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   Playing with Mathematics 

   My great-aunt Evelyn used to love to relate an anecdote about babysitting me and my two 
younger sisters, from when I was only five years old. After chasing my sister around the 
living room for a few minutes, she realized she had lost track of me, and began searching 
the house as she called out my name. Finally she heard me answer from one of the 
bedrooms, “I’m in here, playing”. Worried about what a 5-year-old might be finding to 
play with in her bedroom, she called out “Playing with what?” as she rushed down the 
hallway. I answered back “Playing with my mathematics!” She was relieved to arrive and 
find me seated quietly in the middle of the floor, scribbling numbers on a note pad. 

 Most listeners laugh at this story, finding the concept of “playing” with mathematics 
somehow absurd. But why is that? I think it’s a sad failure of our modern education 
systems that so many of my fellow citizens think of math as a burden, something to 
be endured in school, something necessary for certain jobs, or at best a useful tool for 
engineering and technology. When I hear the word “mathematics,” here are some of the 
things I think of:

•    Strange insights you get from basic counting: did you know that 
nearly everyone in Pittsburgh has an above-average number of 
fingers?  

•   Bizarre quantities like π or infinity, that make less sense the more 
you think about them: can one infinity actually be larger than 
another?  

•   Mysterious journeys into extra-dimensional spaces: do we live in 
a three, four, eleven, or infinite-dimensional world?  

•   Mental paradoxes that result from attempts at precise 
reasoning: can you dispute a philosophers’ proof that there is a 
hippopotamus in your basement right now?  

•   Insight into the working of our own minds: can we explain why 
time passes faster as we get older?  

•   The fundamental nature of reality: are we all really a computer 
simulation?    

 When you connect mathematics with topics like these, it suddenly grows into a much 
more playful and motivating topic than the rote techniques that were drilled into you in 
school. Ideas like these are what motivated me, almost a decade ago, to create the Math 
Mutation podcast. Despite the fact that there were thousands of podcasts out there (and 
are even more today), I found that there wasn’t really any that occupied this niche: brief 
and focused introductions to fun, interesting, and weird corners of mathematics that you 
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are unlikely to have heard in school. There were a few other math podcasts out there, but 
the primary focus tended towards homework help for current students. This is a laudable 
goal, but misses so much beyond that. My key guiding principles in assembling topics for 
the Math Mutation podcast have always been: 

 Accessibility. The average listener with no math education beyond high school, or 
even a current high school student, should be able to comprehend and enjoy the podcast. 

 Brevity. The idea is to give a quick tidbit that whets the appetite, sharing a single 
intriguing or surprising mathematical concept, and communicating the basic idea. For 
fully elaborated details or rigorous proofs that would satisfy a math professor, listeners 
can follow up and check out the meatier references in the show notes. 

 Welcoming. One flaw I’ve seen in many books and podcasts of the “interesting math” 
genre is the focus on presenting problems to be solved. While problem-solving is a critical 
tool for mathematical growth, it can be intimidating to those who are less experienced or 
less confident in their own abilities. Thus, I intentionally avoid this path, choosing direct 
presentation over problem-solving challenges. 

 Fun! The topic needs to be something I find unusual, fascinating, or surprising, and 
is typically not learned in a high school or college mathematics class. 

 I should also mention that in creating this podcast, I have “stood on the shoulders 
of giants”. I grew up reading mind-bending books and essays by brilliant authors like 
Martin Gardner, Douglas Hofstadter, Rudy Rucker, and Isaac Asimov, and many of the 
topics were inspired by those writings. In general, I’m not claiming to have derived new 
mathematical results, but I have cherry-picked a set of especially intriguing mathematical 
tidbits, and provided a short and focused exposition that will whet your appetite to 
learn more. Hopefully this will be a launching point, leading to many further hours of 
enjoyment as you follow up on your favorite topics using the “References and Further 
Reading” chapter near the end of this book. 

 When assembling the podcast episodes to transfer into this printed format, I have 
attempted to group them into logical chapters, and have done my best to revise and 
improve them. I think you, the reader, deserve a little bonus content for buying this book, 
rather than just listening to the free episodes online. I hope that after reading this book, 
you too will think of mathematics as not just a required school topic, necessary burden, 
or useful engineering tool, but as something fun to play with.  
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    CHAPTER 1   

 Simple Surprises           

 Many of the amusing mathematical tidbits that I’ve highlighted in the podcast do not 
require very deep or complex reasoning: they are simple consequences of logically 
thinking through our basic notions about numbers, counting, or probability. In this first 
chapter we discuss some of these very basic but somehow surprising ideas. 

     City of  Mutants   
     From Math Mutation podcast 1 
 Did you know that almost everybody in Pittsburgh has an above-average number of fingers? 
Some say it’s nuclear waste. Some say it’s toxic pollution. But I say it’s just the math. 

 Suppose a city has 2 million residents. Assuming everyone is healthy, we would 
expect them to have 20 million fingers among them. So the average number of fingers per 
person is 20 million divided by 2 million, or 10. But in real life, is there ever a city where 
everyone is healthy? 

 In any population, a tiny number of people will have lost a finger due to an industrial 
accident or over-zealous   World of Warcraft  keyboard-pounding  . So suppose 10 people 
in the city have lost a finger. Then the total number of fingers is not 20 million, but 
19,999,990. (There may be a few with extra fingers to balance this out, but that’s a much 
rarer condition, probably negligible for the purpose of this calculation.) This brings 
the average per person down to 9.999995. Yet this doesn’t change the fact that nearly 
everybody has 10 fingers, which beats the average by 0.000005! So nearly everyone does 
have an above-average number of fingers. 

 As you have probably noticed, we’re playing with the difference between our 
casual conversational notion of “average”, and its mathematical definition. The average 
is usually formally defined to be the   mean    ,  the sum of a measure divided by the size 
of the population, which we calculated above. But in casual conversation, we think of 
the word “average” as denoting a typical member of the population. In terms of formal 
definitions, this more closely matches the   median   , where you sort the population by some 
measurement, and take the middle member as a representative. The median resident of 
Pittsburgh does indeed have the normal 5 fingers per hand you would expect. 
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 In any case, the statement that opened this episode will work for just about any 
city. Having lived there for four years back in the 1990s, I think Pittsburgh may indeed 
be a uniquely mutated city, but if so it’s for reasons beyond this discussion. So if things 
get boring at your next social gathering, be sure to liven it up by pointing out that, 
using the average number of fingers as the measurement, your city is also a city of 
mutants.   

       Two Plus Two Equals  Five   
     From Math Mutation podcast 210 
 Recently I heard someone quote a clever metaphor in a casual conversation, “Life is when 
nature takes 2 and 2 to make 5.” It’s a nice statement of how living creatures are more than 
the sum of their parts. If you took all the chemical compounds in my body and dumped 
them on the ground in the right proportions, all you would get is a mess. Yet somehow I 
am here, and at least sentient enough to record math podcasts. I went online to try to find 
the source of this quotation, and was surprised to see the number of references to this 
seemingly silly nonsense equation, 2 + 2 = 5. 

 Most of us are probably familiar with the equation from George Orwell’s classic 
novel   1984   . As you probably recall, in the book, people are told that if the government 
says that 2 + 2 = 5, it is the duty of all citizens to believe it – not just say it, but actually come 
to believe that it is true. Surprisingly, Orwell did not come up with this out of thin air: 
a real-life totalitarian government, the Soviet Union, actually did use 2 + 2 = 5 as part of 
its propaganda, in a poster with the title “2 + 2 = 5: Arithmetic of a counter-plan plus the 
enthusiasm of the workers.” It wasn’t quite as blatantly absurd as in  1984 , but the Soviet 
propaganda poster used it as a metaphor: supposedly a 5-year plan could be completed 
in 4 years, because the enthusiasm of the workers provided an invisible additive factor. 
Sadly, most of this “enthusiasm” was mainly due to fear of being sent to the Gulag prison 
camps, which resulted in many managers doctoring the statistics to match the results that 
the government wanted – on paper only. It’s also reported that Nazi Hermann Goering 
actually used this metaphor in real life, once saying “If the Führer wants it, two and two 
makes five!” 

 The phrase ‘2 + 2 = 5’ has actually existed in the arts from the early 19th century. 
According to  Wikipedia , the phrase was first coined in a letter from Lord Byron, where he 
wrote “I know that two and two make four—& should be glad to prove it too if I could—
though I must say if by any sort of process I could convert 2 & 2 into five it would give 
me much greater pleasure.” He may have been making an indirect reference to Rene 
Descartes’  Meditations , where the famous philosopher discussed whether equations such 
as 2 + 3 = 5 exist outside the human mind, and whether they can be doubted: “And further, 
as I sometimes think that others are in error respecting matters of which they believe 
themselves to possess a perfect knowledge, how do I know that I am not also deceived 
each time I add together two and three, or number the sides of a square, or form some 
judgment still more simple, if more simple indeed can be imagined?” 

 Later, Victor  Hugo   used this concept in a critique of the mob rule that had led to 
Napoleon’s rise to power, foreshadowing Orwell’s later political metaphor: “Now, get 
seven million five hundred thousand votes to declare that two and two make five, that 
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the straight line is the longest road, that the whole is less than its part; get it declared by 
eight millions, by ten millions, by a hundred millions of votes, you will not have advanced 
a step.” Russian authors Ivan Turgenev, Leo Tolstoy, and Fyodor Dostoyevsky also made 
use of this metaphor. Turgenev used it to symbolize divine intervention: “Whatever 
a man prays for, he prays for a miracle. Every prayer reduces itself to this: Great God, 
grant that twice two be not four.” In the 20th century, there were many instances of 
authors following Orwell’s lead and again using this metaphor for the struggle against 
totalitarianism, including Albert Camus and Ayn Rand. 

 An intriguing question is whether there are cases when it is actually valid to say that 
2 + 2 = 5. A well-known mathematicians’ joke is that “2 + 2 = 5, for particularly large values 
of 2.” This may refer to issues with rounding: if you start, for example, with the obviously 
correct equation “2.4 + 2.4 = 4.8”, and ask someone to round all the numbers to the nearest 
integer, you do indeed derive “2 + 2 = 5” from this true equation. It also might be a case 
of playing with the definitions of symbols: perhaps you can define the symbol that we 
normally write as “2” to actually be an algebraic variable representing the value 2.5. You 
can also find various tricky “proofs” that 2 + 2 = 5 circulating the web, where many lines 
of complex algebra are often used. These many lines usually misdirect you from one 
invalid step, where a term  t  is replaced with the square root of  t  2  (it should really be the 
absolute value of that quantity), or both sides are divided by a term that equals 0. Here is 
an example of one of the simpler ones:

    4 – 4 = 10 – 10  :  Start out with true statement   

   (2 – 2) × (2 + 2) = 2 × 5 – 2 × 5  :  Rewrite both sides in a complex form   

   (2 – 2) × (2 + 2) = (2 – 2) × 5  :   Regroup factors on the right-hand side   

   ==> 2 + 2 = 5  :   Divide both sides by (2 – 2)     

 As you have probably noticed, the last step divided both sides by 0, which is not 
algebraically valid, and results in nonsense. 

 An amusing spoof article online [Eul04] points out some real-life situations 
where 2 and 2 might really make 5. Ancient Incas used knotted ropes to track business 
transactions, and if you tie together two ropes that each have two knots, the resulting 
rope will have 5 knots, including the one used to tie them together. Another example 
is if you put 2 male and 2 female rabbits in a cage – pretty soon you will see numbers 
way larger than 5. I’m sure that most people who experience these situations in real life 
can make the distinction between the messiness of reality and the related arithmetic 
though. 

 But that last example brings us back around to the quote that started this whole 
thing. Ironically, my web searching did not succeed in uncovering the source of the 
clever comparison between life and making two plus two equal five. Most likely I didn’t 
remember the phrasing exactly right, or else someone was just coining this on the fly and 
it didn’t really come from a famous quote. If you have heard it before and know its origin, 
please send me an email!     
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      Stupid Number Tricks   
     From Math Mutation podcast 23 
 One act you could occasionally see at carnival sideshows in the 19th and 20th centuries 
was the ‘calculating prodigy’. This would be someone who could perform amazing feats 
of calculation, such as instantly multiplying large numbers or finding 23rd-roots, in 
front of an audience. Some of these prodigies were true geniuses or autistic savants. 
But today we are going to talk about the fakes, people who were not geniuses, but 
still managed to impress audiences with their mathematical feats. Martin Gardner 
described many of their tricks in his classic “Mathematical Games” series in  Scientific 
American . 

 Some of their methods were simply what we would call “cheating”. The easiest way 
to cheat in this kind of performance is to have a confederate in the audience, who you 
happen to point at to call out the numbers. Then it’s a simple matter to pre-calculate 
some difficult problem, and have the answer ready in an instant. A more legitimate 
cheating method is stalling for time. For example, after an audience member calls out 
two large numbers to multiply, ask him to repeat them to be sure you got them right, 
then slowly write the numbers on a blackboard. Your assistant will yell ‘Go’ and start the 
stopwatch after you have finally drawn the equals sign… but by then, you may have a 2–3 
minute head start on your mental calculation. 

 What I find more interesting are the tricks that don’t involve any cheating, but truly 
allow the performer to do the complex calculations requested. Most of these are things 
that could be mastered by any reasonably intelligent person with a good memory. One 
way to double your speed of multiplication, for example, is to memorize your times tables 
for all two-digit number combinations from 0 to 99. As you may recall, when you do long 
multiplication, you look at each column of digits and multiply them, using the simple 
9 × 9 table you memorized as a child. Thus, if you memorized the pairs up to 99 × 99, you 
could multiply with two columns at once. 

 Another valid trick is to think ahead about some subclass of problems, and 
memorize the supporting data you need to come up with a quick answer. An example 
of this: suppose you tell people you can, in under a minute, instantly estimate 
the 23rd root of any number up to 44 digits to the nearest integer. Sounds pretty 
impressive, doesn’t it? What your audience hasn’t considered is that 99 to the 23rd 
power has more digits than that – so if you have memorized the 23rd powers of all the 
integers from 1 to 99, not an unreasonable amount of memorization, you can pretty 
quickly figure out the proper root by simply looking up the closest numbers in your 
mental table. 

 Such quick calculating acts may still be a conversation-starter at parties, but these 
days are probably not too impressive as performances, given the spread of miniaturized 
computing devices and wireless communications that make true cheating ridiculously 
easy. But still, it’s fun to think about the various tricks that can enable non-geniuses to 
carry out seemingly impressive feats of calculation.   
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       Deceptive Digits   
     From Math Mutation podcast 206 
 Imagine that you are a crooked corporate manager, and are trying to convince your 
large financial firm’s customers that they own a set of continually growing stocks, 
when in fact you blew the whole thing investing in math podcasts over a decade ago. 
You carefully create artificial monthly statements indicating made-up balances and 
profits, choosing numbers where each digit 1–9 appears as the leading digit about 
1/9th of the time, so everything looks random, just like real balances would. You are 
then shocked when the cops come and arrest you, telling you that the distribution of 
these leading digits is a key piece of evidence. In fact, due to a bizarre but accurate 
mathematical rule known as Benford’s Law, the first digit should have been 1 about 
30 % of the time, with probabilities trailing off until 9 s only appear about 5 % of the 
time. How could this be? Could the random processes of reality actually favor some 
digits over others? 

 This surprising mathematical law was first discovered by American astronomer 
Simon Newcomb back in 1881, in a pre-automation era when performing advanced 
computations efficiently required a small book listing tables of logarithms. Newcomb 
noticed that in his logarithm book, the earlier pages, which covered numbers starting 
with 1, were much more worn than later ones. In 1938, physicist Frank Benford 
investigated this in more detail, which is why he got to put his name on the law. He looked 
at thousands of data sets as diverse as the surface areas of rivers, a large set of molecular 
weights, 104 physical constants, and all the numbers he could gather from an issue of 
  Reader’s Digest   . He found the results remarkably consistent: a 1 would be the leading digit 
about 30 % of the time, followed by 2 at about 18 %, and gradually trailing down to about 
5 % each for 8 and 9. 

 While counterintuitive at first,  Benford’s Law   actually makes a lot of sense if you look 
at a piece of logarithmic graph paper. You probably saw this kind of paper in high school 
physics class: it has a large interval between 1 and 2, with shrinking intervals as you get 
up to 9, and then the interval grows again to represent the beginning of the next order of 
magnitude. If you randomly throw a dart at it, you are much more likely to hit one of the 
1–2 intervals than any of the others, with the probabilities diminishing at higher digits in 
each order of magnitude.
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 The idea is that this scale can represent values that may be very small and very large on the 
same graph, by having the same amount of space on a graph represent much larger intervals 
as the order of magnitude grows. It effectively transforms exponential intervals to linear ones. 
If you can generate a data set that tends to vary evenly across orders of magnitude, it is likely to 
generate numbers which appear at random locations on this log scale – which means that the 
probabilities of it being in a 1–2 interval are much larger than a 2–3, 3–4, and so on. 

 Now, you are probably thinking of the next logical question, why would a data set 
vary smoothly across several orders of magnitude? Actually, there are some very natural 
ways this could happen. One way is if you are choosing a bunch of totally arbitrary 
numbers generated from diverse sources, as in the  Reader’s Digest  example, or the set of 
assorted physical constants. Another simple explanation is exponential growth. Take a 
look, for example, at the powers of 2: 2, 4, 8, 16, 32, 64, 128, etc. You can see that for each 
count of digits in the number, you only go through a few values before jumping to having 
more digits, or the next order of magnitude. When you add new digits by doubling values, 
you will jump up to a larger number that begins with a 1. If you try writing out the first 20 
or so powers of 2 and look at the first digits, you will see that we are already not too far off 
from Benford’s Law, with 1 s appearing most commonly in the lead. 

 Sets of arbitrarily occurring human or natural data that can span multiple orders of 
magnitude also tend to share this Benford distribution. The key is that you need to choose 
a data set that does have this kind of span, due to encompassing both very small and very 
large examples. If you look at a list of populations of towns in England, ranging from the 
tiniest hovel to London, you will see that it obeys Benford’s law. However, if you define 
“small town” as a town with 1000–9999 residents, creating a category that is restricted to 
four-digit numbers only, this phenomenon will go away, and the leading digits will likely 
show a roughly equal distribution. 

     1 10 100 1000 10000 1000002 3 4 20

 Figure 1-1.    Semi-log graph paper  
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 The most intriguing part of Benford’s law is the fact that it leads to several powerful 
real-life applications. As we alluded to earlier,  Benford’s Law   is legally admissible in cases 
of accounting fraud, and can often be used to ensnare foolish fraudsters who haven’t 
had the foresight to listen to  Math Mutation . (Or who are listening too slowly and haven’t 
reached this episode yet.) A link in the show notes goes to an article that demonstrates 
fraud in several bankrupt U.S. municipalities based on their reported data not conforming 
to Benford’s law. It was claimed that this law proves fraud in Iran’s 2009 election data 
as well, and in the economic data Greece used to enter the Eurozone. It has also been 
proposed that this could be a good test for detecting scientific fraud in published papers. 
Naturally, however, once someone knows about Benford’s law they can use it to generate 
their fake data, so compliance with this law doesn’t prove the absence of fraud. 

 So, next time you are looking at a large data set in an accounting table, scientific 
article, or newspaper story, take a close look at the first digits of all the numbers. If you 
don’t see the digits appearing in the proportions identified by Benford, you may very well 
be seeing a set of made-up numbers.    

       Nonrandom Randomness   
     From Math Mutation podcast 193 
 Recently my wife got a bit annoyed with me as we drove to a restaurant on our Saturday 
date night. The problem was that, as usual, I plugged my iPhone into my car’s radio to 
play music for our drive, telling it to shuffle the playlist and select random songs. On this 
particular night, my phone decided to play four David Bowie songs in a row. Now I should 
admit that Bowie does take up a nontrivial proportion of my usual playlist, about 160 or 
so out of the 1000 songs on the list. But it was still pretty surprising that we heard nothing 
but Bowie on the drive; my wife thought I had set the iPhone on Bowie-only just to drive 
her nuts. Is such a streak a reasonable result for a truly random song shuffle? 

 Well, to answer this, we should think about the probability – does it make sense that 
every once in a while, we would experience a streak like this? It’s kind of similar to the well-
known “Birthday Paradox”. Suppose you are at a party with a bunch of friends, and ask 
them all their birthdays, looking to see if any two share the same one. You would think that 
the probability of two people with the same birthday would be pretty low, since if you ask a 
random person their birthday, the chance of them sharing your birthday is only 1 in 365. 
But actually, the probability reaches 50 percent as soon as you have 23 people at the 
party. This seems pretty counterintuitive at first. But think about the number of pairs you 
have with 23 people: the total number of possible pairs of people is 23 times 22 over 2, or 
253. When you look at it this way, the number of pairs seems in the right ballpark to have 
a decent chance of a shared birthday. 

 The actual calculation is a bit more complex. An easy way to look at it is by analyzing 
the party attendees one at a time, and calculating the chances that we do NOT have two 
people sharing the same birthday. We want to calculate, for each person, the chance 
that they do not share a birthday with any of the previously analyzed visitors.  P1 , the 
probability that there are no shared dates yet after looking at the first person, is 1, since 
there are no people before him.  P2  is 364/365, the chance that visitor #2 does not have 
the same birthday as visitor #1.  P3  is 363/365, the chance that visitor #3 doesn’t have his 
birthday on any of the two days seen so far. And so on. The final probability that nobody 
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has shared birthdays is  P1  ×  P2  ×  P3  × …, up to the number of party attendees. You can see 
the full probability calculation for this situation at the  Wikipedia  page on the Birthday 
Paradox. The ultimate result, as I mentioned before, is that if you have 23 attendees, the 
probability is only about 49 % that there are no shared birthdays. 

 So, now that we understand the birthday paradox, or at least you’re willing to 
entertain the notion if it hasn’t fully sunk in, what does that have to do with shuffled 
songs? Well, as one author points out at HowStuffWorks.com, you can think about shared 
artists for songs as something like shared birthdays. My playlist has way fewer artists 
represented than the number of days in a year, and I have been playing them over and 
over on many car trips. In the particular case of Bowie, we can see that the odds are better 
than average, as he represents about 1/6th of my typical playlist. Thus any time a Bowie 
song plays, there is roughly a 1 in 6 cubed, or 1 in 216, chance it starts a streak of four. 
And I’ve gone on a lot more than 216 car rides in my life. So it’s not only not unusual, but 
expected, for me to see regular Bowie streaks. And that doesn’t count streaks by other 
musicians as well, who have slightly lower odds but also are expected to occasionally 
appear several times in a row. 

 We also need to keep in mind the human predisposition to look for patterns in 
randomness. Back when song shuffling first became available on music players, it was 
a known problem that people would often randomly get the same song twice in a row 
or only a few songs apart, and then assume something must be wrong with their device. 
And of course, once people experience this once, they will suffer from a confirmation 
bias, looking for instances where the same song is repeated and concluding that these 
verify the supposed technical glitch. Something about our brains just isn’t hard-wired to 
understand or accept the coincidences inherent in randomness. One simple solution was 
biased random selection, where the device purposely can avoid playing the same artist or 
song twice in a row based on user settings. Another change that helps is that most current 
music-playing devices shuffle the music like a deck of cards, creating a full random 
ordering of all the songs in the playlist, rather than randomizing after each song. This 
inherently prevents repeats until the user chooses to re-shuffle their list. 

 To see an extreme case of our human predisposition towards finding patterns, try 
flipping four coins, writing down the results, and asking a friend if they appear random. 
No matter what combination you get, it will probably look nonrandom to your friend! If 
you get 3 or 4 of the same result, such as Heads Tails Heads Heads, it will certainly seem 
like the coin was biased. If you have 2 of each result, there is no way to avoid having it look 
like a pattern: either a repeated pair like HTHT, or a symmetric pair like HTTH. You have 
to really think about it to convince your brain of the randomness of such a set of coin flips. 

 So, when dealing with birthday sharing at parties, coin flips, music shuffling, or 
annoyed spouses, remember that sometimes truly random results can seem nonrandom, 
and try to take a step back and really think about the processes and probabilities involved.    

     A  True Holiday Celebration   
     From Math Mutation podcast 50 
 Today I’m going to tell you how to truly celebrate Christmas: you can breathe in one 
of the actual molecules of air that was in Baby Jesus’s first breath! Actually, this form 
of celebration doesn’t take much effort, since you’re inherently doing it, whether 
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you planned to or not. But perhaps if you recognize the holy nature of some of your 
molecules, it will enhance the flavor of the season. 

 Why do I say you’re doing it anyway? Well, think about this. The average human 
breath contains a number of air molecules roughly equal to 10 to the 22nd power. Now, 
a baby is pretty small, so for the sake of argument let’s cut that down to 10 to the 21st 
power for Baby Jesus. After two-thousand-plus years, I think it’s fair to estimate that those 
molecules are now pretty well randomly dispersed throughout the atmosphere. 

 The atmosphere overall contains a number of air molecules approximately equal to 
10 to the 44th power. So the proportion of molecules that were actually present in that 
breath is 10 to the 21st over 10 to the 44th, or about 1 in 10 to the 23rd. But remember that 
each of your breaths contains an average of 10 to the 22nd air molecules, so you breathe 
in 10 times 10 to the 22nd, or 10 to the 23rd, air molecules every ten breaths. Thus, in the 
long term, you expect that on average, you will inhale a Baby Jesus Breath molecule every 
10 breaths. Don’t you feel closer to Him already? 

 Incidentally, if you’re a non-Christian like me, you don’t need to feel left out of the holiday 
season. This calculation works equally well for Buddha, Moses, Mohammed, Zoroaster, 
Quetzalcoatl, Akhnaten, or Mitochondrial Eve, assuming each of them actually existed and 
breathed our atmosphere at some point. I first heard this argument based on Julius Caesar’s 
last breath, in John Allen Paulos’ classic book  Innumeracy , though of course just about anyone 
who lived that long ago (or longer) is just as good a candidate for this analysis. 

 Thus, whatever your religious or non-religious tradition, celebrate your holiday 
season by breathing in deep and sharing some air molecules with your spiritual, 
biological or philosophical ancestors.   

     Forgotten Knowledge 
     From Math Mutation podcast 151 
 Recently I was reminded of an intriguing science fiction story I read long ago, about 
a time when pen-and-paper computation had been forgotten. I only remembered it 
vaguely, but a few minutes of web searching revealed that the story I was thinking of was a 
1958 story by Isaac Asimov called “The Feeling of Power”. 

  “The Feeling of Power”   is set in a far future, when due to dependence on computers, 
nobody recalls the basic principles of mathematics, even simple things like pen-and-
paper methods of addition and subtraction. Even the basics of how to design computers 
have been forgotten, since for many generations computers have been designed only by 
automated programs built into other computers. In this strange world, a gifted technician 
named Aub discovers that he can perform basic numerical calculations using pencils 
and paper, using a new technique he calls  “graphitics”  . His discovery is just the common 
arithmetic we teach today in elementary school. Aub presents his graphitics to a group 
of government officials, who are amazed at his ability to multiply decimal numbers 
without having any electronic device available. They are immediately enthralled by the 
possibilities of replacing expensive computers with cheap human labor throughout 
the government. In particular, they salivate at the vision of a manned missile, a missile 
controlled by a human suicide bomber inside, who could make course corrections and do 
all the needed calculations at a fraction of the cost of a military computer. In the end, Aub 
commits suicide out of guilt at the death and destruction his discovery will cause. 
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 There are a number of absurdities that stand out in this story. Most glaringly, with 
the abundant cheap storage and vast supply of information available on the Internet, 
could basic elements of knowledge like arithmetic ever be truly forgotten? I’m pretty sure 
that 1000 years from now, even such obscure and useless pieces of data as  Math Mutation  
podcast episodes will be easily accessible to anyone who wants them.  Asimov’s error   here 
is just one small example of the general embarrassment of 20th century science fiction: its 
overall failure, except in a few isolated cases, to anticipate the Internet and other modern 
computing technologies. 

 But there’s a more  fundamental logical error   in Asimov’s story that’s harder to forgive. 
If humans could perform pen-and-paper calculations more cheaply and efficiently than 
computers, why would the human method ever have been forgotten? People replace old 
tools with cheaper and more efficient ones, not with slower and more expensive ones. 
Asimov wrote at a time when computers were expensive and gigantic – but even then, in 
the applications where they were being used, no human armed with a pen & paper could 
ever compete.  ENIAC  , the first general-purpose computer, had existed for over a decade 
before this story, and could perform 5000 operations per second, already far beyond human 
capacity. And any science fiction writer worth his quatloos should have predicted that 
computers would only get faster and cheaper from there, until we reached the gigaflops and 
teraflops, or billions and trillions of operations per second, that we regularly see today. 

 On the other hand, the story does ring disturbingly true in certain ways. There 
really has been a trend in recent years to denigrate basic arithmetic skills in our schools. 
Recently I was frustrated when a fast-food cashier could not properly estimate that two 
$1.98 hamburgers would cost about 4 dollars. Today the average person knows that in 
everyday situations like shopping or bill-paying, they can always get out a calculator or 
run the calculator app on their favorite nearby electronic device. Will the typical person’s 
basic numerical intuition continue to slowly wither away over the generations? We also 
see the disturbing situation where young Americans today see much more financial 
reward by going into law or business than science, math, or engineering. It may not be 
that farfetched that a few generations from now, nobody is alive who remembers how 
to design a computer chip, as everyone just relies on commoditized manufacturing of 
existing designs. Even if all the information is documented in theory in Internet archives, 
how easy will it be to understand for a far-off future generation that has lost their basic 
experience in engineering? 

 So, despite its basic flaws, Asimov’s story does give us a few things to think about.   

     Exponents Squared 
     From Math Mutation podcast 64 
 Back in school, you probably recall that one of the earliest arithmetic operations you 
learned was addition. Then the concept was extended to multiplication: take a number  x , 
and add it to itself a bunch of times. A logical further step was exponents: take a number 
 x , and then multiply it by itself a bunch of times. And you probably stopped there – 
while your math classes went off in various other directions, you didn’t really learn any 
additional operator on this ‘ladder’. But why should we stop there? If multiple repeated 
additions become multiplication, and multiple repeated multiplications become 
exponents, then what do multiple repeated exponents become? 
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 It might surprise you to learn that there are further operations in this series, though 
they usually don’t bother to teach them in school. After exponentiation comes what is 
known as “tetration”.  Tetration   is usually symbolized with a number drawn to the upper 
left of another number, as opposed to the upper right used for exponents. Let’s look at 
an example: what is 2 tetrated to the 4th? We would draw this as a 2 with a little 4 to the 
upper left side:  4 2. This is equivalent to 2 222 . Be careful here – we need to start expanding 
at the uppermost exponent, otherwise we are effectively just multiplying the exponents 
together. So  4 2 becomes 2 2

4
 , or 2 16 , which is 65536. 

 Needless to say, on positive whole numbers,  tetration   causes values to grow 
incredibly fast. This probably helps explain why it’s not too practical in real life: after 
all, the simple operation of exponentiation allows us to concisely express the number 
of atoms in the universe, approximately 10 80 , or a 1 with 80 zeros. In contrast, if we look 
at the relatively simple tetration value of  3 10, this is 10 10

10
 , which is 10 to the 10 billionth 

power, or a 1 with ten billion zeros after it. I couldn’t even begin to describe  80 10 in any 
comprehensible form, other than just saying “10 tetrated to the 80th”. It’s hard to imagine 
a real-life application that needs such immense numbers. 

 But even without real-life applications, there are some mathematicians that find 
tetration a very interesting topic to study. On small numbers, it can have some bizarre 
properties. For example, get out a calculator and try calculating some tetrations of the 
square root of 2.  2 √2, or √2 √2 , is approximately 1.63.  3 √2 is approximately 1.76. And as you 
increase the tetration, you will find that bizarrely, √2 tetrated to higher and higher values 
always gets closer and closer to 2. So in effect, √2 tetrated to infinity is just 2, instead of 
growing huge like you would expect. 

 In addition to converging on small numbers, there has also been extensive study into 
the properties of tetration on complex numbers, which leads to lots of pretty multicolored 
pictures when graphically plotted on the complex plane. There is actually a web domain, 
“tetration.org”, devoted entirely to the study of this operation, as well as some other sites 
centered on this topic. 

 And, as you probably suspected already,  tetration   is just the beginning. 
Mathematicians with lots of time on their hands have defined further operations in 
the series: just as tetration is a chain of exponents, an operation called “ pentation  ” is a 
chain of tetrations, “hexation” is a chain of pentations, and so on. This general series of 
definitions is known as the “ hyper-operation sequence  ”. As with tetration, none of these 
have any real-life applications, as far as I can tell with a little web searching. But has that 
ever stopped mathematicians before? 

 This whole class of operations, however, is actually a subset of a general operation 
that is known as the “ Ackermann Function  ”, defined by German mathematician Wilhelm 
Ackermann in the 1920s, which does have some significance in theoretical computer 
science. So, at some level, these hyper-operations do have a tenuous connection to reality.   

     Giving You the Fingers 
     From Math Mutation podcast 75 
 I remember one day, a number of years ago, when my then-21-month-old daughter came 
home from preschool, held up her hand, and proudly counted out loud “1-2-3-4-5”. My 
excitement died down a bit when I asked her to count our cat’s ears, and she recited the 
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same “1-2-3-4-5”. In case you’re wondering, our cat is a bit of a mutant, but not *that* 
much of one, and only has the standard two ears. He does have 12 nipples, but that’s a 
subject for another podcast. Apparently to my daughter, “1-2-3-4-5” was a new word, and 
is the answer to any question that involves the words “count” or “how many”. 

 But this got me thinking about the process of finger counting. Many of us 
remember that when we were small, we first learned to count to 10 on our fingers. Is 
that really an efficient use of finger real estate though? If you think about it, using your 
fingers to count to 10 is really laboring under a very artificial restriction – that at any 
time, you can only hold up one finger. If you think of each finger as a binary, 
or base-2, digit, like a bit in computer memory, then your hands are equivalent to a 
10-bit memory. Thus, by holding up various combinations of fingers, you can represent 
numbers up to 2 to the 10th power –1, or 1023. 

 This leads to another line of thought: in premodern societies, especially where 
common merchants were unlikely to have access to cash registers, cheap plentiful scrap 
paper, or the education to have a good written system of mathematical notation, how did 
people keep track of numbers? I browsed a bit on the net and found articles on a wide 
variety of finger-counting methods from different cultures. 

 In China, a method for representing numbers up to 10 on a single hand has been 
passed down for many generations. This is based on moving the thumb, index finger, and 
middle finger into various positions, rather than just up or down. The simpler Korean 
 “Chisenbop” method   uses the thumb to represent 5, and the other fingers to represent 
one each; by holding up multiple fingers, you can again represent 0 through 10 on one 
hand. Either in the Chinese or Korean system, you can then easily count to 100 on two 
hands, using one to represent the ones and the other for the tens. 

 Once you start varying finger positions like the Chinese did, however, this opens up 
a world of possibilities. Another medieval finger counting system used in Europe and 
the Middle East uses a combination of finger positions to count up to 100 on each hand: 
you use your thumb and index finger in ten different positions to represent the tens place 
digit, while the other three fingers in various positions represent the ones place digit. This 
means that by using both hands, you can represent any four-digit base 10 number – so 
you can count up to 9999 on your hands! There is a serious drawback though – it requires 
a major feat of manual dexterity. Can you hold your pinky and middle finger halfway 
down, your ring finger straight up, and have your index finger touch the middle of your 
thumb? That’s the number 15 in this system. I tried doing a few more numbers on my 
hands, and was pretty hopeless. Could you imagine doing a series of these on each hand 
and holding the position long enough to complete a business transaction? 

 In any case, can we do better than 10000? I also found an intriguing indirect 
comment on a yoga site, talking about a system of holding up individual joints or tips of 
each finger. This means that each non-thumb finger can represent four possible values, 
and the thumb can represent three, for a total of 4 × 4 × 4 × 4 × 3, or 768, combinations 
on each hand. Thus, with two hands, we can represent a total of 768 × 768, or 589,824 
combinations! Something tells me, though, that not even the most advanced yoga master 
would ever be capable of this theoretically possible feat. 

 On the other hand, I can’t even count to 10000 on my fingers like a medieval 
merchant, so who am I to judge what’s possible? Perhaps some of you champion 
videogamers out there can perform feats of manual dexterity that I could never even 
conceive of.      
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    CHAPTER 2   

 Into the Infinite           

 What does the word “infinity” mean? This is one of the strangest mathematical ideas we 
can try to twist our mind around. Does it represent everything in the universe? Is it just 
a number that is bigger than all other numbers? Can something be greater than infinity? 
When you try to think carefully about the concept of infinity, all your preconceived notions 
start to fly out the window. There also seems to be some implied tie-in with religion: how 
many modern faiths refer to god as “The Infinite” in some form? The idea of multiple 
infinities was the theme of the very first  Math Mutation  podcast, and there have been 
many subsequent episodes where we have explored different aspects of this concept. 

     Too Infinite for Me 
     From Math Mutation podcasts 0 and 5 
 Today I want to talk about  Hilbert’s Hotel  , a famous paradox introduced by the 
mathematician David Hilbert, challenging naive ideas about infinity. Imagine a hotel with 
an infinite number of rooms, numbered by the natural numbers 1, 2, 3,.... This cannot 
actually exist, of course, though I hear they are trying to build one next to the Mall of 
America. Anyway, suppose you arrive at the desk and are told that the hotel is full. Can 
they still find a room for you? 

 Surprisingly, the answer is yes, if you can just get a little cooperation from your current 
guests. The guest in room 1 moves to room 2. The guest in room 2 moves to room 3. And 
in general, the guest in room  n  moves to room  n +  1. Since all numbers can be increased, 
everyone still has a room, and you get one too! 

 Now suppose you happen to get married to a fellow math geek, try out the latest and 
greatest fertility drugs, and nine months later your wife bears a set of infinituplets, with one 
child for each natural number. Once they are old enough, you and your infinite family decide 
to go on vacation to Hilbert’s Hotel, and arrive at the front desk demanding enough rooms 
to accommodate all of you. Can they still manage this? Yes, they can. The guest in room 
1 moves to room 2. The guest in room 2 moves to room 4. And the guest in room  n  moves to 
room  2n . Every number can be doubled, so everyone still has a room. But now all the odd-
numbered rooms, of which there are infinitely many, are free for your family to take up. 

 What we are seeing here is that in some sense, all ‘countably’ infinite sets are 
equivalent – even when some seem to be subsets of others. When moving guests to 
different rooms in Hilbert’s Hotel, we were effectively setting up mappings between the 
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set of current rooms, the integers from 1 to  n , and other sets: the set of integers greater 
than 1, or the set of even integers. Using these mappings, each of these sets can be fully 
accommodated in new rooms of Hilbert’s Hotel, while leaving some other rooms free. 

 Now let’s ask another follow-up question: is it possible that such a large number of 
guests could arrive that they could NOT fit in the hotel? This is another case where the 
surprising answer is yes. 

 Suppose those fertility drugs were more effective than you expected, and your wife 
has given birth to a very special set of infinituplets. This is no garden-variety, boring, 
everyday set of infinituplets – you have so many children that you have one for every 
non-negative real number strictly less than 1. One child is numbered .11111 (repeating), 
another is .12345, another is a decimal followed by all the digits of π, etc. To keep track 
of them all, you give each child a T-shirt with a different real number on it (represented 
without an infinite tail of 9 s, to avoid technical issues). 

 Now, arriving at the hotel, you decide you want each child to have a room of their 
own. You tell your children to enter in an orderly line, and you write some things down 
as they walk in. Start by writing a decimal point on your paper. When your first child is 
assigned room 1, you write down the *first* digit from his T-shirt. For the child assigned to 
room 2, you write down the *second* digit, and so on. Once all the rooms in the Hotel are 
full, you have written down a real number on your paper, such that its first digit matches 
the first digit from the child in room 1, the second digit matches the second digit from the 
child in room 2, and so on. 

 Next, under the number you wrote, you write another number as follows: if the digit 
in the original number is 8 or 9 you write 0 underneath it; otherwise you add one to the 
digit and write that digit underneath the original (so, for example, under the number 
.2859328… you would write .3060430…). This number cannot match *any* of the numbers 
of the kids in the rooms – its first digit differs from the first digit in room 1, its second digit 
differs from the second digit in room 2, and in general its  nth  digit differs from the  nth  
digit in room  n,  for *any* value of n. 

 But we said you had a child for every non-negative real number less than one! So, 
the child with the number you just wrote down is sitting in the lobby, crying that you 
ignored him. Maybe you should buy him an ice cream cone to calm him down. I hope you 
brought a lot of spare change though, since an infinite number of his brothers and sisters, 
whose numbers can be discovered through variants of the same method, were also left 
behind in the lobby. 

 This is essentially the famous ‘diagonal’ proof discovered by Georg Cantor in 1891, 
showing that not all infinities are equal. The  uncountable  infinity of real numbers is 
strictly larger than the  countable  infinity of positive integers: no matter how you assign 
corresponding integers to each real number, after you assign all the integers, some real 
numbers will be left over.   

     Infinitely Ahead of His Time 
     From Math Mutation podcast 116 
 As mentioned above, 19th century mathematician Georg Cantor was the founder of 
modern  set theory  , and proved many surprising results dealing with infinity, such as the 
proof that the infinity of real numbers is greater than the infinity of integers. These results 
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are now well-accepted and seen as part of the foundations of modern mathematics; 
if you attended a U.S. elementary school in the 1960s, you may even recall the ill-fated 
“New Math” fad that tried to teach set theory to children. But it might surprise you to hear 
that in his own time, Cantor’s theories were seen by many as incorrect, dangerous, or 
blasphemous. And oddly enough, he found support from some religious Catholics while 
his ideas were being rejected by prominent figures in the math world. 

 To start with, let’s review Cantor’s most controversial theories. Before his time, 
infinity was seen as a kind of vague abstraction, not something vulnerable to formal 
types of analysis. When Cantor developed  set theory  , he defined two sets to have the 
same ‘cardinality’, or number of elements, when you can set their elements in 1-1 
correspondence. Once he had defined this, it seemed reasonable to apply the definition 
to infinite sets as well. Looking at the infinite set of natural numbers, 1, 2, 3, etc, and the 
infinite set of real numbers, i.e. all decimals, he asked if these two infinite sets had the 
same cardinality. With his famous diagonal proof, he showed that no matter how you 
try to set up a correspondence between natural numbers and real numbers, some real 
numbers would be left out. Thus, even though both sets are infinite, the infinity of natural 
numbers is somehow smaller than the infinity of real numbers. And extending this idea, 
for every infinite set he could define a larger infinite ‘power set’, determining an infinite 
hierarchy of infinities. 

 In the mathematical world, there were three major groups opposed to Cantor’s ideas. 
The   constructivists   , including Cantor’s former mentor Leopold Kronecker, believed that a 
mathematical object could not exist without an explicit method to construct it. Since any 
attempt to construct an infinite set is non-terminating, this generally invalidated results 
dealing with infinity. Kronecker even labelled Cantor a “corrupter of youth” for teaching 
his odd theories to his students. The   intuitionists   , such as Henri Poincaré, had a related 
but slightly different objection: they considered mathematics a tool for more deeply 
analyzing intuitive notions of the human mind. An uncountable infinite set, such as the 
real numbers, is seen as beyond human intuition and thus not mathematically analyzable. 
The   finitists    were a stricter offshoot of these two schools, believing that no mathematical 
object could exist unless constructible from natural numbers in a finite number of steps. 

 On the religious side, many Christian theologians were horrified at the concept of 
 multiple types of   infinity, since they only recognized one true infinity, God. Cantor made 
a concerted effort to bring the religious community to his side, however: he believed 
that his multiple infinities increased God’s glory, considering God to be an absolute 
infinity above the hierarchy of mathematical infinities he had discovered. Indeed, didn’t 
it make God even more powerful, if there were below him not only finite concepts, but 
an infinite set of lesser infinities? He wrote to numerous prominent figures, including 
the Pope. While his efforts had mixed results, he did win over a few well-known religious 
philosophers, such as Catholic priest Constantin Gutberlet, who believed Cantor’s 
theories of infinities provided a tool for man to probe more deeply into the nature of the 
Divine. In an odd twist of historical fate, he seemed to have more support at times from 
the Catholic Church than from the scientific community. 

 All the controversy over his ideas took quite a toll on Cantor, causing lifelong issues 
with depression, though some modern scholarship suggests that his problems may 
also have been a result of undiagnosed bipolar disorder. After being promoted to a full 
professor at age 34 and publishing a series of seminal papers that formed the foundations 
of set theory, Cantor was requested to withdraw a paper from the prestigious journal 
 Acta    Mathematica    in 1884. He was soon hospitalized for depression, and dropped out of 
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mathematics completely for a while. Oddly, he decided to spend some time researching 
the works of Shakespeare, and published several pamphlets suggesting that Francis 
Bacon really wrote the plays. A few years later he seemingly recovered and returned to 
his profession, but suffered a similar bout of depression in 1899, and afterwards these 
continued every few years. He remained active in the mathematical world, but his work 
continued to be controversial. He eventually died in poverty in 1918. 

 However, towards the end of his life Cantor’s mathematics was increasingly accepted, 
and he received numerous prestigious honors in his lifetime. In 1904, the Royal Society 
in London granted him the Sylvester Medal, its highest award. And in 1911, he was one 
of the distinguished foreign scholars invited to the 500th anniversary of the founding of 
St Andrews University in Scotland. David Hilbert, a leader of 20th century mathematics, 
summed up Cantor’s work with the statement: “No one shall expel us from the Paradise 
that Cantor has created.”   

     Infinite Infinities 
     From Math Mutation podcast 157 
 During a recent evening, I told my daughter that it was 10 minutes until bedtime. She 
replied, “No, infinity minutes!” Naturally, I responded, “Are you talking about a countable 
infinity, analogous to the integers, or the uncountable infinity of the real numbers?” Since 
she stared at me blankly without a response, I concluded that we would have to stick with 
the original plan of 10 minutes. 

 But afterwards I realized that my question hadn’t been quite valid. Rather than just 
two classes, there are actually an infinite number of ever increasing infinities. It’s pretty 
easy to prove, based on a variant of Cantor’s famous diagonal argument, the same one we 
used to prove there are more reals than integers. 

 The key is to recognize that for every set there is a “ power set  ”, the set of all subsets of 
its elements, that is strictly larger. For example, look at the set consisting of elements a, b, 
and c. The power set contains the subsets {a,b}, {b,c}, and {a,c}, plus the trivial singleton 
subsets {a}, {b}, {c}, the null set, and the full set {a,b,c}. For a finite set, we can see that the 
power set is obviously larger than the set we started with. 

 But is it the case that the power set of an infinite set is larger than the original set? At 
first this might seem obvious as well: since all the singleton sets are trivially in the power 
set, it means that the power set has all the elements of the original set plus a bunch of other 
stuff. However, this kind of reasoning doesn’t work with infinities. A simple counterexample 
is given by comparing the set of whole numbers to the set of even numbers, as we discussed 
earlier. At first you would think there are twice as many whole numbers, since it contains all 
the even numbers plus the odd numbers. But by assigning every even number 2 N to room 
N in Hilbert’s Hotel, we can see that the full set of even numbers precisely fits. Thus there 
is a 1-1 correspondence between even and whole numbers, and their infinities are actually 
equivalent. 

 So, to show that for any set S, its power set P is truly larger, we need to show that in 
any attempt to set up a 1-1 correspondence, we will have some excess element of P that 
doesn’t fit. Let’s look again at a Hilbert Hotel, and assume it has a room numbered for 
every element of P. Can we show that after guests arrive with every element of S on their 
shirts, and each is assigned a room, there will always be a room left over? 
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 Let’s assume on the contrary that we can fill the hotel, so that every room is occupied 
by a guest. So for every guest labeled with some element of S, he is assigned a room 
numbered with an element of the  power set   P. Remember that the power set is just the set 
of subsets of S, so each room will have a list of guests on its door, each of whom may or 
may not be in that room. Let’s define another set Q as the set of guests who are in a room 
that does not include their label on the door. (Q is not empty since there is a guest in the 
room labeled by the null set.) Since Q is a subset of S, there must be a room labeled with 
the set Q on its door. 

 Now, by assumption all the rooms are occupied, so let’s look at the guest assigned to 
room Q. If his label is on the door, we have a contradiction, since we defined Q as the set 
of labels of guests who are NOT in rooms with their label on the door. If his label is not in 
Q, then this guest is in a room without his label on the door – which means he must be 
in Q, due to the way we defined it. Thus we have another contradiction. So, no guest can 
be in room Q, and room Q must be empty, contradicting our assumption, and thus, the 
power set is strictly larger than the original set. And since every set, including a power 
set itself, has a power set that is strictly larger, this proof shows that there is an infinite 
class of infinities. 

 So, next time your child wants to delay their bedtime, you’ll be prepared to discuss in 
detail which class of infinite extensions they are requesting.   

     Infinity Times Infinity 
     From Math Mutation podcast 184 
 If you were watching American TV around 2012–2013, you probably saw the silly 
commercial where a TV announcer is interviewing a bunch of kids, and asks them to 
name the largest number they can think of. One says “infinity”, and the next one tops 
him by yelling out “infinity + 1”. The announcer then says, “Sorry, I was looking for 
infinity + infinity.” But then a little girl tops him, by blurting out, “What about infinity 
*times* infinity?” I’m inferring that the viewer is supposed to be amused by all these 
meaningless manipulations of infinity that don't really make much sense. But did you 
know that there is a well-defined extension of the real numbers that includes clear 
definitions of operations on infinity, and that it is actually possible to intelligently 
compare infinity + 1, infinity + infinity, and infinity times infinity? 

 This set of numbers is known as the “ surreal numbers     ”, and was first defined (or 
discovered, depending on how you look at it) by John Conway, and then popularized in 
a book by Donald Knuth. By the way, I should take a moment to congratulate Professor 
Conway on his recent retirement from the Princeton University Mathematics Department 
– somehow his name always seems to come up in conjunction with the cool math stuff we 
talk about here, and I have the feeling we haven’t heard the last from him. The definition 
of surreal numbers is kind of unusual, but there are good reasons for this. Of course it’s 
pretty easy to define any arbitrary stuff and call it infinity, without really understanding 
what you’re talking about. But it’s challenging to define a system of numbers that is 
self-consistent, encompasses the reals we already know, adds infinities, and behaves as 
expected under addition, multiplication, and similar operations. 
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 The definition of  surreal numbers      works like this: a surreal number is a pair of 
sets, a left set and a right set, such that every element of the left set is less than every 
element of the right set. In the simple cases, such a pair can be thought to represent a 
value intermediate between the two sets. So, for example, the surreal number equivalent 
to 1/2 can be represented by a left set of 0 and a right set of 1. Any real number can be 
represented by an infinite left set consisting of all rationals less than it, and an infinite 
right set consisting of all rational values greater than it. The advantage of this set-based 
definition is that it’s then possible to clearly define all the basic arithmetic operations in 
terms of these left and right sets, and show that such operations are closed: if you start 
with surreal numbers, the result will be a valid surreal number as well. The details are a 
little messy, but you can find them in the more detailed sources in the References chapter. 

 At this point you might ask, what does all this have to do with infinity? Well, 
remember that the left and right sets can be infinite sets – so there is a surreal number 
defined by the left set of all integers, and an empty right set. This is an infinite number, 
larger than any integer, traditionally represented by the Greek letter ω (omega). Then, 
after that, we can define ω + 1 as having a left set of ω and an empty right set: this is a 
number greater than ω. Similarly, ω + 2 is greater than ω + 1, and so on… until eventually 
we can define ω + ω. Going on to multiplication, we can define a number ω times 2, 
whose left set contains (ω +  n ) for all  n . We can continue to define multiples of ω, until we 
reach ω times ω, just like in the commercial. Clearly that kindergartner had an advanced 
knowledge of set theory. But there is no reason she had to stop at ω times ω. ω can be 
raised to arbitrary exponential powers as well, to get even larger numbers, such as ω ω . 

 There are other  manipulations   of infinity, represented as ω, that are also pretty cool 
in this system. Integers can be subtracted from ω, so that ω –  n , for any natural  n , is less 
than ω, but still larger than all integers. All such numbers are greater than the smaller 
but still-infinite value ω /2. ω also has an inverse, ε (epsilon), the infinitesimal number: 
ε is greater than 0, but less than any other real number. ω is equal to 1/ε, so as you would 
expect, ε times ω equals one. You can also perform various operations on ε, similar to 
what can be done with ω, to find other infinitesimal numbers that might be greater or 
smaller, while still lying between 0 and all the familiar reals on the surreal number line. 

 We should probably also take a minute to clarify that there was an earlier definition of 
ω before the surreal numbers came about, by Georg Cantor in the 19th century, as part of 
his system to extend the system of ordinal numbers to accommodate infinities. In Cantor’s 
system, ω is defined as the smallest infinite number denoting the size of a well-ordered set. 
His definition of the arithmetic operations on ω had a few peculiarities, such as addition and 
multiplication not being commutative: 1 + ω is just ω, but ω + 1 is a larger number. This kind 
of makes sense in some ways: if you are performing the operation “go all the way to the end 
of the infinite number line”, which is what adding ω is like, it doesn’t matter that you started 
a few steps ahead, you’re going to the same place. But if you’re already at the end of the 
infinite line, then you can go farther, if that doesn’t make your brain hurt. Anyway, the surreal 
numbers are said by some to be more satisfying due to their more familiar arithmetical 
properties, which do match our standard expectations: in surreal numbers, 1 + ω equals ω + 1. 

 So, is there any application of the  surreal number   system, besides describing the 
bizarre variety and properties of these infinite numbers, and inspiring quirky television 
commercials? Strangely enough, Conway first came up with surreal numbers when trying 
to come up with a mathematical analysis of the game of Go. The definitions of infinite 
constants were not really his intention, but were side effects of his investigations into game 
theory. I think the big lesson here is that, if you think hard enough and are careful about your 
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definitions, concepts like arithmetic operations on infinities, which may seem too bizarre or 
nebulous to define, might turn out to make sense after all. Even to a group of 5-year-olds.   

      Infinite  Perimeter  , Finite Area 
     From Math Mutation Podcast 21 
 Suppose I asked you to draw me a figure that has an infinite perimeter, but a finite area. 
Could you do it? Well, not literally, since your wrist would get kind of tired trying to draw 
an infinite perimeter. But it might surprise you to know that we actually can describe such 
figures. One famous example is known as the Koch Snowflake or Koch Star. It was first 
described by mathematician Helge von Koch in 1904. 

 To define this figure, start with an ordinary equilateral triangle. Then you want to 
draw a spike jutting out from each side. More precisely, imagine the center third of each 
side as the base of a smaller equilateral triangle, and draw your spike by drawing the 
other two sides of the triangle, erasing the original segment. After you have done this for 
all three sides, the figure will look like a six-pointed star. Now repeat the process, drawing 
similar spikes in the middle third of each of the twelve segments making up the star. 

 Continue for an infinite number of steps, each time drawing spikes out of the center 
third of all line segments in the figure. The result, looking somewhat like an infinitely 
complex snowflake, is the Koch Star: 

     

 Figure 2-1.    First steps in building the Koch snowflake 1   

   1  Image used with permission under the Creative Commons Attribution-Share Alike 3.0 Unported 
license; original found here:   https://commons.wikimedia.org/wiki/File:KochFlake.svg    . 
Copyright user Wxs.  

 

https://commons.wikimedia.org/wiki/File:KochFlake.svg
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  Does this really have an infinite perimeter? Well, the easiest way to see this is that 
each step takes every individual line segment, and multiplies its total length by 4/3, since 
we are replacing the middle third with two segments of equal length. Multiplying the 
original perimeter by something greater than 1 an infinite number of times will, naturally, 
get us an infinite result. 

 Does it really have a finite area? Despite its infinite perimeter, the answer is yes. 
The simplest way to see this is probably to draw a circle that just barely encloses the six-
pointed star you generate after the first step, touching it at each of the six points. If you 
sketch out the next few steps of drawing spikes for the Koch Star, you will see that none 
of the spikes can ever jut outside that original circle. Thus, however long you continue 
drawing spikes, the total area must be less than or equal to the area of that circle. 

 So, what is the significance of this figure? Aside from the fact that it looks cool, it 
is one of the simplest examples of the class of figures known as fractals. Fractals are 
interesting because they exhibit greater detail the closer you examine them. For example, 
suppose I show you a picture of a Koch star. You might spot one small portion that looks 
smooth. But if you examine it more closely with a magnifying glass, you will see more and 
more complexity, inherent because any line segment in the figure must, by definition, 
have a spike sticking out of its center. 

 These kinds of figures can be used as models for real-life phenomena like mountains 
and coastlines. For example, a coastline looks smooth when viewed from an airplane 
overhead. But if you take a walk on the beach, you will see much more jagged detail than 
from the high-level view. And if you crawl along the beach examining grains of sand with 
a microscope, not only will you look like a dork, but you will also realize there is an even 
greater level of detail than you noticed when walking along. Due to their ability to model 
this type of complexity, fractals have applications in geology, seismology, medicine, art, 
and various other areas .   

      A Pretty  Big Library   
     From Math Mutation podcast 15 
 Wouldn't it be nice if you could go into a library and be guaranteed that any possible book 
would always be there? I’m not just talking about books that have been written – this 
library contains all books that could ever be written. If we assume that any books over 
a fixed length, say 410 pages, are split into multiple volumes, the library wouldn’t even 
have to be infinite. Let’s say that each page contains 40 lines, and each line contains 80 
characters. That’s 3200 characters per page; multiply by the 410 pages, and that’s just 
1,312,000 characters per book. If we assume that each character can be one of 26 letters, 
a space, a period, a comma, or a quote, then each character has 30 possibilities. Then 
the total number of possible books is a mere 30 to the 1,312,000th power. Of course, 
since modern physics claims that there are only about 10 to the 80th power atoms in the 
observable universe right now, I’m not quite sure where we would build this library. In 
fact, with a new storage technology that can represent an entire book on one atom, you 
couldn’t even build a virtual version of this library. But it’s still fun to speculate about. 

 There would be quite a few implications of this very large library. To start with, as 
I mentioned, it contains every possible book. Are you an aspiring author? Well, you’d 
better pick another profession, since all the books you will ever write are already on the 
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shelf. You can even find one volume that contains transcripts of all the   Math Mutation  
podcasts  , including the ones that I haven’t recorded yet. But a slight twist to this is that 
every possible variant of each book is also there – so there is a fake volume that seems to 
contain all  Math Mutation  podcasts, but where I get the math entirely wrong in every one. 
(At least, I hope that one’s a fake volume.) Finding the volume you want would be kind of 
hard though. 

 Another implication is that no matter what your problem is in life, no matter what 
your goals or dilemmas are, the answer is in one of the books. There is a complete book 
of prophecies, describing the origins of man and outlining all the major events of history, 
until our race’s downfall. Likewise, there are many books of heresies, describing a false 
past and steering us in every possible bad direction. There are also plenty of books of bad 
advice, including a complete collection of Dr. Phil’s writings. And again, finding what you 
want would be a challenge. 

 But one possible multi-volume set that exists is surely an *index* to the library, 
essentially a multi-volume card catalog; so maybe you can find the volume you want! 
Given the large portion of the books that are pure gibberish, finding this would probably 
be our first priority anyway. Someone just has to find the index, and then you can get to 
whatever volume you need. On the other hand, there are also plenty of fake indices that 
are right the first few times you try them, but after that send you to a wrong shelf light-
years out of your way. There’s even an index that is guaranteed to send you to a slightly 
wrong version of any book, where the last chapter is replaced with a series of Yoko Ono 
lyrics. So I guess we’re hosed anyway. 

 As you have probably guessed, this idea is not original with me – it comes from the 
classic short story “The Library of Babel”, by Jorge Luis Borges. I highly recommend his 
 Collected Fictions , which touch on a lot of ideas like this on the border of mathematics 
and the humanities.    

