive Sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.5 Discrete-time systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.2.6 Positive invariance and fixed point theorem .. . . . . . . . . . . . . . 136

4.3 Convex invariant sets and linear systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.4 Ellipsoidal invariant sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.4.1 Ellipsoidal invariant sets for continuous-time systems . . . 146
4.4.2 Ellipsoidal invariant sets for discrete-time systems . . . . . . . 150

4.5 Polyhedral invariant sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.5.1 Contractive polyhedral sets for

continuous-time systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.5.2 Contractive sets for discrete-time systems . . . . . . . . . . . . . . . . 162



Contents xiii

4.5.3 Associating a control with a polyhedral
control Lyapunov function and smoothing . . . . . . . . . . . . . . . . 166

4.5.4 Existence of positively invariant polyhedral C-sets . . . . . . . 170
4.5.5 Diagonal dominance and diagonal invariance .. . . . . . . . . . . . 172
4.5.6 Observability invariance and duality. . . . . . . . . . . . . . . . . . . . . . . 176
4.5.7 Positive linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.6 Other classes of invariant sets and historical notes . . . . . . . . . . . . . . . . . 188
4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

5 Dynamic programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
5.1 Infinite-time reachability set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.1.1 Linear systems with linear constraints . . . . . . . . . . . . . . . . . . . . . 200
5.1.2 State in a tube: time-varying and periodic case . . . . . . . . . . . 208
5.1.3 Historical notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.2 Backward computation of Lyapunov functions .. . . . . . . . . . . . . . . . . . . . 212
5.3 The largest controlled invariant set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.4 The uncontrolled case: the largest invariant set . . . . . . . . . . . . . . . . . . . . . 224

5.4.1 Comments on the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6 Set-theoretic analysis of dynamic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.1 Set propagation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.1.1 Reachable and controllable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
6.1.2 Computation of set propagation under

polytopic uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
6.1.3 Propagation of uncertainties via ellipsoids . . . . . . . . . . . . . . . . 241

6.2 0-Reachable sets with bounded inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6.2.1 Reachable sets with pointwise-bounded noise . . . . . . . . . . . . 243
6.2.2 Infinite-time reachability and l1-norm .. . . . . . . . . . . . . . . . . . . . 252
6.2.3 Reachable sets with energy-bounded noise . . . . . . . . . . . . . . . 254
6.2.4 Historical notes and comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

6.3 Stability and convergence analysis of polytopic systems. . . . . . . . . . . 257
6.3.1 Quadratic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.3.2 Joint spectral radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
6.3.3 Polyhedral stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
6.3.4 The robust stability radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
6.3.5 Best transient estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.3.6 Comments about complexity and conservativity .. . . . . . . . . 267
6.3.7 Robust stability/contractivity analysis via

system augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
6.4 Performance analysis of dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . 271

6.4.1 Peak-to-peak norm evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
6.4.2 Step response evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
6.4.3 Impulse and frequency response evaluation .. . . . . . . . . . . . . . 279
6.4.4 Norm evaluation via LMIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
6.4.5 Norm evaluation via non-quadratic functions .. . . . . . . . . . . . 282



xiv Contents

6.5 Periodic system analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

7 Control of parameter-varying systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
7.0.1 Control of a flexible mechanical system.. . . . . . . . . . . . . . . . . . 291

7.1 Robust and Gain-scheduling control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
7.2 Stabilization of LPV systems via quadratic Lyapunov functions . . 298

7.2.1 Quadratic stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
7.2.2 Quadratic stabilizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
7.2.3 Quadratic Lyapunov functions: the

discrete-time case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
7.2.4 Quadratic stability and H∞ norm.. . . . . . . . . . . . . . . . . . . . . . . . . 302
7.2.5 Limits of quadratic functions and linear controllers . . . . . . 303
7.2.6 Notes about quadratic stabilizability. . . . . . . . . . . . . . . . . . . . . . . 308

7.3 Polyhedral Lyapunov functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
7.3.1 Polyhedral stabilizability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
7.3.2 Universality of polyhedral Lyapunov

functions (and their drawbacks).. . . . . . . . . . . . . . . . . . . . . . . . . . . 313
7.3.3 Smoothed Lyapunov functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

7.4 Gain scheduling linear controllers and duality . . . . . . . . . . . . . . . . . . . . . . 321
7.4.1 Duality in a quadratic framework .. . . . . . . . . . . . . . . . . . . . . . . . . 326
7.4.2 Stable LPV realization and its application . . . . . . . . . . . . . . . . 326
7.4.3 Separation principle in gain-scheduling

and robust LPV control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

8 Control with time-domain constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
8.1 Input constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

8.1.1 Construction of a constrained control law
and its associated domain of attraction . . . . . . . . . . . . . . . . . . . . 344

8.1.2 The stable–unstable decomposition.. . . . . . . . . . . . . . . . . . . . . . . 349
8.1.3 Systems with one or two unstable eigenvalues .. . . . . . . . . . . 350
8.1.4 Region with bounded complexity

for constrained input control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
8.2 Domain of attraction for input-saturated systems. . . . . . . . . . . . . . . . . . . 362
8.3 State constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

8.3.1 A two-tank hydraulic system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
8.3.2 The boiler model revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
8.3.3 Assigning an invariant (and admissible) set . . . . . . . . . . . . . . . 374

8.4 Control with rate constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
8.4.1 The rate bounding operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

8.5 Output feedback with constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
8.6 The tracking problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

8.6.1 Reference management device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
8.6.2 The tracking domain of attraction . . . . . . . . . . . . . . . . . . . . . . . . . 392
8.6.3 Examples of tracking problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

8.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402



Contents xv

9 Switching and switched systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
9.1 Hybrid and switching systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
9.2 Switching and switched systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
9.3 Switching Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

9.3.1 Switching systems: switching sequences and
dwell time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

9.4 Switched systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
9.4.1 Switched linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

9.5 Switching and switched positive linear systems . . . . . . . . . . . . . . . . . . . . 424
9.5.1 The fluid network model revisited . . . . . . . . . . . . . . . . . . . . . . . . . 425
9.5.2 Switching positive linear systems. . . . . . . . . . . . . . . . . . . . . . . . . . 428
9.5.3 Switched positive linear systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 432

9.6 Switching compensator design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
9.6.1 Switching among controllers: some applications . . . . . . . . . 444
9.6.2 Parametrization of all stabilizing controllers

for LTI systems and its application to
compensator switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

9.6.3 Switching compensators for switching plants . . . . . . . . . . . . . 450
9.7 Special cases and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

9.7.1 Relay systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
9.7.2 Planar systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461

9.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

10 (Sub-)Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
10.1 Minimum-time control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

10.1.1 Worst-case controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
10.1.2 Time optimal controllers for linear

discrete-time systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
10.1.3 Time optimal controllers for uncertain systems . . . . . . . . . . . 472

10.2 Optimal peak-to-peak disturbance rejection . . . . . . . . . . . . . . . . . . . . . . . . 477
10.3 Constrained receding-horizon control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

10.3.1 Receding-horizon: the main idea . . . . . . . . . . . . . . . . . . . . . . . . . . 483
10.3.2 Recursive feasibility and stability . . . . . . . . . . . . . . . . . . . . . . . . . . 486
10.3.3 Receding horizon control in the presence

of disturbances .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
10.4 Relatively optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

10.4.1 The linear dynamic solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
10.4.2 The nonlinear static solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

10.5 Merging Lyapunov function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
10.5.1 Controller design under constraints . . . . . . . . . . . . . . . . . . . . . . . . 522
10.5.2 Illustrative example .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523

10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525



xvi Contents

11 Set-theoretic estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
11.1 Worst case estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

11.1.1 Set membership estimation for linear systems
with linear constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533

11.1.2 Approximate solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
11.1.3 Bounding ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
11.1.4 Energy bounded disturbances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

11.2 Including observer errors in the control design . . . . . . . . . . . . . . . . . . . . . 548
11.3 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550
11.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

12 Related topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
12.1 Adaptive control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

12.1.1 A surge control problem.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
12.2 The domain of attraction .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564

12.2.1 Systems with constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
12.3 Obstacle avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
12.4 Biological models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
12.5 Monotone systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
12.6 Communication and network problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586

12.6.1 Production–distribution systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
12.6.2 P-persistent communication protocol . . . . . . . . . . . . . . . . . . . . . . 589
12.6.3 Clock-synchronization and consensus . . . . . . . . . . . . . . . . . . . . . 591
12.6.4 Other applications and references. . . . . . . . . . . . . . . . . . . . . . . . . . 593

12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
A.1 Remarkable properties of the Euler auxiliary system. . . . . . . . . . . . . . . 597
A.2 MAXIS-G: a software for the computation of invariant

sets for constrained LPV systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
A.2.1 Software availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604
A.2.2 Web addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 604

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625



Chapter 1
Introduction

1.1 Notations

The book will cover several topics requiring many different mathematical tools.
Therefore adopting a completely coherent notation is impossible. Several letters
will have different meaning in different sections of the book. Coherence is preserved
inside single sections as long as it is possible. Typically, but not exclusively, Greek
letters α, β, . . . will denote scalars, Roman letter a, b, . . . vectors, Roman capital
letters A, B matrices, script letters A, B, . . . sets. Ai will denote both the ith row
or the ith column of matrix A. Besides the standard mathematical conventions, the
following notations will be used.

• IR is the set of real numbers.
• IR+ is the set of non-negative real numbers.
• AT denotes the transposed of matrix A.
• eig(A) denotes the set of the eigenvalues of matrix A.
• Given function Ψ : IRn → IR and α ≤ β, we denote the sets

N [Ψ, α, β]
.
= {x : α ≤ Ψ(x) ≤ β}

and

N [Ψ, β]
.
= N [Ψ(x),−∞, β] = {x : Ψ(x) ≤ β}

• Given a smooth function Ψ : IRn → IR its gradient ∇Ψ(x) is the column vector

∇Ψ(x) =

[
∂Ψ

∂x1
(x)

∂Ψ

∂x2
(x) . . .

∂Ψ

∂xn
(x)

]T

© Springer International Publishing Switzerland 2015
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2 1 Introduction

• If x, z ∈ IRn we denote the directional upper derivative of Ψ : IRn → IR

D+Ψ(x, z) = lim sup
h→0+

Ψ(x + hz) − Ψ(x)
h

(in the case of a smooth function Ψ(x) it simply reduces to ∇Ψ(x)T z). We will
also (ab)use (of) this notation when a function z = f (x,w, u) has to be considered
and, to keep the notation simple, we will write

D+Ψ(x,w, u) = D+Ψ(x, f (x,w, u))

to mean the upper directional derivative with respect to f (x,w, u).
• If A and B are matrices (or vectors) of the same dimensions, then

A < (≤, >,≥)B

has to be intended componentwise Aij < (≤, >,≥)Bij for all i and j.
• In the space of symmetric matrices

Q ≺ (	,
,�)P

denotes that P − Q is positive definite (positive semi-definite, negative definite,
negative semi-definite).

• We will denote by ‖ · ‖ a generic norm. We will use this notation in all cases in
which specifying the norm is of no importance.

• More specifically, ‖x‖p, with integer 1 ≤ p < ∞, denotes the p-norm

‖x‖p = p

√√√√ n∑
i=1

|xi|p

and

‖x‖∞ = max
i

|xi|

• If P 
 0 is a symmetric square matrix, then

‖x‖P =
2
√

xTPx

• Given any vector norm ‖ · ‖∗, the corresponding induced matrix norm is

‖A‖∗
.
= sup

x �=0

‖Ax‖∗
‖x‖∗
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• For x ∈ IRn, the sign and saturation vector functions sgn(x) and sat(x) are
defined, respectively, by the component-wise assignations

[sgn(x)]i
.
=

⎧⎨
⎩

1 if xi > 0

0 if xi = 0

−1 if xi < 0

[sat(x)]i
.
=

{
xi if |xi| ≤ 1

sgn(xi) if |xi| > 1

The saturation function can be generalized to the weighted case sata[x] or the
unsymmetrical case where sata,b[x] where a and b are vectors as follows:

[sata,b(x)]i
.
=

⎧⎨
⎩

xi if ai ≤ xi ≤ bi

a if xi < ai

b if xi > bi

and sata[x]
.
= sat−a,a[x].

• With a slight abuse of notation, we will often refer to a function y(·) : IRq �→
Y ⊂ IRp by writing “the function y(t) ∈ Y” or even y ∈ Y , if the meaning is
clear from the context.

• A locally Lipschitz function Ψ : IRn → IR is positive definite if Ψ(0) = 0 and
Ψ(x) > 0 for all x �= 0. It is positive semi-definite if the strict inequality is
replaced by the weak one. A function Ψ(x) is negative (semi-)definite if −Ψ(x)
is positive (semi-)definite.

The above definitions admit local versions in a neighborhood S of the origin.
In this case, the statement “for all x �= 0” is replaced by “for all x ∈ S, x �= 0”.

1.1.1 Acronyms

In the paper, very few acronyms will be used, with few exceptions. We report some
of the acronyms next.

EAS Euler Auxiliary System;
LMI(s) Linear Matrix Inequality (Inequalities);
LPV Linear Parameter-Varying;
RAS Region of Asymptotic Stability;
DOA Domain of Attraction;
GUAS Globally Uniformly Asymptotically Stable;
UUB Uniformly Ultimately Bounded.
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1.2 Basic ideas and motivations

The goal of this book is providing a broad overview of important problems in system
analysis and control that can be successfully faced via set-theoretic methods.

1.2.1 The spirit of the book

We immediately warn the reader who is mainly interested in plug-and-play solutions
to problems or in “user friendly” recipes for engineering problems that she/he
might be partially disappointed by this book. The material presented in most parts
of the book is essentially conceptual. By no means the book lacks numerical
examples and numerical procedures presented in detail. But it turns out that in some
cases the provided examples evidence the limits of the theory, especially from a
computational standpoint, if approached with a “toolbox” spirit. However, we hope
that if the reader will be patient enough to read the following subsections, she/he
will be convinced that the book can provide an useful support.

The set-theoretic approach applies naturally in many contexts in which its lan-
guage is essential even to state the problem. Therefore the set-theoretic framework
is not only a collection of methods, but it is mainly a natural way to formulate study
and solve problems.

As a simple example consider the “problem” of actuator limitations whose
practical meaning is out of questions. The main issue in this regard is indeed:
how to formulate the “problem” in a meaningful way. It is known that, as long
as a controlled system state is close to the desired equilibrium point, actuator
limitation is not an issue at all. Clearly, troubles arise when the state is “far” from
the target. However, to properly formulate the problem in an engineering spirit, one
must decide what “far” means and provide the problem specification. A possible
way to proceed is the typical analysis problem in which a control is fixed and its
performance is evaluated by determining the domain of attraction under the effect
of saturation. If one is interested in a synthesis problem, then a possible approach is
trying to find a controller which includes a certain initial condition or a set of initial
conditions in its domain of attraction. A more ambitious problem is determining
a controller which maximizes the domain of attraction. From the above simple
problem formulation it is apparent that the set of states which can be brought to
the origin, the domain of attraction, is essential in the problem specification. The
same considerations can be done if output or state constraints are considered, since
a quite natural requirement is to meet the constraints for specified initial conditions.
As it will be seen, this is equivalent to requiring that these initial states belong to
a proper set in the state space which is a domain of attraction for the closed-loop
system.

The problem of constrained control can be actually solved in the disturbance
rejection framework by seeking a stabilizing compensator which guarantees con-
straint satisfaction when a certain disturbance signal (or a class of disturbance
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signals) is applied with zero initial conditions. Although, in principle, no sets are
involved at all in this problem, there are strong relations with the set-theoretic
approach. For instance, if one considers the tracking problem of reaching a certain
constant reference without constraint violation, the problem can be cast in the set-
theoretic language after state translation, by assuming the target state as the new
origin and by checking if the initial state (formerly the origin) is in the domain of
attraction.

In other contexts, such as the rejection of unknown-but-bounded disturbances
under constraints, the set-theoretic approach plays a central role. Indeed, classical
results on dynamic programming show how the problem of keeping the state inside
prescribed constraint-admissible sets under the effect of persistent unknown-but-
bounded disturbances can be formulated and solved exactly (up to computational
complexity limits) in the set-theoretic framework.

The set-theoretic language, beside being the natural one to state several important
problems, also provides the natural tool for solving them as, for instance, in the
case of uncertain systems with unknown-but-bounded time-varying parameters, for
which Lyapunov theory plays a fundamental role. One key point of Lyapunov’s
work is that the designer has to choose a class in which a candidate Lyapunov
function needs to be found. Several classes of functions are available and, without
doubts, the most popular are those based on quadratic forms. Very powerful tools
are available to handle these functions. However, it is known (as it will clearly be
evidenced) that quadratic functions have strong theoretical limitations. Other classes
of functions, for instance the polyhedral ones, do not have such limitations and
several methods to compute them are based on the set-theoretic approach, as we
will see later.

In this book, several problems will be considered, without privileging any of
them. Indeed we are describing tools that can be exploited in several different
situations (although, for space reasons, some of these will be only sketched).

1.2.2 Solving a problem

It is quite useful to briefly dwell on the statement “solving a problem,” since this
is often used with different meanings. As long as we are talking about a problem
which is mathematically formulated, a distinction has to be made between its
“general formulation” and “the instance of the problem,” being the latter referred
to a special case, namely to a problem with specific data. When we say that a
problem “is solved” (or can be “solved”) we are referring to the general formulation.
For instance, the analytic integration problem which consists in finding a primitive
of a function is a generically unsolved problem although many special instances
(
∫

xdt = x2/2 + C) are solvable.
We could discuss for years on the meaning of solving a problem. Physicists,

doctors, mathematicians, and engineers have different feelings about this. Therefore
we decided to insert a “pseudo-definition” of problem solving in order to clarify our
approach.



6 1 Introduction

Our pseudo-definition of “solving a problem” sounds as follows.
We say that a given problem, mathematically formulated, is solved if there exists

an algorithm that can be implemented on a computer such that, given any instance
of the problem, in a finite number of steps (no matter how many) it leads to one of
the following conclusions:

• the instance can be solved (and, hopefully, a solution is provided);
• there is no solution with the given data.

The discussion here would be almost endless since nothing about the computabil-
ity has been said, and indeed computability will not be the main issue of the book.
Certainly, we will often consider the computational complexity of the proposed
algorithms, but we will not assume that an “algorithm” must necessarily possess
good “computational complexity,” as, for instance, that of being solvable in a time
which is a polynomial function of the data dimensions.

We remark that, although we absolutely do not underestimate the importance of
the complexity issue, complexity will not be considered of primary importance in
this book. Basically we support this decision by two considerations:

• if we claimed that a problem can be solved if there exists a polynomial algorithm,
then we would implicitly admit that the major part of the problems is unsolvable;

• complexity analysis is quite useful in all disciplines in which large instances are
the normal case (operation research and networks). We rather believe that this is
not the case of control area.

Unfortunately, as it will be shown later, finding tools which solve a problem in a
complete way requires algorithms that can be very demanding from a computational
viewpoint and therefore complexity aspects cannot be completely disregarded. In
particular, the issue of the trade-off between conservativeness and complexity, that
will be discussed next, will be a recurring theme of the work.

1.2.3 Conservative or intractable?

Constructive control theory is based on mathematical propositions. Typical condi-
tions have the form “condition C implies property P” or, in lucky cases, “condition
C is equivalent to property P,” where P is any property pertaining to a system
and C is any checkable (at least by means of a computer) mathematical condition.
Clearly, when the formulation is of the equivalence type (often referred to as
characterization), the control theoretician is more satisfied. For instance, for linear
discrete-time and time-invariant systems, stability is equivalent to the state matrix
having eigenvalues with modulus strictly less than 1. This condition is often called
a characterization, since the family of asymptotically stable systems is the same
family of systems whose matrix A has only eigenvalues included in the open unit
disk.
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There is a much simpler condition, which can be stated in terms of norms and
which states that a discrete-time linear system is asymptotically stable if ‖A‖ < 1,
where ‖ · ‖ is any matrix induced norm, for instance ‖A‖∞ .

= maxi
∑

j |Aij|. This
gain-type condition is generically preferable since, from the computational point of
view, it is easier to compute the norm of A rather than its eigenvalues. However,
the gain condition is a sufficient condition only, since if ‖A‖ ≥ 1 nothing can be
inferred about the system stability, as in the next case

A(μ, ν) =

[
0 μ

ν 0

]

In the book we will say that a criterion based on a condition C is conservative to
establish property P if C implies P, but it is not equivalent to. In lucky cases it is
possible to establish a measure of conservativeness. We say that a criterion based on
a condition C is arbitrarily conservative to establish property P if, besides being
conservative, there are examples in which condition C is “arbitrarily violated,” but
still propertyP holds. This is the case of the previous example, since ‖A(μ, ν)‖∞ =
max{μ, ν} so ‖A(μ, ν)‖ < 1 can be arbitrarily violated (for instance for ν = 0 and
arbitrarily large μ) and still the matrix could be asymptotically stable. If we can
“measure the violation,” then we can also measure conservativeness.

The counterpart of conservativeness is intractability. Certainly the example
provided is not so significant since computing the eigenvalues of a matrix is
not a problem as long as the computers work. But we can easily be trapped in
the complexity issue if we consider a more sophisticated problem, for instance
establishing the stability of a system of the form x(k + 1) = A(w(k))x(k) where
A(w(k)) takes its values in the discrete set {A1,A2} (this is a switching system,
a family that will be considered in the book). Since A(w(k)) is time-varying, the
eigenvalues play a marginal role1. Conversely, the condition ‖A(w)‖ < 1 remains
valid as a conservative sufficient condition for stability. If we are interested in a
non-conservative (sufficient and necessary) condition, we can exploit the following
result: x(k + 1) = A(w(k))x(k) is stable if and only if there exists a full column
rank matrix F such that the norm ‖A‖F

.
= ‖FA‖∞ ≤ 1 [Bar88a, Bar88b, Bar88c].

The matrix F can be numerically computed and it will be shown how to manage
the computation via set-theoretic algorithms. However, it will also be apparent
that the number of rows forming F, which depends on the problem, can be very
large. Actually it turns out that the problem of establishing stability of x(k + 1) =
A(w(k))x(k) or, equivalently, computing the spectral radius of the pair {A1,A2}, is
computationally intractable [TB97].

It is known that computer technology has improved so much2 that hard problems
can be faced in at least reasonable instances. However, there is a further issue.
Assume that we are considering a design problem and we are interested in finding
an optimal compensator. Assume that we can spend two days and two nights in

1|λ| < 1 for λ ∈ σ(A1)
⋃

σ(A2) is a necessary condition only.
2Otherwise this book would not have reason to exist.
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computing a compensator of order 200 which is “optimal.” It is expected that no
one (or few people) will actually implement this compensator since in many cases
she/he will be satisfied by a simple compensator, for instance a PID. We can use
the hard solutions to evaluate the approximate solutions. It is almost a paradox, but
our approach is supported by considering that recurrent situations, such as the one
described below, in which it happens that reasonably simple solutions are quite close
to the optimal ones.

Quite frequently, situations of this kind arise: an “optimal” compensator of order
200 is computed and it is then established that by means of a PID one can achieve
a performance which is 5% worse than the optimal one so that, seemingly, the
“optimal control evaluation” has been almost useless. But we can find a solid
argument (and a very good motivation to proceed): we should be happy to use a
simple PID based controller because, thanks to the fact that the optimal solution
was found, we are now aware of the limits of performance, and that the PID is just
5% sub-optimal.

However, there are cases in which the simple solution is not so close to the
“optimal” one and therefore it is reasonable and recommendable to seek for a
compromise. This typically happens in the case of linear compensators which
normally suffer from the fact that they “react proportionally” to the distance of
the state from the target point, which is known to be a source of performance
degradation. If a high gain feedback is adopted, then the compensator works
smoothly when close to the origin but the performance can deteriorate in transients
of large magnitude. Conversely, reducing the gain to limit the saturation leads to a
weak action. A simple way to overcome the problem is to use small gains when far
from the origin and large gain as the origin is approached. This can be achieved in
several ways, for instance by switching among compensators, and in this case the
switching law must be suitably coordinated, as we will see later on, to ensure the
stability of the scheme.

1.2.4 How to avoid reading this book

The book is not structured as a manual or a collection of recipes to be accessed
in case of specific problems, but rather the opposite: it is a collection of ideas and
concepts. Organizing and ordering them has certainly been the major effort as it will
be pointed out soon.

To avoid a waste of time to the reader who is not interested in the details, we have
introduced Section 1.3, in which the essentials of the book are presented in form of
a summary with examples. Therefore, Section 1.3 could be very useful to decide
whether to continue or to drop further reading3. In such a section we have sketched,
in a very intuitive way, which is the context of the book, which are the main results
and concepts and which is the spirit of the presentation.

3With the hope that the final decision will be the former.
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We think that accessing Section 1.3 could be sufficient at least to understand the
basics of the message the authors are trying to send, even in the case of postponed
(or abandoned) reading.

1.2.5 How to benefit from reading this book

If, eventually, the decision is to read, we would like to give the reader some hints:

• Do not be too scared by the mathematics you will find at the beginning. It has
been introduced for the sake of completeness. For instance, if you do not like the
Dini superior derivative just think in terms of regular derivative of a differentiable
function.

• Do not be too concerned with proofs. We have, clearly, inserted them (or referred
to available references), but we have not spent too much effort in elegance. We
have rather concentrated on enlightening the main ideas.

• If you find the book interesting, please give a look at the exercises at the end of
each chapter while reading. We have tried our best to stimulate ideas.

• Please note that a strong effort has been put in emphasizing the main concepts.
We could not avoid the details, but do not sacrifice time to follow them if this
compromises the essential.

• Always remind that we are humans and therefore error-prone. We are 100% sure
that the book will include errors, questionable sentences, or opinions.

1.2.6 Past work referencing

This has been a crucial aspect, especially in view of the fact that the book includes
material which has been known for more than 40 years. As the reader can see,
the reference list is full of items, but we assume as an unavoidable fact that some
relevant references will be missing. This is certainly a problem that can have two
types of consequences:

• misleading readers, who will ignore some work;
• disappointing authors, who will not see their work recognized.

The provided references are our good-faith best knowledge of the literature (up to
errors or specific decisions of not including some work for which we will accept the
responsibility).

The first edition of the book reported the following sentence: “Clearly, any
comment/remark/complain concerning forgotten of improperly cited references will
be very much appreciated.” We did not receive many complaints, but certainly we
discovered many references which should have been included but they were not.
We added all of them and we further added many references of work subsequent
to the first edition. We were also happy to notice that many new papers found a
theoretical support from our work. In any case the reported sentence remains valid.
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1.3 Outline of the book

We generically refer to all the techniques which exploit properties of suitably chosen
or constructed sets in the state space as set-theoretic methods. The set-theoretic
approach appears naturally or can be successfully employed in many problems of
different nature. As a consequence, it was absolutely no obvious how to present the
material and how to sequence the chapters (actually this was the major concern
in structuring this work). Among the several aspects which are related to the
set-theoretic approach, the dominant one is certainly Lyapunov theory which is
considered next. Other fundamental issues are constrained control problems and
robust analysis and design.

1.3.1 The link with Lyapunov theory

Lyapunov theory is inspired by the concept of energy and energy-dissipation (or
preservation). The main idea of the theory is based on the fact that if an equilibrium
point of a dynamical system is the local minimum of an energy function and the
system is dissipative, then the equilibrium is (locally) stable. There is a subsequent
property that comes into play, and more precisely the fact that the sublevel sets of
a Lyapunov function Ψ(x) (i.e., the sets N [Ψ, κ] = {x : Ψ(x) ≤ κ}) are positively
invariant for κ small enough. This means that if the initial state is inside one of this
sets at time t, then it will be in the set for all t′ ≥ t.4 This fact turns out to be very
useful in many applications which will be examined later on.

The concept of positive invariance is, in principle, not associated with a
Lyapunov function. There are examples of invariant sets that do not derive from
any Lyapunov function. Therefore the idea of set-invariance can originate a theory
which is much more general than Lyapunov theory. For instance, the standard
definition of a Lyapunov function requires positive definiteness. As a consequence
the sublevel sets {x : Ψ(x) ≤ κ}, for κ > 0 are bounded sets which include
the origin as an interior point. But this is not necessary in many problems in
which suitable invariant sets do not need to have (or even should not have) this
property. A Lyapunov function is typically used to assure stability or boundedness
of the solution of a system. An unstable system admits positively invariant sets. For
instance, Chetaev type of criteria to establish instability are based on the existence
of suitable positively invariant sets. As we will see in Section 4, invariant sets
are sometimes associated or represented by means of the so-called Lyapunov-like
functions.

But there are cases in which no functions at all are involved. Consider, for
instance, the case of a positive system, precisely a system such that, if the initial

4If t = 0, then it will belong to the set for positive values of t′, hence the name “positive invariance.”
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state has non-negative components, then the same property is preserved by the future
states. This property can be alternatively stated by claiming that the state-space
positive orthant is positively invariant. It is clear that the claim has no stability
implications, since a positive system can be stable or unstable. Still the positive
invariance conditions are quite close (at least from a technical standpoint) to the
known derivative conditions in Lyapunov theory.

We borrow a simple preliminary example from nonlinear mechanics.

Example 1.1. Consider the following nonlinear system

θ̈(t) = α sin(μθ(t)) − β sin(νθ(t))

A standard procedure to investigate the behavior of the system is multiplying both
members by θ̇

θ̇θ̈ − α sin(μθ(t))θ̇ + β sin(νθ(t))θ̇ = 0

and integrating the above so as to achieve

Ψ(θ, θ̇)
.
=

1

2
θ̇2 +

α

μ
cos(μθ(t)) − β

ν
cos(νθ(t)) = C

This means that Ψ(θ, θ̇) is constant along any system trajectory and thus, a
qualitative investigation of such trajectories can be obtained by simply plotting
the level curves of the function Ψ in the θ–θ̇ space. For α = 2, β = 1, μ = 2,
and ν = 1, the level curves are depicted in Figure 1.1. From the picture it can
be inferred that the equilibrium point θ = 0 is unstable (a conclusion that can be
derived via elementary analysis), and that there are other two equilibrium points
which are stable (not asymptotically), (±θ̄, 0), with θ̄ ≈ 1.3. However, if the system
is initialized close to the origin, there are two types of trajectories. For instance, if

Fig. 1.1 The level surfaces
of the function Ψ
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θ(0) = ε (−ε), ε > 0 and θ̇(0) = 0, then the system trajectories are periodic
and encircle the left (right) equilibrium point. Conversely, for any initial condition
θ(0) = 0 and θ̇(0) = ε (−ε), the trajectory encircles both equilibria.

The type of investigation in the example can be clearly extended to cases which
are not so lucky and the property that the trajectories evolve along the set Ψ = C is
not true anymore. The invariance property of some suitably chosen set can provide
useful information about the qualitative behavior. For instance, if a damping is
introduced in the nonlinear system

θ̈(t) = α sin(μθ(t)) − β sin(νθ(t)) − γθ̇(t)

one gets

d
dt
Ψ(θ, θ̇) = −γθ̇(t)2

so that, due to the energy dissipation, the system will eventually “fall” in one of
the stable equilibrium points (with the exception of a zero-measure set of initial
conditions from which the state converges to the origin in an unrealistic behavior).

The next natural question concerning the link between set invariance and Lya-
punov theory is the following: since the existence of a Lyapunov function implies
the existence of positively invariant sets, is the opposite true? More precisely, given
an invariant set, is it possible to derive a Lyapunov function from it? The answer
is negative, in general. For instance, for positive systems the positive orthant is
invariant, but it does not originate any Lyapunov function. However, for certain
classes of systems (e.g., those with linear or affine dynamics) it is actually possible
to derive a Lyapunov function from a compact invariant set which contains the origin
in its interior, as in the following example.

Example 1.2. Consider the linear system ẋ = Ax with

A =

[
−1 α

−β −1

]

where 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1 are uncertain, constant, parameters. To check
whether this system is stable for any choice of the values of α and β in the given
range, it is sufficient to consider the unit circle (actually any circle) and check
whether it is positively invariant. An elementary way to achieve this is to use the
Lyapunov function Ψ(x) = xTx/2 and notice that the Lyapunov derivative

Ψ̇(x) = xT ẋ = xTAx = −x21 − x22 + (α− β)x1x2 < 0

for (x1, x2) �= 0. An interpretation of the inequality can be deduced from Figure 1.2
(left). The time derivative of Ψ(x(t)) for x on the circle is equal to the scalar product
between the gradient, namely the vector which is orthogonal to the circle surface and
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Fig. 1.2 The subtangentiality
conditions for the circle and
the square

x(t)

points outside, and the velocity vector ẋ (represented by a thick arrow in the figure).
Intuitively, the fact that such a scalar product is negative, namely that the derivative
points inside, implies that any system trajectory originating on the circle surface
goes inside the circle (the arrowed curve). This condition will be referred to as sub-
tangentiality condition.

Up to now, standard quadratic functions have been considered together with stan-
dard derivatives. As an alternative, one might think about, or for some mysterious
reasons be interested in, other shapes. If, for example, a unit square is investigated,
it is possible to reason in a similar way but with a fundamental difference: the unit
square has corners! An important theorem, due to Nagumo in 1942 [Nag42], comes
into play. Consider the right top vertex of the square which is [1 1]T (the other three
vertices can be handled in a similar way). The corresponding derivative is

ẋ =

[
(−1 + α)

(−1 − β)

]
,

which “points towards the interior of the square” as long as 0 ≤ α ≤ 1, 0 ≤ β ≤ 1.
Intuitively, this means that any trajectory passing through the vertex “goes inside.”
It is also very easy to see that for any point of any edge the trajectory points inside
the square. Consider, for instance, any point [x1 x2]T on the right edge, x1 = 1 and
|x2| ≤ 1. The time derivative of x1 results in

ẋ1 = −x1 + αx2 ≤ −1 + α|x2| ≤ −1 + α ≤ 0.

This means that x1(t) is non-increasing when the state x is on the right edge, so that
no trajectory can cross it from the left to right. By combining the edge and the vertex
conditions, one can expect that no trajectory originating in the square will leave it (it
will be shown later that for linear uncertain systems one needs only to check “vertex
conditions”). It is rather obvious that, by homogeneity, the same consideration can
be applied to any scaled square. This fact allows to consider the norm

Ψ(x) = ‖x‖∞ = max
i

|xi|

which is such that Ψ(x(t)) is non-increasing along the trajectories of the system and
then results in a Lyapunov function for the system. Given that different shapes (say,
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different level sets) can be considered, the obvious next question is the following:
how can we deal with this kind of functions since Ψ(x) is non-differentiable and
the standard Lyapunov derivative cannot be applied? We will reply to this question
in two ways. From a theoretical standpoint we will introduce a powerful tool,
the Dini derivative, which is suitable for locally Lipschitz Lyapunov functions
(therefore including all kinds of norms). From a practical standpoint, it will be
shown that for the class of piecewise linear positive definite functions there exist
linear programming conditions which are equivalent to the fact that Ψ(x(t)) is non-
increasing. These conditions are basically derived by the same type of analysis
sketched before and performed on the unit ball of Ψ (this type of Lyapunov functions
are called set-induced).

1.3.2 Uncertain systems

Enlightening the importance of Lyapunov theory for the analysis and control of
uncertain systems is definitely not an original contribution of this book. However,
the issue of uncertainty is of primary importance and it will be deeply investigated
in the book. Uncertainty will be analyzed not only in the standard way (i.e., by
Lyapunov second method) but also by means of a set-theoretic approach which will
provide a broader view and will allow to face several problems which are not directly
solvable by means of the standard Lyapunov theory. In particular, reachability
and controllability problems under uncertainties and their applications will be
considered. These problems will be faced by means of a dynamic programming
approach. As a very simple example consider the next inventory problem.

Example 1.3. The following equation

x(k + 1) = x(k) − d(k) + u(k)

represents a typical (and, probably, the simplest) inventory model. The variable u is
the control representing the production rate, while d is the demand rate. The state
variable x is the amount of stored goods. Consider the problem of finding a control
u over a horizon 0, 1, . . . , T−1 such that, given x(0) = x0, the following constraints
will be satisfied: 0 ≤ x(k), x(T) = x̄, and 0 ≤ u(k) ≤ ū. If d(k) is assumed to be
a known function, then the problem is a standard reachability problem in which the
following constraints have to be taken into account

x(k) = x0 −
k−1∑
i=0

d(i) +
k−1∑
i=0

u(i) ≥ 0

along with the control constraints 0 ≤ u(k) ≤ ū and the final condition x(T) = x̄.
If we assume d(k) uncertain and we adopt an unknown-but-bounded uncertainty
specification, for instance d−(k) ≤ d(k) ≤ d+(k), then the scenario changes
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completely. Three kinds of policies can be basically considered. The first is the open-
loop strategy, in which the whole sequence is chosen as a function of the initial state
u(·) = Φ(x0). The second is the state feedback strategy, precisely u(k) = Φ(x(k))
while the third is the full information strategy, u(k) = Φ(x(k), d(k)), in which
the controller is granted the knowledge of d(k), at the current time. These three
strategies are strictly equivalent if d is known in advance, in the sense that if the
problem is solvable by one of them then it is solvable by the other two, but under
uncertainty the situation changes. It is immediate that only the third type of strategy
can lead to the terminal goal x(T) = x̄. To hope to produce something useful by
means of the other two strategies we have to relax our request to a more reasonable
target like |x(T) − x̄| ≤ β, where β is a tolerance factor.

The open-loop problem can then be solved if and only if one can find an open-
loop sequence such that 0 ≤ u(k) ≤ ū and

x(k) = x0 −
k−1∑
i=0

d+(i) +

k−1∑
i=0

u(i) ≥ 0

x(T) = x0 −
T−1∑
i=0

d+(i) +

T−1∑
i=0

u(i) ≥ x̄ − β

x(T) = x0 −
T−1∑
i=0

d−(i) +

T−1∑
i=0

u(i) ≤ x̄ + β

In this case the solution is simple since, in view of the fact that the problem is scalar,
one can consider the “worst case” action of the disturbance (which is d+(i) for
the upper bound and d−(i) for the lower bound). For multi-dimensional problems,
the situation is more involved because there is no clear way to detect the “worst
case.” Then a possibility, in the linear system case, is to compute the “effect of the
disturbance,” namely the reachability set at time k, with u = 0 and x0 = 0. In this
simple case we have that such a set is

Di =

{
k−1∑
i=0

d(i), for all possible sequences d(i)

}

namely the interval
[∑T−1

i=0 d−(i),
∑T−1

i=0 d+(i)
]

(as we will see the situation is more

involved in the general case). Then, for instance, non-negative constraint satisfaction
reduces to the condition

x0 − δ +

k−1∑
i=0

u(i) ≥ 0, for all δ ∈ Di
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We will see that this kind of trick is very useful in model predictive control
(a technique which embeds an open-loop control computation in a feedback scheme)
in the presence of uncertainties.

The feedback problem is more involved and the solution procedure works as
follows. Consider the set of all non-negative states at time T − 1 which can be
driven in one step to the interval [x−T , x

+
T ]

.
= [x̄ − δ, x̄ + δ]. This is the set

XT−1 = {x ≥ 0 : ∃u, 0 ≤ u ≤ ū, such that x − d + u ∈ [x−T , x
+
T ],

∀d−(T − 1) ≤ d ≤ d+(T − 1)}

It will be seen that such a set is convex. In the scalar case it is an interval XT−1 =
[x−T−1, x

+
T−1] (the impatient reader can have fun in determining the extrema). Once

XT−1 has been computed, the procedure repeats exactly backward by determining
the set of all non-negative states at time T − 2 that can be driven in one step to the
interval XT−1 = [x−T−1, x

+
T−1] and so on.

It is apparent that the control strategy requires two stages:

• off-line stage: the sequence of sets Xk is sequentially determined backward in
time and stored;

• on-line stage: the sets of the sequence, Xk, are used at time k to determine the
control value u(k) = Φ(x(k)) inside the following set

Ωk(x) = {u : 0 ≤ u ≤ ū, x(k) − d(k) + u(k) ∈ Xk+1, ∀d−(k) ≤ d ≤ d+(k)}

which is referred to as control map. It is not difficult to realize that feasibility is
assured by construction if and only if x(0) ∈ X0.

Though the operation of storing the sets Xk can be computationally demanding, this
solution (being of the feedback nature) presents several advantages over the open-
loop one. It is very simple to find examples in which the open-loop solution does
not exist while the feedback solution does. For instance, for 1 ≤ d(k) ≤ 3, ū = 4
and the target interval 0 ≤ x ≤ 4, the target can be met for arbitrary T > 0 and
all 0 ≤ x0 ≤ 4 by using the feedback strategy, but no open-loop strategy exists for
T > 4.

The previous closed-loop solution is a typical dynamic programming algorithm
[Ber00]. The basic idea of dynamic programming is determining the solution
backward in time by starting from the target.

There is an interesting connection between dynamic programming and the
construction of Lyapunov functions for uncertain systems. Let us consider the case
of a simple linear time-varying uncertain system

x(k + 1) = A(w(k))x(k)

where A(w), for w ∈ W , and W is a compact set. Being w time-varying, the natural
way to check robust stability of the system is to seek for a Lyapunov function.
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If we resort to quadratic functions, then the problem is basically that of checking
if for some positive definite P it is possible to assure

xTA(w)TPA(w)x < xTPx, ∀w ∈ W

However, this is a sufficient condition only. Indeed there are examples of linear
uncertain systems for which no quadratic Lyapunov function can be found, but are
indeed stable. Then the question is shifted to the following one: is it possible to find
a suitable non-quadratic Lyapunov function? The set-theoretic approach provides a
constructive way to do this. Again, one possibility is to apply dynamic programming
ideas. Given an arbitrary convex set X containing the origin in its interior, consider
the next sequence, computed backward in time (i.e. k = 0,−1,−2, . . . )

X0 = X

Xk−1
.
= {x ∈ X : A(w)x ∈ Xk, ∀w ∈ W}

Under appropriate technical assumptions, it will be seen that each element of this
sequence is compact and convex and such that Xk ⊆ X . Furthermore the sequence
is nested, say Xk−1 ⊆ Xk. If the sequence converges to a set (which includes the
origin) which we will denote byX−∞, then such limit set exhibits some fundamental
properties:

• it is the set of all states inside X which remain inside X if propagated by the
system x(k + 1) = A(w(k))x(k);

• it is the largest positively invariant set in X ;
• if X−∞ includes 0 as an interior point, then it is possible to associate with this set

a positively homogeneous function, whose level surfaces are achieved by scaling
the boundary of X−∞ (a simple example will be presented soon), which is a
Lyapunov function for the system (then the system is stable);

• if X−∞ is zero-symmetric (i.e., x ∈ X−∞ implies −x ∈ X−∞), the associated
function is a norm.

We will show later how the possibility of deriving Lyapunov functions by means of
invariant sets leads to a stability criterion which is not only sufficient for stability, but
necessary as well. We will also show that the technique can be used for continuous-
time systems and for stabilization problems, namely when a proper control action
has to be found.

The set-theoretic approach can be successfully exploited to achieve other kinds
of results. Consider, for instance, the following asymptotically stable single-input
single-output system

x(k + 1) = Ax(k) + Ed(k), y(k) = Cx(k)

and assume that |d(k)| ≤ 1 is a bounded unknown signal.
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If its performance in terms of disturbance rejection is investigated, namely

μmax = sup
x(0)=0, k≥0

|y(k)|

then it is well known that

μmax =

∞∑
h=0

|CAhE| (1.1)

However, it is possible to solve this problem in the following alternative set-theoretic
way by considering the strip

Y(μ) = {x : |Cx| ≤ μ}

It will be shown that μ ≥ μmax if and only the set of states reachable from 0
with bounded input d is included in the strip Y(μ) (see Fig. 1.3). A different,
but equivalent, condition is to verify whether there exists a (robustly) positively
invariant set S for the system x(k + 1) = Ax(k) + Ed(k), including 0 and which
is included in the strip or, in other words, that the maximal positively invariant set
included in Y(μ) includes the origin. As we shall see, both the computation of the 0
reachable sets and of the largest positively invariant set are in general much harder
than the computation of the series (1.1). The main point is that when (even linear)
uncertain systems are dealt with, the series formula (1.1) is not valid anymore, while
the computation of invariant sets is a viable solution. It will also be shown how this
kind of ideas are useful to synthesize controllers which minimize the worst case
peak ratio, i.e. minimize μmax.

Fig. 1.3 The set-theoretic
interpretation μ.

Y(μ)

x2

x1

S
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1.3.3 Constrained control

Dealing with constraints in control design is an old issue, but it is still a major
challenge in modern control theory and application. The classical approach based on
feasibility regions in the state space, presented in the 70s, is still receiving attention.
Let us briefly show, by means of an example, which are the basic issues in this
context.

Example 1.4. Consider the problem of damping an oscillating system (Fig. 1.4) for
which certain admissible ranges are prescribed for the position y (with respect the
equilibrium), the speed ẏ and the force u. Let M = K = 1 and assume that such
ranges are described by |y| ≤ ȳ, |ẏ| ≤ v̄, |u| ≤ ū and that these constraints
are hard, namely no violation is allowed, so that the control must be designed
accordingly. The first (obvious) point to consider is that, once the control law is
applied, constraints violation depend on the initial condition. It is apparent that there
are many different ways to face this problem:

• compute a stabilizing control and find the set of initial states for which no
violation occurs;

• compute a stabilizing control for which no violation occurs for a prescribed (set
of) initial state(s);

• compute a stabilizing control which “maximizes” (in some sense) the set of initial
states which do not produce violations.

It is clear that there are other possible ways to formulate the problem. If only the
control input is constrained, one can consider the saturation operator

usat = satū(u)

Fig. 1.4 The oscillating
system

K M

y

admissible range

u
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that limits the control value (we remind that satū(u) = u if |u| ≤ ū otherwise
satū(u) = ū sgn(u)). One can then adopt any control, for instance a linear gain
u = Kx, and saturate it: usat = satū[Kx]. Though this feedback prevents constraints
violation, nothing can be said about output constraints (and even about stability).
For instance, let the state constraints be given by a square, precisely |y| ≤ ȳ = 1,
|ẏ| ≤ v̄ = 1, ū = 1. The resulting equations are

ẋ1 = x2

ẋ2 = −x1 + u

The first idea is to seek for a control which introduces a damping

u = −κx2

with κ > 0. If no violation is allowed, then any initial state must be restricted in the
strip

|x2| ≤
1

κ

Unfortunately, meeting the constraints at time t does not assure that the constraints
will be met in the future. For instance, for κ = 1 all the states in the square satisfy
all the constraints but, if we consider the right upper corner, [1 1]T , it is immediate
to see that the derivative is ẋ = [1 − 2]T and then, being ẋ1 > 0, the square is
abandoned.

One of the most efficient approaches is based on the invariant sets theory. What
we need is a set S which is compatible with the constraints and which is positively
invariant. This is going to be a safe set, precisely a set of states for which not only
the constraints are satisfied, but constraint fulfilling is guaranteed in the future as
well.

A possible choice of candidate invariant sets is the family of ellipsoids, which
are quite simple to use. For instance, in our case, it is easy to see that the unit circle
is positively invariant for the system with the control u = −x2 since the function
Ψ(x1, x2) = (x21 + x22)/2 has non-positive Lyapunov derivative Ψ̇(x1, x2) = −x22.

Note that the unit circle is the “largest” ellipse that can be included in the square,
and therefore it is, in some sense, the optimal choice inside the family of ellipsoidal
sets. Note also that there are other possible controls under which the unit circle is
invariant and compatible with constraints. To investigate this problem, consider the
Lyapunov derivative “with no feedback applied”

Ψ̇(x1, x2, u)
.
= ∇Ψ(x)(Ax + Bu) = x2u

Then any control action which makes Ψ̇ ≤ 0 assures that Ψ(x1(t), x2(t)) is non-
increasing, so any circle is an invariant set. In this lucky case saturated control,
u = −sat[κx2], is appropriate since it yields Ψ̇(x1, x2) = −sat[κx2]x2 ≤ 0. Any set
having the property of becoming positively invariant provided that a certain control
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action is applied is named controlled-invariant. This circle is a special case because
it is by itself positively invariant for the autonomous system (i.e., with no control
action, u = 0).

In principle the function Ψ(x1(t), x2(t)) is not a Lyapunov function in a strict
sense since its derivative is negative semidefinite (it is necessarily 0 for x2 = 0).
Actually it is possible to assure convergence by means of a slightly different
Lyapunov function, Ψα(x1(t), x2(t)) = (x21 + 2αx1x2 + x22)/2. For a small α > 0
the unit ball is an ellipse which is arbitrarily close to the unit circle, hence “almost
optimal.” The Lyapunov derivative is

Ψ̇α(x1, x2) = [x1 + αx2 x2 + αx1](Ax + Bu) = −αx21 + αx22 + (x2 + αx1)u

Elementary computations show that one can make the expression above strictly
negative by means of the control

u = −κ[x2 + αx1]

for κ > 0 large enough. Indeed

Ψ̇α(x1, x2) = −α(1 + κα)x21 − 2ακx2x1 − (κ− α)x22

which is negative definite if and only if κ > α and (1 + κα)ακ − 2ακ > 0. Note
that the smallest is α the smallest is the value of κ required to assure that Ψα(x1, x2)
is negative definite. The function Ψα(x1, x2) becomes a Lyapunov function for
the system once a proper controller is assigned, namely it is a control Lyapunov
function. Its sublevel sets are, again, controlled invariant sets (with the difference
that now the control action is necessary since they are not invariant for u = 0)

Therefore by means of a small modification (associated with the new parame-
ter α) of the original function one gets

• a safe set arbitrarily close to the optimal ellipsoid (i.e., the circle);
• constraint satisfaction, because κ can be arbitrary small, hence the control-

admissible strip

|x2 + αx1| ≤
1

κ

becomes arbitrarily large;
• assured convergence because the derivative is negative Ψ̇α(x1, x2) < 0 for

(x1, x2) �= 0.

Is it possible to do something better? Indeed it is. We can abandon the family of
ellipsoidal sets and choose a “more general” class. It can be shown that the largest
controlled invariant set is a convex set, but not an ellipsoidal one. If |u| ≤ ū = 1,
then the largest controlled invariant set S can be shown to be the one which is
depicted in Fig. 1.5 and compared with the circle. This region is delimited by part
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Fig. 1.5 The largest
controlled invariant set A

B

x1

x2

D

C

of the square edges and by the arcs in the first and third quadrants (thick lines). An
intuitive explanation can be given as follows. Consider the full-force trajectories
namely those associated with u = ±1. It can be shown5 that these are circles
centered in the points (−1, 0) (for u = −1) and (1, 0) (for u = +1). These
trajectories are tracked in the clockwise sense. The two curved lines, A–B and C–D,
are achieved by full-force trajectories (u = −1 and u = 1, respectively). It is quite
intuitive that from any point on the boundary of the set there is a proper choice of
u = ±1 such that the corresponding full-force trajectory drives the state inside this
set. It is also easy to realize that any point in the square which is not in this region
must escape, no matter which control (constrained as |u| ≤ 1) is applied.

Once it has been established that the depicted convex set is the largest region, the
next questions have to be faced:

Q1: How can a control in the feedback form be found?
Q2: Can this simple idea be extended to more than two-dimensions? If so, how

can it be extended?
Q3: Is it possible to find the boundary (even in two-dimensions) if the system is

uncertain, so that no trajectory can be a priory computed?
Q4: Given that the maximal region is not much bigger than the circle, why

shouldn’t we be satisfied with the circle?

The first question can be easily faced if one allows for discontinuous control. The
feedback

u = −sgn[x2 + αx1],

5For instance for u = 1, write the system as x2dx2 + (x1 − 1)dx1 = 0 by means of variable
separation to derive x22 + (x1 − 1)2 = γ.
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where sgn[·] is the sign function, does the job. It applies the full force input u = −1
above and u = 1 below the line x2 + αx1 = 0 (the dashed line in the figure). As
a result, any trajectory starting in the square reaches such line. Once this line is
reached it cannot be abandoned, but still convergence to the origin has to be proved
and thus let us see what happens on the line. Consider the function Ψ2(x1, x2) = x21.
This cannot be given the dignity of candidate Lyapunov function since it is not
positive definite (only positive semidefinite) so we will call it a Lyapunov-like
function. The Lyapunov derivative is

Ψ̇2(x1, x2) = αx1x2 < 0

which is negative as long as the state x �= 0 is on the line x2 + αx1 = 0 (precisely
Ψ̇2(x1, x2) = −α2x21). There is a continuous version of this control which is

u = −sat[κ(x2 + αx1)]

which works properly for κ > 0 large enough.
By chance, in this case we have that the same control which was previously

deduced by the control Lyapunov function Ψ1(x1, x2) works for the maximal
invariant set although, in general, this is not the case. A natural question is whether
we can associate a Lyapunov function Ψ3 with the largest invariant set. Let us
consider the function which is intuitively constructed as a positively homogeneous
function (i.e., Ψ3(λx1, λx2) = λΨ3(x1, x2)) and which is equal to 1 on the boundary
of the largest controlled invariant set S. Such a function turns out to be

Ψ3(x1, x2) = max

{
|x1|, |x2|, sgn[x1x2]

|x1| +
√

4x21 + 3x22
3

}

It is not difficult to see that such a function is equal to one on the boundary of
S, and it is clearly positively homogeneous of order one. Such function is called
a Minkowski function of S (see Fig. 1.6) Since S is symmetric, it is a norm (in
general, if symmetry is dropped, it is called gauge function). It is apparent that this
function is not differentiable, but only piecewise differentiable. This implies that the
gradient of this function is defined only on the interior of the regions denoted by R1,
R2, and R3 and their opposite. What about the corners? Actually one can replace
the gradient by the subgradient and instead of the regular Lyapunov derivative one
can use the directional derivative

D+Ψ(x(t))
.
= lim

τ→0+

Ψ(x(t + τ)) − Ψ(x(t))
τ

which is always defined if Ψ is convex and x(t) is a regular solution of the
differential equation. Unfortunately one cannot always assume that the solution
is “regular.” For instance, the closed-loop system with the saturated control is
Lipschitz, but it becomes discontinuous if we consider sign-type functions. To be
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Fig. 1.6 The set S , its
polyhedral approximation and
the level curves of Ψ3
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able to include “discontinuities” we will use, for the sake of generality, the Dini
derivative (basically, replacing lim by lim sup). Although this generality will cause
some difficulties, still the essential ideas can be presented in an intuitive way (and
they will be).

Question Q2 points out some limits of the presented theory. The simple ideas
presented in the example, indeed, cannot be so easily generalized (in a constructive
way) to more general cases. The idea of using the “extremal trajectory” to delimit the
largest invariant set cannot easily be extended in dimension 3 and above. However,
if we resort to a special category of sets, namely the polyhedral ones, then there
are available algorithms which compute, in a systematic way, invariant sets in
this family. These algorithms are based on linear programming. The main idea is
depicted in Figure 1.6 and basically amounts to replace the original set S by a
polyhedral set (the dashed one). It will be shown that such an approximation can
be arbitrarily faithful but, in turn, arbitrarily complex.

Question Q3, concerning uncertainties, is also a problem that has to be faced. For
uncertain systems, extra care should be put to extend the idea of extremal trajectories
leading to the boundary of invariant sets, even in two-dimensions. To face the
general problem, as we will see, the approach based on dynamic programming,
previously described, is effective, since it enables to face, in some sense, the “worst
case” with no conceptual limitation (there are only computational limitation due to
the system dimensions).

Question Q4 is extremely important and, notwithstanding its apparent “malice,”
we cannot (and it is not our intention to) hide the fact that quite often the
described algorithms provide modest improvements to a much higher price from
the computational complexity standpoint. But, as already stressed, these operational
consuming techniques lead to necessary and sufficient conditions that can be used
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to evaluate the performances of approximate solutions. This critical view is one of
the most important features of the book. We reply to the fourth malicious question
as follows.

• Perhaps it depends on the application. One may be ready to use a sophisticated
software to have “the best solution” if the application is extremely important and
with stringent specifications.

• Computing the largest invariant set provides a reference to your approximated
solution based on circle. If you denote by vcir the circle volume and by vmax

the volume of the maximal set, you can say that the approximate solution is of
a factor vcir/vmax worse than the “optimal” one. Note that the volumes can be
computed even in high dimension (in the example it is an elementary exercise)
via randomized algorithms [TCD04].

• By analyzing the optimal solution you know something very important about the
“approximate solution,” since the feedback u = −sat[κ(x2−αx1)] deduced from
the “modified circle” indeed assures, in this special case, the maximal domain of
attraction.

• Concerning the oscillating system just presented, given the outcome in terms of
the difference between the two sets, we would suggest to use the approximated
one, unless such system had to be used in a stringent performance application.

1.3.4 Required background

We believe that this book is accessible to any student with a normal control and
system theory background, including fundamentals of linear system theory and
basics of Lyapunov theory. We also believe that it is accessible to all control
theoreticians, especially mathematicians who are not be too frustrated by “intuitive
arguments,” and practical engineers who are not scared by the formalism of the first
part. The notions which are necessary for the reading are

• very basic notions of topology (neighborhood, compactness, continuity, Lips-
chitz continuity, etc.) in finite dimension;

• basic calculus;
• linear algebra;
• notions of convexity and convex functions;
• basics of linear and convex programming.

1.4 Related topics and reading

In writing this book we planned to fill a hole (in space–time). The topic of this book
has been addressed since thirty years, for instance in Schweppe’s book [Sch73] that,
basically, was written with the same spirit. We do claim that the concepts expressed
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there remain still valid and this work covers only a part of that book. As far as the
dynamic programming is concerned, we would like to point out the excellent work
by Bertsekas [Ber00], now available in a renewed version.

The concepts presented here, in particular invariance and controlled invariance,
can be faced in a formal way and the interested reader is referred to [Aub91].
Fundamental concepts on Lyapunov theory can be found in [RHL77].

A suggested complementary reading is the book [BEGFB04], which is a renewed
version of a very successful edition. That book is mainly concerned with ellipsoidal
sets and quadratic functions. The existence of that work has been fundamental in
the tuning of the present book since it has allowed us not to enter in deep details
of invariance of ellipsoidal sets since much material can be found there. A further
reference of a book specialized to the case of ellipsoidal sets is [KV97]

A subject which is related to the material in this book is the geometric theory of
linear systems in particular the properties of controlled invariant subspaces [BM92].

One of the fundamental issues which will be dealt with is the control of
constrained systems. A nice complementary reading is the book [HL01]. Several
parts of the book will be devoted to the control of uncertain systems based on
Lyapunov methods. Classical books on this matter are [FK96b, Qu98]. Other
references (written with different spirit) about the control of uncertain systems are
[SPS98, ZDG96, DDB95, CGTV09].

The book will dwell briefly on special problems such as that of state estimation.
The literature on this topic is huge. Among the books concerned with the problem,
we point out [Che94] which is the most similar in spirit. A new emerging topic
at the moment of writing the first edition of this book is the control of switching
systems. We have now dedicated a new chapter to the topic which is far from being
exhaustive. Excellent references on this topic are [Lib03, SG05, SG11].



Chapter 2
Lyapunov and Lyapunov-like functions

As shown in the introduction, Lyapunov functions are crucial in the present book
aims, given the strict relation between Lyapunov functions and invariant sets. In this
chapter, basic notions of Lyapunov and Lyapunov-like functions will be presented.
Before introducing the main concept, a brief presentation of the class of dynamic
models which will be considered and some preliminary mathematical notions are
given.

It is assumed that the reader is familiar with basic concepts of differential and
difference equations.

2.1 State space models

The dynamic systems which will be considered in the book are those governed by
ordinary differential equations of the form

ẋ(t) = f (x(t), u(t),w(t)) (2.1)

y(t) = h(x(t),w(t)) (2.2)

or by difference equations of the form

x(t + 1) = f (x(t), u(t),w(t)) (2.3)

y(t) = h(x(t),w(t)) (2.4)

where x(t) ∈ IRn is the system state, u(t) ∈ IRm is the control input, y(t) ∈ IRp

is the system output, and w(t) ∈ IRq is an external input (uncontrolled and whose
nature will be specified later). In particular, systems of the form

© Springer International Publishing Switzerland 2015
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x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ed(t) (2.5)

y(t) = Cx(t) (2.6)

will be often considered. The distinction between the two external inputs is due
to practical consideration. Indeed w typically represents model variations while d
represents a disturbance signal. Clearly this is a special case because the two signals
can be combined in a single input ŵ = (w, d).

The book is mainly devoted to control problems. The class of regulators which
will be considered is the following:

ẋc(t) = fc(xc(t), y(t),w(t)) (2.7)

u(t) = hc(xc(t), y(t),w(t)) (2.8)

In the case of discrete-time systems the expression becomes

xc(t + 1) = fc(xc(t), y(t),w(t)) (2.9)

u(t) = hc(xc(t), y(t),w(t)) (2.10)

The reason why no control action has been considered in the output equation (2.2)
and (2.4) is the well posedness of the feedback connection. In some parts of the
book this assumption will be dropped and a direct dependence of the output from
the input will be considered, resulting in

y(t) = h(x(t), u(t),w(t)).

It is well known that the connection of the systems (2.1)–(2.2) and (2.7)–(2.8) results
in a dynamic system of augmented dimension whose state is the compound vector

z(t) =

[
x(t)
xc(t)

]
(2.11)

This state augmentation is crucial for the Lyapunov theory which has the state space
as natural environment. Indeed, a dynamic feedback (as long as the dimension of
xc(t) is known) can always be regarded as the static feedback

v(t) = fc(xc(t), y(t),w(t))

u(t) = hc(xc(t), y(t),w(t))

for the augmented system

ż(t) =

[
ẋ(t)
ẋc(t)

]
=

[
f (x(t), u(t),w(t))

v(t)

]
(2.12)
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with output

y(t) = h(x(t),w(t))

Therefore (with few exceptions) we will usually refer to static feedback control
actions. Obviously the same considerations can be done for the discrete-time version
of the problem.

One of the goals of the present work is to deal with constraints which are imposed
on both control and output, typically of the form

u(t) ∈ U (2.13)

and

y(t) ∈ Y, (2.14)

where U ⊂ IRm and Y ⊂ IRp are assigned “admissible” sets.
As far as the input w(t) is concerned, it will play different roles, depending on

the problem. More precisely, it will act as a noise entering the system and/or as an
uncertain time-varying parameter affecting the system or it will be regarded as a
reference signal. A typical specification for such function is given in the form

w(t) ∈ W . (2.15)

The set W will therefore be either the set of possible variation of an unknown-but-
bounded noise/parameter or the set of variation of the admissible reference signals.

It is definitely worth mentioning that the joint presence of the control u(t) and
the signal w(t) can be interpreted in terms of dynamic game theory in which u (the
“good guy”) plays against w (the “bad guy”) [BO99]. In this context, a successful
design problem is a “good end movie” in which u prevails over w, which in turn
applies the worst actions to prevent u from assuring its goal. Two possibilities can
occur:

(a) the control u = u(x) plays first, say it is unaware of what the “bad guy” w is
doing, and u has to minimize all the possible “damage” caused by w;

(b) the disturbance w plays first, say the control u = u(x,w) is aware of the “bad
guy” move and can exploit such knowledge to counteract its effects.

Obviously, the possibility for the compensator (i.e., the strategy adopted by u)
of exploiting the information of w is an advantage which might produce a big
difference in the result of the game. We will dwell again later on this game-theoretic
concept.
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2.1.1 Differential inclusions

An important concept that will be considered is the concept of differential inclusion.
Basically, a differential inclusion is an expression of the form

ẋ(t) ∈ F(x(t)) (2.16)

where F(x) is not a single vector valued function, but a set-valued function, i.e. F(x)
is a set for all x. In the case of an uncertain system

ẋ(t) = f (x(t),w(t)), w(t) ∈ W

the set F is then given by F(x) = {f (x,w), w ∈ W} so that (2.16) is a
generalization. The formalism (2.16) is very useful, and the differential inclusions
theory is quite effective in dealing with several mathematical problems.

A well-known example is the case of a system of differential equations with
discontinuous terms. The problem is mathematically relevant and stems from many
different applications such as that of relay systems, switching systems or sliding
mode control. Assume that

ẋ(t) = f (x(t))

is not continuous in a point x. It is possible to embed this system in a “minimal
differential inclusion” of the form (2.16) and claim that, by definition, any absolutely
continuous function (defined later) x(t) which satisfies (2.16) is a solution of the
system.

Example 2.1 (Oven control). Consider the following relay system

ẋ(t) = −λx(t) + u(t)

with control

u(t) =

{
0 if x ≥ x̄
ū if x < x̄

The system is a well-known example of control of a heating plant (such as an
oven) where x̄ is the desired temperature. Clearly, the value x = x̄ represents a
discontinuity of the function. The corresponding differential inclusion is

ẋ ∈ F(x) :=

⎧⎨
⎩

−λx if x > x̄
[−λx̄,−λx̄ + ū] if x = x̄
−λx + ū if x < x̄

Let us assume that the desired temperature is x̄ ≥ 0 (reasonable for both Celsius
and Fahrenheit scale) and that −λx̄ + ū > 0 (a desirable assumption). Then, it is not
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difficult to see that the (unique in this case) absolutely continuous function which
satisfies the inclusion for x(0) ≤ x̄ is

x(t) = min{(x(0) − ū/λ)e−λt + ū/λ, x̄}

which becomes, by definition, the solution of the relay system. The determination
of the analogous expression of x(t) for x(0) ≥ x̄ is left to the reader.

The theory of differential inclusions, by exploiting the set valued maps theory, and
especially the concept of semicontinuity (or continuity) of set-valued maps, is a
framework to prove the existence of solutions in the general case (see Chapter 2 of
[AC84] for details).

2.1.2 Model absorbing

An idea that sometimes is extremely useful is the approximation achieved by
absorbing a nonlinear uncertain system in a linear (controlled) differential inclusion.
Consider the system

ẋ(t) = f (x(t), u(t),w(t)) (2.17)

The idea is determining a family of matrices

{A(p),B(p), p ∈ P}

such that for all w ∈ W

f (x, u,w) = A(p)x + B(p)u, for some p ∈ P (2.18)

for all x and u. If such A(·) and B(·) exist, we say that system (2.17) is absorbed
in (2.18) . Then we can claim that, no matter how u is taken, any trajectory of the
original system (2.17) is also a trajectory of (2.18) (the opposite is clearly not true in
general). As a consequence, if we are able to determine the qualitative behavior of
the absorbing system, we can determine (in a conservative way) the behavior of the
original system. The important property of the mentioned trick is that if one is able
to stabilize (2.18), or to prove its stability in the uncontrolled case, then stability is
assured also for (2.17) [Liu68] (see also [LR95, SA90, SA91]).

Example 2.2 (Magnetic levitator). Consider the following simplified equation of a
magnetic levitator

ÿ(t) = −k
i(t)2

y(t)2
+ g = f (y(t), i(t))
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Fig. 2.1 The magnetic
levitator

shown in Fig. 2.1. The variable y is the distance of a steel sphere from a controlled
magnet and i is the current impressed by an amplifier. Note that y is oriented
downwards (i.e., increasing y means lowering the sphere). Let (ȳ, ī) be the pair of
equilibrium positive values, say such that f (ȳ, ī) = 0. Then, f (y, i) can be written as
follows:

f (y, i) =

∫ (y,i)

(̄y,̄i)

[
2ki2

y3
dy − 2ki

y2
di

]

The integral in the previous expression is to be thought as a curve-integral evaluated
on any continuous curve connecting (ȳ, ī) to (y, i). Now, it is reasonable to assume
that the variables are bounded as

0 < y− ≤ y ≤ y+, 0 < i− ≤ i ≤ i+, 0 < k− ≤ k ≤ k+,

and then get the absorbing model

ÿ(t) = p1(t)(y(t) − ȳ) − p2(t)(i(t) − ī) (2.19)

By the mean value theorem, the minimal and maximal values of p1(t) and p2(t) can
be taken as
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2k−i−
2

y+3 ≤ p1(t) ≤
2k+i+

2

y−3 ,
2k−i−

y+2 ≤ p2(t) ≤
2k+i+

y−2

The original nonlinear model is then handled as a model of the type (2.18),
known as Linear Parameter-Varying (LPV) systems. LPV models are very important
and they will be often considered in the present book. The previous approach is
also known as quasi-LPV system modeling in which a “nonlinearity” is removed
by introducing a suitable parameter (see, for instance, [SR00]). The next example
comes from chemistry.

Example 2.3 (A simple chemical reaction network). Consider the following very
simple chemical reactions

∅ → A, ∅ → B, A + B → C, C → ∅

In which two reactants A and B produce C. C is subject to a linear degradation.
We assume that the supply of A is controlled while the inflow of B is exogenously
determined.

Assuming mass action kinetics, these reactions correspond to the following set
of equations, in which we have denoted by the lowercase letters a, b, and c the
concentrations of A, B, and C respectively:

ȧ(t) = −ka(t)b(t) + a0(t)

ḃ(t) = −ka(t)b(t) + b0(t)

ċ(t) = ka(t)b(t) − hc(t)

k and h are positive rate constants, a0(t) is the controlled supply of A and b0(t) is
the spontaneous flow of B. Consider a certain equilibrium value corresponding to a
constant value of b0(t) = b̄0. The steady-state conditions are

0 = −kāb̄ + ā0

0 = −kāb̄ + b̄0

0 = kāb̄ − hc̄

thus ā0 = b̄0, c̄ = b̄0/h while ā and b̄ can be chosen according to āb̄ = b0/k.
Hence the reaction steady state can be chosen with one degree of freedom. Once the
equilibrium point is fixed, by introducing the variables x1 = a − ā, x2 = b − b̄,
x3 = c − c̄, u = a0 − ā0 and by noticing that

ka(t)b(t) − kāb̄ = kb(t)(a(t) − ā) + kā(b(t) − b̄)
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it is readily seen that the system can be rewritten as

⎡
⎣ ẋ1(t)

ẋ2(t)
ẋ3(t)

⎤
⎦ =

⎡
⎣−kw(t) −kā 0

−kw(t) −kā 0

kw(t) kā −h

⎤
⎦
⎡
⎣ x1(t)

x2(t)
x3(t)

⎤
⎦+

⎡
⎣ 1

0

0

⎤
⎦ u(t) (2.20)

with the “parameter” w(t) = b(t). We may obviously assume that ā > 0. To provide
bounds for w(t) = b(t) we can assume that the system will be confined in a working
region

0 < b− ≤ b(t) ≤ b+

Note that this system is not asymptotically stable. This can be seen by linearizing it
and noticing that the Jacobian has the same form of (2.20) with w = v̄, or simply by
noticing that, if a0 and b0 are fixed, we get

ȧ − ḃ = a0 − b0

hence even small values of a0 − b0 produce a linear divergence of the variable
a(t) − b(t) = (a0 − b0)t + a(0) − b(0). This system needs a stabilizing control.

The two previous examples open the way to a circular argument. The LPV
representation is valid as long as the system remains in a proper region. But, since
the two systems are unstable, confining the state in such a region can be achieved
only by a proper feedback control. Note that this applies to stable systems as well,
unless we assume to be extremely close to the equilibrium value.

Therefore, an appropriate quasi-LPV system control should be approached as
follows:

1. select a working region in the state-space;
2. find bounds for the “parameters” valid in such a region;
3. make sure that the controller keeps the state inside this region by analyzing the

LPV closed-loop system.

As it will be seen later on the Lyapunov approach is the ideal one to solve the
problem of confining the state inside an assigned region.

2.1.3 The pitfall of equilibrium drift

The equilibrium point definition is quite popular in elementary system theory
classes. It is well known that, given a (certain) dynamic system ẋ = f (x, u) and
a pair x̄ ∈ IRn and ū ∈ IRm such that 0 = f (x̄, ū), then a translation is possible by
introducing the new variables z(t)

.
= x(t) − x̄ and v(t)

.
= u(t) − ū, thus achieving a

new system
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ż(t) = Fx̄,ū(z(t), v(t))
.
= f (z(t) + x̄, v(t) + ū)

In the case of an uncertain system, the additional input w is present and therefore,
when talking about equilibria, one needs to refer to a nominal value w̄ of w to derive,
under the condition 0 = f (x̄, ū, w̄), a model of the form

ż(t) = Fx̄,ū,w̄(z(t), v(t), r(t))

where r(t)
.
= w(t) − w̄. It is quite clear that the equilibrium is changed if the value

of the input w is not the nominal.
The pitfall we are talking about is exactly the just mentioned one: a linear model

changes its nature to a linear + disturbance model in the uncertain case.
Consider the LPV system ẋ = A(w)x + B(w)u, for which x̄ = 0 and ū = 0

is clearly an equilibrium pair, and consider a different equilibrium condition, with
x̄ �= 0, which is subject to the condition

0 = A(w̄)x̄ + B(w̄)ū

Denoting by δA(w) = A(w) − A(w̄) and by δB(w) = B(w) − B(w̄), the original
LPV system can be written as

ż(t) = A(w(t))z(t) + B(w(t))v(t) + δA(w(t))x̄ + δB(w(t))ū︸ ︷︷ ︸
Δ(̄x,ū,w(t))

,

which is not a pure LPV system anymore, being affected by an additive term Δ.
In particular, if the nominal value of the control u = ū is applied, the steady
state variations of w change the equilibrium state. The theory (often without even
mentioning the problem) typically deals with the new term Δ as an additional
uncertain noise.

Consider again the levitator model in Example 2.2. Equation (2.19) is correct, but
it does present the pitfall. Indeed, for i = ī and y = ȳ, the system is in equilibrium
conditions. However, if the parameter k changes, the corresponding values of ī and
ȳ change as well, according to the physical law k̄i2 = gȳ2. If a non-nominal value
k �= k̄ is considered, we have also to bear in mind that the equilibrium values are not
anymore ȳ and ī such that ȳ = ī

√
k̄/g.

Example 2.4 (A circuit with uncertain parameters). Consider the linear electric
circuit represented in Fig. 2.2 and whose equations are

ẋ1 = − 1

C1

(
1

R1
+

1

R3
+

1

R5

)
x1 +

1

C1R3
u1 +

1

C1R5
u2

ẋ2 = − 1

C2

(
1

R2
+

1

R4
+

1

R6

)
x2 +

1

C2R6
u1 +

1

C2R4
u2
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Fig. 2.2 The electric circuit
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where x1 and x2 are the capacitor voltages. The circuit represents two voltage
generators u1 and u2 which supply power to the load R1 and R2 (whose values
are assumed much greater than the transportation resistances R3, R4, R5, and R6). If
symmetry of the circuit is assumed, say R1 = R2, R3 = R4, R5 = R6 and C1 = C2,
then any constant input couple ū1 and ū2 results in the steady state values for the
state variables

x̄1 = x̄2 = x̄ = μ(ū1 + ū2)

Therefore, the power is equally supplied to R1 and R2, no matter which of the
sources u1 and u2 pushes harder. However, variations of the provided parameters
can deeply unbalance the energy distribution between the two loads, and completely
change the equilibrium point (and create power circulation between the generators).
The problem becomes even harder if looked at in another way. Assume that x̄1
and x̄2 are fixed. If the input matrix B is non-singular, then the couple x̄1 and x̄2
can be obtained by imposing suitable values to ū1 and ū2, precisely ū = B−1Λx̄,
where −Λ is the diagonal state matrix. It is obvious that if B becomes near-singular
due to parameter changes, then the components of ū may become arbitrarily large.
However, if the parameters are unknown, the situation is completely different. We
will discuss this matter later when the effects of the uncertainties on B will be
considered.

To summarize, two simple facts are worth evidencing:

• The equilibrium shift can be non-negligible, depending on the specific problem
faced.

• Models of the form

ẋ(t) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

are more realistic than pure LPV (since the previously introduced term Δ can be
included in Ed) when uncertainties have to be taken into account. Such models
will be often considered in the book.
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2.2 Lyapunov derivative

This chapter is dense of non-standard concepts. However, the reader who is not
interested in mathematical formalism can leave the contents at an intuitive level
without essentially compromising the reading of the rest of the book.

2.2.1 Solution of a system of differential equations

Although this book is mathematically written, it is mainly devoted to engineering
problems. As a consequence, theoretical conditions of existence of solutions are not
the main concern. However, to render the exposition rigorous, we need to specify
what we mean by solution of a differential equation.

Consider a system (possibly resulting from a feedback connection) of the form

ẋ(t) = f (x(t),w(t)) (2.21)

Clearly if we assume that the signal w is continuous and f is sufficiently regular,
then we may always think at (2.21) as a regular relation between f (x(t),w(t)) and
ẋ(t) which exists in the usual sense.

Unfortunately assuming a continuous w unacceptably restricts the class of
problems since we could not even consider step inputs. In the sequel, it will always
be assumed that w(t) is a piecewise continuous function of time, which means that
it has a finite (possibly zero) number of discontinuity points in any finite interval
and in each of them it admits finite left and right limits. Then the proper way to
handle (2.21) is to consider the equivalent integral equation

x(t) = x(0) +

∫ t

0

f (x(σ),w(σ))dσ (2.22)

which is strictly equivalent to (2.21) as long as the derivative ẋ exists.
Then, under proper assumptions on f , the solution of (2.22) exists. Unfortunately,

it is not always possible to rely on the continuity of the function f , since we will
sometimes refer to systems with discontinuous controllers, an event which causes
some mathematical difficulties.

For the sake of completeness, we introduce a general notion of solution of a
differential equation. Let us start with the next definition [Hal69]

Definition 2.5. A function f : [a, b] → IR, with [a, b] ⊂ IR a finite interval, is
absolutely continuous if for any ε > 0 there exists a δ > 0 such that for any
countable number of disjoint sub-intervals [ai, bi] such that

∑
i (bi−ai) ≤ δ we have

∑
i

| f (bi) − f (ai)| ≤ ε
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It is known that an absolutely continuous function is differentiable everywhere and

f (t) =

∫ t

a
f ′(σ)dσ

Actually we have the characterization that a function is absolutely continuous if and
only if it is the integral of some Lebesgue-measurable function m

f (t) =

∫ t

a
m(σ)dσ

The next is the most general (reasonable) definition of solution of a differential
equation.

Definition 2.6 (Solution of a differential equation). Given a function x : IR+ →
IRn, which is component-wise absolutely continuous1 in any compact interval, x is
said to be a solution of (2.21) if it satisfies it for almost all t ≥ 0.

The same definition holds for the solution of a differential inclusion which is an
absolutely continuous function satisfying (2.16) almost everywhere. The above
definition is quite general, but it is necessary to deal with problems in which the
solution x(t) is not differentiable in the regular sense.

In most of the book (but with several exception) we will refer to differential
equations admitting regular (i.e., differentiable everywhere) solutions. As far as
the existence of global solutions (i.e., defined on all the positive axis IR+) is
concerned, we will not enter in this question, since it will always be assumed that
the system (2.21) is globally solvable. In particular, equations with finite escape time
will not be considered (see Exercise 1 for an example).

Another issue we have to explore is the domain of definition of f . Let us consider
the following unit magnetic levitator model2

ÿ(t) = F(y(t)) = 1 − 1

y(t)2

Obviously, function F is not defined for y = 0. So it is legitimate to consider F only
for positive values y > 0. If we start from an initial condition ẏ(0) = 0 and we take
0 < y(0) < 1, the system will accelerate upwards, thus decreasing the distance of
the sphere from the magnet: ẏ(t) < 0, and this will produce a decreasing of y(t) and
this will further decrease the acceleration . . . . In simple words this equation will
meet its doom: the state will reach the condition y(t) = 0 at some (finite) t and after
this instant the differential equation is not defined, so this is the end of the story.

1See [RHL77] for more details.
2For instance built by using a sphere of unit mass with a unitary constant κ, using unitary current
on a planet in which the gravity is one.
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This is understandable, since the levitator model is realistic (even accurate) only
in a neighborhood of the equilibrium point.

Thus in general, a differential equation is defined on a domain, D but its solution
may well escape such a domain. As we have pointed out the “non escaping theme”
is a fundamental one in the book. But for the moment being let us point out that
mathematicians usually refer to “solution in the set” in the sense that its general
properties-existence are a concern as long as x(t) is in D. The fact that the solution
might reach the boundary of D and stop to exist may be a subject of investigation,
but not a worry.

Note that mathematical singularities may be removed by slightly changing the
model as

F(y) = 1 − 1

(y + ε)2

with a small ε, so that in the contact condition y = 0 the force is high but finite.
In this case the condition y = 0 does not imply mathematical singularities, but just
the fact that the model is not valid anymore, because y > 0 is a physical constraint.
Introducing ε > 0 may improve the quality of the model when the sphere is close to
the magnet, but not necessarily when it is close to the equilibrium point.

A similar case is the unit-tank model with a hole in the bottom

ḣ(t) = −
√

h(t)

where h is the fluid height. The domain of the definition is h ≥ 0. The solution for
h(0) > 0 reaches the boundary h = 0 (in finite time), but the solution does not cease
to exist.

2.2.2 The beauty of Lyapunov theory

No one would doubt that the system in Figure 2.3, which is formed by three
masses connected by a rope after a sufficiently long time will be found in its
minimum energy configuration. More precisely, denoting by (xi, yi), i = 1, 2, 3,
the coordinates of the three masses, the final configuration will be the solution of

min E = min gm1y1 + gm2y2 + gm3y3,

s.t.

(xi − xi−1)
2 + (yi − yi−1)

2 ≤ r2i , i = 1, . . . , 4,

where (xi, yi) are the coordinates of the ith point, namely it will minimize the
potential energy if the rope is assumed not elastic. Slightly perturbing this systems
would not prevent it from returning in this configuration.
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Fig. 2.3 The masses
connected by a rope
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The reason why we are sure about this fact is that during the evolution any
additional energy put in the system will be dissipated and the system will eventually
return in the minimal energy configuration. A theoretical mathematician who only
looks at the mathematical formulation would say that if the free points (x1, y1),
(x2, y2) (x3, y3) are persistently “moved” within the constraint set, by decreasing
E without violating the constraints, namely by applying a gradient method, then
at some point no further move could be possible after reaching the (unique)
constrained minimum. No equations are necessary.

Similarly, any floating object, without any auxiliary force but gravity and
Archimedes’ force, is known to reach a minimal-energy configuration just because
of the dissipation of energy. This minimum may be non-unique (and, in this case,
engineers are often concerned with the problem of assuring the proper minimum is
attained).

In general, for mechanical systems, writing an energy function is possible and
often easy. The main idea of Lyapunov theory is that any system for which there
exists a function Ψ(x) of its state variables which has a (possibly local) minimum
in a point x̄ and is “dissipative” (namely Ψ(x(t)) decreases in a neighborhood of x̄)
exhibits a “stable behavior.”

Example 2.7 (A simple compartmental system). Consider the system

ẋ = −g(x − y) + g0

ẏ = g(x − y) − f (y)

where g(·) and f (·) are continuous and strictly increasing. Such a model is a typical
compartmental system which is often encountered in fluid networks and systems
biology (Fig. 2.4). The term g0 represents a flow into compartment 1, g is a flow
from compartment 1 to compartment 2 or vice versa, which is increasing with the
difference x − y, f is an outflow from compartment 2. Assuming g0 constant, the
equilibrium conditions are
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Fig. 2.4 The compartmental
model

g0 g(x−y) f(x)
1 2

0 = −g(x̄ − ȳ) + g0

0 = g(x̄ − ȳ) − f (ȳ)

from which it is possible to derive ȳ as the unique solution of the equation f (ȳ) = g0

and then x̄ as the unique solution of g(x̄ − ȳ) = g0.
What about the behavior of the system? What kind of “energy function” should

we consider? Let us pretend that an oracle tells us that a possible choice is

Ψ(x, y) = (x − x̄)2 + (y − ȳ)2

and let us try it. Denoting by z = x − x̄ and w = y − ȳ, the time derivative
d
dtΨ(z(t),w(t)) results in

d
dt
Ψ(z(t),w(t)) = 2zż + 2wẇ

= 2z[−g(z + x̄ − w − ȳ) + g0] + 2w[g(z + x̄ − w − ȳ) − f (w + ȳ)]

= 2(z − w)[−g(z + x̄ − w − ȳ) + g0] + 2w[−f (w + ȳ) + g0]

Notwithstanding the fact that z(t) and w(t) are unknown, it is not difficult to see that,
since g(·) and f (·) are increasing and taking into account the equilibrium conditions,
the above expression is always negative unless w = z = 0.

It is then a consequence that Ψ(x(t), y(t)) is decreasing for x �= x̄ and y �= ȳ, no
matter how the increasing functions f and g are chosen. Moreover, it can be proven
that Ψ(x(t), y(t)) converges to 0, hence x(t) → x̄ and y(t) → ȳ (a formal proof will
be given later in the general case in Section 2.3).

The above arguments are quite straightforward and nice. However, there are two
open questions:

• how has Ψ(x, y) been chosen?
• are there other possible choices?

The first question is one of the main issues of Lyapunov theory. In the case of this
simple system, the inspiration for choosingΨ = z2+w2 comes from the observation
that the Jacobian is symmetric. As it will be seen later, a linear system with a
symmetric matrix is asymptotically stable if and only if xTx is a Lyapunov function3.

3Note that the function Ψ assures that the convergence to the equilibrium is global, while the
linearization would only prove local stability.
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The “how” question has no general answer, unless special classes of systems and
candidate Lyapunov functions are considered. The second question has a simple
and affirmative answer and this aspect will be also deeply investigated.

The Lyapunov theory provides solid tools, but also interesting problems to face.
This book will attempt to provide ideas in this direction.

2.2.3 The upper right Dini derivative

Consider a function Ψ : IRn → IR, defined and locally Lipschitz on the state
space. As long as one is interested in the behavior of this function in terms of its
monotonicity, one needs to exploit the concept of Lyapunov derivative along the
system trajectory. For any solution x(t), consider the composed function

ψ(t)
.
= Ψ(x(t))

This new function ψ(t) is not usually differentiable. Under the additional assump-
tion of regularity on Ψ and x we could write ψ̇(t) = ∇Ψ(x(t))T ẋ(t). The basic point
of Lyapunov standard theory is that, if we have x(t) = x and w(t) = w, then

d
dt
Ψ(x(t))

∣∣∣∣
x(t)=x, w(t)=w

= ∇Ψ(x)T f (x,w)

This implies that the derivative of Ψ(x(t)) can be computed without the knowledge
of x(t), but as a function of the current state and input values.

In our more general framework, we can just say that the composition of a
locally Lipschitz functionΨ and an absolutely continuous function is also absolutely
continuous, and therefore it is differentiable almost everywhere. To avoid problems
due to the lack of differentiability, the following definition is introduced:

Definition 2.8 (Dini derivative). The upper right Dini derivative D+ψ(t) of ψ at
t is

D+ψ(t)
.
= lim sup

h→0+

ψ(t + h) − ψ(t)
h

(2.23)

When the function ψ(t) is differentiable in the regular sense, the standard derivative

D+ψ(t) = ψ̇(t)

is obtained. Other Dini derivatives can also be defined. They are four in total and
they are denoted as D+, D+, D−, and D− where ‘+’ and ‘−’ indicate a limit from
the right or from the left, whereas the upper or lower position of the symbol means
upper or lower limit. The following inequalities (obviously) hold
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D+ ≤ D+

D− ≤ D−

The only Dini derivative which will be used in the sequel will be the upper right
one, say we will limit our attention to D+. The reason for the lack of interest in
the other derivatives is that a) the main focus here is on causal systems evolving
in the positive direction, and thus the future trend alone is of interest b) most of
the analysis will be carried out in a “worst-case” setting and, since in most of the
sequel we will be interested in decreasing monotonicity properties, the “+” choice
is preferable. In fact the theory would work as well with any of the three remaining
derivatives.

If an absolutely continuous function ψ(t) defined on [t1, t2] has upper right
Dini derivative D+ψ(t) which is non-positive almost everywhere, then it is non-
increasing on such interval as in the case of differentiable functions. The assumption
of absolute continuity is fundamental, because there exist famous examples of
continuous functions whose derivative is 0 almost everywhere, but which are indeed
increasing4.

2.2.4 Derivative along the solution of a differential equation

Let us consider again a locally Lipschitz function Ψ : IRn → IR and the solution
x(t) of the differential equation (2.21). A key point of the Lyapunov theory is that,
as long as one wishes to analyze certain monotonicity properties of a function ψ(t)
resulting from the composition of Ψ(·) and a solution x(·) of (2.21),ψ(t) = Ψ(x(t)),
it is not necessary to know x(·) as a function of time, but just the current values x
and w are needed. Let us introduce the upper directional derivative of Ψ with respect
to (2.21), say the limsup of the variation rate Ψ(x,w) in the direction given by the
vector f (x,w).

Definition 2.9 (Directional derivative). The upper directional derivative of Ψ
with respect to (2.21) is

D+Ψ(x, f (x,w))
.
= lim sup

h→0+

Ψ(x + hf (x,w)) − Ψ(x)
h

(2.24)

In the sequel we will sometimes use, with an abuse of notation, the expression

D+Ψ(x,w)
.
= D+Ψ(x, f (x,w))

4The interested reader can find details on the web using “devil’s staircase” as a keyword.
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when no confusion can arise. The next fundamental property holds (see [RHL77],
Appendix. 1, Th. 4.3).

Theorem 2.10. Let x(t) be a solution of the differential equation (2.21), Ψ : IRn →
IR be a locally Lipschitz function and let ψ(t) denote the composed function ψ(t) =
Ψ(x(t)). Then

D+ψ(t) = D+Ψ(x(t),w(t)) (2.25)

for almost all t.

Theorem 2.11. Let x(t) be a solution of the differential equation (2.21), Ψ : IRn →
IR be a locally Lipschitz function and let ψ(t) denote the composed function ψ(t) =
Ψ(x(t)). Then

ψ(t2) − ψ(t1) =

∫ t2

t1

D+ψ(σ) dσ =

∫ t2

t1

D+Ψ(x(σ),w(σ)) dσ (2.26)

for all 0 ≤ t1 ≤ t2.

According to what has been previously mentioned, both theorems are valid for any
of the Dini derivatives D+ D+ D− D−, since x(t) is absolutely continuous (see
[RHL77] Corollary 3.4 and Remark 3.5)

2.2.5 Special cases of directional derivatives

There are special but important cases in which the Lyapunov derivative admits an
explicit expression, since the directional derivative can be written in a simple way.
The most famous and popular case is that in which the function Ψ is continuously
differentiable. We formally state what we have already written.

Proposition 2.12. Assume now that Ψ is continuously differentiable on IRn. Then

D+Ψ(x,w) = ∇Ψ(x)T f (x,w). (2.27)

(we remind that ∇Ψ(x) = [∂Ψ(x)/∂x1 ∂Ψ(x)/∂x2 . . . ∂Ψ(x)/∂xn]
T ).

Another important case arises when the function Ψ(x) is a proper (i.e., locally
bounded) possibly non-differentiable convex function defined in an open domain.

Definition 2.13 (Subgradient). The vector z ∈ IRn is a subgradient of Ψ , at x1 if
(see Fig. 2.5):

Ψ(x) − Ψ(x1) ≥ zT (x − x1), for all x ∈ IRn (2.28)

The set of all the subgradients at x1 is the subdifferential ∂Ψ(x1).



2.2 Lyapunov derivative 45

Fig. 2.5 Subgradient of Ψ at
point x1
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In general the subdifferential ∂Ψ(x) is a set-valued map. Note that for a differ-
entiable (convex) function ∂Ψ(x) is a singleton including the gradient at x : ∂Ψ
(x) = {∇Ψ(x)}. Clearly the provided definition of subgradient holds for any
function, but if the function is non-convex the sub-differential may be empty in
some points5.

For a convex (possibly non-differentiable) Lyapunov function Ψ(x) the above
definition allows to compute the Lyapunov derivative as

D+Ψ(x,w) = sup
z∈∂Ψ(x)

zT f (x,w). (2.29)

Another interesting case is that of maximum-type convex functions. Assume that
g1(x), g2(x), . . . , gm(x) is a given family of continuously differentiable convex
functions. The “maximum function” is the convex function defined as

g(x) = max
i

gi(x)

Define as I(x) the set of indices where the maximum is achieved:

I(x) = {i : gi(x) = g(x)}

Then

D+Ψ(x,w) = max
i∈I(x)

∇gi(x)
T f (x,w). (2.30)

These expressions will be useful in the sequel, in particular when piecewise-linear
functions will be dealt with.

5For example, the function −x2 has empty subdifferential for all x.
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2.3 Lyapunov functions and stability

In this section, some basic notions concerning Lyapunov stability of differential
systems of equations are recalled. The concept of Lyapunov function is widely
known in system theory. The main purpose of this section is not that of providing
a further presentation of the theory. Conversely, but that of focusing on one aspect,
precisely the relationship between the concept of Lyapunov (and Lyapunov-like)
functions and the notion of invariant set.

Generically speaking, a Lyapunov function for a system is a positive definite
function having the property that it is decreasing along the system trajectories. This
property can be checked without knowing the system trajectories by means of the
Lyapunov derivative. If a function Ψ of the state variables is non-increasing along
the system trajectory, as an obvious consequence the set

N [Ψ, ν] = {x : Ψ(x) ≤ ν}

is positively invariant and precisely, if x(t1) ∈ N [Ψ, ν], then x(t) ∈ N [Ψ, ν] for
all t ≥ t1. Furthermore, if the function is strictly decreasing and the derivative is
bounded away from zero, namely Ψ̇(x(t)) < −γ, with γ > 0 in a set of the form

N [Ψ, α, β] = {x : α ≤ Ψ(x) ≤ β},

then the condition x(t1) ∈ N [Ψ, α, β] implies (besides x(t) ∈ N [Ψ, β], t ≥ t1) that
x(t) reaches the smaller set N [Ψ, α] in finite time6. Properties such as the mentioned
one form the core of the book.

We remind once again that in the sequel it will always be assumed that

• any system of differential equations under consideration admits a solution for
every initial condition and each piecewise continuous input;

• any solution is globally defined (i.e., defined on IR+).

2.3.1 Global stability

Let us introduce the next definitions.

Definition 2.14 (Radially unbounded function). A locally Lipschitz function Ψ :
IRn → IR is radially unbounded if

lim
‖x‖→∞

|Ψ(x)| = ∞.

6Ψ ′ ≤ −γ means that this will happen at some time t ≥ t1, with t ≤ (β − α)/γ + t1.
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Definition 2.15 (κ-function). A continuous function φ : IR+ → IR+ is said to be
a κ-function if it is continuous, strictly increasing and φ(0) = 0.

Consider a model of the form

ẋ(t) = f (x(t),w(t)), w(t) ∈ W , (2.31)

and assume that the following condition is satisfied

f (0,w) = 0, for all w ∈ W (2.32)

which is well known to be equivalent to the fact that x(t) ≡ 0 is a trajectory of
the system. Denote by x(t) any solution of (2.31) corresponding to x(0) ∈ IRn and
w(t) ∈ W .

Definition 2.16 (Global uniform asymptotic stability). The system (2.31) is said
to be Globally Uniformly Asymptotically Stable if it is

Locally Stable: for all ν > 0 there exists δ > 0 such that if ‖x(0)‖ ≤ δ then

‖x(t)‖ ≤ ν, for all t ≥ 0; (2.33)

for all functions w(t) ∈ W .
Globally Attractive: for all μ > 0 and ε > 0 there exists T(μ, ε) > 0 such that if

‖x(0)‖ ≤ μ then

‖x(t)‖ ≤ ε, for all t ≥ T(μ, ε) (2.34)

for all functions w(t) ∈ W .

Since local stability and global attractivity properties are requested to hold for all
functions w, the above property is often referred to as Robust Global Uniform
Asymptotic Stability. The meaning of the above definition is the following: For any
neighborhood of the origin the evolution of the system is bounded inside it provided
the system is initialized sufficiently close to 0 and, moreover, the state converges to
zero uniformly in the sense that for all the initial states inside a μ-ball, the ultimate
capture of the state inside any ε-ball occurs in a time that admits an upper bound
independent from w(t).

Definition 2.17 (Positive definite function). A function Ψ : IRn → IR is positive
definite if Ψ(0) = 0 and there exists a κ-function φ0 such that

Ψ(x) ≥ φ0(‖x‖)

Definition 2.18 (Global Lyapunov Function). A locally Lipschitz function Ψ :
IRn → IR is a said to be a Global Lyapunov Function (GLF) for the system if it is
positive definite, radially unbounded and there exists a κ-function φ such that

D+Ψ(x,w) ≤ −φ(‖x(t)‖) (2.35)
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For differential equations ẋ = f (x), with a continuous f , the previous condition
can be written as D+Ψ(x) < 0 for x �= 0. In the presence of uncertainty this is not
sufficient (see Exercise 4).

The following theorem is a well-established result in system theory. Its first
formulation is due to Lyapunov [Lya66] and several other versions have been
introduced in the literature.

Theorem 2.19. Assume that system (2.31) admits a global Lyapunov function Ψ .
Then it is globally uniformly asymptotically stable.

Proof. From Theorem 2.11 we have that

Ψ(x(t)) − Ψ(x(0)) =

∫ t

0

D+(x(σ),w(σ)) dσ ≤ −
∫ t

0

φ(‖x(σ)‖) dσ (2.36)

To show uniform stability, let ν > 0 be arbitrary and let ξ be any positive value
such that N [Ψ, ξ] ⊆ N [‖ · ‖, ν] (the ν-ball of any norm). Since Ψ(x) is positive
definite, such a ξ > 0 exists and moreover there exists δ > 0 such that N [‖ · ‖, δ] ⊆
N [Ψ, ξ]. Then, for all ‖x(0)‖ ≤ δ, Ψ(x(0)) ≤ ξ. Since Ψ(x(t)) is monotonically
non-increasing, then x(t) ∈ N [Ψ, ξ] ⊆ N [‖ · ‖, ν], say ‖x(t)‖ ≤ ν.

To prove uniform convergence, it has to be shown that for any given μ > 0 and
any arbitrary small ε > 0, there exists T(μ, ε) (which does not depend on w(t) and
x(0)) such that all the solutions originating from the μ-ball of the norm, x(0) ∈
N [‖ · ‖, μ], are ultimately confined in the ε-ball x(t) ∈ N [‖ · ‖, ε], for t ≥ T(μ, ε).

Take ρ∗ <∞ such that

N [‖ · ‖, μ] ⊆ N [Ψ, ρ∗]

(for instance, one can take ρ∗ = max‖x‖≤μ Ψ(x), the smallest value such that the
inclusion holds). For any arbitrary small ε, take ρ∗ > 0 such that

N [Ψ, ρ∗] ⊂ N [‖ · ‖, ε]

(again, one can always take the largest of such values which is necessarily greater
than zero since Ψ is positive definite). Consider the set

N [Ψ, ρ∗, ρ
∗] = {x : ρ∗ ≤ Ψ(x) ≤ ρ∗}

which is compact, being Ψ radially unbounded, and let ζ be

ζ
.
= min

x∈N [Ψ,ρ∗,ρ∗]
φ(‖x‖) > 0

For x(0) ∈ N [‖·‖, μ] ⊂ N [Ψ, ρ∗], in view of the previous considerations we have
x(t) ∈ N [Ψ, ρ∗]. Then necessarily, in a finite time t̄, we must have x(̄t) ∈ N [Ψ, ρ∗].
Indeed if this condition is not satisfied, we must have x(t) ∈ N [Ψ, ρ∗, ρ

∗]. From the
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integral equality (2.36), we achieve the bound (independent of w(t))

Ψ(x(t)) = Ψ(x(0)) +

∫ t

0

D+(x(σ),w(σ)) dσ ≤ Ψ(x(0)) − ζt ≤

≤ ρ∗ − ζt

it is immediate to see that the rightmost term becomes smaller than ρ∗ when

t ≥ T(μ, ε) = [ρ∗ − ρ∗]/ζ

thus necessarily x(t) reaches N [Ψ, ρ∗] no later than T(μ, ε).
To complete the proof it is then sufficient to recall that, since Ψ(x(t)) is non-

increasing, x(t) ∈ N [Ψ, ρ∗], therefore ‖x(t)‖ ≤ ε, for t ≥ T(μ, ε).

A stronger notion of stability, which will be often used in the sequel, is the
following:

Definition 2.20 (Global exponential stability). System (2.31) is said to be Glob-
ally Exponentially Stable if there existμ, γ > 0 such that for all ‖x(0)‖ the condition

‖x(t)‖ ≤ μ‖x(0)‖e−γt, (2.37)

holds for every t ≥ 0 and every function w(t) ∈ W .

The factor γ in the definition above will be named the convergence speed, while the
factor μ will be named the transient estimate. Exponential stability can be assured
by the existence of a Lyapunov function whose decreasing rate along the system
trajectories is expressed in terms of the magnitude of the function. Let us assume
that the positive definite function Ψ(x) is upper and lower polynomially bounded,
namely for some positive reals α and β and some positive integer p

α‖x‖p ≤ Ψ(x) ≤ β‖x‖p, for all x ∈ IRn. (2.38)

The following theorem holds true.

Theorem 2.21. Assume that system (2.31) admits a positive definite locally Lips-
chitz function Ψ , which has polynomial growth as in (2.38) and

D+Ψ(x,w) ≤ −γΨ(x) (2.39)

for some positive γ. Then it is globally exponentially stable.

Proof. Consider the integral equality (2.26) and bound it as

Ψ(x(t + T)) = Ψ(x(t)) +

∫ t+T

t
D+Ψ(x(σ),w(σ))dσ
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≤ Ψ(x(t)) − γ

∫ t+T

t
Ψ(x(σ))dσ ≤ Ψ(x(t)) − γTΨ(x(t + T))

where the last inequality follows by the fact that Ψ(x(t)) is non-increasing. This
implies

Ψ(x(t + T)) ≤ 1

1 + Tγ
Ψ(x(t))

Therefore, for all integer k

Ψ(x(kT)) ≤
[

1

1 + Tγ

]k

Ψ(x(0))

Let now t > 0 be arbitrary and let T = t/k, with k integer so that the above can be
rewritten as

Ψ(x(t)) ≤
{[

1

1 + γt/k

]− k
γt

}−γt

Ψ(x(0)) =
{
[1 + γt/k]

k
γt

}−γt
Ψ(x(0))

The number inside the curly brackets converges to e as k → ∞ and then, since the
inequality holds for any k,

Ψ(x(t)) ≤ e−γtΨ(x(0))

Finally, exploiting condition (2.38), after simple mathematics the following inequal-
ity holds

‖x(t)‖ ≤ p

√
β

α
e−

γ
p t ‖x(0)‖

which implies exponential convergence with convergence speed γ/p.

The previous theorem admits a trivial proof if one assumes that Ψ(x(t)) is dif-
ferentiable in the regular sense, since the inequality (2.39) becomes the differential
inequality Ψ̇(x(t)) ≤ −γΨ(x), implying Ψ(x(t)) ≤ e−γtΨ(x(0)).

It is rather obvious that global exponential stability implies global uniform
asymptotic stability.

2.3.2 Local stability and ultimate boundedness

Global stability can be somewhat a too ambitious requirement in practical control
theory, basically for the next two reasons.
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• requiring convergence with arbitrary initial conditions can be too restrictive;
• persistent disturbances can prevent the system from asymptotically approaching

the origin, thus the best we can get is convergence to a set.

For the above reasons, it is very useful to introduce the notion of local stability and
uniform ultimate boundedness.

Definition 2.22 (Uniform local asymptotic stability). Let S be a neighborhood
of the origin. The system (2.31) is said to be Uniformly Locally Asymptotically
Stable with basin (or domain) of attraction S if, for every function w(t) ∈ W , the
next two conditions hold:

Local Stability : for all μ > 0 there exists δ > 0 such that ‖x(0)‖ ≤ δ implies
‖x(t)‖ ≤ μ for all t ≥ 0.

Local Uniform Convergence : for all ε > 0 there exists T(ε) > 0 such that if
x(0) ∈ S, then ‖x(t)‖ ≤ ε, for all t ≥ T(ε);

Definition 2.23 (Uniform ultimate boundedness). Let S be a neighborhood of
the origin. The system (2.31) is said to be Uniformly Ultimately Bounded in S if for
all μ > 0 there exists T(μ) > 0 such that, for every ‖x(0)‖ ≤ μ,

x(t) ∈ S

for all t ≥ T(μ) and all functions w(t) ∈ W .

To assure the conditions of the above definitions, the following concepts of
Lyapunov functions inside and outside S are introduced.

Definition 2.24 (Lyapunov function inside a set). Let S be a neighborhood of the
origin. The locally Lipschitz positive definite function Ψ is said to be a Lyapunov
function inside S for system (2.31) if there exists ν > 0 such that

S ⊆ N [Ψ, ν]

and for all x ∈ N [Ψ, ν] the inequality

D+Ψ(x,w) ≤ −φ(‖x(t)‖)

holds for some κ-function φ and all w ∈ W .

Definition 2.25 (Lyapunov function outside a set). Let S be a neighborhood of
the origin. The locally Lipschitz positive definite function Ψ is said to be a Lyapunov
function outside S for system (2.31) if there exists ν > 0 such that

N [Ψ, ν] ⊆ S
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and for all x �∈ N [Ψ, ν] the inequality

D+Ψ(x,w) ≤ −φ(‖x(t)‖)

holds for some κ-function φ.

The next two theorems hold.

Theorem 2.26. Assume that system (2.31) satisfying condition (2.32) admits a
positive definite locally Lipschitz function Ψ inside S. Then, it is locally stable with
basin (domain) of attraction S.

Theorem 2.27. Assume that system (2.31) admits a positive definite locally Lips-
chitz function Ψ outside S. Then it is uniformly ultimately bounded in S.

It is rather intuitive that there are as many possible stability definitions as
the number of possible permutations of the requirements (Global-Local-Uniform-
Exponential and so on . . . ). For instance, one can define exponential local stability
by requiring condition (2.37) to be satisfied only for x(0) ∈ S. Similarly,
exponential ultimate boundedness in the set S can be defined by imposing that
N [‖ · ‖, ν] ⊂ S and ‖x(t)‖ ≤ max{μe−γt‖x(0)‖, ν}. The problem is well known
and in the literature some classifications of stability concepts have been proposed
(see [RHL77] section VI), further investigation in this sense is beyond the scope of
this book.

Remark 2.28. It is apparent that a Lyapunov function is not only a stability
certificate. Indeed the sets N [Ψ, ν] (for appropriate values of ν) are positively
invariant, a property whose consequences are among the main concerns of the book.

2.4 Control Lyapunov function

In the previous section, the main results of the Lyapunov theory for a dynamical
system with an external input have been presented. These concepts will now be
extended to systems of the form (2.1)–(2.2) with a controlled input. Essentially, a
Control Lyapunov Function can be defined as a positive definite (locally Lipschitz)
function which becomes a Lyapunov function whenever a proper control action is
applied.

As previously observed, any finite-dimensional dynamic feedback controller can
be viewed as a static output feedback for a properly augmented system. Therefore,
in this section, systems of the following form

{
ẋ(t) = f (x(t), u(t),w(t))
y(t) = h(x(t),w(t))

(2.40)
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will be considered and associated with a static feedback. To introduce the main
definitions one has to refer to a class C of controllers. The main classes considered
here are

Output feedback : u(t) = Φ(y(t));
State feedback : u(t) = Φ(x(t));
Output feedback with feed forward : u(t) = Φ(y(t),w(t));
State feedback with feed forward : u(t) = Φ(x(t),w(t)) (full information);

Definition 2.29 (Control Lyapunov function). Given a class of controllers C and
a set P , a locally Lipschitz positive definite function Ψ is said to be a global Control
Lyapunov Function (a CLF outside P or a CLF function inside P) if there exists a
controller in C such that:

• for each initial condition x(0) there exists a solution x(t) for any admissible w(t)
and each of such solutions is defined for all t ≥ 0;

• the function Ψ is a global Lyapunov function (a Lyapunov function outside P or
a Lyapunov function inside P) for the closed-loop system.

An interesting generalization of the previous definition is achieved by consider-
ing the control constraints (2.13)

u(t) ∈ U .

In this case Ψ is said to be a global Control Lyapunov Function (a CLF outside P or
a CLF inside P) if there exists a controller (in a specified class C) such that, beside
the conditions in Definition 2.29, the control constraints are also satisfied. Note also
that the problem with state constraints can be addressed as well. If one assumes that

x(t) ∈ X

is a hard constraint to be satisfied, it can be immediately argued that, as long as
N [Ψ, μ] ⊆ X , for some μ, and Ψ is a control Lyapunov function (either global,
inside or outside P), then the constraints can be satisfied by means of a proper
control action as long as x(0) ∈ N [Ψ, μ].

2.4.1 Associating a control law with a Control Lyapunov
Function: state feedback

In this section, the state feedback and the full information feedback cases will be
mainly analyzed. According to the previous considerations the following domain
will be considered

N [Ψ, α, β] = {x : α ≤ Ψ(x) ≤ β} (2.41)
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By letting α = 0 or β = +∞, the above class includes all the “meaningful” cases
of control Lyapunov functions (inside a set, outside a set or global). Assume that a
locally Lipschitz function Ψ is given and consider the next inequality

D+Ψ(x, u,w)
.
= lim sup

h→0+

Ψ(x + hf (x, u,w)) − Ψ(x)
h

≤ −φ(‖x‖). (2.42)

Again, the above is a simplified version of the “appropriate notation”

D+Ψ(x, u,w) = D+Ψ(x, f (x, u,w))

Consider the next two conditions in the set (2.41):

• for all x there exists u such that (2.42) is satisfied for all w ∈ W ;
• for all x and w ∈ W there exists u such that (2.42) is satisfied.

These conditions are clearly necessary for Ψ to be a control Lyapunov function
with state or full information feedback, because, by definition, they are satisfied by
assuming u = Φ(x) or u = Φ(x,w), respectively. A fundamental question is then
the following: if these conditions hold, how can a feedback function Φ be found?
The problem can be thought of in the following terms. Let us first analyze the state
feedback case. Consider the set

Ω(x) = {u : (2.42) is satisfied for all w ∈ W}

which is known as the regulation map or control map. Then the question becomes
the following: does there exist a state feedback control function u = Φ(x) such that

Φ(x) ∈ Ω(x)?

Put in this term, this question appears to be a philosophic one, because, as
long as the set Ω(x) is not empty, it is always possible to associate to x a
point u ∈ Ω(x), and “define” such a function Φ. The matter is different if one
requires the function to satisfy certain regularity properties such as that of being
continuous. From a mathematical point of view, continuity is important because
it implies solvability. From a practical standpoint, continuity is important because
discontinuous controllers cannot be always applied. Furthermore it is fundamental
to derive some formulas suitable for the implementation.

A positive answer to our question can be given for control-affine systems, namely
systems of the form

ẋ(t) = a(x(t),w(t)) + b(x(t),w(t))u(t) (2.43)

where a and b are continuous and a(0,w) = 0 for all w ∈ W . In this case,
if a continuously differentiable positive definite function Ψ is given and for such



2.4 Control Lyapunov function 55

function (2.42) is satisfied for all x, from the differentiability of Ψ one has that (2.42)
can be written as follows:

∇Ψ(x)T [a(x,w) + b(x,w)u] ≤ −φ(‖x‖),

Then the set Ω(x) turns out to be

Ω(x) =
{

u : ∇Ψ(x)T b(x,w)u ≤ −∇Ψ(x)T a(x,w) − φ(‖x‖), for all w ∈ W
}

(2.44)

Such a non-empty set is convex for each x and the continuity of a and b and
∇Ψ(x) allow to state the next theorem.

Theorem 2.30. Assume that the set Ω(x) as in (2.44) is non-empty. Then there
always exists a function Φ : IRn → IRm continuous everywhere, possibly with the
exception of the origin, such that

Φ(x) ∈ Ω(x) (2.45)

Proof. See [FK96a]

The previous theorem considers the fundamental concept of selection of a set-
valued map. A set-valued map f from X to Y is a multivalued function which
associates with any element x of X a subset Y of Y . A selection is a single-valued
function which maps x into one of the elements in Y = f (X). In our case,Ω(x) is the
set-valued map of all the feasible control values which assure a certain decreasing
rate to the Lyapunov function.

In the case of full-information control, the appropriate set-valued map must be
defined in the state-disturbance product space:

Ω(x,w) =
{

u : ∇Ψ(x)T b(x,w)u ≤ −∇Ψ(x)T a(x,w) − φ(‖x‖)
}

(2.46)

If this set is not empty for all x and w, then it is possible to seek for a function

Φ(x,w) ∈ Ω(x,w) (2.47)

which is a stabilizing full-information control. In view of the convexity of the set
Ω(x,w) and the continuity of a and b and ∇Ψ(x), it can be shown that a continuous
selection always exists, namely, that Theorem 2.30 can be stated by replacing (2.45)
with (2.47).

Although mathematically appealing, the engineering question which obviously
comes next is the following: Is it possible to determine this function in an analytic
form?

To this aim, let us think first to the full information case. Let us also consider,
for the moment being, that the region of interest is of the form N [Ψ, ε, κ] with k
finite and ε small. Assume that there exists a continuous function Φ̂(x,w) which
satisfies (2.47) and consider the following minimum effort control [PB87]
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ΦME(x,w) = arg min
u∈Ω(x,w)

‖u‖2 (2.48)

(‖ · ‖2 is the Euclidean norm). Such a control function always exists and it has the
obvious property that

‖ΦME(x,w)‖2 ≤ ‖Φ̂(x,w)‖2

for any admissible controller Φ̂(x,w), therefore it is bounded in N [Ψ, ε, κ]. The
minimum effort control admits an analytic expression which can be easily derived
as follows. For fixed x and w, equation (2.46) represents a linear inequality for u:

∇Ψ(x)T b(x,w)u ≤ −c(x,w) (2.49)

where

c(x,w)
.
= ∇Ψ(x)T a(x,w) + φ(‖x‖)

The vector u of minimal norm which satisfies (2.49) can be determined analyti-
cally as follows

ΦME(x,w) =

{
− b(x,w)T∇Ψ(x)

‖∇Ψ(x)T b(x,w)‖2 c(x,w) if c(x,w) > 0

0 if c(x,w) ≤ 0
(2.50)

The singularity due to the condition ∇Ψ(x)T b(x,w) = 0, for some x and w, is
not a problem since this automatically implies that c(x,w) ≤ φ(‖x‖) < 0 (hence
ΦME = 0: this is basically the reason of working inside the set N [Φ, ε, κ] with small
but positive ε, say to exclude x = 0). This expression admits an immediate extension
to the state feedback case if one assumes that the term b does not depend on w and
precisely

ẋ(t) = a(x(t),w(t)) + b(x(t))u(t)

In this case the condition becomes

∇Ψ(x)T b(x)u ≤ −c(x,w) (2.51)

where

c(x,w)
.
= ∇Ψ(x)T a(x,w) + φ(‖x‖)

which has to be satisfied for all w, by an appropriate choice of u.
Take ε > 0 very small, (to avoid singularities) and define

ĉε(x) = max
w∈W

∇Ψ(x)T a(x,w) + (1 − ε)φ(‖x‖)
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which is a continuous function of x [PB87, FK96a].7 The condition to be considered
is then

∇Ψ(x)Tb(x)u ≤ −ĉε(x) (2.52)

which yields the following expression for the control:

ΦME(x) =

{
− b(x)T∇Ψ(x)

‖∇Ψ(x)T b(x)‖2 ĉε(x) if ĉε(x) > 0

0 if ĉε(x) ≤ 0
(2.53)

The minimum effort control (2.53) belongs to the class of gradient-based controllers
of the form

u(t) = −γ(x)b(x)T∇Ψ(x) (2.54)

where γ(x) ∈ IR+. This type of controllers is well known and includes other types
of control functions. For instance, if the control effort is not a concern, one can
just consider (2.54) with γ(x) > 0 “sufficiently large function” [BCL83]. It can be
shown that, as long as (2.53) is a suitable controller, any function (if it exists) having
the property

γ(x) ≥ γ̄ε(x)
.
= max

{
ĉε(x)

‖∇Ψ(x)Tb(x)‖2 , 0
}

(2.55)

is also a suitable controller. The following proposition holds.

Proposition 2.31. Function γ̄ε(x) in (2.55) is continuous.

Proof. The expression is obviously continuous in each point x for which
∇Ψ(x)T b(x) �= 0. Let us consider a point x̂ in which ∇Ψ(x̂)Tb(x̂) = 0. In such a
point

∇Ψ(x̂)Ta(x̂,w) + φ(‖x̂‖) ≤ 0

for all w, by definition, and therefore

ĉε(x̂) ≤ −εφ(‖x̂‖)

This means that ĉε(x) is strictly negative in a neighborhood of x̂ hence γ̄ε(x) is
identically 0 in such neighborhood.

The problem becomes more involved if one admits that also the term b depends
on the uncertain parameter. In this case finding a state feedback controller is related
to the following min–max problem

7ĉ(x) is referred to as Marginal Function.
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min
u∈U

max
w∈W

{
∇Ψ(x)T [a(x,w) + b(x,w)u]

}
≤ −φ(‖x‖), (2.56)

where, to keep things as general as possible, it is also assumed that u ∈ U . If this
condition is pointwise-satisfied, then there exists a robustly stabilizing feedback
control. However, determining the minimizer function u = Φ(x) can be very hard.

Example 2.32 (Electric circuit revisited). Consider again the system considered in
Example 2.4 which can be written as

ẋ = −Λ(w)x + B(w)u

where w ∈ W is the vector including the resistor and capacitor values (W is
typically an hyper-rectangle). In this case

A(w) = −Λ(w) = −diag{Λ1(w), Λ2(w)}

where Λ(w) is a strictly positive and diagonal matrix. To avoid the singularity
problems described in Example 2.4, it is assumed that det(B(w)) ≥ ν > 0 for
all w ∈ W .

Consider a nominal equilibrium point Λ(w̄)x̄ = B(w̄)ū corresponding to a
nominal value w̄ ∈ W , and define the variables z = x − x̄, v = u − ū, so that

ż = −Λ(w)z + B(w)v +Δ(w)

For any fixed x̄ and ū, it is clear that there exists a positive value μ such that

‖Δ(w)‖ = ‖(Λ(w̄) − Λ(w))x̄ + (B(w) − B(w̄))ū‖ ≤ μ

Let us consider the problem of keeping the state x as close as possible to the
nominal value x̄ (thus z � 0) and, to this aim, consider the Lyapunov function
Ψ(z) = (z21 + z22)/2, whose derivative is

Ψ̇(z) = −Λ1(w)z21 − Λ2(w)z22 + zTB(w)v + zTΔ(w)

If w is available, since B is invertible, the problem becomes quite easy since it is
readily seen that the control

v(t) = −γB(w)−1z(t)

is such that

Ψ̇(z,w) = −Λ1z21 − Λ2z22 − γzTz + zTΔ(w)
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and, by taking γ large enough, it is possible to ensure that Ψ̇(z) is strictly negative
outside any ε-ball (the computations are straightforward), so that the state is
uniformly ultimately bounded inside N [Ψ, ε].

If w is not available for control, the situation is quite different. A solution is that
of trusting the nominal value w̄ and consider

u(t) = −γB(w̄)−1z(t)

To see how the proposed “trust-based” control law works, let B(w) = B(w̄)+δB(w)
and assume B(w)B(w̄)−1 remains close to the identity, say

‖B(w)B(w̄)−1 − I‖ = ‖δB(w)B(w̄)−1‖ ≤ ν < 1

(this is a typical assumption when B is uncertain). If the previously introduced
Lyapunov function is analyzed, then its Lyapunov derivative results in

Ψ̇(z,w) = −Λ1z21 − Λ2z22 − γzT [B(w̄) + δB(w)]B(w̄)−1z + zTΔ(w)

= −Λ1z21 − Λ2z22 − γzTz − γzTδB(w)B(w̄)−1z + zTΔ(w)

≤ −Λ1z21 − Λ2z22 − γ(1 − ν)zTz + zTΔ(w)

Again, the same argument used for the nominal case applies and then the state can
be confined in any arbitrarily small neighborhood of the desired value via state
feedback provided that ‖B(w)B(w̄)−1 − I‖ is “small enough.”

Going back to the min–max problem in Eq. (2.56), where the control (the good
guy) had to play ignoring the action of the opponent, it is worth mentioning
an important fact, precisely its relation with the corresponding full information
problem

max
w∈W

min
u∈U

{
∇Ψ(x)T [a(x,w) + b(x,w)u]

}
≤ −φ(‖x‖), (2.57)

in which the “min” and the “max” are reversed (say the disturbance plays first).
If condition (2.57) is satisfied, then there exists a full information control. In fact
condition (2.56) always implies (2.57). There are important classes of systems for
which the two conditions are equivalent. For instance, in the case in which b does
depend on x only, the two problems are equivalent. This means that the existence of a
full-information stabilizing controller implies the existence of a pure state feedback
controller [Meı79]. A further class of control affine uncertain systems for which the
same property holds is that of the so-called convex processes [Bla00].

There are other forms of controllers which can be associated with a control
Lyapunov function. An interesting class, strongly related to the minimum effort
control, is the limited-effort control. Assume that the control is constrained as

‖u(t)‖ ≤ 1. (2.58)
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Fig. 2.6 The set Ω(x)
⋂

U

Ω (x)

U

U

Ω(x)

U

Note that this expression is nothing but a state (and disturbance) independent con-
straint which adds to the constraint coming from (2.44) (the dashed ones depicted
in Figure 2.6). The figure represents the set Ω(x)

⋂
U derived by considering,

for instance, Example 2.32 by allowing some parameter variations. The square
represents the set U = {u : ‖u(t)‖∞ ≤ 1} while the dashed curved line represents
the envelope of lines of the form

Ψ̇(z, u,w) = −zTΛ(w) + zT B(w)u ≤ −φ(‖x‖),

each associated with a certain value of the parameter.
Note that, in general, if Ψ is smooth, the resulting set is convex, since it is the

intersection of half-planes and a convex U , no matter how a(x,w) and b(x,w) are
chosen.

Assuming the magnitude equal to 1 is not a restriction since the actual magnitude
or weighting factors can be discharged on b(x,w). Two norms are essentially worth
of consideration, and precisely the 2-norm ‖u‖2 =

2
√

uTu and the ∞-norm ‖u‖∞ =
maxj |uj|. Consider the case of local stability and assume that a control Lyapunov
function inside N [Ψ, κ] exists and that the associated stabilizing control law does
not violate the constraint (2.58).

This in turn means that, when minimizing the Lyapunov derivative; hence there
exists a minimizer which satisfies the imposed bound and results in a negative
derivative, say the solution to the minimization problem

min
‖u‖≤1

∇Ψ(x)T [a(x,w) + b(x)u]

is strictly negative (if the origin, obviously, is excluded). For instance, if the 2-norm
is considered, this control is

u =

{
− b(x)T∇Ψ(x)

‖b(x)T∇Ψ(x)‖ if ∇Ψ(x)Tb(x) �= 0,

0 if ∇Ψ(x)Tb(x) = 0
(2.59)
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whereas, in the case of infinity norm, one obtains

u = −sgn[b(x)T∇Ψ(x)] (2.60)

(the sign function sgn is defined in the notation section 1.1). Both the controls (2.59)
and (2.60) are discontinuous, but can be approximated by the continuous controllers:

u = − b(x)T∇Ψ(x)
‖b(x)T∇Ψ(x)‖ + δ

for δ sufficiently small and

u = −sat[γb(x)T∇Ψ(x)]

for γ sufficiently large, respectively (sat is the vector saturation function). It is left
to the reader as an exercise to show that for all ε there exists a sufficiently small δ
(sufficiently large γ) such that the system is ultimately bounded inside N [Ψ, ε].

The literature about control Lyapunov functions is huge, since this concept is of
fundamental importance in the control of nonlinear systems. Here we do not enter
into further details, but we rather refer to specialized work such as [FK96a, FK96b,
Qu98].

2.4.2 Associating a control law with a Control Lyapunov
Function: output feedback

As far as the output feedback case is concerned, the problem of determining a
control to associate with a Control Lyapunov Function is much harder and the
problem will be marginally faced with the aim of explaining the reasons of these
difficulties. Consider the system

ẋ(t) = f (x(t),w(t), u(t))

y(t) = h(x(t),w(t))

and a candidate Control Lyapunov function Ψ defined on IRn. Consider a static
output feedback of the form

u(t) = Φ(y(t))

Since only output information is available, the control value u that assures a negative
Lyapunov derivative must assure this property for a given output value y for all



62 2 Lyapunov and Lyapunov-like functions

possible values of x and w that produce that output. Let Y be the image of h: Y =
{y = h(x,w), x ∈ IRn,w ∈ W}. Given y ∈ Y , define the preimage set as

h−1(y) = {(x,w), x ∈ IRn, w ∈ W : y = h(x,w) }

The condition for Ψ to be a control Lyapunov function under output feedback is then
the following. Consider the set

Ω(y) = {u : D+Ψ(x,w, u) ≤ −φ(‖x‖), for all (x,w) ∈ h−1(y)}

Then a necessary and sufficient condition for Φ(y) to be a proper control function is
that

Φ(y) ∈ Ω(y), for all y ∈ Y (2.61)

This theoretical condition is simple to state, but useless in most cases, since the
set Ω(y) can be hard (not to say impossible) to determine. It is not difficult to find
similar theoretical conditions for a control of the formΦ(y,w), which are again hard
to apply.

2.4.3 Finding a control Lyapunov function

So far, we considered the problem of associating a control with a Control Lyapunov
Function. Such task is evidently subsequent to “the Problem” of finding such a
function. Although there are lucky cases in which the function can be determined,
in general such problem is very difficult to solve even with state feedback (the
output feedback case is much worse). Special classes of systems are, for instance,
those that admit the so-called strict feedback form (and the “extended strict
feedback form”) and the reader is referred to specialized literature for further details
[FK96a, FK96b, Qu98].

As an exception, in the case of linear uncertain systems, there are effective
algorithms to determine a control Lyapunov function that will be discussed later.
This fact is meaningful since we have seen that a nonlinear plant can be often
merged (locally) in a linear uncertain dynamics, as in the levitator case. However,
a general constructive Lyapunov theory for the control of uncertain systems is
missing. Therefore it seems reasonable to approach the problem in a case-by-case
spirit. Indeed there are significant classes of systems originating from practical
problems for which the construction of a control Lyapunov function is possible
(often derived by intuition rather than by exploiting a general theory).
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2.4.4 Classical methods to find Control Lyapunov Functions

A well-known way to find a control Lyapunov function for a system is to derive
it from its linearization. We briefly remind some basic concepts from the general
control theory on this topic. Any sufficiently smooth nonlinear system having an
equilibrium point, which is assumed to be the origin, can be written as

ẋ(t) = f (x(t), u(x)) = Ax(t) + Bu(t) + R(x(t), u(x))

where R(x, u) is an infinitesimal of order greater than one. A locally stabilizing
control can be found by considering a linear feedback u = Kx such that ACL =
A+BK has eigenvalues with negative real part. The so achieved closed-loop system
satisfies the Lyapunov equation

AT
CLP + PACL = −Q

where Q is an arbitrary positive definite symmetric matrix. The Lyapunov function
for the linearized system is

Ψ(x) = xTPx, with P > 0

Such a function is the candidate Lyapunov function for the original nonlinear
system. The essential idea is that Ψ(x) is not only a Lyapunov function for the
closed-loop linear system, but it is also a Lyapunov function for the closed-loop
nonlinear system valid in a proper neighborhood. Obviously, Ψ(x) is a control-
Lyapunov function for the original system, that is the following inequality

2xTPAx + 2xTPBu < 0 (2.62)

is true for some u(x), and therefore

2xTP(Ax + R(x, u)) + 2xTPBu < 0

is satisfied, for some u(x), for all x in a neighborhood of the origin.
We do not know anything about the size of such neighborhood, which clearly

depends on R(x, u), but the following proposition holds for all candidate quadratic
Lyapunov functions.

Proposition 2.33. A quadratic positive definite function Ψ(x) = xTPx is a control
Lyapunov function for the nonlinear system if (2.62) is satisfied for all x for some
u(x).

The proof of the above proposition, which basically states that (2.62) can be
used to find candidate quadratic (local) control Lyapunov function for the nonlinear
system, is quite straightforward. The proposition essentially states that if a quadratic
(local) control Lyapunov has to be found, one should start with the linear part.
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Note that if P is determined, the control gain K is not the only choice, since it is
possible to adopt a gradient-based control

u = −γBTPx

which is a linear feedback gain (see exercise 12). Note that any candidate smooth
control Lyapunov function for the nonlinear system must be a control Lyapunov
function for the linearized plant.

If the system is affected by uncertainties, the problem is even harder since
the “linearization” does not provide a simple linear model, not even a certain
equilibrium and one has to resort to results specifically tailored on the class of
models under consideration.

An important class of uncertain models is given by systems with matching
conditions such as

ẋ(t) = f (x(t)) + Bu(t) + Bw(t)Cx(t), ‖w(t)‖ ≤ ω.

Assume that a control Lyapunov function is found for the system without
uncertainties:

∇Ψ(x)[f (x) + BuN(x)] ≤ −φ(‖x‖)

for some κ function φ and some nominal feedback uN(x). Without restriction we
incorporate Buu in f : [f (x) + BuN(x)] = F(x) so

∇Ψ(x)[F(x) + Bu] ≤ −φ(‖x‖) (2.63)

is satisfied in region containing 0, where u is a new control action which will be
used to robustly stabilize the system. As expected, we take a gradient-based control
u = −β2BT∇Ψ(x)T . Considering the perturbed system we get

Ψ̇(x) = ∇Ψ(x)F(x) + ∇Ψ(x)BwCx − β2∇Ψ(x)BBT∇Ψ(x)T

≤ −φ(‖x‖) + ∇Ψ(x)BwCx − β2∇Ψ(x)BBT∇Ψ(x)T ± xTCTwTwCx
4β2

= −φ(‖x‖) −
∥∥∥∥βBT∇Ψ(x)T − wCx

2β

∥∥∥∥
2

+
‖wCx‖2

4β2

≤ −φ(‖x‖) +
‖Cx‖2
4β2

‖w‖2 ≤ −φ(‖x‖) +
‖Cx‖2
4β2

ω2

The last term is negative in a neighborhood of 0 and null in x = 0 for a large enough
β > 0.
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In the linear case, assuming A Hurwitz (e.g., pre-stabilized)

ẋ(t) = Ax(t) + Bu(t) + Bw(t)Cx(t)

it is possible to take a quadratic function such that 2xTPAx ≤ −xTQx, Q > 0, so that

2xTPAx + 2xTPBwCx − 2β2xTPBBTPx ≤ −xTQx +
‖Cx‖2
4β2

ω2

and then, by taking β such that, for all x,

β2 ≥ ‖Cx‖2
4xTQx

ω2

it is immediate to see that the origin is globally stable with the linear state feedback
control law

u(t) = −β2BTPx

Example 2.34 (Cart-pendulum). Let us consider the following linearized model

ẋ(t) = Ax(t) + Bu(t) + Bw(t)Cx

of the cart-pendulum system in the inverted position (Fig. 2.7) where

A =

⎡
⎢⎢⎣

0 1 0 0

α2 0 0 0

0 0 0 1

−ε 0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0

−ρν
0

ν

⎤
⎥⎥⎦ , C =

[
0 0 0 1

]

and

α2 = 15.09, ν = 5.78, ρ = 1.53, ε ≈ 0

The state variables are, in order, the pendulum angle, the angular speed, the cart
position, and the cart speed. The parameter w represents the high uncertainty in the
friction of the cart on the tracks and its nominal value is w0 ≈ 4.9 (but this value is
extremely unreliable). The equilibrium point is clearly unstable. It is worth noticing
that the uncertainty w affecting the system can be seen as an output feedback gain
of the same linearized system with output C and input matrix B. This system is
non-minimum phase. This means that high values of the friction tend to destabilize
the system. Physically this fact can be interpreted by considering that high friction
values tend to stick the cart preventing its motion hence the possibility of stabilizing
the pendulum. Therefore we need an “authoritative control action.” On the other
hand, a strong control action, means high gain. If we consider the control
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Fig. 2.7 The cart-pendulum
system

y

θ

u = −β2BTPx

with xTPx control Lyapunov function, then β2 large does not destabilize the system,
in other words, the loop has infinite gain margin.

The Lyapunov matrix was derived by solving a standard LQ problem. However
we do not claim any practical optimality. Other gradient-based controllers worked
properly as well. Experimental results on the system8 showed that indeed the
gradient-based control worked quite well on the system, while other techniques such
as pole assignment gave quite unsatisfactory results.

2.4.5 Polytopic systems

In this book much emphasis will be put on uncertain linear systems of the form

ẋ(t) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

where A(w), B(w) are continuous functions of the parameter w ∈ W . A special case
of considerable interest is that of polytopic systems, in which matrices A(w) and
B(w) belong to a polytope of matrices

A(w) =
∑s

i=1 Aiwi,

B(w) =
∑s

i=1 Biwi

with
wi ≥ 0,

∑s
i=1 wi = 1

(2.64)

and

d(t) ∈ D

8Experiments can be seen on Blanchini’s web page.
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where D is a polytope with vertex set {d1, d2, . . . dr}.

D = {d =

r∑
i=1

βidi, βi ≥ 0,

r∑
i=1

βi = 1}

To keep things more general, the following class of systems, including the previous
one as a special case, will also be considered

ẋ(t) =

s∑
i=1

wi(t)fi(x(t), u(t)) (2.65)

Note that distinct external signals w and d can be absorbed in a single vector. For
example, the system

ẋ = wx + u + d

with |w| ≤ 1 and |d| ≤ 1 can be rewritten as (2.65) with

f1 = x + u + 1, f2 = x + u − 1, f3 = −x + u + 1, f4 = −x + u − 1

To check the negativity of the Lyapunov derivative for the above class of systems
it is possible to exploit a “vertex result,” which will be stated next in its general
form. It is assumed that a candidate Lyapunov Ψ function is assigned and that its
Lyapunov derivative can be expressed as in (2.29)

D+Ψ(x, f (x, u,w)) = sup
z∈∂Ψ

zT f (x, u,w) (2.66)

Note that this category comprises most of the commonly used Lyapunov functions
such as the smooth and the convex ones.

Proposition 2.35. Let Ψ be a candidate Lyapunov function which is positive
definite, locally Lipschitz. Assume its subgradient (see Definition 2.13) is a convex
non-empty set for all x ∈ IRn and its Lyapunov derivative can be expressed as
in (2.66). Then Ψ is a control Lyapunov function (global, inside X or outside X ) for
system (2.65) (possibly under constraints u ∈ U) assuring the condition

D+Ψ (x, f (x, Φ(x),w))
.
= D+Ψ (x, Φ(x),w) ≤ −φ(‖x‖)

with a proper control function Φ(x) and a κ-function φ if and only if

D+Ψ(x, fi(x(t), Φ(x(t))) ≤ −φi(‖x‖), i = 1, 2, . . . , r.

for some κ-functions φi.
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Proof. The condition is obviously necessary, because wi(t) ≡ 1 and wj(t) ≡ 0,
j �= i, is a possible realization of the uncertainty.

