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To my sweet wife Anna,
who is furious for my book was conceived
after hers but is ready long before. . .
but she seems to love me anyway





Preface

Why this book?

Why a new book on optimal transport? Were the two books by Fields Medalist
Cédric Villani not enough? And what about the Bible of Gradient Flows, the book
by Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, which also contains many
advanced and general details about optimal transport?

The present text, very vaguely inspired by the classes that I gave in Orsay in
2011 and 2012 and by two short introductory courses that I gave earlier in a summer
school in Grenoble [274, 275], would like to propose a different point of view and is
partially addressed to a different audience. There is nowadays a large and expanding
community working with optimal transport as a tool to do applied mathematics.
We can think in particular of applications to image processing, economics, and
evolution PDEs, in particular when modeling population dynamics in biology or
social sciences, or fluid mechanics. More generally, in applied mathematics, optimal
transport is both a technical tool to perform proofs, do estimates, and suggest
numerical methods and a modeling tool to describe phenomena where distances,
paths, and costs are involved.

For those who arrive at optimal transport from this side, some of the most
important issues are how to handle numerically the computations of optimal maps
and costs, which are the different formulations of the problem, so as to adapt them
to new models and purposes; how to obtain in the most concrete ways the main
results connecting transport and PDEs; and how the theory is used in the approach of
existing models. We cannot say that the answers to these questions are not contained
in the existing books, but it is true that probably none of them have been written with
this purpose.

The first book by C. Villani [292] is the closest to our intentions. It is a wide
introduction to the topic and its applications, suitable for every audience. Yet, some
of the subjects that I decided to deal with here are unfortunately not described in
[292] (e.g., the minimal flow problems discussed in Chapter 4 of this book). Also,
since 2003, the theory has enormously advanced. Also the books by ST Rachev

vii



viii Preface

and L Ruschednorf (two volumes, [257, 258]) should not be forgotten, as they
cover many applications in probability and statistics. But their scopes diverge quite
soon from ours, and we will not develop most of the applications nor the language
developed in [257]. Indeed, we will mainly stick to a deterministic framework and
to a variational taste.

If we look at what happened after [292], we should mention at least two beautiful
books which appeared since then. The new book by C. Villani [293] has expanded
the previous presentation into an almost-thousand-page volume, where most of the
extra content actually deals with geometrical issues, in particular the notion of
curvature. Optimal transport for the quadratic cost on a manifold becomes a central
tool, and it is the starting point to study the case of metric measure spaces. The
other reference book is the one by L. Ambrosio, N. Gigli, and G. Savaré [15],
devoted to the study of gradient flow evolution in metric space and in particular
in the Wasserstein space of probability measures. This topic has many interesting
applications (e.g., the heat equation, Fokker-Planck equation, porous media, etc.),
and the tools that are developed are very useful. Yet, the main point of view of the
authors is the study of the hidden differential structures in these abstract spaces;
modeling and applied mathematics were probably not their first concerns.

Some of the above references are very technical and develop powerful abstract
machineries that can be applied in very general situations but could be difficult to use
for many readers. As a consequence, some shorter surveys and more tractable lecture
notes have appeared (e.g., [11] for a simplified version of some parts of [15] or [9] as
a short introduction to the topic by L. Ambrosio and N. Gigli). Yet, a deeper analysis
of the content of [9] shows that the first half deals with the general theory of optimal
transport, with some variations, while the rest is devoted to gradient flows in metric
spaces in their generality and to metric measure spaces with curvature bounds. We
also mention two very recent survey, [63] and [228]: the former accounts for the
main achievements on the theory on the occasion of the centennial of the birth of
L. V. Kantorovich, and the second gives a general presentation of the topic with
connections with geometry and economics.

In the meantime, many initiatives took place underlining the increasing interest
in the applied side of optimal transport: publications,1 schools, workshops, research
projects, etc. The community is very lively since the 2010s in particular in France
but also in Canada, Italy, Austria, the UK, etc. All these considerations suggested
that a dedicated book could have been a good idea, and the one that you have in
your hands now is the result of the work for the last three years.

1A special issue of ESAIM M2AN on “Optimal Transport in Applied Mathematics” is in
preparation and some of the bibliographical references of the present book are taken from such
an issue.
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What about this book?

This book contains a rigorous description of the theory of optimal transport and of
some neglected variants and explains the most important connections that it has with
many topics in evolution PDEs, image processing, and economics.

I avoided as much as possible the most general frameworks and concentrated
on the Euclidean case, except where statements in Polish spaces did not cost
any more and happened to help in making the picture clearer. I skipped many
difficulties by choosing to add compactness assumptions every time that this
simplified the exposition without reducing too much the interest of the statement
(to my personal taste). Also, in many cases, I first started from the easiest cases
(e.g., with compactness or continuity) before generalizing.

When a choice was possible, I tried to prefer more “concrete” proofs, which I
think are easier to figure out for the readers. As an example, the existence of velocity
fields for Lipschitz curves in Wasserstein spaces has been proven by approximation
and not via abstract functional analysis tools, as in [15], where the main point is a
clever use of the Hahn-Banach theorem.

I did not search for an exhaustive survey of all possible topics, but I structured
the book into eight chapters, more or less corresponding to one (long) lecture each.
Obviously, I added a lot of material to what one could usually deal with during one
single lecture, but the choice of the topics and their order really follows an eight-
lecture course given in Orsay in 2011 (only exceptions: Chapter 1 and Chapter 5
took one lecture and a half, and the subsequent ones were shortened to half a lecture
in 2011). The topics which are too far from those of the eight “lectures” have been
omitted from the main body of the chapters. On the other hand, every chapter ends
with a discussion section, where extensions, connections, side topics, and different
points of view are presented. In some cases (congested and branched transport),
these discussion sections correspond to a mini-survey on a related transport model.
They are more informal; and sometimes statements are proven while at other times
they are only sketched or evoked.

In order to enhance the readership and allow as many people as possible to
access the content of this book, I decided to explain some notations in detail that
I could have probably considered as known (but it is always better to recall them).
Throughout the chapters, some notions are recalled via special boxes called Memo
or Important Notion.2 A third type of box, called Good to Know!, provides extra
notions that are not usually part of the background of nonspecialized graduate
students in mathematics. The density of the boxes, and of explanatory figures as
well, decreases as the book goes on.

For the sake of simplicity, I also decided not to insist too much on at least one
important issue: measurability. You can trust me that all the sets, functions, and maps

2The difference between the two is just that in the second case, I would rather consider it as a
Memo, but students usually do not agree.
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that are introduced throughout the text are indeed measurable as desired, but I did
not underline this explicitly. Yet, actually, this is the only concession to sloppiness:
proofs are rigorous (at least, I hope) throughout the book and could be used for sure
by pure or applied mathematicians looking for a reference on the corresponding
subjects. The only chapter where the presentation is a little bit informal is Chapter 6,
on numerical methods, in the sense that we do not give proofs of convergence or
precise implementation details.

Last but not least, there is a chapter on numerical methods! In particular those
that are most linked to PDEs (continuous methods), while the most combinatorial
and discrete ones are briefly described in the discussion section.

For whom is this book?

This book has been written with the point of view of an applied mathematician,
and applied mathematicians are supposed to be the natural readership for it. Yet,
the ambition is to speak to a much wider public. Pure mathematicians (whether
this distinction between pure and applied makes sense is a matter of personal taste)
are obviously welcome. They will find rigorous proofs, sometimes inspired by a
different point of view. They could be interested in discovering where optimal
transport can be used and how and to bring their own contributions.

More generally, the distinction can be moved to the level of people working with
optimal transport rather than on optimal transport (instead of pure vs applied). The
former are the natural readership, but the latter can find out they are interested in the
content too. In the opposite direction, can we say that the text is also addressed to
nonmathematicians (physicists, engineers, theoretical economists, etc.)? This raises
the question of the mathematical background that the readers need in order to read
it. Obviously, if they have enough mathematical background and if they work on
fields close enough to the applications that are presented, it could be interesting for
them to see what is behind those applications.

The question of how much mathematics is needed also concerns students. This
is a graduate text in mathematics. Even if I tried to give tools to review the
required background, it is true that some previous knowledge is required to fully
profit from the content of the book. The main prerequisites are measure theory
and functional analysis. I deliberately decided not to follow the advice of an
“anonymous” referee, who suggested to include an appendix on measure theory.
The idea is that mathematicians who want to approach optimal transport should
already know something on these subjects (what is a measurable function, what is a
measure, which are the conditions for the main convergence theorems, what about
Lp and W1;p functions, what is weak convergence, etc.). The goal of the Memo Boxes
is to help readers to not get lost. For nonmathematicians reading the book, I hope
that the choice of a more concrete approach could help them in finding out what
kind of properties is important and reasonable. On the other hand, these readers are
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also expected to know some mathematical language, and for sure, they will need to
put in extra effort to fully profit from it.

Concerning readership, the numerical part (Chapter 6) deserves being discussed
a little bit more. Comparing in detail the different methods, their drawbacks, and
their strengths, the smartest tricks for their implementation, and discussing the
most recent algorithms are beyond the scopes of this book. Hence, this chapter is
probably useless for people already working in this field. On the other hand, it can
be of interest for people working with optimal transport without knowing numerical
methods or for numericists who are not into optimal transport.

Also, I am certain that it will be possible to use some of the material that I present
here for a graduate course on these topics because of the many boxes recalling the
main background notions and the exercises at the end of the book.

What is in this book?

After this preface and a short introduction to optimal transport (where I mainly
present the problem, its history, and its main connections with other part of
mathematics), this book contains eight chapters. The two most important chapters,
those which constitute the general theory of optimal transport, are Chapters 1 and 5.
In the structure of the book, the first half of the text is devoted to the problem of the
optimal way of transporting mass from a given measure to another (in the Monge-
Kantorovich framework and then with a minimal flow approach), and Chapter 1 is
the most important. Then, in the second half, I move to the case where measures
vary, which is indeed the case in Chapter 5 and later in Chapters 7 and 8. Chapter 6
comes after Chapter 5 because of the connections of the Benamou-Brenier method
with geodesics in the Wasserstein space.

Chapter 1 presents the relaxation that Kantorovich did of the original Monge
problem and its duality issues (Kantorovich potentials, c-cyclical monotonicity,
etc.). It uses these tools to provide the first theorem of existence of an optimal
map (Brenier theorem). The discussion section as well mainly stems from the
Kantorovich interpretation and duality.

Chapter 2 focuses on the unidimensional case, which is easier and already has
many consequences. Then, the Knothe map is presented; it is a transport map built
with 1D bricks, and its degenerate optimality is discussed. The main notion here
is that of monotone transport. In the discussion section, 1D and monotone maps
are used for applications in mathematics (isoperimetric inequalities) and outside
mathematics (histogram equalization in image processing).

Chapter 3 deals with some limit cases, not covered in Chapter 1. Indeed, from
the results of the first chapter, we know how to handle transport costs of the form
jx � yjp for p 2 .1;C1/, but not p D 1, which was the original question by Monge.
This requires to use some extra ideas, in particular selecting a special minimizer via
a secondary variational problem. Similar techniques are also needed for the other
limit case, i.e., p D 1, which is also detailed in the chapter. In the discussion
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section we present the main challenges and methods to tackle the general problem
of convex costs of the form h.y � x/ (without strict convexity and with possible
infinite values), which has been a lively research subject in the last few years, and
later we consider the case 0 < p < 1, i.e., costs which are concave in the distance.

Chapter 4 presents alternative formulations, more Eulerian in spirit: how to
describe a transportation phenomenon via a flow, i.e., a vector field w with
prescribed divergence, and minimize the total cost via functionals involving w.
When we minimize the L1 norm of w, this turns out to be equivalent to the original
problem by Monge. The main body of the chapter provides the dictionary to pass
from Lagrangian to Eulerian frameworks and back and studies this minimization
problem and its solutions. In the discussion section, two variants are proposed:
traffic congestion (with strictly convex costs in w) and branched transport (with
concave costs in w).

Chapter 5 introduces another essential tool in the theory of optimal transport: the
distances (called Wasserstein distances) induced by transport costs on the space of
measures. After studying their properties, we study the curves in these spaces, and in
particular geodesics, and we underline the connection with the continuity equation.
The discussion section makes a comparison between Wasserstein distances and
other distances on probabilities and finally describes an application in terms of
barycenters of measures.

Chapter 6 starts from the ideas presented in the previous chapter and uses them
to propose numerical methods. Indeed, in the description of the Wasserstein space,
one can see that finding the optimal transport is equivalent to minimizing a kinetic
energy functional among solutions of the continuity equation. This provided the first
numerical method for optimal transport called the Benamou-Brenier method. In the
rest of the chapter, two other “continuous” numerical methods are described, and
the discussion section deals with discrete and semidiscrete methods.

Chapter 7 contains a “bestiary” of useful functionals defined over measures
and studies their properties, not necessarily in connection with optimal transport
(convexity, semicontinuity, computing the first variation, etc.). The idea is that these
functionals often appear in modeling issues accompanied by transport distances.
Also, the notion of displacement convexity (i.e., convexity along geodesics of
the Wasserstein space) is described in detail. The discussion section is quite
heterogeneous, with applications to geometrical inequalities but also equilibria in
urban regions.

Chapter 8 gives an original presentation of one of the most striking applications
of optimal transport: gradient flows in Wasserstein spaces, which allow us to deal
with many evolution equations, in particular of the parabolic type. The general
framework is presented, and the Fokker-Planck equation is studied in detail. The
discussion section presents other equations which have this gradient flow structure
and also other evolution equations where optimal transport plays a role, without
being gradient flows.



Preface xiii

Before the detailed bibliography and the index which conclude the book, there is
a list of 69 exercises from the various chapters and of different levels of difficulties.
From students to senior researchers, the readers are invited to play with these
exercises and enjoy the taste of optimal transport.

Orsay, France Filippo Santambrogio
May 2015
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Introduction to optimal transport

The history of optimal transport began a long time ago in France, a few years before
the revolution, when Gaspard Monge proposed the following problem in a report
that he submitted to the Académie des Sciences [239].3 Given two densities of mass
f ; g � 0 on R

d, with
´

f .x/ dx D ´
g.y/ dy D 1, find a map T W Rd ! R

d, pushing
the first one onto the other, i.e. such that

ˆ

A
g.y/ dy D

ˆ

T�1.A/
f .x/ dx for any Borel subset A � R

d; (1)

and minimizing the quantity

M.T/ WD
ˆ

Rd
jT.x/ � xj f .x/ dx

among all the maps satisfying this condition. This means that we have a collection of
particles, distributed according to the density f on R

d, that have to be moved so that
they form a new distribution whose density is prescribed and is g. The movement
has to be chosen so as to minimize the average displacement. In the description
of Monge, the starting density f represented a distribution of sand that had to be
moved to a target configuration g. These two configurations correspond to what
was called in French déblais and remblais. Obviously, the dimension of the space
was only supposed to be d D 2 or 3. The map T describes the movement (that we
must choose in an optimal way), and T.x/ represents the destination of the particle
originally located at x.

In the following, we will often use the image measure of a measure � on X
(measures will indeed replace the densities f and g in the most general formulation
of the problem) through a measurable map T W X ! Y: it is the measure on Y
denoted by T#� and characterized, as in (1), by

.T#�/.A/ D �.T�1.A// for every measurable set A

or
ˆ

Y
� d .T#�/ D

ˆ

X
.� ı T/ d� for every measurable function �:

More generally, we can consider the problem

.MP/ minfM.T/ WD
ˆ

c.x;T.x// d�.x/ W T#� D �g;

for a more general transport cost c W X � Y ! R.

3This happened in 1781, but we translate his problem into modern mathematical language.
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When we stay in the Euclidean setting, with two measures �; � induced by
densities f ; g, it is easy – just by a change-of-variables formula – to transform the
equality � D T#� into the PDE

g.T.x// det.DT.x// D f .x/; (2)

if we suppose f ; g and T to be regular enough and T to be injective.
Yet, this equation is highly nonlinear in T, and this is one of the difficulties

preventing an easy analysis of the Monge problem. For instance: how do we prove
the existence of a minimizer? Usually, what one does is the following: take a
minimizing sequence Tn, find a bound on it giving compactness in some topology
(here, if the support of � is compact, the maps Tn take value in a common bounded
set, spt.�/, and so one can get compactness of Tn in the weak-* L1 convergence),
take a limit Tn * T, and prove that T is a minimizer. This requires semicontinuity of
the functional M with respect to this convergence (which is true in many cases, for
instance, if c is convex in its second variable): we need Tn * T ) lim infn M.Tn/ �
M.T/), but we also need that the limit T still satisfies the constraint. Yet, the
nonlinearity of the PDE prevents us from proving this stability when we only have
weak convergence (the reader can find an example of a weakly converging sequence
such that the corresponding image measures do not converge as an exercise; it is
actually Ex(1) in the list of exercises).

In [239], Monge analyzed fine questions on the geometric properties of the
solution to this problem, and he underlined several important ideas that we will
see in Chapter 3: the fact that transport rays do not meet, that they are orthogonal
to a particular family of surfaces, and that a natural choice along transport rays is to
order the points in a monotone way. Yet, he did not really solve the problem. The
question of the existence of a minimizer was not even addressed. In the next 150
years, the optimal transport problem mainly remained intimately French, and the
Académie des Sciences offered a prize on this question. The first prize was won by
P. Appell [21] with a long mémoire which improved some points but was far from
being satisfactory (and did not address the existence issue4).

The problem of Monge has stayed with no solution (does a minimizer exist?
how to characterize it?) until progress was made in the 1940s. Indeed, only with the
work by Kantorovich (1942, see [200]), it was inserted into a suitable framework
which gave the possibility to attack it and, later, to provide solutions and study them.
The problem has then been widely generalized, with very general cost functions
c.x; y/ instead of the Euclidean distance jx � yj and more general measures and
spaces. The main idea by Kantorovich is that of looking at Monge’s problem as
connected to linear programming. Kantorovich indeed decided to change the point
of view, and to describe the movement of the particles via a measure � on X � Y ,
satisfying .�x/#� D � and .�y/#� D �. These probability measures over X � Y

4The reader can see [181] – in French, sorry – for more details on these historical questions about
the work by Monge and the content of the papers presented for this prize.
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are an alternative way to describing the displacement of the particles of �: instead
of giving, for each x, the destination T.x/ of the particle originally located at x, we
give for each pair .x; y/ the number of particles going from x to y. It is clear that
this description allows for more general movements, since from a single point x,
particles can a priori move to different destinations y. If multiple destinations really
occur, then this movement cannot be described through a map T. The cost to be
minimized becomes simply

´
X�Yc d� . We have now a linear problem, under linear

constraints. It is possible to prove existence of a solution and to characterize it by
using techniques from convex optimization, such as duality, in order to characterize
the optimal solution (see Chapter 1).

In some cases, and in particular if c.x; y/ D jx � yj2 (another very natural cost,
with many applications in physical modeling because of its connection with kinetic
energy), it is even possible to prove that the optimal � does not allow this splitting
of masses. Particles at x are only sent to a unique destination T.x/, thus providing a
solution to the original problem by Monge. This is what is done by Brenier in [82],
where he also proves a very special form for the optimal map: the optimal T is of
the form T.x/ D ru.x/, for a convex function u. This makes, by the way, a strong
connection with the Monge-Ampère equation. Indeed, from (2), we get

det.D2u.x// D f .x/

g.ru.x//
;

which is an (degenerate and nonlinear) elliptic equation exactly in the class
of convex functions. Brenier also uses this result to provide an original polar
factorization theorem for vector maps (see Section 1.7.2): vector fields can be
written as the composition of the gradient of a convex function and of a measure-
preserving map. This generalizes the fact that matrices can be written as the product
of a symmetric positive-definite matrix and an orthogonal one.

The results by Brenier can be easily adapted to other costs, strictly convex
functions of the difference x�y. They have also been adapted to the squared distance
on Riemannian manifolds (see [231]). But the original cost proposed by Monge, the
distance itself, was much more difficult.

After the French school, it was time for the Russian mathematicians. From the
precise approach introduced by Kantorovich, Sudakov [290] proposed a solution for
the original Monge problem (MP). The optimal transport plan � in the Kantorovich
problem with cost jx � yj has the following property: the space R

d can be
decomposed in an essentially disjoint union of segments that are preserved by � (i.e.,
� is concentrated on pairs .x; y/ belonging to the same segment). These segments
are built from a Lipschitz function, whose level sets are the surfaces “foreseen” by
Monge. Then, it is enough to reduce the problem to a family of 1D problems. If
� � L d, the measures that � induces on each segment should also be absolutely
continuous and have no atoms. And in dimension one, as soon as the source measure
has no atoms, one can define a monotone increasing transport, which is optimal for
any convex cost of the difference x � y.
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The strategy is clear, but there is a small drawback: the absolute continuity of the
disintegrations of � along segments, which sounds like a Fubini-type theorem, fails
for arbitrary families of segments. Some regularity on their directions is needed.
This has been observed by Ambrosio and fixed in [8, 10]. In the meantime, other
proofs were obtained by Evans-Gangbo [159] (via a method which is linked to
what we will see in Chapter 4 and unfortunately under stronger assumptions on the
densities) and by Caffarelli-Feldman-McCann [101] and, independently, Trudinger-
Wang [291], via an approximation through strictly convex costs.

After much effort on the existence of an optimal map, its regularity properties
have also been studied: the main reference in this framework is Caffarelli, who
proved regularity in the quadratic case, thanks to a study of the Monge-Ampère
equation above. Surprisingly, at the beginning of the present century, Ma-Trudinger-
Wang [219] found out the key for the regularity under different costs. In particular,
they found a condition on costs c 2 C4 on R

d (some inequalities on their fourth-
order derivatives) which ensured regularity. It can be adapted to the case of squared
distances on smooth manifolds, where the assumption becomes a condition on the
curvature of the underlying manifolds. These conditions have later been proven to be
sharp by Loeper in [216]. Regularity is a beautiful and delicate matter, which cannot
have in this book all the attention that it would deserve (refer to Section 1.7.6 for
more details and references).

But the theory of optimal transport cannot be reduced to the existence and the
properties of optimal maps. The success of this theory can be associated to the
many connections it has with many other branches of mathematics. Some of these
connections pass through the use of the optimal map: think of some geometric and
functional inequalities that can be proven (or reproven) in this way. In this book, we
only present the isoperimetric inequality (Section 2.5.3) and the Brunn-Minkowski
inequality (Section 7.4.2). We stress that one of the most refined advances in
quantitative isoperimetric inequalities is a result by Figalli-Maggi-Pratelli, which
strongly uses optimal transport tools in the proof [167].

On the other hand, many applications of optimal transport pass, instead, through
the distances they defines (Wasserstein distances; see Chapter 5). Indeed, it is
possible to associate to every pair of measure a quantity, denoted by Wp.�; �/,
based on the minimal cost to transport � onto � for the cost jx � yjp. It can be
proven to be a distance and to metrize the weak convergence of probability measures
(at least on compact spaces). This distance is very useful in the study of some
PDEs. Some evolution equations, in particular of parabolic type, possibly with
nonlocal terms, can be interpreted as gradient flows (curves of steepest descent;
see Chapter 8) for this distance. This idea has first been underlined in [198, 246].
It can be used to provide existence results or approximation of the solutions. For
other PDEs, the Wasserstein distance, differentiated along two solutions, may be a
technical tool to give stability and uniqueness results or rate of convergence to a
steady state (see Section 5.3.5). Finally, other evolution models are connected either
to the minimization of some actions involving the kinetic energy, as it is standard
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in physics (the speed of a curve of densities computed w.r.t. the W2 distance is
exactly a form of kinetic energy), or to the gradient of some special convex functions
appearing in the PDE (see Section 8.4.4).

The structure of the space Wp of probability measures endowed with the distance
Wp also received and still receives a lot of attention. In particular, the study of its
geodesics and of the convexity properties of some functionals along these geodesics
has been important, both because they play a crucial role in the metric theory of
gradient flows developed in the reference book [15] and because of their geometrical
consequences. The fact that the entropy E.%/ WD ´

% log % is or not convex along
these geodesics turned out to be equivalent, on Riemannian manifolds, to lower
bounds on the Ricci curvature of the manifold. This gave rise to a wide theory of
analysis in metric measure spaces, where this convexity property was chosen as a
definition for the curvature bounds (see [218, 288, 289]). This theory underwent
much progress in the last few years, thanks to the many recent results by Ambrosio,
Gigli, Savaré, Kuwada, Ohta, and their collaborators (see, as an example, [18, 183]).

From the point of view of modeling, optimal transport may appear in many fields
more or less linked to spatial economics, traffic, networks, and collective motions,
but the pertinence of the Monge-Kantorovich model can be questioned, at least for
some specific applications. This leads to the study of an alternative model, either
more “convex” (for traffic congestion) or more “concave” (for the organization of
an efficient transport network). These models are typically built under the form of
a flow minimization under divergence constraints and are somehow a variant of the
original Monge cost. Indeed, the original Monge problem (optimal transport from �

to � with cost jx � yj) is also equivalent to the problem of minimizing the L1 norm
of a vector field w under the condition r � w D � � �. This very last problem is
presented in Chapter 4, and the traffic congestion and branched transport models are
presented as a variant in Section 4.4.

Finally, in particular due to its applications in image processing (see Sec-
tions 2.5.1 and 5.5.5), it has recently become crucial to have efficient ways of
computing, or approximating, the optimal transport or the Wasserstein distances
between two measures. This is a new and very lively field of investigation: the
methods that are presented in Chapter 6 are only some classical ones. This book
does not aim to be exhaustive on this point but sheds some light on these subjects.

It is not our intention to build a separating wall between two sides of optimal
transportation, the “pure” one and the “applied one.” Both have been progressing at
an impressive rate in the last several years. This book is devoted to those topics in
the theory that could be more interesting for the reader who looks at modeling issues
in economics, image processing, social and biological evolutionary phenomena, and
fluid mechanics; at the applications to PDEs; and at numerical issues. It would be
impossible to summarize the new directions that these topics are exploring in this
short introduction, and also the book cannot do it completely.

We will only try to give a taste of these topics as well as a rigorous analysis of
the mathematics which are behind them.
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Notation

The following are standard symbols used throughout the book without always
recalling their meaning.

• “domain”: a nonempty connected set in R
d, equal to the closure of its interior.

• RC: nonnegative real numbers, i.e., Œ0;C1Œ.
• log: the natural neperian logarithm of a positive number.
• limn, lim infn, lim supn (but n could be replaced by k; h; j : : : ): limit, inferior

limit (liminf), superior limit (limsup) as n ! 1 (or k; h; j � � � ! 1).
• r and r� denote gradients and divergence, respectively.
• � denotes the Laplacian: �u WD r � .ru/ (and not minus it).
• �p denotes the p-Laplacian: �pu WD r � .jrujp�2ru/.
• D2u: Hessian of the scalar function u.
• P.X/;M .X/;MC.X/;M d.X/: the spaces of probabilities, finite measures,

positive finite measures, and vector measures (valued in R
d) on X.

• M d
div.˝/: on˝ � R

d, the space of measures w 2 M d.˝/with r�w 2 M .˝/.
• R

d;Td;Sd: the d-dimensional Euclidean space, flat torus, and sphere.
• C.X/;Cb.X/;Cc.X/;C0.X/: continuous, bounded continuous, compactly

supported continuous, and continuous vanishing at infinity functions on X.
• L1

c .˝/: L1 functions with compact support in ˝.
• ıa: the Dirac mass concentrated at point a.
• 1A: the indicator function of a set A, equal to 1 on A and 0 on Ac.
• ^;_: the min and max operators, i.e., a^b WD minfa; bg and a_b WD maxfa; bg.
• jAj;L d.A/: the Lebesgue measure of a set A � R

d; integration w.r.t. this
measure is denoted by dx or dL d.

• !d: the measure of the unit ball in R
d.

• H k: the k-dimensional Hausdorff measure.
• Per.A/: the perimeter of a set A in R

d (equal to H d�1.@A/ for smooth sets A).
• � � �: the measure � is absolutely continuous w.r.t. �.
• �n * �: the sequence of probabilities �n converges to � in duality with Cb.
• f � �: the measure with density f w.r.t. �.
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xxvi Notation

• � A: the measure � restricted to a set A (i.e., 1A � �).
• fjA: the restriction of a function f to a set A.
• T#�: the image measure of � through the map T.
• Mk�h: the set of real matrices with k lines and h columns.
• I: the identity matrix.
• Tr: the trace operator on matrices.
• Mt: the transpose of the matrix M.
• cof.M/: the cofactor matrix of M, such that cof.M/ � M D det.M/I.
• id: the identity map.
• If T W X ! Y , the map .id;T/ goes from X to X � Y and is given by x 7!
.x;T.x//.

• ˘.�; �/: the set of transport plans from � to �.
• �˝ �: the product measure of � and � (s.t. �˝ �.A � B/ D �.A/�.B/).
• �T: the transport plan in ˘.�; �/ associated to a map T with T#� D �.
• M.T/, K.�/: the Monge cost of a map T and the Kantorovich cost of a plan � .
• �x; �y; �i: the projection of a product space onto its components.
• AC.˝/ (or C , if there is no ambiguity): the space of absolutely continuous

curves, parametrized on Œ0; 1� and valued in ˝.
• L.!/;Lk.!/: the length or weighted length (with coefficient k) of the curve !.
• et W AC.˝/ ! ˝: the evaluation map at time t, i.e., et.!/ WD !.t/.
• ai

j; a
ij
kh : : : : superscripts are components (of vectors, matrices, etc.) and sub-

scripts denote derivatives. No distinction between vectors and covectors is
performed.

• x1; : : : ; xd: coordinates of points in the Euclidean space are written as subscripts.
• 	t; vt : : : : the subscript t denotes the value at time t, not a derivative in time,

which is rather denoted by @t or d
dt .

• n: the outward normal vector to a given domain.
• Wp;Wp: Wasserstein distance and Wasserstein space of order p, respectively.
• Tc.�; �/: the minimal transport cost from � to � for the cost c.
• Lip1.˝/: the set of 1-Lipschitz functions.
• ıF

ı	
: first variation of F W P.˝/ ! R, defined via d

d"F.	C"
/j"D0 D ´
ıF
ı	

d
:

—

The following, instead, are standard choices of notations.

• The dimension of the ambient space is d; we use RN when N stands for a number
of particles, of points in a discretization. . .

• T is a transport map, while T is typically a final time.
• ! is usually a curve (but sometimes a modulus of continuity).
• ˝ is usually a domain in R

d, and general metric spaces are usually called X.
• X is typically an abstract Banach space.
• � is usually a vector function (often a test function).
• Q is typically a measure on C .
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• � is typically a test function, while ' is a Kantorovich potential or similar.
• u is typically the Kantorovich potential for the cost jx�yj or the convex potential

T D ru in the jx � yj2 case.
• Velocity fields are typically denoted by v, momentum fields by w (when they

are not time dependent) or E (when they could be time dependent).



Chapter 1
Primal and dual problems

In this chapter, we will start with generalities on the transport problem from a
measure � on a space X to another measure � on a space Y . In general, X and
Y can be complete and separable metric spaces, but soon we will focus on the
case where they are the same subset ˝ � R

d (often compact). The cost function
c W X�Y ! Œ0;C1�will be assumed to be continuous or semi-continuous, and then
we will analyze particular cases (such as c.x; y/ D h.x � y/ for strictly convex h).

For the sake of the exposition, the structure of this chapter is somewhat involved
and deserves an explanation. In Section 1.1, we present the problems by Monge and
Kantorovich and prove existence for the Kantorovich problem (KP). In Section 1.2,
we present the dual problem (DP), but we do not prove the duality result min .KP/ D
sup .DP/. In Section 1.3, taking this duality result as proven, we discuss cases where
the solution of (KP) turns out to be induced by a transport map, hence solving (MP).
Sections 1.4 and 1.5 are devoted to counterexamples to the existence for (MP) and
to the equality min .MP/ D min .KP/. In Section 1.6, we introduce the notion of
cyclical monotonicity, which allows us to prove the duality min .KP/ D sup .DP/,
as well as stability results and sufficient optimality conditions. We also give an
independent proof of duality, based on a notion of convex analysis that we actually
introduce in a Memo Box in the same section. The chapter is concluded by a long
discussion in Section 1.7.

1.1 Kantorovich and Monge problems

The starting point of optimal transport is the classical problem by Monge [239]
which reads in its most general version, and in modern language, as follows.

© Springer International Publishing Switzerland 2015
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2 1 Primal and dual problems

Problem 1.1. Given two probability measures � 2 P.X/ and � 2 P.Y/ and a
cost function c W X � Y ! Œ0;C1�, solve

.MP/ inf

�
M.T/ WD

ˆ
c.x;T.x// d�.x/ W T#� D �

�
; (1.1)

where we recall that the measure denoted by T#� is defined through .T#�/.A/ WD
�.T�1.A// for every A and is called the image measure or pushforward of �
through T.

As we pointed out in the introduction, Problem (MP)1 is difficult because of its
constraint. In particular, this constraint on T is not closed under weak convergence:
see Ex(1) or consider Tn.x/ D sin.nx/ on Œ0; 2��.

Because of this difficulty, we will forget (MP) for a while and pass to the
generalization that appears as natural from the work of Kantorovich [200]:

Problem 1.2. Given � 2 P.X/, � 2 P.Y/, and c W X�Y ! Œ0;C1�, we consider
the problem

.KP/ inf

�
K.�/ WD

ˆ

X�Y
c d� W � 2 ˘.�; �/

�
; (1.2)

where ˘.�; �/ is the set of the so-called transport plans, i.e.,

˘.�; �/ D f� 2 P.X � Y/ W .�x/#� D �; .�y/#� D �g;

where �x and �y are the two projections of X � Y onto X and Y , respectively. These
probability measures over X � Y are an alternative way to describe the displacement
of the particles of �: instead of specifying, for each x, which is the destination
T.x/ of the particle originally located at x, we specify for each pair .x; y/ how
many particles go from x to y. More precisely, the value �.A � B/ denotes the
amount of mass moving from A to B. It is clear that this description allows for
more general movements, since from a single point x, particles can a priori move
to different destinations y. If multiple destinations really occur, then this movement
cannot be described through a map T. Note that the constraints on .�x/#� and .�y/#�

exactly mean that we restrict our attention to the movements that really take particles
distributed according to the distribution � and move them onto the distribution �.

The minimizers for this problem are called optimal transport plans between
� and �. Should � be of the form .id;T/#� for a measurable map T W X ! Y
(i.e., when no splitting of the mass occurs), the map T would be called the optimal
transport map from � to �.

1To clarify the notation, let us stress that we use (MP) to denote the name of the minimization
problem, as well as (KP), (BP), and many others later on. For its minimal value, we write min(MP).
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Remark 1.3. It can be easily checked that .id;T/#� (this transport plan will be
denoted by �T) belongs to ˘.�; �/ if and only if T pushes � onto � (i.e., �.A/ D
�.T�1.A// for any Borel set A) and the functional takes the form

´
c.x;T.x//d�.x/;

thus generalizing the Monge problem.

This generalized problem by Kantorovich is much easier to handle than the
original one proposed by Monge; for instance, in the Monge case, we would need
existence of at least a map T satisfying the constraints. This is not verified when
� D ı0, if � is not a single Dirac mass (see Section 1.4). On the contrary,
there always exist transport plans in ˘.�; �/ (for instance, � ˝ � 2 ˘.�; �/).
Moreover, one can state that (KP) is the relaxation of the original problem by Monge
(something which will be made clear in Section 1.5, and it means, roughly speaking,
that (KP) is somehow the minimal extension of (MP) which has some chances to
admit a minimizer).

Anyway, it is important to note that an easy use of the direct method in
calculus of variations proves that a minimum does exist. This means that we take a
minimizing sequence, we say that it is compact in some topology (here it is the weak
convergence of probability measures), and we find a limit and prove semi-continuity
(or continuity) of the functional we minimize, so that the limit is a minimizer.

Box 1.1. Memo: Weierstrass criterion for the existence of minimizers, semi-continuity

The most common way to prove that a function admits a minimizer is called the “direct
method in calculus of variations.” It simply consists of the classic Weierstrass theorem,
possibly replacing continuity with semi-continuity.

Definition. On a metric space X, a function f W X ! R [ fC1g is said to be lower
semi-continuous (l.s.c. in short) if for every sequence xn ! x we have f .x/ � lim infn f .xn/.

Definition. A metric space X is said to be compact if from any sequence xn, we can
extract a converging subsequence xnk ! x 2 X.

Theorem (Weierstrass). If f W X ! R [ fC1g is lower semi-continuous and X is
compact, then there exists Nx 2 X such that f .Nx/ D minff .x/ W x 2 Xg.

Proof. Define ` WD infff .x/ W x 2 Xg 2 R [ f�1g (` D C1 only if f is identically
C1, but in this case, any point in X minimizes f ). By definition, there exists a minimizing
sequence xn, i.e., points in X such that f .xn/ ! `. By compactness, we can assume xn ! Nx.
By lower semi-continuity, we have f .Nx/ � lim infn f .xn/ D `. On the other hand, we have
f .Nx/ � ` since ` is the infimum. This proves ` D f .Nx/ 2 R, and this value is the minimum
of f , realized at Nx.

Box 1.2. Memo: Weak compactness in dual spaces

Definition. A sequence xn in a Banach space X is said to be weakly converging to x,
and we write xn * x, if for every � 2 X 0 (where X 0 is the topological dual of X and h�; �i
stands for the duality product between these spaces) we have h�; xni ! h�; xi. A sequence

�n 2 X 0 is said to be weakly-* converging to � , and we write �n
�

* � , if for every x 2 X
we have h�n; xi ! h�; xi.

(continued)
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Box 1.2. (continued)
Theorem (Banach-Alaoglu). If X is separable and �n is a bounded sequence in X 0,

then there exists a subsequence �nk weakly converging to some � 2 X 0.
We refer, for instance, to [90] for all the details on functional analysis.

Box 1.3. Memo: Duality between C0 and M

Definition. A finite signed measure � on a metric space X is a map associating to every
Borel subset A � X a value �.A/ 2 R (we will see in Chapter 4 the case of vector measures,
where � is valued in R

d) such that, for every countable disjoint union A D S
i Ai (with

Ai \ Aj D ; for i ¤ j), we have

X
i

j�.Ai/j < C1 and �.A/ D X
i

�.Ai/:

We denote by M .X/ the set of finite signed measures on X. To such measures, we can
associate a positive scalar measure j�j 2 M

C

.X/ through

j�j.A/ WD sup

(X
i

j�.Ai/j W A D [
i

Ai with Ai \ Aj D ; for i ¤ j

)
:

Theorem (Riesz representation theorem). Suppose that X is a separable and locally
compact metric space. Let X D C0.X/ be the space of continuous function on X vanishing
at infinity, i.e., f 2 C0.X/ ” f 2 C.X/, and for every " > 0, there exists a compact
subset K � X such that jf j < " on X n K. Let us endow this space with the sup norm
since C0.X/ � Cb.X/ (this last space being the space of bounded continuous functions on
X). Note that C0.X/ is a Banach space and that it is a closed subset Cb.X/. Then every
element of X 0 is represented in a unique way as an element of M .X/: for all � 2 X 0,
there exists a unique � 2 M .X/ such that h�; �i D ´

� d� for every � 2 X ; moreover,
X 0 is isomorphic to M .X/ endowed with the norm jj�jj WD j�j.X/.

For signed measures of M .X/, we should call weak-* convergence the convergence
in the duality with C0.X/. Yet, another interesting notion of convergence is that in duality
with Cb.X/. We will call it (by abuse of notation) weak convergence and denote it through
the symbol *: �n * � if and only if for every � 2 Cb.X/ we have

´
� d�n ! ´

� d�
(note that, taking � D 1, we also have �n.X/ ! �.X/, which is not the case for the
�

* convergence). Note that C0.X/ D Cb.X/ D C.X/ if X is compact, and in this case,
the two notions of convergence are the same. On the other hand, for non-compact X, the
space M .X/ is not the dual of Cb.X/: by Hahn-Banach’s theorem, it is possible to produce
(see, for instance, Section 1.3 in [292]) elements of Cb.X/0 that only look at the behavior of
functions of Cb.X/ “out of compact subsets” (i.e., at infinity or on the boundary). The notion
of weak convergence in duality with Cb is also sometimes called narrow convergence. For
all details about measure theory, we refer, for instance, to [268].
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Box 1.4. Memo: Weak convergence of probability measures

Probability measures are particular measures in M .X/: � 2 P.X/ ” � 2 M
C

.X/
and �.X/ D 1 (note that for positive measures, � and j�j coincide).

Definition. A sequence �n of probability measures over X is said to be tight if for every
" > 0, there exists a compact subset K � X such that �n.X n K/ < " for every n.

Theorem (Prokhorov). Suppose that �n is a tight sequence of probability measures over
a complete and separable metric space X (these spaces are also called Polish spaces). Then
there exists � 2 P.X/ and a subsequence �nk such that �nk * � (in duality with Cb.X/).
Conversely, every sequence �n * � is necessarily tight.

Sketch of proof (of the direct implication). For every compact K � X, the measures
.�n/ K admit a converging subsequence (in duality with C.K/). From tightness, we have
an increasing sequence of compact sets Ki such that �n.K

c
i / < "i D 1=i for every i and

every n. By a diagonal argument, it is possible to extract a subsequence �nh such that
.�nh / Ki * �i (weak convergence as n ! 1 in duality with C.Ki/). The measures �i are
increasing in i, and define a measure � D supi �i (i.e., �.A/ D supi �i.A \ Ki/). In order to
prove �nh * �, take � 2 Cb.X/ and write

´
X � d.�nh ��/ � 2"i C ´

Ki
� d.�nh � �i/. This

allows us to prove the convergence. Proving � 2 P.X/, we only need to check �.X/ D 1,
by testing with � D 1.

We are now ready to state some existence results.

Theorem 1.4. Let X and Y be compact metric spaces, � 2 P.X/, � 2 P.Y/, and
c W X � Y ! R a continuous function. Then (KP) admits a solution.

Proof. We just need to show that the set ˘.�; �/ is compact and that � 7! K.�/ D´
c d� is continuous and apply Weierstrass’s theorem. We have to choose a notion

of convergence for that and we choose to use the weak convergence of probability
measures (in duality with Cb.X � Y/, which is the same here as C.X � Y/ or
C0.X � Y/). This gives continuity of K by definition, since c 2 C.X � Y/.

As for the compactness, take a sequence �n 2 ˘.�; �/. They are probability
measures, so that their mass is 1, and hence they are bounded in the dual of
C.X �Y/. Hence, usual weak-* compactness in dual spaces guarantees the existence
of a subsequence �nk * � converging to a probability � . We just need to check
� 2 ˘.�; �/. This may be done by fixing � 2 C.X/ and using

´
�.x/ d�nk D´

� d� and passing to the limit, which gives
´
�.x/ d� D ´

� d�. This shows
.�x/#� D �. The same may be done for �y. More generally, the image measure
through continuous maps preserves weak convergence (and here we use the map
.x; y/ 7! x or .x; y/ 7! y). ut
Theorem 1.5. Let X and Y be compact metric spaces, � 2 P.X/, � 2 P.Y/, and
c W X � Y ! R [ fC1g be lower semi-continuous and bounded from below. Then
(KP) admits a solution.

Proof. Only difference: K is no more continuous; it is l.s.c. for the weak conver-
gence of probabilities. This is a consequence of the following lemma, applied to
f D c on the space X � Y . ut
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Lemma 1.6. If f W X ! R [ fC1g is a lower semi-continuous function, bounded
from below, on a metric space X, then the functional J W MC.X/ ! R [ fC1g
defined on positive measures on X through J.�/ WD ´

f d� is lower semi-continuous
for the weak convergence of measures.

Proof. Consider a sequence fk of continuous and bounded functions converging
increasingly to f . Then write J.�/ D supk Jk.�/ WD ´

fk d� (actually Jk � J and
Jk.�/ ! J.�/ for every � by monotone convergence). Every Jk is continuous
for the weak convergence, and hence, J is l.s.c. as a supremum of continuous
functionals. ut

Box 1.5. Memo: l.s.c. functions as suprema of Lipschitz functions

Theorem. If f˛ is an arbitrary family of lower semi-continuous functions on X, then
f D sup˛ f˛ (i.e., f .x/ WD sup˛ f˛.x/) is also l.s.c.

Proof. Take xn ! x and write f˛.x/ � lim infn f˛.xn/ � lim infn f .xn/. Then pass to
the sup in ˛ and get f .x/ � lim infn f .xn/. It is also possible to check the same fact using
epigraphs: indeed, a function is l.s.c. if and only if its epigraph f.x; t/ W t � f .x/g � X �R

is closed, and the epigraph of the sup is the intersection of the epigraphs.
Theorem. Let f W X ! R [ fC1g be a function bounded from below. Then f is l.s.c.

if and only if there exists a sequence fk of k-Lipschitz functions such that for every x 2 X,
fk.x/ converges increasingly to f .x/.

Proof. One implication is easy, since the functions fk are continuous, hence lower semi-
continuous, and f is the sup of fk. The other is more delicate. Given f lower semi-continuous
and bounded from below, let us define

fk.x/ D inf
y
.f .y/C kd.x; y// :

These functions are k-Lipschitz continuous since x 7! f .y/ C kd.x; y/ is k-Lipschitz. For
fixed x, the sequence fk.x/ is increasing and we have inf f � fk.x/ � f .x/. We just need
to prove that ` WD limk fk.x/ D supk fk.x/ D f .x/. Suppose by contradiction ` < f .x/,
which implies in particular ` < C1. For every k, let us choose a point yk such that f .yk/C
kd.yk; x/ < fk.x/C 1=k. We get d.yk; x/ � `C1=k�f .yk/

k � C
k ; thanks to the lower bound on

f and to ` < 1. Hence, we know yk ! x. Yet, we have fk.x/ C 1=k � f .yk/ and we get
limk fk.x/ � lim infk f .yk/ � f .x/. This proves ` � f .x/. Finally, the functions fk may be
made bounded by taking fk ^ k.

Theorem 1.7. Let X and Y be Polish spaces, i.e., complete and separable metric
spaces, � 2 P.X/, � 2 P.Y/, and c W X � Y ! Œ0;C1� lower semi-continuous.
Then (KP) admits a solution.

Proof. It is now the compactness which is no more evident. We need to use the
Prokhorov theorem. This means showing that any sequence in ˘.�; �/ is tight. To
do that, fix " > 0 and find two compact sets KX � X and KY � Y such that
�.X nKX/; �.Y nKY/ <

1
2
" (this is possible thanks to the converse implication in the

Prokhorov theorem, since a single measure is always tight). Then the set KX � KY is
compact in X � Y and, for any �n 2 ˘.�; �/, we have
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�n..X � Y/ n .KX � KY// � �n..X n KX/ � Y/ C �n.X � .Y n KY//

D �.X n KX/C �.Y n KY/ < ":

This shows tightness (and hence compactness) of all sequences in ˘.�; �/. ut
We add to this section an improvement of the continuity and semi-continuity

results above, which could be useful when the cost functions are not continuous.

Lemma 1.8. Let �n; � 2 ˘.�; �/ be probabilities on X � Y and a W X ! QX and
b W Y ! QY be measurable maps valued in two separable metric spaces QX and QY.
Let c W QX � QY ! RC be a continuous function with c.a; b/ � f .a/C g.b/ with f ; g
continuous and

´
.f ı a/ d�;

´
.g ı b/ d� < C1. Then

�n * � )
ˆ

X�Y
c.a.x/; b.y// d�n !

ˆ

X�Y
c.a.x/; b.y// d�:

Proof. We start from the case where c is bounded, say 0 � c � M. We can apply
the weak version of Lusin’s theorem (see the observations in the next Memo 1.6)
to maps valued in QX and QY . Let us fix ı > 0 and find two compact sets KX � X,
KY � Y , with �.X n KX/ < ı and �.Y n KY/ < ı, such that a and b are continuous
when restricted to KX and KY , respectively. Let us set K WD KX �KY � X �Y , which
is a compact set in the product.

We can write
ˆ

c.a; b/ d�n �
ˆ

1Kc.a; b/ d�n C 2Mı;

and the function 1Kc.a; b/ is upper semi-continuous on X �Y (since it is continuous
and positive on a closed set, and vanishes outside it). This implies

lim sup
n

ˆ
c.a; b/ d�n �

ˆ
1Kc.a; b/ d� C 2Mı �

ˆ
c.a; b/ d� C 2Mı

and, since ı is arbitrary, lim supn

´
c.a; b/ d�n � ´

c.a; b/ d� . This proves upper
semi-continuity of the integral functional when c is bounded by M. An analogous
computation with M � c instead of c proves lower semi-continuity.

If c is positive but unbounded, just approximate it from below with its truncations
cM D c ^ M, and lower semi-continuity is proven for the integral functional, which
will be a sup of lower semi-continuous functionals. By replacing c with the function
QX � QY 3 .Qx; Qy/ 7! f .Qx/C g.Qy/� c.Qx; Qy/, upper semi-continuity is proven as well. ut
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Box 1.6. Memo: Lusin’s theorem

A well-known theorem in measure theory states that every measurable function f on a
reasonable measure space .X; �/ is actually continuous on a set K with �.X n K/ small.
This set K can be taken compact. Actually, there can be at least two statements: either we
want f to be merely continuous on K or we want f to coincide on K with a continuous
function defined on X. This theorem is usually stated for real-valued functions, but we
happen to need it for functions valued in more general spaces. Let us be more precise: take
a topological space X endowed with a finite regular measure � (i.e., any Borel set A � X
satisfies �.A/ D supf�.K/ W K � A; K compactg D inff�.B/ W B � A; B openg). The
arrival space Y will be supposed to be second countable (i.e., it admits a countable family
.Bi/i of open sets such that any other open set B � Y may be expressed as a union of Bi;
for instance, separable metric spaces are second countable).

Theorem (weak Lusin). Under the above assumptions on X;Y; �, if f W X ! Y is
measurable, then for every " > 0, there exists a compact set K � X such that �.X n K/ < "
and the restriction of f to K is continuous.

Proof. For every i 2 N, set AC

i D f �1.Bi/ and A�

i D f �1.Bc
i /. Consider compact sets

K˙

i � A˙

i such that �.A˙

i n K˙

i / < "2
�i. Set Ki D KC

i [ K�

i and K D T
i Ki. For each

i, we have �.X n Ki/ < "2
1�i. By construction, K is compact and �.X n K/ < 4". To prove

that f is continuous on K, it is sufficient to check that f �1.B/ \ K is relatively open in K
for each open set B, and it is enough to check this for B D Bi. Equivalently, it is enough to
prove that f �1.Bc

i /\ K is closed, and this is true since it coincides with K�

i \ K.
Theorem (strong Lusin). Under the same assumptions on X, if f W X ! R is measurable,

then for every " > 0, there exists a compact set K � X and a continuous function g W X ! R

such that �.X n K/ < " and f D g on K.
Proof. First apply weak Lusin’s theorem, since R is second countable. Then we just

need to extend f
jK to a continuous function g on the whole X. This is possible since f

jK is
uniformly continuous (as a continuous function on a compact set) and hence has a modulus
of continuity !: jf .x/ � f .x0/j � !.d.x; x0// (the function ! can be taken subadditive and
continuous). Then define g.x/ D infff .x0/C!.d.x; x0// W x0 2 Kg. It can be easily checked
that g is continuous and coincides with f on K.

Note that this last proof strongly uses the fact that the arrival space is R. It could
be adapted to the case of R

d just by extending componentwise. On the other hand, it is
clear that the strong version of Lusin’s theorem cannot hold for any space Y: just take X
connected and Y disconnected. A measurable function f W X ! Y taking values in two
different connected components on two sets of positive measure cannot be approximated
by continuous functions in the sense of the strong Lusin’s theorem.

The consequence of all these continuity, semi-continuity, and compactness
results is the existence, under very mild assumptions on the cost and the space,
of an optimal transport plan � . Then, if one is interested in the problem of Monge,
the question may become, “does this minimal � come from a transport map T?”.
Should the answer to this question be yes, then (MP) would have a solution, which
also solves a wider problem, that of minimizing among transport plans. This is
the object of the next two sections, Sections 1.2 and 1.3. On the other hand, in
some cases, proving that the optimal transport plan comes from a transport map (or
proving that there exists at least one optimal plan coming from a map) is equivalent
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to proving that (MP) has a solution, since very often the infimum among transport
plans and among transport maps is the same. This depends on the presence of atoms
(see Sections 1.4 and 1.5).

1.2 Duality

The problem (KP) is a linear optimization under convex constraints, given by linear
equalities or inequalities. Hence, an important tool will be duality theory, which is
typically used for convex problems. We will find a dual problem (DP) for (KP) and
exploit the relations between dual and primal.

The first thing we will do is finding a formal dual problem, by means of an inf-sup
exchange.

Let us express the constraint � 2 ˘.�; �/ in the following way: note that, if
� 2 MC.X � Y/, then we have

sup
'; 

ˆ

X
' d�C

ˆ

Y
 d� �

ˆ

X�Y
.'.x/C  .y// d� D

(
0 if � 2 ˘.�; �/;
C1 otherwise,

where the supremum is taken among bounded and continuous functions '; .
Hence, we can remove the constraints on � if we add the previous sup, since if

they are satisfied, nothing has been added, and if they are not, we get C1 (which
will be avoided by the minimization). Hence, we may look at the problem, we get

min
�

ˆ

X�Y
c d� C sup

'; 

ˆ

X
' d�C

ˆ

Y
 d� �

ˆ

X�Y
.'.x/C  .y// d� (1.3)

and consider interchanging sup and inf:

sup
'; 

ˆ

X
' d�C

ˆ

Y
 d� C inf

�

ˆ

X�Y
.c.x; y/ � .'.x/C  .y/// d�:

We would like the two above optimization problems (“inf sup” and “sup inf”) to be
equivalent and the value to be the same. This is not always possible, and the main
tool to do it is a theorem by Rockafellar (see [260], Section 37) requiring concavity
in one variable, convexity in the other one, and some compactness assumption. Yet,
Rockafellar’s statement concerns finite-dimensional spaces, which is not the case
here. To handle infinite-dimensional situations, one needs to use a more general
mini-max theorems2.

For now, we prefer not to investigate anymore the question of obtaining the
duality equality. The result is true (under suitable assumptions), and we will see
later on how to prove it. For the moment, let us accept it as true.

2We will give a proof in this spirit in Section 1.6.3.
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If we come back to the maximization over .';  /, one can rewrite the inf in � as
a constraint on ' and  :

inf
��0

ˆ

X�Y
.c � ' ˚  // d� D

(
0 if ' ˚  � c on X � Y

�1 otherwise
;

where ' ˚  denotes the function defined through .' ˚  /.x; y/ WD '.x/C  .y/.
The above equality is easy to see: if ' ˚  > c somewhere, then use measures �
concentrated on the set where this strict inequality holds, with mass tending to 1
and the integral tends to �1. This leads to the following dual optimization problem.

Problem 1.9. Given � 2 P.X/, � 2 P.Y/, and the cost function c W X � Y !
Œ0;C1Œ we consider the problem

.DP/ max

�ˆ
X
' d�C

ˆ

Y
 d� W ' 2 Cb.X/;  2 Cb.Y/ W ' ˚  � c

�
:

(1.4)

First of all, we notice that sup .DP/ � min .KP/: it is enough to integrate the
condition ' ˚  � c according to � , to get

ˆ

X
' d�C

ˆ

Y
 d� D

ˆ

X�Y
.' ˚  / d� �

ˆ

X�Y
c d�:

This is valid for every admissible .';  / and every admissible � and proves the
desired inequality.

Yet, (DP) does not admit a straightforward existence result, since the class of
admissible functions lacks compactness. Let us recall the main result concerning
compactness in the space of continuous functions.

Box 1.7. Memo: Compactness for the uniform convergence

Theorem (Ascoli-Arzelà). If X is a compact metric space and fn W X ! R are
equicontinuous (i.e., for every " > 0, there exists a common ı > 0 such that jfn.x/�fn.y/j <
" for all pairs x; y with d.x; y/ < ı and for all n) and equibounded (i.e., there is a common
constant C with jfn.x/j � C for all x 2 X and all n), then the sequence .fn/ admits a
subsequence fnk uniformly converging to a continuous function f W X ! R.

Conversely, a subset of C.X/ is relatively compact for the uniform convergence (if and)
only if its elements are equicontinuous and equibounded.

The same result is true if the arrival space R and the equiboundedness assumption are
replaced with an arrival space which is a compact metric space.

Definition 1.10. Given a function 
 W X ! R, we define its c-transform (also called
c-conjugate function) 
c W Y ! R by


c.y/ D inf
x2X

c.x; y/ � 
.x/:
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We also define the Nc-transform of  W Y ! R by

 Nc.x/ D inf
y2Y

c.x; y/ � .y/:

Moreover, we say that a function  defined on Y is Nc-concave if there exists 

such that  D 
c (and, analogously, a function ' on X is said to be c-concave if
there is  W Y ! R such that ' D  Nc), and we denote by c�conc.X/ and Nc�conc.Y/
the sets of c- and Nc-concave functions, respectively (when X D Y and c is symmetric,
this distinction between c and Nc will play no more any role and will be dropped as
soon as possible).

It is important to note that the notion of c-concavity implies a bound on the
modulus of continuity.

Box 1.8. Memo: Continuity of functions defined as an inf or sup

Proposition. Let .f˛/˛ be a family (finite, infinite, countable, uncountable, etc.) of
functions, all satisfying the same condition

jf˛.x/� f˛.x
0/j � !.d.x; x0//:

Consider f defined through f .x/ WD inf˛ f˛.x/. Then f also satisfies the same estimate.
This can be easily seen from f˛.x/ � f˛.x0/C!.d.x; x0//, which implies f .x/ � f˛.x0/C

!.d.x; x0// since f � f˛ . Then, taking the infimum over ˛ at the r.h.s., one gets f .x/ �
f .x0/C !.d.x; x0//. Interchanging x and x0, one obtains

jf .x/� f .x0/j � !.d.x; x0//:

In particular, if the function ! W R
C

! R
C

satisfies limt!0 !.t/ D 0 (which means
that the family .f˛/˛ is equicontinuous), then f has the same modulus of continuity (i.e.,
the same function !) as the functions f˛ . The same idea obviously works for the supremum
instead of the infimum.

In our case, if c is continuous and finite on a compact set, and hence uniformly
continuous, this means that there exists an increasing continuous function ! W
RC ! RC with !.0/ D 0 such that

jc.x; y/ � c.x0; y0/j � !.d.x; x0/C d.y; y0//:

Hence, when we take the definition of 
c, we have 
c.y/ D infx gx.y/ with gx.y/ WD
c.x; y/�
.x/, and the functions gx satisfy jgx.y/�gx.y0/j � !.d.y; y0//. This proves
that 
c shares the same continuity modulus also.

It is quite easy to realize that, given a pair .';  / in the maximization problem
(DP), one can always replace it with .'; 'c/ and then with .'cNc; 'c/, and the
constraints are preserved and the integrals increased. Actually one could go on,
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but we will see that 'cNcc D 'c for any ' (see Section 1.6). The goal of these
transformations is to “improve” the maximizing sequence so as to get a uniform
bound on its continuity.

A consequence of these considerations is the following existence result.

Proposition 1.11. Suppose that X and Y are compact and c is continuous. Then
there exists a solution .';  / to problem (DP) and it has the form ' 2 c �
conc.X/;  2 Nc�conc.Y/, and  D 'c. In particular

max .DP/ D max
'2c�conc.X/

ˆ

X
' d�C

ˆ

Y
'c d�:

Proof. From the considerations above, we can take a maximizing sequence .'n;  n/

and improve it, by means of c- and Nc-transforms, so that we can assume a uniform
bound on the continuity of these functions (the same modulus of continuity as c).
Instead of renaming the sequence, we will still call .'n;  n/ the new sequence
obtained after these transforms. We only need to check equiboundedness so as to
apply Ascoli-Arzelà’s theorem. This may be done if we note that adding a constant
to ' and subtracting it to  is always possible: the value of the functional does
not change, nor the constraints are affected. Hence, since 'n is continuous on a
compact set and hence bounded, we can always subtract its minimum and suppose
without loss of generality that min'n D 0. We get max'n � !.diam X/ (since the
oscillation of a function is always less than its modulus of continuity computed at
the highest possible distance in the set). So, if we have chosen  n D 'c

n, we also
have  n.y/ D infx c.x; y/� 'n.x/ 2 Œmin c �!.diam X/;max c�. This gives uniform
bounds on 'n and  n and allows us to apply Ascoli-Arzelà’s theorem.

Passing to a subsequence, we can assume 'n ! ' and  n !  , both
convergences being uniform. It is easy to see that

ˆ

X
'n d�C

ˆ

Y
 n d� !

ˆ

X
' d�C

ˆ

Y
 d�;

as a consequence of uniform convergence. Moreover,

'n.x/C  n.y/ � c.x; y/ ) '.x/C  .y/ � c.x; y/

(here, pointwise convergence would have been enough). This shows that .';  / is
an admissible pair for (DP) and that it is optimal. ut

If we admit the duality result min .KP/ D max .DP/ (the proof is postponed to
Section 1.6), then we also have

min .KP/ D max
'2c�conc.X/

ˆ

X
' d�C

ˆ

Y
'c d�;
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which also shows that the minimum value of (KP) is a convex function of .�; �/, as
it is a supremum of linear functionals.

Definition 1.12. The functions ' realizing the maximum in (3.1) are called Kan-
torovich potentials for the transport from � to �. This is in fact a small abuse,
because traditionally, this term was used only in the case c.x; y/ D jx � yj, but
it is nowadays understood in the general case as well.

Remark 1.13. Note that the Kantorovich potential ' is not necessarily c-concave,
but coincides with the c-concave function 'cNc �-a.e. However, it is always possible
to choose a c-concave Kantorovich potential, and we will do it often.

1.3 The case c.x; y/ D h.x � y/ for h strictly convex
and the existence of an optimal T

This section is mainly devoted to the results that we can obtain in the case where
X D Y D ˝ � R

d and the cost c is of the form c.x; y/ D h.x � y/, for a strictly
convex function h. We will also assume ˝ to be compact for simplicity. This case
allows for very strong results, and in particular we will find existence, as well as a
representation formula, for the optimal T. Anyway, the first few lines of this section
will be concerned with a more general case: that of costs functions c satisfying a
twist condition, the most remarkable case being exactly those of the form h.x � y/
with h strictly convex.3

The main tool is the duality result. More precisely, we use Theorem 1.39,
which applies to the case of compact domains with continuous cost functions c.
It guarantees max .DP/ D min .KP/.

From the equality between the minimum of (KP) and the maximum of (DP) and
the fact that both extremal values are realized, one can consider an optimal transport
plan � and a Kantorovich potential ' and write

'.x/C 'c.y/ � c.x; y/ on ˝ �˝ and '.x/C 'c.y/ D c.x; y/ on spt.�/:

The equality on spt.�/ is a consequence of the inequality which is valid everywhere
and of

ˆ

˝�˝
c d� D

ˆ

˝

' d�C
ˆ

˝

'c d� D
ˆ

˝�˝
.'.x/C 'c.y// d�;

which implies equality � -a.e. These functions being continuous, the equality is
satisfied on a closed set, i.e., on the support of the measure � (let us recall
the definition of support of a measure, not to be confused with sets where it is
concentrated).

3The general results of this section are essentially due to [176], as a generalization of [82, 84].
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Definition 1.14. On a separable metric space X, the support of a measure � is
defined as the smallest closed set on which � is concentrated, i.e.,

spt.�/ WD
\

fA W A is closed and �.X n A/ D 0g :

This is well defined since the intersection may be taken countable, due to the
separability assumption. Moreover, there exists also this characterization:

spt.�/ D fx 2 X W �.B.x; r// > 0 for all r > 0g :

Once we have that, let us fix a point .x0; y0/ 2 spt.�/. One may deduce from the
previous computations that

x 7! '.x/ � c.x; y0/ is minimal at x D x0

and, if ' and c.�; y0/ are differentiable at x0 and x0 … @˝, one gets r'.x0/ D
rxc.x0; y0/. We resume this fact in a very short statement (where we do not put the
sharpest assumptions on c) since we will use it much later on.

Proposition 1.15. If c is C1, ' is a Kantorovich potential for the cost c in the
transport from � to �, and .x0; y0/ belongs to the support of an optimal transport
plan � , then r'.x0/ D rxc.x0; y0/, provided ' is differentiable at x0. In particular,
the gradients of two different Kantorovich potentials coincide on every point
x0 2 spt.�/ where both the potentials are differentiable.

Proof. The proof is contained in the above considerations. ut
The equality r' D rxc is particularly useful when c satisfies the following

definition.

Definition 1.16. For ˝ � R
d, we say that c W ˝ � ˝ ! R satisfies the

twist condition whenever c is differentiable w.r.t. x at every point and the map
y 7! rxc.x0; y/ is injective for every x0. This condition is also known in economics
as Spence-Mirrlees condition (see, for instance, [261]). For “nice” domains and cost

functions, it corresponds to det
�

@2c
@yi@xj

�
¤ 0.

The goal of this condition is to deduce from .x0; y0/ 2 spt.�/ that y0 is indeed
uniquely defined from x0. This shows that � is concentrated on a graph, that of the
map associating y0 to each x0, and this map will be the optimal transport. Since this
map has been constructed using ' and c only, and not � , it also provides uniqueness
for the optimal � .

We will see this strategy with more details in the particular case where c.x; y/ D
h.x � y/, with h strictly convex, but the reader can see how to translate it into the
most general case.

For this choice of c, if ' and h are differentiable at x0 and x0 � y0, respectively,
and x0 … @˝, one gets r'.x0/ D rh.x0 � y0/. This works if the function h
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is differentiable; if it is not, we shall write r'.x0/ 2 @h.x0 � y0/ (using the
subdifferential of h; see Box 1.12 in Section 1.6). For a strictly convex function
h, one may inverse the relation passing to .rh/�1, thus getting

x0 � y0 D .rh/�1.r'.x0//:

Notice that the expression .rh/�1 makes sense for strictly convex functions h,
independently of h 2 C1, thanks to the considerations on the invertibility of @h
in Box 1.12.

This formula gives the solution to the transport problem with this cost, provided
' is differentiable a.e. with respect to �. This is usually guaranteed by requiring �
to be absolutely continuous with respect to the Lebesgue measure and using the fact
that ' may be proven to be Lipschitz.

Box 1.9. Memo: Differentiability of Lipschitz functions

Theorem (Rademacher). Let f W Rd ! R be a Lipschitz continuous function. Then the
set of points where f is not differentiable is negligible for the Lebesgue measure.

We do not provide a proof of this fact, but one can look at Chapter 3 of [12].

Then, one may use the previous computation to deduce that, for every x0, the
point y0 (whenever it exists) such that .x0; y0/ 2 spt.�/ is unique (i.e., � is of the
form �T WD .id;T/#� where T.x0/ D y0). Moreover, this also gives uniqueness of
the optimal transport plan and of the gradient of the Kantorovich potential.

We may summarize everything in the following theorem:

Theorem 1.17. Given � and � probability measures on a compact domain ˝ �
R

d, there exists an optimal transport plan � for the cost c.x; y/ D h.x � y/ with
h strictly convex. It is unique and of the form .id;T/#�, provided � is absolutely
continuous and @˝ is negligible. Moreover, there exists a Kantorovich potential ',
and T and the potentials ' are linked by

T.x/ D x � .rh/�1.r'.x//:

Proof. The previous theorems give the existence of an optimal � and an optimal '.
The previous considerations show that if we take a point .x0; y0/ 2 spt.�/ where
x0 … @˝ and r'.x0/ exists, then necessarily we have y0 D x0 � .rh/�1.r'.x0//.
The points x0 on the boundary are negligible by assumption. The points where the
differentiability fails are Lebesgue-negligible by Rademacher’s theorem. Indeed, '
shares the same modulus of continuity of c, which is a Lipschitz function on˝ �˝
since h is locally Lipschitz continuous and˝ is bounded. Hence, ' is also Lipschitz.
From the absolute continuity assumption on �, these two sets of “bad” points (the
boundary and the non-differentiability points of ') are �-negligible as well. This
shows at the same time that every optimal transport plan is induced by a transport
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map and that this transport map is x 7! x � .rh/�1.r'.x//. Hence, it is uniquely
determined (since the potential ' does not depend on � ). As a consequence, we also
have uniqueness of the optimal � . ut
Remark 1.18. All the costs of the form c.x; y/ D jx � yjp with p > 1 can be dealt
with via Theorem 1.17.

Remark 1.19. In the previous theorem, we showed the uniqueness of the optimal
plan by giving an explicit expression for the optimal map. Yet, it is possible to use
a more general argument: every time that we know that any optimal � must be
induced by a map T, then we have uniqueness. Indeed, suppose that two different
plans �1 D �T1 ; �2 D �T2 are optimal: consider 1

2
�1 C 1

2
�2, which is optimal as well

by convexity. This last transport plan cannot be induced by a map unless T1 D T2 �-
a.e., which gives a contradiction.

Remark 1.20. Theorem 1.17 states that the optimal � is of the form .id;T/#�, under
some assumptions on �. If the same assumptions are also satisfied by �, then we can
also say that there is an optimal map the other way around, i.e., � D .S; id/#�. In
particular � -a.e. we have y D T.x/ and x D S.y/, which means S.T.x// D x � -a.e.,
i.e. for �-a.e. point x. Hence, T is invertible on a set of full measure and its inverse
is the optimal map from � to �.

1.3.1 The quadratic case in R
d

The case where the cost is given by c.x; y/ D 1
2
jx � yj2 in R

d deserves a special
attention. The main reason for this special attention is the connection between c-
concavity and the usual notion of convexity.

Proposition 1.21. Given a function 
 W Rd ! R [ f�1g, let us define u
 W Rd !
R[ fC1g through u
.x/ D 1

2
jxj2 �
.x/. Then we have u
c D .u
/	. In particular,

a function  is c-concave if and only if x 7! 1
2
jxj2 � .x/ is convex and l.s.c.

Proof. Just compute

u
c.x/ D 1

2
jxj2�
c.x/ D sup

y

1

2
jxj2�1

2
jx�yj2C
.y/ D sup

y
x�y�

�
1

2
jyj2 � 
.y/

�
:

This proves the first part of the statement. Moreover, since c-concave functions are
characterized by the fact that they are c-transforms and convex l.s.c. functions by the
fact that they are sup of affine functions (see Box 1.11 in Section 1.6), the second
part of the statement follows. ut

As a consequence of the above proposition, we can particularize Theorem 1.17
to the quadratic case c.x; y/ D 1

2
jx � yj2, thus getting the existence of an optimal

transport map
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T.x/ D x � r'.x/ D r
�

x2

2
� '.x/

�
D ru.x/

for a convex function u. Since we will also see the converse implication (sufficient
optimality conditions), this will also prove the existence and the uniqueness of a
gradient of a convex function transporting � onto �. This well-known fact has been
investigated first by Brenier (see [82]) and is usually referred to as the Brenier
theorem (however, see also [227]). Section 1.7.2 will present the original approach
by Brenier, called “polar factorization.”

Let us moreover note that a specific approach for the case jx � yj2, based on
the fact that we can withdraw the parts of the cost depending on x or y only and
maximize

´
x�y d� , gives the same result in an easier way: we actually get '.x0/C

'	.y0/ D x0 � y0 for a convex function ' and its Legendre transform '	, and we
deduce y0 2 @'.x0/ (see Box 1.12 in Section 1.6).

We note now that the existence of an optimal transport map is true under weaker
assumptions on �: we can replace the condition of being absolutely continuous with
the condition “�.A/ D 0 for any A � R

d such that H d�1.A/ < C1” or with any
condition which ensures that the non-differentiability set of u is negligible.

In [4, 5], it is proven that the set where a convex function is not differentiable is
.d �1/-rectifiable (i.e., it is contained, up to H d�1-negligible sets, in a countable
union of Lipschitz images of R

d�1); more generally, the set of points where
the subdifferential has dimension at least k is .d �k/-rectifiable. Lipschitz .d �k/
surfaces can be replaced with C1 surfaces, thanks to Lusin-type approximation
results of Lipschitz functions via C1 functions (see [160], Chapter 6).

Also, it is possible to give an even stronger result about the non-differentiability
set: it is contained H d�1-a.e. in a countable union of .d�1/ surfaces of class C2, as
it is proven in [3]. Moreover, every set which is .d�1/-rectifiable in this C2 sense is
contained in the non-differentiability set of a convex function4.

After these subtle details on the sharpest assumptions on � which guarantee the
existence of an optimal transport map T (essentially, the fact that convex functions
must be differentiable �-a.e.), we want now to adapt our analysis to the case of
unbounded domains. This case is not covered by the general results of this section
and has not been detailed so far. Yet, it can be handled replacing Theorem 1.39 with
Theorem 1.40, which is valid for the cost c.x; y/ D 1

2
jx � yj2 without compactness

assumptions on the domain (we just need
´ jxj2 dx;

´ jyj2 dy < C1). It provides
the existence of solution .';  / to the following variant of (DP):

4These considerations allowed N. Gigli in [182] to prove the following characterization theorem,
extending 1.17: given �; � 2 P.˝/, suppose �.A/ D 0 for every C2 surface A of co-dimension 1;
then the optimal transport plan � 2 ˘.�; �/ for the quadratic cost jx � yj2 is unique and induced
by a transport map, whatever � is. Moreover, the condition “�.A/ D 0 for every C2 surface A of
co-dimension 1” characterizes the class of measures � such that the optimal transport plans (for
the quadratic cost) from � are unique and induced by maps for every target measure �.
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.DP � var/ sup

�ˆ
Rd
' d�C

ˆ

Rd
 d� W ' 2 L1.�/;  2 L1.�/; ' ˚  � c

�
;

together with max .DP � var/ D min .KP/. The sharpest result in the unbounded
case is detailed in the following theorem.

Theorem 1.22. Let �; � be probabilities over Rd and c.x; y/ D 1
2
jx � yj2. Suppose´ jxj2 dx;

´ jyj2 dy < C1, which implies min .KP/ < C1 and suppose that �
gives no mass to .d�1/ surfaces of class C2. Then there exists, unique, an optimal
transport map T from � to �, and it is of the form T D ru for a convex function u.

Proof. We follow again the same scheme as before: an optimal � exists, and
Theorem 1.40 also gives the existence of an optimal dual pair .';  / 2 L1.�/ �
L1.�/ and guarantees that we have no duality gap. Then, we can see that � is
concentrated on the graph of x 7! x � r'.x/ WD ru.x/ provided u (or ', which
is equivalent) is differentiable �-a.e. Since ' 2 L1.�/, we infer that u is finite �-a.e.
and, since u is convex, we get spt.�/ � fu < C1g, which is a convex set. Note that
@.fu < C1g/ can be expressed locally as the graph of a concave function; hence,
it is .d�1/ � C2 rectifiable set and is �-negligible by assumption. In the interior of
fu < C1g, u is differentiable �-a.e. (again, because of the assumption on � and of
u being convex). ut
Remark 1.23. As a consequence of all these considerations, the quadratic case gives
a very interesting result in dimension one. Suppose that � 2 P.R/ is atomless.
Then every convex function is differentiable �-a.e., since we know that the set
of non-differentiability points of a convex function is at most countable (this is a
consequence of the fact that if  is convex, then the intervals � 0

l .x/;  
0
r.x/Œ, where

 0
l and  0

r denote the left and right derivatives, are all nonempty and disjoint when x
ranges among non-differentiability points). This implies the existence of an optimal
transport map for the quadratic cost between � and any measure � 2 P.R/. This
transport map will be the derivative of a convex function, i.e., a nondecreasing map.

Remark 1.24. Some of the properties of the quadratic case stay true if we pass to a
general cost c.x; y/ which is C1;1 and satisfies the twist condition of Definition 1.16.
Obviously, the fact that the transport is the gradient of a convex function is no more
true; on the other hand, the differentiability properties of Kantorovich potentials are
the same as for convex functions, since one can prove that ' is semi-concave (i.e.,
concave, up to subtracting a quadratic function), and this allows us to use the same
assumptions on � as in Theorem 1.22.

1.3.2 The quadratic case on the flat torus

It is useful and interesting to see what happens if we replace measures on R
d with

measures on the flat torus T
d D R

d=Zd and the cost 1
2
jx � yj2 with the squared
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distance on the torus, i.e., c.x; y/ D 1
2
jŒx � y�j2, where

jŒz�j WD minfjz C kj W k 2 Z
dg: (1.5)

This is the simplest example of optimal transport on a manifold, for which a general
existence theorem has been established by McCann in [231]. Yet, the case of the
torus, first studied in [127], is much simpler, because of the structure that Td inherits
from R

d. In many cases (we will see in Chapters 5 and 6, in particular), studying
what happens on the torus allows us to understand the main qualitative features
of the problem, getting rid of difficulties arising from lack of compactness and/or
boundary issues. In the case of compactly supported measures, it is possible to view
their supports as part of a large cube, to be identified with a torus, and this at no
price. Indeed, if the measures are far from the boundary of the cube, the optimal
transport maps on the torus and on the Euclidean space will coincide.

Note that an optimal Nk in (1.5) always exists. If we take z 2 Q WD Œ� 1
2
; 1
2
�d,

then Nk 2 f�1; 0;C1gd, and it is unique (and equal to 0) unless z 2 @Q. Moreover,
the function R

d 3 z 7! 1
2
jŒz�j2 is semi-concave, as it is the infimum of a family

of functions with Hessian equal to the identity matrix I. It is differentiable at every
point where the optimal Nk is unique. For a given point x, we call cut locus of x the set
of points y such that the squared distance function, viewed as a function of the pair
.x; y/, is not differentiable at .x; y/. This is a general notion in differential geometry,
and we denote it by cut.x/ (see [294] for its use in optimal transport), but in the case
of the flat torus, it simply coincides with the set of points y such that y�x 2 @QCZ

d.

Theorem 1.25. Take �; � 2 P.Td/, with � � L d and c.x; y/ D 1
2
jŒx � y�j2.

Then there exists a unique optimal transport plan � 2 ˘.�; �/. It has the form
� D �T and the optimal map T is given by T.x/ D x � r'.x/ for a.e. x, where the
sum x � r'.x/ is to be intended modulo Z

d. Here, the function ' is a Kantorovich
potential, solution to the dual problem, in the transport from � to � for the cost c.
Moreover, for a.e. x 2 T

d, the point T.x/ does not belong to cut.x/.

Proof. The strategy is the same as for the costs of the form h.x � y/. We take an
optimal transport plan � , together with a pair .';  /, solution of the dual problem,
and we fix .x0; y0/ 2 spt.�/. We have

1

2
jŒx � y0�j2 � '.x/ �  .y0/;

1

2
jŒx0 � y0�j2 � '.x0/ D  .y0/:

Now, take k0 2 Z
d such that jŒx0 � y0�j D jx0 � y0 � k0j and observe that, from the

inequality jŒx � y0�j � jx � y0 � k0j, we have

1

2
jx � y0 � k0j2 � '.x/ �  .y0/;

1

2
jx0 � y0 � k0j2 � '.x0/ D  .y0/:
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This means that the function x 7! 1
2
jx � y0 � k0j2 � '.x/ is minimal at x D x0.

Yet, '.x/ D infy
1
2
jŒx � y�j2 �  .y/ is a semi-concave function, as it is defined as

an infimum of uniformly semi-concave functions. Hence, it is differentiable a.e. and
�-a.e.

If we assume that x0 is such that r'.x0/ exists, we deduce from the minimality
above that x0 � y0 � k0 D r'.x0/. This implies that k0 is uniquely determined by x0
and y0, and hence y0 … cut.x0/. Moreover, y0 is uniquely determined by x0, and we
get the usual result for the existence and uniqueness of the optimal map. ut
Remark 1.26. In the proof of the previous theorem, we can also observe that we
have k0 D 0 if x0 � y0 2 Q; this means in particular that whenever spt.�/; spt.�/ �
1
2
Q, then the transport is completely identical to what we would have with the

classical quadratic cost in R
d instead of using the periodic framework of Td.

1.4 Counterexamples to existence

We want to give at least two examples that are not included in the statement of
Theorem 1.17 and where an optimal transport does not exist. We concentrate on
examples where the cost c.x; y/ would usually allow for existence results (take, for
instance, c.x; y/ D jx�yj2), but the reason for this lack of existence is the measure�.
Other examples where this is due to the cost and not to the measures are possible;
see, for instance, Ex(58) and Ex(59).

No transport may exist

The first one is very easy. Consider the case � D ıa, a 2 X, and suppose that � is
not a Dirac mass. In this case, there is no transport map at all. Indeed, it is easy to
check that T#ıa D ıT.a/, and hence no transport map T W X ! Y can exist if � is not
of the form ıb for some b 2 Y .

More generally, we can say that the image measure T#� always includes an
atom of mass at least �.fag/ for every atom a of �. This implies in particular that
measures with atoms cannot be sent through a transport map onto measures without
atoms. For these reasons, the absence of atoms is a typical assumption on the source
measure � when one wants to solve (MP).

On the contrary, the problem (KP) by Kantorovich still makes sense even for
atomic measures. In particular, the situation is very easy when � D ıa. In this case,
the set ˘.�; �/ contains a unique element, which is � D �˝ � D ıa ˝ �.
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Transport can exist, but no optimal one

We consider the quadratic cost c.x; y/ D jx � yj2 (but any other cost strictly
increasing in the distance would give the same result). Set

� D H 1 A and � D H 1 B C H 1 C

2

where A, B, and C are three vertical parallel segments in R
2 whose vertices lie on the

two lines y D 0 and y D 1 and the abscissas are 0, 1, and �1, respectively, and H 1

is the 1-dimensional Hausdorff measure (this example is essentially due to [227]).
It is clear that no transport plan may realize a cost better than 1 since, horizontally,
every point needs to be displaced of a distance 1. Moreover, one can get a sequence
of maps Tn W A ! B [ C by dividing A into 2n equal segments .Ai/iD1;:::;2n and
B and C into n segments each, .Bi/iD1;:::;n and .Ci/iD1;:::;n (all ordered downward).
Then define Tn as a piecewise affine map which sends A2i�1 onto Bi and A2i onto
Ci. In this way, the cost of the map Tn is less than 1 C 1=n, which implies that the
infimum of the Kantorovich problem is 1, as well as the infimum on transport maps
only. Yet, no map T may obtain a cost 1, as this would imply that all points are
sent horizontally, but this cannot respect the push-forward constraint. On the other
hand, the transport plans associated to Tn weakly converge to the transport plan
1
2
�C

T C 1
2
��

T where T˙.x/ D x ˙ e and e D .1; 0/. This transport plan turns out to
be the only optimal transport plan, and its cost is 1.

Note that in this last example, we also saw that the infimum among transport
maps was equal to the infimum (i.e., the minimum) among transport plans. This is a
general fact, which relies on the notion of relaxation, as we can see in the following
section.

A BC

Ci Bi
A2i

A2i−1

1.5 Kantorovich as a relaxation of Monge

Let us set again K.�/ WD ´
˝�˝ c d� . Since we know that for any map T, we have

M.T/ D ´
˝

c.x;T.x// d� D ´
˝�˝ c d�T D K.�T/, the Monge problem may be
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rewritten as

min fJ.�/ W � 2 ˘.�; �/g ;

where

J.�/ D
(

K.�/ D M.T/ if � D �T;

C1 otherwise.

This is simple to understand: the definition of J forces to restrict the minimization
to those plan induced by a transport map. This fact is useful in order to consider
(MP) and (KP) as two problems on the same set of admissible objects, where the
only difference is the functional to be minimized, J or K.

The question is now: why did Kantorovich decide to replace J with K? Can
we easily prove that inf K D inf J? This is obviously true when, by chance, the
minimizer of K is of the form � D �T, since in this case, we would have equality
of the two minima. But is it possible to justify the procedure in general? The main
mathematical justification comes from the following notion of relaxation.

Box 1.10. Memo: Relaxation

Let F W X ! R[ fC1g be a given functional on a metric space X, and suppose that it
is bounded from below. We define the relaxation of F as the functional F W X ! R[fC1g
which is the maximal functional among those G W X ! R[ fC1g which are lower semi-
continuous and such that G � F. This functional exists since the supremum of an arbitrary
family of l.s.c. functions is also l.s.c. Moreover, we also have a representation formula,
which is easy to prove:

F.x/ D infflim inf
n

F.xn/ W xn ! xg:

A consequence of the definition is also that inf F D inf F (this latter infimum, that of
F, being often a minimum, when X is compact). This is easy to check: F � F implies
inf F � inf F; on the other hand, we have F � ` where ` WD inf F and a constant function
is l.s.c. Hence F � ` and inf F � inf F.

Here we claim that, under some assumptions, K is actually the relaxation of J. It
will happen, in this case, by chance, that this relaxation is also continuous, instead
of only semi-continuous, and that it coincides with J on fJ < C1g.

The assumptions are the following: we take˝ � R
d to be compact, c continuous,

and � atomless (i.e., for every x 2 ˝, we have �.fxg/ D 0). Compactness
is supposed for simplicity, while the result could be true under more general
assumptions. The references on this subject are [253] and [8].

We need some preliminary results. The first concerns the one-dimensional case,
we will analyze in detail in Chapter 2, but can be stated right now.
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Lemma 1.27. If �; � are two probability measures on the real line R and � is
atomless, then there exists at least a transport map T such that T#� D �.

Proof. Just consider the monotone increasing map T provided by Remark 1.23. This
map also optimizes the quadratic cost, but here we don’t care about it. ut
Lemma 1.28. There exists a Borel map �d W Rd ! R which is injective, its image
is a Borel subset of R, and its inverse map is Borel measurable as well.

Proof. First, note that it is sufficient to prove this result for d D 2, since then one
can proceed by induction: if a map �d�1 is given on R

d�1, then one can produce a
map �d by considering �d.x1; x2; : : : ; xd/ D �2.x1; �d�1.x2; x3; : : : ; xd//.

Then, note also that it is enough to define such a map on �0; 1Œ2, since one can go
from R

2 to �0; 1Œ2 by considering .x; y/ 7! . 1
2

C 1
�

arctan x; 1
2

C 1
�

arctan y/.
Then, consider the map which associates to the pair .x; y/, where x D

0; x1x2x3 : : : and y D 0; y1y2y3 : : : in decimal (or binary) notation, the point
0; x1y1x2y2x3y3 : : : . In order to avoid ambiguities, we can decide that no decimal
notation is allowed to end with a periodic 9 (i.e., 0:347299999 : : : has to be written
as 0:3473). This is why the image of this map will not be the whole interval, since
the points like 0:39393939 : : : are not obtained through this map. But this set of
points is actually Borel measurable.

It is not difficult neither to check that the map is Borel measurable, as well as
its inverse, since the pre-image of every interval defined by prescribing the first 2k
digits of a number in R is just a rectangle in R

2, the product of two intervals defined
by prescribing the first k digits of every component. These particular intervals being
a base for the Borel tribe proves the measurability we need. ut
Corollary 1.29. If �; � are two probability measures on R

d and � is atomless, then
there exists at least a transport map T such that T#� D �.

Proof. This is just obtained by considering a transport map T from .�d/#� to .�d/#�

and then composing with �d and .�d/
�1. ut

Remark 1.30. We provided here, through Lemma 1.28, an explicit way of con-
structing a transport map between an atomless measure � and an arbitrary measure
�, when the ambient space is R

d. Actually, this fact is much more general, since
it is well known that any measure space endowed with an atomless measure is
isomorphic to Œ0; 1� with the Lebesgue measure5. Yet, we do not want to introduce
this kind of arguments when an explicit construction is sufficient to deal with the
Euclidean case, which already meets our scopes.

5Note that this was the argument used in [175] to obtain the existence of transport maps in general
spaces, and [253] points out that, when composing with the isomorphisms sending arbitrary spaces
to Œ0; 1�, the cost function is no more continuous. Yet, this could be handled using Lemma 1.8,
which allows us to use costs of this form: the composition of a continuous function with measurable
maps of x and y separately.
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A last lemma:

Lemma 1.31. Consider on a compact metric space X, endowed with a probability
% 2 P.X/, a sequence of partitions Gn, each Gn being a family of disjoint subsets
Ci;n such that

S
i2In

Ci;n D X for every n. Suppose that size.Gn/ WD maxi diam.Ci;n/

tends to 0 as n ! 1 and consider a sequence of probability measures %n on X such
that, for every n and i 2 In, we have %n.Ci;n/ D %.Ci;n/. Then %n * %.

Proof. Set mi;n WD %n.Ci;n/ D %.Ci;n/. It is sufficient to take a continuous function
� 2 C.X/ and note that

ˇ̌̌
ˇ
ˆ

X
� d%n �

ˆ

X
� d%

ˇ̌̌
ˇ �

X
i2In

ˇ̌̌
ˇ
ˆ

Ci;n

� d%n �
ˆ

Ci;n

� d%

ˇ̌̌
ˇ

� !.diam.Ci;n//
X
i2In

mi;n D !.diam.Ci;n// ! 0;

where ! is the modulus of continuity of �. This is justified by the fact that, whenever
two measures have the same mass on a set C � X, since the oscillation of � on the
same set does not exceed !.diam.C//, the difference of the two integrals is no more
than this number times the common mass.

This proves
´
� d%n ! ´

� d% and hence %n ! %. ut
We can now prove the following.

Theorem 1.32. On a compact subset ˝ � R
d, the set of plans �T induced by a

transport is dense in the set of plans ˘.�; �/ whenever � is atomless.

Proof. Fix n and consider any partition of ˝ into sets Ki;n of diameter smaller than
1=.2n/ (for instance, small cubes). The sets Ci;j;n WD Ki;n � Kj;n make a partition of
˝ �˝ with size smaller than 1=n.

Let us now take any measure � 2 ˘.�; �/. Thanks to Lemma 1.31, we only need
to build a transport T sending � to �, such that �T gives the same mass as � to each
one of the sets Ci;j;n. To do this, define the columns Coli;n WD Ki;n � ˝ and denote
by �i;n the restriction of � on Coli;n. Its marginal will be denoted by �i;n and �i;n.
Consider now, for each i, a transport map Ti;n sending �i;n to �i;n. It exists thanks to
Corollary 1.29, since for each .i; n/, we have �i;n � �, which makes these measures
atomless. Since the �i;n are concentrated on disjoint sets, by “gluing” the transports
Ti;n, we get a transport T sending � to � (using

P
i �i;n D � and

P
i �i;n D �).

It is enough to check that �T gives the same mass6 as � to every Ci;j;n, but it is
easy to prove. Indeed, this mass equals that of �Ti;n and �Ti;n.Ci;j;n/ D �i;n.fx W x 2
Ki;n; Ti;n.x/ 2 Kj;ng/ D �i;n.fx W Ti;n.x/ 2 Kj;ng/ D �i;n.Kj;n/ D �.Ki;n � Kj;n/. ut

6Note that [8] and [253] proved the same fact in a more complicated way: indeed, the use of a
unique transport map for every column is enough. The same idea has been used in [146] for a
different density result, concerning Lipschitz transport maps.
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The relaxation result is just a consequence.

Theorem 1.33. Under the above-mentioned assumptions, K is the relaxation of J.
In particular, inf J D min K, and hence Monge and Kantorovich problems have the
same infimum.

Proof. First note that, since K is continuous, then it is l.s.c., and since we have
K � J, then K is necessarily smaller than the relaxation of J. We only need to
prove that, for each � , we can find a sequence of transports Tn such that �Tn * �

and J.�Tn/ ! K.�/, so that the infimum in the sequential characterization of the
relaxed functional (see definition) will be smaller than K, thus proving the equality.
Actually, since for � D �Tn the two functionals K and J coincide, and since K is
continuous, we only need to produce a sequence Tn such that �Tn * � . This is
possible thanks to Theorem 1.32. ut

1.6 Convexity, c-concavity, cyclical monotonicity, duality,
and optimality

1.6.1 Convex and c-concave functions

In this section, we analyze properties of c-concave functions in comparison with
convex functions, which are better known. We start from recalling some notions
from convex analysis.

Box 1.11. Memo: Convex functions

The definition of convex function is always the same: f W Rd ! R[fC1g is convex if
and only if for all x; y 2 R

d and t 2 Œ0; 1�, we have f ..1� t/xC ty/ � .1� t/f .x/C tf .y/. We
do not care about convex functions defined on subsets ˝ � R

d (which should be convex,
for the definition to make sense) since one can always extend f outside ˝ by setting it to
C1, preserving convexity.

An easy stability property is the following: if f˛ is a family of convex functions, then f
defined through f .x/ WD sup˛ f˛.x/ is also convex. This can be checked easily by writing
f˛..1 � t/x C ty/ � .1 � t/f˛.x/ C tf˛.y/ � .1 � t/f .x/ C tf .y/ and passing to the sup
in ˛. Otherwise, we can also use the epigraphs (and a function is convex if and only if its
epigraph is convex) and note that the intersection of convex sets is still convex.

Real-valued convex functions defined on R
d are automatically continuous and locally

Lipschitz (and in general, they are continuous and locally Lipschitz in the interior of their
domain ff < C1g). However, on the boundary between ff < C1g and ff D C1g,
there could be discontinuities. This is why typically we require at least lower semi-
continuity.

Theorem. A function f W Rd ! R[fC1g is convex and l.s.c. if and only if there exists
a family of affine functions f˛ such that f .x/ WD sup˛ f˛.x/. This family can also be chosen
to be the family of all affine functions smaller than f .

(continued)
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Box 1.11. (continued)
One implication is easy (if f is a sup of affine functions, since affine implies convex,

then it is convex). The geometrical intuition behind the converse one is the fact that the
epigraph of a convex and l.s.c. function is a closed convex set in R

d �R and can be written
as the intersection of the half-spaces which contain it. A precise proof requires the use of
the Hahn-Banach theorem in its geometrical form.

Box 1.12. Memo: Legendre transform, subdifferential

Definition (Legendre-Flenchel transform). For any given function f W Rd ! R[fC1g,
we can define its transform f �.y/ WD supx x � y � f .x/.

Example. The Legendre transform of x 7! 1
p jxjp is x 7! 1

q jxjq, where 1
p C 1

q D 1.
A function f is convex and l.s.c. if and only if there exists g such that f D g� (since

the class of functions that are Legendre transform of something exactly agrees with that of
functions which are expressed as suprema of affine functions). To be convinced that every
supremum of affine functions can be expressed as g�, just take f .y/ D sup˛ x˛ � y C b˛ ;
then, for each vector x, set g.x/ D � supfb˛ W x˛ D xg (by setting g.x/ D C1 if no ˛ is
such that x˛ D x) and check that we have f D g�.

Proposition. A function f W Rd ! R[fC1g is convex and l.s.c. if and only if f �� D f .
The proof of this fact can be seen as an application of the Hahn-Banach theorem. For a

complete proof, even in infinite dimension, see, for instance, [23].
Definition (subdifferential). For every convex function f , we define its subdifferential at

x as the set @f .x/ D fp 2 R
d W f .y/ � f .x/C p � .y � x/ 8y 2 R

dg.
It is possible to prove that @f .x/ is never empty if x lies in the interior of the set ff <

C1g. At every point where the function f is differentiable, then @f reduces to the singleton
frf g.

For the subdifferential of the convex functions f and f �, we have

p 2 @f .x/ , x 2 @f �.p/ , f .x/C f �.p/ D x � p:

This helps in proving the following equivalence: take two conjugate functions f and f �

(with f D f ��); then f is C1 if and only if f � is strictly convex. This comes from the fact
that C1 means that there is at most one p in every set @f .x/, while strictly convex means that
the same vector cannot belong to the subdifferential of more than one point. In particular, if
h is strictly convex, then @h, which is a multivalued map, can be inverted, and is univalued,
thus getting a map .@h/�1 that should be used in the statement of Theorem 1.17 instead of
.rh/�1.

Finally, note that the subdifferential of a convex function satisfies this monotonicity
property: if p1 2 @f .x1/ and p2 2 @f .x2/, then .p1 � p2/� .x1 � x2/ � 0.

Note the analogy with c-concave functions (or Nc-concave, this distinction being
meaningless in the symmetric case), which were defined as being the Nc-transform
(or c-transform) of something. Indeed, up to the change of sign, c-concavity has
exactly been defined as a generalization of convexity. Note that we admit the value
C1 for convex functions and �1 for concave and c-concave ones. Yet, we do not
like the convex function which is identically C1 nor any c-concave function which
is identically �1.
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Instead of proving the result on f 		 D f , we may prove this more general one
concerning c-concave functions7.

Proposition 1.34. Suppose that c is real valued. For any ' W X ! R [ f�1g,
we have 'cNc � '. We have the equality 'cNc D ' if and only if ' is c-concave; in
general, 'cNc is the smallest c-concave function larger than '.

Proof. First we prove 'cNc � '. Write

'cNc.x/ D inf
y

c.x; y/ � 'c.y/ D inf
y

c.x; y/ � inf
x0

c.x0; y/ � '.x0/:

Consider that infx0 c.x0; y/ � '.x0/ � c.x; y/ � '.x/, and hence

'cNc.x/ � inf
y

c.x; y/ � c.x; y/C '.x/ D '.x/:

Analogously, we have  Ncc �  for any  W Y ! R [ f�1g.
Then, let us prove 'cNc D ' if ' is c-concave. In such a case, we may write

' D  Nc ) 'c D  Ncc �  ) 'cNc �  Nc D ';

where the last inequality is obtained by noting that c- and Nc-transforms revert the
inequalities between functions (due to the minus sign in the definition). This proves
that in such a case, we have 'cNc � ', and hence 'cNc D '.

Finally, we can prove that for any ', the function 'cNc is the smallest c-concave
function larger than '. To prove that, take Q' D 
Nc any c-concave function and
suppose Q' � '. Then consider


Nc � ' ) 
Ncc � 'c ) 
 � 'c ) Q' D 
Nc � 'cNc;

which proves the desired inequality. ut
We finish this section with a last concept about convex functions, which we will

then translate into the framework of c-concave functions later on.
Let us define the graph of the subdifferential of a convex function as

Graph.@f / WD f.x; p/ W p 2 @f .x/g D f.x; p/ W f .x/C f 	.p/ D x � pg:

We already know that this graph is monotone in the sense that .xi; pi/ 2 Graph.@f /
for i D 1; 2 implies

.p2 � p1/ � .x2 � x1/ � 0:

7Note that this result is easy to prove, since c-concave functions are exactly defined as c-transform
of something, while usually convex functions are not defined via sup of affine functions, but via the
convexity inequality. This is why the corresponding theorem for convex functions usually requires
the use of the Hahn-Banach theorem.
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Yet, not all monotone graphs are the graphs of the subdifferential of a convex
function, nor they are contained in one of such graphs.8

Hence, monotonicity is not enough to characterize gradients and subdifferential
of convex functions (to be more precise, gradient vector functions that are monotone
are gradient of convex functions, but monotonicity alone does not imply gradient-
ness).

A stronger notion is that of cyclical monotonicity.

Definition 1.35. A set A � R
d � R

d is said to be cyclically monotone if for every
k 2 N, every permutation � , and every finite family of points .x1; p1/; : : : ; .xk; pk/ 2
A we have

kX
iD1

xi � pi �
kX

iD1
xi � p�.i/:

The word “cyclical” refers to the fact that, since every � is the disjoint composition
of cycles, it is enough to check this property for cyclical permutations, i.e., replacingPk

iD1 xi � p�.i/ with
Pk

iD1 xi � piC1 in the definition (with the obvious convention
pkC1 D p1).

Note that if we take k D 2 we get the usual definition of monotonicity, since

x1 � p1 C x2 � p2 � x1 � p2 C x2 � p1 ” .p1 � p2/ � .x1 � x2/ � 0:

A famous theorem by Rockafellar ([260], Theorem 24.8) states that every cyclically
monotone set is contained in the graph of the subdifferential of a convex function.
We will not prove this theorem here as will see it as a particular case of a theorem
on c-concave functions.