     Someone Knocked My 8 Over 
     From Math Mutation podcast 28 
  The ∞  symbol   for infinity, which looks like the numeral 8 on its side, has always seemed 
kind of weird to me. Perhaps that is fitting, since infinity is certainly a weird number, as 
we have discussed. I had to stare at it for a while to figure out what specifically bothered 
me about the symbol. One thing is that it’s kind of short and fat, compared to most other 
symbols in our math repertoire. Another is that it represents a quantity, sort of, but isn’t 
a letter in some language, like most constants such as π or ‘e’. The symbol was first used 
explicitly to represent infinity in a book by English mathematician John Wallis in 1655, 
but he did not supply any details on why he used this symbol. So where does the infinity 
symbol come from? 

 I like Rudy Rucker’s explanation, in his classic book,  Infinity and the Mind , that it 
represents a Demolition Derby racetrack, where the cars can zoom around forever. But 
I suspect Wallis didn’t attend too many car races in 1655, so there is probably a better 
explanation. 

 One common thought is that maybe the symbol represents a Möbius strip. As you 
may recall, this is a strip of paper that has its ends taped together after a half-twist: if you 
do this, any line you start drawing along the paper will eventually appear on both sides 
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without you ever having to lift your pen. This does suggest ideas of infinity. And held 
at the right angle, the strip does look kind of like an infinity symbol. Unfortunately, the 
Möbius strip was discovered in 1858, so Wallis would not have known any more about 
that than about demolition derbies. 

 Other theories of its origin refer to ancient religious symbols, such as the 
“Ouroboros”, a drawing of a reptile or dragon eating its own tail. Some representations 
of the Ouroboros are drawn in a way that does look like the infinity symbol. There 
are Ouroboros-like symbols or references in such diverse areas as Plato’s writings, 
Christianity, Aztec ruins, and African religions. 

 It is also possible that Wallis based his infinity symbol on slight modifications of 
Greek or Roman symbols. Perhaps it is simply a perversion of the letter omega, the 
final letter of the Greek alphabet, which looks like a curvy ‘w’. Or maybe it came from an 
Etruscan and Roman symbol for 1000, which was also sometimes used to indicate large 
abstract quantities, and looked like a ‘C’, followed by a vertical line, and then a backwards 
‘C’. I guess the vertical line acted like a twisty-tie to pull in the edges of the C’s, and keep 
the infinite garbage from spilling out of them. 

 One more explanation that seems kind of fun is that the symbol represents an 
hourglass turned on its side. If you think about it, when an hourglass is on its side, no time 
will seem to pass, so any interval being measured will literally seem to extend to infinity. 
Or at least until the sun goes nova and melts the hourglass; but that’s still a pretty long 
time, if we can trust our astronomers. 

 Finally, there is the mundane explanation that in the days of manual typesetting, 
creating a new symbol was a pain, so Wallis just used an 8 turned on its side to simplify the 
printing process. I think this is my favorite explanation, just because it makes all the people 
pondering this question look really silly, and making people look silly is always fun. Of 
course, after this podcast, I guess I may be one of them. But we will never really know.    

     Not Quite Infinity 
     From Math Mutation podcast 186 
 In one of the previous sections, we talked about a group of kindergarteners challenged 
to name the largest number, eventually settling on infinity times infinity as the winner. 
But what if they had made a rule against infinities? As our more astute readers are 
probably aware, that would be a silly rule, because the whole point of infinity is the fact 
that numbers go on forever, so regardless of the current answer, you could always name 
a bigger non-infinite number. But what if the question is about the largest number used 
somewhere in a serious mathematical proof? Then it becomes a little more interesting. In 
that case, it would not be surprising if one of the children had named Graham’s Number, 
popularized by one of Martin Gardner’s  Scientific American  columns in 1977, which was 
listed for many years in the  Guinness Book of World Records  as the largest such number. 

  What is  Graham’s number  ? It arises from a discussion by American mathematician 
Ron Graham about connecting all the vertices of an  n -dimensional hypercube and 
coloring the edges. What is the smallest number  n  for which coloring the edges of such a 
hypercube-based graph, with 2 colors, guarantees at least one single-colored complete 
subgraph of 4 vertices? You don’t really need to understand the problem to hear about 
the number though. 
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 To describe the number, we need to start by describing what’s called Knuth’s up-↑ 
notation. You can think of this as a generalization of the concept of exponents. To start 
with, “a ↑ b” is the same as a b , the result of repeated multiplication. So 4 ↑ 3 is 4 × 4 × 4, or 
64. Then, each time you add an ↑, it’s a result of repeated operation of the previous type 
of ↑. So 4 ↑ ↑ 3 means 4 tetrated by 3, or 4 to the 4 to the 4th power, or 4 256 . This is already 
getting pretty big, over 150 digits when written as a decimal. Similarly 4↑↑↑ 3 means 4 
tetrated by 4 tetrated by 4, an even more astronomical value. 

 Now that we have this arrow notation, we can define Graham’s actual number. 
Define  g1  as 3↑↑↑↑ 3. Note that this number is already almost inconceivably immense. 
Then  g2  is defined as 3  g1 -↑ 3. In other words, in Knuth’s ↑ notation, the number of ↑s 
used to define  g2  is equal to the full value of  g1 . Repeat this for 64 steps, with  g  

 n  
 equal to 

3  g  
 (n-1) 

  -↑  3. The final number  G , Graham’s number, is equal to  g  
 64 

 . The  Wikipedia  page 
points out that if you tried to write this final number in ordinary decimal notation, the 
observable universe would be too small to contain it, even assuming your handwriting 
is small enough that each digit fits in a Planck volume, around 10 to the minus 105 cubic 
meters. 

 After Gardner’s publication, and its subsequent appearance in the  Guinness Book of 
World Records , this number caught on for a while in pop culture; one post I spotted online 
talks about a mathematician who was asked about it by a cab driver. Ironically, Graham’s 
Number isn’t the real number defined for use in Graham’s published proof. Later on, 
Graham admitted to a reporter that his famous number was actually a weaker bound than 
the true one in the theorem, slightly larger than necessary, because the real one was too 
hard to quickly describe to a non-specialist. We also shouldn’t treat the  Guinness Book of 
World Records  as a very good source of mathematical wisdom; while they have removed 
the Graham’s number record from their online edition, they describe the ‘smallest 
infinity’ as the ‘sum of all the integers’; not a very good description, even if arguably 
equal in magnitude to Cantor’s definition. It’s also the case that since then, several larger 
numbers have been generated by other unrelated proofs, though somehow none seem to 
have caught on in pop culture. 

 What amuses me most about Graham’s Number is the sense of intimidating 
magnitude you get when thinking about a number so large that, if written down on paper, 
the paper would fill the entire known universe. Somehow in podcasts like this we have 
gotten almost blasé about discussing infinities, even though every infinity is technically 
larger than Graham’s number, and don’t get the same sense of awe. Maybe we need 
to think about large numbers like this every once in a while, to remind us how infinite 
infinity really is.    

     Big Numbers Upside Down 
     From Math Mutation podcast 203 
 When it comes to understanding big numbers, our universe just isn’t very cooperative. 
Of course, this statement depends a bit on your definition of the word “big”. The age of 
the  universe   is a barely noticeable 14 billion years, or 1.4 × 10 10  years. The radius of the 
observable universe is estimated as 46 billion light years, around 4.6 × 10 25  meters. The 
observable universe is estimated to contain a number of atoms equal to about 10 80 , or a 
1 followed by 80 zeros. Now you might say that some of these numbers are pretty big, by 
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your judgement. But still, these seem pretty pathetic to me, with none of their exponents 
even containing exponents. It’s fairly easy to write down a number that’s larger than any 
of these without much effort, as we have discussed in the previous section. While it’s easy 
to come up with mathematical definitions of numbers much larger than these, is there 
some way we can relate even larger numbers to physical realities? Internet author Robert 
Munafo has a great web page, linked in the show notes, with all kinds of examples of 
significant large numbers. 

 There are some borderline examples of large numbers that result from various forms 
of games and amusements. For example, the number of possible chess games is 
estimated as      1010

50
 . Similarly, if playing the “four 4 s” game on a calculator, trying to get 

the largest number you can with four 4 s, you can reach      444
4
 , another truly immense value. 

It can be argued, however, that numbers that result from games, artificial exercises 
created by humans for their amusement, really should not count as physical numbers. 
These might more accurately be considered another form of mathematical construct. 

 At a more physical level, some scientists have come up with some pretty wild 
sounding numbers based on assumptions about what goes on in the  multiverse  , beyond 
what humans could directly observe, even in theory. These are extremely speculative, of 
course, and largely border on science fiction, though based at some level in modern 
physics. For example, one estimate is that there are likely      1010

82
  universes existing in our 

multiverse, though this calculation varies widely depending on initial assumptions. In an 
even stranger calculation, physicist Max Tegmark has estimated that if the universe is 
infinite and random, then there is likely another identical copy of our observable universe 
within      1010

115
  meters. Munafo’s page contains many more examples of such estimates 

from physics. 
 My favorite class of these large “physical” numbers is the use of probabilities, as 

discussed by Richard Crandall in his classic 1997  Scientific American  article [Cra97]. 
There are many things that can physically happen whose infinitesimal odds dwarf the 
numbers involved in any physical measurement we can make of the universe. Naturally, 
due to their infinitesimal probabilities, these things are almost certain never to actually 
happen, so some might argue that they are just as theoretical as artificial mathematical 
constructions. But I still find them a bit more satisfying. For example, a parrot would have 
odds of about a 1 in 10 3000000  of pecking out a classic Sherlock Holmes novel, if placed in 
front of a typewriter for a year. Taking on an even more unlikely event, what is the 
probability that a full beer can on a flat, motionless table will suddenly flip onto its side 
for no observable reason sometime in the next year? Crandall estimates this as 1 in      101033.  
In the same neighborhood is the chance of a mouse surviving a week on the surface of the 
sun, due to random fluctuations that locally create a comfortable temperature and 
atmosphere: 1 in      101042 . Similarly, your odds of suddenly being randomly and 
spontaneously teleported to Mars are      101051  power to 1. Sorry, Edgar Rice Burroughs. 

 So, it looks like tiny probabilities might be the best way to envision the vastness of 
truly large numbers, and escape from the limitations of our universe’s puny 10 80  number 
of atoms. If you aren’t spontaneously teleported to Mars, maybe you can think of even 
more cool examples of large numbers involved in tiny probabilities that apply to our 
physical world.       
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    CHAPTER 3   

 Getting Geometric           

 Ever since Euclid, generations of learners have been astonished by the level of insight we 
can gain into the basic shapes of the world around us, starting with a few observations 
and basic principles. Isn’t it amazing that you can draw any triangle you want on a flat 
piece of paper, not telling me anything else about it, and yet I will know that the sum of 
its angles is precisely 180 degrees? You probably learned that fact in school, but unless 
you were very lucky or had an especially talented teacher, your textbook sucked all the joy 
out of it. Here we focus on a small set of geometry-related topics that I still enjoy, decades 
after my high school class on the topic. 

     Something Euclid Missed 
     From Math Mutation podcast 171 
 Here’s an experiment for you. Take a piece of paper, and try using your abundant artistic 
skills to draw a triangle. Any triangle will do: it can be equilateral, isosceles, right, or none 
of the above, just the lines connecting three random dots on your paper. Now trisect each 
angle: draw lines 1/3 and 2/3 of the way across the angle at each corner. There should be 
three points near the middle of the triangle where pairs of adjacent trisectors intersect 
each other. Join these to form a little triangle in the center. Assuming you are sufficiently 
talented to be able to draw straight lines and approximately trisect angles by hand, you 
will notice something amazing: no matter what triangle you started with, the small one in 
the middle is equilateral, with all sides the same length and all angles at 60 degrees! How 
did this happen?       



CHAPTER 3 ■ GETTING GEOMETRIC

26

  This little equilateral triangle is known as  Morley’s Triangle     . You would think that such 
a simple trick, drawing lines within a triangle to get cool shape in the middle, would have 
been part of the classical geometry known since Euclid, but surprisingly, that’s not the case. 
Euclid and his contemporaries may have missed this due to his tendency to concentrate 
on figures that could be constructed with compass and straightedge, since trisecting angles 
isn’t directly possible with this type of technique. This triangle wasn’t discovered until 1899, 
by Anglo-American mathematician Frank Morley at Haverford College. Morley was actually 
investigating complex properties of more general algebraic curves, and came across this 
triangle by accident. He didn’t bother publishing it right away, though it spread by word-
of-mouth until it eventually appeared in print as a problem in  The Educational Times  in 
1908. He also showed it to his young son, who was fascinated by this magic triangle and 
later reminisced, “Always, to the eye at least, the theorem, if drawn accurately, proved itself. 
What caused me considerable annoyance was that I could not for a long time comprehend 
what purblind examiners might accept as a valid proof.” These recollections also hint 
that part of Morley’s reluctance to publish may have come from the fact that the theorem 
seemed so simple and obvious (once drawn) that he was sure somebody must have already 
discovered it centuries ago. But the first actual publication of a proof was by two other 
mathematicians named Taylor and Marr in 1913, who acknowledged Morley in their paper. 

 Since Morley, numerous proofs have been discovered of the theorem. Trying to 
guess at the intuition behind the Morley triangle, it occurred to me that 180 degrees 
is a special quantity for triangles, the sum of their angles, so it only makes sense that 
when messing around with trisected, or 1/3, angles, the quantity 60 degrees, which 
matches the angles at the corner of an equilateral triangle, would play a special role. 
Unfortunately, I haven’t been able to find a proof that really connects to this intuition as 
to why this magical equilateral triangle appears. Many proofs are basically solving a set of 
trigonometric equations to figure out the relations of the lines and angles, fully valid and 
convincing but not providing much insight. Probably the cleanest proof I’ve seen online is 
one discovered in the late 20th century by Conway, where he basically assembles a bunch 

 Figure 3-1.    The Morley triangle 1   

   1  Image used with permission under the Creative Commons Attribution-Share Alike 3.0 Unported 
license; original found here:   https://commons.wikimedia.org/wiki/File:Morley_triangle.svg    . 
Copyright user Hagman.  

https://commons.wikimedia.org/wiki/File:Morley_triangle.svg
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of small triangles with the right sides and angles, and shows how they fit together to form 
any larger triangle with an equilateral Morley triangle in the center. 

 But an even more surprising aspect of  Morley’s theorem   is that it can be generalized 
to find other implied equilateral triangles lurking around. We’ve been talking about 
trisecting the interior angles of a triangle – but what about the *exterior* ones? Actually, 
if you draw the exterior trisectors of each angle of the triangle, you can come up with yet 
more equilateral triangles, both by intersecting the exterior trisectors with each other, and 
intersecting interior and exterior trisectors. You can also come up with slightly different 
trisectors by adding 360 or 720 degrees to the size of an angle and then dividing by three, 
yielding yet more implied triangles. There are a total of 18 Morley triangles that can be 
constructed. One amusing article I spotted on the web was from a math enthusiast who 
wrote a computer program trying to illustrate the central  Morley triangle      we started with, 
but due to a bug actually trisected the exterior angles in some cases… and was surprised 
to produce equilateral Morley triangles anyway! 

 I think the coolest aspect of this whole  Morley triangle      concept is that we had 
a supposedly well-explored, solidly understood area of mathematics, the Euclidean 
geometry of planar triangles, and thousands of years later a new and unknown property 
was discovered. Just draw the trisectors of each corner of any triangle, and their points of 
intersection determine an equilateral triangle. The ancient Greeks could have discovered the 
Morley triangle and come up with a proof like Conway’s, but somehow they didn’t, despite 
some of them having a literally religious devotion to geometry. How many more surprises 
are lurking in what we today consider well-understood areas of math? Maybe someday a 
 Math Mutation  listener will be the one who discovers something new. Maybe even you.   

      How Not to Decorate Your  Bathroom   
     From Math Mutation podcast 82 
 There’s one men’s room at the building where I used to work that drove me nuts. Like 
most corporate bathrooms, the floor consisted of tiles of several different colors, arranged 
in a simple repeating pattern. But in one particular stall, the pattern was violated: two 
tiles are the wrong colors, in a position right where you are staring if you go to do your 
business. Someone must have replaced some cracked tiles a few years back, and just not 
paid attention to the pattern. I’m not quite sure why this particular violation of symmetry 
bothers me; maybe it’s just the irony that a company can create massive engineering feats 
like modern microprocessors, but not keep its bathroom tiling consistent. 

 This got me thinking about tilings in general. Nearly every real-life use of tiles is 
periodic, with translational symmetry: it consists of a pattern of tiles that is repeated 
over and over, so you can take a small section, shift it a certain distance, and you will see 
exactly the same pattern. But do tilings always have to be that way? What other options 
are there? Of course, you can just take an identical set of tiles whose angles evenly 
divide into 360 degrees, like squares or hexagons, and randomly color them to create 
an essentially random set of colorings on top of a repeating tile pattern. But I’m asking 
for a truly different concept: can we take a simple set of tile shapes and cover an infinite 
floor without ever repeating the pattern? Think of it like the graphical counterpart to 
the decimal expansion of π, 3.14159…: it is made of the ten basic digits, but never settles 
into a repeating pattern. In other words, do sets of tiles exist that can cover the plane 
aperiodically, without exhibiting translational symmetry? 
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 Surprisingly, the answer is yes. Such tilings were first discovered in 1964 by Harvard 
mathematician Robert Berger, who found a set of 104 tiles that can only cover the plane 
aperiodically, without translational symmetry. But the most famous tilings in this class 
were developed in the 1970s by Roger Penrose, who found numerous examples of as few 
as two tiles which could cover the plane aperiodically. One famous example is based on 
trying to use pentagon-shaped tiles. You can’t cover a plane with such tiles, of course, since 
the angles of a pentagon are each 108 degrees, and this does not divide evenly into 360, so 
a set of pentagons cannot intersect at a point without leaving gaps. But Penrose defined a 
small set of tiles that can be used to fill these gaps, consisting of a star, a diamond, and a 
small odd-shaped tile that looks like a boat. By combining these with pentagon tiles, you 
can fill the plane with a pattern that never displays translational symmetry.        

   Penrose tilings   also have some other surprising properties: if you take any finite 
region, it will be repeated in an infinite number of other places, though not in any regular 
pattern. And some of these Penrose tilings also have rotational symmetry, which means 
that if you rotate the tiling at a certain angle, you will repeat the same tiling pattern. You 
can find lots of great illustrations of Penrose tilings at the  Wikipedia  page on this topic. 

 Initially, when I was researching this podcast, I thought the comparison to bathroom 
tilings would be an amusing joke, since nobody would seriously put in the effort to 
actually place an aperiodic tiling in a real-life building. But when reading about the 
topic online, I was surprised to see that in the 13th–15th centuries in the Islamic world, 

 Figure 3-2.    Penrose tiling   2   

   2  Sourced from Wikimedia Commons at   https://commons.wikimedia.org/wiki/File:Penrose_
Tiling_(P1).svg    . Released into public domain by owner, user Inductiveload.  

https://commons.wikimedia.org/wiki/File:Penrose_Tiling_(P1).svg
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some architects actually used a set of five tiles of varying shapes known as “ Girih tiles  ” 
that really could form an aperiodic tiling of the plane if placed properly. They consist of 
a decagon, an elongated hexagon, a bow-tie shape, a rhombus, and a pentagon. Almost 
every building known to use the tiles actually used them in periodic patterns, which are 
also possible, but at least one building, the Darb-i-Imam funerary complex in Iran, really 
does use an aperiodic pattern that can be extended into a full tiling of the plane. Did 
someone stumble on this by trial-and-error, or did early Islamic mathematicians actually 
achieve geometric breakthroughs that were lost until the late 20th century? We’ll never 
know for sure .   

      Bees Vs  Mathematicians   
     From Math Mutation podcast 152 
 Getting back to more realistic bathroom tilings, when I was younger, I spent a lot of time 
thinking about why we see hexagon-shaped tiles used so often. After staring at them for 
a while, you can probably figure out without too much trouble that it’s all in the angles. 
The total angles around any point where tiles meet has to be 360 degrees. So if you want 
to tile using regular polygons, each one needs to have angles that divide into 360. You may 
recall that the formula for the total of the angles of a convex polygon is 180( n -2), where  n  
is the number of sides. So this means that if you are tiling with regular polygons, triangles, 
squares, and hexagons are your only option, due to their 60, 90, and 120 degree angles. 
And let’s face it, regular tilings of both triangles and squares are pretty boring to look at, 
with lots of straight lines forming regular matrices. So hexagons are a clear winner there. 

 Incidentally, this got me wondering, why do bees build hives out of hexagons? I bet 
it’s probably easier for nature to evolve a regular pattern than to evolve something more 
complex, but there must be more to it. There’s another important property of polygons we 
need to consider here: how can you enclose the highest possible area while minimizing 
the perimeter of a figure? The best answer is to use a circle, but that’s cheating, since we 
were asking the question about polygons. (You might argue that it’s not really cheating, 
since a circle is just a polygon with an infinite number of sides, but that’s getting into 
some issues of philosophy.) If you have to use a finite regular polygon, you enclose more 
area the more sides you have, as that gets you closer to the circumscribed circle. And if 
you want to fill a plane without wasting any space, you need to choose a shape that allows 
a regular tiling – leaving hexagons as the best choice. 

 We’re not done though. Can you spot the hole in this logic? Think for a minute about 
hidden assumptions. Why should bees be required to use a single shape, and why should 
they be required to make it out of straight lines? The idea that hexagons are still the best 
answer for efficiently dividing the plane into equally sized regions while minimizing the 
length of the lines used, even if irregular shapes and curves are still allowed, is known 
as the “honeycomb conjecture”. It’s actually been around since ancient times; Pappas 
of Alexandria speculated on this question in the 4th century AD. Surprisingly, it was not 
proven until the 1990s, by Thomas Hales of the University of Michigan. Hales showed that 
indeed, any partition of the plane into regions of equal area would have a perimeter at 
least equal to that of a regular hexagonal grid. 
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 We also shouldn’t forget that the hexagon shape of beehives is a bit of a 
simplification: like most of real life, beehives are actually a 3-dimensional structure. Every 
pair of hexagonal layers is offset from each other a bit, and the bottoms of the hexagon-
sided cells are kind of pointy, made of three diamond-shaped panels. With these shapes, 
the layers are able to interlock; in an article on  Science News , Ivars Peterson points out that 
this is kind of like the bottoms of two egg cartons stuck together. And this leads to another 
surprise: Hungarian mathematician László Fejes Tóth proved in 1964 that if they made the 
tips out of two hexagons and two squares, they would be able to enclose more volume in 
relation to the wax used. So here’s a case where evolution didn’t seem to get bees the right 
answer. Could that really be right? Well, the Tóth structure is relatively complex, so it’s 
probably hard for nature to come up with the right one through random mutation. 

 But not so fast: we can’t forget that mathematical results are in a kind of ideal space, 
not accounting for physical details, perhaps including the fact that cell walls have a 
nonzero thickness. To confirm Tóth’s result, scientists Dennis Weaire and Robert Phelan 
did some experiments with detergent bubbles, which naturally minimize their surface in 
relation to the enclosed area, by pumping bubbles between two glass plates. When the 
walls were very thin, they indeed confirmed the result, forming beehive-like hexagon 
layers connected by tips using Tóth’s hexagon/square structure. But when the liquid walls 
reached a certain thickness, it instead formed the three-rhombus structure seen in actual 
beehives. Thus, it’s likely that when wall thickness is taken into account, Tóth’s model was 
oversimplified. Proving once again that no matter how smart mathematicians are, nature 
is sometimes smarter.    

     A Brush with Evil 
     From Math Mutation podcast 102 
   Today I thought it would be fun to discuss  pentagrams     . You know the figure I’m talking 
about: basically you draw a pentagon, then draw all the diagonals connecting the vertices, 
and you have a pretty star shape. The pentagram seems to have had deep symbolic 
meaning in many cultures since ancient times, and most popularly brings demonic 
connotations to mind in our modern culture. Why do we find this shape so fascinating? 

 To start with, I think it’s the easiest “interesting” picture to draw. Think about it: one 
lazy way to doodle, especially for the non-artistically-inclined, is to draw a bunch of dots 
and connect them. If you draw 2 or 3 dots, you get a simple line or triangle. If you draw 4 
dots and connect them all, you get a quadrilateral with an X in it, which is not very exciting. 
But draw 5 dots with even spacing, connect them – and you have a pentagram! If the 
spacing is not even, you get some kind of distorted pentagram, except in the degenerate 
cases where several of your dots coincide or fall on a line. If you’re aiming for a star shape, 
the pentagram star is also an easy figure to draw, in that you can draw the complete star in 
five lines without lifting your pencil, as I’m sure you learned in grade school. 

 Each intersection between diagonals of a pentagram divides the line into segments 
measurable by the “golden ratio”, the famed mathematical constant φ equal to the ratio 
 a/b  such that  a/b =  ( a + b ) /a , which is (1+ √5)/2. You can also see that the center lines 
of the pentagram together form a smaller pentagon, in which you can draw another 
pentagram. In fact, if you look carefully, you’ll see that in the ‘arms’ of the star, you can 
also inscribe a diminishing infinite series of smaller pentagons and pentagrams. If the 
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starting pentagram was inscribed in a circle of radius 1, or had a circumradius of 1, then 
the  n th iteration of smaller pentagrams has a circumradius of φ - n  .        

  Aside from these properties, the close association of the pentagram with the number 5 
is probably another reason why human cultures have continuously found it fascinating. As 
early as 4000 BC it is said to have represented the “sacred feminine”. To the ancient Hebrews, 
it represented the five books of the Torah. Perhaps because the 5 points can be put in 
correspondence to 2 arms, 2 legs, and a head, the top point of an upward-pointing pentagram 
can be said to represent the Spirit. According to the  Skeptic’s Dictionary , an inverted 
pentagram may be considered especially evil because it relegates the spirit to the bottom 
of the metaphysical heap. In ancient Greece, the mathematical cult of Pythagoras used 
pentagrams as a symbol of health, and wore them so followers could recognize each other. 

 The pentagram was a Christian symbol to the Roman emperor Constantine I, 
representing the Five Wounds of Christ. The knight Gawain in medieval literature 
inherited this use. Due to the ability to draw the full figure without lifting your pencil, the 
pentagram also became known as the Endless Knot, a symbol of Truth and protection 
against demons. A pentagram was used to contain the demon Mephistopholes in 
Goethe’s  Faust , which probably helped lead to its adoption by Satanists in more recent 
times. As a result, many Christians consider the pentagram in general to be demonic, 
regardless of which way it’s pointing. To Wiccans and Japanese, however, the pentagram 
has no evil connotations, and merely symbolizes the five mystical elements. 

 Perhaps the most amusing comment I found in articles online is the most obvious. 
As you’ve probably seen in thousands of cartoons and children’s drawings, the five-
pointed pentagram star seems to be a near-universal symbol for the stars in the sky. But 
as the  Skeptic’s Dictionary  points out, no star ever looks anything like that, whether to the 
naked eye or through a telescope. Strange, isn’t it?     

 Figure 3-3.    Inscribed pentagrams and pentagons   3   

   3  Image used with permission under the Creative Commons Attribution-Share Alike 3.0 Unported 
license; original found here:   https://commons.wikimedia.org/wiki/File:Embedded_
pentagrams_(thick,_transparent).png    . Copyright user KovacsUR.  

https://commons.wikimedia.org/wiki/File:Embedded_pentagrams_(thick,_transparent).png
https://commons.wikimedia.org/wiki/File:Embedded_pentagrams_(thick,_transparent).png
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       Twistier Than You Thought 
     From Math Mutation podcast 168 
 If you’re geeky enough to be reading this book, you probably know the basics of the 
 Möbius Strip     : take a long strip of paper, and tape one short end to the other, after 
rotating it 180 degrees. This results in an object that has only one side and one edge. If 
you start drawing a line in the middle, you will find that by the time it has returned to its 
starting point, your line traverses both sides of the paper. And if you start highlighting an 
edge, you will similarly find that all edges are covered by the time you get back to your 
starting point. 

 The Möbius Strip is named after August Ferdinand Möbius, a 19th century German 
mathematician and astronomer who had studied under Gauss. He was seen as quite 
talented in his youth, and became chair of astronomy at the University of Leipzig in 1816. 
My favorite anecdote about him is the fact that, despite being a department chair, he wasn’t 
promoted to full professor very quickly, because he was not a good enough lecturer to 
attract students to pay to listen to him! If only modern universities followed similar policies, 
instead of torturing undergraduates with professors promoted only based on publications. 
Möbius ended up making major contributions to astronomy, analytical geometry, and 
topology. Ironically, his work on the strip, which was to make him a household name, 
was only published posthumously in a memoir, and the strip was discovered earlier (but 
apparently not described as completely) by another mathematician named Johann Listing. 

 Möbius strips are fun to play with. For a few surprises, try cutting one in half along its 
center, or cutting a parallel line 1/3 of the way from the edge. You will probably find the 
results don’t quite match your intuition – you will end up with one long non-Möbius loop 
in the first case, and a linked Möbius and non-Möbius loop in the second. On the web 
you can find pages describing more general formulas for what you get from parallel cuts 
in a Möbius strip. A stranger experiment with a Möbius strip is to use it as tape for one of 
those punch-tape-based music boxes: the result will be playing a song the right way up 
once, then playing the same song with all the notes transposed to their opposites. One 
 YouTube  user has posted a video of this trick. 

 But aside from being an interesting curiosity, you might be surprised to learn that 
Möbius strips really do have practical applications. This isn’t so surprising, actually, after 
you think about it for a minute: many elements of modern technology from the past 
century have used long tapes or belts of one type or another, and applying a Möbius twist 
allows both sides of an endlessly rotating strip to be effectively used without needing to 
remove and turn over the tape. In the case of a typewriter ribbon, it allows ink on both 
sides to be used up before the ribbon is worn out. In the case of a magnetic computer or 
audio tape, again it can allow recording on both sides. Those last two might not make 
much sense to you if you’re not an elderly 46-year-old like me, but you can read about 
them in the history books. However, factories still need to use conveyor belts, until we 
all upload our consciousness into computers and cease to interact with physical objects 
altogether. In the case of a conveyor belt, a Möbius design allows us to ensure equal wear 
and tear on both sides, doubling its useful life. Various sanding and abrasive belts have 
similar issues. In a slightly more esoteric application, some music theorists have also 
found that when they try to describe chord relationships on a two-dimensional surface, 
the result is a structure that can be directly mapped to a Möbius strip. 

 And it’s not just humans who have figured out how to make use of Möbius strips – 
they actually appear in nature. Analyzing an African folk medicine that seemed helpful 
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for pregnant women, biologists discovered a key component was a protein called Kalata 
B1. Kalata B1 is a cyclic protein, consisting of 29 amino acids connected in a loop – and 
the loop has a single half-twist, resulting in a Möbius-like structure. Apparently this 
makes the protein especially stable, able to survive boiling temperatures, and makes it 
very complex for enzymes to interact with. Experiments have shown that this protein also 
has antimicrobial and insecticidal properties. It is suspected that these kinds of structures 
will have many pharmaceutical and agricultural applications. 

 Finally, we shouldn’t neglect the uses of Möbius strips in the arts. You can see them 
in many paintings, most famously those of M.C. Escher, and of course a drawing of the 
Möbius strip is the basis of the green-triangle recycling symbol seen in many politically 
correct locations around the world. Whimsical stories about Möbius strips have also 
been a popular theme in science fiction short stories: one website on such things counts 
31 well-known stories using the topic, including ones by luminaries such as Arthur C. 
Clarke, John Barth, Martin Gardner, and Lewis Carroll. I’ll conclude this section with 
a more obscure work, an Internet poem by someone whose name (or pseudonym) is 
Eleanor Ninestein:

   The Topologist’s child was hyper  

  ‘Til she wore a Möbius diaper.  

  The mess on the inside  

  Was thus on the outside  

  And it was easy for someone to wipe her.        

     Squash Those Dice 
     From Math Mutation podcast 18 
 Recently I was playing in my weekly game of  Dungeons and Dragons  (“D&D”), and 
started thinking about the dice we use in that game. The main dice in D&D correspond to 
the five  regular polyhedra  , also known as the  platonic solids  . These are solid shapes that 
have the nice property that every side is a regular polygon, and every vertex is congruent 
to every other vertex. They consist of the tetrahedron, with 4 triangular faces; the cube, 
with 6 square faces; the octahedron, with 8 triangular faces; the dodecahedron, with 12 
pentagonal faces; and the icosahedron, with 20 triangular faces.       
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  What has always seemed odd to me is the fact that there are exactly five of these 
 regular polyhedra  . Why shouldn’t there be any others? Why isn’t some gigantic wacky 
8,763-sided shape with nonagon faces, that nobody has bothered building yet, lurking out 
there? That die would certainly add some spice to our D&D games. 

 Years ago in a math class, I learned a standard algebraic proof that the five platonic 
solids were the only ones, involving equations describing the relations between the 
number of vertices, edges, and faces. But I never really had any intuition about why this 
was so. Thus I was happy to see, when skimming the web for more information on this 
topic, a simple geometric argument for why these five solids are unique. 

 To understand this argument, let’s look at one of the vertices (corners) of one of 
these solids, a point where three or more of the polygonal faces meet. Imagine that you 
are frustrated with your latest die roll, so you take your palm and smash this vertex into 
the ground, and the faces break apart from each other, but still remain attached to the 
vertex point you started with. Look at the point on the ground where that vertex has 
landed. Around it are all the adjacent faces, with one angle from each in a circle around 
the vertex. Since these angles together, flattened in the plane, all fit around a single point, 
they must total less than 360 degrees. Strictly less than, and not equal, since at exactly 
360 degrees they would have had to be flat in the plane to start with, and could never 
have been “folded” upwards into a polygonal shape. This is the key observation – the 
uniqueness of the five solids derives directly from this constraint, that the angles touching 
a vertex must total less than 360 degrees. 

 Why is that? Well, remember that at least three faces must touch to make a vertex, 
and we have defined regular polyhedra to require that all faces are identical. So now we 
know that each face must have corners with an angle strictly less than 120 degrees. But 
each angle of a hexagon is 120 degrees, and regular polygons have wider angles the more 
sides you add, so that means that each face of a regular polyhedron must be a pentagon, 
square, or triangle. In the case of pentagons or squares, you can only fit three around 
a vertex without hitting the 360 degree limit, so there is only one platonic solid with 
pentagonal faces, the dodecahedron, and one with square faces, the cube. In the case of 

 Figure 3-4.    The five regular polyhedral dice  
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triangular faces, each angle is only 60 degrees, so we can have three, four, or five of them 
at a vertex, defining our last three solids: the  tetrahedron  ,  octahedron  , and  icosahedron  . 
The fewer we have at a vertex, the sharper the angle is when we “fold” them up to make 
a solid. 

 Now, those of you who are hardcore gamers may be confused by the fact that you 
have seen other dice in stores, such as the 10-sider, 30-sider, or 100-sider. But none of 
these are  regular polyhedra  : either not all angles are congruent, or the sides are not 
regular polygons. As for why we care about that restriction – well, that makes the math 
more interesting. Fair enough? Due to our insight about the angles around each vertex, 
we know that as long as we want our dice to be regular polyhedra, the basic five are the 
only ones we will ever get.   

      Crazy Dice 
     From Math Mutation podcast 155 
 In the previous section, we discussed  regular polyhedral dice  . These are formed from the 
five convex solids in which every side is a regular polygon, and every vertex is identical. 
There are the 4-sided tetrahedron, the 6-sided cube, the 8-sided octahedron, the 12-sided 
dodecahedron, and the 20-sided icosahedron. Why are these dice preferred for gaming, 
over more irregular shapes? You can see why these would be naturally fair dice, as their 
multiple symmetries make all the faces equivalent in some sense. But do we need such 
strict criteria to create fair dice, or dice with equal probabilities of landing on each 
side? If you think about it a little, the requirement of a Platonic solid is really too strict. 
A simpler criterion for a fair die is that it be  isohedral : this means it is a convex polygon 
with all faces identical, and with each face having the same relationship with the shape’s 
center of gravity. In other words, we can loosen the requirements that all faces are regular 
polygons, and that all vertices are identical. 

 So… what does that buy us? Well, quite a bit in fact. On the web you can find a nice 
site by Ed Pegg, who shows cool 3-D plots of dice with 24, 30, 48, 60, or 120 sides. But even 
more useful, he also discusses infinite families of isohedra with  2n  sides, for any  n  value 
of 3 or more. The simplest ones are easy to visualize: just take a cone, but instead of a 
circular base, make the base a regular  n -gon. Then put two of those cones base-to-base 
with the corners touching, and voila, you have a fair die with  2n  sides. And note that you 
can easily use a  2n -sided die to fairly generate random numbers from 1 to  n , simply by 
numbering it up to  n  twice instead of uniquely numbering all sides. So no matter what 
crazy role-playing game you invent, you can include appropriate dice to generate random 
numbers in any range. 

 But as with any basic mathematical principle, there are always wise guys who have 
to find a way to violate it. So they make dice with funny numbers of sides like 5 or 7, 
but instead of using the simple formula we just mentioned, they find other tricks. For 
example, here’s one way to make a 7-sided die that is actually manufactured & sold to 
gamers: visualize a cylinder standing upright like a soda can, but for the top and bottom 
bases, use pentagons rather than circles. Think about this for a minute – it means two of 
the sides, the bases, will be pentagons, but the other 5 will be rectangles. Can this really 
be a fair die? If you’re very careful about the area of each of the sides and the distribution 
of weight within the die, you can probably even things out to make this fair. It’s also 
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unusual in that if it lands on the top or bottom, you can read the value on the face like a 
normal die, but if it lands on a rectangular side, what’s facing up will be an edge, so those 
numbers will have to be labeled on the edges. 

 It’s a bit trickier than you might think at first, though, to make an odd-shaped die 
fair. A naive calculation would just be to compare the area of the sides, and assume that 
if they are all equal, we’re fine. You can quickly disprove this with a thought experiment: 
Imagine that in the 7-sided die we just discussed, the pentagons on the ends are cut at 
an angle rather than straight, so if you let the die rest on one, it will be leaning to one side 
and topple over. The probably of rolling on one of these pentagons effectively drops to 
0, regardless of their area. In these odd shapes, you really need to account for the energy 
needed to topple the die over to the next side, as well as the likely momentum from a 
roll, to figure out not only if the die will land on that side, but also if it will stay there. 
Pegg calculates what he calls the Energy State Model to formalize this, which you can see 
in detail on his website. 

 In another article, Ivars Peterson points out one more wrinkle that affects the fairness 
of dice. In most nicer dice, the numbers are indicated by small dots that are drilled into 
each face. But the tiny amount of material removed in this drilling means that the weights 
of the faces are not perfectly symmetrical, and the side with only one dot is heavier than 
the side with six. So the six is more likely to be face-up than the one, and your gnome is 
a likely to slay that dragon a tiny bit faster. Is this effect really significant? According to 
numbers posted on the web, out of 10000 rolls, you can expect 1679 sixes, but only 1654 
ones. Probably not enough to tip a casual game, but it is enough to concern the casinos: 
they actually fill in the dots with paint that has a weight precisely matching the missing 
plastic, to eliminate the issue. 

 So, while it takes a little work, you can make fair dice that generate just about any 
number. Maybe one day you will be clever enough to add yet another to the hundreds of 
types of dice registered at the U.S. patent office.    

     Wheels That Aren’t Round 
     From Math Mutation podcast 209 
 Most of us are generally familiar with the concept that wheels are usually round. But 
do they have to be this way? What are the properties that make a round wheel useful? 
Yes, you might think that a decade of math podcasting has finally driven me insane, to 
question something so obvious. But math geeks are famous for requiring proofs of the 
obvious – and this is a case where common instincts might lead us astray. Now of course, 
for a wide variety of reasons, circular shapes do tend to make the best wheels. In certain 
cases, though, there is a more general class of figures that can be substituted for the 
circular shape, with some important real-life applications. These are known as   curves of 
constant width   . 

 To simplify the discussion and avoid the complications of axles, let’s discuss simple 
rollers. Suppose you want to smoothly roll a large plank across the top of a bunch of logs. 
If the logs have a circular cross section, it’s pretty obvious that the plank can roll smoothly 
along, without wobbling up and down. But what is the property that enables this? The 
reason for the plank’s smooth rolling is that the circle is a curve of constant width. This 
means that if you put parallel lines above and below a circle and touching it, the distance 
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will be a constant, the diameter of a circle. However, a surprising fact discovered by Euler 
in the 18th century is that there are many other curves of constant width that could be 
used instead and still allow smooth rolling. 

 The most famous non-circular curve in this class is known as the  Reuleaux Triangle  , 
a kind of equilateral triangle with rounded edges. To create one, start with an ordinary 
equilateral triangle. Then, for each vertex, replace the opposite side with the arc of a circle 
whose center is that vertex, and whose radius matches the side of the triangle.        

  If you think about it for a minute, you should see that this curve will be of constant 
diameter: if a plank is rolling over the top, at any given moment either the plank or the 
ground will be touching a vertex, and the opposite surface will be touching a curved edge. 
Since the circle used to form that curved edge is defined as the set of points equidistant 
from its center, the opposite vertex in this case, the distance between the plank and the 
ground will be a constant value equal to the circle’s radius. Thus, logs with a Reuleaux 
cross section will be rolled over just as smoothly as circular ones. 

 As you can probably see from how we constructed it, the  Reuleaux Triangle   is just 
one representative of a large class of curves of constant width. Take any regular polygon 
with an odd number of sides, and replace the side opposite each vertex with an arc 
of a circle centered at that vertex. There are also many other curves in this class, with 
more complicated construction methods; you can read up on these on the web if you’re 
curious. 

 The surprising discovery of this large class of shapes has led to some useful real-
life applications. Reuleaux, the 19th century engineer for whom the triangle is named 
(despite Euler’s earlier knowledge of it), became famous for investigating a variety of uses 
based on converting circular into other types of motion. Later this led to applications 
in mechanisms as diverse as film projectors and automotive engines. Since a rotating 
 Reuleaux triangle   traces a shape that is nearly square, it has also been used to construct 
a special drill bit that enables woodworkers to drill square holes. By basing the drill on 
other curves of constant width, a similar method can be used to drill pentagon, hexagon, 

 Figure 3-5.    Reuleaux triangle  
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or octagon-shaped holes as well. This shape has also been used in the design of pencils, 
with the claim that the constant diameter but non-circular shape provide a comfortable 
grip while reducing the chance of spontaneously rolling off a table. And in several 
countries, non-circular curves of constant width have been used as the shape of coins, 
with their constant diameter providing advantages in the design of vending machines. 

 But one of the most useful aspects of the  Reuleaux Triangle   and related shapes is as 
a non-circular counterexample, forcing us to question basic assumptions about simple 
geometric properties. According to some sources, engineers working on the doomed 
space shuttle  Challenger  tried to verify the cylindrical shape of some components by 
measuring their width at various sampling points, not being aware of the existence of 
non-circular curves of constant diameter. Too bad they didn’t have math podcasts back 
then, though technically the engineers could have read Martin Gardner’s classic essay on 
the topic. Anyway, if the shapes were not circular, this would mean that various types of 
stress would affect the parts unevenly. This may have contributed to the shuttle’s eventual 
destruction. 

 So, be sure to think about the existence of these non-circular curves of constant 
width, next time you are assembling a mechanical device, minting your nation’s currency, 
or designing a space shuttle.   

     The Future That Never Arrived 
     From Math Mutation podcast 73 
 If you’ve gone to Disney’s Epcot center, or seen other visions of the future created in the 
1950s and 1960s, you’ve probably seen a geodesic dome. These are the big domes, made 
up of triangles that were thought by many half a century ago to represent the future of 
architecture. They still do look cool, but never quite caught on, and most of us still live 
in rectilinear houses. What are these geodesic domes, though, and what makes them so 
interesting? 

 In general a dome is an efficient design, as judged by the relationship of interior 
volume to surface area, since in three dimensions, spherical figures enclose the most 
volume with the least surface. A  geodesic dome   is built using a network of linear elements 
forming portions of great circles around a sphere, where a “great circle” is a circle like the 
equator that has a diameter equal to the sphere itself. The intersecting network of great 
circles forms a large number of triangular elements. The most important property of these 
geodesic domes is that these great circles distribute stress across the structure, making 
them naturally very strong. However, due to the large network of intersecting elements, 
small flaws can cause stress to be transferred in very odd ways:  Wikipedia  references an 
incident where a snow plow bumped into one of these buildings in Princeton, New Jersey, 
and the damage appeared on the opposite side. But properly built domes have been seen 
to stand up extremely well against earthquakes, hurricanes, and other risks. Since this 
self-reinforcing structure is inherently strong, if you do it right, it is apparently possible to 
build one out of very lightweight materials; I spotted one website that shows you how to 
build one out of straws and gumballs. 

 But you’ve most likely heard about geodesic domes more recently due to ‘buckyballs’, 
the 60-atom carbon molecules discovered in the last few decades that have geodesic-
dome-like shapes. Their extreme structural stability leads to many potentially interesting 
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applications, such as using them to contain and transport simpler molecules, including 
densely packed hydrogen. Buckyballs were named after architect Buckminster Fuller, 
thought to be the inventor of geodesic dome architecture. He certainly patented and 
popularized them, though there is some dispute about whether certain German designs 
from the 1920s technically beat him to it. 

 Fuller led a successful but very unusual life. While he gained international fame from 
his exotic but extremely strong dome-shaped buildings, he attributed more universal 
significance to his geometrical observations. These included principles of close-packing 
spheres, tetrahedrons, and octahedrons, which he called “ tensegrity structures  ”, in 
addition to understanding geodesic domes. He considered himself not just an architect, 
but a philosopher, and believed that understanding the interdependent nature of these 
geometric structures would lead naturally to environmentalism, universal government, 
and world peace. He called this philosophy Synergetics, explained as “The integration of 
geometry and philosophy in a single conceptual system providing a common language 
and accounting for both the physical and metaphysical.” 

 I tried to read his long, ponderous book on the  Synergetics  , which describes this 
philosophy in detail, but didn’t quite make it through. As  Wikipedia  states, Fuller often 
created “long run-on sentences and used unusual compound words (omniwell-informed, 
intertransformative, omni-interaccommodative, omniself-regenerative) as well as terms 
he himself coined.” He also considered his own thoughts and actions so significant that 
he made an effort to document every 15 minutes of his entire life between 1915 and 1983, 
titling the resulting work the  Dymaxion Chronofiles . These files included items ranging 
from personal journal entries to dry cleaning bills. But the fact that he went off the deep 
end philosophically should not detract from his architectural achievements. 

 So anyway, if these geodesic domes are so great, why aren’t we all living in them 
in the 21st century? To start with, domes have some obvious downsides: the sloping 
shapes mean that you will have a lot of wasted areas without enough headroom to be 
practical living space. And most building materials come in rectangular shapes, so it’s 
hard to build a dome without a lot of waste. Furthermore, laws and regulations regarding 
things like fire escapes, windows, and electrical wiring are ill-suited to these structures, 
adding extra expense. Similar issues come due to the geometric conflict with commonly 
constructed furniture: where can you put a sofa in a dome without wasting the space 
behind it? None of these problems were enough to stop Fuller himself from living in one 
of his domes, of course, but the rest of us who aren’t quite as rich as him have to consider 
these practical issues.       
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    CHAPTER 4   

 Deeper Dimensions           

 I still remember the first time I read Edwin Abbott’s classic 19th-century novel  Flatland , 
back when I was in the 6th grade.  Flatland  tells the story of A. Square, a square-shaped 
creature who lives in a world that exists entire on a two-dimensional plane: he can move 
forward, backward, left, or right, but has no idea that the directions of up and down even 
exist. All he can see is other objects in his plane, which all look like mere lines from his 
plane-confined point of view. Eventually he is visited by a sphere from the 3rd dimension, 
and is amazed by its “tricks” such as the ability to get smaller or larger, depending on 
which of its cross-sections is intersecting the Flatland plane. Eventually the square comes 
to accept that there really are dimensions beyond the two that he is used to. 

 As I reviewed my list of  Math Mutation  episodes in preparation for assembling this 
book, I was surprised to realize that I didn’t actually have an episode directly focused on 
discussing  Flatland . In the back of my mind, I probably figured that anyone interested 
enough in math to listen to my podcast must have already read that book. If you haven’t, 
I strongly recommend that you do! My description in the paragraph above certainly fails 
to do it justice, though it should be sufficient for you to be able to comprehend the related 
discussions in this chapter. Note that  Flatland  is old enough to be out of copyright, so you 
can find the complete text for free online, in case buying this book has already expended 
your reading budget. 

 Reading  Flatland  was an eye-opening experience. Could it really be the case that we 
are just like the Flatlanders, unable to detect the real higher dimensions of the universe 
due to our misfortune of originating in a limited three-dimensional hyperplane? How 
many amazing discoveries are out there, perhaps mere inches away from us, that we are 
simply failing to notice? How would our lives be transformed if we could figure out a way 
to interact with these higher dimensions? Ever since then, I have eagerly absorbed all the 
books, articles, and stories I could on this mind-blowing topic. Here I share some of my 
favorite ideas and observations on the possible existence of higher dimensions, and the 
strange properties they would possess. 

     Making Flatland Real 
     From Math Mutation episodes 4, 8, 74, and 175 
  The  original Flatland   was just an infinite plane, where the inhabitants could travel around 
at will. While the novel was brilliant, its author, Edwin Abbott, didn’t give much thought 
to two-dimensional energy sources, ecology, biological plausibility, or other mundane 
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considerations that make life possible in our universe. None of this was necessary 
to express his basic metaphor, using two-dimensional creatures ignorant of the 3rd 
dimension to question how we view our own world. But it still would have been nice 
for Flatland to be a little more realistic. In the years since Abbott’s original publication, 
numerous other authors tried to extend Flatland into a slightly more ‘realistic’ model, 
if you can call it that. For example, it would be more analogous to our experience if the 
planar creatures lived on the rim of a disk in the universe, just like we live on the surface 
of our planet. Three subsequent authors created particularly notable works in this genre: 
C. H. Hinton, Dionys Burger, and A.K. Dewdney. 

 C.H. Hinton was actually a contemporary of Abbott, and wrote his works on the 
fourth dimension soon after  Flatland.  Less famous than Abbott, probably because he was 
not quite as talented a storyteller, he wrote about another two-dimensional world of his 
own invention. In Hinton’s world of Astria, the creatures live on a circular planet on the 
surface of a large three-dimensional bubble. In many ways this predicted Einstein’s later 
description of space-time, where our (perceived) 3-dimensional universe is curved in the 
fourth dimension. Hinton also made an effort to deal with the various difficulties of living 
in such a world. For example, he described how one could create wheeled vehicles. You 
can’t have a wheel rotating around an axle, since a round wheel would have its movement 
impeded by any connected rod, so you would have to sit a cart upon some free-moving 
rollers. Someone in the back has to pick up the rollers as they emerge and pass them 
to the front again. Even worse, if you are trying to pull this cart forward with a rope and 
some kind of 2-D horse, you need to unhook the rope every time you want to place a new 
roller down. Think about it for a minute – a single line of rope in two-dimensions is as 
much of a barrier as a solid wall of rope would be to us! 

 While he was very realistic in some ways, Hinton also described the intelligent 
beings in his world as geometric shapes and used them as a vehicle for social 
commentary, much like Abbott did. Unlike Abbott’s male polygons and female lines, 
in Hinton’s world, all people are right triangles, with one leg parallel to the ground and 
the other perpendicular to it. This means that everyone has a straight side, where they 
can communicate with others, and a pointy side, which they use for self-defense. Men 
have their pointy side facing left, and women have their pointy side facing right. Thus, 
in a heartwarming illustration of family values, men and women naturally fit together: a 
man and his wife can stand side by side and defend each other from the world with their 
pointy ends. Two men or two women cannot join together in such a way, so I think this 
world might be ruled illegal by the Supreme Court of California. But this depiction also 
makes a not-so-subtle statement about women’s rights issues of the day: while it may not 
be obvious to the inhabitants, it’s clear to us higher-dimensional beings that although 
Astrian men and women may seem different, they are actually the same, and in the third 
dimension we could easily transform one into the other. So maybe California would 
approve after all. 

 Hinton was especially interested in the fourth dimension as a possible explanation 
for mystical or psychic phenomena. If you can travel or exert force in the fourth 
dimension, all sorts of actions would be possible that seem to violate the laws of our 
three-dimensional world. In one of his later Astria stories, the inhabitants realize that 
their planet’s orbit is slowly degrading, and their disk will eventually fall into their sun. To 
save themselves, the Astrians realize that their bodies extend into the third dimension, 
where what they call their ‘soul’ lies. By concentrating hard, they can invoke their natural 
psychic-like powers and cause some motion in that dimension. By spreading a religious 
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awakening about this mysterious power in their souls, and having all the enlightened 
people work together, they manage to use their three-dimensional powers to save their 
planet. 

 A few generations later, in the 1960s, Dionys Burger wrote his own unofficial sequel 
to  Flatland , titled  Sphereland. Sphereland  attempts to expand this story into an allegory 
about curved Einsteinian spacetime, and introduce readers to the possibility that the 
fourth dimension not only exists, but that our space is curved in that direction, as 
physicists now believe is the reality. It is revealed that rather than living in a generic plane, 
the Flatlanders live along the rim of a large circular planet, and there are other distant 
circular planets floating about in their two-dimensional space. There is a very amusing 
discussion of Flatland’s Age of Exploration, when various expeditions discover properties 
of distant lands, and finally when explorers heading east and west unexpectedly 
encounter each other, prove that their world is a disc. In “modern” times in Flatland, 
an astronomer starts measuring large triangles, and discovers that some of them have 
angle sums greater than 180 degrees. He is thought to be a sloppy or crazy scientist by his 
fellow Flatlanders, since everyone knows that geometry has proven a triangle’s angles 
always total 180 degrees. Convinced that his measurements are accurate, the scientist 
works with a hexagon, the grandson of  Flatland’s  square, and together they discover the 
truth, that their universe is curved in the third dimension. Just as our universe is curved 
in 4-dimensional space, Flatland is curved in 3-dimensional space, and the Flatland 
universe sits on the surface of a sphere. 

 Probably the most realistic attempt to describe a two-dimensional world is A.K. 
Dewdney’s  The Planiverse , which was published in 1984. In addition to continuing with 
the concept of a “realistic” disc-shaped planet floating in a universe of similar planets 
and stars, Dewdney dismissed with the rather silly concept of living beings as polygonal 
figures, and tried to come up with plausible two-dimensional animals. He wrestled with 
numerous basic issues that would result: for example, think for a moment about your 
digestive or circulatory systems. These are basically a bunch of tubes running through 
your body. But in two dimensions, any kind of tube, intestine, or blood vessel essentially 
splits a shape in half. How could living beings exist? Dewdney describes a clever solution 
for this: the zipper organ. Like a zipper, two sets of cells can come together in groups 
while others nearby pull apart, thereby holding the whole body together as blood or food 
is being passed along. At any given moment, a large subset of the cells is connected, and 
the creature is held together. 

 Another example of an obvious but tricky question addressed by Dewdney is: how 
can someone build a house in a 2-D world? It’s impossible to walk past a structure built 
on the surface of this circle-world, without climbing over it. I would not like having 
every transient in Portland climbing over my roof at all hours. I’m not sure people would 
appreciate having to climb over every building in town to go for a walk either. Dewdney’s 
solution is that houses are built into holes in the ground. You always have to keep 
the door open though, except for the short time when someone needs to cross over – 
otherwise, it forms a perfect seal, keeping out the air. However, think about what happens 
to this two-dimensional burrow-house when it rains – you have to close the door, and 
it has to be 100 % sealed, or else your home will turn into a swimming pool. Thus, your 
house had better hold enough air for you to survive until the end of a rainstorm. 

 So, if you enjoyed  Flatland  but really want to explore the inherent complexities and 
contradictions of a two-dimensional world, Hinton, Burger, and Dewdney are a great 
place to start. Hinton and Burger go a little further than Abbott did, though they are still 
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primarily focused on philosophy and metaphor. Dewdney provides hardcore science-
fiction realism, if that’s something you prefer. Either way, if you enjoyed  Flatland,  all three 
of these additional authors deserve a place on your bookshelf.    

     Is Flatland Doomed? 
     From Math Mutation podcast 53 
 Now let’s dive a little deeper into the “realistic” physics of a two-dimensional world, as 
explored in  A.K. Dewdney’s Planiverse  . What would be the effect of fewer dimensions 
on things like chemistry and physics? How would the laws we’re familiar with be subtly 
warped by the lack of dimension? 

 One example Dewdney points out is the familiar inverse-square law that applies to 
the strength of forces like gravity over distance. You may recall from high-school physics 
class that in our three-dimensional universe, if you multiply the distance between two 
objects by a factor of  n , the gravity between them diminishes by a factor of  n   2  . Probably 
like me, you accepted this as a fact, used it in formulas, and just moved on. But is there 
a reason why it works like this? Why is it inverse-square, and not inverse-cube, or just 
inversely proportional? There is actually a reasonable explanation that is intimately tied 
with the dimensionality of our universe. 

 Think about a point of light on the inside of, say, a large-radius beach ball. The area 
it illuminates is the inside surface area of the beach ball, proportional to the square of the 
radius. Now imagine that the beach ball’s radius expands by a factor of three. The inner 
surface area increases by a factor of nine, or three squared. But the point in the center 
hasn’t changed – the same amount of light must now be spread across nine times the 
surface area. In other words, the inverse square law happens because as you move farther 
away, the same amount of energy must spread over an area that squares with the distance 
in order to produce the same effect. 

 So what does this mean in two dimensions? Well, our  two-dimensional   “beach ball” 
would be a circle, and the light would just have to illuminate the outer perimeter, whose 
length is directly proportional to the radius rather than its square. So rather than an 
inverse-square law, the two-dimensional universe has a simple-inverse law. This means 
that forces and energy diminish much less rapidly over distance in the two-dimensional 
universe. But does this simple-inverse law have more drastic consequences? 

 One fact critical in basic physics is that an integral, or continuous summation, from 
1 to infinity of the inverse-square function converges: that is, values diminish so rapidly 
that the sum total of all the energy it would take to separate two objects to an infinite 
distance has a finite sum. This is why we have the concept of “ escape velocity  ”, a finite 
surface speed an object can have to take off of the earth’s orbit. It also helps explain why 
a finite amount of energy can permanently sever an electron from its atom, and similar 
small-scale effects that facilitate chemical reactions. 

 But the integral from 1 to infinity of the simple inverse function does NOT converge. 
This means that in our two-dimensional universe, there is no escape velocity, and our 
2-D NASA has a much harder time getting off the ground to explore space, though with 
enough energy we can reach any finite point. And it also means that chemical elements are 
much more stable. In fact, much of our chemistry and physics would be impossible, so our 
poor two-dimensional Planiversans would find themselves in a much less rich universe 
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than ours, even after you take into account their lack of dimension. Actually, taking this 
information into account, we should seriously doubt whether our two-dimensional beings 
can exist at all, or their world is just too limited by this simple-inverse law. 

 However, all it not lost – let’s reexamine our original reasoning. Could it be that 
somehow our 2-D universe will still obey an inverse square law? One possibility is that it’s 
a 2-D subset of a truly 3-D universe: so our hypothetical point of light has to illuminate 
not just the circle around it, but a spherical area above and below the plane, that the 
inhabitants are not aware of. Or, alternatively, there is no reason to assume that 2-D 
space is empty: maybe there is some kind of space-filling aether, like people used to once 
hypothesize in our own universe that partially absorbs energy and causes it to more 
rapidly diminish. You can probably think of other ways our two-dimensional universe 
might rescue the inverse-square law, and still have lifelike chemistry and physics despite 
its lack of dimension. 

 In any case, this thought experiment shows that when changing the dimensionality 
of universes, Abbott’s original idea of reasoning by analogy has a few flaws. We would 
need to think very carefully about changes to physics and chemistry when trying to 
realistically describe a two-dimensional universe.   

     Visitors from the Next Dimension 
     From Math Mutation podcast 17 
 What would it look like to us if a four-dimensional creature passed through our space? 
A fourth  spatial dimension   can be kind of hard to wrap your mind around, so the best 
way to answer these kinds of questions is often by analogy, thinking about what three-
dimensional shapes would look like when passing through a two-dimensional world. Try 
to think about the situation of residents of Edwin Abbott’s Flatland. They can travel in 
their ordinary two dimensions and observe things happening on their plane, but have no 
way to detect or envision what is beyond that. If any three-dimensional creature or object 
passes through the plane of Flatland, they can see cross-sections where it intersects their 
plane, but cannot see anything more. 

