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Preface

Weak convergence of probability measures or, what is the same, convergence in
distribution of random variables is arguably one of the most important basic con-
cepts of asymptotic probability theory and mathematical statistics. The classical
central limit theorem for sums of independent real random variables, a cornerstone
of these fields, cannot possibly be thought of properly without the notion of weak
convergence/convergence in distribution. Interestingly, this limit theorem as well as
many others which are usually stated in terms of convergence in distribution remain
true under unchanged assumptions for a stronger type of convergence. This type of
convergence, called stable convergence with mixing convergence as a special case,
originates from the work of Alfred Rényi more than 50 years ago and has been used
by researchers in asymptotic probability theory and mathematical statistics ever
since (and should not be mistaken for weak convergence to a stable limit distri-
bution). What seems to be missing from the literature is a single comprehensive
account of the theory and its consequences in applications, illustrated by a number
of typical examples and applied to a variety of limit theorems. The goal of this book
is to present such an account of stable convergence which can serve as an intro-
duction to the area but does not compromise on mathematical depth and rigour.

In Chap. 1 we will give a detailed motivation for the study of stable convergence
of real random variables and disclose some of its main features. With the exception
of one crucial example this introductory chapter contains no proofs, but references
to later chapters in which proofs can be found. It will be seen that stable conver-
gence is best thought of as a notion of convergence for conditional distributions of
random variables given sub-σ-fields of the σ-field of the underlying probability
space on which the random variables are defined. Now conditional distributions are
Markov kernels so that the theory of weak convergence of Markov kernels is the
proper framework for stable convergence. Since we want to include limit theorems
for (continuous-time) stochastic processes later on, it is reasonable to consider from
the very start random variables with values in separable metrizable spaces.
Therefore, we have to deal with the setting of Markov kernels from sample spaces
of arbitrary probability spaces to separable metrizable spaces (which quite often are
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assumed to be polish). The required facts from the theory of weak convergence of
such Markov kernels will be presented in Chap. 2.

In Chap. 3 the material from Chap. 2 is used to describe two approaches to stable
convergence of random variables in separable metrizable spaces. In the first
approach the limits of stably convergent sequences are always Markov kernels. In
the second (essentially equivalent) approach the limit kernels are represented as
conditional distributions of random variables. This approach allows for what might
sometimes be considered as a somewhat more intuitive description of stable con-
vergence results.

In Chap. 4 we demonstrate the usefulness of stable convergence in different
areas. Our focus is on limit points of stably convergent sequences with an appli-
cation to occupation times of Brownian motion and random index limit theorems as
well as the empirical measure theorem and the δ-method.

Chapters 5–10 constitute in some sense the second part of the book in which it is
shown that in a variety of known distributional limit theorems the convergence is
actually stable or even mixing.

In Chap. 5 we discuss general conditions under which limit theorems in distri-
bution are mixing. In particular, it turns out that the classical distributional limit
theorems for centered and normalized partial sums and sample maxima of inde-
pendent and identically distributed real random variables are automatically mixing.

Chapter 6 is devoted to martingale central limit theorems. Here, stable and
mixing convergence is strongly dependent on the filtrations involved and the
normalization used. Full stable convergence follows from a nesting condition of the
filtrations. Illustrations concern martingales with stationary increments, exchange-
able sequences, the Pólya urn and adaptive Monte Carlo estimators.

In Chap. 7 it is shown that the natural extension of Donsker’s functional central
limit theorem for partial sum processes of independent real random variables to
martingale difference sequences holds with stable convergence in the metric space
of all continuous real valued functions defined on the nonnegative real axis.

Chapter 8 contains a stable limit theorem for “explosive” processes with
exponential rate. Since the increments of these processes are not asymptotically
negligible, conditions of Lindeberg-type are not satisfied. Nevertheless, the limits
can be normal, but quite different limits are also possible. This result is crucial for
deriving stable limit theorems for some estimators in autoregressive processes of
order one in Chap. 9 and in Galton-Watson branching processes in Chap. 10. From
our point of view, these applications in two classical models of probability theory
and mathematical statistics provide once more convincing illustrations of the
importance of the concept of stable convergence.

Exercises appear throughout the book. We have supplied solutions of the
exercises in Appendix B while Appendix A contains some basic facts about weak
convergence of probability distributions, conditional distributions and martingales.

As is apparent from the brief description of its content this book is by no means
meant as an encyclopedic account of all major stable limit theorems which have
been established in the last 50 years or so. We tried to be reasonably complete in the
basic Chap. 3 and in some sense also in Chaps. 4 and 6, but the selection of the
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material presented in other chapters is quite subjective. As far as our sources are
concerned, we tried to give credit where credit is due, but we did not spend much
time obtaining definite historical evidence in all cases. In addition to the published
sources listed in the References, the first author benefitted considerably from a
series of lectures on stable convergence given by David Scott at the University of
Munich in the fall semester 1978/79. It is a pleasure to thank Holger Rootzén who
made valuable comments on an earlier version of the manuscript. Our thanks also
go to a referee for careful reading of the manuscript and for useful suggestions.
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Chapter 1
Why Stable Convergence?

This chapter is of an introductory nature. We make the motivation for the study of
stable convergence more precise and present an exposition of some of its features.
With the exception of Example 1.2, no proofs are given, only references to later
chapters where proofs may be found.

Our starting point is the classical central limit theorem. For this, let (Zk)k≥1 be a
sequence of independent and identically distributed real random variables, defined
on some probability space (�,F , P). Assume Z1 ∈ L2 (P) and set μ = E Z1 and
σ2 = Var Z1. To exclude the trivial case of almost surely constant variables, assume
also σ2 > 0. Then the classical central limit theorem says that

lim
n→∞ P

(
1

n1/2

n∑
k=1

Zk − μ

σ
≤ x

)
= �(x) =

∫ x

−∞
ϕ (u) du for all x ∈ R ,

where ϕ (u) = 1√
2π

exp
(− 1

2u2
)
, u ∈ R, denotes the density of the standard normal

distribution. It is customary to write this convergence of probabilities in a somewhat
more abstract way as convergence in distribution of random variables, i.e. as

1

n1/2

n∑
k=1

Zk − μ

σ

d→ N (0, 1) as n → ∞ ,

where N (0, 1) denotes the standard normal distribution, or as

1

n1/2

n∑
k=1

Zk − μ

σ

d→ N as n → ∞ ,

where N is a random variable which “realizes” the standard normal distribution, that
is, the distribution P N of N (under P) equals N (0, 1). To put this notation into a

© Springer International Publishing Switzerland 2015
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2 1 Why Stable Convergence?

broader perspective, recall that for a probability distribution ν on R and real random
variables (Xn)n≥1 convergence in distribution of (Xn)n≥1 to ν, written as

Xn
d→ ν as n → ∞ ,

is equivalent to

lim
n→∞ Eh (Xn) =

∫
h dν for all h ∈ Cb (R) ,

whereas convergence in distribution of (Xn)n≥1 to a real random variable X , written
as

Xn
d→ X as n → ∞ ,

means Xn
d→ ν with ν = P X and is equivalent to

lim
n→∞ Eh (Xn) = Eh (X) for all h ∈ Cb (R) ,

where Cb (R) is the set of all continuous, bounded functions h : R → R. Here it
is implicitly assumed that the probability space (�,F , P) is rich enough to carry a
random variable X with distribution ν.

Writing, as usual, Zn = 1
n

∑n
k=1 Zk for the sample mean of Z1, . . . , Zn , an

equivalent formulation of the classical central limit theorem is

n1/2 (
Zn − μ

) d→ σN as n → ∞ ,

whichmeans that Zn considered as an estimator forμ is asymptotically normal,where
the asymptotic distribution N

(
0,σ2

)
of σN is the centered normal distribution with

variance σ2. If in a statistical setting μ and σ2 are supposed to be unknown and μ is
the parameter of interest and σ2 is not, i.e. σ2 is a so-called nuisance parameter, then
σ has to be removed from the limit theorem by replacing it by a suitable consistent
estimator, if the limit theorem is to be used for statistical inference. The proper tool
for doing this is

Theorem 1.1 (Cramér-Slutzky) Let (Xn)n≥1 and (Yn)n≥1 be sequences of real ran-
dom variables. If

Xn
d→ X as n → ∞

for some real random variable X and

Yn → c in probability as n → ∞



1 Why Stable Convergence? 3

for some c ∈ R, then

Yn Xn
d→ cX as n → ∞ .

A proof of this fundamental result can be found in almost any textbook on
asymptotic theory in mathematical statistics. For the sample variance

σ̂2
n = 1

n

n∑
k=1

(
Zk − Zn

)2

of Z1, . . . , Zn we have σ̂2
n → σ2 almost surely as n → ∞ by the strong law of large

numbers, and Theorem 1.1 gives

n1/2 Zn − μ

σ̂n

d→ N as n → ∞ .

This convergence result can now be used in asymptotic statistical inference about μ
because it is free from the unknown nuisance parameter σ.

The situation is different in the following setting. Consider the classical super-
critical Galton-Watson branching process as a model for exponentially growing pop-
ulations. For n ≥ 0 let Xn denote the size of the n-th generation, and α the mean
per-capita number of offspring. Here α > 1, and if α is unknown, it can be estimated
from observed values of X0, X1, . . . , Xn in various ways. For simplicity, we assume
here that limn→∞ Xn = ∞ almost surely; the general case is considered in Chap.10.
If limn→∞ Xn = ∞ almost surely, then the Harris estimator

α̂(H)
n :=

∑n
i=1 Xi∑n

i=1 Xi−1

is a consistent estimator for α, and

αn/2

(α − 1)1/2

(
α̂(H)

n − α
)

d→ σM−1/2∞ N as n → ∞ ,

where σ2 is the offspring variance (assumed to be positive and finite), where N is a
random variable with a standard normal distribution and M∞ is a positive random
variablewith positive variance, i.e. M∞ is a proper randomvariable and not a constant
almost surely, which is independent of N . Since the norming sequence in this limit
theorem depends on the unknown parameter α and, more importantly, since the limit
distribution is a variance mixture of centered normals with unknown mixing law, the
result as it stands is not suitable for asymptotic statistical inference about α. Now

http://dx.doi.org/10.1007/978-3-319-18329-9_10


4 1 Why Stable Convergence?

(
n∑

i=1

Xi−1

)1/2
(α − 1)1/2

αn/2 → M1/2∞ a.s. as n → ∞ ,

and we would immediately get

(
n∑

i=1

Xi−1

)1/2 (
α̂(H)

n − α
)

d→ σN as n → ∞ ,

if in Theorem 1.1 the constant limit c could be replaced by a proper random vari-
able. The remaining nuisance parameter σ could then be removed with the help of
Theorem 1.1 as it stands and a consistent estimator for σ exactly as in the case of
the classical central limit theorem for independent observations discussed before.
Unfortunately, as shown by the following example, Theorem 1.1 is no longer true if
c is replaced by a proper random variable so that removing the mixing variable M∞
from the limit theorem and thereby transforming it into a statistically useful result
requires a new tool.

Example 1.2 Consider (�,F , P) = (
[0, 1] ,B ([0, 1]) ,λ[0,1]

)
and set Xn =

1[an ,an+1/2] for all n ≥ 1 and some sequence (an)n≥1 of real numbers in [0, 1/2].
Clearly, P Xn = (δ0 + δ1) /2 for all n ≥ 1 so that

Xn
d→ X1 as n → ∞ .

Consider the random variable Y with Y (ω) = ω for all ω ∈ � and the function
h (u) = (u ∧ 1) ∨ 0, u ∈ R. Then h ∈ Cb (R), and

Eh (Y Xn) =
∫ an+ 1

n

an

u du = 1

2

(
an + 1

4

)
.

This shows that for any sequence (an)n≥1 which is not convergent, the sequence
(Eh (Y Xn))n≥1 is also not convergent so that the sequence (Y Xn)n≥1 cannot con-
verge in distribution, and in particular not to Y X1. Therefore, Theorem 1.1 does not
hold if the limit c in the assumption Yn → c in probability as n → ∞ is replaced by
a proper random variable. �

A second example of a more probabilistic nature for a distributional limit theo-
rem in which the limit is a variance mixture of centered normals with non-constant
mixing law is as follows (cf. Corollary 6.26). Let (Xk)k≥1 be a martingale difference
sequence w.r.t. an increasing sequence (Fk)k≥0 of sub-σ-fields of F . If (Xk)k≥1 is
also stationary and X1 ∈ L2 (P), then the following version of the central limit
theorem is true:

http://dx.doi.org/10.1007/978-3-319-18329-9_6


1 Why Stable Convergence? 5

1

n1/2

n∑
k=1

Xk
d→ E

(
X2
1|IX

)1/2
N as n → ∞ ,

where IX is the σ-field of the invariant sets of X = (Xk)k≥1, N is a random variable
with a standard normal distribution and the random variables E

(
X2
1|IX

)
and N

are independent. It is important to note that E
(
X2
1|IX

)
is in general indeed a proper

randomvariable so that the limit distribution is a variancemixture of centered normals
again. Therefore, though we have

1

n

n∑
k=1

X2
k → E

(
X2
1|IX

)
a.s. as n → ∞

by the ergodic theorem, we cannot derive

(
n∑

k=1

X2
k

)−1/2 n∑
k=1

Xk
d→ N as n → ∞

by an application of Theorem 1.1 thus removing the mixing variable E
(
X2
1|IX

)1/2
from the limit theorem by a random norming, because for a proper application
1
n

∑n
k=1 X2

k would have to converge (in probability) to a constant, which is not the
case in general (unless the stationary sequence (Xk)k≥1 is ergodic, of course). Mixed
normality in the limit as appearing here and in the Galton-Watson branching process
typically occurs in “non-ergodic” or “explosive” models.

As Example 1.2 shows, the concept of convergence in distribution is not strong
enough to allow for a version of the Cramér-Slutzky Theorem 1.1 in which the
constant factor c in the limit variable is replaced by a proper random variable. There
is, however, a stronger notion of convergence for which such a stronger version
of the Cramér-Slutzky theorem is true, and this is stable convergence. For a brief
exposition of its main features let (Xn)n≥1 be a sequence of real random variables
defined on some probability space (�,F , P), let G be a sub-σ-field of F and let K
be a G-measurable Markov kernel from � to R. Then the sequence (Xn)n≥1 is said
to converge G-stably to K as n → ∞, denoted by

Xn → K G-stably as n → ∞ ,

if the conditional distributions P Xn |G of the random variables Xn given G converge
weakly to K in the sense of weak convergence of Markov kernels, i.e. if

lim
n→∞ E f h (Xn) =

∫
�

∫
R

f (ω) h (x) K (ω, dx) d P (ω)

for every f ∈ L1 (G, P) and h ∈ Cb (R). In case K does not depend on ω ∈ � in
the sense that K = ν P-almost surely for some probability distribution ν on R, then
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(Xn)n≥1 is said to converge G-mixing to ν, and we write

Xn → ν G-mixing as n → ∞ .

This means

lim
n→∞ E f h (Xn) =

∫
f d P

∫
h dν

for every f ∈ L1 (G, P) and h ∈ Cb (R). Therefore, the weak topology on the set
of G-measurable Markov kernels from � to R and the theory of weak convergence
of such Markov kernels does provide the proper framework for stable convergence.
We will develop this theory (for more general state spaces) as far as necessary in
Chap.2.

To get a feeling for the difference between convergence in distribution and stable
convergence, recall that convergence in distribution of random variables Xn towards
a distribution ν is in fact weak convergence of the distributions P Xn towards the
distribution ν, i.e. the underlying concept is that of weak convergence of probability
measures. Now the distributions P Xn may obviously be interpreted as the conditional
distributions P Xn |{∅,�} of the random variables Xn given the trivial σ-field {∅,�}.
In the concept of stable convergence this trivial σ-field is replaced by some larger
sub-σ-fieldG of the σ-fieldF in (�,F , P), and the limit distribution ν is replaced by
the G-measurable Markov kernel K . Note that G-stable convergence always implies
convergence in distribution (take f = 1 in the definition of stable convergence).

As for convergence in distribution it can be convenient to “realize” the limit kernel
K through a random variable X which satisfies P X |G = K . Such a random variable
does always exist on a suitable extension of (�,F , P). Therefore, if (Xn)n≥1 and X
are real random variables, defined on some probability space (�,F , P), and G ⊂ F
is a sub-σ-field, we say that (Xn)n≥1 converges G-stably to X as n → ∞, written as

Xn → X G-stably as n → ∞ ,

if Xn converges G-stably to the conditional distribution P X |G . This is equivalent to

lim
n→∞ E f h (Xn) = E f h (X)

for every f ∈ L1 (G, P) and h ∈ Cb (R).
Most useful criteria for G-stable convergence Xn → X are

Xn
d→ X under PF for every F ∈ G with P (F) > 0 ,

where PF = P (· ∩ F) /P (F) denotes the conditional probability given the event
F , or

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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(Xn, Yn)
d→ (X, Y ) as n → ∞

for every sequence (Yn)n≥1 of real random variables and every G-measurable real
random variable Y satisfying Yn → Y in probability (cf. Theorems 3.17 and 3.18).
In particular, a generalized version of the Cramér-Slutzky theorem about random
norming holds under G-stable convergence where full strength is obtained if G is
sufficiently large.

In case X is independent ofG so that P X |G = P X ,G-stable convergence Xn → X
means G-mixing convergence. If X is G-measurable so that P X |G = δX , the Dirac-
kernel associatedwith X , thenG-stable convergence Xn → X turns into convergence
in probability just as for G = {∅,�} distributional convergence to a constant means
convergence in probability to this constant (cf. Corollary 3.6).

In the two examples discussed above we, in fact, can show that

αn/2

(α − 1)1/2

(
α̂(H)

n − α
)

→ σM−1/2∞ N G-stably as n → ∞ ,

where G = σ (Xn, n ≥ 0) and N is independent of G, and

1

n1/2

n∑
k=1

Xk → E
(

X2
1|IX

)1/2
N G-stably as n → ∞ ,

where G = σ (Xn, n ≥ 1) and N is independent of G, respectively (cf. Corollaries
10.6 and 6.26). Consequently, the generalized Cramér-Slutzky theorem implies the
desired limit theorems

(
n∑

i=1

Xi−1

)1/2 (
α̂(H)

n − α
)

d→ σN as n → ∞

and

(
n∑

k=1

X2
k

)−1/2 n∑
k=1

Xk
d→ N as n → ∞ .

As we have seen we can formulate stable limit theorems with Markov kernels as
limits or with random variables as limits, if the limit kernels are identified as condi-
tional distributions of these random variables. Both approaches will be developed in
Chap.3 and applied as convenient.

