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Preface

The reader is invited to immerse himself in a “love story” which has been unfolding
for 35 centuries: the love story between mathematicians and geometry. In addition
to accompanying the reader up to the present state of the art, the purpose of this Tril-
ogy is precisely to tell this story. The Geometric Trilogy will introduce the reader to
the multiple complementary aspects of geometry, first paying tribute to the histori-
cal work on which it is based and then switching to a more contemporary treatment,
making full use of modern logic, algebra and analysis. In this Trilogy, Geometry
is definitely viewed as an autonomous discipline, never as a sub-product of algebra
or analysis. The three volumes of the Trilogy have been written as three indepen-
dent but complementary books, focusing respectively on the axiomatic, algebraic
and differential approaches to geometry. They contain all the useful material for a
wide range of possibly very different undergraduate geometry courses, depending
on the choices made by the professor. They also provide the necessary geometrical
background for researchers in other disciplines who need to master the geometric
techniques.

In the 1630s Fermat and Descartes were already computing the tangents to some
curves using arguments which today we would describe in terms of derivatives
(see [4], Trilogy II). However, these arguments concerned algebraic curves, that is,
curves whose equation is expressed by a polynomial, and the derivative of a polyno-
mial is something that one can describe algebraically in terms of its coefficients and
exponents, without having to handle limits. Some decades later, the development of
differential calculus by Newton and Leibniz allowed these arguments to be formal-
ized in terms of actual derivatives, for rather arbitrary curves. In the present book,
we focus on this general setting of curves and surfaces described by functions which
are no longer defined by polynomials, but are arbitrary functions having sufficiently
well behaved properties with respect to differentiation.

We have deliberately chosen to restrict our attention to curves in the 2- and 3-
dimensional real spaces and surfaces in the 3-dimensional real space. Although we
occasionally give a hint on how to generalize several of our results to higher dimen-
sions, our focus on lower dimensions provides the best possible intuition of the basic
notions and techniques used today in advanced studies of differential geometry.
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viii Preface

An important notion is the consideration of parametric equations, following an
idea of Euler (see [4], Trilogy II). A closer look at such equations suggests that we
should view a curve not as the set of points whose coordinates satisfy some equa-
tion(s), but as a continuous deformation of the real line in R

2 or in R
3, according

to the case. When a parameter t varies on the real line, the parametric equations
describe successively all the points of the curve. Analogously, a surface can be seen
as a continuous deformation of the real plane in the space R

3. This is the notion of
a parametric representation, which is the basic tool that we shall use in our study.

Our first chapter is essentially historical: its purpose is to explain where the ideas
of differential geometry came from and why we choose this or that precise definition
and not another possible one.

The formalized study of curves then begins with Chap. 2, where we restrict our
attention to the simplest case: the plane curves. We pay special attention to basic
notions like tangency, length and curvature, but we also prove very deep theorems,
such as the Hopf theorem for simple closed curves. Working in the plane makes
certainly things easier to grasp in a first approach. However, it is also a matter of
fact that the study of plane curves offers many interesting aspects, such as envelopes,
evolutes, involutes, which have beautiful applications. Many of these aspects do not
generalize elegantly to higher dimensions.

Our Chap. 3 is a kind of parenthesis in our theory of differential geometry: we
present a museum of some specimens of curves which have played an important
historical role in the development of the theory.

Chapter 4 is then devoted to the study of curves in three dimensional space: the
so-called skew curves. We focus our attention on the main aspects of the theory,
namely, the study of the curvature and the torsion of skew curves and the famous
Frenet trihedron.

Next we switch to surfaces in R
3. In Chap. 5 we concentrate our attention on

the local properties of surfaces, that is, properties “in a neighborhood of a given
point of the surface”, such as the tangent plane at that point or the various notions of
curvature at that point: normal curvature, Gaussian curvature, and the information
that we can get from these on the shape of the surface in a neighborhood of the
point.

Chapter 6 then begins by repeating many of the arguments of Chap. 5, but us-
ing a different notation: the notation of Riemannian geometry. Our objective is to
provide in this way a good intuitive approach to notions such as the metric tensor,
the Christoffel symbols, the Riemann tensor, and so on. We provide evidence that
these apparently very technical notions reduce, in the case of surfaces in R

3, to very
familiar notions studied in Chap. 5. We also devote special attention to the case of
geodesics and establish the main properties (including the existence) of the systems
of geodesic coordinates.

The last chapter of this book is devoted to some global properties of surfaces:
properties for which one has to consider the full surface, not just what happens in
a neighborhood of one of its points. We start with a basic study of the surfaces of
revolution, the ruled and the developable surfaces and the surfaces with constant



Preface ix

curvature. Next we switch to results and notions such as the Gauss–Bonnet theo-
rem and the Euler characteristic, which represent some first bridges between the
elementary theory of surfaces and more advanced topics.

Each chapter ends with a section of “problems” and another section of “exer-
cises”. Problems are generally statements not treated in this book, but of theoretical
interest, while exercises are more intended to allow the reader to practice the tech-
niques and notions studied in the book.

Of course reading this book assumes some familiarity with the basic notions of
linear algebra and differential calculus, but these can be found in all undergradu-
ate courses on these topics. An appendix on general topology introduces the few
ingredients of that theory which are needed to properly follow our approach to Rie-
mannian geometry and the global theory of surfaces. A second appendix states with
full precision (but without proofs this time) some theorems on the existence of solu-
tions of differential equations and partial differential equations, which are required
in some advanced geometrical results.

A selective bibliography for the topics discussed in this book is provided. Certain
items, not otherwise mentioned in the book, have been included for further reading.

The author thanks the numerous collaborators who helped him, through the years,
to improve the quality of his geometry courses and thus of this book. Among them
a special thanks to Pascal Dupont, who also gave useful hints for drawing some of
the illustrations, realized with Mathematica and Tikz.
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Chapter 1
The Genesis of Differential Methods

This first chapter is intentionally provocative, and useless! By useless (besides being
at once provocative) we mean: this first chapter is not formally needed to follow the
systematic treatment of the theory of curves and surfaces developed in the subse-
quent chapters.

So what is this chapter about? Usually, when you open a book on—let us say—
the theory of curves in the real plane, you expect to find first “the” precise definition
of a plane curve, followed by a careful study of the properties of such a notion.
We all have an intuitive idea of what a plane curve is. Everybody knows that the
straight line, the circle or the parabola are curves, but a single point or the empty
set are not curves! Nevertheless, all these “figures” can be described by an equation
F(x, y) = 0, with F a polynomial: for example, x2 + y2 = 0 is an “equation of the
origin” in R

2 while x2 + y2 = −1 is “an equation” of the empty set. Thus a curve
cannot simply be defined via an equation F(x, y) = 0, even when F is a “very
good” function! For example, consider the picture comprised of 7 hyperbolas, thus
14 branches. Is this one curve, or seven curves, or fourteen curves? After all, it is
not so clear what a curve should be!

Starting at once with a precise definition of a curve would give the false impres-
sion that this is the definition of a curve. Instead it should be stressed that such a
definition is a possible definition. Discussing the advantages and disadvantages of
the various possible definitions, in order to make a sensible choice, is an important
aspect of every mathematical approach.

There is also a second aspect that we want to stress. For Euclid, a straight line
was What has a length and no width and is well-balanced at each of its points (see
Definition 3.1.1 in [3], Trilogy I). The intuition behind such a sentence is clear, but
such a “definition” assumes that before beginning to develop geometry, we know
what a length is. Of course what we want to do concerning a length is then to find a
formula to compute it, such as 2πR for a circle of radius R.

With more than two thousand years of further mathematical developments and
experience, we now feel quite uneasy about such an approach. How can we establish
a formula to compute the length of a curve if we did not define first what the length
of a curve is?

F. Borceux, A Differential Approach to Geometry, DOI 10.1007/978-3-319-01736-5_1,
© Springer International Publishing Switzerland 2014
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2 1 The Genesis of Differential Methods

For many centuries—essentially up to the 17th century—mathematicians could
hardly handle problems of length for curves other than the straight line and the
circle. Differential calculus, with the full power of the theories of derivatives and
integrals, opened the door to the study of arbitrary curves. However, in some sense,
one was still taking the notion of length (or surface or volume) as something “which
exists and that one wants to calculate”.

Like many authors today, we adopt in the following chapters a completely differ-
ent approach: the theory of integration is a well-established part of analysis and we
use it to define a length. Analogously the theory of derivatives is a well-established
part of analysis and we use it to define a tangent. And so on.

This first chapter is intended to be a “bridge” between the “historical” and the
“contemporary” approaches. We present typical arguments developed in the past
(and sometimes, still today) to master some geometrical notions (like length, or tan-
gent), but we do that in particular to develop an intuition for the contemporary def-
initions of these notions. In this introductory chapter, we refer freely to [3] and [4],
Trilogy I and II, when the historical arguments that we have in mind have been
developed there.

Various arguments in this chapter can appear quite disconcerting. We often rely
on our intuition, without trying to formalize the argument. We freely apply many
results borrowed from a first calculus course, taking as a blanket assumption that
when we apply a theorem, the necessary assumptions for its validity should be sat-
isfied, even if we have not tried to determine the precise context in which this is the
case! This is not a very rigorous attitude, however our point in this chapter is not to
prove results, but to guess what possible “good” definitions should be.

1.1 The Static Approach to Curves

Originally, Greek geometry (see [3], Trilogy I) was essentially concerned with the
study of two curves: the line and the circle.

The line is what has length and no width and is well-balanced around each
of its points.

The circle is the locus of those points of the plane which are at a fixed
distance R from a fixed point O of the plane.

Passing analogously to three dimensional space, using a circle in a plane and a point
not belonging to the plane of the circle, you can then—using lines—construct the
cone on this circle with vertex the given point. “Cutting” this cone by another plane
then yields new curves that, according to the position of the “cutting plane”, you
call ellipse, hyperbola or parabola. This is the origin of the theory of curves.

It is common practice to describe a curve by giving its equation with respect to
some basis. In this book, we are interested in the study of curves in the real plane
R

2. For example a circle of radius R centered at the origin admits the equation (see
Chap. 1 in [4], Trilogy II)

x2 + y2 = R2
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Fig. 1.1

which we can equivalently write as

x2 + y2 − R2 = 0.

One might be tempted to introduce a general theory of curves by allowing equa-
tions of the form

F(x, y) = 0

where

F : R2 −→R

is an arbitrary function. But it does not take long to realize that:

• choosing F(x, y) = x2 + y2, we get the equation of a single point: the origin;
• choosing F(x, y) = x2 + y2 + 1, we even get the equation of the empty set!

In both cases the function F(x, y) is certainly “a very good one”: it is even a poly-
nomial, but we do not want a point or the empty set to be considered as a curve.

For more food for thought, look at the picture in Fig. 1.1: should this be consid-
ered as one curve, or as six curves?

In fact, if you look carefully at Fig. 1.1, you will realize that it is comprised of
three hyperbolas. The equation of this picture is “simply”

(
x2 − y2 − 1

)(
(x − √

3y)2 − (
√

3x + y)2 − 4
)(

(x + √
3y)2 − (

√
3x − y)2 − 4

)= 0

thus again an equation of the form F(x, y) = 0 with F a polynomial. But since this
is the equation of three hyperbolas, should we consider that the picture represents
three curves, not one or six?

If you decide that a hyperbola is one curve, then you accept that a curve can have
several disjoint branches. Thus you should probably also consider that the picture
of Fig. 1.1 represents one curve with six branches. Furthermore, you should also
consider that a picture comprising 247 straight lines is one curve as well. Taking the
opposite point of view, the hyperbola is no longer one curve, but the union of two
curves.

If you have not yet given up, the following example may cause you to:
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Fig. 1.2

Example 1.1.1 There exist continuous functions F : R2 −→ R such that
{
(x, y) ∈ R

2
∣∣F(x, y) = 0

}

is a full square.

Proof The following function is one among many examples:

F(x, y) = (
x − |x|)2 + (

y − |y|)2 + (
(1 − x) − |1 − x|)2 + (

(1 − y) − |1 − y|)2
.

The condition F(x, y) = 0 is indeed equivalent to

x ≥ 0, y ≥ 0, 1 − x ≥ 0, 1 − y ≥ 0.

The corresponding “curve” is the full square of Fig. 1.2. Certainly, you do not want
this to be called a curve! �

Should we thus give up our attempt to define a curve via a rather general equation
of the form F(x, y) = 0? For the time being we shall abandon this idea, but we will
come back to this problem later, with adequate differential tools.

Nevertheless, let us conclude this section with a comment. Every equation of the
form F(x, y) = 0 determines a subset of R2

{
(x, y)

∣∣F(x, y) = 0
}⊆ R

2

and we would like to find conditions on F so that this subset is worthy of being
called a curve. If we achieve this program, a curve will thus be a subset of R

2.
Being a subset is a static notion: no sense of movement is involved here. The full
meaning of this comment will be expanded upon in the following Sect. 1.2.

1.2 The Dynamic Approach to Curves

The idea of “separating the variables” of an equation is due to the Swiss mathemati-
cian Leonhard Euler (1707–1783) (see Chap. 1 in [4], Trilogy II). In the case of the
circle

x2 + y2 = R2
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Fig. 1.3

this idea consists, for example, of describing the circle via the classical formulas
{
x = R cos θ

y = R sin θ

where θ is the angle between the x-axis and the radius (see Fig. 1.3).
We thus obtain a dynamical description of the circle: when θ runs from −∞ to

+∞, we repeatedly travel around the circle.
We are thus tempted to define a plane curve “dynamically” as a function

f : R −→R
2, t �→ f (t).

In this spirit, a curve becomes a “deformation of the real line in the plane”. Our
intuition of a curve is that such a deformation should at least be continuous. Indeed
we cannot imagine calling a “curve” a function such as

f (t) =
{
(t,1) if t is rational
(t,0) if t is irrational.

Let us observe that if we want to view a curve as a continuous deformation of the
real line, then by continuity, every curve will have a single “branch”. We discussed
the case of the hyperbola in Sect. 1.1: the hyperbola is not a continuous deformation
of the real line, but each of its two branches is. Thus we slowly begin to realize that
choices have to be made and that probably, no optimal choice exists.

In a first “dynamic” approach, let us therefore view a curve as a continuous func-
tion

f : R −→ R
2, t �→ f (t)

as in Fig. 1.4.
The curve is thus thought of as the trajectory of a point, the trajectory expressed

in terms of a parameter t which runs along the real line. This parameter t could be
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Fig. 1.4

regarded as the “time” calculated (positively or negatively) from a given origin of
time: at the instant t , the point has reached the position f (t) in the plane. Alterna-
tively t could also be thought of as the “distance traveled on the curve” from a fixed
origin on this curve: after having already traveled a distance t , the point has reached
the position f (t). And so on. When you prepare an itinerary for your holiday, you
will probably say something like

After 247 km I shall be in Paris.

But when you comment on your travels afterwards, you will probably say

After 2 hours and 36 minutes I was in Paris.

In both cases you are commenting on the same itinerary, using different parameters.
Of course since various functions in terms of various parameters can describe the

same curve, each of these functions should better be called a parametric represen-
tation of a curve.

However, we still have not avoided the “undesirable examples” encountered in
the previous section. Simply choose for f the constant function on a point (a, b) ∈
R

2 (not a particularly convincing “holiday itinerary”: you spend your entire holiday
at home)! Again we do not want to call this a “representation of a curve”. We have
a point, not a curve. More surprisingly:

Example 1.2.1 There exist continuous functions

f : R −→ R
2

whose image covers a full square.

Proof Let us sketch the construction of an example proposed by the Italian mathe-
matician Peano in 1890. He defines a sequence

fn : [0,1] −→ R
2, n ∈ N

of continuous functions, which converges uniformly to a continuous surjective func-
tion

f : [0,1] −→ [0,1] × [0,1].
Since moreover

f (0) = (0,0), f (1) = (1,1)
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Fig. 1.5

Fig. 1.6

it suffices to extend the definition by
{
f (t) = (t,0) if t ≤ 0,

f (t) = (t,1) if t ≥ 1,

to get the expected counterexample as in Fig. 1.5.
The sequence begins with the identity function: f0(t) = t . The graph of the func-

tion f1(t) is then given by the right hand picture in Fig. 1.6. Simply follow the path
according to the numbering of the sub-squares 0 to 8.

To obtain f2(t), replace each diagonal of a small square in the graph of f1 by
an analogous zigzag of nine smaller segments, each starting and ending at the same
points as the small diagonal. Repeat the process to pass from f2 to f3, and so on.
Each function fn(t) is continuous and the sequence (fn)n∈N converges uniformly,
since at each level, the further variations are at most the length of the diagonal of
the smallest square already constructed. It is then a standard result in analysis that
the limit function f (t) is still continuous.

To prove that f is surjective, express t in base 9. The construction shows at once
that, writing a, b, c, d , . . . for the successive digits of the expansion of t in base 9,

t = 0.abcde . . .

then

• f1(t) is in the square numbered a;
• f2(t) is in the sub-square of the previous square numbered b;
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Fig. 1.7

• f3(t) is in the sub-sub-square numbered c;
• and so on.

It is obvious that every sequence of square–sub-square–sub-sub-square– · · · deter-
mines a unique point P of the square, and each point P of the square can be de-
termined in this way. Such a sequence is by no means unique since (except for
(0,0) and (1,1)) each vertex of a small square, at whatever level, belongs to several
squares. But nevertheless, choosing one of the possible sequences of square–sub-
square–sub-sub-square– · · · which determines the point P , the list of the numbers 0
to 8 attached to each term of this sequence is then the base 9 expansion of a number
t ∈ [0,1] such that f (t) = P . Thus f is surjective. But as we have observed, such a
number t is generally not unique, thus f is not injective. �

Again a dead end? Not really! We are now close to a solution. If we think of a
parametric representation of a curve

f : R −→ R
2, t �→ f (t)

as being the trajectory of a point which “actually” moves in the plane, then when t

varies, f (t) should vary as well. Let us then simply impose that f is injective. This
immediately eliminates the trivial case f (t) = (a, b), but also Example 1.2.1, as we
have seen.

The assumption “f injective” is perhaps a little too strong Fig. 1.7 depicts a
“curve”, even if the “trajectory” passes through the same point twice.

Considering the parametric representation of the circle

f (θ) = (cos θ, sin θ)

as the parameter runs along the real line the corresponding point rotates around the
circle infinitely many times. A single loop contains all the required information.

The following definition takes care of these “wishes”.

Definition 1.2.2 A parametric representation of a plane curve is a continuous func-
tion

f : ]a, b[ −→R
2, t �→ f (t), a, b ∈R∪ {−∞,+∞}

which is locally injective, that is, injective in a neighborhood of each point.
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Fig. 1.8

More explicitly, the local injectivity means that for every t0 ∈]a, b[ one can find
ε > 0 such that ]t0 − ε, t0 + ε[ is still contained in ]a, b[ and

f : ]t0 − ε, t0 + ε[ −→ R
2

is injective. Allowing a and b to take “infinite values” is a quick way of saying that
we allow f to be defined on R itself, on a half line or on an open interval.

Of course a constant function f (t) = (a, b) is not locally injective. But what
about the function f of Example 1.2.1?

Lemma 1.2.3 The function f of Example 1.2.1 is not locally injective.

Proof Consider the diagonal of a small square at the level n. This is the injective
image under fn of a small subsegment of [0,1]. Let us say that this is the subsegment
of origin u and length v. Observing the construction of the zigzag in Example 1.2.1,
we conclude that all fi with i > n are such that

fi

(
u + 1

9
v

)
= fi

(
u + 5

9
v

)
, fi

(
u + 4

9
v

)
= fi

(
u + 8

9
v

)
.

Thus at the limit we still have

f

(
u + 1

9
v

)
= f

(
u + 5

9
v

)
, f

(
u + 4

9
v

)
= f

(
u + 8

9
v

)
.

This proves that one can always find points, everywhere in [0,1], “as close as one
wants to each other”, which are mapped by f onto the same point. Thus f is not
locally injective. �

We conclude that the “non-examples” of curves that we gave earlier do not satisfy
our Definition 1.2.2 of a curve. Does this mean that Definition 1.2.2 is the good one?
The only possible good one? Certainly not. Nevertheless, the following chapters will
give evidence that this is certainly a possible good definition.

For example, as already observed, our choice prevents us from considering the
hyperbola (Fig. 1.8) as one curve, since it has two branches.

To overcome this problem, in the definition of a parametric representation of a
curve, we could decide to allow as domain a union of open intervals, but probably
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not any kind of union. It would surely be wise to exclude such unions as

∞⋃

n=1

]
1

2n + 1
,

1

2n

[
.

Reducing one’s attention to a finite union of open intervals could be a reasonable
compromise. However, as already mentioned in Sect. 1.1, do we really want the
union of 247 straight lines to be considered as a single curve?

We could also decide to allow closed intervals as domains, not only open inter-
vals. We would of course not allow these closed intervals to reduce to single points.
But then every time we consider a construction using limits or derivatives, at the
extremities of a closed interval, we would have to work with “one-sided” limits or
derivatives. For example if we define a circle via

f : [0,2π] −→ R
2, f (θ) = (cos θ, sin θ)

we have to treat separately the point f (0) = f (2π), which by the way, in a cir-
cle, should have the same properties as any other point of the circle! As far as
possible, we shall avoid entering into these considerations (nevertheless, see Def-
inition 2.14.1).

In Definition 1.2.2 you may also want to impose that f is differentiable, or even
of class C∞, or some other class. We shall not do this: we will introduce these
additional assumptions (or others) when they are needed for some results.

The conclusion of this discussion is thus

Defining a curve is a matter of choice!

But not all choices are sensible. Our choice is Definition 1.2.2.

1.3 Cartesian Versus Parametric

In Sect. 1.1 we have tried (without much success up to now) to determine a curve
via a Cartesian equation

F(x, y) = 0

while in Sect. 1.2 we have focused our attention on parametric representations

f : ]a, b[ −→R
2, t �→ (

f1(t), f2(t)
)

that is, on a system of parametric equations
{
x = f1(t)

y = f2(t).

Can we switch easily from one approach to the other, and perhaps guess what a good
notion of Cartesian equation of a curve might be?
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Fig. 1.9

An initial warning must be made. The “static” definition of a curve presents it as
“a subset of the plane”. The “dynamic” definition of a curve presents is as “a tra-
jectory in the plane”. However a curve, regarded as a subset of the plane, can easily
be obtained via very different trajectories! Fig. 1.9 presents a curve comprising the
x-axis and a circle of radius 1 with center (0,1). This “curve” admits the equation

y
(
x2 + (y − 1)2 − 1

)= 0.

You can view this as the “smooth” trajectory of a point coming from (−∞,0), turn-
ing counter-clockwise around the circle, and proceeding next to (+∞,0). Having
arrived at the origin, you could also very well turn clockwise: as a trajectory, this is
completely different! Of course you could also follow both trajectories in the reverse
direction, but this is certainly not an essential difference.

Let us thus see how we can pass from a “static” description to a “dynamic”
description, and vice-versa. In one direction, the idea is clear. Given the system of
parametric equations

{
x = f1(t)

y = f2(t)

we just need to eliminate the parameter t between the two equations ending up with
a Cartesian equation! This is easy to say, but not always that easy to do when f1 and
f2 are fairly involved functions.

However, analysis is there to help us, at least formally. Let us recall the following
important result:

Theorem 1.3.1 (Local Inverse Theorem) Consider a function g : Rn −→ R
n of

class Ck (k ≥ 1). If the matrix
(

∂gi

∂xj

(a1, . . . , an)

)

1≤i,j≤n

is regular, then the function g is invertible on a neighborhood of the point
(a1, . . . , an) and its inverse is still of class Ck .

Of course when n = 1, the condition in Theorem 1.3.1 reduces to g′(a) �= 0. This
suggests the following definition:
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Definition 1.3.2 A parametric representation of a curve

f : ]a, b[ −→R
2, t �→ (

f1(t), f2(t)
)

is regular when it is of class C1 and f ′(t) �= (0,0) for each t ∈ ]a, b[.

We obtain the following result:

Proposition 1.3.3 Let f : ]a, b[ −→ R
2 be a regular parametric representation of

a curve. For every t0 ∈ ]a, b[:
1. there exists a neighborhood of t0 on which the curve admits a Cartesian equation

F(x, y) = 0;
2. the function F : R2 −→R is of class C1 on this neighborhood;
3. at each point of the curve in the given neighborhood, at least one of the partial

derivatives of F is non-zero.

Proof Assume—for example—that f ′
1(t0) �= 0. By Proposition 1.3.1 we can write

t = f −1
1 (x) on a neighborhood of t0. This yields

y = f2
(
f −1

1 (x)
)

and it suffices to define

F(x, y) = f2
(
f −1

1 (x)
)− y.

Notice in particular that

∂F

∂y
= −1 �= 0. �

Proposition 1.3.3 suggests further to try the following definition:

Definition 1.3.4 (Temporary Definition; see 1.4.2) By a Cartesian equation of a
plane curve is meant an equation

F(x, y) = 0

satisfying the following requirements:

• this equation admits solutions;
• F : R2 −→R is a function of class C1;
• at each point (x0, y0) such that F(x0, y0) = 0, at least one of the partial derivatives

of F is non-zero.

The corresponding curve is the set of those points (x, y) such that F(x, y) = 0.

Let us now consider the opposite problem: how do we pass from a Cartesian
equation to a parametric representation? Once more, analysis is there to help us
solve our problem. Let us recall a celebrated result:



1.3 Cartesian Versus Parametric 13

Theorem 1.3.5 (Implicit Function Theorem) Consider a function F : Rn −→ R of
class Ck (k ≥ 1). If

F(a0, . . . , an) = 0,
∂F

∂xn

(a0, . . . , an) �= 0

then there exists

• a neighborhood V of (a0, . . . , an−1) and
• a function ϕ : V −→ R of class Ck

such that

• ϕ(a0, . . . , an−1) = an;
• ∀(x1, . . . , xn−1) ∈ V F(x1, . . . , xn−1, ϕ(x1, . . . , xn−1)) = 0.

Moreover, the neighborhood V can be chosen such that a function ϕ as in the state-
ment is necessarily unique.

The implicit function inferred from F is thus

xn = ϕ(x1, . . . , xn−1).

Proposition 1.3.6 Consider a Cartesian equation F(x, y) = 0 of a plane curve (as
in Definition 1.3.4) and a point (x0, y0) satisfying this equation. In a neighborhood
of (x0, y0), there exists a regular parametric representation of a curve

f : ]a, b[ −→R
2

such that each point (x, y) = (f1(t), f2(t)) satisfies the equation F(x, y) = 0.

Proof Assume that ∂F
∂y

(x0, y0) �= 0. With the notation of Theorem 1.3.5 it suffices
to define

f (x) = (
x,ϕ(x)

)
.

The parameter is thus t = x and f ′(x) = (1, ϕ′(x)) �= (0,0). Considering its first
component, we notice that f is injective. �

The slogan suggested by Propositions 1.3.3 and 1.3.6 is thus:

In good cases, one can switch locally from a system of parametric equa-
tions to a Cartesian equation, and vice-versa.

Locally is certainly the point to emphasize here, but it is not the only one. The
two processes seem to be “the inverse of each other”, but this is definitely a false
impression. Let us demonstrate this with some examples.

Consider first the circle of Fig. 1.10 and its parametric equations
{
x = R cos θ

y = R sin θ.
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Fig. 1.10

To eliminate θ between the equations you will probably simply square each equation
and add the results, to end up with

x2 + y2 = R2.

Conversely, you will probably write

y = ±
√

R2 − x2

and observe that each choice of the sign will give you half of the circle (the “upper
half” or the “lower half”). You will then obtain

f : ]−R,+R[ →R
2, x �→ (

x,
√

R2 − x2
)

as a parametric representation of the upper half of the circle. Working with

x = ±
√

R2 − y2

would give you the “left half” or the “right half”. So from the parametric equa-
tions, you have obtained the “global” Cartesian equation of the circle, but from that
Cartesian equation you have reconstructed—only locally—parametric equations of
the circle. Moreover, these are completely different from the original parametric
equations!

Let us now try the same with the parametric equations
{
x = et

y = et

which represent the half-diagonal of Fig. 1.11. It suffices to subtract the two equa-
tions to eliminate t , and this yields the equation x = y of the full diagonal! Of course
one cannot possibly guess, given only the Cartesian equation x = y, that it comes
from the original parametric equations.

Another slogan should thus be

Be careful . . .

But we should perhaps also add Be sorry!, as the next section will explain.
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Fig. 1.11

Fig. 1.12

1.4 Singularities and Multiplicities

We have already observed in Sect. 1.1 that not all real polynomials F(X,Y ) yield
the equation F(x, y) = 0 of a curve in R

2. But we know many examples where
F(x, y) = 0 does describe something which is worthy of being called a “curve”.
For example

x3 − 3xy2 = (
x2 + y2)2

which yields the “curve” of Fig. 1.12.
This equation can thus be written in the form F(x, y) = 0 with

F(x, y) = x3 − 3xy2 − (
x2 + y2)2

.

Since each term is of degree at least 2 (in fact, of degree 3 or 4),

∂F

∂x
(0,0) = 0,

∂F

∂y
(0,0) = 0.

So unfortunately, this “curve” is not a curve in the sense of our Definition 1.3.4.
Not recapturing the “decent algebraic curves” in our theory is rather unsatisfac-

tory. The present Section, deeply inspired by the considerations of Chap. 7 in [4],
Trilogy II, will now discuss this “difficulty” further. We observe first that:
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Proposition 1.4.1 Let f (X,Y ) ∈ R[X,Y ] be a non-constant polynomial with-
out any multiple factors. There are at most finitely many points (X,Y ) such that
f (X,Y ) = 0 and both derivatives of f vanish at (X,Y ).

Proof Let us consider the family (ai, bi)i∈I of those points such that

f (ai, bi) = 0,
∂f

∂X
(ai, bi) = 0,

∂f

∂Y
(ai, bi) = 0.

We must prove that there are only finitely many of them.
Let us write F(X,Y,Z) for the homogeneous polynomial associated with F

(see [4], Trilogy II, Sect. C.2). Thus f (X,Y ) = F(X,Y,1) and the factors of f

and F correspond to each other via the “homogenizing” process. Both polynomials
f and F have the same degree: let us say, n. By Euler’s formula (see C.1.5 in [4],
Trilogy II)

nF = X
∂F

∂X
+ Y

∂F

∂Y
+ Z

∂F

∂Z
.

Applying this formula at the points (ai, bi,1) yields

∂F

∂Z
(ai, bi,1) = 0.

Thus the points (ai, bi,1) are multiple points (see Definition 7.4.5, [4], Trilogy II)
of the complex projective curve F(X,Y,Z) = 0.

By assumption, f (X,Y ) and thus F(X,Y,Z) do not have any multiple factor as
real polynomials. If we can prove that analogously F(X,Y,Z) does not have any
multiple factors in C[X,Y,Z], then the number of multiple points of F(X,Y,Z) is
bounded by n(n−1) (see Sect. 7.9 in [4], Trilogy II). Thus there are at most n(n−1)

points (ai, bi) as above.
Let us recall that splitting all coefficients into their real and their imaginary parts,

every complex polynomial α(X,Y,Z) can be written as

α(X,Y,Z) = β(X,Y,Z) + iγ (X,Y,Z)

where α and β are polynomials with real coefficients. This shows at once that
given a non-constant real polynomial δ(X,Y,Z), if αδ is a real polynomial, then
γ (X,Y,Z) = 0. In other words, if a non-constant real polynomial δ(X,Y,Z) di-
vides another real polynomial in C[X,Y,Z], it divides it in R[X,Y,Z].

Replacing the coefficients of α by their conjugates then yields

α(X,Y,Z) = β(X,Y,Z) − iγ (X,Y,Z).

It follows at once that, just as for complex numbers

α(X,Y,Z)α(X,Y,Z) = β(X,Y,Z)2 + γ (X,Y,Z)2

that is, a polynomial with real coefficients.
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Write now

F(X,Y,Z) = G1(X,Y,Z) · · ·Gm(X,Y,Z)

with the Gk(X,Y,Z) irreducible. We must prove that each factor Gk is simple.
Since F has real coefficients, passing to the conjugates yields

F(X,Y,Z) = G1(X,Y,Z) · · ·Gm(X,Y,Z).

Of course, the Gk are still irreducible, because conjugation is a homomorphism of
fields.

If some Gk has real coefficients, it divides F(X,Y,Z) in R[X,Y,Z] as we have
just seen. Therefore by assumption, it is a simple factor.

Otherwise by uniqueness of the decomposition into irreducible factors, there ex-
ists an index j �= k such that Gj = Gk . Then GkGj = GkGk is a polynomial with
real coefficients which divides F(X,Y,Z). By assumption, it is a simple factor. Di-
viding by this polynomial and repeating the argument allows as to conclude that all
non-real Gk are simple factors as well. �

Of course replacing a multiple factor of f (x, y) by the same factor with degree 1
does not modify the set of points (x, y) such that f (x, y) = 0. Thus the assump-
tion in Proposition 1.4.1 is not really a restriction, as far as the study of curves is
concerned.

All this suggests modifying Definition 1.3.4 in the following way:

Definition 1.4.2 By a Cartesian equation of a plane curve is meant an equation

F(x, y) = 0

where:

• F : R2 −→R is a function of class C1;
• there exist solutions (x, y) where at least one partial derivative of F does not

vanish;
• there are at most finitely many solutions (x, y) where both derivatives of F van-

ish.

The corresponding curve is the set of those points (x, y) such that F(x, y) = 0.

Of course now, Proposition 1.3.6 holds only for those points where at least one
of the partial derivatives is not zero.

Still inspired by the considerations of Chap. 7 in [4], Trilogy II, it is also sensible
to define:

Definition 1.4.3 Let F(x, y) = 0 be a Cartesian equation of a plane curve. The
points (x, y) of the curve where both partial derivatives of F vanish are called the
multiple points of the curve.
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In the curve of Fig. 1.12 there is thus one single multiple point, namely, (0,0).
However, if we define multiple points when the curve is given by a Cartesian

equation, we are immediately faced with the challenge of defining a corresponding
notion for a parametric representation. Since at a multiple point Proposition 1.3.6
does not hold, we would be tempted, in the case of a parametric representation, to
consider those points where the “converse” Proposition 1.3.3 does not hold:

Definition 1.4.4 Given a parametric representation of class C1 of a curve, a point
of parameter t is singular when f ′(t) = (0,0).

It is important to stress two facts concerning this notion:

• “being a singular point” is a property of the parametric representation which does
not necessarily exhibit a “singularity” of the corresponding subset of R2;

• being a “singular point” for a parametric representation is by no means equivalent
to being a “multiple point” for a corresponding Cartesian equation.

For example

f : R −→ R
2, t �→ (t3,0)

is a parametric representation of class C∞ of the x-axis, which on the other hand
admits the Cartesian equation y = 0. Observe that

f ′(t) = (3t2,0), f ′(0) = (0,0)

thus the origin is a singular point of the parametric representation f . But the origin
is by no means a multiple point of the x-axis, that is, the algebraic curve y = 0.

If we consider the more usual parametric representation of the x-axis

g : R −→ R, t �→ (t,0)

then

g′(t) = (1,0) �= (0,0)

and there is no singular point at all.
Next consider the curve of Fig. 1.12 and its multiple point at the origin. It is

routine to verify that
{
x = cos θ · cos 3θ

y = sin θ · cos 3θ

is a system of parametric equations of the same “curve”. Since sin θ and cos θ do
not vanish together, the origin (0,0) is reached when cos 3θ = 0, that is (up to 2π )
for

θ = π

6
, θ = π

2
, θ = 5π

6
.

A straightforward computation shows that, writing f for the parametric represen-
tation, f ′(θ) �= (0,0) at these three points (in fact, the parametric representation f
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is regular!) Thus these three values of the parameter θ are not singular, while the
corresponding point is multiple.

The conclusion is clear: parametric representations are not appropriate for the
study of multiple points in the sense of the theory of algebraic curves! Intuitively, if
you travel “regularly” along a curve, there is nothing special about passing through
a point you have passed through earlier.

You might claim that passing through the same point several times is something
special. When working with a parametric representation f , we might then try to say
that a point P ∈ R

2 is multiple if P = f (t) for several values of the parameter t . But
then all points of the circle

f : R −→R
2, θ �→ (cos θ, sin θ)

are multiple, and even of multiplicity ∞! I am sure this is not what you had in mind!
You should certainly now be convinced that defining a curve is definitely a matter

of choice. If you strengthen the conditions in order to avoid some pathologies, then
you eliminate some examples that you would like to keep, and conversely. More-
over, working with parametric equations or with a Cartesian equation lead rather
naturally to non-equivalent choices of definitions.

In this book, we shall adopt Definitions 1.2.2 and 1.4.2, and we shall stop our
endless search for possible improvements of these definitions.

1.5 Chasing the Tangents

The Greek geometers defined tangents in the following way:

Definition 1.5.1 A tangent to a circle at one of its points P is a line whose inter-
section with the circle is reduced to the point P .

They proved (see Proposition 3.3.2, [3], Trilogy I):

Proposition 1.5.2 Given a point P of a circle, there exists a unique tangent at P

to the circle, namely, the perpendicular to the radius at P (see Fig. 1.13).

Very trivially, such a definition does not work at all for arbitrary curves. Just have
a look at Fig. 1.14: a tangent can cut the curve at a second point, and a line which
cuts the curve at exactly one point has no reason to be a tangent.

Consider the trivial case of a straight line: the tangent to a straight line should be
the line itself, which certainly takes us very far from a “unique” point of intersection,
globally or locally. Also keep in mind that a tangent can “cut” the curve at the
point of tangency, as in Fig. 1.15: thus “touching without cutting” is an inadequate
definition. Finally do not forget the case of multiple points, as in Fig. 1.12. At a
multiple point, there could be several tangents, not just a single one.
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Fig. 1.13

Fig. 1.14

Fig. 1.15

Fortunately, the fact of not having a good definition of a tangent did not prevent
mathematicians from calculating tangents!

In the 1630’s, Fermat and Descartes proposed methods to calculate the tangent to
a curve given by a polynomial equation F(x, y) = 0 (see Sect. 1.9 of [4], Trilogy II).
The idea was that

A tangent is a line having a double point of intersection with the curve.

The notion of “double point of intersection” was in those days (1630–1640) more
heuristic than precisely defined, but today it has been formalized in rigorous con-
temporary algebraic terms (see Definition 7.4.5 in [4], Trilogy II). In this book, we
shall instead turn our attention to some attempts which prefigure contemporary dif-
ferential methods.
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Fig. 1.16

Greek geometers could thus calculate the tangent to a circle and of course the
tangent to a line Archimedes (287–212 AC) had already made the conceptual leap
of regarding a curve as the trajectory of a moving point, and in this context he treated
the tangent as follows:

Definition 1.5.3 The tangent to a curve is the line in the direction of the instanta-
neous movement of a point traveling on that curve.

Archimedes then computed the tangent to certain curves by “decomposing” the
movement into a combination of linear and circular movements, and assuming that
the direction of the tangent can be decomposed analogously. Let us follow his ar-
gument on a precise example (see Sect. 4.5 in [3], Trilogy I, for more comments on
this curve).

Definition 1.5.4 The spiral of Archimedes (see Fig. 1.16) is the trajectory of a
point in a plane, which moves at constant speed along a line, while the line turns at
constant speed around one of its points, called the center of the spiral (see Fig. 1.16).

Example 1.5.5 Archimedes’ construction of the tangent to his spiral.

Proof The global movement has two components: one resulting from the uniform
linear movement of the point on the line, one resulting from the uniform circular
movement of the line.

The component resulting from the uniform linear movement of the point on the
line is expressed by a segment oriented along this line. Its length is the distance
traveled on the line during a unit of time: let us say (to keep the picture on a page),
during the time necessary for the line to make a half turn. This length is then half
the distance between two turns of the spiral.

To obtain the component of the movement resulting from the uniform circular
movement:

• consider the circle centered at the center of the spiral and which passes through
the point at which you want to compute the tangent;
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Fig. 1.17

• the circular component of the movement is a segment in the direction of the tan-
gent to this circle;

• this component has a length equal to the distance traveled on this circle during a
unit of time, that is, half the length of the circle.

Adding these two components via the parallelogram rule, Archimedes gets the di-
rection of the tangent. �

This is a beautiful theoretical result, but of course, quite a disturbing one for
a Greek geometer! Indeed Greek geometers could not, by ruler and compass con-
structions, draw a segment whose length is equal to the length of the circle, and
we have known since the 19th century that this is in fact impossible: “circle squar-
ing”, that is, constructing π , is impossible by ruler and compass constructions (see
Corollary B.3.3 in [3], Trilogy I).

In 1636, the French mathematician Roberval systematized Archimedes’ idea to
compute what he called the touching line. He applied this method to a wide variety
of curves: various spirals, the conchoids, the cycloid, and so on (see Chap. 3 for a
description of these curves). But let us focus here on his treatment of the tangent to
a conic.

Proposition 1.5.6

1. The tangent at a point P to a hyperbola with foci F , F ′ is a bisector of the two
lines FP , F ′P .

2. The tangent at a point P to an ellipse with foci F , F ′ is a bisector of the two
lines FP , F ′P .

3. The tangent at a point P to a parabola with focus F and directrix f is a bisector
of the line FP and the perpendicular to f through P .

Proof Consider first the case of the hyperbola (Fig. 1.17). As proved in Proposi-
tion 1.12.1 [4], Trilogy II, the hyperbola is the locus of those points P such that the
difference of the distances

∣∣d(P,F ) − d(P,F ′)
∣∣
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Fig. 1.18

Fig. 1.19

to the two foci remains constant. When you move along a branch of the hyperbola—
let us say—away from the origin, both distances increase. But since the difference
between the two distances remains the same, both distances increase at the same
rate. Roberval decomposes the movement into two instantaneous movements: one
along the line FP , one along the line F ′P . Since these two movements have equal
amplitudes, the corresponding “parallelogram of movements” is a diamond, and the
length of a side has no influence on the direction of the diagonal. Therefore, the
tangent is simply the bisector of the two lines joining the point P and the two foci
F and F ′.

An analogous argument holds for the ellipse (see Fig. 1.18): this time, by Propo-
sition 1.11.1 in [4], Trilogy II,

d(F,P ) + d(F,P )

is constant. Thus one distance increases in the same way as the other one decreases.
This again yields a diamond as “parallelogram of movements”.

Finally for the parabola (see Fig. 1.19) with focus F and directrix f , when you
move away from the origin, the two distances d(F,P ) and d(f,P ) increase at the
same rate. Therefore the “parallelogram of movements” is a diamond with one side
perpendicular to f and the other one in the direction FP . �

Think what you want of such arguments, they were nevertheless efficient in a
period when differential calculus did not exist!
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Fig. 1.20

Fig. 1.21

1.6 Tangent: The Differential Approach

Although it is nice to see how tangents were computed historically, today everybody
“with a basic mathematical culture” knows that:

The tangent to an arbitrary curve at one of its points P is the limit of the
secant through P and another point Q of the curve, as Q converges to P (see
Fig. 1.20).

Indeed, this “dynamic” definition of the tangent, taking full advantage of the no-
tion of limit, recaptures precisely our intuition of what a tangent should be (see
Fig. 1.20).

Of course this is no longer the case at a multiple point (see Fig. 1.12): there
we should consider separately the various “branches” of the curve, whatever that
means! Perhaps we should decide if at a vertex of a square, there are two tangents,
or no tangent at all. In the case—for example—of the cycloid: the trajectory of a
point of a circle which rolls on a line (see Fig. 1.21), we should decide whether or
not there is a tangent at each cusp point.

What might be a possible tangent at the origin for the curve with parametric
representation

f : R −→ R
2, t �→

{(
t, tk sin 1

t

)
if t �= 0

(0,0) if t = 0,
k ∈ N?

It is no longer clear which curves have a tangent and which do not. We still need
a precise definition. The trouble with the “definition” above is that we can define the
limit of a family of points in R, and the limit of a family of vectors in R

2, but how
are we to precisely define the limit of a family of lines?
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Fig. 1.22

Let us take a parametric representation of the curve

f : ]a, b[ −→R
2

and consider the point P = f (t0). When t converges to t0, the point Q = f (t)

converges to P = f (t0). The secant through P and Q is the line

• passing through P = f (t0);
• of direction

−→
PQ = f (t) − f (t0).

The tangent will thus be the line

• passing through P = f (t0);
• of direction limt→t0(f (t) − f (t0)).

Unfortunately this does not make any sense because by continuity of f , the limit is
simply f (t0) − f (t0), that is the zero vector.

But the difficulty is easy to overcome. Two vectors in the same direction define
the same secant, thus let us simply work with vectors of length 1, so that the limit
should remain of length 1. The tangent should thus be the line

• passing through P = f (t0);
• of direction

lim
t→t0

f (t) − f (t0)

‖f (t) − f (t0)‖ .

When this limit exists, of course. Unfortunately, this limit most often does not exist.
Look at the following two curves, represented in Fig. 1.22.

• the circle with parametric representation

f : R −→R
2, θ �→ (cos θ, sin θ);

• the curve constituted of two half-circles, whose parametric representation is given
by

g : ] − 1,+1[−→ R
2, t �→ (

t,
√

1 − x2
)
.
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In both cases, consider the point with parameter 0. What about the tangent, at these
points, in the sense of the “definition” above?

• In the case of the circle, the expected limit does not exist! Indeed, we observe
immediately that

lim
t→0
t<0

f (t) − f (t0)

‖f (t) − f (t0)‖ = (−1,0), lim
t→0
t>0

f (t) − f (t0)

‖f (t) − f (t0)‖ = (1,0).

Both results are different, thus the limit does not exist.
• In the case of the two half-circles, the same kind of computation shows at once

that

lim
t→0

g(t) − g(t0)

‖g(t) − g(t0)‖ = (1,0)

and the limit exists.

What does this mean? Although defining a tangent as “a limit of secants” is
a good idea, when you try to make precise what “a limit of secants means”, you
easily run into severe problems. For example, with the attempt above, the circle
does not have a tangent while the curve comprising of two half circles does! This
first attempt to define a “limit of secants”, because of the “counterexample” of the
circle, is certainly unacceptable.

Note that in the case of the circle, the limits for t < t0 and t > t0 are opposite
vectors, thus define the same direction, thus the same line. So one could modify our
definition of the tangent by saying that both limits

lim
t→t0
t<t0

f (t) − f (t0)

‖f (t) − f (t0)‖ , lim
t→t0
t>t0

f (t) − f (t0)

‖f (t) − f (t0)‖

on the right and on the left should exist, be non-zero, and be proportional vectors.
However, one cannot expect to be able to prove elegant results and make computa-
tions with such a convoluted definition of the tangent.

The sensible thing to do is indeed to replace the vector f (t) − f (t0) by a vector
proportional to it, but not a vector of length 1. Consider instead

lim
t→t0

f (t) − f (t0)

t − t0

which, when it exists, is simply f ′(t0). Of course for such an approach to be effi-
cient, not only must the derivative exist, but it must be non-zero! Therefore we make
the following definition:

Definition 1.6.1 Consider a regular parametric representation of a curve

f : ]a, b[ −→R
2.
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• The tangent to this curve at the point with parameter t0 is the line containing
f (t0) and of direction f ′(t0).

• The normal to this curve at the point with parameter t0 is the perpendicular to the
tangent at this point.

Now of course, since the same curve can be described by various parametric rep-
resentations, one should verify that Definition 1.6.1 of the tangent does not depend
on the choice of the representation. We shall treat this question in Sect. 2.4. We
recall that our point here is not to prove theorems, but to “guess” good definitions!
Analogously one should see what happens to this definition when the curve is given
by a Cartesian equation, but again this will be done in Sect. 2.4.

To conclude this section, let us insist once more on the fact that defining the
tangent is a matter of choice.

Of course with Definition 1.6.1, our parametric representation f of the circle
now yields a tangent at each point, because it is regular.

In our first attempt, the curve comprising two half circles also had a tangent at
each point, but the parametric representation g of this curve is not differentiable at
t = 0. So using Definition 1.6.1, the curve represented by g does not have a tangent
at the origin.

Therefore one might want to further modify the definition of a tangent, to get the
best of the two attempts. For example, by requiring only the proportionality of the
left derivative and the right derivative, not the existence of the derivative. Then the
curve represented by g would also have a tangent at the origin.

If we consider the parametric representation

h : R −→R
2, t �→ (t3,0)

of the x-axis, we observe that h′(0) = (0,0), thus in view of Definition 1.6.1, the
x-axis—when represented by h—does not have a tangent at the origin, which is less
than satisfactory. Again one might want to revise the definition of a tangent to avoid
such a situation.

However, we shall not enter into these considerations: we adopt once and for
all Definition 1.6.1. We are now well aware that in doing so, we exclude examples
where a more involved definition would have produced a “sensible tangent”.

1.7 Rectification of a Curve

As far as the length of a curve is concerned, the greatest achievement of Greek
geometry was (see Theorem 3.1.4 in [3], Trilogy I):

Theorem 1.7.1 The ratio between the length of a circle and the length of its diam-
eter is a constant, independent of the size of the circle. This constant is written π .
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Proof This result was proved by the so-called exhaustion method due to Eudoxus
(around 380 AC): this method was the direct ancestor of the notion of limit. Greek
geometers first proved a corresponding result for regular polygons inscribed in a
circle and then “by a limit process”, inferred the result for the circle. �

The importance of this result is often hidden by the systematic use of the well-
know formulas 2πR and πR2 for the length and the area of a circle of radius R.
These formulas hold because the number π involved is independent of the size of
the circle! Today many of us consider that these formulas answer the question fully.
For Greek geometers, they were only a beginning: what is the precise value of this
quantity π? The famous problem of squaring the circle consisted equivalently of
finding a construction of a segment of length π . However, all attempts in this direc-
tion seemed to be hopeless.

Two thousand years later, in 1637, the French mathematician and philosopher
Descartes wrote

The relations between straight lines and curves are not known and, I think,
cannot be discovered by the human mind; for that reason, no conclusion at all
based on such relations can be accepted as rigorous and exact.

So, even if you say that the length of a circle is 2πR, you still do not know the
length of the circle since you do not know the precise value of π ! You are unable to
construct (with ruler and compass) a segment having the same length as the circle,
and if you cannot do this for the circle, how could you possibly hope to do it for
more complicated curves?

One year later Descartes studied the movement of a body falling on the Earth,
while the Earth is itself was considered as a body in rotation. For that he introduced
the so-called logarithmic spiral (see Fig. 1.23).

Definition 1.7.2 The logarithmic spiral is the trajectory of a point moving on a
line, at a speed proportional to the distance already travelled on this line, while the
line itself turns at constant speed around one of its points.

In an irony of history, the logarithmic spiral was the first curve to be rectified, that
is, a precise construction was given to produce a segment whose length is equal to
the length of a given arc of the curve. This result is due to the Italian mathematician
Torricelli (1608–1647), a student of Galilee Galileo. At the same time, Torricelli
rectified various other curves, such as the cycloid (see Definition 1.9.1 and Proposi-
tion 1.9.4).

Proposition 1.7.3 The length of an arc of a logarithmic spiral, from its origin O to
a given point P , is equal to the length of the segment joining P and the intersection
Q of the tangent at P and the perpendicular at O to the radius OP .

Proof Let R be the length of the radius OP . By definition of the spiral, the com-
ponent of the movement at P along the radius is kR, for a fixed constant k. The
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Fig. 1.23

circular component of the movement at P is oriented along the tangent to the circle
with center O and radius R, that is, perpendicular to the radius OP ; it has a length
equal to the length of the circle, that is 2πR. The parallelogram of movements is
thus a rectangle with sides kR and 2πR; its diagonal is thus oriented as that of
a rectangle with sides k and 2π . Therefore the angle between the tangent and the
radius OP is independent of R and is thus a constant α.

Now “unroll” the spiral along its tangent at P , starting from P . As we have
just seen, the various successive radii OP ′ will keep forming an angle α with the
tangent. Therefore the movement of the point O during this “unrolling” process is
perpendicular to the direction of these radii. So the point O moves on the perpen-
dicular to the radius OP at the point O . When O finally reaches the intersection
point Q with the tangent at P , the spiral is entirely unrolled. �

Most probably, you are not fully convinced by these “dynamical” arguments.
However, we must bear in mind that differential calculus did not exist in Toricelli’s
time. In modern terms, writing θ for the angle of rotation of the line, the logarithmic
spiral is defined by the differential equation

dR(θ)

dθ
= kR(θ).

This yields as possible solution

R(θ) = aekθ , a ∈R.



30 1 The Genesis of Differential Methods

Fig. 1.24

A parametric representation of the logarithmic spiral is then

f (θ) = (
aekθ cos θ, aekθ sin θ

)
.

One can now obtain the result by brute computation rather than imagination!
This result was doubly amazing for the mathematicians of the time:

• first, as already mentioned, the result finds a precisely defined segment whose
length is equal to that of a piece of a curve;

• second, this segment has a finite length, while the piece of the curve winds in-
finitely many times before reaching the origin.

However, this is not really a counterexample to Descartes’ statement. Indeed the
curve itself was considered as “badly defined”: the curve was described in a dynamic
way, but its equation could not be written. Of course in those days, the exponential
function could by no means be considered as a function and, even less, as a “well
defined function”.

Nevertheless this first attempt raised the hope of being able to rectify some curves
and, perhaps, all curves. The British mathematician Neil (1659), the Dutch math-
ematician van Heuraet (1659) and the French mathematician Fermat (1660) were
able to “rectify” the semi-cubic parabola, that is, the “well-defined” curve with equa-
tion

y2 = x3

(see Fig. 1.24).
The method of Neil and van Heuraet consisted of approaching the curve by a

polygonal line inscribed to the curve and letting the distance between two consecu-
tive points tend to zero. The method of Fermat consisted instead of approaching the
curve by a polygonal line tangent to the curve (see Fig. 1.25). The most amazing
point is the fact that all of them succeeded in computing the limit of the lengths
of these polygonal lines before the birth of differential calculus in 1676. Newton
(1642) and Leibniz (1646) were at the time already teenagers who were starting to
get interested in these questions!
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Fig. 1.25

1.8 Length Versus Curve Integral

The tricky computations of Neil, van Heuraet and Fermat (see Sect. 1.7) to com-
pute the length of an arc of a cubic parabola are of course based on the following
“definition”:

Given a curve, we approximate it by a polygonal line as in Fig. 1.25. The
length of the curve is the limit of the lengths of all possible polygonal lines as
the length of all segments tends to zero.

Once more, the intuition behind this “definition” is clear, but the terms contained
in it should now be given a precise mathematical meaning. To achieve this, let us
first work with this “definition” as such, without asking too many questions about its
precise meaning and about the assumptions needed to develop the following proof.

Proposition 1.8.1 Consider a parametric representation

f : ]a, b[ −→ R
2, t �→ f (t)

of class C1 of a plane curve and two points c < d in ]a, b[. The length of the arc of
the curve between the points of parameters c and d is equal to

∫ d

c

∥∥f ′(t)
∥∥dt.

Proof We thus call the length of the arc of the curve the limit of the lengths of the
polygonal lines inscribed to the curve, as the length of each side tends to zero. For a
natural number n �= 0, put

Δn(t) = d − c

n

and consider the polygonal line determined by the values

ti = c + iΔn(t), 0 ≤ i ≤ n

of the parameter. The length of this polygonal line is equal to

n∑

i=0

∥∥f (ti+1) − f (ti)
∥∥.
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The function f is continuous, thus it is uniformly continuous on the compact
interval [c, d]. Therefore when n tends to ∞, that is as Δn(t) tends to 0, each side
of the polygonal line has a length which also tends to 0.

But for “good” functions f , the Taylor expansion of f tells us that

f (ti+1) = f (ti) + Δn(t)f
′(ti) +O1

(
Δn(t)

)

where O1 has the property

lim
x→0

O1(x)

x
= 0.

This suggests to re-write the length of the polygonal line as

n∑

i=0

∥∥∥∥f
′(ti) + O1(Δn(t))

Δn(t)

∥∥∥∥ · Δn(t).

When the number n of sides of the polygonal line tends to ∞, Δn(t) tends to 0 and
this sum should thus have as limit

∫ d

c

∥
∥f ′(t)

∥
∥dt. �

This “proof” is not very rigorous, and nor should we expect it to be, after all it
concerns a definition whose terms have bot been given a precise meaning. Never-
theless, the formula in Proposition 1.8.1 should remind us of well-known result in
analysis:

Theorem 1.8.2 Consider an injective function of class C1

f : [c, d] −→ R
n

and another continuous function

g : [c, d] −→ R.

Then the curve integral of g along f exists and is equal to
∫ d

c

g(t) · ∥∥f ′(t)‖dt.

This immediately suggests the following definition

Definition 1.8.3 Let f : ]a, b[−→ R
2 be an injective parametric representation of

class C1 of a curve. Given a < c < d < b, the length of the arc of the curve between
the points with parameters c and d is by definition the curve integral of the constant
function 1 along f : [c, d] −→ R

2.

Since a parametric representation is always locally injective, the restriction of
injectivity can easily be overcome: it suffices to compute a length “by pieces”.
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Fig. 1.26

1.9 Clocks, Cycloids and Envelopes

Still in the years 1650–1560, thus before the invention of differential calculus,
the Dutch physicist Huygens was very much concerned with constructing the best
clocks of his time. The most immediate way to construct a clock is based on the
pendulum principle: attach a weight at the extremity of a chord and let it swing!
Our physics courses tell us that the frequency of such a pendulum is “more or less”
independent of the amplitude of the movement, at least in the case of oscillations
of “small amplitude”. We make these various qualifications, “more or less”, “small
amplitudes”, and so on, but is it not possible to construct an isochronal pendulum:
a pendulum which always swings at the same frequency, whatever the amplitude of
the oscillations?

The frequency of a pendulum increases when the “chord” of the pendulum is
shorter. When the amplitude of the oscillation increases, the frequency of the pen-
dulum decreases. Thus to obtain a pendulum whose frequency is independent of the
amplitude of the oscillation, it would “suffice” to have a chord of variable length: a
length which diminishes as the pendulum moves away from its position of equilib-
rium, and gets longer again as the pendulum moves back towards its bottom position.
How can one realise such a pendulum?

Huygens’ idea was to attach the chord between two templates, so that the chord
“rolls” on these templates (see Fig. 1.26) while the pendulum is swinging. The chord
has its full length in vertical position and this length becomes shorter and shorter as
the pendulum moves away from this equilibrium position. But what form should you
give to the templates in order to get a pendulum whose frequency is independent of
the amplitude of the oscillations?

Huygens discovers that the solution to the problem is obtained via the cycloid: a
curve already mentioned in Sect. 1.6 (see Fig. 1.27).

Definition 1.9.1 The cycloid is the trajectory of a fixed point of a circle, as this
circle rolls on a line.
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Fig. 1.27

The Italian mathematician Torricelli (1608–1647) and the French mathematician
Roberval (1602–1675) had already studied problems of tangency, length and area
for various curves, including the cycloid. Huygens knew these results and pursued
the study of the cycloid further. Let us establish the necessary results with the con-
temporary techniques of Sects. 1.6 and 1.8.

Proposition 1.9.2 Choosing the radius of the rolling circle as unit of length, a
parametric representation of the cycloid is given by

f : R −→ R
2, f (θ) = (θ − sin θ,1 − cos θ).

Proof In Fig. 1.27, when the circle has turned by an angle θ , the length of the arc
PQ is equal to θ . But by definition of the cycloid, this length is also that of the
segment BQ. Observing further that the center of the circle moves on the line with
equation y = 1, we obtain the announced formula. �

The following result was first discovered by Roberval, using his technique of
composition of movements.

Proposition 1.9.3 In Fig. 1.27, the tangent to the cycloid at a point P is the line
joining P and the point S diametrically opposite to Q on the circle.

Proof In view of Definition 1.6.1 and Proposition 1.9.2, the direction of the tangent
at P is (1 − cos θ, sin θ). The equation of this tangent is thus

sin θ
(
x − (θ − sin θ)

)− (1 − cos θ)
(
y − (1 − cos θ)

)= 0.

The point Q has coordinates (θ,0), thus S has coordinates (θ,2). It is immediate
that the coordinates of S satisfy the equation of the tangent. �

Here we present (with contemporary proof) Toricelli’s result concerning the rec-
tification of the cycloid.

Proposition 1.9.4 In Fig. 1.27, write D for the middle point of the full arch of the
cycloid. The length of the arc of the cycloid between P and D is equal to twice the



1.9 Clocks, Cycloids and Envelopes 35

length of the tangent segment PS (see Proposition 1.9.3). As a consequence, the
length of a full arch of the cycloid is equal to eight times the radius of the rolling
circle.

Proof Going back to the proof of Proposition 1.9.3, we have

P = (θ − sin θ,1 − cos θ), S = (θ,2).

Therefore

‖−→PS‖ = √
2 + 2 cos θ = 2 cos

θ

2
since

1 + cos θ = 2 cos2 θ

2
.

On the other hand the length of the arc PD of the cycloid is given by (see Propo-
sition 1.8.1)

∫ π

θ

∥∥f ′∥∥=
∫ π

θ

√
2 − 2 cos θ dθ

= 2
∫ π

θ

sin
θ

2
dθ

= −4

(
cos

π

2
− cos

θ

2

)

= 4 cos
θ

2

where this time, we have used the formula

1 − cos θ = 2 sin2 θ

2
.

The length of the arc PD of the cycloid is thus indeed twice the length of the
segment PS.

The length of a full arch is therefore four times the length of the tangent vector
PS, when P = B . Except that at P = B , the argument above does not apply! Indeed
for θ = 0, the tangent vector f ′(θ) becomes simply (0,0): the cusp points of the
cycloid are singular points (see Definition 1.4.4). But taking the limit of the lengths
of the arcs PD as P converges to B yields

lim
θ→0

4 cos
θ

2
= 4

as expected. �

What Huygens proved about the cycloid is the following theorem.
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Fig. 1.28

Theorem 1.9.5 Put a cycloid upside-down in a gravitational field. Attach at a cusp
point of this cycloid a pendulum whose length is equal to half the length of an arch
of the cycloid. The trajectory of this pendulum is another cycloid of the same size
and the frequency of the pendulum is independent of the amplitude of the oscillation.

Proof In Fig. 1.28, consider the lower cycloid, obtained when the lower circle of
radius 1 rolls on the middle horizontal line. Analogously consider the upper cycloid,
obtained when the upper circle with the same radius 1 rolls on the upper horizontal
line. Write P , P ′ for the fixed points on these circles whose trajectories are the
cycloids. Write further Q for the contact point of these two circles with the middle
horizontal line and S, S′ for the points of the circles diametrically opposite to Q.

By Proposition 1.9.3, PS is the tangent to the lower cycloid at P while P ′Q is
the tangent to the upper cycloid at P ′. Since both circles have already turned by the
same angle θ after leaving B , the points P and P ′ are symmetric to each other with
respect to Q. In other words, P , Q, P ′ are on the same line and both segments PQ,
P ′Q have the same length. But by Proposition 1.9.4, the length of the segment P ′Q
is half the length of the arc BP ′ of the cycloid. Thus the arc BP ′ of the cycloid has
the same length as the segment PP ′.

Thus the length of the arc AP ′ of the cycloid, augmented by the length of the
segment P ′P , yields the same result as the length of the full arc AB of the cycloid.
In other words, if a pendulum is attached at A, with a length of cord equal to the arc
AB of the upper cycloid, when this pendulum swings, its trajectory is exactly the
lower cycloid.

Now call τ the angle between the tangent at P and the horizontal line. Writing
g for the gravitational force, the acceleration of the pendulum along its trajectory is
thus equal to −g sin τ . But, still by Proposition 1.9.4

sin τ = ‖PS‖
2

=
1
2 arcDP

2
.
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Write s for the length of the arc DP , viewed as the position of the pendulum on the
cycloid. The acceleration of the pendulum along the cycloid is thus characterized by
the differential equation

s̈(t) = −g

4
s(t)

where t is the time. Integrating this differential equation yields

s(t) = α cos

(
1

2
√

g t

)
+ β sin

(
1

2
√

g t

)
.

Let us assume that at the instant t = 0 the pendulum reaches its highest position
s = s0. The symmetry of the problem forces s(t) = s(−t), which implies β = 0.
Putting t = 0 yields α = s0, so that the equation of the movement is

s(t) = s0 cos

(
1

2
√

g t

)
.

The point D, that is s = 0, is thus reached at the time t0 such that

0 = s0 cos

(
1

2
√

g t0

)

that is
1

2
√

g t0 = π

2
.

The time necessary for the pendulum to reach its bottom position D is thus π
√

1
g

:

this time is indeed independent of s0, the amplitude of the oscillation.
Not surprisingly, given that he was essentially trying to solve a differential equa-

tion before the invention of differential calculus, Huygens’ argument for this last
point was fairly convoluted. Amazingly, he nevertheless managed to solve the prob-
lem. �

This study of the cycloid underlines another important geometrical notion: the
envelope of a family of curves.

Proposition 1.9.6 In the situation depicted in Fig. 1.28, the upper cycloid is tangent
to all the normals to the lower cycloid: therefore the upper cycloid is called the
envelope of these normals (see Fig. 1.29).

Proof The angle QPS is inscribed in a half circle, thus it is a right angle. Since PS

is tangent to the lower cycloid, PQP ′ is normal to this cycloid, but it is also the
tangent to the upper cycloid. �

The idea of considering the envelope of the normals to a given curve is much
older that the work of Huygens. The first result in this direction is probably the case
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Fig. 1.29

of the normals to a parabola, studied once again by Apollonius, around 220 BC!
The first case of an envelope of a family of arbitrary curves (not just straight lines)
is probably due to Torricelli around 1642. We shall come back to these problems in
Sect. 2.6.

1.10 Radius of Curvature and Evolute

The study of the cycloidal pendulum, as developed by Huygens (see Sect. 1.9) gives
rise to a very interesting observation. An ordinary pendulum moves along a circle
whose radius is the length of the chord of this pendulum. But the cycloidal pendu-
lum has a chord of variable length, originating from a variable point: in Fig. 1.28,
the chord is P ′P with origin P ′. The instantaneous movement of the cycloidal pen-
dulum at the point P thus coincides with the instantaneous movement of an ordinary
pendulum whose chord would be P ′P . Therefore the circle of radius P ′P is the best
circular approximation of the cycloid at its point P . Huygens calls P ′ the center of
curvature of the cycloid at P and P ′P , the corresponding radius of curvature. The
upper cycloid is thus the locus of the centers of curvature of the lower cycloid: what
one calls the evolute of the lower cycloid.

Again it was Huygens who first succeeded in handling the problem of the radius
of curvature in a quite general setting. Let us follow his argument, taking for granted
that when we refer to a tangent, an intersection or a limit, it does exist!

Consider a fixed point P on a given curve and a variable point Q on the
same curve.

• The center of curvature at P is the limit of the intersection of the normal at P

and the normal at Q, when Q converges to P .
• The distance between P and the corresponding center of curvature is called the

radius of curvature at P .
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• The locus of all the centers of curvature is called the evolute of the given curve.

As already mentioned, we take for granted that this definition makes sense, which
is of course false, even for very good curves! For example if the curve is a straight
line, the two normals at P and Q are parallel and you cannot even start the process!
Our purpose is therefore once more to guess what a “good” contemporary definition
should be. Let us translate Huygens’ argument in contemporary terms.

Proposition 1.10.1 Consider a plane curve with parametric representation f . In
“good cases”, the radius of curvature is given by the formula

ρ = ‖f ′‖3

|f ′
2f

′′
1 − f ′

1f
′′
2 | .

Proof Let us consider the fixed point P = f (t0) and the variable point Q = f (t).
The normal vector at Q is thus n(t) = (f ′

2(t),−f ′
1(t)) and analogously at P . The

intersection of the two normals is thus such that

f (t0) + αtn(t0) = f (t) + βtn(t)

for two scalars αt and βt that we have now to determine.
This equality yields the system of equations

f1(t0) + αtf
′
2(t0) = f1(t) + βtf

′
2(t)

f2(t0) − αtf
′
1(t0) = f2(t) − βtf

′
1(t)

so that, by Cramer’s rule for solving such a system and the well-known properties
of determinants

αt =
det

(
f1(t)−f1(t0) −f ′

2(t)

f2(t)−f2(t0) f ′
1(t)

)

det
(

f ′
2(t0) −f ′

2(t)

−f ′
1(t0) f ′

1(t)

) =
det

(
f1(t)−f1(t0)

t−t0
−f ′

2(t)

f2(t)−f2(t0)

t−t0
f ′

1(t)

)

det

(
f ′

2(t0)
f ′

2(t0)−f ′
2(t)

t−t0

−f ′
1(t0)

f ′
1(t)−f ′

1(t0)

t−t0

) .

When t converges to t0, we obtain

α = lim
t→t0

αt =
det

(
f ′

1(t0) −f ′
2(t0)

f ′
2(t0) f ′

1(t0)

)

det
(

f ′
2(t0) −f ′′

2 (t0)

−f ′
1(t0) f ′′

1 (t0)

) = ‖f ′(t0)‖2

f ′
2(t0)f

′′
1 (t0) − f ′

1(t0)f
′′
2 (t0)

.

The center of curvature at P is then the point

f (t0) + α n(t0).
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The radius of curvature is simply

∥∥α n(t0)
∥∥=

∣∣∣∣
‖f ′(t0)‖2

f ′
2(t0)f

′′
1 (t0) − f ′

1(t0)f
′′
2 (t0)

√(
f ′

2(t0)
)2 + (

f ′
1(t0

))2
∣∣∣∣

= ‖f ′(t0)‖3

|f ′
2(t0)f

′′
1 (t0) − f ′

1(t0)f
′′
2 (t0)|

which is indeed the announced formula. �

1.11 Curvature and Normality

The treatment of the radius of curvature as in Sect. 1.10 is certainly very intuitive,
but raises many questions. It refers again to a notion of “limit computed on a family
of lines” and as we have seen in Sect. 1.6, such a notion of limit is not always as
simple as one might imagine. So we now want to translate the ideas of Sect. 1.10 in
“decent differential terms”.

The idea is the following. What measures the curvature of a curve is the speed at
which the tangent to the curve changes direction as you travel along this curve. But
the measure of the variation of a quantity is something well-known today: this is the
derivative of the quantity. The direction of the tangent to a regular curve represented
by f (t) is given by the tangent vector f ′(t) (see Definition 1.6.1). One could thus
be tempted to define the curvature as the derivative of this tangent vector, that is as
the vector f ′′(t).

However, f ′(t) is a vector in R
2: it thus has a direction and a length. When this

vector varies, it can vary both in direction and in length. What we are interested in,
is only the variation in direction. Of course if it turns out that the vector f ′(t) has a
constant length, for all values of the parameter t , then the derivative f ′′(t) measures
exactly the variation in direction of the tangent vector f ′(t), and we end up with an
elegant way of defining the curvature. But is such a situation possible?

Proposition 1.11.1 Choose as parameter for describing a curve, the length s of
the arc of the curve from an arbitrary point on the curve chosen as origin. If the
corresponding parametric representation f (s) is regular, the tangent vector f ′(s)
is of length 1, for every value of the parameter s. Such a parametric representation
is called normal.

Proof Applying Proposition 1.8.1 to such a special parametric representation, we
get

s =
∫ s

0

∥∥f ′∥∥.

Deriving both sides with respect to s yields 1 = ‖f ′‖. �

We therefore make the following definition:
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Definition 1.11.2 Let f (s) be a normal representation of class C2 of a curve (see
Proposition 1.11.1). The curvature at the point with parameter s is by definition the
quantity ‖f ′′(s)‖.

It is fairly immediate to observe that this definition does not depend on the normal
representation chosen: we shall see this in more detail in Sect. 2.9.

To conclude this section, we should now exhibit the link between the notion of
curvature in Definition 1.11.1 and the more intuitive idea of radius of curvature
obtained via the intersection of normals. For that it suffices to remember that the
derivative of a scalar product can be computed via a formula analogous to that of
the derivative of an ordinary product.

Lemma 1.11.3 Consider two functions of class C1

f,g : R → R
2

and the corresponding function

(f |g) : R −→ R, t �→ (
f (t)

∣∣g(t)
)
.

Under these conditions

(f |g)′ = (
f ′|g)+ (

f |g′).

Proof Indeed

(f |g)′ = (f1g1 + f2g2)
′

= (
f ′

1g1 + f1g
′
1

)+ (
f ′

2g2 + f2g
′
2

)

= (
f ′

1g1 + f ′
2g2

)+ (
f1g

′
1 + f2g

′
2

)

= (
f ′∣∣g

)+ (
f
∣∣g′)

by the ordinary formula for the derivative of a product. �

We then have:

Proposition 1.11.4 Let f (s) be a normal representation of class C2 of a curve.
The radius of curvature at a given point is the inverse of the curvature at this point,
provided of course that this curvature is not zero.

Proof By Proposition 1.11.1, a normal representation f has a tangent vector f ′ of
constant length 1. Differentiating the equality (f ′|f ′) = 1, we obtain 2(f ′|f ′′) = 0.
Thus f ′′ is orthogonal to f ′ and therefore, the vector v = (−f ′′

2 , f ′′
1 ) perpendicular

to f ′′ is parallel to f ′. It follows that

(
f ′∣∣v

)= ∥∥f ′∥∥ · ‖v‖ · coskπ = ±‖v‖ = ±
√(

f ′′
2

)2 + (
f ′′

1

)2 = ±∥∥f ′′∥∥.
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Fig. 1.30

But
(
f ′∣∣v

)= −f ′
1f

′′
2 + f ′

2f
′′
1 .

Introducing these values into the formula of Proposition 1.10.1 gives

ρ = 1

‖f ′′‖
as announced. �

1.12 Curve Squaring

“Circle squaring”, that is, constructing by ruler and compass a square having the
same area as a circle, is a problem which puzzled mathematicians for more than two
millenniums. This problem has largely been discussed in Sect. 2.4 of [3], Trilogy I;
its impossibility was finally proved in 1882 as a corollary of a famous result of Lin-
demann: the number π is transcendental, that is, it cannot be obtained as a solution
of an equation with rational coefficients (see Sect. B.3 of [3], Trilogy I).

Of course, today, “squaring” a portion of the plane is no longer seen as a “ruler
and compass” problem, but as a question of integral calculus. Therefore “curve
squaring” is generally not considered as part of curve theory and is instead treated
in an analysis course: we thus direct the reader towards an analysis book for a sys-
tematic treatment of these questions. Notice that making clear which curves can be
“squared” is already a challenging problem.

Nevertheless, due to the historical importance of these questions, it is sensible
to present here a short section on this curve squaring problem, focusing on some
historically important examples. Our first example was treated by Archimedes (see
Sect. 4.4 in [3], Trilogy I).

Example 1.12.1 The area of the portion of the plane delimited by the x-axis and
the parabola of equation y = 1 − x2 is equal to 4

3 (see Fig. 1.30).
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Fig. 1.31

Proof We know that this area is given by the integral

∫ +1

−1
1 − x2 dx =

[
x − x3

3

]+1

−1
=
(

1 − 1

3

)
−
(

−1 + 1

3

)
= 4

3
. �

Don’t forget that the parabola is a section of a circular cone by a plane. Greek
geometers were able to “square” the parabola, but not the circle which for them was
thus a priori a “more elementary” curve. A rather intriguing situation! Today we
know the easy explanation for this phenomenon: the parabola admits an equation of
the form y = p(x) with p(x) a polynomial: the integration yields another polyno-
mial

∫
p(x)dx, that is a formula in terms of the four arithmetical operations, and the

four arithmetical operations (as well as the square root) can be performed by ruler
and compass constructions. On the other hand, viewing the upper half of a circle of
radius R as the graph of the function y = √

R2 − x2, the area of the circle is given
by

2
∫ +R

−R

√
R2 − x2 dx

and such an integral involves inverse trigonometric functions!
Again it was during the 17th century that several mathematicians were able to

compute—using precursors of differential methods—areas delimited by various
curves. A celebrated achievement of this type, before the invention of differential
calculus by Newton and Leibniz, is the squaring of the cycloid by Roberval, in 1634.
Roberval’s subtle computation of the integral, before the discovery of that notion, is
described below.

Proposition 1.12.2 The area of an arch of a cycloid, with generating circle of
radius R, is equal to 3πR2.

Proof We shall follow the argument in modern terms (see Fig. 1.31). We know
already that a parametric representation of the cycloid is given by (see Proposi-
tion 1.9.2)

f (t) = R(t − sin t,1 − cos t).

An arch of the cycloid is obtained when t varies from 0 to 2π .
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Let us write g(t) for the orthogonal projection of the point f (t) on the instanta-
neous vertical radius of the rolling circle. Thus

g(t) = R(t,1 − cos t).

The function g represents the so-called Roberval curve. It is immediate that this
curve g, for t varying from 0 to π , is symmetric with respect to its middle point
g(π

2 ): that is

g(π
2 + t) − g(π

2 − t)

2
= g

(
π

2

)
.

Therefore the area under this curve g, between 0 and π , is equal to half the area
of the corresponding rectangle; that is, 1

2 (πR)(2R) = πR2. It follows that the area
under the Roberval curve, between the points with parameters t = 0 and t = 2π , is
equal to 2πR2.

It remains to compute the area between the Roberval curve and the cycloid.
Roberval simply observes that the segment joining f (t) and g(t) is equal to half
the corresponding chord of the circle. “Pushing” all the segments f (t)g(t) to the
left, in order to align their right extremities g(t) vertically, for t varying from 0 to
π , Roberval concludes that these segments fill the left half of the generating circle.
This half circle has area 1

2R2. Thus as t varies from 0 to 2π , the area between the
Roberval curve and the cycloid is equal to R2.

Putting all of this together, an arch of the cycloid has an area equal to 3πR2. �

This proof is very interesting for two reasons. First—choosing the radius R as
unit length—the Roberval curve is simply the curve

y = 1 − cosx.

Up to a translation, the Roberval curve is thus the graph of a cosine (or sine) func-
tion. It seems that this is the first time that the graph of the sine function appears
in the mathematical treatment of a problem. The way the corresponding integral is
computed is particularly imaginative.

Second, the “pushing” argument of Roberval may appear rather strange to us. Let
us nevertheless observe that writing the equations of the first halves of the cycloid
and the Roberval curve in the form

x = c(y), x = r(y), 0 ≤ x ≤ Rπ, 0 ≤ y ≤ 2R

this “pushing” argument corresponds precisely to the modern formula
∫

(c − r) =
∫

c −
∫

r.

To conclude this short section, let us recall a celebrated result of integral calculus:
the so-called Green–Riemann formula.
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Theorem 1.12.3 (Green–Riemann) Let K ⊆ R
2 be a compact subset whose bound-

ary is constituted of finitely many curves of class C1. Moreover assume that the
boundary of K is oriented in such a way that K is always on the left of its boundary.
Given a differential form P(x, y)dx + Q(x,y)dy of class C1 defined on an open
subset containing K , one has

∫

∂K

(
P(x, y)dx + Q(x,y)dy

)=
∫

K

(
∂Q

∂x
(x, y) − ∂P

∂y
(x, y)

)
dx dy.

Corollary 1.12.4 The area delimited by a closed plane curve C, the boundary of a
compact subset K ⊆ R

2 as in the Green–Riemann theorem, is equal to either of the
following equal quantities

∣
∣∣∣

∫

C
x dy

∣
∣∣∣,

∣
∣∣∣

∫

C
y dx

∣
∣∣∣.

Proof The area is simply the integral
∫ ∫

K

dx dy

of the constant function 1 on K . Putting P = 0 and Q = x in the Green–Riemann
formula yields the first formula of the statement; putting P = y and Q = 0 yields
the second formula. �

Example 1.12.5 The area delimited by an ellipse of half axis a and b is equal to
πab.

Proof A parametric representation of the ellipse E is given by

f (θ) = (a cos θ, b sin θ).

By Corollary 1.12.4, the corresponding area is thus

∣∣∣∣

∫

E
a cos θ d(b sin θ)

∣∣∣∣=
∣∣∣∣

∫ 2π

0
a cos θ b cos θ dθ

∣∣∣∣

=
∣
∣∣∣ab

∫ 2π

0
cos2 θ dθ

∣
∣∣∣

=
∣∣∣∣ab

[
θ

2
+ sin 2θ

4

]2π

0

∣∣∣∣

= abπ.

When a = R = b, we recapture the usual formula πR2 for the area of a circle of
radius R. �
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Fig. 1.32

1.13 Skew Curves

Let us now switch to the case of skew curves, or space curves, that is: curves in the
three dimensional space R

3.
The systematic study of skew curves was initiated in 1731 by the French math-

ematician Clairaut. His idea is to present a skew curve as the intersection of two
surfaces, just as a line can be presented as the intersection of two planes. A skew
curve is thus described by a system of two equations

{
F(x, y, z) = 0
G(x,y, z) = 0.

The tangent line to the skew curve at a given point is then obtained as the intersection
of the tangent planes to the surfaces

F(x, y, z) = 0, G(x, y, z) = 0

at this same point. As you might suspect, the technicalities inherent to such an ap-
proach are quite heavy.

Let us for example focus on the question of the curvature. In the plane, a curve
with constant curvature is a circle. However, in three dimensional space, there are
many more curves with constant curvature. The easiest example is that of the cir-
cular helix (see Fig. 1.32): the curve having the shape of a screw. Of course this
curve must be “identical” at all points: this is why you can screw a bolt through a
nut! In particular, the curvature must be the same at all points. There are many more
examples of curves with constant curvature, as we shall see later.

The study of the curvature of a skew curve was initiated by the French mathe-
matician Monge in 1771, thus still before the introduction of parametric equations.
In three dimensional space, the normal to the curve now becomes a normal plane to
the curve: the plane perpendicular to the tangent at a given point. Therefore Monge
makes the following definitions:
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• The axis of curvature at a point P of the skew curve is the limit of the
intersection of the normal plane at P and the normal plane at a point Q of
the curve, as Q converges to P .

• The radius of curvature at P is the distance between P and the axis of
curvature at P .

The fact of having an axis of curvature instead of a center of curvature explains in
particular why curves with the same curvature can have very different shapes. The
orientation of the axis of curvature is generally not constant and its variations in
direction affect in an essential way the shape of the curve.

It remains an excellent exercise of technical virtuosity to compute the axis of
curvature, starting from a system of Cartesian equations as in the time of Clairaut
and Monge.

The ideas of Monge were clarified and developed in 1805 by his student Lancret,
who introduced what we call today the osculating plane and the torsion, in order
to study the variations in direction of the axis of curvature. The osculating plane is
in a sense the tangent plane to the curve: the plane in which the curve tends to fit
locally. Provided the following can be made precise, the idea is this:

The osculating plane at a fixed point P of a skew curve is the limit of the
planes through P , Q, R, when Q and R are two other points of the curve
converging to P .

Lancret observed that the axis of curvature is perpendicular to the osculating plane.
Following the comments of the previous sections, we need not re-emphasize the

fact that the definitions of Monge and Lancret, however intuitive, raise endless dif-
ficulties! Again, this is not the point here: in the “good cases” these definitions
should recapture what we have in mind. What remains to be done is to work out
these unpolished ideas to end up with a rigorous alternative presentation in decent
differential terms!

Let us recall, as already mentioned in Sect. 1.2, that Euler introduced in 1775
his idea of separating the variables. This allows us to define a skew curve via three
parametric equations

⎧
⎨

⎩

x = f1(t)

y = f2(t)

z = f3(t)

that is, finally, via a parametric representation

f : R −→R
3, t �→ f (t) = (

f1(t), f2(t), f3(t)
)
.

This approach, together with the full strength differential calculus introduced a cen-
tury earlier by Newton and Leibniz, allows us to transpose to skew curves most of
the considerations developed in the previous sections. We do this immediately.

• A parametric representation of a skew curve is a locally injective continuous
function

f : ]a, b[ −→ R
3.
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• The parametric representation is regular when it is of class C1 and f ′(t) �= 0 at
each point.

• In the regular case, the tangent to the curve at the point with parameter t is the
line through f (t) and of direction f ′(t).

• The normal plane to the curve at a point is the plane perpendicular to the tangent
at this point.

• When f is injective of class C1, the length of the arc of the curve between the
points with parameters c < d is the integral of the constant function 1 along this
arc; it is also equal to

∫ d

c
‖f ′‖.

• The parametric representation f is normal when the parameter is the length trav-
eled on the curve from an arbitrary origin.

• Given a normal representation of class C2, ‖f ′‖ = 1 and f ′ is orthogonal to f ′′.
• Given a normal representation of class C2, the curvature is the quantity ‖f ′′‖.

Let us follow Lancret’s idea and investigate first the case of the osculating plane.

Proposition 1.13.1 Let f (t) be a parametric representation of a skew curve. “Un-
der suitable assumptions”, the osculating plane at a point f (t) is the plane through
f (t) whose direction is determined by the vectors f ′(t) and f ′′(t).

Proof Of course for this statement to make sense, f should be at least of class C2,
with f ′(t) and f ′′(t) linearly independent, in order to determine a plane. But our
point here is not to exhibit all the “suitable” assumptions.

We thus fix a point P = f (t0) and consider two variable points Q = f (t1), R =
f (t2) on the curve. We are interested in the plane

• containing the point f (t0);
• whose direction contains the vectors f (t1) − f (t0) and f (t2) − f (t0).

We now have to let t1 and t2 converge to t0. With the considerations of Sect. 1.6 on
the tangent in mind, we might be tempted to divide the two vectors f (ti)−f (t0) by
ti − t0 and let ti converge to t . But of course this cannot possibly work since in both
cases, the limit would be the same vector f ′(t0). One vector no longer determines
a plane! So let us handle separately the points Q and R. We consider first that the
direction of the plane is equivalently given by

f (t1) − f (t0)

t1 − t0
, f (t2) − f (t0)

and we let t1 tend to t0. This yields a plane whose direction contains the vectors

f ′(t0), f (t2) − f (t0).

Using a Taylor expansion we write

f (t2) = f (t0) + (t2 − t0)f
′(t0) + 1

2
(t2 − t0)

2f ′′(t0) +O(t2 − t0)
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where

lim
x→0

O(x)

x2
= 0.

This allows us to further characterize the direction of the plane by the vectors

f ′(t0), (t2 − t0)f
′(t0) + 1

2
(t2t0)

2f ′′(t0) +O(t2 − t0).

Working on linear combinations of these two vectors, the direction is also deter-
mined by the vectors

f ′(t0), f ′′(t0) + 2
O(t2 − t0)

t2 − t0
.

Letting t2 tend to t1, we get

f ′(t0), f ′′(t0). �

Next, let us make the link with the ideas of Monge.

Proposition 1.13.2 “Under suitable assumptions”, the axis of curvature is per-
pendicular to the osculating plane and the radius of curvature is the inverse of the
curvature.

Proof Let us work with a parametric representation

f : ]a, b] −→ R
3, t �→ f (t) = (

f1(t), f2(t), f3(t)
)

and let us assume that Proposition 1.13.1 applies: in particular f ′(t) and f ′′(t) are
linearly independent at each point. We study the curvature at f (t0) and there is no
loss of generality in choosing a rectangular system of coordinates with origin f (t0)

and such that f ′(t0) is oriented along the third axis. Thus

f (t0) = (0,0,0), f ′(t0) = (
0,0, f ′

3(t0)
)
.

The normal plane at f (t0) is thus the plane with equation z = 0.
The normal plane at f (t) admits the equation

f ′
1(t)

(
x − f1(t)

)+ f ′
2(t)

(
y − f2(t)

)+ f ′
3(t)

(
z − f3(t)

)= 0.

Its intersection with the plane z = 0 is thus the line with equation

f ′
1(t)

(
x − f1(t)

)+ f ′
2(t)

(
y − f2(t)

)= f ′
3(t)f3(t)

in the (x, y)-plane. Keeping in mind the very special form of the coordinates of
f (t0) and f ′(t0), and dividing by t − t0, this equation can equivalently be re-written
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as

f ′
1(t) − f ′

1(t0)

t − t0

(
x − f1(t)

)+ f ′
2(t) − f ′

2(t0)

t − t0

(
y − f2(t)

)= f ′
3(t)

f3(t) − f3(t0)

t − t0
.

Passing to the limit when t converges to t0 yields

f ′′
1 (t0)x + f ′′

2 (t0)y = (
f ′

3(t0)
)2

.

Assume now that f is a normal representation. Then ‖f ′‖ = 1, thus f ′
3(t0) = 1.

Moreover f ′′ is perpendicular to f ′:

f ′
1f

′′
1 + f ′

2f
′′
2 + f ′

3f
′′
3 = 0

thus, f ′′
3 (t0) = 0. The system of equations of the axis of curvature can thus be written

as
{
f ′′

1 (t0)x + f ′′
2 (t0)y + f ′′

3 (t0)z = 1
z = 0.

The first plane is orthogonal to f ′′(t0) and the second one is orthogonal to f ′(t0),
thus their intersection—the axis of curvature—is perpendicular to these two vectors,
which by Proposition 1.13.1 span the osculating plane.

The radius of curvature is the distance, in the (x, y)-plane, between the origin
and the line with equation

f ′′
1 (t0)x + f ′′

2 (t0)y = 1.

This distance is simply

√(
f ′′

1 (t0)
)2 + (

f ′′
2 (t0)

)2 =
√(

f ′′
1 (t0)

)2(
f ′′

2 (t0)
)2(

f ′′
3 (t0)

)2 = ∥∥f ′′(t0)
∥∥. �

Let us conclude with the definition of the torsion of the curve which measures
the variation of the osculating plane, that is, the variation of the axis of curvature.
The symbol × indicates the cross product (see Sect. 1.7 in of [4], Trilogy II).

Definition 1.13.3 The torsion of a skew curve is the variation of its osculating
plane. More precisely, given a normal representation f (s) of the curve, it is the
quantity ‖n′(s)‖ where

n(s) = f ′(s) × f ′′(s)
‖f ′(s) × f ′′(s)‖

is the vector of length 1 perpendicular to the osculating plane at f (s).

Subsequent work of the French mathematicians Cauchy, Frenet, Serret and Dar-
boux (among others) then established the modern bases of the theory of skew curves,
studied in our Chap. 4.
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1.14 Problems

1.14.1 Show that the “non-curve” of Example 1.1.1 can also be obtained via a func-
tion F(x, y) of class C1.

1.14.2 Show that the curve with equation

y2(1 − x) = x2(1 + x)

has the shape of the curve in Fig. 1.7. Find a corresponding parametric representa-
tion.

1.14.3 It is possible to modify Example 1.2.1 so that the continuous functions fn

are all injective, and still converge uniformly to a function which is surjective from
the “unit interval” to the “unit square”, but the limit function is nevertheless not
locally injective. Can you imagine such an example?

1.14.4 When n = 1, the Local inverse theorem (see 1.3.1) reduces to the simple fact
that a function g : R −→ R of class C1 whose derivative is non-zero at a point is
monotone, and thus bijective, in a neighborhood of this point.

1.14.5 An irreducible polynomial F(X,Y ) yields a curve F(x, y) = 0 in the sense
of Definition 1.4.2 as soon as this “curve” is not empty.

1.14.6 Determine the tangent to a cycloid using the method of “composition of
movements”.

1.14.7 Prove Proposition 1.7.3 using the differential definitions of a tangent and a
length.

1.14.8 Calculate the length of an arc of the cubic parabola, the curve with equation
y2 = x3.

1.14.9 In Propositions 1.8.1 and 1.13.1, what about the case where f is of class C∞
but the Taylor expansion of f does not converge to f on a neighborhood of t0?

1.14.10 Prove Apollonius’ result attesting that every normal to the parabola y2 =
2px is tangent to the semi-cubic parabola 27py2 = 8(x − p)3.

1.14.11 Using the differential techniques, prove that the evolute of a cycloid is an-
other cycloid of the same size.

1.14.12 Is there a normal parametric representation of the circle of radius R?

1.14.13 Prove that when a curve admits a regular parametric representation, all its
normal representations are regular.
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1.14.14 Calculate the area of an arch of a cycloid using the Green–Riemann for-
mula.

1.14.15 Find a system of two Cartesian equations describing the circular helix.

1.14.16 Calculate the axis of curvature of the circular helix.

1.14.17 Prove that the circular helix has constant curvature and constant torsion.

1.14.18 Consider a logarithmic helix with parametric representation

f (θ) = (
eθ cos θ, eθ sin θ,α(θ)

)
.

Determine the differential equation that α must satisfy in order for this spiral to have
a constant curvature.

1.14.19 Given two functions of class C1

f,g : ]a, b[ −→ R
3

and their cross product

f × g : ]a, b[ −→ R
3

(see Sect. 1.7, Vol. 2), prove that f × g is still of class C1 and

(f × g)′ = (
f ′ × g

)+ (
f × g′).

1.15 Exercises

1.15.1 Find a polynomial equation F(x, y) = 0 whose set of solutions comprises n

points (ai, bi), i = 1, . . . , n.

1.15.2 Find an equation F(x, y) = 0, with F a continuous function, whose set of
solutions is the full circle of radius 1 centered at the origin.

1.15.3 Find an open subset U of the real line and an injective function of class C∞,

f : U −→R
2

whose image is the hyperbola with equation

x2 − y2 = 1.

1.15.4 Give a parametric representation of the curve in Fig. 1.9.
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1.15.5 Consider the curve represented by

f : R −→R
2, θ �→ (coskθ cos θ, coskθ sin θ), k ∈ R.

Draw a picture of this curve for k = 0, k = 1, k = 2 and k = 3. Find the correspond-
ing Cartesian equations. Are there multiple points? Can you guess what the shape
of the curve becomes in the case of an irrational parameter k?

1.15.6 Find the two tangents to the ellipse of equation x2 + 2y2 = 1, passing
through the point (3,3). Determine the position of the two foci and observe the
bisector property mentioned in Proposition 1.5.6.2.

1.15.7 Find the two tangents to the hyperbola with equation x2 − 2y2 = 3, passing
through the point (1,2). Determine the position of the two foci and observe the
bisector property mentioned in Proposition 1.5.6.1.

1.15.8 Find the two tangents to the parabola with equation y = 3x2 + 2x − 1, pass-
ing through the point (−2,−3). Determine the position of the focus and that of the
directrix and observe the bisector property mentioned in Proposition 1.5.6.3.

1.15.9 In R
2, consider an ellipse, a hyperbola or a parabola with equation p(x, y) =

0, with p a polynomial of degree 2. Consider further the two subsets

Q− = {
(x, y)

∣∣p(x, y) < 0
}
, Q+ = {

(x, y)
∣∣p(x, y) > 0

}
.

Show that through a point in one of these subsets, there are always two distinct
tangents (or asymptotes) to the conic, while through a point in the other subset,
there is no tangent at all.

1.15.10 Consider the cycloidal pendulum as in Fig. 1.26. Find a parametric equation
of the trajectory of the pendulum when the two arches of the cycloid are substituted
by quarters of circles.

1.15.11 In a coordinate system of your choice, find a parametric representation of
the skew curve obtained as the intersection of a sphere and a cone “in arbitrary
positions”.



Chapter 2
Plane Curves

Inspired by the intuitive and historical considerations of Chap. 1, we now begin
our systematic study of differential geometry with the case of curves in the real
plane R

2.
After setting precise definitions, both in terms of parametric and Cartesian equa-

tions, we begin with the study of the tangent. We pay special attention to the case
of envelopes: those curves which are tangent to a continuous family of curves. This
notion has numerous applications: we treat some of them as examples.

Next we switch to the main characteristic of a curve: its curvature. For that we
first need to be able to compute the length of an arc of a curve: the curvature is then
the variation in direction of the tangent, the variation with respect to the distance
traveled on the curve. This allows us to recapture notions such as the radius of
curvature or the center of curvature. The locus of the centers of curvature, called
the evolute of the curve, has then rather striking properties. Huygens used these
properties to construct his cycloidal pendulum (see Sect. 1.9).

We complete the chapter with some other interesting properties of the curvature.
First, knowledge of the curvature allows us to reconstruct the curve, up to its position
in the plane. Second, in the case of a closed curve, integrating the curvature along
one loop of the curve allows us to compute the number of times that the curve has
been “rolled up”. But above all, we provide a proof of the famous Hopf theorem
on simple closed curves and pay special attention to the case of convex curves, in
particular to the four vertices theorem.

2.1 Parametric Representations

With the considerations of Sect. 1.2 in mind, we first define:

Definition 2.1.1 A function

f : U −→ R
m, U ⊆ R

n
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Fig. 2.1

is locally injective when every point x ∈ U possesses a neighborhood on which f is
injective.

The basic definition of the theory of plane curves is then:

Definition 2.1.2 By a parametric representation of class Ck , k ∈ N ∪ {∞}, of a
plane curve is meant a mapping

f : ]a, b[ −→R
2, a, b ∈ R∪ {−∞,+∞}

which is locally injective and of class Ck . The set

{
f (t)

∣
∣t ∈ ]a, b[}

is called the support of the curve represented by f .