 So let’s think about what a three-dimensional sphere would look like when passing 
through a two-dimensional world. When it first touches the plane, it starts out as a point, 
to the eyes of the Flatlanders. Then, as the sphere travels through the plane, it becomes a 
circle, getting bigger and bigger until it is halfway through. Then it starts shrinking again, 
until it becomes a point and disappears. By analogy, we can then see what will happen 
when a four-dimensional  hypersphere   passes through our space. It will start out as a 
point, which expands into a sphere, from our point of view. The sphere will gradually 
grow until it is halfway through our space, then start shrinking again, until it finally 
disappears. 

 What’s more fun is to speculate about less regular higher-dimensional shapes 
passing through our world. Suppose a four-dimensional  creature   had some limb 
analogous to a human hand. What would this look like if he stuck it in our space? Well, 
let’s go back to our two-dimensional example for an analogy. Suppose you stuck your 
hand into the plane of Flatland. What would it look like to the natives? At first, it would 
start out as five distorted circles, as your fingers intersect the plane. The circles would get 
slightly fatter and then, suddenly, when the main part of your hand reaches the plane, 
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they would flow and merge together into one large blob. So, if the four-dimensional 
creature stuck its hand into our space, we would start by seeing a number of small 
irregular spheres. They would get slightly bigger, and then suddenly merge together into a 
large blob, as the four-dimensional ‘palm’ reaches our space. 

 Speculations like this are what lead many New Age types to think that UFOs, ghost 
sightings, or angel visitations might be higher-dimensional creatures passing through 
our world. Personally, I kind of doubt it – especially since most of these “sightings” are of 
humanoids, not of bizarrely odd-shaped beings that split and merge like we described in 
our hand metaphor above. But I suppose anything is possible.   

     Will the Real Fourth Dimension Please Stand Up? 
     From Math Mutation podcast 30 
 As we have been discussing, the fourth dimension is a new direction that is somehow 
perpendicular to length, width, and height, our usual  X/Y/Z coordinates   in Cartesian 
space, and thus represents a totally new measurement or direction of travel that we 
cannot perceive in ordinary life. But often we will hear people speak of Time as the fourth 
dimension, and indeed, the concept of time does meet our definition of a dimension in 
some sense. So, should we think of time as just another dimension, like our X, Y, and Z, or 
is it a different concept? 

 I should start by clarifying that I’m not talking about strict mathematical definitions 
here. In some sense, just about any number you can assign to some aspect of an object 
can be considered a dimension: color, brightness, voltage, etc. You will often hear of 
computer scientists thinking of modeling some set of parameters in an “n-dimensional” 
space, meaning that they are optimizing the set of numbers that describe some object, 
perhaps trying to come up with the fastest, cheapest, etc. Also, modern string theorists 
have hypothesized that the universe needs 10 or 11 dimensions. But in this podcast, I’m 
talking more of our innate sense of a “dimension”, as some fundamental measurement 
that is in some sense as meaningful as length, width, and breadth. Does Time meet this 
criterion? 

 The most basic way to answer is to simply ask if objects are required to have a 
measurement of time, similar to their measurements in the other dimensions, in order 
to exist. If I tell you I have an object that is five feet long, and 0 feet wide, then it must 
be a figment of my imagination: something of 0 width cannot exist. Duration, the 
measurement of how much time an object exists for, does seem similar: if an object exists 
for 0 seconds, then it does not exist, any more than an object of 0 width. Everything must 
have a length, width, height, and duration. 

 Another intuitive criterion for  labelling   a dimension is: can Time be interchanged 
with one of the other spatial dimensions? For example, we can switch the X and Y 
coordinates of an object by turning it on its side. Can we do the same with Time and one 
of the spatial dimensions? If you think about it, the answer seems to be yes in some sense. 
Let’s look at the metaphor of Flatland, a two-dimensional world we have mentioned in 
earlier podcasts. Flatland can be viewed as a large sheet of paper, where various two-
dimensional creatures, such as living squares and triangles, can travel around, but have 
no idea there is another direction of travel that would let them leave the paper. If we 
watch the movie  Flatland: The Film , we see the lives of these two-dimensional creatures 
unfold over the period of a couple of hours in time. 
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 Now imagine that we like the movie so much that we capture each frame on our 
computer and print it out, sticking the frame printouts in a pile on our desks. Looking at 
the stack of printouts, we see that the top one is the first second of the movie, underneath 
it is the next second, and so on; when we get to the bottom of the stack, we are at the end 
of the movie. In other words, we have converted the time dimension of Flatland into the 
spatial dimension of height. If we imagine that the frames are printed on glass, we might 
be able to see the snakelike path of the starring square in this large solid glass cube on our 
desks. This path is known to physicists as a “world line”, tracing out the activities of some 
solid creature through time in a static representation. There’s actually a good illustration 
of a  Flatlander’s worldline   (though they don’t label it as that) in the Worldline article on 
 Wikipedia . We three-dimensional creatures theoretically have worldlines too, though to 
actually depict them in a visual graph, we would need a fourth spatial dimension other 
than time. 

 However, we don’t need to get nearly so exotic to describe worldlines. I do think 
Flatland is cool, so I try to shove it into an article whenever I can. But just think about 
tracing your favorite stock price in the Wall Street Journal. If you wait to read its value 
each day, you are essentially observing a one-dimensional quantity, the stock value, 
over time. On the other hand, if you look at a summary graph of the stock price over 
the last year, one of those crooked-line things that is all over the financial section, you 
are essentially seeing the  stock’s worldline  , with the time dimension translated to the 
horizontal spatial dimension. 

 So, if worldlines do represent the transfer of a time dimension into another spatial 
dimension, is it an open-and-shut case that time really is just another dimension? I don’t 
think so. However physicists try to sound sophisticated about how time is just another 
term in their equations, or an abstract measurement of the direction of progress of 
entropy under the laws of thermodynamics, I think we all agree that there is something 
fundamentally different about time. However we can transpose or represent it in a 
theoretical sense, it’s the only dimension that has us all handcuffed in some cosmic 
prisoner transport, forcing us to continuously travel in one direction at about the same 
speed, regardless of what we want to be doing. 

 Ultimately, this kind of discussion starts to sound like the silly arguments over 
whether Pluto is a planet – it all depends how you define the words. In some ways, time 
clearly is like other dimensions, and viewing a worldline graph, it is hard to see how we 
could not consider time a regular dimension. On the other hand, the unique way our 
conscious minds experience time cannot be replaced by any other dimension, so in some 
sense it is a different concept. As for whether you want to think of time as a dimension or 
something apart from the dimensions – I don’t think math or physics can ever come up 
with a definitive answer.   

      A Four-Dimensional  House   
     From Math Mutation podcast 111 
 Recently I reread the classic 1940 Robert Heinlein story, “And He Built a Crooked House”. 
This was a clever tale about an architect who decided that he wanted to build a four-
dimensional house. Now at first you might object, saying that in our world we only can 
construct objects in three dimensions. If you’re a little sneakier, you might point out that 
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all houses are four-dimensional – if you regard time as the fourth dimension. As long as the 
house doesn’t instantaneously disappear, it has a measurement in the time dimension. 

 But Heinlein’s architect, Quintus Teal, wanted to build a true four-dimensional 
house, extending into a theoretical fourth spatial dimension that is truly perpendicular 
to our common  x ,  y , and  z  axes, though currently imperceptible to us. To do this, he 
started by looking at the metaphor of trying to build a three-dimensional cube out of 
two-dimensional paper. I’m sure that you’ve seen an ‘unfolded’ cube at some point: on a 
piece of paper, you can draw six squares, in a shape like a cross. Then you can cut that six-
square shape out of the paper, fold it up, and make it into a cube. So, reasoning by analogy, 
shouldn’t you be able to do something similar with a four-dimensional hypercube? Just 
like you could draw the cross-like unfolded cube on a piece of paper, you should be able 
to build an unfolded hypercube in three-dimensional space. This would consist of eight 
cubes, in a three-dimensional version of that cross shape, essentially a four-cube-tall 
tower, with four side cubes jutting out of the second cube down from the top. 

  Now, just like the unfolded cube is still just a two-dimensional shape until you 
fold it in the third dimension, the unfolded hypercube is just an odd three-dimensional 
shape, until you fold it in the fourth dimension. So while Teal’s concept for a house may 
have been architecturally interesting, it wasn’t a true hypercube. On the other hand, you 
may recall that Heinlein was a science fiction author, so he had a way around that slight 
difficulty. The house happened to be built in earthquake-prone California. So one night, 
after a major earthquake, Teal came to the house and found that all he saw was a cube! 
In the night, his unfolded hypercube had folded in the fourth dimension. And just like a 
two-dimensional being would only see a plain square if there was a cube sitting on his 
plane, Teal could only see the “bottom” cube of the four-dimensional structure. 

     

 Figure 4-1.    An unfolded hypercube  
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 When Teal and his friends entered the house, it got even more confusing. As 
they travelled around the house, they sometimes were turned at odd angles in four-
dimensional space, and re-entered the three-dimensional world at some other spot in 
3-D space. You can imagine a two-dimensional flatlander reaching the edge of a cube: 
he can’t even conceive of turning in the third dimension, so really has no control over 
whether he goes straight along the plane, or ends up creeping up the side of the cube. So 
he might think he is traveling the distance of three rooms, as he travels up the side, over 
the top, and down the other side – and then find himself on the opposite side of the room 
which he thought he originally entered, facing the front door, as he has arrived at the 
bottom square from the other direction. 

 There is at least one major flaw in the story though, even if you accept Heinlein’s 
slightly odd reality. For the unfolded hypercube to get folded up into a real hypercube, it 
must mean that the earthquake was some kind of multi-dimensional super-earthquake, 
capable of exerting force in the direction of the fourth dimension. But if this were the 
case, then objects near the folded house would certainly have been subject to the same 
forces – so they should have seen lots of nearby buildings missing and holes in the 
landscape, places where objects were flung off our three-dimensional hyperplane into 
other parts of 4-D space. Looking at the metaphor of a 2-D world again: how likely would 
it be that an ordinary earthquake would take an unfolded cube you drew on a piece of 
paper and fold it up into a cube, without any other visible effects on the nearby paper? 

 In any case, I wouldn’t recommend attempting a four-dimensional house in today’s 
real estate market. You might be better off saving on building materials and downgrading 
to two dimensions instead.    

     Turning Around in Time 
     From Math Mutation podcast 63 
 I’m sure that if you are the kind of person who is reading this book, you have occasionally 
speculated about time travel. If time is truly another dimension, just like our ordinary 
three dimensions of space, then should we be able to change our direction? Are we really 
stuck traveling forward at a more-or-less constant rate, unless we can go fast enough to 
benefit from the distortions of relativity? It’s fun to think about what it would look like if 
we could just decide to make a U-turn in time, like we can in space. 

 To make this example concrete, let’s suppose I have a doctor’s appointment at noon, 
and it takes me 10 minutes to walk down the street to the doctor’s office. I look at my 
watch and notice that it’s noon already. No problem, due to my time-walking ability. 
I step outside, spend 5 minutes walking halfway to the doctor’s office, then make a U-turn 
in time, and walk 5 more minutes, traveling backward 5 minutes in time as I continue 
walking down the street toward the doctor’s office in space. At noon, I am safely at the 
office, and start walking forward in time again, entering for my appointment. 

 What would this look like to a neighbor couple sitting on their porch, watching 
me walk down the street? From my house, they would see me emerging at noon, and 
arriving halfway down the street at 12:05. But from the doctor’s office, they would see an 
odd sight. There would be a backward-me walking backward down the street toward my 
house, at the same time as the first me is walking forward. Think about it: at noon, my 
backward-traveling-self arrived at the office. At 12:01, I was one minute away from the 
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office, traveling backward in time. At 12:02, I was two minutes away, and so on. But the 
most bizarre event happens at precisely 12:05, the backward-me and forward-me meet 
and merge, then suddenly disappear! At 12:06, I do not exist in the middle of the street, 
since at 12:05, I turned around in time. The neighbor couple will think I have suddenly 
disintegrated after a collision between my forward-self and backward-self. Eventually, 
of course, I will travel forward again and reach this point in time while in the doctor’s 
waiting room. In fact, if it’s a typical doctor, I will experience many future epochs of time 
in that waiting room, but that’s another topic. 

 This kind of  turning-around in time   sounds absurd when described in terms of a 
person. But, strangely enough, many physicists believe they have observed precisely 
this phenomenon in the area of subatomic particles. A well-known type of interaction 
occurs when an electron and a positron collide, releasing a photon. And similarly, it 
is possible for a photon to spontaneously break down into an electron and a positron. 
According to a theory first proposed by the famous physicist Richard Feynman in 
1949, we can also just view a positron as an electron traveling back in time. So when an 
electron and a positron collide to generate a photon, what is really happening is that the 
electron is hitting a photon and turning around in time, just like when I turned around 
in time in the middle of the street. And the positron it hit is just the same electron, 
travelling backward. Similarly, when a photon spontaneously splits into an electron 
and a positron, what’s really happening is that a backward-electron hit the photon as 
it travelled backward in time from the future, bounced off it, and became an ordinary 
forward-moving electron. 

 So, even if I can’t change direction in the fourth dimension to catch up when 
I’m late for an appointment, such direction-changing on the subatomic scale is a real 
phenomenon that has been observed, at least according to some theories.   

       11-Dimensional Spaghetti Monsters   
     From Math Mutation podcast 38 
 You have probably heard the term “ string theory  ”, the exotic theory dominating the study 
of fundamental particles in modern physics. It claims that rather than point-like basic 
particles, the fundamental constituents of matter are tiny vibrating loops of string. One 
of the many bizarre properties of this theory is the claim that these strings that make 
up our universe are 10- or 11-dimensional, but the dimensions other than the four 
spacetime ones we are familiar with are not detectable by our available methods. These 
extra dimensions are required to make the equations of string theory work out, although 
it sounds hard to believe. How can we have so many dimensions? How is it possible to be 
living in an 11-dimensional world, but think we only have four? 

 One easy way to look at this is by returning to our familiar metaphor of Flatland, an 
infinite two-dimensional plane inhabited by living circles, squares, and similar figures. 
Flatlanders are able to move about within their plane, but never able to leave it or even 
sense anything off of it, and thus have no concept of the directions ‘up’ and ‘down’ off 
the plane. But suppose that their ‘plane’ is actually the surface of a gigantic soap bubble 
floating in our space. In that case, the world of Flatland is really just the surface of a 
three-dimensional bubble, though the inhabitants are unaware of this fact. This is similar 
to the concept proposed by Dionys Burger in  Sphereland . The Flatlanders are restricted 
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to a two-dimensional subspace of the true universe. Similarly, it’s possible that we are 
living within a four-dimensional subspace, a giant soap bubble floating in the true 
11-dimensional universe. 

 Another explanation is that the extra dimensions are compact, rolled up into 
a space so small as to be undetectable. To better understand this, let’s look at the 
Flatlanders’ dimension-challenged cousins, the Linelanders. The world of Lineland is 
one dimensional – its inhabitants are points and small segments that can move back and 
forth on a single line, and are not even aware of a second dimension. On this line they 
can never pass each other, since there is no way to “get out of the way” of an approaching 
visitor. But suppose that Lineland is actually an infinitely long but very thin piece of 
spaghetti. This means it’s actually three-dimensional, though it is infinitely large in the 
length dimension and very tiny in the other dimensions. The Linelanders are actually 
made up of little rings and tubes around the surface of the spaghetti, rather than true 
points. But being unable to detect any phenomena at the scale of a spaghetti-width, have 
no idea of the existence of these extra dimensions. We might be in a similar situation, 
except that our spaghetti is 11-dimensional. 

 So, are we wandering around the surface of a gigantic soap bubble in 
multidimensional spacetime? Are we foolishly traversing the four-dimensional surface 
of an 11-dimensional piece of pasta, never knowing of the vastly greater number of 
directions in space? Or are string theorists playing a silly game with their equations that 
has no relationship to reality? You will be sure to win a Nobel Prize if you can figure out 
and prove the real answer.    

      Your Five-Dimensional  Kitchen   
     From Math Mutation podcast 133 
 In this chapter, we’ve been talking about the weird properties of multidimensional 
geometry, with the clear implication that these odd situations could only arise as a result 
of wild speculation or detailed calculations by advanced physicists. But did you know 
that you may very well have items in your kitchen that make use of five-dimensional 
geometry? Some types of coatings for nonstick cookware are made with a recently 
discovered and very useful material called quasicrystals. 

 To understand quasicrystals, let’s start by reviewing the concept of an aperiodic 
tiling, which we described back in Chapter   3    . A periodic tiling is a set of shapes 
that can cover a plane by continuously repeating a simple pattern, with what is 
called “translational symmetry”. The most obvious examples are endlessly repeating 
squares or hexagons, which you may see in the set of tiles on a bathroom floor. An 
aperiodic tiling also covers the plane with a small set of shapes – but there is no 
individual section that is repeated over and over in a regular pattern. While the 
basic shapes appear infinitely often, there is no grouping of them that is repeated 
forever to fill the plane. Roger Penrose’s “kites and darts” tiling, where two types of 
irregular quadrilaterals can together fill a plane in a non-repeating pattern, is one 
famous example. One other surprising aspect is that an aperiodic tiling may show 
rotational symmetry in local regions, where a set of tiles can be rotated by some angle 
and appear identical to the starting point, as in the 5-way symmetry of the original 
Penrose tiling. 

http://dx.doi.org/10.1007/978-1-4842-1892-1_3
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 Another unusual property of aperiodic tilings is that many of them can be obtained 
by projecting periodic lattices in 4 or more dimensions; in other words, the aperiodic 
nature is due to our low-D view of a 2-D “shadow” of a regular higher-dimensional 
structure. A nice online article by Stefan Weber illustrates graphically how this can be 
done, using a regular 2-D lattice to derive a 1-D aperiodic pattern. The key seems to be 
to place an  n -dimensional hyperplane at an irrational slope in an  n  + 1-dimensional 
structure, with the irrationality preventing its projection from having a repeating pattern. 
So in a sense, the fact that we see many aperiodic tilings as aperiodic can be considered 
simply artifacts of our limited view of higher-dimensional spaces. 

 How does this lead us to quasicrystals? Ordinary crystals are three-dimensional 
analogs of periodic tilings, where simple solid shapes are repeated endlessly to form 
the crystal. Well, given that I’m not currently embedded in crystal while typing this, 
“endlessly” isn’t quite accurate, but I think you get the idea. Thus, it wasn’t such a stretch 
for mathematicians to ask whether there could be 3-D aperiodic tilings that form another 
type of crystal. Physical scientists didn’t think this was possible, but surprisingly, in 
1984, a group of scientists reported an aluminum-manganese crystal whose diffraction 
pattern had a fivefold symmetry. This seemed very odd, since this form of symmetry was 
not thought possible for a crystal – similar to trying to fill a plane with pentagons. They 
concluded that it must be a case of an aperiodic crystal. The scientific community was 
skeptical at first, but this was followed by numerous other, similar discoveries. Finally 
in 1991 the International Union of Crystallography amended its definition of crystals to 
allow aperiodic cases. 

 Now there are hundreds of types of quasicrystals known, including some stable ones. 
In 2009, a natural quasicrystal was even discovered in a rock from a Russian mountain 
range. And some of the stable ones seem to have the very nice property, possibly due 
in part to their aperiodic nature, that it is very difficult for other materials to stick to 
them – making them an ideal material for coating nonstick cookware. A company called 
Sitram developed and began marketing a set of quasicrystal-coated cookware, known as 
Cybernox, in the last decade. 

 So, next time you want to make fun of mathematicians for spending time with crazy 
ideas of aperiodic tilings and higher-dimensional spaces, stop and fry yourself an egg first.    

     As Math Goes By 
     From Math Mutation podcast 134 
 Recently I’ve been reading the book  Warped Passages  by Lisa Randall, in which she talks 
about  string theory  , higher dimensions, and similar mind-bending aspects of modern 
physics. In the introduction to one chapter, she mentions that the famous song “As Time 
Goes By”, which you have probably heard in the movie  Casablanca , has additional verses 
that refer to Einstein and the fourth dimension. I assumed she was just pulling my leg, but 
did some web searching just in case. And I was surprised to find that multiple, seemingly 
independent, sources do confirm that the song has these lyrics. 

 The song, originally written in 1931 for a Broadway musical before being included 
in  Casablanca , has a famous chorus. I’ll spare you the pain of hearing me attempt to sing 
it, and just state the lyrics: “You must remember this / A kiss is just a kiss, a sigh is just a 
sigh. / The fundamental things apply / As time goes by.” Makes a nice song, but seems 
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pretty sappy, and doesn’t have much to do with science or math. But the chorus, which is 
what made it into the movie and is usually heard in later covers, actually does not appear 
until the middle of the original song. The song begins as follows: “This day and age we’re 
living in / Gives cause for apprehension / With speed and new invention / And things like 
fourth dimension / Yet we get a trifle weary / With Mr. Einstein’s theory / So we must get 
down to earth at times / Relax relieve the tension.” 

 How did references to, at the time, cutting-edge ideas in physics and math, make it 
into a set of Broadway lyrics? A nice article by a Brown University professor named Philip 
Davis provides some insight. As Davis explains, “In the 1920s and later, the newspapers 
were full of Einstein and his theory. He was the consummate genius. The term “relativity” 
was in the air, and as it became a buzzword…” In fact, these ideas were so prevalent in the 
public consciousness that half-understood notions of relativity were incorrectly applied 
to daily activities: for example, when a drive in the car didn’t take the expected time, 
people would blame Einstein’s theory. Unless they were traveling at a significant fraction 
of the speed of light, relativity was not truly a detectable factor. The author of “As Time 
Goes By”, Herman Hupfeld, was a graduate of Cornell, and thus likely to be at the upper 
levels of comprehension in this area, at least as far as pop culture figures go. 

 A more interesting question is whether the themes of the song, and of the movie 
 Casablanca , truly mesh with the references to Einstein and the fourth dimension. I think 
a case can be made for this, though the producers of the movie obviously didn’t think so. 
Davis describes the connection as follows: “The times change and we change with them. 
Despite all the revolutionary changes that occurred in his lifetime, songwriter Hupfeld 
asserts that something in human nature abides. Mathematics and physics seek invariants; 
Hupfeld sought the invariants of human experience.” 

 Amusingly, covers of this song by artists including Binnie Hale and Rudy Vallee 
changed one word: “fourth dimension” became “third dimension”. Were these artists 
trying to make a profound statement about the flatness of modern human existence? Or 
were they just air-headed celebrities who had never heard of the fourth dimension and 
assumed it was a typo? We’ll never know for sure.   

     Between the Dimensions 
     From Math Mutation podcast 22 
 We all know that a  one-dimensional figure   is a line or curve, essentially something we can 
measure just by finding the linear distance from a starting point. And a  two-dimensional 
figure   is a surface, where we need two coordinates, like a latitude and longitude, to figure 
out where we are. So what would a 1.2-dimensional figure look like? The question seems 
silly at first – who could imagine such an absurdity – but actually, figures with such 
fractional dimensions have been defined. In fact, these fractional dimensions are used to 
describe fractals, such as the Koch Snowflake we discussed in Chapter   2    . 

 To review, a fractal like the Koch snowflake is essentially an infinitely detailed 
curve. (This description actually covers only a subset of fractals, but it is sufficient for 
this discussion.) These are useful to model things like mountains and coastlines. To 
understand the concept of being infinitely detailed, let’s take a closer look at how a 
real-life coastline would be measured. Suppose you look at a map of the world, and try 
to measure the length of the  Oregon coast  . You probably would not be able to see many 

http://dx.doi.org/10.1007/978-1-4842-1892-1_2
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features at a detail level below 100 miles or so, and might come up with an estimate of 
about 300 miles. Now suppose you are just looking at map of Oregon. You can see lots of 
minor indentations in the coast that you missed at the coarse-grained scale… so it may 
look closer to 350 miles. Now suppose you are feeling energetic, and decide to walk along 
the beach from Astoria to Brookings with a yardstick, measuring as you go. At this level, 
you will follow many tiny bays and inlets too small to show up on a state map, and when 
you add all your distances up, will find it is even longer, maybe hundreds more miles. 
Then, if you crawl your way back with an electron microscope being sure not to miss a 
single grain of sand, you will extend the length still further. 

 So, how long *is* the coast of Oregon? The question doesn’t really have a good 
answer – it all depends on your granularity of measurement. In real life, there is some 
level where you have to stop, of course. But a fractal is an ideal mathematical curve that 
represents this situation, where you can keep looking at a finer and finer granularity down 
to infinity, increasing the length each time. In other words, in fractals, there can actually 
be an infinite distance between any two points. For fractals in this class, if you ever claim 
you traversed a finite distance, and then look more closely, you will be guaranteed to 
find some outcropping or inlet in the curve that you missed. And a single measurement 
coordinate cannot describe where you are. Thus, fractals can be considered to have 
fractional dimensions. 

 A fractal like the Koch snowflake is a curve, not a surface, so it can’t be said to 
be two-dimensional. But somehow it is more than one-dimensional, since a single 
coordinate (indicating distance from a designated origin point) cannot specify a point 
on it. Mathematicians have defined precise methods for calculating a curve’s dimension, 
essentially depending on the speed with which increased detail appears when you look at 
a finer granularity. In the case of the Koch snowflake, it is considered to be approximately 
1.26-dimensional. 

 Now you may object that we are cheating here, using the word ‘dimension’ to 
describe some new measurement that doesn’t really correspond to our intuition about 
dimensions. I have to say, I can’t totally disagree with that objection. Yet on the other 
hand, I think it is clear that our ordinary notion of dimension does somehow break down 
in the case of fractals.      
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    CHAPTER 5   

 Understanding the Universe           

 Like many of you reading this book, I have been a lifelong fan of science fiction movies, 
books, and television shows. This is not very unusual for a math and computer geek, 
since there has always been a strong correlation between interest in mathematics, 
space travel, and science fiction. To some extent, this is inherent in the topic: after all, 
our space program and our knowledge of astrophysics, astronomy, and cosmology are 
heavily dependent on some of our most advanced mathematical techniques. But I think 
it goes beyond this, with some fundamental similarity between the way we stretch our 
minds to think about what might lie beyond us in space, and what might lie in the many 
mathematical possibilities beyond our mundane systems of counting and measuring. 

     The Bogus Bang? 
       From Math Mutation podcast 68 
 We’re all used to the  Big Bang theory      by now, the standard model of cosmology that 
says our universe started out infinitely hot and dense, and suddenly expanded outward. 
You’ve also probably heard of superstring theory, which we mentioned in the last chapter. 
Among other things, this predicts that the universe actually contains 11 dimensions, 
not just the three we can see, and in fact we are living on some kind of gigantic 
multidimensional membrane, or “brane”, floating within this higher-dimensional space. 
These two theories don’t seem to inherently contradict each other, to a layman at least, 
but in fact there are a lot of details of the Big Bang, especially the way it describes the 
first moments of our universe, that have made some physicists nervous. Recently I was 
intrigued to read in Rudy Rucker’s blog about a new theory, created a few years ago by 
physicists Paul Steinhardt of Princeton and Neil Turok of Cambridge, that uses this new 
view of the multidimensional nature of our universe to replace the Big Bang model with 
something a bit different. 

 The basic idea is that if we are living on a membrane floating around a 
multidimensional space, why should it be the only one? Suppose there are other, similar 
 branes  floating around. What happens when a pair collide? Steinhardt and Turok 
investigated this question, and spent over a year trying to work on the equations that 
would describe this situation. They discovered that when two of these membranes get 
close, they would begin to ripple and distort. Then at some point, the peaks of a pair of 
ripples would collide, and create an effect very similar to the Big Bang. The force of the 
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impact would cause a burst of energy and a rapid expansion of space, just as in the Big 
Bang theory, and due to the various peaks and valleys in the ripples, there would be 
hot and cold spots after the collision. These hot and cold spots correspond to what we 
actually observe in the universe. This new model is known as the  ekpyrotic  model, from 
the Greek word for conflagration. 

 What’s even more interesting, though, is the long-term future in this model. 
Currently, with the expansion of the universe accelerating, the Big Bang theory predicts 
that our universe will slowly become essentially empty as all particles of matter accelerate 
away from each other. But in the new theory, the nearby neighbor brane that we originally 
collided with will still be out there, floating in multidimensional space – and eventually, 
there will be another collision between the two now-empty branes, that will form 
another Big Bang-like explosion and start the cycle of matter all over again. So, instead 
of just being on a long path to emptiness, this says we live in a cyclic universe, which will 
eventually renew itself and start again. 

 As with any new theory, though, there is quite a bit of controversy. Like the Big Bang 
theory, this theory still suffers from a singularity; that is, a point where its equations break 
down, at the very beginning of the universe. And even Steinhardt has a disclaimer on 
his web page that this idea is based on unproven ideas in string theory. There is work 
underway to try to find evidence one way or the other, in the form of gravity waves that 
would exist in the Big Bang but not the ekpyrotic theory, but results will be a long way off. 

 Still, it’s fascinating to think that, as professor David Spergel of Princeton has said, 
maybe “everything that astronomers have ever observed is just a speck within the higher 
dimensions, and all of history since the Big Bang is but an instant in the infinity of time.”     

     The  Shape   of the Universe 
     From Math Mutation podcast 86 
 If you’re a  Math Mutation  listener and a fan of the TV Show  The Simpsons , I’m sure you 
remember the episode where Lisa joined Mensa, and physicist Steven Hawking visited 
Springfield to meet her. At one point in the episode, Hawking has a beer with Homer, and 
tells him, “Your theory of a donut-shaped universe is intriguing… I may have to steal it.” 
Like me, you probably paused to wonder if this joke was based on some real-life theory of 
the shape of the universe. The answer, as is so often the case on that show, is yes. 

 To start with, let’s try to get our minds around the concept of the “shape of 
the universe”. As we have discussed before, modern physics sees the universe as a 
multidimensional object, so we’re really talking about some higher-dimensional analog 
of shapes, rather than the familiar 3-D shapes that we know. But we can get the basic idea 
here by looking again at the metaphor of two-dimensional creatures, or flatlanders, living 
on the surface of some 3-D universe. The simplest example is to think about the surface 
of a sphere: a two-dimensional creature traveling around a small part of it would imagine 
themselves to be on a large, flat plane, and would then be surprised to see that if they 
travelled east for enough time, they would come back from the west. So if our universe 
is on the 3-D surface of a 4-D hypersphere, we too might one day return to where we 
started, having gone “all the way around” this higher-dimensional surface. 
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 While the sphere is the simplest metaphor, there are many other possibilities for 
the  shape   of the universe. The donut, or in math-speak the torus, is another possibility 
discussed by physicists. How would the universe appear different to a flatlander on a giant 
torus? Like on a sphere, if you travel long enough in one direction, you’ll return to your 
starting point. In, say, the east-west direction, if you travel around the full circle of the 
donut, you would have to travel the entire distance of the universe, just like in the sphere. 
But in the other direction, say north-south, you would be traveling in and through the 
donut hole, having only to travel a much smaller distance before seeing your starting point. 

 But there’s no reason why we should stop at the torus, and in fact physicists 
have many more bizarre shapes for the universe in mind. In the previous section we 
mentioned an alternative to the big-bang theory, where we are said to be on higher-
dimensional wobbly membranes. Another idea has been proposed recently is a kind of 
dodecahedron connected to itself in higher dimensions. Think of ourselves inside a giant 
soccer ball, and if we exit it on one face, we find ourselves re-entering on the opposite 
side, but rotated 36 degrees. And an even stranger possibility that physicists have taken 
seriously is the idea of a giant horn shape known as a “Picard horn”, with a narrow end 
getting narrower and narrower towards infinity, but the wide horn opening having a 
definite end; if a traveler reaches the end of the horn, he circles around and starts heading 
inside the interior. In this case, the universe is non-uniform: while it appears very large 
near the mouth of the horn, where we probably are, at the narrow end it gets arbitrarily 
small. So you could travel to a part of the universe where you are nearly as wide as the 
universe itself: you could reach out ahead and poke yourself in the back, your arm 
having wrapped all the way around the universe. In this case, you would appear to be in 
a gigantic hall of mirrors, looking at your own back, at a 2-universe-distance view of your 
own back based on reflected light that has wrapped around twice, etcetera on to infinity. 

 Physicists at the  NASA WMAP project   have been studying the universe’s background 
radiation, hoping to get clues about the actual shape that we are living in. Recent results 
posted online seem to put a damper on the more bizarre theories, suggesting that NASA 
has concluded the universe as a whole is flat rather than curved, with only a 2 % margin 
of error. (This is analyzing the global structure; there is still local curvature, as described 
by Einstein). But weird theories and radical shifts in conventional wisdom seem to be the 
one constant of the physics universe, so who knows what they will say a few years from 
now, or by the time this book goes to press.      

     Your  Size   in Space and Time 
     From Math Mutation podcast 148 
 Have you ever wondered about exactly how big you are in the scheme of things, when 
compared to the total size or duration of the universe? How does our extent in space 
compare to our extent in time? Since both length and time are dimensions we can 
calculate, it shouldn’t be too hard to compute. 

 The observable universe is a sphere with a diameter of about 92 billion, or 9.2 × 10 10 , 
light-years. A light year is about 10 16  meters. Assuming you are about 2 meters tall, your 
height in universes is about 2 / (9.2 × 10 26 ), or 2.17 × 10 -27  universes. 
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 Now how about your size in time? Time is just another dimension for the purpose of 
this calculation, so we should treat it the same way. The universe is about 14 billion years 
old, though estimates do vary a bit. Let’s take an optimistic view of medical science, and 
assume you will live about 100 years. Your size in time is then 100 / 1.4 × 10 10 , or about 
7.14 × 10 -9  universes. 

 What I find surprising here is that your size in time is so much greater than your size 
in space, by a factor of about 3 × 10 18 , or 3000000000000000000. That means in terms of 
your impact on the universe, the time you spend here is much greater than your physical 
extent. If your size in space were as large as your size in time, you would be a major 
astronomical object. And if your size in time were comparable to your size in space, you 
would appear and disappear in an instant. Strange to see how much greater our extent in 
time is than our extent in space, isn’t it? Does it mean something about our significance 
for posterity as opposed to our significance right now? 

 I’m sure you have spotted a couple of problems with this calculation. For one, we 
don’t know the real size of the universe: beyond the observable universe there may be 
an infinite extent of other stuff, too far away for its light to ever reach us. As for the size in 
time, we really should count the future as well as the past, and we don’t even know for 
sure if the total duration will be finite or infinite – so we may actually be as small in time 
as we are in space, just happening to be located near the beginning. 

 You might also raise some more philosophical objections here: is our size in time just 
confined to our lifetime, or does it live beyond as we are remembered and continue to 
influence future generations? Should Alexander the Great or Julius Caesar get 2000 years 
of credit since we still remember their names today? Do I still get to count the years after 
I die, until some sysadmin at iTunes finally gets around to deleting this podcast, and anti-
math barbarians burn all copies of this book? 

 I originally saw this calculation in Robert Grudin’s book  Time and the Art of Living . 
Grudin makes a lot of philosophical observations like this about our relationship with 
time and space. They may not always ring true, but they do make you think a bit.      

     Observing the Universe 
     From Math Mutation podcast 61 
 How big is the universe? There is no way for us to answer that question with certainty based 
on our current techniques – we need to start by talking about the ‘ observable universe’  , all 
the things we can actually detect. If something is so far away that light traveling since the 
creation of the universe would not have had time to reach us, then we are probably out of 
luck. So, let’s start with that: how big is the universe we can actually detect? 

 You might think the answer is pretty simple at first. According to current theories, the 
universe is about 13.7 billion years old, so just draw a sphere of radius 13.7 billion light-
years around the Earth, and that describes what we can see. But surprisingly, that answer 
is wrong. The problem is that we are in a universe that has been expanding in more 
than the three dimensions we are used to: ever since Einstein, we have realized that any 
calculations at the cosmic scale must utilize a four-dimensional structure of spacetime. 
Returning to a Flatland-like analogy, think of our space as the surface of a giant balloon 
that is being slowly blown up. Things that were once close enough to emit light that we 
can observe today may get farther and farther away as the balloon expands – so the light 
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that was launched long ago can arrive at our telescopes, even though the actual object 
is now much farther away than that 13.7 billion light-years. As a result, our observable 
universe contains objects that are now as many as 46.5 billion light-years away. 

 An even more bizarre property of the observable universe is that we might actually 
be observing a *larger* universe than the one that actually exists, due to light that 
completely travels around the universe and reaches us a second time. In other words, the 
universe might be like the hall of mirrors at a carnival, with the same objects being visible 
to us many times. Using the balloon-surface analogy again, look at a line directly from a 
distant galaxy to us on the surface of the balloon, and also at another line that loops all 
the way around the balloon and then to us. Both might be legitimate paths for the light 
to reach us, and we would see them as separate images. A question you might ask now 
is: why are we so gullible? Shouldn’t we notice immediately if some object in the sky is 
exactly the same as some other one? The problem here is that since the light must likely 
traverse many billions of light-years to go all the way around the universe, the duplicate 
objects will be viewed at vastly different eras in their history. It’s not easy to know exactly 
what a particular galaxy will look like in several billion years, or what it looked like that 
amount of time in the past. Some object we have labelled as a “distant galaxy” might 
actually be our own Milky Way, viewed many billions of years ago. 

 Of course, we also need to keep in mind the very likely possibility that the universe 
is much larger than what we can detect. This discussion has by necessity been limited 
to the observable universe, since that’s all we can realistically comment upon. But it is 
very likely that we really are observing only a subset, and we may never know how big the 
universe really is.       

      Alien Algebra      
       From Math Mutation podcast 129 
 A listener recently emailed me an interesting question: He had heard that we could 
theoretically communicate with aliens using mathematics. But clearly there are many 
symbols and conventions of math that are culturally determined, not universal: how 
would an alien know what a plus sign is, or what an equal sign is, or identify that squiggly 
thing we use to symbolize an integral in calculus? But the answer is a pretty simple one: 
While it is true that there are many such aspects to modern math, there are in reality 
many universals that we could take advantage of for communication, even without any 
shared culture. 

 One basic universal that we might be able to take advantage of is the concept 
of prime numbers. This method has been suggested by numerous scientists and 
mathematicians, and is probably most famous from its appearance in Carl Sagan’s 
novel  Contact . As you may recall, a prime number is a number greater than one which is 
divisible only by itself and 1. Due to the fact that any number is a product of a unique set 
of prime factors, regardless of base, units, or measuring system, the concept of primes 
would surely have been discovered by any species advanced enough in mathematics 
for interstellar communication. It doesn’t matter if there are 5-headed hydras on Alpha 
Centauri who count using their 14 tentacles in base 62: the concept of prime numbers 
would still exist, and the same numbers would be prime. In addition, the known 
algorithms to determine prime numbers are complex enough that it is very unlikely that 
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some natural process would arise by chance and generate them. So, if we were to send a 
set of pulses into space that first repeated twice, then three times, then five times, and so 
on, expressing the first 100 prime numbers, anyone detecting them would be very likely 
to assume they were generated by some kind of intelligence. 

 While sending pulses of prime numbers might be a nice way to establish 
the existence of intelligence, it’s hard to see how this could lead to any useful 
communication. How could we move from simply being aware of distant aliens’ existence 
to actual messages with content? The problem seems insurmountable at first. But 
surprisingly, in the 1960s, astronomer Frank Drake came up with a clever scheme that 
could actually be used to establish real communication with distant, unidentified aliens. 

 Here’s how it works. Take two reasonably large prime numbers, which we’ll call p and 
q, and construct a rectangular video display that measures p pixels by q pixels. Each dot of 
the display can be either on or off. If we then take all the dots of the display, representing 
dots by a short pulse if off and a long pulse if on, we can convert them into a long linear 
series of pulses of length p × q. We can then repeatedly send this message into space. 

 How would the aliens know what to do with this message? Well, hopefully they 
would recognize that this repeating series of pulses has a length which is the product of 
two large primes, especially if we have already established our existence by broadcasting 
prime number series. Assuming that the primes we choose are relatively large, the chance 
of a natural process randomly producing repeating pulses of that size would probably be 
very small. Thus the alien scientists would suspect an intelligent origin. They should then 
realize that this message, as the product of precisely two primes, could be displayed as a 
two-dimensional array, either p across and q down, or q across and p down. One of these 
possibilities would replicate our original p by q display! 

 Using this method, we could transmit black-and-white pictures of arbitrary 
resolution. We could send every photo on Facebook to the aliens, though that might be a 
bad idea if we want them to return our calls. But we could also send them examples of our 
biology, our arts, and or technology. We could even talk about particular elements, using 
sets of  n  dots to represent the element with atomic number  n , and if they are clever about 
interpreting the pictures, this might even inform the aliens of the chemical content of the 
objects in the pictures we send. 

 So, using some basic math, we could establish a surprising level of communication 
with alien species. In fact, we are already trying to do it, with SETI (the Search for 
Extraterrestrial Intelligence) broadcasting an image using the  Drake method   that contains 
pictures including people, the double helix of DNA, representations of the atoms making 
up DNA, and schematics of the radio telescope broadcasting the message. Unfortunately, 
we have to be a little patient, as odds are that even if someone receives it, the reply will 
not arrive for thousands of years – if we’re still around to recognize it as a reply.     

       Time Reversed Worlds   
     From Math Mutation podcast 195 
 Recently I read Martin Gardner’s classic book  The New Ambidextrous Universe , on 
various forms of symmetry found in modern physics. One of the most amusing ideas 
discussed in this book is the idea of time-reversed worlds. Is the direction of time truly 
fixed, as it seems to be from our point of view? Or could there be parts of our universe 
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where time runs in reverse from how we observe it, so our future is their past, and 
vice versa? Naturally, this idea has been explored by many science fiction writers over 
the past century. I think my favorite use of the idea was by Kurt Vonnegut in his novel 
 Slaughterhouse-Five . Let me quote a bit from Vonnegut’s description of how a time-
reversed observer would describe the bombing of Dresden during World War II: 

  The formation flew backwards over a German city that was in flames. The bombers 
opened their bomb bay doors, exerted a miraculous magnetism which shrunk the fires, 
gathered them into cylindrical steel containers, and lifted the containers into the bellies of 
the planes. The containers were stored neatly in racks. ... When the bombers got back to their 
base, the steel cylinders were taken from the racks and shipped back to the United States of 
America, where factories were operating night and day, dismantling the cylinders, separating 
the dangerous contents into minerals. Touchingly, it was mainly women who did this work. 
The minerals were then shipped to specialists in remote areas. It was their business to put 
them into the ground, to hide them cleverly, so they would never hurt anybody ever again.  

 More seriously, we might ask the question, how could a time-reversed world be 
possible? One idea comes from the concept of antimatter. As you may recall from physics, 
most fundamental particles have a corresponding antiparticle with opposite charge. For 
example, an electron has a negative charge, and its antiparticle the positron has a positive 
charge. When a particle and an antiparticle collide, they annihilate each other in a burst of 
energy, creating a new photon, or light particle. As we discussed in the last chapter, Feynman 
had a curious insight. Perhaps antiparticles could simply be particles traveling backwards in 
time. For example, a typical interaction in a Feynman diagram might show an electron and 
positron colliding, generating a short-lived photon, and the photon then creating an electron-
positron pair. But you could also interpret this as the first electron suddenly reversing 
direction, emitting a photon as it turns backwards in time to become a positron. Then a short 
time later, a positron traveling backwards in time collides with the photon, and reverses 
direction to become a forward-moving electron. The resulting picture is exactly the same.     

  If antimatter is just matter traveling backwards in time, could there be entire solar 
systems and worlds somewhere out there in the universe that are made of antiparticles, 
and thus experiencing time backwards from our point of view? It’s initially challenging 
to tell directly if a distant solar system is matter or antimatter, since the photon is its 
own antiparticle, and thus an antimatter solar system would look just like a matter one 

     

 Figure 5-1.    Feynman diagram of electron-positron collision  
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through a telescope. However, modern physicists have realized that interstellar space 
does contain some atoms, approximately one per cubic meter. This doesn’t sound like a 
lot, but is enough that any matter/antimatter region boundary should be detectable due 
to the particles annihilating each other and generating gamma ray bursts. There are also 
some heavier particles that occasionally arrive in cosmic rays, and these suggest where 
we can also look for evidence of antimatter regions. The physicists looking for these 
phenomena are now pretty sure that there are no antimatter regions in the observable 
universe. However, there could still be such regions in areas too far away for us to observe. 

 As you would expect, there are other objections to the possibility of time reversal 
in our universe, such as the need to follow laws of entropy, which seem to point time 
monotonically in one direction. And if some time-reversed antimatter aliens stopped 
by to visit, it would be a rather unpleasant encounter, with them getting annihilated 
particle by particle as soon as they arrived. We might try to communicate with them by 
radio, but it would be a rather confusing conversation, as the only questions they could 
answer would be ones that we hadn’t transmitted yet. But perhaps by programming 
long-lasting computers to send messages sometime in the future, we could at least have a 
rudimentary discussion and become aware of the basics of each other’s existence.    

       A  Pear-Shaped Planet      
     From Math Mutation podcast 120 
 If you grew up in the U.S. before the mid-1970s or so, you probably learned in elementary 
school that Christopher Columbus believed the Earth to be round, while his foolish 
contemporaries thought it was flat. Thus Columbus was a visionary who first understood 
the true shape of the Earth. But probably a few years later, you heard the correct story, 
that our planet had been known to be a sphere since antiquity, and that the dispute was 
merely about the size. The flat Earth story had been part of a 19th-century romanticized 
Columbus biography by Washington Irving, and entered the popular culture from there. 

 Actually, not only did the ancients already believe the Earth to be spherical, but in 
the 3rd century BC, Eratosthenes came up with a remarkably accurate estimate of the 
Earth’s size. He did this by observing that when the sun is directly overhead at Syene, as 
seen by lighting the bottom of a straight well, it was offset at an angle equal to 1/50th of 
a circle in the city of Alexandria, which was directly north. Since this offset angle should 
be theoretically equal to the portion of the Earth’s arc covered by the distance between 
the two cities, he then multiplied the distance between Syene and Alexandria by 50, and 
came up with an estimate of about 25000 miles. 

 Interestingly,  Wikipedia  points out several aspects of this story that are suspicious: 
the cities aren’t exactly on a north-south meridian, the angle measurement is a bit off, 
and we don’t really know the exact size of Greek ‘stadia’ units in terms of today’s units. So 
the accuracy of Eratosthenes’ estimate of the Earth’s size may in fact be an urban legend. 
But it’s generally agreed that the ancient Greeks did know the Earth to be a sphere, and 
got a measurement in the right ballpark. 

 Columbus was aware of this information, but decided to put more trust in some 
other estimates of our planet’s size. A scholar named Marinus of Tyre, around the end 
of the 1st century AD, had come up with estimates that the Eurasian land mass took 
up about 225 degrees of the Earth’s surface, making the planet much smaller than 
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other ancient estimates. We shouldn’t be too hard on Marinus – he did also make the 
contribution of first providing latitude and longitude to identify locations on a map, an 
invaluable tool for future mapmakers. 

 But as you have probably heard, when Columbus encountered America, he took 
this as confirmation that Marinus’ smaller estimate of the Earth’s size was accurate, 
and assumed he had reached East Asia. Most stories of Columbus end there, with him 
deluded until the end of his days thinking that he has proven the theory of the smaller 
Earth. But there is one more wrinkle that you may not have heard. In his later years, 
Columbus saw a lot of data from various other voyages, including his own trip to South 
America on his third voyage. This additional data, plus the quantity of fresh water pouring 
from rivers into the Atlantic, convinced him that he had encountered another vast 
continent, contradicting his earlier confirmation of the Earth’s small size. 

 How did he reconcile this with his beliefs? He decided that the planet must not be a 
sphere at all, but had to be pear-shaped, with a big lump stretching out somewhere near 
China to make room for a big new land mass. Back in Europe, he was widely mocked for 
this bizarre idea. Ironically, we know today that he was right that the Earth is slightly pear-
shaped, though bulging in a different way than he expected: the southern hemisphere is 
a tiny bit ‘fatter’ than the northern. But it’s a relatively tiny difference compared to what 
Columbus estimated, so he isn’t fully vindicated by this modern knowledge.     

     Where Am I? 
     From Math Mutation podcast 108 
 In these modern days of  satellite photos and global positioning systems  , we take it for 
granted that whether we are at home, in a boat, or on an airplane, we can pretty much 
always know where we are on the planet. Two numbers always describe our location: the 
latitude, saying how far north or south we are, and the longitude, specifying our location 
east and west. But have you ever wondered when it was that people gained the ability to 
calculate these numbers while traveling? 

 In particular, on a boat in pre-modern times, when you could see nothing but water 
in every direction, knowing your latitude and longitude was a life-or-death matter. 
Surprisingly, although latitude could be calculated since ancient times, the problem of 
longitude wasn’t solved until the 1700s. This asymmetry might seem a bit odd at first, 
but if you think about it for a minute, I think you’ll see the problem: while people at 
two different latitudes will observe clearly different views of the stars at night, people at 
different longitudes will see the same views, just at different times, due to the rotation of 
the earth. 

 So how was the problem of longitude solved? As long ago as the second century 
BC, the Greek astronomer Hipparchus recognized that if you could accurately calculate 
the current time at a known location and compare it to the time of day at your present 
location, that would give you a precise measure. But it’s no easy matter to construct 
a mechanical clock that still works in the chaotic, constantly-moving conditions on 
the ocean, and was suspected by many to be an impossible dream. For a long time, 
sailors were limited to “dead reckoning”, or calculating based on estimated speeds of 
a ship how much time had passed. This often led to accumulated errors, and extra 
days or weeks at sea meant increasing risk of shipwrecks, starvation, or death by 
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scurvy. Recognizing the often fatal consequences of miscalculations, various European 
governments began offering lucrative prizes in the 1600s and 1700s for an accurate way 
to measure longitude. 

 The British actually created a government body, the Board of Longitude, to 
examine the various solutions and administer the large reward. Needless to say, like in 
modern patent offices, this caused all sorts of crackpots to come out of the woodwork, 
convinced that they were geniuses who had saved the world. Someone named Owen 
Straton attempted to claim the prize by presenting a sundial. The somewhat impractical 
 Halandby solution   involved making sure that you are always traveling precisely at a 45 
degree angle northwest, southwest, northeast, or southeast, regardless of ocean current, 
and then simply reusing your latitude calculation. Lucasian professor William Whiston 
proposed another impractical scheme, permanently anchoring ships at regular intervals 
across the Atlantic and having them launch fireworks at known times. Probably the 
most ridiculous idea was one involving the semi-magical “powder of sympathy”, where 
a bandage that had previously been on a wounded dog would be poked at certain times, 
and the dog would then feel the wound again no matter how far away he was. Umberto 
Eco mocked this idea in his classic novel  The Island of the Day Before . 

 But among all the clutter were some practical methods. Galileo had noted in 1612 
that due to the regular orbit of Jupiter’s four moons, Jupiter itself was a kind of  universal 
clock  : by observing the relative positions of the moons, you could always know the exact 
time. This worked well on land, but observing the moons of Jupiter from the deck of a 
1600s-era ship was nearly impossible, even with the clever apparatus invented by Galileo, 
which attempted to use layered shells separated by oil to enable an observer to stand still 
on a moving vessel. 

 Related to this method is the method of lunar  distances  , using the exact position 
of the Earth’s moon to identify the current time. This was proposed as early as 1514 
by Johannes Werner, but did not really become practical until the release of Nevil 
Maskylene’s  Nautical Almanac  in 1767, which contained detailed tables of lunar 
positions. It still suffered from the labor-intensive need to make a local observation of 
the moon’s position with respect to the Sun or a known star, but to some degree was a 
practical method. 

 The problem was truly solved by British carpenter John Harrison, the first to come 
up with a practical chronometer that could give the exact time even at sea. Harrison 
was a self-educated clockmaker, said to have first learned of clocks at the age of 6 while 
amusing himself with a watch while sick in bed with smallpox. He truly mastered his 
craft; according to online sources, one of his original clocks from the 1720s still works 
today. He created numerous innovations in clock design, such as systems of counter-
weights to compensate for nautical motion, and the gridiron pendulum and bimetallic 
strip to compensate for temperature changes. He first demonstrated a successful  marine 
chronometer   in 1736. He was given various interim grants to continue work on it, but 
to his misfortune Nevil Maskylene, famous contributor to the lunar distance method, 
was appointed Astronomer Royal before Harrison could formally be granted the 
Longitude Prize. Maskylene sabotaged the official test of  Harrison’s ‘H4’ chronometer     , 
ironically the same design successfully used in practice by the famous explorer James 
Cook, by distorting his presentation of the results. Eventually the elderly Harrison’s 
accomplishments were recognized by an Act of Parliament in 1773, though he was never 
granted the official longitude prize. 
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 Because Harrison’s chronometers were initially expensive, the labor-intensive and 
less-accurate, but still useful, lunar distance method remained popular through the 
mid-1800s, only gradually being replaced as the price of chronometers descended to 
convenient levels. And today we’re all familiar with the various modern technologies 
that eventually made the chronometers themselves unnecessary, despite their status as 
marvels of pre-modern mechanical technology.   

     Putting the Multiverse to Work 
     From Math Mutation podcast 31 
  Quantum Computing      is a new form of computation that can turn many of our ordinary 
assumptions about solvable problems on their head. For certain types of computations, 
quantum computers enable the performance of an exponential amount of computation 
in polynomial time. When we say a computation requires “exponential” work, it means 
the amount of work required to solve a problem of size  n  is roughly proportional to 2  n  . 
Since there are estimated to be only about 2 260  atoms in the observable universe, this 
means that such problems quickly grow unsolvable for most practical purposes. So how 
can a new form of computer address this issue? 

 To get the basic idea, let’s review the concept of bits, the 1 s or 0 s that represent the 
information in a standard computer. If you have a 2-bit memory element, it can have 
one of four values: 00, 01, 10, or 11. But in a quantum computer, the basic elements are 
something called   qubits . Qubits      can be in a  superposition  of multiple states at once: 
so rather than one of those four definite states, a 2-qubit memory element is in a state 
of A times 00 + B times 01 + C times 10 + D times 11, where A, B, C, and D are complex 
probabilities. A set of  n  qubits thus represents a set of 2  n   coefficients, an exponential 
amount of information. To perform computations with such elements, the laws of 
quantum physics are used to cause the full sets of coefficients of different memory 
elements to interact, eventually resulting in a superposition that represents a correct 
answer with a probability close to 1. 

 So, does this mean all our problems of computation are now solved? Well, not quite. 
The set of physical interactions that are available in quantum computers is very limited, 
so arbitrary exponential problems cannot be solved: only certain ones that fit within 
the possible interactions. One problem that has been proven to be solvable on such 
computers, though, is the factoring of large numbers – and many modern encryption 
algorithms, including the popular “RSA”  algorithm  , rely on the fact that such factoring is 
hard. As a result, if a practical quantum computer were suddenly on the market, many of 
our computer security systems would be immediately compromised! But you don’t need 
to cancel all your electronic accounts quite yet, since nobody has built a proven quantum 
computer with more than a handful of qubits. 

 What I find most interesting about quantum computers is that physicist David 
Deutsch has argued that they support the “many-worlds interpretation” of quantum 
physics. The many-worlds interpretation holds that the superposition of many possible 
states of a quantum particle really represents the fact that there are many parallel 
universes, an exponential number, and in each one the particle holds a different state. 
The nearby parallel universes are just like our own, except for tiny quantum variations 
– there are an exponential number of other versions of you reading this book right now. 
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Some of them are even enjoying it. This concept of multiple parallel universes does 
seem a bit hard to swallow, especially given the large number involved. Martin Gardner 
famously ridiculed this idea when he asked, “Are universes thicker than blackberries?” 

 However, looking at the issue from the other direction, what would it mean if a 
successful large-scale quantum computer were produced? Deutsch points out that it 
could be taken as a strong argument that the existence of multiple universes has been 
proven. In this interpretation, the equations of quantum physics that describe the state of 
a particle represent the interaction between our universe and the many nearby parallel 
universes in which that particle exists. For a quantum computer to solve a practical 
problem that would require an exponential amount of classical work, the work has to 
be done somewhere – how can a simple particle be doing an exponential amount of 
computation on its own? If a quantum computer really succeeds, that could provide 
evidence that an exponential number of universes has been harnessed in order to 
perform our computation. 

 I’m sure I’m not doing Deutsch’s argument justice here, but would encourage you to 
read more in his excellent book  The Fabric of Reality .      
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    CHAPTER 6   

 The Mathematical Mind           

 Mathematics is one of the few purely mental activities that we humans can undertake; 
while we tend to use it as a tool to analyze the world around us, it really takes place 
entirely in our minds. This observation is especially important when trying to understand 
the world of  autistic savants , people with impaired mental function in some areas who 
seem to be mathematical geniuses in others. You will see several articles here that relate 
to these savant thought processes, which have always intrigued me. 

 Beyond this, there are questions of how to understand our minds in general: are we 
just a set of mathematical functions floating around our brains? How does a blob of cells 
like our brain manage to understand mathematics anyway? There are also many ideas 
about how to use mathematical insights to improve all our thought processes, through 
changing our use of language or through other means. In this chapter we will examine 
these various insights into our mental workings from several directions. 

     What Color is this Podcast? 
     From Math Mutation podcast 6 
 I was recently reading online about ‘ synesthesia  ’, a phenomenon where the senses get 
mixed up. For example, someone may claim that certain piano notes trigger various 
smells, or that seeing certain shapes result in an odd taste in their mouth. One possible 
form of this condition is when people claim that they “see” each number as a particular 
color. For example, to a synesthete, all 2s might appear to be green, while all 3s appear to 
be blue. 

 Like most of you, I was kind of skeptical when first hearing this. I figured that this was 
just a case of pretentious artsy types trying to sound weird and mysterious, or trying to be 
poetic. This opinion is reinforced by the fact that one of the most famous synesthetes was 
the author Vladimir Nabokov, a favorite among self-proclaimed intellectuals and literary 
academics. But I recently read in  Scientific American  online about a clever experiment 
that seems to disprove this theory, and show that some people really do see each number 
as a different color. 

 Here’s how it works. The scientist prints out a sheet of paper that is mostly 5s, but 
with a few 2s mixed in. The 2s are set up so they form some recognizable pattern, such 
as a triangle. Normal people will find it very hard to distinguish the pattern at a glance, 
and will have to stare a long time picking out individual numbers. But to a synesthete, 
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because the 2s and 5s are different colors, the pattern is obvious, and they should spot it 
immediately. If they can pass this test, a synesthete can plausibly claim that they are really 
seeing the numbers as different colors, and not just consciously choosing to describe 
them with figurative language. In numerous trials, a majority of the self-proclaimed 
synesthetes actually passed this test. 

 So, the conclusion: synesthetes really do experience the world differently. Those 
artsy types claiming to be synesthetes are not just pretending to be weird and mysterious 
– in at least some cases, they *are* weird and mysterious. And to some of them, every 
number really does have its own color.   

     Computers on the Brain 
     From Math Mutation podcast 48 
 Now that we have established that synesthesia is real, and not just an attempt at metaphor 
or poetry, another question arises: are there cases where this could be powerful enough 
to provide a significant advantage in a science or engineering career? If a small set of 
people have different parts of their brains cross-wired somehow, where different senses 
are somehow associated with numbers, letters, or concepts, it stands to reason that there 
may be cases where this can function as a powerful practical tool. 

 Along these lines, I was surprised to read in a recent issue of   Chip Design    magazine 
about another form of synesthesia: certain engineers see different parts of computer 
chip schematics in various colors. I should probably give a little background first, for 
those of you who don’t help design computer chips for a living. When designing a 
microprocessor, engineers use different types of basic symbols, or “gates”, to represent 
sets of transistors that perform common tasks. One example is the AND gate, which has 
two wires coming in, and one wire coming out. The wire coming out will have a value of 1 
if both its inputs were 1, and otherwise it will have a value of 0. Similarly, an OR gate 
drives a value of 1 if either of its inputs was 1. A NOT gate, or inverter, is even simpler, 
always outputting a 1 if its single input was 0, and vice versa. When viewing a design 
schematic, an engineer will typically be staring at a sea of symbols representing AND, OR, 
NOT, and more complex gates. 