To prove sufficiency, consider the expression of the derivative (2.66)

D+Ψ (x, Φ(x),w) =

= sup
z∈∂Ψ(x)

zT

[
s∑

i=1

wifi(x, Φ(x))

]
= sup

z∈∂Ψ(x)

s∑
i=1

wi
[
zT fi(x, Φ(x))

]
≤

≤
s∑

i=1

wi sup
z∈∂Ψ(x)

[
zT fi(x, Φ(x))

]
≤ −min

i
φi(‖x‖)

Since φ(·) .
= mini φi(·) is a κ-function, the proof is completed.

It is fundamental to stress that the control function Φ must be common for all i.
The existence of control functions, each “working” for some i, is not sufficient. For
instance, the system

ẋ(t) = x(t) + δ(t)u(t), |δ| ≤ 1

cannot be stabilized since δ(t) = 0 is a possible realization. However, both the
“extremal” systems ẋ = x + u and ẋ = x − u admit the control Lyapunov function
|x|, as it is easy to check, although associated with different control actions (for
instance, u = −2x and u = 2x, respectively).

The previous property holds, under additional assumptions, when a full infor-
mation control of the form u = Φ(x,w) is considered. Suitable systems are, for
instance, the elements of the class

ẋ(t) =
s∑

i=1

wi(t) fi(x(t)) + Bu(t) (2.67)

which are linear in the control with a constant input matrix B. It can be seen (using
the previous type of machinery) that the existence of control laws u = Φi(x) that
make Ψ(x) a Lyapunov function for all the extreme systems is a sufficient and
necessary condition for Ψ to be a control Lyapunov function. Such a function can
be associated with the full information control

u = Φ(x,w) =

s∑
i=1

wi Φi(x)
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2.4.6 The convexity issue

We briefly report on the problem of “convexity seeking,” an issue which is often
regarded as a major deal in control synthesis. Convex problems have nice properties
and they are easier to solve than non-convex problems. Let us see how this issue
affects the Lyapunov theory.

Consider, for instance, the output feedback problem for the system

ẋ(t) = f (x(t),w(t)) + Bu(t)

y(t) = Cx(t)

and a given candidate Lyapunov function Ψ(x). Consider, for brevity, the standard
inequality for the Lyapunov derivative for exponential stability

∇Ψ(x)T [f (x(t),w(t)) + BΦ(y)] ≤ −βΨ(x)

Then it can be seen that the set of all the functions Φ(y) that satisfy the inequality
form a convex set (in the sense that if Φ1(y) and Φ2(y) are suitable controllers, then
αΦ1(y) + (1 − α)Φ2(y) is suitable as well, for every 0 ≤ α ≤ 1). This convexity
property is quite strong and desirable in the computation of a control, for a given
Ψ(x), as we will see later.

Let us consider the problem of determining a Lyapunov function Ψ(x). At least
in the space of smooth functions, for a given system (we assume that the control,
if any, is fixed) the set of Lyapunov function is convex i.e., if Ψ1(x) and Ψ2(x) are
suitable positive definite Lyapunov functions that satisfy

∇Ψi(x)
T f (x(t),w(t)) ≤ −βΨi(x), i = 1, 2

then αΨ1(x) + (1 − α)Ψ2(x) satisfies the same inequality for 0 ≤ α ≤ 1 (see, for
instance, [Joh00]).

Unfortunately, when the control term is present and both Ψ and a proper
controller Φ have to be determined, convexity is usually lost. This convexity issue
will appear again several times in the book.

2.4.7 Fake Control Lyapunov functions

In this section we sketch a simple concept which is associated with some pitfall
in the choice of a Lyapunov based control. Roughly we call a “fake control
Lyapunov function” a function which is used as such but does not satisfy the proper
requirements.

The first pathological case considered here is related to notions in other fields
such as the greedy or myopic strategy in Dynamic optimization. Let us introduce
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a very heuristic approach to control a system. Given a plant (we do not introduce
uncertainties for brevity)

ẋ(t) = f (x(t), u(t))

and a positive definite function Ψ(x), adopt the following heuristically justified strat-
egy: pick the controller that maximizes the decreasing rate of Ψ(x(t)), regardless of
the fact that the basic condition (2.42) is satisfied. Assuming a constraint of the form
u(t) ∈ U and assuming, for the sake of simplicity, Ψ to be a differentiable function,
this reduces to

u = Φ(x) = argmin
u∈U

∇Ψ(x)T f (x, u)

If one assumes that an integral cost

∫ ∞

0

Ψ(x(t))dt

has been assigned, this type of strategy is known as greedy or myopic strategy.
Indeed, at each time it minimizes the derivative in order to achieve the “best”
instantaneous results. It is well known that this strategy is far from achieving the
optimum of the integral cost (with the exception of special cases, see, for instance,
[MSP01]). Not only, it may also produce instability.

To prove this fact, it is sufficient to consider the simple case of a linear time-
invariant system

ẋ(t) = Ax(t) + Bu(t)

with a scalar input u and the function

Ψ(x) = xTPx

If the linear system (A,B,BTP)9 admits zeros with positive real parts, the just
introduced strategy may lead to instability. Now let us first consider a gradient-based
controller which tries to render the derivative Ψ̇(x) = 2xTP(Ax + Bu) negative and
large. According to the previous considerations, the gradient-based control in this
case is

u(t) = −γBTPx(t)

with γ > 0 chosen sufficiently large to decrease Ψ̇ . However, due to the non-
minimum phase nature of the system, this control can lead to instability. Things

9That is, with state matrix A, input matrix B, and output matrix C = BT P.
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do not get any better if one considers a limitation for the input, such as |u| ≤ 1. In
this case the pointwise minimizer is

u = arg min
|u|≤1

2xTP(Ax + Bu) = −sgn[xT PB]

If system (A,B,BTP) has right-half-plane zeros, the system becomes locally
unstable at the origin. The problem with the chosen “candidate control Lyapunov
function” is that it cannot, by its nature, have negative derivative everywhere. An
attempt of making the derivative as negative as possible, in all points in which this
is possible, produces a destabilizing effect.

Example 2.36 (Destabilizing a stable system via wrong feedback). Consider the
(open-loop stable!) linear system with

A =

[
1 −2

2 −3

]
, B =

[
0

1

]
, P = I

It is immediate that the gradient based controller associated with the fake Lyapunov
function xTPx = xTx is

u = −γBTPx = −γx2

destabilizes the system for γ ≥ 1. The discontinuous control

u = −sgn[x2]

produces similar destabilizing effects (see Exercise 14) as well as its “approxima-
tion”

u = −sat[γx2].

where γ > 0 is a “large number.”

Another classical case of bad “candidate control Lyapunov function” choice is
presented next. In this case, the function does not satisfy the positive definiteness
property and its use to derive a feedback control (in general) results in an unstable
closed-loop behavior.

Example 2.37 (A non-positive definite function). Consider a linear continuous-time
single-input single-output system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
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with CB �= 0, for which a state feedback control law is sought as to satisfy the output
specification

|y(t)| ≤ 1,

for all initial conditions such that |y(0)| = |Cx(0)| ≤ 1 (and possibly, stabilizing). In
the attempt to find such control law, the candidate Lyapunov function Ψ(x) = |Cx|,
whose gradient is ∇ΨT = Csgn(Cx), is considered. If a gradient-based controller
of the form (2.59) is chosen,

u(x) = −γ(x)
BTCT

(CB)2
sgn(Cx)

it is possible to make the Lyapunov derivative negative if

sgn(Cx)CAx − γ(x) < 0

One possible choice for γ(x) is

γ(x) = sgn(Cx)CAx + ρ|Cx|

for some ρ > 0, leading to the linear feedback law

u(x) = − BTCT

(CB)2
C (A + ρI) x.

Unfortunately, the only result which we are assured to get is that the functionΨ(x) =
|Cx| will decrease along the system trajectories, precisely D+Ψ(x) ≤ −ρΨ(x), but
there is no guarantee that the closed-loop will be stable (see Exercise 11).

2.5 Lyapunov-like functions

In the previous subsections, candidate positive definite Lyapunov functions were
considered, motivated by the fact that the origin is typically the target point for
the system state in the stability analysis or stabilization problem. However, many
analysis or regulation problems are not concerned with stability but rather the
main goal is to establish the qualitative behavior of a given system. Lyapunov-like
functions may provide a useful tool for this purpose. The definition of a Lyapunov-
like function can be simply stated as follows.

Definition 2.38 (Lyapunov-like function). The locally Lipschitz function Ψ(x) is
a Lyapunov-like function for system (2.21) inside the domain D if for x ∈ D we
have that
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D+Ψ(x,w) ≤ 0, (2.68)

for all w(t) ∈ W .

The interest in such functions lies in the fact that the level surfaces of the function
Ψ provide a qualitative information of the behavior of the system inside the set D.
More precisely, if x(t) ∈ N [Ψ, ν]

⋂
D, the state cannot leave the set N [Ψ, ν] without

previously abandoning D. If D is an invariant set, then the state cannot leave the set
N [Ψ, ν] at all.

Example 2.39 (Magnetic levitator revisited). Consider the following system of
differential equations

ẋ1(t) = x2(t)

ẋ2(t) = g − d2g
(x1(t) + d)2

representing, with a suitable parameterization, the unstable vertical motion of an
uncontrolled magnetic levitator (see Fig. 2.1 and Example 2.2). The constant d is
the equilibrium distance of the steel sphere from the magnet and g is the gravity.
The variable x1 is the vertical distance of the object from the equilibrium, while x2
represents the velocity. The unstable vertical motion in the positive sector will now
be studied by means of a pair of Lyapunov-like functions.

Consider the function Ψ1(x) = −x1x2 and let D be the positive quadrant x1, x2 ≥
0. The Lyapunov derivative of Ψ1(x) is

D+Ψ1(x) = −
(

x22 +
x31 + 2dx21
(x1 + d)2

g

)
< 0, for x ∈ D.

The level surfaces of Ψ1(x) are hyperbola whose asymptotes are the principal
axes (see Fig. 2.8). This implies that as long as x(t1) is the positive quadrant, and
Ψ1(x(t1)) = k < 0 the set N [Ψ, k] cannot be escaped. But this implies that the
interior of the positive quadrant is positively invariant because for each interior point
x(t1) there exist k < 0 such that Ψ1(x(t1)) = k. Moreover, being Ψ1(x) = 0 for each
x on the axes, these cannot be reached for t ≥ t1.

Consider also the Lyapunov-like function

Ψ2(x) = −gx1 +
1

2
x22

whose level sets N [Ψ2, μ], for μ < 0, are delimited in the positive quadrant by arcs
of parabolas each originating on the x1 axis at the point x1 = −μ/g (see again
Fig. 2.8). It is therefore clear that the trajectories of the system originating in the
positive quadrant have the behavior described in Fig. 2.8 (dashed-line), because they
must intersect both parabolas and hyperbolas from left to right.
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Fig. 2.8 The level surfaces
of Ψ1 and of Ψ2
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Lyapunov like functions are very useful to prove unstable behavior of a system
and the example above is one of such cases. There are more lucky cases in which the
level surfaces of a Lyapunov-like function describe exactly the system trajectory.

Example 2.40 (Oscillator). The system of equation

ẋ1(t) = x2(t)

ẋ2(t) = x1(t) − x1(t)
3

admits the Lyapunov-like function

Ψ(x) =
1

2
x22 +

(
x41
4

− x21
2

)

which is such that

D+Ψ(x) = 0, for all x

Therefore the system trajectories lie on the level surfaces of this function. These
level surfaces show that the system is an oscillator admitting periodic trajectories
which encircle either or both the equilibrium points (1, 0) and (−1, 0) (see
Figure 2.9)

Example 2.41 (Decentralized job balancing). Consider the problem of m agents
who have to assign a fixed amount of work among n operators. Each agent controls
her/his group of ni operators represented by the n nodes. The groups are represented
by the nodes included in the polygons in Fig. 2.10 and they might have non-empty
intersections (so

∑
ni ≥ n). In the case of the figure, agent 1 controls nodes 1, 2,

and 5, agent 2 controls 6, 7, and 8, agent 3 controls 2, 3, 6 and 7, and agent 4 controls
3, 4, 7, and 8.
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Fig. 2.9 The level surfaces of Ψ(x) and the trajectory for x(0) = [0.3 − 0.7]T (bold) for system
in Example 2.40

Fig. 2.10 The agent-operator
problem
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Denote by Bk = (n × nk) the incidence matrix of the partial graph having all
the n nodes and all the arcs connecting the nk nodes in the kth group. For instance,
group 1 includes nodes 1, 2, and 5, so B1 has three columns corresponding to the
arcs 1 → 2, 2 → 5, and 5 → 1

B1 =

⎡
⎣−1 1 0 0 0 0 0 0

0 −1 0 0 1 0 0 0

1 0 0 0 −1 0 0 0

⎤
⎦

T

The agent k can impose a distribution flow confined in the subspace spanned by
matrix Bk. Such a flow is limited to the subset of its nodes. The incidence matrix
B = [B1 B2 B3 B4] is the input matrix of the model of our re-distribution problem
whose equations are

ẋ(t) =

m∑
k=1

Bkuk(t) = Bu (2.69)
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where uk is the action of the kth agent, and xi(t) represent the workload of the ith
operator. The matrices Bk have the property that

1̄TBk = 0, and rank(Bk) = nk − 1

so that each single agent can distribute load among its operators without changing
the total workload of the group. The workload can be arbitrarily distributed in the
group. Again, u1 can distribute the load of x1, x2, and x5 but cannot change x1 +
x2 + x5. Note that the overall matrix B has not full row rank, since 1̄TB = 0.

We assume that the agents do not talk to each other and have information
only about the loads of their operators. Accordingly, we consider the network-
decentralized strategy [ID90, Ift99, BMU00] uk = −γBT

k x with γ > 0, namely

u = −γBTx

This means that the agents can feed back only the states of their operators. For
instance, agent 1 control is u = −γBT

1x and she/he needs information only about the
loads of operators 1, 2, and 5 because only the corresponding columns in BT

1 have
non-zero elements. We wish to show that, asymptotically, the system converges to
an “optimal load distribution.”

Let us consider a general problem of the form (2.69). For any initial condition
x0, the system evolves on the affine manifold

A = {x = x0 + Bv, ∀v}

For the system of Fig. 2.10, this just means that 1̄Tx(t) = 1̄Tx0.
The control u = −γBTx(t) yields

ẋ(t) = −γBBTx(t)

We show that the state converges to the minimum norm value inside A, i.e. it
asymptotically minimizes ‖x‖2. The minimum is clearly attained for a value v̄ such
that x̄ = x0 + Bv̄ is orthogonal to the image space of B, namely

BTx̄ = 0

Let us consider the Lyapunov-like function

Ψ(x) = xTBBTx

Its Lyapunov derivative is

Ψ̇(x) = 2xTBBTẋ = −2γxTBBTBBTx = −2γ‖BBTx‖2
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which is negative, unless BBTx = 0, say xTBBTx = 0, which is equivalent to
BTx = 0. This means that

Ψ(x(t)) → 0

hence x(t) → x̄.
In the case of the load distribution problem, the overall network is connected,

hence the kernel of B has dimension 1 and it has the form A = {x = λ1̄}, so,
asymptotically, we will have x1 = x2 = · · · = xn, namely a consensus (see [RBA07]
for a survey) is reached.

The following example is similar, but with the difference that the state is
asymptotically unbounded.

Example 2.42 (Clock synchronization). Consider the system of n clocks each
having its own speed ωi. Their time indications are grouped in the vector x(t).
These clocks may communicate pairwise according. The overall communication
is described by a graph having an arc connecting two nodes if and only if they
communicate. Let us denote its incidence matrix as B. Each clock compares its time
with that of its neighbors and adjusts its speed proportionally:

ẋi(t) = ωi + ui = ωi +
∑
Ni

−γ(xi(t) − xj(t))

︸ ︷︷ ︸
ui

where Ni is the set of nodes communicating with node i.
The derivative ẋi(t) represents the change of the ith clock speed with respect to

the “absolute” time. This basically means that each clock can modify its speed by
means of the “control action” ui. Clearly, in real implementations, each clock has
no access to the “true” time (otherwise the problem would be trivial), and in order
to synchronize its time with the rest of the group, the best it can do is to correct its
time based on its own “time perception.” If we assume that the relative speeds are
not too different, the model can be valid.

If we accept this simplified model, we arrive to the equation

ẋ(t) = ω − γBBTx(t) = ω − γLx(t)

where ω = [ω1 ω2 . . . ωn]
T and L = BBT is the so-called Laplacian matrix [RBA07].

The Laplacian is a symmetric positive semi-definite matrix and, if the graph is
connected, it has rank n − 1, as B. Its kernel is generated by the vector 1̄

L1̄ = BBT 1̄ = 0

Matrix L2 is symmetric positive semi-definite and it has the same kernel. Moreover,
there exists α such that
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xTL2x = ‖Lx‖2 ≤ α2xTLx

Note that in the case of no adjustment, the clock times would spread apart since

x(t) = x(0) + ωt,

unless ω has strictly equal components. But even in the last case the initial mismatch
among the components of x(0) would be maintained.

Let us see what happens with γ > 0. The ideal situation is the case in which
x1(t) = x2(t) = · · · = xn(t), namely x(t) = ξ(t)1̄: the clocks are synchronized. As
in the previous example, we use the Lyapunov-like function

Ψ(x) = xTLx = xTBBTx = ‖BTx‖2

as a measure of the mismatch. Note indeed that, for a connected graph, Ψ(x) = 0 is
equivalent to x = ξ1̄, as desired.

Now we separate the “common” and “mismatched” part of vector ω

ω =
1̄Tω

n
1̄ +Δ = ω̄1̄ +Δ

where ω̄ = 1̄Tω/n is the average and Δ is a (hopefully small) mismatch vector.
Assume that a bound is known forΔ: ‖Δ‖ ≤ δ. Observe that BBTω = Lω = BBTΔ.
Then we have

Ψ̇(x) = −2γxTL2x + 2xTLω ≤ −2γ‖Lx‖2 + 2|xTLΔ| (2.70)

≤ −2γ‖Lx‖2 + 2‖Lx‖‖Δ‖ ≤ −2[γ‖Lx‖ − δ] ‖Lx‖ (2.71)

Then the derivative is negative if ‖Lx‖2 < (δ/γ)2. But we have seen that ‖Lx‖2 ≤
α2xT Lx = α2Ψ(x), so the derivative is negative if

Ψ(x) ≤ δ2

γ2α2

This means that

lim sup
t→∞

Ψ(x(t)) ≤ δ2

γ2α2

On the other hand, this is equivalent to saying that asymptotically

‖BTx‖ ≤ δ

γα

which means the mismatch becomes arbitrarily small according to our measure
‖BTx‖ if we take γ > 0 large.
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To complete our investigation, we consider another Lyapunov-like function, the
average

a(x) =
1̄Tx
n

Then, since 1̄TL = 0,

ȧ(x) =
1̄T ẋ
n

=
1̄Tω

n
= 1̄ω̄

Hence

a(x(t)) = a(x(0)) + ω̄t

so the average time evolves with the average of the initial speeds.
The synchronization problem will be reconsidered later in the book.

2.6 Discrete-time systems

The main concepts of this chapter have been presented in the context of continuous-
time systems. The same concepts hold in the case of discrete-time systems, although
there are several technical differences. In particular some difficulties, typical of the
differential equations, such as existence, uniqueness, and finite escape time of the
solution, do not trouble anymore.

Let us now consider the case of a system of the form

x(t + 1) = f (x(t),w(t)), (2.72)

where now functions x(t) and w(t) ∈ W are indeed sequences, although they will
often be often referred to as “functions.” Consider a function Ψ : IRn → IR defined
and continuous on the state space. It is known that, as a counterpart of the Lyapunov
derivative, the Lyapunov difference has to be considered. Again, for any solution
x(t), it is possible to consider the composed function

ψ(t)
.
= Ψ(x(t))

and its increment

Δψ(t)
.
= ψ(t + 1) − ψ(t) = Ψ(x(t + 1)) − Ψ(x(t))
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so that the Lyapunov difference is simply defined as

Δψ(t) = Ψ(f (x(t),w(t))) − Ψ(x(t))
.
= ΔΨ(x(t),w(t)) (2.73)

Therefore, the monotonicity of function Ψ along the system trajectories can be
inferred by considering the function ΔΨ(x,w), thought of as a function of x and w.

Consider a model of the form (2.72) and again assume that the following
condition is satisfied

f (0,w) = 0, for all w ∈ W (2.74)

namely, x(t) ≡ 0 is a trajectory of the system.
For this discrete-time model, the same definition of global uniform asymptotic

stability (Definition 2.16) holds unchanged. Definition 2.18 of global Lyapunov
function remains unchanged up to the fact that the Lyapunov derivative is replaced
by the Lyapunov difference.

Definition 2.43 (Global Lyapunov Function, discrete-time). A continuous func-
tion Ψ : IRn → IR is said to be a Global Lyapunov Function (GLF) for system (2.72)
if it is positive definite, radially unbounded and there exists a κ-function φ such that

ΔΨ(x,w) ≤ −φ(‖x(t)‖) for all w ∈ W (2.75)

The next theorem, reported without proof, is the discrete-time counterpart of
Theorem 2.19.

Theorem 2.44. Assume the system (2.72) admits a global Lyapunov function Ψ .
Then it is globally uniformly asymptotically stable.

Even in the discrete-time case, it is possible to introduce a stronger notion of
stability, namely exponential stability.

Definition 2.45 (Global Exponential Stability, discrete-time). System (2.72) is
said to be Globally Exponentially Stable if there exist a positive λ < 1 and a positive
μ such that, for all ‖x(0)‖,

‖x(t)‖ ≤ μ‖x(0)‖λt (2.76)

for all t ≥ 0 and all sequences w(t) ∈ W .

The coefficient λ is the discrete-time convergence speed and μ is the discrete-
time transient estimate. As in the continuous-time case, exponential stability can
be assured by the existence of a Lyapunov function whose decreasing rate, or better,
whose Lyapunov difference along the system trajectories is bounded by a term
proportional to the function value. Let us assume that the positive definite function
Ψ(x) is upper and lower polynomially bounded, as in (2.38). The following theorem,
reported without proof, holds.
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Theorem 2.46. Assume that system (2.72) admits a positive definite continuous
function Ψ , which has polynomial growth as in (2.38) and

ΔΨ(x,w) ≤ −βΨ(x) (2.77)

for some positive β < 1. Then it is globally exponentially stable with speed of
convergence λ = (1 − β)(< 1).

Note that the condition of the theorem may be equivalently stated as

Ψ(f (x,w)) ≤ λΨ(x)

with 0 ≤ λ < 1 for all x and w ∈ W .
The concept of Uniform Local Stability and Uniform Ultimate Boundedness for

discrete-time system are expressed by Definitions 2.22 and 2.23 which hold without
modifications. Given a neighborhood of the origin S the concepts of Lyapunov
functions inside and outside S sound now as follows.

Definition 2.47 (Lyapunov function inside a set, discrete-time). The continuous
positive definite function Ψ is said to be a Lyapunov function inside S for
system (2.72) if there exists ν > 0 such that S ⊆ N [Ψ, ν] and for all x ∈ N [Ψ, ν]
the inequality

ΔΨ(x,w) ≤ −φ(‖x‖)

holds for some κ-function φ and for all w ∈ W .

Definition 2.48 (Lyapunov function outside a set, discrete-time). The continu-
ous positive definite function Ψ is a Lyapunov function outside S for system (2.72)
if there exists ν > 0 such that N [Ψ, ν] ⊆ S and for all x �∈ N [Ψ, ν] the inequality

ΔΨ(x,w) ≤ −φ(‖x‖)

holds for some κ-function φ and all w ∈ W ; moreover

Ψ(f (x,w)) ≤ ν

for all x ∈ N [Ψ, ν] and all w ∈ W .

Note that the last condition in the previous definition has no analogous statement in
the continuous-time Definition 2.25 and its meaning is that once the set N [Ψ, ν] is
reached by the state, it cannot be escaped. This condition is automatically satisfied in
the continuous-time case by a function as in Definition 2.25. The next two theorems
hold.

Theorem 2.49. Assume system (2.72) admits a positive definite continuous function
Ψ inside S. Then it is Locally Stable with basin (domain) of attraction S.
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Theorem 2.50. Assume system (2.72) admits a positive definite continuous function
Ψ outside S. Then it is uniformly ultimately bounded in S.

Example 2.51 (Newton–Raphson method for nonlinear systems of equations). Con-
sider the problem of solving the nonlinear system f (x) = 0. Assume that x̄ is an
isolated root f (x̄) = 0 and that f is twice continuously differentiable and its Jacobian
J(x) is continuously differentiable and ‖J(x)−1‖ ≤ ν in a neighborhood of x̄. We
further assume that

‖(J(x) − J(x̄))(x − x̄)‖ ≤ μ1‖x − x̄‖2

is infinitesimal of the second order. Note also that

f (x) = J(x̄)(x − x̄) +Θ(x − x̄)

with Θ infinitesimal

‖Θ(x − x̄)‖ ≤ μ2‖x − x̄‖2

Consider the following iterative method (Newton–Raphson method)

xk+1 = xk − J(xk)
−1f (xk) + w

where ‖w‖ ≤ ω is the roundoff error. We initially consider w = 0 and we show that
xk converges to the root, xk → x̄, if x0 is close enough to x̄. Consider ‖x − x̄‖ as
candidate Lyapunov function.

‖xk+1 − x̄‖ =
∥∥xk − J(xk)

−1f (xk) − x̄
∥∥ =

=
∥∥xk − J(xk)

−1 [J(x̄)(xk − x̄) +Θ(x − x̄)] − x̄
∥∥ =

=
∥∥xk − J(xk)

−1 [J(xk)(xk − x̄) + (J(x̄) − J(xk))(xk − x̄) +Θ(x − x̄)] − x̄
∥∥ =

=
∥∥J(xk)

−1 [(J(x̄) − J(xk))(xk − x̄) +Θ(x − x̄)]
∥∥ ≤ ν(μ1 + μ2)‖xk − x̄‖2

Take any positive λ0 < 1 (λ0 � 1). It can be verified that for ‖x0 − x̄‖ < λ0

ν(μ1+μ2)

also ‖x1 − x̄‖ satisfies the same condition ‖x1− x̄‖ < λ0

ν(μ1+μ2)
. Hence, recursively,

‖xk − x̄‖ < λ0
ν(μ1 + μ2)

.
= ρconv

for every k > 0, say the sequence xk is bounded if we start in the ball centered in x̄
of radius ρconv . We have also that

‖xk+1 − x̄‖ ≤ λ0‖xk − x̄‖
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which means that we have exponential convergence with speed λ0 < 1. Actually,
convergence is faster. Indeed convergence along with the condition10

‖xk+1 − x̄‖ ≤ ν(μ1 + μ2)‖xk − x̄‖p

with p = 2 implies that ‖xk − x̄‖ converges faster than λk, with 0 < λ < 1.
Finally, if we consider the roundoff error we derive

‖xk+1 − x̄‖ ≤ ν(μ1 + μ2)‖xk − x̄‖2 + ω

For ω not too large it can be seen that xk converges to a neighborhood

‖xk − x̄‖ ≤ ρ

where ρ is the smallest positive root (if any) of the equation

ρ = ν(μ1 + μ2)ρ
2 + ω

Note that, for ω large, no root can exist as expected.

Consider now the case of a controlled discrete-time system which has to be
equipped with a controller of the form (2.9)–(2.10). As previously observed, any
dynamic finite-dimensional feedback controller can be viewed as a static output
feedback for a properly augmented system. Therefore, it is possible to consider a
system of the form

{
x(t + 1) = f (x(t), u(t),w(t))

y(t) = h(x(t),w(t))
(2.78)

with a static feedback control law. As in the continuous-time case, the class C
of controllers needs to be specified. In the following, controllers in one of these
classes will be considered: output feedback, state feedback, output feedback with
feedforward, state feedback with feedforward.

The definition of control Lyapunov function is identical to that reported in the
continuous-time case in Definition 2.29. In practice, a Control Lyapunov function
(Global, Inside, Outside) is a Lyapunov function once a proper control is applied.
If control constraints of the form (2.13) need to be taken into account, then it is
sufficient to include them in the control Lyapunov function definition. If constraints
on the state, x(t) ∈ X , are present, then the key condition is that x(0) ∈ N [Ψ, μ] ⊆
X , for some μ. Again, dealing with difference equations, there is no need to specify
that the closed-loop system has to admit a solution which, in the discrete-time case,

10In numerical analysis this condition is known as convergence of order p, so the Newton–Raphson
method is quadratic.
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exists as long as the control function is well defined. Other technical differences
appear when a control law has to be associated with a Control Lyapunov Function.

Let us consider a domain of the form

N [Ψ, α, β] = {x : α ≤ Ψ(x) ≤ β} (2.79)

where, by possibly assuming α = 0 or β = +∞, all the “meaningful” cases of
Lyapunov function inside a set (outside a set or global) are included. Assume that a
positive definite continuous function Ψ is given and consider the next inequality

ΔΨ(x, u,w)
.
= Ψ(f (x, u,w)) − Ψ(x) ≤ −φ(‖x‖). (2.80)

The problem can be thought of in either of the following ways. If, for all x, there
must exist u such that (2.80) is satisfied for all w ∈ W , then this condition implies
that Ψ is a control Lyapunov function with state feedback. Conversely, if u is allowed
to be a function also of w, the condition becomes: for all x and w ∈ W there exists
u such that (2.80) is satisfied. In this second case one is dealing with a control
Lyapunov function for the full information feedback.

To characterize the control function for the state feedback, consider the discrete-
time control map or regulation map

Ω(x) = {u : (2.80) is satisfied for all w ∈ W} ,

conceptually identical to that already introduced in the continuous-time case Any
proper state feedback control function u = Φ(x) has to be such that

Φ(x) ∈ Ω(x). (2.81)

In the full-information control case, the following set

Ω(x,w) = {u : (2.80) is satisfied}

comes into play. The control function in this case must be such that

Φ(x,w) ∈ Ω(x,w) (2.82)

The question of the regularity of function Φ(x) is not essential from the mathemati-
cal point of view. Nevertheless, it may be important, since discontinuous controllers
may have practical troubles, such as actuator over-exploitation.

Unfortunately, though continuity is not an issue anymore, in the discrete-time
case the problem of determining a feedback control in an analytic form does not
admit in general a solution, as it does instead in the continuous-time case. The main
reason is that even in the case of a smooth control Lyapunov function the gradient
does not play any role. Once the gradient is known, in the continuous-time case,
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basically the control is chosen in order to push the system in the opposite direction
as much as possible. In the discrete-time case this property does not hold. Let us
consider a very simple example.

Example 2.52. Let us seek for a state feedback for the scalar system

ẋ(t)[x(t + 1)] = f (x(t),w(t)) + u, |w| ≤ 1. (2.83)

Assume that f is bounded as |f (x(t),w(t))| ≤ ξ|x| and consider the control
Lyapunov function Ψ(x) = x2/2. The continuous-time problem is straightforward.
Since the “gradient” is x, it is sufficient to take a control pushing towards the origin,
for instance u = −κx, with κ large enough (at least κ > ξ). The Lyapunov derivative
results then in

Ψ̇(x) = x (f (x,w) + u(t)) ≤ −(κ− ξ)x2,

so that the closed-loop system is globally asymptotically stable.
The discrete-time version of the problem is rather different. For the Lyapunov

function Ψ(x) = x2/2 to decrease, the basic condition to be respected is:

(f (x,w) + u(t))2

2
− x2

2
≤ −φ(|x|), for all |w| ≤ 1

The only information which can be derived by the above condition is that

u(x) ∈ Ω(x) = {x : (f (x,w) + u(t))2 ≤ x2 − 2φ(|x|), for all |w| ≤ 1 },

a condition that heavily involves function f . Furthermore, it is not difficult to show
that the bound |f (x(t),w(t))| ≤ ξ|x| does not assure that Ω(x) is non-empty for all
x (say, the system is stabilizable). For instance, the system

x(t + 1) = [a + bw(t)]x + u, |w| ≤ 1, (2.84)

is not stabilizable by any feedback for all values of the constant a and b. The
necessary and sufficient stabilizability condition via state feedback is |b| < 1.

The previous example shows that there are no analogous controllers to those
proposed for uncertain systems by [BCL83]. Another point worth being evidenced is
the difference, in the discrete-time case, between state feedback and full information
control. Indeed, for the above example, when |b| > 1 there is no stabilizing state
feedback u = Φ(x), but the system is always stabilizable by means of the full
information feedback u = −f (x,w) = −[a+bw]x. This implies that the equivalence
between state and full information feedback, which holds under some technical
assumptions [Meı79, Bla00] in the continuous-time case, is not true for discrete-
time systems.
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To conclude the section, the analogous of Proposition 2.35 is stated. Consider a
discrete-time polytopic system of the form

x(t + 1) = f (x(t), u(t),w(t)) =

s∑
i=1

wi(t) fi(x(t), u(t))

with
∑s

i=1 wi = 1, wi ≥ 0. The following proposition holds.

Proposition 2.53. The convex positive definite function Ψ is a control Lyapunov
function (global outside or inside a set X ) if and only if there exists a single control
function Φ such that

ΔΨi(x, Φ(x))
.
= Ψ(fi(x, Φ(x))) − Ψ(x) ≤ −φi(‖x‖)

for proper κ-functions φi.

Proof. The proof is immediate, since

ΔΨ(f (x, Φ(x),w)) = Ψ

(
s∑

i=1

wi fi(x, Φ(x))

)
− Ψ(x) ≤

≤
s∑

i=1

wi [Ψ (fi(x, Φ(x))) − Ψ(x)] ≤

≤ −
s∑

i=1

wi φi(‖x‖) ≤ −min
i
φi(‖x‖)

and mini φi(‖x‖) is a κ-function.

It has to be stressed that convexity of Ψ(x) is fundamental here, while it was not
necessary in the analogous Proposition 2.35.

2.6.1 Converse Lyapunov theorems

Lyapunov theory not only provides fundamental tools for solving engineering
problems, but it is conceptually fundamental as well. Nevertheless, the main
weak point of this theory, precisely the not-always-so-clear way to find a suitable
candidate Lyapunov function, is unfortunately11 an unsolved problem.

11Actually for mathematicians and theoretical engineers for which this circumstance is a source of
fun.
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In the previous sections it has been shown that finding a suitable (control) Lya-
punov function for a given dynamic system is crucial for the stability (stabilizability)
of the considered system. Unfortunately, if such function cannot be found, nothing
can be said. Indeed, in basic system theory, it is a rather established fact that a
candidate positive definite Ψ(x), even smooth, whose derivative Ψ̇(x) is not sign
definite, leads to the only conclusion that Ψ(x) is the wrong candidate.

Therefore, a fundamental question arises: Is the Lyapunov approach the right one
for stability? This question has a theoretical affirmative fundamental reply. Indeed
Lyapunov-type theorems admit several converse theorems which basically state that
if a system is asymptotically stable (under appropriate assumptions), then it admits
a Lyapunov function. Some famous results in this sense are due to Persisdki and
Kurzweil and to Massera. The reader is again referred to the book [RHL77]. We
report here a “robust converse Lyapunov theorem,” proved in [LSW96] and which
includes several previous results as special cases.

Consider the system

ẋ = f (x(t),w(t))

where w(t) ∈ W and W is a compact set, f is continuous with respect to w and
locally Lipschitz in x uniformly with respect to w12.

Theorem 2.54. For the above system the following two conditions are equivalent.
Global uniform asymptotic stability

• There exists a κ-function φ(·) such that, for every ε > 0 and any ‖x(0)‖ ≤ φ(ε),
the solution ‖x(t)‖ ≤ ε for all t ≥ 0 and all w ∈ W .

• For any ρ > 0 and ε > 0 there exists T such that, for all ‖x(0)‖ ≤ ρ, ‖x(t)‖ ≤ ε,
t ≥ T, for all w(t) ∈ W .

Existence of a smooth Lyapunov function

• There exist a smooth function Ψ(x) and two κ-functionsα1(·) and α2(·) such that

α1(‖x‖) ≤ Ψ(x) ≤ α2(‖x‖)

for all x.
• There exists a κ-function α3(·) such that

D+Ψ(x) = ∇Ψ(x)T f (x,w) ≤ −α3(‖x‖)

This theorem was previously proved by Meilakhs [Meı79] under the stronger
assumption of exponential stability. It is also to be mentioned that the formulation in
[LSW96] is more general than that provided here since the case of convergence to a
closed set A is considered. Basically, the statement in [LSW96] sounds as follows:

12For each closed ball S ⊂ IRn there exists ν such that ‖f (x1,w)− f (x2,w)‖ ≤ ν‖x1 − x2‖ for all
x1, x2 ∈ S and all w ∈ W .
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If the system converges to the closed set A, then there exists a Lyapunov like
function which is zero inside this set and positive elsewhere for which

D+Ψ(x) = ∇Ψ(x)T f (x,w) ≤ −α3(dist(x,A))

where dist(x,A) is the distance of x from A (which will be formally introduced later
in Section 4.2). In particular, this implies that if a system is uniformly ultimately
bounded inside a compact neighborhood of the origin, A, then there exists a
Lyapunov function outside this set. The discrete version of the theorem is reported
in [JW02].

2.6.2 Literature Review

In this section, some basic notions concerning Lyapunov theory have been reported.
As it has been underlined several times, the main focus has been the geometrical
interpretation of the Lyapunov theory and the examination of some formal concepts.

Needless to say, the literature on Lyapunov theory is so huge that it is not possible
to provide but a limited review on the subject. Nevertheless, it is mandatory to
remind some seminal works as well as some fundamental textbooks as specific
references. Beside the already mentioned work of Lyapunov himself [Lya66], it
is fundamental to quote the works of La Salle and Lefschetz [LL61], Krasowski
[Kra63], Hahn [Hah67], and Hale [Hal69] as pioneering works concerning the
stability of motion.

An important work on Lyapunov theory is the book [RHL77]. The reader is
referred to this book for further details on the theory of stability and for a complete
list of references.

The Lyapunov direct method provides sufficient conditions to establish the stabil-
ity of a dynamic system. A major problem in the theory is that it is non-constructive
in most cases. How to construct Lyapunov and control Lyapunov functions, will be
one of the main deals of this book. Lyapunov theory has also played an important
role in robustness analysis and robust synthesis of control systems. In connection
with the robust stabilization problem, pioneering papers for the construction of
quadratic functions are [HB76, Meı79, BCL83, BPF83, Gut79, Lei81, RK89].

Converse Lyapunov Theorems for certain systems are provided in [Hal69,
RHL77] and the extensions to uncertain system are in [Meı79, LSW96, JW02]. An
interesting connection among robust stabilizability, optimality, and existence of a
control Lyapunov function is presented in [FK96a]. The problem of associating a
feedback control function with a Control Lyapunov Function has been considered
by Artstein [Art83] and a universal formula can be found in [Son98]. This problem
has been considered in the context of systems with uncertainties in [FK96b].
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There are results concerning the robust stability (stabilization) for linear uncer-
tain systems which show that a linear uncertain system is stable [MP86a, MP86b,
MP86c] or robustly stabilizable [Bla95] if and only if there exists a Lyapunov (or
a control Lyapunov) function which is a norm (polyhedral or “polynomial”). This
problem will be later reconsidered in a constructive way.

It is worth mentioning that the concept of Lyapunov-like function is in some
sense related with the concept of partial stability. Basically, a system is partially
stable with respect to part of its state variables if these remain bounded and
converge, regardless what the remaining do. For further details on this matter, the
reader is referred to [Vor98].

2.7 Exercises

1. An equation with finite escape time admits solutions which cannot be defined
for all t ≥ 0. Show that the equation ẋ = x2 has finite escape time.

2. Prove the claim of Example 2.1 about the proposed expression of the solution.
3. Show why condition (2.38) is essential for exponential stability. Can you figure

out an example in which (2.38) fails and (2.39) holds and you do not have
exponential stability? (hint: try the scalar system ẋ = −x3 and Ψ(x) =
exp(−1/x2)).

4. For an uncertain system ẋ = f (x,w) the existence of a positive definite function
Ψ(x) such that D+Ψ(x,w) < 0 for x �= 0 is not sufficient to prove asymptotic
stability (and indeed we wrote D+Ψ(x,w) < −φ(‖x‖) with φ a κ-function in
expression (2.35)). Consider ẋ(t) = −w(t)x(t), with 0 < w(t) < 1 and let
Ψ(x) = x2. Take, for instance, x(0) > 0 and show that for some w(t), x(t)
decreases but it does not converge to 0 (hint: let w(t) = e−t).

5. In the previous exercise, the interval for w is not compact. Can the problem be
fixed under compactness assumptions?

6. Show that if Ψ(x) is a Lyapunov function assuring exponential stability, then
Ψ(x)m (as long as it still satisfies (2.38)) is also a Lyapunov function. How
do the convergence measure factors assured by the two function relate to each
other?

7. Sketch the proof of Theorems 2.26 and 2.27.
8. Find an example of a system and a differentiable positive definite function

which is a control Lyapunov function if the class of control C is of state-
feedback type but it is not a control Lyapunov function if static output feedback
controllers are considered.

9. Although we generally desire continuous controllers, discontinuity is often
necessary (hence the evidenced difficulties). Show that the (certain) system
ẋ = x + |x|u is stabilizable (for instance by means of the control Lyapunov
function x2/2) but no controller u = Φ(x) continuous at 0 exists. Can we
achieve UUB in a small interval [−ε, ε] with a continuous Φ?



90 2 Lyapunov and Lyapunov-like functions

10. Consider the system

ẋ(t) = a(x(t),w(t))x(t) + b(x(t))u(t)

and assume that Ψ(x(t)) is a global control Lyapunov function. Show that, for
each arbitrarily small ε > 0 and each arbitrarily large κ > 0, there exists a
constant γ > 0 such that, if the control

u = −γb(x)T∇Ψ(x)

is applied, then there exists T such that for all x(0) ∈ N [Ψ, κ], x(t) ∈ N [Ψ, ε]
for t ≥ T [BCL83, Meı79].

11. Check that, given the SISO system

A =

[
1 3

−1 1

]
, B =

[
1

0

]
, C =

[
1 1

]
,

the state feedback control law of Example 2.37 leads to an unstable closed-loop
system for any ρ > 0. Show that, on the other hand, for any initial condition
x(0), the proposed greedy linear control law is such that Ψ(x(t)) = |Cx(t)| =
e−ρt|Cx(0)|. Find a two-dimensional dynamic system, which is reachable and
observable, for which the proposed control law results in a stable closed-loop
(hint: take (A,B,C) with stable zeros and relative degree 1 CB �= 0)

12. Consider the linear uncertain system

ẋ(t) = A(w(t))x(t) + Bu(t)

with state matrix globally bounded: ‖A(w)‖ ≤ μ, w ∈ W , and assume that it
admits the global quadratic control Lyapunov function Ψ(x) = xTPx associated
with a continuous control function Φ(x)

2xTPA(w)x + 2xTBΦ(x) ≤ −α2‖x‖2.

Show that the system is globally quadratically stabilizable via a linear controller
of the form

u = −γBTPx(t),

with γ sufficiently large [Meı74, BPF83].
13. Show that |b| < 1 is the stabilizability limit via state feedback for system (2.84).
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14. Consider the example of Section 2.4.7 with the control u = −sgn(x2). Show
that the origin with this control is unstable. Hint: consider the rectangleD1(ε) =
{x : |x1| ≤ 1/4, |x2| ≤ ε} and show that Ψ1 = x22/2 is a Lyapunov-like
function inside D1(ε), if ε is small enough, so that the trajectory can escape
the rectangle only through the vertical edges. Then consider the Lyapunov-like
function Ψ2 = −x1 in the rectangle D2(ε) = {x ∈ D1 : x1 ≥ ε/2} (or the
opposite one) so that no trajectory originating in D2(ε) can reach the origin
without violating the constraint x1 ≤ 1/4 . . . (or the constraint x1 ≥ 1/4).

15. Sketch the proof of Theorem 2.46.
16. Show that convexity in Proposition 2.53 is essential (Hint: take x(t + 1) =

u(t) ∈ IR2, u = K(θi)x, i = 1, 2, rotation matrices, and a non-convex Lyapunov
function whose sublevel sets are kind of “stars” . . . ).

17. Show that the solution of ẋ(t) = −1/x(t) for x(0) > 0 reaches the boundary of
the existence domain in finite time.



Chapter 3
Convex sets and their representation

3.1 Convex functions and sets

The purpose of this section is to remind the reader essential notions about convex
sets and functions which will be useful in the sequel. For a more detailed exposition
on convexity, the reader is referred to specialized literature [Roc70, RW98, BV04].

Definition 3.1 (Convex set). A set S ∈ IRn is said to be convex if for all x1 ∈ S
and x2 ∈ S we have that

αx1 + (1 − α)x2 ∈ S for all 0 ≤ α ≤ 1. (3.1)

It is henceforth assumed that the empty set ∅ is convex1. The point

x = αx1 + (1 − α)x2

with 0 ≤ α ≤ 1 is called a convex combination of the pair x1 and x2. The set
of all such points is the segment connecting x1 and x2. Basically a set is convex
if it includes all the segments connecting all the pairs of its points (if any). Some
definitions will be recurrently used in the sequel and it is henceforth useful to group
them here.

Definition 3.2 (Convex hull). Given a set S, its convex hull is the intersection of
all the convex sets containing S.

With a slight abuse of notation, given two sets S1 and S2, both in IRn, we will often
call convex hull of S1 and S2 the convex hull of S1

⋃
S2 (see Figure 3.1).

1To keep the exposition simple, it is assumed that any considered family of convex sets
(i.e., ellipsoids, polytopes) includes the empty set.
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Fig. 3.1 The convex hull of
two sets S1 and S2

S2

S1

The convex hull of a set S can be alternatively seen as the smallest convex set
containing S.

Definition 3.3 (Centered cone). A set C ⊂ IRn is called a cone centered in x0 ∈
IRn if

x0 + λ (x − x0) ∈ C, for all x ∈ C and λ > 0. (3.2)

A cone centered in x0 = 0 is simply called a cone. A set C is a convex centered cone
if it is a centered cone and convex or, equivalently,

x1, x2 ∈ C implies α(x1 − x0) + β(x2 − x0) ∈ C, for all α, β ≥ 0.

The definition of convexity for functions is the following.

Definition 3.4 (Convex function). A real function ψ defined on a convex subset
S of IRn, ψ : S → IR, is convex if the condition

ψ(αx1 + (1 − α)x2) ≤ αψ(x1) + (1 − α)ψ(x2) (3.3)

holds for all x1, x2 ∈ S and all 0 ≤ α ≤ 1.

It is immediately seen that any sublevel set N [ψ, κ] of a convex function is a convex
set. However the opposite is not true, in the sense that functions whose sublevel sets
are convex are not necessarily convex. For instance, the function φ(x) = ‖x‖2/(1 +
‖x‖2) is not convex but its sublevel sets are spheres thus they are convex. In Fig. 3.2
the function φ(x) and its sublevel sets (bold line) when x ∈ IR2 are depicted.

The following definition allows a better characterization of a function having
convex sublevel sets.
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Fig. 3.2 Quasi-convex
function φ(x) = ‖x‖2/
(1 + ‖x‖2) and level sets

Definition 3.5 (Quasi-convex function). A functionψ : IRn → IR is quasi-convex
if the condition

ψ(αx1 + (1 − α)x2) ≤ max{ψ(x1), ψ(x2)} (3.4)

holds for all x1, x2 ∈ IRn and 0 ≤ α ≤ 1.

Convexity implies quasi-convexity, while the vice versa is not true. It is easy to show
that a function is quasi-convex if and only if its sublevel sets are convex.

A function ψ is said concave if −ψ is convex.
In the cases in which a convex function ψ (or a quasi-convex function) can

be naturally defined only on a bounded domain S (for instance, the function
1/
√

1 − ‖x‖2 with S = {x : ‖x‖ < 1}) one can always extend the definition
over IRn by just assuming that the function is equal to +∞ outside S. Obviously, in
this case, functions with values on the extended real axis {−∞}

⋃
IR
⋃

+{∞} =
[−∞,∞] have to be considered. In this case, the set of all values in which the
function ψ is not infinite is named the effective domain and denoted by dom ψ =
{x : ψ(x) < ∞}. A convex function is always continuous on every open set
included in its effective domain [Roc70] pag. 82.

There are many important properties associated with convexity. Perhaps, one of
the most important is the following [Roc70].

Proposition 3.6. Any local minimum of the optimization problem

min
x∈S

ψ(x)

where S ⊆ IRn is a closed convex set and ψ is a quasi-convex function, is a global
minimum.

A concept which turns out to be important is the support function of a convex set.
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Definition 3.7 (Support function). Given a convex set S ⊆ IRn, the function φS :
IRn → [−∞,+∞] defined as

φS(z) = sup
x∈S

zTx (3.5)

is said to be the support function.2

The support function (often referred to as support functional) of a convex set has to
be thought in the extended way, in the sense it may assume values in [−∞,+∞].
A convex and closed set can be represented in terms of its support function. If S is
a convex and closed set, then

S =
{

x : zTx ≤ φS(z) ∀z ∈ IRn} (3.6)

3.1.1 Operations between sets

There are some basic operations between sets which are necessary to describe the
algorithms that will be presented later. Let A and B denote generic subsets of IRn,
let λ denote a real number, and let M(x) be a map M : IRn → IRm

Definition 3.8 (Operations on convex sets).

Sum of sets A and B (a.k.a. Minkowski sum, see Fig. 3.3): the set

C = {x = a + b, a ∈ A, and b ∈ B}

Scaled set of A: the set

λA = {x = λa, a ∈ A }, λ ≥ 0

Erosion of a set A with respect to B 3 (see Fig. 3.4): the set

ÃB = {x : x + b ∈ A, for all b ∈ B}

Image of a set under a map M (see Fig. 3.5): the set

M(A) = {y = M(x), x ∈ A}

Projection of A on a subspace X (see Fig. 3.6): the set

B = {b ∈ X : ∃ a ∈ A : a = b + c, with c ∈ X⊥}

2In general the support functional is defined in the dual space; since we are working in IRn, we do
not need to introduce any distinction.
3Often referred to as Pontryagin difference.
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Fig. 3.3 The sum of two sets
x2

x1

A

B

A + B

Fig. 3.4 The erosion of A
with respect to B

A

B

A B
~

x2

x1

Fig. 3.5 The image of
A = {x : ‖x‖∞ ≤ 1} under
the map
M(x) = 0.5x + [1 1]T

x2

x1

M(A )

A

x

where X⊥ denotes the subspace orthogonal to X .

It is immediately seen that, if A and B are convex, then

• their sum is convex;
• the scaled set is convex;
• the erosion is convex;
• if M(x) is an affine map (the sum of a constant and a linear map), then M(A) is

convex.



98 3 Convex sets and their representation

Fig. 3.6 The projection of A
on X = {x : x2 = 0} x2

x1

A

B

Fig. 3.7 The network
considered in Example 3.9

d1

f1 f2

d2

u1 u2

Convexity preserving in the case of a map requires strong properties. For instance
that of being affine is sufficient, but not actually necessary. We refer the reader to
[BV04] for an extended description of convexity preserving maps.

Example 3.9. Consider the simple network in Figure 3.7 in which two agents u and
d operate by a choosing their components within given constraints (representing the
capacity of the arcs)

u ∈ U = {u : u−
i ≤ ui ≤ u+

i , i = 1, 2}, d ∈ D = {d : d−
i ≤ di ≤ d+

i , i = 1, 2}.

The resulting outcoming flow is represented by vector f given by

f = Bu + d

where

B =

[
1 −1

0 1

]

As for the interaction between u and d, two extreme cases can be considered:

• u and d cooperate;
• u and d are in competition.

In the first case, the achievable flows are

f ∈ BU + D
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In the other case the situation is different. If, for instance, u plays the role of the
good player and d that of the opposer, it is interesting to consider the “worst case”
set of all the flows f such that no matter which is the move of d ∈ D there exists
u ∈ U (depending on d) such that Bu + d = f . This set is precisely

f ∈ ˜[BU ]D

It turns out that in both cases the resulting set is a polyhedron (this example
will be reconsidered later, after the introduction of some elementary notions about
polyhedral sets).

It is worth reminding here some basic properties which concern the operations
just introduced. Let A and B be compact and convex sets. Then:

• A ⊆ A + B if 0 ∈ B;
• ÃB ⊆ A if and only if 0 ∈ B;
• ÃB + B ⊆ A
• Let B̄ be the closure of the convex hull of B. Then ÃB = ÃB̄ .

3.1.2 Minkowski function

An important definition which will be often used in the sequel is that of a C-set.

Definition 3.10 (C-set). A C-set is a convex and compact subset of IRn including
the origin as an interior point.

Given a C-set S ⊂ IRn, it is always possible to define a function, named after
Minkowski, which is essentially the function whose sublevel sets are achieved by
linearly scaling the set S (see Fig. 3.8).

Definition 3.11 (Minkowski function). Given a C-set S, its Minkowski func-
tion4 is

ψS(x) = inf{λ ≥ 0 : x ∈ λ S }

The Minkowski function ψS satisfies the following properties [Lue69], p. 131.

Proposition 3.12 (Minkowski function properties).

• It is positive definite: 0 ≤ ψS(x) < ∞ and ψS(x) > 0 for x �= 0.
• It is positively homogeneous of order 1: ψS(λx) = λψS(x) for λ ≥ 0.
• It is sub-additive: ψS(x1 + x2) ≤ ψS(x1) + ψS(x2).
• It is continuous.
• Its unit ball is S = N [ψS , 1].
• It is convex.

4Also known as Minkowski functional.
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Fig. 3.8 The level surfaces
of the Minkowski function

S

x1

x2

A function having the above properties is named gauge function, because it
introduces a measure of the distance from the origin. Since the closed unit ball
N [ψ, 1] of a gauge function is a C-set, gauge functions and C-sets are in a one-to-
one correspondence.

If a C-set S is 0-symmetric, that is

x ∈ S ⇒ −x ∈ S,

for all x ∈ IRn, then

ψS(x) = ψS(−x),

and in this case ψS is a norm. Therefore, the concept of a gauge function generalizes
the concept of a norm to functions with similar properties but with possibly non-
zero-symmetric unit balls.

The concept of C-set introduced here (proper C-set) could be relaxed to that of
a non-proper C-set, namely a convex and closed set S (not necessarily compact)
including 0 in the interior. In this case Definition 3.11 of Minkowski function still
holds. Function ψS is convex and positive semi-definite. In the case of a symmetric
set S, ψS is a semi-norm 5.

The following definition turns out to be useful to introduce the concept of duality
between support functions and Minkowski functions.

5A semi-norm has the properties of a norm except positive definiteness: it is a non-negative function
ψ(x) ≥ 0 such that ψ(λx) = |λ|ψ(x), ψ(x + y) ≤ ψ(x) + ψ(y), but x �= 0 �⇒ ψ(x) > 0 (e.g., in
IR2, |x1 + x2| is a semi-norm).
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Fig. 3.9 Examples of C-sets (top) and their polar sets (down)

Definition 3.13 (Polar of a C-set). Consider a C-set P (Fig. 3.9). Then its polar
set is defined as

P∗ = {x : zTx ≤ 1, for all z ∈ P} (3.7)

The following properties hold for any C-set P (see [Roc70] Theorem 14.5).

Proposition 3.14.

• [P∗]∗ = P .
• If ψP(x) is the Minkowski function of P and φP∗(x) is the support functional of

the polar set P∗, then

ψP(x) = φP∗(x).

3.1.3 The normal and the tangent cones

Throughout this book, convex functions will often be considered as candidate
Lyapunov functions for dynamical systems. As mentioned in the previous chapter,
this requires the exploitation of the concept of directional derivative. Assume a
convex function ψ(x), defined on a convex open set, is given and let the difference
quotient be defined as:

R(ψ, x, f , τ) =
ψ(x + τ f ) − ψ(x)

τ

A fundamental property is that for each pair of vectors x and f , the difference
quotient is a non-decreasing function of τ , as long as ψ is convex. Therefore, the
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directional derivative defined in (2.24) in the previous section can be equivalently
replaced by the formula (see [Roc70] for details)

D+ψ(x, f ) = lim
τ→0+

R(ψ, x, f , τ) = inf
τ≥0

R(ψ, x, f , τ) (3.8)

(note that f = f (x,w) if we are considering the Lyapunov derivative of ẋ = f (x,w)).
The existence of the limit is assured by the monotonicity of the difference quotient
R. In the case of convex functions which are not differentiable, it is convenient to
use the notion of subgradient already introduced: given the subdifferential

∂ψ(x) = {z : zT (y − x) ≤ ψ(y) − ψ(x), ∀y ∈ IRn}

we have that

D+ψ(x, f ) = sup
z∈∂ψ(x)

zT f (3.9)

The subdifferential of a convex function is a convex set for all x. An important notion
related to that of subdifferential is that of normal cone.

Definition 3.15 (Normal cone). Given a closed and convex set S, the normal cone
at S in x is defined as follows (see Fig. 3.10):

HS(x) = {z : zT(y − x) ≤ 0, for all y ∈ S}

The normal cone is trivially {0} if x ∈ int S, the interior of S. Assume now that
a closed and convex set with a non-empty interior is given as the sublevel set of a
convex function

S = N [ψ, κ]

Fig. 3.10 The normal and
tangent cones

x

x+Ts(x)

x+Hs(x)

S
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Assume that κ is not a minimum of ψ. Then ψ(x) < κ, for all x ∈ int S �= ∅, and
consider a point x on its boundary, i.e. such that ψ(x) = κ. Then the normal cone
is the closure of the cone generated by the vectors of the subgradient of ψ in x (see
[Roc70]).

HS(x) = {z = λw, λ ≥ 0, for some w ∈ ∂ψ(x)}.

For a convex differentiable function ψ, under the previous assumption that κ is
not the minimum value, if x is on the boundary of N [ψ, k], then the set HS(x)
is generated by the gradient vector ∇ψ(x). The plane of all vectors y such that
∇ψ(x)(y − x) = 0 is the tangent plane to S in x. The following notion of tangent
cone generalizes that of tangent plane.

Definition 3.16 (Tangent cone). Given a closed and convex set S the tangent cone
at S in x is defined as follows (see Fig. 3.10):

TS(x) = cl

{⋃
h>0

1

h
(S − x)

}
(3.10)

where cl{·} denotes the closure of the set6

Given a cone C we say that C∗ is the polar cone if

C∗ = {z : zTx ≤ 0, for all x ∈ C} (3.11)

A fundamental relation between the normal and the tangent cone is that they are
polar to each other as per the following proposition (see [AC84], Section 5.1,
Proposition 2, pag. 220).

Proposition 3.17. Let S be a closed convex set with a non-empty interior and
x ∈ S. Then TS(x) and HS(x) are both closed and convex cones and

TS(x) = HS(x)∗

and

HS(x) = TS(x)∗.

Note that for x ∈ int S the proposition is trivial but coherent because HS(x) = {0}
and TS(x) = IRn. Note also that, for the sake of simplicity in the representation, the
cones depicted in Fig. 3.10 are not centered in 0, but in x, so they are actually the

6This is the closure of the set of all vectors of the form (s − x)/h, with s ∈ S and h > 0.



104 3 Convex sets and their representation

translated versions of the normal and the tangent ones. As a final remark, it has to be
pointed out that the definition of normal cone TS(x) given here is valid for a convex
set only. A more general definition, valid for general closed sets, will be given later.

3.2 Ellipsoidal sets

A famous class of convex sets, definitely the most popular in the dynamic systems
control area, is that of the ellipsoidal sets or ellipsoids. Given a vector x0, named the
center, and a positive definite matrix P an ellipsoid is a set of the form

E(x0,P, μ)
.
= {x :

√
(x − x0)T P(x − x0) ≤ μ} (3.12)

If the ellipsoid is centered in the origin, then it is possible to write:

E(P, μ)
.
= E(0,P, μ) = N [

√
xT Px, μ] = N [‖x‖P, μ]

When μ = 1, for brevity, the following notation will be adopted: E(P)
.
=

E(0,P, 1) = N [‖x‖P, 1]. By defining the root of a positive definite matrix P as
the unique positive symmetric matrix R = P1/2 such that R2 = P, it is possible to
derive an alternative dual representation for an ellipsoidal set:

D(x0,Q, μ) = {x = x0 + μ Q
1
2 z, where ‖z‖2 ≤ 1} (3.13)

Again, dropping the first argument implies that the ellipsoid is centered in 0,
D(Q, μ) = D(0,Q, μ), and dropping the third argument means that the radius is
1 D(Q) = D(0,Q, 1).

By defining P−1/2 = R−1 = [P1/2]−1, the following proposition holds true:

Proposition 3.18. If Q = P−1, expressions (3.12) and (3.13) represent the same
set. In particular E(P) = D(Q)

Proof. Consider the transformation z = P1/2(x − x0)/μ. Then x is in (3.12) if and
only if zTz ≤ 1. In the new reference frame, this condition represents the unit ball,
the set of all z such that ‖z‖2 ≤ 1. By applying the inverse transformation it can be
seen that this set is in a one-to-one correspondence with the set of all x such that

x = x0 + μP−1/2z, for some ‖z‖2 ≤ 1

which is equivalent to (3.13)

A further representation for an ellipsoid is achievable by means of its support
functional (3.6). It is easy to see that the support function of an ellipsoid E(P, μ) is

φE(z) = μ
√

zTP−1z = μ
√

zTQz = μ‖z‖Q
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and therefore

E(P, μ) = D(Q, μ) =
{

x : zTx ≤ μ
√

zTQz, for all z
}

(3.14)

(actually, it is possible to replace “for all z” with “for all ‖z‖2 = 1” in the previous
expression). An ellipsoidal set is uniquely determined by the entries of matrix P and
by the components of x0. Since P is symmetric, the complexity of the representation
(the number of required free parameters) is

n(n + 1)/2 + n = n(n + 3)/2.

An ellipsoidal set has some special properties which are useful in the application.

Proposition 3.19.

• The intersection of an ellipsoid and a subspace X ⊂ IRn is an ellipsoid.
• If M is a full row rank matrix and E is an ellipsoid, then ME is an ellipsoid.
• The projection of an ellipsoid on a subspace X is an ellipsoid (inside the

projection subspace).

Proof. To show the first property consider representation (3.12) and apply the
transformation z = P1/2x and z0 = P1/2x0, so that the ellipsoid becomes the sphere
determined by (z − z0)T(z − z0) ≤ μ2. The subspace X is mapped in the subspace
Z = P1/2X . Let B be any basis matrix for Z .

Vector z0 can be decomposed as z0 = Bw0 + h0 where h0 is in the orthogonal
of the subspace spanned by B, so that hT

0B = 0. Let us consider the identical
decomposition for z = Bw + h. Define h∗ = h − h0. Then

(z − z0)
T(z − z0) = [(B(w − w0) + h∗]

T [(B(w − w0) + h∗] ≤ μ2

which is equivalent to

(w − w0)
T(BTB)(w − w0) ≤ μ2 − hT

∗h∗

Since B is a basis matrix, (BTB) is positive definite. Therefore the above expression
represents an ellipsoid (possibly empty) in the w-space.

To prove the second property consider an m × n full row rank matrix (so that
m ≤ n) and the set Y = ME , where E is represented by means of (3.12). Apply
the transformation z = P1/2x/μ and z0 = P1/2x0/μ, so that the ellipsoid becomes
the sphere determined by (z − z0)T (z − z0) ≤ 1. This is the unit ball centered in
z0 namely the set of all z = z0 + w, with ‖w‖2 ≤ 1. Consider the transformed
matrix y = Mx = M̂z where M̂ = μMP−1/2, and its singular value decomposition
M̂ = U[Σ 0]W, with U and W orthonormal matrices and Σ diagonal square. Then
the image is the set of all vectors of the form

y = U[Σ 0]W(z0 + w) = y0 + U[Σ 0]ŵ, ‖ŵ‖2 ≤ 1
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where y0 = M̂z0 and ŵ = Ww is any arbitrary unit vector (in view of the fact that
W is orthonormal). Denoting by ŵ1 the first m components of ŵ, it turns out that the
set of all y is

y = y0 + UΣ ŵ1, for all ‖ŵ1‖2 ≤ 1.

This can be written equivalently as

‖[UΣ]−1(y − y0)‖2 = ‖ŵ1‖2 ≤ 1

Since [UΣ]−1 = Σ−1UT , this means that the set of all admissible y is character-
ized by

‖[UΣ]−1(y − y0)‖22 = (y − y0)
TUΣ−2UT(y − y0) ≤ 1

therefore it is an ellipsoid (P̂ = UΣ−2UT is positive definite).
The third property follows immediately from the second, because the projection

on a subspace is a linear operator that can be represented by the linear map y = BTx
where B is an orthonormal basis.

Other operations between ellipsoids do not preserve the ellipsoidal structure. In
particular

• the sum of two ellipsoids is not in general an ellipsoid;
• the intersection of two ellipsoids is not in general an ellipsoid;
• the erosion of an ellipsoid (even with respect to an ellipsoid) is not in general an

ellipsoid.
• the convex hull of the union of two ellipsoids is not an ellipsoid;

Therefore, the above operations increase the complexity of the resulting set. It can
be easily seen that the negative assertions above hold even if ellipsoids centered in
the origin are considered.

As a final point, notice that, given an ellipsoidal set E(0,P, 1) = E(P, 1) centered
in zero, its Minkowski functional is the quadratic norm

‖x‖P =
√

xTPx,

and its support function is

‖x‖Q =
√

xTQx.

where Q = P−1. In agreement with Proposition 3.14 we have that

E(P) = D(Q)

and

E(Q) = D(P)

are dual to each other while ‖x‖P and ‖x‖Q are dual norms.
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3.3 Polyhedral sets

An important family of convex sets of common interest is that of polyhedral sets.
The main advantage of polyhedral sets is the fact that they form a closed family with
respect to the mentioned operations. Their main disadvantage is that the complexity
of representation is not fixed by the space dimension.

Definition 3.20 (Polyhedral set). A convex polyhedral set is a set of the form

P(F, g) = {x : Fx ≤ g} = {x : Fix ≤ gi, i = 1, 2, . . . , s} (3.15)

where Fi denotes the i-th row of the s × n matrix F and gi the i-th component of the
s × 1 vector g.

A polyhedral set includes the origin if and only if g ≥ 0 and includes the origin as
an interior point if and only if g > 0 (gi > 0, ∀i). We will use the notation 1̄ to
mean the vector with all components equal to 1

1̄T = [ 1 1 . . . 1 ] (3.16)

Thus a polyhedral set including the origin can be always represented as

P(F, 1̄) = P(F) = {x : Fx ≤ 1̄} = {x : Fix ≤ 1, i = 1, 2, . . . , s} (3.17)

which can be achieved from (3.15) by dividing both sides of each inequality by
gi > 0. A 0-symmetric convex polyhedral set can be always represented in the form

P̄(F, g) = {x : − g ≤ Fx ≤ g} = {x : − gi ≤ Fix ≤ gi, i = 1, 2, . . . , s}
(3.18)

Again, if P̄(F, g) includes 0 as an interior point, up to a normalization, it can be
represented as

P̄(F, 1̄) = P̄(F) = {x : − 1̄ ≤ Fx ≤ 1̄} = {x : − 1 ≤ Fix ≤ 1, i = 1, 2, . . . , s}
(3.19)

A convex polyhedron admits a vertex representation of the form

V(Xw,Xy) = {x = Xww + Xyy,
p∑

i=1

wi = 1, w ≥ 0, y ≥ 0} (3.20)

The columns of matrix Xw represent the set of finite vertices, while those of matrix
Xy represent the set of infinite directions or “infinite vertices.” In the symmetric case,
the following representation is possible:
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V̄(Xw,Xy) = {x = Xww + Xyy,
p∑

i=1

|wi| ≤ 1, y arbitrary} (3.21)

In this case, the finite (respectively infinite) vertices are given by the columns of the
matrices Xw (respectively Xy ) and their opposite.

Definition 3.21 (Polytope). A bounded polyhedral set is called a polytope.

A necessary and sufficient condition for (3.20) or (3.21) to represent a polytope is
that Xy = 0. It is not difficult to see that expression (3.18) or expression (3.19)
represents bounded sets if and only if F has full column rank. A condition for P(F)
to be a polytope is given in Exercise 11.

In the book, the following notation

P(F) = {x : Fx ≤ 1̄} (3.22)

and its dual

V(X) = {x = Xz, 1̄Tz = 1, z ≥ 0} (3.23)

will often be used. The corresponding notations for symmetric sets are

P̄(F) = {x : ‖Fx‖∞ ≤ 1} (3.24)

and its dual

V̄(X) = {x = Xz, ‖z‖1 ≤ 1} (3.25)

The duality between the plane (3.22) and vertex (3.23) representations (or the
analogous (3.24) and (3.25)) can be explained as follows.

Consider a polytopeP = P(F) = V(X) including the origin as an interior point7

and its polar set P∗(as defined in expression (3.7)). Then the following properties
hold

P(F)∗ = V(FT) (3.26)

and

V̄(X)∗ = P̄(XT) (3.27)

Let us explain why (3.26) is true (the case of (3.27) is left to the reader). The
Minkowski (gauge) functions associated with P(F) and V(X) are

ψP(F)(x) = max{Fx} .
= max

i
{Fi x} (3.28)

7Boundedness and the inclusion of 0 as an interior point are assumed for simplicity.
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and

ψV(X)(x) = min{1̄T w : x = Xw, w ≥ 0}, (3.29)

respectively. The polarity between P(F) and V(X) can be seen from the linear
programming duality. Consider the support function of P(F)

φP(F)(z) = max {zTx : Fx ≤ 1̄}

= min {1̄Tw : s.t. FTw = z, w ≥ 0} = ψV(FT)(z)

which is the Minkowski function of V(FT). In view of Proposition 3.14, V(FT)
and P(F) = V(X) polar. As a consequence of this fact the support function is
achieved by the expressions (3.28) and (3.29) if F and X are replaced by XT and FT ,
respectively.

Important cases of polyhedral sets are introduced next.

Definition 3.22 (Simplex). Given a full row rank matrix X ∈ IRn×(n+1) a simplex
is the convex hull of the sets Si = xi, where each of the xi is the i-th column vector
of matrix X.

Definition 3.23 (Diamond set). Given a full rank matrix X ∈ IRn×n, a diamond is
the convex hull of the sets Si = ±xi, where each of the xi is the i-th column vector
of matrix X.

Definition 3.24 (Simplicial cone). Given a full rank matrix X ∈ IRn×n, a
simplicial cone C ⊂ IRn is a set of the form

C = {x = Xp : p ≥ 0}. (3.30)

A simplicial cone is always generated by the simplex having the origin amongst its
vertices, say the simplex generated by the n × (n + 1) matrix X1 = [X 0], where 0
is the n × 1 vector with zero entries.

A further important concept is the minimality of the representation.

Definition 3.25 (Minimal representation). A plane or vertex representation is
minimal if and only if there is no other representation of the same set involving
a smaller (with respect to dimensions) F or X.

A minimal representation of a set can be achieved by removing from the
plane (vertex) representation all the redundant planes (vertices), whose definition
is reported next.

Definition 3.26 (Redundant plane). Given the polyhedral set P(F, g), let
P(F̃−i, g̃−i) be the set obtained by removing the i-th plane Fi from matrix F (and
the corresponding component gi of vector g). The plane Fi is said to be redundant if

max
x∈P(F̃−i,g̃−i)

Fix ≤ gi
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Definition 3.27 (Redundant vertex). Given the polyhedral set V(X), let X̃−i be
the vertex matrix obtained by removing vertex xi from the vertex matrix X. The
vertex xi is said to be redundant if

min{1Tζ : xi = X̃−iζ} ≤ 1

Note that checking any of the presented conditions requires the solution of a linear
programming problem.

Once again it has to be stressed that the representation complexity of polyhedral
sets, differently from ellipsoidal sets, is not a function of the space dimension only,
but it may be arbitrarily high. The usual complexity index of a polyhedral set is the
number of rows of matrix F, for the plane representation P(F), and the number
of vertices, for the vertex representation V(X). As far as the complexity issue
is concerned, none of these representations can be regarded as more convenient.
Indeed, as we have seen, for any polyhedral C-set with np planes and nv vertices,
the dual has exactly n∗

p = nv planes and n∗
v = np vertices. For high dimensional

problems, passing from a representation to the other, namely determining the
vertices from the planes and vice versa, is a hard task. It is worth saying that in
general the algorithms which involve polyhedra computations are very demanding
in terms of computational complexity and thus it is often mandatory to work with
minimal representations to keep the complexity as low as possible. Unfortunately,
computing a minimal representation can also turn out to be a computational
demanding task.

The counterpart of the computational troubles of polyhedral set is their flexibility.
Indeed any convex and compact set can be arbitrarily closely approximated by a
polyhedron (see [Lay82]). In particular, if S is a C-set, then for all 0 < ε < 1 there
exists a polytope P such that

(1 − ε)S ⊆ P ⊆ S (3.31)

(internal approximation) or

S ⊆ P ⊆ (1 + ε)S (3.32)

(external approximation). The same concept can be expressed in terms of Hausdorff
distance. Denote by B the unit ball of any norm. The Hausdorff distance between
two sets S and R can be expressed as

δH(S,R) = min {α ≥ 0 : R ⊆ S + αB, S ⊆ R + αB}

Then we can always find a polyhedral approximation arbitrarily close to any convex
C-set in the sense of Hausdorff. In particular given ε > 0 and a C-set S, we can find
an internal polytope P such that

S ⊆ P + εB
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or an external polytope such that

P ⊆ S + εB

The class of polyhedral sets is closed with respect to the basic operations already
considered according to the next proposition.

Proposition 3.28. If A and B are polyhedra, λ ≥ 0 and M is an affine map, then

• the image M(A) is a polyhedron;
• the preimage M−1(A) is a polyhedron;
• the projection on a subspace of A is a polyhedron;
• A

⋂
B is a polyhedron;

• the intersection of A with a subspace X ⊂ IRn is a polyhedron;
• the scaled set λA is a polyhedron;
• the sum A + B is a polyhedron;
• the erosion of A with respect to B ÃB is a polyhedron8;
• the convex hull conv{A

⋃
B} is a polyhedron.

Proof. The fact that M(A) is a polyhedron follows from the representation (3.23)
A = V(X), since it is immediate to see that

MV(X) = V(MX)

To show that M−1(A) = {x : Mx ∈ A} is also polyhedral, consider the
representation (3.15). It follows that the preimage is identified by the inequalities

FMx ≤ g,

This can be synthetically written as follows:

M−1(A) = P(FM, g).

To show that the projection of A is a polyhedron, it is sufficient to remind that the
projection operator is a linear map.

To prove that the intersection of two polyhedra is itself a polyhedron, consider
the representation (3.15). Then, the intersection of two polyhedra is the set of
vectors which satisfies all the inequalities associated with the two elements. If
A = P(FA, gA) and B = P(FB, gB), then

P(FB, gB)
⋂

P(FA, gA) = P
([

FA

FB

]
,

[
gA

gB

])

8This property holds even if B is a generic closed set.
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To show that the intersection of A with a subspace X is a polyhedron, it
is sufficient to notice that any subspace can be represented by the kernel of
a proper matrix BT , where B is a basis of the orthogonal subspace, namely
X = {x : BT x = 0}. This is equivalent to the inequalities

0 ≤ BT x ≤ 0,

say the intersection of A with a subspace is nothing but the intersection between
A and another polyhedron and thus, by the previously shown statement, it is a
polyhedron.

The scaled set λA is a polyhedron because scaling is equivalent to applying the
linear operator λI. Then from (3.23) we see that

λV(X) = V(λX)

and for λ > 0

λP(F) = P(F/λ)

(note that if λ = 0, λP(F) = {0}, and then the representation P(F) cannot be
used).

To show that A + B is a polyhedron, consider for brevity the case in which both
A and B are bounded and represented as in (3.23). If A = V(XA) and B = V(XB),
then

A + B = V(XAB)

where XAB is the matrix achieved by summing in all possible ways a column of XA

and a column of XB. The sum A + B is formed by all vectors of the form

x = XAwA + XBwB =
∑

i

XA
i wA

i +
∑

j

XB
j wB

j ,

with

∑
i

wA
i = 1,

∑
i

wB
j = 1, and wA

i ≥ 0, wB
j ≥ 0.

Then

x = XAwA + XBwB =
∑

ij

XA
i wA

i wB
j +

∑
ij

XB
j wA

i wB
j =

=
∑

ij

wA
i wB

j (XA
i + XB

j ) = XABwAB
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where the component of the vector wAB are of the form wA
i wB

j ≥ 0 and
∑

k wAB
k = 1.

Then the sum A + B ⊆ V(XAB), the convex hull of all the points XA
i + XB

j . On the
other hand, all these points belong to the sum because both XA

i and XB
j do. Therefore

conv{A + B} = V(XAB). The proof of the statement is completed by keeping in
mind that A + B is a convex set so that A + B = conv{A+ B}

The erosion of A with respect to B is defined as

ÃB = {x : x + b ∈ A, for all b ∈ B}.

Consider the plane representation (3.15). Then x ∈ AB if and only if, for all i,

Fi(x + b) ≤ gi, for all b ∈ B,

which is equivalent to

Fix ≤ gi − max
b∈B

Fib

then

P̃(F, g)B = P(F, g̃)

so that, denoting by φB the support functional of B, g̃ is the vector whose
components are

g̃i
.
= gi − max

b∈B
Fib = gi − φB(Fi)

The convex hull conv{A
⋃
B} is nothing else than the convex hull of all the vertices

of A and B (if, for brevity, the case of bounded polyhedra alone is considered). In
terms of the representation (3.23) this results in

conv{A
⋃

B} = V([XA XB]).

Remark 3.29. If A and B are 0 symmetric polyhedra, then all the statements of the
previous proposition are valid by replacing the word “polyhedra” by “symmetric
polyhedra.”

Example 3.30. Let us consider the simple network introduced in Example 3.9
Simple computations show that the plane representation of BU is P(M, g), where

M =

⎡
⎢⎢⎣

1 1

0 1

−1 −1

0 −1

⎤
⎥⎥⎦ and g =

⎡
⎢⎢⎣

u+
1

u+
2

−u−
1

−u−
2

⎤
⎥⎥⎦
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Its vertex representation is V(R) where

R =

[
u−
1 − u−

2 u−
1 − u+

2 u+
1 − u−

2 u+
1 − u+

2

u−
2 u+

2 u−
2 u+

2

]

The vertices of the set D are

D =

[
d−
1 d−

1 d+
1 d+

1

d−
2 d+

2 d−
2 d+

2

]

The “cooperation set” is given by BU + D and it turns out to be V(Y), where
the matrix Y is achieved by summing pair of vertices chosen from BU and D,
respectively, in all possible ways. Therefore the set has, in principle, 16 vertices
(although four of them are redundant). For brevity the matrix Y is not reported.

The “competition set” [BU ]D is achievable by the plane description. Since D is
a square, the computation of the plane representation P [M, g̃] = ˜[BU ]D is quite
simple and, more precisely, M is the same matrix reported above and

g̃ =

⎡
⎢⎢⎣

u+
1 − (d+

1 − d−
2 )

u+
2 − (d+

2 )

−u−
1 + (d−

1 − d−
2 )

−u−
2 + (d−

2 )

⎤
⎥⎥⎦

Note that this polyhedron may be empty.

As a final point, the following result, that provides an interesting condition to
check the inclusion between polyhedra (see for instance [DH99]), is reported.

Proposition 3.31. The inclusion

P [F(1), g(1)] ⊂ P [F(2), g(2)]

holds if and only if there exists a non-negative matrix H such that

HF(1) = F(2)

Hg(1) ≤ g(2)

Proof. If the inclusion holds then, denoting by F(k)
i the ith row of F(k), we get for

all i

μi
.
= max F(2)

i x

s.t. F(1)x ≤ g(1)
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is such that

μi ≤ g(2)
i

This is a linear programming problem. Its dual is:

μi = min hg(1)

s.t. hF(1) = F(2)
i

h ≥ 0

Denote by h(i) the non-negative row vector which is a solution of the dual and let H
be the square matrix whose ith row is h(i). Then H satisfies the required conditions.

Conversely, assume that the mentioned matrix H exists. Then for all x ∈
P [F(1), g(1)], namely F(1)x ≤ g(1), we have

F(2)x = HF(1)x ≤ Hg(1) ≤ g(2)

(the first inequality holds because H is non-negative) so x ∈ P [F(2), g(2)].

In the case of polyhedral C-sets, we can assume g(1) = 1̄ and g(2) = 1̄, so the
inequality becomes

H1̄ ≤ 1̄.

The previous proposition admits a “dual version”.

Proposition 3.32. If V(X(1)) and V(X(2)) are polyhedral C-sets, then

V(X(1)) ⊆ V(X(2))

if and only if there exists a matrix P ≥ 0 such that

PX(2) = X(1)

1̄TP ≤ 1̄T

The proof proceeds along the same lines of that of Proposition 3.31.

3.4 Other families of convex sets

Obviously the family of convex sets in IRn is much wider than that of quadratic and
polyhedral ones. The problem in general is that, to be effective in applications, a
class of sets must be supported by efficient tools. As we have seen, convex ellipsoids
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and polyhedra are associated with quadratic and piecewise linear functions, respec-
tively. A first question is whether there exists a class of functions which includes the
family of convex quadratic and piecewise linear functions. The answer is obviously
that the class of piecewise quadratic functions [RJ98, BMDP02] includes both
polyhedral and quadratic functions (as well as piecewise affine function [Mil02b]).
A piecewise quadratic function is a function of the form

Ψ(x) = max
i

{xTPix + qT
i x + ri} (3.33)

where Pi are positive definite matrices, qi are vectors and ri scalars. The single
component xTPix + qT

i x + ri is convex and therefore Ψ is convex. Clearly any set of
the form N [Ψ, κ] is convex and it can represent any ellipsoid or any polyhedron, by
an appropriate choice of Pi, qi and ri.

A further family of convex sets can be achieved by “smoothing” a polyhedral
set. The application of such smoothing property will be presented later. Consider a
polyhedral 0-symmetric C-set S represented by the notation (3.24)

S = {x : ‖Fx‖∞ ≤ 1}.

and its associated Minkowski function, denoted by Ψ(x). For p positive integer,
define the function

Ψ2p(x)
.
= 2p

√√√√ r∑
i=1

(Fix)2p

where r is the number of rows of F (the even exponent allows to avoid using absolute
values inside the root). It turns out that

lim
p→∞

Ψ2p(x) → Ψ(x),

uniformly on every compact set. This is immediate to see since

max
i

{Fix} ≤ 2p

√√√√ r∑
i=1

(Fix)2p ≤ 2p

√
r max

i
{Fix}2p ≤ 2p

√
r max

i
{Fix}

and 2p
√

r → 1, as p → ∞. Therefore, the unit ball S2p of Ψ2p(x) converges to S from
inside. The function Ψ2p(x) is smooth everywhere for x �= 0.

This smoothing procedure can be extended to non-symmetric sets. Consider for
p integer the function

σp(ξ) =

{
0 if ξ ≤ 0,

ξp if ξ > 0.
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Then the approximating smoothing function for the Minkowski function of a
polyhedral C-set of the form (3.17)

Ψ(x) = max
i

Fix

is given by (it is not necessary to have even numbers now)

Ψp(x)
.
= p

√√√√ r∑
i=1

σp(Fix).

Other types of convex sets can be efficiently adopted. In particular those achieved
as sublevel surfaces of special positive definite convex functions. An interesting
generalization of polyhedral sets and functions is achieved by allowing for complex
numbers [BT80]. It is interesting to see that these sets, projected on the real space,
can provide real convex sets with (at least partially) smooth surfaces and then are
suitable to reduce complexity.

We remind also the composite quadratic functions [HL03], and in particular the
max of quadratics,

Ψ(x) = max
i

xTPix

(or their root
√
Ψ(x)) where Pi, i = 1, 2, . . . ,m is a family of positive definite

symmetric matrices. These functions are convex and piecewise-smooth and, as we
will see, they are an interesting counterpart to the polyhedral functions.

Convex sets and functions are naturally derived as cost-to-go functions of
constrained optimal control problems, as we will see later on.

3.5 Star-shaped sets and homogeneous functions

Convex sets are an important family, however convexity can be a too high
requirement in many applications. One important class of sets which includes C-
sets as a special case is that of the so-called star-shaped sets, defined as follows.

Definition 3.33. A compact and closed set S including the origin in its interior is
star-shaped if any ray originating at 0 encounters its boundary in a single point,
namely if for any z �= 0, there exists a value λz such that x = λz ∈ S if and only if
0 ≤ λ ≤ λz.

A star-shaped set can be associated with a positive definite function which is
positively homogeneous of order 1 (Fig. 3.11), i.e. such that ψ(λx) = λψ(x), for
any λ ≥ 0.

ψ(x) = inf{λ : x ∈ λS}
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Fig. 3.11 A star-shaped set

Conversely, any positive definite, locally bounded and positively homogeneous
function defines a star-shaped set

S = {x : ψ(x) ≤ 1}

Note that the degree of homogeneity is not necessarily one. Precisely the function
ψ(x)p, p > 0 integer, defines the same set

S = {x : ψp(x) ≤ 1}

This kind of sets and functions turns out to be useful when we are dealing with
homogeneous systems, as we will see later.

One important class of star-shaped sets is that associated with homogeneous
polynomial [Zel94, CGTV03]. In general these functions are not necessarily convex.
For further reading on this topic the reader is referred to [Che11a].

An interesting case of star-shaped function which is not convex is the min type
function

Ψ(x) = min
i

xTPix

where Pi, i = 1, 2, . . . ,m is a family of positive definite symmetric matrices. While
any single xTPix is convex, if we take the minimum, then convexity is lost.

3.6 Exercises

1. Show that a function Ψ is quasi-convex if and only if its sublevel sets N [Ψ, κ]
are convex.

2. Show that the sum of two convex functions ψ1 and ψ2 is convex. Show by
means of a counterexample that the sum of two quasi-convex functions is not
quasi-convex. What about max{ψ1(x), ψ2(x)} with ψ1 and ψ2 quasi-convex?

3. Show that a convex positive definite function is radially unbounded. Is this true
in the case of a quasi-convex function?
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4. Is the support function of the sum of two C-sets equal to the sum of their support
functions?

5. Is the Minkowski function of the sum of two C-sets equal to the sum of their
Minkowski functions?

6. Show that the definition of the polar of a convex set (Def. 3.13) is consistent
with that of a polar convex cone (centered in 0) provided in Section 3.1.3.

7. Show that the normal cone of a set N [Ψ, κ], having non-empty interior and with
Ψ convex, is not necessarily given by the subgradient formula if κ is a (global)
minimum of Ψ . (Hint: take a convex differentiable function which is constant
in a portion of the domain . . . )

8. Show that the sum of two ellipsoids is in general not an ellipsoid. What about
the sum of spheres?

9. Show that the erosion of an ellipsoid E with respect to a convex set B is not an
ellipsoid in general (hint: Take E a disk and B a segment centered at the origin).

10. Given an ellipsoid containing the origin in its interior (not necessarily the
center) find the expression of its Minkowski function.

11. Show that P(F) is bounded if and only if the polar P(F)∗ = V(FT) includes 0
as an interior point (is the statement achievable by commuting P(F) and V(FT)
meaningful?9)

12. Which is the expression (3.20) for the sum of two polyhedra (not necessarily
bounded)?

13. Which is the expression (3.20) for the convex hull of the union of two polyhedra
(not necessarily bounded)?

14. Under which condition the set P [M, g̃] = [BU ]D in Example 3.30 is non-
empty?

15. The complexity of the representation P(F, g) of a polyhedron is not increased
by the erosion operation. Can you figure out an example in which the
complexity is actually reduced?

16. The complexity of the representation ofV(X(1))+V(X(2)) is the product of their

number of vertices of n(1)
v n(2)

v . Can you find an example in which the minimal
representation of the sum does not preserve this complexity? And another in
which it does?

17. Show that if Ψ(x) is a convex function defined on a convex set P , then it reaches
it maximum on the boundary, and that, if P is a polytope, then it achieves the
maximum on one of its vertices. What about the minimum?

18. Show pictorially an example of a two-dimensional set V(X) with redundant
vertices. Show that a vertex xi is redundant if and only if the plane xT

i is
redundant for P(XT , 1̄).

19. Give a set-theoretic interpretation of the set [BU ]D in example 3.9 if u is a player
who wants to meet a certain flow f = Bu + d by choosing u ∈ U no matter how
its opponent chooses d ∈ D.

9Of course not, why?



Chapter 4
Invariant sets

This chapter contains the basic definitions and results concerning invariant sets in
control and it is the core of the book. Indeed, the invariance concept is at the basis
of many control schemes that will be considered later. Such a concept naturally
arises when dealing with Lyapunov functions, as we have seen, since any Lyapunov
function has positively invariant sublevel sets. However, the invariance concept does
not require the introduction of the notion of Lyapunov functions and indeed there
exist invariant sets that are not obviously related to any Lyapunov function.

4.1 Basic definitions

The idea of positive invariance can be easily understood by referring to a simple
autonomous system in state space form:

ẋ(t) = f (x(t)) (4.1)

It is assumed that the above system of equations is defined in a proper open set

O ⊆ IRn

and that there exists a globally defined solution (i.e., for all t ≥ 0) for every initial
condition x(0) ∈ O. Although the concept has been already considered, positive
invariance is formally defined as follows.

Definition 4.1 (Positive invariance). The set S ⊆ O is said to be positively
invariant w.r.t. (4.1) if every solution of (4.1) with initial condition x(0) ∈ S is
globally defined and such that x(t) ∈ S for t > 0.

© Springer International Publishing Switzerland 2015
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The above definition is all that is needed when the problem is well-posed, say there
is a unique solution corresponding to each given initial condition x(0) ∈ S. For the
sake of generality, it is worth saying that if pathological situations have to be taken
into account (say if one wants to consider the case in which the differential equation
may have multiple solutions for the same initial condition) then the following weak
version of the concept comes into play:

Definition 4.2 (Weak positive invariance). The set S ⊆ O is said to be weakly
positively invariant w.r.t. (4.1) if, among all the solutions of (4.1) originating in
x(0) ∈ S, there exists at least one globally defined solution which remains inside S,
namely x(t) ∈ S for t > 0.

The reason for the introduction of the (rarely used throughout the book) weak
invariance concept is basically that of establishing a link with the abundant
mathematical work in this area (see, among the recent literature [AC84, Aub91]).
Indeed, from an engineering point of view, the existence of at least a solution in S is
not that stunning, since nothing is said about all other possible solutions to the given
set of equations. To avoid having the reader dropping the book we guarantee that in
the 99.999% of the dynamic systems which will be considered well-posedness will
be assumed, namely the existence of a unique solution for any x(0) ∈ S, a case in
which the weak definition collapses to the standard one. The latter can be simply
restated as x(t1) ∈ S ⇒ x(t) ∈ S for t ≥ t1. It has to be pointed out that the role
of the word “positive” is referred to the fact that the property regards the future. If
x(t1) ∈ S implies x(t) ∈ S, for all t, this property is known as invariance and S
is said to be an invariant set. Invariance is a too special concept to be considered.
Therefore in the book we will always refer to positive invariance (although we will
sometimes write “invariance” for brevity).

Set invariance plays a fundamental role not just for autonomous systems but also
for differential equations of the form

ẋ(t) = f (x(t),w(t)) (4.2)

or controlled differential equations of the form

ẋ(t) = f (x(t), u(t),w(t))
y(t) = g(x(t),w(t))

(4.3)

where w(t) ∈ W is an exogenous input and u(t) ∈ U is a control input as considered
in Chapter 2. To keep (as promised a few lines above) the exposition simple, it will
always be assumed that, unless differently specified, (4.2) admits a unique globally
defined solution for any w(·) : IR+ �→ W and all initial conditions x(0) ∈ O ⊂ IRn

and that the control associated with (4.3) is admissible, in the sense that it assures
the closed-loop system has this property.
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The presence of the external input w is required to account for performance
specifications as well as for uncertainty entering the system. Thus, to embed the
previously introduced invariance concept in the uncertain setting, the following
definition is stated:

Definition 4.3 (Robust positive invariance). The set S ⊆ X is said to be robustly
positively invariant if, for all x(0) ∈ S and any w(t) ∈ W , 1 the condition x(t) ∈ S
holds for all t ≥ 0.

To deal with synthesis problems a further definition, that of robust controlled
invariance, has to be introduced. It is worth recalling that, for the control Lyapunov
functions discussed in Chapter 2, synthesis requires the specification of the class of
adopted controllers C (output-feedback, state feedback, . . . ). In a similar fashion,
being the considered sets S defined in the plant state space, only static controllers
(possibly of a suitably augmented plant) will be considered, since no additive
dynamics can be admitted.

Definition 4.4 (Robust controlled positive invariance). The set S ⊆ X is said
to be robust controlled positively invariant if there exists a control in the class C
(assuring the existence and uniqueness of the solution for the closed-loop system)
such that, for all x(0) ∈ S and w(t) ∈ W , the condition x(t) ∈ S holds for all t ≥ 0.

Note that this definition requires the existence of a control such that the problem
is well-posed. For instance, assume ẋ = u and S the positive real axis. Then any
continuous control function u = Φ(x) such that Φ(0) > 0 would be in principle
suitable since, for x(0) ≥ 0, x(t) remains positive for t > 0. However u = 1 + x2 is
not acceptable, because the resulting equation has finite escape time.

The positive invariance notions just introduced are quite useful and several
applications will be shown later. In the next section, a fundamental result which
characterizes the invariance of a closed set will be presented.

4.2 Nagumo’s Theorem

Nagumo’s theorem is of a fundamental importance in the characterization of
positively invariant sets for continuous-time systems. The best way to state the
theorem is to consider the notion of tangent cone. In Section 3.1, a definition of
a tangent cone to a set was proposed (see Eq. (3.10)), which is valid for convex sets
only. To state the theorem in its general form, a new definition of tangent cone to a
set due to Bouligand [Bou32], equivalent to the previous one in the case of convex
sets, is introduced. To this aim, the notion of distance has to be defined first, as per
the next definition:

1Formally w : IR+ → W .
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Definition 4.5 (Distance from a set). Given a set S ⊂ IRn and a point y ∈ IRn,
the distance is defined as:

dist(y,S) = inf
w∈S

‖y − w‖∗

where ‖ · ‖∗ is any relevant norm.

With this in mind, the “Bouligand” definition of the tangent cone to a closed set is
as follows [Bou32].

Definition 4.6 (Bouligand’s tangent cone). Given a closed set S, the tangent cone
to S at x is defined as follows:

TS(x) =

{
z : lim inf

τ→0

dist(x + τz,S)

τ
= 0

}
(4.4)

It is worth stressing that, although the distance function depends on the chosen
norm, the set TS(x) does not. It has to be pointed out that there exist other definitions
of a tangent cone, due to Bony [Bon69] and Clarke [Cla83], which lead to similar
results. The three definitions are equivalent in the case of convex sets.

Also, it is easy to see that if S is convex, so is TS(x), and “lim inf” can be
replaced by “lim” in (4.4). Furthermore if x ∈ int{S}, then TS(x) = IRn, whereas
if x �∈ S, then TS(x) = ∅ (remember that S is closed). Thus the tangent cone TS(x)
is non-trivial only on the boundary of S.

We are now able to state one basic result concerning positive invariance. This
theorem was introduced for the first time in [Nag42] and it was reconsidered later in
different formulations (see, for instance, [Bre70, Gar80, Yor67]). Here, the standard
version in terms of tangent cone (see also [Aub91, AC84, Cla83, FH76a] for details)
is presented.

Theorem 4.7 (Nagumo 1942 [Nag42]). Consider the system ẋ(t) = f (x(t)) and
assume that for each initial condition x(0) in an open set O it admits a (not
necessarily unique) solution defined for all t ≥ 0. Let S ⊂ O be a closed set.
Then, S is weakly positively invariant for the system if and only if the velocity vector
satisfies Nagumo’s condition:

f (x) ∈ TS(x), for all x ∈ S. (4.5)

As expected, weak (positive) invariance turns into positive invariance if uniqueness
of the solution is assumed, thus getting the following corollary.

Corollary 4.8. If all the assumptions and conditions of Theorem 4.7 are verified,
under the “more strict” assumption of uniqueness of the solution for every x(0) ∈
O, then the positive invariance of S is equivalent to condition (4.5).
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Fig. 4.1 Nagumo’s
conditions applied to a fish
shaped set

X
X

X

X

Nagumo’s condition (4.5), also known as sub-tangentiality condition, is meaningful
only for x ∈ ∂S, since for x ∈ int{S}, TS(x) = IRn. Thus the condition (4.5) can
be replaced by

f (x) ∈ TS(x), for all x ∈ ∂S.

The theorem has a simple geometric interpretation (see Fig. 4.1). Indeed, in plain
words, it says that if the velocity vector ẋ = f (x), x ∈ ∂S “points inside or it is
tangent to S,” then the trajectory x(t) remains in S. It is worth pointing out that
Nagumo’s condition without the assumption of the uniqueness of the solution is not
sufficient to assure positive invariance. Consider, for instance, the set S = {0} (i.e.,
the set including the origin only). Its tangent cone for x = 0 is {0}. The equation
ẋ(t) =

√
x(t) does fulfil the requirements of the theorem. However, for x(0) = 0,

only the zero solution x(t) = 0, t ≥ 0 remains inside S. In fact, there are infinitely
many non-zero solutions escaping from S, each of them being of the form

x(t) =

{
0 for t ≤ t0,
(t − t0)2/4, for t > t0,

where t0 is any non-negative real number. There are several proofs of Nagumo’s
theorem. Perhaps the easiest one is that provided by Hartman [Har72] (who was not
aware of the previous result by Nagumo). Here, a simple proof in the very special
case of what is called a “practical set” is provided. This proof is inspired by the one
proposed in the book [Kra68].

Definition 4.9 (Practical set). Let O be an open set. The set S ⊂ O is said to be a
practical set if

1. it is defined by a finite set of inequalities of the form

S = {x : gk(x) ≤ 0, k = 1, 2, . . . , r}

or in the equivalent form

S = {x : ĝ(x) = max
k=1,2,...,r

gi(x) ≤ 0}

where gi(x) are continuously differentiable functions defined on O;
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2. for all x ∈ S there exists z such that

gi(x) + ∇gi(x)
Tz < 0, for all i;

3. there exists a Lipschitz continuous vector field φ(x) such that for all x ∈ ∂S(x)

∇gi(x)
Tφ(x) < 0

Practical sets form a large class which is of significance in engineering. The
first two assumptions are purely technical, and basically concern the regularity.
In particular, the second one essentially corresponds to the constraint qualification
conditions as reported in [Lue69], Sect. 9.4. Such an assumption implies that the
interior of the set is given by

int{S} = {x : gk(x) < 0, k = 1, 2, . . . , r}

Under these assumptions, denote by Act(x) the set of active constraints

Act(x) = {i : gi(x) = 0}

Note that Act(x) is non-empty only on the boundary in view of the second
assumption. It turns out that for all x ∈ ∂S the tangent cone is given by

TS(x) = {z : ∇gi(x)
T z ≤ 0, for all i ∈ Act(x)} (4.6)

(the expression is valid in the interior where Act(x) is empty, if one admits that any
z ∈ IRn is a solution of the resulting empty set of inequalities). Similar assumptions
have been considered by [FZ87].

The third assumption is strong but “reasonable” and it basically requires the
existence of a regular vector field that from each point of the boundary “points
inside.” In particular, for convex sets with non-empty interior, one of such vector
fields φ is

φ(x) = x̄ − x

where x̄ ∈ int {S}. The same vector field can also be associated with star-shaped
sets, namely sets having an interior point x̄ such that any ray originating in x̄
encounters the boundary of S in at most one point, provided that x̄ − x is in the
interior of the tangent cone for all x ∈ ∂S (mind that this amounts to say that the
interior of the tangent cone is non-empty for any x ∈ ∂S). For instance, the set
reported in Figure 4.1 (assuming that a finite set of inequalities describing the “fish”
boundaries exists) is practical, while pictorial examples of “non-practical” sets are
reported in Figure 4.2 (still Nagumo’s theorem applies to these sets).



4.2 Nagumo’s Theorem 127

Fig. 4.2 Examples of
“non-practical” sets

4.2.1 Proof of Nagumo’s Theorem for practical
sets and regular f

To provide a reasonably simple proof we assume that S ⊂ O is a practical set
and that the function f is continuous and that the system ẋ = f (x) admits a unique
solution for any initial state in O.

Proof (Sufficiency of the condition). To prove the theorem, we consider the auxiliary
system

ẋ(t) = fε(x(t)) = f (x(t)) + εφ(x(t))

with ε > 0. Let us denote by xε(t) its solution. As a first step, we show that xε(t) ∈ S
for all t ≥ 0. Since S is closed, we need to prove that any solution xε(t) originating
from a point x0, xε(0) = x0 ∈ ∂S, i.e. on the boundary, remains inside S in a proper
interval [0, τ ], with τ > 0. This is immediate because if x0 ∈ ∂S then ĝ(x) = 0 and,
by the assumption, we have that the derivative of gi(xε(t)) at t = 0 is

ġi(xε(0)) = ∇gi(x
0)T fε(x

0) = ∇gi(x
0)T f (x0)︸ ︷︷ ︸
≤0

+ε∇gi(x
0)Tφ(x0)︸ ︷︷ ︸
<0

< 0,

for all i ∈ Act(x0). Then in a right neighborhood of 0 we have gi(xε(t)) < 0 for
i ∈ Act(x0) and, by continuity, gi(xε(t)) < 0 for i �∈ Act(x0), then gi(xε(t)) < 0
for all i. Then, for xε(0) ∈ ∂S we have that xε(t) ∈ S in an interval [0, τ ], τ > 0.
Since the system is time-invariant, the same situation holds for any initial time t0,
therefore xε(t) cannot cross the boundary at any time, so that for all ε > 0 xε(t) ∈ S
if xε(0) ∈ S. So the first step of the proof is completed having shown that S is
positively invariant for the modified system.

Let us now consider the original system and its solution x(t) with x(0) = x0 ∈
S. For ε = 1/k consider the corresponding sequence of solutions x1/k(t) of the
auxiliary system. As k → ∞, x1/k(t) → x(t) converges uniformly on each interval
[0, τ ]. This implies that for each 0 ≤ t ≤ τ , x(t) ∈ S, because if we assume
x(t) = x1 �∈ S we arrive to a contradiction. Indeed, since S is closed there would be
a neighborhood Bδ of radius δ and center x1 such that Bδ

⋂
S = ∅. But in view of

the mentioned convergence, for k large enough, we would have both x1/k(t) ∈ Bδ

and, as shown before, x1/k(t) ∈ S: a contradiction. The fact that for x(0) ∈ S
we have x(t) ∈ S in the interval [0, τ ] implies also that the inclusion holds for all
t > 0.
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Necessity of the condition Conversely let us assume that for some x0 ∈ S
we have f (x0) �∈ TS(x0). Since for x0 ∈ int{S} we would have from (4.6) that
TS(x0) = IRn, this implies that x0 ∈ ∂S. Let i ∈ Act(x0) such that gi(x0) = 0
and ∇gi(x0)T f (x0) > 0. Then we have that the derivative of the function gi(x(t)) if
x(t) = x0 is given by

d
dt

gi(x(t))

∣∣∣∣
x(t)=x0

= ∇gi(x
0)T f (x0) > 0

and therefore, in a right neighborhood of τ , τ ∈ [t, t + h], we have gi(x(τ)) > 0, so
that x(τ) �∈ S.

Note that the results presented in Section 2.5 concerning Lyapunov functions
can be regarded as special cases of Nagumo’s Theorem. Indeed if the set S is
defined by a differentiable Lyapunov function g as S = N [g, 0], then the derivative
condition ġ(x)∇g(x)T f (x) ≤ 0 is nothing but a special case of Nagumo’s condition.
The contribution of Nagumo’s theorem is twofold. First, it considers a much more
general class of sets than those described by a single inequality, say of the form
S = N [g, 0]. Second, it provides a condition which has to be satisfied on set
boundary only.

4.2.2 Generalizations of Nagumo’s theorem

There are natural generalizations of Nagumo’s theorem to non-autonomous systems,
reported next.

Let us first consider the case of a simple time-varying system

ẋ(t) = f (x(t), t).

We wish to establish the invariance of a closed set.
First the concept of positive invariance has to be re-defined since the system is

not time-invariant

Definition 4.10. The closed set S is positively invariant if for all t0 the condition
x(t0) ∈ S implies x(t) ∈ S for t ≥ t0.

Definition 4.10 is not equivalent to Definition 4.1.
Investigating the positive invariance of a set S is possible by adding a fictitious

equation θ̇(t) = 1, so the system becomes

ẋ(t) = f (x(t), θ(t))

θ̇(t) = 1,
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Fig. 4.3 The tube

t

which is autonomous with the new variable θ. Then Nagumo’s theorem can be
applied. Note that the set S has changed its nature, since in the new state-space, it
is a cylinder. In particular it is not compact, only closed. We can further generalize
the theory by taking time-varying sets. Take a set of the form

S(t) = {x : φ(x, t) ≤ 0}

where φ(x, t) is smooth. Assume that at any t

∂φ(x, t)
∂x

�= 0, for φ(x, t) = 0.

Under this “boundary-regularity” assumption, we have that φ(x, t) = 0 is the
equation of the boundary of the set at time t (Fig. 4.3). The problem of remaining in
such a set if we are inside is often called “state in a tube.”

The question whether the condition x(τ) ∈ S(τ) implies x(t) ∈ S(t) for t ≥ τ
naturally leads to the condition

∇φ(x, t)ẋ +
∂φ(x, t)
∂t

θ̇ = ∇φ(x, t)f (x(t), t) +
∂φ(x, t)
∂t

1 ≤ 0

at the boundary. This type of expression is well known in the context of time-varying
Lyapunov functions.

We are especially interested in the robust version of Nagumo’s theorem which is
reported next. The proofs can be inferred from that previously given in the case of a
practical set and the previous augmentation by means of the equation θ̇(t) = 1. The
reader is referred to [AC84, Aub91].

Theorem 4.11. Consider the dynamic system ẋ(t) = f (x(t),w(t)), w(t) ∈ W , with
W a compact set and f continuous. Assume that, for each initial condition x(0) in
an open set X and each piecewise continuous function w(t), such system admits a
unique and globally defined (i.e., for all t ≥ 0) solution. Let S ⊆ X be a closed set.
Then S is robustly positively invariant for such a system if and only if for all x ∈ S

f (x,w) ∈ TS(x), for all w ∈ W . (4.7)
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The continuity of f in Theorem 4.11 is fundamental. If it is not verified, then the
meaning of solution of a system of differential equations has to be defined.

Example 4.12. Consider the system

ẋ = −sgn[x] + w, |w| ≤ 1/2

The solution of this system may be defined by absorbing the system in a differential
inclusions (an exhaustive book on differential inclusion is [AC84], see Chapter 2
for details). Intuitively it can be argued that, as long as x(t) �= 0, the solution of this
system is

x(t) = x(0) − sgn(x(0)) t +

∫ t

0

w(σ) dσ,

which has the property |x(t)| ≤ max{0, |x(0)| − 1/2t}, and therefore converges in
finite time to 0 for all the specified w(·). Once 0 is reached the solution remains
null, thus the set {0} is necessarily robustly positively invariant. This claim can be
easily proved in view of the fact that any interval of the form [−ε, ε] is positively
invariant (note that no discontinuity of f appears on the extrema). However, Nagumo
conditions are not satisfied for the set {0}. Therefore Nagumo’s result holds as long
as it is possible to define a solution in the regular sense.

In the case of a controlled system ẋ(t) = f (x(t), u(t),w(t)), w(t) ∈ W , with f
continuous, S is said to be robustly controlled invariant if there exists a continuous
control function Φ(x) (or a control in a proper class C) assuring the existence of a
unique and globally defined solution for all x(0) ∈ X and such that, for all x ∈ S,

f (x, Φ(x),w) ∈ TS(x), for all w ∈ W . (4.8)

Note that it is assumed that the control Φ is such that the corresponding closed-
loop system admits a solution. In general, assuring such a condition can be a real
headache for an (even academic) engineer. In principle, condition (4.8) could be
formulated in a pointwise sense as follows: “for each x there must exist a control
value u such that f (x, u,w) ∈ TS(x).” If formulated as above, the problem then
becomes that of verifying the existence of a sufficiently regular feedback function
u = Φ(x) (or u = Φ(x,w)) which guarantees the global existence of a unique
solution. To explain the problem, let us define the set of admissible pointwise control
values

Ω(x) = {u : f (x, u,w) ∈ TS(x), for all w ∈ W}. (4.9)

Then one should find a sufficiently regular function Φ such that

Φ(x) ∈ Ω(x)
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As already mentioned in Chapter 2, this is a selection problem and theorems
analogous to Theorem 2.30 apply (under appropriate conditions). The reader is
referred to specialized literature [AC84, Aub91].

One of the basic properties of the class of positively invariant sets is that they are
closed w.r.t. the union and intersection operations, as per the following fundamental
proposition.

Proposition 4.13. Let S and P be closed positively invariant subsets of an open set
O for ẋ(t) = f (x(t),w(t)), w(t) ∈ W . Then

• S
⋂
P is positively invariant.

• S
⋃
P is positively invariant.

If S and P are controlled-invariant for ẋ(t) = f (x(t), u(t),w(t)), w(t) ∈ W , then

• S
⋃
P is controlled invariant.

The proofs of the above assertions are trivial and thus omitted. It is easy to see that
the intersection of controlled-invariant set is not controlled-invariant, in general.

4.2.3 Examples of application of Nagumo’s Theorem

As a simple example of application of Nagumo’s theorem, a qualitative analysis of
a dynamical competition model is now presented.

Example 4.14 (A competition model). Consider a system of the form

ẋ1(t) = x1(t) [1 − x1(t) − αx2(t) − βx3(t)]

ẋ2(t) = x2(t) [1 − βx1(t) − x2(t) − αx3(t)]

ẋ3(t) = x3(t) [1 − αx1(t) − βx2(t) − x3(t)]

where α and β are positive constants. This model describes the competition among
three populations, sharing the same environment. The variable xi represents the
total number of individuals of population i, while α > 0 and β > 0 are positive
parameters [Bel97].

The evolution of this system clearly depends on the specific parameters α and
β and can be computed (approximately) via numerical integration. However, as
a preliminary qualitative analysis of these equations, we can try to answer the
following questions.

• The variables of this system have physical meaning as long as they are non-
negative. Are these equations consistent in this sense, namely, is the condition
x(t) ≥ 0 for all t > 0 assured for x(0) ≥ 0?

• Is the solution of this system bounded for any given x(0) ≥ 0?
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Only a positive answer to these questions may lead to the conclusion that the model
is realistic. In particular, the second property is important if it is assumed that the
environment has limited resource so that none of the populations can diverge.

We can provide such a positive answer by proving that the set

S = {x : ‖x‖2 ≤ ρ, x ≥ 0 }

is positively invariant for ρ large enough.
To check the positive invariance one has to consider the expression of the cone at

the boundary. Assume that x is on the positive orthant boundary. The tangent cone
is the set

TS(x) = {z : zi ≥ 0, for all i such that xi = 0}

It is immediate to see that f (x) ∈ TS(x) because ẋi = 0 whenever xi = 0.
Let us now consider the part of the boundary which is on the sphere of radius ρ.

If x is in the interior of the positive orthant, the tangent cone is the plane TS(x) =
{z : xTz ≤ 0} tangent to the sphere. Consider the smallest positive constant γ such
that ‖x‖3 ≥ γ‖x‖2 for all x, which turns out to be γ = 1/ 6

√
3. Bearing in mind that

in the interior of the orthant xi > 0, we derive

xT ẋ = x21 + x22 + x23 − [x31 + x32 + x33] +

− α[x21x2 + x22x3 + x23x1] − β[x21x3 + x22x1 + x23x2]

≤ x21 + x22 + x23 − [x31 + x32 + x33] =

= ‖x‖22 − ‖x‖33 ≤ (‖x‖22 − γ3‖x‖32) = (ρ2 − γ3ρ3) ≤ 0

provided that

ρ ≥ 1/γ3 =
√

3

As for the remaining points on the boundary (i.e., those which are both on the orthant
boundary and the sphere boundary), the tangent cone is given by

TS(x) = {z ∈ IRn : zi ≥ 0, for all i s.t. xi = 0, and xTz ≤ 0 }

By means of the same considerations above it can be seen that even for such points
the condition ẋ ∈ TS(x) is satisfied.

The analysis we carried out so far is strictly preliminary and there are several
additional properties that can be shown. For instance, there exists a single nontrivial2

equilibrium point given by

2Namely such that all the populations are non-zero.
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x̄ =
1

1 + α+ β

⎡
⎣ 1

1

1

⎤
⎦ ,

which is included in S provided that the radius ρ > 0 is large enough. This can be
shown by proving that the central ray of the orthant

Rc = {x = [ 1 1 1 ]Tλ, λ ≥ 0}

is positively invariant and that for any non-zero initial condition taken on this ray
the solution converges to the equilibrium point (throughout the ray). Note that this
is coherent with our results because the norm of the equilibrium point is ‖x̄‖2 ≤√

3 ≤ ρ, since α and β are both positive.
If the dynamical model is “reduced” by one dimension, for instance by setting

x3 = 0 (i.e., after the extinction of the third population), the theory of invariant
sets can provide a deeper insight on the situation since a graphical representation is
possible (see [Bel97] and Exercise 5). The case in which x3 = 0 represents a special
evolution of our model because the subset of S of all points for which xi = 0 is
positively invariant, which means that no population can recover spontaneously after
extinction (as nature sadly imposes). In the one-dimensional case, i.e. x2 = x3 = 0,
the well-known equation ẋ1 = x1[1− x1], present in most basic books on dynamical
systems, is recovered. For further details on the possible funny behaviors of this
kind of systems, the reader is referred to [Bel97].

4.2.4 Contractive Sets

Consider now a C-set S ⊂ IRn and its Minkowski function ΨS(x). An equivalent
statement of positive invariance sounds as follows: If ΨS(x(0)) ≤ 1, then
ΨS(x(t)) ≤ 1 for all t > 0. In particular, we must have that ΨS(x(t)) is non-
increasing on the boundary. It is possible to strengthen this notion by imposing
a certain “speed of entrance” which will be useful later to assure speed of
convergence to the system.

Definition 4.15 (Contractive set, continuous-time). The C-set S is contractive
for the system

ẋ(t) = f (x(t), u(t),w(t))

w ∈ W , u ∈ U if and only if there exists a Lipschitz control function ū(x) ∈ U ,
defined for x ∈ ∂S, such that for each point on the boundary x ∈ ∂S the following
condition holds

D+ΨS(x, f (x, ū(x),w)) ≤ −β, for all w ∈ W , (4.10)

for some β > 0. In this case S is also said to be β-contractive.
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Remark 4.16. If we allowed for β = 0 in the definition we would have controlled-
invariance. We also stress that the definition of contractivity can be generalized to
the much more general class of star-shaped closed sets see Definition 3.33.

The fact that the function ū(x) defined on the boundary is Lipschitz, namely that
there exists L > 0 such that ‖ū(x1) − ū(x2)‖ ≤ L‖x1 − x2‖, is assumed for
the easier exposition, but it is not strictly necessary. Clearly, contractivity is a
stronger property than positive invariance. It implies that, when x is on the boundary,
not only the trajectory remains in the set but also that it “can be pushed inside”
with a guaranteed boundary-crossing speed. The consequence for linear (actually
homogeneous) systems is fundamental because, by scaling the boundary, we can
see that this crossing speed implies a “global convergence speed to the set,” and
even a convergence speed to the origin when no additive disturbances are present.

4.2.5 Discrete-time systems

Consider the discrete-time system

x(t + 1) = f (x(t))

and a set S. The definition of positive invariance of S holds without changes, even in
the more general version when systems of the form x(t +1) = f (x(t),w(t)), w ∈ W
are considered.

As it can be easily understood, there is no evident extension of Nagumo’s
“boundary-type” conditions for discrete-time systems. Intuitively the natural coun-
terpart of the Nagumo’s condition ẋ ∈ TS(x), namely the derivative on the boundary
“pointing inside,” would be

f (x) ∈ S for all x ∈ ∂S

which means, roughly, the state on the boundary “jumps inside.” However, this
condition is not sufficient to assure f (x) ∈ S for all x ∈ S. Indeed, it is easy
to provide discrete-time examples in which the above boundary condition can be
satisfied, yet the set is not positively invariant [Bla99].

Therefore the only reasonable “discrete-time extension” of Nagumo’s theorem is
the next tautology: S is positively invariant if and only if

f (S) ⊆ S
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Luckily enough, the situation is completely different if we restrict our attention to
the class of homogeneous systems (including the linear ones)3 and the sets under
considerations are convex C-sets S.

Definition 4.17 (Positively homogeneous system). The system x(t + 1) =
f (x(t), u(t),w(t)) is said to be positively homogeneous of order p > 0 if

f (λx, λu,w) = λpf (x, u,w) for all w ∈ W

The following proposition holds true.

Theorem 4.18. The C-set S is controlled invariant for a positively homogeneous
system x(t + 1) = f (x(t), u(t),w(t)) if and only if for all x ∈ ∂S there exists a
control u(x) (or u(x,w)) such that

f (x, u,w) ∈ S for all w ∈ W

Proof. Only the case in which the control law does not depend on w is considered.
The proof of the case in which u = u(x,w) is an easy extension. Consider any
point x ∈ S and the ray originating from the origin and passing through x, and let
x̄ be the unique intersection of this ray with the boundary of the set ∂S. In terms of
Minkowski functional, it is possible to write x = ΨS(x)x̄ = λx̄ with λ = Ψ(x) ≤ 1.
Then, consider the control u(x) = ΨS(x)ū(x̄), where u(x̄) is the control that drives x̄
inside S. In view of the positively homogeneity assumptions one gets:

f (x, u,w) = f (λx̄, λū,w) = λpf (x̄, ū,w) ∈ S for all w ∈ W .

Note that the theorem is valid even if the input values are constrained as
u ∈ U , with U a C-set. Furthermore, the theorem holds true for other classes of
homogeneous systems, for instance those which are affected by an exogenous input
d ∈ D with D a C-set. One of such cases is

x(t + 1) = A(w)x(t) + B(w)u(t) + Ed(t)

(although the homogeneous control used in the proof might be not appropriate).
The theorem provides, as a special case, the positive-invariance condition for
uncontrolled systems. It is also worth mentioning that the distinction between
positive invariance and weak-positive invariance has no reason to exist (not even
as a mathematical fantasy) since there are no questions concerning the uniqueness
of the solution in the case of difference equations.

3If the reader is scared by this idle generality, we let her/him know immediately that the subclass of
relevance, that of linear uncertain systems x(t + 1) = A(w)x(t) + B(w)u(t), is the only one which
will be actually considered.
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As already done in the continuous-time case, it is possible to strengthen the
notion of invariance by introducing a “speed of entrance.”

Definition 4.19 (Contractive set, discrete-time). The C-set S is contractive for
the system

x(t + 1) = f (x(t), u(t),w(t)),

where w ∈ W , u ∈ U , if and only if there exists a control function u(x) ∈ U such
that, for every x ∈ S, the following condition holds

ΨS(f (x, u,w)) ≤ λ, for all w ∈ W

where ΨS(x) is the Minkowski function of S, for some 0 ≤ λ < 1. In this case the
set S is said to be λ-contractive.

Note that the control action, differently from the continuous-time case, has to be
defined on the whole S (say, not just on the boundary), for the same already analyzed
reasons concerning the non-existence of boundary-type conditions for discrete-time
systems. Finally we stress that, the case in which u is a function of w can be easily
dealt with by considering u = u(x,w), and in this case the set S is referred to as
gain-scheduling contractive, with obvious meaning of the term.

4.2.6 Positive invariance and fixed point theorem

There is an interesting connection between positive invariance and the fixed point
theorem we wish to analyze. For the simple exposition, we limit our attention to
convex and compact sets but the results can be further generalized. Let us first
consider a discrete-time system of the form

x(t + 1) = f (x(t)),

where f is continuous and defined on a compact and convex set S. Then the next
theorem is a re-statement of the well-known fixed-point-theorem.

Theorem 4.20 (Brouwer fixed-point theorem). If the convex and compact set S is
positively invariant for the continuous map f : S → S, then it necessarily includes
a stationary point for the system. More precisely, there exists x̄ ∈ S such that

f (x̄) = x̄
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The previous theorem is a milestone in mathematics and no proof is provided
here. Rather, we point out that convexity4, boundedness and closedness are crucial
assumptions. It is easy to see that, if any of these assumption is dropped, then the
remaining two are not sufficient for the claim (see Exercise 3).

The previous property can be, noteworthy, extended to continuous-time systems,
as per the next theorem.

Theorem 4.21. Consider a continuous-time system of the form

ẋ(t) = f (x(t)),

with f locally Lipschitz and defined on a compact and convex set S which is
positively invariant. Then S includes at least one stationary point. More precisely,
there exists x̄ ∈ S such that

f (x̄) = 0

The proof of the theorem is based on the following Lemma5.

Lemma 4.22. If v(x) is a continuous vector field defined on a compact convex set
S, then one of the following conditions holds:

• v(x) vanishes in some point x ∈ S;
• there is a point x̃ on the boundary in which Nagumo’s conditions are violated,

precisely v(x) �∈ TS(x).

Proof. Consider the minimum-distance function μ(x) which associates with x the
point y ∈ S of minimum distance (which is unique if we choose the Euclidean
norm), formally

μ(x)
.
= argmin

z∈S
‖z − x‖.

Function μ is continuous. Define the function μ(x + v(x)) which is also continuous
and maps S in S. Therefore, according to the fixed-point theorem, it admits a fixed
point

x̂ = μ(x̂ + v(x̂))

Two cases are possible:

1. x̂ + v(x̂) ∈ S: in this case we have

4Actually, convexity can be relaxed to the requirement that there is a continuous invertible map G
such that G(S) is convex.
5The provided proof is sketched in [Mil95], to which the reader is referred for an interesting
dissertation on game theory.
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x̂ + v(x̂) = μ(x̂ + v(x̂)) = x̂

and consequently v(x̂) = 0.
2. x̂ + v(x̂) �∈ S: this means that x̂ is on the boundary (being the closest point to

x̂ + v(x̂)) and necessarily v(x̂) belongs to the normal cone v(x̂) ∈ HS(x̂) in view
of the Kuhn–Tucker conditions [Lue69], precisely

v(x̂)x ≤ v(x̂)x̂, for all x ∈ S

As a consequence, unless v(x̂) = 0, v(x̂) cannot belong also to the tangent cone
TS(x̂) to S, being the two cones polar to each other (see Proposition 3.17).

The proof of Theorem 4.21 is now immediate. Indeed if S is a convex and
compact positively invariant set, then Nagumo’s conditions (which are necessary
and sufficient) must be satisfied and therefore f (x) ∈ TS(x) for all x ∈ S which
means, in view of Lemma 4.22, that f (x) vanishes somewhere in S.

Another proof of the mentioned result can be found, in the more general setting
of “weakly controlled invariant” sets, in [FH76b] (see Th. 3.3).

A third way to prove the theorem is based on the following idea, which is going
to be only sketched for brevity. Each time-invariant system can be considered as
periodic of arbitrary period T > 0. Consider, for T > 0 the map φT(x) defined
as the value of the solution x(T) with initial condition x. This map is continuous
and maps S in S. Therefore for each T there exists a fixed point x̂(T), i.e. x̂(T) =
φT(x̂(T)). Now consider a “sequence of periods” Tk > 0 converging to zero and the
corresponding sequence of fixed points x̂(Tk) ∈ S (we admit the notation is terrible).
Since S is compact, x̂(Tk) has an accumulation point x̄. Without restriction, assume
x̂(Tk) → x̄ (by possibly extracting a sub-sequence with this property). For each x̂(Tk)

consider the periodic trajectory originating in x̂(Tk) and returning in x̂(Tk) after time
Tk. Since Tk → 0, the maximum distance of each of these periodic trajectories from
its originating point x̂(Tk) goes to 0.

Now by simple-but-tedious considerations, one can argue that all these periodic
trajectories “collapse to x̄” which results to be a stationary point. The details are left
to the interested reader as an exercise.

An important extension of the theorem is the fact that the set S is not necessarily
convex but it has to be closed compact and homeomorphic to a convex set, namely
that there exists a continuous invertible functions Φ which maps S in a compact and
convex set Ŝ.

A known application of positive invariance is the question of the existence of a
stationary point in a flow.

Example 4.23 (Stagnation point in a flow). Positive invariance is often referred to
as flow invariance and we wish to give an intuitive idea of this concept with an
example.

Consider Fig. 4.4, left, in which a planar flow (fluid electrical or magnetic) is
defined with the following properties. The vector field
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ẋ = Vx(x, y)

ẏ = Vy(x, y)

is stationary and smooth. The flow “enters through the lateral” vertical faces Vx < 0
in R (right) and Vx > 0 in L (left) and exits through the other two horizontal faces
Vy < 0 in T (top) and Vy > 0 in B (bottom). We assume also that the curved
surfaces are smooth and at the boundary the flow is tangent and directed as in the
figure, so that at the two top boundaries L-T and R-T we have Vy < 0 and in the
bottom boundaries L-B and R-B we have Vy > 0. Note that we cannot invoke
any symmetry, since we do not assume neither a special flow distributions at the
boundaries nor homogeneity of the space. we need only regularity of the flow.

The considered domain is not convex but it is a star-shaped set if we place the
origin in its center and its boundary can be described by a continuous function of
the angle in polar coordinates ρ(θ) or, equivalently, as a function of the unit vector
ρ(cos(θ), sin(θ)). Such function expresses the distance of the point of the boundary
from the origin in any direction θ. This means that the considered set is isomorphic
to a convex set. To prove this, we just need to take the continuous invertible function
which maps x̄ on the boundary on a point of the unit ball and all x aligned with x̄
and scaled proportionally as

(x̂, ŷ) = ρ(cos(θ), sin(θ))−1(x, y)

To show that there is at least a stagnation point, namely a point in which both
“speed” components are 0, we need just to consider the modified flow

ẋ = Vx(x, y)

ẏ = −Vy(x, y)

which behaves as in Fig. 4.4, right. The new “flow” has no physical meaning but it is
mathematically well defined. It is quite an easy exercise to show that the considered

B

T
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B

T
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Fig. 4.4 The flow problem (left) and its complementary problem (right)
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region is positively invariant for the new flow. Therefore there exists at least one
point in which the modified flow has a stationary point. But this corresponds to a
stationary point of the original flow.

We finally would like to stress that the existence of equilibria can be inferred from
other assumptions. For instance, it turns out that if all the solutions x(t), with
x(0) ∈ IRn of a dynamical system ẋ = f (x), with sufficiently regular f are ultimately
bounded inside a compact set, then there is necessarily an equilibrium point x̄, (i.e.,
f (x̄) = 0) in such a set (see, for instance, [Srz85, Hal88, RW02]).

4.3 Convex invariant sets and linear systems

The results presented in the previous sections can be particularized to linear systems,
leading to interesting results, especially as far as the construction of Lyapunov
functions is concerned. Later in the book, it will indeed be shown how the derived
controlled contractive sets, or level sets of Lyapunov functions, can be equipped by
controllers u(x) naturally associated with the points on the boundary (in fact with
the vertices, in the case of a polytopic set S).

As the reader can imagine, positive invariance concepts are extremely general,
but the effective (constructive) results are limited to special classes of functions and
systems. In particular some remarkable tools are available for the class of C-sets as
candidate invariant sets for the class of linear (possibly uncertain) systems of the
form

ẋ(t) = A(w(t))x(t) + B(w(t))u(t) + Ed(t), w(t) ∈ W , d(t) ∈ D (4.11)

or, in the discrete-time case, of the form

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ed(t), w(t) ∈ W , d(t) ∈ D (4.12)

where the additive disturbance bounding set D is a C-set. We assume that u ∈ U , a
convex and closed set including the origin in its interior.

The existence of a contractive set is very important, because it allows the
construction of Lyapunov functions according to the following theorem.

Theorem 4.24. Assume that the C-set S is contractive for the system (4.11)
(resp. (4.12)) and let ΨS(x) be its Minkowski function. The following statements
hold

• If E = 0 and U = IRn, then ΨS(x) is a global control Lyapunov function.
• If U = IRn, then ΨS(x) is a control Lyapunov function outside S.
• If E = 0, then ΨS(x) is a control Lyapunov function inside S.

Proof. Let us first consider the discrete-time version of the theorem. Consider any
point x ∈ IRn with x �= 0. There exists a unique point x̄ on the boundary of S such
that
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x = ΨS(x)x̄

(i.e., x̄ the intersection of the ray originating in 0 and passing through x). Consider
the control

Φ(x) = ΨS(x)ū(x̄)

where ū(x̄) is such that A(w)x̄ + B(w)ū(x̄)+ Ed ∈ λS or, equivalently, ΨS(A(w)x̄ +
B(w)ū(x̄) + Ed) ≤ λ for all w ∈ W and d ∈ D (such a value ū(x̄) does exist by
assumption). If U = IRn, the control u(x) = Φ(x) is admissible for all x and then,
for all w ∈ W and d ∈ D,

ΨS(A(w)x + B(w)Φ(x) + Ed) =

= ΨS (A(w)ΨS(x)x̄ + B(w)ΨS(x)ū(x̄) + ΨS(x)E(d/ΨS(x)))

= ΨS(x)ΨS (A(w)x̄ + B(w)ū(x̄) + Ed′)

where d′ = d/ΨS(x). If we show that

ΨS (A(w)x̄ + B(w)ū(x̄) + Ed′) ≤ λ (4.13)

for suitable x, we get the inequality

ΨS(A(w)x + B(w)Φ(x) + Ed) ≤ λΨS(x) (4.14)

which proves the claim.
For E = 0 and u unconstrained (4.13) holds by definition, no matter how x is

chosen so the first statement is then proved (actually the case x = 0 is not considered
but it is quite trivial).

The second statement is also immediate. Indeed, for x �∈ intS, say ΨS(x) ≥ 1,
d′ = d/ΨS(x) ∈ D, which is a C-set and again (4.13) holds and thus (4.14). We
notice that, for x �∈ S it is then possible to apply the control Φ(x) (thus the global
control Φ̂(x) = max{ΨS(x), 1}ū(x̄) can be used).

The third statement is essentially a consequence of Theorem 4.18. The inequal-
ity (4.13) holds by construction, thus the only issue is the constraint on u. However,
the scaled controlΦ(x) = ΨS(x)ū(x̄) is admissible if ΨS(x) ≤ 1, so that (4.14) holds
for x ∈ S.

To prove the theorem in the continuous-time case, note that if S is contractive
for (4.11), then for each point x̄ ∈ ∂S there exists ū such that

lim sup
h→0

ΨS(x̄ + h(A(w)x̄ + B(w)ū(x̄) + Ed)) − ΨS(x̄)
h

≤ −β

As done for the discrete-time case, the control can be “extended” as u(x) =
ū(x̄)ΨS(x) depending on which of the three following cases is being considered:
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i) E = 0 and u unbounded: extended to all x ∈ IRn;
ii) E �= 0 and u unbounded: extended to all x �∈ S;

iii) E = 0 and u bounded: extended to all x ∈ S.

Consider, for brevity, case i). Then, by scaling, one gets

lim sup
h→0

ΨS(x + h[A(w)x + B(w)u(x)]) − ΨS(x)
h

= ΨS(x)
ΨS(x̄ + h[A(w)x̄ + B(w)ū(x̄)] − ΨS(x̄)

h
≤ −βΨS(x)

and therefore the control u(x) assures the decreasing conditions in a pointwise sense.
Since ū(x̄) is locally Lipschitz on ∂S, then Φ(x) is continuous (actually locally
Lipschitz) and thus the statement is proved.

The above theorem can be extended quite naturally to the full information control
case, u = Φ(x,w), as well as to the output feedback control case, assuming a linear
output function y = Cx,

u = Φ(Cx,w) (4.15)

The next lemma relates continuous and discrete-time systems and will be very
useful in the sequel. Its importance lies in the fact that it establishes a relation
between the stabilization of the continuous-time system and of the associated Euler
Auxiliary System (EAS).

Definition 4.25 (Euler Auxiliary System). Given the continuous-time system
(4.11) and τ > 0, the discrete-time system

x(t + 1) = [I + τA(w(t))]x(t) + τB(w(t))u(t) + τEd(t) (4.16)

is the Euler Auxiliary System.

Before getting confused with the parameter τ just introduced, the reader is referred
to Remark 4.27 where the relation between this parameter and the sampling period
of a possible digital implementation is better explained.

Lemma 4.26. The following conditions are equivalent.

i) There exist a non-negative λ < 1 and τ > 0 and a locally Lipschitz function
u(x) such that, for all x �∈ int{S} (respectively: if E = 0, for all x; if E = 0 and
u ∈ U , for all x ∈ S),

ΨS(x + τ(A(w)x + B(w)u(x) + Ed)) ≤ λΨS(x)

ii) There exist β > 0 and a locally Lipschitz function u(x) such that, for all x �∈
int{S} (respectively: if E = 0, for all x; if E = 0 and u ∈ U , for all x ∈ S),
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D+ΨS(x,A(w)x + B(w)u + Ed) ≤ −βΨS(x), for all w ∈ W , d ∈ D

Furthermore, if i) holds, then β as in ii) can be derived as

β =
1 − λ

τ

Proof. The implication i) ⇒ ii) along with the last assertion will be shown here,
whereas for the converse statement ii) ⇒ i) the reader is referred to [Bla95].

Since ΨS is convex, the quotient ratio is a non-decreasing function of τ , namely

Ψ(x + τ1z) − Ψ(x)
τ1

≤ Ψ(x + τ2z) − Ψ(x)
τ2

for τ1 ≤ τ2 [Roc70]. In view of the above decreasing condition,

D+ΨS(x,A(w)x + B(w)u(x) + Ed)

≤ ΨS (x + τ(A(w)x + B(w)u(x) + Ed)) − ΨS (x)
τ

≤

≤ λΨS(x) − ΨS(x)
τ

≤ −1 − λ

τ
ΨS(x)

which is what was to be shown.

The importance of the Lemma is that it allows the computation of Lyapunov
functions and invariant sets for continuous-time systems by exploiting discrete-time
algorithms. To avoid confusion, we report immediately the following.

Remark 4.27. Parameter τ has nothing to do with a sampling time. All the
properties and the constructions that will be based on the EAS will be proper of
the continuous-time system. So if the control u(x) has to be digitally implemented,
the sampling time T is not required nor recommended to be equal to τ . In practice
the condition T << τ should be satisfied.