In this definition, we have taken the notion of an open interval in its more general
sense. This allows us to view the full real line, as well as open half lines, as open
intervals. This useful convention allows maximal flexibility in examples.

The reader should be aware that in Definition 2.1.2, we have defined expressions
such as parametric representation of a plane curve or support of the curve repre-
sented by f but we have not (yet) defined what a curve is.

Obviously, a parametric representation of class Ck is also a parametric represen-
tation of class Ck′

, for every k′ ≤ k.

Example 2.1.3 The graph of every continuous function g : ]a, b[ −→ R is the sup-
port of a parametric representation

f : ]a, b[ −→ R
2, x �→ (

x,g(x)
)

of a plane curve. When g is of class Ck , so is f (see Fig. 2.1).

Proof The function f is locally injective because its first component is injective.
When g is of class Ck then so is f , because the first component of f is of class
C∞. �

Of course there are many more parametric representations than those given by
the graph of a function!
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Fig. 2.2

Example 2.1.4 The function

f : R −→ R
2, θ �→ (a cos θ, b sin θ), a, b > 0

is a parametric representation of class C∞ of a curve whose support is an ellipse of
radii a and b. (See Fig. 2.2.)

Proof Since the functions cos θ and sin θ are of class C∞, then so is f . On the other
hand

(a cos θ, b sin θ) = (
a cos θ ′, b sin θ ′) =⇒ (cos θ, sin θ) = (

cos θ ′, sin θ ′)

=⇒ θ ′ = θ + 2kπ, k ∈ N.

Thus f is injective on each interval of length strictly less than 2π . We therefore
have a parametric representation of class C∞.

It is immediate that each point

(x, y) = (a cos θ, b sin θ)

satisfies the equation

x2

a2
+ y2

b2
= 1

which is that of an ellipse of radii a and b (see Sect. 1.14 in of [4], Trilogy II).
Conversely every point (x, y) of this ellipse is such that

(
x

a

)2

+
(

y

b

)2

= 1

thus
x

a
= cos θ,

y

b
= sin θ

for a unique θ ∈ [0,2π[. Therefore the support of f is comprised precisely of the
points of the ellipse. �
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Fig. 2.3

Counterexample 2.1.5 The mapping of class C∞

f : R �→ R
2, t �→ (

t2, t2)

is not a parametric representation of a plane curve, while the other mapping of class
C∞

g : R �→R
2, t �→ (

t3, t3)

is a parametric representation of the first diagonal.

Proof One always has f (t) = f (−t), thus f is not locally injective in a neighbor-
hood of 0. Notice that the “support” of f (i.e. its image) is one half of the first
diagonal (compare with the example in Fig. 1.11).

On the other hand h(t) = t3 is an injective function, thus g is a parametric repre-
sentation of the first diagonal. �

Let us now proceed to the definition of a curve.

Definition 2.1.6 Two parametric representations of class Ck

f : ]a, b[ −→R
2, t �→ f (t); g : ]c, d[ −→ R

2, s �→ g(s)

are equivalent in class Ck when there exist inverse bijections of class Ck

ϕ : ]a, b[ −→ ]c, d[, ϕ−1 : ]c, d[ −→ ]a, b[
such that (see Fig. 2.3)

g ◦ ϕ = f, f ◦ ϕ−1 = g.

Of course in this definition, the equality f ◦ϕ−1 = g is redundant since it follows
at once from g◦ϕ = f and the bijectivity of ϕ. But ϕ−1 being of class Ck is certainly
not a redundant condition, as Counterexample 2.1.11 shows.

Definition 2.1.6 thus tells us that the two parametric representations f and g are
equivalent when you can switch in both ways from one to the other by a simple
change of parameter

s = ϕ(t), t = ϕ−1(s)

respecting the class of differentiability. Trivially:
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Fig. 2.4

Proposition 2.1.7 Being equivalent in class Ck is an equivalence relation on the
parametric representations of class Ck of plane curves.

We can now define a curve:

Definition 2.1.8 By a plane curve of class Ck is meant an equivalence class of
parametric representations of class Ck of plane curves, for the equivalence relation
of Proposition 2.1.7.

We observe at once that:

Proposition 2.1.9 Two equivalent parametric representations, whatever the class
of differentiability, always have the same support, which therefore is called the sup-
port of the corresponding curve.

Proof With the notation of Definition 2.1.6, the support of f is contained in that of
g because f (t) = g(ϕ(t)). Analogously the support of g is contained in that of f

because g(s) = f (ϕ−1(s)). �

It is very important to note that different curves, in the sense of Definition 2.1.8,
can very well have the same support.

Counterexample 2.1.10 Consider the two functions

f : ]0,2π[ −→ R
2, f (θ) =

{
(cos 2θ − 1, sin 2θ) if θ ≤ π

(1 − cos 2θ, sin 2θ) if θ > π

g : ]0,2π[−→ R
2, g(τ ) =

{
(cos 2τ − 1, sin 2τ) if τ ≤ π

(1 − cos 2τ,− sin 2τ) if τ > π.

The functions f and g are parametric representations, respectively of class C1 and
C0, of two plane curves having the same support. These two curves are different,
even as curves of class C0. (See Fig. 2.4.)

Proof When θ runs from 0 to π , f (θ) travels counter-clockwise around the left
hand circle, starting from the origin (or “just after it” since we are working on an
open interval). When θ varies from π to 2π , f (θ) travels clockwise around the right
hand circle. In particular, f is injective; it is also of class C1, with f ′(π) = (0,1).



60 2 Plane Curves

Fig. 2.5

When τ runs from 0 to π , g(τ) travels counter-clockwise around the left hand
circle, starting again from the origin. But when τ varies from π to 2π , g(τ) now
travels counter-clockwise around the right hand circle. In particular, g is injective
and continuous.

The change of parameter interchanging f and g is thus

τ = ϕ(θ) =
{
θ if θ ≤ π

−θ if θ > π.

This is definitely not a continuous function (see Fig. 2.5). �

Let us think of a parametric representation f as describing the trajectory of the
point f (t) when the parameter t varies. Then Counterexample 2.1.10 becomes in-
tuitively clear: f and g describe two different trajectories, even if these trajectories
eventually pass through the same points, but in a different order.

The following counterexample is more subtle.

Counterexample 2.1.11 The following two functions

f : R −→ R
2, t �→ (t,0)

g : R −→ R
2, s �→ (

s3,0
)

are two parametric representations of class C∞ of the x-axis. They are equivalent in
class C0, but not in class Ck , for every k �= 0.

Proof The change of parameter formulas are simply

ϕ(t) = 3
√

t, ϕ−1(s) = s3.

These two bijections are continuous, with ϕ−1 of class C∞, but ϕ is not differen-
tiable for t = 0. �
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2.2 Regular Representations

Of course in order to obtain relevant results, the parametric representations involved
should have sufficiently good properties. Being of class C1 appears as a first sensible
assumption, but we shall often need more.

Definition 2.2.1 Consider a parametric representation f : ]a, b[ −→ R
2 of class

C1 of a plane curve.

• The point with parameter t ∈ ]a, b[ is regular when f ′(t) �= 0.
• The representation itself is regular when f ′(t) �= 0 for all t ∈ ]a, b[.
• The point with parameter t ∈ ]a, b[ is singular when f ′(t) = 0.

Being regular is in fact a property of the corresponding curve of class C1, as our
next result proves.

Proposition 2.2.2 With the notation of Definition 2.1.6, consider two parametric
representations f , g of class C1, equivalent in class C1.

• The point with parameter t ∈ ]a, b[ is regular for f if and only if the point with
parameter ϕ(t) is regular for g.

• The parametric representation f is regular if and only if the parametric repre-
sentation g is regular.

Proof From f = g ◦ ϕ we deduce

f ′(t) = g′(ϕ(t)
) · ϕ′(t).

If f ′(t) �= 0, necessarily g′(ϕ(t)) �= 0. �

It should be clear that for a parametric representation, being regular is definitely
stronger than being of class C1.

Counterexample 2.2.3 The following function

f : R −→R
2, x �→ (

x3,
∣∣x3

∣∣)

is a non-regular parametric representation of class C2 of a plane curve, whose sup-
port is the graph of the function y = |x|, which is only of class C0 (see Fig. 2.6).

Proof Consider the functions

g−(x) = −x3, g+(x) = x3

whose successive derivatives are

g′−(x) = −3x2, g′+(x) = 3x2, g′′−(x) = −6x, g′′+(x) = 6x.
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Fig. 2.6

The functions g− and g+ have the same first and second derivatives for x = 0,
proving that the function h(x) = |x3| is of class C2. Thus f is of class C2; it is
also injective since the function k(x) = x3 is injective. The corresponding support
is trivially comprised of the points (u, |u|), that is, of the graph of the function
y = |x|.

Observe further that the function y = |x| is not differentiable at x = 0, thus the
parametric representation

x′ �→ (
x′,

∣∣x′∣∣)

of its graph (see Example 2.1.3) is only of class C0. This parametric representation
is equivalent to f in class C0 via the change of parameter

x′ = x3, x = 3
√

x′

which, as already observed in Counterexample 2.1.11, is only of class C0. �

Let us conclude this section by observing that the “regularity condition” imme-
diately implies “local injectivity”.

Lemma 2.2.4 Consider a function of class C1

f : ]a, b[ −→ R
n

such that f ′(t) �= 0 for each t ∈]a, b[. Then f is locally injective.

Proof Fix a value t0 ∈]a, b[. At least one of the components of f ′ is non-zero at
this point: let us say, f ′

1(t0) > 0. By continuity, f ′
1(t) > 0 on some neighborhood

]t0 − δ, t0 + δ[ of t0. On this neighborhood of t0, f must be injective. Otherwise one
would have t1 < t2 in this interval such that f (t1) = f (t2). The mean value theorem
(see an analysis course) applied to f1 would then imply the existence of t1 < t3 < t2
such that

0 = f1(t2) − f1(t1)

t2 − t1
= f ′

1(t3).

Since t3 ∈ ]t0 − δ, t0 + δ[, this contradicts f ′
1(t3) �= 0. �

This lemma immediately implies:
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Proposition 2.2.5 For a function

f : ]a, b[ −→ R
2, t �→ f (t)

the following conditions are equivalent:

1. f is a regular parametric representation of a plane curve;
2. f is of class C1 and f ′(t) �= 0 for all t ∈ ]a, b[.

2.3 The Cartesian Equation of a Curve

Following the considerations of Sects. 1.3 and 1.4, we now investigate those equa-
tions of the form

F(x, y) = 0

whose set of solutions is—at least locally—the support of some curve, in the sense
of Sect. 2.1. We first rephrase our Definition 1.4.2.

Definition 2.3.1 By a Cartesian equation of a Cartesian plane curve we mean an
equation

F(x, y) = 0

where:

• F : R2 −→R is a function of class C1;
• the equation admits infinitely many solutions;
• there are at most finitely many solutions (x, y) of the equation where both partial

derivatives of F vanish.

The corresponding Cartesian curve is the set of those points (x, y) which are solu-
tions of the equation F(x, y) = 0.

We define further (see Definition 1.4.3).

Definition 2.3.2 Consider a Cartesian equation F(x, y) = 0 of a Cartesian plane
curve.

• A point of the Cartesian curve is multiple when both partial derivatives of F

vanish at this point.
• A point of the Cartesian curve is simple when at least one partial derivative of F

does not vanish at this point.

Example 2.3.3 The Cartesian curve with Cartesian equation

y2(1 − x) = x2(1 + x)

—the so-called right strophoid (see Fig. 2.7)—admits the origin as a multiple point.
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Fig. 2.7

Proof The two partial derivatives of the function

F(x, y) = y2(1 − x) − x2(1 + x)

are

∂F

∂x
= −y2 − x(2 + 3x),

∂F

∂y
= 2y(1 − x).

Both vanish at (0,0), which is thus a multiple point.
This is in fact the only multiple point. Indeed ∂F

∂y
vanishes when y = 0 or x = 1.

• If y = 0, ∂F
∂x

vanishes for x = 0 or x = − 2
3 , but this last point is not a point of the

curve.
• If x = 1, ∂F

∂x
is strictly negative, whatever the value of y.

Thus F(x, y) = 0 is indeed the Cartesian equation of a Cartesian curve. �

It should be clear that “being a multiple point” is a property of the Cartesian
equation F(x, y) = 0, not of the corresponding Cartesian curve. In particular, for
an arbitrary Cartesian equation F(x, y) = 0, being a multiple point is certainly not
equivalent to the intuitive idea of “a curve passing through this point several times”.
For example, y2 = 0 is a Cartesian equation of the x-axis admitting the origin as a
multiple point. A more precise study of these questions, in the projective complex
case, with F an irreducible polynomial, can be found in Sect. 7.4 of [4], Trilogy II.

We now “repeat” our Propositions 1.3.3 and 1.3.6.

Proposition 2.3.4 Consider a plane curve of class C1. In a neighborhood of each
regular point, the support of the curve can be described by a Cartesian equation.

Proof Consider a parametric representation f : I −→ R
2 of class C1 of the curve

and a regular point of parameter t0 ∈ I . We then have (see Definition 2.2.1)

f ′(t0) = (
f ′

1(t0), f
′
2(t0)

) �= (0,0);
we consider the case f ′

2(t0) �= 0.
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By the Local Inverse Theorem (see Theorem 1.3.1), f ′
2 is invertible on some

neighborhood of t0, with an inverse still of class C1. For t in this neighborhood, we
can thus write t = f −1

2 (y) and consequently, x = f1(f
−1
2 (y)). Putting

F(x, y) = x − f1
(
f −1

2 (y)
)

we conclude that on the given neighborhood of t0, the points of the curve are solu-
tions of the equation F(x, y) = 0.

Notice that since f1 and f −1
2 are of class C1 then so is F . On the other hand

∂f
∂x

= 1 �= 0 at all points where the argument above applies. �

Proposition 2.3.5 Let F(x, y) = 0 be a Cartesian equation of a Cartesian plane
curve. On a neighborhood of a simple point (x0, y0) of this curve, the Cartesian
curve is the support of a regular curve.

Proof At (x0, y0), one of the partial derivatives of F does not vanish (see Defini-
tion 2.3.2); we consider the case ∂F

∂y
�= 0. By the Implicit Function Theorem (see

Theorem 1.3.5), there exist a neighborhood ]a, b[ of x0 and a mapping

ϕ : ]a, b[ −→R

of class C1, such that

ϕ(x0) = y0, ∀x ∈ ]a, b[ F
(
x,ϕ(x)

)= 0.

The graph of ϕ (see Example 2.1.3)

f : ]a, b[ −→R
2, x �→ (

x,ϕ(x)
)

is then a parametric representation of class C1 of a plane curve whose support
coincides with the Cartesian curve with equation F(x, y) = 0, in a neighborhood
of x0. �

It is certainly useful to underline the fact that the functions F in Proposition 2.3.4
and f in Proposition 2.3.5 are by no means unique. Let us demonstrate this with two
examples.

• In Example 2.1.4, we can of course choose

F(x, y) = x2

a2
+ y2

b2
− 1.

But in a neighborhood of the point (0, b) of the ellipse—in fact, on the entire
upper half of the ellipse—we have

y = b

√

1 − x2

a2
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and thus we could as well choose

F(x, y) = y − b

√

1 − x2

a2
.

• In Counterexample 2.1.10, the common support of the two curves is a Cartesian
curve whose Cartesian equation is the product of the Cartesian equations of the
two individual circles, that is,

(
(x + 1)2 + y2 − 1

)(
(x − 1)2 + y2 − 1

)= 0.

As we have seen, f and g are parametric representations of different curves hav-
ing precisely this support.

It is also useful to draw attention to the fact that Propositions 2.3.4 and 2.3.5 give
the false impression that regular point and simple point are closely related notions.
The following counterexamples throw more light on this question.

Counterexample 2.3.6 The right strophoid (see Example 2.3.3 and Fig. 2.7) can be
seen as a regular curve whose support admits a Cartesian equation with a multiple
point.

Proof The following function f is of class C∞.

f : R −→R
2, t �→

(
t2 − 1

t2 + 1
, t

t2 − 1

t2 + 1

)
.

It is also locally injective. Indeed the equality

(
t2
0 − 1

t2
0 + 1

, t0
t2
0 − 1

t2
0 + 1

)
=
(

t2
1 − 1

t2
1 + 1

, t1
t2
1 − 1

t2
1 + 1

)

forces t0 = t1 as soon as t2
0 − 1 �= 0, which forces further t2

1 − 1 �= 0. Thus f is
“almost injective”, that is, the only points identified by f are f (−1) = f (+1).
Thus f is locally injective and is a parametric representation of class C∞ of a plane
curve.

The derivative of f is given by

f ′(t) =
(

4t

(t2 + 1)2
,
t4 + 4t2 − 1

(t2 + 1)2

)
.

The first component vanishes only for t = 0, in which case the second component
equals −1. Thus f is also regular.

It is then routine to check that F(x, y) = 0 with

F(x, y) = y2(1 − x) − x2(1 + x)
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is a possible Cartesian equation. This is precisely the Cartesian equation of the right
strophoid of Example 2.3.3. �

Counterexample 2.3.6 can be interpreted intuitively as follows: the origin is a
regular point “on each branch of the curve passing through the origin”, but it is a
multiple point precisely because the curve passes through the origin twice.

Counterexample 2.3.7 There exist curves with singular points whose support ad-
mits a Cartesian equation with respect to which all points are simple.

Proof The parametric representation g of the x-axis as described in Counterexam-
ple 2.1.11 admits the origin as singular point, and of course y = 0 is a Cartesian
equation of the x-axis for which all points are simple. �

2.4 Tangents

With the considerations of Sect. 1.6, in mind, we first observe:

Lemma 2.4.1 Consider two parametric representations f , g of class C1 of a plane
curve, equivalent in class C1. With the notation of Proposition 2.2.2, at a regular
point of the corresponding curve, the two vectors f ′(t) and g′(ϕ(t)) are propor-
tional.

Proof This is precisely what the proof of Proposition 2.2.2 shows. �

Definition 2.4.2 Consider a parametric representation

f : ]a, b[ −→R
2

of class C1 of a plane curve.

• The tangent to the curve at a regular point with parameter t0 is the line passing
through f (t0) and of direction f ′(t0).

• The normal to the curve at a regular point is the perpendicular to the tangent
through this point.

Lemma 2.4.1 shows that Definition 2.4.2 is independent of the choice of the
parametric representation f .

Proposition 2.4.3 Consider a parametric representation

f : ]a, b[ −→R
2

of class C1 of a plane curve.
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• The tangent to the curve at a regular point of parameter t0 admits the Cartesian
equation

f ′
2(t0)

(
x − f1(t0)

)− f ′
1(t0)

(
y − f2(t0)

)= 0.

• The normal to the curve at a regular point of parameter t0 admits the Cartesian
equation

f ′
1(t0)

(
x − f1(t0)

)+ f ′
2(t0)

(
y − f2(t0)

)= 0.

Proof The line through (a, b) in the direction orthogonal to the vector (c, d) has the
equation

c(x − a) + d(y − b) = 0

(see Corollary 4.8.4 in [4], Trilogy II). �

Proposition 2.4.4 Consider a Cartesian equation F(x, y) = 0 of a Cartesian plane
curve. The tangent to that curve at a simple point (x0, y0) is the line with equation

∂F

∂x
(x0, y0)(x − x0) + ∂F

∂y
(x0, y0)(y − y0) = 0.

Proof Let us consider the case ∂F
∂y

(x0, y0) �= 0 and use the notation of Proposi-
tion 2.3.5. The curve admits the regular parametric representation f (x) = (x,ϕ(x))

on a neighborhood of x0. Thus the tangent is the line through (x0, y0) with direction
(1, ϕ′(x0)) (see Definition 2.4.2). We must determine the value of ϕ′(x0).

Differentiating the equality F(x,ϕ(x)) = 0 with respect to x yields

∂F

∂x
(x0, y0) · dx

dx
(x0) + ∂F

∂y
(x0, y0) · dϕ

dx
(x0) = 0

that is,

ϕ′(x0) = −
∂F
∂x

(x0, y0)

∂F
∂y

(x0, y0)
.

The parametric equations of the tangent are thus

x = x0 + α · 1

y = y0 − α

∂F
∂x

(x0, y0)

∂F
∂y

(x0, y0)
.

Introducing the value α = x − x0 into the second equation yields the formula of the
statement. �

Going back to the example of the right strophoid (Counterexample 2.3.6), work-
ing with the parametric representation f allows us to consider two tangents at the
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Fig. 2.8

origin: one for the value t = +1 and one for the value t = −1. But working with the
Cartesian equation, Proposition 2.4.4 does not allow the consideration of any tan-
gent at the origin. The question of multiple tangents at multiple points for algebraic
curves is treated algebraically in Sect. 7.4 of [4], Trilogy II.

Let us conclude by rephrasing a well-known theorem in analysis:

Proposition 2.4.5 Consider a regular parametric representation of a plane curve

f : ]a, b[ −→R
2.

In a neighborhood of each point t0 ∈ [a, b[, the line joining two points f (t1) and
f (t2) is parallel to the tangent at some point with parameter t3, with t1 < t3 < t2
(see Fig. 2.8).

Proof As observed in the proof of Proposition 2.3.4, assuming f ′
2(t0) �= 0, we can

locally describe the curve by an equation of the form y = g(x). The conclusion
follows at once from the mean value theorem for functions of a real variable. �

2.5 Asymptotes

The notion of an asymptote is better treated in the context of projective geometry,
where it reduces simply to a tangent at a point at infinity (see Chap. 6 in [4], Tril-
ogy II). Let us nevertheless give a short account of this notion in R

2, in the most
simple (and restricted) cases.

Definition 2.5.1 Consider a regular parametric representation

f : ]a,∞[ −→R
2, t �→ f (t)

of a plane curve. A line is an asymptote at +∞ of the corresponding curve when
this line admits a parametric representation of the form

g : ]−∞,∞[ −→ R
2, t �→ (αt + β,γ t + δ)
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such that when t tends to +∞

lim
t→∞

(
f (t) − g(t)

)= (0,0).

An analogous definition holds in the case ]−∞, b[.

Example 2.5.2 The asymptotes to the hyperbola.

Proof Let us consider a branch of the hyperbola with Cartesian equation xy = 1.
A parametric representation is simply

f : ]0,+∞[−→ R
2, x �→

(
x,

1

x

)
.

The x-axis admits the parametric representation

g : ]−∞,+∞[ −→ R
2, x �→ (x,0).

It is immediate that

lim
x→∞

(
f (x) − g(x)

)= lim
x→∞

(
0,

1

x

)
= (0,0).

Working instead with the parametric representation

h : ]0,+∞[ −→R
2, y �→

(
1

y
, y

)

allows us to present the y-axis as the second asymptote. �

Example 2.5.3 The right strophoid of Counterexample 2.3.6 admits the vertical
line of equation x = 1 as asymptote, both at +∞ and at −∞ (see Fig. 2.7).

Proof With the notation of Counterexample 2.3.6, simply consider the parametric
representation g(t) = (1, t) of the line x = 1. The result follows at once from the
fact that

lim
t→±∞

t2 − 1

t2 + 1
= 1. �

Our next example is more involved, but will play a significant role in surface
theory (see Example 5.16.7). Imagine a horse, starting from the origin and moving
up along the y-axis. The horse pulls a weight attached at the extremity of a rope of
length R and this weight was originally situated at the point (R,0) on the x-axis.
While the horse moves, the weight follows a trajectory to which the rope is tangent
at each instant. Such a trajectory is called a tractrix (see Fig. 2.9).
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Fig. 2.9

Example 2.5.4 A tractrix is a plane curve with the property that the length of
the segment of the tangent between the tangency point and the y-axis has constant
length R. The graph of the function

g : ]0,R[ −→R, g(x) =
∫ R

x

√
R2

t2
− 1dt

is a tractrix converging at x = R to the point (0,R) and admitting the y-axis as
asymptote.

Proof A function g(x) yielding a tractrix as in the statement corresponds to a para-
metric representation f (x) = (x, g(x)) (see Example 2.1.3). The tangent at the point
f (x) is given by (see Definition 2.4.2)

(
x,g(x)

)+ α
(
1, g′(x)

)
.

It intersects the y-axis when α = −x, that is at the point
(
0, g(x) − x g′(x)

)
.

The length of the corresponding tangent segment up to the y-axis is thus

R =
√

x2 + x2g′(x)2.

This can be re-written as

g′(x) = ±
√

R2

x2
− 1.

We shall choose the “minus” sign in order to recapture the situation described just
before the example (the “plus” sign would correspond to the horse moving down



72 2 Plane Curves

along the y-axis). The general solution of this differential equation can be written

g(x) =
∫ R

x

√
R2

t2
− 1dt + k

where k is a constant. Further imposing the initial condition g(R) = 0 forces k = 0.
Observe that for each x ∈ ]0,R[

g′(x) =
√

R2

x2
− 1 < 0.

Thus the function g, which is of class C∞ on ]0,R[, is strictly decreasing on this
interval. Therefore it is bijective and its inverse g−1 is still of class C∞. We obtain
an alternative parametric representation of the tractrix

h : ]0,∞[ −→ R
2, y �→ (

g−1(y), y
)
.

On the other hand the y-axis admits the parametric representation

k : ]0,∞[ −→ R
2, y �→ (0, y).

We thus have

lim
y→∞

(
k(y) − h(y)

)= lim
y→∞

(
g−1(y),0

)= lim
x→0

(x,0) = (0,0).

Therefore the y-axis is an asymptote (see Definition 2.5.1). �

2.6 Envelopes

The problem of envelopes is another rather tricky question, if one wants to treat it
in the most general and precise setting. We restrict ourselves to the proof of a rather
classical (but restricted) result, which—with a little bit of effort and imagination—
proves to be sufficient in most cases of interest.

Definition 2.6.1 Consider a function of class C1:

F : R×R× ]a, b[ −→ R, (x, y,α) �→ F(x, y,α).

Assume that for each value α0 ∈ ]a, b[, F(x, y,α0) = 0 is the Cartesian equation of
a Cartesian plane curve Cα . A regular plane curve C represented by

f : ]a, b[−→ R
2, α �→ f (α)

is an envelope of the family of curves (Cα)α when for each value α ∈ ]a, b[:
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1. f (α) is a simple point of the curve Cα ;
2. the curves C and Cα have the same tangent at this common point.

Let us only prove the following necessary condition, due to Leibniz, which con-
siderably facilitates the study of envelopes.

Proposition 2.6.2 Under the conditions of Definition 2.6.1, all the points of the
envelope satisfy the system of equations

{
F(x, y,α) = 0,

∂F
∂α

(x, y,α) = 0.

Proof The first equation expresses the fact that the point

(
f1(α), f2(α)

)

lies on the curve Cα with Cartesian equation F(x, y,α) = 0.
By Definition 2.4.2 and Proposition 2.4.4,

(
f ′

1(α), f ′
2(α)

)
and

(
∂F

∂x

(
f1(α), f2(α),α

)
,
∂F

∂y

(
f1(α), f2(α),α

))

are respectively the directions of the tangent to the curve C and the normal to the
curve Cα . By definition of an envelope, these two directions are perpendicular.

Differentiating with respect to α the equation

F
(
f1(α), f2(α),α

)= 0

yields

∂F

∂x

(
f1(α), f2(α),α

) · f ′
1(α) + ∂F

∂y

(
f1(α), f2(α),α

) · f ′
2(α)

+ ∂F

∂α

(
f1(α), f2(α),α

)= 0.

Together with the perpendicularity condition above, this gives the second equation
of the statement. �

Proposition 2.6.2 is often sufficient to investigate problems of envelopes: solve
the system given by that proposition, and use your imagination to investigate which
solutions of this system are indeed points of the envelope. Let us illustrate this with
some examples.

Example 2.6.3 The envelope of the family of circles of radius R whose center is
at a distance R of the origin is the circle of radius 2R centered at the origin (see
Fig. 2.10).



74 2 Plane Curves

Fig. 2.10

Proof The circle of radius R centered at the point (R cos θ,R sin θ) admits the equa-
tion

F(x, y, θ) = (x − R cos θ)2 + (y − R sin θ)2 − R2 = 0

which reduces to

x2 − 2R(x cos θ + y sin θ) + y2 = 0.

Differentiating with respect to θ yields

x sin θ − y cos θ = 0.

The system of equations

{
x cos θ + y sin θ = x2+y2

2R

−y cos θ + x sin θ = 0

admits the trivial solution (x, y) = (0,0). When (x, y) �= (0,0), this system with
unknowns sin θ , cos θ has determinant x2 + y2 �= 0. The solutions are then

cos θ = x

2R
, sin θ = y

2R

that is

(x, y) = (2R cos θ,2R sin θ)

which is the parametric representation of a circle of radius 2R centered at the origin.
The solutions of the system given by Proposition 2.6.2 are thus constituted of the

origin and the circle of radius 2R centered at the origin. The origin is certainly not
an envelope: it is a point, not a curve. On the other hand the circle of radius 2R at
this point with parameter θ trivially has the same tangent as the circle of radius R

centered at (R cos θ,R sin θ). Thus the envelope is the circle of radius 2R centered
at the origin. �
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Fig. 2.11

In Example 2.6.3, the appearance of the undesired point (0,0) in the solutions of
the system of equations is of course due to the fact that we have precisely chosen
circles of radius r centered on a circle of radius R, with R = r! Choosing R �= r

would result in an envelope comprising two circles (see Problem 2.18.3).
Here is another phenomena which can cause the appearance of undesired solu-

tions of the system of equations in Proposition 2.6.2.

Example 2.6.4 Consider the family of all the “vertically translated” right strophoids
of Example 2.3.3 (see Fig. 2.11)

(y − α)2(1 − x) = x2(1 + x).

The envelope is the vertical line with equation x = −1.

Proof The system of equations given by Proposition 2.6.2 is
{
(y − α)2(1 − x) − x2(1 + x) = 0
−2(y − α)(1 − x) = 0.

The second equation is satisfied for y − α = 0 or x = 1. But x = 1 is not a solution
of the first equation. On the other hand when y − α = 0, the first equation reduces
to x = 0 or x = −1. It is obvious that the vertical line x = −1 with parametric
representation

α �→ (−1, α)

is tangent to all the strophoids of the family, thus it is certainly an envelope. But the
line x = 0 is definitely not an envelope: it is not tangent to any of the curves of the
family!

The point here is the fact that the line with equation x = 0 is the locus of the
multiple points of the family of strophoids (see Example 2.3.3). With the notation
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Fig. 2.12

of Proposition 2.6.2, at these points we thus have

∂F

∂x

(
f1(α), f2(α),α

)= 0,
∂F

∂y

(
f1(α), f2(α),α

)= 0.

Introducing these values into the last formula of the proof of Proposition 2.6.2 then
yields

∂F

∂α

(
f1(α), f2(α),α

)= 0.

This is thus a general phenomenon: if we have a family of curves admitting a mul-
tiple point, the locus of these multiple points will appear as a solution of the system
of equations of Proposition 2.6.2. �

The first study of the envelope of a family of curves was probably due to Apol-
lonius, around 220 BC! He studied the envelope of the family of the normals to a
parabola. It is hard to believe, but despite being confined to the tools of antiquity,
Apollonius was able to compute (in the language of the time) the equation of this
envelope!

Example 2.6.5 The envelope of the family of the normals to the parabola of equa-
tion y2 = 2x is the so-called semi-cubic parabola with equation

27y2 = 8(x − 1)3

(see Fig. 2.12).

Proof Write

G(x,y) = y2 − 2x = 0

for the Cartesian equation of the parabola.
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For a value y = α, the corresponding point of the parabola has coordinates

(
α2

2
, α

)
.

By Proposition 2.4.4, the normal to the parabola at this point admits the equation

−∂G

∂y

(
α2

2
, α

)(
x − α2

2

)
+ ∂G

∂x

(
α2

2
, α

)
(y − α) = 0

that is,

F(x, y,α) = 0 with F(x, y,α) = α

(
x − α2

2

)
+ (y − α).

Proposition 2.6.2 tells us that the points of the envelope satisfy the equations
{

α(x − α2

2 ) + (y − α) = 0

(x − α2

2 ) − α2 − 1 = 0.

The second equation yields

x − α2

2
= α2 + 1.

Introducing this value into the first equation gives first

α3 = −y.

The first equation can thus be re-written

3

2
y = α(1 − x).

Taking the third power of each side and dividing by y yields the expected equation

27y2 = 8(x − 1)3.

A quick look at Fig. 2.12 suggests that this should indeed be the envelope, per-
haps with a problem of regularity at the point (0,1). But verifying the conditions
in Definition 2.6.2 “from scratch” would be a serious challenge! Fortunately, the
considerations of Sect. 2.11 will take care of that. �

The first study of the envelope of an arbitrary family of curves (not just straight
lines) was probably due to Torricelli, around 1642: this student of Galileo has al-
ready been mentioned several times in Chap. 1. Galileo suggested to Torricelli that
he should study the region of the space which can be reached by a projectile thrown
in all possible directions with a fixed initial speed. All the possible trajectories are
parabolas, and—treating the problem in a plane—Torricelli concluded that the cor-
responding envelope is again a parabola (see Fig. 2.13).
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Fig. 2.13

Example 2.6.6 The envelope of the trajectories of a bullet fired by a gun, with a
constant initial speed, in a field of constant gravity, in all possible directions in a
vertical plane, is a parabola.

Proof Write g for the gravitational force and v0 for the initial speed of the bullet. If
the bullet is fired in a direction making an angle θ with the horizontal, then:

• the horizontal component of the speed is v0 cos θ ;
• the vertical component of the initial speed is v0 sin θ , while the constant vertical

acceleration is −g; at the instant t the vertical component of the speed will thus
be

v0 sin θ +
∫ t

0
−g dt = v0 sin θ − gt.

The equations of the movement are obtained by integrating these equations for the
speed: choosing the gun as origin, i.e. choosing (0,0) as initial values, this yields

{
x = v0t cos θ

y = v0t sin θ − g t2

2 .

Eliminating t between these two equations immediately gives

y = x tan θ − g

2v2
0

x2(1 + tan2 θ
)

as equation of the trajectory. This is the equation of a parabola.
The Leibniz system of equations (see Proposition 2.6.2) is then

{
y = x tan θ − g

2v2
0
x2(1 + tan2 θ)

0 = x(1 + tan2 θ) − g
2v0

2 tan θ(1 + tan2 θ).

• A first solution of this system is given by x = 0, that is the y-axis. This curve is
not tangent to the various trajectories, thus is not part of the envelope. In fact, this
pathology corresponds to the absurd idea of firing the bullet vertically above the
gun!

• When x �= 0, the second equation yields

x = v2
0

g tan θ
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and the solution of the system becomes

y = v2
0

2g
− g

2v2
0

x2

which is the equation of the parabola discovered by Torricelli.

Figure 2.13 provides evidence that this last parabola is indeed the expected en-
velope! More rigorously, let us check the conditions of Definition 2.6.1. For a given
value of x, the angular coefficient of the tangent to the envelope is − g

v2
0
x. Compar-

ing this value with the angular coefficient at x of the curve with parameter θ , we
conclude that in order to have the same tangent, we need

tan θ − g

v2
0

x
(
1 + tan2 θ

)= − g

v2
0

x

that is x = v2
0

g tan θ
. It suffices to introduce this change of parameter in the solution of

the Leibniz system, to conclude by routine computation that

f (θ) =
(

v2
0

g tan θ
,
v2

0

2g
− v2

0

2g tan2 θ

)

is an envelope of the given family of parabolas, in the sense of Definition 2.6.1. In
fact, since f is not defined for θ = π

2 , we get two envelopes in the sense of Defi-
nition 2.6.1: they are represented by f defined, respectively, on the intervals ]0, π

2 [
and ]π

2 ,π[. Thus we get the two halves of the parabola discovered by Torricelli:
once more the point x = 0 appears as a singularity of the problem. �

Example 2.6.7 Fronts of waves: the Tcherenkov effect in nuclear physics.

Proof With just an ordinary protractor, you can measure speeds close to that of
light! Admittedly, you probably need more sophisticated instruments to accelerate
a particle to such speeds.

Write c0 for the speed of light in a vacuum (which is more or less 300,000 km
per second). The refraction law allows you, just by measuring an angle, to infer the
speed c1 of light in another transparent medium (see Fig. 2.14)—let us say glass—
via the formula

c1

c0
= sin θ1

sin θ0
.

In glass, you will find that the speed of light is more or less 200,000 km per second.
In the vacuum, accelerate a given particle to a very high speed v close to the light

speed c0 and in any case, a speed higher than the speed c1 of light in the transparent
medium.

c1 < v < c0.
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Fig. 2.14

Fig. 2.15

For example, suppose you accelerate the particle to some speed exceeding
250,000 km per second, a speed that you want to measure. To realize this mea-
sure, you send the particle through a piece of glass. Because of its mass, its high
speed, and thus its considerable inertia, the particle will cross a thin piece of glass
almost without being slowed down. Thus it will cross the piece of glass at a speed
higher than the speed of light in glass. The Tcherenkov effect tells us that this will
result in an emission of light by this particle while moving in the piece of glass.

Let t = 0 be the instant when the particle enters the piece of glass; let us take its
trajectory as the x-axis. At the fixed instant τ , the light wave emitted at a former
instant t will be (considering a planar section) a circle of radius c1(τ − t) centered
at the position (vt,0) of the particle at the instant t (see Fig. 2.15):

(x − vt)2 + y2 = c2
1(τ − t)2.

The Leibniz system of Proposition 2.6.2 for this family of circles indexed by the
parameter t is then

{
(x − vt)2 + y2 = v2(τ − t)2

−2v(x − vt) = −2c2
1(τ − t).
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The second equation gives

t = vx − c2
1τ

v2 − c2
1

.

Introducing this value into the first equation we obtain:

y2 − c2
1

v2 − c2
1

(vτ − x)2 = 0.

This is the equation of two intersecting lines, namely

y = ± c1√
v2 − c2

1

(vτ − x);

this formula makes sense since by assumption v > c1. Writing θ for the angle be-
tween these lines and the x-axis, we have

tan θ = c1√
v2 − c2

1

.

So indeed, the value of v can be obtained from that of c1 by simply measuring the
angle 2θ of the “light cone”.

The reader will immediately observe that the expression of t in terms of x also
yields

x = t (v2 − c2
1) + c2

1τ

v
.

Introducing this change of parameter into the equations of the two enveloping lines,
we obtain parametric representations of the two pieces of the envelope

f : ]0, τ [ −→R
2, t �→

(
t (v2 − c2

1) + c2
1τ

v
,±c1

v

√
v2 − c2

1(τ − t)

)

as required by Definition 2.6.1. �

Of course the considerations of Example 2.6.7 apply to calculate the behaviour
of arbitrary waves emitted in a medium by a source moving more rapidly than the
waves: for example, the wake of a boat moving rapidly on the water, or the slip-
stream of a plane flying at a speed higher than Mach 1.

The examples already considered in this section certainly justify the name en-
velope: the so-called envelope curve actually envelopes the given family of curves.
However, this is not generally true.

Example 2.6.8 Consider the graph of the function y = x3 and translate it horizon-
tally. The x-axis is an envelope of the corresponding family of curves (see Fig. 2.16).
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Fig. 2.16

Proof The various curves are thus

y = (x − α)3

and admit x = 0 as tangent at (α,0). The x-axis

f (α) = (α,0)

is thus an envelope in the precise sense of Definition 2.6.1. �

The study of envelopes is in particular a key ingredient in the theory of stability
of ships with respect to the movements of waves.

2.7 The Length of an Arc of a Curve

Most often, curve integrals are only defined along an “injective” curve. Let us begin
with an important observation concerning the “locally injective case”.

Lemma 2.7.1 Consider a locally injective function of class C1 defined on an open
interval ]a, b[ ⊆ R:

f : ]a, b[ −→ R
n.

For all points c, d ∈ ]a, b[, there exist finitely many values

c = r0 < r1 < · · · < rn−1 < rn = d

such that on each interval [ri , ri+1] the function f is injective.

Proof By definition, f is continuous on an open neighborhood in ]a, b[ of each
point t ∈ [c, d]; in particular these open neighborhoods cover [c, d]. By compact-
ness of [c, d], the covering can already be realized by a finite number of these open
neighborhoods. The rest is easy.

We first put r0 = c. The number c belongs to one of the finitely many open
neighborhoods: let us say ]u1, v1[. If d < v1, we are done: just put r1 = d . Otherwise
consider a second of these open neighborhoods, let us say ]u2, v2[, which contains
v1. Then choose r1 such that c < u2 < r1 < v1. If d < v2 it remains to put r2 = d .
Otherwise repeat the process, which will stop after finitely many steps. �
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We are thus tempted to make the following definition:

Definition 2.7.2 Consider a locally injective continuous function

f : ]a, b[ −→ R
n.

Consider further c, d ∈ ]a, b[ and a continuous function

g : [c, d] −→ R.

By Lemma 2.7.1, consider values

c = r0 < r1 < · · · < rn−1 < rn = d

such that on each interval [ri , ri+1], f is injective. The curve integral of g along

f : [c, d] −→ R
n

is the sum of the curve integrals of g along the various

f : [ri , ri+1] −→ R
n.

This definition makes perfect sense because:

Lemma 2.7.3 Definition 2.7.2 is independent of the choice of the points ri .

Proof By Theorem 1.8.2, the curve integral of Definition 2.7.2 is equal to

n−1∑

i=0

∫ ri+1

ri

g · ∥∥f ′∥∥=
∫ rn

r0

g · ∥∥f ′∥∥=
∫ d

c

g · ∥∥f ′∥∥.
�

With the considerations of Sect. 1.8 in mind, we define:

Definition 2.7.4 Consider a parametric representation of class C1 of a plane curve

f : ]a, b[ −→R
2.

The length of the arc of curve between the points of parameters c, d , with a < c <

d < b, is the curve integral of the constant function 1 along

f : [c, d] −→ R
2.

Again by Theorem 1.8.2 we have:

Proposition 2.7.5 Consider a parametric representation of class C1 of a plane
curve

f : ]a, b[ −→R
2.
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The length of the arc of the curve between the points with parameters c, d , with
a < c < d < b, is equal to the absolute value of

∫ d

c

∥∥f ′∥∥.

It is important to notice that the length is a notion depending only on the curve
of class C1 which is considered, not on a particular parametric representation.

Proposition 2.7.6 Let f , g be two regular parametric representations of class C1

of a plane curve, equivalent in class C1 via a change of parameter ϕ as in Fig. 2.3.
Given two points

f (t0) = g
(
ϕ(t0)

)= g(s0), f (t1) = g
(
ϕ(t1)

)= g(s1)

of this curve, the length of the corresponding arc is the same when computed using
f or using g.

Proof From f = g ◦ ϕ we deduce f ′ = (g′ ◦ ϕ)ϕ′. Since f ′(t) �= 0 at each point,
ϕ′(t) �= 0 at each point. Since ϕ′ is continuous, it is always strictly positive or always
strictly negative. We consider the positive case: the negative one is analogous.

∫ t1

t0

∥∥f ′∥∥=
∫ t1

t0

∥∥(g′ ◦ ϕ)(t)
∥∥ · ϕ′(t) dt =

∫ s1

s0

∥∥g′(s)
∥∥ds

via the change of variable s = ϕ(t). �

Let us apply Proposition 2.7.5 to some of the curves which have played an im-
portant historical role in the problem of “rectification” (see Sect. 1.7).

Example 2.7.7 The length of a circle of radius R is equal to 2πR.

Proof Using the parametric representation

f (θ) = (R cos θ,R sin θ)

we obtain
∥
∥f ′(θ)

∥
∥= ∥

∥(−R sin θ,R cos θ)
∥
∥= R.

The length of the circle is thus

∫ 2π

0
R dθ = [Rθ ]2π

0 = R2π − R0 = 2πR. �

Example 2.7.8 The length of an arc of the logarithmic spiral

f (θ) = (
a ekθ cos θ, a ekθ sin θ

)
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(see Proposition 1.7.3 and Fig. 1.23).

Proof In this case we have

∥∥f ′(θ)
∥∥= ∥∥(ka ekθ cos θ − a ekθ sin θ, ka ekθ sin θ + a ekθ cos θ

)∥∥

= a
√

1 + k2 ekθ .

The length of an arc starting from the origin is thus equal to

∫ θ

0

√
1 + k2 ekθ =

[
a

√
1 + k2

k2
ekθ

]θ

0
= a

√
1 + k2

k2

(
ekθ − 1

)
. �

Example 2.7.9 The length of an arc of the semi-cubic parabola y2 = x3 (see
Fig. 1.24).

Proof It is immediate that

f (t) = (
t2, t3)

is a parametric representation of the semi-cubic parabola, with the cusp point (0,0)

as a singular point. We then have

∥∥f ′(t)
∥∥= ∥∥(2t,3t2)∥∥=

√
4t2 + 9t4.

The length of an arc starting from the cusp point is thus equal to

∫ √
x

0

√
4t2 + 9t4 dt =

[
1

27

(
4 + 9t2) 3

2

]√
x

0
= (4 + 9x)

3
2 − 8

27
. �

Example 2.7.10 The length of an arch of a cycloid generated by a circle of radius
R is equal to 8R (see Definition 1.9.1 and Fig. 1.27).

Proof By Proposition 1.9.2, a parametric representation of the cycloid is given by

f (θ) = R(θ − sin θ,1 − cos θ).

This yields

∥∥f ′(θ)
∥∥= ∥∥R(1 − cos θ, sin θ)

∥∥= R
√

2 − 2 cos θ = 2R sin
θ

2
.

The length of an arch is thus equal to
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∫ 2π

0
2R sin

θ

2
dθ =

[
−4R cos

θ

2

]2π

0
= 4R + 4R = 8R. �

So the length of an arch of a cycloid can be expressed as a rational quantity in
terms of the radius, while the length of a circle—an a priori simpler curve—cannot.
Torricelli, who found this very simple formula 8R for the cycloid around 1640, had
certainly been quite amazed by his own result.

2.8 Normal Representation

We shall now investigate the particular properties of a parametric representation
where the parameter is the “length traveled on the curve from a fixed arbitrary ori-
gin”.

Definition 2.8.1 By a normal representation of a plane curve is meant a parametric
representation of class C1

f : ]a, b[ −→ R
2, s �→ f (s)

such that ‖f ′(s)‖ = 1 for each s ∈ ]a, b[.

It follows immediately from Definition 2.2.1 that a normal representation is
in particular regular. Choosing the “length traveled on the curve” (see Proposi-
tion 2.7.5) as a parameter, we obtain a normal representation:

Proposition 2.8.2 Consider a regular representation of class Ck of a plane curve

f : ]a, b[ −→ R
2, t �→ f (t).

Given t0 ∈ ]a, b[, the function

σ : ]a, b[ −→ ]
σ(a), σ (b)

[
, σ (t) =

∫ t

t0

∥∥f ′∥∥

is a change of parameter of class Ck . The corresponding parametric representation

f = f ◦ σ−1 : ]σ(a), σ (b)
[−→ R

2

is normal of class Ck .

Proof Of course, in this statement,

σ(a) ∈ R∪ {−∞}, σ (b) ∈ R∪ {+∞}.
Since f is regular (see Definition 2.2.1), σ ′ = ‖f ′‖ > 0 and thus σ is a strictly
increasing function: as a consequence, it is a bijection.
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This bijection is of class Ck since it has a derivative ‖f ′‖ which is a function of
class Ck−1

√(
f ′

1

)2 + (
f ′

2

)2

again because each f ′
i is of class Ck−1 and the argument of the square root is never

zero.
The inverse bijection σ−1 admits the first derivative

(
σ−1)′ = 1

σ ′ ◦ σ−1
,

which makes sense, since σ ′ = ‖f ′‖ �= 0. Next

(
σ−1)′′ = − (σ ′′ ◦ σ−1)(σ−1)′

(σ ′ ◦ σ−1)2
= − σ ′′ ◦ σ−1

(σ ′ ◦ σ−1)3

and so on. So σ−1 itself is of class Ck and therefore, f = f ◦ σ−1 is of class Ck .
The representation f is normal because

f
′ = (

f ◦ σ−1)′ = (
f ′ ◦ σ−1) · (σ−1)′ = f ′ ◦ σ−1

‖f ′ ◦ σ−1‖ .

Trivially, this quantity has norm 1. �

Proposition 2.8.3 Consider a normal representation of class C2

f : ]a, b[ −→ R
2, s → f (s)

of a plane curve. Then (f ′|f ′′) = 0, that is f ′′ is orthogonal to f ′ (or is equal to 0)
at each point of the curve.

Proof We have (f ′|f ′) = 1 by Definition 2.8.1. Then 2(f ′|f ′′) = 0 by
Lemma 1.11.3. �

Proposition 2.8.2 admits—in a sense—a converse statement: in a normal repre-
sentation the parameter—up to a possible translation of the origin—is necessarily
the length traveled on the curve.

Proposition 2.8.4 Let

f : ]a, b[ −→ R
2, s �→ f (s)

be a normal representation of a plane curve. For every two values a < s0 < s1 < b

of the parameter, s1 − s0 is equal to the length of the arc of the curve between the
points with parameters s0 and s1.
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Proof By Proposition 2.7.5 and Definition 2.8.1, the length between the points with
parameters s0, s1 is equal to

∫ s1

s0

∥∥f ′∥∥=
∫ s1

s0

1 = [s]s1
s0

= s1 − s0. �

Corollary 2.8.5 Two normal representations f (t) and g(s) of the same regular
curve differ only by a change of parameter of the form s = ±t + k, where k is a
constant.

Proof We use the notation of Definition 2.1.6. Differentiating the equality f = g ◦ϕ

we obtain f ′ = (g′ ◦ ϕ) · ϕ′. Taking the norms of both sides we obtain, by Defini-
tion 2.8.1

1 = ∥∥f ′∥∥= ∥∥(g′ ◦ ϕ
) · ϕ′∥∥= ∥∥g′ ◦ ϕ

∥∥ · ∣∣ϕ′∣∣= 1 · ∣∣ϕ′∣∣= ∣∣ϕ′∣∣.

Thus ϕ is a real function of a real variable such that ϕ′ = ±1. Integrating this equal-
ity yields the expected result. �

Example 2.8.6 The usual parametric representation of a circle with center (a, b)

and of radius 1

f (θ) = (a + cos θ, b + sin θ)

is a normal one. But a normal representation of a circle of radius R and center (a, b)

is

g(θ) =
(

a + R cos
θ

R
,b + R sin

θ

R

)
.

Proof Simply observe that ‖f ′‖ = 1 and ‖g′‖ = 1. �

2.9 Curvature

At last we can now study of the main characteristic of a curve: the fact of being
curved!

The derivative of a function somehow “measures” the variation of this function.
Consider for example a regular parametric representation of class C2 of a plane
curve

f : ]a, b[ −→R
2.

The function

f ′ : ]a, b[ −→ R
2

yields at each point a vector f ′(t) tangent to the curve (see Definition 2.4.2). When
t varies, this tangent vector f ′(t) varies both in length and direction. But when f
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is a normal representation, f ′(t) has constant length 1 (see Definition 2.8.1) and its
variation is thus only in direction. In that case, f ′′(t) “measures” the variation in
direction of the tangent vector, that is, the variation in direction of the tangent line.
The “extent” of this variation is what we shall call the curvature of the curve.

Definition 2.9.1 Let

f : ]a, b[ −→ R
2, s �→ f (s)

be a normal representation of class C2 of a plane curve. The curvature at the point
with parameter s is the quantity ‖f ′′(s)‖.

For Definition 2.9.1 to make sense, we must of course observe that:

Lemma 2.9.2 Two normal representations of a given plane curve of class C2 admit
the same second derivative at each point. In particular the definition of the curvature
of a plane curve is independent of the chosen normal parametric representation.

Proof Given two normal representations as in Corollary 2.8.5, we have a corre-
sponding change of parameter ϕ(t) = ±t + k, thus

f = g ◦ ϕ

f ′ = (
g′ ◦ ϕ

)
ϕ′ = (

g′ ◦ ϕ
)
(±1)

f ′′ = (
g′′ ◦ ϕ

)
(±1)ϕ′ = (

g′′ ◦ ϕ
)
(±1)2 = g′′ ◦ ϕ.

This is the expected result. �

The following result allows us to calculate the curvature more easily:

Proposition 2.9.3 Let f (t) be an arbitrary parametric representation of class C2

of a plane curve. The curvature is equal to

κ = |f ′
1f

′′
2 − f ′

2f
′′
1 |

‖f ′‖3
.

Proof We use the notation of Proposition 2.8.2 and the various observations made
in its proof. We have κ = ‖f ′′‖ by Definition 2.9.1, and furthermore

f = f ◦ σ−1

f
′ = (

f ′ ◦ σ−1)(σ−1)′

f
′′ = (

f ′′ ◦ σ−1)((σ−1)′)2 + (
f ′ ◦ σ−1)(σ−1)′′.

The vector f
′

is thus equal to

f
′ = (

σ−1)′(f ′
1 ◦ σ−1, f ′

2 ◦ σ−1).
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Therefore the vector

n = (
σ−1)′(−f ′

2 ◦ σ−1, f ′
1 ◦ σ−1)

is a vector of length 1 in the direction perpendicular to f
′
, that is, a vector in the

direction of the normal to the curve. But by Proposition 2.8.3, this direction is also
that of the vector f

′′
. Therefore

(
n
∣∣f

′′)= ‖n‖ · ∥∥f ′′∥∥ · cos�
(
n,f

′′)= ±∥∥f ′′∥∥= ±κ.

Thus we also have

κ = ∣∣(n
∣∣f

′′)∣∣

= ∣∣(n
∣∣(f ′′ ◦ σ−1)((σ−1)′)2 + (

f ′ ◦ σ−1)(σ−1)′′)∣∣

= ∣∣(n
∣∣(f ′′ ◦ σ−1)((σ−1)′)2)∣∣

since n is orthogonal to f ′.
We conclude that

κ = ∣∣(n
∣∣(f ′′ ◦ σ−1)((σ−1)′)2)∣∣

= (
σ−1)′3 · ∣∣((−f ′

2 ◦ σ−1, f ′
1 ◦ σ−1)∣∣(f ′′

1 ◦ σ−1, f ′′
2 ◦ σ−1))∣∣

= |((−f ′
2 ◦ σ−1, f ′

1 ◦ σ−1)|(f ′′
1 ◦ σ−1, f ′′

2 ◦ σ−1))|
‖f ′ ◦ σ−1‖3

= −(f ′
2 ◦ σ−1)(f ′′

1 ◦ σ−1) + (f ′
1 ◦ σ−1)(f ′′

2 ◦ σ−1)

‖f ′‖3
.

In terms of the parameter t = σ−1(s), this is precisely the formula of the state-
ment. �

Let us begin with the most obvious examples:

Example 2.9.4 The curvature of a straight line is everywhere zero.

Proof A parametric representation of a line has the form

f (t) = (a + bt, c + dt), a, b, c, d ∈R.

Thus f ′(t) = (b, d) and f ′′(t) = (0,0). The result follows by Proposition 2.9.3. �

Example 2.9.5 The curvature of a circle of radius R is constant and equal to the
inverse 1

R
of the radius.
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Fig. 2.17

Proof With the notation of Example 2.8.6 we get

g′(θ) =
(

− sin
θ

R
, cos

θ

R

)
, g′′(θ) =

(
− 1

R
cos

θ

R
,− 1

R
sin

θ

R

)

from which ‖g′′(θ)‖ = 1
R

. �

One should be aware that “not being straight” does not mean “being curved”.
The following example (see Fig. 2.17) illustrates the limits of our intuition.

Example 2.9.6 At the origin, the parabola of equation y = ax2 has curvature 2a,
while the graph of the function y = ax4 has curvature 0.

Proof Just apply Proposition 2.9.3. �

Example 2.9.7 At its “vertex” (0, b), the curvature of the ellipse with equation

x2

a2
+ y2

b2
= 1

is equal to b

a2 .

Proof A parametric representation of the ellipse is given by (see Example 2.1.4)

f (θ) = (a cos θ, b sin θ).

It follows at once that

f ′(θ) = (−a sin θ, b cos θ), f ′′(θ) = (−a cos θ,−b sin θ).

The point (0, b) corresponds to the value θ = π
2 , thus

f ′
(

π

2

)
= (−a,0), f ′′

(
π

2

)
= (0,−b).

The result then follows immediately from Proposition 2.9.3. �

Let us conclude this section with the observation that in the plane, a curve can
bend away from the tangent on one side or the other in Fig. 2.18.
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Fig. 2.18

For that reason, for various purposes, it is useful to give a sign to the curvature.

Definition 2.9.8 Let f (s) be a normal representation of class C2 of a plane curve;
write κ(s) for its curvature at the point with parameter s. The relative curvature with
respect to this normal representation f is the quantity

• 0 if f ′′(s) = 0;
• +κ(s) if (f ′(s), f ′′(s)) is a basis having the same orientation as the canonical

basis of R2;
• −κ(s) if (f ′(s), f ′′(s)) is a basis having the orientation opposite to that of the

canonical basis of R2.

Let us recall that two bases have the same orientation when the change of base
matrix has a positive determinant (see Sect. 3.2 in [4], Trilogy II).

Warning 2.9.9 The sign of the curvature, as in Definition 2.9.8, is by no means an
intrinsic property of the curve: it depends on the chosen normal representation.

Proof In the proof of Lemma 2.9.2 (and with its notation) we have indeed observed
that, given two normal representations of the same curve

f ′ = ±(g′ ◦ ϕ
)
, f ′′ = g′′ ◦ ϕ.

So when the sign −1 applies in the first equality, the two bases (f ′, f ′′) and (g′, g′′)
have opposite orientations at a point where the curvature does not vanish.

As an example, consider the “counter-clockwise” representation of a circle

f (θ) = (R cos θ,R sin θ).

The first and second derivatives are

f ′(θ) = (−R sin θ,R cos θ), f ′′(θ) = (−R cos θ,−R sin θ).

The change of basis matrix with respect to the canonical basis is then
(−R sin θ −R cos θ

R cos θ −R sin θ

)
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whose determinant is equal to R2. The relative curvature of this circle is thus equal
to 1

R
(see Example 2.9.5).

Now consider the same circle described in “clockwise” orientation

g(θ) = (R cos θ,−R sin θ).

The determinant of the change of base matrix is now equal to −R2 and therefore
the relative curvature is equal to − 1

R
. �

Nevertheless, let us make clear that:

Proposition 2.9.10 Consider two normal representations f (t), g(s) of class C2 of
a plane curve. One of the following two possibilities holds:

• both representations yield the same relative curvature at all points;
• the two representations yield opposite relative curvatures at all points.

Proof By Proposition 2.8.5, the corresponding change of parameter has the form
s = ±t + k, which yields g′(s) = ±f ′(t) at a given point of the curve. On the other
hand g′′(s) = f ′′(t) by Lemma 2.9.2. �

Proposition 2.9.11 Consider a parametric representation f (t) of class C2 of a
plane curve and write f (s) for the corresponding normal representation as in
Proposition 2.8.2. When the curvature is non-zero, both bases (f ′, f ′′) and (f

′
, f

′′
)

have the same orientation and the relative curvature, expressed in terms of the para-
metric representation f , is given by

κ = f ′
1f

′′
2 − f ′

2f
′′
1

‖f ′‖3
.

Proof By Proposition 2.9.3, the curvature is given by the absolute value of the quan-
tity in the statement. This quantity is positive precisely when the determinant

det

(
f ′

1 f ′
1

f ′′
1 f ′′

2

)

is positive. Considering the normal representation f = f ◦ σ−1 as in Proposi-
tion 2.8.2, the corresponding determinant is that of the matrix

(
(f ′

1 ◦ σ−1)(σ−1)′ (f ′
2 ◦ σ−1)(σ−1)′

(f ′′
1 ◦ σ−1)(σ−1)′2 + (f ′

1σ
−1)(σ−1)′′ (f ′′

2 ◦ σ−1)(σ−1)′2 + (f ′
2σ

−1)(σ−1)′′

)

which is thus equal to

(
σ−1)′3((f ′

1 ◦ σ−1)(f ′′
2 ◦ σ−1)− (

f ′
2 ◦ σ−1)(f ′′

1 ◦ σ−1)).
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Fig. 2.19

Since

(
σ−1)′ = 1

σ ′ ◦ σ−1
= 1

‖f ′ ◦ σ−1‖ ≥ 0

we conclude that both determinants are simultaneously positive or negative. Pro-
vided that the curvature is not zero, both bases (f ′, f ′′) and (f

′
, f

′′
) thus have the

same orientation. The determinant in the case of the normal representation is pre-
cisely the relative curvature, since ‖f ′‖ = 0 (see Definition 2.8.1). �

So indeed, if the sign of the relative curvature is not relevant (see Counterexam-
ple 2.9.9), the changes of sign of the relative curvature are highly significant.

2.10 Osculating Circle

With the example of the circle in mind (see Example 2.9.5), we are tempted to
“approximate” a curve at a given point by the circle passing through that point and
having the same tangent and the same curvature. However, one should be aware
that there are two such circles: one on each side of the tangent! (see Fig. 2.19).
Lemma 2.10.1 helps us to make the “right” choice.

Lemma 2.10.1 Consider a normal representation f (s) of class C2 of a plane curve.
Given on this curve a point f (s0) with non-zero curvature, there exist two circles
with normal representation g(θ) such that:

1. each circle passes through the point f (s0), for a value θ0 of the parameter;
2. the curve and each circle have the same tangent at f (s0) = g(θ0);
3. the curve and each circle have the same curvature κ(s) at f (s0) = g(t0).

For one of these two circles, one has further

f ′′(s0) = g′′(θ0)
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while for the other one, f ′′(s0) = −g′′(s0). The center of the first circle is the point

f (s0) + 1

κ(s0)2
f ′′(s0).

Proof Let us first recall that for a normal representation of class C2, the value of the
second derivative is independent of the chosen representation (see Lemma 2.9.2).

The radius of a circle is perpendicular to its tangent. Thus by Proposition 2.8.3,
the center of a circle as in the statement must be of the form f (s0) + k f ′′(s0), with
k some constant.

The radius of such a circle is then

R = ∥∥k f ′′(s0)
∥∥= |k| · ∥∥f ′′(s0)

∥∥= |k| · κ(s0).

Since the circle and the curve must have the same curvature. Example 2.9.5 yields

1

R
= κ(s0).

Therefore

R = 1

κ(s0)
, k = ±1

κ(s0)2
.

The normal representations of the two circles corresponding to the two possible
values of k, and the derivatives of these, are thus (see Example 2.8.6)

g(θ) =
(

f1(s0) ± f ′′
1 (s0)

κ(s0)2
+ 1

κ(s0)
cos

(
κ(s0)θ

)
,

f2(s0) ± f ′′
2 (s0)

κ(s0)2
+ 1

κ(s0)
sin
(
κ(s0)θ

))

g′(θ) = (− sin
(
κ(s0)θ

)
, cos

(
κ(s0)θ

))

g′′(θ) = (−κ(s0) cos
(
κ(s0)θ

)
,−κ(s0) sin

(
κ(s0)θ

))
.

The first equality, together with the requirement f (s0) = g(θ0), and the last equality,
together with the requirement f ′′(s0) = g′′(θ0), then yield

∓f ′′(s0)

κ(s0)
= (

cos(κ(s0)θ), sin(κ(s0)θ)
)= −f ′′(s0)

κ(s0)
.

This forces the choice of the sign −, which comes from the sign + in the description
of g. �

With Example 2.9.5 in mind, we then complete our terminology in the following
way.
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Definition 2.10.2 Consider a normal representation f (s) of class C2 of a plane
curve. Given on this curve a point f (s0) with non-zero curvature:

1. the radius of curvature at the point f (s0) is the quantity 1
κ(s0)

, where κ(s0) is the
curvature;

2. the center of curvature at the point f (s0) is the point

f (s0) + 1

κ(s0)2
f ′′(s0);

3. the circle centered at the center of curvature, with radius the radius of curvature,
is called the osculating circle to the curve at the point f (s0).

2.11 Evolutes and Involutes

In view of Definition 2.10.2, we make the following definition:

Definition 2.11.1 Consider a regular curve of class C2 whose curvature is non-zero
at each point. The locus of the centers of curvature is called the evolute of the curve.

Of course there is no reason that the evolute of a curve will be a curve: for exam-
ple, the evolute of a circle is reduced to a point, namely the center of the circle!

Proposition 2.11.2 Consider a normal representation

f : ]a, b[ −→ R
2, s �→ f (s)

of class C2 of a plane curve, whose curvature κ(s) is non-zero at each point. When
the function

f + f ′′

κ2
: ]a, b[−→ R

2, s �→ f (s) + f ′′(s)
κ(s)2

is locally injective, it is a parametric representation of the evolute of the curve rep-
resented by f .

Proof Since f ′′ is continuous, so is the function of the statement and, by as-
sumption, f ′′(s) �= 0 for each s. The result follows by Definition 2.10.2 and
Lemma 2.10.1. �

Here are two important properties of the evolute, when the evolute turns out to
be a curve.

Proposition 2.11.3 Consider a normal representation f (s) of class C3 of a plane
curve. Assume that the curvature is non-zero at each point and that the function

g(s) = f (s) + f ′′(s)
κ(s)2

f ′′(s)
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whose support is the evolute, is a regular parametric representation (see Proposi-
tion 2.11.2). Under these conditions, the evolute is the envelope of the family of all
normals to the curve.

Proof In view of Definition 2.6.1, we must prove that for a given parameter s, the
tangent to the evolute at g(s) is normal to the original curve at f (s).

The normal to the curve admits the equation (see Proposition 2.4.3)

f ′
1(s)

(
x − f1(s)

)+ f ′
2(s)

(
y − f2(s)

)= 0.

Proving that the point g(s) satisfies this equation reduces to

f ′
1(s)

f ′′
1 (s)

κ(s)2
+ f ′

2(s)
f ′′

2 (s)

κ(s)2
= 0.

This reduces further to (f ′|f ′′) = 0, which is the case by Proposition 2.8.3.
Differentiating the equality (f ′|f ′′) = 0 yields further

(
f ′′∣∣f ′′)+ (

f ′∣∣f ′′′)= 0

(see Lemma 1.11.3). The direction of the tangent to the evolute is

g′ = f ′ − 2
κ ′

κ3
f ′′ + f ′′′

κ2
.

Again since f ′ and f ′′ are perpendicular (Proposition 2.8.3), the scalar product with
f ′ is then simply

(
f ′∣∣f ′)+ (f ′|f ′′′)

κ2
= (

f ′∣∣f ′)− (f ′′|f ′′)
κ2

= 0.

Thus the tangent to the evolute is indeed the normal to the curve. �

Proposition 2.11.4 Consider a normal representation f (s) of class C3 of a plane
curve. Assume that the curvature is non-zero at each point and is a monotone func-
tion on the interval considered. Assume further that the function

g(s) = f (s) + 1

κ(s)2
f ′′(s)

whose support is the evolute is a regular parametric representation (see Proposi-
tion 2.11.2). Under these conditions, the difference between the radii of curvature
at two points with parameters s1 and s2 equals the length of the arc of the evolute
between the points g(s1) and g(s2).

Proof Definition 2.8.1, Proposition 2.8.3 and the proof of Proposition 2.11.3 already
imply that

(
f ′∣∣f ′)= 1,

(
f ′∣∣f ′′)= 0,

(
f ′′∣∣f ′′)= κ2,

(
f ′∣∣f ′′′)= −κ2.
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Differentiating the third equality yields further

2
(
f ′′∣∣f ′′′)= 2κ · κ ′.

By Proposition 2.8.3, the basis constituted of f ′ and f ′′
κ

is orthonormal. We thus
obtain, by Proposition 4.6.2 in [4], Trilogy II:

f ′′′ = (
f ′′′∣∣f ′)f ′ +

(
f ′′′

∣∣∣
f ′′

κ

)
f ′′

κ
= −κ2f ′ + κ ′

κ
f ′′.

This yields further

g′ = f ′ − 2
κ ′

κ3
f ′′ + 1

κ2
f ′′′

= f ′ − 2
κ ′

κ3
f ′′ − f ′ + κ ′

κ3
f ′′

= − κ ′

κ3
f ′′.

Thus
∥∥g′∥∥=

∣∣∣
∣
κ ′

κ2

∣∣∣
∣.

Since by assumption the curvature κ is a monotone function, its derivative has con-
stant sign; let us say, is positive (the negative case is analogous). Then

∫ ∥∥g′∥∥=
∫

κ ′

κ2
= − 1

κ
.

The rest of the proof is now easy. The length of the arc of the evolute is equal to
(see Proposition 2.7.5)

∫ s2

s1

∥∥g′∥∥=
[−1

κ

]s2

s1

= 1

κ(s1)
− 1

κ(s2)

that is, by Definition 2.10.2, the difference between the two radii of curvature. �

This last result admits an interesting practical interpretation, illustrated in
Fig. 2.20.

View the tangent at the point g(s) as a chord rolling along the evolute with
extremity at f (s). As this chord rolls or unrolls further along the evolute, the
extremity of the chord describes the curve f (s).

It is this property that Huygens discovered in the case of the cycloid, in view of
constructing a pendulum whose frequency is independent of the amplitude of the
oscillations (see Sect. 1.9).
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Fig. 2.20

Fig. 2.21

Example 2.11.5 The evolute of a parabola is a semi-cubic parabola (see Fig. 2.12).

Proof This follows by Example 2.6.5 and Proposition 2.11.3. �

Example 2.11.6 The evolute of a cycloid is another cycloid of the same size (see
Fig. 1.29).

Proof This follows from Proposition 2.11.3, via Proposition 1.9.6, which has been
proved via “historical” methods. �

Let us conclude with another point of terminology.

Definition 2.11.7 By an involute of a curve g(s) is meant a curve f (s) admitting
g(s) as evolute.

It should be observed that a given curve can admit many involutes. In fact, in the
“practical interpretation” above, it suffices to modify the “length of the chord” to
get all possible involutes (see Fig. 2.21). More precisely:

Example 2.11.8 Under the conditions of Proposition 2.11.4, consider the vector
n(s) = (f ′

2(s),−f ′
1(s)) of length 1 normal to the curve. For every constant k ∈ R
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such that

h(s) = f (s) + k n(s)

is still a regular parametric representation of a curve, that curve still admits g(s) as
evolute.

Proof It suffices to check that the tangent to g(s) is still normal to h(s), that is
(h′|g′) = 0. But differentiating (n|n) = 1 yields 2(n′|n) = 0. Since n is parallel to
g′, this also proves (g′|n′) = 0. Then

(
h′∣∣g′)= (

f ′ + kn′∣∣g′)= (
f ′∣∣g′)+ k

(
n′∣∣g′)= 0 + k 0 = 0. �

2.12 Intrinsic Equation of a Plane Curve

When we speak of an ellipse with axes of lengths 2 and 3, we know what we mean,
even if we are unable to give a precise equation for this ellipse from the informa-
tion given. Indeed we did not say where the center of this ellipse lies nor in which
directions the axis are oriented.

The idea of an intrinsic equation of a curve is precisely this: being able to de-
scribe a curve “intrinsically”, without having to refer to a precise position of the
curve in the plane. To this end we shall follow another simple idea: if we want to
give to an iron wire the shape of a precise curve, it suffices to know how to “curve”
this wire at each point. Thus the knowledge of the curvature at each point should be
sufficient to describe the curve.

Of course going back to Fig. 2.18, we immediately realize that it is important
to know when we have to curve the wire “one way or the other with respect to the
tangent”. We shall thus work with the relative curvature as in Definition 2.9.8.

We first need a lemma.

Lemma 2.12.1 Consider a function of class C1

f : I −→ R
2 (I ⊆ R generalized interval; see Example A.10.9)

with the property that ‖f (t)‖ = 1 for all t ∈ I . Then there exists a function

θ : I −→R

of class C1 such that for all t ∈ [a, b]
f (t) = (

cos θ(t), sin θ(t)
)
.

Moreover, given two such continuous functions θ1 and θ2, there exists an integer k

such that for all t ∈ [a, b]
θ2(t) = θ1(t) + 2kπ.
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Proof Of course since ‖f (t)‖ = 1, we have

f (t) = (
cos θ(t), sin θ(t)

)

for some angle θ(t). But the angle θ is only defined up to a multiple of 2π and
the whole point is to make sure that a choice can be made which forces θ to be
continuous and even, of class C1.

Let us write θ0 ∈ [0,2π[ for the angle corresponding to a fixed value t = t0 of
the parameter. We define

θ(t) =
∫ t

t0

f1(t)f
′
2(t) − f2(t)f

′
1(t) dt + θ0.

By construction, this function θ is of class C1 since f and f ′ are of class C0. More-
over θ(t0) = θ0.

Consider now the function

ψ = (f1 − cos θ)2 + (f2 − sin θ)2.

Proving

f (t) = (
cos θ(t), sin θ(t)

)
.

is equivalent to proving that ψ(t) = 0 for all t . Since θ(t0) = θ0, we have already

ψ(0) = (
f1(t0) − cos θ0

)2 + (
f2(t0) − sin θ0

)2 = 0.

Thus it remains to prove that ψ is constant or equivalently, that ψ ′ = 0.
Differentiating the equality f 2

1 + f 2
2 = 1 we get f1f

′
1 + f2f

′
2 = 0. On the other

hand θ ′ = f2f
′
2 − f2f

′
1. Therefore

1

2
ψ ′ = (f1 − cos θ)

(
f ′

1 + θ ′ sin θ
)+ (f2 − sin θ)

(
f ′

2 − θ ′ cos θ
)

= (
f1f

′
1 + f2f

′
2

)− (
f ′

1 cos θ + f ′
2 sin θ

)+ θ ′(f1 sin θ − f2 cos θ)

= −(f 2
1 + f 2

2

)(
f ′

1 cos θ + f ′
2 sin θ

)+ (
f1f

′
2 − f2f

′
1

)(
f ′

1 cos θ + f ′
2 sin θ

)

= −f1 cos θ
(
f1f

′
1 + f2f

′
2

)− f2 sin θ
(
f1f

′
1 + f2f

′
2

)

= 0.

This concludes the proof that θ has the expected property.
Next let θ be another function of class C1 satisfying

f (t) = (
cos θ(t), sin θ(t)

)
.

Differentiating we obtain

(
f ′

1, f
′
2

)= θ
′
(− sin θ, cos θ) = θ

′
(−f2, f1).
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This yields further

f ′
1f2 = −θ

′
f 2

2 , f ′
2f1 = θ

′
f 2

1 .

Subtracting these equalities yields

f1f
′
2 + f2f

′
1 = θ

′(
f 2

1 + f 2
2

)= θ
′
.

Thus θ and θ have the same derivative and therefore, differ only by a constant. Since
at t0 both express the angle between the x-axis and the vector f (t0), this constant is
a multiple of 2π . �

Corollary 2.12.2 Consider a normal representation of class Ck

f : ]a, b[ −→ R
2, s �→ f (s)

of a plane curve.

1. There exists a function of class Ck−1

θ : ]a, b[ −→R

such that θ(s) is at each point, up to a multiple of 2π , the angle between the
x-axis and the tangent vector f ′(s).

2. Writing κ(s) for the relative curvature, one has further

κ(s) = θ ′(s).

Two possible such functions θ differ by a constant multiple of 2π . Such a function θ

is called an angular function of the curve.

Proof Since f ′(s) has length 1, one can apply Lemma 2.12.1 and write

f ′(s) = (
cos θ(s), sin θ(s)

)

with θ a function of class C1. Differentiating this equality yields

f ′′(s) = θ ′(s)
(− sin θ(s), cos θ(s)

)
.

Taking the norms of both sides yields
∥∥κ(s)

∥∥= ∥∥f ′′(s)
∥∥= ∣∣θ ′(s)

∣∣.

The same equality can be re-written in the form
(
f ′′

1 , f ′′
2

)= θ ′(−f ′
2, f

′
1

)
.

Observe that (−f ′
2, f

′
1) is a vector of length 1 orthogonal to f ′, and such that the

basis (f ′,−→n ) has direct orientation. Comparing with Definition 2.9.8, we conclude
that θ ′ ≥ 0 precisely when the basis (f ′, f ′′) has direct orientation, that is, when the
relative curvature κ(s) is given the positive sign. �
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Theorem 2.12.3 Consider a continuous function

κ : ]a, b[ −→ R, s �→ κ(s).

All the normal representations of all the curves admitting κ as relative curvature
have the form

f (s) =
(

x0 +
∫ s

s0

cos θ(s) ds, y0 +
∫ s

s0

sin θ(s) ds

)

where

θ(s) = θ0 +
∫ s

s0

κ(s) ds

and s0 ∈ ]a, b[, θ0 ∈ [0,2π[, x0, y0 ∈ R are arbitrary constants.

Proof With the notation of Corollary 2.12.2 we must have θ ′(s) = κ(s). Integrating
this equality yields

θ(s) = θ0 +
∫ s

s0

κ(s) ds

for some arbitrary choices s0 ∈]a, b[ and θ0 ∈ [0,2π[.
However, by the considerations in the proof of Corollary 2.12.2, we must have

further

f ′(s) = (
cos θ(s), sin θ(s)

)
.

Integrating this equality yields the formula in the statement. �

Theorem 2.12.4 Two regular plane curves of class C2 admitting the same relative
curvature function with respect to the arc length are necessarily isometric.

Proof By Proposition 2.12.3, the two curves admit the parametric representations

f (s) =
(

x0 +
∫ s

s0

cos θ(s) ds, y0 +
∫ s

s0

sin θ(s) ds

)

g(t) =
(

u0 +
∫ s

s1

cos τ(s) ds, v0 +
∫ s

s1

sin τ(s) ds

)

with

θ(s) = θ0 +
∫ s

s0

κ(s) ds, τ (s) = τ0 +
∫ s

s1

κ(s) ds.

Let us first write the first curve as

f (s) =
(

x0 +
∫ s1

s0

cos θ(s) ds +
∫ s

s1

cos θ(s) ds,

y0 +
∫ s1

s0

sin θ(s) ds +
∫ s

s1

sin θ(s) ds

)
.
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The translation mapping

(
x0 +

∫ s1

s0

cos θ(s) ds, y0 +
∫ s1

s0

sin θ(s) ds

)

on (u0, v0) transforms this first curve into

h(t) =
(

u0 +
∫ s

s1

cos θ(s) ds, v0 +
∫ s

s1

sin θ(s) ds

)
.

Write further

θ(s) = θ0 +
∫ s1

s0

κ(s) ds +
∫ s

s1

κ(s) ds.

Apply now the rotation with center (u0, v0) transforming the angle

θ0 +
∫ s1

s0

κ(s) ds

into τ0. The curve becomes further

k(s) =
(

u0 +
∫ s

s1

cos θ̃ (s) ds, v0 +
∫ s

s1

sin θ̃ (s) ds

)

where

θ̃ (s) = τ0 +
∫ s

s1

κ(s) ds.

This proves the result since translations, rotations and orthogonal symmetries are
examples of isometries (see Sects. 4.11 and 4.12 in [4], Trilogy II). �

Corollary 2.12.5 Two regular plane curves of class C2 admitting opposite relative
curvature functions with respect to the arc length are necessarily isometric.

Proof Apply first to one the curves an orthogonal symmetry with respect to some
arbitrary line in order to get an isometric curve (see Example 4.11.3 in [4], Tril-
ogy II). This isometry changes the orientation of each base (see Proposition 3.3.2
in [4], Trilogy II), thus changes the sign of the curvature function. We are then back
in the situation of Theorem 2.12.5. �

Definition 2.12.6 By an intrinsic equation of a regular plane curve of class C2 is
meant a function

κ : ]a, b[ −→ R, s �→ κ(s)

giving the relative curvature κ(s) of the curve in terms of the arc length s.



2.13 Closed Curves 105

Example 2.12.7 The intrinsic equation κ(s) = 0 is that of a straight line.

Proof This follows by Example 2.9.4 and Theorem 2.12.4. �

Example 2.12.8 The intrinsic equation κ(s) = k, with k > 0 a constant, is that of a
circle of radius 1

k
.

Proof This follows by Example 2.9.5 and Theorem 2.12.4. �

Example 2.12.9 The intrinsic equation κ(s) = ks, with 0 �= k ∈ R, is that of a
clothoid, also called the spiral of Cornu, the curve depicted in Fig. 2.18.

Proof This curve—where the curvature is proportional to the distance traveled on
the curve—is often used to construct roads: when the road makes a turn, it suffices
to progressively turn the steering wheel at a constant speed.

Choosing the various constants of integration to be 0, a possible equation is thus
obtained via

θ = ks2

2
and thus

f (s) =
(∫ s

0
cos

ks2

2
ds,

∫ s

0
sin

ks2

2
ds

)
.

The integrals of the functions cosx2 and sinx2 do not admit expressions in terms of
elementary functions. �

2.13 Closed Curves

Up to now, we have essentially considered results valid at a given point of the curve:
the tangent, the curvature, and so on. These are local results, that is, the result is
not affected when restricting the parametric representation to a neighborhood of the
point considered. In this section, we begin the study of a global result, the so-called
Umlaufsatz: a result which makes sense only when one considers the full curve.

Definition 2.13.1 By a closed curve is meant a curve admitting a periodic function

f : R −→ R
2

as parametric representation.

Thus if ω is a period of the function, we have f (a) = f (a + ω) for each value
a ∈ R. Of course given a period of length ω, any quantity kω, with k a strictly
positive integer, is a period as well. As usual, we are mainly interested in the smallest
period.
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Fig. 2.22

Fig. 2.23

Example 2.13.2 The circle with parametric equation

f : R −→R
2, θ �→ (R cos θ,R sin θ)

is a closed curve with minimal period 2π (see Fig. 2.22).

Proof The result is obvious. Consider the following experiment (we repeat this for
various curves below, anticipating the Umlaufsatz): place your hand on Fig. 2.22,
representing the tangent vector to the circle with your forefinger. Move around the
circle, keeping your forefinger tangent to the curve. If you go around the whole
circle your arm will be badly twisted a full turn! �

Example 2.13.3 The Limaçon of Pascal is the curve admitting the parametric rep-
resentation

f : R −→ R
2, θ �→ (cos θ + cos 2θ, sin θ + sin 2θ).

This is a closed curve with minimal period 2π (see Fig. 2.23).

Proof Again, this is immediate to check. Try the same experiment with your forefin-
ger as in Example 2.13.2. If you succeed, you could confidently begin a promising
career as a contortionist! Indeed, to follow the full curve with your forefinger re-
maining tangent to the curve, you would have to fully twist your arm twice! (And
do not cheat: do not walk around the table: stay seated on your chair!) �



2.13 Closed Curves 107

Fig. 2.24

Example 2.13.4 The lemniscate of Bernoulli is the curve with parametric represen-
tation

f : R −→ R
2, t �→

(
sin t

1 + cos2 t
,

sin t · cos t

1 + cos2 t

)
.

This is a closed curve with minimal period 2π (see Fig. 2.24).

Proof Once more the result is immediate. But if you try the experiment of Exam-
ple 2.13.2 with your forefinger, you will realize that you can easily follow the full
curve as many times as you wish. Only boredom can stop you. The point is now
that every time that you twist your arm when following one “loop” of the curve, you
untwist it when following the second loop. After traveling along a full period of the
curve, you arm and your forefinger are back in their original positions. �

The Umlaufsatz (the “rotation theorem”) is a result which gives a formula for
counting the number of times that you will twist your arm, along a period of the
curve, when performing the experiment of Example 2.13.2.

Theorem 2.13.5 (Umlaufsatz) Consider a regular closed curve of class C2 repre-
sented by the function

f : R −→ R
2, t �→ f (t)

which is periodic with minimal period ω. Write

fω : [a, a + ω] −→R
2, a ∈R

for the restriction of f to an arbitrary period and κ(t) for the curvature. Then

1

2π

∫

fω

κ

is an integer, independent of the choice of a. This integer is called the rotation num-
ber of the closed curve. For every a ∈R, it is also equal to the quantity

1

2π

(
θ(a + ω) − θ(a)

)

where θ(t) is an angular function of the curve (see Corollary 2.12.2).
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Proof We consider the change of parameter

s = σ(t) =
∫ t

t0

∥
∥f ′∥∥

for some arbitrary origin t0 ∈ R. It follows that f = f ◦σ is a normal representation
(see Proposition 2.8.2). We write κ(s) for the curvature expressed as a function of
the arc length s.

We shall also use our Lemma 2.12.2: writing θ(s) for the angle between the
x-axis and the vector f

′
(s), one has κ(s) = ±θ ′(s).

The usual formula for curve integrals then yields

∫

fω

κ =
∫ a+ω

a

κ(t)
∥∥f ′(t)

∥∥dt

=
∫ a+ω

a

κ
(
σ(t)

)
σ ′(t) dt

=
∫ σ(a+ω)

σ(a)

κ(s) ds

= ±
∫ σ(a+ω)

σ(a)

θ ′(s) ds

= ±[θ(s)
]σ(a+ω)

σ(a)

= ±(θ(σ(a + ω)
)− θ

(
σ(a)

))

= 2kπ.

The last equality holds by periodicity of f : the tangent vectors at f (a) and f (a +
ω) are the same, thus the corresponding angles with the x-axis are equal “up to a
multiple of 2π”. �

Corollary 2.13.6 Consider a closed regular curve of class C2 represented by the
function

f : R −→ R
2, t �→ f (t)

which is periodic with minimal period ω. The rotation number of the curve is equal
to

1

2π

∫ ω

0

f ′
1f

′′
2 − f ′

2f
′′
1

f ′
1

2 + f ′
2

2
.
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Proof Going back to the proof of Theorem 2.13.5, we have

1

2π

∫

fω

κ = 1

2π

∫ ω

0
κ(t)

∥∥f ′(t)
∥∥dt = 1

2π

∫ ω

0

f ′
1f

′′
2 − f ′

2f
′′
1

f ′
1

2 + f ′
2

2

(see Proposition 2.9.11). �

Example 2.13.7 Applying Proposition 2.13.5 to the examples above, one finds as
rotation numbers:

• ±1 in the case of the circle;
• ±2 in the case of the limaçon;
• 0 in the case of the lemniscate.

Proof In the case of the circle, we have

f ′(t) = (−R sin t,R cos t)

thus ‖f ′‖ = R while κ = 1
R

by Example 2.9.5. It follows that

1

2π

∫

f ω

κ = 1

2π

∫ 2π

0
κ(t)

∥∥f ′(t)
∥∥dt = 1

2π

∫ 2π

0

R

R
= 1.

In the case of the Limaçon, the formula in Corollary 2.13.6 reduces to

1

2π

∫ 2π

0

9 + 6 cos θ

5 + 4 cos θ
dθ = 1

2π
· 4π = 2.

Indeed, a routine calculation shows that the indefinite integral involved in this for-
mula is given by

3θ

2
+ arctan

(
1

3
tan

θ

2

)
.

Applying Corollary 2.13.6 to the case of the lemniscate leads to lengthy calcula-
tions. However, observing that the parametric representation f of Example 2.13.4
is such that f (−t) = −f (t), we get at once that

∫ 0

−π

f ′
1f

′′
2 − f ′

2f
′′
1

(f ′
1)

2 + (f ′
2)

2
= −

∫ π

0

f ′
1f

′′
2 − f ′

2f
′′
1

(f ′
1)

2 + (f ′
2)

2

from which
∫ π

−π

f ′
1f

′′
2 − f ′

2f
′′
1

(f ′
1)

2 + (f ′
2)

2
= 0.

Of course changing the orientation (i.e. introducing the change of variable t ′ =
−t) changes the sign of the rotation number. �
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2.14 Piecewise Regular Curves

Up to now in this book, we have essentially worked with regular curves (see Defi-
nition 2.2.1) defined on generalized open intervals. However, there are non-regular
curves of great interest in geometry, such as the perimeter of a triangle, of a square,
of an arbitrary polygon. Of course we can also imagine “curve polygons”, that is,
polygons whose sides are no longer straight lines, but arbitrary regular curves.

Doing this will in particular force us to consider the various “sides” of the curve
polygon, each of which we shall rather naturally assume to be a “regular curve”. But
each such side—joining two vertices A and B of the curve polygon—should now
be a curve defined on a closed interval:

f : [a, b] −→ R
2, f (a) = A, f (b) = B.

The continuity of such a mapping is just a special case of the general notion of
continuity (see Definition A.8.1). By a trivial adaptation of the proof of Proposi-
tion A.4.1, this reduces to the usual continuity of f at each point a < t < b together
with the usual right and left continuity of f at a and b, that is

f (a) = lim
t→a,t>a

f (t), f (b) = lim
t→b,t<b

f (t).

Analogously, the differentiability of f means its usual differentiability for each a <

t < b together with the usual left and right differentiability of f at a and b, that is,
the existence of

f ′(a) = lim
t→a,t>a

f (t) − f (a)

t − a
, f ′(b) = lim

t→b,t<b

f (t) − f (b)

t − b
.

When f ′ itself is continuous on [a, b], one says that f is of class C1 on [a, b].
Iterating these definitions yields the notion of a function of class Ck on [a, b]. Of
course f is called regular when it is of class C1 and f ′(t) �= 0 for all a ≤ t ≤ b.

Definition 2.14.1 A parametric representation of a piecewise regular plane curve
of class Ck is a continuous locally injective function C0

f : [a, b] −→R
2, t �→ f (t), a, b ∈ R;

together with finitely many values a = a0 < a1 < · · · < an < an+1 = b of the pa-
rameter such that f is regular of class Ck on each interval [ai, ai+1].

The points f (ai), i = 1, . . . , n, are called the corners of the piecewise regular
curve; the pieces of curve

f : [ai, ai+1] −→ R
2

are called the sides of the piecewise regular curve.
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Fig. 2.25

The term vertex is sometimes preferred to the term corner in Definition 2.14.1, in
particular in the case of curve polygons. Our choice intends to avoid any ambiguity
with another totally different but still very classical notion of vertex of a curve,
studied in Sect. 2.17.

Figure 2.25 shows an example of a piecewise regular curve. Under the conditions
of Definition 2.14.1 it is common practice to write

f0 : ]a, a1] −→R
2, fi : [ai, ai+1] −→R

2, fn : [an, b[ −→R
2

for the various restrictions of f to the sub-intervals. It is also common practice to
simply write

f ′
i−1(ai) = lim

t→ai , t<ai

f (t) − f (ai)

t − ai

, f ′
i (ai) = lim

t→ai , t>ai

f (t) − f (ai)

t − ai

for the left and right derivatives of f at ai .
Let us first clarify a few points:

Definition 2.14.2 By a normal representation of a piecewise regular curve is meant
a parametric representation whose restriction to each side is normal, that is, with the
notation above, ‖f ′

i (t)‖ = 1 for all i and t .

Lemma 2.14.3 Every piecewise regular curve admits normal representations.

Proof This follows at once from Proposition 2.8.2. The continuity of the represen-
tation forces the behaviour at each corner. �

Definition 2.14.4 By a closed piecewise regular curve is meant a closed curve
which is piecewise regular on each period.

Thus the requirement here is that there are only finitely many corner in a period.
Of course in Definition 2.14.4, it is equivalent to assume that the curve is piecewise
regular on one specified minimal period [a, a + ω], provided a corresponds to a
corner.
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Fig. 2.26

Definition 2.14.5 With the notation indicated above, the exterior angle at ai of a
piecewise regular plane curve as in Definition 2.14.1 is the angle between the vector
f ′

i−1(ai) and the vector f ′
i (ai).

It should be clear that the sign of an exterior angle at some corner of a piecewise
regular plane curve is not an intrinsic property of the curve: a change of parameter
t ′ = −t in Definition 2.14.5 trivially results in changing the sign of all exterior
angles (see Fig. 2.26).

We shall now generalize the Umlaufsatz (see Proposition 2.13.5) to the case of
closed piecewise regular curves.

Definition 2.14.6 Consider a piecewise regular plane curve c(s) of class C2, given
in normal representation. An angular function for this curve consists of an angular
function θi on each side of the curve, defined in such a way that at each corner c(si),
the corresponding external angle αi remains given by

αi = θi(si) − θi−1(si).

Lemma 2.14.7 Consider a piecewise regular plane curve c(s) of class C2 given in
normal representation. This curve admits an angular function. Two angular func-
tions differ by a constant multiple of 2π .

Proof By Proposition 7.10.1, on each side we have infinitely many possible angular
functions, one for each multiple of 2π . Fixing the value of θi at one point thus fixes
its value on the whole side. Choose arbitrarily θi0 on an arbitrarily chosen side of
the curve. Then proceed side by side, using the requirement

αi = θi(si) − θi−1(si)

to fix the initial value of the function θi when passing from one side to the next. �

Theorem 2.14.8 (Umlaufsatz) Consider a closed piecewise regular curve of class
C2 given in normal representation by a function

f : R −→ R
2, s �→ f (s).
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Consider a minimal period of this function, defined on an interval

a0 < a1 < · · · < an−1 < an

with f (a0) = f (an) and the various f (ai) the corners of the piecewise curve. Write
further

• κ(s) for the curvature at each point of class C2;
• αi for the exterior angle of the curve (see Definition 2.14.5) at the corner f (ai).

Under these conditions the quantity

1

2π

(
n−1∑

i=0

∫ ai+1

ai

κ(s) ds +
n−1∑

i=0

αi

)

is an integer called the rotation number of the piecewise regular closed curve. Writ-
ing θ for an angular function of the curve (see Corollary 2.12.2), the rotation num-
ber is also equal to

1

2π

n−1∑

i=0

(
θ(ai+1) − θi(ai)

)+
n−1∑

i=0

αi.

Proof Adopting the convention following Definition 2.14.1, we write θi(s) for the
angle between the x-axis and f ′

i (s). Of course, each such function θi is a priori
defined up to a multiple of 2π . As a convention, we fix θi(ai) ∈ [0,2π[; this forces,
by the required continuity of θi , the value of θi(s) on the whole interval [ai, ai+1].
In particular, θi(ai+1) is—up to a multiple of 2π—the angle between f ′

i (ai+1) and
the x-axis. The external angle αi at the point f (ai) thus has the form

θi(ai) − θi−1(ai) + 2kiπ.

We know by Lemma 2.12.2 that θ ′(s) = κ(s) at all points of class C2. Therefore,
since the integral on a closed interval is the same as on the corresponding open
interval,

∫ ai+1

ai

κ(s) ds =
∫ ai+1

ai

θ ′
i (s) ds = θi(ai+1) − θi(ai).

Summing all these equalities we obtain

n−1∑

i=0

∫ ai+1

ai

κ(s) ds = −
n−1∑

i=0

(
θi(ai) − θi−1(ai)

)= −
n−1∑

i=0

αi + 2kπ

where in this formula we have used the notation θ0 = θn. This proves the announced
result. �
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Fig. 2.27

2.15 Simple Closed Curves

The simple closed curves are those closed curves which “do not intersect them-
selves”:

Definition 2.15.1 A simple closed curve is a closed curve admitting a periodic
parametric representation which, restricted to a minimal period, is injective.

Clearly, this definition means that if

f : R −→ R
2

is a periodic parametric representation with minimal period ω, then f is injective on
each interval [a, a +ω[. Of course the circle is a simple closed curve, but the closed
curves of Figs. 2.23 and 2.24 are not simple.

Our considerations concerning the Umlaufsatz and the rotation number in
Sect. 2.13 probably convince you that the rotation number of a simple closed curve
is necessarily ±1 (the sign depends on proceeding clockwise or counter-clockwise
along the curve). This is indeed true, but rather hard to establish. Here is the idea of
the proof.

Imagine (see Fig. 2.27) that you have modeled the simple closed curve using
some rope, set down on your table. Your intuition of what a simple closed curve is
suggest that smoothly, continuously, you can modify the shape of the rope—paying
attention to maintain all the time a simple closed curve—eventually obtaining a cir-
cle of radius R. A continuity argument should then imply that the curvature of the
varying curve varies continuously during the whole process. Therefore by the Um-
laufsatz (see Proposition 2.13.5), the rotation number of this varying curve should
also vary continuously. But since the rotation number is an integer, the only way
for it to vary continuously is to remain constant. Thus the rotation number of the
original curve should be equal to the rotation number of the circle that you have
eventually obtained: it is thus equal to ±1, by Example 2.13.7. This argument is
certainly intuitive and convincing, but the difficulty is to express mathematically
how to continuously transform an arbitrary simple closed curve into a circle! Our
proof of Theorem 2.15.2 is very close to the original proof of Hopf (see [14]).

Theorem 2.15.2 (Hopf) The rotation number of a plane, closed, simple, and piece-
wise regular curve of class C2 is equal to ±1.
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Fig. 2.28

Proof For the sake of clarity, let us split the proof into several steps.

Step 1: Choice of a basis

The support C of the curve contains infinitely many points and only finitely many
corners. We can thus choose a straight line � intersecting the curve C at a point Q

but not containing any corner of it. Let us first observe that the intersection C ∩ � is
compact.