 According to this article, a synesthetic engineer who was interviewed can see AND 
gates as yellow, and OR gates as green. At first one might suspect that rather than reacting 
to the logical function of the gates, he is simply perceiving the shapes used to represent 
the gates, since a well-known form of synesthesia associates shapes with colors. But the 
engineer insisted this was not the case – for example, the symbol usually used for an 
inverter is a triangle with a small circle at the end. But triangles can also appear as parts 
of more complex symbols, and he doesn’t see the same colors in those cases, or when 
the same shapes just happen to be on a piece of paper. So somehow, the part of his brain 
that understands the logic of chip schematics seems to be cross-wired with the part that 
perceives colors! This can be quite useful for an engineer working with schematics. 

 If you think about it, this also might add a new dimension to our understanding of 
computation and our brains. I had always thought that numbers and shapes are directly 
inherited from the natural world, so it’s not too surprising that our brain can directly 
exhibit odd behaviors like synesthesia related to these. Something about these concepts 
seems to be fundamentally a part of nature; even if humans had never evolved, numbers 
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and shapes would still exist somehow. But the logic gates used to design computers seem 
like a complex human invention - sure, they model basic forms of mathematical logic, 
but in a way not easily found in nature. So it seems to me that the fact that these forms are 
also subject to synesthesia says that, somehow, the concepts of computation really are as 
basic to our brains as numbers.   

     The Rain Man’s Secret 
     From Math Mutation podcast 10 
 You have probably heard about  autistic savants  , sometimes called ‘idiot savants’ by the 
politically incorrect. These are people who can barely function in the real world, but 
somehow manage to do amazing levels of mathematical calculations in their head. For a 
long time, it was a complete mystery how these people managed to perform their mental 
feats. But recently a highly functioning autistic savant named Daniel Tammet has written 
a fascinating memoir, where he describes his methods. Tammet has been called the 
“Rosetta Stone” of savants, since he is one of the few who has these talents, but also is able 
to communicate well enough to describe how he does it. The key lies in the phenomenon 
of synesthesia. 

 Basically, Tammet’s brain is hard-wired to perceive numbers in a different way: when 
he thinks about or reads a number, he experiences shapes, sounds, and smells unique to 
that number. It’s not that he makes an effort to visualize these aspects, or is remembering 
earlier experiences – these senses are real to him. As he describes his perceptions of 
numbers, “Each one is unique and has its own personality. The number 11 is friendly 
and 5 is loud, whereas 4 is both shy and quiet – it’s my favorite number, perhaps because 
it reminds me of myself.” He once told David Letterman that he reminded him of the 
number 117. Later Tammet goes on to write that he has visual and sometimes emotional 
responses to every number up to 10,000. 

 Now how does this help him with arithmetic calculations? Well, as he describes it, 
he can multiply by visualizing the shapes of two numbers, which then change and a third 
shape appears. He can read the answer off the new shape. Division somehow produces 
rotating spirals in his head, which he can read accurately to almost 100 decimal places. 
Prime numbers have a smooth, round, “pebble-like” quality, which enables him to 
recognize all primes up to 9,973. 

 What’s even more interesting is how he uses numbers as a substitute for emotions, 
which most autistics find hard to understand or relate to. When a friend is sad or 
depressed, he thinks of the number 6, which he describes as “ tiny black dots  .” To 
understand the concept of being intimidated by something, he imagines himself standing 
next to the number 9, which is very tall. When he is unhappy or anxious, he counts in his 
head, and the patterns formed by the numbers help to reassure him. 

 A reasonable person might ask if Tammet is just making all this stuff up. But he is 
a pretty credible source: he once recited π to 22,514 digits under controlled conditions, 
setting a European record. Unfortunately, assuming he is telling the truth, it looks like his 
abilities are beyond the reach of the rest of us. But they certainly do make for a fascinating 
read: if you enjoy thinking about this topic, be sure to check out his bestselling memoir, 
Born  on a Blue Day .   
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     Look Him in the Eye 
     From Math Mutation podcast 119 
 Daniel Tammet's book, discussed in the previous section, actually appears to be just 
one representative of a small cottage industry of  autism-spectrum memoirs  . Recently I 
read another one:  Look Me in the Eye , the autobiography of someone named John Elder 
Robison with the mild form of autism known as Asperger’s  syndrome  . Despite, but also 
because of, his condition, Robison led quite a colorful life: bouncing from high school 
dropout, to KISS roadie, to professional engineer, and finally settling down as an auto 
mechanic and entrepreneur. 

 As I mentioned, Robison suffers from Asperger’s syndrome, a mild autism-spectrum 
disorder. He always found it difficult to emotionally connect with other people, to figure 
out what to say in social situations, or to look others in the eye during conversation. He 
tried to deal with this in several ways. At the simplest level, he tried to come up with 
mathematical algorithms to tell him what to say in response to others’ comments. This 
often worked but sometimes led to embarrassing results. For example, in one incident, 
discussions of someone having an affair triggered his “ask names of unidentified persons” 
response, and generated seemingly rude and nosy questions. 

 But he also found an unusual way to cope, which led him to be a little more socially 
popular than many others with his condition: practical jokes. When you think about it, it 
makes a kind of sense – he could not figure out how to do or say what was appropriate in 
most social situations, so he was better off intentionally doing things that were absurdly 
inappropriate. Some of his classics included convincing his parents’ friends at a party 
that he was a corrupt garbage man collecting payments for the mafia, and arranging for 
several tons of gravel to be delivered from a quarry to a teacher’s driveway. 

 Like many with his condition, he also had some strong mathematical talents that 
developed from an early age. After discovering musical equipment, he soon realized 
that he had a gift for understanding how sounds were produced by amplifiers: he could 
visualize the sound waves created by various electronic components, and thus could 
modify an amplifier to create desired sound effects. This led to connections on the local 
musical scene, and paying jobs working on sound equipment after he dropped out of 
high school. Eventually he was discovered by the rock band KISS. Yes, *the* KISS, the guys 
with the crazy makeup. He created numerous special-effects guitars for them, using his 
electronic gifts. But he eventually realized this wasn’t a very stable lifestyle. 

 When he applied for a corporate job, his amazing insights into electronics impressed 
Milton-Bradley enough that they hired him as a design engineer, despite his lack of a 
formal education. He was quite successful as an engineer, but after being promoted to 
management realized that he wasn’t really suited for the corporate world. He moved 
back to his hometown and started an auto-repair business. Again his gifted insight into 
electronic and mechanical issues paid off, as he became well known as the mechanic of 
last resort who could resolve issues in high-end foreign cars that stumped most standard 
service providers. 

 I think the most interesting thing about reading biographies like Robison’s and 
Tammet’s is the realization that there is really a kind of continuum between normal, or 
‘neurotypical’ people in the current lingo, and people with Asperger’s and more severe 
forms of autism. I think the characteristics often labelled as ‘nerdiness’ are somewhere 
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along this line: while I am not suffering from Asperger’s or anything like that, I could 
recognize some of my own past struggles when Robison described his challenges in dealing 
with social situations. And I think any of us in mathematical, scientific, or engineering fields 
have found ourselves working or studying with people who are somewhere near Robison’s 
point on the autism spectrum. I highly recommend reading Robison’s and Tammet’s books 
to gain better understanding of our colleagues, and help realize that underneath all that 
odd behavior they are not really that different from the rest of us.   

     Savants Are People Too 
     From Math Mutation podcast 97 
 Recently I’ve been reading Daniel Tammet’s second book,  Embracing the Wide 
Sky , a fascinating account of recent ideas and research on how the mind functions, 
peppered with insights from Tammet based on his own unusual thought patterns. One 
important aspect of this new book is his strong belief that autistic minds like his are not 
fundamentally different from other people’s – he uses the same facilities as everyone 
else, just with certain parts stronger and other parts weaker than the general population. 
In particular, he vehemently disagrees with the notion of  autistic savants   as “human 
computers”. 

 For example, many of us got our ideas about people like Tammet from the movie 
“Rain Man”, which exposed the idea of autistic savants to a wide audience. In one famous 
scene, Dustin Hoffman’s autistic character sees someone drop a box of matches, and he 
instantly counts how many matches are on the ground. This was inspired by an account 
from Oliver Sacks’ psychological memoir,  The Man Who Mistook His Wife for a Hat , where 
he interviewed a pair of savant twins, who indeed stated the number of matches that fell 
out of a matchbox. But Tammet points out that if those matches were on the twins’ table, 
they were very likely to have already known how many are in the box: even if the number 
was not labelled on the outside, they could count them at their leisure, not an unlikely 
activity for them. Also, if over 100 matches fall down, it’s virtually guaranteed that the view 
of some would be obscured, making it highly unlikely that even a sophisticated computer 
would be able to accurately give the number by viewing the fallen matches. In addition, 
no controlled scientific study has ever found a savant to have this instant-counting ability, 
despite their having demonstrated many other abilities. 

 Tammet also points out that in his mind, the number 111, which was how many 
matches Sacks’ twins counted, is a very beautiful number: the natural symmetry of the 
three ones, the fact that it’s divisible by three, and the fact that it is a multiple of 37 are all 
very interesting. With his synesthesia, which you will recall is his ability to ‘see’ numbers 
as shapes and colors, 111 is “full of beautiful bright white light”. So Tammet believes that 
the most likely explanation is that the twins counted the matches at some point before 
the interview, and had no problem remembering this especially interesting number that 
corresponded to the count. 

 In addition, Sacks talked about other incredible math feats by the twins: another 
notable example is their game of mentioning high prime numbers to each other. He 
claims to have confirmed the accuracy of their primes up to 10 digits by checking in a 
mathematics text he had that listed the primes. But a book that included all primes up to 
10 digits would contain over 400 million numbers! When faced with this criticism, Sacks 
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replied that he had since lost the book he was using, so his claim conveniently could not 
be checked. Overall, Sacks seemed especially predisposed to consider the autistic twins 
as something vaguely nonhuman, describing them as “a sort of grotesque Tweedledee 
and Tweedledum”. Setting out from the beginning to depict them this way, it’s not 
surprising that he viewed everything they did as further confirming their strangeness. 
Tammet is obviously offended at this characterization, as he should be. 

 With regard to his personal accomplishments, Tammet points out that his π-reciting 
feat was not something fully auto-computed by his subconscious mind, but the result 
of several intense weeks of constant studying and practice. His synesthetic abilities 
certainly helped, but they did not replace the requirement to carefully think about the 
mathematics he was attempting. So while being brilliant and having an excellent memory 
plus off-the-chart synesthetic ability, Daniel Tammet is still a man, and not a machine.   

      The  Uninhibited Brain   
     From Math Mutation podcast 99 
 As we discussed in the previous section, in his second memoir  Embracing the Wide Sky , 
Daniel Tammet makes the case that he is not a “human computer”. This still leaves the 
question open, however, of how to explain his strange condition. He has a theory for that: 
savant syndrome results from a lack of inhibition in communication between parts of his 
brain. In other words, pieces of the brain that are kept separate from each other in normal 
people are somehow in constant communication for people like him, and this results in 
his exceptional mathematical abilities. 

 To begin to understand this, let’s review the first part of his explanation: synesthesia. 
This means that when he sees or hears a number, he also sees associated shapes and 
colors in his mind. For example, he describes prime numbers as having a smooth, 
pebble-like quality, and David Letterman reminds him of the number 117. You can see 
why this would help give him an excellent memory for numbers and their properties: one 
common mnemonic technique is to try to visualize pictures associated with things you 
want to remember, and for him this comes naturally with numbers. 

 But the most novel part of Tammet’s thesis is that this synesthesia is not the root 
cause of his abilities, but a symptom of the deeper root cause, the lack of inhibitions 
between parts of his brain. For example, think about what happens in a normal mind 
like yours when you hear the word “giraffe”. A whole flood of associations come to you: 
the visual image of the animal, concepts like “tall”, “mammal”, and “long neck”, etc. With 
numbers, things like this don’t happen: when asked what comes to mind when you hear 
“23”, for example, you may think of 22 or 24, but won’t come up with many interesting 
semantic relations. 

 For Tammet, the ordinary associative abilities that people naturally have with 
language also extend to the mathematical parts of his mind. When he hears 23, all sorts 
of things immediately pop into his head with no effort: its square, 529; its largest 3-digit 
multiple, 989; and the fact that it’s prime. Just like a normal person has an intricately 
networked linguistic vocabulary of thousands of words and concepts that they can 
associate without effort, Tammet has the same situation with numbers, his basic 
‘vocabulary’ covering all numbers under 10000, and a nice selection of interesting ones 
beyond. 
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 How does this let him perform new math tricks, like figuring out whether a 6-digit 
number is prime? The key is that he uses his connected insights to infer additional 
properties. He gives the analogy of finding words in a game of Scrabble: if you have 
the right tiles, you might guess that “agedness” is a word and play it, even though you 
have never seen that word written. Similarly, he might find a number that ‘feels’ prime, 
think about it a bit, and tentatively conclude that he has found a new prime number. 
Just like recognizing that his base word ‘aged’ plus the suffix ‘ness’ is probably a legal 
combination, he can split up parts of a number and figure out if they are combined in 
ways that have special meaning. For example, look at 84,187. He can instantly see that the 
first 3 digits make 841, or 29 × 29, and the last two make 87, or 3 × 29, and thus instantly 
recognize that 84,187 is not prime. To recognize a large prime number, he looks at its 
‘shape’ for a few minutes in his mind, and sees if any factors occur to him: if not, it’s 
probably prime. 

 An interesting consequence of this, and another refutation of the idea of savants as 
human computers, is the fact that it’s not uncommon for savants to incorrectly label a large 
number as prime, if its factors are hard to find. For example, when asked to find a prime 
between 10,500 and 10,600, one savant came up quickly with 10,511, which ‘looks’ prime 
to a savant’s mind, not having any obvious factors, or any immediate structure the reveals 
divisibility by some smaller number. But 10,511 is actually the product of 23 and 457. 

 So, if Tammet’s theory is correct, a large part of the secret of autistic savants is 
that the parts of the brain handling their number sense and language sense kind of 
flow together, causing numbers to bring the floods of associations that others typically 
experience as parts of language processing. While you may be jealous of such abilities, 
watch out – this may also be a partial explanation of the autistic issues in their psychology 
as well, as the sensory overload is simply too difficult to process for a normal mind. And 
unfortunately, the majority of autistics with these savant abilities are not lucky enough to 
be as high-functioning as Daniel Tammet.    

      A  Logical Language   
     From Math Mutation podcast 192 
 If you’re a speaker of English, which is pretty likely since you’re reading this book, you 
may have found yourself occasionally frustrated by its arbitrary nature, and the difficulties 
and ambiguities this sometimes causes. Why are there so many ways of spelling “their” 
there? Why should you have to twist your tongue if you want to sell sea shells by the 
seashore? And if you talk about a little girls’ school, why should listeners be confused 
about whether the school or the girls are little? It may not surprise you to learn that the 
desire for a more well-defined and mathematically sound human language has been 
around for a long time. In fact, it has been over 50 years since Dr. James Cooke Brown 
first defined the language Loglan, a new human language based on the mathematical 
concepts of the predicate calculus. Later iterations of the language, after an internal 
political struggle against Dr. Brown by language enthusiasts, were renamed Lojban. In 
theory, Lojban, unlike English and other natural languages, is claimed to be minimal, 
regular, and unambiguous. 
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 How do they define Lojban as such a clean language? First they made a careful 
choice of phonemes, basic sounds, chosen from among the ones most common in a 
variety of world languages. Each distinct-sounding phoneme is connected to uniquely 
defined symbols, removing any possible confusion about how to pronounce a given 
word: a word’s sound is completely determined by how it is spelled. Then they defined a 
set of around 1,350 phonetically-spelled basic root words using these phonemes, being 
careful to not create homonyms or synonyms that could lead to confusion. The number 
of letters in a word and its consonant-vowel pattern determine what type of word it is: 
for example, a two-letter word with a consonant followed by a vowel is a simple operator, 
while five-letter words are what is known as “predicates”. Replacing many aspects of parts 
of speech such as nouns and verbs from traditional languages, the formation of sentences 
is based around the predicates, which are in many ways analogous to the logic predicates 
of mathematics. For example, the predicate “tavla” means “ x1  talks to  x2  about  x3  in 
language  x4 ”, with  x1 ,  x2, x3,  and  x4  being slots that may be filled by other Lojban words. 

 To get a better idea of how this works, let’s look at a specific example. In the opening 
I alluded to the sentence “That’s a little girls’ school”, which is ambiguous in English: is it 
a school for little girls, or a little school for girls? In Lojban, if it is the school that is little, 
the translation is “Ta cmalu nixli bo ckule”. The predicate “cmalu” defines something 
being small. “Nixli” means “girl”, and “ckule” means “school”. The connector “bo” groups 
its two adjacent words together, just like enclosing them in parentheses in a mathematical 
equation, showing that we are talking about a school for girls, and it is that whole thing 
which is small. Alternatively, if we said “Ta cmalu bo nixli ckule”, the virtual parentheses 
would be around “cmalu” for is-a-small and “nixli” for girl, showing that what is small 
is the girls, not the school. If there were no “bo” at all, there is a deterministic order-of-
operations just like in a mathematical equation: the leftmost choice of words is always 
grouped together. So “Ta cmalu bo nixli ckule” and “Ta cmalu nixli ckule” are equivalent. 
Pretty simple, right? Well, maybe not, but after you stare at it for a while it kind of makes 
sense. And it does eliminate an ambiguity we have in English, at least for this case. 

 The adherents of these logical languages claim many potential benefits from 
learning them. They were originally developed to test the Sapir-Whorf Hypothesis, 
which claims that a person’s primary language can determine how they think. Whatever 
the merits to this idea, I have a hard time seeing Lojban as a valid testing tool, unless a 
child is raised with this as his primary language without learning any natural languages 
– and that would be rather cruel to a child, I think! But many other virtues are claimed. 
Since the language is fully logical, it should facilitate precise engineering and technical 
specifications; a goal I can sympathize with, since I regularly deal at work with challenges 
of interpreting plain-English design specifications. It is also claimed as a building block 
towards Artificial Intelligence, since its logical nature should make it easier to teach to a 
computer than natural languages. It is also claimed as a culturally neutral international 
language, though it has fallen far short of other choices like Esperanto in popularity. And 
its adherents also enjoy it as a “linguistic toy”, helping to research aspects of language in 
the course of building an artificial one. 

 At this point, I should add that I actually have a bit of a personal perspective on 
the viability of this kind of approach to technical specs. It is claimed that the logical 
and precise nature of Lojban will mean that if engineers would just learn it, all our 
specs would be clearer and unambiguous, leading to great increases in engineering 
productivity. But I work in the area of Formal Verification, where we are trying to verify 
chip designs, often having to convert plain-English specifications into logically precise 
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formats. For many years there were different verification languages proposed for 
people to use in specifications, many offering minimal, highly logical, and well-defined 
semantics. But the ones that caught on the most in the engineering community and 
became de facto standards have not been the elegantly designed minimal ones, but the 
ones that were most flexible and added features corresponding more to the way humans 
think about the designs. So I’m a little skeptical of the idea that engineers would willingly 
replace English with a language like Lojban in order to gain more logical precision. 

 In any case, I think the biggest failure of Lojban has been that there are not enough 
people willing to learn it. Perhaps the human brain’s language areas might just not be 
hard-wired in a way that naturally supports the predicate calculus. Even the lojban.org 
page states “At any given time, there are at least 50 to 100 active participants… A number 
of them can hold a real-time conversation in the language.” So out of 50–100 people 
who are paying attention, only a subset of these can actually speak it? In comparison, 
Esperanto, an artificial international language designed by political idealists in the late 
19th century, has tens of thousands of speakers, and an estimated thousand who learned 
the language natively from birth. And even Klingon, an artificial language invented for 
“Star Trek” and of no practical use to anybody, is rumored to have more fluent speakers 
than Lojban. 

 So, if you want to learn a cool way to think differently about language and make it 
more mathematically precise, go ahead and visit the Lojban institute online and start 
your lessons. But if you’re hoping to make your engineering specifications more precise, 
communicate with your neighbors, or bring about world peace, you’re out of luck. 
Remember to teach your children English as well.    

     When ‘Is’ Isn’t 
     From Math Mutation podcast 196 
 Aside from the Lojban effort, others have attempted simpler solutions to improve the 
logic in natural languages. Followers of the cult-like philosophical movement known 
as General Semantics have found a way to supposedly improve the English language 
by transforming it into a new language called “ E-prime     ”. They base E-prime on the 
observation that poor and ambiguous usage of the verb “to be” causes many logical 
problems. This verb can hide the assumption of a logical hypothesis that needs better 
grounding in the user’s previous definitions, and can create an illusion of a factual 
observation when in fact a writer merely states an opinion or guess. Thus, by completely 
disallowing usage of all forms of the verb “to be”, we can speak more logically and 
consistently, and add clarity and rigor to our thought processes. This change to the 
language can also make statements and discussions less dogmatic, and some theorize 
that it could reduce strife and conflict in human societies. The name “E-prime” comes 
from the equation  E’ = E – e , where capital E represents the full English language, and 
lowercase e represents the verb “to be”. 

 To get an idea of the problems E-prime attempts to solve, let’s look at some 
example ambiguous or illogical statements in English that this change would disallow. 
Suppose you want to say “Erik is a podcaster”. Do you mean that Erik makes his living 
at podcasting? That  Erik   records podcasts as a hobby? That Erik spends his weekends 
partying at a fraternity nicknamed “the podcasters”? You could mean any or none of these 
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things. Another example comes from a classic Shakespeare quote, “To be or not to be, that 
is the question.” We all know what that means, referring to Hamlet’s struggles to decide 
whether or not to commit suicide. But we only know that due to lots of context from 
studying the play in school, or from hearing others talk about it. Wouldn’t it improve the 
quote if Shakespeare had said, “To live or to die, I ask myself this.” While you may dispute 
the poetic value of this rephrasing, I think you’ll agree that it communicates the idea 
clearly, even to someone who doesn’t have any context about Shakespeare or Hamlet. 

 This  ambiguity   in language comes from the fact that the verb “to be” can have many 
different meanings in English. It can signify identity, class membership, predication, 
existence, location, mathematical equality, and can function as an auxiliary verb. E prime 
advocates offer some common suggestions for making each of these types of statements 
clearer. For example, we can rewrite statements of title to include the exact credentials 
being asserted, as in replacing “he is the landlord” with “he owns the building and 
manages it.” In statements about mathematics, using the precise term “equals” to replace 
“is” makes discussions much more logically sound, and helps to distinguish statements of 
equations from definitions of terms. 

 Some have claimed that while all these complaints of ambiguity are valid, 
eliminating a verb entirely from the language goes a bit too far, and that we should 
solve these issues by improving general discipline in language use. E-prime advocates 
tend to admit that this might make sense in theory, but in real life people just have too 
much difficulty applying that kind of discipline to their writing. For example, one web 
author writes, “After seven years of experience with this technique, I must agree with 
Dr. Kellogg (who even speaks in E-Prime) that, to work effectively, E-Prime requires the 
total elimination of be forms, since we use them addictively, even compulsively, as their 
subliminal residuum even in third drafts attests. On a recent foray into cyberspace, for 
instance, I found a Web Page featuring four sentences ‘rewritten’ in E-Prime – two of 
them containing be forms!” 

 Naturally, as we could expect with a movement for such a major change, some 
members of the  General Semantics movement      have opposed the idea of E prime as 
well. They point out that eliminating all forms of a particular verb can only make writing 
poorer and less interesting, by reducing a writer’s options. They also point out that 
the forbidden verb communicates unambiguously in many common situations: for 
example, if someone asks “What color is that rose”, the answer “That rose is red” contains 
no ambiguity or cause for confusion. They also point out that if we have the goal of 
eliminating logically unsupported inferences, malicious writers can always sneak them in 
using other verbs. They could change, for example, the non-E-prime “Erik’s podcasts are 
silly” to the fully acceptable “Erik records silly podcasts”, keeping the implied accusation 
of silliness without using the word “are”. If you look at the article linked in the show notes, 
you’ll also find numerous obscure objections to E-prime that have meaning mostly to 
General Semantics devotees. 

 So, should we all try to eliminate the verb “to be” from our writing, in order to make 
it logically clearer, more rigorous, and less dogmatic? Judging by what I see on the web, 
a small but dedicated E prime community seems to still exist, as a subset of the still-
continuing General Semantics movement. I think the adoption of some aspects of their 
philosophy by the somewhat creepy Scientology movement didn’t do them any favors. 
But as with many radical ideas, I think the concepts of E-prime may contain a kernel of 
truth. Several teachers of English and composition claim online that while they do not 
enforce the strictness of E-prime for general usage, they recommend it to their students 
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as a way to improve discipline and clarity in their writing. After reading a few articles 
on it, I do feel motivated to try to review my writing for overuse of unsupported “is” 
statements. If you read carefully, you may already have noticed that I attempted to write 
this section in E-prime, with the only uses of the verb “to be” in cases where I am quoting 
it rather than using it. Do my thinking and speaking seem clearer than usual, or just more 
awkward? Only you readers can judge.   

     De-Abstracting Your Life 
     From Math Mutation podcast 212 
 One of the core principles of mathematics is the idea of abstraction, generalizing from 
various experiences to describe simplified models that enable rigorous reasoning. 
For example, if you look at a street map of your city, nothing there qualifies as a pure 
Euclidean triangle: all roads have thickness, varying slopes, squished raccoons, etc. But 
by reasoning about ideal triangles and lines, we can make powerful deductions about 
the distances between points that are very useful and accurate for practical purposes. 
However, there is a dark side to abstraction – when used too much in your daily life, it can 
cause you to over-generalize and lead to issues like stereotyping and prejudice. 

 For example, 20 years ago I had a Scottish roommate named Lloyd. Lloyd was a great 
guy, but I could not understand a word he said, due to his outrageous Scottish accent. 
Eventually we started keeping a notepad in the room so he could write down anything 
important he needed to communicate. After a few months with him, I was on the verge 
of insanity. Now, whenever I’m being introduced to someone from Scotland, I inwardly 
cringe, bracing myself for a similar experience. In effect, I have abstracted Lloyd as the 
general Scotsman in my mind, impacting my further relationships and experiences 
with his countrymen. It hasn’t been that much of an impact in my life, as most residents 
of Scotland have yet to discover the joys of Hillsboro, Oregon, but it’s still a bad habit. 
Is there something simple I can do to try to cure myself of this way of thinking? One 
intriguing set of ideas comes from a 20th century pop philosophy movement known as 
General Semantics. 

 General Semantics was first created by Polish count Alfred Korzybski in the 1930s, 
and detailed in a book called “ Science and Sanity  ”. This book describes a wide-ranging 
philosophy based on evaluating our total “semantic response” to reality, and learning 
to separate true reality, our observations of reality, and our language that describes the 
reality. By becoming conscious of our tendency to over-abstract, we can improve our 
own level of sanity, hence the book title “Science and Sanity”. While serious philosophers 
and linguists generally don’t consider Korzybski’s ideas very deep, he attracted a devoted 
cult following, who believe that the General Semantics tools can significantly improve 
people’s lives by reducing the errors that result from over-abstraction. This movement 
also led to the proposal for “E-Prime”, the variant English language without the verb “to 
be”, which I described in the previous section. Korzybski was also a bit of a math geek: 
when his Institute for General Semantics in Chicago was assigned the address 1232 East 
56th Street, he had the address changed to 1234, in order to create a nice numerical 
progression. 
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 Among the key tools that General Semantics provides for fixing over-abstractions 
are the “ extensional devices  ”, new ways to think about the world that help you to correct 
your natural tendencies. Many of these involve attaching numbers to words. The most 
basic is “indexing”, mentally assigning numbers to help emphasize the differences 
between similar objects. For example, I might think of my friend Lloyd as Scotsman-1. 
Then, if introduced to another person from Scotland, I can think of him as Scotsman-2, 
emphasizing that he is a completely different person from Scotsman-1 despite their 
common origin. If I go out with my new friend for a yummy haggis dinner, I would think 
of the waiter as Scotsman-3, again recognizing his essential uniqueness and separating 
him from the other two. Through this assignment of numbers, I can avoid grouping 
them all into the single abstraction of Scotsmen, and help force myself to treat them as 
individuals. 

 Another important extensional  device   is called “Dating”, similar to indexing but 
based on time. With this device, you attach dates to objects, indicating when you 
observed or experienced them. The Lloyd I remember should really be thought of 
as Lloyd-1993, since that’s when I knew him, and I’m really only familiar with his 
characteristics at that time. If he emails me that he’s coming to town, I should now think 
of him as Lloyd-2015, who may be a different person in many ways. Perhaps he has been 
working on his accent a bit, or maybe due to my 20+ additional years of engineering 
experience with colleagues from many diverse backgrounds, my ears have gotten better at 
discerning words in unusual accents. I should not over-abstract and assume that his most 
notable characteristics at one time, and my perception of them, will be the same today as 
in the past. Like everything in the universe, he and I are constantly changing, and I can 
use this extensional device to remind myself of that. 

 There are a number of additional  extensional devices   in General Semantics, such 
as the use of Et Cetera, quotes, and hyphens to further qualify your abstracted language. 
These seem a bit more awkward to me, though some may prefer them. Overall, I think 
the general concepts behind Korzybski’s extensional devices probably can serve as a 
useful tool, especially if I go to Scotland sometime, though perhaps they are not quite as 
profound as General Semantics fanatics like to think. Korzybski’s movement still seems 
to be going strong, with active institutes in New York, Australia, and Europe that have a 
presence on the web and in social media, and a quarterly newsletter still in print since 
1943. Naturally, I’ve grossly oversimplified many of the core ideas for this short podcast, 
but if this has served to whet your appetite, you can find many other details at their 
website.   

     Your Kids Are Smarter Than You 
     From Math Mutation podcast 208 
 Did you know that, measured by constant standards, the average Intelligence Quotient, 
or IQ, of the world’s population has been steadily increasing as long as it has been 
measured? In fact, by today’s standards, your great-grandparents most likely would be 
formally diagnosed as mentally retarded. It’s a little confusing, since the  IQ tests   are 
continually re-normalized, so the “average IQ” at any given time is pegged to 100. But 
if we look at the raw test scores and compare them across decades, we see that in every 
modern industrialized country, the IQ has slowly been creeping upwards. This effect is 
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known as the Flynn Effect, named after the New Zealand psychiatrist who first noticed it 
in the 1980s. This seems pretty surprising – could our entire population really be steadily 
increasing its intelligence? 

 When I first heard about this effect, I was a bit skeptical. If you’ve read Stephen Jay 
Gould’s classic  The Mismeasure of Man , you have learned about all sorts of broken and 
ridiculous ways in which people have attempted to measure intelligence at various times. 
My favorite example was an  IQ test   from the early 20th century where your intelligence 
was, in part, dependent on your ability to recall the locations of certain Ivy League 
colleges. Even though such egregious examples no longer are likely to appear, you could 
easily hypothesize that the  Flynn Effect   was merely measuring the fact that over the past 
century, kids have been progressively exposed to a lot more miscellaneous trivia first 
through radio, then TV, growing mass media, and finally on the Internet. 

 Even simple things such as the expanding access to books and magazines 
throughout the 20th century might have contributed; I remember all the hours I spent 
biking between local used bookstores as a teenager, looking for cool math and science 
books, and I doubt my father had such an opportunity at his age. My daughter won’t even 
have to think about such absurdities, having instant access to virtually all major literature 
published by the human race over the Internet. But it turns out that the belief that this IQ 
growth is just measuring access to accumulated factoids is not quite right – the growth 
has been very minor in tests dependent on this type of factual knowledge, and is really 
measuring an increased ability to do abstract reasoning using simple concepts. 

 In our modern lives, we take the concept of abstraction for granted: the ability to talk 
about and compare ideas, rather than just discuss concrete items and actions that are 
immediately relevant. And of course all of modern mathematics, including many topics 
we discuss on  Math Mutation , is dependent on the ability to do this kind of abstraction. 
But this is not something to take for granted: it has been slowly growing in our society 
from generation to generation. For example, one article I found talks about a study done 
on an isolated tribe in Liberia. They took a bunch of random objects from the village and 
asked the villagers to sort them into categories. Instead of sorting into groups of clothing, 
tools, and food, as we might do, they put items together that were used together, such as 
a potato with a knife, since the knife is used to cut the potato. So apparently modern IQ 
tests are largely measuring our ability to think in abstract categories, and this is the ability 
that is increasing. Flynn has argued that we should really label this kind of thinking as 
“more modern” rather than “more intelligent” – can we really say objectively that one 
kind of thinking is better? However, we probably can say that this modern thinking is a 
critical component in the explosion of science and technology that we observe in the 
modern world. 

 There are numerous theories to try to explain the  Flynn Effect  . Most center on 
social or societal factors. Perhaps the explosion of media exposure is important not 
because of miscellaneous factoids, but because of the generally more cognitively 
complex environment, forcing us to think in abstractions to make sense of the massive 
bombardment of ideas coming at us from literature, television, and the Internet. The 
growth of intellectually demanding work, where more and more of us have jobs that 
involve at least some thinking rather than pure manual labor, may also contribute. 
Another possible factor is the reduced family size in the Western world: with fewer kids 
around, each gets more parental attention, and this may foster development of abstract 
thought. And of course, in recent years, I’m sure there has been an IQ explosion among 
the very important subset of the population who listen to  Math Mutation . 
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 Aside from social factors, there are more basic physical ones: essential 
improvements to health and welfare, such as massively reduced malnutrition and 
disease, could also be important here. Some studies have shown that simple health can 
have a much bigger effect on educational success than fancy computers. There is also the 
theory that we are simply measuring the effects of Darwinian natural selection, where 
parents with this more modern thinking style are more likely to reproduce, due to coping 
better in our technological 20th–21st century society. But most biologists believe that the 
Flynn effect has set upon us too quickly to be evolution-based. 

 To further complicate the discussion, some recent studies in Northern Europe seem 
to show that the  Flynn Effect      is disappearing or getting reversed. It’s unclear whether this 
is a real effect, or an artifact of recent population shifts: over the past two decades, there 
has been massive immigration from the Third World into these countries, and it could be 
that we are just measuring the fact that a lot of new immigrants are in earlier stages of the 
Flynn Effect treadmill. But as in every generation, there is no shortage of commentators 
who can find good reasons why today’s young whippersnappers are supposedly getting 
dumber, such as a focus on repetitive video games and social-network inanity. We need 
to contrast this with their parents’ more intellectual pursuits, such as Looney Tunes and 
Jerry Springer. 

 So, what does this all mean? We certainly do see some effects in society that may very 
well be partially due to the  Flynn Effect     , such as the explosion of new technology in recent 
years. I think we should do whatever we can to continue making our kids smarter, and 
enabling more modern and abstract thinking – though of course, that would be true with 
or without the Flynn Effect anyway. Encourage your kids to engage in cognitively complex 
tasks such as reading lots of books, learning to play a musical instrument, and discussing 
cool math podcasts. But when they tell you in a few years that you’re going senile, don’t 
take it personally: you really are dumber than they are, due to the Flynn Effect.   

     My Brain Hurts 
     From Math Mutation podcast 56 
 I bet a lot of you out there, like me, often try to think of your brain as some kind of 
computer. It seems to make intuitive sense, at least, since it does consist of a bunch of 
neurons firing electrical  pattern  s. In that case, our consciousness might simply be a set 
of mathematical patterns of electron firings, circulating around our computer-brains. But 
does this view actually make sense? Of course, many treatises have been written on the 
pluses and minuses of looking at the brain this way, not to mention the gods of numerous 
religions who would smite me just for making the suggestion. But recently I was reading 
an amusing little story called “The Story of a Brain” by Arnold Zuboff, part of the classic 
collection  The Mind’s I , that shows some interesting problems with this idea. 

 To summarize, the story centers on the brain of a man diagnosed with a terminal 
illness. Some scientists come up with a radical new procedure, where his brain will be 
preserved in a jar, and actually kept alive and conscious; stimulation will be provided by a 
computer that will fire the external nerves just as if the body were still attached. That way, 
the dying man could potentially live forever. So far, pretty standard science fiction stuff. 

 The twist comes when the scientists decide to try a new experiment. They separate 
the brain into two halves, and hook up each to a computer, designed to simulate the other 
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half of the brain. They argue a bit about whether the halves have to be kept physically 
oriented the same way: can one be on its side? And do the computers have to be precisely 
in sync, or can they freeze the whole process for one brain-half during transport to 
another lab, then continue the program, effectively causing one half-brain to be on a time 
delay relative to the other? They eventually decide these issues should not be a problem, 
and happily carry off one half to another lab. 

 Years later, the experiment has been continuing, and now there are millions of labs 
all over the galaxy, each with one of the original neurons connected to a computer. Some 
of them are starting to wear out, so when this happens, whichever scientists owns that 
one simply acquires an equivalent neuron from another dying body, and hooks it up to 
the same computer program. Then one day, as he is bending over the neuron to observe 
it firing, one scientist has a thought. There must be some neuron among the millions in 
his head that is firing at each given moment when the lab neuron fires – so why does he 
even care about the one in the lab? As long as there are a bunch of people around with 
neurons firing continuously, the sum total of some subset is equivalent to the original 
subject’s consciousness! 

 You can see the bizarre issues this story raises. If it is truly the case that the mind is a 
computer, and your consciousness is just a mathematical pattern going through it, where 
is the flaw in the story? When the brain was split, was the man’s consciousness suddenly 
cloned, or did it cease to exist? What about when it was separated into neurons? Did the 
subject ever truly die, and if so, when? And why did the final scientist’s observation not 
show that they could have just buried the guy to begin with, and not bothered with the 
lab? 

 It’s fun to try to think of answers to these paradoxes. One obvious one is that there is 
a major premise: the computers that need to be hooked up to the brain-halves or neurons 
must effectively be artificial-intelligence simulators of the original subject’s mind. Could 
such AI be effectively realized? Even if we could construct conscious software programs, 
an exact replica of an existing person’s mind might be a tall order. Another issue is the 
final scientist’s assumption that someone, somewhere, must be replicating a needed 
firing at every given moment. Given a finite human population engaged in a finite 
amount of neural activity, what are the true odds that this would happen? It’s not clear to 
me the odds are anywhere close to 100 %. 

 But these objections just scratch the surface; I’m sure that among the random 
patterns of neural firings in your brain, you can find many more ways to answer the points 
in this story. Some of you can probably find objections encoded in the random patterns in 
other parts of your body as well. But for deeper discussions of the many issues involved, I 
would highly recommend that you check out the classic anthology ‘The Mind’s I’, where I 
first read the story.   

        Psychochronometry      
     From Math Mutation podcast 202 
 I recently celebrated my 46th birthday. It seems like the years are zipping by now – it feels 
like just yesterday when I was learning to podcast, and my 4th grader was the baby in the 
 Math Mutation  podcast logo. This actually ties in well with the fact that I’ve recently been 
reading “Thinking in Numbers”, the latest book by Daniel Tammet. This book is actually 
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a collection of loosely autobiographical essays about various mathematical topics. One I 
found especially interesting was the discussion of how our perceptions of time change as 
we age. 

 I think most of us believe that when we were young, time just seemed longer. The 
365 days between one birthday and the next were an inconceivably vast stretch of time 
when you were 9 or 10, while at the age of 45, it does not seem nearly as long. Tammet 
points out that there is a pretty simple way to explain this using mathematics: when you 
are younger, any given amount of time simply represents a much larger proportion of 
your life. When you are 10, the next year you experience is equal to 10 % of your previous 
life, which is a pretty large chunk. At my age, the next year will only be 1/45th of my life, 
or about 2.2 %, which is much less noticeable. So it stands to reason that as we get older, 
each year will prove less and less significant. This observation did not actually originate 
with Tammet – it was first pointed out by 19th century philosopher Paul Janet, a professor 
at the Sorbonne in France. 

 Following up on the topic, I found a nice article online by an author named James 
Kenney. He mentions that there is a term for this analysis of why time seems to pass by at 
different rates, “Psychochronometry”. Extending the concept of time being experienced 
proportionally, he points out that we should think of years like a musical scale: in music, 
every time we move up one octave in pitch, we are doubling the frequency. Similarly, we 
should think of our lives as divided into “octaves”, with each octave being perceived as 
roughly the equivalent subjective time as the previous one. So the times from ages 1 to 
2, 2 to 4, 4 to 8, 8 to 16, 16 to 32, and 32 to 64, are each an octave, experienced as roughly 
equivalent to the average human. 

 This outlook is a bit on the bleak side though: it makes me uneasy to reflect on the 
fact that, barring any truly extraordinary medical advances in the next decade or two, 
I’m already well into the second-to-last octave of my life. Am I really speeding down a 
highway to old age with my foot stuck on the accelerator, and time zipping by faster and 
faster? Is there anything I can do to make it feel like I have more time left? Fortunately, 
a little research on the web reveals that there are other theories of the passage of time, 
which offer a little more hope. 

 In particular, I like the “perceptual theory”, the idea that our perception of time is in 
proportion to the amount of new things we have perceived during a time interval. When 
you are a child, nearly everything is new, and you are constantly learning about the world. 
As we reach adulthood, we tend to settle down and get into routines, and learning or 
experiencing something truly new becomes increasingly rare. According to this theory, 
the lack of new experiences is what makes time go by too quickly. And this means there 
*is* something you can do about it – if you feel like things are getting repetitive, try to 
arrange your life so that you continue to have new experiences. 

 There are many common ways to address this problem: travel, change your job, 
get married, have a child, or strive for the pinnacle of human achievement and start a 
podcast. If time or money are short, there are also simple ways to add new experiences 
without major changes in your life. My strong interest in imaginary and virtual worlds 
has been an endless source of mirth to my wife. I attend a weekly  Dungeons and Dragons  
game, avidly follow the  Fables  graphic novels, exercise by jogging through random cities 
in  Wii Streets U , and love exploring electronic realms within video games like  Skyrim  or 
 Assassins Creed . You may argue that the unreality of these worlds makes them less of an 
“experience” than other things I could be doing – but I think it’s hard to dispute the fact 
that these do add moments to my life that are fundamentally different from my 
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day-to-day routine. One might argue that a better way to gain new experiences is to spend 
more time traveling and go to real places, but personally I would sacrifice 100 years of life 
if it meant I would never have to deal with airport security again, or have to spend 6 hours 
scrunched into an airplane seat designed for dwarven contortionists. 

 So, will my varied virtual experiences lengthen my perceived life, or am I ultimately 
doomed by Janet’s math? Find me in 50 years, and maybe I’ll have a good answer. Or 
maybe not – time will be passing too quickly by then for me to pay attention to silly 
questions.        
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    CHAPTER 7   

 Science and Skepticism           

 Ever since reading Martin Gardner’s classic  Fads and Fallacies in the Name of Science  
back in high school, I’ve had a strong interest in the idea of skepticism, critically 
examining our assumptions about science and the ways in which we misinterpret the 
world around us. This doesn’t just mean picking at easy targets such as astrology and 
numerology, but also asking basic questions about the sources of all our scientific 
knowledge. We need to be careful not to define skepticism as simply our instinctive 
negative reaction to the sillier of the New Age fads, but as our requirement to carefully 
think about our hidden and not-so-hidden assumptions. 

 The “Skeptic Movement”    has exploded in the past decade or so, aided by our 
improving ability to connect with like-minded folks on the web and to an abundance of 
excellent podcasts on the topic. In fact, I would guess that skeptic podcasts are today the 
single largest category of science podcasts on the web. Because of this overcrowding of 
the genre, I’ve tried not to focus too much on skeptical topics in  Math Mutation . But every 
once in a while I can’t resist producing an episode in this often surprising and amusing 
subject area. 

     Why Statisticians Stink at Statistics 
     From Math Mutation podcast 163 
 I’ve recently been reading the brilliant bestseller,  The Black Swan , by Nassim Nicholas 
Taleb, which discusses the impact of improbable events in our lives. One of the surprising 
points Taleb makes is that humans are wired to be really bad at probability and statistics. 
We have a built-in heuristic mind, which takes shortcuts to jump to conclusions that 
would not be mathematically justified if we thought things through more carefully. Taleb 
makes many references to the work of pioneering researchers Kahneman and Tversky, 
who initially made this observation in the early 1970s, publishing classic papers on what 
came to be commonly known as “Cognitive Biases”. Their experiments show that even 
professionals who should know better, like scientists, doctors, and statisticians, make 
these mistakes. 

 One common cognitive bias is called   anchoring   . Suppose you want to get an 
estimate of how many listeners  Math Mutation  has. Divide your friends into two 
groups, A and B. Ask group A, “Is the number of listeners more than 1000, or less than 
1000?” Then ask them to guess the exact number. Afterwards, go to group B and ask 
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them, “Is the number of listeners more than 100,000, or less than 100,000?” Then ask 
them to guess the number as well. You will find that those in group A will guess much 
lower exact numbers than group B, with group A’s guesses being close to 1000, while 
group B’s guesses are closer to 100,000: apparently when asked for a number about 
which we know very little, we inherently “anchor” ourselves to numbers we recently 
heard as a reference point. Shrewd buyers and sellers make use of this bias, when 
they open a negotiation with a highball or lowball offer, anchoring the expectations 
in the directions they want. Surprisingly, some experiments show that the anchoring 
still takes effect even if the starting number is achieved by visibly spinning a roulette 
wheel. 

 Another common cognitive bias is called   framing   . Suppose I present you with this 
scenario: We need to figure out what podcast to play over municipal loudspeakers, to 
inspire the drug cartels to end their violence in a small Central American city, where 6000 
people are killed per year. If you choose  Math Mutation , projections show that 2000 lives 
will be saved. If instead you choose  A Gobbet Of Pus , there is a 1/3 probability that 6000 
lives will be saved, and 2/3 chance that none will. Which podcast will you choose? Most 
likely, your choice will be  Math Mutation . But suppose we alternatively present it like this: 
if you choose  Math Mutation , 4000 people will die. If you choose  A Gobbet Of Pus , there 
is a 1/3 chance that nobody will die, and a 2/3 chance that 6000 will. In this case, the vast 
majority of people will make the other choice. But if you think carefully, you will realize it 
is exactly the same choice in both cases. The positive or negative framing of the question 
dramatically alters people’s opinions of the result. 

 A third well-known cognitive bias is known as the   conjunction fallacy   . Suppose I 
give you a short bio of someone named Fred, who got 800 on his math SATs, studied 
physics at Princeton, and was champion of his chess team. Tell me which of the 
following statements is more likely: A. Fred is a bank teller. Or B: Fred is a bank teller 
and president of the local  Math Mutation  fan club. Chances are that you will gravitate 
to choice B. But think about this for a minute: choice B, being a bank teller AND fan 
club president, must be strictly less probable than A, which only says that he is a bank 
teller. We have taken the same basic statement, and added a more restrictive condition. 
You are fooled by your natural tendency to focus on specific statements in preference to 
more general ones. 

 So, what can we learn from all these cognitive biases? The real lesson is just to 
recognize that you have them: whenever you are dealing with numbers or probability, 
you will have a biological drive to take shortcuts rather than truly thinking the problem 
through. When you’re just playing games or choosing podcasts, this may be fine – but 
when money or lives are at stake, you need to take that extra effort to step back and 
question the rationality of your decisions.   

     On Average, Things Are Average 
     From Math Mutation podcast 58 
  You may have heard of the “ Sports Illustrated Cover Jinx  ”, the legend that athletes who 
are featured on the cover of  Sports Illustrated  tend to suffer a decline in their careers 
afterwards. Naturally, we all like to think that divine powers are punishing these 
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superstars for their excessive egos. After all, if the universe was fair, it would be *you* on 
that cover instead, right? But if you look at the careers of the cover athletes, there really 
may seem to be some kind of jinx effect: many athletes really do seem to achieve less after 
their cover appearances. So what’s going on here? Actually, the explanation lies in simple 
mathematics. 

 The phenomenon influencing this situation is known as “regression towards the 
mean”. This is a fancy way of stating that if you take any measurable quantity that has 
a sizable chance component, and you look at it again after you get a really high value, 
the next value you see will probably be lower. There’s no magic here: *all* values have a 
higher chance of being close to average, assuming typical random distributions, so any 
given value you take will be most likely to be close to average. So if you get a really high 
value, the next one will almost certainly be lower – not because of any type of curse, but 
simply because on average, the value will be close to average. 

 What does this mean in terms of athletic performance? Well, I don’t want to diminish 
the drive and effort of individual athletes, and it’s certainly the case that superstars are 
usually very good at their games, with or without a  Sports Illustrated  cover. But I think 
we can all agree that there are numerous chance factors in any sports competition: the 
weather, the winds, the particular unpredictable strategies of the opposing team, the 
random fumbles that may or may not occur at opportune moments, the distracting 
yells from fans, or the intriguing mathematical podcasts from the previous day that are 
still distracting the athletes’ thoughts. Together, these add up to a noticeable chance 
component in any athletic competition, and can add up to a sizable chance factor over a 
number of games. 

 So, if an athlete has an exceptional season that lands him on the cover of  Sports 
Illustrated , that means that these random components of his performance all happened 
to line up to create a very high positive “plus factor” adding to the pure-talent part of 
his performance. Due to regression towards the mean, this plus factor is very unlikely to 
reach the same high positive level the following season: chances are that it will be close 
to average, as is the probability in any given season. Thus, while the athlete does not get 
any less talented, the random factors are probably not going to add up in his favor during 
the season after his  Sports Illustrated  cover. And it will look like the athlete is jinxed – but 
actually, all that has happened is that an exceptionally unlikely streak of luck has not 
repeated itself. 

 Regression towards the mean can pop up in many areas of your daily life, if you look 
for it. You probably won’t have two car accidents for two days in a row – while you might 
credit this fact to consciously improving your driving after the first accident, it may just 
be that on average days, your bad driving isn’t quite bad enough to cause an accident. 
Following an exceptional score on a test in school, you may be disappointed to find that 
your following tests are not so hot; maybe your studying slacked off, or maybe you just got 
lucky that one time. If you feel especially snotty one day and take a homeopathic remedy, 
you’ll probably feel better the next day – not because homeopathic remedies do anything, 
but because you’re likely to be close to your average health on any given day, unless truly 
suffering from a serious illness. Whenever you try to analyze some type of cause-effect 
relationship in your daily life, you should try to think about whether regression towards 
the mean might be the best explanation.    
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     Don’t Panic 
     From Math Mutation podcast 101 
  Suppose you arrive home after a long day of work, turn on your TV, and see a lurid report 
of a dangerous new disease, Exploding Brain Syndrome. Although it only affects about 
one out of every million people, its effects are horrific, and the story is accompanied 
by the usual footage showing what is left of “beautiful people” after their brains have 
exploded. Terrified, you go to your doctor to ask if you can be tested for this syndrome, 
just to be safe. “No problem,” he says. “I have a test that is 99% accurate. Let me just take 
some blood, and I’ll call you tomorrow.” The next day there is a somber message on your 
voice mail. “Your test came out positive.” Should you start preparing for the inevitable 
explosion of your brain? 

 Although most people, including many doctors, would say the answer is yes, this 
answer is actually very wrong. You need to take into account both the accuracy of the test 
AND the prevalence of the condition in the population, and once you combine those two 
pieces of data, you will see that you shouldn’t be too worried. Let’s put some concrete 
numbers on the discussion to illustrate. 

 Suppose you live in a city of one million people. Since the disease only affects one 
out of every million, there’s probably only one person with Exploding Brain Syndrome 
in your city. But since the test is only 99% accurate, that means that of the almost one 
million healthy people, about 1% of them, or ten thousand people, will test positive on 
this test. So your actual chance of having the disease, given that you are one of the ten 
thousand and one people who tested positive, is one in ten thousand and one, or less 
than .01%. Not quite as good as the original one-in-a-million odds, but still a pretty 
minuscule thing to worry about. 

 This counterintuitive  calculation   actually has serious real-world implications: it 
means that over-testing for rare diseases is likely to result in huge amounts of time and 
resources wasted on treating false positives, and in the worst cases, actual health harm 
due to side effects of the drastic treatments necessary for some dangerous and rare 
diseases. For example, some studies suggest that PSA testing for prostate cancer may 
actually have done more harm than good in the years since it has become popular, with 
people who don’t actually have the disease suffering from radiation and chemo therapies. 

 If your doctor tells you that you have a positive test for a rare condition, be sure to 
probe the details, get another independent test if available, and strongly consider the 
risks of treatment vs the risks of having the disease. There may be a stronger chance that 
your brain will explode from panic than from Exploding Brain Syndrome.    

     It Must Be True, There’s an Equation 
     From Math Mutation podcast 132 
 It’s said that the Russian empress Catherine the Great was annoyed by the atheist 
philosopher Diderot, and asked the famous mathematician Euler for help. So Euler 
came to her court and presented his proof, in the form of a mathematical equation: 
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“( a  +  b   n  )/ n  =  x , therefore God exists.” Diderot, who had no training in algebra, could not 
answer this argument, and had to give up and return to Paris in embarrassment. 

 The story is actually an urban legend, but it still has somewhat of a ring of truth: 
 equations   do have an almost mystical power, convincing people that you have reason 
and logic behind whatever you’re saying, regardless of the actual merits. I think all 
of us who took social science or philosophy classes in college had the experience of 
seeing the professor write an equation on the board, and wondering if there really 
was that level of mathematical precision in play. Even engineering professors are not 
immune to this bias: back when I was thinking of finishing my Ph.D. in computer 
science, I remember one professor critiquing my thesis proposal. “You need to get a 
few more equations in there.” He didn’t care what the equations were, or whether my 
main point truly required more equations: I just needed them there to demonstrate my 
scholarliness. 

 Physicist Alan Sokal is famous for blowing holes in academic pretensions. His 
most notorious stunt was getting a hoax article published that mentioned, among other 
things, the patriarchal social construction of the value of π. His classic book  Fashionable 
Nonsense  is full of examples of dubious references to math and physics concepts by 
postmodern academics. One example is his discussion of Jacques Lacan, the influential 
20th century psychiatrist, whose writings often string many arbitrary-seeming math 
concepts together in order to sound impressive. Here’s an example quote: “… The signifier 
can only be a line [trait] that is drawn from its circle without being able to be counted 
part of it. It can be symbolized by the inherence of a -1 in the whole set of signifiers. 
As such it is inexpressible, but its operation is not inexpressible, for it is that which is 
produced whenever a proper noun is spoken. Its statement equals its signification. Thus, 
by calculating the signification according to the algebraic method used here, namely 
S(signifier)/s(signified) = s(the statement), with S = -1, produces: S = √(-1).” Lacan goes 
on to explain that this is the imaginary number  i  as defined by mathematicians, and is 
somehow related to the human penis. 

 Those who misuse math like this have a lot of excuses. One major category is that 
the equations are mere illustrations or marginal elements, and that they should only be 
viewed in the full context of a work. But as Sokal explains, the misuse of these symbols 
and terms, which have very precise meanings that directly result in their usefulness in 
real math, shows a general disdain for facts, logic, and intellectual rigor, that *should* cast 
doubt on the entire context. Another major category of excuses is that we should allow 
some poetic license, as the math is merely as metaphor or analogy to relate abstruse 
concepts to something more familiar. But in nearly every case, the math is a lot less 
familiar to the typical reader in a humanities or social science discipline than the author’s 
main argument: so exactly how is this use of math supposed to clarify anything? The 
logical conclusion is that in the vast majority of such cases, the math is brought in to add 
an impression of erudition and logical rigor to arguments that are otherwise weak or 
incomprehensible. 

 So, next time you read an article or book in a non-math subject area and see an 
equation, step back and think about it for a minute. Does it really make sense? Are all 
the terms used according to precise, sensible mathematical definitions? If not, you may 
merely be reading a piece of, as Alan Sokal puts it, “fashionable nonsense”.   
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     A Twisted Take on Turing 
     From Math Mutation podcast 107 
 Many physicists would agree that, had it not been for congestion control, the evaluation 
of web browsers might never have occurred. In fact, few hackers worldwide would 
disagree with the essential unification of voice-over-IP and public/private key pair. In 
order to solve this riddle, we confirm that SMPs can be made stochastic, cacheable, and 
interposable. 

 Did the previous paragraph make sense to you? Well, the sentences certainly sound 
plausible, in the endless flow of technobabble that seems to dominate today’s online 
discussions. But in fact, they were randomly generated by a program called  SCIgen  , 
developed by a group of clever grad students at MIT. They form the abstract of a randomly 
generated paper called “ Rooter  : A Methodology for the Typical Unification of Access 
Points and Redundancy”, which was actually accepted to the 2005 World Multiconference 
on Systemics, Cybernetics, and Informatics, a real conference despite its title, which 
sounds like it could be generated by the same program. 

 The program is built around a set of formal structures known as a “context-free 
grammar”.  Context-free grammars   were first developed by Noam Chomsky in the 1950s 
to recursively describe basic language structures, decomposing chunks like sentences 
and phrases into simpler elements, until basic combinations of words are described. 
For example, a grammar that describes sentences where combinations of X and Y are 
added would have the following rule: S - > x | y | S + S. By starting with the single symbol 
S, and then choosing whether to substitute the terminals x or y, or the recursive addition 
of S + S, you can use this grammar to form results like “x + y”, “x + y + y”, “x + x + y + x”, etc. 
Such grammars have quite a few uses in areas like parsing computer programs, or 
checking basic grammatical correctness of sentences. But an important thing to notice 
about these grammars is that they are context-free: you can’t force any kind of real 
coherence with distant elements, which means they are inherently unable to represent 
the flow of intelligent thought that should be built in to a good academic paper. The fact 
that plausible academic papers can be built out of a context-free grammar of technical-
sounding words is quite an embarrassment to academia. 

 Having spent time in the academic community as a grad student, and since then 
heard more than my share of low-quality conference presentations, I have to applaud 
Jeremy Stribling, Max Krohn, and Dan Aguayo, the authors of SCIGen. They correctly 
observed that too many academic conferences seem to have the sole purpose of making 
money for their organizers, and are latched onto by borderline academics who have 
nothing much to say, but want more publications on their resumes. I knew one professor 
who listed three dozen or so of his own papers as references in every new paper he 
published, and the titles all seemed like permutations of the same ten words. An excellent 
way to test the academic legitimacy of a conference’ publications is to submit randomly 
generated papers, and see how many of them are accepted, in comparison to the 
acceptance rate for so-called serious papers. 

 In some ways, this is a variation on the famous  Turing test  , where an observer must 
converse with unseen entities in two remote rooms through online chat. The challenge 
is to distinguish the human from the computer program. Turing intended this to be a test 
of artificial intelligence – when the computer program could converse well enough to be 
indistinguishable from the human to the average observer, AI would truly be achieved. 
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This is kind of a reverse case though: rather than trying to prove artificial intelligence in 
their computer, Stribling, Krohn, and Agauyo were trying to expose natural stupidity in 
academia. I’m sure Turing would approve of this new application of his test though. 

 Their success at the conference I mentioned before was not a fluke. On the 
 SCIgen website  , you can see a list of conferences and journals that have accepted the 
randomly generated papers. Many of them have prestigious-sounding names, like the 
IEEE International Conference on Computer Science and Software Engineering, or the 
International Symposium of Interactive Media Design. Remember, just because someone 
forms smart-sounding words into sentences, it doesn’t mean they are making sense. 
And if you see a lot of publications on a job applicant’s resume, don’t be too impressed, 
until you read, comprehend, and truly appreciate one of their papers. If it sounds too 
complicated for you to understand, it just might have been generated randomly.   

     I Want My Molecule 
     From Math Mutation podcast 7 
 Recently I was browsing in an otherwise respectable drugstore, and I was surprised to 
find some ‘homeopathic’ remedies available. As usual, I just shook my head and laughed. 
These so-called ‘medicines’ are created according to an alternative form of  medical 
science   that was created in Germany about two hundred years ago – and defies basic 
mathematics. Let’s see why. 