1.6.2 c-Cyclical monotonicity and duality

We start from the translation to the c-concave case of the definition of cyclical
monotonicity.

Definition 1.36. Once a function c W X � Y ! R [ fC1g is given, we say that a
set � � X � Y is c-cyclically monotone (briefly c-CM) if for every k 2 N, every
permutation � and every finite family of points .x1; y1/; : : : ; .xk; yk/ 2 � we have

8Take, for instance, a 90ı rotation R in R
2 and consider the set A D f.x;Rx/; x 2 R

dg. This set
satisfies the monotonicity inequality since we have .Rx1 � Rx2/ � .x1 � x2/ D 0 for any x1 and x2.
Yet, the map x 7! Rx is not the gradient of convex functions (it is not a gradient at all), nor can it
be contained in the graph of the subdifferential of a convex function.
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kX
iD1

c.xi; yi/ �
kX

iD1
c.xi; y�.i//:

As for the convex case, the word “cyclical” refers to the fact that we can restrict our
attention to cyclical permutations. The word “monotone” is a leftover from the case
c.x; y/ D �x � y.

It is useful to recall the following theorem, which is a generalization of a theorem
by Rockafellar in convex analysis. The classical reference for this proof is [269], but
it is interesting to see that it can actually be traced back to much older papers, such
as [261] (in the framework of rationalizability of actions in economics, Theorem 1
in the paper) or [91] (for applications to liquid crystals, as a part of a proof of a
discrete Kantorovich duality for distance costs, see Lemma 2 in the paper).

Theorem 1.37. If � ¤ ; is a c-CM set in X � Y and c W X � Y ! R (note
that c is required not to take the value C1), then there exists a c-concave function
' W X ! R [ f�1g (different from the constant �1 function) such that

� � f.x; y/ 2 X � Y W '.x/C 'c.y/ D c.x; y/g:

Proof. We will give an explicit formula for the function ' and prove that it is well
defined and that it satisfies the properties that we want to impose.

Let us fix a point .x0; y0/ 2 � : for x 2 X, set

'.x/ D inf fc.x; yn/ � c.xn; yn/C c.xn; yn�1/ � c.xn�1; yn�1/C � � � C
Cc.x1; y0/ � c.x0; y0/ W n 2 N; .xi; yi/ 2 � for all i D 1; : : : ; ng :

Since c is real valued and � is nonempty, ' never takes the value C1.
If we set, for y 2 Y ,

�  .y/ D inf f�c.xn; y/C c.xn; yn�1/ � c.xn�1; yn�1/C � � � C c.x1; y0/C
�c.x0; y0/ W n 2 N; .xi; yi/ 2 � for all i D 1; : : : ; n; yn D yg :

Note that from the definition, we have  .y/ > �1 if and only if y 2 .�y/.� /.
Moreover, by construction we have ' D  Nc. This proves that ' is c-concave9. The
fact that ' is not constantly �1 can be seen from '.x0/ � 0: indeed, if we take
x D x0, then for any chain of points .xi; yi/ 2 � , we have

9Note that we did not spend words here on the measurability of ': from its c-concavity, this is
straightforward, as it is also continuous, but this is based on the assumption that c is uniformly
continuous. Measurability and integrability in the general case are trickier.
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nX
iD0

c.xiC1; yi/ �
nX

iD0
c.xi; yi/;

where we consider xnC1 D x0. This shows that the infimum in the definition of '.x0/
is nonnegative.

To prove '.x/ C 'c.y/ D c.x; y/ on � , it is enough to prove the inequality
'.x/ C 'c.y/ � c.x; y/ on the same set, since by definition of c-transform, the
opposite inequality is always true. Moreover, since 'c D  Ncc and  Ncc �  , it is
enough to check '.x/C  .y/ � c.x; y/.

Suppose .x; y/ 2 � and fix " > 0. From ' D  Nc, one can find a point Ny 2 �y.� /

such that c.x; Ny/� .Ny/ < '.x/C ". In particular,  .Ny/ ¤ ˙1. From the definition
of  , one has the inequality � .y/ � �c.x; y/C c.x; Ny/ �  .Ny/ (since every chain
starting from Ny may be completed adding the point .x; y/ 2 � /.

Putting together this information, one gets

� .y/ � �c.x; y/C c.x; Ny/ �  .Ny/ < �c.x; y/C '.x/C ";

which implies the inequality c.x; y/ � '.x/C  .y/ since " is arbitrary. ut
We can now prove the following.

Theorem 1.38. If � is an optimal transport plan for the cost c and c is continuous,
then spt.�/ is a c-CM set.

Proof. Suppose by contradiction that there exist k; � , and .x1; y1/; : : : ; .xk; yk/ 2
spt.�/ such that

kX
iD1

c.xi; yi/ >

kX
iD1

c.xi; y�.i//:

Take now " < 1
2k

�Pk
iD1 c.xi; yi/ �Pk

iD1 c.xi; y�.i//
�

. By continuity of c, there

exists r such that for all i D 1; : : : ; k and for all .x; y/ 2 B.xi; r/ � B.yi; r/, we
have c.x; y/ > c.xi; yi/ � " and for all .x; y/ 2 B.xi; r/ � B.y�.i/; r/, we have
c.x; y/ < c.xi; y�.i//C ".

Now consider Vi WD B.xi; r/�B.yi; r/ and note that �.Vi/ > 0 for every i, because
.xi; yi/ 2 spt.�/. Define the measures �i WD � Vi=�.Vi/ and �i WD .�x/#�i, �i WD
.�y/#�i. Take "0 < 1

k mini �.Vi/.
For every i, build a measure Q�i 2 ˘.�i; ��.i// at will (for instance, take Q�i D

�i ˝ ��.i/).
Now define

Q� WD � � "0
kX

iD1
�i C "0

kX
iD1

Q�i:
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We want to find a contradiction by proving that Q� is a better competitor than � in
the transport problem, i.e., Q� 2 ˘.�; �/ and

´
c d Q� < ´

c d� .
First we check that Q� is a positive measure. It is sufficient to check that � �

"0
Pk

iD1 �i is positive, and, for that, the condition "0�i <
1
k� will be enough. This

condition is satisfied since "0�i D ."0=�.Vi//� Vi and "0=�.Vi/ � 1
k .

Now, let us check the condition on the marginals of Q� . We have

.�x/# Q� D � � "0
kX

iD1
.�x/#�i C "0

kX
iD1
.�x/# Q�i D � � "0

kX
iD1

�i C "0

kX
iD1

�i D �;

.�y/# Q� D � � "0
kX

iD1
.�y/#�i C "0

kX
iD1
.�y/# Q�i D � � "0

kX
iD1

�i C "0

kX
iD1

��.i/ D �:

Finally, let us estimate
´

c d� � ´
c d Q� and prove that it is positive, thus

concluding the proof. We have

ˆ
c d� �

ˆ
c d Q� D "0

kX
iD1

ˆ
c d�i � "0

kX
iD1

ˆ
c d Q�i

� "0

kX
iD1
.c.xi; yi/ � "/ � "0

kX
iD1
.c.xi; y�.i//C "/

D "0

 
kX

iD1
c.xi; yi/ �

kX
iD1

c.xi; y�.i// � 2k"

!
> 0;

where we used the fact that �i is concentrated on B.xi; r/ � B.yi; r/, Q�i on B.xi; r/ �
B.y�.i/; r/ and that they have unit mass (due to the rescaling by �.Vi/). ut

From the previous theorem, together with Theorem 1.37, we get the duality result
that we were waiting for10 from Section 1.2.

Theorem 1.39. Suppose that X and Y are Polish spaces and that c W X � Y ! R is
uniformly continuous and bounded. Then the problem (DP) admits a solution .'; 'c/

and we have max .DP/ D min .KP/.

Proof. First consider the minimization problem (KP). Since c is continuous, it
admits a solution � . Moreover, the support � of � is c-cyclically monotone, thanks
to Theorem 1.38. Then, since c is real valued, we can apply Theorem 1.37 and obtain
the existence of a c-concave function ' such that

� � f.x; y/ 2 ˝ �˝ W '.x/C 'c.y/ D c.x; y/g:

10We insist that this is just a possible path: we prove duality via cyclical monotonicity; instead,
one could first prove duality (see Section 1.6.3) and then prove cyclical monotonicity through
arguments as in Theorem 1.42.
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From their c- (and Nc-)concavity, ' and 'c are continuous. Moreover, from
'c.y/ D infx c.x; y/ � '.x/, we obtain an upper bound on 'c (since c is supposed
to be bounded), which turns into a lower bound on '. Symmetrically, we can also
obtain upper bounds on ' and lower on 'c, which prove that ' and 'c are both
continuous and bounded.

Hence, we can use .'; 'c/ as an admissible pair in (DP). Consider now

ˆ

X
' d�C

ˆ

Y
'c d� D

ˆ

X�Y
.'.x/C 'c.y// d� D

ˆ

X�Y
c.x; y/ d�;

where the last equality is due to the fact that � is concentrated on � and there we
have '.x/ C 'c.y/ D c.x; y/. The equality just before comes from the fact that the
marginals of � are � and �, respectively. This finally shows, using the optimality
of � ,

.DP/ �
ˆ
' d�C

ˆ
'c d� D

ˆ
c.x; y/ d� D .KP/

and implies (DP)D(KP), since we already know (DP)� (KP). As a by-product of
this proof, the pair .'; 'c/ turns out to be optimal for (DP). ut

We also want to deal with some cases which are not covered by the previous
theorem. First we want to give a short statement about the quadratic case in R

d,
in order to comply with Section 1.3.1. The difference compared to Theorem 1.39
lies in the fact that the cost c.x; y/ D 1

2
jx � yj2 is neither bounded nor uniformly

continuous.

Theorem 1.40. Let �; � be probabilities over Rd and c.x; y/ D 1
2
jx � yj2. Suppose´ jxj2 dx;

´ jyj2 dy < C1. Consider the following variant of (DP):

.DP � var/ sup

�ˆ
Rd
' d�C

ˆ

Rd
 d� W ' 2 L1.�/;  2 L1.�/; ' ˚  � c

�
:

Then (DP-var) admits a solution .';  /, and the functions x 7! 1
2
jxj2�'.x/ and y 7!

1
2
jyj2 �  .y/ are convex and conjugate to each other for the Legendre transform.

Moreover, we have max .DP � var/ D min .KP/.

Proof. Applying the same considerations as in Theorem 1.39, we get the existence
of a pair .';  /, with ' c-concave and  D 'c such that '.x/C 'c.y/ D c.x; y/ for
every .x; y/ in the support of an optimal transport plan � . From Proposition 1.21, we
deduce that x 7! 1

2
jxj2�'.x/ and y 7! 1

2
jyj2� .y/ are convex and conjugate to each

other. In particular, 1
2
jxj2 � '.x/ is bounded from below by a linear function, and

hence ' is bounded from above by a second-order polynomial. This proves 'C 2
L1.�/, from the assumption on �. The same can be said on  , i.e.,  C 2 L1.�/. We
can now integrate ' ˚  w.r.t. � , thus obtaining
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ˆ

Rd
' d�C

ˆ

Rd
 d� D

ˆ

Rd�Rd
' ˚  d� D

ˆ

Rd�Rd
c d� � 0:

This proves
´
Rd ' d�;

´
Rd  d� > �1, and hence ' 2 L1.�/ and  2 L1.�/.

The conclusion follows as before. ut
Then, we also give some details about the case where c is not continuous but

only l.s.c. We recall that this assumption is sufficient for the existence of an optimal
transport plan.

The first result concerns the validity of the duality formula, i.e.,

min .KP/ D sup

�ˆ
X
' d�C

ˆ

Y
 d� W ' 2 C.X/;  2 C.Y/; ' ˚  � c

�
:

(1.6)

By now, we have established this equality when c is uniformly continuous and
bounded, also proving that the dual problem admits a maximizing pair. We also
know that an inequality is always true: the minimum on the left is always larger than
the maximum on the right. More precisely, we are able to deal with the uniformly
continuous case (since we want to guarantee continuity of c-concave functions of
the form '.x/ D infy c.x; y/ �  .y/).

To deal with a l.s.c. cost c bounded from below, we will use the fact that
there exists a sequence ck of continuous functions (each one being k-Lipschitz)
increasingly converging to c. We need the following lemma.

Lemma 1.41. Suppose that ck and c are l.s.c. and bounded from below and that ck

converges increasingly to c. Then

lim
k!1 min

�ˆ
ck d� W � 2 ˘.�; �/

�
D min

�ˆ
c d� W � 2 ˘.�; �/

�
:

Proof. Due to the increasing limit condition, we have ck � c, and hence the limit
on the left (which exists by monotonicity) is obviously smaller than the quantity on
the right. Now consider a sequence �k 2 ˘.�; �/, built by picking an optimizer for
each cost ck. Up to subsequences, due to the tightness of ˘.�; �/, we can suppose
�k * � . Fix now an index j. Since for k � j we have ck � cj, we have

lim
k

min

�ˆ
ck d� W � 2 ˘.�; �/

�
D lim

k

ˆ
ck d�k � lim inf

k

ˆ
cj d�k:

By semi-continuity of the integral cost cj, we have

lim inf
k

ˆ
cj d�k �

ˆ
cj d�:
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Hence, we have obtained

lim
k

min

�ˆ
ck d�; � 2 ˘.�; �/

�
�
ˆ

cj d�:

Since j is arbitrary and limj
´

cj d� D ´
c d� by monotone convergence, we also

have

lim
k

min

�ˆ
ck d�; � 2 ˘.�; �/

�
�
ˆ

c d� � min

�ˆ
c d�; � 2 ˘.�; �/

�
:

This concludes the proof. Note that it also gives, as a by-product, the optimality of
� for the limit cost c. ut

We can now establish the validity of the duality formula for semi-continuous
costs.

Theorem 1.42. If X;Y are Polish spaces and c W X � Y ! R [ fC1g is l.s.c. and
bounded from below, then the duality formula min .KP/ D sup .DP/ holds.

Proof. Consider a sequence ck of k-Lipschitz functions approaching c increasingly.
Then the same duality formula holds for ck, and hence, we have

min

�ˆ
ck d� W � 2 ˘.�; �/

�
D max

�ˆ
' d�C

ˆ
 d� W ' ˚  � ck

�

� sup

�ˆ
' d�C

ˆ
 d� W ' ˚  � c

�
;

where the max and the sup are computed among Cb functions '; . The inequality
is justified by the fact that ck � c, and hence, every pair .';  / satisfying '.x/ C
 .y/ � ck.x; y/ also satisfies '.x/ C  .y/ � c.x; y/. The conclusion follows by
letting k ! C1, using Lemma 1.41. Note that for the cost c, we cannot guarantee
the existence of a maximizing pair .';  /. ut

The duality formula also allows us to prove the following c-cyclical monotonicity
theorem.

Theorem 1.43. If c is l.s.c. and � is an optimal transport plan, then � is concen-
trated on a c-CM set � (which will not be closed in general).

Proof. Thanks to the previous theorem, the duality formula holds. This means that,
if we take a sequence of maximizing pairs .'h;  h/ in the dual problem, we have

ˆ
.'h.x/C  h.y// d� D

ˆ
'h d�C

ˆ
 h d� !

ˆ
c d�;

since the value of
´

c d� is the minimum of the primal problem, which is also the
maximum of the dual. Moreover, we have c.x; y/�'h.x/C h.y/ � 0, which implies
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that the functions fh WD c.x; y/ � 'h.x/ �  h.y/, defined on X � Y , converge to 0 in
L1.X�Y; �/ (since they are positive and their integral tends to 0). As a consequence,
up to a subsequence (not relabeled), they also converge pointwisely � -a.e. to 0. Let
� � X � Y be a set with �.� / D 1 where the convergence holds.

Take any k, � , and .x1; y1/; : : : ; .xk; yk/ 2 � : we have

kX
iD1

c.xi; yi/ D lim
h

kX
iD1

'h.xi/C  h.yi/ D lim
h

kX
iD1

'h.xi/C  h.y�.i//

�
kX

iD1
c.xi; y�.i//;

which proves that this set is c-CM. ut
Remark 1.44. The duality formula that we proved for l.s.c. cost c differs from that
for continuous costs in that there is no existence for the dual problem (DP). Actually,
if one restates the dual problem as in (DP-var), then one can produce an optimizer
by first applying Theorem 1.43 to say that the optimal � is concentrated on a c-CM
set � and then build a potential ' through Theorem 1.37. This works under the
assumption that c is real valued and does not depend on its continuity11.

1.6.3 A direct proof of duality

In Section 1.6.2, we paid off the debt that we contracted with duality in Section 1.2:
we proved, via c-cyclical monotonicity arguments, that min .KP/ D sup .DP/, with
no duality gap, under some very general assumptions.

Here we want to give an alternative proof, independent of c-cyclical monotonicity
and based on a simple convex analysis trick12. We will restrict to the compact case
and only use the following fact: if H is convex and l.s.c., then H		 D H (see
Box 1.12 in Section 1.6.1).

Suppose that X and Y are compact metric spaces and c W X�Y ! R is continuous.
For every p 2 C.X � Y/, define

11Yet, note that the construction requires to use an optimal � , which is guaranteed in the case
where c is l.s.c., but could be the case in some special situations as well, such as when we can
apply Lemma 1.8. Also, for nonuniformly continuous costs c, there are measurability issues on the
function ' of Theorem 1.37.
12Even if not strictly necessary, we prefer to give it for completeness, and because it is different
from what is presented in other texts, such as [292], where the main tool is a theorem from [90],
Chapter 1, applied to well-chosen functions and space. The present proof, suggested by C. Jimenez,
is essentially adapted from Section 4 in [70].
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H.p/ WD � max

�ˆ
X
' d�C

ˆ

Y
 d� W '.x/C  .y/ � c.x; y/ � p.x; y/

�
;

which coincides with the opposite of the value of (DP) with cost c � p. The fact that
this value is attained is proven in Proposition 1.11, which also provides bounds on
the modulus of continuity of the optimal ' and  (the same as c � p) and on their
oscillation (if we assume '.x0/ D 0, then both ' and  are bounded by a constant
only depending on sup jc � pj).
Lemma 1.45. The function H W C.X � Y/ ! R is convex and l.s.c. for the uniform
convergence on the compact space X � Y.

Proof. For convexity, take p0 and p1 with their optimal potentials .'0;  0/ and
.'1;  1/. For t 2 Œ0; 1�, define pt D .1 � t/p0 C tp1, 't D .1 � t/'0 C t'1, and
 t D .1 � t/ 0 C t 1. The pair .'t;  t/ is admissible in the max defining �H.pt/.
We have

H.pt/ � �
�ˆ

X
't d�C

ˆ

Y
 t d�

�
D .1 � t/H.p0/C tH.p1/;

which shows convexity.
For semi-continuity, take pn ! p. Extract a subsequence pnk , realizing the

liminf of H.pn/. From uniform convergence, the sequence pnk is equicontinuous and
bounded (use the converse of the Ascoli-Arzelà theorem). Hence, the corresponding
optimal potential .'nk ;  nk/ are also equicontinuous and bounded and we can assume
'nk ! '; nk !  uniformly, up to extracting again. Obviously 'nk.x/C nk.y/ �
c.x; y/ � pnk.x; y/ implies '.x/C  .y/ � c.x; y/ � p.x; y/. Hence,

H.p/ � �
�ˆ

X
' d�C

ˆ

Y
 d�

�
D lim

k
H.pnk/ D lim inf

n
H.pn/;

which proves lower semi-continuity. ut
Let us now compute H	 W M .X � Y/ ! R [ fC1g. For � 2 M .X � Y/, we have

H�.�/ WD sup
p

ˆ

X�Y
p d�Csup

�ˆ
X
' d�C

ˆ

Y
 d� W '.x/C  .y/ � c.x; y/ � p.x; y/

�
;

which can be written as a unique sup over p; ';  . Note that, if � … MC.X�Y/, then
there is p � 0 such that

´
p0d� > 0, and one can take ' D 0,  D 0, p D c C np0,

and, for n ! 1, we get H	.�/ D C1. On the contrary, if � 2 MC.X � Y/, we
should choose the largest possible p, i.e., p.x; y/ D c.x; y/�'.x/� .y/. This gives

H	.�/ D sup
'; 

ˆ

X�Y
c.x; y/ d� C

ˆ

X
' d��

ˆ

X�Y
'.x/ d� C

ˆ

Y
 d� �

ˆ

X�Y
 .x/ d�:
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But this is exactly the expression that we introduced in Section 1.2 (see Equa-
tion (1.3)) to rewrite the constraints in (KP). Indeed we have

H	.�/ D
(

K.�/ if � 2 ˘.�; �/;
C1 if not.

The duality theorem follows.

Theorem 1.46. If X;Y are compact spaces and c continuous, then min .KP/ D
sup .DP/ (proof by convex analysis).

Proof. We have max .DP/ D �H.0/ D �H		.0/ (since H is convex and l.s.c., see
Box 1.12). Moreover, H		.0/ D sup� h0; �i � H	.�/ D � inf H	 D � min .KP/.

ut

1.6.4 Sufficient conditions for optimality and stability

The considerations of Sections 1.6.1 and 1.6.2 about c-transforms allow us to prove
sufficient conditions for optimality in optimal transportation, at least when the cost
satisfies the twist condition of Definition 1.16. As we did in Section 1.3, we will
first give a general statement under compactness assumptions, and we will then give
a different proof in the quadratic case, with no need of compactness.

Theorem 1.47. Let ˝ � R
d be compact and c be a C1 cost function satisfying

the twist condition on ˝ � ˝. Suppose that � 2 P.˝/ and ' 2 c�conc.˝/ are
given, that ' is differentiable �-a.e., and that �.@˝/ D 0. Suppose that the map T
satisfies rxc.x;T.x// D r'.x/. Then T is optimal for the transport cost c between
the measures � and � WD T#�.

Proof. Consider the function ', which may be written as '.x/ D infy c.x; y/� .y/
for a certain function W ˝ ! R. The function  may be supposed to be Nc-concave
and hence continuous (actually, we can take  D 'c, from the considerations of
the previous section). Fix now x0 2 ˝ such that r'.x0/ exists and x0 … @˝. By
compactness and continuity, one can say that infy c.x; y/ �  .y/ is realized by a
certain point y0. This gives

'.x/ � h.x � y0/ �  .y0/ for every x '.x0/ D h.x0 � y0/ �  .y0/;

and hence x 7! h.x � y0/ � '.x/ is minimal at x D x0 (note that we defined y0 by
the optimality in y, but now we use the optimality in x). As a consequence, we get

r'.x0/ D rxc.x0; y0/:

By assumption, y 7! rxc.x0; y/ is injective: this implies y0 D T.x0/. This proves
'.x0/C  .T.x0// D c.x0;T.x0//, and this same equality is true for �-a.e. x0. If we
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integrate with respect to �, we get

ˆ
' d�C

ˆ
 d� D

ˆ
' d�C

ˆ
 ı T d� D

ˆ
c.x;T.x//d�.x/;

which proves the optimality of T since the last integral equals the cost of T in the
problem of Monge, and we have

´
' d�C ´

 d� � .DP/ � .KP/, since .';  / is
admissible in (DP). ut

As we promised, here is a different proof for the case c.x; y/ D 1
2
jx � yj2.

Theorem 1.48. Suppose that � 2 P.Rd/ is such that
´ jxj2 d�.x/ < 1 and that

u W Rd ! R [ fC1g is convex and differentiable �-a.e. Set T D ru and suppose´ jT.x/j2d�.x/ < C1. Then T is optimal for the transport cost c.x; y/ WD 1
2
jx � yj2

between the measures � and � WD T#�.

Proof. First note that, for a convex function u, we have the following properties:

u.x/C u	.y/ � x � y for all x; y 2 R
d; u.x/C u	.y/ D x � y if y D ru.x/:

Now, consider any transport plan � 2 ˘.�; �/ and write

ˆ

Rd�Rd
.x � y/ d�.x; y/ �

ˆ

Rd�Rd

�
u.x/C u	.y/

	
d�.x; y/

D
ˆ

Rd
u.x/ d�.x/C

ˆ

Rd
u	.T.x// d�.x/ D

ˆ

Rd
.x � T.x// d�.x/:

This proves
´
.x �y/ d� � ´

.x �y/ d�T. Subtracting these quantities from the integral,
which only depends on � and �,

´
1
2
.jxj2 C jyj2/ d� D ´

1
2
.jxj2 C jyj2/ d�T, we get

ˆ

Rd�Rd

1

2
jx � yj2 d� �

ˆ

Rd�Rd

1

2
jx � yj2d�T;

which proves the claim. ut
Let us spend some words on the two different proofs that we just gave: we needed

to prove some optimality properties of the point T.x/ among possible points y. In
the first case, we proved that an optimal point y0 existed, and we deduced from
the first-order optimality conditions y0 D T.x0/. In the second case, we used the
characterization of minimizers for convex functions: whenever a gradient vanishes,
we are at a minimizer. This is the idea behind the property u.x/ C u	.y/ D x � y if
y D ru.x/.

We now pass to a more general criterion that can be used for almost arbitrary
costs. The main idea is that we proved that optimal plans are necessarily concen-
trated on c-CM sets, but the converse is also true: a plan which is concentrated on
a c-CM set is optimal, at least in the most reasonable cases. We will prove this fact
in the easiest case, i.e., when c is uniformly continuous and bounded. Actually, we



1.6 c-concavity, duality and optimality 39

will see in the next proof that the main ingredient is Theorem (1.37), which only
requires finiteness of the cost, but continuity and compactness are needed to avoid
integrability issues (in this case, all the functions are measurable and bounded).
Moreover, we will apply this sufficient criterion to another interesting problem,
i.e., stability of the optimal plans, which will require these assumptions for other
reasons. The fact that this converse implication stays true when these assumptions
are withdrawn (and in particular for infinite costs) is a delicate matter, and we refer
to [10] for a counterexample when the cost takes the value C1 and to [30, 60, 254]
for interesting positive proofs.

Theorem 1.49. Suppose that � 2 P.X � Y/ is given, that X and Y are Polish
spaces, that c W X � Y ! R is uniformly continuous and bounded, and that spt.�/ is
c-CM. Then � is an optimal transport plan between its marginals � D .�x/#� and
� D .�y/#� for the cost c.

Proof. Theorem (1.37) gives the existence of a c-concave function ' such that
spt.�/ is contained in the set f.x; y/ W '.x/ C 'c.y/ D c.x; y/g. Both ' and
'c are continuous thanks to the continuity of c, and hence bounded on X and Y ,
respectively.

Thanks to what we know about duality, we have

.KP/ �
ˆ

c.x; y/ d� D
ˆ
.'.x/C'c.y// d� D

ˆ
' d�C

ˆ
'c d� � .DP/D .KP/

which shows that � is optimal (and that .'; 'c/ solves the dual problem). ut
We are now able to prove the following stability result that we only state in the

compact case.

Theorem 1.50. Suppose that X and Y are compact metric spaces and that c W X �
Y ! R is continuous. Suppose that �n 2 P.X � Y/ is a sequence of transport plan
which are optimal for the cost c between their own marginals �n WD .�x/#�n and
�n WD .�y/#�n, and suppose �n * � ; then �n * � WD .�x/#� , �n * � WD .�y/#�

and � is optimal in the transport between � and �.

Proof. Set �n WD spt.�n/. Up to subsequences, we can assume �n ! �

in the Hausdorff topology (see below). Each support �n is a c-CM set (Theo-
rem (1.38)) and the Hausdorff limit of c-CM sets is also c-CM. Indeed, if one fixes
.x1; y1/; : : : ; .xk; yk/ 2 � , there are points .xn

1; y
n
1/; : : : ; .x

n
k ; y

n
k/ 2 �n such that, for

each i D 1; : : : ; k, we have .xn
i ; y

n
i / ! .xi; yi/. The cyclical monotonicity of �n givesPk

iD1 c.xn
i ; y

n
i / � Pk

iD1 c.xn
i ; y

n
�.i//; which implies, taking the limit n ! 1

kX
iD1

c.xi; yi/ �
kX

iD1
c.xi; y�.i//:
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This proves that � is c-CM. Moreover, we know from the convergence �n * �

together with �n ! � that spt.�/ � � . This shows that spt.�/ is c-CM and implies
the optimality of � . ut

We finish with an easy but useful consequence of Theorem 1.50. To fix the
notations, for a given cost c W X � Y ! R and � 2 P.X/; � 2 P.Y/, let us
define

Tc.�; �/ WD min

�ˆ
X�Y

c d� W � 2 ˘.�; �/
�
:

Theorem 1.51. Suppose that X and Y are compact metric spaces and that c W X �
Y ! R is continuous. Suppose that �n 2 P.X/ and �n 2 P.Y/ are two sequences
of probability measures, with �n * � and �n * �. Then we have Tc.�n; �n/ !
Tc.�; �/.

Proof. Let �n be an optimal transport plan from �n to �n for the cost c. Up to
subsequences, we can assume �n * � . Theorem 1.50 provides the optimality of
� . This means that we have (along this subsequence, but since it is arbitrary)

Tc.�n; �n/ D
ˆ

X�Y
c d�n !

ˆ

X�Y
c d� D Tc.�; �/

which proves the claim. ut

Box 1.13. Memo: Hausdorff convergence

Definition. In a compact metric space X, we define the Hausdorff distance on pair of
compact subsets of X by setting

dH.A;B/ WD max fmaxfd.x;A/ W x 2 Bg;maxfd.x;B/ W x 2 Agg :
Properties. We have the following equivalent definition:

1) dH.A;B/ D maxfjd.x;A/� d.x;B/j W x 2 Xg
2) dH.A;B/ D inff" > 0 W A � B"; B � A"g, where A" and B" stand for the "-

neighborhood of A and B, respectively.

Theorem (Blaschke). dH is a distance: it is positive and symmetric, it only vanishes if the
two sets coincide, and it satisfies triangle inequality. With this distance, the set of compact
subsets of X becomes a compact metric space itself.

We refer to [12] for a detailed discussion (with proofs) of this topic. Here we only prove
a simple fact that we need.

Proposition. If dH.An;A/ ! 0 and �n is a sequence of positive measures such that
spt.�n/ � An with �n * �, then spt.�/ � A.

Sketch of proof. For each n, we have
´

d.x;An/ d�n D 0, since �n is supported on An.
Since d.x;An/ ! d.x;A/ uniformly and �n * �, thanks to the duality between uniform
convergence and weak converge of measures, we get

´
d.x;An/ d�n ! ´

d.x;A/ d�. This
implies

´
d.x;A/ d� D 0, and hence � is concentrated on A.
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Let us also conclude with a result on the stability of the Kantorovich potentials.

Theorem 1.52. Suppose that X and Y are compact metric spaces and that c W X �
Y ! R is continuous. Suppose that �n 2 P.X/ and �n 2 P.Y/ are two sequences
of probability measures, with �n * � and �n * �. Let .'n;  n/ be, for each n, a
pair of c-concave Kantorovich potentials for the cost c in the transport from �n to
�n. Then, up to subsequences, we have 'n ! ',  n !  , where the convergence is
uniform and .';  / is a pair of Kantorovich potentials for � and �.

Proof. We know that c-concave functions have the same modulus of continuity as c
and hence, up to translating by a constant, we can apply the Ascoli-Arzelà theorem.
We have 'n ! Q' and  n ! Q , the convergences being uniform. From 'n.x/ C
 n.y/ � c.x; y/, we deduce, as n ! 1, the inequality Q'.x/ C Q .y/ � c.x; y/.
Moreover, we have

Tc.�n; �n/ D
ˆ
'n d�n C

ˆ
 n d�n !

ˆ
Q' d�C

ˆ
Q d�:

Yet, we also have (Theorem 1.50) Tc.�n; �n/ ! Tc.�; �/. We infer that the pair
. Q'; Q / is admissible in the dual problem and realizes the maximal value

´ Q' d� C´ Q d� D Tc.�; �/. Hence, they are Kantorovich potentials.
The convergence is obviously true on the full sequence (without passing to a

subsequence) in case of uniqueness of the Kantorovich potentials at the limit. ut

1.7 Discussion

This section presents alternative point of views (probabilistic language, polar
factorization), connections with economics and finance, generalizations and a brief
presentation of the regularity issues on the optimal transport map, and the optimal
potentials.

1.7.1 Probabilistic interpretation

We completely skipped up to now any interpretations involving probabilities, which
are actually natural in this setting. By changing for a while our language, let us
describe the situation in the following way.

Two probability measures � and � on some spaces (often, Rd) are given and can
be interpreted as the laws of two random variables. Yet, we do not prescribe the
joint law (which corresponds to � ) of these two random variables and we consider
the optimization problem

minfEŒc.X;Y/� W X 	 �; Y 	 �g
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where E denotes the expected value (according to a probability P on a probability
space ˝, which is not relevant for the minimization, but could be considered either
“large enough” or to be part of the optimization). This expected value obviously
depends on the joint law of .X;Y/, which is the main unknown.

The particular case of real (or vector) valued r.v. with c.X;Y/ D jX � Yjp reads

minfjjX � YjjLp W X 	 �; Y 	 �g:

More interesting is the case p D 2, where the problem can be expressed in terms
of covariance. Indeed, let us set x0 D EŒX� D ´

x d� and y0 D EŒY� D ´
y d�,

these two values being the mean values of X and Y . We have

EŒjX � Yj2� D EŒj.X � x0/ � .Y � y0/C .x0 � y0/j2�
D EŒjX � x0j2�C EŒjY � y0j2�C jx0 � y0j2

C2EŒX � x0� � .x0 � y0/ � 2EŒY � y0� � .x0 � y0/

�2EŒ.X � x0/ � .Y � y0/�:

In this expression, the three first terms only depend on the laws of X and Y
separately (the first being the variance of X, the second the variance of Y , and
the third the squared distance between the two mean values), and the next two
terms vanish (since the mean value of X � x0 is 0 and so for the mean value of
Y � y0). The problem is hence reduced to the maximization of EŒ.X � x0/ � .Y � y0/�.
This means that we need to find the joint law which guarantees maximal covariance
(i.e., somehow maximal dependence) of two r.v. with given laws. In the case of
real-valued r.v. (see next chapter), the answer will be that the optimal coupling
is obtained in the case where X and Y are completely dependent and one is an
increasing function of the other. The multidimensional case obviously replaces this
increasing behavior with other monotone behaviors.

1.7.2 Polar factorization

A classical result in linear algebra states that every matrix A 2 MN�N can be
decomposed as a product A D S �U, where S is symmetric and positive semidefinite,
and U is a unitary matrix, i.e., U � Ut D I. The decomposition is unique if A is
nonsingular (otherwise, U is not uniquely defined), and in such a case, S is positive
definite. Also, one can see that the matrix U of this decomposition is also a solution
(the unique one if A is nonsingular) of

maxfA W R W R � Rt D Ig;

where A W R stands for the scalar product between matrices, defined as A W R WD
Tr.A � Rt/.
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Indeed, one can write

A W R D .S � U/ W R D Tr.S � U � Rt/ D
X

i;j

SiiUijRij;

where the coordinates are chosen so that S is diagonal (and hence Sii � 0). Let us
observe that U � Ut D I imposes that the vectors u.i/ with components u.i/j WD Uij

are unit vectors (let us also define the unit vectors r.i/ in the same way from the
matrix R). Thus

A W R D
X

i;j

SiiUijRij D
X

i

Siiu.i/ � r.i/

�
X

i

Sii D Tr.S/ D Tr.S � U � Ut/ D Tr.A � Ut/ D A W U:

Also note that maximizing A W R is the same as minimizing jjA � Rjj2 (where the
norm of a matrix is defined as the square root of its scalar product with itself).
Indeed, we have jjA � Rjj2 D jjAjj2 � 2A W R C jjRjj2, and both jjAjj2 and jjRjj2 D
Tr.R � Rt/ D Tr.I/ D N are constants.

Analogously, in his first works about the quadratic optimal transport, Y. Brenier
noted that Monge-Kantorovich’s theory allowed us to provide a similar decomposi-
tion for vector fields instead of linear maps (see [82, 84] and also [174]).

The statement is the following:

Theorem 1.53. Given a vector map � W ˝ ! R
d with ˝ � R

d, consider
the rescaled Lebesgue measure L˝ on ˝ and suppose that �#L˝ is absolutely
continuous; then, one can find a convex function u W ˝ ! R and a measure-
preserving map s W ˝ ! ˝ (i.e., such that s#L˝ D L˝) such that � D .ru/ ı s.
Moreover, both s and ru are uniquely defined a.e., and s solves

max

�ˆ
�.x/ � r.x/ dx W r#L˝ D L˝

�
:

Note that the statement concerning nonsingular matrices exactly corresponds to
this one when one takes ˝ D B.0; 1/, since the assumption on the image measure
corresponds to the non-degeneracy of the linear map x 7! Ax, the matrix S is the
gradient of the convex function x 7! 1

2
.Sx/ � x, and the unitary matrix U is measure

preserving.
We give a proof of this statement; see also [84].

Proof. Consider � D �#L˝ and take the optimal transport for the quadratic cost
between � and L˝ . This transport is the gradient of a convex function that we will
call u	. Set s WD .ru	/ ı � , and note that s#L˝ D .ru	/#.�#L˝/ D .ru	/#� D
L˝ ; hence s is measure preserving. Then, take the Legendre transform u of u	 and
note .ru/ ı s D .ru/ ı .ru	/ ı � D � (indeed, the gradients of both u and u	
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are defined a.e. and we always have .ru/ ı .ru	/ D id). In this way, we have the
desired decomposition.

The uniqueness of ru comes from the fact that � D .ru/ ı s with s measure
preserving implies .ru/#L˝ D �, and there is only one gradient of a convex
function transporting a given measure (here L˝) to another given measure (here,�),
and it is the optimal transport between them.

Once ru is unique, the uniqueness of s is obtained by composing with ru	.
Concerning the optimality of s, use the optimality of ru. The maximization of

the scalar product instead of the minimization of the quadratic cost, we get

ˆ
.ru.x/ � x/ dx �

ˆ

˝�Rd
.y � x/ d�.x; y/

for every � 2 ˘.L˝;�/. If we consider a measure-preserving map r W ˝ ! ˝

and build � D .r; �/#L˝ , we get

ˆ
.�.x/ � r.x// dx D

ˆ
.y � x/ d�.x; y/

�
ˆ
.ru.x/ � x/ dx D

ˆ
.ru.s.x// � s.x// dx D

ˆ
.�.x/ � s.x// dx;

which provides the optimality of s. ut

1.7.3 Matching problems and economic interpretations

Optimal transport problems have several “abstract” economic interpretations, where
the role of transport plan � is that of matchings between different actors of an
economy, and the function c.x; y/ does not represent anymore a cost for moving
from x to y but rather a compatibility of the two objects x and y, or the opposite of
the “utility” for x and y to be coupled.13 Consider that, in economics, it is typical to
maximize utility, instead of minimizing costs.

A first easy and well-known example is that of the maximization of the
productivity. A company has a certain number of employees of different types (let
us use the variable x for the types and the measure � for the distribution of these
types, i.e., the quantity of employees for each type) and some tasks to attribute (we
use y for the different kinds of tasks and � for the distribution of different tasks), and
if the productivity p.x; y/ of the employees of type x when they work out the task y
is known, then the goal of the company is to solve

13For a comprehensive introduction to some applications of otpimal transport to economics, see
also [228].
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max

�ˆ
p.x; y/ d� W � 2 ˘.�; �/

�
:

This problem is easy to understand, but we want to analyze some other ones
where also the Kantorovich potentials also play a role.

The first example is that of stable marriages. Given two populations W of women
and M of men, represented by a measure � on W and a measure � on M, we denote
by uw.x; y/ the interest of Ms x for Mr y and um.x; y/ that of Mr y for Ms x. The
problem is that of finding a stable set of marriages, i.e., a measure � on the set
W � M giving how many women of type x get married with how many men of
type y. This � must obviously belong to ˘.�; �/, and we want to select such a �
so that it is stable, i.e., no new couple .x; y/ will decide to divorce (each one from
his/her current partner) to go together. The case that we are interested in is that of
transferable utility: it means that we suppose that, once x and y get married, they
decide how to split their total utility uw.x; y/C um.x; y/. They divide into a quantity
'.x/, which is the utility surplus for Ms x (now Mrs y, but let us call her with her
maiden name) and  .y/ for Mr y. Note that in this case, only the sum U.x; y/ WD
uw.x; y/Cum.x; y/ really plays a role. A stable marriage is a triple .�; ';  / such that
U.x; y/ D '.x/C .y/ � -a.e. (this represents the fact that ' and  are a splitting of
the total utility) and U.x; y/ � '.x/C .y/ for all .x; y/ (this represents the fact that
no pair .x; y/ will be interested in quitting the status quo). It is easy to see that this
corresponds to an optimal � with its potentials. We mention [125] for an interesting
discussion of this problem. On the other hand, the case of nontransferable utility is
much more involved and does not correspond to a transport problem.

If, in the previous example, the potentials represented split utilities, we can think
of other cases where they are really prices. Indeed, consider that the variable x
represents the goods that are available on the market and that � is the distribution
(how many of each type) of these goods, which we consider as fixed. The variable y
plays the role of the type of consumers and � is their distribution. Let u.x; y/ be the
utility of the consumer y when he/she buys the good x. The goal is to determine
the prices of the goods and who buys what. Suppose for a while that the price
'.x/ of each good is known; then, each consumer will choose what to buy by
solving maxx u.x; y/ � '.x/. Let us denote (by abuse of notation, since usually we
used minimization instead of maximization) this quantity as 'u.y/. We describe the
choices of the consumers through a measure � 2 ˘.�; �/ where �.A � B/ stands
for the number of consumers of type y 2 B buying a good x 2 A. The constraint
� 2 ˘.�; �/ stands for the constraints given by the supply and the demand on the
market (we say that the market is cleared). Another natural condition to impose is
the fact that each consumer only buys goods which are optimal for him, i.e., that �
is concentrated over the set of pairs .x; y/ with 'u.y/ D u.x; y/�'.x/, i.e., such that
x is an optimal choice, given ', for y.

This means that we are led to the following problem:

find .�; '/ such that � 2 ˘.�; �/ and '.x/C 'u.y/ D u.x; y/ � � a:e:;
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and we can see again an optimal transport problem for the maximization of
the cost u. Indeed, the pairs .�; '/ can be characterized as the solutions of the
Kantorovich problem

max

�ˆ
u d� W � 2 ˘.�; �/

�

and of the dual problem

min

�ˆ
' d�C

ˆ
'u d�

�
:

By the way, this optimal transport interpretation shows that a simple equilibrium
condition (clearing the market and only using rational choices of the consumers)
implies good news, i.e., the fact that the general satisfaction

´
u d� is maximized.

One could remark that the values of the functions ' and 'u are only defined
up to additive constants, which means that this procedure only selects the relative
differences of prices between goods and not the complete price chart. Yet, natural
assumptions guarantee uniqueness up to additive constants of the solution of the
dual problem (it is the case, for instance, when x and y belong to Euclidean spaces,
u.x; y/ is differentiable and one of the two measures has strictly positive density
a.e.). In this case, as soon as the price of one special good Nx is known, then
everything is uniquely determined. A typical example can be obtained if the “empty”
good is included in the market. Let us denote by x0 a special good which corresponds
to “not buying anything at all.” We can normalize utilities by setting u.y; x0/ D 0 for
every y, but this is not really important. However, we can assume that no seller will
charge a price different from 0 when selling this empty good. This fixes '.x0/ D 0

and allows for computing the other prices. If the measure� is such that�.fx0g/ > 0,
then this means that there are not enough goods on the market so as to satisfy all
the demands and that some of the consumers will stay “out of the market,” i.e., they
will buy the empty good.

Another interesting problem is obtained when the measure � on the sets of goods
is not fixed, and we consider a class of goods which are sold by a unique company,
acting as a monopolist on this market. We suppose that the set X of feasible goods
(those that the company can technically produce) is known and that it includes the
empty good x0. The goal of the company is, hence, to select at the same time a
measure � (how much production for each type of goods) and a price list ' W X !
R, satisfying '.x0/ D 0, so as to maximize its profit, assuming that each consumer
will buy according to the maximization of x 7! u.x � y/ � '.x/.

This problem may be expressed in two ways: indeed, the equilibrium condition
of the previous problem (when�was fixed) induces a relationship between� and ',
and this allows us to consider either one or the other as the variable of the problem.

Probably the easiest way to describe the problem is to think that the company
chooses the price list ', that every consumer y selects its optimal good X.y/ 2
argminx u.x; y/ � '.x/, and that the total income (supposing zero production costs)



1.7 Discussion 47

of the company is
´
'.X.y// d�.y/ D ´

' d� for � D X#�. The measure � is also
the measure of the real production of goods that the company will implement. In
other words, it will adapt its production to the choice of the consumers. Anyway '
has then to be chosen so as to maximize

´
'.X.y// d�.y/, taking into account that

the map X depends on '. The problem can also be adapted so as to take into account
production costs, in the form of a function c W X ! R, and the maximization
becomes that of

´
.' � c/.X.y// d�.y/ D ´

.' � c/ d�. This formulation should
be revisited in case the optimal point X.y/ is not uniquely defined (since different
optimizers for the consumer could lead to very different incomes for the company).
We refer to [178], where different relaxed formulations (defined as “optimistic” and
“pessimistic”) are proposed. Anyway, we will see in a while that in a very reasonable
case, there is no ambiguity.

The other approach is complementary to this one: we can give the company the
right to select the production measure �; then the market is cleared thanks to the
previous considerations, thus determining a measure � 2 ˘.�; �/ and a potential '.
The goal of the company is to maximize

´
.' � c/ d�, where � is unknown and

' depends on �. Note that this is an optimization problem in the space of measures
which involves the Kantorovich potential ' in the transport from a given measure �
to �.

The case which is studied the most is the case where both x and y belong to
convex sets X;Y � R

d and the function u.x; y/ D x � y is a scalar product. This is
natural if one thinks that goods can be described through a set of parameters (think
of cars: we can use number of seats, size of the luggage van, fuel consumption,
maximal speed, etc.) and that consumers are described through the importance that
they give to each one of these parameters. Customers of type y D .y1; : : : ; yn/ are
ready to spend yi extra unit of money for every unit increase in the ith parameter of
the good. This means that the values of the coefficients yi give the relative value of
each feature of the good compared to money (in the case of cars, we can expect that
they will be higher for richer people, who care less about money, or for people who
like very much cars, or need them absolutely). The empty good can be chosen as the
point x0 D 0 2 R

d.
In this case, it is easy to check that 'u is simply the Legendre transform '	

of convex analysis. Standard considerations in convex analysis imply that if '	
is differentiable at y, then the optimal choice x in maxx x � y � '.x/ is exactly
x D r'	.y/ and gives uniqueness a.e. in case � is absolutely continuous (due to
differentiability properties of convex functions). Then, the map r'	.y/ sends �
onto � and, conversely, r' sends � onto �. Hence, the optimization problem reads

max

�ˆ
'� d� W � 2 P.X/

�
;

where, for every �, '� is the unique convex function with .r'/#� D � and
'.x0/ D 0. It can also be rephrased as an optimization problem in the class
of convex functions, if one takes  D '	 as unknown, since in this case, one
should maximize

´
 	 d.r /#� D ´

. 	.r .y// � c.r .y/// d�, but we know
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 	.r .y//C  .y/ D y � r .y/, which turns the problem into

max

�ˆ
.y � r .y/ �  .y/ � c.r .y/// d�.y/ W min D 0;  convex

�
;

the constraint min D 0 coming from 0 D  	.0/ D supy 0 � y �  .y/. This is
a standard calculus of variations problem but considered in the restricted class of
convex functions. It has been deeply studied in [262], and it is usually known as
principal-agent problem.

For more general couplings u.x; y/, [168] studied fine features on the problem
and in particular which assumptions on the utility u provide a convex optimization
problem. Interestingly, the condition to guarantee this convexity is connected to the
MTW assumption that we will mention in Section 1.7.6 for regularity.

1.7.4 Multi-marginal transport problems

This recent part of the theory of optimal transport is becoming more and more
popular and finds applications in many different fields. We will only give a brief
sketch of what is done or can be done on this topic.

It is not difficult to imagine that, instead of using measures � 2 P.X � Y/ with
prescribed marginals on the two factors X and Y , one could consider more than two
marginals. Take some spaces X1;X2; : : : ;XN ; define X WD X1 � X2 � � � � � XN ; take
a cost function c W X ! R [ fC1g, some measures �i 2 P.Xi/, and solve

min

�ˆ
X

c.x1; : : : ; xN/ d� W � 2 P.X /; .�i/#� D �i

�
;

where �i W X ! Xi is the canonical projection map. Duality could be performed in
the same way as for the two-marginal case, getting to problems such as

max

(X
i

ˆ

Xi

'i d�i W 'i W Xi ! R;
X

i

'i.xi/ � c.x1; : : : ; xN/

)
:

The existence of a transport map (in the sense that there exist maps Ti W X1 ! Xi,
i� 2, such that the optimal � is of the form � D .id;T2; : : : ;TN/#�1) is a much more
delicate question than the usual case. In some sense, it corresponds to considering
the above transport problem as a two-marginal Monge problem on the spaces X1
and X2� � � �� XN . Yet, the difference in “dimensions” between the source and target
spaces makes the existence of an optimal map trickier. On the other hand, the image
measure on X2�� � ��XN is not really prescribed, but only its marginals on X2; : : : ;XN

are fixed. This means that extra optimality properties should be taken into account.
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This kind of problems may have several different interpretations. For a compre-
hensive survey about multi-marginal transport problems and their applications in
physics and economics, see [249].

Among the first examples that have been treated in this setting, we cite the cost

c.x1; : : : ; xN/ WD
X

i;j

jxi � xjj2;

which has many similar properties to the 2-marginal case (see [177]), and the
determinant cost, where the goal is to maximize

c.x1; : : : ; xd/ WD det.x1; : : : ; xd/ or c.x1; : : : ; xd/ WD j det.x1; : : : ; xd/j;

where the determinant of a family of d vectors in R
d is intended as the determinant

of the matrix where these vectors are the columns (see [109]). The problem is
interesting for d > 2 since in 2D, from det.x; y/ D x � Ry (where R is the rotation
of 90ı), one comes back to Brenier problem via a change of variable (also compare
to Ex(2)). The case of [177] will also appear in Section 5.5.5 in connection with
barycenters.

Yet, we prefer to present some few cases where important applications naturally
lead to a multi-marginal transport problem. For instance, in economics (see [108]),
one can think at contracts with more than two agents (when a seller given a good to a
buyer in exchange of money, this is a contract between two agents; when somebody
wants to build a house, he/she buys some land and hires a carpenter and an architect,
there are at least four agents). A point in the space X stands in this case for a
possible contract between the agents x1; x2; : : : ; xN and c.x1; : : : ; xN/ is the global
utility of this contract.

A completely different setting is found in recent works from physics, in the
framework of Electronic Density Functional Theory (see [97] and [128]). To
describe these issues in a very simplified way, consider a family of N electrons
moving around a nucleus. In quantum physics, the configuration of the electrons is
described through a wave function  W ˝N ! C, where ˝ is the physical region
where the electrons live (typically ˝ D R

3). For simplicity, we will ignore spin
issues and the fact that the symmetry properties of  depend on the distinction
between fermionic and bosonic particles. We will only consider that the quantity
j j2 is invariant under permutations of the variables. This same scalar function
denotes the joint law of the position of the electrons. Hence, the probability measure
% 2 P.R3/ given by .�1/#.j j2/ represents the law of the position of a single
electron. The energy of the state is represented by the following sum:

„
ˆ

˝N
jr j2 dxC

ˆ

˝N
.V.x1/C� � �CV.xN//j j2 dxC

ˆ

˝N

0
@X

i<j

1

jxi � xjj

1
A j j2 dx;
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where the first term represents the kinetic energy, the second the potential energy
(created, for instance, by the nucleus), and the last the electric interaction energy
between the electrons. As far as the parameter N is concerned, it is meant to be
the atomic number of an atom, which means that it ranges from two to one or
two hundreds. The minimization of the above energy becomes a multi-marginal
transport problem as soon as one takes the semiclassical limit „ ! 0 (see [128, 129];
the rigorous limit for N > 2 is an ongoing work). This allows us to get rid of the first
term in the energy, and the second is easily seen to depend on % only. Hence, the
only unknown is the joint law of the positions of the N electrons, i.e., the probability
� 2 P..˝/N/ given by � D j j2dx1 : : : dxN , with marginals all equal to %. The cost
c is given by

c.x1; : : : ; xN/ WD
X
i<j

1

jxi � xjj ;

so that � should minimize
´

c d� under marginal constraints. The fact that c is
neither bounded nor finite (it goes to C1 as soon as two electrons approach each
other) is a strong difficulty of this problem even in the “easy” case N D 2. It is
by the way an interesting transport problem where configurations with equalities
xi D xj cost the most, so that the problem is meaningful and intriguing even and in
particular when the marginals are all equal (which would not be the case for costs
increasingly depending on the distances).

We observe that we already faced several examples of “symmetric” cost func-
tions, meaningful when the marginals are identical (which is not the case for the
costs in [177] and [109]). This raises several questions about symmetric minimizers.
Indeed, that all these problems can be restricted to the set of plans � which
are invariant under permutations of the components. The theory of symmetric
transport problems, in connection with a variant of polar factorization theory and
with self-dual convex problems, has been investigated a lot by N. Ghoussoub and
collaborators, and we refer to [179, 180] without entering into extra details.

We finish this section by underlining another point: in evolution problems, and
particularly in fluid mechanics, a natural Lagrangian point of view is the description
of the global movement by using a measure on the set of possible trajectories. This
typically requires the use of probabilities on the set of continuous or Lipschitz paths
on Œ0; 1�, but any kind of time discretization of such a setting can be interpreted in
terms of measures on ˝N , where ˝ is the state space and N represents the number
of time steps, each one of length � D 1=N. In this case, the marginals are somehow
“ordered” and the cost takes into account this feature: for instance, natural costs
could be

c.x1; : : : ; xN/ D
N�1X
iD1

jxi � xiC1j or c.x1; : : : ; xN/ D
N�1X
iD1

jxi � xiC1j2
�

;
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which are, respectively, the total length of a discrete path or the total kinetic energy
(the term jx � yj2=� standing for the integration over a time interval of length � of a
speed jx�yj=� ). Let us mention that the continuous counterpart of this last cost, i.e.,
c.!/ WD ´ 1

0
j!0.t/j2dt for ! 2 C WD H1.Œ0; 1�I˝/, appears in Brenier’s variational

formulation of the incompressible Euler equation (see [83]), which gives rise to a
minimization problem such as

min

�ˆ
H

c.!/ dQ.!/ W Q 2 P.C /; .et/#Q D L˝; .e0; e1/#Q D �0;1

�
;

where et W C ! ˝ is the evaluation map et.!/ WD !.t/, L˝ is the rescaled
Lebesgue measure over ˝; and �0;1 is a fixed measure in P.˝ � ˝/ with both
marginals equal to L˝ .

1.7.5 Martingale optimal transport and financial applications

We present in this section two problems from mathematical finance involving multi-
marginal optimal transport. To analyze them, one should know what is an option.
An option is a contract giving the owner the right to buy or sell some financial
assets at some given conditions, which could bring a monetary advantage. The most
typical case is the European Call option, saying “at time T you will have the right
to buy this asset at price K”: should the price be ST , higher than K, then you gain
ST � K; should it be lower, then simply do not use the option, so that finally the
gain is .ST � K/C. More generally, we call option any financial contract giving the
owner a gain which is a function of the value ST at time T of a given asset (a share,
for instance). This value is a random variable (based on a probability P) evolving in
time. More exotic options such that their payoff depends on the whole history .St/t
of the asset value also exist. One of the main issues of financial mathematics is to
give formulas to compute the correct price for these contracts. This is based on the
no-arbitrage assumption: the only reasonable price for a contract is the one which
avoids the existence of arbitrage14 opportunities on the market, i.e., the possibility
of buying and selling this contract together with the related underlying asset and to
produce a positive amount of money out of nothing (more precisely, since all the
values are random variables: to produce with probability 1 a nonnegative amount
of money, which is strictly positive with strictly positive probability). A general
theorem in financial mathematics (see, for instance, [139] for references) states that
all these no-arbitrage prices are actually the expected value of the contract according
to a probability Q which is in general not P (but P � Q and Q � P, so that they
have the same negligible sets) and which has the property that all the asset values
on the market are martingales under Q. This means, for instance, that the price of

14The absence of arbitrage is usually referred to as “no free lunch.”
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a European Call option should be E
QŒ.ST � K/C�. Note that the knowledge of this

price for every K implies the knowledge of the law of ST under Q.
A first problem that one could find in finance is the following: consider a

complicated option with payoff depending on the values at time T of several assets
Si

T at the same time T . One should compute EQŒf .S1T ; S
2
T ; : : : ; S

N
T /�. Yet, this depends

on the joint law of the different assets under the unknown probability Q. If we
suppose that this option is new on the market, but that all the European Calls on
each of the assets Si are regularly sold on the market for each strike price K, then
this means that we know the marginal laws �i under Q of each asset, and we only
lack the joint law. We can have an estimate of the correct price of the option by
computing

min =max

�ˆ
f .x1; x2; : : : ; xN/ d� W .�i/#� D �i

�

which is nothing but a transport problem. We ignored here the constraints on the
fact that Q should make the asset value process a martingale since they are already
included in the law of each asset and do not involve the joint law. Indeed, in this
case, the different marginals represent different financial assets, and not different
instants of time, and the martingale condition does not play any role15.

Another problem, much more intriguing, can be obtained when one considers
a single asset but uses several marginals for several time steps. This allows us to
consider exotic options depending on the whole history of the asset value. Consider
a process .St/t defined for various instants of time (we will consider discrete time
models for the sake of simplicity: t D 0; 1; : : : ;N). Suppose that an option pays
f .S0; S1; : : : ; SN/. Suppose that European Calls are traded in the market for each
maturity time t and each strike price K, which provides the law of St under the
unknown martingale measure Q. Then, the price of the option may be estimated by
solving

min =max
˚
E
QŒf .S0; S1; : : : ; SN/� W .St/#Q D �t; .St/t is a martingale under Q



:

This can also be expressed in terms of the measure � D .S0; S1; : : : ; SN/#Q as

min =max

�ˆ
f .x1; x2; : : : ; xN/ d� W .�i/#� D �i; � 2 MartN

�
;

where the set MartT is the set of discrete time martingale measures � , satisfying for
each t � N � 1

15We could have presented this problem in Section 1.7.4, but we preferred to do it here in order to
introduce the martingale setting.
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ˆ
xtC1�.x0; x1; : : : ; xt/ d� D

ˆ
xt�.x0; x1; : : : ; xt// d�: (1.7)

These problems are now called martingale optimal transport problems and are out
of the framework of usual transport problems that we presented before. By the way,
in general, there is no reason to hope for the existence of an optimal transport
map. Indeed, even in the easiest case, i.e., two marginals, this will not be the
case. The reason is the fact that the only martingale measure which is of the form
�T D .id;T/#� is that with T D id. This can be seen from Equation (1.7), since it
gives

ˆ
T.x/�.x/ d� D

ˆ
y�.x/ d�T D

ˆ
x�.x/ d�T D

ˆ
x�.x/ d�;

which implies, � being an arbitrary test function, T.x/ D x �-a.e. This means
that, unless � D �, the martingale transport problem with two marginals admits no
admissible transport plan issued by a transport map. On the contrary, it is possible
to realize � as a combination of two transport maps, and optimality results of this
kind are proven in [31, 193]. For a general presentation of the martingale optimal
transport problem, see [32] and [173].

We finish this section presenting an alternative approach, leading to the same
problems, and based on the idea of optimal hedging. Think that f .S0; : : : ; SN/ is the
loss that a company would face, depending on the prices of the asset S (i.e., it is
the amount of money that the company needs to pay, because of a debt or other
contracts). The company wants to “cover” (or “hedge”) this amount, by using the
possibilities in the market. In order to hedge this amount, the company can

• buy usual options, based on the value of the asset at time t, i.e., buy a contract
whose value will be �.St/ and whose price is known to be

´
� d�t;

• buy some amounts of the asset itself: at time t � N � 1, it is possible to but for
a price St and to resell at price StC1; the number of assets to buy can only be
chosen according to the information that are available at time t, which means
that one can buy (and then resell) an amount of the form  .S0; S1; : : : ; St/; this
results in covering a quantity  .S0; S1; : : : ; St/.StC1 � St/, at cost 0.

The optimal hedging problem becomes

min

(
NX

tD0

ˆ
't d�t W

NX
tD0

't.xt/C
N�1X
tD0

 .x0; x1; : : : ; xt/.xtC1 � xt/ � f .x0; x1; : : : ; xN/

)
:

It is not difficult to check, thanks to the marginal constraints and to the martingale
condition (1.7), that this problem is exactly the dual of the above martingale
transport problem.
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1.7.6 Monge-Ampère equations and regularity

We saw in Section 1.3.1 that the optimal transport for the quadratic case is of the
form T.x/ D ru.x/, for a convex function u. If this function is smooth and strictly
convex, and the two measures � and � are absolutely continuous (say, with densities
f and g), then we can write the condition T#� D � in a PDE form. Indeed, this
condition is equivalent, if � D f .x/ dx and � D g.y/ dy and if T is C1 and injective,
to the Jacobian condition

det.DT.x// D f .x/

g.T.x//

which can be obtained as a consequence of a simple change-of-variable computa-
tion, as explained here below.

Box 1.14. Memo: Change-of-variable and image measures

Proposition. Suppose that % 2 L1.˝/ is a positive density on˝ � R
d and T W ˝ ! R

d

is a Lipschitz injective map, which is thus differentiable a.e. We suppose that det.DT/ ¤ 0

a.e. on f% > 0g. Then the image measure T#% is absolutely continuous and its density %T is
given by

%T.y/ D %.T�1.y//

det.DT.T�1.y///
:

If T is non-injective, the formula becomes T#% D %T � L d with %T given by

%T.y/ D X
xWT.x/Dy

%.x/

det.DT.x//
:

The same formulas stay true if T is not Lipschitz, but if there are measurable sets Ei such
that j˝ nSi Eij D 0 and T is Lipschitz continuous on each set Ei (see also Definition 3.13
for countably Lipschitz functions), with the differential DT which is actually the differential
of the restriction of T to each set where it is Lipschitz continuous (and coincides thus with
the approximate differential of T, see Section 3.3.2).

In the particular case where T D ru (where we suppose u to be strictly
convex just to guarantee injectivity of T), this becomes the so-called Monge-Ampère
equation

det.D2u.x// D f .x/

g.ru.x//
; (1.8)

which is a nonlinear PDE of elliptic type. Nonlinearity comes both from the right-
hand side with the term g.ru/ but also from the higher-order term det.D2u/. This
Jacobian term is nonlinear but has some monotonicity property when we assume the



1.7 Discussion 55

matrix D2u to be positive (which is the case for convex functions), as we have 0 �
A � B ) det.A/ � det.B/. This monotonicity is anyway very much degenerate,
but enough to classify this nonlinear PDE as a fully nonlinear (degenerate) elliptic
equation. We refer, for instance, to [190] for the general theory about this equation.

In our case, it is important to understand the meaning and the boundary
conditions to be associated to this equation.

First, let us consider the boundary conditions. In view of the transportation
meaning of this PDE, if we consider � 2 P.˝/ and � 2 P.˝ 0/, there is no point
in imposing the behavior of u or ru on @˝. On the contrary, the natural condition
is just ru.˝/ D ˝ 0, which is a global condition on u. This corresponds, roughly
speaking and only when u is a homeomorphism, to u.@˝/ D @˝ 0. This particular
sort of “boundary” condition is usually called second boundary value problem for
the Monge-Ampère equation.

We define various notions of solutions for (1.8):

• we say that u satisfies (1.8) in the Brenier sense if .ru/#.f �L d/ D g �L d (and
this is actually the sense to be given to this equation in optimal transport);

• we say that u satisfies (1.8) in the Alexandroff sense if the measure % defined
via %.A/ WD jSx2A @u.x/j is absolutely continuous and its density equals
the right-hand side of (1.8) a.e. (warning: the fact that % is a measure is
not straightforward, one has to use properties of convex functions, as in
Lemma 1.1.12 and Theorem 1.1.13 in [190]);

• we say that u satisfies (1.8) in the viscosity sense if it satisfies the usual com-
parison properties required by viscosity theory but restricting the comparisons
to regular convex test functions (this is possible because of the monotonicity
properties of the determinant);

• we say that u satisfies (1.8) in the classical sense if it is of class C2 and the
equation holds pointwise.

Note that all these notions except the first may also be applied to the more general
equation det D2u D f (for fixed f , without the structure f=g ı T), while the first one
just applies to this specific transportation case.

The regularity of the solutions of (1.8), which implies regularity results for the
optimal transport map, has been studied in the 1990s by Caffaelli, with very strong
results. The results we want to use are well summarized in Theorem 50 of [292]:

Theorem 1.54. If f and g are C0;˛.˝/ and are both bounded from above and from
below on the whole ˝ by positive constants and ˝ is a convex open set, then the
unique Brenier solution u of (1.8) belongs to C2;˛.˝/\ C1;˛.˝/, and u satisfies the
equation in the classical sense (hence also in the Alexandroff and viscosity senses).

We just detail a possible bibliographical path to arrive at this result. It is not easy to
deal with Brenier solutions, so the idea is to consider viscosity solutions, for which it
is in general easy to prove existence by Perron’s method. Then prove some regularity
result on viscosity solutions, up to getting a classical solution. After that, once we
have a classical convex solution to Monge-Ampère equation, this will be a Brenier
solution too. Since this is unique (up to additive constants), we have got a regularity



56 1 Primal and dual problems

statement for Brenier solutions. We can find results on viscosity solutions in [98,
100] and [99]. In [98], some conditions are given so as to ensure strict convexity of
the solution of det D2u D f when f is bounded from above and below. In [100], for
the same equation it is proved C1;˛ regularity provided we have strict convexity. In
this way, the term f=g.ru/ becomes a C0;˛ function, and in [99], it is proved C2;˛

regularity for solutions of det D2u D f with f 2 C0;˛ .
Some recent improvements on this regularity theory are due to De Philippis and

Figalli, who worked on this natural question: if f and g are bounded from above
and below, then the transport map is a BV map (since it is the gradient of a convex
function), which happens to be continuous (since u 2 C1;˛); its derivative has no
jump part (because of continuity), and the question arises whether T 2 W1;1, i.e., u 2
W2;1. The answer is yes, as it is shown in [147, 148, 150], and one can even prove
sharper estimates (D2u is not only L1 but slightly better, including some L1C" results,
also proven by Schmidt in [281]). For a comprehensive survey of the relations of the
Monge-Ampére equation with optimal transport and its regularity properties, see
[149].

The situation becomes much trickier when dealing with different costs than the
quadratic one. If the cost c satisfies the twist condition, it is still possible to express
the optimal map T in terms of a gradient, T.x/ D .rxc.x; �//�1.r'.x//. If we write
rxc.x;T.x// D r'.x/, differentiating this equality we get

D2
xxc.x;T.x//C D2

xyc.x;T.x//DT.x/ D D2'.x/;

which means that the equation on det.DT/ reads

det.D2
xyc.x;T.x/// det.DT.x// D det.D2'.x/ � D2

xxc.x;T.x///;

i.e.,

det.D2'.x/ � D2
xxc.x;T.x/// D det.D2

xyc.x;T.x///
f .x/

g.T.x//
;

which is a Monge-Ampère-type equation of the form

det.D2'.x/ � A.x;r'.x/// D F.x;r'.x//:

The regularity problem of the Kantorovich potentials for general costs has been
a long-standing problem, and it was listed as open in [292]. It is now well clarified
after a remarkable paper by Ma, Trudinger, and Wang, who found out in [219] a key
assumption on the cost c so as to be able to develop regularity estimates, based on
some Pogorelov-type methods. The assumption on c is very technical and requires
some inequalities on its fourth-order derivatives. We do not want to write them here,
but it is worth noting that these assumptions have later been proven to be sharp
by Loeper in [216]. In particular, the case c.x; y/ D jx � yj2 is covered by this
assumption but is a limit case, and no other power cost jx � yjp for p 2�1;C1Œ
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satisfies it. The cost
p
"2 C jx � yj2 also satisfies the MTW assumption for every

" > 0, and this allowed some approximation result for the linear cost jx � yj (see
[210]). The convexity of the domain ˝ is also replaced by a suitable notion of
c-convexity that we do not detail here. The connection with convexity properties
related to c-concave functions is also underlined in [168], as we saw in Section 1.7.3.
The theory has been deeply studied after this discovery, and many costs have been
considered: the case of the squared distance on a manifold can also be investigated,
and the condition translates into a curvature condition on the manifold. We refer to
[164] for an interesting survey of the whole theory.



Chapter 2
One-dimensional issues

This chapter is devoted to the special features of the 1D case and to a less known
transport map in the higher-dimensional case, called the Knothe map, built from 1D
constructions and related to some degenerate transport cost. The discussion section
deals with applications of 1D transport maps to image processing and geometric
inequalities.

2.1 Monotone transport maps and plans in 1D

We already discussed, in Section 1.3, the quadratic cost in 1D: as soon as the
source measure � has no atoms, there exists an optimal map, which is monotone
nondecreasing.

In this section we want to discuss monotone (in the following “monotone” means
“monotone nondecreasing”) transport maps between two given measures in terms
of their cumulative distribution functions and generalize to the case where � may
have atoms. This discussion is independent of optimal transport considerations.
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Box 2.1. Memo: Cumulative distribution function

Definition. Given a probability measure � 2 P.R/, we define its cumulative distribu-
tion function F� through

F�.x/ D �..�1; x�/:

The cumulative distribution function F� is easily seen to be nondecreasing and right
continuous since if xn ! x with xn > x, then .�1; x� D \n.�1; xn� and hence
�..�1; x�/ D limn �..�1; xn�/ D infn �..�1; xn�/. It is continuous at any point where
� has no atom since if xn ! x with xn < x, then limn �..�1; xn�/ D �..�1; xŒ/.

The CDF F� is important because it characterizes the measure �. Indeed, the sets of the
form .�1; x� are enough to generate all open sets: we have �.�a; b�/ D F�.b/ � F�.a/,
�.�a; bŒ/ D supfF�.t/ � F�.a/ W t < bg and the measure of any open set is obtained via
countable disjoint unions of open intervals.

In R
d the situation is trickier, but the knowledge of �.� � 1; x1� � � � � �� � 1; xd�/

for every x D .x1; : : : ; xd/ is enough, as in 1D, to characterize � (by finite differences one
could get all the semi-open rectangles �x�

1 ; x
C

1 � � � � � ��x�

d ; x
C

d � and by countable disjoint
unions all the open sets).

Unfortunately, the CDF above cannot always be inverted, as it is not always
strictly increasing, but we can define a pseudo-inverse.

Definition 2.1. Given a nondecreasing and right-continuous function F W R !
Œ0; 1�, its pseudo-inverse is the function FŒ�1� W Œ0; 1� ! R given by

FŒ�1�.x/ WD infft 2 R W F.t/ � xg;

where the infimum is a minimum as soon as the set is nonempty (otherwise it is
C1) and bounded from below (otherwise it is �1), thanks to right continuity
of F.

Note, as a simple consequence of the definition of pseudo-inverse, that we have

FŒ�1�.x/ � a , F.a/ � x I FŒ�1�.x/ > a , F.a/ < x: (2.1)

We look now at some properties of the pseudo-inverse of cumulative distribution
functions.

Proposition 2.2. If � 2 P.R/ and FŒ�1�� is the pseudo-inverse of its cumulative

distribution function F�, then .FŒ�1�� /#.L 1 Œ0; 1�/ D �.

Moreover, given �; � 2 P.R/, if we set � WD .FŒ�1�� ;FŒ�1�� /#.L 1 Œ0; 1�/, then
� 2 ˘.�; �/ and �..�1; a� � .�1; b�/ D F�.a/ ^ F�.b/.
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Proof. For the first part of the statement, using (2.1), we write

jfx 2 Œ0; 1� W FŒ�1�� .x/ � agj D jfx 2 Œ0; 1� W F�.a/ � xgj D F�.a/;

and this proves that the image measure is �, using the characterization of a measure
through its CDF (see the Memo Box 2.1 above).

For the second part of the statement, � 2 ˘.�; �/ is just a consequence of the
first. Then, let us compute

�..�1; a� � .�1; b�/ D jfx 2 Œ0; 1� W FŒ�1�� .x/ � a; FŒ�1�� .x/ � bgj
D jfx 2 Œ0; 1� W F�.a/ � x; F�.b/ � xgj D F�.a/ ^ F�.b/;

which is the desired equality. ut
Definition 2.3. We will call the transport plan � WD .FŒ�1�� ;FŒ�1�� /#.L 1 Œ0; 1�/ the
co-monotone transport plan between � and � and denote it by �mon.

Now, consider two measures �; � 2 P.R/: we want to build a monotone
transport map (and not only a plan) sending � onto �, provided � is atomless.

We first need a simple lemma on the CDF of atomless measures.

Lemma 2.4. If � 2 P.R/ is atomless, then .F�/#� D L 1 Œ0; 1�. As a
consequence, for every ` 2 Œ0; 1�, the set fx W F�.x/ D `g is �-negligible.

Proof. First note that F� is continuous because � is atomless. Hence, for a 2�0; 1Œ,
the set fx W F�.x/ � ag is a closed interval of the form �� 1; xa�, with F�.xa/ D a.
Hence, �.fx W F�.x/ � ag/ D F�.xa/ D a, which proves .F�/#� D L 1 Œ0; 1�.

As a consequence, for ` 2 Œ0; 1�, the sets fx W F�.x/ D `g are �-negligible, since
otherwise the image measure .F�/#� would have an atom at `, which contradicts
the first part of the statement. ut
Theorem 2.5. Given �; � 2 P.R/, suppose that � is atomless. Then, there exists
a unique nondecreasing map Tmon W R ! R such that .Tmon/#� D �.

Proof. First, let us build one such a map. Let us consider the cumulative distribution
functions F� and F� and define the map Tmon through

Tmon.x/ WD FŒ�1�� .F�.x//:

This quantity is well defined and belongs to R provided F�.x/ 2�0; 1Œ (so that the
set on which we take the infimum in Definition 2.1 is neither empty nor unbounded
from below). The sets fx W F�.x/ D 0g and fx W F�.x/ D 1g are �-negligible
thanks to Lemma 2.4. Hence, Tmon is well-defined �-a.e.

The fact that Tmon is monotone nondecreasing is obvious; we just have to prove
.Tmon/#� D �. Since we already know .FŒ�1�� /#.L 1 Œ0; 1�/ D �, by composition
we just need to use Lemma 2.4, which proves .F�/#� D L 1 Œ0; 1�.
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We now pass to the proof of uniqueness. Consider any nondecreasing function
T such that T#� D �.

From monotonicity we have T�1.� � 1;T.x/�/ 
� � 1; x�. We deduce

F�.x/ D �.� � 1; x�/ � �.T�1.� � 1;T.x/�// D �.� � 1;T.x/�/ D F�.T.x//;

which means T.x/ � FŒ�1�� .F�.x//. Suppose that the inequality is strict. This means
that there exists "0 > 0 such that F�.T.x/ � "/ � F�.x/ for every " 2�0; "0Œ. On the
other hand, from T�1.� � 1;T.x/ � "Œ/ �� � 1; xŒ, we get F�.T.x/ � "/ � F�.x/.

Hence, we obtain F�.T.x/� "/ D F�.x/ for every " 2�0; "0Œ. Thus, F�.T.x/� "/
is the value that F� takes on an interval where it is constant. These intervals are a
countable quantity; hence the values of F� on those intervals are also countable. We
call `i these values. As a consequence, the points x where T.x/ > FŒ�1�� .F�.x// are
contained in

S
ifx W F�.x/ D `ig. Lemma 2.4 proves that this set is negligible. This

allows us to conclude T.x/ D FŒ�1�� .F�.x// �-a.e. ut
Remark 2.6. Note that the previous proof was complicated by the possibility that
the cumulative distribution functions could be either discontinuous or not strictly
increasing. Should F� be continuous and strictly monotone (which means that � is
atomless and supported on the whole R), then one would simply have

Tmon D .F�/
�1 ı F�:

Remark 2.7. As a consequence of the explicit formula of the previous remark, one
can also study the regularity of this map Tmon depending on the regularity of � and
�. Indeed, as soon as these measures are fully supported and have no atoms, the two
functions F� and F� are homeomorphisms, and so is Tmon. Moreover, if � and � are
absolutely continuous, with continuous densities which do not vanish, then they are
also diffeomorphisms, and so is Tmon. In general, the regularity of Tmon is one degree
higher than that of the two measures, as it is the case for F�;F�;F�1

� , and F�1
� .

In the next section we will see that the map Tmon that we have just built
optimizes a whole class of transport costs. To prove it, we will need the following
characterization of �mon and Tmon.

Lemma 2.8. Let � 2 ˘.�; �/ be a transport plan between two measures �;
� 2 P.R/. Suppose that it satisfies the property

.x; y/; .x0; y0/ 2 spt.�/; x < x0 ) y � y0: (2.2)

Then, we have � D �mon. In particular there is a unique � satisfying (2.2).
Moreover, if � is atomless, then � D �Tmon .

Proof. For the first part of the statement, we just need to prove

�..�1; a� � .�1; b�/ D F�.a/ ^ F�.b/:
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Indeed, from Proposition 2.2, this condition is satisfied by �mon, and we saw that
this is enough to characterize a measure on R

2.
Consider the two sets A D�� 1; a���b;C1Œ and B D�a;C1Œ��� 1; b�. From

the assumption on � , it is not possible to have both �.A/ > 0 and �.B/ > 0

(otherwise we would have points in spt.�/ violating condition (2.2)). Hence, we
can write

�..�1; a��.�1; b�/ D �...�1; a��.�1; b�/[A/^�...�1; a��.�1; b�/[B/:

Yet, we have

�...�1; a� � .�1; b�/ [ A/ D �..�1; a� � R/ D F�.a/

and

�...�1; a� � .�1; b�/ [ B/ D �.R � .�1; b�/ D F�.b/:

This proves the first part of the claim. For the second part, we suppose � to be
atomless. For any point x 2 R, one can define the interval Ix as the minimal interval
I such that spt.�/ \ .fxg � R/ � fxg � I. This interval can obviously be reduced
to a singleton. The assumption on � implies that the interior of all these intervals
is disjoint (and ordered). In particular there can be at most a countable quantity
of points such that Ix is not a singleton. Since these points are �-negligible (as a
consequence of � being atomless), we can define �-a.e. a map T such that � is
concentrated on the graph of T. This map will be monotone nondecreasing because
of (2.2), and this gives T D Tmon since we already know the uniqueness of a non-
decreasing map with fixed marginals (Theorem 2.5). ut

2.2 The optimality of the monotone map

Now that we know quite well the properties, definitions, and characterizations of the
map Tmon and of the plan �mon, we can see that they are, in the 1D case, optimal for
several different costs and not only for the quadratic one. This is really specific to
the 1D case; it will not be true in higher dimension. The costs that we will consider
will be convex functions of the difference x�y and, to stress the possible asymmetric
behavior of these costs, we prefer to write h.y � x/ instead of h.x � y/.

Theorem 2.9. Let h W R ! RC be a strictly convex function and �; � 2 P.R/ be
probability measures. Consider the cost c.x; y/ D h.y � x/ and suppose that (KP)
has a finite value. Then, (KP) has a unique solution, which is given by �mon. In the
case where � is atomless, this optimal plan is induced by the map Tmon.
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Moreover, if the strict convexity assumption is withdrawn and h is only convex,
then the same �mon is actually an optimal transport plan, but no uniqueness is
guaranteed anymore.

Proof. We will use the fact that the support of any optimal � is a c-CM set � . This
means in particular that for .x; y/; .x0; y0/ 2 � , we have

h.y � x/C h.y0 � x0/ � h.y0 � x/C h.y � x0/: (2.3)

We only need to show that this implies (in the strictly convex case) a monotone
behavior: we will actually deduce from (2.3) that x < x0 implies y � y0, and this will
allow us to conclude from Lemma 2.8.

To prove y � y0, suppose by contradiction y > y0 and denote a D y�x, b D y0�x0
and ı D x0 � x > 0. Condition (2.3) reads h.a/ C h.b/ � h.b C ı/ C h.a � ı/.
Moreover, the assumption y0 < y implies b C ı < a. Hence, b C ı and a � ı are
located in the segment between b and a (and b < a). More precisely, we have

b C ı D .1 � t/b C ta; a � ı D tb C .1 � t/a; for t D ı

a � b
2�0; 1Œ:

Thus, strict convexity yields

h.a/C h.b/ � h.b C ı/C h.a � ı/
< .1 � t/h.b/C th.a/C th.b/C .1 � t/h.a/ D h.a/C h.b/:

This gives a contradiction and proves the statement in the strictly convex case.
The statement when h is only convex is trivial if h is constant (since every � is

optimal), and, if not, it is obtained by approximation. Lemma 2.10 below proves
that there exists a sequence of strictly convex functions h" such that h � h" �
.1 C "/h C ". Let us take the transport cost c".x; y/ WD h".y � x/. In this case we
know that �mon optimizes the cost

´
c" d� and hence

ˆ
h.y�x/ d�mon �

ˆ
h".y�x/ d�mon �

ˆ
h".y�x/ d� � "C.1C"/

ˆ
h".y�x/ d�

for all � 2 ˘.�; �/. Passing to the limit as " ! 0, we get that �mon also optimizes
the cost c. ut
Lemma 2.10. For every nonconstant convex and positive function h W R ! RC
and every " > 0, there exists h" W R ! RC strictly convex, such that h � h" �
.1C "/h C ".

Proof. We just need to prove that there is a strictly convex function f W R ! RC
such that f � h C 1. Then, we will take h" WD h C "f . From the fact that h is convex,
it is bounded from below by an affine function, and we have h.t/ � .at C b/C (we
take the positive part since we also know h � 0). It can be checked that
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f .t/ WD 1

2

p
4C .at C b/2 C 1

2
.at C b/

is strictly convex and satisfies f .t/ � 1
2
.2CjatCbjC.atCb// D 1C.atCb/C. ut

Remark 2.11. Positivity of the function h is not really necessary, as soon as � and
� satisfy some integrability conditions so that inf .KP/ > �1. For instance, if we
have

´ jxjd�.x/; ´ jyjd�.y/ < C1, we can add an affine function to h and make it
convex, and the cost of this affine function does not depend on � and is finite (see
Example 2.14 below).

Remark 2.12. We stress that a completely analogous proof could be used to prove
that optimal maps for strictly concave costs (of the form h.y � x/ for h strictly
concave) are monotone decreasing instead of monotone increasing. Compare with
what is described in Section 3.3.2.

Remark 2.13. Also, the optimality of �mon is true under more general assumptions,
i.e., for some costs which are not of the form h.x � y/ but satisfy the twist condition.
See Ex(10).

Easy examples where c is convex but not strictly convex and Tmon is not the unique
optimal transport map may be built as follows.

Example 2.14 (Linear costs). Suppose that c.x; y/ D L.x�y/, the map a W Rd ! R

being linear. In this case any transport plan � is optimal and any transport map as
well. This can be easily seen if one writes

ˆ
L.x � y/ d� D

ˆ
L.x/ d� �

ˆ
L.y/ d� D

ˆ
L.x/ d� �

ˆ
L.y/ d�;

which shows that the result does not depend on � but only on its marginals. This
general example works for �; � compactly supported (so that we do not have any
problem of integrability of L.x/ and L.y/) and in any dimension. Hence, also in 1D.

Example 2.15 (Distance costs on the line). Suppose that c.x; y/ D jx � yj and that
�; � 2 P.R/ are such that sup spt.�/ < inf spt.�/. In this case any transport plan �
is optimal and any transport map is optimal as well. This can be seen by noting that
for every .x; y/ 2 spt.�/ � spt.�/, we have c.x; y/ D y � x; which is again a linear
cost.

Example 2.16 (Book shifting). Consider c.x; y/ D jx � yj, � D 1
2
L 1
Œ0;2�, and � D

1
2
L 1
Œ1;3�. Then Tmon.x/ D xC1 is the monotone transport plan transporting � onto �.

Its cost is M.T/ D ´ jTmon.x/ � xj d� D 1. Yet, the transport map T given by

T.x/ D
(

x C 2 if x � 1

x if x > 1
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m

Tmon

ν

m

T
ν

m ν

T

Tmon

Fig. 2.1 The transport maps in the book-shifting example

also satisfies T#� D � and
´ jT.x/ � xj d� D 1

2

´ 1
0
2 dx D 1 and is optimal as well

(Figure 2.1).

Starting from the fact that the optimal transport for all these costs is the monotone
one, we can express the cost for sending a given measure � onto another measure �
in terms of their cumulative distribution functions F� and F� .

Proposition 2.17. Given �; � 2 P.R/, consider the cost c.x; y/ D h.x � y/, where
h is a convex function. Then, we have

Tc.�; �/ D
ˆ 1

0

h.FŒ�1�� � FŒ�1�� /dL 1:

If h.z/ D jzj, then this also coincides with
´
R

jF�.t/ � F�.t/j dt.

Proof. The first part of the statement is just a consequence of the optimality of �mon

(Theorem 2.9).
The particular case of h.z/ D jzj may be treated by geometric consideration:

indeed, the integral
´ 1
0

ˇ̌
.F�/�1 � .F�/�1

ˇ̌
equals the area of the part of the strip

Œ0; 1� � R bounded by the graphs of .F�/�1 and .F�/�1. In order to pass from the
inverse functions to the direct ones, it is enough to turn the head and look at the
same strip from the variable t instead of x. But, if we want to prove it through
computations, we have

ˆ
jFŒ�1�� .x/ � FŒ�1�� .x/j dx

D L 2
�f.x; t/ 2 Œ0; 1� � R W FŒ�1�� .x/� t<FŒ�1�� .x/ or FŒ�1�� .x/� t<FŒ�1�� .x/g	

D L 2
�f.x; t/ 2 Œ0; 1� � R W FŒ�1�� .x/� t<FŒ�1�� .x/g	

C L 2
�f.x; t/ 2 Œ0; 1� � R W FŒ�1�� .x/� t<FŒ�1�� .x/g	:
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Then, by Fubini’s theorem, we have

L 2
�f.x; t/ 2 Œ0; 1� � R W FŒ�1�� .x/� t<FŒ�1�� .x/g	

D
ˆ

R

L 1
�fx 2 Œ0; 1� W x � F�.t/ and F�.t/ < xg	dt

D
ˆ

R

L 1
�fx 2 Œ0; 1� W F�.t/ < x � F�.t/g

	
dt:

Analogously,

L 2
�f.x; t/ 2 Œ0; 1� � R W FŒ�1�� .x/� t<FŒ�1�� .x/g	

D
ˆ

R

L 1
�fx 2 Œ0; 1� W F�.t/ < x � F�.t/g

	
dt;

and, summing up,

L 2
�f.x; t/ 2 Œ0; 1� � R W FŒ�1�� .x/� t<FŒ�1�� .x/ or FŒ�1�� .x/� t<FŒ�1�� .x/g	

D
ˆ

R

L 1
�fx 2 Œ0; 1� W F�.t/<x�F�.t/ or F�.t/<x�F�.t/g

	
dt

D
ˆ

R

jF�.t/ � F�.t/jdt:

This concludes the proof (Figure 2.2). ut

2.3 The Knothe transport

The Knothe transport, also known as Knothe-Rosenblatt rearrangement, is a special
transport map, which has a priori nothing to do with optimal transport, that may be
associated to two given measures �; � 2 P.Rd/. It was independently proposed

Fν Fm

1

Fν Fm

1

Fig. 2.2 The computation of the areas in the last part of Proposition 2.17: the integral of jFŒ�1�� �
FŒ�1�� j corresponds to seeing “horizontally” the graph on the left, while if seen “vertically,” we get
the integral of jF� � F� j
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by Rosenblatt [264] for statistical purposes and by Knothe [203] for applications to
geometric inequalities (see also Section 2.5.3). The main interesting point of such a
map is its computational simplicity. We will explain the principle of this transport
map in the simpler case where the two measures are absolutely continuous: � D
f .x/ dx, � D g.y/ dy.

Let us first define the densities Of d and Ogd via

Of d.xd/ D
ˆ

f .t1; t2; : : : ; td�1; xd/ dt1dt2 : : : dtd�1;

Ogd.yd/ D
ˆ

g.s1; s2; : : : ; sd�1; yd/ ds1ds2 : : : dsd�1

as well as, for k < d,

Of k.xk; xkC1; : : : ; xd/ D
ˆ

f .t1; : : : ; tk�1; xk; : : : ; xd/ dt1 : : : dtk�1;

Ogk.yk; ykC1; : : : ; yd/ D
ˆ

f .s1; : : : ; sk�1; yk; : : : ; yd/ ds1 : : : dsk�1:

It is easy to check that Of d and Ogd are the densities of .�d/#� and .�d/#�, where
�d W Rd ! R is the projection on the last variable. More generally, Of k and Ogk are the
densities of �k D .�k;d/#� and �k D .�k;d/#�, where �k;d W Rd ! R

d�kC1 is the
map given by the projection onto the variables from k to d:

�k;d.x1; : : : ; xk�1; xk; xkC1; : : : ; xd/ D .xk; xkC1; : : : ; xd/:

Then, we define, for k D 1; : : : ; d�1;

f k.xk; xkC1; : : : ; xd/ D
Of k.xk; xkC1; : : : ; xd/

Of kC1.xkC1; : : : ; xd/
;

gk.yk; ykC1; : : : ; yd/ D Ogk.yk; ykC1; : : : ; yd/

OgkC1.ykC1; : : : ; yd/
:

(Note that all these functions will only be used on the set of points where the
denominator does not vanish.)

The function f k, considered as a function of xk with parameters .xkC1; : : : ; xd/,
can be actually seen as the density of the disintegration of �k according to the vari-
ables .xkC1; : : : ; xd/, and gk is, in the same terms, the density of the disintegration of
�k. We briefly sketch below the main notions about the disintegration of measures.
With this language, the Knothe transport that we are going to define could be defined
even in the case of non-absolutely continuous measures, under some assumptions
on the absence of atoms. Anyway, for the sake of simplicity, we will give most of
the results in the case of absolutely continuous measures.
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Box 2.2. Important notion: Disintegrations of measures

Definition. Consider a measure space X endowed with a Borel measure � and a map f W
X ! Y valued in a topological space Y . We say that a family .�y/y2Y is a disintegration
of � according to f if every �y is a probability measure concentrated on f �1.fyg/, and for
every test function � 2 C.X/, the map y 7! ´

X � d�y is Borel measurable and

ˆ

X
� d� D

ˆ

Y
d�.y/

ˆ

X
� d�y;

where � D f#�.
The disintegration of � is also often written (by abuse of notation) as

� D �y ˝ �.
In the particular case where X D Y �Z and f is the projection on the Y factor, we usually

identify the measures �y, which are “officially” defined as measures on Y � Z concentrated
on fyg � Z, with measures on Z, so that we get

ˆ

Y�Z
�.y; z/ d�.y; z/ D

ˆ

Y
d�.y/

ˆ

Z
�.y; z/ d�y.z/:

The disintegration of a measure � exactly corresponds to the conditional law in prob-
ability. The reader is invited to consult [152] to find proofs about conditional probabilities
and then to translate them into the disintegration language. Indeed, in probability we usually
speak of the conditional law of a random variable X knowing Y D y. This means that the
probability P on the probability space ˝ is disintegrated according to the map Y W ˝ ! E
(where E is the image space of Y) into probabilities Py and that we take the law of X under
Py. The existence and the uniqueness of the disintegration depend on some assumptions on
the spaces, but are true if X D R

d .

In order to define the Knothe rearrangement, let us start from k D d and define the
transport map Td W R ! R as the monotone nondecreasing transport map sending
f d onto gd (these functions being considered as probability densities). We know that
this map is well defined and we know how to compute it in terms of cumulative
distribution functions. We will now define a family of maps Tk W R

d�kC1 ! R,
where the variables of Tk will be .xk; xkC1; : : : ; xd/. The first one is the map Td that
we just defined. For the sake of notations, we also define some maps OTk W Rd�kC1 !
R

d�kC1 given by

OTk.xk; xkC1; : : : ; xd/ D .Tk.xk; xkC1; : : : ; xd/;T
kC1.xkC1; : : : ; xd/; : : : ;T

d.xd//:

Obviously Td and OTd coincide. Now, if we write f k
.xkC1;:::;xd/

and gk
.ykC1;:::;yd/

for

the functions xk 7! f k.xk; xkC1; : : : ; xd/ and yk 7! gk.yk; ykC1; : : : ; yd/ and we
interpret them as densities of probability measures, we can define the map Tk, if
we suppose that we have already defined Tj for j > k, in the following way: take
Tk
.xkC1;:::;xd/

to be the monotone nondecreasing transport map sending f k
.xkC1;:::;xd/

onto

gk
OTkC1.xkC1;:::;xd/

.
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Finally, the Knothe-Rosenblatt rearrangement T is defined by T D OT1.
We want to check that this map T is a transport map from � to �.

Proposition 2.18. The Knothe-Rosenblatt rearrangement map T defined above
satisfies T#� D �.

Proof. We will prove by induction that OTk satisfies

OTk
#�

k D �k (2.4)

(let us recall that �k D .�k;d/#� and �k D .�k;d/#� are the marginals of � and �
onto the last d � k C 1 variables). Equality (2.4) fact is evident by construction for
k D d, and if we get it for k D 1, we have proven T#� D �.

We only need to prove that if the claim is true for a given k C 1, then it will be
true for k. To check equality (2.4), we just need to use test functions 
.yk; : : : ; yd/
and check
ˆ

.Tk.xk; xkC1; : : : ; xd/;T

kC1.xkC1; : : : ; xd/; : : : ;T
d.xd// d� D

ˆ

.yk; : : : ; yd/ d�:

Moreover, by density (see below for Stone-Weierstrass’s theorem), it is enough
to check the equality above on functions 
 which are separable, i.e., of the form

.yk; : : : ; yd/ D �.yk/ .ykC1; : : : ; yd/. To ease the notation, for fixed k, we will
denote by Nx the vector �kC1;d.x/ and Ny D �kC1;d.y/. In this case we should check

ˆ
 ı OTkC1

�ˆ
� ı Tk f k dxk

�
Of kC1 dNx D

ˆ
 .Ny/

�ˆ
�.yk/ gk dyk

�
OgkC1 dNy:

In order to get this equality, we just need to use the definition of Tk, so that we get,
for every x,

ˆ
� ı Tk f k dxk D

ˆ
�.yk/ gk

OTkC1.Nx/.yk/ dyk:

If we define G W Rd�k ! R the function given by G.Ny/ D ´
�.yk/ gk

Ny.yk/ dyk, we
have now

ˆ
 ı OTkC1

�ˆ
� ı Tk f k dxk

�
Of kC1 dNx D

ˆ
 ı OTkC1 G ı OTkC1 Of kC1 dNx:

By taking the image measure of Of kC1 under OTkC1, the last expression is equal to´
 .Ny/G.Ny/OgkC1.Ny/ dNy, which is in turn equal to

ˆ
 .Ny/

�ˆ
�.yk/ gk

Ny.yk/ dyk

�
OgkC1.Ny/ dNy

and proves the claim. ut
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Box 2.3. Memo: Stone-Weierstrass’s Theorem

Theorem. Suppose that X is a compact space and that E � C.X/ is a subset of the space
of continuous functions on X satisfying

i) constant functions belong to E
ii) E is an algebra, i.e., it is stable by sum and product: f ; g 2 E ) f C g, fg 2 E

iii) E separates the points of X, i.e., for all x ¤ y 2 X, there is f 2 E such that f .x/ ¤ f .y/.

Then E is dense in C.X/ for the uniform convergence (see, for instance, [268]).
This theorem is usually evoked to justify the density of polynomials when X � R

d .
Trigonometric polynomials are also dense for the same reason (and, by the way, this may
be used to prove the L2 convergence of the Fourier series). In product spaces X D Y � Z,
linear combinations of separable functions of the form

P
i 'i.y/ i.z/ are dense because of

this very same theorem.

We just proved that the map T is a transport map between � and �. Moreover,
by construction, should it be a regular map, the Knothe transport T has a triangular
Jacobian matrix with nonnegative entries on its diagonal. Compare this with the
Brenier optimal map for the quadratic cost: its Jacobian matrix is the Hessian matrix
of a convex function, which is symmetric (instead of triangular) and has also positive
eigenvalues. Moreover, we underline that assuming absolute continuity as we did,
all the monotone optimal transports that we use in defining T are invertible, since not
only the source measures are atomless but also the arrival ones are atomless (they
are all absolutely continuous). As a consequence, each map OTk is also invertible.

Remark 2.19. It is interesting to note that, due to its explicit definition, the Knothe
map automatically inherits some regularity properties from the measures � and �.
In general, T has the same regularity as � and � and not better. Indeed, each Tk is
built as a monotone transport, which gives one extra derivative than the regularity of
� and � (see Remark 2.7), but only in the direction of the variable xk. With respect
to the other variables, the explicit formula of monotone transports with cumulative
distribution functions allows us to prove that the dependence on .xkC1; : : : ; xd/ is as
regular as the densities are.

Remark 2.20. It is also interesting to note that the Knothe map defined above is
the (unique) transport map from � to � which is monotone for the lexicographic
order, i.e., the order where x < y is defined in the following way: “there exists
k 2 f1; 2; : : : ; dg such that xj D yj for j > k and xk < yk.”

Remark 2.21. How to define the Knothe transport for � and � which are not abso-
lutely continuous? The construction uses the notion of disintegration of measures
(Box 2.2).

First we define the transport map Td W R ! R as the monotone nondecreasing
transport map sending .�d/#� onto .�d/#�. We need to suppose that .�d/#� has no
atoms. Then, for each k we consider .�k;d/#� and we disintegrate it with respect
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to .�kC1;d/#�, and we do the same for .�k;d/#� with .�kC1;d/#�. We obtain some
families of probabilities on the real line that we can call �k

xkC1;:::;xn
and �k

ykC1;:::;yn
,

respectively. They are measures on the variables xk and yk and they replace the
densities f k.�; xkC1; : : : ; xd/ and gk.�; ykC1; : : : ; yd/. Again, we need to suppose that
each measure �k

xkC1;:::;xn
is atomless. The maps OTk.xk; xkC1; : : : ; xd/ are defined as

before, using 1D monotone increasing maps.

2.4 Knothe transport as a limit of quadratic
optimal transports

Let us slightly modify the quadratic cost that we discussed in Section 1.3.1 and
replace it with the weighted quadratic cost

c".x; y/ WD
dX

iD1
�i."/.xi � yi/

2

where the �i."/s are positive scalars depending on a parameter " > 0. If � is
absolutely continuous with respect to the Lebesgue measure, the corresponding
optimal transportation problem admits a unique solution T". For simplicity, in this
section we will only consider the case where the supports of � and � are compact
(but everything could be adapted to the case

´ jxj2d�; ´ jyj2d� < C1).
When in addition, for all k 2 f1; : : : ; d�1g, �k."/=�kC1."/ ! 0 as " ! 0, it is

natural to expect the convergence of T" to the Knothe transport T. This convergence
result was conjectured by Y. Brenier as a very natural one.

We will show it under the absolute continuity assumption of the previous section.
On the other hand, [114] proves the same result under a slightly weaker assumption,
namely, the absence of atoms in all the disintegrated measures. The curios point
is that absence of atoms is also needed on the target measure � and that a
counterexample to the convergence result exists if it is not satisfied.