Stable convergence has a number of other interesting consequences and applica-
tions beyond the random norming discussed earlier. Let us demonstrate this for the
classical central limit theorem. We will see that

n1/2 (
Zn − μ

) → N
(
0,σ2

)
F-mixing as n → ∞

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_10
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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(cf. Example 3.13). This mixing convergence and the second criterion above applied
with Xn = n1/2

(
Zn − μ

)
and Yn = Y for all n ∈ N imply

lim
n→∞ P

(
n1/2 (

Zn − μ
) ≤ Y

)
=

∫
N

(
0,σ2

)
((−∞, y]) d PY (dy)

for any real random variable Y on (�,F , P), whereas convergence in distribution
covers only constants Y .

Another area in which stable convergence proves its value are limit theorems with
random indices, i.e. limit theorems for sequences

(
Xτn

)
n≥1 with random variables

Xn and N-valued random variables τn with τn → ∞ in probability as n → ∞; see
Sect. 4.2. For instance, if τn/an → η in probability for some (0,∞)-valued random
variable η and an ∈ (0,∞) satisfying an → ∞, then

τ
1/2
n

(
Z τn − μ

) d→ N
(
0,σ2

)
,

and this convergence is again F-mixing (cf. Example 4.8). In this context we can
also demonstrate the advantage of stable convergence for restrictions to subsets
of �. Assume that the limiting random variable η is R+-valued satisfying merely
P (η > 0) > 0. Since by the first criterion n1/2

(
Zn − μ

) → N
(
0,σ2

) F-mixing
under P{η>0}, and P{η>0} (η > 0) = 1, we can conclude in this case that

τ
1/2
n

(
Z τn − μ

) d→ N
(
0,σ2

)
under P{η>0} .

Still another area concerns the fluctuation behavior of stably convergent sequences
of random variables; see Sect. 4.1. As for the classical mixing central limit theorem
this implies that the set of limit points of the sequence

(
n1/2

(
Zn − μ

))
n≥1 coincides

with R, the support of N
(
0,σ2

)
, almost surely (cf. Example 4.2).

Historically, the idea of mixing convergence was developed first. Early appli-
cations of the concept, not yet in its most general form, can be found in [84, 85,
90, 93, 94]. In the work of Rényi, the idea can be traced back at least to [75] and
was developed in its general form in [76, 78]. Therefore, the notion is also known
as “Rényi-mixing”. More detailed information on the early history of the theory of
mixing and its application to random-sum central limit theorems in particular can be
found in [21].

Stable convergence originates from [77], where an unspecified limit version of
F-stability in the sense of

Xn
d→ νF under PF

for every F ∈ F with P (F) > 0 and some probability distribution νF on R is used
which, however, is equivalent to our definition (cf. Proposition 3.12). The classical
limit theory for sums of independent real random variables as well as for maxima of

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_4
http://dx.doi.org/10.1007/978-3-319-18329-9_4
http://dx.doi.org/10.1007/978-3-319-18329-9_4
http://dx.doi.org/10.1007/978-3-319-18329-9_4
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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independent and identically distributed random variables provides, in fact, mixing
limit theorems (cf. Examples 3.13 (a) and 5.6 (c)). In view of the consequences of
stable convergence as outlined above its importance is simply due to the fact that
manyother distributional limit theoremsare stable.The concept of stable convergence
played one of its first major roles in the development of the theory of martingale
central limit theorems in discrete time; see [41, 82] and the references therein. Later
it became important in the theory of limit theorems for stochastic processes; see
e.g. the monographs [50, 60]. More recently, stable convergence has appeared as
a crucial tool in the investigation of discretized processes [49], the approximation
of stochastic integrals and stochastic differential equations [56, 59, 70, 71] and the
statistics of high-frequency financial data [1].

As explained in this chapter, stable convergence is in fact weak convergence
of conditional distributions, for which weak convergence of Markov kernels is the
proper framework. In the next chapter we will therefore present the essential parts
of the theory for Markov kernels from measurable spaces to separable metric spaces
equipped with their Borel-σ-fields. This somewhat abstract level cannot be avoided
if we want to include the convergence of stochastic processes in later chapters, as we
will do.

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_5


Chapter 2
Weak Convergence of Markov Kernels

As indicated in the previous chapter, stable convergence of random variables can be
seen as suitable convergence of Markov kernels given by conditional distributions.
Let (�,F , P) be a probability space and letX be a separable metrizable topological
space equipped with its Borel σ-field B (X ). In this chapter we briefly describe the
weak topology on the set of Markov kernels (transition kernels) from (�,F) to
(X ,B (X )).

Let us first recall the weak topology on the setM1 (X ) of all probability measures
on B (X ). It is the topology generated by the functions

ν �→
∫

h dν, h ∈ Cb (X ) ,

where Cb (X ) denotes the space of all continuous, bounded functions h : X → R

equipped with the sup-norm ‖h‖sup := supx∈X |h (x)|. The weak topology on
M1 (X ) is thus the weakest topology for which each function ν �→ ∫

h dν is con-
tinuous. Consequently, weak convergence of a net (να)α inM1 (X ) to ν ∈ M1 (X )

means

lim
α

∫
h dνα =

∫
h dν

for every h ∈ Cb (X ) (here and elsewhere we omit the directed set on which a net
is defined from the notation). Because

∫
h dν1 = ∫

h dν2 for ν1, ν2 ∈ M1 (X ) and
every h ∈ Cb (X ) implies that ν1 = ν2, this topology is Hausdorff and the limit is
unique. Moreover, the weak topology is separable metrizable e.g. by the Prohorov
metric, see e.g. [69], Theorem II.6.2, and polish ifX is polish; see e.g. [69], Theorem
II.6.5, [26], Corollary 11.5.5. The relatively compact subsets ofM1 (X ) are exactly
the tight ones, provided X is polish, where � ⊂ M1 (X ) is called tight if for every
ε > 0 there exists a compact set A ⊂ X such that supν∈� ν (X \ A) ≤ ε; see e.g.
[69], Theorem II.6.7, [26], Theorem 11.5.4.

© Springer International Publishing Switzerland 2015
E. Häusler and H. Luschgy, Stable Convergence and Stable Limit Theorems,
Probability Theory and Stochastic Modelling 74,
DOI 10.1007/978-3-319-18329-9_2
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12 2 Weak Convergence of Markov Kernels

A map K : � × B (X ) → [0, 1] is called a Markov kernel from (�,F) to
(X ,B (X )) if K (ω, ·) ∈ M1 (X ) for every ω ∈ � and K (·, B) is F-measurable
for every B ∈ B (X ). Let K1 = K1 (F) = K1 (F ,X ) denote the set of all
such Markov kernels. If M1 (X ) is equipped with the σ-field �

(M1 (X )
) :=

σ (ν �→ ν (B) , B ∈ B (X )), then Markov kernels K ∈ K1 can be viewed as(M1 (X ) ,�
(M1 (X )

))
-valued random variables ω �→ K (ω, ·). Furthermore,

�
(M1 (X )

)
coincides with the Borel σ-field ofM1 (X ) (see Lemma A.2).

For a Markov kernel K ∈ K1 and a probability distribution Q on F we define the
product measure (which is a probability distribution again) on the product σ-field
F ⊗ B (X ) by

Q ⊗ K (C) :=
∫ ∫

1C (ω, x) K (ω, dx) d Q (ω)

for C ∈ F ⊗ B (X ) and its marginal on B (X ) by

QK (B) := Q ⊗ K (� × B) =
∫

K (ω, B) d Q (ω)

for B ∈ B (X ). For functions f : � → R and h : X → R let f ⊗ h : � ×X → R,
f ⊗ h (ω, x) := f (ω) h (x), be the tensor product.

Lemma 2.1 (a) (Fubini’s theorem for Markov kernels) Let K ∈ K1 and g :
(� × X ,F ⊗ B (X )) →

(
R,B

(
R

))
be measurable such that g− (or g+)∈

L1 (P ⊗ K ). Then∫
g d P ⊗ K =

∫ ∫
g (ω, x) K (ω, dx) d P (ω) .

(b) (Uniqueness) For K1, K2 ∈ K1, we have {ω ∈ � : K1 (ω, ·) = K2 (ω, ·)} ∈
F , and K1 (·, B) = K2 (·, B) P-almost surely for every B ∈ B (X ) implies
P ({ω ∈ � : K1 (ω, ·) = K2 (ω, ·)}) = 1, that is, K1 = K2 P-almost surely.

Proof (a) For g = 1C with C ∈ F ⊗ B (X ) this is the definition of P ⊗ K . The
formula extends as usual by linearity, monotone convergence and the decomposition
g = g+ − g−.

(b) Note that B (X ) is countably generated. Let C be a countable generator of
B (X ) and let C0 be the (countable) system of all finite intersections of sets from C.
Then by measure uniqueness

{ω ∈ � : K1 (ω, ·) = K2 (ω, ·)} =
⋂

B∈C0
{ω ∈ � : K1 (ω, B) = K2 (ω, B)} .

Hence the assertion. �
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Exercise 2.1 Let C ⊂ B (X ) be closed under finite intersections with σ (C) = B (X )

and let K : � × B (X ) → [0, 1] satisfy K (ω, ·) ∈ M1 (X ) for every ω ∈ � and
K (·, B) is F-measurable for every B ∈ C. Show that K ∈ K1.

Definition 2.2 The topology on K1 generated by the functions

K �→
∫

f ⊗ h d P ⊗ K , f ∈ L1 (P) , h ∈ Cb (X )

is called the weak topology and is denoted by τ = τ (P) = τ (F , P). Accordingly,
weak convergence of a net (Kα)α in K1 to K ∈ K1 means

lim
α

∫
f ⊗ h d P ⊗ Kα =

∫
f ⊗ h d P ⊗ K

for every f ∈ L1 (P) and h ∈ Cb (X ).

The dependence of τ on P is usually not explicitly indicated. This topology is
well known e.g. in statistical decision theorywhereK1 corresponds to all randomized
decision rules and in areas such as dynamic programming, optimal control, game
theory or random dynamical systems; see [7, 13, 18, 61, 62, 87].

Simple characterizations of weak convergence are as follows. For a sub-σ-field G
ofF , letK1 (G) = K1 (G,X ) denote the subset ofK1 consisting of all G-measurable
Markov kernels, that is of Markov kernels from (�,G) to (X ,B (X )). For F ∈ F
with P (F) > 0 let PF := P (·|F) = P (· ∩ F) /P (F) denote the conditional
probability measure given F , and let EF and VarF denote expectation and variance,
respectively, under PF . Further recall that for a net (yα)α in R = R ∪ {−∞,∞}

lim sup
α

yα := inf
α

sup
β≥α

yβ and lim inf
α

yα := sup
α

inf
β≥α

yβ .

Theorem 2.3 Let G ⊂ F be a sub-σ-field, (Kα)α a net in K1 (G), K ∈ K1 (G) and
let E ⊂ G be closed under finite intersections with � ∈ E such that σ (E) = G. Then
the following statements are equivalent:

(i) Kα → K weakly,
(ii) limα

∫
f ⊗ h d P ⊗ Kα = ∫

f ⊗ h d P ⊗ K for every f ∈ L1 (G, P) and
h ∈ Cb (X ),

(iii) QKα → QK weakly (in M1 (X )) for every probability distribution Q on F
such that Q  P,

(iv) PF Kα → PF K weakly for every F ∈ E with P (F) > 0.
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Proof (i) ⇒ (iii). Let Q  P . Setting f := d Q/d P and using Fubini’s theorem for
Markov kernels 2.1 (a), we obtain for h ∈ Cb (X )∫

h d QKα =
∫ ∫

h (x) Kα (ω, dx) d Q (ω) =
∫

f ⊗ h d P ⊗ Kα

→
∫

f ⊗ h d P ⊗ K =
∫

h d QK .

(iii) ⇒ (iv) is obvious because PF  P .
(iv) ⇒ (ii). Let

L :=
{

f ∈ L1 (G, P) : lim
α

∫
f ⊗ h d P ⊗ Kα =

∫
f ⊗ h d P ⊗ K

for every h ∈ Cb (X )
}

.

Then L is a vector subspace of L1 (G, P) with {1G : G ∈ E} ⊂ L, in particular
1� ∈ L, and if fk ∈ L, f ∈ L1 (G, P), fk ≥ 0, f ≥ 0 such that fk ↑ f , then f ∈ L.
In fact,∣∣∣∣

∫
f ⊗ h d P ⊗ Kα −

∫
f ⊗ h d P ⊗ K

∣∣∣∣
≤

∫
| f ⊗ h − fk ⊗ h| d P ⊗ Kα +

∣∣∣∣
∫

fk ⊗ h d P ⊗ Kα −
∫

fk ⊗ h d P ⊗ K

∣∣∣∣
+

∫
| fk ⊗ h − f ⊗ h| d P ⊗ K

≤ 2‖h‖sup
∫

( f − fk) d P +
∣∣∣∣
∫

fk ⊗ h d P ⊗ Kα −
∫

fk ⊗ h d P ⊗ K

∣∣∣∣
and hence

lim sup
α

∣∣∣∣
∫

f ⊗ h d P ⊗ Kα −
∫

f ⊗ h d P ⊗ K

∣∣∣∣ ≤ 2‖h‖sup
∫

( f − fk) d P .

Letting k → ∞ yields by monotone convergence

lim
α

∫
f ⊗ h d P ⊗ Kα =

∫
f ⊗ h d P ⊗ K .

Thus f ∈ L. One can conclude that D := {G ∈ G : 1G ∈ L} is a Dynkin-system so
that D = σ (E) = G. This clearly yields L = L1 (G, P), hence (ii).

(ii) ⇒ (i). For f ∈ L1 (P) we have E ( f |G) ∈ L1 (G, P) and thus in view of the
G-measurability of Kα and K
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lim
α

∫
f ⊗ h d P ⊗ Kα = lim

α

∫
E ( f |G) ⊗ h d P ⊗ Kα

=
∫

E ( f |G) ⊗ h d P ⊗ K =
∫

f ⊗ h d P ⊗ K

for every h ∈ Cb (X ). �

Exercise 2.2 Prove that weak convergence Kα → K is also equivalent to QKα →
QK weakly for every probability distribution Q on F such that Q ≡ P , where ≡
means mutual absolute continuity.

Exercise 2.3 Show that weak convergence is preserved under an absolutely continu-
ous change of measure, that is, τ (Q) ⊂ τ (P), if Q  P , and hence τ (Q) = τ (P),
if Q ≡ P .

Exercise 2.4 One may consider M1 (X ) as a subset of K1. Show that τ ∩ M1 (X )

is the weak topology on M1 (X ).

The weak topology on K1 is not necessarily Hausdorff and the weak limit kernel
is not unique, but it is P-almost surely unique. In fact, if

∫
f ⊗ h d P ⊗ K1 =∫

f ⊗ h d P ⊗ K2 for K1, K2 ∈ K1 and every f ∈ L1 (P) and h ∈ Cb (X ), then∫
h d PF K1 = ∫

h d PF K2 for every h ∈ Cb (X ) so that PF K1 = PF K2 for every
F ∈ F with P (F) > 0. This implies K1 (·, B) = K2 (·, B) P-almost surely for
every B ∈ B (X ) and thus K1 = K2 P-almost surely by Lemma 2.1 (b).

The following notion is sometimes useful.

Definition 2.4 Assume that X is polish. Let K ∈ K1 and G ⊂ F be a sub-σ-field.
Then by disintegration of measures there exists a (P-almost surely unique) kernel
H ∈ K1 (G) such that

P ⊗ H |G ⊗ B (X ) = (P|G) ⊗ H = P ⊗ K |G ⊗ B (X )

(see Theorem A.6). The Markov kernel H is called the conditional expectation of
K w.r.t. G and is denoted by E (K |G).

For a sub-σ-field G ⊂ F , the weak topology on K1 (G) is denoted by τ (G) =
τ (G, P). We will see that the map K1 �→ K1 (G) or K1, K �→ E (K |G), is weakly
continuous.

Corollary 2.5 Let (Kα)α be a net in K1, K ∈ K1 and G ⊂ F a sub-σ-field.
(a) τ (G) coincides with the topology induced by τ on K1 (G), that is τ (G) =
τ ∩ K1 (G).
(b) Assume that X is polish. If Kα → K weakly, then E (Kα|G) → E (K |G)

weakly (in K1 and K1 (G)).
(c) Assume that X is polish. If {N ∈ F : P(N ) = 0} ⊂ G, then K1 (G) is τ -closed
in K1.
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Proof (a) is an immediate consequence of Theorem 2.3.
(b) is immediate from Theorem 2.3 and∫

f ⊗ h d P ⊗ E (K |G) =
∫

f ⊗ h d P ⊗ K

for K ∈ K1, f ∈ L1 (G, P) and h ∈ Cb (X ).
(c) Let (Kα)α be a net in K1 (G), K ∈ K1 and assume Kα → K weakly in

K1. Then by (b), Kα = E (Kα|G) → E (K |G) weakly in K1 and hence, by almost
sure uniqueness of limit kernels, we obtain E (K |G) = K P-almost surely. The
assumption on G now implies K ∈ K1 (G). Thus K1 (G) is τ -closed. �

We provide further characterizations of weak convergence. Recall that a function
h : Y → R on a topological space Y is said to be lower semicontinuous if {h ≤ r}
is closed for every r ∈ R or, what is the same, if h (y) ≤ lim infα h (yα) for every
net (yα)α and y in Y with yα → y. The function h is upper semicontinuous if −h is
lower semicontinuous. A function which is both upper and lower semicontinuous is
continuous.

Theorem 2.6 For a net (Kα)α and K inK1 the following statements are equivalent:

(i) Kα → K weakly,
(ii) limα

∫
g d P ⊗ Kα = ∫

g d P ⊗ K for every measurable, bounded function
g : (� × X ,F ⊗ B (X )) → (R,B (R)) such that g (ω, ·) ∈ Cb (X ) for every
ω ∈ �,

(iii) (For X polish) lim supα

∫
g d P ⊗ Kα ≤ ∫

g d P ⊗ K for every measurable

function g : (� × X ,F ⊗ B (X )) →
(
R,B

(
R

))
which is bounded from

above such that g (ω, ·) is upper semicontinuous for every ω ∈ �,
(iv) (For X polish) lim infα

∫
g d P ⊗ Kα ≥ ∫

g d P ⊗ K for every measurable

function g : (� × X ,F ⊗ B (X )) →
(
R,B

(
R

))
which is bounded from

below such that g (ω, ·) is lower semicontinuous for every ω ∈ �.

Note that statements (ii)–(iv) say that the functionK1 → R, K �→ ∫
g d P ⊗ K , is

weakly continuous, upper semicontinuous and lower semicontinuous, respectively.
Moreover, it is interesting to note that the F ⊗ B (X )-measurability of the function
g in (ii) already follows from the F-measurability of g (·, x) for every x ∈ X ; see
[18], Lemma 1.1.