 To start with, let’s assume you accept the fact that substances are made out of 
molecules, as has been generally accepted for longer than my lifetime. Where the math 
fits in is that it’s well known how many molecules of a substance are needed to make up 
its molecular mass in grams: approximately 6.02 × 10 23 . So, as a simple example, if you 
have 10 grams of a medicine whose molecular weight is 10, you have about 6.02 × 10 23  
molecules. 

 Now we can figure out why the math of homeopathy just doesn’t work. One of the 
basic principles of homeopathy is that a medicine does not lose its effectiveness, and in 
fact becomes more effective, after dilution. A typical step of dilution involves taking the 
original medicine and mixing it with one hundred times its volume of water, known as 
1C. If you take a bottle of medicine, perform this ‘1C’ dilution, then remove a bottle of the 
result, your new bottle has roughly 100 times fewer molecules of the medicine than you 
started with, or 10 -2  times the original amount. 

 The fun part comes when you read homeopathic literature, and find that ‘30C’ is a 
typical recommended dilution. This means that you go through this 1C dilution process 
30 times. The first time you have 10 -2  times as much medicine as you started with; the 
second gets you to 10 -4 , and so on. By the end, you have 10 -60  as much of the medicine as 
you started with. Multiply that by the 6.02 × 10 23  molecules we started with in our example, 
and we are left with 6.02 × 10 -37  – an infinitesimal fraction of a molecule. This means that 
we have a much bigger chance of winning the lottery than of having a single molecule of 
the actual medicine in a small bottle taken from the diluted sample. 

 I don’t know about you, but when I pay good money for a medicine, I like to have at 
least one molecule of it in the bottle. Is that too much to ask?   
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     The Gullible Ratio 
     From Math Mutation podcast 185 
  One potential podcast topic that bounced around in the back of my mind for many years 
is φ (phi), the golden ratio, the well-known irrational quantity equal to

     

1+√5
2  

  or approximately 1.618.    The reason why I waited so long to create a podcast episode on 
the topic is that it’s so overdone – the chances are that if you have even a passing interest 
in math, at some point you have read an article or been told by a teacher about the many 
amazing properties of this golden value and its connections to art, architecture, biology, 
and even human psychology. But did you know that, to a large extent, the concept of φ 
has been oversold, and is not nearly as significant as some claim? I came across this when 
reading an essay by Martin Gardner in his collection  Weird Water and Fuzzy Logic , a set of 
articles debunking various pseudoscientific ideas; the chapter on φ is called “The Cult of 
the Golden Ratio.” While φ does have some mathematical significance, its importance in 
other areas has been significantly exaggerated. 

 Before we start debunking it, let’s review what φ is. Draw a line segment, and place a 
dividing point such that the ratio of the two segment lengths in the divided line is equal 
to the ratio of the length of the whole to the larger segment. Or, viewed algebraically, 
if the segments are of length A and B, we need (A + B)/A equal to A/B. The ratio A/B is 
the definition of φ. The geometrical definition was first created by ancient Greeks and 
described in Euclid’s  Elements , where it naturally comes up in several theorems related to 
pentagons: the length of a pentagon’s diagonal is equal to φ times its side. A related result 
is that in a pentagram, the star-shaped object formed from a pentagon’s diagonals, each 
intersection splits its edges into golden-ratio segments. Another interesting geometric 
result, known as Odom’s construction, is that if you inscribe an equilateral triangle in a 
circle, draw a line segment connecting the midpoints of two sides, and extend it at one 
end to intersect the circle, the segment’s portions inside and outside the triangle are in a 
golden ratio. 

 These results seem to be a natural consequence of the type of ratio φ describes, but 
what is more surprising about this golden ratio are several non-geometric results. There are 
a couple of bizarre simple-but-infinite constructions that have been proven equal to φ. 
One is the infinite fraction

     

φ = [1;1,1,1,...]=1+ 1

1+ 1

1+ 1
1+ . ..  
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  repeated out to infinity. That looks really complex at first, but if you define it as  s , 
observing that  s  must satisfy the equation  s = 1+ 1/s , the idea might be clearer. Starting 
from the latter form it’s pretty easy to prove that  s  equals φ using the quadratic formula. 
Similarly, you can represent φ with the square-root-based construction 

      φ =√1+√1+√1+√1+ .... 

  But probably the most useful φ-related result is related to the Fibonacci sequence. 
As you may recall, the Fibonacci sequence is formed by continuously adding the previous 
two members of the sequence, so it starts out as 1, 1, 2, 3, 5, 8, 13, and so on. As you 
extend it out to infinity, the ratio between successive terms gets closer and closer to φ. 
Logically you would expect that this could result in some applications in nature, as there 
are several additive natural processes that can be modeled as a Fibonacci sequence, as 
previous cells or other components of an animal or plant add on to determine further 
development. However, since most such cases are finite in real life, it probably makes 
more sense to just describe them as applications of the Fibonacci sequence rather than 
uses of φ. 

 Where the pseudoscience comes in is when measurements are stretched or fudged 
to conform to the golden ratio based on very scant evidence. This is what has happened 
in most claims that the ratio is important in art, architecture, and nature. Some have 
taken this concept to ridiculous extremes – in a search for φ-related books on Amazon, I 
even came across one called  The Golden Ratio Lifestyle Diet . Here’s part of its description: 
“The Diet is based on a fascinating formula – the Golden Ratio – that when applied to 
anything, creates greater beauty, unity, efficiency, value and success – a greater whole 
exceeding the sum of its parts. This formula guides the structure of matter and movement 
of energy throughout the Universe.” Hmmm… I think I’ll stick with the much yummier ‘pi 
diet’ myself. 

 One common misconception that is the source of much of this insanity is that 
somehow elements in this ratio are provably most aesthetically pleasing to the human 
eye, and thus φ is wired into our biology. This largely stems from a 19th century study by 
Gustav Fechner, where he showed a bunch of rectangles to subjects and asked them to 
choose the prettiest. But the many subsequent attempts to replicate this study have gotten 
inconsistent results. In fact, Gardner describes one replication attempt that came to the 
conclusion that 3 × 5 index-card-like rectangles are equally preferred, with no irrational 
values needed – perhaps this is a case where the free market has optimized better than 
the mathematicians. 

 There have also been many observed measurements of this ratio in ancient 
architecture, such as claims about Egyptian pyramids and the Greek Parthenon, and 
in various body proportions of creatures and plants. All these suffer from a fatal flaw: 
the lack of precision. As Gardner points out, by slightly altering the starting and ending 
positions of a measurement, any measurement that is somewhere close to a ratio of 1.6:1 
or 3:5 can be tweaked to seem to match φ or its inverse to a few significant digits. And 
there is so much individual variation in nature that it’s nearly impossible to create firm 
rules about any bodily ratio. For example, a 1992 study checked the navel heights of 319 
men and women, to check claims that the navel divides the body in a golden proportion 
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in humans. Their conclusion was as follows: “Admittedly, measurement error in this 
study was a ticklish problem. But… a practitioner of the navel art who wishes to capture 
divine proportions would have to place the belly-button of a typical Middlebury College 
coed about 0.7 inches higher than it really is.” 

 So, is the Golden Ratio important? I think there is no doubt that it is a quantity 
of mathematical significance, due to its intimate connection with geometry and the 
Fibonacci sequence, as well as its appearance in some bizarre infinite constructions. 
But we need to be careful before claiming a particular irrational number as somehow 
psychologically pleasing, built into biological organisms, or possessing some kind of 
mystical power. I think online forum participant ‘MartianInvader’ has a good summary: 
“Reports of the golden ratio’s awesomeness are often overstated, but there’s still a decent 
amount of awesome in there.”    

     Monkeying Around with Probability 
     From Math Mutation podcast 118 
  Recently in creationist circles there has been an argument making the rounds that simple 
 probability   shows that evolution cannot occur, based on calculations of the odds of 
mankind evolving vs the amount of matter and time in our universe. When I first read one 
of these arguments, it seemed like they might have a point; but after thinking about it a 
little while watching the monkey-like behavior of my daughter, I realized that there are 
at least three major flaws. I’ll start by describing the argument – see if you can spot the 
problems before I tell you. 

 One amusing form of the argument is found at a  Free Republic  posting by someone 
named Brett Watson. He tries to calculate the probability of monkeys randomly typing 
“To be or not to be, that is the question”; we would probably agree that any simple 
life form is at least as complicated as this sentence. Assuming we have a basic 32-key 
keyboard, the probability of a monkey typing every one of the 41 characters in this 
sentence correctly is 1 in 32 41 : 1/32 chance of the first character being right, 1/32 2  chance 
of the first two characters being right, and so on. Assuming the monkey types one line per 
second, a few simple calculations show that even if typing for 17 billion years, the monkey 
will have less than a 1 in 10 39  chance of succeeding. And if you allow 17 billion galaxies, 
each with 17 billion planets containing 17 billion typing monkeys, there is still less 
than a 1 in 10 13  chance of success. So the conclusion is that life in general could never 
arise by chance. 

 The first major flaw is perhaps the simplest. Sure, there might be only a 1 in 1039 

chance of a particular universe evolving life – but why is it so inconceivable that the 
number of planets in the universe or in the multiverse is that large? As we’ve mentioned 
in an earlier chapter, we have no way of knowing how much exists beyond the frontier 
of space that we can observe. In addition, the ‘many worlds’ interpretation of quantum 
mechanics seems to imply exponential numbers of alternate universes branching off at 
every moment. And even if that’s wrong, and the number of universes is fixed and finite, 
we really have no way of knowing how many parallel universes there are. If we admit 
the possibility of a large unobserved portion of our universe, or of parallel universes, 
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why should 10 39  planets be less conceivable than a handful? The well-known  anthropic 
principle  states that we are observing one of the lucky few planets/universes that did 
evolve life, simply because otherwise we wouldn’t be here to observe it. 

 If that doesn’t satisfy you, or you still find the idea of parallel universes perplexing in 
general, a 2006 article by John Allen Paulos points out a second flaw. Look at the forms 
of life that we are familiar with. Do we really think these are the *only* types of life that 
could have evolved? Perhaps there are many alternate ways to build life from chemicals 
in our universe, just as viable and self-reproducing, that could have evolved instead; we 
just happen to observe that ones that were lucky enough to evolve on our planet. Looking 
at the monkeys-typing-Shakespeare analogy: Do they really have to type “To be or not to 
be, that is the question”? Maybe they just had to type *any* valid English sentence, which 
is much easier. Paulos uses the analogy of a deck of cards: suppose you deal out the 52 
cards in order. There are about 1068 possible orderings: but you are guaranteed to get 
some ordering when you deal the cards. No matter what order the cards were dealt in, 
you can point and say, “Wow, there was only a 1 in 10 to the 68th chance of that ordering – 
divine beings must have intervened!” We have no way of knowing exactly how many ways 
life can form, but even within the limited parameters of life on our planet, scientists are 
continually surprised by discoveries of life previously thought impossible in places like 
Antarctic ice or geothermal vents. 

 A third flaw in the monkeys argument is a bit more subtle, but is perhaps the most 
powerful. It totally ignores the concept of “survival of the fittest” in evolution. In other 
words, evolution is a feedback system, where the forms that are able to reproduce 
succeed in propagating, while the non-viable forms die out. This even extends back into 
precursors of life, organic molecules that can reproduce themselves or catalyze other 
organic reactions. Thus each event in the evolution of life is not independent: when 
early life forms or their precursors get a partial success, this success is built upon in 
further evolution. This is critical, since the calculations of infinitesimal odds are based 
on multiplying many small probabilities, which is only a valid operation if the events are 
independent. Back to the typing monkeys analogy, not only are the monkeys allowed to 
produce any valid English sentence, but there is a guy with a whip standing behind each 
monkey, thrashing him if he starts to type a character that will not form a sentence. In 
this scenario, I bet we would start getting valid sentences pretty quickly. Assuming the 
monkeys did not revolt, slay their cruel masters, and form their own non-Shakespeare-
typing society. 

 So, does all this prove that evolution took place, or that creationists are wrong? I’m 
afraid that discussion is beyond the scope of this book, though I think you can find about 
10000 podcasts on each side of this topic if you’re interested, not to mention uncountable 
numbers of online blog-comment flame wars. It’s also possible that future developments 
in biology and physics will invalidate the counter-arguments I presented here: maybe it 
will be conclusively shown that there are only one or a handful of universes in existence, 
there is only one way life can evolve, or that there is an unbridgeable chemical gap 
between the primordial soup and true precursors of life. But I think you can see from 
these points that today’s simple probabilistic objections to evolution are missing some 
important factors. If you want to argue for creationism over evolution based on today’s 
knowledge, you’ll have to look elsewhere besides in the math.    
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     Solving Burma’s Problems 
     From Math Mutation podcast 42 
  Reading the many articles about current events in Burma, I noticed that back in 1987, 
the leader Ne Win decided to replace the currency with notes in units of 45 and 90, since 
his lucky number was 9. But that led to mass protests and violence, perhaps due to its 
sanity- challenging interpretation of economics and politics, and helped contribute 
to the opposition movement that continues to this day. However, if we assume for the 
moment that our destinies are controlled by capricious divine beings who examine 
arbitrary numbers that come up in our lives and choose whether to help us based on their 
correlation with our selected lucky numbers, I think the general still got it wrong. 

 While harnessing the powers of the number 9, there are a few other aspects that 
the general should have taken advantage of as well. You may have heard of “casting out 
nines”, a method of checking arithmetic calculations by adding up the digits of all the 
numbers, finding the remainder modulo nine, and checking that the calculation using 
the remainders matches the original numbers. It couldn’t hurt to mandate that everyone 
use that – what could be luckier than double-checking your arithmetic? And then, 
there’s the fact that six recurring nines appear in decimal places 762 through 767 of π. 
So, in any calculation using π, it should be required that you calculate it to 767 digits of 
accuracy, to maximize this luck factor. That might be a bit of a pain, but after all, what’s 
a little pain when compared to the extra luck that comes from using such auspicious 
numbers? Finally, since 9 is the atomic number of fluorine, we must be sure to fluoridate 
the nation’s water supply. Having had recent root canal work, I’ll always consider healthy 
teeth especially lucky. 

 But there is one fundamental flaw with all these properties, except the chemistry 
of fluorine – they all depend on the fact that we are using the ordinary base 10 
representation of numbers. For example, if 9 is your lucky number, why is 90 a good 
currency unit? Sure, 9 is a factor, but then it’s multiplied by 10, which may or may not 
be particularly lucky. As best I can figure, somehow ending in a 0 adds luckiness to a 
number, according to Win’s theory. But if that’s the case, why are we restricted to base 
10 representations? In fact, with so much modern economic activity (even back in 1987) 
passing through computers, I think the binary representations used within computer 
systems are much more relevant. While 90 in binary does end in a 0, since it is 1011010, 
we can do much better. Any number divisible by 8 ends in *3* zeroes in binary, since 8 is 
2 to the 3rd power. So, if we take 9 times 8, or 72, this is 1001000 in binary, making it three 
times as lucky as 90. In other words, due to its superior binary luckiness, Ne Win should 
have chosen 72 as a major currency denomination. 

 But let’s take a step further back. Our choice of 72 or 90 is based on something rather 
superficial, how many 0s appear at the end of the number in various representations. 
If we assume that we can find a numerologist who attended math classes beyond 
third grade, they probably learned that numbers also have deeper properties that are 
independent of a particular representation. How about taking the various powers of a 
number? 9 is especially auspicious for this purpose: being a perfect square, we can take 
both integral powers and half-powers of 9 and get nice clean integers for our currency 
denominations. 9 to the 1.5 power is 27, 9 squared is 81, and 9 to the 2.5 power is 243. So 
if we choose 9, 27, 81, and 243 for our currency denominations, we are invoking the super 
extra lucky powers of the number 9, independent of any particular chosen representation. 
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 There is one inescapable conclusion to draw from all this: the source of all  Burma’s 
problems   for the past two decades is obviously the fact that they are using incompetent 
numerologists. All they have to do is hire me, and due to my superior understanding of 
the number 9, I’ll get the country back on track.    

     A New Numerology 
     From Math Mutation podcast 128 
  I was amused recently to read an article on “ numerology  ”, the New Age technique where 
your personality is analyzed based on aspects of your name or birthdate. A typical 
numerological system will work like this: get the number associated with each letter of 
your name, then add the numbers together, and then keep adding digits together until 
you have a total that is one digit. So for example, in my name ‘Erik’, E is the 5th letter of the 
alphabet, R is the 18th, I is the 9th, and K is the 11th. 5 + 18 + 9 + 11 is 43, and 4 + 3 is 7, so 
I am a ‘7’ personality. I look up that number on a numerological table, and find that it is 
associated with thoughtfulness. So I guess I must be thoughtful. 

 Being thoughtful though, I have to wonder why there should be a mere 9 personality 
types that describe everyone. Of course various numerology systems add additional 
wrinkles, such as ‘master numbers’ 11, 22, 33, and 44 that should not be reduced, but still, 
it seems like something more is needed. Why not treat each individual letter position, 
for example, as having its own meaning? That’s how we enable multi-digit numbers to 
signify larger values: for example, 123 is 3 times 10 to the 0th power, + 2 times 10 to the 
1st, + 1 times 10 to the 2nd. That’s how with only three digits from 0 to 9, we can describe 
1000 different numbers. If we just added the 1, 2, and 3 together, we couldn’t tell 123 from 
321, and both would be equivalent to 42 or 6. Shouldn’t there be thousands of personality 
types, at the very least? If the New Age gods are somehow using our names to encode 
important information about our lives, I would think they could take advantage of the 
same elementary principles in our place-based number systems. Hopefully most of these 
gods have the 6th-grade education necessary to understand such things. 

 While we’re generating numerical values to describe our personalities though, does 
it really make sense to base them on our names? A name is something that can easily be 
changed, and is often ambiguous if translated from another language. How about getting 
something physical from our bodies to generate a large number, each of whose places will 
be significant? Wouldn’t it be great if there were some consistent aspect of our body, such 
as something inside our cells, that we could use to extract a descriptive number? 

 Actually, it seems that biologists have beat us to it. Inside each of our cells are long 
strands of DNA, which are basically strings of 3 billion or so “base pairs”, each consisting 
of one of four basic nucleobases and its complement. And as we all know, these genes 
determine many aspects of our bodies and our personalities. Thus we can think of our 
DNA sequences as extremely long base-4 numbers which describe us in minute detail. 
Genes have been identified with such varied characteristics like eye color, vulnerability to 
cancer, and introverted vs extroverted personalities. So, ironically, the numerologists were 
right all along – each of us does have a unique number that describes us in detail, and can 
be used to help understand our personality and our health. It’s a little more complicated 
than the ones they usually use, but I’m sure they won’t object to correcting their systems 
in light of the latest science, right? 
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 Somehow I’m not holding my breath waiting for online numerology sites to correct 
their name-based systems and add links to genetic analysis labs. But who knows, perhaps 
all this DNA stuff is just a trick by the dark sprits to distract me from truly understanding 
that I am fundamentally a Number 7 guy, and using the power of my number to drive the 
demons from the earth.    

     One Intestinal Worm Per Child 
     From Math Mutation podcast 110 
 Most of us have seen, in one form or another, heartbreaking pictures of deprived children 
in the developing world. Many of them live in huts that seem to be made of discarded 
particle board or scrap metal, with floors that consist, like the road outside, largely of 
mud. Often the children are seen playing in the streets, with little but dirt and garbage as 
their toys. We see obvious signs of disease and starvation, such as distended stomachs. 
And there appears to be little sign of hope or opportunity for the children growing up 
in these environments, without some fundamental changes to their way of life. So, as 
enlightened Westerners, our duty is clear. We must ensure that each of these children has 
an inexpensive laptop computer. 

 What, you’re saying that’s not your reaction? Well, before going on to discussing the 
details, let’s talk about a basic mathematical principle involved here. Amdahl’s law, as 
stated by computer architect Gene Amdahl in 1967, points out that if you have a process 
that can be broken down into many subprocesses, your overall speedup from some 
improvement is limited by which subprocesses you can do more efficiently. Suppose we 
have subprocesses  P1  and  P2  that take up time  T1  and  T2 , and you can’t improve  P1 , but 
can make  P2  run  n  times faster. Then the total runtime is  T1 + (T2/n) . So if  T1  is much 
larger than  T2 , then even with a huge value of  n , representing a huge improvement to 
process  P2 , you still have to run the full time of  P1 . 

 To make this more concrete, suppose you have a computer program that reads a list 
of names, then sends an email to each person telling them to listen to  Math Mutation . 
Suppose reading the file takes 90 seconds, and sending the email takes 10 seconds. Then 
if you get a new multicore computer that can send email at lightning speed, 1000 times 
faster than before, but doesn’t read files any faster, what’s our overall improvement? 
Well, assuming the time for sending email is now negligible, the total time went from 100 
seconds to 90 seconds, for a speedup of about 100/90, around 1.1. It doesn’t quite match 
the 1000 times speedup claimed by the vendor, because there was a huge part of our 
process that was not improved. 

 How does this relate to solving poverty through laptop computing? I have to admit 
I’m abusing Amdahl’s Law slightly here, since improving education isn’t quite the well-
defined process of a typical parallel computation. But for the moment let’s accept that 
a primary problem in these third world areas is educational opportunity, and there are 
many factors that affect educational quality. Let’s also assume that our goal is to, for 
the majority of children, reach some basic educational baseline where they achieve 
respectable scores on international tests of math and literacy. 

 I’m sure there are many factors that affect test scores in such societies. One of 
them might be lack of access to computers. But are there other factors that have more 
importance? Again, computer access is certainly nice, but must be considered alongside 
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other possible issues. And then, following Amdahl’s Law, the largest factors are the ones 
that charitable donors should concentrate on, as improvements in other areas will have 
an inherently limited effect. These issues came to mind as I was reading a recent Miller-
McCune article on experiments comparing the One Laptop Per Child concept with two 
other initiatives in rural India. One involved providing funding for de-worming, on the 
assumption that a large proportion of school nonattendance was due to children battling 
intestinal worms. Another program decided to address teacher absenteeism, a huge 
problem in remote areas: they provided digital cameras to teachers, and required that 
teachers send in a date-stamped photo with their students each day in order to get paid. 
Both of these programs showed much more significant gains in student achievement than 
providing computers. Apparently when students are too sick to make it to school or their 
teacher doesn’t show up, that hurts education a bit more than lack of technology. 

 What’s the lesson here? When looking at any sort of problem, in areas of public 
policy as well as engineering, we really need to keep Amdahl’s Law in mind. For 
maximum effectiveness, we need to always look at the multiple factors and try to estimate 
how much of the overall problem they relate to, rather than choosing a particular 
initiative tied in with our personal emotions and hobbies and make that the focus. When 
we look closely at what is really needed, the answers may surprise us. 

 I don’t want to get too cynical about the ‘sexy’ initiatives proposed by high-tech 
wizards to improve the third world: their hearts are surely in the right place. Perhaps 
they even have done some studies that disagree with the ones I read about, and really do 
believe lack of computers is the number one factor holding back Third World education. 
But I haven’t seen much evidence of this in the many media articles on the “One Laptop 
Per Child” initiative. I think Amdahl’s Law and similar factors, rather than simple 
emotional appeals, need to become a key component of all discussions of these kinds of 
initiatives. Journalists need to do a better job of trying to look at the various contributing 
factors, and show estimated weights in terms of effect on the overall problem, in order to 
truly examine the best ways to direct charitable efforts.      
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    CHAPTER 8   

 Analyzing the Arts           

 There has always been an intimate connection between mathematics and the arts. Many 
of the math geeks I’ve known have had a strong interest in various forms of art. Back 
in college, I remember the majority of my fellow math majors being skilled with some 
kind of musical instrument. Rudy Rucker, one of the brilliant popular-math authors who 
originally inspired  Math Mutation , is also known as a literary pioneer in the “cyberpunk” 
movement, as well as being an amateur painter in his spare time. Another inspiration 
was Douglas Hofstadter’s groundbreaking classic  Godel, Escher, Bach , which explored 
connections among math, art, and music. And as we discussed earlier, Edwin Abbot 
introduced the idea of the fourth dimension through a literary allegory rather than 
through dry exposition. 

 Perhaps the most obvious area of connection between math and art is in the visual 
arts and their close connection to geometry: the core idea of perspective, that we can get 
a real 3-dimensional impression by looking at a simple 2-D surface, has always amazed 
me. Music is highly mathematical as well, as even the ancient Greeks recognized the 
connection between musical tones and mathematical ratios. While it might not be quite 
as obvious, our study of literature can also benefit from mathematical insights. The 
articles in this chapter should help open your mind to the many connections between art, 
music, literature, and mathematics. 

     Discovering the Third Dimension 
     From Math Mutation podcast 135 
  You may recall that a few chapters ago, we made fun of some popular singers who 
changed a lyric about discovering the fourth dimension to one about discovering the 
third. This got me thinking about when the ‘third  dimension’   might have actually been a 
new discovery. In a literal sense, this is a silly question, since a human who wasn’t aware 
of the third dimension would never be able to get out of bed in the morning to ask it. But 
on the other hand, there are some areas in which the third dimension was discovered 
rather late in human history: in particular, in art. We’ve all seen those flat ancient 
Egyptian pictures on the pyramids, with those wacky arm angles due to the total inability 
to represent depth. Then at some point, artists began to realize that by paying a little more 
attention to how things should look, they could produce a realistic perspective view of the 
third dimension. When did this happen? 
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 To start with, let’s review the basics of perspective in art. I think artists have always 
intuitively known that closer objects should appear larger than ones that are far away – but 
this alone is not sufficient to create an illusion of three dimensions. To create this illusion, 
an artist needs to conceptualize a horizon line, representing the distant line where the sky 
meets the ground; and one or more vanishing points, where parallel lines eventually meet 
in the distance. Effectively, the artist is imagining the canvas as a window into another 
world, thinking of the paths of the rays of light from the depicted objects to the viewer’s 
eye, and painting the images where these rays would hit the canvas. As usual, this barely 
scratches the surface; you can find a lot more info online. 

 When I first thought about this topic, I assumed I would be looking up developments 
in the early Renaissance, based on my vague recollections from high school classes. But 
I was surprised to find that actually, perspective in art was discovered by the ancient 
Greeks, in the 5th century BC. The Greek version of this technique seems to have 
originated with a scene-painter named Agatharcus, who was trying to create realistic 
backgrounds for the plays of Aeschylus. Some sources do also say that there were some 
occurrences of perspective in painted vases from the previous century, so it may not have 
been entirely original even then. In any case, Agatharcus was apparently very talented 
for his time, and in heavy demand – according to one anecdote, the prominent general 
Alcibiades held him hostage in his house for three months and ordered him to paint it. 
Perhaps Alcibiades had had a bad prior experience with a contractor who walked off the 
job; this is one aspect of human society that has probably remained constant for several 
thousand years. 

 The realistic illusion of three dimensions in a stage background was striking enough 
to attract the interest of leading mathematicians and philosophers of the day. According 
to the Roman historian Vitruvius, Agatharcus’ paintings “led Democritus and Anaxagoras 
to write on the same subject, showing how, given a centre in a definite place, the lines 
should naturally correspond with due regard to the point of sight and the divergence of 
the visual rays, so that by this deception a faithful representation of the appearance of 
buildings might be given in painted scenery, and so that, though all is drawn on a vertical 
flat facade, some parts may seem to be withdrawing into the background, and others to 
be standing out in front.” 

 Sadly, we don’t have any surviving examples of Agatharcus’ painting, and none of the 
related written works survive, though Vitruvius’s description seems clear enough to leave 
little doubt about the Greek discovery. In addition, we do have solid visual evidence that 
the ancients did know about this technique: in the ruins of Pompeii, from the first century 
AD, a paintings were found that clearly show the use of perspective. These were probably 
copied from Greek originals. Looking at them, you are likely to be surprised that they 
came out of the ancient world. 
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 Figure 8-1.    Pompeii fresco showing perspective 1   

  So, their modified lyrics to “As Time Goes By” could make sense, if Binnie Hale and 
Rudy Valee were born around the 5th century BC. On the other hand, we should probably 
have learned by now that it’s foolish for us to try to make sense of any pop music lyrics.    

   1  Sourced from Wikimedia Commons at   https://commons.m.wikimedia.org/wiki/
File:Pompeii_Fresco_001.jpg    , public domain under tag {{PD-Art}}.  

https://commons.m.wikimedia.org/wiki/File:Pompeii_Fresco_001.jpg
https://commons.m.wikimedia.org/wiki/File:Pompeii_Fresco_001.jpg
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     A New Perspective on Perspective 
     From Math Mutation podcast 154 
  I recently came across a passing reference to a statement by 20th century modern art 
theorist Marshall McLuhan, claiming that visual perspective is not an inherent aspect of 
art, but a cultural artifact of our society. In other words, the lack of perspective in primitive 
art is not some kind of lack of sophistication, but a result of a different cultural worldview 
and choices, which have not taught them to see the world in a way in which perspective 
would make sense. To a member of a culture that did not use this technique, perspective-
based art would be meaningless until they were taught to understand it as a representation 
of reality. Finding this a bit insane, I decided to do some web searching to see if people 
could really believe this. Are realistic depictions of perspective just something we learn to 
expect in pictures, rather than a fundamental step in artistic maturity? 

 As we discussed in the previous section, artistic perspective is a set of methods 
for realistically depicting the 3-D world on a two-dimensional canvas. It makes use of 
concepts like a horizon line and vanishing point to create the illusion of viewing a scene 
as if the viewer were really present in the landscape. Aspects of perspective were visible 
in Western art as early as the 5th century BC, though a systematic approach based on 
an understanding of geometry did not begin until the Renaissance. The fact that artistic 
perspective has a close relationship to culture is beyond dispute; the objective view of 
reality that leads to perspective was also the underpinning of the scientific worldview that 
enabled the evolution of modern science. 

 We should note that these techniques are not perfect: in the real world, for example, 
the true horizon line is curved due to the curve of the Earth. We also have the naturally 
curved shape of our eyeballs to contend with, creating slight changes in how visual images 
arrive. Furthermore, no non-holographic painting can truly reproduce the 3-D view of the 
world we get from our two eyes viewing it at once. It is also true that some cultures have 
simply believed in different purposes for art; for example, in Egyptian and Byzantine works, 
figures are often placed and sized according to their relative importance in society, rather 
than attempting any kind of realistic view. But I don’t think you can deny that Renaissance 
art was attempting a concrete task, realistic depiction of the world, in a way that these other 
kinds of art simply are not, and achieving it at a much more advanced level. 

 McLuhan and his colleagues seem to have more fundamental concerns. 
Complaining about the limitations of artistic perspective, they make statements like 
“to close one eye and hold the head still at a single predetermined point in space is not 
the normal way of looking at things”. But they go much further. McLuhan once wrote, 
“far from being a normal mode of human vision, three-dimensional perspective is a 
conventionally acquired mode of seeing, as much acquired as is the means of recognizing 
the letters of the alphabet, or of following chronological narrative.” They view perspective 
as a kind of pictorial code that we have learned to understand in our particular culture. 
Well-known art critic Herbert Read added that  perspective   “is merely one way of 
describing space and has no absolute validity”. 

 Their biggest concern seems to be that perspective-based art separates the viewer 
from the object being viewed. Art critic Robert Romanyshin writes, “The painter (and 
the viewer) imagines that he or she is looking at the subject to be painted (the world to 
be viewed) as if through a window… The condition of the window implies a boundary 
between the perceiver and the perceived. It establishes as a condition for perception a 
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formal separation between a subject who sees the world and the world that is seen; and 
in doing so it sets the stage, as it were, for that retreat or withdrawal of the self from the 
world which characterizes the dawn of the modern age.” 

 And I think this is ultimately what McLuhan and his colleagues are interested in: they 
are trying to utilize this odd philosophy of art in the service of a new, more holistic, world 
view. This seems well-aligned with the modern New Age movement, with their many 
complaints that objective science is missing something, and we need to view ourselves 
as part of nature and reality rather than trying to logically observe it from outside. It 
goes hand-in-hand with the tendency to idealize primitive cultures and reject scientific 
progress. While many postmodernists find this an emotionally satisfying view, and 
refuting it is way beyond the scope of this book, I find it rather unconvincing. I don’t see 
how thousands of pages of philosophic discussion can undo the simple act of placing a 
primitive painting, a Renaissance painting, and a photograph side by side. 

 But it is fun to do a little thought experiment for a moment, and accept the 
proposition that interpreting perspective-based art as a 3-D world is merely something 
we have learned in our culture. Could it be that there is some clever way to depict FOUR 
dimensional figures on a canvas that our culture simply has not picked up on yet? Maybe 
our lack of ability to visualize four-dimensional objects is just a consequence of our current 
cultural limitations, and not a fundamental limitation of our 3-D biology. At some proper 
cultural moment, a grad student at the Pratt Institute will suddenly paint a picture that will 
make the fourth dimension perfectly clear and logical to us. From that point, we will easily 
be able to visualize four-dimensional geometry, and laugh at our primitive forbears whose 
visual understanding was limited to three dimensions. Four-dimensional illustrations will 
become commonplace, and after work we will relax by playing 4-D adventure games on 
our Wii 4D game systems. At that point, I’ll owe McLuhan an apology.    

     Hippasus’s Revenge 
     From Math Mutation podcast 142 
  The relationship  between   mathematics and music was discovered over 2000 years ago, 
by the ancient Greek mathematician Pythagoras. Legend has it that he was wandering by 
a blacksmith’s shop one day, and noticed that the clanging of the hammers against the 
anvils had a musical quality to it, with the notes depending on the weight of the hammers, 
and that certain pairs of hammers sounded better together, if their weights were in whole 
number ratios. Numerous authors have pointed out that this story is pretty unlikely: 
without careful hammer and anvil measurement and construction, which a blacksmith 
would be unlikely to do, it’s nearly impossible that a blacksmith’s hammers would 
harmonize well. It’s much more likely that this observation came from experimenting 
with the strings on Pythagoras’s lyre, an ancient Greek stringed instrument. 

 Pythagoras observed that if he vibrated strings whose lengths were whole number 
ratios, they would sound good together. And if two strings were in a 2:1 ratio, they would 
sound especially harmonious, being in some sense the “same note” in different octaves. 
Why would this happen? 

 Well, remember to think about how sound travels through the air: you’ve probably 
seen drawings of sound waves, with peaks and troughs at regular intervals, which are 
interpreted by the human ear. If two waves have frequencies that are whole number 
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ratios, they will periodically sync up, with some peaks occurring together. For example, 
suppose you play an A note, at 110 Hz, and then play a higher A from the next octave at 
220 Hz. If you think about it, and draw some squiggly lines, you will see that each wave 
peak of the lower note will correspond to a peak of the higher note. To a listener, this 
creates a pleasant effect, and the notes sound good together. Other ratios like 3 to 2, 5 to 4, 
etc, also create effects that sound good together as the peaks and troughs of the waves 
periodically line up, forming various chords and other musical structures. The system 
now known as Pythagorean Tuning was based on using frequencies in a 3 to 2 ratio, 
which sounds very pleasing to our ears. 

 Once they discovered these relationships, the Pythagoreans took the idea to 
extremes that sound a bit odd today. They looked at the apparent distances from 
the known planets to the Earth and decided that these ratios must form a “music of 
the spheres”, a cosmic symphony played by the gods. Looking at the ability of these 
mathematical ratios to invoke various emotions, they also believed that music would 
have the power of healing. At the major medical centers of ancient Greece, treatment 
would always be accompanied by appropriate music. Roman philosopher Boethius later 
explained this as resulting from the fact that the body and soul are subject to the same 
laws of proportion as the cosmos. 

 There are some basic flaws, though, in building musical scales based solely on ratios 
of whole numbers. One is that using small whole ratios will cause the frequencies to 
be unevenly spaced in our scale. Another is that we want a scale such that if we choose 
an arbitrary note, we are able to play pleasing ratios of it in each octave. For example, 
suppose we have an A at 440 Hz. We want to play 660Hz for the pleasing 3:2 ratio, and 
then 990 Hz as well. But the 990Hz note might be too high depending on what instrument 
we are currently using, so we may want to go down an octave and play 495 Hz. We then 
need to add a 3:2 ratio times that 495 Hz, getting 742.5. And we will soon find ourselves 
in an infinite loop, having to add more and more keys to our piano and more digits to our 
calculations. 

 To solve this, musicians in recent centuries developed ‘equally tempered’ scales, 
where the frequency ratio between adjacent notes is a constant 12th root of 2. Thus, after 
twelve notes, you have nicely reached the next octave. While the steps in between don’t 
precisely match whole number intervals, they do reach fairly close approximations. 
For example, four steps along the scale we reach a ratio equal to the cube root of 2, 
approximately 1.2599. This is close enough to the ratio 5/4, or 1.25, to sound pleasant 
when needed, even though the actual number is irrational. Rather ironic since 
Pythagoras’s disciple Hippasus of Metapontum was executed for proving that the square 
root of 2 is irrational. Now that this equally-tempered scale is in common use, I’m sure 
Pythagoras is rolling in his grave somewhere.    

     Unlistenable But Fun 
     From Math Mutation podcast 87 
  Recently I’ve been reading a book by 20th century classical composer John Cage. He’s 
most famous for his piece titled ‘4 minutes 33 seconds’, which consists of four minutes 
and 33 seconds of silence. It was either an intellectual and artistic triumph, or a cynical 
attempt to demonstrate the gullibility of an avante-garde-art-loving public, depending 
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on who you ask. I’m in the latter school, but that’s not what I find most interesting about 
Cage. He explicitly used mathematical patterns and ideas to construct his music, and was 
very good about documenting his methods. 

 Aside from the silent piece, another famous aspect of Cage’s  music   is the use of 
chance operations, or generation of ransom numbers. One method he liked to use, 
in compositions such as his ‘Music of Changes’ and ‘Two Pastorales’, is to decide on 
the notes and durations for a piece based on the I Ching, an ancient Chinese system 
essentially equivalent to generating random numbers from 0 to 63, though couched in a 
lot of mystical language. An even more bizarre method for generating randomness, used 
in his ‘Music for Piano 1-3’, created notes based on “imperfections in the paper upon 
which the piece was written”. Even in his famous ‘4 minutes 33 seconds’, the choice of 
length for the piece was determined by a chance operation. 

 He also liked to combine these chance operations with other types of patterns. 
One idea used in many compositions was to match space to time. Rather than standard 
musical notation to specify lengths of time, he could note at the top of each page how 
much space on the paper should correspond to 1 second of time. Realizing this could 
be confusing for musicians who tried to actually play the piece, he added notes like 
“Where these [instructions] are unclear, the pianist is free to decide what to do.” In his 
composition ‘Music Walk’, he went even further off the deep end, giving the following 
instructions: “Readings are taken from a transparent rectangle having five parallel lines 
placed in any position over a sheet having points… The relation of points to lines is 
interpreted relatively with respect to any characteristic of sound or action.” If that wasn’t 
enough, in another piece titled ‘Renga’, he used the I Ching to choose which of a selection 
of drawings by Henry David Thoreau to pick out for the performer, who would then try 
to musically interpret that drawing, with vertical space representing pitch and horizontal 
space representing time. Other spatial arrangements Cage translated into music for his 
compositions included chessboards, with the game in progress during the actual concert, 
and astronomical maps of the stars. 

 It’s fascinating to read about Cage’s various methods for producing music, but a bit 
disappointing to hear the actual results. Actually, ‘disappointing’ is an understatement; 
in my opinion, I’d rather be listening to my cat getting vaccinated than to a typical John 
Cage CD. I’m not alone in this view; at one of his live performances, an acquaintance 
of Cage’s famously got up and yelled, “John, I dearly love you, but I can’t bear another 
minute,” before walking out. I think this is the kind of music that’s a lot more interesting to 
talk about than to actually listen to. Though I have met some serious music scholars who 
claim that Cage always used his own musical intuition to discipline the chance results 
of his operations, and that once you acquire the taste, his pieces are among the most 
beautiful of classical compositions. I think I’ll take their word for it, and set my iPod on 
my David Bowie playlist while I read my next Cage book.    

     What a Planet Sounds Like 
     From Math Mutation podcast 29 
  You’ve probably heard the phrase “Music of the Spheres”. You sound cool and mystical if 
you talk about it, but what that phrase actually means is another question. This concept, 
said to have come from Pythagoras and his followers in ancient Greece, is the idea that 
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the mathematical patterns in the movements of  planets   and other celestial bodies form 
a kind of metaphorical “music”. I guess mathematics and music are both abstract ways of 
thought that observe and experience interesting patterns. Some composers, such as Holst 
in “The Planets”, have tried to create artistic experiences inspired by this so-called music. 
But the metaphor has always seemed to be a bit of a stretch to me. 

 Browsing the web recently, I was intrigued when I saw that a composer named 
Greg Fox has figured out a way to use a few mathematical tricks to literally translate the 
movement of the planets into music. A well-known property of musical physics is that if 
you look at the frequency of a musical note, the way you get to the same note in the next 
octave is by doubling the frequency. So, for example, the frequency of 1760 Hz is heard by 
us as the musical note ‘A’, and if we double it, to 3520 Hz, we hear another ‘A’, one octave 
higher. To the human ear, these sound like they belong together, and are in some sense 
the same note. 

 Now think about a planet orbiting the sun. Since a planetary orbit is a periodic 
phenomenon, it has a frequency, just like sounds in the air. Of course, it’s a very 
low frequency. The Earth completes an orbit around the sun in 365.25 days, or 
31,557,600 seconds. To get the frequency in hertz, or the number of times the Earth orbits 
the sun in a second, we invert this value to get about 3.169 × 10 -8 . Of course, this is way 
below the range of sound frequencies a human ear can notice. But by repeatedly doubling 
it, which keeps it as the same note but in higher octaves, we eventually get about 34.025 
hertz, a real musical note we can hear. In some sense, this musical note truly represents 
the ‘tone’ of the Earth’s orbit. 

 Fox calculated the characteristic musical tones associated with each of the planets, 
and used these tones to construct his musical piece  Carmen of the Spheres . This created 
quite a significant constraint on the music, with only 9 tones allowed, but as he writes on 
his website, this minimalism is the Universe’s decision, not his own. Perhaps the recent 
discoveries of additional dwarf planets could be used to improve his music a bit in the 
next revision. 

 How does this music end up sounding? Personally, I would put it in the bucket 
with John Cage, Arnold Schoenberg, and Captain Beefheart, of music that’s a lot more 
interesting to talk about than to actually listen to. But you’ve can download the piece 
online and judge for yourself. Maybe I’m just a dork who doesn’t get it. But either way, it is 
still fun to think about the fact that the planets really do have characteristic musical notes.    

     Mozart Rolls the Dice 
     From Math Mutation podcast 54 
  I bet there are many of you reading this who, like me, learned to program computers as 
a teenager, and were fascinated when you first figured out how to make sounds come 
out of the speakers. If you’re like me, you wrote short programs to randomly generate 
and play musical tones, hoping that if you ran them enough times, eventually you would 
produce a brilliant melody that would make you the next David Bowie. And after a while, 
you probably realized that randomly producing *good* music was a lot harder than it 
first looked. It’s kind of like the monkeys-writing-Shakespeare theory: maybe it would 
eventually happen, but it would take a looong time. 
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 Surprisingly, back in the classical days of the late 1700s, long before the days of 
computers, creating classical music through random rolls of the dice was a bit of a fad 
in Europe. Well-known composers including Haydn and Mozart published systems 
where one could roll dice to determine how to put together a large number of possible 
measures, and thus randomly produce a piece of classical music. They would supply a 
large set of pre-written musical fragments, combined with tables that showed which one 
to insert at which point based on rolls of a pair of dice. There are some questions about 
how seriously the great composers took such music though – Haydn titled his published 
system the “Philharmonic Joke”, and Mozart published his anonymously. In fact, there 
is still some controversy as to whether Mozart really created his random music-creation 
 system   – the  Wikipedia  entry and another website I found seem to disagree as to whether 
he was truly the author. 

 In those days when great music was being deliberately created, why did composers 
feel a need to publish systems that would let people randomly come up with a musical 
composition? One interesting theory is that in those times and places, it became 
commonly expected that educated classes would be able to compose short pieces of 
music, just like they were expected to be able to write letters or make speeches. But 
needless to say, the majority of pieces created by typical people were pretty bad. By 
using Mozart’s or Haydn’s system to choose a proper set of prefabricated measures, they 
could at least have a shot at getting something listenable. Think of it as using clip art in 
a presentation instead of trying to draw everything yourself. And if the dice-roller had a 
little bit of talent, they could use the randomly strung-together measures as the kernel of 
a larger piece they completed themselves. 

 In the mid-20th century, these ideas of randomly created music were revived by 
avant-garde composers like John Cage, as I mentioned earlier. In general I have yet to 
hear a piece of music created by random methods that I really enjoy. Even some Cage 
fans I’ve spoken to admitted that his best supposedly random-generated pieces aren’t 
truly random – while randomness might help inspire a starting point or escape a bout 
of musical writer’s block, it’s the inspiration and deliberate creations of the composer 
that create truly great music, and Cage’s true talent was in manually hacking the random 
results when necessary. That’s probably one reason why these musical dice games 
eventually fell out of favor in the classical period, and why even 20th century randomly 
generated music isn’t widely discussed outside snooty art circles.    

     Candide’s Calculus 
     From Math Mutation podcast 83 
 If you’re like me, you probably recall Voltaire’s satirical  novel    Candide  as one of the more 
enjoyable 18th century novels you were forced to read in high school. Its fast-moving and 
rather silly plot involves a young man who is tutored by an optimistic philosopher named 
Pangloss. Pangloss insists that they are living in the best of all possible worlds, despite 
losing an eye and an ear, catching syphilis, being sold into slavery, and experiencing 
disasters such as a fire, earthquakes, and a tsunami. But did you know that the philosophy 
that Pangloss parodies is directly related to the development of calculus? 
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 This connection comes from the fact that Gottfried Leibniz, the co-inventor of 
calculus, was also a well-respected philosopher. You may recall that one of the key 
achievements of calculus is the ability to find a maximum value of a function. This works 
because calculus lets us look at the slope of a curve, which measures how steeply it is 
rising or falling, at any infinitesimal point. When a curve has stopped rising and is about 
to fall, its slope is 0, and it has achieved a local maximum. So if you can calculate a point 
where the slope of a curve is 0, you can find a maximum. 

 In mathematics, this idea is not very controversial. But Leibniz extended this 
accomplishment into the domain of philosophy. As a basic premise, he started with his 
Christian religion, which asserted that there was an omniscient and omnipotent God 
who designed the universe. Most likely, an omniscient or all-knowing God would know 
calculus, and probably a much more powerful divine super-calculus than what Leibniz 
had developed. And being all-knowing, he would also know all the variables that would 
go together to describe the universe, and be able to define some infinitely complex 
function that would describe how good the universe is. Since God is also supposed to 
possess infinite goodness, it stands to reason that he would apply his super-calculus 
to the universe’s goodness function, and achieve an overall maximum. Therefore if 
something local seems bad, it’s only because in combination with the other variables 
of the universe, it needs to be that way to achieve the overall maximum goodness, the 
optimal result. 

 I find it pretty hard to argue with this reasoning, if you accept Leibniz’s premises. 
In the centuries since Leibniz, many complicated functions have been defined, which 
we don’t have algorithms to optimize in a reasonable time, but God would know all the 
mathematical techniques he needs, and wouldn’t care about time limits. After all, if there 
is truly an all-powerful divine being who likes to create universes, he may as well take 
his time doing it, even if he has to spend several eons executing an impossibly time-
consuming (to us!) optimization algorithm. 

 Thus, if your religion admits the existence of a benevolent all-powerful and all-
knowing Creator, then Leibniz and Pangloss were both right, and we really do live in the 
best of all possible worlds.   

     Fractals in the Hat 
     From Math Mutation podcast 91 
  Recently I came across an interesting web article by  a   researcher named Akhlesh 
Lakhtakia at Penn State University, claiming that Dr. Seuss’s classic children’s novel 
 The Cat in the Hat Comes Back  helped him to understand fractals. If so, this would mark 
quite an achievement on Seuss’s part, since Seuss was writing decades before fractals 
were named or widely studied, even in mathematical circles. But Seuss’s use of repeated 
recursion in the book does provide some interesting analogies to fractals, so I thought it 
would be fun to look at Lakhtakia’s argument. 

 To start with, let’s review the concept of a fractal. At a basic level, a fractal is an 
infinitely complex object, usually not describable by simple Euclidean geometry, that 
is infinitely self-similar and generated by a recursive algorithm. The property of “self-
similar” means that you can look at a small part, and it looks just like a miniature version 
of the whole thing. The idea of being generated by a “recursive algorithm” means that 
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even though a fractal is infinitely complex, it is not that hard to describe. Each step in 
building the fractal is described by taking the previous step and making some clearly 
defined extension. Many phenomena in nature, such as the appearance of mountain 
ranges or small plants like ferns, seem to be remarkably similar to fractals, and that has 
led to many useful applications. 

 Let’s make this concrete by reviewing the definition of one of the simplest fractals, 
the Koch snowflake, which we discussed back in Chapter   4    . Draw an equilateral triangle. 
Now in the middle third of each side, draw another equilateral triangle jutting out, a third 
of the side of each original triangle. At this point, you should see a six-pointed star. Then 
repeat the process on each edge of this star, adding smaller triangles jutting out of each 
one. Repeat this an infinite number of times. Of course you can never finish drawing it, 
but at some point you will be drawing lines so fine they are at the limit of what you can 
perceive, so that’s probably a good enough approximation. (Though if you’re a stickler 
for accuracy, please wait until after finishing this book to draw your infinite number of 
triangles, as that might take a while.) You will see a figure that looks like a very complex 
snowflake. 

 So, how does ‘ The Cat in the Hat ’ make use of fractals? Well, in case you don’t 
remember the story, this book centers around the Cat’s attempts to clean up a mess he 
makes as he visits some unfortunate children. Realizing he needs some help, he takes off 
his hat to reveal Little Cat A, a miniature replica of himself that stands inside his hat. Little 
Cat A then takes his hat off to reveal an even tinier replica of himself, named Little Cat B. 
The hat removal continues throughout the book, until finally Little Cat Z is so small he 
can’t even be seen. But this apparently turns out to be an asset for removing tiny hard-to-
reach stains. 

 I think you can immediately see the similarity to the Koch snowflake: just as little 
triangles are recursively added to the large triangle in the fractal, little cats are recursively 
revealed under the Cat’s hat in the book. The Cat does obey some of the key properties of 
fractals: the little cats are revealed through a simple recursive definition, an exact replica 
under the hat of the previous cat, and the self-similarity property is obeyed as well, since 
the process is essentially the same whether starting at the real Cat or one of the other 
lettered Cats. Author Philip Neil in  The Annotated Cat  points out a subtle difference 
though: usually in fractals, each increasingly fine level of granularity creates multiple 
copies of the previous level, and this is the source of the infinite complexity. In the Koch 
snowflake, for example, each time you are adding triangles, you are adding more triangles 
than in the previous step, since more and more edges have been created. Since there is 
only one Cat in each of the Cat in the Hat’s recursive cat-creation steps, and they end at 
cat Z, the complexity does not really increase in the same way. 

 So, did Dr. Seuss really anticipate fractals? Probably not. But that doesn’t mean The 
Cat in the Hat can’t be a great metaphor for discussing the basic fractal concepts of self-
similarity and recursive definitions, as well as the general mathematical idea of recursion, 
which comes up in both fractals and unrelated disciplines such as set theory, linguistics, 
and computer science. So I think Lakhtakia was right that the Cat can be a useful 
metaphor for introducing fractals. And of course, you don’t really need an excuse to enjoy 
a Dr. Seuss book with your kids.    

http://dx.doi.org/10.1007/978-1-4842-1892-1_4
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     Math or Not Math? 
     From Math Mutation podcast 125 
  I recently read a surprising book by Douglas Hofstadter, the author of math-based classics 
including  Gödel Escher Bach  and  Metamagical Themas . This book was called  Le Ton Beau 
de Marot , and discussed the concepts and challenges of  literary translation  . At first, I 
thought it a bit odd that he would choose such a topic, which seems quite removed from 
his usual areas. But actually, literary translation, especially of poetry, sits at an intriguing 
nexus of math, language, and art. 

 Some of us might start with the naive view that translation is purely a mathematical 
process, taking the set of symbols of one language and transforming them, according 
to some well-defined function, into another language. But if you’ve gone to an auto-
translation website like google.com/translate, and tried translating a paragraph from 
English to another language and back, you probably realized pretty quickly that there was 
a bit more to it. As his example, Hofstadter focuses on a short French poem called “ A Une 
Damoiselle Malade ”, by Clement Marot, written from the point of view of a poet trying to 
cheer his sweetheart, who is lying sick in a hospital. 

 The first few lines of the poem are

    Ma mignonne,   

   Je vous donne,   

   Le bonjour,   

   Le sejour,   

   C’est prison …    

 You can see that in addition to the literal words, there is a very formal mathematical 
structure here: each line has three syllables, the stress falls on the final syllable, every 2 
lines rhyme, etcetera. To translate it properly, you need not just equivalent words, but 
need to mimic this structure. In effect, you are trying to find the intersections of two 
functions, one that maps words to a set of corresponding words, and another that maps 
poetic structures into a set of corresponding poetic structures. Google Translate fails 
horribly, giving us the following:

    My darling,   

   I give you,   

   Hello,   

   Sojourn   

   is prison.     

 Not only are virtually all the structural elements gone, but the words just seem 
wrong. Perhaps the most egregious example is “ Le sejour ”, translated to the out-of-place-
sounding (and slightly different in meaning) English word “sojourn” instead of a more 
common word or phrase to match the overall tone. Not only is attention to structure 
needed, but a translator also needs to choose from many possible words, with different 
connotations and ‘rings’ in English. 
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 Throughout the book, Hofstadter examines many more attempts to translate the 
same poem, each of which succeeds in some ways but fails in others. For example, here 
are a few other translations of those opening lines:

    Gentle gem,   

   Diadem,   

   Ciao! Bonjour!   

   Heard that you’re   

   In the rough     

 That one takes a lot of liberties with the literal meaning, replacing the opening lines 
with gem & jewelry analogies, but provides something roughly similar and preserves 
the rhythmic structure. Another translation Hofstadter provides tries to put the poem in 
informal, contemporary language, taking yet more liberties to preserve the structure:

    Babe o’ mine,   

   Gal divine,   

   Here’s a kiss,   

   It ain’t bliss   

   Bein’ sick.     

 And here’s another one, redirecting the poem towards Hofstadter’s late wife, focusing 
on her final days in the hospital.

    Carol dear,   

   Here’s some cheer   

   From your beau   

   Lying low   

   Has been tough     

 The book contains many more attempts to translate the poem, and it’s fascinating 
to examine how in each case, different compromises are made in literal faithfulness to 
the words in order to make other parts of the poem more strictly compliant. We can see 
that the mathematical or formal process of finding corresponding words and language 
elements, and identifying the specific structure being targeted, is an important part of 
translation, but only the launching point for an artistic endeavor to truly represent the 
original work. 

 As always, Hofstadter also uses the translation of this poem as motivation for 
many long, interesting discussions on language, the mind, and related themes. You 
can see that the problems of translation would have a lot of implications for artificial 
intelligence: even if a computer could model internal structures that we would consider 
“intelligent”, somehow expressing them in a way that can be appreciated by human users 
is fundamentally a translation problem. 
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 He also gave me a new appreciation for both the mathematical and the artistic 
challenges of translation. For example, how many of us read the conductor’s name with 
reverence whenever we attend a classical concert, but are barely aware of the translator 
credit when we read a book originally written in another language? Yet as we have seen, 
translating a book does not merely involve finding corresponding words, but requires 
careful artistic choice from many formally acceptable alternatives to try to be faithful to 
the author’s intent. Arguably this is a much bigger challenge than faithfully reproducing a 
piece of music, which in some sense is fully specified on the written page.    

     Gnarly Gnovels 
     From Math Mutation podcast 170 
  If  you   read a lot of novels like I do, you may have noticed that that they tend to vary 
in quality. I know, it’s shocking, but some books that are not very good manage to get 
published. And this was true even before the modern days of ebooks and podcasting, when 
any dork with a computer can publish online. (I had better not elaborate too much on that 
last comment.) Anyway, looking at novels in particular, what makes one more interesting 
than the other? Why is Kurt Vonnegut superior to a drugstore romance? It probably won’t 
surprise you to hear that people have attempted to look at the mathematical structure of 
novels, and use that to analyze what makes a book good. In particular, the mathematician 
and cyberpunk author Rudy Rucker, in his excellent ebook of collected essays, makes 
several attempts to explain the quality of a work of fiction in mathematical terms. 

 One notion that may be useful here is the concept of  Kolmogorov complexity  , as 
applied to the outline of a book’s plot. This measurement, first proposed by Russian 
mathematician Andrey Kolmogorov in 1963, essentially says you can measure the 
complexity of a string by looking at the shortest set of instructions, or computer program, 
that can produce the string. So, for example, a string consisting of “abababab…”, repeated 
100 times, can be produced by a simple instruction “Repeat × 100: print ‘ab’”. On the other 
hand, the first 200 characters of this chapter can probably not be reliably produced by any 
program much shorter than one that says ‘print this’ and lists them directly – so they are 
of greater complexity than the string of repeated occurrences of ‘ab’. 

 Applied to novels, the concept is a little more abstract, but think about the plot 
outline of a typical schlocky romance. It probably goes something like “boy meets girl, 
boy loses girl, boy gets girl back”, or one of a short set of variants on that concept. Thus 
these novels have very low complexity. On the other hand, Kurt Vonnegut’s classic 
 Slaughterhouse-Five  is much harder to fit into a standard formula. Somehow “boy meets 
girl, boy gets unstuck in time, boy survives Dresden bombing, boy gets captured by aliens 
from Tralfamadore” doesn’t seem like an adequate summary – there is still so much more 
to it. So at first glance, looking at the Kolmogorov complexity of the plot outline does 
seem to provide some insight into the quality of a work of fiction. 

 But in a postscript to the essay where he first proposed this measure, Rucker 
describes a letter from a reader that points out a major flaw in this measurement. If 
you accept this measure of complexity, isn’t it the case that the  New York City Phone 
Directory  is the greatest novel in the English language? Oops! Indeed, the complexity 
of a phone directory, a long list of arbitrary names and numbers which essentially 
cannot be described much more compactly than through reading the directory itself, 
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is astronomical by Kolmogorov’s measure. And I think most of us would agree that we 
don’t find it very fulfilling to read the phone book in our leisure time. So we need a better 
measurement. 

 To solve this problem, Rucker further refines the concept by adding a criterion for 
“gnarliness” of the computation required to produce a plot. Yes, I know, the surfer lingo 
is a bit goofy, but you have to forgive him for having lived too long in California. What he 
calls a “gnarly computation” is one that may have a relatively short set of rules describing 
it, but generates patterns of high complexity that could not be easily predicted before 
running the program. One example is John Conway’s famous “Game of Life”. (This is 
a mathematical game, no relation to the board game!) The Game of Life is played on 
an endless grid of squares, on which each square can be in a live (black) state, or dead 
(white) state. Each turn, any live square with exactly 2 or 3 live neighbors stays alive, 
otherwise dying of loneliness or crowding, and a new live square is born at any location 
with exactly 3 live neighbors. This simple rule, run for hundreds of rounds, can give 
an amazing variety of behaviors, creating long-term patterns from just a few initial live 
squares, seemingly living structures such as “glider guns” that endlessly reproduce, or 
even a universal computer. It’s almost impossible to predict in advance what will happen 
in a few hundred rounds of the game, other than by simply running it. Thus the Game of 
Life, by Rucker’s definition, is very gnarly. 

 Gnarliness, as defined by Rucker, does seem like a better measure of how interesting 
a novel is. It helps us rule out predictable, formulaic patterns, but also helps us rule out 
totally arbitrary randomness. A gnarly computation has a deep underlying pattern and 
structure, but you must experience the realization of this pattern to comprehend it. Even 
if you know the source algorithm, or the initial plot ideas that were in the writer’s head, 
you still need to read the book to get the full effect. If the plot outline is generated by 
a formula so simple that once you see the outline, you don’t need to read the novel, it 
has low gnarliness and is probably a waste of time to read. And if a novel is complex to 
describe but has no underlying pattern, it probably seems kind of pointless in the end. 