Example 2.22 (Explicit computations for Gaussians). To illustrate the problem in
a particular case where explicit solutions are available, take d D 2, and � and �

two Gaussian measures where � D N .0; I/ and � D N

�
0;

�
a b
b c

��
(with ac > b2,

a > 0; the notation N.a;A/ stands for the Gaussian density with covariance matrix
A, centered at a). Take �1 ."/ D " and �2 ."/ D 1. Then it can be verified (see also
Ex(11)) that T" is linear and that its matrix in the canonical basis of R2 is

T" D 1p
a"2 C c C 2"

p
ac � b2

 
a"C p

ac � b2 b
b" c C "

p
ac � b2

!
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which converges as " ! 0 to T D
�p

a � b2=c b=
p

c
0

p
c

�
, i.e., the matrix of the

Knothe transport from � to �.

We directly state our first result, whose proof, in the spirit of � -convergence
developments (see [77] and Box 4.6), will require several steps.

Theorem 2.23. Let � and � be two absolutely continuous probability measures on
R

d with compact supports and �" 2 ˘.�; �/ be an optimal transport plan for the
costs c".x; y/ D Pd

iD1 �i."/.xi � yi/
2, for some weights �k."/ > 0. Suppose that for

all k 2 f1; : : : ; d�1g, �k."/=�kC1."/ ! 0 as " ! 0. Let T be the Knothe-Rosenblatt
map between � and � and �K 2 P.Rd � R

d/ the associated transport plan (i.e.,
�K WD .id;T/#�). Then �" * �K as " ! 0.

Moreover, the plans �" are induced by transport maps T", and these maps
converge to T in L2.�/ as " ! 0.

The proof will roughly stick to the following strategy. We will take a limit
point of �" and show that it shares the same .xd; yd/ marginal as �K . Then, we
will disintegrate with respect to .xd; yd/ and prove that the conditional .xd�1; yd�1/-
marginals coincide. We will end the proof by iterating this argument.

Proof. Without loss of generality, we assume �d."/ D 1 and �i."/=�iC1."/ ! 0.
Take the optimal plans �" and suppose (which is possible, up to subsequences)

�" * � . We want to prove � D �K . From the uniqueness of the Knothe transport,
the convergence will hold on the full sequence and not only on subsequences.

By comparing �" to �K and using optimality, we first get

ˆ
c" d�" �

ˆ
c" d�K (2.5)

and, passing to the limit as " ! 0, since c" converges uniformly to c.d/.x; y/ D
.xd � yd/

2 (we will use the general notation c.k/.x; y/ D jxk � ykj2), we get

ˆ
c.d/ d� �

ˆ
c.d/ d�K :

Yet, the function c.d/ only depends on the variables xd and yd and this shows that
the measure .�x;y

d /#� gets a result at least as good as .�x;y
d /#�K with respect to

the quadratic cost (�x;y
d being the projection onto the last coordinates of x and y,

i.e., �x;y
d .x; y/ D .xd; yd/). Yet, the measure �K has been chosen on purpose to be

optimal from �d to �d for this cost, and this optimal transport plan is unique. Then
.�

x;y
d /#� D .�

x;y
d /#�K . Let us call �d this common measure.

We go back to (2.5) and go on by noting that all the measures �" have the same
marginals as �K and hence their (separate) projections onto xd and yd are �d and �d,
respectively. This implies that .�x;y

d /#�" must realize a result which is not better than
.�

x;y
d /#�K as far as the 1D quadratic cost is concerned. Consequently, we have



74 2 One-dimensional issues

ˆ
jxd � ydj2d.�x;y

d /#�K.xd; yd/C
d�1X
iD1

�i."/

ˆ
.xi � yi/

2 d�"

�
ˆ

c" d�" �
ˆ

c" d�K

D
ˆ

jxd � ydj2d.�x;y
d /#�K.xd; yd/C

d�1X
iD1

�i."/

ˆ
.xi � yi/

2 d�K ;

which implies, by simplifying the common term, dividing by �d�1."/, and passing
to the limit,

ˆ
c.d�1/ d� �

ˆ
c.d�1/ d�K : (2.6)

We can note that both integrals depend on the variables xd�1 and yd�1 only. Anyway,
we can project onto the variables .xd�1; xd/ and .yd�1; yd/ (obtaining measures
.�

x;y
d�1;d/#� and .�x;y

d�1;d/#�K) so that we disintegrate with respect to the measure �d.
We have

ˆ
d�d.xd; yd/

ˆ
jxd�1 � yd�1j2 d�d�1

.xd ;yd/
.xd�1; yd�1/

�
ˆ

d�d.xd; yd/

ˆ
jxd�1 � yd�1j2 d�d�1

.xd ;yd/;K
.xd�1; yd�1/: (2.7)

We want to prove that the measures �d�1
.xd ;yd/

share the same marginals on xd�1 and yd�1
of the corresponding �d�1

.xd ;yd/;K
. Should this be the case, their quadratic cost would be

not better than the corresponding cost of �d�1
.xd ;yd/;K

(because the Knothe measure has
been chosen exactly with the intention of being quadratically optimal on .xd�1; yd�1/
once xd and yd are fixed). Yet, (2.7) shows that, on average, the result given by those
measures is not worse than the results of the optimal ones. Thus, the two results
coincide for almost any pair .xd; yd/, and by uniqueness of the optimal transports
in the 1D case, we get �d�1

.xd ;yd/
D �d�1

.xd ;yd/;K
. To let this proof work, it is sufficient to

prove that the marginals of the two measures coincide for �d-a.e. pair .xd; yd/. For
fixed .xd; yd/, we would like to prove, for any �,

ˆ
�.xd�1/ d�d�1

.xd ;yd/
D

ˆ
�.xd�1/ d�d�1

.xd ;yd/;K

(and to prove an analogous equality for functions of yd�1). Since we want to prove it
for a.e. pair .xd; yd/, it is sufficient to prove this equality:
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ˆ
d�d.xd; yd/ .xd; yd/

ˆ
�.xd�1/ d�d�1

.xd ;yd/

D
ˆ

d�d.xd; yd/ .xd; yd/

ˆ
�.xd�1/ d�d�1

.xd ;yd/;K

for any � and any  . This means proving

ˆ
 .xd; yd/�.xd�1/ d�d�1 D

ˆ
 .xd; yd/�.xd�1/ d�d�1

K ;

which is not trivial. As far as now, we only know that the two measures �d�1 and
�d�1

K have the same marginals with respect to the pairs .xd�1; xd/, .yd�1; yd/ (since
they have the same projections onto x and onto y) and .xd; yd/ (since we just proved
it). But here there is a function of the three variables .xd�1; xd; yd/. Yet, we know
that the measure �d is concentrated on the set yd D Td.xd/ for a certain map Td

(here we use that the optimal plan is indeed a map), and this allows us to replace
the expression of yd, thus getting rid of one variable. This proves that the function
 .xd; yd/�.xd�1/ is actually a function of .xd�1; xd/ only and that equality holds when
passing from � to �K . The same can be performed on functions .xd; yd/�.yd�1/, but
we have in this case to ensure that we can replace xd with a function of yd, i.e., that
we can invert Td. This is possible thanks to the absolute continuity of �d, since
Td is the optimal transport from �d to �d, but an optimal transport exists in the
other direction as well and it gives the same optimal plan (thanks to uniqueness).
These facts prove that the measures �d�1

.xd ;yd/
and �d�1

.xd ;yd/;K
have the same marginals

and hence, since they are both optimal, they coincide for a.e. pair .xd; yd/. This
implies .�x;y

d�1;d/#� D .�
x;y
d�1;d/#�K , and we will call this common measure �d�1.

In the case d D 2, the proof would be finished. Now, it is possible to go on by
induction in the following way: we prove, by induction on N, that the statement of
the theorem is true if d � N and that, whatever the dimension is, we have .�x;y

k;d/#� D
.�

x;y
k;d/#�K (i.e., that we have convergence in what concerns the components from the

kth to the dth) for every k � d � .N � 1/. Both facts are proven for N D 2.
Suppose the result proven for a certain value of N. Take d > N and

k D d � .N � 1/. We want to prove .�x;y
k�1;d/#� D .�

x;y
k�1;d/#�K . If we can do it,

we are done, since this also proves that the result is true in dimension d D N C 1

(since in this case we have k D 2 and with our extra step we conclude the proof).
Write x D .x�; xC/ and y D .y�; yC/ with x�; y� 2 R

k�1 and xC; yC 2 R
d�kC1

(decomposing into the components up to k�1 and after k). Then, define a competitor
�"K in the following way: �"K is a measure on R

d � R
d with the following marginals:

.�x�;xC
/#�

"
K D �; .�y�;yC

/#�
"
K D �; .�xC;yC

/#�
"
K D �";k;

where �";k is the measure which optimizes the transport cost
Pd

iDk �i."/c.i/ between
the marginals �k D .�xC

/#� and �k D .�yC
/#�. Thanks to the recursive structure

of the proof, we know that �";k converges to .�xC;yC
/#�K (since we suppose the

result to be true in dimension N).
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We need to specify how to build the measure �"K (which is likely not to be
unique). One easy way to construct such a measure is the following: disintegrate �
and � according to �xC

and �yC
, respectively, thus getting two family of measures

�xC

and �yC

. Then, for every pair .xC; yC/ pick a transport plan � xC;yC

between
them. The measure � xC;yC ˝�";k satisfies the required properties. Moreover, we will
choose for � xC;yC

the Knothe transport between those two measures. Indeed, for the
sake of this step of the proof, the only important point is that, in what concerns the
.k � 1/th component, we choose for any .xC; yC/ the monotone map from �xC

k�1 WD
.�xk�1 /#�

xC

to �yC

k�1 WD .�yk�1 /#�
yC

, so that
´

c.k�1/ d� xC;yC D Tc.�
xC;
k�1�

yC

k�1/ (in
this last expression Tc denotes the quadratic transport cost on the real line).

With this choice in mind, we write

X
i�h

�i."/

ˆ
jxi � yij2 d�"K C

k�1X
iD1

�i."/

ˆ
.xi � yi/

2 d�"

�
ˆ

c" d�" �
ˆ

c" d�"K

D
X
i�h

�i."/

ˆ
jxi � yij2 d�"K C

k�1X
iD1

�i."/

ˆ
.xi � yi/

2 d�"K ;

and consequently by erasing the common terms and dividing by �k�1."/, we get

ˆ
c.k�1/ d�" �

ˆ
c.k�1/ d�"K D

ˆ
Tc.�

xC;
k�1�

yC

k�1/d�";h:

Then we pass to the limit as " ! 0. The left-hand side of the last inequality tends
to
´

c.k�1/ d� , while the right-hand side converges to

ˆ
Tc.�

xC;
k�1�

yC

k�1/d.�xC;yC
/#�K D

ˆ
c.k�1/ d�K :

This convergence result is justified by the following Corollary 2.24 of Lemma 1.8.
In the end we get

ˆ
c.k�1/ d� �

ˆ
c.k�1/ d�K

and we can go on. This last inequality was obtained thanks to a procedure which
was similar to what we did for getting (2.6), but it required some more work since
�K is not exactly optimal for all the components i � k as it was the case for k D d.

We disintegrate with respect to �x;y
k;d and we act exactly as before: proving that

the marginals of the disintegrations coincide are sufficient to prove equality of the
measures. Here we will use test functions of the form
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 .xh; xkC1; : : : ; xd; yh; ykC1; : : : ; yd/'.xk�1/

and

 .xh; xkC1; : : : ; xd; yh; ykC1; : : : ; yd/'.yk�1/:

The same trick as before, i.e., replacing the variables y with functions of the
variables x, is again possible. To invert the trick and replace x with y, one needs
to invert part of Knothe’s transport. This is possible since, as we noted, our
assumptions implied that all the monotone transports we get are invertible. In the
end we get, as before, � k�1 D � k�1

K . This proves that we can move from step N to
step .N C 1/ in the induction and allows us to conclude.

We have now proven �" * �K . Yet, if all these transport plans come from
transport maps, then .id;T"/#� * .id;T/#� implies T" ! T in L2.�/ (see
Lemma 2.25 below). ut

In the proof we used the following result, which is a corollary of Lemma 1.8.

Corollary 2.24. If� and � are two probabilities over Rd D R
k�Rd�k with compact

support which disintegrate as � D �C ˝ �xC

and � D �C ˝ �yC

and c is a
continuous cost, then the functional

� 7!
ˆ

Tc.�
xC

; �yC

/ d�.xC; yC/

is continuous over the transport plans between �C and �C.

Proof. It is sufficient to apply Lemma 1.8 to the following setting: X D Y D R
k,

QX D QY D P.˝/, where˝ � R
d�k is such that spt.�/; spt.�/ � R

k �˝. The space
P.˝/ is endowed with any distance metrizing weak convergence and making this
space a separable metric space (see, for instance, Chapter 5 for a choice of distances
with this property, or build it with standard methods for the weak convergence in the
unit ball of a Banach space). For the cost function which appears in the statement of
Lemma 1.8, we take .a; b/ 7! Tc.a; b/ and a.xC/ WD �xC

, b.yC/ WD �yC

. Since this
quantity is bounded by max jcj (as we are on compact supports), there is no difficulty
in choosing two bounded functions f ; g so that Tc.a; b/ � f .a/C g.b/. ut

Another easy lemma that we needed is the following.

Lemma 2.25. Given � 2 P.X/ and �n 2 P.˝/, where ˝ � R
d is a compact set,

suppose that �n WD �Tn 2 ˘.�; �n/ is such that �n ! � D �T. Then Tn ! T in
L2.X; �/.

Proof. Since the functions Tn are valued in˝, they are equibounded and they admit
a weak limit in L2.X; �/ up to subsequences. Let us call S this limit. To prove S D T,
take a continuous function � 2 C.XIRd/ and consider the limit of
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ˆ
.�.x/ � S.x//d�.x/ D lim

n

ˆ
.�.x/ � Tn.x//d�.x/ D lim

n

ˆ
.�.x/ � y/ d�n.x; y/

D
ˆ
.�.x/ � y/ d�T.x; y/ D

ˆ
.�.x/ � T.x//d�.x/:

This proves S D T.
In order to prove strong convergence, just consider

ˆ
jTnj2 d� D

ˆ
jyj2 d�n !

ˆ
jyj2 d� D

ˆ
jTj2 d�:

This proves that we do not only have weak convergence in L2 but also convergence
of the L2 norm. This implies strong convergence, as usual in Hilbert spaces. ut
Note that the above proof also works in other spaces Lp and that the boundedness
assumption (i.e., compact supports) could be replaced by suitable integrability
bounds.

Let us remark here that if instead of considering the quadratic cost c", one
considers the more general separable cost

c".x; y/ WD
dX

iD1
�i."/ci.xi � yi/

where each ci is a smooth strictly convex function (with suitable growth), then the
previous convergence proof carries over.

Example 2.26 (A counterexample when the measures have atoms). We now show
that interestingly, the absolute continuity hypothesis in Theorem 2.23 is necessary
not only for � but also for � (see Remark 2.21 to check the definition of the Knothe
map in such a case). We propose a very simple example in R

2 where � is absolutely
continuous with respect to the Lebesgue measure but � is not, and we show that
the conclusion of the theorem fails. On the square ˝ WD Œ�1; 1� � Œ�1; 1�, define
� D 1

2
1E � L 2, where E D f.x1; x2/ 2 Œ�1; 1� � Œ�1; 1� W x1x2 < 0g, so that the

measure � is uniformly spread on the upper left and the lower right quadrants, and
� D 1

2
H 1

jS , S being the segment Œ�1; 1� � f0g.
The Knothe-Rosenblatt map is easily computed as

T.x/ WD .2x1 C sign.x2//; 0/

(indeed, the measure �2 is a Dirac mass at 0; hence T2.x/ D 0). The solution of
any transportation problem with cost jx1 � y1j2 C "jx2 � y2j2 is T0.x/ WD .x1; 0/ (no
transport may do better than this one, which projects on the support of �). Therefore,
in this example the optimal transportation maps fail to tend to the Knothe-Rosenblatt
map. The reason is the atom in the measure �2 D ı0 (Figure 2.3).
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m ν

Fig. 2.3 The measures � and � in the counterexample

2.5 Discussion

2.5.1 Histogram equalization

A very typical problem where we encounter monotone transport maps in image
processing is histogram equalization. The setting is easy to explain: take a black-
and-white digital picture, and consider all possible grey levels; these levels are
numbered from 0 to 255; for each i D 0; : : : ; 255, count how many pixels have
exactly such a grey level and make a histogram of that. In some situations, it could be
interesting to transform the given picture into a different one, which should represent
again the same subject, but have a different histogram. Why? A typical example is
the following: you have two pictures A and B which are supposed to represent the
same object, with minor modifications (something has moved), at different instants
of time; you want to compare them, but B happens to be much darker than A (this
means that the histogram of B is much more concentrated on the right-hand part of
the graph than that of A). Then, before comparing them, one prefers to transform
B into a new picture B’, where the darkness level of B’ is comparable to that of A,
i.e., the histogram of B’ is equal to that of A. Similarly, one can also consider the
case where A and B represent two parts of a same object, and the two pictures must
be merged, but it could happen that the two partial pictures have been taken from
different angles, and the light is different.

In some other cases, we have only one picture, but its histogram is too much
concentrated around one peak. This means that pixels have different grey levels, but
not so different. In order to see better what is inside the picture, one would like to
enhance the contrast, which corresponds to using a more widespread histogram. In
such a case one fixes a target histogram, for instance, the uniform one, where every
level is used by the same number of pixels. This is the best possible histograms
in the sense that we do not waste information by concentrating too much around a
same grey level.
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In all these cases, we want to perform a transformation which does not act pixel
by pixel, but grey level by grey level: we look for a map T from the set X of grey
levels to itself (all pixels with grey level x will be turned into the grey level T.x/),
and we want to prescribe the histogram of the image after the transformation. This
is the same as saying that we have a measure � on X and we want to impose a
condition of the form T#� D �. Here the important fact is that the space X is a
subset of R, i.e., it is 1D and ordered. The natural condition on T is that it should be
monotone increasing. This condition translates the fact that we do not want to invert
darker and brighter pixels.

Up to the fact that, in this discrete setting (the grey level only takes value in a
finite set of integers), the two measures � and � are atomic (and hence a transport
map could not exist), the situation is exactly the one described in this chapter.
The problem of nonexistence of transport maps could be solved in several ways in
practice: one could introduce some rounding rules or use a transport plan which
corresponds to use different colors on pixels which had the same colors on the
original picture, i.e., splitting the mass.

The situation becomes trickier when we take color images. In this case the space
X of colors becomes 3D and the notion of monotone transport does not make sense
any more. Obviously the quadratic optimal transport (Brenier’s map) could play the
role of a monotone map, since it is monotone in the vector sense .T.x/� T.y// � .x �
y/ � 0. On the other hand, it is expensive to compute (we will see in Chapter 6 some
numerical methods to do it and the associated difficulties) and some of its features
are probably useless for this kind of application in image processing (the fact that it
is a gradient, for instance).

Several solutions are now a matter of current research: looking for transport maps
which are more regular but not so far from the optimal one [163], or producing
maps defined from the composition/superposition of several 1D bricks, so that
they keep some monotonicity properties and are easier to compute (see [252] and
Section 2.5.2).

Also, in some cases all the components of the color space are not equally
important, and one could decide to look only at one or two components or to
treat them separately. In this case, colors are often described by different sets of
parameters.

See, for instance, [140], where some applications of a 1D analysis on the circle
are proposed for hue component of the color space (with the HSL decomposition
into hue, saturation, and lightness).

The same space of colors can also be written as the combination of a 1D
information (the luma signal, corresponding to a weighted average of the three
components R, G, and B and standing for the brightness of the image) and of a
2D information (called chrominance or chroma, standing for the color information).
In Figure 2.4 we see an application of optimal transport in 1D and 2D to the color
transfer between two streets with very different colors.

For a wider discussion about 1D histogram equalization and 3D color transfer in
connection with optimal transport, we refer to [163] and [255] and the references
therein (in particular some older papers such as [242, 259]).
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Fig. 2.4 First column: the images of a souq arcade and of a narrow Western street with tags on the
walls, in different lights. Second column: the two images, each with the colors of the other. Third
column: their chrominance histograms (in the CIE-lab representation). The transfer has been done
independently on the 1D feature of the luma on the 2D feature of the chroma. Only the chroma
histograms are represented. Pictures kindly provided by G. Peyré

2.5.2 Efficient monotone maps from 1D constructions

For many applications, in particular in image processing (as in the previous
Section 2.5.1), people tried to build “good” transport maps, which are not neces-
sarily optimal, but satisfy at least two criteria: they must be computationally easy to
find, and they must have some “monotonicity” properties. A good idea to cope with
these two requirements is to build these maps by using 1D bricks.

A very first idea that one could have is to use the Knothe map. Yet, the main
drawback of such a choice is that it is highly anisotropic. The choice of the
orthonormal basis is crucial, and the map gives very different roles to the different
axes.

A different idea was contained in [252], where it is proposed the so-called
Iterative Distribution Transfer algorithm: a source measure � is given, together
with a target measure �; starting from �0 D �, the authors build recursively a
sequence of maps Tn and set �nC1 D .Tn/#�n. The sequence is built so that �n

should converge to �, which means that, for large n, the map Tn ı Tn�1 ı : : :T1 ı T0
is a transport map from � to a measure �n very close to �.

In the construction of [252], the maps Tn are obtained in the following way: at
every step n an orthonormal basis Bn is randomly selected; then, we define Tj

n as
the monotone transport map from .�j/#�n to .�j/#�, where �j is the projection on
the jth coordinate of the selected basis; the map Tn is defined, in the corresponding
basis, as Tn.x/ D .T1n.x1/; : : : ;T

d
n.xd//.
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There are two ideas behind this choice: first, all the maps Tn are easy to compute,
composed of finitely many 1D monotone maps, and have monotonicity properties;
second, if the bases Bn are chosen in a suitable diversified way, then the only
possibility for the algorithm to stop on a constant measure �n is that �n and �
have the same projections on all directions. This implies �n D �, thanks to the
considerations on Radon and X-ray transforms of Box 2.4, and obviously suggests
that the limit of �n should be �.

Yet, this convergence is observed empirically but proven in [252] only if �
is Gaussian and the bases Bn are i.i.d. random variable, uniform on the set of
orthonormal bases. See also Chapter 5 in [65] for a revised and more general proof.

Box 2.4. Good to know!: The Radon or X-ray transform

Definition. Given a measure � on R
d , we define the Radon transform R� of � as the

family of measures .�e/, parametrized by e 2 S
d�1 and defined as .�e/#�, where �e.x/ WD

x � e. When � is absolutely continuous, these measures are also absolutely continuous, and
we can define R� as a function over Sd�1 � R, through R�.e; t/ D fe.t/ and �e D fe.t/dt.
In dimension d > 2, one could consider projections onto hyperplanes instead of lines (note
that projecting onto all .d�1/-dimensional hyperplanes means considering the integral of
the measure (or of its density) on arbitrary 1D lines). This transformation is called X-ray
transform, but Radon and X-ray transforms coincide for d D 2. See, for instance, [192] for
more details and applications.

Proposition. Given two measures �; � on R
d , if their Radon transforms coincide, then

� D �.

Proof. Note that
´
Rd ei��x d� D ´

R
eitj�j d��=j�j.t/dt. This means that the Radon

transform uniquely determines the Fourier transform of a measure, so that R� D R� )
O� D O�. The equality � D � follows from standard results about the Fourier transform.

The Radon and the X-ray transforms are very well-known objects in applications such
as tomography. Computer tomography devices in medical images are exactly based on the
inversion of the X-ray transform.

Another interesting idea on how to build similar transport maps is due to
M. Bernot. Many features are in common with the approach of [252].

Consider two measures �; � 2 P.Rd/ and project them onto any 1D direction.
For every e 2 S

d�1 (the unit sphere of Rd), we take the map �e W Rd ! R given by
�e.x/ D x � e and look at the image measures .�e/#� and .�e/#�. Again, they are
measures on the real line, and we call Te W R ! R the monotone optimal transport
between them. The idea is that, as far as the direction e is concerned, every point x
of Rd should be displaced of a vector Se.x/ WD .Te.�e.x//��e.x//e. To do a global
displacement, consider S.x/ D ffl

Sd�1 Se.x/ dH d�1.e/, where H d�1 is the uniform
measure on the sphere.

Again, there is no reason to guarantee that id C S is a transport map from �

to �. But if one fixes a small time step � > 0 and uses a displacement �S getting
a measure �1 D .id C �S/#�, then it is possible to iterate the construction, as it is
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Fig. 2.5 Optimal transport between a finite number of points on an annulus and on a duck.
Colors represent the assignment of points in the annulus to points on the duck. Middle, 1D-sliced
assignment; right, optimal map for the quadratic cost. The two results are very similar (but one can
find few points with different colors, which means a slightly different assignment). Picture taken
from [256] with permission

done in [252]. Only the definition of the transport map Tn is different. Again, one
expects the sequence of measures �n that are built in this way to converge to �,
but the problem is not really solved. From the empirical point of view, the transport
maps that are obtained in this way are quite satisfactory and have been tested in
particular in the discrete case (a finite number of Dirac masses with equal mass, i.e.,
the so-called assignment problem). An example is given in Figure 2.5, where there
is a comparison between the optimal transport obtained via linear programming
methods (see Section 6.4.1) and the assignment obtained via these 1D-sliced ideas
by M. Bernot.

Moreover, we will see in Section 5.5 that one can also build an interesting
distance on the set of probabilities with this kind of idea (taking the average of a
distance defined direction by direction: it will be much easier to compute than the
corresponding multidimensional distance). In Section 8.4 we will also show that the
iterative algorithm above corresponds indeed to a gradient flow evolution.

2.5.3 Isoperimetric inequality via Knothe or Brenier maps

For the last discussion section of this chapter, we review one of the most spectacular
applications of optimal transport, i.e., its role in geometric inequalities. We will see
here how the isoperimetric inequality can be proven either by using the optimal
(Brenier) map or even the Knothe map.

It is interesting to learn that it was indeed one of the first motivations for the
use of Knothe transport to deal with geometric inequalities (see [203]). However,
the short proof of the isoperimetric inequality that we see here was first found by
Gromov (see the appendix in [236]), while the original goal of Knothe in [203] was
to establish other inequalities concerning convex sets.
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The isoperimetric inequality states that every set E has a larger perimeter than
the ball B with the same volume jBj D jEj. Thanks to the scaling properties of the
volume and the perimeter, it is possible to write this fact in the following way:

Per.E/ � d!1=d
d jEj1�1=d;

where !d is the volume of the unit ball in R
d.

As usual in these discussion sections, we will not give full details on the ideas
that we mention, and we will be quite sloppy concerning regularity. Anyway, think
that E is a smooth domain in R

d. By scaling, we can also suppose that E has the
same volume of the unit ball B D B.0; 1/.

The idea to prove this result is the following: consider the densities � D LE and
� D LB, and use the Knothe transport between these densities, denoted by T. Due
to the considerations on the Jacobian matrix of T, it has only positive eigenvalues
and it satisfies the condition

det.DT/ D jBj
jEj D 1

(with no absolute value at the determinant). Hence, we can write

!d D jBj D jEj D
ˆ

E
.det.DT//

1
d � 1

d

ˆ

E
r � T D 1

d

ˆ

@E
T � n � 1

d
Per.E/; (2.8)

where the inequalities are obtained thanks to the arithmetic-geometric inequality
1
d

P
i �i � .�1 : : : �d/

1
d applied to the eigenvalues of DT (which gives an inequality

between the determinant and the trace, i.e., the divergence of T) and to the fact that
T is valued in B, whence T � n � 1. This shows Per.E/ � d!d D Per.B/. Note

E B

T

that we only used the fact that the Jacobian matrix of T has positive eigenvalues and
that it transports one measure onto the other. These properties are also satisfied by
the Brenier map; simply this map was not known at the time this proof was first
performed.

The same proof can also be used to prove the uniqueness of the optimal sets (i.e.,
if a set E has the same volume of the unit ball, and is such that Per.E/ D d!d, then
it is a unit ball, up to negligible sets).
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The use of the Brenier map strongly simplifies the study of the equality
cases. Suppose indeed to have equality in the above inequalities: this implies the
equality .det.DT//

1
d D .r � T/=d a.e., and from the cases of equality in the

arithmetic-geometric inequality, we get that the eigenvalues of DT should all be
equal. Thanks to the condition on the determinant, they are equal to 1. If the matrix
is known to be symmetric (which is the case for Brenier’s map, but not for Knothe’s
one), then we get DT D I and T.x/ D x C x0. Since T would be a translation, then
we conclude E D B, up to translations.

It is slightly harder for the Knothe transport, since DT is not symmetric. Yet, if
all the eigenvalues are 1, one deduces that Td (the last component) is a translation.
If we suppose from the beginning that (up to a fixed translation) E and B share the
same barycenter, then this translation is the identity. This means .�d/#� D .�d/#�.
This is not yet enough to get � D �, and hence E D B, unless one uses the fact
that the Knothe transport is not isotropic (i.e., its definition depends on the choice
of the axes) and that the directions of the axes are arbitrary. Hence, if E is a set
giving equality in the isoperimetric inequality, then its projections onto any direction
coincide with those of the ball. This implies E � B and, by equality of the volumes,
E D B (the argument may also be done through the measures and the notion of
Radon transform, since .�d/#� D .�d/#� for arbitrary direction of the dth axis
implies � D �).

We finish the section by stressing that if the isoperimetric inequality can
obviously be proven in many other ways, one recent advanced refinement of it (i.e.,
the quantitative version of the anisotropic perimetric inequality, where the definition
of perimeter is modified, and the optimal set is no more the ball but another convex
set, unit ball of another norm) was only proven with the optimal exponent via
optimal transport techniques (see [167] and [276] for a short review).



Chapter 3
L1 and L1 theory

Chapter 1 gave, in the framework of the general theory of optimal transportation
based on duality methods, an existence result for the optimal transport map when
the cost is of the form c.x; y/ D h.x � y/ and h is strictly convex. In particular using
c.x; y/ D jx � yjp, this applies to the minimization problems

min
˚jjT � idjjLp.�/ W T#� D �



;

(expressed in Kantorovich terms as min
˚jjy � xjjLp.�/ W � 2 ˘.�; �/
), for p 2

�1;C1Œ. We look in this chapter at the two limit cases p D 1 and p D 1, which
require additional techniques.

Then, the discussion section will go into two different directions: on the one
hand, the L1 and L1 cases introduced and motivated the study of convex costs
which could be non-strictly convex or infinite valued somewhere, and the last
developments on this topic will be debated in Section 3.3.1; on the other hand,
one could wonder what is the situation for 0 < p < 1 and more generally for costs
which are concave increasing functions of the distance, which will be the subject of
Section 3.3.2.

3.1 The Monge case, with cost jx � yj

This section will prove that, if �; � 2 P.˝/, where ˝ � R
d is a compact domain,

and � � L d, then there exists an optimal transport map T for the cost jx � yj (the
Euclidean distance in R

d). The proof that we present is essentially due to Ambrosio
[8], as a modification from that of Sudakov, [290]. In the introduction, we gave
references for the other alternative proofs of the existence in this.
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3.1.1 Duality for distance costs

Let us spend some words on the case where the cost c.x; y/ is actually a distance
(thus satisfying the triangle inequality, vanishing if x D y. . . ). Since the cost is
symmetric, we will avoid the distinction between the Nc- and the c-transforms.

Proposition 3.1. If c W X � X ! R is a distance, then a function u W X ! R is
c-concave if and only if it is Lipschitz continuous with Lipschitz constant less than
1 w.r.t. the distance c. We will denote by Lip1 the set of these functions. Moreover,
for every u 2 Lip1, we have uc D �u.

Proof. First take a c-concave function u. It can be written as

u.x/ D 
c.x/ D inf
y

c.x; y/ � 
.y/

for some function 
 W X ! R [ f�1g. One can ignore the points y such that

.y/ D �1 and, for the others, note that x 7! c.x; y/ � 
.y/ is a Lip1 function,
since x 7! c.x; y/ is Lip1 as a consequence of the triangle inequality. Hence, u 2
Lip1 since the infimum of a family of Lipschitz continuous functions with the same
constant shares the same modulus of continuity.

Take now a function u 2 Lip1. We claim that one can write

u.x/ D inf
y

c.x; y/C u.y/:

Actually, it is clear that the infimum at the r.h.s. is not larger than u.x/, since one can
always use y D x. On the other hand, u 2 Lip1 implies u.x/ � u.y/ � c.x; y/, i.e.,
u.x/ � u.y/ C c.x; y/ for every y, and hence the infimum is not smaller than u.x/.
This expression shows that u D .�u/c and that u is c-concave.

Applying this last formula to �u, which is also Lip1, we get uc D �u and the last
part of the claim follows. ut

As a consequence, the duality formula, in the case of a distance cost function,
gives

min

�ˆ
X�X

c.x; y/ d� W � 2 ˘.�; �/
�

D max

�ˆ
X

u d.� � �/ W u 2 Lip1

�
:

(3.1)

This also implies a useful property concerning the transport cost Tc when c is
a distance, namely, the fact that it satisfies the triangle inequality. We will see it
again in Chapter 5, where transport costs Tc for c.x; y/ D jx � yjp are used to define
distances over P.˝/. We want to stress it here since we will need it later on in this
chapter.

Corollary 3.2. If c W X � X ! R is a distance, given �; �; % 2 P.X/, we have

Tc.�; �/ � Tc.�; %/C Tc.%; �/:
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Proof. Take an arbitrary function u 2 Lip1 and write

ˆ
u d.� � �/ D

ˆ
u d.� � %/C

ˆ
u d.% � �/ � Tc.�; %/C Tc.%; �/:

The result follows by taking the supremum in u. ut
We also note another useful property, typical of distances.

Corollary 3.3. If c W X �X ! R is a distance and �; � are such that Tc.�; �/ D 0;

then � D �.

Proof. Many proofs can be given of this simple fact. For instance, the duality
formula gives

´
u d.� � �/ D 0 for every u 2 Lip1, which is enough to guarantee

� D �. Otherwise, one can simply note that Tc.�; �/ D 0 implies the existence of
� 2 ˘.�; �/ such that

´
c d� D 0, i.e., c.x; y/ D 0 � -a.e. Since c is a distance, this

means x D y � -a.e., which implies
´
� d� D ´

�.x/ d� D ´
�.y/ d� D ´

� d� for
every test function �, and hence, � D �. ut

3.1.2 Secondary variational problem

As we already saw in the book-shifting example 2.15, the optimal � for a distance
cost like jx � yj in R is not unique in general. We want now to select a special
optimizer � , so as to be able to prove that it is induced by a transport map. For
simplicity, as we will use very soon some Euclidean features of the problem, in
connection with the quadratic cost jx�yj2, we switch back to a concrete presentation
in a domain ˝ of the Euclidian space R

d. In particular, we will not use general
distances, and the norm will only be the Euclidean norm.

Let us call O.�; �/ the set of optimal transport plans for the cost jx � yj. To fix
notation, let us denote by Kp the functional associating to � 2 P.˝ � ˝/, the
quantity

´ jx � yjp d� , and mp its minimal value on ˘.�; �/. In this language

O.�; �/ D argmin�2˘.�;�/ K1.�/ D f� 2 ˘.�; �/ W K1.�/ � m1g:

Note that O.�; �/ is a closed subset (w.r.t. the weak convergence of measures) of
˘.�; �/, which is compact. This is a general fact whenever we minimize a lower
semi-continuous functional of � .

From now on, we fix a Kantorovich potential u for the transport between � and
� with cost c.x; y/ D jx � yj, and we will use it as a tool to check optimality. Indeed,
we have

� 2 O.�; �/ , spt.�/ � f.x; y/ W u.x/ � u.y/ D jx � yjg: (3.2)
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This is true because optimality implies
´
.u.x/ � u.y// d� D ´ jx � yj d� and the

global inequality u.x/�u.y/ � jx�yj gives equality � -a.e. All these functions being
continuous, the equality finally holds on the whole support. Vice versa, equality on
the support allows us to integrate it and prove that K1.�/ equals the value of the dual
problem, which is the same of the primal; hence, one gets optimality.

As we said, we want to select a special minimizer, somehow better than the
others, and prove that it is actually induced by a map.

Let us consider the problem

minfK2.�/ W � 2 O.�; �/g:

This problem has a solution � since K2 is continuous for the weak convergence and
O.�; �/ is compact for the same convergence. We do not know a priori about the
uniqueness of such a minimizer. It is interesting to note that the solution of this
problem may also be obtained as the limits of solutions �" of the transport problem

minfK1.�/C "K2.�/ W � 2 ˘.�; �/g;

but we will not exploit this fact here (its proof can be done in the spirit of
� -convergence developments, as in Section 2.4).

The goal is now to characterize this plan � and prove that it is induced by a
transport map.

The fact that the condition � 2 O.�; �/ may be rewritten as a condition on the
support of � is really useful since it allows us to state that � also solves

min

�ˆ
c d� W � 2 ˘.�; �/

�
; where c.x; y/D

(
jx � yj2 if u.x/� u.y/ D jx � yj;
C1 otherwise.

Actually, minimizing this new cost implies being concentrated on the set where
u.x/� u.y/ D jx � yj (i.e., belonging to O.�; �/) and minimizing the quadratic cost
among those plans � concentrated on the same set (i.e., among those � 2 O.�; �/).

Let us spend some words more in general on costs of the form

c.x; y/ D
(

jx � yj2 if .x; y/ 2 A

C1 otherwise,
(3.3)

where A is a given closed subset of ˝ � ˝. First of all we note that such a cost is
l.s.c. on ˝ �˝.

Semi-continuity of the cost implies that optimal plans are concentrated on a
set which is c-CM (Theorem 1.43). What does it mean in such a case? c-cyclical
monotonicity is a condition which imposes an inequality for every k, every � , and
every family .x1; y1/; : : : ; .xk; yk/; here we will only need to use the condition for
k D 2, which gives the following result.
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Lemma 3.4. Suppose that � � ˝�˝ is c-CM for the cost c defined in (3.3). Then

.x1; y1/; .x2; y2/ 2 �; .x1; y2/; .x2; y1/ 2 A ) .x1 � x2/ � .y1 � y2/ � 0:

Proof. From the definition of c-cyclical monotonicity, we have

.x1; y1/; .x2; y2/ 2 � ) c.x1; y1/C c.x2; y2/ � c.x1; y2/C c.x2; y1/:

For costs c of this form, this is only useful when both .x1; y2/ and .x2; y1/ belong to
A (otherwise, we have C1 on the right-hand side of the inequality). If we also use
the equivalence

jx1 � y1j2 C jx2 � y2j2 � jx1 � y2j2 C jx2 � y1j2 , .x1 � x2/ � .y1 � y2/ � 0

(which can be obtained just by expanding the squares), the claim is proven. ut

3.1.3 Geometric properties of transport rays

Let us consider for a while the role played by the function u. We collect some
properties.

Lemma 3.5. If x; y 2 ˝ are such that u.x/ � u.y/ D jx � yj, then u is affine on the
whole segment Œx; y� WD fz D .1 � t/x C ty; t 2 Œ0; 1�g.

Proof. Take z D .1 � t/x C ty. Just consider that the Lip1 condition implies

u.x/ � u.z/ � jx � zj D tjx � yj; u.z/ � u.y/ � jz � yj D .1 � t/jx � yj:

Summing up the two inequalities, we get u.x/ � u.y/ � jx � yj, but the assumption
is that this should be an equality. Hence, we can infer that both inequalities are
equalities, and in particular u.z/ D u.x/�tjx�yj, i.e., u..1�t/xCty/ D u.x/�tjx�yj
is an affine function of t. ut
Lemma 3.6. If z 2�x; yŒWD fz D .1� t/x C ty; t 2�0; 1Œg, for a pair of points x ¤ y
such that u.x/� u.y/ D jx � yj, then u is differentiable at z and ru.z/ D e WD x�y

jx�yj .

Proof. First of all, let us give an estimate on the increment of u in directions
orthogonal to e. Consider a unit vector h with h � e D 0 and a point z0 2�x; yŒ,
and let t0 be such that z0 ˙ t0e 2 Œx; y�. Set ı WD u.z0 C th/�u.z0/. By using u 2 Lip1,
we can say that

u.z0 C th/�u.z0 � t0e/ D u.z0 C th/�u.z0/Cu.z0/�u.z0 � t0e/ D ıC t0 �
q

t2 C t20
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as well as

u.z0 C th/�u.z0 C t0e/ D u.z0 C th/�u.z0/Cu.z0/�u.z0 C t0e/ D ı� t0 �
q

t2 C t20:

By raising these inequalities to power 2, we get

ı2 C t20 ˙ 2t0ı � t2 C t20:

These two inequalities give ˙2t0ı � ı2 ˙ 2t0ı � t2, and hence 2t0jıj � t2, i.e.,
jıj � t2=2t0.

Consider now a point z 2�x; yŒ and a number t0 < minfjz � x�; jz � yjg. Any
point z00 sufficiently close to z may be written as z00 D z0 C th with h a unit vector
orthogonal to e, t � 1, z0 2�x; yŒ such that z0 ˙ t0e 2 Œx; y�. This allows us to write

u.z00/�u.z/ D u.z0Cth/�u.z0/Cu.z0/�u.z/ D .z0�z/�eCO.t2/ D .z00�z/�eCO.t2/:

Using O.t2/ D o.t/ D o.jz00 � zj/, we get ru.z/ D e (Figure 3.1). ut

Definition 3.7. We call transport ray any nontrivial (i.e., different from a singleton)
segment Œx; y� such that u.x/�u.y/ D jx�yj that is maximal for the inclusion among
segments of this form. The corresponding open segment �x; yŒ is called the interior
of the transport ray and x and y its boundary points. We call direction of a transport
ray the unit vector x�y

jx�yj . We call Trans.u/ the union of all nondegenerate transport

rays, Trans.b/.u/ the union of their boundary points, and Trans.u/.i/ the union of
their interiors. Moreover, let Trans.bC/.u/ be the set of upper boundary points of
nondegenerate transport rays (i.e., those where u is minimal on the transport ray,
say the points y in the definition u.x/ � u.y/ D jx � yj) and Trans.b�/.u/ the set
of lower boundary points of nondegenerate transport rays (where u is maximal, i.e.,
the points x).

Fig. 3.1 The points used in
the proof of Lemma 3.6

•z′
•z′ − t0e

•z′+ t0e

•z

•z′′ = z′+ th

eh
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Corollary 3.8. Two different transport rays can only meet at a point z which is a
boundary point for both of them, and in such a case, u is not differentiable at z. In
particular, if one removes the negligible set Sing.u/ of non-differentiability points of
u, the transport rays are disjoint.

Proof. First of all, note that if a point z belongs to a transport ray with direction e,
and u is differentiable at z, then necessarily we have e D ru.z/. Indeed, close to
z, there are points of the form z C te which belong to the same transport ray, for
arbitrarily small values of t (we do not care about the sign of t), and on these points,
we can write

t D u.z C te/ � u.z/ D ru.z/ � te C o.t/:

This shows ru.z/ � e D 1. Together with jru.z/j � 1, the only possibility is
ru.z/D e.

Now, suppose that two transport rays meet at a point z which is internal for both
rays. In such a case, u must have two different gradients at z, following both the
directions of the rays, which is impossible (recall that the different rays meeting at
one point must have different directions, since otherwise they are the same transport
ray, by maximality).

Suppose that they meet at z, which is in the interior of a transport ray with
direction e but is a boundary point for another ray, with direction e0 ¤ e. In such
a case, u should be differentiable at z, and again, ru.z/ should take two distinct
values, which is impossible.

Finally, suppose that the intersection point z is a boundary point for both
segments, one with direction e and the other one with direction e0 ¤ e. In this
case, there is no contradiction if u is not differentiable at z. On the other hand, if one
supposes that u is differentiable at z, then we get ru.z/ D e D e0, which is, again, a
contradiction. ut

We will see later on that we need to say something more on the direction of the
transport rays.

From this section on, we fix a transport plan � , optimal for the secondary
variational problem, and we will try to prove that it is actually induced by a transport
map. We use here that � is actually concentrated on a set � which is c-CM (we
recall that we are using the cost c defined as in (3.3)) and see how this interacts with
transport rays. We can suppose � � A D f.x; y/ W u.x/ � u.y/ D jx � yjg, since
anyway � must be concentrated on such a set, so as to have a finite value for

´
c d� .

We want to say that � behaves, on each transport ray, as the monotone increasing
transport. More precisely, the following is true.

Lemma 3.9. Suppose that x1; x2; y1, and y2 are all points of a transport ray Œx; y�
and that .x1; y1/; .x2; y2/ 2 � . Define an order relation on such a transport ray
through x � x0 , u.x/ � u.x0/. Then if x1 < x2, we also have y1 � y2.
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Proof. We already know that x1 � y1 and x2 � y2 (thanks to � � A). Hence,
the only case to be considered is the case where we have x1 < x2 � y2 < y1.
If we prove that this is not possible, then we have proven the claim. And this is
not possible due to the fact that � is c-CM, since on this transport ray, due to the
order relationship we have supposed and to the behavior of u on such a segment, the
condition .x1; y2/; .x2; y1/ 2 A is guaranteed. This implies .x1 � x2/ � .y1 � y2/ � 0.
But this is the scalar product of two vectors parallel to e, and on the segment, this
simply means that y1 and y2 must be ordered exactly as x1 and x2 are. ut

From what we have seen in Chapter 2, we know that when s is a segment and
� 0 � s � s is such that

.x1; y1/; .x2; y2/ 2 � 0; x1 < x2 ) y1 � y2

(for the order relation on s), then � 0 is contained in the graph of a monotone
increasing multivalued function, which associates to every point either a point or
a segment. Yet, the interiors of these segments being disjoint, there is at most a
countable number of points where the image is not a singleton (see the proof of
Lemma 2.8). This means that � 0 is contained in a graph over s, up to a countable
number of points of s. We will apply this idea to � 0 D � \ .s � s/, where s is a
transport ray.

If we combine what we obtained on every transport ray, we obtain:

Proposition 3.10. The optimal transport plan � is concentrated on a set � with the
following properties:

• if .x; y/ 2 � , then

– either x 2 Sing.u/ (but this set of points is Lebesgue-negligible),
– or x … Trans.u/, i.e., it does not belong to a nondegenerate transport ray

(and in this case, we necessarily have y D x, since otherwise, Œx; y� would
be contained in a nondegenerate transport ray),

– or x 2 Trans.bC/.u/ n Sing.u/ (and in this case, we necessarily have y D x,
since x is contained in a unique transport ray s and it cannot have other
images y 2 s, due to the order relation x � y),

– or x 2 Trans.u/ n .Trans.bC/.u/ [ Sing.u// and y belongs to the same
transport ray s of x (which is unique);

• on each transport ray s, � \ .s � s/ is contained in the graph of a monotone
increasing multivalued function;

• on each transport ray s, the set

Ns D fx 2 s n Trans.bC/.u/ W #.fy W .x; y/ 2 � g/ > 1g

is countable.

It is clear that � is induced by a transport map if �.
S

s Ns/ D 0, i.e., if we can get
rid of a countable number of points on every transport ray.



3.1 The Monge case, with cost jx � yj 95

This could also be expressed in terms of disintegration of measures (if � is
absolutely continuous, then all the measures �s given by the disintegrations of
� along the rays s are atomless; see Box 2.2 in Section 2.3 for the notion of
disintegration), but we will try to avoid such an argument for the sake of simplicity.
The only point that we need is the following ( Property N, for negligibility).

Definition 3.11. We say that Property N holds for a given Kantorovich potential u
if B � ˝ is such that

• B � Trans.u/ n Trans.bC/.u/,
• B \ s is at most countable for every transport ray s,

then jBj D 0.

This property is not always satisfied by any disjoint family of segments in R
d, and

there is an example (by Alberti, Kirchheim, and Preiss, later improved by Ambrosio,
Kirchheim and Pratelli; see [14]) where a disjoint family of segments contained in a
cube is such that the collection of their middle points has positive measure. We will
prove that the direction of the transport rays satisfies additional properties, which
guarantee property N.

Please be aware that, as usual, we are ignoring here measurability issues of
the transport map T that we are constructing: this map is obtained by gluing the
monotone maps on every segment, but this should be done in a measurable way1.

It appears that the main tool to prove Property N is the Lipschitz regularity of the
directions of the transport rays (which is the same as the direction of ru).

Theorem 3.12. Property N holds if ru is Lipschitz continuous or if there exists a
countable family of sets Eh such that ru is Lipschitz continuous when restricted to
each Eh and jTrans.u/ � nSh Ehj D 0.

Proof. First, suppose that ru is Lipschitz. Consider all the hyperplanes parallel to
d�1 coordinate axes and with rational coordinates on the last coordinate. Consider
a set B in the definition of Property N. By definition, the points of B belong to
nondegenerate transport rays, i.e., to segments with positive length. Hence, every
point of B belongs to a transport ray that meets at least one of the above hyperplanes
at exactly one point of its interior. Since these hyperplanes are a countable quantity,
up to countable unions, we can suppose that B is included in a collection SY of
transport rays all meeting the same hyperplane Y . Moreover, we can also suppose
that B does not contain any point which is a boundary point of two different transport
rays, since we already know that those points are negligible. Now, let us fix such a
hyperplane Y and let us consider a map f W Y � R ! R

d of the following form: for
y 2 Y and t 2 R the point f .y; t/ is defined as y C tru.y/. This map is well defined
and injective on a set A � Y � R which is the one we are interested in. This set A is

1Measurability could be proven, either by restricting to a �-compact set � or by considering the
disintegrations �s and �s and using the fact that, on each s, T is the monotone map sending �s

onto �s (and hence it inherits some measurability properties of the dependence of �s and �s w.r.t.
s, which are guaranteed by abstract disintegration theorems).
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B′ = f−1(B)⊂ A

Y

•

•

•
•
•

•
• •(y,0)

(y,t) f

Y

•

•

•
•
•

•
•

B

•y

y+ t∇u(y)

Fig. 3.2 The map f in Theorem 3.12. The points of B and B0 are only a countable number on each
line and represented by bullets

defined as those pairs .y; t/ where y is in the interior of a transport ray of SY ; hence,
u is differentiable at such a point, and y C tru.y/ belongs to the interior of the same
transport ray. The map f is injective, since getting the same point as the image of
.y; t/ and of .y0; t0/would mean that two different transport rays cross at such a point.
B is contained in the image of f by construction, so that f is a bijection between B
and B0 WD f �1.B/. The map f is also Lipschitz continuous, as a consequence of
the Lipschitz behavior of ru. Note that B0 is a subset of Y � R containing at most
countably many points on every line fyg � R. By Fubini’s theorem, this implies
jB0j D 0. Then we have also jBj D jf .B0/j � Lip.f /djB0j, which implies jBj D 0.

It is clear that the property is also true when ru is not Lipschitz but is Lipschitz
continuous on each set Eh of a partition covering almost all the points of Trans.u/,
since one can apply the same kind of arguments to all the sets B \ Eh and then use
countable unions (Figure 3.2). ut

We now need to prove that ru is countably Lipschitz.

Definition 3.13. A function f W ˝ ! R
d is said to be countably Lipschitz if there

exists a countable family of sets Eh such that f is Lipschitz continuous on each Eh

and j˝ nSh Ehj D 0.

Note that “being Lipschitz continuous on a set E” or “being the restriction to E
of a Lipschitz continuous function defined on the whole R

d” is actually the same
property, due to Lipschitz extension theorems. Indeed, whenever E � X are metric
spaces, every L-Lipschitz function f W E ! R can be extended to an L-Lipschitz
function over X. This is known as Kirszbraun theorem and can be easily obtained
by using the functions fk of the Memo Box 1.5, for k � L.

We want to prove that ru is countably Lipschitz. We will first prove that
u coincides with some �-convex or �-concave functions on a sequence of sets
covering almost everything. This requires a definition.

Definition 3.14. A function f W ˝ ! R is said to be �-convex if x 7! f .x/� �
2
jxj2 is

convex and �-concave if x 7! f .x/C �
2
jxj2 is concave. Note that the number � is not

required to be positive, so that �-convex functions for � > 0 are strictly convex, and,
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for � < 0, they just have second derivatives (where they exist) which are bounded
from below. Functions which are �-convex (or �-concave) for some values of � are
called semi-convex (or semi-concave).

Proposition 3.15. There exist some sets Eh such that

•
S

h Eh D Trans.u/ n Trans.u/.bC/,
• on each set Eh the function u is the restriction of a �-concave function, for a

value � depending on h.

Proof. Let us define

Eh D
�

x 2 Trans.u/ W 9z 2 Trans.u/ with u.x/ � u.z/ D jx � zj > 1

h

�
;

which is roughly speaking made of those points in the transport rays that are at least
at a distance 1

h apart from the upper boundary point of the ray. It is clear that Eh �
Trans.u/nTrans.u/.bC/. Moreover, we easily have

S
h Eh D Trans.u/nTrans.bC/.u/.

Let us fix a function ch W Rd ! R with the following properties: ch 2 C2.Rd/,
jrchj � 1, ch.z/ � jzj for all z 2 R

d, ch.z/ D jzj for all z … B.0; 1=h/. Set
�h WD �jjD2chjjL1 (note that we can take this value to be of the order of � 1

h ). It is
easy to check that, if x 2 Eh, one has

u.x/ D inf
y2Rd

jx � yj C u.y/ � inf
y2Rd

ch.x � y/C u.y/ � inf
y…B.x;1=h/

jx � yj C u.y/ D u.x/;

where the first inequality is a consequence of jzj � ch.z/ and the second is due to
the restriction to y … B.x; 1=h/. The last equality is justified by the definition of Eh.
This implies that all the inequalities are actually equalities and that u.x/ D uh.x/ for
all x 2 Eh, where

uh.x/ WD inf
y2Rd

ch.x � y/C u.y/:

It is important to note that uh is a �h-concave function.
Let us justify that uh is �h-concave. With this choice of �h, ch is obviously �h-

concave. Consider

uh.x/C �h

2
jxj2 D inf

y2Rd
ch.x � y/C �h

2
2jxj2 C u.y/

D inf
y2Rd

ch.x � y/C �h

2
jx � yj2 C �hx � y � �h

2
jyj2 C u.y/:

This last expression shows that uh.x/C �h
2

jxj2 is concave in x, since it is expressed
as an infimum of concave functions (ch.x � y/ C �h

2
jx � yj2 is concave, �hx � y is

linear, and the other terms are constant in x). Hence, uh.x/ is �h-concave. ut
The previous theorem allows us to replace the function u with the functions uh,

which are more regular (since they are �-concave, they share the same regularity of
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convex functions). Unfortunately, this is not enough yet, since convex functions in
general are not even differentiable. A new countable decomposition is needed and
can be obtained from the following theorem that we do not prove.

Theorem 3.16. If f is a convex function, then rf is countably Lipschitz.

The proof of this theorem may be found in [13], in Theorem 5.34. It is also true
when we replace rf with an arbitrary BV function, and this is the framework that
one finds in [13].

Box 3.1. Memo: BV functions in R
d

On a domain ˝ � R
d , an L1 function f W ˝ ! R is said to be a BV function if its

distributional derivatives are finite measures. This means that we require

ˆ

˝

f .r � �/ dx � Cjj�jjL1 ;

for every C1
c vector field � W ˝ ! R

d . The space BV is hence a wider class than the
Sobolev spaces W1;p, where the distributional derivatives are supposed to belong to Lp (i.e.,
they are absolutely continuous measures with integrability properties).

It happens that the distributional derivative rf cannot be any measure, but must be of
the form rf D raf .x/ dx C Dsf C Djf , where raf .x/ dx is the absolutely continuous part
of rf (with respect to the Lebesgue measure), Djf is the so-called jump part and has a
density with respect to H d�1 (it is concentrated on the set Jf of those points where there
is an hyperplane such that the function f has two different limits on the two sides of the
hyperplane, in a suitable measure-theoretical sense, and the density of Dju with respect to
H d�1

jJf
is exactly the difference of these two limit values times the direction of the normal

vector to the hyperplane: Djf D .f C � f �/nJf �H d�1
jJf

), and Dc is the so-called Cantor part,
which is singular to the Lebesgue measure but vanishes on any .d�1/-dimensional set.

We denote by BVloc.R
d/ the space of functions which are locally BV in the sense that

their derivatives are Radon measures, i.e., measures which are locally finite (in the definition
with test functions � , we use � 2 C1

c .R
d/ and the constant C may depend on the support of

�). Vector-valued BV functions are just defined as functions f D .f1; : : : ; fk/ W Rd ! R
k

which are componentwise BV, i.e., fi 2 BV for each i D 1; : : : ; k. It is interesting that
gradients g D rf of convex functions are always locally BV. This depends on the fact
that the Jacobian matrix of the gradient of a convex function is indeed the Hessian of
such a function and is positive definite. This means that the matrix-valued distribution
r.rf / D D2f is a positive distribution, and we know that positive distributions are
necessarily positive measures (warning: this requires precise definitions when we work with
matrix- and vector-valued functions).

BV functions satisfy several fine regularity properties almost everywhere for the
Lebesgue or the H d�1-measure, and the reader may refer to [13] or [160]. In particular,
we cite the following (not at all easy) result, which implies Theorem 3.16.

Theorem. If f 2 BVloc.R
d/, then f is countably Lipschitz.

As a consequence of Proposition 3.15 and Theorem 3.16 one has:

Proposition 3.17. If u is a Kantorovich potential, then ru W Trans.u/ ! R
d is

countably Lipschitz.
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Proof. It is clear that the countably Lipschitz regularity of Theorem 3.16 is also true
for the gradients of �-convex and �-concave functions. This means that this is true
for ruh and, by countable union, for ru. ut

3.1.4 Existence and nonexistence of an optimal transport map

From the analysis performed in the previous sections, we obtain the following result,
essentially taken from [10, 14, 44].

Theorem 3.18. Under the usual assumption � � L d, the secondary variational
problem admits a unique solution � , which is induced by a transport map T,
monotone nondecreasing on every transport ray.

Proof. Proposition 3.17, together with Theorem 3.12, guarantees that Property N
holds. Hence, Proposition 3.10 may be applied to get � D �T. The uniqueness
follows in the usual way: if two plans � 0 D �T0 and � 00 D �T00 optimize the secondary
variational problem, the same should be true for 1

2
�T0 C 1

2
�T00 . Yet, for this measure

to be induced by a map, it is necessary to have T0 D T00 a.e. (see Remark 1.19). ut
Definition 3.19. The optimal transport plan � will be called ray-monotone trans-
port plan and the transport map which corresponds to it ray-monotone transport
map.

Note that as a by-product of this analysis, we also obtain jTrans.u/.b/j D 0,
since Trans.u/.b/ is a set meeting every transport ray in two points, and it is hence
negligible by Property N. Yet we could not have proven it before, so unfortunately
every strategy based on a decomposition of Trans.u/.i/ is not complete.

To complete this section, one could wonder whether the assumption � � L d is
really necessary for this existence result: would the condition “�.A/ D 0 for every
.d�1/-rectifiable set A” (or other conditions as in Section 1.3.1) be enough for the
existence of an optimal map, as it happened for the quadratic case?

The answer is not, as it is shown in the following example.

Transport from a graph to a square

Consider a continuous function B W Œ0; 1� ! R with the following property: for
every Lipschitz function f W R ! R, the sets ft 2 Œ0; 1� W B.t/ D f .t/g and ft 2
Œ0; 1� W f .B.t// D tg are Lebesgue negligible. Then take � D .id;B/#.L 1 Œ0; 1�/

and � D L 2 Q, where Q is the square Œ0; 1� � ŒL;L C 1� with L D jjBjjL1 .
In practice, � is concentrated on the graph of B and � on a square above the

graph. With this choice, the measure� gives zero mass to any rectifiable curve of the
form f.t; f .t//g or f.f .s/; s/g, for f Lipschitz. On the other hand, it is not absolutely
continuous, as it gives positive mass to a graph, which is L 2-negligible. The goal is
now to prove that no optimal transport map exists from � to � (Figure 3.3).
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Fig. 3.3 The measure �
concentrated on a graph, with
� on a square

ν

m

B
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x2
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First consider that there is an obvious transport map S sending � into �. Just
take S.x1; x2/ D .x1;B.x1// (i.e., each point moves vertically to the corresponding
point on the graph of B). Obviously, S is not injective. The Monge cost of S is
given by

´
Q jx2 � B.x1/j dx1 dx2 D ´

Q.x2 � B.x1// dx1 dx2. Moreover, the function
u.x1; x2/ D �x2 is in Lip1 and we have

ˆ

R2

u d.� � �/ D �
ˆ 1

0

B.x1/ dx1 C
ˆ

Q
x2 dx1 dx2 D

ˆ

Q
jx2 � B.x1/j dx1 dx2:

This proves that S is an optimal map from � to � and u is a Kantorovich potential
(more precisely: u is a Kantorovich potential from � to � and �u from � to �).
But this also proves that any optimal transport plan between � and � must be
concentrated on the set f.x; y/ W y2 � x2 D jx � yjg, i.e., on f.x; y/ W y1 D x1;
and x2 � y2g. In particular the transport can only occur vertically, exactly as it

happens for S. Yet, there is no transport map from � to � with this property: indeed,
the image of spt.�/ through such a map could only contain one point in each vertical
segment of spt.�/ and could not cover almost all Q.

To make the example complete2, one only needs to produce such a function B.
As the reader could imagine, the choice of the notation has been done on purpose:
the typical trajectory of the Brownian motion satisfies this assumption. Indeed, it is
known that the trajectories of a Brownian motion are almost surely never differen-
tiable and even never approximately differentiable (see Box 3.3 in Section 3.3.2 for
this notion, and see [222] for the behavior of the Brownian motion with this respect).
By the way, it is also proven in [25] that, almost surely, there is no set A with
dimension bigger than 1=2 on which B could be Hölder continuous with exponent
larger than 1=2. This prevents the possibility that B coincides with a Lipschitz

2 Note that the construction is essentially the same as in the example provided in [199], for a
different goal. The regularity degree is slightly different, and we decided to handle by hands
“vertical” Lipschitz curves in order to make a self-contained presentation.
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function on a 1-dimensional set. We can even say that ft 2 Œ0; 1� W B.t/ D f .t/g has
dimension less or equal than 1=2.

For the other set (i.e., the points where t D f .B.t//), it is trickier. We can assume,
by contradiction, that there exists a compact set K with jKj > 0 and f ı B D id
on K. Hence, the set H D B.K/ is also compact and must have positive measure.
Otherwise, if jHj D 0, K � f .H/ would be negligible too, because f is Lipschitz.
We can assume that f is C1, if we restrict H. Indeed, for every Lipschitz function f
and every n, there is a C1 function Qfn with jff ¤ Qfngj < 1

n (see [160] for this fact).
If we set Hn D ff D Qfng, we have jH n Sn Hnj D 0 and jf .H n Sn Hn/j D 0;
this proves jf .Sn Hn/j D jSn f .Hn/j > 0, and at least for some n, we must have
jHnj; jf .Hn/j > 0. Hence, we can suppose f 2 C1. Now, there are two possibilities:
either f 0 D 0 on H or there is a small interval where f is a diffeomorphism. In this
second case, we find B D f �1 on a set of positive measure, which is a contradiction
with the well-known properties of Brownian motions (since f �1 is Lipschitz, and
even C1). On the contrary, if f 0 D 0 on H, then the area formula provides jKj D 0,
which is also a contradiction.

3.1.5 Approximation issues for the ray-monotone
optimal transport

The present section deals with some natural questions concerning the ray-monotone
optimal transport plan � , and in particular approximation questions. Indeed, we have
seen (Theorem 1.50) that for any weakly converging sequence �n * � , if �n is
optimal for a continuous cost between its marginal, then so is � . Yet, we know
that for c.x; y/ D jx � yj, the optimal transport plan is not in general unique, and
for many applications, one prefers to stick to the ray-monotone one. Hence, the
question is how to select this special transport plan by approximation, when the
measures and/or the cost varies.

For many applications (see in particular Chapter 4), it is interesting to approxi-
mate transport plans through transport maps sending a given measure to an atomic
one. This is because these kinds of transport maps are actually composed of different
homotheties defined on a partition of the domain.

Here is a useful approximation lemma in the spirit of � -convergence develop-
ments (see [77], Section 2.4, and Box 4.6 in Section 4.4.2).

For fixed measures �; � 2 P.˝/, with � � L d, consider the following family
of minimization problems .P"/:

.P"/ D min
˚
Tc..�y/#�; �/C "K1.�/C "2K2.�/C "3dC3#..�y/#�/ W

� 2 P.˝ �˝/; .�x/#� D �g ;
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where Tc is the minimum value of the transport problem for the cost c.x; y/ D jx�yj,
Kp.�/ D ´ jx � yjp�. dx; dy/ for p D 1; 2, and the symbol # denotes the cardinality
of the support of a measure. Note that K1.�/ ¤ Tc..�x/#�; .�y/#�/ in general.

Actually, the minimization of .P"/ consists in looking for a transport plan with
first marginal equal to � satisfying the following criteria with decreasing degree of
importance: the second marginal must be close to �; the K1 cost of transportation
should be small; the K2 as well; and, finally, the second marginal must be atomic
with not too many atoms.

This minimization problem has obviously at least a solution (by the direct
method, since˝ is compact). We denote by �" such a solution and �" WD .�y/#�" its
second marginal. It is straightforward that �" is an atomic measure and that �" is the
(unique, since � � L d) solution of minfK1.�/C "K2.�/ W � 2 ˘.�; �"/g, which
is an optimal transport problem from � to �" for the cost jx � yj C "jx � yj2. Set

� D argmin fK2.�/ W � is a K1-optimal transport plan from � to �g : (3.4)

This transport plan � is unique, and it is the unique ray-monotone optimal transport
plan from � to � (this is a consequence of Section 3.1.4); note that the functional K2
could have been replaced by any functional � 7! ´

h.x � y/ d� for a strictly convex
function h.

Lemma 3.20. As " ! 0, we have �" * � and �" * � .

Proof. It is sufficient to prove that any possible limit of subsequences coincides
with � or �; respectively. Let �0 be one such a limit and �0 D .�y/#�0 the limit of
the corresponding subsequence of �". Consider a regular grid Gn � ˝ composed
of approximately Cnd points (take Gn D 1

nZ
d \ ˝), and let pn be any measurable

map from ˝ to Gn, with the property jpn.x/ � xj � 1=n (for instance, pn can be the
projection map, where it is well defined). Set �n WD .pn/#� and note #�n � Cnd, as
well as �n * � and Tc.�

n; �/ � 1
n .

First step: �0 D �. Take �n any transport plan from � to �n. By optimality of �"
we have

Tc.�"; �/ � Tc.�
n; �/C "K1.�

n/C "2K2.�
n/C C"3dC3nd:

Fix n, let " go to 0, and get

Tc.�0; �/ � Tc.�
n; �/ � 1

n
:

Then let n ! 1 and get Tc.�0; �/ D 0, which implies �0 D � (thanks to
Corollary 3.3).

Second step: �0 is optimal for K1 from � to �. Take any optimal transport plan
�n (for the K1 cost) from � to �n (i.e., K1.�n/ D Tc.�; �

n/). These plans converge
to a certain optimal plan Q� from� to � (i.e., K1. Q�/ D Tc.�; �/). Then, by optimality
of �", we have
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"K1.�"/ � Tc.�
n; �/C "K1.�

n/C "2K2.�
n/C C"3dC3nd

� 1

n
C "K1.�

n/C C"2 C C"3dC3nd:

Then take n � "�2 and divide by ":

K1.�"/ � "C K1.�
n/C C"C C"dC2:

Passing to the limit, we get

K1.�0/ � K1. Q�/ D Tc.�; �/;

which implies that �0 is also optimal.
Third step: �0 D � . Take any optimal transport plan � (for the cost K1) from� to

�. Set �n D .id � pn/#� , where .id � pn/.x; y/ WD .x; pn.y//. We have .�y/#�
n D �n.

Then we have

Tc.�"; �/C "K1.�"/C "2K2.�"/ � Tc.�
n; �/C "K1.�

n/C "2K2.�
n/C C"3dC3nd:

Moreover, using the triangle inequality of Corollary 3.2, we infer

K1.�"/ � Tc.�; �"/ � Tc.�; �/ � Tc.�"; �/:

We also have

K1.�
n/ � K1.�/C

ˆ
jpn.y/ � yj d�.x; y/ � K1.�/C 1

n
D Tc.�; �/C 1

n
:

Hence, we have

.1�"/Tc.�"; �/C"Tc.�; �/C"2K2.�"/ � 1

n
C"Tc.�; �/C "

n
C"2K2.�n/CC"3dC3nd:

Getting rid of the first term (which is positive) on the left-hand side, simplifying
"Tc.�; �/ and dividing by "2, we get

K2.�"/ � 1C "

n"2
C K2.�

n/C C"3dC1nd:

Here it is sufficient to take n � "�3 and pass to the limit to get

K2.�0/ � K2.�/;

which is the condition characterizing � (K2-optimality among plans which are
K1-minimizers). ut
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This approximation result will be useful in Chapter 4. It is mainly based on the
fact (already mentioned in Section 3.1.2) that, when we minimize the transport cost
jx �yjC"jx �yj2, we converge to the solution of the secondary variational problem,
i.e., to the ray-monotone transport map. As we said, any kind of strictly convex
perturbation should do the same job as the quadratic one.

Yet, there are other approximations that are as natural as this one but are still
open questions. We list two of them.

Open Problem (stability of the monotone transport): take �n to be the ray-
monotone optimal transport plan for the cost jx � yj between �n and �n. Suppose
�n * �; �n * �, and �n * � . Is � the ray-monotone optimal transport plan
between � and �?

Open Problem (limit of
p
"2 C jx � yj2): take �" to be the optimal transport

plan for the cost
p
"2 C jx � yj2 between two given measures � and �. If spt.�/ \

spt.�/ D ;, then �" can be easily proven to converge to the ray-monotone optimal
transport plan (because, at the first nonvanishing order in ", the perturbation of the
cost is of the form jx � yjC "2=jx � yjC o."2/, and the function h.t/ D 1=t is strictly
convex on ft > 0g). Is the same true if the measures have intersecting (or identical)
supports as well?

This last approximation is very useful when proving (or trying to prove)
regularity results (see [210]).

3.2 The supremal case, L1

We consider now a different problem: instead of minimizing

Kp.�/ D
ˆ

jx � yjp d�;

we want to minimize the maximal displacement, i.e., its L1 norm. This problem has
been first addressed in [122], but the proof that we present here is essentially taken
from [197].

Let us define

K1.�/ WD jjx � yjjL1.�/ D inffm 2 R W jx � yj � m for � � a:e:.x; y/g
D maxfjx � yj W .x; y/ 2 spt.�/g

(where the last equality, between an L1 norm and a maximum on the support, is
justified by the continuity of the function jx � yj).
Lemma 3.21. For every � 2 P.˝ � ˝/, the quantities Kp.�/

1
p increasingly

converge to K1.�/ as p ! C1. In particular, K1.�/ D supp�1 Kp.�/
1
p and K1
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is l.s.c. for the weak convergence in P.˝ � ˝/. Thus, it admits a minimizer over
˘.�; �/, which is compact.

Proof. It is well known that, on any finite measure space, the Lp norms converge to
the L1 norm as p ! 1, and we will not reprove it here. This may be applied to
the function .x; y/ 7! jx � yj on ˝ �˝, endowed with the measure � , thus getting

Kp.�/
1
p ! K1.�/. It is important that this convergence is monotone here, and this

is true when the measure has unit mass. In such a case, we have for p < q, using
Hölder (or Jensen) inequality

ˆ
jf jp d� �

�ˆ
jf jq d�

�p=q �ˆ
1 d�

�1�p=q

D
�ˆ

jf jq d�

�p=q

;

for every f 2 Lq.�/. This implies, by taking the pth root, jjf jjLp � jjf jjLq . Applied
to f .x; y/ D jx � yj, this gives the desired monotonicity.

From this fact, we infer that K1 is the supremum of a family of functionals which
are continuous for the weak convergence (since Kp is the integral of a bounded
continuous function, ˝ being compact, and taking the pth root does not break
continuity). As a supremum of continuous functionals, it is l.s.c. and the conclusion
follows. ut

The goal now is to analyze the solution of

minfK1.�/ W � 2 ˘.�; �/g

and to prove that there is at least a minimizer � induced by a transport map. This
map would solve

minfjjT � idjjL1.�/ W T#� D �g:

Here as well, there will be no uniqueness (it is almost always the case when we
minimize an L1 criterion); hence we define O1.�; �/ D argmin�2˘.�;�/ K1.�/,
the set of optimal transport plans for this L1 cost. Note that O1.�; �/ is compact,
since K1 is l.s.c. (as for O.�; �/). Set now L WD minfK1.�/ W � 2 ˘.�; �/g: we
can write

� 2 O1.�; �/ , spt.�/ � f.x; y/ W jx � yj � Lg
(since any transport plan � concentrated on the pairs where jx � yj � L satisfies
K1.�/ � L and is hence optimal). We will suppose L > 0; otherwise, this means
that it is possible to obtain � from � with no displacement, i.e., � D � and the
optimal displacement is the identity.

Consequently, exactly as for the L1 case, we can define a secondary variational
problem:

minfK2.�/ W � 2 O1.�; �/g:
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This problem has a solution � since K2 is continuous for the weak convergence and
O1.�; �/ is compact. We do not know for the moment whether we have uniqueness
for this minimizer. Again, it is possible to say that � also solves

min

�ˆ
˝�˝

c d� W � 2 ˘.�; �/
�
; where c.x; y/ D

(
jx � yj2 if jx � yj � L

C1 otherwise.

The arguments are the same as in the L1 case. Moreover, also the form of the cost c
is similar, and this cost is l.s.c. as well. Hence, � is concentrated on a set � � ˝�˝
which is c-CM. This means

.x1; y1/; .x2; y2/ 2 �; jx1 � y2j; jx2 � y1j � L ) .x1 � x2/ � .y1 � y2/ � 0: (3.5)

We can also suppose � � f.x; y/ W jx�yj � Lg. We will try to “improve” the set � ,
by removing negligible sets and getting better properties. Then, we will show that
the remaining set Q� is contained in the graph of a map T, thus obtaining the result.

As usual, we will assume � � L d. Then, we need to recall the notion of
Lebesgue points, which is specific to the Lebesgue measure.

Box 3.2. – Memo – Density points

Definition - For a measurable set E � R
d we call Lebesgue point of E a point x 2 R

d

such that

lim
r!0

jE \ B.x; r/j
jB.x; r/j D 1:

The set of Lebesgue points of E is denoted by Leb.E/, and it is well known that jE n
Leb.E/j C j Leb.E/ n Ej D 0. This is actually a consequence of a more general fact:
given a function f 2 L1loc.R

d/, a.e. point x is a Lebesgue point for f , in the sense that
limr!0

ffl
B.x;r/ jf .y/� f .x/jdy D 0, which also implies f .x/ D limr!0

ffl
B.x;r/ f .y/ dy. If this

is applied to f D 1E, then one recovers the notion of Lebesgue points of a set (also called
density points).

Lemma 3.22. The plan � is concentrated on a c-CM set Q� such that for every
.x0; y0/ 2 Q� and for every "; ı > 0, every unit vector � and every sufficiently
small r > 0, there are a point x 2 �

B.x0; r/ n B.x0;
r
2
/
	 \ C.x0; �; ı/ and a point

y 2 B.y0; "/ such that .x; y/ 2 Q� , where C.x0; �; ı/ is the following convex cone:

C.x0; �; ı/ WD fx W .x � x0/ � � > .1 � ı/jx � x0jg:

Proof. First, take a c-CM set � such that �.� / D 1. Then, let Bi be a countable
family of balls in R

d, generating the topology of Rd (for instance, all the balls such
that the coordinates of the center and the radius are rational numbers). Consider now

Ai WD .�x/.� \ .˝ � Bi//;
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i.e., the set of all points x such that at least a point y with .x; y/ 2 � belongs to Bi

(the points that have at least one “image” in Bi, if we imagine � as a multivalued
map). Then set Ni WD Ai n Leb.Ai/. This set has zero Lebesgue measure, and hence
it is �-negligible. Also �.

S
i Ni/ D 0. As a consequence, one can define Q� WD

� n �.Si Ni/ �˝	. The plan � is still concentrated on Q� , since we only removed
�-negligible points. Obviously, Q� stays c-CM and enjoys property (3.5), since it is
a subset of � .

Moreover, Q� has the property which is claimed in the statement. This is true
since there is at least one of the balls Bi containing y0 and contained in B.y0; "/.
Since x0 2 Ai and we have removed Ni, this means that x0 is a Lebesgue point
for Ai. Since the region

�
B.x0; r/ n B.x0;

r
2
/
	 \ C.x0; �; ı/ is a portion of the ball

B.x0; r/ which takes a fixed proportion (depending on ı) of the volume of the whole
ball, for r ! 0 it is clear that Ai (and also Leb.Ai/) must meet it (otherwise x0
would not be a Lebesgue point). It is then sufficient to pick a point in Leb.Ai/ \�
B.x0; r/ n B.x0;

r
2
/
	 \ C.x0; �; ı/ and we are done. ut

Lemma 3.23. If .x0; y0/ and .x0; z0/ belong to Q� , then y0 D z0 (Figure 3.4).

Proof. Suppose by contradiction y0 ¤ z0. In order to fix the ideas, let us
suppose jx0 � z0j � jx0 � y0j (and in particular y0 ¤ x0, since otherwise
jx0 � z0j D jx0 � y0j D 0 and z0 D y0).

Now, use the property of Q� and find .x; y/ 2 Q� with y 2 B.y0; "/ and x 2�
B.x0; r/ n B.x0;

r
2
/
	\ C.x0; �; ı/, for a vector � to be determined later. Use now the

fact that Q� is c-CM applied to .x0; z0/ and .x; y/.

B(x0,L)

•y0•y
•x

• x0

•z0

B(y0,e)

w

x

C(x0,x,d)

r

r/2

v

{x ·w< 0}

{x ·v< 0}

Fig. 3.4 The points in the proof of Lemma 3.23
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If we can prove that jx � z0j; jx0 � yj � L, then we should have

.x � x0/ � .y � z0/ � 0

and we would use this to get a contradiction, by means of a suitable choice for � .
Indeed, the direction of x � x0 is almost that of � (up to an error of ı) and that of
y � z0 is almost that of y0 � z0 (up to an error of the order of "=jz0 � y0j). If we
choose � such that � � .y0 � z0/ < 0, this means that for small ı and ", we would get
a contradiction.

We need to guarantee jx � z0j; jx0 � yj � L, in order to prove the claim. Let us
compute jx � z0j2: we have

jx � z0j2 D jx0 � z0j2 C jx � x0j2 C 2.x � x0/ � .x0 � z0/:

In this sum, we have

jx0�z0j2 � L2I jx�x0j2 � r2I 2.x�x0/ �.x0�z0/ D jx�x0j.� �.x0�z0/CO.ı//:

Suppose now that we are in one of the following situations: either choose � such that
� �.x0�z0/ < 0 or jx0�z0j2 < L2. In both cases, we get jx�z0j � L for r and ı small
enough. In the first case, since jx � x0j � r

2
, we have a negative term of the order of

r and a positive one of the order of r2; in the second, we add to jx0 � z0j2 < L2 some
terms of the order of r or r2.

Analogously, for what concerns jx0 � yj, we have

jx0 � yj2 D jx0 � xj2 C jx � yj2 C 2.x0 � x/ � .x � y/:

The three terms satisfy

jx0 � xj2 � r2I jx � yj2 � L2I
2.x0 � x/ � .x � y/ D jx � x0j.�� � .x0 � y0/C O.ı C "C r//:

In this case, either we have jx0 � y0j < L (which would guarantee jx0 � yj < L for
"; ı small enough) or we need to impose � � .y0 � x0/ < 0.

Note that imposing � � .y0 � x0/ < 0 and � � .x0 � z0/ < 0 automatically gives
� � .y0 � z0/ < 0, which is the desired condition so as to have a contradiction. Set
v D y0 � x0 and w D x0 � z0. If it is possible to find � with � � v < 0 and � � w < 0,
we are done. When is it the case that two vectors v and w do not admit the existence
of a vector � with both scalar products that are negative? The only case is when they
go in opposite directions. But this would mean that x0; y0, and z0 are colinear, with
z0 between x0 and y0 (since we supposed jx0 � z0j � jx0 � y0j). If we want z0 and y0
to be distinct points, we should have jx0 � z0j < L. Hence, in this case, we do not
need to check � � .x0 � z0/ < 0. We only need a vector � satisfying � � .y0 � x0/ < 0
and � �.y0�z0/ < 0, but the directions of y0�x0 and y0�z0 are the same, so that this



3.3 Discussion 109

can be guaranteed by many choices of � , since we only need the scalar product with
just one direction to be negative. Take, for instance, � D �.y0 � x0/=jy0 � x0j. ut
Theorem 3.24. The secondary variational problem

minfK2.�/ W � 2 O1.�; �/g

admits a unique solution � , it is induced by a transport map T, and such a map is
an optimal transport for the problem

minfjjT � idjjL1.�/ ; T#� D �g:

Proof. We have already seen that � is concentrated on a set Q� satisfying some useful
properties. Lemma 3.23 shows that Q� is contained in a graph, since for any x0, there
is no more than one possible point y0 such that .x0; y0/ 2 Q� . Let us consider such
a point y0 as the image of x0 and call it T.x0/. Then � D �T. The optimality of
T in the “Monge” version of this L1 problem comes from the usual comparison
with the Kantorovich version on plans � . The uniqueness comes from standard
arguments (since it is true as well that convex combinations of minimizers should
be minimizers and this allows us to perform the proof in Remark 1.19). ut

3.3 Discussion

3.3.1 Different norms and more general convex costs

The attentive reader will have observed that the proof in Section 3.1 about the case
of the distance cost function was specific to the case of the distance induced by
the Euclidean norm. Starting from the original problem by Monge and relying on
the proof strategy by Sudakov [290] (which had a gap later solved by Ambrosio in
[8, 10], but was meant to treat the case of an arbitrary norm), the case of different
norms has been extensively studied in the last years. Note that the case of uniformly
convex norms (i.e., those such that the Hessian of the square of the norm is bounded
from below by a matrix which is positively definite) is the one which is most similar
to the Euclidean case and can be treated in a similar way.

One of the first extensions was the case studied by Ambrosio, Kirchheim, and
Pratelli about crystalline norms [14], i.e., norms such that their unit balls are convex
polyhedra. One can guess that the fact that we have a finite number of faces
makes the task easier, but it already required a huge approximation work. Indeed,
if one uses duality, the gradient ru.x/ of a Kantorovich potential is not enough
to determine the direction of the displacement y � x for a pair .x; y/ 2 spt.�/,
because a crystalline norm has the same gradient on all the points of a same face
(and not only on points on the same ray, as is the case for the Euclidean norm, or for
other strictly convex norms). To handle this problem, [14] develops a strategy with a
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double approximation, where jjzjj is replaced by something like jjzjj C "jzj C "2jzj2,
jjzjj is the norm we consider, jzj is the Euclidean norm which is added so as to select
a direction, and its square is added so as to get strict convexity and monotonicity
on each ray (exactly as we saw in Section 3.1). In this way, the authors prove
the existence of an optimal map for crystalline norms in any dimensions and for
arbitrary norms in R

2.
Later, the way was open to the generalization to other norms. The main tool

is always a secondary variational problem, since for norm costs it is in general
false that optimal plans all come from a map, and one needs to select a special
one. The difficulty with secondary variational problems is that they correspond to
a new cost c which is not finitely valued. This prevents from using duality on the
secondary problem. Indeed, Proposition 1.42 proves that we have equality between
the primal and the dual problem for all costs which are l.s.c., but does not guarantee
the existence of an optimizer in the dual; existence is usually guaranteed either via
Ascoli-Arzelà arguments, or through Theorem 1.37, which requires finiteness of the
cost. This is why some methods avoiding duality and concentrating on c-cyclical
monotonicity have been developed. The first time they appeared is in [122], for
a different problem (an L1 case): it corresponds to the idea that we presented in
Section 3.2 (looking for density points of this concentration set). Later, Champion
and De Pascale managed to use the same tools to prove the existence of an optimal
map first for arbitrary strictly convex norms (in [119], the same result being obtained
differently at almost the same time by Caravenna in [103]) and then for general
norms in [120]. This last result was more difficult to obtain and required some extra
approximation tools inspired from [273] and in particular the selection of a special
optimal transport plan via approximation through atomic marginals, as we did in
Section 3.1.5.

But the history of optimal transport did not look only at norms. Many studies
have been done for different cost functions (distances or squared distances on
manifolds, geodesic distances on R

d if obstacle are present, etc.). In this book, we
prefer to stick to the Euclidean case, and in this section, we only consider costs
of the form c.x; y/ D h.x � y/ for h convex. Even this case is far from being
completely understood. In a paper with Carlier and De Pascale (see [113]), a general
(straightforward) strategy of decomposition according to the “faces” of the cost
function h is presented.

The decomposition is based on the following steps:

• Consider an optimal plan � and look at the optimality conditions as in
Section 1.3. For all .x0; y0/ 2 spt.�/, if x0 is a differentiability point for the
potential ' (we write x0 2 Diff.'/), one gets r'.x0/ 2 @h.x0 � y0/; which is
equivalent to

x0 � y0 2 @h	.r'.x0//: (3.6)
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Let us define

Fh WD f@h	.p/ W p 2 R
dg;

which is the set of all possible values of the subdifferential multi-map of h	.
These values are those convex sets where the function h is affine, and they
will be called faces of h. The fact that ' is differentiable �-a.e. is enforced
by supposing � � L d and h to be Lipschitz, so that ' is also Lipschitz.
Thanks to (3.6), for every fixed x, all the points y such that .x; y/ belongs to the
support of an optimal transport plan are such that the difference x � y belongs
to a same face of h. Classically, when these faces are singletons (i.e., when h	
is differentiable, which is the same as h being strictly convex), this is the way
to obtain a transport map, since only one y is admitted for every x.
Equation (3.6) also enables one to classify the points x as follows. For every
K 2 Fh, we define the set

XK WD fx 2 Diff.'/ W @h	.r'.x// D Kg:

Hence, � may be decomposed into several subplans �K according to the criterion
x 2 XK . If K varies among all possible faces, this decomposition covers � -
almost all pairs .x; y/. Moreover, if .x; y/ belongs to spt.�/ and x to Diff.'/,
then x 2 XK implies x � y 2 K.
If the set Fh is finite or countable, we define

�K WD �jXK�Rd :

In this case, the marginal measures �K and �K of �K (i.e., its images under the
maps �x and �y, respectively) are sub-measures of � and �, respectively. In
particular �K inherits the absolute continuity from �. This is often useful for
proving existence of transport maps.
If Fh is uncountable, in some cases, one can still rely on a countable decom-
position by considering the set Fmulti

h WD fK 2 Fh W K is not a singleton g.
If Fmulti

h is countable, then one can separate those x such that @h	.r.'.x// is
a singleton (where a transport already exists) and look at a decomposition for
K 2 Fmulti

h only.
• This decomposition reduces the transport problem to a superposition of trans-

port problems of the type

min

�ˆ
h.x � y/ d�.x; y/ W � 2 ˘.�K ; �K/; spt.�/ � fx � y 2 Kg

�
:

The advantage is that the cost c restricted to K is easier to study. If K is a face
of h, then h is affine on K and in this case, the transport cost does not depend
any more on the transport plan.
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• The problem is reduced to find a transport map from �K to �K satisfying the
constraint x � T.x/ 2 K, knowing a priori that a transport plan satisfying the
same constraint exists.
In some cases (e.g., if K is a convex compact set containing 0 in its interior),
this problem may be reduced to an L1 transport problem. In fact if one denotes
by jj � jjK the (gauge-like) “norm” such that K D fx W jjxjjK � 1g, one has

min
n

maxfjjx � yjjK W .x; y/ 2 spt.�/g W � 2 ˘.�; �/
o

� 1 (3.7)

and the question is whether the same inequality would be true if one restricted
the admissible set to transport maps only (passing from Kantorovich to Monge,
say). The answer would be yes if a solution of (3.7) were induced by a transport
map T. This is what we presented in Section 3.2 in the case K D B.0; 1/ and
which was first proven in [122] via a different strategy (instead of selecting
a minimizer via a secondary variational problem, selecting the limit of the
minimizers for the Lp norms or p ! 1). Note also that this issue is easy in
1D, where the monotone transport solves all the Lp problems and hence the L1
as well (and this does not need the measure to be absolutely continuous, but just
atomless).

Let us note that the assumption that the number of faces is countable is quite
restrictive and is essentially used to guarantee the absolute continuity of �K , with
no need of a disintegration argument (which could lead to difficulties at least as
hard as those faced by Sudakov those faced by Sudakov, see also [104]). However,
an interesting example that could be approached by finite decomposition is that of
crystalline norms. In this case, the faces of the cost h are polyhedral cones but,
if the support of the two measures are bounded, we can suppose that they are
compact convex polyhedra. This means, thanks to the considerations above, that
it is possible to perform a finite decomposition and to reduce the problem to some
L1 minimizations for norms whose unit balls are polyhedra (the faces of the cone).
In particular, the L1 problem for crystalline norms is solved if we can solve L1
optimal transport problem for other crystalline norms.

It becomes then interesting to solve the L1 problem as in Section 3.2, replacing
the unit ball constraint jx � yj � 1 with a more general constraint x � y 2 C, the set
C being a generic convex set, for instance, a polyhedron. This is studied in [197] by
minimizing the quadratic cost

c.x; y/ D
(

jx � yj2 if x � y 2 C;

C1 otherwise,

which is also of the form c.x; y/ D h.x � y/ for h strictly convex (but not real
valued). The existence of an optimal map (better: the fact that any optimal � for this
problem is induced by a map) is proven when � is absolutely continuous and C is
either strictly convex or has a countable number of faces. This can be achieved by
adapting the arguments of Section 3.2 and proving that, if .x0; y0/ and .x0; y1/ belong
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to spt.�/ (and hence y0 � x0; y1 � x0 2 C), then the middle point 1
2
.y0 C y1/ � x0

cannot lie in the interior of C. If C is strictly convex, this proves y0 D y1. If not,
this proves that the points y0 � x0 and y1 � x0 are on a same face of C and one can
perform a dimensional reduction argument and proceed by induction.

In particular, this argument applies to the case of polyhedra and of arbitrary
convex sets in R

2 (since no more than a countable quantity of segments may be
contained in @C) and provides an alternative proof for the result of [14].

Many generalizations of this last result have been performed: Bertrand and Puel
[52] studied the “relativistic” cost h.z/ WD 1�p1 � jzj2, which is naturally endowed
with the constraint jzj � 1 and is a strictly convex function (but not finite valued
since the constraint means h.z/ D C1 outside the unit ball). They proved existence
of an optimal map by adapting the arguments of [122, 197] to the case of a strictly
convex function h with a strictly convex constraint C (from there, adapting to the
case of a countable number of faces seems to be also possible).

Finally, Chen, Jiang, and Yang combined the arguments of [197] with those of
[120], thus getting existence for the cost function

c.x; y/ D
(

jx � yj if x � y 2 C;

C1 otherwise,

under the usual assumptions on C (strictly convex or countable number of faces).
These results can be found in [123, 124] and are the first which combine lack of
strict convexity and infinite values.

All these subsequent improvements paved the way to an obvious conjecture,
i.e., the fact that a mixture of duality, variational approximation, and density points
techniques could finally prove the existence of an optimal transport map in a very
general case:

Problem (existence for every convex cost): suppose � � L d and take a cost
c.x; y/ of the form h.x�y/ with h W Rd ! R[fC1g convex; prove that there exists
an optimal map.

This problem was open till the final redaction phases of this book, when Bardel-
loni and Bianchini’s paper [26] appeared, containing a proof of a disintegration
result implying this very same statement, at least in the case where h is finite valued
but not strictly convex.

3.3.2 Concave costs (Lp, with 0 < p < 1)

Another class of transport costs which is very reasonable for applications, rather
than convex functions of the Euclidean distance, is that of concave costs3, more

3We mean here costs which are concave functions of the distance jx � yj, not of the displacement
x � y, as instead we considered in Remark 2.12.
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precisely c.x; y/ D `.jx � yj/ where ` W RC ! RC is a strictly concave and
increasing function4. From the economic and modeling point of view, this is the
most natural choice: moving a mass has a cost which is proportionally less if the
distance increases, as everybody can note from travel fares of most transport means
(railways, highway tolls, flights, etc.). All these costs are subadditive. In many
practical cases, moving two masses, each on a distance d, is more expensive than
moving one at distance 2d and keeping at rest the other. The typical example of
costs with these property is given by the power cost jx � yj˛ , ˛ < 1.

Note that all these costs satisfy the triangle inequality and are thus distances on
R

d. Moreover, under strict concavity assumptions, these costs satisfy a strict triangle
inequality. This last fact implies that the common mass between � and � must stay
at rest, a fact first pointed out in [176].

Theorem 3.25. Let � be an optimal transport plan for the cost c.x; y/ D `.jx � yj/
with ` W RC ! RC strictly concave, increasing, and such that `.0/ D 0. Let
� D �D C �O, where �D is the restriction of � to the diagonal D D f.x; x/ W x 2 ˝g
and �O is the part outside the diagonal, i.e., the restriction to Dc D .˝ � ˝/ n D.
Then this decomposition is such that .�x/#�O and .�y/#�O are mutually singular
measures.

Proof. It is clear that �O is concentrated on spt.�/ n D and hence .�x/#�O is
concentrated on �x.spt.�/ n D/ and .�y/#�O on �y.spt.�/ n D/. We claim that
these two sets are disjoint. Indeed suppose that a common point z belongs to both.
Then, by definition, there exists y such that .z; y/ 2 spt.�/ n D and x such that
.x; z/ 2 spt.�/ n D. This means that we can apply c-cyclical monotonicity to the
points .x; z/ and .z; y/ and get

`.jx � zj/C `.jz � yj/ � `.jx � yj/C `.jz � zj/ D `.jx � yj/ < `.jx � zj/C `.jz � yj/;

where the last strict inequality gives a contradiction. ut
This gives a first constraint on how to build optimal plans � : look at � and �, take

the common part �^ �, leave it on place, subtract it from the rest, and then build an
optimal transport between the two remainders, which will have no mass in common.
Note that when the cost c is linear in the Euclidean distance, then the common mass
may stay at rest but is not forced to do so (think at the book-shifting example); on
the contrary, when the cost is a strictly convex function of the Euclidean distance,
in general, the common mass does not stay at rest (in the previous example, only
the translation is optimal for c.x; y/ D jx � yjp, p > 1). Note that the fact that the
common mass stays at rest implies that in general, there is no optimal map T, since
whenever there is a set A with �.A/ > .� ^ �/.A/ D �.A/ > 0, then almost all
the points of A must have two images: themselves and another point outside A.

4We will not explicitly state it every time, but this also implies that ` is strictly increasing.
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Fig. 3.5 The optimal plan in
1D in the case of common
mass m

m ∧ n

go

gD

n

A typical case is represented in Figure 3.5 in the 1D case, where the transport map
(after removing the common mass) is decreasing as a consequence of Remark 2.12.
Note that the precise structure of the optimal transport map for this kind of
“concave” costs in 1D follows a sort of hierarchical construction, first investigated
in [230] and then used in [141] for numerical purposes.

This suggests to study the case where � and � are mutually singular, and the best
that one could do would be to prove the existence of an optimal map in this case. In
particular, this allows us to avoid the singularity of the function .x; y/ 7! `.jx � yj/
concentrated on the diagonal fx D yg (look at the example jx � yj˛), since when the
two measures have no common mass, almost no point x is transported to y D x.

Yet, exploiting this fact needs some attention. The easiest case is when � and �
have disjoint supports, since in this case, there is a lower bound on jx � yj and this
allows to stay away from the singularity. Yet, spt.�/\ spt.�/ D ; is too restrictive,
since even in the case where � and � have smooth densities f and g, it may happen
that, after subtracting the common mass, the two supports meet on the region
ff D gg.

The problem has been solved in the classical paper by Gangbo and McCann,
[176], one of the first papers about optimal transportation. In such a paper, the
authors used the slightly less restrictive assumption �.spt.�// D 0. This assumption
covers the example above of two continuous densities, but does not cover many
other cases. Think at � being the Lebesgue measure on a bounded domain ˝ and �
being an atomic measure with an atom at each rational point, or other examples that
one can build with fully supported absolutely continuous measures concentrated on
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disjoint sets A and ˝ n A (see Ex(20)). In the present section, we show how to
prove the existence of a transport map when � and � are singular to each other and
� � L d.

We will prove the following result.

Theorem 3.26. Suppose that � and � are two mutually singular probability
measures on R

d such that � � L d, and take the cost c.x; y/ D `.jx � yj/, for
` W RC ! RC strictly concave, C1 on �0;C1Œ, and increasing. Then there exists a
unique optimal transport plan � and it is induced by a transport map.

Proof. We will use the standard procedure explained in Chapter 1 for costs of the
form c.x; y/ D h.x�y/. In particular, we get the existence of a Kantorovich potential
' such that, if .x0; y0/ 2 spt.�/, then

x0 � y0 D .rh/�1.r'.x0//: (3.8)

This allows us to express y0 as a function of x0, thus proving that there is only
one point .x0; y/ 2 spt.�/ and hence that � comes from a transport T.x/ D
x � .rh/�1.r'.x//. This approach also proves uniqueness in the same way. In
Chapter 1, we presented it under strict convexity assumptions on h, so that rh is
injective and .rh/�1 D rh	. But the injectivity is also true if h.z/ D `.jzj/. Indeed
we have rh.z/ D `0.jzj/ z

jzj , and the modulus of this vector identifies the modulus
jzj (since `0 is strictly increasing), and the direction identifies the direction of z.

The main difficulty is the fact that we need to guarantee that ' is differentiable
a.e. with respect to �. Since � � L d, it is enough to have ' Lipschitz continuous,
which is usually proven using the fact that '.x/ D infy h.jx�yj/� .y/. Yet, concave
functions on R

C may have an infinite slope at 0 and be non-Lipschitz, and this
could be the case for ' as well. This suggests the use of an alternate notion of
differentiability.

Box 3.3. Important notion: Approximate gradient

We recall here some facts about a measure-theoretical notion replacing the gradient for
less regular functions. The interested reader can find many details in [160].

Let us start from the following observation: given a function f W ˝ ! R and a point
x0 2 ˝, we say that f is differentiable at x0 2 ˝ and that its gradient is v D rf .x0/ 2 R

d

if for every � > 0 the set

A.x0; v; "/ WD fx 2 ˝ W jf .x/� f .x0/� v � .x � x0/j > � jx � x0jg
is at positive distance from x0, i.e., if for small ı > 0 we have B.x0; ı/ \ A.x0; v; "/ D ;.
Instead of this requirement, we could ask for a weaker condition, namely, that x0 is a zero-
density point for the same set A.v; "/ (i.e., a Lebesgue point of its complement). More
precisely, if there exists a vector v such that

(continued)
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Box 3.3. (continued)

lim
ı!0

jA.x0; v; "/\ B.x0; ı/j
jB.x0; ı/j D 0

then we say that f is approximately differentiable at x0 and its approximate gradient is v.
The approximate gradient will be denoted by rappf .x0/. As one can expect, it enjoys several
of the properties of the usual gradient that we list here.

• The approximate gradient, provided it exists, is unique.
• The approximate gradient is nothing but the usual gradient if f is differentiable.
• The approximate gradient shares the usual algebraic properties of gradients, in

particular rapp.f C g/.x0/ D rappf .x0/C rappg.x0/.
• If x0 is a local minimum or local maximum for f , and if rappf .x0/ exists, then

rappf .x0/ D 0.