C is the continuous image, by a periodic parametric representation, of a closed
interval corresponding to a period (see Definition 2.13.1). It is thus compact by
Proposition A.8.3. In particular, C is contained in some closed ball B(P, r) (see
Definition A.3.1). In C∩d , we can thus equivalently replace � by the closed segment
�′ = � ∩ B(P, r), which is compact. Thus

C ∩ � = C ∩ �′

is compact as an intersection of two compact (i.e. bounded, closed) subsets.
Consider now the continuous function

d(Q,−) : C ∩ d −→R, A �→ d(Q,A)

where d indicates the distance. By Corollary A.8.4, this positive function attains a
maximum for some point O ∈ C ∩ �. We choose that point O as the origin of the
axes (see Fig. 2.28). By the maximality property of O , either

• O = Q is the only point in C ∩ �;
• or all the other points of C ∩ � are on the half line of � starting at O and passing

through Q.
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Let us fix a vector −→v with origin O , in the direction of a half line on � which does
not contain any other point of C.

We choose an orthonormal basis (0, e1, e2) of the plane whose origin is the point
O and whose first vector is oriented along the tangent to the curve C at this regular
point O . Moreover there is no loss of generality in assuming further that the curve
is given in “normal representation” f (s), that is, the parameter s is the arc length
along the curve, again with O as origin for the arc lengths. Since ‖f ′(0)‖ = 1, we
have f ′(0) = ±e1 and we choose further the orientation of e1 to get the sign +:
f ′(0) = e1. The considerations of Sect. 2.8 indicate that ‖f ′(s)‖ = 1 at each regular
point; these arguments extend immediately to the left and right derivatives at each
corner.

Step 2: A “star-shaped” subset of R2

Again because the support C of the curve is compact and the “length function”
from the origin O is continuous, this function reaches a maximum ω after a period
(see Corollary A.8.4). Thus the closed curve has bounded length ω ∈ R. The various
corners of the curve are obtained for some values si

0 < s1 < · · · < sn < ω

of the parameter.
We consider first the following subset of R2

S = {
(u, v) ∈R

2
∣
∣0 ≤ u ≤ v ≤ ω, ∀i (u, v) �= (si , si)

}
.

Observe that (0,ω) ∈ S because O is a regular point.
Let us observe that S is “star-shaped” with respect to (0,ω), that is, if (u, v) ∈ S ,

then all points of the segment joining (0,ω) to (u, v) are still in S . Such a point has
the form

(0,ω) + t
(
(u, v) − (0,ω)

)
, 0 ≤ t ≤ 1.

The assumptions on u, v, t imply at once

0 ≤ tu ≤ tv ≤ (1 − t)ω + tv = ω − t (ω − v) ≤ ω.

On the other hand

(0,ω) + t
(
(u, v) − (0,ω)

)= (si , si)

would imply

tu = si = ω + t (v − ω)

that is

t (u − v) = ω(1 − t).

Since t ≥ 0, 1 − t ≥ 0, u − v ≤ 0 while ω > 0, this forces 1 − t = 0, thus t = 1 �= 0
and u = v. But then u = si = v, which is not the case.
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Step 3: A normed continuous function on S

Let us now define a function

ϕ : S −→R
2, ∀(u, v) ∈ S

∥∥ϕ(u, v)
∥∥= 1,

which expresses, for all values (u, v) of the parameter (except possibly at the cor-
ners), the direction of the vector joining f (u) to f (v). More precisely

ϕ(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

f ′(u) if u = v;
−f ′(0) if (u, v) = (0,ω);
f (v)−f (u)

‖f (v)−f (u)‖ otherwise.

Notice that this definition makes perfect sense. Indeed when u = v, by definition of
S this value of the parameter does not correspond to a corner, thus f is regular at that
point and ‖f ′(u)‖ = 1. Since O = f (0) is a regular point as well, ‖f ′(0)‖ = 1. The
form of the first case forces u �= v in the third case; since the curve is simple, this
implies f (u) �= f (v), except if (u, v) = (0,ω): but this is excluded by the second
case. Thus in the third case f (u) �= f (v) and the quotient makes sense; of course, it
is of norm 1.

Let us first prove that this function ϕ is continuous, that is, the three pieces of
the definition—which, separately, are trivially continuous—“glue together” contin-
uously. Of course a pair (u,u) cannot converge to (0,ω) or to a pair (u, v) with
u < v. Thus it suffices to prove the continuity when a pair (u, v) of condition 3
converges to a pair in conditions 1 or 2 of the definition of ϕ.

It is a straightforward variation on the definition of a derivative to observe that

lim
(u,v)→(w,w)

u<v

f (v) − f (u)

‖f (v) − f (u)‖ = f ′(w)

‖f ′(w)‖

and

lim
(u,v)→(w,w)

u>v

f (v) − f (u)

‖f (v) − f (u)‖ = − f ′(w)

‖f ′(w)‖ .

Since we are in normal representation, we get at once, for (w,w) ∈ S

lim
(u,v)→(w,w)

u<v

f (v) − f (u)

‖f (v) − f (u)‖ = f ′(w).

An analogous argument applies when (u, v) converges to (0,ω), but this time the
sign is reversed. Indeed when v converges to ω, considering f as a periodic function,
we have

f : R −→ R
2, f (v) = f (v − ω)
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with this time (u, v − ω) converging to (0,0). Since

lim
(u,v)→(0,ω)

u<v

f (v) − f (u)

‖f (v) − f (u)‖ = lim
(u,v−ω)→(0,0)

u>v−ω

f (v − ω) − f (u)

‖f (v − ω) − f (u)‖

we get

lim
(u,v)→(0,ω)

u<v

f (v) − f (u)

‖f (v) − f (u)‖ = −f ′(0).

But in fact, ϕ is of class C1. Of course again, by differentiability of f , the function
ϕ is of class C1 at all points in case 3 of its definition.

When (u, v) as in the third case converges to a point (w,w) as in the first case,
we know that when u, v are sufficiently close to w, f (v)−f (u) is parallel to f ′(w′)
for some u < w′ < v (see Proposition 2.4.5). Since we are in normal representation,
this implies

ϕ(u, v) = f (v) − f (u)

‖f (v) − f (u)‖ = f ′(w′).

As a consequence the limit of the derivative when (u, v) converges to (w,w), and
thus when w′ converges to w, will simply be f ′′(w). This is also the derivative of
ϕ along the diagonal (i.e. the first case). As above, an analogous argument (up to a
change of sign) holds for the limit to (0,ω).

Step 4: Trigonometric form of the function ϕ

At each point (u, v) ∈ S we have ‖ϕ(u, v)‖ = 1. It follows that

ϕ(u, v) = (
cos θ(u, v), sin θ(u, v)

)

for some angle θ(u, v). Of course such an angle is only defined up to a multiple
of 2π . The present crucial step of the proof consists of showing that a continuous
choice of θ can be made. This is essentially the formalization of the intuitive conti-
nuity argument described at the beginning of this section. This is also an extension
of Lemma 2.12.1 to the case of a function ϕ(u, v) with two variables.

Let us keep the notation θ for the angle above, defined up to a multiple of 2π .
We shall write Θ for the corresponding continuous function that we are looking for.
Let us first notice that

ϕ(0,ω) = −f ′(0) = −e1 = (−1,0).

Let us then choose Θ(0,ω) = π as “initial condition”.
Now fix a point (u, v) �= (0,ω) in S . The function

τ : [0,1] −→ R
2, t �→ ϕ

(
(0,ω) + t (u, v)

)

is continuous. Using instead the notation

(ut , vt ) = (0,ω) + t (u, v),
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by Lemma 2.12.1 we obtain a continuous function Θ(ut , vt ) defined on the interval
joining (0,ω) to (u, v) and such that

ϕ(ut , vt ) = τ(t) = (
cosΘ(ut , vt ), sinΘ(ut , vt )

)
.

But this defines the function Θ on the whole of S and it remains to prove its conti-
nuity.

Let us fix a point (u, v) ∈ S and a “small” real number ε > 0 (it will appear
eventually that “small” should mean ε < π

7 ). Since a closed segment is compact, the
function Θ is in fact uniformly continuous on the ray joining (0,ω) to (u, v) (see
Theorem A.4.2). By uniform continuity of Θ , there exists a δ > 0 such that for two
points of the ray

∥∥(u1, v1) − (u2, v2)
∥∥≤ δ =⇒ ∣∣Θ(u1, v1) − Θ(u2, v2)

∣∣≤ ε.

The open balls B((ui, vi), δ) cover the ray, which is compact. Thus a finite number
of them already suffices to cover this ray (see Sect. A.3).

But in R
2, if a finite number of open balls covers a segment, a whole open rect-

angle admitting the segment as median line is still contained in these balls (see
Fig. 2.29). Let us write w for the width of this rectangle; we thus have w

2 ≤ δi ≤ δ

for each index i. Let us put

δ = min

{
δ,

w

2

}
.

We shall prove that given a point (u, v) ∈ S such that
∥∥(u, v) − (u, v)

∥∥≤ δ

then
∥∥Θ(u,v) − Θ(u,v)

∥∥≤ ε.
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This will prove the continuity of Θ .
Notice first that by choice of δ,

∥∥θ(u, v) − θ(u, v)
∥∥≤ ε

that is
∥∥Θ(u,v) − Θ(u,v)

∥∥= 2kπε, |ε| < ε

for some integer k. We therefore need to prove that k = 0.
To that end, consider first a point (u′, v′) on the segment joining (0,ω) and (u, v)

and a point (u′′, v′′) ∈ S such that
∥∥(u′′, v′′)− (

u′, v′)∥∥< δ.

We know that

(
u′, v′) ∈ B

(
(ui, vi), δi

)
,

(
u′′, v′′) ∈ B

(
(uj , vj ), δj

)

for some indices i and j . Comparing these points with the centers of the correspond-
ing balls, this forces

∣∣θ
(
u′, v′)− θ(ui, vi)

∣∣≤ 2ε,
∣∣θ
(
u′′, v′′)− θ(uj , vj )

∣∣≤ 2ε.

On the other hand
∥∥(ui, vi) − (uj , vj )

∥∥≤ ∥∥(ui, vi) − (
u′, v′)∥∥+ ∥∥(u′, v′)− (

u′′, v′′)∥∥

+ ∥
∥(u′′, v′′)− (uj , vj )

∥
∥

≤ 3δ.

By uniform continuity of Θ on the ray, this forces
∥∥θ(ui, vi) − θ(uj , vj )

∥∥≤ 3ε.

Together these inequalities yield
∥∥θ
(
u′′, v′′)− θ

(
u′, v′)∥∥≤ 7ε.

We now consider the function

ψ(t) = Θ
(
(0,ω) + t

(
(u, v) − (0,ω)

))− Θ
(
(0,ω) + t

(
(u, v) − (0,ω)

))
.

Since Θ is continuous on both “rays” through (u, v) and (u, v), the two terms are
continuous in t and thus ψ is a continuous function of t .

Observe next that
∥∥((0,ω) + t

(
(u, v) − (0,ω)

))− (
(0,ω) + t

(
(u, v) − (0,ω)

))∥∥
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= ∥∥t
(
(u, v) − (u, v)

)∥∥

≤ ∥∥(u, v) − (u, v)
∥∥

≤ δ.

Since the two points

(0,ω) + t
(
(u, v) − (0,ω)

)
, (0,ω) + t

(
(u, v) − (0,ω)

)

are at a distance less than δ apart, with the first one on the ray from (0,ω) to (u, v),
we know already that

∥∥θ
(
(0,ω) + t

(
(u, v) − (0,ω)

))− θ
(
(0,ω) + t

(
(u, v) − (0,ω)

))∥∥≤ 7ε < π

since we started with a sufficiently small ε.
This last inequality can be rephrased by saying that for each t

∣∣ψ(t)
∣∣= 2ktπ + εt ,

∣∣ε′
t

∣∣< π

for some integer kt . But by continuity, since |εt | < π , the integer kt is constant.
When t = 1 we find

ψ(1) = Θ(u,v) − Θ(u,v) = 2kπ + ε.

Thus kt = k for all values of t . But

ψ(0) = Θ(0,ω) − Θ(0,ω) = 0.

This proves that k0 = 0 thus k = 0.

Step 5: Θ(ω,ω) − Θ(0,0) = ±2π

Consider 0 < s < ω. By choice of the vector −→v in Step 1,
−−−−→
O f (s) = −−−−−−→

f (ω)f (s)

cannot be in the direction of the vector −→v . Thus ϕ(s,ω), which is in the direction
of

−−−−−−→
f (s)f (ω), cannot possibly be the vector −−→v . Thus when s varies in ]0,ω[,

Θ(s,ω) never crosses the direction of −−→v and therefore, one always has
∣
∣Θ(s,ω) − Θ(0,ω)

∣
∣< 2π

and thus by continuity of Θ

∣
∣Θ(ω,ω) − Θ(0,ω)

∣
∣≤ 2π.

But by definition of ϕ and Θ ,

Θ(0,ω) = π, ϕ(ω,ω) = f ′(ω) = e1, Θ(ω,ω) = 2kπ.

Putting together these two requirements, we obtain

Θ(ω,ω) = 0 or Θ(ω,ω) = 2π.
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In other words

Θ(ω,ω) − Θ(0,ω) = ±π.

In a completely analogous way, one proves that

Θ(0,ω) − Θ(0,0) = ±π.

An important point is to observe that in both cases, the same sign must be chosen.
Indeed

Θ(t,ω) − Θ(0,ω)

represents the angle from the vector −e1 to the vector −−−−−→
O f (s) while

Θ(0, t) − Θ(0,0)

represents the angle from the vector e1 to the vector
−−−−→
O f (s): these two angles are

equal.
It then remains to compute

Θ(ω,ω) − Θ(0,0) = (
Θ(ω,ω) − Θ(0,ω)

)+ (
Θ(0,ω) − Θ(0,0)

)= ±2π.

Step 6: The external angles

Our next concern is to express the external angles αi in terms of the continuous
function Θ . By Definition 2.14.5 and using its notation, the external angle αi is that
between

f ′
i1
(si) and f ′

i (si).

By Step 3 and the continuity of f ′
i and fi−1, this is the same as the angle between

f ′
i−1(si) = lim

s→si ,s<si
f ′

i−1(si) = lim
s→si ,s<si

ϕ(s, s)

and

f ′
i (si) = lim

s→si ,s>si
f ′

i (si) = lim
s→si ,s>si

ϕ(s, s).

Since these limits exist and the inverse trigonometric functions are continuous, the
limits

Θi−1(si , si) = lim
s→si ,s<si

Θ(s, s), Θi(si , si) = lim
s→si ,s>si

Θ(s, s)

exist as well and we have

αi = Θi(si, si) − Θi−1(si , si) + 2kiπ

because Θi(si, si) and Θi−1(si , si) are equal—up to a multiple of 2π—to the angles
between the x-axis and f ′

i (si), f ′
i−1(si). Our aim in this step is to prove that

αi = Θi(si, si) − Θi−1(si , si)
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that is, ki = 0.
To achieve this, for sufficiently small ε > 0, consider the triangle whose vertices

are

f (si − ε), f (si), f (si + ε)

(see Fig. 2.30). We assume that when running along the triangle, following the order
in which these vertices have been introduced, the external angles are positive; an
analogous proof holds in the other case. Notice that there is no loss of generality in
assuming that we can always choose ε to be arbitrarily small so that the three points
constitute an actual triangle: otherwise the external angle at si would be 0 and the
point f (si) would be regular: we could thus avoid treating it as a corner.

We write β−
i (ε), βi(ε) and β+

i (ε) for the corresponding (positive) interior angles
of the triangle; for short, let us for now simply write β−, β,β+ for these angles. Let
us write further

Θ(si − ε, si) = τ + 2rπ, Θ(si, si + ε) = γ + 2pπ,

Θ(si − ε, si + ε) = δ + 2qπ

with

τ, γ, δ ∈ ]−π,+π[, p, q, r ∈ Z.

Observe that

β− + β + β+ = π, β− = δ − τ, γ + β − τ = π

from which

β+ = π − β− − β = π − δ + τ − β = γ − δ.

This proves that

Θ(si, si + ε) − Θ(si − ε, si + ε) = β+ + 2mπ.
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By continuity of Θ , when ε is chosen sufficiently small, the difference
∣∣Θ(si, si + ε) − Θ(t, si + ε)

∣∣

can be made arbitrarily small, thus in any case strictly smaller than π . This forces
m = 0. This proves that

Θ(si, si + ε) − Θ(t, si + ε) = β+.

Analogously one proves that

Θ(si − ε, si + ε) − Θ(si − ε, si) = β−.

Putting these equalities together yields

Θ(si, si + ε) − Θ(si − ε, si) = β+ + β− = π − β.

Switching back to the more precise notation, we have trivially

lim
ε→0

βi(ε) = π − αi.

This indicates that

lim
ε→0

Θ(si, si + ε) − lim
ε→0

Θ(si − ε, si) = π − lim
ε→0

βi(ε),

that is

Θi(si, si) − Θi−1(si , si) = αi.

Step 7: Conclusion of the proof

The curve that we consider is periodic, with first corner at s1 and last corner at
sn; as usual, to make the formulas easier to write down, we take f (sn) as “the corner
f (s0)” starting a new period. In other words, we introduce the convention s0 = sn
and analogously, Θ0 = Θn.

The conclusion follows immediately from the proof of Theorem 2.14.8 and the
various steps of the present proof. Indeed

n∑

i=1

∫ si+1

si

κ +
n∑

i=1

αi

=
∫ s1

0
κ +

n−1∑

i=1

∫ si+1

si

κ +
∫ ω

sn

κ +
n∑

i=1

αi

=
∫ s1

0
Θ ′

0(s, s) +
n−1∑

i=1

∫ si+1

si

Θ ′
i (s, s) +

∫ ω

sn

Θ ′
n(s, s) +

n∑

i=1

αi
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= (
Θ0(s1, s1) − Θ(0,0)

)+
n−1∑

i=1

(
Θi(si+1, si+1) − Θi(si, si)

)

+ (
Θ(ω,ω) − Θn(sn, sn)

)+
n∑

i=1

(
Θi(si+1, si+1) − Θi(si, si)

)

= Θ(ω,ω) − θ(0,0)

= ±2π

and this forces the conclusion. �

Let us emphasize a special case of interest:

Definition 2.15.3 A polygon is a simple, closed, piecewise regular plane curve of
class C∞ all of whose sides are segments of straight lines (see Definition 2.14.1).

Of course we get at once (even if in this particular case, easier proofs can be
given):

Proposition 2.15.4 The sum of the exterior angles of a polygon equals 2π .

Proof This follows by Theorems 2.14.8, 2.15.2 and Example 2.9.4. �

Certainly everybody knows that:

Corollary 2.15.5 A polygon has at least three sides.

Proof Since the sides are segments of straight lines, an exterior angle equal to π

would mean that the two sides at the corresponding corner are superposed; this
would contradict the simplicity of the curve. But if each exterior angle is strictly
less than π , at least three of them are necessary to reach a sum of 2π . �

Of course when one switches to “curve polygons”, that is, piecewise regular sim-
ple closed curves, Corollary 2.15.5 no longer holds true (see Fig. 2.31 for curve
polygons with one or two sides). Notice also that curve polygons can also very well
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have zero interior angles, that is, the two consecutive sides are tangent at their com-
mon corner.

Later (see Sect. 7.11) we shall remark upon the properties of simple closed curves
in the spirit of the Jordan curve theorem (see Theorem 7.11.3).

2.16 Convex Curves

We adopt the following definition:

Definition 2.16.1 A regular plane curve is convex when, at each point, it lies en-
tirely on one side of the tangent to that point.

Trivially:

Example 2.16.2 An ellipse, a parabola and a branch of a hyperbola are all con-
vex curves. But the Limaçon of Pascal (see Example 2.13.3), the lemniscate (see
Example 2.13.4) and the curve y = x3 are not convex.

Lemma 2.16.3 Consider a simple, closed, convex regular plane curve which lies
entirely on one side of some line �. When the curve contains two distinct points of �,
the whole segment joining these two points is entirely contained in the curve.

Proof Write f (s) for a normal parametric representation of the curve and assume
that two distinct points f (s′) and f (s′′) are on the line �. If the segment joining
f (s′) and f (s′′) is not entirely contained in the support of the curve, choose a point
P on this segment which is not on the curve. The line �⊥ through P , perpendicular
to the segment, determines two open half planes which we write as P ′ and P ′′. The
curve has points in these two half planes, namely, the extremities f (s′) and f (s′′) of
the segment. The two pieces of the closed curve with extremities these points f (s′)
and f (s′′) are thus continuous lines connecting a point of one half plane to a point
of the other half plane. They must therefore cut the line �. Indeed the continuous
function

f : [s′, s′′]−→ R
2

cannot take values only in P ′ ∪P ′′, otherwise we would have a partition
[
s′, s′′]= f −1(P ′)∪ f −1(P ′′)

of the closed interval [s′, s′′] into two disjoint open subsets, which is impossible (see
Propositions A.4.1 and Lemma A.10.3). An analogous argument holds for the other
arc. Notice that since the curve is simple, the two intersections of the two arcs with
the line �⊥ are necessarily distinct.

So we have at least two intersections of the curve and the line �⊥. As in Step 1 of
the proof of Theorem 2.15.2, we know that there are only finitely many intersection
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points of the curve with �⊥. By assumption, all these points lie on the same side of
the line �. We call f (s) the point which is closest to the line � and f (̃s) the point
which is furthest from d . But then f (s) lies inside the triangle with vertices f (s′),
f (s′′) and f (̃s) (see Fig. 2.32). Thus whatever the line that we draw through f (s),
there are vertices of the triangle on both sides of it. Choosing as line the tangent at
f (s) contradicts the assumption of convexity. �

Theorem 2.16.4 A simple closed regular curve is convex if and only if its relative
curvature has constant sign.

Proof We choose a normal representation

f (s) : [0,ω] −→R
2

where ω is the minimal period of the curve. There is no loss of generality in as-
suming that we are working in an orthonormal basis (O, e1, e2) with O = f (0) and
e1 = f ′(0). We consider the angular function θ of Corollary 2.12.2.

Assume first that the curve is convex. We know that the derivative of a monotone
function has constant sign. Since κ = θ ′, to prove that κ has constant sign it suffices
to prove that θ is monotone. (To be precise, let us make clear that we call a func-
tion h monotone when a ≤ b implies h(a) ≤ h(b).) Proving monotonicity is clearly
equivalent to proving, for s1 < s2

θ(s1) = θ(s2) =⇒ θ(s) is constant on [s1, s2].
Let us fix two such points s1, s2.

Since the curve is simple and closed, by Theorem 2.15.2 its rotation number is
±1; thus by the Umlaufsatz (see Theorem 2.13.5)

±2π =
∫ ω

0
κ(s) ds =

∫ ω

0
θ ′(s) ds = θ(ω) − θ(0).
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Since the variation of θ is 2π on a period, there exists a point s3 where the variation
is only π with respect to the value θ(s1) = θ(s2). Thus

θ(s3) = θ(s2) ± π

and the tangents at these three points are parallel. Of course these three tangents
cannot be three different lines, otherwise the curve would be on both sides of the
one which is between the other two; this would contradict the convexity of the curve.
Thus at least two of these three tangents coincide. Let s′, s′′ ∈ {s1, s2, s3} be the two
values yielding the same tangent. Since f (s′) and f ′(s′′) are on this tangent, the
common tangent is the line d through these two points. We choose s′ < s′′.

By convexity, the curve is entirely on one side of the tangent d and since
f (s′) �= f (s′′), the whole segment joining these two points lies on the curve (see
Lemma 2.16.3). As a consequence, θ(s) is constant on [s′, s′′]. Since

θ(s3) �= θ(s1), θ(s3) �= θ(s2)

we conclude that s1 = s′ and s2 = s′′. But then θ(s) is constant on [s1, s2] as ex-
pected.

Conversely, assume that the curvature does not change sign; let us say, κ(s) ≥ 0.
If the curve is not convex, there is a point of the curve such that the curve has
points on both sides of the corresponding tangent. There is no loss of generality in
assuming that this is the point that we have chosen as origin of the axis, with the
x-axis as tangent at this point. The curve thus has points on both sides of the x-axis.
This means that the function f2(s), the second component of f , changes sign. As
a continuous function on the interval [0,ω], this function attains a maximum for a
value s = s1 and a minimum for a value s = s2 (see Corollary A.8.4). Of course
since f2 takes both signs

f2(s1) < 0 = f2(0) < f2(s2).

At an extremum, the derivative of f2 is zero. Thus

f ′
2(s1) = 0 = f ′

2(s2).

This proves that f ′(s1) and f ′(s2) are both parallel to e1. So at least two of the
following three vectors are equal

f ′(s1), e1 = f ′(0), f ′(s2).

Let us write s′, s′′ ∈ {s1,0, s2} for two values of the parameter such that the corre-
sponding two tangent vectors are equal. Choose further s′ < s′′.

We have, by Corollary 2.12.2

∫ s′′

s′
κ =

∫ s′′

s′
θ ′ = θ

(
s′′)− θ

(
s′)= 2kπ, k ∈ Z.
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Let us prove that k > 0.
First, k ≥ 0 because κ ≥ 0. On the other hand k = 0 would imply that the integral

above is zero: since the function κ(s) is always positive, this would force κ(s) to be
zero on the whole interval [s′, s′′]. The arc of the curve between f (s′) and f (s′′)
would then be a segment (see Example 2.12.7) and since the tangent at f (s′) and
f (s′′) is horizontal, this would be a horizontal segment. But this would contradict
the inequality f2(s

′) �= f2(s
′′). Thus indeed k �= 0 and therefore k > 0.

Analogously one proves that

θ
(
s′ + ω

)− θ
(
s′′)= 2k′π, k′ > 0.

Adding these equalities we obtain

θ
(
s′ + ω

)− θ
(
s′)= 2

(
k + k′)π.

By Corollary 2.12.2 again, we have

∫ s′+ω

s′
κ =

∫ s′+ω

s′
θ ′ = θ

(
s′ + ω

)− θ
(
s′)= 2

(
k + k′)π

and since the curve is simple and closed, Theorem 2.15.2 forces k + k′ = ±1. This
is a contradiction, since k > 1 and k′ > 1. �

It should be noted that the assumption of being a simple curve is definitely nec-
essary in Theorem 2.16.4. Indeed:

Counterexample 2.16.5 The limaçon of Pascal has a relative curvature with con-
stant sign but is not convex.

2.17 Vertices of a Plane Curve

When considering the ellipse with equation

(
x

a

)2

+
(

y

b

)
= 1

it is common practice to refer to the four points

(±a,0), (0,±b)

as the vertices of the ellipse; analogously the origin of the axes is often called the
vertex of the parabola with equation y = x2 (see Fig. 2.33). Let us give a formal and
general definition of what a vertex of a curve is.

Definition 2.17.1 A vertex of a regular plane curve of class C3 is a point where the
derivative of the relative curvature function vanishes (see Definition 2.9.8).
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Fig. 2.33

Observe first that:

Lemma 2.17.2 In Definition 2.17.1, the notion of vertex is independent of the
choice of the parametric representation of class C3.

Proof Consider two equivalent representations f (t), g(s) as in the statement and
write κ(t), κ̃(s) for the corresponding curvature functions. Let s = ϕ(t) express the
equivalence between f and g. Differentiating the equality

κ(t) = κ̃
(
ϕ(t)

)

we obtain

κ ′(t) = κ̃ ′(ϕ(t)
) · ϕ′(t).

Since moreover

f ′(t) = g′(ϕ(t)
) · ϕ′(t),

by regularity ϕ′(t) �= 0 and thus κ ′ vanishes precisely when κ̃ does. �

Example 2.17.3 The ellipse with equation

(
x

a

)2

+
(

y

b

)
= 1, a > b > 0

admits the four vertices

(±a,0), (0,±b).

Proof Considering the parametric representation of the ellipse as in Example 2.1.4,
the relative curvature is given by (see Proposition 2.9.11)

κ = ab

(a2 sin2 θ + b2 cos2 θ)
3
2

.

The derivative of this function vanishes precisely when the derivative of the expres-
sion between parentheses vanishes, that is

2
(
a2 − b2) sin θ cos θ = 0.

Since a �= b, this is the case precisely when sin θ = 0 or cos θ = 0. �



2.17 Vertices of a Plane Curve 131

Example 2.17.4 The origin is the only vertex of the parabola with equation y = x2.

Proof The parabola admits the parametric representation f (x) = (x, x2). By Propo-
sition 2.9.11, the relative curvature is given by

κ = 2

(1 + 2x2)
3
2

.

The derivative of this function vanishes precisely when

(
1 + 2x2)′ = 4x = 0

that is when x = 0. �

Of course, we also have:

Example 2.17.5 All the points of the circle are vertices.

Proof The curvature is constant (see Example 2.9.5), thus its derivative is every-
where zero. �

Let us conclude this section with a celebrated result concerning vertices:

Theorem 2.17.6 (Four Vertices Theorem) A convex simple regular closed curve of
class C3 admits at least four vertices.

Proof Let us work in normal representation f (s) and assume that the minimal pe-
riod is ω. Since [0,ω] is compact, the relative curvature function admits at least a
maximum and a minimum (see Corollary A.8.4), thus the derivative of the relative
curvature vanishes at at least two points. If the minimum equals the maximum, the
relative curvature is constant, we have a circle (see Example 2.12.8) and all points
are vertices. In that case the result is proved. Let us now assume that the curvature
is not constant.

Up to a possible change of the origin for computing arc lengths, there is no loss
of generality in assuming that the relative curvature reaches its minimal value at
s = 0. Write s0 for a value of the parameter where κ(s) attains its global maximum;
since the relative curvature is not constant, we have 0 < s0 < ω. Up to a possible
translation of the origin, there is also no loss of generality in assuming that f (0) =
(0,0). Up to a possible rotation of the axis, we can further assume that the x-axis
is the line joining f (0) to f (s0). Since κ(0) �= κ(s0), the curve is not contained in
the x-axis as s runs through [0, s0] (see Example 2.9.4); thus there exists a point
0 < s1 < s0 such that f2(s1) �= 0. If f2(s1) < 0, rotate further by an angle π the
system of axes so that in all cases we end up with f2(s1) > 0. Notice that translations
and rotations do not change the orientation, thus do not affect the sign of the relative
curvature.
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The points f (0) and f (s0) are thus on the x-axis: let us prove that no other point
of the curve lies on the x-axis. Indeed if f (s2) is another point of the curve on the x-
axis, we have three points f (0), f (s0), f (s2) on the x-axis: thus one of these points
is between the other two. Let us say, f (s′′) is between f (s′) and f (s′′′). Since the
curve is convex, it is entirely on one side of the tangent at f (s′′). But since f (s′)
and f (s′′′) are on the curve and on both sides of f (s′′) on the x-axis, this forces the
tangent at f (s′′) to be the x-axis itself. This tangent then contains all three points
f (s′), f (s′′), f (s′′′) of the curve, thus the whole segment between f (s′) and f (s′′′)
lies entirely on the curve (see Lemma 2.16.3). But then, again by Example 2.9.4,
the curvature is zero at all three points with parameters s′, s′′, s′′′, thus in particular
at 0 and s0, which is not the case. Thus indeed, the only points of the curve on the
x-axis are f (0) and f (s0).

Since f2(s1) > 0 and the curve does not cross the x-axis between f (0) and f (s0),
we conclude that this portion of the curve is entirely contained in the upper half
plane: thus f2(s) > 0 for all 0 < s < s0. Analogously, the whole portion of the
curve between f (s0) and f (ω) is entirely on one side of the x-axis. But it cannot be
in the upper half plane, otherwise the whole curve would be in the upper half plane
and again by Lemma 2.16.3, the whole segment from f (0) to f (s0) would lie on
the curve. Thus f2(s) < 0 for all s0 < s < ω.

Let us now prove that κ ′(s) must change sign (thus by continuity, must also
vanish) at some other point than s = 0 and s = s0. If not, then κ ′(s) has constant sign
on each interval ]0, s0[ and ]s0,ω[. Thus κ is monotone on each of these intervals.
Since

κ(0) = κ(ω) < κ(s0),

the function κ(s) is increasing on the interval [0, s0] and decreasing on the interval
[s0,ω]. Therefore

κ ′(s) ≥ 0 for 0 ≤ s ≤ s0, κ ′(s) ≤ 0 for s0 ≤ s ≤ ω.

Together with the sign of f2 on these intervals as determined above, we obtain that
κ ′(s)f2(s) ≥ 0 at all points s ∈ [0,ω]. Therefore, integrating by parts,

0 ≤
∫ ω

0
κ ′(s)f2(s) ds = −

∫ ω

0
κ(s)f ′

2(s) ds.

But since f is a normal representation, Propositions 2.9.11 and 2.8.3 yield

κ = f ′
1f

′′
2 − f ′

2f
′′
1 , 0 = f ′

1f
′′
1 + f ′

2f
′′
2 .

It follows that

κf ′
2 = f ′

1f
′
2f

′′
2 − f ′

2
2
f ′′

1 = −f ′
1

2
f ′′

1 − f ′
2

2
f ′′

1 = −f ′′
1

(
f ′

1
2 + f ′

2
2)= −f ′′

1 .

Therefore
∫ ω

0
κ(s)f ′

2(s) ds = −
∫ ω

0
f ′′

1 (s) ds = f ′
1(ω) − f ′

1(0) = 0.
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Putting these results together, we obtain
∫ ω

0
κ ′(s)f2(s) ds = 0.

This forces κ ′(s)f2(s) = 0 for all s ∈ [0,ω]. Since f2(s) �= 0 except for s = 0 and
s = s0, this forces κ ′(s) = 0 on the whole interval [0,ω], that is, κ(s) is a constant.
We have already treated and excluded this case. This contradiction implies that there
is indeed at least a third point s3 where κ ′(s) changes sign.

But s = s0 corresponds to a local minimum of κ(s): thus κ ′(s) changes sign at
s = 0, passing from negative to positive. Analogously κ(s0) is a local maximum,
thus κ ′(s) changes sign at s = s0, passing from positive to negative. If 0 < s3 < s0,
then since κ ′ changes sign at s = s3, it becomes negative on one side of s3 and since
it must be positive when approaching 0 or s0, it must change sign a second time
in the interval ]0, s0[ to become positive again. In that case we have found a fourth
point 0 < s4 < s0 where κ ′(s) = 0. An analogous argument holds if s0 < s3 < ω. �

2.18 Problems

2.18.1 Two equivalent parametric representations of class C0 of a plane curve have
the same orientation when the corresponding change of parameter is a strictly in-
creasing function. Prove that this is an equivalence relation, yielding two equiva-
lence classes. Give an example showing that this result no longer holds when one
allows arbitrary open subsets in Definition 2.1.2.

2.18.2 Up to an appropriate choice of affine basis, in a neighborhood of a regular
point, a curve of class C1 can always be presented as the graph of a continuous
function with the tangent as x-axis.

2.18.3 Prove that the envelope of the family of circles of fixed radius r , centered
on a circle of radius R �= r , is constituted of two circles.

2.18.4 Show that the locus of intersection points of the pairs of orthogonal tangents
to an ellipse is a circle.

2.18.5 Using the formula in Example 2.7.8, prove Proposition 1.7.3 concerning the
logarithmic spiral.

2.18.6 Compute the evolute of a cycloid using the general formula of Proposi-
tion 2.11.2.

2.18.7 Consider two plane curves defined in terms of the same parameter

f : ]a, b[ −→ R
2, f̃ : ]a, b[ −→R

2.
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Assume that these curves are regular of class C2. These curves are called Bertrand
curves when their normal lines coincide at corresponding points. Prove that the dis-
tance between corresponding points is constant. Show that two involutes of the same
curve are Bertrand curves.

2.18.8 A regular closed curve of class C2 is strictly convex when its curvature is
non-zero at each point. When the curve is given in normal representation f (s),
prove that for each vector −→v of norm 1 in R

2, there is a unique value s ∈ [a, a + ω[
in a minimal period such that f ′(s) = −→v .

2.18.9 If a closed strictly convex curve has exactly four vertices, then any circle has
at most four points of intersection with that curve.

2.18.10 If a closed, strictly convex curve intersects a circle in 2n points, then it has
at least 2n vertices.

2.18.11 Given a simple closed regular curve of length L, with an interior of area A,
then 4πA ≤ L2. (This is the so-called isoperimetric inequality, proved by Steiner
and Chern; see [31] and [6].)

2.19 Exercises

2.19.1 Determine if the following mappings are parametric representations of plane
curves. Are they regular?

1. f : R −→R
2, t �→ (t2, cos t2);

2. f : R −→R
2, t �→ (|t |, sin t);

3. f : ]−1,1[ −→R
2, t �→ (0, tn) (discuss in terms of n ∈ N);

4. f : ]−1,1[ −→R
2, t �→ (t, tn) (discuss in terms of n ∈N);

5. f : [0,2π] −→R
2, t �→ (cos t

2 , sin t
2 ).

2.19.2 For each odd n ∈ N, consider

fn : R −→ R
2, t �→ (

tn, tn
)
.

Determine if, when n �= m, the parametric representations fn and fm are equivalent
and if so, in which class of differentiability.

2.19.3 Give a parametric representation of a curve whose support is:

1. an epicycloid: the path of a chosen point of a circle of radius r , which rolls
without slipping around a fixed circle of radius R (Fig. 2.34).

2. a hypocycloid: the path of a chosen point of a circle of radius r , which rolls
without slipping within a fixed circle of radius R > r (Fig. 2.35).
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Fig. 2.34

Fig. 2.35

Discuss the situation when the ratio R
r

is:

• an integer;
• a rational number;
• an irrational number.

2.19.4 Determine the points of the ellipse
{
x = 2 cos t + sin t

y = 2 cos t − sin t

for which the normal line contains the origin.

2.19.5 Let P be an arbitrary point of the parabola
{
x = 2t

y = t2 − 1.

Through P , draw the line d1 parallel to the y-axis and the line d2 containing the
origin. Show that the tangent at P to this parabola makes equal angles with d1 and
d2.

2.19.6 Let 0 < a,b < ∞; we work in the canonical basis of E2(R). Consider the
circle Γ with center (a,0) and radius a and the line p with equation y = b.
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Fig. 2.36

Through the origin O = (0,0), consider a line d , distinct from the axis, cutting
the circle Γ at a point M and the line d at a point N . Through M , draw the parallel
d1 to the x-axis; through N , draw the parallel d2 to the y-axis. Write P for the
intersection of d1 and d2.

The locus of the point P , as d rotates around the origin, is called the serpentine
curve; it was first studied by L’Hospital and Huygens in 1692, and more extensively
by Newton in 1701.

1. Sketch the shape of the serpentine.
2. Give a parametric representation of the serpentine.

2.19.7 From a parabola P , construct the cissoid of Diocles as the locus of the or-
thogonal projections of the vertex of this parabola on the tangents to the parabola
(see Fig. 2.36). Determine a parametric representation of the cissoid corresponding
to the parabola with equation y2 = 2px, for p > 0.

2.19.8 Calculate the length of the cardioid (see Fig. 2.37)

{
x = a(2 cos t − cos 2t)

y = a(2 sin t − sin 2t)
(a ∈ R

∗+).

Compare with Exercise 2.19.3.

2.19.9 Give a normal parametric representation of the logarithmic spiral (see
Fig. 1.23)

{
x = et cos t

y = et sin t.
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Fig. 2.37

Fig. 2.38

2.19.10 Compute the curvature of the logarithmic spiral
{
x = et cos t

y = et sin t

at an arbitrary point.

2.19.11 A plane curve C admits the parametric representation

f : R −→R
2, t �→ (√

t2 + 1, t
)
.

1. Give a Cartesian equation of C.
2. Calculate the coordinates of the center of curvature of C at the point (

√
2,−1).

2.19.12 Consider the astroid (see Fig. 2.38) with parametric representation

f : R −→ R
2, t �→ (

2 cos3 t,2 sin3 t
)
.

1. Compute a Cartesian equation of the osculating circle to the astroid at each reg-
ular point.
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2. Draw the evolute of the astroid; justify geometrically.
3. Give a parametric representation of this evolute.
4. Calculate the length of the evolute.
5. Explain geometrically why the sign of the curvature, computed from the given

parametric representation, is necessarily negative at each regular point.
6. Give a Cartesian equation of the astroid.
7. Do you see a link with Exercise 2.19.3?

2.19.13 Give an intrinsic equation of the logarithmic spiral.

2.19.14 Determine the curves whose intrinsic equations are:

1. κ(s) = 1/
√

2as with a > 0.
2. κ(s) = 1/

√
16a2 − s2 with (a > 0).

2.19.15 Calculate the envelope of:

1. the family of lines αx − y = α2

2 ;
2. the family of circles (x − α)2 + y2 − 2α = 0;
3. the normal lines to the parabola y = ( x

2 )2 − 1;
4. the circles centered on the unit circle x2 + y2 = 1 and tangent to the y-axis.

2.19.16 Find the vertices of the Limaçon (see Example 2.13.3) and the Lemniscate
(see Example 2.13.4).



Chapter 3
A Museum of Curves

This chapter presents a list of some interesting properties of some famous plane
curves. The lists—both of curves and properties of each curve—are far from being
exhaustive. Some properties indicated have already been established elsewhere in
this book; the other properties are cited without proof, but the omitted proofs reduce
each time to routine calculations. Of course in these conditions, we do not introduce
further sections of problems or exercises.

3.1 Some Terminology

Through the centuries, an incredible number of generic methods have been used to
construct new curves from given ones, often with the with often the objective of
inferring properties of some curves from well-known properties of other curves. We
list here a few of these methods.

Definition 3.1.1 The caustic of a regular plane curve with respect to a fixed point
P is the envelope of the family of lines which are, for each point Q of the curve,
symmetric to the line PQ with respect to the normal to the curve at Q (see Fig. 3.1).

In other words, consider the point P as a light source and the curve as a mirror.
The “light rays” PQ are then reflected by the mirror into those lines of which one
considers the envelope. The envelope thus delimits the portion of the plane which
is lit by the reflected rays. The interested reader will compare this situation with
Proposition 1.13.2 in [4], Trilogy II: the case of the parabola and its focus P , a
situation where the corresponding envelope does not exist! In that case, the reflected
rays are parallel, a property which is widely used in optics.

Of course Definition 3.1.1 does not make sense at the point Q = P , when P turns
out to be a point on the curve.

F. Borceux, A Differential Approach to Geometry, DOI 10.1007/978-3-319-01736-5_3,
© Springer International Publishing Switzerland 2014
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Fig. 3.1

Fig. 3.2

Definition 3.1.2 The pedal curve of a regular plane curve with respect to a point
P is the locus of the orthogonal projections of P on the tangents to the curve. (See
Fig. 3.2.)

Definition 3.1.3 The conchoid of a regular plane curve with respect to a point P

and a real number � > 0 is the locus of those points Q′, Q′′ obtained, for each point
Q of the curve, by subtracting or adding to

−→
PQ a vector in the same direction and

of fixed length � (see Fig. 3.3).

−−→
PQ′ = −→

PQ − �

−→
PQ

‖−→
PQ‖

,
−−→
PQ′′ = −→

PQ + �

−→
PQ

‖−→
PQ‖

.

Again Definition 3.1.3 does not make sense at the point Q = P , when P turns
out to be a point on the curve.
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Fig. 3.3

Fig. 3.4

Definition 3.1.4 The cissoid of a regular plane curve with respect to a point P and
a fixed line d is the locus of those points Q′ obtained in the following way. For each
point Q of the curve, write Q′′ for the intersection of the lines PQ and d . Then Q′
is the point on the line PQ given by (see Fig. 3.4)

Q′ = P + −−→
QQ′′.
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Fig. 3.5

Fig. 3.6

Clearly this definition makes sense only when P �= Q and when moreover, the
line PQ is not parallel to d .

Definition 3.1.5 An epicycloid is the trajectory of a point P of a circle of radius
r which rolls on another fixed circle of radius R, around the exterior of this other
circle (see Fig. 3.5).

Definition 3.1.6 A hypocycloid is the trajectory of a point P of a circle of radius
r which rolls on another fixed circle of radius R, around the interior of this other
circle (see Fig. 3.6).

We shall also refer to the notions of evolute and involutes of a curve, as studied
in Sect. 2.11.

3.2 The Circle

The most basic curve is certainly the circle. With radius R and center the origin, we
get:

• Parametric representation

f (t) = (R cos t,R sin t), R �= 0.
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Fig. 3.7 The ellipse and its evolute

• Cartesian equation:

x2 + y2 = R2, R �= 0.

• Equation in polar coordinates

r = R, R ∈R, R �= 0.

• Intrinsic equation

κ = 1

R
, R ∈R, R �= 0.

• Length: 2πR.
• Area: πR2.

3.3 The Ellipse

The interested reader will find more about the ellipse in Sect. 1.11 of [4], Trilogy II.

• Parametric representation

f (t) = (a cos t, b sin t).

• Cartesian equation
(

x

a

)2

+
(

y

b

)2

= 1.

• The area is πab.
• The evolute is the curve with equation

(ax)
2
3 + (by)

2
3 = (

a2 − b2) 2
3 (see Fig. 3.7).
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Fig. 3.8 The hyperbola and its evolute

• The ellipse is the locus of those points of the plane whose sum 2R of distances
to two fixed points F1 = (k,0) and F2 = (−0, k) (the foci) is constant. More
precisely, R = a and k = √

a2 − b2, with the convention a ≥ b and of course,
R > k.

• The ellipse admits the two axes x = 0 and y = 0 as axes of symmetry and the
origin (0,0) as center of symmetry.

• The ellipse is the section of a circular cone by a plane not containing the vertex
of the cone and cutting all the rulings of the same sheet of the cone.

3.4 The Hyperbola

The interested reader will find more about the hyperbola in Sect. 1.12 of [4], Tril-
ogy II. Of course the hyperbola should be regarded as the union of two curves or
as a curve with two branches, depending of the point of view (see the discussion in
Sect. 1.1).

• Parametric representation

f (t) = (a cosh t, b sinh t)

or

g(t) =
(

a

2

(
t + 1

t

)
,
b

2

(
t − 1

t

))
, t �= 0.

• Cartesian equation
(

x

a

)2

−
(

y

b

)2

= 1.

• The evolute is the curve with equation (see Fig. 3.8)

(ax)
2
3 − (by)

2
3 = (

a2 + b2) 2
3 .
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Fig. 3.9 The parabola and its evolute

• The hyperbola is the locus of those points of the plane whose difference 2R of
distances to two fixed points F1 = (k,0) and F2 = (−k,0) (the foci) is constant.
More precisely, R = a and k = √

a2 + b2 with of course k > R.
• The hyperbola admits the two axes x = 0 and y = 0 as axes of symmetry and the

origin (0,0) as center of symmetry.

• The two lines y = ±
√

b
a
x are asymptotes of the hyperbola.

• The hyperbola is the section of a circular cone by a plane not containing the vertex
of the cone and cutting both sheets of the cone.

• Choosing the asymptotes as (in general, non-orthogonal) coordinate axes, the
Cartesian equation takes the form

xy = k

and a parametric representation is thus

f (t) =
(

t,
k

t

)
, t �= 0.

3.5 The Parabola

The interested reader will find more about the parabola in Sect. 1.13 of [4], Tril-
ogy II. The parabola has also already been considered several times in this book.

• Parametric representation:

f (t) = (t, at2).

• Cartesian equation:

y = ax2.

• The evolute is the semi-cubic parabola with equation (see Fig. 3.9)

27ax2 = 2(2y − a)3.
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Fig. 3.10 The cycloid as an envelope

• The parabola is the locus of the points in the plane whose distance to a fixed
line d (the focal line) is equal to the distance to a fixed point F (the focus). More
precisely, d is the line with equation y = − 1

4a
x and F has the coordinates (0, 1

4a
).

• The axis x = 0 is an axis of symmetry of the parabola.
• The parabola is the section of a circular cone by a plane not containing the vertex

of the cone and parallel to a ruling.

3.6 The Cycloid

The cycloid has already largely been studied in Sects. 1.9 and 1.12.

• Parametric representation

f (t) = R(t − sin t,1 − cos t).

• Area of an arch: 3πR2.
• Length of an arch: 8R.
• The evolute of a cycloid is another cycloid with the same size.
• The cycloid is the trajectory of a point of a circle of radius R which rolls along

the x-axis.
• The cycloid is also the envelope of a diameter of a circle of radius 2R which rolls

along the x-axis (see Fig. 3.10).
• Turned “upside-down”, a half arch of a cycloid

g(t) = R(t − sin t, cos t − 1), 0 ≤ t ≤ π

is the curve of fastest descent of a particle, between two of its points, in a gravi-
tational field.

• In the same setting, the time taken for the particle to reach the bottom point of the
arch is independent of the starting point (see Theorem B.1).

3.7 The Cardioid

The cardioid—the heart-shaped curve—was considered early in the 18th century,
by La Hire, who calculated its length.
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Fig. 3.11 The cardioid as a caustic curve

• The parametric representation of the cardioid is

f (t) = R(2 cos t − cos 2t,2 sin t − sin 2t).

• The length is 16R.
• The area is 6πR2.
• (R,0) is a cusp point.
• The equation in polar coordinates with the cusp point as origin is

r = 2R(1 − cos θ).

• In this polar equation, the tangents at two points of parameters θ and θ + 2π
3 are

parallel; in particular, there are always three tangents in a given direction.
• All chords of the cardioid passing through the cusp point have the same length

4R.
• The tangents to the cardioid, at the two extremities of a chord containing the cusp

point, are perpendicular.
• The evolute of a cardioid is another cardioid, three times smaller.
• The cardioid is the epicycloid obtained when a circle of radius R rolls around a

circle of the same radius R.
• The cardioid is the pedal curve of a circle with respect to a point P of this circle.
• The cardioid is the conchoid of a circle with respect to a point P of this circle and

a length � equal to the radius of the circle.
• The cardioid is the caustic of a circle with respect to a point P of this circle (see

Fig. 3.11, where the segments are the “reflected rays” with (−1,0) as emission
point).

• The cardioid is the envelope of the family of circles whose center is on a given
circle and passing through a fixed point P of this circle.

• The cardioid is the inverse (see Sect. 5.7 in [3], Trilogy I) of a parabola with
respect to its focus.
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Fig. 3.12 The nephroid as an envelope

3.8 The Nephroid

The name nephroid refers to the shape of this kidney-shaped curve.

• A parametric representation is given by

f (t) = R(3 sin t − sin 3t,3 cos t − cos 3t).

• The length is 24R.
• The area is 12πR2.
• The evolute is another nephroid, twice smaller.
• The nephroid is the epicycloid obtained when a circle of radius R rolls on a circle

of radius 2R.
• The nephroid is the envelope of the family of those circles whose center is on

a fixed circle and which are tangent to a fixed diameter of the fixed circle (see
Fig. 3.12).

• The nephroid is the envelope of a fixed diameter of a circle which rolls around a
fixed circle of the same diameter.

• The nephroid is the caustic of a cardioid with respect to its cusp point.

3.9 The Astroid

The name astroid clearly comes from the star-shaped aspect of the curve. This curve
was considered by Leibniz in 1715.

• A parametric representation is

f (t) = R
(
cos3 t, sin3 t

)
.

• The Cartesian equation is

x
2
3 + y

2
3 = R

2
3 .
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Fig. 3.13 The asteroid as an envelope

• The length is 6R.
• The area is 6πR2.
• The evolute is another astroid, twice as large.
• The astroid is the hypocycloid obtained when a circle of radius R rolls inside a

circle of radius 4R.
• The astroid is the hypocycloid obtained when a circle of radius 3R rolls inside a

circle of radius 4R.
• The astroid is the envelope of the family of segments of fixed length whose ex-

tremities run on two perpendicular axis (see Fig. 3.13).
• The astroid is the envelope of the family of all ellipses

(
x

a

)2

+
(

y

b

)2

= 1

whose sum k = a + b of the lengths of the two axes is constant.

3.10 The Deltoid

The name deltoid refers to the Greek letter Delta: Δ. The Deltoid is also called
Steiner’s hypocycloid.

• A parametric representation is given by

f (t) = R(2 cos t + cos 2t,2 sin t − sin 2t).

• The length is 16R.
• The area is 2πR2.
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Fig. 3.14 The deltoid

• The evolute is another deltoid, three times bigger.
• The deltoid is the hypocycloid obtained when a circle of radius R rolls inside a

circle of radius 3R.
• The deltoid is the hypocycloid obtained when a circle of radius 2R rolls inside a

circle of radius 3R.
• The deltoid is the envelope of a fixed diameter of a circle of radius 2R rolling

inside a circle of radius 3R.
• The tangent to the deltoid, terminated at the other two points P and Q of inter-

section with the deltoid, is of constant length.
• In these circumstances, the tangent at P is perpendicular to the tangent at Q (see

Fig. 3.14).

3.11 The Limaçon of Pascal

The Limaçon of Pascal (also known as the snail of Pascal) is in fact a family of
curves which contains as a special case the cardioid (see Sect. 3.7). Let us mention
that the name Limaçon of Pascal does not refer to the famous mathematician and
philosopher Blaise Pascal, but to his father, Étienne Pascal.

• A parametric representation is

f (t) = (k cos t + a cos 2t, k sin t + a sin 2t).

(see Fig. 3.15 which presents—at different scales—the cases (a = 1, k = 3) and
(a = 1, k = 1)).

• When k = 2a, the curve is a cardioid (see Fig. 3.11).
• When k = a, the curve is the so-called trisectrix (see Sect. 2.3 in [3], Trilogy I

and the right hand picture in Fig. 3.15).
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Fig. 3.15 The limaçon of Pascal

• The limaçon is the pedal curve of a circle of radius k with respect to a point whose
distance to the center of the circle is 2a.

• The limaçon is the conchoid of a circle of radius a with respect to a point on this
circle, the fixed distance � being k.

• The limaçon is the inverse of a conic (see Sect. 5.7 in [3], Trilogy I) with respect
to one of its foci.

• When k ≥ 2a (see the left picture in Fig. 3.15), the area is (2a2 + k2)π .
• When k < 2a (see the right picture in Fig. 3.15), the area of the inner loop is

a2(π − 3
2

√
3) while the area between the two loops is a2(π + 3

√
3).

• The polar equation, with origin the cusp or multiple point, is

r = k − 2a cos θ.

3.12 The Lemniscate of Bernoulli

A lemniscate is the pedal curve of a hyperbola with respect to its center of symmetry.
The lemniscate of (James) Bernoulli corresponds to the case where the hyperbola is
rectangular, that is, with orthogonal asymptotes:

(
x

a

)2

−
(

y

a

)2

= 1.

The bow or ribbon shape of this curve is at the origin of its name; in Latin, lemniscus
indicates a type of ribbon.

• A parametric representation is

f (t) = a

(
sin t

1 + cos2 t
,

sin t · cos t

1 + cos2 t

)
.

• The Cartesian equation is

(
x2 + y2)2 = a2(x2 − y2).
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Fig. 3.16 The lemniscate of Bernoulli as an envelope

• The polar equation is

r2 = a2 cos 2θ.

• The area is a2.
• The lemniscate of Bernoulli is the pedal curve of a hyperbola with respect to its

center of symmetry.
• The lemniscate of Bernoulli is the inverse of a rectangular hyperbola with respect

to its center of symmetry.
• It is the envelope of those circles whose center is on a fixed rectangular hyperbola

and passing through the center of symmetry of this hyperbola (see Fig. 3.16).
• The lemniscate of Bernoulli is the cissoid of a circle of radius R with respect to a

point at a distance R
√

2 from the center.
• It is also the locus of those points whose product of distances to two fixed points

P and Q equals 1
4‖−→

PQ‖.

3.13 The Conchoid of Nicomedes

The name conchoid refers to a mussel-shell-shaped curve. According to Pappus,
Nicomedes, in the second century BC, was the first to consider a conchoid. Here we
restrict our attention to this conchoid of Nicomedes.

• A parametric representation is

f (t) = (a + k cos t, a tan t + k sin t).
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Fig. 3.17 The conchoid of Nicomedes

• The Cartesian equation is

k2x2 = (a − x)2(x2 + y2).

(Notice that for k < a, this equation includes an isolated point at the origin.)
• The conchoid of Nicomedes is the conchoid of a straight line with respect to a

point at a distance a > 0 from the line; k is the fixed length � of Definition 3.1.3.
Depending on the values of the parameters a and k, the curve can take various
shapes, with or without a loop (see Fig. 3.17).

• The line x = a, which is the line involved in the definition of the conchoid of
Nicomedes, is an asymptote.

• The area between each branch of the curve and the asymptote is infinite.

3.14 The Cissoid of Diocles

The cissoid of Diocles is one of the numerous curves used to attempt to solve cubical
problems. The name cissoid suggests an ivy-leaf-shaped curve, even if this requires
some imagination.

• A parametric representation is

f (t) = R

(
2t2

1 + t2
,

2t3

1 + t2

)
.

• The Cartesian equation is

y2(2R − x) = x3.
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Fig. 3.18 The cissoids of Diocles

• The polar equation is

r = 2R sin θ tan θ.

• The area between the curve and its asymptote is equal to 3πR2.
• The cissoid of Diocles is the cissoid of a circle of radius R with respect to a tan-

gent to this circle and the second extremity of the diameter through the tangency
point (see Fig. 3.18).

• The line x = 2R, which is the tangent involved above, is an asymptote.

3.15 The Right Strophoid

It seems that the study of the right strophoid began during the 17th century, with
Roberval and Torricelli. The origin of the name is not clear: it is perhaps a reference
to a strophos, the Latin name for a belt with a twist used to hold a sword.

• A parametric representation is

f (t) = a

(
t2 − 1

t2 + 1
, t

t2 − 1

t2 + 1

)
.

• The Cartesian equation is

y2(a − x) = x2(a + x).
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Fig. 3.19 The right strophoid

• The polar equation is

r = a

(
1

cos θ
− 2 cos θ

)
.

• The line x = a is an asymptote (see Fig. 3.19).
• The area of the loop is 1

2a2(4 − π).
• The area between the curve and its asymptote is 1

2a2(4 + π).
• The right strophoid is the cissoid of a circle with respect to one of its diameters

and one extremity of the diameter perpendicular to the first diameter.
• The strophoid is the pedal curve of a parabola with respect to the intersection of

the directrix and the axis of symmetry of that parabola.
• It is also the inverse of a rectangular hyperbola with respect to one of its vertices.
• The strophoid is its own inverse for an inversion with center the origin and power

a2 (see Sect. 5.7 in [3], Trilogy I).
• A secant through the point A = (−a,0) makes equal angles with the tangents to

the strophoid, at the two intersection points.

3.16 The Tractrix

Imagine a horse on a towpath, pulling a boat. The problem of computing the tra-
jectory of the boat, in the absence of any steering, was solved by Huygens. Very
naturally, he gave the name tractrix to the corresponding curve.

• A parametric equation is

f (t) = k

(
log

(
1 + sin t

cos t

)
− sin t, cos t

)
.

• The x-axis is an asymptote (see Fig. 3.20).
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Fig. 3.20 The tractrix

Fig. 3.21 The catenary

• The length of the tangent, from a point of the tractrix to the intersection with the
x-axis, is constant.

• The evolute is a catenary.
• The area between the tractrix and its asymptote is 1

2πk2.
• The tractrix is the trajectory of an object, attached at the end of a string of fixed

length, as the other end of the string moves along a straight line.

3.17 The Catenary

Galileo suggested that a rope, attached at its two ends, would hang in the shape of a
parabola. This conjecture proved to be false: the correct shape of the rope is the so-
called catenary, as discovered around 1690. The name refers clearly to a (hanging)
chain (a catena).

• A parametric representation is

f (t) =
(

t, k cosh
t

k

)
.

• The catenary is the locus of the focus of a parabola which rolls on a straight line.
• The catenary is the form assumed by a flexible chain hanging in a gravitational

field (see Fig. 3.21).
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Fig. 3.22 The Archimedean spiral

3.18 The Spiral of Archimedes

The spiral of Archimedes—as the name indicates—was first studied in Greek An-
tiquity (see Sect. 4.5 in [3], Trilogy I). Archimedes was already able to compute its
tangent (see Sect. 1.5).

• A parametric equation of the spiral of Archimedes is

f (t) = k(t cos t, t sin t).

(See Fig. 3.22.)
• The polar equation is r = kt .
• The spiral of Archimedes is the trajectory of a point which moves at a constant

linear speed on a line as this line turns at a constant angular speed around one of
its points.

3.19 The Logarithmic Spiral

The logarithmic spiral is often introduced as follows. Imagine four runners, initially
positioned at the four vertices of a square. They start running at the same time, at
the same constant speed, each runner running at each instant in the direction of the
position of the next runner. The trajectory of each runner is a special instance of
a so-called logarithmic spiral, already studied in Sect. 1.7. In this example, if O

is the center of the square and A′ is the position reached by runner A, considering
the square A′B ′C′D′ we conclude that the angle between the vector OA′ and the
direction of the trajectory is always 45 degrees.

More generally a logarithmic spiral, also called an equiangular spiral is a curve
such that the position vector

−→
OP , for all points P of the curve, makes a constant
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Fig. 3.23 The logarithmic spiral

angle with the tangent to the curve at P . These spiral have striking “stability prop-
erties”.

• A parametric equation of a logarithmic spiral is

f (t) = a
(
ebt cos t, ebt sin t

)
.

(See Fig. 3.23.)
• The polar equation of a logarithmic spiral is r = aebt .
• The angle between the tangent at a point P of the spiral and the vector

−→
OP is

constant.
• A secant through the origin meets the curve at points whose distances to the origin

are in geometric progression.
• The evolute of a logarithmic spiral is an isometric logarithmic spiral.
• The pedal curve of a logarithmic spiral with respect to the origin is an isometric

logarithmic spiral.
• The caustic of a logarithmic spiral with respect to the origin is an isometric loga-

rithmic spiral.
• Every curve homothetic to a logarithmic spiral is an isometric logarithmic spiral.
• The inverse (see Sect. 5.7 in [3], Trilogy I) of a logarithmic spiral with respect to

the origin (and with arbitrary power) is an isometric logarithmic spiral.

3.20 The Spiral of Cornu

The spiral of Cornu is the curve whose curvature is proportional to the distance
traveled on the curve.
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Fig. 3.24 The spiral of Cornu

• Parametric representation:

f (t) =
(∫ s

0
cos

ks2

2
ds,

∫ s

0
sin

ks2

2
ds

)
.

(See Fig. 3.24.)
• Intrinsic equation:

κ = ks.



Chapter 4
Skew Curves

We now turn our attention to the case of curves in three dimensional real space.
Of course many aspects already considered for plane curves extend to the three di-
mensional case and in fact, to arbitrary finite dimensions. This is so in particular
for the notions of parametric representation, tangent, length and normal representa-
tion. We therefore treat these questions quite rapidly, since they consist essentially
of repeating arguments already developed in Chap. 2.

In fact, we shall focus our attention on the generalization, in dimension 3, of the
notion of curvature. The circle is a curve with constant non-zero curvature: in the
plane, it is the only such curve. However, in three dimensional space, there are many
more such curves: for example every circular helix (a curve having the shape of a
bolt; see Fig. 4.1) has non-zero constant curvature. Thus the curvature no longer
suffices to characterize a skew curve: another parameter is required: the torsion.
The plane curves are characterized by having a zero torsion. An intuitive approach
to these questions has been developed in Sect. 1.13: we focus here on a systematic
treatment of the theory.

After giving precise definitions, we establish efficient formulas to compute the
curvature and the torsion. We also study the famous “moving” Frenet trihedron at-
tached to each point of the curve. The Frenet formulas constitute the basic ingredient
for proving our main result concerning skew curves: the existence of intrinsic equa-
tions, that is, the description of a curve in terms of its curvature and its torsion. In
contrast to the case of plane curves, recapturing a parametric equation of the curve
from the knowledge of the curvature and the torsion can no longer be done via a
simple integration process: in fact the problem reduces to solving a system of dif-
ferential equations.

All these results can further be generalized in arbitrary finite dimension: we only
give the corresponding useful hints in our section devoted to “problems”.

4.1 Regular Skew Curves

With the considerations of Sect. 2.1 in mind, we make the following definition:

F. Borceux, A Differential Approach to Geometry, DOI 10.1007/978-3-319-01736-5_4,
© Springer International Publishing Switzerland 2014
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Fig. 4.1 The helix

Definition 4.1.1

1. A parametric representation of class Ck (with k ∈ N∪ {∞}) of a skew curve is a
locally injective function of class Ck

f : ]a, b[ −→R
3, a, b ∈ R∪ {−∞,+∞}.

2. Two parametric representations f and g of class Ck are equivalent in class Ck

when there exist inverse bijections ϕ, ϕ−1 of class Ck such that

f = g ◦ ϕ, g = f ◦ ϕ−1.

3. A skew curve of class Ck is an equivalence class of parametric representations of
class Ck , for the equivalence relation described in 2.

4. The support of a skew curve is the image of (any one of) its parametric represen-
tations.

Example 4.1.2 The circular helix is the curve with parametric representation (see
Fig. 4.1)

f (t) = (R cos t,R sin t, kt), R > 0, k �= 0.

Proof The function f is trivially locally injective, since its third component is in-
jective. Notice that the case k = 0 would have produced a circle of radius R in the
(x, y)-plane. �

Definition 4.1.3

1. A parametric representation f (t) of a skew curve is regular when it is of class
C1 and f ′(t) �= 0 at each point.

2. This representation is called 2-regular when it is of class C2 and f ′(t), f ′′(t) are
linearly independent vectors at each point.
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As expected one has:

Proposition 4.1.4 For a function

f : ]a, b[ −→ R
3, t �→ f (t)

the following conditions are equivalent:

1. f is a regular parametric representation of a skew curve;
2. f is of class C1 and f ′(t) �= 0 for all t ∈ ]a, b[.

Proof This follows by Lemma 2.2.4. �

Moreover, we have:

Proposition 4.1.5

1. If a curve of class Ck , k ≥ 1, admits a regular parametric representation f (t),
then all its parametric representations g(s) are regular. Moreover the vectors
f ′(t) and g′(s), at corresponding points, are proportional.

2. If a curve of class Ck , k ≥ 2, admits a 2-regular parametric representation f (t),
then all its parametric representations g(s) are 2-regular. Moreover the vectors
f ′(t) and f ′′(t) generate at each point the same vector subspace as the vectors
g′(s) and g′′(s) at this point.

Proof We use the notation of Definition 4.1.1. From f = g ◦ ϕ we deduce f ′ =
(g′ ◦ ϕ)ϕ′. If f ′ �= 0, necessarily g′ �= 0 and we have the expected proportionality.

Assume now that k ≥ 2, with f ′ and f ′′ linearly independent. We have

f ′′ = (
g′′ ◦ ϕ

)(
ϕ′)2 + (

g′ ◦ ϕ
)
ϕ′′.

This proves that g′′ cannot be a multiple of g′, otherwise f ′′ would be a multiple of
g′ which is itself a multiple of f ′, by the first part of the proof. �

By Proposition 4.1.5, it now makes sense to define:

Definition 4.1.6

1. The tangent to a regular curve represented by f (t) is the line passing through
f (t) and of direction f ′(t).

2. The osculating plane to a 2-regular curve represented by f (t) is the plane passing
through f (t) and whose direction is generated by f ′(t) and f ′′(t).

We have seen in Sect. 2.3 that plane curves can also be described by Cartesian
equations. But in three dimensional space, a Cartesian equation

F(x, y, z) = 0
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describes in general a surface, not a curve: for example, a quadric (see Sect. 1.14
in [4], Trilogy II).

Now a straight line in R
3 can be described by a system of two linear equations:

that is, the line can be presented as the intersection of two planes (see Sect. 1.6
in [4], Trilogy II). An analogous approach could be developed for curves: a system
of two Cartesian equations

{
F(x, y, z) = 0
G(x,y, z) = 0

can possibly represent a curve as the intersection of two surfaces. We shall not enter
into this discussion. Such an approach is in any case most often technically too
heavy to allow the development of an elegant theory.

4.2 Normal Representations

We now extend the results of Sects. 2.8 and 2.7. We omit several proofs, identical to
those in dimension 2.

Definition 4.2.1 By a normal representation of a skew curve is meant a parametric
representation f (s) of class C1 such that ‖f ′(s)‖ = 1 at each point.

A normal representation is thus in particular regular. Moreover, we have:

Proposition 4.2.2 Given a normal representation f (s) of class C2 of a skew curve:

1. (f ′|f ′′) = 0.
2. The curve is 2-regular as soon as f ′′(s) �= 0 at each point.

Proof Differentiating the equality (f ′|f ′) = 1 yields 2(f ′|f ′′) = 0. Moreover, two
perpendicular vectors are linearly independent as soon as they are non-zero. �

But one has more:

Proposition 4.2.3 Consider two normal representations f (t) and g(s) of the same
curve of class C1.

1. The corresponding change of parameter formula has the form

ϕ(t) = ±t + k, k ∈R.

2. One always has f ′ = ±(g′ ◦ ϕ).
3. In class C2 one has further f ′′ = g′′ ◦ ϕ.

Proof Differentiating f = g ◦ ϕ yields

f ′ = (
g′ ◦ ϕ

)
ϕ′, f ′′ = (

g′′ ◦ ϕ
)(

ϕ′)2 + (
g′ ◦ ϕ

)
ϕ′′.
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Since

1 = ∥∥f ′∥∥= ∥∥(g′ ◦ ϕ
)
ϕ′∥∥= ∥∥g′ ◦ ϕ

∥∥ · ∣∣ϕ′∣∣= ∣∣ϕ′∣∣

we obtain ϕ′ = ±1, which implies condition 2. By integration we get ϕ(t) = ±t +k,
thus condition 1. By differentiation we obtain ϕ′′ = 0, from which we get condi-
tion 3. Notice that the sign must be the same at all points, by continuity of ϕ. �

Let us now prove the existence of normal representations. With Definition 2.7.2
in mind, we make the following definition.

Definition 4.2.4 Consider a skew curve of class C1 represented by

f : ]a, b[ −→ R
3, t �→ f (t).

Given c, d ∈ ]a, b[, the length of the arc of the curve between the points with pa-
rameters c and d is the curve integral of the constant function 1 along

f : [c, d] −→ R
3.

Of course, we have:

Proposition 4.2.5 Under the conditions of Definition 4.2.4, the length of the arc of
the curve is also given by

∫ d

c

∥∥f ′∥∥

and it is independent of the chosen parametric representation.

Proof The proof of Proposition 2.7.6 applies as such. �

Example 4.2.6 The length of a turn of the circular helix

f (t) = (R cos t,R sin t, kt)

is equal to 2π
√

R2 + k2.

Proof We have

f ′(t) = (−R sin t,R cos t, k).

By Proposition 4.2.5, the length of a turn is

∫ 2π

0

√
R2 + k2 = 2π

√
R2 + k2. �

Proposition 4.2.7 Consider a regular representation of class Ck of a skew curve

f : ]a, b[ −→ R
3, t �→ f (t).
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Given t0 ∈ ]a, b[, the function

σ : ]a, b[ −→ ]
σ(a), σ (b)

[
, σ (t) =

∫ t

t0

∥∥f ′∥∥

is a change of parameter of class Ck . The corresponding representation

f = f ◦ σ−1 : ]σ(a), σ (b)
[−→R

3, s �→ f (s)

is normal of class Ck . In particular, when f is 2-regular, so is f .

Proof The proof of Proposition 2.8.2 applies as such. The last statement follows
from Proposition 4.1.5. �

4.3 Curvature

Definition 2.9.1 can be transposed to skew curves since, by Proposition 4.2.3, it is
independent of the chosen normal representation:

Definition 4.3.1 Let

f : ]a, b[ −→ R
3, s �→ f (s)

be a normal representation of class C2 of a skew curve. The curvature κ(s) at the
point with parameter s is the quantity ‖f ′′(s)‖.

Our first concern is to establish a formula to easily compute the curvature.

Proposition 4.3.2 Let

f : ]a, b[ −→ R
3, t �→ f (t)

be an arbitrary parametric representation of class C2 of a skew curve. The curvature
at the point with parameter t is the quantity

κ(t) = ‖f ′(t) × f ′′(t)‖
‖f ′(t)‖3

.

Proof Let us use the notation of Proposition 4.2.7 and consider the normal repre-
sentation f . From σ = ∫ t

t0
‖f ′‖ we obtain

σ ′ = ∥∥f ′∥∥,
(
σ−1)′ = 1

σ ′ ◦ σ−1
= 1

‖f ′ ◦ σ−1‖ .
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From f = f ◦ σ−1 we obtain further

f
′ = (

f ′ ◦ σ−1)(σ−1)′, f
′′ = (

f ′′ ◦ σ−1)(σ−1)′2 + (
f ′ ◦ σ−1)(σ−1)′′.

Using the properties of the cross product (see Sect. 1.7 in [4], Trilogy II) together
with Proposition 4.2.2, we also have

∥∥f
′ × f

′′∥∥= ∥∥f
′∥∥ · ∥∥f ′′∥∥ · ∣∣sin�

(
f

′
, f

′′)∣∣= ∥∥f
′′∥∥= κ.

All this yields, again by the properties of the cross product

κ = ∥∥(f ′ ◦ σ−1)(σ−1)′ × (
f ′′ ◦ σ−1)(σ−1)′2 + (

f ′ ◦ σ−1)(σ−1)′′∥∥

= ∥∥(f ′ ◦ σ−1)(σ−1)′ × (
f ′′ ◦ σ−1)(σ−1)′2∥∥

= (
σ−1)′3 ∥∥f ′ ◦ σ−1 × f ′′ ◦ σ−1

∥∥

=
∥∥f ′ ◦ σ−1 × f ′′ ◦ σ−1

∥∥
∥∥f ′ ◦ σ−1

∥∥3
.

In terms of t = σ−1(s), this is precisely the formula of the statement. �

Example 4.3.3 The curvature of the circular helix (see Example 4.1.2)

f (t) = (R cos t,R sin t, kt)

is constant and equal to R

R2+k2 .

Proof We have

f ′(t) = (−R sin t,R cos t, k), f ′′(t) = (−R cos t,−R sin t,0)

from which, by Proposition 4.3.2

κ(t) = ‖(kR sin t,−kR cos t,R2)‖
‖(−R sin t,R cos t, k)‖3

=
√

k2R2 + R4

(
√

R2 + k2)3
= R

R2 + k2
. �

Example 4.3.4 A regular skew curve of class C2 has constant curvature 0 if and
only if it is a straight line.

Proof Let f (t) be a normal representation of the curve. From κ(t) = 0 we get
f ′′(t) = 0. Integrating twice, we conclude that the three components of f are linear
functions. �
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4.4 The Frenet Trihedron

We are now going to attach an orthonormal Euclidean basis to each point of a skew
curve.

Definition 4.4.1 Consider a normal representation

f : ]a, b[ −→ R
3, s �→ f (s)

of a 2-regular skew curve. The Frenet trihedron at the point with parameter s is the
orthonormal basis with direct orientation

• whose origin is f (s);
• which is constituted of the three vectors

t(s) = f ′(s), n(s) = f ′′(s)
κ(s)

, b(s) = t(s) × n(s).

The three vectors are called respectively:

• the tangent vector t(s);
• the normal vector n(s);
• the binormal vector b(s).

The planes generated by two of these vectors have also been given names:

• the osculating plane, generated by t and n (see Definition 4.1.6);
• the normal plane, generated by n and b;
• the rectifying plane, generated by t and b.

This definition makes perfect sense, by Proposition 4.2.2, Definition 4.3.1 and
the properties of the cross product (see Example 3.2.4 in [4], Trilogy II).

Notice in particular that since the osculating plane is generated by the vectors t
and n, b is orthogonal to this osculating plane. Since b(s) is of constant length 1, its
variation is only in direction and thus, measures precisely the variation in direction
of the osculating plane. This is what we call the absolute torsion of the skew curve.

Definition 4.4.2 Let f (s) be a normal representation of class C3 of a 2-regular
skew curve. The quantity

∣∣τ(s)
∣∣=

∥∥∥∥
db
ds

(s)

∥∥∥∥

is called the absolute torsion of the curve at the point with parameter s.

Let us observe at once that:

Lemma 4.4.3 The definition of the absolute torsion does not depend on the choice
of the normal representation.
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Proof By Proposition 4.2.3, two normal representations give rise to the same binor-
mal vector b, or to opposite vectors b. �

As we did for the curvature of plane curves (see Definition 2.9.8), we shall now
provide the torsion with a sign.

Lemma 4.4.4 Consider a normal representation f (s) of class C2 of a 2-regular
skew curve. Then

dt
ds

= κ n.

Proof Trivially

dt
ds

= f ′′ = ∥∥f ′′∥∥ f ′′

‖f ′′‖ = κ n. �

Lemma 4.4.5 Consider a normal representation f (s) of a 2-regular skew curve of
class C3. One always has

db
ds

= ±∣∣τ(s)
∣∣n(s).

Proof From (b|b) = 1 we deduce ( db
ds

|b) = 0. Analogously from (b|t) = 0, we de-
duce by Lemma 4.4.4

0 =
(

db
ds

∣∣∣t
)

+
(

b
∣∣∣
dt
ds

)
=
(

db
ds

∣∣∣t
)

+ (b|κ n) =
(

db
ds

∣∣∣t
)

since b is orthogonal to n. But then db
ds

is orthogonal to both b and t, thus is parallel
to n. Therefore

db
ds

(s) = ±
∥∥
∥∥
db
ds

(s)

∥∥
∥∥n(s) = ±∣∣τ(s)

∣
∣n(s). �

Lemma 4.4.5 offers an easy way of providing the torsion with a sign:

Definition 4.4.6 Consider a normal representation f (s) of a 2-regular skew curve
of class C3. The torsion at the point with parameter s is the quantity τ(s) such that

db
ds

(s) = −τ(s)n(s).

We shall discuss later (see Example 4.5.4) the probably unexpected choice of the
sign −, instead of +, in Definition 4.4.6.

Much more importantly, in striking contrast to the case of the relative curvature
for plane curves (see Warning 2.9.9), let us observe that:

Proposition 4.4.7 Two normal representations of class C3 of a 2-regular skew
curve give rise to the same torsion, with the same sign.
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Proof Let f (t) and g(s) be the two normal representations. We use Proposi-
tion 4.2.3 and its notation. When ϕ(t) = t + k, both representations yield the same
vectors t, n and b and the conclusion is immediate.

When ϕ(t) = −t + k, the two vectors t are opposite but the two vectors n are the
same. It follows at once that the two vectors b are opposite as well. As a consequence

db(s)

ds
(s) = d(−b(t))

dt
ϕ′(t) = −db(t)

dt
(−1) = db(t)

dt
.

Thus both the derivative of the vectors b and the vectors n are the same for both
representations, yielding the announced result. �

Again, we will comment on this result in more detail in Sect. 4.5. Let us conclude
this section with the celebrated Frenet formulas:

Theorem 4.4.8 Consider a normal representation f (s) of class C3 of a 2-regular
skew curve. The derivatives of the three functions t, n, b describing the Frenet tri-
hedron are equal to

dt
ds

= κn

dn
ds

= −κt + τb

db
ds

= −τn

where κ is the curvature and τ is the torsion.

Proof By Lemma 4.4.4 and Definition 4.4.6, it remains to prove the second formula.
But from (n|n) = 1 we get at once ( dn

ds
|n) = 0, thus dn

ds
is a linear combination of

only t and b. By Proposition 4.6.2 in [4], Trilogy II, we thus have

dn
ds

=
(

dn
ds

∣∣∣t
)

t +
(

dn
ds

∣∣∣b
)

b.

It remains to compute the two coefficients.
From (n|t) = 0 we obtain

0 =
(

dn
ds

∣∣∣t
)

+
(

n
∣∣∣
dt
ds

)
=
(

dn
ds

∣∣∣t
)

+ (n|κn) =
(

dn
ds

∣∣∣t
)

+ κ.

Therefore
(

dn
ds

∣∣∣t
)

= −κ.



4.5 Torsion 171

Analogously from (n|b) = 0 we deduce

0 =
(

dn
ds

∣∣
∣b
)

+
(

n
∣∣
∣
db
ds

)
=
(

dn
ds

∣∣
∣b
)

+ (n| − τn) =
(

dn
ds

∣∣
∣b
)

− τ.

Therefore
(

dn
ds

∣∣∣b
)

= τ. �

4.5 Torsion

The torsion of a skew curve has already been defined in Definition 4.4.6. This sec-
tion is essentially devoted to establishing easy formulas to compute it.

Proposition 4.5.1 Let f be a normal representation of class C3 of a 2-regular skew
curve. The torsion of this curve is given by the formula

τ = (f ′ × f ′′|f ′′′)
‖f ′′‖2

.

Proof From (b|n) = 0 we deduce, via the Frenet formulas of Theorem 4.4.8

0 =
(

db
ds

|n
)

+
(

b
∣∣∣
dn
ds

)
= (−τn|n) +

(
b
∣∣∣
dn
ds

)
= −τ +

(
b
∣∣∣
dn
ds

)
.

It follows that

τ =
(

b
∣∣∣
dn
ds

)
.

But by definition of n (see Definition 4.4.1)

dn
ds

= f ′′′κ − f ′′κ ′

κ2
= f ′′′κ − κκ ′n

κ2
.

Since n is orthogonal to b, we thus have

τ =
(

b
∣∣∣
f ′′′κ
κ2

)
=
(

f ′ × f ′′

κ

∣∣∣
f ′′′

κ

)
= (f ′ × f ′′|f ′′′)

‖f ′′‖2
. �

Let us now consider the case of an arbitrary parametric representation.

Proposition 4.5.2 Let f be an arbitrary parametric representation of class C3 of
a 2-regular skew curve. The torsion of this curve is given by the formula

τ = (f ′ × f ′′|f ′′′)
‖f ′ × f ′′‖2

.
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Proof We use the notation of Proposition 4.2.7. As already observed, from σ(t) =∫ t

t0
‖f ′‖ we deduce

σ ′ = ∥∥f ′∥∥,
(
σ−1)′ = 1

σ ′ ◦ σ−1
= 1

‖f ′ ◦ σ−1‖ .

From f = f ◦ σ−1 we deduce further

f
′ = (

f ′ ◦ σ−1)(σ−1)′

f
′′ = (

f ′′ ◦ σ−1)(σ−1)′2 + (
f ′ ◦ σ−1)(σ−1)′′

f
′′′ = (

f ′′′ ◦ σ−1)(σ−1)′3 + 2
(
f ′′ ◦ σ−1)(σ−1)′(σ−1)′′

+ (
f ′′ ◦ σ−1)(σ−1)′(σ−1)′′ + (

f ′ ◦ σ−1)(σ−1)′′′.

By Proposition 4.5.1, the torsion is given by

τ = (f
′ × f

′′|f ′′′
)

‖f ′′‖2
= (f

′ × f
′′|f ′′′

)

κ2
.

Let us introduce the expressions of f
′
, f

′′
and f

′′′
into this formula.

When computing the cross product f
′ × f

′′
, the term involving f ′ in the expres-

sion of f
′′

yields a zero component, since f ′ is parallel to f
′
.

In particular f
′ × f

′′
is a vector in the direction of f ′ × f ′′, as already observed

in Proposition 4.1.5. Therefore f ′ and f ′′ are perpendicular to this direction. This
implies that the terms involving f ′ or f ′′ in the expression of f

′′′
also yield a zero

component when performing the scalar product with f
′ × f

′′
.

Finally, the formula of Proposition 4.5.1 reduces to

τ = ((f ′ ◦ σ−1)(σ−1)′ × (f ′′ ◦ σ−1)(σ−1)′2|(f ′′′ ◦ σ−1)(σ−1)′3)
κ2

.

Using further the last formula in the proof of Proposition 4.3.2, we obtain finally

τ =
( f ′◦σ−1

‖f ′◦σ−1‖ × f ′′◦σ−1

‖f ′◦σ−1‖2 | f ′′′◦σ−1

‖f ′◦σ−1‖3

)

‖(f ′◦σ−1)×(f ′′◦σ−1)‖2

‖f ′◦σ−1‖6

= ((f ′ ◦ σ−1) × (f ′′ ◦ σ−1)|(f ′′′ ◦ σ−1))

‖(f ′ ◦ σ−1) × (f ′′ ◦ σ−1)‖2
.

Via the change of parameter t = σ−1(s), this is the formula of the statement. �

As expected, we then have:
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Proposition 4.5.3 A 2-regular skew curve of class C3 has constant zero-torsion if
and only if it is a plane curve.

Proof Up to a change of basis, a plane curve admits a parametric representation of
the form

f (t) = (
f1(t), f2(t),0

)
.

Thus the vectors f ′ and f ′′ are in the (x, y)-plane for every value t of the parameter.
This implies that the binormal vector b(t) is a constant vector of length 1 in the
direction of the z-axis. Its derivative is thus equal to 0.

Conversely, let us work with a normal representation f (s). If the torsion is con-
stantly 0, we have db

ds
= 0 and thus b(s) is a constant vector b0. Differentiating the

scalar product (f (s)|b0) we obtain

d

ds

(
f (s)

∣∣b0
)= (

f ′(s)
∣∣b0

)= (
t(s)

∣∣b0
)= 0

because b0 is constant and is orthogonal to t. Integrating this equality thus yields a
constant, that is

(
f (s)

∣∣b0
)= k, k ∈ R.

It follows at once that the curve f (s) is contained in the plane of equation
(
(x, y, z)

∣∣b0
)= k. �

Example 4.5.4 The torsion of the circular helix

f (t) = (R cos t,R sin t, kt), R > 0, k �= 0

is equal to k

k2+R2 .

Proof We have

f ′ × f ′′ = (−R sin t,R cos t, k) × (−R cos t,−R sin t,0)

= (kR sin t,−kR cos t,R2).

Therefore
(
f ′ × f ′′∣∣f ′′′)= ((

kR sin t,−kR cos t,R2)∣∣(R sin t,−R cos t,0)
)= kR2.

The formula of Proposition 4.5.2 then gives

τ = kR2

k2R2 + R4
= k

k2 + R2
. �

Example 4.5.4 explains the choice of the sign − in the definition of the torsion
(see Definition 4.4.6 and Fig. 4.2).
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Fig. 4.2

• When k > 0, the helix is called a right helix, that is, has the shape of a “corkscrew”
(or an “ordinary bolt”: a bolt with a right thread). The torsion is then strictly
positive.

• When k < 0, the helix is called a left helix, a curve having the shape of a bolt with
a left thread. In that case, the torsion is strictly negative.

Scientists are probably big wine drinkers, since they rely so often on the so-called
corkscrew rule. They definitely want the sign of the torsion to be such that the tor-
sion of a corkscrew (a right helix) is positive. To achieve that, as Example 4.5.4
shows, the sign “−” must be chosen in Definition 4.4.6.

Example 4.5.4 also suggests something else. We have seen that the sign of the
torsion is an intrinsic property of the curve, independent of the chosen parametric
representation (see Proposition 4.4.7). This is a striking difference with the sign
of the relative curvature for plane curves (see Warning 2.9.9), which depends on
the representation. How can we intuitively understand this difference? In the plane,
there are two ways to “turn”: clockwise or counter-clockwise. However, it does
not make sense to distinguish between “clockwise circles” and “counter-clockwise
circles”. On the other hand, in three dimensional space, everybody who has used
bolts knows very well the intrinsic difference between “right thread bolts” and “left
thread bolts”.

4.6 Intrinsic Equations

We now want to prove that a skew curve can “intrinsically” be defined by giving its
curvature and its torsion.

First let us prove that a curve is uniquely defined, up to its position in space, by
its curvature and its torsion. In the spirit of the comments at the end of Sect. 4.5,
observe once more the difference with the case of plane curves: Theorem 2.12.4
refers to an arbitrary isometry while Theorem 4.6.1 concerns a direct isometry, that
is, just a shifting.

Theorem 4.6.1 Consider two normal representations

f : ]a, b[ −→R
3, f̃ : ]a, b[ −→R

3
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of class C3 of two 2-regular skew curves. When these two curves admit the same
curvature and the same torsion for each value s ∈ ]a, b[ of the parameter, the two
curves are the image of each other under a direct isometry.

Proof Let us fix a value s0 ∈ ]a, b[. Up to possible translations of the curves, there
is no loss of generality in assuming that f (s0) = f̃ (s0) is the origin of R3. Up to
possible further rotations, there is also no loss of generality in assuming that the
two Frenet trihedrons at this point coincide with the canonical basis of R

3 (see
Definition 4.4.1). We use respectively the notation t, n, b and t̃, ñ, b̃ to indicate the
Frenet trihedrons of the two curves.

We shall now use the Frenet formulas of Theorem 4.4.8 several times, without
further reference. Using the notation ( )′ to indicate a derivative with respect to s,
we have, since κ = κ̃ and τ = τ̃

(
t
∣∣̃t
)′ = (

t′
∣∣̃t
)+ (

t
∣∣̃t′
)= (

κn
∣∣̃t
)+ (

t
∣∣̃κñ

)= κ
((

n|̃t)+ (
t
∣∣̃n
))

(
n
∣∣̃n
)′ = (

n′∣∣̃n
)+ (

n
∣∣̃n′)= (−κt + τb

∣∣̃n
)+ (

n
∣∣−κ̃̃t + τ̃ b̃

)

= −κ
((

t|̃n)+ (
n
∣∣̃t
))+ τ

((
b
∣∣̃n
)+ (

n
∣∣̃b
))

(
b
∣∣̃b
)′ = (

b′∣∣̃b
)+ (

b
∣∣̃b′)= (−τn

∣∣̃b
)+ (

b
∣∣−τ̃ ñ

)= −τ
((

n|̃b)+ (
b
∣∣̃n
))

.

Adding these three equalities we obtain
((

t
∣∣̃t
)+ (

n
∣∣̃n
)+ (

b
∣∣̃b
))′ = 0.

Integrating, we thus get a constant
(
t
∣∣̃t
)+ (

n
∣∣̃n
)+ (

b
∣∣̃b
)= k, k ∈R.

But at the point with parameter s0

(
t(s0)

∣∣̃t(s0)
)= (

e1
∣∣e1
)= 1

and analogously for n and b. Therefore the constant k is equal to 3. But since each of
the vectors t(s) and t̃(s) has norm 1, the Schwarz inequality (see Proposition 4.2.5
in [4], Trilogy II) yields

−1 ≤ (
t(s)

∣∣̃t(s)
)≤ +1.

An analogous conclusion holds for n and b. But for three quantities between −1
and +1 to have a sum equal to 3, necessarily all three quantities must be equal to 1.
This proves that at all points

(
t
∣∣̃t
)= 1,

(
n
∣∣̃n
)= 1,

(
b
∣∣̃b
)= 1.

Next considering the formula

1 = (
t
∣∣̃t
)= ‖t‖ · ∥∥̃t

∥∥ · cos�
(
t,̃ t
)= cos�

(
t,̃ t
)
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we conclude that �(t,̃ t) = 0 and thus finally, t = t̃. This means f ′ = f̃ ′. Integrating
this equality, we find that f = f̃ + v for some constant vector v. But since we have
f (s0) = f̃ (s0), it follows that v = 0. Thus f = f̃ . �

We next have to show that there always exists a curve admitting a prescribed
curvature function and a prescribed torsion function. Then by Theorem 4.6.1, such
a curve will be “unique up to a direct isometry”.

Theorem 4.6.2 Consider a strictly positive function

κ : ]a, b[ −→R, s �→ κ(s) > 0

and an arbitrary function

τ : ]a, b[ −→R, s �→ τ(s),

both of class C1. In a neighborhood of each point t ∈]a, b[, there exists a 2-regular
normal representation of class C3 of a skew curve admitting κ and τ as curvature
and torsion.

Proof The Frenet formulas can be re-written component-wise as

t ′i (s) = κ(s)ni(s)

n′
i (s) = −κ(s)ti(s) + τ(s)bi(s)

b′
i (s) = −τ(s)ni(s)

where i ∈ {1,2,3}. This is a homogeneous system of nine differential equations with
coefficients 1, ±κ(s) and ±τ(s) of class C1 and nine indeterminate functions

ti , ni, bi : ]a, b[ −→R, i = 1,2,3.

Fix a value s0 ∈ ]a, b[ and impose the initial values

(
t1(s0), t2(s0), t3(s0)

)= (1,0,0)
(
n1(s0), n2(s0), n3(s0)

)= (0,1,0)
(
b1(s0), b2(s0), b3(s0)

)= (0,0,1).

The existence (and uniqueness) theorem for a problem of this type (see Proposi-
tion B.1.1) proves—in a neighborhood of each point—the existence and uniqueness
of nine functions of class C2 ti , ni , bi satisfying all the requirements above.

Using the solutions of the system, let us then define the following three functions,
from ]a, b[ to R

3:

t = (t1, t2, t3), n = (n1, n2, n3), b = (b1, b2, b3).
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The statement that the functions ti , ni , bi are solutions of the system of differential
equations can be rephrased as the fact that t, n, b satisfy the Frenet formulas of
Theorem 4.4.8. We shall now prove that for each value s ∈ ]a, b[, (t(s),n(s),b(s))

constitute an orthonormal basis with direct orientation.
Since t, n and b satisfy the Frenet formulas, we have at once

(t|t)′ = 2κ(t|n)

(t|n)′ = κ(n|n) − κ(t|t) + τ(t|b)

(t|b)′ = κ(n|b) − τ(t|n)

(n|n)′ = −2κ(t|n) + 2τ(b|n)

(n|b)′ = −κ(t|b) + τ(b|b) − τ(n|n)

(b|b)′ = −2τ(n|b).

This can be viewed as a new system of differential equations in the following six
functions from ]a, b[ to R:

(t|t), (t|n), (t|b), (n|n), (n|b), (b|b)

that is, in all the possible scalar products of two of the functions t, n, b. In addition to
admitting these six functions as solutions, the new system of differential equations
is such that the following initial conditions are satisfied, simply because of the initial
conditions imposed on the functions ti , ni , bi .

(
t(s0)

∣∣t(s0)
)= 1

(
t(s0)

∣∣n(s0)
)= 0

(
t(s0)

∣∣b(s0)
)= 0

(
n(s0)

∣∣n(s0)
)= 1

(
n(s0)

∣∣b(s0)
)= 0

(
b(s0)

∣∣b(s0)
)= 1.

Again the (existence and) uniqueness theorem for a problem of this type (see Propo-
sition B.1.1) tells us that the six functions indicated constitute the only possible such
solution.

But now it is trivial that another possible solution of the system, with the same
initial conditions, is given by

(
t(s)

∣∣t(s)
)= 1

(
t(s)

∣∣n(s)
)= 0

(
t(s)

∣∣b(s)
)= 0
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(
n(s)

∣∣n(s)
)= 1

(
n(s)

∣∣b(s)
)= 0

(
b(s)

∣∣b(s)
)= 1.

By uniqueness of the solution, the three functions t, n and b defined above thus
satisfy these last equalities.

The rest of the proof is now easy. The definition of the tangent vector f ′ = t in
the Frenet trihedron (see Definition 4.4.1) suggests at once to define

f (s) =
(∫ s

s0

t1(s) ds,

∫ s

s0

t2(s) ds,

∫ s

s0

t3(s) ds

)
.

We shall prove that f is the expected curve.
By definition, the function t is of class C2. Therefore the function f defined

above is of class C3. The first two derivatives of f are thus

f ′ = t, f ′′ = t′ = κn.

Since ‖f ′‖ = ‖t‖ = 1, f is a regular parametric representation by Proposition 4.1.4
and thus, is a normal representation. Since (t,n,b) constitute at each point an or-
thonormal basis, f is also 2-regular.

Next the form of f ′ indicates at once that t is the tangent vector to f , while the
form of f ′′ indicates further that n is its normal vector. Since

f ′′ = t′ = κn

we have ‖f ′′‖ = κ and κ is thus also the curvature of f (see Definition 4.3.1). But
then the binormal vector of f is the cross product t × n, that is b. Since

db
ds

= −τn

we conclude by Definition 4.4.6 that τ is also the torsion of f . �

4.7 Problems

4.7.1 A skew regular curve is said to have constant slope when there is a fixed
vector v in R

3 such that the tangent vector t to the curve makes a constant angle
θ �= 0 with the vector v. Prove that a curve with a constant slope admits a normal
representation of the form

f (s) = (
f1(s), f2(s), s cos θ

)
.

Verify that a circular helix has constant slope.
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4.7.2 Prove that a 2-regular curve of class C3 has constant slope if and only if the
ratio τ

κ
is constant.

4.7.3 Show that a 2-regular curve of class C3 is a plane curve if and only if all its
osculating planes have a common point of intersection.

4.7.4 Consider two skew curves defined in terms of the same parameter

f : ]a, b[ −→ R
3, f̃ : ]a, b[ −→R

3.

Assume that these curves are 2-regular and of class C3. These curves are called
Bertrand curves when their normal lines coincide at corresponding points (the nor-
mal line is that passing through the point in the direction of the normal vector n).
Prove that:

1. the distance between corresponding points is constant;
2. the angle between tangents at corresponding points is constant.