Further relevant properties of the EAS will be reported in the appendix.
The next lemma concerns the power of a Lyapunov function. It shows that if Ψ

is a Lyapunov function, so is Ψ p

Lemma 4.28. Assume Ψ(x) is a control Lyapunov function for the dynamic system
ẋ(t) = f (x(t), u(t),w(t)) (global, inside or outside a C-set S). Assume that Ψ p is
locally Lipschitz, where p > 0 is a real number6. Then Ψ p(x) is also a control
Lyapunov function for the system.

6The request for Ψp to be locally Lipschitz is for coherence with our definition of a Lyapunov
function and could be removed with suitable care.
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Proof. By definition D+Ψ(x, f (x, Φ(x),w)) ≤ −φ(‖x‖) and, since Ψ is positive
definite, Ψ(x) ≥ φ0(‖x‖) for some κ-functions φ and φ0. Consider the Lyapunov
derivative

D+Ψ p(x) = lim sup
h→0+

Ψ p(x + hf (x, Φ(x),w)) − Ψ p(x)
h

= lim sup
h→0+

Ψ p(x + hf ) − Ψ p(x)
Ψ(x + hf ) − Ψ(x)

Ψ(x + hf ) − Ψ(x)
h

= lim
h→0+

Ψ p(x + hf ) − Ψ p(x)
Ψ(x + hf ) − Ψ(x)

lim sup
h→0+

Ψ(x + hf ) − Ψ(x)
h

≤ −pΨ p−1(x)φ(‖x‖) ≤ −pφ0(‖x‖)p−1φ(‖x‖)

since φ1(·)
.
= pφ0(·)p−1φ(·) is a κ-function, the assertion is proved.

Basically the lemma states that what characterizes a control Lyapunov function is
the shape of its level surfaces, rather than the corresponding values. For instance, if
a quadratic Lyapunov function of the form Ψ(x) = xTPx is considered, also its root,
namely the quadratic norm ‖x‖P

.
=

√
xTPx is a Lyapunov function. This property

has been reported to emphasize that classes of functions such as the piecewise linear,
the quadratic and the homogeneous polynomial functions of order p can be all
equivalently replaced by positively homogeneous functions of order one and then
analyzed and compared in the common class of norms.

As a final remark, let us note that if a polynomially bounded function assures
exponential stability

D+Ψ(x, f ) ≤ −βΨ(x)

then the Lyapunov function Ψ p(x) (assuming it polynomially bounded) assures the
condition

D+Ψ p(x, f ) ≤ −βpΨ p(x)

and therefore, up to a change of coefficient, exponential convergence is assured by
both Ψ(x) and Ψ p(x).

In the sequel, several techniques to compute contractive sets and the associated
Lyapunov function will be presented. Many of the proposed results are known in the
literature. The main feature of the book, however, is that of presenting a different
perspective. In some sense, the main aspect which will be emphasized is that of
positive invariance and contractivity. We saw that these concepts are related to that
of a Lyapunov function. In particular, it will be shown how to generate Lyapunov
functions from contractive sets, rather than the opposite.
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The next lemma is a preliminary result, which holds for convex and positively
homogeneous functions of order 1 (see [BM00] for a proof), we need to prove the
subsequent key Lemma 4.30.

Lemma 4.29. Let ΨS(x) be the Minkowski function of the convex C-set S. Then,
denoting by ∂ΨS(x) the sub-differential of ΨS(x), the following holds:

ΨS(x) = wT x, for all w ∈ ∂ΨS(x).

With the above in mind, the following result can be presented, which will be used in
the sequel to prove the equivalence between stability and exponential stability for a
class of systems.

Lemma 4.30. Consider the dynamic system

ẋ(t) = f (x(t), u(t),w(t))

with w(t) ∈ W . The C-set S is β-contractive for the above system associated with
the control u = Φ(x) ∈ U if and only if it is controlled-invariant for the system

ẋ(t) = βx(t) + f (x(t), u(t),w(t))

associated with the same control action u = Φ(x).

Proof. Consider the expression of the directional derivative of a convex func-
tion (3.9) and recall that, by the just introduced Lemma, wTx = ΨS(x) for all
w ∈ ∂ΨS(x). Then we have

D+ΨS(x, f (x, u,w)) = sup
w∈∂ΨS(x)

wT [f (x, u,w)] =

sup
w∈∂ΨS(x)

⎡
⎣wT (βx + f (x, u,w))) − β wTx︸︷︷︸

=ΨS(x)

⎤
⎦ =

sup
w∈∂ΨS(x)

wT [βx + f (x, u,w)] − βΨS(x)

Therefore

D+ΨS(x, f (x, u,w)) ≤ −βΨS(x)

is equivalent to

D+ΨS(x, βx + f (x, u,w)) ≤ 0,

say the contractivity of S implies its controlled invariance for the modified system.

The Lemma admits a discrete-time version.
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Lemma 4.31. The C-set S is λ contractive for the dynamic system

x(t + 1) = f (x(t), u(t),w(t))

with w(t) ∈ W and u(t) ∈ U if and only if it is controlled-invariant for the modified
system

x(t + 1) =
f (x(t), u(t),w(t))

λ

4.4 Ellipsoidal invariant sets

Ellipsoids are the most commonly exploited sets as candidate invariant regions since
they are associated with powerful tools such as the Lyapunov equation or Linear
Matrix Inequalities (LMIs). In this section, an overview of the main results will be
provided. The reader is referred to the excellent book [BEGFB04] for a specialized
exposition.

4.4.1 Ellipsoidal invariant sets for continuous-time systems

Consider an ellipsoidal set of the form7

E(P, 1) = {x :
√

xTPx ≤ 1} = N [
√

xTPx, 1],

namely the unit ball of the quadratic norm

‖x‖P =
√

xTPx,

and apply Nagumo’s condition for the system

ẋ(t) = f (x(t),w(t))

in a point x on the boundary. The tangent cone, in this case the tangent plane, is
given by

TE(x) = {z : xTPz ≤ 0}

7Assuming μ = 1 in the expression E(P, μ) is not a restriction because it is always possible to
scale P to achieve E(P, μ) = E(P/μ, 1).
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thus the positive invariance condition becomes

xTPf (x,w) ≤ 0, for all x ∈ ∂E(P, 1).

In the case of a linear time-invariant system ẋ = Ax, the above condition becomes
xTPAx ≤ 0, for all x ∈ ∂E(P, 1), which is equivalent to

ATP + PA 	 0,

the well-known Lyapunov inequality. If the ellipsoid is contractive, then for every x
on the boundary (i.e., such that

√
xTPx = 1) the following condition

D+‖x‖P = D+
√

xTPx =
1√

xTPx
xTPAx ≤ −β

must be satisfied. By scaling, we have that

D+‖x‖P =
1√

xTPx
xTPAx ≤ −β

√
xTPx = −β‖x‖P

must hold for all x. Thus contractivity condition assures exponential β-convergence
with the transient estimate

‖x(t)‖P ≤ ‖x(0)‖P e−βt (4.17)

If one considers the quadratic function ‖x‖2P, the contractivity conditions becomes

D+[xTPx] ≤ −2βxTPx

so achieving

ATP + PA ≺ −2βP (4.18)

which is an LMI necessary and sufficient condition for an ellipsoid to be β-
contractive for the linear system. LMIs have had a great success in the literature
since they involve efficient numerical tools for their manipulation. The strong prop-
erty that characterizes this kind of conditions is the convexity of the admissibility
domain. In fact the set of all the symmetric matrices P 
 0 such that (4.18) is
satisfied is convex, precisely if P1 and P2 satisfy (4.18) so does αP1 + (1 − α)P2,
for all 0 ≤ α ≤ 1. As it will be shown in several parts of the book, many significant
problems can be reduced to the solution of a set of LMIs.

Going to synthesis problems, the conditions for an ellipsoid E(P, 1) to be
controlled-invariant (or contractive) for a simple linear time-invariant system

ẋ(t) = Ax(t) + Bu(t),
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require the existence a control function Φ, which has to be Lipschitz continuous on
the boundary of E(P, 1), such that the following inequality

xTPAx + xTPBΦ(x) < 0

is satisfied for xTPx = 1. One possible choice for Φ(x) is the gradient-based
controller (2.54), which in this case is indeed linear and precisely

uγ(x) = −γBTPx (4.19)

for γ > 0 large enough. Therefore, it is always possible to associate a linear
controller with a contractive ellipsoid (this property holds even if A(w) is an
uncertain matrix as long as B is known and constant) [Meı74, BPF83]. If such a
control law is substituted in the expression of the derivative on the boundary, it
turns out that the level of contractivity β is assured if

Ψ̇(x) = 2xTPAx − γ2xTPBBTPx = xT(ATP + PA − 2γPBBTP)x < −2βxTPx

namely if the inequality

(
ATP + PA − 2γPBBTP + 2βP

)
	 0

holds. The condition provided here is not linear in P. By defining Q
.
= P−1, and pre

and post multiplying the expression between brackets by Q one gets

(
QAT + AQ − 2γBBT + 2βQ

)
	 0

which is an LMI. More generally, it is possible to consider a linear feedback matrix
K leading to the inequality

ATP + PA + KTBTP + PBK ≺ 0 (4.20)

(which is not necessarily a gradient-based control). Though this condition is
nonlinear (since P and K are unknown). Still it can be re-parameterized into a linear
condition by setting Q = P−1, R = KQ, and by pre and post multiplying (4.20)
by Q. The above multiplication indeed transforms (4.20) into

QAT + AQ + RTBT + BR ≺ 0, Q 
 0 (4.21)

which is again a nice LMI condition. If a solution Q does exist, then

K = RP (4.22)
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is a suitable feedback matrix. Condition (4.21) characterizes the set of all P such
that E(P, 1) is a contractive ellipsoid and (4.22) characterizes the set of all linear
stabilizing controls u = Kx (which are not necessarily of the form (4.19)).

There are invariance conditions for systems with persistent additive disturbances,
namely systems of the form

ẋ(t) = Ax(t) + Ed(t)

Assume that the bound for the disturbance is dTd ≤ 1. Then in [USGW82] it has
been shown that the ellipsoid E(P, 1) is positively invariant if Q = P−1 satisfies the
condition

QAT + AQ + αQ +
1

α
EET 	 0, for some α > 0 (4.23)

The reader is referred to [PHSG88] for an interesting application of this condition to
the synthesis of a control of a power plant. Quite surprisingly, the above condition
has been later proved to be also necessary if (A,E) is a reachable pair [BC98].

It is worth mentioning that, in some problems, degenerate forms of ellipsoids
E(P, μ), with P positive semi-definite, can arise8. For instance, these sets are useful
in cases in which one is interested just in the stability of part of the state variables.
This condition, known as partial stability, arises in many contexts [Vor98]. The
positive invariance conditions are exactly the same already proposed, with the only
understanding that P is not necessarily positive definite.

A fundamental issue is the output feedback case. Unfortunately, as it is well
known, this is a hard problem. Indeed, if one wishes to consider a control of the
form

u = Ky = KCx

where y = Cx, the gain parameterization previously introduced has to be reconsid-
ered. Such parameterization now becomes

RP = KC

or

R = KCQ,

where Q = P−1. Unfortunately, linearity is lost by this new constraint. Indeed, the
known methods for static output feedback synthesis do not have strong properties
such as convexity. Needless to say, static output feedback is known to be one of the
open problems in control theory.

8Or even regions of the form N (xT Px, μ), deriving from quadratic functions which are not sign
definite.
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4.4.2 Ellipsoidal invariant sets for discrete-time systems

Let us now analyze the case of a discrete-time linear system. The positive invariance
of E(P, 1) is equivalent to the fact that, given the vector norm ‖x‖P =

√
xTPx, the

corresponding induced norm of matrix A is less than 1, precisely

‖A‖P = sup√
xT Px=1

√
(Ax)TP(Ax) < 1

for all x. The above leads to the discrete-time Lyapunov inequality

ATPA − P ≺ 0. (4.24)

Let us consider now the problem of checking controlled invariance. Consider the
linear discrete-time system

x(t + 1) = Ax(t) + Bu(t)

The ellipsoid E(P, 1) is contractive if and only if there exists λ < 1 such that, for all
x such that xT Px ≤ 1 (say, ‖x‖P ≤ 1), there exists u(x) such that ‖Ax+Bu(x)‖P ≤ λ.
For the moment being, let us assume that such a control does exist. Then it can be
easily derived by the well-known minimization problem

u(x) = arg min
u∈IRn

‖Ax + Bu‖P

which, solved by the least square formula, yields

u = −(BTPB)−1BTPAx

Denote B̂ = P
1
2 B, Â = P

1
2 AP− 1

2 and x̂ = P
1
2 x so that x ∈ E(P, 1) results in

‖x̂‖2 ≤ 1.
By substitution, the following is achieved

‖Ax + Bu‖2P = (Ax + Bu)TP(Ax + Bu) = (Âx̂ + B̂u)T(Âx̂ + B̂u),

say

‖Ax + Bu‖2P = ‖Âx̂ + B̂u‖22 =

∥∥∥∥
(

I − B̂
(

B̂T B̂
)−1

B̂T

)
Âx̂

∥∥∥∥
2

2

Since the above must hold for every ‖x̂‖2 ≤ 1, the controlled invariance of the
ellipsoid E(P, 1) is equivalent to the fact that the induced norm of the rightmost
term of last expression is less than 1, that is
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∥∥∥∥
(

I − B̂
(

B̂TB̂
)−1

B̂T

)
Â

∥∥∥∥
2

=

∥∥∥(I − P
1
2 B
(
BTPB

)−1
BTP

1
2

)
P

1
2 AP− 1

2

∥∥∥
2
< 1

The previous condition can be used to check controlled invariance of E(P, 1), but,
as it is written, it is not suitable to determine P.

There is a mechanism to determine P 
 0 along with a linear controller u = Kx.
Closing the loop, from (4.24), one has

(A + BK)TP(A + BK) − P ≺ 0.

Again, pre and post multiplying by Q = P−1 and setting KQ = R one gets

(QAT + RTBT)Q−1(AQ + BR) − Q ≺ 0,

which, along with Q 
 0, is known to be equivalent to [BEGFB04]
[

Q QAT + RTBT

AQ + BR Q

]

 0

This is a “nice” convex condition with respect Q and R. In the sequel of the book,
positively invariant ellipsoids will be investigated in connection with the control
of constrained systems, the control of LPV systems and system performance
evaluation.

4.5 Polyhedral invariant sets

Polyhedral sets and the associated polyhedral functions, although less popular than
ellipsoids, have been widely accepted as good candidate invariant sets. They present
several theoretical and practical advantages over the ellipsoids, but they suffer from
the problem of complexity of their representation. Here, some basic invariance
conditions for polyhedral sets are provided. To this aim, we remind that a polyhedral
set can be represented as in (3.22)

P(F) = {x : Fx ≤ 1̄} (4.25)

or in its dual form (3.23)

V(X) = {x = Xz, 1̄Tz ≤ 1, z ≥ 0} (4.26)

where 1̄ = [1 1 . . . 1]T . We remind that the notation P ≤ Q between matrices or
vectors has to be intended component-wise.
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If a polyhedral C-set is considered, the Minkowski (gauge) functions deriving
from representations (4.25) and (4.26) with P(F) and V(X)

ΨP(F)(x) = max{Fx} .
= max

i
{Fi x} (4.27)

and

ΨV(X)(x) = min{1̄T w : x = Xw, w ≥ 0}. (4.28)

Note that the first expression is valid for unbounded sets, including 0 in the interior
(we have seen that the Minkowski function can be defined for unbounded sets)
provided that we add the 0 constraint

ΨP(F)(x) = max{0,F1x, F2x, . . . }

The expression (4.27) is useful to characterize the Lyapunov derivative along the
trajectory of the dynamic system

ẋ(t) = G(x(t),w(t)), w(t) ∈ W .

The Lyapunov derivative, whose expression was given in (2.30), is

D+Ψ(x,w) = max
i∈I(x)

Fi G(x,w), (4.29)

where I(x) is the maximizer subset

I(x) = {i : Fi(x) = ΨP(F)(x)}.

Fortunately, in the case of interest, this terrifying expression will be seldom used
and, even when used, it will just be for theoretical purposes.

4.5.1 Contractive polyhedral sets for continuous-time systems

In the case of a linear system, necessary and sufficient conditions for a C-set of the
polyhedral type to be positively invariant can be derived. To this aim, we introduce
the following definition

Definition 4.32 (Metzler matrix). Matrix M is a Metzler matrix if Mij ≥ 0 for
i �= j.

The importance of Metzler matrices will be seen in the next result. We remind that
1̄ = [1 1 . . . 1]T .

Theorem 4.33. Consider the linear system

ẋ(t) = Ax(t)
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and let S be a polyhedral C-set of the form (4.25), with F ∈ IRs×n, or of the
form (4.26) X ∈ IRn×r. Then the next statements are equivalent.

i) S = P(F) = V(X) is β-contractive.
ii) There exists a Metzler matrix H such that

HF = FA, H 1̄ ≤ −β1̄ (4.30)

iii) There exists an Metzler matrix H such that

AX = XH, 1̄T H ≤ −β1̄T

Proof. The equivalence between i) and ii) is shown here, whereas the equivalence
between i) and iii) will be proved later (see Remark 4.38 after Theorem 4.37) in a
more general case.

ii) =⇒ i). Proving contractivity of S is equivalent to proving that for every x(t0)
on the boundary, D+Ψ(x(t0)) ≤ −β. From equation (4.29) this is in turn equivalent
to the requirement d

dt [Fix(t0)] ≤ −β, for all i ∈ I(x).
Consider then x(t0) ∈ ∂S. Since x(t0) belongs to the boundary, by definition

of polyhedral C-set, Fix(t0) = 1 for every i ∈ I(x(t0)) and Fjx(t0) < 1, for j �∈
I(x(t0)). From (4.30), for every i ∈ I(x(t0))

d
dt

Fix(t)

∣∣∣∣
t=t0

= Fiẋ(t0) = FiAx(t0) = HiFx(t0)

where Hi is the ith row of H. Then, for x = x(t0),

d
dt

Fix(t0) =

s∑
j=1

HijFjx =
∑
j�=i

Hij︸︷︷︸
≥0

Fjx︸︷︷︸
≤1

+Hii Fix︸︷︷︸
=1

≤

∑
j�=i

Hij + Hii = Hi1̄ ≤ −β

which is what was to be shown. i) =⇒ ii). This part of the proof is more involved,
because matrix H has to be constructed. The key idea is provided in [VB89]. The
contractivity of the set implies that for all x on the boundary, d

dt [Fix] ≤ −β, for all
i ∈ I(x). To construct matrix H, the boundary of S is considered face by face and it
is shown how to construct the row of H corresponding to a specific face. Let us then
see how to compute the first row of H starting from the first face of S, namely the
set

{x : F1x = 1, Fjx ≤ 1, j �= 1}
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On this set, in view of the β-contractivity, d
dt [F1x] = F1Ax ≤ −β. Consider the

following linear programming problem

μ = max F1Ax

s.t.

F1x = 1

F̃x ≤ 1̄

where F̃ is the (s− 1× n) matrix achieved by removing the first row of F (therefore
1̄ in the last inequality has s−1 ones). The optimal value must be such that μ ≤ −β.
The optimal value of the dual [Pad99] linear programming problem

μ = min
[
w1 w̃T

]
1̄

s.t.[
w1 w̃T

]
F = F1A

w1 ∈ IR

w̃T ≥ 0̄

is also μ ≤ −β, and therefore, there exists a feasible dual solution [w1 w̃T ] which
has the same cost μ. Take H1, the 1st row of H, equal to this solution so that

μ = H11̄ ≤ −β, H1F = F1A, and H1j ≥ 0, for j �= 1.

The ith row Hi of H, i = 2, 3, . . . , s can be determined exactly in the same fashion.
Then we achieve

Hi1̄ ≤ −β

HiF = FiA

Hij ≥ 0, j �= i

Therefore, the so composed matrix H satisfies condition ii).

Remark 4.34. The previous theorem provides, as a special case for β = 0,
necessary and sufficient conditions for the invariance of a polytope. In this case
the condition FiAx ≤ 0, i ∈ I(x) on the boundary has a clear interpretation in terms
of Nagumo’s condition.

The following dual property, immediate consequence of Theorem 4.33, holds.

Proposition 4.35. The set P(F) (or P̄(F)) is β-contractive for the system

ẋ(t) = Ax(t)
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if and only if the dual set V(FT) (or V̄(FT))) is β-contractive for the dual system

ẋ(t) = ATx(t).

Theorem 4.33 admits a “symmetric” version. Precisely if one considers a
symmetric polyhedral C-set of the form (3.24) and (3.25)

P̄(F) = {x : ‖Fx‖∞ ≤ 1} (4.31)

and its dual

V̄(X) = {x = Xz, ‖z‖1 ≤ 1} (4.32)

then S = P̄(F) is β-contractive if and only if there exists a matrix H such that
HF = FA and

[
H̄ H
H H̄

] [
1̄

1̄

]
≤ −β

[
1̄

1̄

]

where H̄ and H are defined as follows: H̄ij = max{Hij, 0}, for i �= j and H̄ii = Hii,
Hij = max{−Hij, 0}, for i �= j and Hii = 0.

Similarly, S = V̄(X) is β-contractive if and only if there exists a matrix H such
that AX = XH and

[
1̄T 1̄T

] [
H̄ H
H H̄

]
≤ −β

[
1̄T 1̄T

]

The proof of the former statement can be found in [Bit91]. The proof of the latter
statement follows by duality, in view of Proposition 4.35.

Remark 4.36. Note that the previous inequalities for H are equivalent to the
following “diagonal-dominance conditions”

Hii +
∑
j�=i

|Hij| ≤ −β

and

Hjj +
∑
i�=j

|Hij| ≤ −β

(the diagonal terms Hjj have to be negative). We will comment on this aspect later
on in Subsection 4.5.5.
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Let us now consider the problem of controlled invariance. It is possible to provide
a characterization of the contractivity of a set for a controlled system by means of
the vertex representation (4.26).

Theorem 4.37. Consider the linear system

ẋ(t) = Ax(t) + Bu(t)

where u(t) ∈ U ⊆ IRm, with U a convex set. Let S be a polyhedral C-set of the
form (4.26), with X ∈ IRn×r. Then S = V(X) is β-contractive if and only if there
exist a Metzler matrix H and a matrix U ∈ IRm×r) such that

AX + BU = XH, (4.33)

1̄T H ≤ −β1̄T (4.34)

uk ∈ U , (4.35)

where uk is the kth column of U.

Proof. A simple way to prove the theorem is based on Lemma 4.30. Consider the
modified system

ẋ(t) = [βI + A]x(t) + Bu(t)
.
= Âx(t) + Bu(t) (4.36)

To prove necessity, we first show that controlled invariance of S for this system
implies conditions (4.33)–(4.35) above with β = 0. If the system is controlled-
invariant, there exists a control action u = Φ(x) ∈ U , such that Nagumo’s condition
holds. Let xi be the ith vertex of V(x), i.e. the ith column of X. Set ui

.
= Φ(xi),

the control at the vertices. The tangent cone in the ith vertex is given by the cone
generated by all the vectors xj − xi namely:

TS(xi) = {y =
∑
j�=i

νj(xj − xi), νj ≥ 0}

Nagumo’s condition implies that

ẋi = Âxi + Bui ∈ TS(xi),

say there exist νj ≥ 0 such that

Âxi + Bui =
∑
j�=i

νj(xj − xi) =
r∑

j=1

ĥij xj (4.37)
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where ĥij = νj if j �= i and ĥii = −
∑

j�=i νj. Let Ĥ be the Metzler matrix whose

coefficients are the ĥij and U the matrix formed by the control at the vertices, U =
[u1 u2 . . . ur]. Then

ÂX + BU = XĤ, 1̄TĤ ≤ 0̄, uk ∈ U (4.38)

Going back to the original system, by defining the Metzler matrix

H = Ĥ − βI

one gets (4.33)–(4.35).
To prove sufficiency note that (4.33)–(4.35) imply (4.38) which, in turn, implies,

by reverse reasoning, that Nagumo’s subtangentiality conditions are verified at
the vertices. To prove controlled-invariance of S for the system (4.36) hence
contractivity for the original system, we need to prove the existence of a suitable
controller.

As a first step in this direction, consider the concept of control at the vertices
[GC86a], precisely a piecewise-linear control u = Φ(x) that interpolates the control
value at the vertices as follows:

• for any pair (xi, ui) of columns of X and U, respectively, Φ(xi) = ui;
• for x ∈ S, Φ(x) = Uz where vector z ≥ 0 is such that x = Xz, 1̄Tz = Ψ(x),

existing in view of (4.26);
• Φ(x) is Lipschitz.

We show that such a controller renders a set positively invariant for the sys-
tem (4.36). First of all note that if the constraints are satisfied at the vertices, then,
by convexity,Φ(x) = Uz ∈ U . Consider any point x ∈ S. The tangent cone is

TS(x) = {y =
r∑

j=1

νj(xj − x), νj ≥ 0}

To derive a simple proof we first consider the following (simple) characterization of
TS(x), valid for any polytope S,

TS(x) = {y : ∃ τ ≥ 0 : x + τy ∈ S}

Then we show that the derivative vector in x = Xz, with u = Uz, as above, is
Âx + Bu ∈ TS(x) for x on the boundary of S. Given x and z, take τ > 0 such that

0 ≤ 1 + τ 1̄TĤz ≤ 1

which is possible because 1̄TĤ ≤ 0 and z ≥ 0. Then

x + τ(Âx + Bu) = X[I + τĤ]z = Xz∗ ∈ S

where the last inclusion holds because 0 ≤ 1̄Tz∗ ≤ 1 with the chosen τ .



158 4 Invariant sets

The last step is to show that the controller with the mentioned properties does
exist. Consider the following control: given x find z such that x = Xz and take,
among all such z one of the minimizers of the expression 1̄Tz, so that, 1̄Tz = Ψ(x),
namely one of the elements of the set

Z(x) = {z : x = Xz, z ≥ 0, 1̄Tz = Ψ(x)}.

A control function can be associated with such a set-valued map as follows:

u = Φ(x) = Uz, with z ∈ Z(x).

For each x the set Z(x) is a polytope and it can be shown that this set-valued map
is Lipschitz continuous (see Exercise 10) and then it admits a Lipschitz selection
z(x) ∈ Z(x) [AC84]. Therefore the so derived control Φ(x) is also Lipschitz9.

In the authors’ knowledge, there is no obvious and direct extension of Theorem 4.37
for the plane representation (4.25). An alternative condition can be derived by means
of the conic representation of projections [DDS96]. See also [DH99] for further
results on this topic.

Remark 4.38. Note that the theorem holds with no assumptions on B and so, for
B = 0, the equivalence i) ⇐⇒ iii) in Theorem 4.33 remains proved.

A special Lipschitz control “at the vertices” is the Gutman and Cwikel control
[GC86a]10. Any polytope S which includes the origin as an interior point can be
partitioned into simplices, S(k), each formed by n vertices and the origin. These
simplices have zero measure intersections and their union is S.

S(k) = {x = α1x(k)
1 +α2x(k)

2 + · · ·+αnx(k)
n , x(k)

i ∈ vert{S}, αi ≥ 0,
∑

i

αi ≤ 1 }

A convex polyhedral cone (henceforth a sector) having the origin as vertex is
generated by each simplex S(k) as follows (see Fig. 4.5):

C(k) = {x = γ1x(k)
1 + γ2x(k)

2 + · · · + γnx(k)
n , x(k)

i ∈ vert{S}, γ1 ≥ 0}

Note that S(k) = C(k)
⋂
S. The simplices S(k) and the associated cones C(k) can be

selected in such a way that

• S(k) and C(k) have non-empty interior;
• S(k)

⋂
S(h) and C(k)

⋂
C(h) have an empty interior if k �= h

•
⋃

k S(k) = S and
⋃

k C(k) = IRn

9A concrete way to derive Φ will be proposed soon.
10Developments of such a control have been proposed in [NGOH13].
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Denote by

X(h) = [x(h)
1 x(h)

2 . . . x(h)
n ]

the square sub-matrix of X formed by the vertices generating S(k) and the corre-
sponding cone C(k) and let

U(h) = [u(h)
1 u(h)

2 . . . u(h)
n ]

be the matrix achieved by the controllers associated with these vertices. Since S(h)

has a non-empty interior, X(h) is invertible. In each of these sectors consider a linear
gain

K(h) .
= U(h)[X(h)]−1,

resulting in the following piecewise linear control

u = K(h)x, for x ∈ C(h) (4.39)

This control is a special case of control at the vertices in the sense that it satisfies the
requirements mentioned in the proof of Theorem 4.37. This can be immediately seen
as follows. Assume that sector 1 (for the remaining sectors the same considerations
apply) C(1) is generated by the first n columns of X = [X(1) X̃]. Then, if x ∈ S(1),

x = [X(1) X̃]

[
g
0

]
,

where g ∈ IRn is a non-negative vector. Therefore

u = K(1)x = U(1)[X(1)]−1[X(1)]g = U(1)g

When x = x(1)i is one of the vertices of S(1), gi = 1 and gj = 0, for j �= i, so that

u = K(1)x(1)i = u(1)
i

It is left as an exercise to show that inside S the control law satisfies the constraints
if and only if the control values at the vertices do (obviously, outsides the constraints
can be violated). The global Lipschitz continuity of this control has been proved in
[Bla95].

Example. Consider the system ẋ = Ax + Bu with

A =

[
0 1

0 0

]
B =

[
0

1

]
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and the constraint u ∈ U = {u : |u| ≤ 8}. The set S = V(X), where

X =

[
3 0 −4 −3 0 4

0 4 4 0 −4 −4

]
,

together with the control matrix

U = [ − 8 − 8 − 4 8 8 4 ],

satisfies the conditions in Theorem 4.37 with

H =
1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−8 4 0 0 0 0

0 −6 0 0 0 0

0 0 −3 6 0 0

0 0 0 −8 4 0

0 0 0 0 −6 0

6 0 0 0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Since

1̄TH =
[
− 2

3 − 2
3 −1 − 2

3 − 2
3 −1

]
≤ −2

3
1̄T

the set S = V(X) turns out to be contractive with a speed β = 2/3. The sectors
individuated by this region are depicted in Figure 4.5. Sector C(1) is individuated
by vertices x1 and x2, sector C(2) by the vertices x2 and x3, and so on in the
counterclockwise sense until C(6) which is individuated by vertices x6 and x1. The
control is then readily computed. For instance, the control in sector C(2) (formed by
vertices x(2) and x(3) associated with controls u(2) and u(3)) is

u =
[
−8 −4

] [
0 −4

4 4

]−1 [
x1
x2

]
=
[
−1 −2

] [
x1
x2

]

The whole set of control gains is reported in the next table.

sector number control gain
1

[
−8/3 −2

]
2

[
−1 −2

]
3

[
−8/3 −11/3

]
4

[
−8/3 −2

]
5

[
−1 −2

]
6

[
−8/3 −11/3

]
The symmetric version of Theorem 4.37 is the following.
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Fig. 4.5 The sector partition

u = 4

u = −8

u = −8u=−4

u = 8
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C (3)

C (2)

C (1)
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Corollary 4.39. The symmetric set S = V̄(X) as in (4.32) is β-contractive for
system ẋ = Ax + Bu, u(t) ∈ U , a convex set, if and only if there exist a matrix
H ∈ IRr×r and a matrix U ∈ IRm×r, having columns in U , such that

AX + BU = XH

and

[
1̄T 1̄T

] [
H̄ H
H H̄

]
≤ −β

[
1̄T 1̄T

]

where H̄ and H are defined as before: H̄ij = max{Hij, 0}, for i �= j and H̄ii = Hii,
Hij = max{−Hij, 0}, for i �= j and Hii = 0.

The proof of the corollary is not reported, since the statement can be easily
derived from the unsymmetrical version of the theorem. A more compact version
of this corollary can be derived by introducing the next definition.

Definition 4.40 (H1-matrix). The matrix H is an H1-matrix if there exists τ such
that

‖I + τH‖1 < 1

Corollary 4.41. The symmetric set S = V̄(X) as in (4.32) is contractive (for some
β > 0) for the system ẋ = Ax + Bu, u(t) ∈ U , a convex set, if and only if there exist
a H1-matrix H ∈ IRr×r and a matrix U ∈ IRm×r, with columns in U , such that

AX + BU = XH (4.40)
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The proof of the corollary can be immediately derived by considering the EAS and
is left as an exercise to the reader (a proof can be found in [Bla00]).

We point out that, although so far much of the results have been given for
polyhedral C-sets, the same properties hold, with proper assumptions, for polyhedral
sets in general, which are unbounded or with empty interior. Indeed contractivity can
be defined for convex and closed sets including the origin in the interior, since the
Minkowski function can be defined for this class of systems. Contractivity can be
defined for a convex and closed set P including 0, but with empty interior, if we
restrict the space to the largest subspace S included in P . It is not hard to see that
the controlled-invariance of a polyhedron implies the controlled invariance ((A,B)-
invariance) [BM92] of the smallest subspace that includes it.

For instance, the following corollary holds.

Corollary 4.42. Consider the linear system ẋ(t) = Ax(t). The polyhedral set
S = P(F) with F ∈ IRs×n including the origin (but not necessarily bounded) is
β-contractive if and only if there exists a Metzler matrix H such that

HF = FA, H 1̄ ≤ −β1̄.

The polyhedral set S = V(X) including the origin (not necessarily with a non-empty
interior) is β-contractive if and only if there exists a Metzler matrix H such that

AX = XH, 1̄T H ≤ −β1̄T

Finally, if we consider subspaces, these are just polyhedra with both pathologies,
since they are unbounded and have empty interior. If X is the matrix that generates
a subspace X , controlled invariance is equivalent to the equation

AX + BU = XH

which is identical to (4.33). No conditions have to be imposed on H, unless we need
to impose stability of the motion on X , which in turn requires that the eigenvalues
of H have negative real part.

4.5.2 Contractive sets for discrete-time systems

In this section, necessary and sufficient conditions for positive invariance of
polyhedral sets for discrete-time systems are provided. The case in which there is no
control action is considered first. The next theorem [Bit88] is the natural counterpart
of Theorem 4.33.

Theorem 4.43. Consider the linear system

x(t + 1) = Ax(t)
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and let S be a polyhedral C-set of the form (4.25), with F ∈ IRs×n, or of the
form (4.26) X ∈ IRn×r. The next statements are equivalent.

i) S = P(F) = V(X) is λ-contractive.
ii) There exists a matrix P ≥ 0 such that

PF = FA, P 1̄ ≤ λ1̄

iii) There exists a matrix P ≥ 0 such that

AX = XP, 1̄T P ≤ λ1̄T

Proof. As for the continuous-time case, we prove just the equivalence between i and
ii), since the equivalence between i) and iii) is stated later along with the generalized
version of the Theorem (see remark 4.45 after Theorem 4.44).

ii) =⇒ i). Take x ∈ S, say Fx ≤ 1̄. λ-contractivity of the polyhedral set is
equivalent to showing that y = Ax is such that Fy ≤ λ1̄, say y ∈ λS. The above
condition can be immediately derived since

FAx = PFx ≤ P1̄ ≤ λ1̄

(the first inequality is due to the fact that P is non-negative).
i) =⇒ ii). Assume that S is contractive. This means that if Fx ≤ 1̄, then FAx ≤

λ̄1. Consider the following linear programming problems

μ = max FiAx

s.t.

Fx ≤ 1̄

i = 1, 2, . . . , s. These problems are all such that μ ≤ λ, by the contractivity
assumption. The ith dual problem is

μ = minwT 1̄

s.t.

wT F = FiA

wT ≥ 0

and has the same optimal value μ ≤ λ. Define P as the matrix whose ith row Pi is a
feasible solution of the ith dual problem. Clearly, P is non-negative and PF = FA.
Since μ ≤ λ, the sum of the elements of w, hence of Pi, is less than λ, thus P1̄ ≤ λ1̄,
as requested.
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A simple proof of the equivalence between i) and ii) can be given by means of the
inclusion property of Proposition 3.31 as shown in [DH99]. Indeed contractivity
implies AS ⊆ λS, thus the condition can be derived by applying that proposition.

The discrete-time counterpart of Theorem 4.37 is the following.

Theorem 4.44. Consider the linear system

x(t + 1) = Ax(t) + Bu(t)

where u(t) ∈ U ⊆ IRm, with U a convex set. Let S be a polyhedral C-set of the
form (4.26), with X ∈ IRn×r. Then S = V(X) is λ-contractive if and only if there
exist a matrix P ≥ 0 and a matrix U ∈ IRm×r such that

AX + BU = XP, (4.41)

1̄T P ≤ λ1̄T , (4.42)

uk ∈ U , (4.43)

where uk is the kth column of U.

Proof. To prove necessity of conditions (4.41)–(4.43) assume that S is λ-
contractive. Then for all xk ∈ vert{S}, there exists uk = Φ(xk) such that
Axk + Buk ∈ λS, namely

Axk + Buk = Xzk, 1̄Tzk ≤ λ, zk ≥ 0

Denoting by P the square matrix whose kth column is Pk = zk, conditions (4.41)–
(4.43) follow immediately.

To prove sufficiency, assume that (4.41)–(4.43) hold. Any x ∈ S can be written
as x = Xz, with 1̄Tz ≤ 1 and z ≥ 0. Consider a control at the vertices as in (4.39),
namely a control such that u = Uz, so that, denoting by x′ = Ax + Bu,

x′ = AXz + BUz = XPz = Xz′

Since P and z are non-negative and 1̄TP ≤ λ1̄T , then 1̄Tz′ = 1̄Pz ≤ λ, say
ΨS(x′) ≤ λ.

Remark 4.45. Note that the above theorem holds even when B = 0 which proves
the equivalence between i) and iii) in Theorem 4.43.

From the proof of the theorem it is straightforward to derive the following
corollary, which provides a vertex interpretation of the result.

Corollary 4.46. The polyhedral C-set S is λ-contractive if and only if for each of
its vertexes x there exists a control u such that Ax + Bu ∈ λS.
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We stress that, although in the discrete-time case there is no theoretical necessity
of a continuous control u = Φ(x) 11, a Lipschitz continuous control can be derived
as in (4.39).

As in the continuous-time case, the presented results can be extended to
polyhedral sets which are not C-sets, in that they are unbounded or include 0 but
they have empty interior. For instance, the following corollary holds.

Corollary 4.47. Consider the linear system x(t + 1) = Ax(t). The polyhedral set
S = P(F) with F ∈ IRs×n including the origin (but not necessarily compact) is
λ-contractive if and only if there exists a matrix P ≥ 0 such that

PF = FA, P 1̄ ≤ λ1̄.

The polyhedral set S = V(X) including the origin (not necessarily with a non-empty
interior) is λ-contractive if and only if there exists a non-negative P such that

AX = XP, 1̄T P ≤ λ1̄T

In the discrete-time case, there exists a version of the theorem for symmetric sets
which is reported next. Let us again consider a symmetric polyhedral C-sets of the
form (3.24) and (3.25)

P̄(F) = {x : ‖Fx‖∞ ≤ 1} (4.44)

and its dual

V̄(X) = {x = Xz, ‖z‖1 ≤ 1} (4.45)

Then S = P̄(F) is λ-contractive for the uncontrolled system x(t+1) = Ax(t) if and
only if there exists a matrix P such that

PF = FA, with ‖P‖∞ ≤ λ;

if and only if there exists a matrix P such that

AX = XP, with ‖P‖1 ≤ λ.

Furthermore, if we consider the system x(t + 1) = Ax(t) + Bu(t), contractivity is
equivalent to the existence of X and U (whose columns are in U in the constrained
case) such that

AX + BU = XP, with ‖P‖1 ≤ λ.

11Although discontinuous controls may cause chattering and thus can be undesirable.
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4.5.3 Associating a control with a polyhedral control
Lyapunov function and smoothing

The conditions presented for polyhedral Lyapunov functions are necessary and
sufficient, however they do not explicitly provide the control action. A possible
control has been proposed in (4.39) which has the trouble that, as it will be seen
later, its complexity in terms of number of gains, can be even greater than that of the
generating polyhedral function.

In the discrete-time case, complexity can be somehow reduced by considering a
different type of control which is based on an on-line-optimization. Assume one is
given a discrete-time control Lyapunov function Ψ(x) which must be such that

Ψ (Ax + Bu) ≤ λΨ (x) ,

for some appropriate control u = Φ(x) ∈ U . If Ψ is the Minkowski function of
P(F) = N [Ψ, 1], then

Ψ(x) = min{ξ ≥ 0 : Fx ≤ ξ1̄}

and therefore the previous condition can be equivalently stated by saying that u must
be taken inside the regulation map (see Subsection 2.4.1).

u ∈ Ω(x) = {v : F(Ax + Bv) ≤ λΨ(x)1̄, v ∈ U} (4.46)

Therefore, the problem reduces to the on-line choice of a proper control u. It is
immediate to see that one can optimize the contractivity by adopting as control u(x)
the maximizer û of the following optimization problem

(û, ξ̂) = arg min {ξ ≥ 0 : F(Ax + Bu) ≤ ξ1̄, u ∈ U} . (4.47)

By construction, the optimal value is upper bounded by λΨ(x). Other possible
optimization criteria, such as the minimum-effort criterion, are also clearly possible,
as evidenced next:

u = arg min
u

{‖u‖ : u ∈ Ω(x)}

It can be shown that this control, named minimal selection [AC84], is Lipschitz
continuous. This construction is particularly convenient for single input systems
[BMM95]. Indeed the set Ω(x)

Ω(x) := {u ∈ IR : FkBu ≤ −FkAx + Ψ(x)λ, k = 1, 2, . . . , r}
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turns out to be the interval

Ω(x) = {u : α(x) ≤ u ≤ β(x)}

where

α(x)
.
= max

k:FkB<0

−FkAx + ψ(x)λ
FkB

, and β(x)
.
= min

k:FkB>0

−FkAx + ψ(x)λ
FkB

The minimum effort control is

ΦME =

⎧⎨
⎩
α(x) if α(x) > 0,

β(x) if β(x) < 0,

0 otherwise.

Unfortunately, the continuous-time case is a different story, since we must take
care about regularity of the control. The piecewise linear control (4.39) is globally
Lipschitz but, as noticed, it has high complexity. It works reasonably well for
systems with low dimensions.

One possibility is the following. We have seen that if a set is contractive for the
EAS (that can be used to compute the function as we will see) it is contractive for
the continuous-time system. Then one should

• compute a Lipschitz control (for instance, ΦME(x)) using the EAS;
• apply it continually (in practice using a sampling time: T << τ !).

The mentioned control is appropriate, since it is Lipschitz, and for sufficiently small
T assures convergence.

The problem is that, being the polyhedral functions non-smooth, the gradient
based controller is not suitable. A way to proceed is to use the smoothing
procedure already considered in Chapter 3, Section 3.4. Consider, for simplicity, the
symmetric case. The polyhedral function ‖Fx‖∞ can be approximated as ‖Fx‖2p,
thus achieving a function which is smooth away from 0. For p → ∞ such a function
converges uniformly to the original one ‖Fx‖∞ on each compact set. Now, each of
the functions ‖Fx‖2p has a gradient that can be expressed as

∇‖Fx‖2p =

(
s∑

i=1

(Fix)
2p

) 1
2p −1 s∑

i=1

(Fix)
2p−1FT

i

= ‖Fx‖1−2p
2p FTGp(x), x �= 0

where the vector Gp(x) is

Gp(x) = [(F1x)2p−1 (F2x)2p−1 . . . (Fsx)
2p−1]T .



168 4 Invariant sets

The explicit expression of the gradient allows the adoption of the gradient based
control

u(t) = −γ(x) (‖Fx‖2p)
1−2p BTFTGp(x), (4.48)

which works for γ(x) positive and large enough. In practice, the resulting control
must be positively homogeneous of order 1 and then the function γ(ξx) must grow
linearly with respect to ξ > 0. This means that a possible (and typical) choice of
γ is

γ(x) = γ0‖Fx‖2p

with γ0 > 0 large enough. We will consider this control later.
As mentioned in Chapter 3, Section 3.4, this smoothing procedure can be

extended to non-symmetric sets. Consider, for p integer, the function

σp(ξ) =

{
0 if ξ ≤ 0,

ξp if ξ > 0.

Then the approximating smoothing function for the Minkowski function of a
polyhedral C-set of the form (3.17)

Ψ(x) = max
i

Fix

is given by (it is not necessary to have even numbers now)

Ψp(x)
.
= p

√√√√ s∑
i=1

σp(Fix)

The gradient of such a function can be computed as

∇Ψp(x) =

(
s∑

i=1

σp(Fix)

) 1
p −1 s∑

i=1

σp−1(Fix)F
T
i

= Ψp(x)
1−p FTG̃p(x)

where

G̃p(x)
.
= [σp−1(F1x) σp−1(F2x) . . . σp(Fsx)]

T

and the gradient-based control can be applied.
In the case of ellipsoidal controlled invariant sets, we have seen that they can

always be associated with a linear feedback. A natural question is whether we can
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associate a linear feedback with a controlled-invariant or contractive polytope. The
answer is negative and this turns out to be one of the problems encountered when
dealing with polytopes.

To examine this problem, assume that a candidate controlled-invariant polyhedral
C-set is given in its vertex representation P = V(X). We can check if it is actually
contractive by solving the problem

min{λ ≥ 0 : AX + BU = XP, 1̄TP ≤ 1̄Tλ, P ≥ 0}

in the discrete-time case or

max{β ≥ 0 : AX + BU = XH, 1̄TP ≤ −1̄Tβ, Hij ≥ 0}

in the continuous-time case. Since X is given, both problems are linear programming
problems in the variables U, P (or H), λ (or β), thus easily solvable. The given set
P is contractive if the optimal value is λopt < 1 (or βopt > 0).

If we wish to know if a linear feedback can be adopted, then a minor modification
can be introduced. Precisely, the new linear constraint

U = KX

must be added with the new variable K. The problem remains an LP one. Note also
that there is no restriction to the state feedback case since, if y = Cx, we can add the
constraint

U = KCX

Unfortunately, if the LP has no useful solution (i.e., λopt < 1 or βopt < 0), then
one must replace X. Then the problem becomes nonlinear and hard to solve. We can
conclude with the next theorem (see, for instance, [VB89, VHB88, Bla90b, Bla91,
Szn93]).

Theorem 4.48. Consider the system

ẋ(t) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

or the corresponding discrete-time version

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

with the output

y(t) = Cx(t)
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where u ∈ U and d(t) ∈ D with U closed and convex including 0 and D a C-set.
Assume that the C-set P is contractive. Then the set K of all linear gains K such
that P can be associated with the linear control

u(t) = Ky(t)

is a convex set. Moreover, if P and D are polytopes and U is polyhedral and if A(w)
and B(w) are polytopic matrices, then the set K of gains K is a polyhedron.

4.5.4 Existence of positively invariant polyhedral C-sets

A fundamental result in basic Lyapunov theory is that a linear time-invariant system
is asymptotically stable if and only if it admits a quadratic Lyapunov function, hence
a contractive ellipsoid. Therefore asymptotic stability is a necessary and sufficient
condition for the existence of contractive ellipsoidal C-sets (in the uncertain system
case, the condition is necessary only). As we will see later, asymptotic stability
is necessary and sufficient for the existence of contractive polyhedra (even for
uncertain systems). An interesting question is what can we say about invariance.

The existence of invariant ellipsoids for linear systems is equivalent to marginal
stability. However, for polyhedral sets this is not the case. Indeed we have the
following [Bla92]

Theorem 4.49. The system ẋ(t) = Ax(t) admits a polyhedral invariant C-set if and
only if

i) it is at least marginally stable;
ii) the eigenvalues on the imaginary axis are all equal to 0.

The discrete-time counterpart sounds differently

Theorem 4.50. The system x(t + 1) = Ax(t) admits a polyhedral invariant C-set if
and only if

i) it is at least marginally stable;
ii) the eigenvalues on the unit circle have phases that are rational multiples of π,

precisely

|λ| = 1 ⇒ λ = ejθ, with θ =
p
q
2π, for some integer q, p

We sketch the proofs of the above theorems. Consider the discrete-time case first.
To prove sufficiency, without restriction, apply a transformation such that

T−1AT = blockdiag{Θ1, Θ2, . . . ΘN ,AS}
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where Θi are blocks of order 1 or 2 associated with eigenvalues with unitary
modulus, while AS is a stable matrix having eigenvalues in the open unit disk. We
show we can find polyhedral invariant C-sets for all the sub-systems, so that the
Cartesian product is invariant. We can associate an invariant set with the stable sub-
system as follows. Consider any full row rank matrix X0 and consider the symmetric
polyhedron V̄(X0) = conv{X0,−X0}. Compute recursively the images

Xk = ASXk−1

and consider the convex hull of all the computed vectors

V̄([X0 X1 . . . Xk+1]) = conv{±X0 ± X1 . . . ± Xk}

In view of the stability Xk converges to 0 and therefore, in a finite number of steps
we get

V̄([X0 X1 . . . Xk+1]) = V̄([X0 X1 . . . Xk+1])

which is positively invariant.
To associate a polyhedral C-set with all the blocks Θi, note that if they are of the

first order, then they are either 1 or −1 so any symmetric interval is invariant. In the
second-order case, we can assume that the block is of the form

Θ =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]

and that the rational phase condition is satisfied. Then for some k Θk = I. Then the
same set iteration proposed above starting from any V̄(X0) in two-dimensions will
eventually produce a positively invariant polyhedron.

To prove necessity, note that for the existence of invariant polyhedral C-sets it is
necessary that the system is marginally stable. Assume that a polyhedral invariant
C-set exists. The intersection of such a set with the eigenspace associated with any
second order block Θi is a polygon. But it is not difficult to see that, if the rational
phase condition is not satisfied, the only invariant C-sets for Θi are circles, since for
any vector x ∈ IR2, the points Θk

i x are dense on a circle.
The continuous-time case can be proved along the same lines. To form an

invariant set for the stable part we can use the EAS, since I + τAS is stable in
the discrete-time sense for τ > 0 small. If there is a marginally stable part, this is
associated with the 0 eigenvalue, for which any interval is invariant. Necessity can
be proved by noticing that marginal stability is necessary. If the marginally stable
eigenvalues are imaginary, we can associate any pair of them with a block of the
form
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Θ =

[
0 ω

−ω 0

]
.

Again, the intersection of any invariant polyhedron with the corresponding subspace
is a polygon. However, the only invariant C-sets for this sub-system are circles. So
no polyhedral C-set can exist.

Remark 4.51. In the discrete-time case, the proposed iterative procedure applied
to an asymptotically stable A provides in a finite number of steps an invariant
polyhedron which is the smallest invariant set including the original set V̄(X0) =
conv{X0,−X0}.

It is not to difficult to see that these results can be immediately extended as
follows.

Corollary 4.52. For a continuous-time (resp. discrete-time) linear time-invariant
system there exists a polyhedral C-set which assures a level of contractivity β
(resp. λ) if and only if all the eigenvalues of A have real part less or equal to −β
(resp. modulus less or equal to λ) and all the eigenvalues for which the equality
holds have degree one and null imaginary part (resp. have phases that are rational
multiple of π).

If one wishes to consider special classes of polyhedra, it turns out that some other
restriction on the eigenvalues has to be made. For instance, for polyhedra which are
affine transformations of the symmetric unit cube,

S = {x : −g ≤ Fx ≤ g},

with g positive and F square invertible, a sufficient condition is that the eigenvalues
are in the damping region Re(λ) ≤ −|Im(λ)|, in the continuous-time case, or in
the square |Re(λ)| + |Im(λ)| ≤ 1 in the discrete-time case [Bit91, Bit88]. It is not
difficult to see that this kind of conditions hold if one seeks for a region which is the
linear transformation of the unit diamond

S = {x = Xy, ‖y‖1 ≤ 1}

4.5.5 Diagonal dominance and diagonal invariance

We analyze in this section a special class of linear systems which have a strong
stability property: they admit the scaled 1 or ∞ norm as Lyapunov functions. This
line of research is due to the work of [PV04]. Let us first introduce the following
definition.

Definition 4.53 (Diagonal dominance). The square matrix A is weakly row-
diagonally dominant if
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|aii| ≥
∑
j�=i

|aij|

for all i. It is column-diagonally dominant if its transpose is row-diagonally
dominant: |ajj| ≥

∑
i�=j |aij|, for all j. Diagonal dominance is strong if the inequality

is strict for all rows (columns).

Since the main focus of the present work is stability, we will be mostly interested in
systems with negative diagonal entries, for which the previous inequality becomes

−aii ≥
∑
j�=i

|aij|

We now dualize Definition 4.40 and we introduce the H∞-matrix

Definition 4.54 (H∞-matrix). The matrix H is anH∞-matrix if there exists τ such
that

‖I + τH‖∞ < 1

The previous definition is related to the concept of matrix measure.

Definition 4.55. Given any vector norm ‖ · ‖, the quantity

μ(A)
.
= lim

h→0

‖I + hA‖ − 1

h

is referred to as matrix measure.

The following proposition is immediate.

Proposition 4.56. A is in the class H∞ (H1) iff the corresponding matrix measure
is negative.

Note that in principle we may define, for any norm ∗, the H∗ class as the class of
all matrices with negative matrix measure with respect to that norm. It is also worth
noticing that a 0-symmetric C-set is contractive for a linear system ẋ = Ax if and
only if the matrix measure associated with its induced norm (Minkowsi functional)
is negative [KAS92].

The following proposition holds.

Proposition 4.57. The following conditions are equivalent.

• A has negative diagonal entries and it is row (column) diagonally dominant.
• V(x) = ‖x‖∞ (respectively V(x) = ‖x‖1) is a Lyapunov function for ẋ = Ax.
• A is a H∞-matrix (respectively H1-matrix).
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Proof. Since in the case of the ∞-norm F = I, the equation FA = HF gives A = H.
Then the ∞-norm is Lyapunov function in view of remark 4.36. The dual property is
immediate as well because in the case of the 1-norm X = I and then A = H. Finally,
the equivalence of the third property with the second one follows from Lemma 4.26.

A less restrictive requirement is that the system admits a weighted norm, or, more
precisely, the weighted ∞ or 1 norm, as a Lyapunov function. Let D be a square
n × n matrix whose diagonal elements are the positive coefficients di, say

D = diag{d1, d2, . . . , dn}, di > 0 (4.49)

and consider the weighted norm

‖x‖∞,D = ‖Dx‖∞

or

‖x‖1,D = ‖Dx‖1

so that the diagonal matrix X = D−1 or F = D are the matrices describing the unit
ball. By resorting to the weighted norms, it is possible to prove the next proposition,
whose proof is left as an exercise:

Proposition 4.58. The weighted norm ‖x‖∞,D (resp. ‖x‖1,D) is a Lyapunov func-
tions if and only if D as in (4.49) is such that DAD−1 is diagonally row (resp.
column) dominant with negative diagonal entries.

A more intriguing fact is that in some cases we cannot rely on strict diagonal
dominance, namely some of the inequalities in definition 4.53 are not strict. Clearly
in this case it is not possible in general to claim that the system admits a Lyapunov
function in the strong sense since it may happen that the contractivity factor β is
zero. For instance, the following system

[
−α α

δ −(δ + γ)

]

with positive α and δ and non-negative γ is just weakly row diagonally dominant
and if we take γ = 0 the system is only marginally stable.

A question then arises: Under which conditions weak dominance implies asymp-
totic stability?

To reply to this question we need a definition.

Definition 4.59 (Irreducible matrix). A matrix A is irreducible if there does not
exist a variable permutation such that the new system matrix has the form
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Ã =

[
A11 A12

0 A22

]

with A11 and A22 square submatrices.

The following classical result holds.

Theorem 4.60. Assume that matrix A has negative diagonal coefficients and that it
is row (column) weakly diagonally dominant. Assume that matrix A has at least one
strictly diagonally dominant row (column) and that it is irreducible. Then the system
ẋ = Ax is asymptotically stable and admits a weighted ∞(1)-norm as a Lyapunov
function.

Proof. We prove that under these assumptions, a diagonal transformation exists
which renders the systems strictly diagonally dominant. Assume that there are m−1,
m > 1 strictly row-dominant diagonal coefficients and assume that these are the
first m − 1. We proceed by induction to show that it is possible to find a diagonal
transformation such that there will be m strictly dominant diagonal coefficients and,
by iterating the reasoning, we will arrive to a fully dominant matrix. The matrix can
be written as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

â11 a12 . . . a1,m−1 a1,m . . . a1,n

a21 â22 . . . a2,m−1 a2,m . . . a2,n

: : : : : :

am−1,1 am−1,2 . . . âm−1,m−1 am−1,m . . . am−1,n

am1 am2 . . . am,m−1 am,m . . . am,n

: : : : : :

an1 an2 . . . an,m−1 an,m . . . an,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(where a “hat” has been put onto all the strictly dominant coefficients). Since the
matrix is irreducible, then there will be at least one of the coefficients in the lower-
left part which is non-zero. Let us assume that this is the element am,1 and consider
the transformation

Λ = diag{λ, 1, 1, . . . , 1}

with

max
i∈1,...,m−1

∑
j |aij|
|aii|

< λ < 1 (4.50)

Then (we underline the non-zero element am1)
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Λ−1AΛ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

â11 a12/λ . . . a1,m−1λ a1,mλ . . . a1,nλ

λa21 â22 . . . a2,m−1 a2,m . . . a2,n

: : : : : :

λam−1,1 am−1,2 . . . âm−1,m−1 am−1,m . . . am−1,n

λam1 am2 . . . am,m−1 âm,m . . . am,n

: : : : : :

λan1 an2 . . . an,m−1 an,m . . . an,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In view of (4.50), the first coefficient â11 maintains its strict dominance as well as
all the other row-dominant diagonal entries since λ < 1. Since am,1 is non-zero, the
coefficient âm,m becomes dominant12, thus we obtain m strictly dominant entries.
Repeating the above, it is possible to obtain n strictly diagonally dominant entries
and thus, in view of Proposition 4.57, the transformed system has the ∞-norm as a
Lyapunov function. Since the applied transformations are all diagonal positive and
so is the overall transformation, then the original system admits a weighted ∞-norm
as a Lyapunov function.

We conclude the subsection with a consideration about weak diagonal dom-
inance: for a weakly diagonally dominant matrix, non-singularity is equivalent
to Hurwitz stability, according to the following proposition (see [Alt13] and
the references therein). An application of the result to the stability analysis of
biochemical systems is found in [BG14].

Proposition 4.61. Assume that matrix A satisfies, for any row i,

−aii ≥
∑
j�=i

|aij|

(respectively, for any column j, −ajj ≥
∑

i�=j |aij|). Then A is Hurwitz if and only if
it is non-singular.

The proof follows from the fact that diagonal dominance implies that the unit ball of
the 1-norm (resp. of the ∞ norm) is positively invariant. In view of Theorem 4.49,
the system has to be at least marginally stable. On the other hand, the only
marginally unstable eigenvalues (if any) must be null.

4.5.6 Observability invariance and duality

A limit of the set-theoretic approach in control is that most of the results are well
suited for state-feedback rather than for output feedback.

12Hence it is awarded a “hat.”
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Still a question can be immediately addressed to see if the previous results admit
some dual version and which are the implication with the state estimation problem.
We briefly address this issue here. It will be reconsidered later in the sections
devoted to LPV and switching systems.

We remind that, given a linear system with output y ∈ IRp.

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(primal),

its dual is

ż(t) = ATx(t) + CTu(t)
y(t) = BTx(t) + DTu(t)

(dual).

In a compact form, the dual is represented by matrices (A∗,B∗,C∗,D∗) as follows:

[
A∗ B∗

C∗ D∗

]
=

[
A B
C D

]T

=

[
AT CT

BT DT

]

We know, from the standard theory of quadratic functions, that the quadratic
stabilizability conditions can be immediately dualized.

Consider, for instance, the dual conditions of (4.21)

ATQ + QA + SC + CTST ≺ 0, Q 
 0 (4.51)

If a solution Q exits, then denoting by

L = Q−1S (4.52)

one gets

Q(A + LC) + (A + LC)TQ ≺ 0,

which means that xTQx is a Lyapunov function for A + LC. If we consider the
observer

ż(t) = Az(t) + Bu(t) + L (Cz(t) + Du(t) − y(t))

denoting by e(t) = z(t) − x(t) the estimation error, we get

ė(t) = (A + LC)e(t)

meaning that E(Q, 1) is a contractive ellipsoid.
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The situation is more involved in the case of polyhedral sets. To introduce this
subject, with some purely mathematical caprice, we start by transposing (“dualiz-
ing”) the controlled invariance conditions. For brevity we consider the symmetric
continuous-time version of Corollary 4.41 (eq. (4.40)). We remind that the vertex
representation V̄(X) considered there is the dual of the plane representation P̄(F)

P̄(F) = {x : ‖Fx‖∞ ≤ 1}

We need again Definition 4.54 of H∞-matrix, the dual of Definition 4.40.
Consider the symmetric polyhedron represented via the plane representation P =
P̄(F) as in (4.31) and let us assume that

FA + LC = HF (4.53)

for some H∞-matrix H ∈ IRs×s and some matrix L ∈ IRs×p. The condition is
obviously the dual of that in Corollary 4.41.

Without lack of generality, let us assume from now on that the input-to-output
matrix D is null13 and consider the following system

ż(t) = Hz(t) − Ly(t) + FBu(t) (4.54)

x̂(t) = Pz(t) + Qy(t) (4.55)

where the matrices P and Q will be defined later. It is easy to see that the variable
z(t) is an estimate of Fx(t). To this aim define

ξ(t)
.
= Fx(t) − z(t)

so that

ξ̇ = Fẋ − ż = FAx + FBu − Hz + Ly − FBu = Hξ

Hence the system with variable ξ(t) admits the ‖ · ‖∞ as a Lyapunov norm which
implies that

‖Fx(t) − z(t)‖∞ → 0

monotonically as t → ∞. Hence (4.54) looks like a state estimator. If we assume that
z(0) = 0 and that the initial system state x(0) is in a set of the form ‖Fx(0)‖ ≤ μ,
then we will have ‖Fx(t) − z(t)‖∞ ≤ μ.

13The presence of a D �= 0 matrix can be easily dealt with by adding some extra terms in the
estimator.
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We let the reader note that this property in true in general, say for any x(0) and
z(0) such that ‖Fx(0) − z(0)‖∞ ≤ μ, this inequality will be satisfied in the future:

‖Fx(0) − z(0)‖∞ ≤ μ ⇒ ‖Fx(t) − z(t)‖∞ ≤ μ, t ≥ 0. (4.56)

We call the family of sets

P̄ [F, z]

observability-invariant as long as there exists an “observer” as in (4.54) which
satisfies (4.56).

This family of sets provides a set-theoretic estimation a subject we will recon-
sider later in a dedicated chapter. To have a state estimation it is possible to
consider (4.55). Assume that P and Q are such that

I − QC = PF.

Note that this equation is always solvable if F has full column rank. Then
from (4.55) one gets

x(t) − x̂(t) = [I − QC]x(t) − Pz(t) = P[Fx(t) − z(t)] → 0

meaning that (4.55) is an asymptotic observer. This basically means that to construct
an asymptotic (polyhedral) observer it is sufficient to determine a polyhedral
controlled invariant set for the dual system, similarly to what is normally done in
the quadratic case.

The previous equations and their dual have an interesting connection for the
characterization of stabilizing compensators. For linear time-invariant systems this
is mainly an academic exercise, but it will soon be shown to be of fundamental
importance for the stabilization of switching and LPV systems.

Assume the pair of inequalities

PAT + AP + BR + RTBT ≺ 0, P 
 0 (4.57)

ATQ + QA + SC + CTST ≺ 0, Q 
 0 (4.58)

is satisfied, so that A + BJ and A + LC are stable matrices with L = Q−1S and
J = RP−1. The well-known theory of linear systems tells us that we can achieve an
observer-based compensator out of these matrices:

ż(t) = [A + BJ + LC]z(t) − Ly(t), u(t) = +Jz(t)

Conversely, it is possible to show that, given a stabilizable system, the two quadratic
inequalities (4.57)–(4.58) have a solution. Although this property can be deduced,
quite obviously, by the detectability and stabilizability property of the system,
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we wish to derive them directly (again, this will be of great help when switching
and LPV systems will be dealt with).

Let

ż(t) = Fz(t) + Gy(t)

u(t) = Hz(t) + Ky(t)

be a stabilizing compensator. The closed-loop system matrix satisfies the Lyapunov
inequality

[
A + BKC BH

GC F

] [
P1 P12

PT
12 P2

]
+

[
P1 P12

PT
12 P2

] [
A + BKC BH

GC F

]T

≺ 0

for some

[
P1 P12

PT
12 P2

]

 0.

Since a block partitioned matrix is positive/negative definite only if its upper left
block is so, it must hold that P1 
 0, and

(A + BKC)P1 + BHPT
12 + P1(A + BKC)T + P12HTBT =

= AP1 + P1AT + B(KCP1 + HPT
12) + (KCP1 + HPT

12)
TBT ≺ 0

Denoting by R
.
= KCP1 + HPT

12, the latter inequality results in

AP1 + P1AT + BR + RTBT ≺ 0

which is exactly (4.57). Condition (4.58) can be obtained dually.
At this point one may ask whether the same property holds with the polyhedral

equations presented so far, say whether the existence of a stabilizing compensator is
equivalent to the satisfaction of (4.40) and (4.53).

The answer is affirmative, although in this case the observer is of the generalized
form and the state feedback is dynamic. The only problem is that there are no bounds
on the compensator complexity, which is basically the same as that of the polyhedral
invariant set which we can associate with the stable closed-loop.

Assume that (4.53) holds, for some H∞-matrix H ∈ IRs×s and matrix L ∈ IRm×p

so that a “polyhedral” observer can be found. If also the primal condition as in
Corollary 4.41 is satisfied

AX + BU = XP
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for some H1-matrix P ∈ IRs×s, and some full row rank X, then we can derive a
linear state-feedback dynamic compensator. Let the matrix Z be such that [XTZT ]T

is invertible and set V
.
= ZP. If we let

[
K̃ H̃
G̃ F̃

]
=

[
U
V

] [
X
Z

]−1

then it is readily seen that the system ẋ = Ax + Bu equipped with the dynamic state
feedback

ż(t) = F̃z(t) + G̃x(t)

u(t) = H̃z(t) + K̃x(t)

leads to the closed-loop matrix

Acl =

[
A + BK̃ BH̃

G̃ F̃

]

which satisfies the equation

[
A + BK̃ BH̃

G̃ F̃

] [
X
Z

]
=

[
A 0

0 0

]
+

[
B 0

0 I

] [
U
V

]
=

[
X
Z

]
P

This is in turn equivalent to say that the closed-loop matrix Acl is similar to P and
hence asymptotically stable.

We leave to the reader as an exercise to prove that, if we associate this state
feedback with the generalized “polyhedral” observer (i.e., by replacing x by x̂,
with x̂ given by the generalized observer (4.54)–(4.55)) the overall compensator
is stabilizing.

4.5.7 Positive linear systems

In this section the special case of positive linear systems is considered, since there
are interesting connections with the polyhedral invariance. We limit our analysis
to autonomous systems without taking into account inputs or outputs. A dynamic
system is positive if x(0) ≥ 0 implies x(t) ≥ 0, for all t ≥ 0 namely if it admits
the positive orthant as a positively invariant set. Here, just basic facts are recalled:
the interested reader is referred to specialized literature, for instance [FR00], for a
comprehensive treatment of the subject and its use in many applications.

A continuous-time positive linear system is represented by the equation

ẋ(t) = Ax(t), (respectively x(t + 1) = Ax(t)), (4.59)
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Fig. 4.6 A fluid network.

h1 h2

h4

h3

h0

where A is a Metzler matrix in the continuous-time case and a non-negative matrix in
the discrete-time case. These systems are clearly a special case of linear systems and
as such enjoy all the properties presented in the previous sections. Positive systems
are sometimes equipped with an input so that the model is

ẋ(t) = Ax(t) + Bu(t)

with B a non-negative matrix and u(t) a non-negative input.

Example 4.62 (A fluid network model). Consider the fluid network depicted in
Fig. 4.6. The reservoirs are connected by pipes and the flow in the pipes is caused by
gravity. For each reservoir, if a linear approximation close to an equilibrium value
is considered, it is possible to write an equation of the form

ḣi(t) =
∑
j∈Ci

[−αij(hi(t) − hj(t)) − βjihi(t) + βijhj(t)]

where αij, βij are non-negative coefficients. The terms in the equation have the
following meaning

• αij(hi(t)− hj(t)) is the outgoing flow from reservoir i to reservoir j, or vice versa
and it depends on the level difference (so that αij = αji);

• βjihi(t) is the outgoing flow from reservoir i to reservoir j and it depends only on
the level hi(t);

• βijhj(t) is the incoming flow to reservoir i from reservoir j and it depends only on
the level hj(t).

Note that we can always model an external contribution by fixing an “external”
reservoir, conventionally numbered as 0 which has a constant fixed level and
provides the incoming flow γj0h0(t) ≥ 0. The addition of the “external” term turns
the dynamic equations into

ḣ1 = −α12(h1 − h2) − β31h1 + β10h0

ḣ2 = −α21(h2 − h1) − α23(h2 − h3) − β42h2

ḣ3 = −α34(h3 − h4) + β31h1 − α32(h3 − h2) − β03h3

ḣ4 = −α43(h4 − h3) + β42h2 − β04h4
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If we assume that the network is lossless, i.e. for any link connecting two reservoirs
the flow entering one is the same leaving the other, the same terms appear in pairs of
equations associated with this link. Therefore, α21 = α12, α23 = α32, and α34 =
α43. The system is linear, with state and input matrices

A =

⎡
⎢⎢⎣
−(α12 + β31) α12 0 0

α21 −(α21 + α23 + β42) α23 0

β31 α32 −(α23 + α34 + β03) α34

0 β42 α43 −(α43 + β04)

⎤
⎥⎥⎦

and

B =

⎡
⎢⎢⎣
β10
0

0

0

⎤
⎥⎥⎦

The next definition, which is consistent with Definition 4.59, plays a key role in
the theory of positive systems.

Definition 4.63 (Irreducible positive system). A positive system of the
form (4.59) is irreducible if its state matrix A is irreducible.

For example, the previous system is reducible if α23 = 0. Physically this condition
represents the fact that the dynamics of the third and fourth tanks has no effect on
the other two.

A key aspect in the theory of positive systems is the existence of a dominant
eigenvalue, both in the continuous and in the discrete-time case.

Definition 4.64 (Dominant eigenvalue). An eigenvalue λ1 of A is said to be
dominant in the continuous-time (resp. discrete-time) case if there are no other
eigenvalues of A of greater real part (resp. of greater magnitude).

The following theorem is the famous Perron–Frobenius theorem, for which a
“set-invariance” proof (under simplifying assumptions) is provided.

Theorem 4.65. A discrete-time (resp. continuous-time) positive system has a real
dominant eigenvalue, known as Perron–Frobenius eigenvalue, that is non-negative
in the discrete-time case. Corresponding to the Perron–Frobenius eigenvalue,
there is always an eigenvector with non-negative components, known as Perron–
Frobenius eigenvector. Moreover, if the system is irreducible, the Perron–Frobenius
eigenvalue is simple and the Perron–Frobenius eigenvector has positive compo-
nents.

Proof (Sketch). Let us give the proof in the discrete-time case under the assumption
that matrix A is non-singular and irreducible (see [FR00] for further details).
Consider the auxiliary discrete-time nonlinear system
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z(t + 1) = ϕ(z(t)) =
Az(t)

‖Az(t)‖1

It is immediately seen that this is a positive system. It is also immediate that the set
of non-negative vectors with components summing up to 1

S = {z ≥ 0 : ‖z‖1 = 1}

is positively invariant: z ∈ S =⇒ ϕ(z) ∈ S.
Since the function ϕ is continuous and S is convex and compact, in view of the

fixed-point theorem, it admits a fixed point z̄ which is such that

Az̄ = ‖Az̄‖1z̄,

hence λ1 = ‖Az̄‖1 is a real positive eigenvalue of A and z̄ is a corresponding
eigenvector.

The eigenvector z̄ has clearly non-negative components since it belongs to S.
Moreover, if the matrix is irreducible, the components are positive. Indeed, assume
by contradiction that there are zero components and, without restrictions, assume
that they are in the last positions, namely z̄T = [̄zT

10] where z̄T
1 > 0. Since z̄ is an

eigenvector, then

[
A11 A12

A21 A22

] [
z̄1
0

]
= λ

[
z̄1
0

]

which in turn implies that A21 = 0 (since the components of A21 are non-negative
and those of z̄1 are positive), say the matrix is reducible.

We need now to prove that there are no eigenvalues with magnitude greater than
λ1 = ‖Az̄‖1.

Let us introduce a diagonal state transformation y = D−1z, characterized by the
matrix

D = diag{1/z̄1, 1/z̄2 . . . , 1/z̄n},

and the transformed auxiliary (linear) system

y(t + 1) =
D−1AD
λ1

y(t) = By(t) (4.60)

The vector ȳ = D−1z̄ = 1̄ is an eigenvector associated with the eigenvalue λ = 1
for (4.60), since

D−1ADȳ = D−1ADD−1z̄ = D−1Az̄ = D−1λ1z̄ = λ1ȳ
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Showing that the dominant eigenvalue of A is λ1 is equivalent to showing that
the dominant eigenvalue of B is 1, which is in turn a consequence of the fact that
the unit ball of the infinity norm B = N [‖x‖∞, 1] is positively invariant. This is
immediate, since for ‖y‖∞ ≤ 1 it holds that

‖By‖∞ = maxi

{∣∣∣∑j Bijyj

∣∣∣} ≤ maxi

{∑
j |Bijyj|

}
=

maxi

{∑
j Bij|yj|

}
≤ maxi

{∑
j Bij

}
= 1

where the last equality comes from B1̄ = 1̄.
The continuous-time proof can be derived by considering the sampled data

discrete-time system

x(t + 1) = eATx(t)

with positive T and the fact that A is a Metzler matrix if and only if eAT is non-
negative. Hence eAT has a real positive dominant eigenvalue let say σ1 = eλ1T .
Since

|eλ1T | = eRe(λ1)T ,

then λ1 must have the largest real part.

In the proof we have not shown that if the matrix is irreducible then the Frobenius
eigenvalue is simple. The opposite is not true: the reducible matrix A = diag{1; 0},
is a counterexample since the Frobenius eigenvalue λ = 1 is simple. Note that the
Frobenius eigenvector v = [1 0]T does not have positive components. The reader is
referred to specialized literature, e.g., [FR00].

Note that there can be more than one dominant eigenvalue. For instance, the
discrete-time matrix

A =

[
0 1

1 0

]

has the two dominant eigenvalues 1 and −1.
The previous theorem admits a corollary.

Corollary 4.66. The following conditions are equivalent for a positive system.

• it is asymptotically stable;
• it admits a polyhedral Lyapunov function of the form ‖D−1x‖∞ with diagonal

positive D;
• it admits a polyhedral Lyapunov function of the form ‖D−1x‖1 with diagonal

positive D.
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Proof. In discrete-time the equivalence of the first two statements follows from the
proof of Theorem 4.65. In detail, the second statement implies the first. Conversely,
assume A asymptotically stable and consider the modified system

x(t + 1) =
A
λ

x(t)

with 0 < λ < 1 and with λ greater than Perron–Frobenius eigenvalue. Then the
modified system (which is asymptotically stable) admits the unit ball of ‖D−1x‖∞,
for some diagonal and positive D, as an invariant set, hence the original system
admits such ball as a λ-contractive set.

The equivalence of the second and third statements is due to duality.
The proof of the continuous-time case can be obtained by using the exponential

matrix.

The following well-known result in the theory of positive systems admits a set-
theoretic proof.

Proposition 4.67. Assume that A is Metzler asymptotically stable matrix. Then its
inverse is a non-positive matrix: A−1 ≤ 0.

Proof. Consider the system

ẋ(t) = Ax(t) + v

with v ≥ 0 and A Metzler asymptotically stable. Then the solution of the system
with x(0) ≥ 0 has the property x(t) ≥ 0. Indeed Nagumo’s conditions are met with
v = 0, because the system is positive. If we add a non-negative vector v, these are
still satisfied on the boundary of the positive orthant. In fact, if xi = 0 and xj ≥ 0,
we have

ẋi =
∑
j�=i

Aijxj + vi ≥ 0.

Since the system is asymptotically stable, from any initial condition, x(t) converges
to some vector x̄(v). Such a vector is the solution of Ax̄ + v = 0, which is unique
because A is invertible

x̄(v) = −A−1v.

On the other hand, for any initial condition x(0) ≥ 0, x(t) ≥ 0 and so x(t) → x̄(v)
implies x̄(v) = −A−1v ≥ 0. Since this condition holds for an arbitrary non-negative
v, A−1 has to be non-positive.

There is a strong connection between the theory of positive invariance of
polyhedral C-sets and the theory of positive systems, which is briefly illustrated
next for discrete-time systems. Assume that the system

x(t + 1) = Ax(t)
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admits an invariant polytope

P = V(X) = {x = Xp, 1̄Tp ≤ 1, p ≥ 0}

Then any state x(t) inside P can be represented as

x(t) = Xp(t), p(t) ≥ 0, 1̄Tp(t) ≤ 1 (4.61)

Since P is invariant, from iii) in Theorem 4.43 (assuming λ = 1) there must exist a
non-negative P such that

AX = XP, 1̄TP ≤ 1̄T

Then for any initial condition

x(0) = Xp(0) ∈ P ,

where p(0) ≥ 0 is a (non-unique) vector such that 1̄Tp(0) ≤ 1, the evolution can be
described by

x(t) = Atx(0) = XPtp(0) = Xp(t),

where the non-negative vector p(t) is such that

p(t + 1) = Pp(t)

It is immediate to see that 1̄Tp(t) ≤ 1, and therefore the evolution of the state inside
P can be represented as the output of the positive system

p(t + 1) = Pp(t)
x(t) = Xp(t)

It is easy to see that exactly the same property holds for continuous-time systems.
Clearly the positive representation is of the form

ṗ(t) = Hp(t)

where H comes from condition iii) in Theorem 4.33, assuming β = 0.
Note also that for a single-input single-output system (A,B,C) which admits

a positively invariant polyhedral C-set V(X) for the free dynamics, it is always
possible to find an equivalent “semi-positive” (non-minimal) realization (P,Q,R),
where P ≥ 0 is the matrix derived above, Q ≥ 0 is a non-negative matrix such that
B = XQ and R = CX. We finally stress that the idea described here is different from
the positive realization of systems with positive impulse response (see [FB04] for
details).
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4.6 Other classes of invariant sets and historical notes

Ellipsoids and polyhedral sets have been, undoubtedly, the most successful classes
of candidate invariant sets. In particular, the ellipsoidal ones along with their
quadratic functions are often the most natural choice since they arise in several
contexts such as linear quadratic optimal control theory [KS72] and Lyapunov
theory for linear systems [Lya66].

Quadratic functions have been used to approximate the domain of attraction of
nonlinear systems [LL61, Lya66]. Indeed the theory of ellipsoidal invariant sets and
quadratic functions is classical and well established. Perhaps the book [BEGFB04]
is one of the best choices to provide a broad view in the modern context of LMIs. In
the book [HL01] ellipsoidal sets (although not only ellipsoidal sets) are considered
in the context of constrained control. In the classical book [Sch73] ellipsoids are
used as a confinement region for uncertain systems. A more recent book about the
properties of ellipsoidal contractive set is [PPA14]. In the context of stabilization
of uncertain systems, quadratic stability has played a fundamental role. Pioneering
work on this topic can be found in [HB76, Gut79, BPF83, BCL83] and several
references will be given in the proper sections of the book.

Polyhedral Lyapunov functions have attracted a certain interest more recently.
A motivation of their consideration is that in many control problems constraints are
expressed by means of linear inequalities. The main point is that adopting polyhedra
instead of ellipsoids allows a reduction of conservativeness which is paid by a higher
complexity.

Besides ellipsoids and polyhedral sets, other families of sets have been con-
sidered together the associated Lyapunov functions. For instance, polynomial
Lyapunov functions which have been exploited for the computation of the domain
of attraction for nonlinear systems [GTV85] and for robust stability analysis
[Zel94, CGTV03]. The so-called semi-ellipsoidal controlled invariant sets form an
interesting class studied in [OM02].

It has been shown that a Lyapunov-type of equation, named the Minkowski–
Lyapunov equation, holds for the general class of set-induced Lyapunov functions,
which include polyhedral and quadratic norms as a special case [RL14].

Piecewise quadratic functions for the stability analysis of hybrid systems have
been considered in [RJ98]. This class of functions generalizes the piecewise linear
ones and offers a higher level of flexibility.

A generalization of quadratic functions, the so-called composite quadratic Lya-
punov functions, has been recently introduced in the context [HL03] of constrained
control (see also [HL01]).

The main difficulty in providing a complete review of the literature of invariant
sets is that this concept arises in very different contexts. In a recent review [Bla99],
to which the reader is referred to for a specific dissertation, a list of references
of basic contributions concerning quadratic and polytopic invariant sets is given.
The mathematical literature considered the concept of positive invariance as a basic
tool for the qualitative study of dynamical systems [Bre70, Gar80, Yor67, FZ87,
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Zan87, Yos75, FH76a]. The concept of positive invariance has also been recently
exploited in the context of differential inclusions [AC84]. In particular, the concept
of contractivity and controlled invariance considered here is related to the concept
of viability [Aub91]. We point out that the theory of differential inclusions (after
its digestion not so easy for an engineer) provides elegant tools to deal with some
problems that unavoidably arise in control theory, such as discontinuity in the
control action.

Among the first contributions concerning the condition of invariance of poly-
hedral sets for linear systems, we point out those due to [Bit88, VB89, BB89]
for discrete-time systems and [Bit91, CH93, Bla90b, Rac91] for continuous-time
systems. Other relevant references are [BG95, BG99, BT94, DH01]. Extensions of
the invariance conditions considered in this chapter to systems with time delays
have been given in [HT98]. Surprisingly enough, some of the positive invariance
conditions were already known, although presented in the complete different context
of uncertain systems dealt with polyhedral Lyapunov functions [MP86a]–[MP86c]
(in particular the latest). The properties of norms, therefore including the polyhedral
ones, as candidate Lyapunov functions for linear system have been analyzed in
[KAS92] and [Szn93]. The proposed theory of invariance of polyhedral sets is
related to the theory of componentwise stability (see [Voi84, PV04, PV06] for
details). Polyhedral invariant sets will be reconsidered in several context later, where
further references will be provided.

4.7 Exercises

1. Try to find analytic expressions for the sets in Fig. 4.2 (hint: the right figure is
achieved by circle boundaries and, for the figure of the left, see Figure 2.9 . . . ).
Explain why these are non-practical.

2. Disprove the assertion: the intersection of two robustly controlled invariant sets
is controlled invariant (Hint: take x(t + 1) = u(t) + d(t), |d| ≤ 1 and two
intervals . . . )

3. Show that the assumptions of compactness, convexity, and boundedness of S
are all fundamental in Theorems 4.20 and 4.21. Precisely, show examples of
invariant sets for which one of the three properties fails (but the remaining hold)
and which do not include fixed or stationary points. Note that convexity can be
actually replaced by the condition of being “isomorphic to a convex set.”

4. Consider the system

ẋ1(t) = −α1x1(t) + φ12(x1(t), x2(t)) + · · · + φ1n(x1(t), xn(t))

ẋ2(t) = φ21(x2(t), x1(t)) − α2x2(t) + + · · · + φ2n(xn(t), x2(t))

:

ẋn(t) = φn1(x1(t), xn(t)) + φn2(x2(t), xn(t)) + · · · + −αnxn(t)
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where functions φij are bounded as |φij(xi, xj)| ≤ μij and φij(0, xj) = 0. Show
that the set S defined in Example 4.14 is invariant for the system provided that
ρ is large enough.

5. Consider the competition model. Show that the ith-population-absence set
{x : xi = 0} is positively invariant (so that if we set xi(0) = 0 the problem is
two-dimensional). Analyze the simple competition model achieved for x3 = 0

ẋ1(t) = x1(t) [1 − x1(t) − αx2(t)]

ẋ2(t) = x2(t) [1 − βx1(t) − x2(t)]

Draw the two lines 1 = x1 − αx2 and 1 = βx1 − x2 and analyze the invariance
of the sets delimited by these lines and the circle ‖x‖ = ρ with ρ > 0 large
enough, in the positive quadrant.

6. Prove the claim that if ẋ(t) = Ax(t)+Bu(t) admits a quadratic control-Lyapunov
function associated with the Lipschitz controller u = Φ(x), then it can be
associated with the controller (4.19). Try to prove the same property if A is
uncertain (A(w) continuous and w ∈ W compact; the proof is in [BPF83]).

7. Consider a system of the form

ẋ(t) = f (x(t),w(t)), w(t) ∈ W

Show that if Ψ1 and Ψ2 are Lyapunov functions, then αΨ1+βΨ2, with α, β > 0
is a Lyapunov function. Show that the same property does not hold for Control
Lyapunov functions.

8. Prove Lemma 4.31.
9. Prove formally Proposition 4.35.

10. A non-empty set-valued map Z(x) with convex and compact values is Lipschitz
continuous if there exists L > 0 such that for all x and x′

Z(x) ⊆ Z(x′) + L‖x − x′‖B1

(B1 is the norm unit ball so Z(x) is included in Z(x′) enlarged by the ball of
radius L‖x − x′‖). Theorem 1 in [AC84] says that any Lipschitz continuous
set-valued map admits a Lipschitz continuous selection, namely a Lipschitz
continuous function z(x) ∈ Z(x). Consider the following set-valued polytopic
map

Z(x) = {z : Mz = v(x), z ≥ 0}

and assume that it is not empty for each x and that v(x) is a Lipschitz function.
Show that it is Lipschitz and show how to find a Lipschitz selection. (Hint:
the candidate vertices of the polytope Z(x) are linear functions of v(x) . . . the
barycenter of the vertices is in Z(x) and . . . )
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11. Find a counterexample to the wrong claim: “f (x) ∈ S for all x ∈ ∂S implies
that the C-set S is positively invariant for x(t + 1) = f (x(t))” (a simple one is
given in [Bla99]).

12. Prove Proposition 4.13.
13. Show that f (x) ∈ λS, where S is a C-set, for every x ∈ ∂S and f (x) positively

homogeneous of order one imply ΨS(x(t)) ≤ λtΨS(x(0)).
14. Show that if ΨS(x) is the Minkowski function of a convex C-set, then

∂ΨS(ξx) = ∂ΨS(x) for any ξ > 0 (hint: use Lemma 4.29).
15. Prove that if the C-set S is β-contractive for the linear system ẋ = Ax + Ed,

with d ∈ D and D is a C-set, then the following implications hold. i) A has all
eigenvalues with negative real part; ii) −β is greater than the largest real part of
the eigenvalues; iii) λS is β-contractive for d ∈ λD.

16. Give an example of a control u = Kx such that ẋ = (A + BK)x is stable but K
is not the gain matrix of a gradient-based control.



Chapter 5
Dynamic programming

In this section a jump back in the history of control is made and we consider
problems which had been theoretically faced in the early 70s, and thereafter almost
abandoned. The main reason is that the computational effort necessary to practically
implement these techniques was not suitable for the computer technology of the
time. Today, the situation is different, and many authors are reconsidering the
approach. In this section, the main focus will be put on discrete-time systems,
although it will also be shown, given the existing relation between continuous- and
discrete-time invariant sets presented in Lemma 4.26, how the proposed algorithms
can be used to deal with continuous-time systems as well.

5.1 Infinite-time reachability set

For an appropriate historical journey, the problem one should start with, is the one
named the state in a tube. This is a special case of the more general category of the
pursuit-evasion dynamic games [BGL69].

Problem 5.1. Consider the discrete-time system

x(t + 1) = f (x(t), u(t),w(t))

where u ∈ U and w ∈ W , with U and W assigned compact subsets of IRm and
IRq, respectively, and assume that a set X ⊆ IRn in the state space is given. Imagine
u and w are actions of two players: the “good one,” Pu who chooses u(t), and the
“bad one” Pw, who can choose w(t), and such choices have to be made at each time
instant t. The goal of the good player is to assure that the following condition

x(t) ∈ X (5.1)

is satisfied for all t ≥ 0 or for all t inside a proper interval 0, 1, . . .T (as usual 0 is
taken as the initial time), no matter what the “moves” of the bad player are.
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The problem is thought by assuming that Pw has the attitude of acting in the
“worst possible way” from the point of view of player Pu. In brief, the problem
is that of deciding if there exists a strategy for Pu that assures her1 to win against
any possible action of her opponent Pw. Player Pw is granted the “full information
advantage,” in particular he is aware of the strategy adopted by his opponent Pu.
There are basically three types of strategies

Open-loop: The whole sequence u(t) is decided a priori.
State feedback: u(t) = Φ(x(t)) is decided based on the knowledge of x(t).
Full information: u(t) = Φ(x(t),w(t)) is decided based on the knowledge of x(t)

and w(t).

Since both authors work in the control area, the open-loop strategy is immediately
disregarded (we will comment on it later); only the second and third ones will be
considered.

It is apparent that the condition x(0) ∈ X is not in general sufficient to assure
x(t) ∈ X t > 0. A natural way of trying to solve the above problem could be that
of thinking about the natural evolution of the game. It is a well-known principle
in Dynamic programming that in this way it is rather difficult to come out with a
solution [Ber00]. Indeed, the right way to face the problem is not that of considering
all possible future evolutions, but to analyze it backward in time. To illustrate
the idea, consider the problem of controlling the motion of two vehicles to avoid
collisions (see Fig. 5.1).

It is rather clear that if the vehicles are too close and/or their relative velocity
is too high if the front vehicle starts braking suddenly, then an accident is most
likely to occur. Without getting into the details of the second driver’s response time
and driving capability, let us see how it is possible to prevent an accident from
occurring. Clearly we can imagine two different scenarios: the one in which there is
cooperation between the two drivers and the one in which the two act independently.

Denote by y1 and y2 the relative positions and by ẏ1 and ẏ2 the corresponding
velocities. For the two-vehicles system we can consider equations of the form

ÿ1(t) = f1(y1, ẏ1) + u1(t)

ÿ2(t) = f2(y2, ẏ2) + u2(t)

Fig. 5.1 The simplified accident setting

1The sexist connotation of the game is not a new idea of the authors.
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where ui are the normalized forces, subject to |ui| ≤ ūi. It is possible to determine
in the state space a “forbidden” region F which corresponds to the values of
(y1, y2, ẏ1, ẏ2) which could eventually lead to an accident. This region will be
derived soon under some simplifications.

The first step is to define a “collision region” which is rather intuitive, in this case.
Such a region C may be reasonably assumed to be represented by |y1 − y2| < μ,
thus the non-collision set is just the complement

C̃ = {(y1, y2, ẏ1, ẏ2) : |y1 − y2| ≥ μ},

where μ > 0 is a function of the vehicle dimensions2.
Clearly being outside the “collision region” is far from assuring that no collision

will occur. Collision avoidance depends on the decision of the drivers and the initial
conditions. Here u1 and u2 are thought as “agents” or “players of the game.” Now
there are two different ways to formulate the problem, precisely

• the two agents u1 and u2 cooperate in achieving the goal;
• the two agents u1 and u2 do not cooperate.

In the cooperative case there are other options. For instance, the decision can
be “centralized” or “decentralized” (i.e., any agent makes her/his own decision).
Different choices for the system output are possible: the positions of both vehicles,
their relative position, the positions and the speeds possibly including measurement
errors.

If the agents cooperate, we are dealing with a constrained control problem.
We will deal with this kind of problems later on. In the non-cooperative case the
situation is more difficult to handle because, perhaps in an artificial way, one has to
attribute “a nature” to the two agents. In the mentioned game-theoretic framework,
as already mentioned, the idea is to consider the game from the perspective of one
player let us say u = u1 “the good player” (the following driver) and to consider
w = u2 as the “opponent” (the front driver). In plain words u2 wishes the crash to
occur while u1 would like to avoid it. This could seem unrealistic since in true life
(quite often) u2 has by no means the intention to provoke a crash. However, this
setup is quite reasonable because if we find a winning strategy for u1, we are on the
safe side even in the presence of unexpected decisions of u2, since any action of u2

cannot have fatal consequences.
To keep things simple, let us assume f1 = f2 = 0 and let us introduce variables

x1 = y1 − y2, ẋ1 = ẏ1 − ẏ2. After discretization (we used the exponential
approximation) we derive a very simple discrete-time model describing the above
situation:

x1(t + 1) = x1(t) + Tx2(t) + 1
2T2(u1(t) − u2(t))

x2(t + 1) = x2(t) + (u1(t) − u2(t))

2Including the necessary margins, an aspect that in Italy should be more seriously taken into
account.
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Fig. 5.2 Allowed set for
simplified accident setting x2

x1

Allowed

AllowedAllowed

Allowed

C

Note that we could take into account a reaction delay by considering a delayed
control u2(t − τD). Given the above (simplified) model, it is possible to define a
no-crash policy based on an “allowed region” (Fig. 5.2). Such a region is computed
starting from the no-crash set C̃, i.e. the set defined by |x1| ≥ μ.

We already know that, if we do not want an accident to occur, the relative speed
and velocity, at any time instant t, must not lie in the set C, say (x1(t), x2(t)) ∈ C̃. If
one goes one step backward in time, at time t − 1, the condition to be met to avoid
a collision are a) (x1(t − 1), x2(t − 1)) ∈ C̃ b) there exists |u1(t − 1)| ≤ ū1 such
that (x1(t), x2(t)) ∈ C̃ no matter what |u2(t − 1)| ≤ ū2 is. In view of the dynamic
equation and the limitation on the input values, for the latter to be satisfied, the
values x1(t − 1), x2(t − 1) must be such that there exists a control value u1(t − 1)
such that

[
x1(t − 1) + Tx2(t − 1) + .5T2(u1(t − 1) − u2(t − 1))

x2(t − 1) + T(u1(t − 1) − u2(t − 1)

]
∈ C̃

for each |u2(t − 1)| ≤ ū2. In other words, the allowed set induces a new set of
admissible states at time t−1. The intersection of these states and the no-crash region
C̃ is the set of two-steps-admissible-states, precisely states which are admissible at
time t − 1 and remain such in t. If we desire admissibility at all times, then we can
iterate the algorithm backward in time. We determine the set of the states at time t−2
which are in the no-crash region C̃ and will be in the two-steps-admissible-states at
time t − 1: this forms the three-steps-admissible-states. If we iterate this procedure
we derive the set of all allowable states. In this case, the no-crash region is formed
by the union of two disjoint convex sets represented in Fig. 5.2. The dashed lines are
introduced by the algorithm that “cuts” at each step part of the k-steps-admissible-
set to form the (k + 1)-steps-admissible-set. How to construct these lines will be
shown soon. It can be seen (and it is intuitive) that the allowable set is non-empty if
and only if ū2 ≤ ū1.
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So far an “avoidance” scenario has been briefly sketched. The general idea is
basically the following: consider a generic instant t and the set of all states at the
previous time t − 1 for which, by means of a suitable choice of u(t − 1) ∈ U , the
condition x(t) ∈ X is satisfied for all w(t) ∈ W . This set, named preimage set, is

PreSF(X ) = {x : there exists u ∈ U , s.t. f (x, u,w) ∈ X , for all w ∈ W}.
(5.2)

The notation PreSF means “state feedback” if the choice of u ∈ U is based on the
knowledge of the state x alone, and thus the inclusion must be satisfied for all w ∈
W . Since (5.1) has to be satisfied also at time t − 1, also the inclusion x(t − 1) ∈ X
must be satisfied, say x(t − 1) must be such that

x(t − 1) ∈ X−1 = PreSF(X )
⋂

X

From this simple reasoning it is apparent that to solve the problem the constraint
set X must be replaced by PreSF(X )

⋂
X , because this condition is necessary and

sufficient to assure that the state remains in X (for a proper choice of the control
value at time t − 1) for two consecutive steps. The procedure can be obviously
reiterated. If it is desired to have x(t − 2) ∈ X , x(t − 1) ∈ X and x(t) ∈ X , then it
is readily seen that the following must hold true:

x(t − 2) ∈ PreSF (X−1)
⋂

X

and so on. The procedure, indefinitely iterated backward in time, is the following.

Procedure. Backward construction of the admissible sets.

1. Set k = 0 and X0
.
= X .

2. Define

X−k−1
.
= PreSF(X−k)

⋂
X (5.3)

3. Set k = k + 1 and go to the previous step.

We point out that in the sequel we will replace the notation of

X (k) .
= X−k,

which appears more clear. Indeed the −k index is introduced now just to explain the
main idea of the backward construction.

In the general case, the previous procedure is not guaranteed to stop and its
implementation requires the adoption of stopping criteria that will be examined later.
Even when the procedure does not stop, it is possible to define the following set:

X̄−∞ =

∞⋂
k=0

X−k (5.4)
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The following properties are consequences.

• The sets X−k are ordered by inclusion

X−k−1 ⊆ X−k (5.5)

• The set X−k has the property that x(−k) ∈ X−k implies x(t) ∈ X for t = −k +
1,−k + 2, . . . , 0 for all admissible sequences w(t) ∈ W provided that a proper
strategy is applied and, conversely, x(t) �∈ X implies x(t) �∈ X for some t =
−k + 1,−k + 2, . . . , 0 and for some admissible sequence w(t) ∈ W .

• If, for some k,

X−k = X−k−1 (5.6)

then

X̄−∞ = X−k

As it will be shown later, the last property is fundamental since it allows to stop
the recursive computation. Unfortunately, in general, the condition is not satisfied
in a finite number of steps and stopping criteria based on numerical tolerances will
be considered in specific cases.

The following results [Wit68a, BR71a, GS71, Ber72] hold true.

Theorem 5.2. Assume that f is a continuous function, and that X , U , and W are
compact sets. Then, there exists a strategy u = Φ(x) and a set of initial conditions
Xini such that, for any x(0) ∈ Xini, x(t) ∈ X for all t ≥ 0 and all w ∈ W if and only
if X̄−∞ is non-empty. Moreover, any initial conditions set Xini of initial of conditions
must be a subset of X̄−∞, namely

Xini ⊆ X̄−∞. (5.7)

Proof. The proof of the theorem is in [Ber72] but it is given here for completeness.
Necessity is obvious. If the intersection is empty then, for any x(0) ∈ X , x(0) �∈

X−k for some k, say in at most k steps the state x(t) will be outside X for a proper
sequence w(t) ∈ W .

Sufficiency It is first shown that if X is a closed set, then PreSF(X ) is also closed.
Proving that it is closed amounts to showing that, if a sequence of vectors xi ∈
PreSF(X ) converges to x̄, then x̄ ∈ PreSF(X ).

Take one of such sequences xi ∈ PreSF(X ). By definition, for all i there exists
ui ∈ U such that

f (xi, ui,w) ∈ X

for all w ∈ W . Since U is compact, it is always possible to extract from {ui} a
subsequence u∗

i ∈ U that converges to an element ū ∈ U (clearly the corresponding
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subsequence x∗i → x̄). Therefore, without restriction, it can be assumed that also the
original sequence converges to ū. For any w ∈ W , by continuity,

yi = f (xi, ui,w) → f (x̄, ū,w)

and, since yi ∈ X (which is closed), f (x̄, ū,w) ∈ X , and then x̄ ∈ PreSF(X ) which
is then closed.

Recursively, it can be readily seen that the elements of the set sequence X−k are
all closed because the intersection of closed sets is a closed set. Then X̄−∞ is closed
by (5.4) (this is always true with the understanding that the empty set is closed).

The second step of the proof requires showing that, if x ∈ X̄−∞, then there exists
u = Φ(x) such that

f (x, u,w) ∈ X̄−∞.

Since x ∈ X̄−∞, x ∈ X−k−1 for all k ≥ 0. Then for any k there exists uk ∈ U such
that

f (x, uk,w) ∈ X−k,

for all w ∈ W . Again, it is possible to extract a converging subsequence of {uk}
uk → ū ∈ U . Since X−k are nested, for any arbitrary h, there exists k′ such that

f (x, uk,w) ∈ X−h.

for all w ∈ W , and for k ≥ k′. Since X−h is closed and since, by continuity,
f (x, uk,w) → f (x, ū,w), one gets

f (x, ū,w) ∈ X−h.

for all w ∈ W and for arbitrary h, and therefore f (x, ū,w) belongs to the intersection

f (x, ū,w) ∈ X̄−∞, for all w ∈ W ,

which is what was to be shown.

The so defined vector ū is chosen as a function of x ∈ X̄−∞ and therefore
implicitly defines a function u(x) such that if x(t) ∈ X̄−∞ then x(t +1) ∈ X̄−∞, for
all w ∈ W . The function u(x) can be formally defined as any selection u(x) ∈ Ω(x)
where Ω is the regulation map

Ω(x) =
{

u : f (x, u,w) ∈ X̄−∞, for all w ∈ W
}

(5.8)

The set x ∈ X̄−∞ is called the infinite-time reachability tube (or infinite-time
reachability set) and is the set of all the states in which the state evolution can
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be confined indefinitely. This set has the property of being the largest controlled-
invariant set included in X .

The assumption of continuity of f and compactness of U and X play a
fundamental role in the theorem. Indeed, if any of these is dropped, condition X̄−∞
remains necessary, but in general not sufficient (see Exercise 2).

The state feedback control case theory just reported (including procedure and
theorem) works without modifications if one considers the full information control
case Φ(x,w), with the only exception that the preimage set of a set X must be
defined in a different way

PreFI(X ) = {x : for all w ∈ W , there exists u ∈ U , s.t. f (x, u,w) ∈ X} (5.9)

From the game-theoretic point of view the new construction is based on the idea that
the opponent w plays first. The infinite-time reachability set X FI

−∞ can be computed
in the same way explained before, as the intersection of the backward computed
preimage sets. The control u = Φ(x,w) must be selected in the following regulation
map

Ω(x,w) =
{

u : f (x, u,w) ∈ X̄ FI
−∞

}
(5.10)

5.1.1 Linear systems with linear constraints

The backward construction procedure presented in the previous section can be
efficiently particularized and used to compute the largest invariant set for linear
discrete-time systems of the form

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

where A(w) and B(w) are as in (2.64)

A(w) =

s∑
i=1

Aiwi, B(w) =

s∑
i=1

Biwi

with

wi ≥ 0,

s∑
i=1

wi = 1

and where

d(t) ∈ D
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with D a polyhedral C-set. It is assumed that both X and U are assigned polyhedral
set including the origin as an interior point:

X = P(F, g) = {x : Fx ≤ ḡ}

U = P(H) = {u : Hu ≤ 1̄}

Moreover, X is assumed to be a C-set. The procedure to generate the sequence X−k

is described next. For convenience, the notation

X (k) = X−k

is now used.

Procedure. Backward construction of controlled-invariant sets for polytopic
systems.

Set k = 0, F(k) .
= F, g(k) .

= g, set X (k) = P(F(k), g(k)), fix a tolerance ε > 0
and a maximum number of steps kmax.

1. Compute the erosion of the set X (k) = P(F(k), g(k)) w.r.t. ED:

P̃ED(F(k), g̃(k)) = {x : F(k)(x + Ed) ≤ g(k), for all d ∈ D}

This set is given by the set of inequalities F(k)
i x ≤ g̃(k)

i , where

g̃(k)
i = g(k)

i − maxd∈D F(k)
i Ed = g(k)

i − maxd∈vertD F(k)
i d

2. Expand the set P̃ED(F(k), g̃(k)) in the extended state-control space IRn+m as
follows:

M(k) = {(x, u) ∈ IRn+m : u ∈ U , A(w)x + B(w)u ∈ P(F(k), g̃(k)),

for all w ∈ W}

This set is given by the following inequalities for (x, u)

F(k)[Aix + Biu] ≤ g̃(k), 1 = 1, 2, . . . , s,

Hu ≤ 1̄

3. Compute set R(k), as the preimage of M(k), which turns out to be the projection
of the set M(k) ⊂ IRn+m onto the state subspace

R(k) = Pr
(
M(k)

)
=
{

x : there exists u, s. t. (x, u) ∈ M(k)
}
. (5.11)

4. Set

X (k+1) = R(k)
⋂

X = R(k)
⋂

X (k)
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5. If

X (k) ⊆ (1 + ε)X (k+1) (5.12)

then STOP successfully;
6. If X (k) = ∅, then STOP unsuccessfully.
7. If k > kmax, then STOP indeterminately.
8. Set k := k + 1 and go to Step 1.

We remind the reader that all the operations between polyhedral sets carried out
in the above procedure, say erosion, intersection and projection, produce polyhedra,
unfortunately of increasing complexity. Given the above, the following proposition
is an obvious consequence.

Proposition 5.3. If X and U are polyhedral sets (which is indeed our case), then
the sets X (k) are polyhedra. Also, since it has been assumed that X is compact, they
are also compact and therefore X (k) is a sequence of nested polytopes.

The intersection of infinitely many polytopes is a convex set, but not a polyhedron
in general. Finding a controlled-invariant polyhedron is related to the finite stopping
of the procedure which is considered next.

We remind that, according to (5.6) if X (k) = X (k+1) for some k, then X (k) =
X̄ (∞). The condition (5.12) basically is the equivalent “up to a numerical tolerance.”
Even if this condition is met for a finite k it is not clear how to estimate such a value.
Therefore the procedure must consider a maximum iteration number for practical
implementation. However it is conceptually interesting to see what would happen
in an ideal computation if no limits on the maximum number of iterations kmax were
imposed (and, of course, there were no limits on the computer time and memory).
The following proposition clarifies the relation between the ideal infinite recursion
and the real one.

Proposition 5.4.

i) If kmax = ∞ and

X̄ (∞) =
∞⋂

k=0

X (k)

is a C-set, then, for any tolerance ε > 0, the procedure stops successfully in a
finite number of steps.

ii) Conversely assume that X̄ (∞) = ∅, then the procedure stops unsuccessfully in a
finite number of steps.

Proof. The proof of the first statement is based on the following fact: if X̄ (∞) is a
C-set then, for finite k̄, the following condition holds:

X (k) ⊆ (1 + ε)X̄ (∞), k ≥ k̄, (5.13)
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which implies (5.12). To prove (5.13) it is sufficient to show that it holds for some
k > 0, since the sets X (k) are nested. By contradiction, assume that X (k) �⊂ (1 +
ε)X̄ (∞). Then there exists xk ∈ X (k), but xk �∈ (1 + ε)X̄ (∞). Since xk ∈ X (k),
a compact set, then it is possible to extract a subsequence x∗k that converges to a
point x̄. Since the sets are nested, then for k large enough, x∗k ∈ X (h) and, since any
set X (h) is compact, x̄ ∈ X (h) for any h. This means that

x̄ ∈ X̄ (∞). (5.14)

This also implies that x̄ ∈ (1 + ε)X̄ (∞). On the other hand, x̄ cannot belong to the
interior because x∗k → x̄ and x∗k �∈ (1 + ε)X̄ (∞). Then x̄ must be on the boundary

x̄ ∈ ∂
{
(1 + ε)X̄ (∞)

}
. (5.15)

Now, conditions (5.14) and (5.15) imply that X̄ (∞) is not a C-set, so the first
assertion is proved.

The second assertion is immediate because the intersection of an infinite number
of closed nested set

⋂∞
i=0 X (k) is empty if and only if

⋂r
i=0 X (k) is empty for a

finite r.

Remark 5.5. The procedure can be formulated in a more general framework
(although only the “polytopic formulation” appears numerically reasonable) by
assuming that X , U , and D are convex and closed sets and that A(w) and B(w)
are continuous function of w ∈ W , with W compact. Then the sequence X (k) is
formed by convex sets, which are necessarily compact if X is compact. Note that
Proposition 5.4 is valid in the more general framework (see [Bla94] for details).

Once the final set is achieved, the regulation map is given by

Ω(x) = {u : Aix + Biu ∈ X̃ (∞)} (5.16)

where X̃ (∞) is the erosion of X̄ (∞) with respect to ED.
There are cases in which the procedure does not stop in a finite number of steps

unless a finite kmax is fixed. According to the proposition, this may happen if X̄ (∞)

has empty interior, but it is not empty. A very simple example is the system

x(k + 1) = 2x(k)

with X = {x : |x| ≤ 1}. The sequence of sets is

X (k) =

{
x : |x| ≤

(
1

2

)k
}
,



204 5 Dynamic programming

whose intersection is the origin. Thus, fixing a maximum number of steps is
fundamental, besides being reasonable for obvious practical reasons.

It is also to say that, in general, the set X̄ (∞) does not necessarily include the
origin even if X , U and D do so (see Exercise 3). For these cases the stopping
criterion (5.12) is not suitable. A different criterion for this case is the set distance

X (k) ⊆ X (k+1) + εB (5.17)

where B is the unit ball of any adopted norm.
In the sequel of the chapter (and of the book) other stopping criteria will be

proposed. For the moment being, note that if the problem is 0-symmetric, namely all
the sets X , U , and D are 0-symmetric, then all the polyhedral sets are 0-symmetric
and the set X̄ (∞) is non-empty if and only if it includes the origin.

Example 5.6. Consider the problem of tracking a point moving in the space with
a video-camera. The problem consists in moving the camera in such a way that
the object remains visible. If we consider a planar motion for both the object and
the camera (which is reasonable if the object is far enough) then we can write the
following set of equations

ẏ = v − s

v̇ = u − f

where y ∈ IR2 is the position of the camera with respect to the object (see Fig. 5.3) s
is the speed of the object, v is the speed of the camera, f is a disturbance force acting
on the camera, and input u is the force which controls the camera. In this model we

Fig. 5.3 The image tracking
problem

y
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assume that the flying object has “no inertia” so that it can vary its speed at each
time without any continuity requirement3. In practice, the speed as well as the force
acting on the camera can be bounded as follows:

‖s‖ ≤ smax and ‖f‖ ≤ f max,

with assigned smax and f max. The control action is also bounded in practice, say it
can be assumed that

‖u‖ ≤ umax,

with assigned umax. If the image is a rectangle with dimensions 2ymax
1 and 2ymax

2 ,
respectively, then the tracking problem can be reduced to the following one.

Find a control strategy such that the center of the image y satisfies the conditions

|y1| ≤ ymax
1 and |y2| ≤ ymax

2 ,

respectively. Note that, by their nature, the equations are decoupled in the y1 and
the y2 directions and moreover, if all ∞-type norms are considered, so that the
components of s, f , and u are independently bounded, the problem can be split into
two independent problems.

To simplify the exposition, we now consider a discrete version of the problem in
which horizontal speed and acceleration are evaluated as

y(t + 1) − y(t)
T

= v(t) − s(t)

v(t + 1) − v(t)
T

= u(t) − f (t)

(where the index has been dropped). Assume T = 1, x1 = y, x2 = v and d = −[s f ]T

so as to get the discrete-time model

x(t + 1) =

[
1 1

0 1

]
x(t) +

[
0

1

]
u(t) +

[
1 0

0 1

]
d(t)

Let us assume the following constraint sets

X = P̄ (I, 4) = {x : ‖x‖∞ ≤ 4}, U = {u : |u| ≤ 4}

and

D = P̄ (I, 1) = {d : ‖d‖∞ ≤ 1}.

3Fairly reasonable in the case of an insect.
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Now the described set-theoretic procedure is able to reply with an yes–no answer to
the next question

• does there exist a control strategy that solves this tracking problem?

In the case of an “yes” answer, the procedure provides the set of initial condition for
which the problem can be solved.

Let us describe all the steps of the procedure in detail for this example. As the
first step, the erosion of the set

X (0)
ED = {x : − 3 ≤ x1 ≤ 3, − 3 ≤ x2 ≤ 3}

is computed. Then, the expansion of the set M(1) is characterized by the inequalities

−3 ≤ x1 + x2 ≤ 3, − 3 ≤ x2 + u ≤ 3, − 4 ≤ u ≤ 4

The projection of this set on the x1 − x2 space and the subsequent intersection with
X (0) produces the first set of the sequence

X (1) = {x : − 4 ≤ x1 ≤ 4, − 4 ≤ x2 ≤ 4, − 3 ≤ x1 + x2 ≤ 3}

The second step requires to compute the erosion of this set

X (1)
ED = {x : − 3 ≤ x1 ≤ 3, − 3 ≤ x2 ≤ 3, − 1 ≤ x1 + x2 ≤ 1}

The expanded set M(2) is characterized by the next inequalities

−3 ≤ x1 + x2 ≤ 3, − 3 ≤ x2 + u ≤ 3, − 4 ≤ u ≤ 4, − 1 ≤ x1 + 2x2 + u ≤ 1

Projecting and intersecting with X (1) we achieve

X (2) = {x : −4 ≤ x1 ≤ 4, −4 ≤ x2 ≤ 4, −3 ≤ x1+x2 ≤ 3, −5 ≤ x1+2x2 ≤ 5}

This set remains unchanged in the subsequent iteration and therefore

X (3) = X (2) = X̄ (∞)

The computed sequence of sets is represented in Figure 5.4. Note that the new plane
is a position-speed plane different from that represented in Figure 5.3, which is
the image plane, therefore the original problem will have two of these “pictures,”
associated with the horizontal and the vertical motion, respectively, as long as the
problem can be decoupled.

The regulation map for this system is derived from (5.16) and precisely

Ω(x) = {u : −g̃ ≤ F[Ax + Bu] ≤ g̃}
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Fig. 5.4 The sequence of
sets X (k)

X (0)=X

X (3)=X (2)X (2)

X (1)

where

F =

⎡
⎢⎢⎣

1 0

0 1

1 1

1 2

⎤
⎥⎥⎦ and g̃ =

⎡
⎢⎢⎣

4

4

3

5

⎤
⎥⎥⎦

This is clearly a lucky case. Very simple examples of systems can be provided for
which the complexity of the found sets grows rather rapidly with time. Furthermore,
unless in very special cases, the set X̄ (∞) is not finitely determined.

Example 5.7. Consider the θ-rotation system ẋ = Aθx with

Aθ =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]

and X = P̄(I) = {x : ‖x‖∞ ≤ 1}. The set X (k) is given by the intersection of all
the rotations of the square X

X̄ (∞) =

∞⋂
k=0

P̄
(
Ak
θ

)
=

∞⋂
k=0

P̄ (Aθk) ,

precisely the set defined by the inequalities

−1 ≤ cos(θk)x1 − sin(θk)x2 ≤ 1

−1 ≤ sin(θk)x1 + cos(θk)x2 ≤ 1,
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for k = 0, 1, 2, . . . . Simple geometrical reasoning leads to the conclusion that this
set is

• a polytope if θ = p
qπ is a rational multiple of π;

• the unit circle in the opposite case.

Therefore, in the latter case, even for this trivial two-dimensional example, the
procedure would not stop without the adoption of the tolerance ε. Note also that a
discontinuity phenomenon shows up: arbitrarily small variations of the parameters
of the matrix (θ in the previous example) produce completely different sets (e.g., a
circle instead of a polytope).

It can be shown that, even under stabilizability assumptions, the largest controlled-
invariant set is not always finitely determined for a discrete-time system (see
Exercise 13 of Chapter 8).

We already mentioned that the fundamental motivation for the adoption of
polyhedral sets instead of sets of simpler shape, e.g., the ellipsoids, lies in the fact
that the considered set operations, such as intersection or erosion, do not preserve
the ellipsoidal shape. This is why (at least at the time of writing the book) the only
reasonable way to compute the infinite-time reachability set is to approximate it by
means of a polyhedron.

5.1.2 State in a tube: time-varying and periodic case

The results of the previous section can be easily generalized to the case of time-
varying systems and target tubes. Actually, the pioneering work on this topic
[BR71a, GS71] considered time-varying system. In general, one might have systems
of the form

x(t + 1) = A(t)x(t) + B(t)u(t) + E(t)d(t)

with time-varying constraints of the form

x(t) ∈ X̂t, u(t) ∈ Ût, d(t) ∈ D̂t

The sequence of set X̂t is called the target tube. Given the initial condition x(τ) ∈
X̂τ , the control must assure that x(t) ∈ X̂t for t > τ . To assure the condition in the
future, one must assure that the state is included in a proper subset x(τ) ∈ Xτ ⊆ X̂τ .
The sequence of these subsets is called the reduced target tube.

In this framework it is practically reasonable to consider two cases:

• the finite horizon case t = −T,−T + 1, · · · − 1, 04;
• the infinite-time periodic case.

4For convenience, negative values of time are assumed.
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The backward set construction is the natural extension of that previously proposed.
Fix X0 = X̂0 and k = 0 and consider the following set (we go back to the original
time-reversed notation):

X̃−1−k = {x : ∃u ∈ U−1−k :

A(−1 − k)x(−1 − k) + B(−1 − k)u + E(−1 − k)d ∈ X0,

∀d ∈ D−1−k}

Define

X−1−k = X̃−1−k

⋂
X̂−1−k

and iterate the procedure in the same way for k = −1,−2, . . . till the end of the
horizon. The sets X−τ ⊆ X̂−τ are the sets of states at time τ for which the problem
of keeping the state inside X̂t is solvable for t = −τ + 1,−τ + 2, . . . , 0.

Even though this procedure can, in principle, be iterated over an infinite horizon,
it must be said that, for a generic sequence of time-varying data (i.e., A(t), B(t),
E(t), X̂t, Ut and Dt), it is not clear how to establish convergence criteria. There are
anyhow special cases of interest for which some results can be derived.

One special case worth mentioning is the periodic one, when all the data (i.e.,
A(t), B(t), E(t), Xt, Ut and Dt) are periodic with a common period T, and in this
event it can be shown that, for any starting set, the sequence either collapses to an
empty set or converges (unfortunately, not necessarily in finite time) to a periodic
sequence of sets, the periodic target tube. For details on this problem, the interested
reader is referred to [Pic93] and [BU93].

Example 5.8. Let us consider the example reported in [BU93] of a distribution
system, already considered in Example 3.9 (see Fig. 3.7), subject to a periodic
demand with uncertainties:

x1(t + 1) = x1(t) − f̄1(t) − d1(t) + u1(t) − u2(t)

x2(t + 1) = x2(t) − f̄2(t) − d2(t) + u2(t)

The period is T = 8. The signal f̄1 and f̄2 represent the periodic nominal values of
the demand and their values are reported in table 5.1.The uncertainties are bounded
as |d1| ≤ 1 and |d2| ≤ 1. We assume the bounds

0 ≤ x1 ≤ 8, 0 ≤ x2 ≤ 8, 0 ≤ u1 ≤ 5, 0 ≤ u2 ≤ 5.

Table 5.1 The periodic
demand for Example 5.8

t 0 1 2 3 4 5 6 7

f1 1 1 2 3 2 3 1 1

f2 0 1 1 2 2 1 1 0
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X 0 X−1 X−2 X−3

X−4 X−5 X−6 X−7

X−8 X−9 X−10 X−11

X−12 X−13

Fig. 5.5 The sequence of set converging to the periodic target tube

Although the data of the plant are all constant, the periodic nature of f makes this
problem periodic. The evolution of the target tube computed backward in time is
depicted in Figure 5.5. In this case the condition X−13 = X−5 is satisfied and this
implies that the periodic target tube is achieved by extending the family of sets from
X−13 to X−6 by periodicity.

According to the works in [BR71a, GS71], the heavy computation of the
sequence of sets can be rendered “practically” possible5 by replacing the sequence
of actual sets by a sequence of sets of a “simpler shape,” typically ellipsoids.
However, the consequence is that the procedure becomes conservative. To briefly
examine this problem, consider the case of an ellipsoidal constraint set X (0) = X .
The first problem arises with the erosion: indeed the erosion of an ellipsoid is not in
general an ellipsoid. Therefore, the erosion must be replaced by an approximating
ellipsoidal subset:

E(0) ⊆ [X0]ED

5Although the extent of possible computation changed in the meanwhile.
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Then the expansion of this set has to be computed (to keep the notation simple, A
and B do not contain any index)

{(x, u) : Ax + Bu ∈ E(0), for some u ∈ U}

Again, this set in not an ellipsoid (even if U is such), its projection on the x space is
not an ellipsoid, and the subsequent intersection with X (0) = X is not an ellipsoid.
Therefore, again, we must replace the computed set by an ellipsoidal subset X−1.
The procedure repeats exactly in the same way. The obvious drawback is that the
sequence of ellipsoids may end, due to an empty element, even if the true tube is not
empty.

It is to say that this kind of procedures were originally presented in a slightly
different form. The main difference with respect to the one proposed here was the
computation of the preimage set, which was performed differently from (5.11).
Given a set X the following set was preliminarily computed: A−1XED = {x :
Ax ∈ X }. In some sense this is a “lucky” operation because, if A is invertible,
the preimage of an ellipsoid is an ellipsoid, thus if the erosion is an ellipsoid (it
happens, for instance, when D is a singleton) A−1XED is also an ellipsoid.

Then the preimage can be computed as the following sum of sets

PreSF(X ) = A−1X − BU (5.18)

which is anyway not an ellipsoid even if A−1XED andU are such. There are formulas
which allow the replacement of the results of these operations by included subsets
of the ellipsoidal type. Specific formulas are provided in the work by [GS71, Sch73]
to which the reader is referred for more details. Clearly the sum and the preimage
A−1XED of polyhedra produce polyhedra and so, also in this different formulation,
adopting polyhedra does not cause (but numerical) problems.

5.1.3 Historical notes and comments

As already mentioned, the ideas presented here of the backward construction of
target tubes trace back to the early 70s and are due to the work by Witsenhausen,
by Glover and Schweppe and by Bertsekas and Rhodes [Wit68a, BR71a, GS71,
Ber72]. Many works related to the above were written in the following years,
often considering sub-problems, precisely dealing only with constraints, or with
disturbance rejection problems. For instance, a subsequent work [MB76] basically
considered the specific case of the infinite-time reachability set for constrained
linear systems. The construction of Lyapunov functions for systems proposed in
[Bla94] is based on a backward mechanism as the considered one. The disturbance
rejection problem has been faced in [Sha96b] where the connections with the l1
problem ([DP87, DDB95]) have been evidenced. Related work along this lines is
in [DDS96, BP98, DSDBB04, AR08, RB10]. The periodic case was considered
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later by [Pic93, BU93]. The spirit of the procedure is typical of the dynamic
programming. The reader is referred to the excellent work by D.P. Bertsekas [Ber00]
for a deeper exposition on this matter. Many other problems can be faced with the
same spirit. For instance, the well-known path selection on an oriented graph is a
typical problem that can be dealt with by means of backward construction. Suppose
you want to reach a target node, say node k. Then, consider the set of all nodes
that are connected to node {k} and denote R(1, {k}). Then go one step backward
and compute the set of all nodes which are connected to one of the elements of
this set (we assume that each node is connected to itself so the new set includes the
former one). These are nodes from which, in two transitions, you can reach node
{k}, precisely

R(1,R(1, {k})) = R(2, {k})

By iterating this procedure, the recursive relation

R(k + 1, {k}) = R(1,R(k, {k}))

is achieved. It is more than obvious that this procedure stops in finite time (since the
set of nodes is finite). Now assign to each node {h} the number

dist(h, k) = min{i : {h} ∈ R(i, {k})}.

Then the feedback procedure is the following: given the state in node {h(t)}, go to
the node h(t + 1) which is at the minimal distance from {k} among the connected
nodes. It is obvious that if {k} is the target node, the distance dist(h(t), k) decreases
of one unit at each transition. The function dist(h, k) can be considered as a “discrete
event” Lyapunov function.

5.2 Backward computation of Lyapunov functions

In this section, it is shown how to compute (control) Lyapunov functions by means
of a procedure inspired by the concepts presented in the previous section. In simple
words, it is shown how to construct a Lyapunov functions proceeding backward
in time. In practice, the determination of a Lyapunov function proving stability or
stabilizability of the system under consideration requires to find a contractive set
rather than an invariant domain. Take 0 < λ < 16 and consider a system of the form

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

with A and B continuous functions of w ∈ W , with W compact, d ∈ D, with D a
C-set (possibly under constraints u ∈ U , a closed and convex set).

6To avoid both singularities and trivialities it is always assumed that λ �= 0.
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According to the results in Section 4.3, a convex C-set S is λ-contractive for the
considered system if and only if it is controlled invariant for the modified system

x(t + 1) =
A(w(t))

λ
x(t) +

B(w(t))
λ

u(t) +
E
λ

d(t) (5.19)

Therefore, to achieve a contractive set, instead of a controlled-invariant one, one can
just use the backward procedure described in Subsection 5.1.1.

To this aim, a new stopping criterion for the procedure is introduced. Such a
criterion can be derived by the next proposition, which basically states that it is
possible to determine a contractive set in finite time if the contractivity factor λ is
relaxed by an arbitrarily small amount.

Proposition 5.9. Consider the modified system (5.19), where u ∈ U includes
the origin as an interior point, and with A(w) and B(w) continuous functions of
w ∈ W , a compact set. Consider the backward construction procedure defined in
Subsection 5.1.1, initialized with a (polyhedral) C-set X . Then, if there exists a
λ-contractive C-set included in X , for any ε > 0 there exists k̄ such that, for k ≥ k̄,
the set X (k) (computed by means of the procedure for the modified system (5.19)) is
λ∗-contractive with contractivity factor λ∗ = (1 + ε)λ

Proof. It follows from Proposition 5.4 (assuming kmax = ∞) since in a finite number
of steps k̄ condition (5.12) occurs

X (k̄) ⊆ (1 + ε)X (k̄+1)

By definition, for all x ∈ X (k̄+1) there exists u(x) ∈ U such that

A(w)

λ
x +

B(w)

λ
u(x) +

E
λ

d ∈ X (k̄) ⊆ (1 + ε)X (k̄+1)

for all d ∈ D and w ∈ W . By multiplying the leftmost and rightmost terms in the
above formula by λ, one gets

A(w)x + B(w)u(x) + Ed ∈ (1 + ε)λX (k̄+1),

say X (k̄+1) is (1 + ε)λ-contractive.
The fact that this condition holds for all k ≥ k̄, follows from (5.13).

The sequence of sets X (k) computed for the modified system (5.19) converges
to Sλ, the largest λ-contractive set included in X . This means that if any other
λ-contractive set included in X exists, then it is included in Sλ. This follows from
the fact that X (k) converges to the largest controlled-invariant set for the modified
system.



214 5 Dynamic programming

Note that the concept of “largest contractive” is well defined as it is easy to see.
Indeed, given two λ-contractive sets S1

λ and S2
λ, the convex hull of their union

conv{S2
λ

⋃
S2
λ}

is λ-contractive. Therefore the λ-contractive sets included in X are partially ordered,
thus forming what it is called a joint-semi-lattice.

The interest for the above result lies in the fact that, once the procedure has
produced a λ-contractive polyhedral C-set, the corresponding Minkowski function
turns out to be

• in the case U = IRm, a Lyapunov function outside X ;
• in the case E = 0, a Lyapunov function inside X ;
• in the case E = 0 and U = IRm, a global Lyapunov function.

In general nonlinear control laws can be associated with this control Lyapunov
function. The class of all such controllers can be derived as Φ(x) ∈ Ω(x), where
Ω is the regulation map (5.16). A possible controller is the piecewise linear
controlled (4.39) that can be constructed from the polyhedral set Sλ.

Although discrete-time systems only have been considered so far, it is to say
that the proposed procedure can also be used to compute contractive sets for
continuous-time systems, in view of the existing relation between a continuous-time
system and its Euler Auxiliary System (EAS). Indeed, according to Lemma 4.26, a
β-contractive polyhedron for the continuous-time system

ẋ(t) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

can be computed by determining a λ-contractive set for the Euler Auxiliary System
(EAS)

x(t + 1) = [I + τA(w(t))]x(t) + τB(w(t))u(t) + τEd(t)

where τ is a “small” positive number. The following proposition holds true.

Proposition 5.10. If the procedure produces a polyhedral λ-contractive set S ⊆ X
for the EAS, then S is a β-contractive C-set for the continuous-time system with

β =
1 − λ

τ
.

Conversely assume that the continuous-time system admits a β-contractive C-set
S ⊆ X . Then for all 0 < β∗ < β there exists a λ∗-contractive polyhedral C-set for
the EAS with

λ∗ = 1 − τβ∗,

which can be determined by the procedure, by choosing τ small enough, in a finite
number of steps.
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Proof. The first claim follows from Lemma 4.26. The second statement is more
involved. The reader is referred to [Bla95, BM96a] for a proof.

The importance of this proposition is in that it says that whenever there exists a
contractive C-set for the continuous-time system, it can be found by the procedure.
The weakness is that it provides no recipe on how to choose the parameters τ and λ.

In general, the application of the procedure turns out to be the following. One
chooses β and fixes τ and λ such that λ = 1 − τβ, applies the procedure with
a certain ε to find the largest λ-contractive set and waits long enough (fixing the
maximum number of steps) to see if it converges. If it converges, then it produces
a λ∗-contractive set with λ∗ = λ(1 + ε) which is a β∗ contractive set for the
continuous-time system with β∗ = 1−λ∗

τ . If the procedure does not converge,
then one should reduce τ or/and the convergence requirement β and restart the
computation. An adaptation criterion suggested in [Bla95] is to assume λ(τ) =
1 − ρτ2, with ρ a positive fixed parameter which allows only to iterate only over τ .
Note that in this way, by reducing τ , the corresponding convergence requirements
decrease roughly as β = (1 − λ(τ))/τ = ρτ and this is the reason of assuming a
square dependence of λ(τ) on τ .

Example 5.11. Consider the two-dimensional dynamic system with matrices

A1 =

[
0.3 0.5

−0.6 0.3

]
, A2 =

[
0.4 0.4

−0.7 0.2

]
, B1 = B2 =

[
1

1

]
, E =

[
0

1

]

and with the following constraint sets, X = P̄ (I, 3), U = P̄ (I, 1) and D =
P̄ (I, 1.5). The largest 0.9-contractive set included in X resulted in P̄ (F, 1), with

F =

⎡
⎢⎢⎣

0 0.3333

0.2727 −0.1364

0.3182 −0.0909

0.3492 0.0635

⎤
⎥⎥⎦

and is depicted in Figure 5.6. The vertices (just half of them are reported) are

X =

[
2.3182 2.9722 2.4444 2.1667

3.0000 −0.5972 −2.4444 −3.0000

]
.

5.3 The largest controlled invariant set

In this section, several topics concerning the computation of the largest controlled-
invariant set (or the largest contractive sets) are discussed. The first issue is how
to manage the computation of contractive sets in the presence of joint control-state
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Fig. 5.6 The .9 contractive
set for example 5.11
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constraints. Consider the system

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

and a set of the form

S(μ) = {x : ‖Cx + Du‖ ≤ μ} (5.20)

For brevity we do not consider uncertainties. The above set represents a typical set
of mixed constraints on both state and control action. Clearly, as special cases, the
above constraints include the cases in which the constraints are separately given to
input and state. To motivate this generality, a couple of cases in which this kind of
constraints naturally arises is presented.

A typical case in which the joint state-control constraints have to be considered
is when one wishes to consider a pre-stabilizing compensator. This means that the
control is parameterized as u = Kx + v where K is a given stabilizing gain and
v is a new term which is typically used for performance, as we will see later. The
constraint u ∈ U then becomes

Kx + v ∈ U

which is of the considered form if, for instance U is the unit ball of some norm.
Another case is the presence of rate bounds. Assume that one wishes to impose

constraints on ẏ = Cẋ. If a bound of the form ‖ẏ‖ ≤ μ is assumed, then the above
translates into

‖CAx + CBu‖ ≤ μ.
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More in general, without difficulties, it is possible to consider systems defined by
constraints of the form

Cix + Diu ≤ μi.

To simplify the exposition, symmetric constraints derived by bounds on the
∞-norm are considered, which are special polyhedral sets. Furthermore, we limit
the discussion to certain systems with no disturbances as inputs (the uncertain
case can be easily inferred from this by using, once again, some of the previously
presented results).

Definition 5.12 (Compatible set). A contractive set P is said to be compatible
with the constraints (5.20) if one of the possible control laws u = Φ(x) is such that

‖Cx + DΦ(x)‖ ≤ μ

for all x ∈ P

Note that, in general, it is not possible to talk about “inclusions” of P inside S(μ)
in the extended state-control space since the set P is unbounded in the “u-direction”
whereas S(μ) could be bounded. Clearly, if the constraints are separable in ‖C̃x‖ ≤
μ and ‖D̃u‖ ≤ μ, then we are just talking of the largest contractive set inside the
polyhedron {x : ‖C̃x‖ ≤ μ} under constrained control (here we do not use P̄[C, μ]
to avoid conflicts of notations). Consider, for instance, the scalar system

x(t + 1) = 2x(t) + u(t) (5.21)

with |u| ≤ 4. For this system one can easily realize that the largest set of state which
can be driven to 0 (in a sufficient number of steps) is the open interval (−4, 4). For
sure the closed interval [−3, 3] is λ-contractive with λ = 2/37.

Let us consider the control u = −2x + v, so that

x(t + 1) = v(t)

The new constraints are

| − 2x(t) + v(t)| ≤ 4.

In the x − v plane this set is depicted as in Figure 5.7. As previously mentioned, the
interval [−3, 3] (represented by the thick line in Figure 5.7) is contractive and still
remains such, as it can be easily checked. Indeed any state inside it can be driven to

7Note that, for fixed λ ≤ 1, the largest contractive set is closed while the set of states that can be
driven to 0 is open.
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Fig. 5.7 The new constraints

v

x−3 3

the interval [−2, 2] with the considered constraint. But no inclusion can be claimed
with respect to the new constraint set in the joint x − v space.

Compatible sets have an important property, reported in the next proposition.

Proposition 5.13. Given two λ-contractive sets P1 and P2, compatible with S(μ),
the convex hull of their union is a contractive compatible with S(μ).

Proof. Take x1 ∈ P1 and x2 ∈ P2. By definition there exist u1 and u2 such that

Ax1 + Bu1 ∈ λP1, Ax2 + Bu2 ∈ λP2.

Take any convex combination x = αx1 + βx2 and u = αu1 + βu2, α + β = 1,
α, β ≥ 0, to get

A(αx1 + βx2) + B(αu1 + βu2) ∈ λconv{P1

⋃
P2}

and

‖C(αx1 + βx2) + D(αu1 + βu2)‖ ≤ α‖Cx1 + Du1‖ + β‖Cx2 + Du2‖ ≤ μ.

Therefore, a proper control function Φ(x) can be defined by taking

Φ(x) = α(x)Φ1(x) + β(x)Φ2(x),

whereΦ1(x) and Φ2(x) are the control laws associated with P1 and P2, respectively.

Therefore it is reasonable to seek for the largest λ-contractive set compatible with
the constraints (5.20). The procedure which performs such a task is essentially the
same previously proposed. Consider an initial constraint set of the following form

Σ = {(x, u) : Fxx + Fuu ≤ g}
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along with the system

x(t + 1) = Ax(t) + Bu(t) + Ed(t)

and d(t) ∈ D, the latter being a C-set. Parametric uncertainties are not considered
for brevity but they can be included without essential changes. We will comment
on this later on. The next procedure extends the one previously described for the
computation of the largest λ-contractive set.