Another very important property is a consequence of the Rademacher theorem.
Proposition. Let f ; g W ˝ ! R be two functions defined on a same domain ˝ with

g Lipschitz continuous. Let E � ˝ be a Borel set such that f D g on E. Then f is
approximately differentiable almost everywhere on E and rappf .x/ D rg.x/ for a.e. x 2 E.

Proof. It is enough to consider all the Lebesgue points of E where g is differentiable.
These points cover almost all E. It is easy to check that the definition of approximate
gradient of f at a point x0 is satisfied if we take v D rg.x0/.

As a consequence, it is also clear that every countably Lipschitz function is approxi-
mately differentiable a.e.

We just need to prove that ' admits an approximate gradient Lebesgue-a.e.: this
would imply that Equation (3.8) is satisfied if we replace the gradient with the
approximate gradient.

Recall that we may suppose

'.x/ D 'cc.x/ D inf
y2Rd

`.jx � yj/ � 'c.y/ :

Now consider a countable family of closed balls Bi generating the topology of
R

d, and for every i, consider the function defined as

'i.x/ WD inf
y2Bi

`.jx � yj/ � 'c.y/

for x 2 R
d. One cannot provide straight Lipschitz properties for 'i, since a priori

y is arbitrarily close to x and in general ` is not Lipschitz close to 0. However, 'i

is Lipschitz on every Bj such that dist.Bi;Bj/ > 0. Indeed if x 2 Bj, y 2 Bi one
has jx � yj � d > 0; therefore, the Lipschitz constant of `.j� � yj/ � 'c.y/ does not
exceed `0.d/. It follows that 'i is Lipschitz on Bj, and its Lipschitz constant does
not exceed `0.d/ and the same is true for 'i has an approximate gradient almost
everywhere on f' D 'ig\Bj. By countable union, ' admits an approximate gradient
a.e. on
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[
i;j

d.Bi;Bj/>0

Œf'i D 'g \ Bj� :

In order to prove that ' has an approximate gradient �-almost everywhere, it is
enough to prove that

�

 [
i;j

d.Bi;Bj/>0

f'i D 'g \ Bj

!
D 1:

In order to do this, note that for every i and j, we have

�x.spt.�/ \ .Bj � Bi// � f' D 'ig \ Bj :

Indeed, let .x; y/ 2 spt.�/\ .Bj � Bi/. Then '.x/C 'c.y/ D l.jx � yj/. It follows
that

'i.x/ D inf
y02Bi

`.
ˇ̌
x � y0 ˇ̌/ � 'c.y0/ � `.jx � yj/ � 'c.y/ D '.x/ :

On the other hand, for every x 2 R
d

'i.x/ D inf
y2Bi

`.jx � yj/ � 'c.y/ � inf
y2Rd

`.jx � yj/ � 'c.y/ D '.x/ :

As a consequence of this,

�

 [
i;j

d.Bi;Bj/>0

f'i D 'g \ Bj

!
� �

 [
i;j

d.Bi;Bj/>0

�x.spt.�/ \ .Bj � Bi//

!

D �

 
�x

 
spt.�/ \

[
i;j

d.Bi;Bj/>0

Bj � Bi

!!

D �.�x.spt.�/ n D//

D �
�
.�x/

�1.�x.spt.�/ n D//
�

� �.spt.�/ n D/ D 1;

where D is the diagonal in ˝ �˝. ut
From the previous theorem, we can also easily deduce the following extension.

Define � ^ � as the maximal positive measure which is both less or equal than �
and than �, and .�� �/C D �� � ^ �, so that the two measures � and � uniquely
decompose into a common part �^� and two mutually singular parts .���/C and
.� � �/C.
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Theorem 3.27. Suppose that � and � are probability measures on˝ with .���/C
� L d, and take the cost c.x; y/ D `.jx � yj/, for ` W RC ! RC strictly concave,
C1 on �0;C1Œ, and increasing with `.0/ D 0. Then there exists a unique optimal
transport plan � , and it has the form .id; id/#.� ^ �/C .id;T/#.� � �/C.

As we said, the above results can be extended to more general situations:
differentiability of ` is not really necessary, and the assumption � � L d can be
weakened. In [250], the result is proven under the natural assumption that� does not
give mass to small sets, i.e., for every A � R

d which is .d�1/-rectifiable, we have
�.A/ D 0. The key tool is the following lemma, which is an interesting result from
geometric measure theory that can be used instead of Lebesgue points-type results
when we face a measure which is not absolutely continuous but “does not give mass
to small sets.” It states that, in such a case, for�-a.e. point x, every cone exiting from
x, even if very small, has positive � mass. In particular, it means that we can find
points of spt.�/ in almost arbitrary directions close to x. This lemma is strangely
more known among people in optimal transport (see also [121]) than in geometric
measure theory (even if it corresponds more or less to a part of Lemma 3.3.5 in
[161]).

Lemma 3.28. Let � be a Borel measure on R
d, and suppose that � does not give

mass to small sets. Then � is concentrated on the set

fx W 8� > 0;8ı > 0;8e 2 S
d�1; �.C.x; e; ı; �// > 0g ;

where

C.x; e; ı; �/ D C.x; e; ı/ \ B.x; �/ WD fy W hy � x; ei � .1 � ı/ jy � xjg \ B.x; �/:



Chapter 4
Minimal flows, divergence constraints,
and transport density

4.1 Eulerian and Lagrangian points of view

We review here the main languages and the main mathematical tools to describe
static or dynamical transport phenomena.

4.1.1 Static and dynamical models

This section presents a very informal introduction to the physical interpretation of
dynamical models in optimal transport.

In fluid mechanics, and in many other topics with similar modeling issues, it
is classical to consider two complementary ways of describing motions, which are
called Lagrangian and Eulerian.

When we describe a motion via Lagrangian formalism, we give “names” to
particles (using either a specific label or their initial position, for instance) and then
describe, for every time t and every label, what happens to that particle. “What
happens” means providing its position and/or its velocity. Hence we could, for
instance, look at trajectories yx.t/, standing for the position at time t of particle
originally located at x. As another possibility, instead of giving names, we could
consider bundles of particles with the same behavior and indicate how many are
they. This amounts to giving a measure on possible behaviors.

The description may be more or less refined. For instance, if one only considers
two different times t D 0 and t D 1, the behavior of a particle is only given by its
initial and final positions. A measure on those pairs .x; y/ is exactly a transport plan.
This explains why we can consider that the Kantorovich problem is expressed in
Lagrangian coordinates. The Monge problem is also Lagrangian, and particles are
labeled by their initial position.

© Springer International Publishing Switzerland 2015
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More refined models can be easily conceived: reducing a movement to the initial
and final positions is embarrassingly poor! Measures on the set of paths (curves ! W
Œ0; 1� ! ˝, with possible assumptions on their regularity) have been used in many
modeling and in particular in traffic issues in branched transport (see Section 4.4 for
both these subjects), or in Brenier’s variational formulation of the incompressible
Euler equations for fluids (see Sections 1.7.4, 8.4.4, and [51, 83, 85]).

On the other hand, in the Eulerian formalism, we describe, for every time t and
every point x, what happens at such a point at such a time. “What happens” usually
means what are the velocity, the density, and the flow rate (both in intensity and in
direction) of particles located at time t at point x.

Eulerian models may be distinguished into static and dynamical ones. In a
dynamical model we usually use two variables, i.e., the density %.t; x/ and the
velocity vt.x/. It is possible to write the equation satisfied by the density of a family
of particles moving according to the velocity field v. This means that we prescribe
the initial density %0 and that the position of the particle originally located at x will
be given by the solution of the ODE

(
y0

x.t/ D vt.yx.t//

yx.0/ D x:
(4.1)

We define the map Yt through Yt.x/ D yx.t/, and we look for the measure
%t WD .Yt/#%0. It is well known that %t and vt solve together the so-called continuity
equation

@t%t C r � .%tvt/ D 0

that is briefly addressed in Section 4.1.2.
The static framework is a bit harder to understand, since it is maybe not clear

what “static” means when we want to describe movement. One has to think to a
permanent, cyclical movement, where some mass is constantly injected into the
motion at some points and constantly withdrawn somewhere else. We can also
think at a time average of some dynamical model: suppose that we observe the
traffic in a city and we wonder what happens at each point, but we do not want
an answer depending on the hour of the day. We could, for instance, consider as
a traffic intensity at every point the average traffic intensity at such a point on the
whole day. In this case we usually use a unique variable w standing for the mass
flow rate (which equals density times velocity: hence, it is rather a momentum
than a velocity), and the divergence r � w stands for the excess of mass which is
injected into the motion at every point. More precisely, if particles are injected into
the motion according to a density � and then exit with density �, the vector fields w
standing for flows connecting these two measures must satisfy

r � w D � � �:
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4.1.2 The continuity equation

This section is devoted to the equation

@t%t C r � .%tvt/ D 0;

its meaning, formulations, and uniqueness results. The remainder of the chapter
will mainly deal with the static divergence equation, but we will see later that
the dynamical case can also be useful (in particular, to produce transport plans
associated with a given vector field). Hence, we need to develop some tools.

First, let us spend some words on the notion of solution for this equation. Here
below ˝ � R

d is a bounded domain, or Rd itself.

Definition 4.1. We say that a family of pairs measures/vector fields .%t; vt/ with
vt 2 L1.%tIRd/ and

´ T
0

jjvtjjL1.%t/dt D ´ T
0

´
˝

jvtjd%t dt < C1 solves the continuity
equation on �0;TŒ in the distributional sense if for any bounded and Lipschitz test
function � 2 C1

c.�0;TŒ�˝/ (note that we require the support to be far from t D 0; 1

but not from @˝, when˝ is bounded; also˝ is usually supposed to be itself closed,
but we write ˝ to stress the fact that we do include its boundary), we have

ˆ T

0

ˆ

˝

.@t�/ d%t dt C
ˆ T

0

ˆ

˝

r� � vt d%t dt D 0: (4.2)

This formulation includes no-flux boundary conditions on @˝ for vt (if ˝ is not
R

d itself, obviously), i.e., %tvt � n D 0. If we want to impose the initial and
final measures, we can say that .%t; vt/ solves the same equation, in the sense of
distribution, with initial and final data %0 and %T , respectively, if for any test function
� 2 C1

c .Œ0;T� �˝/ (now we do not require the support to be far from t D 0; 1), we
have

ˆ T

0

ˆ

˝

.@t�/ d%t dt C
ˆ T

0

ˆ

˝

r� � vt d%t dt D
ˆ

˝

�.T; x/ d%T.x/ �
ˆ

˝

�.0; x/ d%0.x/:

(4.3)

We can also define a weak solution of the continuity equation through the
following condition: we say that .%t; vt/ solves the continuity equation in the weak
sense if for any test function  2 C1

c .˝/, the function t 7! ´
 d%t is absolutely

continuous in t and, for a.e. t, we have

d

dt

ˆ

˝

 d%t D
ˆ

˝

r � vt d%t:

Note that in this case t 7! %t is automatically continuous for the weak convergence,
and imposing the values of %0 and %1 may be done pointwisely in time.
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Proposition 4.2. The two notions of solutions are equivalent: every weak solution
is actually a distributional solution and every distributional solution admits a
representative (another family Q%t D %t for a.e. t) which is weakly continuous and is
a weak solution.

Proof. To prove the equivalence, take a distributional solution, and test it against
functions � of the form �.t; x/ D a.t/ .x/, with  2 C1

c.˝/ and a 2 C1
c.�0; 1Œ/.

We get

ˆ T

0

a0.t/
ˆ

˝

 .x/ d%t dt C
ˆ 1

0

a.t/
ˆ

˝

r � vt d%t dt D 0:

The arbitrariness of a shows that the distributional derivative (in time)
of

´
˝
 .x/ d%t is

´
˝

r � vt d%t. This last function is L1 in time since
´ T
0

ˇ̌´
˝

r � vt d%t

ˇ̌
dt � Lip 

´ T
0

jjvtjjL1.%t/dt < C1. This implies that .%; v/
is a weak solution.

Conversely, the same computations show that weak solutions satisfy (4.2) for
any � of the form �.t; x/ D a.t/ .x/. It is then enough to prove that finite linear
combination of these functions is dense in C1.Œ0;T� � K/ for every compact set
K � R

d (this is true, but is a nontrivial exercise: Ex(23)). ut
It is also classical that smooth functions satisfy the equation in the classical sense
if and only if they are weak (or distributional) solutions. We can also check the
following.

Proposition 4.3. Suppose that % is Lipschitz continuous in .t; x/, that v is Lipschitz
in x, and that the continuity equation @t% C r � .%v/ D 0 is satisfied in the weak
sense. Then the equation is also satisfied in the a.e. sense.

Proof. First we note that with our assumptions both @t% and r�.%v/ are well defined
a.e. Fix a countable set D � C1

c.
V̋ / which is dense for the uniform convergence

in C0
c .

V̋ / (for instance, use polynomial functions with rational coefficients times
suitable cut-off functions). Fix t0 such that .t; x/ 7! %.t; x/ is differentiable at .t0; x/
for a.e. x, and also such that t 7! ´

˝
� d%t is differentiable at t D t0 with derivative

given by
´
˝

r� � vt d%t for all � 2 D. Almost all t0 satisfy these conditions. Then
we can also write, by differentiating under the integral sign,

d

dt jtDt0

ˆ

˝

� d%t dx D
ˆ

˝

� .@t%/t0 dx;

which proves
´
˝
.r� �vt0 /%t0 dx D ´

� .@t%/t0 dx. Yet, we can write
´
˝

r� �vt0%t0 dx
as � ´

˝
� r � .vt0%t0 / dx (by integration by parts of Lipschitz functions, with no

boundary term because of the compact support of �), and finally we get
ˆ

˝

� ..@t%/t0 C r � .%t0vt0 // dx D 0 for all � 2 D;

which is enough to prove .@t%/t0 C r � .%t0vt0 / D 0 a.e. in x. ut
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After checking the relations between these different notions of solutions, from
now on we will often say “solution” to mean, indifferently, “weak solution” or
“solution in the distributional sense.”

We now try to identify the solutions of the continuity equation and we want to
connect them to the flow of the vector field vt. First, we recall some properties of
the flow.

Box 4.1. Memo: Flow of a time-dependent vector field

We consider the ODE y0

x.t/ D vt.yx.t// with initial datum yx.0/ D x, as in (4.1).
Proposition. If vt is continuous in x for every t, then for every initial datum, there is local

existence (there exists at least a solution, defined on a neighborhood of t D 0). If, moreover,
v satisfies jvt.x/j � C0CC1jxj, then the solution is global in time. If vt is Lipschitz in x and
uniformly in t, then the solution is unique and defines a flow Yt.x/ WD yx.t/. In this case, if
we set L WD supt Lip.vt/, then the map Yt.�/ is Lipschitz in x, with constant eLjtj. Moreover,
Yt W Rd ! R

d is invertible and its inverse is also Lipschitz with the same constant.
Sketch of proof. We do not prove existence, which can be classically obtained by fixed-

point arguments in the space of curves. As for uniqueness and for the dependence on the
initial datum x, we consider two curves y.1/ and y.2/, solutions of y0.t/ D vt.y.t//, and we
define E.t/ D jy.1/.t/� y.2/.t/j2. We have

E0.t/ D 2.y.1/.t/� y.2/.t// � .vt.y
.1/.t//� vt.y

.2/.t///;

which proves jE0.t/j � 2LE.t/. By Gronwall’s lemma, this gives E.0/e�2Ljtj � E.t/ �
E.0/e2Ljtj and provides at the same time uniqueness, injectivity, and the bi-Lipschitz
behavior of Yt (which is also a homeomorphism from R

d onto R
d since for every x0 2 R

d

we can solve the ODE imposing the Cauchy datum y.t/ D x0).

Then, we can prove the following that we state for simplicity in the case of
Lipschitz and bounded vector fields.

Theorem 4.4. Suppose that ˝ � R
d is either a bounded domain or R

d itself.
Suppose that vt W ˝ ! R

d is Lipschitz continuous in x, uniformly in t, and uniformly
bounded, and consider its flow Yt. Suppose that for every x 2 ˝ and every t 2 Œ0;T�,
we have Yt.x/ 2 ˝ (which is obvious for ˝ D R

d and requires suitable Neumann
conditions on vt otherwise). Then, for every probability %0 2 P.˝/, the measures
%t WD .Yt/#%0 solve the continuity equation @t%t C r � .%tvt/ D 0 with initial datum
%0. Moreover, every solution of the same equation with %t � L d for every t is
necessarily obtained as %t D .Yt/#%0. In particular, the continuity equation admits
a unique solution.

Proof. First we check the validity of the equation when %t is obtained from such a
flow through (4.1). We will prove that we have a weak solution. Fix a test function
� 2 C1.Rd/ such that both � and r� are bounded, and compute
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d

dt

ˆ

˝

� d%t D d

dt

ˆ
�.yx.t// d%0.x/ D

ˆ

˝

r�.yx.t// � y0
x.t/ d%0.x/

D
ˆ

˝

r�.yx.t// � vt.yx.t// d%0.x/ D
ˆ

˝

r�.y/ � vt.y/ d%t.y/:

This characterizes weak solutions.
In order to prove the second part of the statement, we first observe that (4.2), i.e.,

ˆ T

0

ˆ

˝

.@t� C vt � r�/ d%t dt D 0;

is also valid for all Lipschitz compactly supported test functions �, whenever
%t � L d for every t. Indeed, if we fix a Lipschitz test function � and we smooth
it by convolution with a compactly supported kernel, we have a sequence �" 2 C1

c
such that rt;x�" ! rt;x� a.e. and we can apply dominated convergence since
jrt;x�"j � Lip.�/ (we need %t to be absolutely continuous because we only have
Lebesgue-a.e. convergence).

Then we take a test function  2 C1
c.R

d/ and we define �.t; x/ WD  ..Yt/
�1.x//.

If we can prove that t 7! ´
�.t; x/ d%t.x/ is constant, then we have proven

%t D .Yt/#%0. The function � is Lipschitz continuous, because the flow Yt is
bi-Lipschitz; yet, it is not compactly supported in time (it is compactly supported in
space since spt� is compact, and if we set M WD supt;x jvt.x/j, we see that �.t; x/
vanishes on all points x which are at distance larger than tM from spt ). Thus, we
multiply it with a cut-off function 
.t/, with 
 2 C1

c .�0;TŒ/. We have

@t.
�/C vt � r.
�/ D 
0.t/�.t; x/C 
.t/ .@t�.t; x/C vt.x/ � r�.t; x// :

We can prove that, by definition of �, the term @t�.t; x/C vt.x/ � r�.t; x/ vanishes
a.e. (this corresponds to saying that � is a solution of the transport equation; see
Box 6.3). This is true since we have �.t;Tt.x// D  .x/, and differentiating it w.r.t.
t (which is possible for a.e. .t; x/), we get @t.t;Yt.x//C vt.Yt.x// � r�.t;Yt.x// D 0,
which means that @t� C vt � r� vanishes everywhere, as Yt is surjective.

Hence, from the definition of distributional solution, we have

ˆ T

0


0.t/dt
ˆ

Rd
�.t; x/ d%t.x/ D

ˆ T

0

dt
ˆ

Rd
.@t.
�/C vt � r.
�// d%t.x/ D 0:

The test function 
 2 C1
c .�0;TŒ/ being arbitrary, we get that t 7! ´

Rd �.t; x/ d%t.x/
is constant. ut
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4.2 Beckmann’s problem

In this section we discuss a flow-minimization problem introduced by Beckmann in
the 1950s [27] as a particular case of a wider class of convex optimization problem,
of the form minf´ H.w/dx W r�w D ���g, for convex H. In this section we discuss
the case H.z/ D jzj, which is a limit case in the class of costs studied by Beckmann,
who was indeed more interested in strictly convex costs. Strict convexity will be
considered in “Discussion” (Section 4.4.1). The reason to stick to the linear cost
here, and to spend more words on it than on the general case, lies in its equivalence
with the Monge problem. We will provide all the tools to study this equivalence and
this problem.

4.2.1 Introduction, formal equivalences, and variants

We consider here a simple version of a problem that has been proposed by
Beckmann as a model for optimal transport in the 1950s. Beckmann called it
continuous transportation model and he was not aware of Kantorovich’s works and
the possible links between the two theories.

Beckmann’s minimal flow problem

Problem 4.5. Consider the minimization problem

.BP/ min

�ˆ
jw.x/j dx W w W ˝ ! R

d; r � w D � � �
�
; (4.4)

where the divergence condition is to be read in the weak sense, with no-flux
boundary conditions, i.e., � ´ r� � dw D ´

� d.� � �/ for any � 2 C1.˝/.

We will see now that an equivalence between (BP) and (KP) (for the cost
c.x; y/ D jx � yj) holds true. To do that, we can look at the following considerations
and formal computations.

We take the problem (BP) and rewrite the constraint on w using

sup
�

ˆ

˝

r� � w dx C
ˆ

˝

� d.� � �/ D
(
0 if r � w D � � �;
C1 otherwise.



128 4 Minimal flows

Hence one can write (BP) as

inf
w

 ˆ
˝

jwj dx C sup
�

ˆ

˝

r� � w dx C
ˆ

˝

� d.� � �/
!

D sup
�

�ˆ
˝

� d.� � �/C inf
w

ˆ

˝

.jwj � r� � w/ dx

�
; (4.5)

where inf and sup have been exchanged formally as in the computations of
Chapter 1. Then, one notes that

inf
w

ˆ

˝

.jwj � r� � w/ dx D
(
0 if jr�j � 1

�1 otherwise

and this leads to the dual formulation for (BP) which gives

sup

�ˆ
˝

� d.� � �/ W jr�j � 1

�
:

Since this problem is exactly the same as (DP) (a consequence of the fact that Lip1
functions are exactly those functions whose gradient is smaller than 1), this provides
a formal equivalence between (BP) and (KP). We say that it is only formal because
we did not prove the equality in (4.5). Note that we also need to suppose that ˝ is
convex; otherwise functions with gradient smaller than 1 are only Lip1 according to
the geodesic distance in ˝.

Most of the considerations above, especially those on the problem (BP), are
specific to the cost equal to the distance jx � yj. In general, for costs of the form
h.x � y/, h needs to be 1-homogeneous, if one wants some similar result to hold.
We refer to [195, 196] for a general way to transform convex costs into convex
1-homogeneous ones (by adding one variable, corresponding to time)1. An inter-
esting generalization which keeps the same formalism of the case of the Euclidean
distance concerns a cost c which comes from a Riemannian distance k.x/.

Consider indeed

min

�ˆ
k.x/jw.x/j dx W r � w D � � �

�

1In this way the flow-minimization problem corresponding to costs of the form jx � yjp is
transformed into the so-called Benamou-Brenier problem, which we will discuss in Chapters 5
and 6, but we do not push this analogy to further conclusions.
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which corresponds, by duality with the functions u such that jruj � k, to

min

�ˆ
dk.x; y/ d�.x; y/ W � 2 ˘.�; �/

�
;

where dk.x; y/ D inf!.0/Dx; !.1/Dy Lk.!/ WD ´ 1
0

k.!.t//j!0.t/jdt is the distance
associated with the Riemannian metric k.

The generalization above is suitable when we want to model a nonuniform
cost for the movement (due to geographical obstacles or configurations). Such
a model is not always satisfying, for instance, in urban transport, where we
want to consider the fact that the metric k is usually not a priori known, but
it depends on the traffic distribution itself. We will develop this aspect in the
“Discussion” Section 4.4.1, together with a completely different problem which is
somehow “opposite” (Section 4.4.2): instead of looking at transport problems where
concentration of the mass is penalized (because of traffic congestion), we look at
problems where it is indeed encouraged, because of the so-called economy of scale
(i.e., the larger the mass you transport, the cheaper the individual cost).

4.2.2 Producing a minimizer for the Beckmann Problem

The first remark on problem (BP) is that a priori it is not well-posed, in the sense
that there could not exist an L1 vector field minimizing the L1 norm under divergence
constraints. This is easy to understand if we think at the direct method in calculus
of variations to prove existence: we take a minimizing sequence wn and we would
like to extract a converging subsequence. Could we do this, from wn * w, it would
be easy to prove that w still satisfies r � w D � � �, since the relation

�
ˆ

r� � wn dx D
ˆ
� d.� � �/

would pass to the limit as n ! 1. Yet, the information
´ jw.x/j dx � C is not

enough to extract a converging sequence, even weakly. Indeed, the space L1 being
nonreflexive, bounded sequences are not guaranteed to have weakly converging
subsequences. This is on the contrary the case for dual spaces (and for reflexive
spaces, which are roughly speaking the dual of their dual).

Note that the strictly convex version that was proposed by Beckmann and that we
will review in Section 4.4.1 is much better to handle: if, for instance, we minimize´ jwj2 dx, then we can use weak compactness in L2, which is much easier to have
than compactness in L1.

To avoid this difficulty, we will choose the natural setting for (BP), i.e., the
framework of vector measures.
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Box 4.2. Memo: Vector measures

Definition. A finite vector measure � on a set ˝ is a map associating with every Borel
subset A � ˝ a value �.A/ 2 R

d such that for every disjoint union A D S
i Ai (with

Ai \ Aj D ; for i ¤ j), we have

X
i

j�.Ai/j < C1 and �.A/ D X
i

�.Ai/:

We denote by M d.˝/ the set of finite vector measures on ˝. To such measures we can
associate a positive scalar measure j�j 2 M

C

.˝/ through

j�j.A/ WD sup

(X
i

j�.Ai/j W A D [
i

Ai with Ai \ Aj D ; for i ¤ j

)
:

This scalar measure is called total variation measure of �. Note that for simplicity we only
consider the Euclidean norm on R

d , and write j�j instead of jj�jj (a notation that we keep
for the total mass of the total variation measure; see below), but the same could be defined
for other norms as well.

The integral of a Borel function � W ˝ ! R
d w.r.t. � is well defined if j�j 2 L1.˝; j�j/

is denoted
´
� � d� and can be computed as

Pd
iD1

´
�i d�i, thus reducing to integrals of

scalar functions according to scalar measures. It could also be defined as a limit of integral
of piecewise constant functions.

Functional analysis facts. The quantity jj�jj WD j�j.˝/ is a norm on M d.˝/, and this
normed space is the dual of C0.˝IRd/, the space of continuous function on˝ vanishing at

infinity, through the duality .�; �/ 7! ´
� � d�. This gives a notion of

�

* convergence for
which bounded sets in M d.˝/ are compact. As for scalar measures, we denote by * the
weak convergence in duality with Cb functions.

A clarifying fact is the following.
Proposition. For every � 2 M d.˝/ there exists a Borel function u W ˝ ! R

d such that
� D u � j�j and juj D 1 a.e. (for the measure j�j). In particular,

´
� � d� D ´

.� � u/ dj�j.
Sketch of proof. The existence of a function u is a consequence, via Radon-Nikodym

theorem, of � 
 j�j (every A set such that j�j.A/ D 0 obviously satisfies �.A/ D 0). The
condition juj D 1 may be proven by considering the sets fjuj < 1 � "g and fu � e > ag
for all hyperplanes such that the unit ball B1 is contained in fx 2 R

d W x � e � ag (and,
actually, we have B1 D T

e;afx 2 R
d W x � e � ag, the intersection being reduced to a

countable intersection). These sets must be negligible; otherwise we have a contradiction
on the definition of j�j.

With these definitions in mind, we can prove the following theorem. We denote
by M d

div the space of vector measures with divergence which is a scalar measure.

Theorem 4.6. Suppose that ˝ is a compact convex domain in R
d. Then, the

problem

.BP/ min
˚jwj.˝/ W w 2 M d

div.˝/ ; r � w D � � �
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(with divergence imposed in the weak sense, i.e., for every � 2 C1.˝/; we impose
� ´ r� � dw D ´

� d.� � �/, which also includes no-flux boundary conditions)
admits a solution. Moreover, its minimal value equals the minimal value of (KP)
and a solution of (BP) can be built from a solution of (KP). The two problems are
hence equivalent.

Proof. The first point that we want to prove is the equality of the minimal values
of (BP) and (KP). We start from min(BP)� min(KP). In order to do so, take an
arbitrary function � 2 C1 with jr�j � 1. Consider that for any w with r�w D ���,
we have

jwj.˝/ D
ˆ

˝

1 djwj �
ˆ

˝

.�r�/ � dw D
ˆ

˝

� d.� � �/:

If one takes a sequence of Lip1 \C1 functions uniformly converging to the
Kantorovich potential u such that

´
˝

u d.� � �/ D max .DP/ D min .KP/ (for
instance, take convolutions �k D �k � u), then we get

ˆ

˝

djwj � min .KP/

for any admissible w, i.e., min(BP)� min(KP).
We will show at the same time the reverse inequality and how to construct an

optimal w from an optimal � for (KP).
Actually, one way to produce a solution to this divergence-constrained problem is

the following (see [70]): take an optimal transport plan � and build a vector measure
wŒ�� defined2 through

hwŒ��; �i WD
ˆ

˝�˝

ˆ 1

0

!0
x;y.t/ � �.!x;y.t//dt d�.x; y/;

for every � 2 C0.˝IRd/, !x;y being a parametrization of the segment Œx; y� (it
is clear that this is the point where convexity of ˝ is needed). Even if for this
proof it would not be important, we will fix the constant-speed parametrization, i.e.,
!x;y.t/ D .1 � t/x C ty.

It is not difficult to check that this measure satisfies the divergence constraint,
since if one takes � D r�, then

ˆ 1

0

!0
x;y.t/ � �.!x;y.t// dt D

ˆ 1

0

d

dt

�
�.!x;y.t/

	
dt D �.y/ � �.x/

and hence hwŒ��;r�i D ´
� d.� � �/ and wŒ�� 2 M d

div.˝/.

2The strange notation wŒ�� is chosen so as to distinguish from the object wQ that we will introduce
in Section 4.2.3.
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To estimate its mass, we can see that jwŒ��j � �� , where the scalar measure �� is
defined through

h�� ; �i WD
ˆ

˝�˝

ˆ 1

0

j!0
x;y.t/j�.!x;y.t//dt d�; for all � 2 C0.˝IR/

and it is called transport density. Actually, we can even say more, since we can use
the Kantorovich potential u (see Chapter 3), and write3

!0
x;y.t/ D �jx � yj x � y

jx � yj D �jx � yjru.!x;y.t//:

This is valid for every t 2�0; 1Œ and every x; y 2 spt.�/ (so that !x;y.t/ is in the
interior of the transport ray Œx; y�, if x ¤ y; anyway for x D y, both expressions
vanish).

This allows to write, for every � 2 C0.˝IRd/,

hwŒ��; �i D
ˆ

˝�˝

ˆ 1

0

�jx � yjru.!x;y.t// � �.!x;y.t//dt d�.x; y/

D �
ˆ 1

0

dt
ˆ

˝�˝
ru.!x;y.t// � �.!x;y.t//jx � yj d�.x; y/:

If we introduce the function �t W ˝ �˝ ! ˝ given by �t.x; y/ D !x;y.t/ D .1 � t/
x C ty, we get

hwŒ��; �i D �
ˆ 1

0

dt
ˆ

˝

ru.z/ � �.z/ d
�
.�t/#.c � �/	;

where c � � is the measure on ˝ �˝ with density c.x; y/ D jx � yj w.r.t. � .
Since, on the other hand, the same kind of computations gives

h�� ; �i D
ˆ 1

0

dt
ˆ

˝

�.z/ d
�
.�t/#.c � �/	; (4.6)

we get hwŒ��; �i D h�� ;�� � rui, which shows

wŒ�� D �ru � �� :

This gives the density of wŒ�� with respect to �� and confirms jwŒ��j � �� .

3Pay attention to the use of the gradient of the Kantorovich potential u: we are using the result of
Lemma 3.6 which provides differentiability of u on transport rays.
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The mass of �� is obviously

ˆ

˝

d�� D
ˆ

˝

ˆ 1

0

j!0
x;y.t/jdt d�.x; y/ D

ˆ

˝�˝
jx � yj d�.x; y/ D min .KP/;

which proves the optimality of wŒ�� since no other w may do better than this, thanks
to the first part of the proof. This also proves min .BP/ D min .KP/. ut

Monge-Kantorovich system and transport density

The scalar measure �� that we have just defined is called transport density. It has
been introduced in [159] and [70, 71] for different goals. In [70, 71] it is connected
to some shape-optimization problems that we will not develop in this book. On the
other hand, in [159] it has been used to provide one of the first solutions to the
Monge problem with cost jx � yj. The important fact is that the measure � D ��
solves, together with the Kantorovich potential u, the so-called Monge-Kantorovich
system

8̂̂
<
ˆ̂:

r � .�ru/ D � � � in ˝

jruj � 1 in ˝;

jruj D 1 � � a.e.

(4.7)

This system is a priori only solved in a formal way, since the product of the
L1 function ru with the measure � has no meaning if � … L1. To overcome
this difficulty there are two possibilities: either we pass through the theory of � -
tangential gradient (see, for instance, [145] or [71]), or we give conditions to have
�� 2 L1. This second choice is what we do in Section 4.3, where we also show
better Lp estimates.

As we said, the solution of (4.7) has been used in [159] to find a transport map T,
optimal for the cost jx�yj. This map was defined as the flow of a certain vector field
depending on � and ru, exactly in the spirit of the Dacorogna-Moser construction
that we will see in Section 4.2.3. However, because of the lack of regularity of �
and ru, the Beckmann problem min

˚´ jwj W r � w D � � �
, whose solution is
w D ��ru, was approximated through min

˚´ jwjp W r � w D � � �
, for p > 1.
We will see in Section 4.4.1 that this problem, connected to traffic congestion issues,
is solved by a vector field obtained from the solution of a �p0 equation and admits
some regularity results. In this way, the dual of the Monge problem is approximated
by p0-Laplacian equations, for p0 ! 1.



134 4 Minimal flows

4.2.3 Traffic intensity and traffic flows for measures on curves

We introduce in this section some objects that generalize both wŒ�� and �� and
that will be useful for many goals. They will be used both for proving the
characterization of the optimal w as coming from an optimal plan � and for the
modeling issues of the discussion section. As a by-product, we also present a new
proof of a decomposition result by Smirnov [287] (see also [278]).

Let us introduce some notations. We define the set AC.˝/ as the set of absolutely
continuous curves ! W Œ0; 1� 7! ˝. We suppose ˝ to be compact, with nonempty
interior, in the whole section. Given ! 2 AC.˝/ and a continuous function �, let
us set

L�.!/ WD
ˆ 1

0

�.!.t//j!0.t/jdt: (4.8)

This quantity is the length of the curve, weighted with the weight �. When we take
� D 1, we get the usual length of ! and we denote it by L.!/ instead of L1.!/.
Note that these quantities are well defined since ! 2 AC.˝/ implies that ! is
differentiable a.e. and !0 2 L1.Œ0; 1�/ (we recall the definition of AC curves: they
are curves ! with their distributional derivative !0 2 L1 and !.t1/ � !.t0/ D ´ t1

t0
!0.t/dt for every t0 < t1). For simplicity, from now on we will write C (the space of
“curves”) for AC.˝/, when there is no ambiguity on the domain.

We consider probability measures Q on the space C . We restrict ourselves to
measures Q such that

´
L.!/ dQ.!/ < C1: these measures will be called traffic

plans, according to a terminology introduced in [48]. We endow the space C with
the uniform convergence. Note that the Ascoli-Arzelà Theorem guarantees that the
sets f! 2 C W Lip.!/ � `g are compact (for the uniform convergence) for every `.
We will associate two measures on ˝ to such a Q. The first is a scalar one, called
traffic intensity and denoted by iQ 2 MC.˝/; it is defined by

ˆ

˝

� diQ WD
ˆ

C

� ˆ 1

0

�.!.t//j!0.t/jdt
�

dQ.!/ D
ˆ

C
L�.!/dQ.!/;

for all � 2 C.˝;RC/. This definition (taken from [112]) is a generalization of the
notion of transport density. The interpretation is the following: for a subregion A,
iQ.A/ represents the total cumulated traffic in A induced by Q, i.e., for every path
we compute “how long” it stays in A, and then we average on paths.

We also associate a vector measure wQ with any traffic plan Q 2 P.C / via

8� 2 C.˝IRd/

ˆ

˝

� � dwQ WD
ˆ

C

�ˆ 1

0

�.!.t// � !0.t/dt

�
dQ.!/:

We will call wQ traffic flow induced by Q. Taking a gradient field � D r� in the
previous definition yields
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ˆ

˝

r� � dwQ D
ˆ

C
Œ�.!.1// � �.!.0//�dQ.!/ D

ˆ

˝

� d..e1/#Q � .e0/#Q/

(we recall that et denotes the evaluation map at time t, i.e., et.!/ WD !.t/).
From now on, we will restrict our attention to admissible traffic plans Q, i.e.,

traffic plans such that .e0/#Q D � and .e1/#Q D �, where � and � are two
prescribed probability measures on ˝. This means that

r � wQ D � � �

and hence wQ is an admissible flow connecting � and �. Note that the divergence is
always considered in a weak (distributional) sense and automatically endowed with
no-flux conditions, i.e., when we say r � w D f , we mean

´ r� � dw D � ´
� df for

all � 2 C1.˝/, without any condition on the boundary behavior of the test function
�.

Coming back to wQ, it is easy to check that jwQj � iQ; where jwQj is the
total variation measure of the vector measure wQ. This last inequality is in general
not an equality, since the curves of Q could produce some cancellations (imagine
a non-negligible amount of curves passing through the same point with opposite
directions, so that wQ D 0 and iQ > 0).

We need some properties of the traffic intensity and traffic flow.

Proposition 4.7. Both wQ and iQ are invariant under reparametrization (i.e., if T W
C ! C is a map such that for every !, the curve T.!/ is just a reparametrization
in time of !, then wT#Q D wQ and iT#Q D iQ).

For every Q, the total mass iQ.˝/ equals the average length of the curves
according to Q, i.e.,

´
C L.!/ dQ.!/ D iQ.˝/. In particular, wQ and iQ are finite

measures thanks to the definition of traffic plan.
If Qn * Q and iQn * i, then i � iQ.
If Qn * Q, wQn * w and iQn * i, then jjw�wQjj � i.˝/�iQ.˝/. In particular,

if Qn * Q and iQn * iQ, then wQn * wQ.

Proof. The invariance by reparametrization comes from the invariance of both
L�.!/ and

´ 1
0
�.!.t// � !0.t/dt.

The formula
´
C L.!/ dQ.!/ D iQ.˝/ is obtained from the definition of iQ by

testing against the function 1.
To check the inequality i � iQ, fix a positive test function � 2 C.˝/ and suppose

� � "0 > 0. Write

ˆ

˝

� diQn D
ˆ

C

�ˆ 1

0

�.!.t//j!0.t/jdt

�
dQn.!/: (4.9)

Note that the function C 3 ! 7! L�.!/ D ´ 1
0
�.!.t//j!0.t/jdt is positive and

lower semi-continuous w.r.t. !. Indeed, if we take a sequence !n ! !, from the
bound � � "0 > 0, we can assume that

´ j!0
n.t/jdt is bounded. Then we can
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infer !0
n * !0 weakly (as measures, or in L1), which implies, up to subsequences,

the existence of a measure f 2 MC.Œ0; 1�/ such that f � j!0j and j!0
nj * f .

Moreover, �.!n.t// ! �.!.t// uniformly, which gives
´
�.!n.t//j!0

n.t/jdt !´
�.!.t//df .t/ � ´

�.!.t//j!0.t/jdt.
This allows to pass to the limit in (4.9), thus obtaining

ˆ
� di D lim

n

ˆ
� diQn D lim inf

n

ˆ

C
L�.!/dQn.!/ �

ˆ

C
L�.!/dQ.!/ D

ˆ
� diQ:

If we take an arbitrary test function � (without a lower bound), add a constant "0 and
apply the previous reasoning, we get

´
.�C "0/di � ´

.�C "0/diQ. Letting "0 ! 0,
as i is a finite measure and � is arbitrary, we get i � iQ.

To check the last property, fix a smooth vector test function � and a number � > 1
and look at

ˆ

˝

� � dwQn D
ˆ

C

�ˆ 1

0

�.!.t// � !0.t/dt

�
dQn.!/

D
ˆ

C

�ˆ 1

0

�.!.t// � !0.t/dt C �jj�jj1L.!/

�
dQn.!/ � �jj�jj1iQn.˝/;(4.10)

where we just added and subtracted the total mass of iQn , equal to the average of
L.!/ according to Qn. Now note that

C 3 ! 7!
ˆ 1

0

�.!.t// � !0.t/dt C �jj�jj1L.!/ � .� � 1/jj�jj1L.!/

is l.s.c. in ! (use the same argument as above, noting that if we take !n ! !, we
may assume L.!n/ to be bounded and obtain !0

n * !0). This means that if we pass
to the limit in (4.10), we get

ˆ

˝

� � dw D lim
n

ˆ

˝

� � dwQn

�
ˆ

C

�ˆ 1

0

�.!.t// � !0.t/dt C �jj�jj1L.!/

�
dQ.!/ � �jj�jj1i.˝/

D
ˆ

˝

� � dwQ C �jj�jj1.iQ.˝/ � i.˝//:

By replacing � with �� , we get

ˇ̌̌
ˇ
ˆ

˝

� � dw �
ˆ

˝

� � dwQ

ˇ̌̌
ˇ � �jj�jj1.i.˝/ � iQ.˝//:

Letting � ! 1 and taking the sup over � with jj�jj1 � 1, we get the desired estimate
jjw � wQjj � i.˝/ � iQ.˝/.
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The very last property is evident: indeed one can assume up to a subsequence that
wQn * w holds for a certain w, and i D iQ implies w D wQ (which also implies the
full convergence of the sequence). ut

Box 4.3. Good to know!: Dacorogna-Moser transport

Let us present here a particular case of the ideas from [132] (first used in optimal
transport in [159]).

Construction. Suppose that w W ˝ ! R
d is a Lipschitz vector field with w � n D 0 on

@˝ and r � w D f0 � f1, where f0; f1 are positive probability densities which are Lipschitz
continuous and bounded from below. Then we can define the nonautonomous vector field
vt.x/ via

vt.x/ D w.x/
ft.x/

where ft D .1� t/f0 C tf1

and consider the Cauchy problem

(
y0

x.t/ D vt.yx.t//

yx.0/ D x
:

We define a map Y W ˝ ! C by associating with every x the curve Y.x/ given by yx.�/.
Then, we look for the measure Q D Y#f0 and %t WD .et/#Q WD .Yt/#f0. Thanks to the
consideration in Section 4.1.2, %t solves the continuity equation @t%t C r � .%tvt/ D 0. Yet,
it is easy to check that ft also solves the same equation since @t ft D f1 � f0 and r � .ftvt/ D
r � w D f0 � f1. By the uniqueness result of Section 4.1.2, from %0 D f0, we infer %t D ft.
In particular, x 7! yx.1/ is a transport map from f0 to f1.

It is interesting to compute the traffic intensity and the traffic flow associated with
the measure Q in Dacorogna-Moser construction. Fix a scalar test function �:

ˆ

˝

� diQ D
ˆ

˝

ˆ 1

0

�.yx.t//jvt.yx.t//jdtf0.x/ dx

D
ˆ 1

0

ˆ

˝

'.y/jvt.y/jft.y/dydt D
ˆ

˝

�.y/jw.y/jdy

so that iQ D jwj. Analogously, fix a vector test function �

ˆ

˝

� � dwQ D
ˆ

˝

ˆ 1

0

�.yx.t// � vt.yx.t//dtf0.x/ dx

D
ˆ 1

0

ˆ

˝

�.y/ � vt.y/ft.y/dydt D
ˆ

˝

�.y/ � w.y/dy;
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which shows wQ D w. Note that in this case we have jwQj D iQ and this is due to
the fact that no cancellation is possible, since all the curves share the same direction
at every given point.

With these tools we want to provide a proof of a decomposition result by Smirnov
[287], for which we need an extra approximation result.

Lemma 4.8. Consider two probabilities �; � 2 P.˝/ on a smooth compact
domain ˝ and a vector measure w 2 M d

div satisfying r � w D � � � in
distributional sense (with no-flux boundary conditions). Then, for every smooth
compact domain ˝ 0 containing ˝ in its interior, there exist a family of vector fields
w" 2 C1.˝ 0/ with w" � n˝0 D 0 and two families of densities �"; �" 2 C1.˝ 0/,
bounded from below by positive constants k" > 0, with r � w" D �" � �" and´
˝0

�" D ´
˝0

�" D 1, weakly converging to w; �, and � as measures, respectively,
and satisfying jw"j * jwj.
Proof. First, extend �; �, and w at 0 out of ˝ and take convolutions (in the whole
space Rd) with a Gaussian kernel �", so that we get Ow" WD w � �" and O�" WD � � �",
O�" WD � � �", still satisfying r � Ow" D �" � �". Since the Gaussian kernel is strictly
positive, we also have strictly positive densities for O�" and O�". These convolved
densities and vector field would do the job required by the theorem, but we have to
take care of the support (which is not ˝ 0) and of the boundary behavior.

Let us set
´
˝0

O�" D 1 � a" and
´
˝0

O�" D 1 � b". It is clear that a"; b" ! 0 as
" ! 0. Consider also Ow" � n˝0 : due to d.˝; @˝ 0/ > 0 and to the fact that �" goes
uniformly to 0 locally outside the origin, we also have j Ow" � n˝0 j � c", with c" ! 0.

Consider u" the solution to
8̂̂
<
ˆ̂:
�u" D a"�b"j˝0j inside ˝ 0
@u"

@n D � Ow" � n on @˝ 0
´
˝0

u" D 0

and the vector field ı" D ru". Note that a solution exists thanks to � ´
@˝0

Ow" �n˝0 D
a" � b". Note also that an integration by parts shows

ˆ

˝0

jru"j2 D �
ˆ

@˝0

u". Ow" � n˝0/ �
ˆ

˝0

u"
�

a" � b"
j˝ 0j

�
� Cjjru"jjL2 .c" C a" C b"/

and provides jjru"jjL2 � C.a" C b" C c"/ ! 0. This shows jjı"jjL2 ! 0.
Now take

�" D O�" ˝ 0 C a"
j˝ 0j I �" D O�" ˝ 0 C b"

j˝ 0j I w" D Ow" ˝ 0 C ı";

and check that all the requirements are satisfied. In particular, the last one is satisfied
since jjı"jjL1 ! 0 and j Ow"j * jwj by general properties of the convolutions. ut
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Remark 4.9. Note that considering explicitly the dependence on ˝ 0, it is also
possible to obtain the same statement with a sequence of domains ˝ 0

" converging to
˝ (for instance, in the Hausdorff topology). It is just necessary to choose them so
that setting t" WD d.˝; @˝ 0

"/, we have jj�"jjL1.B.0;t"/c/ ! 0. For the Gaussian kernel,
this is satisfied whenever t2"=" ! 1 and can be guaranteed by taking t" D "1=3.

With these tools we can now prove

Theorem 4.10. For every finite vector measure w 2 M d
div.˝/ and �; � 2 P.˝/

with r � w D � � �, there exists a traffic plan Q 2 P.C / with .e0/#Q D � and
.e1/#Q D � such that jwQj D iQ � jwj, and jjw � wQjj C jjwQjj D jjw � wQjj C
iQ.˝/ D jjwjj. In particular we have jwQj ¤ jwj unless wQ D w.

Proof. By means of Lemma 4.8 and Remark 4.9, we can produce an approximating
sequence .w"; �"; �"/ * .w; �; �/ of C1 functions supported on domains ˝"

converging to ˝. We apply Dacorogna-Moser’s construction to this sequence of
vector fields, thus obtaining a sequence of measures Q". We can consider these
measures as probability measures on C WD AC.˝ 0/ (where ˝ � ˝" � ˝ 0)
which are, each, concentrated on curves valued in ˝". They satisfy iQ" D jw"j
and wQ" D w". We can reparametrize by constant speed the curves on which Q" is
supported, without changing traffic intensities and traffic flows. This means that we
use curves ! such that L.!/ D Lip.!/. The equalities

ˆ

C
Lip.!/ dQ".!/ D

ˆ

C
L.!/ dQ".!/ D

ˆ

˝0

iQ" D
ˆ

˝0

jw"j ! jwj.˝ 0/ D jwj.˝/

show that
´
C Lip.!/ dQ".!/ is bounded and hence Q" is tight (since the sets f! 2

C W Lip.!/ � Lg are compact). Hence, up to subsequences, we can assume Q" *

Q. The measure Q is obviously concentrated on curves valued in ˝. The measures
Q" were constructed so that .e0/#Q" D �" and .e1/#Q" D �", which implies, at
the limit, .e0/#Q D � and .e1/#Q D �. Moreover, thanks to Proposition 4.7, since
iQ" D jw"j * jvj and wQ" * w, we get jwj � iQ � jwQj and jjw � wQjj �
jwj.˝/� iQ.˝/. This gives jjw � wQjj C jjwQjj � jjw � wQjj C iQ.˝/ � jjwjj and
the opposite inequality jjwjj � jjw � wQjj C jjwQjj is always satisfied. ut

Remark 4.11. The previous statement contains a milder version of Theorem C in
[287], i.e., the decomposition of any w into a cycle w � wQ (we call cycle all
divergence-free vector measures) and a flow wQ induced by a measure on paths,
with jjwjj D jjw � wQjj C jjwQjj. The only difference with the theorem in [287]
is the fact that it guarantees that one can choose Q concentrated on simple curves,
which we did not take care of here (on the other hand, Ex(27) provides a partial
solution to this issue).

Remark 4.12. It is possible to guess what happens to a cycle through this construc-
tion. Imagine the following example (as in Figure 4.1): ˝ is composed of two parts
˝C and ˝�, with spt.�/ [ spt.�/ � ˝C and a cycle of w is contained in ˝�.
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Fig. 4.1 The decomposition
of w in the example of
Remark 4.12

m

ν

wQ
w−wQ

W+ W−

When we build the approximations �" and �", we will have positive mass in˝�, but
very small. Because of the denominator in the definition of v, the curves produced
by Dacorogna-Moser will follow this cycle very fast, passing many times on each
point of the cycle. Hence, the flow w" in ˝� is obtained from a very small mass
which passes many times. This implies that the measure Q" of this set of curves
will disappear at the limit " ! 0. Hence, the measure Q will be concentrated on
curves staying in ˝C and wQ D 0 on ˝�. However, in this way we got rid of that
particular cycle, but the same does not happen for cycles located in regions with
positive masses of � and �. In particular nothing guarantees that wQ has no cycles.

4.2.4 Beckman problem in one dimension

The 1D case is very easy in what concerns Beckmann formulation of the optimal
transport problem, but it is interesting to analyze it: indeed, it allows to check the
consistency with the Monge formulation and to use the results throughout the next
sections. We will take ˝ D Œa; b� � R.

First of all, note that the condition r � w D �� � is much stronger in dimension
one than in higher dimension. Indeed, the divergence is the trace of the Jacobian
matrix, and hence prescribing it only gives one constraint on a matrix which has a
priori d � d degrees of freedom. On the contrary, in dimension one there is only
one partial derivative for the vector field w (which is actually a scalar), and this
completely prescribes the behavior of w. Indeed, the condition r � w D � � � with
Neumann boundary conditions implies that w must be the antiderivative of � � �

with w.a/ D 0 (the fact that � and � have the same mass also implies w.b/ D 0).
Note that the fact that its derivative is a measure gives w 2 BV.Œa; b�/ (we can say
that M d

div D BV when d D 1).
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Box 4.4. Memo: Bounded variation functions in one variable

BV functions are defined as L1 functions whose distributional derivatives are measures.
In dimension one this has a lot of consequences. In particular these functions coincide
a.e. with functions which have bounded total variation in a pointwise sense: for each f W
Œa; b� ! R, define

TV.f I Œa; b�/ WD sup

(
N�1X
iD0

jf .tiC1/ � f .ti/j W a D t0 < t1 < t2 < � � � < tN D b

)
:

Functions of bounded variation are defined as those f such that TV.f I Œa; b�/ < 1. It
is easy to check that BV functions form a vector space and that monotone functions are
BV (indeed, if f is monotone, we have TV.f I Œa; b�/ D jf .b/ � f .a/j. Lipschitz functions
are also BV and TV.f I Œa; b�/ � Lip.f /.b � a/. On the other hand, continuous functions
are not necessarily BV (but absolutely continuous functions are BV), nor it is the case for
differentiable functions (obviously, C1 functions, which are Lipschitz on bounded intervals,
are BV). As an example one can consider

f .x/ D
(

x2 sin
�
1
x2

	
if x ¤ 0

0 for x D 0;

which is differentiable everywhere but not BV.
On the other hand, BV functions have several properties.
Properties of BV functions in R. If TV.f I Œa; b�/ < 1, then f is the difference of two

monotone functions (in particular we can write f .x/ D TV.f I Œa; x�/ � .TV.f I Œa; x�/ �
f .x//, both terms being nondecreasing functions); it is a bounded function and sup f �
inf f � TV.f I Œa; b�/; it has the same continuity and differentiability properties of monotone
functions (it admits left and right limits at every point; it is continuous up to a countable set
of points and differentiable a.e.).

In particular, in 1D, we have BV � L1 which is not the case in higher dimension (in
general, we have BV � Ld=.d�1/).

We finish by stressing the connections with measures: for every positive measure � on
Œa; b�, we can build a monotone function by taking its cumulative distribution function,
i.e., F�.x/ D �.Œa; x�/, and the distributional derivative of this function is exactly the
measure �. Conversely, every monotone increasing function on a compact interval is the
cumulative distribution function of a (unique) positive measure, and every BV function is
the cumulative distribution function of a (unique) signed measure.

As a consequence, we have the following facts:

• In dimension one, there is only one competitor w which is given by w D F��F�
with F�.x/ D �.Œa; x�/ and F�.x/ D �.Œa; x�/.

• This field w belongs to BV.Œa; b�/ and hence to every Lp space, including L1.
• Possible higher regularity of w depends on the regularity of �� � (for instance,

we have w 2 W1;p whenever �; � 2 Lp).
• The minimal cost in Beckmann’s problem is given by jjF� � F� jjL1 , which is

consistent with Proposition 2.17.
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• The transport density � , characterized by w D �u0 � � , is given by � D jwj
and shares the same summability properties of w; it also belongs to BV as a
composition of a BV function with the absolute value function.

4.2.5 Characterization and uniqueness of the optimal w

In this section we will show two facts: first we prove that the optimal w in the
(BP) always comes from an optimal transport plan � , and then we prove that all the
optimal � give the same wŒ�� and the same �� , provided one of the two measures is
absolutely continuous.

Theorem 4.13. Let w be optimal in (BP): then there is an optimal transport plan �
such that w D wŒ��.

Proof. Thanks to Theorem 4.10, we can find a measure Q 2 P.C / with .e0/#Q D
� and .e1/#Q D � such that jwj � jwQj. Yet, the optimality of w implies the
equality jwj D jwQj and the same Theorem 4.10 gives in such a case w D wQ, as
well as jwj D iQ. We can assume Q to be concentrated on curves parametrized by
constant speed. Define S W ˝ � ˝ ! C the map associating with every pair .x; y/
the segment !x;y parametrized with constant speed: !x;y.t/ D .1 � t/x C ty. The
statement is proven if we can prove that Q D S#� with � an optimal transport plan.

Indeed, using again the optimality of w and Theorem 4.10, we get

min .BP/ D jwj.˝/ D iQ.˝/ D
ˆ

C
L.!/ dQ.!/ �

ˆ

C
j!.0/ � !.1/j dQ.!/

D
ˆ

˝�˝
jx � yj d..e0; e1/#Q/.x; y/ � min .KP/:

The equality min .BP/ D min .KP/ implies that all these inequalities are equalities.
In particular Q must be concentrated on curves such that L.!/ D j!.0/�!.1/j, i.e.,
segments. Also, the measure .e0; e1/#Q, which belongs to˘.�; �/, must be optimal
in (KP). This concludes the proof. ut

The proof of the following result is essentially taken from [8].

Theorem 4.14. If� � L d, then the vector field wŒ�� does not depend on the choice
of the optimal plan � .

Proof. Let us fix a Kantorovich potential u for the transport between � and �.
This potential does not depend on the choice of � . It determines a partition into
transport rays: Corollary 3.8 guarantees that the only points of ˝ which belong to
several transport rays are non-differentiability points for u and are hence Lebesgue-
negligible. Let us call S the set of points which belong to several transport rays: we
have �.S/ D 0, but we do not suppose �.S/ D 0 (� is not supposed to be absolutely
continuous). However, � is concentrated on .�x/

�1.Sc/. We can then disintegrate
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(see Section 2.3) � according to the transport ray containing the point x. More
precisely, we define a map R W ˝ � ˝ ! R, valued in the set R of all transport
rays, sending each pair .x; y/ into the ray containing x. This is well-defined � -a.e.
and we can write � D � r ˝ �, where � D R#� , and we denote by r the variable
related to transport rays. Note that, for a.e. r 2 R, the plan � r is optimal between
its own marginals (otherwise we could replace it with an optimal plan, do it in a
measurable way, and improve the cost of � ).

The measure wŒ�� may also be obtained through this disintegration, and we have
wŒ�� D w� r ˝ �. This means that in order to prove that wŒ�� does not depend on
� , we just need to prove that each w� r and the measure � do not depend on it. For
the measure � this is easy: it has been obtained as an image measure through a map
only depending on x and hence only depends on �. Concerning w� r , note that it is
obtained in the standard Beckmann way from an optimal plan, � r. Hence, thanks
to the considerations in Section 4.2.4 about the 1D case, it uniquely depends on the
marginal measures of this plan.

This means that we only need to prove that .�x/#�
r and .�y/#�

r do not depend
on � . Again, this is easy for .�x/#�

r, since it must coincide with the disintegration
of � according to the map R (by uniqueness of the disintegration). It is more delicate
for the second marginal.

The second marginal �r WD .�y/#�
r will be decomposed into two parts:

.�y/#.�
r
j˝�S/ C .�y/#.�

r
j˝�Sc/:

This second part coincides with the disintegration of �jSc , which obviously does not
depend on � (since it only depends on the set S, which is built upon u).

We need now to prove that �r
jS D .�y/#.�

r
j˝�S/ does not depend on � . Yet, this

measure can only be concentrated on the two endpoints of the transport ray r, since
these are the only points where different transport rays can meet. This means that
this measure is purely atomic and composed by at most two Dirac masses. Not
only the endpoint where u is maximal (i.e., the first one for the order on the ray; see
Section 3.1) cannot contain any mass of �: indeed the transport must follow a precise
direction on each transport ray (as a consequence of u.x/�u.y/ D jx�yj on spt.�/),
and the only way to have some mass of the target measure at the “beginning” of the
transport ray would be to have an atom for the source measure as well. Yet, � is
absolutely continuous and Property N holds (see Section 3.1.4 and Theorem 3.12,
which means that the set of rays r where �r has an atom is negligible). Hence �r

jS
is a single Dirac mass. The mass equilibrium condition between �r and �r implies
that the value of this mass must be equal to the difference 1 � �r

jSc.r/, and this last
quantity does not depend on � but only on � and �.

Finally, this proves that each w� r does not depend on the choice of � . ut
Corollary 4.15. If � � L d, then the solution of (BP) is unique.

Proof. We have seen in Theorem 4.13 that any optimal w is of the form wŒ�� and in
Theorem 4.14 that all the fields wŒ�� coincide. ut
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4.3 Summability of the transport density

The analysis of the Beckmann problem performed in the previous sections was
mainly made in a measure setting, and the optimal w and the transport density �
were just measures on ˝. We investigate here the question whether they have extra
regularity properties supposing extra assumptions on � and/or �.

We will give summability results, proving that � is in some cases absolutely
continuous and providing Lp estimates. The proofs are essentially taken from [273]
(also look at [61, 166]): previous results, through very different techniques, were
first presented in [143–145]. In these papers, different estimates on the “dimension”
of � were also presented, thus giving interesting information should � fail to be
absolutely continuous. Let us also observe that [208], while applying these tools to
image processing problems, contains a new4 proof of absolute continuity.

Note that higher-order questions (such as whether � is continuous or Lipschitz
or more regular provided � and � have smooth densities) are completely open up
to now. The only exception is a partial result in dimension 2 (see [171]), where
a continuity result is given if � and � have Lipschitz densities on disjoint convex
domains.

Open Problem (continuity of the transport density): Is it true that, supposing
that �; � have continuous densities, the transport density � is also continuous? Is it
true that it is Lipschitz if they are Lipschitz, and/or Hölder if they are Hölder?

In all that follows ˝ is a compact and convex domain in R
d, and two probability

measures �; � are given on it. At least one of them will be absolutely continuous,
which implies uniqueness for � (see Theorem 4.14). The first result – first proven in
[162] – will concern L1 summability (i.e., absolute continuity).

Theorem 4.16. Suppose ˝ � R
d is a convex domain, and � � L d. Let � be the

transport density associated with the transport of � onto �. Then � � L d.

Proof. Let � be an optimal transport plan from � to � and take � D �� ; call �t

the standard interpolation between the two measures: �t D .�t/#� where �t.x; y/ D
.1 � t/x C ty. We have �0 D � and �1 D �.

We have already seen (go back to (4.6)) that the transport density � may be
written as

� D
ˆ 1

0

.�t/#.c � �/dt;

where c W ˝ �˝ ! R is the cost function c.x; y/ D jx � yj (hence c � � is a positive
measure on ˝ �˝).

4Their proof is somehow intermediate between that of [143] and the one we present here: indeed,
approximation by atomic measures is also performed in [208], as here, but on both the source and
the target measure, which requires a geometric analysis of the transport rays as in [143].
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Since ˝ is bounded, it is evident that we have

� � C
ˆ 1

0

�t dt: (4.11)

To prove that � is absolutely continuous, it is sufficient to prove that almost every
measure �t is absolutely continuous, so that, whenever jAj D 0, we have �.A/ �
C
´ 1
0
�t.A/dt D 0.

We will prove �t � L d for t < 1. First, we will suppose that � is finitely
atomic (the point .xi/iD1;:::;N being its atoms). In this case we will choose � to be any
optimal transport plan induced by a transport map T (which exists, since � � L d).
Note that the absolute continuity of � is an easy consequence of the behavior of the
optimal transport from � to � (which is composed by N homotheties), but we also
want to quantify this absolute continuity, in order to go on with an approximation
procedure.

Remember that � is absolutely continuous and hence there exists a correspon-
dence " 7! ı D ı."/ such that

jAj < ı."/ ) �.A/ < ": (4.12)

Take now a Borel set A and look at �t.A/. The domain ˝ is the disjoint union of a
finite number of sets ˝i D T�1.fxig/. We call ˝i.t/ the images of ˝i through the
map x 7! .1 � t/x C tT.x/ (Figure 4.2). These sets are essentially disjoint. Why?
Because if a point z belongs to ˝i.t/ and ˝j.t/, then two transport rays cross at z,
the one going from x0

i 2 ˝i to xi and the one from x0
j 2 ˝j to xj. The only possibility

is that these two rays are actually the same, i.e., that the five points x0
i; x0

j; z; xi; xj

are aligned. But this implies that z belongs to one of the lines connecting two atoms
xi and xj. Since we have finitely many of these lines, this set is negligible. Note that
this argument only works for d > 1 (we will not waste time on the case d D 1, since
the transport density is always a BV , and hence bounded, function). Moreover, if we
sticked to the ray-monotone optimal transport map, we could have actually proved
that these sets are truly disjoint, with no negligible intersection.

Now we have

�t.A/ D
X

i

�t.A \˝i.t// D
X

i

�0

�
A \˝i.t/ � txi

1 � t

�
D �0

 [
i

A \˝i.t/ � txi

1 � t

!
:

Since for every i we have
ˇ̌̌
ˇA \˝i.t/ � txi

1 � t

ˇ̌̌
ˇ D 1

.1 � t/d
jA \˝i.t/j ;

we obtain ˇ̌̌
ˇ̌[

i

A \˝i.t/ � txi

1 � t

ˇ̌̌
ˇ̌ � 1

.1 � t/d
jAj:
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Fig. 4.2 Disjointness of the sets ˝i.t/

Hence it is sufficient to suppose jAj < .1 � t/dı."/ to get �t.A/ < ". This confirms
�t � L d and gives an estimate that may pass to the limit.

Take a sequence �n of atomic measures converging to �. The corresponding
optimal transport plans �n converge to an optimal transport plan � and �n

t converge
to the corresponding �t (see Theorem 1.50 in Chapter 1). Hence, to prove absolute
continuity for the transport density � associated with such a � , it is sufficient to
prove that these �t are absolutely continuous.

Take a set A such that jAj < .1 � t/dı."/. Since the Lebesgue measure is regular
(see the definition in the memo Box 1.6), A is included in an open set B such
that jBj < .1 � t/dı."/. Hence �n

t .B/ < ". Passing to the limit, thanks to weak
convergence and semi-continuity on open sets, we have

�t.A/ � �t.B/ � lim inf
n

�n
t .B/ � ":

This proves �t � L d and hence � � L d. ut
Remark 4.17. Where did we use the optimality of �? We did it when we said that
the ˝i.t/ are disjoint. For a discrete measure �, it is always true that the measures
�t corresponding to any transport plan � are absolutely continuous for t < 1, but
their absolute continuity may degenerate at the limit if we allow the sets ˝i.t/ to
superpose (since in this case densities sum up and the estimates may depend on the
number of atoms).

Remark 4.18. Note that we strongly used the equivalence between the two different
definitions of absolute continuity, i.e., the " $ ı correspondence, on the one hand,
and the condition on negligible sets, on the other. Indeed, to prove that the condition
�t � L d passes to the limit, we need the first one, while to deduce � � L d, we
need the second one.
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−2 −1 1 2

T

m νm1/2

Fig. 4.3 An example of optimal transport plan that cannot be approximated with optimal plans
with atomic second marginal

Remark 4.19. As a by-product of our proof, we can see that any optimal transport
plan from � to � which is approximable through optimal transport plans from �

to atomic measures must be such that all the interpolating measures �t (for every
t 2�0; 1Œ) are absolutely continuous. This property is not satisfied by every optimal
transport plan, since, for instance, the plan � which sends � D L 2

jŒ�2;�1��Œ0;1�
onto � D L 2

jŒ1;2��Œ0;1� moving .x; y/ to .�x; y/ is optimal but is such that �1=2 D
H 1

jf0g�Œ0;1�. Hence, this plan cannot be approximated by optimal plans sending
� onto atomic measures. On the other hand, we proved in Lemma 3.20 that
the monotone optimal transport can indeed be approximated in a similar way
(Figure 4.3).

From now on we will often confuse absolutely continuous measures with their
densities and write jj�jjLp for jjf jjLp.˝/ when � D f � L d.

Theorem 4.20. Suppose � D f � L d, with f 2 Lp.˝/, where ˝ is compact and
convex. Then, if p < d0 WD d=.d�1/, the unique transport density � associated with
the transport of � onto � belongs to Lp.˝/ as well, and if p � d0, it belongs to any
space Lq.˝/ for q < d0.

Proof. Start from the case p < d0: following the same strategy (and the same
notations) as before, it is sufficient to prove that each measure �t (for t 2 Œ0; 1Œ)
is in Lp and to estimate their Lp norm. Then we will use

jj� jjLp � C
ˆ 1

0

jj�tjjLp dt;

(which is a consequence of (4.11) and of Minkowski inequality), the conditions on
p being chosen exactly so that this integral converges.

Consider first the discrete case: we know that �t is absolutely continuous and
that its density coincides on each set ˝i.t/ with the density of a homothetic image
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of � on ˝i, the homothetic ratio being .1 � t/. Hence, if ft is the density of �t, we
have

ˆ

˝

ft.x/
p dx D

X
i

ˆ

˝i.t/
ft.x/

p dx D
X

i

ˆ

˝i

�
f .x/

.1 � t/d

�p

.1 � t/d dx

D .1 � t/d.1�p/
X

i

ˆ

˝i

f .x/p dx D .1 � t/d.1�p/
ˆ

˝

f .x/p dx:

We get jj�tjjLp D .1 � t/�d=p0 jj�jjLp , where p0 D p=.p � 1/.
This inequality, which is true in the discrete case, stays true at the limit as well.

If � is not atomic, approximate it through a sequence �n
1 and take optimal plans

�n and interpolating measures �n
t . Up to subsequences we have �n * � (for an

optimal transport plan � ) and �n
t * �t (for the corresponding interpolation); by

semi-continuity, we have

jj�tjjLp � lim inf
n

jj�n
t jjLp � .1 � t/�d=p0 jj�0jjLp

and we deduce

jj� jjLp � C
ˆ 1

0

jj�tjjLp dt � Cjj�0jjLp

ˆ 1

0

.1 � t/�d=p0

dt:

The last integral is finite whenever p0 > d, i.e., p < d0 D d=.d�1/.
The second part of the statement (the case p � d0) is straightforward once one

considers that any density in Lp also belongs to any Lq space for q < p. ut
Example 4.21. We can see an example where, even if � 2 L1, the singularity
of � prevents � from being Ld0

. Consider � D f � L d with f D 1A and A D
B.0;R/ n B.0;R=2/ (with R chosen so that

´
f D 1), and take � D ı0. Note that

R
2
� � c � � � R� , which implies that the summability of � D ´ 1

0
.�t/#.c � �/dt

is the same as that of
´ 1
0
.�t/#.�/dt D ´ 1

0
�t dt. We have �t D ft � L d, with ft D

.1 � t/�d1.1�t/A; hence

ˆ 1

0

ft.x/ dt D
ˆ 2

R jxj
1
R jxj

1

sd
ds D cjxj1�d for jxj � R

2

(where we used the change of variable s D 1 � t). This function belongs to Lp in a
neighborhood of 0 in dimension d only if we have .1 � d/p C .d�1/ > �1, i.e., if
.d�1/.p � 1/ < 1. This is exactly p < d0.

We saw in the previous theorems that the measures �t inherit some regularity
(absolute continuity or Lp summability) from � exactly as it happens for homoth-
eties of ratio 1 � t. This regularity degenerates as t ! 1, but we saw two cases
where this degeneracy produced no problem: for proving absolute continuity, where
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the separate absolute continuous behavior of almost all the �t was sufficient, and
for Lp estimates, provided the degeneracy stays integrable.

It is natural to try to exploit another strategy: suppose both � and � share some
regularity assumption (e.g., they belong to Lp). Then we can give estimate on �t for
t � 1=2 starting from � and for t � 1=2 starting from �. In this way we have no
degeneracy!

This strategy works quite well, but it has an extra difficulty: in our previous
estimates, we didn’t know a priori that �t shared the same behavior of piecewise
homotheties of �; we got it as a limit from discrete approximations. And, when we
pass to the limit, we do not know which optimal transport � will be selected as a
limit of the optimal plans �n. This was not important in the previous section, since
any optimal � induces the same transport density � . But here we would like to glue
together estimates on �t for t � 1=2which have been obtained by approximating �1
and estimates on �t for t � 1=2 which come from the approximation of �0. Should
the two approximations converge to two different transport plans, we could not put
together the two estimates and deduce anything on � .

Hence, the main technical issue that we need to consider is proving that one
particular optimal transport plan, i.e., the ray-monotone one, can be approximated
in both directions. Lemma 3.20 exactly does the job (and, indeed, it was proven
in [273] exactly for this purpose). Yet, the transport plans �" we build in the
approximation are not optimal for the cost jx�yj but for some costs jx�yjC"jx�yj2.
We need to do this in order to force the selected limit optimal transport to be the
monotone one (through a secondary variational problem, say). Anyway, this will
not be an issue: these approximating optimal transport plans will share the same
geometric properties that will imply disjointness for the sets ˝i.t/. In particular, we
can prove the following estimate.

Lemma 4.22. Let � be an optimal transport plan between � and an atomic
measure � for a transport cost c.x; y/ D h.y � x/ where h W R

d ! R is a
strictly convex function. Set as usual �t D .�t/#� . Then we have jj�tjjLp �
.1 � t/�d=p0 jj�jjLp .

Proof. The result is exactly the same as in Theorem 4.20, where the key tool is the
fact that �t coincides on every set ˝i.t/ with a homothety of �0. The only fact that
must be checked again is the disjointness of the sets ˝i.t/.

To do so, take a point x 2 ˝i.t/\˝j.t/: Hence there exist xi; xj belonging to ˝i

and ˝j, respectively, so that x D .1 � t/xi C tyi D .1 � t/xj C tyj, being yi D T.xi/

and yj D T.xj/ two atoms of �. But this would mean that Tt WD .1 � t/id C tT is
not injective, which is a contradiction to the following Lemma 4.23. Hence the sets
˝i.t/ are disjoint and this implies the bound on �t. ut
Lemma 4.23. Let � be an optimal transport plan between � and � for a transport
cost c.x; y/ D h.y � x/ where h W Rd ! R is a strictly convex function, and suppose
that it is induced by a transport map T. Choose a representative of T such that
.x;T.x// 2 spt.�/ for all x. Then the map x 7! .1 � t/x C tT.x/ is injective for
t 2�0; 1Œ.
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Proof. Suppose that there exist x ¤ x0 such that

.1 � t/x C tT.x/ D .1 � t/x0 C tT.x0/ D x0:

Set a D T.x/� x and b D T.x0/� x0. This also means x D x0 � ta and x0 D x0 � tb.
In particular, x ¤ x0 implies a ¤ b.

The c-cyclical monotonicity of the support of the optimal � implies

h.a/C h.b/ � h.T.x0/ � x/C h.T.x/ � x0/ D h.tb C .1 � t/a/C h.ta C .1 � t/b/:

Yet, a ¤ b, and strict convexity implies

h.tbC.1� t/a/Ch.taC.1� t/b/ < th.b/C.1� t/h.a/Cth.a/C.1� t/h.b/ D h.a/Ch.b/;

which is a contradiction. ut
Theorem 4.24. Suppose that � and � are probability measures on˝, both belong-
ing to Lp.˝/, and � the unique transport density associated with the transport of �
onto �. Then � belongs to Lp.˝/ as well.

Proof. Let us consider the optimal transport plan � from � to � defined by (3.4). We
know that this transport plan may be approximated by plans �" which are optimal
for the cost jx � yj C "jx � yj2 from � to some discrete atomic measures �". The
corresponding interpolation measures �"t satisfy the Lp estimate from Lemma 4.22
and, at the limit, we have

jj�tjjLp � lim inf
"!0

jj�"t jjLp � .1 � t/�d=p0 jj�jjLp :

The same estimate may be performed from the other direction, since the very same
transport plan � may be approximated by optimal plans for the cost jx�yjC"jx�yj2
from atomic measures to �. Putting together the two estimates, we have

jj�tjjLp � min
n
.1 � t/�d=p0 jj�jjLp ; t�d=p0 jj�jjLp

o
� 2d=p0

max fjj�jjLp ; jj�jjLpg :

Integrating these Lp norms, we get the bound on jj� jjLp . ut
Remark 4.25. The same result could have been obtained in a strongly different
way, thanks to the displacement convexity of the functional � 7! jj�jjpLp . This
functional is actually convex along geodesics in the space Wq.˝/ for q > 1

(see Proposition 7.29 where, unfortunately, the notation for p and q is reversed).
Then we pass to the limit as q ! 1: this gives the result on the interpolating
measures corresponding to the optimal plan which is obtained as a limit of the Kq-
optimal plans. This plan is, by the way, � again. And the integral estimate comes
straightforward. Yet, this requires more sophisticated tools than what developed
so far.
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Example 4.26. We can provide examples (in dimension higher than one) where the
summability of � is no more than that of � and �. Take, for instance, � D f �L d and
� D g � L d with f .x1; x2; : : : ; xd/ D f0.x2; : : : xd/1Œ0;1�.x1/ and g.x1; x2; : : : ; xd/ D
f0.x2; : : : xd/1Œ4;5�.x1/. It is not difficult to check that the transport rays in this
example go in the direction of the first coordinate vector and that the optimal �
is absolutely continuous with density given by �.x/ D f0.x2; : : : xd/s.x1/, where
s W R ! RC is characterized by s0 D 1Œ0;1� � 1Œ4;5�, s.0/ D s.5/ D 0 (which comes
from the fact that s would be the transport density for the 1D transport between 1Œ0;1�
and 1Œ4;5�). Hence, from s D 1 on Œ1; 4�, one sees that the summability of � is the
same of that of f0, which is also the same of those of f and g.

4.4 Discussion

4.4.1 Congested transport

As we saw in Section 4.2, Beckmann’s problem can admit an easy variant if we
prescribe a positive function k W ˝ ! RC, where k.x/ stands for the local cost
at x per unit length of a path passing through x. This models the possibility that
the metric is nonhomogeneous, due to geographical obstacles given a priori. Yet, it
happens in many situations, in particular in urban traffic (as many readers probably
note every day), that this metric k is indeed nonhomogeneous, but is not given a
priori: it depends on the traffic itself. In Beckmann’s language, we must look for a
vector field w optimizing a transport cost depending on w itself!

The easiest model, chosen by Beckmann (see [27] and later [110]), is to consider
the same framework as (BP) but supposing that k.x/ D g.jw.x/j/ is a function of
the modulus of the vector field w. This is quite formal for the moment (for instance,
it is not meaningful if w is a measure, but we will see that in this case we can use
better spaces than M d

div). In this case we would like to solve

min

�ˆ
H .w.x// dx W r � w D � � �

�
; (4.13)

where H .z/ D H.jzj/ and H.t/ D g.t/t. Note that if H is superlinear (if g.t/ tends to
1 as t ! 1, i.e., if the congestion effect becomes stronger and stronger when the
traffic increases), this problem is well-posed in the class of vector fields w 2 L1. For
instance, if g.t/ D t, which is the easiest case one can imagine, we must minimize
the L2 norm under divergence constraints:

min

�ˆ
jw.x/j2 dx W w 2 L2.˝IRd/; r � w D � � �

�
:

This problem is easily solvable since one can see that the optimal w must be a
gradient (we will develop this computation in a more general framework later), and
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setting w D ru one gets �u D � � �. This is complemented with Neumann
boundary conditions and allows to find u and then w.

We want now to discuss the meaning and pertinence of this model, keeping into
account the following natural questions:

• is it correct that the coefficient k depends on jwj, or should it rather depend on
other traffic quantities, such as iQ? (note that w can have cancellations);

• what is the connection with equilibrium issues? In traffic congestion, typically
every agent decides alone which path to choose, and the final traffic intensity
is rather the output of a collection of individual choices and not the result of a
global optimization made by a single planner;

• is the example g.t/ D t a good choice in the modeling ? This implies g.0/ D 0,
i.e., no cost where there is not traffic.

To start our analysis, we would like to present first an equilibrium model developed
by Wardrop, [295], on a discrete network.

Traffic equilibria on a finite network

The main data of the model are a finite-oriented connected graph G D .N;E/
modeling the network, and some travel times functions ge: � 2 RC 7! ge.�/ giving,
for each edge e 2 E, the travel time on e when the flow on e is � . The functions ge

are all nonnegative, continuous, and nondecreasing, and they are meant to capture
the congestion effects (which may be different on the different edges, since some
roads may be longer or wider and may have different responses to congestion). The
last ingredient of the problem is a transport plan on pairs of nodes .x; y/ 2 N2

interpreted as pairs of origins/destinations. We denote by .�x;y/.x;y/2N2 this transport
plan: �x;y represents the “mass” to be sent from x to y. We denote by Cx;y the set of
simple paths on the graph G connecting x to y, so that C WD [.x;y/2N2Cx;y is the set
of all simple paths. A generic path will be denoted by ! and we will use the notation
e 2 ! to indicate that the path ! uses the edge e.

The unknown of the problem is the flow configuration. The edge flows are
denoted by i D .ie/e2E and the path flows are denoted by q D .q!/!2C: this means
that ie is the total flow on edge e and q! is the mass traveling on !. Of course
the values ie and q! are nonnegative and constrained by the mass conservation
conditions:

�x;y D
X
!2Cx;y

q!; 8.x; y/ 2 N2 (4.14)

and

ie D
X

!2C W e2!
q!; 8e 2 E; (4.15)
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which means that i is a function of q. Given the edge flows i D .ie/e2E, the total cost
(to be interpreted as a sort of weighted length) of the path ! 2 C is

Li.!/ D
X
e2!

ge.ie/: (4.16)

In [295], Wardrop defined a notion of noncooperative equilibrium that has been
very popular since then among engineers working in the field of congested transport
and that may be described as follows. Roughly speaking, a Wardrop equilibrium is
a flow configuration such that every actually used path should be an optimal path
for the cost Li defined in (4.16). This leads to

Definition 4.27. A Wardrop equlibrium5 is a flow configuration q D .q!/!2C

satisfying q! � 0 and the mass conservation constraints (4.14), such that when
we compute the values ie with (4.15), for every .x; y/ 2 N2 and every ! 2 Cx;y with
q! > 0, we have

Li.!/ D min
!02Cx;y

Li.!
0/:

A few years after the introduction of this notion by Wardrop, Beckmann,
McGuire, and Winsten [29] realized that Wardrop equilibria can be characterized
by the following variational principle:

Theorem 4.28. The flow configuration q D .q!/!2C is a Wardrop equilibrium if
and only if it solves the convex minimization problem

min

(X
e2E

He.ie/ W q � 0 satisfies (4.14)

)
(4.17)

where, for each e, we define He to be an antiderivative of ge: H0
e D ge.

Proof. Assume that q D .q!/!2C (with associated edge flows .ie/e2E) is optimal
for (4.17). Then, for every admissible � D .�!/!2C with associated (through (4.15))
edge-flows .je/e2E, one has

0 �
X
e2E

H0
e.ie/.je � ie/ D

X
e2E

ge.ie/
X

!2C W e2!
.�! � q!/

D
X
!2C

.�! � q!/
X
e2!

ge.ie/;

5Note that this is just an example of Nash equilibrium with a continuum of players, as we will see
in Section 7.4.3 and, more particularly, in Box 7.3.
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so that

X
!2C

q!Li.!/ �
X
!2C

�!Li.!/: (4.18)

Minimizing the right-hand side thus yields

X
.x;y/2N2

X
!2Cx;y

q!Li.!/ D
X

.x;y/2N2

�x;y min
!02Cx;y

Li.!
0/;

which exactly says that q is a Wardrop equilibrium. To prove the converse, it is
enough to see that problem (4.17) is convex so that the inequality (4.18) is indeed
sufficient, and not only necessary, for a global minimum. ut

The previous characterization allows to deduce for free existence results but also
uniqueness for i (not for q) as soon as the functions ge are strictly increasing (so that
the He are strictly convex).

Remark 4.29. It would be very tempting to deduce from Theorem 4.28 that equilib-
ria are efficient since they are minimizers of (4.17). Yet, the quantity

P
e2E He.ie/

does not represent the natural total social cost measured by the total time lost in
commuting which would rather be

X
e2E

iege.ie/: (4.19)

In general, �ge.�/ D He.�/ and ge D H0
e are very different conditions. The efficient

transport patterns are minimizers of (4.19) and thus are different from equilibria in
general. Efficient and equilibria configurations coincide in the special case of power
functions where He.�/ D ae�

p. Yet, we must note that this case is not realistic since,
for p > 1, it implies ge.0/ D 0. This means that traveling times vanish if there is
no traffic, while one should expect a residual nonzero cost even without traffic.
Moreover, a famous counterexample due to Braess (see [76]) shows that it may be
the case that adding an extra road with very small cost on which the traveling time
is always zero leads to an equilibrium where the total commuting time is increased!
This illustrates the striking difference between efficiency and equilibrium, a topic
which is very well documented in the finite-dimensional network setting where it
is frequently associated with the literature on the so-called price of anarchy (see
[266]).

Remark 4.30. In the problem presented in this paragraph, the transport plan � is
fixed. This may be interpreted as a short-term problem. Instead, we could consider
the long-term problem where only the distribution of origins � and of destinations
� is fixed. In this case, one also obtains as an optimality condition that � is efficient,
in the sense that it minimizes among transport plans in ˘.�; �/, the total cost
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X
�x;ydi.x; y/ with di.x; y/ WD min

!2Cx;y
Li.!/:

In the long-term problem where one is allowed to change the assignment as well,
equilibria still are characterized by a convex minimization problem, i.e., the same
above, where one also optimizes over � .

Optimization and equilibrium in a continuous framework

If we want to generalize the previous analysis to a continuous framework6, we
will formulate the whole path-dependent transport pattern in terms of a probability
measure Q on the set of paths (this is the continuous analogue of the path flows
.q!/! of the previous paragraph). Then, we will measure the traffic intensity
generated by Q at every point x by using the measure iQ of Section 4.2.3 (this is the
continuous analogue of the arc flows .ie/e of the previous paragraph). The last and
main idea will be to model the congestion effects through a metric that is monotone
increasing in the traffic intensity (the analogue of ge.ie/).

Avoiding technicalities and choosing an informal presentation (see [112] for
more details), we take ˝ a domain in R

d (typically, d D 2) and

• either two probability measures � and � (distribution of sources and destina-
tions) on ˝ in the case of the long-term problem,

• or a transport plan � (joint distribution of sources and destinations, i.e., a joint
probability on ˝ �˝) in the short-term case,

• or more generally a convex and closed subset � � ˘.�; �/, and we accept any
� 2 � (this is just a common mathematical framework for the two previous
cases, where we can take � D f�g or � D ˘.�; �/).

We will use the notations of Section 4.2.3 and use probability measures Q on
C WD AC.˝/, compatible with mass conservation, i.e., such that .e0; e1/#Q 2 � .
We shall denote by Q.� / the set of admissible Q.

The traffic intensity associated with Q 2 Q.� / is by definition the measure iQ
defined in Section 4.2.3 and congestion effects are captured by the metric associated
with Q: suppose iQ � L d and set

kQ.x/ WD g.x; iQ.x//

for a given increasing function g.x; :/: RC ! RC. The fact that there exists at least
one Q 2 Q.� / such that iQ � L d is not always true and depends on � . We will
see later how to guarantee it7.

In order to define the notion of Wardrop equilibrium in this continuous case, let
us define

6For a survey on the continuous framework, see also [111].
7Note that, even for � D f�g (which is the most restrictive case), assuming �; � 2 L1,
considerations from incompressible fluid mechanics in [83] allow to build a Q such that iQ 2 L1.
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LkQ.!/ D
ˆ 1

0

g.!.t/; iQ.!.t//j!0.t/jdt

and

dkQ.x; y/ WD inf
!2C ;!.0/Dx;!.1/Dy

LkQ.!/:

Paths in C such that dkQ.!.0/; !.1// D LkQ.!/ are called geodesics (for the metric
induced by the congestion effect generated by Q).

We can define

Definition 4.31. A Wardrop equilibrium is a Q 2 Q.� / such that

Q.f! W LkQ.!/ D dkQ.!.0/; !.1//g/ D 1: (4.20)

Existence, and even well-posedness (what does it mean Lk.!/ if k is only mea-
surable and ! is a Lipschitz curve?) of these equilibria are not straightforward.
However, it is possible to characterize equilibria as solutions of a minimal traffic
problem.

The full proof is quite involved since it requires to take care of some regularity
issues in detail. In particular, the use of the weighted length functional LNk and thus
also the geodesic distance dNk require some attention when Nk is not continuous or at
least l.s.c. In [112] a possible construction when Nk is just Lq is given.

Problem 4.32. Let us consider the (convex) variational problem

.WP/ min

�ˆ
˝

H.x; iQ.x// dx W Q 2 Q.� /

�
(4.21)

where H0.x; :/ D g.x; :/, H.x; 0/ D 0.

Under some technical assumptions that we do not reproduce here, the main result of
[112] is

Theorem 4.33. (WP) admits at least one minimizer. Moreover, Q 2 Q.� / solves
(WP) if and only if it is a Wardrop equilibrium and �Q WD .e0; e1/#Q solves the
optimization problem

min

�ˆ
˝�˝

dkQ.x; y/ d�.x; y/ W � 2 �
�
:

In particular, if � is a singleton, this last condition does not play any role (there
is only one competitor) and we have the existence of a Wardrop equilibrium
corresponding to any given transport plan � . If, on the contrary, � D ˘.�; �/,
then the second condition means that � solves a Monge-Kantorovich problem for a
distance cost depending on Q itself, which is a new equilibrium condition.
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As in the finite-dimensional network case, Wardrop equilibria have a variational
characterization which is in principle easier to deal with than the definition.
Unfortunately, the convex problem (WP) may be difficult to solve since it involves
measures on sets of curves: it means two layers of infinite dimensions!

We finish this section by proposing two recent developments, with the aim of
transforming the problem into simpler ones. The first development, easier to present
in the short-term case, gives a dual formulation and provides interesting numerical
methods. The second, only in the long-term case, gets rid of the formulation in terms
of measures over curves and transforms the problem into a minimal flow problem
in the spirit of Beckmann.

Duality and numerics for the short-term problem

We want here to give a tractable formulation of the variational problem for the short-
term version of (WP). For every x 2 ˝ and k � 0, let us define H	.x; �/ as the
Legendre transform of H.x; �/. Let us now define the functional

J.k/ D
ˆ

˝

H	.x; k.x// dx �
ˆ

˝�˝
dk.x; y/ d�.x; y/ (4.22)

where, again, dk is the geodesic distance associated to the metric k. Consider

sup f�J.k/ : k � 0g : (4.23)

The above maximization problem is important because of the following duality
result.

Proposition 4.34.

min (4.21) D max (4.23) (4.24)

and k solves (4.23) if and only if k D kQ for some Q 2 Q.�/ solving (WP).

Moreover, the optimization problem in k is “dimensionally smaller” than that on
Q (in the purely continuous case, we optimize among scalar functions instead of
measures over curves, and if we discretize in space and compute the dimensions,
we really have a huge difference between the two formulations8).

Remark 4.35. Under reasonable assumptions, the dual problem (4.23) has a unique
solution. The equilibrium metric kQ and the equilibrium intensity of traffic iQ are
unique, although Wardrop equilibria Q might not be unique.

8Note that the same duality trick is also used in the discrete problem over networks, where solving
the dual problem is much more convenient than the original one.
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Starting from this duality result, in [42] and [43], a consistent numerical scheme
to approximate the equilibrium metric kQ was designed. The idea is to run a descent
method on the dual. Hence, one needs to know how to compute (i.e., approximate)
the values of dk, which can be done in an efficient way by the Fast Marching
Algorithm, but also to differentiate them according to k.

The functional J in (4.22) is considered by means of a discretization grid, and
the values of k are considered as defined at the nodes of the grid. The first integral
becomes a sum on all the points of the grid, while, for the second, one needs to
replace the transport plan � with a discretized one defined on pairs of points .x; y/
on the same grid and to define dk.x; y/ consequently.

To define such a distance dk.x0; �/; for a fixed source x0, as a function of the
second variable, one uses the fact that it is the unique viscosity solution u of the
Eikonal nonlinear PDE

(
jruj D k;

u.x0/ D 0;
(4.25)

Box 4.5. Good to know!: Discretization of the Eikonal equation and FMM

To approximate the geodesic distance u D dk.x0; �/; we discretize both the (unknown)
values of u and of k on a square lattice with n points per side. Then we define

D1u
i;j WD maxf.uij � ui�1;j/; .uij � uiC1;j/; 0g=h;

D2u
i;j WD maxf.uij � ui;j�1/; .uij � ui;jC1/; 0g=h:

As proposed by Rouy and Tourin [267], the discrete geodesic distance u D .uij/i;j is found
as the solution of the following system that discretizes (4.25):

Du D k where Dui;j D p
.D1ui;j/2 C .D2ui;j/2: (4.26)

Rouy and Tourin [267] showed that this discrete geodesic distance u converges to uk when
h tends to 0. Then, we have to choose a clever way to solve the above nonlinear system.
One of the most efficient ways is the so-called Fast Marching Algorithm (see [283]): at
every step of the algorithm, the values ui;j of a bunch of points of the grid have already been
computed and the corresponding points are colored in red, and all the other values are set
to C1; then, a tentative computation for all the neighbors of the red point is done, using
Equation (4.26) for each of them separately (including the C1 values of the other points);
then, only the smallest among the tentative values is validated, and the corresponding point
is colored in red, and the algorithm goes on. This solves the system (4.26) in O.N log N/
steps, where N D nd is the number of points in the grid.

Once we are able to compute the value of J.k/ for every discrete metric k on the
grid, we want to differentiate it w.r.t. k, so as to take advantage of a gradient descent
algorithm. Actually, one can see that J is not always differentiable in k, but since all
the terms ck.x; y/ may be proven to be concave in k, we face a convex optimization
problem, and we can look at the subdifferential of J. Differentiating the equations
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Fig. 4.4 Traffic intensity at equilibrium in a city with a river and a bridge, with two sources S1
and S2 and two targets T1 and T2. Picture taken from [43] with permission

in (4.26) (see [43]), one gets a new set of equations on the gradient rkck.x; y/. The
same loop of the Fast Marching Algorithm allows to solve them in a quite efficient
way, thus giving an element of the subdifferential9

An example of Wardrop equilibria computed with this kind of approach is given
in the following Figure 4.4.

Beckmann reformulation of the long-term problem

In the long-term problem (4.21), we have one more degree of freedom since the
transport plan is not fixed. This will enable us to reformulate the problem as a
variational divergence constrained problem à la Beckmann and ultimately to reduce
the equilibrium problem to solving some nonlinear PDE10.

As we already did in Section 4.2.3, for any Q 2 Q.� /, we can take the vector
field wQ. If we consider the scalar problem (WP), it is easy to see that its value is
larger than that of the minimal flow problem à la Beckmann:

.BP � cong/ min

�ˆ
˝

H .w.x// dx W r � w D � � �
�
; (4.27)

where H .w/ D H.jwj/ and H is taken independent of x only for simplicity.
The inequality is justified by two facts: minimizing over all vector fields w with

9This procedure is just a particular case of what is usually called forward automatic differentiation.
10We also observe that this reduction to a divergence-constrained convex minimization problem
allows to provide alternative numerical approaches, as it is done in [35], in the same spirit of the
Benamou-Brenier Augmented Lagrangian technique; see also Section 6.1
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prescribed divergence gives a smaller result than minimizing over the vector fields
of the form wQ, and then we use jwQj � iQ and the fact that H is increasing.

Actually, the two problems are equivalent. The main ingredient to prove it is
Theorem 4.10. If we take a minimizer w for this minimal flow problem, then we are
able to build a measure Q, and as we did in Theorem 4.13, the optimality of w gives
w D wQ and jwQj D iQ, thus proving that the minimal values are the same. Also,
we can build a minimizer w from a minimizer Q (just take w D wQ) and conversely
a minimizer Q from w (use Theorem 4.10).

Moreover, we also know from the proof of Theorem 4.10 that the main tool to
construct the measure Q is the Dacorogna-Moser flow. If we want to use it to define
a unique and canonical flow connecting the two measures � and �, then we would
like to have some regularity of the vector field v defined as vt.x/ D w.x/=ft.x/,
where ft D .1 � t/�C t�. If v was Lipschitz continuous, then the Cauchy problem

(
y0

x.t/ D vt.yx.t//

yx.0/ D x

would have a unique solution for every initial datum x and would allow to find the
measure Q (which would be unique, by the way). Obviously, we can decide to add
some assumptions on � and �, which will be supposed to be absolutely continuous
with regular densities (at least Lipschitz continuous and bounded from below).

However, one needs to prove regularity for the optimal w and for this one needs
to look at the optimality conditions satisfied by w as a minimizer of (4.27). By
considering perturbations of the form w C " Qw with r � Qw D 0, one gets that the
optimal w must satisfy

´ rH .w/ � Qw D 0 for any divergence-free vector field Qw.
This means that rH .w/ is a gradient (see Box 6.2 in Section 6.2), which has to be
adapted to an Lp setting11. We can call it ru, and by inverting rH , we get that the
minimizers of (4.27) satisfy w D rH 	.ru/ where H 	 is the Legendre transform
of H and u solves the PDE:

� r � .rH 	.ru// D � � �; in ˝;
rH 	.ru/ � n D 0; on @˝:

(4.28)

This equation turns out to be a standard Laplace equation if H is quadratic, or it
becomes a p-Laplace equation for other power functions. In these cases, regularity
results are well known, under regularity assumptions on � and �.

Remark 4.36. Note that the above considerations allow to answer the question
“Given �; �, does a traffic plan Q with iQ 2 Lp exist?” The answer is yes if and
only if � � � 2 .W1;q/	, and the proof is left as an exercise; see Ex(26).

As we already mentioned, the case of power-like functions H is not suitable for
modeling reasons. Recall that H0 D g where g is the congestion function, so it is

11Observe that the same result can also be directly obtained from duality arguments, as it is done
in Theorem 2.1 in [80].
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natural to have g.0/ > 0: the metric should be positive even if there is no traffic!
This means that the radial function H cannot be differentiable at 0 and then its
subdifferential at 0 contains a ball. By duality, this implies rH 	 D 0 on this ball
which makes (4.28) very degenerate, even worse than the p-Laplacian. For instance,
a reasonable model of congestion is g.t/ D 1C tp�1 for t � 0, with p > 1, so that

H .w/ D 1

p
jwjp C jwj; H 	.z/ D 1

q
.jzj � 1/qC; with q D p0 D p

p � 1 (4.29)

so that the optimal w is

w D
�
jruj � 1

�q�1
C

ru

jruj ;

where u solves the very degenerate PDE:

r �
��

jruj � 1
�q�1

C
ru

jruj
�

D � � �; (4.30)

with Neumann boundary condition

�
jruj � 1

�q�1
C

ru

jruj � n D 0:

Note that there is no uniqueness for u, but there is for w.
For this degenerate equation, we cannot expect regularity results which go

beyond Lipschitz continuity for u (indeed, since the diffusion coefficient identically
vanishes in the zone where jruj � 1, every u 2 Lip1 is the solution of the
corresponding homogeneous equation). On the other hand, we can expect better
regularity for w (roughly speaking, w is obtained by gluing two zones: the one
where w D 0 and the one where the equation is elliptic). However, we will not be
able to obtain w itself to be Lipschitz. On the other hand, Sobolev regularity of w
and Lipschitz regularity results for u are proven in [80]. This enables one to build
a flow à la DiPerna-Lions [156] and then to justify rigorously the existence of a
unique and well-defined flow for a.e. initial datum x. Interestingly, recent continuity
results are also available (see [279] in dimension 2, and then [126], with a different
technique in arbitrary dimension), obtained as a consequence of a fine analysis of
this degenerate elliptic PDE. Besides the interest for this regularity result in itself,
we also stress that continuity for w implies continuity for the optimal iQ, and this
exactly gives the regularity which is required in the proof of Theorem 4.33 (the
main difficulty being defining cNk for a noncontinuous Nk, and this is the reason why
our previous arguments are only formal).
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4.4.2 Branched transport

The goal of this second part of the discussion section is to present an opposite
minimal flow problem, where, contrary to what happens in traffic congestion, joint
transportation on a common path is indeed encouraged. This is reasonable when
we consider “economy of scale” principles, and it is also something that we can
observe in many different phenomena. In many cases, when a single planner needs
to organize a transport (building a transportation network, for instance), the total
cost happens to be subadditive (the cost for moving two objects cannot exceed the
sum of the two costs), and in many cases it has decreasing marginal costs (i.e., the
cost for adding a unit to a given background quantity is a decreasing function of the
background, which means that the cost is actually concave).

Note that we are considering here the transport cost as a function of the mass and
not of the length. The silent assumption is that the cost will be linear in the length
(as it happens in all minimal flow problems of this chapter). But it will be concave
in the mass, opposite to what we saw in Section 3.3.2.