4.7.5 The results of Sects. 4.1 and 4.2 generalize immediately to curves in R
n. A

curve in R
n is called k-regular when it is of class Ck and the first k derivatives of

a parametric representation are linearly independent at each point. Consider then
a normal representation f of an (n − 1)-regular curve of class Cn in R

n. By the
Gram-Schmidt process (see Theorem 4.6.6 in [3], Trilogy I), orthonormalize the se-
quence of the successive derivatives f ′, . . . , f (n−1); call these vectors t1, . . . , tn−1.
Complete this sequence with a vector tn in order to obtain an orthonormal basis with
direct orientation. The n − 1 curvatures are defined by

κi =
(

dti
ds

∣∣∣∣ti+1

)
= −

(
ti

∣∣∣∣
dti+1

ds

)
.

The Frenet formulæ are then

dt1

ds
= κ1t2

dti
ds

= −κi−1ti−1 + κiti+1 (1 < i < n)

dtn
ds

= −κn−1tn−1.

4.8 Exercises

4.8.1 Give a normal parametric representation of the curve defined by

f : R −→ R
3, t �→

(
t2

2
, cos t + t sin t, sin t − t cos t

)
.
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4.8.2 Consider the circular helix (see Fig. 4.1)

f : R −→R
3, t �→ (a cos t, a sin t, b), a, b > 0.

1. Give the equation of the osculating plane to f at the point (a,0,0).
2. Give a parametric representation of the curve obtained as the intersection of this

plane π with the cylinder Γ of radius a and axis Oz.

4.8.3 Consider the skew curve represented by

f : R −→R
3, t �→ (

et , e−t ,
√

2t
)
.

Compute the tangent, the curvature and the torsion for each value of t .

4.8.4 Give a parametric representation of the locus of the orthogonal projections of
the point O = (0,0,0) on the osculating planes to the helix of Example 4.8.2.

4.8.5 Consider again the helix of Example 4.8.2. At each point, determine the
Frenet trihedron and give the equations of the osculating plane, the normal plane
and the rectifying plane.

4.8.6 In R
2 consider the astroid represented by (see Fig. 2.38)

f : R −→ R
2, t �→ (

2 cos3 t,2 sin3 t
)
.

View this astroid as a curve in the xy-plane of R3 and “project” it, parallel to the
z-axis, onto the upper half-sphere of radius 2 centered at the origin, to obtain a skew
curve P . Give a parametric representation of this curve P .

4.8.7 Suppose that a 2-regular skew curve of class C3 admits the intrinsic equations
{
κ(s) = f (s)

τ (s) = g(s).

Give the intrinsic equations of the curve C∗, the image of C by:

1. a translation;
2. a central symmetry;
3. an axial symmetry;
4. an orthogonal symmetry with respect to a plane.



Chapter 5
The Local Theory of Surfaces

Our next concern is the theory of surfaces in three dimensional real space. Just as
curves are “good deformations” in R

2 or R
3 of a “good piece” of the real line,

surfaces are analogous “good deformations” in R
3 of a “good piece” of the real

plane. The basic definitions are thus straightforward generalizations of those in the
case of curves. This includes the parametric representations, the Cartesian equations
and the study of the tangent plane.

However—expectedly or not—the situation for surfaces rapidly turns out to
present striking differences with the case of curves. For example, a (good) curve
admits a normal representation: the curve can be presented as a deformation of the
real line, which respects lengths. Intuitively, you can represent a curve as a piece
of iron wire, without any stretching of this wire. But of course you cannot possibly
construct a sphere by folding a sheet of metal, without stretching it.

The central topic of this chapter is the study of the curvature of a surface at a
given point. In each direction at the given point, cut the surface by a plane: you get a
curve and the curvature of this curve can be regarded as the curvature of the surface
in the given direction. Of course different directions will generally yield different
curvatures, as in the case of an ellipsoid. The so-called normal curvature is thus, at
a given point, a function of the direction. The study of this function, essentially due
to Euler, is among the main concerns of this chapter.

Following an idea of Gauss, we also devote some attention to the case of the
Gaussian curvature. Intuitively, the Gaussian curvature at a given point of the sur-
face measures the “oscillation” of the tangent plane as you move on the surface
in the neighborhood of the point. This notion will be further studied in subsequent
chapters, especially in Chap. 6 devoted to Riemannian geometry, where it plays a
central role. In contrast to the normal curvature, the Gaussian curvature at a given
point is just a real number, not a function. The information recaptured in this way
is certainly less precise, but it nevertheless gives rise to a “qualitative” idea of the
shape of the surface in a neighborhood of the point. As we shall see later, it is “more
intrinsic” than the normal curvature.

The reader will have noticed that all properties mentioned in this introduction
are properties valid “at a given point of the surface”. This justifies the title of the

F. Borceux, A Differential Approach to Geometry, DOI 10.1007/978-3-319-01736-5_5,
© Springer International Publishing Switzerland 2014
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chapter. Some “global” properties, that is, properties involving the whole surface,
not just the neighborhood of a given point, will be studied in Chap. 7.

5.1 Parametric Representation of a Surface

In this chapter, we limit our study to the case of (some) surfaces in R
3; this first

approach will be generalized in Chap. 6.
With the theory of curves in mind, we shall define a surface as a continuous and

locally injective deformation of a “good piece” of the real plane in R
3. But what is

a “good piece U ⊆ R
2? Of course the answer to this question is again a matter of

choice, but we shall follow the same arguments as in the case of a curve.

• We want U to be open, in order to avoid “points on the border” (these would
otherwise require a special treatment each time continuity or differentiability is
concerned).

• To avoid pathologies, we also want U to be “one piece”: such open subsets are
called connected (see Definition A.10.1).

It should be observed that the connected open subsets of the real line are precisely
the generalized intervals (see Example A.10.9), so that our choice for surfaces ex-
tends the choice that we made for curves.

Therefore we make the following definition:

Definition 5.1.1

1. A parametric representation of class Ck (with k ∈ N ∪ {∞}) of a surface is a
locally injective function of class Ck

f : U −→ R
3, (u, v) �→ (

f1(u, v), f2(u, v), f3(u, v)
)

where U ⊆ R
2 is a connected open subset of the real plane.

2. Given another parametric representation of class Ck

g : V −→ R
3, (r, s) �→ (

g1(r, s), g2(r, s), g3(r, s)
)
,

the two parametric representations f and g are equivalent in class Ck when there
exist inverse bijections ϕ, ϕ−1 of class Ck such that

f = g ◦ ϕ, g = f ◦ ϕ−1.

3. A surface of class Ck is an equivalence class of parametric representations of
class Ck , with respect to the equivalence relation described in 2.

4. The support of a surface is the image of (any one of) its parametric representa-
tions.
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Fig. 5.1

Fig. 5.2

Clearly, locally injective means as usual that for every point P ∈ U , there exists
a neighborhood V ⊆ U of P on which f is injective.

The fact that Definition 5.1.1 makes perfect sense is a direct transposition of the
straightforward observations already made for plane curves in Sect. 2.1.

Notice nevertheless that a connected open subset of R
2 can present some pecu-

liarities which cannot possibly appear in the case of an open interval. For example
an open “ring” (see Fig. 5.1, the area between two concentric circles) is a connected
open subset of R2 “with a hole in it”. Of course, an open interval never has a hole in
it, but we can easily imagine a natural deformation of an open ring which provides
an interesting surface in R

3, for example a cylinder. So there is certainly no reason
to try to avoid such connected open subsets.

Example 5.1.2 Let g : R2 −→ R be a function of class Ck . Then

f : R2 −→R
3, (x, y) �→ (

x, y, g(x, y)
)

is a parametric representation of class Ck of a surface, whose support is the graph of
g (see Fig. 5.2 where f (x, y) = sinxy).

Proof The function f is injective and of class Ck . �
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Let us now investigate the case of the most interesting quadrics of R
3 (see

Sect. 1.14, [4], Trilogy II).

Example 5.1.3 The paraboloids are surfaces of class C∞.

Proof Going back to Sect. 1.14 in [4], Trilogy II, and applying Example 5.1.2, a

paraboloid can be presented as the graph of a function g(x, y) = x2

a2 ± y2

b2 , with
a, b > 0. �

Now since we insisted on defining surfaces on connected open subsets of the real
plane, as in the case of the hyperbola (see Sect. 1.2), we must consider separately
the possible various sheets of a quadric:

Example 5.1.4 Each sheet of a hyperboloid with two sheets is a surface of class
C∞.

Proof The two sheets of the hyperboloid

x2

a2
− y2

b2
− z2

c2
= 1, a, b, c > 0

are respectively the graphs of the two functions

x = ±g(y, z)

where

g(y, z) = a

√

1 + y2

b2
+ z2

c2
.

By Example 5.1.2, each of them is therefore a surface of class C∞. �

The argument in Example 5.1.2 does not apply to the hyperboloid with one sheet,
which is by no means the graph of a function R

2 −→R. Nevertheless:

Example 5.1.5 The hyperboloid with one sheet is a surface of class C∞.

Proof We consider the hyperboloid with equation

x2

a2
+ y2

b2
− z2

c2
= 1, a, b, c > 0.

Cutting this hyperboloid by the plane z = z0, with z0 ∈ R, we obtain an ellipse
whose equation can be re-written as

x2

a2(1 + z2
0

c2 )

+ y2

b2(1 + z2
0

c2 )

= 1.
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This is an ellipse of radii

a

√

1 + z2
0

c2
, b

√

1 + z2
0

c2
.

A parametric representation of this ellipse is thus (see Example 2.1.4)

f (−, z0) : R �→R
2, θ �→

(
a

√

1 + z2
0

c2
cos θ, b

√

1 + z2
0

c2
sin θ

)
.

The function

f : R2 →R
3, (θ, z) �→

(
a

√

1 + z2

c2
cos θ, b

√

1 + z2

c2
sin θ, z

)

is then a parametric representation of class C∞ of the hyperboloid with one sheet.
This function is trivially of class C∞. It is also locally injective because different
values of z of course yield different points of R3, while for z = z0 fixed, the function
f (−, z0) is locally injective by Example 2.1.4. �

However, the most popular of all quadrics—the sphere—is the one which causes
troubles! Indeed, one can prove that:

There does not exist a parametric representation of a sphere, in the sense
of Definition 5.1.1.

Such a negative result calls at once for a more general notion of “surface”, in order to
recapture (at least!) the example of the sphere. Proving this negative result elegantly
requires some sophisticated tools; proving it with elementary arguments is very long
and tedious. We shall not dwell here on this negative result: we shall simply observe
why the most natural parametrisation of the sphere does not fulfil the requirements
of Definition 5.1.1.

All of us are used to the representation of a part of the surface of the Earth on
a geographical map, and a geographical map is by nature a piece of R2. The two
parameters classically used to represent in this way a piece of the Earth (which we
shall approximate as a sphere) are the longitude and the latitude. Let us investigate
this example further and observe why it does not provide a parametric representation
of the full sphere.

Example 5.1.6 The sphere (and more generally, an ellipsoid) punctured at two op-
posite poles is a surface of class C∞, admitting a parametric representation in terms
of the longitude and the latitude.

Proof Consider first the case of a sphere of radius r , centered at the origin of R3.
View the xy-plane as that of the equator and the x-axis as the origin of the longi-
tudes. A point P of longitude θ and latitude τ thus has the coordinates (see Fig. 5.3)
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Fig. 5.3

f (θ, τ ) = (r cos τ cos θ, r cos τ sin θ, r sin τ).

Trivially the function

f : R2 −→ R
3

is of class C∞ and describes precisely all the points of the sphere. But this function
is not locally injective because all points of the form (θ, π

2 ) are mapped onto the
“North pole” (0,0, r), while all points of the form (θ,−π

2 ) are mapped onto the
“South pole” (0,0,−r). However, restricting f as a function

f : R×
]
−π

2
,+π

2

[
−→R

3

avoids the problem and yields this time a locally injective function, that is, a para-
metric representation of class C∞ of the sphere punctured at its two “poles”.

More generally, the function

g : R×
]
−π

2
,+π

2

[
−→R

3, (θ, τ ) �→ (a cos τ cos θ, b cos τ sin θ, c sin τ)

is such that
(

x

a

)2

+
(

y

b

)2

+
(

z

c

)2

= 1

and is a parametric representation of class C∞ of an ellipsoid of radii a, b, c punc-
tured at its two poles (0,0, c) and (0,0,−c) (see Sect. 1.14, [4], Trilogy II). �

One can even do a little bit better: avoiding just one point of the sphere, not two!
Problem 5.17.2 presents a parametric representation of the sphere punctured only at
the North pole.

The torus (the surface having the shape of the inner tubes of your bicycle) is
another celebrated surface:
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Fig. 5.4 The torus

Fig. 5.5

Example 5.1.7 The torus (see Fig. 5.4) is a surface of class C∞.

Proof The torus can be obtained by letting a circle of radius r , positioned in a
vertical plane containing the z-axis, rotate around the z-axis, provided the distance
R between the center of the circle and the z-axis is strictly greater than r . In terms
of the angles θ and τ as in Fig. 5.5, the coordinates of the corresponding point P of
the torus can be obtained by adding the two vectors

−→
OC and

−→
CP . This yields

f (θ, τ ) = (R cos θ,R sin θ,0) + (r cos τ cos θ, r cos τ sin θ, r sin τ).

It follows at once that

f : R2 −→ R
3
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Fig. 5.6 The helicoid

is a parametric representation of class C∞ of the torus. Indeed, f is of class C∞ and
injective on the neighborhood

]θ0 − π, θ0 + π[ ×
]
τ0 − π

2
, τ0 + π

2

[

of (θ0, τ0). �

The helicoid is obtained by letting a straight line d rotate uniformly around one
of its points P0, while this point P0 translates uniformly along a fixed line � perpen-
dicular to d .

Example 5.1.8 The helicoid (see Fig. 5.6) is a surface of class C∞.

Proof A parametric representation of the helicoid is given by

f (u, v) = (u cosv,u sinv, v)

where v is the position of the point P0 on the line � while u is the position of the
point f (u, v) on the moving line d . Notice that f is injective. �

The Möbius strip is another famous surface: take a rectangle of paper and glue
together two opposite sides, but after having twisted the strip of paper by a half turn.
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Fig. 5.7 The Möbius string

Fig. 5.8

Example 5.1.9 The Möbius strip (see Fig. 5.7) is a surface of class C∞.

Proof We consider a circle of radius R, centered at the origin in the xy-plane, and
a segment of length 2r , with r < R, perpendicular in R

3 to the tangent to the circle.
The middle point P0 of the segment moves uniformly along the circle; as this middle
point travels by a full turn along the circle, the segment rotates uniformly by a half
turn. This yields a parametric representation of the corresponding Möbius strip

f : R× ]−r,+r[ −→R
3, (θ, t) �→ f (θ, t)

f (θ, t) =
((

R + t cos
θ

2

)
cos θ,

(
R + t cos

θ

2

)
sin θ, t sin

θ

2

)

where θ is the around of rotation arround the circle in the xy-plane and t measures
the position on the rotating segment (see Fig. 5.8). The function f is of class C∞
and injective on each rectangle ]x, x + 2π[ × ]−r,+r[. �
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Fig. 5.9 The monkey saddle

Let us conclude this list of examples with a somewhat “peculiar one” (at least, as
far as the name is concerned):

Example 5.1.10 The graph of the function

f : R2 −→ R, (x, y) �→ x3 − 3x2y

is the so-called Monkey saddle (see Fig. 5.9). By Example 5.1.2, this is a surface of
class C∞.

5.2 Regular Surfaces

We want now to transpose to the case of surfaces the notion of regularity of a para-
metric representation (see Definition 2.2.1).

A parametric representation f (t) of a curve is regular when it is of class C1 and
df
dt

�= 0 at each point. But a parametric representation f (u, v) of class C1 of a surface

has two partial derivatives ∂f
∂u

and ∂f
∂v

. Requiring that both partial derivatives are not
zero is certainly not the correct generalization of regularity. Everybody familiar with
linear algebra knows that the sensible generalization of a single vector is non-zero
is rather several vectors are linearly independent. Therefore we make the following
definition:

Definition 5.2.1 Consider a parametric representation f : U −→R
3 of class C1 of

a surface.

• The point with parameters (u0, v0) ∈ U is regular when ∂f
∂u

(u0, v0) and ∂f
∂v

(u0, v0)

are linearly independent.
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• The representation f itself is regular when it is regular at each point (u, v) ∈ U .
• A point which is not regular is called singular.

Being regular is in fact a property of the corresponding surface of class C1, as
our next result proves.

Proposition 5.2.2 With the notation of Definition 5.1.1, consider two parametric
representations f (u, v) and g(r, s) of class C1 of a surface, equivalent in class C1

via a change of parameters ϕ.

• The point with parameters (u, v) ∈ U is regular for f if and only if the point with
parameters ϕ(u, v) is regular for g.

• The parametric representation f is regular if and only if the parametric repre-
sentation g is regular.

• The matrix
(

∂ϕ1
∂u

∂ϕ2
∂u

∂ϕ1
∂v

∂ϕ2
∂v

)

is regular.

Proof From f = g ◦ ϕ we deduce at once

∂f

∂u
= ∂g

∂r

∂ϕ1

∂u
+ ∂g

∂s

∂ϕ2

∂u
,

∂f

∂v
= ∂g

∂r

∂ϕ1

∂v
+ ∂g

∂s

∂ϕ2

∂v
.

If ϕ(u, v) is singular, then ∂g
∂r

and ∂g
∂s

are proportional vectors, thus ∂f
∂u

and ∂f
∂v

are
also proportional. So (u, v) is a singular point. The same argument, using ϕ−1,
proves the converse assertion.

The last statement is a well-known fact concerning Jacobian matrices. Indeed the
formulas above indicate that

(
∂f

∂u

∂f

∂u

)
,

(
∂g

∂r

∂g

∂s

)

are two bases of the same 2-dimensional vector space, with
(

∂ϕ1
∂u

∂ϕ2
∂u

∂ϕ1
∂v

∂ϕ2
∂v

)

as the change of basis matrix. This matrix is thus regular. �

As in the case of curves (see Lemma 2.2.4), we observe that the “regularity con-
dition” immediately implies “local injectivity”.

Lemma 5.2.3 Consider a function of class C1

f : U −→ R
n
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where U is an open subset of R2. When the two partial derivatives of f are lin-
early independent at some point (u0, v0) ∈ U , f is injective on a neighborhood of
(u0, v0).

Proof By the regularity assumption, the matrix

( ∂f1
∂u

(u0, v0)
∂f2
∂u

(u0, v0)
∂f3
∂u

(u0, v0)

∂f1
∂v

(u0, v0)
∂f2
∂v

(u0, v0)
∂f3
∂v

(u0, v0)

)

has rank 2. So at least one 2 × 2-sub-matrix is regular. Let us say that

( ∂f1
∂u

(u0, v0)
∂f2
∂u

(u0, v0)

∂f1
∂v

(u0, v0)
∂f2
∂v

(u0, v0)

)

is regular. By the local inverse theorem (see Theorem 1.3.1), the function

(u, v) �→ (
f1(u, v), f2(u, v)

)

is then invertible—thus a fortiori injective—on a neighborhood of (u0, v0). There-
fore f is injective on that same neighborhood. �

This lemma implies at once:

Proposition 5.2.4 For a function of class C1

f : U −→R
3

with U ⊆ R
2 a connected open subset, the following conditions are equivalent:

1. f is a regular parametric representation of a surface;
2. at each point (u, v) ∈ U , the partial derivatives of f are linearly independent.

Another very useful related result is:

Proposition 5.2.5 Consider a parametric representation of class Ck (k ≥ 1)

f : U −→ R
n

of a surface. In a neighborhood of a regular point, the surface coincides with the
graph of a function ϕ of class Ck , expressing one of the three coordinates in terms
of the other two.

Proof Going back to the situation in the proof of Lemma 5.2.3, let us write

(x, y) �→ (u, v) = (
h1(x, y),h2(x, y)

)
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for the inverse of the function

(u, v) �→ (x, y) = (
f1(u, v), f2(u, v)

)

on a neighborhood of (u0, v0). This allows us to locally rewrite the parametric rep-
resentation of the surface as

(x, y) �→ (
x, y,f3

(
h1(x, y),h2(x, y)

))
.

The function ϕ announced in the statement is thus

ϕ(x, y) = f3
(
h1(u, v),h2(u, v)

)
. �

5.3 Cartesian Equation

Here we simply generalize the considerations of Sect. 2.3 for plane curves.

Definition 5.3.1 By a Cartesian equation of a Cartesian surface we mean an equa-
tion

F(x, y, z) = 0

where

• F : R3 −→R is a function of class C1;
• the equation admits infinitely many solutions;
• there are at most finitely many solutions (x, y, z) of the equation where all three

partial derivatives of F vanish.

The corresponding Cartesian surface is the set of those points which are solutions
of the equation F(x, y, z) = 0.

We define further:

Definition 5.3.2 Consider a Cartesian equation F(x, y, z) = 0 of a Cartesian sur-
face.

• A point of the Cartesian surface is multiple when all three partial derivatives of F

vanish at this point.
• A point of the Cartesian surface is simple when at least one partial derivative of

F does not vanish at this point.

As expected, we then have:

Proposition 5.3.3 Consider a surface of class C1. In a neighborhood of each reg-
ular point, the support of the surface can be described by a Cartesian equation.
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Proof With the notation in the proof of Proposition 5.2.5, the surface can locally be
presented as z = ϕ(x, y), up to a permutation of the variables; thus it suffices to put
F(x, y, z) = z − ϕ(x, y). �

Proposition 5.3.4 Let F(x, y, z) = 0 be a Cartesian equation of a surface. On a
neighborhood of a simple point (x0, y0, z0) of this surface, the Cartesian surface is
the support of a regular surface.

Proof At (x0, y0, z0), one of the partial derivatives of F does not vanish (see Defi-
nition 5.3.2); we consider the case ∂F

∂z
�= 0. By the Implicit Function Theorem (see

Theorem 1.3.5), there exist a neighborhood U of (x0, y0) (and there is no loss of
generality in assuming that it is open and connected) and a mapping

ϕ : U −→R

of class C1, such that

ϕ(x0, y0) = z0, ∀(x, y) ∈ U F
(
x, y,ϕ(x, y)

)= 0.

The graph of ϕ (see Example 5.1.2)

f : U −→R
3, x �→ (

x, y,ϕ(x, y)
)

is then a parametric representation of class C1 of a surface whose support coin-
cides with the Cartesian surface of equation F(x, y, z) = 0, in a neighborhood of
(x0, y0). �

5.4 Curves on a Surface

A “curve on a surface” is the deformation, by the parametric representation of the
surface, of a plane curve in the domain of definition of the surface.

Definition 5.4.1 Consider a parametric representation

f : U −→ R
3, (u, v) �→ f (u, v)

of a surface. By a curve on this surface is meant a curve represented by f ◦h, where

h : ]a, b[ −→ U ⊆ R
2, t �→ h(t)

is a parametric representation of a plane curve. A curve on a regular surface is itself
called regular if the plane curve represented by h is regular.

Let us observe at once that this definition makes sense:
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Lemma 5.4.2 Under the conditions of Definition 5.4.1, f ◦ h is a parametric rep-
resentation of a skew curve. This skew curve is regular as soon as f and h are
regular.

Proof It is immediate that the local injectivity of f and h forces that of f ◦ h.
Analogously, the regularity of f and h forces that of f ◦ h: indeed

(f ◦ h)′ = ∂f

∂u
h′

1 + ∂f

∂v
h′

2

where the two partial derivatives are linearly independent and (h′
1, h

′
2) �= (0,0); thus

(f ◦ h)′ �= 0. �

Our first concern about curves on a surface is to exhibit a particular formula for
computing their length.

Proposition 5.4.3 Consider a regular surface represented by

f : U −→ R
3, (u, v) �→ f (u, v)

and the three functions U −→R defined by

E =
(

∂f

∂u

∣∣∣∣
∂f

∂u

)
, F =

(
∂f

∂u

∣∣∣∣
∂f

∂v

)
, G =

(
∂f

∂v

∣∣∣∣
∂f

∂v

)
.

Given a regular curve on this surface

h : ]a, b[ −→ U ⊆ R
2, t �→ h(t),

the length of an arc of this curve, between the points with parameters t0, t1, is given
by

∫ t1

t0

√√√√(
h′

1(t) h′
2(t)

)
(

E(h1(t), h2(t)) F (h1(t), h2(t))

F (h1(t), h2(t)) G(h1(t), h2(t))

)(
h′

1(t)

h′
2(t)

)

dt.

Proof In the formula
∫ t1
t0

‖(f ◦ h)′‖ for the length (see Proposition 2.7.5), simply
replace (f ◦ h)′ by its expansion

(f ◦ h)′ = ∂f

∂u
h′

1 + ∂f

∂v
h′

2

and apply the definition of a norm (see 4.2.4, [4], Trilogy II). �

Analogously, we have:
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Proposition 5.4.4 Consider a regular surface represented by

f : U −→ R
3, (u, v) �→ f (u, v)

and two regular curves on this surface

g : ]a, b[ −→ U, t �→ g(t), h : ]c, d[ −→ U, s �→ h(s)

passing through the same point

g(t0) = (u0, v0) = h(t0).

The angle θ between these two curves f ◦ g and f ◦ h on the surface at the point
f (u0, v0) (that is, the angle between their tangent vectors) is given by

cos θ =
g′

1(t0) g′
2(t0)

(
E(u0,v0) F (u0,v0)

F (u0,v0) G(u0,v0)

)(
h′

1(s0)

h′
2(s0)

)

‖g′(t0)‖ · ‖h′(s0)‖
where moreover

∥
∥g′(t0)

∥
∥=

√
(
g′

1(t0) g′
2(t0)

)(E(u0, v0) F (u0, v0)

F (u0, v0) G(u0, v0)

)(
g′

1(t0)

g′
2(t0)

)

∥∥h′(s0)
∥∥=

√
(
h′

1(s0) h′
2(s0)

)(E(u0, v0) F (u0, v0)

F (u0, v0) G(u0, v0)

)(
h′

1(s0)

h′
2(s0)

)
.

Proof In the formulæ for the angle and the norm (see Definitions 4.2.6 and 4.2.4
in [4], Trilogy II), simply replace (f ◦ g)′ and (f ◦ h)′ by their expansions

(f ◦ g)′ = ∂f

∂u
g′

1 + ∂f

∂v
g′

2, (f ◦ h)′ = ∂f

∂u
h′

1 + ∂f

∂v
h′

2. �

The matrix in the statement of Propositions 5.4.3 and 5.4.4 will play a central role
in Riemannian geometry (see Chap. 6), where it will be called the metric tensor. In
classical surface theory, it is instead called the first fundamental form of the surface.

Definition 5.4.5 Consider a regular surface represented by

f : U −→ R
3, (u, v) �→ f (u, v).

The quadratic form

I : R2 −→ R, (α,β) �→ (α β)

(
E(u,v) F (u, v)

F (u, v) G(u, v)

)(
α

β

)

is called the first fundamental form of the surface at the point with parameters (u, v),
with respect to the parametric representation f .
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Proposition 5.4.6 At each point, the first fundamental form of a regular surface is
symmetric, definite and positive. In particular:

1. EG − F 2 > 0;
2. E > 0, G > 0;
3. (α,β) �= (0,0) =⇒ Eα2 + 2Fαβ + Gβ2 > 0.

Proof The matrix

(
E F

F G

)
=
(( ∂f

∂u

∣∣ ∂f
∂u

) ( ∂f
∂u

∣∣ ∂f
∂v

)

( ∂f
∂u

∣∣ ∂f
∂v

) ( ∂f
∂v

∣∣ ∂f
∂v

)

)

is the matrix of the scalar product in the two-dimensional subspace of R3 having as
basis the two partial derivatives of f (see Definition 4.2.1 and Proposition 4.2.2, [4],
Trilogy II). In particular, its determinant is strictly positive (see Proposition G.3.4,
[4], Trilogy II). Since the partial derivatives are linearly independent, they are cer-
tainly non-zero, proving that E > 0, F > 0. The (more general) last assertion ex-
presses the positivity of the scalar product. �

Now as far as the cross product (see Sect. 1.7, [4], Trilogy II) of the partial
derivatives is concerned:

Proposition 5.4.7 Consider a regular surface represented by

f : U −→ R
3, (u, v) �→ f (u, v).

Then
∥∥∥
∥
∂f

∂u
× ∂f

∂v

∥∥∥
∥=

√
EG − F 2.

Proof By Proposition 1.7.2 in [4], Trilogy II,

∥∥∥∥
∂f

∂u
× ∂f

∂v

∥∥∥∥=
∥∥∥∥
∂f

∂u

∥∥∥∥ ·
∥∥∥∥
∂f

∂v

∥∥∥∥ ·
∣∣∣∣sin�

(
∂f

∂u
,
∂f

∂v

)∣∣∣∣.

We have already
∥∥∥∥
∂f

∂u

∥∥∥∥= √
E,

∥∥∥∥
∂f

∂v

∥∥∥∥= √
G

while

∣∣∣∣sin�
(

∂f

∂u
,
∂f

∂v

)∣∣∣∣=
√

1 − cos2 �
(

∂f

∂u
,
∂f

∂v

)
=
√

1 − F 2

EG

(see Sect. 4.2 in [4], Trilogy II) from which the result follows at once. �
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5.5 The Tangent Plane

Of course one could consider three points on a surface, converging to each other, and
determine (when this makes sense) the “limit” of the plane passing through these
three points. This “limit plane” would be a good candidate for being the tangent
plane. We prefer the following more useful approach.

Lemma 5.5.1 Consider a regular parametric representation of a surface

f : U −→ R
3, (u, v) �→ f (u, v)

and a point P = f (u0, v0) of this surface. All the regular curves f ◦ h of class C1

on this surface

h : ]a, b[ −→ U ⊆ R
2, t �→ h(t)

passing through the point (u0, v0), that is

∃t0 ∈ ]a, b[ h(t0) = (u0, v0),

have a tangent at t0 which is contained in the plane passing through P and spanned
by the two partial derivatives

∂f

∂u
(u0, v0),

∂f

∂v
(u0, v0).

Proof Keeping in mind that h(t0) = (u0, v0), simply observe that (see Defini-
tion 2.4.2)

(f ◦ h)′(t0) = ∂f

∂u
(u0, v0)h

′
1(t0) + ∂f

∂v
(u0, v0)h

′
2(t0). �

This plane containing all the tangents to all the curves passing through P on the
surface is certainly worthy of the title: the tangent plane to the surface.

Definition 5.5.2 The tangent plane at a regular point of parameters (u0, v0) on a
surface of class C1 represented by

f : U −→ R
3, (u, v) �→ f (u, v)

is the plane passing through f (u0, v0) and spanned by the two partial derivatives

∂f

∂u
(u0, v0),

∂f

∂v
(u0, v0).

As expected:

Lemma 5.5.3 Two regular parametric representation of class C1, equivalent in
class C1, determine the same tangent plane at the corresponding point of the surface.
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Proof Consider two parametric representations f (u, v), g(r, s) equivalent via a
change of parameters ϕ, thus f = g ◦ ϕ. It follows at once that

∂f

∂u
= ∂g

∂r

∂ϕ1

∂u
+ ∂g

∂s

∂ϕ2

∂u
,

∂f

∂v
= ∂g

∂r

∂ϕ1

∂v
+ ∂g

∂s

∂ϕ2

∂v
.

Thus the partial derivatives of f are linear combinations of the partial derivatives
of g. �

Lemma 5.5.3 allows us to rephrase the observation made in the proof of Propo-
sition 5.4.6:

Proposition 5.5.4 Consider a parametric representation

f : U −→ R
3, (u, v) �→ f (u, v)

of class C1 of a surface. At a regular point with parameters (u0, v0), the matrix
(

E(u0, v0) F (u0, v0)

F (u0, v0) G(u0, v0)

)

is the matrix of the scalar product in the tangent plane, expressed with respect to the
affine basis

(
f (u0, v0); ∂f

∂u
(u0, v0),

∂f

∂v
(u0, v0)

)
.

Proposition 5.2.5 can also be specialized:

Proposition 5.5.5 Consider a parametric representation

f : U −→ R
3, (u, v) �→ f (u, v)

of class Ck (k ≥ 1) of a surface. In a neighborhood of a regular point with parame-
ters (u0, v0), with respect to an affine basis

(
f (u0, v0); e1, e2, e3

)

with the vectors e1, e2 in the tangent plane, the surface admits the equation x3 =
ϕ(x1, x2), with ϕ a function of class Ck .

Proof Apply a change of basis and write g(r, s) for the parametric representation
of the surface with respect to the basis of the statement; let (r0, s0) correspond to
(u0, v0). The two partial derivatives of g at (r0, s0) are in the tangent plane, thus
do not have any components along e3. The linear independence of the two partial
derivatives of g at (r0, s0)

∂g

∂r
(r0, s0) =

(
∂g1

∂r
(r0, s0),

∂g2

∂r
(r0, s0),0

)
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∂g

∂s
(r0, s0) =

(
∂g1

∂s
(r0, s0),

∂g2

∂s
(r0, s0),0

)

thus forces the linear independence of the vectors
(

∂g1

∂r
(r0, s0),

∂g2

∂r
(r0, s0)

)
,

(
∂g1

∂s
(r0, s0),

∂g2

∂s
(r0, s0)

)
.

The result follows as in the proof of Proposition 5.2.5. �

Definition 5.5.2 provides the vectorial equation of the tangent plane at the point
of parameters (u0, v0):

−→
x = f (u0, v0) + α

∂f

∂u
(u0, v0) + β

∂f

∂v
(u0, v0)

thus the system of parametric equations
⎧
⎪⎪⎨

⎪⎪⎩

x1 = f1(u0, v0) + α
∂f1
∂u

(u0, v0) + β
∂f1
∂v

(u0, v0)

x2 = f2(u0, v0) + α
∂f2
∂u

(u0, v0) + β
∂f2
∂v

(u0, v0)

x3 = f3(u0, v0) + α
∂f3
∂u

(u0, v0) + β
∂f3
∂v

(u0, v0).

Let us now investigate the situation where the surface is described by a Cartesian
equation.

Proposition 5.5.6 Consider a Cartesian equation F(x, y, z) = 0 of a surface. At a
simple point (x0, y0, z0) of this surface, the tangent plane admits the equation

∂F

∂x
(x0, y0, z0)(x − x0) + ∂F

∂y
(x0, y0, z0)(y − y0) + ∂F

∂z
(x0, y0, z0)(z − z0) = 0.

Proof We freely use the notation and the situation described in the proof of Propo-
sition 5.3.4, thus assuming that

∂F

∂z
(x0, y0, z0) �= 0.

The tangent plane is the one passing through (x0, y0, z0) and spanned by the two
partial derivatives (see Definition 5.5.2)

∂f

∂x
(x0, y0) =

(
1,0,

∂ϕ

∂x
(x0, y0)

)
,

∂f

∂y
(x0, y0) =

(
0,1,

∂ϕ

∂y
(x0, y0)

)
.

To compute the partial derivatives of ϕ, it suffices to differentiate with respect to x

and y the equality F(x, y,ϕ(x, y)) = 0. This gives

∂F

∂x
+ ∂F

∂z

∂ϕ

∂x
= 0,

∂F

∂y
+ ∂F

∂z

∂ϕ

∂y
= 0
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and therefore

∂ϕ

∂x
= −

∂F
∂x
∂F
∂z

,
∂ϕ

∂y
= −

∂F
∂y

∂F
∂z

.

The parametric equations of the tangent plane are thus
⎧
⎪⎪⎨

⎪⎪⎩

x = x0 + α

y = y0 + β

z = z0 − α
∂F
∂x

(x0,y0,z0)
∂F
∂z

(x0,y0,z0)
− β

∂F
∂y

(x0,y0,z0)

∂F
∂z

(x0,y0,z0)
.

The first two equations yield at once

α = x − x0, β = y − y0.

Introducing these values into the third equation and multiplying the equality by the
denominator yields the equation of the statement. �

Let us introduce another useful notion:

Definition 5.5.7 The normal vector at the point with parameters (u0, v0) on a reg-
ular surface represented by

f : U −→ R
3, (u, v) �→ f (u, v)

is the vector

−→
n (u0, v0) =

∂f
∂u

(u0, v0) × ∂f
∂v

(u0, v0)

‖ ∂f
∂u

(u0, v0) × ∂f
∂v

(u0, v0)‖
of length 1, perpendicular to the tangent plane (see Sect. 1.7 in [4], Trilogy II).

To be precise, Definition 5.5.7 only defines “a” normal vector to the surface:
indeed there are two vectors of length 1 perpendicular to the tangent plane, one
on each side of the tangent plane. The fact of obtaining one normal vector or its
opposite depends on the parametric representation. For example if you consider the
equivalent parametric representation g(v,u) = f (u, v), you simply interchange the
two partial derivatives and obtain the opposite normal vector (see Proposition 1.7.2
in [4], Trilogy II). However, a possible change in the orientation of the normal vector
is necessarily a global fact:

Proposition 5.5.8 Consider two regular parametric representations

f : U −→ R
3, g : V −→ R

3

of a surface, equivalent in class C1 via a change of parameters ϕ. Write −→
n , −→η for

the corresponding normal vectors. Then the two functions

−→
n , −→η ◦ ϕ : U −→ R

3
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• are either equal at all points,
• or are opposite at all points.

Proof We freely use the notation of Lemma 5.5.3 and the properties of the cross
product studied in Sect. 1.7 of [4], Trilogy II. In particular since for all vectors −→

x ,−→
y , one has

−→
x × −→

x = −→
0 ,

−→
x × −→

y = −(−→y × −→
x
)

we obtain

∂f

∂u
× ∂f

∂v
=
(

∂g

∂r

∂ϕ1

∂u
+ ∂g

∂s

∂ϕ2

∂u

)
×
(

∂g

∂r

∂ϕ1

∂v
+ ∂g

∂s

∂ϕ2

∂v

)

=
(

∂g

∂r
× ∂g

∂s

)
∂ϕ1

∂u

∂ϕ2

∂v
+
(

∂g

∂s
× ∂g

∂r

)
∂ϕ2

∂u

∂ϕ1

∂v

=
(

∂g

∂r
× ∂g

∂s

)(
∂ϕ1

∂u

∂ϕ2

∂v
− ∂ϕ2

∂u

∂ϕ1

∂v

)
.

The proportionality factor is the determinant of the matrix

(
∂ϕ1
∂u

∂ϕ2
∂u

∂ϕ1
∂v

∂ϕ2
∂u

)

.

Since ϕ admits an inverse of class C1, this matrix is invertible at each point, with
precisely the matrix of partial derivatives of ϕ−1 as inverse. The determinant of the
matrix of partial derivatives of ϕ is thus a continuous function of (u, v) which never
takes the value 0. Therefore it is of constant sign: positive or negative. �

5.6 Tangent Vector Fields

A tangent vector field on a surface consists of, at each point of the surface, a vector in
the tangent plane. The most efficient way to describe such a vector is to give its two
components in the basis of the tangent plane determined by the partial derivatives
of a parametric representation.

Definition 5.6.1 Consider a regular parametric representation

f : U −→ R
3, (u, v) �→ f (u, v)

of a surface. By a tangent vector field of class Ck to the surface is meant a function
of the form

(u, v) �→ α(u, v) = α1(u, v)
∂f

∂u
(u, v) + α2(u, v)

∂f

∂v
(u, v)
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where

αi : U −→R, i = 1,2

are functions of class Ck .

Of course every arbitrary choice of the continuous functions αi yields a tangent
vector field. Among these, choosing the constant functions

α1(u, v) = 1, α2(u, v) = 0

yields the tangent vector field given at each point by the first partial derivative of
f , and analogously for the second partial derivative. These two tangent vector fields
thus constitute at each point a basis of the tangent plane. We shall need the following
result, which generalizes this situation to the case of arbitrary linearly independent
tangent vector fields.

Theorem 5.6.2 Consider a regular parametric representation

f : U −→ R
3, (u, v) �→ f (u, v)

of class Ck of a surface and two tangent vector fields α, β of class Ck on this sur-
face (k ≥ 1). Suppose that at a given point with parameters (u0, v0), the two vectors
α(u0, v0) and β(u0, v0) are linearly independent. Then there exists, in a neighbor-
hood of (u0, v0), a change of parameters of class Ck such that the two tangent vector
fields of partial derivatives now become oriented along the tangent vector fields α

and β .

Proof An elegant proof of this theorem consists of translating it into a sophisticated
result on partial differential equations, accepted at once as a known result. To keep
this book “as accessible as possible”, we choose a more extensive proof based only
on the few basic results introduced in Appendix B.

Saying that the vectors α(u0, v0) and β(u0, v0) are linearly independent means
that the determinant constituted of their components is non-zero. By continuity, this
determinant remains non-zero on a neighborhood of (u0, v0).

Moreover since α(u0, v0) and β(u0, v0) are linearly independent, at least one
of them is not in the direction of the second partial derivative. There is no loss of
generality in assuming that this holds for β . Thus β and ∂f

∂v
are linearly independent

at (u0, v0) and the argument just given for α and β implies that this remains the case
on a neighborhood of (u0, v0).

We restrict our attention to a neighborhood V on which α and β , but also β and
∂f
∂v

, are linearly independent.
For each fixed point (u0, v) in this neighborhood V , let us first investigate the

existence of a curve on the surface which admits at each point the vector β as tangent
vector. We are looking for a curve

h(v) : ]a, b[−→ V, t �→ (
h

(v)
1 (t), h

(v)
2 (t)

)
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such that h(v)(0) = (u0, v) and

(
dh

(v)
1

dt
,
dh

(v)
2

dt

)
= (

β1
(
h

(v)
1 (t), h

(v)
2 (t)

)
, β2

(
h

(v)
1 (t), h

(v)
2 (t)

))
.

By Proposition B.2.1, such a curve of class Ck exists on a neighborhood of 0. By
Proposition B.3.1, on some neighborhood of (0, v0) in R

2, the functions

Hi(t, v) = h
(v)
i (t)

are themselves of class Ck .
Let us now consider the function

H(t, v) = (
H1(t, v),H2(t, v)

)
.

We have

∂H

∂t
=
(

dh
(v)
1

dt
,
dh

(v)
2

dt

)
= (

β1
(
h(v)

)
, β2

(
h(v)

))
.

On the other hand

∂H

∂v
(0, v) = ∂(u0, v)

∂v
= (0,1).

The linear independence of β and ∂f
∂v

proves that at each point (u0, v), the two partial
derivatives of H are linearly independent. This is in particular the case at (u0, v0)

and by the Local Inverse Theorem (see Theorem 1.3.1), the function H is invertible
in a neighborhood of (0, v0) and its inverse is still of class Ck .

We have thus exhibited a first change of parameter H . The new parametric rep-
resentation g = f ◦ H is now such that

∂g

∂t
(t, v) = ∂f

∂u

(
H(t, v)

)∂H1

∂t
(t, v) + ∂f

∂v

(
H(t, v)

)∂H2

∂t
(t, v)

= ∂f

∂u

(
h(v)(t)

) · β1
(
h(v)(t)

)+ ∂f

∂v

(
h(v)(t)

) · β2
(
h(v)(t)

)

= β
(
h(v)(t)

)
.

Let us now proceed with this new parametric representation g(t, v) and the two
vector fields α(t, v), β(t, v) now expressed in terms of the new parameters.

For each fixed value v, keeping unchanged the various curves v = k with k a
constant, we shall now introduce on each of these a change of parameter t = ψ(v)(s)

in order to force the conclusion of the theorem. We are thus interested in a global
change of parameters of the form

(t, v) = ϕ(s, v) = (
ψ(v, s), v

)
.
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The curves v = k, with k a constant, will thus indeed remain the same. Therefore
the tangent vectors to these curves will remain in the same direction, that is, in the
direction of the vector field β . But now we want the tangent vectors to the curves
s = k, with k constant, to be oriented along the vector field α. Since

∂(g ◦ ϕ)

∂v
= ∂g

∂t

(
ϕ(s, v)

) · ∂ψ

∂v
(s, v) + ∂g

∂v

(
ϕ(s, v)

) · ∂v

∂v
(s, v)

= ∂g

∂t

(
ϕ(s, v)

) · ∂ψ

∂v
(s, v) + ∂g

∂v

(
ϕ(s, v)

) · 1

what we want is the vector
(

∂ψ

∂v
(s, v),1

)

to be proportional to the vector

(
α1
(
ϕ(s, v)

)
, α2

(
ϕ(s, v)

))
.

Notice that α2 = 0 at some point would imply that at this point, α is oriented along
∂g
∂t

= β . This is never the case, by choice of the neighborhood V . Thus the propor-
tionality above can be achieved by requiring that

∂ψ

∂v
(s, v) = α1

α2

(
ψ(s, v), v

)
.

The local existence of a function ψ of class Ck satisfying these requirements
is again attested by Propositions B.2.1 and B.3.1. For each value of s, a function
ψ(s)(v) satisfying

∂ψ(s)

∂v
(v) = α1

α2

(
ψ(s)(v), v

)

together with the initial condition

ψ(s)(v0) = s

exists by Proposition B.2.1. Then Proposition B.3.1 attests that

ψ(s, v) = ψ(s)(v)

remains of class Ck on a neighborhood of (0, v0).
It remains to make sure that the function ϕ is a change of parameters in a neigh-

borhood of (0, v0). By the Local Inverse Theorem (see Theorem 1.3.1), it suffices to
check that the partial derivatives of ϕ are linearly independent at (0, v0). First,

∂ϕ

∂s
(0, v0) =

(
dψ(s, v0)

ds
(0),

dv

ds
(0)

)
= (1,0)
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since ψ(s, v0) = s. On the other hand

∂ϕ

∂v
(0, v0)(v0) =

(
dψ(0, v)

dv
(v0),

dv

dv
(v0)

)
=
(

α1

α2

(
ϕ(s, v0)

)
,1

)
.

These two vectors are indeed trivially linearly independent. �

5.7 Orientation of a Surface

In practical life orientation is something we take for granted, we can tell left from
right, clockwise from anticlockwise. However, there are surfaces for which it is not
possible to define a global orientation in this way.

Imagine that you are living on the Möbius strip of Example 5.1.9 and you are
driving along the “central circle” along which the segment rotates (see the proof of
this Example). This central circle is your road A. At some point, you want to enter
the road B determined by the position of the rotating segment at this point. You want
to reach a specific point P on this road B and for that, you need—let us say—to turn
right. But instead of turning right immediately, you first make a full tour around the
central circle. You return to the same point, but “on the other face of the strip”! If you
want to enter the road B and reach your original objective P , you now have to turn
left! The Möbius strip is a non-orientable surface. As we have just observed, it is a
peculiar surface with only “one face”: moving along a face one eventually returns
to the same point, but on what you would intuitively call the “other” side. A similar
observation can be made concerning the “edge” moving along the “edge” eventually
leads you to the opposite end of the segment you started from! The Möbius strip has
one face and one edge.

There is an easy way to connect these observations with the notion of the orien-
tation of a real affine space studied in Sect. 3.2.

Definition 5.7.1 A surface is orientable when it admits a parametric representation
of class C1

f : U −→R
3

satisfying the following property. When two restrictions of f on connected open
subsets U1 ⊆ U , U2 ⊆ U

f : U1 �→R
3, f : U2 �→ R

3

constitute equivalent representations of class C1 of the same piece of the support
of the surface, the respective partial derivatives constitute two bases of the tangent
plane having the same orientation.

Of course we immediately observe that:
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Lemma 5.7.2 Definition 5.7.1 is independent of the choice of the parametric rep-
resentation of class C1.

Proof Under the conditions of Definition 5.7.1, write

ϕ : U1 −→ U2

for the change of parameters involved. Consider another parametric representation
of class C1

g : V −→ R
3

equivalent to f in class C1 via a change of parameter

ψ : U −→ V.

In terms of g, the change of parameters given by ϕ becomes

ψ ◦ ϕ ◦ ψ−1 : V1 = ϕ(U1) −→ ϕ(U2) = V2.

The change of basis matrix between the two bases of partial derivatives at two points
P ∈ V1 and ψϕψ−1(P ) is thus comprised of the partial derivatives of the two com-
ponents of this composite. But this matrix of partial derivatives is simply the product
of the three matrices constituted respectively of the partial derivatives of ψ , ϕ and
ψ−1. Since the third matrix is the inverse of the first one, the determinant of the
composite is the same as that of the second matrix. In particular, these two determi-
nants have the same sign. �

Notice also that:

Proposition 5.7.3 Every surface admitting an injective parametric representation
of class C1 is orientable.

Proof By injectivity, two distinct restrictions of the parametric representation al-
ways describe different pieces of the support of the surface. �

Corollary 5.7.4 The graph of a function g : R2 −→ R of class C1 is an orientable
surface.

Proof As observed in Example 5.1.2, the corresponding parametric representation
is injective. �

As expected:

Counterexample 5.7.5 The Möbius strip is not orientable.
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Proof Going back to the proof of Example 5.1.9, we take

U1 = ]a, b[ × ]−r,+r[, U2 = ]a + 2π,b + 2π[ × ]−r,+r[.
The change of parameters in Definition 5.7.1 is simply

(θ, t) �→ (θ + 2kπ,−t).

The two partial derivatives of f are

∂f

∂θ
=
(

− t

2
cos

θ

2
cos θ −

(
R + t cos

θ

2

)
sin θ,

− t

2
cos

θ

2
sin θ +

(
R + t cos

θ

2

)
cos θ,

t

2
cos

θ

2

)

∂f

∂t
=
(

cos
θ

2
cos θ, cos

θ

2
sin θ,0

)
.

Observe that ∂f
∂θ

is unaffected by the change of parameters, while ∂f
∂t

changes its
sign. �

On the other hand—for example—

Example 5.7.6 The hyperboloid of one sheet is an orientable surface.

Proof Going back to the proof of Example 5.1.5, the change of parameters in Defi-
nition 5.7.1 is simply

R
2 �→ R

2, (θ, z) �→ (θ + 2kπ, z).

The two partial derivatives of the parametric representation f (θ, z) are

∂f

∂θ
=
(

−a

√

1 + z2

c2
sin θ, b

√

1 + z2

c2
cos θ,0

)

∂f

∂z
=
(

2az cos θ

c2
√

1 + z2

c2

,
2bz sin θ

c2
√

1 + z2

c2

,1

)
.

These partial derivatives are unaffected by the change of parameters. �

5.8 Normal Curvature

We arrive now at the central notion of this chapter: the curvature of a surface. The
idea behind this notion is very simple (see Fig. 5.10) and is due to Euler.
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Fig. 5.10

Fig. 5.11

Consider the tangent plane π at some point P of the surface. Cut the sur-
face by a plane σ passing through P and perpendicular to the tangent plane
π . You obtain a curve whose curvature at P will be called the curvature of the
surface at P in the direction of the plane σ .

Of course cutting the surface by different planes σ through P in different directions
will a priori yield curves with different curvatures at P . Thus

The curvature of a surface at a given point P should be a function of the
direction in the tangent plane at this point P .

But there is still an important piece information to take care of. In some cases—such
as an elliptic paraboloid—the curve involved in the “definition” above is always
on the same side of the tangent plane; but in other cases—for example a hyper-
bolic paraboloid—the curve involved is sometimes on one side of the tangent plane,
sometimes on the other side (see Fig. 5.11). It is rather clear that

Taking care of the position of the section curve with respect to the tangent
plane should be achieved by giving a sign to the curvature of the surface in a
given direction.
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Having said that, one may be a little bit puzzled by the situation where the section
curve, in one or even in all directions, “crosses” the tangent plane, that is, it is on
“both sides” of it. The Monkey saddle of Fig. 5.9 presents such a situation! How can
we choose the sign in this case? As we shall see later (see Example 5.9.2), this is
just an apparent problem, because here the normal curvature will turn out to be zero.

The presentation above is very intuitive and—being particularly careful with the
necessary assumptions—it can easily be made perfectly rigorous. But it is certainly
not very convenient for computing the curvature of the surface! Indeed, let us ob-
serve what has to be done.

We start with a parametric representation f (u, v) of the surface and a direction
in the tangent plane at the point of parameters (u0, v0). This direction is determined
by some vector

−→w = α
∂f

∂u
(u0, v0) + β

∂f

∂v
(u0, v0), (0,0) �= (α,β) ∈R

2.

We consider next the normal vector to the surface at the point f (u0, v0)

−→
n (u0, v0) = ∂f

∂u
(u0, v0) × ∂f

∂v
(u0, v0)

and the plane σ passing through f (u0, v0) and spanned by the two vectors −→w and−→
n . The plane σ thus admits the vectorial equation, in terms of two parameters r

and s,

(x, y, z) = f (u0, v0) + r−→w + s
−→
n (u0, v0).

The intersection between the surface and the plane σ is so determined by a system
of six equations with four parameters u, v, r , s. It “suffices” then to eliminate three
of these parameters to end up with a system of only three equations with one single
parameter t

x = h1(t), y = h2(t), z = h3(t).

This should provide a parametric representation h(t) of the curve involved in the
problem. The considerations of Sect. 2.9 now allow us to compute the curvature.

This is certainly a challenging technical problem. Fortunately, there is a much
more efficient and interesting approach.

The plane curve on the surface, the intersection of the plane σ and the surface as
in Fig. 5.10, thus has a parametric representation

h : ]a, b[ −→ R
3.

Consider further its normal parametric representation (see Sect. 4.2)

h : ]c, d[ −→ R
3.

The tangent to the curve lies in the tangent plane π to the surface (see Defini-
tion 5.5.2) and of course in the plane σ of the curve: it is thus the intersection of the
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two planes π and σ . The vector h
′′

remains in the plane σ of the curve and is per-
pendicular to the tangent vector h

′
(see Proposition 2.8.3), that is to the intersection

of π and σ . Since σ is perpendicular to π , it follows that h
′′

is perpendicular to π ,
thus is in the direction of the normal vector to the surface. Therefore, at the point
considered,

h
′′ = k

−→
n , k ∈R.

But since the (unsigned) curvature κ of the curve is given by κ = ‖h′′‖ (see Defini-
tion 2.9.1), one has further

h
′′ = k

−→
n = ±κ

−→
n .

In particular

k = (
h

′′∣∣−→n )= ±κ.

Considering k instead of κ already takes care of the sign, which will be positive or
negative according to whether or not h

′′
is on the same side of π as −→

n .
The trick to avoid heavy calculations is the following. Instead of working with

the specific curve constructed above, consider an arbitrary curve h on the surface,
passing through the point P . In that case the quantity

(
h

′′∣∣−→n )

represents—up to the sign—the length of the orthogonal projection of the “curvature
vector” h

′′
on −→

n , while the sign takes care of the orientation of this orthogonal
projection, compared with that of the normal vector −→

n . Intuitively, this quantity
represents the component of the curvature of the curve in the direction of the normal
vector to the surface. This is what we shall call the normal curvature of the curve.
The key observation will then be Theorem 5.8.2: all the curves on a surface, at
a given point and in a given direction, have the same normal curvature! There is
thus no need to compute the precise form of the very specific intersection curve
considered at the beginning of this section: any curve in the same direction will
yield the same result.

Definition 5.8.1 Consider a regular surface of class C2 represented by

f : U −→ R
3, (u, v) �→ f (u, v)

and a regular curve of class C2 on this surface, represented by

g : ]a, b[ −→ U ⊆ R
2.

Write h(s) for the normal representation of the curve h = f ◦ g on the surface. The
normal curvature of this curve (with respect to f ) at the point with parameter s0 is
the quantity

κn(s0) = (
h

′′
(s0)

∣∣−→n (h(s0)
))

where −→
n indicates the normal vector to the surface.
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Of course choosing another equivalent parametric representation of the surface
can possibly change the orientation of the normal vector (see the considerations at
the end of Sect. 5.5): thus the sign of the normal curvature depends explicitly on the
choice of the parametric representation f .

Theorem 5.8.2 Consider a regular parametric representation of class C2

f : U −→ R
3, (u, v) �→ f (u, v)

of a surface. All the regular curves of class C2

g : ]a, b[ −→ U ⊆ R
2, t �→ g(t)

on this surface passing through a fixed point with parameters (u0, v0) and having
the same tangent at this point, also have the same normal curvature at this point.
For a tangent in the direction

α
∂f

∂u
(u0, v0) + β

∂f

∂v
(u0, v0), (0,0) �= (α,β) ∈R

2

the normal curvature is given by

κn(α,β) = L(u0, v0)α
2 + 2M(u0, v0)αβ + N(u0, v0)β

2

E(u0, v0)α2 + 2F(u0, v0)αβ + G(u0, v0)β2

where E, F , G are the coefficients of the first fundamental form of the surface (see
Definition 5.4.5 and Proposition 5.4.3) and the three functions

L,M,N : U −→ R

are defined by

L =
(

∂2f

∂u2

∣∣∣−→n
)

, M =
(

∂2f

∂u∂v

∣∣∣−→n
)

, N =
(

∂2f

∂v2

∣∣∣−→n
)

.

Proof We consider the curve h(t) = (f ◦ g)(t) and its normal representation

h(s) = (h ◦ σ−1)(s)

where σ has been defined in Sect. 4.2. We first compute

h
′ = (

h′ ◦ σ−1) (σ−1)′

h
′′ = (

h′′ ◦ σ−1) (σ−1)′2 + (
h′ ◦ σ−1) (σ−1)′′.

Since h′ is orthogonal to −→
n , it follows that

(
h

′′∣∣−→n )= ((
h′′ ◦ σ−1)(σ−1)′2∣∣−→n ).
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Of course, this is an abbreviated notation to indicate the scalar product of h
′′
(s) with

the normal vector −→
n (h(s)) to the surface at the point h(s).

Next we compute

h′ = ∂f

∂u
(g1, g2)g

′
1 + ∂f

∂v
(g1, g2)g

′
2

which as usual we abbreviate again as

h′ = ∂f

∂u
g′

1 + ∂f

∂v
g′

2.

With analogous abbreviated notation

h′′ =
(

∂2f

∂u2
g′

1 + ∂2f

∂u∂v
g′

2

)
g′

1 + ∂f

∂u
g′′

1 +
(

∂2f

∂v∂u
g′

1 + ∂2f

∂v2
g′

2

)
g′

2 + ∂f

∂v
g′′

2 .

Again the first partial derivatives of f are in the tangent plane, thus perpendicular
to −→

n . This proves that

(
h

′′∣∣−→n )=
((

∂2f

∂u2
g′

1
2 + 2

∂2f

∂u∂v
g′

1g
′
2 + ∂2f

∂v2
g′

2
2
)

◦ σ−1
∣∣∣−→n

)(
σ−1)′2.

With the notation of the statement, this can be re-written as

(
h

′′∣∣−→n )= ((
Lg′

1
2 + 2Mg′

1g
′
2 + Ng′

2
2) ◦ σ−1)(σ−1)′2.

But (see the proof of Proposition 4.3.2)

(
σ−1)′2 = 1

‖h′ ◦ σ−1‖2
= 1

(h′ ◦ σ−1|h′ ◦ σ−1)
.

With the form of h′ as calculated above, we obtain

(
σ−1)′2 = 1

( ∂f
∂u

∣∣ ∂f
∂u

)
g′

1
2 + 2

( ∂f
∂u

∣∣ ∂f
∂v

)
g′

1g
′
2 + ( ∂f

∂v

∣∣ ∂f
∂v

)
(g′

2)
2

◦ σ−1.

With the notation of Proposition 5.4.3, this can be re-written as

(
σ−1)′2 = 1

(E g′
1

2 + 2F g′
1g

′
2 + Gg′

2
2
)

◦ σ−1.

The normal curvature of the curve h = f ◦ g, in terms of the parameter s, is thus
given by
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Lg′
1

2 + 2Mg′
1g

′
2 + Ng′

2
2

Eg′
1

2 + 2F g′
1g

′
2 + Gg′

2
2

◦ σ−1.

Since σ−1(s) = t , this proves the formula of the statement, in terms of the original
parameter t .

The rest of the proof is now easy. The numerator and the denominator are homo-
geneous polynomials of the same degree 2, thus the quotient remains unchanged if
we replace h′ by a vector proportional to it. This proves that two regular curves with
the same tangent line—that is, with proportional tangent vectors—have the same
normal curvature. �

Theorem 5.8.2 gives rise to the following definition:

Definition 5.8.3 Consider a regular parametric representation of class C2

f : U −→ R
3, (u, v) �→ f (u, v)

of a surface. The normal curvature of the surface (with respect to f ), at the point
with parameters (u0, v0), in the direction

α
∂f

∂u
(u0, v0) + β

∂f

∂v
(u0, v0), (0,0) �= (α,β) ∈R

2

of the tangent plane, is the normal curvature of any regular curve on the surface,
passing through (u0, v0) and whose tangent is oriented in the direction (α,β).

Still by Theorem 5.8.2, we thus have:

Proposition 5.8.4 Consider a regular parametric representation f (u, v) of class
C2 of a surface. The normal curvature in the direction (α,β) �= (0,0) of the tangent
plane at the point with parameters (u0, v0) is given by

κn(α,β) = L(u0, v0)α
2 + 2M(u0, v0)αβ + N(u0, v0)β

2

E(u0, v0)α2 + 2F(u0, v0)αβ + G(u0, v0)β2

where E, F , G, L, M , N are the six functions defined in Proposition 5.4.3 and
Theorem 5.8.2.

Let us recall that the denominator of the fraction in Proposition 5.8.4 is never
zero (see Proposition 5.4.6).

Let us also emphasize the fact that the notion of normal curvature is “almost”
independent of the choice of the parametric representation chosen to define it:

Proposition 5.8.5 Consider two equivalent regular parametric representations of
class C2 of a surface. One of the following possibilities holds:
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• the two representations yield at each point the same notion of normal curvature;
• the two representations yield at each point two notions of normal curvature op-

posite in sign.

Proof This follows by Definition 5.8.1 and Proposition 5.5.8. �

Let us conclude with a definition:

Definition 5.8.6 Consider a regular surface of class C2 represented by

f : U −→ R
3, (u, v) �→ f (u, v).

The quadratic form

II : R2 −→R, (α,β) �→ (α β)

(
L(u, v) M(u, v)

M(u, v) N(u, v)

)(
α

β

)

is called the second fundamental form of the surface at the point with parameters
(u, v), with respect to the parametric representation f .

We shall prove in Sect. 6.16 that the knowledge of the two fundamental forms
of a surface, that is, the knowledge of the six functions E, F , G, L, M , N , entirely
determines the surface up to an isometry. This will generalize our Theorem 2.12.4
in the case of plane curves.

5.9 Umbilical Points

As already mentioned, at a given point of a surface, the curvature is a priori different
in the various directions of the tangent plane. Studying the “curvature function” will
be the topic of the next section. The present short section is instead devoted to the
special case where the “curvature function” at a given point is constant.

Definition 5.9.1 Consider a regular surface f (u, v) of class C2. The point with
parameters (u0, v0) is umbilical when at this point, the normal curvature is the same
in all directions of the tangent plane.

Proposition 5.9.2 Consider a regular surface f (u, v) of class C2. The point with
parameters (u0, v0) is umbilical if and only if at this point, there exists a real number
k such that (see Definitions 5.8.6 and 5.4.5)

II(u0, v0) = kI(u0, v0).

Under these conditions, the real number k is the constant value of the normal cur-
vature at f (u0, v0).
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The condition of the statement thus means

L(u0, v0) = kE(u0, v0), M(u0, v0) = kF (u0, v0),

N(u0, v0) = kG(u0, v0).

Let us mention that it is common practice to write instead

L(u0, v0)

E(u0, v0)
= M(u0, v0)

F (u0, v0)
= N(u0, v0)

G(u0, v0)

where of course k is then the common value of these three fractions. When
F(u0, v0) = 0 the formula must by convention be interpreted as

L(u0, v0)

E(u0, v0)
= N(u0, v0)

G(u0, v0)
, F (u0, v0) = 0 = M(u0, v0).

On the other hand let us recall that in all cases, E �= 0 and G �= 0 (see Proposi-
tion 5.4.6).

Proof Assume that we have an umbilical point. With abbreviated notation and writ-
ing k for the constant value of the normal curvature, for every pair (α,β) �= (0,0),
but trivially also for (α,β) = (0,0), we have (see Theorem 5.8.2)

(L − kE)α2 + 2(M − kF )αβ + (N − kG)β2 = 0.

We obtain a real polynomial p(α,β) taking only the value 0: this is thus the zero
polynomial, that is

L − kE = 0, M − kF = 0, N − kG = 0.

The conclusion follows at once.
The converse implication is immediate from the formula in Theorem 5.8.2. �

Our first example of an umbilical point has already been suggested in the intro-
duction to Sect. 5.8.

Example 5.9.3 The origin is an umbilical point of the Monkey saddle (see Exam-
ple 5.1.10), with normal curvature 0.

Proof The parametric representation of the Monkey saddle is thus

f (x, y) = (
x, y, x3 − 3x2y

)
.

Its partial derivatives are

∂f

∂x
= (

1,0,3x2 − 6xy
)
,

∂f

∂y
= (

0,1,−3x2)
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and are linearly independent at each point. The second partial derivatives are

∂2f

∂x2
= (0,0,6x − 6y),

∂2f

∂x∂y
= (0,0,−6x),

∂2f

∂y2
= (0,0,0).

All three second partial derivatives vanish for (x, y) = (0,0), forcing L = M = N =
0 at this point. Thus the normal curvature itself is equal to 0 in all directions at the
origin. �

Example 5.9.3 presents the situation of an “isolated” umbilical point. At the op-
posite extreme we have:

Example 5.9.4 All the points of a sphere of radius R are umbilical, with normal
curvature ± 1

R
.

Proof Cutting a sphere of radius R by a plane orthogonal to a tangent plane yields a
“great circle” of radius R, thus with curvature 1

R
(see Example 2.9.5). So the normal

curvature is equal to 1
R

(or to − 1
R

, depending on the orientation of the normal vector)
at all points, in all directions. �

Of course, we have:

Example 5.9.5 All the points of a plane are umbilical with normal curvature 0.

Proof Cutting the plane by another plane orthogonal to it yields a straight line, thus
with curvature 0 (see Example 2.9.4). �

It is not always easy “at first glance”, to guess where the possible umbilical points
of a surface lie. To convince you of that, let us consider the case of an ellipsoid.

Example 5.9.6 The ellipsoid with equation

x2

a2
+ y2

b2
+ z2

c2
= 1, a > b > c > 0,

admits the four umbilical points

(
±a

√
a2 − b2

a2 − c2
,0,±c

√
b2 − c2

a2 − c2

)
.

Proof Notice first that at the two “poles” (0,0,±c) of the ellipsoid, the tangent
plane is horizontal. Cutting the ellipsoid by the vertical xz-plane of equation y = 0
yields an ellipse with equation

x2

a2
+ z2

c2
= 1
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whose curvature at the two poles indicated (see Example 2.9.7) is equal to c

a2 . Cut-
ting the ellipsoid by the vertical yz-plane analogously yields a curvature c

b2 at the
two poles. Since a > b, the normal curvatures of the ellipsoid in the directions of the
x and y axis are different at the two poles (0,0,±c), thus these poles are certainly
not umbilical points. Of course—even if not needed in this proof—an analogous
argument holds for the other “poles” (±a,0,0) and (0,±b,0).

A parametric representation of the ellipsoid punctured at its two poles (0,0,±c)

is given by (see Example 5.1.6)

f (θ, τ ) = (a cos τ cos θ, b cos τ sin θ, c sin τ).

It follows at once that

∂f

∂θ
= (−a cos τ sin θ, b cos τ cos θ,0)

∂f

∂τ
= (−a sin τ cos θ,−b sin τ sin θ, c cos τ)

from which we get in particular the normal vector

−→
n = (bc cos2 τ cos θ, ac cos2 τ sin θ, ab sin τ cos τ)

‖(bc cos2 τ cos θ, ac cos2 τ sin θ, ab sin τ cos τ)‖ .

For short, let us write η(θ, τ ) for the norm in the denominator of this fraction. Let
us compute further

∂2f

∂θ2
= (−a cos τ cos θ,−b cos τ sin θ,0)

∂2f

∂θ∂τ
= (a sin τ sin θ,−b sin τ cos θ,0)

∂2f

∂τ 2
= (−a cos τ cos θ,−b cos τ sin θ,−c sin τ).

We therefore obtain

E = cos2 τ
(
a2 sin2 θ + b2 cos2 θ

)

F = sin τ cos τ sin θ cos θ
(
a2 − b2)

G = a2 sin2 τ cos2 θ + b2 sin2 τ sin2 θ + c2 cos2 τ

and further

L = −abc cos3 τ

η(θ, τ )

M = 0



5.9 Umbilical Points 219

N = −abc cos τ

η(θ, τ )
.

If F �= 0 at some point, then by Proposition 5.9.2, to have an umbilical point,
we must have L = 0 = N , because M = 0. This means cos τ = 0, thus τ = ±π

2 .
This corresponds to the two “poles” (0,0,±c) which are not represented by f (and
which in any case, as we have seen above, are not umbilical points). So this case
must be excluded and in order to have an umbilical point, it is thus necessary, again
by Proposition 5.9.2, to have F = 0 as well as the equality L

E
= N

G
, that is

− abc cos3 τ
η(θ,τ )

cos2 τ(a2 sin2 θ + b2 cos2 θ)
= − abc cos τ

η(θ,τ )

a2 sin2 τ cos2 θ + b2 sin2 τ sin2 θ + c2 cos2 τ
.

Since we have already excluded the case cos τ = 0, this reduces to

a2 sin2 θ + b2 cos2 θ = a2 sin2 τ cos2 θ + b2 sin2 τ sin2 θ + c2 cos2 τ.

The necessary condition F = 0 corresponds to the four possibilities

sin τ = 0, cos τ = 0, sin θ = 0, cos θ = 0.

The second possibility has already been excluded. In the case sin τ = 0, thus cos τ =
±1, the requirement L

E
= N

G
becomes

a2 sin2 θ + b2 cos2 θ = c2.

This is impossible because

a2 sin2 θ + b2 cos2 θ ≥ b2 sin2 θ + b2 cos2 θ = b2 > c2.

Analogously, the case cos θ = 0, thus sin θ = ±1, yields

a2 = b2 sin2 τ + c2 cos2 τ.

Again this is impossible, because

b2 sin2 τ + c2 cos2 τ ≤ b2 sin2 τ + b2 cos2 τ = b2 < a2.

We are thus left with the single possibility sin θ = 0, thus cos θ = ±1. In that
case the requirement L

E
= N

G
becomes

b2 = a2 sin2 τ + c2 cos2 τ.

This can be re-written as

a2 − b2 = (
a2 − c2) cos2 τ.
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It follows at once that this condition holds for

cos τ = ±
√

a2 − b2

a2 − c2
from which sin τ = ±

√
b2 − c2

a2 − c2
.

These formulas make perfect sense because a > b > c > 0. Introducing these val-
ues, together with sin θ = 0 and cos θ = ±1, into the parametric representation f ,
yields the four umbilical points announced in the statement. �

5.10 Principal Directions

We arrive at the most important theorem of this chapter. To avoid any ambiguity, let
us recall that a function

f : U −→ R, U ⊆ R
n

admits a global maximum on U at P ∈ U when

∀Q ∈ U f (Q) ≤ f (P ).

The notion of a local maximum at P is more subtle:

The function f admits a local maximum at P ∈ U when there exists a
neighborhood V of P in R

n which is entirely contained in U and such that

∀Q ∈ V f (Q) ≤ f (P ).

Of course when U is open, a global maximum at P is at once a local maximum
(simply choose V = U ). Being a local maximum is definitely an intrinsic property
of the function f at the neighborhood of the point considered, while being a global
maximum depends heavily on the choice of the domain U .

Theorem 5.10.1 At a non-umbilical point of a regular surface of class C2, there
exists:

• exactly one direction in which the normal curvature reaches a local maximal
value;

• exactly one direction in which the normal curvature reaches a local minimal
value,

and these two directions are orthogonal.

Proof Let us write

f : U −→ R
3, (u, v) �→ f (u, v)
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for a regular parametric representation of class C2 of the surface. The normal curva-
ture, at a non-umbilical point with parameters (u0, v0), in the direction of the vector

α
∂f

∂u
+ β

∂f

∂v
, (0,0) �= (α,β) ∈ R

2

is the quantity

κn(α,β) = L(u0, v0)α
2 + 2M(u0, v0)αβ + N(u0, v0)β

2

E(u0, v0)α2 + 2F(u0, v0)αβ + G(u0, v0)β2
= II(u0,v0)(α,β)

I(u0,v0)(α,β)

(see Theorem 5.8.2, Definitions 5.4.5 and 5.8.6). From now on, for short and since
the values (u0, v0) of the parameters are fixed once and for all, we shall simply write
E instead of E(u0, v0), and analogously for F , G, L, M , N , I, II.

The function κn is of class C∞ in α and β , on R
2 \ {(0,0)}, as a quotient of two

polynomials whose denominator never vanishes (see Proposition 5.4.6). Of course
proportional values of the pair (α,β) yield the same value for κn. Therefore it is
equivalent to study the function κn on—for example—a circle of radius 1 centered
at f (u0, v0), in the tangent plane. But this circle C is a compact subset of R2. By a
well-known theorem in analysis (see our Corollary A.8.4), the continuous function

κn : C −→ R, (α,β) �→ κn(α,β)

is then bounded and attains its bounds. Since the function is not constant (the point
is not umbilical), the function attains a global maximum and a global minimum,
which are distinct values.

However, viewing κn again as a function defined for all (α,β) �= (0,0), that is, on
the open subset R2 \ {(0,0)} ⊆ R

2, a global maximum or minimum is in particular a
local one. This already proves that the function κn admits at least one local maximal
value and at least one local minimal value, these two values being distinct.

But a necessary condition for the function κn of class C1 to admit a local mini-
mum or maximum, is the nullity of its partial derivatives at the corresponding point.
Thus if the pair (α0, β0) �= (0,0) corresponds to a local maximum or a local mini-
mum, then certainly

∂κn

∂α
(α0, β0) = 0,

∂κn

∂β
(α0, β0) = 0.

This can be re-written as

∂II
∂α

(α0, β0)I(α0, β0) − II(α0, β0)
∂I
∂α

(α0, β0)

I2(α0, β0)

=
∂II
∂α

(α0, β0) − κn(α0, β0)
∂I
∂α

(α0, β0)

I(α0, β0)
= 0

∂II
∂β

(α0, β0)I(α0, β0) − II(α0, β0)
∂I
∂β

(α0, β0)

I2(α0, β0)
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=
∂II
∂β

(α0, β0) − κn(α0, β0)
∂I
∂β

(α0, β0)

I(α0, β0)
= 0.

For these fractions to be zero, the numerators must be zero, so that (after division
by 2), the nullity of the partial derivatives in the direction (α0, β0) reduces to

{
(Lα0 + Mβ0) − κn(α0, β0)(Eα0 + Fβ0) = 0
(Mα0 + Nβ0) − κn(α0, β0)(Fα0 + Gβ0) = 0.

This system can be further re-written as

{
(L − κn(α0, β0)E)α0 + (M − κn(α0, β0)F )β0 = 0
(M − κn(α0, β0)F )α0 + (N − κn(α0, β0)G)β0 = 0.

For a fixed value (α0, β0) corresponding to a local maximum or minimum of κn,
let us then consider the following system in α, β .

{
(L − κn(α0, β0)E)α + (M − κn(α0, β0)F )β = 0

(M − κn(α0, β0)F )α + (N − κn(α0, β0)G)β = 0.

This is a homogeneous system of two linear equations with two unknowns and we
know that it admits a non-zero solution, namely, (α0, β0). This is possible if and
only if the determinant of the system is zero (see any algebra course). Thus

(
L − κn(α0, β0)E

)(
N − κn(α0, β0)G

)

− (
M − κn(α0, β0)F

)(
M − κn(α0, β0)F

)= 0.

This can be re-written as

(
EG − F 2)κ2

n(α0, β0) + (2FM − EN − GL)κn(α0, β0) + (
LN − M2)= 0.

This proves in particular that every locally maximal or locally minimal value of
κn(α,β) is a root of the equation

(
EG − F 2)κ2 + (2FM − EN − GL)κ + (

LN − M2)= 0.

Since this is an equation of degree 2, it has at most two roots. This proves that κn has
at most two locally extremal values. But we know already that κn admits at least a
locally minimal value and at least a locally maximal value and these two are distinct.
Therefore, κn admits exactly one locally minimal value κ1, reached in at least one
direction (α1, β1), and exactly one locally maximal value κ2, reached in at least one
direction (α2, β2). Furthermore, these values are distinct and are given precisely by
the roots of the second degree equation above.

Our next concern is to prove that each locally extremal value of κn is reached in
exactly one direction. We consider the case of κ1; the case of κ2 is analogous. As
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observed earlier in the proof, every direction (α0, β0) yielding κ1 as corresponding
normal curvature is a solution of the system

{
(L − κ1E)α + (M − κ1F)β = 0
(M − κ1F)α + (N − κ1G)β = 0.

But all the solutions of this homogeneous system constitute a sub-vector-space of
R

2. This subspace thus has dimension 0, 1 or 2: our concern is to prove that it has
precisely dimension 1. Notice that if we do so, we shall get as a by-result that (α,β)

is a direction of normal curvature κ1 if and only if it is solution of this system.
We therefore have to exclude the dimensions 0 and 2. First, the subspace of

solutions does not have dimension 0, because there exists at least a direction (α1, β1)

with normal curvature κn(α1, β1) = κ1. On the other hand the dimension of the
subspace of solutions is equal to 2 (the number of unknowns) minus the rank of the
matrix of the system. So a subspace of dimension 2 would mean a matrix of rank 0,
that is, the zero matrix. This would yield

L = κ1E, M = κ1F, N = κ1G.

This case has to be excluded as well, because by assumption the point is not umbil-
ical (see Proposition 5.9.2 again).

To prove the orthogonality requirement, it “suffices” to solve the equation of the
second degree yielding κ1 and κ2, and next for each of these values to solve the
system of equations yielding the corresponding directions (α1, β1) and (α2, β2). It
remains then (see Proposition 5.5.4) to check that

(α1 β1)

(
E F

F G

)(
α2
β2

)
= 0.

A more subtle approach will avoid those lengthy calculations.
Let us work in an affine basis with direct orientation

(P ; e1, e2, e3)

where

• P is the point of the surface that we are considering;
• e1 is of length 1, in the tangent plane at P , in the direction of minimal curvature;
• e2 is of length 1, in the tangent plane at P , in the direction of maximal curvature;
• e3 is of length 1, perpendicular to the tangent plane at P .

By Proposition 5.5.5, we know that in a neighborhood of P the surface admits a
parametric representation of the form

g(r, s) = (
r, s, ϕ(r, s)

)
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with g(0,0) = P . The partial derivatives at (0,0) are in the tangent plane at P , thus
have a component 0 along e3. They are thus

∂g

∂r
(0,0) = (1,0,0) = e1,

∂g

∂s
(0,0) = (0,1,0) = e2.

The two directions of extremal curvatures thus coincide with those of the partial
derivatives of g. The orthogonality of these directions then reduces to

(
∂g

∂r
(0,0)

∣∣∣∣
∂g

∂s
(0,0)

)
= 0,

that is to F(0,0) = 0. Of course the coefficient F , as well as the other coefficients
E, G, L, M , N , are now calculated in terms of the parametric representation g.

In the case of the minimal normal curvature κ1, reached in the direction (1,0),
the system of equations already considered several times above reduces to

{
L − κ1E = 0
M − κ1F = 0.

In the case of the maximal normal curvature κ2, reached in the direction (0,1)

{
M − κ2F = 0
N − κ2G = 0.

This yields in particular

κ1F = M = κ2F.

This indeed forces F = 0, otherwise one would have κ1 = κ2, which is not the case
because the point is not umbilical.

Notice further (even if it is not needed for this proof) that in this last situation we
also have E(u0, v0) = 1 and G(u0, v0) = 1 since e1, e2 have been chosen to be of
length 1. Therefore

L = κ1, M = 0, N = κ2.
�

Let us formalize in a definition the conclusions of Theorem 5.10.1:

Definition 5.10.2 At a non-umbilical point of a regular surface of class C2, the
two orthogonal directions in which the normal curvature reaches an extremal value
are called the two principal directions. The corresponding extremal values of the
normal curvature are called the principal curvatures.

The following result is essentially the last part of the proof of Theorem 5.10.1:

Proposition 5.10.3 Consider a point P of a regular surface of class C2. Consider
an orthonormal basis (P ; e1, e2, e3) such that e1 and e2 are in the tangent plane
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and—in the case of a non-umbilical point—are oriented along the principal direc-
tions. In a neighborhood of P , the surface admits a parametric representation of the
form

g : U −→ R
3, (r, s) �→ (

r, s, ϕ(r, s)
)

such that

E(0,0) = 1, F (0,0) = 0, G(0,0) = 1

L(0,0) = κ1, M(0,0) = 0, N(0,0) = κ2

where κi is the normal curvature in the direction of ei .

Proof The proof in the case of a non-umbilical point, where κ1 and κ2 are then the
principal curvatures, is precisely the content of the last part of the proof of Theo-
rem 5.10.1.

In the case of an umbilical point, a parametric representation of the form indi-
cated exists locally by Proposition 5.5.5 and since e1 and e2 have been chosen to be
orthogonal and of length 1, the same argument as in the proof of Theorem 5.10.1
forces

E(0,0) = 1, F (0,0) = 0, G(0,0) = 1.

Since the point is umbilical, Proposition 5.9.2 then forces

L(0,0) = L(0,0)

E(0,0)
= κ(0,0) = N(0,0)

G(0,0)
= N(0,0), M(0,0) = 0

where κ(0,0) is the constant normal curvature. �

Let us emphasize the characterization of the principal curvatures and principal
directions established in the proof of Theorem 5.10.1:

Proposition 5.10.4 At a non-umbilical point of a regular surface of class C2, the
two principal curvatures are the two solutions of the second degree equation

(
EG − F 2)κ2 + (2FM − EN − GL)κ + (

LN − M2)= 0.

When the point is umbilical, the constant normal curvature is a double root of this
equation.

Proof The case of a non-umbilical point has been treated in the proof of Theo-
rem 5.10.1. In the umbilical case, by Proposition 5.9.2, the equation of the statement
becomes

(
EG − F 2)κ2 − 2k(EG − F 2)κ + k2(EG − F 2)= 0
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with k the normal curvature. Since EG − F 2 �= 0 (see Proposition 5.4.6), the equa-
tion reduces to

κ2 − 2kκ + k2 = 0

that is

(κ − k)2 = 0. �

Proposition 5.10.5 At a non-umbilical point of a regular surface of class C2, a
direction (α,β) is principal if and only if there exists a real number κ such that

{
(L − κE)α + (M − κF)β = 0
(M − κF)α + (N − κG)β = 0.

Under these conditions, κ is the corresponding principal curvature. When the point
is umbilical, every triple (α,β, κ), with (α,β) �= (0,0), a solution of this system,
is such that κ is the constant normal curvature; moreover, for this κ , all directions
(α,β) satisfy the system.

Proof Let us first assume that the point is non-umbilical. If (α,β) is a non-zero
solution of the system for some real number κ , the determinant of the system must
be zero and so κ is a principal curvature by Proposition 5.10.4. The rest has been
established in the proof of Theorem 5.10.1.

In the umbilical case, by Proposition 5.9.2, the system becomes
{
(k − κ)Eα + (k − κ)Fβ = 0
(k − κ)Fα + (k − κ)Gβ = 0

with k the constant normal curvature. If a solution (α,β, κ) exists, with (α,β) �=
(0,0), fixing this value κ , the system in α,β must have a determinant equal to 0,
that is

(k − κ)2(EG − F 2)= 0.

Again since EG − F 2 �= 0 by Proposition 5.4.6, we conclude that κ = k, the con-
stant normal curvature. But then the system becomes the trivial zero system and is
satisfied by all pairs (α,β). �

Another interesting characterization of principal directions is given by the fol-
lowing result:

Proposition 5.10.6 Consider a regular parametric representation f (u, v) of class
C2 of a surface. At a given non-umbilical point f (u0, v0), for a direction

α1
∂f

∂u
(u0, v0) + α2

∂f

∂v
(u0, v0)

of the tangent plane, the following conditions are equivalent:
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1. the direction (α1, α2) is principal;
2. the direction (α1, α2) satisfies at (u0, v0) the equation

(EM − LF)α2
1 + (EN − LG)α1α2 + (FN − MG)α2

2 = 0.

At an umbilical point, all directions satisfy this equation.

Proof In the case of a non-umbilical point, let us first re-write the system of Propo-
sition 5.10.5 as

{
(Lα1 + Mα2)λ − (Eα1 + Fα2)κ = 0
(Mα + Nα2)λ − (Fα1 + Gα2)κ = 0.

For every principal direction (α1, α2), this homogeneous system in λ,κ admits the
non-zero solution (1, κ), with κ the corresponding principal direction. Thus the de-
terminant of the system is zero, which yields precisely the equation in condition 2
of the statement.

Conversely if the equation of condition 2 holds, the determinant of the system
above is zero and thus the system admits a non-zero solution. Let us recall that a
solution of the system is only defined up to a multiple. If a solution has the form
(1, κ), the result follows by Proposition 5.10.5. So it suffices to prove that a non-
zero solution cannot have the form (0,1).

Indeed (0,1) being a solution would imply

Eα1 + Fα2 = 0, Fα1 + Gα2 = 0.

Since E �= 0 and G �= 0 (see Proposition 5.4.6), this would imply further

α1 = −F

E
α2 = F

E

F

G
α1.

Notice that α1 = 0 would imply Gα2 = 0, thus α2 = 0; this is impossible since by

assumption, (α1, α2) �= (0,0) as a direction. But α1 �= 0 then implies F 2

EG
= 1, that

is EG − F 2 = 0, which is also excluded by Proposition 5.4.6.
At an umbilical point, Proposition 5.9.2 indicates that the equation of the state-

ment degenerates as

0α2
1 + 0α1α2 + 0α2

2 = 0.

It is of course satisfied in every direction. �

5.11 The Case of Quadrics

Let first now investigate umbilical points and principal directions on some quadrics.
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Example 5.11.1 Consider the elliptic paraboloid with equation

z = x2

a2
+ y2

b2

where a, b > 0.

• The origin is an umbilical point if and only if a = b.
• Otherwise, the principal directions at the origin are those of the x- and y-axis

with principal curvatures 2
a2 and 2

b2 .

Proof Considering the parametric representation

g(x, y) =
(

x, y,
x2

a2
+ y2

b2

)

we obtain immediately

∂g

∂x
=
(

1,0,
2x

a2

)
,

∂g

∂y
=
(

0,1,
2y

b2

)
.

This yields further

∂2g

∂x2
=
(

0,0,
2

a2

)
,

∂2g

∂x ∂y
= (0,0,0),

∂2g

∂y2
=
(

0,0,
2

b2

)
.

At the origin, the first partial derivatives are simply (1,0,0) and (0,1,0), thus the
tangent plane is the xy-plane and the normal vector is (0,0,1). It follows at once
that at the origin

E = 1, F = 0, G = 1, L = 2

a2
, M = 0, N = 2

b2
.

By Proposition 5.9.2, the origin is an umbilical point precisely when 2
a2 = 2

b2 ,
that is when a = b.

When the origin is a non-umbilical point, by Theorem 5.10.1 the principal cur-
vatures are the roots of the equation

κ2 −
(

2

a2
+ 2

b2

)
κ + 4

a2b2
= 0.

They are thus

κ1 = 2

a2
, κ2 = 2

b2

and are both positive. We treat the case of κ1: the other case is analogous. The
corresponding principal direction is given by the solutions of the system (see again
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Proposition 5.10.5)
{

0x + 0y = 0
0x + ( 2

b2 − 2
a2

)
y = 0.

These are precisely all the points (x,0). �

Example 5.11.2 Consider the hyperbolic paraboloid with equation

z = x2

a2
− y2

b2

with a, b > 0.

• The origin is never an umbilical point.
• The principal directions at the origin are those of the x- and y-axis with principal

curvatures 2
a2 and − 2

b2 .

Proof Exactly the same arguments as in Example 5.11.1 now yield

E = 1, F = 0, G = 1, L = 2

a2
, M = 0, N = − 2

b2

and lead to the conclusions of the statement. �

Example 5.11.3 At all points, the parabolic cylinder with equation z = x2

a2 admits
the direction of the y-axis as a principal direction with principal curvature 0. It does
not have any umbilical points. At the origin, the principal curvature in the direction
of the x-axis is equal to 2

a2 .

Proof The parametric representation

f (x, y) =
(

x, y,
x2

a2

)

admits as first partial derivatives

∂f

∂x
=
(

1,0,
2x

a2

)
,

∂f

∂y
= (0,1,0).

It follows that

E = 1 + 4x2

a4
, F = 0, G = 1

while the normal vector is

−→
n (x, y) = 1

√
1 + 4x2

a4

(
−2x

a2
,0,1

)
.
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The second partial derivatives of f are

∂2f

∂x2
=
(

0,0,
2

a2

)
,

∂2f

∂x∂y
= (0,0,0),

∂2f

∂y2
= (0,0,0).

It follows that

L = 2

a2
√

1 + 4x2

a4

, M = 0, N = 0.

The normal curvature at the point f (x, y) in the direction (α,β) of the tangent
plane is thus (see Proposition 5.8.4)

κn(α,β) =

2

a2

√
1+ 4x2

a4

α2

(1 + 4x2

a4 )α2 + β2
.

This function is always positive and takes the value 0 when α = 0. This value 0
is thus minimal. Thus the direction (0,1), that is the direction ∂f

∂y
= (0,1,0) of the

y-axis, is always a principal direction with principal curvature 0. Furthermore, when
α �= 0, κn(α,β) > 0, proving the absence of umbilical points.

At the origin, the formula above becomes simply

κn(α,β) =
2
a2 α2

α2 + β2
= 2

a2

α2

α2 + β2
.

The maximal value 2
a2 is reached for β = 0, i.e. in the direction of the x-axis. �

5.12 Approximation by a Quadric

Theorem 5.10.1 is surprising and one is even tempted to think that it cannot be true,
as suggested by our Problem 5.17.6. Indeed, one can easily imagine “counterexam-
ples” to Theorem 5.10.1, such as the surface pictured in Fig. 5.12! This gives the
clear impression of admitting two directions of maximal curvature and two direc-
tions of minimal curvature.

It is certainly quite easy to find surfaces which violate the conclusions of Theo-
rem 5.10.1; but what about the assumptions of this theorem? For example, just by
looking at a picture, we can often discern the difference between the classes C0 and
C1; but not really between the classes C1 and C2. Nor can we visually recognize the
difference between the class C1 and the regularity, and it is certainly not easy to find
umbilical points on a picture (see Example 5.9.6)!

This section intends to “demystify” the question, by showing that the whole sit-
uation can be reduced to that at a “vertex” of a quadric, as studied in Sect. 5.11. In
that case, Theorem 5.10.1 certainly becomes “less amazing”.
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Fig. 5.12

Theorem 5.12.1 In a neighborhood of a regular point of a surface of class C2,
there exists a second order approximation of the surface by a quadric admitting at
this point the same normal curvature as the surface.

Proof Let P be a regular point of the surface. We apply Proposition 5.5.5 and work
in an orthonormal basis with origin P , with direct orientation, whose first two vec-
tors e1, e2 are in the tangent plane: e1 and e2 are oriented along the principal di-
rections at P in the case of a non-umbilical point and are arbitrary otherwise. In
a neighborhood of P , the surface admits a parametric representation of the form
g(x, y) = (x, y,ϕ(x, y)) with g(0,0) = P = (0,0,0), thus in particular ϕ(0,0) = 0.
Notice that in the case of a non-umbilical point, this is precisely the basis considered
in the last part of the proof of Theorem 5.10.1.

The partial derivatives of g at (0,0) are in the tangent plane at P , thus have a
component 0 along e3. In other words

∂g

∂x
(0,0) =

(
1,0,

∂ϕ

∂x
(0,0)

)
= (1,0,0) = e1

∂g

∂y
(0,0) =

(
0,1,

∂ϕ

∂y
(0,0)

)
= (0,1,0) = e2.

In particular, since (e1, e2) is an orthonormal basis of the tangent plane at P

E(0,0) = 1, F (0,0) = 0, G(0,0) = 1.

Since the normal vector at P is e3 = (0,0,1), computing the second partial
derivatives of g and performing the scalar product with e3 yields at once

L(0,0) = ∂2ϕ

∂x2
(0,0), M(0,0) = ∂2ϕ

∂x∂y
(0,0), N(0,0) = ∂2ϕ

∂y2
(0,0).

Notice further that when the point is umbilical, then M(0,0) = 0 because F(0,0) =
0 (see Proposition 5.9.2). When the point is non-umbilical, we have observed at the
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end of the proof of Theorem 5.10.1 that we also have M(0,0) = 0. So in all cases,
M(0,0) = 0.

Again the proof of Theorem 5.10.1 tells us that in the case of a non-umbilical
point

L(0,0) = κ1(0,0), N(0,0) = κ2(0,0)

where κi is the normal curvature in the direction ei . In the case of an umbilical point,
Proposition 5.9.2 indicates that

L(0,0) = κ(0,0)E(0,0) = κ(0,0), N(0,0) = κ(0,0)G(0,0) = κ(0,0).

Thus in all cases, L(0,0) and N(0,0) are the normal curvatures κi at P in the
directions ei .

Since ϕ(0,0) = 0 and the first partial derivatives of ϕ vanish at (0,0), the Taylor
development of degree 2 of the function ϕ at (0,0) reduces to

1

2

(
∂2ϕ

∂x2
(0,0)x2 + 2

∂2ϕ

∂x ∂y
(0,0)xy + ∂2ϕ

∂y2
(0,0)y2

)
.

Considering the values of L, M , N calculated above, this can be re-written as

1

2

(
κ1(0,0)x2 + κ2(0,0)y2).

The quadric with equation

z = 1

2

(
κ1(0,0)x2 + κ2(0,0)y2)

is thus a second order approximation of the surface in a neighborhood of P ; it admits
the parametric representation

h(x, y) =
(

x, y,
1

2

(
κ1x

2 + κ2(0,0)y2)
)

.

The first partial derivatives of h at (0,0) are then

∂h

∂x
(0,0) = (1,0,0),

∂h

∂y
(0,0) = (0,1,0).

These coincide with the partial derivatives of g at (0,0), thus both surfaces have
the same normal vector at P , but also the same coefficients E, F , G as the first
fundamental form at (x, y) = (0,0) (see Definition 5.4.5).

The second partial derivatives of h are

∂2h

∂x2
(0,0) = (

0,0, κ1(0,0)
)
,
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∂2h

∂x ∂y
(0,0) = (0,0,0),

∂2h

∂y2
(0,0) = (

0,0, κ2(0,0)
)
.

Since both surfaces have the same normal vector (0,0,1) at P , these formulas imply
that they also have the same coefficients

L = κ1, M = 0, N = κ2

of the second fundamental form at (x, y) = (0,0) (see Definition 5.8.6).
Finally, since both surfaces admit at P the same coefficients for the two funda-

mental forms, they admit in particular the same normal curvature at P (see Defini-
tion 5.8.3). �

Corollary 5.12.2 The quadric of Theorem 5.12.1 is a plane, a parabolic cylinder
or a paraboloid.

Proof With respect to the orthonormal basis used in the proof of Theorem 5.12.1,
the quadric admits the equation

z = κ1(0,0)

2
x2 + κ2(0,0)

2
y2.

This is a plane when κ1(0,0) = 0 = κ2(0,0), a parabolic cylinder when exactly one
of the two coefficients κ1(0,0), κ2(0,0) is non-zero and a paraboloid when both
coefficients are non-zero (see Sect. 1.14 in [4], Trilogy II). �

Our Theorem 5.10.1 is thus somehow “demystified”: in all cases, the situation
reduces to that of a plane or to Examples 5.11.1, 5.11.2 and 5.11.3.

5.13 The Rodrigues Formula

This short section is devoted to proving a celebrated result on principal directions:

Theorem 5.13.1 (Rodrigues Formula) Given a regular parametric representation
f (u, v) of class C2 of a surface, consider the function −→

n : “the normal vector to the
surface”. Consider further the differentials of f and −→

n at a non-umbilical point
with parameters (u0, v0):

df (α,β) = ∂f

∂u
(u0, v0)α + ∂f

∂v
(u0, v0)β

d
−→
n (α,β) = ∂

−→
n

∂u
(u0, v0)α + ∂

−→
n

∂v
(u0, v0)β.
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The direction

α
∂f

∂u
(u0, v0) + β

∂f

∂v
(u0, v0)

is principal if and only if there exists a scalar κ such that

d
−→
n (α,β) = −κ df (α,β).

Under these conditions, κ is the corresponding principal curvature.

Proof Let (α0, β0) be a principal direction. Differentiating the equality

(
−→
n

∣∣∣
∂f

∂u

)
= 0

with respect to u, we obtain

(
∂
−→
n

∂u

∣∣∣∣
∂f

∂u

)
= −

(
−→
n

∣∣∣∣
∂2f

∂u2

)
.

Analogously
(

∂
−→
n

∂v

∣∣∣∣
∂f

∂u

)
= −

(
−→
n

∣∣∣
∂2f

∂u∂v

)
.