Procedure. Backward construction for polytopic systems with mixed state-input
constraints.

Set k = 0, [F(k)
x F(k)

u ]
.
= [Fx Fu]. Fix a tolerance ε > 0 and a maximum number

of steps kmax.

1. Consider the projection of the set Σ

X (k) = Pr(Σ) = {x : ∃u, such that (x, u) ∈ Σ}

2. Compute X̃ (k), the erosion of the set X (k) w.r.t. ED:

X̃ (k) = {x : x + Ed ∈ λX (k), ∀d ∈ D}.

3. Expand the set in the extended state-control space IRn+m as follows:

M(k) = {(x, u) ∈ Σ : Ax + Bu ∈ X̃ (k)}

4. Compute the preimage set Pr
(
M(k)

)
, that is the projection of the set M(k) ⊂

IRn+m on the state subspace

R(k) = Pr
(
M(k)

)
=
{

x : there exists u, s. t. (x, u) ∈ M(k)
}
. (5.22)

5. Set

X (k+1) = R(k)
⋂

X (k)

6. If

X (k) ⊆ (1 + ε)X (k+1) (5.23)

then STOP successfully.
7. If X (k) = ∅, then STOP unsuccessfully.
8. If k > kmax, then STOP indeterminately.
9. Set k := k + 1 and go to Step 1.

Note that there is no guarantee that the resulting set is compact, unless additional
assumptions are introduced (for instance, that the initial projection ofΣ is compact).
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There is an extra condition which assures the boundedness of the resulting set. To
this aim, the next well-known definition is introduced

Definition 5.14 (Transmission zeros). Given the system (A,B,C,D) if there exist
a complex value σ and appropriate vectors x̄ and ū, not both null, for which

[
A − σI B

C D

] [
x̄
ū

]
=

[
0

0

]

then σ is said to be (finite) right transmission zero.

This condition is equivalent to the existence of an input and an appropriate initial
condition for which the output is identically zero. It is a trivial exercise to show that
this input is ūeσt (ūσt in the discrete-time case) and the initial condition is x̄.

Proposition 5.15. The largest controlled invariant set (or λ-contractive set) com-
patible with S(μ) = {(x, u) : ‖Cx + Du‖∞ ≤ μ} is bounded if and only if the
system (A,B,C,D) has no finite transmission zeros.

Proof (If). Let P be a closed and convex contractive set which is 0-symmetric
and compatible with S(μ). This set can be represented as the sum of a compact
0-symmetric set P̄ and a subspace T :

P = P̄ + T

The “if” assertion is proved if we show that T = {0}, the null subspace, in the
absence of finite transmission zeros. Indeed we can see that if T �= {0} the system
admits finite transmission zeros.

The subspace T is necessarily (A,B) invariant. By contradiction, assume that
there exists x ∈ T for which Ax + Bu �∈ T , for all u. Define

ξ(x) = min
z∈T ,u∈IRm

‖Ax + Bu − z‖ > 0

the minimum Euclidean distance of Ax + Bu from T . Denote by û and ẑ the vectors
which realize the minimum distance. Now consider the scaled vector ρx. Then
necessarily

ξ(ρx) = min
z∈T ,u∈IRm

‖Aρx + Bu − z‖ = ‖Aρx + Bρû − ρẑ‖ = |ρ|ξ

that is, the minimum distance ξ(ρx) of Aρx + Bu from T grows arbitrarily with ρ.
On the other hand, if x ∈ T , then ρx ∈ T ⊆ P , so that Aρx + Bv ∈ P for some v,
since P is contractive. Then

Aρx + Bv = z + w, z ∈ T , w ∈ P̄,

where w is bounded: a contradiction with the statement that ξ(ρx) grows arbitrarily.
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Once we have established that T is (A,B)-invariant, consider a pair of vectors
x̄ ∈ T and ū such that

Ax̄ + Bū ∈ T ,

which implies

Aρx̄ + Bρū ∈ T

Consider now the case in which D = 0. In this case, we must have ‖Cx̄‖ ≤ μ for
any x̄ ∈ T . Since T is a proper subspace, then for any non-zero element x̄ ∈ T
‖Cρx̄‖ ≤ μ, for any arbitrary scaling factor ρ.

Then, necessarily,

Cx̄ = 0

To complete the “if”-proof, consider a basis matrix T for T , T = [T1 . . .Ts] and let
U = [U1 . . .Us] be a set of vectors such that ATk + BUk ∈ T . Then [BM92], for
some square P, the following equality holds

AT + BU = TP

Take σ as any eigenvalue of P and let r be a corresponding eigenvector. Then ATr +
BUr = Tσr and, since Tr ∈ T ,

[A − σI]Tr + BUr = 0, CTr = 0

which means that the system has finite transmission zeros.
A simple way to consider the case D �= 0 it is to consider the delay-augmented

system

x(t + 1) = Ax(t) + Bu(t)

u(t + 1) = v(t)

y(t) = Cx(t) + Du(t)

namely the system with matrices

Aaug =

[
A B
0 0

]
, Baug =

[
0

I

]
, Caug =

[
C D

]
, Daug =

[
0
]

Then it is immediate that, if we set

v(t) = Φ(x(t + 1)) = Φ(Ax(t) + Bu(t)),



222 5 Dynamic programming

any trajectory of the original system can be achieved by a proper initialization of
u(0) and therefore P is λ-contractive for the original system if and only if it is such
for the augmented system. The fact that the set is unbounded implies that there are
finite transmission zeros for the augmented system. But it is no difficult to see that
these are those of the original system.

(Only if) To prove the opposite implication, we have that if the system has finite
transmission zeros, then there exists a controlled-invariant subspace T [BM92],
namely such that for all x ∈ T there exists u assuring that Ax + Bu(x) ∈ T
and Cx + Du(x) = 0. This means that the proper subspace T is a contractive set
compatible with the constraint8

For further details on the issue of (possibly unbounded) controlled invariant
polyhedral sets, the reader is referred to [DH99].

The main reason for which it is important to have a bounded contractive set is
stability. In the case of an unbounded contractive set stability might not be achieved
(only partial stability can [Vor98]) as in the following example.

Example 5.16. Consider the system whose matrices are

A =

[
ν −κ2
1 ν

]
, B =

[
0

1

]
, C =

[
1 1

]
, D

Consider the constraints |y| = |x1 + x2 + Du| ≤ 1. If D �= 0, the largest contractive
set compatible with the constraints is clearly the whole space IR2. This is true no
matter how C is chosen. In the case D = 0 the whole constraint-admissible state

Σ(1) = {(x1, x2) : |x1 + x2| ≤ 1}

is λ-contractive. Indeed no matter how (x1(t), x2(t)) are taken (inside this strip),
there is a choice of u such that y(t + 1) = x1(t + 1) + x2(t + 1) = 0 (i.e., Σ(1) is
0-contractive). However, the fact that this strip is contractive does not imply that the
system is stable. The main role is played by the system zero which turns out to be
σ = ν+ k2 (while the poles are ν± jk). If and only if the zero is stable it is possible
to find a stabilizing control which renders the strip invariant. This can be seen by
considering the transformation z1 = x1 and z2 = x1 + x2, so as to achieve

Â =

[
ν + κ2 −κ2
1 + κ2 ν − κ2

]
, B̂ =

[
0

1

]
, Ĉ =

[
0 1

]
, D̂ = 0

Then we can indeed assure the condition |y| = |z2| ≤ 1, however the first equation
becomes

z1(t + 1) = (ν + k2)z1(t) − κ2z2(t)

8Since in the case of subspaces λT = T any controlled-invariant subspace is contractive, but the
motion on this subspace is not necessarily stable. If we wish to have convergence we must impose
conditions on the eigenvalues of P.
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Fig. 5.8 The largest 0.98
contractive set inside the strip

x1

x2

Then if the zero is unstable (for instance, (ν + k2) > 1), there is no way to drive
the state to zero for any z1(0), since z1 is “controlled through z2” which is bounded
as |z2| < 1. Conversely, if |(ν + k2)| < 1, stability is assured, for instance by
considering the control

u(t) = −(ν + κ2)z1(t) − νz2(t),

which drives z2 to zero in finite time. To solve the problem in the case of an unstable
zero we must add fictitious constraints. For instance, for ν = 0.9 and κ = 0.4, the
system is stable, |ν + jk| =

√
0.97, but non minimum-phase, since ν + κ2 = 1.06.

There is no hope to achieve stability and the whole strip as an invariant set. Then we
can add the “bounding constraints” |x1| ≤ 1000 and run the program. The largest
λ-contractive set included in the strip with λ = 0.98 is represented in Figure 5.8.
This set has the vertex and plane representations V̄ [X] and P̄ [F], respectively, where

X =

[
2.002 1.7

−1.002 −2.7

]
, F =

[
0.4586 −0.0815

1 1

]
.

Note that the fictitious constraints introduced to achieve a bounded set are (by far)
not active in this set. The control which can be associated with this set, which is
affine to a diamond, is linear and precisely

u = −1.451x1 − 0.8199x2.

The presented results are valid, without changes, for continuous-time systems. They
can be extended also to uncertain systems, with the understanding that the maximal
contractive set is bounded if the system has no zeros finite transmission zeros for
any value of the uncertainties.
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5.4 The uncontrolled case: the largest invariant set

A special important case is that in which no control action is present, precisely
B = 0 or, equivalently, a given linear control law has been chosen. Assume initially
that E = 0 and consider the following problem.

Problem. Given a C-set X and the system

x(t + 1) = A(w(t))x(t), (5.24)

find the largest λ-contractive set Smax
λ (here we will consider also the largest

positively invariant set corresponding to λ = 1) included in X .

There are two basic motivations for this problem. The first is that, if such a largest
set includes the origin as an interior point, then the system is stable and a speed of
convergence λ is assured (a special case of the results in the previous section). The
second is that, in this way, it is possible to determine a set of initial conditions such
that x(0) ∈ S =⇒ x(t) ∈ X for t > 0. If one considers λ = 1, then S is the set
of all the initial conditions for which the property holds. However, if λ = 1, it is
clearly not possible to deduce asymptotic stability.

We face the problem in the case of a polytopic system, i.e.

A(w) =

s∑
i=1

Aiwi,

∑s
i=1 wi = 1, wi ≥ 0, and we assume that

X = P(F, 1̄).

Denote by

Ik = {(i1, i2, . . . , ik), ij = 1, 2, . . . , s}

the set of all possible choices of k indices among the numbers 1, 2, . . . , s and let, for
Ck = (i1, i2, . . . , ik) ∈ Ik,

ΠCk = Ai1Ai2 . . .Aik ,

the product of the k generating matrices with indices in Ck, where we assume
ΠC0 = I. Then the largest invariant set is given by

Smax = S(∞) = {x : FΠChx ≤ 1, Ch ∈ Ih h = 0, 1, 2, . . .}
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Briefly this means that S is represented by all the inequalities of the form

FAi1Ai2 . . .Aik x ≤ 1̄,

in principle, an infinite number. Define the set produced at the k iteration as

S(k) = {x : FΠCh x ≤ 1, Ch ∈ Ih h = 0, 1, 2, . . . , k} (5.25)

The natural question is that whether the set is actually finitely determined, namely
whether there exists a k̄ such that

S = S(k̄) (5.26)

We will provide a complete answer to this question later when we will relate the
property of finite determination with the spectral radius of the set of matrices. For
the moment being let us state the following preliminary results.

Theorem 5.17. Assume that system (5.24) is asymptotically stable. Then condi-
tion (5.26) holds true for a finite k̄, i.e. Smax is finitely determined.

Proof. We sketch the proof (the reader is referred to [BM96b] for more details and
stopping criteria for the procedure). We show that in finite time k̄ the condition

S(k̄+1) = S(k̄)

is satisfied. Let μint be the diameter of the largest ball centered in 0 and included
in S(0) and μext the diameter of the smallest ball including S(0). By the asymptotic
stability assumption, for k large enough we have ‖Ai1Ai2 . . .Aik+1‖ ≤ μint/μext.
Then for any x ∈ S(0), ‖Ai1Ai2 . . .Aik+1x‖ ≤ μint which means that

FAi1Ai2 . . .Aik+1x ≤ 1̄.

This means that at a certain value k̄ +1 these new inequalities are satisfied by all the
points x ∈ S(0), hence by all the points in its subset S(k̄).

In the case of a single matrix, namely of the system x(t + 1) = Ax(t),
the procedure stops in a finite number of steps if Σ(A) < 1 for any C-set
X (equivalently, the procedure for the modified system stops in finite time for
λ > Σ(A)). This was shown in [GT91]. Actually in [GT91] it is shown that, under
some observability assumptions, the maximal invariant set included in a symmetric
polyhedron (i.e., non-necessarily bounded) is compact. We propose this result here
in a slightly more general form.

Proposition 5.18. The largest invariant set Smax for the asymptotically stable
system x(t + 1) = A(w)x(t) (respectively ẋ(t) = A(w(t))x(t)) included in the
polyhedral set P̄[F, g], g > 0 is compact provided that there exists w ∈ W such
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that (A(w),F) is an observable pair. In the case of a certain system the condition is
necessary and sufficient, precisely Smax is compact iff (A,F) is observable.

Proof. The largest invariant set for a system with certain A set is given by the
intersection of polyhedra

S = P̄[F, g]
⋂

P̄ [FA, g]
⋂

P̄ [FA2, g]
⋂

· · ·
⋂

P̄ [FAk, g]
⋂

. . . (5.27)

If the system is observable, then the observability matrix

O = [FT (FA)T (FA2)T . . . (FAn−1)T ]T

has full column rank. Then, denoting by ĝ = [gT gT gT . . . gT︸ ︷︷ ︸
n times

]T , we have

S ⊆ P̄[O, ĝ]

Since O has full column rank (see Section 3.3) the rightmost set is compact, hence
so is S.

Conversely if (A,F) is not observable, then the system can be reduced in the
observability form by a proper transformation Tx̃ = x, so that the polyhedron
becomes P̄ [F̃, g] = P̄ [FT, g]

Ã =

[
Ano Ano,o

0 Ao

]
F̃ =

[
0 Ho

]

Then it is immediate that if we consider expression (5.27) for the set S, we get only
inequalities of the form

−g ≤
[
0 HoAk

o

] [
x̃no

x̃o

]
≤ g.

where x̃o and x̃no are the observable and unobservable components of x̃. So S is
unbounded in the unobservable direction x̃no.

To consider the uncertain case, let w′ ∈ W a value for which (A(w′),F) is
observable. The largest invariant set for the system x(t + 1) = A(w)x(t) is included
in the largest invariant set for the (certain) system x(t + 1) = A(w′)x(t), henceforth
S is compact.

To prove the results in the continuous-time case ẋ(t) = Ax(t), one needs just to
consider the exponential approximation

x(t + 1) = eAτx(t) (5.28)
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and notice that (A,F) is observable iff (eAτ ,F) is observable for τ > 0 small
enough. Then the proof is immediate. Indeed, if A is stable, then eAτ is (discrete-
time) stable. Any invariant set for the continuous-time system is invariant for the
discrete-time exponential approximation then the largest invariant set is included in
the largest (w.r.t. P̄ [F, g]) invariant set for (5.28), thus it is compact.

The proof of the previous theorem is inspiring about the following issue: exponential
or EAS?. We remind that the EAS is the system

x(t + 1) = [I + τA]x(t). (5.29)

Indeed we know that, for τ > 0 small, the two tend to coincide since

eAτ ≈ I + τA.

So it is reasonable that in both cases, for τ > 0 small, we can achieve approximation
of invariant sets for the continuous-time case. This is certainly the case, but the
interesting point arises as far as we are concerned with the maximal invariant set Sct

for the continuous-time system included in P̄ [F, g]:

• by means of the EAS (5.29) it is possible to derive internal approximations of
Sct;

• by means of the exponential approximating system (5.28) it is possible to derive
external approximations of Sct.

This fact, which has also been pointed out in [LO05], is a consequence of the
following proposition.

Proposition 5.19.

i) If the C-set S is positively invariant for the continuous-time asymptotically
stable system ẋ(t) = Ax(t), then it is positively invariant for the “exponential
system” (5.28). The converse is not in general true9.

ii) If the C-set S is positively invariant for the EAS (5.29), assuming that it is
asymptotically stable, then it is positively invariant for the continuous-time
system, which is also asymptotically stable. The opposite is not in general true.

Example 5.20. As a simple example, consider the continuous-time system with

A =

[
−1 0

0 −2

]
(5.30)

and consider the strip P̄ [F, 1] with F = [1 − 1]. For τ = 0.2, we computed the
largest invariant set for the exponential and the EAS approximations, which are

9The converse is true in the case of polytopes with the understanding that τ has to be “small
enough” [Bla90b].
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Fig. 5.9 The largest invariant set for the exponential (left) and the EAS (right)

reported in Figure 5.9. As expected, the former includes the latter. In this case the
maximal invariant set for the continuous-time system can be computed exactly. This
is delimited by the strip P̄[F, 1] and two arcs. The first is that generated by the
solution of the system which is identified by the initial condition

x0 = [2(1 +
√

2) 3 + 2
√

2]T ,

which ends at time tf = log(1 +
√

2) in the point

xf = [2 1]T .

Note that this arc connects the two lines delimiting the strip. The second arc is the
opposite (i.e., that generating from −x0 and terminating in −xf at time tf ). Note that
in the final point the two arcs are tangent to the arrival lines. It is easy to see that
the so achieved figures satisfies Nagumo’s conditions. It is also easy to see that the
derived figure is the maximal one.

Let us now consider the case of a system with additive uncertainties

x(t + 1) = A(w(t))x(t) + Ed(t) (5.31)

where d(t) ∈ D and D is a C-set. The next theorem provides a criterion to
ensure that the iteration stops in a finite number of steps successfully/unsuccessfully.
Although not already formally defined (we will do it soon), let R be the set of all
states reachable from the initial condition x(0) = 0 in some (arbitrary) time T with
constrained input d(t) ∈ D. Let R̄ be the closure of R. It is quite easy to see that
both R and R̄ are robustly positively invariant.

Theorem 5.21. Assume that system (5.31) is asymptotically stable. Then condi-
tion (5.26) holds true for a finite k̄, i.e. S is finitely determined, if X includes a
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closed robustly positively invariant set in its interior (in particular if it encloses R̄).
Conversely if X does not include R̄, then S(k) = ∅ for a finite k̄

Proof. See [BMS97]

Example 5.22. As an example of application of the largest invariant set, we show
how it is possible to determine, given a linear compensator, the set of all initial states
for which no input or output violations occur. The size of this set can be considered
as an important parameter to evaluate the efficacy of the compensator. Consider the
discrete-time system

A =

[
1.2 0.5

−0.5 0.8

]
, B =

[
0

1

]
, C =

[
1 0

]
.

equipped with a control of the form u = Kx. The input and output values are
constrained as |u| ≤ 1 and |y| ≤ 1, respectively. So, given a stabilizing gain K, the
problem is that of determining the largest invariant set included in the polyhedron
P̄[F, 1̄], where 1̄ = [1 1]T and

F =

[
K
C

]

In the sequel four solutions are considered and compared: the case of dead-beat
control and the cases of a closed-loop system with: real distinct, real coincident,
and complex eigenvalues. The results are reported in Figures 5.10–5.13, in each of
which are depicted:

• the largest invariant set compatible with the input constraint |Kx| ≤ 1 (plain lines,
left);

• the largest invariant set compatible with the output constraint |Cx| ≤ 1 (dashed
lines, center);

• the largest invariant set compatible with both input and output constraints,
namely the intersection of the previous two (plain and dashed lines, right).

The first one is the dead-beat compensator K = [−2.38 − 2.00] which places
both poles at the origin. The results are shown in Fig. 5.10.

As a second solution, two distinct real poles, λ1 = 0.9317 and λ2 = 0.2683,
are assigned. The reader could puzzle why these strange numbers. Actually, the
gain K = [0.00 − 0.80], which results in these poles, was chosen in order to
“insert a damping” in the 2–2 coefficient. The results are in Fig. 5.11.

If two real coincident poles λ1 = λ2 = 0.9 are assigned with K =
[+0.3200 − 0.2000], the situation is quite different w.r.t the previous one. The
results are in Fig. 5.12.

Finally, two complex poles λ12 = 0.8 ± j0.4 were assigned, resulting in K =
[0.14 0.40]. The results are in Fig. 5.13.

A comment on the derived pictures is useful. First of all, note that all the
determined sets are compact. This is due to the fact that (Acl,K) and (Acl,C) are
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Fig. 5.10 The cases of the dead-beat compensator
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Fig. 5.11 The cases of compensator assigning two distinct poles
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Fig. 5.12 The cases of compensator assigning two coincident poles
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Fig. 5.13 The cases of compensator assigning two complex poles
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always observable. We did not remove the redundant constraints. We computed
all the constraints −1 ≤ KAi

clx ≤ 1 and −1 ≤ CAi
clx ≤ 1 up to i = 20. In

this way it is apparent that, for some choices of the closed-loop eigenvalues, the
convergence is faster than that achieved with other choices (for instance, for the
dead-beat controller there are only 8 constraints, since Ai

cl = 0 for i ≥ 2).
A circumstance which is apparent is that some controllers, such as the dead-

beat one, produce large output-constraint compatible sets while other controllers
produce large input-constraint compatible sets and this is certainly the case of
the compensator assigning complex poles. This is not surprising. Basically, the
dead-beat compensator requires a big control effort which is paid with control
exploitation, while the “complex-pole-assigning” one requires a much smaller
effort. It is not surprising that the situation is reversed between these two
compensators if the output-constraint admissible set, which is quite bigger for
the dead-beat one, is considered.

5.4.1 Comments on the results

A drawback of the presented procedures (that will be evidenced throughout the
book) is that the derived algorithms do no work with fixed complexity. It turns out
that the number of planes which describes the polyhedral Lyapunov function may be
huge even for simple problems as in the next example. Computational experience
shows that troubles arise when the system is pushed close to its limits. A further
source of troubles is the presence of control constraints.

Example 5.23. Consider the 2-dimensional continuous-time system

ẋ(t) = [w(t)A1 + (1 − w(t)) A2] x(t) + Bu(t)

with

A1 =

[
0 1

−2 −1

]
, A2 =

[
0 1

−(2 + k) −1

]
, B =

[
0

1

]
(5.32)

and 0 ≤ w(t) ≤ k for all t ≥ 0. This system is obtained by the example in [Zel94]
(subsequently reconsidered in [CGTV03]), by adding an input matrix. For the above
system it can be shown that the maximum value of k that assures open-loop stability
is 7.

So, for k = 7.5 the system is open-loop unstable. Let us then consider an
unconstrained stabilization problem. Let us set τ = 0.1 and run the algorithm.
Starting from X (0) = {x : ‖x‖∞ ≤ 1} with λ = 0.9, it turns out that the largest
contractive set is simply the symmetric diamond V(X) with
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X =

[
0.4042 −0.4042 0.5911 −0.5911

1 −1 −1 1

]
.

It turns out that this system can be associated with the linear stabilizing gain

u = −0.8599 x1(t) − 1.069 x2(t).

To see the effect of control constraints, set k = 7.5 and let the input bound be
|u| ≤ 1. The same value of τ = 0.1 is used and λ = 0.96, which correspond to a
contractive coefficient

β = (1 − λ)/τ = 0.4.

Starting from the same initial region, a set represented by 40 delimiting planes and
vertices was found. This set is a guaranteed domain of attraction (although not the
largest one) with the considered control constraints.

Let us now consider the problem of approximating, as closely as possible, the
largest contractive set under the considered control constraints. To this aim, a very
small discretization parameter τ = 2.5 × 10−3 is used to derive the discrete-time
EAS. The contractivity coefficient for the EAS was chosen as λ = 0.999, in order to
keep the continuous-time contractivity coefficient as before (β = (1 − λ)/τ = 0.4)
and a tolerance ε = 9×10−4 was adopted. The procedure was started with the initial
set X (0) = {x : ‖x‖∞ ≤ 1 × 104} (that simulates unbounded state-space variables)
in order to take into account only control constraints. The resulting polyhedral set is
represented by 960 planes. Such a set is the region internal to the thick line depicted
in Figure 5.14.

It is rather clear that the situation is completely different in terms of complexity.
The same trouble occurs if one wishes to push the system close to “its limits.” Let
us now consider a stability analysis problem. Precisely let us check the system
stability when k = 6.97. Starting from the initial set X (0) = {x : ‖x‖∞ ≤ 1}

Fig. 5.14 Thin line: a
7.6e−6-contractive set for the
autonomous system with
k = 6.97; thick line: the
constrained-control
convergence domain
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and by using the discrete-time EAS with τ = 2.5 × 10−4 and the constants
λ = 1 − 1 × 10−9 and ε = 9 × 10−10 (corresponding to a guaranteed contractivity
β = 7.6e−6), a “polyhedral” Lyapunov function was constructed. In this case, the
contractivity is pushed almost to its limit (since for k = 7 the system does not admit
a contractive region). The quotes in the polyhedral are easily justified by the shape
of the level set of the Lyapunov function, depicted in Fig. 5.14 (thin line), which
counts 12842 planes (though the region is symmetric, thus half of this number is a
measure of the complexity of the region). The computational time is 39 s on a x86
750 MHz calculator. The reader is referred to [RKMK07] for a promising technique
of construction of controlled-invariant sets of a reasonable complexity. A possible
way to construct polyhedral Lyapunov functions is facing the bilinear equations.
Unfortunately, in this case the solution needs non-convex methods, which are in
general hard to solve. A promising approach is using randomized algorithms (see,
for instance, [TCD04]).

As we will see later, if one chooses ellipsoidal sets, then the algorithms have
a fixed complexity, a big advantage. On the other hand, ellipsoidal sets are
conservative, because it is known that a system may admit a contractive set but
no ellipsoidal contractive sets. Furthermore ellipsoidal sets have no maximality
properties. For instance, the maximal λ-contractive set included in an ellipsoid
is not an ellipsoid in general. To overcome the conservativity deriving from the
use of ellipsoidal sets while maintaining the advantages of their computation, in
recent years some authors (see [CGTV03] and the references therein) have started
to consider homogeneous polynomial Lyapunov functions and, more precisely,
those which can be written as sum of squares (SOS) (and treated by standard LMI
techniques). We will come back to this point in the next chapter, when we will deal
with polynomial Lyapunov functions.

5.5 Exercises

1. Show that the chain of inclusions (5.5) holds (hint: show that if X1 ⊂ X2 then
PreSF(X1) ⊆ PreSF(X2))

2. Consider the backward construction of X̄−∞ for the scalar system

x(t + 1) = 2x(t) + u(t)w(t),

where W = {w : |w| ≤ 1}, X = {x : 0 ≤ x ≤ 1}, and U = {x : 0 < u ≤ 1}
which is not closed. Compute the sequence of (non-closed sets) X−k, show that
they have non-empty intersection, but the problem of keeping the state in X has
no solution. (Hint: given the set {x : 0 ≤ x < k} or the set {x : 0 ≤ x ≤ k} the
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one-step-controllability set to this set is {x : 0 ≤ x < k/2} thus the sequence
of sets is X−k = {x : 0 ≤ x < (1/2)k}10)

3. Show that the set X̄ (∞) for the system x(t + 1) = 2x(t) + u(t) + d(t) with
−1 ≤ x ≤ 10, −20 ≤ u ≤ 1, −2 ≤ d ≤ 2, is non-empty but it does not include
the origin.

4. Consider the reachability problem formulated on a graph as in subsection 5.1.3
with the following modifications. Assume that to each arch a transition weight
is provided. Determine a “Lyapunov” node-function such that V({k}) = 0 and
defined in such a way that a feedback strategy to reach node {k} can be achieved
by moving at each time to the node (among the connected ones) having the
minimum value of V and such that the achieved path from each starting node {j}
is of minimum cost, namely the sum of the transition costs is minimal among
all the paths connecting {j} to {k}.

5. Prove the statement of Remark 5.5.
6. Show, by means of a counterexample, that the maximal λ-contractive set

included in an ellipsoid is not necessarily an ellipsoid. How does this set look
like for x(t + 1) = A(w(t))x(t), with polytopic A?

7. Find the set of states that can be driven to 0 (in an arbitrary number of steps)
for system (5.21) after the transformation u = −2x+v is applied. (. . . of course
you know it: it is unchanged, just (−4, 4) . . . but prove it!)

8. Consider again the continuous-time system whose matrix is given in (5.30).
Prove that the largest invariant set is actually that described in the example.

9. Prove/disprove the following: system (A,B,C) has finite transmission zeros iff
there exists a controlled-invariant subspace included in Ker(C) (see [BM92] for
details).

10. Show that the largest λ-contractive set for the system x(t + 1) = A(w(t))x(t) +
B(w(t))u(t) y(t) = Cx(t), included in the strip ‖Cx‖ ≤ μ is bounded, provided
that the system (A(w),B(w),C) has no finite transmission zeros for all w.

11. Write the regulation map Ω(x) for the Example 5.11.
12. Rephrase example 5.16 for continuous-time systems.
13. Show that the delayed-extended system considered in Proposition 5.15 has the

same zeros of the original one.

10This hint is rather a solution . . . .



Chapter 6
Set-theoretic analysis of dynamic systems

In this section, several applications of set-theoretic methods to the performance
analysis of dynamic systems will be presented. Although, in principle, the proposed
techniques are valid for general systems, their application is computationally viable
in the case of (uncertain) linear systems and thus we restrict the attention to this
case.

6.1 Set propagation

6.1.1 Reachable and controllable sets

Consider a dynamic system of the form

ẋ(t) = f (x(t), u(t))

or of the form

x(t + 1) = f (x(t), u(t))

where u(t) ∈ U . The following classical definitions of reachability and controllabil-
ity sets are reported.

Definition 6.1 (Reachability set). Given the set P , the reachability set RT(P)
from P in time T < +∞ is the set of all vectors x for which there exists x(0) ∈ P
and u(·) ∈ U such that x(T) = x.

Definition 6.2 (Controllability set). Given the set S, the controllability set CT(S)
to S in time T < +∞ is the set of all vectors x for which there exists u(·) ∈ U such
that if x(0) = x then x(T) ∈ S.

© Springer International Publishing Switzerland 2015
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More in general, S is said to be reachable from P in time T if for all x ∈ S there
exists x(0) ∈ P and u(·) such that x(T) = x. Similarly, P is said to be controllable
to S in time T if, for all x(0) ∈ P , there exists u(·) such that x(T) ∈ S. Unless
for very specific cases, the fact that P is reachable from S does not imply that S is
controllable to P and vice versa.

However, if backward systems are considered, namely systems that evolve
backward in time of the form

ẋ(t) = −f (x(t), u(t))

or of the form

x(t + 1) = f−1(x(t), u(t))

where f−1 is the inverse of f with respect to x (if it exists at all), precisely the map
such that f−1(f (x, u), u) = x for all x and u ∈ U , then the set P is reachable from
(controllable to) S if and only if S is controllable to (reachable from) P for the
backward system.

Controllable sets have the following composition property1. If S0 is controllable
in time T1 to S1 and S1 is controllable in time T2 to S2, then S0 is controllable in
time T1 + T2 to S2. The analogous composition property holds for reachability.

Reachable sets are useful to describe the effects of a bounded disturbance on a
dynamical system or to describe the range of effectiveness of a bounded control.
Unfortunately, the computation of reachable sets is, in general, very hard even in
the discrete-time case, although effort is currently put in this direction [RKML06].
For simple systems, typically planar ones, they can be computed (approximately) by
simulation and the approximated reachable and controllable sets can be visualized
by appealing computer graphics. Unfortunately, as the dimension grows, our mind
gets somehow lost, besides the inherent intractability of reachable set computation.

From the theoretical point of view, some results that characterize the closedness
or compactness of controllability/reachability sets which are available in the mathe-
matical literature. For instance, in the discrete-time case, if the map f is assumed to
be continuous and U compact, then the expression of the one-step reachability set
of a compact set P , precisely

f (P ,U)

is compact. Therefore the reachable set in k steps, that can be recursively computed
by setting R0 := P and

Rk+1 = f (Rk,U)

1A semi-group property.
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is compact. Some compactness results for the controllability sets can be easily
inferred under some assumptions, such as the system reversibility (i.e., that f−1(x, u)
is defined for all u and continuous). This kind of closedness–compactness results are
valid also for continuous-time systems under suitable regularity assumptions.

The next theorem shows that, at least for the case of linear systems (which are
those we will be mostly interested in), some reasonable procedures can be devised.

Theorem 6.3. Consider the system

ẋ(t) = Ax(t) + Bu(t) (or x(t + 1) = Ax(t) + Bu(t))

where u ∈ U , with U a convex and compact set and, in the discrete-time case,
A is assumed to be invertible. Let P be a convex and compact set. Then, for all
T < +∞,

• the controllability set in time T to P is convex and compact.
• the reachability set in time T from P is convex and compact.

In the discrete-time case, if matrix A is singular, the reachability set is still convex
and compact whereas the controllability set is convex, closed but not necessarily
bounded.

Proof. The proof of compactness will be reported in the continuous-time case only,
whereas the proof of convexity and the discrete-time case are left as an exercise.

The reachability set is given by the set of all vectors

x = eATx̄ +

∫ T

0

eA(T−σ)Bu(σ)dσ, (6.1)

(with u(·) a measurable function) namely the sum of the image of P with respect to
eAT (which is compact) and the set of all vectors reachable from 0 in time T:

RT (P) = eATP + RT({0})

The set of states reachable from 0 in a finite time is compact as shown in [PN71],
and, since the sum of two compact sets is compact, RT (P) is compact. The
analogous proof for controllable sets is derived by noticing that the controllable
set is the set of all x̄ for which (6.1) holds with x in P . By multiplying both sizes by
e−AT one immediately derives

CT(P) = e−ATP + R−
T ({0})

where we denoted by R−
T ({0}) the set of 0-reachable states of the time-reversed

sub-system (−A,−B), hence the claim.

Convexity of reachability and controllability sets in the case of linear systems is
a strong property which allows to obtain practical results, as it will be seen later.
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An important problem that can be solved, in principle, in a set-theoretic framework
is the analysis of uncertainty effects via set propagation. The literature on this kind
of investigation is spread in different areas. A classical approach to the problem
is that based on the concept of differential inclusion. As we have seen, a system
of the form ẋ(t) = f (x(t),w(t)), w(t) ∈ W , is a special case of differential
inclusion. Given an initial condition x(0), if one is able to determine the reachable
set Rt({x(0)}), then one can actually have an idea of the uncertainty effect. The
literature presents some effort in this sense, however, most of the work is effective
only for special classes of systems, typically of low dimensions. A survey of
numerical methods for differential inclusions can be found in [DL92].

6.1.2 Computation of set propagation under polytopic
uncertainty

Let us now consider the discrete-time system

x(t + 1) = A(w(t))x(t) + E(w(t))d(t) (6.2)

with

A(w) =

s∑
i=1

Aiwi(t), E(w) =

s∑
i=1

Eiwi(t)

w ∈ W = {w : wi ≥ 0,
s∑

i=1

wi = 1}

and d ∈ D, also a polytope. Here, no control action is considered and w and d are
both external uncontrollable signals.

Consider the problem of computing the propagation of the uncertainty for this
system, starting from a set X0 of initial conditions which is a polytope. This set can
be propagated forward in time, keeping into account the effect of the uncertainty
and disturbance, by considering the set:

X1 = R1(X0) = {A(w)x + E(w)d : w ∈ W , d ∈ D} (6.3)

Even from the first step it is not difficult to see that the one step reachable set X1

is not convex (then it cannot be a polytope). The lack of convexity is shown in the
next example.
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Fig. 6.1 Butterfly shaped
non-convex one step
reachable set for example 6.4
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Example 6.4. Consider the autonomous system whose matrices are

A =

[
1 w
0 1

]
, E = 0,

and |w| ≤ 1. Let X0 = {(x1, x2) : x1 = 0, x2 ∈ [−1, 1]}. The reachable set is
the set of all the possible images of the considered segment with respect to matrix
A(w), which turns out to be the union of two triangles with center in the origin (the
one having vertices [0 0]T , [1 1]T [1 − 1]T and its opposite), depicted in Figure 6.1
and clearly non-convex.

Though the reachable set is non-convex, Barmish and Sankaran [BS79] showed
that the convex hull of the reachable sets can be propagated recursively, as per the
next result.

Proposition 6.5. Let X0 be a polytope and let Xk be the k-step reachability set
of (6.2) from X0. Let X̂k = conv{Xk} be its convex hull. Then the sequence of
convex hulls can be generated recursively as

X̂k+1 = conv
{
R1

(
X̂k

)}
,

roughly, as the convex hulls of image sets of convex hulls.

The remarkable property evidenced by the previous theorem is that one can compute
the convex hulls of the reachability sets by just propagating the vertices. Precisely,
assume a vertex representation of the polytope X̂ = V(x1, x2, . . . , xs) is known. Let
Ai and Ei, i = 1, 2, . . . , r, be the matrices generating A(w) and E(w) and let D =
V(D), where D = [d1, d2, . . . , dh]. Then the convex hull of the one-step reachability
set (which might be non-convex) is given by the convex hull of all the points of the
form Aixk + Eidj, say its expression is
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conv
{
R1

(
X̂
)}

=

= conv {Aixk + Eidj, i = 1, 2, . . . , r, k = 1, 2, . . . , s, j = 1, 2, . . . , h} (6.4)

Therefore, a routine which propagates the vertices of the sets X̂k can be easily
constructed. Its application is a different story. Indeed, the complexity of the
problem is enormous, since the number of candidate vertices grows exponentially.
One can apply the mentioned methods to remove internal points, but still the number
of true vertices might explode in few steps even for small dimensional problems.
The reader is referred to [RKKM05b, RKK+05] for more recent results on this
construction.

Example 6.6. As previously mentioned, the one-step forward reachability set of
a convex set is in general non-convex [BS79]. Here, by means of a simple two-
dimensional system, another graphical representation of such lack of convexity is
reported. Consider the two-dimensional autonomous uncertain system

x(k + 1) = A(w(k))x(k)

with |w(k)| ≤ 1 and

A(w) =

[
1/3 −2/3 w

−2/3 + 2/3 w 1/2

]

and the set

X = {x : ‖x‖∞ ≤ 1}

The one step forward reachability set (computed on a grid of points) is depicted in
figure 6.2

Fig. 6.2 Image (computed
on a grid) of the one step
reachable set for example 6.6
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It is immediately seen that this set is non-convex (to double check such sentence
one can try to determine whether there exist x ∈ X and a value −1 ≤ w ≤ 1 such
that A(w)x = [1/2, 0]T).

Conversely the preimage set is convex and precisely

S = {x : ‖A(1)x‖∞ ≤ 1, ‖A(−1)x‖∞ ≤ 1}

If A and E are certain matrices (i.e., the family of matrices are singletons), then the
following result, reported without proof, holds:

Proposition 6.7. Let X0 and D be polytopes. Consider the system

x(t + 1) = Ax(t) + Ed(t), with d ∈ D

Then Xk, the k-step reachability set from X0, is a polytope.

Again, if X and D are known, then (6.4), as a special case, provides the expres-
sion of the one-step reachability set. It is worth mentioning that the propagation
of the uncertainty effect cannot be achieved by considering ellipsoidal sets. Indeed,
even in the case in which no parametric uncertainty is present, the one step reachable
set from an ellipsoid is convex, but it is not an ellipsoid.

We have seen that the attempt of propagating the disturbance effect forward in
time can be frustrating even in the case of linear systems, if parameter uncertainties
are to be considered. Thus, working with reachable sets forward in time, unless
for the special case of linear systems with no parameter uncertainties, is very hard.
The reader is referred to [RKKM05a, RK07, LO05] for recent results on the topic.
Luckily enough, there is another bullet to shoot, the controllability one. It will soon
be shown that, by working backward in time, it is possible to keep convexity, a
property which allows to derive efficient numerical algorithms. We will consider
this aspect later when the concept of worst case-controllability will be considered.

6.1.3 Propagation of uncertainties via ellipsoids

A known method to investigate the effect of uncertainty is the adoption of ellipsoids.
However, as already mentioned, the methods based on ellipsoids are conservative,
since they are usually unfit to describe the true reachability set. However, they
typically require less computational effort. We remind the an ellipsoid with center
c, radius 1 and characterizing matrix G−1 
 0 is denoted by

E(c,G−1, 1) = {x : (x − c)T G−1(x − c) ≤ 1}
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Let us consider the case of the following linear system

ẋ(t) = Ax(t) + Bu(t) + Ed(t)

where u(t) is a known input and d(t) is an uncertain input, bounded as

d ∈ E(0,G−1, 1)

(i.e., dTG−1d ≤ 1). Let us assume that the state is initially confined in the following
ellipsoid with center c0

x(0) ∈ E(c0,Q
−1, 1)

Then the state of the system is confined at each time in the ellipsoid2 (see [Sch73],
section 4.3.3)

x(t) ∈ E(c(t),Q−1(t), 1) (6.5)

where the center c(t) and the matrix Q−1(t) describing the ellipsoid satisfy the
following equations

ċ(t) = Ac(t) + Bu(t) (6.6)

Q̇(t) = AQ(t) + Q(t)AT + β(t)Q(t) + β(t)−1EGET (6.7)

where β(t) is an arbitrary positive function. A discussion on how to choose the free
function β to achieve some optimality conditions for the ellipsoid E(c(t),Q−1(t), 1)
is proposed in [Che81, CO04, Sch73]. The reader is referred to the recent survey
books [Che94, KV97] for a more complete overview. It is worth noticing that, in the
case of a stable A, assuming u = 0 and a constant function β, the asymptotic value of
Q is achieved by setting Q̇ = 0, thus achieving, as a particular case, equation (4.23).
Note also that, by setting Q(0) = 0 (in this case the expression E(0,Q−1(t), 1) has
no significance for t = 0), the initial state is set to 0. Then the corresponding set
E(0,Q−1(t), 1) (defined for t > 0) includes the set of states reachable in time t from
the origin. It will be seen how to compute, at least approximately, the reachability
set from 0.

There is a corresponding equation for discrete-time ellipsoidal confinement. The
reader is referred to specialized literature (see, for instance, [Sch73], Section 4.3.2)

2In general the inclusion is quite conservative.
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6.2 0-Reachable sets with bounded inputs

In this section, a specific problem, and precisely that of estimating the 0-reachable
set of a linear time invariant system, will be considered. We consider the reachable
sets with pointwise bounded inputs for both discrete and continuous-time systems.
We will consider also the problem of determining reachable sets with energy-
bounded inputs (a problem elegantly solvable via ellipsoidal sets) although such
a class of signals have not been considered in this book so far.

6.2.1 Reachable sets with pointwise-bounded noise

Consider initially the discrete-time system

x(t + 1) = Ax(t) + Ed(t).

Assume that d ∈ D is a convex and closed set including the origin. Denote by RT

the set of all reachable states in T steps. It is not difficult to see that, since 0 ∈ D,

RT ⊆ RT+1

namely the sets RT are nested. The T step reachability set is given by

RT =
T−1∑
k=0

AkED.

and it can be recursively computed as follows:

RT+1 = ART + ED

This involves known operations amongst sets, such as computing the sum and
the image of a set (see Section 3.1.1, page 96). These operations can be done, in
principle, in the environment of convex sets. However, for computational purposes,
sticking to polyhedral sets is of great help. Let us assume that D is a polytope. Then,
assuming the following vertex representation,

RT = V [x(T)
1 , x(T)

2 , . . . , x(T)
rT

], D = V [d1, d2, . . . , ds]

the set RT+1 has the points Ax(T)
j + Edk as candidate vertices, precisely

RT = conv
{

Ax(T)
j + Edk, j = 1, . . . , rT , k = 1, . . . , s

}
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Again the number of candidate vertices grows exponentially. Therefore the algo-
rithm may result difficult to apply to systems of high dimension. It is worth
noticing that the generation of 0-reachability sets for polytopic systems x(t + 1) =
A(w(t))x(t) + E(w(t))d(t), in view of the previous consideration, leads to sets that
are non-convex. However, if one is satisfied with the convex hulls conv{RT}, these
computations can be done in an exact way according to Proposition 6.5 and the
operations in (6.4).

A different approach that may be used for evaluating reachable sets is based on
the hyperplane representation of the set. Since RT is convex and, in general, closed,
it can be described by its support functional as

RT = {x : zT x ≤ φT (z), ∀z}

The support functional φT(z) can be computed as follows. Denote by DT = D ×
D× · · · ×D, (T times), the convex and compact set of finite sequences of T vectors
in D. The T-step reachability set is given by

RT =
{

x = [ E AE A2E . . . AT−1E ]dT , dT ∈ DT
}
.

Therefore

φT(z) = sup
dT∈DT

{
zT [ E AE A2E . . . AT−1E ]dT

}
=

=

T−1∑
i=0

sup
d∈D

zTAiEd

=

T−1∑
i=0

φD(zTAiE),

where φD(·) is the support functional of D. Therefore the evaluation of φT (z) at a
point z requires the solution of the programming problem supd∈D zTAiEd. If D is
a C-set, then “sup” is actually a “max.” Remarkable cases are those in which D is
the unit box of the p norm, with 1 ≤ p ≤ ∞

D = {d : ‖d‖p ≤ 1}

For the above,

max
d∈D

zT AiEd = ‖zTAiE‖q,

where q is such that 1/p + 1/q = 1. In particular, if D is assumed to be a hyperbox,
the components of d are all bounded as |di| ≤ d̄i. Without restrictions, we can
assume |di| ≤ 1 a condition always achievable by scaling the columns of matrix E.
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Then

φT (z) =

T−1∑
i=0

‖zTAiE‖1

Example 6.8. Let us consider a very simple example in which the computation can
be carried out by hand (perhaps an isolated case in this book). Consider the matrices

A =
1

2

[
1 1

−1 1

]
, E =

[
1

0

]

and let the disturbance set be D = [−1, 1]. The reachable sets for the first three
steps, also depicted in Fig. 6.3, are

R1 = V̄
([

1

0

])
,

R2 = V̄
([

3/2 −1/2

−1/2 −1/2

])
,

R3 = V̄
([

3/2 −1/2 −3/2

−1 −1 0

])
.

For the above system, consider the problem of determining the largest absolute
value of the output y(t) = x2(t). This problem may be recast as follows: consider

constraints of the form zTx ≤ μ and −zTx ≤ μ, where z =
[
0 1

]T
and determine

the smallest value of μ such that the reachable set is inside a proper μ-thick strip
(see Fig. 6.3).

P̄ [z, μ] =
{

x : |zTx| ≤ μ
}

It is immediately seen that such a value is the support functional of Rt computed in z.
In this example the smallest value in three steps is μmin = 1.

This value can be computed by considering the expression

μmin = φ3(z) = ‖zTE‖1 + ‖zTAE‖1 + ‖zTA2E‖1 = 0 +
1

2
+

1

2

It is clear that, in principle, one could compute in an approximate way the infinite-
time reachability set

R∞ =

∞⋃
k=0

Rk
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Fig. 6.3 The reachability
sets for example 6.8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

1

by computing Rk with k large. Clearly, this set would be an internal approximation.
The following convergence property holds.

Proposition 6.9. Assume that D is a C-set, that (A,E) is a reachable pair and that
A is asymptotically stable. Then the set R∞ is bounded and convex and its support
functional is given by

φ∞(z) =

∞∑
i=0

φD(zT Ai)

Furthermore, Rk → R∞ in the sense that for all ε > 0 there exists k̄ such that for
k ≥ k̄

Rk ⊆ R∞ ⊆ (1 + ε)Rk

Proof. There are several proofs of the previous result in the literature, for instance
[GC86b]. We just sketch the proof. The support functional is

φ∞(z) = sup
d(·)∈D

zT
∞∑

h=0

AhEd(h) =

=

∞∑
h=0

sup
d(·)∈D

zT AhEd(h) =

∞∑
h=0

φD(zTAhE)

This value is finite because ‖zTAiE‖ ≤ ‖zT‖‖A‖i‖E‖ converges to 0 exponentially,
and then R∞ is bounded. As far as the inclusions are concerned, the first one is
obvious. The second can be proved as follows. Fix k̄ > 0. Any reachable state in
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k ≥ k̄ steps can be written as

x =

k̄−1∑
h=0

AhEd(h) + Ak̄
k−k̄∑
h=0

AhEd(h + k̄) =

=

k̄−1∑
h=0

AhEd(h) + Ak̄sk ∈ Rk̄ + Ak̄Rk−k̄

where sk ∈ Rk−k̄ (it is understood that if k ≤ k̄ then sk = 0), so ‖sk‖ ≤ μ for some
positive μ. Then

νk̄
.
= ‖Ak̄‖μ→ 0 as k̄ → ∞

and, denoting by B = N [‖·‖, 1] the unit ball of ‖·‖ we have that the k-step reachable
state is

Rk ⊆ Rk̄ + νk̄B ⊆ (1 + ε)Rk̄

This, in turn, implies that any reachable state is in (1 + ε)Rk̄.

By means of the just reported property one can compute an internal approxima-
tion of the set R∞ by computing Rk. By the way, it turns out that each of the sets
Rk, under the assumption of the theorem, is a C-set as long as D is a C-set. The same
property does not hold for the set R∞, which is convex and bounded, but in general
is not closed. This assertion is easily proved by the next scalar counterexample.

Example 6.10. The infinite time reachability set for the system

x(t + 1) =
1

2
x(t) + d(t), |d(t)| ≤ 1

is clearly the open intervalR∞ = (−2, 2). We stress that we defined the reachability
set as the set of all states that can be reached in finite time 0 < T < ∞, although for
T arbitrary. This is why the extrema are not included.

The situation is different if one considers the set R̄∞ =
∑∞

k=0 AkED which is
closed, indeed the closure of R∞ [RK07].

To achieve an external approximation one can use several tricks. The first one
is that of “enlarging” D. Indeed, if the reachability set Rε

t with disturbances d ∈
(1 + ε)D is considered, by linearity the condition

Rε
t = (1 + ε)Rt

is obtained, thus achieving an external approximation. A different trick is that of
computing the reachable set for the modified system
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x(t + 1) =
A
λ

x(t) +
E
λ

d(t) (6.8)

Denoting by λ̄max = max{|λi|, λi ∈ eig(A)}, for λ̄max < λ ≤ 1, the system
remains stable, so that the reachability sets of the modified system Rλ

k are bounded.
For any 0 < λ < 1, AkED ⊂ (A/λ)k(E/λ)D, and then

RT ⊂ Rλ
T =

T−1∑
k=0

(
A
λ

)k E
λ
D

For λ approaching 1, Rλ
k approaches Rk from outside. An interesting property is

the following.

Proposition 6.11. Assume that D is a C-set, that (A,E) is a reachable pair and that
A is asymptotically stable. Let λ < 1 be such that A/λ is stable. Then there exists k̄
such that, for k ≥ k̄, the set Rλ

k , computed for the modified system (6.8), is robustly
positively invariant for the original system and

R∞ ⊂ Rλ
k

The proof of the above proposition can be deduced by the fact that:

• Rλ
∞ is positively invariant for the modified system (this fact will be reconsidered

later) and then, in view of Lemma 4.31, it is contractive for the original system;
• Rλ

k → Rλ
∞, which has been shown in Proposition 6.9.

We refer the reader to [RKKM05a, RKK+05] for further details on this kind of
approximations.

Let us now consider the problem of evaluating the reachability set for continuous-
time system

ẋ(t) = Ax(t) + Ed(t).

It is at this point rather clear that the problem cannot be solved by considering a
sequence Rt, because such a set is not polyhedral even if D is such. Therefore the
hyperplane method, previously considered for discrete-time systems and based on
the support functional, seems the most appropriate. Let Rt be the set of all the states
reachable in time t from the origin, with D a C-set. Let us consider the support
functional φt(z) of Rt. Then, in view of the following chain of equalities

φt(z) = sup
d∈D

zT
∫ t

0

eAσEd(σ)dσ =

∫ t

0

sup
d(σ)∈D

zT eAσEd(σ)dσ =

∫ t

0

φD(zTeAσE)dσ
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the reachability set in time t turns out to be the convex set characterized in terms of
support functional as

Rt =
{

x : zTx ≤ φt(z), ∀z
}

The reader can enjoy her/himself in investigating special cases of D given by her/his
preferred norms. Let us consider the single input case and the set D = [−1, 1]. In
this case the support functional of D is φD(δ) = |δ| and then

φt(z) =

∫ t

0

|zTeAσE| dσ (6.9)

By (possibly numerical) integration, as done and reported graphically in the next
example, it is possible to determine φt(z) and φ∞(z), the support functional of R∞,
at least approximately.

Example 6.12. By using Eq. (6.9), the reachable sets Rt for the continuous-time
dynamic system

ẋ(t) =

[
−0.3 1

−1 −0.3

]
x(t) +

[
1

−1

]
d(t)

when the disturbance is bounded as |d(t)| ≤ 1, were computed for t = 1, 2, 4, 100.
Such sets are depicted in Figure 6.4.

Fig. 6.4 Reachable sets with
pointwise-bounded noise for
Example 6.12, computed for
different values of t
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Henceforth we establish some properties that concern the reachability sets in both
continuous and discrete-time case. We start with the following basic fact.

Proposition 6.13. Assume that D is a C-set, (A,E) is a reachable pair and that A
is asymptotically stable. Then R∞ is the smallest robustly-positively-invariant set
for the system, precisely any robustly-positively-invariant set includes R∞.

Proof. The discrete-time case only is considered (the continuous-time case proof is
in practice the same). The fact that R∞ is robustly-positively-invariant is obvious.

Proving minimality is equivalent to showing that any invariant set P contains
R∞, say x ∈ R∞ implies x ∈ P . Assume then that P is invariant, let k be arbitrary
and let x̄ ∈ Rk be an arbitrary vector. Let B be any neighborhood of the origin such
that any state of B can be driven to 0 in finite time with a signal d(t) ∈ D. Consider
any x(0) ∈ P and let d(t) = 0 until the state x(t1) ∈ B. For t ≥ t1 take the sequence
d(t) ∈ D which drives the state to zero at t2, x(t2) = 0. Then consider the sequence
of further k inputs d(t) ∈ D which drive the state x(t3) = x̄. Since P is robustly
invariant, x̄ ∈ P . Since x̄ is arbitrary, P contains any point of Rk and since k is also
arbitrary, P contains any point of R∞.

The set R∞ is the limit set of the stable system (A,E). In other words, for any
x(0), x(t) → R∞

3. This fact is important because it allows to characterize the
asymptotic behavior of a system. As an example of application, let us consider the
problem of characterizing the worst case state estimation error.

Example 6.14 (Observer asymptotic error). Let us consider an observer-based
control for the system

(x(t + 1)) ẋ(t) = Ax(t) + Bu(t) + Ed(t)

y(t) = Cx(t) + v(t)

in which d and v are external inputs subject to d(t) ∈ D and v ∈ V . In most cases
these inputs represent noise and cannot be measured. If a standard linear observer is
designed,

(z(t + 1)) ż(t) = (A + LC)z(t) + Bu(t) − Ly(t)

e(t) = z(t) − x(t)

where e(t) is the error, the error equation results in

(e(t + 1)) ė(t) = (A + LC)e(t) − Lv(t) − Ed(t) (6.10)

It is apparent that, under persistent noises d and v, the observer error does not
vanish asymptotically. The asymptotic effect of the noise can be clearly evidenced

3In the sense that δ(x(t),R∞), the distance from x(t) to R∞ converges to 0.



6.2 0-Reachable sets with bounded inputs 251

by computing the reachability set of the error system (6.10). If an invariant set E for
this system is computed, then it is possible to assure that, whenever e(0) ∈ E ,

x(t) ∈ z(t) − E

t > 0. We will come back on this problem in Chapter 11.

So far the problem of determining the reachability set has been considered under
the following assumptions: reachability of (A,E), asymptotic stability of A, and D
a C-set. The assumption that D is a C-set is reasonable. If D has an empty interior,
but 0 is inside the relative interior4 then it is possible to reconsider the problem by
redefining E. to this subspace, namely by involving a new matrix ED, where D is
any basis of such a subspace.

Conversely there are cases in which the constraint set does not include 0 as an
interior point. In this case the problem has to be managed in a different way. For
instance, one can decompose d ∈ D by choosing a constant d0 ∈ intD. Then
d = d0 + d1, where d1 ∈ D1 = D − d0. Now, the translated disturbance d1 is
in a C-set D1. The effect of d0 and d1 can be investigated separately. An interesting
case is that of systems with positive controls. We do not analyze this case but we
refer the reader to specialized literature, such as [FB97].

Then let us still assume that D is a C-set, but let us remove the stability or the
reachability assumption.

Proposition 6.15. For the 0-reachability sets Rk the following properties hold:

• Rk ⊆ reach(A,E), the reachable space of (A,E).
• R∞ is bounded if and only if the reachable sub-system of (A,E) is asymptotically

stable.
• Assume that (A,E) is reachable, and denote by Xsta and Xuns the eigen-spaces of

A associated with the stable and the unstable modes. Then the reachable set is
given by

R∞ = Rsta
∞ + Xuns

where Rsta
∞ denotes the set of reachable states in the subspace Xsta.

Proof. The first statement is obvious. The second statement is obvious in its
sufficient part because, by the previous statement we can consider the reachable
sub-system and conclude that the reachability set is bounded. As far as necessity is
concerned, assume that the reachable sub-system is unstable. Then, by means of a
bounded input, it is possible to reach from x(0) = 0 an eigenvector v̄ associated
with an unstable eigenvalue λ (in general an unstable subspace) in time [0, t̄] and,
assuming d(t) = 0 for t > t̄ so that x(t) = eλ(t−̄t)v̄, it is immediate to see that

40 is in the interior relatively to the smallest subspace including D.
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x(t) cannot be bounded. The third statement requires more work and its proof is
postponed to the problem of controllability of systems with bounded-control.

6.2.2 Infinite-time reachability and l1-norm

We now investigate an important connection between the infinite-time reachability
set R∞ and the l1-norm, often referred to as ∞ to ∞ induced norm or peak-to-peak
norm of a system. Consider the SISO stable system (A,E,H)

x(t + 1) = Ax(t) + Ed(t)

y(t) = Hx(t)

The ∞ to ∞ induced norm is defined as

‖H(zI − A)−1E‖∞,∞
.
= sup

t≥0,x(0)=0,|d(t)|≤1

|y(t)|

The reason why this norm is referred to as l1-norm is that it turns out to be the
l1-norm [DP87] of the sequence of Markov parameters

‖H(zI − A)−1E‖∞,∞ = ‖H(zI − A)−1E‖l1
.
=

∞∑
k=0

|HAkE|

In the general case of a MIMO (possibly not strictly proper) system the l1-norm can
be defined by replacing | · | by ‖ · ‖, precisely

‖H(zI − A)−1E + D‖∞,∞
.
= sup

t≥0,x(0)=0,‖d(t)‖≤1

‖y(t)‖

Such a norm can be evaluated as the sum of a series [DP87]

‖H(zI − A)−1E + D‖∞,∞ =

‖H(zI − A)−1E + D‖l1
.
= maxi{‖Di‖1 +

∑∞
k=0 ‖[HAkE]i‖1}

(6.11)

where Di and [HAkE]i denote the ith row of the matrices D and HAkE, respectively.
A set-theoretic equivalent condition is given in the next proposition.

Proposition 6.16. Consider the asymptotically stable system (A,E,H) (i.e.,
assume D = 0). Then the smallest value μinf of μ such that R∞ is included in
the strip

P̄[H, μ1̄] = {x : ‖Hx‖ ≤ μ}
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is equal to the l1-norm of the system:

μinf = inf{μ : R∞ ⊂ P̄[H, μ1̄]} = ‖H(zI − A)−1E‖∞,∞ = ‖H(zI − A)−1E‖l1

In the single output case this is the support functional of R∞ evaluated in H, i.e.
φ∞(H) = φ∞(−H) (by symmetry).

When D is non-zero, the following holds:

Proposition 6.17. Consider the asymptotically stable system (A,E,H,D), with p
outputs. Then the l1-norm of ‖(A,E,H,D)‖l1 is the smallest value of μ for which
the 0-reachability set R∞ is included in the set

P̄ [H, μ̃1̄] {x : ‖Hix‖ ≤ μ− ‖D‖1, i = 1, 2, . . . , p}

where μ̃ = μ− ‖D‖1
Proof. It is known [DP87] hat the l1-norm condition ‖H(zI − A)−1E + D‖l1 = μ
is equivalent to the fact that for x(0) = 0, the condition ‖y(t)‖∞ ≤ μ holds for all
‖d(t)‖∞ ≤ 1, namely,

−μ ≤ yi(t) ≤ μ,

which is, in turn, equivalent to

−μ ≤ Hix(t) + Did(t) ≤ μ

for all ‖d(t)‖∞ ≤ 1. Since the current value of d(t) does not depend on x(t) and can
be any arbitrary vector with ∞-norm not greater than 1, it is possible to write

− min
‖d‖∞≤1

Did − μ ≤ Hix(t) ≤ μ− max
‖d‖∞≤1

Did

Then the proof is completed since

− min
‖d‖∞≤1

Did = max
‖d‖∞≤1

Did = ‖Di‖1

The previous proposition represents an interesting interpretation of the ‖·‖l1 norm of
a system in terms of reachability. In practice, the ‖·‖l1 norm less than μ is equivalent
to the inclusion of R in P̄[H, μ1̄]. It will be soon shown that this interpretation is
very useful to compute the peak-to-peak induced norm in those cases (i.e., polytopic
systems) in which the computation via Markov parameters is not possible.
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6.2.3 Reachable sets with energy-bounded noise

In this section, a characterization of the disturbances which is unusual in the book
is analyzed. Precisely, the focus of the present section are linear dynamic systems
of the form

ẋ(t) = Ax(t) + Ed(t).

with disturbances bounded as follows:
∫ ∞

0

dT(t)Rd(t) dt ≤ 1, with R 
 0

To avoid unnecessary complications, it is assumed, without lack of generality, that
R = I, since if this is not the case one can replace the matrix E by ER−1/2 and
consider the input d̂ = R1/2d. Let us then assume

∫ ∞

0

dT(t)d(t) dt ≤ 1. (6.12)

Denote by B(t) the set of all the functions having energy bounded by 1 on the
interval [0, t], precisely such that

B(t) =

{
d(t) :

∫ t

0

dT(t)d(t) dt ≤ 1

}

Note that the set of reachable states with inputs d ∈ B(t) is non-decreasing with t,
precisely, B(t′) includes B(t) for t′ > t. Let us consider the set of all 0-reachable
states with inputs bounded as above. It turns out that this set is an ellipsoid according
to the following theorem. We remind that an ellipsoid D(Q) = D(Q, 1) can be
described as in (3.14)

D(Q) =
{

x : zTx ≤
√

zTQz, for all z
}

where
√

zT Qz is its support functional 5

Theorem 6.18. Let A be a stable matrix and let (A,E) be a reachable pair. The
closure of the set of all the states reachable from x(0) = 0 with inputs bounded as
in (6.12) is given by the ellipsoid D(Q), where Q is the reachability Gramian, i.e.
the unique solution of

QAT + AQ = −EET

5Note that D has not the same meaning of the previous subsection, but represents now the ellipsoid.
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Proof. Consider any state x(t) reachable at time t with energy bounded as

∫ t

0

dT(σ)d(σ) dσ ≤ 1.

Take any vector z and consider the following optimization problem

μt = sup
d∈B(t)

zTx(t) = sup
d∈B(t)

∫ t

0

zTeAσEd(t − σ) dσ = sup
d∈B(t)

(
zTeA(·)E, d(·)

)

where (·, ·) is a scalar product in the Hilbert space of the square measurable
functions defined on the time interval [0, t] with values in IRp [Lue69]. Such an
optimization problem has solution

μt = ‖zTeA(·)E‖2 =

√∫ t

0

zTeAσEETeATσzdσ =
√

zTQ(t)z

where

Q(t)
.
=

∫ t

0

eAσEETeATσdσ

Therefore the set of all reachable states in time t is the ellipsoid D(Q(t)). By obvious
mathematical speculations, such an ellipsoid is non-decreasing with t, precisely,
zTQ(t)z ≤ zTQ(t′)z for t ≤ t′. Now consider the identity

∫ t

0

d
dσ

[
eAσEETeATσ

]
dσ =

∫ t

0

[
AeAσEETeATσ + eAσEETeATσAT

]
dσ

= A

[∫ t

0

eAσEETeATσdσ

]
+

[∫ t

0

eAσEETeATσdσ

]
AT = AQ(t) + Q(t)AT

On the other hand, we can write the same quantity as

∫ t

0

d
dσ

[
eAσEETeATσ

]
dσ = eAtEETeAT t − EET =

=
d
dt

∫ t

0

eAσEETeATσ dσ − EET = Q̇(t) − EET

and notice that Q(t) is solution of the following equation

Q̇(t) = AQ(t) + Q(t)AT + EET (6.13)
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Now, since A is stable, a finite limit value Q = limt→∞ Q(t) exists and is achievable
by setting Q̇ = 0. Then the theorem is proved, if we remind that D(Q(t)) is non-
decreasing and then included in the limit value D(Q). Moreover, for any x̄ in the
boundary of D(Q), we can find points in D(Q(t)) arbitrarily close to x̄, so D(Q) is
the closure of all D(Q(t)).

The discrete-time version of the theorem is the following:

Theorem 6.19. Consider the system

x(t + 1) = Ax(t) + Ed(t)

with A stable and (A,E) reachable. The closure of the set of all the states reachable
from x(0) = 0 with inputs bounded as

∞∑
t=0

d(t)T d(t) ≤ 1

is given by the ellipsoid D(Q), where Q is the discrete-time reachability Gramian
which is the unique solution of

AQAT − Q = −EET

Proof. (Sketch). The proof of the theorem is basically the same as the previous one.
Let

Q(t) =

t−1∑
k=0

AkEET(AT)k

so that

zT [Ed(t − 1) AEd(t − 2) A2Ed(t − 3) . . .At−1Ed(0)] =
√

zTQ(t)z,

say the ellipsoid D(Q(t)) is the t-step reachability set with bounded energy. The
matrix Q(t) clearly satisfies the equation

Q(t + 1) = AQ(t)AT + EET .

and its limit value is the solution of the Lyapunov equation in the theorem statement.

Remark 6.20. The same results might have been obtained, both in the discrete
and the continuous-time case, by resorting to the adjoint operator theory. We have
skipped that powerful and elegant approach, since the main focus here has been put
on set-theoretic aspects.
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6.2.4 Historical notes and comments

The history of set-propagation is wide, especially as far as the computation of
reachable sets is concerned. The first contribution are due to the seminal works
of Bertesekas and Rhodes [BR71a] and Glower and Schweppe [GS71, Sch73],
followed by several further contributions of which only a portion is mentioned in this
book. We have mentioned the work by Chernousko and Kurzhanski[Che81, KV97,
Che94], which provided techniques for ellipsoidal approximation. Considering the
problem of the computation of the reachability sets, the available literature is enor-
mous and providing a survey is a major challenge. Among the first contributions,
it has to be mentioned [PN71], where several types of input bounds have been
considered and [HR71], where a numerical algorithm for the determination of
reachable sets via amplitude bounded inputs is provided. In [GC86b] and [GC87]
it has been exploited the fact that the 0-reachable sets are the 0-controllable
set for the inverse system and an algorithm based on polyhedral sets has been
proposed. The hyperplane method idea is due to [SS90b] and [GK91b]. See also
[Gay86, Las87, SS90a, Las93] for further results on the topic.

For further references, we refer to the survey [Gay91] or to [RKKM05a] for
some more recent contributions concerning the computation and approximation of
the minimal invariant set [RKKM05a].

6.3 Stability and convergence analysis of polytopic systems

Stability analysis is a fundamental problem in system theory. For linear systems this
trivial task requires the computation of the eigenvalues of a matrix. This method
cannot be applied when dealing with an uncertain system. Let us consider again a
system of the form

x(t + 1) = A(w(t))x(t), (respectively, ẋ(t) = A(w(t))x(t))
A(w) =

∑s
i=1 Aiwi,

∑s
i=1 wi = 1, wi ≥ 0

(6.14)

with the basic questions:

• is the system stable?
• assumed that it is, how fast does it converge?

These questions will be faced next by means of quadratic and non-quadratic
Lyapunov functions.



258 6 Set-theoretic analysis of dynamic systems

6.3.1 Quadratic stability

One approach to the problem is inspired by the well-known fact that any stable
linear time-invariant system admits a quadratic Lyapunov function, leading to the
following criterion.

Theorem 6.21. The discrete-time (resp. continuous-time) system (6.14) is stable if
all the systems share a common quadratic Lyapunov function, equivalently, if there
exists a positive definite matrix P such that

AT
i PAi − P ≺ 0, (respectively AT

i P + PAi ≺ 0)

for i = 1, 2, . . . , s.

Corollary 6.22. The condition of the theorem is equivalent to the existence of ε >
0, β > 0 or 0 ≤ λ < 1 such that, for all i

AT
i PAi − λ2P 	 0, (respectively AT

i P + PAi + 2βP 	 0), P 
 εI

The easy proof of this theorem (the corollary follows obviously) is not reported
here. We will come back on it later, when we will show that the provided condition
is sufficient, but not necessary at all. To provide necessary and sufficient conditions
one might think about resorting to another family of Lyapunov functions. The class
of polyhedral Lyapunov functions is an appropriate one as we will show soon.

6.3.2 Joint spectral radius

To provide non-conservative and constructive solutions to the stability analysis
of a Linear Parameter-Varying (LPV) system one can consider the procedure
for the construction of the largest invariant and the basic finite determination of
Theorem 5.17. To investigate on this matter, a connection with the joint spectral
radius is established.

Given a square matrix A its spectral radius is defined as the largest modulus of its
eigenvaluesΣ(A) = max{|λ| : λ ∈ eig(A)}. For a set of matrices the joint spectral
radius of the set is defined as the supremum of the spectral radius of all possible
products of generating matrices.

Definition 6.23 (Joint spectral radius). Given a finite set of square matrices
[A1,A2, . . . ,As], the quantity

Σ(A1,A2, . . . ,As)
.
= lim sup

k≥0
max
Ck∈Ik

Σ(ΠCk)
1
k (6.15)

is said the joint spectral radius of the family [RS60].



6.3 Stability and convergence analysis of polytopic systems 259

We remind that Ck is a string of k elements of {1, 2, . . . , s} and ΠCk is the product
of the matrices Ai indexed by the corresponding elements. The above quantity can
be equivalently defined as

Σ(A1,A2, . . . ,As) = lim sup
k→∞

max
Ck∈Ik

‖ΠCk‖1/k.

(the quantity does not depend on the adopted norm) and it is related to the notion
of Lyapunov exponent [Bar88a, Bar88b, Bar88c]. The following property is well
known:

Proposition 6.24. The robust exponential stability of the discrete-time system
x(t + 1) = A(w(t))x(t) as in (6.14) is equivalent to Σ(A1,A2, . . . ,As) < 1.

Proof. It is obvious that x(t + 1) = A(w(t))x(t) stable implies that the switching

x(t + 1) = A(k)x(t), A(k) ∈ A = {A1,A2, . . . ,As}

is stable hence Σ(A1,A2, . . . ,As) < 1. The converse statement can be proved by
using Proposition 6.5. Consider any initial polytopic set X0. The T-steps reachable
set of the discrete inclusion is included in the convex hull of the points

AiT−1AiT−2 . . .Ai0vj, Ait ∈ A, vj ∈ vert{X0}

Thus, if Σ(A1,A2, . . . ,As) < 1, these points converge to 0 as T → ∞.

The following theorem holds.

Theorem 6.25. Assume that the matrices in the set have no common proper non-
trivial invariant subspaces6. Then the following implications hold.

i) If the spectral radius Σ(A1,A2, . . . ,As) < 1, then for any initial polyhedral
C-set X , the largest invariant set S included in X is represented by a finite
number of inequalities.

ii) Conversely, if Σ(A1,A2, . . . ,As) > 1, then there exists k̄ such that

S(k̄) ⊂ int{X}

Proof. See [BM96b].

It has to be stressed that claim i) of the theorem holds even in the case in which
the Ai share a common invariant subspace, which is the case of a single matrix A
[GT91]. Statement ii) requires the assumption (see Exercise 11).

As previously mentioned, this implies that the procedure for computing S can be
used to check the stability of a system. The following theorem formalizes this fact.

6Say there is no proper subspace G, {0} �= G ⊂ IRn such that AiG ⊂ G, for all i.
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Let us consider the sequence (5.25) of sets S(k) computed for the modified system

z(t + 1) =
A(w(t))

λ
z(t) (6.16)

(note that x(t) = z(t)λt if x(0) = z(0)), which turns out to be

S(k)
λ = {x : F

ΠCh

λh
x ≤ 1, Ch ∈ Ih h = 0, 1, 2, . . . , k}

The next theorem formalizes some of the properties concerning the spectral radius.

Theorem 6.26. Define the following numbers:

λ1 = inf{λ > 0 : the modified system (6.16) is stable}

λ2 = inf{λ > 0 : ‖x(t)‖ ≤ C‖x(0)‖λt, for some C > 0}

λ3 = inf{λ > 0 : S∞
λ is a C-set}

λ4 = inf{λ > 0 : S∞
λ = S(k)

λ for a finite k}

Then

λ1 = λ2 = λ3 = λ4 = Σ(A1,A2, . . . ,As)

Proof. The fact that λ1 = λ2 = Σ(A1,A2, . . . ,Ak) is a well-known result, see,
for instance, [Bar88a, Bar88b, Bar88c]. The remaining equalities are immediate
consequence of the previous theorem.

It follows immediately from Theorems 6.25 and 6.26 that, in the case of a single
linear time-invariant system x(t) = Ax(t), the procedure stops in a finite number of
steps if Σ(A) < λ for any C-set X or determines a set S(k) which is in the interior
of X if Σ(A) > λ (this is in perfect agreement with the earlier result in [GT91]).

A remarkable consequence which can be drawn from Theorem 6.26 is that, in
principle, the joint spectral radius can be approximately computed by bisection, by
increasing (resp. decreasing) λ if the numeric procedures, applied to the modified
system, stops unsuccessfully (resp. successfully). As previously pointed out, the
procedure produces a number of constraints which increases enormously when
λ � Σ. This is in agreement with the work presented in [TB97, BT00] which
analyzes the complexity of computing or approximating, the joint spectral radius
of matrices and which can provide an explanation of this phenomenon (although
there are particular interesting cases in which the complexity can be reduced, see
[BNT05]) The reader is referred to [BN05] for more details and references on
this topic. We will show later also that the considered type of procedures can be
used to compute, beside the spectral radius, other performance indices for uncertain
systems.
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6.3.3 Polyhedral stability

To face the problem of robust stability analysis we can exploit the fact that
polyhedral stability is equivalent to stability for an LPV system, as stated next.

Theorem 6.27. The following statements are equivalent.

1. The discrete-time (continuous-time) system (6.14) is asymptotically stable.
2. The discrete-time (continuous-time) system (6.14) is exponentially stable, namely

there exists (C, λ), 0 ≤ λ < 1 (resp. (C, β), β > 0) such that

‖x(t)‖ ≤ C‖x(0)‖ λt (6.17)

(respectively

‖x(t)‖ ≤ C‖x(0)‖ e−βt) (6.18)

3. The system admits a polyhedral norm ‖Fx‖∞ as a Lyapunov function. Precisely,
there exists 0 ≤ λ < 1 (resp. β > 0) such that

‖FA(w)x‖∞ ≤ λ‖Fx‖∞, (resp. D+‖FA(w)x‖∞ ≤ −β‖Fx‖∞, ) ∀w

4. All the vertex systems x(t + 1) = Aix(t) share a common polyhedral Lyapunov
function ‖Fx‖∞.

5. For any signal v(t), with ‖v(t)‖ ≤ ν, there exist β, C1 and C2 such that the
solution of the system x(t + 1) = A(w(t))x(t) + v(t) (resp. ẋ(t) = A(w(t))x(t) +
v(t)) is bounded as

‖x(t)‖∗ ≤ C1‖x(0)‖ λt + C2, (resp. ‖x(t)‖∗ ≤ C1‖x(0)‖ e−βt + C2)

Proof. The proof of the equivalence of the first three statements is reported in
[MP86a, MP86b, MP86c] and [Bar88a, Bar88b, Bar88c]. See also the work in
[BT80]. The equivalence 3–4 is easy, while the equivalence of statement 5 to the
other ones is a tedious exercise (suggested but not required to the reader).

The theorem, as stated, is non-constructive. To check stability of an assigned
discrete-time polytopic system (along with the determination of a proper poly-
hedral Lyapunov function, whenever stable) it is possible to proceed iteratively
as previously mentioned. Indeed it is possible to use the procedure described in
Section 5.4, starting from an arbitrary polyhedral set X (0). Precisely, given the
initial set X (0) = {x : ‖F(0)x‖∞ ≤ 1} it is possible to recursively compute the sets

X (k+1) = {x :∈ X (k) : Ai x ∈ X (k), i = 1, 2, . . . , s}

= {x : ‖F(k)x‖∞ ≤ 1, ‖F(k)Ai x‖∞ ≤ 1, i = 1, 2, . . . , s}
.
= {x : ‖F(k+1)x‖∞ ≤ 1}
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Theorem 6.25 assures that if the system is stable then no matter how the polyhedral
C-set X is chosen the largest invariant set included in it is also a polyhedral C-set
and can be determined by a recursive procedure in a finite number of steps.

This theorem can be used “the other way around.” Precisely, one can try to
compute Σ(A1,A2, . . . ,As) by computing the largest invariant set for the system

x(t + 1) =
A(w(t))

λ
x(t)

and to reduce/increase λ if the procedure stops successfully/unsuccessfully. In
detail, given a tentative λ one runs the procedure and

• decreases λ if for some k̄

S(k̄) = intS(k̄−1)(= S)

• increases λ if for some k̄

S(k̄) ⊂ int{X (0)}

According to Theorem 6.25, under the assumption that the matrices do not admit
a common proper invariant subspace (unless for the critical value λ = Σ), both
conditions are detected in a finite number of steps. We will come back on this later,
when we will deal with the more general problem of computing the best transient
estimate.

For the continuous-time case one can, once again, resort to the EAS

x(t + 1) = [I + τA(w)]x(t)

supported by the next proposition.

Proposition 6.28. The following two statements are equivalent.

• The continuous-time system is stable and admits the Lyapunov function ‖Fx‖∞.
• There exists τ > 0 such that the EAS is stable and admits the Lyapunov function

‖Fx‖∞.

Proof. See [BM96a].

Therefore, the stability of a continuous-time polytopic system can be established by
applying the previously described bisection algorithm to the EAS. In this case, there
are two parameters on which it is necessary to iterate: λ and τ . One possibility to
avoid this double iteration is that of iterating over the parameter τ only by assuming
λ(τ) = 1 − ρτ2, as already mentioned in Section 5.2.

A possibility of reducing the complexity of the computation of the Lyapunov
function is based on the following Proposition, which basically states that the
stability of a differential inclusion is unchanged if we multiply it by a positive
function.
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Proposition 6.29. Consider the differential inclusion

ẋ(t) = ρ(t)A(w(t))x(t), 0 < ρ− ≤ ρ(t) ≤ ρ+ (6.19)

Then its stability does not depend on the bounds 0 < ρ− ≤ ρ+. In particular it is
stable iff ẋ(t) = A(w(t))x(t) is stable.

Proof. We prove sufficiency, since necessity is obvious. If ẋ(t) = A(w(t))x(t) is sta-
ble, then it admits a polyhedral Lyapunov functionΨ(x) such that D+Ψ(x,A(w)x) ≤
−βΨ(x). If we consider this function for (6.19) we get, denoting by h′ = hρ,

D+Ψ(x, ρA(w)x) = lim sup
h→0+

Ψ(x + hρA(w)x) − Ψ(x)
h

= lim sup
h′→0+

Ψ(x + h′A(w)x) − Ψ(x)
h′ ρ = ρD+Ψ(x,A(w)x) ≤ −βρΨ(x)

Note that multiplication by ρ > 0 is equivalent to a time scaling: it changes the
speed of convergence, but cannot compromise stability.

As a simple corollary, in the case of polytopic systems we can replace the
generating matrices by scaled matrices

A(w) =

s∑
i=1

ρiAi wi

with positive scalars ρi > 0 without affecting the stability/instability properties.
As an immediate consequence, when we consider the EAS for the computation of
a polyhedral function, we can adopt different τi for different matrices. Precisely
stability of the continuous-time system can be proven by computing a polyhedral
function for the “EAS”.

x(t + 1) = [I +

s∑
i=1

τiAiwi]x(t)

This property can be applied as follows. Given a single stable A, the eigenvalues
of the EAS are 1 + τλi, where λi are the eigenvalues of A. If τ is small enough,
then I + τA is stable, but if τ is too small, then the discrete-time eigenvalues are
squeezed to 1, so that the discrete-time contractivity is very low. In general, different
matrices A might suggest different values of τ . We can take advantage of this fact
in computing a Lyapunov function, reducing both the computation time and the
function complexity.

Example 6.30. Consider the polytopic system generated by the two matrices

A1 =

[
0 1

− 1
4 −1

]
A2 =

[
0 1

− 7
4 −1

]
.



264 6 Set-theoretic analysis of dynamic systems

Fig. 6.5 The computed
regions with a single τ = 0.2
(external) and with two
different values τ1 = 0.5 and
τ2 = 0.2 (internal)
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The polyhedral Lyapunov function computed with τ = 0.2 considering the unit
square (unit ball of ‖ · ‖∞) as initial set, produced a unit ball with 28 delimiting
planes. The eigenvalues of A1 are −0.5,−0.5 while those of A2 are −0.5 ± 1.225j.
Those of the EAS are 0.9, 0.9, and 0.9± 0.24495j. If we notice that it is reasonable
to take a smaller τ for A1 than for A2, then we can take τ1 = 0.5, So the EAS
has eigenvalue 0.75, 0.75, and τ2 = 0.2. The resulting function is represented by a
unit ball of 14 delimiting planes (Fig. 6.5). Clearly by no means the stability of the
two discrete-time matrices assures convergence and continuous-time stability. In
general, we will have to reduce all the τi when the procedure stops unsuccessfully.

6.3.4 The robust stability radius

Let us now consider the problem of computing the “robustness measure.” Consider
the system ẋ(t) = A(w(t))x(t) (or x(t + 1) = A(w(t))x(t)), with

A(w) = [A0 +Δ(w(t))], Δ(w) ∈ ρW

where W is compact and Δ(w) is continuous. The robustness measure we are
thinking about is reported in the next definition.

Definition 6.31. Assuming A0 a stable matrix

ρST = sup{ρ : the system is robustly stable}

In the discrete-time case it is possible to apply the bisection procedure, precisely
by starting with a tentative ρ, and to increase/reduce it if the computed set
includes/does-not-include the origin in its interior. Thus, by applying the proposed
procedure and by iterating by bisection on ρ, it is possible to derive an upper and
lower bound on ρST .
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This algorithm may be directly applied to polytopic discrete-time systems in
which

A(w) = A0 + ρ[

s∑
i=1

Δiwi],

s∑
i=1

wi = 1, wi ≥ 0

with Δi assigned. As mentioned above, to consider continuous-time systems, one
can use the EAS and iterate over τ .

6.3.5 Best transient estimate

Detecting stability only can be a non-sufficient task. One could be interested in
evaluating the transient quality. To this aim, one can evaluate the evolution with
respect to a given norm ‖ · ‖∗ by computing a transient estimate.

Definition 6.32. A transient estimate is a pair (C, λ) (respectively (C, β)) for
which (6.17) (respectively (6.18)) holds for the solution.

Note that, in principle, λ may be any non-negative number and β any number.
In other words, it is possible to estimate the transient of an unstable system (thus
determining the “speed of divergence”).

Let us consider the problem of computing a transient estimate with respect to the
∞-norm ‖x‖∞ (the procedure immediately generalizes to any polyhedral norm of
the form ‖Fx‖∞). This can be done, in the discrete-time case, by performing the
following steps.

Procedure. Computation of a transient estimate, given a contraction factor λ.

1. Fix a positive λ < 1.
2. Compute the largest invariant set Pλ inside the unit ball of the ∞-norm X =

N [‖ · ‖∞, 1], for the modified system x(t + 1) = (A(w)/λ)x(t). Note that Pλ is
the largest λ-contractive set for the considered system.

3. If Pλ has empty interior, then the transient estimate does not exist for the given
λ (then one can increase λ and go back to Step 2).

4. Determine Cλ > 0 as the inverse of the largest factor μ such that μX is included
inside Pλ

C−1
λ = max

μ>0
s.t. μX ⊆ Pλ

It can be shown that Cλ is the smallest constant such that (Cλ, λ) is a transient
estimate. It is then clear that, by iterating over λ, it is possible to determine the
“best transient estimate” (see [BM96a] for details). It turns out that if the system
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converges (or diverges) with speed λ0 < λ, then the set Pλ is a polyhedral set
and, as we have already seen, the procedure for its generation converges in a finite
number of steps.

The same procedure can be used for continuous-time systems as follows. We can
fix β > 0 and consider a small τ such that λ(τ) = 1 − τβ < 1. Then apply the
procedure with such a λ to the EAS. It turns out that if the system converges with
speed of convergenceλ0 > β then, for sufficiently small τ , it is possible to compute
a λ-contractive polyhedral set for the EAS and then a β-contractive polyhedral set
with β = (1 − λ)/τ .

Note that in principle, the transient estimate could be computed by means of any
Lyapunov function, possibly quadratic, as shown later on. However the results are
conservative.

Example 6.33. We report as an example the continuous-time system considered in
[Zel94], with m = 2

A1 =

[
0 1

−2 − 1

]
A2 =

[
0 1

−2 −Δ − 1

]
.

Δ = Δ(t) ≥ 0. Quadratic stability is assured for this system if and only if
0 ≤ Δ < ΔQ ≈ 3.82 [Zel94] (this bound can be also obtained via standard
continuous-time H∞ analysis, as it will shown later). Zelentsowsky [Zel94] found
the stability limit ΔZ = 5.73, say a 50% improvement. By using homogeneous
polynomial Lyapunov functions and LMI techniques, in [CGTV03] it was shown
that stability is assured for ΔS = 6.7962. Though not explicitly dealing with
transient estimates, it is worth recalling that those techniques can be applied to
the problem as well. Using the (EAS) with τ = 2.5 × 10−4, λ = 1 − 1 × 10−9

and the polyhedral Lyapunov function construction, we were able to determine a
polyhedral function for ΔP = 6.97. The computed transient estimate corresponding
to ΔQ, ΔZ , and ΔP are (CQ, βQ) = (2.5439, 0.14), (CZ , βZ) = (2.7068, 0.02)
(CP, βP) = (2.7805, 4.0 × 10−6). The unit ball {x : ‖Fx‖∞ ≤ 1} of the Lyapunov
function corresponding to ΔP is reported in Fig. 6.6.

As it has been underlined several times, polyhedral Lyapunov functions are non-
conservative. However, they generally require algorithms for the generation of their
unit ball that are extremely heavy from the computational standpoint. The number
of planes necessary for the description of such sets can drive out-of-range the most
powerful machines, even for trivial instances. Clearly a transient estimate can be
computed by means of quadratic function. If a positive definite matrix P such that

AT
i P + PAi + 2βI ≺ 0

is found, then the corresponding family of ellipsoids E(P, ν) is β-contractive. This
in turn implies that one can take a β-contractive ellipsoid E(P, ν) included in the
box X and including μX for a proper μ ≤ 1. Then (C, β) with C = 1/μ is
a transient estimate. Clearly such a transient estimate is, in general, conservative,
not only because β is smaller, but also because C is quite greater than the best
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Fig. 6.6 The computed
region for β = 4.0× 10−6

and the inscribed region
1/CPX
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transient estimate (see Exercise 12). On the other hand, the computation is much
easier. Indeed in the inclusion and containment constraints

μX ⊂ E(P, ν) ⊂ X (6.20)

only the variables μ, ν, and P come into play. Besides, there are several problems,
such as finding the smallest invariant set including a polytope or the largest invariant
set in a polytope (in the sense of volume), that have the further important property of
being convex in their variable and therefore very efficient algorithms are available.
The reader is referred to [BEGFB04] for further details. As a final remark, it should
be mentioned that the proposed analysis does not take into account variation of
speed limits in the parameter. Taking into account these limits makes the problem
harder (see, for instance, [Ran95, ACMS97]).

6.3.6 Comments about complexity and conservativity

Polyhedral functions are non-conservative, but computationally demanding7. Thus
considering polyhedral functions instead of quadratic ones can be dramatic since
the former might be extremely complex. A legitimate question is whether this is
always the case. We show by means of a simple example that there are systems
which are not quadratically stabilizable, but they admit a polyhedral function whose
representation is not more complex than the representation of a quadratic function.

7Perhaps the reader will find this a tedious repetition in the book, still this conservativeness issue
was not well known in the control literature for a long period [Ola92, Bla95].
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Example 6.34 (A low complexity polyhedral function). Consider the four matrices

A1 =

[
−1 0

1 0

]
, A2 =

[
−1 0

−1 0

]
, A3 =

[
0 1

0 −1

]
, A4 =

[
0 −1

0 −1

]
,

and the system

ẋ(t) =

4∑
i=1

wi[−εI + Ai]x(t),
4∑

i=1

wi = 1, wi ≥ 0 (6.21)

with ε > 0 sufficiently small. The system admits V(x) = ‖x‖1 as a common
Lyapunov function. Indeed any of the generating matrices −εI + Ai has ‖ · ‖1 as
an LF because it is strictly diagonally dominant, with negative diagonal entries.

We show that there are no common quadratic positive definite Lyapunov
functions. To prove this, we first note that the set of matrices {Ak, k = 1, 2, 3, 4} is
invariant with respect to the following transformations

T1 =

[
1 0

0 −1

]
, T2 =

[
−1 0

0 1

]
, T3 =

[
0 1

1 0

]
,

namely changes of signs or reflections along the bisectors, since, for every choice
of Ti, i = 1, 2, 3, we have {T−1

i AkTi, k = 1, 2, 3, 4} = {Ak, k = 1, 2, 3, 4}. This
amounts to saying that for every i = 1, 2, 3 and every k = 1, 2, 3, 4 there exists
j = 1, 2, 3, 4 such that T−1

i AkTi = Aj. This same property applies to the matrices
Ak − εI, k = 1, 2, 3, 4. Consequently, if the positive definite matrix

P1 =

[
a b
b c

]

defines a common quadratic Lyapunov function for the matrices Ak − εI, k =
1, 2, 3, 4, so does

P2 =

[
a −b

−b c

]
= T−1

1 P1T1.

Since the set of common Lyapunov matrices for {Ak−εI, k = 1, 2, 3, 4} is a convex
cone, then

P3 =
P1 + P2

2
=

[
a 0

0 c

]

defines a common quadratic Lyapunov function for the matrices Ak − εI, k =
1, 2, 3, 4. But since the set {Ak, k = 1, 2, 3, 4} is also invariant over bisector
reflections, the positive definite matrix
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P4 = T−1
3 P3T3 =

[
c 0

0 a

]

and hence the scalar matrix

P4 + P3

2
=

[
a + c 0

0 c + a

]
1

2

obtained as the average of P3 and P4, both define common quadratic Lyapunov
functions. This implies that P = I2 defines a common Lyapunov matrix, in other
words that ÂT

k + Âk < 0 for every k = 1, 2, 3, 4. To verify that such condition is not
true it is sufficient to compute

det
(
−ÂT

1 − Â1

)
= det

([
2 (1 + ε) − 1

− 1 2ε

])
= 4ε2 + 4ε− 1

which is clearly negative for 0 < ε < −1+
√
2

2 .

6.3.7 Robust stability/contractivity analysis via system
augmentation

A possibility to investigate stability contractivity in a less conservative way than
using quadratic Lyapunov functions is based on system augmentation. Let us
consider the discrete-time first. Assume we wish to establish the stability of the
system

x(t + 1) = [
s∑
i

Ai=1wi(t)]x(t),
∑
i=1

wi = 1, wi ≥ 0

or equivalently, we wish to check if Σ(A1,A2, . . . ,As) < 1.
We can consider the T step system defined as follows:

x(k + T) = [AiT−1AiT−2 . . .Ai0 ]x(t) = Φtx(t) (6.22)

where

Φt ∈ ĀT
.
= [AiT−1AiT−2 . . .Ai0 ]

are the matrices formed by all possible T-products of the given Ai. The following
proposition holds.
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Proposition 6.35. The difference inclusion is stable (or Σ(A1,A2, . . . ,Ak) < 1) if
and only if for T large enough (6.22) is quadratically stable. Moreover, for T large
enough, any quadratic positive definite function xTPx, P 
 0 is a suitable quadratic
Lyapunov function for system (6.22).

Proof. The proof is similar to that of Proposition 6.24 and left to the reader as an
exercise.

It should be noticed that the previous proposition is essentially a re-statement of old
theory, for instance [GY93].

To apply the criterion we have two possibilities. One possibility is to fix an
horizon T and check if all the matrices Φ ∈ ĀT share a common Lyapunov function.
The second one is to fix an horizon (usually much larger) to check if Φ ∈ ĀT have
all norms ‖Φ‖ < 1. The shortcoming of the approach is that the number of matrices
Φ ∈ ĀT grows exponentially.

In the continuous-time case we can use a different system augmentation. This
technique was used for the first time in [Zel94] and deeply investigated later
[CGTV03, Che10, CGTV09, CCG+12]. The idea, explained in brief, sounds as
follows. Instead of x(t) we introduce the variable x(m)(t) formed by all the
monomials of order m. For instance, for x(t) ∈ IR2

x(3)(t) = [x31(t), x
2
1(t)x2(t), x1(t)x

2
2(t), x

3
2(t)]

T

Consider the linear system

ẋ(t) = Ax(t)

Then the system in the new variable x(m) is described by the following “expanded”
dynamic system

ẋ(m)(t) = A(m)x(m)(t)

where the matrices A(m) can be computed as shown in [CGTV09]. Now it is obvious
that the stability of the original system and of the expanded one are equivalent.

If we consider a quadratic candidate Lyapunov function for the new system

Ψ(x(m)) = (x(m))TPx(m)

this function turns out to be a polynomial Lyapunov function for the original system
[CGTV09]. We know that the class of positive polynomials are universal, hence non-
conservative for the robust stability problem [MP86a, MP86b, MP86a, BM99c]. It
has recently been proved that the stability of the original system is equivalent to the
quadratic stability of the extended system for m large enough [Che11b, CCG+12,
Che13].
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6.4 Performance analysis of dynamical systems

In this section, it is shown how several problems related to the performance analysis
of dynamic systems may be solved via a set-theoretic approach. We start by
considering the fact that, as we have seen, for Linear Time-Invariant (LTI) systems,
basic properties such as the effect of bounded inputs on the system can be in practice
solved without set-computing. For instance, the evaluation of the l1 norm of a system
(i.e., the worst-case output peak for all possible peak-bounded inputs) requires the
computation of the sum of a series. We have given a set-theoretic interpretation
which has its own interest but it does not provide practical or theoretical advantages.
Here it is shown how the set-theoretic formulation can be used to solve some
analysis problems for uncertain systems for which the formulas known for LTI
systems are no longer useful.

6.4.1 Peak-to-peak norm evaluation

Let us consider the problem of evaluating the largest output value achievable by the
constrained inputs with 0 initial conditions for the discrete-time polytopic system

x(t + 1) = A(w(t))x(t) + Ed(t)
y(t) = Hx(t)

where, again, A(w) =
∑s

i=1 Aiwi, with w ∈ W , namely,
∑s

i=1 wi = 1, wi ≥ 0 and
d belongs to the compact set D.

The paradigm consists in the following question: assume x(0) = 0 and let
d(t) ∈ D. Is the constraint

‖y(t)‖∗ ≤ μ,

(with ‖ · ‖∗ a given norm) satisfied for all t ≥ 0?
In the case in which also D is the unit ball of the same norm ‖ · ‖∗, we are

evaluating the system induced norm. Formally the question is

• Q0:

‖(A(w),E,H)‖∗,∗ = sup

w(t) ∈ W
x(0) = 0

‖d(t)‖∗ ≤ 1, t ≥ 0

sup
t>0

‖y(t)‖∗ ≤ μ ?

The actual system norm can be estimated by iterating over μ. One way to proceed
is that of computing the convex hulls of the 0-reachable sets. From the results
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previously presented it is indeed apparent that, denoting by Rt the 0 reachable set
in t steps, the sequence of the convex hulls conv{Rt} can be computed as shown in
Proposition 6.5. In view of the above consideration, an “yes” answer is equivalent
to checking that

conv{Rt} ∈ Y(μ)
.
= N [‖Hx‖∗, μ],

(roughly the set of all x such that ‖Hx‖∗ ≤ μ), for all t. This way of proceeding
has the drawback that if the previous condition is satisfied till a certain t̄, there is no
guarantee that the same condition will be satisfied in the future. As it often happens,
inverting the reasoning can be helpful. This is equivalent to reverting time, in this
case. The problem can be solved in two steps as follows.

• Compute the largest robustly invariant set Pμ for system x(t+1) = A(w(t))x(t)+
Ed(t) inside Y(μ).

• If 0 ∈ Y(μ) then the answer to Q0 is “yes”, otherwise it is “no”.

In principle we should assume that the system has passed the stability test. Under
some assumptions, such as the existence of an observable pair(A(w),H) the stability
test is actually included in the procedure according to following theorem.

Theorem 6.36. Assume that there exists w′ ∈ W such that (A(w′),H) is an
observable pair and that there exists w′′ ∈ W such that (A(w′′),E) is reachable.
The following statements are equivalent.

• All the reachable sets (equivalently, their convex hulls) are inside Y(μ), say Rt ⊂
Y(μ), for all t > 0.

• The largest robustly invariant set Pμ included in Y(μ) is a C-set.
• The system is stable and question Q0 has answer “yes” (in the case of the

induced norm ‖(A(w),E,H)‖∗,∗ ≤ μ).

Proof. The set Pμ is the region of initial states starting from which the condition
x(t) ∈ Y(μ) is guaranteed for all t ≥ 0. Therefore, the first two statements are
obviously equivalent to the third statement, with the exception of the “stability
claim.” To include stability, we need to consider the observability and reachability
assumption. Indeed, if we assume that (A(w′),H) is observable, then the closed
and convex set Pμ is necessarily bounded [GT91]. Furthermore, if (A(w),E) is
reachable, then the reachable set RT includes the origin as an interior point for
all T > 0 (for T large enough in the discrete-time case) and then Pμ is a C − set.
Then we are in the position of proving stability.

Take any initial condition x0 on the boundary of the C-set Pμ. The corresponding
solution is given by x(t) = xf (t) + xd(t) where xf (t) is the free response (i.e., such
that xf (t + 1) = A(w(t))xf (t) and xf (0) = x0) and xd(t) is the response driven by d
(precisely xd(0) = 0 and xd(t +1) = A(w(t))xd(t)+ Ed(t). Since xd(T) ∈ RT , then

x(T) ∈ {xf (T)} + RT ⊆ Pμ
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Denote by ST = conv{RT} the convex hull of RT . Being Pμ convex the last
inclusion can be replaced by

x(T) ∈ {xf (T)} + ST ⊆ Pμ

therefore {xf (t)} is in the erosion, [P̃μ]ST , of (see Definition 3.8) Pμ with respect
to ST

xf (T) ∈ [Pμ]ST

Since ST is a C-set there exists λ < 1 such that xf (T) ∈ λPμ.
We have proved that, for all x0 ∈ ∂Pμ, we have that in T steps xf (T) ∈ λPμ.

Consider the T-step forward system

xf (t + T) = [A(w(t + T − 1))A(w(t + T − 2)) . . .A(w(t))] xf (t)

which is linear, hence homogeneous. By applying Theorem 4.18 and Lemma 4.31
we can see Pμ (which is invariant for xf (t + 1) = A(w(t))xf (t)) is λ-contractive for
such a system which implies stability.

We sketch now the algorithm proposed in [FG95] and [BMS97] that can be used
for the ‖ · ‖∞ norm. Precisely we assume that ‖d(t)‖∞ ≤ 1 and we seek for the
largest possible ‖y(t)‖∞.

1. Fix an initial guess μ > 0 and a tolerance ε > 0.
2. Set F(0) = H, g(0) = μ1̄, k = 0, μ+ = +∞ and μ− = 0.
3. If μ+ − μ− ≤ ε STOP. Else
4. Given the set Sk = {x : |F(k)

i x| ≤ g(k)
i , i = 1, 2, . . . , r(k)}, where F(k)

i is the

ith row of matrix F(k) and g(k)
i is the ith component of vector g(k), compute the

pre-image set Pk+1 as

Pk+1 = {x : |F(k)
i Ajx| ≤ μ(k) − ‖F(k)

i E‖1, j = 1, 2, . . . , s, i = 1, 2, . . . , r(k)}

5. Compute the intersection

Sk+1
.
= Pk+1

⋂
Sk

to form the matrix F(k+1)
i and the vector g(k+1).

6. If 0 �∈ Sk+1, then set μ− = μ, increase μ and GOTO step 3.
7. If Sk = Sk+1, then set μ+ = μ, reduce μ and GOTO step 3,

The previous results can be applied to continuous-time systems by means of the
EAS. It can be shown that the ∞-to-∞ induced norm of the EAS system is always
an upper bound for the corresponding induced norm of the continuous-time system

‖(A,E,H)‖∞,∞ ≤ ‖((I + τA), τE,H)‖∞,∞
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This fact can be inferred from the property that ‖((I + τA), τE,H)‖∞,∞ ≤ μ
implies the existence of an invariant set for the EAS included in Y(μ). In view
of Lemma 4.26 and Proposition 5.10, such an invariant set is positively invariant for
the continuous-time system.

The computation of the norm of system

(A(wA),E(wE),H(wH)) =
(∑

AiwA,i,
∑

EiwE,i,
∑

HiwH,i

)

with polytopic structure can be handled as follows. The input E(wE)d is replaced
by v ∈ V the convex hull of all possible points of the form Ekdh, with Ek and dh on
their vertices. It is quite easy to see that the convex hulls of the reachability sets of
x(t + 1) = A(wA)x(t) + v(t) are the same as those of the original system. As far as
the output uncertainty is concerned, the condition to be faced is

‖y‖∞ = ‖H(wH)x‖∞ ≤ μ⇔ ‖y(k)‖∞ = ‖Hjx‖∞ ≤ μ, ∀j

Therefore the problem requires repeating the iteration for all matrices Hj and
retaining the minimum value. Note that, in this extension, it has been assumed that
the uncertainties affecting (A(wA),E(wE),H(wH)) are independent.

We remind the reader that the induced norm for the time-varying uncertain
system we are considering here, say ‖(A(w),E,H)‖∞,∞, is quite different from
the time-invariant norm, namely ‖(A(w̄),E,H)‖∞,∞, the norm computed for the
time-invariant system achieved by fixing w = w̄. Clearly the time-invariant norm is
not greater than the time-varying worst case norm:

‖(A(w̄),E,H)‖∞,∞ ≤ ‖(A(w),E,H)‖∞,∞

Example 6.37. Let us consider the following system

A(w) =

⎡
⎣ 0 1 0

0 0 1

−(3 + w) −2 −3

⎤
⎦ , E =

⎡
⎣0

0

1

⎤
⎦ , H =

[
1 0 0

]
,

w ∈ [0, 1], and let us consider the corresponding EAS (I+τA, τE,H). The algorithm
provided the following limits for the norm

13.5 = μ− ≤ ‖((I + τA(w)), τE,H)‖∞,∞ ≤ μ+ = 13.6

Note that the upper bound is actually an upper bound for the continuous-time
system, while the lower bound is not. The algorithm required 3638 iterations to
detect that the origin was not included in the largest invariant set for μ = μ− = 13.5
and required 144 iterations to find an invariant set μ = μ+ = 13.6. Such an
invariant set is generated by 1292 constraints (by symmetry these correspond to
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646 rows for the describing matrix F, not reported for paper-saving reasons).
In the next table we report the number of iterations to detect the “yes/no” answer
and the number of residual constraints (the actual constraints forming Pμ in the
“YES” answer case) as a function of the “guess” μ. We point out that the norms

μ 8 10 12 13.5 13.6 14 16 18

‖ ‖ ≤ μ? NO NO NO NO YES YES YES YES

iterations 646 969 1554 3638 144 53 44 43

constraints 226 276 270 288 1292 586 530 524

of the extreme systems are quite smaller, ‖((I + τ(A(0)), τE,H)‖∞,∞ ≈ 1.98
‖((I + τ(A(1)), τE,H)‖∞,∞ ≈ 5.95, and this means that high values of the norm
are not due to a special “critical” value of w, but mainly to its variation inside W .

Clearly the performance of the system might be estimated via ellipsoids. Let us
consider the following problem. Consider the system

ẋ(t) = A(w)x(t) + Ed(t), y(t) = Hx(t)

with

‖d(t)‖ ≤ 1

μ
.

Now we assume that the norm is the Euclidean one (in the single input case it does
not matter). Then we can consider the condition (4.23) (see [Sch73, USGW82]) to
state that the ellipsoid E(P, 1) is positively invariant if, denoting by Q = P−1, we
have, for all i:

QAT
i + AiQ + αQ +

1

α
EET 1

μ2
	 0, for some α > 0 (6.23)

The condition (4.23) has been stated for a single system ẋ = Ax + Ed, but the
generalization above is obvious. The problem is that of including the ellipsoid
E(Q−1, 1) inside the strip Y(1). Note that for convenience we are iterating over
μ by scaling the control disturbance rather than changing the size of Y which is
obviously equivalent.

The condition E(Q−1, 1) ⊂ Y(1) can be easily expressed. Let us consider the
single-input case for brevity. Then Y(1) = {x : |Hx| ≤ 1}, so that E(Q−1, 1) ⊂
Y(1) iff

HQHT ≤ 1. (6.24)



276 6 Set-theoretic analysis of dynamic systems

Then, if we find a matrix Q 
 0 such that conditions (6.23) and (6.24) are satisfied,
then we are sure that the induced norm of the system is less than μ. If such an
ellipsoid does not exist, however, we cannot conclude that the induced norm of the
system is greater than μ.

Example 6.38. To show that the previous condition can be conservative, consider
the example in [USGW82], namely the system ẋ(t) = Ax(t) + Bu(t) + Ed(t) with
matrices

A =

⎡
⎣−0.0075 −0.0075 0

0.1086 −0.149 0

0 0.1415 −0.1887

⎤
⎦ , E =

⎡
⎣ 0

−0.0538

0.1187

⎤
⎦ , B =

⎡
⎣ 0.0037

0

0

⎤
⎦

to which the linear feedback control

u = Kx = −37.85x1 − 4.639x2 + 0.475x3

is applied. Four outputs were considered: the state components and the control input.
On all these variables, constraints are imposed as follows:

|x1| ≤ 0.1, |x2| ≤ 0.01, |x3| ≤ 0.1, |u| ≤ 0.25

which can be written as ‖Hx‖∞ ≤ 1, where

H =

⎡
⎢⎢⎣

10 0 0

0 100 0

0 0 10

−151.40 −18.55 1.90

⎤
⎥⎥⎦ .

The disturbance input is bounded as |d| ≤ α. The ellipsoidal method provides the
bound

αell = 1.27

which implies the bound for the induced norm equal to ‖(A,E,H)‖∞,∞ ≤
(1.27)−1 = 0.787 By considering the EAS with τ = 1, we achieved the bound

αEAS = 1.45

which implies ‖(A,E,H)‖∞,∞ ≤ (1.45)−1 = 0.685. Clearly, by reducing τ ,
tighter bounds can be achieved. We will reconsider this example later as a synthesis
benchmark. We remind that the condition is also necessary [BC98] for positive
invariance (if there exists a reachable pair (A(w),E)), therefore conservativeness
is not due to condition (6.23), but to the adoption of ellipsoids.
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6.4.2 Step response evaluation

We consider now the problem of computing the peak of the step response of the
system

x(t + 1) = A(w(t))x(t) + Ed(t), y(t) = Hx(t) + Gd(t)

where it is assumed that d(t) ≡ 1 and x(0) = 0. Basically the values one would
like to evaluate for this system are the worst case peak and the asymptotic error and
precisely, for given positive μ and ν, the questions now are:

Q1 : is the largest peak bound less than μ, supt≥0 ‖y(t)‖ ≤ μ?
Q2 is the largest asymptotic value less than ν, lim supt→∞ y(t) ≤ ν?

We can answer this questions as follows. We assume that A(w) is stable. Let us
consider the following sets

Y(ξ) = {x : ‖Hx + G‖ ≤ ξ}

(remind that d ≡ 1). Then we can claim the following.

Proposition 6.39.

• The answer to question Q1 is yes if and only if the largest invariant set included
in Y(μ) includes the origin.

• The answer to question Q2 is yes if and only if the largest invariant set included
in Y(ν) is non-empty.

The proof of this proposition can be found in [BMS97] where a more general case
with both disturbances and constant inputs is considered.

Again, in terms of ellipsoids, a bound can be given as suggested in [BEGFB04]
(see notes and references of Chapter 6). Indeed, the unit step is a particular case
of norm-bounded input. However, as pointed out in [BEGFB04], the method is
conservative (see Exercise 8).

Example 6.40. Consider the system

ẏ(t) = −[1 + w(t)/2]y(t) + u(t)

with the integral control

u̇(t) = −κ(y(t) − r(t)).

Assume r(t) ≡ r̄ = 1, κ = 5 and u(0) = y(0) = 0. We use the EAS with τ = 0.1,
so achieving the system
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Fig. 6.7 The maximal
invariant set (external) and
the limit set (internal)
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We first compute the output peak with respect to output y, asking
Q1: is condition supt≥0 |y(t)| ≤ μ true for all w(t)?
It turns out that μ+ = 1.75, μ− = 1.74 are the upper and lower limits for

the “yes” answer. In Figure 6.7 the largest invariant set included in Ymax(1.75) is
depicted. Its margin is the rightmost vertical line, which includes the origin and
certifies that μ+ = 1.75 is actually an upper limit. Then we compute the asymptotic
behavior of the error y − r, the question now is

Q2: is the condition lim supt→∞ |y(t) − r̄| ≤ ν, true for all w(t)?
It turns out that the limit for the “yes” answer is between ν+ = 0.430 and

ν− = 0.429. The smaller set in Fig. 6.7 is the largest invariant set included in the
set Ylim(0.430), the strip included between the two leftmost lines which certifies
that the asymptotic behavior of y is between r̄ + ν+ = 1.430 and r̄ − ν+ = 0.570
(we remind that r̄ = 1)

The conclusions that can be drawn are the following. The step response of the
system with the considered control does not exceed 1.75 as a peak, no matter how
0 ≤ w(t) ≤ 1 changes. The asymptotic error is clearly not constant unless w has a
limit value 0 ≤ w̄ ≤ 1 (in which case the integrator assures e(t) → 0). For persistent
fluctuating values of w, in agreement with the considerations in Subsection 2.1.3.
the error fluctuates and the worst case (for the EAS) is 0.430, which assures that the
worst case for the continuous-time system does not exceed 0.430. It is intuitively
clear that by taking τ smaller and smaller one converges to the actual value for the
continuous-time system. Such intuition is supported by the results in [BS94], where
such an assertion is proved. In Figure 6.8 a simulated step response is proposed.
The value of w(t) is alternatively taken equal to 0 and 1 starting with w(0) = 0 and
by switching at t = 3, 13, 15, 17, 19, 21. It appears that the estimated values are
sensibly larger than the actual ones. These are essentially due to two reasons. First,
the realization of w(t) considered in the simulation is not necessarily the “worst
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Fig. 6.8 The proposed
simulation
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case.” Second, the provided bounds are non-conservative as τ → 0. Thus, we could
reduce the value of τ (the considered one is 0.1), at the price of a noticeable increase
in the number of planes delimiting the set.

6.4.3 Impulse and frequency response evaluation

It is possible to analyze impulse responses in the set-theoretic framework. Consider
the SISO system

x(t + 1) = A(w(t))x(t) + Ed(t), y(t) = Hx(t)

with w(t) ∈ W , x(0) = 0, d(t) = δ0(t) = {1, 0, 0, . . .}, and assume that (A(w̃),H)
is observable for some w̃ ∈ W . The question is to find

sup
t≥0

|y(t)|∞

The problem can be reformulated as by fixing a μ > 0 and checking if
supt≥0 |y(t)|∞ ≤ μ. By iterating over μ we can solve the problem up to a numerical
approximation. We have the following.

Proposition 6.41. Assume that the system is asymptotically stable. Then the
impulse response y is such that supt≥0 |y(t)|∞ ≤ μ if and only if the (finitely
determined) largest invariant set in the strip {x : |Hx| ≤ μ} for the system includes
the vector E.

Note that, in principle the step response analysis proposed in the previous subsection
could be carried out by augmenting the (stable) system

x(t + 1) = A(w(t))x(t) + Ed(t), (6.25)
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by adding a fictitious equation

d(t + 1) = d(t), d(0) = 1

and testing the impulse response for the resulting system with output y(t) = Hx(t)+
0d(t). The only problem is that, in this way the augmented system is not stable
anymore and then there is no way to assure that the algorithm which computes the
largest invariant set converges in finite time. To fix the problem, we can decide to
accept the approximation achieved by replacing the equation d(t + 1) = d(t) by a
slow decay

d(t + 1) = λd(t)

with 0 < λ < 1 and λ ≈ 1. With this kind of tricks we can manage other kind of
problems. For instance, we can augment system (6.25) by adding the second order
system

z(t + 1) = R(θ)z(t) + Pr(t), d(t) = z1(t)

where R(θ) is the θ-rotation matrix

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]

and P = [ 1 0 ]T . By means of the impulse response of this plant we can test
the frequency response amplitude of the original plant (at frequency θ). Again the
convergence of the algorithm is an open issue, since the augmented system is not
asymptotically stable.

6.4.4 Norm evaluation via LMIs

We briefly now discuss some problems that can be solved by means of methods
which are in some sense related to the set-theoretic approach we are dealing with.
An important performance index for a system is the so-called L2-to-L2 induced gain
which can be defined as follows:

‖(A,E,H,G)‖2,2 = sup
w �=0

‖y‖2
‖d‖2

where the L2 norm is defined as

‖u‖2 =

√∫ ∞

0

u(σ)Tu(σ) dσ
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It is well known that, if A is stable, such a norm has the fundamental frequency
response characterization

‖(A,E,H,G)‖2,2 = sup
ω≥0

√
max eig [W(jω)T W(−jω)]

where W(s) = H(SI − A)−1E + G is the transfer function matrix and eig(WTW) is
the set of the eigenvalues of WT W (which are real non-negative) This norm is also
referred to as H∞-norm. It is known that the property ‖(A,E,H,G)‖2,2 < 1 has an
LMI characterization [SPS98]. Let us assume now that (A,E,H,G) has a polytopic
structure

[A,E,H,G] =
s∑

i=1

wi [Ai,Ei,Hi,Gi]

∑s
i=1 wi = 1, wi ≥ 0, Then the induced norm condition ‖(A,E,H,G)‖2,2 < 1 is

assured if there exists a positive definite P such that

⎡
⎣AT

i P + PAi PEi HT
i

ET
i P −I GT

i

Hi Gi −I

⎤
⎦ ≺ 0

Again this condition is a complete characterization (i.e., it provides a necessary and
sufficient condition) for a single system (A,E,H,G), but for polytopic systems it is
only sufficient when the condition is far to be necessary. Indeed as it will be seen
later, there exist stable systems, therefore with finite induced gains, which are not
quadratically stable (a condition which is implied by the previous LMI condition).
Clearly, the discrete-time version of the problem has also an LMI characterization
and the reader is referred to specialized literature.

Similar considerations can be done for the computation of the impulse response
energy. Precisely, one might be interested in the evaluation of ‖(A,E,H)‖2, the L2

system norm, defined as the L2 norm of the system impulse response (for simplicity,
the SISO case only is considered). Such norm is then equal to

‖(A,E,H)‖2 = ‖yimp‖2 =

√∫ ∞

0

(HeAtE)THeAtE dt =
√

ETPE

where P 
 0 is the unique (assuming (A,H) observable) solution to the equation

ATP + PA + HTH = 0

Let us consider a polytopic system. Assume that there exists P 
 0 such that

AT
i P + PAi + HTH ≺ 0
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and define the function Ψ(x) = xTPx. Then, for any initial condition x(0), the free
response is such that

Ψ̇(x) = xT [A(w)T P + PA(w)]x ≤ −xTHTHx = −yTy

say yTy ≤ −Ψ̇(x). By integrating we have

∫ t

0

y(t)T y(t) dt ≤ Ψ(x(0)) − Ψ(x(t))

Consider the system impulse response y, namely the free evolution with initial
condition x(0) = E. Then, in view of the assumed asymptotic stability, Ψ(x(t)) → 0
as t → ∞, then

‖yimp‖22 ≤ ETPE

Again this is not a tight bound since the condition implies quadratic stability, which
is stronger than stability.

6.4.5 Norm evaluation via non-quadratic functions

It is clear that if we consider bounds based on quadratic functions, then the system
has to be quadratically stable. So the criterion is conservative for polytopic systems.

In general, given a stable system of the form

ẋ(t) = A(w(t))x(t) + Ed(t), (6.26)

y(t) = Hx(t) (6.27)

and a positive definite positively homogeneous function of the second order Ψ(x),
from a condition of the form

D+Ψ(x) ≤ −y2(t) + γd2(t)

by integration we get, assuming d(t) → 0 and x(t) → 0

∫ ∞

0

y2(t)dt ≤ γ

∫ ∞

0

d2(t)dt + Ψ(x0)

where x0 is the initial state. The function Ψ(x) is not necessarily quadratic and
we can derive a polytopic bound on the output energy of the impulse response as
follows. For brevity we consider the SISO case and d ≡ 0.
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Consider the set

Y = {x : |Hx| ≤ 1}

and compute a β-contractive (possibly the largest) set S inside Y . Consider the
corresponding Minkowski functional Ψ(x), for which, if d = 0, we get D+Ψ(x) ≤
−βΨ(x). Let ψ(x) = Ψ2(x). We get

D+ψ(x) ≤ − 1

μ
ψ(x)

where μ
.
= (2β)−1. On the other hand, by construction, S ⊂ Y , so ψ(x) ≥ y2

(because the 1-level surface of ψ, S = N [ψ, 1] is included in the 1-level surface of
y2, namely Y . Hence

D+ψ(x) ≤ −ψ(x)/μ ≤ −y2/μ

By integrating we get for d = 0

∫ ∞

0

y2(t)dt ≤ μΨ(x0)

which provides a bound for the output energy with initial condition x0, so Ψ(E) is a
bound for the energy of the impulse response (say, when d(t) = δ(t)).

The computation of the set S can be performed as previously described.

6.5 Periodic system analysis

We briefly consider the analysis problem of periodic systems. It is a known problem
in the mathematical literature and we sketch some basic results. Consider the system

ẋ(t) = f (x(t),w(t))

and assume that f is Lipschitz and that w(t) is a periodic signal of period T.
A basic question considered in the literature is the existence of periodic trajectories.
Clearly, the periodicity of w(t) does not imply the existence of a periodic trajectory.
However, there are some sufficient condition. Assume that there exist a C-set X , t0
and a period T > 0 such that, for all x(t0) ∈ X , x(t0 + T) ∈ X . Then, there exists a
periodic trajectory. This fact can be shown by considering the Brouwer fixed-point
theorem. Consider the map F : X → X which associates to x ∈ X the solution of
the equation with initial condition x(t0) at time t0+T x(t0+T) = F(x(t0)). The map
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F is continuous in view of the continuous dependence on the initial condition.
Therefore there exists x̄ ∈ X such that F(x̄) = x̄, which implies that the solutions
which starts from x̄ at t0 is T-periodic.

However, this basic result does not characterize the behavior of the periodic
solution, for instance as far as its stability is concerned. Here we propose some
results for systems of the form

ẋ(t) = A(t,w(t))x(t), or, as usual x(t + 1) = A(t,w(t))x(t) (6.28)

with A(t,w) periodic in t. For this class of systems, stability implies exponential
stability, as proved below.

Theorem 6.42. Assume that in Eq. (6.28) A(t,w) is continuous and periodic of
period T, for any fixed w ∈ W , with W compact. Assume that (6.28) is globally
uniformly asymptotically stable (GUAS), according to Definition 2.16. Then it is
exponentially stable.

Proof. If the system is GUAS, for all μ > 0 and ε > 0, there exists an integer
κ = κ(μ, ε) > 0 such that if ‖x(0)‖ ≤ μ then ‖x(t)‖ ≤ ε, for all t ≥ κT and
it is bounded as ‖x(t)‖ ≤ ν 0 ≤ t ≤ κT, for some ν > 0. Take μ = 1 and
ε = μ/2 = 1/2. Then ‖x(κT)‖ ≤ 1/2. Consider the modified system

ż(t) = [βI + A(t,w(t))]z(t),

and recall that if x(0) = z(0) then, z(t) = eβtx(t) is the solution of the modified
system, since

d
dt

(xeβt) = βeβtx + eβtẋ = [βI + A(t,w)](xeβt).

Take β > 0 small enough to assure that ‖z(κT)‖ ≤ 1. Then, since ‖z(0)‖ ≤ 1
implies ‖z(κT)‖ ≤ 1 and since z(t) is bounded for 0 ≤ t ≤ κT, by the assumed
periodicity we have that ‖z(rκT)‖ ≤ 1 for all integer r and that z is bounded, say
‖z(t)‖ ≤ ρ for some ρ > 0. Therefore

‖x(t)‖ = ‖e−βtz(t)‖ = e−βt‖z(t)‖ ≤ e−βtρ

for all ‖x(0)‖ ≤ 1, and thus also for ‖x(0)‖ = 1. In view of the linearity, in general
we have

‖x(t)‖ ≤ e−βtρ‖x(0)‖

thus exponential stability.
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The previous result, as a particular case, proves that an LPV system is stable if
and only if it is exponentially stable, precisely the equivalence of the first two items
of Theorem 6.27.

In the case of discrete-time periodic systems, stability can be checked by
algorithms, which are based on the approach previously described. Indeed, one can
start the backward construction (see Section 5.1.2) of the sets

X−k−1 =

{
x :

A(t,w)

λ
x ∈ X−k

}⋂
X0

starting from any arbitrary C-set X0. It can be shown that the sequence of sets, which
is nested in T steps

X−k−T ⊆ X−k

either collapses to the origin or converges to a periodic sequence. The occurrence of
the latter proves stability of the system under consideration. Precisely, assume that

X−k−T = X−k

(a condition which is typically met within a certain tolerance). The above states the
fact that x(t) ∈ X−k implies x(t + T) ∈ λTX−k, where λ is the contractivity factor.

The provided set-theoretic approach to performance evaluation can be easily
extended to non-autonomous periodic systems. Consider, for instance, the system

x(t + 1) = A(t,w(t))x(t) + Ed(t), y(t) = Hx(t)

with A(t,w) periodic in t with period T and d belonging to the C-set D. Assume that
one wishes to check if the worst case magnitude is ‖y(t)‖∞ ≤ μ. Then, setting X0 =
Y(μ) = {x : ‖Hx‖ ≤ μ}, it is possible to start a similar backward construction:

X−k−1 = {x : A(t,w)x + Ed ∈ X−k}
⋂

X0.

Again the sequence of sets is nested in T steps, say X−k−T ⊆ X−k. The sequence
either stops due to an empty element, X−k = ∅, or converges to a periodic sequence
[BU93].
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6.6 Exercises

1. Show an example of a set S controllable to P such that P is not reachable form
S and vice versa.

2. Show that if f is continuous, and if P and U are compact, then

f (P ,U)

is compact (too easy?).
3. Assume that P is controlled-invariant. Show that, for T1 ≤ T2, CT1(P) ⊆

CT2(P) where CT(P) is the controllability set in time T. Show that the
implication RT1(P) ⊆ RT2(P) is not true in general.

4. Explain why CT(P) is not compact, even for a compactP , in the case of discrete-
time linear systems (Hint: take A singular . . . ).

5. Prove Proposition 6.7.
6. Show, by means of an example, that the one step reachable set from an ellipsoid

E for the system x(t + 1) = Ax(t) + Ed(t), d ∈ D is convex, but in general it is
not an ellipsoid, no matter if D is an ellipsoid or a polytope.

7. The set R∞ with bounded input d ∈ D is robustly positively invariant. Is the set
R∞(x̄) of all states reachable from x̄ �= 0, for some arbitrary T > 0, positively
invariant? Is the setC∞(x̄) of all states controllable to x̄ �= 0 for arbitrary T > 0,
positively invariant?

8. Given a stable system, the ratio between a) the maximum (worst case) output
peak persistent disturbance inputs |d(t)| ≤ 1, and b) unit step output, may be
arbitrarily large. Can you show a sequence of LTI systems for which this ratio
grows to infinity?

9. The l1-norm of a MIMO system (A,E,H) is defined as follows. Denote by
Q(1),Q(2), . . . ,Q(k), . . . the sequence of Markov parameters (p × m matrices).
Then the l1 norm is defined as

‖H(zI − A)−1E‖l1 = sup
i

∞∑
k=1

m∑
j=1

|Q(k)
ij |

This norm is known to be equal to

‖H(zI − A)−1E‖∞,∞
.
= sup

t≥0,x(0)=0,‖d(k)‖∞≤1

‖y(t)‖∞

Provide the “reachability set” characterization of this norm which is the MIMO
version of Proposition 6.16.

10. Formulate a “convex” optimization problem to find P, μ, and ν which
satisfy (6.20).
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11. The statement ii) of Theorem 6.25 does not hold, in general, if the matrices
share a proper invariant subspace. Show this by considering the single matrix
A = diag{2, 1/2} and X the unit square.

12. Consider the system x(t + 1) = Ax(t) with

A =
1

2

[
1 −1

1 1

]

and the norm ‖ · ‖∞ and 1/
√

2 ≤ λ < 1. Find the best transient estimate
(the largest λ-contractive set is delimited by 8 planes). What about the transient
estimate evaluated with the Lyapunov norm ‖ · ‖2?



Chapter 7
Control of parameter-varying systems

In this chapter the problem of feedback control of uncertain systems is considered,
with a special attention to the control of polytopic systems. To properly introduce
the results, let us reconsider the stability analysis problem for an uncertain system
of the form

ẋ(t) = A(w(t))x(t)

where w(t) ∈ W , with W compact, and A(·) is continuous. In the case of a single
stable linear system, stability is equivalent to the fact that the eigenvalues of A have
negative real part (modulus less than one in the discrete-time case). The speed of
convergence associated with the maximum real part (modulus) of the eigenvalues,
precisely the maximum value of β > 0 such that (4.17) holds, is max{Re(λ), λ ∈
eig(A)}, where eig(A) is the set of the eigenvalues of A. In the case of an uncertain
system, there is no analogous concept of eigenvalues. The eigenvalues of A(w),
intended as functions of w, do not play a substantial role anymore, since they may all
have negative real part bounded away from 0 (i.e. max{Re(λ), λ ∈ eig(A(w))} ≤
β < 0), and still the time-varying system be unstable. Indeed, the condition becomes
necessary only.

Most of us1 experienced how parameter variations can affect the stability of a
system which is stable for any fixed value of the parameters, for example when
sitting on a swing. A swing can be destabilized (among the different strategies) by
changing the distance of the mass barycenter from the hinge. A slightly different
system, similar in spirit, consists in a pendulum which is hinged on a non-inertial
frame (see Fig. 7.1), and subject to a vertical acceleration a(t). This system is
represented by the model

Jθ̈(t) = −(g − a(t)) sin(θ(t)) − α̂θ̇(t)

1Before knowing the pleasure of studying applied mathematics.
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Fig. 7.1 The experimental
device

θ

If one assumes small angles, so that sin(θ) ≈ θ, the following linear system is
obtained:

ẋ(t) =

[
0 1

−ρ(t ) −α

]
x(t) (7.1)

where x = [θ θ̇]T and α = α̂/J. If ρ(t) is bounded as 0 < ρ− ≤ ρ(t) ≤ ρ+ and
α > 0, then this system is stable for any frozen value of the parameters. However,
if the friction coefficient α > 0 is assumed small enough, then the system becomes
unstable for a suitable variation of ρ(t). We do not report here a formal proof since
it can be found on most books (see, for instance, [Lib03]), and since this issue will
be reconsidered later in Section 9.1.

In practice, to assure stability of a system with time-varying parameters (or to
assure a proper convergence speed by means of a control action), Lyapunov theory
is fundamental: a proper Lyapunov function is needed which has to be common to
all the members of the family of systems represented by A(w).

As already pointed out, the most commonly used Lyapunov functions are the
quadratic ones. They are the most famous in the control community and they are
easy to deal with. However, they are known to be conservative. Conversely, poly-
hedral functions have stronger properties as far as the conservativity is concerned,
but they may require computationally heavy procedures. In this section, both kinds
of functions will be considered, with the aim of enlightening their advantages
and disadvantages in the problem of stabilizing a system, possibly by assigning
a convergence speed.
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7.0.1 Control of a flexible mechanical system

To motivate the chapter, we introduce a preliminary example.

Example 7.1. Consider the system depicted in Fig. 7.2, whose dynamics is

θ̈ = −α(θ − ϕ) + τ

ϕ̈ = −α(ϕ− θ) + β sin(ϕ)

Let ϕ̄ be a reference angle for ϕ and let θ̄ be the corresponding equilibrium value
for θ, namely such that

α(ϕ̄ − θ̄) + β sin(ϕ̄) = 0

Define x1 = ϕ − ϕ̄, x2 = θ − θ̄, x3 = ẋ1 = ϕ̇ and x4 = ẋ2 = θ̇. Let τ̄ be the
equilibrium value for the control, which satisfies

τ̄ + β sin(ϕ̄) = 0

and let u = τ − τ̄ . If we write the equations for ẋi we see that one of them is
nonlinear:

ẍ1 = −α(x1 − x3) + β [sin(x1 + ϕ̄) − sin(ϕ̄)]

To eliminate the nonlinearity, let

ω
.
=

sin(ϕ) − sin(ϕ̄)

ϕ− ϕ̄

Fig. 7.2 The flexible
mechanical system

θ

ϕ
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This function is bounded as |ω| ≤ 1. Indeed write2

ω =
sin(ϕ̄+ x) − sin(ϕ̄)

x
,

Candidate minima and maxima are achieved by computing the derivative and
equating it to zero:

d
dx
ω =

cos(x + ϕ̄)x − sin(x + ϕ̄) + sin(ϕ̄)

x2
= 0

Let x∗ be a maximum or a minimum point, then

sin(ϕ̄+ x∗) − sin(ϕ̄) = cos(ϕ̄+ x∗)x∗

By replacing this term in ω one can see that the corresponding minimum or
maximum ω∗ is such that

ω∗ =
cos(ϕ̄+ x∗)x∗

x∗
= cos(ϕ̄+ x∗)

hence −1 ≤ ω∗ ≤ 1.
The nonlinear equation becomes ẍ1 = −α(x1 − x3) + βωx1 and then the system

can be absorbed in the following linear differential inclusion
⎡
⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0

0 0 0 1

−α+ βω α 0 0

α −α 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎦ u

If we assume that the measured variables are the angles x1 = ϕ − ϕ̄, x2 = θ − θ̄,
we have to consider the output vector y ∈ IR2

[
y1
y2

]
=

[
1 0 0 0

0 1 0 0

]
⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦

The resulting model has the form

ẋ(t) = A(ω(t))x(t) + Bu(t)

y(t) = Cx(t)

Note that parameter ω(t) is available for control purpose as long as x1 = ϕ − ϕ̄ is
measured.

2We assume that the function is extended by continuity, for x = 0, ω = cos(ϕ̄).
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It is clear that if we succeed in stabilizing this system, for any possible function
|ω(t)| ≤ 1, then the same control law stabilizes the nonlinear system.

The previous example motivates the gain-scheduling control technique for LPV
systems which has been deeply investigated in the control literature [SA90, SA91,
SB92, AG95, Sha96a, Hel98, SEG98, LR95].

7.1 Robust and Gain-scheduling control

First, a “vertex” result for polytopic systems is introduced. The systems considered
here are of the form

ẋ(t) = A(w(t))x(t) + B(w(t))u(t) + Ed(t) (7.2)

in the continuous-time case, whereas they have the form

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ed(t) (7.3)

in the discrete-time case. The uncertain matrices are assumed to be polytopic

A(w(t)) =

s∑
i=1

Aiwi, B(w(t)) =

s∑
i=1

Biwi, (7.4)

where w(t) ∈ W ,

W =

{
w ∈ IRs : wi ≥ 0,

s∑
i=1

wi = 1

}
(7.5)

and

d(t) ∈ D

where D = V(D) is a polytope having vertices grouped in the matrix D =
[d1 d2 . . . dr]. Denote by

w(i) =

⎡
⎢⎣ 0 . . . 0 1︸︷︷︸

ith position

0 . . . 0

⎤
⎥⎦

T

the ith vertex of W .
The next theorem states a fundamental extreme point result (basically a special

case of Proposition 2.35).
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Theorem 7.2. Let S be a C-set and ΨS its Minkowski functional. Then S is
β-contractive (λ-contractive) for system (7.2) (system (7.3)) under state feedback
(possibly under input constraints of the form u ∈ U) if and only if there exists a
Lipschitz control function Φ(x) such that3

D+ΨS(x,Aix + BiΦ(x) + Edk) ≤ −β, (continuous-time case)

ΨS(Aix + BiΦ(x) + Edk) ≤ λ, (discrete-time case)
(7.6)

(and Φ(x) ∈ U), for all x ∈ ∂S, all i = 1, 2, . . . , s and all k = 1, 2, . . . , r.

Proof. The condition is obviously necessary, because w(t) ≡ w(i) and d(t) ≡ dk are
possible realizations of w and d.

We prove sufficiency in the case E = 0 and in the continuous-time case only.
Since

∑
i wi = 1 and ΨS is convex, then

D+ΨS(x,A(w)x + B(w)Φ(x))

= limsup
h→0

ΨS(x + h(
∑

[Aiwix + BiwiΦ(x)]) − ΨS(x)
h

=

= limsup
h→0

ΨS(
∑

wi[x + h(Aix + BiΦ(x))] −
∑

wiΨS(x)
h

≤ limsup
h→0

∑
wi
ΨS(x + h(Aix + BiΦ(x))) − ΨS(x)

h
≤ −β

The proof for the discrete-time case is quite similar and it is omitted.

The next important corollary, which is a consequence of Theorem 7.2 and
Theorem 4.24, enlightens the relation between contractive sets and Lyapunov
functions.