Many branching structures transporting different fluids, such as road systems,
communication networks, river basins, blood vessels, leaves, trees, and so on, may
be easily thought of as coming from a variational principle for a cost of this kind.

Note that, exactly as it happened for traffic congestion, modeling this kind of
effects requires, either in Lagrangian or Eulerian language, to look at the paths
actually followed by each particle. It could not be done with the only use of a
transport plan � 2 ˘.�; �/. Yet, once we choose the good formulation via the tools
developed in this chapter, we can guess the shape of the optimal solution for this
kind of problem: particles are collected at some points, move together as much as
possible, and then branch toward their different destinations. This is why this class
of problems is nowadays known as “branched transport.”

Recently these problems received a lot of attention by mathematicians, but in
fact the formalization of the discrete framework, which can be expressed in terms of
Dirac masses, is very classical in optimization and operational research. As we did
for congested transport, we start from the discrete framework, which was introduced
by Gilbert [185]. We then move on to the continuous models, which are much more
recent and were partly developed and studied by Bernot, Caselles, and Morel [46,
48–50] and Maddalena and Solimini [220, 221] for the Lagrangian model and by
Xia [297], who gave an Eulerian continuous extension of the Gilbert Energy.

The discrete model

Translating into our language the work by Gilbert [185], we consider two atomic
probability measures � D Pm

iD1 aiıxi and � D Pn
jD1 bjıyj supported in some

compact subset˝ � R
d, and we want to connect them through a weighted oriented

graph G. A weighted oriented graph in R
d is just a system G D .sk; �k/k where sk is

a pair of points sk D .pk; qk/ representing an oriented segment in R
d and �k 2 RC is
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a weight associated with the segment sk. We denote by Osk the orientation qk�pk
jqk�pkj of

sk (provided it is not trivial) and jskj its length jqk � pkj. The points pk; qk are called
the vertices of the graph and the segments sk are its edges.

•

>

•

>

•y1 <

•

>

•
>

•y3
>

•y2>

•
>

•y5
< •y4 <

• <

•x3
• <

•x1

•x2
pk

qk
sk

Given �; �, we say that G irrigates � from � if it satisfies the well-known
Kirchhoff law for electric circuits: for each vertex x of the graph, one must have

incoming mass at x = outcoming mass at x.

We count as incoming the mass conveyed by the segments sk D .pk; qk/ reaching
x, i.e., such that x D qk, increased by the mass given by �, i.e., increased by ai

if x D xi. Similarly, the outcoming mass at x is the total weight of the segments
sk D .pk; qk/ leaving x, i.e., such that pk D x, decreased by the mass taken out by �,
i.e., by bj if x D yj. The set of graphs irrigating � from � is denoted by G.�; �/.

For ˛ 2 Œ0; 1�, we define the cost of ˛-irrigation of a graph G, also called Gilbert
energy as

E˛.G/ D
nX

kD1
�˛k jskj ;

which means that the cost of moving a mass m along a segment of length l is m˛l.
Given �; � atomic probabilities, we want to minimize this energy among all

graphs sending � to �, which reads

min fE˛.G/ W G 2 G.�; �/g:
This problem was introduced by Gilbert in [185, 186] as an extension of Steiner’s
minimal length problem which corresponds12 to the case ˛ D 0, where one wants to
minimize the total length of the network. The main applications that Gilbert referred
to were in the field of communication networks.

Note that for ˛ 2 Œ0; 1� the function t 7! t˛ is concave and subadditive; it is
strictly concave for ˛ 2�0; 1Œ. In this way larger tubes bringing the mass from � to
� are preferred to several smaller ones transporting the same total mass.

12To have an exact equivalence between the Steiner minimal connection problem and Gilbert
problem with ˛ D 0, one needs to consider a measure � composed of a unique Dirac mass,
so that every point in spt.�/ must be connected to it, hence getting connectedness of the graph.
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Fig. 4.5 An example of a strong cycle (left) and of a cycle which is not strong (right)

It is not evident to see why this problem admits a minimizer. Indeed, we minimize
among finite objects, but we do not impose uniform bounds (on the number of edges,
of vertices, etc.). We need to give an important definition.13

Definition 4.37. We call cycle (resp. strong cycle) of G any sequence of segments
(resp. oriented segments) which are adjacent (Figure 4.5).

As the function t 7! t˛ is increasing, we can easily reduce the energy of a graph
by removing strong cycles. It is not difficult to check that the concavity of the same
function also ensures that one reduces the energy by removing any cycle. Therefore
one can take a minimizing sequence of graphs which have no cycles, i.e., which are
trees, and this implies a uniform bound on the number of edges (in terms of the total
number of atoms of � and �). This provides compactness and proves the existence
of a minimizer. Any minimizer will have no strong cycles and no cycles if ˛ 2�0; 1Œ.

Moreover, it is possible to prove an optimality condition on the free junctions
in the graph. This means that at every node x of the graph which is not one of the
points xi or yj, a balance of the direction must hold: the condition is

X
kWxDpk

�˛k Osk �
X

kWxDqk

�˛k Osk D 0; (4.31)

which means that the sum of the unit vectors corresponding to all the segments
touching the point x, always taken as exiting from x independently of the true
orientation Osk, each weighted with �˛k , must vanish14.

13Unfortunately, to cope with the language usually adopted in branched transport, we cannot be
completely coherent with the rest of the chapter, where we called “cycles” what we call here
“strong cycles.”
14For triple junctions, which are the most common ones, this gives interesting results: when ˛ D 0,
we get the well-known condition about Steiner trees, with three 120ı angles, and for ˛ D 0:5, we
have a 90ı angle (see Ex(30)); yet, in general, the angles depend on the masses �k.
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A relaxed continuous model (Xia)

More recently Xia, in [297], has proposed a new formalization leading to generaliza-
tions of this problem to arbitrary probability measures � and �. The main idea was
to translate the Kirchhoff law constraint into a divergence constraint. To be precise,
and since we will need this language later on, we introduce some heavy notation.

If E � ˝ is a 1-rectifiable set15, � W E ! S
d�1 is a measurable vector field,

and � W E ! RC is H 1-integrable, we define the finite vector measure ŒE; �; �� 2
M d.˝/ through

hŒE; �; ��; �i D
ˆ

E
�.x/�.x/ � �.x/dH 1.x/;

for all � 2 C.˝IRd/.
Given a finite graph G D .sk; �k/k, we associate with G the measure

wG WD
X

k

Œsk; Osk; �k� 2 M d.˝/:

We can express both the cost and the constraint in terms of wG only. First note that
G 2 G.�; �/ (i.e., it satisfies mass balance conditions for irrigating � from �) if and
only if r � wG D � � �. Then, we also write

E˛.G/ D
nX

kD1
�˛k jskj D

ˆ

K
j�.x/j˛ dH 1.x/;

where we called � the density of wG w.r.t. the H 1 measure.
This suggests a continuous Eulerian formulation of Gilbert’s problem by gener-

alizing Gilbert’s energy, the minimization problem becoming

.XP/ min fM˛.w/ W w 2 M d
div.˝/; r � w D � � �g: (4.32)

Obviously, one needs to define the energy M˛ (which is also called the “˛-mass” of
w). The original idea by Xia is to define it by relaxation, i.e.,

M˛.w/ WD inf
n
lim inf

n
E˛.Gn/ W Gn 2 G.�n; �n/;wGn * w in M d

div.˝/
o
;

where the convergence in M d
div.˝/means wGn * w and r �wGn D �n ��n * r �w

as measures.

15We already met rectifiable sets when studying the differentiability of convex functions, in
Chapter 1: 1-rectifiable sets are defined as those sets which are covered, H 1-a.e., by a countable
union of Lipschitz curves. Anyway, the reader can easily pretend that “1-rectifiable” is a synonym
of “1D” and it should be enough to follow the rest of the discussion.
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As a consequence of a famous rectifiability theorem by B. White [296], one can
prove that M˛.w/ < C1 implies that w is 1-rectifiable,16 and with a finer analysis,
we get

M˛.w/ D
( ´

E j�.x/j˛ dH 1.x/ if w D ŒE; �; ��

C1 otherwise:

It should be proven that when � and � are both atomic measures, we retrieve the
problem by Gilbert (this is not trivial, as we admitted lots of new competitors).

Compared to the finitely atomic case, another difference is the finiteness of the
minimum in (XP). Indeed, it is always possible to connect two atomic measures
with a finite graph, and the cost of finite graphs is always finite. On the contrary, it
is not clear for general measures �; � that there exists a w with M˛.w/ < 1 and
r � w D � � �.

Irrigability and irrigation distance

For �; � 2 P.˝/, we set d˛.�; �/ WD min .XP/ 2 Œ0;C1� (which obviously
depends on �; �). First of all we consider the question whether this value
is finite. Supposing 0 2 ˝, it is clear that if d˛.�; ı0/; d˛.�; ı0/ < C1,
then d˛.�; �/ < C1. Hence17 we will concentrate on the question whether
d˛.�; ı0/ < C1.

One of the main results of [297] is the following:

Proposition 4.38. If ˛ > 1 � 1=d and ˝ D Œ�a; a�d, then d˛.�; ı0/ < C1 for
every � 2 P.˝/. This implies d˛.�; �/ < C1 for every pair .�; �/. The same is
true in every compact domain, just by fitting it into a large cube.

Moreover, keeping the conditions ˛ > 1 � 1=d and ˝ compact, d˛ is actually a
distance over P.˝/ and it metrizes the weak convergence of probabilities.

We just prove the very first part of this statement.

Proof. The idea to prove d˛.�; ı0/ < C1 is the following: take a dyadic
approximation of � by partitioning the cube ˝ into 2nd small cubes of edge 2�n

and putting a Dirac mass of the corresponding measure at the center of each small
cube, thus getting an atomic measure �n. Then connect �n to �nC1 through a finite
graph Gn (to which we associate a flow wn), which sends every Dirac mass of �n,
corresponding to some small cube D, to the 2d Dirac masses of �nC1 corresponding
to the sub-cubes of D, along straight lines (Figure 4.6). A simple calculation gives
the estimate:

16We define rectifiable vector measures as those which can be expressed in the form ŒE; �; ��
with E rectifiable. This language is borrowed from that of rectifiable currents, but currents can
be considered vector measures. The reader can look at [161] for more details.
17Indeed, even if not completely evident, it can be proven that, at least in the case where spt.�/\
spt.�/ D ;, the condition d˛.�; �/ < C1 is actually equivalent to d˛.�; ı0/; d˛.�; ı0/ < C1.
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Fig. 4.6 Different steps of the construction of Proposition 4.38

M˛.Gn/ � C
2ndX
kD1

am˛
k 2

�n;

where the masses mk are the masses contained in each of the cubes at the
nth subdivision. Then we use

PN
kD1 m˛

k � N1�˛.
PN

kD1 mk/
˛ (which comes from

Jensen’s inequality), and get E˛.Gn/ � aC2�n.1�d.1�˛//.
It is clear by construction that we only need

P
n E˛.Gn/ < C1, and this is true

as soon as 1 � d.1 � ˛/ > 0. ut
Some counterexamples that we do not develop here (but one can see Ex(29))

complement the previous result and show that the above statement is sharp in terms
of ˛. More generally, we can think that the irrigability of a measure starting from
ı0 is a matter of its dimension, but suitable notions of dimensions (which are not
simply the Hausdorff dimension of the support) have to be chosen. These matters
are discussed in [153, 154].

It is interesting to note that the above distance d˛ may also be obtained by
relaxation (see [220]) from the functional which associates with every pair of atomic
probability measures � D P

i aiıxi , � D P
j bjıyj the quantity

d˛.�; �/ WD min

8<
:
X

ij

jxi � yjj�.f.xi; yj/g/˛ W � 2 ˘.�; �/
9=
; :

This quantity, which corresponds to a sort of nonlinear version of the Kantorovich
problem, is only well defined on atomic measures. Then, we can check that we have

d˛ D sup

8̂̂
<
ˆ̂:

d W P.˝/�P.˝/ ! Œ0;C1� W

8̂̂
<
ˆ̂:

d � d˛ on atomic measures;

d is l.s.c. for *;

d satisfies the triangle inequality.

9>>=
>>;
:

(4.33)
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The Lagrangian formulation

We want now to provide an alternative formulation of the branched transport
problem, based on the use of measures on paths. This formulation18 has been
introduced in [221] and then deeply studied in [48].

As usual, we will be given two measures �; � 2 P.˝/ and look for a traffic
plan19, i.e., a measure Q 2 P.C /, where C WD AC.˝/, with

´
C L.!/ dQ.!/ <

C1. As usual, we will restrict our attention to those traffic plans satisfying
.e0/#Q D �; .e1/#Q D � (the case where we fix also the coupling .e0; e1/#Q D �

will not be considered, and, by the way, the connection with the previous Eulerian
model by Xia does not work if � is fixed).

To introduce the quantity that we want to minimize, we need to define

�Q.x/ WD Q.f! 2 C W x 2 !.Œ0; 1�/g/; mQ.x/ WD
ˆ

C
#.ft 2 Œ0; 1� W !.t/Dxg/ dQ.!/:

Proposition 4.39. The following properties are satisfied:

1. We always have 0 � �Q.x/ � mQ.x/ � 1, with equality �Q D mQ whenever Q
is concentrated on loop-free curves.

2. The function .x;Q/ 7! �Q.x/ is u.s.c. w.r.t. the convergence of points x 2 ˝ and
the weak convergence of measures Q 2 P.C /.

3. The traffic intensity iQ is equal to mQ �H 1 whenever there exists a set � , � -finite
for the H 1 measure, with !.t/ 2 � for Q-a.e. curve ! and a.e. time t.

Then, we define the energy I˛ through

I˛.Q/ WD
ˆ

C
ZQ.!/ dQ.!/;

where

ZQ.!/ WD L�˛�1
Q
.!/ D

ˆ 1

0

�Q.!.t//
˛�1j!0.t/j dt:

The problem that we consider is then

minfI˛.Q/ W Q 2 P.C /; .e0/#Q D �; .e1/#Q D �g:

18What we provide here is just a translation into the language of this chapter of the model proposed
in [48, 221], which uses “parametrized traffic plans” instead of measures on paths, but it is just a
matter of language.
19The terminology has been introduced for this very purpose by the authors of [48].
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Note that the trivial estimate I˛.Q/ � ´
C L.!/ dQ.!/ provides compactness on

a minimizing sequence (indeed, the energy is invariant under reparametrization of
each curve, and hence length bounds turn into Lipschitz bounds, as we did in the
rest of the chapter). The existence of a minimizer is then obtained by proving semi-
continuity. Indeed, combining fact 2 with a simple Fatou Lemma, we obtain that the
function .Q; !/ 7! ZQ.!/ is l.s.c. (for the weak convergence on Q and the uniform
convergence on !). Finally we use the following:

Proposition 4.40. If f W P.C / � C ! R is l.s.c., then F W Q 7! ´
C f .Q; !/ dQ.!/

is l.s.c. on P.C /.

Then, we can prove the following facts:

Proposition 4.41. 1. For every Q with I˛.Q/ < C1, the set � D fx W �Q.x/ >
0g is � -finite for the measure H 1 and we have I˛.Q/ D ´

�
�˛�1

Q mQ dH 1.
2. If Q is optimal, then it is concentrated on loop-free curves and I˛.Q/ D´

�
�˛Q dH 1.

3. If Q is optimal, then it is cycle-free20.

This property and the particular the expression of I˛ as the integral of the ˛-power
of the multiplicity �Q suggest the connection with the Eulerian model. A precise
equivalence can be proven, either via the tools in [48] or via Theorem 4.10.

The single-source case

It is interesting to see the special features of the problem when we fix the source
measure as a single Dirac mass ı0. This particular case is already very rich. In this
case, it is possible to study the problem with a different definition of multiplicity:
indeed, we can expect that whenever two curves pass at a same point x, they had
traveled together on all the path from 0 to x. In this case, it is better to change a
little bit the framework, because parametrizing all the curves on a fixed finite-length
integral Œ0; 1� could be too restrictive. Also, this gives the occasion to observe the
original framework presented in [221] (which can be checked to be equivalent to the
general one).

We consider now the space � D f! 2 Lip1.RCI˝/; !.0/ D 0g, endowed with
the topology of uniform convergence on compact sets (recall that this topology is
metrizable by some distance d and that this makes� a compact metric space thanks
to the Ascoli-Arzelà theorem).

If ! 2 �, we define its stopping time by

Stop.!/ D infft � 0 W ! is constant on Œt;C1Œg:

20We can give a precise definition in the following way: for x; y 2 ˝, define Œx; y� D f! 2 C W
9 s < t such that !.s/ D x and !.t/ D yg; we say that Q is cycle-free if there are not x1; : : : ; xn

with x1 D xn such that Q.Œxi; xiC1�/ > 0 or Q.ŒxiC1; xi�/ > 0 for all i D 1; : : : ; n � 1.
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We denote by �stop the set of curves ! such that Stop.!/ < 1. Then we define the
following subsets of �stop : �arc; �inj; �lf, respectively, the set of curves which are
parameterized by arc length on Œ0;Stop.!/�, which are injective on Œ0;Stop.!/Œ and
which are injective on Œ0;Stop.!/� (these curves are called loop-free).

We call traffic pattern any � 2 P.�/ (we use the notation � to distinguish from
the case Q 2 P.C /) satisfying

ˆ

�

Stop.!/ d�.!/ < C1:

We define the multiplicity and the energy according to the following variant of
the previous definitions: for the multiplicity, we first define

Œ!�t WD f Q! 2 �stop W !.s/ D Q!.s/ 8s 2 Œ0; t�g;

the set of curves which coincide with ! up to time t, and for notational simplicity,
we set j!jt;� WD �.Œ!�t/. This last quantity will play the role of the multiplicity � .
Then we define

QZ�.!/ WD
ˆ Stop.!/

0

j!j˛�1
t;� dt

and we call �-good any curve ! with QZ�.!/ < C1. Then, we use the energy

QI˛.�/ WD
ˆ

�

QZ�.!/ d�.!/:

The problem becomes the minimization of QI˛ among probabilities � 2 P.�/

satisfying .e1/#� D �, where e1.!/ D !.Stop.!//. Note that e1 is well defined
on�stop, but any finite energy traffic plan is necessarily concentrated on�stop; hence
the condition makes sense; moreover, � 7! .e1/#� is continuous for the weak
convergence when restricted to any set f� 2 P.�/ W ´

�
Stop.!/ d�.!/ � Cg.

It is not difficult to prove the existence of a minimizer in this case, and it is also
possible to prove that minimizers are concentrated on�arc \�inj and are even loop-
free (i.e., we can prove �.�lf/ D 1, even if it is less evident). Note that we withdrew
from the definition of the energy the term j!0j and this forces the minimizers to
saturate the constraint j!0j � 1.

Remark 4.42. Other intermediate models may be introduced, all differing in the
definition of the multiplicity of the curve ! at time t. See, for instance, [47] or [220].

The class of �-good curves is an explicitly defined set of curves which shares
many of the properties satisfied �-almost everywhere. For instance, if � is optimal
and Q is a measure on C representing � after a suitable reparametrization in time,
we have j!jt;� D �Q.!.t// D mQ.!.t//, and this is true for every ! which is �-good.
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An important point is the following: if !1; !2 are �-good and � is optimal, if
.e1/.!1/ D .e1/.!2/, then QZ�.!1/ D QZ�.!2/ (see [272]). As a corollary, we get,
for instance, that any �-good curve ! is in fact loop-free, i.e., it is injective on
Œ0;Stop.�/�.

Definition 4.43 (Landscape function). We define the landscape function z� asso-
ciated with the traffic pattern � through

z�.x/ D
(

Z�.!/ if ! is an �-good curve and x D e1.!/;
C1 if there is no �-good curve ending at x:

The introduction of the landscape function [272] is justified by several different
considerations. On the one hand, it plays the role of the first variation of the
functional

X˛.�/ D d˛.ı0; �/;

as we can prove (by concavity)

X˛.�/ � X˛.�/C ˛

ˆ

˝

z� d.� � �/;

where � is any optimal traffic plan irrigating �. Considering that we also have
X˛.�/ D ´

z� d�, it seems to play the same role as the Kantorovich potential plays
for the classical Monge transport cost21.

On the other hand, and this justifies its name, z� is a natural object studied by
geophysicists when dealing with river basins (see [263] for details and [272] for a
brief mathematical introduction to this theory); in their model, after a first evolution
phase, it is assumed that landscape erosion creates a stable configuration where the
elevation z.x/ at each point is characterized by two properties: the river flows in the
direction of maximal slope, and the slope jrzj is proportional to the discharge (i.e.,
multiplicity) coefficient � , raised to a power close to �1=2 (say ˛ � 1, with ˛ close
to the 2D critical exponent 1=2).

It is possible to prove few properties of the landscape function.

Theorem 4.44. The landscape function z is lower semi-continuous. It is Hölder
continuous22 of exponent ˇ D d.˛� .1� 1

d // whenever ˛ > 1� 1
d ,˝ has Lipschitz

boundary and � � cL˝ . Moreover, z has maximal slope in the direction of the
irrigation network in the following sense: if ! is an �-good curve, t0 � Stop.!/,
x0 D !.t0/, and �0 D j!jt0;�, then for any x 2 ˝, we have

z.x/ � z.x0/ � �˛�1
0 jx � x0j � o.jx � x0j/:

21But it does not seem to come from a dual problem.
22Other Holder results exist under different assumptions, if � admits different dimensional lower
bounds, i.e., it is Ahlfors regular of another exponent k < d, thus obtaining ˇ D d.˛ � .1� 1

k //;
see [78].
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Regularity

The regularity of the optimal networks in branched transport is a delicate issue,
which has been studied both in Eulerian and Lagrangian framework. One of the
first results concerns what Xia called “interior regularity”: here interior means “far
from the supports of � and �,” which can be considered as the boundary of the
transport network. These results, proven in [298] with a Eulerian approach and
in [49] with the Lagrangian approach, state that, far from these supports, optimal
networks are locally finite graphs. In particular, they satisfy the angle law (4.31) at
every branching point. The question now becomes whether this angle law is satisfied
at an infinitesimal level (in the sense that the directions to be considered are tangent
lines and not segments) inside the support of � and �. [300] gives partial results in
this direction (characterization of the limits up to subsequences), but a full solution
is not yet available. On the other hand, in the simpler case of a single source, [241]
provides the following result:

Theorem 4.45. Let ! be an �-good curve, parametrized with constant speed, of an
optimal traffic pattern irrigating a measure � with aL˝ � � � bL˝ , for 0 < a <
b < 1. Suppose that ˝ is a Lipschitz bounded domain. Consider t0 < Stop.!/.
Let �i, i 2 I the masses of all trees branching from ! in the interval Œ0; t0�/. ThenP

i �
˛
i < 1 and !0 2 BV.Œ0; t0�/. In particular, ! has two half-tangents at all

points and a tangent at all points which are not branching points. Moreover, the
tangent cone at every branching point x is composed of a finite (and bounded by a
constant depending on ˛ and d) number of segments whose directions and masses
satisfy (4.31). More precisely, ! satisfies in the sense of distributions on Œ0; t0� the
elliptic equation

� .j!j˛t;� !0.t//0 D
X
i2I

�˛i ı!.ti/ Osi (4.34)

where Osi is the tangent of the branch stemming from ! at the point !.ti/ with mass
�i. The fact that this tangent vector exists, and that the right-hand side is a vector
measure with finite mass, is guaranteed by the first parts of the statement.

Counterexamples to the existence of tangent directions can be built when the
assumption on � fails (see, again, [241]). For an alternative approach to the existence
of tangent directions under slightly different assumptions, one can also see the last
chapter in [271].

Numerics

From the point of view of the practical search of the solutions, branched transport
problems lie in between combinatorial optimization (they are similar to the Steiner
minimal connection problem, which is, on a graph, known to be NP-hard) and
continuous minimal flow problems. The numerical methods for finding a solution
have to face at least two difficulties: concavity (and hence the high number of local
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minimizers) and singularity (i.e., working with singular structures such as networks
instead of using Lp or smoother functions, as in the congested traffic case).

Some numerical results, based on local and nonlocal improvements of a suitably
chosen initial guess, are present in [297] and [299]. Yet, here we prefer to introduce
a completely different idea, based on a � -convergence approach.

Box 4.6. Important notion: � -convergence

� -convergence is a theory, introduced by De Giorgi (see [138] and [133]), to provide
approximations of minimization problems. It is also known as epi-convergence.

Definition. On a metric space X, let Fn W X ! R [ fC1g be a sequence of functions.
We define the two lower-semi-continuous functions F� and FC (called � � lim inf and
� � lim sup of this sequence, respectively) by

F�.x/ WD infflim inf
n!1

Fn.xn/ W xn ! xg;
FC.x/ WD infflim sup

n!1

Fn.xn/ W xn ! xg:

Should F� and FC coincide, then we say that Fn actually � -converges to the common
value F D F� D FC. The definition of � -convergence for a continuous parameter " ! 0

obviously passes through the convergence to the same limit for any subsequence "n ! 0.
Among the properties of � -convergence, we have the following:

• if there exists a compact set K � X such that infX Fn D infK Fn for any n, then F
attains its minimum and inf Fn ! min F;

• if .xn/n is a sequence of minimizers for Fn admitting a subsequence converging to x,
then x minimizes F;

• if Fn is a sequence � -converging to F, then Fn C G will � -converge to F C G for any
continuous function G W X ! R [ fC1g.

One of the first applications of � -convergence was to provide elliptic approxima-
tions of free discontinuity problems, or, more generally, variational problems with
“singular energies.” We will only mention the following standard example (known
as “Modica-Mortola” approximation; see [237] and [133]) because of its simplicity.
Define the functional F" on L1.˝/ through

F".u/ D
(
1
"

´
W.u.x//dx C "

´ jru.x/j2dx if u 2 H1.˝/I
C1 otherwise:

Then, if W.0/ D W.1/ D 0 and W.t/ > 0 for any t ¤ 0; 1, we have � -convergence
of the functionals F" toward the functional F given by

F.u/ D
(

cPer.S/ if u D 1S and S is a finite-perimeter setI
C1 otherwise;

where the constant c is given by c D 2
´ 1
0

p
W.t/dt.
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Inspired by this result, in [247] a similar result for branched transport
has been proven. Unfortunately, it has only been proved for the 2D case
˝ � R

2. Consider, on the space M d
div.˝/ of vector measures on˝ with divergence

which is also a measure (endowed with the weak convergence of both the measures
and their divergences), the functionals

M˛
" .w/ D "˛�1

ˆ

˝

jw.x/jˇdx C "˛C1
ˆ

˝

jrw.x/j2dx; (4.35)

defined on w 2 H1.˝IR2/ and set to C1 outside H1 \ M d
div.˝/. The exponent

ˇ D 4˛�2
˛C1 is fixed from suitable scaling computations.

Compared to the Modica-Mortola case, here the double-well potential is replaced
with a concave power. Note that concave powers, in their minimization, if the
average value for u is fixed in a region (which is in some sense the meaning of
weak convergence), prefer either u D 0 or juj being as large as possible, i.e., there
is sort of a double well at zero and infinity.

Theorem 4.46. Suppose d D 2 and ˛ 2� 1
2
; 1Œ, then we have � -convergence

of the functionals M˛
" to cM˛ , with respect to the convergence in M d

div.˝/, as
" ! 0, where c is a finite and positive constant (the value of c is actually
c D ˛�1 .4c0˛=.1 � ˛//1�˛ , with c0 D ´ 1

0

p
tˇ � tdt).

As a consequence of this approximation result, É. Oudet performed efficient
numerical simulations by minimizing the functionals M˛

" (more precisely: first a
large value of " is fixed, so that the problem is more or less convex, and a minimizer

Fig. 4.7 Branched transport computed via � -convergence between one point and four points, two
points and four points, and one point and the uniform distribution on a circle, for different values
of ˛ (increasing from left to right). Pictures partially taken from [247], with permission
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is found by gradient descent, then, following a continuation method, the value of "
is reduced and at every step the gradient descent starts from the previously found
minimizer). In the end we find a “well-chosen” local minimizer quite satisfactory in
practice (Figure 4.7).



Chapter 5
Wasserstein distances and curves
in the Wasserstein spaces

In this chapter, we will use the minimal value of transport problems between two
probabilities in order to define a distance on the space of probabilities. We mainly
consider costs of the form c.x; y/ D jx � yjp in ˝ � R

d, but the analysis can be
adapted to a power of the distance in a more general metric space X. The exponent
p will always be taken in Œ1;C1Œ (we will briefly address the case p D C1 in
the Discussion Section 5.5.1) in order to take advantage of the properties of the Lp

norms. When ˝ is unbounded, we need to restrict our analysis to the following set
of probabilities:

Pp.˝/ WD
�
� 2 P.˝/ W

ˆ

˝

jxjp d� < C1
�
:

In a metric space, we fix an arbitrary point x0 2 X, and set Pp.X/ WD f� 2 P.X/ W´
d.x; x0/p d�.x/ < C1g (the finiteness of this integral does not depend on the

choice of x0).
Without entering into details for the moment, let us only mention that the

distances that we use are defined in the following way: for �; � 2 Pp.X/, we set
Wp.�; �/ WD Tc.�; �/

1=p, where Tc is the minimal transport cost for c.x; y/ D
d.x; y/p and d is the distance on X.

The distance that we obtain in this way are called Wasserstein distances.1 They
are very important in many fields of applications and they seem a natural way to

1The name is highly debated, in particular in Russia, since L. Vaserstein (whose name is sometimes
spelled Wasserstein), a Russian scholar based in the United States, did not really play the key role
that one could imagine in the introduction of these distances. Yet, this is nowadays the standard
name in Western countries, probably due to the terminology used in [198, 246], and it seems
impossible to change this convention, even if other names have been often suggested, such as
Monge-Kantorovich distances, etc. Also note than in the most applied communities the name Earth
Mover Distance (EMD) is very common for this distance.
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describe distances between equal amounts of mass distributed on a same space.
To translate into a language more meaningful for applications,2 one could say that
Wasserstein distances are a way to take a distance onto a set X of objects (colors,
words, points, etc.) and create out of it a distance on the set of all possible histograms
on X (see also Section 2.5.1).

It is interesting to compare these distances to Lp distances between densities
(a comparison which is meaningful when we consider absolutely measures on
R

d, for instance). A first observation is the very different behavior of these two
classes of distances. We could say that, if Lp distances can be considered “vertical,”
Wasserstein distances are instead “horizontal.” This consideration is very informal,
but it is quite natural if one associates with every absolutely continuous measure
the graph of its density. To compute jjf � gjjLp , we need to look, for every point
x, the distance between f .x/ and g.x/, which corresponds to a vertical displacement
between the two graphs, and then integrate this quantity. On the contrary, to compute
Wp.f ; g/, we need to consider the distance between a point x and a point T.x/ (i.e.,
a horizontal displacement on the graph) and then to integrate this, for a particular
pairing between x and T.x/ which makes a coupling between f and g.

A first example where we can see the very different behavior of these two ways of
computing distances is the following: take two densities f and g supported on Œ0; 1�,
and define gh as gh.x/ D g.x � h/. As soon as jhj > 1, the Lp distance between f
and gh equals .jjf jjpLp C jjgjjpLp/1=p and does not depend on the “spatial” information
consisting in jhj. On the contrary, the Wp distance between f and gh is of the order
of jhj (for h ! 1) and depends much more on the displacement than on the shapes
of f and g. As another example, consider the distance between a density g and its
translation gh, for jhj ! 0. In this case, we have Wp.g; gh/ D jhj, while jjg � ghjjLp

can be much larger than jhj and is of order jhj if and only if g is smooth enough
(Figure 5.1).

f(x)

f(x)

g(x)

g(x)

x T(x) x T(x)

f

g

Fig. 5.1 “Vertical” vs “horizontal” distances (the transport T is calculated in the picture on the
right as in the 1D case, by imposing equality between the blue and red areas under the graphs of f
and g, i.e., using the CFD functions as in Chapter 2)

2In particular in image processing. Thanks to G. Peyré for pointing out this interpretation.
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In several applications, this robustness of the Wasserstein distances w.r.t. pertur-
bation of the densities makes them preferable to other distances, and the fact that
they quantify spatial features of the measures is exactly what is required. Also, we
will see (in Section 5.4 and later 6.1 and 7.3) that the geodesics for these distances
provide useful interpolations between distributions of mass.

5.1 Definition and triangle inequality

In this section, we give the basic definitions of Wasserstein distances and spaces in
˝ � R

d. We will see how to adapt the analysis to the case of more general metric
spaces. As we said above, we restrict our analysis to the set

Pp.˝/ WD
�
� 2 P.˝/ W

ˆ
jxjp d� < C1

�
:

Note that p < q implies Pp.˝/ � Pq.˝/ and that, whenever ˝ is bounded,
Pp.˝/ D P.˝/.

For �; � 2 Pp.˝/, let us define

Wp.�; �/ WD min

�ˆ
˝�˝

jx � yjp d� W � 2 ˘.�; �/
� 1

p

;

i.e., the pth root of the minimal transport cost Tc for the cost c.x; y/ D jx � yjp.
The assumption �; � 2 Pp.˝/ guarantees finiteness of this value since jx � yjp �
C.jxjp C jyjp/, whence Wp

p .�; �/ � C.
´ jxjp d�C ´ jxjp d�/.

Note that, due to Jensen inequality, since all � 2 ˘.�; �/ are probability
measures, for p � q we have

�ˆ
jx � yjp d�

� 1
p

D jjx � yjjLp.�/ � jjx � yjjLq.�/ D
�ˆ

jx � yjq d�

�1=q

;

which implies Wp.�; �/ � Wq.�; �/. In particular, W1.�; �/ � Wp.�; �/ for every
p � 1. We will not define here W1, but we refer to Section 5.5.1 for a definition as
a limit for p ! 1.

On the other hand, for bounded ˝, an opposite inequality also holds, since

�ˆ
jx � yjp d�

� 1
p

� diam.˝/
p�1

p

�ˆ
jx � yj d�

� 1
p

:

This implies

Wp.�; �/ � CW1.�; �/
1
p ; (5.1)

for C D diam.˝/.p�1/=p.
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Proposition 5.1. The quantity Wp defined above is a distance over Pp.˝/.

Proof. First, let us note that Wp � 0. Then, we also remark that Wp.�; �/ D 0

implies that there exists � 2 ˘.�; �/ such that
´ jx � yjp d� D 0. Such a � 2

˘.�; �/ is concentrated on fx D yg. This implies � D � since, for any test function
� we have

ˆ
� d� D

ˆ
�.x/ d� D

ˆ
�.y/ d� D

ˆ
� d�:

We need now to prove the triangle inequality. We give two different proofs of this
fact. The first (Lemma 5.3) is easier and uses transport maps and approximation; the
second (Lemma 5.4) is more general but requires a trickier tool, i.e., disintegrations
of measures. ut
Lemma 5.2. Given �; � 2 Pp.R

d/ and 
" any even regularizing kernel in L1 with´
Rd 
".z/ dz D 1 and 
".z/ D "�d
1.z="/, then we have

1. the inequality Wp.� � 
"; � � 
"/ � Wp.�; �/

2. the limit lim"!0 Wp.� � 
"; � � 
"/ D Wp.�; �/:

Proof. Take an optimal transport plan � 2 ˘.�; �/ and define a transport plan
�" 2 ˘.� � 
"; � � 
"/ through

ˆ

Rd�Rd
�.x; y/ d�" WD

ˆ

Rd�Rd

ˆ

Rd
�.x C z; y C z/
".z/dz d�.x; y/:

We need to check that its marginals are actually � � 
" and � � 
". Just consider

ˆ

Rd�Rd
�.x/ d�" D

ˆ

Rd�Rd

ˆ

Rd
�.x C z/
".z/dz d�.x; y/

D
ˆ

Rd�Rd
.� � 
"/.x/ d�.x; y/ D

ˆ

Rd
.� � 
"/.x/ d�.x/

D
ˆ

Rd
�.x/ d.� � 
"/.x/

(we use the fact that 
" is even to pass the convolution from � to �). The
computation for the second marginal is the same. It is then easy to show that´ jx � yjp d�" D ´ jx � yjp d� , since

ˆ
jx � yjp d�" D

ˆ

Rd�Rd

ˆ

Rd
j.x C z/ � .y C z/jp
".z/dz d�.x; y/ D

ˆ
jx � yjp d�:

This shows the first part of the statement and also

lim sup
"!0

Wp.� � 
"; � � 
"/p � lim sup
"!0

ˆ
jx � yjp d�" D

ˆ
jx � yjp d�:
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One can also obtain the opposite inequality by a standard semi-continuity
argument. Consider �" WD � � 
" and �" WD � � 
", and use only the weak
convergences �" * � and �" * �. Call �" the optimal plans in ˘.�"; �"/.
This sequence of plans is tight, since its marginals are tight (look at the proof
of Theorem 1.7). First fix a sequence "k ! 0 such that limk Wp.�"k ; �"k/ D
lim inf"!0 Wp.�"; �"/. Then extract a subsequence "kj so as to guarantee that the
optimal transport plans �"kj

have a weak limit �0. This weak limit must belong to
˘.�; �/ (the fact that the marginals of �0 are � and � follows by the properties of
composition with continuous functions of the weak convergence). Then we have

Wp
p .�; �/ �

ˆ
jx � yjp d�0 � lim inf

j

ˆ
jx � yjp d�"kj

D lim inf
"!0

Wp.�"; �"/;

where the first inequality follows from the fact that �0 is not necessarily optimal but
is admissible and the second follows by semi-continuity (Lemma 1.6). ut

Then, we can perform a proof of the triangle inequality based on the use of
optimal transport maps.

Lemma 5.3. The quantity Wp satisfies the triangle inequality (proof by transport
maps and approximation).

Proof. First consider the case where � and % are absolutely continuous and � is
arbitrary. Let T be the optimal transport from � to % and S the optimal one from %

to �. Then SıT is an admissible transport from � to �, since .SıT/#� D S#.T#�/ D
S#% D �. We have

Wp.�; �/ �
�ˆ

jS.T.x// � xjp d�.x/

� 1
p

D jjS ı T � idjjLp.�/

� jjS ı T � TjjLp.�/ C jjT � idjjLp.�/:

Moreover,

jjS ı T � TjjLp.�/ D
�ˆ

jS.T.x// � T.x/jp d�.x/

� 1
p

D
�ˆ

jS.y/ � yjpd%.y/

� 1
p

and this last quantity equals Wp.%; �/. Moreover, jjT� idjjLp.�/ D Wp.�; %/, whence

Wp.�; �/ � Wp.�; %/C Wp.%; �/:

This gives the proof when �; % � L d. For the general case, first write the triangle
inequality for � � 
", % � 
", and � � 
", then pass to the limit as " ! 0 using
Lemma 5.2. ut
The proof above strongly uses the results about transport maps from Chapter 1 and
is somehow specific to R

d (in a general metric space, the tricky part would be to
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approximate arbitrary measures with measures such that the Wasserstein distance
can be computed with maps instead of plans3). To give a more general result, we
provide a different proof, which may happen to be more difficult for the reader who
is not accustomed to disintegrations of measures (see Chapter 2).

Lemma 5.4. The quantity Wp satisfies the triangle inequality (proof by disintegra-
tions).

Proof. Let us take �; % and � 2 Pp.˝/, �C 2 ˘.�; %/ and �� 2 ˘.%; �/. We
can also choose �˙ to be optimal. Let us use Lemma 5.5 to say that there exists
a measure � 2 P.˝ � ˝ � ˝/ such that .�x;y/#� D �C and .�y;z/#� D ��,
where �x;y and �y;z denote the projections on the two first and two last variables,
respectively. Let us take � WD .�x;z/#� . By composition of the projections, it is easy
to see that .�x/#� D .�x/#� D .�x/#�

C D � and, analogously, .�z/#� D �. This
means � 2 ˘.�; �/ and

Wp.�; �/ �
�ˆ

jx � zjp d�

� 1
p

D
�ˆ

jx � zjpd�

� 1
p

D jjx � zjjLp.�/

� jjx � yjjLp.�/ C jjy � zjjLp.�/ D
�ˆ

jx � yjpd�

� 1
p

C
�ˆ

jy � zjpd�

� 1
p

D
�ˆ

jx � yjp d�C
� 1

p

C
�ˆ

jy � zjp d��
� 1

p

D Wp.�; %/C Wp.%; �/:

The proof is concluded. ut
The following lemma is usually known as “gluing lemma” and allows to produce

a sort of “composition” of two transport plans, as if they were maps.

Lemma 5.5. Given two measures �C 2 ˘.�; %/ and �� 2 ˘.%; �/, there exists (at
least) a measure � 2 P.˝ �˝ �˝/ such that .�x;y/#� D �C and .�y;z/#� D ��,
where �x;y and �y;z denote the projections on the two first and two last variables,
respectively.

Proof. Start by taking �C and disintegrate it w.r.t. the projection �y (see Box 2.2 in
Section 2.3). We get a family of measures �C

y 2 P.˝/ (as we pointed out in the
same box, we can think of them as measures over ˝, instead of viewing them as
measures over ˝ � fyg � ˝ �˝). They satisfy (and are actually defined by)

ˆ

˝�˝
�.x; y/ d�C.x; y/ D

ˆ

˝

d%.y/
ˆ

˝

�.x; y/ d�C
y .x/;

3It is not strictly necessary to use absolutely continuous measures: we actually need atomless
measures, and then we can apply Theorem 1.33.
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for every measurable function � of two variables. In the same way, one has a family
of measures ��

y 2 P.˝/ such that for every �, we have

ˆ

˝�˝
�.y; z/ d��.y; z/ D

ˆ

˝

d%.y/
ˆ

˝

�.y; z/ d��
y .z/:

For every y, take now �C
y ˝ ��

y , which is a measure over ˝ �˝. Define � through

ˆ

˝�˝�˝
�.x; y; z/d�.x; y; z/ WD

ˆ

˝

d%.y/
ˆ

˝�˝
�.x; y; z/ d

�
�C

y ˝ ��
y

	
.x; z/:

It is easy to check that, for � depending only on x and y, we have

ˆ

˝3

�.x; y/d� D
ˆ

˝

d%.y/
ˆ

˝�˝
�.x; y/ d

�
�C

y ˝ ��
y

	
.x; z/

D
ˆ

˝

d%.y/
ˆ

˝

�.x; y/ d�C
y .x/ D

ˆ
� d�C:

This proves .�x;y/#� D �C and the proof of .�y;z/#� D �� is analogous. ut
Remark 5.6. All the analysis of this section can be performed on a general Polish
space X instead of a subset ˝ � R

d. The only differences are the definition of
Pp.X/ (we need to use Pp.X/ WD f� 2 P.X/ W ´

d.x; x0/p d�.x/ < C1g),
and the fact that the first proof of the triangle inequality was specific to R

d (but the
second works in general).

Definition 5.7. Given a Polish space X, for each p 2 Œ1;C1Œ we define its
Wasserstein space of order p, Wp.X/, as the space Pp.X/, endowed with the
distance Wp.

5.2 Topology induced by Wp

In this section, we want to analyze the convergence in the space Wp and compare it
to the notion of weak convergence. First of all, we recall what we mean by “weak
convergence”: as we pointed out in Box 1.3 in Chapter 1, we use this term to denote
the convergence in the duality with Cb, the space of bounded continuous functions
(which is often referred to as narrow convergence), and we write �n * � to say
that �n converges in such a sense to �.

We recall that another natural notion of convergence for measures is the one in
duality with the space of functions vanishing at infinity

C0.X/ WD f� 2 C.X/ W for all " > 0 there is K � X compact s.t. j�j < " on X n Kg:
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It is useful to point out some facts:

• When X is compact, the spaces C0.X/, Cc.X/, C.X/, and Cb.X/ coincide.
• The condition defining � 2 C0.X/ means that � tends to 0 “out of the compact

subsets of X”: this means at infinity, for X D R
d, on @˝ when X D ˝ � R

d is
open, and it means nothing if X is itself compact.

• For every x0 2 X, the existence of functions � 2 C0.X/ with �.x0/ ¤ 0 implies
the existence of compact neighborhoods of x0. In particular, the space C0.X/
is interesting only for locally compact spaces X, and it only consists of the
zero function whenever no point of X has compact neighborhoods (for instance,
in infinite-dimensional Banach spaces). Indeed, the duality result stating that
M .X/ is the dual of C0.X/ is only true for locally compact spaces (see Box 1.3
in Section 1.1).

The following lemma (which is true in locally compact spaces, but we only state
it for subsets of Rd) gives a helpful criterion for weak convergence.

Lemma 5.8. When all measures �n and � are probabilities over a subset˝ � R
d,

the convergence �n * � coincides with the convergence in the duality with Cc.˝/.

Proof. We only need to show that if we take  2 Cb.˝/, �n; � 2 P.˝/ and we
assume

´
� d�n ! ´

� d� for every � 2 Cc.˝/, then we also have
´
 d�n !´

 d�. If all the measures are probability, then we may add “for free” a constant C
to  , and, since  is bounded, we can choose C so that  C C � 0. Hence  C C
is the sup of an increasing family of functions �n 2 Cc (take �n D . C C/
n, 
n

being an increasing family of cutoff functions4 with 
n D 1 on B.0; n/). Hence by
semi-continuity, we have

´
. C C/ d� � lim infn

´
. C C/ d�n; which implies´

 d� � lim infn
´
 d�n: If the same argument is performed with � , we obtain

the desired convergence of the integrals. ut
Note that in the above lemma one can also use C0 instead of Cc, as Cc � C0.

Once the weak convergence is understood, we can start from the following result.

Theorem 5.9. If ˝ � R
d is compact, then �n * � if and only if W1.�n; �/ ! 0.

Proof. Let us recall the duality formula, which gives for arbitrary �; � 2 P.˝/

W1.�; �/ D max

�ˆ
˝

' d.� � �/ W ' 2 Lip1

�
:

Let us start from a sequence �n such that W1.�n; �/ ! 0. Thanks to the duality
formula, for every ' 2 Lip1.˝/, we have

´
' d.�n ��/ ! 0. By linearity, the same

will be true for any Lipschitz function. By density, it will hold for any function in
C.˝/. This shows that Wasserstein convergence implies weak convergence.

4The existence of cutoff functions, i.e., a sequence of continuous compactly supported functions
converging pointwisely to 1, is indeed peculiar to the case of locally compact spaces.
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To prove the opposite implication, let us first fix a subsequence �nk such that
limk W1.�nk ; �/ D lim supn W1.�n; �/. For every k, pick a function 'nk 2 Lip1.˝/
such that

´
'nk d.�nk � �/ D W1.�nk ; �/. Up to adding a constant, which does not

affect the integral, we can assume that the 'nk all vanish at a same point, and they
are hence uniformly bounded and equicontinuous. By the Ascoli-Arzelà theorem
we can extract a sub-subsequence uniformly converging to a certain ' 2 Lip1.˝/.
By replacing the original subsequence with this new one, we can avoid relabeling.
We have now

W1.�nk ; �/ D
ˆ
'nk d.�nk � �/ !

ˆ
' d.� � �/ D 0;

where the convergence of the integral is justified by the weak convergence �nk *

� together with the strong convergence (in C.˝/) 'nk ! '. This shows that
lim supn W1.�n; �/ � 0 and concludes the proof. ut
Theorem 5.10. If ˝ � R

d is compact and p 2 Œ1;C1Œ, in the space Wp.˝/, we
have �n * � if and only if Wp.�n; �/ ! 0.

Proof. We have already proved this equivalence for p D 1. For the other values of
p, just use the inequalities

W1.�; �/ � Wp.�; �/ � CW1.�; �/
1
p

that give the equivalence between the convergence for Wp and for W1. ut
We can now pass to the case of unbounded domains. From the fact that the

distance Wp does not really depend on the ambient domain, we can simply consider
the case ˝ D R

d.

Theorem 5.11. In the space Wp.R
d/, we have Wp.�n; �/ ! 0 if and only if �n *

� and
´ jxjp d�n ! ´ jxjp d�.

Proof. Consider first a sequence �n which is converging to � in Wp.R
d/. It is still

true in this case that

sup

�ˆ
� d.�n � �/ W � 2 Lip1

�
! 0;

which gives the convergence when testing against arbitrary Lipschitz functions.
Note that Lipschitz functions are dense (for the uniform convergence) in the space
C0.˝/ (while it is not necessarily the case for Cb.˝/). This is enough to prove
�n ! �, thanks to Lemma 5.8.

To obtain the other condition, namely,
´ jxjp d�n ! ´ jxjp d� (which is not a

consequence of the weak convergence, since jxjp is not bounded), it is sufficient to
note that
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ˆ
jxjp d�n D Wp

p .�n; ı0/ ! Wp
p .�; ı0/ D

ˆ
jxjp d�:

We need now to prove the opposite implication. Consider a sequence a �n * �

satisfying also
´ jxjp d�n ! ´ jxjp d�. Fix R > 0 and consider the function �.x/ WD

.jxj ^ R/p, which is continuous and bounded. We have
ˆ
.jxjp � .jxj ^ R/p/ d�n D

ˆ
jxjp d�n �

ˆ
� d�n

!
ˆ

jxjp d� �
ˆ
� d� D

ˆ
.jxjp � .jxj ^ R/p/ d�:

Since
´
.jxjp � .jxj ^ R/p/ d� � ´

B.0;R/c jxjp d� and
´
Rd jxjp d� < 1, it is possible

to choose R so that
ˆ
.jxjp � .jxj ^ R/p/ d� < "=2

and hence one can also guarantee that
´
.jxjp � .jxj ^ R/p/ d�n < " for all n large

enough.
We use now the inequality .jxj � R/p � jxjp � Rp D jxjp � .jxj ^ R/p which is

valid for jxj � R (see Lemma 5.12) to get
ˆ
.jxj � R/p d�n < " for n large enough, and

ˆ
.jxj � R/p d� < ":

Consider now �R W Rd ! B.0;R/ defined as the projection over B.0;R/. This
map is well defined and continuous and is the identity on B.0;R/. Moreover, for
every x … B.0;R/, we have jx � �R.x/j D jxj � R. We can deduce

Wp.�; .�R/#�/ �
�ˆ

.jxj � R/p d�

� 1
p

� "
1
p ;

Wp.�n; .�R/#�n/ �
�ˆ

.jxj � R/p d�n

� 1
p

� "
1
p :

Note also that, due to the usual composition of the weak convergence with
continuous functions, from �n * �, we also infer .�R/#�n * .�R/#�. Yet, these
measures are all concentrated on the compact set B.0;R/, and here we can use the
equivalence between weak convergence and Wp convergence. Hence, we get

lim sup
n

Wp.�n; �/

� lim sup
n

�
Wp.�n; .�R/#�n/C Wp..�R/#�n; .�R/#�/C Wp.�; .�R/#�/

	

� 2"
1
p C lim

n
Wp..�R/#�n; .�R/#�/ D 2"

1
p :
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As the parameter " > 0 is arbitrary, we get lim supn Wp.�n; �/ D 0, and the proof
is concluded. ut
Lemma 5.12. For a; b 2 RC and p � 1, we have ap C bp � .a C b/p.

Proof. Suppose without loss of generality that a � b. Then we can write .aCb/p D
ap C pp�1b, for a point  2 Œa; a C b�. Use now p � 1 and  � a � b to get
.a C b/p � ap C bp. ut
Remark 5.13. How to handle more general metric spaces X instead of subsets
of R

d? First, we notice that Lemma 5.8 does not hold in general (for instance,
it is trivially false in infinite-dimensional Banach spaces). Also, the problem of
the density of Lipschitz functions in the space of continuous functions (even if
X is compact) appears. Indeed, in R

d the fact that smooth functions are dense is
easy to obtain by convolution, a tool which is not available in general spaces. To
overcome this difficulty, one can prove the following statement, which is enough for
our scopes: “if we have convergence testing against arbitrary Lipschitz functions,
than we also have convergence testing against arbitrary functions in Cb” (this is
left as an exercise, see Ex(31)). Hence, in what concerns Theorems 5.9 and 5.10,
everything can be translated into the framework of Polish spaces (with no need of
local compactness). On the other hand, the proof that we gave of Theorem 5.11 was
somehow specific to R

d: the key point was the existence of a continuous retraction
�R from the whole space to a compact subset (the ball B.0;R/), with a bound on the
distance between x and �R.x/. The proof could be adapted to more general spaces,
with ad hoc assumptions, but we prefer to refer the reader to [9, 15] for the general
case.

5.3 Lipschitz curves in Wp and the continuity equation

In this section, we analyze some properties of Lipschitz and absolutely continuous
curves in the space Wp. In order to do that, we need some simple elements from
analysis in metric spaces. The reader who wants to know more can have a look, for
instance, at [12].

Box 5.1. Good to know! Curves and speed in metric spaces

Let us recall here some properties about Lipschitz curves in metric spaces.
A curve ! is a continuous function defined on a interval, say Œ0; 1� and valued in a

metric space .X; d/. As it is a map between metric spaces, it is meaningful to say whether
it is Lipschitz or not, but its velocity !0.t/ has no meaning, unless X is a vector space.

Surprisingly, it is possible to give a meaning to the modulus of the velocity, j!0j.t/.
Definition: If ! W Œ0; 1� ! X is a curve valued in the metric space .X; d/, we define the

metric derivative of ! at time t, denoted by j!0j.t/ through

(continued)
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Box 5.1. (continued)

j!0j.t/ WD lim
h!0

d.!.t C h/; !.t//

jhj ;

provided this limit exists.
The following theorem, in the spirit of Rademacher theorem (see Box 1.9 in Sec-

tion 1.3), guarantees the existence of the metric derivative for Lipschitz curves.
Theorem: Suppose that ! W Œ0; 1� ! X is Lipschitz continuous. Then the metric

derivative j!0j.t/ exists for a.e. t 2 Œ0; 1�. Moreover, we have, for t < s,

d.!.t/; !.s// �
ˆ s

t
j!0j.�/ d�:

The above theorem can be proved by using the fact that every compact metric space (and
!.Œ0; 1�/ is the image of a compact set through a continuous map; hence it is compact) can
be isometrically embedded in `1, where one can work componentwise. For all the notions
and the proofs about metric derivatives, we refer, for instance, to [12], Chapter 4.

We also need to consider more general curves, not only Lipschitz continuous.
Definition: A curve ! W Œ0; 1� ! X is defined absolutely continuous whenever there

exists g 2 L1.Œ0; 1�/ such that d.!.t0/; !.t1// � ´ t1
t0

g.s/ds for every t0 < t1. The set of
absolutely continuous curves defined on Œ0; 1� and valued in X is denoted by AC.X/.

It is well known that every absolutely continuous curve can be reparametrized in time
(through a monotone-increasing reparametrization) and become Lipschitz continuous. A
possible way to achieve this goal is the following: let G.t/ WD ´ t

0 g.s/ds, and then set
S.t/ D "t C G.t/ (for any " > 0), which is continuous and strictly increasing and valued
in an interval Œ0;L�; for t 2 Œ0;L�, set Q!.t/ D !.S�1.t//. It is easy to check that Q! 2 Lip1.
Also, if we let " ! 0, we obtain a unit-speed reparametrization of !. If we want to have
parametrizations defined on the same interval Œ0; 1�, we just need to rescale by a factor L.

In particular, the above Rademacher theorem is also true for ! 2 AC.X/ (since the
reparametrization that we defined is differentiable a.e.).

The goal of this section is to identify the absolutely continuous curves in the
space Wp.˝/ with solutions of the continuity equation @t�t C r � .vt�t/ D 0 with
Lp vector fields vt. Moreover, we want to connect the Lp norm of vt with the metric
derivative j�0j.t/.

We recall (see Section 4.1) that the continuity equation may be interpreted as
the equation ruling the evolution of the density �t of a family of particles initially
distributed according to �0, and each of which follows the flow

(
y0

x.t/ D vt.yx.t//

yx.0/ D x:

We state below the main theorem (originally proven in [15]) relating absolutely
continuous curves in Wp with solutions of the continuity equation. For simplicity,
we will only state it in the framework of a compact domain˝ � R

d. We will explain
where we use the compactness assumption and how to get rid of it.
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Theorem 5.14. Let .�t/t2Œ0;1� be an absolutely continuous curve in Wp.˝/ (for
p > 1 and ˝ � R

d compact). Then for a.e. t 2 Œ0; 1�, there exists a vector field
vt 2 Lp.�tIRd/ such that

• the continuity equation @t�t C r � .vt�t/ D 0 is satisfied in the weak sense (see
Section 4.1.2),

• for a.e. t, we have jjvtjjLp.�t/ � j�0j.t/ (where j�0j.t/ denotes the metric
derivative at time t of the curve t 7! �t, w.r.t. the distance Wp);

Conversely, if .�t/t2Œ0;1� is a family of measures in Pp.˝/ and for each t we

have a vector field vt 2 Lp.�tIRd/ with
´ 1
0

jjvtjjLp.�t/ dt < C1 solving @t�t C r �
.vt�t/ D 0, then .�t/t is absolutely continuous in Wp.˝/, and for a.e. t, we have
j�0j.t/ � jjvtjjLp.�t/.

Remark 5.15. Note that, as a consequence of the second part of the statement, the
vector field vt introduced in the first one must a posteriori satisfy jjvtjjLp.�t/ D
j�0j.t/.

We will split the proof of this theorem into two parts, dealing with the direct
and converse implications, respectively. We first introduce some tools that we need,
and in particular, the following one will be needed in both parts of the statement of
Theorem 5.14.

Remark 5.16. It is important to observe that, by reparametrizing in time, it is always
possible to assume that the absolutely continuous curve �t of the first part of the
statement is actually Lipschitz (and we obtain in this case a uniform bound on
jjvtjjLp.�t/) and that the norm jjvtjjLp.�t/ in the second part is bounded (and we obtain
that �t is Lipschitz). Hence, all the proofs will be done in this Lipschitz framework.

5.3.1 The Benamou-Brenier functional Bp

We need to start from an easy computation, which will be useful in the sequel. We
consider a pair of exponents p and q such that 1p C 1

q D 1.

Lemma 5.17. Set Kq WD f.a; b/ 2 R�Rd W aC 1
q jbjq � 0g. Then, for .t; x/ 2 R�Rd

we have

sup
.a;b/2Kq

.at C b � x/ D fp.t; x/ WD

8̂̂
<
ˆ̂:

1
p

jxjp
tp�1 if t > 0;

0 if t D 0; x D 0

C1 if t D 0; x ¤ 0; or t < 0:

(5.2)

In particular, fp is convex and l.s.c.

Proof. First of all, we establish (5.2). Suppose t > 0: then it is clear that one should
take the maximal possible value of a in the sup, and hence a D � 1

q jbjq. This gives
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sup
b

�
�1

q
tjbjq C b � x

�
D t

�
sup

b
�1

q
jbjq C b � �x

t

	�
:

If we recall that the Legendre transform of p 7! 1
q jpjq is x 7! 1

p jxjp. This gives

sup
b

�1
q

jbjq C b � y D 1

p
jyjp for all y; (5.3)

and hence

sup

�
at C b � x W a 2 R; b 2 R

d; a C 1

q
jbjq � 0

�
D t

1

p

ˇ̌̌x
t

ˇ̌̌p D 1

p

jxjp
tp�1 :

The case .t; x/ D .0; 0/ is straightforward. If t D 0 and x ¤ 0, then it is clear that
any vector b may be compensated by a sufficiently negative value of a, which gives

sup

�
at C b � x W a 2 R; b 2 R

d; a C 1

q
jbjq � 0

�
D sup

b
b � x D C1:

Finally, in the case t < 0, one can take a arbitrarily negative and b D 0 so that

sup

�
at C b � x W a 2 R; b 2 R

d; a C 1

q
jbjq � 0

�
� sup

a<0
at D C1:

The fact that fp is convex and l.s.c. is a consequence of the fact that it is expressed
as a supremum of linear functions. ut
We can note in the above result that we computed the Legendre transform of an
indicator function and that we got, as expected, a 1-homogeneous convex function.
We want now to use this function fp to define a functional over measures. For % 2
M .X/ and E 2 M d.X/, we set

Bp.%;E/ WD sup

�ˆ
X

a.x/d%C
ˆ

X
b.x/ � dE W .a; b/ 2 Cb.XI Kq/

�
;

where the letter B is chosen because of the role that this functional has in the so-
called Benamou-Brenier formula (see Section 6.1).

We prove the following:

Proposition 5.18. The functional Bp is convex and lower semi-continuous on the
space M .X/�M d.X/ for the weak convergence. Moreover, the following properties
hold:

1. Bp.%;E/ � 0,
2. Bp.%;E/ WD supf´ a.x/d%C ´

b.x/ � dE W .a; b/ 2 L1.XI Kq/g;
3. if both % and E are absolutely continuous w.r.t. a same positive measure � on

X, we can write Bp.%;E/ D ´
X fp.%.x/;E.x// d�.x/, where we identify % and E

with their densities w.r.t. �,
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4. Bp.%;E/ < C1 only if % � 0 and E � %,
5. for % � 0 and E � %, we have E D v � % and Bp.%;E/ D ´

1
p jvjp d%,

6. If X D R
d, %" WD % � �" and E" WD E � �" (for standard even mollifying kernel

�"), then we have Bp.%
";E"/ � Bp.%;E/.

Proof. The convexity and lower semi-continuity of Bp are a direct consequence of
its definition as a supremum of linear functionals. The first property (positivity) is
straightforward, as one can take a D 0 and b D 0 in the supremum.

In order to prove that the supremum can be taken over bounded functions
instead of continuous ones, we just need to approximate every bounded function
with continuous ones (beware that, by abuse of notation, the space L1.XI Kq/

denotes here the space of bounded measurable functions valued in Kq, indepen-
dently of the reference measure). This can be done via Lusin’s theorem (see the
corresponding Box 1.6 in Section 1.1), and every bounded pair .a; b/ can be
approximated by continuous pairs .Qa; Qb/, such that .% C jEj/.f.a; b/ ¤ .Qa; Qb/g/ <
" and sup jQaj � sup jaj and sup jQbj � sup jbj. Then, we can replace Qa with
minfQa;� 1

q jQbjqg so as to guarantee to have functions valued in Kq. The differenceˇ̌´
a.x/d%C ´

b.x/ � dE � ´ Qa.x/d%C ´ Qb.x/ � dE
ˇ̌

is bounded by C" where C only
depends on sup jaj and sup jbj.

Once we know that we can use measurable functions a; b with no need of
continuity, then property 3 is a consequence of Lemma 5.2. As a consequence of
Lemma 5.17, we can write

Bp.%;E/ D sup

�ˆ
Œa.x/%.x/C b.x/ � E.x/� d�.x/ W .a; b/ 2 L1.XI Kq/

�

D
ˆ

fp.%.x/;E.x//d�.x/:

The fact that Bp is only finite if % � 0 is easy: assume it to be false for
contradiction, and take a set A such that %.A/ < 0, a D �n1A and b D 0. We
have Bp.%;E/ � n%.A/ and, since n is arbitrary, Bp.%;E/ D C1. To prove the
fact that Bp is only finite if E � %, assume that there is a set A with %.A/ D 0

and E.A/ ¤ 0. Take any unit vector e and use a D � nq

q 1A and b D ne1A. We have
Bp.%;E/ � ne � E.A/. Since both e and n are arbitrary, we get Bp.%;E/ D C1.

When we restrict to the case % � 0 and E D v � %, property 5 is a consequence of
property 3. Indeed, just use � D %, thus getting

Bp.%; v � %/ D
ˆ

fp.1; v.x//d%.x/ D
ˆ
1

p
jvjp d%:

Let us now prove property 6. Take arbitrary bounded functions a W Rd ! R and
b W Rd ! R

d satisfying a.x/C 1
q jb.x/jq � 0 for all x. From standard properties of

convolutions, we have
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ˆ
a d%" C

ˆ
b � dE" D

ˆ
a" d%C

ˆ
b" � dE;

where a" WD a � �" and b" WD b � �". Note that, by Jensen inequality

jb".y/jq D
ˇ̌̌
ˇ
ˆ

b.x/�".x � y/ dx

ˇ̌̌
ˇ
q

�
ˆ

jb.x/jq�".x � y/ dx

and hence

a".y/C 1

q
jb".y/jq �

ˆ
a.x/C

�
1

q
jb.x/jq

�
�".x � y/ dx � 0:

This proves .a"; b"/ 2 C.RdI Kq/, and hence we have

ˆ
a d%" C

ˆ
b � dE" D

ˆ
a" d�C

ˆ
b" � dE � Bp.%;E/:

Passing to the sup in a and b, one gets Bp.%
";E"/ � Bp.%;E/. ut

Remark 5.19. As a convex and l.s.c. functional, Bp has admits a subdifferential,
which one could usefully compute for optimization purposes: this computation is
developed in [235], but we will not need it in this framework.

We are now ready to prove the first part of Theorem 5.14.

5.3.2 Proof of Theorem 5.14, Part 1: � is AC ) there exists v

Proof. First of all, we note that it is not restrictive to assume that � is a Lipschitz
curve (if not, we just reparametrize in time).

We will do our proof by approximation, i.e., we build a sequence �k
t of curves

which admit the existence of suitable vector fields vk
t , in such a way that �k

t * �t

and that we can find a limit for the vector fields also.
To define �k

t we proceed in the following way. For t D i=k, i D 0; 1; : : : ; k, we
define �k

t D �t � �k, where �k is a smooth approximation of the identity, i.e., a
smooth even positive function supported on B.0; 1=k/ and with integral equal to 1.
The only goal of this smoothing is to guarantee that the measures are absolutely
continuous. The support of the measures is now contained in a slightly bigger
domain ˝ 0 
 ˝ that we can choose convex. Then, for each i D 0; 1; : : : ; k � 1,
we define Ti;k W ˝ 0 ! ˝ 0 to be the optimal transport (for the cost c.x; y/ D
jx � yjp) from �k

i=k to �k
.iC1/=k. These optimal transport maps exist since every �k

i=k

is absolutely continuous. Then, for t 2� i
k ;

iC1
k Œ, we define

�k
t WD �

.i C 1 � kt/id C .kt � i/Ti;k
	

#�
k
i=k;
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which means that the particle located at x at time i=k goes to the position Ti;k.x/
at time .i C 1/=k, moving with constant speed on the segment connecting these
two positions in the interval � i

k ;
iC1

k Œ. The velocity of this movement is given by

vi;k WD k.Ti;k.x/ � x/. Set Ti;k
t WD .i C 1 � kt/id C .kt � i/Ti;k; this map is injective

(see Lemma 4.23). Thus, we can set vk
t WD vi;k ı �Ti;k

t

	�1
. This last vector field

exactly represents the velocity that each particle has during its movement at time t:
first we detect which is the original position of such a particle (at time i=k), then we
associate with this particle the velocity associated with this original position.

As a consequence of this construction and of the considerations in Section 4.1,
the pair .�k

t ; v
k
t / solves the continuity equation @t�

k
t C r � .vk

t�
k
t / D 0.

The important point is the computation

jjvk
t jjpLp.�k

t /
D

ˆ
jvk

t jp d�k
t D

ˆ
jvi;kjp ı �Ti;k

t

	�1
d
�
Ti;k

t

	
#�

k
i=k D

ˆ
jvi;kjp d�k

i=k

D kpWp
p .�

k
i=k; �

k
.iC1/=k/ � kpWp

p .�i=k; �.iC1/=k/

� kp

 ˆ .iC1/=k

i=k
j�0j.s/ds

!p

� k
ˆ .iC1/=k

i=k
j�0jp.s/ds:

Here we used the fact that Wp.�i=k � �"; �.iC1/=k � �"/ � Wp.�i=k; �.iC1/=k/ (see
Lemma 5.2) and, at the end, Jensen’s inequality. In particular, we also get a uniform
bound on jjvk

t jjLp.�k
t /

since k
´ .iC1/=k

i=k j�0jp.s/ds � Lip.�/.
This implies that, for arbitrary time 0 � a < b � 1 (with ia=k � a � .ia C 1/=k

and ib=k � b � .ib C 1/=k), we have

ˆ b

a
jjvk

t jjpLp.�k
t /

dt �
ibX

iDia

ˆ .iC1/=k

i=k
j�0jp.s/ds

D
ˆ .ibC1/=k

ia=k
j�0jp.s/ds �

ˆ b

a
j�0jp.s/ds C 2Lip.�/

k
: (5.4)

Now, define a vector measure Ek on ˝ 0 � Œ0; 1� via

ˆ
�.t; x/ � dEk WD

ˆ 1

0

�ˆ
�.t; x/ � vk

t .x/ d�k
t .x/

�
dt:

We can easily check that

jjEkjj D
ˆ 1

0

jjvk
t jjL1.�k

t /
dt �

ˆ 1

0

jjvk
t jjLp.�k

t /
dt �

�ˆ 1

0

jjvk
t jjpLp.�k

t /
dt

� 1
p

� C:
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Hence, up to a subsequence extraction, the sequence of vector measures Ek admits
a weak limit E. On the other hand, it is easy to check that �k converges in Wp,
uniformly in time, to �. Indeed

Wp.�
k
t ; �t/ � Wp.�

k
t ; �

k
i=k/C Wp.�

k
i=k; �i=k/C Wp.�i=k; �t/:

The first term may be estimated using

Wp.�
k
t ; �

k
i=k/ � jt � i=kj jjvi;kjjLp.�k

i=k/
� C

k
I

the second may be estimated by the size of the support of the kernel �" (which allows
to obtain �k

i=k from �i=k), which is " D 1=k; the third is estimated by the Lipschitz

constant of � times, again, jt � i
k j � 1

k . Overall, we get

Wp.�
k
t ; �t/ � C

k
:

From @t�
k C r � Ek D 0, we can easily pass to the limit and get @t�C r � E D 0.

We want now to prove that Et D vt�t, with jjvtjjLp.�t/ � j�0j.t/ a.e.
This is a consequence of Proposition 5.18 on the semi-continuity of Bp. Indeed,

using (5.4) with a D 0; b D 1, we have Bp.�
k;Ek/ � C (where the functional Bp

is considered on the whole space-time domain Œ0; 1� �˝). This is enough to obtain
Bp.�;E/ < C1 and E � �, i.e., Et D vt�t. Then, if we apply the same lemma to
the measures �k and Ek restricted to a closed interval Œa; b�, we obtain

ˆ b

a
jjvtjjpLp.�t/

dt � lim inf
k

ˆ b

a
jjvk

t jjpLp.�k
t /

dt �
ˆ b

a
j�0jp.t/dt:

Since this is true for arbitrary values of a and b, on every Lebesgue point t0 of
t 7! jjvtjjpLp.�t/

and t 7! j�0jp.t/, we get the desired inequality. ut
We want now to prove the converse implication of Theorem 5.14. Again, to be

able to perform our computations rigorously, we need to regularize by convolution.
The construction that we do here will be useful many times, and it deserves to be
detailed and analyzed.

5.3.3 Regularization of solutions of the continuity equation

Suppose that .�;E/ solves the continuity equation @t�tCr�Et D 0, that the supports
of all measures �t and Et are contained in a same compact set ˝ � R

d, and that
Et is bounded in the space of measure, i.e., jjEtjj WD jEtj.Rd/ � C. Take a C1
strictly positive kernel �" (as a function of space only) and define �"t WD �" ��t and
E"t WD �" � Et, and v"t WD E"t =�

"
t . The choice is made so that @t�

"
t C r � .�"t v"t / D 0.
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Since we want to apply the characterization result of solutions of the continuity
equation (Theorem 4.4), we want to check uniform global bounds on v". To do
this, we need to perform a particular choice of �", and in particular, we take it of
the form �".z/ D "�d�.jzj="/, where � W RC ! R

C is a smooth function such that
�.t/ D Ce�t for t � 1. In Lemma 5.20, we check that this guarantees that v" satisfies
the required global bounds, and we also state regularity for �" (that we will need in
Section 5.3.5).

Lemma 5.20. With the above choice of the convolution kernel �", the function �"

is Lipschitz in .t; x/ and v" is Lipschitz in x and bounded, uniformly in t (for fixed
" > 0), provided ˝ is bounded.

Proof. We can fix " D 1 as the computations for other values of " are similar. We
set � D �". From �".t; x/ D ´

�.jy � xj/�t.dx/, we have a Lipschitz bound in x
from standard convolution properties, but also

@t�
".t; x/ D d

dt

ˆ
�.y � x/d�t.x/ D

ˆ
r�.y � x/ � dEt.x/;

which is bounded by Lip.�/jEtj.Rd/.
As far as v" is concerned, computations are trickier since it is defined as E"=�".

From � > 0, we get �" > 0 which guarantees that v" is smooth as the ratio between
two smooth functions, with nonvanishing denominator. Yet, we want to compute
explicit and global bounds for large jxj. If R0 D diam.˝/ and 0 2 ˝, we have
for sure, for jxj D R � 1, �".x/ � �.R C R0/. On the other hand, we have, for
R � 2R0 _ 1, jE"j � C�.R � R0/, jrE"j � Cj�0.R � R0/j, and, similarly, jr�"j �
Cj�0.R � R0/j. From

jv"j D jE"j
�"

; jrv"j � jrE"j
�"

C jE"j jr�"j
.�"/2

;

using � D �0 D �00 on Œ1;C1Œ and �.R C R0/ D e�2R0�.R � R0/, we get uniform
bounds. ut
We will see that the application of Lemma 5.20 is the only point where we needed˝
to be bounded. Without this assumption, we cannot apply the characterization result
for the continuity equation that we presented in Theorem 4.4. On the other hand, we
already mentioned that more general uniqueness results exist (for instance, in [15]),
and we simply chose not to present them for the sake of simplicity.

Thanks to our definitions, we have

@t�
"
t C r � .v"t�"t / D 0:

Moreover, applying Theorem 4.4, we know that the only solution of @t%t C r �
.v"t %t/ D 0 is given by the flow of v". Hence, we get
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�"t D .Yt/#�
"
0; where Yt.x/ D yx.t/; and

(
y0

x.t/ D v"t .yx.t//;

yx.0/ D x:
(5.5)

We can summarize our construction in the following proposition.

Proposition 5.21. Consider a pair .�;E/ solving @t�t C r � Et D 0, and suppose
that the supports of all measures �t and Et are contained in a same compact set
˝ � R

d and that Et is bounded in the space of measure, i.e., jEtj.Rd/ � C. Then,
there exists a family of approximating curves .�"t /t with a velocity vector field v"t
such that

• �" is Lipschitz in .t; x/ and v" is Lipschitz in x and bounded, uniformly in t;
moreover, �" > 0 everywhere;

• �"t is obtained from �"0 by following the flow of the vector field v", in the sense
of (5.5);

• For every t, we have �"t * �t and for a.e. t, we have E"t * Et.
• jjv"t jjLp.�"t / � Bp.�t;Et/.

Proof. We use the construction we described above. The first property is proven
in Lemma 5.20, the second has been discussed above, and the third is evident by
construction. The fourth is a consequence of property 5 of Lemma 5.18. Note that
this means jjv"t jjLp.�"t / � jjvtjjLp.�t/ whenever Et D vt � �t. ut

We finish this paragraph by noting that the same construction could have been
performed on the torus.

Remark 5.22. If �t 2 P.Td/, one can consider an arbitrary approximation kernel
�" 2 C1.Rd/ of the form �".z/ D "�d�.z="/ (strictly positive, but with no need
of imposing exponential behavior) and define the convolution on the torus. To be
precise, let us stress that the periodic convolution ��� between a measure � on T

d

and a function � on R
d is defined as follows. Consider at first � as a measure on

Q D Œ� 1
2
; 1
2
� � R

d, perform standard convolution on R
d, and then define

.���/.x/ WD
X
k2Zd

.� � �/.x C k/:

Equivalently, this corresponds to a convolution on the torus with the convolution
kernel

P
k2Zd �.x C k/.

With this construction, the same conclusions as in Proposition 5.21 hold.
Moreover, every compact domain ˝ can be seen as a subset of a cube Q identified
with the torus, and it can even fit an arbitrary small portion of Q. In this case, every
optimal transport problem for the costs jx � yjp between measures on ˝ “does not
see” the fact that Q is identified with a torus (it is enough to have ˝ � 1

2
Q).

We stress that the uniform bounds in the case of the torus are easier to obtain, but
we found conceptually easier to deal with measures on R

d (and in particular with
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optimal transport problems in R
d). This is why we prefer the Euclidean construction

to this one. Yet, we present both of them for the use that we will do in Section 5.3.5,
where compactness is crucial for our estimates.

5.3.4 Proof of Theorem 5.14, Part 2: There exists v ) � is AC

Proof. The starting point is a pair .�;E/ which solves the continuity equation,
where Et D vt � �t and vt 2 Lp.�t/ for a.e. t. Again, we apply a reparametrization:
with a change of variable in time, we can replace .�t;Et/ with a new pair where Et

is just multiplied by a scalar constant depending on t. By choosing our change of
variable, we can impose a uniform bound on jjvtjjLp.�t/. This also implies a bound
on jjEtjj D jEtj.Rd/ D jjvtjjL1.�t/.

Under this extra assumption (the uniform bound on jjEtjj), we can use the
construction provided in the previous paragraph (using the construction on R

d for
simplicity of exposition). Thus, we can build an approximated curve �"t which is
driven by the flow of the smooth (in space) vector field v". This provides a useful
transport plan between �"t and �"tCh, taking � D .Tt;TtCh/#�

"
0 2 ˘.�"t ; �

"
tCh/.

We obtain

Wp.�
"
t ; �

"
tCh/ �

�ˆ
˝�˝

jx � yjp d�

� 1
p

D
�ˆ

˝

jTt.x/ � TtCh.x/jp d�"0

� 1
p

� jhj1=q

�ˆ
˝

ˆ tCh

t

ˇ̌̌
ˇ d

ds
Ts.x/

ˇ̌̌
ˇ
p

ds d�"0

� 1
p

D jhj1=q

�ˆ tCh

t
ds
ˆ

˝

ˇ̌
v"s.yx.s//

ˇ̌p
d�"0

� 1
p

D jhj1=q

�ˆ tCh

t
ds
ˆ

˝

ˇ̌
v"s.y/

ˇ̌p
d�"s.y/

� 1
p

:

We proved in Lemma 5.17 that
´ ˇ̌

v"s.y/
ˇ̌p

d�"s.y/ � jjvsjjpLp.�s/
: From this, we get

Wp.�
"
t ; �

"
tCh/ � jhj1=q

�ˆ tCh

t
jjvsjjpLp.�s/

ds

� 1
p

D jhj
�
1

jhj
ˆ tCh

t
jjvsjjpLp.�t/

ds

� 1
p

:

First we can pass to the limit " ! 0, thus obtaining

Wp.�t; �tCh/

jhj �
�
1

jhj
ˆ tCh

t
jjvsjjpLp.�s/

ds

� 1
p

:
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This provides Lipschitz behavior for �t. Then, we take the limit h ! 0 at points t
where j�0j.t/ exists and which are Lebesgue points of t 7! jjvtjjpLp.�t/

, we obtain

j�0j.t/ � jjvtjjLp.�t/;

which provides the desired estimate. ut
We remark that Theorem 5.14 has been proven thanks to an extensive use of the

functional Bp: we needed its convexity in the second part and its semi-continuity in
the first part.5

Remark 5.23. We also note that we only defined the functional Bp for p > 1 and
that the only natural extension for p D 1 would be given by B1.%;E/ D jjEjj. It is
easy to understand that the first part of Theorem 5.14 cannot stay true in the case
p D 1. Indeed, the part of the statement which fails is the existence of a vector field
vt, since it is no more possible to deduce E � �: it is not difficult to adapt the proof
so as to get the existence of a family Et of vector measures solving @t�t Cr �Et D 0,
but Et will be no more of the form vt � �t. An example where absolute continuity
fails is the following: take �t WD .1 � t/ıx0 C tıx1 , which is Lipschitz in W1 (but
not in Wp, p > 1). In this case, one could take Et D x1�x0jx1�x0jH

1 Œx0; x1� (a uniform
measure on the segment joining the two points, oriented as the same segment), but
no measure concentrated on fx0; x1g can be such that its divergence is ıx1 � ıx0 .

5.3.5 Derivative of Wp
p along curves of measures

We conclude this section with a useful computation which can be applied in many
cases in the study of evolution PDEs. The same result is efficiently proven in [15],
but we provide a different proof.

Theorem 5.24. Let .%.i/t ; v
.i/
t / for i D 1; 2 be two solutions of the continuity

equation @t%
.i/
t C r � .v.i/t %

.i/
t / D 0 on a compact domain ˝ (with no-flux boundary

conditions), and suppose that %.i/t � L d for every t and that %.i/ are absolutely
continuous curves in Wp.˝/. Then we have

d

dt

�
1

p
Wp

p .%
.1/
t ; %

.2/
t /

�
D

ˆ
r't � v.1/t %

.1/
t dx C

ˆ
r t � v.2/t %

.2/
t dx

5The proof that we gave of the second part is standard and based on the interpretation of the
continuity equation that we gave in Chapter 4. The approximations that we performed are the same
as in [15], but we tried to simplify them to make this exposition self-contained: in order to do that,
we chose a very precise convolution kernel. Concerning the first part, we stress that a different, and
much more elegant, approach can be found in [15] and does not use approximation. The approach
that we presented here is more or less inspired by a paper by Lisini, [212].



5.3 Curves in Wp and continuity equation 199

for a.e. t, where .'t;  t/ is any pair of Kantorovich potentials in the transport
between %.1/t and %.2/t for the cost 1p jx � yjp.

Proof. We first prove the result under the assumption that %.i/ is Lipschitz contin-
uous in .t; x/ and v.i/ is Lipschitz in x, uniformly in t, for i D 1; 2. In this case,
we write, for arbitrary t; t0, the following inequality, justified by the duality formula
(Theorem 1.39):

1

p
Wp

p .%
.1/
t ; %

.2/
t / �

ˆ
't0%

.1/
t �

ˆ
 t0%

.2/
t � 0; (5.6)

with equality when t D t0. Choose t0 such that t 7! Wp
p .%

.1/
t ; %

.2/
t / is differentiable

at t D t0 and %.i/.t; x/ is differentiable in t at .t0; x/ for a.e. x, and the derivative in
time equals �r � .%.i/.t; x/vi.t; x//. All these conditions are satisfied for a.e. t0 (we
use Proposition 4.3). Hence, the left-hand side in (5.6) is differentiable at t D t0 and
the derivative must vanish, because of minimality at t D t0. This proves

d

dt

�
1

p
Wp

p

�
%
.1/
t ; %

.2/
t

��
jtDt0

D
ˆ
't0

�
@t%

.1/
	

t0
C
ˆ
 t0

�
@t%

.2/
	

t0
;

and the desired formula is obtained by using @t%
.i/ D �r � .v.i/%.i// and integrating

by parts.6

To deal with the general case, first we reduce to the case where the curves %.i/ are
Lipschitz in Wp.˝/, by reparametrization in time. Then, we apply the regularization
procedure of Section 5.3.3. In order to preserve compactness, we choose to apply
the construction on the torus, and we suppose ˝ � 1

2
Q (which is possible up

to rescaling). Hence, we obtain two smoother families of curves %.i;"/t with their
velocity fields v.i;"/t . For t0 < t1, the first part of the proof implies

1

p
Wp

p

�
%
.1;"/
t1 ; %

.2;"/
t1

�
� 1

p
Wp

p

�
%
.1;"/
t0 ; %

.2;"/
t0

�
D

ˆ t1

t0

dt
ˆ

Td
r'"t � E.1;"/t C r "

t � E.2;"/t ;

where E.i;"/t D %
.i;"/
t v.i;"/t (also set E.i/t D %

.i/
t v.i/t ) and '"t and  "

t are Kantorovich
potentials in the transport from %

.1;"/
t to %.2;"/t .

We just need to pass to the limit in the above equality. The left-hand side trivially
converges to the corresponding Wasserstein distances between the measures %.i/

(note that we are on a compact space, and the convolutions weakly converge to the

6One of the difficulties in this result is that the functions t 7! ´
't0%

.1/
t and t 7! ´

 t0%
.2/
t are

differentiable for a.e. t, but not necessarily at t D t0 (we know that for every integrand the integral
is differentiable for a.e. T , and not that for a.e. t differentiability occurs for every integrand). We
propose a way to overcome this difficulty via Lipschitz solutions. As an alternative approach, one
can try to find the precise set of times t such that differentiability occurs for every integrand, as in
[155], based on ideas from [15].
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original measure). Next, let us analyze the first part of the right-hand side (i.e., for
i D 1, the other part being completely analogous).

For each t, we have

ˇ̌̌
ˇ
ˆ

Td
r'"t � E.1;"/t

ˇ̌̌
ˇ�Lip.'"t /

v.i;"/t


L1
�
%
.i;"/
t

��C
v.i;"/t


Lp
�
%
.i;"/
t

��C
v.i/t


Lp
�
%
.i/
t

��C;

where we used property 5 of Proposition 5.18 and the fact that all the functions '"

are equi-Lipschitz (see Section 1.3.2).
It is now enough to look at the limit for fixed t, since as a function of t, we can

apply dominated convergence. Let us set '""t WD �" � '"t : we have

ˆ

Td
r'"t � E.1;"/t D

ˆ

Td
r'"t � .�" � E.1/t / D

ˆ
r'""t � E.1/t ;

because of standard properties of convolutions. Thus, we only need to prove that
r'""t ! r't a.e. The functions '""t are equi-Lipschitz and equi-semi-concave (see
again Section 1.3.2) on a compact set and, up to translating their mean, we can apply
the Ascoli-Arzelà theorem. Thus they converge up to subsequence to a function Q'.
Note that, because of semi-concavity, the convergence of the functions implies a.e.
convergence of the gradients (see, for instance, Theorem 3.3.3 in [102]). We just
need to prove r Q' D r't (which would also imply that the convergence is true on
the whole sequence).

Note that by Theorem 1.52, the limit of '"t must be a Kantorovich potential.
Moreover, we have the general estimate

j.�" � f /.x/ � f .x/j �
ˆ

jf .x/ � f .x � y/j �
�y

"

� dy

"d

� Lip.f /
ˆ

jyj�
�y

"

� dy

"d
D "Lip.f /

ˆ
jzj�.z/dz;

(where we used the change of variable y D "z). The same estimate also works
for periodic convolution and shows jj'""t � '"t jjL1 � C Lip.'"/" � C" ! 0.
This allows to conclude that the limit of '""t must be the same as that of '"t , i.e., a
Kantorovich potential. Even if the Kantorovich potential is not necessarily unique,
its gradient is unique, and we deduce r'""t ! r't. ut

Note that in the above proof, we intensively used the compactness of the domain
˝ (and of the torus: the same proof performed with regularization via measures on
R

d seems delicate because of the lack of bounds on r'""t ). The assumption that the
measures are absolutely continuous is used to take advantage of the a.e. convergence
of the gradients to a unique limit (the gradient of the limit potential). Without this,
one could have problems in recovering full convergence of the sequence.

As a corollary of the previous result, we obtain the following useful formula.
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Corollary 5.25. Under the same assumptions of Theorem 5.24, we have

d

dt

�
1

p
Wp

p .%
.1/
t ; %

.2/
t /

�
D

ˆ

˝

.x � Tt.x// �
�

v.1/t .x/ � v.2/t .Tt.x//
�
%
.1/
t .x/ dx;

where Tt is the optimal transport map from %
.1/
t to %.2/t for the cost 1p jx � yjp.

Proof. We just need to rewrite the conclusion of Theorem 5.24, using r't.x/ D
x � Tt.x/ and r t.y/ D y � St.y/, where St is the optimal transport from %

.2/
t to %.1/t .

We use
ˆ
.y � St.y// � v.2/t .y/ d%.2/t .y/ D

ˆ
.Tt.x/ � x/ � v.2/t .Tt.x// d%.1/t .x/;

which is a consequence of .Tt/#%
.1/
t D %

.2/
t and St D T�1

t . Hence, the formula given
by Theorem 5.24 provides

d

dt

�
1

p
Wp

p .%
.1/
t ; %

.2/
t /

�

D
ˆ

˝

.x � Tt.x// � v.1/t .x/ d%.1/t .x/C
ˆ

˝

.Tt.x/ � x/ � v.2/t .Tt.x// d%.1/t .x/;

which gives the claim.

Some examples of application of the above computation to the uniqueness and
the properties of the solution to some evolution PDEs are presented in the Exercise
section (Ex(34), Ex(66),Ex(67),Ex(68),Ex(69)).

Here, we will only give an example of application to the uniqueness for the
continuity equation with given vector field.

Proposition 5.26. Let vt W ˝ ! R
d be a family of vector fields on a compact

smooth domain ˝, parametrized in time, satisfying a one-sided Lipschitz condition
.vt.x/� vt.y// � .x � y/ � Cjx � yj2 for a fixed constant C, not depending on x; y, nor
t. Suppose also that vt �n D 0 on @˝ and consider the equation @t%t Cr �.%tvt/ D 0

with given initial datum %0. Then there is at most one solution %t among AC curves
in W2.˝/ which are absolutely continuous measures for a.e. t.

Proof. Consider two solutions %.1/t ; %
.2/
t and compute the derivative in time of

W2
2 .%

.1/
t ; %

.2/
t /. Using Corollary 5.25, we have

d

dt

�
1

2
W2
2 .%

.1/
t ; %

.2/
t /

�
D

ˆ

˝

.x � T.x// � .vt.x/ � vt.T.x///%
.1/
t dx

� C
ˆ

˝

jx � T.x/j2%.1/t dx D CW2
2 .%

.1/
t ; %

.2/
t /:
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This allows to apply Gronwall’s lemma and deduce W2
2 .%

.1/
t ; %

.2/
t / D 0 from the fact

that the same distance vanishes at t D 0. ut
Note that the above proof could also be used to prove uniqueness in the continuity

equation and applied to Theorem 4.4.

5.4 Constant-speed geodesics in Wp

We will see in this section how constant-speed geodesics in Wp are related to optimal
transport maps. Before doing so, we recall the main facts about geodesics in metric
spaces.

Box 5.2. Good to know! Constant-speed geodesics in general metric spaces

First of all, let us define the length of a curve ! in a general metric space .X; d/.
Definition: For a curve ! W Œ0; 1� ! X, let us define

Length.!/ WD sup

(
n�1X
kD0

d.!.tk/; !.tkC1/ W n � 1; 0 D t0 < t1 < � � � < tn D 1

)
:

Note that the same definition could be given for functions defined on Œ0; 1� and valued
in X, not necessarily continuous. The functions ! with Length.!/ < C1 are exactly
those which have bounded variation in the sense of the BV functions 1D (see Box 4.4 in
Section 4.2.4). It is easy to see that all curves ! 2 AC.X/ satisfy Length.!/ � ´ 1

0 g.t/dt <
C1.

Proposition: For any curve ! 2 AC.X/, we have

Length.!/ D
ˆ 1

0

j!0j.t/dt:

We collect now some more definitions.
Definition: A curve ! W Œ0; 1� ! X is said to be a geodesic between x0 and x1 2 X if it

minimizes the length among all curves such that !.0/ D x0 and !.1/ D x1.
A space .X; d/ is said to be a length space if it holds

d.x; y/ D inffLength.!/ W ! 2 AC.X/; !.0/ D x; !.1/ D yg:
A space .X; d/ is said to be a geodesic space if it holds

d.x; y/ D minfLength.!/ W ! 2 AC.X/; !.0/ D x; !.1/ D yg;
i.e., if it is a length space and there exist geodesics between arbitrary points.

We will not enter into details here about the conditions for the existence of geodesics,
but the fact that Length.!/ is defined as a sup is crucial so to establish semi-continuity
results.

(continued)
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Box 5.2. (continued)
Definition: In a length space, a curve ! W Œ0; 1� ! X is said to be a constant-speed

geodesic between !.0/ and !.1/ 2 X if it satisfies

d.!.t/; !.s// D jt � sjd.!.0/; !.1// for all t; s 2 Œ0; 1�:

It is easy to check that a curve with this property is automatically a geodesic.
The following characterization is useful.
Proposition: Fix an exponent p > 1 and consider curves connecting x0 to x1. The three

following facts are equivalent:

1. ! is a constant-speed geodesic,
2. ! 2 AC.X/ and j!0j.t/ D d.!.0/; !.1// a.e.,

3. ! solves min
n´ 1
0 j!0j.t/pdt W !.0/ D x0; !.1/ D x1

o
.

First, we prove that the space Wp.˝/ is a length space, provided ˝ is convex.

Theorem 5.27. Suppose that˝ is convex, take �; � 2 Pp.˝/ and � 2 ˘.�; �/ an
optimal transport plan for the cost c.x; y/ D jx�yjp (p � 1). Define �t W ˝�˝ ! ˝

through �t.x; y/ D .1 � t/x C ty. Then the curve �t WD .�t/#� is a constant-speed
geodesic in Wp connecting �0 D � to �1 D �.

In the particular case where � is absolutely continuous, or in general if � D �T,
then this very curve is obtained as ..1 � t/id C tT/#�.

As a consequence, the space Wp.˝/ is a geodesic space.

Proof. It is sufficient to prove Wp.�t; �s/ � Wp.�; �/jt � sj. Indeed, suppose this is
proven for every s > t, then we would have

Wp.�; �/ � Wp.�; �t/C Wp.�t; �s/C Wp.�s; �/ � Wp.�; �/.t C .s � t/C .1� s// D Wp.�; �/;

which implies equality everywhere. To prove the claim, take � s
t WD .�t; �s/#� 2

˘.�t; �s/ and compute

Wp.�t; �s/�
�ˆ

jx � yjp d� s
t

� 1
p

D
�ˆ

j�t.x; y/ � �s.x; y/jp d�

� 1
p

D jt � sj
�ˆ

jx � yjp d�

� 1
p

Djt � sjWp.�; �/;

where we used that j.1 � t/x C ty � .1 � s/x � syj D j.t � s/.x � y/j. ut
Before analyzing the constant-speed geodesics in Wp, we want to insist on

an important consequence of the fact that we have a geodesic space and of
Theorem 5.14. The idea behind this result, usually called Benamou-Brenier formula
and considered as a dynamical version of the Kantorovich problem, will be crucial
in Section 6.1 to provide a numerical characterization.
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Theorem 5.28. On a convex and compact domain˝, given �; � 2 P.˝/, we have

Wp
p .�; �/ D minfBp.%;E/ W @t%C r � E D 0; %0 D �; %1 D �g;

where both % and E have to be considered as measures on the space-time˝� Œ0; 1�.
Proof. From the fact that Wp is a length space, we have

Wp
p .�; �/ D

�
min

�ˆ 1

0

j%0j.t/dt W %0 D �; %1 D �

��p

:

The minimum can be restricted to constant-speed geodesics, and, thanks to the
characterization that we gave in Box 5.2, we also have

Wp
p .�; �/ D min

�ˆ 1

0

j%0j.t/pdt W %0 D �; %1 D �

�
:

Then we use Theorem 5.14 which allows to replace j%0j.t/ with jjvtjjLp.%t/, thus
obtaining

Wp
p .�; �/ D min

�ˆ 1

0

jjvtjjpLp.%t/
dt W @t%t C r � .%tvt/ D 0 %0 D �; %1 D �

�
:

Setting Et D %tvt, the statement is just a rewriting of the above formula. ut
Coming back to the structure of geodesics in Wp, keeping in mind again the

important result of Theorem 5.14, one can wonder what is the velocity field
associated with these geodesics. Indeed, the constant-speed geodesic curves �t are
Lipschitz curves, and hence they must admit the existence of a velocity field vt (at
least if p > 1) satisfying the continuity equation @t�t C r � .�tvt/ D 0.

In rough terms, this means: take y 2 spt.�t/ � ˝, for t 2�0; 1Œ, and try to find
the velocity of the particle(s) passing at y at time t. This should be the value of vt.y/.
It would be easier to answer this question if we had uniqueness of “the particle”
passing through y at time t. To provide this uniqueness, we use the following lemma.

Lemma 5.29. Let ˝ be compact and � be an optimal transport plan for a cost
c.x; y/ D h.y � x/ with h strictly convex, between two probabilities �; � 2 P.˝/

and take t 2�0; 1Œ. Define �t D .�t/#� with �t.x; y/ D .1 � t/x C ty, and take
y 2 spt.�t/. Then there exists a unique pair .x; z/ 2 spt.�/ such that y D .1�t/xCtz.
These values of x and z will be denoted by Xt.y/ and Zt.y/, respectively. The two
maps Xt and Zt are also continuous.

In particular, if � D �T comes from a transport map, then the map Tt WD .1 � t/
id C tT is invertible and T�1

t D Xt.

Proof. The claim is essentially the same as in Lemma 4.23, and the uniqueness of
.x; z/ 2 spt.�/ comes from c-cyclical monotonicity of spt.�/. The continuity of Xt
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and Zt is obtained by compactness. Take yn ! y and suppose (up to subsequences)
that .Xt.yn/;Zt.yn// ! .X;Z/. Since spt.�/ is closed, then .X;Z/ 2 spt.�/.
Moreover, uniqueness implies .X;Z/ D .Xt.y/;Zt.y//. Since any limit of converging
subsequences must coincide with the value at y, and we work in a compact space,
this gives continuity. ut

We can now identify the velocity field of the geodesic �t: we know that every
particle initially located at x moves on a straight line with constant speed T.x/ � x,
which implies vt.y/ D .T � id/.T�1

t .y//. More generally, if � is not induced by a
map, we have vt.y/ D Zt.y/ � Xt.y/.

Proposition 5.30. Let �t D .�t/#� be the geodesic connecting � to � introduced
above. Then the velocity field vt WD Zt � Xt is well defined on spt.�t/ for each
t 2�0; 1Œ and satisfies

@t�t C r � .�tvt/ D 0; jjvtjjLp.�t/ D j�0j.t/ D Wp.�; �/:

Proof. We already saw that Xt and Zt are well defined, so we only need to check
the continuity equation and the Lp estimate. To prove the continuity equation, take
� 2 C1 and compute

d

dt

ˆ
� d�t D d

dt

ˆ
�..1 � t/x C tz/d�.x; z/ D

ˆ
r�..1 � t/x C tz/ � .z � x/d�.x; z/

D
ˆ

r�.�t.x; z/�.Zt.�t.x; z//�Xt.�t.x; z///d�.x; z/

D
ˆ

r�.y/ � .Zt.y/ � Xt.y//d�t.y/:

To compute the Lp norm, we have

ˆ
jvtjp d�t D

ˆ
jZt.y/ � Xt.y/jp d�t.y/ D

ˆ
jz � xjp d�.x; z/ D Wp

p .�; �/;

and we used in both the computations the fact that Zt.�t.x; z//�Xt.�t.x; z// D z � x
for every .x; z/ 2 spt.�/: ut

We now want to prove that, at least for p > 1, all the geodesics for the distance
Wp have this form, i.e., they are given by �t D .�t/#� for an optimal � . Non-
uniqueness would stay true in case � is not unique. The proof that we provide here
is different from that of [15] and is based on the following representation theorem
(in the spirit of [212]). We use the set of AC.˝/ of absolutely continuous curves
defined on Œ0; 1� and valued in ˝, and we denote by Kp W AC.˝/ ! R[ fC1g the

p-Kinetic energy, given by Kp.!/ WD ´ 1
0

j!0.t/jpdt (which is only finite if ! belongs
to the Sobolev space W1;p.Œ0; 1�/ � AC.˝/). As usual, we write C for AC.˝/, for
short.
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Proposition 5.31. For every Lipschitz curve .�t/t in Wp.˝/, there exists a measure

Q 2 P.C / such that �t D .et/#Q and
´
C Kp.!/ dQ.!/ � ´ 1

0
j�0j.t/p dt.