Proof (i) ⇒ (ii) and (i) ⇒ (iv). Let g : � × X → R be as in (iv). Replacing g by
g− inf g, wemay assume g ≥ 0. There exists a totally boundedmetric d inducing the
topology ofX so that the subspaceUb (X , d) ofCb (X ) consisting of all d-uniformly
continuous, bounded functions is separable; see [26], Theorem 2.8.2, [69], Lemma
II.6.3. Let {hn : n ∈ N} be a countable dense subset of Ub (X , d). We obtain the
representation

g (ω, x) = sup
{
h+

n (x) : hn ≤ g (ω, ·) , n ∈ N
}

http://dx.doi.org/10.1007/978-3-319-18329-9_1
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for every ω ∈ � and x ∈ X . To see this, let ε > 0, fix ω ∈ � and x ∈ X and consider
the functions

gk : X → R, gk (y) := inf
z∈X

{k ∧ g (ω, z) + kd (y, z)} − ε

for k ∈ N. One easily checks that gk is d-Lipschitz and thus gk ∈ Ub (X , d),
gk ≤ g (ω, ·)−ε and gk (y) ↑ g (ω, y)−ε for every y ∈ X . If g (ω, x) < ∞, choose
k ∈ N such that gk (x) ≥ g (ω, x)− 2ε and then m ∈ N such that ‖gk − hm‖sup ≤ ε.
This implies hm ≤ g (ω, ·) and hm (x) ≥ g (ω, x) − 3ε, hence

sup
{
h+

n (x) : hn ≤ g (ω, ·)} ≥ sup {hn (x) : hn ≤ g (ω, ·)} ≥ g (ω, x) − 3ε .

Since ε was arbitrary, we get the above representation. If g (ω, x) = ∞, for t > 0,
choose k ∈ N such that gk (x) > t + ε and m ∈ N such that ‖gk − hm‖sup ≤ ε. Then
hm ≤ g (ω, ·) and hm (x) > t which yields sup

{
h+

n (x) : hn ≤ g (ω, ·)} = ∞.
Setting Fn := {ω ∈ � : hn ≤ g (ω, ·)} for n ∈ N we obtain g (ω, x) = sup{

1Fn ⊗ h+
n (ω, x) : n ∈ N

}
for every ω ∈ � and x ∈ X .

Now assume that g is bounded and g (ω, ·) ∈ Cb (X ) for every ω ∈ �. Then

Fn =
⋂

x∈X0

{hn (x) ≤ g (·, x)}

for some countable dense subset X0 of X and hence Fn ∈ F . In view of the rather
obvious fact that

V :=
{

n∑
i=1

1Hi ⊗ ki : Hi ∈ F pairwise disjoint, ki ∈ Cb (X )+ , n ∈ N

}

is a lattice in the pointwise ordering there exists a nondecreasing sequence (vn)n≥1
in V such that g (ω, x) = supn∈N vn (ω, x) for every ω ∈ � and x ∈ X .
Using monotone convergence we obtain that the map K �→ ∫

g d P ⊗ K =
supn∈N

∫
vn d P ⊗ K is lower τ -semicontinuous on K1. This can be applied to the

function −g + sup g and yields that the map K �→ ∫
g d P ⊗ K is τ -continuous,

hence (ii).
In the setting of (iv) the proof is a bit more involved because Fn is not necessarily

in F . However,

Fc
n =

⋃
x∈X

{ω ∈ � : hn (x) > g (ω, x)}

is the image of An := {(ω, x) ∈ � × X : hn (x) > g (ω, x)} ∈ F ⊗B (X ) under the
projection π� : � × X → � onto �, that is

π� (An) =
⋃
x∈X

An,x = Fc
n ,
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and hence, using thatX is polish, it follows from a projection theorem that Fn belongs
to the P-completion of F ; see [83], Theorem 4. Therefore, for every n ∈ N there
is a set Gn ∈ F and a P-null set Nn ∈ F such that Gn ⊂ Fn and Fn\Gn ⊂ Nn .
Defining N := ⋃

n∈N Nn we obtain g (ω, x) = sup
{
1Gn ⊗ h+

n (ω, x) : n ∈ N
}
for

every ω ∈ N c and x ∈ X . As above, this yields the lower τ -semicontinuity of
K �→ ∫

g d P ⊗ K , hence (iv).
(ii) ⇒ (i) is obvious, as is (iv) ⇔ (iii) ⇒ (ii). �

Finally we mention a characterization of compactness in K1. For this, it is con-
venient to identify Markov kernels in K1 that agree P-almost surely. One arrives
at the space K 1 (P) = K 1 (F , P) = K 1 (F , P,X ) of P-equivalence classes.
The weak topology on K 1 (P), still denoted by τ (P), is now Hausdorff. For a
sub-σ-field G ⊂ F , let K 1 (G, P) denote the subspace of K 1 (P) consisting of
equivalence classes which contain at least one representative from K1 (G). By
Corollary 2.5 (c), the set K 1 (G, P) is weakly closed in K 1 (P) providedX is polish.

A net inM1 (X ) is called tight if the corresponding subset is tight. A weakly con-
vergent sequence inM1 (X ) is tight providedX is polish. In fact, weak convergence
νn → ν in M1 (X ) obviously implies weak compactness of {νn : n ∈ N} ∪ {ν},
hence {νn : n ∈ N} is relatively weakly compact and thus tight.

Theorem 2.7 Assume that X is polish. For a subset � ⊂ K 1 (P),

(i) � is relatively τ (P)-compact
if and only if
(ii) P� := {P K : K ∈ �} is relatively compact in M1 (X ),
and then
(iii) � is relatively sequentially τ (P)-compact.
In particular, if (Kα)α is a net (sequence) in K1 such that (P Kα)α is tight, then
(Kα)α has a weakly convergent subnet (subsequence).

Proof (i)⇒ (ii) is an immediate consequence of the continuity of themap K �→ P K .
(ii)⇒ (i). Choose as in the proof of Theorem 2.6 a totally bounded metrization of

X . Then the completion Y ofX is compact andX ∈ B (Y) because X is, as a polish
subspace of the polish spaceY , a Gδ-set, i.e. a countable intersection of open subsets
of Y . Hence B (X ) ⊂ B (Y). Because Ub (X ) and Cb (Y) are isometrically isomor-
phic, it follows from the Portmanteau theorem that

(
K 1 (P,X ) , τ (P,X )

)
is homeo-

morphic to the subspace
{

K ∈ K 1 (P,Y) : P K (X ) = 1
}
of

(
K 1 (P,Y) , τ (P,Y)

)
.

Identifying these spaces and because K 1 (P,Y) is τ (P,Y)-compact, see [29], [65],
[33], Theorem 3.58, the τ (P,Y)-closure� of� in K 1 (P,Y) is compact. Let K ∈ �

and let (Kα)α be a net in � such that Kα → K weakly in K 1 (P,Y). Because P�

is tight in M1 (X ), for every ε > 0 we find a compact set A ⊂ X such that
P Kα (A) ≥ 1 − ε for every α. By Theorem 2.3 and the Portmanteau theorem we
obtain

1 − ε ≤ lim sup
α

P Kα (A) ≤ P K (A) ≤ P K (X ) .

This implies P K (X ) = 1 and hence K ∈ K 1 (P,X ).

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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(i)⇒ (iii). Let (Kn)n≥1 be a sequence in � and G := σ (Kn, n ∈ N). IfA denotes
a countable generator of B (X ) which is stable under finite intersections, then G =
σ (Kn (·, B) , B ∈ A, n ∈ N) so that G is a countably generated sub-σ-field of F .
In view of Corollary 2.5 (a) the set {Kn : n ∈ N} is relatively τ (G, P)-compact
and because

(
K 1 (G, P) , τ (G, P)

)
is metrizable, see [33], Proposition 3.25, [18],

Theorem 4.16, (Kn)n≥1 has a τ (G, P)-convergent subsequence which is again by
Corollary 2.5 (a) also τ (P)-convergent. �

Exercise 2.5 Show that one can replace in the last part of Theorem 2.7 the tightness
of the net (P Kα)α by its weak convergence inM1 (X ).

Exercise 2.6 Assume thatX is polish and let� ⊂ K1. Regarding each K ∈ K1 as an(M1 (X ) ,B (M1 (X )
))
-valued random variable, prove that P� is tight inM1 (X )

if and only if
{

P K : K ∈ �
}
is tight inM1

(M1 (X )
)
. Here P K denotes the image

measure.

Exercise 2.7 Let Y be a further separable metrizable topological space. Show that
the weak topology on M1 (X × Y) is generated by the functions

μ �→
∫

h ⊗ k dμ , h ∈ Cb (X ) , k ∈ Cb (Y)

and the weak topology on K1 (F ,X × Y) is generated by the functions

H �→
∫

1F ⊗ h ⊗ k d P ⊗ H , F ∈ F , h ∈ Cb (X ) , k ∈ Cb (Y) .

Exercise 2.8 Let Y be a further separable metrizable space. Let (Hα)α be a net in
K1 (F ,X ), H ∈ K1 (F ,X ) and let (Kα)α be a net in K1 (F ,Y), K ∈ K1 (F ,Y).
Assume that Hα → H weakly and

∫
k (y) Kα (·, dy) →

∫
k (y) K (·, dy) in L1 (P) for every k ∈ Cb (Y) .

Show that Hα ⊗ Kα → H ⊗ K weakly in K1 (F ,X × Y).



Chapter 3
Stable Convergence of Random Variables

Based on the notions and results of Chap.2 we may now introduce and deeply
investigate the mode of stable convergence of random variables. Starting from the
papers [76–78] expositions can be found in [4, 13, 48, 50, 57].

Let X still be a separable metrizable topological space and fix a metric d that
induces the topology on X . For an (X ,B (X ))-valued random variable X and a sub-
σ-fieldG ⊂ F let P X |G denote the conditional distributionwhich exists, for example,
provided that X is polish. It is a Markov kernel from (�,G) to (X ,B (X )) such
that P X |G (·, B) = P (X ∈ B|G) almost surely for all B ∈ B (X ). The conditional
distribution is P-almost surely unique by Lemma 2.1 (b) and characterized by the
Radon-Nikodym equations

∫
G

P X |G (ω, B) d P (ω) = P
(

X−1 (B) ∩ G
)

for every G ∈ G, B ∈ B (X ) ,

or, what is the same,

P ⊗ P X |G = P ⊗ δX on G ⊗ B (X ) ,

where δX is the Dirac-kernel associated with X given by δX (ω) := δX(ω). If, for
example, X is G-measurable, then P X |G = δX . The distribution of X (under P)
is denoted by P X . In the sequel we restrict our attention to sequences of random
variables, all defined on the same probability space (�,F , P).

3.1 First Approach

Definition 3.1 Let G ⊂ F be a sub-σ-field. A sequence (Xn)n≥1 of (X ,B (X ))-
valued random variables is said to converge G-stably to K ∈ K1 (G), written as
Xn → K G-stably, if P Xn |G → K weakly as n → ∞. In case K does not depend on
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ω ∈ � in the sense that K = ν P-almost surely for some ν ∈ M1 (X ), then (Xn)n≥1
is said to converge G-mixing to ν, and wewrite Xn → ν G-mixing. Stable andmixing
convergence are short for F-stable and F-mixing convergence, respectively.

In Definition 3.1 and in the sequel we always assume that the conditional distri-
butions involved exist. (Existence is not part of the subsequent assertions.)

Using Fubini’s theorem for Markov kernels (see Lemma 2.1 (a)) and the fact that∫
h (x) P Xn |G (dx) = E (h (Xn) |G), G-stable convergence Xn → K reads

lim
n→∞ E ( f E (h (Xn) |G)) =

∫
f
∫

h (x) K (·, dx) d P

for every f ∈ L1 (P) and h ∈ Cb (X ). The choice f = 1 implies Xn
d→ P K , that

is, P Xn → P K weakly. Here and elsewhere the reference measure for distributional
convergence is always P . The G-mixing convergence Xn → ν means

lim
n→∞ E ( f E (h (Xn) |G)) =

∫
f d P

∫
h dν

for every f ∈ L1 (P) and h ∈ Cb (X ), which implies Xn
d→ ν. Because P Xn |G =

E
(
δXn |G

)
in the sense of Definition 2.4, G-stable convergence Xn → K can also

be read as E
(
δXn |G

) → K weakly. In the extreme case G = {∅,�}, G-stable
convergence Xn → K coincides with distributional convergence Xn

d→ ν, because
K = ν for some ν ∈ M1 (X ) by G-measurability of K .

Typical limit kernels for G-stable convergence Xn → K are of the type
K (ω, ·) = μϕ(ω,·), where μ ∈ M1 (Y), Y is a separable metrizable space and
ϕ : (� × Y,G ⊗ B (Y)) → (X ,B (X )) is some “concrete” measurable map. Here
μϕ(ω,·) is the image measure of μ under the map ϕ (ω, ·) so that K (ω, B) =
μ ({y ∈ Y : ϕ (ω, y) ∈ B}). In fact, every kernel has such a representation provided
X is polish; see [51], Lemma 3.22)). In particular, if X = Y = R, μ = N (0, 1) and
ϕ (ω, x) := η (ω) x for some G-measurable and nonnegative real random variable η,
we obtain the Gauss-kernel K (ω, ·) = N (0, 1)ϕ(ω,·) = N

(
0, η2 (ω)

)
.

The results of Chap.2 provide the following characterizations of G-stable conver-
gence.

Theorem 3.2 Let Xn be (X ,B (X ))-valued random variables, K ∈ K1 (G) and let
E ⊂ G be closed under finite intersections with � ∈ E and σ (E) = G. Then the
following statements are equivalent:

(i) Xn → K G-stably,
(ii) limn→∞ E f h (Xn) = ∫

f ⊗ h d P ⊗ K for every f ∈ L1 (G, P) and h ∈
Cb (X ),

(iii) Q Xn → QK weakly (in M1 (X )) for every probability distribution Q on F
such that Q 
 P and d Q/d P is G-measurable,

(iv) P Xn
F → PF K weakly for every F ∈ E with P (F) > 0,

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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(v) limn→∞
∫

g (ω, Xn (ω)) d P (ω) = ∫
g d P ⊗ K for every measurable,

bounded function g : (� × X ,G ⊗ B (X )) → (R,B (R)) such that g (ω, ·) ∈
Cb (X ) for every ω ∈ �,

(vi) (For X polish) lim supn→∞
∫

g (ω, Xn (ω)) d P (ω) ≤ ∫
g d P ⊗ K for every

measurable function g : (� × X ,G ⊗ B (X )) →
(
R,B

(
R

))
which is

bounded from above such that g (ω, ·) is upper semicontinuous for every
ω ∈ �,

(vii) (Xn, Y ) → K ⊗ δY G-stably for every separable metrizable space Y and
every G-measurable (Y,B (Y))-valued random variable Y , where K ⊗ δY ∈
K1 (G,X × Y), K ⊗ δY (ω, ·) = K (ω, ·) ⊗ δY (ω),

(viii) (Xn, 1F )
d→ P

(
K ⊗ δ1F

)
for every F ∈ E .

Proof The equivalences (i)–(vi) follow from Theorems 2.3 and 2.6. Here are some
comments. First, observe that for Q 
 P such that d Q/d P is G-measurable we
have Q ⊗ P Xn |G = Q ⊗ δXn on G ⊗B (X ) and hence Q P Xn |G = QδXn = Q Xn for
the marginals on B (X ) (see Lemma A.4 (d)).

(i) ⇔ (ii). For f ∈ L1 (G, P) and h ∈ Cb (X ) we have E ( f E (h (Xn) |G)) =
E f h (Xn).

(i) ⇒ (iii) ⇒ (iv) ⇒ (i) are clear from the above formulas and Theorem 2.3.
(ii) ⇔ (v) ⇔ (vi). For a measurable function g : (� × X ,G ⊗ B (X )) →(

R,B
(
R

))
which is bounded from above,

∫
g dP ⊗ P Xn |G =

∫
g dP ⊗ δXn =

∫
g (ω, Xn (ω)) d P (ω) .

Therefore the equivalences follow from Theorem 2.6 applied to the weak topology
τ (G) on K1 (G) instead of τ .

(v) ⇒ (vii). For F ∈ G and h ∈ Cb (X × Y) define g : � × X → R by
g (ω, x) := 1F (ω) h (x, Y (ω)). Using B (X × Y) = B (X ) ⊗ B (Y) we see that g
is G ⊗ B (X )-measurable and g (ω, ·) ∈ Cb (X ) for every ω ∈ �, so that

lim
n→∞ E1F h (Xn, Y ) = lim

n→∞

∫
g (ω, Xn (ω)) d P (ω) =

∫
g d P ⊗ K

=
∫ ∫ ∫

1F (ω) h (x, y) dδY (ω) (y) K (ω, dx) d P (ω)

=
∫

1F ⊗ h d P ⊗ (K ⊗ δY ) .

Now G-stable convergence (vii) follows in view of (iv) ⇔ (i). Note that no further
assumption onY is needed to assure the existence of conditional distributions because
P(Xn ,Y )|G = P Xn |G ⊗ δY (see Lemma A.5 (a)).

(vii) ⇒ (viii) is clear.
(viii) ⇒ (iv). For F ∈ E , h ∈ Cb (X ) and k ∈ Cb (R) satisfying k (x) = x for

x ∈ [0, 1] and Y = 1F , we have h ⊗ k ∈ Cb (X × R) and thus

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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lim
n→∞ E1F h (Xn) = lim

n→∞ Eh ⊗ k (Xn, Y ) =
∫

h ⊗ k d P (K ⊗ δY )

=
∫ ∫ ∫

h (x) k (y) dδY (ω) (y) K (ω, dx) d P (ω)

=
∫

1F ⊗ h d P ⊗ K . �

Some of the above equivalent conditions are more useful in a given situation
than the others. So, for proving a particular stable limit theorem, Theorem 3.2
(iv) is usually used. In order to obtain theoretical consequences of stability, the
other conditions are more interesting.

Unlike convergence in distribution, stable convergence Xn → K is a property of
the random variables Xn rather than of their distributions. Consider, for example, a
U (0, 1)-distributed random variable U and set Xn := U if n is even, Xn := 1−U if
n is odd and Yn := U for every n. Then P Xn = PYn for every n and Yn → δU stably,
but Xn does not converge stably, because otherwise δU = δ1−U by uniqueness of
limit kernels so that U = 1 − U or U = 1/2 almost surely.

Exercise 3.1 Let (Fn)n≥1 be a nonincreasing (nondecreasing) sequence in F , F =⋂∞
n=1 Fn (F = ⋃∞

n=1 Fn) and P(F) > 0. Show that if P Xn
F → ν weakly for some

ν ∈ M1 (X ), then P Xn
Fn

→ ν weakly as n → ∞.