 Looking again at the example of Kurt Vonnegut’s  Slaughterhouse-Five : I think this 
one you can clearly put in the gnarly category. The main character has a mix of realistic 
and wild adventures, surviving the bombing of Dresden, getting married and attempting 
to start a normal life, becoming unstuck in time, and getting captured by aliens. I think 
we all can agree that this plotline isn’t really covered by established literary formulas, 
and those of you who read the book realize that the quick summary I just gave you is 
barely a hint of the full story. Yet once you read it, the whole thing seems to fit together 
as a coherent whole, a classic novel exploring the insanity of war and the concept of free 
will. The bizarre juxtaposition of elements is shocking, but by the time you’re done, there 
seems to be some sense to it. 

 Naturally, there is a lot more to judging a great novel than the math. I’m sure you can 
come up with a counterexample of some novel that has high gnarliness, but still stinks. 
And there is some level of looseness in this definition of gnarliness, as the plot of a novel 
isn’t really a precise mathematical object in the same sense as a mathematical construct 
like the Game of Life. There can also be honest disagreement on the level of gnarliness 
of a novel: ironically, having read many of Rucker’s cyberpunk novels, I think he himself 
occasionally departs from true gnarliness to near randomness. On the other hand, if you 
ever do decide to create a work of your own, this is a nice guideline to keep in mind: if you 
want to hold readers’ interest, it’s a very good idea to strive to keep an underlying pattern 
discernible to the reader, but make it as gnarly as possible.        
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    CHAPTER 9   

 Political Ponderings           

 The decisions about how human society is to be organized and governed are among the 
most critically important choices a civilization must make. Thus it is only natural that we 
should attempt to use insights from mathematics, which enables precise reasoning based 
on well-established premises, in order to improve our decisions in this area. On the other 
hand, this is easier said than done, as any political decision is heavily influenced by value 
judgements that are beyond the domain of mathematics – despite the fact that one side or 
another will dogmatically cling to them regardless of evidence or of outside events. 

 I have generally avoided any topics in  Math Mutation  that would imply a strong 
political stance on a controversial issue, in order to avoid alienating a subset of listeners 
in today’s polarized climate. But I have personally ventured into politics at the local level, 
successfully running for a seat on the board of Oregon’s fourth largest school district, so 
political thoughts are never too far from my mind. Thus, on numerous occasions,  Math 
Mutation  has included topics that touch on politics in one way or another. I hope you 
will enjoy the historical anecdotes, and perhaps you will agree with some of the ideas 
you read in this chapter. I still believe my proposal for solving the problem of endless 
recounts, which you will read in one of the sections below, would be a major boon to the 
American election system! 

     A Founding Theorem 
     From Math Mutation podcast 183 
  If you’re a fellow American, you probably clean off your barbecue and put out your flag 
every July 4th for the holiday. This is the day set aside once per year to celebrate the 
independence of the United States from England, and to reflect upon the mathematical 
theorems that led to the founding of our nation. What? Are you thinking that July 4th 
isn’t about math? Clearly something has been missing from all the specials you’ve been 
watching on TV. Actually, there was at least one mathematical result that had a direct 
influence on our Founding Fathers:  Condorcet’s Jury Theorem  . This theorem states that 
if you are trying to decide on a topic by voting, and the average voter has at least a 50-50 
chance of getting it right, increasing the number of voters gives a more accurate result. 

 Back around the time of America’s founding in the late 1700s, there was a colorful 
French mathematician, the Marquis de Condorcet, who spent a lot of time thinking 
about mathematical aspects of democracy, voting, and probability theory. Condorcet 
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is known to have collaborated with colleagues in the US and worked personally with 
Benjamin Franklin, and thus his theorem is thought by many to have directly influenced 
the United States Constitution of 1787. The Jury Theorem was part of a larger 1785 work, 
 Essay on the Application of Analysis to the Probability of Majority Decisions , considered a 
major contribution in the development of probability theory. Condorcet was concerned 
both with the basic concepts of probability, and how they could be used to help develop 
rational public policies – he was one of the earliest mathematicians to attempt such a 
direct application to the social sciences. 

 To get an idea of how we prove that increasing the number of voters leads to a more 
accurate total, think about a situation where we have some odd number  n  of votes, the 
probability of an individual vote being correct is  p , and we add two more votes that might 
change the result. In this case, you can think of the  nth  vote as having been a deciding 
vote: our oddness assumption prevents ties, and otherwise the two new votes would not 
have been able to reverse the answer. So we just need to calculate probabilities for the last 
3 votes, in 2 cases: did they convert an incorrect majority to a correct majority, or a correct 
majority to an incorrect majority? Remember, each individual vote has a probability  p  of 
being correct and  1–p  of being wrong. Also remember that you can compute the overall 
probability of a set of independent events by multiplying their probabilities together. So 
for the previous deciding vote to be incorrect, and the two new votes reversed the tide, 
the probability would be  (1–p) × p   2  . For the previous vote to have been right, and the two 
new ones to reverse the total, it would be  p × (1–p)   2  . The first one of these is larger than the 
second if and only if  p  is greater than 1/2. 

 We should be careful, though, to look at the limitations of this theorem before 
relying on it too much in our political system. At its heart is the notion of some kind of 
objective correctness, the ability to state a right answer that most people will come to 
with a definite probability. Except when I’m one of the candidates, there are very rarely 
such clearly correct answers in politics. It also depends on the voters being independent, 
and ignores the influence of neighbors, popular delusions, and people too lazy to 
gather the information needed to make an intelligent decision, or people held in sway 
to demagogues. I’m pretty sure that, depending on your political leanings, you consider 
the election of one or more of our past two U.S. presidents a result of such factors. And 
the theorem only works when choosing between precisely two alternatives: it does not 
account for voting on multiple choices. 

 The last limitation leads to another of Condorcet’s important insights, his “voting 
paradox”. Assume we have 3 opponents A, B, and C, and the public is divided into 3 
segments with cyclic preferences: some prefer A over B over C, some want B over C over 
A, and some want C over A over B. Let’s say they vote and get basically a 3-way tie, with 
just a very tiny margin putting C over the 1/3 number needed to win. You could argue 
that if C won, then 2/3 of the population would have wanted B to win over C: since the 
ones that wanted A preferred B over C, and the ones that wanted B also preferred B over 
C. Yet if B won, you could say precisely the same thing about the people preferring A, 
or if A won, could make a similar complaint about C! Thus, somehow a popular vote 
will always result in an outcome that 2/3 disagree with. This can be solved by voting 
with a “Condorcet method”, basically a more complex voting method that guarantees 
the winner will be someone who would have won in a pairwise competition with every 
other candidate. This can be done by having voters list candidates in order of preference 
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instead of just choosing one result, or by having multiple rounds of voting with runoffs. 
Personally, I think these kinds of alternative methods make a lot of sense, though 
they suffer from the disadvantage of being much more complex to administer and 
understand. 

 So, with all these great insights into how government should work, you would 
infer that Condorcet had a brilliant political career, right? Unfortunately, he suffered 
the results known since Socrates to those who embrace their philosophical insights too 
enthusiastically without sufficiently understanding the flawed human psychology all 
around them. Initially a supporter and active participant in the 1789 French Revolution, 
he failed to support the radical faction that took control, instead trying to convince them 
to embrace his ideas. While this got him a position on the Assembly for a while and a 
decent amount of popular support, it eventually led to his arrest and death. Technically 
he killed himself in jail, but many believe this was permitted or staged to avoid the 
embarrassment of publicly executing such a well-known revolutionary figure. Either way, 
in the most important applied mathematics experiment of his life, the basic assumptions 
of Condorcet’s theorems just didn’t hold. Let’s hope my term on the Hillsboro School 
Board leads to a better fate.    

     More Than a Cartoon Cat 
     From Math Mutation podcast 88 
  If you paid attention in high school history class, you may vaguely recall the name of 
James Garfield, the 20th president of the United States. In his early life he had been more 
academically inclined, but the Civil War interrupted his plans. He turned out to be a 
talented soldier, and quickly rose through the military ranks. Afterwards, as a popular 
Civil War veteran, he was elected to Congress and then to the Presidency in 1880, the only 
president in history to have been elected while sitting in the House of Representatives. 
Tragically, he was assassinated within four months of being sworn in, so didn’t have 
much time to get himself noticed in our history texts. But he is remembered for one very 
unusual achievement: he is the only U.S. president known to have published a journal 
article in mathematics. He’s credited with an original proof of the  Pythagorean Theorem  , 
created while he was sitting in the U.S. House of Representatives. 

 As I’m sure you recall, the Pythagorean Theorem is the classical result that if a right 
triangle has legs of length  A  and  B  and a hypotenuse of length  C ,  A   2    + B   2    = C   2  . Garfield’s 
proof worked by constructing a particular trapezoid. Place two copies of your right 
triangle next to each other in a straight line, touching at the tip, such that the length-A leg 
of one is next to the length-B leg of the other. Now connect the upper vertices of the two 
triangles. You should now have a trapezoid whose base is of length  A + B , and has height 
of  B  on one side and  A  on the other. If you draw this figure, you will see that the trapezoid 
consists of three triangles: the two you started with, plus one in the middle that was 
formed when you connected the tops – and that new one is a right triangle whose legs are 
both of length C.       
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  Now let’s compute the areas of the three triangles. The two original triangles are 
right triangles with legs of size  A  and  B , so their areas are  AB/2 . The middle triangle 
has area  C   2   /2 . But now let’s equivalently compute the area of our full trapezoid, which 
is the base times the average of its sides, or  (A + B) × (A + B)/2 . Then we just need to 
equate our two computed areas:  AB/2 + AB/2 + C   2   /2 = (A + B)   2   /2 . Simplifying, we get 
 A   2    + 2AB + B   2    = 2AB + C   2.   If we eliminate the  2AB  terms, we have our theorem. 

 I should point out that this isn’t really an earth-shattering mathematical result. 
One of the classical proofs involves constructing a giant square using four copies of the 
original triangle, and Garfield’s proof essentially constructs half of that giant square and 
uses trapezoid-based instead of square-based areas for its calculations. But I still think it’s 
nice that at least one U.S. president did make a real contribution to mathematics. Given 
what’s been going on with the federal budget, there may be doubts that any of the recent 
ones can do basic math.    

     The Round Road to Damnation 
     From Math Mutation podcast 20 
  Every schoolchild, and probably most listeners of this podcast, knows about the 
constant called ‘π’. This is the ratio between the circumference and diameter of a  circle  , 
an infinite decimal beginning with 3.14159. Those of you who are somewhat religious 
Judeo-Christians may thus be concerned when you hear that there is a passage in the 
Bible’s Book of Kings where it says a round basin has a 10-cubit diameter and a 30-cubit 
circumference, implying a value for π of exactly 3. Does this mean you have to choose 
between your religion and your math? 

 Fortunately, there are several ways to reconcile this Biblical story with reality. The 
simplest is to say this is just an approximation; after all, the Bible was written many years 
before the decimal system, making a potential detailed description of the measurements 
rather cumbersome. A famous rabbi named Nehemiah came up with a more clever 
explanation around the year AD 150: the diameter was measured using the outer rim, 
while the circumference was measured using the inner rim. This way, depending on the 
thickness of the basin, the values could very well be made correct to any desired degree of 
precision. 
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 Figure 9-1.    Garfield’s trapezoid  
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 Another interesting element of this confusion is the persistent stories going around 
the net that crazy Christian fundamentalists in the U.S. Midwest have tried to pass laws 
making π equal to 3. These stories have been around long before the internet, actually – 
Robert Heinlein mentioned this in passing in one of his novels. This always sounded a bit 
suspicious to me; after all, not only was π known to within 0.5 % accuracy by the ancient 
Babylonians, but you can also disprove the π = 3 theory with a dinner plate and some 
string, even if you’re an uneducated farmer in the remote countryside. 

 The consensus of urban legend-type sites seems to be that this rumor is false, and 
Christians never tried to pass such a law. The bit of truth that started these stories is a 
proposal from 1897 in the Indiana legislature to change the value of π. The proposal, 
originally proposed by a rather deluded pseudo-mathematician named E.J. Goodwin, 
claims that 3.14159 is “wholly wanting and misleading in practical applications.” 
Apparently the bill was so incoherently written that it wasn’t even self-consistent, 
proposing values for π of 3.2, 3.23, or 4 at various times. The bill actually passed the state 
House, but was held up indefinitely in the state Senate for unclear reasons, and never 
became law. 

 So, what’s the lesson here? Well, people in Indiana may be crazy, but not 
because they are Christians. And you can continue to correctly measure the area and 
circumference of circles without fears that you will suffer for it in the afterlife.    

     A Math Teacher to Remember 
     From Math Mutation podcast 93 
  With my mind blanking on podcast topics one day, I looked through one of those online 
lists of people who died recently, to see if there was anyone of mathematical significance 
to mention in the podcast. One name that stood out was Aleksandr  Solzhenitsyn  , the 
Soviet dissident who was instrumental in publicizing the horrors of the communist 
system to the outside world. What is lesser known about him is that he was originally 
trained in mathematics, and this background played a key role in enabling his later 
political activities. 

 Solzhenitsyn was born in 1918, so came of age just in time for World War II. While 
having an interest in literature from an early age, he found in school that he had a talent 
for math, so studied at the Department of Mathematics in Rostov University, graduating 
in 1941. Because of this background, he was sent to an artillery school, and served in the 
war as an artillery officer until he was arrested for having made remarks critical of Stalin 
in a private letter. 

 Upon his arrest, Solzhenitsyn was deported into the Soviet Union’s “Gulag”, or 
network of concentration camps, where political prisoners were generally put on heavy 
labor duty with barely any food or shelter, until many were worked to death. But his 
mathematical background saved him: he was one of the few lucky prisoners selected 
to serve in the  sharashkas , a kind of university system within the prison camp network. 
Those prisoners were given a better level of food and shelter, and expected to conduct 
advanced scientific research. 

 In his autobiographical novel “The First Circle”, Solzhenitsyn talked about life in 
these camps. He related some darkly humorous anecdotes about the prisoners constantly 
trying to convince their technically illiterate Communist masters about progress being 
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made. In one example, they convinced senior officials that they could look at a voiceprint 
and figure out what was being said, by of course colluding in advance about what 
statements to use in the test. But the stakes were deadly serious, as any prisoner in whom 
the authorities lost confidence would likely end up back in the common labor camps. 

 Eventually Solzhenitsyn was declared ‘rehabilitated’ and released, and once again 
his mathematical background played a key role. A “rehabilitated” political prisoner was 
still living under many restrictions and had very few choices in where or how to live. 
But because he qualified to serve as a math teacher, he had had a relatively comfortable 
existence for an ex-prisoner, with enough time to write. And then he skillfully read the 
political winds and submitted his novel about prison camp life,  One Day in the Life of Ivan 
Denisovich , at just the right time: Krushchev, the new Soviet leader, was trying to show 
his independence from Stalin’s legacy, and allowed it to be published, despite its stark 
exposure of the inhumane treatment of prisoners. The Soviet leadership came to regret 
this decision, especially after Solzhenitsyn won the Nobel Prize and became too famous 
to quietly dispose of like so many others who had criticized the communist system. 

 Since this is a math podcast rather than a political one, I’ll avoid talking in too much 
detail about Solzhenitsyn’s many important political works, which exposed not only 
the treatment of political prisoners, but the many ways in which the communist system 
destroyed the moral, political, and cultural fabric of Russian society. If you have any 
interest in the topic, I do highly recommend that you pick up  The Gulag Archipelago , his 
massive work based on the collected recollections of himself and the thousands of other 
prisoners who wrote to him after he became famous. You would think 1800 pages on life 
in Soviet prison camps would be dry, but once I started reading it, I couldn’t put it down.    

     Election Solutions 
     From Math Mutation podcast 172 
  Close  elections  , where two candidates have vote totals that are close enough to be 
within the possible counting error, seem to be a perennial feature of our voting systems. 
Nearly every U.S. election these days is accompanied by stories of various groups of 
lawyers gearing up to challenge totals and force recounts in various states or counties. 
You can probably remember many stories about nail-biters like the 2000 US Bush/Gore 
presidential election, the 2008 Minnesota Coleman/Franken senatorial election, or 
the earth-shattering tension created by the 2009 Hillsboro, Oregon Seligman/Sollman 
school board vote. But do endless hand-wringing, legal battling, and recounts after close 
elections really make logical sense? Do they improve the quality of our election results? 
Recently I’ve been reading Charles Seife’s entertaining but occasionally flawed 2010 book, 
 Proofiness: How You’re Being Fooled by the Numbers . Seife presents an interesting analysis 
of these situations from a mathematical point of view. 

 Seife describes the core issue here as what he calls “disestimation”. What is 
disestimation? Here’s a particularly egregious example: A museum tour guide was 
showing some visitors the skeleton of a large dinosaur. One of the visitors asked how old 
the skeleton was. The tour guide replied, “Exactly 65 million and 38 years old.” When 
asked why he was so confident, the guide replied, “I started working here 38 years ago, 
and the paleontologist told me this skeleton was 65 million years old at that time.” As 
you can probably see, the guide was ludicrously misunderstanding the precision with 
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which scientists can age fossils: what was intended as an estimate within a few percent 
of the real total, he took as a precise statement of an exact value. “ Disestimation  ” is the 
tendency to incorrectly treat an estimated value as much more exact than it truly is. 

 Similarly, whenever we get the total results from an election, it is an estimate, NOT 
an exact count. So rather than saying that the 2000 US Presidential vote totals in Florida 
were “Bush 2,912,790 / Gore 2,912,253”, it would have been more correct to say that they 
each got approximately 2,910,000 votes The nominal totals are simply an estimate, just 
like the dinosaur’s age. At first this sounds a bit odd – aren’t votes an exact numerical 
total that can be confidently counted? In fact, when counting large numbers of objects, 
it’s pretty well established that humans will make occasional errors. It’s conventional 
wisdom among factory managers that if you ask two employees to take inventory by 
counting the objects in a warehouse, you’ll get two different results. In the show notes 
you’ll see a link specifically to a Rice study on hand-counting votes, demonstrating an 
expected 1–2 % error. I don’t think many will disagree that even when computers are used 
in some degree, you have issues like paper jams, power flickers, mistyped human input, 
or software bugs. With these kind of error rates, a recount is really just a flip of a coin: the 
new result will be different, but just as error-prone as the original result. 

 So, what should we do when we have a close election? Seife proposes a simple 
answer: rather than going to the time and expense of a recount to achieve an essentially 
random result, let’s agree that when the election is within a certain margin, we will 
declare it a tie, and flip a coin to decide the winner. The result will be no less accurate 
than the one achieved by the recounts, and will be achieved with much less time and 
expense. It’s a simple, elegant solution – but Seife misses one fatal flaw in this proposal. 
What is the exact margin that is required to declare the election a tie? And if we’re close 
to that margin, how do we decide if it’s really a tie or not? For example, in the Bush/Gore 
Florida vote, suppose we had calculated that 50.005 % of the vote would constitute an 
outright victory, which would have put Bush’s total 12 votes short of the amount needed 
to avoid the coin flip. This would have resulted in the same drawn-out battle, forcing 
recounts to see if the total could be pushed to the result that would force or avoid the 
coin flip. By the way, this type of situation is not purely hypothetical – a few years ago the 
race for the Oregon Superintendent of Education was in a very similar situation, where 
Ron Maurer lost by an amount just slightly greater than the margin that would trigger 
a statewide recount. Supporters tried to push for local county recounts in close areas, 
hoping for a result that would just barely push him into the boundary that would trigger 
the statewide recount, essentially a gigantic coin flip. This was despite the fact that there 
was no way that recounting those votes could give Maurer an actual majority. 

 I think the key issue Seife missed is that we will have this problem any time there is 
a discrete boundary where one vote, or a small handful, makes a huge difference in the 
outcome. Is there a solution to this? I see one possible method. We could use a meta-
solution based on Seife’s initial solution: if the margin is close to the value of what would 
trigger the coin flip, by a certain percentage, we have two coin flips: one to figure out if 
we should consider the original vote to be within coin flip range, and then a second to 
actually decide the election if the first one succeeded. This would effectively give the 
candidate with the lower total a 1 in 4 chance of flipping the election. But of course, then 
we have the meta-meta-issue, of what to do if the vote total was just outside the margin 
that would cause us to flip a coin to see if the total was within the margin that we flip a 
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coin for the election. Now we would have 3 coin flips, with the lower original vote-getter 
having a 1 in 8 chance of flipping the election. And what if we were just outside the 
margin of the margin of the margin? That can be solved by 4 coin flips… And so on. 

 One other wrinkle here though: since we are calculating percentages of percentages 
of percentages, the total of the margins we are looking at is effectively a geometric series: 
 1/n + 1/n   2    + 1/n   3  …, which means that the total of all our margins will converge to a known 
value, beyond which we need to do no coin flipping. For example, if we allow a 10 % 
margin to trigger the first coin flip, a margin of 1/10 + 1/100 + 1/1000…, which equals 1/9 
of the total vote, will be the outer boundary of where a series of coin flips would occur. 
Will the discrete 1-vote boundary between coin-flipping and non-coin-flipping itself 
recreate the original problem? It’s exacerbated by the fact that you can’t have fractions 
of a vote, meaning that the series of margins would peter out after 7 or 8 iterations, when 
the size becomes less than one vote. The losing candidate would probably go to great 
lengths to cross this boundary if close & give himself a remote but possible shot, again 
recreating all the legal wrangling. Perhaps it would be better to have some continuous 
sliding scale of probability based on a bell curve: if one side got 99 % of the vote, we have a 
1-in-a-billion chance of reversing the election, and we gradually scale this down based on 
the vote %, smoothly reaching the coin flip at 50 % of the vote without having any specific 
point where 1 vote causes a huge, discrete jump in the outcome. For any particular vote 
count, there would be a known probability of reversing the vote, and slight increases or 
decreases to the vote count would just result in small changes to that probability. 

 With this system, we would have a huge return in societal resources that would 
not be wasted on endless recounts. With all the financial and budget crises today, think 
about what this means: how many teachers’ jobs could be saved if the salaries of all of 
Obama and Romney’s recount lawyers were instead donated to schools? I think I’ll call up 
President Obama and ask him to start working on it. Unfortunately, this system would not 
survive the first lucky win: when some popular candidate gets a clearly higher vote total 
but loses due to a lucky one-in-a-thousand set of coin flips, which is bound to happen 
somewhere given the number of state and local elections nationwide, there will probably 
be riots in the streets and popular pressure to go back to the system we have now. Oh 
well, I guess that’s why I’m a podcaster and not a president.    

     Democracy Doesn’t Work 
     From Math Mutation podcast 188 
  After the work by Condorcet mentioned a few sections back, work on mathematical 
analysis of election systems continued until the preset day. One of the most famous 
results of the past century in this area is  Arrow’s Theorem  . Arrow’s Theorem was first 
proven by economist Kenneth Arrow in 1951, as part of his Ph.D. work – just the start of 
a long career that later won him a Nobel Prize. This is a theorem that basically says that 
according to some common criteria that we should use to define a fair voting system, no 
rank-order voting system can ever meet those criteria. In some ways it can be considered 
an extension of Condorcet’s voting paradox. I think the easiest way to introduce Arrow’s 
Theorem is through an anecdote I read in the  Cafe Hayek  blog by Don Boudreaux. 
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 “You walk into an ice-cream store and ask what flavors are available today. The 
clerk says ‘We’ve got vanilla and strawberry.’ You ponder for a moment and tell the clerk 
‘I’ll have strawberry.’ Just before the clerk starts to scoop out your strawberry ice cream, 
he turns to you and says, ‘Oh, I almost forgot. We also have pistachio.’ In response, you 
ponder for another second and then tell the clerk, ‘Well, in that case, I’ll have vanilla.’ 

 Seems pretty absurd, right? Somehow the availability of a flavor you don’t like 
changes your first-choice selection? But when we’re talking about voting, our society 
really does choose like this. In one recent election, people pointed to the Virginia 
governor’s race, where many believe that Republican Cuccinelli only lost to Democrat 
McAuliffe because of the presence of ‘spoiler’ Libertarian candidate Robert Sarvis. 
McAuliffe won the election, but if Sarvis had not been running and his voters had chosen 
Cuccinelli (whose views were very close to Sarvis on most major issues), then Cuccinelli 
would have won. Even if you disagree in this instance, articles on the spoiler effect appear 
during pretty much every election season in the U.S. 

 This spoiler effect is related to one of the criteria for fair voting in Arrow’s Theorem, 
the “Independence of Irrelevant Alternatives” – the idea that if you prefer X over Y, 
your feelings about some third alternative Z should not change that. There are three 
other criteria in the theorem. First, “non-dictatorship”: no single voter should be able 
to decide the outcome. Second, “universality”: for any set of votes, the system must 
provide a complete, deterministic ranking of the society’s preferences as a whole. Third, 
“unanimity”: if every individual prefers one choice over another, then so must the society 
as a whole. The theorem then states that if you have at least two voters and at least three 
options to decide among, it will never be able to meet all of these four fairness criteria. 

 As you would expect, Arrow’s theorem has led to lots of discussions about how to 
improve democratic voting. One simple way is to cheat and just relax one of the fairness 
criteria – in fact, this has largely been done in practice, as we do have voting systems in 
many countries, including the United States, that do allow the spoiler effect and violate 
the independence of irrelevant alternatives. Another method is to always limit votes to 
two alternatives, since then we can have a ‘fair’ system according to the Arrow 
criteria – but unfortunately if we divide a larger group of alternatives into pairs to try to 
use this method, then we find the collective choice using these multiple pairwise votes is 
in effect a larger tournament that is subject to Arrow-like problems. The order of pairing 
can have a big influence on the ultimate winner. There are also systems not based on 
rank order, for example ‘Range Voting’, giving a score to each candidate instead of a 
simple rank order and adding the populations’ total ratings: this has its own problems 
though, sometimes giving a result close to society’s average judgement but disagreeing 
with the true majority choice. 

 Some mathematicians have also pointed out that if you drop the assumption of 
finitely many voters, Arrow’s theorem can be fixed, but I think there might be a few other 
problems if we increased our birth rate to infinity just to fix our voting system. Plus, until 
they reached voting age, we wouldn’t be able to fairly elect a school board to oversee the 
education of our infinite number of children anyway, so they would not grow up to be 
informed voters. 

 All these improved voting systems, or at least the set of them that are actually 
possible in real life, suffer the disadvantage that they make voting more complicated in 
general. Given the contentiousness and error rates we have now regarding the simple 
problem of counting direct votes, I think that is likely a fatal flaw. At some level, we just 
have to recognize that any system of governance will have its inherent flaws, and that we 
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just need to learn to cope with the fact that life is never 100 % fair. And the fact that after 
every election, advocates for the losing side will come out and declare society fatally 
flawed, is just one of the prices we pay for the public having some kind of influence on its 
government – every fix they advocate will result in some other form of unfairness. 

 Personally, I still say the best system would be the one I proposed in the last section, 
where we simply admit at some point that the election system is uncertain, and roll a die 
to help randomly determine the final result, with probabilities determined by the votes 
counted so far. Or at least, that would be the best stand-in until society gains the wisdom 
to make me its benevolent philosopher-king.    

     Drop That Number or We’ll Shoot 
     From Math Mutation podcast 60 
  Would it surprise you to learn that there are certain situations in which writing down 
a mathematical theorem, or even a particular number, can be a violation of the law? 
This odd situation results from the interactions between copyrights, trade secrets, and 
American law in the modern world. Under the  U.S. Digital Millennium Copyright Act  , 
or DMCA, originally passed in 1998, virtually any attempt to circumvent protection of 
copyrighted works, including figuring out any encryption methods, is against the law. 
Many researchers were unhappy about this, as research into encryption is a vital and 
active area of modern mathematics, and under some interpretations, much of it could be 
considered illegal. Probably the most famous specific controversy that came up related 
to this law was the publication of the DeCSS encryption algorithm, which was used to 
encode video DVD files. 

 David Touretsky, professor of computer science at Carnegie Mellon University, made 
a strong case that the DeCSS algorithm belongs to the realm of mathematics and of free 
speech, and should not in itself be considered an illegal device. To support his case, he 
came up with a really silly gallery of different ways of expressing the  DeCSS algorithm  . 
Here are a few:

•    The most basic example is the original computer program that 
directly decodes DVDs, obviously the most legally shaky case.  

•   Next there is a computer program written in what is known as 
a “functional language”. A functional language is essentially 
a computer program that doubles as the statement of a 
mathematical theorem. Can it really still be illegal?  

•   Then, taking it a step further, the gallery contains a pure 
mathematical theorem proving that DVDs can be decoded. The 
decryption algorithm is described within the proof, without 
providing actual computer code to do so. Can it really still be 
illegal?  
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•   Moving off in an artistic direction, the gallery also contains a 
haiku poem which states the essential properties of the algorithm, 
in carefully structured syllables as prescribed by ancient Japanese 
artistic techniques. Along similar lines, there is a dramatic audio 
reading of the algorithm, including musical and square-dance 
variants. Can you be arrested for dancing to the tune of an illegal 
theorem?  

•   Then there is an artificially constructed DNA sequence that 
encodes the algorithm. With recent technological developments, 
maybe we could actually build an illegal bacterium.  

•   Another example is the board from a game of “minesweeper”, 
in which the patterns of mines describe the DeCSS algorithm. 
I guess as long as you get blown up before uncovering all the 
mines, you won’t violate the law.  

•   An encoding of the algorithm as a single prime number. Could 
this be the first case in history of a particular number being 
illegal? Can you go to jail for numerical possession?    

 You can see the full gallery at Touretsky’s site online. It’s pretty fun to come up with 
lists like this, but I do think Touretsky was glossing over a serious issue. I’m not a lawyer, 
but if you take his arguments to an extreme, it seems to me like you have to throw away 
all concepts of copyright, trademark, and patent: with modern digital encoding methods, 
everything stored digitally anywhere is a string of 1 s and 0 s, so can literally be viewed as 
just a very large number. I think we do owe a lot of our modern technology to the fact that 
people can come up with ideas and expect they will get some kind of legal protection; are 
we really ready to toss all that out in order to regain full mathematical consistency? 

 In the end, Touretsky didn’t convince the judge, and the DMCA remained in effect. 
So maybe we do have to accept a world in which every once in a while, math really can 
be illegal. But don’t worry–if I end up in jail, I promise to find a way to keep this podcast 
going.    

     That’s How We Do It In Government 
     From Math Mutation podcast 158 
 At a meeting of the Hillsboro, Oregon School District curriculum committee, discussing 
progress in English Language Learner education, a district official presented a statistic 
that looked something like this:

    Mean test score: 73 %   

   Margin of error: 9 %   

   Adjusted score: 82 %     

 Now, for any of us in engineering or other professions that use margins of error, this 
looked distinctly odd. A “margin of error” represents the imprecision in a measurement, 
and inherently can show uncertainty in either direction, at some specified level of 
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confidence. So a rating 73 % with a 9 %  margin of error   might mean we are 95 % confident 
that the true score has a range of 64 %–82 %. It’s equally likely that the valid result is at 
either end of the range. Why does it make sense to add the margin of error to the mean 
 score  , calculating the maximum score at the high end of the confidence interval, when 
reporting the “adjusted” official result? The answer, when I raised the question: “That’s 
how we do it in government.” 

 This is a nice trick: it enables every statistic to be presented in the best possible light 
for promoting the success of current public officials. It also is inherently insane, in my 
opinion, granting bonus points for the imprecision of the measurement. Think about it: 
normally, measurements with lower margins of error are seen as more valuable, as they 
give a clearer and more precise picture. But look at the scores above: if they worked hard 
on developing a better test and lowered their margin of error, the “ adjusted score  ” would 
likely be penalized! And if they know the true scores are going down, they can game the 
system by lowering the quality of the tests or sampling, aiming to increase the margin 
of error rather than improving student knowledge. Is this the right way measurements 
should be done in our education system? 

 I can see how this would become the custom in government: once one official does 
it, everyone else has to follow suit, or else their statistics would appear inferior. Imagine if 
the district suddenly stopped “adjusting” these scores. “Look, in Hillsboro the scores went 
down 9 % this year!” Any elected officials involved would see their opponents demagogue 
the issue, and the employees who stopped the adjustments would suffer for it. 

 Don’t take this post as a criticism of the particular official who made this 
presentation though: in fact, I am commending him for his forthrightness when 
explaining the topic to me. In a regime where this silly “adjusted score” must be 
produced, the most intellectually honest policy is to do what he did: present the actual 
source numbers in addition to the final adjusted score, and let the viewers see the full 
story. I’m happy to see our district doing this. 

 The big lesson: any time a government body reports an “adjusted” statistic, look very 
closely at the adjustment, and demand to see the raw scores if not shown.      
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    CHAPTER 10   

 Money Matters           

 Money and economics are among society’s earliest motivations for learning about and 
developing mathematics. If you think about it, the fact that we are able to facilitate 
intelligent business and exchange policies is not something we can take for granted. Isn’t 
it somewhat miraculous that one person can spend 40 hours a week designing computers 
with no awareness of where his food comes from, another can spend the same amount 
of time farming with no awareness of what goes on at the computer factory, and yet both 
end up with easy access to food, computers, and unrelated services like medical care? 
Somehow the glue of economics, aided by its mathematical foundations, enables this to 
smoothly happen in our modern society. In this chapter we highlight some fun historical 
anecdotes and some more modern thoughts on concepts related to money, economics, 
and business, intertwined with various aspects of mathematics. 

     Tally Folly 
     From Math Mutation podcast 96 
  These days, we are so used to universal literacy and ubiquitous writing materials that 
many of us never even think about how we would count and keep records without 
writing. In fact, until a couple of centuries ago this was a serious problem, and many 
people and businesses kept financial records in the form of tally sticks, sticks with notches 
marked to represent various quantities. Use of such sticks extends far into antiquity: the 
oldest known mathematical artifact is said to be the “Lebombo Bone”, a 35,000-year-old 
baboon fibula with 29 distinct notches found in Swaziland that resembles calendar sticks 
still used by bushmen today. Even in Western countries, the use of this method lasted 
longer than you might have thought. For example, the move from tally sticks to paper 
records in England didn’t occur until the early 19th century. Some stories even claim 
that early New Yorkers originally located their stock market, now Wall Street, to be near a 
plentiful supply of wood in case it was needed for tally sticks. 

 The system of keeping  records   with tally sticks used by the Exchequer, or tax authority, 
of England had been handed down since the 12th century, and was actually pretty 
clever. First notches were made of various thicknesses to indicate a numerical quantity: a 
thousand pounds was a cut as thick as “the palm of the hand”, 20 pounds the “breadth of 
the little finger”, etc. Then the stick would be split in half lengthwise, and each party to the 
transaction given half the stick. Because it would be nearly impossible with premodern 
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technology to construct a fake replica of your half of the stick with different notches, this 
was a nearly tamper-proof method for recording taxes owed or similar transactions. Tally 
stick halves were accepted as legal proofs in European courts and under the Napoleonic 
code. And a tally stick half held by the Exchequer, which showed an amount of tax money 
owed to the king, could be sold by the government when cash was needed before taxes were 
due. Thus notched tally stick halves actually functioned as an early version of a short-term 
bond, beginning a tradition of innovation in the British monetary system. 

 Of course, times moved on, and English treasury officials had been trying to move off 
the tally system since 1724. But due to popular usage and momentum the sticks had to be 
accepted until 1826. By 1834 the rotting stock of old tally sticks stored by the government 
at Westminster was getting to be rather annoying, so they tried to work out a way to free 
the space. Charles Dickens pointed out that they could easily have disposed of these 
sticks and put them to productive use by simply allowing London’s poor to take them 
for use as firewood: but as usual when a government was involved, the official policies 
dictated a different procedure, and the old tallies had to be burned in an official stove in 
the House of Lords. 

 If that wasn’t dumb enough, there was the further problem that there were way 
too many tally sticks to fit in this stove. And the workers in charge of the burning were 
not paid to think, but to obey, and according to some stories were concerned about 
finishing the job by the 5pm deadline. They stuffed in as many tally sticks as they could, 
and lit the flame. Dickens describes what happened next: “The stove, over-gorged with 
these preposterous sticks, set fire to the paneling; the paneling set fire to the House of 
Commons; the two houses [of government] were reduced to ashes; architects were called 
in to build others; and we are now in the second million of the cost thereof.” In other 
words, Parliament was burned to the ground, and had to be rebuilt from scratch.    

     How to Bankrupt Your Boss and Get Rich 
     From Math Mutation podcast 84 
   With   all the economic turmoil in the news lately, I’ve been leafing again through my copy 
of  Fooled by Randomness , Nassim Nicholas Taleb’s excellent book about basic probability 
fallacies that impact modern investors. One important topic introduced in that book is 
the concept of asymmetric bets. It’s not a very complex concept mathematically, but it’s 
still one that a surprising number of people fail to think through when investing. 

 Suppose I were to tell you that mathmutation.com stock has a 90% chance of going 
up in the next year, and only a 10% chance of going down. For the moment assume we 
have completely accurate information, so you are sure that these probabilities are correct. 
Your instinct might be to go out and buy a bunch of shares. After all, there is a 90% chance 
that you are going to make a profit. But is this the correct answer? Actually, you still need 
more information to figure out whether the stock is something you should buy or should 
sell. To see this, let’s assume the stock value is currently 100 dollars, and look at the 
expected profit from buying a share in two scenarios. 

 In scenario one, if the stock either rises or falls, it will be by fifty cents. So if we buy 
a share, our expected gain is .9 × 50 + .1 × (-50) cents, for a total of $0.40. Thus, due to the 
positive expected gain, this is a buy – in the long term, you expect on average to gain 
money when buying in this scenario. 
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 Now let’s look at another scenario. Here, the 90% chance of a rise is due to slowly 
spreading word-of-mouth about  Math Mutation , so if the stock goes up, it will still be 
about fifty cents. However, the 10% chance of a fall is due to rumors that the host will 
soon convert to the Amish religion and give up all technology, so there will be no further 
episodes and the podcast will be worthless, and the stock will drop by the full 100 dollars, 
or 10000 cents. Then your expected gain will be .9 × 50 + .1 × (-10000), for a total of -$9.55. 
In the long term, using this strategy repeatedly and deciding to buy the stock, you expect 
a huge net loss. 

 This is an example of an asymmetric bet – while there is a larger chance of a gain, 
the magnitude of the gain is not enough to justify the risk of the huge loss. Even though 
there is a 90% chance of the stock going up, the one in ten times it goes down will be such 
a catastrophe that it will wipe out all your previous gains, and more. So it seems like an 
intelligent investor should always try to recognize such asymmetric bets, and make the 
rational decision not to invest if there is a large chance of a small gain, but a small chance 
of an overwhelming loss like this, right? Well, we need to add one more twist. 

 Suppose you are managing a huge corporate portfolio worth hundreds of millions 
of dollars. Each year in which the corporate account gains, you get a half-million dollar 
bonus, which you can then put in a personal savings account. However, if the corporate 
account goes bankrupt, you will be fired. Now think again about the asymmetric bet. 
If there is a 90% chance that it will gain, then you know you can place this bet for your 
company – nine out of ten years, you will get a huge bonus. Eventually you will probably 
bankrupt the company and get fired, but by then you will have squirreled away enough 
bonuses from your successful years that you won’t care. In fact, you probably have a 
decent-looking resume for applying to further financial jobs, with a record superficially 
showing that most of the time, you made money for your company. 

 I don’t know enough details to say whether this is what actually happened in any 
of the recent crises, and I’m sure economists siding with one company or government 
party will disagree with those siding with rivals. In his book, Taleb does describe many 
examples of individual traders who seem to be doing well for a number of years, then 
suddenly lose their companies a huge amount of money that dwarfs the total of their 
previous gains. And recent additions to Taleb’s website seem to indicate that he thinks his 
ideas applied directly to Fannie Mae, a semi-private U.S. company that many blame for 
the recent economic turmoil. In any case, in the current situation, it does seem suspicious 
to me that there are so many cases where individual executives exited with millions of 
dollars, while leaving behind bankrupt companies for the taxpayers to bail out.    

     What Color Is Your Swan? 
     From Math Mutation podcast 164 
 In the past week, a popular topic of conversation here in Hillsboro has been the 
quarterly earnings announcement of our largest local employer. As with all companies, 
the quarterly earnings affect company stock, bonuses, and lots of other related arcane 
financial statistics. But are short-term earnings a good way to judge a company? Could 
this kind of result be inherently inaccurate or even deceptive? I’ve recently read Nassim 
Nicholas Taleb’s book  The Black Swan , which offers a unique perspective on these kinds 
of measurements, with much wider implications throughout human society. 
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 In Taleb’s terminology, a “Black Swan” is an event with low but nonzero probability, 
hard or impossible to predict based on current knowledge, whose effects are large 
enough to dwarf many previous high-probability events. A good example in the corporate 
world, which we also discussed in the previous section, is the case of accepting a risk 
of catastrophic loss in exchange for short-term profits. If I’m a financial officer who can 
gain a million dollar bonus by investing in risky derivatives, which incur a 5% risk of a 
hundred-million dollar loss for the company, I could last several years and walk away 
with millions before the “Black  Swan     ” of the loss occurs. Each year, I could report massive 
profits, while nobody would be monitoring the risks that build up. 

 But Black Swans are not limited to derivatives investors; when you look closely, 
they appear throughout our society. For example, imagine being a worker in the World 
Trade Center on September 10, 2001, confidently planning your career and your future. 
Or, going further back in history, if you were a citizen of the Austro-Hungarian Empire in 
1913, you might have assumed that your life and livelihood were quite secure, and any 
probable change would be incremental and easy to accommodate – until the Black Swan 
of World War I arrived. Also think about your own life and career; are you exactly where 
you envisioned being 10 or 20 years ago? Chances are that some Black Swan occurred at 
some point in your life, causing a dramatic shift in one direction or another. If a particular 
alumni recruiter had not scheduled an extra off-season trip to Carnegie Mellon 22 years 
ago, planning to recruit an intern in my exact research area, my life would be quite 
different today. I would barely have heard of Oregon, known Intel only due to a sticker on 
my PC, and the world might have even been deprived of  Math Mutation . 

 Ultimately, Taleb’s contention is that nearly all major changes in history and society, 
as well as in people’s personal lives, have resulted from these Black Swans, unpredictable 
individual events that had low probability but hugely disproportionate effects. This 
contrasts with the tendency of history books to treat everything as a predictable flow, 
what Taleb calls the “narrative fallacy”. We have a natural instinct to construct stories 
and explain events as rational and predictable – but the real test is to see who actually 
predicted them in advance. Your history book, for example, talks about how World War 
I was a natural consequence of various tensions building in Europe; but how many 
investors restructured their portfolios in 1913 to take account of the coming high-
probability “inevitable” war? Surprisingly few. If it had really been so predictable, surely 
people would have bet on it with their own money. 

 So, if these low-probability but high-consequence events are really prime factors 
in reshaping our lives and societies, does that mean we are all adrift and at the mercy of 
randomness? Taleb’s answer is no. We just need to recognize this factor, take into account 
our lack of knowledge of these upcoming Black Swans, and use it to guide our actions. For 
example, Taleb is a fan of free-market capitalism over central planning, but for different 
reasons than many libertarians: the free market allows us to ‘roll the dice’ on many 
different opportunities, until we are lucky enough for the Black Swan of a Ford, Intel, or 
Apple that comes across some set of innovations that vastly improves society. Central 
planners, cautiously trying one low-risk option at a time, almost never offer that level of 
innovation. 

 In your individual life, it is also important to take the Black Swan factor into account. 
You need to watch out for situations where you face a negative Black Swan: a common 
example we are all familiar with is to buy fire insurance, incurring a small expense now so 
that the Black Swan of a house fire will not wipe us out. And conversely, position yourself 
to take advantage of positive Black Swans: at some point in your life, you may encounter a 
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rare opportunity with unusually high potential payoff, like that recruiter visit that shifted 
my direction in grad school. Be sure to take advantage of such a case. They will be rare, 
but chances are they will happen from time to time. 

 But most importantly of all, recognize that all the pontificating talking heads who 
“explain” every unusual event in history, in the news, or in your life are mostly full of hot 
air, unless they actually predicted these events in detail *before* they occurred. Chances 
are that they are engaging in the narrative fallacy, rationalizing low-probability events 
after they occurred in order to sound intelligent.   

     Comparative Disadvantage 
     From Math Mutation podcast 165 
   Have you heard about the Law of Comparative  Advantage     ? This is a famous economic 
discovery of the 19th century which is counterintuitive at first, but makes a lot of sense 
once you start plugging in some basic numbers. Suppose one country is better at 
producing everything than another country. This law states that in many such situations, 
it’s advantageous to everybody if each country produces what they are best at, and they 
trade with each other, rather than having the higher-producing country wall itself off 
from the other. This law forms one of the basic arguments for free trade, and is often 
misunderstood and derided by those who don’t fully understand it. We should point 
out that, like many economic theories, the mathematical modeling it uses is simplified 
compared to the real world, and there are some legitimate criticisms of the theory that are 
a bit too detailed for this podcast. But Nassim Nicholas Taleb’s Black Swan concept, which 
we discussed in the previous section, adds a surprising new twist to the law. 

 To start understanding Comparative Advantage, let’s look at a simple example of 
this law in action. Suppose France can produce wine for 1 dollar a bottle, and beer for 2 
dollars a bottle, while Germany can produce beer for 3 dollars a bottle, plus wine for 4 
dollars a bottle. Initially, France is better at everything, so can wall itself off and refuse to 
trade with Germany. Here I’m talking purely in terms of the numbers, so we’re ignoring 
the social unrest that would occur in a population forced to drink French beer. Anyway, 
let’s also assume each country has 120 million dollars to spend on beverages, and wants 
to consume roughly equal amounts of wine and beer. Some quick algebra will tell you 
that France will produce 40 million bottles each of wine and beer, while Germany will 
produce a little over 17 million bottles of each, for total consumption of about 57 million 
bottles of each by the two countries. 

 Now, let’s suppose they decide to trade with each other, and each country specializes 
in what it does best: so wine is produced for $1 per bottle in France, and beer for $3 in 
Germany. If the combined nations’ 240 million dollars is used to produce equal amounts 
of wine and beer again, we can produce 60 million bottles each of wine and beer: so the 
total consumption of the two countries increases by 3 million bottles of each. Even if 
they are a little drunk from subsisting solely on a beer-wine economy, the French and 
Germans should both be able to see the advantage of trade in this situation. The key 
insight here is the concept of opportunity cost: previously for each bottle of beer they 
produced, France had to give up the opportunity of producing 2 bottles of wine. Once 
they are allowed to trade, they are saved from this opportunity cost. 
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 So, what’s the new twist that comes from Taleb’s theory? Remember the concept of 
the Black Swan: we must account for low-probability but high-impact events that may be 
unlikely at any given time, but are probable enough that they will happen in the long run. 
Suppose France takes the law of comparative advantage to heart, and decides to devote 
almost all of their nation’s efforts to producing wine. Then one year, a new grape blight 
appears in France, killing almost their whole crop. The nation will be in serious trouble. 
In general, Black Swans which destroy productivity for a time in a particular industry, 
from causes such as disease, natural disasters, or wars involving key suppliers, are 
going to happen at some point over the long term. This danger is not just theoretical – 
we can see examples in history such as the Irish Potato Famine, where Ireland was 
over-dependent on a single crop which failed nationwide due to disease. So even in the 
presence of comparative advantage, it’s important for nations to diversify to some degree, 
rather than devoting their entire economy to a very small set of optimal industries. 

 I should point out that some web commentators have incorrectly grouped 
Taleb’s critique with the many critiques of Comparative Advantage based on social or 
political values, whose merits or non-merits are beyond the scope of this book. I think 
these discussions are sometimes missing the point – the Black Swan idea is just as 
mathematical, in some sense, as the theory of comparative advantage itself. The fact 
that something that seems unlikely in the short term may be significantly likely in the 
long term is a basic element of probability theory. For example, if one of a group of low-
probability disasters has a 1% chance of occurring in any given year, it might seem like 
a remote worry. But some elementary calculations, calculating  n  for which (.99)  n   < .5, 
we see that in 69 years, a single human lifetime, such an event has over a 50% chance of 
occurring. And in real life, we can’t make calculations this precise: we know there are 
many things that can go wrong, but we can never have enough data to fully model them 
quantitatively. So we need to defend against these unknown disasters that are likely 
to wipe us out in the long term by making sure our productive capacity and our set of 
suppliers remain diverse, rather than over-concentrated in a small set of industries, and 
ensuring that we are robust overall in the face of these Black Swan events.     

     Money for Math 
     From Math Mutation podcast 182 
  Recently the media has been full of stories about Yitang Zhang, a struggling math 
professor whose career has included stints as an accountant and as a  Subway  sandwich 
maker. Zhang made a major advance towards proving the Twin Primes conjecture. Twin 
Primes, as you may recall, are pairs of prime numbers that just differ by 2, like 3 and 5, or 
41 and 43. He didn’t actually prove the theorem that there are an infinite number of pairs 
of twin primes, but proved a related theorem: for some number N less than 70 million, 
there are infinitely many prime pairs separated by N. I’m not going to rehash that story 
in detail – if you’re reading this book, I’m sure you’ve seen or read it somewhere anyway 
by now. But today’s topic is inspired by an amusing question someone asked me after 
reading this article: “So, how much money does he get?” 

 First we should ask the question: why would there be a monetary reward for solving 
certain math  problems  ? The perception that this should be the case is probably a result 
of the publicity surrounding the Clay Institute’s Millennium Prize, a million dollar reward 
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announced in 2000 for resolving any of 7 famous math problems. This institute was 
founded by a successful businessman named Landon T. Clay, a pretty standard way these 
things get set up. Sadly, the twin primes conjecture is not one of the 7 prize problems, so 
even if he had proven the full theorem, Zhang would not have won the million dollars. 
There are numerous other monetary awards given in mathematics as well, though 
nothing coming close to the Clay Institute. Zhang has won several of these awards, for a 
total of almost $150,000, so we don't need to feel too sorry for him. 

 Probably the most interesting story of a math award is the origin of the Wolfskehl 
Prize for Fermat’s Last Theorem, awarded to Princeton’s Andrew Wiles in 1996. As 
you probably recall, Fermat’s Last Theorem is the famous 1637 conjecture that the 
equation  a   n   +  b   n   =  c   n   has no whole number solutions for  n  > 2. For hundreds of years, 
until Wiles finally solved it, many mathematicians spent their lives working on proofs of 
this theorem. The award for the theorem was created by German mathematician Paul 
Wolfskehl. According to legend, Wolfskehl had been rejected by a woman and was very 
depressed, so he decided to commit suicide at midnight one night. But, since he made 
this decision in early evening, he had a lot of time to kill until midnight, so decided to 
hang out at the library and browse through books and journals. As he was reading an 
article by mathematician Ernst Kummer, he found a flaw in one of the proofs related to 
Fermat’s Last Theorem, and began working on some calculations to enable him to fix 
the article. Ultimately he was able to fix the flaw in Kummer’s work, but this took him all 
night, causing him to miss his scheduled midnight suicide. This work didn’t prove the 
theorem, but at least he was able to improve an article refuting a failed path to a proof. 
By morning, he was so excited about his original contribution to mathematics that he no 
longer wanted to kill himself. In celebration of the theorem that saved his life, he modified 
his will to create a 100 thousand mark prize for anyone who did prove it. 

 As with many great stories, however, there are some Internet suggestions that it 
may not really be true. There are a few other legends going around about the Wolfskehl 
prize. One is that he started out intending to be a doctor, but due to multiple sclerosis 
was unable to practice that profession, and went into mathematics instead. According to 
this theory, the award was to celebrate the opportunity that math gives to the disabled. 
Another story says that the prize was due to spite: because of his disability, Wolfskehl 
was forced to marry the only woman who would take him, a mean, desperate woman 
who treated him horribly. So he left his money to create a mathematical prize instead of 
leaving it to her. 

 In any case, should people go into math in the hopes of growing rich through 
prize money? I think there are probably much easier ways – if you’re good at math and 
money is your sole motivation, your odds of striking it rich are probably much better in 
the financial industry. In many cases, your odds might be better buying a lottery ticket, 
for that matter. It takes a special kind of genius and dedication to solve most famous 
unsolved math problems – look at how many years Zhang spent on the fringe of his 
profession before his success – and by the time Wiles won the Wolfskehl award, it was 
only worth about 45 thousand dollars, a few months’ salary for him. And the Fields 
Medal, the ‘Nobel Prize’ of mathematics, is only worth a third of that. If you’re one of 
those talented people on the track to solve one of these problems, I suspect that a big 
monetary prize is the least of your concerns.    
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     Liking the Lottery 
     From Math Mutation podcast 191 
  If you’re the kind of person who listens to math podcasts, you’ve probably heard the 
often-repeated statement that a government-run lottery is a “tax on stupidity”, due to the 
fact that stupid people are likely to waste their money on something that has a negative 
expected value. But is the case really that open-and-shut? Does the negative expected 
value of a lottery automatically make it not worth playing, and would this situation 
reverse if the expected value ventured into the realm of the positive? 

 Let’s start by reviewing the concept of expected value. At a basic level, this is the sum 
of the possible values of your  lottery   ticket, each multiplied by the probability of getting 
that value. As a simple example, suppose you have a local lottery where you pay 1 dollar 
to guess a number from 1 to 10, and if you’re right, you get 6 dollars back. Your expected 
value is 9/10 times -1, since in 9 out of 10 cases you lose your dollar, and 1/10 times 5, for 
a total of -40 cents of expected value. This represents the likely average return per round 
if you play hundreds of rounds of this lottery. Expected value calculations for real-life 
lotteries are similar, except that they deal with very tiny probabilities and values in the 
millions. Real-life lotteries almost always have negative expected values; for example, 
one website recently calculated the expected value of a U.S. Powerball ticket at -$1.58. 
Actually, for real life lotteries there are some complicating factors that reduce it further: 
you have to account for possibly splitting the jackpot with someone else who guessed 
the same numbers, and also the hefty chunk of taxes that Uncle Sam will take out of your 
winnings, but let’s simplify this discussion by ignoring those factors. 

 Now here’s the critical question: suppose after many weeks of a growing Powerball 
jackpot, which happens sometimes if there is no winner, the pot grows to the hundreds of 
millions, and the expected value crosses over into positive range. Is it now a more rational 
decision to play the lottery? I would argue no: you are still much more likely to be struck 
by an asteroid or lightning, die from a bee sting, or suffer a plane crash than to win. The 
expected value calculation really only kicks in if you are buying millions of tickets, in 
which case you can use it to figure out if your massive bet is likely to be profitable. One 
article I found online talks about an investment group that actually did try to buy all the 
tickets to a Virginia lottery one year, but was a bit hosed by the fact that not all the tickets 
could be printed in time. 

 Another way to realize the limited usefulness of the expected value is to think about 
a slightly odd lottery, as suggested in a blog by statistician Alan Salzberg: suppose you 
could spend all your savings for a 1 in 1000 chance to win 10 billion dollars. If you have 
less than 10 million dollars in the bank, this game actually has a positive expected value. 
Would you play it? I think 99.9% of people would think playing such a game is insane. 
When you can only play it once, you need to think about things other than the statistical 
average of thousands of trials. What is the likely net effect on your life if you play it once? 
Chances are overwhelming that this lottery would leave you penniless. 

 So, if the expected value calculation doesn’t make sense, how do we figure out if 
playing the lottery is rational? I think the key factor is the cost to you of spending the 
price of the lottery ticket. Assuming you are doing OK economically, spending a couple 
of dollars every week can probably be considered effectively zero cost: you are likely to 
casually spend more than that on potato chips from vending machines, lattes at Starbuck’s, 
etc. For this near-zero cost, what value do you get? There is that thrill of scratching 
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off the numbers or watching the drawing, and having that infinitesimal but nonzero 
chance of becoming an instant millionaire; given the low cost, maybe that alone makes it 
worthwhile. You also know that your ticket cost has contributed operating funds to your 
government; your feelings on that may vary, but even if you’re a hardcore libertarian, there 
are likely at least a few government services you are OK with funding. And you’re probably 
happier giving money voluntarily than being required to by law, which would be the effect 
if nobody played the lottery and income or sales taxes had to be raised instead. 

 Now I’m not saying that lotteries are always a good idea: the arguments I just made 
are predicated on the fact that the lottery ticket is effectively zero cost to you. If it is not – 
if the 2 dollars per week would make a real difference in your life, or you are spending 
more money than you can afford to lose – you need to realize that the chances of winning 
something are so infinitesimal that this is really not a wise expenditure. It’s always kind 
of sad when I see blue-collar-looking people pump what seems like hundreds of quarters 
into Oregon Lottery video poker machines in bars. Saving up the money annually to buy 
asteroid insurance would be more likely to benefit their families in the long run. 

 But overall, does playing the lottery mean you’re stupid? This looks to me like an 
area where many people blindly apply a mathematical formula without really thinking 
about what it means. Assuming the cost of a lottery ticket is effectively zero when 
compared to your income, it looks to me like the answer is no, playing the lottery may be 
perfectly rational.    

     Number Nonsense 
     From Math Mutation podcast 70 
  Recently I was at a local fast food restaurant, and I saw a burger that looked good for 
$1.98. I ordered two of the burgers, plus a soda which was 99 cents, and the cashier told 
me the total was 6.93. I looked at her, confused, and tried to reason with her. “You see 
that burger I ordered is about 2 dollars? And I got two of them, plus a one dollar soda. 
Shouldn’t the total be around 5 dollars?” She was a bit annoyed. “So, you’re not going to 
pay the amount displayed on the register?” I valiantly tried one more time to reason with 
her. “Look, 2 + 2 + 1 equals 5. So the total should be close to 5 dollars. Something is wrong 
here.” She gave up and went back to get the manager. I could overhear her speaking to 
him, though she didn’t realize it. “An irate customer up front is refusing to pay for his 
meal.” Needless to say, after the manager finally sorted things out, it turned out she had 
rung me up for an extra burger. 

 But I was still flabbergasted that a high-school-age American would lack the basic 
skills to estimate that 2 + 2 + 1 = 5, and therefore something had gone wrong. My confusion 
was cleared up when I did a bit of internet research, and found that many school systems 
are using calculators from as early as the first grade level. Don’t get me wrong, I think in 
some places, such as advanced science classes or application of formulas, it might make 
sense to use a calculator in school. But thinking back to my elementary days, I think I 
gained a lot of my inherent “ number sense  ” from working out lots of simple calculations 
on paper. Sure, technically it’s the same if you remember 2 + 3 = 5 from repeating a lot 
of hand calculations, or if you type 2 and 3 into a magical black box and get 5 – but the 
thought process is a lot different. When you do it by hand, you can’t help but notice 
patterns and gain an inherent ‘feel’ for the numbers. If all you do is mechanically type 
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them in and always get a guaranteed answer, you may lose even your basic impulses of 
curiosity about what’s happening. 

 On the net, there seems to be a clear backlash these days against the trend of using 
calculators in schools. Like me, many educated adults are horrified to see that if they ask 
for simple calculations like 300 divided by 3, a sizable portion of calculator-educated 
teenagers will reach for a calculator rather than thinking about the problem and giving 
a quick answer. No matter how sophisticated our technology gets, there will always be 
human fingers, or brain waves, supplying inputs to our computing devices – and thus 
always room for human error at some point. Having a basic number sense, and being 
able to understand whether simple, round arithmetic results are in the right ballpark, will 
always be a critical component needed to sanity-check calculations and avoid disasters. 
In a few years will we hear about a bridge collapsing because some entry in a computer 
was off by a factor of 10, and nobody noticed?    

     Does the House Always Win? 
     From Math Mutation podcast 140 
    If you’re a self-respecting math geek, by now you’ve probably heard the urban legend of 
the group of MIT students who made millions in the 1990s playing blackjack at Las Vegas 
casinos, immortalized in Ben Mezrich’s book  Bringing Down the House  and the movie 
“21”. I read the book over the holidays, and really enjoyed it; not great literature, but a 
breezy and entertaining read. What I found most surprising was the basic simplicity of the 
card counting scheme that the MIT students used. 