This implies

(
d
−→
n (α,β) + κn(α0, β0)df (α0, β0)

∣∣∣
∂f

∂u

)

=
(

∂n

∂u
α + ∂n

∂v
β + κn(α0, β0)

∂f

∂u
α + κn(α0, β0)

∂f

∂v
β

∣∣∣∣
∂f

∂u

)

= −
(

−→
n

∣∣∣
∂2f

∂u2

)
α −

(
−→
n

∣∣∣
∂2f

∂u∂v

)
β

+ κn(α0, β0)

(
∂f

∂u

∣∣∣∣
∂f

∂u

)
α + κn(α0, β0)

(
∂f

∂v

∣∣∣∣
∂f

∂u

)
β

= −(Lα + Mβ) + κn(α0, β0)(Eα + Fβ)

= −1

2

∂II
∂α

(α0, β0) + κn(α0, β0)
1

2

∂I
∂α

(α0, β0)

= −1

2

∂(II − κnI)
∂α

(α0, β0)

= 0
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where the last but one equality holds because in the principal direction (α0, β0) we
have

∂κn

∂α
(α0, β0) = 0

as observed in the proof of Theorem 5.10.1. The last equality follows at once from
Definition 5.8.3, which implies II − κnI = 0.

We have thus proved that

d
−→
n (α0, β0) + κn(α0, β0)df (α0, β0)

is orthogonal to ∂f
∂u

. Analogously, it is perpendicular to ∂f
∂v

and hence orthogonal

to the tangent plane. But differentiating the equality (
−→
n |−→n ) = 0 with respect to u

and v shows that the partial derivatives of −→
n are perpendicular to −→

n , thus parallel
to the tangent plane. Therefore d

−→
n is parallel to the tangent plane. Of course by

definition, df is in the tangent plane as well. Therefore, in a principal direction,
d
−→
n + κndf is both perpendicular and parallel to the tangent plane: it is thus equal

to zero.
Conversely, assume that

d
−→
n (α0, β0) + κ df (α0, β0) = 0

for some direction (α0, β0) and some scalar k. This trivially implies
(

d
−→
n (α0, β0) + k df (α0, β0)

∣∣
∣
∂f

∂u

)
= 0.

This equality can be re-written as
((

∂
−→
n

∂u

∣∣∣∣
∂f

∂u

)
+ k

(
∂f

∂u

∣∣∣∣
∂f

∂u

))
α0 +

((
∂
−→
n

∂v

∣∣∣∣
∂f

∂u

)
+ k

(
∂f

∂v

∣∣∣∣
∂f

∂u

))
β0.

As already observed above, this can be further written as

(−L + kE)α0 + (−M + kF )β0 = 0.

An analogous computation using this time ∂f
∂v

finally yields the system of Proposi-
tion 5.10.5. Therefore (α,β) is a principal direction with principal curvature κ . �

5.14 Lines of Curvature

The curves on a surface “oriented along the principal directions” are of some inter-
est.

Definition 5.14.1 A regular curve on a regular surface of class C2 is a line of
curvature when at each non-umbilical point, the tangent to the curve is oriented in
a principal direction of the surface.
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The following theorem underlines the interest of the lines of curvature:

Theorem 5.14.2 Consider a regular surface of class Ck (k ≥ 3). In a neighborhood
of a non-umbilical point P , there exists a parametric representation g(r, s) of class
Ck−1 of the surface such that all curves

r = k, s = l, with k, l constants

are lines of curvature, while moreover F = 0 and M = 0 at each point.

Proof Consider a regular parametric representation

f : U −→ R
3, (u, v) �→ f (u, v)

of class Ck of the surface and a non-umbilical point with parameters (u0, v0). Saying
that the point is non-umbilical is equivalent to saying that the two roots of the second
degree equation in Proposition 5.10.4 are distinct. This can be rephrased as the fact
that the discriminant

(2FM − EN − GL)2 − 4
(
EG − F 2)(LN − M2)

is non-zero. By continuity, this discriminant remains non-zero on a neighborhood V

of (u0, v0), thus all corresponding points remain non-umbilical.
For each non-umbilical point with parameters (u, v) ∈ V , let us write

(
α1(u, v),α2(u, v)

)
,

(
β1(u, v),β2(u, v)

)

for the coordinates of the two principal directions with respect to the basis of partial
derivatives. Expressing α and β via the classical formulas for the solutions of the
second degree equation in Proposition 5.10.6, we obtain four functions αi , βi of
class Ck−1. We have thus obtained two tangent vector fields (see Definition 5.6.1)
which are linearly independent at each point, since all points considered are non-
umbilical. The result then follows by Theorem 5.6.2.

Since the partial derivatives are oriented at each point along the principal di-
rections, they are orthogonal (see Theorem 5.10.1), thus F = 0 by definition (see
Proposition 5.4.3). The first principal curvature is in the direction (1,0), thus the
first principal curvature is equal to L

E
(see Theorem 5.8.2); analogously the second

principal curvature is G
N

. Therefore by Definition 5.16.1, the total curvature is equal
to LN

EG
; since F = 0, comparing with Proposition 5.16.3 yields M = 0. �

5.15 Gauss’ Approach to Total Curvature

This very informal section focuses on the ideas which led Gauss to introduce the no-
tion of the total curvature of a surface, today usually called the Gaussian curvature.
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The formal study of the Gaussian curvature will be the topic of our next section.
Readers only interested in this formal study can skip the present “historical” section.

As we have done several times already, for this “historical” approach, we shall
not pay particular attention to the necessary assumptions for our arguments to be
valid. We just want—in those good cases where everything makes sense—to end up
with a notion which we can easily formalize rigorously.

Consider a parametric representation of a regular surface of class C2

f : U �→R
3, (u, v) �→ f (u, v).

Since we shall work on the neighborhood of a point P = f (u0, v0), by local in-
jectivity, there is no loss of generality in assuming that f is injective. The normal
vectors −→

n (u, v) to the surface are of length 1, thus belong to the sphere S of radius
1 centered at the origin of R3. We thus consider the mapping

−→
n : U −→ S, (u, v) �→ −→

n (u, v).

Consider now a neighborhood (u0, v0) ∈ V ⊆ U and the corresponding piece
f (V ) of the surface around P = f (u0, v0). When the surface is “very slightly
curved” in the neighborhood of P , the vector −→

n (u, v) does not vary much and
therefore the area of the piece −→

n (V ) of the sphere is rather small. At the opposite
extreme, when the surface is “very highly curved” in the neighborhood of P , the
vector −→

n (u, v) varies a lot and so the piece −→
n (V ) of the sphere has a rather large

area. Thus, the quotient

area of −→
n (V )

area of f (V )

somehow measures the “global curvature of the surface in the neighborhood V ”,
provided these areas exist, of course!

With this idea in mind, Gauss “defines” the total curvature of the surface at the
point P = f (u0, v0) as being

κτ (u0, v0) = lim
V

area of −→
n (V )

area of f (V )

where the limit is taken in some sense over “smaller and smaller neighborhoods of
(u0, v0), converging to the point (u0, v0)”. Of course if such an approach makes
sense, it should be independent of the parametric representation chosen.

Let us thus work with the orthonormal basis and the parametric representation

g(x, y) = (
x, y,ϕ(x, y)

)

already considered in the proof of Theorem 5.12.1. Our point of the surface is now
the origin of the orthonormal basis.

If the limit formula above makes sense, the limit can equivalently be calculated
on a converging subfamily of neighborhoods of (0,0) and we choose

V(a,b) = ]−a,+a[ × ]−b,+b[, a, b ∈ R, a, b > 0.
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In good cases, the limit

lim
(a,b)→(0,0)

area of −→
n (V(a,b))

area of g(V(a,b))

of this quotient must remain unchanged if we replace the numerator and the denom-
inator by approximations of them at the first order. We shall therefore replace them
by their orthogonal projections on the corresponding tangent plane to the surface or
to the sphere, at the point considered.

For the denominator, the problem is easy: the projection of g(x, y) on the tangent
plane at the origin is simply (x, y,0). The corresponding area is thus simply 4ab.

For the numerator, we have

∂g

∂x
=
(

1,0,
∂ϕ

∂x

)
,

∂g

∂y
=
(

0,1,
∂ϕ

∂y

)

from which we get

−→
n = (− ∂ϕ

∂x
,− ∂ϕ

∂y
,1)

√
(
∂ϕ
∂x

)2 + (
∂ϕ
∂y

)2 + 1
.

The normal vector at g(0,0) is simply −→
n (0,0) = (0,0,1), thus the corresponding

tangent plane to the sphere is z = 1. Therefore the projection of −→
n (x, y) on the

tangent plane to the sphere for (x, y) = (0,0), translated further on the xy-plane
(which does not change the area) is thus

p(x, y) = (− ∂ϕ
∂x

,
∂ϕ
∂y

,0)
√

(
∂ϕ
∂x

)2 + (
∂ϕ
∂y

)2 + 1
.

A well-known formula in analysis tells us that the corresponding area is (up to its
sign)

∫ +a

−a

∫ +b

−b

∥∥∥∥
∂p

∂x
× ∂p

∂y

∥∥∥∥dx dy.

We now have to go through the lengthy calculation of the norm involved in this
formula.

Writing for short

√• =
√(

∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2

+ 1

we first compute that

∂p

∂x
= 1

(
√•)2

(
−∂2ϕ

∂x2

√• + ∂ϕ

∂x

∂
√•
∂x

,− ∂2ϕ

∂x∂y

√• + ∂ϕ

∂y

∂
√•
∂x

,0

)
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∂p

∂y
= 1

(
√•)2

(
− ∂2ϕ

∂x∂y

√• + ∂ϕ

∂x

∂
√•
∂y

,−∂2ϕ

∂y2

√• + ∂ϕ

∂y

∂
√•
∂y

,0

)
.

It follows that

∂p

∂x
× ∂p

∂y
= 1

(
√•)4

(0,0, z)

where, after simplification,

z = ∂2ϕ

∂x2

∂2ϕ

∂y2
(
√•)2 − ∂2ϕ

∂x2

∂ϕ

∂y

√• ∂
√•
∂y

− ∂ϕ

∂x

∂2ϕ

∂y2

∂
√•
∂x

√•

−
(

∂2ϕ

∂x∂y

)2

(
√•)2 + ∂ϕ

∂x

∂2ϕ

∂x∂y

∂
√•
∂y

√•.

We compute further that

∂
√•
∂x

= 1√•
(

∂ϕ

∂x

∂2ϕ

∂x2
+ ∂ϕ

∂y

∂2ϕ

∂x∂y

)

∂
√•
∂y

= 1√•
(

∂ϕ

∂y

∂2ϕ

∂y2
+ ∂ϕ

∂x

∂2ϕ

∂x∂y

)
.

Introducing these values into the expression above, a straightforward calculation
eventually yields

∥∥∥∥
∂p

∂x
× ∂p

∂y

∥∥∥∥=
∂2ϕ

∂x2
∂2ϕ

∂y2 − (
∂2ϕ
∂x∂y

)2

(
√•)4

.

We thus have to compute the limit

lim
(a,b)→(0,0)

∫ +a

−a

∫ +b

−b

∂2ϕ

∂x2
∂2ϕ

∂y2 −(
∂2ϕ
∂x∂y

)2

((
∂ϕ
∂x

)2+(
∂ϕ
∂y

)2+1)2
dx dy

4ab
.

But in good cases, the limit of a quotient does not change if we differentiate both
the numerator and the denominator. Let us recall further that (still in good cases)

d
∫ a

0 h(t) dt

da
= h(a).

Therefore, differentiating with respect to both a and b,

lim
(a,b)→(0,0)

∫ a

0

∫ b

0

∂2ϕ

∂x2
∂2ϕ

∂y2 −(
∂2ϕ
∂x∂y

)2

((
∂ϕ
∂x

)2+(
∂ϕ
∂y

)2+1)2
dx dy

4ab
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= lim
(a,b)→(0,0)

∂2ϕ

∂x2
∂2ϕ

∂y2 −(
∂2ϕ
∂x∂y

)2

((
∂ϕ
∂x

)2+(
∂ϕ
∂y

)2+1)2
(a, b)

4

= 1

4

∂2ϕ

∂x2
∂2ϕ

∂y2 − (
∂2ϕ
∂x∂y

)2

((
∂ϕ
∂x

)2 + (
∂ϕ
∂y

)2 + 1)2
(0,0).

An analogous computation on the other quarters of V(a,b)

[−a,0] × [0, b], [0, a] × [−b,0], [−a,0] × [−b,0]
yields the same conclusion. Thus eventually, adding the results,

κτ (0,0) =
∂2ϕ

∂x2 · ∂2g

∂y2 − (
∂2ϕ
∂x∂y

)2

((
∂ϕ
∂x

)2 + (
∂ϕ
∂y

)2 + 1)2
(0,0).

In the proof of Theorem 5.12.1, we observed that

∂ϕ

∂x
(0,0) = 0,

∂ϕ

∂y
(0,0) = 0,

while

∂2ϕ

∂x2
(0,0) = L(0,0) = κ1(0,0),

∂2ϕ

∂y2
(0,0) = N(0,0) = κ2(0,0)

where κ1 and κ2 indicate the two principal curvatures (twice the constant normal
curvature in the case of an umbilical point). Moreover

∂2ϕ

∂x∂y
(0,0) = M(0,0) = 0.

Therefore the formula above reduces simply to

κτ (0,0) = κ1(0,0) · κ2(0,0).

We conclude therefore that

The total curvature at the point with parameters (u0, v0) is the product of
the two principal curvatures at this point.

5.16 Gaussian Curvature

With the considerations of Sect. 5.15 in mind, we make the following definition:



5.16 Gaussian Curvature 241

Definition 5.16.1 Consider a regular surface of class C2. The Gaussian curvature
(also called the total curvature) at a given point is:

• the product of the two principal curvatures, if the point is non-umbilical;
• the square of the constant normal curvature, if the point is umbilical.

Let us first observe that:

Lemma 5.16.2 The value of the Gaussian curvature is independent of the regular
parametric representation of class C2 used to compute it.

Proof By Proposition 5.8.5, both factors of the product in Definition 5.16.1 are
equal or both are opposite in sign. �

Let us next prove a formula for computing the Gaussian curvature:

Proposition 5.16.3 Consider a regular surface of class C2. The Gaussian curvature
is given by the formula

κτ = LN − M2

EG − F 2

where the six coefficients E, F , G, L, M , N are computed using any regular para-
metric representation of class C2 of the surface.

Proof We know that at a non-umbilical point, the two principal curvatures are the
two solutions of the equation in Proposition 5.10.4. The product of the two roots is
thus indeed given by the formula of the statement.

In the case of an umbilical point with constant normal curvature k, Proposi-
tion 5.9.2 tells us that

L = kE, M = kF, N = kG

which again implies the formula of the statement. �

Example 5.16.4 A plane has Gaussian curvature 0 at each point.

Proof This follows by Example 5.9.5. �

Example 5.16.5 The sphere of radius R has Gaussian curvature 1
R2 at each point.

Proof This follows by Example 5.9.4. �

Examples 5.16.4 and 5.16.7 present well-known situations where the Gaussian
curvature is constant: zero for the plane, positive for the sphere. These results are
very predictable since these surfaces have exactly the same shape in a neighbour-
hood of any point. But the converse is not true: having the same Gaussian curvature
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Fig. 5.13 The (hemi)-pseudo-sphere

at all points does not imply having the same shape in a neighborhood of all points.
For example:

Example 5.16.6 The parabolic cylinder has constant Gaussian curvature 0.

Proof This follows by Example 5.11.3, since at each point one of the principal
curvatures is equal to zero. �

The case of a constant negative Gaussian curvature is probably less popular. An
example is provided by the pseudo-sphere: the surface obtained by rotating the trac-
trix (see Example 2.5.4) around its asymptote. More precisely, this surface should
better be called the hemi-pseudo-sphere (see Problem 5.17.15 for the definition of
the “full” pseudo-sphere).

Example 5.16.7 The hemi-pseudo-sphere of “pseudo-radius” R is the surface rep-
resented by

f : ]0,R[ × ]0,∞[ →R
3, (r, θ) �→

(
r cos θ, r sin θ,

∫ R

r

√
R2

t2
− 1dt

)

(see Fig. 5.13). It has constant Gaussian curvature − 1
R2 .
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Proof We first compute

∂f

∂r
=
(

cos θ, sin θ,−
√

R2

r2
− 1

)

∂f

∂θ
= (−r sin θ, r cos θ,0)

from which

E = R2

r2
, F = 0, G = r2.

We thus also have

−→
n = r

R

(
cos θ

√
R2

r2
− 1, sin θ

√
R2

r2
− 1,1

)

and we compute further

∂2f

∂r2
=
(

0,0,
R2

r2
√

R2

r2 − 1

)

∂2f

∂r∂θ
= (− sin θ, cos θ,0)

∂2f

∂θ2
= (−r cos θ,−r sin θ,0).

This yields

L = R

r2
√

R2

r2 − 1
, M = 0, N = −

r2
√

R2

r2 − 1

R
.

Applying Proposition 5.16.3, we conclude that at each point the Gaussian curva-
ture is equal to

κτ = LN − M2

EG − F 2
= − 1

R2
. �

A “good” surface, at a given point, has the same normal curvature as a quadric
(see Theorem 5.12.1). Knowing the nature of this quadric thus gives a rough idea
of the shape of the surface in a neighborhood of the point. Let us formalize this as
follows:
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Theorem 5.16.8 Consider a regular surface of class C2. At a given point, the
quadric locally approximating the surface as in Theorem 5.12.1 is:

• an elliptic paraboloid when the Gaussian curvature is strictly positive;
• a hyperbolic paraboloid when the Gaussian curvature is strictly negative;
• a parabolic cylinder when the Gaussian curvature is zero and the point is not

umbilical;
• a plane when the Gaussian curvature is zero and the point is umbilical.

Proof The surface and the quadric have the same normal curvature at the given
point, by Proposition 5.12.1. They thus also have the same Gaussian curvature at
this point, by Definition 5.16.1. But by Corollary 5.12.2, the quadric can only take
one of the following forms:

• a plane, whose Gaussian curvature is zero by Example 5.9.5 and all of whose
points are umbilical by Example 5.9.5;

• a parabolic cylinder, whose Gaussian curvature is zero as attested by Exam-
ple 5.11.3 and all of whose points are non-umbilical by Example 5.11.3;

• an elliptic paraboloid, whose Gaussian curvature is strictly positive at the point
considered (see Example 5.11.1), and in fact also at all points (see Prob-
lem 5.17.13);

• a hyperbolic paraboloid, whose Gaussian curvature is strictly negative at the point
considered (see Example 5.11.2), and in fact at all points (see Problem 5.17.13).

�

In view of Theorem 5.16.8, the following is common terminology:

Definition 5.16.9 A point of a regular surface of class C2 is:

1. elliptic, when the Gaussian curvature is strictly positive;
2. hyperbolic, when the Gaussian curvature is strictly negative;
3. parabolic, when the Gaussian curvature is zero, but the point is not umbilical;
4. planar, when the Gaussian curvature is zero and the point is umbilical.

Warning 5.16.10 The sole consideration of Gaussian curvature does not allow the
detection of umbilical points.

Proof Examples 5.16.4 and 5.16.6 show that the plane and the parabolic cylinder
have the same Gaussian curvature, namely, 0 at each point. But all the points of the
plane are umbilical (see Example 5.9.5) while the parabolic cylinder does not have
any umbilical points (see Example 5.11.3). �

Thus in terms of just the Gaussian curvature at a given point, it is impossible
to distinguish between cases 3 and 4. Furthermore, in case 1, it is again impossible,
just in terms of the Gaussian curvature at the point, to decide if the point is umbilical
or not. An umbilical point can never be detected by just considering the Gaussian
curvature at this point.
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Fig. 5.14 The pseudo-sphere

On the other hand a hyperbolic point is never umbilical, since the two normal
curvatures are non-zero and of opposite signs, thus certainly distinct.

Finally, let us mention that various results in Chap. 7 will show that more precise
conclusions on the form of the surface at a given point can sometimes be inferred
from the consideration of the Gaussian curvature, provided that one considers this
Gaussian curvature on a whole neighborhood of the point, not just at the point itself.
But this is definitely not a general fact, as the proof of Warning 5.16.10 shows.

5.17 Problems

5.17.1 Show that the following can be presented as surfaces of class C∞: a plane,
an elliptic cylinder, a parabolic cylinder, a sheet of a hyperbolic cylinder, a half cone
punctured at its vertex.

5.17.2 The stereographic projection (see Fig. 5.14 and Sect. 5.9 in [3], Trilogy I) is
a mapping of the sphere S punctured at its North pole N onto the tangent plane π

at the South pole S. It maps a point P of the sphere to the intersection Q of π with
the line joining N and P . This is a bijection and its inverse provides an injective
parametric representation of the sphere punctured at the North pole.

5.17.3 Prove that all quadrics (or sheets of them) are orientable surfaces.

5.17.4 Prove that a regular surface is orientable precisely when it is possible to
make a choice of the normal vector at each point of the support S ⊆ R

3, in such a
way to obtain a continuous function −→

n : S −→ R
3.

5.17.5 Consider a regular curve of class C2 on a regular surface of class C2. At a
given point of the curve, one defines its Darboux orthonormal trihedron, comprising
the tangent vector −→

t to the curve, the normal vector −→
n to the surface and their cross

product −→
g . Study the change of coordinates matrix between the Frenet trihedron of
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Fig. 5.15

the curve and its Darboux trihedron. Express this change of coordinates in terms of
the curvature, the torsion and the normal curvature of the curve.

5.17.6 Consider, in the xy-plane, the curve with polar equation

R = cos 4θ + 2

pictured in Fig. 5.15. In each plane containing the z-axis, consider a parabola with
vertex (0,0,1) cutting the xy-plane on the given curve. When the plane through
the z-axis turns, the curvature of the various parabolas at the point (0,0,1) clearly
passes twice through a local maximum and twice through a local minimum, while
the corresponding directions form angles of 45 degrees. Verify that the correspond-
ing surface (pictured in Fig. 5.12) is not a counterexample to Theorem 5.10.1 be-
cause it is not of class C2. Next replace the usual parabolas by “quartic parabolas”
(curves of equations y = kx4). The problem of differentiability vanishes, but the
point (0,0,1) is now umbilical.

5.17.7 The surface of Fig. 5.16 is the one admitting the equation

z = x4 + y4 − 4x2y2.

The situation at the origin does not contradict Theorem 5.10.1, because that point is
umbilical.

5.17.8 Consider the ellipsoid with equation

x2

a2
+ y2

b2
+ z2

c2
= 1

where a, b, c are distinct and non-zero. Prove that at each intersection with a coor-
dinate axis, the principal directions are in the directions of the other two axes.

5.17.9 At a regular point P of a surface of class C2, consider in the tangent plane at
P a line through P making an angle θ with the first principal direction. Prove that
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Fig. 5.16

the normal curvature of the surface in this direction is equal to

κn(θ) = κ1 cos2 θ + κ2 sin2 θ

where κ1, κ2 are respectively the first and the second principal curvatures.

5.17.10 Consider a regular parametric representation f (u, v) of class C2 of a
surface. Prove that at a non-umbilical point f (u0, v0), the curves f (u0, v) and
f (u, v0) are oriented in the principal directions if and only if F(u0, v0) = 0 and
M(u0, v0) = 0. In that case, the two principal curvatures are given by

κ1 = L(u0, v0)

E(u0, v0)
, κ2 = N(u0, v0)

G(u0, v0)
.

5.17.11 In the spirit of Theorem 5.14.2, now using a system of partial differential
equations, prove that in a neighborhood of a non-umbilical point of a regular surface
of class C3 represented by f (u, v), there exists a change of parameters ϕ

u = ϕ1(r, s), v = ϕ2(r, s)

for which the equivalent parametric representation g = f ◦ ϕ is such that all curves
g(r0, s) and g(r, s0) are lines of curvature. In particular, the conclusions of Prob-
lem 5.17.10 apply at each point.

5.17.12 A regular curve on a regular surface of class C2 is called an asymptotic line
when at each point, its tangent is oriented in a direction with normal curvature zero.
Prove that in a neighborhood of a non-umbilical point, there exist on the surface two
asymptotic lines passing through that point.
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Fig. 5.17 The pseudo-sphere

5.17.13 Prove that the second degree approximation as in Theorem 5.12.1 is at
each point:

• an elliptic paraboloid in the case of the ellipsoid, the hyperboloid with two sheets
and the elliptic paraboloid;

• a hyperbolic paraboloid in the case of the hyperboloid with one sheet and the
hyperbolic paraboloid;

• a parabolic cylinder in the case of a cylinder or a cone.

5.17.14 Consider the torus of Example 5.1.7. Prove that the point with parameters
(θ, τ ) is:

• elliptic, when −π
2 < τ < π

2 ;
• hyperbolic when π

2 < τ < 3π
2 ;

• parabolic when τ = ±π
2 .

5.17.15 The pseudo-sphere (see Fig. 5.17) is the surface obtained by gluing to-
gether, along the circle of radius R centered at the origin in the xy-plane, the hemi-
pseudo-sphere of Example 5.16.7 and its symmetric copy with respect to the xy-
plane. In terms of the function g of Example 2.5.4, extended continuously on [0,∞[
by defining g(0) = R, the pseudo-sphere thus admits the parametric representation
of class C0

f : R2 −→R
3, (z, θ) �→ (

g
(|z|) cos θ, g

(|z|) sin θ, z
)
.
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The pseudo-sphere is clearly not bounded: nevertheless it has the same area 4πR2

and the same volume 4
3πR3 as the ordinary sphere of radius R. Together with the

fact that the Gaussian curvature is constant and equal to − 1
R2 , this fully justifies the

name pseudo-sphere.

5.18 Exercises

5.18.1 Sketch the shape of the surfaces represented by

1. f : R2 −→R
3, (u, v) �→ (u cosv,u sinv, v);

2. f : R2 −→R
3, (u, v) �→ (u cosu,u sinu,v);

3. f : R2 −→R
3, (u, v) �→ (u cosu,v,u);

4. f : R2 −→R
3, (u, v) �→ (u cosv,u sinv,u).

Determine if these parametric representations are regular.

5.18.2 Give a parametric representation of the surface obtained by letting the curve
f (t) = (et ,0, t) rotate

1. around the x-axis;
2. around the z-axis.

5.18.3 In R
3 consider the lines

d ≡
{
x = y

z = 1
and d ′ ≡

{
y = 0
z = 0.

For each point P ∈ d , let dP be the line through P perpendicular to d ′. Give a
parametric representation of the surface comprising all these lines dP , as P runs
along d .

5.18.4 Determine if the curve represented by

g : R −→ R
3, t �→ (t cos t, t sin t, t)

lies on the surface whose a parametric representation is:

1. f (u, v) = (u cosv,u sinv, v);
2. f (u, v) = (u cosu,v,u).

5.18.5 Give a parametric representation, a normal vector and the equation of the
tangent plane to the hyperbolic paraboloid with equation z = x2 − y2 at the point
(1,1,0) (see Fig. 1.14.8 in [4], Trilogy II).

5.18.6 Calculate the tangent plane at each regular point of the cone with equation

z2 = a2(x2 + y2), a > 0.
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5.18.7 Calculate the first fundamental form of the helicoid (see Fig. 5.6)

f (u, v) = (u cosv,u sinv, kv), k > 0

1. at the origin;
2. at the point with parameters (1,0);
3. at the point with parameters (2, π

2 ).

5.18.8 Calculate the length of the arc of the curve

h(t) =
(∫ t

π
4

1

sin τ
dτ, t

)

drawn on the sphere

f (θ,ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ)

as t runs from 0 to π .

5.18.9 Calculate the second fundamental form of the helicoid at the origin (see
Example 5.1.8).

5.18.10 Calculate, at an arbitrary point, the normal curvature of the helix (see Ex-
ample 4.1.2)

h(t) = (a cos t, a sin t, bt)

on the helicoid (see Example 5.1.8)

f (u, v) = (u cosv,u sinv, bv).

5.18.11 Let S be a surface of class C2 whose intersection with some plane π is a
circle of radius R. Suppose that at a given point P of this circle, the tangent plane
to the surface is perpendicular to the plane π . What is the normal curvature of the
circle at P ?

5.18.12 In R
3, consider the curve C obtained as the intersection of the paraboloid P

with equation x2 + y2 = z and the plane z = 1. Consider further the point (1,0,1)

on this curve C. At this point P , compute the normal curvature of the paraboloid P
in the direction of the tangent to C.

5.18.13 Consider the two spheres

• S1, with center (0,0,0) and radius 3;
• S2, with center (0,0,4) and radius 5.

Compute the normal curvature of the intersection S1 ∩ S2 as a curve on S1.
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5.18.14 Calculate the normal curvature of the hyperbolic paraboloid z = x2 − y2 at
the origin, in all directions.

5.18.15 Let S be the surface of R3 obtained by letting the curve c(t) = (0, t2, t)

rotate around the y-axis. Consider the mapping

f : ]0,∞[ ×R −→ R
3, (θ,ϕ) �→ (θ sinϕ, θ2, θ cosϕ).

1. Prove that f is a regular parametric representation of class C∞.
2. Prove that S is the support of f .
3. Prove that the curve C represented by

h : ]0,∞[−→R
3, t �→ (t cos t, t2, t sin t)

lies on the surface S .
4. Compute the normal curvature of C on S at an arbitrary point.

5.18.16 Consider the surface represented by f (u, v) = (u, v,uv). At the point with
parameters (1,2) compute the principal directions

1. with respect to the basis of partial derivatives;
2. with respect to the canonical basis of R3.

What is the nature of this surface?

5.18.17 Consider the helicoid (see Fig. 5.6) represented by

f (u, v) = (u cosv,u sinv, bv).

1. Compute the normal curvature at an arbitrary point, in an arbitrary direction.
2. Compute at each point the principal curvatures.
3. Find the possible umbilical points.
4. Compute the Gaussian curvature at an arbitrary point.

5.18.18 Let us recall that the hyperbolic cosine and the hyperbolic sine are the
functions defined by

coshx = ex + e−x

2
, sinhx = ex − e−x

2
;

these functions satisfy the equality

cosh2 x − sinh2 x = 1.

Consider the surface S represented by

f : R2 −→ R
3, (u, v) �→ (coshu cosv, coshu sinv, sinhu).
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Fig. 5.18

1. Give the normal vector and an equation of the tangent plane at the point

(
√

2
2 ,

√
2

2 ,0).
2. Let C0 be the curve on S determined by u = u0. Compute the normal curvature

of C0 on S and prove that it is constant along C0.
3. Give a Cartesian equation of S . What is the nature of this surface?
4. Show that S is the surface obtained by letting a plane curve C rotate around an

axis situated in the plane of C. What is this curve C?

5.18.19 Let C be a 2-regular skew curve of class C3, whose curvature and torsion
never vanish. The tangent surface to this curve is the surface S comprising all the
tangents to the curve (see Fig. 5.18).

1. Given a normal parametric representation f (s) of the curve C, give a parametric
representation of the corresponding tangent surface S .

2. Show that, among the points of the tangent surface S , those situated on the curve
C are singular and the other points are regular.

3. Show that the osculating plane to the curve C at a point with parameter s0 is also
the tangent plane to the surface S at all regular points of the surface S lying on
the tangent to the curve C at this point f (s0).

4. Prove that all regular points of the surface S are parabolic.

5.18.20 Let f : R −→ R be a function of class C∞ such that f (x)f ′′(x) > 0 for all
x ∈ R. In the yz-plane of R3, consider the curve C with equation y = f (z). Let S
be the surface obtained by letting the curve C rotate around the z-axis. Compute, at
each point, the Gaussian curvature of S .

5.18.21 Let S be the surface admitting the parametric representation

f (t, u) =
(

cos t cosu, cos t sinu,
1

2
sin t

)
.

Let C be the curve obtained as the intersection of S with the plane π with equation
x = y. Consider a regular point P of the surface S situated on the curve C. Prove
that at P , the tangent plane to S is orthogonal to the plane π . What can you say
about the normal curvature of C?



Chapter 6
Towards Riemannian Geometry

As the title indicates, the purpose of this chapter is not to develop Riemannian ge-
ometry as such. The idea is to first re-visit the theory of surfaces in R

3, as studied
in Chap. 5, adopting a different point of view and different notation. One of the
objectives of this somehow unusual exercise—besides proving some important new
theorems—is to provide a good intuition for the basic notions and techniques in-
volved in general Riemannian geometry.

The idea of Riemannian geometry is to consider a surface as a universe in itself,
not as a part of a “bigger universe”, for example as a part of R3. Thus Riemannian
geometry is interested in the study of those properties of the surface which can
be established by measures performed directly “within” the surface, without any
reference to the possible surrounding space. The “key” to performing measures on
the surface will be the consideration of its first fundamental form (see Sect. 5.4),
called the metric tensor in Riemannian geometry.

In Chap. 5, our main concern regarding surfaces in R
3 has been the study of

their curvature. The normal curvature of a given curve on the surface is the orthog-
onal projection of its “curvature” vector on the normal vector to the surface (see
Sect. 5.8). This normal curvature cannot be determined by measures performed on
the surface, but the geodesic curvature can: the geodesic curvature is “the other
component” of the curvature vector, that is, the length of the orthogonal projection
of the curvature vector on the tangent plane to the surface. When you have the im-
pression of “moving without turning” on a given surface—like when you follow a
great circle on the surface of the Earth—you are in fact following a curve with zero
geodesic curvature. Such a curve is called a geodesic: we pay special attention to
the study of these geodesics.

In Sect. 5.16 we also studied the Gaussian curvature, which provides less precise
information than the normal curvature. But in Riemannian geometry—where the
normal curvature no longer makes sense—the Gaussian curvature assumes its full
importance: the Gaussian curvature can be determined by measures performed on
the surface itself. This is the famous Theorema Egregium of Gauss.

We characterize—in terms of the coefficients E, F , G, L, M , N of their two
fundamental quadratic forms—those Riemann surfaces which arise from a surface
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embedded in R
3, as studied in Chap. 5. As an example of a Riemann surface not

obtained from a surface in R
3, we describe the so-called Poincaré half plane, which

is a model of non-Euclidean geometry.
We conclude with a first discussion of what a tensor is and a precise definition of

a Riemann surface. This last definition refers explicitly to topological notions: the
reader not familiar with them is invited to consult Appendix A.

Let us close this introduction with an observation which, in this chapter, will play
an important role in supporting our intuition. Consider a surface represented by

f : U �→R
3, (u, v) �→ f (u, v)

and suppose that f is injective, not just locally injective. Consider a point P =
f (u, v), for (u, v) ∈ U . The injectivity of f allows us to speak equivalently of the
point P of the surface or the point with parameters (u, v) on the surface. In this
case, the points of the open subset U describe precisely the points of the surface: f

is a bijection between these two sets of points.

6.1 What Is Riemannian Geometry?

Turning through the pages of Chap. 5, we find many pictures of surfaces, as if we
had taken photographs of these surfaces. But of course when you take a photograph
of a surface, you do not put the lens of the camera on the surface itself: you stay
outside the surface, sufficiently far, at some point from which you have a good view
of the shape of the surface. Doing this, you study your surface from the outside,
taking full advantage of the fact that the surface is embedded in R

3 and that you are
able to move in R

3, outside the surface.
Let us proceed to a completely different example. We are three dimensional be-

ings living in a three-dimensional world. We are interested in studying the world in
which we are living. Of course if we are interested in only studying our solar system,
we can take R

3 as a reliable mathematical model of our universe and use the rules
of classical mechanics to study the trajectories of the planets. But we know that if
we are interested in cosmology and the theory of the expansion of the universe, the
very “static” model R3 is no longer appropriate to the question. Physicists perform
a lot of experiments to study our universe: they use large telescopes to capture very
remote information. But these telescopes are inside our universe and take pictures of
things that are inside our universe. This time—we have no other choice—we study
our universe from the inside. From this study inside the universe itself physicists try
to determine—for example—the possible curvature of our universe.

The topic of Riemannian geometry is precisely this: the study of a universe from
the inside, from measures taken inside that universe. In this book we shall focus
on Riemann surfaces, that is, two dimensional universes. Thus we imagine that we
are very clever two-dimensional beings, living in a two-dimensional universe and
knowing a lot of geometry. We do our best to study our universe from the inside,
since of course there is no way for us to escape and look at it from the outside.
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Our first challenge is to mathematically model this idea. For that, we shall rely on
our study of surfaces embedded in R

3 in order to guess what it can possibly mean to
study these surfaces from the inside. The above discussion suggests a first answer:

A Riemannian property of a surface in R
3 is a property which can be es-

tablished by measures performed on the support of the surface, without any
reference to its parametric representation.

Of course a two-dimensional being living on a surface of R3 is able to measure
the length of an arc of a curve on this surface, or the angle between two curves on
the surface. These operations can trivially be done inside the surface, without any
need to escape from the surface.

But given a regular curve

c : I −→ U ⊆ R
2, t �→ (

c1(t), c2(t)
)

on a regular surface

f : U −→R
3, (u, v) �→ f (u, v),

we have seen (see Proposition 5.4.3) how to calculate its length:

∫ ∥∥(f ◦ c)′
∥∥=

∫ √

(c′
1 c′

2)

(
E F

F G

)(
c′

1
c′

2

)

where the three functions E(u,v), F(u, v), G(u,v) are the coefficients of the first
fundamental form of the surface. The same matrix also allows us to calculate the
angle between two curves on the surface (see Proposition 5.4.4). The matrix

(
E F

F G

)

thus allows us to compute lengths and angles on the surface: it is intuitively the
“mathematical measuring tape” on the surface.

However, we must stress the following: knowledge of this “mathematical mea-
suring tape” is (somehow) equivalent to being able to perform measures inside the
surface. That is, only from measures performed inside the surface, you can infer
the values of the three functions E(u,v), F(u, v), G(u,v). In this statement, the
“somehow” restriction is the fact that to reach this goal, you have to perform in-
finitely many measures, because there are infinitely many points on the surface.

Indeed consider the curve v = v0

u �→ f (u, v0)

for some fixed value v0. The length on this curve from an origin u0 to the point with
parameter u is thus

�(u) =
∫ u

u0

√

(1 0)

(
E(u,v0) F (u, v0)

F (u, v0) G(u, v0)

)(
1
0

)
du =

∫ u

u0

√
E(u,v0) du.
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The two dimensional being living on the surface can thus measure the value �(u)

for any value of the parameter u, and so “somehow” determine the function �(u).
If he makes the additional effort to attend a first calculus course, he will be able to
compute the derivative

�′(u) =√
E(u,v0)

of that function and thus eventually, get the value of E(u,v0). An analogous argu-
ment holds for G(u0, v). Notice further that the angle θ between the two curves
u = u0 and v = v0 is given by

cos θ = F(u0, v0)√
G(u0, v0)

√
E(u0, v0)

.

Since E(u0, v0) and G(u0, v0) are already known, the two-dimensional being gets
the value of F(u0, v0) from the measure of the angle θ .

All this suggests reformulating the above statement as follows:

The Riemannian geometry of a surface

f : U −→ R
3, (u, v) �→ f (u, v)

embedded in R
3 is the study of those properties of the surface which can be

inferred from the sole knowledge of the three functions

E,F,G : U −→R.

Now working with three symbols E, F , G and two parameters u, v remains
technically quite tractable. But imagine that you are no longer interested in “two
dimensional universes” (surfaces), but in “three dimensional universes”, such as
the universe in which we are living! Instead of two parameters, you now have to
handle three parameters; analogously, as we shall see in Definition 6.17.6, the cor-
responding “mathematical measuring tape” will become a 3 × 3-matrix. If you are
interested—for example—in studying relativity, you will have to handle a fourth
dimension, “time”. Thus four parameters and a 4 × 4-matrix. In such higher dimen-
sions, one has to use “notation with indices” in order to cope with all the quantities
involved! We shall do this in the case of surfaces and introduce the classical notation
of Riemannian geometry.

The Riemannian notation for the first fundamental form is:
(

E(u,v) F (u, v)

F (u, v) G(u, v)

)
=
(

g11(x
1, x2) g12(x

1, x2)

g21(x
1, x2) g22(x

1, x2)

)
.

Having changed the notation, we shall also change the terminology.

Definition 6.1.1 Consider a regular parametric representation of a surface

f : U −→ R
3,

(
x1, x2) �→ f

(
x1, x2).
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The matrix of functions

gij : U −→R,
(
x1, x2) �→ gij

(
x1, x2), 1 ≤ i, j ≤ 2

defined by

(
g11 g12
g21 g22

)
=
⎛

⎝

( ∂f

∂x1

∣∣ ∂f

∂x1

) ( ∂f

∂x1

∣∣ ∂f

∂x2

)

( ∂f

∂x2

∣∣ ∂f

∂x1

) ( ∂f

∂x2

∣∣ ∂f

∂x2

)

⎞

⎠

is called the metric tensor of the surface.

The “magic word” tensor suddenly appears! The reason for such a terminology
will be “explained” in Sect. 6.12. For the time being, this is just a point of terminol-
ogy which does not conceal any hidden properties and so formally, does not require
any justification.

Using symbols like gij to indicate the various elements of the “tensor”—which
after all is just a matrix—sounds perfectly reasonable, as does using symbols
(x1, x2) to indicate the two parameters. The use of upper indices x1 and x2 might
seem like an invitation for confusion at this point, but we shall come back to this in
Sect. 6.12. For the time being, we just decide to use the unusual notation (x1, x2).

Even if we do not yet know the reason for using these “upper indices”, let us at
least be consistent. Given a curve

c : ]a, b[ −→ U

on the surface, we should now write

c(t) = (
c1(t), c2(t)

)

for the two components of the function c.
We have thus described the “challenge” of Riemannian geometry, as far as sur-

faces embedded in R
3 are concerned, and we have introduced the classical notation

and terminology of Riemannian geometry. But to help us guess which properties
have a good chance to be Riemannian, we shall add a “slogan”.

Consider again our friendly and clever two-dimensional being living on the sur-
face. This two-dimensional being should have full knowledge of what happens “at
the level of the surface” but no knowledge at all of what happens “outside the sur-
face”. From a quantity that lives in the “outside world R

3”, the two-dimensional
being should only see its “shadow on the surface”, its “component at the level of the
surface”, that is, its “orthogonal projection at the level of the surface”. Let us write
this quantity of R3 in terms of the basis comprising the two partial derivatives of
the parametric representation and the normal vector to the surface. What happens
along the normal to the surface, that is, what projects as “zero” on the surface, is
the part of the information that the two-dimensional being cannot possibly access.
So the rest of the information, that is, the components along the partial derivatives,
should probably be accessible to our two-dimensional being. Let us take this as a
slogan for discovering Riemannian properties.
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Slogan:
The component of a geometric quantity along the normal vector to the

surface is not Riemannian, but its components along the tangent plane should
be Riemannian.

This is of course just a “slogan”, not a precise mathematical statement!

6.2 The Metric Tensor

Let us first recall (Proposition 5.5.4) that at each point of a regular surface

f : U −→ R
3,

(
x1, x2) �→ f

(
x1, x2)

the matrix
(

g11(x
1
0 , x2

0) g12(x
1
0 , x2

0)

g21(x
1
0 , x2

0) g22(x
1
0 , x2

0)

)

=
(

E(x1
0 , x2

0) F (x1
0 , x2

0)

F (x1
0 , x2

0) G(x1
0 , x2

0)

)

is that of the scalar product in the tangent plane at f (x1
0 , x2

0), with respect to the
affine basis

(
f
(
x1

0 , x2
0

); ∂f

∂x1

(
x1

0 , x2
0

)
,

∂f

∂x2

(
x1

0 , x2
0

))
.

This matrix is thus symmetric, definite and positive (Proposition 5.4.6).
We are now ready to give a first (restricted) definition of a Riemann surface, a

definition which no longer refers to any parametric representation:

Definition 6.2.1 A Riemann patch of class Ck consists of:

1. a connected open subset U ⊆ R
2;

2. four functions of class Ck

gi,j : U −→R,
(
x1, x2) �→ gij

(
x1, x2), 1 ≤ i, j ≤ 2

so that at each point (x1, x2) ∈ U , the matrix

(
g11(x

1, x2) g12(x
1, x2)

g21(x
1, x2) g22(x

1, x2)

)

is symmetric definite positive. The matrix of functions

(
gij

)
ij

is called the metric tensor of the Riemann patch.
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The observant reader will have noticed that if we start with a regular parametric
representation f of class Ck of a surface in R

3, the corresponding metric tensor as in
Definition 6.2.1 is only of class Ck−1. This is the reason why some authors declare
a Riemann patch to be of class Ck+1 when the functions gij are of class Ck . This is
just a matter of taste!

The term Riemann patch instead of Riemann surface underlines the fact that in
this chapter, we shall again essentially work “locally”. The more general notion of
Riemann surface is investigated in Sect. 6.17. We can now express will full precision
the concern of Riemannian geometry:

Local Riemannian geometry is the study of the properties of a Riemann
patch.

Of course what has been explained above suggests that we should think of the metric
tensor intuitively as being that of a hypothetical surface in R

3. This can indeed
support our intuition but this is perhaps not the best way to look at a Riemann patch.

Let us go back to the example of the sphere (or part of it) in terms of the “longi-
tude” and “latitude”, as in Example 5.1.6:

f : U −→ R
3, (θ, τ ) �→ (cos τ cos θ, cos τ sin θ, sin τ).

Assume that we have restricted our attention to an open subset U on which f is
injective. Think of the sphere as being the Earth. The open subset U ⊆ R

2 is then
the geographical map of the corresponding piece of the Earth. The two coordinates
of a point of U ⊆ R

2 are the longitude and the latitude of the corresponding point
of the Earth. But how can you—for example—determine the distance between two
points of the Earth, simply by inspecting your map? Certainly not by measuring the
distance on the map using your ruler! Indeed on the map, the further one moves
away from the equator, the more distorted the distances on the map become. Of
course we can determine the longitude and the latitude of the two points on the map
and use our knowledge of spherical trigonometry to calculate the corresponding
distance on the surface of the Earth. However, to do this, one has to know that the
Earth is approximately a sphere in the surrounding universe R

3: an attitude which
does not make sense in Riemannian geometry.

What would be better would be to have an elastic ruler which is able to adjust
itself to the correct length, depending on where it has been placed on the map. We
are in luck, such an elastic ruler exists: it is the metric tensor. The metric tensor is
at each point the matrix of a scalar product, but a scalar product which varies from
point to point, compensating for the distortion of the map.

It is better to imagine that the map is of some unknown planet, the shape of
which is totally unknown to us. From only the longitude and the latitude of points
on this planet, as given by the map, we cannot draw any conclusions since we have
no idea of the shape of the planet and thus of the distortion of the map together
with the “elastic ruler” (the metric tensor), to “calculate” from the map the actual
distances on the planet (we shall make this precise in Definitions 6.3.2 and 6.3.3).
This probably gives a clearer intuitive way to think about Riemann patches.

Let us return to our formal definition of a Riemann patch.
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Proposition 6.2.2 Given a Riemann patch as in Definition 6.2.1, the metric ten-
sor is at each point (x1, x2) an invertible matrix with strictly positive determinant.
Moreover at each point, g11 > 0 and g22 > 0.

Proof By Proposition G.3.4 in [4], Trilogy II, the determinant of the matrix is
strictly positive, thus the matrix is invertible. On the other hand

(
1 0

)(g11 g12
g21 g22

)(
1
0

)
= g11

thus this quantity is strictly positive by positivity and definiteness. An analogous
argument holds for g22. �

Definition 6.2.3 Given a Riemann patch as in Definition 6.2.1, the inverse metric
tensor

(
g11(x1, x2) g12(x1, x2)

g21(x1, x2) g22(x1, x2)

)
=
(

g11(x
1, x2) g12(x

1, x2)

g21(x
1, x2) g22(x

1, x2)

)−1

is at each point (x1, x2) the inverse of the metric tensor.

The matrix (gij )ij has again received the label tensor and the indices have now
been put “upstairs”. Once more, this is for the moment simply a matter of terminol-
ogy and notation. We will comment further on this in Sect. 6.12.

Proposition 6.2.4 Given a Riemann patch of class Ck , the coefficients gij of the
inverse metric tensor are still functions of class Ck .

Proof From any algebra course, we know that the inverse metric tensor is equal to

(
g11 g12

g21 g22

)
=
( g22

g11g22−g12g21

−g12
g11g22−g12g21

−g21
g11g22−g12g21

g11
g11g22−g12g21

)

.

This forces the conclusion because the denominator is never zero (Proposition 6.2.2)
while by Definition 6.2.1, the functions gij are of class Ck . �

Let us conclude this section with a useful point of notation. Since at each point
of a Riemann patch, the metric tensor is a 2 × 2 symmetric definite positive matrix
(Definition 6.2.1), it is the matrix of a scalar product in R

2. Let us introduce a
notation for this scalar product.

Notation 6.2.5 Given a Riemann patch

gij : U −→ R, 1 ≤ i, j ≤ 2
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and a point (x1, x2) ∈ U , we shall write

(
(a, b)

∣
∣(c, d)

)
(x1,x2)

= (
a b

)(g11(x
1, x2) g12(x

1, x2)

g21(x
1, x2) g22(x

1, x2)

)(
c

d

)

for the corresponding scalar product on R
2, and by analogy

∥∥(a, b)
∥∥

(x1,x2)
=
√(

(a, b)
∣∣(a, b)

)
(x1,x2)

.

6.3 Curves on a Riemann Patch

The notion of a curve on a Riemann patch is the most obvious one.

Definition 6.3.1 A curve on a Riemann patch

gij : U −→ R, 1 ≤ i, j ≤ 2

is simply a plane curve in the sense of Sect. 2.1, admitting a parametric representa-
tion

c : ]a, b[ −→ U ⊆ R
2, t �→ (

c1(t), c2(t)
)
.

The curve on the Riemann patch is regular when the plane curve represented by c

is regular.

Using Notation 6.2.5 and in view of Propositions 5.4.3 and 5.4.4, we define:

Definition 6.3.2 Consider a regular curve

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)

on a Riemann patch

gij : U −→ R, 1 ≤ i, j ≤ 2.

Given a < k < l < b, the length of the arc of the curve between the points with
parameters k and l is defined as being

Lengthl
k(c) =

∫ l

k

∥∥c′(t)
∥∥

c(t)
.

Definition 6.3.3 Consider two regular curves

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)
, d : ]k, l[−→ U,

s �→ (
d1(s), d2(s)

)
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on a Riemann patch

gij : U −→ R, 1 ≤ i, j ≤ 2.

When these two curves have a common point

c(t0) = (
x1

0 , x2
0

)= d(s0)

the angle between these two curves at their common point is the real number θ ∈
[0,2π[ such that

cos θ =
(c′(t0)|d ′(s0))(x1

0 ,x2
0 )

‖c′(t0)‖(x1
0 ,x2

0 ) · ‖d ′(s0)‖(x1
0 ,x2

0 )

.

Let us now, for a curve in a Riemann patch, investigate the existence of a normal
representation.

Definition 6.3.4 Consider a Riemann patch

gij : U −→ R, 1 ≤ i, j ≤ 2

and a regular curve

c : ]a, b[ −→ U, s �→ (
c1(s), c2(s)

)

in it. The parametric representation c is said to be a normal representation when at
each point

∥∥c′(s)
∥∥

c(s)
= 1.

One should be well aware that in Definition 6.3.4, c is not a normal representation
of the ordinary plane curve in U of which it is a parametric representation. In the
case of a surface of R3 represented by f , the condition in Definition 6.3.4 requires
in fact that f ◦ c be a normal representation of the corresponding skew curve.

The existence of normal representations in the case of a Riemann patch can
be established just as in the case of plane or skew curves (see Propositions 2.8.2
and 4.2.7).

Proposition 6.3.5 Consider a Riemann patch

gij : U −→ R, 1 ≤ i, j ≤ 2

and a regular curve

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)
.

Fixing a point t0 ∈ ]a, b[, the function

σ(t) =
∫ t

t0

∥∥c′∥∥
c
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is a change of parameter of class C1 making c ◦ σ−1 a normal representation.

Proof The derivative of σ is simply σ ′ = ‖c′‖c. This derivative is strictly positive
at each point because the matrix (gij )ij is symmetric definite positive (see Defini-
tion 6.2.1) and by regularity, the vector c′ is never zero. Therefore σ ′—thus also
σ—is still of class C1, since so are the gij and c, as well as the square root function
“away from zero”. Since its derivative is always strictly positive, σ is a strictly in-
creasing function. Therefore σ admits an inverse σ−1, still of class C1, whose first
derivative is given by

(
σ−1)′ = 1

σ ′ ◦ σ−1
= 1

‖c′‖c ◦ σ−1
= 1

‖c′ ◦ σ−1‖c◦σ−1
.

Let us write c = c ◦ σ−1. We must prove that ‖c′‖c = 1 (see Definition 6.3.4).
But

c′ = (
c′ ◦ σ−1)(σ−1)′ = c′ ◦ σ−1

‖c′ ◦ σ−1‖c

which forces at once the conclusion. �

Of course, we have:

Proposition 6.3.6 Consider a Riemann patch

gij : U −→ R, 1 ≤ i, j ≤ 2

and a regular curve

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)

given in normal representation. Then for a < k < l < b

Lengthl
k(c) = l − k.

Proof In Definition 6.3.2, the integral is that of the constant function 1. �

6.4 Vector Fields Along a Curve

Following the “slogan” at the end of Sect. 6.1, what happens in the tangent plane to
a surface should be a Riemannian notion. In the theory of skew curves (see Chap. 3)
we have considered several vectors attached to each point of a curve: its successive
derivatives, the tangent vector, the normal vector, the binormal vector, and so on.
When the curve is drawn on a surface, our “slogan” suggests that only the compo-
nents of these vectors in the tangent plane should be relevant in Riemannian geom-
etry. Therefore we make the following definition.
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Definition 6.4.1 Let us consider a curve c on a surface f

]a, b[ c−→ U
f−→R

3,

both being regular and of class Ck . A vector field of class Ck along the curve, tangent
to the surface, is a function of class Ck

ξ : ]a, b[ −→ R
3, t �→ ξ(t)

where for each t ∈ ]a, b[, ξ(t) belongs to the direction of the tangent plane to the
surface at the point (f ◦ c)(t) (see Definition 2.4.1 in [4], Trilogy II).

Of course, working as usual in the affine basis of the partial derivatives in each
tangent plane, we can re-write (with upper indices)

ξ(t) = ξ1(t)
∂f

∂x1
(f ◦ c)(t) + ξ2(t)

∂f

∂x2
(f ◦ c)(t).

The knowledge of the vector field ξ is of course equivalent to the knowledge of its
two components ξ1 and ξ2. This suggests at once that being a tangent vector field
can easily be made a Riemannian notion:

Definition 6.4.2 Consider a Riemann patch of class Ck

gij : U →R, 1 ≤ i, j ≤ 2

and a regular curve of class Ck in it

c : ]a, b[ −→ U.

A vector field ξ of class Ck along this curve consists of giving two functions of class
Ck

ξ1, ξ2 : ]a, b[ −→R.

Of course in Definition 6.4.2 we intuitively think of the two functions ξ1, ξ2 as
being the two components of a vector in the tangent plane (see Definition 6.4.1),
even if in the case of a Riemann patch, no such tangent plane is a priori defined. Let
us conclude this section with a very natural definition:

Example 6.4.3 Consider a Riemann patch of class Ck

gij : U →R, 1 ≤ i, j ≤ 2

and a regular curve of class Ck

c : ]a, b[ −→ U, s �→ (
c1(s), c2(s)

)
.
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The vector field τ of class Ck−1 with components

τ 1 = (c1)′

‖c′‖ c

, τ 2 = (c2)′

‖c′‖ c

: ]a, b[ −→R

is called “the” tangent vector field to the curve; it is such that ‖τ‖c = 1. When c is
given in normal representation, one has further τ = c′.

Proof At each point, the vector field τ is the vector c′ ∈ R
2 divided by its norm

for the scalar product (−|−)c (see Notation 6.3.4). The result follows by Defini-
tion 6.3.4. �

In Example 6.4.3, it is clear that equivalent parametric representations of the
same curve can possibly give corresponding tangent vector fields opposite in sign.

Definition 6.4.4 Consider a Riemann patch

gij : U −→ R, 1 ≤ i, j ≤ 2

and a regular curve

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)
.

With Notation 6.2.5:

1. The norm of a vector field ξ along c is the positive real valued function

‖ξ‖(t) = ∥∥ξ(t)
∥∥

c(t)
.

2. Two vector fields ξ and χ along c are orthogonal when at each point
(
ξ(t)

∣∣χ(t)
)
c(t)

= 0.

6.5 The Normal Vector Field to a Curve

We are now interested in transposing, to the context of a Riemann patch, the notion
of the normal vector to a curve in the sense of the Frenet trihedron (see Defini-
tion 4.4.1).

Proposition 6.5.1 Consider a Riemann patch of class Ck

gij : U →R, 1 ≤ i, j ≤ 2

and a regular curve of class Ck

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)
.



266 6 Towards Riemannian Geometry

There exists a vector field of class Ck−1

η1, η2 : ]a, b[

along c with the properties:

1. η is orthogonal to the tangent vector field of c;
2. ‖η‖c = 1;
3. the basis (c′, η) has at each point direct orientation (see Sect. 3.2 in [4], Tril-

ogy II).

This vector field is called “the” normal vector field to the curve.

Proof To get a vector field μ satisfying the orthogonality condition of the statement,
at each point we must have (see Definition 6.4.4)

(
μ1 μ2

)(g11 g12
g21 g22

)(
(c1)′
(c2)′

)
= 0

or in other words

(
μ1 μ2

)(g11(c
1)′ + g12(c

2)′
g21(c

1)′ + g22(c
2)′
)

= 0.

It suffices to put

μ1 = g21
(
c1)′ + g22

(
c2)′, μ2 = −(g11

(
c1)′ + g12

(
c2)′)

or—of course—the opposite choice

μ1 = −(g21
(
c1)′ + g22

(
c2)′), μ2 = g11

(
c1)′ + g12

(
c2)′.

This can be re-written as
(

μ1

μ2

)
=
(

g21 g22
−g11 −g12

)(
(c1)′
(c2)′

)
.

In this formula, the square matrix is regular at each point (it has the same determi-
nant as the metric tensor) and c′ is non-zero at each point, by regularity of c. Thus
μ is non-zero at each point and the expected normal vector field is

η1 = μ1

‖μ‖c

, η2 = μ2

‖μ‖c

: ]a, b[ −→R.

Observe that the two-fold possibility in the choice of the vector field μ yields
two bases (c′, η) with opposite orientations: it remains to choose the basis with
direct orientation. �
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6.6 The Christoffel Symbols

Chapter 5 has provided evidence that all important properties of the surface can
be expressed in terms of the six functions E, F , G, L, M , N defined in Propo-
sition 5.4.3 and Theorem 5.8.2. As emphasized in Sect. 6.2, the functions E, F ,
G constitute the metric tensor of the surface. But what about the functions L, M ,
N . Are they Riemannian quantities, quantities that we can determine by measures
performed on the surface? The answer is definitely “No”:

Counterexample 6.6.1 The coefficients L, M , N of the second fundamental form
of a surface cannot be deduced from the sole knowledge of the coefficients E, F , G

of the first fundamental form.

Proof At each point of the plane with parametric representation

f (x, y) = (x, y,0)

we have trivially

E = 1, F = 0, G = 1, L = 0, M = 0, N = 0.

At each point of the circular cylinder (see Sect. 1.14 in [4], Trilogy II) with
parametric representation

g(θ, z) = (cos θ, sin θ, z)

we have

∂g

∂θ
= (− sin θ, cos θ,0),

∂g

∂z
= (0,0,1)

from which again

E = 1, F = 0, G = 1.

On the other hand

−→
n = (cos θ, sin θ,0)

and

∂g2

∂θ2
= (− cos θ,− sin θ,0),

∂g2

∂θ ∂z
= (0,0,0),

∂g2

∂z2
= (0,0,0)

from which

L = −1, M = 0, N = 0.

The two surfaces have the same functions E, F , G, but not the same functions
L, M , N . �
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So L, M , N are not Riemannian quantities. Let us recall that they are obtained
from the second partial derivatives of the parametric representation, by performing
the scalar product with the normal vector −→

n to the surface (see Theorem 5.8.2). Ap-
plying the “slogan” at the end of Sect. 6.1 to the case of the second partial derivatives
of the parametric representation, the following definition sounds sensible:

Definition 6.6.2 Consider a regular parametric representation

f : U −→ R
3,

(
x1, x2) �→ f

(
x1, x2)

of class Ck of a surface.

1. The Christoffel symbols of the first kind are the functions

Γijk =
(

∂2f

∂xi∂xj

∣∣∣∣
∂f

∂xk

)
, 1 ≤ i, j, k ≤ 2.

2. The Christoffel symbols of the second kind are the quantities Γ k
ij , the components

of the second partial derivatives of f with respect to the basis comprising the first
partial derivatives and the normal to the surface:

∂2f

∂xi∂xj
= Γ 1

ij

∂f

∂x1
+ Γ 2

ij

∂f

∂x2
+ hij

−→
n .

The observant reader will have noticed the use of the word “symbols”, not “ten-
sor”; and the presence of upper and lower indices! Again, we shall comment upon
this later.

Proposition 6.6.3 Under the conditions of Definition 6.6.2,
(

h11 h12
h21 h22

)
=
(

L M

M N

)
.

Proof Simply take the scalar product of

∂f 2

∂xi∂xj
= Γ 1

ij

∂f

∂x1
+ Γ 2

ij

∂f

∂x2
+ hij

−→
n

with −→
n , keeping in mind that

(
∂f

∂xi

∣∣∣−→n
)

= 0,
(−→

n
∣∣−→n )= 1. �

From now on, we shall use the notation hij instead of L, M , N . Let us also make
the following easy observations:

Proposition 6.6.4 Under the conditions of our Definition 6.6.2, the Christoffel sym-
bols are functions of class Ck−2 with the following properties:
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Γijk = Γjik,

Γ k
ij = Γ k

ji,

Γijk =
∑

l

glkΓ
l
ij ,

Γ k
ij =

∑

l

gklΓij l .

Proof The first two equalities hold because

∂2f

∂xi∂xj
= ∂2f

∂xj ∂xi
.

The third equality is obtained by expanding the scalar product

(
Γ 1

ij

∂f

∂x1
+ Γ 2

ij

∂f

∂x2
+ hij

−→
n

∣∣∣∣
∂f

∂xk

)

keeping in mind that (
−→
n | ∂f

∂xk ) = 0.
This third equality can be re-written in matrix form as

(
Γij1 Γij2

)=
(
Γ 1

ij Γ 2
ij

)(
g11 g12
g21 g22

)
.

Multiplying both sides by the inverse metric tensor, we obtain the fourth formula.
By Definition 6.6.2, the Christoffel symbols of the first kind are functions of

class Ck−2. By Proposition 6.2.4 and the fourth equality in the statement, the same
conclusion holds for the symbols of the second kind. �

The key observation is now:

Proposition 6.6.5 Under the conditions of Definition 6.6.2, the Christoffel symbols
of the first kind are also equal to

Γijk = 1

2

(
∂gjk

∂xi
+ ∂gki

∂xj
− ∂gij

∂xk

)
.

Proof First (see Lemma 1.11.3)

∂gij

∂xk
= ∂

∂xk

(
∂f

∂xi

∣∣∣∣
∂f

∂xj

)

=
(

∂2f

∂xi∂xk

∣∣∣∣
∂f

∂xj

)
+
(

∂f

∂xi

∣∣∣∣
∂2f

∂xj ∂xk

)

= Γikj + Γjki .
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Therefore

∂gjk

∂xi
+ ∂gki

∂xj
− ∂gij

∂xk
= Γjik + Γkij + Γijk + Γkji − Γikj − Γjki = 2Γijk

by the first formula in Proposition 6.6.4. �

Proposition 6.6.6 Under the conditions of Definition 6.6.2, the Christoffel symbols
of the first and second kind can be expressed as functions of the coefficients of the
metric tensor.

Proof Proposition 6.6.5 proves the result for the symbols of the first kind. But the
inverse metric tensor can itself be expressed in terms of the metric tensor (see Defi-
nition 6.2.3 or the proof of Proposition 6.2.4 for an explicit formula). By the fourth
equality in Proposition 6.6.5, the result for the symbols of the second kind follows
immediately. �

To stress the fact that the Christoffel symbols are Riemannian quantities, let us
conclude this section with a definition inspired by Proposition 6.6.6:

Definition 6.6.7 Given a Riemann patch of class C1 as in Definition 6.2.1, the
Christoffel symbols of the first kind are by definition the quantities

Γijk = 1

2

(
∂gjk

∂xi
+ ∂gki

∂xj
− ∂gij

∂xk

)
, 1 ≤ i, j, k ≤ 2

while the Christoffel symbols of the second kind are the quantities

Γ k
ij =

∑

l

gklΓij l, 1 ≤ i, j, k, l ≤ 2.

Proposition 6.6.4 carries over to this generalized context.

Proposition 6.6.8 Consider a Riemann patch of class Ck

gij : U −→ R, 1 ≤ i, j ≤ 2.

The Christoffel symbols are functions of class Ck−1 satisfying the following proper-
ties:

Γijk = Γjik,

Γ k
ij = Γ k

ji,

Γijk =
∑

l

glkΓ
l
ij ,

Γ k
ij =

∑

l

gklΓij l .
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Proof The last condition is just Definition 6.6.7. This same definition forces at once
the first condition, because the metric tensor is symmetric. This immediately implies
the second condition. Finally Definition 6.6.7 can be expressed as the matrix formula

(
Γ 1

ij

Γ 2
ij

)(
g11 g12

g21 g22

)(
Γij1
Γij2

)
.

Multiplying both sides by the metric tensor yields condition 4 in the statement. �

6.7 Covariant Derivative

Our experience of doing mathematics tells us how important the derivative of a
function can be. Going back to Definition 6.4.1, we therefore want to consider the
derivative of the function ξ describing a vector field. However, since we are working
in Riemannian geometry, our “slogan” of Sect. 6.6 suggests that we should focus on
the component of this derivative in the tangent plane.

Definition 6.7.1 Consider a regular curve c on a regular surface f

]a, b[ c−→ U
f−→ R

3.

Consider further a vector field of class C1 along this curve, tangent to the surface

ξ : ]a, b[ −→R
3, t �→ ξ(t).

The covariant derivative of this vector field is the vector field

∇ξ

dt
: ]a, b[ −→ R

3

defined at each point as the orthogonal projection of the derivative of ξ on the di-
rection of the tangent plane to the surface.

Our job is now to explicitly calculate this covariant derivative.

Proposition 6.7.2 In the situation described in Definition 6.7.1, when the surface
is of class C2, the covariant derivative of the vector field ξ is equal to

∇ξ

dt
=

2∑

k=1

(
dξk

dt
+

2∑

i,j=1

ξ i dcj

dt
Γ k

ij

(
c1, c2)

)
∂f

∂xk

(
c1, c2).

Proof Let us first differentiate the function

ξ(t) =
2∑

i=1

ξ i(t)
∂f

∂xi

(
c1(t), c2(t)

)
.
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We obtain, keeping in mind Definition 6.6.2 and writing −→
n for the normal vector to

the surface:

dξ

dt
=
∑

i

(
dξ i

dt

∂f

∂xi
+ ξ i

(∑

j

∂2f

∂xi∂xj

dcj

dt

))

=
∑

i

(
dξ i

dt

∂f

∂xi
+ ξ i

(∑

j

(
Γ 1

ij

∂f

∂x1
+ Γ 2

ij

∂f

∂x2
+ hij

−→
n

)
dcj

dt

))

=
(

dξ1

dt
+
∑

i

ξ i

(∑

j

Γ 1
ij

dcj

dt

))
∂f

∂x1

+
(

dξ2

dt
+
∑

i

ξ i

(∑

j

Γ 2
ij

dcj

dt

))
∂f

∂x2

+
(∑

ij

ξ i dcj

dt
hij

)
−→
n

where for short, we have used the abbreviated notation

Γ l
ij = Γ l

ij

(
c1, c2), hij = hij

(
c1, c2)

and analogously for the partial derivatives of f . The orthogonal projection on the di-
rection of the tangent plane is constituted of the first two lines of this last expression,
which is indeed the formula in the statement. �

The observant reader will have noticed that Definition 6.7.1 of the covariant
derivative makes perfect sense in class C1, while its expression given in Proposi-
tion 6.7.2 requires the class C2 because of the presence of the Christoffel symbols
(see Definition 6.6.2).

The Christoffel symbols are Riemannian quantities (see Definition 6.6.7), thus
by Proposition 6.7.2, so is the covariant derivative:

Definition 6.7.3 Consider a Riemann patch of class C1

gij : U →R, 1 ≤ i, j ≤ 2

and a regular curve

c : ]a, b[ −→ U.

The covariant derivative of a tangent vector field ξ of class C1 along this curve is
the tangent vector field ∇ξ

dt
whose two components are

dξk

dt
+
∑

i,j

ξ i dcj

dt
Γ k

ij

(
c1, c2), 1 ≤ k ≤ 2.
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The covariant derivative inherits the classical properties of an “ordinary” deriva-
tive. For example:

Proposition 6.7.4 Consider a Riemann patch of class C1

gij : U −→ R, 1 ≤ i, j ≤ 2

and a regular curve

c : ]a, b[ −→ U, t �→ (
c1(t), c2)

)

in it. Consider two tangent vector fields ξ and χ of class C1 along this curve, as well
as an additional function of class C1

α : ]a, b[ −→ R, t �→ α(t)

and a change of parameter of class C1

ϕ : ]r, s[−→ ]a, b[, s �→ ϕ(s).

The following properties hold:

1. ∇(ξ+χ)
dt

= ∇ξ
dt

+ ∇χ
dt

;

2. ∇(α·ξ)
dt

= dα
dt

ξ + α
∇ξ
dt

;

3. ∇(ξ◦ϕ)
ds

= (
∇ξ
dt

◦ ϕ) · ϕ′;
4. d(ξ |χ)c

dt
= (

∇ξ
dt

|ξ)c + (ξ |∇χ
dt

)c .

Proof Condition 1 of the statement is trivial. Condition 2 is immediate: the compo-
nents of ∇(α·ξ)

dt
are

d(α · ξk)

dt
+
∑

ij

(
α · ξk

)i dcj

dt
Γ k

ij = dα

dt
ξk + α

dξk

dt
+
∑

ij

αξ i dcj

dt
Γ k

ij

which is the second formula of the statement. Condition 3 is proved in exactly the
same straightforward way: the components of ∇(ξ◦ϕ)

ds
are

d(ξk ◦ ϕ)

ds
+
∑

ij

(
ξ i ◦ ϕ

)d(cj ◦ ϕ)

ds
Γ k

ij

=
(

dξk

dt
◦ ϕ

)
ϕ′ +

∑

ij

(
ξ i ◦ ϕ

)
(

dcj

dt
◦ ϕ

)
ϕ′Γ k

ij

which is again the announced statement.
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Proving the fourth formula in the statement is a more involved task. First let us
observe that the components of d(ξ |χ)c

dt
are

d

dt

(∑

kl

ξ k(t)χl(t)gkl

(
c(t)

))

=
∑

kl

dξk(t)

dt
χl(t)gkl

(
c(t)

)+
∑

kl

ξ k(t)
dχl(t)

dt
gkl

(
c(t)

)

+
∑

kl

ξ k(t)χl(t)

(∑

m

∂gkl

∂xm

(
c(t)

)dcm(t)

dt

)
.

On the other hand the components of (
∇ξ
dt

|χ) + (ξ |∇ξ
dt

) are

∑

kl

(
dξk(t)

dt
+
∑

ij

ξ i(t)
dcj (t)

dt
Γ k

ij

(
c(t)

)
)

χl(t)gkl

(
c(t)

)

+
∑

kl

ξ k(t)

(
dχ(t)

dt
+
∑

ij

χi(t)
dcj (t)

dt
Γ l

ij

(
c(t)

))
gkl

(
c(t)

)
.

Comparing both expressions, it remains to prove that

∑

klm

ξkχl ∂gkl

∂xm

dcm

dt
=
∑

klij

ξ iχ l dcj

dt
γ k
ij gkl +

∑

klij

ξ kχi dcj

dt
γ l
ij gkl .

Using Proposition 6.6.8 and Definition 6.6.7, we obtain

∑

klm

ξkχl dcm

dt

∂gkl

∂xm
=
∑

lij

ξ iχ l dcj

dt
Γijl +

∑

kij

ξ kχi dcj

dt
Γijk

=
∑

lij

ξ iχ l dcj

dt

1

2

(
∂gjl

∂xi
+ ∂gli

∂xj
− ∂gij

∂xl

)

+
∑

kij

ξ kχi dcj

dt

1

2

(
∂gjk

∂xi
+ ∂gki

∂xj
− ∂gij

∂xk

)

=
∑

klm

ξkχl dcm

dt

1

2

(
∂gml

∂xk
+ ∂glk

∂xm
− ∂gkm

∂xl

)

+
∑

klm

ξkχl dcm

dt

1

2

(
∂gmk

∂xl
+ ∂gkl

∂xm
− ∂glm

∂xk

)

=
∑

klm

ξkχl dcm

dt

∂gkl

∂xm

which is the expected equality concluding the proof. �
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Corollary 6.7.5 Consider a Riemann patch of class C2

gij : U →R, 1 ≤ i, j ≤ 2

and a regular curve of class C2

c : ]a, b[ −→ U, s �→ (
c1(s), c2(s)

)

given in normal representation. The tangent vector field c′ to the curve and its co-
variant derivative ∇c′

ds
are orthogonal vector fields (see Definition 6.4.4).

Proof By Definition 6.3.4, (c′|c′)c = 1. By Proposition 6.7.4.4, this implies
2(∇c′

ds

∣∣c′)c = 0. �

Under the conditions of Corollary 6.7.5, when the covariant derivative of c′ is
non-zero at each point, the normal vector field of Proposition 6.5.1 is given by

η = ±
∇c′
ds

‖∇c′
ds

‖ .

Let us conclude this section by noticing that the notion of covariant derivative
provides the notion of covariant partial derivative:

Definition 6.7.6 Consider a Riemann patch (U, (gij )ij ) of class Ck (k ≥ 1).

1. A 2-dimensional tangent vector field ξ of class Ck on this Riemann patch consists
of two functions of class Ck

ξ1, ξ2 : U −→R.

2. The covariant partial derivatives of this vector field ξ at a point (x1
0 , x2

0) are:

• ∇ξ

∂x1 (x1
0 , x2

0), the covariant partial derivative at x1
0 of the vector field ξ(x1, x2

0)

along the curve x2 = x2
0 ;

• ∇ξ

∂x2 (x1
0 , x2

0), the covariant partial derivative at x2
0 of the vector field ξ(x1

0 , x2)

along the curve x1 = x1
0 .

As expected, one has:

Proposition 6.7.7 Consider:

• a Riemann patch (U, (gij )ij ) of class C1 (k ≥ 1);
• a 2-dimensional tangent vector field ξ = (ξ1, ξ2) of class C1;
• a regular curve represented by c : ]a, b[ −→ U .
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Under these conditions, writing t ∈ ]a, b[ for the parameter,

∇ξ(c(t))

dt
= ∇ξ

∂x1

(
c(t)

)dc1

dt
+ ∇ξ

∂x2

(
c(t)

)dc2

dt
.

Proof Since ∇ξ

∂x1 is computed along a curve h(x1) = (x1, x2
0), one has

dh1

dx1
= 1,

dh2

dx1
= 0

and analogously for the other partial derivative. Thus by Definition 6.7.3 ∇ξ

∂xj has for
components

∂ξk

∂xj
+
∑

i

ξ iΓ k
ij .

On the other hand, still by Definition 6.7.3, the vector field ξ(c(t)) along c has a
covariant derivative whose components are given by

dξk

dt

(
c(t)

)+
∑

ij

ξ i
(
c(t)

)dcj

dt
Γij

k
(
c(t)

)

=
∑

j

∂ξk

∂xj

(
c(t)

)dcj

dt
(t) +

∑

ij

ξ i
(
c(t)

)dcj

dt
Γij

k
(
c(t)

)

=
∑

j

(
∂ξk

∂xj

(
c(t)

)+
∑

i

ξ i
(
c(t)

)
Γij

k
(
c(t)

))dcj

dt
(t)

=
∑

j

∇ξk

∂xj

(
c(t)

)dcj

dt
(t).

This proves the announced formula. �

6.8 Parallel Transport

In the plane R2, we know at once how to “transport” a fixed vector −→v along a curve
represented by c(t) (see Fig. 6.1): at each point of the curve, simply consider the
point

P(t) = c(t) + −→v
that is the point P(t) such that

−−−−−→
c(t)P (t) = −→v (see Definition 2.1.1 in [4], Tril-

ogy II).
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Fig. 6.1

This construction in R
2 thus yields a “constant vector field” along c

−→v : ]a, b[ −→ R
2, t �→ −→v .

But saying that this function is constant is equivalent to saying that its derivative is
equal to zero. The corresponding Riemannian notion is now clear:

Definition 6.8.1 Consider a Riemann patch of class C1

gij : U −→R, 1 ≤ i, j ≤ 2,

and a regular curve

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)

in it. A vector field ξ of class C1 along c is said to be parallel when its covariant
derivative is everywhere zero.

Let us observe that

Lemma 6.8.2 Being a parallel vector field along a curve is independent of the
regular parametric representation chosen for the curve.

Proof Let ϕ be a change of parameters of class C1 for the curve. Differentiating the
equality ϕ ◦ ϕ1 = id, we get

(
ϕ′ ◦ ϕ−1) · (ϕ−1)′ = 1

proving that ϕ′ is never zero. The conclusion then follows immediately from Propo-
sition 6.7.4.3. �

Proposition 6.8.3 Consider a Riemann patch of class C1

gij : U −→R, 1 ≤ i, j ≤ 2,

and a regular curve in it:

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)
.
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1. A parallel vector field ξ of class C1 along c has a constant norm.
2. A parallel vector field ξ of class C1 along c is orthogonal to its covariant deriva-

tive ∇ξ
dt

.
3. Two non-zero parallel vector fields ξ , χ of class C1 along c make a constant

angle.

Proof By Proposition 6.7.4

d(ξ |χ)c

dt
=
(∇ξ

dt

∣
∣∣χ
)

c

+
(

ξ

∣
∣∣
∇χ

dt

)

c

= (0|χ)c + (ξ |0)c = 0.

This proves that the scalar product (ξ |χ)c is constant. Putting ξ = χ we conclude
that ‖ξ‖c and ‖χ‖c are constant. Together with the scalar product being constant,
this proves that the angle is constant as well (see Notation 6.2.5).

But when ‖ξ‖2
c = (ξ |ξ)c is constant, its derivative is zero and by Proposi-

tion 6.7.4.4, this yields 2(
∇ξ
dt

|ξ)c = 0, thus the orthogonality of ξ and ∇ξ
dt

. �

The existence of parallel vector fields is attested by the following theorem:

Theorem 6.8.4 Consider a Riemann patch of class Ck (k ≥ 2)

gij : U −→R, 1 ≤ i, j ≤ 2,

and a regular curve of class Ck in it:

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)
.

Given a vector −→v ∈ R
2 and a point t0 ∈ ]a, b[, there exists a sub-interval ]r, s[ ⊆

]a, b[ still containing t0 and a unique parallel vector field ξ of class Ck along c

ξ1, ξ2 : ]r, s[ −→R

such that ξ(t0) = −→v . For each value t ∈ ]r, s[, the vector ξ(t) is called the parallel
transport of −→v along c.

Proof This is an immediate consequence of the theorem for the existence and
uniqueness of a solution of the system of differential equations (see Proposi-
tion B.1.1)

dξk

dt
(t) +

∑

ij

ξ i(t)
dcj

dt
(t)Γ k

ij

(
c1(t), c2(t)

)= 0, 1 ≤ k ≤ 2

together with the initial conditions

ξ1(t0) = v1, ξ2(t0)= v2

(see Definition 6.7.3). Observe that all the coefficients of the differential equations
are indeed of class Ck−1 (see Proposition 6.6.8). �
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6.9 Geodesic Curvature

Let us now switch to the study of the curvature of a curve in a Riemann patch.
Let us first recall the situation studied in Sect. 5.8. Given a curve on a surface

]a, b[ c−→ U
f−→R

3,

we write h = f ◦c for the corresponding skew curve and h for its normal representa-
tion. The normal curvature (up to its sign) is the length of the orthogonal projection
of the “curvature vector” h

′′
on the normal vector −→

n to the surface. Following our
“slogan” at the end of Sect. 6.1, this normal curvature is probably not a Riemannian
notion. Indeed we have the following:

Counterexample 6.9.1 The normal curvature of a surface cannot be deduced from
the sole knowledge of the three coefficients E, F , G.

Proof In Counterexample 6.6.1, the two surfaces have the same coefficients E, F , G
but not the same normal curvature. Indeed by Theorem 5.8.2, the normal curvature
of the cylinder is equal to −1 in the direction (1,0) while in the case of the plane,
the normal curvature is equal to 0 in all directions. �

However, as our “slogan” of Sect. 6.1 suggests, in the discussion above, the or-
thogonal projection of the “curvature vector” h

′′
on the tangent plane should be a

Riemannian notion. That projection—called the geodesic curvature of the curve—is
intuitively what the two-dimensional being living on the surface sees of the curva-
ture of the curve (see Sect. 6.1).

Definition 6.9.2 Consider a curve on a surface

]a, b[ c−→ U
f−→R

3,

both being regular and of class C2. Write f ◦ c for the normal representation of the
corresponding skew curve. The geodesic curvature of the curve on the surface is the
length of the orthogonal projection of the vector f ◦ c

′′
on the tangent plane to the

surface.

We thus get at once:

Proposition 6.9.3 Consider a curve on a surface, both being regular and of class
C2. Then at each point of this curve

κ2 = κ2
n + κ2

g

where

• κ indicates the curvature of the curve;
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• κn indicates the normal curvature of the curve;
• κg indicates the geodesic curvature of the curve.

Proof This follows by Pythagoras’ Theorem (see Theorem 4.3.5 in [4], Trilogy II)
and Definitions 5.8.1 and 6.9.2. �

Definition 6.9.2 can easily be rephrased:

Proposition 6.9.4 Consider a curve on a surface

]a, b[ c−→ U
f−→R

3,

both being regular and of class C2. Write f ◦ c for the normal representation of the
corresponding skew curve. The geodesic curvature of the curve on the surface is the
norm of the covariant derivative of the tangent vector field f ◦ h

′
.

Proof This follows by Definitions 6.9.2 and 6.7.1. �

By Proposition 6.9.4, the geodesic curvature is thus a Riemannian notion. There-
fore we make the following definition:

Definition 6.9.5 Consider a Riemann patch of class C2

gij : U −→ R, 1 ≤ i, j ≤ 2

and a regular curve of class C2

c : ]a, b[ −→ U, s �→ (
c1(s), c2(s)

)

given in normal representation. The geodesic curvature of that curve is—with No-
tation 6.2.5—the norm of the covariant derivative of its tangent vector field:

κg =
∥∥∥∥
∇c′

ds

∥∥∥∥
c

.

Of course one can refine Definition 6.9.5 and provide the geodesic curvature with
a sign, as we did for plane curves (see Definition 2.9.8). For that purpose, let us make
the following observation:

Proposition 6.9.6 Consider a Riemann patch of class C2

gij : U −→ R, 1 ≤ i, j ≤ 2

and a regular curve of class C2

c : ]a, b[ −→ U, s �→ (
c1(s), c2(s)

)
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given in normal representation. The geodesic curvature is also equal to

κg =
∣∣∣∣

(∇c′

ds

∣∣∣η
)

c

∣∣∣∣

where η is the normal vector field to the curve (see Proposition 6.5.1).

Proof At a point where ∇c′
ds

(s) = (0,0), both the geodesic curvature and the scalar
product of the statement are equal to zero. Otherwise we have

(∇c

ds
(s)

∣∣∣η(s)

)

c(s)

=
∥∥∥∥
∇c′

ds
(s)

∥∥∥∥
c(s)

· ∥∥η(s)
∥∥

c(s)
· cos θ(s)

where θ(s) is the angle between ∇c′
ds

(s) and η(s). By Proposition 6.5.1, η(s) is of
length 1. But by Proposition 6.7.5, since c is given in normal representation, ∇c

ds
(s)

is proportional to η(s), thus cos θ(s) = ±1. Therefore

(∇c′

ds
(s)

∣∣∣η(s)

)

c(s)

= ±
∥∥∥∥
∇c′

ds
(s)

∥∥∥∥
c(s)

which forces the conclusion. �

Definition 6.9.7 Consider a Riemann patch of class C2

gij : U −→ R, 1 ≤ i, j ≤ 2

and a regular curve of class C2

c : ]a, b[ −→ U, s �→ (
c1(s), c2(s)

)

given in normal representation. The relative geodesic curvature is the quantity

κg =
(∇c′

ds

∣∣∣η
)

c

where η is the normal vector field to the curve (see Proposition 6.5.1).

Clearly, the sign of the geodesic curvature as in Definition 6.9.7 is not an intrinsic
property of the curve: for example, it is reversed when considering the equivalent
normal parametric representation c̃(̃s) obtained via the change of parameter s̃ = −s.

Of course the following proposition is particularly useful:

Proposition 6.9.8 Consider a Riemann patch of class C2

gij : U −→ R, 1 ≤ i, j ≤ 2
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and a regular curve of class C2

c : ]a, b[ −→ U, t �→ (
c1(t), c2(t)

)

given in arbitrary representation. The geodesic curvature of c is equal to

κg = − (∇c′
dt

|η)c

‖c′‖2
c

where η is the normal vector field of the curve (see Proposition 6.5.1).

Proof Let us freely use the notation and the results in the proof of Proposition 6.3.5:
we thus write s = σ(t) and c(s) = (c ◦ σ−1)(s) for the normal representation of the
curve. Analogously, we write η(s) for the normal vector expressed as a function of
the parameter s (see Proposition 6.5.1). Thus, by the proof of Proposition 6.3.5, we
already know that

(
σ−1)′ = 1

‖(c′ ◦ σ−1)(s)‖(c◦σ−1)(s)

= 1

‖c′(t)‖c(t)

.

By Proposition 6.9.6, and using Proposition 6.7.4, the normal curvature in terms
of the parameter s is then given by

−κg =
(∇(c ◦ σ−1)′

ds

∣∣∣η ◦ σ−1
)

c◦σ−1

=
(∇(c′ ◦ σ−1) · (σ−1)′

ds

∣∣∣η
)

c◦σ−1

=
((∇c′

dt
◦ σ−1

)
· ((σ−1)′

)2 + (
c′ ◦ σ−1) · (σ−1)′′

∣∣∣η
)

c◦σ−1

=
((∇c′

dt
◦ σ−1

)
· ((σ−1)′

)2
∣∣∣η
)

c◦σ−1

= ((∇c′
dt

◦ σ−1)|η)c◦σ−1

‖c′ ◦ σ−1‖2
c◦σ−1

where the last but one equality holds because c′ is orthogonal to η.
Putting σ−1(s) = t in these equalities, we get the formula of the statement. �

6.10 Geodesics

Imagine that you traveling on the Earth, around the equator. To achieve this, you
have to proceed “straight on”, without ever turning left or right. But nevertheless,



6.10 Geodesics 283

by doing this you travel along a circle, because the equator is a circle. The point
is that the “curvature vector” of this circle—the second derivative of a normal rep-
resentation (see Example 2.9.5)—is oriented towards the center of the circle, and
in the case of the equator, the center of the circle is also the center of the Earth.
The “curvature vector” is thus perpendicular to the tangent plane to the Earth and
so its orthogonal projection on that tangent plane is zero. The geodesic curvature of
the equator is zero and this is the reason why you have the false impression of not
turning at all when you proceed along the equator.

Definition 6.10.1 A geodesic in a Riemann patch of class C2 is a regular curve of
class C2 whose geodesic curvature is zero at each point.

Notice at once that

Proposition 6.10.2 In a Riemann patch of class C2, a regular curve of class C2 is
a geodesic if and only if its tangent vector field is a parallel vector field.

Proof By Lemma 6.8.2, there is no loss of generality in assuming that the curve is
given in normal representation. By Definitions 6.10.1 and 6.9.5, being a geodesic is
then equivalent to ‖∇c′

ds
‖ = 0, which is the condition for being a parallel vector field

(see Definition 6.8.1). �

The results that we already have yield at once a characterization of the geodesics:

Theorem 6.10.3 Consider a Riemann patch of class C2

gij : U −→ R, 1 ≤ i, j ≤ 2

and a regular curve of class C2

c : ]a, b[ −→ U, s �→ (
c1(s), c2(s)

)

given in normal representation. That curve is a geodesic if and only if

d2ck

ds2
+
∑

ij

dci

ds

dcj

ds
Γ k

ij

(
c1, c2)= 0, 1 ≤ k ≤ 2.

Proof By Definition 6.9.5, we must prove that
∥∥∇c′

ds

∥∥= 0, which is of course equiv-

alent to ∇c′
ds

= 0, since at each point of U , the norm is that given by a scalar product
(see Definition 6.4.4 and Notation 6.2.5). The result follows by Definition 6.7.3,
putting ξ = c′. �

Example 6.10.4 The geodesics of a sphere are the great circles.
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Proof The argument concerning the equator, at the beginning of this section, works
for every great circle, proving that these are geodesics of the sphere.

Conversely, consider a geodesic on a sphere. There is no loss of generality in as-
suming that the center of the sphere is the origin of R3. Given a normal representa-
tion h of that geodesic viewed as a skew curve, we have h′ in the tangent plane to the
sphere (Lemma 5.5.1) and h′′ perpendicular to that tangent plane (Definition 6.9.2).
Therefore h′′ is oriented along the radius of the sphere and the osculating plane
(Definition 4.1.6) to the curve passes through the center of the sphere. But, since the
center of the sphere is the origin of R3, h′′ is also proportional to h. Let us write

h′′(s) = α(s)h(s).

By Proposition 4.5.1, the torsion of the geodesic is equal to

τ = (h′ × h′′|h′′′)
‖h′′‖2

= (h′ × h′′|α′h + αh′)
‖h′′‖2

= 0

because h′ ×h′′ is orthogonal to h′, but also to h which is proportional to h′′. So the
torsion of the curve is equal to zero and by Proposition 4.5.3, the geodesic is a plane
curve. The plane of this curve is thus also its osculating plane, which passes through
the center of the sphere. So the geodesic lies on the intersection of the sphere with a
plane through the center of the sphere. Therefore the geodesic is (a piece of) a great
circle. �

Example 6.10.5 A straight line contained in a surface is always a geodesic.

Proof A straight line has a zero curvature vector (see Example 2.9.4). �

Example 6.10.6 The geodesics of the plane are the straight lines.

Proof The straight lines are geodesics by Example 6.10.5. Now as a surface, the
plane is its own tangent plane at each point. But given a curve in the plane, its
curvature vector is already in the plane, thus coincides with its orthogonal projection
on the tangent plane. Therefore the curve is a geodesic if and only if its curvature
vector is zero at each point. The result follows by Example 2.12.7. �

Example 6.10.7 The geodesics of the circular cylinder

g(θ, z) = (cos θ, sin θ, z)

are:

1. for each fixed value θ0, the rulings

z �→ (cos θ0, sin θ0, z);
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2. for each fixed value z0, the circular sections

θ �→ (cos θ, sin θ, z0);
3. for all values r �= 0, s ∈R, the circular helices (see Example 4.5.4)

θ �→ (cos θ, sin θ, rθ + s).

Proof Going back to the proof of Example 6.6.1, we observe at once that the second
partial derivatives of g are orthogonal to the first partial derivatives. Therefore the
Christoffel symbols of the first kind are all equal to zero (Definition 6.6.2). By the
fourth formula in Proposition 6.6.4, the Christoffel symbols of the second kind are
all zero as well. This trivializes the equations in Theorem 6.10.3: a curve on the
cylinder

c : ]a, b[ −→ R, s �→ (
c1(s), c2(s)

)

such that g ◦ c is in normal representation is a geodesic when

d2c1

ds2
= 0,

d2c2

ds2
= 0.

Integrating twice, we conclude that c1 and c2 are polynomials of degree 1. The
geodesics are thus obtained as the deformations by g of the plane curves

s �→ (as + b, cs + d).

The case a = 0 = c is excluded, since it is not a curve. When a = 0, c �= 0, we obtain
the ruling corresponding to θ0 = b. When a �= 0, c = 0 we obtain the circular section
corresponding to z0 = d . When a �= 0 �= c, the change of parameter t = as+b yields
in the plane the parametric representation

t �→
(

t, c
t − b

a
+ d

)
=
(

t,
c

a
t − cb

a
+ d

)
.

Putting

r = c

a
, s = d − cb

a

this curve yields on the cylinder the circular helix of the statement. �

In fact, all surfaces admit geodesics, not just these obvious examples which tend
to be the ones we immediately think of. Indeed:

Proposition 6.10.8 Consider a Riemann patch of class Ck , with k ≥ 3

gij : U −→ R, 1 ≤ i, j ≤ 2.
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For each point of (x1
0 , x2

0) ∈ U and every direction (α,β) �= (0,0), there exists in a
neighborhood of this point a unique geodesic of class Ck

c : ]a, b[ −→ U, a < 0 < b

such that

c(0) = (x1
0 , x2

0), c′(0) = (α,β).

Proof We are looking for two functions c1, c2 of class Ck which are solutions of the
second order differential equations in Theorem 6.10.3 and satisfy the initial condi-
tions of the statement. Since all coefficients of the differential equations are of class
Ck−1, such a solution exists and is unique (see Proposition B.2.1). �

6.11 The Riemann Tensor

Both the normal curvature and the Gaussian curvature of a surface are expressed in
terms of the six coefficients E, F , G, L, M , N (see Propositions 5.8.4 and 5.16.3).
We have seen in Counterexample 6.6.1 that the three functions L, M , N are not
Riemannian quantities and, in Counterexample 6.9.1, that the normal curvature is
not a Riemannian notion. This might suggest that the Gaussian curvature is also not
a Riemannian quantity. Perhaps unexpectedly, it is!

A very striking result, due to Gauss himself, is that the Gaussian curvature can
be expressed as a function of E, F , G. So the Gaussian curvature is a Riemannian
notion, while the normal curvature is not. To prove this, in view of the formula

κτ = LN − M2

EG − F 2

of Proposition 5.16.3, it suffices of course to prove that the quantity LN − M2 can
be expressed as a function of E, F , G. For this, let us switch back to the notation
hij and gij of Definitions 6.6.2 and 6.1.1.

Definition 6.11.1 Consider a regular parametric representation of class C3 of a
surface:

f : U �→ R
3,

(
x1, x2) �→ f

(
x1, x2).

The Riemann tensor of this surface consists of the family of functions

Rijkl = hjlhki − hjkhli , 1 ≤ i, j, k, l ≤ 2

where
(

h11 h12
h21 h22

)
=
(

L M

M N

)
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are the coefficients of the second fundamental form of the surface (see Theo-
rem 5.8.2).

Notice once more the appearance of the term tensor.

Lemma 6.11.2 Under the conditions of Definition 6.11.1, all the components Rijkl

of the Riemann tensor are equal to one of the following quantities:

LN − M2, 0, −(LN − M2).

Thus, knowing the metric tensor, the knowledge of the Riemann tensor is equivalent
to the knowledge of the Gaussian curvature.

Proof Simply observe that

R1212 = R2121 = LN − M2, R1221 = R2112 = −(LN − M2)

while all other components are zero. �

Theorem 6.11.3 (Theorema Egregium, Gauss) Under the conditions of Defini-
tion 6.11.1, the Riemann tensor is equal to

Rijkl = ∂Γjli

∂xk
− ∂Γjki

∂xl
+
∑

α

(
Γ α

jkΓliα − Γ α
jlΓkiα

)
.

In particular, the Riemann tensor can be expressed as a function of the sole coeffi-
cients of the metric tensor.

Proof Of course the last sentence in the statement will follow at once from the
formula in the statement, since we already know the corresponding result for the
Christoffel symbols (see Proposition 6.6.6). Let us therefore prove this formula.

Since the normal vector −→
n has length 1, we can write equivalently

Rijkl = (hjl
−→
n |hki

−→
n ) − (hjk

−→
n |hli

−→
n ).

But by Definition 6.6.2

hij
−→
n = ∂2f

∂xi∂xj
− Γ 1

ij

∂f

∂x1
− Γ 2

ij

∂f

∂x2
.

Let us then replace hij
−→
n by the quantity on the right hand side, keeping in mind

Definition 6.1.1 of the coefficients of the metric tensor and Definition 6.6.2 of the
Christoffel symbols.