Exercise 3.2 Let Fn ∈ F , α : � → [0, 1] G-measurable and K (ω, ·) := α (ω) δ1 +
(1 − α (ω)) δ0. Show that 1Fn → K G-stably if and only if limn→∞ P (Fn ∩ G) =∫

G α d P for every G ∈ G.

Exercise 3.3 Let (�,F , P) = (
[0, 1] ,B ([0, 1]) ,λ[0,1]

)
, an ∈ [0, 1/2], Xn :=

1[an ,an+1/2] and G := σ (Y ), where Y : � → R, Y (ω) = ω. Show that P Xn =
(δ0 + δ1) /2 for every n but, if (an)n≥1 is not convergent, (Xn)n≥1 does not converge
G-stably.
Corollary 3.3 (Mixing convergence) In the situation of Theorem 3.2 let K = ν
almost surely for some ν ∈ M1 (X ). Then the following assertions are equivalent:

(i) Xn → ν G-mixing,
(ii) limn→∞ E f h (Xn) = ∫

f d P
∫

h dν for every f ∈ L1 (G, P) and h ∈
Cb (X ),

(iii) Q Xn → ν weakly for every probability distribution Q on F such that Q 
 P
and d Q/d P is G-measurable,

(iv) P Xn
F → ν weakly for every F ∈ E with P (F) > 0,

(v) (Xn, Y )
d→ ν ⊗ PY for every separable metrizable space Y and every G-

measurable (Y,B (Y))-valued random variable Y .
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Proof The equivalences (i)–(iv) are obvious consequences of Theorem 3.2.
(i) ⇒ (v). By Theorem 3.2, we have (Xn, Y ) → ν ⊗ δY G-stably so that

(Xn, Y )
d→ P (ν ⊗ δY ) = ν ⊗ PY .

(v) ⇒ (i) is again immediate from Theorem 3.2. �

Exercise 3.4 Assume that σ (Xn) and G are independent for every n ∈ N. Prove that

(i) (Xn) converges G-stably,
(ii) (Xn) converges G-mixing,
(iii) (Xn) converges in distribution

are equivalent assertions.

Next we state various further features of stable convergence.

Proposition 3.4 (a) (For X polish) If
(
P Xn

)
n≥1 is tight in M1 (X ), then (Xn)n≥1

has a stably convergent subsequence.
(b) (For X polish) Let G1 ⊂ G2 ⊂ F be sub-σ-fields and K ∈ K1(G2). If Xn → K
G2-stably, then Xn → E(K |G1) G1-stably.
(c) Let Y be a separable metrizable space, Y a (Y,B (Y))-valued random variable,

G = σ (Y ) and K ∈ K1 (G). Then Xn → K G-stably if and only if (Xn, Y )
d→

P (K ⊗ δY ).

Proof (a) By Theorem 2.7, there exists a subsequence (Xk) of (Xn) with δXk → K
weakly for some K ∈ K1 because

(
PδXn

) = (
P Xn

)
is tight. Using P Xk |F = δXk ,

this means Xk → K stably.
(b) It follows from Lemma A.7 (b) and Corollary 2.5 (b) that P Xn |G1 =

E(P Xn |G2 |G1) → E(K |G1) weakly in K1, that is, Xn → E(K |G1) G1-stably.
(c) The “if” part. One checks that

L :=
{

f ∈ L1 (G, P) : lim
n→∞ E f h (Xn) =

∫
f ⊗ h d P ⊗ K for every h ∈ Cb (X )

}

is a closedvector subspace ofL1 (G, P).Moreover, functions f of the type f = k (Y )

with k ∈ Cb (Y) belong to L because

E f h (Xn) = Eh ⊗ k (Xn, Y ) →
∫

h ⊗ k d P (K ⊗ δY ) =
∫

f ⊗ h d P ⊗ K .

Since Cb (Y) is dense in L1
(
PY

)
, the vector space {k (Y ) : k ∈ Cb (Y)} is dense in

L1 (G, P) so that L = L1 (G, P). Theorem 3.2 yields Xn → K G-stably.
The “only if” part follows from Theorem 3.2. �

Themost powerful case concernsG-stabilitywhen Xn isG-measurable for everyn.

Proposition 3.5 Let Xn beG-measurable, (X ,B (X ))-valued random variables and
let K ∈ K1 (G). Then the following assertions are equivalent:

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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26 3 Stable Convergence of Random Variables

(i) Xn → K G-stably,
(ii) Xn → K stably,
(iii) δXn → K weakly.

Proof The result is an immediate consequence of Definition 3.1 and P Xn |G =
P Xn |F = δXn P-almost surely. �

Exercise 3.5 Show that the following assertions are equivalent:

(i) Xn → ν mixing,
(ii) P Xn

F → ν weakly for every F ∈ E := ⋃∞
k=1 σ (Xk) with P (F) > 0,

(iii) Xn
d→ ν and limn→∞ P(Xn ,Xk ) (B × B) = ν (B) P Xk (B) for every k ∈ N and

B ∈ B (X ) with ν (∂B) = 0,

(iv) (Xn, Xk)
d→ ν ⊗ P Xk as n → ∞ for every k ∈ N.

(Note that E is a generator of σ (Xn, n ≥ 1)which is generally not closed under finite
intersections.)

In case of a Dirac kernel as limit kernel, stable convergence turns into conver-
gence in probability. Recall that a sequence (Xn)n≥1 of (X ,B (X ))-valued random
variables is said to converge in probability to an (X ,B (X ))-valued random variable
X if limn→∞ P (d (Xn, X) > ε) = 0 for every ε > 0, where d is any metric which
metrizes X and d (Xn, X) is F-measurable because B (X × X ) = B (X ) ⊗ B (X ).
This feature does not depend on the choice of the metric, see e.g. [35], p. 335, and
is equivalent to limn→∞ E (d (Xn, X) ∧ 1) = 0.

Corollary 3.6 (Convergence in probability) For (X ,B (X ))-valued random vari-
ables Xn and X, where X is G-measurable for some sub-σ-field G ofF , the following
assertions are equivalent:

(i) Xn → X in probability,
(ii) Xn → δX G-stably,
(iii) Q Xn → Q X weakly for every probability distribution Q onF such that Q 
 P

and d Q/d P is G-measurable.

This corollary may of course be applied with G = F .

Proof (i) ⇒ (iii). For Q with Q 
 P it follows from (i) that Xn → X in Q-
probability and hence (iii).

(ii) ⇔ (iii) is an immediate consequence of Theorem 3.2 because Q X = QδX .
(ii) ⇒ (i). Define g : � × X → R by g (ω, x) := d (x, X (ω)) ∧ 1. Since g is

G ⊗ B (X )-measurable and g (ω, ·) ∈ Cb (X ) for every ω ∈ �, Theorem 3.2 yields

lim
n→∞ E (d (Xn, X) ∧ 1) = lim

n→∞

∫
g (ω, Xn (ω)) d P (ω) =

∫
g d P ⊗ δX

=
∫

g (ω, X (ω)) d P (ω) = 0 ,

hence (i). �
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Exercise 3.6 Assume Xn → ν mixing, where ν ∈ M1 (X ) is no Dirac-measure.
Show that Xn cannot converge in probability.

Exercise 3.7 (a) Assume that X is polish. Find a direct proof of the implication (ii)
⇒ (i) in Corollary 3.6 based only on the definition of G-stable convergence (that is,
on Theorem 3.2, (i) ⇒ (ii)).
(b) Find a proof of the same implication based on Theorem 3.2, (i) ⇒ (vii).

The main advantage of stable convergence when compared with distributional
convergence is contained in part (b) of the next result.

Theorem 3.7 Assume Xn → K G-stably for (X ,B (X ))-valued random variables
Xn and K ∈ K1 (G). Let Y be a separable metrizable space and Yn, Y random
variables with values in (Y,B (Y)).

(a) Let X = Y . If d (Xn, Yn) → 0 in probability, then Yn → K G-stably.
(b) If Yn → Y in probability and Y is G-measurable, then (Xn, Yn) → K ⊗ δY

G-stably.
(c) If g : X → Y is Borel-measurable and P K -almost surely continuous, then
g (Xn) → K g G-stably with K g (ω, ·) := K (ω, ·)g . The P K -almost sure continuity
of g means that the Borel set {x ∈ X : g is not continuous at x} has P K -measure
zero.

Proof (a) For F ∈ G with P (F) > 0 we have d (Xn, Yn) → 0 in PF -probability
and, by Theorem 3.2, P Xn

F → PF K weakly. This implies PYn
F → PF K weakly by

Theorem 4.1 in [9]. Hence Yn → K G-stably again by Theorem 3.2.
(b) Since (Xn, Y ) → K ⊗ δY G-stably by Theorem 3.2, (b) follows from (a).
(c) For any distribution Q on F such that Q 
 P and d Q/d P is G-measurable

we have weak convergence Q Xn → QK by Theorem 3.2. Since QK 
 P K , the
function g is QK -almost surely continuous so that

(
Q Xn

)g → (QK )g weakly (in
M1 (Y)) by [9], Theorem 5.1. In view of

(
Q Xn

)g = Qg(Xn) and (QK )g = QK g

the assertion follows from Theorem 3.2. �

We now consider special spaces X . In case X = R
d , let 〈·, ·〉 denote the usual

scalar product.

Corollary 3.8 Let X = R
d . Let Xn be R

d -valued random variables, K ∈
K1

(G, R
d
)

and let E ⊂ G be closed under finite intersections with � ∈ E and
σ (E) = G. Then the following assertions are equivalent:

(i) Xn → K G-stably,
(ii) limn→∞ E1F exp (i 〈u, Xn〉) = E1F

∫
exp (i 〈u, x〉) K (·, dx) for every F ∈

E and u ∈ R
d ,

(iii) (Cramér-Wold device) 〈u, Xn〉 → K u G-stably for every u ∈ R
d , where K u ∈

K1 (G, R) is given by K u (ω, ·) := K (ω, ·)〈u,·〉.

Proof This follows from Theorem 3.2 and Lévy’s continuity theorem. �
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Now let X = C ([0, T ]) = Cb ([0, T ]), for 0 < T < ∞ and equipped with
the sup-norm, or X = C (R+). Then C ([0, T ]) is polish. The space C (R+) of all
continuous functions x : R+ → R is equipped with the local uniform topology
induced by the metric d (x, y) = ∑∞

n=1 2
−n

(
maxt∈[0,n] |x (t) − y (t)| ∧ 1

)
. This

metric is complete, C (R+) is a polish space and B (C (I )) = σ (πt , t ∈ I ), I =
[0, T ] or I = R+, where πt : C (I ) → R, πt (x) = x (t) denotes the projection
(see [53], Theorems 21.30 and 21.31). Consequently, any path-continuous stochastic
process X = (Xt )t∈I may be viewed as a (C (I ) ,B (C (I )))-valued randomvariable.
For t j ∈ I let πt1,...,tk : C (I ) → R

k,πt1,...,tk (x) = (x (t1) , . . . , x (tk)).

Proposition 3.9 Let X = C (I ) with I = [0, T ] or R+, and let Xn = (
Xn

t

)
t∈I

be path-continuous processes and K ∈ K1 (G). Then the following assertions are
equivalent:

(i) Xn → K G-stably,
(ii)

(
P Xn )

n≥1 is tight and
(
Xn

t1 , . . . , Xn
tk

) → K πt1,...,tk G-stably for every k ≥ 1 and
0 ≤ t1 < · · · < tk , t j ∈ I .

Proof (i) ⇒ (ii). Since P Xn → P K weakly, the sequence
(
P Xn )

n≥1 is tight. The
second assertion follows from Theorem 3.7 (c).

(ii) ⇒ (i). If Xn
� K G-stably, we may choose functions f ∈ L1 (G, P) and

h ∈ Cb (X ) and some ε > 0 such that
∣∣E f h (Xr ) − ∫

f ⊗ h d P ⊗ K
∣∣ ≥ ε along a

subsequence (r) of the sequence (n) of all positive integers. By Proposition 3.4 (a),
(b) there exists a further subsequence (m) of (r) and an H ∈ K1 (G) such that
Xm → H G-stably. But then by Theorem 3.7 (c) and Theorem 3.2

P

(
Xm

t1
,...,Xm

tk

)
F → PF Hπt1,...,tk = (PF H)πt1,...,tk weakly,

and because also by (ii)

P

(
Xm

t1
,...,Xm

tk

)
F → (PF K )πt1,...,tk weakly,

for every F ∈ G with P (F) > 0 and every k ≥ 1, 0 ≤ t1 < · · · < tk , t j ∈ I , we
obtain PF H = PF K for every F ∈ G with P (F) > 0, which yields H = K almost
surely. Thus Xm → K G-stably, and so E f h (Xm) → ∫

f ⊗ h d P ⊗ K , which is a
contradiction. �

Note that characterizations of stable convergence similar to Proposition 3.9 may
by given for spaces of càdlàg functions, e.g. X = D ([0, T ]), D (R+), D

(
R+, R

k
)

etc.
The following approximation result provides a useful tool for proving stable

convergence.
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Theorem 3.10 (Approximation) Let Xn,r and Yn be (X ,B (X ))-valued random
variables and Kr , K ∈ K1 (G) for n, r ∈ N. Assume that

(i) Xn,r → Kr G-stably for n → ∞ and all r ∈ N,
(ii) Kr → K weakly for r → ∞,
(iii) limr→∞ lim supn→∞ P

(
d

(
Xn,r , Yn

)
> ε

) = 0 for every ε > 0.

Then Yn → K G-stably.

Proof For F ∈ G with P (F) > 0we have P
Xn,r
F → PF Kr weakly for n → ∞ by (i)

and Theorem 3.2, and PF Kr → PF K weakly for r → ∞ by (ii) and Theorem 2.3.
It remains to show that this combined with (iii) implies PYn

F → PF K weakly. Then
Theorem 3.2 yields G-stable convergence Yn → K .

For a closed set B ⊂ X and ε > 0 let Bε := {y ∈ X : inf x∈B d (y, x) ≤ ε}. Since
{Yn ∈ B} ⊂ {

Xn,r ∈ Bε

} ∪ {
d

(
Xn,r , Yn

)
> ε

}
, we obtain PYn

F (B) ≤ P
Xn,r
F (Bε) +

PF
(
d

(
Xn,r , Yn

)
> ε

)
. Since Bε is closed, the subadditivity of limsup and the Port-

manteau theorem yield

lim sup
n→∞

PYn
F (B) ≤ PF Kr (Bε) + lim sup

n→∞
PF

(
d

(
Xn,r , Yn

)
> ε

)
and furthermore lim supr→∞ PF Kr (Bε) ≤ PF K (Bε). By (iii) and since Bε ↓ B
as ε ↓ 0 we get lim supn→∞ PYn

F (B) ≤ PF K (B) so that, B being arbitrary closed,

again by the Portmanteau theorem PYn
F → PF K weakly. �

Exercise 3.8 Show that condition (iii) of Theorem 3.10 is equivalent to the condition
limr→∞ lim supn→∞ E

(
d

(
Xn,r , Yn

) ∧ 1
) = 0.

The following observation is sometimes useful.

Proposition 3.11 Let P = ∑∞
i=1 si Qi for probability distributions Qi on F and

si ∈ [0, 1] satisfying
∑∞

i=1 si = 1. If Xn → K G-stably under Qi for every i ∈ N

with si > 0 for (X ,B (X ))-valued random variables Xn and K ∈ K1 (G), then
Xn → K G-stably (under P).

Proof This is an immediate consequence of Theorem 3.2. In fact, let I = {i ∈ N :
si > 0}, F ∈ G and h ∈ Cb (X ). Then∫

1F h (Xn) d P =
∑
i∈I

si

∫
1F h (Xn) d Qi

→
∑
i∈I

si

∫
1F ⊗ h d Qi ⊗ K =

∫
1F ⊗ h d P ⊗ K . �

Finally, we state an unspecified limit version of (parts of) Theorem 3.2. Typically,
unspecified limit results are not of great interest. However, the subsequent condition
(iii) with E = G = F was the original definition of stable convergence.

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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Proposition 3.12 (Unspecified limit) Assume that X is polish. Let E ⊂ G be closed
under finite intersections with � ∈ E and σ (E) = G. Then the following assertions
are equivalent:

(i) (Xn) converges G-stably,
(ii)

(
P Xn

)
is tight and the sequence (E1F h (Xn)) converges in R for every F ∈ E

and h ∈ Cb (X ),

(iii)
(

P Xn
F

)
converges weakly for every F ∈ E with P (F) > 0,

(iv) ((Xn, Y )) converges in distribution for every separable metrizable space Y and
every G-measurable (Y,B (Y))-valued random variable Y .

Proof The implications (i) ⇒ (iii) ⇒ (ii) are obvious in view of Theorem 3.2.
(ii) ⇒ (i). For F ∈ E and h ∈ Cb (X ), let cF,h := limn→∞ E1F h (Xn). By

Proposition 3.4 (a) and (b), there is a subsequence (Xk) of (Xn) with Xk → K
G-stably for some K ∈ K1 (G). Hence, limk→∞ E1F h (Xk) = ∫

1F ⊗ h d P ⊗ K
so that cF,h = ∫

1F ⊗ h d P ⊗ K for every F ∈ E , h ∈ Cb (X ). Again Theorem 3.2
yields Xn → K G-stably.

(i) ⇒ (iv) follows from Theorem 3.2.

(iv) ⇒ (ii). Clearly,
(
P Xn

)
is tight. For F ∈ E , let (Xn, 1F )

d→ μF for some
μF ∈ M1 (X × R). Then for h ∈ Cb (X ) and k ∈ Cb (R) satisfying k (x) = x for
x ∈ [0, 1], we obtain

lim
n→∞ E1F h (Xn) = lim

n→∞ Eh ⊗ k (Xn, 1F ) =
∫

h ⊗ k dμF . �

Exercise 3.9 Assume that X is polish. Show that for (general) stable convergence
an unspecified limit version of most parts of Exercise 3.5 is true, that is,

(i) (Xn)n≥1 converges stably,

(ii)
(

P Xn
F

)
n≥1

convergesweakly for every F ∈ E := ⋃∞
k=1 σ (Xk)with P (F) > 0,

(iii) ((Xn, Xk))n≥1 converges in distribution for every k ∈ N

are equivalent assertions.

Here is a first example.

Example 3.13 (Classical stable central limit theorem; Takahashi, Rényi)
(a) We observe automatic stability in the following setting. Let (Zn)n≥1 be an
independent sequence of real random variables, bn ∈ R, an > 0, an → ∞ and
ν ∈ M1 (R). If

Xn := 1

an

⎛
⎝ n∑

j=1

Z j − bn

⎞
⎠ d→ ν ,
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then Xn → ν mixing as n → ∞. To see this, let G := σ (Zn, n ≥ 1) and E :=⋃∞
k=1 σ (Z1, . . . , Zk). Then E is a fieldwith σ (E) = G and the Xn areG-measurable.