 To review the basics,  blackjack   is a simple card game where you are dealt two cards, 
and can request additional ones to try to hit a total of 21 without going over. Face cards 
count as 10, and aces can be 1 or 11. Because the dealers hand out cards from the same 
deck for many hands in a row, it’s a game with a “memory”, where the previous hands do 
have a real influence on the current hand. Compare with something like the dice game 
craps, for example: there, every die roll is truly independent, so looking for some kind of 
pattern is hopeless, as the odds of each number on a die roll are constant. In blackjack, it’s 
possible in theory to gain an advantage by remembering the cards that have been dealt so 
far. Traditional counting techniques have been estimated to provide a player an edge of 
roughly 2 percent in the long term. 

 If you think about this 2 percent advantage, this means that if you play for a long 
time with a $100 average bet, you will win an average of $102 per hand. But this very slight 
advantage means that in the short run, you are likely to lose many hands, so you would 
need to be able to tolerate large losses and have the bankroll to come back. So unless your 
stakes are large and you play for a long time, there is not that much profit to be made. 
In addition, conventional wisdom said that this technique, “card counting”, has been 
nearly impossible for decades due to the casinos’ mixing 6 decks together, creating a huge 
number of cards to keep track of. 

 But the students on the MIT blackjack team realized that the 6-deck policy created 
a new vulnerability: if an imbalance ever developed, such as the remaining cards in the 
6-deck stack containing a large concentration of face cards, knowledge of this situation 
could create a huge advantage for the players. And the advantage would last for a 
noticeable amount of time, due to the time it took to go through 6 decks’ worth of cards. 
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The trick was that this kind of situation was not common enough that a single player 
sitting at a table would be able to use it. So they would send a group of “spotters”, players 
looking for this situation, to multiple different blackjack tables at the casino, while a big 
better would wander around waiting for a signal. 

 The spotters would play continuously, placing minimum bets and keeping a running 
count, a single number that reflected how many more face cards than low cards remained 
in the deck. The number would start at 0, and each time they saw a low card (2–6), they 
would subtract 1 from the count, and each high card (10, A, or face card) would add 
1. They also had to factor in the number of remaining decks in the shuffle, by dividing 
the count by that number: an imbalance during the first few hands would likely be very 
temporary, while one developed when halfway through the cards was likely to yield much 
bigger rewards. This counting wasn’t as easy as it sounds. Multiple hands of cards are 
flying by rapidly at a casino, most dealt to other players, and to avoid suspicion of being 
a card counter they had to participate in random table banter, order drinks, flirt with 
the Vegas bimbos, and otherwise act like ‘normal’ gamblers. They did a lot of practice in 
mock games before risking this in a real casino. 

 When the imbalance in the remaining cards reached a certain point, where 
disproportionate number of face cards remaining would provide a distinct advantage, 
a spotter would cross their arms, signaling a “big better” to come in. This would be 
another team member, acting ostentatiously rich and throwing around money, who 
would sit down at the table without acknowledging that they knew the spotter and start 
making large bets. The spotter would “pass the count” to him, making nonsense remarks 
containing code words they had carefully memorized in advance. For example, suppose 
the current count was 9. They would say something like, “Darn, I forgot to feed my cat.” 
The word ‘cat’ signaled the number 9, since a cat has 9 lives. The big better would then 
know the current level of imbalance, and choose the bets accordingly. By placing big bets 
at the right times, and only placing minimum bets when establishing the count, the team 
greatly magnified their potential return. This is how they won millions of dollars. 

 Once a casino realizes someone is using this technique though, it’s pretty easy to 
fight. The simplest way is just to shuffle the cards more often rather than waiting until 
all 310 cards of the 6 decks are used, dramatically cutting down on the potential window 
of vulnerability created by any imbalance. Another easy method is to make a house rule 
not allowing new players to join a table or existing players to increase their bet except 
right after a shuffle. One might wonder why they don’t just shuffle after every hand in the 
first place, completely eliminating the issue of the cards ‘remembering’ state that can be 
leveraged. Mezrich points out that the casinos actually *want* some level of counting to 
be theoretically possible. This way they can attract foolish gamblers who play blackjack 
thinking they have an advantage, when they actually lack either the counting skills or 
large bankroll needed to truly beat the house. 

 In the end, such fanciness wasn’t really needed to stop the MIT team. The casinos 
figured out that this small group of people was consistently winning, and ended up 
passing around faxes with their photos, resulting in them being banned from most 
venues. Casinos have the power to ban suspected cheaters without needing any kind of 
proof. This is useful since legally, card counting is not even considered cheating, since it 
all happens in the heads of the players. If you believe Mezrich’s book, there was further 
intrigue involving Hollywood makeup artists, armed thugs, crooked cops, and backroom 
beatings, though the  Wikipedia  article claims that these aspects of the story were largely 
fabricated. In any case, now that the book and movie are out, I doubt even the smallest 
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casino will ever again be vulnerable to this exact technique. But those MIT guys are pretty 
smart – I wouldn’t be surprised if even now, they have another team milking the casinos 
using newer and trickier techniques.      

     Mutating Up the Corporate Ladder 
     From Math Mutation podcast 146 
  If you’re a regular listener to  Math Mutation ,    you’re used to hearing about the surprising 
corners of modern math, things like fractals, higher dimensions, and complexity theory. 
But you’re probably convinced that, while they are fun to talk about, these strange ideas 
will not have much impact on your daily life. What if I were to tell you, though, that 
applying modern mathematics could provide you with useful leadership insights in 
day-to-day business situations? It sounds a bit counter-intuitive, but that’s the contention 
of business author Margaret Wheatley. Let’s take a look at a few of her ideas. 

 First, let’s review the concept of fractals, like the Koch snowflake, which we discussed 
in earlier chapters. It has the nice property that if you magnify any piece of it by any 
amount, it seems to be a smaller version of part of the original snowflake: this endless 
self-similarity is a common characteristic of fractals. In the case of the ideal mathematical 
objects, however much you magnify such fractal shapes, you see additional complexity, 
all resulting from simple rules or equations used to generate the fractal. Real-life 
situations such as mountains and coastlines act like fractals to some degree, though of 
course their self-similarity only works to some finite level rather than infinity. 

 So, how do fractals provide insight into leadership? To start with, think about the set 
of values and policies advanced by your company. If your company is well-run, the set of 
corporate values visible in the top levels of the organization should match those visible 
at lower levels. In theory, you should be able to visit a front-line manager on the factory 
floor, and he should be promoting a corporate attitude matching that of an executive 
meeting held by the CEO. And this should arise naturally from solid basic principles, 
just as the simple rules for the Koch curve generate the complex snowflake: you should 
not be attempting to centrally specify every edge and boundary. If your company is not 
exhibiting this fractal-like self-symmetry, something has broken down at some level, and 
you’re in a dangerous situation where the corporate goals are not being well-propagated. 
You need to understand where the symmetry ends in order to correct the situation. As 
Wheatley says, “The very best organizations have a fractal quality to them.” 

 Another aspect of fractals that Wheatley finds relevant to business is their infinite 
complexity. When you take a ‘big picture’ look at a fractal, you see the illusion of a definite 
boundary. But upon a closer look, you see more and more complexity at the edge, making 
it impossible to properly measure this boundary. As Wheatley states, “Fractals suggest 
the futility of searching for ever finer measures of discrete systems.” You can probably see 
how this would apply to business: managers love to specify quantitative measures of how 
their organizations are doing. If you work at a big company, I’m pretty sure you have been 
frustrated at some point by a top-down requirement to measure your work using some 
arbitrary statistic. We have to recognize that there are a huge number of measurements 
you can take, and in the quest for the perfect precise measurement, you can easily get 
lost in an endless refinement of measurements that can never finish. You have to step 
back and look for some underlying structure of the big picture, rather than focusing on 
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the details. Just as you need to try to find the simple set of rules that generated a fractal to 
understand it, you need to think about true root causes deep in the organization rather 
than just measuring output at the edge to understand your business. 

 Wheatley applies many more ideas from modern math and physics in her book, 
 Leadership and the New Science , and her many articles published afterwards. Naturally, 
there is some question about whether she is truly using these ideas to influence business 
thought, or merely invoking them with strained metaphors to sound impressive as 
she applies common-sense business advice. I’m a bit suspicious, for example, of her 
leaps from the difficulty of measuring fractals to the need for qualitative intuition: 
the generating function of a fractal is just as mathematically precise an operation as 
measuring the lengths of curves. I get especially skeptical when she starts to quote from 
questionable authorities like New Age quantum physics abuser Deepak Chopra or 
psychic dog researcher Rupert Sheldrake. To some extent, her ideas seem ripe for the 
kind of debunking Alan Sokal does of misused math and science, as we discussed is our 
chapter on Science and Skepticism. On the other hand, as I see it, nearly every business 
book I’ve read has essentially been about puffing up common-sense ideas to sound like 
new insights. If bringing in a metaphor from higher math helps to convince your local 
managers to implement more sensible policies, why not use it? And if babbling about 
cool stuff you heard in  Math Mutation  can provide you a leg up next time you’re being 
interviewed for a job or promotion, why not take advantage? Be sure to send me a cut 
after your mathematical jargon wins you that huge raise.    

     The Converse of a CEO 
     From Math Mutation podcast 205 
 Ever since I was a small child, I aspired to grow up to become a great Rectangle. When 
I was only six years old, my father took me to meet one of the leading Rectangles of 
New Jersey, and I will always remember his advice: “Be sure to have four sides and four 
angles.” All through my teenage years, I worked on developing my four sides and four 
angles, as I read similar advice in numerous glossy magazines aimed at Rectangle fans. 
In high school, my guidance counselor showed me many nice pamphlets with profiles 
of famous Rectangles who had ridden their four sides and four angles to success. Finally, 
soon after I turned 18, I took a shot at realizing my dream, lining up many hours to 
audition for a spot on the popular TV show  American Rectangle . But when I made it up 
onto the stage, I was mortified to be met by a chorus of laughter, and end up as one of the 
foolish dorks that Simon Cowell makes fun of on the failed auditions episode. With all my 
years of effort, I had not become a Rectangle, but a mere Trapezoid. 

 OK, that anecdote might be slightly absurd, but think for a moment about the 
premise. Suppose you want to become successful in some difficult profession or task. 
A natural inclination is to find others who have succeeded at that, and ask them for 
advice. If you find something that a large proportion of those successful people claim to 
have done, then you conclude that following those actions will lead you to success. Most 
of us don’t actually aspire to become geometric shapes, but you can probably think of 
many miscellaneous pieces of advice you have heard in this area: practicing many hours, 
waking up early every day, choosing an appropriate college major, etc. I started reflecting 
on this concept after looking at a nice career planning tool aimed at high school students, 
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which lets them select professions they are interested in, and then read about attributes 
and advice from those successful in it. 

 Unfortunately, this kind of advice-seeking from the successful is actually acting out 
a basic mathematical fallacy. In simple logic terms, an implication statement “A implies 
B”, is logically different from its converse, “B implies A”. Neither statement logically follows 
from the other: “A implies B” does not mean that “B implies A”. When we look at the case of 
rectangles, this seems fairly easy to understand: the condition A of having four sides and 
four angles does NOT imply the consequent B, that the object is a rectangle. By observing 
that all rectangles have these characteristics, we are learning the opposite: Being a rectangle 
implies that the object has four sides and four angles. This is important to recognize 
because there may be infinitely many non-rectangle objects that meet this condition, and 
actual rectangles might represent only a small portion of the possibilities. If we wanted 
to isolate conditions that will imply something is a rectangle, we need to look at both 
rectangles and non-rectangles, to identify unique rectangle conditions, such as having four 
right angles. Once we have a set of properties that will pertain only to rectangles and not to 
non-rectangles, then we might be able to come up with an intelligent set of preconditions. 

 Sadly, real life does not always offer us geometric shapes. When we substitute a real 
aspiration people might have, too many try to infer the keys to success just from looking 
at the successful. Without thinking through this basic logical fallacy about a statement 
and its converse, “A implies B” does not mean “B implies A”, many people waste lots of 
time and money following paths where their likelihood of success is minimal. A common 
case among today’s generation of middle-class kids is the hopeful young writer who 
decides to major in English. An aspiring writer might see that many successful writers 
have degrees in English, without taking the time to note that the proportion of English 
majors who become successful writers is infinitesimally small. The statement “If you 
are a successful writer today, you probably have a college degree in English” does not 
imply “if you earn a degree in English, you will probably become a successful writer.” In 
contrast, if looking at computer engineering, they might see a similar profile among the 
most successful – but will also find that unlike in English, a huge majority of computer 
engineering majors do end up with a well-paying job in that field upon graduation. So in 
that case, the implication really does work both ways – but this is a coincidence, since the 
statement and its converse are independent. 

 Even famous business consultants are subject to this fallacy. Have you heard of the 
influential 1980s business book  In Search of Excellence , where the authors closely looked 
at a set of successful companies to find out what characteristics they were built upon? 
That became one of the all-time best-selling business books, and many leaders followed 
their sweeping conclusions, hoping to someday make their companies as successful as 
NCR, Wang, or Data General. But some have criticized the basic premise of this research 
for this same basic flaw: trying to determine the conditions of success by looking only at 
the successful will inherently get you the wrong kind of implication. It may enable you to 
find a set of preconditions that being successful means you must have had, while these 
same preconditions are met by endless numbers of failed companies. You really need to 
study both success and failure to find conditions that uniquely imply success. 

 So, when you or your children are thinking about their future, look carefully at all the 
available information, not just at instances of success. Always keep in mind that a logical 
statement “A implies B” is truly distinct from its converse “B implies A”, and take this into 
account in your decision making.      
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    CHAPTER 11   

 Looking at Life           

 It’s often the case that math and physics geeks look down on the “squishy sciences” 
like biology and medicine. However, mathematical foundations are critical to these 
sciences: it was largely the transition from qualitative observation to careful, quantitative 
measurement that led to our amazing modern success in these areas. In addition, 
spending many hours watching  Animal Planet  with my daughter, I especially enjoy 
stories where animals or plants seem to have somehow discovered laws of mathematics, 
or made use of ideas from these areas in the struggle for survival. 

 Aside from this, you may have heard of the promising research area of Artificial Life, 
where scientists try to model idealized animal behaviors with computer programs: this 
can often provide useful insights into both actual animal behaviors, and into new ways 
to use those behaviors in creating more intelligent computer programs. You may have 
seen the lifelike behavior of John Conway’s famous “Game of Life” simulation online; 
if not, I strongly encourage you to do a web search for the topic. It’s described to some 
degree in the articles below, but no text description can do it justice; from a few simple 
mathematical rules, you can construct what seems to be a living simulation. 

 Hence, topics related to medicine, biology, and animal behavior have been a regular 
source of ideas for  Math Mutation , and here I share some of my favorite episodes that 
touch on these areas. 

      Florence Nightingale, Math Geek 
     From Math Mutation podcast 85 
 You probably recognize the name of Florence  Nightingale  , nicknamed “the lady with the 
lamp”, who is known as the founder of modern nursing. But most likely you only have a 
vague idea what that means in practice: did she find a way to give shots less painfully? 
Or discover a new method of changing bedpans? Actually, during the 19th century, she 
introduced modern concepts of cleanliness and hygiene into British hospitals, saving 
countless lives by preventing many common infectious diseases that were essentially 
untreatable in her day. But one lesser-known aspect of this achievement was that 
Nightingale’s successes would not have been possible without her love of mathematics 
and her introduction of statistical methods into nursing and public health. 
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 As the daughter of an upper-class British family, Nightingale was expected to master 
the social and home arts, marry a respectable partner, and participate in high society. 
But from a young age she insisted on being allowed to study math, and after many 
emotional battles her parents finally gave in, even hiring the famous number theorist 
J.J. Sylvester as one of her tutors. She took the subject to heart, even sprinkling occasional 
math references in her personal letters. Once after attending a political lecture, she wrote 
to her boyfriend, “I have invented a new system of Logarithms (finding the capacities of 
arithmetic not sufficiently extensive) to count the number of times ‘Imperial Majesty’ 
occurs in the speech.” 

 Nightingale shocked her family by choosing to pursue nursing, and running off to 
care for soldiers at the Scutari Hospital in Turkey during the Crimean War. Once she 
arrived at the hospital, she was horrified at the filthy conditions, and began taking a 
detailed accounting of her activities as she defied the local military authorities and began 
to clean it up. For example, during one week she recorded the removal of 215 handcarts of 
debris, 19 flushes of the sewer system, and the animal carcass removal of two horses, four 
dogs, and a cow. 

 More importantly, though, she began to keep comparative statistics measuring 
hospitals against each other. She recorded that Scutari had 300–500 square feet per 
patient, versus 1600 in London hospitals. Furthermore, she recorded the death rates: 
42.7 % before the cleanup of Scutari, and 2.2 % afterwards. When the authorities were 
unconvinced that this was more than a fluke, she found two control groups to compare 
to: patients in ordinary London hospitals who were typically much less seriously injured 
than soldiers at Scutari, and soldiers treated in the field who were too badly wounded to 
transport. She successfully collected and analyzed data showing that before her cleanup 
of the hospital, soldiers were better off being treated in the field – but afterwards, Scutari 
had a better survival rate than the best London institutions. To help persuade others of 
the importance of her measurements, Nightingale also invented a new type of pie graph, 
known as the ‘polar area diagram’, essentially a pie graph that shows quantities through 
the increase or decrease in the radius of the circle at a given angle. 

 After her achievements at Scutari, proven through her detailed measurements and 
statistics, Nightingale went on to continue a distinguished nursing and statistical career. 
Among her later achievements were advising the Union army in the U.S. Civil War, the 
founding of a women’s medical college, and the introduction of modern medical care 
and nursing to India. She received awards including the Royal Red Cross and the Order of 
Merit, was elected an honorary member of the American Statistical Association, and was 
the first female member of the British Royal Statistical Society.    

     The Genius Who Cheated 
     From Math Mutation podcast 112 
  I’m sure that in high school biology class, you learned the story of the Austrian monk 
Gregor  Mendel  , who meticulously cross-bred many varieties of peas in his garden in 
the 1850s and 1860s, and came up with the first modern theory of genetics. By carefully 
observing a set of traits of the plants in his garden, he concluded that various traits 
were determined by inherited factors, later called genes, and that every plant carried 
two of these genes for each feature, one from each parent. He was ahead of his time, 
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and his work was largely ignored until the 1900s, despite being a major step forward for 
our understanding of biology. But did you know that according to many 20th century 
statisticians, he almost certainly fudged his results? 

 To understand why it’s likely he cheated, let’s start with a look at his theories. As one 
example, he took two stable lines of plants, one with purple flowers and one with white, 
and cross-bred them. In the first generation, all the descendants had purple flowers. But 
by cross-breeding those, in the next generation he got 75 % purple and 25 % white. This 
perplexing result could be explained by the fact that each plant in the first generation 
inherited a dominant purple gene and a recessive white gene. Then, when two from that 
generation were bred, there would be a 25 % chance that the offspring would have two 
purple genes, and thus have purple flowers; a 50 % chance that the offspring would get a 
purple and a white gene, also having purple flowers due to the purple dominance; and a 
25 % chance of two white genes, resulting in white flowers. 

 Mendel did this type of analysis based on seven different characteristics of his 
plants, and the result was his theory of inheritance, with two major laws. The law of 
segregation said that when an individual reproduces, it passes on one of each gene pair to 
its offspring. The law of independent assortment stated that genes mixed independently 
during reproduction. To some approximation, these theories were correct, and were a 
major step forward in our understanding of genetics. 

 But there were several respects in which Mendel was very lucky. First, in real life, the 
law of independent assortment isn’t quite right: if two genes are near each other on the 
same chromosome, they will be very likely to be passed on together. Mendel happened 
to choose characteristics that were largely independent, not being near each other on 
any chromosome. Another complication is that for many characteristics, there is not 
complete dominance of one trait over another, but a combination: for example, if he had 
been dealing with snapdragon flowers, he might have found that white and red parents 
blend to a pink offspring. A third issue is that many real-life characteristics have multiple 
genetic contributors: the short-haired ‘Devon Rex’ and ‘Cornish Rex’ cat breeds look 
similar, for example, but their short hair is caused by two different genes. Mendel’s lucky 
choices of characteristics to analyze eliminated all these difficulties. 

 Most damning, however, is an analysis done by statistician R.A. Fisher in the 1930s. 
He used what is known as a ‘ Chi-square’ test  . This is a statistical technique where 
you sum up squares of the differences between expected frequency and observed 
frequency of an event, divided by the expected frequency. This sounds odd, but has the 
nice property that it generates a graph whose area to the right of the observed value is 
proportional to the “P-value”, or probability that the result occurred by chance. Using this 
technique, Fisher determined that Mendel’s results were too good: there was only a 4 in 
100,000 chance that his results would so closely confirm his hypotheses. In other words, 
the random combination of genes should have resulted in frequencies of plant traits that 
still confirmed Mendel’s hypotheses, but not by such exact numbers. 

 What do we conclude about all this? Perhaps Mendel was a little too open about his 
theories to junior monks who helped tend his garden, and they were too eager to please 
their superior. Modern scientists are well aware that the best experiments are “double-
blind”, managed by assistants who don’t know the intended hypothesis, to avoid the issue 
where even with good intentions, humans tend to subconsciously bias results. On the 
other hand, maybe Mendel just cherry-picked, or should we say pea-picked, his results, 
discarding bad trials as probably due to human error. Maybe we are just seeing what’s 
known in modern times as the ‘publication bias’, where Mendel only talked about the 



CHAPTER 11 ■ LOOKING AT LIFE

146

subset of his experiments that seemed to give positive results, and discarded others as 
uninteresting or as the result of human error. Maybe he just was incredibly lucky. Some 
academics have even produced complex analyses that claim that for subtle reasons not 
taken into account by Fisher, Mendel’s results are statistically fine as-is, though I found 
these a bit too difficult to follow. 

 In the final analysis, was Mendel a genius or a fraud? Despite questions about the 
validity of his experiments, he did develop foundational theories of modern genetics which 
are critical to current biological and medical research. So perhaps he was a bit of both.    

     Shuttle Butt 
     From Math Mutation podcast 72 
  Have you heard about how the width of the solid rocket boosters on the space shuttle 
can be directly traced to the width of an ancient Roman horse’s rear end? Here’s how the 
story goes. 

 Apparently the solid rocket boosters for the shuttle are transported by rail, and need 
to be correlated with the standard railroad gauge, or track width, in order to fit through 
tunnels. This standard width is about 4 feet 8.5 inches. This width comes from standards 
set in England. The English set this standard because early trains were designed based 
on similar horse-drawn wagons, and that was a standard spacing for wagon wheels. The 
wagon wheels have that spacing because they had been built for centuries to correspond 
to ruts in old roads. And the major roads in England and Europe were first built by the 
ancient Romans, who had a standard wheel width on their war chariots. And finally, 
the chariots were designed to match the width of the back ends of a pair of warhorses. 
Thus, the solid rocket boosters on the space  shuttle   were directly based on the width of a 
Roman horse’s behind! 

 It’s a cute story, but sounded a bit suspicious, so I checked out a few urban legend 
websites, like Snopes and The Straight Dope. My suspicions were confirmed – there 
are quite a few holes in this story. To start with, railroad tunnels are significantly wider 
than the tracks, though perhaps some tunnel-related limitation reduces the size of the 
shuttle’s boosters. As for the standard gauge – there were a lot of creative American 
designers who experimented with different railroad track widths in the 19th century. 
During the Civil War, the Confederacy had three different sizes of tracks, and that may 
have contributed to their loss. The North had maximized efficiency by using the most 
popular width as a standard. After the war, destroyed Southern infrastructure was rebuilt 
(with central organization) to match the North, and that’s how the U.S. gained one 
standard track width. 

 But more fundamentally, I think this story is a classic example of how correlation 
does not mean causation. In other words, just because one event occurs before another, 
it doesn’t mean that the first one is the cause. It’s true that at the dawn of the railroad era 
wagon wheels were about the same width as ancient Roman chariots – but that’s because 
from ancient times through the Industrial Revolution, transportation technology was a 
constant. Whether an ancient Roman charioteer or a 19th century settler, you were using 
wheeled vehicles pulled by pairs of horses. So, the common cause of the width of a pair of 
horse’s behinds explains the widths of ancient Roman chariots, medieval English wagons, 
and the first railroads.    
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     Booms and Busts 
     From Math Mutation podcasts 14 and 159 
  According to the State of Missouri’s website on rabbit management, each female can 
produce 35 young per season, and  Wikipedia  says rabbits live 5–10 years. If we make the 
conservative estimate that a pair of rabbits has 3 good reproductive years and rounding 
off to get an even 100 offspring, that means that each pair of rabbits results in about 50 
times as many rabbits in the next generation. That means after 2 generations, there will be 
50 × 50, or 2500, rabbits, and in general after  n  generations, 50  n  , an exponential function. 

 For fun, now let’s calculate how long it would take for the planet earth to become 
nothing but a gigantic ball of rabbits. The volume of the earth is about 1.08 × 10 21  cubic 
meters. A cube about 8 cm on a side seems like a good estimate for the size of a rabbit, 
which would give a volume of .000512 cubic meters. So our planet is equivalent to about 
2.10 × 10 24  rabbits. Solving the equation  50   n    = 2.10 × 10   24  , by taking the log of both sides 
and then solving for  n,  we get an answer between 14 and 15. So, in other words, after only 
15 generations of rabbits, there should be no non-rabbit matter left on our planet. That’s 
quite an Easter. 

 This may lead you to an obvious question: why haven’t the rabbits taken over? Well, 
fortunately, there are plenty of limiting factors, such as food supply, predators, etc, that 
prevent them from sustaining the ideal reproduction rate in this simplistic model. But 
when rabbits are placed in a new environment with lots of food and few predators, we 
do see explosive growth – just ask the people of Australia, who got 24 rabbits imported 
in 1859, and by 1869 could hunt two million annually without making a dent in the 
population. Yet given these calculations, it still seems somewhat surprising that  Math 
Mutation  has a nontrivial number of non-rabbit listeners. 

 Let’s look into how we can model the countervailing forces, like scarcity of food or 
space. There is in fact a nice relation, originally developed by Belgian mathematician 
Pierre Verhulst in the 19th century, that models modified exponential growth in the 
presence of limited resources. He was actually describing a continuous model and 
using calculus, but when discussing populations we can use the simplified discrete 
form. Assume there is some maximum population or value that can be supported 
by the environment. Let  p1  be the proportion of this maximum tolerance we have 
currently reached,  r  be the rate of growth, and  p2  be the expected proportion of the next 
generation. Then the “logistic difference equation” can be expressed as: 

  p2 = r × p1 × (1–p1)  

 In other words, we are simply multiplying an additional factor to the exponential 
growth:  1–p1.  With regular exponential growth, we would just have  p2 = r × p1 . The 
additional factor accounts for the fact that as  p1  gets close to 1, the maximum possible 
size of the population, this will act as a tempering force to reduce the exponential growth. 
When we are very far from saturation, that  1–p1  is about 1, so it looks like standard 
exponential growth. The closer we get to saturation, the more the growth is throttled by 
that extra factor. 

 This formula doesn’t seem very complex, but if we plug in numbers some very 
interesting things happen. Intuitively, how would you expect this equation to act? A good 
guess might be that if you start with a low value for  p , population growth will initially 
be rapid, and then will smooth out and achieve some kind of stable equilibrium. For 
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a growth rate  r  of 2.9, this does indeed happen: for example, if we start with a  p  value 
of .2, indicating we have about 20 % of our maximum number of rabbits, we can see it 
initially jump to .46, then .72, bounce back a little to .58, and eventually settle down to a 
consistent .66. This shows that our population will settle down at about 66 % of capacity. 

 But for other growth rates, we see very different results. There are many growth rates 
for which the population never does settle. As one example, if we use  r  = 3.3, we can see 
that after a few generations, the population starts oscillating between .48 and .82. In other 
words, we have generations containing 48 % of our maximum rabbit capacity, followed 
by generations at 82 %, going back and forth forever. For various other growth rates, the 
population ends up oscillating between 3 or 4 values. There are even many values, such 
as  r  = 3.57, where the value never settles down or oscillates – it just seems to jump around 
forever between arbitrary totals. 

 What does all this mean? It means that this simple difference equation is an 
example of a   chaotic function   . That is, a function where a slight change in initial 
conditions can result in widely varying results. In this case, we see that small changes 
in the rate of growth can give us a nice stable population, boom and bust cycles, or 
random fluctuations. You might expect that a slight change in the rate would create a 
corresponding change in the equilibrium value, but this simply isn’t true: you may modify 
the rate a little and find you have lost equilibrium entirely, changed a former equilibrium 
into a new boom and bust cycle, or in effect randomized the results overall. 

 But seeing chaos come out of such a simple model, I think we’ve also discovered 
a surprising fact: in many parts of real life, boom and bust cycles may be a natural and 
expected occurrence. We tend to anticipate that things we encounter on a daily basis 
will reach some kind of equilibrium, whether it is the rabbit population in your yard, the 
national economy, the planet’s climate, your weight, or your spouse’s mood. When we 
see things not in equilibrium, we usually consider it a serious problem, and try to figure 
out what has gone wrong. After seeing the behavior of the logistic difference equation, 
though, we see that boom and bust cycles are something that really does arise out of 
simple, natural processes. A slight tweak to your inputs will not always get you the nice, 
predictable result you want. 

 So, next time you see world events or your daily life going out of control, take a step 
back before stressing about it. Maybe it is a real crisis, maybe it’s totally beyond your 
control, or maybe you just need to modify parameters of a few of your real-life logistic 
difference equations.    

     The Boids and Bees of Leadership 
     From Math Mutation podcast 160 
   Recently my daughter was staring out the car window at a large flock of birds passing 
by, and asked me, “How do they know which way to go?” As often happens with her 
questions, I didn’t have a good answer, so I just said “They’re birds, they are born 
knowing.” She pouted a bit, instinctively recognizing that that was not a very good answer. 
Thankfully, I was saved by her short attention span. But as luck would have it, that same 
week I started reading an entertaining book called  The Perfect Swarm  by Len Fisher, 
which describes many types of group algorithms and intelligence, including the simple 
methods that many animals use to keep their position in a flock. The key is to recognize 
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that no master planning is needed for birds to form a flock: the flock emerges from a 
small set of local rules used by each individual bird. 

 A classic demonstration of how simple individual rules can emerge into a group flock 
behavior was a computer simulation known as   Boids   , created by Craig Reynolds back in 
1986. He created a computer animation of a group of triangular birds (remember, this was 
1986, cut him some slack on bird shapes) that would fly around the computer screen in a 
realistic-looking flock. But rather than having a complex central program to plan out the 
flights of all the boids in his flock, he gave them each just three basic rules: Separation, 
Alignment, and Cohesion. The Separation rule required each boid to try to keep a 
reasonable distance from neighbors and avoid crowding. The Alignment rule required 
each boid to steer in the average direction of its closest neighbors. And the Cohesion rule 
required the boid to try to steer towards the average position of its neighbors. 

 Amazingly, these basic rules were all that was needed to create an accurate-looking 
simulation of real life flocks or swarms of animals. And when supplemented with an 
obstacle avoidance rule, this created cool effects like the flock automatically splitting and 
re-forming when blocked by a large tree-like obstacle. This influential demonstration 
has since been used as the basis for many realistic swarm animations in movies and 
computer games, including the penguin swarm in  Batman Returns  and a bunch of flying 
aliens in  Half-Life . 

 But the uses of boids are not limited to entertainment. Scientists have since used 
them as a starting point and tried to nudge Boids-like simulations closer to behaviors 
of real-life animals, leading to surprising new insights. One classic case was a couple 
of biologists who decided they wanted to find out how swarms  of   bees are led to newly 
discovered flowers. You probably can vaguely remember from biology class that the bees 
dance to tell each other of discoveries. But if you think about it, the tight spaces in hives 
and the massive numbers of bees mean that in practice, only a tiny proportion of a swarm 
can actually see the dance and know where a newly discovered nectar source is. So how 
do huge groups of bees arrive in the right place? At first you might think that the scout 
and the few who saw the dance would somehow be designated as leaders and get their 
companions to the right place, but you would be wrong. 

 After many painstaking hours of observing actual bee behavior, the biologists 
discovered the bees’ secret: they do NOT have designated leaders, and none of them 
really know who is going the right way. Most of the bees are just massed in a boids-like 
swarm, following local rules to fly with their neighbors. But the small number of bees who 
know the right direction, or the “streaker bees”, bias their flight to go faster than average 
and in the right direction. These bees are distributed throughout the swarm: they may 
be near the front, middle, or back. Since they are going slightly faster, they eventually 
reach the front and have to veer back within the swarm for a moment. But with most of 
the bees just trying to follow the basic rules and stay in the swarm, the few who know 
where they are going are good enough: with just a small number who are flying quickly 
in a purposeful direction, the entire group will end up in the right place. The biologists 
confirmed their discovery with a Boids-like simulation. 

 So, in other words, with a huge mass just trying to stay with their neighbors, all it 
takes are a few who are moving purposefully to get the entire swarm in the right direction. 
Some have pointed out that this insight can apply in other areas of life. How many times 
have you been with a bunch of friends deciding what podcast to listen to, and since most 
of them had no strong preference, your enthusiasm for  Math Mutation  soon turned into a 
group consensus? Maybe that’s not a realistic example, since after all, who could imagine 
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dissent on that topic. But you can easily think of how this might apply to business: the 
visionaries in a company can “lead from within”, and if everyone else is basically carrying 
out standard tasks through momentum, the few who are moving purposefully can steer 
the whole company in a new direction. 

 I should probably end this section here before I get into trouble: I think I just gave 
my boss an excuse not to promote me, since I’ve just proven I don’t need to be artificially 
placed at the head of the flock to lead the team in a new direction.     

     A New Kind of Decade 
     From Math Mutation podcast 166 
  Recently Stephen Wolfram’s massive tome,  A New Kind of Science , referred to as NKS 
for short, celebrated its 10th anniversary. Normally, a title like that is a dead giveaway 
that the author is a crackpot, as I’m sure you’ll hear if you listen to one of the dozens of 
skeptical podcasts that seem so popular on iTunes. But Wolfram is a special case – he is 
beyond doubt a true genius, having made contributions to particle physics starting at the 
age of 15, received a Ph.D from Caltech at the age of 20, was the youngest-ever recipient 
of a MacArthur “genius” grant at 21, and was the primary developer of the  Mathematica  
software package, which has become a worldwide standard for computational math. 
On the other hand, being an actual genius doesn’t prevent someone from going a little 
nuts after a while. So, did Wolfram, as the title of his book suggests, really revolutionize 
science? Or has he pulled a Linus Pauling and gone off the deep end? 

 First, let’s review the core concepts of this New Kind of  Science  . The NKS concept 
is based on the idea that very simple computational models can lead to surprising 
complexity. One example is Conway’s Game of Life, a member of the class of simple 
systems known as cellular automata. This “game” is played on an endless grid of squares, 
on which each square can be in a live (black) state, or dead (white) state. Each turn, any 
live square with exactly 2 or 3 live neighbors stays alive, otherwise dying of loneliness or 
crowding. Any dead square stays dead, unless it has exactly 3 live neighbors, in which 
case it becomes alive. That’s it. Despite the simplicity of these rules, there is an amazing 
variety of behavior it can produce, depending on the initial configuration of live squares. 
On the  Wikipedia  page you can see a “glider gun”, a structure of live squares that launches 
an endless series of “gliders” off to infinity. It’s even been shown that the Game of Life is 
computationally universal: a general Turing Machine, and thus any real computer can be 
simulated with the proper configuration of starting squares on a Life grid. 

 Given that computational universality is possible in such a simple system, what 
other complex real-life phenomena can be modeled by cellular automata or similar 
systems? Such systems have been used as models for fluid dynamics, traffic, crystal 
growth, and various areas of geology and ecology. If you play with the Game of Life long 
enough, you will find some configurations seem almost literally life-like in the way they 
defy prediction and seem to have minds of their own: “artificial life” has even branched 
off as a separate area of study. Wolfram’s contention seems to be that all the complex 
areas of modern science, such as biology, chemistry, quantum theory, and relativity, will 
eventually be revealed to be computations in some simple cellular automata-like system. 
But since it’s very difficult to back-solve and guess such laws from observing the system, 
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we should be creating a new scientific discipline, where we systematically examine the 
classes of simple computational systems, like cellular automata, and the computations 
that they can perform. Studying these computations will eventually lead us to discovering 
the underlying principles at the core of the other sciences: hence, if Wolfram is right, NKS 
really is indeed a new kind of science. 

 So, 10 years later, did Wolfram’s ideas really revolutionize science? Wolfram himself 
seems to think so: his anniversary blog entry points out that “there’s now an average of 
one paper a day citing the NKS book”, and points out that NKS models have been created 
for diverse areas including hair color in mice, clustering of red blood cells, patterns of 
worm appendages (yes, I also have to wonder about that one!), financial trading systems, 
and shapes of galaxies. He also points out that papers have appeared about almost all of 
what he characterizes as the 256 simplest cellular automata, showing that at least some 
are taking to heart his suggestion of focusing study on these simple systems. Since journal 
papers tend to reflect the real efforts of working science to some degree, it seems fair to 
claim that NKS has influenced a nontrivial amount of research. 

 On the other hand, some have argued that NKS was not really a new kind of 
science, but a logical progression of science in general. Scientists and engineers have 
always been looking for simple models of real-life phenomena: in a sense, this is the 
essence of scientific inquiry. Wolfram and other cellular automata researchers have 
made some important points, that simple models can enable emergence of much 
more complex-seeming phenomena than one would initially expect. But is it really 
the case that scientists in the varied areas Wolfram cites would not have found their 
simple models without the contributions of NKS? And while cellular-automata-based 
models have been successful in numerous niche areas, I think we’re still waiting for the 
description of some major, general area of science, such as particle physics or relativity, 
in terms of such a simple model. If there was such a success, I think it would be all over 
the front pages of the popular science literature, and as far as I can tell, almost all of 
the NKS impacts that Wolfram cites are limited to articles in academic journals. Not 
to knock journal articles, which are a standard part of the scientific process, but when 
you claim to be revolutionizing science, I think the bar is a little higher. We also can’t 
forget that many scientists may have felt obligated to reference NKS in any discussion 
that vaguely related to cellular automata, due to its status as a well-known and massive 
tome on the subject: one colleague confessed to me that this was actually the case 
when he cited NKS, even though his paper would have been nearly identical without 
ever hearing of Wolfram’s book. 

 So, did Stephen Wolfram really create a New Kind of Science, or was he just 
hypnotized by the cool animations of cellular automata on his screen into making the 
concepts sound much more grandiose than they deserve? It looks to me like the jury 
is still out: assuming his literature analysis is accurate, I think it’s safe to say that a lot 
of working scientists, engineers, and mathematicians are taking his ideas seriously, 
though we have yet to see the revolutionary breakthroughs that were to be promised 
by his title. But if anyone deserves the benefit of the doubt despite choosing a book 
title that raises the crackpot-detecting flags of every skeptic in the scientific world, it’s 
Stephen Wolfram.    
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     Basic Bugs 
     From Math Mutation podcast 167 
  After I released the podcast episode referenced in the previous section, a listener, Andrew 
from Switzerland, sent me an email with a fascinating link. This link was to an article 
on “Braitenburg Vehicles”, a set of simple, abstract vehicles defined by psychology and 
cybernetics researcher Valentino  Braitenburg   in 1986, which show how very simple 
robotic designs can lead to apparent intelligence and emotions, as viewed by a naive 
observer. While the robots can be physically built, and have been built or simulated at 
several links you’ll see in the show notes, Braitenburg really intended them as thought 
experiments, to better understand the basics of psychology. As he states in his book, “Get 
used to a way of thinking in which the hardware of the realization of an idea is much less 
important than the idea itself.” 

 The initial Braitenburg Vehicle can be thought of as a small toy car, with motors for 
left and right wheels, and basic sensors on the left and right sides of its front that can 
detect levels of some preset element of the environment, such as light or temperature, 
and operate the motors accordingly. The simplest vehicle can be thought of as one that 
just has temperature sensors that are together connected to both wheels, so it moves 
quickly when in a warm area, and slows down or stops in a cold area. If you saw one of 
these things in nature, would you realize how simple its design is, or would you attribute 
to it some conscious desire to get out of the sun and cool off? Here is Braitenburg’s 
answer: “Imagine, now, what you would think if you saw such a vehicle swimming in a 
pond. It is restless, you would say, and does not like warm water. But it is quite stupid, 
since it is not able to turn back to the nice cold spot it overshot in its restlessness. Anyway, 
you would say, it is ALIVE, since you never saw a particle of dead matter move around 
quite like that.” Braitenburg may be stretching things a little, but I don’t think his analysis 
is so farfetched, especially if you envision the vehicle dressed up to look more like an 
insect than a robot. 

 As you make the vehicles a little more complex, you might seem to be simulating 
bugs with slightly more complex actions and emotions. For example, think about the case 
where the left and right wheels can operate independently, with each sensor connected 
to the wheel on the same side. If the vehicle detects heat on one side, that wheel will 
spin faster, and it will turn away; it will appear that the vehicle is afraid of heat, as with 
our original example, but fleeing in more interesting ways as its independent wheels 
produce curved movement. If each sensor is connected to the opposite wheel, however, 
we will actually produce a very different behavior: it will head towards a source of heat, 
eventually ramming into it if possible. So our vehicles will look very similar to animals 
displaying attitudes of fear or aggression. 

 The next variant Breitenburg proposes is reversing the sign of the sensors’ influence, 
so instead of causing wheels to speed up, activating the sensors causes the otherwise-
moving wheels to slow down. Now let’s look at the two variants we previously discussed, 
with each sensor operating the wheel on the same side or opposite side. If on the same 
side, the vehicle will eventually come to rest facing the heat source, since the wheel on the 
opposite side will move faster than the one on the same side. If on the opposite side, the 
vehicle will eventually come to rest facing away from the source, for similar reasons, and 
will be more vulnerable to getting started again due to the appearance of remote sources. 
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So you could think of the first vehicle as a Lover, that really wants to be near the heat 
source, and the second as an Explorer, who likes the heat source but is ready to turn away 
for other opportunities. 

 It’s fun to think about what other slight variants will lead to behavior simulating 
different primitive emotions. Braitenburg wrote a whole book on the topic, where he 
goes on to add new twists such as multiple sensors, or “threshold sensors” that act 
discontinuously when certain values are reached in the environment, gradually building 
up into primitive neural nets and elements that seem to be leading to basic computers. 
These result in illusions of intention, likes and dislikes, memory, and other seemingly 
higher-level animal behaviors. He even goes on to discuss how Darwinian evolution 
could be used to create even more advanced vehicles. 

 The complexity resulting from these simple vehicles is fundamentally different 
from the cellular automata discussed in the last section in several ways, though. Coming 
from the domain of psychology more than automata theory, they are much less precisely 
described. These vehicles are not limited to as simple a set of operations as a typical 
cellular automaton, and seem to be open to eventually incorporating arbitrarily complex 
computing elements. Still, even before the major complexities are added, it is quite 
surprising how easy it is to mimic some common real behavior patterns we might see 
among animals in nature, just by tying together a few dumb machine components in an 
obvious way. Both Braitenburg vehicles and cellular automata can also be viewed as basic 
contributions the fringe discipline known as Artificial Life, the serious study of artificially-
created lifelike systems as the real foundations for generating non-biological life forms. 

 Anyway, next time you are frustrated or feel guilty about squishing a cockroach 
you see scurrying around your kitchen floor, remember that its behavior may well be 
represented by a trivial Braitenbug vehicle, and that it may be a dumb biological machine 
rather than an evil genius conspiring to destroy your kitchen.    

     Bugged by Math 
     From Math Mutation podcast 179 
  Since she was in first grade, my daughter has loved to play with insects and other bugs 
she finds outside. I try to encourage any science-type interest, though I’ve had to give her 
some stern talks about taking this hobby into the house. Thus we watch a lot of  Animal 
Planet  shows together. Recently one show mentioned 17-year cicadas, a type of insect 
whose larvae emerge from the ground into adulthood every 17 years. But as my daughter 
wondered out loud, how did they come up with the number 17? Why would an insect 
choose this particular number? 

 A little web searching revealed a few answers. But to start with, we need to figure out 
what question we’re asking. 17 years is an interesting life cycle for more than one reason. 
On the one hand, it’s pretty long to start with – why would an insect derive an advantage by 
spending so much time between generations? Then, as an avid math podcast fan, you’ve 
probably noticed another interesting aspect of 17: it’s a prime number, divisible only by 
itself and 1. Do the cicadas benefit from both long generation time and prime-ness? 

 According to one theory, the long generations are useful in cases where the climate is 
in a state of rapid change. Periodical cicadas evolved about 1.8 million years ago, at a time 
of climate instability. In these situations, there would sometimes be several years in a row 
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of inhospitable temperatures, either too warm or too cold. You can easily imagine that 
if bad years come in clusters, waiting a while to return after a year in which you barely 
survive can give you a bit of an edge, and prevent a Dust Bowl from wiping out your 
species. Of course, depending on the actual temperature patterns, the long generation 
time could be good or bad, but one modeling study linked in the show notes showed that 
in the climate of that time, a 17-year cicada would have a 96 % chance of its descendants 
surviving for 1500 years, while a 7-year variety would only have an 8 % chance. That’s 
assuming the main threat is the climate, and is not accounting for hungry predators or 
pet-seeking 6-year-olds. 

 The fact that their period is prime is another interesting adaptation. The most popular 
theory, originally proposed by famous biologist Stephen Jay Gould, is related to the fact 
that cicadas avoid predators by a method called “predator  satiation  ”. This is a fancy way 
of saying they just reproduce in such enormous swarms that the predators can eat all 
they want, and there are still enough survivors to propagate the species. But there’s a 
fundamental problem with this evolutionary strategy: predators could learn to increase 
their own population periodically in anticipation of this tasty swarm. If the period was a 
small, predictable number, it would not be too hard for some predator by chance to evolve 
a matching cycle. But with the prime number 17, chances are very small that a predator 
would evolve through random mutation to increase its population by the right period. 

 Another competing, or perhaps complementary, explanation comes from the cicada 
version of racial segregation: the subspecies that remain most distinct are the ones least 
likely to interbreed. For example, a 13-year and a 17-year cicada species would only meet 
at most every 13 × 17 = 221 years, meaning opportunities for interbreeding would be rare 
and the two genetic lines would be more likely to remain separate. There does seem to be 
a basic flaw in this explanation, if you think about it a bit: a 17-year period seems like an 
overly-complex way to keep species separate. All it would take is for a pair of species to 
have, for example, 2-year periods, but emerge 1 year apart – then they would never meet. 
However, if there are large numbers of random cicada groups of competing periods, it 
could be that among all these groups, the large prime-breeders will have the advantage of 
remaining distinct species. The smaller and non-prime breeders would meet much more 
often, and most likely blend with each other until they all seem to merge together. 

 As with many aspects of evolutionary science, it’s kind of tricky to figure out 
empirically whether one or all of these explanations is the right one. But there are lots 
of links on the web describing computational models that support one or more of these 
hypotheses. Maybe one day you will figure out an even better answer. Personally, I’m 
happy as long as they don’t end up in my kitchen.    

     Voyages Through Animalspace 
     From Math Mutation podcast 194 
  One day recently I was at the Oregon Zoo with my daughter, and we saw lots of cute and 
not-so-cute  animals  , including a tortoise, lizards, tigers, sea otters, and a chimpanzee. It’s 
always amazed me that such a variety of animals could evolve on our planet, and through 
a variety of mutations some primal forms have led to all these diverse and dissimilar 
creatures. For a long time I found this hard to grasp, until I read Richard Dawkins’ famous 
book  The Ancestor’s Tale . In one chapter of the book, he described evolution as a grand 
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mathematical journey through a special kind of multidimensional space. Somehow this 
geometric view of evolution made it seem more real, and more sensible to me than it had 
ever been before, so I thought I would go ahead and share it with you. 

 What do we mean by a journey through a geometric space? Let’s start by talking 
about a journey through an ordinary three-dimensional space. Think of a 3-D graph you 
might set up in a tool like Excel, showing your location in your house in terms of length, 
width, and height relative to the front door. So a dot at coordinates (0,0,0) might indicate 
that you are at the front door, while (10,10,10) might show that you are in your computer 
room a short distance away on the second floor. Suppose you ask the question: is it 
possible to get from the front door to the computer room? The answer is yes if you can 
draw a continuous path in your graph from coordinates (0,0,0) to (10,10,10), in which 
every point along the way is physically reachable. If your computer room is unreachable – 
say your wife encased it in steel walls on all sides to keep you from playing so many video 
games – this is represented by impassible blacked-out regions in your graph, preventing 
you from drawing this continuous path. 

 Now let’s look at how we can model animal evolution as a graph. Think about 
several characteristics of animals, such as fuzziness, size, and strength. You could draw 
points on a 3-D graph showing where some similar animals fall in these dimensions. 
Perhaps your house cat would be close to the graph’s origin, while a Siberian tiger 
would be represented by a point further out. Let’s ask the question: can we travel on a 
continuous path, where motion is due to genetic mutations resulting in a living creature 
slightly different on one of our three dimensions, from the house cat point to the tiger 
point? It’s pretty easy to imagine mutations that make an animal slightly larger, stronger, 
or fuzzier. Nobody would seriously propose, for example, that there is a blacked-out 
region somewhere between the cat and tiger where, after a certain size, there is no way a 
creature with that specification could be alive. So we can easily imagine that the cat and 
the tiger are related. 

 Looking at just these three dimensions is obviously a massive simplification, as 
there are thousands of dimensions along which an animal can be described: diet type, 
eyesight, hearing, and many other things you probably can’t even conceive of if you’re 
not a professional veterinarian or biologist. So the three dimensions we are limited to 
in our sad dimensionally poor existence, at least from our perception, are not sufficient 
to describe a creature. But the core concept remains: any animal can be thought of as a 
point in a large multidimensional graph. Graphs with more than three dimensions can 
be easily modeled with modern computer systems, though we can’t physically look at 
more than three in a single figure. If you want to figure out if some animal can have an 
evolutionary relationship to another animal, you just need to ask: can you conceive a 
continual path from one to the other in this gigantic space? It doesn’t matter if the path is 
incredibly long – evolution has millions of years to work with. 

 The most challenging part is that there are lots of blacked-out regions on this graph, 
representing non-viable monstrosities: the point with the size of a house cat and the bite 
strength of a tiger, for example, can probably never be reached, though if you try to pet my 
cat Manny while he’s washing himself you may get pretty close. As Dawkins points out, 
“in the multidimensional landscape of all possible animals, living creatures are islands of 
viability separated from other islands by gigantic oceans of grotesque deformity. Starting 
from any one island, you can evolve away one step at a time, here inching out a leg, there 
shaving the tip of a horn, or darkening a feather.” So the islands that Dawkins describes 
in his graph can be thought of as connected by thick sandbars, showing paths from one 
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to the other where the intermediate creatures are reasonable. The journey from a T. Rex 
to a chicken may seem incredible, but I don’t find it that hard to imagine a very long 
continuous series of changes that trace this journey in this strange type of space: changes 
in size, gradual transformation of arms to wings, hardening of teeth into a beak, etc. 

 There’s actually one more detail of this space that makes evolution slightly easier 
to believe than it might sound at first. We’ve been talking about continuous paths, but 
that is an oversimplification. Every genetic change is actually a tiny discrete ‘jump’ from 
one point to another, so the paths do not have to be fully continuous. So, for example, 
the jump from total blindness to light-sensitive spots, then to recessed spots filled with 
fluid, and so on to a full eye may seem to have many discontinuities, but that’s okay, as 
long as none of the discontinuities is large enough that it can’t be jumped by a small 
genetic mutation. In other words, some thin blacked-out regions of this graph may not 
be insurmountable. There are of course some discontinuities that can’t be jumped – a 
bird with a petroleum-based jet propulsion system might be plottable here, but it would 
require such a massive set of changes at once that it’s probably effectively impossible. The 
blacked-out regions between our superbird and the chicken are likely just too thick to 
allow an evolutionary jump. 

 Anyway, maybe this only helps for math geeks, but I found Dawkins’s spatial 
explanation a really intuitive way to think about evolution. Next time you play with 
your cat or dog, remember that he’s not just a pet, he’s a unique point in a massive 
multidimensional space.    

     A Heap of Seagulls 
     From Math Mutation podcast 201 
  The Heap Paradox, also known to snootier intellectuals as the  Sorites Paradox   (Sorites 
being the Greek word for heap), goes like this. We all agree we can recognize the concept 
of a heap of sand: if we see a heap, we can look at the pile of sand and say “that’s a heap!”. 
We all agree that removing one grain of sand from a heap does not make it a non-heap, 
so we can easily remove one grain, knowing we still have a heap. But if we keep doing this 
for thousands of iterations, eventually we will be down to 1 grain of sand. Is that a heap? 
I think we would agree the answer is no. But how did we get from a situation of having 
a heap to having a non-heap, when each step consisted of an operation that preserved 
heap-ness? 

 One reason this paradox is so interesting is that it apples to a lot of real-life situations. 
We can come up with a similar paradox if describing a tall person, and continually 
subtracting inches. Subtracting a single inch from a tall person would not make him 
non-tall, would it? But if we do it repeatedly, at some point he has to get short, before 
disappearing altogether. Similarly, we can take away a dollar from Bill Gates without 
endangering his status of “rich”, but there must be some level where if enough people 
(probably antitrust lawyers) do it enough times, he would no longer be rich. We can 
do the same thing with pretty much any adjective that admits some ambiguity in the 
boundaries of its definition. 

 Surprisingly, the idea of clearly defining animal species is also subject to this 
paradox, as Richard Dawkins has pointed out. We tend to think of animal species as 
discrete and clearly divided, but that’s just not the case. The best example from the 
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animal kingdom may be the concept of “Ring Species”. These are species of animals that 
consist of a number of neighboring populations, forming a ring. At one point on the ring 
are two seemingly distinct species. But if you start at one of them, it can interbreed with a 
neighbor to its right, and that neighbor can interbreed with the next, and so on… until it 
reaches all the way around, forming a continuous set of interbreeding pairs between the 
two distinct species. 

 For example, in Great Britain there are two species of herring gulls, the European 
and the Lesser Black-Backed, which do not interbreed. But the European Herring Gull 
can breed with the American Herring Gull to its west, which can breed with the East 
Siberian Herring Gull, whose western members can breed with the Heuglin’s Gull, which 
can breed with the Lesser Black-Backed Gull, which was seemingly a distinct species from 
the European gull we started with. So, are we discussing several distinct gull species, or is 
this just a huge heap of gulls of one species? It’s a paradox. 

 Getting back to the core heap concept, there are a number of classical resolutions 
to the dilemma. The most obvious is to just label an arbitrary boundary: for example, 
500 grains of sand or more is a heap, and anything fewer is a non-heap. This seems 
a bit unsatisfying though. A more complicated version of this method mentioned on 
the  Wikipedia  page is known as “Hysteresis”, allowing an asymmetric variation in the 
definition, kind of like how your home air conditioner works. When subtracting from the 
heap, it may lose its heapness at a threshold like 500. But when adding grains, it doesn’t 
gain the heap property again until it has 700. I’m not convinced this version adds much 
philosophically though, unless your energy company is billing each time you redefine 
your heap. 

 A better method is to use multivalued logic, where we say that any pile has some 
degree of heapness which continuously varies: over some threshold it is 100 %, then as we 
reduce the size the percentage of heapness gradually goes down, reaching 0 at one grain. 
A variant of this is to say that you must poll all the observers, and average their judgement 
of whether or not it’s a heap, to decide whether your pile is worthy of the definition. 

 If you’re a little more cynical, there is the nihilistic approach, where you basically 
un-ask the question: simply declare it out-of-bounds to discuss any concept that is not 
well-defined with clean boundaries. Thus, we would say the real problem is the use of 
the word “heap”, which is not precise enough to admit philosophical discussion. There 
are also a couple of more involved philosophical resolutions discussed in online sources, 
which seem a bit technical to me. 

 Ultimately, this paradox is pointing out the problem of living in a world where we 
like things to have discrete definitions, always either having or not having a property 
we ascribe to it. It is almost always the case that there are shades of grey, that our clean, 
discrete points may reach each other by a continuous incremental path, and thus not be 
as distinct as we think.       



159© Erik Seligman 2016 
E. Seligman, Math Mutation Classics, DOI 10.1007/978-1-4842-1892-1_12

    CHAPTER 12   

 Puzzling Paradoxes           

 Paradoxes, statements that somehow seem both true and false or otherwise self-
contradictory, have always been a favorite topic among math geeks. They seem to 
indicate cases where our desire for airtight logic and mathematical precision runs 
headlong into a brick wall. Often they show some kind of previously misunderstood 
limitation in the logical structures we have been building, or some kind of fundamental 
disconnect between our human languages and the underlying mathematics. 

 There are also some cases that seem like paradoxes at first due to limitations of our 
intuition of our linguistic description, but actually are perfectly consistent when correctly 
understood. I lump some of these into the same bucket as well, since they require 
stretching our minds in similar ways to properly dig ourselves out of the illusionary 
“paradoxical” hole. 

     You Can Cross the Road 
     From Math Mutation podcast 94 
  You have probably heard about  Zeno’s Paradox  , a classical problem first described by 
the ancient Greek philosopher Zeno of Elea around 490–430 BC. More precisely, he 
described a series of paradoxes, but here we will discuss the most commonly known 
one, sometimes referred to as the  Dichotomy paradox  . It is equivalent to the following: 
Suppose you want to cross the street. Before you get all the way across, you have to get 
halfway across. But before you get halfway across, you have to get 1/4 of the way across. 
And before you get 1/4th of the way across, you have to get 1/8th of the way across. And 
so on. Since you have to do an infinite number of things before you advance any distance, 
it’s impossible to get anywhere. Thus, all motion is an illusion. 

 Actually, to my mind, even if you take the paradox at face value, the conclusion that 
all motion is an illusion seems to me like it doesn’t really solve the problem. After all, 
assume you want to imagine yourself crossing a road, since you are resigned to the fact 
that real-life motion is impossible. Before you imagine yourself getting all the way across, 
you must imagine yourself getting halfway across. And before you imagine yourself 
getting halfway across, you must imagine yourself getting a quarter of the way across. And 
so on. So, even in your imagination, it’s a paradox, and an imaginary crossing of the street 
can’t exist either! I guess if we can imagine ourselves teleporting across the road, that 
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would bypass this issue, but I’m pretty sure I can imagine myself crossing a road without 
teleportation. Of course, maybe I’m just imagining that I can imagine that. 

 Another interpretation of the ancients was that the paradox proves that space is not 
infinitely divisible. If at some point you can’t take half the remaining distance anymore, 
there is no paradox. However, there are some difficulties with this solution: even if there is 
some size below which no physical objects exist, isn’t it still the case that you can describe 
distances smaller than that, since nothing prevents you from halving an arbitrarily small 
number? And then you must traverse these distances in order to move. If we supplement 
this with the supposition that continuous motion does not exist, and below some distance 
motion is always achieved by micro-teleportation that we don’t notice, I suppose that 
does resolve it. In fact, that interpretation may be consistent with modern quantum 
physics. But there are better ways to resolve the paradox and still allow continuous 
motion. 

 As early as the 300 s BC., Aristotle had noticed that the sequence of diminishing 
distances also comes with a sequence of diminishing *times*. Thus if it should take you 
a minute to cross the street, you should take 1/2 minute to get 1/2 way across, or 1/4 to 
get 1/4 of the way across, etc., so while you do have to do these infinite things, they begin 
to take infinitesimal amounts of time as they get smaller and smaller. While the total 
distance you need to cover is 1/2 + 1/4 + 1/8 + …, on to infinity, the total time is given by 
the same series. If each of the infinite distances took a full minute to traverse, then you 
truly would have a paradox: it would take you an infinite time to sum up the infinite 
terms and travel any distance. But since the infinite number of infinitesimal distances are 
covered using an infinite number of infinitesimal times, as long as these infinite series 
have finite sums, you are covering a finite amount of space in a finite amount of time, and 
there is no paradox. 