Proof. First we note that for a.e. t, there exists, thanks to Theorem 5.14, a vector
field vt 2 Lp.�t/ such that @t�t C r � .vt�t/ D 0, and with jjvtjjLp.�t/ � j�0j.t/.
The same approximation argument (with the same convolution kernels) as in
Theorem 5.14 provides a regularized curve of measures �"t and a regularized vector
field v"t , with jjv"t jjLp.�"t / � jjvtjjLp.�t/. This vector field has a flow Y W ˝ ! AC.˝/,
where Y.x/ is the curve yx.�/, and we know �"t D .Yt/#�

"
0, where Yt.x/ D Y.x/.t/ D

yx.t/. Let us also define the measure Q" WD Y#�
"
0. We have �"t D .et/#Q".

Let us compute
´
C Kp dQ":

ˆ

C
Kp.!/ dQ".!/ D

ˆ

˝

ˆ 1

0

jv"t .yx.t//jp dt d�"0.x/ D
ˆ 1

0

ˆ

˝

jv"t jp d�"t

�
ˆ 1

0

ˆ

˝

jvtjp d�t D
ˆ 1

0

j�0j.t/p dt:

Now (as we saw many times in Chapter 4), this implies that the measures Q" are
tight, since there is a bound on

´
C Kp dQ" and Kp is such that

f! 2 AC.˝/ W Kp.!/ � Lg

is compact in C0.Œ0; 1�/ (for the uniform convergence) for every L. Also, Kp is l.s.c.
for the same convergence. Hence, we can obtain the existence of a subsequence
such that Q" * Q and

´
C KpdQ � lim inf"

´
C KpdQ". From �"t D .et/#Q" we get

�t D .et/#Q and we conclude. ut
Proposition 5.32. Let .�t/t be a constant-speed geodesic in Wp.˝/ between � and
� and suppose p > 1. Then there exists an optimal � 2 ˘.�; �/ for the transport
cost c.x; y/ D jx � yjp such that for every t 2 Œ0; 1�, we have �t D .�t/#� .

Proof. Since the curve is a constant-speed geodesic, we have j�0j.t/ D Wp.�; �/

for a.e. t (the metric derivative being computed according to Wp). Applying our
previous Proposition 5.31, we get the existence of a measure Q 2 P.C / such that
�t D .et/#Q and

´
C Kp.!/ dQ.!/ � ´ 1

0
j�0j.t/p dt.

From Jensen inequality, we have j!.0/ � !.1/jp � Kp.!/, with equality if and
only if ! is a segment parametrized with constant speed. Hence, we have

Wp
p .�; �/ �

ˆ

C
j!.0/ � !.1/jp dQ.!/

�
ˆ

C
Kp.!/ dQ.!/ �

ˆ 1

0

j�0j.t/p dt � Wp
p .�; �/:
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Fig. 5.2 Nine time steps of the interpolation (top, left to right, and then bottom, left to right),
obtained via a W2 geodesic curve, between the histograms on the 2D space of chroma signals of
the two images of Figure 2.4. Pictures kindly provided by G. Peyré

The first inequality comes from � WD .e0; e1/#Q 2 ˘.�0; �1/; the second is a
consequence of the above inequality for Kp; the last comes from the properties
of Q. Thus, all inequalities are equalities. Hence Q is concentrated on curves
which are constant-speed segments and � is an optimal transport plan. This proves
�t D .�t/#� . ut

Note how the above proof is reminiscent of that of Theorem 4.13, with here a
dynamical framework, compared to the static framework in Chapter 4.

It is not difficult to see that both Propositions 5.31 and 5.32 do not hold for p D 1.
The counterexample is, as usual, given by �t D .1 � t/ıx0 C tıx1 .

We finish this section insisting on the role that Wasserstein geodesics play
in applications, as they allow to build an interesting interpolation between two
distribution of masses (or two histograms), moving slowly the particles from one
distribution to the other. For instance, Figure 5.2 shows the interpolation between
the chrominance histograms of Figure 2.4. These intermediate histograms could also
be used to produce intermediate images.

5.5 Discussion

5.5.1 The W1 distance

The case p D 1 in the definition of Wp deserves special attention. It is easy to guess
how to define a W1 distance on probability measures:

W1.�; �/ WD inf
˚jjx � yjjL1.�/ W � 2 ˘.�; �/
 ;
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where the minimization problem in the right-hand side is exactly the one studied in
Section 3.2. As we did in the rest of this chapter, the difference here is that, instead
of paying attention to the optimal map, we mainly consider the optimal cost as a
function of the two measures and use it as a distance on the space of probabilities.

In order to properly define W1.�; �/, one should restrict to P1.˝/, which
is the space of measures with bounded support. Otherwise, there could be pairs
of measures such that no bounded-displacement plan � exists. From the results in
Section 3.2, we know that, if � � L d, then W1.�; �/ is also equal to

inf
˚jjT.x/ � xjjL1.�/ W T#� D �



:

It is not difficult to check the expected property

W1.�; �/ D lim
p!1 Wp.�; �/;

where the right-hand side is increasing in p (the proof is proposed as an exercise,
Ex(35)). The triangle inequality can be proved by passing to the limit in p in the
corresponding triangle inequality for Wp.

Note that, in dimension one, as a consequence of the results of Chapter 2, the
optimal way to displace particles is the monotone increasing map, for every cost
jx � yjp with p < 1. Passing to the limit, this is also the optimal map for the L1
problem.

In general, we have a new distance on probability measures on compact sets,
and it measures the minimal maximal displacement that should be done to move
particles from one distribution to the other. It is interesting to see that, though the
modeling which gives rise to this distance is the same as in the case p < 1, the
topology induced by it is not at all the same.

Indeed, if one takes two different points x; y 2 ˝ and two different values s; t 2
Œ0; 1�, one can easily check W1..1 � t/ıx C tıy; .1 � s/ıx C sıy/ D jx � yj. In
particular, the probabilities .1 � t/ıx C tıy do not tend to ıx as t ! 0, even if
there is convergence for all the distances Wp and even for the strong convergence
of measures. As a matter of fact, even if ˝ is compact, the space .P.˝/;W1/ is
neither compact, nor separable, as soon as the cardinality of ˝ is larger than 1.

On the other hand, the characterization of Lipschitz curves via the existence of
a velocity field vt satisfying jjvtjjL1.�t/ � j�0jW

1

.t/ stays true and can be easily
deduced from Theorem 5.14 as a limit p ! 1. This fact, together with an extended
use of Lipschitz curves for W1, has been used in [79] in order to analyze an
alternative model for branched transport. If the role of this model is very limited,
some examples and considerations in the paper are useful to understand the structure
of Wasserstein spaces.

However, the distance W1 appears naturally in many modeling issues and
happens to be very useful to analyze very different phenomena. One of the first
papers using such a distance was [232], devoted to the shape of rotating stars. In
such a paper, the choice of W1 was motivated by the following observation (that
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we will develop better in Section 7.4.3): a measure � is a local minimizer in W1 of
some functional F if and only if every point x 2 spt.�/ satisfies a local minimality
condition for a function f (equal to the first variation of F, see Section 7.2). This
equivalence fails if we replace W1 with Wp.

Finally, it is interesting to mention a reverse inequality between W1 and Wp

(which could not be deduced from Equation (5.1)), of the form

W1.�; �/ � CW
p

pCd
p .�; �/;

where the constant C depends on p, on the dimension d, on the domain ˝, and on
a lower bound on the density of �. This inequality is a consequence of a stronger
result proved in [74]: if � D f � L d, f � a > 0 and T is the optimal transport map
from � to another measure �, then we have

jjT � idjjpCd
L1

� C.˝; p; d/
ˆ

˝

jT.x/ � xjp dx � C.˝; p; d/

a

ˆ

˝

jT.x/ � xjp d�.x/:

This is proven by using the c-cyclical monotonicity condition on T so as to guarantee
that, whenever we fix a point x with jT.x/ � xj > 0, there exists a certain region R
around x, with volume proportional to jT.x/ � xjd, such that for every y 2 R, the
distance jT.y/ � yj is not smaller than a certain fraction of jT.x/ � xj.

5.5.2 Wasserstein and negative Sobolev distances

We already noted that the distance W1 is induced by a norm, which is the dual of
the Lipschitz seminorm. Indeed, if we consider the space X of Lipschitz functions
with zero mean, endowed with the norm jjf jj WD Lip.f /, the distance W1 on P1.˝/

is exactly the distance associated with the norm of the topological dual X 0. It
is interesting to note that the space of probability measures with this distance is
complete, but the space of finite measures endowed with the same norm is not.
More precisely, one can consider zero-mean finite scalar measures endowed with
the norm jj%jj WD supf´ f d% W f 2 Lip1.˝/g and look at its completion. Note that
the sequence %n WD Pn

iD1 ı1=2i � ı1=.2i�1/ is Cauchy for this norm, but its limit is an
infinite sum of Dirac masses, which is not a finite scalar measure. The completion
of the set of measures for this norm has been studied in [73], where the authors
prove that it amounts to the set of distributions which are the divergence of an
L1 vector field. This nice result makes an interesting link with the L1-Beckmann
problem studied in Chapter 4.

Anyway, once the role of the distance W1 in the duality with W1;1 functions
is clear, one could wonder whether other distances Wp are in duality with Sobolev
spaces of the form W1;q (for instance, with q D p0 D p=.p � 1/). The answer is
obviously “not,” since not all probability measures belong to the dual space W�1;p
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(in particular, Dirac masses only belong to the dual of W1;q when functions in W1;q

are continuous, i.e., when q > d). Yet, some partial answers and some analogies
exist. For instance, the following lemma was both proven in [214] and later in [225]
for different purposes.

Lemma 5.33. Assume that � and � are absolutely continuous measures on a
convex domain ˝, whose densities are bounded by the same constant C. Then, for
all function � 2 H1.˝/, we have the following inequality:

ˆ

˝

� d.� � �/ � p
C jjr�jjL2.˝/W2.�; �/

Proof. Let �t be the constant-speed geodesic between � and �, and let vt be the
velocity field associated with this curve by Theorem 5.14. Then .�; v/ satisfies the
continuity equation, and jjvtjjL2.�t/ D W2.�; �/. We use the fact that �t is absolutely
continuous for all t, and its density is bounded by the same constant C, which will
be proven in Chapter 7 (Prop 7.29). Therefore:

ˆ

˝

� d.� � �/ D
ˆ 1

0

d

dt

�ˆ
˝

�.x/d�t.x/

�
dt D

ˆ 1

0

ˆ

˝

r� � vt d�t dt

�
�ˆ 1

0

ˆ

˝

jr�j2 d�t dt

�1=2 �ˆ 1

0

ˆ

˝

jvtj2 d�t dt

�1=2

� p
C jjr�jjL2.˝/W2.�; �/;

and the proof is completed. ut
We do not develop here the case of different exponents than p D p0 D 2, since

the quadratic case seems to be the most interesting (see Ex(38) for the general case).
The exact negative Sobolev norm appearing in the quadratic case is the PH�1 norm,
which deserves some remarks. First let us define

jj� � �jj PH�1.˝/ D sup

�ˆ
� d.� � �/ W jjr�jjL2 � 1

�
:

Note that we also have jj� � �jj PH�1.˝/ D jjrujjL2 , where u is the solution of the
Neumann problem

(
��u D � � �; in ˝;
@u
@n D 0 on @˝:

Indeed, for this choice of u, we have
´
� d.���/ D ´ r� � ru � jjr�jjL2 jjrujjL2 ;

with equality for � D u=jjrujjL2 . We can also see that we have
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jj� � �jj PH�1.˝/ D min fjjwjjL2 W r � w D � � �g ;

since the optimal w in this minimization problem is a gradient (see Section 4.4.1
and the considerations on Problem (4.27)), and we have w D �ru.

The interest for the relation between the distances W2 and PH�1 (where PH�1
denotes the dual of the space X of zero-mean H1 functions on a connected domain,
endowed with the L2 norm of its gradient) is now very lively because these two
distances are asymptotically equivalent when the involved densities are close to the
value % D 1, which is the relevant case when dealing with evolution problems
where congestion imposes an L1 constraint % � 1, as in crowd motion (see
Section 8.4.2). These asymptotical equivalences can be made precise through some
general estimates. We cite a short note by R. Peyre [251] where some universal
estimates are proven and a funny equality in dimension 1 (see Ex(64)). Moreover,
we also prove the following result.

Theorem 5.34. Assume that � and � are absolutely continuous measures on a
convex domain˝, with densities bounded from below and from above by two (same)
constants a; b with 0 < a < b < C1. Then, we have

b�1=2jj� � �jj PH�1.˝/ � W2.�; �/ � a�1=2jj� � �jj PH�1.˝/:

Proof. The inequality b�1=2jj� � �jj PH�1.˝/ � W2.�; �/ is a consequence of

Lemma 5.33 and of the definition of the PH�1 norm.
To prove that the opposite inequality can be obtained through the Benamou-

Brenier formula of Theorem 5.28, consider any vector field E 2 M d
div.˝/ with

r � E D � � � and %t WD .1 � t/� C t�. The pair .%t;Et/, where Et D E
is taken independent of time, is admissible in the Benamou-Brenier formula. If
E 2 L2.˝IRd/, we have

W2
2 .�; �/ � B2.%;E/ D

ˆ 1

0

ˆ

˝

jEj2
%t

� 1

a

ˆ

˝

jEj2;

where the last inequality is justified by %t D .1 � t/� C t� � .1 � t/a C ta D a.
Since E is arbitrary with the only constraint r � E D � � �, we obtain

W2
2 .�; �/ � 1

a
min

˚jjwjj2L2 W r � w D � � �
 D 1

a
jj� � �jj2PH�1.˝/

;

which gives the second part of the statement. ut

5.5.3 Wasserstein and branched transport distances

Another class of distances which has been compared to the Wasserstein distances is
that induced by branched transport. We recall that d˛.�; �/ is defined as the minimal
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value of the branched transport cost (see Section 4.4.2) between two measures �; �,
as soon as ˛ > 1 � 1

d . In this case, it is a distance, and it metrizes the weak
convergence of probabilities on a bounded domain.

In branched transport, the cost per unit length to move a mass m is given by m˛ ,
and we can assume m � 1 (because there are no cycles in the optimal networks).
Hence, one immediately remarks m˛ � m, which implies d˛ � d1, and the distance
d1 is nothing but W1.

Since the two distances d˛ and W1 satisfy an inequality, and they induce the
same topology, it was a question raised by C. Villani whether the two distances
are metrically equivalent, i.e., we can bound above d˛ with W1. Inequalities of the
form d˛ � CW1 are necessarily false, since they do not scale in the correct way
w.r.t. masses. Indeed, even if we stick to probability measures, we can consider
the following situation: take �; � 2 P.˝1/ and a third measure % concentrated
on another domain ˝2, disjoint from ˝1. Then take �" D .1 � "/% C "� and
�" D .1 � "/%C "�. Since both W1 and d˛ only depend on the difference between
the two measures (which is false for Wp, with p > 1), by a scaling argument it is
clear that we have W1.�"; �"/ D c1" and d˛.�"; �"/ D c˛"˛ . This rules out the
possibility of a linear bound but leaves the possibility of an inequality of the form
d˛ � CWˇ

1 for ˇ � ˛.
This question has been analyzed in [240], where the sharp exponent has been

found, ˇ D d.˛ � .1 � 1
d //. Indeed, a simple example shows that it cannot be

improved.

Example 5.35 (Optimal exponent for d˛ � Wˇ
1 ). Divide the cube Œ0; 1�d into nd

small cubes of edge 1=n and set �n D Pnd

iD1 1
nd ıxi and �n D Pnd

iD1 1
nd ıyi , where each

xi is a vertex of one of the nd cubes (let us say the vertex with minimal sum of the
d coordinates) and the corresponding yi is the center of the same cube. In this way,
the point yj closest to xi is exactly yi. Thus the optimal configuration both for d˛ and
W1 is obtained by linking any xi directly to the corresponding yi, and we have

d˛.�n; �n/ D nd

�
1

nd

�˛ c

n
D cn�d.˛�.1�1=d//

W1.�n; �n/ D nd 1

nd

c

n
D cn�1

The proof of the inequality d˛ � CWd.˛�.1�1=d//
1 is a bit technical. Yet, in order

to give an idea, we just sketch an alternative proof (from [81]), which provides
a slightly weaker inequality, namely, d˛ � CWd.˛�.1�1=d//

p for p D 1=˛. This
inequality is also optimal in some sense, as it is also possible to strengthen the
lower bound d˛ � W1 turning it into d˛ � W1=˛ (this has been first remarked in
[220] and then in [81]). The choice of the exponent p is very natural because of

scaling reasons. Indeed, Wp scales as m
1
p w.r.t. the mass (in the example above, if

˝1 and ˝2 are far enough so that the measure % becomes useless, then we have

Wp.�"; �"/ D c"
1
p ), which makes the choice p D 1=˛ the good one.
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Proposition 5.36. Let �; � be two probabilities on Œ0; 1�d and ˛ > 1� 1
d , p D 1=˛.

Then

Wp � d˛ � CWd.˛�.1�1=d//
p :

Proof. First we prove the inequality Wp � d˛ . This is a consequence of (4.33).
Indeed, Wp is a distance, it is l.s.c. for *, and we have

X
ij

jxi � yjj�.f.xi; yj/g/˛ �
0
@X

ij

jxi � yjjp�.f.xi; yj/g/
1
A
˛

:

This inequality is due to the choice p D 1=˛ and to the subadditivity of t 7! t˛ .
Passing to the minimum over � 2 ˘.�; �/, we get Nd˛.�; �/ � Wp.�; �/, whenever
� and � are atomic. This implies d˛ � Wp.

In order to prove the other inequality, we divide the cube into nd small disjoint
cubes Qi of edge 1=n and set

�n D
ndX

iD1

1

nd
�.Qi/ıyi and �n D

ndX
iD1

�.Qi/ıyi ;

where each point yi is the center of the cube Qi. Since the branched transport from
� Qi to �.Qi/ıyi costs no more than C�.Qi/

˛ 1
n (see Proposition 4.38), we can

estimate

d˛.�; �/ � d˛.�; �n/C d˛.�n; �n/C d˛.�n; �/

� C

n

 X
i

�.Qi/
˛ C

X
i

�.Qi/
˛

!
C d˛.�n; �n/ � C

n
nd.1�˛/ C d˛.�n; �n/;

where we used the inequality
Pk

jD1 a˛j � k. 1k /
˛ , which is valid whenever

Pk
jD1 aj D

1 and ˛ 2�0; 1Œ (it is just a version of Jensen inequality).
Then, let � 2 ˘.�n; �n/ be an optimal transport plan for the cost jx � yjp. We

have � D P
i;j �ijı.xi;xj/, and we can decide to use segments connecting each point

xi to each point xj with mass �ij as a (nonoptimal) branched transport network. Its
cost is

P
i;j �

˛
ij jxi � xjj. We denote by K the number of pairs .i; j/ such that �ij > 0.

Since � is optimal in a linear programming problem, it may be taken extremal in
the polyhedron of matrices f.�ij/i;j W �ij � 0;

P
i �ij D �.Qj/;

P
j �ij D �.Qi/g. For

these matrices, it is well known that the number of nonzero entries does not exceed
the sum of the number of rows and columns (left as an exercise, Ex(41)), here 2nd.
Hence we have
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d˛.�n; �n/ �
X

i;j

�˛ij jxi � xjj �
0
@X

i;j

�ijjxi � xjjp
1
A

1
p

.2nd/
1� 1

p

D CWp.�n; �n/n
d.1�˛/ � C

�
Wp.�; �/C 2

n

�
nd.1�˛/;

where we used the triangle inequality on Wp together with Wp.�; �n/;Wp.�; �n/ �
1=n. By putting together the estimates, one gets

d˛.�; �/ � Cnd.1�˛/�1 C Cnd.1�˛/Wp.�; �/

and we can conclude by taking n � Wp.�; �/
�1. ut

5.5.4 The sliced Wasserstein distance

Starting from the considerations of Section 2.5.2, it is possible, and convenient in
many cases, to define a distance, which is alternative to the usual W2 distance, based
on the behavior of the measures “direction by direction.”

The idea is the following and is detailed in [256]: given two measures �; � 2
P2.R

d/, we define

SW2.�; �/ WD
� 

Sd�1
W2
2 ..�e/#�; .�e/#�/ dH d�1.e/

�1=2
;

where �e W R
d ! R is the projection on the axis directed according to the unit

vector e, namely, �e.x/ D x � e, and H d�1 is the surface measure on S
d�1. This

quantity could have been called “projected Wasserstein distance” (as it is based
on the behavior through projections), but since in [256] it is rather called “sliced
Wasserstein distance,” we prefer to keep the same terminology.

The fact that SW2 is a distance comes from W2 being a distance. The triangle
inequality may be proven using the triangle inequality for W2 (see Section 5.1) and
for the L2 norm. Positivity and symmetry are evident. The equality SW2.�; �/ D 0

implies W2
2 ..�e/#�; .�e/#�/ for all e 2 S

d�1. This means .�e/#� D .�e/#�/ for all
e and it suffices (see Box 2.4 in Section 2.5.2 on Radon and X-ray transforms) to
prove � D �.

It is evident from its definition and from the fact that the maps �e are 1-Lipschitz
(hence W2

2 ..�e/#�; .�e/#�/ � W2
2 .�; �/) that we have SW2.�; �/ � W2.�; �/.

Moreover, the two distances also induce the same topology, at least on compact
sets. Indeed, the identity map from W2 to .P.˝/;SW2/ is continuous (from
SW2 � W2) and bijective. Since the space where it is defined is compact, it is also a
homeomorphism.
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One can also prove more, i.e., an inequality of the form W2 � CSWˇ
2 for a

suitable exponent ˇ 2�0; 1Œ. Chapter 5 in [65] proves this inequality7 with ˇ D
.2.d C 1//�1.

The interest in the use of this distance is the fact that one has a distance on
P.˝/ with very similar qualitative properties as W2, but much easier to compute,
since it only depends on 1D computations (obviously, the integral over e 2 S

d�1 is
discretized in practice and becomes an average over a large number of directions).
For instance, it is useful when the Wasserstein distance is used to evaluate distances
between mass distributions (or images, where each image is associated with a
measure on R

5 by associating with each pixel its two spatial coordinates and its
three color components), or when one looks at the “horizontal” barycenter of several
distributions, as in Section 5.5.5 here below (in the Euclidean space, the barycenter
of x1; : : : ; xN is the point x which minimizes

P
i jx � xij2; in the Wasserstein space,

the measure minimizing
P

i W2
2 .%; %i/

2 is the one which is located “at the middle” of
%1; : : : ; %N). In both cases, replacing W2 with SW2 simplifies a lot the computations.
We remark anyway an important difference between W2 and SW2: the latter is not a
geodesic distance. On the contrary, the geodesic distance associated with SW2 (i.e.,
the minimal length to connect two measures) is exactly W2.

We will also see in Section 8.4.2 that the gradient flow of SW2
2 has an interest

in itself, and in the very next Section 5.5.5, we see the applications of SW2
2 to

barycenter computations.

5.5.5 Barycenters in W2

An interesting problem in applications, and in particular in image processing, is
that of finding a reasonable notion of barycenter between two or more probability
measures. Suppose that we have two B&W images, representing similar objects,
but one being very dark (almost black) and one very pale (almost white). We denote
by %0 and %1 their color histograms (see Section 2.5.1): what is the middle point
between these two histograms? If we answer .%0 C %1/=2, then we obtain an image
with some black and some white, while we could prefer to have an intermediate
grey image. Also, we would like to provide a definition of middle point such that
the middle point of ıx0 and ıx1 is ıx1=2 , with x1=2 D .x0 C x1/=2.

The notion of geodesic in Wasserstein spaces provides what we look for: just
define the middle point as %1=2, where %t is the constant-speed geodesic between %0

and %1, according to what we saw in Section 5.4. Also, we could look for a weighted
barycenter, with weights .1� t/ and t, and the geodesic provides the correct answer.
Some nonuniqueness issues subsist: geodesics are not always unique, and moreover
they depend on the exponent p. We will soon fix the exponent issue by choosing
p D 2, as we are going to see in a while.

7Indeed, one can define sliced Wasserstein distances associated with other exponents p, and [65]
proves W1 � CSW1=.dC1/

1 ; then, one can compose with W2 � CW1=2
1 to obtain the result for p D 2.
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What about a barycenter between three or more measures? If we want to make
use of geodesics, we could define the barycenter of .%0; %1; %2/, with weights
.1=3; 1=3; 1=3/, as the barycenter with weights .1=3; 2=3/ between %2 and the
middle point of %0 and %1. Unfortunately, in the space W2 in dimension larger than 1,
there is no associativity, and this definition gives different results if we interchange
the order of the measures %i.

Hence, it is better to switch to another characterization of the barycenter in
Euclidean spaces, which we will translate into the framework of Wasserstein spaces.
We note that the barycenter with weights �i � 0 between points xi 2 R

d is the
unique point y minimizing

P
i �ijy � xij2. Hence, we could define the barycenter

between %i with weights �i as any measure solving

min

(
NX

iD1
�iW

2
2 .%; %

i/2 W % 2 P.˝/

)
: (5.7)

Note that the same approach could be applied to general Riemannian manifolds, as
the barycenter is otherwise not well defined on nonlinear structures. This explains
also the choice of the exponent p D 2: using powers p of the distances, we do
not recover the usual barycenter in the Euclidean space (for p D 1, we have a
notion of median), and using the square of a Wp distance is not very convenient.
The uniqueness of the barycenter will be true as soon as one of the measures %i is
absolutely continuous (see Proposition 7.19).

As an interesting example, it is not difficult to analyze the 1D case. In this case,
one can find the barycenter of some measures %i with weights �i in the following
way: pick one of these measures, say %1, define the optimal transport maps Ti

sending %1 onto %i (i.e., the monotone maps; note that this would work for any
exponent p), and set % WD .

P
i �iTi/#%

1, where we set T1 D id (see also Ex(63)).
The minimization problem (5.7) has been first introduced in [1], where the

authors also propose an interpretation in terms of a multi-marginal optimal transport
problem. Indeed, one can choose as a variable, instead of % 2 P.˝/, a multi-
marginal transport plan � 2 P.˝NC1/, with .�i/#� D %i for i D 1; : : :N and
.�0/#� D % (the latter % being part of the unknown). The problem becomes

min
ˆ
.

NX
iD1

�ijxi � x0j2/ d�;

under the constraint that the marginals of � for i D 1; : : :N are the %i. The other
marginal being arbitrary, one could decide to choose x0 as a function of the points
.x1; : : : ; xN/, in an optimal way, i.e., x0 D P

i �ixi (suppose
P

i �i D 1). In this way,
we need to solve

min

�ˆ
c.x1; : : : ; xN/ d� W � 2 ˘.%1; : : : ; %N/

�
;
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Fig. 5.3 Interpolation between a point distribution on an annulus and on a duck. On the first line,
an assignment is computed as in Figure 2.5, and then points move interpolating starting and arrival
positions with constant speed. On the third line, the same is done with the optimal assignment,
realizing the distance W2 (hence we have a geodesic in W2). On the second line, the interpolations
are computed as barycenters for SW2, minimizing the sum of the squared distances. Pictures kindly
provided by J. Rabin and adapted from [256]

with c.x1; : : : ; xN/ WD PN
iD1 �ijxi � Nxj2 and Nx D PN

iD1 �ixi. Note that, in the standard
case �i D 1=N, we have

c.x1; : : : ; xN/ D 1

N

NX
iD1

jxi � Nxj2 D �jNxj2 C 1

N

NX
iD1

jxij2 D 1

2N2

X
i;j

jxi � xjj2

(to be convinced of the last equality, just expand the squares). This shows that the
problem is equivalent to the very first multi-marginal problem studied by Gangbo
and Świȩch in [177].

For the applications of barycenters in image processing, we refer to [256], where,
for the sake of numerical computations, the distance W2 is replaced with SW2 (see
Section 5.5.4). An example is given in Figure 5.3. More recent numerical algorithms
have also allowed to directly treat the W2 distance, as is shown in Figure 5.4.
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Fig. 5.4 Interpolation between three different shapes (a five-pointed star, a four-pointed one, and
the union of two small disks). Every image represents a barycenter between the three shapes,
computed in W2. Pictures kindly provided by G. Peyré



Chapter 6
Benamou-Brenier and other continuous
numerical methods

In this chapter we present some numerical methods to solve optimal transport
problems. The search for efficient numerical strategies is a very lively domain
in current days, after a period where optimal transport was mainly investigated
from the theoretical point of view. It would be impossible to list all the recent
developments in the field, and because of the taste for calculus of variations and
PDEs which haunts all the book, the choice has been done to prefer those methods
which can be classified as “continuous.” This means that they are especially suitable
to tackle the problem of the optimal transport between two given densities. They
are opposite to some more discrete methods, which will be briefly presented in
“Discussion” (Section 6.4), and are concerned with the case of two finitely atomic
measures or one atomic vs one density. The most famous method is for sure the
one due to J. D. Benamou and Y. Brenier, which transforms the problem into a
tractable convex variational problem in dimension d C1. This method gives the title
to the chapter and justifies the position of this chapter after Chapter 5. Indeed, we
will describe it strongly using the theory about Wasserstein geodesics (rather than
finding the map, this method finds the geodesic curve �t).

Two other classical continuous methods are presented: the Angenent-Hacker-
Tannenbaum method based on the fact that the optimal maps should be a gradient,
and that removing non-gradient parts decreases the energy, and the Loeper-Rapetti
method based on the resolution of the Monge-Ampère equation. Both require
smooth and non-vanishing densities, and special domains to handle boundary data
(a rectangle or, better, a torus). The problem of the resolution of the Monge Ampère
equation on more general domains is much more delicate and has been addressed
more recently (see the end of Section 6.3).

In this chapter we will neither be exhaustive nor present the most recent methods
or compare the efficiency and advantages of all of them. It would be impossible,
because of the huge progresses which are occurring on this topic. The goal is mainly
to provide the reader an overview of the most natural ideas which could be translated
into numerical tools.

© Springer International Publishing Switzerland 2015
F. Santambrogio, Optimal Transport for Applied Mathematicians,
Progress in Nonlinear Differential Equations and Their Applications 87,
DOI 10.1007/978-3-319-20828-2_6
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6.1 The Benamou-Brenier formula and its numerical
applications

The results of Sections 5.3 and 5.4 allow to rewrite the optimization problem
corresponding to the cost jx � yjp in a smart way, so as to transform it into a convex
optimization problem. Indeed

• looking for an optimal transport for the cost c.x; y/ D jx � yjp is equivalent to
looking for constant-speed geodesic in Wp because from optimal plans we can
reconstruct geodesics and from geodesics (via their velocity field) it is possible
to reconstruct the optimal transport;

• constant-speed geodesics may be found by minimizing
´ 1
0

j�0j.t/pdt;
• in the case of the Wasserstein spaces, we have j�0j.t/p D ´

˝
jvtjp d�t, where v

is a velocity field solving the continuity equation together with � (this field is
not unique, but the metric derivative j�0j.t/ equals the minimal value of the Lp

norm of all possible fields).

As a consequence of these last considerations, for p > 1, solving the kinetic
energy minimization problem

min

�ˆ 1

0

ˆ

˝

jvtjpd%t dt W @t%t C r � .vt%t/ D 0; %0 D �; %1 D �

�

selects constant-speed geodesics connecting � to � and hence allows to find the
optimal transport between these two measures1.

On the other hand, this minimization problem in the variables .%t; vt/ has
nonlinear constraints (due to the product vt%t) and the functional is non-convex
(since .t; x/ 7! tjxjp is not convex). Yet, we saw with the tools of Section 5.3.1
that it is possible to transform it into a convex problem.

For this, it is sufficient to switch variables, from .%t; vt/ into .%t;Et/ where Et D
vt%t, and use the functional Bp in space-time. Remember Bp.%;E/ WD ´

fp.%;E/
with fp W R � R

d ! R [ fC1g defined in Lemma 5.17. We recall its definition for
the reader’s convenience:

fp.t; x/ WD sup
.a;b/2Kq

.at C b � x/ D

8̂̂
<
ˆ̂:

1
p

jxjp
tp�1 if t > 0;

0 if t D 0; x D 0

C1 if t D 0; x ¤ 0; or t < 0;

where Kq WD f.a; b/ 2 R � R
d W a C 1

q jbjq � 0g. The problem becomes

1We choose to denote by % the interpolating measures, in order to stress the “continuous” flavor of
this method (typically, % is a density, and � a generic measure).
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Problem 6.1. Solve

.BpP/ min
˚
Bp.%;E/ W @t%t C r � Et D 0; %0 D �; %1 D �



:

Note that we can write Bp.%;E/ D ´ 1
0
Bp.%t;Et/dt D ´ 1

0

´
˝

fp.%t.x/;Et.x// dxdt,
where this third expression of the functional implicitly assumes %t;Et � L d.
Indeed, as we saw in Proposition 5.18, the functional Bp has an integral repre-
sentation of this form as soon as %t and Et are absolutely continuous w.r.t. a same
positive measure2.

We also want to stress that the constraints given by @t%t C r � Et D 0; %0 D
�; %1 D � are indeed a divergence constraint in space-time (consider the vector
.%;E/ W Œ0; 1� �˝ ! R

dC1). The space boundary constraints are already of no-flux
type, while the initial and final value of % provides nonhomogeneous Neumann data
on the boundaries f0g �˝ and f1g �˝. Indeed, the whole constraint can be read as
rt;x � .%;E/ D ı0 ˝�� ı1 ˝ � (notice that this point of view which uses derivatives
in .t; x/ will appear again in the section). The functional that we minimize is a 1-
homogeneous functional, and in this way (BpP) becomes a dynamical version (in
space-time) of the Beckmann problem that we saw in Section 4.2. It is by the way
the problem that we obtain if we apply to the cost jx � yjp the reduction suggested
in [196], which transforms it into a one-homogeneous transport cost in space-time.

The constraints are now linear, and the functional is convex. Yet, the functional
(and the function fp as well) is convex, but not so much, since, as we said, it
is 1-homogeneous. In particular, it is not strictly convex and not differentiable.
This reduces the efficiency of any gradient descent algorithm in order to solve the
problem, but some improved methods can be used.

In [34], the authors propose a numerical method, based on this convex change of
variables, on duality, and on what is called “augmented Lagrangian.”

Box 6.1. Memo: Saddle points, Uzawa and Augmented Lagrangian

Suppose that we need to minimize a convex function f W RN ! R, subject to k linear
equality constraints Ax D b (with b 2 R

k and A 2 Mk�N ). This problem is equivalent to

min
x2RN

f .x/C sup
�2Rk

� � .Ax � b/:

This gives a min-max problem with a Lagrangian function L.x; �/ WD f .x/C� � .Ax�b/. If
we believe in duality, finding a minimizer for f under the constraints is the same as finding
a maximizer for g.�/ WD infx2RN f .x/C � � .Ax � b/. And it is the same as finding a saddle

(continued)

2This is typical of 1-homogeneous functionals (the fact that the result is independent of the
reference measure).
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Box 6.1. (continued)
point for L (a point .Nx; N�/ where L.x; N�/ � L.Nx; N�/ � L.Nx; �/ for every x and every �, i.e., a
point which minimizes in x and maximizes in �).

The maximization in � is easier, since the problem is unconstrained: it is possible to
apply a gradient algorithm (see Box 6.8). We only need to compute rg.�/, but this is
easily given via rg.�/ D Ax.�/ � b, where x.�/ is the (hopefully unique) minimizer of
x 7! f .x/C � � .Ax � b/.

The algorithm that we obtain from this idea, called Uzawa algorithm3, reads as follows:
given .xk; �k/, set xkC1 WD x.�k/ and �kC1 D �k C �rg.�k/ D �k C �.AxkC1 � b/, for
a given small � . The sequence of points xk converges, under reasonable assumptions, to the
minimizer of the original problem.

An alternative idea which makes the computation of the point x.�/ easier and accelerates
the convergence is the following: instead of using the Lagrangian L.x; �/, use the following
variant – QL.x; �/ WD L.x; �/C Q�

2
jAx � bj2, for a given value of Q� . The conditions for being

a saddle point of QL and L are, respectively,

for QL W
(

rf .x/C At�C Q�.Ax � b/ D 0;

Ax � b D 0;
for L W

(
rf .x/C At� D 0;

Ax � b D 0:

Hence, the saddle points of QL and L are the same, but using QL makes the problem more
convex and tractable in x. Then, one uses the same gradient algorithm on Qg.�/ WD
infx f .x/ C � � .Ax � b/ C Q�

2
jAx � bj2, using a step � . It is possible to take � D Q� and

iterate the following algorithm:
(

xkC1 D argmin f .x/C �k � .Ax � b/C �
2
jAx � bj2

�kC1 D �k C �.AxkC1 � b/
:

For more details and convergence result, we refer, for instance, to [170].

Here are the main steps to conceive the algorithm.
First of all, we will write the constraint in a weak form (actually, in the sense of

distributions), thanks to (4.3). This means that we actually want to solve

min
%;E

Bp.%;E/C sup
�

�
�
ˆ 1

0

ˆ

˝

..@t�/ %t C r� � Et/C G.�/

�
;

where we set

G.�/ WD
ˆ

˝

�.1; x/ d�.x/ �
ˆ

˝

�.0; x/ d�.x/;

3The Uzawa algorithm is actually more general than this: it can handle inequality constraints of the
form ' i.x/ � 0, with the Lagrangian L.x; �/ D f .x/CP

i �
i' i.x/ and � 2 .R

C

/k, but we prefer
to stick to the equality constraints for simplicity of exposition.
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and the sup is computed over all functions defined on Œ0; 1��˝ (we do not care here
about their regularity, since they will be anyway represented by functions defined
on the points on a grid in Œ0; 1� � R

d).

Remark 6.2. It is interesting to make a small digression to see the connection
between the above problem and a Hamilton-Jacobi equation. We will consider the
easiest case, p D 2. In this case we can write the problem as

min
.E;%/ W %�0

ˆ 1

0

ˆ

˝

jEj2
2%

C sup
�

�
ˆ 1

0

ˆ

˝

..@t�/ %C r� � E/C G.�/;

where we expressed the functional B2 with its integral expression, valid in the case
of absolutely continuous measures, with % � 0 (where % D 0, we must have E D 0

in order to have finite energy).
If we formally interchange inf and sup, we get the following problem:

sup
�

G.�/C inf
.E;%/ W %�0

ˆ 1

0

ˆ

˝

� jEj2
2%

� .@t�/ % � r� � E

�
:

We can first compute the optimal E, for fixed % and �, thus getting E D %r�. The
problem becomes

sup
�

G.�/ C inf
%�0

ˆ 1

0

ˆ

˝

�
�.@t�/% � 1

2
jr�j2%

�
:

The condition for the infimum to be finite (and hence to vanish) is @t�C 1
2
jr�j2 � 0,

and at the optimum we must have equality on f% > 0g. This gives the Hamilton-
Jacobi equation:

@t� C 1

2
jr�j2 D 0 %-a.e.

By the way, from the optimal �, we can recover the Kantorovich potentials using
 .x/ WD �.1; x/ and '.x/ WD ��.0; x/.

The quantity Bp in this variational problem may be expressed as a sup and hence
we get

min
%;E

sup
.a;b/2Kq;�

ˆ 1

0

ˆ

˝

.a.t; x/d%C b.t; x/ � dE � @t� d% � r� � dE/C G.�/:

Denote m D .%;E/. Here m W Œ0; 1��˝ ! R
dC1 is a .d C 1/-dimensional vector

field defined on a .d C 1/-dimensional space. Again, we do not care here about
m being a measure or a true function, since anyway we will work in a discretized
setting, and m will be a function defined on every point of a grid in Œ0; 1� � R

d.
Analogously, we denote � D .a; b/. We also denote by rt;x� the space-time gradient
of �, i.e., rt;x� D .@t�;r�/.
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The problem may be rewritten as

min
m

sup
�;� W �2Kq

h� � rt;x�;mi C G.�/:

Here comes the idea of using an augmented Lagrangian method. Indeed, the
above problem recalls a Lagrangian, but in a reversed way. We must think that the
dual variable should be m and the primal one is the pair .�; �/. The function f .�; �/
includes the term G.�/ and the constraint � 2 Kq, and there is an equality constraint
� D rt;x�. We do not care actually at the original constrained problem giving rise to
this Lagrangian, bur we just decide to add in the optimization a term �

2
j� � rt;x�j2

(for a small step size � ).
Hence, we look for a solution of

min
m

sup
�;� W �2Kq

h� � rt;x�;mi C G.�/ � �

2
j� � rt;x�j2:

The algorithm that one can consider to find the optimal m should do the
following: produce a sequence mk and find, for each k, the optimal .�k; �k/. Yet,
instead of finding exactly the optimal .�k; �k/, we will optimize in two steps (first
the optimal � for fixed � , then the optimal � for this �).

The algorithm will work in three iterate steps. Suppose we have a triplet
.mk; �k; �k/.

• Given mk and �k, find the optimal �kC1, by solving

max
�

�hrt;x�;mki C G.�/ � �

2
jj�k � rt;x�jj2;

which amounts to minimizing a quadratic problem in rt;x�. The solution can
be found as the solution of a Laplace equation ��t;x� D r � .��k � mk/,
with a space-time Laplacian and with Neumann boundary conditions. These
conditions are homogeneous in space, and nonhomogeneous, due to the role of
G, on t D 0 and t D 1. Most Laplace solvers can find this solution in time
O.N log N/, where N is the number of points in the discretization.

• Given mk and �kC1, find the optimal �kC1, by solving

max
�2Kq

h�;mki � �

2
j� � rt;x�kC1j2:

By expanding the square, we see that this problem is equivalent to the projection
of rt;x�kC1C 1

�
mk, and no gradient appears in the minimization. This means that

the minimization may be performed pointwisely, by selecting for each .t; x/ the
point � D .a; b/ which is the closest to rt;x�kC1.t; x/C 1

�
mk.t; x/ in the convex

set Kq. If we have a method for this projection in R
nC1, requiring a constant

number of operations, then the cost for this pointwise step is O.N/.
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• Finally we update m by setting mkC1 D mk � �.�kC1 � rt;x�kC1/.

This algorithm globally requires O.N log N/ operations at each iteration (warn-
ing: N is given by the discretization in space-time). It can be proven to converge,
even if, for convergence issues, the reader should rather refer to the works by
K. Guittet and Benamou-Brenier-Guittet [36, 188, 189], as the original paper by
Benamou and Brenier does not insist on this aspect. Also see the recent paper [194]
which fixes some points in the proof by Guittet.

Compared to other algorithms, both those that we will present in the rest of
the chapter and other more recent ones, the Benamou-Brenier method has some
important advantages:

1. It is almost the only one for the moment which takes care with no difficulties of
vanishing densities and does not require special assumptions on their supports;

2. It is not specific to the quadratic cost: we presented it for power costs c.x; y/ D
jx � yjp but can be adapted to other convex costs h.x � y/ and to all costs issued
from a Lagrangian action (see Chapter 7 in [293]); it can incorporate costs
depending on the position and time and is suitable for Riemannian manifolds;

3. It can be possibly adapted to take into account convex constraints on the density
% (for instance, lower or upper bounds);

4. It can handle different “dynamical” problems, where penalizations on the
density or on the velocity are added, as it happens in the case of mean field
games (see Section 8.4.4) and has been exploited, for instance, in [35];

5. It can handle multiple populations, with possibly interacting behaviors.

We refer, for instance, to [96, 248] for numerical treatments of the variants of the
points 2 and 3 above and to [37] for an implementation of the multi-population case.
Here we present a simple picture (Figure 6.1), obtained in the easiest case via the
Benamou-Brenier method on a torus.

6.2 Angenent-Hacker-Tannenbaum

The algorithm that we see in this section comes from an interesting minimizing
flow proposed and studied in [19] (see also [191]). The main idea is to start from
an admissible transport map T between a given density f (which we will suppose
smooth and strictly positive on a nice compact domain ˝) and a target measure �
(we do not impose any kind of regularity on � for the moment) and then to rearrange
the values of T slowly in time, by composing it with the flow of a vector field v, i.e.,
considering T ı .Yt/

�1 instead of T.x/, where Yt.x/ WD yx.t/ is, as usual, the solution
of

(
y0

x.t/ D vt.yx.t//;

yx.0/ D x:
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Fig. 6.1 Geodesics between a Gaussian on a 2D torus and the same Gaussian displaced of a vector
.1=2; 1=2/. Notice that, to avoid the cut locus (see Section 1.3.2), the initial density breaks into four
pieces. Picture taken from [34] with permission

The vector fields vt have to be chosen so that the map Yt, defined via Yt.x/ WD yx.t/,
preserves the measure f and also so as to reduce the value of the Monge cost

M.T/ D
ˆ

c.x;T.x//f .x/ dx:

The cost c is taken smooth (say, C1, we will see later the particular case of the
quadratic cost).

The first computation to do is the derivative of the cost function: set Tt.x/ WD
T.yx.�t// where y is defined as the flow of an autonomous vector field v. The
condition for v to preserve the measure f is that the solution of

@t%t C r � .%tv/ D 0 with %0 D f
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is the constant (in time) density %t D f . This requires r � .f v/ D 0. We will set
w D f v for simplicity. By choosing v satisfying this condition, we can write

d

dt

�ˆ
˝

c.x;T.yx.�t//f .x/ dx

�
D d

dt

�ˆ
˝

c.yx.t/;T.x//f .x/ dx

�

D
ˆ

˝

rxc.yx.t/;T.x// � y0
x.t/f .x/ dx D

ˆ

˝

rxc.yx.t/;T.x// � v.yx.t//f .x/ dx;

and, at t D 0, this gives a derivative equal to
´
˝

rxc.x;T.x// � v.x/f .x/ dx. In the
computation above, we used the fact that Y�t preserves the measure f and that its
inverse is Yt (which is true for vector fields v independent of time).

We recover here an important part of the theory of optimal transport: if T is
optimal, then the vector field rxc.x;T.x// must be orthogonal to all divergence-free
vector fields w, and hence it is a gradient (see Proposition 1.15). In the particular
case c.x; y/ D 1

2
jx�yj2, this gives x�T.x/ D r'.x/ and hence T itself is a gradient.

The fact that T is the gradient of a convex function, and not of any function, comes
from second-order optimality conditions, at least when one has sufficient regularity
(see Ex (44)).

On the other hand, the goal here is not to study the structure of an optimal T,
but to start from a nonoptimal T and to improve it. In order to do this, we must
choose a suitable vector field v. This will be done by producing a flow Tt, and the
vector field v will be chosen in some clever way at every instant t of time. Hence, it
will be no more autonomous. Several choices for v are possible, but we start from
the simplest one: we saw that the derivative of the cost M is given by

´
˝
� � w,

where �.x/ D rxc.x;T.x// and w D f v. Since
´
˝
� � w is a scalar product in L2,

this identifies the gradient of M for the L2 structure, when restricted to the set of
infinitesimal displacements preserving the measure (i.e., we impose the constraint
r � w D 0). The optimal choice of w (if we want to have a bound on jjwjjL2) is to
take as w the projection of �� onto the vector space of divergence-free vector fields.
Concerning the boundary conditions to associate with this divergence constraint, we
choose as usual the Neumann conditions w � n D 0, which are also those required to
preserve the measure without letting any mass exit ˝.

Box 6.2. Memo: Helmholtz decomposition

Given a vector field � 2 L2.˝IRd/, it is always possible to write it as the sum of a
gradient and of a divergence-free vector field � D ru C w with u 2 H1.˝/ and r � w D 0

(in the distributional sense). The decomposition is unique if one imposes u 2 H1
0.˝/, or

w � n D 0 (in the weak sense, which, together with the zero-divergence condition, means´
w � r� D 0 for all � 2 C1.˝/).

These decompositions have a variational origin: indeed one can solve

(continued)
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Box 6.2. (continued)

min

�ˆ
j� � ruj2 W u 2 H1

0.˝/

�

and get the first one, or

min

�ˆ
j� � ruj2 W u 2 H1.˝/;

ˆ

u D 0

�

and get the second one (if ˝ is connected). In both cases, the zero-divergence condition on
w comes from the optimality conditions on u.

Note that ru is the projection of � on the set of L2 gradients (of H1
0 functions, in the

first case) and hence w is the projection onto the set of divergence-free vector fields (with
Neumann conditions, in the second case).

The projection w D PŒ�� can be computed by writing r � � D r � w C �u, i.e.,
w D � � r.��1.r � �//.

Hence, we look for a family of transport maps Tt, a flow Yt, and a vector field wt

satisfying the following conditions:

• Tt is defined as Tt D T ı .Yt/
�1 at every instant t;

• the map Yt is the flow of the time-dependent vector field vt, defined through
f vt D wt;

• the vector field wt D PŒ��t�, where P is the projection onto divergence-free
vector fields with w � n D 0 and �t D rxc.x;Tt.x//.

We can write the PDE satisfied by Tt, which is the transport equation @tTt C vt � r
Tt D 0.

Box 6.3. Memo: Linear transport equation

Given a smooth vector field vt, its flow Yt.x/ D yx.t/ (with, as usual, y0

x.t/ D vt.yx.t//
and yx.0/ D x), and a smooth function g, we define gt D g ı Y�1

t . Then, we have

@tgt C vt � rgt D 0:

Indeed, we can write gt.yx.t// D g.x/ and differentiate in time, thus getting the above
equation. As soon as vt stays Lipschitz continuous, its weak formulation is valid for
arbitrary g 2 L1 since we can take a sequence of smooth approximating functions gn ! g,
write

´´
gn ı Y�1

t .@t' C vt � r'/, use the change of variable y D Y�1
t .x/, and pass to the

limit.
This equation is called transport equation. It is similar to the continuity equation, but it

is not in conservative form, and the mass of g is not conserved in time. On the contrary, L1

bounds on g are conserved, since the values of gt are the same as those of g D g0. The two
equations, transport and continuity equations, are somehow dual: if a vector field v is fixed
and we take smooth solutions %t of @t%t C r � .%tvt/ D 0 and gt of @tgt C vt � rgt D 0,

(continued)
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Box 6.3. (continued)
then we have

d

dt

�ˆ
gt d%t

�
D

ˆ

.@tgt/%t C
ˆ

gt.@t%t/D �
ˆ

%tvt � rgt �
ˆ

gtr � .%tvt/D 0:

We now compute formally the derivative in time of M.Tt/ with the above choices

d

dt
M.Tt/ D d

dt

�ˆ
c.x;Tt/f

�
D

ˆ
ryc.x;Tt/.@tTt/f D �

ˆ
ryc.x;Tt/ � rTt � wt:

We go on using rŒc.x;Tt.x//� D rxc.x;Tt.x//Cryc.x;Tt.x//rTt.x/, together with´ rŒc.x;Tt.x//� � wt.x/ dx D 0, which comes from r � wt D 0. Hence we get

d

dt
M.Tt/ D

ˆ
rxc.x;Tt/ � wt.x/ D

ˆ
�t � wt D �

ˆ
�tPŒ�t� D �jjPŒ�t�jj2 � 0:

This shows that the proposed flow makes M.Tt/ decrease in time and that the
value of M.Tt/ is stationary if and only if PŒ�t� D 0, i.e., if �t is a gradient.

[19] proves the local existence of the above flow, i.e.,

8̂̂
ˆ̂<
ˆ̂̂̂:

@tTt C vt � rTt D 0;

r � .f vt/ D 0; vt � n D 0;

�rxc.x;Tt/ D f vt C rut;

T0 given;

(the second and third line can be replaced by vt D �t � r.��1.r � �t//; for �t D
rxc.x;Tt/, which avoids inserting a new variable ut, but introduces nonlocal terms
in the equation) is proven. Also, it is proven that the only limits of Tt for t ! 1
can be those rearrangements T of T0 such that rxc.x;T/ is a gradient. The same is
studied also in the more general case of transport plans instead of transport maps,
but we avoid presenting this advanced case for the sake of simplicity. However,
we note that for costs c which do not satisfy the twist condition, the framework of
transport plans cannot be avoided. Indeed, in general it is not possible to converge
to an optimal transport map as t ! 1, simply because such a map could not exist.

In the very same paper [19], alternative choices of the vector field v are proposed,
in particular “regularized” flows (i.e., applying regularization kernels to the above
wt, and in this case global existence is proven). There is also a possibility of a local
choice for the flow: in coordinates, we can take wj D � i

ij � �
j
ii (superscripts are

components and subscripts are derivations). It can be checked that this choice as
well guarantees that M.Tt/ decreases in time.
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Even if, as we noted, the method is general for any cost, it is in the case of the
quadratic cost that it has been mainly employed. The idea in this case can be roughly
summarized as “start from an admissible transport map, and then gradientize it”
(i.e., transform it slowly into a gradient).

The equation becomes, for �t D x � Tt,

8̂̂
<
ˆ̂:
@t�t � vt C vt � r�t D 0;

vt D 1
f

�
�t � r.��1.r � �t//

	
;

�0.x/ D x � T0.x/ given:

From an implementation point of view (see [20]), the above system has been
discretized and solved using an upwind scheme for the transport equation (roughly
speaking, a finite difference method where the choice of the left- or right-centered
derivatives is made according to the sign of the components of the advecting vector
field v) and standard solvers for the solution of the Laplacian (such as Matlab
Poisson solver). The complexity of each time iteration is of the order of N log N,
N being the number of pixels in the space discretization.

The AHT flow has been used for numerical purposes, with some advantages and
disadvantages. Even if it has been mainly used for the quadratic case, it could be
used for many smooth costs, which makes it a very general approach. Yet, from the
numerical point of view, the implementation involves some difficulties, and it has
also the disadvantage of requiring strictly positive densities. Also, its convergence
to the optimal map is not at all proven. This question can be easily understood in
the quadratic case. Beware that we do not mean here rigorous convergence results:
the problem is that the flow is meant to converge to a critical point for the cost M,
which means (for the quadratic case) a transport T which is a gradient map. Nothing
guarantees that it is the gradient of a convex map!

A priori, even the gradient of a concave function (i.e., the worst possible map for
the quadratic cost, see Ex (2)) could be recovered. Since the flow has the property
that M.Tt/ is strictly decreasing in time as long as one does not meet a critical point,
this case can be easily excluded (the only possibility is starting from T0 being the
gradient of a concave function, which is easy to avoid). But any other gradient could
be found at the limit.

These issues have been discussed in [86]. It happens that a good idea to improve
the results and enhance the chances of converging to the good transport map,
following [19, 20], is to select a good initial guess T0. Several choices (specific for
the quadratic case) are proposed (including the Dacorogna-Moser transport map;
see Box 4.3 in Section 4.2.3), but, at least at a first sight, the most suitable one is the
Knothe transport (see Section 2.3). Indeed, with this choice, the initial transport map
has triangular Jacobian matrix, with positive eigenvalues. Let us assume (extra than
the previous assumptions) that � is absolutely continuous with density g.x/ bounded
from above and below by positive constants. As we know that the map Tt satisfies
.Tt/#f D g for every t, the value of j det.DTt/j can never be 0 (bounded from below
by inf f= sup g). If everything is smooth, this means that the sign of the determinant
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is preserved and that no eigenvalue can ever be zero (this is also underlined in [86]).
Unfortunately, the eigenvalues of DTt are real at t D 0 (if we choose the Knothe
map) and are real at t D 1 (since, as a gradient, the Jacobian is symmetric), but
nothing prevents the eigenvalues to become complex and to pass from �0;C1Œ to
��1; 0Œ without passing through 0 during the evolution! (even if this does not seem
likely to happen, because the choice of v exactly forces Tt to become closer to the
set of gradients, and gradients do not like complex eigenvalues).

A simple case, where there is no ambiguity if everything is smooth, is the 2D
case. We can give a straightforward proposition.

Proposition 6.3. Suppose that .�t; vt/ is a smooth solution of the AHT system in
the quadratic case, with Tt.x/ D x � �t.x/ being a transport map between two
given smooth densities f ; g 2 P.˝//, where ˝ � R

2 is a 2D smooth convex and
bounded domain. Suppose that det.DT0.x// is positive for every x. Also suppose
that Tt ! T1 in C1.˝/ as t ! 1 and that the evolution is nontrivial (i.e., there
exists t such that Tt ¤ T0). Then T1 is the gradient of a convex function and is thus
optimal.

Proof. From the above considerations, we have

M.T0/ � M.Tt/ D
ˆ t

0

jjPŒ�t�jj2L2dt: (6.1)

This implies that
´ 1
0

jjPŒ�tj�jj2L2dt < 1 and, at least on a sequence tn ! 1, we
have PŒ�tn � ! 0 in L2.˝/. Hence PŒ�1� D 0 since �tn ! �1 WD x � T1.x/ in
C1, and hence �1 and T1 are gradients. We need to prove that T1 is the gradient
of a convex function, i.e., that the eigenvalues of DT1, which is now a symmetric
matrix, are both positive (remember that we are in R

2).
We know that t 7! det.DTt.x// is continuous in time, is positive at t D 0, and

cannot vanish. From C1 convergence, this implies det.DT1.x// > 0 for every x.
Hence, the eigenvalues of DT1.x/ have the same sign (for each fixed x).

Let us look now at Tr.DT1.x//. This is a continuous function of x, and it cannot
be zero. Indeed, if it vanished somewhere, at such a point the two eigenvalues would
have different signs. Hence, the sign of this trace is constant in x. Note that this only
works for t D 1, as for t 2�0;1Œ one could a priori have complex eigenvalues.

If we exclude the case where Tr.DT1.x// < 0 everywhere, we have concluded.
Yet, this case corresponds to T1 being the gradient of a concave function (remember
again that in dimension two, positive determinant and negative trace imply negative
2D definite). And concave functions are the worse possible transports for the
quadratic case (see Ex (2)). This is impossible since M.T1/ < M.T0/ (except if
the curve t 7! Tt were constant) from (6.1). ut

Note that the assumptions on the initial condition of the above theorem are
satisfied both by the Knothe transport and by the Dacorogna-Moser transport map.

Unfortunately, the above proof is really 2D as we characterized positive symmet-
ric matrices as those which have positive trace and positive determinant. Also, in



232 6 Numerical methods

practice it is almost impossible to guarantee the assumptions of the theorem above
and convergence can only be observed empirically.

Open Problem (convergence of AHT): justify, even assuming smoothness and
very strong convergence, that the AHT flow converges to the optimal map, if
initialized at Knothe and/or Dacorogna-Moser, in dimension higher than two, and
prove a rigorous result with minimal assumption in 2D.

6.3 Numerical solution of Monge-Ampère

As we saw in last section, we can use for numerical purposes the fact that solving
the quadratic optimal transport problem is equivalent to finding a transport map
which is the gradient of a convex function. In the last section, an iterated method
was produced where a sequence of transport maps Tn (it was a continuous flow,
but in practice it is discretized), with the same image measure, was considered, and
they were forced to converge to a gradient. Here the approach is somehow opposite:
a sequence of gradient maps is considered, and the corresponding measures are
forced to converge to the desired target.

More precisely, the idea contained in [217] is the following: consider the
simplified case where the domain ˝ D T

d is a d-dimensional torus, the source
measure % is a C0;˛ density bounded from below and from above, and the target
measure is the uniform measure with constant density 1; we look for a smooth
function ' such that D2' � I (which is the condition for ' to be c-concave, with
c.x; y/ D jŒx � y�j2 on the torus; see Section 1.3.2) and

det.I � D2'/ D %:

We stress the fact that, in this periodic setting, it is not possible to look for a convex
function u satisfying det.D2u/ D %. Actually, periodic convex functions do not exist
(except constant ones)! The only possibility is to stick to the framework of c-concave
functions, without passing to the convexity of x 7! 1

2
jxj2 � '.x/.

If we find such a function ', then T.x/ D x � r'.x/ (in the periodic sense) will
be the optimal map between % and L d. Note that the choice of a uniform target
measure gives a non-negligible simplification: the correct equation with a generic
target measure would involve a function of x � r'.x/ at the denominator in the
right-hand side. This would make the following analysis much more involved.

The idea of Loeper and Rapetti in [217] is to solve the equation through an
iterative scheme, based on a Newton method.
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Box 6.4. Memo: Newton’s method to solve F.x/ D 0

Suppose we seek solutions of the equation F D 0, where F W X ! X is a smooth
function from a vector space X into itself. Suppose a solution Nx exists, with DF.Nx/ which is
an invertible linear operator. Given an initial point x0, we can define a recursive sequence in
this way: xkC1 is the only solution of the linearized equation F.xk/CDF.xk/.x�xk/ D 0. In
other words, xkC1 D xk �DF.xk/

�1 �F.xk/. This amounts at iterating the map x 7! G.x/ WD
x � DF.x/�1 � F.x/. This map is well defined, and it is a contraction in a neighborhood of
Nx. The iterations converge to Nx if the initial point belongs to such a suitable neighborhood.
The order of convergence is quadratic, i.e., jxkC1 � Nxj � Cjxk � Nxj2. This is a consequence
of the fact that the Lipschitz constant of G in a ball B.Nx;R/ is proportional to maxfjF.x/j W
x 2 B.Nx;R/g and hence decreases as O.R/. To see this fact, just compute

DG D I � DF�1 � DF C DF�1 � D2F � DF�1 � F D DF�1 � D2F � DF�1 � F:

An alternative and less “aggressive” method can make use of a step parameter � > 0,
defining xkC1 D xk � �DF.xk/

�1 � F.xk/. In this case the map G.x/ D x � �DF.x/�1 � F.x/
is a contraction, but its contraction factor is of the order of 1� � , which only gives slower
convergence (but could converge under weaker assumptions).

Here, if we have a guess ' and look for a solution 'C , the linearization of the
equation reads

det.I � D2'/ � TrŒcof.I � D2'/D2 � D %;

where cof.A/ denotes the cofactor matrix of a given square matrix A, satisfying
cof.A/ � A D det.A/I.

Box 6.5. Memo: Linearization of the determinant

It is well known that det.I C "B/ D 1C "TrŒB�C O."2/ (this can be easily checked by
expanding the determinant of I C "B and looking at the terms which are first order in ").
This gives the linearization of the determinant in a neighborhood of the identity matrix. If
we look for the linearization of the determinant around another matrix A and we suppose A
invertible, we have

det.A C "B/ D det.A/ det.I C "A�1B/ D det.A/.1C "TrŒA�1B�C O."2//

D det.A/C "TrŒcof.A/B�C O."2/:

By continuity, the determinant and the map A 7! cof.A/ being C1 functions, this last
expression (avoiding the use of A�1) is also valid for A non-invertible.

The iterative steps of the algorithm proposed in [217] are thus:

• Start with an arbitrary smooth function '0 such that I � D2'0 > 0 and fix a
small value of � > 0. Typically, one takes '0 D 0.

• At every step n, compute %n WD det.I � D2'n/.
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• Define the matrix Mn.x/ WD cof.I � D2'n/. Suppose that we can guarantee that
Mn is positive definite.

• Solve TrŒMnD2 � D %n � %, which is a second-order linear elliptic equation in
', on the torus (i.e., with periodic boundary conditions). The solution is unique
up to an additive constant (choose for instance the zero-mean solution) provided
Mn > 0. Call  n the solution.

• Define 'nC1 D 'n C � n and start again.

From the implementation point of view, the elliptic equation defining  , i.e.,
TrŒMnD2 � D %n � % is solved in [217] via a finite-difference discretization of
the second-order derivatives. It is worthwhile mentioning that this kind of equation,
i.e., TrŒMD2 � D f , where M is the cofactor matrix of an Hessian, can also be
expressed in divergence form. Indeed, they read

P
i;j Mij ij D f , but

P
i;j Mij ij DP

i

�
Mij j

	
i since

P
i Mij

i D 0 for all j (see Ex (43)). This allows to give a variational
structure to this elliptic equation and solve it via finite-element methods. On the
other hand, the condition %n WD det.I � D2'n/ is more naturally interpreted in
terms of second-order finite differences. Let us stress that one of the main difficulties
of these equations is exactly the discretization of a nonlinear operator such as the
Monge-Ampère operator (i.e., the determinant of the Hessian).

The convergence of the algorithm is guaranteed by the following theorem, under
regularity assumptions:

Theorem 6.4. Suppose % 2 C0;˛.Td/ is a strictly positive density and that �
is smaller than a constant c0 depending on jj log %jjL1 and jj%jjC0;˛ . Then the
above algorithm provides a sequence 'n converging in C2 to the solution ' of
det.I � D2'/ D %.

Proof. The proof is based on a priori bounds derived from both elliptic regularity
theory (see [184], for instance) and Caffarelli’s regularity for Monge-Ampère (see
Section 1.7.6; for the periodic boundary conditions, see also [127]).

Choosing � small enough and suitable constants c1 > 0 and C1;C2;C3 large
enough, one can prove by induction the following statement: at every step n, we
have I � D2'n > c1I, jj log.%n=%/jjL1 � C1, jj%n �%jjC0;˛ � C2 and jj'njjC2;˛ � C3.
To do that, note that we have jj njjC2;˛ � Cjj% � %njjC0;˛ from standard elliptic
regularity theory (see Schauder Estimates in Chapter 6 in [184]). We can compute

%nC1 D det.I � D2'n � �D2 n/ D %n � �TrŒcof.I � D2'n/D
2 n�C rn

D .1 � �/%n C �%C rn;

where rn is the second-order rest in the linearization of the determinant, i.e., it
involves second derivatives of 'n and second derivatives of  n, but is of order 2
in �D2 n. Hence, from the algebra properties of the C0;˛ norm, we have jjrnjjC0;˛ �
C�2jjD2 njj2

C0;˛
� C�2jj%n � %jj2

C0;˛
. Then, from %nC1 � % D .1� �/.%n � %/C rn,

we get
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jj%nC1�%jjC0;˛ � .1� �/jj%n�%jjC0;˛C C�2jj%n�%jj2C0;˛ � jj%n�%jjC0;˛ .1� � C C�2/:

It is enough to choose � small enough so that 1 � � C C�2 < 1, to go on with the
bound on jj%nC1 � %jjC0;˛ . For the L1 bound, we use again

%nC1 D .1 � �/%n C �%C rn � ..1 � �/eC1 C � C C�2/%:

Again, for � small enough and C1 > 0, one can guarantee .1��/eC1C�CC�2 � eC1 .
The lower bound works in the same way.

In order to study the bound on 'nC1, we write 'nC1 D 'n C � n. Note that, from
I � D2'n � c1I and jD2 nj � C, a suitable choice of � allows to guarantee the
convexity condition I � D2'nC1 > 0. Hence, the uniform bound jj'nC1jjC2;˛ � C3
simply follows from Caffarelli’s theory and from the bounds on %nC1. And, finally,
an upper bound on the Hessian of 'nC1 also implies a lower bound on I � D2'nC1
because of the determinant condition.

This shows that the bounds are preserved in the iterations, and the convergence
comes from jj njjC2;˛ � Cjj% � %njjC0;˛ , where the norm jj% � %njjC0;˛ goes
exponentially to 0. ut

We finish this section by mentioning that after this first work by Loper and
Rapetti, which indeed provided interesting numerical results, many improvements
have occurred. First, we underline that [280] extended to the case of a nonconstant
target density (but still, Lipschitz regularity of the target density was needed).
Then, we remark that another strong limitation of [217] is given by its periodic
boundary conditions. When working on different domains than T

d, the situation is
much trickier. It has been successfully studied by Benamou, Froese, and Oberman
in [39, 41], by using a monotone discretization of the Monge-Ampère operator.
Monotonicity allows to prove the existence of a solution of the discretized problem
and to prove convergence toward the viscosity solution of the limit Monge-Ampère
equation. Finally, [39, 41] also attacked the problem of the boundary conditions and
of the shape of the domain. With the approach by viscosity solutions, the authors
are able to consider non-convex and even non-connected source domains (hence
allowing vanishing densities). They handle the second boundary value problem
writing the target domain as the level set of a convex function. Yet, we prefer not to
enter into details of these recent results, because of their technical difficulty and of
the notions about viscosity solutions that we did not develop here.

6.4 Discussion

6.4.1 Discrete numerical methods

We strongly used in Chapter 1 the linear and convex structure of the Kantorovich
problem, which is indeed a linear programming problem in infinite dimension. It
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is natural to look for methods which exploit this fact, after discretization. Here
discretization simply means replacing � and � with two finitely atomic measures
� D PN

iD1 aiıxi and � D PM
jD1 bjıyj . For fixed N and M, the choice of “optimal”

points xi and yj and of weights ai; bj so that the approximation is as precise as
possible is a delicate matter that we do not want to discuss here. It is linked to
quantization problems for the measures � and � (see [187] for a survey of the
theory from a signal processing point of view and [72] for a variational asymptotical
approach). We note anyway that the difficult issue is the choice of the points,
since once the points are fixed, the natural choice for the weights is ai D �.Vi/,
bj D �.Wj/, where V and W represent the Voronoi cells of the points .xi/i and .yj/j,
respectively (see below).

Box 6.6. Good to know! Voronoi cells

Given a finite family of distinct points .xi/i � R
d , we define their Voronoi cells as

follows:

Vi D fx 2 R
d W jx � xij � jx � xjj for all jg:

These cells are essentially disjoint (only the boundary can be in common: Vi \ Vi0 D
@Vi \ @Vi0 ). They are convex polyhedra, possibly unbounded, and the boundary @Vi \ @Vi0

is orthogonal to the vector xi � xi0 . Each point xi obviously belongs to the corresponding Vi.
Given a finite measure %which does not give mass to .d�1/-dimensional sets, a Voronoi

partition is said to be a Centroidal Voronoi Tessellation (CVT) if every point xi is the
barycenter (according to�) of its cell Vi: xi D 1

�.Vi/

´
Vi

x d%.x/. Note that if� D PN
iD1 aiıxi

is a solution of minfW2.�; %/ W #.spt.�// � Ng (the so-called location problem), then
the points xi are a Centroidal Voronoi Tessellation (see Ex (39)). There is an efficient
algorithm, called Lloyd algorithm which finds a CVT and a local minimizer of this optimal
quantization problem by iterating a simple construction: “once we have the cells, we move
each point to their barycenter” (see [213]).

Anyway, after discretization, the problem becomes finite dimensional, and the
only ingredients are a family of costs cij (real numbers) and some mass constraints
ai and bj. The problem becomes

min

8<
:
X

i;j

cij�ij W �ij � 0;
X

i

�ij D bj;
X

j

�ij D ai

9=
; : (6.2)

This is a classical linear problem in the standard form minfc � x W x � 0; Cx D bg
(where x � 0 means xi � 0 for every i). It can be solved, for instance, with the
simplex algorithm.
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Box 6.7. Good to know! Simplex algorithm

If c 2 R
d; b 2 R

k;C 2 Mk�n.R/ are given, the minimum in minfc � x W x 2 R
d; x �

0; Cx D bg, if it exists, is realized by a vertex of the polyhedron K D fx 2 .R
C

/N ; Cx D
bg. A vertex is defined as an extremal point of K (i.e., a point x which cannot be written as
x D .y C z/=2 with y; z 2 K and y ¤ z). In the case of polyhedra, vertices are characterized
by the property that the columns Ci of the matrix C corresponding to the indices i with
xi > 0 are linearly independent. Every polyhedron has a finite number of vertices.

The simplex algorithm, invented by G. B. Dantzig in 1947, considers all possible basis
of Rk (or of the range of C) composed of columns Ci. In this way all vertices are taken into
account (one vertex x can correspond to several bases: if the columns Ci with xi > 0 are
less than k, then they can be completed at will). The algorithms move from one basis to
another, choosing the next one in a clever way. The choice of the order is based on local
improvements of the objective function c � x. In this way it can find the optimal vertex (or
find that the problem has no solution, if K is unbounded and c �x is not bounded from below
on K) without visiting all the vertices.

See [135] and [136] for an interesting history of how linear programming began.
Curiously, the example provided by Dantzig to explain how linear programming opened
new horizons in optimization is exactly a transport problem (maximal productivity
assignment).

Among the good news with this kind of approach there is the fact that, at least in
the assignment problem (i.e., the case N D M and ai D bj D 1=N), one can prove
that the vertices of the convex set˘.�; �/ are exactly those � induced by a transport
map (which is, in this case, a permutation of f1; : : : ;Ng; see Ex (40)).

Among the bad news, there is the computational time of the algorithm. Even if
it is much cheaper than visiting all the vertices of ˘.�; �/, it has in general a huge
computational cost4.

To overcome this difficulty, one possibility is to exploit the particular form of
this linear programming problem, due to the particular features of the matrix C,
which only has entries with values 0 and 1. For matrices of this kind, there is an
interpretation in terms of optimization problems on graphs or networks. And in this
specific case, this is quite easy to understand: the optimal transport from N atoms
to M atoms (even when N ¤ M and their weights are different) may be seen as a
network with N CM nodes (the source and target points) and NM edges (a complete
bipartite graph, hence), and the unknown is the flow on each edge, satisfying
compatibility with the mass which is imposed at every node. The optimization
involves a linear function of these flows. For linear programming problems of this
form, an alternative to the simplex algorithm is the so-called network simplex, for
which we refer to [2] and to its historical reference, [169]. These methods are widely
used, even if they also lack worst-case polynomial bounds on their complexity.

4We sometimes hear that the simplex method is exponential: this is a worst-case estimate. Also,
other solvers for linear programming problems exist, for instance, interior point methods, and
their computational cost can be way better than exponential. However, in practice they are all too
expensive.
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Other methods have also been found, also specific to the transport problem and
based on duality. Among the most well known, there is the so-called Hungarian
algorithm [204], which is polynomial in time, and the Auction algorithm that we
describe below.

Auction algorithm

This algorithm is also connected with the dual problem, but is not based on
a sequence of improvements of the dual objective function, but on a seek for
the equilibrium. Due to its connections with the economic considerations of
Section 1.7.3, we give a quite detailed description of it (see also [53]).

We specialize to the assignment problem, i.e., the case where the weights ai and
bj are all equal. We can imagine that we have N buyers, denoted by the index i, and
N goods to be bought, denoted by j. We look for an assignment j D �.i/; � 2 SN

which maximizes5 P
i ui�.i/. The values uij are the utilities of buyer i when he buys

item j. As in Section 1.7.3, we look at a price system p D .pj/j. Given a price
system p and an assignment � , we say that it is an equilibrium if for every i, we
have ui�.i/ � p�i D maxj uij � pj. The buyers i satisfying this condition are said
to be “happy.” This only corresponds to writing the equilibrium condition that we
presented in Section 1.7.3 in terms of a coupling � induced by a permutation. It is
well known that if .p; �/ is an equilibrium, then � is an optimal assignment (and p
is optimal in the dual problem).

Let us start from an arbitrary pair .p0; �0/.
At every step, we have a pair .pn; �n/. If it is an equilibrium, then we stop the

algorithm. Otherwise, pick any i	 among those i such that ui�.i/�p�i < maxj uij �pj.
The selected buyer i	 implements two actions:

1. he chooses one good j	 realizing the maximum in maxj ui�j � pj and exchanges
his own good �n.i/ with the buyer ��1

n .j	/ who was originally assigned to j	
2. he increases the price of j	 to a new value which is such that he is indifferent

between j	 and the second best object in maxj ui�j � pj.

Thus, the new price of j	 is P D pn
j� C maxj.ui�j � pn

j / � maxj¤j�.ui�j � pn
j / � pj� .

The new price system pnC1 is defined by setting pnC1
j D pn

j for j ¤ j	 and pnC1
j� D

P. The new permutation �nC1 is obtained by composing with the transposition which
exchanges j	 and �n.i	/.

Unfortunately, the above algorithm can loop forever, because of possible ex-
aequo in maxj ui�j � pj. Indeed, in such a case the prices can stay constant, and
a certain subset of buyers could go on exchanging among them the same set of
goods. To bypass this problem, it is useful to introduce a tolerance parameter " > 0.
We define a buyer i to be "-happy whenever ui�.i/ � p�i > maxj.uij � pj/ � ". We

5We switch back to the language, of economists, who prefer to maximize utility rather than
minimizing costs.
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look now for a pair .p; �/ where all buyers are "-happy. The algorithm evolves
as before, selecting a buyer i	 who is not "-happy, letting him exchange a good
with ��1

n .j	/, but the rule for price increase changes. Indeed, we can now set
P D pn

j� C maxj.ui�j � pn
j /� maxj¤j�.ui�j � pn

j / � pj� C ". This price is the maximal
one that we can give to item j	 so that buyer i	 is "-happy if he purchases j	 at such
a price. The advantage is that we have now P � pn.j	/ C " and there is a minimal
increment.

It is easy to see an analogy with auction systems and that this "-system imposes
a minimal bid.

Now, we can see that every time that an item is chosen by a buyer and receives a
bid, then, from that moment on, whoever owns such an item will be "-happy. Indeed,
at the very moment when a buyer gets an object by a bid, he is "-happy, and the price
of such an object cannot increase as long as he owns it, as well as the prices of the
others cannot decrease. Hence, the algorithm will stop as soon as all items will have
received at least a bid each. Now, suppose that there is an item which has received
no bids: his price is constant, while the prices of the other increase. It is not difficult
to prove that the number of possible iterations going on in the presence of an object
which has never received a bid must be bounded (as soon as there is one unbidded
good, all the others become too expensive after a certain number of received bids,
and when they become too expensive, they receive no more bids). This means that
the algorithm stops after a finite number of steps.

Once we have a pair .p; �/ which is a equilibrium in the sense that every buyer
is "-happy, then we can prove that the cost

P
i ui�.i/ is almost optimal among

permutations Q� . Indeed, take any other permutation Q� . We have

ui�.i/ � p�i � max
j
.uij � pj/ � " � uiQ�.i/ � pQ�.i/ � ":

Summing over i, and using
P

i p�i D P
i pQ�.i/, we get

X
i

ui�.i/ �
X

i

uiQ�.i/ � N":

This proves that � is optimal, up to an error of N". By the way, if the utilities uij are
integer numbers and N" < 1, then � must actually be optimal, with no error.

A rough estimate of the number of iterations which are necessary to conclude the
algorithm is obtained in the following way: set C D max juijj and start with p0 D 0.
Till there is at least an unbidded good, no other good can receive more than C="
bids. This means that the number of iterations is at most of the order of NC=". In
the case of integer utilities, an exact solution is found in O.CN2/ iterations6.

6Observe that this assumption on the values uij being integer, corresponding to integer costs on
each edge in the network interpretation, appears quite often and simplifies the complexity of other
algorithms as well. For instance, in [245] a polynomial bound on the cost of a network simplex



240 6 Numerical methods

We remark that this cost can be indeed very high because of the presence of the
factor C. Indeed, if the costs are rational numbers between 0 and 1 with k digits, if
we want to make them integers, we could lead to multiply up to C D 10k. A way to
circumvent this problem is to make an iterative "-scaling procedure. We first find an
assignment which is N"-optimal for a certain value of ", then we divide " by two,
and we go on. This procedure, introduced in [55], is also detailed in [234]. We refer
to these notes and to [54] for considerations about possible accelerated variants and
computational costs of this method, very efficient in many cases. We also mention
that in Section 8.4.4 we will briefly describe a cosmological model which has been
numerically attacked thanks to the auction algorithm.

Entropic regularization and iterated projections

We would like to discuss another, very recent, but simple to explain, approach to the
discrete linear programming version of the optimal transport problem. The starting
point is the following variant of the linear problem (6.2): fix " > 0 and look at

min

8<
:
X

i;j

�
cij�ij C "�ij log.�ij/

	 W �ij � 0;
X

i

�ij D bj;
X

j

�ij D ai

9=
; : (6.3)

It is clear that, for " ! 0, the above minimization problem converges (in the sense
of � -convergence, see Box 4.6) to the minimization in (6.2). We try to describe now
why this approximated problem is easier to handle.

First, we rewrite the objective function using

cij�ij C "�ij log.�ij/ D "�ij log

�
�ij

�ij

�
;

X
i;j

�
cij�ij C "�ij log.�ij/

	 D "KL.� j�/;

where �ij D e�cij=" and KL denotes the so-called Kullback-Leibler divergence. This
is not at all a divergence in the sense of differential calculus, but rather a sort of
distance based on the relative entropy:

KL.� j�/ WD
X

i;j

f

�
�ij

�ij

�
�ij for f .t/ D

(
t log t if t � 0;

C1 if t < 0:

Hence, the above minimization problem reads as the projection, for the Kullback-
Leibler divergence, of the point � 2 R

N�N on the set of constraints C D Cx \ Cy,
where Cx D f� 2 R

N�N W Pj �ij D aig and Cy D f� 2 R
N�N W Pi �ij D bjg. It

is important to notice that the positivity constraint on � has disappeared, because it
is included in the definition of the entropy function f , which acts as a sort of barrier

algorithm is given under this assumption, obtaining O.min.kh log.kC/; kh2 log k/ for a network
with k nodes, h edges, and maximal cost equal to C.
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for this constraint (it is not a true barrier in the usual sense because it does not tend
to infinity as the variable tends to 0; yet, it is set to infinity on negative numbers, and
the derivative tends to infinity at 0).

The Kullback-Leibler divergence is not a distance, but shares some of the
properties of distances. In particular it can be proven that the projection onto the
intersection of two linear subspaces such as Cx and Cy can be obtained by alternate
projections, i.e., defining �2kC1 D ProjCx.�2k/ and �2kC2 D ProjCy.�2kC1/, with
�0 D �, and looking at the limit as k ! 1.

The problem becomes that of the projection on one on the two subspaces, but this
happens to be doable explicitly. Given a certain � , we want to solve (for instance)
the minimization problem

min

8<
:
X

i;j

�ij log

 
�ij

� ij

!
W
X

j

�ij D ai

9=
; :

It can be seen that the problem is separable according to the variable i (i.e., that
every i can be treated separately, and the optimality condition gives log.�ij/ D
log.� ij/C �i, i.e., �ij D pi� ij, for some constants pi which are determined thanks to
the constraint (i.e., pi D ai=.

P
j � ij/).

Analogously, it can be proven that the projection onto Cy has the form �ij D qj� ij,
for qj D bj=.

P
i � ij/).

As a consequence, one can solve the approximated problem by means of a
sequence of iterations of the following algorithm: start from �0 D �, define �2kC1

ij D
pi�

2k
ij with pi D ai=.

P
j �

2k
ij /, and then �2kC2

ij D qj�
2kC1
ij with qj D bj=.

P
i �

2kC1
ij /.

The limit as k ! 1 provides the desired solution of the “regularized” problem (the
regularization being given by the addition of the entropy) (Figure 6.2).

This idea, called iterative proportional fitting procedure (IPFP), can be traced
back to [142] and even [282], and it has been recently applied to many optimal
transport problems in [38]. It shows that the choice of the entropic regularization
has several advantages:

• it allows to get rid of the positivity constraint (which would not be the case for
a quadratic regularization);

• it allows to compute explicitly the projection at every step, as soon as we only
project on one subspace Cx or Cy only;

• it is not too costly in terms of memory storage, since at every step the current
�2k is of the form �2k

ij D �ijpiqj (cumulating the product of the coefficients pi

and qj appearing at every step), which allows to stock 2N data instead of N2;
• it is not too costly at every step, as it only requires O.N/ operations;
• it can be easily parallelized, due to the separable structure of each step;
• it can be adapted to multi-marginal problems and other linear problems.

It is also possible to deduce, from the limit value of the coefficients p and q, the
Kantorovich potentials ' and  , but we leave it as an exercise (see Ex (42)).
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6.4.2 Semidiscrete numerical methods

After the study of two discrete measures, the case of one discrete measure and one
continuous deserves a short discussion. We are speaking of the case where � D
f .x/ dx has a density and � D PN

jD1 bjıyj is finitely atomic.
The main ideas behind the methods that are used rely on the dual problem,7 in

the following formulation:

max

8<
:F. / D

X
j

 jbj C
ˆ

˝

 c.x/f .x/ dx

9=
; ;

where the numbers  j represent the values of the function  at the points yj and
 c is the c-transform of  . The considerations in Chapter 1 explain why solving
this problem gives information on the primal problem minf´ c d� W � 2 ˘.�; �/g.
In particular, once we find the optimal function  , the set of points x satisfying
 j C c.x/ D c.x; yj/ will provide the set of points transported onto the target point
yj. We note that c.x/ D c.x; yj/� j exactly means that c.x; yj/� j � c.x; yj0/� j0

for all j0. This gives rise to the study of some sorts of Voronoi cells, whose definition
also involves some scalar coefficients  j. We will analyze these cells in the simpler
case where c.x; y/ D 1

2
jx � yj2. In this case we define

V .j/ D
�

x W 1
2

jx � yjj2 �  j � 1

2
jx � yj0 j2 �  j0 for all j0

�
:

By expanding the squares, we see that each V .j/ is defined by N � 1 linear
inequalities of the form x � .yj0 � yj/ � a.j; j0/ WD  j �  j0 C 1

2
jyj0 j2 � 1

2
jyjj2 and is

hence a convex polyhedron. These cells are called power cells. They coincide with
the Voronoi cells of the points yj whenever all the values  j are equal.

The problem consists in finding values j such that the masses
´

V .j/
f .x/ dx equal

the prescribed values bj. This is indeed equivalent to maximizing the quantity F. /.
The maximization of F is a finite-dimensional issue, since (thanks to � being finitely
atomic) the only values of  which are relevant are those taken at the points yj.
Hence, we can consider  2 R

N , and look at the derivatives of F.
First, we note that F is concave in  . Indeed, the first part of F is linear:  7!P
j  jbj. Then, we take the values  c.x/ D infj c.x; yj/� j; these values are infima

of linear functions of  and thus are concave. They are weighted with a positive
density f and then integrated; the result is a concave function of  . Let us compute
the derivative of F with respect to one variable  j: from

7See also Example 1.6 in [176] for a first genesis of these ideas.
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Fig. 6.2 The optimal � in a 1D transport problem (the starting measure is a centered Gaussian;
the arrival measure is composed of two bumps), via IPFP methods with decreasing values of ".
The image on the right gives a quite precise description of the optimal (monotone) map. Pictures
kindly provided by L. Nenna

@ c.x/

@ j
D

8̂̂
<
ˆ̂:

�1 if c.x; yj/ �  j < c.x; yj0/ �  j0 for all j0 ¤ j;

0 if c.x; yj/ �  j >  
c.x/;

not defined if c.x; yj/ �  j D  c.x/ D c.x; yj0/ �  j0 for some j0 ¤ j;

and from the fact that the last of these three cases is negligible (at least in the case
c.x; y/ D jx � yj2 where the equality case reduces to a subset of a hyperplane), we
deduce that F is indeed differentiable everywhere, and8

@F

@ j
D bj �

ˆ

V .j/
f .x/ dx:

This shows that the maximization of F is equivalent to bj D ´
V .j/

f .x/ dx and
also allows to look for the maximum of F via gradient methods. To this aim, it is
also useful to check upper bounds on the second derivatives of F. We restrict again
our attention to the case c.x; y/ D 1

2
jx � yj2. We note that moving the value of the

coordinates of  from  j to  j C hj makes all the cells V .j0/ change, but only by
changing the constants a.j; j0/ of a value hj0 � hj. This means that the hyperplanes
defining their boundaries move to a distance of the order of jhj

jyj�yj0 j . If the points yj

are fixed and distinct, the measure of the symmetric difference V .j0/�W Ch.j0/ is
bounded by Cjhj. If f is L1, then one obtains

ˇ̌̌
ˇ @F

@ j
. / � @F

@ j
. C h/

ˇ̌̌
ˇ � Cjhj; (6.4)

and F 2 C1;1.

8The computation of the gradient, and its continuity, could have been simplified by looking at the
subdifferential; see [24].
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Box 6.8. Memo: Gradient algorithm

If F W R
N ! R is a differentiable convex function, an easy algorithm to look for the

minimum of F is the following: take x0 2 R
N and � > 0 a fixed size, and define

xkC1 D xk � �rF.xk/:

If F is such that ˛I � D2F.x/ � LI for every x and some ˛;L > 0, then the above
algorithm converges exponentially whenever � < 2˛=L2. More precisely, F is strictly
convex and has a unique minimizer Nx, and we have jxk � Nxj � Cˇk, where ˇ depends
on �; ˛;L, and ˇ < 1 if � 2�0; 2˛=L2Œ. The convergence F.xk/� min F is also exponential.

If D2F is bounded from above but not from below (i.e., F is smooth but not enough
convex), but admits a minimizer Nx, then the rate of convergence is much worse: indeed, one
can only prove F.xk/� F.Nx/ � C=k, as soon as �M < 1.

Many texts present a wide introduction to gradient methods in convex optimization;
see, for instance, [64] for more details. Variants where the step size � varies with k, both in
prescribed and optimized manners, also exist.

As a final point, note that the above algorithm also corresponds to an explicit Euler
scheme in the discretization of the gradient flow of F (see the Memo Box 8.1).

Then, the practical implementation of a gradient algorithm of this kind depends
on how one can practically compute the power cells V .j/ and the integral of the
density f on them. This is a matter of the so-called computational geometry. We
do not spend word on this very delicate issue, but refer, for instance, to the recent
papers [209, 233] for a detailed discussion. The original implementation of these
methods is proposed in [233], and the implementation has been improved in [209],
where spectacular numerical simulations 9 of optimal transport between geometric
shapes are also presented.

Due to the very good numerical results, which we present through Figures 6.3
and 6.4, we prefer to spend some extra words on the most efficient methods to be
used in this semi-discrete setting.

Indeed, even if the description of the algorithm was easier in the case of a gradient
algorithm, the convergence is much quicker if one uses instead a Newton approach.
Newton’s method (see Box 6.4 in Section 6.3) is suitable to find zeros of a vector
function from R

N to R
N , which is in this case the function associating with a dual

potential  D . i/i 2 R
N the values bi � ´

V .i/
f .x/ dx D @F=@ i. In order to be

able to use the Newton method, one needs to be able to compute their derivatives,
which are indeed the entries of the Hessian matrix of F. One also needs to justify
that this Hessian matrix is nonsingular and provide lower bounds on its eigenvalues.
This corresponds to uniform convexity of F.

Moreover, we know that the Newton method is only efficient when we are
able to choose a suitable initialization for the algorithm, since it only converges

9The pictures in the next pages have been kindly provided by B. Lévy and are produced with the
same algorithms as in [209].
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Fig. 6.3 W2 geodesic between two different stars in 3D, computed via semi-discrete optimal
transport on a simplex triangulation. Once obtained the images of every vertex xi of the
triangulation, linear interpolation between each xi and T.xi/ is computed. Note the topology change
and the singularities of the optimal map on every branch of the star

starting from a certain neighborhood. This is efficiently addressed in [233], where
the problem is considered with a multi-resolution point of view. We associate with
the family of points yj a number of smaller families, each obtained from the previous
one via a Lloyd algorithm and dividing the number of points by a fixed ratio. In this
way there is a correspondence such that every point in a family has a unique image
in the next one (which is smaller). We start from the computation of a potential  
for the smallest family, which is easy to do. Then, at every step, the potential  
computed for the ith family is used to build an initialization for the Newton method
of the next step, the one for the .i � 1/th family of points. This guarantees that we
are always sufficiently close to the minimizer that we look for and that the algorithm
converges in a very small number of iterations. In practice, the implementations of
[209] can handle one million points in some minutes.

We come back now to the justification of uniform convexity, which is required
to apply the Newton procedure. Actually, the function F is far from being strictly
convex: indeed, it does not change if one adds a same constant to all the  i. Yet,
up to this invariance, we can expect it to be strictly convex. In order to do that, one
needs to fix a value  i0 D 0 and to look at the behavior w.r.t.  i for i ¤ i0.
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Fig. 6.4 W2 geodesic between the uniform measure on the shapes of an “armadillo” and of a
sphere (discretized with up to a million of Dirac masses)

How to compute the second derivatives of F? It is enough to improve the
computations leading to (6.4): if f is a continuous density, then one obtains

@2F

@ j@ j
. / D � 1

jyi � yjj
ˆ

�ij

f .x/ dH d�1.x/; for i ¤ j;

where �ij D @V .i/ \ @V .j/ is the common boundary (if any) of the two cells
corresponding to the indices i and j (which is .d�1/-dimensional polyhedron). For
the pure derivatives, one has

@2F

@2 i
. / D

X
j¤i

1

jyi � yjj
ˆ

�ij

f .x/ dH d�1.x/ D �
X
j¤i

@2F

@ j@ j
. /:

Note that in these sums, we also keep the index i0. This allows to write a Hessian in
N variables which is singular since the sum of every line is 0. Then, we withdraw the
line and column corresponding to the index i0, and we have a square .N�1/� .N�1/
matrix M. In order to check inversibility of M, we use the following lemma:

Lemma 6.5. Any matrix M 2 Mk�k satisfying the following properties is invertible:

(H1) for all i; we have Mi;i � P
j¤i jMi;jj;

(H2) there exists i such that Mi;i >
P

j¤i jMi;jj;
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(H3) for any pair .i; j/, there is a sequence i1; i2; : : : ; ik with i1 D i; ik D j
satisfying Mih;ihC1 ¤ 0.

Proof. Let x 2 Ker.M/ and let i0 be an index such that jxij is maximal. We may
suppose for simplicity that xi0 is positive. Then we have

0 D Mi0;i0xi0�
X
j¤i0

Mi0;jxj � Mi0;i0xi0�
X
j¤i0

jMi0;jjxi0 D xi0

0
@Mi0;i0�

X
j¤i0

jMi0;jj
1
A � 0:

This implies that all inequalities are equalities and in particular xj D xi0 whenever
Mi0;j ¤ 0. Hence, the entries of x on all the indices which are “neighbors” of i0 equal
to xi0 (and they are maximal as well). This allows to repeat the argument replacing
i0 with another maximizing index j and so on. . . ; since any index is connected by a
chain of neighbors to i0, we get that all the entries are equal. But this implies that the
vector that we selected in the kernel must be a multiple of the vector .1; 1; : : : ; 1/.
Yet, this vector is not in the kernel since the sum of the elements on each line is not
zero for all lines, by assumption .H2/. This proves that M is invertible. ut

The above lemma can be applied to the Hessian of F under some reasonable
assumptions (for instance, we should require that the support of the density f is
arcwise connected).

This guarantees that the Hessian of F is a strictly positive-definite matrix (on the
space R

N�1 of potentials with fixed  i0 D 0) at every point. In order to apply
a Newton’s method, one should also bound from below its eigenvalues. This is
more delicate, and we refer to [114] both for a counterexample under the three
assumptions of the above Lemma, which are not enough for such a bound, and for
a proof in the specific case where the matrix M comes from a partition into power
cells.

Moreover, as we are dealing with the arguments of [114], let us underline another
semi-discrete method, described in the same paper. The idea of the method comes
from the considerations of our Section 2.4 about Knothe transport. Indeed, as we
proved that the Knothe map is the limit of the optimal transport maps for degenerate
quadratic costs corresponding to a matrix diag.1; "; "2 : : : ; "d�1/, we can start from
such a map (Knothe) and then let " vary. The Knothe map is easy to compute, and
one can find the cells corresponding to it10. Since for the Knothe map the most
important coordinate is the last one, these cells are horizontal strips with prescribed

10This is the semidiscrete method coming from this idea, implemented in [114]. There is also a
continuous counterpart, i.e., a PDE on the Kantorovich potentials  ". It has been studied from the
theoretical point of view in [66], where Bonnotte proved a nontrivial well-posedness result, based
on the application of the Nash-Moser implicit function theorem around " D 0 (once we are on
" > 0, the equation is more regular). Later, the same author also started numerical implementations
of the time discretization of this equation in [65]. Note that his continuous method recalls in some
aspects both the AHT flow described in Section 6.2 (as it starts from the Knothe map, is continuous
in time but discretized for numerical purposes, and evolves by imposing prescribed image measure
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Fig. 6.5 Ten sample points: evolution of the tessellation for " D 0 to " D 1 (from top left to
bottom right). Picture taken from the preliminary studies leading to [114]

volume. Note that we need to suppose that they have different xd components for the
method to work. After the computation of the initial condition, one runs an ODE in
dimension N �1 (N being the number of atoms at the arrival) and finds the evolution
of the Kantorovich potential  ."/. The computations needed in order to prove that
the ODE is well-posed are similar to the ones above and allows to conclude that the
evolution fits into the standard existence, uniqueness, stability, and approximation
theory for Cauchy problems with Lipschitz vector fields. Hence, one can apply
a time discretization in the form of an explicit Euler scheme to approximate the
solution. Observing the evolution of the potentials  " as " runs from 0 to 1, we can
also compute the corresponding cells, which move from rectangular strips to convex
polyhedral power cells.

We show in Figure 6.5 a simple sequence of cells obtained with the above
method.

at every time) and the LR Newton’s iterations of Section 6.3 (as the underlying PDE is based on a
linearization of the Monge-Ampère equation).



Chapter 7
Functionals on the space of probabilities

We consider in this chapter various classes of functionals on the space P.˝/, which
can be of interest in many variational problems, and are natural in many modeling
issues. Indeed, in several applied models, we can face minimization problems where
the unknown to be determined is the distribution of a certain amount of mass, and
the criteria involve one or more of the following functionals:

• The integral of a given function (potential energy)

V .�/ WD
ˆ

˝

V d�:

• The double integral of a function on ˝ � ˝ according to the tensor product
�˝ � (interaction energy)

W .�/ WD
ˆ

˝�˝
W.x; y/ d�.x/ d�.y/:

• The Wasserstein distance Wp (or a function of it) from a fixed measure �; for
simplicity, we consider rather the pth power of Wp:

� 7! Wp
p .�; �/:

More generally, we will also consider transport cost Tc.�; �/ defined as usual
as minf´ c.x; y/ d� W � 2 ˘.�; �/g; for general costs c.x; y/.

• The norm in a dual functional space: given a Banach space of functions on ˝,
we take

jj�jjX 0 WD sup
'2X ;jj'jj�1

ˆ
' d� D sup

'2X nf0g

´
' d�

jj'jj :
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250 7 Functionals over probabilities

• The integral of a function of the density

F .�/ WD
( ´

˝
f .%.x// dx if � D % � dx;

C1 otherwise:

• The sum of a function of the masses of the atoms

G .�/ WD
(P

i g.ai/ if � D P
i aiıxi ;

C1 if � is not purely atomic:

The scope of this chapter is to study some properties of these functionals. The
first questions that we analyze are classical variational issues (semi-continuity,
convexity, first variation, etc.). Then, we also introduce and analyze a new notion,
the notion of geodesic convexity. This is a natural concept in the analysis on metric
spaces: is a certain functional convex along geodesics of the metric space? In the
case of the Wasserstein spaces, and in particular of W2, this concept, introduced by
McCann in [229], is called displacement convexity. It turns out to be quite different
than usual convexity, but very useful in many cases.

7.1 Semi-continuity

Since the main goal is to use these functionals in variational models, in order to be
able to minimize them, we first give some semi-continuity criteria. We will consider
semi-continuity or continuity of these functionals with respect to weak convergence
(meaning as usual the duality with Cb functions). We start from the most simple
functionals.

7.1.1 Potential and interaction energies, transport costs, dual
norms

We start this review from the easiest case: the potential energy.

Proposition 7.1. If V 2 Cb.˝/, then V is continuous for the weak convergence
of probability measures. If V is l.s.c. and bounded from below, then V is semi-
continuous. Moreover, semi-continuity of V (respectively, continuity) is necessary
for the semi-continuity (continuity) of V .

Proof. The continuity of � 7! ´
V d� for V 2 Cb is straightforward by definition

of weak convergence. If V is l.s.c. and bounded from below, we know that there
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is a sequence of Lipschitz and bounded functions Vk increasingly converging
to V (see Box 1.5). Then, by monotone convergence, we infer that V .�/ D
limk

´
Vk d� D supk

´
Vk d�. This allows to see V as a supremum of continuous

functionals, and hence it is l.s.c.
The necessity part is straightforward if one considers sequences of points xk ! x

and the associated Dirac masses. Since ıxk * ıx, then continuity of V implies
V.xk/ ! V.x/ and semi-continuity implies lim infk V.xk/ � V.x/. ut

We pass now to the case of the interaction functional W .