Corollary 7.3. Assume that ΨS(x) is a gauge function, say the Minkowski func-
tional of a C-set S. Then ΨS(x) is a global control Lyapunov function (inside S,
outside S) if and only if there exists an admissible control Φ(x) ∈ U such that the
condition

D+ΨS(x,Aix + BiΦ(x) + Edk) ≤ −βΨS(x)

or, in the discrete-time case, the condition

ΨS(Aix + BiΦ(x) + Edk) ≤ λΨS(x))

is satisfied for all x (for all x ∈ S, for all x �∈ S) and for all i = 1, 2, . . . , s and all
k = 1, 2, . . . , r.

3Note that ΨS = 1 on the boundary, so the inequalities could be written in the familiar way
D+ΨS ≤ −βΨS .
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We stress that the control function Φ must be common for all k and i. The
existence of several control functions, each “working” for some k, is not sufficient,
as exemplified next.

Example 7.4. Extreme system stabilization with the same Lyapunov function, but
with different controls, is not sufficient: a counterexample.

The system

ẋ(t) = x(t) + δ(t)u(t), |δ| ≤ 1 (7.7)

is clearly not stabilizable since δ(t) = 0 is a possible realization. However, both the
“extremal” systems ẋ = x + u and ẋ = x − u admit the control Lyapunov function
|x| (or x2), as it is easy to check, although associated with different control actions
(e.g., u = −2x and u = 2x, respectively).

The corollary could be stated in a quite more general way according to
Proposition 2.35.

Proposition 7.5. Consider a system of the form

ẋ(t) = F(x(t), u(t),w(t), d(t))

where

F(x, u,w, d) =

s∑
i=1

wifi(x, u) + Ed, with
s∑

i=1

wi = 1, wi ≥ 0

and d ∈ D is a polytope with r vertices d1, . . . , dr. Then, for a smooth positive
definite function Ψ(x), the following two conditions are equivalent:

1. for every w ∈ W and any d ∈ D

Ψ̇(x, Φ(x),w, d) = ∇TΨ(x)F(x, Φ(x),w, d) ≤ −φ(‖x‖)

2. for any i = 1, . . . , s and any dk, k = 1, . . . , r,

∇TΨ(x)[fi(x, Φ(x)) + Edk)] ≤ −φ(‖x‖)

Clearly, if φ(x) is a κ-function, Ψ(x) is a Lyapunov function for the closed-loop
system. The mentioned property has been stated in a general form, although in the
case of LPV systems we will consider, without restrictions, Minkowski functions as
candidate Lyapunov functions. Note also that the same property holds for a convex
(non-differentiable) function Ψ , if the classical derivative Ψ̇ is replaced by D+Ψ .

It is worth stressing that, for discrete-time systems, smoothness alone is not
enough for this “extreme point property” and the convexity assumption on Ψ is
essential.
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Proposition 7.6. In the discrete-time case, the following two conditions are
equivalent

1. for every w ∈ W and any d ∈ D

Ψ (F(x, Φ(x),w, d)) − Ψ(x) ≤ −φ(‖x‖)

2. for any i = 1, . . . , s and any dk, k = 1, . . . , r,

Ψ (fi(x, Φ(x)) + Edk) − Ψ(x) ≤ −φ(‖x‖)

provided that Ψ is convex.

So far we considered state feedback. Let us now consider the full-information
case u = Φ(x,w). Here we assume B certain (we will comment on this assumption
later).

Theorem 7.7. Consider and LPV system with matrices as in (7.4) under the
assumption that B is certain (i.e., Bi = B for all i). Let S be a C-set and ΨS
be its Minkowski functional. Then S is β-contractive (λ-contractive) under full
information control

Φ(x,w) =

s∑
i=1

wiΦ(x,w(i))

(possibly under convex constraints u ∈ U) if and only if Φ is such that

D+ΨS(x,Aix + BΦ(x,w(i)) + Edk) ≤ −β (continuous-time)
ΨS(Aix + BΦ(x,w(i)) + Edk) ≤ λ (discrete-time)

(and Φ(x,w(i)) ∈ U), for all x ∈ ∂S, for every i = 1, 2, . . . , s and every k = 1,
2, . . . , r.

Proof. The condition is obviously necessary, because w(t) ≡ w(i) and d(t) ≡ dk are
possible realizations of w and d. Again, sufficiency is proved in the case E = 0 and
in the continuous-time case only. Since

∑
i wi = 1 and ΨS is convex, the following

chain of conditions holds true.

D+ΨS(x,A(w)x + B(w)Φ(x,w))

= limsup
h→0

ΨS(x + h(
∑

[Aiwix + BwiΦ(x,wi)]) − ΨS(x)
h

=

= limsup
h→0

ΨS(
∑

wi[x + h(Aix + BΦ(x,wi))] −
∑

wiΨS(x)
h

≤ limsup
h→0

∑
wi
ΨS(x + h(Aix + BΦ(x,wi))) − ΨS(x)

h
≤ −β
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The theorem suggests the idea that we can associate a control with each “vertex i”.
Indeed this is the case, as we can see from the next corollary.

Corollary 7.8. Let Ψ(x) be a gauge function, say the Minkowski functional of a
C-set S, and let B(w) = B. Then Ψ(x) is a global control Lyapunov function (inside
S, outside S) under full-information control there exist admissible controls Φi(x),
i = 1, 2, . . . , s such that the condition

D+Ψ(x,Aix + BΦi(x) + Edk) ≤ −βΨ(x)

or, in the discrete-time case, the condition

Ψ(Aix + BΦi(x) + Edk) ≤ λΨ(x)

is satisfied with β > 0, or in the discrete-time case 0 ≤ λ < 1, along with Φi(x) ∈
U , for all x (for all x ∈ S, for all x �∈ S), for every i = 1, 2, . . . , s and every
k = 1, 2, . . . , r.

Note that, once the Φi are known, the control is given by Φ(x,w) =
∑

wiΦi(x). Note
also that the assumption of a certain B cannot be dropped. This can immediately be
seen from Example 7.4.

We remind now Theorem 2.54 and its original and more general formulation
[LSW96]. Consider an LPV system with matrices as in (7.4), equipped by a
continuous control u = Φ(x,w) which is locally Lipschitz in x uniformly with
respect to w. In view of the results in [LSW96], an LPV system is Globally
Uniformly Asymptotically Stable (GUAS) if and only if there exists a smooth
positive definite function which is a global Lyapunov function and satisfies

D+Ψ(x,w, d) = ∇Ψ(x)T [A(w)x + B(w)Φ(x,w) + Ed] ≤ −φ(‖x‖)

where φ(‖x‖) is a positive definite function. If the system is uniformly ultimately
bounded within a C-set X , then there exists a smooth positive definite function
which is a Lyapunov function outside X . If the system is uniformly locally stable
including a C-set X in its domain of attraction, then there exists a Lyapunov function
inside X . Similar results hold in the discrete-time case [JW02].

We admit that the reader could be surprised at this point. We asked her/him to
make a major effort to consider functions that can be non-smooth and now we let
her/him know that there is no restriction in considering smooth ones for, basically,
the most general problem considered in the book. The reason is quite simple.
The previous result is fundamental from a theoretical standpoint, but it is non-
constructive. We will indeed present constructive methods to generate polyhedral
Lyapunov functions which are, by their nature, non-smooth.
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7.2 Stabilization of LPV systems via quadratic
Lyapunov functions

In this section, stability and stabilizability problems will be considered and the con-
ditions to check stability (stabilizability) by means of a single quadratic Lyapunov
function will be reported.

Definition 7.9 (Quadratic stabilizability). The system

ẋ(t) = A(w(t))x(t) + B(w(t))u(t)

is said to be quadratically stabilizable (quadratically stable if B = 0) if it admits a
quadratic control Lyapunov function (Lyapunov function if B = 0). The system
is said to be quadratically stabilizable via linear control (linearly quadratically
stabilizable) if the controller associated with the control Lyapunov function is of
the form u = Kx.

7.2.1 Quadratic stability

When B = 0, the existence of a common quadratic Lyapunov function, namely of a
symmetric solution P to the parametrized LMI

A(w)T P + PA(w) ≺ −2βP, P 
 0, for all w ∈ W (7.8)

assures the condition xT(t)Px(t) ≤ xT(0)Px(0) e−2βt. Equivalently, we can write

‖x(t)‖P ≤ ‖x(0)‖P e−βt

(we remind that ‖x‖P =
√

xTPx) and therefore exponential stability is guaranteed.
In the case of polytopic systems the previous condition reduces to a finite

number of inequalities. Indeed, to check whether the system converges with speed
β, according to Theorem 7.2 and Corollary 7.3 (for B = 0 and E = 0), one can
consider the following LMI problem

Problem 7.10. Find a matrix P such that

AT
i P + PAi 	 −2βP, i = 1, 2, . . . , r

P � εI

One nice property of the above problem (as we have already seen) is that the set
of all its solutions F(Ai, ε, β), also known as feasible set, is convex. Indeed, if P1

and P2 are feasible solutions, then P = αP1 + (1 − α)P2 is a feasible solution
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for all 0 ≤ α ≤ 1. This implies that the search of feasible solutions may rely on
very efficient methods [BEGFB04, BV04]. Unfortunately, the existence of a matrix
P satisfying condition (7.8) is sufficient but not necessary to assure a speed of
convergence β (this trade-off between computational efficiency and conservativity
is a recurring argument).

7.2.2 Quadratic stabilizability

Let us now proceed with our investigation by considering the stabilization problem
for an LPV. Inspired by the certain case, for which assuming a linear control is not a
restriction, a control law of the form u = Kx is sought. The stability condition (7.8)
previously stated becomes then (with β = 0)

(A(w) + B(w)K)T P + P(A(w) + B(w)K) ≺ 0.

If a polytopic structure in the matrices A(w) and B(w) is assumed, then one gets a
finite number of inequalities

AT
i P + PAi + KTBT

i P + PBiK ≺ 0, i = 1, 2, . . . , s, P 
 0

which are nonlinear in K and P. Interestingly, the problem can be re-parametrized
by assuming Q = P−1 and R = KQ. Indeed, by pre and post multiplying both sides
by Q, the following extension of condition (4.21) is obtained:

QAT
i + AiQ + RTBT

i + BiR ≺ 0, i = 1, 2, . . . , s, Q 
 0 (7.9)

which is again a set of LMIs. If a solution pair (Q,R) to the above problem exists,
then

K = RP

is the desired linear control gain and condition (7.9) characterizes the set of all Q
such that E(Q−1, 1) is a contractive ellipsoid that can be associated with a linear
gain K.

If a specific level of contractivity β > 0 is desired, then the above set of
inequalities has simply to be changed into

QAT
i + AiQ + RTBT

i + BiR + 2βQ ≺ 0, i = 1, 2, . . . , r, Q 
 0 (7.10)

Again, the existence of β > 0 along with R and a positive definite Q is a sufficient
condition only for the system stabilizability.

To conclude the present section, some results concerning the stabilizability
problem via linear control are reported. The first one concerns general polytopic
systems, whereas the second one is an interesting particularization to systems, with
no uncertainties affecting the input matrix.
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Theorem 7.11. Condition (7.10) is necessary and sufficient for a polytopic system
to be quadratically stabilizable via linear control.

The above condition is quite strong, but it is worth stressing that there exist
quadratically stabilizable systems, henceforth admitting contractive ellipsoids, for
which linear stabilizing controllers do not exist. Put in other words: quadratic
stabilizability is not equivalent to linear quadratic stabilizability [Pet85].

An exception to the rule just recalled is the case in which matrix B is certain,
when the condition reported in the previous theorem is necessary and sufficient for
quadratic stabilizability, being the latter always achievable via linear compensators
when B is known. This fact, which has already been mentioned in Section 4.4 (see
also Exercise 12 in Chapter 2) is reported in the next theorem.

Theorem 7.12 ([Meı74, BPF83]). The system ẋ = A(w)x+Bu with w ∈ W , where
W is a compact set, with A(w) continuous, is quadratically stabilizable if and only
if it is quadratically stabilizable via linear control.

These results can be extended under some additional assumptions to uncertain B
[BCL83] (see Exercise 7)

We now consider the case in which the control can be a function of the parameter
w. Let us first analyze the case in which B is known. In this case it is possible to
consider the following set of inequalities (see Corollary 7.8)

QAT
i + AiQ + RT

i BT + BRi + 2βQ ≺ 0, i = 1, 2, . . . , s, Q 
 0 (7.11)

If the above set of LMIs admits a solution, then the system

ẋ(t) = [A(w) + BK(w)]x(t)

is asymptotically stable with the gain scheduled linear control law u = K(w)x,
where

K(w) =

s∑
i=1

Kiwi

where

Ki = RiP = RiQ
−1. (7.12)

We stress once again that, if B was also a function of w, the expression (7.11)
could not be extended in general since a pathology might occur as in system (7.7).
We also have to stress the following fact.

Remark 7.13. If the system ẋ(t) = A(w(t))x(t) + Bu(t), w ∈ W , where A(w) is
continuous and W is compact can be quadratically stabilized by a control of the
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form u = Φ(w, x), then it can be stabilized by a pure state-feedback control of the
form u = Φ(x) and precisely by a gradient-based controller [Meı79]

u = −γBTPx.

However, potential advantages in terms of performances can be obtained when the
control uses information on w (see Exercise 1).

7.2.3 Quadratic Lyapunov functions: the discrete-time case

Given a discrete-time polytopic system of the form

x(t + 1) = A(w(t))x(t) =

[
s∑

i=1

Ai wi(t)

]
x(t) (7.13)

the set of LMI conditions to be satisfied to check quadratic stability is the following

AT
i PAi − P ≺ 0, i = 1, 2, . . . , s, (7.14)

which is the natural counterpart of (4.24). To prove this claim note that, for any x,
the set of all vectors y(w) = A(w)x is a polytope and, since the norm is a convex
function, the expression

√
xTA(w)TPA(w)x = ‖A(w)x‖P,

thought as a function of w, reaches the maximum on one of the vertices (see
Exercise 17 in Section 3).

Let us now consider a mechanism to determine P in the case of an uncertain
system with a polytopic matrix and a linear controller u = Kx. From (7.14) we get

(Ai + BiK)TP(Ai + BiK) − P ≺ 0, i = 1, 2, . . . , s

Similarly to what has been done in the continuous-time case, by pre and post
multiplying both sides by Q = P−1 and by defining KQ = R one gets

(QAT
i + RTBT

i )Q−1(AiQ + BiR) − Q ≺ 0, i = 1, 2, . . . , s

which, along with Q 
 0 is known to be equivalent to the set of LMIs [BEGFB04]

[
Q QAT

i + RTBT
i

AiQ + BiR Q

]

 0, i = 1, 2, . . . , s

Again, assuming that the controller is linear is in general a restriction.
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7.2.4 Quadratic stability and H∞ norm

As we have seen, for linear systems, positive invariance of an ellipsoid is equivalent
to quadratic stability. Although the subject is not strictly related with the theme of
the book, we point out a fundamental connection between the quadratic stability
of an uncertain system with non-parametric uncertainties and the H∞ norm of an
associated transfer function. Given a stable strictly proper rational transfer function
W(s), its H∞ norm is the value

‖W(s)‖∞ = sup
Re(s)≥0

√
σ+[WT(s∗)W(s)] (7.15)

where s∗ is the complex conjugate of s and σ+[N] = maxλ∈eig(N) |λ| is the
maximum modulus of the eigenvalues of matrix N, which is related to the induced
2-norm of a matrix as follows:

‖M‖2 .
= sup

x �=0

‖Mx‖2
‖x‖2

=
√
σ+[MTM]

The following property holds.

Theorem 7.14. Given the system ẋ(t) = A(Δ(t))x(t) with

A(Δ) = A0 + DΔE, ‖Δ‖2 ≤ ρ,

there exists a positive definite matrix P such that

xTPA(Δ)x < 0, for all ‖Δ‖2 ≤ ρ,

if and only if A0 is asymptotically stable and

‖E(sI − A0)
−1D‖∞ <

1

ρ

For the stabilization problem, this theorem admits the following extension:

Theorem 7.15. Consider the system

ẋ(t) = [A0 + DΔE]x(t) + [B0 + DΔF]u(t)

y(t) = C0x(t), ||Δ(t)|| ≤ ρ.

Then the control u(s) = K(s)y(s) is quadratically stabilizing if and only if the
closed-loop system

sx(s) = A0x(s) + Dd(s) + B0u(s)

z(s) = Ex(s) + Fu(s)

y(s) = C0x(s)

u(s) = K(s)y(s)
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is stable and the corresponding d-to-z transfer function

‖Wzd(s)‖∞ ≤ 1

ρ

The proof of both theorems can be found in [KPZ90]. In our context these results
show an important connection between properties that can be naturally defined in
the state space and the frequency domain characterization of a system.

This connection goes much further beyond its noteworthy theoretical interest. It
turns out that H∞ control theory provides several tools (including LMI and Riccati
equations) for efficient control synthesis and therefore robustness can be faced in
that framework. For details on this matter, the reader is referred to specialized
literature [SPS98, ZDG96].

7.2.5 Limits of quadratic functions and linear controllers

It has been recalled that finding a quadratic function along with a linear compensator
is a “nice” convex problem. Also, it has been shown how, in the case of a polytopic
system, the solution of such a problem is equivalent to a set of LMIs, for which
efficient tools are available. The only potential trouble is the number of LMIs
involved. To explain this fact, let us consider the case of an interval matrix A for
which the uncertainty specification is given in the form

A−
ij ≤ Aij ≤ A+

ij

with A−
ij ≤ A+

ij , for each matrix entry. This means that each Aij is, potentially,
an uncertain parameter (unless A−

ij = A+
ij ). If a polytopic representation of the

form (7.4) is adopted, in the worst case all the vertices have to be considered. The
total number of vertices is

nv = 2n2

This means that, if we do not limit the number of uncertain entries of A, then
the number of vertices grows exponentially and, as a consequence, the “forget it”
conclusion is the only possible. Clearly this is a trouble of the problem, which is
intrinsically difficult, and it is not due to the quadratic approach. It is interesting
to point out that the number of vertices that actually have to be checked can be
(strongly) reduced to nv = 22n, as shown in [ATRC07]. However, the computation
remains of exponential complexity.

As a matter of fact, if the number of uncertain entries is limited, LMI tools can
face problems of high dimensions with no particular difficulties.
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The drawbacks of LMI based techniques are well known:

1. quadratic stability for any fixed value of the parameter (i.e., the existence of a
family of matrices P(w) such that A(w)TP(w) + P(w)A(w) ≺ 0) does not imply
robust time-varying stability;

2. robust stability does not imply quadratic robust stability;
3. robust stabilizability does not imply quadratic robust stabilizability;
4. quadratic stabilizability does not imply quadratic stabilizability via linear con-

trollers;
5. robust stabilizability does not imply robust stabilizability via linear controllers.

The first two claims can be supported by very simple counterexamples. For
instance, the system governed by matrix

A(w(t)) =

[
0 1

1 + w − ε

]

with ε > 0, is stable for any fixed 0 ≤ w ≤ 1, hence it admits a quadratic
Lyapunov function for each fixed w. However, for ε small enough, the system
can switch between the extrema, w(t) ∈ {0, 1}, thus exhibiting the well-known
unstable behavior (see, for instance, [Lib03], Part II). Examples which support the
second claim are known (see [BM96b, Lib03]). We will give a very simple example
soon. The third claim has been proved in [BM99b]. The fourth claim is much more
difficult and the reader is referred to the famous Petersen counterexample [Pet85].
Actually, it was later pointed out that the Petersen counterexample is indeed linearly
stabilizable (but not via a quadratic Lyapunov function [Sta95b, Sta95a]). The final
claim has been proved in [BM99b].

A simple system which is robustly stable, but not quadratically stable, is
presented next.

Example 7.16. Consider the following A matrix

A(δ(t)) =

[
0 1

−1 + δ(t) −1

]
=

[
0 1

−1 −1

]
+

[
0

1

]
δ(t)

[
1 0

]
, |δ| ≤ ρ (7.16)

The system is stable iff (see Exercise 5)

ρ < ρST = 1, (robust stability radius)

However the time-varying system is quadratically stable iff

ρ < ρQ =

√
3

2
, (quadratic stability radius)

To prove the last assertion one can fix the candidate Lyapunov matrix

P =

[
x 1

1 y

]
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which is positive definite if x > 0, y > 0, xy > 1. The derivative is negative if

Q = PA(δ) + A(δ)T P =

[
−2(1 − δ) x − 1 − (1 − δ)y

x − 1 − (1 − δ)y 2(1 − y)

]
≺ 0

The matrix Q is negative definite for the values of x, y, and δ such that: δ < 1,
y > 1, and −4(1− δ)(1− y)− (x− 1− (1− δ)y)2 > 0. The last condition requires
that the intersection of all the δ parametrized regions

{(x, y) : − 4(1 − δ)(1 − y) − (x − 1 − (1 − δ)y)2 > 0}

is non-empty (it can be shown that these regions are the internal parts of parabolas
in the x-y plane, all placed above the line y = 1, which is their envelope). This
condition is true if and only if the extremal sets (i.e., those achieved for δ = −ρ and
δ = ρ) have non-empty intersection and therefore the limit condition is achieved by
the parameter 0 ≤ ρ < 1 such that the curves represented by the two equations

{
4(1 + ρ)(y − 1) = (x − 1 − (1 + ρ)y)2,
4(1 − ρ)(y − 1) = (x − 1 − (1 − ρ)y)2,

are tangent. Denoting by z = x − 1 − y we achieve the equivalent system

{
4(1 + ρ)(y − 1) = (z − ρy)2,
4(1 − ρ)(y − 1) = (z + ρy)2.

(7.17)

so the mentioned tangency conditions are equivalent to the fact that system (7.17)
has a double solution (y, z). We show that such a tangency condition occurs for
ρ < 1. The two equations in (7.17) imply

(z − ρy)2(1 − ρ) = (z + ρy)2(1 + ρ)

that yields

z2 + 2zy + ρ2y2 = 0

Since y > 1, it is possible to divide by y2 so that

(
z
y

)2

+ 2

(
z
y

)
+ ρ2 = 0

which means that the any solutions (y, z) of system (7.17) must satisfy condition

z
y

= −1 ±
√

1 − ρ2
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Let us derive z from the previous equation and replace it in any of equations (7.17),
for instance the second, to derive

((
−1 ±

√
1 − ρ2

)
y + ρy

)2
− 4(1 − ρ)y + 4(1 − ρ) = 0

This equation admits a real root iff

(1 − ρ) −
(
(ρ− 1) ±

√
1 − ρ2

)2
≥ 0

The inequality associated with “−” is never satisfied, thus we consider only the “+”
version. Since we are seeking the limit condition, we consider the equality so that
we need to solve

(1 − ρ) −
(
(ρ− 1) +

√
1 − ρ2

)2
= 0

which has solutions ρ = ±
√

3/2 and ρ = 1. The values ρ = −
√

3/2 and ρ = 1
must be discharged, so we can conclude that the limit value for quadratic stability is

ρQ =

√
3

2
.

As we have seen, by means of a (not so immediate) chain of algebraic manipulations,
the quadratic limit could be found. One would have easier life by using the result
in Theorem 7.14. Indeed, even in this case, the computation of the H∞ norm of the
transfer function F(s) = D(sI − A0)

−1E where

A0 =

[
0 1

−1 −1

]
, E =

[
0

1

]
, D =

[
1 0

]

is rather straightforward and results in ‖D(sI − A0)
−1E‖∞ = 2√

3
.

As far as stabilizability is concerned, the next counterexample shows that the
conservativity of the methods based on quadratic Lyapunov functions can be
arbitrarily high. To this aim, let us consider again the system

ẋ(t) = A(p(t))x(t) + B(p(t))u(t)

where

p ∈ ρP

and ρ ≥ 0 is a measure of the uncertainty. If we assume a linear dependence, we get

A(p(t)) = A0 + pA, B(p(t)) = B0 + pB, p ∈ ρP
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with (A0,B0) stabilizable and p ∈ P , a C-set. Then we can define the following two
stabilizability margins

ρST = sup{ρ : (S) is stabilizable};

ρQ = sup{ρ : (S) is quadratically stabilizable}.

The next counterexample shows that there are systems for which

ρST

ρQ
= ∞

Example 7.17 (Stabilizability and quadratic stabilizability can be far away). In
[BM99b] it has been shown that, given P = [−1, 1], for the dynamic system:

A =

[
0 1

−1 0

]
, B =

[
p(t)
1

]
, p ∈ ρP = [−ρ, ρ],

the two parameters previously introduced are

ρST = ∞, ρQ = 1.

Thus this system is stabilizable for any arbitrary ρ, but no quadratic Lyapunov
function exists for ρ ≥ 1. Also, it is possible to show that, for ρ large enough,
this system is not stabilizable by means of any linear static state feedback control
law of the form

u = k1x1 + k2x2

(in which k1 and k2 do not depend on w). It is worth saying that there are examples
of stabilizable systems which cannot be stabilized via linear (even dynamic)
compensators. The interested reader is again referred to [BM99b].

The example evidences once more that seeking quadratic Lyapunov functions
and/or linear compensators is in general a conservative choice. Nevertheless,
quadratic stabilizability and linear quadratic stabilizability are notions frequently
adopted for convenience.

Actually, there are special cases in which the quadratic functions are not
conservative. One of such cases is that of systems with uncertainties satisfying the
so-called matching conditions (we already found in Subsection 2.4.4), as in the next
theorem.

Theorem 7.18. Consider a system of the form

ẋ(t) = A0x(t) + B0u(t) + B0Δ(x(t),w(t))
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where Δ(x(t),w(t)) is a Lipschitz function bounded as

‖Δ(x(t),w(t))‖ ≤ K‖x(t)‖

and assume that (A0,B0) is stabilizable. Then the system is quadratically stabiliz-
able via linear control.

Proof. See [BCL83].

There are several generalizations of the previous theorem. Perhaps one of the
most important is the case of system satisfying the so-called generalized matching
conditions [Bar85].

7.2.6 Notes about quadratic stabilizability

As we have mentioned, the quadratic stabilizability approach has an established his-
tory which started since the late 70s [Gut79, Lei79]. Subsequently, the connections
with Riccati equation [PH86] and with H∞ theory [KPZ90] were established. The
role of convex optimization in the synthesis of quadratic Lyapunov functions for
uncertain systems was pointed out in [GPB91] and it has become very popular (see
the book [BEGFB04] and its first version).

Several other studies originated from the quadratic theory. To reduce the level
of conservatism, some authors [DCAF94, FAG96] have considered parameter-
dependent quadratic Lyapunov functions which obviously offer more degrees
of freedom than quadratic function. If the parametrization is simple enough, it
is possible to maintain the advantages of an LMI approach [DB01, dOBG99].
A particular interesting case is that of affine parametrization, having the following
form

V(x) = xT

(
s∑
i

Piwi(t)

)
x (7.18)

where the parameters w entering the function definition are exactly those appearing
in the system dynamics (7.13). We refer the reader to the cited works for more
details, stressing once again that even by using the above-mentioned functions it is
just possible to get sufficient conditions for robust stability. Interesting extensions
of quadratic functions are the composite quadratic functions, introduced in [HL03],
that can be successfully applied to robust control problems [Hu07].

7.3 Polyhedral Lyapunov functions

In this section, we show that polyhedral functions do not have the same theoretical
limitations of quadratic functions.
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7.3.1 Polyhedral stabilizability

From Theorem 4.33 and Theorem 7.2, the following result can be derived. We
remind that M is a Metzler matrix if Mij ≥ 0 for i �= j.

Proposition 7.19. Consider the continuous-time linear LPV system ẋ(t) =
A(w(t))x(t), with the polytopic structure (7.4), and let S be a polyhedral C-set
of the form (4.25), with F ∈ IRq×n, or of the form (4.26) with X ∈ IRn×r. Then, the
next statements are equivalent

i) S = P(F) = V(X) is β-contractive.
ii) There exist s Metzler matrices H(i) such that, for any i = 1 . . . , s,

H(i)F = FAi, H(i) 1̄ ≤ −β1̄

iii) There exist s Metzler matrices H(i) such that, for any i = 1 . . . , s,

AiX = XH(i), 1̄T H(i) ≤ −β1̄T

The next proposition generalizes Theorem 4.37 (see also [Bla00] for further details).

Proposition 7.20. Consider the polytopic system (7.2) with the constraint u ∈ U ,
with U a convex set. There exists a state-feedback control law u = Φ(x) satisfying
the constraints and which makes the polyhedral C-set S = V(X) β-contractive for
the closed-loop system if and only if there exist s Metzler -matrices H(i) and a single
matrix U ∈ IRm×r such that, for any i = 1, . . . , s,

AiX + BiU = XH(i), (7.19)

1̄T H(i) ≤ −β1̄T (7.20)

uk ∈ U (7.21)

where uk is the kth column of U.

Proof. Necessity follows immediately from Theorem 4.37, since the set is β-
contractive for the polytopic system only if it is such for the extreme systems
ẋ = Aix + Biu, therefore the conditions must hold.

Conversely if the conditions hold, then there exists a linear variable structure
control u = Φ(x) of the form (4.39) which can be constructed from U and X as
shown in Subsection 4.5.1. Such a control does not depend on w and thus satisfies
the conditions of Theorem 7.2 and Corollary 7.3. Therefore, sufficiency follows.

Example 7.21. Consider the system presented in Subsection 7.0.1 with α = 1 and
|w| ≤ 0.2. Using the EAS with τ = 0.4, a contractive factor λ = 0.98, and a
tolerance ε = 0.005, by means of the recursive procedure presented in the previous
chapter, a polyhedral Lyapunov function was computed. The unit ball of such a
function has 106 delimiting planes.
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In the case of a polytopic system, with known B, we have the following.

Corollary 7.22. Consider the polytopic system (7.2) with the constraint u ∈ U ,
with U a convex set. There exists a gain scheduled state-feedback control law
u = Φ(x,w) satisfying the constraints and which makes the polyhedral C-set S =
V(X) β-contractive for the closed-loop system if and only if there exist s Metzler
matrices H(i) and s matrices U(i) ∈ IRm×r such that

AiX + BU(i) = XH(i), (7.22)

1̄T H(i) ≤ −β1̄T (7.23)

u(i)
k ∈ U , k = 1, . . . , r (7.24)

for any i = 1, . . . , s, where u(i)
k is the kth column of U(i).

Proof. Necessity follows, as in the previous proposition, by the fact that if
u = Φ(x,w) is a control which assures contractivity for the polytopic system,
then it assures contractivity for fixed w = wi, say the conditions must be satisfied.

Sufficiency: if the conditions hold, for each w = wi, in view of Theorem 4.37
there exists a control Φi(x) (which can be, for instance, the piecewise linear
controller (4.39)) associated with a contractive set for the vertex system ẋ =
Aix + BΦi(x). In view of Theorem 7.7 and Theorem 7.8, the control

u = Φ(x,w) =

s∑
i=1

wi Φi(x)

is a suitable controller.

We remark that a consequence of Proposition 7.20 and Corollary 7.22 is that,
when X is given (therefore the function is fixed) checking contractivity is a linear
programming problem. It is very easy to see that checking contractivity via linear
gains of the form

u = Kx(t),

or, in the case of a certain B, of the form

u(t) = K(w(t))x(t) =

[
s∑

i=1

wi(t)Ki

]
x(t)

is a linear programming problem.
It should be noticed that there exist examples of systems for which a certain

function Ψ(x) is a Lyapunov function that can be associated with a gain scheduling
control only (say, a state feedback controller alone would not do the job).
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Example 7.23. Consider the system ẋ = A(w)x + Bu with

A =

[
− 1 0

w 0

]
B =

[
0

1

]

with |w| ≤ 2 and the candidate Lyapunov function ‖x‖1. This function becomes a
Lyapunov function with the control u = −x2 − wx1. However, for any control u =
Φ(x1, x2) applied to the vertex [1, 0]T of the unit ball of ‖x‖1, if w = 2sgn(u), the
derivative vector does not satisfy Nagumo’s condition. This pathological behavior
does not show up if we take Ψ differentiable.

The following property establishes a connection between the gain scheduling and
the robust stabilization problems.

Theorem 7.24 ([Bla00]). The system ẋ = A(w)x + B(w)u, where the set
{[A(w),B(w)], w ∈ W} is a convex and compact set, is robustly stabilizable
if (and obviously only if) it is gain-scheduling stabilizable.

The previous theorem is in some way valid for a more general class of nonlinear
systems: that of convex processes, namely systems of the form

ẋ(t) = A(x,w) + B(x,w)u(t)

where the set {[A(x,w),B(x,w)], w ∈ W} is compact and convex for any x.
A previous version of the theorem in the case of certain B(x) was introduced in
[Meı79].

As a consequence, it is not necessary to seek for controllers of the form Φ(x,w)
for an LPV system since, if the system can be stabilized, then the same goal can
be achieved by a controller of the form u = Φ(x) which does not require on-line
measurement of the parameter. Furthermore, we saw that the conditions concerning
the gain scheduling stabilization are limited by the fact that uncertainties in the
matrix B cannot be admitted. In the continuous-time case, this is not a problem.

Let us now consider the discrete-time case, namely systems of the form (7.3).
From Theorem 4.43 and Theorem 7.2, the following can be derived.

Proposition 7.25. Consider the polytopic LPV system x(t +1) = A(w(t))x(t), with
s vertices, and let S be a polyhedral C-set of the form (4.25), with F ∈ IRq×n, or of
the form (4.26) with X ∈ IRn×r. Then the next two statements are equivalent.

i) S = P(F) = V(X) is λ-contractive.
ii) There exist s non-negative matrices P(i) ≥ 0 such that

P(i)F = FAi, P(i) 1̄ ≤ λ1̄, i = 1, . . . , s.

iii) There exist s non-negative matrices P(i) ≥ 0 such that

AiX = XP(i), 1̄T P(i) ≤ λ1̄T , i = 1, . . . , s.
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The next proposition, reported without proof (similar to that of Theorem 7.19 and
left as an exercise), generalizes Theorem 4.44.

Proposition 7.26. Consider the polytopic system (7.3) with the constraint u ∈ U ,
with U a convex set. There exists a state-feedback control law u = Φ(x) satisfying
the constraints and which makes the polyhedral C-set S = V(X) λ-contractive for
the closed-loop system if and only if there exist s non-negative matrices P(i) and a
single matrix U ∈ IRm×r such that, for any i = 1, . . . , s,

AiX + BiU = XP(i) (7.25)

1̄T P(i) ≤ λ1̄T (7.26)

uk ∈ U , k = 1, . . . , r, (7.27)

where uk is the kth column of U.

Parallel to the continuous-time case, when B is known, the following corollary
holds (the proof is almost identical to the continuous-time case one):

Corollary 7.27. Consider the polytopic system (7.3) with the constraint u ∈ U ,
with U a convex set. There exists a gain scheduled state-feedback control law
u = Φ(x,w) satisfying the constraints making the polyhedral C-set S = V(X)
λ-contractive for the closed-loop system if and only if there exist s non-negative
matrices P(i) and s matrices U(i) ∈ IRm×r such that, for any i = 1, . . . , s,

AiX + BU(i) = XP(i) (7.28)

1̄T P(i) ≤ λ1̄T (7.29)

u(i)
k ∈ U , k = 1, . . . , r, (7.30)

where u(i)
k is the kth column of U(i).

Remark 7.28. There are conditions similar to those proposed for systems with
additive uncertainties in a polytope, d(t) ∈ D = V(D). Basically the idea is that
matrices P(ij) (resp. H(ij) in the continuous-time case) have to be found, for all
(Ai,Bi) and all dj ∈ vert{D}, such that

AiX + BiU + Edj1̄
T = XP(ij) (= XH(ij))

where, for instance, in discrete-time, P(ij) ≥ 0 and 1̄TP(ij) ≤ λ1̄T . The reader is
referred to [Sav07] for details.

The relation between gain scheduling and robust control is different from that we
have seen for the continuous-time case. Indeed in general the two concepts of gain-
scheduling stabilizability and robust stabilizability are not equivalent, as shown in
the next example.
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Example 7.29. Consider the system

x(t + 1) = w(t)x(t) + u(t)

with |w| ≤ 2. This system is stabilized by the control u = −wx. However no
controller which ignores the current value of w(t) is stabilizing. Indeed, for any
x �= 0 and for each u (no matter which oracle provides it) which does not depend
on w, either |2x + u| > |x| or | − 2x + u| > |x|. Since both w = 2 and w = −2 are
possible, |x(t)| may increase at each time. Then the system cannot be stabilized for
arbitrary w(t). Therefore, in the context of discrete-time systems, seeking controllers
of the form u = Φ(x,w) or u = Φ(x) for LPV systems are different problems.

7.3.2 Universality of polyhedral Lyapunov functions
(and their drawbacks)

An important property of polyhedral Lyapunov functions relies on the fact that their
existence is a necessary and sufficient condition for the system stabilizability. We
name this property universality. Precisely the following theorem holds.

Theorem 7.30. Consider the system

ẋ(t) = A(w(t))x(t) + B(w(t))u(t)

with A(w) and B(w) continuous functions of w ∈ W , with W a compact set. Then
the following statements are equivalent.

i) There exists a control u = Φ(x), locally Lipschitz in x uniformly with respect to
w, such that the closed-loop system is GUAS.

ii) There exists a polyhedral control Lyapunov function Ψ(x) associated with a
piecewise linear controller u = Φ(x) of the form (4.39), which assures the
condition

D+Ψ(x) ≤ −βΨ(x)

for some positive β.

Furthermore, if A(w) and B(w) have a polytopic structure, then the previous
statements are equivalent to the next one.

iii) There exist matrices X, H(i) and U such that (7.19) and (7.20) are satisfied.

Proof. Clearly ii) implies i). The proof that i) implies ii) is in [Bla95]. We have
already seen that ii) is equivalent to condition iii) for polytopic systems.
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The previous theorem is essentially a converse Lyapunov theorem for linear
uncertain systems. Note that no assumptions have been made on W , beside its
compactness to claim the equivalence between i) and ii) which applies to the
important case in which W is a discrete set, precisely to switching systems
[Bla95, SG05].

Remark 7.31. If we strengthen our assumptions by requiring that the set of matrices
{[A(w),B(w)], w ∈ W} is convex, we have, in view of Theorem 7.24, that the
statements i) and ii) (and iii) for polytopic systems) are equivalent to the following
one: there exists a control u = Φ(x,w), continuous and locally Lipschitz with
respect to x, uniformly with respect to w which assures GUAS.

The theorem admits the following corollaries. The first concerns the constrained
control case.

Corollary 7.32. Under the same assumptions of Theorem 7.30, assume u ∈ U ,
with U a C-set. Let X be a C-set in the state-space. The following statements are
equivalent:

i) there exists a locally Lipschitz control u = Φ(x) that satisfies the constraints and
a control Lyapunov function inside X ;

ii) there exists a polyhedral control Lyapunov function Ψ(x) (inside X ) such that
X ⊆ N [Ψ, 1] and the associated piecewise linear controller u = Φ(x) of the
form (4.39) assures that D+Ψ(x) ≤ −βΨ(x) for some positive β and that u =
Φ(x) ∈ U for all x ∈ N [Ψ, 1].

Again, for polytopic systems, the following statement is equivalent to the previous
ones.

iii) There exist matrices X, H(i), and U which satisfy conditions (7.19)–(7.21) where
the columns of U uk ∈ U .

In the case of systems with additive uncertainties, the next corollary holds.

Corollary 7.33. Consider the system

ẋ(t) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

where A(w) and B(w) are continuous functions of w ∈ W and d ∈ D, with W and
D compact sets. Let X be a C-set in the state-space. The following statements are
equivalent.

i) There exists a locally Lipschitz control u = Φ(x) and a control Lyapunov
function outside X .

ii) There exists a polyhedral control Lyapunov function Ψ(x) (outside X ) such that
N [Ψ, 1] ⊆ X and which is associated with a piecewise linear controller u =
Φ(x) of the form (4.39) and such that condition

D+Ψ(x) ≤ −βΨ(x)

holds for some positive β and for x �∈ N [Ψ, 1].
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The proof can be immediately derived from [Bla95].

Remark 7.34. Note that no assumptions have been made on B which can be zero.
Therefore the previous corollary tells us that if the system ẋ(t) = A(w(t))x(t)+Ed(t)
is ultimately bounded with a proper Lyapunov function outside a C-set X , then there
exists a polyhedral Lyapunov function outside X .

The previous theorem and corollaries admit a discrete-time version which is
readily written. Here a distinction between controllers of the form u = Φ(x,w)
and u = Φ(x), even in the case of convex process, has to be made, which is not a
deal in the continuous-time case (see Remark 7.31).

Theorem 7.35. Consider the system

x(t + 1) = A(w(t))x(t) + B(w(t))u(t)

with A(w) and B(w) continuous functions of w ∈ W , with W a compact set. Then
the following statements are equivalent.

i) There exists a locally Lipschitz control u = Φ(x) such that the system is GUAS.
ii) There exists a polyhedral control Lyapunov function Ψ(x) associated with a

piecewise linear controller u = Φ(x) of the form (4.39) such that

Ψ(A(w)x + B(w)Φ(x)) ≤ λΨ(x)

for some positive λ < 1.
iii) Conditions (7.25) and (7.26) are satisfied by proper matrices X, P(i) and U.

Proof. It is obvious that iii) ⇒ ii) ⇒ i). We provide a simplified proof of i) ⇒ ii),
assuming that the system has a polytopic structure.

Assume that the system can be stabilized by a certain control Φ(x). Let X0 be
an arbitrary polytopic C-set. By assumption, there exists T such that for, t ≥ T, all
the solutions originating in X0 are included in X0/2. Take a positive λ < 1 close
enough to one such that the solution z(t) of the modified system

z(t + 1) =
A(w(t))

λ
z(t) +

B(w(t))
λ

Φ(z(t))

is included in X0 at time t = T (note that this implies that the solution z(t) will
be in such set for all t > T). Consider all the possible trajectories z(t) of the
modified system having initial condition on the vertices of X0 and corresponding
to all possible sequences with values w(t) ∈ vert{W} (then A(w(t)) = Ai for all t).
The (enormous) set of all the points forming these trajectory is finite. Let S be
their convex hull and Z the matrix including its vertices (so that S = V(X)). By
construction, for each vertex x(j), we have that4

4x+ means “the state at the next step.”
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x+ =
Ai

λ
x(j) +

Bi

λ
Φ(x(j)) ∈ S

namely

Aix
(j) + BiΦ(x(j)) ∈ λS

This means that x+ can be expressed as a convex combination of the vertices of S

Akx(j) + BkΦ(x(j)) =
∑

i

x(i)P(k)
ij

with

P(k)
ij ≥ 0,

∑
i

P(k)
ij ≤ λ

Repeating the same reasoning for all the vertices x(t) and defining the matrix P(k) .
=

[P(k)
ik ] and

U = [Φ(x(1)) Φ(x(2)) . . . Φ(x(s))]

one can see that (7.25) and (7.26) are satisfied, say the system can be robustly
stabilized by a control of the form (4.39).

The previous theorem admits the following corollaries whose proofs are omitted
for brevity, but can be easily inferred. The first concerns the constrained control
case.

Corollary 7.36. Under the same assumptions of the previous theorem, assume that
u ∈ U , a C-set. Let X be a C-set in the state space. The following statements are
equivalent.

i) There exists a locally Lipschitz control u = Φ(x) which satisfies the constraints
and a control Lyapunov function inside X .

ii) There exists a polyhedral control Lyapunov function Ψ(x) (inside X ) such that
X ⊆ N [Ψ, 1] and the associated piecewise linear controller u = Φ(x) of the
form (4.39) is such thatΦ(x) ∈ U and Ψ(A(w)x+B(w)Φ(x)) ≤ λΨ(x) for some
positive λ < 1 , for all x ∈ N [Ψ, 1].

iii) Conditions (7.25) (7.26) are satisfied and the columns uk of U are such that
uk ∈ U .

In the case of systems with additive uncertainties, we have the next corollary.

Corollary 7.37. Consider the system

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)
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with A(w) and B(w) continuous functions of w ∈ W , and d ∈ D, where W and
D are compact sets. Let X be a C-set in the state-space. The following facts are
equivalent:

i) There exists a continuous control u = Φ(x) and a control Lyapunov function
outside X .

ii) There exists a polyhedral control Lyapunov function Ψ(x) (outside X ) such that
N [Ψ, 1] ⊆ X which is associated with a piecewise affine controller u = Φ(x)
such that condition

Ψ(A(w)x + B(w)Φ(x) + Ed) ≤ λΨ(x)

holds for some positive λ < 1 and for x �∈ N [Ψ, 1].

Remark 7.38. The piecewise-affine control mentioned in the corollary can actually
be the piecewise linear one (4.39) if we assume 0 symmetric sets X and D. If the
symmetry fails, we might be forced to use a “drift” term [Sav07]. For instance,
consider the system

x(t + 1) = 2x(t) + u(t) + d(t)

with −2.9 ≤ d(t) ≤ 0.9. The state x(t) can be driven to the set X = [−2, 2] (for
instance in one step by the control u = −2x + 1). However, no piecewise linear
control, even non-symmetrical, can keep the state inside.

Similar converse Lyapunov results for discrete-time systems, with gain schedul-
ing control, have been proposed in [BM03]. Note that in all the mentioned properties
no rank assumptions on matrix B have been made and thus they are valid if there is
no control action, i.e. B = 0. When B = 0 results coming from the Soviet Union
literature about robust stability (often referred to as absolute stability) [MP86a,
MP86b, MP86c, Bar88a, Bar88c, Bar88c] are recovered. Independent results were
previously known in the western literature where polyhedral functions had already
been introduced, although not so deeply investigated [BT80, MNV84, OIGH93] (see
also [BM94] for interesting connections between eastern and western literature).
The next result summarizes several established properties.

Proposition 7.39. Consider the continuous-time system

ẋ(t) = A(w(t))x(t)

or the discrete-time system

x(t + 1) = A(w(t))x(t)

with A(w) continuous and w ∈ W a compact set. Then the following statements are
equivalent.
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i) The system is asymptotically stable.
ii) The system is exponentially stable.

iii) The system admits a polyhedral Lyapunov function.

If the case of polytopic systems is considered, the next statements are equivalent to
the previous ones.

iv) There exist matrices which satisfy the conditions of Proposition 7.19 (respec-
tively Proposition 7.25).

The conclusions that can be drawn from the previous theorem are that polyhedral
Lyapunov functions are an appropriate class as long as non-conservative stabiliz-
ability conditions are desired. The comparison with quadratic functions shows that,
apparently, the “ellipsoidal shape” is not sufficiently general to confine the dynamics
of an uncertain system. There are clearly special cases for which this is not the case,
as it was pointed out in the previous sections.

The drawbacks are evident at this point. The complexity of the representation of a
polyhedral function depends on the number of delimiting planes or on the number of
vertices of its unit ball. Therefore the claimed existence of polyhedral functions for
stabilizable system can be frustrated in the attempt of computing them numerically.

There is a further drawback that has to be considered. This is due to the fact
that the provided necessary and sufficient conditions for a polyhedral function to be
a control Lyapunov function do not characterize the control in an explicit form.
Indeed, the control law which has been repeatedly invoked in the “polyhedral”
theorems is the piecewise-linear control (4.39), whose complexity can be greater
than that of the generating polyhedral function (which is already complex enough
in most examples!).

In the discrete-time case, this problem can be avoided by considering a different
type of feedback, precisely the on-line-optimization-based control presented next.

Assume a discrete-time control Lyapunov function Ψ is given. Clearly for such
function, for any value of x we have that

Ψ (A(w)x + B(w)u) ≤ λΨ (x)

no matter which is w ∈ W , for some appropriate control u = Φ(x) ∈ U (possibly
with U = IRm). If Ψ is polyhedral and assigned as the Minkowski function of a
polyhedral C-set P(F) = {x : Fx ≤ 1̄}, this condition can be equivalently stated
by saying that u must be taken in such a way that

u ∈ Ω(x) = {v : F[A(w)x + B(w)v] ≤ λΨ(x)1̄, ∀w ∈ W , v ∈ U} .

In the case of a polytopic system the set Ω(x), (the regulation map) becomes

Ω(x) = {v : F(Aix + Biv) ≤ λΨ(x)1̄, i = 1, 2, . . . , r, v ∈ U}
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which is a polyhedron for each x. As mentioned in Subsection 4.5.3, this expression
is convenient for single input systems since the set Ω(x) is an interval for each x.
Needless to say, in the case of the gain-scheduling control problem we just have to
move the dependence on w in the arguments of the regulation map Ω

u ∈ Ω(x,w) = {v : F(A(w)x + B(w)v) ≤ λΨ(x)1̄, v ∈ U}

7.3.3 Smoothed Lyapunov functions

The previous discrete-time control can be applied to continuous-time systems by
means of the Euler Auxiliary System (EAS)

x(t + 1) = [I + τA(w(t))]x(t) + τB(w(t))u(t)

Indeed, if the EAS has been used to determine the polyhedral control Lyapunov
function Ψ(x) = max Fx = maxi Fix, then, by construction, the associated
regulation map ΩEAS is such that for all x there exists u(x) ∈ U ensuring

τFk[Aix + Biu(x)] ≤ λΨ(x) − Fkx ≤ λΨ(x) − max
k

Fkx = (λ− 1)Ψ(x)

for all k and i. This, in turn, means that

Fk[Aix + Biu(x)] ≤ −1 − λ

τ
Ψ(x) = −βΨ(x)

for all i and for all k, and in particular for all k in the maximizer set k ∈ I(x) =
{h : Fhx = Ψ(x)}. Then, for all i

D+Ψ(x) = max
k∈I(x)

Fk[Aix + Biu(x)] ≤ −βΨ(x)

This means that the control can be computed as a selection in ΩEAS(x):

u ∈ ΩEAS(x) (7.31)

One can consider, for instance, the minimal selection [AC84] which is continuous.
As we have already pointed out, the sampling time of the implementation should be
T << τ .

Though mathematically sound, the selection problem is a relevant one, since no
general tools are in general available to derive a closed form expression from (7.31).
The main reason why this problem shows up is the lack of differentiability of
the considered functions, which does not in general allow to derive a gradient-
based expression for the control law. When B is known, one might fix the problem
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by properly smoothing the polyhedral function, which is what is about to be
discussed next. Indeed we can apply the smoothing procedure already discussed
in Subsection 4.5.3. Let us consider the symmetric case. The computed polyhedral
function ‖Fx‖∞ is replaced by the function ‖Fx‖2p, which is expressed as

∇‖Fx‖T
2p = (‖Fx‖2p)

1−2p GT
p (x)F, x �= 0

where

Gp(x) = [(F1x)2p−1 (F2x)2p−1 . . . (Fsx)
2p−1]T .

The gradient based controller can then be computed according to (4.48). In
particular in this case γ(x) can be taken as γ(x) = γ0‖Fx‖2p, resulting in the
control law

u(t) = −γ0 (‖Fx‖2p)
(2−2p) BTFTGp(x) (7.32)

which, for γ0 large enough, guarantees stability of the closed-loop system, as stated
in the next proposition [BM99c].

Proposition 7.40. Assume the polyhedral function ‖Fx‖∞ is a control Lyapunov
function which assures the level of contractivity β̂ > 0. Then, for any positive β <
β̂, there exists p and γ0 such that the system with the control (7.32) assures the
condition D+‖Fx‖2p ≤ −β‖Fx‖2p.

The reader is referred to [BM99c] for further details, in particular for the
computation of γ0.

Example 7.41. Consider the following uncertain system:

[
ẋ1(t)
ẋ2(t)

]
=

[
0 −1.5 + δ(t)
−2 −1

] [
x1
x2

]
+

[
0

10

]
u

where |δ(t)| ≤ 0.5. A polyhedral Lyapunov function Ψ̂(x) = ‖Fx‖∞ with a
decreasing rate λ̂ = 0.8 for the corresponding EAS with τ = 0.05 was computed.
This function is characterized by the plane matrix

F =

⎡
⎣ 0.000 1.000

4.997 −.4997

4.997 −.2498

⎤
⎦

corresponding to the vertex matrix

X =

[
0.2501 0.2001 0.1001

1.0000 0 −1.0000

]
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Fig. 7.3 The smoothed function level surfaces (plain lines) and the original polyhedral function
level surfaces (dashed lines)

and the associated input values

U =
[
−0.2500 1.6400 3.5200

]

The contractivity achievable by this polyhedral function is β̂ = 1−λ
τ = 4. By means

of the proposed smoothing procedure, relaxing the speed of convergence to β = 2,
a polynomial Lyapunov function with p = 6 and γ0 = 3.027 can be found, thus
obtaining the smooth control

u(x) = − 3.027

Ψ6(x)11
[10 − 4.970 − 2.485]G6(x).

The level surfaces of the original polyhedral function ‖Fx‖∞ and of the polynomial
one ‖Fx‖12 are depicted in Figure 7.3.

7.4 Gain scheduling linear controllers and duality

In the previous section it has been shown that for continuous-time systems, gain-
scheduling (full information) stabilizability and robust stabilizability are equivalent,
whereas such property does not hold for discrete-time systems. Also, it was shown
that stabilizability of an LPV system is not equivalent to robust stabilizability
via linear (not even dynamic) controllers. However, it turns out that for the gain
scheduling problem the situation is quite different.
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Again, we consider dynamic systems of the form

ẋ(t) = A(w(t))x(t) + B(w(t))u(t)

or

x(t + 1) = A(w(t))x(t) + Bu(t)

(note that in the discrete-time case B is assumed constant).

Definition 7.42 (Linear gain scheduling stabilization). The previous system is
said to be stabilizable via linear gain scheduling controller if there exists a control

z(t + 1) = F(w(t))z(t) + G(w(t))x(t) (7.33)

u(t) = H(w(t))z(t) + K(w(t))x(t) (7.34)

such that the closed-loop system is GUAS.

The following theorem holds.

Theorem 7.43. Assume the continuous-time system is stabilizable5. Then it is
stabilizable via a linear gain scheduling controller.

Proof. If the system is stabilizable, it admits a polyhedral control Lyapunov
function. Then equations (7.19) (7.20) hold for some full row rank X (eq. (7.21)
does not play any role since no control bounds are assumed). Let us now augment
equation (7.19) by adding a matrix Z such that the matrix

XAUG
.
=

[
X
Z

]

is invertible and let V(i) = ZH(i), so that

AiX + BiU = XH(i)

V(i) = ZH(i)

namely

[
Ai 0

0 0

] [
X
Z

]
+

[
Bi 0

0 I

] [
U

V(i)

]
=

[
X
Z

]
H(i) (7.35)

5Either robustly or in the gain-scheduling sense, which are equivalent.
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Consider now the matrices Fi, Gi, Hi, and Ki such that

[
U

V(i)

]
=

[
Fi Gi

Ji Ki

] [
X
Z

]

and the linear gain scheduling controller (7.33) with

[
F(w) G(w)

J(w) K(w)

]
=

s∑
i=1

wi

[
Fi Gi

Ji Ki

]

(similarly for the other matrices).
By simple calculations it can be seen that the closed-loop system vertex matrices

result in

ACL
i =

[
Ai 0

0 0

]
+

[
Bi 0

0 I

] [
Fi Gi

Ji Ki

]

which satisfies the condition

ACL
i

[
X
Z

]
=

[
X
Z

]
H(i)

which, together with (7.20), implies that the polyhedral function generated in the
extended space by XAUG is indeed a polyhedral Lyapunov function in view of item
iii) of Proposition 7.19.

The reader is referred to [Bla00] for more details. The discrete-time version of
the above, reported without proof (which is almost identical to the one reported for
the continuous-time case) is the following.

Theorem 7.44. Assume the discrete-time system is stabilizable in the gain-
scheduling sense. Then it can be stabilized via a linear gain scheduling controller.

The reader is referred to [BM03] for more details. The previous results admit
some extension by duality which concern the output feedback case. Consider a
discrete-time system of the form

x(t + 1) = A(w(t))x(t) + Bu(t) (7.36)

y(t) = Cx(t) (7.37)

for which an observer is to be determined. Motivated by the purely linear case,
generalized observer of the form

z(t + 1) = P(w(t))z(t) − L(w(t))y(t) + T(w(t))Bu(t)
x̂(t) = Q(w(t))z(t) + R(w(t))y(t)

(7.38)
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with z(t) ∈ IRs, is analyzed. Such an observer, for a given constant w̄, represents the
most general form of a linear observer [O’R83].

Also, it is known that, for a given constant w̄, for (7.38) to be an observer, the
following necessary and sufficient conditions must hold

P(w̄)T(w̄) − T(w̄)A(w̄) = L(w̄)C (7.39)

Q(w̄)T(w̄) + R(w̄)C = I (7.40)

where P(w̄) is a stable matrix (i.e., its eigenvalues are inside the open unit disk).
The main problem is now to see what happens when w(t) is time-varying, as

in our case. According to [BM03], there is no restriction in assuming (7.38) of the
form

z(t + 1) = P(w(t))z(t) − L(w(t))y(t) + TBu(t)

x̂(t) = Q(w(t))z(t) + R(w(t))y(t),
(7.41)

namely with T constant and of full column rank with the conditions

P(w̄)T − TA(w̄) = L(w̄)C (7.42)

Q(w̄)T + R(w̄)C = I (7.43)

It is quite easy to see how this observer works. Consider the variables

r(t) = Tx(t) − z(t), e(t) = x̂(t) − x(t).

Simple computations yield

r(t + 1) = P(w(t))r(t) (7.44)

e(t) = −Q(w(t))r(t) (7.45)

Thus, if matrix P(w) is stable, the variable r(t) converges to 0, so that e(t) → 0,
which in turn implies that x̂(t) → x(t).

The problem is then that of assuring the stability of P(w(t)). We have seen that
for this property the existence of a polyhedral Lyapunov function is a necessary and
sufficient condition. This result can be achieved by duality.

To state the result in its generality, let us now formally define the primal system as

x(t + 1) = A(w(t))x(t) + Bu(t)
y(t) = x(t)

(7.46)
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and its dual as

x(t + 1) = AT(w(t))x(t) + u(t)
y(t) = BTx(t)

(7.47)

Remark 7.45. It must be said that, in the standard literature, the dual of a linear
time-varying system is normally obtained by transposition and time reversing (e.g.,
AT(−t))6. We refer the reader to the seminal work [AM81] for a clear statement of
the problem, as well as for a quadratic based solution.

Since we have established that the generalized observer design and the state
feedback design are dual problems, we can focus on the stabilization via state
feedback only.

Theorem 7.46. The following statements are equivalent.

i) There exist a static control law u(t) = Φ(x(t),w(t)) and a polyhedral function
which is a Lyapunov function for system (7.46).

ii) There exist a full row rank matrix X ∈ IRn×l, s matrices P(h) ∈ IRl×l and
U(h) ∈ IRm×l, such that for every h = 1, . . . , s

AhX + BU(h) = XP(h), with ‖P(h)‖1 < 1. (7.48)

iii) System (7.46) is stabilizable via linear gain scheduled controllers.
iv) System (7.46) is exponentially stabilizable via linear gain scheduled controllers.

Proof. See [BM03].

The next theorem introduces a duality result.

Theorem 7.47. The following statements are equivalent.

i) There exists a linear gain scheduling observer for system (7.46) of the
form (7.41) with T full column rank.

ii) There exist a full column rank matrix F ∈ IRl×n, s matrices H(h) ∈ IRl×l and
s matrices Y(h) such that, for every h = 1, . . . , s, the dual equation of (7.48)
holds:

FAh + Y(h)C = H(h)F, with ‖H(h)‖∞ < 1. (7.49)

iii) The dual system

x(t + 1) = AT(w(t))x(t) + CTu(t)

is gain-scheduling stabilizable.

Proof. See [BM03].

6Roughly, in our case it is not necessary since if A(t) is admissible also A(−t) is such.
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7.4.1 Duality in a quadratic framework

An important duality relation also holds in the framework of quadratic stability for
gain scheduling linear design. If the parameters are available on-line one can always
use the observer

ż(t) = A(w(t))z(t) + L(w(t))Cz(t) − L(w(t))y(t) + Bu(t) (7.50)

As usual, denoting by e(t)
.
= z(t) − x(t), we derive the error equation

ė(t) = [A(w(t)) + L(w(t))C]e(t)

This system is quadratically stable if and only if its dual

ẋ(t) = [A(w(t)) + L(w(t))C]T x(t) = [A(w(t))T + CTL(w(t))T ]x(t)

is such. Then we can infer the following.

Proposition 7.48. System (A(w(t)),C) (no matter which is B) can be detected
by means of the linear gain-scheduled observer (7.50) if and only if its dual
(A(w(t))T ,CT) (no matter which is the “output” matrix BT) is quadratically gain-
scheduling stabilizable via linear controller u = K(w)x.

Some kind of mixed relation holds if we assume that L and, respectively, K must be
independent of w.

Proposition 7.49. System (A(w(t)),C) can be detected by means of the linear gain-
scheduled observer (7.50), with L constant, if and only if its dual (A(w(t))T ,CT) is
quadratically robustly stabilizable via constant linear controller u = Kx.

It is apparent that, even in the quadratic framework, the existence of a robustly
stabilizing constant linear gain does not imply the existence of some kind of “robust”
observer. Indeed the structure of the Luenberger observer must replicate the dynamic
of the system, which is impossible if the parameter w is unavailable on-line.

For further detail on the problem of gain scheduling control and its solution via
quadratic functions the reader is referred to specialized surveys, for instance [SR00].

7.4.2 Stable LPV realization and its application

We anticipate a subject that will be reconsidered in more detail in Subsection 9.6.3.
The issue concerns the parametrization of stabilizing compensators and its applica-
tion to LPV design.
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For brevity, we consider the case of an LPV system

d
dt x(t) = A(w)x(t) + B(w)u(t)

y(t) = C(w)x(t)

which is quadratically stabilizable. Precisely, let us consider the case in which the
two inequalities

PA(w)T + A(w)P + B(w)U(w) + U(w)TB(w)T ≺ 0

A(w)TQ + QA(w) + Y(w)C(w) + C(w)T Y(w)T ≺ 0

are satisfied for some positive definite symmetric n × n matrices P and Q, and
matrices U(w) ∈ IRm×n, Y(w) ∈ IRn×p. The previous ones are standard quadratic
stabilizability conditions which involve LMIs [BP94, AG95, BEGFB04]. If they are
satisfied, then the following observer-based compensator turns out to be stabilizing

d
dt x̂(t) = (A(w) + L(w)C(w) + B(w)J(w))x̂(t) − L(w)y(t) + B(w)v(t)

u(t) = J(w)x̂(t) + v(t)
(7.51)

where

J(w) = U(w)P−1 L(w) = Q−1Y(w)

The input v(t) will be used later. For the moment being let v = 0. To prove that the
control is quadratically stabilizing denote, as usual, the error as e(t) = x̂(t) − x(t),
so that

d
dt

[
x(t)
e(t)

]
=

[
A(w) + B(w)J(w) B(w)J(w)

0 A(w) + L(w)C(w)

] [
x(t)
e(t)

]

This is a triangular system for which the block matrices on the diagonal A(w) +
B(w)J(w) and A(w) + L(w)C(w) satisfy the conditions

P−1(A(w) + B(w)J(w)) + (A(w) + B(w)J(w))T P−1 ≺ 0

and

(A(w) + L(w)C(w))Q−1 + Q−1(A(w) + L(w)C(w))T ≺ 0

hence it is exponentially robustly stable.
We show now how the signal v(t) comes into play. Assume that in the previous

machinery the signal v(t) is generated as the output of the following system

v(t) = T(w)C(x̂ − x) = T(w)Ce(t)
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where T(w) is a “stable operator.” Plugging such a T modifies the compensator, but
it cannot destabilize the plant as long as we can assure that

e(t) → 0 implies v(t) → 0

Although in general any input–output stable operator T would fit, we limit ourselves
to operators T which can be described by finite-dimensional LPV systems.

By the Youla–Kucera parametrization theory [ZDG96, SPS98], the following
well-known proposition (which will be reconsidered later in Proposition 9.40) holds:

Proposition 7.50. Let w be constant and let W(w, s) be the transfer function of
any compensator stabilizing the plant. Then there exists a Youla–Kucera parameter
T(w, s) such that the resulting compensator is stabilizing and has transfer function
W(w, s).

Therefore one can realize any compensator scheduled as a function of w which is
stabilizing for constant w. For instance, one could consider a family of compensators
Wopt(w, s) optimal with respect to w and achieve optimality for any w, as long as w
is constant (or time-varying with a very slow variation rate). However w(t) can vary,
hence the following question arises.

Question: if one chooses a parametrized compensator transfer function

Wopt(w, s)

and implements it by means of some parametrized realization, is stability assured
even under variations of w(t)?

The answer to the previous question is no. However, there always exists a suitable
realization such that:

• for constant w, the compensator transfer function is the desired one Wopt(w, s);
• stability7 is assured under arbitrary variations w(t) ∈ W .

Consider, for instance, the system in Example 7.0.1. One could synthesize an
optimal local controller which is “good” for small variations from the reference.
This will provide a transfer function Wopt(w, s). On the other hand, it is desirable
that the system remains stable even in the case of large transients among reference
values.

We do not prove the previous claim here since it will be discussed later in
the context of switching systems (Theorem 9.45). We only anticipate the method.
Assume that the compensator transfer function Wopt(w, s) corresponds to a Youla–
Kucera parameter Topt(w, s). The problem is solved if one realizes such a parameter
as

ż(t) = FT(w)z(t) + GT(w)o(t)
v(t) = HT(w)z(t) + KT (w)o(t)

(7.52)

7Not optimality.
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in a stable way. Precisely we must have

HT(w)(sI − FT(w))−1GT(w) + KT(w) = Topt(w, s)

with the additional condition that the LPV system (7.52) is LPV stable.

Example 7.51. Assume that the following transfer function is assigned

W(w, s) =
κ

s2 + 2ξs2 + ξ2 + w

The realization

A =

[
0 1

−(ξ2 + w) − 2ξ

]
, B =

[
0

1

]
, C =

[
κ 0

]

is not necessarily LPV stable if ξ > 0 is small and 0 < w− ≤ w(t) ≤ w+ is time-
varying. This is indeed a system of the form (7.1) (describing the physical system
in Fig. 7.1). Conversely

A =

[
−ξ −

√
w√

w −ξ

]
, B =

[
1

0

]
, C =

[
0 κ/

√
w
]

is the realization of the same transfer function for constant w and it is an LPV stable
system. If w is constant, then the two realizations are clearly equivalent. This is
absolutely not true when w(t) is time-varying.

If we realize the compensator by means of a pre-stabilizer as in (7.51) equipped
by a proper operator v = To as in (7.52), then any transfer function can be matched.
Moreover, if we realize the Youla–Kucera parameter (7.52) in such a way that it is
quadratically stable when w is time-varying, then our goal is achieved.

Remark 7.52. The word “realization” is formally correct when w is constant. With
an abuse of word we say that (7.52) is a realization as long as its transfer function
is the desired one for any constant w. The additional requirement is that it remains
stable, for w(t) time-varying, although (7.52) is not the realization of a transfer
function anymore.

In Subsection 9.6.3 we will prove the following (Lemma 9.41): Given a stable
square matrix F, there exists an invertible T such that F̂ = T−1FT has P = I
as Lyapunov matrix. Then the LPV stable operator T described by (7.52) can be
achieved as follows.

1. Given the current w, compute any realization F̂T(w), ĜT (w), ĤT(w), K̂T (w)
such that

ĤT(w)(sI − F̂T(w))−1ĜT(w) + K̂T(w) = Topt(w, s).
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2. Take the matrices (FT(w),GT (w),HT(w),KT (w)) which implement Topt(w, s) as
in (7.52) given by

FT(w) = T−1(w)F̂T (w)T(w), GT(w) = T(w)−1ĜT(w),

HT(w) = ĤT(w)T(w), KT (w) = K̂T (w)

where T(w) has the property that T−1(w)F̂T (w)T(w) has the identity I as
Lyapunov matrix.

A problem of the previous machinery to implement the compensator is that these
computations have to be performed on-line for the current w, i.e. within the sampling
time.

7.4.3 Separation principle in gain-scheduling
and robust LPV control

We have seen that there are interesting duality properties in LPV control theory.
The following result establishes a separation principle for gain-scheduling design
[BCMV10]. Consider the LPV system

ẋ(t) = A(w(t))x(t) + B(w(t))u(t)
y(t) = C(w(t))x(t)

(7.53)

and the class of LPV compensators of the form

ż(t) = F(w(t))z(t) + G(w(t))y(t)
u(t) = H(w(t))z(t) + K(w(t))y(t)

(7.54)

Theorem 7.53. System (7.53) can be stabilized by a control of the form (7.54) if
and only if the two following conditions are satisfied:

• the system is stabilizable via state feedback by a compensator of the form

ż(t) = FSF(w(t))z(t) + GSF(w(t))x(t), (7.55)

u(t) = HSF(w(t))z(t) + KSF(w(t))x(t), (7.56)

• there exists a generalized observer of the form

ṙ(t) = Q(w(t))r(t) − L(w(t))y(t) + RB(w(t))u(t), (7.57)

x̂(t) = Mr(t), (7.58)

which produces an asymptotic estimation of the state: x̂(t)− x(t) → 0 for all u(·)
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If the conditions of the theorem are satisfied, then an observer-based compensator
is achieved as in Fig. 7.4. It is also known that state feedback control and observer
design are dual problems [BM03, BCMV10].

Theorem 7.54. System (7.53) can be stabilized by a gain scheduling state feedback
if and only if its dual admits a gain scheduling generalized observer.

Conversely in robust control neither separation principles nor duality properties
can be established, at least under the standard definitions. Roughly, we say that
the stabilization problem for a class of systems enjoys the separation principle
if whenever we know that a system in this class is stabilizable, then a possible
stabilizer is achieved by means of a state observer, which reconstruct asymptotically
the state for all u and w, and an estimated-state-feedback [BG86].

We show that in robust control of LPV systems there is no hope to establish
a general separation principle. This can be done by means of a very simple
counterexample (which is taken and suitably adapted from [BM99b]). Consider the
LPV system

ẋ1 = −ωx2

ẋ2 = ωx1 + βu

y = γx2
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with μ ≤ ω(t) ≤ 1/μ, ρ ≤ β(t) ≤ 1/ρ and ξ ≤ γ(t) ≤ 1/ξ, and with 0 < μ, ρ,
ξ < 1. This system can be stabilized by the control u = −κy, as it can be shown by
means of the Lyapunov function

Ψ(x1, x2) =
1

2
(x21 + x22)

whose derivative, along the system trajectory, is

Ψ̇(x1, x2) = −κγβx22

Although the derivative is negative semi-definite, stabilizability can be proved by
Krasowskii arguments.

However, no device can asymptotically reconstruct the state with arbitrary u(·).
For instance, take u ≡ 0, and consider the periodic trajectory which is on the
unit circle. Whenever x2 is in the strip ξ ≤ |x2| ≤ 1/ξ, one might assume that
γ(t) = 1/|x2(t)|. The value of γ is ignored by the compensator. The output remains
constant: y(t) = 1 in the upper strip and y(t) = −1 in the lower strip, therefore
no information about the state is available. On the other hand, the state sweeps the
circle with angular speed ω(t) and therefore, when the state enters the “blind strip”
of Figure 7.5, no detection is possible and a persistent error is unavoidable if ω(t)
changes and the compensator has no information about ω and γ. It is easy to modify
this example by perturbing the second equation as ẋ2 = ωx1 + εx2 + βu, with a
small term ε > 0 to show that the error might even diverge.

Even duality fails in robust control. Here we show a continuous-time example by
adapting that proposed in [BM99b]. The system is

ẋ1 = ωx2 + u
ẋ2 = −ωx1 + βu

(7.59)

with |β| ≤ ρ and μ ≤ ω ≤ 1/μ. This system can be stabilized by the gain
scheduling feedback

u(t) = −κ[x1 + β(t)x2]

Fig. 7.5 The blind strip

blind strip

blind strip



7.4 Gain scheduling linear controllers and duality 333

Consider the same Lyapunov function as before Ψ(x1, x − 2) = (x21 + x22)/2 to get

Ψ̇(x1, x2) = −κ[x1 + βx2]
2

Again, the derivative is only non-positive for arbitrary κ > 0. However, if κ is small
the system has a “rotating behavior,” so that the state periodically reaches the region
in which

[x1 + βx2]
2 < 0

and the Lyapunov derivative is necessarily negative so that x(t) → 0.
In view of Theorem 7.46, the existence of a gain scheduling stabilizing feedback

implies that the system is also robustly stabilizable. However, the dual system

ẋ1 = −ωx2

ẋ2 = ωx1

y = x1 + γx2

|γ| ≤ ρ and μ ≤ ω ≤ 1/μ, admits a GS observer but not a robust observer. Indeed,
the following gain scheduling Luenberger observer

˙̂x =

[
0 −ω
ω 0

]
x̂ +

[
κ

κγ(t)

] (
y −

[
1 γ(t)

]
x̂
)

provides an asymptotic estimate of the true state x when κ > 0 (this can be seen
by using the same Lyapunov arguments used for the gain scheduled state feedback).
If no parameter measurements are available, say in the robust case, no asymptotic
estimator can be found. Indeed, in the “blind” sector (see Fig. 7.6)

Sρ = {(x1, x2) : |x1| ≤ ρ|x2|}

Fig. 7.6 The blind sector

blind sector

blind sector
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γ(t) = −x1(t)/x2(t) is admissible and yields y(t) = x1(t) + γx2(t) = 0. For such
γ(t) whenever x(t) ∈ Sρ, no output information is available. On the other hand, x(t)
rotates at a variable speed ω(t), so that, again, no state detection is possible.

Obviously, there are no LPV systems which are robustly detectable whose dual
is not state feedback stabilizable. Indeed robust detection implies gain scheduling
detection which implies gain scheduling state-feedback stabilizability, hence robust
stabilizability, of the dual.

To conclude this subsection we stress that, as long as we are considering gain-
scheduling design, we may always count on duality and separation principles
no matter if we are considering quadratic or polyhedral Lyapunov functions.
Conversely, in the case of robust control, there is no “obvious” way to “dualize”
all the procedures we have presented for state feedback. In the section concerning
robust set-theoretic estimation we will see that some set-theoretic procedures are
possible for robust state detection but these are essentially different from the
procedure proposed for state feedback design.

7.5 Exercises

1. Consider a single-input system of the form ẋ = A(w)x + Bu in which the goal is
that of assuring a contractivity level β. Show that for some realizations of w(t)
a gain-scheduling control is preferable to a state feedback controller from the
actuator effort point of view, in the sense that, on the average, the control effort
is greatly reduced. What about the worst case?

2. Show that the system of equation (7.1) for 0 < ρ− < ρ+ can be destabilized via
a proper time-varying ρ(t), provides that α > 0 is small enough. (Hint: consider
the case in which α = 0 and show that, for ρ(t) = ρ− and ρ(t) = ρ+, the
trajectories are on ellipses. Show how to jump from a trajectory to another in
order to go arbitrarily far from 0 . . . )

3. Show that the system with equation (7.1) for 0 < ρ− < ρ+ and α < 0 can be
stabilized by choosing a proper time-varying ρ(t), provided that α > 0 is small
enough. (Hint: read the hint in Exercise 2)

4. Equation (7.11) is valid for a constant B only. Why?
5. Consider the equation (7.16) and show that ρQ =

√
3/2, by computing the

inverse of the H∞ norm of the system.
6. Solve the previous exercise directly, by developing all the computation in (7.16)

in detail.
7. Quadratic stabilizability is equivalent to linear quadratic stabilizability if B =

B0(I + Δ) with ‖Δ‖2 ≤ ν < 1 [BCL83]. Prove it (Hint: take a gradient based
control u = −γBT

0Px . . . ).
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8. Show why convexity is essential in Proposition 7.6. Hint: take the linear system
x(t + 1) = [A1w1(t) + A2w2(t)]x, w1 + w2 = 1, w1,w2 ≥ 0, with

A1 = ρ

[
1 0

0 1

]
A2 = ρ

[
0 −1

1 0

]

ρ = 0.99, and the candidate non-convex function

Ψ(x1, x2) = min{|x1|/2 + |x2|; |x1| + |x2|/2}

Show that Ψ(x1, x2) is a Lyapunov function if‘ the system is of the switching
type, namely only (1, 0) and (0, 1) are admitted for (w1,w2).

9. In the previous exercise, is

Ψ̂(x1, x2) = max{|x1|/2 + |x2|, |x1| + |x2|/2}

a suitable Lyapunov function to prove stability? (consider both polytopic and
switching case).



Chapter 8
Control with time-domain constraints

Constraints are encountered practically in every real control problem. It is a tradition
(although questionable) that in many textbooks constraints are mentioned but, with
several exceptions, the design of control systems which take into account constraints
is frequently disregarded.

Basically, there are two ways to cope with constraints and precisely

• the control design is performed disregarding the constraints and the effect of the
constraints is considered a posteriori, by simulation analysis or by computing the
domain of attraction;

• the control design is performed directly by taking constraints into account.

Clearly the first approach is more suitable when the problem primary aspect is
that of optimizing local performances, while the constrains have a secondary role.
Conversely, when the constraints are critical, the second type of design is often
preferable. A typical example is the control problem of a cart-pendulum system.
It is quite reasonable that, if the system is to be controlled in the lower (stable)
position, the presence of constraints is not a critical issue. Conversely, if the system
is to be controlled in the more challenging and not purely academic (see [GM04] for
a relevant application) upper position, constraints have necessarily to be kept into
account in the design stage, since disregarding them might lead to far-from-ideal
behavior of the control loop. Indeed, if limitations in the control action are present,
for large values of the angle the system might not even be brought to the upper
position. Things get even worse if state constraints (e.g., the cart position being
limited) are also present.

In this section the problem will be analyzed by considering input and output
constraints by means of a set-theoretic approach. The relevance of such a set-
theoretic approach can be appreciated in view of the following basic result. Consider
the system
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ẋ(t) = f (x(t), u(t)) (f (x(t), u(t),w(t)))
y(t) = g(x(t)) (g(x(t),w(t)))

(8.1)

where the control u(t) is constrained as u(t) ∈ U and the state as x(t) ∈ X (and
w(t) ∈ W is the external output, if any1), and the (stabilizing, if possible) controller

ż(t) = h(z(t), y(t)) (h(z(t), y(t),w(t)))
u(t) = k(z(t), y(t)) (k(z(t), y(t),w(t)))

(8.2)

Definition 8.1 (Admissible set). A set P in the extended state space is said to be
admissible if, for all [xT zT ]T ∈ P ,

u = k(z, g(x)) ∈ U and x ∈ X

(for all w(t) ∈ W).

The following result holds.

Theorem 8.2. Given the dynamic system (8.1) and the controller (8.2), then x(t) ∈
X and u(t) ∈ U for all t ≥ 0 and for all w(t) ∈ W if and only if the initial state
[x(0)T z(0)T ]T is included in a set P which is admissible and (robustly) positively
invariant for the closed-loop system.

Proof. It is rather obvious that the condition is sufficient. Indeed, if the initial
condition belongs to a positively invariant set P , then the (extended) state evolution
will belong to P and since this set is also admissible no constraint violation will
occur. The fact that it is necessary is simply derived by noticing that, if one considers
the set Pmax of all initial state [x(0)T z(0)T ]T for which the constraints are not
violated, by definition any future state [x(τ)T z(τ)T ]T is also in such a set (because
[x(τ)T z(τ)T ]T is still an initial state for the future transient, i.e. t ≥ τ , then
[x(τ)T z(τ)T ]T ∈ Pmax).

Even in its simplicity, the extent of the previous result is fundamental: to solve a
constrained control problem, a controlled-invariant set, say an invariant admissible
set which can be associated with a control law for which there is no constraints
violation, must exist.

This “if it is fine now it will be fine forever” concept, naturally associated with
the invariance concept, is of course involved and it is crucial because it assures that
violations will not occur in the future.

Though such a concept is always present in constrained control problems, there
are techniques to handle constraints in which the word invariance is not even
mentioned, but it hidden, as in the next example. Consider the feedback loop in
Fig. 8.1, where the scalar control is constrained as |u(t)| ≤ ū and the system has to
satisfy such a constraint for all the scalar “tracking signals” |r(t)| ≤ r̄. Assuming

1Though in this chapter the main focus will be put on systems without uncertainties, the signal w
is considered here for the sake of generality.
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Fig. 8.1 The feedback loop
for tracking F(s)K(s)

yuer

closed-loop stability, this no-constraint-violation condition can be analyzed as a
“worst case” output analysis by considering r as input and the control action u as
output. More precisely, it can be stated as an ∞-to-∞ norm condition under the
assumption that the initial condition is 0.

To provide a set-theoretic interpretation of the above problem along the lines of
Subsection 6.4.1, consider any state space realization of the closed-loop system

ẋ(t) = Ax(t) + Er(t)

u(t) = Cx(t) + Hr(t)

Proposition 8.3. The next statements are equivalent

• for x(0) = 0 the stable loop of Figure 8.1 is such that the control constraints are
satisfied for all reference signals such that |r(t)| ≤ r̄;

• the induced ∞-to-∞ norm2 is such that

μ = sup
r �=0

‖u‖∞
‖r‖∞

≤ ū
r̄
;

• the largest robustly invariant set S∞ of the system included in the strip

P [C, ū − |H |̄r] = {x : |Cx| ≤ ū − |H |̄r}

is not empty (in particular, by symmetry, it includes the origin).

In many books and papers it is often assumed that the initial condition is zero.
From this point of view, the last statement of the above proposition might appear
to be useless since the computation of S∞ is normally much harder than the
computation of the ∞-to-∞ norm (the so-called L1 norm) which is given by

μ =

∫ ∞

0

|CeAtE|dt + |H|

Though the above assertion is clearly true, a set-theoretic investigation of the
problem has some advantages:

• S∞ is the set of all the initial conditions (not just the 0 one) for which there is no
violation;

2We remind that the infinity norm of a signal is defined as ‖u‖∞ .
= supt≥0 |u(t)|.
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• the results can be extended to uncertain systems of the form (A(w),E,C,H).
• the analysis can be extended, without difficulties, to asymmetrical constraints of

the form

u− ≤ u ≤ u+, r− ≤ r ≤ r+,

• the L1 control optimization is undoubtedly a very nice theory [BG84, DP87], but
it is not simple to deal with. Furthermore, a set-theoretic interpretation gives the
designer a complementary reading.

With the above motivations in mind, in this section the constrained input problem
will be faced by means of invariant sets. We refer the reader to the nice book [HL01]
for a less set-invariant alternative.

8.1 Input constraints

In this section, the constrained input control problem is specifically considered.
Assume that the control is constrained as

u(t) ∈ Uv

where U is a C-set.
As it is well known, controllability and reachability problems in the presence

of constraints are completely different from the same problems in the absence of
constraints.

Consider a linear time-invariant system of the form

ẋ(t) = Ax(t) + Bu(t)

or its corresponding discrete-time version

x(t + 1) = Ax(t) + Bu(t)

Let

RT (respectively CT)

be the reachability (controllability) set from (to) the origin in time T, according to
Definition 6.1 (Definition 6.2), and let

R∞ (respectively C∞)

be the set of all the reachable (controllable) states in a finite, but arbitrary, time from
(to) the origin.
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Controllable and reachable sets are strictly related and precisely, according to the
concepts expressed in Subsection 6.1.1, the constrained reachability problem can be
equivalently stated as a controllability problem for the “reverse-time” system:

ẋ(t) = −Ax(t) − Bu(t),
(
x(t + 1) = A−1x(t) − A−1Bu(t)

)

(in the discrete-time case, it is assumed for brevity that A is invertible). The main
properties and relations of reachable and controllable sets for linear systems are
summarized in the next proposition (part of them are reported for the sake of
completeness, since they have already been stated in Section 6.1.1)

Proposition 8.4.

i) x̄ ∈ IRn is reachable under constraints if and only if it is controllable under
constraints for the reverse system (and vice versa).

ii) Reachability (controllability) sets are monotonically increasing (decreasing),
i.e., for T1 ≤ T2 ≤ ∞,

RT1 ⊆ RT2 ⊆ R∞, CT1 ⊆ CT2 ⊆ C∞

iii) The sets RT and CT , as well as R∞ and C∞, are convex sets.

The next proposition is a preliminary step for the reachability and controllability
analysis.

Proposition 8.5. Denote by

R(A,B) = range[B|AB|A2B| . . . |An−1B]

the reachable subspace (without constraints) of the pair (A,B). Then

RT ⊆ R(A,B)
(
respectively CT ⊆ R(A−1,A−1B) = C(A,B)

)

The proof of the proposition can be immediately derived by the Kalman reachability
decomposition and is left to the reader. In view of this property, it is henceforth
possible to work under the assumption that the pair (A,B) is reachable, precisely

R(A,B) = range[B|AB|A2B| . . . |An−1B] = IRn

For the sake of completeness, we state the next lemma which tells us that, as
long as the system state is sufficiently close to the origin, constraints are not a major
issue.

Lemma 8.6. If (A,B) is reachable, then

i) there exists a neighborhood B1 of the origin such that for all x(0) ∈ B1 the
state can be driven to 0 in finite time without constraints violation;
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ii) given any stabilizing linear feedback control u = Kx and any η > 0, there exists
a neighborhood B of the origin and ε > 0 such that for all x(0) ∈ B and for all
‖w‖ ≤ ε the state of the system

ẋ(t) = (A + BK)x(t) + w(t), (respectively x(t + 1) = (A + BK)x(t) + w(t))

remains bounded and ‖u(t)‖ ≤ η,
iii) for any stabilizing linear feedback control there exist μ and ν such that, if

x(0) = 0 and ‖w(t)‖ ≤ ε, then ‖x(t)‖ ≤ εν and ‖u(t)‖ ≤ εμ.

With the above in mind, the next lemma, which relates the controllable (reachable)
set to the eigenspaces of the system, can be introduced.

Lemma 8.7. If (A,B) is reachable, then

i) if A has all its eigenvalues in the closed left-half-plane (resp. in the closed unit
disk), then

C∞ = IRn;

ii) if A has all its eigenvalues in the closed right-half-plane (resp. in the complement
of the open unit disk), then

R∞ = IRn;

The proof of this lemma can be found in [BS80] and in [Son84] (see also [HL01]).
An important consequence of this result is the following. For a generic system, one
can consider two subspaces in the state space: the first, T L̄, related to the closed left-
half-plane eigenvalues and the second T R associated with the other eigenvalues. In
other terms, one can apply a state transformation

Â = [TL̄|TR]−1A[TL̄|TR], B̂ = [TL̄|TR]−1B

where TL̄ and TR denote two matrices whose columns form a basis for T L̄ and T R,
so that the system is reduced to

Â =

[
AL̄ 0

0 AR

]
, B̂ =

[
BL̄

BR

]
(8.3)

By exploiting the above, the following result concerning controllable sets can be
presented.

Theorem 8.8. Consider the system decomposition (8.3) and let CR
∞ be the control-

lable set under constraints for the system (AR,BR). Then

C∞ = T L̄ + CR
∞
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Proof. A proof of this statement can be found in [Haj91]; here, an alternative proof
based on Lemma 8.7 is reported. To show that any state in the set T L̄ + CR

∞ can
be driven to 0, consider initially the anti-stable system AR and a control action
u1(T) ∈ U , defined on the interval [0, T1], which drives xR(0) ∈ CR

∞ to 0 in time
T1, xR(T1) = 0. Such a control action and such a T1 exist by definition of CR

∞.
The problem now is to show that xL̄(t) can be driven to zero without letting xR(t)

“escape” from CR
∞. Consider a control action of the form

u = KRxR + v, ‖v‖ ≤ ε

where KR is such that A2 = AR +BRKR is asymptotically stable and has no common
eigenvalues with AL̄. With the above control law, the controlled system becomes

[
ẋL̄

ẋR

]
=

[
AL̄ BL̄KR

0 A2

] [
xL̄

xR

]
+

[
BL̄

BR

]
v(t)

Consider the transformation

[
xL̄

xR

]
=

[
I X
0 I

] [
x1

xR

]

where X satisfies the Sylvester equation

AL̄X − XA2 = −BL̄KR

which admits a solution since AL̄ and A2 have distinct eigenvalues. By applying the
above transformation, the new equation

[
ẋ1

ẋR

]
=

[
AL̄ 0

0 A2

] [
x1

xR

]
+

[
B1

BR

]
v(t)

is obtained. Note in passing that the second sub-system remains unchanged. In view
of statement iii) of Lemma 8.6, since xR(T1) = 0, for any ε > 0 we have that, if
we limit v as ‖v(t)‖ ≤ ε, then ‖u(t)‖ ≤ με and ‖xR(t)‖ ≤ νε, t ≥ T1, for some
μ, ν > 0. Then, for ε small enough, we have u(t) ∈ U .

Now, according to Lemma 8.7, it is possible to drive, in a proper interval of
time [T1, T2], x1(t) to x1(T2) = 0 by means of a bounded control ‖v(t)‖ ≤ ε,
thus simultaneously assuring u(t) ∈ U , for ε small enough. Once x1(T2) = 0,
take v(t) = 0 so that xR(t) → 0, so that in time T3 large enough the condition
‖xR(T3)‖ ≤ δ can be met with δ arbitrarily small. Since in the meanwhile x1 remains
zero, in time T3 large enough a neighborhood of the origin can be reached which
is arbitrarily small. Statement i) of Lemma 8.6 finally assures that the state can be
driven to zero in a finite interval [T3, T4].
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It is clear that, if the xR-sub-system is not present, then the domain of attraction
is not needed since it is a priori known that the system state can be driven to 0 for
all initial conditions. In this case the problem can be faced in terms of the so-called
global [Son84] or semi-global stabilization approach [LSS96, SSS00, SHS02].

As far as the reachability analysis is concerned, a similar decomposition has to
be applied. In this case one has indeed to consider two subspaces: the first, T L,
related to the open left-half-plane eigenvalues and the second, T R̄, associated with
the closed right-half-plane eigenvalues. Again, by applying a state transformation

Â = [TL|TR̄]−1A[TL|TR̄], B̂ = [TL|TR̄]−1B

where TL and TR̄ denote two matrices whose columns form a basis for T L and T R̄,
the system is reduced to

Â =

[
AL 0

0 AR̄

]
, B̂ =

[
BL

BR̄

]
. (8.4)

The above decomposition allows us to derive the following reachability result.

Theorem 8.9. Consider the system decomposition (8.4). Let RL
∞ be the reachable

set under constraints for the system (AL,BL). Then

R∞ = T R̄ + RL
∞

Proof. The proof follows immediately from Proposition 8.4 and the fact that the
reverse system spectrum is symmetric, with respect to the imaginary axis, to that of
the “direct system.”

8.1.1 Construction of a constrained control law
and its associated domain of attraction

The previous results are essentially theoretical. Our intention is that of providing a
constructive way to drive the state asymptotically to zero by means of a feedback
control law. Precisely, the following two problems are addressed:

• that of finding a set S such that, for all initial states x(0) ∈ S, x(t) → 0 with
u(t) ∈ U ;

• that of finding a proper stabilizing feedback law u = Φ(x) ∈ U ;

As already mentioned, it is possible to restrict our attention to sets S which
are controlled-invariant since the problem, under stabilizability assumptions, is
solvable if and only if such a set exists.

We also consider the special but important case in which the set U is a polytope

U = P [R, p]
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There are many different approaches to compute a region of attraction. Again,
one has to choose between conservative but efficient approaches on one side and
efficient but computationally intensive techniques on the other.

The starting point is the next theorem, which basically shows that it is possible
to approximate any domain of attraction by a polyhedral domain of attraction. This
fact is well known in the literature and due to previous work [Las93, GC86b, GC87,
KG87, BM98, BM96a] (see also [Bla99, HL01] for surveys).

In view of the fact that the reachability analysis boils down to the controllability
analysis of the reverse system, in the following the null controllability case only will
be dealt with.

Theorem 8.10. Consider a reachable linear system and let C∞ be the controllable
set (which includes the origin as an interior point). Consider any finite number
of points x̄k ∈ int{C∞}, the interior of C∞, k = 1, 2, . . . , r. Then there exists a
polyhedron P such that

i) x̄k ∈ P for all k;
ii) P is controlled invariant;

iii) there exist a feedback controller u = Φ(x), a polyhedral Lyapunov function
Ψ(x) (the Minkowski function of P) and λ < 1 (respectively, β > 0) such that

Ψ(x(t + 1)) ≤ λΨ(x(t)) (respectively, D+Ψ(x(t)) ≤ −βΨ(x(t))

and u(t) ∈ U for all initial conditions in P .

Proof. The proof, inspired by that in [BMM95], is reported in the discrete-time case
only, whereas the continuous-time one will just be sketched.

Assume without restriction that the convex hull of the assigned points
V [x̄1x̄2 . . . x̄r] includes the origin as an interior point (if this is not the case, then
new ones can be added). By definition, there exist control sequences uk(t) ∈ U such
that, if x(0) = x̄k, then x(t) → 0. Consider the modified system

x(t + 1) =
A
λ

x(t) +
B
λ

u(t)

and denote by xλk (t) the trajectory associated with the initial condition x̄k and
input uk(t). Note that the trajectories computed for λ = 1, x1k (t), are those of
the original system. Since all the x1k (t) converge to zero, for all ε such that the
ball of radius ε, Bε, is in the interior of V [x̄1x̄2 . . . x̄r], there exists T such that
‖x1k (T)‖ ≤ ε/2. For λ sufficiently close to 1, by continuity arguments one has that
‖xλk (T)‖ ≤ ε. Let P be the polytope achieved as convex hull of all the points of the
form xλk (t)

P = V
[

xλ1 (0) xλ2 (0) . . . xλr (0) xλ1 (1) xλ2 (1) . . .
]

Since P includes the points x̄k, condition i) is satisfied.
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Showing that this set is also controlled invariant for the modified system is
straightforward, since for each vertex xλk (t) the next state xλk (t + 1) is either a vertex
or a point inside P . More precisely,

xλk (t + 1) =
A
λ

xλk (t) +
B
λ

uk(t) ∈ P

that is

Axλk (t) + Buk(t) ∈ λP

Therefore any vertex can be associated with an admissible control uk(t) ∈ U and,
according to Theorem 4.44 and Corollary 4.46, P is λ-contractive.

Finally, statement iii) follows by the fact that it is always possible to associate a
control of the form (4.39) with P .

Let us consider the continuous-time case. Denote by xk(t) the solution of the
system when the initial state is x̄k associated with the nominal control uk(t) (which
is assumed to be continuous). Since u(t) ∈ U , ẋ is bounded and therefore it is
possible to approximate the continuous-time solution with the solution of the EAS

xτ (kτ + τ) = [I + τA]xτ (kτ) + τBu(kτ)

For T large enough, the solutions xτk (T) are inside the interior of the ball Bε/2 of
radius ε/2. Take ε such that Bε is included in the interior of the set V [x̄1x̄2 . . . x̄k].
Then the proof proceeds as the previous one by considering the modified Euler
system

xτ (kτ + τ) =
[I + τA]

λ
xτ (kτ) +

τ

λ
Bu(kτ)

and by determining a polyhedral contractive set for the EAS. This set results to be
β contractive for the continuous-time system with β = (1 − λ)/τ . The rest of the
proof is identical to the discrete-time case.

The previous theorem can be constructively used to approximate the largest
invariant set. Indeed, it basically says that, whenever there exists a family of points
in the interior of the domain of attraction, it is always possible to “capture” them
(intended as initial states) and drive the state evolution to the origin. In other words,
the procedure implicitly suggested by the theorem is the following.

Procedure: Construction of a constrained feedback with a specified initial condi-
tion set.

1. Given the points x̄k, check if there exists an open-loop control law which drives
the state to the origin in Tk steps under constraints (later, it will be shown how
this problem can be solved).
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2. If such open-loop control does not exist for some initial point x̄k, and Tk large
enough, this means that x̄k is not included in the controllability region.

3. Once the initial states x̄k and the corresponding open-loop control laws have been
determined, pick a λ close enough to 1 and compute the convex hull of all the
possible trajectories of the modified system.

It must be said that the last task can be very hard. Indeed the number of vertices of
the region P grows enormously as the number of points x̄k is increased and as the
points get closer to the boundary of C∞, since the closer to the border, the greater
the horizon to reach the origin (a problem which has evident bad side effects on the
controller realization, which depends on the number of computed vertices). Still,
in some problems in which candidate initial conditions are naturally specified, the
suggested procedure might turn out to be very useful, since the number of involved
vertices is not so high. We will dwell on this later when relatively optimal control
laws will be considered in Section 10.4.

So far it has been shown, or at least we have tried to convince the reader, that the
choice of a finite number of vertices is reasonable and can lead to the determination
of a domain of attraction. Though the above approach has some advantages, it must
be said that in principle one might be interested in determining a set which is in
some sense the maximal or it approaches the maximal domain of attraction, without
fixing a candidate family of initial conditions. This problem can be solved, by means
of the procedure provided in Section 5.1 and more specifically in Section 5.1.1, by
proceeding as follows:

• fix a “large” set X , typically a polyhedral one (although it is not explicitly
required by the problem) and compute (or approximate) the largest invariant (or
contractive) set Pmax inside X .

Clearly, if X is big enough, the problem is not practically affected, because the state
variables have to be bounded anyway. Note that, in this way, it is possible to solve
in a more general form the problem of driving to zero the state from a set of initial
conditions, since any state in the derived set can be kept inside the constraints or
driven to zero if we may relay on a contractive set.

Example 8.11. As an example of the possibility of determining a good approxima-
tion of the set C∞, consider the continuous-time system whose dynamic and input
matrices are

A =

⎡
⎣ 0 1 0

9 0 −1

0 16 −2

⎤
⎦ , B =

⎡
⎣ 0

0

1

⎤
⎦ ,

with constraints |u| ≤ ū = 1. This system has eigenvalues 1.4809,−1.7404 ±
3.0209j. Consider initial conditions of the form x̄ = [ μ 0 0 ]T and the following
question: which is μmax, the largest possible value for |μ|?
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In principle, one could solve the open-loop problem of determining a constrained
trajectory for an assigned μ and then iterate over μ > 0 by increasing/decreasing
the value of μ if the problem is unfeasible/feasible.

To solve the problem in a more general way, a domain of attraction was
determined. The fictitious constraints ‖x‖∞ ≤ 1000 were added and, by using
the EAS with τ = 0.1, a contractive region for λ = 0.9 was computed. Such
a discrete-time contractivity amounts to a continuous-time contraction coefficient
equal to β = (1 − λ)/τ = 1. The set can be represented as ‖Fx‖∞ ≤ 1, where F is
the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0.0010

0 0.0018 0.0009

0.0018 0.0036 0.0006

0.0055 0.0052 0.0001

0.0114 0.0067 −0.0005

0.0193 0.0078 −0.0012

0.0294 0.0088 −0.0019

0.0415 0.0097 −0.0027

58.4180 9.6123 −2.7614

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and is depicted in Figure 8.2. A linear-variable structure control can be derived as
previously explained (see Section 4.5.1), though it will be shown in a while how this
example can be more conveniently managed.

The reply to our initial question is then μmax = 1/58.4180.
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Fig. 8.2 The “slice of ham” contractive set for the third-order system in Example 8.11
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The previous example indeed has some peculiarities, basically its controllability
set is a sort of slice. Such a behavior is clearly due to the (single) unstable eigenvalue
which, as it is rather well known, has a bad role in constrained controllability. This
aspect is worth a further investigation and in the next section it will be shown how
to determine a domain of attraction by working only in the unstable subspace.

8.1.2 The stable–unstable decomposition

To provide constructive results in a simple way it is better to use a decomposition
which is obtained by incorporating the marginally stable sub-system in the unstable
part. By facing the unstable part only we achieve, in most cases, for a significant
reduction of complexity.

Let us consider the system decomposed in its asymptotically stable part (i.e., the
dynamics associated with the eigenvalues with strictly negative real part) and the
marginally stable and unstable part, thus grouping the imaginary axis eigenvalues
with the open right-half-plane ones:

[
ẋL

ẋR̄

]
=

[
AL

0 AR̄

] [
xL

xR̄

]
+

[
BL

BR̄

]
v(t), (8.5)

The following corollary of Theorem 8.8 holds.

Corollary 8.12. Consider the system decomposition (8.5). Let CR
∞ be the control-

lable set under constraints for the system (AR̄,BR̄) and let T L be the stable subspace.
Then

C∞ = T L + C R̄
∞

Proof. The proof is similar, though actually much simpler, to that of Theorem 8.8,
and it is just sketched. To drive any state of C∞ to 0 one needs just to drive xR̄(t)
to 0 in an interval [0, T1] by means of a proper control action and then sit-and-wait
during an interval[T1, T2] with u(t) = 0 so that xL(t) comes sufficiently close to 0,
from where it can be brought to the origin in finite time.

The statement of the corollary is quite important: when controllability sets have to
be computed, one can simply ignore the asymptotically stable sub-system and face
the unstable one alone. In other words, one can construct a control u = Φ(xR̄(t))
along with a proper controlled invariant set S R̄ for the unstable sub-system so as to
achieve

ẋR̄(t) = AR̄xR̄(t) + BR̄Φ(xR̄(t))

This control can be continuous and, as it has been shown, such that u(t) → 0 as
xR̄(t) → 0. By applying this feedback, the problem is solved because xL(t) → 0
spontaneously.
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Thus a simplified way to solve the problem is the following:

• decompose the system in the form (8.5);
• construct a controller and a domain of attraction for the unstable sub-system.

This procedure is typically useful when, as it is often the case, the system admits
few unstable eigenvalues and the work space can then be reduced. It is worth
pointing out that the procedure can be extended by decomposing a system in a fast
and a slow sub-system as follows:

[
ẋF

ẋS

]
=

[
AF

0 AS

] [
xF

xS

]
+

[
BF

BS

]
u(t), (8.6)

where the eigenvalues of AF are on the left of the vertical line Re(s) = −β (resp.
inside the λ-disk) and those of AS on the right (resp. outside the λ-disk), where β
(resp. λ) is a given convergence speed requirement.

8.1.3 Systems with one or two unstable eigenvalues

An interesting case worthy of investigation is that of systems with one or two
unstable eigenvalues. The case of a single-input system with a single unstable
eigenvalue will be considered first and, to keep things as general as possible,
the constrained stabilizability problem will be replaced by the problem of driving
the state to the origin with a certain “speed of convergence.”

Proposition 8.13. Let (A,B) be a reachable continuous-time (discrete-time) system
with scalar control (m = 1) and let the input u be symmetrically constrained as
|u| ≤ ū. Let β > 0 (0 < λ < 1) be fixed. If there exists a single eigenvalue whose
real part is larger or equal to β (a single eigenvalue whose modulus is larger or
equal to λ), then the largest β-contractive (λ-contractive) set is a strip of the form

P = {x : |fx| ≤ ū}

which can be associated with a linear controller3.

Proof. The proof is provided in the continuous-time case only, since the discrete-
time one is almost identical. Consider the decomposition (8.5)

[
ż
ẏ

]
=

[
Az 0

0 ρ

] [
z
y

]
+

[
Bz

η

]
u(t), (8.7)

3With a slight abuse of notation, since we are not dealing here with bounded sets; we remind that
the Minkowski function can be defined for closed and convex sets including 0 as an interior point;
so P is contractive if x(0) ∈ P implies x(t) ∈ e−βtP.
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and extract the last equation

ẏ(t) = ρy(t) + ηu(t)

By symmetry, a contractive set for this system is an interval of the form

|y| ≤ ȳ

associated with the Minkowski function

Ψ(x) =

∣∣∣∣yȳ
∣∣∣∣

For positive values of y, its derivative is

D+Ψ(y) =
ρy + ηu

ȳ

which achieves its maximum, w.r.t. to the state variable, at the boundary (y = ȳ)
where it is equal to D+Ψmax = ρȳ+ηu

ȳ . Such a quantity is minimized by u =

−sign(η)ū and thus, imposing the derivative to be smaller than −β,

ρȳ − |η|ū
ȳ

≤ −β

it turns out that the maximal set of y which can be driven to 0 with speed at least
β is

−ȳ ≤ y ≤ ȳ

where

ȳ =
|η|

ρ+ β
ū

It is immediate that the above set is β-contractive with the linear controller

u = − ū
ȳ

y

and, since y is a linear function of the system original state variable, say y = vTx for
some v ∈ IRn×1, the strip

−ū ≤ ρ+ β

|η| vT

︸ ︷︷ ︸
f T

x ≤ ū
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is contractive and can be associated with the linear control law

u = −f Tx

Remark 8.14. It is not difficult to see that convergence can be improved by adopting
a saturated control law instead of a linear one. Assume η > 0 and ū = 1 (without
restriction, because one can always discharge the value of ū �= 0 on B as follows:
Bu = (Bū)(u/ū) = (Bū)u′) and consider a control of the form

u(t) = −sat(κy)

with κ ≥ 1
ȳ . By using the above, convergence is still assured for all |y| ≤ ȳ since

sat(κy) ≥ 1
ȳ y as long as y ≤ |ȳ|. For positive values of y, the derivative is

ẏ = ρy − ηsat(κy) ≤ ρy − η
1

ȳ
y

therefore smaller than the derivative achieved by the linear controller. Once again
the remaining dynamics, that associated with z(t), is not affected by the proposed
control law, say it does not necessarily converge faster.

Example 8.15. Reconsider the dynamic system in Example 8.11 to which, since
there is only one unstable eigenvalue, it is possible to apply the transformation

T =

⎡
⎣ 0.0438 −0.0305 0.1421

0.0159 0.1852 0.2104

0.9811 0 0.9672

⎤
⎦ T−1 =

⎡
⎣−7.5257 −1.2383 1.3750

−8.0251 4.0779 0.2918

7.6338 1.2561 −0.3609

⎤
⎦

to get the new representation

Â = T−1AT =

⎡
⎣−1.7404 3.0209 0

−3.0209 −1.7404 0

0 0 1.4809

⎤
⎦ , B̂ = T−1B =

⎡
⎣ 1.3750

0.2918

−0.3609

⎤
⎦

The unstable system scalar equation is

ż3 = 1.4809z3 − 0.3609u

and then, according to the just introduced results, the largest β-contractive set with
β = 1 is [−z̄3, z̄3], where

z̄3 =
|η|

ρ+ β
ū =

0.3609

1.4809 + 1
= 0.1455
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The linear control law associated with such set is

u = − ū
z̄3

z3 = κ̂z3 = −6.874z3

(note once again that this control law is a maximal effort one, say u = 1 when z3 =

z̄3). Note also that u =
[
0 0 κ̂

] [
z1 z2 z3

]T
= κ̂z3 does not affect the remaining

eigenvalues which are stable. Indeed, the closed-loop system matrix is

Âcl =

⎡
⎣−1.7404 3.0209 9.4532

−3.0209 −1.7404 2.0060

0.0000 −0.0000 −1

⎤
⎦

In the original coordinates the control law is

u = f T x =
[
0 0 κ̂

]
T−1x = 52.4829x1 + 8.6357x2 − 2.4809x3

The associated contractive region |f T x| ≤ 1 is an unbounded strip oriented as the
slice of ham in Figure 8.2 (which is actually a part of such a strip).

If there is more than one input, the extension of the solution is straightforward
since it is possible to consider a decomposition as the one previously introduced so
that the last equation becomes

ẏ(t) = ρy(t) +

m∑
j=1

ηj uj(t) = ρy(t) + v(t)

If symmetrical constraints (the non-symmetrical case is a trivial extension) are
assumed, say

|uj| ≤ ūj

the “new” control variable

v(t)
.
=

m∑
j=1

ηj uj(t) (8.8)

is subject to the constraint

|v| ≤
m∑

j=1

|ηj|ūj

so the previous arguments apply without modifications.
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A further interesting case is the one in which there are two unstable eigenvalues.
This situation has been accurately discussed in [HL01] and here a different
presentation, in the case of single-input systems only, will be provided.

If the reachable system has only two “β-unstable” (say has two eigenvalues with
real part greater than −β) modes, one can always compute a decomposition of the
form

ż(t) = Azz(t) + Bzu(t)

ẏ(t) = Ayy(t) + Byu(t)

where the eigenvalues of Az have real part smaller than −β, Ay ∈ IR2×2 has the
two eigenvalues (λ1 and λ2) with real part greater than −β, and the input u is
assumed to be bounded as |u| ≤ ū. In view of the results of the previous section, it is
possible to disregard the z(t) variable and focus on the “y part” alone, thus, without
restriction, assume Ay = diag{λ1, λ2} and By = [ 1 1 ]T .

Assume that one is interested in assuring a convergence speed β for the overall
system and consider first the case in which the eigenvalues of Ay, λ1 and λ2, are
real and distinct. Finding a β-contractive set is equivalent to the determination of a
controlled invariant set for the y sub-system

ẏ(t) = [βI + Ay] y(t) + Byu(t)

say

ẏ1(t) = (β + λ1)y1(t) + u(t)

ẏ2(t) = (β + λ2)y2(t) + u(t)

with |u| ≤ ū. For such a system, the largest controlled-invariant set can be computed
as the 0 reachable set of the reverse system

ẏ(t) = −Ayy(t) − Byu(t)

which is the convex set confined between the extremal trajectories achieved by
keeping the control at its extreme values and originating from the two extreme
equilibrium points:

ȳ+ =

[
ū

β+λ1
ū

β+λ2

]
and ȳ− =

[
− ū

β+λ1

− ū
β+λ1

]

Such trajectories admit analytic expressions; more precisely, the upper one is

y(t) = e−Aytȳ− + ū
∫ t

0

e−AytBy dt =

[ [
−2e−(β+λ1)t + 1

]
ū

β+λ1[
−2e−(β+λ2)t + 1

]
ū

β+λ2

]
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Fig. 8.3 The contractive set
for the second-order system
(real eigenvalues)

y−

y+

u = +u

u = −u

whereas the lower one is symmetric. Note that the found set has non-empty interior
because (Fig. 8.3), by the assumed reachability, λ1 �= λ2. Note also that the set
is divided into two parts by the line passing through the points ȳ− and ȳ+. Below
and above this line the control action is u = ū and u = −ū, respectively. If one
applies this control to the modified system, it turns out that the identified set satisfies
Nagumo’s condition.

These heuristic considerations show that the considered set is controlled- invari-
ant. To make these arguments more precise, one can observe that, if the system with
the mentioned control strategy is initialized at any point of the boundary, it remains
on the boundary by construction, thus D+Ψ(y) = 0, where Ψ(y) is the Minkowski
function. Clearly, if the same strategy is applied to the original system, the following
inequality is obtained on the boundary

D+Ψ(y) ≤ −βΨ(y)

say the set is β-contractive with the proposed switching strategy. If one is not satis-
fied with a discontinuous switching strategy, then it can be shown that it is possible
to derive locally Lipschitz controllers by considering an internal approximating
polytope (possibly “smoothed”) [BM96a, BM98], but losing (an arbitrarily small)
part the region. The reader is referred to [HL01] for a more detailed exposition.

In the case of complex eigenvalues the situation is similar and, even in this case,
it is possible to derive a set as a proper limit cycle.

Rather than following the above route, here a different argument will be
proposed, and precisely the approach presented in [BM98].

It is known that the domain of attraction of the planar system is convex and can be
arbitrarily closely approximated by a polyhedral set of the form {y : ‖Fy‖∞ ≤ 1}
and hence by a “smooth” set of the form

{y : ‖Fy‖2p ≤ 1}
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Fig. 8.4 The contractive set
for the second-order system
(complex eigenvalues)

u = +u

y−

y+

B

u = −u

Then, up to an arbitrarily good approximation, one can assume that the domain of
attraction is a smooth set of the form represented in Figure 8.4. According to the
results presented in Subsection 4.5.3, the gradient of the function ‖Fy‖2p is

∇‖Fy‖2p =

(
s∑

i=1

(Fiy)
2p

) 1
2p −1 s∑

i=1

(Fiy)
2p−1FT

i

= (‖Fy‖2p)
1−2p FTGp(y), y �= 0

where Gp(y) denotes the vector

Gp(y) = [(F1y)2p−1 (F2y)2p−1 . . . (Fsy)
2p−1]T .

The explicit expression of the gradient allows the adoption of a gradient based
control

u(y) = −γ(y) (‖Fy‖2p)
1−2p BTFTGp(y)

which works for γ(y) positive and large enough. Now since the control is bounded,
the largest value of γ(y) can be chosen in such a way that u is on the boundary. In
the scalar case, the resulting control is a bang–bang one:

ubb(y) = −ū sgn[BTFTGp(y)]

It is immediate that this control is the one which minimizes the derivative of ‖Fy‖2p,
say is the minimizer of the following problem

min
|u|≤ū

D+‖Fy‖2p = min
|u|≤ū

(‖Fy‖2p)
1−2p GT

p (y)F (Ay + Bu)

= (‖Fy‖2p)
1−2p GT

p (y)F (Ay + Bubb(y))
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Note now that in the two-dimensional case there are only two points on the boundary
of the set N [‖Fy‖2p, 1] in which the quantity BTFTGp(y) vanishes. These two points
have been denoted by y− and y+ in Figure 8.4. It is clear that the line passing
through these points is a discriminating line. On one side of this line one has to
apply +ū, while −ū has to be applied on the other side. If one assumes that this line
has equation fy = 0, then this control can be equivalently written as

ubb(y) = −ū sgn[fy]

(this equivalence does not hold for systems of greater dimensions in general).
Finally, note that this control can be approximated by a saturated controller

usat(y) = −ū sat [κfy]

for κ > 0 large enough (see [BM98]).
To recap, in the case of two unstable eigenvalues only (or two eigenvalues slower

than β), it turns out that it is always possible to use a linear-saturated control law,
virtually without loss in the size of the domain of attraction. Such a result is in
perfect agreement with the limit cycle approach presented in [HL01], though the
arguments used here provide an alternative way to determine the line fy = 0.

The discrete-time version of the problem has a straightforward extension in the
single-unstable-pole case. Indeed, one can apply the same transformation and reduce
the problem to the scalar case. It is not clear how to extend the exposed theory in
the case of two unstable poles. Indeed the bang–bang control does not work for
discrete-time systems (not even for scalar input systems). However the control at
the vertices, namely the piecewise-linear controller described in Subsection 4.5.2, is
reasonably simple in the two-dimensional case.

8.1.4 Region with bounded complexity
for constrained input control

As repeatedly mentioned, an alternative and simpler way to compute a domain of
attraction is to resort to ellipsoids along with an associated linear controller. This is
certainly a simplified solution since the resulting region is not maximal. However
the complexity of the compensator is low, no matter how many unstable poles are
present. The present discussion is a brief summary of what is extensively treated in
[BEGFB04].

Consider the problem of finding an ellipsoid E [P, 1] = E [Q−1, 1] (i.e., of all x
such that xTPx = xTQ−1x ≤ 1) which

• is β-contractive and associated with a linear control u = Kx;
• guarantees that for all x ∈ E the control is bounded as ‖u‖2 ≤ μ;
• includes a certain number of assigned vectors x̄k.
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Note that removing any of the three requirements would render the problem trivial.
The contractivity requirement reduces to the conditions derived in Section 4.4.1 for
the positive definite matrix Q. The corresponding controller is u = Kx = RQ−1x.
The constraint ‖u‖2 ≤ μ can be dealt with by defining z = Q−1/2x and by requiring
that

max
x∈E

‖u‖2 = max
xT Q−1x≤1

‖RQ−1x‖2 =

= max
zT z≤1

‖RQ−1/2z‖2 = ‖RQ−1/2‖2 ≤ μ

The above constraint can be written as

Q−1/2RTRQ−1/2 	 μ2I (8.9)

Finally, requiring the states x̄k to be included in the set E can be stated as

x̄T
k Q−1x̄k ≤ 1 (8.10)

Putting the condition for the β-contractivity of E along with (8.9) and (8.10) results
in the following set of LMI conditions

AQ + QAT + BR + RTBT + 2βQ 	 0,[
Q RT

R μ2I

]
� 0

[
1 x̄k

xT
k Q

]
� 0

(8.11)

which can be solved by existing efficient software tools [BEGFB04]. The last set of
conditions in (8.11) can be replaced by

Q � I

if one wishes to impose that E includes the unit ball xTx ≤ 1.
Similar conditions can be derived if one considers constraints of the form |ui| ≤

μ (mind that this is not restrictive since it is always possible to achieve the same
bound for all components by possibly scaling the entries in B), so the constraints
are expressed in terms of the ∞-norm ‖u‖∞ ≤ μ (see [BEGFB04] for details).
In this case one needs to introduce a new variable X and consider new constraints.
Precisely, the condition of invariance and admissibility for the ellipsoid is now

[
X R
RT Q

]
� 0, Xii ≤ μ2.
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The discrete-time case admits an almost identical expressions with the under-
standing that the basic contractivity condition is now different, as shown in
Subsection 4.4.2.

A quite different approach for constrained control proposed in the late 80s and
intensively studied in the literature is based on fixed-complexity polytopes and
linear control laws. The problem can be formulated as follows. Given a linear system
with a control subject to the constraint u ∈ U , find a control u = Kx such that

• A + BK is asymptotically stable;
• the admissibility set

A(K) = {x : Kx ∈ U}

is positively invariant.

Consider the case in which ‖u‖∞ ≤ 1, say −1 ≤ uk ≤ 1, for all k, so that the
candidate admissible set is the polyhedron

A(K) = P̄ [K, 1̄]

The following result holds.

Theorem 8.16. Consider the n dimensional linear system

ẋ = Ax + Bu

and assume the input matrix B ∈ IRn×m has full column rank. Then there exists a
solution to the mentioned problem if and only if (A,B) is stabilizable and A has no
more than m (the number of inputs) unstable eigenvalues.

Proof. The proof of the theorem can be found in [BV90, BV95] based on an
eigenstructure assignment. Here a sketch of the proof (actually an “explanation of
the result”) in an algebraic form is provided.

It is first shown that the condition is generically necessary. Assume a solution K
exists and define the variable y = Kx ∈ IRm. Assume also that KB

.
= By is square

and invertible (so that K must have full row rank: this is a condition which can
always be met by possibly applying an input transformation and discharging some
columns of B and K). Let D be an n × (n − m) orthonormal matrix whose columns
span the null space of the matrix BT , say

DTD = In−m, BTD = 0m×(n−m)

Set J = DT and consider the matrix

[
K
J

]
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which is invertible since

[
K
J

] [
B D

]
=

[
By KD
0 In−m

]

has rank n. Define the variable z = Jx ∈ IRn−m and consider the transformation

[
y
z

]
=

[
K
J

]
x

to get

[
ẏ
ż

]
=

[
Ayy Ayz

Azy Azz

] [
y
z

]
+

[
By

0

]
u(t)

The feedback gain matrix in the new representation is related to K as

K = [Ky Kz]

[
K
J

]
= [I 0]

[
K
J

]

This means that the transformed closed-loop system is

Âcl =

[
Ayy Ayz

Azy Azz

]
+

[
By

0

] [
I 0

]

The positive invariance of the set P̄ [K, 1̄] can then be stated in terms of the new
variables as the invariance of the set

{(y, z) : ‖y‖∞ ≤ 1}

The only possibility for the above to hold for every z is that

Ayz = 0

namely, the z-subspace is A-invariant. Indeed, since for ‖y‖∞ = 1 we must have
D+‖y‖ ≤ 0 for all z, ẏ must point inside. If yk = 1 is an active constraint we must
have ẏk ≤ 0. On the other hand, the invariance condition imposes ẏk = [Ayyy +
Ayzz]k ≤ 0, even for arbitrary (large) z �= 0, which necessarily implies that the kth
column of Ayz is zero. Repeating the argument for all k, we see that Ayz is zero. Since
this sub-matrix is not affected by the control gain, the open-loop-system state matrix
in the new representation must then be

[
Ayy 0

Azy Azz

]
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Therefore, if the problem can be solved, then the matrix Azz ∈ IR(n−m)×(n−m) whose
eigenvalues are a subset of the original ones must be stable. Hence, there can be at
most m unstable eigenvalues. To see why the condition is also sufficient, consider
the system decomposed in its stable part, associated with variable z and its “possibly
unstable part” associated with the variable y, as follows:

[
ẏ
ż

]
=

[
Ayy 0

Azy Azz

] [
y
z

]
+

[
By

Bz

]
u(t)

where y ∈ IRm and where Azz ∈ IR(n−m)×(n−m) includes only stable eigenvalues.
Consider a feedback of the form [Ky 0] to achieve the closed-loop system

[
ẏ
ż

]
=

[
Ayy + ByKy 0

Azy + BzKy Azz

] [
y
z

]
(8.12)

Then the problem can be solved if one assures the positive invariance of the set
‖Kyy‖∞ ≤ 1 by means of a proper control action. We prove that this is possible
under the simplifying assumption that By is invertible. Indeed one can take Ky is
such a way that

• Ayy + ByKy = −βI, β > 0, in the continuous-time case;
• Ayy + ByKy = λI, 0 ≤ λ < 1, in the discrete-time case.

The closed-loop “y-system” becomes

ẏ(t) = −βy(t), (respectively y(t + 1) = λy(t))

and the set ‖Kyy‖∞ is invariant (indeed β or λ contractive) with respect to the new
dynamics.

It is worth stressing that the proposed “sketch of proof” of the results requires an
assumption, basically the matrix By being invertible, which is not necessary and
which is not present in the original work [BV90, BV95]. Other contributions in this
sense can be found in [BH93, Ben94, HB91] These references exploit the property
that the invariance of the set P̄[K, 1̄] is equivalent to the following condition

KA + KBK = HK (8.13)

where H must be such that

‖H‖∞ = λ ≤ 1

in the discrete-time case, and such that
[

H̄ H
H H̄

] [
1̄

1̄

]
≤ −β

[
1̄

1̄

]
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in the continuous-time case (see Subsection 4.5.1 for details). Equation (8.13) is
well-known in the eigenstructure assignment framework [Ben94, HB91]. Basically,
the result can be interpreted in the following way: to enforce the invariance of the
set P̄ [K, 1̄] one must assure that a certain number of the closed-loop eigenvectors lie
in the null space ker(K) and are associated with stable eigenvalues, as it is apparent
from Equation (8.12). Interesting extensions to the case of descriptor systems can
be found in [GK91a] and [CT95]

8.2 Domain of attraction for input-saturated systems

In the control of input-saturated systems, it is assumed that each input component
uk(t) follows exactly the ideal input signal vk(t), computed by the controller, as long
as this signal is between its lower and upper bounds u−

k and u+
k . Below or upper this

bounds, the signal is truncated as

u = sat[u−,u+](v)

precisely

uk(t) =

⎧⎨
⎩

u+
k if vk > u+

k

vk if u−
k ≤ vk ≤ u+

k

u−
k if vk < u−

k

This is equivalent to the insertion in the loop of the nonlinear block represented in
Figure 8.5. The basic difference with respect to the approach previously considered
is that the satisfaction of the constraints is not assured by the nominal control law:
the bounds are naturally imposed by actuator saturation. We stress that, in many
cases, letting the actuators reach their physical bounds could be inappropriate4.
An intervention of the control software should limit the input signal preventing the
reaching of such bounds. In other words, the “saturation” block in Fig. 8.5 should
be added to the control. The typical approach is the following:

System

Saturation block

xu
Control

v

Fig. 8.5 The saturation function

4“Criminal” according to some experts.
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Fig. 8.6 The saturation
function

sat[v]=α v

v

u

• the control is computed based on local optimality criteria;
• the effect of the saturations is then taken into account.

As we will see, the latter step might require a redesign of the control if the results
in terms of domain of attraction are not satisfactory. To simplify the exposition,
consider the case in which upper and lower bounds are opposite and their absolute
value is equal to one, precisely −u− = u+ = 1 and write

u = sat[Kx]

(the theory can be easily extended to the general unsymmetrical case without special
difficulties).

A possible way to evaluate the domain of attraction [GdST01, GdST99, HL01] is
to consider the saturation function as a variable gain (see Fig. 8.6). More precisely,
in the scalar case, one has

u = sat[v] = α(v)v

where 0 ≤ α(v) ≤ 1. Clearly, α(v) = 1 for v sufficiently close to 0 (the non-
saturation region) and α(v) → 0 as v increases. Thus, in the single input case, when
a linear control is applied we have

sat[Kx] = α(Kx)Kx

If the state excursion is limited by assuming as a constraint a strip of the form

P̄ [F, κ] = {x : |Fx| ≤ κ}

then it is possible to determine a bound for α valid inside P̄[F, κ], precisely, if
κ > 1, then

ᾱ =
1

κ
≤ α(Kx) ≤ 1
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while, if κ ≤ 1, there is no saturation effect as long as x is in the strip P̄ [F, κ]. This
means that the system with a saturated control can be seen as an LPV system

ẋ(t) = Ax(t) + Bsat[Kx] = Ax(t) + B(w)Kx

where B(w) is a segment of matrices

B(w) = wB + (1 − w)ᾱB, 0 ≤ w ≤ 1. (8.14)

This argument can be extended in an immediate way to the case of multiple input
systems, by considering a polyhedral cylinder of the form

P̄ [F, κ] = {x : ‖Fx‖∞ ≤ κ}

and by assuming the polytopic structure

B(w) =

2m∑
k=1

Bkwk,

2m∑
k=1

wk = 1, wk ≥ 0, (8.15)

where the matrices Bk are all the possible combinations of

B[α], [α] = diag{α1, α2, . . . , αm}

by assuming each of the αk at its extrema

αk ∈ {ᾱk, 1}

The problem can then be managed as follows.

Procedure: Computation of a guaranteed region of attraction for a saturated
system.

Given the gain K and the amplitude κ > 1, perform the following steps

1. For each input channel determine the lower bounds for αk, ᾱk = 1
κ .

2. Check the stability of the system

ẋ(t) = [A + B(w(t))K]x(t)

where B(w) is given as in (8.14), by constructing a Lyapunov function Ψ(x). If
the system is unstable, then reduce κ (keeping it greater than 1) and restart the
procedure.

3. Determine the largest value ρ such that N [Ψ, ρ] ∈ P̄ [F, κ]. Then N [Ψ, ρ] is an
invariant set which is a guaranteed domain of attraction for the input saturated
system.
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The considered procedure can be used also for synthesis, if one assumes that K is
an unknown matrix. In this case, κ > 1 is fixed and the inequality

AQ + QAT + BkR + RTBT
k ≺ 0, Q 
 0, k = 1, 2, . . . ,m

is exploited to provide the controller

u = −RPx = −RQ−1x

together with the associated domain of attraction, which results to be the largest
ellipsoid E [P, ρ] (in terms of ρ) which is included in the strip ‖RPx‖∞ ≤ κ.

Clearly, instead of considering ellipsoids, one could consider polyhedral sets and
norms. One method is to compute the largest invariant set included in the strip
P [F, κ] for the associated system using the technique suggested in [BM96b].

Several procedures have been proposed in the literature to face the problem
of systems with saturating actuators. The most traditional ones are based on
ellipsoidal invariant sets, starting with the seminal work [GH85]. Several works
have been done more recently [HL02, HL01, GdST99, NJ99, NJ00, GdST01].
Other classes of functions which perform better than ellipsoids are piecewise-
affine functions [Mil02b, Mil02a], composite quadratic functions [HL03, HTZ06],
saturation dependent Lyapunov functions [CL03], or function associated with the
so-called SNS domain of attraction [ACLC06]. An universal formula to associate a
control with a control Lyapunov function has been suggested in [LS95].

The provided approach and all those based on convex Lyapunov functions are
computationally effective in providing domains of attraction for saturated systems.
Unfortunately they are not always very accurate, as it can be seen in the next
example which enlightens the fact that

• a saturated system has a domain of attraction which is, in general, non-convex;
• a convex region has no hope, in general, to be a faithful representation of such a

domain.

Example 8.17. Consider the simple system

A =

[
0 1

1 −0.1

]
, B =

[
0

1

]

and the following locally stabilizing control

u = −sat[2x1]

Let us now see what can be found by means of the different techniques, say let us
compare ellipsoidal versus polyhedral domains of attraction. Concerning ellipsoids,
it turns out that κQ = 1.105, corresponding to ᾱQ = 0.9050, is the largest value for
which the polytopic system ẋ = [A + B(w)K]x with B(w) = wB + (1 − w)ᾱQB is
quadratically stable (such a value can be found by means of the results presented in
Theorem 7.14).
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For such a value of κQ the quadratically stable polytopic system is characterized
by the two matrices:

A + BK =

[
0 1

−1 −0.1000

]
and A + ᾱQBK =

[
0 1

−0.8100 −0.1000

]

for which the Lyapunov function xTPx with

P =

[
85.1833 4.7063

4.7063 94.1241

]

could be found. By considering polyhedral functions, as expected, κ could be
increased to κP = 1.1628 (corresponding to ᾱP = 0.86). The resulting polytopic
system is characterized by the next two pair of matrices

A + BK =

[
0 1

−1 −0.1

]
and A + ᾱPBK =

[
0 1

−0.7200 −0.1000

]

By discretizing the system via EAS with τ = 0.001, a polyhedral Lyapunov function
(with 6628 vertices) was computed imposing λ = 0.99999 and a tolerance ε =
0.00001 for the discrete-time system. In Figure 8.7 the ellipsoidal (thick dashed
line) and polyhedral (solid line) domain of attraction are reported, together with
the respective strips Kx ≤ κQ and Kx ≤ κP. Unfortunately these sets are very
conservative, as it can be seen from Fig. 8.8, which pictorially depicts the domain
of attraction determined by simulation of the backward system. The main point is
that, as it can be seen in Figure 8.8, the actual domain of attraction is non-convex.

Fig. 8.7 The ellipsoidal
(thick dashed line) and
polyhedral (solid line)
domains of attraction
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Fig. 8.8 The saturated and the absolute domain of attraction computed via simulation

Therefore by means of the proposed method we cannot aspect accurate results, since
we are enforcing convexity in order to have computability.

Note also that the choice of the saturated control u = sat[Kx] = sat[2x1] can lead
to a smaller domain of attraction than the largest achievable. In this case the system
has a single unstable pole and therefore it is straightforward to compute, according
to the results of Subsection 8.1.3, the largest domain of attraction which turns out to
be a set of the form

|K∗x| = |−1.0140x1 − 0.9646x2| ≤ 1

and can be associated with the linear controller u = K∗x This domain is the one
included between the two dashed lines.

8.3 State constraints

In several control problems it is fundamental to include in the design state con-
straints, possibly together with control constraints. Essentially the same approach
described in the case of control constraint can be applied, although the techniques
are different when it comes to the details. Given the system

ẋ(t) = Ax(t) + Bu(t)

and the constraints

x(t) ∈ X
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where X is a C-set, the problem consists in finding a stabilizing compensator such
that the system state is driven to 0 without constraint violation. The next theorem is
an obvious preliminary results.

Theorem 8.18. The constraint are not violated by means of a proper control action
if and only if the initial state belongs to a controlled-invariant set included in X .

Therefore, no matter which technique is adopted, the existence of a controlled
invariant set is a fundamental requirement for the problem to be solved. Basically
the computation of a controlled invariant set can be achieved by the methods already
presented. Therefore one can simultaneously consider state and control constraints
(and even uncertainties) without changing the exposed theory, as shown in the next
subsection.

8.3.1 A two-tank hydraulic system

Consider the system shown in the Figure 8.9 and represented with the scheme in
Figure 8.10 It is formed by the electric pump EP which supplies water to the two

Fig. 8.9 The two tank
system
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Fig. 8.10 The two tank system scheme

parallel pipes P1 and P2, whose flow can be either 0 or Umax and is regulated by two
on–off electro-valves EV1 and EV2 which are commanded by the signals coming
from the digital board BRD1 (not reported in Figure 8.10). The two parallel pipes
bring water to the first tank T1 which is connected, through P12, to an identical
tank T2 positioned at a lower level. From T2 the water flows out to the recirculation
basin BA. The two identical variable inductance devices VID1 and VID2, together
with a demodulating circuit in BRD1, allow the computer to acquire the water levels
inside the two tanks. These levels, denoted by h1 and h2, are the state variables of
the system.

Choosing as linearization point the steady state value [h10 h20]
T corresponding

to the constant input u0 = Umax and setting x1(t) = h1(t) − h10(t) and x2(t) =
h2(t) − h20(t), one gets the linearized time-invariant system, whose state and input
matrix A and B are

A =

[
− α

2
√

h10−h20
α

2
√

h10−h20
α

2
√

h10−h20
− α

2
√

h10−h20
− β

2
√

h20

]
B =

[
1

0

]

The parameters entering the above matrix are α = 0.08409, β = 0.04711, h10 =
0.5274, h20 = 0.4014, and u0 = 0.02985. To keep into account the effects due to
the nonlinear part of the system, the uncertain model described by

A(ξ, η) =

[
−ξ ξ

ξ −(ξ + η)

]
B(ξ, η) =

[
1

0

]

with ξ = 0.118 ± .05 and η = 0.038 ± 0.01 was considered. The state and control
constraint sets are, respectively, given by X = {[x1 x2]T : |x1| ≤ 0.1, |x2| ≤ 0.1}
and U = {−umax, umax}.
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A 0.2-contractive region inside X was computed by using the corresponding EAS
with τ = 1 and λ = 0.8. Such a region (the maximal 0.8-contractive for the EAS)
turns out to be P = {x : ‖Fx‖∞ ≤ 1}, where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.000 0.000

−0.1299 −1.727

−0.2842 −1.871

−0.4429 −1.932

−0.5833 −1.905

−0.6903 −1.806

−0.8258 −1.671

−0.8716 −1.557

−0.9236 −1.414

−0.9295 −1.317

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Matrix F has been ordered in a way such that the ith row of F is associated with the
ith sector and, by symmetry, its opposite in Figure 8.11. This region is formed by
20 symmetric sectors and, as it is always the case in two dimensions, these are all
simplicial. Hence the piecewise-linear control is characterized by 10 different gains,
which are reported in matrix K
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23456789
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Fig. 8.11 The maximal β-contractive region, with β=0.2
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Fig. 8.12 Variable structure control: experimental test

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2839 −0.3003

−1.035 −1.449

−0.0855 −0.5613

−0.1329 −0.5796

−0.1750 −0.5713

−0.2071 −0.5419

−0.2477 −0.5012

−0.2614 −0.4672

−0.2771 −0.4243

−0.2788 −0.3964

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

which, again, is ordered in a way such that the i-th row of K corresponds to the i-th
sector of P (i-th row of F). The result of the implementation of the variable structure
control law u(x) = KI(x)x is reported in figure 8.12.

We let the reader note that in this simple experiment we didn’t force the initial
state to belong to the set P. This can be immediately seen from the fact that the
control saturates for the first 20 seconds. After this period the system enters and
remains inside the region and converges asymptotically to the steady state value
(the origin of the linearized system) with the assigned contractivity speed.
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Fig. 8.13 Bang–bang control system evolution

We remind that the piecewise-linear control is just one of the suitable controls.
For comparison, a discontinuous control law was also implemented [BM96a]:

u = arg max
|u|≤umax,i∈I(x)

(Fi(Ax + Bu))

where I(x) = {i : Fix = maxk Fkx} is the maximizer subset of indices. This
control is piecewise constant and possibly discontinuous on the sector boundaries.
Although this control is stabilizing in theory, one can see from the experimental
results in Figure 8.13 that, due to the extremely rough sampling frequency (0.5 Hz),
the system exhibits a limit cycle, thus it is not converging to the origin (a typical
behavior for sampled systems under bang–bang control).