 By the way, remember that the infinite series 1/2 + 1/4 + 1/8 + … does have a finite 
sum. To prove this, let S equal the sum of the series. If we write S = 1/2 + 1/4 + 1/8 + …, 
then multiply both sides by 2, we get 2S = 1 + 1/2 + 1/4 + 1/8 + .... But the right side of that 
equation is just 1 + S, since all but the initial 1 form the series we started with. And if 
2S = 1 + S, S = 1, and there is our finite sum. These kinds of results were actually known as 
early as Archimedes in the second century BC. 

 Now, some philosophers will say that this mathematical refutation based on 
summing infinite series is too glib, and in fact that the whole basis of allowing infinite 
processes in algebra and calculus is problematic. But I think calculus has worked in 
enough real-life contexts that I won’t worry too much about it. Maybe you should listen to 
a philosophy podcast if you still have trouble imagining you can cross a road. But, as your 
hand will never be able to reach all the way to the keyboard to subscribe to that other 
podcast without summing an infinite series, that might be a challenge.    

     Four-Dimensional Greek Warships 
     From Math Mutation podcast 197 
  Today we’re going to discuss the famous Ship of  Theseus paradox  . This paradox, known 
at least since the time of Socrates, involves the ship that the famous hero Theseus sailed 
from Crete to Athens. When the ship returned, the local shipwrights noticed that one of 
its boards was starting to rot, so replaced it. Because the ship was so famous, rather than 
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eventually scrapping it as it got old, they continued over the years replacing any broken 
or decaying boards with new ones. Eventually 100 % of the wood on the ship had been 
replaced: not a single plank remained that had been present on the original voyage from 
Crete. At this point, was this still the same ship from Theseus’s voyage, or should this be 
considered a new ship that had been constructed in the port of Athens? Many years later, 
Thomas Hobbes made this paradox even more confusing by adding one more issue: 
suppose someone had painstakingly gathered the removed boards and used them to 
construct a second, complete though not-very-sturdy, ship. Would this new ship have a 
better claim to be the true Ship of Theseus? 

 This paradox has been described with several variations over the years. During the 
enlightenment John Locke described essentially the same paradox based on patching a 
sock. Jules Verne came up with a clever version where an old man took a much younger 
wife, who after being widowed many years later took on a much younger husband, and 
the pattern repeated for hundreds of years. Was this “the same” marriage centuries down 
the line? In modern times, you’re probably most likely to encounter this paradox in terms 
of rock bands, who seem to be in a perpetual state of warfare over the band name after 
some original members leave. For many years I was disappointed that the last  Velvet 
Underground  album, “Squeeze”, was out of print; it was considered to not be a true VU 
album by most fans, since none of the original members were left by the time it was 
recorded, but I was still curious to hear it. Eventually  iTunes  made that album available, 
and after listening to it once, I have to take the side that the vessel in Athens’ harbor 
should have been burnt as kindling. 

 But more seriously, how do we resolve this paradox? After all the planks had been 
replaced, is Theseus’s ship the one made out of the new planks, the one constructed from 
the old planks, or neither? I think the most satisfying solution I have heard is based on 
the concept of “four-dimensionalism”. The idea here is that our problem stems from the 
naive definition of Theseus’s ship as an object at some point in three-dimensional space. 
We need to think of the Ship of Theseus as the union of a continuous set of objects in 
four-dimensional spacetime, accounting for not just the three dimensions of the physical 
object but also the points in the fourth dimension of time. Each ‘slice’ of the Ship of 
Theseus consists of a three-dimensional ship at a particular point in time, and the Ship of 
Theseus is a union of all these slices. 

 In this view, the Ship of Theseus consists of the original ship on the day it returned 
to port, plus the ship in that port with one plank replaced a week later, and so on. We 
need to be clear about what we are defining as Theseus’s ship at each point in time. 
Thus gradually changing out the planks doesn’t make the ship a different ship, since we 
defined the Ship of Theseus to be the one that is continually getting repaired over some 
interval in four-dimensional spacetime. Note that it also possible to instead define the 
Ship of Theseus to be the sum of the original planks at each given point in time. With this 
alternative but still valid definition, Theseus’s oddly defined ‘ship’ will start out as the 
original ship upon its return from Crete, but then at many future time points consist of 
a partial ship plus a pile of wood in a junkyard somewhere, until Hobbes completes his 
duplicate. 

 Of course, there are simpler ways to resolve the paradox as well. One might argue 
that the real problem is just the vague and muddy definition of what is the Ship of 
Theseus, which the paradox assumes the user to have as an implicit notion but is never 
clearly stated. (I wonder if the “E-prime” techniques discussed a few chapters ago, where 
you avoid the word ‘is’ in favor of more specific verbs, could have helped here.) If we had 
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clearly defined the Ship from the outset, in terms of its planks, its deed, the captain, or 
something more tangible, we would never hit a seeming paradox. A nice metaphor might 
come from some U.S. gun control laws, where the a component known as the “lower 
receiver” is considered to contain the identity of the firearm, and it’s legally the same 
weapon as long as any other part is replaced, though it becomes a different one if you 
change the receiver. 

 Anyway, next time you bring your car to the local mechanic and they replace a tire 
or air filter, think about whether Theseus would let you tell your spouse that you brought 
home a new car.    

     A Christmas Surprise 
     From Math Mutation podcast 139 
  Suppose I tell you that I have a Christmas surprise for you: I will release a special  Math 
Mutation  episode some morning next week, but you won’t know in advance when it will 
be. Being a math geek, you start reasoning about it logically. 

 Suppose the episode comes out on Saturday. By Friday, you would have known 
that the only remaining day of the week is Saturday, so you would already know in 
advance that the podcast will be released that day – contradicting my original promise 
that it would be a surprise. Once you eliminate Saturday, on which other days could 
it happen? Well, now you know it can’t be Friday either, because if the podcast didn’t 
arrive by Thursday, you would know it had to be Friday, since you already know it’s not 
Saturday. If it’s truly to be a surprise, it thus can’t be on Friday either. Following a similar 
chain of logical induction, we see that it could not happen any day of the week! Then, 
when I actually release the podcast on Wednesday, you are truly surprised, as I originally 
promised – which seems to contradict your logic. 

 This paradox, most commonly known as the  Surprise Paradox   or Prediction 
Paradox, is said to have originated during World War II, when the Swedish government 
announced on the radio that there would be a civil defense exercise during the following 
week, but nobody would know the date in advance. Swedish mathematician Lennart 
Ekbom recognized this paradox inherent in the announcement, and it soon spread virally 
throughout the mathematical community. One of many reasons why civil authorities 
sometimes consider mathematicians a pain in the rear. Anyway, by 1948 the paradox 
appeared in print in a British magazine, and by the end of the 20th century, nearly 100 
academic papers had appeared on the topic in philosophy and mathematics literature. 
There have been many equivalent formulations, including one involving a prisoner about 
to be hanged, and another by Martin Gardner where a husband promises a surprise gift 
to a wife. 

 This paradox does seem to be a valid issue when first described, but it’s not too hard 
to satisfy yourself after thinking a few minutes that some kind of trick has been played 
on you. One simple resolution is to accept that I have truly given you a contradictory 
statement by promising that you can never know in advance the day of the podcast. If 
you can reach a logical contradiction by deductive reasoning, that means that one of your 
axioms, probably the statement I gave you, had to be false. Thus, my statements must not 
be truthful in the first place, and you actually have to disregard them, and have no useful 
information about the timing of the podcast. 
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 A web author named Uri Geva points out another subtle aspect of this paradox. We 
are really mixing two forms of surprise here: there is surprise due to lack of knowledge, 
when you simply do not know when something will happen, and surprise due to 
contradictory knowledge, when you have logically reasoned that something will not 
happen and then it does. The announcement of the surprise podcast is transforming 
the first type of surprise into the second. Is it still a paradox? I think at its essence, this 
explanation is equivalent to the previous resolution, where the logical contradiction has 
effectively made the two forms of knowledge equivalent. 

 But to get a more satisfying resolution, it looks to me like the key point is the 
definition of ‘surprise’ in the context of the paradox. Am I truly promising you that you 
will never, at any point, have the possibility of advance knowledge of the correct day? Or 
am I merely promising that *today* you do not yet know the day of the podcast? If we use 
the former definition, there is likely a paradox here. If we use the latter definition, merely 
requiring that you don’t know the day right now, then the paradoxical reasoning falls 
apart. 

 Given that the Surprise Paradox has inspired so many academic papers, you can 
easily imagine that a lot more has been said about it. A detailed  American Mathematical 
Monthly  paper by my old Princeton classmate Tim Chow formulates several versions 
of the paradox in symbolic logic, and even somehow calculates an exact probability 
distribution to choose the day while maximizing surprise potential for a five-day week. 
However, I think as long as you are clear on your definition of surprise, you can avoid a 
paradox without going into that much detail.    

     Resolving the Grandfather Paradox 
     From Math Mutation podcast 122 
  You have probably heard about the “ Grandfather Paradox  ”, a classic logical proof that 
backwards time travel is impossible. Suppose you have a time machine that allows you 
to travel back in time. You can then use it to go back to the time when your grandfather 
was a child, and shoot him. This would mean that you could never be born. But if you 
were never born, you would not exist to travel back in time and kill your grandfather – so 
your grandfather would be OK, and you would be born after all. Since our only logical 
conclusions are the contradictory results that you both were and weren’t born, our 
premises must have been wrong, and time travel is impossible. 

 The most common way science fiction authors have resolved this issue is to use 
multiple universes: if you travel back in time and alter events, you create a parallel 
universe where the different events occur. So in one universe your grandfather was shot, 
and in another he wasn’t. But that’s a form of cheating: if traveling back in time puts 
you in another universe, then you didn’t really travel back in time. Can we resolve this 
paradox in such a way that allows time travel in a single universe? 

 The answer is yes. Back in the 1980s, Dr. Igor Novikov developed something called 
the “Novikov self-consistency principle”, which states that if any event would change 
the past in an inconsistent way, its probability is 0. So, you simply couldn’t shoot your 
grandfather. You might try to do it – but something will always go wrong. Perhaps you 
will have a fatal heart attack a moment before firing the bullet. Or you might return to 
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find your father telling the sad story about how when your grandfather was a child, some 
maniac from the future killed his lesser-known twin brother. Or you might discover you 
accidentally dropped your iPod in the past while time-traveling, and its inspirational 
math podcasts gave your injured grandfather the will to live. By the way, last year you may 
have read in the papers about some physicists trying to use this same self-consistency 
principle to explain why the Large Hadron Collider was plagued by problems – it would 
somehow lead into inconsistencies in the universe, so it was just not physically possible 
to get it working. 

 But how can this self-consistency principle make sense, in a world with free will? 
It might be useful to imagine it in terms of a two-dimensional example. Let’s suppose 
we are in Flatland, the two-dimensional universe discussed in earlier chapters, and it is 
inhabited by a single being, Mr. Square. Think of the plane as a square sheet of glass, 
with Mr. Square being an etched square that can move around it. Let’s take the plane 
as it exists at 1:00, then lay on top of it the plane at 1:01, then at 1:02, etc. As we pile 
on Mr. Square’s plane-moments, each a single unmoving glass sheet, imagine we are 
building up a large translucent cube, created by all the stacked planes. Kind of like one 
of those etched-glass things you see in souvenir shops. We see a snake-like trajectory 
etched in the cube, showing Mr. Square’s movements around the plane. The square is 
experiencing each moment in succession, his consciousness slowly moving up the cube – 
but we see it all at once. It’s kind of a history-cube showing us in one glance the square’s 
entire worldline, the history of all he has experienced or will experience. The etchings 
in the cube never move from our point of view, because what Mr. Square senses as his 
dimension of time has been translated into our dimension of height. 

 Now suppose Mr. Square has a time machine in his plane, and uses it to travel back 
in time from 2:00 to 1:00. If we look closely at our cube, we can see there is a second Mr. 
Square near the bottom, in the 1:00 plane. But no matter what trajectory the second 
Mr. Square traces, it can’t change his original trajectory – there is only one cube, and 
we are seeing the world history all at once. Mr. Square might have the idea that he can 
travel back in time and kill his 1:00 self, but we can look at the cube and see that either 
the 1:00 Square continued to live or he didn’t: the whole history-cube is static, and does 
not change from our point of view. So no matter what happens, Mr. Square’s history 
must occur in a self-consistent way: it’s physically impossible for it to occur otherwise. 
Similarly, what we perceive as time might be seen by creatures outside our universe as 
a mere static trajectory through an already-determined past and future, which by their 
nature cannot be changed in an inconsistent way. 

 This solution is a little disturbing, as it demolishes our perception of free will. But 
don’t blame me – the universe destined me to write this chapter.    

     A Million Dollar Choice 
     From Math Mutation podcast 123 
  The previous section’s topic, on resolving the Grandfather Paradox, got me thinking 
about another paradox that is somewhat related. This one, known as  Newcomb’s Paradox  , 
has also led to large amounts of debate in the philosophical community, and also brings 
into question fundamental issues of the existence of free will. It goes like this. 
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 Suppose we have a Predictor, that is, a psychic or similar person who claims to be 
able to predict the future, and has always predicted correctly in the past. The Predictor 
has set up two boxes, Box A and Box B, and given us the choice to take the contents of 
either Box B or both boxes. If he predicted that we would take both boxes, he has put 1000 
dollars in Box A and nothing in Box B. If he predicted we would just take Box B, he has 
put 1000 dollars in Box A and a million dollars in Box B. It’s important to note that the 
predictor set up the boxes in advance, so no action we take now can change the contents. 
Should we choose to take both boxes, and just Box B? 

 One obvious answer comes from the theory of “expected utility”. If we take both 
boxes, that must mean that the Predictor expected us to do so, and we only get 1000 
dollars. If we just take Box B, then the Predictor expected us to do this, and we get the 
million dollars. Of course, if we really believe in the Predictor, we don’t really have a 
choice in the matter, but we can hopefully believe we are the kind of person with the 
willpower to just take one box, in which case we are about to be a millionaire. So to the 
extent that we believe we have free will, we should take Box B. Case closed. 

 Another obvious answer comes from the theory of “dominance”. Since the money 
is already in the boxes, we are in one of two situations: either Box A has a thousand and 
Box B is empty, or Box A has a thousand and Box B has a million. In each of those cases, 
opening both boxes gets us $1000 more than just opening Box B. So, since opening both 
is guaranteed to get us more money than just one, we should naturally take both boxes. 
Regardless of what the Predictor thought we would do, the money is in the boxes, so it 
would be crazy to leave one behind. Case closed. 

 You can see why this is seen as a paradox – we have seemingly irrefutable arguments 
for taking just box B, or for taking both boxes. But I think the statement of the paradox 
cheated in a way: we were presented with a Predictor who knows the future, yet told 
we can choose between the boxes using our free will. Both can’t be the case. Either the 
predictor’s knowledge of the future is imperfect, or we don’t really have the free will to 
make the choice. Since we start with contradicting assumptions, it’s not surprising that 
we come up with contradicting conclusions. And a paradox is not a paradox if its initial 
premises cannot be consistently valid. 

 Another way to look at it is that we do have free will, but also backwards causality: 
that we can choose freely, and the choice we make now travels backwards in time to the 
Predictor’s mind. But in this case, we are faced with something similar to the solution 
to the Grandfather Paradox discussed in the last section – as long as there is a way for 
the universe to be consistent, this kind of time travel is not ruled out. If such is the case, 
we clearly need to choose Box B, since that will cause the million dollars to be there. 
Newcomb specifically ruled this solution out, since the answer is too easy in that case. 

 By restating this paradox in ways where the Predictor is slightly imperfect, we can 
look at it in intriguing new ways. For example, suppose you learn that two contradictory 
genes run in your family. One will make you a football champion and lead to multimillion 
dollar NFL contracts. The other will make you the greatest math podcaster in the Internet 
universe, but will also cause you to die by the age of 30. You are entering college, and 
must choose whether to major in football studies or mathematics. You face a similar 
choice to the paradox: does it make sense to give up your lifelong dream of being a math 
podcaster, and settle for being a football champion, on the basis of the fact that choosing 
math means an early death is more likely? Or does it make more sense to reason that 
there’s no way to change your genes, so you should follow your heart? Hopefully, you will 
never be faced with such a gut-wrenching choice.    
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     The Painter’s Paradox 
     From Math Mutation podcast 55 
  In earlier chapters, you may remember that we discussed an odd figure known as a fractal 
that had an infinite perimeter but a finite area. But in a recent discussion a co-worker of 
mine, Wayne, mentioned a simple non-fractal 3-D figure known as Gabriel’s Horn that 
has a similar property: it has an infinite surface area, but only a finite volume! This means, 
bizarrely, that you can fill up the figure by pouring in a finite amount of paint, but you can 
never paint its surface. Thus the definition of this figure is sometimes referred to as the 
“Painter’s  Paradox  ”. It was first discovered way back in the 17th century by Evangelista 
Torricelli, the same Italian physicist who invented the barometer. 

 How is Gabriel’s Horn constructed? It’s actually very simple. Take the graph of  y = 1/x , 
drawn starting from  x = 1  and continuing on to infinity. Now rotate the graph in a circle 
around the x-axis, forming what looks like a giant horn, with the wide end open at  x = 1  and 
the narrow part trailing off forever to infinity. You can see an illustration of this figure below:       

  If you look at the circular cross-section at any given point, its radius is  1/x , so its area 
is  π/x   2  . Now let’s calculate the surface area and volume of this figure. You may recall that 
integrals, or infinite continuous summations of 1/x 2 , converge to a finite sum, since the 
values diminish very quickly and become negligible. So if we find the volume by taking 
the integral from one to infinity, we can easily determine that the total volume of this 
figure adds nicely to a value of  π . But to find the total surface area, we need to take the 
integral of the perimeter, which is  2πr  at any given point, or  2π/x.  So this surface area is 
proportional to an integral of 1/ x , which we know diverges to infinity. Thus, we could fill 
the horn with a finite amount of paint, but paradoxically, that paint could not fully cover 
the inner surface area. Actually, if we consider paint as a 3-dimensional object, and allow 
its thickness to diminish in proportion with the size of the horn, we can transform the 
painting into a volume problem and solve the paradox. 

 But something still seems seriously strange here. How can we have a finite volume, 
but an infinite surface area? Ultimately, in the particular case of Gabriel’s Horn, this 
descends from our misfortune that sums of  1/x  grow to infinity, while sums of  1/x   2   
converge – so paradoxically, adding a dimension to a figure whose size diminishes as 1/ x  
will turn an infinite value into a finite value. Incidentally, you can see from this analysis 

 Figure 12-1.    Gabriel’s horn 1   

   1  Sourced from Wikimedia Commons at   https://en.wikipedia.org/wiki/File:
GabrielHorn.png    . Released into public domain by owner, user RokerHRO.  

https://en.wikipedia.org/wiki/File:GabrielHorn.png
https://en.wikipedia.org/wiki/File:GabrielHorn.png
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that the Horn is really just a representative of a huge family of similar figures, created by 
“stretching” an infinite two-dimensional graph into three dimensions using a converging 
function. For example, take the graph of  y = sin x  from  x  = 1 to infinity, then just thicken it 
by stretching the graph in three dimensions by a factor of  1/x   2   at each point, looking at the 
solid formed by the area between the graph’s curve and the  x -axis. You will similarly get a 
figure with infinite surface area and finite volume. 

 The real problem here is that we are defining figures that can never be physically 
built – you can’t construct a horn that actually descends out to infinity. Any finite piece 
of Gabriel’s Horn that can be built, can obviously be both painted and filled with paint. 
If we were describing a figure that could physically be constructed, I’d be a lot more 
worried about this paradox. But as it is, our description of the figure is really just an 
interesting mathematical game. You might find it fun to look up other converging and 
non-converging integral functions in a calculus text, and figure out more strange figures 
you can build by rotating, stretching, or otherwise extending the dimensions, creating 
out-of-sync area-related and volume-related properties.    

     The Monty Hall Paradox 
     From Math Mutation podcasts 3 and 109 
  The so-called “ Monty Hall Paradox  ” is a famous problem in probability theory which 
a large majority of engineers and scientists will get wrong the first time they hear it. 
Recently I was stuck for several hours in a boring lecture, and after covering several 
notebook pages with scribbled diagrams, I think I finally understand the problem. Let’s 
see if you believe me. 

 Suppose you are on a game show facing 3 curtains, which we’ll call A, B, and C. You 
are told that one conceals a prize, and the others contain goats. You choose curtain A. 
But before it is opened, the host opens curtain B, revealing that there is a goat behind 
that one. Should you stick with curtain A, or switch to curtain C? You probably will reply 
with the common-sense answer that it makes no difference, and you have a 50/50 chance 
either way. But you are wrong. You should switch to curtain C, with 2/3 probability. To see 
this, think about it this way. There are three possible situations, all equally likely.

•    Situation 1: You chose the correct curtain.  

•   Situation 2: You chose the wrong curtain, and the first of the ones 
you didn’t choose contains the prize.  

•   Situation 3: You chose the wrong curtain, and the second of the 
ones you didn’t choose contains the prize.    

 If you were in situation 1, where you chose correctly the first time, obviously you 
shouldn’t switch. But in situations 2 or 3, you should switch. So with 2/3 probability, you 
will win if you switch curtains. 

 That explanation might sound somewhat satisfactory, but there is something about 
this problem that causes people to insist that it’s wrong. We just have a really strong 
intuition that changing the door shouldn’t matter. Don’t feel too bad though: in one 
study, only 13 % of respondents got the answer right, and people who get it wrong include 
such respected intellects as scientists, Nobel Prize winners, and podcast hosts. Even the 
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genius Hungarian mathematician Paul Erdős got it wrong the first time. When columnist 
Marilyn Vos Savant wrote an article on this problem in  Parade  magazine in 1990, she got 
about 10 thousand letters claiming her correct solution was wrong, including 1000 signed 
by PhDs. Eventually this resulted in a 1991 front page article in the  New York Times , where 
with typical media savvy, they decided to settle the issue by interviewing former game 
show host Monty Hall himself. Surprisingly, he understood the problem quite well. 

 Here’s another way to think about the solution: When you choose a door, you have 
a 1/3 chance that you chose the right one. In that case, you have to keep your original 
choice to win. But there’s a 2/3 chance that you chose the wrong door – and in these 
cases, switching doors is what gets you the car. If you still doubt the explanation, you can 
find online descriptions of a procedure for simulating the game using playing cards, in 
addition to websites that run Java simulations, showing that indeed the probability is 2/3 
that you win if you switch doors. But these explanations are still a bit unsatisfying: where 
does the odd result come from? Why isn’t the probability 50-50? 

 I think the best insight comes from the fact that there is a hidden assumption here: 
the host knows which door has the car, and will always use his knowledge to open a door 
with a goat. The host’s knowledge is what tilts the probability. If, on the other hand, the 
host does *not* know which door is the winning one, and has a chance of accidentally 
revealing the car, the whole game changes. Now there is a 1/3 chance that switching gives 
you the car, 1/3 chance that switching doesn’t give you the car, AND a 1/3 chance that you 
chose the wrong door originally, but the host reveals the car & gives away the game! So, in 
this no-knowledge case, it is truly a 50-50 decision whether to switch or not. 

 Another question someone asked me is whether this Monty Hall paradox translates 
to the recently popular TV quiz show,  Deal or No Deal . On this show, the contestant 
chooses one of 25 suitcases that contain various amounts of cash, and gradually opens 
ones he didn’t choose. Often the choice eventually comes down to two suitcases, the 
one they chose and one they didn’t choose, and the host asks them if they want to switch 
before the final suitcases are opened. In this case, we are in the no-knowledge situation, 
since the contestant chose which cases to open, with no influence from anyone who 
knows the contents. So it truly doesn’t matter: the probability of winning is equal 
either way.    

     A Mathematical Nuclear Bomb 
     From Math Mutation podcast 24 
  In 1913, Alfred North Whitehead and Bertrand Russell completed the third volume of the 
  Principia Mathematic a  , one of the most important works of the 20th century. This was 
a precise, detailed description of the foundations of mathematics, intended to enable 
the derivation of all possible mathematical truths from a set of well-defined axioms and 
inference rules. Mathematicians commonly skip a lot of steps when describing proofs, 
and understanding a work of mathematics usually requires a significant amount of 
background and intuition. But the  Principia  was intended to be fully self-contained, and 
not rely on such external knowledge: simply by using the axioms and following the rules 
stated in the book, all possible theorems should be eventually provable. To get an idea of 
the level of detail here, the proof that 1 + 1 = 2 is not reached until page 379 of Volume I. 
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The first three volumes covered set theory, cardinal numbers, ordinal numbers, and 
real numbers. The authors had planned to continue with a fourth volume, but instead 
stopped due to intellectual exhaustion. 

 While the  Principia  was surely a monumental achievement, did they truly describe 
a consistent system that could eventually prove all truths of mathematics? For many 
years it was thought so – but in 1931, 25-year-old Austrian mathematician Kurt Gödel 
stunned the academic community by proving conclusively that there were true theorems 
that could be stated using the system in the  Principia , but could never be proven. In 
itself, this might not be so bad; it might simply mean that a few more axioms needed 
to be added to complete the system. But Gödel’s theorem went further than that. He 
proved that in principle, *any* consistent formal system complex enough to represent the 
natural numbers would have to contain true but unprovable theorems. Thus, no matter 
how many axioms Whitehead and Russell added, Gödel could always construct a new 
statement that we know is true, for reasons outside the system, but could never be proven 
from within. 

 The way he did this was by showing how to construct an almost-paradoxical 
statement, let’s call it G, that essentially says ‘Statement G can never be proven.’ If you 
think about it for a moment, you will see why it follows that if the system is consistent, this 
is a true but unprovable statement. If it is false, then it means theorem G can be proven – 
but then we have proven a false theorem, and the system is inconsistent. On the other 
hand, if it is true, then that means we have created a true statement that we will never be 
able to prove. And this is not the only one. This is what is known as an “existence proof” – 
Gödel demonstrated the existence of true but unprovable statements, forever knocking 
down the notion that a complete formal system of mathematics is possible. Further 
results show there are actually an infinite number of such statements. 

 So what does this all mean? Well, it does not show that mathematics is useless; we 
still learn many powerful and subtle truths based on things we are able to prove based 
on our axioms. What it does show is that, in general, not every mathematical problem 
is solvable. Perhaps some of the Millennium Prize Problems will still be unresolved 
at the turn of the next millennium, simply because they describe true but unprovable 
statements. But in the meantime, I’m sure plenty of useful math will be done.        
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    CHAPTER 13   

 Rethinking Reality           

 In this final chapter, we take a step back and question some fundamental notions of truth, 
falsehood, and our reality in general. Do we know what it means to make true statements, 
and consistently define our terms, or are we just playing word games? Is there a subtle 
connection between mathematics and religion? Is it possible to accurately reason about 
reality and existence? Do we exist at all? 

     Answering All Possible Questions 
     From Math Mutation podcast 207 
  Have you ever wished, in your daily life, that you had a simple way to find all the answers 
about any subject that was vexing you? Perhaps you are in a personal crisis wondering 
whether God exists, or maybe have a mundane issue as simple as finding your way 
home when lost. Well, according to 13th century monk Ramon Llull, you’re in luck. Llull 
devised a unique philosophical  system  , based on combining a set of primitive concepts, 
that he believed would provide the path to solving any conceivable dilemma. His primary 
goal was to find a way to discuss religious issues and rationally convert heathens to 
Christianity, without relying on unprovable statements from the Bible or other holy 
books. As a philosophy, his system was far from definitive or complete, and gradually 
faded into obscurity. But along the way he became a major contributor to mathematics, 
making advances in areas as diverse as algebra, combinatorics, and computer science as 
he tried to elaborate upon his strange philosophical methods. 

 Llull began by listing a set of nine attributes in each of several categories of thought, 
intended to represent a complete description of that category, which could be agreed 
upon both by Christians and non-Christians. For example, his first list was the nine 
attributes of God: goodness, greatness, eternity, power, wisdom, will, virtue, truth, 
and glory. He wanted to discuss all combinations of these virtues, but repeating them 
endlessly was kind of tedious in the days before word processing, so he labeled each 
with a letter: B, C, D, E, F, G, H, I, K. He then drew a diagram in which he connected each 
letter to each of the others, forming a nine-pointed star with fully connected vertices. By 
examining a particular connection, you could spur a discussion of the relationship of 
two attributes of God: for example, by observing the connection between B and C, you 
could discuss how God’s goodness is great, and how his greatness is good. Whatever you 
might think of his religious views, this was actually a major advance in algebra: while the 
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basics of algebra had existed by then, variables were commonly represented by short 
words rather than letters, and had been thought of as simply representing an unknown 
to be solved for in a single equation. For the first time, Llull was using letters to represent 
something more complex than numbers, and mixing and matching them in arbitrary 
expressions. In addition, his diagram of the relations between attributes was what we 
now call a graph, an important basic data structure in computer science. He also created 
another depiction of the possible combinations as a square half-matrix, another data 
structure that is common today but was unknown in Llull’s time.       

  Llull’s system got even more complicated when he introduced additional sets of 
attributes, and tried to find more combinations. For example, another set of his concepts 
consisted of relationships: difference, concordance, contrariety, beginning, middle, 
end, majority, equality, minority. He also had a list of subjects: God, angel, heaven, 
man, imaginative, sensitive, vegetative, elementative, instrumentative. Even deeper 
philosophical conversations could theoretically result from combining elements from 
several lists. This created some challenges, however. He would again label each element 
of these lists with letters, but keeping track of all combinations led to an explosion of 
possibilities: just the three lists we have so far make 9 × 9 × 9, or 729 combinations, and he 
had a total of 6 major lists. So to facilitate discussion of arbitrary combinations, he created 
a set of three nested wheels, each divided into 9 sectors, one for each letter. One would be 
drawn on a sheet of paper, and the other two would be progressively smaller and drawn 

 Figure 13-1.    One of Llull’s wheels 1   

   1  Sourced from Wikimedia Commons at   https://commons.wikimedia.org/wiki/File:Ramon_
Llull_-_Ars_Magna_Tree_and_Fig_1.png    , public domain under tag {{PD-Art}}.  

https://commons.wikimedia.org/wiki/File:Ramon_Llull_-_Ars_Magna_Tree_and_Fig_1.png
https://commons.wikimedia.org/wiki/File:Ramon_Llull_-_Ars_Magna_Tree_and_Fig_1.png
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on separate sheets that could be placed over the first one and independently rotated. 
Thus, he had developed a kind of primitive machine for elaborating the combinations 
of multiple sets: for each 9 turns of one wheel, you would turn the next larger wheel 
once, and by the time you returned to your starting point, you would have explored 
all the combinations possible on the three wheels. Several centuries later, the great 
mathematician Gottfried Leibniz cited Llull as a major influence when inventing the first 
mechanical calculating machines. 

 There were also several other contributions resulting from this work: Llull can be 
thought of as the first person to discuss ternary relations, or functions of more than 
one variable; and he anticipated some of Condorcet’s contributions to election theory, 
which we discussed in our chapter on politics. Llull, however, was not really concerned 
with making contributions to mathematics, as he was concentrating on developing a 
comprehensive philosophical system. In his own mind, at least, he believed that he 
had succeeded: he claimed that “everything that exists is implied, and there is nothing 
that exists outside it”. To help prove this point, he wrote a long treatise elaborating upon 
physical, conceptual, geometrical, cosmological, and social applications of his ideas. 
Apparently he even spent five pages showing how his system could aid the captain of a 
ship that was lost at sea. Personally, I would prefer to have a GPS. But even if our modern 
thought processes don’t strictly follow Llull’s guidelines, we still owe him a debt of 
gratitude for his contributions to mathematics along the way.    

     Sacrificing a Goat to Calculus 
     From Math Mutation podcast 65 
  The differences between mathematics and  religion   are pretty clear, right? In math, we 
only believe in clearly proven consequences of elementary assumptions. In religion, we 
must take things we don’t really understand on faith. But is it always that way? In fact, 
when new mathematical ideas are initially being developed, we often understand them in 
a vague or imprecise form. Like in religion, mathematical speculation often begins with 
intuitive ideas about how something should be; rigorous definitions and proofs might be 
left until later. A classic example of this case is the initial definition of calculus. In the early 
1700s, the philosopher Bishop Berkeley wrote a famous critique, claiming calculus was 
really a type of religion. And in some ways, he actually had a point. 

 To start with, let’s review some of the basic concepts of calculus. You probably recall 
that a “derivative”, or what Newton called a “fluxion”, is the slope of a curve at a single 
infinitesimal point. But does this make sense? After all, ever since Euclid, we’ve known 
that a point can have lines through it at any angle, and there’s no reason to prefer one over 
another. Just because the point happens to lie on a curve doesn’t change this. Newton 
defined it by looking at the slopes of smaller and smaller lines crossing pairs of points on 
the curve, as you get closer to a single point – if they seem to converge to a known value, 
as is the case with most common geometric curves, than that can be said to be the slope 
at the point. 

 Bishop Berkeley’s scathing critique of this method was called “The Analyst: A 
Discourse Addressed to an Infidel Mathematician”. He pointed out that if you are 
assuming you have small intervals to obtain a slope, then compress those intervals to a 
single point, you have violated your initial premise – so you no longer can believe your 
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information about the slope. He closes with a long list of final questions to ask the infidel 
mathematician, such as:

•    Query 4: “Whether men may be properly said to proceed on a 
scientific method, without clearly conceiving the object they are 
conversant about, the end proposed, and the method by which it 
is pursued?”  

•   Query 16: “Whether certain maxims do not pass current among 
analysts which are shocking to good sense?”  

•   Query 63: “Whether such mathematicians as cry out against 
mysteries have ever examined their own principles?”  

•   Query 64: “Whether mathematicians, who are so delicate in 
religious points, are strictly scrupulous in their own science? 
Whether they do not submit to authority, take things upon 
trust and believe points inconceivable? Whether they have 
not their mysteries, and what is more, their repugnances and 
contradictions?”    

 It is questionable whether Berkeley was sincerely critiquing calculus at the time, or 
just trying to make a forceful case that if calculus were acceptable, we should provide 
more lenient criteria for considering Christianity. At the time, he was concerned about 
defending his religion against the Deists. And he was right that the concept of a limit, 
essential to a clear understanding of calculus’s infinitesimal points, had not been clearly 
and rigorously defined – it was not until the 19th century that Bolzano, Cauchy and 
Weirstrass would precisely define limits using the concept of “epsilon-delta proofs”. In 
a sense, scientists of the day were accepting something they had not fully defined or 
proven, in order to use Newton’s fluxions in calculations. 

 However, Berkeley seems to have been glossing over the critical point that calculus 
provided experimentally verifiable results, and thus while not as rigorously sound as 
other branches of mathematics at the time, had a clear and demonstrated connection to 
reality. So his comparison with religion seems a little strained. Over the next few decades 
a number of books and pamphlets were published by Berkeley’s contemporaries, refuting 
him point-by-point. 

 But this episode does serve to remind us that the “ideal” view of math we often see 
in school, where the edifice of proofs is slowly built up to precisely define everything we 
know today, is really just a small part of the story. Without dreamers taking intuitive leaps 
ahead of what they can really prove, humanity would never have achieved nearly as much 
in the mathematical arena.    

     Grue and Bleen 
     From Math Mutation podcast 76 
 My wife just looked out the window, and she thinks the grass on our lawn is green. But 
I know better. I told her that it’s really bleen. Bleen is a color defined by 20th century 
 philosopher   Nelson Goodman, defined similarly to the following: An object is bleen if it 
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appears green until July 31, 2018, and then blue afterwards. There is also a complementary 
color defined, called “grue”, which describes objects that are blue until July 31, 2018, then 
green afterwards. These definitions may sound odd to you, but in my native land of New 
Jersey, things changed color from pollution all the time, so these definitions are perfectly 
natural. How can my wife prove that our lawn is green, and not bleen? Every day since we 
moved in, I’ve looked out our window, and it’s looked bleen to me. 

 Being a clever reader, you might object – “Obviously your bleen and grue are 
complicated definitions, not natural notions of color like the green and blue that we are 
used to.” But I can easily reply that you have it backwards. Earlier I stated the definitions 
in a form that seemed complex, but to me, bleen and grue are the natural notions. I define 
your bizarre color “green” as “bleen until July 31, 2018, and grue afterwards.” So you see, 
it takes lots of words to construct this artificial color green that you are used to, while my 
simple notion of bleen can be stated in one word. Now, how sure are you that my lawn is 
not going to, in your terms, turn blue at some point? 

 This amusing and classic pseudo-paradox demonstrates the problem of inductive 
reasoning in the sciences. We observe natural phenomena, try to come up with the 
simplest explanations and definitions, and then use this information to model things 
mathematically. I’m pretty sure that at some fundamental level, blue and green are 
simpler than grue and bleen – perhaps the best answer I’ve heard to this conundrum 
is that blue and green can be defined without reference to time, by describing the 
wavelengths of light they represent, while grue and bleen cannot. But do we always get 
our inductions right? Is it always the case that the simplest explanation of phenomena we 
observe will turn out to be the most accurate? 

 One well-known example of a case we got wrong is Newton’s laws of physics. 
His simple equations describing motion of common objects and forces seemed right 
for hundreds of years, until Einstein came along. Which do you think would be more 
surprising: my lawn turning blue on a certain day, or time slowing down a slight amount 
for me if I drive my car fast enough? Yet the latter case turns out to be true! What seems 
like a simple, obvious model of reality is not always so. We can never be sure that our 
inductive reasoning is right; our careful observations of past events always might be 
missing some crucial factor that would lead to a completely different theory. Take a look 
out your window – perhaps your lawn is bleen as well.   

      Hippos in my Basement 
     From Math Mutation podcast 113 
 I’m tired of being an engineer. I think I want to devote the rest of my life to the study of 
the wild hippopotamus. There are a few difficulties though. To observe hippos, I would 
have to fly to Africa, and I hate airplanes. I’m also not a big fan of hot weather. But using 
a basic principle of mathematics, I can work around these problems, and study hippos 
without leaving my basement. I’m not talking about cheating and looking things up on 
the internet: I’m talking about original scientific research on the wild hippo. 

 How do I accomplish this feat? Well, to start with, let’s look at how ordinary science 
works. Often you have some proposition about the natural world, let’s say for example, 
“All hippos have large noses”. Think of this as a mathematical proposition “A implies B”, 
where A is the property of being a hippo, and B is the property of having a large nose. 
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You would then go and do field research, observing large numbers of hippos, and 
determining what proportion do in fact have large noses. While you can’t absolutely 
prove the proposition this way, you are gathering evidence inductively, which is usually 
the best scientists can do in many areas. Each confirming instance you observe adds 
weight to the hypothesis that A does imply B, and all hippos do truly have large noses. 

 Now let’s suppose I want to study this theory, but make use of a little math first. 
Remember we started with the proposition that A implies B, where A is the property of 
being a hippo, and B is the property of having a large nose. But logically, A implies B is 
equivalent to (not B) implies (not A). Think about if for a minute, and I think you’ll see 
why: if A implies B, then that means that if anything has the property (not B), it must 
not have (not A), otherwise the original implication would be false. For any statement 
“A implies B”, “not B implies not A” is equivalent in truth value, and is known as the 
 contrapositive . 

 So, instead of analyzing the original  hypothesis   that being a hippo implies having 
a large nose, let’s look at its contrapositive: not having a large nose implies not being a 
hippo. Studying this is logically the same as studying the original theory. To verify this 
inductively, instead of having to look for hippos like I did in the original proposition, now 
I just have to look for things without large noses, and verify that they are not hippos. But 
that’s easy! Just sitting here at my desk, I see my computer, my chair, my stereo, my cat, my 
daughter… Endless non-large-nosed things. And each one is a confirming instance of my 
theory, adding weight to my evidence that all non-large-nosed objects are non-hippos. In 
other words, without leaving my basement, I have been able to do original research into 
the theory that all hippos have large noses. 

 Now if you want to nitpick, you might point out that the number of hippos is so 
tiny compared to the number of non-large-nosed things, that if I spent my whole life 
cataloguing non-large-nosed things, I would still have gathered less convincing evidence 
than if I had gone to the zoo and looked at one hippo. Statistically, each piece of inductive 
“confirming evidence” using my method adds much less confidence to our hypothesis 
than would each observation of an actual hippo. But it doesn’t change the fundamental 
logic of my argument. I’m still doing valid science in my basement, just doing it a little 
more slowly.   

     Is There a Hippopotamus in this Podcast? 
     From Math Mutation podcast 144 
 The discussion of hippos in the last section reminded me of a famous conversation 
between Bertrand Russell and Ludwig Wittgenstein, discussing the concept of truth and 
falsehood of logical propositions. Wittgenstein asserted that existential propositions 
are inherently meaningless, and as his retort, Russell asked him whether the statement 
“There is a hippopotamus in this room right now” is true or false. Wittgenstein held to 
his position, insisting that the question could not be answered, while Russell comically 
looked under all the desks for hippos. Various sources claim the discussion was about a 
rhino rather than a hippo, but I don’t think the logic fundamentally changes. 

 The anecdote is amusing, and often used in popular discussions as a humorous jab at 
how philosophers are disconnected from reality. But as I thought about it, the statement 
bothered me a bit – after all, Russell was a leading mathematical thinker of the 20th 
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century, and commented after the hippo conversation that he thought Wittgenstein was a 
genius. So there must have been some substance here, some sort of interpretation of logic 
in which Wittgenstein’s obstinacy on the hippo statement actually did make sense. I began 
browsing the web for an explanation. I was surprised not to find any that I considered clear 
and concise: there were lots of references for humor value, or long philosophical treatises, 
but no straightforward answer to how this could be interpreted other than as a total 
disconnect from reality. Here’s my attempt to summarize what I found. 

 To start with, there are the psychological explanations: there seems to be a persistent 
theme on the web of claims that Wittgenstein was likely suffering from Asperger’s 
Syndrome, or a similar autism-spectrum disorder. One sufferer of this condition writes 
on the web: “Like Wittgenstein, we have a habit of hearing and seeing propositions, but 
feeling that they say nothing.” As any of you who have met a philosopher know all too 
well, it is often tempting to explain their utterances as a result of a neurological condition. 
This would neatly tie up the question of Wittgenstein and Russell’s conversation, 
but I don’t find it very satisfying. It would certainly not explain Russell’s respect for 
Wittgenstein’s reasoning abilities. So I think we need to dig further. 

 One logical interpretation of the statement is that it stems from Wittgenstein’s 
general belief that the concept of observation is invalid, and his refusal to admit the 
existence of anything except asserted propositions. Thus it would not be enough to look 
for a hippo using fallible human powers of observation: its existence would have to be 
argued based on fundamental propositions and definitions. If a proposition, such as the 
one about the hippo in the room, contained terms that had not been previously defined 
or could not be understood in terms of other propositions, it could not be labeled true or 
false at all, and would have to be dismissed merely as incoherent. Personally, I prefer to 
accept the evidence of my senses even if I haven’t mathematically proven it, but I’m pretty 
sure I’m not as smart as Russell or Wittgenstein. 

 Another interpretation is that the statement depends a lot on the frame of 
reference and the thoughts of the speakers. For example, would a stuffed hippo 
Russell had in a desk drawer count? What about a picture of a hippo rapidly scribbled 
while Wittgenstein’s head was turned? And how close are the two philosophers’ ideas 
concerning the definition of a hippo? In a sense, this discussion could be about the 
limits of language to express thought and logic. Similar issues arise in another famous 
and controversial statement of Wittgenstein’s: “If a lion could speak, we could not 
understand him.” Speaking does not involve merely the communication of words, but 
their interpretation in terms of a conceptual scheme. A similar issue might arise from 
the title of this section: Is there a hippopotamus in this podcast? A lot depends on what I 
mean by the question. Does a hippo have to emerge from the page as I type this, or is the 
mere word enough? Since this section has been transferred from podcast to book form, 
is the question now nonsensical? 

 I should also point out that at least one source seems to imply that the commonly 
quoted version cuts off part of the sentence, and Russell’s real statement was really “There 
is a hippopotamus in the room, but it cannot be seen or touched, heard or tasted or 
smelled”. This throws a whole new light on things – this statement truly is one that cannot 
be checked through observation, and makes much more sense as something arguable by 
philosophers. It also makes everyone struggling to interpret the meaning of the shortened 
version kind of look like dorks, but since I’m one of them, I should probably stop now.    
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     I Have Lied to You 
     From Math Mutation podcast 115 
  Suppose you accept the following statements: #1. If Statement S has a high probability 
of being true, you are justified in believing S. #2. If we are justified in believing S, and 
justified in believing S2, then we are justified in believing the statement “S and S2.” #3. We 
are not justified in believing things we know to be false. These seem pretty reasonable, 
right? It’s hard to imagine much of modern science proceeding without taking these as a 
basis. 

 But in 1961, philosopher Henry Kyberg spotted an apparent contradiction here, in 
what he called the “ Lottery Paradox  ”. Let’s assume we have a fair lottery with 1000 tickets, 
and take our statement S as the statement “Ticket #1 will not win the lottery.” This is 
99.9 % likely to be true, so certainly we are justified in saying we believe S. Then let S2 be 
“Ticket #2 will not win the lottery.” Similarly, we are justified in believing S2. Continue the 
process, and you will see we are justified in believing NO ticket will win the lottery. But we 
also know one ticket will win, leading to a contradiction. 

 In general, this paradox is seen as part of the philosophical field of epistemology, 
or the theory of knowledge. You can see that this paradox really applies to just about 
everything in our daily lives. How can you justify that you know you are reading this 
book? Sure, it has a high probability of being true, but maybe you are just experimenting 
with LSD and experiencing a vivid acid fantasy of God’s perfect mathematical tome, or 
the CIA has placed a hidden video display in your eyeball replacing subversive  Math 
Mutation  literature with a fake, government-approved text designed to calm the masses. 
You cannot absolutely guarantee either of these hypotheses to be false, yet you carry on 
with your day based on the belief that you have in fact read the  Math Mutation  book. So 
where is the problem with our original premises? 

 Perhaps I’m not doing justice to the millions of words philosophers have written 
about this paradox, but coming from my computer science world, it looks to me like 
a simple case of a “rounding error”. When we started off by saying we are justified in 
believing the lottery ticket would not win, we were really being lazy: the correct statement 
is “the ticket will lose with 99.9 % probability.” By wanting to establish a binary yes-or-no 
belief, we are rounding that 99.9 % to 100 %, throwing away information. And as anyone 
who has dealt with calculations in computer systems can tell you, a rounding that is 
reasonable for a single data item can accumulate to a ridiculous error when many items 
are aggregated. Such accumulated round off errors in calculations have led to numerous 
real-life disasters, such as failures in the US Patriot missile system and in a Vancouver 
stock exchange index. 

 So this rounding to 100 % may be reasonable for a single ticket, but cause a 
catastrophic error when applied to 1000 tickets. Looked at in this way, the paradox is not 
a paradox at all, but just a consequence of the fact that calling something a ‘belief’ is a 
rounding of a more complex probabilistic quantity to a simple 0 % or 100 %. Sometimes 
we have to round a probability to a belief in order to act in real life – to make the decision 
whether or not to buy that lottery ticket, for example – but that’s not a contradiction, just 
an approximation we use to conduct our daily business. Just about all scientific theories 
work this way: we are not 100 % sure any of them are true, but sure enough that we can 
tentatively act on the basis of their truth for now. 
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 My favorite aspect of this lottery paradox, though, is the extension known as David 
Makinson’s Preface Paradox. Suppose you have carefully researched every episode of, for 
example, a 200-episode podcast, and are pretty sure, but not 100 % sure, that each episode 
states the facts correctly as you produce it. You do know you’re not perfect, and due to 
the number of episodes, chances are that one of them must have an error somewhere. If 
you have a 99 % accuracy rate, then you likely have released 2 wrong episodes somewhere 
along the line. So, when the bestselling book based on transcripts of your podcasts is 
being prepared for distribution, are you justified in writing in your preface that the book 
contains an error? While you rationally believe that each statement in the podcasts is 
correct, you also believe, based on the probabilities, that you made a mistake somewhere. 
Thus in a sense, you rationally believe that  Math Mutation  does and does not contain 
an error. Think about it for a few minutes, and I think you’ll realize that the rounding 
explanation applies to this example as well: the best resolution is to say that, when you 
remove the rounding you did with each chapter,  Math Mutation  does probably contain an 
error somewhere. Sorry about that.    

     Does This Podcast Exist? 
     From Math Mutation podcast 177 
  Recently a friend pointed me to an interesting article at io9.com, titled “You’re living in 
a computer simulation, and math proves it.” I’m sure you’re familiar with the concept 
of reality being an elaborate  computer simulation  , an idea most famously illustrated in 
the  Matrix  movies, but around in some form or another for many years before that. Even 
before computers, philosophers were discussing whether life was real or just some kind of 
dream in the mind of powerful unknown beings. A lot of the recent discussion of the topic 
seems to have been spurred by a 2003 Philosophical Quarterly article by Nick Bolstrom 
of Oxford University, “Are You Living in a Computer Simulation?”, which was one of the 
inspirations for the io9 article. According to this particular article, we can prove through 
math alone that we are almost certainly living in a computer simulation. 

 Here’s how the basic argument goes. Let’s suppose it is possible for a sufficiently 
advanced civilization to create a computer capable of running a simulation of the 
complexity of our universe. If such a simulation could be created, would these advanced 
beings create only one, or many of them? Just look at the sales figure for  The Sims , a 
much more primitive simulation game from our time, and I think you’ll agree that if you 
could buy an  Xbox  disc that runs a full simulation of an Earth-like world for your own 
amusement, lots of people would do it. So for every real reality, there are millions or 
even billions of simulated realities. Thus, let’s ask the question: given an arbitrary reality, 
namely ours, is it real or simulated? The odds are millions or billions to one that it’s one of 
the simulated ones. Seems like a pretty convincing argument, doesn’t it? 

 Of course, this is dependent on a few premises that may be a bit questionable. 
First is the idea that it would be possible to generate a simulation of the complexity of 
our reality: while extrapolating the rate of advances in computing over the last century 
makes it sound plausible, we can’t really be sure. There may be some fundamental 
limit to computing power that falls short of what is needed for a full simulation of this 
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type. Another premise is that creatures advanced enough to create such a simulation 
would choose to do it – maybe such advanced civilizations would tend to develop 
moral philosophies that wouldn’t accept the creation of conscious beings for other’s 
amusement. I’d be more inclined to argue from the reverse of this idea, actually: if 
some powerful beings could arbitrarily mess with the laws of our reality for their own 
amusement, like some gamer who uses  Fallout 3  cheat mods to turn everyone within 
a mile into two-headed cows just for fun, why aren’t we observing a lot more arbitrary 
violations of physical laws? 

 A more serious hole in this argument, also discussed by Bolstrom, is that we haven’t 
discussed how many universes exist where civilization never reaches the level capable 
of creating such a simulation. Maybe it’s true that when a civilization reaches this level, 
it will create a billion simulations – but at the same time, perhaps only one in a billion 
billion civilizations reaches this level, which upends the whole argument. It could just be 
a natural tendency of sentient beings to kill each other off in nuclear wars way before they 
get to the level of developing a universal-simulation computer program. If this is the case, 
the odds are a billion to one that we are real rather than part of an elaborate simulation. 
Sorry,  Matrix  fans. 

 Another intriguing trend in this discussion is the search by some physicists for 
direct evidence that we are actually in a computer simulation. The idea is to find, in the 
actual physical laws of our universe, elements that would be telltale signs of a computer 
simulation. For example, scientists could detect effects of cosmic rays traveling in a 
tiny lattice of regular grid lines, like pixels on a computer screen, rather than being 
able to truly exist continuously in spacetime. It sounds like a nice idea, but I’m pretty 
skeptical of such a search: how can we say for sure that such lattice-like behavior, or 
any unexpected observation from physics, is the result of being a simulation rather 
than some subtle new law of physics we have not yet discovered? If they had observed 
relativistic effects experimentally before Einstein came along, would they claim that 
time distortion during high acceleration was proof that we were living in a buggy 
computer simulation, since the observations violated reality, which everyone knows to 
be described by Newton’s laws? 

 Along similar lines are the arguments that we can infer proof of artificial creation 
of our universe by the fact that so many physical constants just happen to be fine-tuned 
to allow sentient life. This one comes up a lot in Creationism and “Intelligent Design” 
arguments as well. But as I see it, this line of reasoning has been thoroughly demolished 
by the anthropic principle: maybe an equal number of other universes with different 
constants do exist, but those of us asking the question have to be in the one with the life-
friendly constants, otherwise we couldn’t be asking it. 

 Anyway, I’m afraid this book will not be able to definitively answer the question 
of whether we are real or in a simulation. Also, if you’re a meta-being listening to this 
podcast from another universe while monitoring our simulated universe on your 
computer screen, don’t gloat too much at my amusing level of simulated ignorance: you 
might still be part of a simulation in a meta-meta-universe, and I can’t definitively prove 
it either way for you either. But next time you’re messing with our reality for fun, a few 
more 5-star podcast reviews on iTunes would be nice.    
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     A Universe Made of Math 
     From Math Mutation podcast 105 
 You may have seen some discussion in the media of a bizarre theory by cosmologist 
Max Tegmark. He summarizes his theory with a concise description: “there is only 
mathematics; that is all that exists”. In other words, the universe is only a  mathematical   
object, and every consistent mathematical object is, in a sense, its own universe. If I 
understand him right, he is saying that the multiverse consists of all mathematically 
describable universes, and all have equal claim to existence. 

 If you aren’t thoroughly confused yet, he goes on to specify that there are four 
‘levels’ of the multiverse that we can describe. Level 1 is the infinite space that we seem 
to observe around us. Level 2 is the multiple set of Level 1 universes that arise if there 
is more than one solution to the Big Bang equations. Level 3 comes from the ‘many 
worlds’ interpretation of quantum mechanics, which we have discussed in previous 
chapters: whenever a quantum event occurs, where two possible outcomes can happen, 
the universe splits into multiple ones, each of which displays one of the outcomes. (This 
idea was originally proposed in 1957 by American physicist Hugh Everett, and further 
popularized by Bryce Seligman DeWitt in the 1960s, sadly no relation to me despite his 
cool name.) As Tegmark describes them, “The parallel universes are like different pages 
in a book, existing independently, simultaneously, and right next to each other. In a way 
all these infinite level III universes exist right here, right now.” 

 Most bizarre is the Level 4 multiverse, which consists of all consistent mathematical 
structures which can describe a universe. In other words, any mathematically possible 
universe exists, in just as real a sense as our universe – we are just one of many possible 
sets of mathematical abstractions. Pretty crazy-sounding, but in a weird way, this does 
solve some core philosophical problems of physics. For one thing, when we discover 
various constants and equations that describe our universe, we always ask: why these? 
This hypothesis provides an answer: all possible sets of equations and constants that 
work form universes of their own, and we just happen to be observing the one we’re 
in. And then the many-worlds interpretation of quantum mechanics, which calls for 
the universe to split into exponential numbers of others upon every quantum event, no 
longer causes a problem – instead of the impossible proposition of instantly duplicating 
physical universes, all the mathematically describable ones inherently come into 
existence. 

 I’m sure you have already come up with lots of critiques of this theory. We certainly 
feel like we exist; where does human consciousness fit in to all this? Can a mathematical 
abstraction really believe it is conscious? In a sense, though, if we think we can create 
artificial intelligence with computers, this isn’t really that different. Another objection 
is: Is it really different to say that everything that is mathematically possible exists, and 
that nothing exists at all? This really reduces to the previous question in a sense: our own 
existence seems somehow qualitatively different than the ‘existence’ of mathematical 
objects we describe on paper. 

 The best objection I’ve heard to this theory overall is probably the “Principle of 
Finite Imagination”: there is a logical reason why the universe is what it is and why we 
exist, though it may not be possible for us to understand. The fact that the best way we 
can describe our universe is through our system of mathematics may simply reflect the 
limitations of the human mind. 
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 What do you think? Don’t think too hard, because the answer you are bound to come 
up with may be pre-determined by the mathematical laws of the universe anyway.   

     Mathematical Immortality 
     From Math Mutation podcast 178 
   Ever   since the dawn of mankind, and probably long before the first caveman figured 
out that 2 plus 2 equals 4, we have been wondering about what happens to our souls 
after we die. Does our consciousness continue in some form after we’re gone? Or does 
it just disappear from the universe, never to be experienced again? I’m not going to try 
to answer this from the philosophical, spiritual or religious viewpoint, since there are 
thousands of better online flame wars available if we would like to debate those topics. 
But if we restrict ourselves to the domain of math and physics, can we still construct a 
good argument for some form of life after death? 

 One of the most direct arguments on this topic comes from the many worlds 
interpretation of quantum mechanics, as we discussed in the previous section. The 
many-worlds interpretation derives from the fact that quantum physics describes 
subatomic events in the form of probability waves, multiple possible outcomes with 
different probabilities. A definite outcome does not occur until the system is observed 
and the waveform collapses to a particular state. A classic example here is “Schrödinger’s 
Cat”, a cat locked in a box with a poison capsule set to release only if a particular 
radioactive atom decays in the next hour. (Luckily PETA was not yet around during the 
development of quantum physics.) Until the box is opened to collapse the wave function, 
the cat is neither alive nor dead: the box can only be described by a superposition of 
states that labels the cat possibly alive and possibly dead. 

 The many-worlds interpretation describes this situation in terms of multiple 
universes. When a quantum event occurs, such as the decay of the atom in the box, our 
universe actually forks into two universes, one representing each probability. So in one 
universe the cat is alive, and in the other the cat is dead. This particular example of the 
cat should make it clear how this relates to our discussion of immortality: while we may 
open the box, see the dead cat, and mourn it, there is another universe in which the cat 
jumped out of the box alive and is happily playing with a ball of USB cables. In any case 
where someone dies in a situation that they could have theoretically survived due to a 
differently-occurring quantum event, there is another universe nearby in which they are 
still alive. 

 Clever readers may have come up with an objection to claiming that this leads to a 
form of immortality: sure, it says something about life after premature deaths, but what 
about inevitable causes of death such as old age? Surely in every possible universe, as sad 
as it is for the podcasting community, I’ll be dead 100 years from now. While previous 
generations are out of luck, we do have an answer for this one as well though: the 
technological singularity. 

 The singularity idea is that technology has been advancing at an exponential rate 
for most of the last century. Even when I was in college, I didn’t dream that by middle 
age I would have a device in my pocket that could store a thousand science podcasts and 
still play  Walking Dead  games with computing power to spare. Technological growth 
has been in some ways like a graph of  y  = 2  n  : while it may start slow, it very quickly starts 
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verging towards infinity. If we can sustain this rate of growth, it may be only a matter 
of decades until we are capable of feats of technology that we would see as almost 
infinitely powerful by today’s standards. When this “singularity” hits, we will be capable 
of uploading our brain’s contents into a powerful computing device, continuing our 
consciousness indefinitely without the limitations of our frail human bodies. So if in just 
one parallel universe we can survive long enough to reach the singularity, and upload our 
brains into a computer with a good extended warranty and reliable backups, we truly are 
immortal. 

 If we’re talking about the mind as software, we also should not discount another 
possible form of immortality, distinct from the many-universes-based ones we have 
been discussing until now. If your consciousness is formed by a finite pattern of electrical 
firings in your brain, why does this pattern have to occur only in your current brain and 
current body? There are things all over the universe: stars, planets, quasars, and other 
stuff, that constantly exhibit many arbitrary patterns of activity among the electrons that 
make them up. Why shouldn’t one of these random patterns be effectively a software 
program that exactly executes your consciousness, except that it continues after your 
Earth-based body dies? Sure, this would be a bit of a coincidence – but if the universe is 
infinite, perhaps every possible electron pattern will occur somewhere and sometime. 
(There is the slight monkey wrench here of multiple different-sized infinities, as discussed 
earlier in this book, but since we don’t know the proper classes of infinity for our brains’ 
possibilities or the universe, we’re free to speculate.) And this isn’t even counting 
the possibility that we discussed a few sections back, where your mind is already an 
intentional simulation that can be rebooted. 

 Before we conclude, I’d like to dedicate this book to the memory of my father, 
Morton Seligman, who recently passed away at the age of 75. If he can just hold out until 
the singularity in a nearby universe, maybe we’ll be seeing him again sometime. Or he 
might be sitting on an underworld throne next to Hades right now, laughing at us for 
these silly mathematical discussions while we ignore the true reality.        
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