Rijkl =
(

∂2f

∂xj ∂xl
− Γ 1

j l

∂f

∂x1
− Γ 2

j l

∂f

∂x2

∣∣∣∣
∂2f

∂xk∂xi
− Γ 1

ki

∂f

∂x1
− Γ 2

ki

∂f

∂x2

)
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−
(

∂2f

∂xj ∂xk
− Γ 1

jk

∂f

∂x1
− Γ 2

jk

∂f

∂x2

∣∣
∣∣

∂2f

∂xl∂xi
− Γ 1

li

∂f

∂x1
− Γ 2

li

∂f

∂x2

)

=
(

∂2f

∂xj ∂xl

∣∣∣∣
∂2f

∂xk∂xi

)
−
(

∂2f

∂xj ∂xk

∣∣∣∣
∂2f

∂xl∂xi

)

− Γjl1Γ
1
ki − Γjl2Γ

2
ki − Γki1Γ

1
j l − Γki2Γ

2
j l

+ Γjk1Γ
1
li + Γjk2Γ

2
li + Γli1Γ

1
jk + Γli2Γ

2
jk

+ Γ 1
j lΓ

1
kig11 + Γ 1

j lΓ
2
kig12 + Γ 2

j lΓ
1
kig21 + Γ 2

j lΓ
2
kig22

− Γ 1
jkΓ

1
li g11 − Γ 1

jkΓ
1
l2g12 − Γ 2

jkΓ
1
li g21 − Γ 2

jkΓ
2
li g22.

Let us now use the third formula in Proposition 6.6.4 to simplify this last expres-
sion. This formula allows us to combine the first and the third terms in the fourth
line to obtain

(
g11Γ

1
j l + g21Γ

2
j l

)
Γ 1

ki = Γjl1Γ
1
ki .

That quantity is then exactly the opposite of the first term in the second line. The
same process allows us to simplify the second and fourth terms in the fourth line
with the second term in the second line. Next, we can apply this process again to
the last line and the first two terms in the third line. Eventually, the last four lines
reduce to

−Γki1Γ
1
j l − Γki2Γ

2
j l + Γli1Γ

1
jk + Γli2Γ

2
jk.

This is exactly the sum in α in the formula of the statement.
To conclude, it remains to check that

∂Γjli

∂xk
− ∂Γjki

∂xl
=
(

∂2f

∂xj ∂xl

∣∣∣∣
∂2f

∂xk∂xi

)
−
(

∂2f

∂xj ∂xk

∣∣∣∣
∂2f

∂xl∂xi

)
.

Indeed

∂Γjli

∂xk
− ∂Γjki

∂xl
= ∂

∂xk

(
∂2f

∂xj ∂xl

∣∣∣∣
∂f

∂xi

)
− ∂

∂xl

(
∂2f

∂xj ∂xk

∣∣∣∣
∂f

∂xi

)

=
(

∂3f

∂xj ∂xl∂xk

∣∣∣∣
∂f

∂xi

)
+
(

∂2f

∂xj ∂xl

∣∣∣∣
∂2f

∂xi∂xk

)

−
(

∂3f

∂xj ∂xk∂xl

∣
∣∣∣
∂f

∂xi

)
−
(

∂2f

∂xj ∂xk

∣
∣∣∣

∂2f

∂xi∂xl

)

=
(

∂2f

∂xj ∂xl

∣∣∣∣
∂2f

∂xi∂xk

)
−
(

∂2f

∂xj ∂xk

∣∣∣∣
∂2f

∂xi∂xl

)

by the well-known property of commutation of partial derivatives. �
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As you might now expect, we conclude this section with a corresponding defini-
tion:

Definition 6.11.4 Given a Riemann patch of class C2, the Riemann tensor is de-
fined as being the family of functions

Rijkl = ∂Γjli

∂xk
− ∂Γjki

∂xl
+
∑

α

(
Γ α

jkΓliα − Γ α
jlΓkiα

)
.

(See Definition 6.6.7.)

It is worth adding a comment.

Definition 6.11.5 Given a Riemann patch of class C2, the quantity

κτ = R1212

g11g22 − g21g12

is called the Gaussian curvature of the Riemann patch.

This terminology is clearly inspired by Lemma 6.11.2 and its proof. This no-
tion of Gaussian curvature makes perfect sense in the “restricted” context of our
Definition 6.2.1, simply because Lemma 6.11.2 remains valid in this context (see
Problem 6.18.1). However, the possibility of reducing the information given by the
metric tensor to a single quantity κτ is a very specific peculiarity of the Riemann
patches of dimension 2. This notion of Gaussian curvature does not extend to higher
dimensional Riemann patches, as defined in Definition 6.17.6: in higher dimensions,
the correct notion to consider is the full Riemann tensor.

6.12 What Is a Tensor?

The time has come to discuss the magic word tensor. A family of functions receives
this “honorary label” when it transforms “elegantly” along a change of parameters.
In fact, a formal, general and elegant theory of tensors must rely on a good multi-
linear algebra course; but this is beyond the scope of this book.

In Sect. 6.1 we have exhibited the Riemann patch corresponding to a specific
parametric representation of a surface in R

3, and we know very well that a given
surface admits many equivalent parametric representations. However, up to now, we
have not paid attention to the question: What are equivalent Riemann patches?

Consider a regular surface of class C3 admitting two equivalent parametric rep-
resentations

f : U −→ R
3; (

x1, x2
) �→ f

(
x1, x2

)

f̃ : U −→ R
3; (

x̃1, x̃2
) �→ f̃

(
x̃1, x̃2

)
.
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To be able to handle the corresponding change of parameters in our arguments, we
have to fix a notation for it. Up to now, we have always used a notation like

(
x̃1, x̃2)= ϕ

(
x1, x2)= (

ϕ1(x1, x2), ϕ2(x1, x2)).

Of course if you have many changes of parameters to handle, using various notations
such as ϕ, ψ , θ , τ and so on rapidly becomes unwieldy. Riemannian geometry uses
a very standard and efficient notation for a change of parameters:

(
x̃1, x̃2)= (

x̃1(x1, x2), x̃2(x1, x2)).

Of course such a notation is a little ambiguous, since it uses the same symbol for the
coordinates x̃i and for the functions x̃i . However, in practice no confusion occurs.
In fact, this notation significantly clarifies the language. When you have several
changes of coordinates, the notation x̃i (x1, x2) reminds you at once of both systems
of coordinates involved in the question, while a notation such as ϕi(x1, x2) recalls
only one of them.

Proposition 6.12.1 Consider a regular surface of class C3 admitting the equivalent
parametric representations

f : U −→ R
3; (

x1, x2
) �→ f

(
x1, x2

)

f̃ : U −→ R
3; (

x̃1, x̃2
) �→ f̃

(
x̃1, x̃2

)
.

Write further

(gij )i,j and (g̃ij )i,j

for the corresponding metric tensors. Under these conditions

g̃ij =
∑

k,l

gkl

∂xk

∂x̃i

∂xl

∂x̃j
.

Proof With the notation just explained for the changes of coordinates, we have

f̃
(
x̃1, x̃2)= f

(
x1(x̃1, x̃2), x2(x̃1, x̃2)).

It follows that

∂f̃

∂x̃i
= ∂f

∂x1

∂x1

∂x̃i
+ ∂f

∂x2

∂x2

∂x̃i
=
∑

k

∂f

∂xk

∂xk

∂x̃i
.

This implies
(

∂f̃

∂x̃i

∣∣∣∣
∂f̃

∂x̃j

)
=
∑

k,l

(
∂f

∂xk

∣∣∣∣
∂f

∂xl

)
∂xk

∂x̃i

∂xl

∂x̃j
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that is

g̃ij =
∑

k,l

gkl

∂xk

∂x̃i

∂xl

∂x̃j

which is the formula of the statement. �

This elegant formula is what one calls the transformation formula for a tensor
which is twice covariant. Forgetting about this new jargon “covariant” for the time
being, let us repeat the same for the inverse metric tensor (see Definition 6.2.3).

Proposition 6.12.2 Consider a regular surface of class C3 admitting the equivalent
parametric representations

f : U −→ R
3; (

x1, x2
) �→ f

(
x1, x2

)

f̃ : U −→ R
3; (

x̃1, x̃2
) �→ f̃

(
x̃1, x̃2

)
.

Write further
(
gij
)
i,j

and
(
g̃ij
)
i,j

for the corresponding inverse metric tensors. Under these conditions

g̃ij =
∑

k,l

gkl ∂x̃i

∂xk

∂x̃j

∂xl
.

Proof As already observed in the proof of Proposition 6.12.1:

∂f

∂x̃i
=
∑

k

∂f

∂xk

∂xk

∂x̃i
.

The matrix

B =
⎛

⎝
∂x1

∂x̃1
∂x1

∂x̃2

∂x2

∂x̃1
∂x2

∂x̃2

⎞

⎠

is thus the change of coordinates matrix between the two bases of partial derivatives
in the tangent plane (see Sect. 2.20 in [4], Trilogy II).

For the needs of this proof, let us write T for the matrix given by the metric
tensor. The formula of Proposition 6.12.1 becomes simply

T̃ = BtT B.

Taking the inverses of both sides, we get

T̃ −1 = B−1T −1(Bt
)−1 = B−1T −1(B−1)t
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since (Bt )−1 = (B−1)t . But the same argument as above shows that

B−1 =
⎛

⎝
∂x̃1

∂x1
∂x̃1

∂x2

∂x̃2

∂x1
∂x̃2

∂x2

⎞

⎠ .

Therefore the transformation formula for the inverse metric tensor is

g̃ij =
∑

k,l

gkl ∂x̃i

∂xk

∂x̃j

∂xl

as announced in the statement. �

Compare now the two formulas in Propositions 6.12.1 and 6.12.2. They are very
similar of course, but nevertheless with a major difference! It will be convenient for
us to call (̃x1, x̃2) the “new” coordinates and (x1, x2) the “old” coordinates.

• In the case of the metric tensor, the coefficients in the change of parameters for-
mula are the derivatives of the “old” coordinates with respect to the “new” coor-
dinates. One says that the tensor is covariant in both variables or simply, twice
covariant. One uses lower indices to indicate the covariant indices of a tensor.

• In the case of the inverse metric tensor, the coefficients in the change of parame-
ters formula are the derivatives of the “new” coordinates with respect to the “old”
coordinates. One says that the tensor is contravariant in both variables or simply,
twice contravariant. One uses upper indices to indicate the contravariant indices
of a tensor.

This already clarifies some points of notation and terminology. However, this still
does not tell us what a tensor is. As mentioned earlier, in order to give an elegant
definition we would need some multi-linear algebra. Nevertheless, as far as surfaces
in R

3 are concerned, we can at least take as our definition a famous criterion charac-
terizing the tensors of Riemannian geometry. For simplicity, we state the definition
in the particular case of a tensor two times covariant and three times contravariant,
but the generalization is obvious.

Definition 6.12.3 Suppose that for each parametric representation of class C3 of a
given surface of R3 you have a corresponding family of continuous functions

T klm
ij : U −→ R

with two lower indices and three upper indices. These families of continuous func-
tions are said to constitute a tensor covariant in the indices i, j and contravariant
in the indices k, l, m when, given any two equivalent parametric representations f ,
f̃ —and with obvious notation—these functions transform into each other via the
formulas

T̃ klm
ij =

∑

r,s,t,u,v

T tuv
rs

∂xr

∂x̃i

∂xs

∂x̃j

∂x̃k

∂xt

∂x̃l

∂xu

∂x̃m

∂xv
.
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Of course, an analogous definition holds for a tensor α times covariant and β times
contravariant, for any two integers α, β .

You should now have a clear idea why some quantities are designated as tensors
and others are not. For example, the Riemann tensor of Theorem 6.11.3 is a tensor
four times covariant (Problem 6.18.2) while the Christoffel symbols do not consti-
tute a tensor (Problem 6.18.4). This also indicates why some indices are put upside
and others downside.

One should be able to guess now why we use upper indices to indicate the coor-
dinates of a point or the coordinates of a tangent vector field.

Proposition 6.12.4 Consider a regular curve c on a regular surface of class C3 in
R

3. In a change of parameters and with obvious notation, a vector field ξ along the
curve c, tangent to the surface, transforms via the formula

ξ̃ k =
∑

i

ξ i ∂x̃k

∂xi
.

Proof One has

ξ = ξ1 ∂f

∂x1
+ ξ2 ∂f

∂x2

= ξ1
(∑

k

∂f̃

∂x̃k

∂x̃k

∂x1

)
+ ξ2

(∑

k

∂f̃

∂x̃k

∂x̃k

∂x2

)

=
(∑

i

ξ i ∂x̃1

∂xi

)
∂f̃

∂x̃1
+
(∑

i

ξ i ∂x̃2

∂xi

)
∂f̃

∂x̃2

and this proves the formula of the statement. �

Of course a vector field along a curve is not a tensor in the sense of Defini-
tion 6.12.3, because it is not defined on the whole subset U . Nevertheless, its trans-
formation law along the curve is exactly that of a tensor one time contravariant. This
explains the use of upper indices.

In particular, the components of the tangent vector field to the curve c itself
should be written with upper indices: c′ = ((c1)′, (c2)′). But then of course, the
components of c should use upper indices as well c = (c1, c2). To be consistent,
when writing the parametric equations of the curve c

{
x1 = c1(t)

x2 = c2(t)

we should use upper indices as well for the two coordinates x1 and x2.
Let us conclude this long discussion on tensors by giving the answer to the ques-

tion raised at the beginning of this section: What are equivalent Riemann patches?
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Keeping in mind that for a surface of class Ck+1 in R
3 the coefficients gij of the

metric tensor are functions of class Ck (see Definition 6.1.1), we make the following
definition:

Definition 6.12.5 Two Riemann patches of class Ck

gij : U −→ R,
(
x1, x2

) �→ g
(
x1, x2

)

g̃ij : U −→ R,
(
x̃1, x̃2

) �→ g̃
(
x̃1, x̃2

)

are equivalent in class Ck when there exists a change of parameters of class Ck+1

(that is, a bijection of class Ck+1 with inverse of class Ck+1)

ϕ : U −→ Ũ ,
(
x1, x2) �→ (

x̃1(x1, x2), x̃2(x1, x2))

such that

gij =
∑

k,l

g̃kl

∂x̃k

∂xi

∂x̃l

∂xj
.

As expected:

Proposition 6.12.6 A change of parameters ϕ as in Definition 6.12.5 is a Rieman-
nian isometry, that is, respects lengths and angles in the sense of the Riemannian
metric.

Proof Consider a curve

c : ]a, b[ → U, t �→ c(t).

Under the conditions of Definition 6.12.5, the length of an arc of the curve in Ũ

represented by ϕ ◦ c is given by

∫ t1

t0

√√
√√
∑

kl

g̃kl

d(̃xk ◦ c)

dt

d(̃xl ◦ c)

dt
dt =

∫ t1

t0

√√√√
∑

ijkl

g̃kl

∂x̃k

∂xi

dci

dt

∂x̃l

∂xj

dcj

dt
dt

=
∫ t1

t0

√√√√
∑

ij

gij

dci

dt

dcj

dt
dt

and this last formula expresses precisely the length of the curve c in U .
The proof concerning the preservation of angles is perfectly analogous. �

Notice that already for a Riemann patch of class C0, the form of the change of
parameters requires that it be of class C1. This is another way to justify the “jump”
of one unit in the classes of differentiability.
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We are almost done. But you are still entitled to ask an intriguing question. If
the Christoffel symbols are not tensors, how do we decide to use upper or lower
indices? There is another convention in Riemannian geometry: a convention which,
deliberately, has not been used in this chapter, and which requires an appropriate
choice of position of the indices.

Convention 6.12.7 (Abbreviated Notation) In Riemannian geometry, when in a
given term of a formula, the same index appears once as an upper index and once as
a lower index, it is understood that a sum is taken over all the possible values of this
index.

For example, following this convention, the formula giving the components of
the covariant derivative of a tangent vector field (see Definition 6.7.3)

dξk

dt
+
∑

i,j

ξ i dcj

dt
Γ k

ij , 1 ≤ k ≤ 2

is generally simply written as

dξk

dt
+ ξ i dcj

dt
Γ k

ij , 1 ≤ k ≤ 2

because both indices i and j appear once as an upper index and once as a lower
index in the “second” term. Notice that the index k appears twice as an upper index
and moreover in two different terms: thus no sum is to be taken on this index. It is
easy to see why we did not use this convention in this first approach of Riemannian
geometry.

6.13 Systems of Geodesic Coordinates

Once again, let us support our intuition with the case of the Earth, regarded as a
sphere. The most traditional system of coordinates is in terms of the latitude and the
longitude. Consider the corresponding “geographical map” as in Example 5.1.6

f (τ, θ) = (cos τ cos θ, cos τ sin θ, sin τ)

where τ is the latitude and θ is the longitude.

• The equator is really the “base curve” of the whole system of coordinates: the
curve given by τ = 0; this is a great circle on the sphere, that is, a geodesic (see
Example 6.10.4). Observe that f (0, θ) is a normal representation of the equator,
because the radius of the sphere has been chosen to be equal to 1.

• The curves θ = k on the sphere, with k constant, are the meridians: they are great
circles, thus geodesics, and moreover they are orthogonal to the equator. Observe
that f (τ, θ0) is again a normal representation of the meridian with fixed longitude
θ0, again because the radius of the sphere is equal to 1.
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• The curves τ = k on the sphere, with k constant, are the so-called parallels; they
are not great circles (except for the equator), thus they are not geodesics; but they
are orthogonal to all the meridians.

This is thus a very particular system of coordinates of which we can expect many
properties and advantages. One calls such a system a system of geodesic coordinates.

A system of geodesic coordinates exists in a neighborhood of each point of a
“good” surface. Let us establish this result in the general context of a Riemann
patch.

Theorem 6.13.1 Consider a regular curve C passing through a point P in a Rie-
mann patch. Assume that both the Riemann patch and the curve are of class Cm, with
m ≥ 2. There exists a connected open neighborhood of P such that the Riemann
patch, restricted to this neighborhood, is equivalent in class Cm−1 to a Riemann
patch

gij : U −→R,
(
x1, x2) �→ gij

(
x1, x2), 1 ≤ i, j ≤ 2

with the following properties:

1. the point P has coordinates (0,0);
2. the curve C is the curve x1 = 0 and is now given in normal representation;
3. the curves x2 = k, with k constant, are geodesics in normal representation;
4. the curves x1 = l, with l constant, are orthogonal to the curves x2 = k, with k

constant;
5. at all points of U

g11 = 1, g21 = 0 = g12, g22 > 0

and also

g11 = 1, g21 = 0 = g12, g22 > 0;
6. at all points of U

Γ211 = Γ121 = Γ112 = Γ111 = 0; Γ 2
11 = Γ 1

11 = Γ 1
21 = Γ 1

12 = 0

while

Γ222 = 1

2

∂g22

∂x2
, Γ212 = Γ122 = 1

2

∂g22

∂x1
, Γ221 = −1

2

∂g22

∂x1
,

and

Γ 2
22 = 1

2g22

∂g22

∂x2
, Γ 2

21 = Γ 2
12 = 1

2g22

∂g22

∂x1
, Γ 1

22 = −1

2

∂g22

∂x1
;

7. when moreover the original curve c is a geodesic

g22(0, x2) = 1,
∂g22

∂x1
(0, x2) = 0



6.13 Systems of Geodesic Coordinates 297

Fig. 6.2

and

Γ k
ij (0, x2) = 0, Γijk(0, x2) = 0, 1 ≤ i, j, k ≤ 2.

A system of coordinates satisfying conditions 1 to 6 is called a geodesic system of
coordinates. When moreover it satisfies condition 7, it is called a Fermi system of
geodesic coordinates.

Proof Let us write

g̃ij : Ũ −→R,
(
x̃1, x̃2) −→ g̃ij

(
x̃1, x̃2)

for the original Riemann patch and

c : ]a, b[ −→ Ũ , t �→ c(t)

for the given curve C. Let us write further P = c(t0). Follow the construction above
on Fig. 6.2.

By Proposition 6.3.5, there is no loss of generality in assuming that the curve
C is given in normal representation with P as origin, thus P = c(0). Under these
conditions c′(t) becomes a vector of norm 1 (see Definition 6.3.4).

For each value t ∈ ]a, b[, we consider the normal vector η(t) to the curve (see
Proposition 6.5.1), which is thus a vector of norm 1 orthogonal to c′(t). By Propo-
sition 6.10.8, in a neighborhood of c(t), there exists in the Riemann patch a unique
geodesic ht (s) of class Cm through c(t) in the direction η(t), satisfying an initial
condition that we choose to be ht (0) = c(t). We are interested in the function

ϕ(s, t) = ht (s)

which we want to become the expected change of parameters of class Cm−2 in a
neighborhood of c(0). Since the coefficients of the equations in Proposition 6.10.8
are of class Cm−1 and c is of class Cm, the function ϕ is indeed defined, and of class
Cm, on a neighborhood of (0,0) (see Proposition B.3.2). But to be a good change of
parameters, the inverse of ϕ should also be of class Cm.
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Let us compute the partial derivatives of the function ϕ at the point (0,0):

∂ϕ

∂s
(0,0) = h0(s)

ds
= η(0),

∂ϕ

∂t
(0,0) = dht (0)

dt
(0,0) = c(t)

dt
(0) = c′(0).

By regularity of c and Proposition 6.5.1, c′(0) and η(0) are perpendicular and of
length 1 with respect to the scalar product (−|−)c(0), thus linearly independent. By
the Local Inverse Theorem (see Theorem 1.3.1), the function ϕ is thus invertible on
some neighborhood U ′ of (0,0), with an inverse which is still of class Cm. There is
no loss of generality in choosing U ′ open and connected. In this way ϕ becomes a
homeomorphism

ϕ : U ′ −→ ϕ
(
U ′).

We simply define U = ϕ(U ′) and use the notation
(
x1, x2) instead of (s, t). Thus

our change of parameters ϕ is now

U ′ −→ U,
(
x̃1, x̃2) �→ (s, r) = (

x1(x̃1, x̃1), x2(x̃1, x̃2)).

Of course there is no difficulty in providing U with the structure of a Riemann
patch equivalent to that given by the g̃ij on Ũ . With Definition 6.12.5 in mind,
simply define

gij =
∑

k,l

g̃kl

∂x̃k

∂xi

∂x̃l

∂xj
.

With the notation of Proposition 6.12.3, this definition can be re-written as

T = Bt T̃ B.

As observed in the proof of Proposition 6.12.3, the matrix B is that of a change
of basis, while T̃ is at each point the matrix of a scalar product in R

2 (see Nota-
tion 6.2.5). By Corollary G.1.4 in [4], Trilogy II, T is then at each point the matrix
of the same scalar product expressed in another base: it is thus a symmetric definite
positive matrix. Therefore the gij on U constitute a Riemann patch equivalent in
class Cm−1 to that of the g̃ij on U ′.

By construction, the curve x1 = 0 is the curve ht (0), that is the original curve
c(t).

Also by construction, the curves x2 = k, with k constant, are the curves hk(s),
which are geodesics given in normal representation.

Next, we prove that g11 = 1. With Notation 6.2.5,

g11(s, t) =
∑

k,l

g̃kl

(
ht (s)

)∂x̃k

∂x1
(s, t)

∂x̃l

∂x1
(s, t)

=
∑

k,l

g̃kl

(
ht (s)

)(
hk

t

)′
(s)
(
hl

t

)′
(s)
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= ∥∥h′
t (s)

∥∥
ht (s)

= 1

because each ht (s) is in normal representation (see Definition 6.3.4).
Next, we turn our attention to the Christoffel symbols. The curve x2 = k is rep-

resented by

x1 �→ hk

(
x1)= (

x1, k
)
.

Differentiating with respect to s = x1, we obtain

∂h
2

∂x1
= 0,

∂2h
2

∂(x1)2
= 0,

∂h
1

∂x1
= 1,

∂2h
1

∂(x1)2
= 0.

Since this curve x2 = k is a geodesic in normal representation, it satisfies the system
of differential equations of Theorem 6.10.3. The observations that we have just made
show that this system reduces simply to its terms in (i, j) = (1,1), that is,

Γ 2
11

(
x1, k

)= 0, Γ 1
11

(
x1, k

)= 0.

Since this holds for every value k, this proves condition 5 of the statement.
Now the case of g12 = g21. By Definition 6.6.7, we have at all points

0 = Γ 1
11 =

∑

l

g1l

(
∂g1l

∂x1
+ ∂gl1

∂x1
− ∂g11

∂xl

)
.

Keeping in mind that g11 = 1 while g12 = g21, which also forces g12 = g21 (the
inverse of a symmetric matrix is symmetric), this equality reduces to

2g21 ∂g21

∂x1
= 0.

Introducing the value of g21 (see the proof of Proposition 6.2.4) into this equality,
we obtain

2
−g21

g22g11 − g21g11

∂g21

∂x1
= 0.

We know that g11g22 − g12g21 �= 0 (Proposition 6.2.1); the equality is thus equiva-
lent to

2g21
∂g21

∂x1
= 0.

But this can be re-written as

∂(g21)
2

∂x1
= 0.
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This proves that g21(x
1, x2) is a constant function of x1: thus to conclude that g21 =

0, it suffices thus to prove that g21(0, x2) = 0. By definition of g21 and using the
values of the partial derivatives of the change of parameters ϕ, we indeed obtain

g21
(
0, x2)=

∑

k,l

g̃kl

(
c(x2)

)∂x̃k

∂x2

(
0, x2) ∂x̃l

∂x1

(
0, x2)

=
∑

k,l

g̃kl

(
c(t)

)(
ck
)′
(t)ηl(t)

= (
c′(t)

∣∣η(t)
)
c(t)

= 0.

So g21(0, x2) = 0 and as we have seen, this implies g21 = g12 = 0. Since we know
already that g11 = 1, this forces g22 > 0 by positivity of the metric tensor (see Defi-
nition 6.2.1).

The metric tensor is thus a diagonal matrix; therefore its inverse (see Defini-
tion 6.2.3) is obtained by taking the inverses of the diagonal elements and thus

g11 = 1, g12 = 0 = g21, g22 = 1

g22
.

Since g11, g12 and g21 are constant, their partial derivatives are zero. Considering
the definition of the Christoffel symbols of the first kind (see Definition 6.6.7), only
the partial derivatives of g22 remain: this gives at once the formulas of the state-
ment concerning the symbols Γijk and as an immediate consequence, the formulas
concerning the symbols Γ k

ij .

Saying that the curves x1 = l, x2 = k, are orthogonal means

(
1 0

)(g11 g12
g21 g22

)(
0
1

)
= 0

which is trivially the case since g12 = 0 = g21. This concludes the proof in the case
of an arbitrary base curve c.

Let us now suppose that this curve c is itself a geodesic. In terms of the co-
ordinates (x1, x2), we have t = x2 and the curve c is simply c(x2) = (0, x2). By
Theorem 6.10.3 we have

d2ck

dx2

(
x2)+

∑

ij

dci

dx2

(
x2) dcj

dx2

(
x2)Γ k

ij

(
0, x2)= 0, 1 ≤ k ≤ 2.

But since c(x2) = (0, x2), this reduces to

Γ 2
22

(
0, x2)= 0, Γ 1

22

(
0, x2)= 0.
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By Proposition 6.7.4.4

∥∥η(t)
∥∥

c(t)
= 1 =⇒ 2

(∇η

dt

∣∣∣η
)

c

= 0.

On the other hand by Proposition 6.7.4

0 = (
η
∣∣c′)

c
=⇒ 0 =

(∇η

dt

∣∣∣c′
)

c

+
(

η

∣∣∣
∇c′

dt

)

c

=
(∇η

dt

∣∣∣c′
)

c

;

the last equality holds because c(t) is a geodesic in normal representation: this im-
plies that c′ is a parallel vector field (see Proposition 6.10.2), thus ∇c′

dt
= 0 by Defini-

tion 6.8.1. But, still by Proposition 6.5.1 and normality of the representation, c′ and
η constitute at each point an orthonormal basis of R2 for the scalar product (−|−)c .
The orthogonality of ∇η

dt
to both c′ and η implies

∇η

dt
(t) = 0

for all values of t = x2. By Definition 6.7.3 we have

dηk

dx2

(
x2)+

∑

ij

ηi
(
x2) dcj

dx2

(
x2)Γ k

ij

(
0, x2), 1 ≤ k ≤ 2.

But in terms of the coordinates (x1, x2), η(x2) = (1,0) while c(x2) = (0, x2).
Therefore the two equalities reduce to

Γ 1
12

(
0, x2)= 0, Γ 2

12

(
0, x2)= 0.

Of course this also forces

Γ 1
21

(
0, x2)= 0, Γ 2

21

(
0, x2)= 0

by Proposition 6.6.8. The third condition in this same proposition also shows that
Γijk(0, x2) = 0 for all indices. �

Corollary 6.13.2 Consider a Riemann patch of class Cm, with m ≥ 2

gij : V −→ R, 1 ≤ i, j ≤ 2.

Suppose that:

1. the curves x2 = k are geodesics in normal representation;
2. each of these curves cuts the curve x1 = 0 orthogonally.

Under these conditions, (x1, x2) is already a system of geodesic coordinates.
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Proof Simply observe that in the proof of Theorem 6.13.1, the change of parameters
ϕ is the identity and therefore, is trivially valid on the whole of V . �

At the beginning of Sect. 6.10, we introduced geodesics via the intuition that they
are the curves on the surface along which you have the impression of travelling in a
straight line without ever turning left or right. As a consequence of the existence of
systems of geodesic coordinates, let us now prove a precise result which reinforces
the intuition that geodesics are “the best substitute for straight lines” on a surface.

Theorem 6.13.3 Locally, in a Riemann patch of class C2, a geodesic is the shortest
regular curve joining two of its points.

Proof We consider a Riemann patch

gij : U −→ R, 1 ≤ i, j ≤ 2

and a geodesic

h : ]a, b[ −→ V, s �→ (
h1(s), h2(s)

)
.

There is no loss of generality in assuming that h is at once given in normal repre-
sentation, with 0 ∈ ]a, b[.

By Proposition 6.10.8, let us consider the geodesic

c : ]p,q[−→ V, t �→ (
c1(t), c2(t)

)

such that

c(0) = h(0), c′(0) = η(0)

where η is the normal vector field of h (see Proposition 6.5.1). By Theorem 6.13.1,
there exists in a neighborhood U ⊆ V of c(0) a Fermi system of geodesic coordi-
nates admitting the curve c as base curve. There is no loss of generality in assuming
that we are working in this system of coordinates. The curve h is a geodesic perpen-
dicular to the base curve c at c(0) = h(0): it is thus the geodesic x2 = 0.

Consider now an arbitrary regular curve

f : ]m,n[−→ U, u �→ (
f 1(u), f 2(u)

)

joining two points

f (u1) = h(s1) = (s1,0), f (u2) = h(s2) = (s2,0)

of the geodesic h. Let us compute its length (see Definition 6.12.3); in view of
Theorem 6.13.1
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Lengthu2
u1

(f ) =
∫ u2

u1

∥∥f ′(u)
∥∥

f (u)
du

=
∫ u2

u1

√∑

ij

(
f i
)′
(u) · (f j

)′
(u) · gij

(
f 1(u), f 2(u)

)
du

=
∫ u2

u1

√((
f 1
)′
(u)

)2 + ((
f i
)′
(u)

)1
g22

(
f 1(u), f 2(u)

)
du

≥
∫ u2

u1

∣∣(f 1)′(u)
∣∣du

≥ ∣∣f 1(u2) − f 1(u1)
∣∣

= |s2 − s1|
= Lengths2

s1
(h)

where the last equality holds by Proposition 6.3.6. �

6.14 Curvature in Geodesic Coordinates

Let us now investigate some simplifications of formulas when working in a system
of geodesic coordinates.

Proposition 6.14.1 Consider a Riemann patch of class C2

gij : U −→ R, 1 ≤ i, j ≤ 2

and assume that we are working in a system of geodesic coordinates. Under these
conditions the length of an arc of the curves x1 = k, with k a constant, is given by∫ √

g22.

Proof These curves admit the parametric representation ck(x
2) = (k, x2). Therefore

c′
k = (0,1) and (see Definition 6.3.2 and Theorem 6.13.1)

∫ ∥
∥c′

k

∥
∥

c
=
∫ √

(
0 1

)(1 0
0 g22

)(
0
1

)
=
∫ √

g22. �

Proposition 6.14.2 Consider a Riemann patch of class C2

gij : U −→ R, 1 ≤ i, j ≤ 2

and assume that we are working in a system of geodesic coordinates. Under these
conditions the relative geodesic curvature of the curves x1 = k, with k a constant, is
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given by

κg = 1

2g22

∂g22

∂x1
.

Proof Proposition 6.14.1 explains how to pass to normal representation for these
curves x1 = k, but we shall instead Proposition 6.9.8 which allows us to work at
once with the representation h(x2) = (k, x2). Notice that h′ = (0,1), from which
‖h′‖h = √

g22 at each point.
Let us first compute the covariant derivative of h′(x2) = (0,1) along h(x2) =

(k, x2). The formula in Definition 6.7.3 reduces to

∇h′

dx2
= (

Γ 2
22,Γ

1
22

)=
(

1

2g22

∂g22

∂x2
,−1

2

∂g22

∂x1

)
.

The curves x2 = l (with l a constant) are in normal representation and orthogonal
to the curve x1 = k (Theorem 6.13.1), that is, the curve h. The tangent vector field to
the curves x2 = l is thus of constant length 1 (Definition 6.3.4) and orthogonal to h′.
Therefore, up to the sign, it is the normal vector field η to h. The “minus sign” must
be chosen since (h′, η) must have direct orientation. But the curve x2 = l admits the
parametric representation x1 �→ (x1, l); therefore its tangent vector field is (1,0)

and the normal vector field η to d is given by η = (−1,0).
By Proposition 6.9.8, the geodesic curvature is then given by

κg = (∇h′
dx2 |η)

‖h′‖2
d

= ((− 1
2

∂g22
∂x1 , 1

2g22
∂g22
∂x2 )|(−1,0))c

g22
= 1

2g22

∂g22

∂x1
. �

Our next concern is to exhibit a formula, in geodesic coordinates, for the geodesic
curvature of an arbitrary regular curve. It is based on the so-called Liouville formula,
which does not require the full strength of geodesic coordinates and—after all—is
more elegant under these weaker assumptions.

Theorem 6.14.3 (Liouville Formula) Consider a Riemann patch

gij : U −→ R, i, j = 1,2

of class C3 and a regular curve in this patch

c : ]a, b[ −→ U, s �→ (
c1(s), c2(s)

)

given in normal representation. Suppose that at each point of the Riemann patch, the
curves x1 = l, with l constant, are orthogonal to the curves x2 = k, with k constant.
At a point with coordinates (x1

0 , x2
0), let us write

• κ1(x
1
0 , x2

0) for the relative geodesic curvature at (x1
0 , x2

0) of the curve x1 �→
(x1, x2

0);
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• κ2(x
1
0 , x2

0) for the relative geodesic curvature at (x1
0 , x2

0) of the curve x2 �→
(x1

0 , x2);
• θ(s0) for the angle at c(s0) between the curve c and the curve x1 �→ (x1, c2(s0)).

Under these conditions, the geodesic curvature of the curve c is given by

κg = dθ

ds
+ κ1 cos θ + κ2 sin θ.

Proof To keep the notation as “light” as possible, let us make the convention that
every norm, length, angle, scalar product or orthogonal condition met in this proof
has to be understood in the Riemann sense, that is, with respect to the metric tensor.
Except when absolutely necessary, we thus avoid repeating the notation introduced
in Notation 6.2.5.

Let us fix once and for all a value s0 of the parameter. We consider the two
changes of parameters

x̃1 = x̃1(x1), x̃2 = x̃2(x2)

putting the two curves

x̃1 �→ (
x̃1, c2(s0)

)
, x̃2 �→ (

c1(s0), x̃
2)

in normal representations (see Proposition 6.3.5). This yields a mapping

(
x1, x2) �→ (

x̃1(x1), x̃2(x2))

which is bijective, of class C3, with an inverse of class C3, since this is the case for
each of the two components of this function. This is thus a very special change of
parameters of class C3, acting component-wise. Notice that the equivalent Riemann
patch is then simply given by (see Definition 6.12.5)

g̃ij

(
x̃1, x̃2)=

∑

kl

gkl

∂xk

∂x̃i

∂xl

∂x̃j
= gij

∂xi

∂x̃i

∂xj

∂x̃j

because

∂x1

∂x̃2
= 0,

∂x2

∂x̃1
= 0.

Let us write

f̃
(
x̃1, x̃2)= f

(
x1(x̃1), x2(x̃2))

for the parametric representation of the surface in terms of the new parameters x̃1,
x̃2. With respect to this new system of coordinates, the curve c becomes

c̃(s) = (
x̃1(c1(s)

)
, x̃2(c2(s)

))
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and is still in normal representation, since the parameter s is still the length s on
the curve. The curves x1 = l are transformed into the curves x̃1 = x̃1(l) (that is,
x̃1 is equal to a constant) and analogously for the curves x2 = k. Therefore the
angle θ(s) and the geodesic curvatures κ1 and κ2 are the same in the new system of
coordinates as in the original system. Consequently, it suffices to prove the formula
of the statement in the new system of coordinates. Or in other words, there is no loss
of generality in assuming that the two curves

x1 �→ (
x1, c2(s0)

)
, x2 �→ (

c1(s0), x
2)

are in normal representation. This is what we shall do from now on.
With that convention, let us now consider the two “2-dimensional” vector fields

(see Definition 6.7.6) given by the normed tangent vectors to the curves x2 = k,
x1 = l:

e1(x1, x2)= (1,0)

‖(1,0)‖(x1,x2)

, e2(x1, x2)= (0,1)

‖(0,1)‖(x1,x2)

.

Since the curves x2 = k, x1 = l are orthogonal at each point, e1(x1, x2) and
e2(x1, x2) constitute at each point an orthonormal basis for the metric tensor. Notice
that since the two curves x1 = c1(s0) and x2 = c2(s0) are in normal representation

e1(c(s0)
)= (1,0), e2(c(s0)

)= (0,1).

On the other hand the curve c is in normal representation and at each point
(e1, e2) is an orthonormal basis. Thus the normed vector c′(s) has at each point
the form

c′(s) = cos θ(s) e1(c(s)
)+ sin θ(s) e2(c(s)

)
.

Let us compute the covariant derivative along the curve c(s) of both sides of this
equality, using freely the results of Sect. 6.7.

∇c′

ds
(s) = − sin θ(s)

dθ

ds
(s)e1(c(s)

)

+ cos θ(s)

(∇e1

∂x1

(
c(s)

)dc1

ds
(s) + ∇e1

∂x2

(
c(s)

)dc2

ds
(s)

)

+ cos θ(s)
dθ

ds
(s)e2(c(s)

)

+ sin θ(s)

(∇e2

∂x1

(
c(s)

)dc1

ds
(s) + ∇e2

∂x2

(
c(s)

)dc2

ds
(s)

)

= − sin θ(s)
dθ

ds
(s)e1(c(s)

)

+ cos θ(s)

(∇e1

∂x1

(
c(s)

)
cos θ(s) + ∇e1

∂x2

(
c(s)

)
sin θ(s)

)
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+ cos θ(s)
dθ

ds
(s)e2(c(s)

)

+ sin θ(s)

(∇e2

∂x1

(
c(s)

)
cos θ(s) + ∇e2

∂x2

(
c(s)

)
sin θ(s)

)

= cos2 θ(s)
∇e1

dx1

(
c(s)

)+ sin2 θ(s)
∇e2

dx2

(
c(s)

)

+
(∇e1

dx2

(
c(s)

)+ ∇e2

dx1

(
c(s)

)
)

cos θ(s) sin θ(s)

+ (− sin θ(s)e1(c(s)
)+ cos θ(s)e2(c(s)

))dθ

ds
(s)

= cos2 θ(s)
∇e1

dx1

(
c(s)

)+ sin2 θ(s)
∇e2

dx2

(
c(s)

)

+
(∇e1

dx2

(
c(s)

)+ ∇e2

dx1

(
c(s)

))
cos θ(s) sin θ(s) + η(s)

dθ

ds
(s)

where η(s) is the normal vector to the curve c (see Proposition 6.5.1).
Let us now compute the relative geodesic curvature of the two curves

p
(
x1)= (

x1, c2(s0)
)
, q

(
x2)= (

c1(s0), x
2)

which are thus in normal representation. We have

p′(x1)= e1
(
x1, c2(s0)

)
, q ′(x2)= e2

(
c1(s0), x

2)

which implies that the corresponding normal vectors are

e2
(
x1, c2(s0)

)
, −e2

(
c1(s0), x

2).

The relative geodesic curvatures κ1 and κ2 involved in the statement are thus given
by

κ1
(
x1, c2(s0)

)=
(∇e1

∂x1

(
x1, c2(s0)

)∣∣∣e2(x1, c2(s0)
))

,

κ2
(
c1(s0), x

2)= −
(∇e2

∂x2

(
c1(s0), x

2)
∣∣∣e1(c1(s0), x

2)
)

.

Covariantly differentiating the equalities
(
e1(x1, c2(s0)

)∣∣e2(x1, c2(s0)
))= 0,

(
e1(c1(s0), x

2)∣∣e2(c1(s0), x
2))= 0

(see Proposition 6.7.4), the κ1 and κ2 can also be re-written as

κ1
(
x1, c2(s0)

)= −
(

e1(x1, c2(s0)
)∣∣∣

∇e2

∂x1

(
x1, c2(s0)

))
,
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κ2
(
c1(s0), x

2)=
(

e2(c1(s0), x
2)
∣
∣∣
∇e1

∂x2

(
c1(s0), x

2)
)

.

Notice also that covariantly differentiating the equality
(
ei
(
x1, c2(s0)

)∣∣ei
(
x1, c2(s0)

))= 1

yields
(∇ei

∂x1

(
x1, c2(s0)

)∣∣∣ei
(
x1, c2(s0)

)
)

= 0.

Analogously we obtain

(∇ei

∂x2

(
c1(s0), x

2)
∣
∣∣ei
(
c1(s0), x

2)
)

= 0.

Using these various equalities and keeping in mind that

η
(
c(s0)

)= − sin θ
(
c(s0)

)
e1(c(s0)

)+ cos θ
(
c(s0)

)
e2(c(s0)

)

we compute further, at the point c(s0) and with obvious abbreviated notation, that

(∇e1

∂x1

∣∣∣η
)

= − sin θ

(∇e1

∂x1

∣∣∣e1
)

+ cos θ

(∇e1

∂x1

∣∣∣e2
)

= cos θκ1

(∇e2

∂x2

∣∣∣η
)

= − sin θ

(∇e2

∂x2

∣∣∣e1
)

+ cos θ

(∇e2

∂x2

∣∣∣e2
)

= sin θκ2

(∇e1

∂x2

∣∣∣η
)

= − sin θ

(∇e1

∂x2

∣∣∣e1
)

+ cos θ

(∇e1

∂x2

∣∣∣e2
)

= cos θκ2

(∇e2

∂x1

∣∣∣η
)

= − sin θ

(∇e2

∂x1

∣∣∣e1
)

+ cos θ

(∇e2

∂x1

∣∣∣e2
)

= sin θκ1.

Now the relative geodesic curvature of the curve c is given by (see Defini-
tion 6.9.7)

κg =
(∇c′

ds

∣∣∣η
)

c

.

Introducing into this formula the various quantities calculated above, we obtain still
at the point c(s0) and still with abbreviated notation,

κg =
(∇c′

ds

∣
∣∣η
)

= cos2 θ

(∇e1

∂x1

∣∣∣η
)

+ sin2 θ

(∇e2

∂x2

∣∣∣η
)



6.14 Curvature in Geodesic Coordinates 309

+ sin θ cos θ

(∇e1

∂x2

∣
∣∣η
)

+ sin θ cos θ

(∇e2

∂x1

∣
∣∣η
)

+ dθ

ds
(η|η)

= cos3 θκ1 + sin3 θκ2 + sin θ cos2 θκ2 + sin2 θ cos θκ1 + dθ

ds

= dθ

ds
+ κ1

(
cos2 θ + sin2 θ

)+ κ2
(
sin2 θ + cos2 θ

)

= dθ

ds
+ κ1 cos θ + κ2 ∈ θ.

This concludes the proof. �

Corollary 6.14.4 Consider a Riemann patch of class C3

gij : U −→ R, i, j = 1,2

given in geodesic coordinates and a regular curve in it

c : ]a, b[ −→ U, s �→ (
c1(s), c2(s)

)

given in normal representation. Write θ(s0) for the angle at c(s0) between the curve
c and the curve x1 �→ (x1, c2(s0)). Under these conditions, the geodesic curvature
of the curve c at the point with parameter s0 is given by

κg(s0) = dθ

ds
(s0) + 1

2
√

g22

∂g22

∂x1

dc2

ds
.

Proof The curves x2 = l are geodesics by Theorem 6.13.1 thus, with the notation
of Theorem 6.14.3, κ1 = 0 (see Definition 6.10.1). On the other hand, Proposi-
tion 6.14.2 gives the value of κ2. Then, still following Theorem 6.14.3

κg = dθ

ds
+ 1

2g22

∂g22

∂x1
sin θ.

It remains to compute sin θ . But

sin θ = cos

(
π

2
− θ

)

that is at each point, the cosine of the angle between the curve c and the curves
x1 = c1(s0). Therefore

sin θ = (( dc1

ds
, dc2

ds
)|(0,1))

‖c′(s)‖ · ‖(0,1)‖ =
dc2

ds
g22√
g22

= dc2

ds

√
g22.



310 6 Towards Riemannian Geometry

Thus finally

κg = dθ

ds
+ 1

2g22

∂g22

∂x1

dc2

ds

√
g22 = dθ

ds
+ 1

2
√

g22

∂g22

∂x1

dc2

ds
. �

Let us conclude this section with the case of the Gaussian curvature (see Defini-
tion 5.16.1).

Proposition 6.14.5 In a geodesic system of coordinates, the Gaussian curvature of
a regular surface of class C3 in R

3 is given by

κτ = − 1√
g22

∂2√g22

∂(x1)2
.

Proof In view of condition 5 in Theorem 6.13.1, the formula in Theorem 6.11.3
reduces to

R1212 = −∂Γ122

∂x1
+ Γ 1

12Γ212.

Applying Proposition 6.6.8 and Theorem 6.13.1 again

Γ212 = Γ122 = 1

2

∂g22

∂x1

Γ 2
21 = Γ 2

12 = g22Γ212 = 1

g22

1

2

∂g22

∂x1
.

These various observations, together with Lemma 6.11.2, show that

κτ = R1212

g11
= 1

4

1

(g22)2

(
∂g22

∂x1

)2

− 1

g22

1

2

∂2g22

∂(x1)2
.

On the other hand

∂
√

g22

∂x1
= 1

2

1√
g22

∂g22

∂x1

∂2√g22

∂2(x1)2
= −1

4

1

g22
√

g22

(
∂g22

∂x1

)2

+ 1

2

1√
g22

∂2g22

∂(x1)2
.

Dividing by
√

g22 and changing the sign indeed yields the formula that we have
obtained for κτ . �

6.15 The Poincaré Half Plane

Our basic example of a Riemann patch is that induced by a surface of R
3 (see

Sect. 6.1). Up to now, we have not provide any other examples. Let us fill this
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gap by describing the so-called Poincaré half plane: a Riemann patch which was
introduced in order to provide a model of non-Euclidean geometry. Non-Euclidean
geometries have been given full attention in Chap. 7 of [3], Trilogy I. Therefore we
shall only very briefly remark upon them later in this section.

Definition 6.15.1 Let U be the “upper half plane” in R
2, that is

U = {(
x1, x2)∣∣x2 > 0

}
.

The Poincaré half plane is the Riemann patch of class C∞

gij : U −→ R, 1 ≤ i, j ≤ 2

given by
(

g11(x
1, x2) g12(x

1, x2)

g21(x
1, x2) g22(x

1, x2)

)
=
(

1
(x2)2 0

0 1
(x2)2

)

.

Trivially, the matrix (gij )ij is symmetric definite positive, since x2 > 0 at all
points of U .

Proposition 6.15.2 In the Poincaré half plane:

1. g11 = g22 = x2 while g12 = g21 = 0;
2. Γ111 = Γ122 = Γ212 = Γ221 = 0 while Γ112 = 1

(x2)3 and Γ121 = Γ211 = Γ222 =
− 1

(x2)3 ;

3. Γ 1
11 = Γ 2

12 = Γ 2
21 = Γ 1

22 = 0 while Γ 2
11 = 1

x2 and Γ 1
12 = Γ 1

21 = Γ 2
22 = − 1

x2 .

Proof This is just a routine application of the formulas in Definitions 6.6.7
and 6.11.4. �

Corollary 6.15.3 The Poincaré half plane is such that

κτ = R1212

g11g22 − g12g21
= −1

at all points.

Proof This follows by Proposition 6.15.2 and Definition 6.11.4. �

Let us recall that the quantity in Corollary 6.15.3, in the case of a 2-dimensional
Riemann patch, is sometimes called the Gaussian curvature of the Riemann patch
(see the comment at the end of Sect. 6.11). The Poincaré half plane thus has a con-
stant negative Gaussian curvature equal to −1, just as the pseudo-sphere of pseudo-
radius 1 (see Example 5.16.7). Notice that nevertheless, the metric tensor of the
pseudo-sphere does not have the same form as that of the Riemann patch (see the
proof of Example 5.16.7).
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Fig. 6.3

Proposition 6.15.4 The Riemannian angles of the Poincaré half plane coincide
with the Euclidean angles.

Proof At a given point (x1, x2), consider the two vectors

v = (
v1, v2), w = (

w1,w2).

Their Riemannian angle θ is such that

cos θ =
1

(x2)2 v1w1 + 1
(x2)2 v2w2

√
1

(x2)2 (v1)2 + 1
(x2)2 (v2)2

√
1

(x2)2 (w1)2 + 1
(x2)2 (w2)2

= v1w1 + v2w2
√

(v1)2 + (v2)2
√

(w1)2 + (w2)2

and this last formula is precisely the value of the cosine of the Euclidean angle. �

Let us now turn our attention to the geodesics:

Proposition 6.15.5 The geodesics of the Poincaré half plane are:

1. the parallels to the x2-axis;
2. the half circles with center on the x1-axis.

Of course in this statement “parallel” and “circle” should be understood in the
sense of the ordinary Euclidean geometry of R2 (see Fig. 6.3).

Proof In view of Proposition 6.15.2, the conditions of Theorem 6.10.3 for being a
geodesic c in normal representation reduce to

⎧
⎨

⎩

d2c1

ds2 (s) − dc1

ds
(s) dc2

ds
(s) 1

x2(c(s))
− dc1

ds
(s) dc2

ds
(s) 1

x2(c(s))
= 0

d2c2

ds2 (s) + dc1

ds
(s) dc1

ds
(s) 1

x2(c(s))
− dc2

ds
(s) dc2

ds
(s) 1

x2(c(s))
= 0
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that is
⎧
⎨

⎩

d2c1

ds2 − 2 dc1

ds
dc2

ds
1
c2 = 0

d2c2

ds2 + ( dc1

ds
)2 1

c2 − ( dc2

ds
)2 1

c2 = 0.

From now on, let us use instead the more concise notation
⎧
⎨

⎩

(c1)′′ − 2 (c1)′(c2)′
c2 = 0

(c2)′′ + (c1)′2−(c2)′2
c2 = 0.

Integrating a system of differential equations is not such an easy task. But we shall
nevertheless take it easy, since the statement suggests at once the answer! We shall
prove that the curves given in the statement are geodesics and we shall prove further
that they exhaust all the possibilities.

The parallels to the x2-axis are the curves c(t) = (k, t) with k a constant. The
change of parameter to pass in normal representation (see Proposition 6.3.5) is

σ(t)

∫ t

t0

√√
√√(

0 1
)
(

1
t2 0

0 1
t2

)(
0
1

)
dt =

∫ t

t0

1

t
dt = log t

when choosing t0 = 1. Therefore σ−1(s) = es and we obtain as normal representa-
tion

c(s) = (
k, es

)
, c′(s) = (

0, es
)
, c′′(s) = (

0, es
)

and it is immediate that these data satisfy the above system of differential equations
for being a geodesic.

The upper half circle of center (α,0) and radius R admits the parametric repre-
sentation

c(t) = (α + R cos t,R sin t), 0 < t < π.

Notice in particular that sin t > 0 for all t . The change of parameter for passing to
normal representation is this time

σ(t) =
∫ t

t0

√√√√(−R sin t R cos t
)
(

1
R2 sin2 t

0

0 1
R2 sin2 t

)(−R sin t

R cos t

)
dt

=
∫ t

t0

√

1 + cos2 t

sin2 t
dt

=
∫ t

t0

1

sin t
dt.

Unfortunately, the explicit form of this last integral is in terms of hyperbolic func-
tions, so we shall avoid calculating it and calculate instead its inverse function. This
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Fig. 6.4

is not really a problem because the differential equations for being a geodesic refer
only to the derivatives of the normal representation c. Therefore, as already observed
several times in this book, only the derivatives of σ and σ−1 are needed explicitly.
We have

σ ′(t) = 1

sin t
,

(
σ−1)′(s) = 1

σ ′(σ−1(s)
) = sin

(
σ−1(s)

)
.

The normal representation and its derivatives are thus

c(s) = (
α + R cos

(
σ−1(s)

)
,R sin

(
σ−1(s)

))

c′(s) = (−R sin2(σ−1(s)
)
,R cos

(
σ−1(s)

)
sin
(
σ−1(s)

))

c′′(s) = (−2R sin2(σ−1(s)
)

cos
(
σ−1(s)

)
,

− R sin3(σ−1(s)
)+ R cos2(σ−1(s)

)
sin
(
σ−1(s)

))
.

It is now trivial that these data satisfy the above differential equations for being a
geodesic.

So: all the curves mentioned in the statement are geodesics. Are they the only
ones? Let us recall that by Proposition 6.10.8, at each point of U , in each direction,
there exists a unique geodesic. If we prove that at each point, in each direction,
there is already a geodesic of the statement, these geodesics will thus exhaust all the
possibilities and the proof will be complete. Of course in the “vertical” direction, we
always have the corresponding parallel to the x2-axis. Consider next a point P ∈ U

and a line d passing through P in a non-vertical direction (see Fig. 6.4). The line
d⊥, passing through P and orthogonal to d , intersects the x1-axis at some point C.
The circle with center C passing through P has a tangent at P perpendicular to its
radius CP : this is precisely the given line d . So the half circle is a geodesic having
at P the direction d . �

Axiomatic geometries were the topic of [3], Trilogy I. Roughly speaking, for the
reader who is not familiar with these theories, let us say that a Euclidean plane
consists of:
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• a set Π—called the plane—whose elements are called points;
• a choice of subsets of Π , called lines;
• various binary or ternary relations involving points and lines;
• axioms to be satisfied by those data.

Among the relations, some express “geometric configurations” (a point is on a line,
a point is between two other points) and others express “congruences”: congruence
of two segments or congruence of two angles (see [3], Trilogy I, for the definition
of these notions).

Among the axioms, one has expected statements such as

Through two distinct points passes exactly one line.

But one also has the famous parallel postulate (two lines are called parallel when
their intersection is empty):

Given a point P not on a line d , there passes through P exactly one line
parallel to d .

The full list of axioms on these geometric data force Π to be isomorphic to the
Euclidean space R

2, with its usual lines. See for example Hilbert’s axiomatization
of the Euclidean plane in Chap. 8 of [3], Trilogy I.

Dropping the “parallel axiom” from Hilbert’s axiomatization of the plane yields
what is called absolute geometry. Let us stress that in absolute geometry, the exis-
tence of a parallel is already a theorem (see Corollary 8.3.36 in [3], Trilogy I): a
parallel can be constructed via two perpendiculars. Thus the parallel axiom is not
needed to prove the existence of a parallel and therefore passing from absolute ge-
ometry to Euclidean geometry requires only to state as an axiom the uniqueness of
the parallel:

Given a point P not on a line d , there passes through P at most one line
parallel to d .

Non-Euclidean geometry is obtained when adding instead to absolute geometry the
negation of this uniqueness requirement:

Given a point P not on a line d , there pass through P several lines parallel
to d .

It can then be proved that the number of possible parallel lines is necessarily infinite.
The Poincaré half plane is a model of non-Euclidean geometry obtained by

choosing as lines the geodesics. The rest of this section is devoted to proving this
result.

Proposition 6.15.6 Through two distinct points of the Poincaré half plane passes
exactly one geodesic.

Proof We freely refer to Theorem 6.16.2. If two points A and B are on the same
vertical line, this vertical line is a geodesic joining them. Of course no other vertical
line contains these two points A, B and no half circle contains them either: indeed,
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Fig. 6.5

a half circle never contains two points on the same vertical. So the vertical line
through A and B is the unique geodesic joining these two points.

If two points A and B are not on the same vertical line, we must prove the exis-
tence of a unique half circle joining them. The necessary and sufficient condition for
a circle to pass through A and B is that its center C lies on the median perpendicu-
lar m of the segment AB (see Fig. 6.5 and Proposition 8.4.10 in [3], Trilogy I; the
median perpendicular is the perpendicular to AB at its middle point). But when the
half circle is a geodesic, the center C of the circle must also be on the x1-axis, thus
finally it must be at the intersection of the median m and the x1-axis. Since A and
B are not on the same vertical, the median m is not horizontal, thus it indeed meets
the x1-axis at some unique point C. The half circle with center C passing through
A and B is then the expected unique geodesic. �

Now the “parallel axiom”:

Proposition 6.15.7 In the Poincaré half plane, given a point P not on a geodesic
d , there pass through P infinitely many geodesics not intersecting d . All these
geodesics are contained between two “limit” geodesics.

Proof We freely refer to Theorem 6.16.2. Consider first as geodesic a vertical line
d (see Fig. 6.6). Consider also a point P /∈ d , thus on the left or the right of d ; the
same argument applies in both cases. Write Q for the intersection in R

2 of d and
the x1-axis. Consider the median m of the segment PQ which—since PQ is not
vertical—meets the x1-axis at some point C in R

2. The half circle with center C

passing through P thus also “passes” through Q: this is a first geodesic c1 which
does not meet d in the Poincaré half plane. Of course the vertical line through P is
another geodesic c2 not intersecting d . But there are infinitely many others! Every
half circle passing through P and whose center is “on the other side of C with
respect to Q”, intersects the x1-axis at some point situated between C and Q: thus
it does not meet d . In other words, “all geodesics situated between c1 and c2 do not
intersect the geodesic d”.

Next consider as geodesic d a half circle “cutting” in R
2 the x1-axis at two points

A and B . Consider further a point P not on this geodesic d . The point P can thus be
“under” or “above” the half circle, but the proof applies to both cases (see Figs. 6.7
and 6.8). Again we consider the median of the segment PA and its intersection CA
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Fig. 6.6

Fig. 6.7

Fig. 6.8

with the x1-axis. In R
2, the half circle with center CA passing through P “cuts” the

x1-axis at A; this is thus a first geodesic cA not intersecting the geodesic d in the
Poincaré half plane. Analogously the median of PB cuts the x1-axis at a point CB

and the half circle with center CB passing through P is a second geodesic cB not
intersecting d . Of course all half circles passing through P “between cA and cB”
are geodesics not intersecting d . �

Next, we observe that
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Lemma 6.15.8 In the Poincaré half-plane, every normal representation of a
geodesic induces a bijection between the real line and the geodesic.

Proof Consider first a parallel to the x2-axis:

c
(
x2)= (

α,x2), x2 > 0

and choose x2
0 as origin for computing lengths along the geodesic. Since c′(x2) =

(0,1), we obtain (see Proposition 6.3.5)

σ(x2) =
∫ x2

x2
0

∥∥(0,1)
∥∥

c(x2)

=
∫ x2

x2
0

dx2

x2

= logx2 − logx2
0 .

As x2 tends to zero, this quantity tends to −∞ and when x2 tends to infinity, it tends
to +∞. This yields the announced bijection.

Consider next as geodesic a half circle centered on the x1-axis.

c(t) = (α + R cos t,R sin t), 0 < t < π

and fix t0 as origin for computing lengths along this geodesic. Since

c′(t) = (−R sin t,R cos t),

we obtain (see Proposition 6.3.5 again)

σ(x2) =
∫ t

t0

∥∥(−R sin t,R cos t)
∥∥

c(t)

=
∫ t

t0

dt

sin t

= log

(
tan

t

2

)
− log

(
tan

t0

2

)
.

As t tends to 0 this quantity tends to −∞ and as t tends to π , it tends to +∞. Again
this yields the announced bijection. �

Notice that the bijection in Lemma 6.15.8 allows us to transpose onto every
geodesic the natural order of the real line and in particular, the relation “a point
is between two other points”. It thus makes perfect sense to speak of segments and
half lines (see Sect. 8.2 in [3], Trilogy I). It therefore also makes sense to consider
the congruence (in the sense of the Riemannian metric) between two segments or
two angles. Notice that:
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Corollary 6.15.9 In the Poincaré half plane, every half-line has infinite length.

Proof This follows by Lemma 6.15.8. �

To be able to check the validity of all congruence axioms for non-Euclidean
geometry (see Sect. 8.3 in [3], Trilogy II), we need to exhibit some Riemannian
isometries of the Poincaré half plane onto itself: that is, bijections which respect the
Riemannian metric.

Proposition 6.15.10 Every Euclidean horizontal translation is a Riemannian isom-
etry of the Poincaré half plane.

Proof Such a translation is a bijection having another such translation as inverse. It
has the form

τ
(
x1, x2)= (

x1 + α,x2).

The matrix of partial derivatives of τ is the identity matrix. The value of the Rie-
mann tensor is the same at (x1, x2) and τ(x1, x2), since it depends only on the
coordinate x2. The conditions of Definition 6.12.5 are then trivially satisfied and by
Corollary 6.12.6, τ is an isometry. �

Proposition 6.15.11 Every Euclidean symmetry with respect to a vertical axis is a
Riemannian isometry of the Poincaré half plane.

Proof It suffices to prove the result when the axis of symmetry is the x2-axis. In-
deed, first translating the axis of symmetry onto the x2-axis, performing the orthog-
onal symmetry around the x2-axis and translating the axis back, yields the symmetry
indicated. We know already by Proposition 6.15.10 that horizontal translations are
Riemannian isometries.

The orthogonal symmetry around the x2-axis is its own inverse and has the form

σ
(
x1, x2)= (−x1, x2).

The matrix of partial derivatives of σ thus has the form
(−1 0

0 1

)
.

The value of the Riemann tensor is the same at (x1, x2) and σ(x1, x2), since it
depends only on the coordinate x2. The conditions of Definition 6.12.5 are then
trivially satisfied and by Corollary 6.12.6, σ is an isometry. �

However, the crucial fact is (see Sect. 5.7 in [3], Trilogy I, for the theory of
inversions):

Proposition 6.15.12 The Euclidean inversions with center on the x1-axis are Rie-
mannian isometries.
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Proof It suffices to prove the result when the center of inversion is the point (0,0).
Indeed, first translating the center of inversion to (0,0), performing the inversion
and translating the center of inversion back to its original position, yields the inver-
sion indicated. We know already by Proposition 6.15.10 that horizontal translations
are Riemannian isometries.

The inversion with center (0,0) and power R2 is its own inverse and is defined
everywhere on the Poincaré half plane, since (0,0) is not a point of the Poincaré
half plane. With the notation of Definition 6.12.5, it has the form

ι
(
x1, x2)= (

x̃1(x1, x2), x̃2(x1, x2))= R2

(x1)2 + (x2)2

(
x1, x2).

The matrix of partial derivatives of ι is thus

R2

((x1)2 + (x2)2)2

(
(x2)2 − (x1)2 −2x1x2

−2x1x2 (x1)2 − (x2)2

)

while, with the notation of Corollary 6.12.6,

(g̃ij )ij = ((x1)2 + (x2)2)2

R4(x2)2

(
1 0
0 1

)
.

It is then immediate to compute that
(
∑

kl

g̃kl

∂x̃k

∂xi

∂x̃l

∂xj

)

ij

=
(

1
(x2)2 0

0 1
(x2)2

)

.

The result follows by Corollary 6.12.6. �

We are now ready to conclude that:

Theorem 6.15.13 The Poincaré half plane is a model of non-Euclidean geometry.

Proof We freely refer to Chap. 8 of [3], Trilogy I. We recall that our points are those
of the Poincaré half plane, with the geodesics as lines. The incidence of a point and a
line is just the membership relation. The “between” relation is that transposed from
the real line via Lemma 6.15.8. The congruence relation for segments and angles is
the congruence in terms of the Riemannian metric.

Proposition 6.15.6 attests the validity of the first incidence axiom; the other two
incidence axioms are trivially satisfied. The first four axioms concerning the “be-
tween” relation follow at once from the corresponding properties of the real line,
via Lemma 6.15.8. The last axiom on this “between” relation—the so-called Pasch
axiom—is a routine exercise on lines and circles in the Euclidean plane, but is also
an easy consequence of our Proposition 7.11.1. When a geodesic not containing a
vertex of a triangle “enters” the triangle along one side, it must leave it (Proposi-
tion 7.11.1) along another side (Proposition 6.15.6).
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The first five axioms concerning the congruence of segments or angles are im-
mediate consequences of Lemma 6.15.8 and Proposition 6.15.4. Let us thus check
the validity of the sixth congruence axiom: the so called case of equality of two
triangles; writing ≡ for the congruence relation:

If two triangles ABC and A′B ′C′ are such that

AB ≡ A′B ′, �ABC ≡ �A′B ′C′, �BAC ≡ �B ′A′C′

then

AC ≡ A′C′, BC ≡ B ′C′, �ACB ≡ �A′C′B ′.

To prove this, we shall show that the triangle ABC is congruent to a triangle ÃB̃C̃

“in canonical position”, that is, a triangle such that:

• Ã = (0,1);
• B̃ = (0, b) with b > 1;
• C̃ = (a, c) with a > 0.

Analogously, the triangle A′B ′C′ will be congruent to a triangle Ã′B̃ ′C̃′ in canonical
position:

• Ã′ = (0,1);
• B̃ ′ = (0, b′) with b′ > 1;
• C̃′ = (a′, c′) with a′ > 0.

When this has been proved, since AB ≡ A′B ′, necessarily b = b′. Thus

Ã = Ã′, B̃ = B̃ ′.

But since �ABC ≡ �A′B ′C′, we also have �ÃB̃C̃ ≡ �Ã′B̃ ′C̃′. Since moreover
C̃ and C̃′ are both on the right hand side of the x2-axis, the two geodesics through
B̃ , C̃ and B̃ ′, C̃′ coincide. Analogously, the two geodesics through Ã, C̃ and Ã′, C̃′
coincide. Eventually, the two triangles ÃB̃C̃ and Ã′B̃ ′C̃′ coincide. Since they are
respectively congruent to the original triangles ABC and A′B ′C′, the proof will be
complete.

So we must now prove that every triangle ABC is congruent to a triangle in
canonical position.

1. First, if it is not already the case, we force the geodesic AB to become a parallel
to the x2 axis. For this it suffices to perform an inversion of arbitrary power whose
center P is one the two “intersection” points of the x1-axis with the half circle
through A and B . By Proposition 5.7.5 in [3], Trilogy I, the Euclidean (half)-
circle through A and B becomes a Euclidean (half)-line perpendicular to the line
joining the center P of inversion and the center of the circle, that is, perpendicular
to the x1-axis. By Proposition 6.15.12, the triangle ABC then becomes congru-
ent to a triangle A1B1C1 such that the geodesic A1B1 is a Euclidean parallel to
the x2-axis.
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2. Second, if necessary, translate the triangle A1B1C1 horizontally to get, by Propo-
sition 6.15.10, a congruent triangle A2B2C2 now with A2 and B2 on the x2-axis.

3. Third, if necessary, perform an orthogonal symmetry around the x2-axis to
transform the triangle A2B2C2 into a congruent triangle A3B3C3 (see Propo-
sition 6.15.11) now with C3 on the right hand side of the x2-axis.

4. Fourth, if this is not already the case, we shall force A3 to become the point (0,1).
If A3 = (α,0), it suffices to apply an inversion with center (0,0) and power α.
By Proposition 6.15.12, we thus obtain a new triangle A4B4C4, still congruent
to ABC, now with A4 = (0,1), B4 still on the x2-axis and C4 still on the right
hand side of this axis.

5. Finally, if it turns out that B4 is below A4, use Proposition 6.15.12 again and
perform an inversion with center (0,0) and power 1 to obtain a triangle ÃB̃C̃

still congruent to ABC but now in canonical position.

This concludes the proof of the last congruence axiom.
The continuity axiom is an immediate consequence of Lemma 6.15.8. And the

non-Euclidean axiom of parallels is Proposition 6.15.7. �

6.16 Embeddable Riemann Patches

We have seen that a plane curve can be “intrinsically” described—up to an
isometry—by an arbitrary continuous function κ(s): the curvature in terms of the
arc length s (see Sect. 2.12). An analogous result holds for skew curves, this time
using two sufficiently differentiable arbitrary functions κ(s) and τ(s): the curvature
and the torsion (see Sect. 4.6). Is there an analogous result for surfaces?

The fundamental theorem of the theory of surfaces tells us in a first approach that

A surface of R
3 is entirely determined—up to an isometry—by the six co-

efficients E, F , G, L, M , N of its two fundamental quadratic forms.

(See Definitions 5.4.5 and 5.8.6). However, in contrast to the case of curves, we can
no longer expect six such arbitrary functions to always define a surface. Indeed in
the case of a surface, these six functions are not “independent”: we already know
some specific properties relating them. Among other things:

• the coefficients E, F , G are those of a symmetric definite positive quadratic form
(see Proposition 5.4.6);

• LN − M2 = R1212 (see Lemma 6.11.2) where R1212 can be written as a function
of E, F , G (see Theorem 6.11.3).

And so on. So in fact, the fundamental theorem of the theory of surfaces must also
answer the following question:

Give necessary and sufficient conditions on six functions E, F , G, L, M , N
for being the coefficients of the two fundamental quadratic forms of a surface
of R3.
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As we have just recalled, one necessary condition is the fact that E, F , G are the
coefficients of a symmetric definite positive quadratic form: in other words, they
must define a Riemann patch (see Definition 6.2.1). But this is certainly not suffi-
cient, as our second observation LN − M2 = R1212 shows. Thus our question can
be rephrased as

What are the additional conditions on a Riemann patch which will ensure
that it is the patch associated with a surface of R3?

This section is devoted to an answer to this question.
It is well-known that given a function ψ(u,v,w) of class C3, the continuity of

the partial derivatives forces the equality

∂3ψ

∂u∂v∂w
= ∂3ψ

∂v∂u∂w
.

This simple fact is the key to solving our problem. As is often the case in the context
of Riemannian geometry, such an easy formula can take an unexpectedly involved
form. It will be convenient for us to switch back to the notation gij and hij of
Definition 6.2.1 and Proposition 6.6.3.

Proposition 6.16.1 Consider a regular parametric representation of class C3 of a
surface

f : U −→ R
3.

The following equalities hold:

The Gauss Equations

∂Γ l
jk

∂xi
− ∂Γ l

ik

∂xj
+
∑

m

(
Γ m

jkΓ
l
im − Γ m

ik Γ l
jm

)=
∑

m

(hjkhim − hikhjm)glm.

The Codazzi–Mainardi Equations

∑

m

Γ m
jkhim −

∑

m

Γ m
ik hjm + ∂hjk

∂xi
− ∂hik

∂xj
= 0.

Proof Write n for the normal vector to the surface (see Definition 5.5.7). Differen-
tiating the equality (n|n) = 0 we get ( ∂n

∂xi |n) = 0 proving that ∂n
∂xi is in the tangent

plane. Let us write

∂n

∂xi
= α1

i

∂f

∂x1
+ α2

i

∂f

∂x2
.
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Since n is orthogonal to ∂f

∂xj , differentiating the equality (
∂f

∂xj |n) = 0 with respect

to xi with respect to xi we obtain

(
∂2f

∂xi∂xj

∣∣∣n
)

+
(

∂f

∂xj

∣∣∣∣
∂n

∂xi

)
= 0

that is
(

∂2f

∂xi∂xj

∣
∣∣n
)

= −
(

∂f

∂xj

∣
∣∣∣
∂n

∂xi

)
.

From Definition 6.6.2, we then deduce

hij =
(

∂2f

∂xi∂xj

∣∣∣n
)

= −
(

∂f

∂xj

∣
∣∣∣
∂n

∂xi

)

= −
(

∂f

∂xj

∣∣∣∣α
1
i

∂f

∂x1
+ α2

i

∂f

∂x2

)

= −α1
i gj1 − α2

i gj2.

This equality can be re-written as

(
hi1
hi2

)
= −

(
g11 g12
g21 g22

)(
α1

i

α2
i

)

from which we deduce
(

α1
i

α2
i

)
= −

(
g11 g12

g21 g22

)(
hi1
hi2

)

(see Definition 6.2.3), that is

α
j
i = −

∑

k

hikg
jk.

As a consequence

∂n

∂xi
= −

∑

jk

hikg
jk ∂f

∂xj
.

Let us now consider the third partial derivatives of f and introduce, for the needs
of this proof, an explicit notation for its components:

∂3f

∂xi∂xj ∂xk
= Υ 1

ijk

∂f

∂x1
+ Υ 2

ijk

∂f

∂x2
+ Ωijkn.
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Considering the definition of the Christoffel symbols of the second kind (Defini-
tion 6.6.2)

∂f 2

∂xj ∂xk
= Γ 1

jk

∂f

∂x1
+ Γ 2

jk

∂f

∂x2
+ hjkn

and differentiating this equality with respect to xi we obtain

∂3f

∂xi∂xj ∂xk
= ∂Γ 1

jk

∂xi

∂f

∂x1
+ Γ 1

jk

∂2f

∂xi∂x1

+ ∂Γ 2
jk

∂xi

∂f

∂x2
+ Γ 2

jk

∂2f

∂xi∂x2

+ ∂hjk

∂xi
n + hjk

∂n

∂xi

= ∂Γ 1
jk

∂xi

∂f

∂x1
+ Γ 1

jk

(
Γ 1

i1
∂f

∂x1
+ Γ 2

i1
∂f

∂x2
+ hi1n

)

+ ∂Γ 2
jk

∂xi

∂f

∂x2
+ Γ 2

jk

(
Γ 1

i2
∂f

∂x1
+ Γ 2

i2
∂f

∂x2
+ hi2n

)

+ ∂hjk

∂xi
n − hjk

(∑

lm

himglm ∂f

∂xl

)
.

The three components of the third partial derivatives of f are then

Υ l
ijk = ∂Γ l

jk

∂xi
+ Γ 1

jkΓ
l
i1 + Γ 2

jkΓ
l
i2 − hjk

(
hi1g

l1 + hi2g
l2)

and

Ωijk = Γ 1
jkhi1 + Γ 2

jkhi2 + ∂hjk

∂xi
.

The Gauss equations translate simply as the equality Υ l
ijk = Υ l

jik , while the
Codazzi–Mainardi equations translate as the equality Ωijk = Ωjik . �

We are now ready to state the expected result. Its proof is highly involved and
uses deep results from the theory of partial differential equations. This clearly runs
outside the normal context for this introductory textbook. Therefore—even if not
formally needed for the proof—we often rely on the intuition hidden behind the
arguments involving the solutions of systems of partial differential equations.

Theorem 6.16.2 A Riemann patch of class C2

gij : U −→ R, 1 ≤ i, j ≤ 2
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is, in a neighborhood V of each point, induced by a regular parametric representa-
tion

f : V −→ R
3,

(
x1, x2) �→ f

(
x1, x2)

of a surface if and only if there exist three functions of class C1

h12, h12 = h21, h22 : V −→R

satisfying the Gauss–Codazzi–Mainardi equations of Proposition 6.16.1.

Proof Proposition 6.16.1 proves the necessity of the condition. Conversely, we are
thus looking for a parametric representation f (x1, x2), which—if it exists—will
have two partial derivatives

ϕ1
(
x1, x2)= ∂f

∂x1

(
x1, x2), ϕ2

(
x1, x2)= ∂f

∂x2

(
x1, x2)

satisfying the requirements (see Definition 6.6.2)

∂ϕj

∂xi
= Γ 1

ij ϕ1 + Γ 2
ij ϕ2 + hijμ

where μ will be the normal vector to the surface. From what we have observed in
the proof of Proposition 6.16.1, we shall further have, if f exists,

∂μ

∂xi
= −

∑

lm

hlmglm ∂f

∂xl
.

We therefore consider the following system of partial differential equations, with
three unknown functions

ϕ1, ϕ2,μ : U −→ R
3

that is, in terms of the components of these functions, nine functions U −→R:
⎧
⎨

⎩

∂ϕj

∂xi = Γ 1
ij ϕ1 + Γ 2

ij ϕ2 + hijμ

∂μ

∂xi = −∑
lm hlmglmϕl.

In these equations, gij is of course the inverse metric tensor of the Riemann patch
and the Γ k

ij are its Christoffel symbols. We are first interested in finding a solution
ϕ1, ϕ2, μ of this system.

A general theorem on systems of partial differential equations (see Proposi-
tion B.4.1) asserts the existence of a solution of class C2 to the system above, pro-
vided some integrability conditions are satisfied. These conditions require that the
given equations force the relations

∂2ϕk

∂xi∂xj
= ∂2ϕk

∂xj ∂xi
,

∂2μ

∂xi∂xj
= ∂2μ

∂xj ∂xi
.
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Let us prove that this is the case.
Since eventually, we want ϕ1 and ϕ2 to be the partial derivatives of the parametric

representation f we are looking for, the first integrability condition should translate
as the classical formula

∂3f

∂xi∂xj ∂xk
= ∂3f

∂xj ∂xi∂xk
.

But this equality expresses exactly the Gauss–Codazzi–Mainardi equations, as we
have seen in the proof of Proposition 6.16.1. Therefore the first integrability con-
dition should follow from these equations. Let us observe that this is indeed the
case.

From our system of partial differential equations, we obtain

∂2ϕk

∂xi∂xj
= ∂

∂xi

(
Γ 1

jkϕ1 + Γ 2
jkϕ2 + hjkμ

)

= ∂Γ 1
jk

∂xi
ϕ1 + Γ 1

jk

∂ϕ1

∂xi

+ ∂Γ 2
jk

∂xi
ϕ2 + Γ 2

jk

∂ϕ2

∂xi

+ ∂hjk

∂xi
μ + hjk

∂μ

∂xi

= ∂Γ 1
jk

∂xi
ϕ1 + Γ 1

jk

(
Γ 1

i1ϕ1 + Γ 2
i1ϕ2 + hi1μ

)

+ ∂Γ 2
jk

∂xi
ϕ2 + Γ 2

jk

(
Γ 1

i2ϕ1 + Γ 2
i2ϕ2 + hi2μ

)

+ ∂hkj

∂xi
μ − hkj

(∑

l,m

hkmglmϕl

)

=
(

∂Γ 1
jk

∂xi
+
∑

m

Γ m
jkΓ

1
im −

∑

m

hjkhimg1m

)
ϕ1

+
(

∂Γ 2
jk

∂xi
+
∑

m

Γ m
jkΓ

2
im −

∑

m

hjkhimg2m

)
ϕ2

+
(

∂hkj

∂xi
+
∑

m

Γ m
jkhim

)
μ.

The corresponding formula for ∂2ϕk

∂xj ∂xi is obtained simply by permuting the indices
i and j in the formula above. To prove the necessary equality of the two expres-
sions (while we do not yet know the existence of ϕ1, ϕ2 and μ), it suffices to prove
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the equality of the respective coefficients of these unknown functions. But this is
precisely what the Gauss–Codazzi–Mainardi equations say.

We still have to take care of the integrability condition concerning the function μ.
Since we eventually want μ to become the normal vector to a surface whose para-
metric representation admits ϕ1 and ϕ2 as partial derivatives, we expect to have

μ = ϕ1 × ϕ2

‖ϕ1 × ϕ2‖
where × indicates the cross product (see Sect. 1.7 in [4], Trilogy II). Therefore
the permutability of the partial derivatives of μ should be a consequence of the
permutability of the partial derivatives of ϕ1, ϕ2, that is, of the Gauss–Codazzi–
Mainardi equations. It is indeed so.

We have at once

∂2μ

∂xj ∂xi
= −

∑

lm

(
∂him

∂xj
glmϕl + him

∂glm

∂xj
ϕl + himglm ∂ϕl

∂xj

)

= −
∑

lm

(
∂him

∂xj
glmϕl + him

∂glm

∂xj
ϕl + himglm

(
Γ 1

j lϕ1 + Γ 2
j lϕ2 + hjlμ

))

= −
(∑

m

∂him

∂xj
g1m +

∑

m

him

∂g1m

∂xj
+
∑

lm

himglmΓ 1
j l

)
ϕ1

−
(∑

m

∂him

∂xj
g2m +

∑

m

him

∂g2m

∂xj
+
∑

lm

himglmΓ 1
j l

)
ϕ2

−
(∑

lm

himglmhjl

)
μ.

We must therefore prove that the three coefficients of ϕ1, ϕ2 and μ are equal to
those obtained when permuting the indices i and j . This is of course trivial for the
coefficient of μ. We shall now prove the same for the coefficient of ϕ1, the proof
being analogous in the case of ϕ2.

To achieve this, we first replace the coefficients gij by their values calculated
in the proof of Proposition 6.2.4. We also replace the partial derivatives of the co-
efficients gij by their values given in Problem 6.18.6 (the proof is an easy routine
calculation). Introducing all these values into the coefficient of ϕ1, we obtain

1

g11g22 − g21g12

(
∂hj1

∂xi
g22 − ∂hj2

∂xi
g12 + 2hj1

(
Γ 1

2ig12 − Γ 1
1kg22

)

− hj2
(
Γ 2

1ig22 + Γ 1
2ig11 − Γ 1

1ig12 − Γ 2
2ig12

)

+ hj1g22Γ
1
i1 − hj2g12Γ

1
i1 − hj1g12Γ

1
i2 + hj2g11Γ

1
i2

)
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= 1

g11g22 − g21g12

(
∂hj1

∂xi
g22 − ∂hj2

∂xi
g12

∂hj1

∂xi
g22 − ∂hj2

∂xi
g12

+ hj1g12Γ
1

2i − hj1g22Γ
1

1i − hj2g22Γ
2

1i + hj2g12Γ
2

2i

)

= 1

g11g22 − g21g12

(
g22

(
∂hj1

∂xi
−
∑

m

hjmΓ m
1i

)
− g12

(
∂hj2

∂xi
−
∑

m

hjmΓ m
2i

))
.

The last but one equality is obtained just by simplifying equal terms appearing with
opposite signs. By the Codazzi–Mainardi equations, the coefficients of g22 and g12
in the last line are equal to those obtained when permuting the roles of the indices i

and j . This concludes the proof of the integrability conditions.
Since the integrability conditions are satisfied, our system of partial differential

equations admits solutions of class C2 in a neighborhood of each point. As usual,
many solutions exist a priori, but we can force the uniqueness of the solution by
imposing initial conditions at some fixed point (x1

0 , x2
0) ∈ U . The idea is to choose

initial conditions which force, at the given point (x1
0 , x2

0), the properties that we
eventually want to be satisfied, at all points, by the three functions ϕ1, ϕ2 and μ.
More precisely, we want to have

⎧
⎪⎨

⎪⎩

(ϕi(x
1
0 , x2

0)|ϕj (x
1
0 , x2

0)) = gij (x
1
0 , x2

0)

(ϕi(x
1
0 , x2

0)|μ(x1
0 , x2

0)) = 0

(μ(x1
0 , x2

0)|μ(x1
0 , x2

0)) = 1

since we want ϕ1 and ϕ2 to become the partial derivatives of a parametric represen-
tation, while μ should become the corresponding normal vector of length 1.

To force these requirement, let us first arbitrarily choose three vectors e1, e2, e3
of R3 such that:

• e3 is an arbitrary vector of length 1;
• e1 and e2 are perpendicular to e3 and of lengths

‖e1‖ =
√

g11
(
x1

0 , x2
0

)
, ‖e2‖ =

√
g22

(
x1

0 , x2
0

);
• the angle θ between e1 and e2 is given by

cos θ = g12(x
1
0 , x2

0)
√

g11(x
1
0 , x2

0)

√
g22(x

1
0 , x2

0)

;

• the basis (e1, e2, e3) of R3 has direct orientation

(see Definition 3.2.3 in [4], Trilogy II). Notice that all this makes sense by Proposi-
tion 6.2.2. Indeed g11 > 0 and g22 > 0; moreover cos2 θ = 1 would imply that the
determinant of the metric tensor is zero, which is not the case; thus θ �= kπ and
therefore e1 and e2 are not proportional.
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The initial conditions that we impose on our system of partial differential equa-
tions are then simply

ϕ1
(
x1

0 , x2
0

)= e1, ϕ2
(
x1

0 , x2
0

)= e2, μ
(
x1

0 , x2
0

)= e3.

By Proposition B.4.1, we conclude the unique existence of three functions ϕ1, ϕ2

and μ of class C2, solutions of the system of partial differential equations above,
and satisfying these initial conditions.

We are next interested in finding the expected function f (x1, x2) such that

∂f

∂x1
= ϕ1,

∂f

∂x2
= ϕ2.

This is another system of partial differential equations, which admits solutions in a
neighborhood of our fixed point (x1

0 , x2
0) as soon as the integrability conditions

∂2f

∂xi∂xj
= ∂2f

∂xj ∂xi

are forced by the system of partial differential equations (see Proposition B.4.1
again). These integrability conditions thus mean

∂ϕj

∂xi
= ∂ϕi

∂xj

that is, considering the system of partial differential equations defining ϕ1, ϕ2 and
μ

Γ 1
ij ϕ1 + Γ 2

ij ϕ2 + hijμ = Γ 1
jiϕ1 + Γ 2

jiϕ2 + hjiμ.

These equalities hold by the assumption hij = hji and because Γ k
ij = Γ k

ji , by Propo-
sition 6.6.8.

But we know at once the general form of the solutions of the very simple system
of partial differential equations defining f :

f
(
x1, x2)=

∫ x1

x1
0

ϕ1
(
t, x2)dt + v0 =

∫ x2

x2
0

ϕ2
(
x1, t

)
dt + w0

where v0, w0 are arbitrary constant vectors. (Of course, by taking the integral of a
function with values in R

3 we mean taking the integrals of its three components.)
Fixing v0 (or equivalently, w0) as initial condition thus forces the uniqueness of the
solution. Notice that since ϕ1 and ϕ2 are of class C2, f is of class C3.

Our next job is to prove that f is the parametric representation of a surface admit-
ting precisely, as coefficients of its two fundamental quadratic forms, the coefficients
gij and hij . For that, we need once more to rely on systems of partial differential
equations.
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We observe first that

∂(ϕi |ϕj )

∂xk
=
(

∂ϕi

∂xk

∣∣∣ϕj

)
+
(

ϕi

∣∣∣
∂ϕj

∂xk

)

=
∑

l

Γ l
ik(ϕl |ϕj ) + hik(μ|ϕj ) +

∑

l

Γ l
jk(ϕi |ϕl) + hjk(ϕi |μ)

∂(ϕi |n)

∂xk
=
(

∂ϕi

∂xk

∣∣∣μ
)

+
(

ϕi

∣∣∣
∂μ

∂xk

)

=
∑

l

Γ l
ki(ϕl |μ) + hki(μ|μ) −

∑

lm

hkmglm(ϕi |ϕl)

∂(μ|μ)

∂xk
= 2

(
∂μ

∂xk

∣∣∣μ
)

= −2
∑

lm

hkmglm(ϕl |μ).

This proves that the functions

Gij = (ϕi |ϕj ), Ni = (ϕi |μ), N = (μ|μ)

satisfy the system of partial differential equations

⎧
⎪⎪⎨

⎪⎪⎩

Gij

∂xk =∑
l Γ

l
ikGlj + hikNj +∑

l Γ
l
jkGil + hjkNi

∂Ni

∂xk =∑
l Γ

l
kiNl + hkiN −∑

lm hkmglmGil

∂N
∂xk = −2

∑
lm hkmglmNl.

Observe that the initial conditions put on the system in ϕ1, ϕ2 and μ force pre-
cisely the satisfaction of the initial conditions:

Gij

(
x1

0 , x2
0

)= gij

(
x1

0 , x2
0

)
, Ni

(
x1

0 , x2
0

)= 0, N
(
x1

0 , x2
0

)= 1.

Again Proposition B.4.1 on systems of partial differential equations asserts the
uniqueness of a solution satisfying these initial conditions (this time there is no need
to check the integrability conditions). Therefore to conclude that

(
∂f

∂xi

∣∣∣∣
∂f

∂xj

)
= (ϕi |ϕj ) = gij

it suffices to prove that

Gij = gij , Ni = 0, N = 1
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is also solution of the above system, satisfying the same initial conditions. By Propo-
sition 6.6.8 and Definition 6.6.7

∑

l

Γ l
ikglj +

∑

l

Γ l
jkgli = Γikj + Γjki = ∂gij

∂xk

and this takes care of the first equation. The second equation reduces to

0 = hki −
∑

lm

hkmglmgil

which reduces further to

0 = hki − hki

since the glm are the coefficients of the matrix inverse to that of the gim. The third
equation is trivially satisfied: it reduces to ∂1

∂xk = 0. Moreover, the initial conditions
indicated are trivially satisfied.

By uniqueness of the solution, we thus have at each point

gij =
(

∂f

∂xi

∣∣∣∣
∂f

∂xj

)
,

(
∂f

∂xi

∣∣∣μ
)

= 0, (μ|μ) = 1.

In particular, μ is at each point a vector of length 1 orthogonal to the partial deriva-
tives of f .

When two vectors are linearly dependent, the matrix of their scalar products has
zero determinant:

∣∣∣∣
∣

(
−→
u |−→u ) (

−→
u |k−→

u )

(k
−→
u |u) (k

−→
u |k−→

u )

∣∣∣∣
∣
= (u|u)2

∣∣∣
∣
1 k

k k2

∣∣∣
∣= 0.

By Proposition 6.2.2, the condition

gij =
(

∂f

∂xi

∣∣∣∣
∂f

∂xj

)

implies that the matrix of the scalar products of the partial derivatives of f is regular;
these partial derivatives are thus linearly independent. Then by Proposition 5.2.4,
f is a regular parametric representation of a surface. Since μ is of length 1 and
orthogonal to the partial derivatives of f , it is the normal vector −→

n to the surface.
We must still prove that the coefficients hij are those of the second fundamental

quadratic form of f . We have already

∂2f

∂xi∂xj
= ∂ϕj

∂xi
= Γijϕ1 + Γijϕ2 + hijμ = Γij

∂f

∂x1
+ Γij

∂f

∂x2
+ hij

−→
n

where the Γ k
ij are the Christoffel symbols of the original Riemann patch and the

hij are the functions given in the statement. Comparing with Definition 6.6.2, these
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equalities prove that the Γ k
ij are also the Christoffel symbols of the surface repre-

sented by f , and the symbols hij are the coefficients of the second quadratic fun-
damental form. This concludes the proof of the existence of a surface f admitting
the gij and hij of the statement as coefficients of its two fundamental quadratic
forms. �

The proof of Theorem 6.16.2 indicates that the parametric representation f is
unique for the given choices of initial conditions. Changing these initial conditions
results simply in applying an isometry to the surface (see Problem 6.18.8). Thus the
surface in Theorem 6.16.2 is in fact unique up to an isometry.

6.17 What Is a Riemann Surface?

The time has come to give an elegant solution to the problem raised in Sect. 5.1:

The sphere does not admit a parametric representation in the sense of Def-
inition 5.1.1.

In other words, once more thinking of the sphere as being the Earth, we cannot
draw a “geographical map” of the whole Earth while respecting the requirements of
Definition 5.1.1. Even if we were to forget the requirements in Definition 5.1.1, there
is no particular practical interest in having a single geographical map of the whole
Earth. Such a map would necessarily feature extreme distortions, so the sensible
thing to do is to map the Earth using a full atlas of geographical maps. This is also
how we define a surface in full generality.

Now let us be aware that every geographical map of a portion of the Earth—no
matter how small—will necessarily have some distortions, because the Earth is not
flat! If we have a full atlas of maps to describe the Earth, the same portion of the
Earth may appear on several maps, with different distortions. As a consequence the
“elastic rulers” called metric tensors will then be different for the same portion of
the Earth on different maps. Nevertheless, these metric tensors will be equivalent,
in order to calculate from the various maps the same actual result at the surface of
the Earth.

Thus a surface should be a “universe” which can be mapped by an atlas of Rie-
mann patches, in such a way that when two Riemann patches of the atlas describe a
same portion of the “universe”, they are equivalent as Riemann patches (see Defini-
tion 6.12.5). It remains to say what “universe” means: this is simply the very general
notion of topological space (see Definition A.5.1). However, if you prefer not to en-
ter into this level of generality, simply think of a “universe” as being a subset of R3

as in Chap. 5, provided with the usual notions of openness, continuity, and so on.

Definition 6.17.1 A Riemann surface of class Ck consists of:

1. a topological space (X,T );
2. a covering X =⋃

i∈I Ui of X by open subsets Ui ∈ T ;
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3. for each index i ∈ I , a Riemann patch of class Ck

gjl : Vi −→ R, 1 ≤ j, l ≤ 2;
4. for each index i ∈ I , a homeomorphism

ϕi : Vi −→ Ui

which is called a local map.

These data must satisfy the following compatibility axiom. For every pair i, j of
indices and every connected open subset U ⊆ Ui ∩ Uj ,

(ϕi)
−1(U)

ϕi−→ U
ϕj

−1

−→ (ϕj )
−1(U)

is an equivalence of Riemann patches of class Ck .

Extending the geographical terminology, the set of local maps is often called the
atlas of local maps. In this book we shall mainly be interested in the following class
of surfaces:

Definition 6.17.2 By a Riemann surface in R
3 is meant a subset X ⊆ R

3 provided
with the induced topology (see Proposition A.5.4) and the structure of a Riemann
surface (see Definition 6.17.1), in such a way that for each local map

ϕi : Vi −→ Ui

the corresponding metric tensor is

gjl =
(

∂ϕi

∂xj

∣∣∣∣
∂ϕi

∂xl

)
.

Notice that in Definition 6.17.2, the local map ϕi is a regular parametric represen-
tation of Ui viewed as an ordinary surface in R

3 (see Definitions 5.1.1 and 5.2.1);
the last requirement indicates that the Riemann structure on Ui is precisely that
induced by the parametric representation (see Definition 6.1.1).

As expected:

Example 6.17.3 The sphere is a Riemann surface of R3.

Proof We know a parametric representation of the sphere of radius 1

x2 + y2 + z2 = 1

punctured at its two poles (0,0,±1) (see Example 5.1.6):

f (θ, τ ) = (cos τ cos θ, cos τ sin θ, sin τ).
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As we have seen, to be locally injective, this function must be considered on the
open subset

V = R×
]
−π

2
,+π

2

[
.

On this open subset of R3 we thus have four functions of class C∞ defining at each
point the metric tensor:

gij : V −→ R, 1 ≤ i, j ≤ 2

namely
(

g11 g12
g21 g22

)
=
(

cos2 τ 0
0 1

)
.

By Proposition A.9.4, each point Pi ∈ V has a neighborhood Vi on which f is
injective and moreover

f : Vi −→ f (Vi) = Ui

is a homeomorphism. Let us choose arbitrarily a family (Vi)i∈I of these Vi ’s such
that the corresponding Ui cover the whole punctured sphere.

Let us now make some remarks which will help to support our intuition.
When producing a geographical atlas of the Earth, each map of the atlas generally

corresponds to some fixed ranges of longitudes and latitudes, thus to some open
rectangle in R

2. Although it is not needed for the proof, to make the language more
intuitive, we will freely choose each open subset Vi to be an open rectangle in R

2.
Now we might be concerned that near the poles, the distortion of the maps “tends

to infinity”. First, we should be aware that such a distortion is mathematically not a
problem at all, even if “geographically” it is certainly not recommended. Neverthe-
less if our intuition insists on avoiding excessive distortions, we are free to replace in
what follows the “punctured sphere” by a “widely punctured sphere”: for example,

f : R× ]−π/3,π/3[ −→R
3.

In such a case, we consider only those points whose latitude is “less than 60 degrees
North or South”.

Finally we might wonder how many maps we will have in our atlas. This depends
on our choices, in particular on the size that we fix for each map. For example if we
insist on covering the whole punctured sphere with individual maps whose distortion
remains below some “geographically acceptable” bound, then near the poles, we
will have to consider smaller and smaller maps, eventually ending up with infinitely
many maps! Mathematically this is not a problem at all, since we do not have to
physically print all these maps!

So long for this digression. Whatever our choice is: the punctured sphere or a
“widely punctured” sphere, a finite or an infinite atlas, let us now observe that each
Ui is an open subset of the sphere. By choice of the open subsets Vi (open rectangles
in R

2), Ui is thus the portion of the sphere situated between two meridians and two
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parallels. Join all points of the four edges of Ui (i.e. the portions of meridians and
parallels limiting Ui ) to the center of the sphere. The interior of the “generalized
pyramid” obtained in this way is an open subset of R

3, whose intersection with
the sphere is precisely Ui . Therefore Ui is indeed an open subset of the sphere
with respect to the induced topology, by Proposition A.5.4. (Of course Vi being a
rectangle is unessential in this argument.)