If F ∈ σ (Z1, . . . , Zk) for some k ∈ N with P (F) > 0 and

Yn := 1

an

⎛
⎝ n∑

j=k+1

Z j − bn

⎞
⎠ , n > k ,

then

|Xn − Yn| =
∣∣∣∣∣∣
1

an

k∑
j=1

Z j

∣∣∣∣∣∣ → 0 everywhere on � as n → ∞

so that Yn
d→ ν. Since σ (Z1, . . . , Zk) and σ (Zn, n ≥ k + 1) are independent, we

have PYn
F = PYn → ν weakly (in M1 (R)) and hence P Xn

F → ν weakly. The
assertion follows from Corollary 3.3 and Proposition 3.5.
(b) Now let (Zn)n≥1 be an independent and identically distributed sequence of real
random variables with Z1 ∈ L2 (P) and σ2:=Var Z1. Then by the classical central
limit theorem and (a),

Xn := 1√
n

n∑
j=1

(
Z j − E Z1

) → N
(
0,σ2

)
mixing as n → ∞ .

Consequences of the mixing feature are, for example, statements such as

lim
n→∞ P (Xn ≤ Y ) =

∫
N

(
0,σ2

)
((−∞, y]) d PY (y)

for any real random variable Y , which is out of scope under mere distributional

convergence. In fact, by Corollary 3.3, (Xn, Y )
d→ N

(
0,σ2

) ⊗ PY so that for the
closed set D := {

(x, y) ∈ R
2 : x ≤ y

}
, by the Portmanteau theorem,

P (Xn ≤ Y ) = P ((Xn, Y ) ∈ D)

→ N
(
0,σ2

)
⊗ PY (D) =

∫
N

(
0,σ2

)
((−∞, y]) d PY (y)

because N
(
0,σ2

) ⊗ PY (∂D) = 0 provided σ2 > 0.
We can also easily derive a multivariate version of the above stable central limit

theorem using the Cramér-Wold device from Corollary 3.8 (iii). �
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Example 3.14 (Classical stable functional central limit theorem, cf. [9], Theorem
16.3) Let (Zn)n≥1 be an independent and identically distributed sequence of real
random variables with Z1 ∈ L2 (P), E Z1 = 0 and σ2:=Var Z1 > 0. For n ∈ N,
consider the path-continuous process Xn = (

Xn
t

)
t≥0 defined by

Xn
t := 1

σ
√

n

⎛
⎝ [nt]∑

j=1

Z j + (nt − [nt]) Z[nt]+1

⎞
⎠ , t ≥ 0

(∑0
j=1 Z j := 0

)
, where [nt] denotes the integer part. ByDonsker’s theorem, Xn d→

ν in C (R+), where ν ∈ M1 (C (R+)) denotes the Wiener measure ([53], Theorem
21.43). We show that Xn → ν mixing. Arguing as in Example 3.13 (a), it is enough
to show that P Xn

F → ν weakly for every F ∈ ⋃∞
k=1 σ (Z1, . . . , Zk)with P (F) > 0.

If F ∈ σ (Z1, . . . , Zk) for some k ∈ N with P (F) > 0 and

Y n
t :=

⎧⎪⎪⎨
⎪⎪⎩
0 , 0 ≤ t ≤ k

n

1

σ
√

n

⎛
⎝ [nt]∑

j=k+1

Z j + (nt − [nt]) Z[nt]+1

⎞
⎠ , t >

k

n

for n ∈ N, then

d
(
Xn, Y n) ≤ 2

σ
√

n

k∑
i=1

|Zi | → 0 everywhere on � as n → ∞

so that Y n d→ ν. Since σ (Z1, . . . , Zk) and σ (Y n) are independent, we have PYn
F =

PYn → ν weakly and hence P Xn
F → ν weakly. For a martingale approach to the

mixing Donsker theorem, see Chap. 7. �

Exercise 3.10 Show in the situation of Example 3.14 that

1

σ
√

n
max
0≤ j≤n

j∑
i=1

Zi → μ mixing ,

where

dμ

dλ
(t) = 2√

2π
exp

(
− t2

2

)
1R+ (t) .

Hint: μ is the distribution of maxt∈[0,1] Wt for a Brownian motion W .

http://dx.doi.org/10.1007/978-3-319-18329-9_7
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3.2 Second Approach

The limit kernel forG-stable convergence Xn → K can always be represented as aG-
conditional distribution of a further randomvariable X defined on a suitable extension
of the underlying probability space (�,F , P): Take � = � ×X , F = F ⊗B (X ),
P = P ⊗ K and X (ω, x) = x . So, for instance, the Gauss-kernel N

(
0, η2

)
, where

η is a G-measurable, nonnegative real random variable, satisfies N
(
0, η2

) = PηZ |G
assuming the existence of a N (0, 1)-distributed random variable Z on (�,F , P)

which is independent of G. This motivates the following approach.

Definition 3.15 Let G ⊂ F be a sub-σ-field. A sequence (Xn)n≥1 of (X ,B (X ))-
valued randomvariables is said to convergeG-stably to an (X ,B (X ))-valued random
variable X if Xn → P X |G G-stably for n → ∞. Then we write Xn → X G-stably.

As before, we assume the existence of conditional distributions. By Definition 3.1
G-stable convergence Xn → X reads

lim
n→∞ E ( f E (h (Xn) |G)) = E ( f E (h (X) |G))

for every f ∈ L1 (P) and h ∈ Cb (X ) and implies Xn
d→ X . The G-mixing conver-

gence Xn → X corresponds to P X |G = P X P-almost surely which is equivalent to
the independence of σ (X) and G. Thus Xn → X G-mixingmeans Xn → X G-stably
and σ (X) and G are independent which is also equivalent to Xn → P X G-mixing
and independence of σ (X) and G.

For the formulation of stable limit theorems in subsequent chapters we sometimes
use the “K -approach”, sometimes the “X -approach”, and sometimes both.

Example 3.16 In the situation of Example 3.13 (b) with G = σ (Zn, n ≥ 1) let X be
N

(
0,σ2

)
-distributed and independent of G. Such an X exists at least after a suitable

extension of (�,F , P). Then Example 3.13 (b) yields

1√
n

n∑
j=1

(
Z j − E Z1

) → X G-mixing.

However, there is nothing special about this G. The above statement holds for any
pair (G, X), where P X = N

(
0,σ2

)
and σ (X), G are independent. The random

variable X is merely an “artificial” construct to describe the limit kernel. In practice,
G can and will be chosen so large that all random variables of interest are measurable
w.r.t. G. �

The previous characterizations of G-stable convergence now read as follows.

Theorem 3.17 Let Xn and X be (X ,B (X ))-valued random variables and let E ⊂ G
be closed under finite intersections with � ∈ E and σ (E) = G. Then the following
assertions are equivalent:
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(i) Xn → X G-stably,
(ii) limn→∞ E f h (Xn) = E f h(X) for every f ∈ L1 (G, P) and h ∈ Cb (X ),
(iii) Q Xn → Q X weakly for every probability distribution Q on F such that

Q 
 P and d Q/d P is G-measurable,
(iv) P Xn

F → P X
F weakly for every F ∈ E with P (F) > 0,

(v) limn→∞
∫

g (ω, Xn (ω)) d P (ω) = ∫
g (ω, X (ω)) d P (ω) for every measur-

able, bounded function g : (� × X ,G ⊗ B (X )) → (R,B (R)) such that
g (ω, ·) ∈ Cb (X ) for every ω ∈ �,

(vi) (For X polish) lim supn→∞
∫

g (ω, Xn (ω)) d P (ω) ≤ ∫
g (ω, X (ω)) d P (ω)

for every measurable function g : (� × X ,G ⊗ B (X )) →
(
R,B

(
R

))
which is bounded from above such that g (ω, ·) is upper semicontinuous for
every ω ∈ �,

(vii) (Xn, Y ) → (X, Y )G-stably for every separable metrizable spaceY and every
G-measurable (Y,B (Y))-valued random variable Y ,

(viii) (Xn, 1F )
d→ (X, 1F ) for every F ∈ E .

Proof Just apply Theorem 3.2. As for (vii) and (viii) one has to recall that P X |G ⊗
δY = P(X,Y )|G by G-measurability of Y so that P

(
P X |G ⊗ δY

) = P(X,Y ). �

Exercise 3.11 LetY be a separable metrizable space, Y a (Y,B (Y))-valued random

variable and G = σ (Y ). Show that Xn → X G-stably if and only if (Xn, Y )
d→

(X, Y ) as n → ∞.

Exercise 3.12 Let G = σ (Xn, n ≥ 1). Prove that Xn → X G-stably if and only if

(Xn, X1, . . . , Xk)
d→ (X, X1, . . . , Xk) as n → ∞ for every k ≥ 1.

In case G1 ⊂ G2 ⊂ F it is clear from Theorem 3.17 that G2-stable convergence
Xn → X implies G1-stable convergence Xn → X .

The G-measurability of all Xn in G-stable convergence Xn → X has no specific
impact (in contrast to Proposition 3.5) while the G-measurability of X has a very
strong impact. In fact, if σ (X) ⊂ G, then Xn → X G-stably if and only if Xn → X
in probability. This is a reformulation of Corollary 3.6 because P X |G = δX . In
particular, still under G-measurability of X , we have Xn → X G-mixing if and only
if X = c almost surely for some constant c ∈ X and Xn → c in probability.

Since G = {∅,�} reduces G-stable convergence Xn → X to distributional con-
vergence and σ (X) ⊂ G gives convergence in probability, G-stability provides a
type of convergence in between.

In the “X -approach” Theorem 3.7 reads as follows.

Theorem 3.18 Assume Xn → X G-stably and let Yn and Y be random variables
with values in (Y,B (Y)) for some separable metrizable space.
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(a) Let X = Y . If d (Xn, Yn) → 0 in probability, then Yn → X G-stably.
(b) If Yn → Y in probability and Y is G-measurable, then (Xn, Yn) → (X, Y )

G-stably.
(c) If g : X → Y is Borel-measurable and P X -almost surely continuous, then
g (Xn) → g (X) G-stably.

Proof Recall that P X |G ⊗ δY = P(X,Y )|G , note that (P X |G)g = Pg(X)|G and use
Theorem 3.7. �

Corollary 3.8 reads as follows.

Corollary 3.19 Let X = R
d . Let Xn and X be R

d -valued random variables and
let E ⊂ G be closed under finite intersections with � ∈ E and σ (E) = G. Then the
following assertions are equivalent:

(i) Xn → X G-stably,
(ii) limn→∞ E1F exp (i 〈u, Xn〉) = E1F exp (i 〈u, X〉) for every F ∈ E and u ∈

R
d ,

(iii) 〈u, Xn〉 → 〈u, X〉 G-stably for every u ∈ R
d .

Proposition 3.9 reads as follows.

Proposition 3.20 Let X = C (I ) with I = [0, T ] or R+. For path-continuous
processes Xn = (

Xn
t

)
t∈I and X = (Xt )t∈I the following assertions are equivalent:

(i) Xn → X G-stably,
(ii)

(
P Xn )

n≥1 is tight and
(
Xn

t1 , . . . , Xn
tk

) → (
Xt1 , . . . , Xtk

) G-stably for every
k ≥ 1 and 0 ≤ t1 < · · · < tk , t j ∈ I .

Theorem 3.10 reads as follows.

Theorem 3.21 (Approximation) Let Xn,r , Xr , X and Yn be (X ,B (X ))-valued ran-
dom variables. Assume that

(i) Xn,r → Xr G-stably for n → ∞ and all r ∈ N,
(ii) Xr → X G-stably for r → ∞,
(iii) limr→∞ lim supn→∞ P

(
d

(
Xn,r , Yn

)
> ε

) = 0 for every ε > 0.

Then Yn → X G-stably.

Using Theorem 3.21 we can treat a further special case quite easily.

Proposition 3.22 Let X = ∏
j∈N Y j for separable metrizable spaces Y j . For

(X ,B (X ))-valued random variables Xn = (
Xn

k

)
k≥1 and X = (Xk)k≥1 are equiva-

lent:
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(i) Xn → X G-stably,
(ii)

(
Xn
1 , . . . , Xn

k

) → (X1, . . . , Xk) G-stably for every k ≥ 1.

Proof (i) ⇒ (ii) follows from the continuity of π1,...,k : X → ∏k
j=1 Y j , π1,...,k

((xn)) := (x1, . . . , xk) for every k ∈ N and Theorem 3.18 (c).
(ii) ⇒ (i). Fix any (cn) ∈ X . For k ∈ N, the map ϕk : ∏k

j=1 Y j → X ,
ϕk ((x1, . . . , xk)) := (x1, . . . , xk, ck+1, ck+2, . . .) is continuous so that by Theo-
rem 3.18 (c)

Zn,k := ϕk
((

Xn
1 , . . . , Xn

k

)) → Zk := ϕk ((X1, . . . , Xk)) G-stably as n → ∞

for every k ∈ N. Note that if d j denotes a metric inducing the topology of Y j , then
the metric d

((
x j

)
,
(
y j

)) := ∑∞
j=1 2

− j
(
d j

(
x j , y j

) ∧ 1
)
provides a metrization of

the product topology of X , and note also that d
(
Zn,k, Xn

) ≤ ∑∞
j=k+1 2

− j and

d
(
Zk, X

) ≤ ∑∞
j=k+1 2

− j for all k, n ∈ N. The G-stable convergence Xn → X now
follows from Theorem 3.21. �

One can deduce a characterization of stable convergence of continuous processes.

Corollary 3.23 Let X = C (R+). For path-continuous processes Xn = (
Xn

t

)
t≥0

and X = (Xt )t≥0 are equivalent:

(i) Xn → X G-stably,
(ii)

(
Xn

t

)
t∈[0,k] → (Xt )t∈[0,k] G-stably in C ([0, k]) for every k ∈ N.

Proof (i) ⇒ (ii) follows from the continuity of the restriction maps ϕk : C (R+) →
C ([0, k]) and Theorem 3.18 (c).

(ii) ⇒ (i). By hypothesis ϕk (Xn) → ϕk (X) G-stably in C ([0, k]) for every k ∈
N. Since the restriction map C ([0, k]) → ∏k

m=1 C ([0, m]), y �→ (y| [0, 1] , . . . , y|
[0, k]) is continuous, Theorem 3.18 (c) implies

(
ϕ1

(
Xn)

, . . . ,ϕk
(
Xn)) → (ϕ1 (X) , . . . ,ϕk (X)) G-stably in

k∏
m=1

C ([0, m])

for every k ∈ N so that Proposition 3.22 yields

(
ϕm

(
Xn))

m∈N → (ϕm (X))m∈N G-stably in
∏
m∈N

C ([0, m])

as n → ∞. Now (ϕm)m∈N is a homeomorphism from C (R+) onto its range Z , say,
in

∏
m∈N C ([0, m]). (Z is a Borel subset of

∏
m∈N C ([0, m]); see [69], Theorem

I.3.9.) Using the Portmanteau theorem one checks that
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(
ϕm

(
Xn))

m∈N → (ϕm (X))m∈N G-stably in Z .

Assertion (i) follows again from Theorem 3.18 (c). �

Proposition 3.11 reads as follows.

Proposition 3.24 Let P = ∑∞
i=1 si Qi for probability distributions Qi on F and

si ∈ [0, 1] satisfying
∑∞

i=1 si = 1. If Xn → X G-stably under Qi for every i with
si > 0, then Xn → X G-stably (under P).



Chapter 4
Applications

The goal of this chapter is to establish consequences of stable convergence of
random variables. We thus demonstrate the importance of this notion simply because
many distributional limit theorems can be shown to be stable. Stable convergence
implies convergence in distribution. But it implies much more. Stable convergence
is useful, for example, in connection with random normalization and random index
limit theorems and can be used to prove results on the fluctuations of sample paths of
stochastic processes. Also the δ-method with random centering works under stable
convergence, and stable convergence Xn → K implies the existence of a subse-
quence (Xm) such that the associated empirical measures of every further subse-
quence of (Xm) converge weakly to K (ω, ·), almost surely. Thus the stable limit
kernel specifies the almost sure limit of empirical measures.

As before, let X be a separable metrizable space and let d be a metric inducing
the topology on X .

4.1 Limit Points

In order to describe the fluctuation behavior of stably convergent random variables
recall that x ∈ X is said to be a limit point of a sequence (xn)n≥1 in X if it has a
subsequence converging to x . We denote by L ((xn)) the set of all limit points of
(xn)n≥1. Since X is first countable (each point has a countable neighborhood basis)
the limit points of a sequence are precisely the cluster (or accumulation) points of
the sequence, so that L ((xn)) = ⋂

n∈N {xk : k ≥ n}, where B denotes the closure
of B ⊂ X . Furthermore, the set L := {

((xn) , x) ∈ XN × X : x ∈ L ((xn))
}
can be

written as L = ⋂
n∈N Ln , where

© Springer International Publishing Switzerland 2015
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Ln :=
{((

x j
)
, x

) ∈ XN × X : x ∈ {xk : k ≥ n}
}

=
∞⋂

i=1

∞⋃
k=n

{((
x j

)
, x

) ∈ XN × X : d (xk, x) <
1

i

}
,

hence Ln , L ∈ B (X )N ⊗ B (X ). For ν ∈ M1 (X ), let supp(ν) denote the support
of ν (i.e. the smallest closed set B such that ν (B) = 1), which exists in our setting
([69], Theorem II.2.1).

Theorem 4.1 (Limit points) Assume that X is polish. If Xn → K stably for
(X ,B (X ))-valued random variables Xn and K ∈ K1, then L ((Xn (ω))) ⊃
supp(K (ω, ·)) almost surely.

Proof Themapϕ :(�×X,F ⊗ B (X ))→
(
XN×X,B (X )N ⊗ B (X )

)
,ϕ (ω, x) :=

((Xn (ω)) , x), is measurable. Hence the sets

Cn := {
(ω, x) ∈ � × X : x ∈ {Xk (ω) : k ≥ n}} = {ϕ ∈ Ln}

and

C := {(ω, x) ∈ � × X : x ∈ L ((Xn (ω)))} = {ϕ ∈ L} =
∞⋂

n=1

Cn

satisfy Cn ,C ∈ F ⊗ B (X ), and the ω-sections Cn,ω are closed so that 1Cn (ω, ·) is
upper semicontinuous for every ω ∈ �. Since obviously

∫
1Cn (ω, Xk (ω)) d P (ω) = 1

for every k ≥ n, Theorem 3.2 yields

1 = lim sup
k→∞

∫
1Cn (ω, Xk (ω)) d P (ω) ≤ P ⊗ K (Cn)

for every n ∈ N. This implies P ⊗ K (C) = 1 and thus K (ω, Cω) = 1 for almost
all ω ∈ �, where Cω = L ((Xn (ω))). �

In the mixing case the above theorem first appeared in [80] and for the gen-
eral case see [7], Corollary 3.18. A sharper “subsequence principle” may be found
in [48].