An interesting heuristic procedure which the authors have seen to produce good
results is that of considering a simple linear control law whose gain is obtained by
averaging the gains of the just reported variable structure control law. In our case the
average gain is given by k = [ − 0.2984 − 0.5792 ] and the maximal β-contractive
region, with β = 0.2, of the closed-loop system included in the non-saturation set
X
⋂

XU, where XU = {x : |kx| ≤ .3}, resulted in the internal region in Figure 8.14.
This set is smaller than the original one in Figure 8.14; however, its existence assures
a speed of convergence β = 0.2 for the closed-loop system with the obtained linear
control. In fact the domain of attraction is greater, being the largest invariant (not
contractive) set, and it is the external region in Figure 8.14.
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Fig. 8.14 The largest β-contractive and invariant sets with u = kx

8.3.2 The boiler model revisited

Let us reconsider the model described in Subsection 6.4.1 and proposed in
[USGW82]. There we considered a linear controller and a legitimate question is
whether we can do better by a nonlinear control. The system equations are reported
here for convenience

ẋ(t) = Ax(t) + Bu(t) + Ed(t)

with

A =

⎡
⎣−0.0075 −0.0075 0

0.1086 −0.149 0

0 0.1415 −0.1887

⎤
⎦ , B =

⎡
⎣ 0.0037

0

0

⎤
⎦ , E =

⎡
⎣ 0

−0.0538

0.1187

⎤
⎦

We have seen that assuming the constraints |x1| ≤ 0.1, |x2| ≤ 0.01, |x3| ≤ 0.1,
|u| ≤ 0.25, we obtain the linear feedback control

u = Kx = −37.85x1 − 4.639x2 + 0.475x3

The ellipsoidal method provides |d| ≤ αell = 1.27 as the bound of the disturbance
amplitude which assures the possibility of keeping the constraints satisfied. We have
also seen that a less conservative bound can indeed be found for this controller,
αEAS = 1.45, by computing a robustly invariant set for the EAS.

Question 1: can we do better?

To answer this question, we can compute the largest invariant (contractive) set
under disturbance without forcing the control to be linear. We can again use the
EAS with τ > 0 small. With τ = 0.3, λ = 0.995 and ε = 0.01, we obtain
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α∗ = 1.47

Further reducing τ does not give essential improvements. The price of using a
nonlinear control is complexity. For instance, the piecewise-linear control can
be computationally hard to be implemented. In the performed experiments, the
number of simplicial sectors, hence the number of required gains is around 50–100.
Therefore, these numerical tests show that, to increment the performance of a small
percentage, we have to adopt a much more complex control in terms of description
of the resulting invariant set. If we try to push the performance close to the limits,
we get either failures or empty sets or extremely complex controllers.

Then we have another legitimate question:

Question 2: so what?

The reply is that paradoxically, by adopting the set-theoretic approach, we do
not always find realistic compensators but we can evaluate the performance of any
other control. The computed value α∗ = 1.47 is virtually the “best we can do” up to
numerical factors. So, given any control, no matter how designed, we can compare
it with the “magic number” arising from the set-theoretic approach.

8.3.3 Assigning an invariant (and admissible) set

We have seen that controlled invariant sets have a fundamental role in the solution of
state constrained problems. A possible way to approach a state constrained problem
is then to fix a certain region and seek for a controller which renders this region
positively invariant. This problem has an elegant solution in the case of an ellipsoid
E [P, 1]. Indeed such set is positively invariant for the system with a linear controller
of the form u = Kx if and only if

(A + BK)TP + P(A + BK)T ≺ 0

which is an LMI in the unknown K. Note that this result applies as well to output
feedback (in this case we have u = KCx, where y = Cx). As we have seen,
a controlled invariant ellipsoid can always be associated with a linear controller
and therefore the previous condition is necessary and sufficient for the controlled
invariance of E [P, 1]. The corresponding discrete time version can be written as
follows. Consider the vector norm ‖x‖P =

√
xTPx and, for a matrix M, let ‖M‖P be

the corresponding induced norm. The set E [P, 1] is controlled invariant if and only
if, for some K,

‖(A + BK)‖P ≤ 1

Again, this is a nice convex condition, suitable to be solved by means of efficient
optimization tools.
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Let us now consider the case of polytopes. Given a polytope in its vertex
representation V [X], it is quite understood that its controlled invariance is equivalent
to the existence of a Metzler-matrix H such that

AX + BU = XH

1̄TH ≤ −β1̄T

β ≥ 0

For a fixed X, the above is a linear programming problem in the unknowns H, U,
and β. The corresponding discrete-time condition is

AX + BU = XP

1̄TP ≤ λ1̄T

0 ≤ λ ≤ 1

As already stated, the difference is that a controlled-invariant polytope cannot be, in
general, associated with a linear controller. If one wishes to impose linearity, then
there is only a further condition to add and precisely

U = KX

with the new unknown K. There are important exceptions of polyhedral regions,
however, in which the control law turns out to be of reduced complexity. Such
exceptions are diamond-shaped sets

D = {x = Xp, ‖p‖1 ≤ 1} (8.16)

with X a square matrix, and simplices

S = {x = Xp, 1̄Tp = 1, p ≥ 0} (8.17)

with X an n × n + 1 matrix, for which the following holds.

Proposition 8.19. A controlled-invariant diamond of the form in (8.16) for a linear
system can be associated with a linear feedback control.

Proof. The discrete-time version of the proposition only is proved, since the
continuous-time case is essentially the same. Let xi be a column of X (then xi and
its opposite are vertices of D). By assumption there exists ui such that

Axi + Bui = Xp∗
i , ‖p∗

i ‖1 ≤ 1, k = 1, . . . , n
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then any vector xi is driven by ui in D. By symmetry, −xi is driven by −ui in D.
Consider the unique matrix K such that

U = KX

(uniqueness follows by the fact that X is square invertible). Then

Axi + BKxi = Xp∗
k , ‖p∗

k‖1 ≤ 1

so that

(A + BK)X = X[p∗
1 p∗

2 p∗
n ]

.
= XP∗

where ‖P∗‖1 ≤ 1. Thus, according to the results presented in Subsection 4.5.2, D is
positively invariant.

In the case of simplices, the following result holds

Proposition 8.20. A controlled-invariant simplex of the form (8.17) for a linear
systems can be associated with an affine feedback control.

Proof. See [HvS04]

Actually, in the simplex case, more general problems can be solved via affine control
such as that of reaching a specified face [HvS04, BR06].

There are other special classes of regions which have been considered in the
literature. One of such cases is that in which the region is associated with the output
variable y = Cx, which is constrained. Let us assume symmetric bounds and then,
without restriction, consider the set

S = {‖Cx‖∞ ≤ 1}

This set is unbounded as long as C has no more rows than columns (more in general
when C has a non-trivial right kernel). Henceforth, it is assumed that C has full row
rank. The problem is now that of checking whether there exists a linear control
which renders this set positively invariant. This is, again, a linear programming
problem. Indeed, in the discrete-time case, such a controller exists if there exist
matrices H and K such that

C(A + BK) = HC
‖H‖∞ ≤ 1

(8.18)

In the continuous-time case the matrices H and K must be such that

C(A + BK) = HC
H ∈ H (8.19)

where H is the class introduced in Definition 4.40.
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We investigate now this problem more in detail to establish a connection with the
theory of (A,B)-invariant subspaces [BM92]. Consider a matrix complementary to
C, precisely a matrix C̃ such that

[
C
C̃

]

is invertible. Then, if the equality in (8.18) holds, then

[
C
C̃

]
(A + BK) =

[
H 0

P Q

] [
C
C̃

]

where P and Q are appropriate matrices. Consider the transformation

[
y(t)
z(t)

]
=

[
C
C̃

]
x(t)

so that the closed-loop system is transformed into

[
ẏ(t)
ż(t)

]
=

[
H 0

P Q

] [
y(t)
z(t)

]

which means that, in the new reference frame, the z-subspace (i.e., the subspace of
vectors for which y = 0) is an invariant subspace. In the original variables, the set
of all vectors such that

Cx = 0

is invariant. The above reasoning can be formalized in the following proposition.

Proposition 8.21. The problem of finding a stabilizing control which makes the set
S = {x : ‖Cx‖∞ ≤ 1} positively invariant can be solved only if ker{C} is an
(A,B)-invariant subspace 5.

The problem with the unbounded set S is that its contractivity does not assure
stability. It can be shown that the condition implies partial stability, namely
“asymptotic stability” of the variable y only.

A natural question is how to assure stability and precisely: under which structural
condition does there exist a control u = Kx such that

• condition (8.18) (or (8.19)) is satisfied so that S = {x : ‖Cx‖∞ ≤ 1} is positively
invariant;

• the closed-loop system is stable.

5We remind that a subspace is said (A,B)-invariant if it is controlled-invariant[BM92].
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This problem was considered and solved in [CH92] where it is shown that the
problem can be faced by means of an eigenstructure assignment approach.

We consider the problem in the special case of square systems (i.e., as many
inputs as outputs) and with relative degree 1, precisely CB invertible. The following
proposition holds.

Proposition 8.22. Given a square system with relative degree 1, the two require-
ments can be met if and only if the system has no unstable zeros.

Proof. If the system is square with relative degree 1, then there exists a state
transformation such that the system is in the form

[
ẏ(t)
ż(t)

]
=

[
A11 A12

A21 A22

] [
y(t)
z(t)

]
+

[
CB
0

]
u(t) (8.20)

Note that the output matrix is [ I 0 ]. The zeros of this system are the eigenvalues
of A11. Necessity follows by Proposition 8.21. Indeed we have seen that the kernel of
C must become positively invariant. This means that the closed-loop-system matrix
must be of the form

[
A11 + CBK1 A12 + CBK2

A21 A22

]
=

[
A11 + CBK1 0

A21 A22

]
(8.21)

Then, to have closed-loop stability, A22 must be stable. Conversely, assume that A22

is stable. Take K2 such that A12 + CBK2 = 0, so the system is reduced as in (8.21).
The problem of assuring the invariance of the set S = {x : ‖Cx‖∞ ≤ 1} reduces,
in the new reference frame, to assure that the set {(y, z) : ‖y‖∞ ≤ 1} is positively
invariant. Since the variable y is governed by the equation

ẏ(t) = [A11 + CBK1]y(t) = Hy(t)

this reduces to the choice of H such that the unit ball {y : ‖y‖∞ ≤ 1} is invariant
for this sub-system. This is an LP problem. This problem as feasible solution: for
instance, take K1 such that

H = A11 + CBK1 = −βI

β > 0 (Exercise 11). Note that in the discrete-time case the condition can be
changed by seeking for H such that ‖H‖∞ ≤ 1. Thus the condition is sufficient.

The reader is referred to the paper [CH92], where this stable-zero condition has been
introduced. The considered condition can be viewed as a minimum-phase condition
for the constraints, as explained in [SHS02]. We remind that determining a convex
set, including 0 as an interior point, which is positively invariant (or contractive)
does not assure the system stability as long as this set is unbounded. Therefore the
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assumption of stable zeros is essential. If we remove it, only partial stability can be
assured, roughly the stability of the y variable (see [Vor98] for details). An example
of application is reported next.

Example 8.23 (Stabilization with monotonic output). As an example we consider
the following problem. Given a SISO system, we wish to stabilize it with the
additional condition that for all initial conditions the output converges to zero
monotonically. This implies that any set of the form {x : |Cx| ≤ μ} is positively
invariant (or contractive). This problem can be relevant in all the circumstances in
which the primary goal is to drive the output to zero without overshooting or damped
oscillations. This property can be a desirable achievement in fluid control.

Consider the two tank system previously considered and its linearization which
turns out to be of the form

[
ż1(t)
ż2(t)

]
=

[
−ρ ρ

ρ −(ρ+ δ)

] [
z1(t)
z2(t)

]
+

[
1

0

]
u(t)

where z1 and z2 are water levels (with respect to the steady state) and u is the input
flow. Then consider the following problem.

Find a stabilizing control such that, for any initial condition z1(0) and z2(0), the
error on the first (upper) tank decreases monotonically.

This problem can be solved if the output is taken to be the level of the first tank,
y(t) = z1(t), since the system is of degree 1 and has stable zeros, as in the theorem
assumptions. The control law which solves the problem is

u(t) = −k1z1(t) − ρz2(t)

with k1 taken such that k1 + ρ = α > 0 which yields the closed-loop matrix

[
−α 0

ρ −(ρ+ δ)

]

It is immediate that any stripe

Σ(μ) = {(z1, z2) : |z1| ≤ μ}

is positively invariant (actually it is α-contractive) for the closed-loop system. Note
also that only the z1 dynamics can be affected, since the other closed-loop pole turns
out to be equal to the system zero −(ρ+ δ), which is clearly invariant.

A further question concerns the possibility of achieving the same goal when the
output is the second tank level. This is not possible. This basically means that for any
control there exists a proper initial condition for which the error on the second tank
level has necessarily a “rest” or a “trend inversion” in the convergence. Indeed there
is no control which can render positively invariant the set {(z1, z2) : |z2| ≤ μ}.
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8.4 Control with rate constraints

There are several cases in which it is necessary not only to deal with amplitude
bounds but also with rate bounds on the control input. Clearly, under such a require-
ment, in the continuous-time case, the control action u(t) must be differentiable, say
the following constraints hold [GdSTG03, MTB04, BMT96]:

u(t) ∈ U
u̇(t) ∈ V (8.22)

In the discrete-time case the similar requirements are

u(t) ∈ U
u(t + 1) − u(t) ∈ V (8.23)

The conceptually simplest way to cope with the above limitations is to introduce a
new “control variable” v = u̇ (respectively v(t) = u(t + 1)− u(t)) and consider the
following extended system:

[
ẋ(t)
u̇(t)

]
=

[
A B
0 0

] [
x(t)
u(t)

]
+

[
0

I

]
v(t) (8.24)

or

[
x(t + 1)

u(t + 1)

]
=

[
A B
0 I

] [
x(t)
u(t)

]
+

[
0

I

]
v(t) (8.25)

The extension is obtained by putting an integrator on the input of the original system.
Therefore, u becomes a new state variable and a new input vector v shows up. By
doing so, the original constraint u ∈ U has become a state constraint for the new
system and the slew-rate constraint for the original system, u̇ ∈ V , has now become
an input constraint, say v ∈ V . This means that, if an integral control of the form

u̇(t) = v(t), (respectively u(t + 1) = u(t) + v(t))
v(t) = φ(x, u)

(8.26)

is applied, we obtain the same closed-loop system which could be achieved by
applying the static controller

v(t) = φ(x, u) (8.27)

to the augmented system. The following result holds.

Theorem 8.24. Assume the extended system (8.24) (or (8.25)) can be stabilized by
means of a constrained control law v(t) = φ(x(t), u(t)) computed for the extended
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system. Then, the original system can be stabilized by a control law complying with
the constraints (8.22) (or (8.23)). The set of all the initial control-states for which
constrained convergence is assured is S, the domain of attraction associated with
the extended controlled system.

It is worth focusing the reader’s attention on the initial condition problem. The
previous theorem (whose proof is omitted) does not distinguish, as far as the domain
of attraction is concerned, between control and state initial value. Precisely, in
applying the previous results one has that convergence is guaranteed under bounds
for all states of the extended systems, namely for all pairs [xT uT ]T ∈ S. Therefore
the convergence to the origin with constraint satisfaction does not depend only
on the initial state, but also on the initial control value. Two cases have to be
distinguished.

i) The control value can be initialized. In this case the set of initial states which
can be driven to the origin without constraint violation is the projection of S on
the original state space

Pr(S) = {x : [xT uT ]T ∈ S, for some u}

ii) The control value is initially assigned u(0) = u0. In this case the set of initial
states which can be driven to the origin without constraint violation is the
intersection of S with the u = u0 affine manifold

{x : [xT uT
0 ]

T ∈ S}

Example 8.25. Consider the continuous-time scalar system

ẋ = x + u

with |u| ≤ 1. For such a system it has been shown that the set

P = {x : |x| ≤ a}

with a < 1 is a domain of attraction. Let us now investigate what happens when the
input derivative is also constrained as |u̇| ≤ v̄. By adding the equation

u̇ = v

the extended system

[
ẋ(t)
u̇(t)

]
=

[
1 1

0 0

] [
x(t)
u(t)

]
+

[
0

1

]
v(t)
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Fig. 8.15 Domains of attraction for the extended system with the given constraints

is obtained (with |v| ≤ v̄). The domains of attraction of the extended system for
v̄ = 2, 1, 0.5, 0.1 are depicted in Figure 8.15. Such sets were computed by choosing
τ = 0.1 and setting λ = 0.9999 and ε = 0.00001. The lines resemble continuous
curves since the vertices of the polytopes are really close (when v̄ = 0.1 there
are more than 350 vertices). Had there been no constraints on v(t) (v̄ = ∞) we
would have expected a squared domain of attraction {(x, u) : |x| ≤ 1, |u| ≤ 1}. By
choosing a finite value of v̄ and decreasing it is possible to observe how the domain
of attraction shrinks.

8.4.1 The rate bounding operator

A typical way to face the bounded variation problem is that of inserting in the
input channel a suitable operator (Fig. 8.16). We have seen that in the case of a
bounded amplitude system, the typical operator is the saturation one. Conversely
if the problem is rate-bounded, a more sophisticated model is necessary and in the
literature different operators have been proposed [SSS00, BHSB96].

Essentially, also the rate bound turns out to be dynamic. If ω is the desired rate-
bounded signal and u is the actual signal, assuming |u̇| ≤ v̄, the operator can be
expressed as

u̇(t) = satv̄

[
ω − u
τ

]
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Fig. 8.16 The saturation operator.

Given these operators, the problem normally consists in the determination of a
controller which produces the “desired control value” ω in such a way that there
are no bad consequences once this is saturated. Note that for τ → 0 the above
operator converges to

u̇(t) = v̄sgn [ω − u]

In the previous section a different approach was pursued, and more precisely a
control law which satisfies both amplitude and rate constraints without considering
any saturation operator was derived. We will reconsider the above saturation
operator later, in Subsection 9.7.1.

8.5 Output feedback with constraints

So far, state feedback control problem has been considered. Clearly, as it is known
in most practical problems, output feedback is the general standard case. This fact
is, as already mentioned, a source of difficulties in our approach.

We might try to convince the reader that, in principle, in the continuous-time
case, the domain of attraction is essentially the same for state and output feedback
provided that (living in a ideal world)

• the model is known exactly;
• the output is disturbance free.

Indeed, under such conditions one can always apply a “fast observer,” which
recovers the state, and then apply an estimated state feedback. We just give a sketch
of the idea. Given the reachable and observable system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)



384 8 Control with time-domain constraints

it is possible to design a control which, starting at time t = 0, performs the following
operations:

1. keeps the control u = 0 for an “estimation” period t ∈ [0, τ ] in such a way that
the estimated state x̂(τ) is sufficiently close to x(τ);

2. applies a proper estimated-state feedback control u = Φ(x̂) for t ≥ τ .

An easy way to perform the operation is to consider the sampled data system during
the period t ∈ [0, τ ]

x(t + T) = eATx(t) = ADx(t), y(t) = Cx(t)

with T = τ/k. For k ≥ n it is immediate to derive the expression which provides
x(t) as a function of the first t measurements

⎡
⎢⎢⎣

C
ADC

:

Ak−1
D C

⎤
⎥⎥⎦A−k

D

︸ ︷︷ ︸
Mt

x(τ) =

⎡
⎢⎢⎣

y(0)

y(1)

:

y(k − 1)

⎤
⎥⎥⎦ .

= Yτ

Under ideal condition this system is consistent and its solution, the estimate of x,
can be derived as

x̂(t) = Mτ
† Yτ (8.28)

where Mτ
† is the pseudoinverse. It is well known that this procedure can be applied

even in the presence of noise, and in this case the expression (8.28) provides the
mean square solution.

Assume that the ideal condition x̂(τ) = x(τ) holds. Then, for t ≥ τ one can
apply an observer-based control

ż(t) = (A − LC)z(t) + Ly(t) + Bu, u = Φ(x̂)

where Φ(x̂) is computed by means of the preferred “state feedback recipe”.
The problem is that, during the interval [0, τ ], the state evolves open-loop, say

x(τ) = eAτx(0). If we wish to have x(τ) ∈ P , then we must require that x(0) =
e−Aτx(τ) is in the set

P̃ = [eAτ ]−1P = e−AτP

which is a feasible set of initial conditions. If P = P [F, g] is a polyhedral set, one
gets the following explicit expression

P̃ = P [FeAτ , g]
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while, in the case of an ellipsoid P = {x : xTPx ≤ 1}, one gets

P̃ = {x : xT(eAτ )T PeAτx ≤ 1}

It is immediate that, as the “observation time” is reduced,

P̃ → P

so that the same domain of attraction of the state-feedback compensator is
recovered.

A similar strategy can be applied in the discrete-time case, though in this case
it is not possible to reduce the “observation interval” below a certain quantity. For
single-output systems, the lower limit is precisely n steps (see Exercise 12).

Unfortunately, the above ideal arguments are in general far from the real
situation. Indeed, there are two main sources of problems. The matrix Mt becomes
very ill conditioned as τ → 0. Disturbances have to be taken into account and thus,
as it is well known, it is not possible to reduce the estimation time too much, because
in this case there is no “filtering” action on the disturbances.

Some approaches in the literature have been proposed to solve output feedback
constrained control problems by means of observers (see, for instance, [MM96]).
An explicit method to take observer errors into account will be considered later in
Section 11.2.

8.6 The tracking problem

In this section, the special problem of tracking under constraints is considered. The
problem in its generality is the following: assume we are given the plant

ẋ(t) = Ax(t) + Er(t) + Bu(t)

h(t) = Chx(t) + Dhrr(t) + Dhuu(t)

e(t) = Cex(t) + Derr(t) + Deuu(t)

y(t) = Cy

where y is the measured output, r is the reference, e is a performance output, and h
is an output on which constraints are imposed (see Figure 8.17)

h(t) ∈ H

It is worth noting that a typical assumption for tracking problems is that the
initial conditions are known (in practice, x(0) = 0) and in this case the output
feedback problem is equivalent to the state feedback problem (provided that the
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Fig. 8.17 Tracking scheme
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system is detectable) since r is a known signal and, by introducing an observer
(see Figure 8.18), one can recover the state of the system. Therefore, as long as
the system dynamics is known (the matrices are known exactly), the problem is
equivalent to the state feedback problem, say to that of determining controllers of
the form

u(t) = Φ(x(t), r(t))

It is worth evidencing that the tracking problem is quite different with respect
to constrained stabilization, since the reference is an additive input which has to
be taken into account. Precisely, due to the dynamics, the tracking signal may
produce constraint violation. This may well happen even in those cases in which
the reference does not produce violation at steady state.
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To face the problem there are basically three possible approaches.

• (A posteriori) The control is designed without taking into account the con-
straints. The effects w.r.t. to reference tracking are then analyzed and a class
of reference signals for which the system performs well are determined.

• (A posteriori, on line) The control is designed without taking into account the
existing constraints. In its on-line implementation, the reference r is suitably
modified to prevent the system from violating the imposed constraints.

• (A priori) The control is designed by directly taking into account the existing
constraints.

The first technique basically leads to a trial-and-error approach. Once the controller
is designed, one can just check if under “reasonable reference signals” the system
works appropriately. If one considers bounded references

r(t) ∈ R

then the problem basically reduces to the computation of the reachability sets, to
check if these are admissible with respect to constraints. Note that r(t) ∈ R includes
constant references as the special case in which R is a singleton.

Conversely, if one wishes to check the system with respect to all the constant
references inside R, then, assuming R a polytope, the following property comes
into play as long as linear compensators are adopted.

Proposition 8.26. Assume the constraint set H is convex. Then, for x(0) = 0, there
is no constraint violation for all constant references r̄ ∈ R if and only if each of
the trajectories of the system corresponding to constant references chosen on the
vertices r(t) ≡ r̄(k) ∈ vert {R} does not violate the constraints.

Note that it is very easy, by scaling the problem, to compute the “largest size” of
admissible signals, precisely

σmax = sup{λ : for r ∈ λR no constraint violations occur}

If H is the unit ball of a norm, one has

σ−1
max = μ = sup

t≥0
‖y(t)‖

More general results can be achieved by means of reachability sets. However this
way of dealing with constraints is not always efficient, since an unsuitable choice of
the compensator might produce very unsatisfactory results. This is especially true in
the case of linear compensators, since linearity, which is always seen as a desirable
property, introduces big restrictions on the class of control functions.

As we will be seen in the next section, by introducing appropriate non-linearities,
considerable advantages can be achieved.
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8.6.1 Reference management device

An idea to face a constrained tracking problem is that of reference managing. With
the term Reference Management Device (RMD) we generically refer to a device
which modifies the reference value in an appropriate way. As a special case, these
RMD include the reference supervisor [KAS89, KAS88], the reference governor
[GT91, GKT95, GK02], and the command governor [BCM97, CMA00].

In general, the main idea of an RMD is the following. The control is computed
based on some optimality criteria and, in order to avoid constraint violation, the
reference signal is suitably modified. Basically, this job can be performed in two
ways.

• Open-loop reference management: basically a pre-filter is adopted to smooth
the reference (see Fig. 8.19).

• Closed-loop reference management: the reference is modified based on the
current system (possibly estimated) state (see Fig. 8.20).

A typical choice of the open-loop reference management device or governor is a
low-pass filter. Let us explain this concept with basic considerations in the case of
system overshoot. It is well known that in the control design practice one can decide
to allow a system step response overshoot in order to achieve a short raising time,
and then a fast response. However, the overshoot can cause constraint violations if
the reference is too close to the limit. Therefore if the system response exhibits an
overshoot due to a too “sharp” reference, the reference can be smoothed in order
to achieve a softer response. However, by proceeding in this way, the speed of
convergence is reduced even for small reference signals which might not produce
violations. The closed-loop reference management device works in a different way
since the reference signal is modified only in case of “danger.”

A typical and simple way to construct this reference management device is the
following. Assume r(t) is the reference signal and r̂(t) is the modified reference.
Then

r̂(t) = σ(r(t), x(t)) r(t), 0 ≤ σ(r(t), x(t))) ≤ 1 (8.29)
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where σ(r(t), x(t))) is a “reduction coefficient” which is thought to be equal to its
upper limit 1 under normal circumstances and it is smaller whenever necessary.
A reasonable idea to exploit σ(r(t), x(t)) is to reduce it whenever there is danger of
constraint violation. Consider again the discrete-time system

x(t + 1) = Ax(t) + Er̂(t) + Bu(t)

u(t) = Kx(t) + Hr̂(t) ∈ U

h(t) = Chx(t) ∈ H

and assume that A + BK is Schur stable and that U and H are C-sets. Assume that
P is a contractive C-set for the system when r = 0 and

KP ⊆ U , ChP ⊆ H

Then one can design the RMD as follows:

σ(r, x) = max0≤σ≤1 σ, s.t.
Ax + Eσr + B(Kx + Hσr) ∈ P
Kx + Hσr ∈ U

(8.30)

The next property, reported without proof, holds.

Proposition 8.27. The RMD in (8.30) is such that, for all x(0) ∈ P and for all r(t),
the constraints are not violated.

Example 8.28. Consider the simple discrete-time plant

y(z) =
1

z − η
u(z)

equipped with the integral compensator

u(z) =
k

z − 1
(r(z) − y(z))

and with the constraint |y| ≤ 1. Let η = 0.8 and k = 0.08 and assume zero initial
conditions for both the integrator and the plant variables and let the reference be
r(t) ≡ 0.8. Setting x1(k) = y(k) and x2(k) = u(k), the following state realization is
found

[
x1(t + 1)

x2(t + 1)

]
=

[
η 1

−k 1

] [
x1(t)
x2(t)

]
+

[
0

k

]
r(t),

y(t) = x1(t)
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Fig. 8.21 The trajectory with RMD (plain) and without RMD (dashed)

The largest invariant set included in the constraint set |x1| ≤ 1 was computed,
resulting in the polyhedron

P = {‖Fx‖∞ ≤ 1}

where

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000 0

0.8000 1.0000

0.5400 1.8000

0.2520 2.3400

−0.0324 2.5920

−0.2851 2.5596

−0.4841 2.2745

−0.6147 1.7904

−0.6708 1.1757

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By computing the natural evolution, one can see from both the phase diagram and
the time evolution (Figures 8.21 and 8.22, dashed lines) that there are constraint
violations. Conversely, if one computes the modified reference as

r̂(t) = max{ρ : ‖F(Ax + Bρ)‖∞ ≤ 1, 0 ≤ ρ ≤ r}

then the plain trajectories which satisfy the constraints can be achieved. It is apparent
that the RMD is active only when the system output y = x1 approaches the
constraints. The open-loop RMD was also considered, which basically consists in
adopting the filter
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Fig. 8.22 The time evolution of y with RMD (plain), without RMD (dot-dashed), and with open-
loop RMD and the modified reference r̂, for r(t) ≡ 0.8

r̂(z) =
1 − ξ

z − ξ
r(z)

where ξ = 0.81 is the smallest value, determined by iteration, such that there are no
violations of the bound |y| ≤ 1. The corresponding (dot-dashed) time evolution in
Fig. 8.22 actually remains feasible, though its convergence is quite slower than that
achieved by the nonlinear reference governor.

It is quite interesting to notice that the device modifies the reference before the
variable y reaches its bounds. It is quite easy to see that if the device waited until
the bound (in this case y = 1) is reached, there would be no possibility of avoiding
constraints. Indeed, the system reaches the bound in a point for which the next
output would be y(k) > 1 and, since the vector B has a zero first entry, there would
be no input choices r̂ at that point6. Finally we analyze the behavior of the system for
a reference value which is very close to the limit, and precisely when r(t) ≡ 0.98.
In this case, both the closed-loop system without RMD and with open-loop RMD
violate the constraints, while that achieved by means of the closed-loop RMD still
exhibits an admissible transient (see Fig. 8.23).

The previous example shows the main idea at the basis of the reference governor
technique. The reader is referred to specialized literature [GT91, GKT95, GK02,
BCM97, Bem98, CMA00, GTC11] for further details. Applications of RMD can be
found in [KGC97, CMP04].

6Too late!
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Fig. 8.23 The time evolution of y with RMD (plain), without RMD (dot-dashed), and with open-
loop RMD and the modified reference r̂, for r(t) ≡ 0.8.

It has to be pointed out that there are other techniques to deal with the tracking
problem in the presence of control saturation, amongst which it is definitely worth
mentioning the anti-windup approach (see, for instance, [GS83, HKH87]) and the
override control (see [GS88]). A quite different approach, based on the reachable
set computation, has been proposed in [GK92], where a technique was presented
which produces suitable bounds on the reference signal (and its derivatives) in such
a way that no constraint violation can occur.

8.6.2 The tracking domain of attraction

In this section we present a contribution by the authors [BM00], concerning the
tracking domain of attraction, namely the set of all states starting from which
it is possible to track a constant reference. In the following, both discrete and
continuous-time square (i.e., p = m) systems

δx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(8.31)

are considered, where δ represents the shift operator δx(t) = x(t+1) in the discrete-
time case and the derivative operator in the continuous-time case. The vector y(t) ∈
IRq is the system output, the vector x(t) ∈ IRn is the system state, and u(t) ∈ IRq

is the control input. The couple (A,B) is assumed to be stabilizable and x and u are
subject to the constraints
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x(t) ∈ X (8.32)

u(t) ∈ U (8.33)

where X ⊂ IRn and U ⊂ IRq are assigned C-sets. The tracking problem is more
general than the stabilization problem as long as 0 is a possible reference. Since in
practice we are not only interested in stability, but also in assuring a certain speed
of convergence, we assume that a certain contractive set is given. This set will be
referred to in the sequel as domain of attraction with speed of convergence β (or λ).
This assumption is not restrictive since, as we have seen in the previous sections, the
existence of a domain of attraction P ⊂ X is essential in the stabilization problem
under constraints. Once a domain of attraction P has been computed to solve the
problem by means of one of the available techniques (for instance [MB76, GC86a,
GC87, KG87, BM96a, BM98]), it is possible to replace the constraint x(t) ∈ X by
the new constraint

x(t) ∈ P ,

which is what will be done hereafter.
A quite natural assumption in dealing with tracking problems is that the system

is free from zeros at one (zeros at the origin in continuous-time) and, to keep things
simple, this assumption will be adopted at the beginning. In terms of state space
representation, this amounts to imposing that the square matrix

Md =

[
A − I B

C D

](
resp. Mc =

[
A B
C D

])
(8.34)

is invertible (the general case in which Md (Mc) is not invertible or even non-square
will be commented later). Under condition (8.34), the system has the property that
for any constant reference r ∈ IRq there is a unique state-input equilibrium pair
(x̄, ū) such that the corresponding equilibrium output is r. Such a pair is the unique
solution of the equation

Md

[
x̄(r)
ū(r)

]
=

[
0

r

](
resp. Mc

[
x̄(r)
ū(r)

]
=

[
0

r

])

Thus it is possible to define the set of admissible constant reference vectors

R = {r ∈ IRq : ū(r) ∈ U , x̄(r) ∈ P}.

Being P and U both bounded, R is also bounded. The set R is of fundamental
importance. It is the set of all reference vectors for which the corresponding input
and state steady-state pairs do not violate the constraints ū ∈ U and x̄ ∈ P .
While the reason for imposing the former is obvious, the second deserves some
explanations because we originally imposed x ∈ X . If x̄(r) were not included in
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a domain of attraction then, since asymptotic tracking requires x(t) → x̄(r), this
would automatically cause constraints violation due to the fact that x(t) doesn’t
belong to a domain of attraction.

We are now going to introduce the set of all the admissible signals to be tracked,
formed by the signals r(t) having a finite limit r∞, with the condition that r∞ has
some admissibility condition with respect to the constraints.

Definition 8.29 (Admissible reference signal). Assume that a small 0 ≤ ε < 1 is
given. A reference signal r(t) is admissible if it is continuous7 and such that

lim
t→∞

r(t) = r∞ ∈ (1 − ε)R .
= Rε.

The parameter ε, as we will see later, is introduced to avoid singularities in the
control. Such an ε may be arbitrarily small and thus it does not practically affect the
problem. We stress that an admissible reference signal does not need to assume its
values in Rε, but only its limit r∞ needs to do this. Now we can state the following
basic definition.

Definition 8.30 (Tracking domain of attraction). The set P ⊂ X is said a
tracking domain of attraction if there exists a (possibly nonlinear) feedback control

u(t) = Φ(x(t), r(t))

such that, for any x(0) ∈ P and for every admissible reference signal r(t),

i) x(t) ∈ P and u(t) ∈ U ,
ii) y(t) → r∞ as t → ∞.

It is worth stressing once more that, since r(t) = 0 is an admissible reference
signal, any tracking domain of attraction is also a domain of attraction. It will
soon be shown that the opposite is also true, say every domain of attraction P is
a tracking domain of attraction. The importance of this assertion lies in the fact that
the tracking problem can be solved once one has found a domain of attraction by
any of the described techniques.

Remark 8.31. Note that, since the matrices in (8.34) are assumed invertible, the
condition y(t) → r∞ as t → ∞ is equivalent to the two conditions x(t) → x̄∞

.
=

x̄(r∞) and u(t) → ū∞
.
= ū(r∞).

We recall that, by choosing a parameter β > 0 large or (λ < 1 small, in the
discrete-time case), it is always possible to impose fast convergence. However,
under reachability assumption, for β (λ) approaching 0 (1), the set P approaches the
largest invariant set. Therefore there is a trade-off between the convergence speed
and the size of P .

7The continuity requirement, obviously referred to the continuous-time case, is not essential, but
avoids unnecessary complications.
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For a given fixed r̄, the corresponding state input pair is

[
x̄
ū

]
=

[
A − I B

C 0

]−1 [
0

r̄

]
.

If our goal were asymptotic tracking only, the translated Lyapunov functionψP(x−
x̄), where ψP is the Minkowski functional of P (see Subsection 3.1.2), could be
used but no constraint satisfaction could be assured.

The basic idea pursued here is that of “deforming” the function ψP(x) in such a
way that the surface of level one is unchanged, while the zero value is assumed for
x = x̄.

Let us consider the main points of the tracking problem. For every reference
signal r(t) → r̄ ∈ Rε and initial condition x(0) ∈ P , our goal is having:

1. y(t) → r̄;
2. x(t) ∈ P .

According to Remark 8.31, for the first condition to hold it is necessary and
sufficient that x(t) → x̄ and u(t) → ū, whereas for the second we need the Lyapunov
function which will be introduced shortly. The Minkowski functional of P can be
written as

ψP(x) = inf{α > 0 :
1

α
x ∈ P} (8.35)

For every x̄ ∈ int{P} and x ∈ P , consider the following function:

ΨP(x, x̄) = inf{α > 0 : x̄ +
1

α
(x − x̄) ∈ P} (8.36)

It is immediate that the just introduced function ΨP recovers the values of ψP when
x̄ = 0, say ΨP(x, 0) = ψP(x). For fixed x̄, ΨP(x, x̄) is convex. Furthermore, the
function ΨP(x, x̄) for (x, x̄) ∈ P × int{P} is such that

ΨP(x, x̄) = 0 iff x = x̄ (8.37)

ΨP(x, x̄) ≤ 1 iff x ∈ P (8.38)

ΨP(x, x̄) = 1 iff x ∈ ∂P (8.39)

A sketch of the function ΨP(x, x̄) for fixed x̄ is in Fig. 8.24. One further relevant
property of this function is that ΨP is Lipschitz in x and positively homogeneous of
order one with respect to the variable z = x − x̄ ∈ IRn, for x̄ ∈ int{P}, i.e.

ΨP(ξz + x̄, x̄) = ξΨP(z + x̄, x̄). (8.40)
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Fig. 8.24 The function
ΨP (x, x̄) for fixed x̄
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x
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In view of property (8.37), the function is a suitable Lyapunov candidate for
tracking, and from (8.38–8.39), this function results to be suitable to prevent
constraint violations, as it will be shown later.

Consider the function ΨP(x, x̄) and, for every x ∈ P and x̄ ∈ int{P}, with x �= x̄,
set

x̃
.
= x̄ + (x − x̄)

1

ΨP(x, x̄)
∈ ∂P .

The vector x̃ is the intersection of ∂P with the half line starting from x̄ and passing
through x (see Fig. 8.24). As shown in the previous sections, it is always possible
to associate with P a stabilizing control law φ(x) which is Lipschitz and positively
homogeneous of order one, namely such that

φ(αx) = αφ(x), for α ≥ 0

Given such a φ(x), the next step in the derivation of a feedback tracking control law
Φ(x, r) is the definition of a saturation map Γ : IRq → Rε as follows:

Γ (r) =

{
rψRε(r)

−1 when ψRε(r) > 1.

r otherwise

say

Γ (r) = r sat

(
1

ψRε(r)

)

where sat(·) is the 1-saturation function and ψRε the Minkowski function of Rε.
Note that Γ (r) is the identity if r is restricted as r ∈ Rε. Conversely, for r �∈ Rε,
Γ (r) is the intersection of ∂Rε and the segment having extrema 0 and r.
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The proposed candidate control law is the following:

Φ(x, r) = φ(x̃)ΨP(x, x̄) + (1 − ΨP(x, x̄))ū (8.41)

where

[
x̄(r̄)
ū(r̄)

]
.
= M−1

d

[
0

r̄

](
resp.

[
x̄(r̄)
ū(r̄)

]
.
= M−1

c

[
0

r̄

])
(8.42)

and

r̄ = Γ (r). (8.43)

Note that, for r ∈ Rε, (8.43) does not play any role. Note also that, since r̄ = Γ (r) ∈
Rε, then x̄ ∈ int{P}, thus the term ΨP(x, x̄) in (8.41) is defined. However, the
expression (8.41) is not defined for x = x̄ because of the critical term φ(x̃)ΨP(x, x̄).
Nevertheless, in view of the homogeneity of φ and from the expression of x̃, it turns
out that

φ(x̃)ΨP(x, x̄) = φ(ΨP (x, x̄)x̃) = φ (x + (ΨP(x, x̄) − 1)x̄) (8.44)

Then φ(x̃)ΨP(x, x̄) → 0 as x → x̄, so that the function can be extended by continuity
by assuming

φ(x̃)ΨP(x̄, x̄) = 0.

The introduced control law inherits most of the properties from φ(x) according
to the next proposition, which assures existence and uniqueness of the solution
of (8.31) when the control Φ(x, r) is used, provided that the admissible reference
signal r(t) is measurable [BM00].

Proposition 8.32. Suppose φ(x) is Lipschitz and homogeneous of order 1. Then
Φ(x, r) : P × IRq → U defined as in (8.41)–(8.43) is continuous and it is Lipschitz
w.r.t. x.

To have an idea on how this control works, note that the following implication
holds

0 ≤ ΨP(x(t), x̄(t)) ≤ 1 =⇒ x(t) ∈ P (8.45)

Therefore, for x̄ ∈ int{P}, the control is just a convex combination of the control
ū(r̄) and φ(x̃). Since, by construction, ū(r̄) ∈ U and φ(x̃) ∈ U , the above implies that
Φ(x, r) ∈ U . So, everything will be fine if the proposed control law guarantees (8.45)
as well as the limit condition

ΨP(x(t), x̄(r∞)) → 0, (8.46)
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where x̄(r∞) is the steady state associated with r∞ ∈ Rε (note that Γ (r∞) = r∞).
Indeed such a limit condition implies x(t) → x̄(r∞) and, from (8.41) and (8.44),
Φ(x(t), r(t)) → Φ(x̄(r∞), r∞) = ū(r∞). Therefore, if (8.46) holds, y(t) → r∞.

An extended concept of speed of convergence, appropriate for the condi-
tion (8.46), will now be introduced. In the discrete-time case, given a fixed x̄ ∈
int{P} we say that the tracking speed of convergence is λ < 1 if

ΨP(Ax + Bu, x̄) ≤ λΨP(x, x̄).

In the continuous-time case, the tracking speed of convergence is β > 0 if the
Lyapunov derivative D+ΨP(x(t), x̄) of ΨP(x(t), x̄, u) is such that

D+ΨP(x, x̄, u)
.
= lim

h→0+

ΨP(x + h(Ax + Bu), x̄) − ΨP(x, x̄)
h

≤ −βΨP(x, x̄)

where the existence of the limit is assured by the convexity of ΨP with respect to x.
We start by considering the special case of a constant reference signal. In this

case, it is possible to show that, if there exists a domain of attraction to the origin
with a certain speed of convergence, then the tracking goal can be achieved without
constraints violation for all the initial states in such domain. Furthermore, for
symmetric domains, it is possible to guarantee a speed of convergence which is
independent of the reference input and depends only on the contractivity of the
domain of attraction to the origin.

Theorem 8.33. Let P be a domain of attraction with speed of convergence λ for
the discrete-time dynamic system (8.31) associated with the control φ(x), positively
homogeneous of order 1. Then, for every admissible constant reference signal r(t) =
r̄, the control law (8.41)–(8.42) is such that, for every initial condition x(0) ∈ P ,
x(t) ∈ P and u(t) ∈ U for every t ≥ 0 and limt→∞y(t) = r̄. Moreover, if P is
0-symmetric, the speed of convergence λTR = λ+1

2 is guaranteed.

The next theorem is the continuous-time version of the above.

Theorem 8.34. Let P be a domain of attraction with speed of convergenceβ for the
continuous-time dynamic system (8.31) associated with the control φ(x), positively
homogeneous of order 1. Then, for every admissible constant reference signal r(t) =
r̄, the control law (8.41)–(8.42) is such that, for every initial condition x(0) ∈ P ,
x(t) ∈ P and u(t) ∈ U for every t ≥ 0 and limt→∞y(t) = r̄. Moreover, if P is
0-symmetric, the speed of convergence is at least βTR = β

2 .

The proposed control law can be successfully used even when the reference
r(t) is allowed to vary, provided that it is asymptotically admissible according to
Definition 8.29.

Theorem 8.35. Let r(t) be admissible as in Definition 8.29. Any domain of
attraction P , with speed of convergence β > 0 (0 ≤ λ < 1), for system (8.31) is
a tracking domain of attraction. Moreover, the control law in (8.41)–(8.43) assures
the conditions i) and ii) in Definition 8.30.
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Remark 8.36. If a constant reference r ∈ Rε and the corresponding steady state
vectors derived from x̄ and ū by means of (8.42) are considered, then it is immediate
to see that the following state and control translation can be applied: δx̂ = Ax̂ + Bû
with the new constraints û = u− ū ∈ U − ū = Û and x̂ = x− x̄ ∈ X − x̄ = X̂ . From
this algebraic point of view, our result amounts to proving that the largest domain
of attraction of the translated problem is just achieved by translating the original
largest domain of attraction as P̂ = P − x̄.

8.6.3 Examples of tracking problems

Example 8.37. As a first example, consider the following continuous-time system:

ẋ(t) =

[
1 0.4

0.8 0.5

]
x(t) +

[
0

1

]
u(t)

y(t) =
[
0.2 0.1

]
x(t)

A linear state feedback compensator u = Kx was designed to stabilize the
closed-loop system while guaranteeing that every initial state ‖x(0)‖ ≤ 1 results
in ‖Kx‖ ≤ Umax along the system trajectory. By solving the corresponding set of
LMIs [BEGFB04] for Umax = 5, the following gain

K =
[
−3.6845 −1.5943

]

was obtained. The associated ellipsoidal domain of attraction (with speed of
convergence β = .0001) is P = {x : xTQx ≤ 1}, where

Q =

[
0.7859 0.2950

0.2950 0.1172

]

and it is the outer region depicted in Figure 8.25. Such a set is by construction
contained in the region where |Kx| ≤ Umax (also depicted in Figure 8.25), thus
the constraints on the reference value r̄ can be derived by the set P alone and
result in |̄r| ≤ 0.2403. Such a value was slightly reduced to 0.24 to guarantee that
x̄(r̄) belongs to the interior of P . This means that r̄ = Γ (r) = 0.24 sat(r/0.24).
Figure 8.26 shows the zero initial state time-evolution of the output (solid-line)
corresponding to the reference signal (dashed line)

r(t) =

{
0.40 for 0 ≤ t ≤ 100,

0.20 + 0.20e−(t−100)/10 for 100 < t,

whereas in Figure 8.27 the state space evolution is depicted.
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Fig. 8.25 Example 8.37: Domain of attraction
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Fig. 8.26 Example 8.37: Output (solid) and reference (dashed) time evolution

Example 8.38. As a second example, consider the following discrete-time system

x(k + 1) =

[
1 0.3

−1 1

]
x(k) +

[
0.5

1

]
u(k)

y(k) =
[
−0.1 0.3

]
x(k)

with the state and control constraint sets, respectively, given by

X = {x : ‖x‖∞ ≤ 1}
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Fig. 8.27 Example 8.37: Domain of attraction and state space evolution

and

U = {u : |u| ≤ 1}.

A symmetric polyhedral domain of attraction P = {x : ‖Fx‖∞ ≤ 1} with speed
of convergence λ = 0.9 (which is the outer region in Figure 8.28) was computed
and the following matrix F was determined:

F =

⎡
⎣ 0 1

1.8160 −0.2421

1.3140 0.1932

⎤
⎦

In this case, the constraints on the reference value derive from the constraint that
x̄ ∈ P and translate in |̄r| ≤ 0.27. The linear variable structure controller associated
with P is given by u(x) = Kix, with i = arg maxj |Fjx|, where Fi and Ki are the i-th
rows of F and of

K =

⎡
⎣−0.4690 −0.7112

−0.6355 −0.7806

−1.3140 −0.1931

⎤
⎦

respectively. The control law proposed in [BM98] with ε = 0.01 was applied,
starting from zero initial state, for the reference signal

r(t) = 0.2 + 0.4 sin(0.01t)e−0.005t
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Fig. 8.28 Example 8.38: Polyhedral domain of attraction and state-space evolution
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Fig. 8.29 Example 8.38: Output (solid) and reference (dotted) time-evolution

Figure 8.29 represents the time evolution of the output and the reference value, while
Figure 8.28 shows the corresponding state-space trajectory.

8.7 Exercises

1. Prove the result in Proposition 8.27.
2. Derive the expression of the constraints for the control v in (8.8) assuming non-

symmetric constraints u−
i ≤ ui ≤ u+

i or, more in general, u ∈ U .
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3. Consider Example 8.23, and prove that there is no continuous control which
renders the set |z2| ≤ μ positively invariant. Provide a physical interpretation of
this fact.

4. In Example 8.11, how could you find the largest cube N [‖ · ‖∞, μ] included in
the computed domain? Hint: consider a proper norm of the rows of F.

5. The volume of the largest invariant ellipsoid for a linear system inside a
polyhedral constraint set can be quite smaller than the largest invariant set.
Show an example in which the volume ratio is (4/3π)/8. What about the largest
invariant polyhedron included in an ellipsoidal constraint set?

6. In Example 8.11 how could you find the largest μ and ν such that [ 0 μ 0 ] and
[ 0 0 ν ] are included in the computed domain?

7. In Example 8.11 the most “squashing” constraint is associated with the last row
of F, which is very close (up to a scaling factor) to one of the left eigenvectors.
Why?

8. Look at the experimental transient in Fig. 8.12. Depict, in a qualitative way, the
trajectory in the state space.

9. Consider the bang–bang control presented in the Example in Subsection 8.3.1.
Find which sectors are associated with umax and which ones are associated with
−umax.

10. Show that if CB is square invertible, then there exists a transformation which
reduces the system as in (8.20). Hint: the transformation is of the form

T−1 =

[
C
C̃

]

with C̃B = 0.
11. In the proof of Proposition 8.22, show that determining H is an LP problem.

Show that H chosen as indicated is a feasible solution. Hint: H must be a Metzler
matrix, i.e. Mij ≥ 0 for i �= j, and diagonally dominant −Mii ≥

∑
i�=j Mij . . . and

any C-set is invariant for ẋ = [−βI]x . . . .
12. Consider the discrete-time system x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t).

Assume that we have an observer which gives the correct estimation x̂(t) = x(t)
for t ≥ T and that u(t) = 0 for 0 ≤ t < T. Assume that P = {x : Fx ≤ g}
is a hard constraint set which is controlled-invariant under state feedback. Show
that the set of all initial conditions for which x(t) ∈ P for all t is given by the
inequalities FAkx ≤ g, k = 0, . . . , T.

13. Consider the continuous-time system

ẋ1 = −λ1x1 + u
ẋ2 = −λ2x2 + u

with λ2 > λ1 > 0. Assume |u| ≤ 1 and find the infinite-time reachability set
R∞ from 0 (the solution is in Subsection 8.1.3). Then consider T > 0 and the
corresponding sampled-data system
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x1((k + 1)T) = e−λ1Tx1(kT) + [1 − e−λ1T ]/λ1 u
x2((k + 1)T) = e−λ2Tx2(kT) + [1 − e−λ2T ]/λ2 u

whose 0-reachability RT set is a subset of R∞ (why?). Show that RT is a C-
set but it is not a polytope. (Hint: by contradiction assume that it is a polytope,
and show that this is impossible because there are infinitely many points of RT

which are arbitrarily close to the continuous curve delimiting R∞). This shows
also that the closure of the reachability set from 0 is not finitely determined.



Chapter 9
Switching and switched systems

In this chapter some basic results which concern the problem of switching and
switched systems are reported. We wish to immediately tell the reader that this
chapter has been written in a period of intensive research so that, quite differently
from the previous sections, many other new results are expected.

There are several prestigious publications which provide complete surveys and to
which the reader is referred for a comprehensive treatment of the topic. In particular,
it is mandatory to mention the books [Lib03, Joh03, SG05] and the surveys [LA09,
SWM+07, DBPL00, Col09]. In this chapter, we will briefly introduce the concept
of hybrid systems, which are dynamical systems which include both continuous and
logic variables, and then we will immediately consider the case of systems which
can undergo switching, which are a special subclass of hybrid systems.

The nomenclature proposed in this chapter about switching and switched is
not universal. Still, to keep the exposition simple, we will refer to “switching”
systems when the commutation can be arbitrary and to “switched” systems when
the commutation is controlled. There are, quite obviously, several intermediate
situations. For instance, the case in which switching is state-dependent (as the
bouncing ball), the case in which switching is arbitrary, but subject to dwell time,
and other “mixed cases” in which some logic variables are controlled and some
other are not controlled.

9.1 Hybrid and switching systems

In this section, a field in which set-theoretic considerations have a certain interest
and some related problems are briefly presented. A hybrid system is a dynamic
system which includes both discrete and continuous dynamics. A simple model
(although not the most general one) of a hybrid system is given by

© Springer International Publishing Switzerland 2015
F. Blanchini, S. Miani, Set-Theoretic Methods in Control, Systems & Control:
Foundations & Applications, DOI 10.1007/978-3-319-17933-9_9

405



406 9 Switching and switched systems

ẋ(t) = fx(x(t), u(t),w(t), q(t)) (9.1)

q(t) = fq(x(t), u(t),w(t), q−(t)) (9.2)

where the variables x, u, and w have the usual meaning while q(t) assumes its values
in Q, a discrete and finite set. Without restrictions it is assumed that

Q = {1, 2, . . . , r}

This class of systems is often encountered in many applications. The first equa-
tion (9.1) is a standard differential equation with the new input q, which can assume
discrete values only. It can be interpreted as a set of r differential equations each
associated with a value of q. The second equation (9.2), the novelty in this book,
expresses the commutation law among the discrete values of Q. Any possible
commutation depends on the current continuous-time state, on the control, on the
disturbance and on the last value q−(t) assumed by the discrete variable.

Example 9.1 (Oven in on–off mode). Let Q = {0, 1}, let x̄ be a desired tempera-
ture1 and let x+ = x̄ + ε and x− = x̄ − ε, where ε > 0 is a tolerance. Consider the
system

ẋ(t) = −αx(t) + q(t)u(t) + u0

q(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x ≥ x+

1 if x ≤ x−

0 if x− < x(t) < x+ and q(t−) = 0

1 if x− < x(t) < x+ and q(t−) = 1

with α > 0, u0 is a constant signal representing the heat introduced by the external
environment, while u(t) is supplied electrically. Assume for brevity that u(t) = ū
is constant, so that the oven works only in on–off mode. This is perhaps one of the
most popular control systems. The oven works properly if the interval characterized
by the extremal steady state temperatures x̄max = (ū + u0)/α and x̄min = u0/α
includes the interval [x−, x+] in its interior

x̄min < x− < x+ < x̄max

We assume that this condition is granted. We do not analyze the system, which
is an elementary exercise and leads to the conclusion that the behavior is that in
Figure 9.1, but we just point out some facts. If we set ε = 0, the temperature reaches
in finite time the desired temperature. However, due to the discontinuity, we have
(in theory) infinite-frequency switching between q = 0 and q = 1. This is not
suitable for the application. First of all infinite frequency is not possible due to the

1Around 180 Celsius degrees for a Plum-Cake.
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Fig. 9.1 The oven switching
behavior
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Fig. 9.2 The bouncing ball:
G gravitational phase, E
elastic phase.
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hysteresis of real switches. Second, an hysteresis is typically introduced to avoid
high frequency commutation and this is actually the reason why the region [x−, x+]
is introduced along with a discrete-dynamics for the system.

In the previous example, the logic part has its own dynamics, in the sense that in
the intermediate region [x−, x+] the logic variable q(t) is not uniquely determined,
but depends on its own value q(t−). We let the reader note that dynamic systems
in which some logic variables depend on the state (or on an output) variable
have already been encountered in the present book and are those obtained by
the implementation of the Gutman and Cwikel control (see (4.39) at page 159)
[GC86a, Bla99], which produces a closed-loop system which is piecewise-linear,
hence characterized by a state-dependent switching.

Example 9.2 (Bouncing ball). To provide an example of purely state dependent
switching, a simplified model of the bouncing ball is considered. The vertical motion
of a ball bouncing on a plane has two phases (see Fig. 9.2). The gravitational one G
in which the ball is subject to the gravity force and the elastic one E in which the
ball is in contact with the plane. Denoting by r the radius of the ball, and denoting
by y(t) the level of the barycenter, it is possible to write two distinct equations:

ÿ(t) = −g if y(t) > r Gravitational
ÿ(t) = −g + k(r − y(t)) if y(t) ≤ r Elastic

(9.3)

This is the typical case in which the logic variable G,E is purely dependent on
the output. This system is quite easy to analyze. First note that the system can be
written as

ÿ(t) = −g + k(y)(r − y(t))
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Fig. 9.3 The trajectories in
the state space

G

y

y E

where k(y) = 0 for y > r and k(y) = k for y ≤ r. Indeed, since no dissipative terms
were considered, its mechanical energy is preserved

Ψ(y, ẏ) =
1

2
ẏ2 + yg +

1

2
k(y)(r − y)2

(note that this is a differentiable function since d/dy[k(y)(r − y)2] is continuous).
It is also immediately seen that this is a positive definite function having a unique
minimum in the equilibrium ȳ = r − g/k, ẏ = 0. An example of system trajectory
is reported in Fig. 9.3.

The previous example falls in the category of piecewise affine systems. A piecewise
affine system has the form

ẋ(t) = Aix(t) + bi, for x ∈ Si

where the family of sets Si forms a partition of the state space. An interesting case
is that in which the sets Si are simplices [HvS04, BR06, Bro10]. Simplices have the
nice property of being quite flexible to reasonably cover non-trivial regions in the
state space. Moreover, a piecewise linear function defined on a simplex is uniquely
identified by the values at the vertices. So, if a region is covered by simplices having
pairwise n vertices in common, it is possible to define a continuous function by
choosing the value at the vertices. We will use this property later, applied to the
relatively optimal control technique.

The next scholastic example aims at illustrating that even the analysis of simple
hybrid systems is a tackling problem.

Example 9.3. Consider the discrete-time hybrid system

x(t + 1) = Aqx(t)

with q ∈ Q = {1, 2} and

A1 =

[
0.8 0.9

0 0.9

]
A2 =

[
0.8 0

1 0.9

]

whose generating matrices are both Schur stable, having both eigenvalues inside the
unit disc.
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Fig. 9.4 Initial condition set for the Example 9.3

If the equation for the discrete variable q is

q(t) =

{
1, if

[
1 −1

]
x > 1

2, if
[
1 −1

]
x ≤ 1

the set of initial conditions ‖x0‖1 ≤ 1 starting from which the evolution is driven
to zero is the dark area depicted in Figure 9.4, whereas if the discrete variable
mapping is

q(t) =

{
1, if

[
1 −0.2

]
x > 1

2, if
[
1 −0.2

]
x ≤ 1

the evolution starting from every initial condition ‖x(0)‖1 < 1 converges to the
origin, as one can check by running the code

for i=1:1000
if [1 -1]*x0>1 ([1 -.2]*x0>1 in the second case)

x0=A1*x0
else

x0=A2*x0;
end

end

for different values of x(0) and evaluating the final value.

Another example of linear switching systems can be found in the framework of
networked control systems
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Fig. 9.5 Delay system

Example 9.4 (Networked control system). Consider the problem of controlling a
strictly proper n-dimensional discrete-time linear time invariant (LTI) plant with
P = {A,B,C}:

{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t − q(t))
(9.4)

where x(t) ∈ IRn, u(t) ∈ IRm, and y(t) ∈ IRp and no delays or dropouts in
the actuator channel, as depicted in Figure 9.5, are present. The system matrices
can be thought of as obtained from a continuous-time plant controlled at a given
sampling rate Tc. The controller clock is synchronized with that of the sensor
and the transmitted data are time stamped, so that the sensor-to-controller delay
q(t) ∈ {0, 1, . . . ,Nmax} is known. To recast such a system in a switching framework,
first the system state is augmented so as to include delayed copies of the output,
yi(t) = Cx(t − i), as

xe(t) =

⎡
⎢⎢⎢⎣

x(t)
y1(t)

...
yNmax(t)

⎤
⎥⎥⎥⎦

and a time-varying output matrix is introduced to get the dynamic system

xe(t + 1) = Ãxe(t) + B̃u(t)
ỹ(t) = C̃q(t)xe(t)

(9.5)

where

Ã =

⎡
⎣ A 0n×(Nmax−1)p 0n×p

C 0p×(Nmax−1)p 0p×p

0(Nmax−1)p×n I(Nmax−1)p 0(Nmax−1)×p

⎤
⎦

B̃ =

⎡
⎣ B

0p×m

0(Nmax−1)p×m

⎤
⎦

C̃0 =
[

C 0p×(Nmax−1)p 0p×p
]

(9.6)
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and, for 1 ≤ i ≤ N̄

C̃i =
[
0p×(n+(i−1)p) Ip 0p×(Nmax−i)p

]
. (9.7)

Note that when q(t) = 0 the augmented system output is nothing but the actual plant
output, say ỹ(t) = y(t), whereas for q(t) ≥ 1 the augmented system output is the
q(t) step delayed version of the plant output, say ỹ(t) = y(t − q(t)).

In view of the above embedding, the problem of controlling the system in the
presence of known delays in the sensing channel is recast into the problem of
stabilizing the augmented switching system. This embedding is not new in this area
and it has been widely used in conjunction with the theory of jump linear systems
(see [ZSCH05, XHH00]).

We will come back to this problem later, in Section 9.6, when the stabilization
problem of such a class of systems will be analyzed.

In the sequel, we do not consider hybrid systems in their most general form,
but we rather consider special cases of systems that can switch (with controlled or
uncontrolled switch) and the case in which the switching is state dependent, but the
switching law is imposed by a feedback control. For a more general view, the reader
is referred to specialized literature [Lib03, Joh03, SG05].

9.2 Switching and switched systems

Consider an autonomous system of the form

ẋ(t) = f (x(t), q(t)) (9.8)

where q(t) ∈ Q and Q is a finite set. We consider two slightly (but substantially)
different definitions.

Definition 9.5 (Switching system). The system is said to be switching if the signal
q(t) is not controlled but exogenously determined. This corresponds to the choice
q(t) = fq(w(t)) ∈ Q in (9.2).

Definition 9.6 (Switched system). The system is said to be switched if the signal
q(t) is controlled. This corresponds to the choice q(t) = fq(u(t)) ∈ Q in (9.2).

9.3 Switching Systems

The analysis of a switching system is basically a robustness analysis problem
already considered in the previous sections. In particular, a switching system is
stable if and only if it admits a smooth Lyapunov function according to known
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converse results [Meı79, LSW96]. The special case of switching linear systems is
included in the results in Subsection 7.3.2 (see Proposition 7.39), here reported in
the switching framework for clarity of presentation.

Proposition 9.7. The linear switching system

ẋ(t) = Aq(t)x(t) (9.9)

(or its discrete-time counterpart x(t + 1) = Aq(t)x(t)) is asymptotically stable
(equivalently exponentially stable) if and only if it admits a polyhedral norm as
Lyapunov function.

The property holds also for norms of the type ‖Fx‖2p [MP86a, MP86b, MP86c].
Note in particular that the stability of the switching system is equivalent to the
stability of the corresponding polytopic system.

Theorem 9.8 ([MP86a, MP86b, MP86c]). The stability of (9.9) under arbitrary
switching is equivalent to the robust stability of the associated polytopic system

ẋ(t) =

[
r∑

q=1

αq(t)Aq(t)

]
x(t),

r∑
q=1

αq(t) = 1, αq(t) ≥ 0 (9.10)

As a consequence, the stability of each of the single systems x(t + 1) = Aqx(t),
which is necessary for the stability of switching systems, is not sufficient [Lib03].
In view of the theorem, not even the Hurwitz stability of all the matrices (assumed
constant) in the convex hull is sufficient for switching stability.

There exists a simple case in which the frozen-time Hurwitz stability assures
switching, hence robust, stability.

Proposition 9.9. Assume that all the matrices Aq are symmetric. Then the following
conditions are equivalent.

• System (9.9) is stable under arbitrary switching.
• System (9.9) is robustly stable.
• All the matrices in conv{Aq, q = 1, . . . , r} are Hurwitz.
• All the matrices Aq, q = 1, . . . , r, are Hurwitz.
• The systems is quadratically stable, i.e. Aq share a common quadratic Lyapunov

function.

Proof. See Exercise 4.

Example 9.10. Consider the two-tank system presented in Subsection 8.3.1, with
state matrix

A(ξ, η) =

[
−ξ ξ

ξ −(ξ + η)

]
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Assume that the parameters can change in an on–off mode ξ ∈ {ξ−, ξ+} and η ∈
{η−, η+} with all values strictly positive. It is immediate that for fixed values the
system is asymptotically stable.

One might be interested in understanding whether this system can be destabilized
by switching, say whether an inexpert2 operator could destabilize the system by
improperly changing the positions of the two valves which are on the duct between
the two tanks and the duct after the second one (see Fig. 8.10).

The reply is obviously no, because the matrix is symmetric for any value of
the parameters ξ and η and all the matrices are Hurwitz since the characteristic
polynomial is p(s) = s2 + (2ξ + η)s + ξη.

There are quite a few cases of switching systems for which Hurwitz stability of
the vertices implies the stability of all the matrices of the convex hull. One of such
classes, specifically that formed by planar positive systems, will be discussed later.

9.3.1 Switching systems: switching sequences and dwell time

The concept of dwell-time, say the time interval during which no transitions
of a switching system can occur (say the minimum amount of time the system
“rests” in a given configuration), originates from the simple idea that a switching
system composed by asymptotically stable systems exhibits an asymptotically stable
behavior if the time interval between two switchings is sufficiently large. Quite
clearly, the main focus of the research is directed towards the determination of the
minimum dwell time. The interested reader is referred to [GC06, Col09] and the
excellent survey [SWM+07].

Definition 9.11 (Dwell time). The value τ > 0 is said to be the dwell time if the
time instants tk and tk+1 in which two consecutive switchings occur, must be such
that

tk+1 − tk ≥ τ

It is clear that, if all the systems are stable, τ has a stabilizing role. It is also
straightforward to see that, if the system is stable with dwell time τ1 then it is stable
for any dwell time τ2 > τ1. The following proposition holds.

Proposition 9.12. For any switching linear system with generating asymptotically
stable matrices A1, A2, . . . Ar there exists a value τ̄ such that for any τ ≥ τ̄ assumed
as dwell time, the switching system is stable.

Proof. We provide a very conservative value of τ but in a constructive way
(an alternative determination of the minimum dwell time by means of quadratic

2Evil/idiot.
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functions can be found in [GC05, GCB08]). Take a 0-symmetric polytope V̄ [X]
which is a C-set and for each stable system compute an invariant ellipsoid Ek ⊂
λV̄ [X], 0 ≤ λ < 1. For each vertex xi compute the minimum time necessary for the
k-th system to reach Ek

Tik = min{t ≥ 0 : eAktxi ∈ Ek}

Such an operation can be easily done by iterating on t > 0 by bisection and by
applying an LP test for any trial. Then it is immediate to see that a possible value
for τ̄ is

τ̄ = max
i,k

Tik

This can be seen by considering the following discrete-time system

x(tk+1) = eAq(tk+1−tk)x(tk)

defined on the switching time sequence tk. This is a linear LPV system. It is
immediate that the set V̄ [X] is λ-contractive and thus the Minkowski function
associated with V̄ [X] is a Lyapunov function for this system, so that ‖x(tk)‖ → 0 as
k → ∞ and the system is globally stable.

9.4 Switched systems

The situation is completely different in the case of switched systems. The stabiliza-
tion problem is that of choosing a feedback law

q(t) = Φ(x(t), q(t−))

such that the resulting system is stabilized. In general, determining the control law
Φ(x(t), q(t−)) is hard even for linear switched system. There is a sufficient condition
which provides a helpful tool. The basic assumption is that there exists a Lyapunov
stable system in the convex hull of the points f (x, q).

Theorem 9.13. Assume there exists a (sufficiently regular) function f̄ (x) such that

f̄ (x) ∈ conv{f (x, q), q ∈ Q},

where Q = {1, 2, . . . , r}, for which the system ẋ = f̄ (x) admits a smooth Lyapunov
function such that

∇Ψ(x)f̄ (x) ≤ −φ(‖x‖)
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where φ(‖x‖) is a κ-function. Then there exists a stabilizing strategy which has the
form

q = Φ(x) = arg min
q∈Q

∇Ψ(x)f (x, q)

Proof. The proof of the theorem is very easy, since it is immediately seen that

min
p

∇Ψ(x)f (x, p) ≤ ∇Ψ(x)f̄ (x) ≤ −φ(‖x‖)

Note that the condition on the average system implies that the “bar” system has
an equilibrium point in x = 0. This is not necessarily true for the individual systems.
Moreover, this procedure is not just useful for stabilizing the systems, but it is quite
efficient to speed up the convergence rate. Some results on the equilibria of switched
systems and their stability are found in [BS04].

Corollary 9.14. Assume there exists a (sufficiently regular) function f̄ (x) such that

f̄ (x) ∈ conv{f (x, q), q ∈ Q}

where Q = {1, 2, . . . , r} and f̄ (0) = 0 (with f (0, q) arbitrary such that f̄ (0) ∈
conv{f (0, q)}) and there exists a smooth Lyapunov function Ψ(x) such that

∇Ψ(x)f̄ (x) ≤ −βΨ(x)

Then the strategy

q = Φ(x) = arg min
q∈Q

∇Ψ(x)f (x, q)

assures

Ψ(x(t)) ≤ Ψ(x(0))e−βt

A typical example of application of this strategy is a system with quantized
control, as shown in the next example. Here the main issue is not the system
stabilization (the system is already stable), but that of speeding up the convergence.

Example 9.15. Consider the two-tank hydraulic system already considered in
Subsection 8.3.1 and represented in Figures 8.9 and 8.10, whose equations are3

ḣ1(t) = −α
√

h1(t) − h2(t) + q(t)

ḣ2(t) = α
√

h1(t) − h2(t) − β
√

h2(t)

3In Section 8.3.1, the linearized version was considered.
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where α and β are positive parameters, h1(t) and h2(t) are water levels, and q(t) is
the incoming flow. The device works with a couple of identical on–off valves, so the
possible values of the flow are

q(t) ∈ {0; q̄; 2q̄}

Let us consider the steady state associated with a single open valve. Then, by
defining the variables x1(t) = h1(t)− h̄1, x2(t) = h2(t)− h̄2, u(t) = q(t)− q̄, where
h̄1, h̄2, and q̄ are the steady-state water levels and the incoming flow satisfying the
conditions

h̄1 =
( q̄
α

)2
+

(
q̄
β

)2

, h̄2 =

(
q̄
β

)2

,

the following equations

ẋ1(t) = −α
√

x1(t) + h̄1 − x2(t) − h̄2 + q̄ + u(t)

ẋ2(t) = α
√

x1(t) + h̄1 − x2(t) − h̄2 − β
√

x2(t) + h̄2

are derived.
Let us now consider the candidate control Lyapunov function (computed via

linearization)

Ψ(x) =
1

2

(
x21 + x22

)

The corresponding Lyapunov derivative for x ∈ N [Ψ, h̄2
2/2] (this value is chosen in

such a way that the ball is included in the positive region for the true levels h̄i +xi) is

Ψ̇(x, u) =

= −(x1 − x2)

(
α
√

x1(t) + h̄1 − x2(t) − h̄2 − q̄

)
− x2

(
β
√

x2(t) + h̄2 − q̄

)
︸ ︷︷ ︸

.
=Ψ̇N(x1,x2)

+ x1u ≤ Ψ̇N(x1, x2) + x1u

Note that Ψ̇N(x1, x2), the natural derivative achieved for u = 0, is negative definite.
Indeed the term in the left brackets has the same sign of x1 − x2 and the term in the
right brackets has the same sign of x2, thus Ψ̇N(x1, x2) is zero only for x1 − x2 =
0 and x2 = 0 and negative elsewhere. This nonlinear system is hence naturally
asymptotically stable. The control input admits three admissible values

u(t) ∈ {−q̄; 0; q̄}

which correspond to the three cases in which none, just one or both the switching
valves are open.
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Let us now pretend to be able to implement a continuous controller

u = −κx1(t),

a controller which clearly cannot be implemented because the device has no
continuous flow regulation. Still, in terms of convergence, it is possible to do as
good as this fictitious control, since the continuous control assures a decreasing rate

Ψ̇(x, u) ≤ Ψ̇N(x1, x2) − κx21

and the discontinuous control

u = −q̄ sgn(x1)

provides a better decreasing rate when |κx1| < q̄. Indeed, the fictitious system with
the continuous control is included in the extremal systems achieved, respectively,
with u = −q̄ and u = +q̄, at least in the set

|κx1| ≤ q̄

where the closed-loop with this bang–bang control achieves better performances in
terms of convergence than the continuous closed-loop plant.

From a practical point of view, the discontinuous controller has to be imple-
mented with a threshold. We actually consider the function

u =

⎧⎨
⎩

q̄ if x1 < −ε
0 if − ε ≤ x1 ≤ ε

−q̄ if x1 ≥ ε

In Figures 9.6 and 9.7 the experimental behavior is shown with ε = 0.01 and
ε = 0.03, being the latter less subject to ripples as expected. Ripples are due to
the real implementation and they cannot be reproduced via simulation. As a final
comment, we point out that in the real system α and β may vary (depending on
the pipe conditions), thus producing an offset. However, the considered control
basically eliminates the offset on x2, since h̄2 can be fixed. Conversely, under
parameter variations, an offset on the first variable x1 �= 0 is possible.

9.4.1 Switched linear systems

The problem of stabilization of switched systems is hard even in the linear case.
This is apparent from the current literature which clearly shows that even in special
cases, such as the case of positive switched linear systems, there are no general
results which allow for algorithms of a reasonable complexity.
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Fig. 9.6 The experimental behavior of the two-tank system with ε = 0.01

Banda 6cm
700

600

500

400

300

200

100

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 9.7 The experimental behavior of the two-tank system with ε = 0.03

There are anyway important sufficient conditions which provide efficient but
conservative solutions. For instance, in the case of a linear plant



9.4 Switched systems 419

ẋ(t) = Aq(t)x(t), q ∈ Q (9.11)

Q = {1, 2, . . . , r}, the problem is easily solved if there exists

Ã ∈ conv{Ai, i = 1, 2, . . . , r}

which is asymptotically stable. Indeed, it is possible to consider any Lyapunov
function for the system ẋ = Ãx, e.g. Ψ(x) = xTPx, where P is a symmetric positive
definite matrix such that

ÃTP + PÃ 	 −Q, Q 
 0

and choose as switched law

Φ(x) = arg min
i

Ψ̇(x) = arg min
i

xTPAix

which insures the condition

Ψ̇(x) ≤ −xTQx

Unfortunately, the existence of such a stable element in the convex hull, besides
being hard to check, is not necessary. For instance, the system given by the pair of
matrices

A(w) =

[
0 1

− 1 + w − a

]

where w = ±w̄ is a switched parameter and a < 0, is not stable for any value
of a. However, if a is small enough, then there exists a suitable stabilizing strategy
[Lib03]. Another example will be discussed later on, in the context of positive
switched systems.

As far as the stabilizability of switched systems is concerned, given the designer
choice of the switching rule and/or control law, three possible definitions can be
considered.

Definition 9.16. System (9.11) is

• consistently stabilizable if there exists a sequence q(t) such that the correspond-
ing linear time-varying system ẋ(t) = Aq(t)x(t) is asymptotically stable4;

• open-loop stabilizable if, for any μ > ε > 0, there exists T > 0 such that,
for all initial states ‖x(0)‖ ≤ μ, there exists a specific switching sequence q(t)
(depending on x(0)) assuring: ‖x(t)‖ ≤ ε, for t ≥ T;

• feedback stabilizable if there exists a closed-loop strategy

q(t) = Φ(x(t), t, q(t−))

such that the corresponding (nonlinear discontinuous) system is globally
uniformly asymptotically stable.

4The same q(t) insures that x(t) converges to 0 for all x(0).
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It is not difficult to see that open-loop and feedback stabilizability are equivalent.
Clearly, if a system is consistently stabilizable, then it is open-loop and feedback
stabilizable. The opposite is not true in general [SG11]. An example will be given
in Section 9.7.2.

The difficulties in dealing with the stabilization problem for switched systems
can be explained, in a Lyapunov framework, by the absence of convex and
even smooth Control Lyapunov functions. Indeed, in general, the best “regularity
property” which one can ask to a control Lyapunov function for a stabilizable linear
system is homogeneity. The interest in such a property derives from the following
fundamental result, whose proof can be found in the recent book [SG11].

Theorem 9.17. Assume that the system ẋ(t) = Aqx(t) (or x(t + 1) = Aqx(t)) is
closed-loop stabilizable. Then it necessarily admits a Lyapunov function which is
positively homogeneous of order 1.

To give an idea of how this function can be defined, consider the following set-
theoretic considerations. First we need the following technical proposition.

Proposition 9.18. If (9.11) is feedback (or open-loop) stabilizable, then also the
following perturbed version

ẋ(t) = [βI + Aq(t)]x(t), q = 1, 2, . . . , r (9.12)

q ∈ Q, is stabilizable for β > 0 small enough.

Proof. We have to notice that for the same initial condition x(0) and the same q,
the solution x(t) of the unperturbed system and the solution xβ(t) of the perturbed
one (9.12) are related as

xβ(t) = eβtx(t)

Indeed, for a given q(t), (9.12) is just a linear time-varying system.
Assume that there exists a feedback stabilizing strategy q. Then for all μ > 0

there exists T > 0 such that ‖x(T)‖ ≤ μ/4, for all ‖x(0)‖ ≤ μ. For β > 0 small,
we also have ‖xβ(T)‖ = ‖eβTx(T)‖ ≤ μ/2.

If we can drive all ‖x(0)‖ ≤ μ in the ball ‖xβ(T)‖ ≤ μ/2, by linearity we have
with similar arguments ‖xβ(2T)‖ ≤ μ/4, ‖xβ(3T)‖ ≤ μ/8, ‖xβ(kT)‖ ≤ μ/(2k).

This also means, in passing, that if the system can be stabilized, then it can be
exponentially stabilized. If the system is uniformly stabilizable, then we can find a
control Lyapunov function of the form

Ψ(x0) = inf
q(·)

∫ ∞

0

‖xβ(q(t), x0)‖ dt < ∞

where we denoted by xβ(q(·), x0) the solution of (9.12) corresponding to the
initial condition x0 and sequence q(·). Function Ψ is well defined if the system is
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stabilizable. It is clearly positive definite. By linearity it is immediate that Ψ(x0)
is positively homogeneous of order one, continuous and 0 symmetric. Such a
function is non-increasing for (9.12) and therefore strictly decreasing for the original
system (9.11) if a proper feedback switching law is applied. Note that Ψ(x0) is
defined by taking the infimum over open-loop sequences, which proves that open-
loop stabilizability implies feedback global stabilizability (the opposite is obviously
true).

Unfortunately, we cannot go much further beyond homogeneity. The next
negative result [BS08], which is in contrast with Proposition 9.7, shows a first
headache in the stabilization of switched systems: convexity is not assured.

Proposition 9.19. There are linear switched systems ẋ(t) = Aq(t)x(t) (or x(t+1) =
Aq(t)x(t)) which are stabilizable by means of a switching feedback control law but
do not admit convex control Lyapunov functions.

Example 9.20. Consider the system

ẋ(t) = Ai(x(t))x(t) i ∈ I = {1, 2}

where A1 and A2 are unstable matrices given by

A1 =

[
1 0

0 −1

]
A2 =

[
γ −1

1 γ

]

with γ > 1. Given the initial condition x(0), the system trajectory is x(t) = eAitx(0),
i = i(x) (see Fig. 9.8), where

eA1t =

[
et 0

0 e−t

]
and eA2t = eγt

[
cos(t) − sin(t)
sin(t) cos(t)

]

Fig. 9.8 Possible trajectories
for dynamics i = 1 (dashed)
and dynamics i = 2 (plain).

x2

x1
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Fig. 9.9 Trajectory of the
stabilized continuous-time
system starting from the
initial state x̃.

x1

x2

x̃

xc

xb

Q1Q2

Q3 Q4

g

b1

b4

xg

i = 1

i = 1

i = 2

i= 2

c

s

It is rather intuitive that this system is stabilizable. Indeed, when the state is of the
form (0, x2) and the dynamics i = 1 is active, the state converges to 0. On the other
hand, the state can be always driven to the x2-axis, from every initial condition by
activating the dynamics i = 2. Using this idea without any modification leads to the
construction of a switching law which activates the dynamics i = 1 in a conic sector
with empty interior. Such a strategy is not robust with respect to switching delays.
This is not a problem, because we can take a line (line c in Fig. 9.9) originating at
zero and sufficiently close to the x2 axis. We also take a line g (see again Fig. 9.9) in
which the derivatives of the two motions A1xg and A2xg are aligned.

Then a suitable strategy is i = 1 in sector s–0–g and i = 2 in sector g–0–c.
Consider the point x̃ in sector s–0–g where i = 1. We let the trajectory reach line g
in xg to commute to i = 2, rotate counterclockwise (vector xb) and reach line c. The
we commute again to i = 1. Then again we reach line g, to commute to i = 2, we
reach line s again and again we commute to i = 1. Then we will reach the same line
aligned with the initial state x̃ (line b4). It is rather intuitive that, if s is close enough
to the x2 axis, the motion with i = 1 reduces the norm of the state, so the state
returns on line b4 with a reduced norm. Then the system repeats the same trajectory,
eventually converging to 0.

On the other hand, the following happens. Given a convex compact set X0

including 0, assume that a stabilizing control strategy q(x(t)) is given (as the one
proposed before). Define as R(T) the set of all states x(t) which are reached from
X0 in time 0 < t ≤ T. The following result, which can be found in [BS08], holds.
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Fig. 9.10 The set R(T)
includes X0.
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Proposition 9.21. If there exists a convex Lyapunov function, then the following
condition is false for T > 0:

X0 ⊂ conv{R(T)}

where conv{R(T)} is the convex hull.

The non-existence of a convex Lyapunov function can be understood by reconsider-
ing Example 9.20 and looking at Figure 9.10. It can indeed be seen that necessarily,
if one takes as X0 the segment −x̃–x̃ the condition X0 ⊂ conv{R(T)} is satisfied
for γ large for some T, no matter how the stabilizing strategy is chosen. The reader
is referred to [BS08] for further details and for a discrete-time counterexample.

Absence of convexity can be a problem and5 we have to announce another
negative result (see [BCV12] and [BCV13] for details).

Proposition 9.22. There are linear switched systems ẋ(t) = Aq(t)x(t) (or x(t+1) =
Aq(t)x(t)) which are stabilizable under a switching control law but do not admit
smooth (away from 0) positively homogeneous control Lyapunov functions.

We will sketch a proof of the result in Subsection 9.5.3 about positive switched
systems.

So essentially the previous negative results justify the use of non-convex non-
smooth functions. In particular the class of minimum-type functions such as those
considered in [HL08] in the quadratic case and defined as

Ψ(x) = min
i

xTPix

where Pi are positive definite or positive semi-definite matrices, have been proved
to be especially useful.

5Since troubles quite often come with friends.
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As a final point, it is worth recalling that in the discrete-time case the existence
of a Schur convex combination is not sufficient for stabilizability (see Exercise 6).

There are several attempts in the literature to deal with the stabilization problem
of switched systems. Successful techniques have been proposed for planar systems
[BC06, XA00]. More general methods have been proposed based on (non-convex)
piecewise linear functions [Yfo10] and on (non-convex) piecewise quadratic Lya-
punov functions [HL08, GCB08, DGD11]. Necessary and sufficient conditions
based on non-convex piecewise linear Lyapunov functions for the stabilizability of
discrete-time switched systems have been recently successfully proposed in [FJ14],
where a numerical procedure is presented along with its computational issues.
Explanations of the difficulties in terms of computational complexity can be found
also in [VJ14] and the references therein. Again, the reader is referred to more
specialized literature [LA09, SG11].

9.5 Switching and switched positive linear systems

This section focuses on positive switching and switched linear systems, represented
by the equation

ẋ(t) = Aq(t)x(t), (respectively x(k + 1) = Aq(t)x(k)) (9.13)

where q(t) ∈ {1, 2, . . . , r} and Aq, q = 1, 2, . . . , r are Metzler matrices in
continuous-time and non-negative matrices in discrete-time.

Clearly, these systems are a special case of linear switching/switched systems,
and therefore have all the properties presented in the previous sections. Given the
extra properties enjoyed by the class of LTI positive systems (for instance, the
existence of the Perron–Frobenius eigenvalue), it is legitimate to ask whether these
extra properties can be somehow helpful when dealing with switching/switched
positive systems.

Some examples of positive switching/switched systems are now presented. To
keep things slightly more general, in the following also positive linear systems
equipped with a non-negative input as follows:

ẋ(t) = Aq(t)x(t) + Bq(t)u(t) (9.14)

where Bq are non-negative matrices and u(t) is a non-negative input, will be
considered.
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9.5.1 The fluid network model revisited

Consider the fluid network already considered in Section 4.5.7, Example 4.62,
whose equations have the form (9.14), with state and input matrices (reported here
for convenience)

A =

⎡
⎢⎢⎣
−(α12 + β31) α12 0 0

α21 −(α21 + α23 + β42) α23 0

β31 α32 −(α32 + α34 + β03) α34

0 β42 α43 −(α43 + β40)

⎤
⎥⎥⎦

B =

⎡
⎢⎢⎣
β10
0

0

0

⎤
⎥⎥⎦

We remind the reader that αij = αji. The network is depicted in Fig. 9.11 which
shows that the fluid can flow in on–off mode. This means that all the coefficients αij

and βij can instantaneously change values as

αij ∈ {α−
ij , α

+
ij }

and

βij ∈ {β−
ij , β

+
ij }

with α+
ij > α−

ij > 0 and β+
ij > β−

ij > 0. According to our distinction, if
the system is “switching,” we have to consider the problem of assuring stability
under arbitrary switching. Conversely, if the system is “switched,” then we typically
wish to guarantee closed-loop stability with a prescribed convergence rate β

h1 h2

h4

h3

Fig. 9.11 The switched fluid network.
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(or β-contractiveness). A final interesting question, at least from a practical point
of view, concerns the possibility of confining the ultimate system evolution in a
neighborhood of a desired equilibrium, given a certain input u.

To answer the above questions, the notion of co-positive Lyapunov functions is
introduced next. The basic idea is that to solve these problems for positive systems
it is possible to restrict our attention to the positive orthant only.

Definition 9.23. A function Ψ(x), x ∈ IRn, is co-positive if Ψ(0) = 0 and Ψ(x) > 0
for x ≥ 0 and x �= 0.

For instance, in IR2, the function Ψ(x1, x2) = x1 + x22 is co-positive.
A co-positive function Ψ(x) is a co-positive Lyapunov function for a positive

systems if it is decreasing along the system trajectories. It is a weak co-positive
Lyapunov function if it is non-increasing along the system trajectories. As expected,
this condition is assured if the Lyapunov derivative is negative6 in the positive
orthant with the exception of 0. In the weak case, we just require the derivative
to never be positive.

If we consider the fluid network example just reported, it can be immediately
seen that the first problem has an immediate solution. Indeed it is apparent that the
system matrix, in view of the symmetry assumption αij = αji, is weakly column
diagonally dominant. Since it is irreducible (see Definition 4.59), we can render it
diagonally dominant by using a diagonal state-transformation

D = diag{λ, λ, 1, 1}

with

α+
23

α+
23 + β−

03

< λ < 1

(it will be shown soon that the lower bound is chosen in such a way to assure
dominance) to get Â = D−1AD and B̂ = D−1B as follows:

Â =

⎡
⎢⎢⎣
−(α12 + β31) α12 0 0

α21 −(α21 + α23 + β42) α23/λ 0

λβ31 λα32 −(α32 + α34 + β03) α34

0 λβ42 α43 −(α43 + β04)

⎤
⎥⎥⎦

and B̂ = [ β10 0 0 0 ]T .
Set z = D−1x and consider the co-positive function

Ψ(z) = 1̄Tz.

6We spare the reader the term “co-negative.”
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Its Lyapunov derivative is

Ψ̇(z) = 1̄T(Âz + B̂u) =

−
[

(1 − λ)β31z1 + (1− λ)(β42 + α32)z2 + (β03 + α32(1− 1

λ
))z3 + β40z4

]

+
uβ10

λ
≤

−
[

(1 − λ)β−
31z1 + (1− λ)(β−

42 + α−
32)z2 + (β−

03 + α+
32(1− 1

λ
))z3 + β−

40z4

]

+
uβ10

λ
=

= −vT z +
uβ10

λ

with obvious meaning of the vector v. Let β10 = 0. Since λ is close enough to 1 and
such that the critical term β−

03 + α+
32(1 − 1

λ ) > 0, then v > 0 and therefore Ψ̇ < 0
for z > 0. This means that the system is asymptotically stable because:

Ψ̇(z) ≤ −min{vj}
∑

zj = −min{vj}Ψ(z)

For β10 > 0 and u bounded, the system solution is bounded. Indeed, if we take the
plane

Ψ(z) = 1̄Tz = μ

the derivative becomes negative for μ > 0 large. Note that the Lyapunov function
1̄Tz for the modified system corresponds to the Lyapunov function 1̄TD−1x for the
original one.

Let us consider the switched stabilization problem, which is quite interesting in
this case. We could use the same Lyapunov function previously derived, but we
propose a different idea. We wish to find a switching strategy to control the system
in the sense that we wish to try to force the system, by switching, to stay at its lowest
level, given a constant incoming flow u = const ≥ 0, or to approach 0 as quickly as
possible if the external input is u = 0.

In this case there is a simple solution which is shown next. Indeed the “average
system” is weakly diagonally dominant and irreducible, hence asymptotically
stable. Then we can find a linear co-positive Lyapunov function which can be used
as a control Lyapunov function for the switched systems.

Denote by Ā the system corresponding to the average values

αij =
α−

ij + α+
ij

2

and

βij =
β−

ij + β+
ij

2
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Let zT be the eigenvector associated with the Frobenius eigenvalue:

zT Ā = λFzT

with λF < 0. As the Frobenius eigenvalue is negative, all the others have negative
real parts. Again, the average system is fictitious and “cannot be realized.” However,
since it would render the derivative negative when u = 0 and it is in the convex hull
of all the matrices, then at each x there exists one of such matrices (a vertex) which
assures a smaller derivative.

Denoting by Ai any of the matrices achieved by taking αij and βij in all possible
ways we have, in the case of a constant input ū > 0,

min
i

zTAix + zTBū ≤ zT Āx + zTBū = λFzTx + zTBū

Hence, considering the strategy

q(x) = argmin
i

zT Aix

the Lyapunov derivative of the co-positive Lyapunov function Ψ(x) = zTx for the
system ẋ = Aq(x)x + Bū would be

D+Ψ(x) ≤ λFzTx + zTBū = λFΨ(x) + zT Bū

hence implying ultimate boundedness of the system, since λF < 0. Therefore
D+Ψ(x) < 0 for every x such that

Ψ(x) < − zTB
λF

ū

Remark 9.24. The “arg-min” strategy (obviously) leads to a system of differential
equations with discontinuous right-hand side. This typically introduces chattering
and sliding modes in the system. As we will see later, introducing chattering is not
necessarily the most convenient strategy.

9.5.2 Switching positive linear systems

In the case of switching systems, namely when the sequence is arbitrary, it is
a legitimate question to ask whether positivity brings something good to the
analysis of switching systems, in particular whether there is any advantage from
the assumption that all the matrices are Metzler.
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For instance, it has been shown that (Th. 9.8) switching robust stability is
equivalent to the stability of the convex differential inclusion, which is in turn
equivalent to the existence of a convex (in particular polyhedral) common Lyapunov
function. Therefore it is necessary that all the elements in the convex hull are
Hurwitz matrices. The condition is by no means sufficient, for switching linear
systems, and an example will be provided later (Example 9.50).

On the other hand, positive systems have a “dominant” eigenvalue, the Frobenius
one, which rules all the others. So a stronger results might be true.

Conjecture 9.25. For positive switching systems, the Hurwitz stability of all the
matrices in the convex hull is necessary and sufficient for switching stability.

The conjecture is true for second order systems only [GSM07, FMC09].

Proposition 9.26. For second order continuous-time switching systems, the Hur-
witz stability of all the matrices in the convex hull is necessary and sufficient for
asymptotic stability under arbitrary switching.

Unfortunately, we cannot go much further. Indeed, in [FMC09], a third order
counterexample is provided in which it is shown that the condition is not sufficient.

What about discrete-time? Even worse. Take x(k + 1) = Aix(k), i = 1, 2, with

A1 =

[
0 0

(2 − ε) 0

]
A2 =

[
0 (2 − ε)

0 0

]

and ε > 0 small enough. The characteristic polynomial of the matrices in the convex
hull is

p(z) = z2 − α(1 − α)(2 − ε)2

For 0 ≤ α ≤ 1, α(1−α)(2−ε)2 < (2−ε)2/4 < 1. Then all the matrices are Schur.
It is an exercise to see that the product (A1A2)

k goes to infinity, thus the system is
not stable under arbitrary switching.

From the computational side, one can have some advantages in the construction
of polyhedral functions, introduced in Chapters 5 and 6, since the plane generating
procedure would work with positive constraints only.

Let us consider the discrete-time case. We present a procedure similar to
the polyhedral Lyapunov function generation algorithm described in Sections 5.4
and 6.3.3, for the computation of the joint spectral radius. Let us introduce a
definition.

Definition 9.27. We call a P-set a set S ⊂ IRn
+ which

• is closed, bounded and includes the origin;
• is star-shaped in the positive orthant: any ray originating at zero and contained in

the positive orthant encounters the boundary of S in a single non-zero point. In
other words, for any (non-negative) vector v ≥ 0, the intersection of the positive
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Fig. 9.12 Example of a
P-set, and the corresponding
“Minkowski-like” function x2

x1

s

ray

ray with direction v with S is a segment with one extremum in x = 0 and the
other extremum on the boundary of S:

{λ : λv ∈ S} = [0, λmax(v)]

for some λmax(v) > 0 (see Fig. 9.12).

Given any co-positive and positively homogeneous function its sub-level sets
N [Ψ, κ] are P-sets. Conversely, given a P-set, we can define a co-positive function
which is positively homogeneous, extending the concept of Minkowski functional

Ψ(x) = inf {λ > 0 : x ∈ λS}

which is a co-positive function of order 1. Clearly we can generate co-positive
homogeneous functions of any order by considering Ψ(x)p.

Obviously a P-set can be convex. In this case the Minkowski-like functional
would also be convex.

As a special case, we can consider polyhedral P-sets, which can be represented as

S = {x ≥ 0 : Fx ≤ 1̄} = P(F)

where F ≥ 0 is a full column rank non-negative matrix.
First we remind that, to assure a certain speed of convergence λ, we have just to

consider the modified system

x(t + 1) =
Aq(t)

λ
x(t), q ∈ {1, 2, . . . r}.

With the above in mind, it is possible to compute the largest invariant set starting
from any arbitrary P-set by means of the procedure presented next.
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Procedure: Computation of a co-positive Lyapunov function given a contraction
factor λ > 0.

1. Take any arbitrary polyhedral P-set S, associated with a non-negative full column
rank matrix F0. Set P0 := P(F0)

⋂
IRn

+. Fix a tolerance ε > 0, k = 1 and a
maximum number of steps kmax.

2. Recursively compute Pk = P(Fk)
⋂

IRn
+ as

Pk = {x : Fk−1
Ai

λ
x ≤ 1̄, i = 1, 2, . . . r}

3. Remove all the redundant rows in matrix Fk to get Pk = P(Fk)
⋂

IRn
+.

4. If Pk = Pk−1 STOP: the procedure is successful.
5. If k = kmax or if ε1̄ �∈ Pk STOP: the procedure is unsuccessful for the given λ.
6. Set k = k + 1 and GO TO step 2.

If the procedure stops successfully, then the final set is the largest invariant set
included in the initial one for the modified system (and the largest λ-contractive
set for the original system).

Again, the previous considerations about the tolerance and maximum number of
steps can be made. Note that, in the event that the sequence collapses, the failure
can be just detected by the exclusion ε1̄ �∈ Sk.

As a starting set, we can take a simple set, for instance S = {x ≥ 0 : Fx ≤ 0}
for some row vector F > 0.

This method for finding polyhedral co-positive functions can be applied (needless
to say) to continuous-time problems by means of the Euler Auxiliary System as
described in Chapter 5. Note that, given a positive continuous-time system ẋ = Ax
with A Metzler, then [I + τA] is a positive matrix provided that τ > 0 is small
enough. Similar techniques have been applied to prove structural boundedness of a
class of biochemical networks [BG14].

Example 9.28 (Worst-case emptying speed). Assume that waste material is accu-
mulated in two stock houses and it has to be eliminated. Assume that the system has
two possible configurations, as in Fig. 9.13. In configuration A the waste material

Fig. 9.13 The
two-configuration emptying
problem. A

B

1 2

1 2
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in node 1 is transferred to node 2 and then eliminated. Configuration B is the
symmetric one. We assume a discrete-time model of the form

AA =

[
β 0

1 − β α

]
, AB =

[
α 1 − β

0 β

]

with 0 < α, β < 1. In any fixed configuration, the system would converge with a
speed depending on the maximum eigenvalue max{α, β}. A legitimate question is
whether switching between the two configurations can worsen the situation and how
much.

If, for instance, we assume α = β = 0.8, then the maximum eigenvalue is λ =
0.8, for both matrices and so, under arbitrary switching, the speed of convergence
in the worst case cannot be smaller than λ = 0.8. Iterating over λ it is possible
to compute numerically that the best contractivity factor, which is assured under
arbitrary switching is around λ∗ ≈ 0.92. The reader can enjoy in Fig. 9.14 the
maximal set computed for λ = 0.94 included in the region

S = {x1, x2 ≥ 0 : x1 + x2 ≤ 1}

9.5.3 Switched positive linear systems

Perhaps the problem of switched positive systems is of more interest, because there
are many situations in which this problem is encountered and positivity turns out to
be an assumption under which some general interesting properties can be proved.

Consider the system

ẋ(t) = Aq(t)x(t) (9.15)

Fig. 9.14 The maximal
invariant set for the modified
system with λ = 0.94
(lower-left portion of the
square)
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where

q(t) ∈ Q = {1, 2, . . . , r}

and the matrices Aq are all Metzler.
The basic question we consider is the existence of a feedback function

q(t) = Φ(x, t)

ensuring that the state x(t) converges to zero for any initial condition x(0) ≥ 0.
Strange as it may seem, in choosing q(t), the knowledge of x(t) does not matter

(see [FV12, BCV12] for details).

Theorem 9.29. For a system of the form (9.15) with Aq Metzler the following
conditions are equivalent.

i) There exists x0 > 0 and q(t) ∈ Q (an open-loop control depending on x0) such
that the trajectory starting from x(0) = x0 converges to zero.

ii) There exists a feedback law q(t) = Φ(x(t), t) such that the trajectory starting
from any x(0) ≥ 0 converges to zero.

iii) The switched system is consistently stabilizable (i.e., there exists a single q(t) ∈
Q which drives x(t) to zero from any initial condition, not necessarily positive).

Proof. ii) ⇒ i): Clearly, if there exists a stabilizing closed-loop q(t) = Φ(t, x), given
x0 > 0 there exists an open-loop sequence which drives the state to 0 starting from
x(0) = x0.

i) ⇒ iii): (this result is in [FV12]). Assume that, given x̄0 > 0, there exists
a switching function q(t) such that for x̄(0) = x̄0, the solution x̄(t) converges to
zero. Let x(0) be any initial condition such that x(0) ≤ x̄0 and let x(t) be the
corresponding solution. Since q(t) is fixed, both x(t) and x̄(t) are solutions and their
difference x̄(t) − x(t)

.
= z(t) satisfies

ż(t) = Aq(t)z(t)

where Aq(t) is Metzler, so the system is positive. Since by construction z(0) = x̄(0)−
x(0) ≥ 0, the condition z(t) ≥ 0 is preserved. Hence x(t) ≤ x̄(t) for all t > 0.
Now take the symmetric initial state −x̄0. For the given q(t) the solution is −x̄(t)
which goes to zero. Exactly in the same way, one can show that if x(0) ≥ −x̄0 then
x(t) ≥ −x̄(t). Then, for −x̄0 ≤ x(0) ≤ x̄0, we have (see Fig. 9.15)

−x̄(t) ≤ x(t) ≤ x̄(t)

Therefore all the initial states in the box P̄ [I, x̄0] are driven to zero. Since the box
includes zero in its interior, and the system is linear, any initial state can be included
in the box λP̄ [I, x̄0], for λ > 0 large enough, so q(t) drives all states to zero. This
proves iii).

iii) ⇒ ii): obvious.

The previous theorem admits a corollary (see [SG05] for further details).
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Fig. 9.15 The idea of the
proof: all solutions are
bounded below and above
from those originating
between −x̄0 and x̄0

−x0

x0

Corollary 9.30. If any of the equivalent conditions of Theorem 9.29 holds, then
there exists a periodic sequence qp(t), with period T large enough, such that any
initial state is driven to 0.

Proof. Consider a function q(t) driving the state trajectory x̄(t) from x̄0 to zero.
Take a positive λ < 1 and T > 0 such that the solution x̄(t) is in the box λP̄ [I, x̄0] at
time t = T, namely x̄(T) ∈ P̄ [I, λx̄0]. So for any initial state in P̄[I, x̄0] (x(0) ≤ x̄0)
we have

x(T) ∈ λP̄ [I, x̄0]

Truncate function q and extend it periodically with period T. The next period we
will have x(2T) ∈ λ2P̄ [I, x̄0] and in general

x(kT) ∈ λkP̄[I, x̄0]

Since λ < 1, this means that x(t) → 0.

The previous results hold, without changes, in discrete-time.
For clear reasons, it is important to find a feedback solution to the problem

anyway. We have seen that in general, for switched linear systems, convex control
Lyapunov function may not exist, even if the system is stabilizable. A natural
question is whether there exists a class of Lyapunov functions which are universal
for the problem. The following theorem provides an answer [HVCMB11] and tells
us that, surprisingly, for positive linear systems, as long as we stay in the positive
orthant, we can always find concave control Lyapunov functions.

Theorem 9.31. Assume that a positive switched linear system is stabilizable.
Then there exists a concave co-positive control Lyapunov function, positively
homogeneous of order one.
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Proof. Consider the perturbed system

ẋ(t) = [βI + Aq]x(t) = Aβ,qx(t)

for β > 0 small enough. We remind that, for the same initial condition and the same
q the solutions of the unperturbed system x(t) and of the perturbed one xβ(t) are
related as (see Proposition 9.18) xβ(t) = eβtx(t) and that for β small enough the
system remains stabilizable if the original system is such.

Denote by xβ,q(t, x0) the solution with initial condition x0, corresponding to a
switching function q(·).

Consider for the modified system the following function:

Ψβ(x0) = inf
q

∫ ∞

0

1̄Txβ,q(t, x0)dt

which is well defined since we assumed stabilizability.
To prove concavity, consider x0 = α1x1 + α2x2, α1 + α2 = 1, α1, α2 ≥ 0. For

any q we have

∫ ∞

0

1̄Txβ,q(t, x0) = α1

∫ ∞

0

1̄Txβ,q(t, x1)dt + α2

∫ ∞

0

1̄Txβ,q(t, x2)dt

hence

Ψβ(x0) = inf
q

∫ ∞

0

1̄Txβ,q(t, x0) =

= inf
q

[
α1

∫ ∞

0

1̄Txβ,q(t, x1)dt + α2

∫ ∞

0

1̄Txβ,q(t, x2)dt

]

≥ α1

[
inf
q1

∫ ∞

0

1̄Txβ,q1(t, x1)dt

]
+ α2

[
inf
q2

∫ ∞

0

1̄Txβ,q2(t, x2)dt

]

= α1Ψβ(x1) + α2Ψβ(x2)

and therefore we have that Ψβ(x0) is concave. It is obviously positively homoge-
neous of order one.

Consider the directional derivative

D+Ψ(x, [βI + A]x) = lim
h→0+

Ψ(x + h[βI + A]x) − Ψ(x)
h

and any interval [0, τ ]. By applying dynamic programming considerations, we have

Ψβ(x0) = inf
q

∫ τ

0

1̄Txβ,q(t, x0)dt + Ψβ(xβ(τ))
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Then, for all τ > 0,

Ψβ(x0) > Ψβ(xβ(τ))

As a consequence we have

D+Ψ(x, [βI + A]x) ≤ 0

Let us denote by η = h/(1 − βh) (then h → 0 implies η → 0) and let us bear in
mind that Ψ(λx) = λΨ(x). Now consider for the nominal system

D+Ψ(x) = lim
h→0+

Ψ(x + hAx) − Ψ(x)
h

= lim
h→0+

Ψ(x − hβx) − Ψ(x)
h

+ lim
h→0+

Ψ(x + hAx + hβx − hβx) − Ψ(x − hβx)
h/(1 − βh)

1

(1 − βh)

= −βΨ(x) + lim
η→0+

Ψ(x + η[βI + A]x) − Ψ(x)
η︸ ︷︷ ︸

≤0

≤ −βΨ(x)

and the proof is completed.

One could at this point try a conjecture. We have seen that, in the switching system
case, a convex Lyapunov function can be smoothed. Then

Conjecture: for a positive switched linear system, stabilizability implies the
existence of a smooth concave positively homogeneous Lyapunov function.

The conjecture is false, unless we take n = 2. Precisely, we can claim the
following.

Theorem 9.32. Assume that the matrices Ai i = 1, 2, . . . , r are irreducible. Then
the following statements are equivalent.

i) The system is stabilizable and admits a co-positive and positively homogeneous
smooth control Lyapunov function.

ii) There exists a matrix Ā in the convex hull of the Ai, Ā ∈ conv{Aq, q = 1, . . . , r},
which is Hurwitz.

iii) The system admits a linear co-positive control Lyapunov function Ψ(x) = zT x,
with z > 0.

Proof. ii) ⇒ iii) If there exists an Hurwitz matrix in the convex hull, then we can
take its Frobenius left eigenvector z and λzT = zĀ, with λ < 0 and z > 0. Note that
Ā is irreducible, if the Ai are such. Then, for all x ≥ 0

min
i

zTAix ≤ λzT Āx = λzT x < 0
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Then Ψ(x)
.
= zTx is a co-positive control Lyapunov function.

iii) ⇒ i) Obviously, since a co-positive linear function is smooth and positively
homogeneous.

i) ⇒ ii) See [BCV12].

Proposition 9.33. There exist Metzler matrices A1, A2, . . . Ar for which the corre-
sponding switched system is stabilizable but there are no positively homogeneous
co-positive Lyapunov functions which are continuously differentiable.

Proof. In view of implication i) ⇒ ii) in Theorem 9.32 it is sufficient to show that
there exist stabilizable positive switched systems which do not include Hurwitz
matrices in the convex hull. This will be shown in Example 9.34.

This is not good news as previously announced. Since positive linear systems are
a special case of linear systems, the existence of a positively homogeneous smooth
Lyapunov function would imply the existence of a co-positive Lyapunov function
if we restrict our attention to the positive orthant. Then Proposition 9.33 implies
Proposition 9.22. The proof of the result is in [BCV12] and a different and more
“detailed” one is in [BCV13].

The following example motivates the analysis and proves Proposition 9.33.

Example 9.34. Consider a traffic control problem in a junction. Assume that there
are three main roads (A,B, and C) converging into a “triangular connection”
governed by traffic lights. Three buffer variables, x1, x2, and x3, represent the
number of vehicles waiting at the three traffic lights inside the triangular loop. We
assume that there are three symmetric configurations as far as the states of the 6
traffic lights are concerned. In the first configuration, described in Fig. 9.16, we
assume that traffic lights corresponding to x1, x2, B and C are green, while the ones
corresponding to x3 and A are red. Accordingly,

• x3 increases proportionally (β > 0) to x2;
• x2 remains approximately constant, receiving inflow from B and buffer x1, while

giving outflow to A and to buffer x3;
• x1 decays exponentially (−γ < 0), since the inflow from C goes all to x2 and B.

Fig. 9.16 The traffic control
problem.
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The exponential decay takes “approximately” into account the initial transient due
to the traffic light switching. The other two configurations are obtained by a circular
rotation of x1, x2, and x3 (as well as of A,B, and C).

We model this problem by considering the following switched system, in which
the control must select one of the three sub-systems characterized by the matrices

A1 =

⎡
⎣−γ 0 0

0 0 0

0 β 0

⎤
⎦ A2 =

⎡
⎣ 0 0 β

0 −γ 0

0 0 0

⎤
⎦ A3 =

⎡
⎣ 0 0 0

β 0 0

0 0 −γ

⎤
⎦ , (9.16)

with γ = 1 and β = 1.
First of all notice that no convex Hurwitz combination of the three matrices can be
found. Indeed the characteristic polynomial of matrix α1Â1 + α2Â2 + α3Â3 is

p(s, α) = s3 + (α1 + α2 + α3)s
2 + (α1α2 + α2α3 + α3α1)s.

So p(s, α) is not a Hurwitz polynomial for any choice of αi ≥ 0, i = 1, 2, 3, with
α1 + α2 + α3 = 1, and therefore there are no Hurwitz convex combinations in the
convex hull.
However, the matrix product eA1eA2eA3 is Schur (the dominant eigenvalue is ≈
0.69). So, the periodic switching law

q(t) =

⎧⎨
⎩

3, t ∈ [3k, 3k + 1);

2, t ∈ [3k + 1, 3k + 2);

1, t ∈ [3k + 2, 3k + 3);

k ≥ 0,

makes the resulting system consistently (actually exponentially) stable, and hence
exponentially stabilizable.

It is also worth pointing out an interesting fact. In general, the existence of
a smooth control Lyapunov function would lead to the “arg-min” strategy which
introduces chattering and sliding modes, as pointed out in Remark 9.24. For this
problem chattering would be catastrophic, while it is obvious that to deal with this
problem we must “dwell” on each configuration for a sufficiently long time. In the
case of a periodic strategy with dwell time T in each mode, the product of the three
exponentials eA1TeA2TeA3T has to be stable. We have seen that this is the case for
T = 1.

Note that this commutation implies that the “red” is imposed according to the
circular order 3, 2, 1, 3, 2, 1 . . . . It is surprising to notice that, if the order is
changed, not only the system performance can get worse, but the system may even
become unstable. Indeed, eA3eA2eA1 is unstable with spectral radius ≈ 1.90, which
means that the commutation order is fundamental and the order 1, 2, 3, 1, 2, 3 . . . is
unsuitable. A simple explanation is that switching the red light from 3 to 2 allows
for a “fast recovery” from the congestion on x3 (due to the exponential decay), while
switching the red from 3 to 1 would leave such a congestion unchanged.
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Fig. 9.17 State trajectory corresponding to T = 2.1 and x(0) = [10 10 10]′.

We complete the example by considering the effect of a constant input (the
incoming traffic) and hence by introducing the system

ẋ = Aqx + b

with b = 1̄, γ = 1 and β = 1. It turns out that, with these values, F := eA1TeA2TeA3T

is Schur for T > 0.19. This means that, under a periodic strategy with T > 0.19,
the system converges to a periodic trajectory x̃(t), as shown in Figure 9.17.

Note that it is possible to optimize T in order to achieve a strategy which reduces
as much as possible the buffer levels of the periodic trajectory (see [BCV12] for
details).

Remark 9.35. Note that, in principle, the matrices provided in the example do not
satisfy the assumption of Theorem 9.32, because they are reducible. This is not
an issue, because we can modify the system by perturbing all the coefficients with
positive small numbers

Ai + εO

where O is the 1-matrix Oij = 1, for all i, j, and ε > 0 small. The periodic strategy
would be stabilizing for ε small. However, no Hurwitz convex combination would
exist anyway (see Exercise 5).

In the simple case of second order systems, the following result holds [BCV12].

Proposition 9.36. A continuous-time second order positive switched system is
stabilizable if and only if there exists an Hurwitz convex combination.

The proof can be found in [BCV12]. We stress that sufficiency holds for
positive switched systems of any order, since it holds for linear switched systems
in continuous-time, as we have seen at the beginning of Section 9.4. Still we
give a proof of the sufficiency to show that we can derive a linear co-positive
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control Lyapunov function using the left Frobenius eigenvector of a Hurwitz
convex combination. A similar proof works also for discrete-time switched systems.
Assume that there exists

Ā =

r∑
i=1

Aiαi, αi ≥ 0,

r∑
i=1

αi = 1

which is a Hurwitz matrix and assume, for brevity, that it is irreducible. Take the
positive eigenvector zT > 0 of Ā associated with the Frobenius eigenvalue λF < 0.
Consider the co-positive function Ψ(x) = zTx. Then, by linearity, for all x ≥ 0

min
i

zT Aix ≤ zT Āx = λFzT x = λFΨ(x)

Therefore, the strategy q = arg mini zT Aix is stabilizing.
We know that, in general, the existence of a Schur-stable convex combination is

neither necessary nor sufficient (see Exercises 6 and 7) for stabilizability of linear
switched discrete-time systems. For positive discrete-time switched systems, the
condition is sufficient, but not necessary (see Exercise 7) even for second order
systems. The sufficiency proof can be derived exactly (mutatis mutandis) by means
of the previous considerations (see Exercise 8).

We can now establish a procedure for discrete-time switched systems which leads
to the generation of a polyhedral concave co-positive control Lyapunov function.

We use again some dynamic programming arguments used in Chapters 5 and 6
(see [HVCMB11]). Consider the set

X0 = {x : 1̄Tx ≥ 1}

and notice that it is impossible to stabilize the system if and only if, starting from
some initial value inside X0, the state x(t) remains in this set for all possible
switching sequences q(t) or, equivalently, if there exists a robustly positive invariant
set included in X0. This is also equivalent to saying that we have stabilizability if
and only if there is no robustly positively invariant set included in X0. Since X0 is
convex, one might try to compute the largest (convex) invariant set in X0 and check
whether such a set is empty.

Consider the set of all vectors x in X0 which are driven inside X0 by all
matrices Ai

X1 = {x ≥ 0 : 1̄Tx ≥ 1, 1̄TAix ≥ 1, i = 1, . . . r}

This set can be represented as

F(1)x ≥ 1̄
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with

F(1) =

⎡
⎢⎢⎣

1̄T

1̄TA1

:

1̄TAr

⎤
⎥⎥⎦

For k = 1, 2, 3, . . . , recursively compute the set

Xk+1 = {x ≥ 0 : F(k)x ≥ 1, F(k)Aix ≥ 1, i = 1, . . . r}

compactly represented as Xk+1 = {x ≥ 0 : F(k+1)x ≥ 1}, and proceed in a
“dynamic programming” style by generating the sets Xk.

The set Xk is the set of all the states x0 which remain in the set X0 (1̄Tx(t) ≥ 1)
in k steps for all possible sequences Aq(t) ∈ {A1,A2, . . . ,Ar}. On the contrary, if
x0 �∈ Xk there exists a sequence that brings x(t) outside X0 hence (1̄Tx(t) < 1).

Therefore, if for some k > 0 Xk is strictly included in X0 (see Fig. 9.18), then
all the states x(0) on its positive boundary can be driven in k steps to x(k) ∈ ∂X0,
the boundary of X0. By construction, any point x0 on the positive boundary of Xk

satisfies the equality

1̄TAik−1Aik−2 . . .Ai0x(0) = 1

for a proper choice of the indices ih, say 1̄Tx(k) = 1.
Now, if Xk does not intersect 1̄Tx = 1, then we can take a positive λ < 1, close

enough to 1, such that the following inclusion is preserved (see Fig. 9.18)

λXk ⊂ X0

Fig. 9.18 The initial set X0

(complement of the dark
region), the final set Xh (to
the right of the thick curve),
and the contracted version
λXh (to the right of the
dashed curve)

x h

x 0

x(0)
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Let X̃k be the closure of the complement of Xk and consider the function Ψ(x) =

minF(k)
i x. Note that X̃k = N [Ψ(x), 1] = {x : Ψ(x) ≤ 1}. Given any x(0) ∈ ∂X̃k, it

can be brought in k steps to ∂X̃0, hence to λX̃k. Hence we have that

Ψ(x(k)) ≤ λΨ(x(0))

for a proper sequence. Thus, by repeating this sequence periodically, we can assure
Ψ(x(ik)) ≤ λiΨ(x(0)), i = 1, 2, . . . , and drive the state to 0.

A possible different stopping condition for the set sequence is

λXk ⊂ Xk−1

for some contraction factor λ > 0. Denoting by F the matrix describing the final
set Xk = {x ≥ 0 : Fx ≥ 1}, we have that the concave co-positive piecewise-linear
Lyapunov function

Ψ(x) = minFx (9.17)

is a control Lyapunov function since

min
i

Ψ(Aix) ≤ Ψ(x)

According to the considerations in Chapters 5 and 6, we can consider the modified
system

x(t + 1) =

(
Ai

λ

)
x(t)

with an assigned contractivity factor λ > 0.

Procedure

1. Let F(0) = 1̄T . Fix a maximum number of steps kmax, a contractivity factor λ > 0
and a tolerance ε > 0 such that λ+ ε < 1.

2. For k = 1, 2, . . . , compute the set

Xk = {x ≥ 0 : F(k−1)x ≥ 1̄, F(k−1)(Ai/λ)x ≥ 0, i = 1, 2, . . . , r}

This set is of the form Xk = {x ≥ 0 : F(k)x ≥ 1̄}.
3. Eliminate all the redundant inequalities, to achieve a minimal F(k) representing

Xk = {x ≥ 0 : F(k)x ≥ 1̄}.
4. If Xk ⊂ (1 + ε)Xk−1 stop (successfully): the closure of the complement of Xk in

the positive orthant is a λ+ ε contractive set.



9.6 Switching compensator design 443

Fig. 9.19 The
two-configuration emptying
problem in the controlled case
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5. If Xk = Xk−1 and the boundary of the original set 1̄Tx is an active constraint
stop (unsuccessfully): the set Xk is robustly invariant for the modified system.
Hence, no matter which sequence Aq(k) is chosen, for x0 in this set we will have
1̄Tx(k) ≥ 1.

6. Let k := k + 1. If k ≥ kmax, STOP.

Example 9.37. Consider again the system of Example 9.28, but assume now that
we can choose at each time the matrix (A1 or A2). Under arbitrary switching the
system has a contractivity factor of about 0.92. If we apply the above, we see that
for the controlled system the contractivity factor (obviously) reduces to 0.89. The
sequence of regions is depicted in Fig 9.19. The final control Lyapunov function is

Ψ(x) = min{1.2710x1 + 0.7263x2, 0.7263x1 + 1.2710x2}

9.6 Switching compensator design

The trade-off among different, often conflicting, design goals is a well-known
problem in control design [LM99]. Even in simple cases, such as the servo design,
it is not possible to achieve a certain performance without compromising another.
For instance, a fast signal tracking in a controlled loop requires a large bandwidth
which has the side-effect of rendering the system more sensible to disturbances. This
problem is often thought of as an unsolvable one: trade-off is generically considered
an unavoidable issue.

In this section we wish to partially contradict this sentence by presenting, in
a constructing way, techniques for switching among controllers each designed for
a specific goal as an efficient approach to reduce the limitations due to adopting a
single controller.
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9.6.1 Switching among controllers: some applications

We start with a very simple example which basically shows which are the benefits
we can achieve by switching.

Example 9.38. Switching strategies can be successfully applied to the problem of
semi-active damping of elastic structures. This is a problem investigated since 30
years ago [HBR83] and it is still quite popular. Here we just propose a simple
example to provide an idea of what can be done by means of Lyapunov-based
techniques. Consider the very simple problem of damping via feedback a single
degree of freedom oscillator whose model is

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1

−1 −μ

]
︸ ︷︷ ︸

A(μ)

[
x1(t)
x2(t)

]

where μ is a damping coefficient μ ≥ β > 0. The lower bound β > 0 represents the
natural damping (i.e., that achieved with no control) and in the example is assumed
that β = 0.1.

Consider the problem of determining the appropriate value of μ to achieve “good
convergence” from the initial state x = −[x0 0]T . This is an elementary problem
often presented in basic control courses. The trade-off in this case is the following:

• small values of μ produce an undamped dynamics with undesirable oscillations;
• large values of μ produce an over-damped dynamics with slow convergence.

Elementary root locus considerations lead to the conclusion that the “best” coeffi-
cient to achieve the fastest transient is the critical damping, i.e. the value μcr = 2
(associated with a pair of coincident eigenvalues). The situation is represented in
Fig. 9.20, where we considered the initial condition x(0) = [−2 0]T . The choice
μ = β, which produces a fast reaction of the system, results anyway in a poorly
damped transient which is represented by the dotted oscillating solution. If we
consider a high gain, for instance such that μ = 10, then we have the opposite
problem: there are no oscillations, but a slow exponential transient (represented
by the exponentially decaying dotted curve in Fig. 9.20). The critical oscillation,
obtained when μcr = 2, is the best trade-off and is represented by the lower dashed
line in Fig. 9.20.

Can we do better? We can provide a positive answer if we do no limit ourselves to
considering a single value of μ. The idea is that, by switching among different values
of μ we have more degrees of freedom. Note that this is equivalent to switching
between derivative controllers with different gain.

We consider the case in which we can switch between two gains μ = β and
μ̄ = 10. The problem is clearly how to switch between the two. The first idea one
might have in mind is heuristically motivated. We allow the system to go without
artificial damping μ = β until a certain strip |x1| ≤ ρ is reached, where ρ is an
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Fig. 9.20 The different solutions

assigned value, and we brake by switching to μ̄. We chose ρ = 0.05. Unfortunately,
this heuristic solution is not very satisfactory and is represented by the dashed curve
marked as heuristic in Fig. 9.20. As expected, it is identical to the undamped solution
in the first part, and then there is a braking stage. It is however apparent that braking
is not sufficient and the system has an overshoot since the state leaves the braking
region in the overshoot stage and jumps out of the braking zone.

Let us consider a better solution for this problem. We activate the braking value
μ̄ only when a proper positively invariant strip for the damped system is reached.
For μ = 10, which is quite larger than the critical value, the system has two real
eigenvalues λF < λS < 0, where λS � 0 and λF << λS are the slow and the
fast eigenvalue, respectively. The eigenvector associated with the fast eigenvalue is
vF = [1 λF]T . Along the subspace corresponding the “fast” eigenvector the transient
is fast. Let us consider the orthogonal unit vector

f T =
[−λF 1]

‖[−λF 1]‖

and a thin strip of the form

S(ξ) = {x : |f T x| ≤ ξ}

This strip is positively invariant for the system with high damping. Indeed the vector
f T is a left eigenvector associated with λF and thus

f TA(μ̄) = λFf T
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Fig. 9.21 The solution with
the good (plain) and the
heuristic (dashed) switching
law
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so that the positive invariance conditions of Corollary 4.42 are satisfied. Note also
that the strip includes the subspace associated with vF . Theoretically, the idea is to
switch on the subspace associated with vF to exploit the fast transient. However,
“being on a subspace” is not practically meaningful, so we replace the above with
the condition x ∈ S(ξ), which can be interpreted as “being on the subspace up to a
tolerance ξ”. We chose ξ = ρ = 0.05 for a fair comparison. It is apparent that the
results are much better. The transient, the plain line in Fig. 9.20, is initially the fast
undamped one and then it is close to the “fast eigenvector” motion. The situation
can be visualized in the phase plane in Fig. 9.21. The heuristic solution switches, as
required, in the strip |x1| ≤ ρ, but cannot remain inside this strip (the vertical one),
since it is not invariant, and then it undergoes a further switching and the damping
is improperly set to the natural β again to eventually reach the braking region. An
application of the proposed technique to more general vibrating structures has been
proposed in [BCGM12, BCC+14].

The idea of switching between controllers by exploiting the properties of
invariant sets is not new. It was presented in [GT91, WB94, KG97, BB99]. The role
played by invariant sets has been evidenced in the previous example. If switching
to a new controller is subject to reaching a proper invariant set for the closed-
loop system with such a controller, then we automatically assure that the new set
will never be left anymore. A possible application is the transient improvement via
switching. Suppose that we are given a linear system and a family of controllers
with “increasing gain”

u = Kix, i = 1, 2, . . . , r

associated with a nested family of invariant C-sets for the systems ẋ = (A + BKi)x:

S1 ⊆ S2 ⊆ · · · ⊆ Sr
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Fig. 9.22 The logic-based switching system

Choosing a nested family is always possible since any invariant set remains such
if it is properly scaled. Then switching among controllers avoids control saturation
when the state is far from the target and exploits the strong action of the larger gains
in proximity of the origin. The idea can be extended to the case of output feedback
if we introduce an observer-based supervisor [DSDB09]. Assume for brevity that
a family of static output feedback gains is given. Then a possible scheme is that
in Fig. 9.22. After an initial transient, in which no switching should be allowed,
the estimate state is accurate (here we assume accurate modeling and negligible
disturbances), say x̂(t) � x(t). The inclusion of the estimated state x̂(t) ∈ Si in the
appropriate region allows the switching to the i-th gain.

Clearly the method requires either state feedback or accurate state estimation,
which is not always possible. Finally we notice that we can design compensators of
different order and dynamic. In this case we have an extra degree of freedom, given
by the possible initialization of the compensator state at the switching time.

A fundamental result concerning switching among controllers is the following
[HM02], here reported.

Theorem 9.39. Consider a linear plant P and a set of r linear stabilizing com-
pensators. Then, for each compensator there exists a realization (not necessarily
minimal) such that, no matter how the switching among these compensators is
performed, the overall closed-loop plant is asymptotically stable.

It is important to notice that the previous result does not imply that the property is
true for any family of compensators with given realizations. In other words, it is
easy to find families of compensator (even static gains) for which an unfavorable
switching law can lead to instability. A simple case is given by the system

A =

[
0 1

−1 −β

]
B =

[
0

1

]
C =

[
1 0

]

If we take u = −(1 + η)y and u = −(1 − η)y, with β small enough and 0 <
η < 1 sufficiently close to 1, there exists a destabilizing switching law [Lib03].
However, there exist equivalent non-minimal realizations of the constant gains for
which stability is assured under switching.
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The result [HM02], which is of fundamental importance, does not consider
performances. It is apparent from Example 9.38, the friction system, that, if one
wishes to assure a performance to the system, then some “logic constraints” to the
switching rule have to be applied.

Further techniques of “switching among controllers” have been proposed in the
literature, although of different nature. It is worth mentioning a special technique
which consists in partitioning the state space in connected subsets in each of which a
“local controller” is active. This idea has been pursued in [MADF00] in a context of
gain-scheduling control and in [BRK99, BPV04] in a context of robot manipulator
control in the presence of obstacles.

9.6.2 Parametrization of all stabilizing controllers for LTI
systems and its application to compensator switching

One possibility to avoid the limitation of a single controller is to use more than one
controller. For instance, if the system changes its working point or its configuration,
one may decide to change the compensator accordingly.

In this subsection we briefly describe the essential of the idea of the mentioned
Theorem 9.39 due to [HM02] and then we apply it to the case in which a switching
compensator is applied to a fixed plant.

The first fundamental step towards the solution of the parametrization of a family
of switching compensators is the standard Youla–Kucera parametrization of all
stabilizing controllers for linear systems. Consider a stabilizable LTI system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

and assume a stabilizing compensator is given with transfer function W(s).
Then W(s) can be realized as follows:

ẋo(t) = (A − LC)xo(t) + Bu(t) + Ly (9.18)

u(t) = −Jxo(t) + v(t) (9.19)

o(t) = Cxo(t) − y(t) (9.20)

ż = FTz(t) + GTo(t) (9.21)

v(t) = HTz(t) + KT o(t) (9.22)

where J and L are matrices such that (A − LC) and (A − BJ) are Hurwitz,
(FT ,GT ,HT ,KT ) are suitable matrices (which depend on the plant matrices
(A,B,C), as well as on W(s)), with FT Hurwitz. We let the reader note that xo(t) is
the state estimate.
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Conversely, given L and J such that (A − LC) and (A − BJ) are Hurwitz,
for any choice of (FT ,GT ,HT ,KT ) of suitable dimensions, with FT Hurwitz, the
corresponding compensator is stabilizing.

This double implication is equivalent to saying that (9.18)–(9.22) parametrize all
the stabilizing compensators for an LTI plant.

Proposition 9.40 ([ZDG96, SPS98]). The transfer matrix W(s) is a stabilizing
compensator for (A,B,C) if and only if it can be realized as in (9.18)–(9.22), with
some choice of the Youla–Kucera parameter (FT ,GT ,HT ,KT).

Note that the realization of W(s) in (9.18)–(9.22) is non-minimal in general.
The sub-system (9.21)–(9.22) represents the Youla–Kucera (YK) parameter. The

fundamental point is that the input of this system is o(t) = Cxo(t)−y(t) = C(xo(t)−
x(t)), which asymptotically converges to 0 since

d
dt

(xo(t) − x(t)) = (A − LC)(xo(t) − x(t))

is an unreachable variable. This in turn means that the output v(t) of the Youla–
Kucera parameter is not fed back by the plant and therefore any stable choice of
the YK parameter cannot destabilize the closed-loop. Note however that any output
y of the plant is fed back by the compensator and the feedback depends on the YK
parameter.

Going back to the general case, assume now that a family W1(s), W2(s),
. . . ,Wr(s), of stabilizing compensators is given: is it possible to switch among them
arbitrarily while preserving closed-loop stability?

In this case Theorem 9.39 comes into play providing a positive answer: yes,
stability can be preserved if the realization of each of the stabilizing compensator is
done in the right way. How does such a realization look like?

The solution of this problem is quite intuitive and boils down to the
YK parametrization. Since any Wi(s) corresponds to some YK parameter

(F(i)
T ,G(i)

T ,H(i)
T ,K(i)

T ), we can switch between compensators by fixing matrices

L and J and by switching just among the YK parameters. However, the fact that F(i)
T

is Hurwitz does not assure that switching between the YK parameters results in a
stable behavior. Moreover, the F(i)

T may be of different dimension.
The problem of dimension is immediately solved by merging some YK parame-

ters in fictitiously augmented dynamics, in order to make them all of the same size.
For stability under switching, we need the following.

Lemma 9.41. Given a stable square matrix F, there exists an invertible T such that
F̂ = T−1FT has P = I as a Lyapunov matrix.

Proof. Assume that F is stable and solves

FTP + PF = −I
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with P 
 0. Let T = P−1/2. Then, bearing in mind that TTPT = I,

F̂T + F̂ = TT FTT−T TTPT + TT PTT−1FT = TT (FTP + PF)T = −TTT < 0

With the above in mind, the idea is then that we may change the realization to all the
YK parameters in such a way they share I as a Lyapunov matrix. This will in turn

• not change the compensator transfer functions;
• assure that the YK parameter is stable under arbitrary switching.

9.6.3 Switching compensators for switching plants

In this subsection, the case in which the compensator switching is subsequent to a
plant switching is considered. More precisely, the problem is cast in the following
setting: assume that the plant formed by the family of stabilizable LTI systems

ẋ(t) = Aix(t) + Biu(t)
y(t) = Cix(t)

is subject to an arbitrary switching rule

i = i(t) ∈ I = {1, 2, . . . , r}

and that the switching plant has to be controlled by means of a family of r stabilizing
controllers, each (clearly) stabilizing the corresponding plant (see Fig. 9.23)

ż(t) = Fiz(t) + Giy(t)
u(t) = Hiz(t) + Kiy(t)

To check whether such a family of controllers exists, a couple of assumptions are
needed.

Assumption (Non-Zenoness). The number of switching instants is finite on every
finite interval.

Fig. 9.23 The switching
control

KiGiFi Hi

Ai Bi Ci

u yi
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Assumption (No delay). There is no delay in the communication between the
plant and the controller, which knows exactly the current output y(t) and config-
uration i(t).

With the above in mind, the two essential problems considered next are the
following.

Problem 1. Does there exist a family of matrices (Fi,Gi,Hi,Ki), i ∈ I, such that
the closed-loop system is switching stable?

Problem 2. Given a set of compensators Wi(s), each assuring Hurwitz stability for
fixed i, does there exist a realization (Fi,Gi,Hi,Ki) such that:

1. Wi(s) = Hi(sI − Fi)
−1Gi + Ki;

2. the closed-loop system is switching stable?

Clearly Problem 1 is preliminary to Problem 2. A weaker, but computationally
tractable, version is that in which, rather than requiring stability, quadratic stability
of the switching closed-loop system only is requested. It will be soon shown that
the solution to Problem 1 amounts to checking a set of necessary and sufficient
conditions, whereas for Problem 2, assuming Problem 1 has a solution, the answer
is always affirmative [BMM09].

As a first preliminary fact it must be pointed out that, when dealing with the
stability of switching systems, we need to talk about their realization and not about
their transfer functions. In fact, while for LTI systems the same transfer function can
be realized in infinite (equivalent) ways, this is not the case for switching systems.

Example 9.42. Consider the plant

P(s) =
1

s + α

with α > 0 and let the compensator be of the form

Wi(s) =
ki

s + β
, i = 1, 2

with β > 0. Using standard realization techniques, the two following closed-loop
matrices

A1 =

[
−α ki

−1 −β

]
or A2 =

[
−α

√
ki

−
√

ki −β

]

can be obtained7. It can be seen that the first is unstable under arbitrary switching
(see Section 9.7.2), whereas the second is stable under arbitrary switching.

7Using either ż = −βz + kiy, u = −z or ż = −βz +
√

kiy, u = −
√

kiz as a realization.
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The following theorem provides a solution to Problem 1.

Theorem 9.43. The following two statements are equivalent.

i) There exists a linear switching-stabilizing compensator
ii) The two equations

AiX + BiUi = XPi (9.23)

RAi + LiCi = QiR (9.24)

have a solution (Pi,Qi,Ui, Li,X,R), with

Pi ∈ H1 and Qi ∈ H∞

(resp. ‖Pi‖1 < 1 and ‖Qi‖∞ < 1 in the discrete-time case), and a full row-rank
matrix X ∈ IRn×μ and a full column-rank matrix R ∈ IRν×n.

If the conditions of the theorem hold, then the problem can be solved as follows.
Take M: MR = I, Vi = ZPi, where Z is any complement of X and

[
Ki Hi

Gi Fi

]
=

[
Ui

Vi

] [
X
Z

]−1

A possible compensator is the following:

Estimated state feedback :

⎧⎨
⎩

ż(t) = Fiz(t) + Gix̂(t)
u(t) = Hiz(t) + Kix̂(t) + v(t)
v(t) ≡ 0

Generalized state observer :

{
ẇ(t) = Qiw(t) − Liy(t) + RBiu(t)
x̂(t) = Mw(t)

The previous compensator has a separation structure and it can be shown that
x̂(t) − x(t) → 0 and that the first part is a dynamic state-feedback compensator.
The auxiliary signal v(t) = 0 is a dummy signal which will be used later.