Now the same point of the sphere can be written as

f (θ1, τ1) = f (θ2, τ2)

if and only if τ1 = τ2 while θ1 = θ2 + 2kπ . Therefore if Ui ∩ Uj �= ∅, then the
corresponding mapping

ϕ : f −1(Ui ∩ Uj )
f−→ Ui ∩ Uj

f −1

−→ f −1(Ui ∩ Uj )

is simply given by

ϕ(θ, τ ) = (θ + 2kπ, τ).

This is a bijection of class C∞ with inverse

ϕ−1(θ, τ ) = (θ − 2kπ, τ)

still of class C∞. This is thus a change of parameters of class C∞ and therefore,
by Proposition 6.12.2, it induces on each connected open subset an equivalence
between the corresponding Riemann patches, as required by Definition 6.12.5.

This already presents the sphere, punctured (or widely punctured) at its two poles
(0,0,±1), as a Riemann surface in the sense of Definition 6.17.1.

In a perfectly analogous way, interchanging the roles of the second and the third
components, the function

f̃ (θ̃ , τ̃ ) = (cos τ̃ cos θ̃ , sin τ̃ , cos τ̃ sin θ̃ )

is now a parametric representation of the sphere punctured (or widely punctured) at
the two points (0,±1,0). Just as above, this allows a presentation of this alternative
punctured (or widely punctured) sphere as a Riemann surface. Let us write Ṽj , Ũj

for the corresponding open subsets of R2 and of the sphere.
Considered together, these two punctured (or widely punctured) spheres cover

the whole sphere. Therefore considered together, all the open subsets Ui and Ũj

cover the whole sphere. To conclude that we have so obtained a presentation of the
sphere as a Riemann surface in the sense of Definition 6.17.1, it remains to prove the
required compatibility condition when Ui ∩ Ũj �= ∅. Again by Proposition 6.12.2,
this reduces to proving that the bijection

f −1(Ui ∩ Ũj )
f−→ Ui ∩ Ũj

f̃ −1

−→ f̃ −1(Ui ∩ Ũj )

is a change of parameters of class C∞, that is, is of class C∞ as is its inverse.
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So we must investigate the form of the change of parameters ϕ(θ, τ ) = (θ̃ , τ̃ )

such that f (θ, τ ) = f̃ (θ̃ , τ̃ ). This means

(cos τ cos θ, cos τ sin θ, sin τ) = (cos τ̃ cos θ̃ , sin τ̃ , cos τ̃ sin θ̃ ).

But since in any case

−π

2
< τ < +π

2
, −π

2
< τ̃ < +π

2

we always necessarily have

cos τ �= 0, cos τ̃ �= 0.

Dividing the second component by the third one, on both sides of the equality, we
then obtain

tan θ = tan τ̃

cos θ̃

while the third components give at once

sin τ = cos τ̃ sin τ̃ .

This proves that, at those points where both parametric representations are defined

(θ, τ ) =
(

arctan
tan τ̃

cos θ̃

)
, arcsin(cos τ̃ sin θ̃ ).

This is indeed a formula of class C∞. An analogous proof holds for the inverse
change of parameters, interchanging θ and θ̃ , and analogously τ and τ̃ . �

The example of the sphere should nevertheless not mislead the reader:

Warning 6.17.4 Being a Riemann surface of R3 is a property which is neither
stronger nor weaker than being a surface in the sense of Chap. 5.

Proof The sphere is an example of a Riemann surface of R3 which does not admit
a parametric representation in the sense of Chap. 5 (see Example 6.17.3).

On the other hand the surface of R3 (see Fig. 6.9) represented by

f : R2 −→R
3, (u, v) �→

(
u2 − 1

u2 + 1
, u

u2 − 1

u2 + 1
, s

)

is not a Riemann surface: at each “multiple” point f (−1, v) = f (1, v) (a point
where the surface “crosses itself”), every neighborhood of the point on the surface
is constituted of two sheets, thus is not homeomorphic to an open subset of R2. �
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Fig. 6.9

Warning 6.17.5 Even the support of an injective regular parametric representation

f : U −→R
3

need not be a Riemann surface in R
3.

Proof Observe that in the proof of Warning 6.17.4, restricting the parametric repre-
sentation to the open subset

]−1,∞[ × ]−∞,+∞[
avoids having multiple points, but the problem remains the same at all points
f (1, v). For the topology induced by R

3 on the support of the surface, each neigh-
borhood of the point f (1, v) is still comprised of two sheets. See also the comment
at the end of Sect. 6.4. �

Let us conclude with a definition which gives evidence of the power of the no-
tions and techniques developed in this chapter.

Definition 6.17.6 An n-dimensional Riemann patch of class Ck consists of a con-
nected open subset U ⊆ R

n, together with functions of class Ck

gij : U −→R, 1 ≤ i, j ≤ n

which, at each point (x1, . . . , xn), constitute a symmetric definite positive matrix.

The only differences with Definition 6.2.1 are:

• the replacement of R2 by R
n;

• the fact that the indices vary from 1 to n.

If you want to develop n-dimensional Riemannian geometry, simply repeat all the
definitions in dimension 2 by letting the indices vary from 1 to n. For example,
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if you are interested in Riemannian geometry of dimension 5, you will now have
53 = 125 Christoffel symbols Γ k

ij of the second kind, and 54 = 625 components
for the Riemann tensor. Nevertheless, the formulas remain “identical” to those in
dimension 2: for example

Rijkl = ∂Γjli

∂xk
− ∂Γjki

∂xl
+

5∑

α=1

(
Γ α

jkΓliα − Γ α
jlΓkiα

)
, 1 ≤ i, j, k, l ≤ 5.

Of course you can also transpose Definition 6.17.1 to dimension n, obtaining what
is called a Riemann manifold of dimension n.

6.18 Problems

6.18.1 In a Riemann patch of class C2, prove that

R1212 = R2121 = −R1221 = −R2112

while all other components of the Riemann tensor are equal to zero. Explain why
your argument no longer works for Riemann patches of higher dimensions (see
Definition 6.17.6).

6.18.2 Prove that the Riemann tensor is indeed a four times covariant tensor.

6.18.3 The Riemann tensor of Definition 6.11.4 is also called the Riemann tensor
of the second kind. As you easily imagine, there is also a so-called Riemann tensor
of the first kind:

Rl
ijk =

∑

α

gαlRαijk.

Prove that this is indeed a tensor three times covariant and one time contravariant.
Prove further that

Rl
ijk = ∂Γ l

ik

∂xj
− ∂Γ l

ij

∂xk
+
∑

α

(
Γ α

ikΓ
l
αj − Γ α

ij Γ l
αk

)

while

Rmijk =
∑

α

gαmRα
ijk.

6.18.4 Prove that the Christoffel symbols, in a change of parameters, transform
according to the formulas

Γ̃ijk =
∑

γ

(∑

α,β

Γαβγ

∂xα

∂x̃i

∂xβ

∂x̃j
+
∑

α

gαγ

∂2xα

∂x̃i∂x̃j

)
∂xγ

∂x̃k
,
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Γ̃ k
ij =

∑

γ

(∑

α,β

Γ
γ
αβ

∂xα

∂x̃i

∂xβ

∂x̃j
+ ∂2xγ

∂x̃i∂x̃j

)
∂x̃k

∂xγ
.

Therefore, they do not constitute a tensor.

6.18.5 With the comment at the end of Sect. 6.11 in mind, generalize Proposi-
tion 6.14.5 to express, in a system of geodesic coordinates, the Gaussian curvature
of a Riemann patch.

6.18.6 Consider a Riemann patch of class C2

gij : U −→ R, 1 ≤ i, j ≤ 2.

Prove that

1.
∂gij

∂xk
= Γikj + Γjki =

∑

l

Γ l
ikglj +

∑

l

Γ l
jkgli ;

2.
∂(g11g22 − g21g12)

∂xk
= 2(Γ 1

1k + Γ 2
2k)(g11g22 − g21g12);

3.
∂g11

∂xk
= 2

Γ 1
2kg12 − Γ 1

1kg22

g11g22 − g21g12
,
∂g22

∂xk
= 2

Γ 2
1kg21 − Γ 2

2kg11

g11g22 − g21g12
,

∂g12

∂xk
= ∂g21

∂xk
= −Γ 2

1kg22 + Γ 1
2kg11 − Γ 1

1kg21 − Γ 2
2kg12

g11g22 − g21g12
.

(See Proposition 6.2.4 for the explicit values of the symbols gij .)

6.18.7 Prove that given a regular surface f : U −→ R
3 of class C2 and an isometry

ϕ : R3 −→ R
3, the composite ϕ ◦ f is still a regular parametric representation of

a surface. Prove that both fundamental quadratic forms of these surfaces have the
same coefficients gij and hij .

6.18.8 Show that in the proof of Theorem 6.16.2:

• another choice of the vector v0 (or equivalently, w0) results in a translation of the
surface;

• another choice of the vector e3 keeps the point f (x1
0 , x2

0) fixed and results (via
Theorem 4.12.4 in [4], Trilogy II) in a rotation of the surface around an axis
passing through f (x1

0 , x2
0);

• another choice of the vectors e1, e2 in the plane perpendicular to e3 results in a
rotation of the surface around the axis of direction e3 passing through f (x1

0 , x2
0);

• the choice of the inverse orientation for the basis (e1, e2, e3) results in an orthog-
onal symmetry of the surface with respect to the plane passing through f (x1

0 , x2
0)

and whose direction is that of the plane (e1, e2).

We conclude that the surface in Theorem 6.16.2 is defined uniquely up to an isome-
try (see Sect. 4.11 in [4], Trilogy II).
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6.19 Exercises

6.19.1 Determine if the following pairs (U,g) are Riemann patches; if so, deter-
mine their class of differentiability.

1. U = R
2; g : U −→ R

2×2, (x1, x2) �→ ( 1 x1

−x1 2

)
.

2. U = R
2 \ {(0,0)}; g : U −→R

2×2, (x1, x2) �→ ( 1
(x1)2+(x2)2

0

0 1

)
.

3. U = R
2; g : U −→ R

2×2, (x1, x2) �→ ( 1
((x1)2+(x2)2+4)2

0

0 1
((x1)2+(x2)2+4)2

)
.

4. U = R
2; g : U −→ R

2×2, (x1, x2) �→ ( |x1| 1
2 x1

1
2 x1 |x1|

)
.

5. U = R
2; g : U −→ R

2×2, (x1, x2) �→ ( x1|x1|
√

2
2 |x1x2|√

2
2 |x1x2| x2|x2|

)
.

6.19.2 Construct a Riemann patch induced by:

1. the so-called inverse plane
⎧
⎨

⎩

x = u

u2+v2

y = v

u2+v2

z = 0;
2. the hyperbolic paraboloid.

6.19.3 Consider the Riemann patch

U = {(
x1, x2)∣∣x1 < 0 or x2 �= 0

};

g : U →R
2×2,

(
x1, x2) �→

(
1 + 4(x1)2 4x1x2

4x1x2 1 + 4(x2)2

)
.

Consider further

Ũ = R
∗+ × ]0,2π[;

ϕ : Ũ → U, ϕ
(
x̃1, x̃2)= (

x̃1 cos x̃2, x̃1 sin x̃2).

Determine g̃ so that ϕ : Ũ −→ U becomes an equivalence of Riemann patches be-
tween (Ũ , g̃) and (U,g). What are the corresponding classes of differentiability?

6.19.4 Consider the cone S with parametric representation

f : U =]0,∞[×R −→R
3, f (u, v) = (u cosv,u sinv,u).

1. Give a Riemann patch induced by S .
2. In this Riemann patch, determine the tangent and the normal vector fields to the

curves x1 = k and x2 = k, with k a constant.
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6.19.5 Compute the Riemann tensor of the Riemann patch defined in Exer-
cise 6.19.1.3.

6.19.6 Compute the Christoffel symbols of the first and the second kind:

1. of the sphere of radius R centered at the origin;
2. of the cone.

6.19.7 On the circular cylinder

f : R2 −→R
3, f (u, v) = (cosu, sinu,v)

consider the curve E represented by

h : R −→ R
2, h(t) = (t, sin t).

1. Show that this curve is an ellipse in R
3.

2. Calculate the covariant derivative along E of the following vector fields, defined
by their components with respect to the canonical basis of R3

ξ(t) =
⎛

⎝
0
0
1

⎞

⎠ , ξ(t) =
⎛

⎝
− sin t

cos t

0

⎞

⎠ .

6.19.8 On the sphere represented by

f (u, v) = (R cosu cosv,R cosu sinv,R sinu), R > 0

consider the “parallel” P determined by u = k, k ∈ R. Consider along P the vector
field ξ admitting the components ξ = ( 1

0

)
with repect to the basis of partial deriva-

tives of f . Compute the covariant derivative of ξ along P . Is ξ a parallel vector
field?

6.19.9 Consider the helicoid with parametric representation

f : R2 −→ R
3, f (u, v) = (u cosv,u sinv, v).

1. Construct a Riemann patch induced by the helicoid.
2. Compute the Christoffel symbols of the first and the second kind of the helicoid.
3. Consider the skew curve

f : R −→ R
3, f (t) =

(
t2 sin t, t2 cos t,

π

2
− t

)
.

Is this curve a geodesic of the helicoid?
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6.19.10 Let

g : ]a, b[ −→ R
3, s �→ g(s)

be a normal parametric representation of class C3 of a 2-regular skew curve C (see
Definition 4.1.3). Write n and b for the normal and the binormal vectors (see Defi-
nition 4.4.1). Given a ∈ R, consider the surface S represented by

f : ]a, b[ ×R −→ R
3, f (s, u) = g(s) + u

(
cosa · n(s) + sina · b(s)

)
.

1. Determine a parametric representation of the surface S defined by choosing

a = 0, g(s) = (
es cos s, es sin s, es

)
.

2. Determine a constant a so that C becomes a geodesic of S .
3. Construct a Riemann patch induced by S in the case a = π

2 .
4. Choose again a = π

2 . Compute the covariant derivative along C of the tangent

vector field ξ having components ξ = ( 1
−1

)
with respect to the basis of partial

derivatives of f .



Chapter 7
Elements of the Global Theory of Surfaces

Up to now, most of the results concerning surfaces appearing in this book have
referred only to what happens on some convenient neighborhood of a given point
of the surface. This last chapter introduces some considerations which make sense
only when one considers the surface globally.

First, we study some special families of surfaces, obtained by letting a curve
revolve around an axis in its plane (the surfaces of revolution), by letting a line
move continuously along a curve (the ruled surfaces), or by rolling up a piece of the
plane (the developable surfaces). We also pay special attention to the surfaces with
constant Gaussian curvature and in particular, to the sphere.

Of course, arriving at the end of this trilogy, we also “open some doors” to fur-
ther fascinating developments of geometry. We achieve this by drawing the reader’s
attention to some striking results whose proofs often rely on some deep topological
results which are beyond the scope of this book (such as the Jordan curve theorem).

We switch to the study of curve polygons drawn on a surface. Making clear
which topological results we rely upon, we prove the famous Gauss–Bonnet theo-
rem and we conclude with some first considerations on the Euler–Poincaré char-
acteristics of a surface: an integer which gives information concerning the global
shape of the surface.

7.1 Surfaces of Revolution

A first class of surfaces of interest is given by the surfaces of revolution:

Definition 7.1.1 A surface of revolution in three dimensional Euclidean space is
one which can be obtained by revolving a plane curve C around a line contained in
the plane of the curve, but not intersecting the curve (see Fig. 7.1).

Of course, there is no loss of generality in choosing the axis of revolution to be
the z-axis. Then
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© Springer International Publishing Switzerland 2014
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Fig. 7.1 A surface of revollution

Proposition 7.1.2 In the xz-plane of three dimensional Euclidean space, consider
a plane curve C of class Ck represented by

f : ]a, b[ −→ R
2, t �→ (x, z) = (

f1(t), f2(t)
)

and not intersecting the z-axis, i.e.

∀t ∈ ]a, b[ f1(t) �= 0.

Revolving the curve C about the z-axis yields a surface of revolution admitting the
parametric representation of class Ck

g : R× ]a, b[ −→R
3, (t, θ) �→ (x, y, z) = (

f1(t) cos θ, f1(t) sin θ, f2(t)
)
.

This representation g is regular as soon as f is regular.

Proof Of course, revolving C about the z-axis yields the “representation” g of the
statement. Trivially when f is of class Ck , so is g.

To have a parametric representation g of a surface, we must still prove that g is
locally injective. But g(t, θ) lies in the plane πθ containing the z-axis and making
an angle θ with the xz-plane; moreover, g(t, θ) is never on the z-axis, because
f1(t) �= 0 for all t . Thus two points g(θ1, t1) and g(θ2, t2), for two “close distinct
values” θ1, θ2, lie in two different vertical planes πθ1 , πθ2 but not in their intersection
(the z-axis); these two points are thus distinct, whatever the values of t1, t2. On the
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other hand for θ0 fixed, since f is locally injective, so is

t �→ (
f1(t) cos θ0, f1(t) sin θ0, f2(t)

)
, θ0 ∈ R

while at least one of the two quantities cos θ0, sin θ0 is non-zero. This proves that g

is locally injective.
When f is regular, the two partial derivatives of g are

∂g

∂t
= (

f ′
1(t) cos θ, f ′

1(t) sin θ, f ′
2(t)

)

∂g

∂θ
= (−f1(t) sin θ, f1(t) cos θ,0

)
.

The cross product of these partial derivatives (see Sect. 1.7 in [4], Trilogy II), is then

(−f1(t)f
′
2(t) cos θ,−f1(t)f

′
2(t) sin θ, f1(t)f

′
1(t)

)

= f1(t)
(−f ′

2(t) cos θ,−f ′
2(t) sin θ, f ′

1(t)
)
.

By Proposition 1.7.2 in [4], Trilogy II, we must prove that this vector is non-zero. By
assumption, f1(t) �= 0, thus if f ′

1(t) �= 0 we are done. Otherwise, when f ′
1(t) = 0,

by regularity of f , we have f ′
2(t) �= 0; since cos θ , sin θ never vanish together, the

cross product is again non-zero. Let us recall that this regularity condition is already
sufficient to force the local injectivity (see Proposition 5.2.4). �

The assumption that the curve C does not intersect the z-axis is essential in Propo-
sition 7.1.2: if we had allowed f (t0) = 0, then all pairs (t0, θ) would have been
mapped to the same point g(t0, θ) = (0,0, f2(t0)), contradicting the local injectiv-
ity of g.

Of course the first example that we have in mind is the following.

Example 7.1.3 The sphere, punctured at its two poles, is a surface of revolution
(see Fig. 7.2).

Proof The sphere is obtained by letting a half circle revolve about the diameter
joining its two extremities. Omitting these two extremities gives the expected result.
The parametric representation

f (θ, τ ) = (r cos τ cos θ, r cos τ sin θ, r sin τ)

of Example 5.1.6 is in the expected form given by Proposition 7.1.2. �

In Example 7.1.3, it does not surprise us that we have to consider a punctured
sphere, since the whole sphere does not admit a parametric representation in the
sense of Definition 5.1.1 (see also Example 6.17.3). The following example is per-
haps more enlightening in this respect:
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Fig. 7.2 The sphere

Fig. 7.3 A punctured circular elliptic paraboloid

Counterexample 7.1.4 The circular elliptic paraboloid (see Fig. 7.3) with equation

z = x2 + y2

is not a surface of revolution in the sense of Definition 7.1.1, but when it is punctured
at the origin it becomes such a surface of revolution.

Proof Of course this is a regular surface of class C∞ with parametric representation

f (x, y) = (
x, y, x2 + y2)
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Fig. 7.4 The (hemi)-pseudo-sphere

(see Example 5.1.2). This surface is also obtained by revolving a parabola about its
axis of symmetry, which yields the other “representation”

g(t, θ) = (
t cos θ, t sin θ, t2).

But g is not a parametric representation in the sense of Definition 5.1.1, because it
is not locally injective: all the points (θ,0) are mapped onto the origin. Of course
imposing t > 0 avoids the problem and presents the paraboloid punctured at the
origin as a surface of revolution: the surface obtained by letting a half parabola
revolve about the z-axis. �

One could of course decide to generalize our Definition 7.1.1 in order to recapture
more examples of surfaces of revolution, such as the full paraboloid. We shall not
do this. Let us instead review some other examples of interest:

Example 7.1.5 The (hemi)-pseudo-sphere with parametric representation

f (r, θ) =
(

r cos θ, r sin θ,

∫ 1

r

√
1

t2
− 1dt

)
, 0 < r < 1

(see Fig. 7.4 and Example 5.16.7) is a surface of revolution.
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Fig. 7.5 The circular hyperboloid of one sheet

Proof The parametric representation f is already in the form given in Proposi-
tion 7.1.2, since r > 0. The example of the whole pseudo-sphere follows analo-
gously (see Problem 5.17.15). �

Example 7.1.6 The circular hyperboloid of one sheet (see Fig. 7.5)

x2 + y2 − z2 = 1

is a surface of revolution (see Sect. 1.14 in [4], Trilogy II).

Proof By Proposition 7.1.2, it suffices to consider the function f in the proof of
Example 5.1.5. This surface is thus obtained by letting a branch of a hyperbola
revolve about one of the axes of symmetry of the hyperbola. �

Example 7.1.7 The torus is a surface of revolution.

Proof By Example 5.1.7 (see Fig. 7.6), the torus admits the parametric representa-
tion

f (τ, θ) = (
(R + r cos τ) cos θ, (R + r cos τ) sin θ, r sin τ

)
, R > r

and is thus a surface of revolution by Proposition 7.1.2. Let us recall that it is ob-
tained by revolving a circle about an axis not intersecting the circle. �
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Fig. 7.6 The torus

Fig. 7.7 A punctured circular semi-cone

Example 7.1.8 A half circular cone punctured at its vertex (Fig. 7.7) is a surface of
revolution.

Proof Simply let the first half diagonal of the xz-plane revolve about the z-axis:

f (t, θ) = (t cos θ, t sin θ, t), t > 0

to obtain a parametric representation as in Proposition 7.1.2. This yields the upper
half of the cone with equation

x2 + y2 − z2 = 0

punctured at its vertex (see Sect. 1.14) in [4], Trilogy II. �

Example 7.1.9 A circular cylinder (see Fig. 7.8) is a surface of revolution.
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Fig. 7.8 The circular cylinder

Proof Simply let the vertical line x = k (k > 0) of the xz-plane revolve around the
z-axis:

f (t, θ) = (k cos θ, k sin θ, t)

to get a parametric representation as in Proposition 7.1.2. �

It is common practice to make the further definition:

Definition 7.1.10 Given a surface of revolution as in Proposition 7.1.2, the merid-
ians are the various positions of the curve C in the space, that is, the curves

t �→ (
f1(t) cos θ0, f1(t) sin θ0, f2(t)

)
, θ0 ∈ R.

The parallels are the various circles, trajectories of a fixed point of the curve C
during the revolution, that is, the curves

θ �→ (
f1(t0) cos θ, f1(t0) sin θ, f2(t0)

)
, t0 ∈ ]a, b[.

This clearly extends the classical terminology in the case of the sphere.

Proposition 7.1.11 We consider a surface of revolution and use the notation and
terminology of Proposition 7.1.2 and Definition 7.1.11. We assume that f is a nor-
mal parametric representation of class C3.

1. The meridians are geodesics and lines of curvature.
2. The parallels are lines of curvature.
3. The meridians are perpendicular to the parallels.

4. The normal curvature of each parallel is constant and equal to
f ′

2(t0)

f1(t0)
.

5. The Gaussian curvature of the surface is equal to −f ′′
1

f1
.

6. The coordinates (t, θ) as in Proposition 7.1.2 constitute a system of geodesic
coordinates on each possible local map of the surface (see Definitions 6.17.2
and 6.17.1).
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Proof Up to a possible change of parameters, there is no loss of generality in as-
suming that 0 ∈ ]a, b[. As already observed in the proof of Proposition 7.1.2

∂g

∂t
= (

f ′
1(t) cos θ, f ′

1(t) sin θ, f ′
2(t)

)

∂g

∂θ
= (−f1(t) sin θ, f1(t) cos θ,0

)
,

from which we deduce at once

E = f ′
1(t)

2 + f ′
2(t)

2 = ∥∥f ′(t)
∥∥2 = 1, F = 0, G = f1(t)

2.

The meridians are the curves θ = constant while the parallels are the curves
t = constant. Since E = 1, the meridians are regular curves given in normal repre-
sentation. Since f1(t) �= 0, we have G �= 0 and the parallels are regular curves as
well. Since F = 0, the meridians are perpendicular to the parallels.

The normal vector to the surface is the cross product of the two partial derivatives,
divided by its norm. As observed in the proof of Proposition 7.1.2, this vector is
proportional to

−→
n = (−f ′

2(t) cos θ,−f ′
2(t) sin θ, f ′

1(t)
)

and in fact is equal to that quantity, since the normality of f forces this vector −→
n to

be of norm 1.
The second partial derivatives of g are

∂2g

∂t2
= (

f ′′
1 (t) cos θ, f ′′

1 (t) sin θ, f ′′
2 (t)

)

∂2g

∂t∂θ
= (−f ′

1(t) sin θ, f ′
1(t) cos θ,0

)

∂2f

∂θ2
= (−f1(t) cos θ,−f1(t) sin θ,0

)
.

It follows that

L = −f ′
2(t)f

′′
1 (t) + f ′

1(t)f
′′
2 (t), M = 0, N = f1(t)f

′
2(t).

But (−f ′
2(t), f

′
1(t)) is a vector perpendicular to f ′(t), with length 1 since f is in

normal representation. This is thus a vector of length 1 parallel to f ′′(t) (see Propo-
sition 2.8.3). This forces

|L| = ∥∥f ′′(t)
∥∥= κ(t)

where κ indicates the curvature of the plane curve represented by f (see Defini-
tion 2.9.1).

With respect to the basis of partial derivatives in the tangent plane, the meridians
are at each point the curves in the direction (1,0). Their normal curvature is thus
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simply (see Theorem 5.8.1)

κn(1,0) = L = ±κ(t).

But since for a curve on a surface

κ2 = κ2
n + κ2

g

where κg is the geodesic curvature (see Proposition 6.9.3), we conclude that the
geodesic curvature of the meridians is zero at each point. Thus the meridians are
geodesics (see Definition 6.10.1).

Analogously the parallels are at each point in the direction (0,1). Thus the nor-
mal curvature of the parallel t = t0 is given by

κn(0,1) = N

G
= f1(t0)f

′
2(t0)

f1(t0)2
= f ′

2(t0)

f1(t0)
.

Let us now consider a non-umbilical point. Considering Proposition 5.10.5 and
adopting its notation, choosing κ = L shows that (1,0) is a principal direction while
choosing κ = N

G
shows that (0,1) is a principal direction. This proves that the merid-

ians and the parallels are lines of curvature (see Definition 5.14.1).
By Corollary 6.13.2, we are in a system of geodesic coordinates, on each possible

local map.
The Gaussian curvature of the surface is given by (see Proposition 5.16.3)

κτ = LN − M2

EG − F 2
= (−f ′

2f
′′
1 + f ′

1f
′′
2 )(f1f

′
2)

f 2
1

= −(f ′
2)

2f ′′
1 + f ′

1f
′′
2 f ′

2

f1
.

By normality of f (see Definition 2.8.1) we have (f ′
1)

2 + (f ′
2)

2 = 1; differentiating
this equality yields f ′

2f
′′
2 = −f ′

1f
′′
1 . We thus obtain

κτ = −f ′′
1

f1

((
f ′

1

)2 + (
f ′

2

)2)= −f ′′
1

f1
. �

7.2 Ruled Surfaces

Roughly speaking, a ruled surface is one obtained by letting a straight line move
continuously in space. Fixing arbitrarily a point on the line, its various positions in
space constitute a trajectory which, most often, will satisfy the conditions for being
a skew curve (see Definition 4.1.1). This suggests the following definition.

Definition 7.2.1 A ruled surface is one admitting a parametric representation of
the form

f : U −→R
3, (s, t) �→ c(t) + s ξ(t)

where
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Fig. 7.9 A ruled surface

1. c : ]a, b[ −→ R
3 is a parametric representation of a skew curve;

2. ξ : ]a, b[ −→ R
3 is a continuous function such that ξ(t) �= 0 for all t ;

3. U ⊆ R × ]a, b[ is a connected open subset containing points (s, t) for each t ∈
]a, b[.

The various lines (or portions of lines) on the surface, represented by

s �→ c(t) + s ξ(t), t ∈ ]a, b[,
are called the rulings of the surface (see Fig. 7.9) and the curve c is called a directrix
of the surface.

Let us stress that:

Counterexample 7.2.2 Given a skew curve c and a function ξ as in Definition 7.2.1,
the function

(s, t) �→ f (s, t) = c(t) + sξ(t)

is generally not a parametric representation of a surface, whatever the choice of the
open subset U .

Proof Simply choose the curve to be the x-axis and ξ to be the constant function on
(1,0,0). Then each point f (s, t) lies on the x-axis. �

So indeed, requiring that f is a parametric representation of a surface (or condi-
tions implying this fact) must remain an explicit condition in Definition 7.2.1.

The first observation that we want to make concerning ruled surfaces is:

Proposition 7.2.3 The Gaussian curvature of a regular ruled surface

f (s, t) = c(t) + sξ(t)
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where c and s are of class C2 is always negative and given by

κτ = −M2

EG − F 2
.

Proof Trivially, ∂2f

∂s2 = 0, thus N = 0. The result follows by Proposition 5.16.3. �

The following property is also worth mentioning:

Proposition 7.2.4 Consider a regular ruled surface represented by

f : R× ]a, b[ −→R
3, (s, t) �→ c(t) + sξ(t).

1. The curve c(t) is regular.
2. The tangent plane at every point with parameters (s, t) contains the ruling

through that point.
3. The tangent plane is constant along the ruling

s �→ c(t0) + sξ(t0)

if and only if the vectors ξ(t0), ξ ′(t0) and c′(t0) are linearly dependent.
4. When c′(t0), ξ(t0) and ξ ′(t0) are linearly independent, the tangent plane to the

surface at each point of this ruling rotates by a half turn around the ruling while
s runs from −∞ to +∞.

Proof As observed in Sect. 5.5, the tangent plane at a given point is the plane con-
taining all the tangents to all the curves on the surface through this point. Since the
tangent to a line is the line itself, the tangent plane at a point of a ruling contains
this ruling.

The tangent plane at the point with parameters (s, t0) has a direction generated
by the two partial derivatives (see Definition 5.5.2) of f , that is

∂f

∂t
(s, t0) = c′(t0) + s ξ ′(t0),

∂f

∂s
(s, t0) = ξ(t0).

By regularity of the surface, these two vectors are linearly independent for all values
of s, thus in particular for s = 0. This proves already that c′(t0) and ξ(t0) are linearly
independent, thus in particular that c(t) is a regular curve (see Definition 2.2.1). But
then the two partial derivatives generate the same direction plane, for all values of s,
if and only if ξ ′(t0) is a linear combination of the two linearly independent vectors
c′(t0) and ξ(t0).

When the three vectors c′(t0), ξ(t0) and ξ ′(t0) are linearly independent, distinct
points of the ruling yield distinct directions of the tangent plane. When s runs from
−∞ to +∞, the direction of the first partial derivative rotates through a half turn:
from the direction of −ξ ′(t0) at −∞, to that of +ξ ′(t0) at +∞, passing through
c′(t0) for s = 0. �
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Fig. 7.10

Definition 7.2.5 Under the conditions of Proposition 7.2.4:

1. the ruling is called singular when the tangent plane is constant along that ruling;
2. when the ruling is not singular, the point of the ruling where the tangent plane is

orthogonal to its limit position is called the striction point of the ruling.

In some cases, all rulings have a striction point and these striction points consti-
tute a skew curve which can be taken as a directrix to describe the ruled surface.
This is somehow a “canonical choice” of the directrix. But singular rulings will also
turn out to play a crucial role later (see Theorem 7.6.1).

Our first example is that of a cylinder:

Example 7.2.6 Consider a regular plane curve C and a line � not parallel to the plane
of the curve. The figure comprising all the lines parallel to � and passing through a
point of C is called a (general) cylinder (see Fig. 7.10). Such a cylinder is a regular
ruled surface.

Proof We consider again a regular plane curve represented by

c : ]a, b[ → R
3, t �→ (

c1(t), c2(t),0
)

and a vector (k, l,m) with m �= 0. We define ξ(t) to be the constant function on
(k, l,m). The mapping

f : R× ]a, b[ −→ R
3, (s, t) �→ c(t) + sξ(t) = (

c1(t) + sk, c2(t) + sl, sm
)

admits the partial derivatives

∂f

∂t
= (

c′
1(t), c

′
2(t),0

)
,

∂f

∂s
= (

k, l,m
)
.
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Fig. 7.11

Since c is regular and m �= 0, this is a regular parametric representation (see Propo-
sition 5.2.4) of a ruled surface (see Definition 7.2.1), namely, the cylinder indicated
in the statement. �

Our next example is that of a cone:

Example 7.2.7 Consider a regular plane curve C and a point P not in the plane of C.
The figure comprising all the lines through P and a point of C is called a (general)
cone (see Fig. 7.11). The point P is called the vertex of this cone. A half cone,
punctured at its vertex, is a regular ruled surface.

Proof Let us consider the regular plane curve represented by

c : ]a, b[ −→ R
3, t �→ (

c1(t), c2(t),0
)

and the vertex P = (k, l,m) with m �= 0. For each value of t , we define ξ(t) to be
the vector joining P to c(t):

ξ(t) = c(t) − (k, l,m).

We consider further the mapping

f (s, t) = c(t) + sξ(t) = (1 + s)c(t) − s(k, l,m).

The two partial derivatives of f are

∂f

∂t
= (1 + s)c′(t), ∂f

∂s
= c(t) − (k, l,m)

that is

∂f

∂t
= (

(1 + s)c′
1(t), (1 + s)c′

2(t),0
)
,

∂f

∂s
= (

c1(t) − k, c2(t) − l,m
)
.
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Fig. 7.12

Since m �= 0 and c is regular, these two vectors are linearly independent as soon as
s �= −1. Thus by Proposition 5.2.4 and Definition 7.2.1,

f : ]−1,∞[ × ]a, b[, (s, t) �→ c(t) + s ξ(t)

is a regular parametric representation of a ruled surface: namely, the half cone punc-
tured at its vertex. �

Notice that this example of a cone also clearly shows why a ruled surface should
not be defined by

f : R× ]a, b[ −→R
3, (s, t) �→ c(t) + sξ(t).

The following example has already been considered in Exercise 5.18.19.

Example 7.2.8 Consider a 2-regular skew curve of class C3. All the half-tangents
to this curve constitute a regular ruled surface called the tangent surface to the curve
(see Fig. 7.12).

Proof Write

c : ]a, b[ −→ R
3, t �→ c(t)

for a parametric representation of the curve. The figure composed of all the tangents
to that curve is described by the function of class C2

f : R× ]a, b[ −→ R
3, (s, t) �→ c(t) + sc′(t).

The partial derivatives of f are

∂f

∂t
= c′(t) + s c′′(t), ∂f

∂s
= c′(t).

For each s �= 0, these two quantities are linearly independent, because c is 2-regular
(see Definition 4.1.3). By Lemma 5.2.3, f is thus injective in a neighborhood of each
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Fig. 7.13 The helicoid

point (s, t) with s �= 0. We obtain the expected regular ruled surface represented by

f : ]0,∞[ × ]a, b[ −→ R
3, (s, t) �→ c(t) + s c′(t).

Of course one could also work with s ∈ ]−∞,0[.
Notice that for s = 0, the partial derivatives of f both reduce to

∂f

∂t
= c′(t), ∂f

∂s
= c′(t)

thus are never linearly independent. �

Let us now recall some examples that we have already met in Chap. 6:

Example 7.2.9 The helicoid (see Example 5.1.8 and Fig. 7.13) represented by

f : R2 −→ R
3, (u, v) �→ (u cosv,u sinv, v)

is a ruled surface.

Proof Simply observe that

f (u, v) = (0,0, v) + u(cosv, sinv,0).

The curve c of Definition 7.2.1 is thus simply the z-axis. �

Example 7.2.10 The Möbius strip (see Example 5.1.9 and Fig. 7.14) represented
by

f (t, θ) = (
R cos θ,R sin θ,0

)+ t

(
cos

θ

2
, cos

θ

2
, sin

θ

2

)

is a ruled surface.
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Fig. 7.14 The Möbius string

Fig. 7.15 The hyperboloid of one sheet

Proof This follows by Definition 7.2.1; here the curve c is a circle of radius R. �

Let us also recall the existence of double ruled quadrics (see Sect. 1.15 in [4],
Trilogy II):

Example 7.2.11 The hyperboloid of one sheet (see Fig. 7.15)

x2

a2
+ y2

b2
− z2

c2
= 1

is a double ruled surface.

Proof As observed in the proof of Proposition 1.15.1 in [4], Trilogy II, through
every point of the ellipse obtained by cutting the hyperboloid by the plane z = 0
pass two lines entirely contained in the hyperboloid. The parametric representation
of this ellipse is given in Example 2.1.4. Thus the hyperboloid of one sheet should
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Fig. 7.16 The hyperbolic paraboloid

have two parametric representations of the form given in Definition 7.2.1:

f (t, θ) = (a cos θ, b sin θ,0) + t
(
α(θ),β(θ), γ (θ)

)
.

It is quite easy to determine the three functions α, β , γ . Introducing the three com-
ponents of f into the Cartesian equation of the statement we obtain

t2
(

α2(θ)

a2
+ β2(θ)

b2
− γ 2(θ)

c2

)
+ 2t

(
α(θ) cos θ

a
+ β(θ) sin θ

b

)
= 0.

Since this must be the case for all values of t , both coefficients of this polynomial
must be zero. Considering the coefficient of t yields at once

α(θ) = sin θ

b
, β(θ) = −cos θ

a

as solution (up to a scalar multiple); introducing these values into the coefficient of
t2 yields further

γ (θ) = ± c

ab
.

This gives the two expected possible functions ξ = (α,β, γ ) of Definition 7.2.1. �

Example 7.2.12 The hyperbolic paraboloid with equation

x2

a2
− y2

b2
= z

is a double ruled surface (see Fig. 7.16).

Proof Again as already observed in the proof of Proposition 1.15.2 in [4], Trilogy II,
through every point of the hyperbolic paraboloid pass two lines contained in the
surface.
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Fig. 7.17

Cutting the surface by the plane y = 0 yields the parabola with equation z = x2

a2

which we take as curve c in Definition 7.2.1. We are thus looking for a parametric
representation

f (t, x) =
(

x,0,
x2

a2

)
+ t

(
α(x),β(x), γ (x)

)

of the hyperbolic paraboloid. Introducing the three components of f into the Carte-
sian equation of the statement we obtain

t2
(

α2(x)

a2
− β2(x)

b2

)
+ t

(
2xα(x)

a2
− γ (x)

)
= 0.

Since this must hold for all values of t , both coefficients of this polynomial are
zero. Considering the coefficient of t2 yields at once α(x) = ±a and β(x) = ±b;
introducing these values into the coefficient of t gives γ (x) = ± 2x

a
. �

7.3 Applicability of Surfaces

In this section we formalize an important question, or more precisely, we observe
that we have already formalized it. Let us first express our problem using a well-
known example. Take a sheet of paper: everybody knows how to roll it up to get a
cylinder, or to get a cone. As a consequence, putting these two operations together,
you know how to transform a piece of a cylinder into a piece of a cone. This is of
course done “without any stretching”, since a piece of paper cannot be stretched!

Mathematically “without any stretching” means that if you consider the various
curves that you can draw on the piece of paper, the lengths of all these curves are
preserved when you roll up the sheet of paper to get a piece of a cylinder or a piece
of a cone. One says that the piece of cylinder is isometric to the piece of cone.

You might convince yourself that although lengths are preserved by this process,
angles are not. Take for example a piece of paper having the shape described in
Fig. 7.17. Glue the segment AB onto the segment AC to get a half-cone with ver-
tex A. On this cone, the two segments AB and AC coincide, thus their angle is zero,
which was not the case in the plane! Thus angles are not preserved.
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Although the arguments are correct, the conclusion is definitely false. Angles are
preserved!

First, let us make clear that—for example—a whole cylinder cannot be unrolled
and then rolled up again to obtain a cone: if you have glued a piece of paper to
produce a cylinder, you first have to unglue it before being able to get a cone out of
the same piece of paper. The problem that we have in mind thus concerns (possibly
big) “pieces of surfaces obtained without gluing”. Thus the problem should be stated
for pieces of surfaces on which the parametric representation is at least injective. The
most efficient way to achieve this is to consider local maps of Riemann surfaces in
R

3 (see Definition 6.17.1). Thus consider two Riemann surfaces of R
3 admitting

local maps

f : U −→ R
3, f̃ : Ũ −→ R

3.

Imagine that you have a homeomorphism (see Definition A.9.1)

ψ : f (U) −→ f̃ (Ũ )

which preserves the length of every curve on the surfaces. The composite

ϕ : U
f−→ f (U)

ψ−→ f̃ (Ũ )
f̃ −1

−→ Ũ

is then a homeomorphism, sufficiently differentiable as soon as ψ is. Saying that
ψ preserves angles or distances on the surfaces in R

3 is equivalent to saying that ϕ

preserves angles or distances, computed in the corresponding Riemann patches in
terms of the metric tensors (see Sect. 6.3). We then have:

Proposition 7.3.1 Consider two Riemann patches of class C0

gij : U −→R, g̃kl : Ũ −→ R

and a change of parameters

ϕ : U −→ Ũ ,
(
x1, x2) �→ (

x̃1, x̃2)

of class C1, with inverse of class C1. The following conditions are equivalent:

1. ϕ exhibits the equivalence of the two Riemann patches in the sense of Defini-
tion 6.12.5;

2. ϕ preserves the length of every curve, in the sense of Definition 6.3.2;
3. ϕ preserves the length of every curve and the angle between any two curves, in

the sense of Definitions 6.3.2 and 6.3.3.

Proof (1 ⇒ 3). Consider two regular curves

c : ]a, b[ −→ U, t �→ c(t) d : ]p,q[ −→ U, s �→ d(s)
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such that c(t0) = d(s0). Then by assumption

(
(ϕ ◦ c)′(t0)|(ϕ ◦ d)′(s0)

)
(ϕ◦c)(t0)=ϕ◦d)(s0)

=
∑

kl

g̃kl

(
(ϕ ◦ c)k

)′(
(ϕ ◦ d)l

)′

=
∑

kl

g̃kl

(∑

i

∂x̃k

∂xi

(
ci
)′
(t0)

)(∑

j

∂x̃l

∂xj

(
dj
)′
(s0)

)

=
∑

ij

(∑

kl

gkl

∂x̃k

∂xi

∂x̃l

∂xj

)(
ci
)′
(t0)

(
dj
)′
(s0)

=
∑

ij

gij

(
ci
)′
(t0)

(
dj
)′
(s0)

= ((
ci
)′
(t0)

∣∣(dj
)′
(s0)

)
c(t0)=d(s0)

.

This proves the preservation of the scalar product of the tangent vector fields, thus
also the preservation of the norm of each of them, just by choosing c = d . This
forces condition 3 of the statement, which trivially implies condition 2.

(2 ⇒ 1). Consider a point (x1
0 , x2

0) in U and the corresponding point ϕ(x1
0 , x2

0) =
(̃x1

0 , x̃2
0) in Ũ . Consider in U the curve c(x1) = (x1, x2

0); this forces c′(x1) = (1,0).
Consider the corresponding curve ϕ ◦ c in Ũ , yielding

(ϕ ◦ c)′
(
x1)=

(
∂x̃1

∂x1
,
∂x̃2

∂x1

)

since (c2)′ = 0. The preservation of the length of an arc of this curve reduces to the
equality

∫ x1

x1
0

g11
(
x1, x2

0

)
dx1 =

∫ x1

x1
0

∑

kl

g̃kl

(
x̃1, x̃2

0

)∂x̃k

∂x1

(
x1, x2

0

) ∂x̃l

∂x1

(
x1, x2

0

)
dx1.

Differentiating this equality with respect to x1 yields

g11
(
x1, x2

0

)=
∑

kl

g̃kl

(
x̃1, x̃2

0

)∂x̃k

∂x1

(
x1, x2

0

) ∂x̃l

∂x1

(
x1, x2

0

)

which is indeed the expected formula (see Definition 6.12.5).
An analogous argument holds of course for g22, considering this time the curve

c(x2) = (x1
0 , x2).
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Consider finally the curve c(t) = (x1
0 + t, x2

0 + t) in U , which yields c′(t) =
(1,1). The corresponding curve ϕ ◦ c in Ũ now yields, with abbreviated notation,

(ϕ ◦ c)′ =
(∑

i

∂x̃1

∂xi
,
∑

j

∂x̃2

∂xj

)
.

The preservation of the length of an arc of this curve then yields, after differentiation
with respect to t

∑

ij

gij =
∑

klij

g̃kl

∂x̃k

∂xi

∂x̃l

∂xj
.

Using the results already obtained for g11 and g22 and keeping in mind that the
metric tensor is symmetric, this expression reduces to

g12 =
∑

kl

g̃kl

∂x̃k

∂x1

∂x̃l

∂x2

which is again the expected formula, as in Definition 6.12.5. �

But then what about our “counterexample” of the cone? First of all, notice that
the injectivity requirement to have a local map is certainly not satisfied, since the
segment AB is identified with the segment AC. More importantly, note that this
“couterexample” exhibits a problem at the vertex of the cone, and as already ob-
served several times, a regular parametric representation of a piece of the cone can
never reach the vertex.

A natural reaction might be to replace the segments AB and AC by two segments
parallel to them but very close to them, inside the domain of definition of what now
becomes a local map of the cone. These two segments intersect at a point close to
A, but still inside the domain of definition of the local map. Since the two segments
(in dotted lines in Fig. 7.17) can be chosen “infinitely close to the segments AB

and BC”, the corresponding angles on the cone should converge to zero when the
new segments converge to AB and AC. Thus these angles cannot possibly remain
constant and equal to the angle θ in Fig. 7.17.

You are assuming some form of continuity of this “angle function” at a point
where it is not defined! Let us abandon this for the moment and consider the follow-
ing. Imagine that your two new segments are parallel to AB and AC, at a distance ε.
They therefore meet on the bisecting line of the angle BAC. Thus the two curves on
the cone meet on the ruling exactly opposite to the ruling obtained from AB , AC.
So when ε converges to zero, the two curves tend to proceed by a half turn, to the
other side of the cone. A striking difference with the rulings obtained from AB and
AC! It is no longer clear what happens to the angles. Certainly, no longer that clear
that your continuity argument on angles works. Perhaps it would be better to rely on
the proof of Proposition 7.3.1!

If you are not yet convinced and want to investigate your counterexample “con-
cretely” on a parametric representation of the cone, consider the following hint.
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What is the parametric representation of the cone that you are considering? Imag-
ine that you have constructed a circular cone having the upper z-axis as axis, by
rolling up the first quarter of R2, that is those points (x, y) with x > 0, y > 0. What
happens to the point

(x, y) = (R cos θ,R sin θ) ∈ ]0,∞[ × ]0,∞[ ?

The quarter of a circle of radius R in R
2 becomes a “parallel” of the cone, thus a full

circle four times smaller, that is, of radius 1
4R. But this circle remains at a distance

R from the vertex A, thus by Pythagoras’ Theorem (see 4.3.5 in [4], Trilogy II) it
lies at a height z such that

z2 +
(

1

4
R

)2

= R2

that is z =
√

15
4 R. The parametric representation thus maps the point (x, y) with

polar coordinates (R, θ) to

(
1

4
R cos 4θ,

1

4
R sin 4θ,

√
15

4
R

)
.

Now keep in mind that

R2 = x2 + y2, cos θ = x

R
, sin θ = y

R

while

cos 4θ = 8 cos4 θ − 8 cos2 θ + 1, sin 4θ = 4 sin θ cos3 θ − 4 sin3 θ cos θ.

Putting together all these quantities, you get the parametric representation of the
cone in terms of x and y. You are ready to compute angles using Proposition 5.4.4:
a quantity converging to zero in the denominator will convince you that your “con-
tinuity argument” cannot possibly hold!

So long for this discussion: we have a proof of Proposition 7.3.1 and we shall
rely on it. This proposition suggests the following definition:

Definition 7.3.2 Consider two local maps of two Riemann surfaces of R3

f : U −→R
3, h : V −→ R

3.

These two local maps are Riemann isometric when the corresponding Riemann
patches are equivalent (see Definitions 6.1.1 and 6.12.5).

More generally

Definition 7.3.3 Two Riemann surfaces of R3 are locally Riemann isometric when
each point of each surface lies in a local map which is Riemann-isometric to a local
map of the other surface.
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Our example of the cylinder and the cone makes clear that in general, the two
parametric representations f and h in Definition 7.3.2 are not equivalent in the sense
of Definition 5.1.1: they represent in general distinct surfaces, with distinct supports
and even, with supports having possibly very different shapes. On the other hand

Proposition 7.3.4 Two Riemann isometric local maps of Riemann surfaces of class
C3 in R

3 yield the same Gaussian curvature at corresponding points.

Proof With the notation of Definition 7.3.2, we have two local maps

f : U −→R
3, h : V −→ R

3

and a change of parameters

ϕ : U −→ V

which is an equivalence of Riemann patches. The surface originally represented
by h can equivalently be represented by h ◦ ϕ. The metric tensor of this surface,
when computed using the parametric representation h ◦ ϕ, is thus the metric tensor
computed via h and further transformed along ϕ, as in Proposition 6.12.1. By as-
sumption, this is precisely the metric tensor of the other surface, computed using
f . So the two surfaces represented by f and h ◦ ϕ have the same metric tensor and
therefore the same total curvature at corresponding points (see Theorem 6.11.3). �

7.4 Surfaces with Zero Curvature

This section begins the systematic study of Riemann-isometric surfaces (see Defi-
nition 7.3.2) and, more generally, locally Riemann-isometric surfaces (see Defini-
tion 7.3.3). In Sect. 5.2.7 we introduced this problem via the case of the cylinder
and the cone which—locally—are Riemann-isometric to a piece of the plane. Let
us first investigate further such a situation in the very general context of Riemann
surfaces.

Let us observe that a piece of the plane

f : U −→ R
3,

(
x1, x2) �→ (

x1, x2,0
)

viewed as a Riemann patch, is the connected open subset U ⊆ R
2 provided with the

corresponding metric tensor (see Definition 6.1.1), which simply takes the form of
the identity matrix:

(
g11 g12
g21 g22

)
=
(

1 0
0 1

)
.

The fundamental result is

Theorem 7.4.1 Consider a Riemann surface of class C3. The following conditions
are equivalent:
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1. The surface is locally Riemann-isometric to the plane.
2. In a neighborhood of each point, there exists a system of coordinates such that

the metric tensor takes the form
(

g̃11 g̃12
g̃21 g̃22

)
=
(

1 0
0 1

)
.

3. The Gaussian curvature is zero at each point.

Proof Conditions 1 and 2 of the statement are equivalent, just by definition.
(2 ⇒ 3). If all the coefficients gij of the metric tensor are constant, all the

Christoffel symbols of the first kind are zero (see Definition 6.6.7), hence so are
the Christoffel symbols of the second kind (see Proposition 6.6.8) and eventually,
all the coefficients of the Riemann tensor (see Definition 6.11.4). The result follows
by Definition 6.11.5.

To prove (3 ⇒ 2), let us apply Theorem 6.13.1 and work locally in a Fermi sys-
tem of geodesic coordinates, so that by Proposition 6.14.5, the Gaussian curvature
is given by

κτ = − 1

g22

∂2√g22

∂(x1)2
.

The nullity of this quantity reduces to that of the second partial derivative, thus

means that
∂
√

g22

∂x1 is a constant function of x1, for every fixed value x2
0 . Computing

this partial derivative we obtain the constant function of x1

∂
√

g22

∂x1

(
x1, x2

0

)= 1

2
√

g22(x1, x2
0)

∂g22

∂x1

(
x1, x2

0

)
.

But in a Fermi system of geodesic coordinates

∂g22

∂x1

(
0, x2

0

)= 0

(see Theorem 6.13.1) so that, by constancy of the function above

∂g22

∂x1

(
x1, x2

0

)= 0.

Once more this means that for every fixed value x2
0 , the function g22(x

1, x2
0) is

constant. But in a Fermi system of geodesic coordinates (see Theorem 6.13.1 again)
g22(0, x2) = 1. By constancy of the function, g22(x

1, x2
0) = 1 for all values x2

0 and
x1. Moreover, once more by Theorem 6.13.1, in a system of geodesic coordinates
one always has g11 = 1 and g12 = 0 = g21. �

Here is another interesting characterization of the surfaces which are locally
Riemann-isometric to a plane:
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Proposition 7.4.2 Consider a Riemann surface of class C3. The following condi-
tions are equivalent:

1. The surface is locally Riemann-isometric to a plane.
2. In a neighborhood of each point, the parallel transport of a vector along a piece-

wise regular curve is independent of the chosen curve.

Of course by parallel transport along a piecewise regular curve we mean the
parallel transport along the first side (see Theorem 6.8.4), followed by the parallel
transport along the second side, and so on up to the last side.

Proof (1 ⇒ 2). By Theorem 7.4.1, we can choose the metric tensor to be the identity
matrix. Since the coefficients gij of the metric tensor are constant, all the Christoffel
symbols of the first kind are zero (see Definition 6.6.7), hence so are the Christoffel
symbols of the second kind (see Proposition 6.6.8). This shows that the covariant
derivative of a vector field (ξ1, ξ2) along a regular curve c is simply given by

∇ξ

dt
=
(

dξ1

dt
,
dξ2

dt

)

(see Definition 6.7.3). Thus the vector field ξ is parallel (see Theorem 6.8.4) pre-
cisely when

dξ1

dt
= 0,

dξ2

dt
= 0

that is, when ξ = (ξ1, ξ2) is constant. So the parallel transport of a vector along a
regular curve—thus also along a piecewise regular curve—leaves that vector con-
stant. It is thus independent of the chosen piecewise regular curve.

(2 ⇒ 1). We apply Theorem 6.13.1 and work locally in a Fermi system of
geodesic coordinates. Then g11 = 1 while g12 = 0 = g21 and by Theorem 7.4.1, it
remains to prove that g22 = 1. But Theorem 6.13.1 also tells us that g22(0, x2) = 1:
thus it suffices to prove that g22 is a constant function of x1, that is ∂g22

∂x1 = 0. Let us

fix a point (x1
0 , x2

0) in the Riemann patch.
At each point of the Riemann patch, let us consider the vector

ξ =
(

0,
1√
g22

)
.

The restriction of ξ along the curve x1 = x1
0 is thus the tangent vector field of that

curve (see Example 6.4.3).
Let us now consider the parallel transport of the vector ξ(x1

0 , x2
0) from the point

(x1
0 , x2

0) to the point (x1
0 ,0)

1. first, along the curve x1 = x1
0 ;

2. second, along the piecewise regular curve comprised of the succession of the
three geodesics
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Fig. 7.18

• x2 = x2
0 , to reach the point (0, x2

0);
• x1 = 0, to reach the point (0,0);
• x2 = 0, to reach the point (x1

0 ,0),

(see Fig. 7.18). By assumption, both parallel transports must yield the same re-
sult.

Since the curve x2 = x2
0 is orthogonal to the curve x1 = x1

0 , the vector ξ(x1
0 , x2

0),
tangent to the second curve, is a vector of length 1 orthogonal to the curve x2 = x2

0 .
Since x2 = x2

0 is a geodesic in normal representation, its tangent vector field is a par-
allel vector field (see Proposition 6.10.2). By Proposition 6.8.3, the parallel transport
of ξ(x1

0 , x2
0) along the curve x2 = x2

0 yields at (0, x2
0) a vector still of length 1 and

still orthogonal to the curve x2 = x2
0 . Since the curve x1 = 0 is orthogonal to the

curve x2 = x2
0 , this is thus a vector of length 1 tangent to the curve x1 = 0, that is,

the tangent vector of that curve.
Since the curve x1 = 0 is a geodesic in normal representation, again by Proposi-

tion 6.10.2, a further parallel transport along the curve x1 = 0 up to the point (0,0)

will simply produce the tangent vector to the curve x1 = 0.
The argument, developed above for the curve x2 = x2

0 , can be applied to the curve
x2 = 0 and proves that a further parallel transport of the vector to the point (x1

0 ,0)

yields a vector of length 1, orthogonal to the curve x2 = 0 thus tangent to the curve
x1 = x1

0 . This is thus the vector ξ(x1
0 ,0).

Applying the above argument twice

• from (x1
0 , x2

0) to (x1
0 ,0);

• from (x1
0 ,0) to (x1

0 , x2
1),

we conclude that the parallel transport of the vector ξ(x1
0 , x2

0) to an arbitrary point
(x1

0 , x2
1) yields the vector ξ(x1

0 , x2
1). The tangent vector field ξ to the curve x1 = x1

0
is thus a parallel one. Notice that by Proposition 6.10.2, the curve x1 = x1

0 is thus a
geodesic.
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The differential equations for the vector field

ξ =
(

0,
1√
g22

)

being a parallel vector field along the curve

c
(
x2)= (

x1
0 , x2)

then reduce to
⎧
⎨

⎩

d 1√
g22

dx2 + 1√
g22

Γ 2
22 = 0

1√
g22

Γ 1
22 = 0.

The second equation shows that Γ 1
22 = 0 at each point (x1

0 , x2), that is, everywhere
since x1

0 has been arbitrarily fixed. But by Proposition 6.6.8 and keeping in mind
that g12 = 0 = g21, thus g12 = 0 = g21

Γ 1
22 = g11Γ221 = −1

2
g11 ∂g22

∂x1
.

Since g11 = 1, g11 = 1
g11

= 1 so that we obtain ∂g22
∂x1 = 0 as expected. �

7.5 Developable Surfaces

Let us now formalize the problem used to introduce the problem of applicability of
surfaces (see Sect. 7.3): Which surfaces of R3 can be obtained by rolling up a piece
of paper?

Definition 7.5.1 A Riemann surface of class C3 is developable when it admits a
parametric representation

f : U −→R
3

which preserves the length of every curve.

Let us first observe that developable surfaces are precisely those studied in
Sect. 7.4.

Proposition 7.5.2 For a Riemann surface of class C3, the following conditions are
equivalent:

1. the surface is developable;
2. the surface is locally Riemann-isometric to the plane;
3. the total curvature is zero at each point.
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Proof By Theorem 7.4.1, conditions 2 and 3 are equivalent. Proposition 7.3.1 shows
that condition 2 is equivalent to the local preservation of lengths. Of course global
preservation of lengths (i.e. condition 1) trivially implies the local preservation. It
remains to prove that the local preservation of lengths implies the global preserva-
tion.

Let us thus write f : U −→ R
3 for a parametric representation of the surface

such that each point of U admits a neighborhood on which f preserves the length
of every curve. Let us further consider a regular curve h : ]a, b[−→ U and two
points a < c < d < b. We must prove that the length of the arc of the curve h on
[c, d] is preserved by f .

For each c ≤ t ≤ d , there exists an open neighborhood Vt of h(t) on which f

preserves lengths. Then h−1(Vt ) is an open subset of R, thus a union of open inter-
vals (see Sect. A.1); one of these intervals contains t : let us call it It . By definition,
h(It ) ⊆ Vt . The various open intervals It thus cover the interval [c, d], which is
compact; therefore finitely many of them—let us say, It0 to Itn—already suffice to
cover [c, d] (see Sect. A.3). But then we can find finitely many points

c < s1 < s2 < · · · < sn−1 < sn < d

such that each interval [si , si+1] is contained in one of the intervals Itj . Since the
length of the curve represented by h is preserved by f on each piece [si , si+1], by
adding the finitely many pieces, the length on the full interval [c, d] is preserved. �

Example 7.5.3 In R
3, every cylinder of class C3 is developable.

Proof A cylinder has a parametric representation of the form

f (s, t) = c(t) + sξ

where ξ is a constant vector (see Example 7.2.6). It follows at once that ∂f
∂s

= ξ ,

thus ∂2f
∂t∂s

= 0. Therefore M = 0 (see Theorem 5.8.2) and the total curvature of the
cylinder is zero by Proposition 7.2.3. The result follows by Proposition 7.5.2. �

Example 7.5.4 In R
3, every cone of class C3 is developable.

Proof A cone has a parametric representation of the form

f (s, t) = c(t) + s
(
c(t) − ξ

)

where ξ is a constant vector (see Example 7.2.7). It follows at once that

∂f

∂t
= c′(t) + sc′(t), ∂f

∂s
= c(t) − ξ,

∂2f

∂t∂s
= c′(t).

In particular ∂2f
∂t∂s

is parallel to ∂f
∂t

and therefore, is in the direction of the tangent
plane. It is thus orthogonal to the normal vector −→

n to the surface, proving that
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M = 0 (see Theorem 5.8.2). The total curvature of the cone is then zero by Propo-
sition 7.2.3. The result follows by Proposition 7.5.2. �

Example 7.5.5 In R
3, every tangent surface of class C3 of a curve is developable.

Proof A tangent surface has a parametric representation of the form

f (s, t) = c(t) + sc′(t)

(see Example 7.2.8). It follows at once that

∂f

∂t
= c′(t) + sc′′(t), ∂f

∂s
= c′(t), ∂2f

∂t∂s
= c′′(t).

Subtracting the two partial derivatives shows that c′′(t) is in the direction of the
tangent plane, thus is orthogonal to the normal vector −→

n to the surface. This proves
that M = 0 (see Theorem 5.8.2). The total curvature of the tangent surface is then
zero by Proposition 7.2.3. The result follows by Proposition 7.5.2. �

7.6 Classification of Developable Surfaces

The key to a classification of the developable surfaces of R3 is the following result
(see Exercise 7.17.5 concerning the assumption on the absence of planar points).

Proposition 7.6.1 Consider a Riemann surface in R
3, without any planar point,

and given by a regular parametric representation of class C3. The following condi-
tions are equivalent:

1. The surface is developable.
2. The surface is locally Riemann-isometric to a ruled surface all of whose rulings

are singular.

Proof Assume first that the surface is developable. By Proposition 7.5.2, we know
that the Gaussian curvature is zero at each point; thus at least one principal curvature
is zero at each point (see Definition 5.16.1). But since by assumption there are no
planar points (see Definition 5.16.9), there are no umbilical points and thus both
principal curvatures cannot vanish together. Let us simply write κ for the non-zero
principal curvature at each point.

Let us now apply Theorem 5.6.2 and, in a neighborhood of P , choose a paramet-
ric representation f (s, t) such that:

• f (0,0) = P ;
• at each point, ∂f

∂t
is oriented along the principal direction of principal curvature κ ;

• at each point, ∂f
∂s

is oriented along the principal direction of principal curvature 0.
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Performing an additional change of coordinates separately on the two axes

ϕ(s, t) = (
ϕ1(t), ϕ2(s)

)

does not affect the orientation of the partial derivatives, thus there is no loss of
generality in assuming that

• the curve s �→ f (s,0) is in normal representation;
• the curve t �→ f (0, t) is in normal representation.

Since the partial derivatives of f are oriented along the principal directions, they
are orthogonal at each point (see Theorem 5.10.1), thus F(s, t) = 0 at each point.
Furthermore, since the two curves t = 0, s = 0 are in normal representation, we
have in fact

E(0, t) = 1, F (s, t) = 0, G(s,0) = 1.

Moreover, one has

L(s, t) = 0, M(s, t) = 0, N(s, t) = κ(s, t)G(s, t).

Indeed the principal directions are at each point given by (1,0) and (0,1) with re-
spect to the basis of partial derivatives. Introducing these directions into the formula
of Proposition 5.8.4 gives the first and the third equalities. The second equality fol-
lows from the first equation in Proposition 5.10.5, when choosing the direction (0,1)

corresponding to the principal curvature 0.
Proving that f has the form

f (s, t) = c(t) + s ξ(t)

(that is, we have a ruled surface) is equivalent to proving that f is linear in the

variable s, which by derivation and integration, is equivalent to proving that ∂2f

∂s2 = 0

at each point. We shall achieve this part of the proof by showing that ∂2f

∂s2 = 0 is
orthogonal to all three vectors of the orthonormal basis

−→ε1 =
∂f
∂s

‖ ∂f
∂s

‖ =
∂f
∂s√
E

, −→ε2 =
∂f
∂t

‖ ∂f
∂t

‖ =
∂f
∂t√
G

,
−→
n = ε1 × ε2.

Of course, −→
n is at each point the normal vector to the surface.

Since (
−→
n | ∂f

∂t
) = 0, we obtain

(
∂
−→
n

∂t

∣∣∣∣
∂f

∂t

)
+
(

−→
n

∣∣∣∣
∂2f

∂t2

)
= 0

that is
(

∂
−→
n

∂t

∣∣∣∣
∂f

∂t

)
= −N = κG.
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Analogously we have
(

∂
−→
n

∂s

∣∣∣∣
∂f

∂s

)
= −L = 0

and this proves already that ∂2f

∂s2 = 0 is orthogonal to −→
n . Finally

(
∂
−→
n

∂t

∣∣∣∣
∂f

∂s

)
=
(

∂
−→
n

∂s

∣∣∣∣
∂f

∂t

)
= −M = 0.

Differentiating the equality (
−→
n |−→n ) = 1 indicates that the partial derivatives of−→

n are orthogonal to −→
n . Expressed with respect to the orthonormal basis (ε1, ε2)

they are thus given by (see Proposition 4.6.2)

∂
−→
n

∂t
=
(

∂
−→
n

∂t

∣∣∣ε1

)
ε1 +

(
∂
−→
n

∂t

∣∣∣ε2

)
ε2

= − M√
EG

∂f

∂s
− N

G

∂f

∂t

= −κ
∂f

∂t

∂
−→
n

∂s
=
(

∂
−→
n

∂s

∣∣∣ε1

)
ε1 +

(
∂
−→
n

∂s

∣∣∣ε2

)
ε2

= −L

E

∂f

∂s
− M√

EG

∂f

∂t

= 0.

In particular this forces the first equality below:

(
∂2f

∂s2

∣∣∣∣
∂f

∂t

)
=
(

∂2f

∂s2

∣∣∣∣−
1

κ

∂
−→
n

∂t

)
= 1

κ

(
∂f

∂s

∣∣∣∣
∂2−→n
∂t∂s

)
= 0.

The second equality is obtained by differentiating the equality
(

∂f

∂s

∣∣∣∣
∂
−→
n

∂t

)
=
(

∂f

∂s

∣∣∣∣− κ
∂f

∂t

)
= 0

and the third one holds since ∂
−→
n

∂v
= 0. All this proves that ∂2f

∂s2 is orthogonal to ε2.
To prove the orthogonality to ε1, we observe that

∂

∂t

(
∂f

∂s

∣
∣∣∣
∂f

∂s

)
= 2

(
∂f

∂s

∣
∣∣∣
∂2f

∂t∂s

)
= −2

(
∂2f

∂s2

∣
∣∣∣
∂f

∂t

)
= 0;

the last but one equality is obtained by differentiating the equality (
∂f
∂s

| ∂f
∂t

) =
0. These equalities prove that (

∂f
∂s

| ∂f
∂s

) = E2 is a constant function of s. Since
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E(0, s) = 1, we conclude that E(s, t) = 1 at all points. Differentiating the equal-

ity (
∂f
∂s

| ∂f
∂s

) = 1 we obtain 2(
∂2f

∂s2 | ∂f
∂s

) = 0 which proves that ∂2f

∂s2 is orthogonal to
ε1.

We have thus proved that ∂2f

∂s2 = 0 and we know therefore that f has the expected
form

f (s, t) = c(t) + sξ(t)

for being a ruled surface. The rulings are the curves t = k, with k a constant. But
since ∂

−→
n

∂s
= 0, the normal vector to the surface is constant along each ruling. So

the tangent plane to the surface is constant along each ruling and thus each ruling is
singular (see Definition 7.2.5).

Conversely, consider a ruled surface represented by

f (s, t) = c(t) + sξ(t)

and assume that all rulings are singular. This means that the normal vector −→
n is

constant along each ruling t = k, k a constant, that is, ∂
−→
n

∂s
= 0. Differentiating the

equality (
∂f
∂t

|−→n ) = 0 we then get (
∂2f
∂t∂s

|−→n ) = (
∂f
∂t

| ∂
−→
n

∂s
) = 0. In other words, M = 0.

By Proposition 7.2.3, the Gaussian curvature is zero. The result follows by Theo-
rem 7.6.1. �

Let us now prove that every developable surface is obtained by “gluing together”
pieces of cylinders, cones and tangent surfaces (see Examples 7.5.3, 7.5.4, 7.5.5).

Theorem 7.6.2 Consider a developable Riemann surface in R
3, without any planar

points, and given by a regular parametric representation of class C3. In a neighbor-
hood U of each point, there exists a dense sub-neighborhood V ⊆ U such that, in a
neighborhood of each point of V the surface has one of the following three forms:

• a cylinder (see Example 7.2.6);
• a cone (see Example 7.2.7);
• a tangent surface to a curve (see Example 7.2.8).

Proof In a neighborhood of P , we freely use the parametric representation

f : U −→ R
3, (s, t) �→ f (s, tr)

already considered in the proof of Proposition 7.6.1, together with the various re-
sults established in that proof. Of course we can at once restrict our attention to a
neighborhood of the form I × J , where I and J are two open intervals of the real
line. We also freely use the basic topological notions and results of Appendix A.

First we notice that

(
ξ ′∣∣−→n )=

(
∂2f

∂t∂s

∣∣∣−→n
)

= M = 0.
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Thus ξ ′ lies in the tangent plane. On the other hand

(
ξ ′∣∣ξ

)=
(

∂2f

∂t∂s

∣∣∣∣
∂f

∂s

)
= −

(
∂f

∂t

∣∣∣∣
∂2f

∂s2

)
= 0;

the last but one equality is obtained by differentiating the equality (
∂f
∂t

| ∂f
∂s

) = 0 and

the last one holds because ∂2f

∂s2 = 0. All this proves that ξ ′ is orthogonal to ξ = ∂f
∂s

in the tangent plane, thus ξ ′ is parallel to ∂f
∂t

. Observing further that

∂f

∂t
= c′(t) + s ξ ′(t)

we conclude that c′ is parallel to ∂f
∂t

, thus to ξ ′.
The curve c is the curve s = 0: by choice of f , it is in normal representation.

Thus ‖c′‖ = 1 and since ξ ′ is parallel to c′,

ξ ′ = (
ξ ′∣∣c′)c′

(see Proposition 4.6.2 in [3], Trilogy I). The rest of our argument is based on the
consideration of the real valued function

μ(t) = (
ξ ′(t)

∣∣c′(t)
)

which remains of class C2.
By continuity, if μ or μ′ takes a non-zero value at some point, it takes a non-zero

value on a whole neighborhood of that point. Therefore the following three subsets
of U are open and, trivially, pairwise disjoint:

V1 =
{
t0 ∈ I

∣∣∣∣
there exists a neighborhood W of t0
such that for all t ∈ W μ(t) = 0

}
,

V2 =
⎧
⎨

⎩
t0 ∈ I

∣∣
∣∣∣∣

μ(t0) �= 0
there exists a neighborhood W of t0
such that for allt ∈ W μ′(t) = 0

⎫
⎬

⎭
,

V3 =
{
t0 ∈ I

∣∣∣
∣
there exists a neighborhood W of t0
such that for all t ∈ W μ(t) �= 0 and μ′(t) �= 0

}
.

It is immediate that the complement of V1 ∪V2 ∪V3 in I is given by W1 ∪W2, where

W1 =
{
t0 ∈ I

∣∣∣∣
every neighborhood W of t0
contains a point t such that μ(t) �= 0

}
,

W2 =
{
t0 ∈ I

∣∣∣∣
every neighborhood W of t0
contains a point t such that μ′(t) �= 0

}
.

We now want to prove that the open subset V1 ∪ V2 ∪ V3 is dense in I . For that
we must prove that every neighborhood of every point of I intersects V1 ∪ V2 ∪ V3
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(see Proposition A.6.3). The result is obvious for the points of V1 ∪ V2 ∪ V3, thus it
remains to prove the assertion for the points of W1 ∪ W2.

Let W be a neighborhood in I of a point t0 ∈ W1. By definition of W1, there
exists a t ∈ W such that μ(t) �= 0.

• If μ′(t) �= 0, by continuity this is the case on a neighborhood of t and then t ∈ V3.
• If μ′(t0) = 0, two possibilities occur:

1. μ′ = 0 on a neighborhood of t , in which case t ∈ V2;
2. every neighborhood of t contains a point t ′ such that μ′(t ′) �= 0; restricting

further our attention to a smaller neighborhood W ′ of t on which μ remains
everywhere non-zero, we conclude that t ′ ∈ V3.

Let W be a neighborhood in I of a point t0 ∈ W2. By definition of W1, there
exists a t ∈ W such that μ′(t) �= 0.

• If μ(t) �= 0, by continuity this is the case on a neighborhood of t and then t ∈ V3.
• If μ(t0) = 0, two possibilities occur a priori, but in fact only one is acceptable:

1. μ = 0 on a whole neighborhood of t , implying μ′(t) = 0, which is not the
case;

2. thus every neighborhood of t contains a point t ′ such that μ(t ′) �= 0; restricting
further our attention to a smaller neighborhood W ′ of t on which μ′ remains
everywhere non-zero, we conclude that t ′ ∈ V3.

This concludes the proof of the density of V1 ∪V2 ∪V3 in I and as a consequence,
it follows at once that

(V1 × J ) ∪ (V2 × J ) ∪ (V3 × J )

is dense in the open subset I × J on which we consider f . We shall prove that
the three pieces of this union correspond to the three cases of developable surfaces
mentioned in the statement.

If t0 ∈ V1, since ξ ′(t) = μ(t) · c′(t), we obtain ξ ′(t) = 0 on a neighborhood of
t0. Thus ξ(t) is constant on a neighborhood I ′ of t0 and the surface is a cylinder on
I ′ × J (see Example 7.2.6).

If t0 ∈ V2, then μ(t0) �= 0 and μ is constant on a neighborhood of t0, because its
derivative is zero. Therefore on that neighborhood, ξ ′(t) = μ(t0) · c′(t). Integrating
this equality, we get

ξ(t) − ξ(t0) = μ(t0)
(
c(t) − c(t0)

)
.

We can then re-write the parametric representation as

f (s, t) = c(t) + s
(
ξ(t0) + μ(t0)

(
c(t) − c(t0)

))

= c(t) + sμ(t0)
(
c(t) − (

c(t0) − ξ(t0)
))

.

Performing further the change of parameter s′ = sμ(t0), we recapture the parametric
representation of a cone (see Example 7.2.7).
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Finally we consider the case t0 ∈ V3. By definition of V3, μ(t) and μ′(t) are
non-zero on some neighborhood of t0. It thus makes sense to consider, on such a
neighborhood, the function

λ(t) = c(t) − ξ(t)

μ(t)
.

One computes at once that

λ′ = c′ − ξ ′μ − ξμ′

μ2
= ξ ′

μ
− ξ ′

μ
+ ξ

ξ ′

μ2
= ξ

ξ ′

μ2

λ′′ = ξ ′ μ′

μ2
+ ξ

μ′′μ2 − 2μ′2μ
μ4

.

Since ξ ′ is orthogonal to ξ and ξ ′ is non-zero, it follows that λ′ and λ′′ are lin-
early independent, thus λ is a 2-regular parametric representation of a curve (see
Proposition 4.1.4 and Definition 4.1.3).

Let us now re-write the parametric representation of the surface in terms of this
curve λ:

c(t) + sξ(t) = λ(t) + ξ(t)

μ(t)
+ s ξ(t)

= λ(t) + ξ(t)

(
1

μ(t)
+ s

)

= λ(t) + λ′(t)μ(t)2

μ′(t)

(
1

μ(t)
+ s

)

= λ(t) + λ′(t)
(

μ(t)

μ′(t)
+ s

μ(t)2

μ′(t)

)
.

It remains to perform the change of parameters

t̃ = t, s̃ = μ(t)

μ′(t)
+ s

μ(t)2

μ′(t)

to obtain as expected (see Example 7.2.8) a representation of the form

λ( t̃ ) + s̃λ′( t̃ ).

That this is a good change of parameters is attested by the Local Inverse Theorem
(see Theorem 1.3.1), since the matrix of partial derivatives has the form

(
∂t̃
∂t

∂ t̃
∂s

∂s̃
∂t

∂s̃
∂s

)

=
⎛

⎝
1 0

∂s̃
∂t

μ(t)2

μ′(t)

⎞

⎠ .
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The determinant of this matrix is simply μ(t)2

μ′(t) , which is always non-zero since t0 ∈
V3. �

7.7 Surfaces with Constant Curvature

Developable surfaces have zero Gaussian curvature; since all of them are locally
Riemann-isometric to a plane, any two of them are locally Riemann-isometric to
each other (see Sects. 7.4, 7.5 and 7.6). This section generalizes these considerations
to the case of surfaces with arbitrary constant Gaussian curvature.

Theorem 7.7.1 Consider two Riemann surfaces of class C3 in R
3, both with con-

stant Gaussian curvature. The following conditions are equivalent:

1. The two surfaces have the same Gaussian curvature.
2. The two surfaces are locally Riemann-isometric (see Definition 7.3.3).

Proof One implication is attested by Proposition 7.3.4. So let us assume that both
surfaces have constant Gaussian curvature κ . We consider the Fermi system of co-
ordinates (see Theorem 6.13.1) in a neighborhood of a point P of the first surface,
based on some arbitrarily chosen geodesic passing through P . The constant Gaus-
sian curvature is given by

κ = − 1√
g22

∂2√g22

∂(x1)2

(see Proposition 6.14.5). For each fixed value x2
0 , this provides the equality

∂2
√

g22(x1, x2
0)

∂(x1)2
= −κ

√
g22(x1, x2

0).

Moreover, still by Theorem 6.13.1, we have the two initial conditions

√
g22(0, x2) = 1,

∂

√
g22(0, x2

0)

∂x1
= 0.

This can be viewed as a second order differential equation involving the function
g22(x

1, x2
0) and the variable x1 (see Sect. B.2). Integrating this system is immediate

and provides the solutions

√
g22

(
x1, x2

0

) = cos
(√

κx1
)

if κ > 0
√

g22
(
x1, x2

0

) = 1 if κ = 0
√

g22
(
x1, x2

0

) = cosh
(√−κx1

)
if κ < 0.
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In Fermi coordinates, whatever the surface with constant Gaussian curvature κ ,
whatever the point P chosen as origin and whatever the base geodesic through P ,
the metric tensor, in a neighborhood of P , takes the form

(
1 0
0 cos2(

√
κ x1)

)
if κ > 0

(
1 0
0 1

)
if κ = 0

(
1 0
0 cosh2(

√−κx1)

)
if κ < 0.

Thus in Fermi coordinates, the two surfaces of the statement admit exactly the same
metric tensor in a neighborhood of two arbitrary points and therefore are locally
Riemann-isometric. �

Notice that the proof of Theorem 7.7.1 establishes a more precise result:

Corollary 7.7.2 Consider two Riemann surfaces of class C3 in R
3, both with the

same constant Gaussian curvature κ . Fix a point P of the first surface and choose
a geodesic through P ; analogously fix a point Q of the second surface and choose
a geodesic through Q. Then P and Q belong to respective local maps which are
equivalent via an equivalence which maps P to Q and transforms into each other
the two chosen geodesics.

Corollary 7.7.3 Locally, a Riemann surface of class C3 in R
3 with constant Gaus-

sian curvature is Riemann-isometric to a sphere, a plane or a pseudo-sphere.

Proof This follows by Theorem 7.7.1 and Examples 5.16.5, 5.16.4 and 5.16.7. �

Observe that Corollary 7.7.2 tells us in particular that two arbitrary points of the
same pseudo-sphere always admit Riemann-isometric neighborhoods. It also tells us
that fixing a point P of the pseudo-sphere and two geodesics through that point, we
can “rotate” on the pseudo-sphere some neighborhood of P so that the first geodesic
is moved onto the second one. These results are far from being obvious when just
observing the shape of a pseudo-sphere, as in Fig. 5.13. Nevertheless, it follows
from our Theorem 7.7.1: if you had a (of course non-flat) piece of paper having
exactly the shape of a piece of the pseudo-sphere, you would be able to run that
piece of paper everywhere along the pseudo-sphere, all the time maintaining full
contact between the piece of paper and the pseudo-sphere. Thus for two Riemann
surfaces of R3, having the same constant Gaussian curvature does not imply having
the same shape as subsets of R3.

Now what about the surfaces with constant positive curvature? Clearly enough,
two pieces (of the same size) of a sphere always have the same shape as pieces
of R3. But are there other surfaces than the sphere which admit a constant strictly
positive Gaussian curvature?
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Example 7.7.4 There exist surfaces of revolution, other than the sphere, with con-
stant positive Gaussian curvature.

Proof With the notation of Proposition 7.1.11, to obtain a surface of revolution with
constant Gaussian curvature 1

R2 , it suffices to rotate a plane curve given in normal
parametric representation by

f (t) = (
f1(t), f2(t)

)

and such that

1

R2
= −f ′′

1

f1
.

This last equality can be regarded as a differential equation

f ′′
1 = − 1

R2
f1.

The general solution of this equation is

f1(t) = a cos

(
t

R
+ b

)

where a and b are constants. Observing that

f ′
1(t) = − a

R
sin

(
t

R
+ b

)

one obtains f ′
2 from the normality requirement (f ′

1)
2 + (f ′

2)
2 = 1

f ′
2 =

√

1 − a2

R2
sin2

(
t

R
+ b

)

and thus

f2(t) =
∫ t

0

√

1 − a2

R2
sin2

(
t

R
+ b

)
dt.

Observe that when a = R, we get simply

f2(t) =
∫ t

0
cos t = sin t + k

where k is a constant. The parametric representation

f (t, θ) =
(

a cos

(
t

R
+ b

)
cos θ, a cos

(
t

R
+ b

)
sin θ, sin t + k

)

is that of a sphere.
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Fig. 7.19 Surfaces of revolution with constant Gaussian curvature

When a �= R, the integral defining f2 becomes an elliptic integral and must be
computed numerically in order to exhibit the shape of the surface. Figure 7.19 cor-
responds respectively to the cases a = 2R and a = R

2 . Clearly, the local injectivity
fails at various places so that to get actual parametric representations, only conve-
nient portions of these surfaces should be considered. �

The case of surfaces of revolution with constant negative curvature is analogous.

7.8 The Sphere

Example 7.7.4 shows that the sphere is by no means the only surface of R3 with
constant positive curvature. Nevertheless it is the only compact connected surface of
R

3 with constant positive Gaussian curvature, as attested by Liebmann’s Theorem.
We freely refer to Appendix A for the topological arguments.

Let us begin with a first characterization of the sphere:

Proposition 7.8.1 A connected Riemann surface of class C3 in R
3, all of whose

points are umbilical, necessarily has constant Gaussian curvature and is contained
in a plane or a sphere.

Proof On each local map, we use the notation of Theorem 5.13.1, establishing the
Rodrigues formula. We write κn for the normal curvature which, at each point, is by
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assumption the same in all directions. The Rodrigues formula tells us that

∂
−→
n

∂u
= −κn

∂f

∂u
,

∂
−→
n

∂v
= −κn

∂f

∂v
.

Differentiating these equalities we obtain

∂2−→n
∂u∂v

= −∂κn

∂v

∂f

∂u
− κn

∂2f

∂u∂v

∂2−→n
∂v∂u

= −∂κn

∂u

∂f

∂v
− κn

∂2f

∂v∂u
.

Comparing these two equalities yields at once

∂κn

∂v

∂f

∂u
= ∂κn

∂u

∂f

∂v
.

Since the partial derivatives are linearly independent (see Definition 5.2.1), this
forces

∂κn

∂v
= 0,

∂κn

∂u
= 0.

This means precisely that on each local map, κn is constant, hence so is the Gaussian
curvature which is equal to κ2

n (see Definition 5.16.1).
If κn = 0, the Rodrigues formula becomes simply

∂
−→
n

∂u
= 0,

∂
−→
n

∂v
= 0

which shows that −→
n is constant. Choosing an orthonormal basis (P ; e1, e2, e3) in

R
3, with P a point of the local map and e3 = −→

n , the parametric representation

f (u, v) = (
f1(u, v), f2(u, v), f3(u, v)

)

of the surface has at each point its partial derivatives in the plane (e1, e2), thus

∂f3

∂u
= 0,

∂f3

∂v
= 0.

This proves that f3(u, v) = k, with k a constant. The local map of the surface is then
contained in the plane with equation x3 = k.

If κn �= 0, by path-connectedness of the domain of the local map (see Theo-
rem A.10.7), let us choose a path c(t) in U joining a fixed point P of the local map
to an arbitrary point Q of the local map. The Rodrigues formula yields

d
−→
n (c(t))

dt
= −κn

df (c(t))

dt
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where κn is constant. Integrating this equality yields

−→
n
(
c(t)

)= −κnf
(
c(t)

)+ (a1, a2, a3)

where (a1, a2, a3) is a constant vector. This equality can be re-written as
(

a1

κn

,
a2

κn

,
a3

κn

)
− f

(
c(t)

)=
−→
n (c(t))

κn

.

Since −→
n has length 1, this proves that all points f (c(t)) are at a distance 1

|κn| from

the fixed point ( a1
κn

, a2
κn

,
a3
κn

). In particular, every point Q of the local map is on the

sphere with center ( a1
κn

, a2
κn

,
a3
κn

) and radius 1
|κn| .

Now given two points Q, Q′ in two distinct local maps, by path-connectedness of
the Riemann surface (see Corollary A.10.8), there is a continuous path joining them.
To pass from Q to Q′, the curve possibly crosses various local maps. By continuity,
to pass from one local map to another, this curve passes each time through a point
P in the intersection of these two consecutive local maps (see Corollary A.10.4).
Fixing this point P and working separately in the two local maps, the considerations
above show that both local maps are contained in the same plane or in the same
sphere, according to the case. �

The key to Liebmann’s Theorem is the following lemma, due to Hilbert.

Lemma 7.8.2 (Hilbert’s Lemma) Consider a regular surface of class C3 in R
3

and its two principal curvature functions, written κ1 and κ2. Suppose that at some
point P :

• κ1(P ) reaches a local maximum;
• κ2(P ) reaches a local minimum;
• κ1(P ) > κ2(P ).

Then κτ (P ) ≤ 0, where κτ indicates the Gaussian curvature.

Proof Let us apply Theorem 5.14.2 and work with a parametric representation such
that all lines of coordinates x1 = k, x2 = l, with k, l constant, are lines of curvature;
there is no loss of generality in assuming further that P is the point with param-
eters (0,0). The principal curvature κ1 is thus at each point the normal curvature
in the direction (1,0), while κ2 is the normal curvature in the direction (0,1). By
Theorem 5.8.2, at all points,

κ1 = L

E
, κ2 = N

G
.

Still by Theorem 5.14.2, we also know that F = 0 and M = 0 at all points.
We switch now to the notation of Riemannian geometry. Keeping in mind that

g12 = 0 = g21, Proposition 6.6.5 yields

1

2

∂g11

∂x1
= Γ111
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1

2

∂g11

∂x2
= −Γ112 = Γ121 = Γ211

1

2

∂g22

∂x2
= Γ222

1

2

∂g22

∂x1
= −Γ221 = Γ122 = Γ212.

Since
(

g11 g12

g21 g22

)
=
(

1
g11

0

0 1
g22

)

Proposition 6.6.4 yields further

Γ 1
11 = 1

2

1

g11

∂g11

∂x1

Γ 2
11 = −1

2

1

g22

∂g11

∂x2

Γ 1
12 = Γ 1

21 = 1

2

1

g11

∂g11

∂x2

Γ 2
12 = Γ 2

21 = 1

2

1

g22

∂g22

∂x1

Γ 1
22 = −1

2

1

g11

∂g22

∂x1

Γ 2
22 = 1

2

1

g22

∂g22

∂x2
.

We shall now use the Codazzi–Mainardi equations of Proposition 6.16.1, keep-
ing in mind that h12 = h21 = M = 0. Choosing i = 1 = k and j = 2, the equation
reduces to

Γ 1
21h11 − Γ 2

11h22 − ∂h11

∂x2
= 0.

Using the values of the Christoffel symbols calculated above, as well as the values
of the two principal curvatures, this gives

∂h11

∂x2
= 1

2

∂g11

∂x2

(
h11

g11
+ h22

g22

)
= 1

2

∂g11

∂x2
(κ1 + κ2).

In a perfectly analogous way, one computes that

∂h22

∂x1
= 1

2

∂g22

∂x1
(κ1 + κ2).
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Using these equalities, one computes at once that

∂κ1

∂x2
= ∂ h11

g11

∂x2
= 1

2g11

∂g11

∂x2
(κ2 − κ1)

and analogously

∂κ2

∂x1
= ∂ h22

g22

∂x1
= 1

2g22

∂g22

∂x1
(κ2 − κ1).

By assumption, at the point P = (0,0), the two principal curvatures reach an ex-
tremum, thus their partial derivatives are zero at that point:

∂κi

∂xj
(0,0) = 0.

Since moreover, still by assumption, κ2(0,0) �= κ1(0,0), we conclude that

∂g11

∂x2
(0,0) = 0,

∂g22

∂x1
(0,0) = 0.

Let us differentiate a second time the principal curvature functions. First

∂2κ1

∂(x2)2
= 1

2

∂2g11
∂(x2)2 g11 − (

∂g11
∂x2 )2

g2
11

(κ2 − κ1) + 1

2g11

∂g11

∂x2

(
∂κ2

∂x2
− ∂κ1

∂x2

)
.

At the point P = (0,0), where ∂κ1
∂x2 vanishes, we obtain

∂2κ1

∂(x2)2
= 1

2g11(0,0)

∂2g11

∂(x2)2
(0,0)

(
κ2(0,0) − κ1(0,0)

)
.

Since κ1(0, x2) has a local maximum at x2 = 0, we also have

∂2κ1

∂(x2)2
(0,0) ≤ 0.

Since moreover κ1(0,0) > κ2(0,0) while g11(0,0) > 0, as norm of the first partial
derivative, we conclude that

∂2g11

∂(x2)2
(0,0) ≥ 0.

Analogously

∂2κ2

∂(x1)2
= 1

2g22(0,0)

∂2g22

∂(x1)2
(0,0)

(
κ1(0,0) − κ2(0,0)

)
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and

∂2κ2

∂(x1)2
(0,0) ≥ 0

since κ2(x
1,0) has a local minimum at x1 = 0. This forces as above

∂2g22

∂(x1)2
(0,0) ≥ 0.

The Gaussian curvature is given by the general formula

κτ = R1212

g11g22 − g12g21

(see Definition 6.11.5). Since the denominator is always strictly positive (see Def-
inition 6.2.1), the sign of the Gaussian curvature is that of R1212. At the point
P = (0,0), the formula of Theorem 6.11.3, in view of the various quantities already
calculated above, reduces simply to

R1212(0,0) = ∂Γ221

∂x1
(0,0) − ∂Γ211

∂x2
(0,0)

= −1

2

∂2g22

∂(x1)2
(0,0) − 1

2

∂2g11

∂(x2)2
(0,0) ≤ 0

which concludes the proof of the lemma. �

We are now ready to characterize the spheres:

Theorem 7.8.3 (Liebmann) The only compact connected Riemann surfaces of R3

with constant positive Gaussian curvature are the spheres.

Proof We retain the notation of the Hilbert lemma (see Lemma 7.8.2) and consider
the function

k(Q) = κ1(Q) − κ2(Q)

where Q runs through all the points of the surface. Since the surface is compact by
assumption, the function k2, which is of course positive, reaches a maximum (see
Corollary A.8.4). Let us prove first that this maximum is zero.

If this is not the case, there exists a point P on the surface where κ1(P ) �= κ2(P );
let us say, κ1(P ) > κ2(P ). Then k(P ) > 0 and thus by continuity, k(Q) > 0 in a
neighborhood of P . Therefore, since k2(Q) reaches its maximum at P , so does
k(Q). But κ1κ2 is the total curvature (see Definition 5.16.1), thus is a constant
strictly positive function by assumption. Therefore if κ1 increases in a neighborhood
of P , necessarily κ2 decreases and the difference k = κ1 − κ2 becomes greater. This
cannot be the case, since k admits a local maximum at P . In other words, κ1 itself
passes through a local maximum at P ; and since κ1κ2 is constant, κ2 passes through
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a local minimum at P . Thus Hilbert’s lemma applies (see Lemma 7.8.2) and the
total curvature at P is negative. This contradicts our assumptions.

We have thus proved that the maximum of the function k2 is necessarily zero.
In other words, κ1 = κ2 at each point and thus each point is umbilical. By Proposi-
tion 7.8.1, the Riemann surface is contained in a sphere of radius 1√

κ
.

It remains to prove that the Riemann surface R is the full sphere S . Choose an
arbitrary point P ∈ R, belonging to some local map

f : UP −→R ⊆ S ⊆ R
3.

There is no loss of generality in choosing UP sufficiently small so that f (UP ) is a
small “open circle” around P in R; writing BP for the corresponding small open
ball centered at P , we have

f (UP ) = BP ∩R= BP ∩ S.

Putting V =⋃
P∈R BP , we obtain an open subset V ⊆ R

3 such that V ∩ S = R.
But R is compact by assumption, thus it is closed in R

3 and thus also in S , by
Proposition A.7.4. Therefore S \ R is open in S and thus S \ R = W ∩ S with W

an open subset of R3. But then

S = (V ∩ S) ∪ (W ∩ S) = R∪ (S \R)

is a covering of the sphere by two disjoint open subsets of S . The sphere is triv-
ially path-connected, thus connected (see Corollary A.10.8). By connectedness, the
sphere is thus already contained in one of these two open subsets, while the other
one is empty. Since R is not empty, it is S \R which is empty and R= S . �

7.9 A Counterexample

The results of Sects. 7.4 and 7.7 could give the false impression that two surfaces
with the same Gaussian curvature are necessarily locally Riemann isometric. This
is by no means the case, when the Gaussian curvature is not constant. Here is a
counterexample.

Counterexample 7.9.1 There exist surfaces with the same Gaussian curvature,
which are not locally Riemann isometric.

Proof Consider the two parametric representations (see Fig. 7.20)

f
(
x1, x2)= (

x1 cosx2, x1 sinx2, logx1)

f
(
x̃1, x̃2)= (

x̃1 cos x̃2, x̃1 sin x̃2, x̃2)
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Fig. 7.20 Two surfaces with the same Gaussian curvature

defined for all values x1 > 0, x̃1 > 0. The corresponding metric tensors are

(
gij

)
ij

=
(

1 + 1
(x1)2 0

0 (x1)2

)

,
(
g̃ij

)
ij

=
(

1 0
0 1 + (̃x1)2

)

and the corresponding Gaussian curvatures are

κτ = −1

1 + (x1)2
, κ̃τ = −1

1 + (̃x1)2
.

These two surfaces thus have the same Gaussian curvature function.
Let us now prove that no change of parameter

x̃1 = x̃1(x1, x2), x̃2 = x̃2(x1, x2)

can exhibit a local Riemann isometry between these two surfaces. If this were the
case, then by Proposition 7.3.4 this change of parameters would preserve the Gaus-
sian curvature and thus would yield

−1

1 + (x1)2
= −1

1 + (̃x1)2
.

Since x1 > 0 and x̃1 > 0, this is equivalent to x1 = x̃1. This would imply

⎛

⎝
∂x̃1

∂x1
∂x̃2

∂x1

∂x̃1

∂x2
∂x̃2

∂x2

⎞

⎠=
⎛

⎝
1 ∂x̃2

∂x1

0 ∂x̃2

∂x2

⎞

⎠ .

Since such a matrix is regular (see Proposition 5.2.2), we have ∂x̃2

∂x2 �= 0.
Moreover, the existence of a Riemann isometry (see Definition 6.12.5) would

yield further

gij =
∑

kl

g̃kl

∂x̃k

∂xi

∂x̃l

∂xj
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that is, introducing the equality x1 = x̃1 into the values of the g̃kl

1 + 1

(x1)2
= 1 + (

1 + (
x1)2)

(
∂x̃2

∂x1

)2

0 = ∂x̃2

∂x1
· ∂x̃2

∂x2

(
x1)2 = (

1 + (
x1)2)

(
∂x̃2

∂x2

)2

.