Example 4.2 In the situation of Example 3.13 (b) with σ2 ∈ (0,∞) we obtain from
Theorem 4.1 that

L

⎛
⎝

⎛
⎝n−1/2

n∑
j=1

(
Z j − E Z1

)⎞⎠
⎞
⎠ = R a.s.

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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This may be compared with Strassen’s law of the iterated logarithm

L

⎛
⎝

⎛
⎝(2n log log n)−1/2

n∑
j=1

(
Z j − E Z1

)⎞⎠
⎞
⎠ = [−σ,σ] a.s.

which, of course, is much better and implies the above statement as well as the strong
law of large numbers

L

⎛
⎝

⎛
⎝n−α

n∑
j=1

(
Z j − E Z1

)⎞⎠
⎞
⎠ = {0} a.s.

for all α > 1/2. �

Example 4.3 (Occupation time ofBrownianmotion) LetW = (Wt )t≥0 be an (every-
where path-continuous) Brownian motion and η its occupation measure, defined by

ηt (A) :=
∫ t

0
1A (Ws) ds = λ (s ≤ t : Ws ∈ A)

for t ≥ 0 and A ∈ B (R). Using Theorem 4.1 we show for A = (0,∞) that the limit
points of the sequence

(
n−1ηn ((0,∞))

)
n≥1 coincide almost surely with [0, 1] and,

in particular,

lim sup
n→∞

1

n
λ (t ≤ n : Wt > 0) = 1 a.s.

and

lim inf
n→∞

1

n
λ (t ≤ n : Wt > 0) = 0 a.s.

We proceed as follows. Let X = C ([0, 1]), ν := P(Wt )t∈[0,1] ∈ M1 (X ) and for
n ∈ N let Xn

t := n−1/2Wnt , t ∈ [0, 1]. By the scaling invariance of Brownian motion

we obtain P Xn = ν for every n (and obviously Xn d→ ν and
(
P Xn )

n≥1 is tight). We
first observe that Xn → ν mixing as n → ∞. By Proposition 3.9 and Corollary 3.8
it is enough to show that

k∑
j=1

u j Xn
t j

→ P
∑k

j=1 u j Wt j mixing as n → ∞

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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for every k ∈ N, 0 < t1 < · · · < tk ≤ 1 and u1, . . . , uk ∈ R. (The case t1 = 0 can be
excluded since Xn

0 = W0 = 0.) Choose an ∈ (0,∞) such that an < n, an ↑ ∞ and
an/n → 0 as n → ∞ and define Yn := n−1/2 ∑k

j=1 u j
(
Wnt j − Want j

)
for n ∈ N.

Since E
(
Want/

√
n
)2 = ant/n → 0 for every t ≥ 0, we obtain

k∑
j=1

u j Xn
t j

− Yn = n−1/2
k∑

j=1

u j Want j → 0 in L2 (P)

and thus in probability as n → ∞. Hence by Theorem3.7 (a) it is enough to show that

Yn → P
∑k

j=1 u j Wt j mixing. LetG := σ (Yn, n ∈ N) and E := ⋃∞
m=1 σ (Y1, . . . , Ym),

satisfying σ (E) = G. For all m ∈ N, we have σ (Y1, . . . , Ym) ⊂ σ (Wt , t ≤ m)

and for all n ∈ N such that ant1 ≥ m, we have σ (Yn) ⊂ σ (Wt − Wm, t ≥ m).
Also, the σ-fields σ (Wt , t ≤ m) and σ (Wt − Wm, t ≥ m) are independent by the
independence of the increments of W . Thus, if F ∈ σ (Y1, . . . , Ym) with P (F) > 0,
then for n ∈ N with ant1 ≥ m

PYn
F = PYn → P

∑k
j=1 u j Wt j weakly .

The desired mixing convergence of Yn follows from Corollary 3.3 and Proposi-
tion 3.5.

We can mention, as a first consequence of Proposition 4.1, that

L
((

Xn)) = supp(ν) = {x ∈ C([0, 1]) : x(0) = 0} P-a.s.

and compare this with Strassen’s law of the iterated logarithm for Brownian motion,
saying that the processes Zn

t := (2n log log n)−1/2 Wnt , t ∈ [0, 1], satisfy

L
((

Zn)) = unit ball of the reproducing kernel Hilbert space of ν

=
{

x ∈ C ([0, 1]) : x (0) = 0, x absolutely continuous and∫ 1

0
ẋ (t)2 dt ≤ 1

}
a.s. ;

see [91], Theorem 1.17.
Now consider the occupation time functional g : X → [0, 1] defined by

g (x) :=
∫ 1

0
1(0,∞) (x (t)) dt = λ (t ≤ 1 : x (t) > 0) .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_1
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Since X × [0, 1] → [0, 1], (x, t) �→ x (t), is obviously continuous, hence Borel-
measurable, and B (X × [0, 1]) = B (X ) ⊗ B ([0, 1]), the functional g is also
Borel-measurable. Furthermore, g is ν-almost surely continuous. In fact, for the
t-sections of

D := {(x, t) ∈ X × [0, 1] : x (t) = 0} ∈ B (X ) ⊗ B ([0, 1])

we have ν (Dt ) = PWt ({0}) = N (0, t) ({0}) = 0 for every t > 0 and by Fubini’s
theorem

0 =
∫ 1

0
ν (Dt ) dt = ν ⊗ λ (D) =

∫
X

λ (Dx ) dν (x) .

Hence there exists a set N ∈ B (X ) with ν (N ) = 0 such that λ (Dx ) = 0
for every x ∈ N c. For x ∈ N c and xn ∈ X such that xn → x we obtain
1(0,∞) (xn (t)) → 1(0,∞) (x (t)) for every t ∈ Dc

x , hence λ-almost surely, so that
by dominated convergence g (xn) → g (x). This gives continuity of g at every point
x ∈ N c. By Theorem 3.7 (c) we can conclude g (Xn) → νg mixing. Since

g
(
Xn) =

∫ 1

0
1(0,∞) (Wnt ) dt = 1

n

∫ n

0
1[0,∞) (Ws) ds = 1

n
ηn ((0,∞)),

and νg = Pg((Wt )t∈[0,1]) = Pη1((0,∞)) as well as supp(Pη1((0,∞))) = [0, 1] sim-
ply because η1 ((0,∞)) has an arcsine distribution with strictly positive λ-density
on (0, 1), see e.g. [51], Theorem 13.16, the assertion about the limit points of(
n−1ηn ((0,∞))

)
n≥1 stated at the beginning follows from Theorem 4.1. �

Example 4.4 (Borel-Cantelli-type features; [30]) Let Fn ∈ F and α ∈ (0, 1).
Assume that (Fn)n≥1 is mixing with density α in the sense of

lim
n→∞ P (Fn ∩ G) = αP (G) for every G ∈ F

(cf. [76]). Then 1Fn → αδ1 + (1 − α) δ0 mixing so that by Theorem 4.1, the limit
points of

(
1Fn

)
n≥1 coincide almost surely with {0, 1}. In particular,

1lim sup
n→∞

Fn
= lim sup

n→∞
1Fn = 1 a.s.

and

1lim inf
n→∞ Fn

= lim inf
n→∞ 1Fn = 0 a.s.

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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which implies

P

(
lim sup

n→∞
Fn

)
= 1 and P

(
lim inf
n→∞ Fn

)
= 0 .

For instance, if Xn → ν mixing, B ∈ B (X ) with ν (∂B) = 0, ν (B) ∈ (0, 1) and
Fn := {Xn ∈ B}, then by Corollary 3.3 and the Portmanteau theorem, PG (Fn) =
P Xn

G (B) → ν (B) for every G ∈ F with P (G) > 0, so that the sequence (Fn)n≥1
satisfies the above mixing condition with α = ν (B).

More generally, let α : (�,F) → ([0, 1] ,B ([0, 1])) be measurable and assume
that (Fn)n≥1 is stable with density α in the sense of

lim
n→∞ P (Fn ∩ G) =

∫
G

α d P for every G ∈ F

(cf. [77]). If K (ω, ·) := α (ω) δ1 + (1 − α (ω)) δ0, then 1Fn → K stably. Since
1 ∈ supp(K (ω, ·)) for ω ∈ {α > 0}, Theorem 4.1 yields lim supn→∞ 1Fn = 1
almost surely on {α > 0} so that

P

(
lim sup

n→∞
Fn

)
≥ P (α > 0) .

Analogously, one obtains

P
(
lim inf
n→∞ Fn

)
≤ 1 − P (α < 1) .

If Xn → H stably, B ∈ B (X ) with P H (∂B) = 0 and Fn := {Xn ∈ B}, then by
Theorem 3.2 and the Portmanteau theorem,

PG (Fn) = P Xn
G (B) → PG H (B) = 1

P (G)

∫
G

H (ω, B) d P (ω)

for every G ∈ F with P (G) > 0. Consequently, the sequence (Fn)n≥1 satisfies the
above stability condition with α = H (·, B). �

4.2 Random Indices

Let τn be anN-valued random variable for every n ∈ N. We are interested in the con-
vergence of

(
Xτn

)
n≥1 for (X ,B (X ))-valued randomvariables Xn provided τn → ∞

in probability as n → ∞, that is limn→∞ P (τn ≥ C) = 1 for every C ∈ (0,∞).

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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We start with the simple independent setting where (τn)n≥1 and (Xn)n≥1 are
independent. Here we observe that stable convergence is preserved by such a random
time change with the same limit.

Proposition 4.5 Let Xn be (X ,B (X ))-valued random variables, K ∈ K1 and
τn → ∞ in probability as n → ∞. Assume that

(i) H1 := σ (τn, n ≥ 1) and H2 := σ (K , Xn, n ≥ 1) are independent.
Let H′

i ⊂ Hi be sub-σ-fields and G := σ
(H′

1 ∪ H′
2

)
. If K ∈ K1 (G) and

(ii) Xn → K G-stably,
then Xτn → K G-stably as n → ∞.

Proof The system E := {
F1 ∩ F2 : F1 ∈ H′

1, F2 ∈ H′
2

}
is closed under finite inter-

sections, � ∈ E and σ (E) = G. Thus by Theorem 3.2 it is enough to show that

lim
n→∞ E1F1∩F2h

(
Xτn

) =
∫

1F1∩F2 ⊗ h d P ⊗ K

for every Fi ∈ H′
i and h ∈ Cb (X ). For this, let Fi ∈ H′

i and h ∈ Cb (X ) be fixed.
The independence ofH′

1 and H2 yields∫
1F1∩F2 ⊗ h d P ⊗ K = P (F1)

∫
1F2 ⊗ h d P ⊗ K .

Let ε > 0. By (ii), there exists an N ∈ N such that for every n ≥ N ,

∣∣∣∣E1F2h (Xn) −
∫

1F2 ⊗ h d P ⊗ K

∣∣∣∣ ≤ ε .

Furthermore, there exists an N1 ∈ N such that P (τn < N ) ≤ ε for every n ≥ N1.
We obtain for n ≥ N1, using (i),∣∣∣∣E1F1∩F2h

(
Xτn

) −
∫

1F1∩F2 ⊗ h d P ⊗ K

∣∣∣∣
=

∣∣∣∣∣
∞∑

k=1

∫
{τn=k}

1F1∩F2h (Xk) d P − P (F1)

∫
1F2 ⊗ h d P ⊗ K

∣∣∣∣∣
≤ P (τn < N ) ‖h‖sup

+
∣∣∣∣∣∣
∑
k≥N

∫
{τn=k}

1F1∩F2h (Xk) d P − P (F1)

∫
1F2 ⊗ h d P ⊗ K

∣∣∣∣∣∣
= P (τn < N ) ‖h‖sup

+
∣∣∣∣∣∣
∑
k≥N

P (F1 ∩ {τn = k}) E1F2h (Xk) − P (F1)

∫
1F2 ⊗ h d P ⊗ K

∣∣∣∣∣∣

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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≤ P (τn < N ) ‖h‖sup

+
∣∣∣∣∣∣
∑
k≥N

(P (F1 ∩ {τn = k}) − P (F1))

∫
1F2 ⊗ h d P ⊗ K

∣∣∣∣∣∣
+

∑
k≥N

P (F1 ∩ {τn = k})
∣∣∣∣E1F2h (Xk) −

∫
1F2 ⊗ h d P ⊗ K

∣∣∣∣
≤ 2P (τn < N ) ‖h‖sup

+
∑
k≥N

P (F1 ∩ {τn = k})
∣∣∣∣E1F2h (Xk) −

∫
1F2 ⊗ h d P ⊗ K

∣∣∣∣
≤ ε

(
1 + 2 ‖h‖sup

)
,

which completes the proof. �

Exercise 4.1 Show that in Proposition 4.5 it is enough to assume K ∈ K1
(H′

2

)
and

Xn → K H′
2-stably instead of condition (ii).

Exercise 4.2 Assume Xn → X almost surely and τn → ∞ in probability. Show
that Xτn → X in probability.

In case H′
i = Hi , the G-stable convergence Xn → K and Xτn → K is, by

Proposition 3.5, the same as stable convergence, while in case H′
1 = H′

2 = {∅,�},
G-stable convergence means distributional convergence. So for mere distributional
convergence of Xτn there is no need of stable convergence of Xn . This is different in
the general (dependent) case, where stable convergence plays an essential role. Now
we need the condition τn/an → η in probability as n → ∞ for some randomvariable
η > 0, where an ∈ (0,∞), an → ∞. For simplicity, we specialize from general
sequences of (X ,B (X ))-valued random variables to normalized real processes (thus
avoiding explicit use of Anscombe-type conditions); see [9], Theorem 17.1, [2], [13],
Theorem 9.4.3, [32].

Theorem 4.6 Let G ⊂ F be a sub-σ-field, (Xt )t≥0 a path-continuous real process,
Xn

t := n−α Xnt , t ≥ 0, n ∈ N, with α ∈ (0,∞) and X = C (R+). Assume

(i) τn/an → η in probability as n → ∞
for some R+-valued, G-measurable random variable η with P (η > 0) > 0
and an ∈ (0,∞) satisfying an → ∞. If
(ii) Xn → K G-stably
for some K ∈ K1 (G, C (R+)), then X τn → K G-stably under P{η>0} as n → ∞.

Proof Choose kn ∈ N such that limn→∞ kn/an = 1. Clearly, by (i), τn/kn → η in
probability. Let ϕ : C (R+) × R+ → C (R+) be defined by

ϕ (x, b) (t) :=
{

b−αx (bt) , if b > 0
0 , if b = 0 .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_9
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Then ϕ is Borel-measurable, ϕ
(
Xkn , τn/kn

) = X τn and one checks that ϕ is con-
tinuous on C (R+) × (0,∞). Condition (ii) yields G-stable convergence Xkn → K
and hence by Theorem 3.7 (b),

(
Xkn ,

τn

kn

)
→ Kη := K ⊗ δη G-stably .

In particular, we have G-stable convergence under P{η>0} because {η > 0} ∈ G.
Since P{η>0}Kη (C (R+) × {0}) = P{η>0} (η = 0) = 0,ϕ is P{η>0}Kη-almost surely
continuous so that we derive from Theorem 3.7 (c) that

X τn = ϕ

(
Xkn ,

τn

kn

)
→ K ϕ

η G-stably under P{η>0} as n → ∞ .

It remains to show that K ϕ
η = K P{η>0}-almost surely. Setting ϕb (x) := ϕ (x, b)

for b > 0, the limiting kernel reads

K ϕ
η (ω, ·) = (

K (ω, ·) ⊗ δη(ω)

)ϕ = K (ω, ·)ϕη(ω) , ω ∈ {η > 0} .

Sinceϕb◦ϕc = ϕbc and Xn = ϕn (X), we have for b = N ∈ N,ϕN (Xn) = XnN →
K G-stably as n → ∞ while continuity of ϕb yields ϕN (Xn) → K ϕN G-stably as
n → ∞ (see Theorem 3.7 (c)). Hence, by almost sure uniqueness of stable limits,
K ϕN = K P-almost surely. Moreover, ϕ1/N

(
XnN

) = Xn → K G-stably while
continuity ofϕb yieldsϕ1/N

(
XnN

) → K ϕ1/N G-stably so that K ϕ1/N = K P-almost
surely. We obtain K ϕb = K P-almost surely for every b ∈ Q, b > 0. Consequently,
there exists a �0 ∈ G with P (�0) = 1 such that K (ω, ·)ϕb = K (ω, ·) for every
ω ∈ �0, b ∈ Q, b > 0. Since the map (0,∞) → M1 (C (R+)), b �→ K (ω, ·)ϕb ,
is continuous for every ω ∈ �, the above equality holds for all b ∈ (0,∞). This
implies K (ω, ·)ϕη(ω) = K (ω, ·) for every ω ∈ �0 ∩ {η > 0} and thus K ϕ

η = K
P{η>0}-almost surely. �

One obtains the same result for càdlàg processes X and X = D (R+).

Remark 4.7 (a) Literally the same proof shows that Theorem 4.6 is still true for
(0,∞)-valued random variables τn , where X τn

t = Xτn t/τ
α
n .

(b) Condition (i) may be weakened. For instance, Theorem 4.6 still holds if (i) is
replaced by

(i)′
m∑

i=1

τn

an,i
1Gi → η :=

m∑
i=1

ηi1Gi in probability,

where m ∈ N, {G1, . . . , Gm} is a G-measurable partition of �, ηi are R+-valued,
G-measurable random variables with P (η > 0) > 0 and an,i ∈ (0,∞) satisfying
an,i → ∞ as n → ∞.

In fact, for i ∈ I := {
j ∈ {1, . . . , m} : P

(
G j ∩ {η > 0}) >0

}
wehave τn/an,i →

ηi in PGi -probability and Xn → K G-stably under PGi so that by Theorem 4.6 (with

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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P replaced by PGi ) X τn → K G-stably under PGi ∩{ηi >0}. Since PGi ∩{ηi >0} =
PGi ∩{η>0} and

P{η>0} =
∑
i∈I

P{η>0} (Gi ) PGi ∩{η>0} ,

the assertion follows from Proposition 3.11.
(c) ([2]) The role of condition (ii) can be further clarified as follows. Assume thatX is
polish. If Xn are (X ,B (X ))-valued random variables (like Xn in Theorem 4.6) such
that Xτn

d→ ν for some ν ∈ M1 (X ) and every sequence (τn)n≥1 satisfying condition
(i)′ from (b) with m ≤ 2 and P (η > 0) = 1, then (Xn)n≥1 must converge G-stably.
Otherwise, by Proposition 3.12, there exists G ∈ G with P (G) ∈ (0, 1) such that(

P Xn
G

)
n≥1

does not converge weakly inM1 (X ). Thus we can find h ∈ Cb (X ) and

subsequences (kn) and (mn) of (n) such that

∫
G

h
(
Xkn

)
d P → c1 and

∫
G

h
(
Xmn

)
d P → c2 ,

where c1, c2 ∈ R, c1 �= c2. The N-valued random variables τn := mn and σn :=
kn1G + mn1Gc satisfy (i)′ with η = 1 and

Eh
(
Xσn

) − Eh
(
Xτn

) =
∫

G
h

(
Xkn

)
d P −

∫
G

h
(
Xmn

)
d P → c1 − c2 �= 0 ,

a contradiction.