We do not report a proof here (the interested reader is referred to [BMM09]),
but we just point out that in the necessity part of the theorem we generalize the
results in Subsection 4.5.6. More precisely, the equations are an extension of (4.40)
and (4.53). Note that the construction is identical to that proposed in Section 7.4.
This is absolutely expected, since we know that an LPV system whose matrices are
inside a polytope is stable if and only if its corresponding switching system is stable.

If the less stringent requirement of quadratic stability only is imposed, then the
following (tractable) result holds:
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Theorem 9.44. The following two statements are equivalent.

i) There exists a family of linear quadratically stabilizing switching compensators.
ii)

PAT
i + AiP + BiUi + UT

i BT
i < 0

AT
i Q + QAi + YiCi + CT

i YT
i < 0

for some positive definite symmetric n × n matrices P and Q, and matrices Ui ∈
IRm×n, Yi ∈ IRn×p.

A possible compensator is

d
dt x̂(t) = (Ai + LiCi + BiJi)x̂(t) − Liy(t) + Biv(t)

u(t) = Jix̂(t) + v(t)
v(t) = 0

where

Ji = UiP
−1, Li = Q−1Yi

In discrete-time the inequalities are

[
P (AiP + BiUi)

T

AiP + BiUi P

]
> 0

[
Q (QAi + YiCi)

T

QAi + YiCi Q

]
> 0

The previous ones are standard quadratic stabilizability conditions which involve
LMIs [BP94, AG95, BEGFB04].

To provide an answer to Problem 2, the signal v(t) comes into play. The first point
is the following. Assume that in the previous machinery the signal v(t) is generated
as the output of the following system:

v(t) = T(C(x̂ − x))

where T(·) is a “stable operator.” This in turn will change the compensator, but it
will not destabilize the plant. Although in general any input–output stable operator
would fit, we limit ourselves to linear finite-dimensional systems.

From Proposition 9.40 it is known that for any fixed mode there exists a Youla–
Kucera parameter Ti such that the resulting compensator has transfer function Wi.
The issue is only to realize the Youla–Kucera parameters in such a way that they are
stable under switching as in Fig. 9.24. Note that the figure includes, as a particular
case, the case of a quadratic stabilizable plant for which R = I, Q = A+LC, M = I,
and the state feedback is static: u = Jx + v.
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Fig. 9.24 The observer-based compensator structure

Theorem 9.45. If the (quadratic) stabilizability conditions in Theorem 9.43 (9.44)
are satisfied, then, given any arbitrary family of transfer functions Wi(s),
i = 1, . . . , r each stabilizing the i-th plant, there exists a switching compensator

δz(t) = Fiz(t) + Giy(t)
u(t) = Hiz(t) + Kiy(t)

(δz is either ż or z(t + 1)) such that

1. Hi(sI − Fi)
−1Gi + Ki = Wi(s)

2. the closed-loop system is switching stable.

We also point out the following aspect. Assume that there are a disturbance input
ω(t) and a performance output ξ

δx(t) = Aix(t) +Biu(t) +Bω
i ω(t)

y(t) = Cix(t) +Dy,ω
i ω(t)

ξ(t) = Eix(t) +Dξ,u
i u(t) +Dξ,ω

i ω(t)
(9.25)

Then the i-th input–output map is of the form

ξ(s) = [Mξ,ω
i (s) + Mξ,v

i (s)Ti(s)M
o,ω
i (s)]ω(s)

which is amenable for optimization.
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Example 9.46 (Networked control system (continued from Example 9.4)). The
system matrices of the extended switching system (9.5) for the unstable dynamic
system P(s) = s+1

s2−10s , with sampling time Tc = 0.05s and Nmax = 5 are:

A =

[
1.649 0

0.065 1

]
, B =

[
0.130

0.003

]
, C =

[
0.5 0.5

]

A family of quadratically stabilizing compensators is obtained by solving the
conditions in Theorem 9.44, which provide the following feedback and observer
gains (mind that the first set of LMIs is indeed a single inequality in view of the fact
that the system update and input matrices do not switch)

J =
[
−12.859 −6.015 −.035 −.022 −.010 −.005 −.002

]

and L = [L0 . . . LNmax ],

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3.04 −5.02 −8.25 −13.82 −22.79 −27.55

−0.28 −0.46 −0.76 −1.29 −2.13 −2.60

−1.00 −1.66 −2.72 −4.56 −7.53 −9.11

−0.60 −1.00 −1.64 −2.76 −4.55 −5.51

−0.36 −0.60 −0.99 −1.65 −2.73 −3.31

−0.21 −0.36 −0.59 −1.01 −1.63 −1.98

−0.13 −0.21 −0.35 −0.58 −1.07 −1.19

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The closed-loop step responses yt and ŷt for two specific delay realizations are
depicted in Fig. 9.25.
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Fig. 9.25 Closed-loop step response for Example 9.46: yt solid, ŷt dashed
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9.7 Special cases and examples

9.7.1 Relay systems

We now consider relay systems, which are nothing but a very special case of
switching systems that can be tackled via a set-theoretic approach. Consider the
scheme depicted in Figure 9.26 and representing a system with a relay feedback.
We assume that the control law is

u = −sgn(y),

thus normalizing the input amplitude to 1. It is well known that feedback systems
of this type have several problems, for instance that of being potential generators of
limit cycles. There is a case in which one can guarantee asymptotic stability and this
is the case we are going to investigate next. The following proposition holds.

Proposition 9.47. Assume that the n-th order SISO transfer function P(s) has n−1
zeros zi with strictly negative real part (say it is minimum-phase with relative degree
one) and that

lim
s→∞

sP(s) > 0

Then the relay loop of Figure 9.26 is locally stable.

Proof. Since we are interested in local stability, it is assumed that r = 0. Let −β <
0 be greater than the largest real part of the transmission zeros. For any realization
(A,B,C, 0) of P(s) it is possible to define the transformation matrix

T =

[(
null{BT}

)T

C
CB

]−1

(null(M) denotes a basis matrix for the kernel of M) so that

T−1B =

⎡
⎢⎣

0
...
1

⎤
⎥⎦ , CT =

[
0 · · · CB

]

r y
P(s)

Fig. 9.26 The relay feedback loop
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with CB > 0 in view of the condition on the limit and T−1AT can be partitioned as

T−1AT =

[
F G
H J

]

where the eigenvalues of F (see Exercise 10 in Chapter 8) are the transmission zeros,
thus have negative real part smaller than −β. Assume for brevity CB = 1. The state
representation of P(s) can then be written as

[
ż(t)
ẏ(t)

]
=

[
F G
H J

] [
z(t)
y(t)

]
+

[
0

1

]
u(t) (9.26)

y(t) =
[
0 CB

] [ z(t)
y(t)

]
(9.27)

where y is the output and the input is u = −sgn(y).
Since matrix F is asymptotically stable, if y(t) is bounded, so is z(t). Consider

now a β-contractive C-set for the z-sub-system ż = Fz + Gỹ, where ỹ is subject to
|ỹ(t)| ≤ 1 and is seen as a disturbance.

Let such a set be S and let Ψz(z) be its Minkowski functional. Assume S is 0-
symmetrical, so that Ψz(z) is a norm (for instance, a quadratic norm Ψz(z) =

√
zTQz

with Q 
 0, associated with a contractive ellipsoid according to inequality (4.23)).
For brevity assume (although this is not necessary) that Ψz(z) is smooth for z �= 0.

Since S is contractive (see Definition 4.15 with u = 0), for z on the boundary
(Ψz(z) = 1) one has that

D+Ψz(z) = ∇Ψz(z)(Fz + Gỹ) ≤ −β, (9.28)

for all |ỹ| ≤ 1. Since ∇Ψz(z) = ∇Ψz(ξz) for any scaling factor ξ (see Exercise 14 in
Chapter 4) and since any ẑ in IRn−1 can be written as ẑ = Ψz(̂z)z for some z ∈ ∂S,
then by scaling (9.28) one gets

D+Ψz(̂z) = ∇Ψz(z)(FΨz (̂z)z + Gy) ≤ −βΨz(̂z), for |y| ≤ Ψz(̂z) (9.29)

say the scaled set ξS is β contractive if |y| ≤ ξ (see Exercise 15 in Chapter 4). Now,
consider the second equation and define, as a first step, the quantity

μ = max
z∈S

|Hz|,

which is a bound for the influence of z on y since

|Hz| ≤ μΨz(z)
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Fig. 9.27 The set P

z2

z1

y

Then, consider the candidate Lyapunov function (referred to the y-system)

Ψy(y) = |y|,

which is the Minkowski function of the interval I1 = [−1, 1] and whose gradient
is ∇Ψy(y) = sgn[y]. In the (z, y) space consider the C-set which is the Cartesian
product of I1 and S, P = {(z, y) : z ∈ S, y ∈ I1} (see Fig. 9.27). The Minkowski
functional of P is

Ψ(z, y) = max{Ψz(z), Ψy(y)}

Now assume (z, y) ∈ εP (namely Ψ(z, y) ≤ ε), where ε is chosen as

ε ≤ CB
μ+ |J| + β

so that

(μ+ |J|) ε ≤ CB − βε

For any (z, y) ∈ εP , by considering the y derivative, one gets

D+Ψy(y) = D+|y| = sgn(y)[Hz + Jy + CBu]

≤ μΨz(z) + |J|Ψy(y) − CB ≤ με+ |J|ε− CB ≤ −βε,

so that, for Ψy(y) ≤ ε,

D+Ψy(y) ≤ −βΨy(y) (9.30)

Therefore, for Ψ(z, y) ≤ ε both (9.29) and (9.30) hold, which in turn implies that
Ψ(z(t), y(t)) cannot increase if Ψ(z(t), y(t)) ≤ ε or, in other words, εP is positively
invariant. Since these inequalities hold inside εP , y(t) and z(t) both converge to 0
with speed of convergence β.
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It can be shown, by means of arguments similar to those used for the relay system,
that also almost relay systems, precisely those formed by a loop with control

u = −sat[−1,1](ky)

are locally stable for k large enough.

Example 9.48. Consider the unstable system

P(s) =
s + 1

s2 − s − 1

represented by the equations

ż(t) = −z(t) − y(t),

ẏ(t) = z(t) + 2y(t) + u(t)

Consider the first sub-system ż = −z− ỹ, |ỹ| ≤ 1 and β = 0.5, which is compatible
with the fact that the zero is in −1. Consider the interval [−ζ, ζ] as candidate
contractive set whose Minkowski functional is |z|/ζ. The condition is that for z = ζ

1

ζ
(−z − ỹ) ≤ −β

for all |ỹ| ≤ 1, which is satisfied for ζ ≥ 1/(1 − β) = 2. The opposite condition
leads to the same conclusion, so we take ζ = 2. We now compute

μ = max
|z|≤ζ

|Hz| = 2

(H = 1) and we can finally evaluate

ε =
1

μ+ |J| + β
=

2

9

(J = 2). The derived domain of attraction is the rectangle

{
(z, y) :

|z|
ζ

≤ ε, |y| ≤ ε

}
=

{
(z, y) : |z| ≤ 4

9
, |y| ≤ 2

9

}

The computed domain of attraction, the trajectories originating from the vertices
and some of the system trajectories originating outside are depicted in Fig 9.28. It
is apparent (and expected) that the actual domain of attraction is quite greater than
the computed one.

The previously presented results can be happily (and easily) extended to the
case of actuators with bounded rate. Let us now reconsider the rate-bounding
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Fig. 9.28 The evaluated domain of attraction with some internal trajectories (plain lines) and some
of the system trajectories originating outside (dotted curves)

yr uω
F(s)v

v

vz

Fig. 9.29 The loop with a rate-bounding operator

operator considered in Subsection 8.4.1. In particular consider a feedback loop
which includes the rate bounding operator in Figure 8.16. Here we consider the
extreme case in which the loop includes the following operator

u̇(t) = v̄ sgn[ω − u]

as in Fig. 9.29. Note that this block allows a maximum increasing rate of v̄. It
is known that rate-bounds can destroy global stability of a system. However, by
means of the previous results it is possible to show that a stable loop preserves local
stability, achieved by a nominal control, in the presence of rate bounds, as shown in
the following proposition.

Proposition 9.49. Given the n dimensional SISO transfer function F(s), if

G(s) =
F(s)

1 + F(s)

is asymptotically stable, then the loop represented in Fig. 9.29 is locally stable.
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Fig. 9.30 Equivalent loop
with rate-bounding operator

yω
F(s)

u

v
v r

s
1

Proof. By “pulling out the deltas” (see [ZDG96]), say by rearranging the transfer
function so as to write the linear relation between the input and the output of the
nonlinear block (which in this case, plays the role of delta) it can be seen that the
loop in Fig. 9.29 is equivalent to the one in Fig. 9.30 which is in turn equivalent to
that achieved by feeding back the (v-to-z) transfer function

P(s) =
1 + F(s)

s

with the sgn block. It is apparent that the zeros of P(s) are the poles of G(s) (say
the poles of the closed-loop system without saturation), which are asymptotically
stable by hypothesis, and that the relative degree of P(s) is exactly one, since there
are n zeros (the poles of G(s)) and n + 1 poles (the poles of F(s) plus the one in the
origin). Thus, by Proposition 9.47, the system is locally stable.

It is worth stressing that the shown strict equivalence between the rate-bounding
and the simply saturated problem allows to apply the construction of Proposi-
tion 9.47 to find a proper domain of attraction.

9.7.2 Planar systems

Planar systems, namely systems whose state space is two-dimensional, have several
nice properties which are worth a brief presentation. The first obvious fact is
that, if we limit our attention to second order systems, the major issue of the
computational complexity of the considered methods almost disappears. On the
other hand, limiting the investigation to this category is clearly a restriction. Still
we can claim that many real-word problems are naturally represented by second
order systems. Furthermore, there are many system of higher order which can be
successfully approximated by second order systems. This is, for example, the case
of the magnetic levitator in Fig. 2.1, which would be naturally represented by a third
order system since there is an extra equation due to the current dynamics

Li̇(t) = −Ri(t) + V(t)
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where V is the voltage. However, since the ratio R/L is normally quite big, this
equation can be replaced by the static equation Ri(t) = V(t) without compromising
the model (we are basically neglecting the fast dynamics).

Let us point out the main properties of second order systems. Consider the second
order system ẋ(t) = f (x(t)), assume f Lipschitz, so that the problem is well-posed,
and let x̄(t) be any trajectory corresponding to a solution of the system. Since two
trajectories cannot intersect x̄(t) forms a barrier to any other system trajectory. This
can be simply seen as follows. Consider any closed ball B and assume that x̄(t)
crosses B side-by-side in such a way that x̄(t1) ∈ ∂B, x̄(t2) ∈ ∂B and x̄(t) ∈
int{B} for t1 < t < t2. The interior of the ball is divided in three subsets B1, B2

and x̄(t)
⋂

int{B}. Then no trajectory of the system originating in B1 can reach B2

without leaving B.
Planar systems have several important properties and indeed many of the books

dealing with nonlinear differential equations often have a section devoted to them.
Here we propose some case studies (basically exercises) which we think are
meaningful.

Example 9.50 (Stability of switching and switched systems). Consider the system
ẋ = A(p)x, where

A =

[
α 1

−p(t)2 α

]
, p ∈ {p−, p+}

and let us consider the problems of determining:

• the supremum value ofα (necessarily negative) for which the switching (p uncon-
trolled) system is stable;

• the supremum value ofα (possibly positive) for which the switched (p controlled)
system is stabilizable.

Problems of this kind can be solved by generating some extremal trajectories in
view of their planar nature (see [Bos02]) and are often reported in the literature as
simple examples of the following facts:

• Hurwitz stability of all elements in the convex hull of a family of matrices does
not imply switching stability;

• in some particular cases it is possible to stabilize a switched system (i.e., by
choosing the switching rule) whose generating matrices are all unstable and do
not admit a stable convex combination;

• a linear switched system which is stabilizable via feedback is not necessarily
consistently stabilizable.

As a first step we notice that, for fixed p, the solution has the following form

[
x1(t)
x2(t)

]
= eα(t−t0)

[
cos(p(t − t0)) 1

p sin(p(t − t0))

−p sin(p(t − t0)) cos(p(t − t0))

] [
x1(t0)
x2(t0)

]
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x1 x1

x2 x2

Fig. 9.31 The worst-case and the best case strategy for α = 0

To analyze the stability of the switched system, let us start from the point x(0) =
[1 0]T and let us assume α = 0. It is apparent that with both values p− and p+,
the corresponding trajectories reach the x2 negative axis in time π/(2 p), but if
we choose the upper value p+ the trajectory is below (and then external to) that
corresponding to the lower value. When the x2 negative axis is reached, the situation
is exactly the opposite. Then, by taking the worst case trajectory, generated by
means of the following strategy

p =

{
p+ if x1x2 < 0

p− if x1x2 > 0

we achieve a trajectory which is the most external (see Fig. 9.31 left).
If we consider the time instants in which the axes are crossed, since we keep p

constant inside any sector, we get the following discrete relation

[
x1(tk)
x2(tk)

]
=

[
0 1

p

−p 0

] [
x1(tk−1)

x2(tk−1)

]

with p ∈ {p−, p+}.
Take the initial vector [ 1 0 ]T . If we consider the worst-case trajectory, we

encircle the origin and we reach the positive x1 axis again, at time t = 2π/p, in a
point [ξ 0]T where

ξ =
(p+)2

(p−)2
≥ 1

(the equality holds only if p− = p+).
By taking into account α again, we can find the largest value of α < 0 which

assures stability. This limit value is such that

eα2π/pξ = 1
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namely

α = − p
2π

log(ξ)

which is negative. To prove this, one has to take into account the fact that the solution
with a generic value α is xα(t) = eαtx0(t), where x0(t) is that achieved with α = 0.

To solve the “switched” problem we have just to proceed in the same way and
consider the “best trajectory,” which is clearly given by (see Fig. 9.31 right)

p =

{
p+ if x1x2 > 0,

p− if x1x2 < 0

The expression is identical, with the difference that α turns out to be the opposite.
This system with α > 0 is an example of a system which can be stabilized via

state feedback, but which is not consistently stabilizable. Indeed one can show that,
no matter how a fixed function p(t) is taken with p− ≤ p(t) ≤ p+,8 the system
trajectory will diverge for some initial conditions.

To this aim, let us consider the case of a linear time-varying system

ẋ(t) = A(t)x(t)

and denote by Φ(t, t0) the state transition matrix for A(t):

d
dt
Φ(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = I.

Then, by the Jacobi-Liouville formula,

det(Φ(t, t0)) = exp

(∫ t

t0

trace(A(τ))dτ

)
.

Indeed

d
dt

(log det(Φ(t, t0))) = trace(Φ(t, t0)
−1A(t)Φ(t, t0)) = trace(A(t)).

If we look back at the example we have that trace(A(p)) = 2α, hence

det(Φ(t, t0)) = exp

(∫ t

t0

trace(A(τ))dτ

)
= e2α(t−t0)

and thus det(Φ(t, t0)) grows arbitrarily large. Therefore some elements of Φ(t, t0)
grow arbitrarily large as t → +∞.

8Including the switching case in which p(t) ∈ {p−, p+}.
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9.8 Exercises

1. Find the analytic expression of the function in Figure 9.1.
2. Prove the stability of the system proposed in Example 7.16 for |δ| ≤ ρ < 1, by

using the technique of extremal trajectories adopted in Example 9.50. Hint: the
extremal trajectories are as in Fig. 9.32

3. Prove that the P set P(F)
⋂

IR+, F ≥ 0, is bounded if and only if for any j there
exists k such that Fkj > 0.

4. Prove Proposition 9.9. Hint: Consider P = I as a Lyapunov matrix. Then,
if all the Aq are symmetric, the Lyapunov inequality which assures quadratic
stability is

AT
q + Aq = 2Aq < 0, for all q,

which is assured if the Aq are Hurwitz . . . .
5. Let A be Metzler and not Hurwitz. Then A + εO (Oij = 1) is non-Hurwitz as

well for ε > 0. Provide a proof.
6. For discrete-time switched systems, show that the existence of a stable matrix in

the convex hull is not sufficient for stabilizability. (Hint: try in dimension one).
7. For discrete-time switched systems, show that the existence of a stable matrix

in the convex hull is not necessary for stabilizability. Find two non-negative
matrices of order 2, A1 and A2, such that no Schur convex combination exists,
but the corresponding switched system is stabilizable. (Hint: try two diagonal
matrices).

8. Show that, for discrete-time positive switched systems, the existence of a Schur
matrix in the convex hull is sufficient for stabilizability. (Hint. Assume that
the Schur matrix in the convex hull is irreducible and take the left Frobenius
eigenvector zT > 0 and the copositive function zT x . . . ).

Fig. 9.32 Extremal
trajectories
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9. Paradox of the 0 transfer functions. Let Ai,B,C be a family of systems which are
Hurwitz for fixed i, but not switching stable. Assume that each of the systems
is stabilizable, for instance quadratically. By Theorem 9.45, we would have
that we can choose compensator transfer functions Wi(s) ≡ 0, which can be
implemented so that stability is assured under switching. Is this impossible, or
not? (see [BMM09]).

10. Show that any minimum-phase system of relative degree 1 with transfer function
P(s) can be written in the form (9.26)–(9.27), where the eigenvalues of F are
coincident with the zeros of P(s).



Chapter 10
(Sub-)Optimal Control

There are several optimal control problems that can be naturally cast in a
set-theoretic framework and for which set-theoretic techniques provide efficient
tools. Although by far non-exhaustive, this section considers several cases and
discusses several solutions.

10.1 Minimum-time control

In this section, minimum-time set reachability and controllability problems under
disturbances are analyzed. To this aim, we reconsider and extend the previously
introduced definitions of controllability and reachability to and from a set. More
precisely, we deal with the concept of worst-case controllability, introduced next.

10.1.1 Worst-case controllability

In the presence of uncertainty the concept of controllability can be expressed in a
dynamic game framework. Consider the dynamic system

x(t + 1) = f (x(t), u(t),w(t))

(or ẋ(t) = f (x(t), u(t),w(t))) where u(t) ∈ U , the control and w(t) ∈ W , the
disturbance (w possibly includes parameter and noise uncertainties). We say that P
is controllable in the worst case sense to S in time T if for all x(0) in P there exists
a control such that x(T) ∈ S for all possible w(t) ∈ W . The above problem can
be thought of as a game between two opponents: a good girl u, who has the goal of
driving x(t) to S, playing against a bad boy w, her opponent, who wishes her to fail.

© Springer International Publishing Switzerland 2015
F. Blanchini, S. Miani, Set-Theoretic Methods in Control, Systems & Control:
Foundations & Applications, DOI 10.1007/978-3-319-17933-9_10
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Then S is worst-case-controllable if she wins the game (being smart enough to apply
the proper strategy). We remind the reader that a fundamental distinction about the
nature of the control has to be made, since the worst-case-controllability property
depends on the chosen type of control, which can fall in any of these categories:

• open-loop control: u(t) = Φ(x(0), t);
• state feedback control u(t) = Φ(x(t));
• full information feedback control u(t) = Φ(x(t),w(t));

As pointed out in the introduction, these three rules of the game are deeply different,
as we can see by considering the system

x(t + 1) = x(t) + u(t) + w(t)

with w ∈ [−1, 1] and u ∈ [−1, 1]. It turns out that, in the time horizon T, the origin
is controllable to [−T, T] by means of the open-loop control u ≡ 0 (other choices
produce different, but not better, results), is controllable to [−1, 1] by means of a
state feedback control (for instance u = −sat(x)) and it is controllable to {0} by
means of a full information control (write the control u = Φ(x,w) as an exercise).

For the sake of completeness (only), we just comment on the concept of
reachability in the worst case sense, which can be defined by considering the
backward system: S is worst-case reachable from P if S is controllable to P for
the backward system (see Exercise 1).

Note that in Section 5.1 the concept of worst-case controllability has been already
exploited, being intrinsic in the infinite-time reachability set construction. Indeed,
the backward construction of the admissible sets is based on the recursive compu-
tation of the sets X−k which are nothing but the k-steps worst case controllability
sets to X under constraints (the preimage sets (5.2) are special cases, precisely they
are one-step worst case controllability sets). The following theorem, concerning the
controllability sets with state feedback, holds [Bla92, Bla94]

Theorem 10.1. Consider the system

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

d ∈ D, u ∈ U , where D and U are both convex and closed sets and D is bounded.
Assume that A(w) and B(w) are continuous functions of w ∈ W , W a compact set.
Assume that there exists w ∈ W such that B(w) has full column rank. Let CT(X )
be the T-step controllability set to X via state feedback control u = Φ(x). We have
that

i) if X is a closed set, then CT(X ) is closed;
ii) if X is a convex set, then CT(X ) is convex;

iii) if A(w) and B(w) are polytopes of matrices and X and U are polyhedra, then
CT(X ) is a polyhedron.
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Proof. All of the above statements will be proved for the one-step controllability set
only, since the rest of the proof follows by induction.

i) Assume that X is closed and let zk ∈ C be a sequence converging to z̄. Proving
that C is closed amounts to showing that z̄ ∈ C. By definition, there exists a
sequence uk(zk) such that

A(w)zk + B(w)uk + Ed ∈ X

for all w ∈ W and d ∈ D. Since A and B are continuous, W is compact and D
is bounded, the sequence {uk} is necessarily bounded and therefore it admits a
subsequence {u′

k} which converges to ū ∈ U , since U is closed. Let us consider
the subsequence {z′k} corresponding to the subsequence {u′

k}. Clearly z′k → z̄.
We must show that for all w ∈ W and d ∈ D

x̄ = A(w)̄z + B(w)ū + Ed ∈ X

which implies z̄ ∈ C. By construction x′k = A(w)z′k + B(w)u′
k + Ed ∈ X . For all

w ∈ W and d ∈ D

‖x′k − x̄‖ = [‖A(w)z′k + B(w)u′
k + Ed] − [A(w)̄z + B(w)ū + Ed]‖ ≤

≤ ‖A(w)‖‖z′k − z̄‖ + ‖B(w)‖‖u′
k − ū‖ → 0,

then x′k → x̄ and, since X is closed, x̄ ∈ X .
ii) To show convexity, consider again the one-step controllability set C1(X ) to a

convex set X (convexity for the controllable set CT(X ) is achieved recursively).
Let x1 and x2 be in C1(X ). By definition there exists two control values u(x1)
and u(x2) such that A(w)x1 + B(w)u(x1)+ Ed ∈ X and A(w)x2 + B(w)u(x2)+
Ed ∈ X for all w ∈ W and d ∈ D. Consider the vector αx1 +(1−α)x2 and the
associated control value u(x) = αu(x1) + (1 − α)u(x2). Then, for all w ∈ W
and d ∈ D,

A(w)x + B(w)u(x) + Ed = α[A(w)x1 + B(w)u(x1) + Ed]

+ (1 − α)[A(w)x2 + B(w)u(x2) + Ed] ∈ X
(10.1)

as long as X and U are convex.
iii) The last statement is proved constructively. Let X = P(F, g) and consider the

polyhedral set

M = {(x, u) : [A(w)x + B(w)u + Ed] ∈ X , u ∈ U , ∀ w ∈ W, and ∀d ∈ D} ⊂ IRn+m

The one-step controllability set is given by the projection P of M on the
subspace associate with the first n components:

P = {x : there exists u such that (x, u) ∈ M}
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Since

[A(w)|B(w)] =

s∑
i=1

[Ai|Bi]wi,

s∑
i=1

wi = 1, wi ≥ 0,

the following expression is valid

M = {(x, u) : F[Akx + Bku + Ed] ≤ g, u ∈ U , k = 0, 1 . . . s, ∀ d ∈ D} ⊂ IRn+m

Set M ⊂ IRn+m can be expressed by considering the erosion of X with respect
to ED (see Proposition 3.28) P [F, g̃], where

g̃i = gi − max
d∈D

FiEd = gi − φD(FiE),

where φD(·) is the support function of D. Then

M = {(x, u) : F[Akx + Bku] ≤ g̃, u ∈ U k = 1, . . . s} ⊂ IRn+m.

Thus M is a polyhedron and therefore, according to Proposition 3.28, its
projection P is a polyhedron.

Note that the last claim of the previous theorem holds even if D is not a polytope.
Actually, it can be any convex and compact set (provided that φD is computable).
Note also that, in the theorem, a state feedback controller was assumed. The
following corollary extends the result of the previous theorem to full information
controllers of the form u = Φ(x,w).

Corollary 10.2. Under the same assumptions of Theorem 10.1, let CT(X ) be the
T-step controllability set to X with full information control u = Φ(x,w). We have
that

• if X is a closed set, then CT(X ) is closed;
• if X is a convex set and B is a certain matrix, then CT(X ) is convex;
• if A(w) is a matrix polytope, X and U are polyhedra and B(w) = B is a certain

matrix, then CT(X ) is a polyhedron.

Proof. The proofs of the first two statement are basically the same of Theorem 10.1
and are not reported.

To prove the third statement, let us characterize the one-step controllability set
C(X ). For each k, consider the following set

Mk = {(x, u) : [Akx + Bu(x, k) + Ed] ∈ X , u(x, k) ∈ U , ∀d ∈ D} ⊂ IRn+m

Consider the polyhedral projection of this set on the first n components

Pk = {x : there exists u such that (x, u) ∈ Mk} .
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The set Pk is the one-step controllability set to X for the kth system. Clearly C(X ) ⊆
Pk for all k because the uncertain matrix A(w) can be equal to Ak.

Consider the polyhedral set

P =
⋂

k

Pk.

Then C(X ) ⊆ P . The inclusion is actually an equality if one shows that any state of
z of P can be driven to X by a control of the form Φ(x,w). If z ∈ P , then z ∈ Pk∀k,
so that

[Akz + Bu(x, k) + Ed] ∈ X , k = 1, . . . , s.

For any given w ≥ 0, 1̄Tw = 1 consider the control

u(x,w) =

s∑
k=1

wk u(x, k)

to get

A(w)z + Bu(x,w) =

s∑
k=1

wk [Akz + Bu(x, k) + Ed] ∈ X ,

hence the claim.

The next theorem concludes this subsection.

Theorem 10.3. Assume that X is a C-set. Then the following statements are
equivalent.

i) Ck−1(X ) ⊆ Ck(X ) for all k ≥ 1.
ii) The set X is robustly controlled-invariant.

iii) Each element of the sequence Ck(X ) is robustly controlled invariant.

Proof. Let us show the equivalence between i) and ii). Clearly if the first condition
holds, for k = 1 we have X = C0(X ) ⊆ C1(X ), which is equivalent to robust
controlled invariance. Conversely let us assume that X is robustly controlled-
invariant. Then X = C0(X ) ⊆ C1(X ) holds. By construction, each state x ∈
Ck−1(X ) can be driven to X in k− 1 steps. If X is invariant, then once the condition
x(k − 1) ∈ X is assured there exists a control value such that x(k) ∈ X . This means
that x can also be driven to X in k steps, namely x ∈ Ck(X ). Thus Ck−1(X ) ⊆ Ck(X ).
The fact that iii) is equivalent to the previous ones is easy to show and is left to the
reader as an exercise.



472 10 (Sub-)Optimal Control

10.1.2 Time optimal controllers for linear discrete-time systems

Conceptually, the time-optimal control in discrete-time has a simple solution based
on the controllability sets [GC86a, KG87]. Given the system

x(t + 1) = Ax(t) + Bu(t),

with the constraint u(t) ∈ U and, possibly, x(t) ∈ X , where both U and X are
C-sets, one has to compute the k-step controllability sets to the origin, precisely
Ck

.
= Ck(0). Then, given an initial condition x, the minimum time to drive the state

to the origin, by construction, can be expressed as

Tmin(x) = min{k : x ∈ Ck}

The corresponding minimum-time control law is any control functionΦ(x) achieved
as a selection as follows:

Φ(x) ∈ Ω(x) = {u ∈ U : Ax + Bu ∈ CT−1}, where T
.
= Tmin(x). (10.2)

The fact that the set-valued function Ω(x) is non-empty is a simple consequence
of the definition of the sets Ck. So simple is the idea, so hard its implementation.
Indeed, the controllability sets Ck may have an arbitrarily complex representation
and therefore the method can be not realistic for high dimensional systems (for
problems in which a long time-horizon is necessary, the reader is referred to the
examples proposed in the original works [GC86a, KG87] to have an idea of the
complexity). Here we do not report further details since, in the next section, we
will consider the most general problem of controllability of a set, thus including the
0-controllability as a special case.

10.1.3 Time optimal controllers for uncertain systems

We consider now the minimum-time problem for polytopic uncertain systems of the
form

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Ed(t)

with the polytopic constraints u ∈ U , x ∈ X and with the uncertainty polytopic
bounds w ∈ W , d ∈ D. It is quite obvious that, due to the uncertainty, the problem
of reaching the origin in finite time has no solution in general (even if there is no
additive uncertainty, i.e. E = 0, see Exercise 2). Therefore, the only reasonable
way to formulate the problem is that of reaching a target set in minimum-time. This
problem has two versions.
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• Weak version: just reach the set in minimum time;
• Strong version: reach the set in minimum time and remain inside forever.

This problem was solved in [Bla92]. Subsequent contributions are in [MS97]. The
definition of controllability under constraints is introduced next. Note that this
definition is new, since we consider also the constraints on x.

Definition 10.4 (Controllable state under constraints). The state x0 is control-
lable under constraints to the compact set G in T steps if there exists a feedback
control u = φ(x) and T ≥ 0 such that, for x(0) = x0, u(t) ∈ U , x(t) ∈ X for t ≥ 0
and

x(T) ∈ G

for any w(t) ∈ W and d(t) ∈ D.

Definition 10.5 (Ultimately boundable state under constraints). The state x0 is
ultimately boundable within the compact set G in T steps if there exists a feedback
control u = φ(x) and T ≥ 0 such that, for x(0) = x0, u(t) ∈ U , x(t) ∈ X , for t ≥ 0,
and

x(t) ∈ G, for t ≥ T,

for any w ∈ W , d ∈ D.

Analogous definitions hold for controllers of the form u = φ(x,w). With the
above in mind, the following two minimum-value functions can be introduced,
precisely:

• the minimum reaching time TR(x0) = min k ≥ 0 for which x0 is controllable to
G in k steps

• the minimum confinement time TU(x0) = min k ≥ 0 for which x0 is ultimately
boundable to G in k steps.

In general the two values are not equal and clearly TR(x0) ≤ TU(x0). We remark
the fact that the indices above refer to the worst case, say that a state might not be
controllable (ultimately boundable) but still it might be driven to G under favorable
disturbances d and w.

We are now able to formulate the following problems.

Problem 10.6 (Minimum-Time Controllability Problem). Find a feedback con-
trol strategy u = Φ(x) which minimizes TR(x0) for all x ∈ X .

Problem 10.7 (Minimum-Time Ultimate Boundedness Problem). Find a feed-
back control strategy u = Φ(x) which minimizes TU(x0) for all x ∈ X .

Henceforth we assume that the target set G is a C-set. According to the theory
developed in the previous subsection, Problem 10.6, namely reaching the target,
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can be solved by evaluating the controllable sets to G, with the only modification
that the admissible environment has to be taken into account.

In view of the constraints x ∈ X , the one-step controllability set to a C-set G is
now defined as

C(G) = {x ∈ X : ∃u ∈ U s.t. A(w)x + B(w)u + Ed ∈ G, ∀w ∈ W , and d ∈ D} .

The T-step controllability sets to G can be recursively defined as

C0 = G, CT+1 = C(CT)

The minimum-time reaching problem can be solved exactly as in the case of systems
without uncertainty, described in Section 10.1.2.

The requirement of reaching the target set in T steps may be not suitable for
applications, because what is desired in practice is to ultimately bound the state in
G. The following theorem is a preliminary step for handling this problem (for a
proof see [Bla92]).

Theorem 10.8. The state x0 is ultimately boundable in the C-set G in T steps if
and only if it is controllable in T steps to a controlled invariant set P ⊆ G or,
equivalently, to the largest controlled invariant set Pmax in G.

Note that the target set G is controlled-invariant if and only if

TR(x0) = TU(x0)

for all x0 ∈ X . As a consequence of the theorem, to solve Problem 10.7 the
following steps must be performed:

Step 1: compute the set Pmax

Step 2: find a control Φ(x) solving Problem 10.6 for Pmax, namely solving the
problem of driving the state to Pmax in minimum time.

We remind now that in view of Theorem 10.3, since Pmax is robustly controlled-
invariant, the controllability sets Ck(Pmax) are all controlled-invariant and satisfy
the inclusion

Ck−1(Pmax) ⊂ Ck(Pmax)

Therefore we have a sequence of nested controlled invariant sets which has the
following property [Bla92].

Proposition 10.9. The sequence of sets Ck(X ) converges to the domain of attrac-
tion inside X to G, precisely the set of all the points in X that can be ultimately
confined in G.
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In the case in which all the considered sets are polyhedral and the system is polytopic

A(w) =

s∑
i=1

wiAi, B(w) =

s∑
i=1

wiBi,

with
∑s

i=1 wi = 1 and wi ≥ 0, the construction of the sets Ck(X ) requires at
each step the solution of the linear programming problems described in the previous
sections. Once such a set has been found, the control can be computed on-line as

u ∈ Ω(x),

where the control map Ω(x) is defined in eq. (10.2) and where Tmin(x) is properly
replaced by TU(x).

Function Φ is a strategy that solves the minimum-time problem if and only if it
fulfils conditionΦ(x) ∈ Ω(x). Among all the functions which fulfil such a condition,
we can choose those which minimize ‖u‖ (minimal selection [Aub91]). It is simple
to show thatΩ(x) is a polyhedral set. The feedback control is obtained by computing
u on-line, by solving the linear programming problem of selecting a vector inside
Ω(x). If the control space dimension is low, as it is often the case, such a problem
may be easily solved on-line (it is extremely simple in the single-input case).

Example 10.10 (Minimum-time reachability of a prescribed level set). Let us con-
sider the water flow system with two reservoirs represented in Figure 10.1 The
upper reservoir is fed by a controlled flow while the lower one is fed by gravity
through a pipeline which connects it to the first one. The water flows out by gravity
from the second reservoir. We assume that in each reservoir there is an uncertain
flow, which is upper and lower bounded, representing the natural contribute (rain

Fig. 10.1 The reservoir
system

x1

x2

d1

d2

u
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and water streams). The linearized model (which keeps into account non-linear and
uncertain parameters) is

x1(t + 1) = x1(t) − w1(x1(t) − x2(t)) + d1(t) + u(t)

x2(t + 1) = x2(t) + w1(x1(t) − x2(t)) − w2x2(t) + d2(t)

where x1(t) and x2(t) are the water levels of the upper and lower reservoirs (with
respect to the nominal reference level), u(t) is the controlled input flow and d1(t),
d2(t) are disturbance flows. The uncertainties are assumed to be bounded as

w−
1 ≤ w1(t) ≤ w+

1 , w−
2 ≤ w2(t) ≤ w+

2 ,

d−
1 ≤ d1(t) ≤ d+

1 , d−
2 ≤ d2(t) ≤ d+

2 ,

while state and control values are constrained as

x−1 ≤ x1(t) ≤ x+1 , x−2 ≤ x2(t) ≤ x+2 , u− ≤ u(t) ≤ u+.

Assume the target set is

G = {(x1, x2) : g−
1 ≤ g1 ≤ g+

1 , g−
2 ≤ g2 ≤ g+

2 }.

and the system parameters are w−
1 = w−

2 = 1, w+
1 = w+

2 = 2 , d+
1 = d+

2 = −d−
1 =

−d+
2 = 0.1 u+ = −u− = 0.1, x+1 = x+2 = −x−1 = −x−2 = 3, g+

1 = g+
2 = −g−

1 =
−g−

2 = 1. The maximal controlled invariant set in G turns out to be

Pmax = {x1, x2 : −1 ≤ x1 ≤ 1, − 1 ≤ x2 ≤ 1, − 1 ≤ −0.111x1 + x2 ≤ 1}

The largest controlled invariant set, i.e. the domain of attraction, was found in ten
steps when the following condition

C10(Pmax) = C11(Pmax)

was detected. This set turns out to be

A = {(x1, x2) : −3 ≤ x1 ≤ 3,−3 ≤ x2 ≤ 3,−3 ≤ −0.111x1 + x2 ≤ 3,

−3 ≤ −0.222x1 + x2 ≤ 3.333}

The controllability sets to Pmax are represented in Fig. 10.2. Denoting by s(i) the
number of constraints of CT(X ), the number of constraints defining each of the sets
results in:

s(0) = 6, s(1) = 8, s(2) = 10, s(3) = 10, s(4) = 12, s(5) = 14,

s(6) = 10, s(7) = 12, s(8) = 10, s(9) = 8, s(10) = 8.
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Fig. 10.2 The sequence of
controllability sets

C10

Co
C1

C2

C3

Hence, in this case, the complexity of the problem to be solved on-line is absolutely
reasonable.

Recent developments of the proposed theory for non-linear systems are found in
[PP14].

10.2 Optimal peak-to-peak disturbance rejection

A problem that can be solved successfully via a set-theoretic approach is the optimal
disturbance rejection problem. Consider the system

x(t + 1) = Ax(t) + Bu(t) + Ed(t)

y(t) = Cx(t) + Du(t) + Fd(t)

and the stabilizing control u = Φ(x). Assume that the signal d is unknown but
bounded as follows:

‖d(t)‖∞ ≤ 1,

(note that possible non-unit bounds can be accommodated by a proper choice of the
matrices E and F). Let us consider the following definition.
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Definition 10.11 (Disturbance rejection level). The control u = Φ(x) achieves a
level of disturbance rejection μ if for all d as previously specified and for x(0) = 0,
the closed-loop system output satisfies

‖y(t)‖∞ ≤ μ

The previous expression is equivalent to −μ ≤ yi(t) ≤ μ or, more formally,
y ∈ P̄(I, μ1̄). Note that these constraints imposed on the output y include several
important cases. By means of a proper choice of matrices C, D, and F, different
types of constraints assigned independently on x and u can be considered. For
instance, when

C =

[
C1

0

]
, D =

[
0

D2

]
, F = 0,

the constraints are of the polytopic form, precisely

x ∈ {x : ‖Cx‖ ≤ μ} , u ∈ {u : ‖Du‖ ≤ μ} .

The peak-to-peak disturbance rejection problem is formulated next.

Problem 10.12. Find a stabilizing controller which minimizes the disturbance
rejection level.

This problem can be solved with set-theoretic methods in a sub-optimal way by
considering (iteratively) the following feasibility problem.

Problem 10.13 (μ-level disturbance rejection problem). Given μ > 0 reply with
an yes–no answer to the following question: does there exist a stabilizing controller
which achieves the disturbance rejection level μ > 0? If the answer is yes, find the
controller.

In principle, solving the second problem is equivalent to solving the first, since one
can iterate over μ, as we will show soon. Take any stabilizing controller (assume
that it exists), for instance a linear gain u = Kx. Compute the performance of such
a controller. This can be done by computing the l1 norm of the closed-loop system

x(t + 1) = (A + BK)x(t) + Ed(t)

y(t) = (C + DK)x(t) + Fd(t)

as shown in Chapter 6, Subsection 6.2.2. Once this value is evaluated we have an
upper bound

μini = ‖(C + DK)(zI − A − BK)−1E + F‖l1 .
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This is the smallest value for which the 0-reachable state of the system with the
control u = Kx is included in the set (see Propositions 6.16 and 6.17)

{x : |[C + DK]ix| ≤ μ− ‖Fi‖1, i = 1, 2, . . . , p} , (10.3)

where [C + DK]i and Fi are the ith rows of C + DK and F, respectively. The so
determined μini is an initial upper bound for μ.

Before stating the main theorem, let us introduce these mild assumptions

i) the matrix E has full row rank;
ii) there exists ν > 0 such that set S(μ) is included in the ball {x : ‖x‖ ≤ μν}.

Note that in practice the above assumptions do not affect the problem since it is
always possible to add a fictitious disturbance d̃ as follows

x(t + 1) = Ax(t) + Bu(t) + Ed(t) + d̃(t),

with ‖d̃(t)‖ ≤ ε to meet assumption i). Furthermore, it is absolutely reasonable to
require that the system state is bounded as in ii). This can be achieved by extending
C and D as follows

Caug =

[
C
εI

]
, Daug =

[
0

D

]
,

since, for ε small enough, the constraints are not essentially affected. The following
theorem holds.

Theorem 10.14. The largest controlled invariant set compatible with1 the set (10.3)
is not empty (equivalently, by symmetry, includes 0) if and only if there exists a
control u = Φ(x) which achieves a level of disturbance rejection μ.

The previous theorem can be inferred by set-theoretic type papers (see [BR71a,
Ber72, GS71, BU93]). However the important link between these technique and the
l1 theory (see [BG84, DP87]) was established by Shamma [Sha96b] who proposed
the theorem as it is formulated. Note that we can always associate a static controller
with any controlled-invariant set. Therefore the next corollary holds.

Corollary 10.15. Dynamic state feedback controllers cannot outperform static
ones.

We remark that the previous corollary is not valid in the class of linear controllers,
since the optimal linear compensator can be dynamic even in the state feedback
case [DBD92]. On the other hand, limiting the attention to linear compensators is a
restriction, since those can be outperformed by nonlinear ones [Sto95].

1See Definition 5.12.
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We can approach the optimal value of μ by iterating the feasibility problem,
augmenting/reducing μ ≥ 0 if the largest controlled-invariant set Pmax in the strip

S(μ) = {x : |Cix + Diu| ≤ μ− ‖Fi‖1, i = 1, 2, . . . , p} (10.4)

is empty/non-empty as follows.

Procedure: Iterative computation of the ε-optimal disturbance rejection level.

1. Set μ+ = μini and μ− = 0. Fix a tolerance ε > 0.
2. Compute the largest controlled invariant set P inside the set (10.4) with μ :=

(μ+ − μ−)/2
3. If the answer to Problem 10.13 is “YES,” then set μ+ := μ.
4. If the answer to Problem 10.13 is “NO,” then set μ− := μ.
5. If μ+ − μ− ≤ ε, then STOP, otherwise go to Step 2;

The ideal procedure, i.e. for ε = 0, converges to the optimal performance level

μ̂
.
= inf{μ : the system achieves the performance level μ}

In practice, the unknown value of μ̂ is included in the shrinking interval

μ− ≤ μ̂ ≤ μ+.

However the usual problem of set-theoretic computation is waiting for us, since the
complexity of the representation of the sets P may render the problem intractable.
Then we must impose a maximum number of constraints and stop the procedure if
such a number is reached.

Going back to the introduced assumptions i) and ii), it has to be said that they
have been introduced basically to enforce stability. Stability can be also enforced
by computing the largest λ-contractive set inside the set (10.4) as proposed in the
previous chapters. If we take a λ < 1, sufficiently close to 1, then the problem is
not basically affected and assumption i) can be removed. The interested reader is
referred to [Bla94, BMS96], and [FG97].

To remove assumption ii), one can introduce the following one.

iii) The system

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

has no transmission zeros.

When D = 0 this means that there are no (A,B) invariant subspaces included in
the kernel of C [BM92]. The following implication is an immediate consequence of
Proposition 5.15.
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Proposition 10.16. If the system (A,B,C,D) has no transmission zeros, then the
largest controlled invariant set (or λ-contractive set) inside S(μ) is bounded.

Therefore, if the “no-zeros” property holds, no additional fictitious constraints are
needed. Note that the procedure can be extended without essential modification
to the case of uncertain systems. To consider continuous-time systems, one can
consider again the Euler Auxiliary System

x(t + 1) = [I + τA]x(t) + τBu(t) + τEd(t)

y(t) = Cx(t) + Du(t)

To solve Problem 10.13 one has just to apply the procedure to the EAS by assuming
a sufficiently small τ . The following proposition supports this idea.

Proposition 10.17. Let μ̂CT be the continuous-time optimal disturbance rejection
level as in Definition 10.11. Denote by μ̂τ the optimal disturbance rejection level
for the EAS. Then the following properties hold.

• If τ1 ≤ τ2 then μ̂τ1 ≤ μ̂τ2 .
• μ̂CT ≤ μ̂τ .
• If τ̂ → 0, then μ̂τ → μCT .

Proof. The optimal disturbance rejection level is the smallest value of μ for which
there exists a controlled invariant set P inside the set (10.4). Then the first property is
based on the fact that if a C-set P is controlled invariant for the EAS with parameter
τ2, then it is controlled invariant for any 0 < τ1 ≤ τ2 (see the Appendix). The
second property comes from the fact that a controlled-invariant C-set P for the
EAS is controlled invariant for the continuous-time system. The third property is
quite tedious to show formally (the proof is quite similar to the convergence proof
proposed in [BM96a], to which the reader is referred) and it is basically due to the
fact that the solution of the EAS converges to the solution of the continuous-time
system as τ → 0. We skip the details here.

A remarkable difference between the continuous and the discrete-time case is the
following. In general, in the discrete-time case, the full information control may
assure better performances than the state feedback. Consider the system

x(t + 1) = x(t) + u(t) + d(t)

y(t) = x(t)

The full information control u = −[d + x] assures the performance level μ = 0.
However no controller of the form u0 = Φ(x) can provide a performance better than
μ = 1. Conversely, in the continuous-time case, the two strategies are equivalent as
far as disturbance rejection is concerned, as per the following result.
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Theorem 10.18. Denote by μCT and by μCTF the optimal performance achievable
in the continuous-time case by means of state and of full information stabilizing
control, respectively. Then

μ̂CT = μ̂CTF.

Proof. A formal proof is quite tedious and it is just sketched here. Consider the
system with a full information control u = Φ(x, d) and the 0 reachability set R of
the closed-loop-system. If a performance level μ̂CTF is achieved, then

R ⊂ intS(μ̂CTF + ε),

with ε > 0 arbitrarily small. Then we can:

1. consider the convex hull of R which is controlled-invariant;
2. approximate such a set by means of a controlled invariant polytope;
3. approximate the invariant polytope, in view of the results in [BM99c], by means

of a controlled invariant set which is the unit ball N [Ψ, 1] of a smooth gauge
function Ψ(x) of the type described in Subsection 4.5.3.

According to Nagumo’s conditions, there exists a control u = Φ1(x, d) which
assures the condition

∇Ψ(x)[Ax + BΦ1(x, d) + Ed] ≤ 0,

for all x on the boundary (i.e., such that Ψ(x) = 1) and then the arguments in [Meı79,
Bla00] can be applied to claim that there exists a control u = Φ2(x) (possibly non-
continuous in x = 0) for which

∇Ψ(x)[Ax + BΦ2(x) + Ed] ≤ 0.

This means that the set N [Ψ, 1] is controlled invariant under state feedback. Since
this set can fit arbitrarily well the convex hull of the original set R then ε > 0 can
be arbitrarily small.

Note that the price that might have to be paid to consider pure state feedback control
instead of a full information one is that continuity might have to be dropped [Bla00].
Consider the simple scalar example

ẋ(t) = u(t) + d(t)

with output y = x and |d| ≤ 1. The full information control u = −αx − d assures
a performance level μ̂CTF = 0. No continuous state-feedback control can assure the
same performance level. Clearly the discontinuous control

u = −2sgn(x)
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assures the performance level μ̂SF = 0, since any trajectory converges to 0, in finite
time and remains null.

We conclude the section by noticing that the proposed approach can be used to
solve a more general category of problems than the considered disturbance rejection
problem. More precisely, a large class of pursuit-evasion games can be faced within
this framework. The general idea was given in [BR71b, GS71] and [Ber72]. After
being dormant for several years, the approach has been reconsidered later for the
already mentioned reasons of the impressing computer facilities [RM05, CDS02].

Amongst the specific contributions concerning the application of set-theoretic
methods to l1 optimal control problems, we have to mention, [Sha96b, FG97, BS95,
SSMAR99] and [BMS96]. Solutions based on ellipsoidal sets have been proposed
in [ANP96, NJ99, NJ00]. Extensions to nonlinear systems have been proposed in
[Lu98].

10.3 Constrained receding-horizon control

The receding-horizon approach (often referred to as Model Predictive Control
(MPC)) is known to be an efficient way to solve constrained (sub-)optimal control
problems. If the constrained stabilization is not the only issue, but system per-
formances are also of interest, the invariance approach is not sufficient. However
the combined receding-horizon and invariance theory is quite powerful, as it will
be shown next. In this section we present only some basic properties of the
Receding Horizon Control (RHC). The reader is referred to specific literature
[GPM89, SD90, May01, MRRS00, KH05, Ala06] for more details.

10.3.1 Receding-horizon: the main idea

Consider the following infinite-time optimal control problem

min

∞∑
t=0

g(x(t), u(t)) (10.5)

s.t.

x(t + 1) = f (x(t), u(t)) (10.6)

u(t) ∈ U , x(t) ∈ X , t ≥ 0, (10.7)

and assume, for brevity, that the following holds.

Assumption: Function g(x, u) is convex and positive definite, thus g(x, u) is
radially unbounded, and U and X are C-sets.



484 10 (Sub-)Optimal Control

The problem, as it is formulated, is hard to solve even in the linear case. Only
simple problems can be faced and, quite often, by means of brute-force computation.
It is known that, according to the Hamilton Jacoby Bellman (HJB) theory, one can
solve the problem by computing the cost-to-go function (that will be introduced
soon). However, it is well known that this is unrealistic for most instances. The
reader is referred to the book [Ber00] for more details.

The receding-horizon control is based on the optimization on-line of a finite
portion of the infinite trajectory, defined on a finite horizon of length T > 0, which
is repeated at each step of the process. This is an open-loop optimization that, being
so iterated, actually provides a feedback control2. We state the basic sequence of an
RHC computation on-line [Pro63].

RHC algorithm (on-line) At each integer time t:

1. measure (or estimate) the state x(t);
2. find sequences u(i) ∈ U , x(i) ∈ X , i = t, t + 1, . . . , t + T − 1, which satisfy the

system equation and optimize a finite-horizon cost

J =

k+T−1∑
i=k

g(x(i), u(i)); (10.8)

3. apply u(t) to the system;
4. set t = t + 1 and go to step 1.

It is intuitive that, for T large enough, this scheme provides a trajectory which
reasonably close to the optimal. However, being T finite, the following issues
arise:

• can recursive feasibility be assured?
• can stability be assured?
• can some sort of (sub-)optimality be assured?

The first issue boils down to the following question: if the problem is feasible at
step t, will it be feasible also at step t + 1? It is obvious that feasibility of the latter
depends on how the control at the previous step has been chosen. The issue of sub-
optimality is the following. At the end, what we want to do, is to minimize the
infinite-horizon cost. Then a natural question is how much performance we lose in
optimizing on a finite horizon only.

Let us consider the feasibility of the problem. We first show by a simple example
that feasibility at time t does not imply feasibility in the future.

2So it has been named OLOF (= Open Loop Optimal Feedback) control, by the author of [Gut86],
whose name, by chance, is Per-Olof.
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Example 10.19. Consider the simple scalar problem of a linear system with a
quadratic cost

x(t + 1) = 2x(t) + u(t) (10.9)

g(x, u) = x2 + βu2 (10.10)

|u(t)| ≤ 3 (10.11)

|x(t)| ≤ 100 (10.12)

For this system the largest domain of attraction is the open set −3 < x < 3. If
x(t) = 2 and we minimize over a horizon of length T = 2 (this example can be
extended to a longer horizon) we have to minimize

J2 = x(t)2 + βu(t)2 + x(t + 1)2 + βu(t + 1)2

= x(t)2 + βu(t)2 + (2x(t) + u(t))2 + βu(t + 1)2

The minimizer of this expression is the couple u(t + 1) = 0 and

u(t) = −2x(t)/(β + 1)

(provided that |2x/(β + 1)| ≤ 3), which is the control at the current step. Consider
the state x(0) = 2. If we apply the “optimal” strategy, then the new state will be

x(1) = [2 − 2/(β + 1)]x(0) = [2 − 2/(β + 1)]2

If β is large enough, the control action is weak and the next state x(1) ≥ 3, so the
state, although it remains admissible, leaves the largest domain of attraction. Then
the problem will remain admissible for a certain number of steps, but the constraints
will be eventually violated and the problem will become eventually unfeasible. Note
that for x(0) = 2, the admissible control sequence −3, − 2, 0, 0, . . . drives the
system to 0, since x = 2 is a recoverable state. This is a typical case in which
recursive feasibility is not assured. This very simple example shows that, if the
constraints on x are removed then we can fix the recursive feasibility of the problem,
but we cannot assure stabilizability. Finally, it can be shown that optimality can be
arbitrarily violated in the sense that the global cost is arbitrarily high, even for values
of β for which the considered two-steps receding horizon scheme stabilizes the
system. This fact is related to the concept expressed in Subsection 2.4.7. Precisely,
limiting the optimization to the first steps can be seen as a greedy strategy, which
can have undesirable results.
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In the unconstrained control case, recursive feasibility is not an issue and the
question of stability can be solved in a simple way. As it will be apparent, the price
to be paid, since we must artificially transform the cost, is once again a compromise.
Consider the unconstrained minimization problem

min

t+T−1∑
k=t

g(x(k), u(k)) + αh(x(t + T)) (10.13)

s.t.

x(k + 1) = f (x(k), u(k)) (10.14)

which is identical to the previous, with the exception that the cost is modified by
the addition of the function h parameterized by α > 0. If h is a convex and positive
definite function (and radially unbounded function) it is quite intuitive that, for T
large enough and α large enough, the modified cost has a stabilizing effect [May01,
MRRS00]. We will propose some examples of final cost later.

10.3.2 Recursive feasibility and stability

Before starting with the description of the technique we introduce the cost-to-go
function as

Jopt(x)
.
= optimal value of (10.5)–(10.7) with initial condition x(0) = x

Assume that

f (0, 0) = 0

If the problem with initial condition is unfeasible, then the cost is set to

Jopt(x) = +∞

Let us define the finite-horizon optimal cost function as follows

Jopt(x, T)
.
= optimal value of (10.13)–(10.14) with initial condition x(0) = x

with the understanding that, again, Jopt(x, T) = +∞ if the problem is unfeasible.

Theorem 10.20. Assume that g(x, u) is positive definite with respect to x. The
following basic properties hold.

i) If g(x, u) is positive definite and radially unbounded, then both Jopt(x, T) and
Jopt(x) are positive definite and radially unbounded.
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ii) If g(x, u) and the constraints are convex, then both Jopt(x, T) and Jopt(x) are
positive definite and convex.3

iii) Jopt(x) is a local control Lyapunov function.

Proof. Property i) is straightforward since Jopt(x) ≥ Jopt(x, T) ≥ Jopt(x, 1) =
minu(t)∈U g(x(t), u(t)). To show ii), consider the case of Jopt(x, T) and take two ini-
tial states x1(k) and x2(k) and the optimal control (constraint-admissible) sequences
from these initial states: u1(k), u1(k + 1), . . . u1(k + T − 1) and u2(k), u2(k + 1),
. . . , u2(k + T − 1). Then, for any initial state x(k) = αx1(k) + (1 − α)x2(k),
0 ≤ α ≤ 1, consider the control sequence u(i) = αu1(i)+(1−α)u2(i). By linearity
the state sequence will be x(i) = αx1(i)+(1−α)x2(i), where x1(i) and x2(i) are the
optimal (constraint-admissible) trajectories associated with x1(k) and x2(k). Since
the constraints are convex, αx1(i) + (1 − α)x2(i) and αu1(i) + (1 − α)u2(i) are
admissible. Since the cost is the sum of convex terms, then

k+T−1∑
i=k

g(x(i), u(i)) ≤

≤ α

[
k+T−1∑

i=k

g(x1(i), u1(i))

]
+ (1 − α)

[
k+T−1∑

i=k

g(x2(i), u2(i))

]
≤

≤ αJopt(x1, T) + (1 − α)Jopt(x2, T),

thus Jopt(x, T) is convex. The same argument is valid for Jopt(x)
Property iii) is a standard property of the cost-to-go function and the proof can

be carried out by standard arguments [May01, Ber00].

We consider now the problem of receding horizon control for linear systems in
the presence of a convex cost and convex constraints:

min J =

t+T−1∑
k=t

g(x(k), u(k)) (10.15)

s.t.

x(k + 1) = Ax(k) + Bu(k) (10.16)

u(k) ∈ U , x(k) ∈ X , t ≥ 0, (10.17)

Recursive feasibility and stability can be assured by means of an additional
constraint associated with a contractive set. Consider a λ-contractive set S ⊆ X
(i.e. which is admissible with respect to the constraints, in the sense that it can be
associated with a controlΦ(x) ∈ U , for all x ∈ S). Denoting by Ψ(x) the Minkowski

3Actually, in Section 3, we did not consider functions which may assume values +∞ as Jopt could
do. The reader is referred to [Roc70] for an extended definition.
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function associated with S, we require the contraction of the first state of the
planning horizon with respect to this set. More precisely, the following additional
initial constraint is added to the scheme

Ψ(x(t + 1)) ≤ λΨ(x(t)) (10.18)

The following proposition holds.

Proposition 10.21. The receding horizon scheme (10.15)–(10.17) with the addi-
tional constraint (10.18) is recursively feasible and locally stable with domain of
attraction S.

Proof. Assume that x(t) ∈ S. Then there exists a sequence of control inputs u(t +
i) ∈ U , i = 0, 1, 2, . . . for which x(t + h) ∈ λhS ⊆ S, thus there exists a feasible
solution to the optimization problem. Stability of the scheme is assured since the first
control of the computed sequence is actually applied and therefore condition (10.18)
holds at each step.

A different approach to solve the problem is to include the final state of the
planning horizon in a contractive set. Given a λ-contractive S ⊆ X which is
admissible with respect to the constraints, in the sense that it can be associated with
a control Φ(x) ∈ U , for all x ∈ S, the following additional final constraint is added
to the scheme

x(t + T) ∈ S. (10.19)

Proposition 10.22. The receding horizon scheme (10.15)–(10.17) with the addi-
tional constraint (10.19), with S controlled-invariant, is recursively feasible.

Proof. Assume that at time t the condition x(t + T) ∈ S can be assured, precisely
that there exists a sequence of T inputs which drives the state inside S in T steps.
Then, by construction, at time t +1 there exists a sequence of of T − 1 inputs which
drives the state inside S is in T − 1 steps. But since S is invariant there exists a
further control which keeps the state inside S, so the sequence can be extended to
the original length T. Then the problem is recursively feasible.

Stability can be assured by reducing the time horizon of one unit at each step, so
that the set S is eventually reached. Once the state is in S, the typical procedure is
to switch to a local controller. Another technique with a similar property is that of
scaling, at each step, the set S by reducing its size. This can be done by storing the
value μprec = Ψ(x(t + T)) computed at step t and, at the next step t + 1, based on
the actual state x(t + 1), imposing the constraint

Ψ(x(t + T + 1)) ≤ λμprec.
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This recursive scheme assures both recursive feasibility and asymptotic stability.
A further possibility is that of modifying the cost by adding on top of the final
constraint the additional final state cost

αh(x(T)) = αΨ(x(T))p,

where Ψ(x) is the Minkowski function of the computed contractive set. When the
final state reaches a neighborhood of the origin N [Ψ, μ] where the constraints are
not active, then we know that at the next step we can guarantee x(T+1) ∈ λN [Ψ, μ],
equivalently Ψ(x(T + 1)) ≤ λΨ(x(T)). Assuming g positively homogeneous, for α
large enough and p equal to the degree of g, the optimizer will be forced to reduce
the cost by reducing Ψ(x(T)).

There is an interesting method to choose the final invariant set. Let us consider
the unconstrained cost-to-go function, precisely

ψ(x) = inf

∞∑
t=0

g(x(t), u(t)) (10.20)

s.t.

x(t + 1) = f (x(t), u(t)) (10.21)

x(0) = x (10.22)

Function ψ(x) is the optimal cost with initial condition x. Let us assume that ψ(x)
is continuous and positive definite. It is clear that, if X and U are C-sets, in a region
close to the origin the constraints have no role and thus this function turns out to be
the effective optimal cost for our original problem. In particular, consider the set of
points of the form N [ψ, μ], where μ is small enough to assure both conditions

N [ψ, μ] ⊆ X

and

Φ(x) ∈ U ,

where Φ(x) is the unconstrained optimal control. Inside N [ψ, μ], the optimal
unconstrained trajectory and the optimal constrained one are the same. In fact the
following proposition (reported without the obvious proof) holds.

Proposition 10.23. The set N [ψ, μ] is controlled-invariant.
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Therefore the infinite-horizon optimal control can be solved as follows [SD87].

Jopt(x)
.
= min

T−1∑
k=0

g(x(k), u(k)) + ψ(x(T)) (10.23)

s.t.

x(k + 1) = f (x(k), u(k)) (10.24)

x(0) = x (10.25)

u(k) ∈ U , x(k) ∈ X (10.26)

x(T) ∈ N [ψ, μ] (10.27)

The following theorem holds.

Theorem 10.24. For a given initial condition we have the following

i) The optimal value Jopt is non-increasing with T.
ii) There exists T̂ such that, for T ≥ T̂ the optimal cost remains unchanged.

iii) For any T ≥ T̂, the control achieved by solving (10.23)–(10.27) with the
receding-horizon strategy is globally optimal.

iv) For any T ≥ T̂, the optimal cost of the optimization problem achieved by solving
on-line (10.23)–(10.27) is equal to the infinite-time optimal cost with the current
state as initial condition.

Proof. See [SD87, May01]

The importance of the previous theorem lies in the fact that we can compute the
optimal constrained strategy in a receding horizon fashion if we are able to solve,
locally, an unconstrained problem to determine ψ(x) and if the horizon is large
enough.

A typical case in which this scheme can be easily implemented is the constrained
linear-quadratic optimal control with

Jopt(x)
.
= min

∞∑
k=0

x(k)T Qx(k) + u(k)T Ru(k) (10.28)

s.t.

x(k + 1) = Ax(k) + Bu(k) (10.29)

x(0) = x (10.30)

u(k) ∈ U , x(k) ∈ X , (10.31)

x(t + T)T P x(t + T) ≤ μ (10.32)

where P 
 0 is any positive definite matrix associated with a controlled-invariant
ellipsoid. An interesting method to choose the matrix P was proposed in [SD87].



10.3 Constrained receding-horizon control 491

For this problem, the unconstrained optimal cost function is given by

Jopt(x) = xTPx

where P is the solution of the Riccati equation

P = Q + ATPA − ATPB
[
R + BTPB

]−1
BTPA,

and the corresponding optimal control is given by

u = Kx =
[
R + BTPB

]−1
BTPAx

Therefore one has to identify an ellipsoid E [P, μ] such that

E [P, μ] ⊆ X , and KE [P, μ] ⊆ U

by choosing a suitably small μ.
The method of imposing the arrival to a controlled-invariant set does not provide

a domain of attraction to the origin as in the technique previously shown of forcing
the first state inside a contractive set. A domain of attraction can be computed
indirectly since any state for which the finite-horizon optimization problem has a
feasible solution (including the arrival to the controlled invariant set) is included in
the domain of attraction. However, in the linear problem with convex constraints
and cost, we can under-estimate the domain of attraction by means of the following
property.

Proposition 10.25. Consider the receding horizon problem (10.23)–(10.27) and
further assume that (10.24) is linear with X and U convex. Consider a polytope
V [X]. If for any vertex (i.e. any column of matrix X) the finite-horizon control
problem with arrival to a controlled-invariant C-set P has a feasible solution, then
each state in the polytope is driven to P ( and then to 0) by the receding horizon
strategy and with a cost which is upper bounded by the largest of the costs associated
with the vertices.

Proof. The proof follows by simple convexity arguments and is left as an exercise.

When X and U are polytopes, the receding horizon problem can be solved by
linear-quadratic optimization in an efficient way. Indeed, if the following constraints
are assumed

X = {x : Fx ≤ g} and U = {x : Hx ≤ k},
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the associated receding horizon problem has the following aspect

x1 = Ax0 +Bu0

x2 = A2x0 +ABu0 +Bu1

x3 = A3x0 +A2Bu0 +ABu1 +Bu2

...
xT = ATx0 +AT−1Bu0 +AT−2Bu1 + . . . +BuT−1

Fxi ≤ g
Hui ≤ k

(10.33)

In the quadratic cost case, minimizing (10.28) subject to these constraints is a
classical problem for which specific software exists.

It is worth mentioning that the constrained linear-quadratic problem can be
solved in a different way in view of the result in [BMDP02]. Indeed, in the
case of linear constraints (i.e., polytopic X and U), the cost-to-go function is
piecewise quadratic and the optimal compensator is piecewise-linear, therefore
their evaluation is computationally feasible. A further interesting approach to face
constrained optimal control problems is that based on the so-called multiparametric
programming (see, for instance, [TJB03] and [BBBM05]).

10.3.3 Receding horizon control in the presence
of disturbances

We consider now the case in which the system is affected by disturbances, and
precisely the case of systems of the form

x(t + 1) = Ax(t) + Bu(t) + Ed(t),

where d ∈ D a C-set. We still assume constraint of the form x ∈ X and u ∈ U .
For brevity we assume that both X and D are polytopes. In this case it is possible to
take into account the effect of the disturbance in the trajectory computation without
basically increasing the complexity of the problem. Consider the linear constraint

Fix(t + k) ≤ gi, i.e. x(t + k) ∈ P [F, g]

k = 1, . . . , T. Assume x(t) is known. From the system equation we get for each k

F

[
Akx(t) +

k−1∑
h=0

Ak−h−1Bu(h + t) +

k−1∑
h=0

Ak−h−1Ed(h + t)

]
≤ g (10.34)
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Constraints (10.34) have to be satisfied for all possible d ∈ D. The last term in the
square brackets belongs to the k-step reachability set with the disturbance input, and
then (10.34) is equivalent to

F

[
Akx(t) +

k−1∑
h=0

Ak−h−1Bu(h + t) + z(t + k)

]
≤ g,

where

z(t + k) ∈ Rk,

and Rk is the k-step reachability set of the system (A,E) with constrained input d ∈
D (see Subsection 6.2.1). Consider a vector r(k), whose components are defined as

r(k)
i

.
= max

z∈Rk

Fiz = φRk (Fi).

Then the set of linear constraints (10.34) becomes equivalent to

F

[
Akx(t) +

k−1∑
h=0

Ak−h−1Bu(h + t)

]
≤ g − r(k), k = 1, 2, . . . , T. (10.35)

This trick was proposed in [Bla90a]. Note that the restricted constraints have the
same form of the original ones and that only the known term g is replaced by the
more stringent g − r(k). This allows to discharge the disturbance in the trajectory
planning. The idea is pictorially represented in Fig. 10.3. Since disturbances are
present, asymptotic stability cannot be achieved. To assure ultimate boundedness to
the whole scheme one can consider, along with the regular constraints (10.35), the

Fig. 10.3 The reduced
constraints

x(t+1)

x(t+4) x(t+2)

x(t+3)

x(t)
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Fig. 10.4 The ultimate
constraint

x(0)

x(T)

X0

additional final constraint

x(t + T) ∈ X0 = {x : F0x ≤ g0}

where X0 is a compact set compatible with the constraints. Such a final constraint
is equivalent to (see Fig. 10.4)

F0

[
ATx(0) +

T−1∑
h=0

AT−h−1Bu(h)

]
≤ g0 − r(T)

0

where r(T)
0 is the analogous of r(T) computed for X0. The following proposition

holds [Bla90a].

Proposition 10.26. If the set X0 is such that, for each vertex xi of X0 assumed as
initial condition, the problem of finding a sequence which drives the state again to
X0 in T steps has a feasible solution, then the condition

x(kT) ∈ X0, k = 1, 2, . . .

can be recursively guaranteed for all the initial conditions inside X0. Therefore it
is possible to assure ultimate boundedness, for all the initial states for which the
problem with the terminal constraint x(T) ∈ X0 is feasible.

The property which assures that the state can be periodically driven inside X0 is
named U–D-invariance in T steps in [Bla90a]. Ultimate boundedness inside X0 can
be assured if X0 is controlled invariant.

The main troubles arising with this approach are due to the fact that if the system
is not asymptotically stable then the reachable sets Rk become larger and larger
as the planning horizon increases. Therefore an improvement of the idea can be
achieved by pre-stabilizing the system as suggested in [MSR05]. The system is pre-
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stabilized by a certain feedback control (typically an optimal gain) so that the actual
control action is u(t) = Kx(t) + v(t). Clearly this means that the residual control
authority is reduced and precisely

Kx(t) + v(t) ∈ U

Setting Â = A + BK, the optimization problem takes the form

x1 = Âx0 +Bv0
x2 = Â2x0 +ÂBv0 +Bv1
x3 = Â3x0 +Â2Bv0 +ÂBv1 +Bv2

...
xT = ÂTx0 +ÂT−1Bv0 +ÂT−2Bv1 + . . . +BvT−1

Fxi ≤ g − ri i = 1, 2, . . . , T − 1

F0xT ≤ g0 − rT

HKxi + Kvi ≤ k

Note that now joint state-control constraints are present. These constraints have
been already considered in Section 5.3. In view of those results we can compute the
reduced constraints as shown above and then compute a contractive set compatible
with the above constraints.

The advantage of this approach is that since the system is stable, the reachable
sets are bounded. In practice the new shifting values ri are much smaller than
those computed for the uncontrolled system (see Subsection 6.2.1). The new
picture is that of Fig. 10.5. Since the propagation of the uncertainty effect, due
to the prestabilization, is strongly reduced, a more accurate prediction is possible.
Therefore a much smaller set can be assumed as final target. This fact can be seen

Fig. 10.5 The ultimate
constraint with
prestabilization

x(0)

x(T)
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by means of a very simple example. Consider again system (5.21) in Section 5.3
now with an additional disturbance term

x(t + 1) = 2x(t) + u(t) + d(t), (10.36)

where |u| ≤ 4 and |d| ≤ 1. If we consider the prestabilization (already introduced
in Section 5.3)

u = −2x(t) + v(t)

the resulting system is

x(t + 1) = v(t) + d(t).

For this system the problem of finding an open-loop v-sequence v(0), v(1), v(2)
which keeps the state inside the interval [−2, 2] can be solved on any arbitrarily large
horizon. Indeed for−2 ≤ x(0) ≤ 2, one can just take v(t) = 0 for t = 0, 1, 2, . . . , T.
Simple computations prove that no constraint violation occurs and that, in fact, the
condition −1 ≤ x(t) ≤ 1 is assured for t ≥ 1. It is immediate to see that no
decision can be made over a T-horizon for the original control input u. Indeed, no
open-loop sequence u(0), u(1), . . . , u(T) for T > 2 will produce feasibility as long
as the constraint −2 ≤ x(t) ≤ 2 must be satisfied, since there is no way to fit the
disturbance-reachability set in this interval.

Note that this example does not mean that the technique of considering the presta-
bilization produces any miracle, since the new system is equivalent to the original
one as long as the constraints remain. It just means that, without pre-stabilization,
the prediction fades as the horizon increases and the trick of taking into account
the disturbance effect during prediction by means of the reachability sets cannot
be applied. For more detailed discussions about robust model-predictive control, in
particular on the so-called tube-based model-predictive control technique, the reader
is referred to [MSR05, MRFA06, CBKR11, RKFC12, RKC+12, RKCP12].

Using set-theoretic methods in receding-horizon control is a standard approach
and only a brief overview is given here. After the first edition of the present
book, a lot of contributions have been published in the literature. Examples of
recent developments are [GFA+11, SOH11, CKRC11, LAAC08, JM10, RFFT14].
A detailed survey is out of the scope of this book and the reader is referred to specific
literature [AZ00, KH05, GSDD06, Ala06, BM99a].

10.4 Relatively optimal control

In this section, a recent idea to solve optimal control problems in the presence
of constraints is discussed. The motivating idea is that finding a control which is
optimal for any initial condition might be computationally hard. However, achieving
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Fig. 10.6 Systems with dominating tasks

optimality for any initial condition is not really important in many cases of systems
(Fig. 10.6) whose main goal is to perform specific tasks and which thus work with
special initial conditions (such as lifts, bascule bridges, automatic gates, floodgates,
cranes, . . . ). Therefore in such cases optimality is important only when starting from
specific nominal initial states. The Relatively Optimal control (ROC) problem is that
of finding a feedback control (i.e., without feedforward actions) such that

• it is optimal for the nominal initial condition;
• it is stabilizing for all the other initial states.

Consider the discrete-time reachable system

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

(10.37)

and the following convex functions of the output

g(y), li(y), i = 1, 2, . . . , s,

together with the constraint

y(t) ∈ Y, (10.38)

where Y is a convex and closed set. Consider then the next optimization problem
with assigned initial condition x(1) = x̄ �= 0 (the initial time now is set to k = 1 for
notation coherence)

Jopt(x̄) = min
N∑

k=1

g(y(k)) s.t. (10.39)

x(k + 1) = Ax(k) + Bu(k), k = 1, . . . ,N (10.40)

y(k) = Cx(k) + Du(k), k = 1, . . . ,N (10.41)

N∑
k=1

li(y(k)) ≤ μi, i = 1, 2, . . . , s (10.42)



498 10 (Sub-)Optimal Control

Fig. 10.7 Feedforward +
static feedback
(trajectory-based) scheme

-

u (k)

x (k)

y (k)
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y(k) ∈ Y, k = 1, 2, . . . ,N (10.43)

x(1) = x̄ (10.44)

x(N + 1) = 0 (10.45)

N ≥ 0, assigned (or free). (10.46)

In principle this problem is very easy to solve by means of a feedback-and-
feedforward control as in Fig. 10.7. Let x̄(k) and ū(k), k = 1, 2, . . . ,N, be the state
and control optimal trajectories, K be any feedback matrix such that A+BK is stable
and consider the static control

u(t) = ū(t) + K(x(t) − x̄(t)). (10.47)

It is obvious that, by definition of ū(t), if the system is initialized with initial
condition x(1) = x̄, the corresponding trajectory is the optimal one. Unfortunately,
this scheme presents well-known disadvantages. Firstly, the resulting controller is
time-varying. Secondly, the initial condition x̄ may be just the effect of a disturbing
event, for instance an impulse, whose precise instant is unknown a priori. Therefore
a solution based on feedforward is not viable. Thirdly, the controller basically
tracks the optimal trajectory originating in x̄ and therefore, if x(1) is far from x̄,
the resulting transient will be completely unsatisfactory. Fourthly, when magnitude
constraints on u and y are present, a natural request is that, whenever x(1) is
“reduced” (for instance x(1) = x̄α, 0 < α < 1), the constraints remain satisfied.
The scheme (10.47) does not assure this property, as shown in the next example.

Example 10.27. Consider the problem above for the system with

A =

[
1 1

0 1

]
, B =

[
0

1

]
, C =

⎡
⎣ 1 0

0 1

0 0

⎤
⎦ , D =

⎡
⎣ 0

0

1

⎤
⎦ ,

Assume |y2| ≤ 2 and |y3| = |u| ≤ 1, and let the initial condition be x(1) = x̄ =
[ − 8 0 ]T . Take g(y) = |y1| and N = 6. The optimal state and control trajectories,
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Fig. 10.8 The trajectories for the example

x(1), x(2) . . . and u(1), u(2) . . . , respectively, are given by the columns of the
following matrices

[
−8 −8 −7 −5 −3 −1 0

0 1 2 2 2 1 0

]
,

[
1 1 0 0 −1 −1 0

]
.

The corresponding optimal cost is Jopt = 32. Consider the control (10.47), with
feedback matrix K = [ − 1 − 2 ] that renders A + BK nilpotent. Clearly, for the
assigned x(1) this control yields the same optimal trajectory reported in Fig. 10.8
(plain line). Assume now to scale down the initial condition as x(1) = x̄/2. The goal
of the control scheme (10.47) is that of reaching the previous optimal trajectory.
The resulting modified trajectory (dashed-dot curve in Figure 10.8) reaches the
original one in two steps at the cost of J = 24. However it is apparent that this
solution is absurd: the first component x1(k) is initially enlarged to reach the optimal
trajectory. Furthermore, both state and input constraints are violated. Note that the
scaled trajectory x̄(1)/2, x̄(2)/2, x̄(3)/2, . . . , corresponding to the plain line in
Figure 10.8, not only moves the first component immediately in the right direction,
but achieves a cost of J = 16 with no constraint violation. It is apparent that if the
optimal trajectory for x(1) = x̄ is achieved by a linear controller, with zero initial
condition, the same controller produces the scaled trajectory when x(1) = x̄/2. This
second behavior is, of course, highly preferable. We do not even report the solution
for x(1) = −x̄, since it goes out of range with x(2) = [ 8 − 15 ]T , with deep
constraints violation. It can be shown that changing the stabilizing gain K (i.e., not
assuming a dead-beat controller) does not improve the situation up to an acceptable
level.



500 10 (Sub-)Optimal Control

Fig. 10.9 Pure (dynamic)
feedback scheme
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Therefore, since the feedforward idea doesn’t seem to produce reasonably good
results, we resort to the feedback scheme in Fig. 10.9. The basic request for this
scheme is that the system has to be stable and the transient has to be optimal if the
initial condition is x̄. To avoid some of the problems evidenced in the last example,
we also require that our (possibly dynamic) compensator cannot be initialized based
on the knowledge of x̄, say the compensator initial condition is zero. We are now in
the position of formalizing the problem. Denote by z(t) the state of the compensator.

Problem 10.28 (Relatively Optimal Control Problem). Find a state feedback
compensator having the structure in Fig. 10.9 such that

1. for x(1) = x̄ and for z(1) = 0 the control and state trajectories are the optimal
constrained ones

2. it is stabilizing4 for all initial conditions.

We remark that the constraints are fulfilled only for the nominal condition. Thus
they should be considered as soft constraints for performance specifications rather
than hard ones.

10.4.1 The linear dynamic solution

We show how to obtain a stabilizing (actually dead-beat) state feedback compen-
sator which does not require feedforward or state initialization and is optimal for the
nominal initial condition. This technique has been proposed in [BP03]. For brevity,
here we work under a technical assumption (in [BP03] it is shown how to remove it).

Assumption. The initial state x̄ �= 0 does not belong to any proper (A,B)-invariant
subspace5 of IRn.

4Although with possible constraint violations.
5A subspace S is said (A,B)-invariant if for all x ∈ S there exists u(x) such that Ax + Bu(x) ∈ S .
It is said proper if S �= IRn [BM92].
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Denote by

X̄ =
[

x̄(1) x̄(2) . . . x̄(N)
]

(10.48)

the n × N matrix containing the optimal state trajectory and by

Ū =
[

ū(1) ū(2) . . . ū(N)
]

(10.49)

the m×N matrix containing the optimal input sequence. By construction, x̄(k+1) =
Ax̄(k) + Bū(k) and x̄(N + 1) = Ax̄(N) + Bū(N) = 0. This means that the matrices
X̄ and Ū satisfy the next equation

AX̄ + BŪ = X̄P, (10.50)

where the square matrix P is an N dimensional Jordan block associated with the 0
eigenvalue,

P =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

: : . . . : :

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦
, (10.51)

and is a stable matrix since Pk = 0 for all k ≥ N. In view of the introduced
assumption, we can state the next Lemma, whose proof can be found in [BP03].

Lemma 10.29. Matrix X̄ has rank n, namely it has full row rank.

Note that the technical assumption is sufficient, but not necessary, say there might
be cases in which x(1) belongs to an (A,B) invariant subspace but still X̄ results in
a full row rank matrix6. The previous lemma obviously implies that N ≥ n. For the
moment being, let us assume N > n (the simple case N = n will be briefly discussed
later). Let us consider any (N − n) × N matrix Z̄ of the form

Z̄ =
[
0 z̄(2) z̄(3) . . . z̄(N)

]
(10.52)

(note that the first column is zero) such that the next square matrix is invertible

T =

[
X̄
Z̄

]
=

[
x̄(1) x̄(2) x̄(3) . . . x̄(N)

0 z̄(2) z̄(3) . . . z̄(N)

]
. (10.53)

6Basically, only via academic examples it is possible to provide non full-row-rank X. For instance
by considering a pure LQ control and by taking as initial condition an eigenvector of the optimal
closed-loop matrix.
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Clearly finding a Z̄ in such a way that T is invertible is always possible because, by
Lemma 10.29, X̄ has full row rank. The fact that we can always take Z̄ having the
zero vector as first column is also readily seen. Since x(1) = x̄ is non-zero, there
is at least one non-zero component in the first column of X̄. By means of the row
of X̄ corresponding to this entry we can apply Gaussian elimination to Z̄ in order to
render null each entry of the first column of Z̄. Matrix T remains invertible after this
operation. Denote by

V̄
.
= Z̄P (10.54)

and consider the linear compensator

z(k + 1) = Fz(k) + Gx(k) (10.55)

u(k) = Hz(k) + Kx(k) (10.56)

where F,G,H,K are achieved as the unique solution of the linear equation

[
K H
G F

] [
X̄
Z̄

]
=

[
Ū
V̄

]
. (10.57)

The next theorem states that such a compensator is stabilizing and that, denoting
by x(k), z(k), u(k) the generic solution of the closed-loop system, for x(1) = x̄ and
z(1) = 0 the resulting trajectory is the optimal one, namely x(k) = x̄(k), u(k) =
ū(k) and z(k) = z̄(k).

Theorem 10.30. The compensator given by (10.55)–(10.57), with T invertible, is a
solution of the ROC Problem.

Proof. By combining (10.50) and (10.54) the following equation is obtained

[
A 0

0 0

] [
X̄
Z̄

]
+

[
B 0

0 I

] [
Ū
V̄

]
=

[
X̄
Z̄

]
P. (10.58)

The state matrix of the closed-loop system, when the compensator (10.55)–(10.56)
is used, is then

Acl =

[
A 0

0 0

]
+

[
B 0

0 I

] [
K H
G F

]
, (10.59)

which, by (10.57) and (10.58), satisfies the condition
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Acl

[
X̄
Z̄

]
=

[
X̄
Z̄

]
⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 0

1 0 . . . 0 0

0 1 . . . 0 0

: : . . . : :

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦

= TP. (10.60)

Since T is invertible, the matrix Acl = TPT−1 is similar to P, hence it is stable. If
we consider the expression of the kth column in (10.60) and the expression of T
in (10.53), denoting by Pk the kth column of P, it is readily seen that if the initial
condition is

[
x(1)

z(1)

]
=

[
x̄(1)

z̄(1)

]
=

[
x̄
0

]

then the solution

Acl

[
x(k)
z(k)

]
=

[
x(k + 1)

z(k + 1)

]
, (10.61)

for k = 1, 2, . . . ,N − 1 is such that

x(k) = x̄(k), and z(k) = z̄(k)

and

Acl

[
x(N)

z(N)

]
= 0, (10.62)

therefore the state sequence is the optimal one. The corresponding control sequence
is achieved by considering (10.55)–(10.56) and in particular

u(k) = Hz(k) + Kx(k) = Hz̄(k) + Kx̄(k),

so that, from (10.57), the control sequence is u(k) = ū(k), k = 1 . . .N, the optimal
one.

The case N = n is very simple. Indeed no augmentation is necessary. Since X is
square invertible and U = KX, we immediately derive that

u = Kx = [ŪX̄−1]x (10.63)

is the desired control.
Once we have established that for the nominal initial condition no constraint

violations occur, a further point worth investigating is the determination of the set
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of states for which the same applies. The next proposition provides an answer in the
case of linear constraints.

Proposition 10.31. Assume that the constraint set on y, namely the set Y , is a
polyhedron including the origin in its interior

Y = {y : Pjy ≤ qj, j = 1, 2, . . . , s, qj > 0} (10.64)

Then the set of all the initial conditions which are driven to the origin without
constraint violation is a polyhedronXmax expressed by a set of s×(n−1) inequalities
as follows:

Xmax =

⎧⎨
⎩

Pj [C + DK DH ] (Acl)
k
[

I
0

]
x ≤ qj,

j = 1, 2, . . . , s, k = 1, 2, . . . ,N − 1

⎫⎬
⎭ (10.65)

Proof. To prove the theorem, we note that

y(k) = Cx(k) + Du(k) = (C + DK)x(k) + DHz(k) = [C + DK DH ]ζ(k)

where ζ
.
= [xT zT ]T . By exploiting the main result presented in Section 5.4 and due

to [GT91] it can be seen that the set of initial states Xmax for which the constraints
are satisfied is defined by the set of inequalities

Pj [C + DK DH ] (Acl)
k
ζ(k) ≤ qj, j = 1, 2, . . . , s, k = 1, 2, . . . , N̂

for some N̂ (which is finite, under appropriate assumptions unnecessary here, but
not known a priori [GT91]). Since Acl is nilpotent, k ranges up to N − 1 and for k ≥
N the inequalities become trivial (since qj > 0). Furthermore we assume that the
compensator is initialized with z(1) = 0 and therefore the admissible set of initial
conditions is the intersection of this set and the x-space (namely the intersection
with the subspace z = 0) which is given by the inequalities in (10.65).

In the problem formulation the final constraint x(N + 1) = 0 was imposed and
this produced a dead-beat compensator (the closed-loop matrix is similar to P). This
constraint can be removed and, as a consequence, the closed-loop stability problem
arises. In [BP06] it is shown how this problem can be solved via characteristic
polynomial assignment. Briefly we report the main idea, which basically consists
in replacing constraint x(N + 1) = 0 by the new constraint

x(N + 1) =

N∑
i=1

x(N − i + 1)pi, (10.66)
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where pi are real numbers. Then it can be shown that the closed-loop matrix turns
out to be similar to the following matrix P

P =

⎡
⎢⎢⎢⎢⎢⎣

0 0 . . . 0 pN

1 0 . . . 0 pN−1

0 1 . . . 0 pN−2

: : . . . : :

0 0 . . . 1 p1

⎤
⎥⎥⎥⎥⎥⎦
. (10.67)

Concerning the numbers pi, there are two options.

• they can be assigned arbitrarily, say an ROC problem can be solved with
characteristic polynomial assignment;

• they can be determined a posteriori. Under some conditions (see [BP06]) it
can be shown that they can be taken as free in the optimization problem (thus
not affecting it with the additional constraint (10.66)) and determined as the
coefficients of a stable polynomial.

We finally stress that, since the zero terminal constraint is not imposed, the cost can
be equipped by a weight for the final state and precisely

Jopt(x̄) = min
N∑

k=1

g(y(k)) + h(y(N + 1)). (10.68)

Clearly the control is optimal only on the considered horizon. Therefore the
technique is suitable only in those cases in which “it does not matter what happens
close to the target.” The reader is referred to [BP06] for further motivations and
details.

Example 10.32. As already mentioned, the proposed approach turns out to be
useful when a system mainly operates between some prescribed positions for whom
optimality is required, but it is also important to guarantee a “reasonable behavior”
from any initial condition. As an example, consider the cart-pole system depicted
in Fig. 10.10, and suppose that the system “normal” operation is moving from A

u = F

x =ˆγ

sFA B

s

s

γ
γ

Fig. 10.10 The cart-pole system
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to B (and vice versa). In the following, a stabilizing dynamic compensator which
guarantees time-optimality for such an operation is computed and a comparison of
its performance for a non-nominal condition versus the behavior of a trajectory-
based scheme is made. The state vector x̂ for the continuous-time system is reported
in Fig. 10.10, while the zero-order-hold sampling of the linearized system leads to
the following state-space representation (the parameters are: mass of the cart 0.3kg,
mass of the pole 0.1kg, length of the pole 1m, gravity acceleration 9.81m/s2, friction
neglected, sampling time 0.2s):

A =

⎡
⎢⎢⎣

1 0.2 0.06259 0.00425

0 1 0.59844 0.06259

0 0 0.74961 0.18301

0 0 −2.3938 0.74961

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0.065953

0.65251

−0.06381

−0.61004

⎤
⎥⎥⎦ .

The target and nominal initial conditions considered are xB = [0 0 0 0]T and xA =
[−0.9 0 0 0]T . The following constraints on both the input (force applied to the cart)
and the third component of the state (angle of the pole) are present:

|u(k)| ≤ 3.5, |x3(k)| ≤ 0.4. (10.69)

By choosing x̄ = xA, and

C =

[
0 0 1 0

0 0 0 0

]
, D =

[
0

1

]
,

g(y(k)) = 1, Y = {[y1 y2]
T : |y1| ≤ 0.4, |y2| ≤ 3.5},

with N free, the problem of finding the minimum-time optimal trajectory is cast into
the form (10.39)–(10.46). The resulting optimal trajectory, steering the system from
x̄ to 0 in N = 7 steps, is reported in Fig. 10.11 (a) and (b), for the pairs (x1, x2) and
(x3, x4) respectively. The optimal control sequence turns out to be:

Ū =
[
2.9199 −1.2314 −1.7968 0.0000 1.7968 1.2314 −2.9199

]

and the corresponding matrix X̄ is

X̄ =

⎡
⎢⎢⎣
−0.9 −0.70742 −0.42682 −0.39439 −0.50561 −0.47318 −0.19258

0 1.9053 0.87873 −0.53399 −0.53399 0.87873 1.9053

0 −0.18632 −0.38707 −0.20076 0.20076 0.38707 0.18632

0 −1.7812 −0.138 1.9192 1.9192 −0.138 −1.7812

⎤
⎥⎥⎦ .
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Fig. 10.11 The optimal trajectory from x̄ = [−0.9 0 0 0]T

The order of the compensator is N − n = 3. By means of the augmentation matrix

Z̄ =

⎡
⎣ 0 −0.26741 −0.14709 0.089061 0.2518 0.21588 0.068797

0 0.13377 −0.047075 −0.0082171 0.19501 0.32251 0.21912

0 0.23974 0.048655 −0.028113 0.12015 0.28393 0.23175

⎤
⎦ ,

we get an invertible T which yields the following matrix F:

F =

⎡
⎣ 0.039928 0.058252 0.031516

0.22618 0.20217 0.0027141

0.062665 0.17021 0.20636

⎤
⎦ ,

(whose eigenvalues are −0.00551, 0.30822, and 0.14574). Note that this matrix is
stable. This fact did not occur by chance only. In [BP03], a technique to determine a
dynamic compensator which is actually stable is reported. The overall compensator
matrix:

[
K H
G F

]
=

=

⎡
⎢⎢⎣
−3.2443 801.79 2678.68 583.548 −2344.82 −2566.59 −1152.60

0.2971 0.2659 −0.06448 0.25835 0.03992 0.05825 0.03151

−0.1486 0.01446 0.08137 0.07400 0.22618 0.20217 0.00271

−0.2663 −0.08883 0.14637 −0.0007 0.06266 0.17021 0.2063

⎤
⎥⎥⎦

By construction, the closed-loop system, initialized in [xT
A 0 0 0]T (4 plant variables

and 3 compensator zero variables) gives rise to the trajectory depicted in Fig. 10.11,
the same trajectory obtained by means of the trajectory-tracking controller (10.47).
However, starting from a non-nominal initial condition the situation is different:
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Fig. 10.12 The trajectory from x̃ = [−.65 0 0 0]T (non-nominal initial condition) using the
proposed compensator (black) and a trajectory tracking approach (gray)
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Fig. 10.13 The optimal minimum-time trajectory from x = [−0.65 0 0 0]T (black) and that
obtained using the trajectory tracking approach saturating the input according to the first of
the (10.69) (gray)

Fig. 10.12 shows the behavior of the system from x̃ = [−0.65 0 0 0]T �= xA under
(black line) the proposed feedback controller and (gray line) the controller (10.47)
(for K = [−19.9688 −9.9844 −1.056 −6.9919], which assigns zero eigenvalues to
A + BK). It is clear that the proposed compensator, producing a downscaled version
of the optimal trajectory, is highly preferable to the other, which causes huge steps
and violates the constraints, both on the state and the control variables. Note that
the true minimum-time trajectory from x̃, reported in black in Fig. 10.13, is one step
shorter than that obtained with the proposed compensator. Finally, we show that the
trajectory-based controller produces a highly undesirable trajectory with constraint
violation if we saturate the control at its assigned bound |u| ≤ 3.5 (gray line),
notwithstanding the fact that the new initial condition is closer to the target.
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10.4.2 The nonlinear static solution

In the previous section, a dynamic ROC was derived. Here it is shown how to
compute a static ROC, which must be necessarily nonlinear. To this aim, the
following additional assumptions are made

a) the objective function is convex, positive definite, and 0-symmetric;
b) the constraints are all 0-symmetric;
c) the optimal trajectory is such that the residual cost is strictly decreasing, i.e.

N∑
k=h

g(y(k)) <
N∑

k=h+1

g(y(k)).

The latter assumption is absolutely reasonable and avoids trivialities (it is obviously
true, for instance, if g(x, u) is positive definite with respect to x).

The problem can be solved as follows: starting from the points of the optimal
trajectory and their opposites (connected by the plain line in Figure 10.14), the
state-space is partitioned into disjoint regions. The convex hull of the points of
the trajectory (the shaded hexagon in Figure 10.14) includes the nominal initial
state x̄ (possibly in its interior) and can be divided into simplices (see Chapter 3 for
the definition of simplex and simplicial sector, which will be used shortly) in each
of whom the control is affine. The simplicial partition induces the corresponding
simplicial cones in the external part. In such convex cones, centered in the origin
and “truncated to keep the outer part,” the controller is linear. Besides being linear
in each cone, the overall so derived control is Lipschitz-continuous. Before stating

x
_

-x
_

u=K(h)x

u=K(h)x+u(h)
_

Fig. 10.14 The state-space partition.
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the main result, we recall that the inequality p ≤ 0, when p is a vector, has to be
intended componentwise and that 1̄ denotes the vector (the dimension depending on
the context) whose components are all equal to 1

1̄ = [ 1 1 . . . 1 ]T (10.70)

(so that the expression 1̄Tp is the sum of the components of vector p).
Together with the standard simplex and simplicial sector notation, we need to

consider the complement (the outer part) of the “unit simplex” in a simplicial cone,
which is the closure of the complement in C:

C̃ = {x = Xp : p ≥ 0, 1̄Tp ≥ 1}. (10.71)

A pictorial explanation of the construction is provided in Fig. 10.14.
If Φ : IRn → IR is a function and X is an n × m matrix we now denote by Φ(X)

the following matrix

Φ(X) = [ Φ(x1) Φ(x2) . . . Φ(xm) ]. (10.72)

The next theorem states that there exists a control which is optimal for x(1) = x̄ and
locally stabilizing.

Theorem 10.33. There exists a convex and compact polyhedron P including the
origin in its interior such that x̄ ∈ P and which is partitioned into simplices
S(h), each generated by an n × (n + 1) matrix X(h) whose columns are vectors
properly chosen among the vectors of the optimal state trajectory and such that the
intersection of two different simplices has empty interior, say

P =
⋃

S(h) =
⋃

S(X(h)), int{S(h)
⋂

S(k)} = ∅, h �= k (10.73)

It is possible to associate with each simplex S(h) an m × (n + 1) matrix U(h) whose
columns are vectors properly chosen among those of Φ(X), the inputs of the optimal
trajectory, and to define the following piecewise affine static controller

u = ΦP(x) = K(h)x + ū(h) = U(h)

[
X(h)

1̄T

]−1 [
x
1

]
, for x ∈ S(h) (10.74)

which is Lipschitz-continuous and relatively optimal inside P . More precisely, it is
stabilizing with domain of attraction P and, for x(1) = x̄, produces the optimal
trajectory. Moreover, for each x(1) ∈ P , the constraints are satisfied and the
transient cost is bounded as

J(x(1)) ≤ max
i=1,...,n+1

Jopt(xki), (10.75)
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where xk1 , xk2 , . . . , xkn+1 are the vertices of a simplex including x(1) and Jopt(xki)
is the optimal cost associated with the initial condition xki .

The next theorem states that the same control can be globally extended over IRn (the
external part in Fig. 10.14).

Theorem 10.34. The control (10.74) can be extended onto IRn as follows. The
complement of the polytope P can be partitioned into complements of simplices
inside a cone

C̃(h) = C̃(X(h)) = {x = X(h)p : p ≥ 0, 1̄Tp ≥ 1}, (10.76)

each generated by a square invertible matrix X(h), having intersection with empty
interior among one another

int{C̃(h)
⋂

C̃(k)} = ∅, h �= k (10.77)

and having intersection with empty interior with P

int{C̃(h)
⋂

P} = ∅ (10.78)

and such that

P
⋃[⋃

h

C̃(h)

]
= IRn. (10.79)

To each set C̃(h) it is possible to associate an m × n matrix U(h) whose columns are
vectors properly chosen among the inputs of the optimal trajectory, thus obtaining
the control law

u = Φ(x) = K(h)x = U(h)
[
X(h)

]−1

x (10.80)

The extended control obtained in this way is globally Lipschitz-continuous and
relatively optimal.

A sketch of the proof of the theorem and of the construction of the controller
is now reported. Denote by x̄(1), . . . , x̄(N) the optimal state trajectory obtained by
solving the open-loop optimal control problem when the system is initialized at
x̄ = x̄(1). Revert and shift by one the time index and for i = 1, . . . ,N define

xi = x̄(N − i + 1), ui = ū(N − i + 1), x−i = −xi, (10.81)

so that x0 = 0 and

xi−1 = Axi + Bui, i = 1, . . . ,N.
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Fig. 10.15 Example of the
set Pn (gray area) in a
two-dimensional space.
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To keep things simple, the following assumption (which can be easily removed
as shown in [BP07]) is introduced: matrix Xn = [x1 x2 . . . xn], formed by the last
n states of the optimal trajectory, is invertible. Assume also that the residual cost is
strictly decreasing along the optimal trajectory, more precisely that the optimal cost
with initial state xi is strictly greater than the cost with initial state xi−1 and consider
the polyhedral set

Pn = {x = Xnp : ‖p‖1 ≤ 1}, (10.82)

which is the convex hull of the last n states of the optimal trajectory and their
opposites. Such a set clearly contains the origin in its interior and it is 0-symmetric.
An example for n = 2 is shown in Figure 10.15: Pn is the convex hull of the last
two states of the optimal trajectory (connected by the plain line) and their opposite
(connected by the dashed line). Thanks to the assumption of invertibility of matrix
Xn, the following lemma holds.

Lemma 10.35. The linear control (proposed in [GC86a])

u(x) = [UnX−1
n ]x, (10.83)

where Un = [u1 u2 . . . un], renders positively invariant the set Pn and is such
that no constraint violation occurs for all the initial conditions inside the set. In
particular, it is dead-beat and steers the state to zero in at most n steps.

Proof. The control law u(x) = UnX−1
n x is a control-at-the-vertices strategy. All

x ∈ Pn can be written in a unique way as a linear combination of the columns of Xn,
namely the last n states of the optimal trajectory:

x = Xnp. (10.84)
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Since Xn is invertible, it follows that

p(x) = X−1
n x, (10.85)

hence the control law u(x) = UnX−1
n x basically computes a control which is a linear

combination of the controls at the vertices of Pn according to the coefficients p(x).
Positive invariance is a consequence of the fact that, by construction, the control at
each vertex keeps the state inside the set [GC86a, Bla99]. Constraints satisfaction
is guaranteed for all initial conditions inside the set since input and state constraints
are convex and 0-symmetric. To prove that the control is dead-beat, note that if at
time k we have

x(k) = xnpn + · · · + x2p2 + x1p1, (10.86)

then the computed control will be

u(k) = unpn + · · · + u2p2 + u1p1. (10.87)

Since xi−1 = Axi + Bui, by linearity,

x(k + 1) = xn−1pn + · · · + x1p2 + 0p1, (10.88)

and at the next step, by repeating the same reasoning,

x(k + 2) = xn−2pn + · · · + x1p3 + 0p2 + 0p1, (10.89)

and so on and therefore after at most n steps the system will reach the origin.

Remark 10.36. The control law defined above is such that inside Pn, at each step,
the state is a convex combination of points with decreasing index and 0.

Note that, if the system reaches the state xn = x̄(N − n + 1) ∈ Pn, it starts
following the last n steps of the optimal trajectory. Note also that Pn (which
will be the first element of a sequence of sets) is affine to a diamond7 and thus
can be partitioned into simplices. The next sets of the sequence are computed
as follows. Consider the state xn+1 (corresponding to the state x3 in the example
of Figure 10.15). Since xn+1 and its opposite −xn+1 are outside Pn (as it will
be shown later on), they can be connected with a certain number of vertices of
Pn without crossing such a set, thus simplices are formed by some vertices of
Pn and the two points xn+1 and x−(n+1) (in the example of Figure 10.16, such
simplices are the triangles (x3, x2, x−1) and (x3, x−1, x−2) and their symmetric).

7P is affine to Q if Q = TP + q0 with T invertible.
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Fig. 10.16 Considering x3
and its opposite x−3, four
simplices can be constructed.
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Denoting by S j
n+1, j = 1 . . .mn+1, the simplices having xn+1 as a vertex and with

S j
n+1, j = −mn+1 · · · − 1 those having x−(n+1) as a vertex, we can define the set

Pn+1 as follows:

Pn+1 =
⋃

j=±1···±mn+1

S j
n+1 ∪ Pn. (10.90)

The procedure goes on exactly in the same manner to generate the sequence of sets
Pk, k = n + 1, n + 2, . . .N, ordered by inclusion and the corresponding simplicial
partition: if we define the set

Pk = conv{x1, x2, . . . , xk, x−1, x−2, . . . , x−k}, k < N, (10.91)

we can consider the vector xk+1, and form a new simplicial partition for Pk+1 by
adding new simplices. It is fundamental to note that each new simplicial partition
of Pk+1 preserves all the simplices forming the simplicial partition for Pk. To prove
that the construction is well-defined we need the following lemma.

Lemma 10.37. The vector xk+1 in the construction is outside Pk.

Proof. Assume by contradiction that xk+1 ∈ Pk. Then xk+1 could be written as a
convex combination of the vertices of Pk. So if we take xk+1 as initial state, since
we considered convex constraints, then xk+1 could be driven to zero in a time not
exceeding k at a cost not exceeding the maximum cost of all the vertices of Pk. This
is in contradiction with the assumption that the cost is strictly decreasing along the
optimal trajectory.

Therefore the procedure is such that {Pk} is a strictly increasing (in the sense of
inclusion) sequence of sets, each of which preserves the simplicial partition of the
former. This construction terminates once P .

= PN is constructed.
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The next step is to show how to associate a control with each simplex. For each
of the simplices S j

k:

1. order (arbitrarily) the vertices;
2. associate a matrix Xj

k whose columns are the ordered vertices;
3. associate a matrix Uj

k whose columns are the controls corresponding to the
ordered vertices (if the vertex belongs to the optimal trajectory, take the
corresponding control, if it belongs to the opposite of the optimal trajectory, take
the opposite of the corresponding control).

Consider the following control strategy. Given x ∈ P ,

• if x ∈ Pn then

ΦP (x) = UnX−1
n x, (10.92)

• otherwise, if x ∈ S j
k then

ΦP(x) = Uj
kp, (10.93)

where p ≥ 0 is the (unique) vector such that

x = Xj
k p, 1̄Tp = 1. (10.94)

Note that p is such that

[
Xj

k

1̄T

]
p =

[
x
1

]
, (10.95)

so that the proposed control is of the form (10.74).
To show that the control is dead-beat, we need to introduce the index In(S) of

a sector S as the maximum of the absolute values of the indices of its generating
vectors. Formally, if S is generated by corners xk1 , xk2 , . . . , xkn , then

In(S) = max{|k1|, |k2|, . . . , |kn|} (10.96)

For reasons that will be clear soon, In(S) will be referred to as the distance of S
from 0.

Remark 10.38. The notion of “sector” deserves some comments. Indeed we now
consider possibly degenerate simplices that can have empty interior being formed
by some points xk and the origin repeatedly considered. For instance, S could be
generated by [0 0 x1 x2], representing a two-dimensional degenerate simplex in the
three dimensional space. Note also that In(S) ≤ k for all sectors inside Pk.

The next lemma shows that, with the proposed control, if the system state is inside
a sector, then it jumps to another one closer to zero.
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Lemma 10.39. The proposed strategy is such that if x ∈ S, a sector of Pk, then
Ax + Bu(x) ∈ S ′ with

In(S ′) < In(S), (10.97)

as long as In(S) �= 0, and therefore if x(1) ∈ Pk, the control steers the system to
zero in at most k steps.

Proof. As a first step we remind that, according to Lemma 10.35 and Remark 10.36,
the jump to a sector closer to 0 occurs ∀x ∈ Pn. Now we proceed by induction.
Assume that x ∈ Pn+1. If x ∈ Pn there is nothing to prove, otherwise x is necessarily
in a sector S generated by xn+1 or its opposite x−(n+1) and other vertices of smaller
indices

x =
n+1∑
i=1

xki pi,
n+1∑
i=1

pi = 1, pi ≥ 0, (10.98)

with |ki| ≤ n, i = 1, 2, . . . , n, and |kn+1| = n + 1. Then we have, by construction,

Ax + BΦP(x) = A[

n+1∑
i=1

xkipi] + B[

n+1∑
i=1

ukipi] =

=

n+1∑
i=1

pi [Axki + Buki ]︸ ︷︷ ︸
∈Pn

∈ Pn.

Therefore Ax + BΦP(x) is necessarily in a sector with index In ≤ n. The rest of the
proof proceeds in the same way. Any point x in Pk+1, if not in Pk, is included in a
sector S with index In(S) = k + 1 and, by means of the same machinery, we can
show that Ax + BΦP(x) ∈ S ′ with In(S ′) ≤ k. The fact that if x(1) ∈ Pk, the state
converges to 0 in at most k steps is an immediate consequence.

The procedure for the construction of the controller and the state partition can be
summarized as follows.

Procedure. Construction of a static ROC.

Given the optimal open-loop trajectory, which satisfies the assumptions, perform
the following operations.

1. Let the set Pn = {x : x = Xnp, ‖p‖1 ≤ 1}, where Xn = [x1 x2 . . . xn], be the
convex hull of the last n states of the optimal trajectory and their opposite.

2. Let Un = [u1 u2 . . . un] be the matrix whose columns are the control vectors
corresponding to the last n states of the optimal trajectory.

3. Take i = n + 1.
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4. Construct the simplices S j
i , j = ±1 · · · ± mi by connecting xi and x−i to the

vertices of Pi−1 without crossing such set. This is always possible, since xi, x−i /∈
Pi−1.

5. Let Xj
i be the matrix whose columns are the vertices of S j

i in an arbitrary order
and Uj

i the controls corresponding to the vertices in the same order. For vertices
belonging to the opposite of the optimal trajectory, take the opposite of the
control.

6. Let Pi =
⋃

j S
j
i ∪ Pi−1.

7. Increase i.
8. If i ≤ N, go back to step 4.

Note that, by construction, the sets Pi, i = n, . . . ,N are convex, 0-symmetric and
such that Pi ⊂ Pi+1. The set Pi+1 \ Pi, the difference between Pi+1 and Pi, is
composed of simplices Sj

i each of whom has all the vertices but one (precisely xi+1

or x−(i+1)) belonging to Pi.
For x ∈ P = PN , the controller described above is relatively optimal. However,

the control law is not defined for x /∈ P . This control can be actually extended
outside since P is a polytope including the origin in its interior. Then we can still
use the control induced by this polytope [GC86a]. It can be shown that the derived
control is globally Lipschitz (over the whole IRn) and globally stabilizing (although
it might violate the constraints for initial states outside P) [BP07].

Example 10.40 (Static ROC construction). Consider the double integrator:

x(k + 1) =

[
1 1

0 1

]
x(k) +

[
0

1

]
u(k), (10.99)

under the constraints |x(k)| ≤ 5, |u(k)| ≤ 3. Given the initial state x(1) = [−2 5]T ,
the horizon N = 5, the final state x(N + 1) = 0, and the cost function J =∑N

i=1 u(k)2, the optimal (open-loop) control and trajectory, found by solving a
quadratic-programming problem, are respectively:

Ū=
[
−3 −2.9 −1.3 0.3 1.9

]
(10.100)

and

X̄ =

[
−2 3 5 4.1 1.9

5 2 −0.9 −2.2 −1.9

]
. (10.101)

The optimal trajectory is reported in Figure 10.17. By means of the proposed
procedure the triangulation reported in Figure 10.18 is obtained; the number of
triangles is 12 (including the four triangles in which the darkest region, i.e. P2, can
be split). The piecewise affine control law obtained by applying a control-at-the-
vertices strategy inside each of the triangles, as stated above, is relatively optimal,
hence is optimal for the nominal initial condition and guarantees convergence
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Fig. 10.17 The optimal trajectory.
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Fig. 10.18 The triangulation induced by the optimal trajectory and the trajectories from three non-
nominal initial conditions inside P .
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Fig. 10.19 Some trajectories starting from outside P .

and constraint satisfaction for the other initial conditions. In Figure 10.18, the
trajectories from three non-nominal initial conditions are reported. Note that the
number of steps required to reach the origin depends on the triangle the initial
state belongs to. Figure 10.19 shows the effectiveness of the extended control,
reporting some trajectories starting from outside P ; the dash-dotted lines represent
the boundaries between the simplicial cones C(h) in the complement of P .

10.5 Merging Lyapunov function

In constrained optimal control, constraints are in general active when the state
is far from the origin. Typically a Lyapunov function which is suitable to face
constraints maximizing the size of the domain of attraction is not suitable to
assure performances when the state is close to zero, the attractor. In this section,
we present an interesting idea proposed in [BCG12], named Lyapunov function
merging. Merging two control Lyapunov functions Ψ1 and Ψ2 basically consists in
producing a new control Lyapunov function which is close to Ψ2 near the origin and
close to Ψ1 far away.
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Given two smooth radially unbounded control Lyapunov functions Ψ1 and Ψ2,
we say that the function Ψ is a gradient-type merging of Ψ1 and Ψ2 if it is positive
definite, smooth, radially unbounded and if

∇Ψ(x) = ρ1(x)∇Ψ1(x) + ρ2(x)∇Ψ2(x), ∀x

with ρ1(x) > 0 and ρ2(x) > 0 for x �= 0. A gradient type merging is easy to find.
For instance, take

Ψ(x) = α1(Ψ1(x), Ψ2(x))Ψ1(x) + α2(Ψ1(x), Ψ2(x))Ψ2(x)

with smooth positive-definite scalar functions α1 and α2. Then

∇Ψ =

(
α1 + Ψ1

∂α1

∂Ψ1
+ Ψ2

∂α2

∂Ψ1

)
∇Ψ1(x) +

(
α2 + Ψ1

∂α1

∂Ψ2
+ Ψ2

∂α2

∂Ψ2

)
∇Ψ2(x)

Unfortunately, the new function is not necessarily a control Lyapunov function, even
if the two original functions are such, unless proper conditions are satisfied.

Consider the case of a system of the form

ẋ = f (x) + G(x)u (10.102)

We say that Ψ1 and Ψ2 have the control-sharing property if the two conditions

∇Ψ1(x)(f (x) + G(x)Φ(x)) ≤ −φ1(‖x‖)

∇Ψ2(x)(f (x) + G(x)Φ(x)) ≤ −φ2(‖x‖)

are satisfied by the same feedback control Φ for some κ functions φ1 and φ2. Then
we have the following.

Proposition 10.41. The following two conditions are equivalent.

1. Any gradient-type merging of Ψ1 and Ψ2 is a control Lyapunov function.
2. Ψ1 and Ψ2 have the control-sharing property.

Sufficiency is immediate. Indeed

∇Ψ(x)(f (x) + G(x)Φ(x))

= ρ1(x)∇Ψ1(x)(f (x) + G(x)Φ(x)) + ρ2(x)∇Ψ2(x)(f (x) + G(x)Φ(x)) ≤

−(ρ1(x)φ1(‖x‖) + ρ2(x)φ2(‖x‖)) .
= −φ(‖x‖)

with φ a κ function. For necessity see [GBC14].
An interesting example of merging is achieved by the “R-composition” [BCG12].

Let Ψ1 be a convex positive definite, function positively homogeneous of order
2, which is associated with N [Ψ1, 1], a “large” domain of attraction. Let Ψ2 be a
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positively homogeneous function of order 2 which is associated with an optimal
control, for instance, in the linear case, Ψ2(x) = xTPx, with P the positive definite
solution of the Riccati equation. Assume that

N [Ψ1, 1] ⊂ N [Ψ2, 1]

or equivalently Ψ2(x) < Ψ1(x) ≤ 1 for x �= 0. This is not a restriction since scaling
the function is equivalent to scaling the cost function. Then

1) Define R1,R2 : IRn → IRn as Ri(x) = 1 − Ψi(x), i = 1, 2.
2) For fixed φ > 0, define

R∧(x) := ρ(φ)
(
φR1(x) + R2(x) −

√
φ2R1(x)2 + R2(x)2

)
,

where ρ(φ) :=
(
φ+ 1 −

√
φ2 + 1

)−1

is a normalization factor.

3) Define the “R-composition” as

Ψ∧(x) := 1 − R∧(x).

Then we have that [BCG12]

∇Ψ∧(x) = ρ(φ) [φc1(φ, x)∇Ψ1(x) + c2(φ, x)∇Ψ2(x)] ,

where c1, c2 > 0 are defined as

c1(φ, x) := 1 +
−φR1(x)√

φ2R1(x)2 + R2(x)2
, c2(φ, x) := 1 +

−R2(x)√
φ2R1(x)2 + R2(x)2

.

The so defined R-function is positive definite and differentiable. It is not convex
in general even if the “parents” Ψ1 and Ψ2 are convex. Such a function is a
gradient-type merging candidate.

According to Proposition 10.41, if Ψ1 and Ψ2 are CLFs and share a (possibly
constrained) control Φ, then Φ is admissible as well for Φ∧, which turns out to be a
CLF for (10.102) (possibly under constraints). In this case, we will refer to the CLF
Ψ∧ as Control Lyapunov R-Function (CLRF).

It is not difficult to see that, independently of φ > 0, the unit sublevel set of Ψ∧
is the same as that of Ψ1

N [Ψ∧, 1] = N [Ψ1, 1],

so the domain of attraction is preserved.
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Conversely, close to the origin, the level set of Ψ∧ are close to those of Ψ2.
Parameter ρ imposes a trade-off between the shape of the level sets of Ψ1 and of
Ψ2. Namely, in light of [BCG12], we have

Ψ∧(x)
φ→∞−→ Ψ2(x) and Ψ∧(x)

φ→0+−→ Ψ1(x)

point-wise in int{N [Ψ∧, 1]}. Moreover [BCG12], we have

∇Ψ∧(x)
φ→∞−→ ∇Ψ2(x), and ∇Ψ∧(x)

φ→0+−→ ∇Ψ1(x)

uniformly on N [Ψ∧, 1 − ε] for any ε > 0 small.
This particular property of fixing the “external” shape, while making the “inner”

one “close” to any given choice can be exploited to fix a “large” DoA while
achieving “locally-optimal” closed-loop performances.

10.5.1 Controller design under constraints

We now investigate the existence of a continuous locally optimal control under
constraints x ∈ N [Ψ1, 1] and u ∈ U which is closed (possibly compact) and
convex. For simplicity, we consider (10.102) with G(x) = B. Since the CLF Ψ∧ is
differentiable, in principle, the existence of a stabilizing control law Φ, continuous
with the exception of the origin, or including x = 0 if Ψ∧ satisfies the small control
property8, could be proved by using the arguments in [FK96b, Chapters 2–4].

We scale Ψ2 in such a way that N [Ψ1, 1] ⊂ N [Ψ2, 1]. Assume that functions Ψ1

and Ψ2 have the control-sharing property. Associated with Ψ2 there is an “optimal”
continuous control law Φ2. The following convex-valued mapping of admissible
(constrained) controls is non-empty for all x ∈ N [Ψ1, 1]

Ω(x) := {u ∈ U : ∇Ψ∧(x) (f (x) + Bu) + φ(‖x‖) ≤ 0} . (10.103)

We then propose the control law

Φ(x) := argmin {‖υ − Φ2(x)‖ : υ ∈ Ω(x)} . (10.104)

Then the control law (10.104) associated with Ψ∧ is continuous, satisfies the
constraints in N [Ψ1, 1], and is locally optimal [GBC14]. The same results hold
without essential restriction for differential inclusions of the form ẋ = A(w)x + Bu.

8A CLF Ψ satisfies the small control property if, for u := Φ(x), we have that for all v > 0 there
exists ε > 0 so that, whenever ‖x‖ < ε we have ‖u‖ < v [Son98].
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10.5.2 Illustrative example

We address the constrained stabilization of a simplified inverted pendulum proposed
in [GBC14], whose dynamics is given by the nonlinear differential equation

Iθ̈(t) = mgl sin(θ(t)) + τ(t)

The goal is the stabilization of (θ, θ̇) to the origin, under the constraints |θ| ≤ π
4 ,

|θ̇| ≤ π
4 and |τ | ≤ 2. With the notation x1 = θ, x2 = θ̇ = ẋ1, u = τ and

w(x) :=

{
sin(x1)

x1
: |x1| ≤

π

4

}

we can consider the following constrained uncertain “absorbing” model:

ẋ ∈
[

0 1

aw(x) 0

]
x +

[
0

b

]
u, (10.105)

where a = (mgl/I), b = (1/I); w(x) � [0.89, 1], w(0) = 1; |x1| ≤ π/4, |x2| ≤ π/4,
|u| ≤ 2. The numerical parameters used in the simulation are I = 0.05, m = 0.5,
g = 9.81, l = 0.3.

We adopt the infinite-horizon quadratic performance cost

J(x, u) :=

∫ ∞

0

(‖x(t)‖2Q + ‖u(t)‖2R)dt,

with weighting matrices Q = I2, R = 10. Let us define the locally optimal (i.e.,
for w ≡ 1) cost function Ψ̄2(x) = x�Px, where P is the unique solution of the
Algebraic Riccati Equation. To accommodate constraints, we consider the function
Ψ̄1(x) = ‖Fx‖2∞, with

F =

[
0 1.53 4/π

4/π 0.51 0

]�
,

which turns out to be a polyhedral control Lyapunov function for the constrained lin-
ear differential inclusions (10.105) and therefore also for the constrained nonlinear
system. Then we smooth this function by taking the polyhedral control Lyapunov
function Ψ1(x) = ‖Fx‖240 [BM99c], achieving almost the same DoA as that assured
by N [Ψ̄1, 1]. Let us also define Ψ2 scaling Ψ̄2, so that N [Ψ1, 1] ⊂ N [Ψ2, 1].
Functions Ψ1 and Ψ2 share a constrained control [GBC14], therefore any gradient-
type merging is a CLF.

Now, Ψ1 has a “large” DoA but it induces a “poor” performance when used with
gradient-based controllers of the kind (10.104) (Figure 10.20 in fact shows that the
constraint u ∈ Ω(x) in (10.103) with Ψ1 in place of Ψ∧ may be “too restrictive”).
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Fig. 10.20 A controlled state trajectory starting from x0 = (0.6, 0.1)� and converging to the
origin. The state is actually “forced” to always “enter” the level sets of the smoothed polyhedral
CLF Ψ1.
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Fig. 10.21 A controlled state trajectory starting from x0 = (0.6, 0.1)� and converging to the
origin “in accordance” with the level sets of the control Lyapunov R-function Ψ∧.

On the other hand, Ψ2 is locally optimal, but both gradient-based controllers, for
instance (10.104) with Ψ2 in place of Ψ∧, and the standard LQ regulator, yield
constraint violations.

If we take the merging Ψ∧ with φ = 20 (see Figure 10.21), we notice that Ψ∧,
with controller (10.104), inherits the benefits of Ψ1 (“large” DoA under constraints)
and Ψ2 (local optimality). For the linearized system (i.e., for w ≡ 1), extensive
Monte Carlo numerical experiments show that the closed-loop performance is “quite
close” to the constrained “global optimal” (obtained via a receding “long”-horizon
controller, under a “fine” system discretization).
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10.6 Exercises

1. In principle, we could say that S is reachable from P in T steps if, for all x ∈ S,
there exist u and x(0) in P such that x(T) = x̄. If there are no uncertainties,
we can consider an open-loop control u which is a function of the final state
x = x(T), namely u(t) = Φ(x(T), t) and this is equivalent to the controllability
to S of P for the time-reversed system (if it is defined). Could you figure
out which are the difficulties in properly defining worst-case reachability if
there are uncertainties? (Note that open-loop and closed-loop definitions are
not equivalent anymore . . . ).

2. Prove by means of a simple example that the 0-reaching minimum-time
problem for an uncertain discrete-time system has no solution even if E = 0,
since the origin cannot be reached in a finite number of steps.

3. Find an example of a control problem for which TR(x0) > TU(x0) where TR(x0)
and TU(x0) are defined in Subsection 10.1.3.

4. Find the values of β > 0 in Example 10.19 for which the described “escape”
phenomenon occurs. Find the values of β > 0 for which it does not.

5. Find a sequence of values of β > 0 in the Example 10.19 for which the
receding horizon scheme converges but the global (infinite-time) cost of the
corresponding receding horizon schemes becomes arbitrary high, and therefore
arbitrarily far from the infinite-time optimal one.

6. Show thatΩ(x) in Eq. (10.2) is a polyhedral set if the constraints are polyhedral.
What about the case of an uncertain A?

7. Prove that a convex positive-definite function is radially unbounded as claimed
at the beginning of Section 10.3.

8. Show that control (10.63) is relatively optimal and dead-beat if n = N.
9. In the proof of Th. 10.34 it is assumed that the last non-zero vectors of the

trajectory are linearly independent. Prove that this condition is assured if xn

does not belong to a proper (A,B)-invariant subspace.
10. Prove that a for a system of the form ẋ = Bu, u ∈ U , U a C-set, the cost-to-

go minimum-time function to the origin is Tmin(x) = ΦV(x), the Minkowski
function of V = −BU .

11. If we modify the system of the previous exercise as ẋ = Bu − d, d ∈ D, D
a C-set, the “worst case” cost-to-go function (under state feedback) is ΦṼ(x),

where Ṽ(x) is the erosion of V with respect to D. This is a little bit harder to
show . . . (see [MS82] and [BMR04]).



Chapter 11
Set-theoretic estimation

This chapter is mainly devoted to evidencing difficulties of the set-theoretic
approach in dealing with output feedback problems. Therefore the chapter (appar-
ently the shortest of the book) will be essentially conceptual rather than technical.
We will be interested in set-theoretic state estimation, and we will not consider, if
not in passing, the problem of set-theoretic system identification. Roughly, given an
uncertain system with output measurements, a set-theoretic estimator provides a set
which includes at each time all the state vectors which are compatible with available
measurements and given disturbance specification.

It would be unfair to claim that set-theoretic techniques for state estimation are
not well developed, it is rather the opposite. In particular as far as the worst case
techniques for estimation are concerned, there are many valid contributions which
started in the 70s’ papers [Wit68b, BR71a, BR71b, GS71, Sch73]. From a practical
standpoint, set-theoretic techniques for state estimation suffer from computational
problems that are worse than those for set-theoretic control. We try to concisely
express these difficulties in two points.

• In set-theoretic-control non-conservative solutions are known. The resulting
state feedback compensators can have arbitrarily high complexity. However, the
complexity of the compensator is fixed at the end of the (off-line) design stage.

• In set-theoretic-estimation non-conservative solutions1 for the evaluation of the
state not only may have arbitrarily high complexity, but the complexity increases
on-line as more output data are collected.

We claim to be unable to overcome this difficulty at this moment, and apparently
many excellent researchers failed as well. Our contribution here is to try our best to
enlighten the problem, hoping for a solution in the near future.

1We will provide definitions to formalize the concept of non-conservativeness for a state-estimator.
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11.1 Worst case estimation

Let us formulate the problem in a general framework. Here we mainly consider
discrete-time systems, although the concepts we present apply to continuous-time
as well. Consider the system

x(t + 1) = f (x(t), u(t), d(t)) (11.1)

y(t) = g(x(t),w(t)) (11.2)

where we assume d(t) ∈ D and w(t) ∈ W , with D and W assigned C-sets. The
control u(t) ∈ U is always assumed to be known in the present context (possibly
determined by a suitable control algorithm).

Together with the information given by equations (11.1)–(11.2) we assume to
have a further a priori information regarding the initial state, precisely

x(0) ∈ X̂0. (11.3)

Note that in the complete blindness we can just write X̂0 = IRn. Now we introduce
two operators from set to set. Given a set X ⊆ IRn, define the set of all reachable
states in one step for all possible d(t) ∈ D given the control action u(t) ∈ U ,
according to equation (11.1)

Reach[X ,D](u)
.
= {z = f (x, u, d), x ∈ X , d ∈ D} . (11.4)

Given a guess about the state in t, the previous equation propagates this information
at t +1. Clearly, in this way the information about the actual state spreads. However
by means of (11.2) we can cut out a portion of the new guess region that is not
compatible with measurements. Let us introduce the set of all the states compatible
with measurements as

Comp[W ](y)
.
= {x : g(x,w) = y, for some w ∈ W} (11.5)

By means of (11.4) and (11.5) we can describe, theoretically, the estimation set. Let
us formally define the concept.

Definition 11.1 (Estimation region). The set X̂ (t) is an estimation region (set) at
time t given the information (11.1), (11.2), and (11.3) over a prescribed horizon
0, 1, . . . , t, if the condition

x(t) ∈ X̂ (t)

is assured for all w ∈ W and d ∈ D.



11.1 Worst case estimation 529

Fig. 11.1 The estimation
problem

image plane
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Definition 11.2 (Non-conservative estimation region). The estimation region
X̂ (t) is non-conservative (with respect to the available information) if there does
not exist a proper subset of it which is also an estimation region.

Before starting with an algorithm, some examples of the previous concept are
reported.

Example 11.3. A position detection problem. Let us study the problem of detecting
the position from an image (see Fig. 11.1). We consider for brevity a 2-dimensional
problem in which a point P of coordinates (x, z) is moving in a plane. The only
information available is its image, which is a point P′ on the line which is at a
distance l from the observation point (0, 0). Thus, the output is given by

y(t) = l
x(t)
z(t)

+ w(t), (11.6)

where |w| ≤ w̄ is the error on the image plane (typically due to pixel quantization).
We assume z ≥ l to avoid unnecessary complications.

The system position cannot be detected by this equation, not even for w̄ = 0, if
we do not assume some kind of motion. Indeed, the best we could say (for w = 0)
is that the point is on a line yz = lx, given the current measured y. Let us consider
the following equations for the motion:

x(t + 1) = x(t) + u(t) + dx(t)
z(t + 1) = z(t) + dz(t)

(11.7)

where the vector d = (dx, dz) represents the proper (unknown) motion of the object
and u(t) represents a controlled horizontal motion. We assume the bound

‖d‖ =
√

d2
x + d2

z ≤ d̄,

which means that the object has a limited speed: precisely, at each sampling time d̄
is the maximum translation, that can occur in any direction.
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Fig. 11.2 The estimation set
without output noise
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Fig. 11.3 The estimation set
with output noise
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To give an explanation to the input u (not to make this example seem too fuzzy),
we are not thinking of a controlled motion of the object but rather of a controlled
horizontal motion of the observer (typically a camera or videocamera). Indeed only
a relative motion (without stereoscopy) can lead to the detection of the position with
finite error. Assume that the initial position is unknown up to the fact that the object
is on the ray starting from the viewpoint. Let us denote this ray by X .

Given the horizontal translation u it is then known that, at the next step, if d = 0
the object will be on a line that is nothing but the set X translated by u, say X + u.
Since ‖d‖ ≤ d̄ also comes into play, the actual set is the translated line to which
we have to sum the D circle (thus, we end up with X + u + D). We achieve in this
way the set Reach[X ,D](u) which is the dotted strip represented in Fig. 11.2. If we
assume, for the moment being, that w̄ = 0, i.e., there are no direct errors on the
measurement, it is apparent that the new observation y identifies a new line, which
is the set Comp[W ](y). The intersection of such a line with the strip produces the set
of possible states that are compatible with the new measurement (the thick segment
in Fig. 11.2).

If we consider also the measurement error, we do not have a single segment, but
a figure which is generated by the union of all the segments generated by lines that
are compatible with the current observation (see Fig. 11.3). The set Comp[W ](y) is
then the sector represented by the dashed lines. The intersection with the strip gives
a more complex figure (pictured in thick lines) that represents the set of all possible
states at time t = 1 which are consistent with the given information.
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The set we have computed in the example has a special meaning. It represents the
set of all possible states at time t = 1 that are compatible with the measurements at
steps t = 0, 1. This is a worst case type of approach, since it is basically based on
the pessimistic idea that hiding the true object position is the main purpose of the
uncertain inputs w and d (thought as “clever” agents). It is apparent that this kind of
analysis naturally leads to the concept of set-membership estimation.

In general, we say that a set-membership estimator is a mechanism (algorithm)
that provides the estimation region X̂ (t) as in Definition 11.1. The basic idea to
compute one of such sets which is non-conservative is essentially that of iterating
forward in time the procedure sketched in the example. We formally introduce this
procedure. For the sake of generality2, it is assumed that the system observation
starts at time k, and that the following a priori information is available

x(k) ∈ X̂ (k)

As a trivial (extreme) case one can just set X̂ (k) = IRn. Other possible extreme
choices are those corresponding to huge portions of the state space as we did, in
some sense, in the example (where z ≥ l as a primary information was assumed),
or to a singleton X̂ (k) = x0. At this point, one computes the set of all the states
compatible with the measurements. Once this set is found, the next step is to
propagate it according to the system equation. Among all the states in the new set,
one takes those compatible with the new measurements and so on. The procedure is
formalized next. We denote by X̂ (t|k) the set of all states at time t that are consistent
with the system equation from time k up to t.

Procedure: Non-conservative state-membership estimation.

For the dynamic system described by (11.1) (11.2), given the initial estimation
X̂ (k), let X̂ (k|k) be the set of estimated states at step k which are output
compatible, say

X̂ (k|k) = X̂ (k)
⋂

Comp[W ](y(k)).

Set t = k and perform the following steps.

1. Given the current value of the control u(t), propagate this set forward

Ẑ(t + 1|k) := Reach[X̂ (t|k),D](u(t)).

2. Compute the new estimation set as the intersection with the compatible set

X̂ (t + 1|k) := Ẑ(t + 1|k)
⋂

Comp[W ](y(t + 1)).

3. Set t := t + 1 and go to Step 1.

2A waste of generality is typical when non-constructive results are provided.
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Fig. 11.4 A further iteration
for the example
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Easy to state, hard to compute3. The difficulty of iterating the method is apparent.
To show it in a simple way, we reconsider the first example and we allow a
further iteration. Consider the last computed set X̂ and assume that a new value
of the control u is given (its action is represented by the arcs in Fig. 11.4). If this
action is combined with d, we derive the figure which is delimited by both curve
and straight lines that are represented via dotted lines. If we intersect with the
cone of output compatible states we derive a figure which is delimited, again, by
straight lines and circle arcs. This case is quite a lucky one, since it is apparent
that all the future sets will be delimited by lines and arcs and will be therefore
reasonably simple. However, in general not even convexity and connection of the set
X̂ (t + 1|k) are assured since, as it has been evidenced in Section 6.1.2 in Chapter 6,
the propagation of uncertainty in general results in non-convex sets even in the
LPV case.