Proposition 7.2. If W 2 Cb.˝/, then W is continuous for the weak convergence
of probability measures. If W is l.s.c. and bounded from below, then W is semi-
continuous.

This result is an easy consequence of the following lemma (which we prove for
subsets of Rd but could be adapted to general locally compact spaces).

Lemma 7.3. Let ˝ be a closed subset of Rd, �k; � 2 P.˝/ and �k * �, then

�k ˝ �k * �˝ �

as probabilities on ˝ �˝.

Proof. We want to prove that for any function � 2 Cb.˝ � ˝/, we have the
convergence

´
� d�k ˝ �k ! ´

� d� ˝ �. First consider the case �.x; y/ D

.x/.y/. In this case

ˆ

˝�˝
� d�k ˝�k D

ˆ

˝


 d�k �
ˆ

˝

 d�k !
ˆ

˝


 d� �
ˆ

˝

 d� D
ˆ

˝�˝
� d�˝�:

This proves that the desired convergence is true for all functions � 2 A .˝/, where
the class A .˝/ is given by

A .˝/ D
(
�.x; y/ D

NX
iD1


i.x/i.y/; N 2 N; 
i; i 2 Cb.˝/

)
:

The class A is an algebra of functions which contains the constants and separates
the points of ˝ � ˝. Hence, by Stone-Weierstrass’s theorem (see Box 2.3 in
Section 3.1), if˝�˝ is compact (i.e., if˝ is compact), it is dense in C.˝�˝/. It is
a general fact that weak-* convergence in a dual space may be tested on a dense set,
provided that the sequence we are considering is bounded. Here weak convergence
corresponds in the compact case to the weak-* convergence in the duality with
C.˝ � ˝/, and we are considering a sequence of probability measures, which is
bounded. This proves �k ˝ �k * �˝ � in the compact case.
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If ˝ is not compact, one can use Stone-Weierstrass’s theorem to prove that
the convergence holds against any compactly supported function. The conclusion
follows if we recall that a sequence of probability measures weakly converges (in
the duality with Cb/ if and only if it weakly-* converges in the duality with Cc. This
was proven in Lemma 5.8. ut

It is worthwhile to note that besides these two classes of functionals, one could
consider higher-order interaction energies defined through

� 7!
ˆ

˝

ˆ

˝

: : :

ˆ

˝

W.x1; x2; : : : ; xn/ d�.x1/ d�.x2/ : : : d�.xn/:

In particular the set of all these functional could be considered as “polynomials” on
the space P.˝/, and some analyses of the space of functions over measures are
based on this very class of functionals1.

We pass now to some different functionals.

Proposition 7.4. For any p < C1, the Wasserstein distance Wp.�; �/ to any fixed
measure � 2 P.˝/ is continuous w.r.t. weak convergence provided ˝ is compact.
If ˝ is not compact and � 2 Pp.˝/, then Wp.�; �/ is well defined and finite valued
over Pp.˝/ and it is only l.s.c.

More generally, for any continuous cost c W ˝ �˝ ! R, the functional Tc.�; �/
is continuous if ˝ is compact. Without compactness on ˝, if c is l.s.c. and bounded
from below, then Tc.�; �/ is l.s.c.

Proof. We start from the compact case. For Wasserstein distances, continuity is
straightforward since the convergence for the distance Wp exactly metrizes the
weak convergence and every distance is continuous w.r.t. itself (as a consequence of
triangle inequality). For general transport costs Tc, just apply Theorem 1.51.

For the non-compact case, we give a unified proof. Consider a sequence �k * �
and a sequence of optimal transport plans �k 2 ˘.�k; �/ for a cost c, l.s.c. and
bounded from below (which includes the case c.x; y/ D jx � yjp). Since �k is
tight, �k is also tight. First extract a subsequence such that limh Tc.�kh ; �/ D
lim infk Tc.�k; �/ and then extract once more so as to guarantee �kh * � for some
� . We know that image measures through continuous functions pass to the limit, so
that we obtain � 2 ˘.�; �/. Hence,

Tc.�; �/ �
ˆ

c.x; y/d� � lim inf
h

ˆ
c.x; y/d�kh D lim

h
Tc.�kh ; �/ D lim inf

k
Tc.�k; �/:

Here the first inequality comes from the fact that � is admissible but maybe not
optimal. The second from semi-continuity of the integral of c (Proposition 7.1). ut

Finally, here is another class of functionals with some interesting examples.

1This is an approach used by P. L. Lions in his lectures at Collège de France; see [211].
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Proposition 7.5. Let X be a Banach space of functions over ˝ such that X \
Cb.˝/ is dense in X . Then

� 7! jj�jjX 0 WD sup
'2X ;jj'jj�1

ˆ
' d� D sup

'2X nf0g

´
' d�

jj'jj

(a functional which is set to C1 if � … X 0) is l.s.c. for the weak convergence.

Proof. This fact is straightforward if one notes that we can write

jj�jjX 0 D sup
'2Cb.˝/\X ;jj'jj�1

ˆ
' d�;

which expresses jj�jjX 0 as a supremum of linear functionals, continuous for the
weak convergence. ut

It is interesting to see two examples.

Proposition 7.6. Suppose X D H1
0.˝/ (where ˝ � R

d is a smooth compact
domain, and we endow this space with the L2 norm of the gradient) and let, for
every � 2 H�1.˝/, '� be the solution of

(
��' D � in ˝;

' D 0 on @˝
:

Then jj�jj2
H�1 D ´

'� d� D ´ ´
G.x; y/ d�.x/ d�.y/, where G.x; �/ is the Green

function of the Dirichlet Laplacian, defined as the solution of

(
��' D ıx in ˝;

' D 0 on @˝
:

In particular, if ˝ D .�1; 1/ � R, then

G.x; y/ D 1

2
..1C x/ ^ .1C y//..1 � x/ ^ .1 � y//:

Suppose, instead, X D H1.˝/ (endowed with the full H1 norm) and let, for
every � 2 .H1.˝//0 D X 0, '� be the solution of

(
��' C ' D � in ˝;
@'

@n D 0 on @˝
:

Then jj�jj2X 0

D ´
'� d� D ´ ´

G.x; y/ d�.x/ d�.y/, where G.x; �/ is defined as the
solution of
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(
��' C ' D ıx in ˝;
@'

@n D 0 on @˝
:

In particular, if ˝ D .�1; 1/ � R, then

G.x; y/ D cosh..1C x/ ^ .1C y// cosh..1 � x/ ^ .1 � y//= sinh.2/:

Proof. We first prove that jj�jj2X 0

D ´
'� d� in the two cases.

First case: H1
0 . Note that, for every function  2 H1

0 , one has

ˆ
 d� D

ˆ
r � r'� � jj jjX jj'�jjX

and equality holds for  D '� (we use the homogeneous norm jj jjX WD
jjr jjL2). This shows that the supremum is realized by a multiple of '� and that´
'� d� D jj'�jj2X . As a consequence, we have

jj�jj2X 0

D
�´

'� d�

jj'�jjX
�2

D
ˆ
'� d�:

The case of H1 is similar, with the only exception of the first computation

ˆ
 d� D

ˆ
r � r'� C  '� � jj jjX jj'�jjX

and, again, equality holds for  D '�.
Finally, expressing

´
'� d� as a double integral

´´
G.x; y/ d�.x/ d�.y/ is only a

matter of expressing '�.x/ as
´

G.x; y/ d�.y/. This is possible by using the theory
of Green functions, and for the 1D case ˝ D .�1; 1/, it is enough to compute that´

G.x; y/ d�.y/ is a solution of the desired equation. ut
In this way we have seen that, thanks to Green functions, we have expressed

these dual norm functionals as interaction functionals.

7.1.2 Local functionals

Local functionals over measures are defined as those functionals F W M .˝/ !
R such that F.� C �/ D F.�/ C F.�/ whenever � and � are mutually singular
(i.e., there exists A;B � ˝ with A [ B D ˝, �.A/ D 0 and �.B/ D 0). This
obviously does not make much sense for probability measures, since if � and � are
probabilities, then � C � is not a probability. Yet, we will see in this section some
functionals that can be defined over probability measures but could be also seen as
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the restriction to probabilities of functionals defined on more general measures. All
our proofs could be easily generalized to finite positive measures; on the contrary,
for simplicity we will not consider at all the case of signed or vector measures. We
refer to [67] for the general theory of these functionals.

First, let us consider functionals of the form

� D % � � 7!
ˆ

f .%.x//d�.x/;

where � is a given positive measure over ˝ (for instance, the Lebesgue measure).
Let us first see which are the natural conditions on f so as to ensure lower semi-

continuity. Then, we will give a precise result.
As a first point, consider a sequence %n of densities, taking values a and b on

two sets An and Bn chosen in the following way: we fix a partition of ˝ into small
cubes of diameter "n ! 0 and then we select set An and Bn such that, for every cube
Q of this partition, we have �.An \ Q/ D .1 � t/�.Q/ and �.Bn \ Q/ D t�.Q/.
We can check that %n weakly converges to a uniform density % D .1 � t/a C tb.
Semi-continuity of the functional would imply

f ..1 � t/a C tb/ � .1 � t/f .a/C tf .b/;

i.e., convexity of f . Hence it is clear that one needs to require f to be convex.
Another requirement concerns the growth of f . For simplicity it is always

possible to assume f .0/ D 0 (up to adding a constant to f ). Suppose that f satisfies
f .t/ � Ct for all t � 0. Consider the functional defined through

F .�/ W
( ´

f .%.x// d�.x/ if � D % � �;
C1 otherwise:

Take a sequence �n of absolutely continuous probability measures weakly converg-
ing to a singular measure �: we get F .�n/ � C while F .�/ D C1, thus violating
the semi-continuity. This suggests that one should have C D C1, i.e., f superlinear.
The following theorem gives a general result which also includes compensation for
non-superlinearity:

Proposition 7.7. Let f W RC ! R be a convex l.s.c. function, and set L WD
limt!1 f .t/=t D supt>0 f .t/=t 2 R[ fC1g. Let � be a fixed finite positive measure
on ˝. For every measure �, write � D % � � C �s, where % � � is the absolutely
continuous part of � and �s be the singular one (w.r.t. �). Then, the functional
defined through

F .�/ D
ˆ

˝

f .%.x// d�.x/C L�s.˝/

(note that if L D C1, then F.�/ D C1 whenever � has a singular part) is l.s.c.
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Proof. We will try to use the equality

f .t/ D sup
a2R

at � f 	.a/:

This equality is a consequence of f 		 D f , which is itself due to the fact f is convex
and lower semi-continuous. Moreover, it is easy to see that for a > L, we have
f 	.a/ D C1: indeed, f 	.a/ D supt at � f .t/ � limt!C1 t.a � f .t/=t/. Hence, we
can write

f .t/ D sup
a�L

at � f 	.a/ D sup
a<L

at � f 	.a/

(the last equality is justified by the fact that f 	 is continuous on the set where it is
finite).

Let us consider the following functional:

QF .�/ WD sup
a2Cb.˝/; sup a<L

ˆ
a.x/ d�.x/ �

ˆ
f 	.a.x// d�.x/:

QF is obviously l.s.c. since it is the supremum of a family of affine functionals,
continuous w.r.t. the weak convergence. We want to prove QF D F .

In order to do so, first note that, thanks to Lusin’s theorem (see Box 1.6 in
Section 1.1), applied here to the measure �C�, it is not difficult to replace bounded
and continuous functions with measurable bounded functions. By abuse of notation,
we denote measurable bounded functions by L1.˝/ (even if we do not mean
functions which are essentially bounded w.r.t. a given measure, but really bounded)
and we get

QF .�/ WD sup
a2L1.˝/; sup a<L

ˆ
a.x/ d�.x/ �

ˆ
f 	.a.x// d�.x/:

Then take a set A such that �s.˝ n A/ D �.A/ D 0: this allows to write

QF .�/ WD sup
a2L1.˝/; sup a<L

ˆ

˝nA

�
a.x/%.x/ � f 	.a.x//

�
d�.x/C

ˆ

A
a.x/ d�s.x/:

The values of a.x/ may be chosen independently on A and ˝ n A and we can check
that

sup
a2L1.˝/; sup a<L

ˆ

˝nA

�
a.x/%.x/ � f 	.a.x//

�
d�.x/ D

ˆ
f .%.x// d�.x/;

sup
a2L1.˝/; sup a<L

ˆ

A
a.x/ d�s.x/ D L�s.A/ D L�s.˝/;

which allows to conclude QF D F . ut
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Remark 7.8. The assumption that � is a finite measure is necessary to avoid
integrability issues for the term

´
f 	.a.x// d�.x/. A typical case where this term

could give troubles is the entropy f .t/ D t log t, where f 	.s/ D es�1. Suppose that �
is the Lebesgue measure on the whole Rd; it is easy to see that, for any L1 function
a, the integral

´
Rd ea.x/�1 dx does not converge, and this provides QF .�/ D �1 for

every �. However, if � is � -finite (which is the case of the Lebesgue measure on
R

d) and f � 0, it is possible to prove the semi-continuity by approximating � from
below with finite measures2.

Remark 7.9. The reader could be shocked by the fact that in Proposition 7.7 we
did not require lower bounds on f . In particular, the same result is true for f .t/ D
t and f .t/ D �t, which implies continuity of the mass with respect to the weak
convergence of measures! Indeed, the weak convergence that we are using is the
one in duality with Cb, and it is perfectly normal that the mass (i.e., the integral
against the function 1) is continuous in this convergence. If we used, instead, the
weak-� convergence in duality with Cc on a non-compact space, the situation would
be different. In order to perform the same proof, one would need at least L > 0

(otherwise, the functions a 2 Cc do not satisfy a > L), or L D 0 and f 	.0/ < C1).

If we come back to the interpretation of F , it is not difficult to check that F
“favors” dispersed measure: first it is only finite for absolutely continuous measures;
second, due to the Jensen inequality, the value of F is minimal for the constant
density.

If we look for functionals having an opposite behavior and favoring the concen-
trated part of the measure, there are at least two different choices. We can look at
an interaction functional such as � 7! ´ ´ jx � yj2d�.x/d�.y/ (where the square of
the distance could be replaced by any increasing function of it). This is a global and
spatially dependent functional and has a different flavor than F . Indeed, we can find
in the same class of local functionals some functionals which favor concentration,
by looking in particular at the atomic part of �. It is the case of the functional

G .�/ WD
(P

i g.ai/ if � D P
i aiıxi ; xi ¤ xj for i ¤ j;

C1 if � is not purely atomic:

As before, let us first understand which are the basic properties of g so as to
guarantee semi-continuity.

We also assume g.0/ D 0 (which is by the way necessary if we want to avoid
ambiguities due to zero-mass atoms). Suppose that g satisfies g.t/ � Ct for all t > 0
and take, similar to what we did before, a sequence �n * � where �n is purely
atomic but � is not (take, for instance, the sequence in Proposition 4.38). Then we

2For the case of the entropy, the lower semi-continuity on the whole Rd is false, but it is true under
stronger convergence assumptions; see Ex (45). This is the usual strategy to study on the whole
space the variational problems that we will present in bounded domains in Section 8.3 for the
Fokker-Planck equation.
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have G .�n/ � C but G .�/ D C1. This is a contradiction with semi-continuity and
suggests that we should consider functions g such that limt!0 g.t/=t D C1.

Second consideration, take �n D aıxn Cbıyn C� (with � finitely atomic: we only
use � so as to come back to a total mass of 1). Suppose xn ! x and yn ! x and
x … spt.�/. Then �n * � D .a C b/ıx C �. In this case semi-continuity would
imply

g.a C b/ � g.a/C g.b/;

i.e., we need g to be subadditive.
It is useful to establish the following:

Lemma 7.10. Suppose that g.0/ D 0 and that g is subadditive. Suppose that �n DPN
iD1 ai;nıxi;n is a sequence of atomic probability measures with bounded number of

atoms. Then, up to a subsequence, we have �n * � where � is also atomic with at
most N atoms and G .�/ � lim infG .�n/.

Proof. Let us precise that we impose to the points xi;n to be distinct. If a measure
�n has less than N atoms, then we choose points xi;n at random to complete the list
of atoms and set ai;n D 0 for those extra indices.

Now extract a subsequence (not relabeled) such that for each i D 1; : : : ;N, one
has ai;n ! ai and xi;n ! xi. For this subsequence one has �n * � WD PN

iD1 aiıxi .
It is possible that the points xi are not distinct. If they are distinct, we have G .�/ DPn

iD1 g.ai/; otherwise we have (thanks to subadditivity) G .�/ � Pn
iD1 g.ai/.

Anyway we have

G .�/ �
nX

iD1
g.ai/ D lim

n

nX
iD1

g.ai;n/ D lim
n

G .�n/;

which proves the desired result (one can choose the subsequence so that it realizes
the liminf of the whole sequence). ut

It is now possible to prove the following:

Lemma 7.11. Suppose that g.0/ D 0, that g.t/ � 0, that g is subadditive and l.s.c.,
and that limt!0 g.t/=t D C1. Then G is l.s.c. on P.˝/.

Proof. Assume without loss of generality that all the �n are purely atomic. Fix a
number M > 0 and use limt!0 g.t/=t D C1: this implies that there exists "0
such that for all t < "0 we have g.t/ > Mt. Consider a sequence �n * �, assume
G .�n/ � C < C1, and decompose it into �n D �s

n C�b
n, where �b

n D PN
iD1 ainıxi;n

is the sum of the atoms of �n with mass at least "0. In particular, these atoms are no
more than N WD "�1

0 . The other part �s
n (the “small” part, �b

n being the “big” one) is
just defined as the remaining atoms (every�n is purely atomic since G .�n/ < C1).
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If we write

C � G .�n/ � G .�s
n/ D

X
i

g.ai;n/ � M
X

i

ai;n D M�s
n.˝/;

we get an estimate on the mass of the “small” part. Hence it is possible to get, up to
subsequences,

�b
n * �b and �s

n * �s; �s.˝/ � C

M
:

We can now apply Lemma 7.10 to prove that �b is purely atomic and that
G .�b/ � lim infn G .�b

n/ � lim infn G .�n/.
This proves that � must be purely atomic, since the possible atomless part of �

must be contained in �s, but �s.˝/ � C=M. Hence the mass of the nonatomic part
of � must be smaller than C=M for every M > 0, i.e., it must be zero.

We have now proven that � is purely atomic and we have an estimate of G .�b/,
where �b is a part of � depending on M. If we write .ai/i for the masses of � and
.aM

i /i for those of �b, we have

X
i

g.aM
i / � lim inf

n
G .�n/ WD `:

We want to prove
P

i g.ai/ � ` and, to this aim, it is enough to let M ! 1.
Actually, �s.˝/ D P

i.ai � aM
i / � C=M ! 0 implies that for each i we

have ai � aM
i ! 0 and thus aM

i ! ai. Using the semi-continuity of g, we have
g.ai/ � lim infM!1 g.aM

i /. If we fix an arbitrary number N, we get

NX
iD1

g.ai/ � lim inf
M!1

NX
iD1

g.aM
i / � `:

By passing to the supremum over N, we finally get

1X
iD1

g.ai/ � `;

which is the claim. ut
As a particular example for the functionals of type F , we can consider the Lp

norms to the power p, i.e.,

F .�/ D jj�jjpLp D
( ´

%.x/p dx if � D % � L d;

C1 otherwise:
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For the functionals of type G , we can instead consider the cardinality of the support,
obtained for g.t/ D 1 if t > 0 and g.0/ D 0:

G .�/ D #.spt.�//:

Box 7.1. Good to know! Characterization of local l.s.c. functionals on M d.˝/

It is also useful to note that functionals of the form F and G could be mixed, obtaining
local functionals accepting both absolutely continuous and atomic parts. There is a general
lower semi-continuity result that comes from the general theory developed in [67–69],
which also characterizes the semi-continuity. It also covers the case of vector-valued
measures and can be expressed as follows.

Theorem: Let f W Rd ! R [ fC1g be convex and l.s.c. and g W Rd ! R [ fC1g be
subadditive and l.s.c. For every vector v 2 R

d , define

f 1.v/ WD lim
t!C1

f .tv/
t

and g0.v/ WD lim
t!0

g.tv/
t
;

and suppose f 1 D g0. Given a finite positive measure �, decompose every vector measure
� 2 M d.˝/ as � D % ��C�c C�#, where �c C�# is the singular part of �w.r.t. �, which
is also decomposed into a purely atomic part �# D P

i aiıxi and the remainder, usually
refereed to as the Cantor part; % W ˝ ! R

d is a vector density and the ai D �.fxig/ 2 R
d

are also vectors; we also denote by w W ˝ ! Sd�1 the density of �c w.r.t. its own total
variation measure j�cj. Then the functional

� 7!
ˆ

f .%.x// d�.x/C
ˆ

f 1.w.x// dj�cj.x/CX
i

g.ai/

is local and lower semi-continuous for the weak convergence of measures.
Conversely, every local and lower semi-continuous functional on M d.˝/ can be written

in the form above, for suitable choices of f , g, and �.

7.2 Convexity, first variations, and subdifferentials

We pass in this section to another important notion concerning these functionals. If
lower semi-continuity is crucial to establish existence results for minimization prob-
lems, convexity properties (in particular, strict convexity) are crucial for uniqueness.
Also, with convexity comes the notion of subdifferential; thus we come to another
very natural question in calculus of variations: how to compute first variations of
these functionals?

We start from the very first question: Which among these functionals are convex?
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Convexity and strict convexity

• V is linear and hence convex but not strictly convex.
• W is quadratic, but not always convex. Take, for instance, W.x; y/ D jx � yj2

and compute

ˆ

˝

ˆ

˝

jx � yj2 d�.x/ d�.y/

D
ˆ

˝

ˆ

˝

jxj2 d�.x/ d�.y/C
ˆ

˝

ˆ

˝

jyj2 d�.x/ d�.y/� 2
ˆ

˝

ˆ

˝

x � y d�.x/ d�.y/

D 2

ˆ

˝

jxj2 d�.x/ � 2
�ˆ

˝

x d�.x/

�2
:

This shows that W has (in this case) a linear part to which we subtract the square
of another linear one; it is then concave rather than convex.

• All transport costs can be expressed by duality formula as a supremum of linear
functionals

Tc.�; �/ D sup
'.x/C .y/�c.x;y/

ˆ
' d�C

ˆ
 d�

and it is hence convex (but Wp is in general not). Strict convexity is discussed
later (it is true for c.x; y/ D jx � yjp, p > 1 and � � L d).

• The norm in a dual functional space is always convex since it is a norm, but
is never strictly convex because it is 1-homogeneous. Note that also the square
of a norm could be non-strictly convex (as it is the case for the L1 or the L1

norms).
• The functionals F that we considered above are actually convex due to the

assumptions on f . Strict convexity is true if f is strictly convex and L D C1
(for instance, if one takes f .t/ D p

1C t2 � 1, which is strictly convex, then F
is not strictly convex because it is finite and linear on singular measures).

• On the contrary, the functionals G that we considered above are typically not
convex since the typical examples of subadditive functions are concave.

First variations

We now pass to the computation of first variations of these functionals. Since many
of them are only considered in the convex set P.˝/, which is a proper (but convex)
subset of the Banach space M .˝/, we prefer to give an ad hoc, and pragmatic,
definition.
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Definition 7.12. Given a functional F W P.˝/ ! R [ fC1g, we say that % 2
P.˝/ is regular for F if F..1 � "/% C " Q%/ < C1 for every " 2 Œ0; 1� and every
Q% 2 P.˝/ \ L1

c .˝/ (absolutely continuous probabilities with L1 density and
compact support), i.e., if the convex envelop of f%g and L1

c .˝/\P.˝/ is contained
in fF < C1g.

If % is regular for F, we call ıF
ı%
.%/, if it exists, any measurable function such that

d

d"
F.%C "
/j"D0 D

ˆ
ıF

ı%
.%/d


for every perturbation 
 D Q% � % with Q% 2 L1
c .˝/ \ P.˝/.

Remark 7.13. From the fact that we necessarily have
´

d
 D 0, it is clear that ıF
ı%
.%/

is defined up to additive constants. On the other hand, up to this invariance, we have
uniqueness.

• From V .�C "
/ D V .�/C "
´

V d
, we infer ıV
ı%
.%/ D V .

• As W is quadratic, the computation is easy:

W .�C "
/ � W .�/ D

"

ˆ ˆ
W.x; y/ d�.x/ d
.y/C "

ˆ ˆ
W.x; y/ d�.y/ d
.x/

C "2
ˆ ˆ

W.x; y/ d
.x/ d
.y/:

This provides

ıW

ı%
.%/.y/ D

ˆ
W.x; y/ d�.x/C

ˆ
W.y; y0/ d�.y0/:

The formula becomes simpler when W is symmetric (since the two terms are
equal) and even simpler when W.x; y/ D h.x � y/ for an even function h, in
which case it takes the form of a convolution ıW

ı%
.%/ D 2h � �.

• For � 7! Tc.�; �/, the first variation is given by the Kantorovich potential ',
in the transport from � to �, provided it is unique; this will be discussed later.

• Analogously, the first variation of � 7! jj�jjX 0 is given by the function '
realizing the maximum in maxf´ ' d� W jj'jjX � 1g, provided it exists and is
unique.

• If f 2 C1 and f 0 satisfies suitable bounds (typically we need f and f 0 to have
polynomial growth), one can see that ıF

ı%
.%/ D f 0.%/. Indeed, we can take


 D � � �, write F .% C "
/ D ´
f .%.x/ C "�.x// d�.x/, and differentiate

under the integral sign (this requires some growth conditions): we get
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d

d"
F .%C "
/j"D0 D

ˆ
f 0.%.x//�.x/ d� D

ˆ
f 0.%/ d
:

The bounds on f 0 are only needed to allow derivation under the integral sign.
• Note that in general the functionals G are not differentiable along this kind

of perturbations and that in general no measure is regular for G . Indeed, from
g0.0/ D C1, we can infer that G.�C "
/ is usually differentiable only if 
 is
concentrated on the same atoms as �, even if for 
 finitely atomic one would
have G .�C "
/ < C1.

Remark 7.14. We stress the fact that the special role given to L1
c functions in the

definition of first variation is completely arbitrary. However, they represent a class
of densities which is at the same time dense enough in the class of probabilities and
regular enough to guarantee finiteness of most interesting functionals. In particular,
we can observe that for all the functionals above except G , a probability % is regular
if and only if the value of the functional is finite.

7.2.1 Dual norms

We start from the nontrivial issues above, i.e., the case of the transport costs and
of the dual norms. Both are characterized by the their definition as sup of linear
functionals. Since they are convex functionals, we start from a general fact in
convex analysis, which allows us to provide not only the first variation but also
the subdifferential.

Lemma 7.15. Let X be a Banach space and H W X ! R[ fC1g be convex and
l.s.c. Set H	.y/ D sup hx; yi � H.x/ for y 2 X 0, where hx; yi denotes the duality
between X and X 0. Then @H	.y0/ D argmaxxfhx; y0i � H.x/g.

Proof. We know x0 2 @H	.y0/ ” y0 2 @H.x0/ (see Box 1.12 in Section 1.6).
This is equivalent to the fact that 0 belongs to the subdifferential of x 7! H.x/ �
hx; y0i at x0, but this is also equivalent to the fact that x0 minimizes the same
expression. ut
Proposition 7.16. Suppose that X is a reflexive separable Banach space of
functions on ˝ such that X \ Cb.˝/ is dense in X . Let F.�/ WD jj�jjX 0 D
supf´ ' d� W jj'jjX � 1g. Suppose that, for a given �, the function '� 2 X
realizing the maximum in the definition of F.�/ exists and is unique. Then we have
ıF
ı%
.�/ D '�. Moreover, the subdifferential @F.�/ (where we consider F to be a

functional on the Banach space M .˝/, set to C1 outside P.˝/\X 0) is always
equal to the set (not necessarily a singleton) of maximizers.

Proof. The second part of the statement is an easy consequence of Lemma 7.15,
applied to the functional F defined as F.'/ D 0 for jj'jj � 1 and F.'/ D C1 for
jj'jj > 1.For the first part, take a perturbation 
 such that � C "
 belongs to X 0
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for small ". This implies that both � and 
 belong to X 0. From the definition of F,
we can write

ˆ
'� d
 � F.�C "
/ � F.�/

"
�
ˆ
'�C"
 d
:

In order to pass to the limit, we just need to show that the right-hand side tends to´
'� d
 as " ! 0. First, note that the functions '�C"
 belong to the unit ball of

a reflexive separable Banach space. This means that, up to subsequences, we have
'�C"
 * ', for a function ' with jj'jj � 1. We just need to prove ' D '�. From
the uniqueness of the optimizer '�, we just need to show that ' is also an optimizer
for �, i.e.,

´
' d� D F.�/.

To do this, note that �C "
 converges strongly in X 0 to �, and hence we have

lim
"!0

F.�C "
/ D lim
"!0

ˆ
'�C"
d.�C "
/ D

ˆ
' d� � F.�/ D lim

"!0
F.�C "
/;

where the last equality comes from the continuity of F for strong convergence in
X 0. Hence the inequality

´
' d� � F.�/ is indeed an equality and ' D '�. ut

7.2.2 Transport costs

We consider here the case of Wasserstein distances to a fixed measure (in particular
functionals of the form � 7! Wp

p .�; �/) and, more generally, transport costs
Tc.�; �/ WD minf´ c.x; y/ d� W � 2 ˘.�; �/g; i.e., minimal transport costs
between measures and a fixed one. Note that for continuity issues it was useful to
take advantage of the distance structure of Wp, but for convexity and first variation,
this will not be the good approach.

For the sake of simplicity, the following result will only be given in the case of a
compact domain ˝ � R

d.

Proposition 7.17. Let ˝ � R
d be compact and c W ˝ � ˝ ! R be continuous.

Then the functional � 7! Tc.�; �/ is convex, and its subdifferential at �0 coincides
with the set of Kantorovich potentials f' 2 C0.˝/ W ´

' d�0 C ´
'c d� D

Tc.�; �/g. Moreover, if there is a unique c-concave Kantorovich potential from �0
to � up to additive constants, i.e., if the c-concave functions in the above set are all
given by the same function '� plus arbitrary additive constants, then we also have
ıTc.�;�/
ı%

.�/ D '�.

Proof. Let us come back to the expression

Tc.�; �/ D sup

�ˆ
' d�C

ˆ
'c d� W ' 2 C0.˝/

�
;
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which allows to see Tc.�; �/ as a supremum of affine functionals of �. Here � is
a fixed probability. Note that the very same supremum gives C1 if we take � 2
M .˝/ n P.˝/, i.e.,

sup

�ˆ
' d�C

ˆ
'c d� W ' 2 C0.˝/

�
D
(
Tc.�; �/ if � 2 P.˝/;

C1 if � 2 M .˝/ n P.˝/:

Indeed, if � is not a positive measure, then there exists a function ' 2 C0.˝/, with
' � 0 and

´
' d� > 0. Since 'c.y/ D infy c.x; y/�'.x/ � inf c (suppose c bounded

from below), then
´
' d�C ´

'c d� � ´
' d�C inf c. By replacing ' with �' and

letting � ! C1, we see that the supremum is C1.
On the other hand, if � � 0 but �.˝/ ¤ 1 D �.˝/, we also find C1 in the sup.

Indeed, we can always add a constant � to any ', and .' C �/c D 'c � �. Taking,
for instance, ' D 0, we get

sup

�ˆ
' d�C

ˆ
'c d� W ' 2 C0.˝/

�
�
ˆ
0c.y/ d�.y/C �

�
�.˝/ � �.˝/	;

which can be made as large as we want if �.˝/ � �.˝/ ¤ 0 (here 0c is a bounded
function whose precise expression depends on c).

In order to identify the subdifferential, we apply Lemma 7.15, with X D C0.˝/

(endowed with the sup norm) and H W X ! R given by H.'/ WD � ´
'c d�: We

just need to see that this functional is convex and semi-continuous (indeed, it is
continuous). Note that if we take '0; '1 2 C0.˝/, we have

'c
1.y/ D inf

x
c.x; y/�'1.x/ � inf

x
c.x; y/�'0.x/Cjj'1�'0jj1 D 'c

0.y/Cjj'1�'0jj1:

By interchanging the roles of '0 and '1 and using the arbitrariness of y, we get
jj'c

1 � 'c
0jj1 � jj'1 � '0jj1, which implies

ˇ̌´
'c
1 d� � ´

'c
0 d�

ˇ̌ � jj'1 � '0jj1
and hence the continuity of the functional. As far as convexity is concerned, set
't D .1 � t/'0 C t'1; we have

'c
t .y/ D inf

x
c.x; y/ � .1 � t/'0.x/ � t'1.x/ � .1 � t/'c

0.y/C t'c
1.y/:

This implies the concavity
´
'c

t d� � .1 � t/
´
'c
0 d� C t

´
'c
1 d� and hence H is

convex.
In order to get the first variation in the situation described in the statement

(uniqueness of the c-concave Kantorovich potential), we take �" D � C "
 with

 D Q�� � and we estimate the ratio .Tc.�"; �/� Tc.�; �//=". First, by using that
.'�; '

c
�/ is optimal in the dual formulation for �, but not necessarily for �", we have

Tc.�"; �/ � Tc.�; �/

"
�

´
'� d�" C ´

'c
� d� � ´

'� d� � ´
'c
� d�

"
D

ˆ
'� d
;

which gives the lower bound lim inf"!0.Tc.�"; �/ � Tc.�; �//=" � ´
'� d
.
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To look at the lim sup, first fix a sequence of values of "k realizing the limsup,
i.e., limk.Tc.�"k ; �/ � Tc.�; �//="k D lim sup"!0.Tc.�"; �/ � Tc.�; �//=". Then
we can estimate the same ratio using the optimality of a pair .'k; '

c
k/, Kantorovich

potentials in the transport from �"k to � (we can assume them to be c-concave
functions and such that 'k.x0/ D 0 for a fixed point x0 2 ˝). Now we may write

Tc.�"k ; �/ � Tc.�; �/

"k
�

´
'k d�"k C ´

'c
k d� � ´

'k d� � ´
'c

k d�

"k
D

ˆ
'k d
:

(7.1)

As in Proposition 7.16, we need to pass to the limit in k. Theorem 1.52 shows that
we have uniform convergence (up to extracting another subsequence) .'k; '

c
k/ !

.'; 'c/ and that .'; 'c/ must be optimal in the duality formula for the transport
between � and �. This implies ' D '� by uniqueness. Finally, passing to the limit
in (7.1), we get also lim sup"!0.Tc.�"; �/ � Tc.�; �//=" � ´

'�d
: ut
As Proposition 7.17 requires uniqueness of the Kantorovich potential in order to

efficiently compute the first variation, we also give here a sufficient condition

Proposition 7.18. If˝ is the closure of a bounded connected open set, c is C1, and
at least one of the measures � or � is supported on the whole˝, then the c-concave
Kantorovich potential in the transport from� to � is unique up to additive constants.

Proof. Suppose that spt.�/ D ˝. First note that c 2 C1 implies that c is Lipschitz
on˝ �˝, and hence all Kantorovich potentials, which are c-concave, are Lipschitz
as well and are differentiable a.e. Consider two different Kantorovich potentials
'0 and '1. We use Proposition 1.15, which guarantees that their gradients must
agree a.e. on ˝. Since ˝ is the closure of a connected open set, this means that the
difference '0 � '1 is constant and provides the desired result. If the measure with
full support is �, just apply the same procedure to the transport from � to � and get
the uniqueness of the potential  . Then, from ' D  c (here we use c-concavity),
one also recovers the uniqueness of '. ut
Note that in order to apply the above result to Proposition 7.17, the uniqueness
�-a.e. would not be enough (since one integrates it also against other measures �"),
and, anyway, without connectedness assumptions on spt.�/, it would be impossible
to deduce the uniqueness of '.

We finish this section with a remark on strict convexity. We come back for
simplicity to the case c.x; y/ D jx � yjp, i.e., to the functional Wp

p .�; �/, but the
reader will see that everything works the same under the twist condition (or if
c.x; y/ D h.x � y/ with h strictly convex). Also, the assumption � � L d is not
sharp, at least for p D 2 (see Section 1.3.1).

Proposition 7.19. If � � L d and p > 1, the functional Wp
p .�; �/ is strictly convex.

Proof. Suppose by contradiction that �0 ¤ �1 and t 2�0; 1Œ are such that
Wp

p .�t; �/ D .1 � t/Wp
p .�0; �/ C tWp

p .�1; �/, where �t D .1 � t/�0 C t�1. Let
�0 be the optimal transport plan in the transport from � to �0 (pay attention to the
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direction: it is a transport map if we see it backward: from � to �0, since � � L d);
we write �0 D .T0; id/#�. Analogously, take �1 D .T1; id/#� optimal from � to �1.
Set �t WD .1 � t/�0 C t�1 2 ˘.�t; �/. We have

.1 � t/Wp
p .�0; �/C tWp

p .�1; �/ D Wp
p .�t; �/ �

ˆ
jx � yjp d�t

D .1 � t/Wp
p .�0; �/C tWp

p .�1; �/;

which implies that �t is actually optimal in the transport from � to �t. Yet �t is not
induced from a transport map, unless T0 D T1. This is a contradiction with �0 ¤ �1
and proves strict convexity. ut

7.2.3 Optimality conditions

We finish this part of the chapter devoted to first variations with an important
computation, which leads to optimality conditions in the space P.˝/. We do not
claim this result to be sharp, but it is enough in most situations, and the reader can
easily see how to adapt it to other cases.

Proposition 7.20. Suppose that %0 minimizes a functional F W P.˝/ ! R [
fC1g, that %0 is regular for F (see Definition 7.12), and that there exists ıF

ı%
.%0/.

Call this function g and set ` D ess inf g, the essential infimum of g (essential w.r.t.
the Lebesgue measure).

First case: Suppose that g 2 C.˝/. Then spt.%0/ � argmin g D fg D `g, and we
have everywhere the inequality g � `, with equality g D ` on spt.%0/.

Second case: Suppose that g is only measurable, but %0 � L d. Then we have a.e.
the inequality g � `, with g D ` a.e. on f%0 > 0g.

Proof. Consider a competitor Q% 2 L1
c .˝/. Take %" WD .1 � "/% C " Q% D % C "
,

with 
 D Q% � %. The measure %" is an admissible competitor in the minimization
problem as soon as " 2 Œ0; 1�. We deduce that

d

d"
.F.%"//j"D0 � 0:

This means
ˆ

g d
 � 0; i.e.,
ˆ

g d Q% �
ˆ

g d%0:

We now use the arbitrariness of Q%. Take any `0 > `. By definition of essential
infimum, the set fg < `0g has positive Lebesgue measure, and we can choose an
L1 density Q% concentrated on it. We get `0 >

´
g d%0: Letting `0 ! `, we get

` � ´
g d%0.
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In the first case, the essential infimum coincides with the infimum, and hence
we have g � ` everywhere. But integrating this inequality against %0, we have the
opposite inequality, which implies g D ` %0-a.e. This equality extends to the support
of %0 since g is continuous.

In the second case, we have g � ` a.e. Since %0 is supposed to be absolutely
continuous, the same is true %0-a.e., and hence we have g D ` %0-a.e., which means
a.e. on f%0 > 0g. ut

We will see, for instance, in Sections 7.4.1 and 8.3 some applications of this
criterion.

We also stress that, when F is convex, alternative arguments using subdifferen-
tials could be used, but the above strategy is the only possible one when we do not
have convexity. We can see how it works in some examples.

Example 7.21. Consider

min

�
F.%/ WD W2

2 .%; �/C
ˆ

V.x/ d%.x/ W % 2 P.˝/

�
;

where ˝ � R
d is compact and V continuous. In such a case it is clear that a

minimizer %0 exists and that it is regular for F since F is finite on the whole space
P.˝/. If the Kantorovich potential ' (for the cost c.x; y/ D jx�yj2) in the transport
from %0 to � is unique up to additive constants, then the first variation of F at %0 is
given by ' C V , and we can apply Proposition 7.20 to obtain the existence of a
constant C such that

' C V � C on ˝; ' C V D C on spt.%0/:

This is the case if spt.�/ D ˝, for instance.
Another way to obtain the optimality conditions is the following: the second

term of F is a continuous and linear functional on M .˝/, and the first is a convex
functional defined on M .˝/, with subdifferential given by the set of Kantorovich
potentials. Hence, we can prove

@F.%0/ D fV C ' W ' Kantorovich potential from %0 to �g :
From standard optimality conditions in convex analysis, we obtain the existence of
a potential ' such that V C' D 0. In this case the result that we get is much stronger
with this convex procedure, since we get rid of the inequality case. Note, however,
that the function ' that we get is not necessarily c-concave: since we know ' D 'cc

on spt.%0/, this means that it has been modified out of spt.%0/ in order to guarantee
the equality.

Example 7.22. Consider

min

�
F.%/ WD W2

2 .%; �/C
ˆ

˝

1

p
%p.x/ dx W % 2 P.˝/; % � L d

�
;
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where ˝ � R
d is compact and p > 1. Again, a minimizer %0 2 Lp.˝/ exists and is

regular (in the sense of Definition 7.12), since F is finite on Lp.˝/ \ P.˝/ which
includes for sure all convex combinations of %0 and L1 functions. Computing the
first variation and using Proposition 7.20, we obtain the existence of a constant C
such that

' C %p�1 � C on ˝; ' C %p�1 D C on spt.%0/:

This, by the way, can be rewritten as %p�1 D .C � '/C.
On the other hand, even if the functional is still convex, it is not easy to compute

the subdifferential of F, viewed as a functional on M .˝/ (set to C1 outside
Lp probabilities). Indeed, the subdifferential of a sum is not always the sum of
the subdifferentials (see, for instance, [157] for convex analysis issues in infinite
dimension; however, this requires continuity of at least one of the two functionals,
while here both are finite on a small subset of M .˝/). Moreover, the first variation
of the second term, i.e., %p�1, does not belong in general to the space C.˝/, i.e., to
the space M .˝/ is in duality with. A way of circumventing this difficulty would be
to view F as a functional on Lp.˝/. Here, the second term becomes a continuous
convex functional. The first one must be rewritten as supf´ � d%C ´

�c d� W � 2
Lp0

.˝/g (with a proper definition of the c-transform in terms of essential infima
instead of infima). This would provide the optimality condition: there exists an Lp0

Kantorovich potential ' such that ' C %p�1 D 0. Again, ' D 'cc %0-a.e., and
' � 'cc elsewhere. This gives again

'cc C %p�1 � C on ˝; 'cc C %p�1 D C on spt.%0/:

7.3 Displacement convexity

In all the considerations of the previous section about convexity, we always
considered the standard convex interpolations Œ0; 1� 3 t 7! .1 � t/�0 C t�1. Yet,
another notion of convexity, more linked to the metric structure of the space Wp.˝/,
may be useful.

Let us start from this general definition.

Definition 7.23. In a geodesic metric space X, we define F W X ! R[ fC1g to be
geodesically convex if for every two points x0; x1 2 X there exists a constant-speed
geodesic ! connecting !.0/ D x0 to !.1/ D x1 such that Œ0; 1� 3 t 7! F.!.t// is
convex.

This obviously reduces to usual convexity in R
d or in any other normed vector space,

where segments are the unique geodesics (note that in any normed vector space
segments are geodesics but they may not be the unique ones, as it is the case in
L1 or L1 or any non-strictly convex space). By the way, in spaces where there is
not uniqueness of the geodesics, the definition we gave could be debated, since one
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could also choose to define as geodesically convex those functionals that satisfy the
geodesic inequality on every geodesic !. But the one we gave is the definition that
is usually chosen, as it satisfies some extra stability results that would not be true
with the more restrictive one requiring convexity for every geodesic.

The notion of geodesic convexity in the space Wp.˝/ has been introduced by
McCann in [229] and is particularly interesting since we know how to characterize
geodesics in such a space. This notion of convexity is usually referred to as
displacement convexity. Note that it could a priori depend on the exponent p.

7.3.1 Displacement convexity of V and W

We recall that the geodesics for the Wp distance are of the form �t D .�t/#� where
� is an optimal transport for c.x; y/ D jx � yjp and �t.x; y/ D .1 � t/x C ty.

Proposition 7.24. The functional V is displacement convex if and only if V is
convex. The functional W is displacement convex if W is convex.

Proof. First consider V and suppose that V is convex. Let us evaluate V .�t/:

V .�t/ D
ˆ

V d.�t/#� D
ˆ

V..1 � t/x C ty/ d�:

It is clear from this formula that t 7! V .�t/ is convex if V is convex.
On the other hand, the convexity of V is a necessary condition for V being convex

as one can easily check by considering geodesics of the form �t D ı.1�t/xCty since
V .�t/ D V..1 � t/x C ty/.

The proof for the convexity of W is similar: consider

W .�t/ D
ˆ

W.x; x0/ d.�t/#�.x/d.�t/#�.x
0/

D
ˆ

W..1 � t/x C ty; .1 � t/x0 C ty0/ d�.x; y/ d�.x0; y0/;

which easily gives the condition for the convexity. ut
Note that we did not state that convexity of W is a necessary condition for W ,

since it is not true in general. Consider, for instance, the following 1D case.

Proposition 7.25. Let ˝ D .a; b/, �C D f.x; y/ 2 ˝ � ˝; y � xg, and �� D
f.x; y/ 2 ˝ � ˝; y � xg. Then it is sufficient that W is convex when restricted to
�C and ��, in order to have displacement convexity of W .

Proof. Just consider the proof of Proposition 7.24 and check that all the segments
t 7! ..1 � t/x C ty; .1 � t/x0 C ty0/ for .x; y/; .x0; y0/ 2 spt.�/ are contained either
in �C or in ��. This is true thanks to the monotonicity properties of spt.�/ that we
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showed in Section 2.2. Actually, we showed that, for every strictly convex cost, the
(unique) optimal transport plan � satisfies

.x; y/; .x0; y0/ 2 spt.�/; x < x0 ) y � y0:

This means that if x < x0, then we have .x; x0/ 2 �C and .y; y0/ 2 �C and, by
convexity, ..1� t/x C ty; .1� t/x0 C ty0/ 2 �C. Analogously, for x > x0, we get that
the segment is contained in ��. If x D x0, it is enough to look at the transport plan
from the point of view of y, thus getting the implication y < y0 ) x � x0 and
concluding in the same way. The only case that stays apart is x D x0 and y D y0, but
in this case the segment reduces to a point.

This proves convexity of W along the geodesics in Wp for p > 1. It also works
for W1 if we choose the same � as an optimal transport plan (in this case, it will
not be the unique one, but this will be enough to build a geodesic where there is
convexity). ut

An interesting consequence of this criterion is the fact that the squared dual norm
� 7! jj�jj2X 0

for X D H1.Œ�1; 1�/ is actually displacement convex, as a corollary
of the characterization of Proposition 7.6 (but it does not work for X D H1

0). This
has been pointed out and used in [62] and [110].

This is an example of displacement convex functional which involves, somehow,
derivatives. We could say that, as an H�1 norm, it is a functional of order �1.
Displacement convex functionals of order different than 0 are not so common to
find. For the first-order case, the only known example is contained in [115] and it is,
again, only available in 1D. Nothing is known in the multidimensional case.

7.3.2 Displacement convexity of F

The most interesting displacement convexity result is the one for functionals
depending on the density.

To consider these functionals, we need some technical facts.
The starting point is the computation of the density of an image measure, via

standard change-of-variable techniques, as we saw in the Memo Box 1.14.
Then, we underline an interesting computation.

Lemma 7.26. Let A be a d � d matrix such that its eigenvalues �i are all real and
larger than �1 (for instance, this is the case when A is symmetric and I C A � 0).
Then Œ0; 1� 3 t 7! g.t/ WD det.I C tA/1=d is concave.

Proof. We can write A in a suitable basis so that it is triangular, and we get

g.t/d D
dY

iD1
.1C t�i/:
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Differentiating,

dg.t/d�1g0.t/ D
dX

jD1
�j

dY
iD1; i¤j

.1C t�i/ D g.t/d
dX

jD1

�j

1C t�j
;

i.e., dg0.t/ D g.t/
Pd

jD1
�j

1Ct�j
. If we differentiate once more, we get

dg00.t/ D g0.t/
dX

jD1

�j

1C t�j
� g.t/

dX
jD1

�2j

.1C t�j/2
:

Here we use the quadratic-arithmetic mean inequality which gives

dX
jD1

�2j

.1C t�j/2
� 1

d

0
@ dX

jD1

�j

1C t�j

1
A
2

D d

�
g0.t/
g.t/

�2

and hence

dg00.t/ � d
g0.t/2

g.t/
� d

g0.t/2

g.t/
D 0;

which proves the concavity of g. ut
Remark 7.27. We observe that in dimension d D 1, the above lemma is straightfor-
ward and that g is actually affine.

We can now state the main theorem, which is the main result of [229].

Theorem 7.28. Suppose that f is convex and superlinear, f .0/ D 0, and that s 7!
s�df .sd/ is convex and decreasing. Suppose that ˝ is convex and take 1 < p < 1.
Then F is geodesically convex in Wp.

Proof. Let us consider two measures �0, �1 with F .�0/;F .�1/ < C1. They
are absolutely continuous and hence there is a unique constant-speed geodesic �t

between them (see Theorem 5.27 and Proposition 5.32), which has the form �t D
.Tt/#�0, where Tt D idC t.T� id/. Note that Tt is injective because of Lemma 4.23.

We first look at the case p D 2, which is easier. In this case we have Tt.x/ D
x�tr'.x/;where ' is such that x2

2
�' is convex. This implies, by Theorem 3.16, that

r' is countably Lipschitz, and so is Tt. Hence they are approximately differentiable
a.e.3 The Hessian D2' (or, equivalently, the approximate gradient of r�) is
symmetric and D2' � I. Let us define A.x/ D �D2'.x/. From the formula for

3Actually, it is also known that D2' exists a.e.: indeed, convex functions are twice differentiable
a.e. (see, for instance, [160], the original result being stated in [6]).
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the density of the image measure, we know that �t is absolutely continuous and we
can write its density %t as %t.y/ D %.T�1

t .y//= det.I C tA.T�1
t .y/// and hence

F .�t/ D
ˆ

f

�
%.T�1

t .y///

det.I C tA.T�1
t .y///

�
dy D

ˆ
f

�
%.x/

det.I C tA.x//

�
det.ICtA.x// dx;

where we used the change of variable x D T�1
t .y/, which gives y D Tt.x/ and

dy D det DTt.x/ dx D det.I C tA.x// dx.
From Lemma 7.26 we know that det.I C tA.x// D g.t; x/d for a function g W

Œ0; 1��˝ which is concave in t. It is a general fact that the composition of a convex
and decreasing function with a concave one gives a convex function. This implies
that

t 7! f

�
%.x/

g.t; x/d

�
g.t; x/d

is convex (if %.x/ ¤ 0, this uses the assumption on f and the fact that t 7!
g.t; x/=%.x/

1
d is concave; if %.x/ D 0, then this function is simply zero). Finally,

we proved convexity of t 7! F .�t/.
We now have to adapt to the case p ¤ 2. In this case, setting h.z/ D 1

p jzjp, we

have Tt.x/ D x � trh	.r'.x//. Note that both h and h	 are C2.Rd n f0g/. First, we
note that we can decompose, up to negligible sets,˝ into two measurable parts: the
set ˝ 0 where r' D 0 and the set ˝ 00 where r' ¤ 0. The analysis that we do is
very much similar to what we did in Section 3.3.2. T is the identity on ˝ 0, and also
Tt is the identity, and so is Tt. Since Tt is injective, the density is preserved on this
set, and we can apply Lemma 7.26 with A D 0. The set ˝ 00, on the contrary, can
be decomposed into a countable union of sets ˝ij where x 2 Bi, T.x/ 2 Bj, .Bi/i is
a countable family of balls generating the topology of Rd, and we only take pairs
such that Bi \ Bj D ;. On this set ' D  c also coincides with 'ij defined as the
restriction to Bi of the function x 7! infy2Bj h.x � y/ �  .y/, which is �-concave
for � D supfjjD2h.z/jj W z 2 Bj � Big. This proves that 'ij has the same regularity
of concave functions and that r' and rh	.r'/ are countably Lipschitz on ˝ 00. In
particular, D2' exists a.e.

If we fix a point x0 2 ˝ 00 where r'.x0/ and D2'.x0/ exist, then we can write
'.x/ � h.x�T.x0//� .T.x0//, an inequality which is true for every x, with equality
at x D x0. In particular we get D2'.x0/ � D2h.x0 � T.x0// D D2h.rh	.r'.x0///.
From general properties of Legendre transforms, we have

D2h.rh	.z// D ŒD2h	.z/��1

(just differentiate the relation rh.rh	.z// D z). Hence, we can apply Lemma 7.26
with A.x/ D �D2h	.r'.x//D2'.x/, which is diagonalizable and has eigenvalues
larger than �1 (see Box 7.2 below). ut
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Box 7.2. Memo: Diagonalizing products of symmetric matrices

It is well known that symmetric matrices can be diagonalized on R. A trickier result is
the following:

Theorem. If A;B are symmetric d � d matrices and A is positive definite, then AB is
diagonalizable.

We do not prove it, but we just prove the following weaker result.
Proposition. If A;B are symmetric d � d matrices and A is positive definite, then AB has

real eigenvalues.
Proof. Suppose that � 2 C is an eigenvalue of AB, i.e., ABv D �v for a vector v 2

C
n n f0g. Take the Hermitian product with A�1v, i.e., NvtBv D �NvtA�1v, where the symbol

t denotes transposition in the sense of matrices. Note that, by diagonalizing independently
B and A�1, both the terms NvtBv and NvtA�1v are real, and NvtA�1v > 0. Hence, � 2 R.

Another important point that we need is the following.
Proposition. If B � A�1 (in the sense of symmetric matrices, i.e., vt.A�1 � B/v � 0 for

all v), then all the eigenvalues �i of AB satisfy �i � 1.
Proof. Again, write ABv D �v and deduce NvtBv D �NvtA�1v. This implies NvtA�1v �

NvtBv D �NvtA�1v, which implies � � 1.

Let us see some easy example of convex functions satisfying the assumptions of
Theorem 7.28. For instance,

• for any q > 1, the function f .t/ D tq satisfies these assumptions, since
sdf .s�d/ D s�d.q�1/ is convex and decreasing;

• the entropy function f .t/ D t log t also satisfies the assumptions since
sdf .s�d/ D �d log s is convex and decreasing;

• if 1 � 1
d � m < 1, the function f .t/ D �tm is convex, and if we compute

sdf .s�d/ D �tm.1�d/, we get a convex and decreasing function since m.1 �
d/ < 1; yet, these functions lack the superlinearity assumption, but this does
not prevent us from applying the same proof of Theorem 7.28 to the case where
�0 and �1 are supposed to be a priori absolutely continuous.

Let us see some consequences of Theorem 7.28 in the case f .t/ D tq; q > 1.

Proposition 7.29. Consider an exponent 1 < q � C1 and two probability
measures �0; �1 2 Lq.˝/ (in the sense that they are absolutely continuous and
their densities are Lq). Take the (unique) geodesic �t connecting them in Wp (for
p > 1). Then the measures �t are also Lq and jj�tjjLq � maxfjj�0jjLq ; jj�1jjLqg:
When q < C1, we also have jj�tjjqLq � .1 � t/jj�0jjqLq C tjj�1jjqLq .

Proof. The case q < C1 is an easy consequence of Theorem 7.28. Actually, if we
use f .t/ D tq, we have F .�/ D jj�jjqLq . Hence

jj�tjjqLq � .1 � t/jj�0jjqLq C tjj�1jjqLq � .maxfjj�0jjLq ; jj�1jjLqg/q :

This allows to get the desired Lq estimate.
The case q D C1 is just obtained by taking the qth root and passing to the limit

q ! C1. ut
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We finish this section observing that in 1D we can say something more.

Proposition 7.30. Suppose d D 1, ˝ D Œa; b� � R and take q > 0. Then the
functional F defined through F.%/ D ´ b

a %.x/
�qdx for 	 � L 1 is displacement

convex in Wp.˝/. In particular, if %0; %1 � c > 0, then we also have %t.x/ � c for
every t 2 Œ0; 1�, where %t is the geodesic connecting %0 to %1.

Proof. Notice the function f .s/ D s�q is convex for s > 0 and that s 7! sdf .s�d/ D
sqC1 is convex but increasing. Yet, if we reread the proof of Theorem 7.28, we
observe that we only needed it to be decreasing to ensure that the composition with
g was convex, but in this case g is affine, and convexity of s 7! sdf .s�d/ is enough.
Moreover, if we assume F.%/ < C1, then we have % > 0 a.e., which shows that it is
not necessary to assume f .0/ D 0. This proves the desired displacement convexity.
To get the lower bound on geodesics, we just need to act as in Proposition 7.29,
letting q ! 1. ut

7.3.3 Convexity on generalized geodesics

It is quite disappointing to note that the functional � 7! W2
2 .�; �/ is not, in general,

displacement convex. This seems contrary to the intuition because usually squared
distances are nice convex functions. However, we can see that this fails from the
following easy example. Take � D 1

2
ı.1;0/ C 1

2
ı.�1;0/ and �t D 1

2
ı.t;a/ C 1

2
ı.�t;�a/.

The curve �t, if a > 1 is the geodesic between ��1 and �1 (because the optimal
transport between these measures sends .a;�1/ to .a; 1/ and .�a; 1/ to .�a;�1/).
Yet, if we compute W2

2 .�t; �/, we have

W2
2 .�t; �/ D a2 C .1 � t/2 ^ .1C t/2:

But this function is not convex! (See Figure 7.1.)

•ν•ν

•m1

•m1

•m−1

•m−1

•mt

•
mt

−1 1
t

a2+min{(t−1)2,(t+1)2}

Fig. 7.1 The distance W2
2 .�t; �/
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The lack of geodesic convexity of this easy functional4 is a problem for many
issues (in particular for some metric approaches to gradient flows through the EVI
condition; see Section 8.4.1) and an alternate notion has been proposed, namely, that
of convexity along generalized geodesics.

Definition 7.31. If we fix an absolutely continuous probability % 2 P.˝/, for
every pair �0; �1 2 P.˝/, we call generalized geodesic between �0 and �1 with
base % in W2.˝/ the curve �t D ..1 � t/T0 C tT1/#%, where T0 is the optimal
transport map (for the cost jx � yj2) from % to �0 and T1 from % to �1.

It is clear that t 7! W2
2 .�t; %/ satisfies

W2
2 .�t; %/ �

ˆ
j..1 � t/T0.x/C tT1.x// � xj2d%.x/

� .1 � t/
ˆ

jT0.x/ � xj2d%.x/C t
ˆ

jT1.x/ � xj2d%.x/

D .1 � t/W2
2 .�0; %/C tW2

2 .�1; %/I

and hence we have the desired convexity along this curve. Moreover, similar
considerations to those we developed in this section show that all the functionals that
we proved to be geodesically convex are also convex along generalized geodesics.
We do not develop these proofs here, and we refer to [15] for more details: for the
case of the functional F , Lemma 7.26 has to be changed into “t 7! det..1 � t/A C
tB/1=d is concave, whenever A and B are symmetric and positive-definite” (the proof
is similar).

7.4 Discussion

7.4.1 A case study: min F.%/ C W2
2
.%; �/

Among variational problems involving optimal transportation and Wasserstein
distances, a very recurrent one is the following:

min
%2P2.˝/

1

2
W2
2 .%; �/C �F.%/ ; (7.2)

where F is a given functional on probability measures, � > 0 a parameter which can
possibly be small, and � is a given probability in P2.˝/ (the space of probability
measures on ˝ with finite second moment

´ jxj2d%.x/ < C1). This very instance

4By the way, this functional can even be proven to be somehow geodesically concave, as it is shown
in [15], Theorem 7.3.2.
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of the problem is exactly the one we face in the time discretization of the gradient
flow of F in W2.˝/ (see Section 8.2).

But the same problem also appears, for fixed � > 0, in other frameworks as well.
For instance, in image processing, if F is a smoothing functional, this is a model to
find a better (smoother) image % which is not so far from the original density � (and
the choice of the distance W2 is justified by robustness arguments); see [92, 208]. In
urban planning (see [93, 270]), � can represent the distribution of some resources
and % that of population, who wants to be close to � but also to guarantee enough
space to each individual. In this case the functional F favors diffuse measures (for
instance, using the functional F .%/ D ´

f .%.x// dx for a convex and superlinear
function f with f .0/ D 0, which gives a higher cost to high densities of % and is
minimized, on bounded domains, by the uniform measure). Reciprocally, � could
instead represent the distribution of population, and % that of services, to be chosen
so that they are close enough to � but more concentrated. In this case F will favor
concentrated measures. When F penalizes the number of points in the support of %,
then % becomes finitely atomic and we face the so-called location problem (finding
where to place a finite number of points so as to approximate a given continuous
distribution), useful both in logistics and in quantization issues in signal processing.
See, for instance, [72, 75] for a transport-based analysis of the asymptotics of this
problem.

Note that, when F only takes value 0 and C1, the above problem becomes
a projection problem. In particular (see Section 8.4.2), the projection onto the
set of densities bounded above by the constant 1 has received a lot of attention
because of its applications in the time discretization of evolution problems with
density constraints, in particular for crowd motion (see [225, 265]), where a crowd
is described as a population of particles which cannot overlap and cannot go beyond
a certain threshold density.

In this section we would like to briefly discuss the characterization and regularity
of the optimizer, at least in the case where F .%/ D ´

f .%/ for a nice convex
integrand f W RC ! R, superlinear at infinity (i.e., one of the main functionals
studied in this chapter).

We are interested in the estimates that one can give on the minimizer O%. They
can be roughly divided into two categories: those which are independent of � but
depend on � and those which are uniform in � but refer to similar bounds on �.

For instance, let us write down the optimality conditions for (7.2) in the case
F .%/ D ´

f .%/, using Proposition 7.20. First we suppose that f 2 C2, that we have
0 < c � f 00 � C, and that spt.�/ D ˝. This allows to differentiate both terms in
the functional (the assumption on � is needed to have uniqueness of the c-concave
Kantorovich potential), and we get

(
' C � f 0. O%/ D C O% � a.e.,

' C � f 0. O%/ � C on f O% D 0g; (7.3)
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where ' is a suitable Kantorovich potential in the transport from O% to �. We can
write the above condition as

O% D .� f 0/�1
�
.C � '/ _ f 0.0/

	
: (7.4)

This provides a Lipschitz bound on %, which only depends on the Lipschitz constant
of ' (which depends on diam.˝/) and of .� f 0/�1 (which is bounded by c�1). In
particular, if we let f and � vary, keeping the condition f 00 � c > 0, we can apply
Ascoli-Arzelà’s theorem to % and pass to the limit (from the uniqueness of the
minimizers, which is guaranteed by the strict convexity of f , the minimizers pass
to the limit). Hence, we can guarantee that (7.4) holds under the only assumption
f 00 � c > 0. Notice that in the case f 0.0/ D �1, we get O% D .� f 0/�1.C � '/ and
that we prefer to rewrite as � f 0. O%/ D C � '.

These considerations allow to get continuity for O%, but the bounds obviously
degenerate as � ! 0. On the other hand, they do not really depend on �.

A different type of bound that one can prove is the following:

Proposition 7.32. If g 2 L1 is a given probability density on a compact convex
and smooth domain ˝ and O% solves

min
%2P.˝/

1

2
W2
2 .%; g/C

ˆ
f .%.x// dx;

where f is convex and superlinear, then jj O%jjL1 � jjgjjL1 .

This bound, which, on the contrary, is independent of � , is proven in [110, 270]. We
can provide a sketch of proof.

Proof. We start from the case where g is smooth and strictly positive, and f is
smooth on �0;C1Œ, continuous on RC, with f 00 � c > 0 and f 0.0/ D �1. From
the above considerations (with � D 1), we know that the density of the optimal O%
is a continuous function, given by O% D .f 0/�1.C � '/. Note that .f 0/�1 is Lipschitz
continuous, as a consequence of the lower bound on f 00, and that O% > 0 since O% D 0

would imply �' D �1. From its continuity, O% admits a maximal value, O%.x0/.
Note that a maximum point for O% corresponds to a minimum point for '. Using
Caffarelli’s regularity theory (see Section 1.7.6), we can provide enough regularity
for ' so as to justify all the following considerations (indeed, since g is smooth and
O% is Lipschitz, and both are strictly positive, and hence bounded from below, on a
convex set, one has at least ' 2 C2;˛). First, suppose that x0 … @˝. In this case we
should have D2'.x0/ � 0. But the Monge-Ampère equation gives us

O%.x0/ D det.I � D2'.x0//g.T.x0//;

where T D id � r' is the optimal transport from O% to g. From D2'.x0/ � 0, we get
det.I � D2'.x0// � 1, and hence
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jj O%jjL1 D O%.x0/ � g.T.x0// � jjgjjL1 :

It remains to consider the case x0 2 @˝. Since T.x0/ D x0 � r'.x0/ 2 ˝ and ˝
is convex, we have r'.x0/ � n � 0. By the optimality property of x0 (which is a
minimum point for '), we also have the opposite inequality, and hence we obtain
anyway r'.x0/ � n D 0. This allows to conclude that also in this case we have
D2'.x0/ � 0 (indeed, second-order minimality conditions are also satisfied on the
boundary if we already know that the gradient vanishes; since the tangential part
always vanishes at extremal points, only the normal one has to be considered).

Finally, one can get rid of the assumptions on g and f by approximation (since
we know that the minimizer of the original problem with g 2 L1 and f which is
only convex and superlinear is unique). ut

As a final remark, we stress that some limited higher-order similar estimates can
also be obtained and are the object of very recent papers. We mention a BV estimate,
namely, jj O%jjBV � jjgjjBV , presented in [151], and based on some integration-by-
parts techniques. We also mention a Lipschitz estimate which, together with some
semi-concavity bounds, is proved in [207] in the case where f .t/ D t log t, thanks
to some Pogorelov-type methods. Both estimates can be adapted to the case where
a potential energy V is added to the functional. However, we do not develop details
here.

7.4.2 Brunn-Minkowski inequality

Another interesting consequence of the displacement convexity in W2 is a transport-
based proof of a well-known geometric inequality called Brunn-Minkowski inequal-
ity. This inequality states that for every two sets E;F � R

d (we ignore here
measurability issues), we have

jE C Fj1=d � jEj1=d C jFj1=d; where E C F D fx C y W x 2 E; y 2 Fg:

This inequality can be proven in the following way, as pointed out in [229].
Consider the measures � with constant density 1

jEj on E and � with constant density
1

jFj on F. Then, take the measure �1=2 obtained at time t D 1=2 on the constant-

speed geodesic between them. Since �1=2 D . 1
2
id C 1

2
T/#�0, we know that �1=2 is

concentrated on A WD 1
2
E C 1

2
F. Moreover, �1=2 is absolutely continuous and we

call % its density (we know % 2 L1 because �; � 2 L1, thanks to Proposition 7.29).
Note that, for convex f , we have

1

jAj
ˆ

A
f .%.x// dx � f

�´
A %.x/ dx

jAj
�

D f
�
jAj�1

�
:
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Geodesic convexity of F for f .t/ D �t1�1=d implies

� 1

2
jEj1=d � 1

2
jFj1=d D 1

2
F .�/C 1

2
F .�/ � F .�1=2/

D
ˆ

A
f .%.x// dx � jAj f

�
jAj�1

�
D � jAj1=d :

If we multiply this inequality by �2 on each side, using the scaling properties of
the Lebesgue measure, we exactly obtain the Brunn-Minkowski inequality.

7.4.3 Displacement convexity, game theory, and spatial
economics: urban equilibria

As optimal transport describes the cost of moving masses (or individuals) when their
density is known, it is a very natural tool to analyze problems in spatial economics,
where densities of agents and of activities are involved, and one wants to take into
account geographical effects. Often, it is important to associate with this densities
some “performances,”’ which let the functionals that we analyzed in this chapter
appear. Among the objects studied in spatial economics, one of the most intriguing,
as we can see in our everyday life, is urban structure.

Many models exist in the economic literature and most of them have nothing to
do with optimal transport. An interesting treatise of some spatial problems involving
some notions of optimal transform (more under the form of flow minimization, such
as in Chapter 4, then under the form of a Monge-Kantorovich problem) is contained
in the book [28], which inspired by the way some of the works on congested
transport contained in Section 4.4.1.

Yet, the goal of this section is not to give a comprehensive literature review on
the subject, but to point out some recent problems in urban economics where the
analysis we did in this chapter is particularly relevant. Indeed, we will see that
displacement convexity can play a role in proving uniqueness of equilibria and their
characterization as the minimizers of a global energy.

In particular, we will not spend words on the models for urban planning contained
in [93, 94], where the goal is to find the optimal shapes of the distribution � of the
population and of the distribution � of “services” in order to minimize a global
quantity F .�/ C Tc.�; �/ C G .�/. They are problems involving a social planner
where no equilibrium issue is addressed, and optimal transport appears directly in
the modeling and not as a tool. We will not spend word neither on the equilibrium
model contained in [106, 107], where one looks at a distribution � of residents, a
distribution � of jobs, a pairing � between them, a function ' giving the price of
the land, and a function  giving wages and at other related quantities. Here an
equilibrium may be found by considering ' and  as Kantorovich potentials for
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an appropriate cost, but the model is quite long to describe (see also [275] for a
short summary of this and other models) and it uses optimal transport ideas to prove
existence and not to characterize the equilibria.

We want rather to concentrate on another, simple class of models: suppose that a
population % is distributed in a region ˝ and that every individual wants to choose
his own position in order to minimize the sum of two costs:

• a residential cost, which is an increasing function of the density of population
at the place where he lives: the individuals living at x “pay” a function of the
form h.%.x//, for h W RC ! RC increasing; this takes into account the fact that
where more people live, the price of land is higher (or that, for the same price,
they have less space);

• an interaction cost, depending on the distances with all the other individuals:
people living at x “pay” a cost of the form

´
W.x�y/%.y/ dy where W is usually

an increasing function of the distance (i.e., W.z/ depends increasingly on jzj).
This means that the cost that every individual pays depends on his location x and
on the whole distribution % of everybody. We look for an equilibrium configuration,
i.e., a density % such that, for every x0, there is no reason for people at x0 to move to
another location, since the function f%.x/ WD h.%.x//C´

W.x�y/%.y/ dy is minimal
at x0, in the spirit of Nash equilibria.

Box 7.3. Important notion: Nash equilibria

Definition. Consider a game where several players i D 1; : : : ; n must choose a strategy
among a set of possibilities Si and suppose that the pay-off of each player (i.e., how
much he gains out of the game) depends on what everybody chooses, i.e., it is given by
a function pi W S1 � � � � � Sn ! R. We say that a configuration .s1; : : : ; sn/ (where
si 2 Si) is an equilibrium (a Nash equilibrium) if, for every i, the choice si optimizes
Si 3 s 7! fi.s1; : : : ; si�1; s; siC1; : : : ; sn/ (i.e., si is optimal for player i under the assumption
that the other players freeze their choice).

Note that Nash equilibria need not exist in all situations, but the strength of Nash
approach was exactly to prove (via convex analysis arguments) that they always exist when
we consider the so-called mixed strategies. This means that we accept that every player
instead of choosing an element si 2 Si, only chooses a probability on Si and then randomly
picks a strategy according to the law he has chosen. This allows to convexify the game
in a way which is similar to what we do when we pass from the Monge to Kantorovich
problems.

This notion, first introduced by J. Nash in [243, 244] in the case of a finite number
of players, can be easily extended to a continuum of players where each one is negligible
compared to the others (nonatomic games). Considering for simplicity the case of identical
players, we have a common space S of possible strategies and we look for a measure % 2
P.S/. This measure induces a payoff function f% W S ! R and we want the following
condition to be satisfied: there exists C 2 R such that f%.x/ D C %-a.e. and f%.x/ � C
everywhere (if the players want to maximize the playoff, otherwise, if it is a cost to be
minimized, f%.x/ � C), i.e., f% must be optimal %-a.e.
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It is easy to see that the equilibrium condition, namely, that

h.%.x//C
ˆ

W.x � y/%.y/ dy

must be minimal %-a.e. is indeed the first-order optimality condition for the
minimization of

% 7! F.%/ WD
ˆ

H.%.x// dx C 1

2

ˆ ˆ
W.x � y/%.y/ dy%.x/ dx

among probabilities % 2 P.˝/, where H0 D h (just compute the first variation with
respect to perturbation of the form %" D .1 � "/% C " Q%). We can wonder whether
this optimality condition, which is necessary for minimality, is also sufficient and
if all equilibria are minimizers. This would allow to say that we face a potential
game (i.e., a game where equilibria can be found by minimizing a global energy;
see [238]). Note by the way that the energy that we minimize is not the total cost for
residents, which would be given by

´
f%.x/%.x/ dx (compare to the notion of price

of anarchy in Remark 4.29). This last quantity differs from what we consider both
in the 1

2
factor in the interaction part and in the fact that H.t/ ¤ th.t/ in general (as

we already saw in Section 4.4.1 concerning traffic congestion).
The answer to the above question would be affirmative if the functional F was

convex. Yet, the first part is convex as H is convex (as it is the antiderivative of an
increasing function), but the interaction energy is not, as we saw in this chapter.
On the other hand, if H satisfies McCann’s assumptions for displacement convexity
and W is convex (which is the case for the interaction costs jx � yj or jx � yj2,
for instance), then F is displacement convex. An interesting observation in [59]
is exactly the fact that displacement convexity is also enough, as usual convexity
would do, in order to guarantee that equilibria are all minimizers of F. To prove
this fact, it is enough to compute the derivative of F.%"/ at " D 0, when we take
%" D ..1 � "/id C "T/#%, where T is the optimal transport map between % and
any other admissible Q%. By the way, it is not a problem to add to the equilibrium
condition a geographical heterogeneity (i.e., a potential function), taking f%.x/ D
h.%.x// C ´

W.x � y/%.y/ dy C V.x/, and in this case we add to F.%/ a term in´
V.x/%.x/ dx. The convexity of V would be the good assumption to perform the

same analysis.
Since we are evoking McCann’s condition on the convex function H, it is

worthwhile to spend some words on its meaning in economic terms. To do that,
we need to check how h and H depend on the density through the formation of the
price of land. This comes from an easy consideration: suppose that at every point,
the agents have a certain budget to be divided into land consumption and money
consumption and that they have a concave and increasing utility function U for
land. This means they solve a problem of the form

maxfU.L/C m W pL C m � 0g;
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where p represents the price for land, L is the land consumption, m is the leftover of
the money, and the budget constraint has been set to 0 for simplicity. The optimal
land consumption will saturate the constraint and be such that U0.L/ D p. This
allows to compute the optimal utility, which is U.L/ � U0.L/L, and this gives a
relation between L and utility. Yet, the land consumption is the reciprocal of the
density, hence L D 1

%
, and the residential cost h.%/, which is a cost and not a utility,

can be taken to be opposite as this utility. Hence, we take

h.%/ D 1

%
U0
�
1

%

�
� U

�
1

%

�
:

Since the function t 7! 1
t U0. 1t /�U. 1t / is the derivative of �tU. 1t /, the correct choice

for H is indeed H.t/ D �tU. 1t /. This makes the verification of McCann’s condition
for displacement convexity very easy, since t 7! tdH.t�d/ becomes t 7! �U.td/, and
we just need t 7! U.td/ to be concave and increasing. Monotonicity is guaranteed
since U is monotone, while the fact that it stays concave when composed with the
dth power is indeed an extra assumption5.

We also stress that, in order to use displacement convexity, one needs a convex
domain ˝ and that [59] also presents examples of multiple equilibria when the
convex domain is replaced by a 1D circle (equilibria with multiple sub-cities are
found, i.e., spt.%/ can be disconnected, and the multiplicity of the equilibria is not
only due to rotational invariance, but equilibria with different shapes and different
number of components are found). Curiously enough, the model described in [59]
strongly recalls a model by R. McCann for rotating stars, described in [232]. In
such a paper, the author introduces a notion of W1-local minimizers which can be
translated into a notion of local equilibrium: each agent only compares his cost to
that of nearby agents; should the support of % be disconnected (which is the case
in [59] and [232]), then the constant value of their utility could change from one
connected component to the others. Note the early use of the W1 distance and the
fact that this is the only distance allowing for this kind of local phenomena. Indeed,
local minimality for integral distances such as Wp, if translated via optimality
conditions into the expression of an equilibrium, would not provide local minimality
for each agent, but automatically global minimality. This can be observed in the
example of the circle in [59]: in this example many equilibria exist, and each agent
is globally satisfied, not only locally, but most of them are not global minimizers of
the global energy.

An even more interesting situation is presented in [56], in the framework of the
so-called Cournot-Nash equilibria. This name is used to denote nonatomic games
with agents which are not indistinguishable. The situation is similar to the one
described above, but with an extra variable, which makes the distinction between

5Thanks to an observation by R. McCann himself, this corresponds to the fact that the utility is a
concave function not only of land “volume” but also of land “linear size,” which seems reasonable
since it has to be compared to “linear” quantities such as distances in the interaction term.
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agents: suppose that a population of agents� distributed over a space Z must choose,
each, a location x 2 ˝ and that the payoff of each agent z is given by c.z; x/C f%.x/,
where % is the distribution of their choices on ˝. More precisely, we look for a
measure � 2 P.Z � ˝/ such that .�Z/#� D �, and we denote .�˝/#� by %.
The goal is to find � such that no agent z wants to change his choice, i.e., there is a
function ' W Z ! R with c.z; x/Cf%.x/ � '.z/ for all .z; x/ and c.z; x/Cf%.x/ D '.z/
� -a.e. Note that the variable z represents the type of the agent, which cannot be
modified by the agent itself: this is why the minimality of c.z; x/ C f%.x/ is tested
only on x and gives a minimal value depending on z.

It is not difficult to prove the following facts (see [56]): a measure � is an
equilibrium if and only if it is optimal for the cost c in˘.�; �/, the pair .';�f%/ is a
pair of Kantorovich potentials for the same transport problems, and the c-transform
'c satisfies 'c.x/C f%.x/ � 0 for all x and 'c.x/C f%.x/ D 0 %-a.e. This leads to a
condition on % only: find % such that  C f% is minimal %-a.e., where  D 'c is the
Kantorovich potential in the transport from % to the given measure �, for the cost c.

The same considerations of this chapter allow to view this as the optimality
condition for the minimization of % 7! Tc.�; %/ C F.%/ and the same questions
about displacement convexity hold. As we saw in Section 7.3.3, the functional
Tc.�; �/ is not in general displacement convex, and one needs to use convexity on
generalized geodesics. But the computations and the result are similar, as one can
see in [56].

Finally, it is interesting to see that the same kind of models would appear if,
instead of defining an equilibrium on agent type z who must choose x, one directly
sets an equilibrium problem on x: agents have to choose where to locate, facing
both a residential cost and an interaction cost, but also need to access a commodity
z, distributed according to a distribution �, and their access cost is c.x; z/.
Since the distribution of the commodity is fixed, the agents cannot simply choose
the z that they prefer (i.e., minimizing z 7! c.x; z/): a matching problem will
appear and a price '.z/ for each commodity. At equilibrium, according to the theory
that we saw in Section 1.7.3, the commodity cost for the agents will be given by
'.z/ C c.x; z/ D 'c.y/. This means that the agents add to their cost a new term,
given by the Kantorovich potential 'c, exactly as above.



Chapter 8
Gradient flows

In this chapter, we present one of the most spectacular applications of optimal
transport and Wasserstein distances to PDEs. We will see that several evolution
PDEs can be interpreted as a steepest descent movement in the space W2. As we
already developed in the previous chapters many of the technical tools that we need,
a large part of this chapter will be devoted to an informal description of the general
framework.

Hence, no need to let the reader wait any more, let us immediately enter into the
subject!

8.1 Gradient flows in R
d and in metric spaces

First of all, let us present what a gradient flow is in the simplest situation. Suppose
you have a function F W R

d ! R and a point x0 2 R
d. A gradient flow is an

evolution stemming from x0 and always moving in the direction where F decreases
the most, thus “gradually minimizing” F, starting from x0. More precisely, it is just
the solution of the Cauchy problem

(
x0.t/ D �rF.x.t// for t > 0;

x.0/ D x0:

This is a standard Cauchy problem which has a unique solution if rF is Lipschitz
continuous, i.e., if F 2 C1;1. We will see that existence and uniqueness can also hold
without this strong assumption, thanks to the variational structure of the equation.

A first interesting property is the following, concerning uniqueness and
estimates.

© Springer International Publishing Switzerland 2015
F. Santambrogio, Optimal Transport for Applied Mathematicians,
Progress in Nonlinear Differential Equations and Their Applications 87,
DOI 10.1007/978-3-319-20828-2_8

285



286 8 Gradient flows

Proposition 8.1. Suppose that F is convex and let x1 and x2 be two solutions of
x0.t/ D �rF.x.t// (if F is not differentiable, we can consider x0.t/ 2 @F.x.t//).
Then we have jx1.t/ � x2.t/j � jx1.0/ � x2.0/j for every t. In particular this gives
uniqueness of the solution of the Cauchy problem.

Proof. Let us consider g.t/ D 1
2
jx1.t/ � x2.t/j2 and differentiate it. We have

g0.t/ D .x1.t/� x2.t// � .x0
1.t/� x0

2.t// D �.x1.t/� x2.t// � .rF.x1.t//� rF.x2.t///:

Here we use the basic property of gradient of convex functions, i.e., that for every
x1 and x2, we have

.x1 � x2/ � .rF.x1/ � rF.x2// � 0:

More generally, it is also true that for every x1; x2 and every p1 2 @F.x1/,
p2 2 @F.x2/, we have

.x1 � x2/ � .p1 � p2/ � 0:

From these considerations, we obtain g0.t/ � 0 and g.t/ � g.0/. This gives the first
part of the claim.

Then, if we take two different solutions of the same Cauchy problem, we have
x1.0/ D x2.0/, and this implies x1.t/ D x2.t/ for any t > 0. ut
Remark 8.2. From the same proof, one can also deduce uniqueness and stability
estimates in the case where F is only semi-convex. We recall that semi-convex
means that it is �-convex for some � 2 R, i.e., x 7! F.x/� �

2
jxj2 is convex. Indeed,

in this case we obtain jx1.t/ � x2.t/j � jx1.0/ � x2.0/je��t; which also proves, if
� > 0, exponential convergence to the unique minimizer of F. The key point is
that if F is �-convex, it is easy, by applying the monotonicity inequalities above to
x 7! F.x/ � �

2
jxj2, to get

.x1 � x2/ � .rF.x1/ � rF.x2// � �jx1.t/ � x2.t/j2:

This implies g0.t/ � �2�g.t/ and allows to conclude, by Gronwall’s lemma, g.t/ �
g.0/e�2�t. For the exponential convergence, if � > 0, then F is coercive and admits
a minimizer, which is unique by strict convexity. Let us call it Nx. Take a solution x.t/
and compare it to the constant curve Nx, which is a solution since 0 2 @F.Nx/. Then
we get jx1.t/ � Nxj � e��tjx1.0/ � Nxj.

Another interesting feature of those particular Cauchy problems which are
gradient flows is their discretization in time. Actually, one can fix a small time step
parameter � > 0 and look for a sequence of points .x�k /k defined through

x�kC1 2 argminx F.x/C jx � x�k j2
2�

:
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We can forget now the convexity assumptions on F, which are not necessary for
this part of the analysis. Indeed, very mild assumptions on F (l.s.c. and some lower
bounds, for instance, F.x/ � C1 � C2jxj2) are sufficient to guarantee that these
problems admit a solution for small � . The case where F is �-convex is covered by
these assumptions and also provides uniqueness of the minimizers. This is evident
if � > 0 since we have strict convexity for every � , and if � is negative, the sum will
be strictly convex for small � .

We can interpret this sequence of points as the values of the curve x.t/ at times
t D 0; �; 2�; : : : ; k�; : : : . It happens that the optimality conditions of the recursive
minimization exactly give a connection between these minimization problems and
the equation, since we have

x�kC1 2 argmin F.x/C jx � x�k j2
2�

) rF.x�kC1/C x�kC1 � x�k
�

D 0;

i.e.

x�kC1 � x�k
�

D �rF.x�kC1/:

This expression is exactly the discrete-time implicit Euler scheme for x0 D �rF.x/!

Box 8.1. Memo: Explicit and implicit Euler schemes

Given an ODE x0.t/ D v.x.t// (that we suppose autonomous for simplicity), with
given initial datum x.0/ D x0, Euler schemes are time discretization where derivatives
are replaced by finite differences. We fix a time step � > 0 and define a sequence x�k . The
explicit scheme is given by

x�kC1 D x�k C �v.x�k /; x�0 D x0:

The implicit scheme, on the contrary, is given by

x�kC1 D x�k C �v.x�kC1/; x�0 D x0:

This means that x�kC1 is selected as a solution of an equation involving x�k , instead of being
explicitly computable from x�k . The explicit scheme is obviously easier to implement, but
enjoys less stability and qualitative properties than the implicit one. Suppose, for instance,
v D �rF: then the quantity F.x.t// decreases in t in the continuous solution, which is
also the case for the implicit scheme, but not for the explicit one (which represents the
iteration of the gradient method for the minimization of F).

Note that the same can be done for evolution PDEs and that solving the heat equation
@t% D �%t by an explicit scheme is very dangerous: at every step, %�kC1 would have two
degrees of regularity less than %�k , since it is obtained through %�kC1 D %�k ��%�k .
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It is possible to prove that for � ! 0, the sequence we found, suitably
interpolated, converges to the solution of the problem. It even suggests how to define
solutions for functions F which are only l.s.c., with no gradient at all!

But a huge advantage of this discretized formulation is also that it can easily be
adapted to metric spaces. Actually, if one has a metric space .X; d/ and an l.s.c.
function F W X ! R [ fC1g bounded from below, one can define

x�kC1 2 argminx F.x/C d.x; x�k /
2

2�
(8.1)

and study the limit as � ! 0. Obviously the assumptions on F have to be adapted,
since we need existence of the minimizers and hence a little bit of compactness. But
if X is compact, then everything works for F only l.s.c.

We can consider two different interpolations of the points x�k , given, respec-
tively, by

x� .t/ D x�k ; Qx� .t/ D !x�k�1;x
�
k

�
t � .k � 1/�

�

�
for t 2�.k � 1/; �; k��;

where !x;y.s/ denotes any constant-speed geodesic connecting a point x to a point
y, parametrized on the unit interval Œ0; 1�. The interpolation Qx� only makes sense
in spaces where geodesics exist, obviously. It is in this case a continuous (locally
Lipschitz) curve, which coincides with the piecewise constant interpolation x� at
times t D k� .

De Giorgi, in [137], defined1 the notion of minimizing movements (see also [7]).

Definition 8.3. A curve x W Œ0;T� ! X is said to be a minimizing movement if
there exists a sequence of time steps �j ! 0 such that the piecewise constant
interpolations x�j , built from a sequence of solutions of the iterated minimization
scheme (8.1), uniformly converge to x on Œ0;T�.

Compactness results guaranteeing the existence of minimizing movements are
derived from a simple property giving a Hölder behavior for the curves x� : for every
� and every k, the optimality of x�kC1 provides

F.x�kC1/C d.x�kC1; x�k /2

2�
� F.x�k /; (8.2)

which implies

d.x�kC1; x�k /2 � 2�
�
F.x�k / � F.x�kC1/

	
:

1We avoid here the distinction between minimizing movements and generalized minimizing
movements, which is not crucial in our analysis.
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If F.x0/ is finite and F is bounded from below, taking the sum over k, we have

lX
kD0

d.x�kC1; x�k /2 � 2�
�
F.x�0/ � F.x�lC1/

	 � C�:

Given t 2 Œ0;T�, denote by `.t/ the unique integer such that t 2�.`.t/ � 1/�; `.t/��.
For t < s apply the Cauchy-Schwartz inequality to the sum between the indices `.t/
and `.s/ (note that we have j`.t/ � `.s/j � jt�sj

�
C 1):

d.x� .t/; x� .s// �
`.s/�1X
kD`.t/

d.x�kC1; x�k / �
0
@`.s/�1X

kD`.t/
d.x�kC1; x�k /2

1
A

1
2

j`.s/ � `.t/j 12

� C
p
�
.jt � sj C �/

1
2

p
�

� C
�jt � sj1=2Cp

�
	
:

This means that the curves x� – if we forget for a while that they are actually
discontinuous – are morally equi-Hölder continuous of exponent 1=2. The situation
is even clearer for Qx� . Indeed, we have

�

�
d.x�k�1; x�k /

�

�2
D

ˆ k�

.k�1/�
j.Qx� /0j2.t/dt;

which implies, by summing up,

ˆ T

0

j.Qx� /0j2.t/dt � C:

This means that the curves Qx� are bounded in H1.Œ0;T�I X/ (the space of absolutely
continuous curves with square-integrable metric derivative), which also implies a
C0; 12 bound by usual Sobolev embedding.

If the space X, the distance d, and the functional F are explicitly known, in some
cases it is already possible to pass to the limit in the optimality conditions of each
optimization problem in the time-discrete setting and to characterize the limit curve
x.t/. It will be possible to do so in the space of probability measures, which is the
topic of this chapter, but not in many other cases. Indeed, without a little bit of
(differential) structure on X, it is almost impossible. If we want to develop a general
theory of gradient flows in metric spaces, we need to exploit finer tools, able to
characterize, with the only help of metric quantities, the fact that a curve x.t/ is a
gradient flow.

We present here an inequality which is satisfied by gradient flows in the smooth
Euclidean case and which can be used as a definition of gradient flow in the metric
case, since all the quantities which are involved have their metric counterpart.
Another inequality, called EVI, will be presented in the Discussion Section 8.4.1.
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The first observation is the following: thanks to the Cauchy-Schwartz inequality,
for every curve x.t/, we have

F.x.s// � F.x.t// D
ˆ t

s
�rF.x.r// � x0.r/ dr �

ˆ t

s
jrF.x.r//jjx0.r/j dr

�
ˆ t

s

�
1

2
jx0.r/j2 C 1

2
jrF.x.r//j2

�
dr:

Here, the first inequality is an equality if and only if x0.r/ and rF.x.r// are vectors
with opposite directions for a.e. r, and the second is an equality if and only if their
norms are equal. Hence, the condition, called EDE (Energy Dissipation Equality)

F.x.s// � F.x.t// D
ˆ t

s

�
1

2
jx0.r/j2 C 1

2
jrF.x.r//j2

�
dr; for all s < t

(or even the simple inequality F.x.s//�F.x.t// � ´ t
s

�
1
2
jx0.r/j2 C 1

2
jrF.x.r//j2	 dr)

is equivalent to x0 D �rF.x/ a.e. and could be taken as a definition of gradient flow.
This is what is done in a series of works by Ambrosio, Gigli, and Savaré and in
particular in their book [15]. Developing this (huge) theory is not among the scopes
of this book. The reader who is curious about this abstract approach but wants to
find a synthesis of their work from the point of view of the author can have a look at
[277]. In such a paper, the role of the different parts of the theory with respect to the
possible applications is clarified as far as possible2 (we also discuss in short some
of these issues in Section 8.4.1).

8.2 Gradient flows in W2, derivation of the PDE

In this section we give a short and sketchy presentation of what can be done when we
consider the gradient flow of a functional F W P.˝/ ! R[ fC1g. The functional
will be supposed l.s.c. for the weak convergence of probabilities and ˝ compact
(which implies that F admits a minimizer and is bounded from below). In particular,
we will give an heuristic on how to derive a PDE from the optimality conditions at
each time step. This is obviously something that we can only do in this particular
metric space and does not work in the general case of an abstract metric space.3

Indeed, we exploit the fact that we know, from Chapter 5, that all absolutely
continuous curves in the space W2.˝/ are solution of the continuity equation @t%t C

2Unfortunately, some knowledge of French is required (even if not forbidden, English is unusual
in the Bourbaki seminar, since “Nicolas Bourbaki a une préférence pour le français”).
3The original ideas which led to this theory come from [198] and [246] through what is known as
“Otto’s formal calculus”, and have later been reconsidered in [15].
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r � .%tvt/ D 0, for a suitable vector field v. The goal is to identify the vector field vt,
which will depend on the measure %t, in a way which is ruled by the functional F.

We consider the iterated minimization scheme

%�.kC1/ 2 argmin% F.%/C W2
2 .%; %

�
.k//

2�
: (8.3)

Each of these problems has a solution, by compactness of P.˝/ and semi-
continuity of the objective function. Exactly as we did for the Euclidean case
(F defined on R

d), we want to study the optimality conditions of these problems
so as to guess the limit equation.

We recall the notation ıG
ı%
.%/ for the first variation of a functional G W P.˝/ !

R [ fC1g. We will suppose that ıF
ı%

is known and try to write the limit equation in
terms of this operator.

Now, take an optimal measure O% for the minimization problem at step k and
compute variations with respect to perturbations of the form %" WD .1 � "/ O% C " Q%,
where Q% is any other probability measure. Using Proposition 7.20, we obtain

ıF

ı%
.%/C '

�
D constant;

where ' is a Kantorovich potential for the transport with cost 1
2
jx � yj2 from O% to

%�.k/. Actually, the above equality holds O%-a.e. and requires uniqueness of '. For
both these points proving %" > 0 will be enough, but we will fix this when doing
the rigorous proof.

If we combine the fact that the above sum is constant and that we have T.x/ D
x � r'.x/ for the optimal T, we get

T.x/ � x

�
D �r'.x/

�
D r�ıF

ı%
.%/
	
.x/: (8.4)

We will denote by �v the ratio T.x/�x
�

. Why? Because, as a ratio between a
displacement and a time step, it has the meaning of a velocity, but since it is the
displacement associated with the transport from %�.kC1/ to %�.k/, it is better to view it
rather as a backward velocity (which justifies the minus sign).

Since here we have v D �r� ıF
ı%
.%/
	
, this suggests that at the limit � ! 0, we

will find a solution of

@t% � r � �%r�ıF
ı%
.%/
		 D 0;

with no-flux boundary conditions on @˝.
Before entering into the details making the above approach rigorous (next

section), we want to present some examples of this kind of equations. We will
consider two functionals that we already analyzed in Chapter 7, and more precisely
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F .%/ D
ˆ

f .%.x// dx; and V .%/ D
ˆ

V.x/d%:

In this case we already saw that we have

ıF

ı%
.%/ D f 0.%/;

ıV

ı%
.%/ D V:

An interesting example is the case f .t/ D t log t. In such a case, we have f 0.t/ D
log t C 1 and r.f 0.%// D r%

%
: this means that the gradient flow equation associated

with the functional F would be the heat equation

@t% ��% D 0;

and that for F C V we would have the Fokker-Planck equation

@t% ��% � r � .%rV/ D 0:

We will see a list of other gradient flow equations in Discussion section, including
the so-called porous media equation, obtained for other choices of f .

Remark 8.4. One could wonder how the usual stochastic diffusion interpretation of
the heat and Fokker-Planck equations is compatible with the completely determin-
istic framework that we present here, where the velocity of each particle is given
by �r%=% � rV (take V D 0 to get the heat equation). Indeed, the Fokker-Planck
equation is also the PDE solved by the density of a bunch of particle following
a stochastic equation dXt D �rV.Xt/dt C dBt, where B is a standard Brownian
motion (independent for each particle). The answer, as it is well pointed out in [88],
is based on the idea that in this optimal transport interpretation we rearrange (i.e.,
relabel) the particles. This fact is quite clear in the 1D case: if at every time step
particles move from x to x � �rV.x/C B� (i.e., they follow the drift �rV and they
diffuse with a Gaussian law), and then we reorder them (we always call particle 1 the
one which is the most at the left, particle 2 the next one : : : and particle N the one
which is the most at the right), then we have a discrete family of trajectories which
converge, when � goes to 0 and the number N to infinity, to a solution of Fokker-
Planck where the velocity is exactly given by �r%=%� rV . Similar considerations
can be done in higher dimension with suitable notions of rearrangement.

Note that all these PDEs come accompanied by Neumann boundary conditions
% @
@n .

ıF
ı%
.%// D 0 on @˝, as a consequence of the no-flux conditions for the

continuity equation of Section 5.3. We will see in Section 8.4.3 a case of extension
to Dirichlet boundary conditions.

We finish this section with some philosophical thoughts. Why should we study
some PDEs by considering them as gradient flows for the distance W2? There are
at least three reasons. The first one is that it allows to give an existence result (of a
weak solution of such a PDE), with the technique that we will see in the next section.
This is obviously useless when the equation is already well known, as it is the case
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for the heat equation or its Fokker-Planck variant. But the same strategy could be
applied to variants of the same equations (or to similar equations in stranger spaces,
as it is nowadays done for the heat flow in metric measure spaces; see [18, 183]).
It is also very useful when the equation is of new type (we will see the case of
the crowd motion models in Section 8.4.2). The second goal could be to derive
properties of the flow and of the solution, once we know that it is a gradient flow. A
simple one is the fact that t 7! F.%t/ must be decreasing in time. However, this can
be often deduced from the PDE in different ways and does not require in general
to have a gradient flow. The third goal concerns numerics: the discretized scheme
to get a gradient flow is itself a sort of algorithm to approximate the solution. If the
minimization problems at each time step are discretized and attacked in a suitable
way, this can provide efficient numerical tools (see, for instance, [40]).

Finally, all the procedure we presented is related to the study and the existence
of weak solutions. What about uniqueness? We stress that in PDE applications the
important point is to prove uniqueness for weak solutions of the continuity equation
with v D �r ıF

ı%
(i.e., we do not care at the metric structure and at the definitions of

EVI and EDE). In some cases, this uniqueness could be studied independently of the
gradient flow structure (this is the case for the heat equation, for instance). Anyway,
should we use PDE approaches for weak solutions, or abstract approaches in metric
spaces, it turns out that usually uniqueness is linked to some kind of convexity, or
�-convexity, and in particular to displacement convexity. This is why a large part of
the theory has been developed for �-geodesically convex functionals.

8.3 Analysis of the Fokker-Planck case

We consider here the case study of the Fokker-Planck equation, which is the gradient
flow of the functional

J.%/ D
ˆ

˝

% log %C
ˆ

˝

Vd%;

where V is a Lipschitz function on the compact domain ˝. The initial measure
%0 2 P.˝/ is taken such that J.%0/ < C1.

We stress that the first term of the functional is defined as

F .%/ WD
( ´

˝
%.x/ log %.x/ dx if % � L d;

C1 otherwise,

where we identify the measure % with its density, when it is absolutely continuous.
This functional is l.s.c. thanks to Proposition 7.7 (which can be applied since we are
on a domain with finite measure; otherwise the situation is trickier, and we refer to
Ex(45)).
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Semi-continuity is the key tool to establish the following result:

Proposition 8.5. The functional J has a unique minimum over P.˝/. In particular
J is bounded from below. Moreover, for each � > 0, the following sequence of
optimization problems recursively defined is well-posed:

%�.kC1/ 2 argmin% J.%/C W2
2 .%; %

�
.k//

2�
; (8.5)

which means that there is a minimizer at every step, and this minimizer is unique.

Proof. Just apply the direct method, noting that P.˝/ is compact for the weak
convergence, which is the same as the convergence for the W2 distance (again,
because ˝ is compact), and for this convergence F is l.s.c. and the other terms
are continuous. This gives at the same time the existence of a minimizer for J and
of a solution to each of the above minimization problems (8.5). Uniqueness comes
from the fact that all the functionals are convex (in the usual sense) and F is strictly
convex. ut

Optimality conditions at each time step

We will use Propositions 7.17, 7.20, and 7.18, and to do so we first need to prove
the following result:

Lemma 8.6. Any minimizer O% in (8.5) must satisfy O% > 0 a.e. and log O% 2 L1.