Exercise 4.3 Show that (Xn)n≥1 converges stably if and only if Xτn

d→ ν for some
ν ∈ M1 (X ) and all sequences (τn)n≥1 of N-valued random variables such that
τn → ∞ in probability and P|σ (τn, n ≥ 1) is purely atomic.

Example 4.8 (Classical stable functional random-sum central limit theorem) In the
situation of Example 3.14 let

Xt := 1

σ

⎛
⎝ [t]∑

j=1

Z j + (t − [t]) Z[i]+1

⎞
⎠ , t ≥ 0

and Xn
t := n−1/2Xnt , t ≥ 0, n ∈ N. Since Xn → ν mixing in C (R+) for the

Wiener measure ν ∈ M1 (C (R+)), it follows from Theorem 4.6 (with G = F) that
X τn → ν mixing under P{η>0} provided condition (i) of Theorem 4.6 is satisfied. In
particular, using Theorem 3.7 (c),

1

στ
1/2
n

τn∑
j=1

Z j = X τn
1 → N (0, 1) mixing under P{η>0} .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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It is not enough to assume τn → ∞ in probability as n → ∞ in Theorem 4.6.

For instance, if P (Z1 = ±1) = 1/2, τ1 := inf
{

k ≥ 1 : ∑k
i=1 Zi = 0

}
and τn :=

inf
{

k > τn−1 : ∑k
i=1 Zi = 0

}
for n ≥ 2, then P (τn ∈ N) = 1 and τn ≥ n so that

τn → ∞ almost surely but
∑τn

i=1 Zi = 0 for every n ∈ N. �

Exercise 4.4 Let W = (Wt )t≥0 be a (path-continuous) Brownian motion, Xb
t :=

b−1/2Wbt , t ≥ 0, b > 0, and let τn be (0,∞)-valued random variables satisfying
condition (i) of Theorem 4.6 with G = F . Show that X τn → ν mixing under P{η>0}
in C (R+), where ν = PW ∈ M1 (C (R+)).

Exercise 4.5 In the situation of Example 4.8 let

τn := n1{∑n
j=1 Z j >0

} + 2n1{∑n
j=1 Z j ≤0

} .

Show that τn/n
d→ (δ1 + δ2) /2, but σ−1τ

−1/2
n

∑τn
j=1 Z j does not even converge in

distribution to N (0, 1) as n → ∞. Thus in condition (i) of Theorem 4.6 convergence
in probability cannot be replaced by convergence in distribution.

4.3 The Empirical Measure Theorem and the δ-Method

The following result (see [7], Corollary 3.16, Theorem 4.7, [31]) allows us to pass
from stable convergence to almost sure convergence and has the Komlós theorem as
its point of departure.

Theorem 4.9 (Empirical measure theorem) If Xn → K stably for (X ,B (X ))-
valued random variables Xn and K ∈ K1, then there exists a subsequence (Xm) of
(Xn) such that for every further subsequence (Xk) of (Xm), almost surely

1

r

r∑
k=1

δXk (ω) → K (ω, ·) weakly
(

in M1 (X )
)

as r → ∞ .

The above assertion simply means almost sure convergence of 1
r

∑r
k=1 δXk to

K when the Markov kernels are seen as
(M1 (X ) ,B (M1 (X )

))
-valued random

variables. Note that the exceptional null set may vary with the subsequence. In
general, the assertion is not true for (Xn) itself (see [7], Example 3.17). However, in
the classical case of an independent and identically distributed sequence (Xn) it is
well known that (Xn → P X1 mixing and) almost surely

1

r

r∑
n=1

δXn (ω) → P X1 weakly as r → ∞ .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Proof of Theorem 4.9. Step 1. We rely on the Komlós theorem: If ( fn)n≥1 is a
sequence in L1 (P) satisfying supn≥1 E | fn| < ∞, then there exists a subsequence
( fm) of ( fn) and a function f ∈ L1 (P) such that for every further subsequence ( fk)

of ( fm)

1

r

r∑
k=1

fk → f a.s. as r → ∞

(see [14], Théorème IX.1).
Step 2. Let {hi : i ∈ N} be a countable convergence-determining subset of Cb (X )

for M1 (X ), that is, the weak topology on M1 (X ) is generated by the functions
ν �→ ∫

hi dν, i ∈ N. For instance, any countable dense subset ofUb
(X , d̃

)
for some

totally bounded metric d̃ inducing the topology of X has the desired property (see
the proof of Theorem 2.6). If fi,n := hi (Xn), then supn≥1 E

∣∣ fi,n
∣∣ ≤ ‖hi‖sup < ∞.

Applying Step 1 (to
(

fi,n
)

n≥1) in a diagonal procedure, we obtain a subsequence

(Xm) of (Xn) and functions fi ∈ L1 (P) such that for every further subsequence
(Xk) of (Xm)

1

r

r∑
k=1

fi,k → fi a.s. as r → ∞

for every i ∈ N. Setting Kr := ∑r
k=1 δXk /r this reads

∫
hi (x) Kr (·, dx) → fi

almost surely. The exceptional null set is denoted by N1. Dominated convergence
yields

lim
r→∞

∫
F

∫
hi (x) Kr (·, dx) d P =

∫
F

fi d P

for every F ∈ F , i ∈ N. On the other hand, by stable convergence Xk → K ,

lim
k→∞

∫
F

hi (Xk) d P =
∫

F

∫
hi (x) K (·, dx) d P

and hence

lim
r→∞

∫
F

∫
hi (x) Kr (·, dx) d P =

∫
F

∫
hi (x) K (·, dx) d P

for every F ∈ F , i ∈ N. Consequently, fi = ∫
hi (x) K (·, dx) almost surely

for every i ∈ N. The exceptional null set is denoted by N2. We obtain for every
ω ∈ N c

1 ∩ N c
2 and i ∈ N

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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lim
r→∞

∫
hi (x) Kr (ω, dx) =

∫
hi (x) K (ω, dx)

and thus

Kr (ω, ·) = 1

r

r∑
k=1

δXk (ω) → K (ω, ·) weakly

which completes the proof. �

Exercise 4.6 Let A be countable and dense in X and B the collection of all
finite unions of open balls with centers in A and radius in Q ∩ (0,∞). Asso-
ciate to each B ∈ B and n ∈ N the function hB,n ∈ Cb (X ), where hB,n (x) :=
1 ∧ n infy∈Bc d (x, y). The resulting collection of all such functions is countable.
Show that it is convergence-determining forM1 (X ).

Exercise 4.7 Assume thatX is polish. Let K ∈ K1 and let Xn be (X ,B (X ))-valued
random variables such that

(
P Xn

)
n≥1 is tight and for every subsequence (Xm) of

(Xn), almost surely

1

r

r∑
m=1

δXm (ω) → K (ω, ·) weakly as r → ∞ .

Show that Xn → K stably.

The δ-method with random centering needs stable convergence.

Proposition 4.10 (δ-method ) Let G ⊂ F be a sub-σ-field, g : Rd → R continu-
ously differentiable and an ∈ (0,∞) with an → ∞ as n → ∞. If

an (Yn − Y ) → X G-stably

for Rd -valued random variables X, Yn and Y , where Y is G-measurable, then

an (g (Yn) − g (Y )) → 〈∇g (Y ) , X〉 G-stably as n → ∞ .

Proof The mean value theorem implies that

an (g (Yn) − g (Y )) = 〈∇g (ξn) , an (Yn − Y )〉 = 〈∇g (Y ) , an (Yn − Y )〉 + Rn

for somemap ξn : � → R
d (not necessarilymeasurable)with‖ξn − Y‖ ≤ ‖Yn − Y‖

everywhere on�, where Rn := 〈∇g (ξn) − ∇g (Y ) , an (Yn − Y )〉 (which is measur-
able) and ‖·‖ denotes the euclidean norm onRd . By Theorems 3.17 and 3.18 (b), (c),

〈∇g (Y ) , an (Yn − Y )〉 → 〈∇g (Y ) , X〉 G-stably .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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In view of Theorem 3.18 (a) it remains to show that Rn → 0 in probability.
Since an (Yn − Y )

d→ X , we have ‖Yn − Y‖ → 0 in probability. Let ε > 0 and
0 < N < ∞ be arbitrary. The map ∇g is uniformly continuous on the compact
subset BN := {

x ∈ R
d : ‖x‖ ≤ N + 1

}
of Rd so that there exists a δ > 0 such

that ‖∇g (x) − ∇g (y)‖ ≤ ε/N for all x, y ∈ BN with ‖x − y‖ ≤ δ. On the event
{|Rn| > ε} ∩ {‖Y‖ ≤ N } ∩ {an ‖Yn − Y‖ ≤ N } we have, by the Cauchy-Schwarz
inequality,

ε < |Rn| ≤ ‖∇g (ξn) − ∇g (Y )‖ an ‖Yn − Y‖ ≤ ‖∇g (ξn) − ∇g (Y )‖ N

so that ‖∇g (ξn) − ∇g (Y )‖ > ε/N . Moreover, on this event we have ‖ξn − Y‖ ≤
‖Yn − Y‖ ≤ N/an ≤ 1 for all largen ∈ N,which implies ξn, Y ∈ BN . Consequently,
δ < ‖ξn − Y‖ ≤ ‖Yn − Y‖, yielding, for all large n ∈ N,

{|Rn| > ε} ⊂ ({|Rn| > ε} ∩ {‖Y‖ ≤ N } ∩ {an ‖Yn − Y‖ ≤ N })
∪ {‖Y‖ > N } ∪ {an ‖Yn − Y‖ > N }

⊂ {‖Yn − Y‖ > δ} ∪ {‖Y‖ > N } ∪ {an ‖Yn − Y‖ > N } .

Therefore, for all large n ∈ N,

P (|Rn| > ε) ≤ P (‖Yn − Y‖ > δ) + P (‖Y‖ > N ) + P (an ‖Yn − Y‖ > N ) .

From ‖Yn − Y‖ → 0 in probability and an ‖Yn − Y‖ d→ ‖X‖ we obtain, by the
Portmanteau theorem,

lim sup
n→∞

P (|Rn| > ε) ≤ P (‖Y‖ > N ) + P (‖X‖ ≥ N )

for every ε > 0 and 0 < N < ∞. Letting N → ∞ yields the assertion. �

Remark 4.11 (a) For G = {∅,�} Proposition 4.10 reduces to the usual δ-method for
convergence in distribution in which Y is almost surely constant.
(b) To see that the δ-method for convergence in distribution does not in general work
with random centering we consider the probability space and sequence (Xn)n≥1
from Example 1.2. For any sequence bn ∈ (0,∞) with bn → ∞ as n → ∞ we set
Yn := b−1

n Xn + Y , where Y is as in Example 1.2. Then

bn (Yn − Y ) = Xn
d→ X1 as n → ∞ .

For the continuously differentiable function g (x) = x2, x ∈ R, we have

bn (g (Yn) − g (Y )) = b−1
n X2

n + 2XnY for all n ≥ 1 .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Now
(
b−1

n X2
n

)
n≥1 converges almost surely to zero because bn → ∞ as n → ∞

and |Xn| ≤ 1, and the sequence (Y Xn)n≥1 does not converge in distribution as seen
in Example 1.2, if the sequence (an)n≥1 used to define the random variables Xn is
not convergent. Thus, the random variables bn (g (Yn) − g (Y )) do not converge in
distribution.

Random centering occurs, for example, in connection with exchangeable
processes; see Corollary 6.27. Stable convergence in connection with random nor-
malization occurs in various subsequent chapters.

http://dx.doi.org/10.1007/978-3-319-18329-9_1
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Chapter 5
Stability of Limit Theorems

In this chapter we present some first results on the stability of limit theorems taken
from [28] (see also [79, 100]). More precisely, we derive simple sufficient conditions
for distributional limit theorems to be mixing.

To this end, let Zn be (Z, C)-valued random variables for some measurable space
(Z, C) and fn : (Zn, Cn) → (X ,B (X ))measurablemaps for everyn ∈ N,wherewe
need a vector space structure forX . So, letX be a polish topological vector space (like
R

d , C ([0, T ]) for 0 < T < ∞ or C (R+)). Then there exists a translation invariant
metric d on X inducing the topology ([86], Theorem 1.6.1) so that Un − Vn → 0 in
probability for (X ,B (X ))-valued random variables Un and Vn means d (Un, Vn) =
d (Un − Vn, 0) → 0 in probability or, what is the same, E (d (Un, Vn) ∧ 1) → 0.

Furthermore, let bn ∈ X and an ∈ (0,∞). We consider the (X ,B (X ))-valued
random variables

Xn := 1

an
( fn (Z1, . . . , Zn) − bn)

for n ∈ N and assume Xn
d→ ν for some ν ∈ M1 (X ). The tail σ -field of Z = (Zn)

is given by

TZ =
∞⋂

n=1

σ (Zk, k ≥ n) .

Proposition 5.1 Assume Xn
d→ ν and

(i) for every k ∈ N,

1

an
( fn (Z1, . . . , Zn) − fn−k (Zk+1, . . . , Zn)) → 0 in probability as n → ∞ ,
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(ii) TZ is trivial, i.e. P (TZ ) = {0, 1} .

Then Xn → ν mixing as n → ∞.

Proof Since
(
P Xn

)
n≥1 is tight in M1 (X ), (Xn)n≥1 has a stably convergent subse-

quence by Proposition 3.4 (a). Let (Xm) be any subsequence of (Xn) with Xm → K
stably for some K ∈ K1 and for k ∈ N, let Xm (k) := ( fm−k (Zk+1, . . . , Zm) − bm) /

am , m > k. Distributional convergence Xm
d→ ν yields P K = ν. By (i), we have

Xm − Xm (k) → 0 in probability as m → ∞. Consequently, by Theorem 3.7 (a),
Xm (k) → K stably as m → ∞. Now, Xm (k) is Hk+1-measurable, where Hk :=
σ

(
Z j , j ≥ k

)
, so that by Propositions 3.4 (b) and 3.5, Xm (k) → E (K |Hk+1) stably

as m → ∞. The P-almost sure uniqueness of stable limits yields K = E (K |Hk+1)

P-almost surely for every k ∈ N. Letting H := E (K |TZ ), the martingale conver-
gence theorem and Lemma A.7 (c) imply for every B ∈ B (X )

K (·, B) = E (K (·, B) |Hk+1) → E (K (·, B) |TZ ) = H (·, B) P-a.s.

as k → ∞ and hence, K = H P-almost surely by Lemma 2.1 (b). Therefore, by
(ii), K is P-almost surely constant and thus K = P K = ν P-almost surely. Thus
all subsequences of (Xn) which converge stably, converge mixing to ν and so the
original sequence must converge mixing to ν. �

Condition (ii) in Proposition 5.1 is met for independent sequences (Zn)n≥1 by the
Kolmogorov zero-one law. In this case, for instance, the choice (Z, C) = (R,B (R))

and fn (z1, . . . , zn) = ∑n
i=1 zi yields Example 3.13 (a).

Triviality of the tail σ -field may be characterized by asymptotic independence in
the following sense (see [11]).

Lemma 5.2 Let Fk := σ (Z1, . . . , Zk) and Hk := σ
(
Z j , j ≥ k

)
. Then the

assertions

(i) P (TZ ) = {0, 1},
(ii) for every G ∈ ⋃∞

k=1 Fk ,

lim
n→∞ sup

F∈Hn

|P (F ∩ G) − P (F) P (G)| = 0 ,

(iii) for every G ∈ F ,

lim
n→∞ sup

F∈Hn

|P (F ∩ G) − P (F) P (G)| = 0

are equivalent.

Proof (i) ⇒ (iii). Let G ∈ F . The martingale convergence theorem and (i) yield
P (G|Hn) → P (G|TZ ) = P (G) in L1 (P). Consequently, for every F ∈ Hn ,

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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|P (F ∩ G) − P (F) P (G)| =
∣∣∣∣
∫

F
(1G − P (G)) dP

∣∣∣∣
=

∣∣∣∣
∫

F
(P (G|Hn) − P (G)) dP

∣∣∣∣ ≤
∫

|P (G|Hn) − P (G)| dP → 0 ,

hence (iii).
The implication (iii) ⇒ (ii) is obvious.
(ii) ⇒ (i). Let F ∈ TZ = ⋂∞

j=1H j with P (F) > 0 and G ∈ E := ⋃∞
k=1 Fk

with P (G) > 0. Then for every n ∈ N

|PG (F) − P (F)| ≤ 1

P (G)
sup

D∈Hn

|P (D ∩ G) − P (D) P (G)| .

Condition (ii) yields PG (F) = P (F) or, what is the same, PF (G) = P (G).
Clearly, this also holds if P (G) = 0. We obtain PF = P on the field E and thus on
σ (E) = H1. Consequently, P (F) = PF (F) = 1 because F ∈ σ (E). �
Second proof of Proposition 5.1. Let G ∈ F with P (G) > 0 and ε > 0. By
(ii) and Lemma 5.2, there exists a k ∈ N such that supF∈Hk

|PG (F) − P (F)| ≤ ε,
where Hk = σ

(
Z j , j ≥ k

)
. For n > k, let Yn := ( fn−k (Zk+1, . . . , Zn) − bn) /an .

By (i), we have Xn − Yn → 0 in probability so that Yn
d→ ν as n → ∞. Now for all

closed sets B ⊂ X we have {Yn ∈ B} ∈ Hk and hence PG (Yn ∈ B) ≤ P (Yn ∈ B)+
ε for every n > k. The Portmanteau theorem yields lim supn→∞ PG (Yn ∈ B) ≤
ν (B) + ε and letting ε tend to zero gives lim supn→∞ PG (Yn ∈ B) ≤ ν (B). Using
again the Portmanteau theorem, this implies PYn

G → ν weakly and thus P Xn
G → ν

weakly. The assertion follows from Corollary 3.3. �

Exercise 5.1 ([92]) Assume Zn
d→ ν, where Z is a polish space and C = B (Z),

and condition (ii) of Proposition 5.1. Show that Zn → ν mixing.