Since ∂x̃2

∂x2 �= 0, the second of these equalities forces ∂x̃2

∂x1 = 0. Introducing this value
into the first equality then yields

1 + 1

(x1)2
= 1

which is impossible. �

7.10 Rotation Numbers

Our next purpose in this chapter is to prove a very deep and fundamental theorem
of surface theory: the generalization of the Hopf Umlaufsatz (see Theorem 2.15.2)
to the case of a piecewise regular simple closed curve on a surface. To achieve this
program, we need some preliminaries presented in this and the following sections.

Let us first investigate, for closed curves in a Riemann patch, the notion of rota-
tion number as studied in Theorems 2.13.5, 2.14.8 and 2.15.2. First, we generalize
Corollary 2.12.2.

Proposition 7.10.1 Consider a regular curve of class C2 in a Riemann patch of
class C2

c : ]a, b[ → U, gij : U −→ R, i, j = 1,2.

Assume that the Riemann patch is given in a geodesic system of coordinates (see
Theorem 6.13.1) and that the curve is given in normal representation. Write

e1(x1, x2)= (1,0), e2(x1, x2)= 1
√

g22(x1, x2)
(0,1)

for the two vector fields constituting at each point an orthonormal basis with respect
to the metric tensor, oriented along the lines of coordinates x1 = k, x2 = l, with k, l

constant.

1. There exists a function of class C1

θ : ]a, b[ −→R
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such that θ(s) is at each point, up to a multiple of 2π , the angle (in the sense of
the metric tensor) between e1(c(s)) and the tangent vector c′(s), that is,

c′(s) = cos θ(s)e1
(
c(s)

)+ sin θ(s)e2
(
c(s)

)
.

2. Two possible such functions θ differ only by a constant multiple of 2π .

Such a function is called an angular function of the curve.

Proof Saying that ‖c′(s)‖ = 1 means

(
c′

1

)2 + g22
(
c′

2

)2 = 1

that is
(
c′

1

)2 + (√
g22c

′
2

)2 = 1.

Applying Lemma 2.12.1, we get the expected function θ satisfying

cos θ = c′
1, sin θ = √

g22c
′
2

that is

c′ = c′
1(1,0) + c′

2(0,1) = cos θ(1,0) + sin θ√
g22

(0,1) = cos θe1 + sin θe2. �

The notion of angular function is easily generalized to piecewise regular curves
in Riemann patches:

Definition 7.10.2 Consider a piecewise regular curve c(s) of class C2 in a Riemann
patch of class C2. Suppose that the curve is given in normal representation and the
Riemann patch in a system of geodesic coordinates. An angular function for this
curve consists of angular function θi on each side of the curve, defined in such a
way that at each corner c(si), the corresponding external angle αi is given by

αi = θi(si) − θi−1(si).

Lemma 7.10.3 Consider a piecewise regular curve c(s) of class C2 in a Riemann
patch of class C2. Suppose that the curve is given in normal representation and the
Riemann patch in a system of geodesic coordinates. This curve admits an angular
function. Two angular functions differ by a constant multiple of 2π .

Proof By Proposition 7.10.1, on each side we have infinitely many possible angular
functions, one for each multiple of 2π . Fixing the value of θi at one point thus fixes
its value on the whole side. Choose θi0 arbitrarily on an arbitrarily chosen side of
the curve. Then proceed side by side, using the requirement

αi = θi(si) − θi−1(si)

to fix the initial value of the function θi when passing from one side to the next. �
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Proposition 7.10.4 Consider a closed and piecewise regular plane curve of class
C2 in a Riemann patch of class C2:

c : R −→ U, gij : U −→R, i, j = 1,2.

Suppose that the curve is given in normal representation and the Riemann patch, in
a geodesic system of coordinates. Write:

• ω for the minimal period of c;
• s0 < s1 < · · · < sn−1 < sn = s0 +ω for the values of the parameter corresponding

to the corners of the curve;
• αi for the external angle of the curve at the point c(si), computed of course in

terms of the metric tensor (see Sect. 6.2);
• θ for an angular function along the curve (see Definition 7.10.2), so that θi is the

angular function of the i-th side c([si , si+1]) of the curve.

Under these conditions,

n−1∑

i=0

(
θi(si+1) − θi(si)

)+
n−1∑

i=0

αi = 2kπ, k ∈ Z.

The integer k does not depend on the choice of the angular function θ and is called
the rotation number of the curve.

Proof With the usual convention θ−1 = θn−1

n−1∑

i=0

(
θi(si+1) − θi(si)

)+
n−1∑

i=0

αi

=
n−1∑

i=0

(
θi(si+1) − θi(si)

)+
n−1∑

i=0

(
θi(si) − θi−1(si)

)

=
n−1∑

i=0

(
θi(si+1) − θi−1(si)

)

= θn−1(sn) − θ−1(s0).

These last two values represent the same angle between e1(c(s0)) and c′(s0), com-
puted for two values of the parameter which differ simply by a period. The differ-
ence is thus necessarily a multiple of 2π . Notice further that another choice of the
angular function θi would not affect the value of k, since all functions θi would sim-
ply be modified by adding a constant multiple of 2π : a quantity which disappears
when taking the differences. �

It should be observed that Proposition 7.10.4, in contrast to the situation in The-
orem 2.14.8, does not tell us anything about a possible relation with the “curvature”



7.10 Rotation Numbers 395

Fig. 7.21

of the curve. In fact, it is easy to convince oneself that just replacing the curvature,
in Theorem 2.14.8, by the geodesic curvature, in Proposition 7.10.4, cannot possibly
work. Simply consider a sphere and cut it by the equator and by two meridians per-
pendicular to each other (see Fig. 7.21). One obtains eight triangles. The three sides
of each triangle are geodesics (see Example 6.10.4) and the three exterior angles are
each equal to π

2 (or to −π
2 , depending on the orientation). Thus in this case

∫

triangle
κg +

∑
αi = ±3π

2
.

This is definitely not a multiple of 2π .
The more precise relation of the geodesic curvature with the rotation number

k of Proposition 7.10.4 will be precisely the content of the Gauss–Bonnet Theo-
rem 7.13.1: in fact, both the geodesic curvature and the Gaussian curvature will
enter into the story.

We next transpose Theorem 2.15.2.

Proposition 7.10.5 The rotation number of a piecewise, regular and simple closed
curve of class C2, in a Riemann patch of class C2 given in geodesic coordinates, is
equal to ±1.

Proof We use the notation of Proposition 7.10.4. On U , let us consider, for every
real number t ∈ [0,1], the metric tensor

⎛

⎝
g

(t)
11 g

(t)
12

g
(t)
21 g

(t)
22

⎞

⎠=
(

1 0
0 t + (1 − t)g22

)

where (gij )ij indicates the original metric tensor. Since g22 > 0 (see Theo-

rem 6.13.1) we have at once g
(t)
22 > 0 and thus the (g

(t)
ij )ij constitute a new metric
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tensor. Notice that when t = 0 we recapture the original metric tensor, while for
t = 1 we obtain the identity matrix, that is, the ordinary metric tensor of the plane.

Let us write further θ
(t)
i and α

(t)
i , respectively, for the angular functions and the

exterior angles computed using the metric tensor g
(t)
ij . It is immediate that the func-

tions θ
(t)
i and α

(t)
i are continuous in t . By Proposition 7.10.4, we know that for each

value of t

n−1∑

i=0

[
θ

(t)
i (si+1) − θ

(t)
i (si)

]+
n−1∑

i=0

α
(t)
i

is a multiple of 2π . This proves that the function

t �→ 1

2π

(
n−1∑

i=0

[
θ

(t)
i (si+1) − θ

(t)
i (si)

]+
n−1∑

i=0

α
(t)
i

)

takes only integer values. Since this function is continuous, it must therefore be
constant. Furthermore, since for t = 1 the corresponding Riemann patch is that of a
plane, by Theorem 2.15.2, this constant integer is equal to ±1. �

7.11 Polygonal Domains

It is easy to see that a triangle, a circle, a quadrilateral, or indeed any simple closed
curve that you draw concretely on a sheet of paper (see Fig. 7.22), delimits an inner
and an outer domain in the plane, although in some tricky situations, such as that of
Fig. 7.23, it can take some time to decide if a given point P is in the inner or the
outer domain of the polygon.

The reader may wonder why we have insisted so much on considering not just a
simple closed curve as before, but also its inner domain. This is because, when pass-
ing to the case of surfaces, the existence of an inner domain delimited by a closed
curve is no longer valid in general. To understand this point, consider Fig. 7.24,
which presents various curves “on the torus”. The depicted situations are clearly of
very different natures. In the upper case, it clearly makes sense to speak of the “inner
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domain” delimited on the torus by the quadrilateral, but in the two lower cases, this
is definitely not the case: the “holes” of the torus somehow “lie inside” the circle.

Contrary to what is sometimes thought, proving in full generality that a simple
closed curve divides the plane into an inner and an outer domain is a rather easy
task: but proving the properties of the inner domain is a very difficult task.

Proposition 7.11.1 Every compact subset C ⊆ R
2 in the plane determines a unique

partition of the plane

R
2 = Inner(C) ∪ C ∪ Outer(C)

having the following properties:
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• Inner(P) is a bounded open subset called the inner domain of C.
• Outer(P) is a connected unbounded open subset called the outer domain of C.
• Every continuous path (see Definition A.8.2) joining a point of the inner domain

to a point of the outer domain necessarily intersects C.

Proof By compactness, C is contained in some closed ball B(O,R) (see Defini-
tion A.3.1). Fix a point P outside this closed ball and define:

• Inner(C) to be the set of those points A ∈ R
2 \ C such that every continuous path

joining A to P intersects C;
• Outer(C) to be the set of those points A ∈R

2 \ C such that there exists a continu-
ous path joining A to P and not intersecting C.

Trivially, this definition forces at once the partition into three disjoint subsets

R
2 = Inner(C) ∪ C ∪ Outer(C).

Fix A ∈R
2 \ C. Then the function

C −→R, B �→ d(A,B)

expressing the distance between A and a point B ∈ C is continuous. By Corol-
lary A.8.4, this function reaches a minimum ε; this minimum is not zero, because
A is not in C. Thus the open ball B(A,ε) does not intersect the compact set C. Of
course every point of this open ball can be joined by a segment to the center A of the
ball. This implies at once that if A ∈ Outer(C), then all points of the open ball are
still in Outer(C). In other words, Outer(C) is open (see Definition A.1.2). A perfectly
analogous argument shows that Inner(C) is open.

Trivially, every two points outside the original closed ball containing C can be
joined by a continuous path not intersecting C. In particular, all these points be-
long to Outer(C). Thus Outer(C) is unbounded. Since Inner(C) is disjoint from
Outer(C), it follows further that Inner(C) is contained in the closed ball B(O, r),
thus is bounded.

Trivially also, P ∈ Outer(C). Since two points of Outer(C) can be joined to P by
continuous paths entirely contained in Outer(C), it follows at once that Outer(C) is
path-connected, thus connected (see Sect. A.10). Of course if a point A in Inner(C)

is joined by a continuous path to a point B ∈ Outer(C), further join B to P by a
continuous path not intersecting C. By definition of Inner(P), the path from A to P

intersects the curve and this is thus at a point on the path between A and B .
Let us now prove the uniqueness of a partition as in the statement. Let

Inner′(C) ∪ C ∪ Outer′(C)

be another partition with the same properties. Since we have two partitions with a
common component C, it suffices to prove that

Outer′(C) ⊆ Outer(C), Inner′(C) ⊆ Inner(C).
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Let us recall that by Theorem A.10.7, Outer(C) and Outer′(C) are path connected.
Since Outer′(C) is unbounded, it contains a point Q �∈ B(O,R), the closed ball

containing C. By path connectedness every point A ∈ Outer′(C) can be joined to Q

by a continuous path contained in Outer′(C), thus not intersecting C; and trivially Q

can be joined to P by a continuous path not intersecting the closed ball B(O,R),
thus not intersecting C. This yields a continuous path joining A to P and not inter-
secting C; therefore by definition of Outer(C), A ∈ Outer(C).

Conversely choose a point B ∈ Inner′(C). Consider an arbitrary continuous path
joining B to P and follow it by a continuous path from P to Q, not intersecting
C. Since B ∈ Inner′(C) and Q ∈ Outer′(C), by assumption the composite path inter-
sects C. Since the path from P to Q does not intersect C, we conclude that the path
from B to P intersects C. Since this continuous path is arbitrary, this proves that
B ∈ Inner(C), by definition of Inner(C). �

Proposition 7.11.2 In R
2, the union of a compact subset C and its inner domain is

still a compact subset.

Proof By Proposition 7.11.1, the union in the statement is the complement of
Outer(C), thus it is a closed subset (see Proposition A.2.2). Since C is bounded
by assumption and its inner domain is bounded by Proposition 7.11.1, their union is
bounded as well. Therefore this union is compact (see Definition A.3.1). �

Of course, Proposition 7.11.1 applies in particular when the compact subset C
is the support of a closed curve. Indeed if a closed curve is represented by a peri-
odic continuous function f : R −→ R

2, its support is the continuous image under
f of the closed interval [0,ω], with ω the minimal period of the curve. By Proposi-
tion A.8.3, this is indeed a compact subset of R2.

But let us make clear that Proposition 7.11.1 does not tell us much—and cannot
tell us much—about the inner domain of a closed curve, simple or not. Not even
the fact that it is non-empty! Furthermore it can reveal nothing about the possible
connectedness of this inner domain, nor anything about the boundary of the inner
or the outer domain (see Definition A.6.4). Indeed in Proposition 7.11.1 choose as
compact subset a closed ball, a lemniscate (see Example 2.13.4) or a “closed ring”,
as in Fig. 7.25. Respectively, the inner domain is empty, is constituted of two pieces
or does not admit the closed ring as boundary.

The additional properties just mentioned turn out to be valid when the compact
subset in Proposition 7.11.1 is the support of a simple closed curve. But this becomes
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a very deep, difficult and famous theorem in topology: the so-called Jordan curve
theorem.

Theorem 7.11.3 (Jordan Curve Theorem) Every simple closed curve C in R
2 de-

termines a unique partition of the plane

R
2 = Inner(C) ∪ C ∪ Outer(C)

such that:

1. Inner(C) is a connected bounded open subset called the inner domain of the
curve.

2. Outer(C) is a connected unbounded open subset called the outer domain of the
curve.

3. Every continuous path joining a point of the inner domain and a point of the
outer domain necessarily intersects the curve.

4. The curve C is the boundary of both its inner domain and its outer domain.

In view of Proposition 7.11.2, it is sensible to make the following definition:

Definition 7.11.4 A polygonal domain of class Ck in R
2 consists of the union of a

piecewise regular simple closed curve of class Ck and its inner domain.

More generally:

Definition 7.11.5 A polygonal domain P of class Ck on a Riemann surface S of
class Ck in R

3 is the image P = f (P ′) of a polygonal domain P ′ of class Ck in R
2,

contained in the domain of a local map of the surface

fi : Ui −→ S ⊆ R
3, P ′ ⊆ Ui ⊆ R

2.

By the Jordan curve Theorem 7.11.3 we then have:

Proposition 7.11.6 In R
2, the polygonal domain determined by a piecewise regular

simple closed curve C is compact and admits the curve C as border.

Proof This follows by Proposition 7.11.2 and Theorem 7.11.3. �

Proposition 7.11.7 Under the conditions of Definition 7.11.5, the polygonal do-
main P is compact and the boundary ∂P of P on the surface is the image under f

of the boundary ∂P ′ of P ′ in R
2.

Proof P is compact as a continuous image of the compact subset P ′ (see Proposi-
tions 7.11.6 and A.8.3).
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For every A ∈P ′ there exists an open ball B(A,εA) ⊆ Ui . Then the various open
balls B(A, εA

2 ) cover P ′. Since P ′ is compact by Definition 7.11.4, finitely many of
these ball already cover P ′ (see Theorem A.3.3):

P ′ ⊆ B

(
A1,

εA1

2

)
∪ · · · ∪ B

(
A1,

εA1

2

)
.

The corresponding closed balls satisfy

B

(
A1,

εA1

2

)
∪ · · · ∪ B

(
A1,

εA1

2

)
⊆ B(A1, ε1) ∪ · · · ∪ B(An, εn) ⊆ Ui.

The finite union of these closed balls trivially remains compact, therefore the re-
striction of f to this union becomes a homeomorphism (see Proposition A.9.3).
Therefore the restriction of f to the corresponding union of open balls is a home-
omorphism as well. Then of course, this homeomorphism preserves the notions of
interior, closure and thus boundary (see Appendix A). �

Of course it would be possible, in the considerations above, to avoid any refer-
ence to the Jordan curve theorem: it would suffice to cheat a little bit and somehow
include the Jordan curve theorem in the definition of a polygonal domain. In other
words, one could define a polygonal domain in R

2 as a compact subset, whose
boundary is a piecewise regular simple closed curve and whose interior (see Defini-
tion A.5.7) is the inner part of that curve. However, as the next sections will show,
this does not allow us to get very far before explicitly needing the Jordan curve
theorem for other purposes.

7.12 Polygonal Decompositions

The results of Sect. 7.10 assume that we are working in a system of geodesic co-
ordinates; we know that such systems exist locally (see Theorem 6.13.1). We must
ask what these results become in the case of polygonal domains not contained in
a system of geodesic coordinates. In order to answer this question we will “split”
an arbitrary polygonal domain into finitely many smaller pieces, each of these now
being a polygonal domain contained in a system of geodesic coordinates.

Our arguments will use some very intuitive results, closely related to the—also
very intuitive—Jordan Curve Theorem 7.11.3. Nevertheless, a rigorous proof of
these intuitive results can only be achieved via an involved application of the Jordan
curve theorem: this is clearly beyond the scope of the present book. We shall thus
take these intuitive results as granted, making clear at which point of the proof we
do so.

Definition 7.12.1 Let K be a compact subset of R2 or more generally, of a Riemann
surface of R3. A polygonal decomposition of K consists of a covering of K

K = K1 ∪ · · · ∪ Kn
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by finitely many polygonal domains Ki ⊆ K , each having at least three sides, in
such a way that, for all indices i �= j , one of the following three situations hold:

• the intersection of Ki and Kj is empty;
• the intersection of Ki and Kj is reduced to a common corner of both of them;
• the intersection of Ki and Kj is reduced to a common side of both of them.

When all polygonal domains Ki have exactly three sides, the decomposition is
called a triangulation.

The following terminology is classical.

Definition 7.12.2 Consider a polygonal decomposition in the sense of Defini-
tion 7.12.1.

• The various polygonal domains Ki are called the faces of the decomposition.
• The various sides of the various polygonal domains Ki are called the edges of the

decomposition.
• The various corners of the various polygonal domains Ki are called the vertices

of the decomposition.

Figure 7.26 gives two examples of a polygonal decomposition of a pentagon
ABCDE. Observe that the triangle ABC is a face of the first polygonal decompo-
sition, but in the second polygonal decomposition, it must now be considered as a
quadrilateral ABCX. Indeed X is a vertex of the triangle DEX. Since the intersec-
tion of the two faces ABC and DEX is a single point X, this point must be a corner
of both faces, by Definition 7.12.1. Thus X must now be considered as a vertex of
ABCX.

Proposition 7.12.3 Given a polygonal decomposition of a polygonal domain in R
2

or on a Riemann surface, write

• f for the number of faces;
• e for the number of edges;
• v for the number of vertices.
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One always has

f − e + v = 1.

Proof Let K = K1 ∪ · · · ∪ Kn be a polygonal decomposition of a polygonal do-
main K . We shall reconstruct this decomposition step by step, dividing each time
one of the faces into two smaller faces, and observing that at each step the equality
in the statement remains valid. Let us stress that we do not claim that all steps cor-
respond to intermediate polygonal decompositions in the sense of Definition 7.12.1.

Let us begin with the given polygonal domain K , viewed as a polygonal decom-
position of itself. It thus has 1 face and—let us say—n vertices; it therefore has n

edges. In this trivial case we have

f − e + v = 1 − n + n = 1.

If the decomposition has more than one face, consider a face Ki containing a
point P of the border of K . Of course the border of Ki is not entirely contained in
the border of K , otherwise one would have Ki = K . Following the border of Ki

(let us say, in the positive orientation), we will eventually leave the border of K . By
Definition 7.12.1 of a polygonal decomposition, this must be when leaving a vertex
A of Ki . But since we have to come back to P , we must come back (one or several
times) to the border of K , again at some vertex of Ki . Write B for the vertex of
Ki at which we return for the first time to the border of K (see Fig. 7.27). We have
described a “polygonal path”, joining two points A and B of the border of K and
not having any other point in common with this border. Notice that possibly, A = B .

If A = B , the polygonal path that we have just described is a simple closed curve
contained in K , with A = B as the only point on ∂K . If A �= B , there are two
ways to join A and B following the border of K ; together with the polygonal path
joining A and B , this provides two simple closed curves, thus by the Jordan curve
Theorem 7.11.3, two corresponding polygonal domains K ′ and K ′′. In both cases,
a refined application of the Jordan curve Theorem allows us to prove the rather
intuitive fact that we have obtained a covering K = K ′ ∪ K ′′ of K , where K ′ and
K ′′ are each obtained as unions of some of the original Ki ’s while K ∩ K ′ is the
polygonal line joining A and B .

Let us write

A = V0,V1, . . . , Vm−1,Vm = B
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for the various vertices of the original decomposition which lie on the “polygonal
path” from A to B . Consider now the “pseudo-decomposition” comprising the two
“pseudo-faces” K ′, K ′′ and all the vertices and sides of the original decomposition
which lie on the border of K or on the “polygonal path” from A to B . (This is
generally not a polygonal decomposition in the sense of Definition 7.12.1, since K ′
and K ′′ have a whole polygonal path as intersection.) With respect to the first step,
one “pseudo-face” has been added (two pseudo-faces instead of one face). Let us
keep writing f for the number of pseudo-faces.

• If A and B were already vertices of K , m − 1 new vertices V1, . . . , Vm−1 have
been added to the decomposition, as well as the m edges of the polygonal path.
The quantity in the statement thus becomes

(f + 1) − (e + m) + (v + m − 1) = f − e + v

that is, remains unchanged.
• If A was already a vertex of K but B was not, then m new vertices V1, . . . , Vm

have been added to the decomposition, as well as the m edges of the polygonal
path; but introducing the new vertex B on one edge of K also splits this edge into
two edges, thus adding one additional edge to the decomposition. The quantity in
the statement then becomes

(f + 1) − (e + m + 1) + (v + m) = f − e + v

and again, remains unchanged.
• If A and B are both new vertices, an analogous observation indicates that the

quantity in the statement becomes

(f + 1) − (e + m + 2) + (v + m + 1) = f − e + v

when A �= B and

(f + 1) − (e + m + 1) + (v + m) = f − e + v

when A = B . Again this quantity remains unchanged.

So in this pseudo-decomposition K = K ′ ∪ K ′′, we still have f − e + v = 1.
If K = K ′ ∪ K ′′ is the decomposition in the statement, we are done. Otherwise

apply separately to K ′ and K the process just described for K : we obtain a polyg-
onal pseudo-decomposition in more pieces and such that the quantity f − e + v
remains unchanged, thus is still equal to 1. After at most n− 1 steps, all the pseudo-
faces will have been reduced to faces of the original decomposition and the proof
will be complete. �

An important use of polygonal decompositions is the following result:

Proposition 7.12.4 Every polygonal domain on a Riemann surface admits a polyg-
onal decomposition such that all faces are contained in a system of geodesic coor-
dinates.
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Proof Let P ⊆ S be a polygonal domain on the Riemann surface S . As in Defini-
tion 7.11.5, we obtain P as the image of a polygonal domain P ′ in R

2:

f : U −→ S, P ′ ⊆ U ⊆ R
2.

By Theorem 6.13.1, in a neighborhood of each point, there exists a system
of geodesic coordinates. Thus for each point P ∈ U there exists an open ball
B(P, rP ) ⊆ U on which the corresponding piece of the surface admits a system
of geodesic coordinates. The various open balls B(P, rP

2 ) cover the compact subset
P ′, thus finitely many of them already do (see Theorem A.3.3):

P ′ ⊆ B

(
P1,

rP1

2

)
∪ · · · ∪ B

(
P1,

rPn

2

)
.

Write

r = min

{
rP1

2
, . . . ,

rPn

2

}
.

Then for each point P ∈ P ′, the open ball B(P, r) is contained in one of the open
balls B(Pi,

rPi

2 ) and therefore the corresponding portion f (B(P, r)) of the surface
admits a system of geodesic coordinates.

It then remains to choose a polygonal decomposition of P ′ into pieces sufficiently
small so that each is contained in an open ball of radius r . Once more the existence
of such a decomposition is rather intuitive, but a precise proof requires a refined
application of the Jordan curve Theorem 7.11.3. �

7.13 The Gauss–Bonnet Theorem

The Gauss–Bonnet theorem is a consequence of the Green–Riemann formula (see
Theorem 1.12.3): it relates the integral of the Gaussian curvature on a polygonal
domain K of a surface with the integral of the geodesic curvature on the border ∂K

of K .

Theorem 7.13.1 (Gauss–Bonnet) Consider a Riemann surface of class C3 in R
3

and a polygonal domain P on it. Orient the border positively. In that case

∫ ∫

P
κτ +

∫

∂P
κg +

n∑

i=1

αi = 2π

where:

• κτ is the Gaussian curvature of the surface;
• κg is the geodesic curvature of the border ∂P of P ;
• αi are the external angles of the border ∂P .
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Proof In a first approach, let us assume that the polygonal domain is contained in a
portion of the surface admitting a system of geodesic coordinates.

We consider a parametric representation of class C3 of this portion of the surface

f : U −→ R
3,

(
x1, x2) �→ f

(
x1, x2)

of the surface and we assume at once that it has been chosen so that (x1, x2) is
a system of geodesic coordinates. We write P ′ for the polygonal domain P ′ ⊆ U

whose image under f is the polygonal domain P on the surface. We also choose a
parametric representation of the border of P which restricts as a normal paramet-
ric representation of each “side” of P . More precisely, if S0, . . . , Sn = S0 are the
successive corners of P ′, we choose real numbers s0 < · · · < sn and a function

c : [s0, sn] −→ U

so that on each interval [si , si+1], f ◦ c is a normal representation of the side
f (si) f (si+1) of P .

First, we compute the integral of the Gaussian curvature:

∫ ∫

P
κτ =

∫ ∫

P ′
κτ

∥∥∥∥
∂f

∂x1
× ∂f

∂x2

∥∥∥∥dx1 dx2

(by the formula for computing a curve integral)

=
∫ ∫

P ′
κτ

√
g11g22 − g12g21 dx1 dx2

(see Proposition 5.4.7)

=
∫ ∫

P ′
κτ

√
g22 dx1 dx2

(by Theorem 6.13.1)

=
∫ ∫

P ′
−∂2√g22

∂(x1)2
dx1 dx2

(by Proposition 6.14.5)

=
∫ ∫

P ′
− ∂

∂x1

(
1

2
√

g22

∂g22

∂x1

)
dx1 dx2

(differentiation of a composite)

= −
∫

∂P ′
1

2
√

g22

∂g22

∂x1
dx2

(by the Green–Riemann formula 1.12.3)

= −
∫ sn

s0

1

2
√

g22

∂g22

∂x1

dc2

ds
ds

(formula for curve integrals).
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Let us now compute the integral of the geodesic curvature along the border of P .
For this we apply Corollary 6.14.4. Of course as usual for piecewise regular curves,
to avoid any ambiguity, we use the notation θi to indicate, along the i-side of the
curve, the angle between the curve x2 = c2(s) and the curve c(s).

∫

∂P
κg =

∫ sn

s0

κg

∥∥(f ◦ c)′
∥∥ds

(formula for curve integrals)

=
∫ sn

s0

κg ds

(because f ◦ c is normal on each side)

=
∑

i=0

n − 1
∫ si+1

si

dθi

ds
+ 1

2
√

g22

∂g22

∂x1
∂dc2ds

(as computed above)

=
n−1∑

i=0

[
θi(si+1) − θi(si)

]+
∫ sn

s0

1

2
√

g22

∂g22

∂x1
∂dc2ds.

Comparing the two formulas above for the integral of κτ and that of κg , we
conclude that it remains to prove that

n−1∑

i=0

[
θi(si+1) − θi(si)

]+
n−1∑

i=0

αi = 2π.

This is precisely the content of Proposition 7.10.5.
We now have to remove the assumption of being in a system of geodesic co-

ordinates. For that we apply Proposition 7.12.4, use its notation, and consider a
decomposition of the polygonal domain into f faces

P = P1 ∪ · · · ∪Pf

with each Pt a polygonal domain contained in a system of geodesic coordinates. By
the first part of the proof we have, for each index t

∫ ∫

Pt

κτ +
∫

∂Pt

κg +
nt∑

it=1

α
(t)
it

= 2π

where the α
(t)
i are the external angles of Pt and nt is the number of vertices. To

obtain the expected result for the polygonal domain P , it “suffices” to add all these
equalities.
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Fig. 7.28

First of all,

∫ ∫

P
κτ =

f∑

t=1

∫ ∫

Pt

κτ

because P = P1 ∪· · ·∪Pf while the corresponding integrals on each Pt ∪Pt ′ (t �= t ′)
are zero, by definition of a polygonal decomposition (see Definition 7.12.1).

Next, we take care of the integral of the geodesic curvature. Each edge of the
decomposition

• is an edge of a unique Pt when it is part of the border ∂P ;
• is a common edge of exactly two faces Pt , Pt ′ , (t �= t ′) otherwise.

But in the second case, since we travel around the border of all faces of the decom-
position in the positive sense, we travel around the common edge positively for one
of the two faces and negatively for the other one (see Fig. 7.28). The two integrals
of the geodesic curvature along this edge thus have opposite signs and their sum
is therefore zero. Eventually, only the terms corresponding to edges lying on ∂P
remain and we obtain

f∑

t=1

∫

∂Pt

κg =
∫

∂P
κg.

Thus adding all the Gauss–Bonnet equalities for the individual polygonal do-
mains Pi we obtain

∫ ∫

P
κτ +

∫

∂P
κg +

f∑

t=1

nt∑

it=1

α
(t)
it

= 2π f.

To conclude the proof, it thus remains to show that

f∑

t=1

nt∑

it=1

α
(t)
it

=
n∑

i=1

αi + 2π(f − 1).
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Writing β
(t)
it

for the internal angles of Pt , we have

f∑

t=1

nt∑

it=1

α
(t)
it

=
f∑

t=1

nt∑

it=1

(
π − β

(t)
it

)=
f∑

t=1

ntπ −
f∑

t=1

nt∑

it=1

β
(t)
it

.

Instead of grouping these angles face by face, let us group them instead vertex
by vertex:

• at a vertex located in the interior of P , the sum of all the internal angles of all
faces containing this vertex is equal to 2π ;

• at a vertex on the border ∂P , but not a vertex of the original polygonal domain
P , the sum of all the internal angles of all faces containing this vertex is equal to
π ;

• at a vertex of the original polygonal domain P , the sum of all the internal angles
of all faces containing this vertex is equal to βi , the internal angle of P at this
vertex. Again βi = π − αi , with αi the corresponding external angle.

Let us write vint for the number of vertices of the decomposition which lie in
the interior of P . Since P has n vertices, there remain v − vint − n vertices of the
decomposition which lie on ∂P without being a vertex of P . We thus obtain

f∑

t=1

nt∑

it=1

β
(t)
it

= vint · 2π + (v − vint − n) · π + nπ −
n∑

i=1

αi = (vint + v)π −
n∑

i=1

αi.

But counting all the vertices of all faces is the same as counting all the faces ap-
pearing at all vertices. As we have seen, according to the fact that the vertex is inside
P or on its boundary, this number of faces at a vertex equals the number of edges
at this vertex or this number of edges minus 1. This “minus 1” possibility occurs
v − vint times. Since moreover each edge appears twice, at two distinct vertices, we
infer that

f∑

t=1

nt = 2e − (v − vint).

Putting all these results together and applying Proposition 7.12.3 we obtain,

f∑

t=1

nt∑

it=1

α
(t)
it

=
(

f∑

t=1

nt∑

it=1

)

π −
f∑

t=1

nt∑

it=1

β
(t)
it

= (2e − v + vint)π − (vint + v)π +
n∑

i=1

αi

= 2(e − v)π +
n∑

i=1

αi
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= 2(f − 1)π +
n∑

i=1

αi.

This is precisely the expected equality which concludes the proof. �

7.14 Geodesic Triangles

The study of Euclid’s Elements in [3], Trilogy I, has provided evidence that the
triangle is the very basic ingredient of the properties on which Greek geometry
of the plane is based. Hilbert’s axiomatization of the plane (see Chap. 8 in [3],
Trilogy I)—Euclidean or non-Euclidean—again grants a crucial role to the triangle.
The generalization of the notion of “triangle” to the context of a surface is easy:

Definition 7.14.1 By a geodesic triangle on a Riemann surface of class C3 in R
3 is

meant a polygonal domain with exactly three sides, these sides being geodesics of
the surface.

The following result is then a special case of the Gauss–Bonnet Theorem:

Theorem 7.14.2 (Theorema Elegantissimum; Gauss) On a Riemann surface of
class C3 in R

3, the sum of the interior angles of a geodesic triangle T is equal to

π +
∫ ∫

T
κτ .

Proof In the Gauss–Bonnet theorem 7.13.1, the geodesic curvature of the boundary
is now zero (see Definition 6.10.1). Writing αi for the exterior angles and βi =
π − αi for the interior angles, the Gauss–Bonnet formula becomes

2π =
∫ ∫

T
κτ +

3∑

i=1

αi =
∫ ∫

T
κτ + 3π −

3∑

i=1

βi.

This is the expected result. �

Corollary 7.14.3 Consider a Riemann surface of class C3 in R
3 and its Gaussian

curvature κτ .

• If κτ < 0 at each point, then the sum of the interior angles of every geodesic
triangle is strictly less than π .

• If κτ = 0 at each point, then the sum of the interior angles of every geodesic
triangle is equal to π .

• If κτ > 0 at each point, then the sum of the interior angles of every geodesic
triangle is strictly greater than π .
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In view of Sect. 7.3 in [3], Trilogy I, the following definition is natural:

Definition 7.14.4 Consider a Riemann surface of class C3 in R
3 and its Gaussian

curvature κτ .

• The surface is called hyperbolic when κτ < 0 at each point.
• The surface is called elliptic when κτ > 0 at each point.

Observe that this terminology is perfectly consistent with that of Defini-
tion 5.16.9.

7.15 The Euler–Poincaré Characteristic

Let us conclude this book—and this Trilogy—by opening a door onto algebraic
topology. The Euler–Poincaré characteristic of a surface is just an integer, but an
integer which tells us something interesting about the shape of the surface. This is
the spirit of algebraic topology: to a given topological space (here, a surface) one
associates some useful algebraic object. The whole power of algebra can then be
applied to infer algebraic properties of this algebraic object and translate them into
topological properties of the original topological space.

A very important result which is often proved using the techniques of algebraic
topology is the following:

Theorem 7.15.1 Every compact Riemann surface of class C2 in R
3 is orientable.

Clearly, by “orientable” we mean that one can choose an orientation on each
local map (see Definition 5.7.1) in such a way that these orientations coincide on
every intersection of two local maps.

On the other hand, adapting first the argument developed in the “proof” of Propo-
sition 7.12.4 and using a rather strong version of the Jordan Curve Theorem 7.11.3,
one also proves that:

Proposition 7.15.2 Every compact Riemann surface of class C3 in R
3 admits a

polygonal decomposition (see Definition 7.12.1).

Applying the Gauss–Bonnet Theorem, we then infer:

Theorem 7.15.3 Given a compact Riemann surface S of class C3 in R
3, the quan-

tity

χ = 1

2π

∫ ∫

S
κτ
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is an integer, called the Euler–Poincaré characteristic of the surface. Given a polyg-
onal decomposition of the surface, with f faces, e edges and v vertices, the Euler–
Poincaré characteristic is also equal to

χ = f − e + v.

Proof The proof is an easy adaptation of the last part of the proof of the Gauss–
Bonnet Theorem 7.13.1. Applying Proposition 7.12.4 and using its notation, we
consider a decomposition of the surface into f faces

S = P1 ∪ · · · ∪Pf.

The Gauss–Bonnet Theorem 7.13.1 yields for each index t

∫ ∫

Pt

κτ +
∫

∂Pt

κg +
nt∑

it=1

α
(t)
it

= 2π

where the α
(t)
i are the external angles of Pt and nt is the number of vertices (or

edges) of Pt . To conclude, it “suffices” to add all these equalities.
First of all,

∫ ∫

S
κτ =

f∑

t=1

∫ ∫

Pt

κτ

because S = P1 ∪· · ·∪Pf while the corresponding integrals on each Pt ∩Pt ′ (t �= t ′)
are zero, by definition of a polygonal decomposition (see Definition 7.12.1).

Next, we take care of the integral of the geodesic curvature. Since we have a
covering of the whole surface, every edge (which is contained in a local map, by
Definition 7.11.5) necessarily appears as an edge of two different faces. Moreover,
since the surface is orientable, if we travel positively along the borders of these
two faces, we travel along the mutual edge in opposite directions. Thus the two
corresponding terms annihilate each other and all the terms involving the geodesic
curvature disappear when summing over t .

Thus adding all the Gauss–Bonnet equalities for the individual polygonal do-
mains Pi we obtain

∫ ∫

S
κτ +

f∑

t=1

nt∑

it=1

α
(t)
it

= 2π f.

To conclude the proof, it remains to show that

f∑

t=1

nt∑

it=1

α
(t)
it

= 2π(e − v).



7.15 The Euler–Poincaré Characteristic 413

Fig. 7.29

As in the proof of the Gauss–Bonnet Theorem 7.13.1, we write β
(t)
it

for the inte-
rior angles of Pt and obtain

f∑

t=1

nt∑

it=1

α
(t)
it

=
f∑

t=1

nt∑

it=1

(
π − β

(t)
it

)=
f∑

t=1

ntπ −
f∑

t=1

nt∑

it=1

β
(t)
it

.

This time, since we have a decomposition of the whole surface, each vertex is an
“interior” vertex of P and the sum of the interior angles at this vertex equals 2π .
Therefore

f∑

t=1

nt∑

it=1

β
(t)
it

= 2πv.

On the other hand
∑f

t=1 nt is the sum of the number of edges of the various faces:
since each edge appears in exactly two faces, this sum is simply 2e. This implies

f∑

t=1

nt∑

it=1

α
(t)
it

= 2πe − 2πv

as expected. �

Theorem 7.15.3 is a very powerful one: it allows us to compute the integral∫∫
S κτ just by counting faces, edges and vertices. Let us do this for some easy

compact surfaces:

Example 7.15.4 The Euler–Poincaré characteristic χ of:

• the sphere (see Fig. 7.29) is 2;
• the torus (see Fig. 7.29) is 0;
• the torus with two holes (see Fig. 7.30) is −2;
• the torus with n holes is 2(1 − n).
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Fig. 7.30

Proof In the first three cases, just “draw” these surfaces together with a polygonal
decomposition and apply Theorem 7.15.3. In Fig. 7.29, we have cut the sphere and
the torus by the three coordinate planes. For the sphere we get:

• 8 triangular faces;
• 12 edges;
• 6 vertices,

thus

χ = 8 − 12 + 6 = 2.

For the torus we obtain:

• 16 quadrilateral faces;
• 24 edges;
• 8 vertices,

thus

χ = 16 − 24 + 8 = 0.

Now how can you construct a torus with n holes? First take a torus with n − 1
holes, and a torus with one hole. Cut a small triangle out of each of these and glue
the two pieces together along these triangles (see Fig. 7.30). Then choose polygonal
decompositions of the two original tori:

• with fn−1 faces, en−1 edges and vn−1 vertices in the case of the torus with n − 1
holes;

• with f1 faces, e1 edges and v1 vertices in the case of the torus with one hole.

Choose these decompositions so that the triangle involved in the cut-and-glue pro-
cess is a face of each decomposition. Then consider the resulting decomposition of
the torus with n holes; it has fn−1 faces, en−1 edges and vn−1 vertices and

fn = (fn−1 − 1) + (f1 − 1), en = en−1 + e1 − 3, vn = vn−1 + v1 − 3.

This implies

fn − en + vn = (fn−1 − en−1 + vn−1) + (f1 − e1 + v1) − 2

= (fn−1 − en−1 + vn−1) − 2
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since the torus has Euler–Poincaré characteristic 0. Writing χn for the Euler–
Poincaré characteristic of the torus with n holes, this proves that χn = χn−1 − 2.
Together with the initial value χ1 = 0, this forces the conclusion by induction. �

The conclusion is rather clear: the Euler–Poincaré characteristic χ recaptures the
information on “the number of holes” in the surface. In the tori of Example 7.15.4,
the number of holes is equal to 1− χ

2 . So indeed, just knowing the number χ already
gives us some pertinent information on the shape of the surface.

Of course, we have not given a precise definition of what a “hole” in a surface is.
The answer leads us into the fascinating world of algebraic topology.

7.16 Problems

7.16.1 Consider a regular curve c of class C2 on an orientable regular surface f

of class C2. Write −→
n for the normal vector to the surface. The curve c is a line of

curvature on the surface if and only if the ruled surface

g(s, t) = c(t) + s
−→
n
(
c(t)

)

is developable.

7.16.2 The tangent plane along a ruling of the tangent surface to a regular curve of
class C2 coincides with the osculating plane to the curve at the corresponding point.

7.16.3 A regular surface of class C2 has constant zero curvature if and only if, in the
neighborhood of each point, there exist two families of geodesics which intersect at
a constant angle.

7.16.4 On a regular surface of class C2 with constant Gaussian curvature, prove
that the area of a geodesic polygon is entirely determined by the knowledge of its
interior angles.

7.16.5 An ovaloid is a compact surface of class C2 in R
3 whose Gaussian curva-

ture is strictly positive at each point. Such a surface is convex, that is, at each point,
lies entirely on one side of the tangent plane at that point. (Compare with Theo-
rem 2.16.4.)

7.16.6 Two ovaloids which are locally Riemann isometric are necessarily isometric
as subsets of R3.

7.16.7 On a Riemann surface of class C2 in R
3, with strictly negative Gaussian

curvature, a closed geodesic necessarily intersects itself.

7.16.8 On a connected Riemann surface of class C2 in R
3, with strictly positive

Gaussian curvature, two different closed geodesics necessarily intersect each other.
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Fig. 7.31 A curve with constant compass direction

7.17 Exercises

7.17.1 Show that the curve

c : ]0,∞[ →R
2, t �→ (2 arctan t, log t)

intersects all the meridians of the sphere

f (ϕ, θ) = (cos θ sinϕ, sin θ sinϕ, cosϕ)

at a constant angle π
4 . (This curve of “constant compass-direction” spirals around

the North and the South pole; see Fig. 7.31.)

7.17.2 For each of the two families of rulings, find the striction lines of the hyper-
boloid of one sheet and the hyperbolic paraboloid.

7.17.3 Find the striction lines of the helicoid (Example 5.1.8) and of the Möbius
strip (Example 5.1.9).

7.17.4 The catenoid is the surface of revolution obtained by rotating a catenary (see
Sect. 3.17); see Fig. 7.32:

f
(
x1, x2)=

(
k cosh

x1

k
cosx2, k cosh

x1

k
sinx2, x1

)
.

The catenoid is locally Riemann isometric to the helicoid of Example 5.1.8

g
(
x̃1, x̃2)= (

x̃1 cos x̃2, x̃1 sin x̃2, kx̃2)

via the change of parameters

x̃1 = a sinh
x1

k
, x̃2 = x2.
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Fig. 7.32 The catenoid

7.17.5 Consider a ruled surface of class C2 represented by

f (s, t) = c(t) + sξ(t).

Prove that the surface is developable if and only if
(
c′ × ξ

∣∣ξ ′)= 0.

Prove that this is also equivalent to saying that ∂2f
∂s∂t

is a linear combination of ∂f
∂s

and ∂f
∂t

.

7.17.6 Consider the following data
(

g11 g12
g21 g22

)
=
(

1 0
0 1

)

and

(
h11 h12
h21 h22

)
=
⎛

⎜
⎝

e−( 1±v
u )2

1±v
∓ue−( 1±v

u )2

(1±v)2

∓ue−( 1±v
u )2

(1±v)2
u2 e−( 1±v

u )2

(1±v)3

⎞

⎟
⎠

where the upper sign must be chosen for u ≥ 0 and the lower sign for u ≤ 0. These
data satisfy the Codazzi–Mainardi equations. The corresponding surface has con-
stant zero Gaussian curvature, but in a neighborhood of (0,0) it is not locally Rie-
mann isometric to a ruled surface.

7.17.7 Prove that the surface of revolution

f (t, θ) = (
α(t) cos θ,α(t) sin θ,β(t)

)
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where

α(t) = a cos
t

k
+ b sin

t

k
, β(t) =

∫ √
1 + α′(t)2 dt

has constant positive Gaussian curvature 1
k2 . When is such a surface a sphere?

7.17.8 Prove that the surface of revolution

f (t, θ) = (
α(t) cos θ,α(t) sin θ,β(t)

)

where

α(t) = ae
t
k + b e− t

k , β(t) =
∫ √

1 + α′(t)2 dt

has constant negative Gaussian curvature − 1
k2 .



Appendix A
Topology

An elegant presentation of the general theory of surfaces requires mastering—at
least—the topology of finite dimensional real spaces, but preferably also some basic
notions of general topology. This appendix is devoted to a quick review of these
notions.

A.1 Open Subsets in Real Spaces

We are thus interested here in some basic aspects of what is called the topology
of the spaces R

n (and feel free to assume n �= 0, if you want to avoid confusing
trivialities). First, a well-known notion:

Definition A.1.1 Consider a point P ∈R
n and a real number ε > 0. The open ball

with center P ∈R
n and radius ε is

B(P, ε) = {
A ∈ R

n
∣
∣d(P,A) < ε

}⊆ R
n

where d(P,A) indicates the distance between A and P .

A subset U ⊆ R
n is open when, given a point P ∈ U , “all the points around P

are still in U”. More precisely:

Definition A.1.2 A subset U ⊆ R
n is open when, for every point P ∈ U , there

exists a real number ε > 0 such that the open ball B(P, ε) with center P and radius
ε is entirely contained in U .

For example, in R
2, the “open upper half plane”

U = {
(x, y) ∈R

2
∣∣y > 0

}
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Fig. A.1

is open because given P = (a, b) with b > 0, the open ball with center (a, b) and
radius b

2 is still entirely contained in U (see Fig. A.1). But the “closed upper half
plane”

U = {
(x, y) ∈R

2
∣∣y ≥ 0

}

is not open, because given a point Q = (c,0) in it, every open ball with center (c,0)

and radius ε contains the point (c,− ε
2 ) which is not in U .

Here are the stability properties of open subsets:

Proposition A.1.3 In R
n:

1. an arbitrary union of open subsets is open;
2. a finite union of open subsets is open.

In particular, Rn itself and the empty subset ∅ ⊆ R
n are open.

Proof The reader familiar with logical arguments will have noticed at once that Rn

can be viewed as the intersection of an empty family of open subsets, while the
empty subset is the union of an empty family of open subsets. To avoid logical
“contortions”, let us treat these two particular cases separately.

Given a point P ∈ R
n and an arbitrary real number ε > 0, the open ball B(P, ε)

is of course contained in R
n. Thus Rn is open.

The empty subset is open, because the condition for being open vanishes in this
case (there is no point in the empty set, thus no condition to check).

Given a non-empty family (Ui)i∈I of open subsets together with a point P ∈⋃
i∈I Ui , there exists an index i0 such that P ∈ Ui0 . Therefore there exists an open

ball B(P, ε) contained in Ui0 , thus also in the union.
Given a non-empty finite family (Ui)i∈I of open subsets and a point P ∈⋂

i∈I Ui , for each index i we get a real number εi > 0 such that the open ball
B(P, εi) is contained in Ui . Choosing for ε the smallest of these εi (which ex-
ists, since I is finite), the open ball B(P, ε) is contained in each Ui , thus in their
intersection. �

Let us also mention a classical point of terminology:

Definition A.1.4 Let P be a point of Rn.

1. An open subset U containing P is called an open neighborhood of P .
2. An arbitrary neighborhood of P is an arbitrary subset V ⊆ X containing an open

neighborhood of P .
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A.2 Closed Subsets in Real Spaces

We now investigate the case of closed subsets of Rn. Let us recall that in R
n, every

Cauchy sequence of points converges.

Definition A.2.1 A subset A ⊆ R
n is closed when the limit of every Cauchy se-

quence of points in A still belongs to A.

Of course a closed ball with center P and radius ε > 0

B(P, ε) = {
Q ∈R

n
∣∣d(P,Q) ≤ ε

}

or a closed box
n∏

i=1

[an, bn], ai < bi

are examples of closed subsets.
Closed subsets can easily be characterized in terms of open sets:

Proposition A.2.2 A subset A ⊆ R
n is closed if and only if its complement �A ⊆

R
n is open.

Proof Consider a closed subset A ⊆ R
n and a point P ∈ �A. We must prove the

existence of an open ball B(P, ε) contained in �A. If this is not the case, for every
integer n > 0, the open ball B(P, 1

n
) is not contained in �A, thus we can find a point

Pn ∈ A ∩ B

(
P,

1

n

)
.

But then (Pn)n∈N is a Cauchy sequence of points Pn ∈ A converging to P /∈ A,
which contradicts the assumption that A is closed.

Conversely, suppose that �A is open. Let (Pn)n∈N be a Cauchy sequence of points
in A with limit P . We must prove that P ∈ A. If not, P ∈ �A and since �A is open,
there exists an open ball B(P, ε) contained in �A. But then this open ball does not
contain any of the points Pn, which is a contradiction since the sequence (Pn)n∈N
converges to P . �

A.3 Compact Subsets in Real Spaces

The notion of a compact subset is more involved:

Definition A.3.1 Consider a subset A ⊆ R
n.

1. A is bounded when it is contained in some closed ball B(P, ε).
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2. A is compact when it is bounded and closed.

Of course, closed balls and closed boxes are again typical examples of compact
subsets of Rn. We also have:

Proposition A.3.2 For a subset A ⊆ R
n, the following conditions are equivalent:

1. A is bounded;
2. A is contained in some compact subset B .

Proof When A is bounded, it is contained in some closed ball B(P, ε) (Defini-
tion A.3.1) and such a closed ball is a compact subset. Conversely if A is contained
is some compact subset B , then B is contained in a closed ball B(P, ε), thus a
fortiori A is also contained in this ball, and hence is bounded. �

The following characterization is crucial.

Theorem A.3.3 (Heine–Borel) For an arbitrary subset A ⊆ R
n, the following con-

ditions are equivalent:

1. A is compact;
2. if A is contained in the union of a family of open subsets, it is already contained

in the union of a finite subfamily of these.

Proof Suppose that A is compact and A ⊆⋃
i∈I Ui with each Ui open. We develop

the proof by reductio ad absurdum and assume that A is not contained in any finite
union

A ⊆ Ui1 ∪ · · · ∪ Uim.

Since A is compact, it is bounded, thus contained in a closed ball which is itself
contained in a closed box Box0:

A ⊆ B(Q, r) ⊆
n∏

k=1

[ak, bk] = Box0.

The complement �A of A is open (see Proposition A.2.2), thus the various Ui to-
gether with �A constitute an open covering of the closed box Box0 (and even of the
whole space R

n). Of course no finite sub-covering already covers the closed box
Box0, otherwise the corresponding finitely many Ui would cover A.

Now divide each interval [ak, bk] into two equal pieces, which results in a divi-
sion of the original box Box0 into 2n smaller boxes, with sides half the length of
the original. If each of these small boxes could be covered by a finite sub-covering
of
⋃

i∈I Ui ∪ �A, the same conclusion would apply to their union Box0, since there
are only finitely many small boxes. Thus at least one small box cannot be covered
by a finite sub-covering of

⋃
i∈I Ui ∪ �A. Let us choose one such small box and

call it Box1. Observe that this argument uses in an essential way the finiteness of the
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dimension n of the space: otherwise, one would have infinitely many smaller boxes
and the argument would fail.

Repeat the same division process with Box1, and so on, to get an infinite sequence
of closed boxes

Box0 ⊇ Box1 ⊇ Box2 · · · ⊇ Boxl ⊇ · · ·
where at each stage the length of all sides is divided by 2 and none of these boxes is
contained in a finite subcovering of

⋃
i∈I Ui ∪ �A.

Choose now a point Ps ∈ Boxs in each of these boxes. Since the length of the
sides is each time divided by 2, the sequence (Ps)s∈N is a Cauchy sequence. There-
fore it converges to a point P ∈ R

n. Certainly P ∈ Box0, because that box is closed
and contains the various elements Ps of the sequence (see Definition A.2.1). No-
tice that the same argument, applied to the indices s ≥ s0, proves that P ∈ Boxs0

for each s0. Now since P belongs to Box0, it belongs to one of the elements of the
covering

⋃
i∈I Ui ∪ �A; let us write W for this element (thus W is one of the Ui ’s

or W = �A). Since W is open and P ∈ W , there exists some open ball B(P, ε) still
contained in W . But for s sufficiently big, each “tiny” box Boxs (which contains P )
is contained in B(P, ε), thus in W . Therefore each such tiny Boxs is contained in a
single element of the covering

⋃
i∈I Ui ∪ �A, which is a contradiction. This proves

1 ⇒ 2.
Conversely, let us cover A with open balls of radius 1 centered at each point of A:

A ⊆
⋃

P∈A

B(P,1).

By assumption, A is already contained in a finite sub-covering. Trivially, a finite
union of balls of radius 1 is bounded, thus A itself is bounded.

To prove that A is closed, it suffices to prove that �A is open (see Proposi-
tion A.2.2). Fix P ∈ �A. For every Q ∈ A consider the two open balls

B(Q,εQ), B(P, εQ), εQ = 1

3
d(P,Q)

where d(P,Q) indicates the distance between P and Q. The various B(Q,εQ), for
all Q ∈ A, cover A, thus already finitely many of them do:

A ⊆ B(Q1, εQ1) ∪ · · · ∪ B(Qt , εQt ), t ∈ N.

Consider then

ε = min{εQ1, . . . , εQt }.
The open ball B(P, ε) does not meet any of the balls B(Qj , εQj

) which cover A,
thus B(P, ε) ⊆ �A. This proves that �A is open (see Definition A.1.2). �

Let us also observe that:
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Proposition A.3.4 In R
n, every neighborhood of a point contains a compact neigh-

borhood of this point. (One says that Rn is locally compact.)

Proof A neighborhood V of a point P ∈R
n (see Definition A.1.4) contains an open

subset U containing P . But U itself contains an open ball centered at P (Defini-
tion A.1.2). It suffices then to consider

P ∈ B

(
P,

ε

3

)
⊆ B

(
P,

ε

2

)
⊆ B(P, ε) ⊆ U ⊆ W.

This concludes the proof because every closed ball is compact. �

A.4 Continuous Mappings of Real Spaces

Let us recall that given a subset X ⊆ R
n, a mapping f : X −→ R

m is continuous
when

∀P ∈ X ∀ε > 0 ∃δ > 0 ∀Q ∈ X d(P,Q) < δ =⇒ d
(
f (P ),f (Q)

)
< ε.

The mapping f is uniformly continuous on X when the following stronger property
holds

∀ε > 0 ∃δ > 0 ∀P ∈ X ∀Q ∈ X d(P,Q) < δ =⇒ d
(
f (P ),f (Q)

)
< ε

that is, when δ can be chosen the same whatever the point P . This definition can
equivalently be rephrased in terms of open subsets, instead of distances:

Proposition A.4.1 Let X ⊆ R
n be a subset. For a mapping f : X −→ R

m, the
following conditions are equivalent, when X is viewed as a topological subspace of
R

n:

1. f is continuous;
2. the inverse image under f of an open subset of Rm is an open subset of X.

Proof If f is continuous and U ⊆ R
m is open, we must prove that for each

P ∈ f −1(U), there exists some δ > 0 such that B(P, δ) ∩ X ⊆ f −1(U) (see Def-
inition A.1.2). But since f (P ) ∈ U and U is open, there exists an ε > 0 such that
B(f (P ), ε) ⊆ U . Choosing δ as in the definition of continuity forces the conclusion.

Conversely assume that f −1(U) is open in X for each open subset U ⊆ R
m.

Given P and ε as in the definition of continuity, put U = B(f (P ), ε) and simply
choose δ such that

B(P, δ) ∩ X ⊆ f −1(B
(
f (P ), ε

));
such a δ exists since f −1(B(f (P ), ε)) is open by assumption. �

Moreover, in the compact case:



A.5 Topological Spaces 425

Theorem A.4.2 (Heine–Cantor theorem) When X ⊆ R
n is a compact subset, every

continuous mapping f : X −→ R
m is uniformly continuous.

Proof Fix ε > 0. By continuity, for every P ∈ X choose δP > 0 such that

f
(
B(P, δP )

)⊆ B

(
f (P ),

ε

2

)
.

The various open balls B(P, δP

2 ) cover the compact subset X, thus a finite number

B

(
P1,

δP1

2

)
, . . . ,B

(
Pn,

δPn

2

)
,

of them already cover X. Write

δ = 1

2
min{δ1, . . . , δn}.

If A,B ∈ X and d(A,B) ≤ δ, by the Minkowski identity (see Proposition 4.3.2
in [4], Trilogy II) the two points A,B are necessarily in some open ball B(Pi, δi).
Then

d
(
f (A),f (Pi)

)≤ ε

2
, d

(
f (B),f (Pi)

)≤ ε

2

and again by the Minkowski identity

d
(
f (A),f (B)

)≤ ε. �

A.5 Topological Spaces

With Propositions A.1.3 and A.2.2 in mind, we make the following definition.

Definition A.5.1 A topological space is a pair (X,T ) where:

• X is a set;
• T is a family of subsets of X, called open subsets.

These data must satisfy the following axioms:

1. an arbitrary union of open subsets is open;
2. a finite intersection of open subsets is open.

In particular, X itself and the empty subset are always open.

The subset X ⊆ X is indeed the intersection of the empty (thus finite) family of
open subsets, while ∅ ⊆ X is its union.
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Definition A.5.2 In a topological space, a neighborhood of a point P is a subset V

containing an open subset U containing P : P ∈ U ⊆ V .

Proposition A.5.3 For a subset U ⊆ X of a topological space (X,T ), the follow-
ing conditions are equivalent:

1. U is open;
2. U is a neighborhood of each of its points.

Proof (1 ⇒ 2) is obvious by Definition A.5.2. Conversely, for each point P ∈ U

there exists an open subset P ∈ UP ⊆ U and U is open, as a union of the open
subsets UP (see Definition A.5.1). �

The examples of topological spaces of interest for this book are essentially ob-
tained via the following proposition:

Proposition A.5.4 Let (X,T ) be a topological space and Y ⊆ X an arbitrary sub-
set. Define

S = {
Y ∩ U

∣∣U ∈ T
}
.

Then (Y,S) is a topological space, called a topological sub-space of (X,T ), and S
is the induced topology on Y .

Proof (Y,S) is a topological space simply because

Y ∩
(⋃

i∈I

Ui

)
=
⋃

i∈I

(Y ∩ Ui), Y ∩
(⋂

i∈I

Ui

)
=
⋂

i∈I

(Y ∩ Ui).
�

Since each space R
n is a topological space by Proposition A.1.3, Proposi-

tion A.5.4 yields several examples closely related to the theory of surfaces:

Example A.5.5 Given a parametric representation

f : U �→R
3

of a surface, the support f (U) of this surface is a topological sub-space of R3. �

We also have:

Example A.5.6 Every quadric (see Sect. 1.14 in [4], Trilogy II) is a topological
sub-space of R3. �

Let us conclude with another classical notion:

Proposition A.5.7 For every subset A ⊆ X of a topological space (X,T ), there

exists a greatest open subset
◦
A contained in A, called the interior of A.
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Proof By Definition A.5.1, it suffices to define the interior
◦
A as the union of all the

open subsets contained in A. �

A.6 Closure and Density

With Proposition A.2.2 in mind, we make the following definition:

Definition A.6.1 Let (X,T ) be a topological space. A subset A ⊆ X is closed
when its complement �A is open.

Proposition A.6.2 For every subset A ⊆ X of a topological space (X,T ), there
exists a smallest closed subset A containing A. It is called the closure of A.

Proof Since a union of open subsets is open (see Definition A.5.1), an intersection
of closed subsets is closed. Therefore A is simply the intersection of all the closed
subsets containing A. �

Proposition A.6.3 The closure of a subset A ⊆ X of a topological space (X,T ) is
the set of those points of X all of whose neighborhoods intersect A.

Proof Write Ã for the set of those points all of whose neighborhoods intersect A.
Trivially, A ⊆ Ã. Let us first prove that Ã is closed, that is, its complement �Ã is
open.

If P ∈ �Ã, there exists a neighborhood V of P which does not intersect A and by
Definition A.5.2, there is no loss of generality in assuming that V is open. But then
V is a neighborhood of each point Q ∈ V which does not interect A. So Q ∈ �Ã
as well and finally V ⊆ �Ã. Thus �Ã is a neighborhood of each of its points and
therefore, it is open (see Proposition A.5.3).

Consider now A ⊆ C with C an arbitrary closed subset; we must prove that
Ã ⊆ C that is, �C ⊆ �Ã. If P ∈ �C, then �P is an open subset containing P and not
intersecting A. Thus P ∈ �Ã.

All this proves that Ã = A is the closure of A (see Proposition A.6.2). �

We conclude this section with two other classical notions:

Definition A.6.4 The boundary of a subset A ⊆ X of a topological space (X,T ) is

the set theoretical difference A\ ◦
A between its closure (see Proposition A.6.2) and

its interior (see Proposition A.5.7).

Definition A.6.5 Consider subsets A ⊆ B in a topological space (X,T ). The sub-
set A is dense in B when B ⊆ A, that is, B is contained in the closure of A (see
Proposition A.6.2).
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A.7 Compactness

Following the Heine–Borel Theorem (see Theorem A.3.3), we define further:

Definition A.7.1 Let (X,T ) be a topological space. A subset A ⊆ X is compact
when, from every covering A ⊆⋃

i∈I Ui of A by open subsets Ui , one can extract a
finite sub-covering

A ⊆ Ui1 ∪ · · · ∪ Uim.

Following Proposition A.3.2, we also define:

Definition A.7.2 In a topological space (X,T ), a subset A ⊆ X is bounded when
it is contained in a compact subset.

Let us stress that the equivalence (see Theorem A.3.3)

compact ⇔ bounded closed

is not valid in arbitrary topological spaces. Nevertheless, it true in the so-called
Hausdorff topological spaces: a class of spaces of great interest.

Definition A.7.3 A Hausdorff space (X,T ) is a topological space in which two
distinct points can always be included in two disjoint open subsets.

P �= Q ∈ X =⇒ ∃U,V ∈ T U ∩ V = ∅ P ∈ U Q ∈ V.

Of course, the spaces R
n are Hausdorff spaces. The observant reader will have

noticed that we used this Hausdorff property in the last part of the proof of the
Heine–Borel Theorem (see Theorem A.3.3). More generally we have:

Proposition A.7.4 For a subset A ⊆ X of a given Hausdorff topological space
(X,T ), the following conditions are equivalent:

1. A is compact;
2. A is bounded and closed.

Proof (1 ⇒ 2). By Definition A.7.2, every compact subset is bounded. To prove
that A is closed, we prove that its complement �A is open (see Definition A.6.1).
We must therefore prove that �A is a neighborhood of each of its points (see Propo-
sition A.5.3). Fix P ∈ �A. By Hausdorffness, for every point Q ∈ A, there exist
disjoint open subsets VQ � Q, WQ � P . The various VQ cover A thus by compact-
ness, finitely many of them already cover A (see Definition A.7.1):

A ⊆ VQ1 ∪ · · · ∪ VQn.
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Then

WQ1 ∩ · · · ∩ WQn

is an open subset (see Definition A.5.1) containing P and not intersecting A.
(2 ⇒ 1). Let A be closed and A ⊆ C with C compact. If (Ui)i∈I is an open

covering of A, adding the open subset �A to the Ui ’s, we obtain an open covering
of the compact subset C. One can thus extract a finite open sub-covering and the
corresponding Ui ’s then constitute a finite open covering of A. �

A.8 Continuous Mappings

Proposition A.4.1 immediately suggests the following definition:

Definition A.8.1 A continuous mapping

f : (X,T ) −→ (Y,S)

between topological spaces is a mapping f : X −→ Y such that

U ∈ S =⇒ f −1(U) ∈ T

that is, the inverse image of an open subset is open.

Let us emphasize the following point of terminology:

Definition A.8.2 By a continuous path joining two points A and B in a topological
space (X,T ) is meant a continuous function

f : [a, b] −→ (X,T ), f (a) = A, f (b) = B, a, b ∈ R.

Given a continuous mapping, the inverse image of an open subset is open (Def-
inition A.8.1), thus the inverse image of a closed subset is again closed (see Defi-
nition A.5.1). What about compact subsets? Perhaps unexpectedly we have the fol-
lowing:

Proposition A.8.3 Let f : (X,T ) −→ (Y,S) be a continuous function between
topological spaces. Then the direct image of a compact subset is a compact subset.

Proof Let A ⊆ X be compact. Consider an open covering f (A) ⊆ ⋃
i∈I Ui in

(Y,S). Then A ⊆ ⋃
i∈I f −1(Ui) is an open covering in (X,T ). By compactness

of A, we can extract a finite sub-covering

A ⊆ f −1(Ui1) ∪ · · · ∪ f −1(Uim)

from which

f (A) ⊆ (
f ◦ f −1)(Ui1) ∪ · · · ∪ (

f ◦ f −1)(Uim) ⊆ Ui1 ∪ · · · ∪ Uim. �
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Corollary A.8.4 Let (X,T ) be a topological space and f : (X,T ) −→ R be a
continuous function. When X is compact, the function f is bounded and attains its
bounds.

Proof By Proposition A.8.3, f (X) is compact. By Theorem A.3.3 and Defini-
tion A.3.1, f (X) is bounded and closed in R. Let us thus write

s = sup
{
f (x)|x ∈ X

}
, i = min

{
f (x)|x ∈ X

}

for the supremum and the infimum of f (X). For each 0 �= n ∈ N, there is thus an
element xn ∈ X such that s − f (xn) < 1

n
. The sequence f (xn) ∈ f (X) is then a

Cauchy sequence converging to s; but then s ∈ f (X) because f (X) is closed (see
Definition A.2.1); thus s = f (x) for some x ∈ X. An analogous argument holds
for i. �

A.9 Homeomorphisms

Among the continuous mappings, the “isomorphisms” of topological spaces play a
special role.

Definition A.9.1 A homeomorphism f : (X,T ) −→ (Y,S) between topological
spaces is a continuous mapping admitting a continuous inverse

f −1 : (Y,S) −→ (X,T ).

Proposition A.9.2 A homeomorphism f : (X,T ) −→ (Y,S) induces a bijection

f : T −→ S, U �→ f (U)

between open subsets.

Proof Writing g for the inverse of f , f −1 and g−1 are inverse bijections between
T and S , and f (U) as in the statement is thus exactly g−1(U). �

Proposition A.9.3 A continuous bijection between two compact Hausdorff spaces
is necessarily a homeomorphism.

Proof Let f : (X,T ) −→ (Y,S) be a continuous bijection between compact Haus-
dorff spaces (see Sect. A.7). We must prove that (f −1)−1—that is, f —transforms
an open subset of X into an open subset of Y . Of course it is equivalent to prove
that f maps a closed subset onto a closed subset (see Definition A.6.1). But in a
compact space, every subset is bounded (see Definition A.7.2). Thus in Hausdorff
spaces, being closed is the same as being compact (see Proposition A.7.4), and in-
deed f transforms compact subsets into compact subsets, by Corollary 5.1.2. �

The homeomorphisms of interest in this book are the following:
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Fig. A.2

Proposition A.9.4 Let f : V −→ R
3 be a regular parametric representation of a

surface. Each point P ∈ V has an open neighborhood U ⊆ V on which f is injective
and

f : U −→ f (U)

is a homeomorphism.

Proof Consider a point P = (u0, v0) ∈ V . Since f is locally injective, it is injec-
tive on some neighborhood of P and there is no loss of generality in choosing this
neighborhood to be an open ball B(P, ε) (see Sect. A.1). Consider then

U = B

(
P,

ε

2

)
⊆ B

(
P,

ε

2

)
⊆ B(P, ε)

where B indicates the closed ball. Since a closed ball is compact (see Defini-
tion A.3.1), Proposition A.9.3 implies that

f : B

(
P,

ε

2

)
−→ f

(
B

(
P,

ε

2

))

is a homeomorphism, since it is bijective and continuous. Therefore the further re-
striction

f : U −→ f (U)

is a homeomorphism as well. �

The reader should be aware that in general, under the conditions of Proposi-
tion A.9.4—however U is an open subset of V —f (U) generally has no reason to
be an open subset of f (V ). Not even when f is injective on V .

For a counterexample, consider in the plane R2 a closed rectangle as in Fig. A.2.
Then “roll” the left hand part in order to “glue” in R

3 the side AC onto the seg-
ment XY (see Fig. A.3). The corresponding open rectangle has now been mapped
injectively and continuously in R

3; let us write Rect for this open rectangle. This
yields a surface in the sense of Definition 5.1.1, with an injective parametric rep-
resentation. But if you consider an arbitrary small open circle U ⊆ Rect around a
point P of the segment XY , f (U) will never be open on the surface. If this were the
case, there would be an open subset W of R3 such that f (U) = W ∩ f (Rect) (see
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Fig. A.3

Proposition A.5.4). But by Definition A.1.2, W would contain an open ball of some
radius ε centered at f (P ), and such an open ball would necessarily contain points
of the form f (X), with X “near” the corresponding point P ′ on the segment AC.
This contradicts the fact that

B(P, ε) ∩ f (Rect) ⊆ W ∩ f (Rect) = f (U).

A.10 Connectedness

In this book, we are mainly interested in open subsets of one piece and surfaces of
one piece. The mathematical term for “being of one piece” is connected. There are
many possible definitions, non-equivalent in the most general context, but neverthe-
less generally equivalent in the more precise contexts in which we use them.

The straightforward way of saying that an open subset is “of one piece” is to
say . . . that it is not constituted of two pieces! Let us put this definition in its most
general context, not just for open subsets.

Definition A.10.1

• A topological space (X,T ) is connected when it is non-empty and cannot be
written as the union of two disjoint non-empty open subsets.

• An arbitrary subset A ⊆ X of a topological space (X,T ) is connected when,
provided with the induced topology (see Proposition A.5.4), it is a connected
topological space.

A second way of saying that an open subset is “of one piece” is to say that,
remaining always inside of it, you can move continuously from one point to any
other one. Again we state this definition in its most general setting:
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Definition A.10.2

• A topological space (X,T ) is path-connected when it is non-empty and any two
points P , Q in X can be joined by a continuous path.

• A subset A ⊆ X of a topological space (X,T ) is path-connected when, provided
with the induced topology (see Proposition A.5.4), it is a path-connected topo-
logical space.

Let us first exhibit the relation between these two notions.

Lemma A.10.3 Every closed interval [a, b] of the real line is connected.

Proof Suppose that [a, b] ⊆ U1 ∪ U2 with U1 and U2 disjoint non-empty open sub-
sets of [a, b]. There is no loss of generality in assuming that a ∈ U1; thus by dis-
jointness, a /∈ U2. Consider

c = inf
{
t ∈ [a, b]∣∣t ∈ U2

}
.

If c ∈ U2, then by disjointness c �= a. By openness of U2, a whole neighborhood
of c in [a, b] is still in U2. This contradicts the infimum property of c.

The case c ∈ U1 and c = b would imply [a, b] = U1, by definition of c. This
would force U2 to be empty, which is not the case.

Finally if c ∈ U1 and c �= b, by openness of U1, a whole neighborhood of c in
[a, b] is still in U1. Since by disjointness, no point of U2 can be in this neighborhood,
this again contradicts the infimum property of c. �

Corollary A.10.4 Let U1 and U2 be two open subsets of an arbitrary topological
space (X,T ). Given a, b ∈R and a continuous function

f : [a, b] −→ U1 ∪ U2 ⊆ X, f (a) ∈ U1, f (b) ∈ U2,

there exists a point c ∈ [a, b] such that f (c) ∈ U1 ∩ U2.

Proof The open subsets f −1(U1) and f −1(U2) of [a, b] (see Definition A.8.1) are
non-empty and cover the closed interval [a, b]. Thus they cannot be disjoint, by
Lemma A.10.3. �

Proposition A.10.5 Every path-connected topological space is connected.

Proof Let (X,T ) be a path-connected topological space. Suppose that X = U1 ∪
U2, where U1 and U2 are disjoint non-empty open subsets. Choose

P ∈ U1, P /∈ U2; Q ∈ U2, Q /∈ U1.

By path-connectedness, choose further a continuous function

f : [a, b] −→ (X,T ), f (a) = P, f (b) = Q.
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Fig. A.4

It follows that

[a, b] = f −1(U1) ∪ f −1(U2)

where f −1(U1) and f −1(U2) are two disjoint non-empty open subsets of the inter-
val [a, b] (see Definition A.8.1). This is a contradiction, because the interval [a, b]
is connected (see Lemma A.10.3). �

The converse implication is false:

Counterexample A.10.6 Consider the topological subspace of R2 defined by

X = X0 ∪ X+

X0 = {
(0, y)| − 1 ≤ y ≤ +1

}
, X+ =

{(
x, sin

1

x

)∣∣
∣∣x > 0

}
.

This space is connected, but not path-connected (see Fig. A.4).

Proof The space X is not path-connected, because there is no continuous function
joining a point (x, sin 1

x
) to a point (0, y). Indeed, suppose that such a continuous

function

f : [a, b] −→ X, t �→ (
f1(t), f2(t)

)
, f (a) = (1, sin 1), f (b) = (0,0)

exists. Put

c = inf
{
t ∈ [a, b]∣∣f (t) ∈ X0

}
.

Then

• f ([a, c]) ∩ X0 = ∅ if f (c) ∈ X+;
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• f ([a, c]) ∩ X0 = {f (c)} if f (c) ∈ X0.

On the other hand every neighborhood of a point (0, y) ∈ X0 contains infinitely
many points of the form (x, sin 1

x
) with 0 < x < 1; thus each such point is in the

closure of f ([a, c]), i.e.

• X0 ⊆ f ([a, c])
(see Proposition A.6.3). Thus f ([a, c]) is not equal to its closure, that is, is not
closed. By Proposition A.7.4, it is not compact. But this is a contradiction, because
[a, c] is compact (see Proposition A.8.3). This concludes the proof that X is not
path-connected.

But X is connected. Indeed a partition X = U1 ∪ U2 into two disjoint non-empty
open subsets would restrict to a partition of both X0 and X+ into two disjoint open
subsets. Since both X0 and X+ are trivially path-connected, they are connected by
Proposition A.10.5 and the induced partition should be trivial: the whole of X0 or
X+ and an empty subset. In other words, X0 ⊆ Ui and X+ ⊆ Uj (i �= j ). But again,
any open subset which contains points of X0 contain infinitely many points of X+.
Thus Ui contains a point of X+ thus a point of Uj , which is a contradiction. �

Nevertheless we have the following:

Theorem A.10.7 For an open subset U ⊆ R
n, the following conditions are equiv-

alent:

1. U is connected;
2. U is path connected.

Proof By Proposition A.10.5, it remains to prove (1 ⇒ 2). If U is connected, fix a
point P ∈ U and write:

• U1 for the set of those points in U which can be joined to P by a continuous path
in U ;

• U2 for the set of those points in U which cannot be joined to P by a continuous
path in U .

Given Q ∈ U1, there is a whole open ball centered at Q and still contained in
U (see Definition A.1.2). But Q can then further be joined by a segment to every
point R of this open ball, a segment which is entirely contained in the ball, thus in
U . Putting together this segment and a path in U from P to Q, we conclude that
R ∈ U1. So U1 contains an open ball centered at each of its points Q and therefore,
U1 is open by Definition A.1.2.

The same argument, used ad absurdum, shows that U2 is open as well. Since U1
and U2 are two disjoint open subsets covering U , by connectedness, one of them
must be empty. Since trivially P ∈ U1, we get U2 = ∅ and thus U = U1. �

Corollary A.10.8 For a Riemann surface S of R3, the following conditions are
equivalent:



436 A Topology

1. S is connected;
2. S is path-connected.

Proof Again by Proposition A.10.5, it suffices to prove (1 ⇒ 2). It suffices to adapt
the proof of Theorem A.10.7.

• U1 is the set of those points in S which can be joined to P by a continuous path
in S ;

• U2 is the set of those points in S which cannot be joined to P by a continuous
path in S .

Every point Q ∈ S lies in some local map, which is thus homeomorphic to a con-
nected and therefore path-connected open subset of R2 (see Definitions 6.17.1, 6.2.1
and Theorem A.10.7). As in Theorem A.10.7 this forces U1 and U2 to be open and
thus finally U2 = ∅ and U = U1. �

Example A.10.9 For a subset A of the real line, the following conditions are equiv-
alent:

1. A is a generalized interval;
2. A is connected;
3. A is path-connected.

Proof By “generalized interval” we mean an interval of one of the forms

]a, b[, ]a, b], [a, b[, [a, b], a, b ∈R

but possibly also

]−∞, b[, ]−∞, b], [a,+∞[, ]a,+∞[, ]−∞,+∞[, a, b ∈R.

Trivially, the generalized intervals are path connected. This proves (1 ⇒ 3).
For the converse, for two points a < b, a path-connected subset X of R necessar-

ily contains the full interval [a, b]. Thus X is a generalized interval with infX and
supX (possibly infinite) as extremities. This proves (3 ⇒ 1).

(3 ⇒ 2) is attested by Proposition A.10.5. Finally if X ⊆ R is connected and
a < b are in X, necessarily all points a < c < b are in X as well, otherwise X would
admit a covering by two disjoint open subsets of R

X ⊆ ]−∞, c[ ∪ ]c,+∞[.
Considering the intersections with X would contradict the connectedness of X. But
then again, with a < b, X contains the whole interval [a, b] and X is a generalized
interval. �

Example A.10.10 In the real plane R
2

• an open ball B(P, ε),
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• an open rectangle ]a, b[ × ]c, d[,
• an open half plane R× ]a,∞[,
• an open strip R× ]a, b[
are all examples of connected open subsets.

Proof Proving path-connectedness is in each case obvious, and the result follows
by Theorem A.10.7. �



Appendix B
Differential Equations

This appendix states—without any proofs—the theorems on systems of differential
equations and systems of partial differential equations which have been used in this
volume. We have deliberately chosen to rely only on these few basic results and not
on more sophisticated and diverse results which could have simplified some argu-
ments. In this appendix, all functions are real valued functions with real variable(s).

B.1 First Order Differential Equations

The simplest case (the so-called linear one), which we have used several times in
this book, is:

Proposition B.1.1 Consider functions of class Ck (k ≥ 1)

αij : R −→R, 1 ≤ i, j ≤ n

and the system of differential equations

f ′
i =

n∑

j=1

αijfj

with unknown functions

f1, . . . , fn : R −→R.

For arbitrary constants t0 and a1, . . . , an, consider further the initial conditions

f1(t0) = a1, . . . , fn(t0) = an.

There exists a neighborhood of t0 on which the system admits a unique solution of
class Ck+1

f1(t), . . . , fn(t)
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satisfying the prescribed initial conditions.

We also need a non-linear result. Its basic form is:

Proposition B.1.2 Consider functions of class Ck (k ≥ 1)

αi, . . . , αn : Rn −→ R

and the system of differential equations

f ′
i = αi(f1, . . . , fn)

with unknown functions

f1, . . . , fn : R −→R.

For arbitrary constants t0 and a1, . . . , an, consider further the initial conditions

f1(t0) = a1, . . . , fn(t0) = an.

There exists a neighborhood of t0 on which the system admits a unique solution of
class Ck+1

f1(t), . . . , fn(t)

satisfying the prescribed initial conditions.

Of course, Proposition B.1.1 is a special case of Proposition B.1.2.

B.2 Second Order Differential Equations

A classical “trick” allows us to pass from differential equations of order 1 to differ-
ential equations of order 2:

Proposition B.2.1 Consider functions of class Ck (k ≥ 1)

αi, . . . , αn : R2n −→ R

and the system of differential equations

f ′′
i = αi

(
f1, . . . , fn, f

′
1, . . . , f

′
n

)

with unknown functions

f1, . . . , fn : R −→R.

For arbitrary constants

t0, a1, . . . , an, b1, . . . , bn
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consider further the initial conditions

f1(t0) = a1, . . . , fn(t0) = an, f ′
1(t0) = b1, . . . , f

′
n(t0) = bn.

There exists a neighborhood of t0 on which the system admits a unique solution of
class Ck+1

f1(t), . . . , fn(t)

satisfying the prescribed initial conditions.

Proof Putting

g1 = f ′
1, . . . , gn = f ′

n

the system above can be re-written as a system of 2n-differential equations
{
f ′

i = gi

g′
i = αi(f1, . . . , fn, g1, . . . , gn)

with the initial conditions

f1(t0) = a1, . . . , fn(t0) = an, g1(t0) = b1, . . . , gn(t0) = bn.

The result follows by Proposition B.1.2. �

B.3 Variable Initial Conditions

An important refinement that we need is the “continuity of the solution of a system
of differential equations with respect to the initial conditions”. That is, if we let the
initial conditions vary continuously, the solution of the system varies continuously
as well.

Proposition B.3.1 Consider functions of class Ck (k ≥ 1)

αi, . . . , αn : Rn −→ R

and the system of differential equations

f ′
i = αi(f1, . . . , fn)

with unknown functions

f1, . . . , fn : R −→R.

Consider now functions of class Ck+1

ai : R −→ R, s �→ ai(s), 1 ≤ i ≤ n.
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For a fixed value t0 and each fixed value of the parameter s, consider the initial
conditions

f1(t0) = a1(s), . . . , fn(t0) = an(s)

and the solution, for each fixed value of s,

f
(s)
1 , . . . , f (s)

n

given by Proposition B.1.2 in a neighborhood of t0. For each fixed value s0 of s,
there exists a neighborhood of (t0, s0) in R

2 on which the functions

f1(t, s) = f
(s)
1 (t), . . . , fn(t, s) = f (s)

n (t)

are of class Ck+1.

Of course Proposition B.3.1 applies in particular in the context of Proposi-
tion B.2.1.

Proposition B.3.2 Consider functions of class Ck (k ≥ 1)

αi, . . . , αn : Rn −→ R

and the system of differential equations

f ′′
i = αi

(
f1, . . . , fn, f

′
1, . . . , f

′
n

)

with unknown functions

f1, . . . , fn : R −→R.

Consider now functions of class Ck+1

ai : R −→R, s �→ ai(s), 1 ≤ i ≤ n;

bi : R −→ R, s �→ bi(s), 1 ≤ i ≤ n.

For a fixed value t0 and each fixed value of the parameter s, consider the initial
conditions

f1(t0) = a1(s), . . . , fn(t0) = an(s), f ′
1(t0) = b1(s), . . . , f

′
n(t0) = bn(s)

and the solution, for each fixed value of s,

f
(s)
1 , . . . , f (s)

n

given by Proposition B.2.1 in a neighborhood of t0. For each fixed value s0 of s,
there exists a neighborhood of (t0, s0) in R

2 on which the functions

f1(t, s) = f
(s)
1 (t), . . . , fn(t, s) = f (s)

n (t)

are of class Ck+1.
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B.4 Systems of Partial Differential Equations

For systems of partial differential equations, we need the following result, which
is in fact simply a disguised result on systems of differential equations (see the
comment following the proof).

Proposition B.4.1 Consider functions of class Ck (k ≥ 1)

αij , βij : R2 −→R, 1 ≤ i, j ≤ n

and the system of partial differential equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂fi

∂x
=

n∑

j=1

αij (x, y)fj (x, y)

∂fi

∂y
=

n∑

j=1

βij (x, y)fj (x, y)

with unknown functions

f1, . . . , fn : R2 −→R.

Consider further the initial conditions

f1(x0, y0) = a1, . . . , fn(x0, y0) = an

for fixed constants x0, y0, a1, . . . , an. When the equations above force the compati-
bility conditions

∂2fi

∂x∂y
= ∂2fi

∂y∂x

(see below for a precise meaning of this sentence), there exists a neighborhood of
(x0, y0) on which the system admits a unique solution of class Ck+1

f1(x, y), . . . , fn(x, y)

satisfying the prescribed initial conditions. The uniqueness condition does not re-
quire the compatibility conditions.

Proof Fix y = y0 in the first equations, which we thus view as a system of differen-
tial equations with unknown functions fi(x, y0) and initial conditions fi(x0, y0) =
ai . By Proposition B.1.1 we obtain a unique solution ϕi(x) on a neighborhood of
x0. Choose x1 in this neighborhood and fix x = x1 in the second equations. We
obtain another system of differential equations with unknown functions fi(x1, y)

and initial conditions fi(x1, y0) = ϕi(x1). Again by Proposition B.1.1 we obtain
a unique solution on a neighborhood of y0. By Proposition B.3.1, we obtain on a
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neighborhood of (x0, y0), a unique solution f (x, y) of class Ck+1 satisfying the first
equations for y = y0 and all of the second equations.

Observe that in particular this forces the uniqueness of a solution f (x, y) of class
Ck+1 satisfying all the equations and the initial conditions. (Of course, even if we
had not assumed the compatibility conditions up to now, they are certainly satisfied
by our function f since f is of class C1.)

Now of course, permuting the roles of x and y, we obtain, on a neighborhood
of (x0, y0), a unique solution g(x, y) of class Ck+1 satisfying the second equations
for x = x0 and all the first equations. To conclude, it thus “suffices” to prove that
f (x, y) = g(x, y) on a neighborhood of (x0, y0). This is where the compatibility
conditions enter the story. �

Let us now make clear what the compatibility conditions precisely mean. For-
mally differentiating the first equation(s) with respect to y we obtain

∂2fi

∂y∂x
=
∑

j

(
∂αij

∂x
fj + αij

∂fj

∂x

)

=
∑

j

∂αij

∂x
fj +

∑

j l

αijβjlfl

=
∑

l

(
∂αil

∂x
+
∑

j

αijβjl

)
fl.

Analogously

∂2fi

∂y∂x
=
∑

l

(
∂βil

∂x
+
∑

j

βijαjl

)
fl.

One says that the expected compatibility conditions are “forced by the equations” as
soon as, for each l, we have the equality of the respective coefficients of fl in these
expressions. That is,

In Proposition B.4.1, the compatibility conditions mean that the coeffi-
cients of the partial differential equations satisfy:

∂αil

∂x
+
∑

j

αijβjl = ∂βil

∂x
+
∑

j

βijαjl

for all indices i, l.
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Index

A
absolute geometry, 315
absolute torsion, 168
angle

between curves, 196, 262
exterior, 112

angular function, 102, 112, 393
Apollonius, 76
Archimedes, 21

spiral, 21, 157
astroid, 137, 148
asymptote, 69
atlas, 334
axis of curvature, 47

B
Bernoulli

lemniscate, 107, 151
binormal vector, 168

C
cardioid, 136, 146
Cartesian equation

plane curve, 12, 17, 63
surface, 193

catenary, 156
catenoid, 416
caustic, 139
center of curvature, 38, 96
Christoffel symbols

first kind, 268, 270
second kind, 268, 270

circle, 84, 88, 90, 105, 106, 142
osculating –, 96

circular
cylinder, 284
helix, 46, 162, 165, 167, 173

cissoid, 141
of Diocles, 136, 153

Clairaut, 46
closed

curve, 105
clothoid, 105
Codazzi–Mainardi equations, 323
conchoid, 140

of Nicomedes, 152
cone, 351

general, 358
vertex, 358

contravariant tensor, 292
coordinates

Fermi system, 297
system of geodesic –, 297

corner, 110
Cornu

spiral, 105
covariant

derivative, 271, 272
tensor, 292

curvature
axis, 47
center, 38, 96
Gaussian, 237, 241, 310
geodesic, 279, 280, 303
line of –, 235
normal, 211, 214, 279
plane curve, 41, 89
radius, 38, 39, 47, 96
relative, 92
skew curve, 48, 166
total, 236, 241

curve
closed

piecewise regular, 111
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curve (cont.)
corner, 110
plane

vertex, 129
regular

piecewise –, 110
see “curve in a Riemann patch”, 261
see “curve on a surface”, 194
see “plane curve”, 56
see “skew curve”, 162
serpentine –, 136
simple closed, 114

curve in a Riemann patch, 261
angle, 262
geodesic, 283
geodesic curvature, 280, 303
length, 261
normal representation, 262
regular, 261
vector field, 264

normal, 266
tangent, 265

curve integral, 32, 83
curve on a surface

angle, 196
curvature

geodesic, 279
normal, 211

length, 195
cycloid, 33, 43, 85, 99, 146

epicycloid, 134
hypocycloid, 134

cylinder
circular, 284, 351
general, 357
parabolic, 229, 242, 244

D
decomposition

polygonal, 401
Descartes, 28
developable surface, 372
Diocles

cissoid, 153
directrix, 355
domain

inner, 398, 400
outer, 398, 400
polygonal, 400

E
edge, 402
ellipse, 22, 45, 57, 91, 143
ellipsoid, 217

elliptic
paraboloid, 244, 348
point, 244
surface, 411

envelope, 37, 72
epicycloid, 134, 142
equiangular spiral, 157
equivalent

parametric representations, 58, 162, 182
Riemann patches, 294

Euclidean
geometry, 314
plane, 314

Euclid’s postulate, 315
Euler, 47, 208
evolute, 39, 96
exterior angle, 112

F
face, 402
Fermi system of coordinates, 297
Frenet trihedron, 168
function

angular, 102, 112, 393
fundamental form

first, 196
second, 215

G
Galileo, 77, 156
Gauss, 236, 286

– equations, 323
Gaussian curvature, 237, 241, 310
geodesic, 283

curvature, 279, 280, 303
relative, 281

system of – coordinates, 297
geodesic triangle, 410
geometry

absolute, 315
Euclidean, 314
non-Euclidean, 315
Riemannian, 254

Green–Riemann theorem, 45

H
helicoid, 188, 360
helix, 46, 162, 165, 167, 173
Hilbert, 315

lemma, 386
Hopf theorem, 114
Huygens, 33
hyperbola, 22, 70, 144
hyperbolic

cosinus, 251
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hyperbolic (cont.)
paraboloid, 244
point, 244
sinus, 251
surface, 411

hyperboloid
of one sheet, 184, 208, 350
of two sheets, 184

hypocycloid, 134, 142
Steiner –, 149

I
implicit function theorem, 13
inner domain, 398, 400
intrinsic equation, 104

plane curve, 100
skew curve, 174
surface, 322

inverse
metric tensor, 260
plane, 341

involute, 99
isometric

locally Riemann-–, 367
Riemann –, 367

J
Jordan Curve theorem, 400

L
Lancret, 47
Leibniz, 30
lemniscate, 107, 151
length

curve in a Riemann patch, 261
curve on a surface, 195
plane curve, 32, 83
skew curve, 48, 165

Liebmann theorem, 389
Limaçon de Pascal, 150
Limaçon of Pascal, 106
Lindemann, 42
line of curvature, 235
Liouville formula, 304
local

injectivity, 9, 56
inverse theorem, 11
map, 334

atlas of –, 334
locally

Riemann-isometric, 367
logarithmic spiral, 28, 84, 157

M
meridian, 352
metric tensor, 257, 258

inverse, 260
Möbius strip, 189, 207, 360
Monge, 46
monkey saddle, 190, 216
multiple point, 17, 63, 193

N
Neil, 30
nephroid, 148
Newton, 30
Nicomedes

conchoid, 152
non-Euclidean geometry, 315
norm of a vector field, 265
normal

curvature, 211, 214
line, 27, 67
parametric representation

in a Riemann patch, 262
plane curve, 40, 86
skew curve, 48, 164

plane, 48, 168
representation, 111
vector

skew curve, 168
surface, 201

vector field, 266

O
orientable surface, 206
orthogonal vector fields, 265
osculating

circle, 96
plane, 48, 163, 168

outer domain, 398, 400
ovaloid, 415

P
parabola, 22, 42, 76, 78, 91, 99, 145

semi-cubic –, 76, 85, 99
parabolic

cylinder, 229, 242, 244
point, 244

paraboloid, 184
elliptic, 228, 244, 348
hyperbolic, 229, 244

parallel, 352
transport, 278
vector field, 277

parametric representation
equivalent, 58, 162
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parametric representation (cont.)
normal, 111
plane curve, 8, 56

normal, 86
regular, 61

skew curve, 47, 162
2-regular, 162
normal, 48
regular, 48, 162

surface, 182
regular, 191

Pascal
Limaçon, 106, 150

Peano curve, 6
pedal curve, 140
piecewise regular, 110

side, 110
planar point, 244
plane

Euclidean, 314
inverse –, 341
normal, 48, 168
osculating, 48, 163, 168
rectifying, 168
tangent, 198

plane curve, 59, 173
asymptote, 69
Cartesian equation, 12, 17, 63
closed, 105
curvature, 41, 89
intrinsic equation, 100
normal line, 27, 67
osculating circle, 96
parametric representation, 8, 56

normal, 40, 86
regular, 61

support, 56
tangent, 21, 24, 27, 67
vertex, 129

Poincaré half plane, 311
point

elliptic, 244
hyperbolic, 244
multiple, 17, 63, 193
parabolic, 244
planar, 244
regular, 61, 190
simple, 63, 193
singular, 18, 61, 191
umbilical, 215

polygon, 125
polygonal

decomposition, 401

domain, 400
principal

curvature, 224
direction, 224

pseudo-sphere, 242, 248, 349
hemi –, 349

R
radius of curvature, 38, 39, 47, 96
rectifying plane, 168
regular

2-regular, 162
parametric representation

plane curve, 61
skew curve, 48, 162
surface, 191

piecewise –, 110
point, 61, 190

relative
geodesic curvature, 281

relative curvature, 92
revolution

surface of –, 345
meridian, 352
parallel, 352

Riemann
isometric, 367
locally –-isometric, 367
patch, 258

equivalent, 294
n-dimensional, 338

surface, 333
tensor, 286, 289

first kind, 339
second kind, 339

Riemannian
geometry, 254

right strophoid, 154
Roberval, 34, 43

curve, 44
Rodrigues formula, 233
rotation

number, 107, 113, 394
ruled surface, 354

directrix, 355
ruling, 355
striction point, 357

ruling, 355
singular, 357

S
semi-cubic parabola, 76, 85, 99
serpentine curve, 136
side, 110
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simple
closed curve, 114
point, 63, 193

singular
point, 18, 61, 191
ruling, 357

skew curve, 162
curvature, 48, 166
Frenet trihedron, 168
intrinsic equations, 174
normal plane, 48
osculating plane, 48, 163
parametric representation, 47, 162

2-regular, 162
equivalent, 162
normal, 48, 164
regular, 48, 162

support, 162
tangent, 48, 163

surface, 252
torsion, 50, 169, 171

absolute, 168
vector

binormal, 168
normal, 168
tangent, 168

sphere, 185, 217, 241, 283, 334, 347
spiral

Archimedes, 21, 157
Cornu, 105
equiangular, 157
logarithmic, 28, 84, 157

Steiner’s hypocycloid, 149
striction point, 357
strophoid, 66, 70

right, 154
support

plane curve, 56
skew curve, 162
surface, 182

surface, 182
Cartesian equation, 193
Christoffel symbols

first kind, 268
second kind, 268

curvature
Gaussian, 237, 241
line of –, 235
normal, 214, 279
total, 236, 241

curve on a –, 194
developable, 372
elliptic, 411

fundamental form
first, 196
second, 215

hyperbolic, 411
normal vector, 201
of revolution, 345

meridian, 352
parallel, 352

orientable, 206
parametric representation, 182

equivalent, 182
regular, 191

principal
curvature, 224
direction, 224

Riemann, 333
rule

striction point, 357
ruled, 354

directrix, 355
ruling, 355

support, 182
tangent –, 252
tangent plane, 198
umbilical point, 215

T
tangent

circle, 19
plane, 198
plane curve, 21, 24, 27, 67
skew curve, 48, 163
surface, 252
vector, 168
vector field, 202, 265

Tcherenkov, 79
tensor, 292

contravariant, 292
covariant, 292
inverse metric, 260
metric, 257, 258
Riemann, 286, 289

theorem
egregium, 287
Elegantissimum, 410
Green–Riemann, 45
Hopf, 114
implicit function, 13
Jordan curve, 400
Liebmann, 389
local inverse, 11

Torricelli, 34, 77
torsion, 50, 169, 171

absolute, 168
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torus, 187, 350
total curvature, 236, 241
tractrix, 71, 155
triangle

geodesic, 410
triangulation, 402

U
umbilical point, 215
Umlaufsatz, 107, 112

V
van Heuraet, 30
vector field, 264

covariant derivative, 271, 272
norm, 265
normal, 266
orthogonal, 265
parallel, 277
parallel transport, 278
tangent, 202, 265

vertex, 129, 358, 402
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