Proof. Consider the measure Q% with constant positive density c in ˝ (i.e., c D
j˝j�1). Let us define %" as .1 � "/ O%C " Q% and compare O% to %".

By optimality of O%, we may write

F . O%/ � F .%"/ �
ˆ

˝

Vd%" �
ˆ

˝

Vd O%C W2
2 .%"; %

�
.k//

2�
� W2

2 . O%; %�.k//
2�

: (8.6)

The Wasserstein term in the right-hand side may be estimated by convexity:

W2
2 .%"; %

�
.k//

2�
� .1 � "/W2

2 . O%; %�.k//
2�

C "
W2
2 . Q%; %�.k//
2�

:

The potential term is of order " as well:

ˆ

˝

Vd%" �
ˆ

˝

Vd O% D "

ˆ

˝

Vd. Q% � O%/ � C":
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This shows that the whole right-hand side of (8.6) is estimated by C" and we get

ˆ

˝

f . O%/ � f .%"/ � C"

where f .t/ D t log t (set to 0 in t D 0). Write

A D fx 2 ˝ W O%.x/ > 0g; B D fx 2 ˝ W O%.x/ D 0g:

Since f is convex, we write, for x 2 A, f . O%.x//�f .%".x// � . O%.x/�%".x//f 0.%".x// D
". O%.x/ � Q%.x//.1 C log %".x//. For x 2 B we simply write f . O%.x// � f .%".x// D
�"c log."c/. This allows to write

�"c log."c/jBj C "

ˆ

A
. O%.x/ � c/.1C log %".x// dx � C"

and, dividing by ",

� c log."c/jBj C
ˆ

A
. O%.x/ � c/.1C log %".x// dx � C: (8.7)

Note that we always have

. O%.x/ � c/.1C log %".x// � . O%.x/ � c/.1C log c/

(just distinguish between the case O%.x/ � c and O%.x/ � c/. Thus, we may write

�c log."c/jBj C
ˆ

A
. O%.x/ � c/.1C log c/ dx � C:

Letting " ! 0 provides a contradiction, unless jBj D 0.
This proves O% > 0 a.e. We now come back to (8.7), which is an upper bound on

the integral of the functions . O%.x/ � c/.1C log %".x//. We already noted that these
functions are bounded from below by . O%.x/� c/.1C log c/, which is L1 because c is
a constant and O% 2 L1. Hence, we can apply Fatou’s lemma and obtain, at the limit
as " ! 0,

ˆ

˝

. O%.x/ � c/.1C log O%.x// dx � C

(the integral on A has been replaced by the integral on ˝, since B is negligible).
Since we already know that . O% � c/.1 C log O%/ is bounded from below by an
L1 function and its integral is finite, then it is L1. But we already know that
O%; O% log O% 2 L1, and we deduce log O% 2 L1. ut
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We can now compute the first variation and give optimality conditions on the
optimal %�.kC1/.

Proposition 8.7. The optimal measure %�.kC1/ in (8.5) satisfies

log.%�.kC1//C V C N'
�

D constant a.e. (8.8)

where N' is the (unique) Kantorovich potential from %�.kC1/ to %�.k/. In particular,
log %�.kC1/ is Lipschitz continuous. If T�kC1 is the optimal transport from %�.kC1/ to
%�.k/, then it satisfies

v�.kC1/ WD id � T�kC1
�

D �r
�

log.%�.kC1//C V
�

a.e. (8.9)

Proof. Take the optimal measure O% WD %�.kC1/. We can say that it is regular (see
Definition 7.12) for the functional J, since the only term that is not finite on all
probabilities in P.˝/ is the entropy term, but it is convex and finite both on
the optimum O% and on L1 densities. We can check that J admits a first variation
at O%. For the linear term it is straightforward, and for the Wasserstein term,
we can apply Proposition 7.17. The uniqueness of the Kantorovich potential is
guaranteed by Proposition 7.18 together with Lemma 8.6. For the entropy term,
consider %" WD .1 � "/ O% C " Q%, for Q% 2 L1. Set M D jj Q%jjL1 and look at
" 7! ´

%" log %": The integrand can be differentiated in " pointwisely, thus getting
.1C log %"/. Q% � O%/. For " < 1=2, we can check that these functions are dominated
by . O%C M/.j log O%j C log M C 1/, which is L1 thanks to O%; log O%; O% log O% 2 L1 (from
Lemma 8.6). This allows to differentiate under the integral sign and proves that the
first variation of this term is 1C log O%.

The first variation of J is hence

ıJ

ı%
D f 0.%/C V D log.%/C 1C V:

Applying Proposition 7.20 we obtain Equation (8.8), which is valid a.e. since O% > 0.
In particular, this implies that %�.kC1/ is Lipschitz continuous, since we have

%�.kC1/.x/ D exp

�
C � V.x/ � N'.x/

�

�
:

Then, one differentiates and gets the equality

r N' D id � T�kC1
�

D �r
�

log.%�.kC1//C V
�

a.e.

and this allows to conclude. ut
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Interpolation between time steps and uniform estimates

Let us collect some other tools.

Proposition 8.8. For any � > 0, the sequence of minimizers satisfies

X
k

W2
2 .%

�
.kC1/; %�.k//
�

� C WD 2.J.%0/ � inf J/:

Proof. This is obtained by comparing the optimizer %�.kC1/ to the previous measure
%�.k/. We get

J.%�.kC1//C W2
2 .%

�
.kC1/; %�.k//
2�

� J.%�k /; (8.10)

which implies

X
k

W2
2 .%

�
.kC1/; %�.k//
�

�
X

k

2.J.%�k / � J.%�.kC1///:

This last sum is telescopic and gives the claim. ut
Let us define two interpolations between the measures %�.k/.
With this time-discretized method, we have obtained, for each � > 0, a sequence

.%�.k//k. We can use it to build at least two interesting curves in the space of measures:

• first we can define some piecewise constant curves, i.e., %�t WD %�.kC1/ for t 2
�k�; .k C 1/��; associated with this curve, we also define the velocities v�t D
v�.kC1/ for t 2�k�; .k C 1/��, where v�.kC1/ is defined as in (8.9): v�.kC1/ D .id �
T�kC1/=� , taking as T�kC1 the optimal transport from %�.kC1/ to %�.k/; we also define
the momentum variable E� D %�v� ;

• then, we can also consider the densities Q%�t that interpolate the discrete values
.%�.k//k along geodesics:

Q%�t D
�

k� � t

�
v�.k/ C id

�
#
%�.k/; for t 2�.k � 1/�; k�ŒI (8.11)

the velocities Qv�t are defined so that . Q%� ; Qv� / satisfy the continuity equation and
jjQv�t jjL2.Q%�t / D j. Q%�/0j.t/. To do so, we take

Qv�t D v�t ı
�
.k� � t/v�.k/ C id

��1 I

as before, we define a momentum variable: QE� D Q%� Qv� .
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After these definitions we consider some a priori bounds on the curves and the
velocities that we defined. We start from some estimates which are standard in the
framework of minimizing movements.

Note that the speed (i.e., metric derivative) of Q%� is constant on each interval
�k�; .k C 1/�Œ and equal to

W2.%
�
.kC1/; %�.k//
�

D 1

�

�ˆ
jid � T�kC1j2d%�.kC1/

�1=2
D jjv�kC1jjL2.%�.kC1/

/;

which gives

jjQv�t jjL2.Q%�t / D j. Q%�/0j.t/ D W2.%
�
.kC1/; %�.k//
�

D jjv�t jjL2.%�t /;

where we used the fact that the velocity field Qv� has been chosen so that its L2 norm
equals the metric derivative of the curve Q%� .

In particular, we can obtain

jE� j.Œ0;T� �˝/ D
ˆ T

0

dt
ˆ

˝

jv�t jd%�t D
ˆ T

0

jjv�t jjL1.%�t /dt �
ˆ T

0

jjv�t jjL2.%�t /dt

� T1=2
ˆ T

0

jjv�t jj2L2.%�t /dt D T1=2
X

k

�

 
W2.%

�
.kC1/; %�.k//
�

!2
� C:

The estimate on QE� is completely analogous

j QE� j.Œ0;T� �˝/ D
ˆ T

0

dt
ˆ

˝

jQv�t jd Q%�t � T1=2
ˆ T

0

jjQv�t jj2L2.Q%�t /

D T1=2
X

k

�

 
W2.%

�
.kC1/; %�.k//
�

!2
� C:

This gives compactness of E� and QE� in the space of vector measures on space-time,
for the weak convergence. As far as Q%� is concerned, we can obtain more than that.
Consider the following estimate, for s < t:

W2. Q%�t ; Q%�s / �
ˆ t

s
j. Q%�/0j.r/dr � .t � s/1=2

�ˆ t

s
j. Q%�/0j.r/2dr

�1=2
:

From the previous computations, we have again

ˆ T

0

j. Q%�/0j.r/2dr D
X

k

�

 
W2.%

�
.kC1/; %�.k//
�

!2
� C;
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and this implies

W2. Q%�t ; Q%�s / � C.t � s/1=2; (8.12)

which means that the curves Q%� are uniformly Hölder continuous. Since they are
defined on Œ0;T� and valued in W2.˝/ which is compact, we can apply the Ascoli-
Arzelà theorem. This implies that, up to subsequences, we have

E� * E in M d.Œ0;T� �˝/; QE� * QE in M d.Œ0;T� �˝/I
Q%� ! % uniformly for the W2 distance:

The limit curve %, from the uniform bounds on Q%� , is both 1
2
-Hölder continuous and

absolutely continuous in W2.
As far as the curves %� are concerned, they also converge uniformly to the same

curve %, since W2.%
�
t ; Q%�t / � C

p
� (a consequence of (8.12), of the fact that Q%� D %�

on the points of the form k� and of the fact that %� is constant on each interval
�k�; .k C 1/��).

Let us now prove that QE D E.

Lemma 8.9. Suppose that we have two families of vector measures E� and QE� such
that

• QE� D Q%� Qv� ; E� D %�v� ;

• Qv�t D v�t ı
�
.k� � t/v�.k/ C id

��1
; Q%� D

�
.k� � t/v�.k/ C id

�
#
%� ;

•
´´ jv� j2d%� � C (with C independent of � );

• E� * E and QE� * QE as � ! 0.

Then QE D E.

Proof. It is sufficient to fix a Lipschitz function f W Œ0;T� �˝ ! R
d and to prove´

f � dE D ´
f � d QE. To do that, we write

ˆ
f � d QE� D

ˆ T

0

dt
ˆ

˝

f � Qv�t d Q%� D
ˆ T

0

dt
ˆ

˝

f ı ..k� � t/v� C id/ � v�t d%� ;

which implies

ˇ̌̌
ˇ
ˆ

f � d QE� �
ˆ

f � dE�
ˇ̌̌
ˇ �

ˆ T

0

dt
ˆ

˝

jf ı ..k� � t/v�Cid/ � f j jv�t jd%�

� Lip.f /�
ˆ T

0

ˆ

˝

jv�t j2d%� � C�:

This estimate proves that the limit of
´

f � d QE� and
´

f � dE� is the same, i.e.,
E D QE. ut
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Relation between % and E

We can obtain the following:

Proposition 8.10. The pair .%;E/ satisfies, in distributional sense,

@t%C r � E D 0; E D �r% � %rV;

with no-flux boundary conditions on @˝. In particular we have found a solution to

(
@t% ��%C r � .%rV/ D 0;

%.0/ D %0;

where the initial datum is to be intended in the following sense: the curve t 7! %t is
(absolutely) continuous in W2, and its initial value is %0.

Proof. First, consider the weak convergence . Q%� ; QE� / * .%;E/ (which is a
consequence of QE D E). The continuity equation @t Q%� C r � QE� D 0 is satisfied
(as in Section 4.1.2) in the sense of distributions by . Q%� ; QE� / (we test the equations
against C1

c function on �0;TŒ�˝, which means in particular that we do not require
the test functions to vanish on @˝) and this passes to the limit.

Hence, @t%C r � E D 0.
The continuity in W2 and the initial datum pass to the limit because of the

uniform C0;1=2 bound in (8.12).
Then, use the convergence .%� ;E� / * .%;E/. Actually, using the optimality

conditions of Proposition 8.7 and the definition of E� D v�%� , we have, for each
� > 0, E� D �r%� � %�rV (again, in the sense of distributions: the term %�rV is
the product of L1 and L1 functions). It is not difficult to pass this condition to the
limit either. Take f 2 C1

c.�0;TŒ�˝IRd/ and test:

ˆ
f � dE� D �

ˆ
f � r%� �

ˆ
f � rV%� D

ˆ
r � f d%� �

ˆ
f � rV%� :

These terms pass to the limit as %� * %, at least if V 2 C1, since all the test
functions above are continuous. This would give

´
f �dE D ´

.r � f /d%�´
f �rV d%;

which implies E D �r% � %rV (once more, r% is to be intended in the sense of
distributions).

To handle the case where V is only Lipschitz continuous, let us note that for every
�; t we have J.%�t / � J.%0/ (this is a consequence of (8.10), which iterated over k,
gives J.%�.k// � J.%0/). This gives a uniform bound on F .%�t / and the Dunford-
Pettis theorem below turns the weak convergence %�t * %t as measures into a weak
convergence in L1. Look at the term

ˆ
f � rV%� WD

ˆ T

0

dt
ˆ

˝

f .t; x/ � rV.x/%�t .x/ dx:
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The integrand in t is uniformly bounded by jjf jjL1 jjrVjjL1 . Hence, we can
compute its limit as � ! 0 looking at the limit for each fixed t because it is
dominated. And, for fixed t, we have weak convergence in L1 of %�t to %t, which,
multiplied with a fixed L1 function, i.e., f �rV , gives the desired limit of the integral.

ut

Box 8.2. Memo: Equi-integrability and the Dunford-Pettis theorem

Definition. A sequence of function %n is said to be equi-integrable if for every " > 0

there exists ı > 0 such that on every set A with jAj � ı, we have
´

A %n.x/ dx � " for any n.
We can check that equi-integrability is equivalent to a bound

´
f .%n.x// dx � C <

C1 for any superlinear function f . Let us only prove that such a bound implies equi-
integrability. Indeed, fix " > 0 and take M such that for all t with t > M, we have f .t/=t >
2C=" (this is possible thanks to the superlinearity of f ). Then we estimate

ˆ

A
%n D

ˆ

A\f%n�Mg

%n C
ˆ

A\f%n>Mg

%n

f .%n/
f .%n/ dx � MjAj C "

2C
C:

It is now enough to take ı D "
2M and we get

´
A %n.x/ dx < ".

Theorem. Suppose that %n is a sequence of probability densities weakly converging as
measures to % 2 P.˝/. Suppose that

´
f .%n/ is bounded for some superlinear function

f . Then % is also absolutely continuous and the weak convergence also holds in L1 (i.e., in
duality with L1 functions and not only with continuous ones).

Proof. The absolute continuity of % is a consequence of the lower semi-continuity of F
defined as F .%/ D ´

˝ f .%.x// dx if % 
 L d (C1 otherwise).
Moreover, the bound on

´
f .%n.x// dx implies equi-integrability. Fix a test function ' 2

L1 and use the fact that for every " > 0, there is a ı > 0 with jAj � ı ) ´
A %n.x/ dx � "

and that, by Lusin’s theorem, for this ı > 0, there exists a continuous function Q' with
jj Q'jjL1

� jj'jjL1

and f' ¤ Q'g � A, where A is open with jAj < ı. We have

ˇ̌̌
ˇ
ˆ

'.%n � %/

ˇ̌̌
ˇ �

ˇ̌̌
ˇ
ˆ

Q'.%n � %/

ˇ̌̌
ˇC 2jj'jjL1

ˆ

A
.%n C %/:

Since A is open and %n * %, we have
´

A %.x/ dx � lim inf
´

A %n.x/ dx � "; hence

lim sup

ˇ̌̌
ˇ
ˆ

'.x/%n.x/ dx �
ˆ

'.x/%.x/ dx

ˇ̌̌
ˇ � 0C 2jj'jjL1";

which implies, " being arbitrary,
´
'.x/%n.x/ dx ! ´

'.x/%.x/ dx.

8.4 Discussion

8.4.1 EVI, uniqueness, and geodesic convexity

In the general theory of gradient flows [15] in metric spaces, another characteri-
zation, different from the EDE, is proposed in order to cope with uniqueness and
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stability results. It is based on the following observation: if F W Rd ! R is convex,
then the inequality

F.y/ � F.x/C p � .y � x/ for all y 2 R
d

characterizes (by definition) the vectors p 2 @F.x/, and if F 2 C1, it is only satisfied
for p D rF.x/. Analogously, if F is �-convex, the inequality that characterizes the
gradient is

F.y/ � F.x/C �

2
jx � yj2 C p � .y � x/ for all y 2 R

d:

Hence, we can pick a curve x.t/ and a point y and compute

d

dt

1

2
jx.t/ � yj2 D .y � x.t// � .�x0.t//:

Consequently, imposing

d

dt

1

2
jx.t/ � yj2 � F.y/ � F.x.t// � �

2
jx.t/ � yj2;

for all y, will be equivalent to �x0.t/ D rF.x.t//. This will provide a second
characterization (called EVI, evolution variational inequality) of gradient flows in a
metric environment. Indeed, all the terms appearing in the above inequality have a
metric counterpart (only squared distances and derivatives w.r.t. time appear). Even
if we often forget the dependence on �, it should be noted that the condition EVI
should actually be written as EVI�, since it involves a parameter �, which is a priori
arbitrary. Actually, �-convexity of F is not necessary to define the EVI� property,
but it will be necessary in order to guarantee the existence of curves which satisfy
such a condition. The notion of �-convexity will hence be crucial also in metric
spaces, where it will be rather “�-geodesic-convexity.”

The role of the EVI condition in the uniqueness and stability of gradient flows is
quite easy to guess. Take two curves, which we call x.t/ and y.s/, and compute

d

dt

1

2
d.x.t/; y.s//2 � F.y.s// � F.x.t// � �

2
d.x.t/; y.s//2; (8.13)

d

ds

1

2
d.x.t/; y.s//2 � F.x.t// � F.y.s// � �

2
d.x.t/; y.s//2: (8.14)

If one wants to estimate E.t/ D 1
2
d.x.t/; y.t//2, summing up the two above

inequalities, after a chain-rule argument for the composition of the function of two
variables4 .t; s/ 7! 1

2
d.x.t/; y.s//2 and of the curve t 7! .t; t/, gives

4Note that a similar argument, based on doubling the variables, is also often performed for the
differentiation of W2

2 along curves in W2, which we did differently in Section 5.3.5.
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d

dt
E.t/ � �2�E.t/:

By Gronwall’s lemma, this provides uniqueness (when x.0/ D y.0/) and stability.
The situation concerning these two different notions of gradient flows (EVI and

EDE) in abstract metric spaces has been clarified by Savaré (in an unpublished note,
but the proof can also be found in [9]), who showed that

• All curves which are gradient flows in the EVI sense also satisfy the EDE
condition.

• The EDE condition is not in general enough to guarantee uniqueness of the
gradient flow. As a simple example, take X D R

2 with the `1 distance

d..x1; x2/; .y1; y2// D jx1 � y1j _ jx2 � y2j;
and take F.x1; x2/ D x1; we can check that any curve .x1.t/; x2.t// with
x0
1.t/ D �1 and jx0

2.t/j � 1 satisfies EDE.
• On the other hand, the existence of a gradient flow in the EDE sense is quite

easy to get and provable under very mild assumption.
• The EVI condition is in general too strong in order to get existence (in the

example above of the `1 norm, no EVI gradient flow would exist), but always
guarantees uniqueness and stability (w.r.t. initial data).

Also, the existence of EVI gradient flows is itself very restricting on the function
F: indeed, it is proven in [134] that if F is such that from every starting point x0
there is an EVI� gradient flow, then F is necessarily �-geodesically convex.

We need to stress that all these abstract considerations on EDE and EVI are
mandatory when dealing with a general metric framework, but can often be skipped
when dealing with precise applications. For the sake of the applications to PDE that
are at the core of this chapter, the point of view which seems to be more concrete
is the following: there is an evolution model translated into a PDE, and we want
to study this equation (existence; uniqueness and stability; qualitative, regularity,
and asymptotical properties; numerical simulations). If this PDE happens to be the
gradient flow of a certain functional for the W2 distance, then much information
can be obtained by the gradient flow approach (more specifically, the minimizing
movement approach via discretized variational problems). But the notion of solution
that one should use is a priori the one which came with the PDE in the modeling of
the problem (in general, the notion of weak solution of a continuity equation). This
is why, even if (nontrivial) results exist proving equivalence between some abstract
(EVI or EDE) notions in the metric space W2 and weak solutions of evolution
equations (see [15]), we preferred not to enter into these details here in this book.

On the other hand, we will see in a while (next section) that, as a last remark
in favor of the general theory developed in [15], it is not always easy to prove
existence via the minimizing movement method when we face nonlinear terms and
that exploiting the characterization of the gradient flows in W2 developed in [15]
could be sometimes easier.
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8.4.2 Other gradient flow PDEs

We saw in Section 8.3 the example, and a detailed analysis, of the Fokker-Planck
equation. The main reason to choose such example is its simplicity, because it is a
linear equation. This allows easily to pass to the limit all the terms in the relation
between E and %. Yet, many other important equations can be obtained as gradient
flows in W2, choosing other functionals. We will see some of them here, without
entering into details of the proof. We stress that handling nonlinear terms is often
difficult and requires ad hoc estimates. We will discuss some of the ideas that one
should apply. Note, on the other hand, that if one uses the abstract theory of [15],
there is no need to produce these ad hoc estimates: after developing a general (and
hard) theory for general metric spaces, the second part of [15] explains which are
the curves that one finds as gradient flows in W2, with the relation between the
velocity field v and the derivatives (with an ad hoc notion of subdifferential in
the Wasserstein space) of the functional F. This automatically gives the desired
result as a part of a larger theory.

We will discuss six classes of PDEs in this section: the porous media equation;
the Keller-Segel equation; more general aggregation models; more involved
equations with diffusion, advection, and aggregation; a model for crowd motion
with density constraints; and the flow of the squared distance SW2

2 .

Porous media equation

This equation models the diffusion of a substance into a material whose properties
are different than the void and which slows down the diffusion. If one considers
the case of particles which are advected by a potential and subject to this kind of
diffusion, the PDE reads

@t% ��.%m/ � r � .%rV/ D 0;

for an exponent m > 1. One can formally check that this is the equation of the
gradient flow of the energy

F.%/ D 1

m � 1
ˆ
%m.x/ dx C

ˆ
V.x/%.x/ dx

(set to C1 for % … Lm). Indeed, the first variation of the first part of the functional
is m

m�1%
m�1, and %r �

m
m�1%

m�1	 D m% � %m�2r% D r.%m/.

Note that, in the discrete step min% F.%/C W2
2 .%;%0/

2�
, the solution % satisfies

(
m

m�1%
m�1 C V C '

�
D C % � a.e.

m
m�1%

m�1 C V C '

�
� C on f% D 0g:
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This allows to express %m�1 D m�1
m .C�V �'=�/C (see Section 7.2.3). This implies

that % is compactly supported if %0 is compactly supported, as soon as V has some
growth conditions (see Ex(52)). This fact contradicts the usual infinite propagation
speed that one finds in linear diffusion models (Heat and Fokker-Planck equation).

The above analysis works in the case m > 1; the fact that the usual Fokker-
Planck equation can be obtained for m ! 1 can be seen in the following way:
nothing changes if we define F via F.%/ D 1

m�1
´
.%m.x/�%.x// dxC´

V.x/%.x/ dx;
since the mass

´
%.x/ dx D 1 is a given constant. Yet, then it is easy to guess the

limit, since

lim
m!1

%m � %
m � 1 D % log %;

which provides the entropy that we already used in Section 8.3.
It is also interesting to consider the case m < 1: the function %m � % is no longer

convex, but it is concave and the negative coefficient 1=.m � 1/ makes it a convex
function. Unfortunately, it is not superlinear at infinity, which makes it more difficult
to handle. But for m � 1 � 1=d, the functional F is still displacement convex.
The PDE that we get as a gradient flow is called fast diffusion equation, and it has
different (and opposite) properties in terms of diffusion rate than the porous media
one.

From a technical point of view, proving compactness of the minimizing move-
ment scheme for these equations is not very easy, since one needs to pass to the limit
the nonlinear term�.%m/, which means proving strong convergence on % instead of
weak convergence. The main ingredient is a sort of H1 bound in space, which comes
from the fact that we have

ˆ T

0

ˆ

˝

jr.%m�1/j2 dxdt �
ˆ T

0

ˆ

˝

jr'j2
�2

dxdt D
ˆ T

0

j%0j.t/2dt � C (8.15)

(but one has to deal with the fact that this is not a full H1 bound, and the behavior in
time has to be controlled).

Keller-Segel

An interesting model in mathematical biology (see [201, 202] for the original
modeling) is the following: a population % of bacteria evolves in time, following
diffusion and advection by a potential. The potential is given by the concentration u
of a chemoattractant nutrient substance, produced by the bacteria themselves. This
kind of phenomenon is also known under the name of chemotaxis. More precisely,
bacteria move (with diffusion) in the direction where they find more nutrient, i.e.,
in the direction of ru, where the distribution of u depends on their density %. The
easiest model uses linear diffusion and supposes that the distribution of u is related
to % by the condition ��u D %, with Dirichlet boundary conditions u D 0 on @˝.
This gives the system
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8̂̂
<
ˆ̂:
@t%C ˛r � .%ru/ ��% D 0;

��u D %;

u D 0 on @˝; %.0; �/ D %0; @n% � ˛%@nu D 0 on @˝:

The parameter ˛ stands for the attraction intensity of bacteria toward the chemo-
attractant. By scaling, instead of using probability measures % 2 P.˝/, one can set
˛ D 1 and play on the mass of % (indeed, the nonlinearity is only in the term %ru,
which is quadratic in %).

Alternative equations can be considered for u, such as ��u C u D % with
Neumann boundary conditions. On the contrary, the boundary conditions on % must
be of Neumann type, to guarantee conservation of the mass (see next Section 8.4.3).
This system can also be set in the whole space, with suitable decay conditions
at infinity. Note also that often the PDE condition defining u as the solution of a
Poisson equation is replaced, when ˝ D R

2, by the explicit formula

u.x/ D � 1

2�

ˆ

R2

log.jx � yj/%.y/ dy: (8.16)

There is some confusion in higher dimension, as the very same formula does not
hold for the Poisson equation (the logarithmic kernel should indeed be replaced by
the corresponding Green function), and there are two alternatives: either keep the
fact that u solves ��u D % or the fact that it derives from % through (8.16). We
prefer keeping the PDE definition, which sounds more justified.

One can see that this equation is the gradient flow of the functional

F.%/ D
ˆ

˝

% log % � 1

2

ˆ

˝

jru%j2; where u% 2 H1
0.˝/ solves ��u% D %:

Indeed, the only nonstandard computation is that of the first variation of the Dirichlet
term � 1

2

´ jru%j2. Suppose %" D %C "
 and set u%C"
 D u% C "u
. Then

d

d"

�
�1
2

ˆ
jru%C"
j2

�
j"D0

D �
ˆ

ru% � ru
 D
ˆ

u%�u
 D �
ˆ

u%
:

It is interesting to note that this Dirichlet term is indeed (up to the coefficient �1=2)
the square of the H�1 norm of %, since jjujjH1

0
D jjrujjL2 D jj%jjH�1 . We will call it

the H�1 term.
It is also possible to replace linear diffusion with nonlinear diffusion of porous

media type, replacing the entropy
´
% log % with a power-like energy

´
%m.

Note that the variational problem min F.%/C W2
2 .%;%0/

2�
requires some assumption

to admit the existence of minimizers, as unfortunately the Dirichlet term has the
wrong sign. In particular, it would be possible that the infimum is �1 or that the
energy is not l.s.c. (the H1 part being u.s.c. because of the negative sign).
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When we use nonlinear diffusion with m > 2, the existence of a solution is quite
easy (see Ex(53)). Sophisticated functional inequalities allow to handle smaller
exponents, and even the linear diffusion case in dimension 2, provided ˛ � 8� . We
refer to [57] and to the references therein for details on the analysis of this equation.
Some of the technical difficulties are similar to those of the porous media equation,
when passing to the limit nonlinear terms. In [57], the H�1 term is treated in terms
of its logarithmic kernel, and ad hoc variables symmetrization tricks are used. Note
however that the nonlinear diffusion case is easier, as Lm bounds on % translate into
W2;m bounds on u and hence strong compactness for ru.

We also remark that the above model, coupling a parabolic equation on % and an
elliptic one on u, implicitly assumes that the configuration of the chemoattractant
instantaneously follows that of %. More sophisticated models can be expressed in
terms of the so-called parabolic-parabolic Keller-Segel equation, in the form

8̂̂
<
ˆ̂:
@t%C ˛r � .%ru/ ��% D 0;

@tu ��u D %;

u D 0 on @˝; %.0; �/ D %0; %.@n% � @nu/ D 0 on @˝;

or other variants with different boundary conditions. This equation can also be
studied as a gradient flow in two variables, using distance W2 on % and L2 on u;
see [58].

Aggregation models

Consider a more general case where the movement is advected by a potential
determined by the superposition of many potentials, each created by one particle.
For instance, given a function W W R

d ! R, the particle located at x produces a
potential W.� � x/ and, globally, the potential is given by V.y/ D ´

W.y � x/d%.x/,
i.e., V D W � %. The equation, if every particle follows �rV , is

@t% � r � .% ..rW/ � %// D 0;

where we used r.W � %/ D .rW/ � %. If W is even (i.e., the interaction between x
and y is the same as between y and x), then this is the gradient flow of the functional

F.%/ D 1

2

ˆ ˆ
W.x � y/d%.x/d%.y/:

When W is convex, for instance, in the quadratic case
´´ jx � yj2d%.x/d%.y/,

this gives rise to a general aggregation behavior of the particle, and as t ! 1 one
expects %t * ıx0 (the point x0 depending on the initial datum %0: in the quadratic
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example above, it is the barycenter of %0; see Ex(51)). If W is not smooth enough,
the aggregation into a unique point can also occur in finite time; see [118].

Obviously, more general interaction terms can be considered, of the form W.x; y/.
As we saw in Chapter 7, some other energies (as the H�1 term in Keller-Segel) can
also be expressed in this way, using their Green function (but in general they lose
convexity of the kernel). Note that these equations are both nonlinear (the term
in the divergence is quadratic in %) and nonlocal. It is rare to see these nonlocal
aggregation terms alone in the equation, as they are often coupled with diffusion or
other terms. This is why we do not provide specific references except [118]. We also
note that from the technical point of view, this kind of nonlinearity is much more
compact than the previous ones, since the convolution operator transforms weak
convergence into strong one, provided W is regular enough (the difficulties with the
kernel in Keller-Segel exactly come from its singularity).

Diffusion, advection, and aggregation: the full picture

Very often, the aggregation energy of the previous paragraph is considered together
with an internal energy and a confining potential energy, which brings to the
functional

F.%/ D
ˆ

f .%.x// dx C
ˆ

V.x/ d%.x/C 1

2

ˆ ˆ
W.x � y/d%.x/d%.y/:

This gives the equation

@t% � r � �% �r.f 0.%//C rV C .rW/ � %�	 D 0:

Among the mathematical interest for this family of equations, we stress that they are
those where more results (in terms of stability and convergence to equilibrium) can
be proven, due to the fact that conditions to guarantee that F is displacement convex
are well known (Section 7.3). See in particular [116, 117] for physical considerations
and convergence results on this equation.

Crowd motion

The theory of Wasserstein gradient flows has interestingly been applied to the study
of a continuous model of crowd movement under density constraints.

Let us explain the modeling, starting from the discrete case. Suppose that we
have a population of particles such that each of them, if alone, would follow its
own velocity u (which could a priori depend on time, position, on the particle itself,
etc.). Yet, there is a constraint: these particles are modeled by rigid disks that cannot
overlap; hence, the actual velocity cannot always be u, in particular if u tends to
concentrate the masses. We will call v the actual velocity of each particle, and
the main assumption of the model is that v D Padm.q/.u/, where q is the particle
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configuration, adm.q/ is the set of velocities that do not induce (for an infinitesimal
time) overlapping starting from the configuration q, and Padm.q/ is the projection on
this set.

The simplest example is the one where every particle is a disk with the same
radius R and center located at qi. In this case we define the admissible set of
configurations K through

K WD fq D .qi/i 2 ˝N W jqi � qjj � 2R for all i ¤ jg:
In this way the set of admissible velocities is easily seen to be

adm.q/ D fv D .vi/i W .vi � vj/ � .qi � qj/ � 0 for all .i; j/ with jqi � qjj D 2Rg:
The evolution equation which has to be solved to follow the motion of q is then

q0.t/ D Padm.q.t//u.t/ (8.17)

(with q.0/ given). Equation (8.17), not easy from a mathematical point of view, was
studied by Maury and Venel in [223, 224].

We are now interested in the simplest continuous counterpart of this microscopic
model (without pretending that it is any kind of homogenized limit of the discrete
case, but only an easy reformulation in a density setting). In this case the particle
population will be described by a probability density % 2 P.˝/, the constraint
becomes a density constraint % � 1 (we define the set K D f% 2 P.˝/ W % � 1g),
the set of admissible velocities will be described by the sign of the divergence on the
saturated region f% D 1g: adm.%/ D ˚

v W ˝ ! R
d W r � v � 0 on f% D 1g
, and

we will consider a projection P, which will be either the projection in L2.L d/ or in
L2.%/ (this will turn out to be the same, since the only relevant zone is f% D 1g).
Finally, we solve the equation

@t%t C r � �%t
�
Padm.%t/ut

		 D 0: (8.18)

The main difficulty is the fact that the vector field v D Padm.%t/ut is neither regular
(since it is obtained as an L2 projection and may only be expected to be L2 a priori),
nor it depends regularly on % (it is very sensitive to small changes in the values of
%: for instance, passing from a density 1 to a density 1 � " completely modifies the
saturated zone and hence the admissible set of velocities and the projection onto it).

In [225] these difficulties have been overtaken in the case u D �rD (where
D W ˝ ! R is a given Lipschitz function), and the existence of a solution (with
numerical simulations) is proven via a gradient flow method. Indeed, (8.18) turns
out to be the gradient flow in W2 of the energy

F.%/ D
( ´

D d% if % 2 KI
C1 if % … K:
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We do not enter into the details of the study of this equation, but we just make
a little bit more precise the definitions above. Actually, instead of considering the
divergence of vector fields which are only supposed to be L2, it is more convenient
to give a better description of adm.%/ by duality :

adm.%/ D
�

v 2 L2.%/ W
ˆ

v � rp � 0 8p 2 H1.˝/ W p � 0; p.1 � %/ D 0

�
:

In this way we characterize v D Padm.%/.u/ through

u D v C rp; v 2 adm.%/;
ˆ

v � rp D 0;

p 2 press.%/ WD fp 2 H1.˝/; p � 0; p.1 � %/ D 0g;

where press.%/ is the space of functions p used as test functions in the dual definition
of adm.%/, which play the role of a pressure affecting the movement. The two cones
rpress.%/ (defined as the set of gradients of elements of press.%/) and adm.%/ are
in duality for the L2 scalar product (i.e., one is defined as the set of vectors which
make a negative scalar product with all the elements of the other). This allows for
an orthogonal decomposition ut D vt C rpt and gives the alternative expression of
Equation (8.18), i.e.,

(
@t%t C r � �%t.ut � rpt/

	 D 0;

0 � % � 1; p � 0; p.1 � %/ D 0:
(8.19)

More details can be found in [225, 226, 265]. In particular, in [225] it is
explained how to handle the nonlinearities when passing to the limit. Two sources
of nonlinearity are observed: the term %rp is easy to consider, since it is actually
equal to rp (from p D 0 on f% ¤ 1g); on the other hand, we need to deal with
the equality p.1 � %/ D 0 and pass it to the limit. This is done by obtaining strong
compactness on p, from a bound on

´ T
0

´
˝

jrpj2, obtained similarly to (8.15).

Sliced Wasserstein distance

We already mentioned in Section 2.5.2 the idea by M. Bernot which consisted in
moving every particle following the vector field v obtained in the following way:
given two measures %; � 2 P.Rd/, we project them onto any 1D direction e 2 S

d�1
via the map �e W Rd ! R given by �e.x/ D x � e; call Te W R ! R the monotone
optimal transport between the two image measures .�e/#% and .�e/#�. Then we
define ve.x/ WD .Te.�e.x//��e.x//e and v.x/ D ffl

Sd�1 ve.x/ dH d�1.e/, where H d�1
is the uniform measure on the sphere.

For numerical approaches, Bernot proposed to iterate a construction with a time
step � > 0, but a natural continuous counterpart exists: simply define, for every
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absolutely continuous measure % 2 P.Rd/, the vector field v.%/ defined above
(absolute continuity is just required to avoid atoms in the projections). Then, we
solve the equation

@t%t C r � .%tv.%t// D 0:

It happens that this equation has a gradient flow structure: it is indeed the gradient
flow in W2 (i.e., for the distance W2) of the functional

F.%/ WD SW2
2 .%; �/:

Existence and estimates on the solution of this equation are proven in [65], and
the nonlinearity of v.%/ is quite easy to deal with. On the other hand, many, natural
and useful, questions are still open: Is it true that %t * � as t ! 1? Can we define
(at least under regularity assumptions on the initial data) the flow of the vector field
v.%t/, and what is the limit of this flow as t ! 1? The idea is that it should be
a transport map between %0 and � and, if not the optimal transport map, at least a
“good” one. This has been tested in the discrete case (where both %0 and � are a
finite number of equal Dirac masses) with satisfactory numerical results, which we
presented briefly in Section 2.5.2.

8.4.3 Dirichlet boundary conditions

For sure, the attentive reader has already noted that all the equations that have
been identified as gradient flows for the distance W2 on a bounded domain ˝
are always accompanied by Neumann boundary conditions. This should not be
surprising. Wasserstein distances express the movement of masses when passing
from a configuration to another, and the equation represents the conservation of
mass. It means that we are describing the movement of a collection % of particles,
bound to stay inside a given domain ˝, and selecting their individual velocity v in
a way that is linked to the global value of a certain functional F.%/. It is natural in
this case to have boundary conditions which write down the fact that particles do not
exit the domain. The pointwise value of the density % at the points of the boundary
@˝ is not particularly relevant in this analysis. Note that “do not exit” does not
mean “those on the boundary stay on the boundary,” which is what happens when
solutions are smooth and the velocity field v satisfies v � n D 0. Yet, the correct
no-flux condition here is rather %v � n D 0 a.e., which means that particles could

enter from @˝ into the interior
ı
˝, but immediately after it happens, there will be

(locally) no mass on the boundary, and the condition is not violated, hence. On the

contrary, should some mass go from
ı
˝ to outside˝, then we would have a violation

of the no-flux condition, since there would be (intuitively) some mass % > 0 on the
boundary with velocity directed outward.
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Anyway, we see that Dirichlet conditions do not find their translation into W2

gradient flows!
To cope with Dirichlet boundary conditions, Figalli and Gigli defined in [165] a

sort of modified Wasserstein distance, with a special role played by the boundary
@˝, in order to study the heat equation @t% D �% with Dirichlet b.c. % D 1 on @˝.

Their definition is as follows: given two finite positive measures �; � 2 MC.
ı
˝/

(not necessarily probabilities, not necessarily with the same mass), we define

˘b.�; �/ D f� 2 MC.˝ �˝/ W .�x/#�
ı
˝D �; .�y/#�

ı
˝D �g:

Then, we define

Wb2.�; �/ WD
s

inf

�ˆ
˝�˝

jx � yj2 d�; � 2 ˘b.�; �/

�
:

The index b stands for the special role played by the boundary. Informally, this
means that the transport from � to � may be done usually (with a part of �

concentrated on
ı
˝ � ı

˝), by moving some mass from � to @˝ (using � .
ı
˝

�@˝/), then moving from one point of the boundary to another point of the
boundary (this should be done by using � .@˝ � @˝/, but since this part of �
does not appear in the constraints, then we can forget about it, and the transport is

free on @˝), and finally moving from @˝ to � (using � .@˝� ı
˝/).

In [165] the authors prove that Wb2 is a distance, and that the space MC.
ı
˝/ is

always a geodesic space, independently of convexity or connectedness properties
of ˝ (differently from what happens with ˝, since here the transport is allowed
to “teleport” from one part of the boundary to another, either to pass from one
connected component to another or to follow a shorter path going out of˝), and they
study the gradient flow, for this distance, of the functional F.%/ D ´

.% log %�%/ dx.
Note that in the usual study of the entropy on P.˝/, one can decide to forget the
term � ´

%, which is anyway a constant because the total mass is fixed. Here this
term becomes important (if the function f .t/ D t log t � t is usually preferred to
t log t, it is because its derivative is simpler, f 0.t/ D log t, without changing its main
properties).

With this choice of the functional and of the distance, the gradient flow that
Figalli and Gigli obtain is the heat equation with the particular boundary condition
% D 1 on @˝. One could wonder where the constant 1 comes from and a reasonable
explanation is the following: if the transport on the boundary is free of charge, then
automatically the solution selects the value which is the most performant for the
functional, i.e., the constant t which minimizes f .t/ D t log t � t. In this way,
changing the linear part and using F.%/ D ´

.% log % � c%/ dx could change the
constant on the boundary, but the constant 0 is forbidden for the moment. It would
be interesting to see how far one could go with this approach and which Dirichlet



8.4 Discussion 313

conditions and which equations could be studied in this way, but this does not seem
to be done at the moment.

Moreover, the authors explain that, due to the lack of geodesic convexity of
the entropy w.r.t. Wb2, the standard abstract theory of gradient flows is not able
to provide uniqueness results (the lack of convexity is due in some sense to the
possible concentration of mass on the boundary, in a way similar to what happened
in [225] when dealing with the door on @˝). On the other hand, standard Hilbertian
results on the heat equation can provide uniqueness for this equation, as the authors
underlined in [165].

We observe that these kinds of distances with free transport on the boundary were
already present in [70, 71], but in the case of the Wasserstein distance W1, and the
analysis in those papers was not made for applications to gradient flows, which are
less natural to study with p D 1. We can also point out a nice duality formula:

Wb1.�; �/ WD min

�ˆ
jx � yj d� W � 2 ˘b.�; �/

�

D sup

�ˆ
u d.� � �/ W u 2 Lip1.˝/; u D 0 on @˝

�
:

Note that in general we also have the (easy) equality

Wbp.�; �/ D inf
˚
Wp.�C 
C; � C 
�/ W spt.
˙/ � @˝



;

where the Wasserstein distance on the right is defined, by abuse of notation, for
every pair of positive measures with the same mass, not only for probabilities. In

the special case p D 1 and �.
ı
˝/ D �.

ı
˝/, we also obtain

Wb1.�; �/ D Tc.�; �/; for c.x; y/ D minfjx � yj; d.x; @˝/C d.y; @˝/g:

The cost c is a pseudo-distance on ˝ where moving on the boundary is free.
This kind of distance has also been used in [95] (inspired by [70]) to model free
transport costs on other lower dimensional sets and not only the boundary (with the
goal to model, for instance, transportation networks and optimize their shape). It is
interesting to see the same kind of ideas appear for so different goals.

8.4.4 Evolution PDEs: not only gradient flows

We finish this chapter (and this book) with some other applications and connections
of optimal transport with evolution PDEs (note that we already saw connections
with static PDEs: the Monge-Ampère equation, in Section 1.7.6, and the Monge-
Kantorovich system, in Section 4.2.2).
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Incompressible Euler equation

Let us consider an incompressible and homogeneous fluid moving inside a smooth
domain ˝. The Euler equation for incompressible fluids describes the evolution of
its velocity field v in terms of the pressure field p:

@tvt C .vt � r/vt C rpt D 0; r � vt D 0:

To clarify the notation .v � r/v, we could write componentwise as @tvi C vjvi
j D �pi

(we ignore here the subscripts t for time, and use superscripts for components and
subscripts for derivatives and Einstein’s convention for summation over repeated
indices). Note that the term @tvt C .vt � r/vt is nothing but the acceleration in
Lagrangian coordinates. Indeed, the trajectory of a particle initially at position
x is obtained by following the vector field vt, i.e., we have, as usual, the flow
y0

x.t/ D vt.yx.t// with yx.0/ D x. If we denote by Yt the map x 7! yx.t/, for each
time t the map Yt is a measure-preserving diffeomorphism of ˝, and for each x
we have

y00
x .t/ D �rpt.yx.t//:

In [22], Arnold interpreted the equation above as a geodesic equation on the
space SDiff.˝/ of measure-preserving diffeomorphism of˝, viewed as an infinite-
dimensional manifold with the metric inherited from the embedding in L2.˝/ (the
tangent space corresponding to the divergence-free vector fields). According to this
interpretation, one can find solutions by minimizing

ˆ T

0

ˆ

D

1

2
jPg.t; x/j2 dx dt (8.20)

among all paths g.t; �/ W Œ0;T� ! SDiff.˝/ with g.0; �/ D g0 and g.T; �/ D gT

prescribed (typically, by right invariance, g0 is taken as the identity map). In this
way, the pressure field arises as a Lagrange multiplier from the incompressibility
constraint.

Shnirelman proved in [284, 285] that when d � 3 the infimum is not attained in
general and that when d D 2 there exists h 2 SDiff.D/ which cannot be connected
to the identity by a path with finite action. These “negative” results motivate the
study of relaxed versions of Arnold’s problem.

The first relaxed version of Arnold’s minimization problem was introduced
by Brenier in [83] and it is a sort of transport problem. Its relation to Arnold’s
problem is the same that Kantorovich problem has w.r.t. Monge. Brenier considered
probability measures Q on the space AC.˝/ of absolutely continuous paths (here
below simply denoted C ) ! W Œ0;T� ! ˝ and looked at the variational problem.
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Problem 8.11. Solve

.EP/ min

�ˆ
C

K2.!/ dQ.!/ W Q 2 P.C /; .e0; eT/#Q D �; .et/#Q D L˝ 8 t

�
;

(8.21)

where K2.!/ WD ´ T
0
1
2
j!0.t/j2 dt is the kinetic energy of a curve ! and the transport

plan � 2 P.L˝;L˝/ is fixed, typically of the form � D .id; h/#L˝ .

The existence of a minimizer Q is standard, provided that there exists at least a Q
with finite action (see [83]), which is true when ˝ is smooth enough.

We observe that any sufficiently regular path g.t; �/ W Œ0; 1� ! SDiff.˝/ induces
a flow (a traffic plan, in our language; see Section 4.2) Q, but the converse is far
from being true: particles starting from different points are allowed to cross at a
later time, and particles starting from the same point are allowed to split, which is
of course forbidden by classical flows. These solutions are called nondeterministic,
and [83] proposes indeed an example in the easy case T D � , ˝ D B.0; 1/ and
h.x/ D �x where they can be optimal.

On the other hand, in [83], a consistency result was proved: smooth solutions to
the Euler equation are optimal even in the larger class of admissible Q provided the
pressure field p satisfies

sup
t2Œ0;T�

sup
x2˝

D2p.t; x/ � �2

T2
I (8.22)

and are the unique ones if the above inequality is strict.
Uniqueness of the solution of the minimal action problem is an interesting matter:

in [51] the situation is analyzed in 1D (when a general uniqueness result is proven
assuming the pressure to be smooth) and 2D (where, on the contrary, [51] extends
and characterizes the nondeterministic solutions of [83] finding a very rich family
of nondeterministic optimizers).

Optimal transport appears in this framework in two aspects. First, the action-
minimization problem by Brenier is indeed a multi-marginal Kantorovich problem,
with marginal constraints for each time t (see Section 1.7.4). Second, when we
discretize in time this problem, natural strategies for numerics involve the following
procedure: suppose we have determined the positions of the particles at time ti�1
and tiC1 (with a uniform partition ti D T i

n ) and that they are represented by
two functions Xi�1 and XiC1, both with image measure equal to L˝ ; without the
incompressibility constraint, the intermediate value Xi D .Xi�1 C XiC1/=2 would
be optimal in order to minimize the kinetic energy, but its image measure is not, in
general, L˝ . Hence, we need to project it onto the set of maps X with prescribed
image measure, which is a classical transport problem, in the polar factorization
formulation (see Section 1.7.2).
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Coupling HJ and continuity equations, mean field games

We saw in Remark 6.2 in Chapter 6 that the Benamou-Brenier method provides a
solution of the following PDE system

(
@t%C r � .%r'/ D 0

@' C 1
2
jr'j2 D 0; %0 D �; %1 D �;

where the second equation is satisfied %-a.e., with inequality @t' C 1
2
jr'j2 � 0

everywhere.
This kind of coupled systems with Hamilton-Jacobi and continuity equations also

arises in other situations and in particular in the newborn theory of mean field games
(MFG).

Let us give a quick and informal presentation of this theory. We will only consider
the deterministic case (i.e., there will be no stochastic part in the evolution of
the agents and we will use deterministic optimal control theory and not stochastic
control). The reader may refer to [205, 206] and [105] to have a wider introduction
to this theory.

Suppose that a population of agents may evolve in time, each agent following
trajectories of the controlled equation

y0.t/ D f .t; y.t/; ˛.t//; t 2 Œ0;T� (8.23)

˛ W Œ0;T� ! R
d being a control that every agent may choose. At each time t, the

goal of each agent is to maximize the payoff

�
ˆ T

t

� j˛.s/j2
2

C g.%.s; y.s///

�
ds C ˚.y.T//; (8.24)

where g is a given increasing function. This means that ˛ is the effort that every
agent makes to move in the desired direction, and he pays for it (for simplicity,
we take a quadratic cost), that its position depends on ˛ through Equation (8.23),
and that he tries to optimize the final payoff ˚ , but he also pays for the densities
of the regions he passes by. In particular agents would like to avoid overcrowded
areas. At this first step, the density %.t; x/ is supposed to be a given function. Yet,
the MFG problem is an equilibrium problem: given the initial density %0, find a
time-dependent family of densities %t such that when every agent selects its optimal
trajectory so as to optimize (8.24), the density realized by these optimal trajectories
at time t is exactly %t.

One can study the optimal control problem given by (8.23) and (8.24) by means
of its value function.
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Box 8.3. Memo: Optimal control and Hamilton-Jacobi

Consider the optimization problem

max

�ˆ T

0

L.t; y.t/; ˛.t//dt C ˚.y.T// W y0 D f .t; y; ˛/; y.0/ D x0

�
;

where ˛ is the control that we can use to affect the solution of the state equation on the
trajectory x. Define the so-called value function

'.t; x/D sup

�ˆ T

t
L.s; y.s/; ˛.s//ds C ˚.y.T// W y.t/ D x; y0 D f .s; y; ˛/

�
:

It is well known from optimal control theory (see, for instance, Section 10.3 in [158]) that
' satisfies the Hamilton-Jacobi-Bellmann equation (in the viscosity sense)

@t'.t; x/C H.t; x;r'.t; x// D 0; '.T; x/ D ˚.x/;

where the Hamiltonian H is defined through

H.t; x; �/ D sup
˛

� � f .t; x; ˛/C L.t; x; ˛/: (8.25)

Moreover, it is also well known that in the control problem, for every .t; x/, the optimal
choice of ˛.t/ so as to solve the optimization problem starting from x at time t is the control
˛ which maximizes in the definition of H given in (8.25) for � D r'.t; x/, i.e., which
maximizes r'.t; x/ � f .t; x; ˛/C L.t; x; ˛/.

In the remarkable case where f .t; x; ˛/ D ˛ and L.t; x; ˛/ D � 1
2
j˛j2 � g.t; x/, we

get H.t; x; �/ D 1
2
j�j2 � g.t; x/, thus @t' C 1

2
jr'j2 D g; and the optimal curves follow

y0 D r'.t; y/.

This gives a system of two coupled equations, since ' solves an HJB equation
where % appears in the Hamiltonian, and % evolves according to a continuity
equation @t%C r � .%v/ D 0. To be more precise, we can give an explicit example,
in the case f .t; x; ˛/ D ˛. In such a case, the vector field to be put in the continuity
equation is exactly r'. This gives the system

8̂̂
<
ˆ̂:
@t' C jr'j2

2
� g.%/ D 0;

@t%C r � .%r'/ D 0;

'.T; x/ D ˚.x/; %.0; x/ D %0.x/;

(8.26)

where the first equation is satisfied in the viscosity sense and the second in the
distributional sense.

In this case, it is also known that a solution of this system (i.e., an equilibrium
in the mean field game) may be obtained by minimizing a suitable global functional
(obviously, up to a change of sign, we could also express it as a maximization).
Actually, one can solve
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min
ˆ T

0

ˆ

˝

�
1

2
j˛.t; x/j2%.t; x/C G.%.t; x//

�
dxdt �

ˆ

˝

˚.x/%.T; x/ dx

among solutions .%; ˛/ of the continuity equation @t% C r � .%˛/ D 0 with initial
datum %.0; x/ D %0.x/. When the function G is chosen as the antiderivative G of
g (i.e., G0 D g, and in particular G is convex), it happens that the minimizers of
this global functional are equilibria in the sense explained above (the trajectories
that the agents chose according to these densities are such that they exactly realize
these densities). These functionals are a modification of the functional proposed by
Benamou and Brenier [34] and studied in Chapters 5 and 6, and the minimization
corresponds to finding a good curve in W2, which avoids over-congested measures.
This kind of problems was also studied, without equilibrium issues, by Buttazzo,
Jimenez, and Oudet in [96]. Also note the analogy with the congested problems
of Section 4.4.1. The main difference here is the crucial role of time, while the
movement in Section 4.4.1 was stationary.

Semi-geostrophic equation

One of the first applications of optimal transport has been its role in this equation
modeling large-scale atmospheric behavior in a certain asymptotical regime. The
main ingredients of the physical description are the Coriolis force, the gravity, and
an incompressibility constraint. We suppose that the particles could have different
weights, thus leading to different impact of gravity, but their number per unit of
volume should be constant in time and space. This consists in imposing that the
density (mass per unit of volume) is constant in Lagrangian coordinates, but not
necessarily in time and space.

By ignoring, in a very shallow atmosphere (consider that the radius of the Earth
is much larger than the width of the atmosphere), the vertical effects of the Coriolis
force and using local coordinates where the vertical axis is orthogonal to the Earth
surface, we can write an equation in Lagrangian formulation:

X00.t; a/C JX0.t; a/C rpt.X.t; a// D f .a/;

where pt is the pressure at time t, a is a Lagrangian label, and the matrix J 2 M3 � 3
is given by

J D
0
@0 �1 0
1 0 0

0 0 0

1
A :

The force f stands for gravity, is vertical, and only depends on the label a. The
pressure pt appears in order to take care of the incompressibility constraint, which
corresponds to a 7! X.t; a/ being measure preserving for every t. For details on this
theory, we refer the reader to the book by M. Cullen [130].
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In Eulerian coordinate the above equation is written

8̂̂
<
ˆ̂:
@tvt C .vt � r/vt C Jv C rpt D ft;

@tft C vt � rft D 0;

r � vt D 0;

where the second equation represents the fact that the force is transported by the flow
itself (hence it “follows” the particles) and the third stands for incompressibility.

The time scale regime of the model is quasi-stationary, in the sense that we
suppose that the configuration at time t is stable. This can be interpreted in several
ways. A first one, with a variational flavor, is the following: at each time t, we
have a distribution of particles, each with its velocity. Suppose that these particles
want to move, each from a position x to x0. The new distribution of positions must
be incompressible and, among these new redistributions, we need to impose that
the original one minimizes the energy of the system, which is given by kinetic
energy and potential energy. Consider that because of Coriolis force, when moving
from x to x0, the velocity moves from v.x/ to v.x/ C J.x0 � x/. Hence the energy
to be minimized is of the form

´
1
2
jJ.x0 � x/j2 C `.x; x0 � x/, where `.x; �/ is

affine for every x (the gravity part is included in `). Consider the pressure, which
takes care of the incompressibility constraint. This means that minimizing such an
energy under prescribed image measure (which is by the way an optimal transport
problem with a cost equivalent to the quadratic one) is the same (see also the part
on incompressible Euler) as minimizing

´
1
2
jJ.x0 � x/j2 C p.x0/C `.x; x0 � x/ under

no constraints. It is clear that each position is stable if and only if it minimizes
x0 7! 1

2
jJ.x0 � x/j2 C p.x0/ C `.x; x0 � x/. This imposes first-order conditions, but

also the fact that x0 7! 1
2
jJx0j2 C p.x0/ is convex.

Another way of seeing the same fact is the following. Fix a time t0 and a point
x0, where particles have a velocity v0. Suppose that some particles around x0 have a
small perturbation in their velocity v � v0. We want to see what happens to these
particles: do they stay close to x0 or do they move far away? We freeze the pressure
in time and approximate it around x0 with its Taylor expansion at x0. Consider a
particle starting from x0 with velocity v.s/: here the variable s denotes time, but at a
shorter time scale than that of the global evolution in t (which justifies the fact that
we freeze t D t0). The equation on v, if we differentiate the acceleration law, is of
the form v00 C Jv0 C D2p.x0/v D 0 (here we take a second-order Taylor expansion
for p). By replacing v0 with �Jv C const (taking, for this lower-order condition, a
first-order Taylor expansion for p), we get

v00 C .D2p.x0/ � J2/v D const:

For stability, we want to avoid the existence of solutions of this equation which
diverge exponentially. If only bounded solutions exist, this means that small
perturbations in the velocity produce small displacements, and hence the profile
at .t0; x0/ is stable.
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In both interpretations (the variational one above and the one related to linear
stability), the condition that we find is that D2p.x0/ � J2 (which is a symmetric
matrix) only has positive eigenvalues. This means

D2p C
0
@1 0 00 1 0

0 0 0

1
A � 0

in the sense of positive-definite symmetric matrices. Equivalently, the function x 7!
Pt.x/ WD pt.x/C 1

2
.jx1j2 C jx2j2/ must be convex.

This convexity fact is known as the Cullen-Purser stability condition; see [130]
or [131, 286].

We now come back to the acceleration law, we differentiate it as above, and
replacing X00 using the equation, we get

X000.t; a/C Œrtp.X.t; a//�
0 � J2X0.t; a/ D Jrpt.X.t; a//:

If we decide, on this time scale, to ignore the third derivative (yep!) and we set
Yt.a/ D rPt.X.t; a//, we have

Y 0.t; a/ D J.Y.t; a/ � X.t; a//;

and this is an evolution equation on Y where X is defined from Y in the following
way: for each time t, X.t; �/ is measure preserving, and Y is decomposed into the
composition of the gradient of a convex function P and X. Here is where optimal
transport, and in particular polar factorization (see Section 1.7.2) comes into play!
We refer to [33] for the first applications of optimal transport in this field.

This equation is also studied in the so-called dual variables, i.e., Y and its image
measure % (which has nothing to do with the density of the fluid). They solve

(
@t%t C r � .%tJ.y � rP	

t .y/// D 0;

det.D2P	
t / D %t; P	

t is convex:

This equation has been mathematically studied in several papers, where recent
regularity improvements on the Hessian of the Kantorovich potential (the W2;1 result
that we briefly addressed in Section 1.7.6) have allowed for rigorous results (see, for
instance, [16, 17]).

Reconstruction of the early universe

This is another surprising domain where optimal transport for a quadratic cost
played an important role. The problem considers the evolution of the density % of the
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matter in the universe, subject to the gravity field created by % itself. In the so-called
co-moving coordinates the equations read as follows:

8̂̂
<
ˆ̂:
@tv C .v � r/v D � 3

2

r'Cv
t ;

@t%C r � .%v/ D 0;

�' D %�1
t :

(8.27)

The first equation gives the acceleration of a particle in terms of the gradient of the
potential, the second is conservation of mass, and the third is the relation of the
potential with the density itself. To understand where the precise expressions of
the first and third equations come from, the reader is invited to look at the very
first pages of [45]. He will easily see that the main point is given by the change
of variable imposed in the choice of the co-moving coordinates, i.e., coordinates
which follow the expansion of the universe. In these coordinates we use x0 D
a.t0/x as a space variable, where x is the physical space variable and a is the
expansion coefficient, which grows in time. We change the time scale from t to
t0, via dt D a.t0/dt0. After the change of variables, we drop the superscripts in
the new variables. The expansion factor a needs to satisfy precise equations, called
Friedmann equations. Note that also the friction term in the first equation (i.e., the
negative velocity at the r.h.s.) exactly comes from this change of variable.

One sees from these equations that the density % at time 0 must be uniform. It
corresponds to the distribution of matter in the very first instants of the universe.
On the contrary, the density of the universe today is far from being uniform and is
well approximated by a number of Dirac masses corresponding each to a galaxy
cluster (i.e., each atom represents several galaxies, very close to each other). The
question arises whether we can guess the evolution of the universe in the past by
only knowing the current density %T (T being the final time, i.e., now, but we will set
T D 1 for simplicity), i.e., without knowing the initial velocity. This question has
been analyzed by U. Frisch and collaborators, involving among others Y. Brenier
because of the connections this problem has with optimal transport. See [89] and
[172]. By the way, Appendix A in [89] explains in detail the derivation of the above
equations in co-moving coordinates presenting the set of choices and simplifications
that have been made compared to the general framework in [45].

The connections of these equations and of the problem of the reconstruction from
the only knowledge of %T with optimal transport theory are twofold. First, let us
start from the so-called Zel’dovich approximation. This approximation consists in
assuming that, for t > 0, all the particles move in straight lines with constant speed
only depending on the initial data. Let us be more precise: in Lagrangian coordinates
the first equation of (8.27) reads

2t

3
X00.t; x0/C X0.t; x0/ D �r't.X.t; x0//:
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Here the potential 't is required to satisfy 1 C t�'t D %t, where %t is the image
measure of X.t; �/. The approximation consists in ignoring the second derivative and
freezing the r.h.s. at its value at t D 0, i.e., X.t/ D x0 � tr'0.x0/.

It seems a rude approximation, but it gives good results in practice, and it has an
optimal transport justification, as pointed out by Y. Brenier. Indeed, choose as %t the
geodesic in W2 between %0 D 1 and %1. If �'t is the Kantorovich potential between
%t and %0, we know that it solves the Monge-Ampère equation

det.I C tD2't/ D %t:

Moreover, if T is the optimal transport from %0 to %1, the Lagrangian map X.t; x0/ D
.1 � t/x0 C tT.x0/ is the optimal transport from %0 to %t. This means that particles
should arrive at time t with velocity equal to �r't.X.t; x0// and proves that
�r't.X.t; x0// D T.x0/ � x0 does not depend on time. In particular, it is also equal
to its initial value �r'0.x0/. In this way, we have constructed a Lagrangian map
compatible with the Zel’dovich approximation (i.e., particles move with X00 D 0),
with the only exception that it solves det.I C tD2't/ D %t instead of 1C t�'t D %t.
In this way, the Zel’dovich approximation provides approximate solution for the
original equation but exact solutions for this new, modified equation. Note the
use of a nonlinear equation to approximate a linear one (the linear one being the
linearization of the nonlinear around t D 0), quite peculiar in this case.

From the above observations, the authors of [89] concentrated on the search
for an optimal map T in the transport between the uniform density %0 and the
current density %1 and obtained satisfactory reconstruction results. Numerically,
they discretized also the source measure and used an auction algorithm.

On the other hand, [89] also shows (in Section 6 and Appendix D) that System
(8.27) (without approximation or replacing the Poisson equation with the Monge-
Ampère equation) can be obtained as the optimality condition of a variational
problem, namely,

min

8̂̂
<
ˆ̂:
ˆ 1

0

ˆ �
t3=2

2
%jvj2 C 3t�1=2

4
jr'j2

�
W

8̂̂
<
ˆ̂:
@t%C r � .%v/ D 0;

�' D % � 1;
%0 D 1; %1 D given

9>>=
>>;
:

(8.28)

This problem is a sort of modified Benamou-Brenier problem, with a time scale
factor, and the addendum of a term F.%/ which penalizes (with a time scale
coefficient as well) the H�1 norm of % � 1. Note that this term is the same which
appears in chemotaxis gradient flows (see Section 8.4.2), but with the good sign, and
also note the same formalism as the variational formulation of mean field games.
Moreover, the important fact is that this minimization problem is strictly convex,
which implies uniqueness of the solution of (8.27).

We leave the proof of the fact that the optimality conditions of the above
minimization lead to (8.27) as an exercise, Ex(54).



8.4 Discussion 323

We also stress that the existence of a minimizer is not straightforward. Indeed, the
coefficient t3=2 in front of the kinetic term does not allow to preserve the condition
at t D 0 along with minimizing sequence, and the H�1 term is multiplied with a
coefficient t�1=2 which is integrable, hence not enough to compensate for it. We are
in a situation analogous to the following 1D problem:

min

�ˆ 1

0

t1C˛jx0.t/j2 C t�1C˛G.x.t// W x.1/ D x1

�

where G is a convex functional, with quadratic growth, minimal at x0. We omit the
constraint x.0/ D 0 since this condition would not be stable under convergence. In
particular, there are finite-energy curves x.t/ with x.0/ ¤ x0 (compare to Ex(56)).
On the other hand, one can prove that the minimizers of this problem must satisfy
an extra condition at t D 0, because of optimality (like Neumann conditions, which
are not meaningful here since they only give 0 D 0 because of the coefficient t3=2).
It is possible to see, as in Ex(55), that this condition is x.0/ D x0.

The minimal action problem (8.28) has also been studied, in a simplified setting,
by Loeper in [215]. We also mention a variant problem proposed by Brenier, which
is meant to give a better insight in the formation of concentration [87]. Indeed, it is
quite disappointing to think that in the optimal transport problem between %0 and
%1, Dirac masses only appear at the final time (coherently with the analysis of the
intermediate measures �t that we did in Section 4.3). This means that they only
appear now, i.e. today : : : what should be the conclusion if we studied again the
same question tomorrow?

Finally, it is challenging to think that both the “static” version of this cosmologi-
cal problem (i.e., the optimal transport between %0 and %T ) and the “dynamical” one
(8.28) still have many secrets to reveal, if treated with the new numerical methods
and approaches (see Chapter 6, in particular for semi-discrete methods which are
exactly suitable for %0 D 1 and atomic %T ) which were not available at the time
of [89].



Exercises

The following is a short list of possible exercises related to the subject of the book.
The level of difficulty is strongly heterogeneous, and the most difficult exercises are
indicated with one * or two **. The symbol  is associated to those exercises which
are more relevant for the theory. Some (very) short hints follow.

Exercises from the topics of Chapter 1

Exercise 1. Find an example of a sequence of functions fn W Œ0; 1� ! Œ0; 1� such
that .fn/#.L 1 Œ0; 1�/ D L 1 Œ0; 1� but fn *

1
2
. Can these functions be taken C1?

Exercise 2.  Consider the problem

max

�ˆ
jx � T.x/j2 d� W T#� D �

�
:

Prove that, if � is absolutely continuous, this problem admits a solution and the
optimal T is the gradient of a concave function.

Exercise 3. Find the optimal transport map for the quadratic cost c.x; y/ D jx � yj2
between � D f � L 2 and � D g � L 2 in 2D, where f .x/ D 1

�
1B.0;1/.x/ and g.x/ D

1
8�
.4 � jxj2/.

Exercise 4. Let R W R
d ! R

d be given by R.x/ D �x. Characterize the
probabilities � 2 P2.R

d/ such that R is an optimal transport map between � and
R#� for the quadratic cost.

Exercise 5. Let S W R
d ! R

d be given by S.x1; x2; : : : ; xd/ D .x1; x2; : : : ;�xd/.
Prove that S cannot be the optimal transport map between � and S#� for the
quadratic cost if � � L d. Prove that if S is optimal in the above sense, then �
is concentrated on a Lipschitz hypersurface of the form fxd D f .x1; x2; : : : ; dd�1/g,
with f 2 Lip1.R

d�1/.
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Exercise 6. Consider the multi-marginal problem

min

�ˆ
c.x1; : : : ; xN/d� W � 2 P..Rd/N/ .�i/#� D �i

�
;

where �i 2 P.Rd/ are given compactly supported measures. Suppose that � is
concentrated on a set f.x1; : : : ; xN/ 2 .Rd/N W x1C� � �CxN D constantg. Prove that
� is optimal whenever the cost c is given by c.x1; : : : ; xN/ D h.x1 C � � � C xN/ for a
convex function h W Rd ! R and also in the case c.x1; : : : ; xN/ D �Pi¤j jxi � xjj2.
Exercises from the topics of Chapter 2

Exercise 7. Consider two probability measures � and � on R that we will suppose
atomless and with full support for simplicity. Let F� and F� be their cumulative
distribution functions: F�.x/ D �..�1; x�/ and F�.x/ D �..�1; x�/. Prove that
the following facts are equivalents:

1. F� � F� ,
2. there exists � 2 ˘.�; �/ concentrated on f.x; y/ W y � xg;
3. there exists T W R ! R such that T#� D � and T.x/ � x for every x,
4. the monotone increasing transport T from � to � satisfies T.x/ � x for every x.

Exercise 8. Prove that an optimal � 2 ˘.�;�/ for the cost c.x; y/ D 1
jx�yj exists

and that it is concentrated on at most two increasing graphs, one above and one
below the diagonal. Prove that these two graphs do not superpose and that the plan
comes indeed from a transport map. Is it increasing?

Exercise 9. * In the case � D L 1 Œ0; 1�, find the optimal transport map from �

to � for the cost c.x; y/ D 1
jx�yj .

Exercise 10.  Prove the optimality of �mon in 1D under the assumption that the
cost c W R � R ! R is C2 with @2

@x@y c.x; y/ < 0 for every .x; y/ 2 R � R. Deduce the
existence of an optimal map if � is atomless.

Exercise 11. Let A and B two symmetric positive definite matrices and LA;LB W
R

d ! R
d be affine functions defined through LA.x/ D Ax C a, LB.x/ D Bx C b, for

given a; b 2 R
d. Take a reference measure % which is invariant under rotations (i.e.,

R#% D % for every matrix R s.t. R �Rt D I) and define � WD .LA/#% and � WD .LB/#%.
Find the optimal transport map from � to � for the quadratic cost.

Exercises from the topics of Chapter 3

Exercise 12. Consider a domain ˝ D Œ0; 3�� Œ0; 2� and two absolutely continuous
measures on it, �0 and �1, with density %0 and %1, respectively, given by

%0.x; y/ D 2

9
if x � 1 or x 2�1; 2Œ and y � 1;

%0.x; y/ D 1

9
if x � 2 or x 2�1; 2Œ and y > 1;
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%1.x; y/ D 2

9
if x � 2 or x 2�1; 2Œ and y � 1;

%1.x; y/ D 1

9
if x � 1 or x 2�1; 2Œ and y � 1:

Represent graphically these two densities and find an optimal transport, as well as
a Kantorovich potential, between �0 and �1 for the cost c.x; y/ D jx � yj. Is the
optimal transport unique? And the potential?

Exercise 13. Find the optimal transport map for the cost c.x; y/ D jx � yj between
� D f �L 2 and � D g �L 2 in 2D, where f .x/ D 1

�
1B.0;1/.x/ and g.x/ D 1

8�
.4�jxj2/.

Exercise 14. Consider the cost c.x; y/ D jx � yj˛ for a given exponent 0 < ˛ < 1.
Prove that, for every pair �; � 2 P.˝/, we have

Tc.�; �/ D sup

�ˆ
u d.� � �/ W u 2 C0;˛.˝/; Œu�0;˛ � 1

�
;

where Œu�0;˛ is the C0;˛ seminorm of u: Œu�0;˛ WD supx¤y
ju.x/�u.y/j

jx�yj˛ .

Exercise 15. Consider the cost c.x; y/ D arctan.jx � yj/ and two measures �; � 2
P.Rd/ with compact and disjoint supports.

1. What can we say about c-concave functions for this c? Are they (uniformly)
continuous, Lipschitz?

2. Do the problems min
˚´

c.x; y/ d� W � 2 ˘.�; �/
 admit a solution?
3. Write the dual problem in terms of functions u having a given modulus of

continuity.
4. What is the connection between the support of an optimal � and the optimal u

in the dual problem?
5. Supposing that � is absolutely continuous, prove that the optimal � is unique

and derives from a transport. Give its expression in terms of ru.

Exercise 16. Consider h W Rd ! R defined through h.z/ D .jzj � 1/2C. Prove that,
for every �; � 2 P.˝/ with � � L d and ˝ compact, there exists an optimal
transport map for the cost c.x; y/ D h.x � y/.

Exercise 17. Consider the cost c.x; y/ D bjx � yjc (the integer part of the distance:
bac D maxfn 2 Z W n � ag. Prove that, for every �; � 2 P.˝/ with � � L d

and ˝ compact, there exists an optimal transport plan for such a cost of the form
� D PN

iD1 �i where each �i is induced by a transport map and N � diam.˝/C 1.

Exercise 18. For " > 0, consider the cost c".x; y/ D "
j jx�yj

"

k
and let �" be

an optimal transport plan for such a cost between two measures �; � 2 P.˝/

(consider ˝ compact for simplicity). Prove that, up to subsequences, �" * � ,
where � is an optimal transport plan between the same measures for the cost
c.x; y/ D jx � yj.
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Exercise 19.  Consider the cost c".x; y/ D p
"2 C jx � yj2 and let �" be optimal

for the cost c" in ˘.�; �/. Let " ! 0. Prove that, up to subsequences, we have
�" * � where � is optimal for the cost jx � yj. Supposing � � L d and spt.�/ \
spt.�/ D ;, prove that we have full convergence to the ray-monotone transport plan.
What can we say about the limit " ! 1?

Exercise 20. * Find a Borel set A � Œ0; 1� such that for every interval I � Œ0; 1�,
we have 0 < L 1.I \ A/ < L 1.I/.

Exercise 21. Let us define a distance, called SNCF distance, on a set X in the
following way:

SNCF.x; y/ WD
(
0 if x D y;

P.x/C P.y/ if x ¤ y;

where P W X ! R is a bounded function, to be interpreted as the distance to a fixed
connecting hub: imagine that every point is connected by a direct train to this hub
and to no other location.1 Prove that SNCF.x; y/ is a distance on X and that, for
c.x; y/ D SNCF.x; y/ and �; � 2 P.X/, we have Tc.�; �/ D ´

P.x/ dj� � �j.x/:
Exercises from the topics of Chapter 4

Exercise 22. Let y be a solution of the ODE y0.t/ D vt.y.t//. Prove that 	t WD ıy.t/

is a solution of the continuity equation @t	t C r � .	tvt/ D 0.

Exercise 23. * Prove that the set of polynomial functions is dense for the C1 norm
in the set C1.Œ0; 1�d/.

Exercise 24. Find the transport density � (see Section 4.3) between the measures
� D f � L 2 and � D g � L 2 in 2D, where f D 1

�
1B.0;1/ and g.x/ D 1

4�
1B.0;2/.

Exercise 25. Suppose � 2 Lp.˝/ and � 2 Lq.˝/, with p > q. Prove that, if
p < d=.d�1/, the transport density � in the transport from � to � belongs to Lp and,
if p � d=.d�1/, it belongs to Lr.˝/ for all the exponents r satisfying

r < r.p; q; d/ WD dq.p � 1/
d.p � 1/ � .p � q/

:

Exercise 26.  Given �; � 2 P.˝/, prove that there exists Q 2 P.C / with
.e0/#Q D �; .e1/#Q D � and iQ 2 Lp.˝/ (we recall that iQ is the traffic intensity
defined in Section 4.2.3 and that the et are the evaluation maps) if and only if��� 2
.W1;p0

/	.

1The common hub could be called Paris, for instance. However, no restriction on the space X is
imposed, and in particular, there is no need to assume that it has hexagonal shape.
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Exercise 27. Given Q 2 P.C / with .e0/#Q D �; .e1/#Q D �, prove that
there exists QQ 2 P.C / concentrated on injective curves and such that .e0/# QQ D
�; .e1/# QQ D � and i QQ � iQ.

Exercise 28. Consider the simplified network on the right, where the cost for a
commuter to move along a segment of length ` with traffic intensity i is given by i`.
Do not distinguish between different traffic directions on a same
segment (i.e., i is the sum of the number of commuters going in one
direction plus the number going in the other direction). Consider the
case where a quantity 1 of commuters must go from A to A0 and
another quantity 1 from B to B0. Find the Wardrop equilibrium.

�A

�A0

�B

�B0

Exercise 29. Prove that d˛.L˝; ı0/ D C1 for every compact domain ˝ � R
d

with nonempty interior and j˝j D 1 and every ˛ < 1 � 1=d.

Exercise 30. Consider the branched transport for ˛ D 1=2 between two atomic
measures � D P

i aiıxi and � D P
j bjıyj . Consider a triple junction at a point z

which is not one of the points xi or yj: among the three branches at z, either two are
incoming and one outcoming or two outcoming and one incoming. Prove that the
two with the same orientation must make an angle of 90ı.

Exercises from the topics of Chapter 5

Exercise 31.  Let X be a Polish metric space and �n; � 2 P1.X/ be probability
measures on X such that

´
� d�n ! ´

� d� for every � 2 Lip1.X/. Prove´
� d�n ! ´

� d� for every � 2 Cb.X/.

Exercise 32. Prove the following equalities, for every compact set ˙ � ˝ and
every density f 2 L1.˝/ with f � 0 and

´
˝

f .x/ dx D 1,
ˆ

d.x; ˙/f .x/ dx D minfW1.f ; �/ W � 2 P.˙/g

D minfjwj.˝/ W w 2 M d
div.˝/; spt.r � w � f / � ˙g:

What could we say if we considered, instead,
´

d.x; ˙/pf .x/ dx, for p > 1?

Exercise 33. Let � 2 ˘.�; �/ be a transport plan between two probabilities on
two compact spaces X and Y , respectively. Let �n * � and �n * � be two
weakly converging sequences of probabilities. Prove that there exists a sequence
�n 2 ˘.�n; �n/ with �n * � . Deduce that for any sequence of costs cn converging
uniformly to c, we have Tcn.�n; �n/ * Tc.�; �/.

Exercise 34. Let ˝ � R
d be smooth and compact, and V be an operator which

associates with every probability % 2 P.˝/ a vector field VŒ%� W ˝ ! R
d with

the following properties: for every %, VŒ%� is Lipschitz continuous and satisfies
Lip.VŒ%�/ � C (for a constant C not depending on %) and VŒ%� � n D 0 on @˝; the
map % 7! VŒ%� is Lipschitz continuous in the following sense: jjVŒ%�� VŒ��jjL1 �
CW2.%; �/ for every %; �. Consider the equation @t%C r � .%VŒ%�/ D 0 with initial
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Cauchy datum %0 � L d. Prove that any solution %t stays absolutely continuous for
t > 0 and prove uniqueness of the solution.

Exercise 35.  Prove the equality W1.�; �/ D limp!1 Wp.�; �/ for �; �
compactly supported. Prove also that for any sequence pn ! 1, the optimal plans
�n for the cost jx � yjpn converge, up to subsequences, to an optimal plan for the
problem defining the W1 distance.

Exercise 36. Prove the inequality dH.spt.�/; spt.�// � W1.�; �/, where dH

denotes the Hausdorff distance.

Exercise 37. * Is it true that for 1 � p � q � 1, if the same map T is optimal in
the definition of Wp and Wq, then it is also optimal in the definition of Wr for every
r 2 Œp; q�?
Exercise 38. Prove that if f 2 W1;p.˝/, ˝ is a convex set, �; � 2 P.˝/ \ Lr.˝/

and jj�jjLr ; jj�jjLr � C, then, for 1
p C 1

q C 1
r D 1C 1

qr , one has

ˆ

˝

f d.� � �/ � C
1
q0 jjrf jjLp.˝/Wq.�; �/:

Exercises from the topics of Chapter 6

Exercise 39. Let ˙ D fx1; : : : xNg � ˝ be a finite subset of a compact convex
domain ˝. For every i, let us set Vi WD fx 2 ˝ W jx � xij � jx � xjj for all jg.
Suppose that ˙ solves the problem minf´

˝
d.x; ˙/2 dx W #˙ � Ng. Prove that,

for every i, the point xi is the barycenter of Vi.

Exercise 40.  For A � R
d we define the extremal points of A as those points x 2 A

such that y; z 2 A; x D yCz
2

) y D z. Let K � Mn.R/ be the set of bistochastic
matrices (those matrices M D .mij/ with mij � 0,

P
j mij D P

i mij D 1 for all i; j).
Prove that the extremal points of k are the permutation matrices.

Exercise 41. For a 2 .RC/n and b 2 .RC/m consider the set ˘.a; b/ defined
through ˘ D fM 2 Mn;m.R/ W mij � 0;

P
j mij D ai;

P
i mij D bjg. Prove that

every extremal matrix M in ˘.a; b/ is such that #f.i; j/ W mij > 0g � n C m.

Exercise 42. Let �"ij WD p"i q"j �ij be a solution of the approximated problem in (6.3)
(see Section 6.4.1). Suppose that " log.p"i /, " log.q"j /, and �"ij converge as " ! 0.
Prove that the limit of " log.p"i / and " log.q"j / are Kantorovich potentials in the limit
problem for " D 0.

Exercise 43. Let u be a smooth function on ˝ and M.x/ WD cof.D2u.x//. Let Mij

be the .i; j/-entry of M and Mij
k its derivative w.r.t. xk. Prove that for every index j,

we have
P

i Mij
i .x/ D 0.

Exercise 44. *  Consider a smooth transport map T W ˝ ! R
d of the form

T D ru on a smooth domain ˝. Suppose T#f D �, where f is a smooth positive
density on ˝. For every vector field v W ˝ ! R

d with r � .f v/ D 0 and v � n D 0
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on @˝, consider the flow of the autonomous vector field v, given by Yt.x/ D yx.t/
(where y0

x.t/ D v.yx.t// and yx.0/ D x), and define Tt D T ı Yt. Let M.S/ D´ jS.x/ � xj2f .x/ dx. Prove that the function j.t/ D M.Tt/ satisfies j00.0/ � 0 for
every v if and only if u is convex.

Exercises from the topics of Chapter 7

Exercise 45. *  Prove that the entropy functional

F .%/ WD
( ´

Rd %.x/ log %.x/ dx if % � L d;

C1 otherwise.

is l.s.c. in W1.R
d/. Also prove that if %n 2 P2.R

d/ and %n * %,
´ jxj2d%n.x/ � C,

then F .%/ � lim infn F .%n/.

Exercise 46. Prove that the problem

min

�ˆ 1

0

ˆ

˝

%jvj2dxdt W @t%C r�.%v/D0; %t 2P.˝/; %.0/ D %0; %.1/ D %1

�

is equivalent to the same problem with the additional constraint %t � 1, provided
that we have %0; %1 � 1 and ˝ is convex. Also, imagine a non-convex (but
connected) domain ˝ where this is no more the case.

Exercise 47. Given a compact and convex domain ˝ � R
d and � 2 P.˝/, prove

that the following problem admits a solution:

min

�
W1.%; �/C 1

2

ˆ
%2.x/ dx W % 2 L2.˝/; % � 0;

ˆ
%.x/ dx D 1

�
:

Is this solution unique? Write the optimality conditions satisfied by the optimal %,
prove that % 2 Lip1, and find explicitly the solution when ˝ D B.0; 5/ and � D ı0.

Exercise 48. ** Given p > 1, consider g 2 P.˝/ an absolutely continuous
probability measure, and look at the problem minfWp.%; g/ W % � f g, where
f 2 L1.˝/ is a given positive function. Prove that a solution exists, that it is unique,
and that it has the form % D 1Ag C 1Ac f .

Exercises from the topics of Chapter 8

Exercise 49. Consider the fourth-order PDE

@t%C r � .%r.�%//C r �
�r%p

%

�
D 0:

This PDE is the gradient flow in W2 of an energy: which one? Also prove that
the variational problems to be solved at every time step (see Equation (8.3)) in the
corresponding minimizing movement scheme admit a solution.
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Exercise 50. Let V W Rd ! R be C1;1 and let G W P.Rd/ ! R be defined through
G.%/ D #.spt.%// and let %0 2 P.Rd/ be a purely atomic probability measure
%0 D PN

iD1 aiıx0i
with finitely many atoms. Prove that for small � (depending on

what?), the solution of the following minimization problem

min

�
G .%/C

ˆ
Vd%C W2

2 .%
0; %/

�
W % 2 P2.R

d/

�

exists, is unique, and has the form %1 D PN
iD1 aiıx1i

with G .%1/ D G .%0/. Deduce
that the minimizing movement scheme for G CV gives the same limit curve as that
for V , and find the equation of this curve.

Exercise 51. Let %0 2 P2.R
d/, x0 its barycenter, and % a solution of

@t%t � r � .%tvt/ D 0

where vt.x/ D ´
.x � y/d%t.y/. Let E.t/ WD ´ jx � x0j2d%t.x/. Prove E0.t/ � �E.t/.

What can we conclude on the asymptotical behavior of %t as t ! 1?

Exercise 52. Let V W Rd ! R be a continuous function such that jV.x/j � ACBjxj2
for suitable constants A;B, and let f W RC ! R a convex function with f 0.0/ > �1.
Define

F.%/ D
ˆ

f .%.x// dx C
ˆ

V.x/%.x/ dx

and consider, for %0 2 P2.R
d/,

min

�
F.%/C W2

2 .%; %0/

2�
W % 2 P2.R

d/

�
:

Prove that, for small � , a solution exists, is unique, and is compactly supported if %0
is compactly supported.

Exercise 53. Consider m > 2 and define

F.%/ D
ˆ

˝

%m � 1

2

ˆ

˝

jru%j2; where u% 2 H1
0.˝/ solves ��u% D %:

Prove that

min
˚
F.%/C W2

2 .%; %0/ W % 2 P2.R
d/



admits a solution.
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Exercise 54. Prove that the optimality conditions of

min

8̂̂
<
ˆ̂:
ˆ T

0

ˆ �
t3=2

2
%jvj2 C 3t�1=2

4
jr'j2

�
W

8̂̂
<
ˆ̂:
@t%C r � .%v/ D 0;

�' D % � 1;
%0 D 1; %T D given

9>>=
>>;

impose, at least formally, the system of Equation (8.27).

Exercise 55. Given ˛ 2�0; 1Œ, prove that a minimizer for

min

�ˆ 1

0

t1C˛jx0.t/j2 C ct�1C˛jx.t/ � x0j2 W x.1/ D x1

�

exists, is unique, and satisfies x.0/ D x0. Prove that a minimizer for the same
problem adding the condition x.0/ D Qx0, with Qx0 ¤ x0, does not exist.

Exercise 56. Consider a triplet .%t; vt; 't/ on the torus T
d (to avoid boundary

issues) satisfying

ˆ 1

0

ˆ �
t3=2

2
%jvj2 C 3t�3=2

2
jr'j2

�
< C1 with

(
@t%t C r � .%tvt/ D 0;

�'t D %t � 1

with jj%tjjL1 � C and t 7! %t continuous for W2 on �0; 1�. Prove that we necessarily
have W2.%t; 1/ ! 0 as t ! 0.

Miscellaneous

Exercise 57. Find the optimal transport map for the costs of the form jx�yjp, p > 0,
between the two measures sketched below:

�

�
�

�
�

�

�
�

� D 1
4
.ı.2;3/ C ı.3;2/ C ı.3;0/ C ı.0;�1//

� D 1
4
.ı.0;0/ C ı.0;2/ C ı.2;1/ C ı.4;2//

Exercise 58. Find an example of a pair of compactly supported absolutely continu-
ous probability measures �; � on R

d and a continuous cost c W Rd �R
d ! RC such

that no optimal transport map exists in the corresponding Monge problem.

Exercise 59. Find the optimal transport plan for the cost c.x; y/ D .x2�y2/2 in 1D,
when � D L 1 Œ0; 1� and � D 1

2
L 1 Œ�1; 1�.

Exercise 60. Find an example of bounded l.s.c. (but not continuous) cost
c W Rd ! R, together with two atomless compactly supported measures �; � 2
P.Rd/ such that inf(MP)> min(KP).
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Exercise 61. * Prove that there exists a continuous map T W Œ0; 1� ! Œ0; 1�2 such
that T#.L 1 Œ0; 1�/ D L 2 Œ0; 1�2.

Exercise 62. Consider a translation S W Rd ! R
d given by S.x/ D x C a.

1. Prove that S is the optimal transport for the cost c.x; y/ D jx � yj2 between any
measure � and S#�.

2. Prove the same result for c.x; y/ D jx � yj.
3. If T is the optimal transport between � and �, can we say that SıT is the optimal

transport between � and S#�? Answer this question both for c.x; y/ D jx � yj2
and c.x; y/ D jx � yj.

4. More generally, is it true that the composition of two optimal transports is still
optimal?

Exercise 63.  Prove that, if J � R is a (possibly unbounded) given interval, then
Wp.J/ is isometric to a closed convex subset of Lp.Œ0; 1�/.

Exercise 64. Given g 2 L1.Œ0; 1�/\ P.Œ0; 1�/, prove W2.1; g/ D jj1� gjj PH�1.Œ0;1�/:

Exercise 65. Consider �; � 2 P1.R
d/ with

´
x d�.x/ D ´

y d�.y/ D 0. Let � be
an optimal transport plan for the cost c.x; y/ D �x � y between these two measures
and Tc.�; �/ the optimal value of this transport cost. Prove Tc.�; �/ � 0 and
spt.�/ � f.x; y/ W x � y � Tc.�; �/g. Deduce that if �n * � and

´
x d�n.x/ D´

y d�.y/ D 0, then Tc.�; �/ � lim supn Tc.�n; �/:

Exercise 66. Let f ; g be two smooth probability densities on a convex domain
˝ and '; the Kantorovich potentials for the transport from f to g for the cost
c.x; y/ D 1

2
jx � yj2 . Prove

´ rf � r' C rg � r � 0. Conclude that the same is
true for f ; g 2 H1.˝/.

Exercise 67. Prove the W2 distance between two (smooth) solutions to the heat
equation @t% D �% decreases in time:

1. in a bounded domain ˝ with homogeneous Neumann boundary conditions,
2. in R

d, with initial data in P2.R
d/.

Exercise 68. Let v W Œ0;T� �˝ ! R
d be Lipschitz continuous in space, uniformly

in time. Prove the uniqueness of the solution to the Fokker-Planck equation @t% �
�% C r � .%v/ D 0 (with no-flux boundary conditions) in the class of solutions
which are H1.˝/\P.˝/ for every t, by differentiating W2

2 between two solutions.
Why is H1 a reasonable assumption for the regularity of the solution?

Exercise 69. Let f W R
d ! R be a C2 strictly convex function with D2f � ˛I

(for ˛ > 0) on a smooth bounded domain ˝. Prove that %1 D ce�f (for c D
.
´

e�f /�1) is a solution of �%C r � .%rf / D 0. Consider now any smooth solution
of @t%��%� r � .%rf / D 0 with Neumann boundary conditions on ˝, and prove
W2.%t; %1/ ! 0 exponentially as t ! 1.
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Hints

Hint to Ex. 1. Use piecewise affine oscillating functions. With C1 it is impossible,
because C1 functions f with image measure with bounded density should satisfy
f 0 ¤ 0 and be diffeomorphisms. Yet, only f .x/ D x and f .x/ D 1 � x preserve the
measure among diffeomorphisms.

Hint to Ex. 2. Write the Kantorovich problem and use a change of variable y 7! �y
in the arrival measure.

Hint to Ex. 3. Find a monotone radial transport. The answer is

T.x/ D 4

q
1 �

p
1 � jxj2 x

jxj :

Hint to Ex. 4. Use c-cyclical monotonicity on two points (i.e., monotonicity).

Hint to Ex. 5. For the first question, use the characterization in terms of gradients
of convex functions. For the second, use again c-cyclical monotonicity.

Hint to Ex. 6. For the first cost, use Jensen inequality. For the second, express it as
.x1 C : : : xN/

2C functions of the xi separately.

Hint to Ex. 7. You can (partially) use the transport problem with cost h.y � x/ with
h.z/ D C1 for z < 0 and h.z/ D 0 for z � 0.

Hint to Ex. 8. Decompose � above and below the diagonal and use results on
convex costs in 1D. Then prove that the superposition is not optimal.

Hint to Ex. 9. Check that T defined as T.x/ D xC 1
2

for x < 1
2

and T.x/ D x� 1
2

for
x � 1

2
is optimal by using the functions �.x/ D 2�4jx� 1

2
j and  .y/ D 2�4jy� 1

2
j

as a guess for the Kantorovich potentials.

Hint to Ex. 10. If two pairs .x0; y0/; .x1; y1/ 2 spt � exist with x0 < x1 and y0 > y1
exist, integrate @2c

@x@y on Œx0; x1� � Œy1; y0� and find a contradiction.

Hint to Ex. 11. Write A�1B as the product of a symmetric positive definite matrix
and a rotation.

Hint to Ex. 12. u.x/ D �x is a potential.

Hint to Ex. 13. Same idea as in Ex(3). Use the potential u.x/ D �jxj to prove that
you have found an optimal map.

Hint to Ex. 14. The cost c.x; y/ D jx � yj˛ is a distance.

Hint to Ex. 15. Use the same analysis as in Section 3.3.2.

Hint to Ex. 16. Decomposition strategy of Section 3.3.1.

Hint to Ex. 17. Use the results about L1 optimal transport.

Hint to Ex. 18. The cost c" uniformly converges to the linear cost.
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Hint to Ex. 19. Consider the Taylor expansion of the cost in " to guess the lower-
order term.

Hint to Ex. 20. Start from classical examples of fattened rationals.

Hint to Ex. 21. Prove that all functions u W X ! R with ju.x/j � P.x/ belong to
Lip1 for the distance SNCF, and apply the duality formula to have a lower bound
on Tc. For the opposite bound, just leave the common mass at rest.

Hint to Ex. 22. Just test against a C1
c function  .x/.

Hint to Ex. 23. Two methods: induction on the dimension and use a polynomial
convolution (with something like xn.1 � x/n).

Hint to Ex. 24. By uniqueness, � is radial. The Kantorovich potential is u.x/ D
�jxj. Use the Monge-Kantorovich equation.

Hint to Ex. 25. Use the same strategy as in Theorem 4.24. See also [273].

Hint to Ex. 26. It is equivalent to the existence of w 2 Lp with r � w D � � �.

Hint to Ex. 27. Solve the minimization problem

min
n
i QQ.˝/ W .e0/# QQ D �; .e1/# QQ D �; i QQ � iQ

o
:

Hint to Ex. 28. Make the ansatz that the mass from A to A0 will be split into three
parts, ˛ passing through B, ˛ through B0, and ˇ directly to A0, and the same for B
to B0. Write a 2 � 2 system for the equilibrium condition.

Hint to Ex. 29. Take a regular grid on a cube contained in˝. Count how much does
it cost to move the mass of the central half of each cube out of the cube, and sum up.

Hint to Ex. 30. Use the angle law (4.31).

Hint to Ex. 31. Suppose � � 0, and use the k-Lipschitz functions �k defined in the
memo 1.5 on l.s.c. functions.

Hint to Ex. 32. Prove that the optimal � is the image of f through the projection
onto ˙ . Use Beckmann’s formulation.

Hint to Ex. 33. Use Lemma 5.5 to modify the marginals of � .

Hint to Ex. 34. Differentiate W2
2 .

Hint to Ex. 35. Prove � -convergence.

Hint to Ex. 36. Take a point x0 2 spt.�/ realizing max d.x; spt.�//: it must be
transported somewhere.

Hint to Ex. 37. Build a counterexample with a map T which is a gradient but such
that rh.T.x/ � x/ is not a gradient for h.z/ D jzj4.
Hint to Ex. 38. Adapt the proof of Lemma 5.33.
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Hint to Ex. 39. Write optimality conditions when we move one point.

Hint to Ex. 40. Consider the entries of an extremal matrix which are in �0; 1Œ. Prove
that if there is one such an entry, then there is a “cycle” and find a contradiction.

Hint to Ex. 41. Same strategy as above.

Hint to Ex. 42. From log �"ij D log p"i C log q"j C log �ij deduce " log p"i C " log q"j �
cij, with equality if at the limit �ij > 0.

Hint to Ex. 43. Write cof.D2u/D2u D det.D2u/I and differentiate.

Hint to Ex. 44. Compute the second derivative and integrate by parts to get´
uijv

ivjf .

Hint to Ex. 45. First part: add and subtract suitable functionals, continuous for W1,
to make the integrand positive, and restrict it to bounded domains. Second part:
prove that a bound on the second moment implies W1 convergence.

Hint to Ex. 46. Use the fact that the L1 norm is bounded by 1 on a geodesic
whenever this is the case on the starting and arrival measures.

Hint to Ex. 47. Use the direct method for existence, strict convexity for uniqueness,
and let the potential appear in optimality conditions.

Hint to Ex. 48. Difficult: prove a sort of interior ball condition, i.e., if %.x0/ >
g.x0/, then % D f on B.T.x0/; jx0 � T.x0/j/, and use Lebesgue points. See [151].

Hint to Ex. 49. Use
´
1
2
jr%j2 C 4

p
%.

Hint to Ex. 50. Consider the optimal � between %0 and %: if % has more than N
atoms, then replacing each �

�fxig � R
d
	

with its barycenter gives a better result.

Hint to Ex. 51. Prove that the barycenter is preserved and use the equation to
compute E0.

Hint to Ex. 52. Write the optimality conditions in terms of the potential (direct
method for existence, strict convexity for uniqueness).

Hint to Ex. 53. Estimate the ru% part in terms of jj%jj2Lm , and use m > 2 to see that
these norms must be bounded on a minimizing sequence.

Hint to Ex. 54. Write the problem as a min-max, introducing Lagrange multiplier
for the constraints, and deduce the conditions to have a saddle point.

Hint to Ex. 55. Write and solve the Euler-Lagrange equation.

Hint to Ex. 56. Prove that t 7! jj%t � 1jj2
H�1 is BV, by using Young inequality and

Lemma 5.33.

Hint to Ex. 57. Check that moving every atom of � on the (a) closest atom of � is
possible.

Hint to Ex. 58. Use concave costs and measures with a common mass.
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Hint to Ex. 59. Try to realize the cost 0.

Hint to Ex. 60. Use � and � as in the counterexample of Section 1.4, and choose
c.x; y/ as a discontinuous function of jx � yj.
Hint to Ex. 61. Adapt the Peano construction for a surjective map onto the square,
defining a map as a fixed point of a contracting operator.

Hint to Ex. 62. Use the characterization of optimal maps as gradients of convex
functions (quadratic). Find a nonoptimal transport between two measures with
compact support on R and translate them far away (linear cost). Find a composition
of two gradients which is not a gradient.

Hint to Ex. 63. Use the properties of FŒ�1�� .

Hint to Ex. 64. Write the optimal transport as x � '0.x/, check jj1 � gjj PH�1 D
jj'0jjL2 , and integrate by parts.

Hint to Ex. 65. For Tc � 0, use the plan � D � ˝ � to have a bound. For the
support of � , take .x; y/ and .x0; y0/ in spt.�/, write c-cyclical monotonicity, and
integrate w.r.t. .x0; y0/. This gives an upper bound that allows to prove upper semi-
continuity.

Hint to Ex. 66. Use displacement convexity of the entropy, compare the derivative
of the entropy at t D 0 and t D 1 on a geodesic.

Hint to Ex. 67. For the first question, differentiate W2
2 and use the Ex(66). For the

second, use the inequality in Lemma 5.2 and the semigroup properties of the heat
equation.

Hint to Ex. 68. After differentiating W2
2 , use Gronwall. H1 is reasonable because

the H1 norm is controlled in time.

Hint to Ex. 69. Differentiate W2
2 between the solution of the evolution equation and

the static solution.
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