We try now to compare the set-theoretic estimation procedure with that used to
generate the largest (contractive) invariant set inside a domain for the derivation of
state feedback control laws. As expected, there are well-established connections in
the literature [Wit68b, BR71a, BR71b, GS71, Sch73] and actually many aspects are
in some sense dual. Although we avoided acronyms in most of the book, we make
an exception here and we refer to SEP to mean State Estimation Procedure and to
CIP, Controlled-Invariant (generation) Procedure.

• The SEP proceeds forward in time while the CIP proceeds backward in time.
This is a well-known circumstance in control theory. For instance, exactly the
same dichotomy holds for the optimal control and the optimal state estimation.
For instance, the Riccati equation for optimal control is integrated backward in
time while the Riccati equation for the Kalman–Bucy filter is integrated forward
in time [KS72].

• Both SEP and CIP provide objects that may have arbitrarily large complexity of
description.

• The SEP has to be performed on-line while the CIP is performed off-line.
This is in practice a substantial difference, since once the CIP has stopped,

3The reader should be familiar at this point with this feeling.
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one can analyze the control and check if it is implementable with the available
hardware (and decide if its implementation is worthwhile). Conversely, the SEP
is performed on-line and leads to a system crash if the complexity of X (t + 1|k)
reaches the computer limit.

A further fact worth pointing out is that the set-theoretic procedure is strongly
dependent on the choice of the control action u. This is apparent in the example we
considered. If one leaves the controlled input u(t) = 0, then no state estimation is
possible (if we do not have information on the size), since it is possible to detect
the direction of the object but not the distance. It can be easily understood that the
set-membership estimation, for u(t) = 0, would be formed by the cone of all output-
compatible states. The motion plays a fundamental role in the identification. Now,
if one considers a control problem, for instance the alignment with the object, in
which one wants to track a relative object position x̄, then the situation is messy.
Assume that at a certain point the condition x(t) = x̄ holds. Then the controller has
to perform some actions anyway only for the purpose of estimating the position. We
will come back to this control-estimation interaction soon.

11.1.1 Set membership estimation for linear systems with
linear constraints

The previous procedure can be actually implemented via linear programming in the
case of linear systems with linear constraints

x(t + 1) = Ax(t) + Bu(t) + Ed(t) (11.8)

y(t) = Cx(t) + w(t) (11.9)

when D and W are polytopes. For convenience we adopt the vertex and plane
representation, respectively.

D = V [D] W = P [W, q]

It is a well-assessed fact that the solution of system (11.8) can be split in to two
terms

x(t) = xu(t) + xd(t)

which are the solutions, respectively, of

xu(t + 1) = Axu(t) + Bu(t), xu(t0) = 0,

xd(t + 1) = Axd(t) + Ed(t), xd(t0) = x(t0),
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therefore, since u is known, only xd(t) needs to be estimated. Henceforth, without
restriction, it is possible to consider only the problem of estimating the state of the
next system

x(t + 1) = Ax(t) + Ed(t) (11.10)

y(t) = Cx(t) + w(t) (11.11)

Given the polyhedron X̂ in its vertex representation X̂ = V [X], the one-step forward
propagation is a polytope

Z = Reach[X̂ ,D] = V [Z] = AX̂ + ED

(note that the dependence on u was eliminated due to the fact that the control is
being considered separately) where Z is the matrix whose columns are generated as
follows

Zk = AXi + EDj, (11.12)

by combining the columns of X and of D in all possible ways. It is clear that, in
performing this operation, eliminating the redundant vertices is fundamental. The
output admissible state set, given the measure y, has the representation

Comp[W ](y) = {x : W(y − Cx) ≤ q}.

Let us now consider a plane representation for Z = P [S, r]. Then the intersection
of Z with the output-admissible sets provides the updated state estimator

X̂new = P [S, r]
⋂

Comp[W ](y) = {x : Sx ≤ r, and − WCx ≤ q − Wy},

or, in a compact form,

Xnew = P
[[

S
−WC

]
,

[
r

q − Wy

]]
.

Therefore the state estimation region for linear systems can be described by
polytopes. Still there is a major problem. The complexity of the set-membership
estimation in general increases at each step and can consequently grow arbitrarily.

A different way of proceeding is the so-called batch approach in which all the
measurements from time k to time t are simultaneously processed. This works as
follows. For brevity consider the system

x(i + 1) = Ax(i) + d(i), i = k, k + 1, . . . , t,

where
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d ∈ P [D, e], (11.13)

and the output measurements

y(i) = Cx(i) + w(i), i = k, k + 1, . . . , t,

with

w ∈ P [W, q]. (11.14)

Then write
⎡
⎢⎢⎢⎢⎢⎣

I −A 0 0 . . . 0 0

0 I −A 0 . . . 0 0

0 0 I −A . . . 0 0

: : : : . . . −A 0

0 0 0 0 . . . I −A

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x(t)
x(t − 1)

x(t − 2)

:

x(k)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

d(t − 1)

d(t − 2)

d(t − 3)

:

d(k)

⎤
⎥⎥⎥⎥⎥⎦

(11.15)

and

⎡
⎢⎢⎣

I 0 . . . 0 −C 0 0 0

0 I . . . 0 0 −C 0 0

: : . . . : : . . . : :

0 0 . . . I 0 . . . 0 −C

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(t)
y(t − 1)

:

y(k)
x(t)

x(t − 1)

:

x(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

w(t)
w(t − 1)

:

w(k)

⎤
⎥⎥⎦ (11.16)

Since d(i) and w(i) are such that Dd(i) ≤ e and Ww(i) ≤ q, equations (11.15)
and (11.16) become

⎡
⎢⎢⎢⎢⎢⎣

D −DA 0 0 . . . 0 0

0 D DA 0 . . . 0 0

0 0 D −DA . . . 0 0

: : : − : . . . −DA 0

0 0 0 0 . . . D −DA

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x(t)
x(t − 1)

x(t − 2)

:

x(k)

⎤
⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎣

e
e
e
:

e

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
−WC 0 0 0

0 −WC 0 0

: : . . . :

0 0 . . . −WC

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(t)
x(t − 1)

:

x(k)

⎤
⎥⎥⎦ ≤

⎡
⎢⎢⎣

q
q
:

q

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

W 0 0 0

0 W 0 0

: . . . : :

0 . . . 0 W

⎤
⎥⎥⎦

⎡
⎢⎢⎣

y(t)
y(t − 1)

:

y(k)

⎤
⎥⎥⎦
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The above inequalities identify a polyhedron in the space of the sequences

x̄(t, k) = [x(k) x(k + 1) . . . x(t)],

which is the set of all admissible states given the measured output sequence

ȳ(t, k) = [y(k) y(k + 1) . . . y(t)].

This polyhedron is uniquely identified once ȳ(t, k) is given and so we denote it as

Ξ(ȳ(t, k)). (11.17)

Now consider the “projection operator” defined as

Pr (x̄(t, k)) = x(t)

which selects the last element of the sequence. Then the set of all the states
compatible with the measurements is

X̂ (t|k) = Pr (Ξ(ȳ(t, k))) ,

The difference with the recursive procedure previously described is, basically, that
the former projects at each step to achieve the intermediate set X̂ (i|k), i = k +
1, k + 2, . . . , t, while the latter identifies the set X̂ (t|k), by means of a single (huge)
projection operation.

Example 11.4. Consider the system

x(t + 1) = Ax(t) + Ed(t)

y(t) = Cx(t) + w(t)

where

A =

[
1 1

0 1

]
, E =

[
0

1

]
, C =

[
1 0

]
.

Assume that |d(t)| ≤ d̄ = 1 and |w(t)| ≤ w̄ = 1 for all t.
For simulation purposes, we initialize the system at x(0) = [1 0]T and we choose

the sequences d and w as d(0) = −1, d(1) = 0, d(2) = 0 and w(0) = 0,
w(1) = 0, w(2) = 0, respectively. This information is clearly unknown to the
estimation algorithm. We indeed assume that, as a priori information, one knows
that ‖x(0)‖∞ ≤ 4, precisely that the state is in the square depicted in Fig. 11.5,
which is the given X̂ (0). Let us see how this information is propagated. The true
state is represented by the thick dot. For pictorial purposes we have represented:
the set AX̂ by dotted lines, the set AX̂ + ED by dashed lines, the output admissible
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Fig. 11.5 The sequence of non-conservative estimation regions

set Comp[w](y) = {x : |Cx − y| ≤ w̄} by plain lines and the actual estimation set
by a thick plain line. This set will be denoted by V [X(k)], where X(k) is the vertex
matrix.

At time t = 0, y(0) = Cx+w(0) = 1, that is to say |Cx−1| = |w(0)|. Since w(0)
is unknown we can only deduce that the system is in the intersection of the square
and the strip |Cx − 1| ≤ 1, see Fig. 11.5, left-top. This set X̂ (0|0) is a rectangle
V [X(0)] and it has vertex matrix

X(0) =

[
0 2 2 0

−4 −4 4 4

]

Now we compute the set AX̂ (0|0) depicted by a dotted line in Fig. 11.5, right-top.
In the same figure we have represented by dashed line the set AX̂ (0|0) + ED. We
computed the intersection with the admissibility set given by the output y(1) = 1
corresponding to the new state x(0) = [1 −1]T and the value w(1) = 0 (unknown to
the estimation algorithm). Such and output-admissible strip is |Cx−1| ≤ 1. Finally,
the thick line represents the new estimation set X̂ (1|0) having vertex matrix

X(1) =

[
0 2 2 0

−3 −1 3 1

]
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A further iteration provides the new state x(2) = [0 −1]T and output y(2) = Cx(2)+
w(2) = 0. The new set X̂ (2|0), computed as previously shown, is characterized by
the vertex matrix

X(2) =

[
−1 −1 1 1

0 −3 −2 2

]
.

At time t = 3 the true state is x(2) = [−1 − 1]T , the output y(3) = −1. The new
set X̂ (3|0) has the following vertex matrix.

X(3) =

[
−2 −1 −1 0 0 −1

0 −3.33 −3 −2 1.5 1

]

Note that the latest set has more vertices than the previous.
To explain the troubles associated with this kind of set-membership estimators,

we computed the estimation set sequence for a different initial condition and
disturbance sequence. Precisely, we assumed that x(0) = [3 2]T and that the first
elements of sequences d and w are d(0) = −1, d(1) = −1, d(2) = 0 and
w(0) = −1, w(2) = 0, w(3) = 0.5, respectively. The corresponding true state
sequence is x(1) = [5 1]T , x(2) = [6 0]T , x(3) = [6 0]T , the output sequence is
y(0) = Cx(0) + w(0) = 3, y(1) = 4, y(2) = 6 and y(3) = 6.5 The corresponding
set sequence is depicted in Fig. 11.6 and is represented by the following matrices.
The first set is X̂ (0|0) = V [X(0)], where

X(0) =

[
2 4 4 2

−4 −4 4 4

]
.

At time t = 1 the set is X̂ (1|0) = V [X(1)], where

X(1) =

[
3 5 5 3

−2 0 4 2

]
.

At time t = 2 the set is X̂ (2|0) = V [X(2)] where

X(2) =

[
5 7 7 5

−1 1 4 3

]
.

Finally, at t = 3 the set is X̂ (3|0) = V [X(3)] where

X(3) =

[
5.50 7.50 7.5 7 5.5

−1.25 −0.25 4.125 4 2.0

]
.
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Fig. 11.6 The new sequence of non-conservative estimation regions

It is apparent that not only the positions but also the shapes of the new sets are
different from those computed before.

We point out the following property, which is a quite obvious consequence of
what has been said up to now.

Proposition 11.5. Given the initial information set X̂ (k) on the state x(k), and the
corresponding output-admissible subset X̂ (k|k) assumed as the initial condition,
X̂ (t|k) represents the set of all the possible states and it is the exact estimation set
(consistent with the information from k to t). In other words, any element x ∈ X̂ (t|k)
can be actually achieved, namely x(i) = x, by means of admissible sequences
w(i) ∈ W and d(i) ∈ D, starting from a proper x(k) ∈ X̂ (k|k), with a transient
which produces the observed output. Conversely, any value x �∈ X̂ (t|k) cannot be
reached without a constraint violation.

Note also the following point. The method is based on precise assumptions on

i) the model: the matrices A, E, C (and possibly B) are known exactly;
ii) the disturbances bound: the sets W and D are known exactly;

iii) the initial guess: the set X̂ (k) is known exactly.
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From an ideal point of view, as long as the assumptions on the disturbances
w(t) ∈ W and d(t) ∈ D and the guess on the initial state X̂ (k|k) are correct,
the corresponding sequence X̂ (t|k) must be non-empty. In its practical application,
this kind of set-theoretic estimation has the following limitations.

• it might be possible that X̂ (t|k) = ∅. This means that either the assumptions on
the disturbances are not verified or the model is non-correct.

• It might be possible that the true state x(t) �∈ X̂ (t|k). This also means that either
the assumptions on the disturbances are not verified or the model is non-correct.

If one of the previous shortcomings occurs, then the only way to overcome it is
to enlarge the uncertainty bound. It is clear that for W and D large enough the
problem becomes necessarily consistent. In particular, uncertainty in the model, i.e.
on (A,C,E,B), can be compensated by augmenting the bounds on the uncertainties,
either additive or in the measurements (or both).

Once the set of admissible states is evaluated, the consequent problem consists in
selecting an estimated value. This is fundamental if this set-theoretic state estimation
has to be used for control. This is nothing else than a selection problem. Precisely a
proper estimation procedure requires computing x̂(t) as a selection

x̂(t) = Φest(y(t), y(t − 1), . . . , y(k), X̂ (k)) ∈ X (t|k) (11.18)

where Φest is a proper map with values in X (t|k). Since any x is possible, any
selection Φest is a possible solution. There are several ways to select a proper value,
normally based on some optimization criteria, for instance:

• x̂ is taken as the value of smallest norm;
• x̂ is taken as the center of the ellipsoid of greatest volume inside X̂ (t|k) (known

as Chebyshev center when a ball instead of an ellipsoid is considered);
• x̂ is taken as the center of the ellipsoid of smallest volume containing X̂ (t|k)

(such an ellipsoid is known as Löwner-John ellipsoid);
• x̂ is taken as the center of the smallest box including X̂ (t|k);
• x̂ is taken as the solution of a min–max problem

max
x̂∈X̂ (t|k)

min
z∈∂X̂(t|k)

‖x − z‖

Discussions about the choice of the center are proposed in [MT85] and [BV04].
However, the main issue remains unchanged: the complexity of the set X̂ (t|k)
increases with time and it is often impossible to use this algorithm in most
practical real-time applications. Some approximations are necessary and will be
discussed next.
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11.1.2 Approximate solutions

In this section we discuss some kind of approximate solutions to the problem.
Possible ways to overcome the problem of arbitrary increasing of complexity of
the exact solution (with respect to the information from k to t) are the following.

• Discharge part of the information when X̂ (t|k) becomes too complex. This
eliminates some of the constraints and provides a set which is an over-bound
of the true one.

• Consider an observer given by some optimality criteria (i.e., a Kalman–Bucy
filter) and then evaluate the error bound a posteriori.

A possible way to follow the first idea is to choose a fixed horizon [t − h, t] and
compute at each time the set X̂ (t|t − h) which has finite complexity. This can be
achieved by considering, for all t, the set Ξ(ȳ(t − T, t)) defined in (11.17), with
T > 0 fixed. For large T the projection Pr(Ξ(ȳ(t − T, t))) defines an accurate
estimation region.

We illustrate this method by means of an example, assuming for brevity d = 0
(measurement errors only) and A invertible. Then we have

x(i) = Ai−tx(t), i = t − k, . . . , t − 1, t.

The measurements are

y(i) = CAi−tx(t) − w(i).

Write the above equalities in a compact form

⎡
⎢⎢⎢⎢⎢⎣

C
CA−1

CA−2

:

CA−k

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ωt,t−k

x(t) −

⎡
⎢⎢⎢⎢⎢⎣

y(t)
y(t − 1)

y(t − 2)

:

y(t − k)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ȳt,t−k

=

⎡
⎢⎢⎢⎢⎢⎣

w(t)
w(t − 1)

w(t − 2)

:

w(t − k)

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
w̄t,t−k

and write the standard regression model

Ωt,t−kx − ȳt,t−k = w̄t,t−k.

Then if we assume w ∈ W , a polytope, the admissible set for x(t) is also a polytope.
If, to keep the exposition simple, we assume W as the ω-ball of the ∞-norm, so that
|wi| ≤ ω, then

X̂ω(t|t − k) = {x : ‖Ωt,t−kx − ȳt,t−k‖∞ ≤ ω}.



542 11 Set-theoretic estimation

Note that we can deal with the problem in an optimization setup by minimizing the
uncertain size ω, precisely by computing

min {ω ≥ 0 s.t. X̂ω(t|t − k) is non-empty}.

To use this scheme in practice, in particular to find an estimated value x̂(t) at each
time, when the new output y(t + 1) is available, all the available data must be
re-processed. There is no known method to process these data in a recursive way.

In the case of the 2-norm, when x̂(t) is taken as the minimizer

x̂(t) = arg min
x

‖Ωt,k−tx − ȳt,k−t‖2,

the least-square minimizer is

x̂(t) =
[
ΩT

t,k−tΩt,k−t

]−1
ΩT

t,k−tyt,k.

It also well known that the above formula admits a recursive implementation and
the reader is referred to specialized literature (e.g., [Lju99]).

Coming back to the case of ∞ norms (in general the polytopic case), we have
to deal with the problem of selecting an element inside a polytope. Unfortunately,
for fixed k, at each t the problem increases its complexity. However, if we fix the
difference h = t− k, then the algorithm has a fixed complexity, but this is clearly an
approximation since we basically keep the information up to t − k.

A more efficient method is to discharge, among the constraints defining the
feasible set, those which appear the “most useless” according to some optimality
criterion, which is not that of removing the oldest ones. For instance, one possible
way is to discharge constraints in order to achieve the minimum volume among all
the possible over-bounding sets [VZ96].

The second mentioned approach, precisely that of designing an observer to
evaluate the error bound a posteriori is more practical. Consider the system

x(t + 1) = Ax(t) + Bu(t) + Ed(t), y(t) = Cx(t) + w(t)

and consider the observer

x̂(t + 1) = (A − LC)x̂(t) + Bu(t) + Ly(t), .

Then the observation error is

e(t)
.
= x̂(t) − x(t)

subject to the equation

e(t + 1) = (A − LC)e(t) − Ed(t) + Lw(t) (11.19)
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Under standard detectability assumptions, (A − LC) can be rendered stable.
However, the error size bound can be quite different depending on the choice of
matrix L.

One possible way to determine an error bound is to compute an invariant set E
for system (11.19). In this case

e(0) ∈ E ⇒ e(t) ∈ E

If A − LC is stable, e(t) → E and E can be assumed as the ultimate observer error.
However the condition e(0) ∈ E is not necessarily assured. If we are granted the

a priori information

e(0) ∈ E0,

where E0 is not necessarily invariant, a viable solution is that of computing the
smallest invariant set including E0 as follows. In view of the results in Chapter 6,
in particular in Subsections 6.1.2 and 6.2.1, we can propagate the set E0, computing
the reachable sets Ek with bounded inputs. If in a finite time we have

Ek̄ ⊂ E0,

then the convex hull of the union of these sets

conv

⎧⎨
⎩

k̄⋃
k=0

Ek

⎫⎬
⎭

is positively invariant (see [BMM95]). This means that we can provide an over-
bound for the error.

An easier problem is to see if we can assure an ultimate observer bound. Assume
that we wish to assure the bound

‖e(t)‖∞ ≤ μ, for t ≥ T, (11.20)

where T clearly depends on the initial condition. The following proposition holds.

Proposition 11.6. Assume that A − LC is asymptotically stable. Denote by μinf the
infimum of the values for which (11.20) holds for some T. Then μinf is the smallest
value for which there exists an invariant set for (11.19) inside the μ-ball of the ‖·‖∞
norm.

The proof of this proposition is easy and is left to the reader.
In a set-theoretic framework it is very important to reduce the complexity of the

estimation algorithm whenever possible. In the case of an observer it is possible,
for instance, to resort to a reduced order observer. Consider the following standard
formulation



544 11 Set-theoretic estimation

[
x1(t + 1)

x2(t + 1)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
+

[
E1

E2

]
d(t), y(t) = x1(t) + w(t).

Consider the variable z(t) = x2(t) − Lx1(t). This variable satisfies

z(t + 1) = x2(t + 1) − Lx1(t + 1) =

= A21x1(t) + A22x2(t) + E2d(t) − LA11x1(t) − LA12x2(t) − LE1d(t)

= (A22 − LA12)z(t) + (A21 − LA11 + A22L − LA12L)x1(t)

+ (E2 − LE1)d(t) = (A22 − LA12)z(t) + PLx1(t) + QLd(t)

where QL = [E2 − LE1] and PL = A21 − LA11 + A22L− LA12L. For this system we
consider the observer

ẑ(t + 1) = (A22 − LA12)̂z(t) + PLy(t), (11.21)

where ẑ(t) is an estimation value for z(t) and x̂2(t)
.
= ẑ(t) + Lx1(t) is an estimation

value for x2(t). This leads to the error

e2(t) = ẑ(t) − z(t) = x̂2(t) − x2(t),

which satisfies the equation

e2(t + 1) = (A22 − LA12)e2(t) − QLd(t) + PLw(t),

Finding an estimation set for this system E2 is, in general, easier in view of the
reduction of the state space dimension. Clearly, we have also to take into account
the error on x1. One reasonable possibility is to trust the available measure x̂1 = y =
x1 + w. This means that

e1(t) = x̂1(t) − x1(t) ∈ W

Example 11.7. Consider the system of the previous example

[
x1(t + 1)

x2(t + 1)

]
=

[
1 1

0 1

] [
x1(t)
x2(t)

]
+

[
0

1

]
d(t), y(t) = x1(t) + w(t).

Again we assume |w(t)| ≤ w̄ = 1 and |d(t)| ≤ d̄ = 1. The estimation of x1 is
x̂1(t) = y(t), with error

|e1(t)| = |x̂1(t) − x1(t)| ≤ 1.



11.1 Worst case estimation 545

Let us now estimate x2. Consider the variable z(t) = x2(t) − Lx1(t). Then

z(t + 1) = [1 − L]z(t) + [−L2]x1(t) + [1]d(t)

ẑ(t + 1) = [1 − L]̂z(t) + [−L2]x1(t) + [−L2]w(t)

e2(t + 1) = [1 − L]e2(t) + [−L2]w(t) − d(t)

This is a single dimensional problem very easy to solve. For instance, it is quite easy
to see that (assuming asymptotic stability, i.e. |1 − L| < 1) the smallest invariant
interval for this system has extrema ±ē2, where

ē2 = [1 − L]ē2 − L2w̄ − d̄

namely ē2 = [−Lw̄ − d̄/L]. In our case (w̄ = 1 and d̄ = 1) ē2 = −[L + 1/L]. This
means that we can achieve a limit interval of the form

|e2| ≤ L + 1/L

We have derived in this way the asymptotic estimation error set, which is

{(e1, e2) : |e1| ≤ 1, and |e2| ≤ L + 1/L}.

Note that the feasible set previously computed for this example is necessarily greater
than this one, since the bound given here holds only asymptotically.

11.1.3 Bounding ellipsoids

We can easily exploit the results of Section 6.1.3 to describe the estimation error
bounds via ellipsoid. Consider the error equation

ė(t) = (A − LC)e(t) − Ed(t) + Lw(t) = (A − LC)e(t) + Eaugdaug(t)

where Eaug = [−E L ] and daug is an uncertain input bounded as

daug ∈ E(0,G−1, 1) = {daug : dT
augG−1daug ≤ 1}

According to the results in Section 6.1.3 [Sch73]

x(t) ∈ E(Q−1(t), 1) (11.22)

and

Q̇(t) = (A − LC)Q(t) + Q(t)(A − LC)T + β(t)Q(t) + β(t)−1EaugGET
aug,
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where β(t) is an arbitrary positive function. If we assume for G a block-diagonal
structure, G = diag{GE,GL}, we get

Q̇(t) = (A − LC)Q(t) + Q(t)(A − LC)T + β(t)Q(t) + β(t)−1(EGEET + LGLLT).

Assuming β(t) → β̄, the limit equation is

(A − LC)Q + Q(A − LC)T + β̄Q + β̄−1(EGEET + LGLLT) = 0,

which provides an invariant ellipsoid D(Q) for the error.

11.1.4 Energy bounded disturbances

For the sake of justice, we consider here the continuous-time case (the chapter is
almost completely devoted to discrete-time). The extension to the discrete-time
case is simple. Consider now the case of energy-bounded disturbances, precisely,
an integral constraint of the form

∫ t

0

[w(σ)T w(σ) + d(σ)Td(σ)]dσ ≤ 1,

for all t. Reconsider the (continuous-time) observer error equation

ė(t) = (A − LC)e(t) − Ed(t) + Lw(t) (11.23)

The set E� of all the states e(t) reachable from e(0) = 0 with bounded energy can
be written as follows:

E� =

{
e(t) =

∫ t

0

e(A−LC)σ [−Ed(t − σ) + Lw(t − σ)]dσ

}

with w, d as above. Consider the support function representation. For any unit vector
z, the corresponding support hyperplane of Et is given by

zTe ≤ max
d,w

zT
∫ t

0

e(A−LC)σ [−Ed(t − σ) + Lw(t − σ)]dσ

=

[∫ t

0

zT e(A−LC)σ(EET + LLT)e(A−LC)Tσz dσ

] 1
2

,

where the maximum is derived by the same argument of Theorem 6.18. We conclude
that

zTe ≤ μ(t)
.
=
√

zTQ(t)z
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where Q(t) satisfies equation (6.13) which now becomes (we assume A−LC stable)

Q̇(t) = (A − LC)Q(t) + Q(t)(A − LC)T + EET + LLT . (11.24)

The equation can be manipulated as follows:

Q̇(t) = AQ(t) + Q(t)AT + EET + LLT − LCQ(t) − Q(t)CT LT

= AQ(t) + Q(t)AT + EET + LLT − LCQ(t) − Q(t)CT LT ± Q(t)CT CQ(t)

= AQ(t) + Q(t)AT + EET − Q(t)CT CQ(t) +

+ (L − Q(t)CT )(L − Q(t)CT )T

Note that, without difficulties, we could consider a time-varying gain L = L(t) and
the expression would remain unchanged. For each unit vector z, let us define the
function

φ(z, t) = zTQ(t)z = μ2(t).

Intuitively, since

φ(z, t) = φ(z, 0) +

∫ t

0

φ̇(z, σ)dσ,

by minimizing the derivative we achieve the “smallest” ellipsoid. Such a deriva-
tive is

φ̇(z, t) = zTQ̇(t)z

and we can minimize it over L(t) independently of z by considering the expression
of Q̇. Indeed we immediately derive

φ̇(z, t) = zT [AQ + QAT + EET − QCTCQ]z + zT [(L − QCT)(L − QCT)T ]z

(where (t) has been dropped to avoid burdening of notations). The minimum value
is achieved when L(t) zeroes the last non-negative term, precisely

L(t) = Q(t)CT .

The resulting equation

Q̇(t) = AQ(t) + Q(t)AT + EET − Q(t)CT CQ(t) (11.25)
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is well known in filtering4 and is the Riccati equation This means that the solution of
the Riccati equation provides the smallest ellipsoid which is reachable with energy-
bounded disturbances. The asymptotic equation

AQ + QA + EET − QCTCQ = 0, (11.26)

along with the corresponding gain

L = QCT ,

provides the steady state solution along with the infinite-time ellipsoid.

11.2 Including observer errors in the control design

The problem of determining an error bound for the observer is fundamental to
extend state feedback techniques to the case in which the state variables are not
measured. Assume that the state is not known exactly but

x̂(t) = x(t) + e(t),

where the error due to the adopted estimation algorithm is e(t) ∈ E . Assume we are
given the state equation

x(t + 1) = Ax(t) + Bu(t) + Ed(t),

with d(t) ∈ D and that both E and D are 0-symmetric. A standard approach is that
of designing a state feedback and applying it to the estimated state

u(t) = Φ(x̂(t))

We show now how to treat the observer error as an additional disturbance [BR71a,
GS71] in the control scheme. Assume that we have computed a contractive C-set P
for the system

x(t + 1) = Ax(t) + Bu(t) + Ed(t) − Aec(t) + en(t), (11.27)

where ec and en are assumed to be independent signals that represent the current
and the next estimation assuming arbitrary values in E . This means that there exists
λ < 1 such that, for all x ∈ P , there exists u = φ(x) for which

Ax + Bu + Ed − Aec + en ∈ λP , (11.28)

4Being associated with the well-known Kalman–Bucy filter.
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for all possible disturbances d ∈ D, ec ∈ E and en ∈ E . Now assume that both x(t)
and x̂(t) are in P ,

(x(t), x̂(t)) ∈ P × P ,

along with x(t) − x̂(t) ∈ E . Consider the equation for the state

x(t + 1) = Ax(t) + BΦ(x̂(t)) + Ed(t)

= Ax̂(t) + BΦ(x̂(t)) + Ed(t) − Ae(t) ∈ λP

(this inclusion holds in view of (11.28) because en = 0 is an admissible value),
which means that the true state is inside λP .

For the estimation x̂, as long as x̂(t) ∈ P , we can write the condition

x̂(t + 1) = Ax(t) + BΦ(x̂(t)) + Ed(t) + e(t + 1)

= Ax̂(t) + BΦ(x̂(t)) + Ed(t) − Ae(t) + e(t + 1) ∈ λP (11.29)

by construction (again from (11.28)). Thus we have the condition

(x(t), x̂(t)) ∈ P × P ⇒ (x(t + 1), x̂(t + 1)) ∈ λ(P × P),

which implies that the product set P × P is contractive. Therefore, we can find
a control law u = Φ(x), positively homogeneous of order one and such that the
Minkowski function of P × P is a Lyapunov function outside this set. We can
conclude this reasoning as follows.

Proposition 11.8. Assume that a contractive C-set P is known for system (11.27)
and that the estimation error is bounded as e(t) ∈ E , for all t. Then the set P × P
is contractive for the extended state. Therefore there exists a control law, positively
homogeneous of order one, which can be computed by considering system (11.27),
where d(t), ec and en are assumed bounded disturbances, which assures uniform
ultimate boundedness of both x(t) and x̂(t) in P .

We now introduce the following claim, about separation principles, which is not
supported by any formal result but only by evidence about the state of art. Unless
we consider conservative solution (error upper bounds), a correct state estimator
has a complexity that varies over time on-line and this is a serious obstacle to any
reasonable implementation.

Claim: There are no neat separation principles in a set-theoretic framework. In
other words, if one wishes to design a compensator based on state feedback, one
can only rely on conservative estimated bounds in order to design the estimated
state feedback.
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Actually, this is a claim that is universal in the context of uncertain systems.
For (even linear) uncertain systems, the state estimation problem is usually harder
than the state feedback as long as the uncertainties entering the systems are not
measurable.

The situation is different if the uncertainties w and d are unknown a priori but
measurable on line or, more in general, available to the compensator. A typical
case is the tracking problem, in which the tracking signal is provided to the control
algorithm. Consider the case

x(t + 1) = Ax(t) + Bu(t) + Er(t), y(t) = Cx(t) + Dr(t)

Then a proper observer turns out to be

x̂(t + 1) = (A − LC)x̂(t) + Bu(t) + Er(t) + L(y(t) − Dr(t)),

that obeys the equation

e(t + 1) = (A − LC)e(t).

This case is virtually identical to the state feedback, since under detectability
assumption the error vanishes asymptotically.

We remind that in Section 7.4 we have seen that in the case in which there are
parameter variations (LPV) but the parameter value is known to the controller, then
some kind of duality and separation principle can be stated.

11.3 Literature review

The first contributions about set membership estimation in connection with control
trace back to the early 70s with the seminal papers [Wit68b, BR71a, BR71b, GS71,
GS71, Sch73] (undoubtedly the most cited papers in this book). For several years
this area has remained almost inactive, with few exceptions. The problem of set-
theoretic estimation via linear programming techniques has been considered later
[BM82, MT85]. Ellipsoidal techniques have been studied as well and the reader is
referred to [KV97] for a comprehensive presentation.

Very recently the worst-case state estimation problem for control has received
a renewed attention. Set-based estimators have been included in receding-horizon
schemes [BU93, BG00, KWL00, CZ02, MRFA06]. We point out that such a
technique is conceptually different from the receding-horizon estimation (see, for
instance, [ABB03] and the references therein). The problem of disturbance rejection
has been recently faced by means of set-theoretic estimators [ST97, ST99, AR11].
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11.4 Exercises

1. Find an example in which the estimation set X̂ (t + 1|k) is non-connected (and
therefore non-convex).

2. State estimation in the presence of model uncertainty is not only “a difficult
problem,” but in some cases it is unsolvable. Find an example of a system,
involving a parameter w, whose state is detectable when w is known but cannot
be detected when w is unknown (one of such examples can be found in [BM03]).

3. Could you figure out an estimation scheme for x(t + 1) = Ax(t) and y(t) =
Cx(t) + w(t), where w(t) is an unknown noise bounded in the C-set W , without
assuming A invertible as we did? Assume (A,C) observable and discuss the
consequences on the boundedness of the estimation region.

4. In Example 11.7 show that ē2 is indeed the bound for the interval. Find the
minimum value of ē2 and the corresponding L.

5. Assume that ΨS is the Minkowski function of P in Proposition 11.8. Find the
Minkowski function ΨSS of the product set P × P and write a bound for
ΨSS(x(t), x̂(t)).



Chapter 12
Related topics

In this chapter, some problems and examples which are in some way related to the
exposed theory are presented.

12.1 Adaptive control

The basic motivation for which we are considering this issue is to evidence the
fact that Lyapunov functions can be used not only to prove stability, but also to
prove boundedness of some variables, a step which is necessary in proving the
convergence of some adaptive schemes. The theory sketched here is exposed in
[BW84, Ilc93, IR94]. A very specific problem which is normally solved by means
of Lyapunov techniques is reported next. Consider the dynamic system

ż(t) = F(w(t))z(t) + G(w(t))y(t)

ẏ(t) = H(w(t))z(t) + J(y(t),w(t)) + M(w(t))u(t)

where w is an uncertain time-varying parameter ranging in a compact set W , u(t)
is the input and y(t) is the output. We admit that matrices F, G, H, J, and M are
completely unknown, but satisfy the following assumptions.

© Springer International Publishing Switzerland 2015
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• F, G, H, J, and M are Lipschitz continuous (this assumption can be weakened).
• F(w(t)) is quadratically stable, i.e. there exists P 
 0 such that

F(w)TP + PF(w) = −Q(w), ∀w ∈ W

with Q(w) 
 Q0 
 0.1

• M(w(t)) is positive definite, precisely, for all u,

uTM(w)u ≥ αuTu

for some α > 0. This is a sort of relative-degree-one assumption.
• The function J grows at most linearly with respect to y

‖J(y,w)‖ ≤ β‖y‖, ∀w ∈ W

(note that this implies that J(0,w) = 0.)

We stress that α, β, P, and Q(w) are all unknown and that the only quantity available
for feedback is the output y(t). This system includes as special case linear square
systems with minimum-phase zeros and relative degree one which can written in the
following form

ż(t) = Fz(t) + Gy(t)
ẏ(t) = Hz(t) + Jy(t) + Mu(t)

(12.1)

with F stable. The assumption on M is basically equivalent to M non-singular, since
its positive definiteness can be achieved by means of an input transformation2. Let
ε > 0 be a tolerance for the error on y and for (12.1) consider the following high-
gain adaptive control

u(t) = −κ(t)y(t)
κ̇(t) = σ2

ε (y(t)),
κ(0) = κ0 ≥ 0,

(12.2)

where (here we consider the Euclidean norm ‖y‖ =
√

yTy)

σε(y) =

{
0 if ‖y‖ ≤ ε

‖y‖ − ε if ‖y‖ > ε
(12.3)

1 This is a sort of minimum-phase zeros assumption which is equivalent to saying that the zero-
dynamics of the system which produces y ≡ 0 is governed by the system ż = F(w)z, which has to
be stable (see [Kha96], Section 12.2 and Exercise 10).
2Just replace u by the new input v, where u = MTv.
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Fig. 12.1 The function σ2
ε(y)

ε y

σε(y)
2

The function σ2
ε (y), depicted in Figure 12.1, represents the square of the distance

from the ε-ball. It is 0 as long as ‖y‖ ≤ ε and grows quadratically when this
condition is not true. It is then apparent that no gain adaptation occurs when y is
in the tolerance ε-ball. We wish to prove the following.

Proposition 12.1. The following conditions hold true.

i) κ converges monotonically from below to a finite value: κ(t) → κ∞ < +∞
ii) z and y are bounded, precisely for all z(0) and y(0) there exists μ and ν such

that ‖z(t)‖ ≤ μ and ‖y(t)‖ ≤ ν, for all t > 0.
iii) y converges to the ε-ball or, equivalently,

σε(y(t)) → 0

Proof. Without restriction, it is possible to assume that P = I, because if this were
not the case, one might consider the (unknown) transformation z = P−1/2ẑ so that
the F matrix becomes F̂ = P1/2FP−1/2 and then

P−1/2(FTP + PF)P−1/2 = P−1/2FTP1/2 + P1/2FP−1/2 = F̂T + F̂ =

= −P−1/2Q(w)P−1/2 ≺ −P−1/2Q0P−1/2 	 −2γI.

where the last inequality holds for γ = σmin/2 where σmin is the smallest eigenvalue
of P−1/2Q0P−1/2.

The first step of the proof is to show that κ is bounded. In view of the second
equation in (12.2), κ(t) is non-decreasing. Then it either converges to a finite limit
or grows up to +∞. To show that the latter option is not possible, consider the
Lyapunov-like function

Ψ1(z, y) =
zTz + yTy

2
,
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whose derivative is

Ψ̇1(z, y) = zT ż + yT ẏ = zTFz + zTGy + yTHz + yTJy − κyTMy ≤

≤ − γzTz + (‖G‖ + ‖H‖)‖z‖‖y‖+ ‖yT‖‖Jy‖ − καyTy ≤

− γ‖z‖2 + ρ‖z‖‖y‖+ (β − κα)‖y‖2 =

− γ‖z‖2 + ρ‖z‖‖y‖+ (β − κ̄α)‖y‖2︸ ︷︷ ︸
φ(z,y)

−(κ− κ̄)α‖y‖2.

The new parameter κ̄ is selected in such a way that the quadratic term denoted by
φ(z, y) is negative definite. Assume by contradiction that κ → ∞. Then, necessarily,
(κ − κ̄) → +∞ and hence the derivative becomes negative definite. In turn this
means that Ψ1(z, y) → 0, say there exists t̄ such that, for all t ≥ t̄, σε(y(t)) = 0,
thus κ̇ = 0, in contradiction with the assumption κ → +∞. Therefore, the limit is
κ∞ < +∞.

We now show that the state variables are bounded. Consider the new Lyapunov-
like function

Ψ2(z, y, κ, κ̂) = Ψ1(z, y) + (κ− κ̂)
2

=
zTz + yTy

2
+ (κ− κ̂)2

where κ̂ > κ∞ is a value that will be specified next. The variables y and z are clearly
bounded if, for a proper value of κ̂, function Ψ2 remains bounded. This is what will
be shown next.

As a first step, take t large enough in such a way that κ > κ∞/2 and define
ξ = (β−ακ∞/2) > β−ακ. For ‖y‖ ≥ ε, by exploiting the expression for Ψ̇1(z, y)
just computed, we get

Ψ̇2(z, y, κ, κ̂) = Ψ̇1(z, y) + 2(κ− κ̂)σ2
ε (y)

≤ −γ‖z‖2 + ρ‖z‖‖y‖+ (β − κα)‖y‖2 − 2(κ̂− κ)σ2
ε (y)

≤ −γ‖z‖2 + ρ‖z‖‖y‖+ ξ‖y‖2 − 2(κ̂− κ)σ2
ε (y)

The next step is to prove that this function becomes non-positive in the complement
of the rectangle

R = {(z, y) : ‖z‖ ≤ ζ, ‖y‖ ≤ 2ε}

(see Fig. 12.2) if ζ is large enough. First note that, since (κ̂ − κ)σ2
ε (y) ≥ 0, the

derivative is necessarily non-positive in the “butterfly region” (represented by the
shaded region in Fig. 12.2)

{(y, z) : θ‖z‖ ≥ ‖y‖}
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Fig. 12.2 The rectangle R
and the “butterfly” region

2ε

−2ε
ζ−ζ

y

z

for θ > 0 small enough. Indeed

Ψ̇2(z, y, κ, κ̂) ≤ −γ‖z‖2 + ρ‖z‖‖y‖ + ξ‖y‖2 ≤ [−γ + ρθ + ξθ2]‖z‖2

and the right term is clearly negative for 0 < θ < θ̄, where θ̄ is the positive root of
−γ + ρθ + ξθ2 = 0.

Now we prove that the derivative cannot be positive when ‖y‖ ≥ 2ε (the border
of such a region is represented by dashed lines in Fig. 12.2), for κ̂ large enough. In
this region σ2

ε (y) = (‖y‖ − ε)2 ≥ ‖y‖2/4 and then

Ψ̇2(z, y, κ, κ̂) ≤ −γ‖z‖2 + ρ‖z‖‖y‖ + ξ‖y‖2 − 2(κ̂− κ)(‖y‖ − ε)2 ≤

−γ‖z‖2 + ρ‖z‖‖y‖ + ξ‖y‖2 − κ̂− κ

2
‖y‖2 ≤ 0,

where the last inequality holds for κ̂ large enough to render negative the quadratic
form in the variables ‖y‖ and ‖z‖.

Take now ζ such that ζ > 2ε/θ. In this way, for ‖z‖ ≥ ζ, (z, y) either belongs to
the butterfly set θ‖z‖ ≥ ‖y‖ or lies outside the strip ‖y‖ ≤ 2ε. Therefore, if we are
outside rectangle R (which is disposed as in Fig. 12.2), one of these two conditions
must occur so that

Ψ̇2(z, y, κ, κ̂) ≤ 0, for (z, y) �∈ R

By taking a > 0 such that N [Ψ2, a] includes the rectangle, Ψ2(z, y, κ, κ̂) results then
non-increasing outside N [Ψ2, a] and then both vectors z(t) and y(t) are bounded.

Finally, we have to prove that y(t) → [−ε, ε]. Since z and y are bounded, then the
time derivative of y,

ẏ = Hz + Jy − κMy

as well as the derivative

d
dt
σ2
ε(y(t)) =

d
dy
σ2
ε(y(t))ẏ(t) = 2σε(y(t))ẏ(t),
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are bounded. Let us write

κ∞ − κ(0) =

∫ ∞

0

σ2
ε(y(t))dt < ∞

Thus we have that the integral of the non-negative function σ2
ε whose derivative is

bounded on [0,∞), is bounded. In view of Barbalat’s Lemma [Bar59], this means
that

lim
t→∞

σε(y(t)) = 0.

The previous theorem can be extended to the problem of tracking a proper signal
r. We do not consider this case here but we refer the reader to specialized literature
[Ilc93, IR94].

It has to be noticed that in the proof of the convergence of the scheme we assumed
a quadratic growth for the adaptation law, so we considered the function σ2

ε(y). This
is fundamental to prove boundedness. Quadratic growth can be dangerous in a real
context, since in practice too high gain values can be unsuitable in practice. In the
next section we consider a case in which a linear growth for the gain is sufficient.

12.1.1 A surge control problem

This subsection is completely dedicated to a real problem to which the high-gain
adaptive control was successfully applied. Consider the compressor-plenum plant
proposed in [Gre76], represented by the following second order model

ẋ1(t) = −B[x2(t) − Ψs(x1(t))]
ẋ2(t) = 1

B [x1(t) − u(t)Γs(x2(t))],
(12.4)

where x1 is the dimensionless flow rate in a compressor duct, that pumps a
compressible fluid in a plenum, whose dimensionless pressure is x2. The coefficient
B > 0 is known as the Greitzer parameter, Ψs(x1) and Γs(x2) are the static
characteristics of the compressor and the throttle valve, respectively. The function
u(t), which is the system input, represents the throttle valve fraction opening and
then it is subject to the constraints 0 ≤ u ≤ 1. Model (12.4) can be associated with
the output equation

y(t) = x2(t) − Ψs(x1(t)), (12.5)

which expresses the dimensionless total pressure at the compressor inlet. It is
well known that, due to compressor stall, the characteristic Ψs(x1) may present a
drop. As a consequence, for small values of u the system may become unstable.
In some conditions the system may exhibit limit cycles known as surge cycles.
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This phenomenon has been investigated and some solutions based on feedback
control have been proposed to suppress the surge.

We work under the conditions of qualitative knowledge of the system, assuming
most of the parameters and curves unknown. The following assumptions are
introduced.

Function Ψs(x1) is defined for x1 ≤ x+1 , where x+1 > 0 is an unknown value
for which Ψs(x

+
1 ) = 0, and it is piecewise-smooth on its domain of definition.

Furthermore, Ψs(x1) > 0 for x1 < x+1 and

lim
x1→−∞

Ψs(x1) = +∞.

Function Γs(x2) is piecewise-smooth, strictly increasing and it is such that

x2Γs(x2) ≥ 0.

The static value u0 can be chosen within the interval [u−, u+], where 0 < u− and
u+ < 1, with the exception of a single value ustall (representing the value in which
the compressor presents a stall). For all points

u0 ∈ [u−, u+], u0 �= ustall,

the system has an isolated equilibrium point P = (x∗1, x
∗
2) characterized by

x2 − Ψs(x1) = 0, x1 − u0Γs(x2) = 0.

We also assume that the two curves cannot have common tangent lines in P.
Denote by Xamm the next admissibility region in the x1–x2 plane (see Fig. 12.3)

Xamm = {x : x1 ≤ x+1 , x2 ≥ x−2 > 0},

where x−2 is an assigned small positive value. In the following, it will be assumed
that (these assumptions are commented in [BG02]): there exists a compact set
X0 ⊂ Xamm, depending on u0, including the unique isolated equilibrium point
P ∈ X0, and for each initial condition x(0) ∈ X0 the corresponding natural (i.e.,
uncontrolled) solution with u(t) = u0 remains admissible, i.e., x(t) ∈ Xamm, and is
bounded, namely, ‖x(t)‖ ≤ M, for some positive M depending on u0. The above
assumptions are in practice equivalent to the fact that the plant characteristics are
only qualitatively known, as it is often the case in real problems. Define the quantity

v(t) = u(t) − u0.

It can be shown, via local stability analysis, that for v = κy, with κ ≥ 0 sufficiently
large, k the equilibrium point is stable. However if one seeks for a more general
solution (described later) local analysis is not sufficient. We consider the following
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Fig. 12.3 The compressor
and throttle characteristics

x2
−

A

B

x2

x1 x1

x1=u0ΓS(x2)

ΨS(x1) P

+

adaptive control law

v(t) = κ(t)y(t), (12.6)

κ̇(t) = μσε(y(t)), κ(0) = 0, (12.7)

where μ is an adaptation factor, and σε(y) is the function (previously defined)

σε(y) =

{
0 if |y| ≤ ε

|y| − ε if |y| > ε
(12.8)

Note that, by considering σε(y) instead of σ2
ε (y) in the adaptation rule, we are

penalizing the distance from the interval of radius ε, not its square as in the previous
case. We will now prove in a set-theoretic framework that this solution actually
works.

Proposition 12.2. The closed-loop system with the above adaptation scheme is
such that

i) from any initial condition x(0) ∈ Xamm the closed-loop solution remains
admissible and bounded.

ii) the parameter κ remains bounded κ(t) → κ∞ < +∞.
iii) y(t) → [−ε, ε].

Proof. To prove this proposition, we need a preliminary (but fundamental) step.
We show that for all initial conditions in the unknown set X0 for which the natural
solution x̄(t) (achieved by κ(t) = 0) remains admissible (i.e., in the admissible
region) then also the solution x(t) with the control κ(t) > 0 remains bounded and
admissible, precisely, for each x(0) = x0 ∈ X0, ‖x(t)‖ ≤ M and x(t) ∈ Xamm.
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We prove this fact by determining some suitable compact invariant sets (for the
controlled system) enclosing the initial state x(0). These sets are determined (or
partially determined) by the trajectories of the uncontrolled solution.

First recall that, by assumption, the norm of the uncontrolled solution x̄(t),
achieved by κ(t) = 0 and x̄0 ∈ X0, is bounded by M. Therefore, the uncontrolled
solution x̄(t) either converges to a limit cycle or to the unique equilibrium point P
(see [Kha96], Section 7.1). We distinguish two cases:

1. solution x̄(t) converges to a limit cycle, say C, and x̄(0) ∈ C̄, the closed area
encircled by C;

2. solution x̄(t) converges to a limit cycle, say C, but x̄(0) �∈ C̄, or x̄(t) con-
verges to P.

In the first case we can show that any solution corresponding to κ(t) ≥ 0 does not
exit from the area C̄ enclosed by C. To this aim, we apply Nagumo’s theorem to show
that C̄ is positively invariant, not only, as it is obvious, for the uncontrolled system,
but also for the time-varying system with any κ(t) ≥ 0. Since C is a differentiable
curve, the tangent cone for x on the boundary of C̄ is

TS(x) = {z : nTz ≤ 0},

where n is the external normal vector orthogonal to C (see the first case in Fig. 12.4)
in point x = (x1, x2), given by

nT = γ(x1, x2)
[
1
B [x1 − u0Γs(x2)] B[x2 − Ψs(x1)]

]
(12.9)

(precisely the unit vector orthogonal to the “natural” derivative ˙̄x), where
γ(x1, x2) = 1/

√
˙̄x21 + ˙̄2x2 > 0 is a normalizing factor. By applying Nagumo’s

condition we achieve for x ∈ C,

nT ẋ = −κ(t)γ(x1, x2)Γs(x2)[x2 − Ψs(x1)]
2 ≤ 0. (12.10)
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Case 1 Case 2
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Fig. 12.4 The system trajectories
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Thus, C̄ is positively invariant for the controlled system and the solution is bounded
for all x(0) inside this set.

The second case is more involved and we deal with it intuitively, since a formal
proof would be too long (the reader is referred to [BG02] for more details). As a
first step, note that we can distinguish four subregions Ri according to the signs of
the derivative components ˙̄x1 and ˙̄x2 in the uncontrolled system (see Fig. 12.4) as
follows:

R1 : (+,+), R2 : (−,+), R3 : (−,−), R4 : (+,−).

Assume now that a limit cycle exists and consider any initial condition x̄0 ∈ X0,
outside the limit cycle. The corresponding uncontrolled trajectory x̄(t) intersects
infinitely many times all regions Ri and the characteristic branches in strict periodic
sequence.

Assume for brevity that x̄(0) ∈ R1 (the other four cases can be dealt with in the
same way). Denote by A, B, C, D, and E the intersections with the characteristic
branches. Let E be the second intersection point with the compressor characteristic
on the right of P. Necessarily E is on the left of A, because the trajectory cannot
intersect itself, and must converge to the limit cycle. Now let F be the point on the
compressor characteristic having the same abscissa of x0. We claim that the region
enclosed by the closed curve x̄(t) through point x0, A, B, C, D, E, arc E–F, and
vertical segment F–x0 is positively invariant for the controlled system. To show this
we have to analyze Nagumo’s condition along the boundary. Along the boundary
given by the curve associated with x̄(t), we derive exactly the same condition (12.9)
obtained before. Let us consider the curve E–F. In any point x = (x̄1, x̄2) in which
it is differentiable, the tangent cone (actually a half-plane) is TC̄(x) = {z : z2 −
Ψs(x̄1)z1 ≥ 0}. Since v = 0 on the characteristic x2 − Ψs(x1) = 0 the derivative
is ẋ = [0 (x̄1 − u0Γs(x̄2))/B]T and its second component is positive, so ẋ ∈ TC̄ . If
the curve E–F is not differentiable in the point (x̄1, x̄2) (for instance in the points
associated with the stall) the tangent cone is characterized by the two inequalities
TC̄(x) = {z : z2 − Ψ ′

s(x̄
−
1 )z1 ≥ 0, z2 − Ψ ′

s(x̄
+
1 )z1 ≥ 0} associated with the left

and the right derivative and the same reasoning applies.
On the boundary formed by the segment F–x0, the tangent cone is the set TC̄ =

{z : z1 ≥ 0}. Since the derivative ẋ1 is non-negative in this sector, we have ẋ ∈ TC̄ .
We need only to consider the points E, F and x0. It is very easy to see that in the
point E the tangent cone is the union of the second and third quadrant and the half-
plane H delimited by the line tangent to the curve in point E3. In the point F the
tangent cone is the union of the first quadrant, the fourth quadrant and H. Checking
the condition ẋ ∈ TC̄ is very easy in both points E and F, since the derivative vector
is vertical (we remind that v = 0).

3H = {z : z2 ≥ Ψ ′
s (x̄1)z1}.
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As far as the point x0 is concerned, the tangent cone is delimited by the line
passing through the origin and parallel to the tangent line of the natural solution
passing through x0 and by the vertical line

TC̄(x0) = {z : z1 ≥ 0, nTz ≤ 0},

where n in the unit vector already defined in (12.9). Checking the condition ẋ ∈
TC̄(x0) is immediate.

The case in which a limit cycle does not exist for the natural trajectory, so that
x̄(t) → P asymptotically, can be handled in the same way by considering P as
a “degenerate limit cycle.” Even in this case we can identify an area, partially
delimited by x̄(t), which is invariant for the controlled solution. Therefore the
situation is as in Fig. 12.4, Case 2, where point E (as well as A, B, C, D) may be
equal to P.

Once we have established the boundedness of the controlled solution, we can use
argument similar to those previously used. We first show that κ is bounded.

By contradiction, assume that κ(t) → +∞ monotonically. To this aim we need
to rewrite the equations by changing variables

y(t) = x2(t) − Ψs(x1(t))
z(t) = x1(t),

we get an equation of the form

ż = −By
ẏ = g(z, y) − Γs(y + Ψs(z))u = g(z, y) − κΓs(y + Ψs(z))y.

(12.11)

Since we have proved that x1 and x2 are bounded, so are z and y and the term
|g(z, y)| ≤ ρ and then, since the variables remain admissible, |Γs(y +Ψs(z))| ≥ ξ >
0. Consider the Lyapunov-like function Ψ(y) = y2/2. Then

Ψ̇(y) = yg(z, y) − κ

B
Γs(y + Ψs(z))y

2 ≤ ρ|y| − ξκy2.

By taking κ̄ > Bρ/εξ we have that, for κ ≥ κ̄, Ψ̇(y) is strictly negative outside
the open interval (−ε, ε). Therefore, it is a Lyapunov function outside this interval,
which in turn implies that y(t) is ultimately bounded inside the interval [−ε, ε]. This
means that there exists T > 0 such that, for all t ≥ T, |y(t)| ≤ ε and so, for all
t ≥ T, κ̇(t) = 0, in contradiction with the fact that κ(t) → +∞

Since the variables are bounded, in view of the equation

ẏ = g(z, y) − Γs(y + Ψs(x1))κy/B,

ẏ is bounded.
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Consider equation (12.7) and write it in the equivalent form

κ∞ − κ(0) = μ

∫ ∞

0

σε(y(t))dt

Then we can apply Barbalat’s Lemma and conclude that σε(y(t)) → 0, which is
what was to be proved.

It can be shown that if we take ε → 0, the state variables approaches the desired
equilibrium point (see [BG02] for details and experimental results). We also remark
that the considered system, in view of Equation (12.11), does not satisfy the strict
minimum-phase conditions imposed in the previous case (cf. footnote 1 in this
section).

12.2 The domain of attraction

Throughout the book we have quite often mentioned the concept of domain of
attraction, especially in Chapter 8, when constrained control problems have been
considered. In view of the importance of the subject, we decided to dedicate a
section to a concept which is clearly related to it: the region of asymptotic stability.
The reader is referred to specialized literature, for instance the excellent survey
[GTV85] and book [Che11a].

Given a system ẋ(t) = f (x), with f (0) = 0, for which the origin is an asymptot-
ically stable equilibrium point, we define as Region of Asymptotic Stability (RAS)
the set of all the initial conditions x0 such that if x(0) = x0 the corresponding
solution x(t) → 0 as t → ∞. The first investigation about RAS is due to the seminal
work of Zubov [Zub64] and La Salle [LL61]. In particular it is known that if a region
of asymptotic stability is sought as N [Ψ, 1], the 1-sublevel set of a Lyapunov smooth
function Ψ(x), then the following equation, known as Zubov equation, comes into
play

∇Ψ(x)f (x) = −φ(x)[1 − Ψ(x)],

where φ(x) is a positive definite function. It is also well known that solving
this partial differential equation (without brute-force methods) is hopeless and
therefore, approximate methods are necessary. These methods typically allow for
the determination of what we call here a Domain of Attraction. A domain of
attraction S is any set S for which

i) 0 ∈ S;
ii) S is positively invariant;

iii) x(0) = x0 ∈ S implies x(t) → 0.
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Obviously, any domain of attraction is a subset of the region of asymptotic stability.
Several techniques can be used to achieve a domain of attraction and the set-
theoretic approach can be very helpful to solve the problem. We sketch some
possible applications.

12.2.1 Systems with constraints

The case of systems with constraints has been already considered in this book and
we just propose a new point of view. Here we assume that the system is locally
stable and that constraints of the form

g(x) ∈ Y

are assigned. Under the obvious assumption that g(0) ∈ Y , an interesting problem
is the determination of a set of initial states for which the constraints are satisfied
during the transient. This requires the determination of the constrained domain of
attraction, precisely a set which is admissible and positively invariant according
to Theorem 8.2 at the beginning of Chapter 8. That chapter has been basically
devoted to the determination of a proper control action for which the constraints
are satisfied. In some cases the controller is given and thus we can only determine
the corresponding domain of attraction.

In the case of asymptotically stable linear systems with linear constraints this
problem can be solved exactly for discrete-time systems as shown in Section 5.4 and
approximately for continuous-time systems. We have seen that solving this problem
is possible even in the case of uncertain linear systems, so the case of nonlinear
systems is considered next.

A possible solution is achieved by the model-absorbing technique presented in
Section 2.1.2. This technique is based on the possibility of determining a compact
W such that, in a proper domain X , the following equality holds:

f (x) = A(w)x, for some w ∈ W

If the above holds, then any domain of attraction for the linear differential inclusion
is a domain of attraction for the original dynamics. One positive aspect of the above
way of proceeding is that uncertain systems can also be dealt with. The shortcoming
is that the approximation can be very rough, as shown in the next example.

Example 12.3. Consider the following system

ẋ1(t) = −[x1(t) − x31(t)] − x2(t)

ẋ2(t) = x1(t) − x2(t)
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and the local Lyapunov function

Ψ(x) = x21 + x22

(determined via linearization), whose derivative is

Ψ̇(x) = −2x21 − 2x22 + 2x41.

To determine a domain of attraction of the form N [Ψ, κ], we seek for the supremum
value κsup of κ for which Ψ̇(x) < 0 for all non-zero x ∈ N [Ψ, κ]. Simple
computations yield κsup = 1, so that the corresponding domain is the open unit
circle (see Fig. 12.5). A different possibility is the following. Write the nonlinearity
between square brackets as

−[x1(t) − x31(t)] = −[1 − w]x1, with w = x21

By imposing bounds of the form

|x1| ≤ ξ (12.12)

we have

|w| ≤ w̄ = ξ2 (12.13)
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Fig. 12.5 The true and the estimated domains of attractions
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The uncertain linear absorbing system, valid under condition (12.12), has the
following state matrix

A(w) =

[
−[1 − w] −1

1 −1

]
, |w| ≤ w̄,

and its largest domain of attraction subject to the constraints (12.12) and (12.13),
was computed for ξ = 3/2 and w̄ = (3/2)2 by means of a polyhedral Lyapunov
function. The vertices of the unit ball are denoted by “*” in Figure 12.5. Note that,
although it is “slightly better” (since it has a larger area), the domain achieved by
absorbing does not include the domain of attraction achieved by the local Lyapunov
function.

The “true” domain of attraction has been also represented. In such kind of
simple examples, this domain can be “numerically determined” by considering
several trajectories computed by backward simulation starting from several “final”
conditions inside the previous domain of attraction. This example clearly shows the
limits of the determination of the domain of attraction achieved by guessing the
shape of the function or by the merging in an uncertain linear system.

In the next example we show a possible application to a real problem.

Example 12.4. Let us consider the magnetic levitator of Figure 2.1 in Subsec-
tion 2.1.2 and the corresponding absorbing equation (2.19) derived there. We rewrite
here the state update and input matrices,

A =

[
0 1

a 0

]
, B =

[
0

−b

]
,

with

1507 ≤ a ≤ 2177, 17.8 ≤ b ≤ 28.

The two variables of this system, x1 and x2, represent the position and the speed of an
iron ball, while the input is the magnet current. We remind that position and speed
are oriented downwards (i.e., increasing x1 means lowering the sphere). For this
system we impose the control constraints |u| ≤ ω, which are obviously due to the
current limitation (actually only the upper bound is really important, since the “true
current is ī + u, where ī is the steady-state current). We also assume the following
position constraints |x1| ≤ ξ. The lower limit is imposed by the fact that the sphere
cannot get too close to the magnet since, due to residual magnetic field, the ball is
attracted even for zero current. The upper level is due to the fact that to start the
experiment the ball is carried by a platform which has been placed at a distance ξ
from the nominal position. The fact that the limits are symmetrical has been imposed
for convenience.
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For ω = 0.7A, ξ = 0.005m, and ī = 1A, we determined the polygon whose
vertices are the columns of the matrix [X − X], where

X =

[
0.005 0.005

0 −0.398

]

which is contractive and can be associated with the linear control law

u = 120x1 + 2.71x2

This information is important because it means that if we place the ball on the
platform at a distance ξ = 5mm from the nominal one then, since the corresponding
state x(0) = [0.005 0]T is in the computed set (actually a vertex), we can lift the
sphere without constraint violation (as experimentally verified). In Figure 12.6, the
estimated domain of attraction is depicted along with some kind of model-based
“true” region computed as follows.

We have computed the full-force trajectory with maximum current u = ω from
the lower limit of x1 = −ξ and we considered the maximum initial speed for which
the breaking effect is such that the peak of x1 (lowest position) is on the maximum
value ξ. We have repeated the same experiment by integrating the trajectory with
i = 0 (this means that u = −1 and then it is out of the considered limits) starting
from x1 = ξ with negative speed and we computed the maximum negative speed
such that the sphere reaches the lower limit −ξ without crossing it. These extremal
curves characterize a “safety region” which appears, as expected, much greater than
the estimated one.

Fig. 12.6 The estimated
(polygonal) and the true and
safety regions
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12.3 Obstacle avoidance

Obstacle avoidance is relevant in many applications in which regions in the state
space must be avoided for safety reasons. Such a problem is encountered, for
instance, in robotics, navigation, automated vehicles, and flight control.

Conceptually, the problem formulation is identical to the problem of keeping the
state in a region, as we have seen in Section 5.1. Consider the dynamical system

ẋ(t) = F(x(t), u(t),w(t)),

where u is the control, u(t) ∈ U , and w is the disturbance, w(t) ∈ W . For such
system, given a region X in the state space to be avoided, the problem faced here
can then be translated into

x(t) ∈ X̃ ,

where X̃ is the complement of X , and therefore we are dealing with a constrained
control problem.

The essential difference is that, while the convexity assumptions considered in
the constrained control case are reasonable in most cases, the convexity assumption
on X̃ would be unacceptable in most situations. This fact renders the problem both
difficult and challenging.

Often obstacles are just associated with regions of the physical space one should
avoid. If, for instance, a convex obstacle is given, then avoiding it is a constrained
problem with respect to the complement of a convex set.

Example 12.5 (Obstacle avoidance: pit-jumping dilemma). Consider the problem
of jumping a pit as in Fig. 12.7. No biker-experience is needed to see that the bike
or a runner may cross the pit provided that its (his/her) speed is large enough. In
simple words, crossing is possible provided that the speed at the pit bound is greater
than a certain quantity. Thus the expression for the obstacle is

O = {(y, v) : |y| ≤ d, |v| ≤ vmin},

where y is the distance from the center of the ditch, v = ẏ is the speed, vmin is
the minimum speed at the boundary which is necessary to jump on the other side

Fig. 12.7 Pit-jumping

2d

v



570 12 Related topics

Fig. 12.8 The obstacle
associated with the
pit-jumping

d

vmin

−vmin

−d

of the ditch. Therefore, a (reasonable) problem for the biker is to be outside the
convex set O. The obstacle is represented in the state-space (position-speed space)
in Fig. 12.8.

Let us now assume that the following equation is associated with the bike: ÿ = u,
with −umin ≤ u ≤ umax, where umin and umax are the minimum (i.e., braking) and
maximum acceleration.

The dynamic problem is intuitive (as experience teaches us). There is a dangerous
zone in terms of speed and position. If the bike approaching the ditch is not fast/slow
enough within a certain distance from the ditch it might get into trouble. How is it
possible to determine such a region and avoid it?

A possibility to face the previous question is to use the dynamic programming ideas
developed in Chapter 5. These ideas have been around for many years [BR71a] with
pursuit-evasion games. See also [CDS02, RBCM07] for more recent developments.
Assume that the region to be avoided is O0 = O. Consider the dynamics represented
by the system

x(t + 1) = f (x(t), u(t)), u ∈ U .

Then, in discrete-time, let us consider the 1-step no-return region O−1, namely the
region for which, no matter how u is taken, we will have that the next step x will be
in the “pit” O0

O−1 = {x : f (x, u) ∈ O0, ∀u ∈ U}.

Needless to say this is a “suicide” region to be avoided. If the biker is inside, then
there is no way to avoid falling into the ditch. The rest of the procedure is similar.
Recursively let us compute

O−(k+1) = {x : f (x, u) ∈ Ok, ∀u ∈ U}
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This is the set such that x(t) ∈ O−(k+1) implies x(t + 1) ∈ O−k, x(t + 2) ∈ O−k+1

and so on. The set

D .
=

∞⋃
k=0

O−k

is the region to be avoided. If the biker is in this region, she/he cannot avoid the
obstacle. It is immediately seen that if the dynamics is linear and if the initial set
O0 is convex, the sets O−k are convex, although D is not necessarily convex. If the
sets O and U are polyhedral C-sets, then all the O−k are polyhedral C-sets. More
precisely, assuming the plane representation O−k = P [F, g], then O−k−1 can be
computed by first determining its erosion (see Subsection 3.1.1)

E−k = {y : y + Bu ∈ O−k, ∀u ∈ U} = P [F, g̃]

and then the pre-image

O−(k+1) = {x : Ax ∈ E−k} = P [FA, g̃].

Interestingly enough, for systems without uncertainties, the complexity of the
sets O−k does not increase with time, say the complexity is linear in the time
horizon.

Example 12.6 (Pit-jumping dilemma continued). Let us consider the discrete-time
equivalent for the pit-jumping problem

x(t + 1) = Ax(t) + Bu(t)

with

A =

[
1 T
0 1

]
, B =

[
T2/2

T

]
.

Assuming vmin = 5, d = 2 and |u| ≤ umax = 1, the sequence of sets depicted in
Fig. 12.9 is obtained. It turns out that the sets O−k have empty interior for k ≥ 21.
The union of these sets is the region D which has to be avoided. The form of the
dangerous set has an immediate physical interpretation. Take, for instance, the point
(−4, 4). Being in this state means that the bike is approaching the obstacle with
positive speed and the engine has not enough power to reach the ‘jumping” speed
nor the brake has enough power to stop before the ditch. Note that for points outside
the dangerous set the strategy might be different. In the state (−5, 2) the bike is safe
if it brakes, reaching the zero speed before the ditch, while in point (−4, 6) a full
force acceleration is “suggested” to jump over the ditch.
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Fig. 12.9 The sequence of sets O−k whose union is the region D
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Fig. 12.10 Robot in a constrained environment

There are some cases in which the form of the obstacle is so complex that the
previous procedure would become computationally unfeasible. This is the case of
obstacle avoidance in robotics.

Assume that a manipulator has to operate in a constrained environment as in
Fig. 12.10 left. Assume that the angles q1 and q2 are the free coordinates of the
robot which has to move in a constrained environment. Generally speaking, even
though the allowable physical space is simple, the corresponding allowable region
in the coordinate space might be very hard to describe. Typically it is non-convex as
the white set in Fig. 12.10 right.



12.3 Obstacle avoidance 573

One possible solution is to fill the admissible region with a family of simple
overlapping sets, typically convex and compact (see, e.g., Fig. 12.10 right). This
set-covering technique has been suggested in [MADF00] and the idea is described
in [BPV04, BMPVA08]. It is based on constructing regions with crossing points
between regions and on equipping the system with a hierarchical control with

• a high-level global controller, which decides a path of connected sets in which
the first includes the starting point and the last the destination point (D in the
figure). The high level control makes use of a connection graph.

• a low-level local controller, active in each convex set, which tracks the reference
(if the reference is inside the current set) or tracks a “crossing” point to another
set of the sequence which is closer to the final set.

The technical problem in the case of the robot is that the sets are naturally defined
in the free coordinate q-space, not in the state-space (whose components are usually
the coordinates and their derivatives (q, q̇)). Therefore they have to be expanded
(“inflated”) in order to become convex sets with non-empty interior in the state-
space, roughly the (q, q̇)-space. We do not proceed further in describing the details
of this problem. The interested reader is referred to [BPV04, BMPVA08]. We rather
analyze the simplest version of the problem: a point moving in a constrained space
q subject to the equation

q̇ = v, (12.14)

where q ∈ IRn is the coordinate vector and v is the speed assumed as a control
signal, so that the q-space is also the state space4. Assuming that a maximum speed
‖v‖2 ≤ v̄ for the robot is assigned, we can adopt as local controller

v = −v̄ κ(q − q̄)

max{1, κ‖q − q̄‖} , (12.15)

where κ > 0 is a parameter and q̄ is either the target point or a crossing point to the
next set of the sequence.

This low-level control obviously satisfies the input constraints ‖v‖2 ≤ v̄. It is not
difficult to see that it satisfies the space constraints too. If Si is the set of the family
in which the state q(t0) and the target or crossing point q̄ are included at time t0,
then the resulting trajectory is

q(t) = θ(t)(q(t0) − q̄) + q̄ (12.16)

4This is typically reasonable when the system is equipped by a “fast” speed-loop control, so that
the speed can be approximately assumed as input.
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Fig. 12.11 The constrained environment and the (experimental) trajectory in a constrained
environment

for some scalar function θ(t) such that θ(t0) = 1 and θ(∞) = 0. By replacing q
as in (12.16) in (12.15) and then replacing v into (12.14), we see that function θ(t)
satisfies the following equation

θ̇(t) = −v̄ κθ(t)
max{1, κθ(t)‖q(t0) − q̄‖} . (12.17)

The so derived closed-loop system satisfies the constraint as long as both q(t0) and q̄
are in the convex set Si, because the trajectory lays on the segment having extrema
q(t0) and q̄. Note also that the speed of the process is saturated, |v| = vmax, when
q(t) is far from the target q̄, and it is proportional to q̄ − q when q(t) is close to q̄,
so it converges exponentially.

This class of controllers has been successfully experimented on a Cartesian
Robot in a constrained environment (Fig. 12.11).

12.4 Biological models

Biological systems, actually biological models, are a mine of interesting (and funny)
problems for both engineers and mathematicians. There are many books which
are devoted to the topic, for instance [EK05, CWLA05, CB11, DVM14]. Perhaps
mathematics will not solve the major problems humans are encountering in biology
and nature, but it might help understanding some principles underlying the behavior
of many systems.

One fundamental field in which mathematics provides essential tools is that of
chemical networks and biomolecular chemistry [DVM14]. Mathematical chemistry
produced nice theorems, such as the 0 deficiency theorem [Fei87], which proves
stability for a large class of networks governed by mass-action kinetics using the
entropy as a Lyapunov function.
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Here we wish to sketch some examples and ideas about problems which may
benefit from the theory presented in the book. Some ideas in this direction have
been presented in [ATS07]. We speak in general of “chemical reactions models”
with the understanding that these principles are general in nature.

Consider the following reaction

A + B → C + D

in which a molecule of the species A and a molecule of the species B react to produce
a molecule C and a molecule D. If one denotes by a, b, c, and d the concentrations
of these species, the reaction reduces the concentrations a and b of A and B and
increases the concentrations c and d of C and D. Then we can write

ȧ = −g(a, b), ḃ = −g(a, b), ċ = g(a, b), ḋ = g(a, b),

where g(a, b) is the reaction speed. An accepted assumption is that g(a, b) = κAB ab
(mass-action kinetics), with κAB constant. In general mass-action kinetics means that
the reaction

pA + qB → whatsoever,

where p molecules of A and q molecules of B are combined to produce some reaction
products, has reaction speed κABapbq, with κAB constant.

Several reactions combined together form a chemical reaction network.

Example 12.7 (Chemical reaction chain with feedback). Consider the family of
reactions

∅ → A → B → C → D → ∅, A + D → ∅

We denoted by A a chemical species introduced from the external environment with
rate a0. In turn, A generates B, with rate ga(a); B generates C, with rate gb(b);
C finally generates D with rate gc(c). D degrades with rate gd(d) and combines
again with A thus consuming it and itself with rate gad(a, d) so creating a negative
feedback for its own production. The corresponding equations are the following

ȧ = a0 − ga(a) − gad(a, d)

ḃ = ga(a) − gb(b)

ċ = gb(b) − gc(c)

ḋ = gc(c) − gad(a, d) − gd(d)
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It is assumed that all the functions g·(·) are defined for positive arguments,
are smooth and strictly increasing with positive partial derivatives for positive
arguments. We also assume that g = 0 if and only if any of its arguments is 0,
otherwise it is positive.

A chemical reaction network, as the previous one, is generally modeled as

ẋ = Sg(x) + g0,

where S is the stoichiometric matrix, g(x) is the vector of the reaction rate functions,
g0 is the external input. In the case of the example

S =

⎡
⎢⎢⎣
−1 0 0 −1 0

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 −1

⎤
⎥⎥⎦ , g =

⎡
⎢⎢⎢⎢⎢⎣

ga

gb

gc

gad

gd

⎤
⎥⎥⎥⎥⎥⎦
, g0 =

⎡
⎢⎢⎢⎢⎢⎣

a0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

It is reasonable to assume that, for positive arguments x > 0 (componentwise), we
have

∂gi

∂xj
> 0

A typical question for a network is whether it is possible to infer some properties
based on its structure, without the explicit knowledge of the function g.

In particular, the following questions are typical.

• Is the overall solution of the system non-negative for non-negative initial
conditions?

• Is the overall solution of the system bounded?
• Assuming there exists an equilibrium point, is it (at least locally) stable?

A set-theoretic approach can be of help in answering these questions.
First of all we immediately stress that the first question should be better named

“dogma,” in the sense that positivity of the concentrations is necessary for the model
to be meaningful, therefore a preliminary positivity test on the system is mandatory.
Once positivity is checked, boundedness and stability can be considered.

Example 12.8 (Chemical reaction chain with feedback continued). Consider again
the previous example and let us prove positivity and boundedness altogether. Let us
sequentially define

• â the unique solution of the equation a0 − ga(a) = 0;
• b̂ the unique solution of the equation ga(â) − gb(b) = 0;
• ĉ the unique solution of the equation gb(b̂) − gc(c) = 0;
• d̂ the unique solution of the equation gc(ĉ) − gd(d) = 0;
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It will now be shown that the box defined by the inequalities

0 ≤ a ≤ â, 0 ≤ b ≤ b̂, 0 ≤ c ≤ ĉ, 0 ≤ d ≤ d̂,

is positively invariant. On the lower bounds, “left inequality” Nagumo’s conditions
are immediate:

a = 0 ⇒ ȧ > 0, b = 0 ⇒ ḃ ≥ 0, c = 0 ⇒ ċ ≥ 0 and d = 0 ⇒ ḋ ≥ 0

Note that this proves that the positive orthant is positively invariant.
As far as the upper bounds are concerned, the “right inequality” Nagumo’s

conditions still hold. Indeed

a = â ⇒ ȧ = −gad(â, d) ≤ 0

and

b = b̂ ⇒ ḃ = ga(a) − gb(b̂) ≤ 0, for 0 ≤ a ≤ â.

Similarly

c = ĉ ⇒ ċ ≤ 0, for 0 ≤ b ≤ b̂,

and

d = d̂ ⇒ ḋ = gc(c) − gd(d̂) − gad(a, d̂) ≤ gc(c) − gd(d̂) ≤ 0, for 0 ≤ c ≤ ĉ.

It follows that an equilibrium point exists inside this positively invariant box. Denote
by (ā b̄ c̄ d̄)T such an equilibrium.

This equilibrium must be component-wise positive for a0 = const > 0. By
contradiction, assume ā = 0; then ȧ = a0 > 0, thus ā > 0. In the same way if
b̄ = 0, then ḃ = ga(ā) > 0, thus b̄ > 0. Similarly we can see that c̄ > 0 and d̄ > 0.

We are now in the position of checking whether this equilibrium is stable. To this
aim (see [BG14]) the system is absorbed in a differential inclusion as follows (see
Subsection 2.1.2). Write

ga(a) − ga(ā) = α(a)(a − ā), gb(b) − gb(b̄) = β(b)(b − b̄),

and

gc(c) − gc(c̄) = γ(c)(c − c̄), gd(d) − gd(d̄) = δ(d)(d − d̄).

Moreover

gad(a, d) − gad(ā, d̄) = μ(a, d)(a − ā) + ν(a, d)(d − d̄),



578 12 Related topics

where the functions α(a) > 0, β(b) > 0, γ(c) > 0, δ(d) > 0, μ(a, d) > 0 and
ν(a, d) > 0 are strictly positive and upper bounded inside the box. Then the system
in the variables xa = a − ā, xb = b − b̄, xc = c − c̄ and xd = d − d̄ can be absorbed
in a differential inclusion with matrix

A =

⎡
⎢⎢⎣
−(α+ μ) 0 0 −ν

α −β 0 0

0 β −γ 0

−μ 0 γ −(δ + ν)

⎤
⎥⎥⎦

This matrix is weakly column-diagonally dominant hence the 1-norm ‖ · ‖1 is a
polyhedral Lyapunov function in the weak sense, namely not increasing.

We assume that the following uniform bound is satisfied:

0 < ρ ≤ α, β, γ, δ, μ, ν ≤ κ

The upper bound is obvious. With a deeper discussion we could convince the reader
that also the lower bound is true. Consider, for instance, the function gad

gad(a, d)− gad(ā, d̄) =
gad(a, d) − gad(ā, d)

(a − ā)︸ ︷︷ ︸
=μ

(a− ā)+
gad(ā, d) − gad(ā, d̄)

(d − d̄)︸ ︷︷ ︸
=ν

(d− d̄)

and notice that the terms μ and ν are uniformly lower bounded for a,b, c, d > ρ
small and positive.

Note that matrix A is irreducible and then, proceeding along the lines of
Theorem 4.60, it is possible to apply the transformation Â = T−1AT with T−1 =
diag{1, 1, λ3, λ4} so as to get the matrix

Â =

⎡
⎢⎢⎣
−(α+ μ) 0 0 −ν/λ4

α −β 0 0

0 βλ3 −γ 0

−μλ4 0 γλ4/λ3 −(δ + ν)

⎤
⎥⎥⎦

It is immediately seen that, if we take 0 < λ4 < λ3 < 1, this matrix becomes
strictly diagonally dominant, provided that λ4 is close enough to 1, in such a way
that δ + ν > ν/λ4 so that the element 4–4 “dominates” the fourth column for any
choice of the parameters. Hence the 1-norm ‖ · ‖1 is a strict Lyapunov function and
the equilibrium point is thus stable.

For a more general discussion about the construction of Lyapunov functions for
biochemical networks, the reader is referred to [BF11, BG14].
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Fig. 12.12 A sigmoid Φ and
a complementary sigmoid Ψ .

Ψ Φ

Example 12.9 (Biochemical oscillator). Consider the following model:

ẋ1 = −α1x1 + Φ(x4)

ẋ2 = −α2x2 + β2x1

ẋ3 = −α3x3 + Ψ(x2)

ẋ4 = −α4x4 + β4x3

where the constants are all positive. The two functions Φ and Ψ are a smooth
sigmoidal function and complementary sigmoidal function, respectively. A function
Φ is sigmoidal if Φ(0) = 0, Φ′(0) = 0Φ(∞) = κ > 0, it is strictly increasing and
its second derivative has a single positive root x̂: Φ′′(x) is positive for 0 < x < x̂
and negative for x > x̂ (see Fig. 12.12). A function Ψ is a complementary sigmoid if
Ψ(0) − Ψ(x) is a sigmoid (Fig. 12.12). The model represents the negative feedback
of two sub-systems: system x1–x2 activates the sub-system x3–x4, which in turn
inhibits the former. It is well known that this type of systems may produce sustained
oscillations.

The first step, to see if the model is a potential oscillator, is to investigate if
it is a positive system and if its solutions are bounded. To prove positivity and
boundedness we show that the simplex

S =
{

x : xi ≥ 0, cTx ≤ ρ
}
,

where

cT = [ 1 μ 1 ν ] ,

is positively invariant for ρ large and for a suitable constants μ and ν. It is rather
easy to see that for xi = 0 we have ẋi ≥ 0. Now we have to show that the Nagumo’s
conditions are met on the upper bound cTx = ρ, for large ρ. We have

d
dt

cTx =
d
dt

(x1 + μx2 + x3 + νx4) =

= −(α1 − μβ2)x1 − μα2x2 − (α3 − νβ4)x3 − να4x4 + Φ(x4) + Ψ(x2)
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Now, if we take μ, ν > 0 small enough so that (α1 − μβ2) > 0 and (α3 − νβ4) >
0 and define the positive vector dT = [(α1 − μβ2) μα2 (α3 − νβ4) να4x4], the
derivative of the co-positive function V(x) = cTx is

d
dt

cTx = −dTx + Φ(x4) + Ψ(x2).

Since the term Φ(x4) + Ψ(x2) ≤ Φ(∞) + Ψ(0) is bounded, and since c and
d are positive vectors, for cTx = ρ large enough, the expression is negative (see
Exercise 4).

Boundedness implies the existence of an equilibrium [Srz85, Hal88, RW02] and
it can be seen that the system admits a single equilibrium point. Indeed, equating
ẋi = 0 and eliminating x1 and x3, we get the following conditions

x2 =
β2
α1α2

Φ(x4), x4 =
β4
α3α4

Ψ(x2)

for the unique equilibrium (the two functions Φ and Ψ are, respectively, increasing
and decreasing). The stability analysis for this system requires more information
about the curves. This can in turn be done by considering the expression of the
Jacobian and its characteristic polynomial

p(s) =

4∏
i=1

(s + αi) − β2β4Ψ
′Φ′,

where Ψ ′ and Φ′ are the derivatives evaluated at the equilibrium. Noticing that
−β2β4Ψ ′Φ′ > 0, we see that the characteristic polynomial has positive coefficients.
Therefore unstable roots can be only complex conjugate (as expected in an
oscillator).

Basically, this system is potentially an oscillator, but it does not have necessarily
sustained oscillations. The oscillatory behavior is assured if −β2β4Ψ ′Φ′ > 0 and
this term is large enough. This in turn depends on the slopes Ψ ′ and Φ′ of the curves
Ψ and Φ at the intersection.

12.5 Monotone systems

Monotone systems form an important class. They arise in several contexts, including
biology. Consider the system

ẋ(t) = f (x(t), u(t)), y(t) = g(x(t))

and denote by ϕ(u, x0, t) its solution with input u and initial state x0.
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Definition 12.10. The system is said input–output monotone if

• given two initial conditions xa ≤ xb and two input functions ua ≤ ub, both
inequalities intended component-wise, then ϕ(ua, xa, t) ≤ ϕ(ub, xb, t);

• for xa ≤ xb we have g(xa) ≤ g(xb).

The above definition includes the special case of monotone systems in which there
are no inputs or outputs.

The definition can be generalized if we define the order with respect to a convex
cone. Given a convex cone C, centered in 0, with a non-empty interior, we say that
xb is greater than xa with respect to the partial order induced by C, with abuse of
notations xa ≤ xb, if xb − xa ∈ C.

The monotonicity defined in Definition 12.10 is just monotonicity with respect
to the positive orthant (which is of course a convex cone).

A linear continuous-time system is input–output monotone iff A is a Metzler
matrix and B, C are non-negative. In the linear discrete-time case, matrix A, B and
C must be non-negative.

The following Theorem holds.

Theorem 12.11 ([Smi95]). The system ẋ(t) = f (x(t)), with f defined in a convex
domain, is monotone iff it satisfies the Kamke–Muller conditions: given two vectors
x ≤ y,

fi(x) ≤ fi(y), ∀ i such that xi = yi

Under smoothness assumption on f , a necessary and sufficient condition is that the
system Jacobian J(x) is a Metzler matrix at any point x, ∂fk(x)/∂xh ≥ 0 for k �= h.

The first claim comes from Nagumo’s theorem. Let y(0) ≥ x(0) and denote by
z(t) = y(t) − x(t). Monotonicity requires that the z dynamic system

ż(t) = f (z(t) + x(t)) − f (x(t))

is positive, namely z(0) ≥ 0 implies z(t) ≥ 0, for all t ≥ 0. For the second claim
the reader is referred to [Smi95].

Monotone systems are often referred to as cooperative, in the sense that there
is a non-negative interaction between each pair of variables. This is basically
the meaning of condition ∂fk(x)/∂xh ≥ 0 for k �= h. They have a lot of remarkable
properties.

Proposition 12.12. Let ẋ(t) = f (x(t)) be a monotone system. Let x̄ be an
equilibrium point, i.e. 0 = f (x̄). The two sets

SL = {x ≤ x̄}, SU = {x ≥ x̄}

are both positively invariant.
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No proof is required being the proposition an immediate consequence of the
definition, because x(t) ≡ x̄ is a trajectory of the system. Note that if there are two
equilibria x− ≤ x+, the corresponding box S = {x : x− ≤ x ≤ x−} is positively
invariant.

A simple extension of the previous result is the following.

Proposition 12.13. Assume that ẋ(t) = f (x(t), u(t)), with output y = x, is input–
output monotone. Assume that u− ≤ u ≤ u+. If x− and x+ are equilibria
corresponding to u− and u+, respectively (so x− ≤ x+), then the set S = {x :
x− ≤ x ≤ x−} is robustly positively invariant for all u− ≤ u(t) ≤ u−.

Another remarkable fact is that in some cases uniqueness of the equilibrium
implies its global stability. Roughly speaking, under mild assumptions, if a mono-
tone system has globally bounded solutions and it has a single equilibrium, then this
equilibrium is globally stable. We refer to specialized literature for further details
[Smi95].

Example 12.14 (Biochemical switch). Consider the following model.

ẋ1 = −α1x1 + Φ(x4) + u

ẋ2 = −α2x2 + β2x1

ẋ3 = −α3x3 + Ψ(x2)

ẋ4 = −α4x4 + β4x3

where the constant are all positive. For the moment, let us assume u = 0. The
functions Φ and Ψ are now both sigmoidal functions, as defined in Example 12.9.
Indeed in some sense this system is the dual of that in Example 12.9. Here the two
sub-systems are in a positive feedback: sub-system x1–x2 activates sub-system x3–
x4, which activates the former. This type of systems may produce bi-stability.

The solutions of this system are bounded. This can be proved exactly as it has
been done in Example 12.9. Boundedness implies the existence of an equilibrium
which is not necessarily unique since the two steady-state equations

x2 =
β2
α1α2

Φ(x4) = Φ̄(x4), x4 =
β4
α3α4

Ψ(x2) = Ψ̄(x2)

may have multiple intersections. The stability analysis for this system requires again
more information about the curves. To this aim, we write the expression of the
Jacobian and we compute the characteristic polynomial

p(s) =

4∏
i=1

(s + αi) − β2β4Ψ
′Φ′,
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Fig. 12.13 The bistable case:
equilibrium conditions

O

U

S

X2

X4

X4 = Ψ(X2)

X2 = Φ(X4)

where Ψ ′ and Φ′ are the derivatives evaluated at the equilibrium. Noticing that
−β2β4Ψ ′Φ′ < 0, we see that the characteristic polynomial has a negative constant
term.

More interestingly, the Jacobian has non-negative non-diagonal entries and
therefore the system is monotone. We consider the intersecting case in which
the system has three equilibria, precisely the intersections of the curves are as in
Fig. 12.13. The three equilibria denoted by O, the zero equilibrium, U (unstable as
we will see soon) and S (stable) are ordered component wise.

xO ≤ xU ≤ xS.

the inequality are trivially seen for components x2 and x4, since both curves Ψ and
Φ are increasing. The same property holds for components x1 and x3 since they are
increasing function of x2 and x4 at steady state.

It is an exercise to see that the equilibrium 0 is stable, since the Jacobian evaluated
at 0 is a diagonal matrix with negative entries on the diagonal (note that Ψ ′(0) = 0
and Φ′(0) = 0).

We wish to show that U and S are unstable and stable respectively. We need the
following proposition

Proposition 12.15. A Metzler matrix is stable (i.e. it has negative real part
eigenvalues) iff the coefficients of the characteristic polynomial are positive.

The condition is well know to be necessary. To prove sufficiency we just need
to remind that a Metzler (stable) matrix always has a real (negative) dominant
eigenvalue (Theorem 4.65). If we assume that the coefficients of the characteristic
polynomial p(s) are all positive, it is readily seen that p(s) cannot have non-negative
(real) roots, hence it is a stable polynomial.

In view of the above proposition, it is thus possible to conclude that the stability
of the characteristic polynomial (hence local stability) depends only on the sign of
the constant term

p0 =

4∏
i=1

αi − β2β4Ψ
′Φ′.



584 12 Related topics

We show in turn that the sign of this term depends on the type of the intersection
between the two curves in Fig. 12.13.

Consider point U. In such a point the slope of the Ψ curve is larger (roughly
“more increasing”) than the slope of the Φ curve (thought as a function of x2). If we
consider the inverse function

x4 = Φ−1

(
α1α2

β2
x2

)
,

this means that

β4
α3α4

Ψ ′ >
α1α2

β2
[Φ′]−1,

which in turn implies that p0 < 0. So the equilibrium is unstable.
In the same way one can see that the equilibrium point S is stable, since we have

p0 > 0.
From Proposition 12.12 it is immediate to see that the equilibrium points

characterize three positively invariant sets

P1 = {x : 0 ≤ x ≤ xU}, P2 = {x : xU ≤ x ≤ xS}, P3 = {x : xS ≤ x}.

To go on with our analysis, we need to explain why this is a toggle switch.
Consider now the input u and take it such that

u(t) = μ, for 0 ≤ t ≤ T, and u(t) = 0, for t > T.

We can show that

• for T and μ > 0, both large enough, the state reaches the upper region P3;
• the state remains in P3 even after T.

Let (x̄1, x̄2, x̄3, x̄4) be the steady-state values corresponding to the stable upper
equilibrium S (region P3 is defined by xi ≥ x̄i).

To show the first property, note that, for μ and T large, x1 grows large because

ẋ1 ≥ −α1x1 + u

and stays above x̄1 for an arbitrarily large period. Since

ẋ2 = −α2x2 + β2x1,

also x2 grows arbitrarily large above x̄2 for an arbitrary large period, if T is
large. Hence Ψ(x2) gets arbitrarily close to the saturation value Ψ(∞) and, since
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Ψ(∞) > Ψ(x̄2), the condition Ψ(x2) − Ψ(x̄2) > 0 is reached and preserved for a
large period. From the equation (adding the zero term α3x̄3 − Ψ(x̄2))

d
dt

(x3 − x̄3) = −α3x3 + Ψ(x2) = −α3(x3 − x̄3) + (Ψ(x2) − Ψ(x̄2)),

we see that in due time x3 > x̄3 and this condition will hold for large time values.
Finally from the equation

d
dt

(x4 − x̄4) = −α4(x4 − x̄4) + β4(x3 − x̄3)

we argue that x4 will exceed x̄4. So the upper region P3 is reached.
Region P3 is positively invariant for u = 0, therefore the state will remain inside

P3 even if u is switched off. Note that indeed the region is invariant for any u ≥ 0,
in view of the system monotonicity, hence x(t) is trapped in P3 once this region is
reached.

For pictorial reasons (and as an exercise for the reader), we suggest a simplified
version of the problem in which the dynamics of x2 and x4 are fast enough to assume
−α2x2 + β2x1 = 0 and −α4x4 + β4x3 = 0. This basically means accepting the
following reduced-order model

ẋ1 = −α1α2

β2
x2 + Φ(x4) + u

ẋ3 = −α3α4

β4
x4 + Ψ(x2)

The equilibrium value for x2 and x4 would be the same and, again, three positively
invariant regions, represented in Fig. 12.14, could be found. In Fig. 12.14 it is also
represented the fact that an active input can “switch on” the system, which remains
in such an activated state even after u becomes inactive.

Further details about this type of models can be found in [FB12].

S

U

C

E

F

D

B

A

u released

G

S

u active

Fig. 12.14 The invariant boxes (left) and the toggle switch (right)
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12.6 Communication and network problems

The control of networks is a really interesting area for control researchers and the
set-theoretic framework can be quite helpful when dealing with network control
problems. This seems surprising, since the dimension of realistic flow networks is
often large and thus it is not so clear how the techniques presented in this book,
which are often computationally demanding, might be of some benefit.

Indeed, flow networks or production–distribution systems have in general a large
number of control variables, often exceeding the number of states, a fact which
renders the problem peculiar and challenging at the same time.

12.6.1 Production–distribution systems

A typical model for production–distribution systems has the following form:

ẋ(t) = Bu(t) + Ed(t), (12.18)

where u ∈ IRm is the controlled flow vector, B is the controlled flow matrix,
d(t) ∈ IRq is the external input (typically demand or disturbances), and E is the
corresponding input matrix. Note that the state dynamic matrix A is zero, namely
the system is driftless. The state vector x(t) ∈ IRn represents the buffer levels or
inventories.

We always assume that m ≥ n, otherwise the system wouldn’t be stabilizable.
More precisely, a necessary and sufficient condition for stabilizability is that B has
full row rank.

Clearly finding a stabilizing feedback control for this application is trivial. For
instance, u = −γBTx, for any γ > 0, is a stabilizing control.

The problem becomes more interesting if we consider constraints on control and
state variables and if we assume that d can be uncertain.

Example 12.16. Consider the network represented in Fig. 12.15, whose dynamic
equation is (12.18), with

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 −1 0 0 0 0 1

1 −1 0 −1 0 0 0 0

0 1 0 1 −1 0 0 0

0 0 1 0 0 −1 0 0

0 0 0 0 0 1 −1 0

0 0 0 0 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, E =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

0 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Plain arcs represent controlled flows, dashed arcs uncontrolled flows. The boxes
represent warehouses. This situation describes the flow of a resource, such as
water, which is naturally supplied to the system through arc d1 (uncontrolled) and
artificially supplied, in case of shortage, through arc u8 (controlled). The flow is to
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Fig. 12.15 A simple
distribution system u8

u2u1

u3

u6 u7

u4 u5

d1

d3 d4 d5

d2
x1

x4 x5 x6

x2 x3

be distributed by the controlled arcs u1 . . . u7 to satisfy the (uncontrolled) demands
d2 . . . d5. It is legitimate to assume that state and control variables have known upper
and lower bounds

x−i ≤ xi ≤ x+i , u−
j ≤ uj ≤ u+

j .

As far as the uncontrolled flow in most cases this is not known but it can vary.
A possible assumption is that

d−
k ≤ dk ≤ d+

k ,

with known bounds.

The following problem naturally arises. Assume that we are assigned the bounds

x ∈ X = {x : x− ≤ x ≤ x+}, u ∈ U = {u : x− ≤ u ≤ u+}, d ∈ D,

with D a convex polytope and with X and U having a non-empty interior. Does there
exist a feedback control which keeps the state within the constraints and satisfies the
flow constraints?

The following necessary and sufficient condition holds [BMU00].

Proposition 12.17. There is a control which keeps x(t) in the interior of X , at least
starting from a proper set of initial conditions X0, if and only if

ED ⊂ int{BU}

We provide a simple argument to explain the result, by means of the Lyapunov
function Ψ(x) = ‖x‖2, the Euclidean norm. Assume without restriction that 0 ∈
int{X}. Consider the following discontinuous (actually bang-bang) control law:

uBB(x) = argmin
u∈U

xT Bu
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The Lyapunov derivative is (we drop the “2”)

Ψ̇(x) =
xT

‖x‖ [BuBB(x) + Ed] ≤ xT

‖x‖BuBB(x) + max
d∈D

xT

‖x‖Ed

On the other hand, the last term is

min
u∈U

xT

‖x‖Bu + max
d∈D

xT

‖x‖Ed ≤ −β, for some β > 0

where the last inequality comes from the assumption ED ⊂ int{BU}.
Indeed the proposition holds even if we assume that D and U are polytopes. In

this case, the special form of U allows us to show a remarkable property. Indeed,
given two vectors a < b define the following function componentwise

σa,b(ξ) =

⎧⎨
⎩

ai if ξi > 0

bi if ξi < 0

any value in [ai, bi] if ξi = 0

Then

uBB(x) = σu−,u+(BTx)

A relevant fact is that any control component ui makes its decision based on the
quantity BT

j x, where Bj is the jth column of B. This control is decentralized in the
sense of networks [ID90, Ift99, BRU97, BMU00, BDVP09], namely each control
agent uk makes its decision based only on the buffers which are directly affected by
it. For instance, in the example, u1 decides its action based on the knowledge of the
two variables x1(t) and x2(t), u2 decides its action based on the knowledge of the
two variables x2(t) and x3(t) and so on.

Example 12.18. Consider again the network represented in Fig. 12.15, with bounds
on u given by

u+ = [ 4 4 3 3 3 2 2 10 ]T u− = [ 0 0 0 0 0 − 2 − 2 0 ]T

and bounds on d given by

d+ = [ 4 2.5 3.5 1.5 2 ]′ d− = [ 2.5 1.5 1.5 0 1 ]′.

Take as initial condition

x(0) = [ 2 − 1 0 2 − 1 1 ]T .
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Fig. 12.16 The network transient: the buffer evolution (top), the disturbance d (middle), and the
norm evolution (bottom).

It is clear that these initial levels are referred to a desired reference level. The
transient, assuming random disturbances at the extrema, is represented in Fig. 12.16.

12.6.2 P-persistent communication protocol

Consider the problem of n transmitters (nodes) sharing the same channel which has
a maximum capacity normalized at 1. The rule of the game is that each transmitting
node has to regulate its own transmission rate xi based on band occupancy. The goals
are that the overall band has to be (almost) exploited; the regulation has to be fully
decentralized; the maximum band has not to be exceeded. The following scheme
can be considered [BDCMP12]:

ẋi(t) = −α[(1 + ε)xi(t) + zi(t) − 1]

where

zi(t) =
∑
j�=i

xj(t)
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is the complementary transmission rate. This control law is implemented at each
node and is based on the knowledge of the local transmission rate xi and of the
aggregate transmission rate zi, namely, the total transmission rate of all other nodes.

Since at steady state we have xi = xj for all i and j, the steady state condition is

x̄i =
1

n + ε

where n is the number of nodes (unknown to each node). The details of the
implementation are discussed in [BDCMP12]. We limit here ourselves to discuss
the properties of the control.

For ε > 0 small the goal is achieved at steady state. We wish to analyze what is
happening during the transient. Consider the Lyapunov like function

y(t) =

n∑
j=1

xj(t),

namely the overall transmission rate. Then

ẏ = −α
n∑

j=1

[(1 + ε)xj(t) + zj(t) − 1] = −α[(n + ε)y − n]

and y(t) → n/(n + ε) < 1. Thus for ε small the band is almost fully exploited. By
means of the same Lyapunov function it is possible to see that the bound y ≤ 1 is
never violated whenever y(0) ≤ 1, because ẏ < 0 when y = 1. It can indeed be
shown that the set

S = {x ≥ 0 : y =
n∑

j=1

xj ≤ 1}

is positively invariant. Since y ≤ 1 cannot be violated, it is sufficient to show that
xi ≥ 0 is not violated. This is in turn immediate, since

ẋi = −α[zi − 1] ≥ 0

when xi = 0.
Finally, to show that the system state actually converges to the equilibrium,

consider the squared variance as a Lyapunov-like function

V =
n∑

i=1

(xi − y/n)2.
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Then, exploiting the expression of ẏ,

V̇ = 2

n∑
i=1

(xi −
y
n
)(ẋi −

ẏ
n
)

= −2α

n∑
i=1

(xi −
y
n
)

[
εxi(t) + y(t) − 1 − (n + ε)y − n

n

]

= −2αε

n∑
i=1

(xi −
y
n
)
[
xi(t) −

y
n

]
= −2αεV.

Then V → 0. It should be noticed that, while the band exploitation y converges
quickly, if ε is small the variance converges slowly. Still the system tends to the
fairness condition, i.e. V = 0 not only at steady state, but even under transient.

12.6.3 Clock-synchronization and consensus

We have already met the consensus problem in Section 2.5. We wish to consider the
more involved problem of clock synchronization.

Suppose that we have n clocks which exchange information to synchronize their
time (Fig. 12.17). This is the case of a computer network in which each machine
wishes to have its internal clock synchronized with the others. Denoting by τi(t)
the instantaneous time indication of the ith machine clock at the “true” time t and
denoting by ωi the time speed of the same machine, each isolated machine would
obey the following dynamic equation

τ̇i(t) = ωi

Fig. 12.17 The network
synchronization problem
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(mind that the derivative is taken with respect to the true time). If each clock
exchanges information with some of the others, it can adapt its time and speed.
A possible adaptation law is

τ̇i(t) = α
∑
j∈Ci

(τj − τi) + diωi

ω̇i(t) = β
∑
j∈Ci

(τj − τi)

where Ci denotes the set of indices of all the clocks which communicate with clock i
and di represents the error in the speed. Namely if a clock considers its time variation
as 1, this may result in a speed di measured with respect to the absolute time5. The
resulting model is

τ̇ (t) = −αLτ + Dω

ω̇(t) = −βLτ

where L is the so-called Laplacian matrix. The Laplacian matrix of a graph is
a symmetric matrix of the same dimension of the system associated with the
communication graph. L has positive diagonal elements, each equal to the number
of edges leaving the corresponding node (the cardinality of Ci). The non-diagonal
entries are Lih = −1 iff node i is connected to node i and Lih = 0 otherwise. The
Laplacian matrix has the property that L1̄ = 0 and that this is the only element of
its kernel, up to a scaling factor, iff the graph is connected.

We assume that D = I for brevity. For a more detailed study, the reader is
referred to specialized literature (see [CCSZ11] and the references therein). Apply
the transformation ω̂ =

√
βω and leave τ unchanged, so as to get the system matrix

[
I 0

0
√
β
−1

I

] [
−αL I
−βL 0

] [
I 0

0
√
βI

]
=

[
−αL

√
βI

−
√
βL 0

]
.

Consider now the Lyapunov-like function

V = τTLτ + ω̂T ω̂.

Then

V̇ = −2ατTL2τ ≤ 0

5We assume that clocks are resting or moving much slower than the speed of light.
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and x must converge to the set in which τT L2τ = ‖Lτ‖2 = 0. If the clock
communication graph is connected, this set is the subspace aligned with 1̄. This
means that asymptotically

τ(t) = θ(t)1̄.

Furthermore we also have

ω̇(t) = −βLτ(t) → 0

namely ω → ω̄ = const. Since asymptotically Lτ = 0, then ω − τ̇ → 0, hence

ω̄ − τ̇ = ω̄ − 1̄θ̇ → 0.

From this condition we see that, asymptotically, θ̇ is constant6 and ω̄ has all equal
components

ω̄ = 1̄ā

for some constant ā. Now consider the average value of the speeds a(t) = 1̄Tω(t)/n.
We have for all t

ȧ = 1̄TLβτ/n = 0,

since 1̄TL = 0. Then the average value of ω is constant and so ā = a(0), namely
the final speed vector has all components equal to the average of the components of
the initial vector. In Fig. 12.18 we show the transient for a system with n clocks and
a randomly generated graph. It is apparent that typically “time synchronization” is
much faster than “speed synchronization.”

12.6.4 Other applications and references

Any book must end at a certain page and, as it is expected, there is always something
which could have been considered but it has not been included for space reasons.

We indeed believe that the list of possible applications and subjects which are
in some way related could be at least twice as long. Consequently, we decided to
briefly remind other subjects or applications which have been not considered or only
marginally mentioned.

An intensive line of research concerns the so-called reachability on polytopes and
[HvS04, BR06, Bro10]. The main problem considered in those references is that of

6Roughly θ(t) is asymptotically linear.
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Fig. 12.18 The clock synchronization transient, with n = 10, α = 2 and β = 2
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reaching a specified face of a polytope, starting from inside, without crossing any
other face. An example of application is the motion among safe regions described
in Section 12.3. Other possible applications can be found in the general problem of
navigation with constraints, such as the problem of a natant which has to navigate
in a channel as in Fig. 12.19.

Recent quite interesting applications of set-theoretic techniques are in fault
detection and fault tolerant systems.

For instance, assume that we are given a system

ẋ = Ax +
m∑

j=1

Bjfjuj = Ax + BFu
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where uj is the control signal for the actuator j. The numbers fj are fault coefficient
which are grouped in a diagonal matrix F. In faulty conditions, fj = 0 while the
normal actuator condition is fj = 1. Partial faults can be considered if we assume
that fj can be a continuous value, 0 ≤ fj ≤ 1.

Typically a fault assumption is introduced. For brevity assume that there are two
actuators and only one actuator can be currently under fault. This means that the
possible values of F are F = diag{1, 1}, F = diag{0, 1} and F = diag{1, 0}. The
problem of finding a stabilizing control law can be seen as a robust control problem
in which the input matrix is affected by uncertainties.

Clearly the system is fault-tolerant if there is a control for which the system
is stable with the three possible fault configurations. A possibility is that of
determining a robust Lyapunov function, a quite stringent requirement since, in the
case of linear feedback control u = Kx, A+BFK might be stable for any admissible
F even if there is no common Lyapunov function. However, a common Lyapunov
function assures stability even under intermittent fault, i.e. when F changes in time.
The reader is referred to specialized literature for further details [ODDSS10, SO13].

Also the fault detection and isolation problem can be handled via set-theoretic
techniques. A typical approach for detecting faults is based on observers. Consider
a linear system

ẋ = Akx + Bku + Ed, y = Ckx + w,

where d and w are disturbances and where the usual matrices Ak,Bk,Ck are labelled
with the index k. If k = 0, then the system is operating in the nominal condition,
while k = 1, 2, . . . ,N are the possible faulty conditions. If an observer is adopted

ż = (A0 + LC0)z − Ly + B0u,

it is possible to measure on-line the residual

r = C0z − y,

so that, defining the error e = z − x, its dynamics is described by

ė = (A0 + LC0)e + (A0 − Ak)x + (B0 − Bk)u + L(C0 − Ck) − Lw − Ed

r = C0e − w + (C0 − Ck)x

In nominal conditions, say k = 0, with zero disturbances (and a properly
designed observer), e and the residual converge to 0. They will get close to zero
with small noises d and w.

This is not true if the system is under fault, so that the residual is far form 0.
By means of set-theoretic methods and in particular those related with the set-
theoretic estimation described in this book, it is in general possible to detect and
even recognize (isolate) a fault. The reader is referred to specialized literature for
further details [SO13].
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Another topic which has not been considered, if not in passing, is that of control
and analysis of time delay system. Systems with time delays are difficult to handle
via set-theoretic methods because their state space is infinite dimensional, at least
in the continuous-time case. In the discrete-time case it is well known that a system
with time delays can be seen as an extended linear undelayed system. Some results
on the definition and characterization of invariant sets for time delay systems are
available since many years [HBB95, HT97, HT97] and it was still an active topic at
the moment of writing the present edition of the book [LOBN12, GLO12, GOL+10].

There are several specific applications of set invariance, many of which have
been described in the book. A converter control design technique has been proposed
in [SALB12]. An application to engine speed control has been suggested in
[DSDBP06].

From a theoretical standpoint, the investigation based on set invariance is deeply
applied to nonlinear systems [FAC10, BT11] and hybrid systems [DSDBP06,
CDS09, BDSCD07, DS08]. Recent results in the definition and construction of
probabilistic invariant sets are found in [CKRC11, KDDS12].

12.7 Exercises

1. The considered adaptive control schemes are quite involved in order to prove
boundedness of the signals to apply Barbalat’s Lemma. Show that there exists
non-negative continuously differentiable functions whose integral on the positive
axis is bounded but which still do not converge to 0. This clearly cannot happen
if the function has a bounded derivative.

2. Consider the Zubov equation for the scalar system ẋ = −x + x3 with φ(x) = x2

and verify that the domain of attraction is −1 < x < 1.
3. Find the solution of (12.17).
4. Given two positive vectors c, d > 0 and the corresponding co-positive linear

functions cTx and dTx, show that for x ≥ 0 we have, for some positive ξ and η,
ξcTx ≤ dTx ≤ ηdT . Finalize the proof of boundedness in Example 12.9.

5. Prove that (12.18) is stabilizable iff B has full row rank. If B has full row rank,
show that u = −γBTx, for γ positive, is a stabilizing control.

6. The p-persistent protocol of Subsection 12.6.2 could have been analyzed in a
simpler, although not so informative, way. The closed-loop system has equation
ẋ = −α(εI + 1̄1̄T)x + α1̄. Try to derive the same conclusions obtained in
Section 12.6.2.

7. Try to devise an automated setup for the natant in Fig. 12.19 based on the
“reachability of a face” technique.
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A.1 Remarkable properties of the Euler auxiliary system

In this section we summarize some properties of the Euler auxiliary system which
have been already mentioned and used throughout the book. Given a continuous-
time system

ẋ(t) = f (x(t), u(t),w(t))

y(t) = g(x(t),w(t))

we define the Euler Auxiliary System (EAS) as the discrete-time system

x(t + 1) = x(t) + τ f (x(t), u(t),w(t))

y(t) = g(x(t),w(t))

where, as usual, w(t) ∈ W . This system is introduced in the basic elementary
analysis as the most natural approximation of a continuous-time system, based
on the fact that ẋ(t) ≈ (x(t + τ) − x(t))/τ . It is also well known that this is a
very rough approximation and more appropriate numerical methods resort to much
more sophisticated schemes. Still there are remarkable properties which are worth
mentioning. In this section we remind a few of them.

The EAS has been often considered in the book because several synthesis
techniques, essentially devoted to discrete-time systems, can be extended to the
continuous-time case (often in a sub-optimal way). To avoid confusion we imme-
diately stress that parameter τ is not a sampling time. In practice, assume that a
(static) controller

u = Φ(y(t),w(t))

© Springer International Publishing Switzerland 2015
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has been computed by means of a “discrete-time” technique. Then it has to be
thought as a continuous-time one. If, as in practice happens, the controller is
digitally applied, then it is neither requested nor recommended that the sampling
time T is equal to τ . In practice we should have

T << τ.

Note that, if we consider a dynamic compensator (which can be handled by means
of an equivalent state augmentation) then if the “discrete-time” compensator is

z(t + 1) = hDT(z(t), y(t),w(t))

u(t) = kDT(z(t), y(t),w(t))

the actual “continuous-time” compensator must be

ż(t) =
hDT(z(t), y(t),w(t)) − z(t)

τ
= hCT(z(t), y(t),w(t))

u(t) = kDT(z(t), y(t),w(t)) = kCT(z(t), y(t),w(t))

In brief we have the following.

Lemma A.1. The EAS of a continuous-time closed-loop system is the same system
achieved by closing the loop of the corresponding EAS (plant and compensator)
systems.

The previous property is not true for other type of discretization techniques. We
start now with some open-loop properties of the EAS. The first one establishes a
connection between the stability of the continuous-time system and of the EAS.

Lemma A.2. Assume that the EAS is stable for some τ > 0 (with u = 0) and it
admits a global convex Lyapunov function Ψ(x). Then the continuous-time systems
is asymptotically stable.

Proof. It is an immediate consequence of the fact that the difference quotient is a
non-decreasing function of τ [Roc70]

Ψ(x + hz) − Ψ(x)
h

≤ Ψ(x + τz) − Ψ(x)
τ

for τ ≥ h. Then if we consider the derivative

lim sup
h→0+

Ψ(x + hf (x(t),w(t)) − Ψ(x)
h

≤ Ψ(x + τ f (x(t),w(t)) − Ψ(x)
τ

≤ −ψ(‖x‖)

where, by definition of a Lyapunov function, ψ is a κ-function.
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Obviously the previous result can be extended to ultimate boundedness and local
stability. The converse is not true. For instance, the continuous-time system

ẋ(t) = −x(t) − x(t)3

is globally exponentially stable. But if we consider its EAS

x(t + 1) = (1 − τ)x(t) − τx(t)3

this is not globally stable no matter how τ > 0 is taken. Indeed for x(0) large enough
the discrete-time solution diverges.

The next result is concerned with the level of (sub-)optimality one can achieve
via EAS.

Lemma A.3. Consider the system

ẋ(t) = f (x(t), u(t)), y(t) = g(x(t))

associated with the cost

JCT =

∫ ∞

0

h(x(t), u(t))dt,

where h is strictly convex and positive definite. Consider the EAS

x(t + 1) = x(t) + τ f (x(t), u(t)), u(t) = g(x(t))

and the corresponding discrete-time cost

JDT =

∞∑
k=0

h(x(k), u(k)) τ.

Assume that the cost-to-go function1 ΨDT(x) associated with the EAS is convex, a
condition always assured if the system is linear, and that Φ(x(t)) is the correspond-
ing optimal control law, then this control applied to the continuous-time system
assures a transient cost

JCT ≤ ΨDT(x)

for every initial condition. This implies that the continuous-time cost-to-go function
ΨCT(x) is upper bounded by that associated with the EAS: ΨCT(x) ≤ ΨDT(x)

1We remind that the cost-to-go function is the optimal value of the optimization with initial
condition x.
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To provide an outline of the proof, let us consider that, if ΨDT(x) is the cost-to-go
function and Φ is the optimal control, then

ΨDT(x(t + 1)) − ΨDT(x(t)) = −τh(x(t), Φ(x(t)))

namely

ΨDT(x(t) + τ f (x(t), Φ(x(t))) − ΨDT(x(t))
τ

= −h(x(t), Φ(x(t))).

Now we remind that, if ΨDT is convex, the difference quotient is non-decreasing
then

D+ΨDT = lim sup
h→0

ΨDT(x + hf (x, Φ(x)) − ΨDT(x)
h

≤ −h(x, Φ(x)).

Since the function h is positive definite, this implies stability. Furthermore, we can
integrate according to Theorem 2.11 and, assuming x(0) = x0, we have

ΨDT(x(t)) − ΨDT(x0) ≤ −
∫ t

0

h(x(σ), Φ(x(σ))) dσ

and, since x(t) → 0,

∫ ∞

0

h(x(σ), Φ(x(σ))) dσ ≤ ΨDT(x0).

Thus the optimal discrete-time cost is an upper bound for the optimal continuous-
time cost. The reader is referred to [BMP03] for more details including the case with
convex constraints. In [BMP03] it is also shown that, under appropriate regularity
assumptions, since the EAS solution converges to the continuous-time solution, then
the discrete-time cost converges to the continuous-time from above.

Let us consider the exponential discretization of the continuous-time linear
system

ẋ(t) = Ax(t) + Bd(t), z(t) = Cx(t) + Dd(t),

precisely

x(t + 1) = ADx(t) + BDd(t), z(t) = Cx(t) + Dd(t),

with AD = eAτ and BD =
∫ τ

0 eAσdσB. Then continuous-time asymptotic
stability is equivalent to discrete-time asymptotic stability. Conversely, reachability
or observability (hence stabilizability and detectability) is not assured for all τ > 0
even if the continuous-time system is reachable or observable. For the EAS AD =
I + τA and BD = τB, the situation is the opposite. Stability of A does not imply
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stability of I + τA (unless we take τ > 0 small enough). Conversely for all
τ > 0 reachability (observability) of the continuous-time system is equivalent to
reachability (observability) of the EAS. This can be seen by means of the Popov
criterion for reachability (observability).

Now we analyze some induced norms for linear systems. For brevity we consider
the SISO case namely we assume that d and z are scalar. The results can be extended
to the MIMO case with appropriate modifications.

Assume that A is asymptotically stable and define the following norms:

‖(A,B,C,D)‖L1 = sup
|d(t)|≤1, x(0)=0

sup
t≥0

|y(t)|

‖(A,B,C,D)‖H∞ = sup
ω≥0

|C(jωI − A)−1B + D|

‖(A,B,C)‖L∞ = sup
t≥0

|CeAtB|

‖(A,B,C)‖2L2
=

∫ ∞

0

(
CeAtB

)2
dt.

Define the corresponding discrete-time norms as

‖(AD,BD,C,D)‖l1 = sup
|d(t)|≤1, x(0)=0

sup
t≥0

|y(t)|

‖(AD,BD,C,D)‖H∞ = sup
−π≤θ≤π

|C(ejθI − AD)−1BD + D|

‖(AD,BD,C)‖l∞ = sup
t≥0

|CAt
DBD|

‖(AD,BD,C)‖2l2 =

∞∑
t=0

(CAt
DBD)

2
τ

Then we have the following.

Lemma A.4. If the discrete-time system is the EAS of the continuous-time one,
namely AD = I + τA and BD = τB with τ > 0, then all the mentioned discrete-
time norms are upper bounds for the corresponding continuous-time norms for any
τ > 0. Furthermore for τ → 0 any of the discrete-time norms converges from above
to the corresponding continuous-time value.

Proof. The case of the L1-norm has been already presented in Subsection 6.4.1.
Note that the result is valid also for systems with parametric uncertainties [BMS97].
The case of the L∞ norm is proved in a simple way. Assume (without restriction)
that (A,B) is reachable. Consider the initial conditions x(0) = B and x(0) = −B
and let x(k) = AkB and −x(k) be the corresponding free evolutions. Consider the set

R = conv{±x(k), k ≥ 0}.
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Since (A,B) is reachable,R has a non-empty interior and, since A is stable, there is k̄
such that ±x(k) ∈ R for k ≥ k̄. ThenR is a polytope. By construction it is positively
invariant for the EAS, because A(±x(k)) = ±x(k+1) ∈ R, for any vertex x(k). This
implies that the polytope R is positively invariant for the continuous-time system.
Then for x(0) = B the continuous-time solution x(t) = eAtB ∈ R. Now consider the
strip

Y(μ) = {x : |Cx| ≤ μ}.

We have just to notice that

‖(A,B,C, 0)‖L∞ = sup |CeAtB| = inf{μ : eAtB ∈ Y(μ), t ≥ 0}

and that

‖(AD,BD,C)‖l∞ = inf{μ : R ⊂ Y(μ)}

Then ‖(A,B,C)‖L∞ ≤ ‖(AD,BD,C)‖l∞ .
The H∞ norm case can be handled as follows. Consider the discrete-time transfer

function norm

‖(AD,BD,C,D)‖H∞ = sup
|z|=1

C(zI − [I + τA])−1τB + D =

= sup
−π≤θ≤π

C

(
ejθ − 1

τ
− A

)−1

B + D

The set of all the points (ejθ−1)/τ is a circle passing through the origin and centered
in −1/τ . For τ → 0 this circle “converges” to the imaginary axis. Therefore it
includes all the eigenvalues of A for all τ < τ̄ for τ̄ > 0 large enough. Then the
transfer function C(sI−A)−1B+D is analytic outside such a circle. By the maximum
modulus theorem, |C(sI − A)−1B + D| is maximum on such a circle. Note that the
imaginary axis is outside the circle (actually intersects it in s = 0); then

|C(jωI − A)−1B + D| ≤ ‖(AD,BD,C,D)‖H∞

for all ω. For the proof of the bound on the L2 norm, the reader is referred to [SAI03]
and the references therein.

The properties mentioned above have easy extensions in the case of L1 and L∞
norms for uncertain polytopic systems.
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A.2 MAXIS-G: a software for the computation of invariant
sets for constrained LPV systems

Contributed by Carlo Savorgnan
Dipartimento di Ingegneria Elettrica Gestionale e Meccanica

Università di Udine,
33100 Udine Italy

MAXIS-G is a software that implements the algorithms presented in Chapter 5
to calculate the maximal invariant set for systems of the form

x(t + 1) = A(w(t))x(t) + B(w(t))u(t) + Dd(t), (A.1)

where x(t), u(t), and d(t) are respectively, the state, the input and the disturbance
vectors. The time-varying parameter w(t) represents the uncertainty. The system
matrices must have the polytopic structure

A(w(t)) =
∑
i∈V

Aiwi(t), B(w(t)) =
∑
i∈V

Biwi(t), (A.2)

where V = {1, 2, · · · }.
The software can be applied to switching, gain-scheduling, and robust stabiliza-

tion cases. Also sort of mixed robust/gain-scheduling problems can be considered.
Indeed the system matrices A(w(t)) and B(w(t)) are allowed to attain their values
in different matrix sets. More precisely, divide the matrices (Ai,Bi) in clusters
Ck = {(Ai,Bi) : i ∈ Ik} (Ik ∩ Ij = ∅ and

⋃
k Ik = V). The uncertainty is such that

wi(t) = 0 if i /∈ Ik,
∑
i∈V

wi(t) = 1, (A.3)

where k is a time-varying parameter indicating the current cluster. The only
information available to the controller are the state of the system and the value of k.
Special cases are then achieved by properly choosing the sets Ik:

• when there is only one cluster, we have the robust stabilizability case;
• when every cluster is composed by only one couple of matrices (Ai,Bi), we have

the switching gain-scheduling stabilizability case.

Due to the complexity of the calculation of an invariant set via polytopes, the
main target in the implementation of MAXIS-G was computational efficiency.
Different devices are used to increase the speed.

• The software is implemented in C++;
• Two polytopic representations are available: the double description and the

inequality representations. The first one uses all the information about the
inequalities and the vertices, while the latter uses only the inequalities.
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The routines that use the double description method are implemented to adapt to
the algorithm and perform well for low dimensional systems. The routines using
the inequality representation use the GLPK library [a] and can be used for higher
dimensional systems.

• All the redundant operations are eliminated. Starting from an initial polytope
the algorithm at every step introduces new inequalities to possibly stop the
procedure when an invariant set is found. An observation that can be made by
analyzing the polytope at every step is that quite often the set of inequalities
doesn’t change considerably (see Figure 5.4). By implementing the algorithm in
a straightforward manner, part of the operations are repeated for the inequalities
that last in the polytope description for more than one step. The expansion to
the state-input space of these inequalities doesn’t change in following steps and
combining the same expanded inequalities doesn’t bring to generation of new
inequalities. Experimentally, we have noticed that, by eliminating the redundant
operations, the computational time can considerably decrease (for certain sys-
tems the reduction is more than 95%).

Beside systems of the form (A.1), the software can be used to calculate invariant
sets for autonomous systems and continuous-time systems. While in the first case
it is enough to set the input dimension to zero, in the latter case we have to set the
time constant for the discretization, that is automatically done by the software with
the Euler auxiliary system.

A.2.1 Software availability

MAXIS-G is available under GPL2 license and can be freely downloaded [b]. The
software package is composed by two parts:

• a command line program that can be used for all the operations (like writing the
input files and calculating the invariant sets);

• a simple interface designed for the MATLAB environment (beside all the
operations available in the command line program, the graphic interface contains
some facilities to plot the invariant sets).

A.2.2 Web addresses

a “GLPK: GNU Linear Programming Kit”. www.gnu.org/software/glpk/.
b C. Savorgnan. MAXIS-G. www.diegm.uniud.it/savorgnan or

www.diegm.uniud.it/smiani, 2005.

www.gnu.org/software/glpk/
www.diegm.uniud.it/savorgnan
www.diegm.uniud.it/smiani
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[RB10] Raković, S. V., & Barić, M. (2010). Parameterized robust control invariant sets for

linear systems: theoretical advances and computational remarks. IEEE Transactions
on Automatic Control, 55(7), 1599–1614.

[RBA07] Ren, W., Beard, R. W., & Atkins, E. M. (2007). Information consensus in multivehi-
cle cooperative control. IEEE Control Systems Magazine, 27(2), 71–82.
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[RKKM05b] Raković, S. V., Kerrigan, E. C., Kouramas, K. I., & Mayne, D. Q. (2005). Invariant
approximation of the minimal robust positively invariant set. IEEE Transactions on
Automatic Control, 50(3), 406–410.
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β-contractive set, 133
κ-function, 47
λ-contractive set, 136
l1-norm, 478
H1-matrix, 161
H∞-matrix, 173
(A,B)-invariant subspace, 377

A
absolutely continuous function, 30, 37
absorbing, 292
absorbing approximation, 31
adaptive control, 554
admissible control, 122
admissible reference signal, 394
attraction

basin of, 51, 52
domain of, 51, 52

B
backward procedure, 197
basin of attraction, 51, 52, 81
bimolecular chemistry, 574
boundedness

uniform ultimate, 51
discrete-time, 81

C
C-set, 99

non-proper, 100
centered cone, 94

chemical networks, 574
compatible set, 217
competition, 131
competition model, 131
cone

centered, 94
convex, 94
convex polyhedral, 158
normal, 102
simplicial, 109
tangent, 103

consensus, 77
conservative criterion, 7
constraints

control, 340
joint state-control, 216, 495
soft, 500
state, 367

contractive set, 215
β, 133
λ, 136
continuous-time, 133
discrete-time, 136
gain scheduling, 136

control
gradient-based, 57
minimum-effort, 55
adaptive, 554
admissible, 122
at the vertices, 157, 158, 357
full information, 481
high-gain, 554
on-line-optimization-based, 318
piecewise linear, 159
relatively optimal, 497
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control constraints, 340
control invariant set, 200
control Lyapunov function, 21, 53

discrete-time, 83
control map, 16, 54, 84
control-invariant set, 344
controllability

set, 235
worst-case, 467

controllability under constraints, 473
controllable set

worst case, 467
controlled invariant, 21
convergence

speed of, 133
convergence speed, 49

discrete-time, 80
converse Lyapunov theorems, 86
convex

combination, 93
cone, 94
function, 94
hull, 93
polyhedral cone, 158
set, 93

convex hull, 93
convex sets

operations on, 96
cost-to-go function, 486

D
delay-augmented system, 221
derivative

Dini, 42
directional, 43

diagonal dominance, 155, 172
diamond set, 109
diamond shaped set, 375
difference quotient, 101
differential equation

discontinuous, 30
solution, 38

differential inclusion, 30, 238
absorbing, 31

Dini derivative, 42
directional derivative, 43
distance from a set, 124
disturbance rejection, 478
disturbance rejection level, 478

ε-optimal, 480
domain of attraction, 51, 52, 81, 393, 564

tracking, 394
with speed of convergence β (λ), 393

dominant eigenvalue, 183
driftless system, 586
dwell time, 413

E
EAS, 142, 214, 319, 481, 597
eigenvalue

Perron–Frobenius, 183
dominant, 183

ellipsoid, 104, 241
confinement, 242, 545
dual representation, 104
representation complexity, 105

equation
Lyapunov, 63
Riccati, 303, 491, 532, 548
Zubov, 564

erosion, 571
erosion of a set, 96
estimation

worst case, 531
set-membership, 531

estimation region, 528
Euler auxiliary system, 142, 214, 319, 481, 597

F
feedback

linear, 169
filtering, 385
finite determination, 258
finite-horizon optimal cost function, 486
fixed point theorem, 136
flow invariance, 138
full information control, 481
full information feedback, 53
function

κ, 47, 415
control Lyapunov, 53
convex, 94
cost-to-go, 486
finite-horizon optimal cost, 486
gauge, 100
global Lyapunov, 47, 140
Lyapunov, inside a set, 51, 52

discrete-time, 81
Lyapunov, outside a set, 51, 52

discrete-time, 81
Lyapunov-like, 72
minimum distance, 137
Minkowski, 99, 214
positive definite, 47
positively homogeneous, 117
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radially unbounded, 46
set-valued, 30
support, 96

function, absolutely continuous, 30, 37

G
gain-scheduling contractive, 136
gauge function, 100
GLF, 47
global

uniform stability, 47
exponential stability, 49

discrete-time, 80
Lyapunov function, 47

discrete-time, 80
gradient-based controllers, 57

H
Hamilton Jacoby Bellman theory, 484
high-gain control, 554
HJB, 484

I
image of a set, 96
infinite directions, 107
infinite-time reachability set, 199
infinite-time reachability tube, 199
input-saturation, 362
invariance

controlled, 200, 344
observability, 179
positive, 121
robust controlled positive, 123
robust positive, 123

invariant
(A,B), 221, 377
controlled, 21
positively, 10

invariant set, 122
largest controlled, 215
robustly controlled, 130
robustly invariant, 129

irreducible matrix, 174
irreducible positive system, 183

J
joint spectral radius, 258

K
Kalman–Bucy, 532
Kamke–Muller conditions, 581

L
Laplacian matrix, 592
largest λ-contractive, 213
largest controlled invariant set, 215
largest invariant set approximation, 346
least square formula, 150
least-square, 542
linear differential inclusion, 292
linear programming, 24, 169, 310
LMI, 146

feasible set, 298
quadratic stability via, 298

LPV, 33
quadratic stability, 298
quadratic stabilizability, 298, 299

Lyapunov
converse theorem, 86

Lyapunov difference, 79
Lyapunov function

concave, 434
control, 21, 53
global, 140

discrete-time, 80
inside a set, 51, 52

discrete-time, 81
outside a set, 51, 52

discrete-time, 81
Lyapunov inequality

continuous-time, 147
discrete-time, 150

Lyapunov like function, 72

M
matching conditions, 64, 307
matrix

irreducible, 174, 183
Laplacian, 592
Metzler, 152

matrix measure, 173
maximum function, 45
Metzler, 424
Metzler matrix, 152, 182
minimum phase, 456, 554
minimum-effort control, 55
minimum-time

confinement, 473
reaching, 473
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Minkowski
function, 214

Minkowski function, 214
model absorbing, 31
Model Predictive Control, 483

N
Nagumo

condition, 124
theorem, 124

Nagumo theorem, 13, 124
robust, 129

Networked control systems, 410
norm

H∞, 281
l1-norm, 252
L2, 281
L2-to-L2, 280
peak-to-peak, 252

normal cone, 102

O
observability-invariance, 179
on-line computation, 484
operations on convex sets, 96
output feedback, 61, 149

P
parametrization

Youla–Kucera , 449
partial stability,Vor98, 377
partition

simplicial, 509
peak-to-peak disturbance rejection problem,

478
periodic target tube, 209
Perron–Frobenius eigenvalue, 183
Perron–Frobenius eigenvector, 183
persistent additive disturbances, 149
piecewise linear control, 159
plane

redundant, 109
polar, 101

cone, 103
polyhedral set, 107

approximation via, 110
minimal representation, 109
operations, 111
plane notation, 108
symmetric, 107
vertex notation, 108
vertex representation of, 107

polytope, 108
polytopic system, 66, 86
positive definite function, 47
positive invariance, 10, 52, 121
positive system

irreducible, 183
positively homogeneous

system, 135
practical set, 125
pre-image, 571
preimage set, 197, 201, 219
procedure

backward construction, 197
backward, for polytopic systems, 201, 219

projection on a subspace, 96

Q
quasi-convex function, 95
quasi-LPV system, 33

R
radially unbounded function, 46
rate-bounding operator, 382
reachability

Gramian, 254
set, 235

reachability set
infinite-time, 245

reachable set
worst case, 468

Receding-Horizon Control, 483
reduced target tube, 208
redundant

plane, 109
vertex, 110

reference
governor, 388
management, 388
management device, 388

region of asymptotic stability, 564
regulation map, 54, 84, 199, 318

discrete-time, 84
relative degree, 456, 554
relatively optimal control, 497
reversibility, 237
RHC, 483
Riccati equation, 491, 532, 548
Robotics, 572
robust controlled positive invariance, 123
robust positive invariance, 123
robustly controlled invariant set, 130
robustly positive invariant set, 129
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S
scaled set, 96
sector, 158
selection, 55, 199

minimum-time, 472
separation principle, 331, 549
set

positively invariant, 52
admissible, 338
C–, 99
compatible, 217
contractive, 133, 136, 215
controllability, 235
controllable, 236
controlled-invariant, 200
convex, 93
diamond, 109
diamond shaped, 375
distance from, 124
erosion of a, 96
image of a, 96
infinite-time reachability, 199
infinite-time reachability full-information,

200
largest λ-contractive, 213
largest controlled invariant, 215
largest invariant approximation, 346
LMI feasible, 298
polyhedral, 107
practical, 125
preimage, 197, 200, 201, 219
projection on a subspace, 96
reachability, 235
reachable, 236
robustly controlled invariant, 130
robustly positive invariant, 129
scaled, 96
simplex, 375
smoothed polyhedron, 116
star-shaped, 117

set-membership estimation, 531
set-theoretic estimation, 179
set-valued map, 55
sets

sum of the, 96
simplex, 109, 158, 375, 509
simplicial cone, 109
simplicial partition, 509
soft constraints, 500
solution of a differential equation, 38
speed of convergence, 133

tracking, 398
stability

absolute, 317

global exponential, 49
discrete-time, 80

global uniform, 47
partial, 377
quadratic, 298
uniform local, 51

discrete-time, 81
stabilizability

quadratic via linear control, 298
gain-scheduling versus robust, 312
quadratic, 298

stabilization
gain scheduling, 322

state
ultimately boundable, 473

state constraints, 367
state feedback, 53
state observer, 326
step response, 277

asymptotic error, 277
sub-tangentiality condition, 125
subdifferential, 44
subgradient, 44, 102
sum of sets, 96
support

function, 96
switched system, 411
switching system, 314, 411
system

absorbed, 31
delay-augmented, 221
Euler auxiliary, 142, 214, 319, 481, 597
input-saturated, 362
linear time-varying, 420
LPV, 33, 299
polytopic, 66, 86
positively homogeneous, 135
switched, 411
switching, 314, 411
zeros, 457

T
tangent cone, 103

Bouligand definition, 124
target tube, 208

periodic, 209
time

dwell, 413
time-optimal control, 472
tracking, 388
tracking domain of attraction, 394
tracking speed of convergence, 398
transient estimate, 49

discrete-time, 80
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transmission zeros, 220, 457
tube

reduced target, 208

U
ultimately bounded state, 473
uniform local stability, 51

discrete-time, 81
uniform ultimate boundedness, 51

discrete-time, 81

V
vertex

redundant, 110
representation, 107

W
weak positive invariance, 122

Y
Youla–Kucera parameter, 449
Youla–Kucera parametrization, 329, 448, 449

Z
zero dynamics, 554
zeros

transmission, 220
zeros of the system, 457
Zubov equation, 564
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