The process Z = (Zn)n≥1 is called stationary if P S(Z) = P Z on the σ -field CN,
where S : ZN → ZN, S

(
(zn)n∈N

) = (zn+1)n∈N denotes the shift operator. Clearly,
S is

(CN, CN)
-measurable. Let CN (S) := {

D ∈ CN : D = S−1 (D)
}
denote the σ -

field of invariant measurable subsets of ZN and for Q ∈ M1
(ZN

)
, CN (S, Q) :={

D ∈ CN : Q
(
D�S−1 (D)

) = 0
}
is the σ -field of Q-almost invariant measurable

sets. If QS � Q, we have CN (S) = CN (S, Q) Q-almost surely, that is, for every
D ∈ CN (S, Q) there exists a set C ∈ CN (S) such that Q (D�C) = 0. In fact, if

D ∈ CN (S, Q) and Sn = Sn−1 ◦ S, then Q
(

D�(Sn)−1 (D)
)

= 0 for every n ∈ N

because QS � Q. Defining C := lim supn→∞ (Sn)−1 (D) yields C ∈ CN (S) and
D�C ⊂ ⋃∞

n=1 D�(Sn)−1 (D), hence Q (D�C) = 0.
A stationary process Z is said to be ergodic if P Z

(CN (
S, P Z

)) = {0, 1} which
is equivalent to P Z

(CN (S)
) = {0, 1}. Since Z−1

(CN (S)
) ⊂ TZ , asymptotic inde-

pendence of Z in the sense of Lemma 5.2 implies ergodicity.
We only need quasi-stationarity of Z , that is P S(Z) � P Z .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Proposition 5.3 Assume that Z = (Zn)n∈N is quasi-stationary. Assume further

Xn
d→ ν and

(i)
1

an
( fn (Z1, . . . , Zn) − fn (Z2, . . . , Zn+1)) → 0 in probability as n → ∞ ,

(ii) P Z
(CN (S)

) = {0, 1} .

Then Xn → ν mixing as n → ∞.

Since Z−1
(CN (S)

) ⊂ TZ , condition (ii) in Proposition 5.3 is weaker than con-
dition (ii) in Proposition 5.1.

Proof Step 1. First, we consider the canonicalmodel
(ZN, CN, P Z

)
with projections

πn : ZN → Z . Letting Yn := ( fn (π1, . . . , πn) − bn) /an wewill show that Yn → ν

mixing under P Z as n → ∞. For this, let (Ym) be any subsequence of (Yn) with
Ym → K stably under P Z for some K ∈ K1

(CN,X )
. As in the proof of Proposition

5.1, it is enough to show K = ν P Z -almost surely. Since Xn
d→ ν and

(
P Z

)Yn =
P Xn , we have Yn

d→ ν under P Z and thus P Z K = ν. Condition (i) implies

1

an
( fn (π1, . . . , πn) − fn (π2, . . . , πn+1)) → 0 in P Z -probability .

Hence, Ym −Ym ◦ S → 0 in P Z -probability so that by Theorem 3.7 (a), Ym ◦ S → K
stably under P Z as m → ∞. On the other hand, we have Ym ◦ S → K ◦ S stably
under P Z , where K ◦ S (z, B) := K (S (z) , B), z ∈ ZN, B ∈ B (X ). In fact, by

Theorem 3.2 and quasi-stationarity
(
P Z

)S = P S(Z) � P Z , Ym → K stably under(
P Z

)S
. This implies, for every C ∈ S−1

(CN)
, C = S−1 (D) with D ∈ CN and

h ∈ Cb (X ),∫
C

h (Ym ◦ S) dPZ =
∫

D
h (Ym) d

(
P Z

)S

→
∫

1D ⊗ h d
(

P Z
)S ⊗ K =

∫
1C ⊗ h dPZ ⊗ K ◦ S .

Hence, again by Theorem 3.2, Ym ◦ S → K ◦ S S−1
(CN)

-stably under P Z . Since
the maps Ym ◦ S are S−1

(CN)
-measurable, it follows from Proposition 3.5 that

Ym ◦ S → K ◦ S stably under P Z .
Now, almost sure uniqueness of stable limits yields K ◦ S = K P Z -almost surely.

Therefore, K is CN (
S, P Z

)
-measurable because for all A ∈ B (R), B ∈ B (X )

{K (·, B) ∈ A} �S−1 ({K (·, B) ∈ A}) ⊂ {K ◦ S �= K } .

Consequently, by (ii) (which is the same as P Z
(CN (

S, P Z
)) = {0, 1}), K must be

P Z -almost surely constant and thus K = ν P Z -almost surely.

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Step 2. Let G := σ (Zn, n ≥ 1) = Z−1
(CN)

. Then it follows from Step 1
and Theorem 3.2 that Xn → ν G-mixing because for every G ∈ G, P(G) > 0,

G = Z−1 (D) with D ∈ CN, we have P Xn
G = (

P Z
)Yn

D . Since the maps Xn are
G-measurable, Proposition 3.5 yields Xn → ν mixing. �

Remark 5.4 One may consider even more general maps fn in Proposition 5.3. In
fact, Proposition 5.3 still holds for fn : (ZN, CN) → (X ,B (X )) and condition 5.3
(i) replaced by

1

an

(
fn

((
Z j

)
j≥1

)
− fn

((
Z j

)
j≥2

))
→ 0 in probability as n → ∞ .

This is obvious from the proof of Proposition 5.3.

Most applications are for stationary ergodic processes.

Example 5.5 Let (Zn)n≥1 be a stationary and ergodic real process andX = Z = R.

(a) If Xn :=
(∑n

j=1 Z j − bn

)
/an

d→ ν and an → ∞, then Xn → ν mixing. This

follows from Proposition 5.3 because

1

an

⎛
⎝ n∑

j=1

Z j −
n+1∑
j=2

Z j

⎞
⎠ = 1

an
(Z1 − Zn+1) → 0 in probability

by stationarity. (As for Xn
d→ ν see e.g. [41], Chap.5.)

(b) If Xn :=
(
max0≤ j≤n

∑ j
i=1 Zi − bn

)
/an

d→ ν and an → ∞, then Xn → ν

mixing. In fact, one checks that

1

an

∣∣∣∣∣∣ max
0≤ j≤n

j∑
i=1

Zi − max
1≤ j≤n+1

j∑
i=2

Zi

∣∣∣∣∣∣ ≤ 1

an
(|Z1| + |Zn+1|) → 0

in probability so that the assertion follows from Proposition 5.3.

(c) If Xn := (
max1≤i≤n Zi − bn

)
/an

d→ ν and an → ∞, then Xn → ν mixing.
This follows again from Proposition 5.3 because

1

an

∣∣∣∣ max
1≤i≤n

Zi − max
2≤i≤n+1

Zi

∣∣∣∣ ≤ 1

an
|Z1 − Zn+1| → 0 in probability. �

The condition an → ∞ in Example 5.5 (c) excludes most extreme value distrib-
utions ν. So let us explore this situation further.

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_5
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Example 5.6 Let (Z j ) j∈N be a sequence of real random variables. In order to estab-
lish mixing convergence of the normalized maxima a−1

n

(
max1≤ j≤n Z j − bn

)
with

real constants an > 0 and bn for all n ∈ N via Proposition 5.1, we set

fn(z1, . . . , zn) := max
1≤ j≤n

z j for all z1, . . . , zn ∈ R

so that for all k ∈ N and n ≥ k + 1

1

an
( fn (Z1, . . . , Zn) − fn−k (Zk+1, . . . , Zn)) = 1

an

(
max
1≤ j≤n

Z j − max
k+1≤ j≤n

Z j

)
.

(a) If an → ∞ as n → ∞, then condition (i) of Proposition 5.1 is satisfied
without further assumptions on the sequence

(
Z j

)
j∈N. For a proof observe that(

max1≤ j≤n Z j
)

n∈N is a nondecreasing sequence of real random variables so that for
every ω ∈ � the limit

Z∞ (ω) = lim
n→∞ max

1≤ j≤n
Z j (ω)

exists with Z∞ (ω) ∈ (−∞,∞]. Let k ∈ N be arbitrary. We consider two cases.

Case 1. Z∞ (ω) = ∞. Since max1≤ j≤k Z j (ω) < ∞, there exists an n0 (ω, k) ∈ N

with n0 (ω, k) ≥ k + 1 and max1≤ j≤k Z j (ω) < max1≤ j≤n Z j (ω) for all n ≥
n0 (ω, k). Hence for all n ≥ n0 (ω, k)

max
1≤ j≤k

Z j (ω) < max
1≤ j≤n

Z j (ω) = max
1≤ j≤k

Z j (ω) ∨ max
k+1≤ j≤n

Z j (ω) = max
k+1≤ j≤n

Z j (ω)

so that

1

an

(
max
1≤ j≤n

Z j (ω) − max
k+1≤ j≤n

Z j (ω)

)
= 0 .

Case 2. Z∞ (ω) < ∞. By monotonicity, the limit

Z∞,k (ω) = lim
n→∞ max

k+1≤ j≤n
Z j (ω)

exists with −∞ < Zk+1 (ω) ≤ Z∞,k (ω) ≤ Z∞ (ω) < ∞ so that, because −∞ <

Z1 (ω) ≤ Z∞ (ω) < ∞ and an → ∞,

1

an

(
max
1≤ j≤n

Z j (ω) − max
k+1≤ j≤n

Z j (ω)

)
→ 0 as n → ∞ .
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Thus we have verified condition (i) of Proposition 5.1, and an → ∞ is used only
in case 2 of the argument. Therefore, if an → ∞, then for any sequence

(
Z j

)
j∈N

with trivial tail-σ -field and a−1
n

(
max1≤ j≤n Z j − bn

) d→ ν for some ν ∈ M1 (R),
this convergence is automatically mixing by Proposition 5.1.

(b) The simple argument from (a) to establish condition (i) of Proposition 5.1 does
not work if an does not converge to infinity. For an example, let

(
Z j

)
j∈N be a

sequence of independent random variables with P Z1 = U [3, 4], P Z2 = U [1, 2]
and P Z j = U [0, 1] for all j ≥ 3. Then max1≤ j≤n Z j = Z1 for all n ∈ N so that

1

an

(
max
1≤ j≤n

Z j − bn

)
d→ U [3, 4] as n → ∞

with an = 1 and bn = 0 for all n ∈ N. On the other hand, max2≤ j≤n Z j = Z2 for
all n ≥ 2 so that

1

an

(
fn (Z1, . . . , Zn) − fn−1 (Z2, . . . , Zn)

) = max
1≤ j≤n

Z j − max
2≤ j≤n

Z j = Z1 − Z2 ≥ 1 ,

showing that condition (i) of Proposition 5.1 is not satisfied. Because
(
Z j

)
j∈N has a

trivial tail-σ -field, all the other assumptions in Proposition 5.1 hold. In fact, we have
max1≤ j≤n Z j → δZ1 stably.

(c) If the sequence
(
Z j

)
j∈N is independent and identically distributed and a−1

n(
max1≤ j≤n Z j − bn

) d→ ν for some ν ∈ M1 (R) which is not a Dirac-measure,
then condition (i) of Proposition 5.1 is satisfied for all sequences (an)n∈N, that is,
also without the assumption that an → ∞ for n → ∞. Therefore, the conver-
gence a−1

n

(
max1≤ j≤n Z j − bn

) → ν is mixing by Proposition 5.1. For a proof,
let F denote the distribution function of Z1 and introduce the right endpoint
x+ = inf{x ∈ R : F(x) = 1} of the support of F , where inf ∅ = ∞. Note
that for all x < x+ we have F(x) < 1 so that

P

(
max
1≤ j≤n

Z j ≤ x

)
= P

⎛
⎝ n⋂

j=1

{
Z j ≤ x

}⎞⎠ = F(x)n → 0 as n → ∞ .

This proves max1≤ j≤n Z j → x+ in probability as n → ∞. But for non-decreasing
sequences of random-variables like max1≤ j≤n Z j convergence in probability and
almost sure convergence are equivalent so that we also have max1≤ j≤n Z j → x+
almost surely. If x+ = ∞, then the argument of case 1 in part (a), which does
not require an → ∞, applies and establishes the desired result. Therefore, assume
x+ < ∞. Then F(x+−0) = limx↑x+ F(x) = 1. To see this, assume F(x+−0) < 1.
Because max1≤ j≤n Z j ↑ x+ almost surely a nondegenerate weak limit means that
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there exist norming constantsan > 0 such thatan → 0 and
(
x+ − max1≤ j≤n Z j

)
/an

has a nondegenerate weak limit. Clearly, for all x > 0

P

(
x+ − max1≤ j≤n Z j

an
≥ x

)
= F

(
x+ − an x

)n ≤ F
(
x+ − 0

)n
.

If F
(
x+ − 0

)
< 1, then the right-hand side converges to zero as n → ∞, a contra-

diction.
Now F

(
x+ − 0

) = 1 = F
(
x+)

implies that, for all k ∈ N, max1≤ j≤k Z j = x+
can occur only with probability zero so that max1≤ j≤k Z j < x+ almost surely. In
view of max1≤ j≤n Z j → x+ almost surely we see, by the argument used in case 1 of
part (a), that for almost allω ∈ � there exists an n0 (ω, k) ∈ Nwith n0 (ω, k) ≥ k+1
and max1≤ j≤n Z j (ω) = maxk+1≤ j≤n Z j (ω) for all n ≥ n0 (ω, k) which gives

1

an

(
max
1≤ j≤n

Z j (ω) − max
k+1≤ j≤n

Z j (ω)

)
= 0

for all n ≥ n0 (ω, k) and almost all ω ∈ �. This completes the proof. �

Example 5.7 Let
(
Z j

)
j≥1 be a stationary and ergodic real process with Z1 ∈ Lp (P)

with 1 ≤ p < ∞, E Z1 = 0, Z = R and X = C (I ) with I = [0, T ] or R+.
If

fn

((
z j

)
j≥1

)
:=

⎛
⎝ [nt]∑

j=1

z j + (nt − [nt]) z[nt]+1

⎞
⎠

t∈I

,

Xn := fn

((
Z j

)
j≥1

)
/an

d→ ν for some ν ∈ M1 (C (I )) and n1/p = O (an),

then Xn → ν mixing. (As for Xn
d→ ν see e.g. [9], Theorems 20.1 and 23.1, [41],

Sect. 5.4). In fact, if I = [0, T ], T ∈ (0,∞), we have

1

an

∥∥∥ fn

((
Z j

)
j≥1

)
− fn

((
Z j

)
j≥2

)∥∥∥
sup

≤ 4

an
max

1≤i≤nT +2
|Zi | → 0

in probability, because for ε > 0,

P

(
1

m1/p
max
1≤i≤m

|Zi | > ε

)
= P

(
m⋃

i=1

{
|Zi | > εm1/p

})
≤ m P

(
|Z1| > εm1/p

)

= m P
(|Z1|p > ε pm

) ≤ 1

ε p

∫
{|Z1|p>ε pm}

|Z1|p dP → 0

as m → ∞. The assertion follows from Proposition 5.3 and Remark 5.4.
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In case I = R+ we obtain

Ed

(
Xn,

1

an
fn

((
Z j

)
j≥2

))

=
∞∑

k=1

2−k E

(
sup

t∈[0,k]

∣∣∣∣Xn,t − 1

an
fn

((
Z j

)
j≥2

)
t

∣∣∣∣ ∧ 1

)
→ 0

so that again Proposition 5.3 and Remark 5.4 yield the assertion. (The assertion also
follows from Corollary 3.23.) �

Exercise 5.2 Let (Zn)n∈N be a stationary ergodic process, where Z is a separable
metric space and C = B (Z). Prove that Zn → P Z1 mixing as n → ∞.

Exercise 5.3 Let (Zn)n∈N be a stationary ergodic process, X = R, bn ∈ R,
an → ∞ and g : (Z, C) → (R,B (R)) a measurable function satisfying Xn :=(∑n

j=1 g
(
Z j

) − bn

)
/an

d→ ν. Show that Xn → ν mixing as n → ∞.

Exercise 5.4 (U-statistics) Let (Zn)n∈N be an independent and identically distrib-
uted sequence of (Z, C)-valued random variables, g : (Z2, C2) → (R,B (R)) a
measurable symmetric function such that g (Z1, Z2) ∈ L2 (P),

Un := 1(n
2

) ∑
1≤i< j≤n

g
(
Zi , Z j

)

for n ≥ 2 andϑ := EUn . Furthermore, let g1 (z1) := Eg (z1, Z2),σ 2
1 := Var g1 (Z1)

and σ 2
2 := Var g (Z1, Z2).

Prove that n1/2 (Un − ϑ) → N
(
0, 4σ 2

1

)
mixing and in case σ 2

1 = 0 < σ 2
2 ,

n (Un − ϑ) → ν mixing as n → ∞ with the distribution ν of
∑

j≥1 λ j

(
N 2

j − 1
)
,

where
(
N j

)
j≥1 is an independent and identically distributed sequence of N (0, 1)-

distributed random variables and
(
λ j

)
j≥1 are the nonzero eigenvalues of the operator

T : L2
(
P Z1

) → L2
(
P Z1

)
, T h := Eh (Z1) (g (Z1, ·) − ϑ).

Hint: [64], Kapitel 10.

The last result demonstrates the role of a nesting condition on filtrations for the
stability of limit theorems in the case of a function space like X = C (R+). We
consider the case of special identically distributed processes.

Theorem 5.8 Let X = C (R+). For n ∈ N, let Fn = (Fn
t

)
t≥0 be a filtration in

F , W n = (
W n

t

)
t≥0 a (path-continuous) Fn-Brownian motion and τn : � → R+ a

(finite) Fn-stopping time such that τn → 0 in probability as n → ∞. Let

G := σ

( ∞⋃
n=1

⋂
m≥n

Fm
τm

)
.

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Then W n → ν G-mixing as n → ∞, where ν = PW 1 ∈ M1 (C (R+)).

Recall that Fn
τn

= {
F ∈ Fn∞ : F ∩ {τn ≤ t} ∈ Fn

t for all t ≥ 0
}
, where Fn∞ :=

σ
(⋃

t≥0 Fn
t

)
.

Proof Let V n
t := W n

τn+t − W n
τn
, ϕ : C (R+) × R+ → R, ϕ (x, t) := x (t) and

ψ : C (R+) × R+ → C (R+), ψ (x, t) := x (t + ·) − x (·). We identify R with
the constant functions in C (R+). Then ϕ and ψ are continuous and W n − V n =
ϕ (W n, τn) − ψ (W n, τn). Using τn → 0 in probability, we have (W n, τn)

d→ ν ⊗
δ0 so that ϕ (W n, τn)

d→ (ν ⊗ δ0)
ϕ = δ0 and ψ (W n, τn)

d→ (ν ⊗ δ0)
ψ = δ0.

Consequently, d (W n, V n) → 0 in probability as n → ∞. Hence by Theorem 3.7
(a), it is enough to show that V n → ν G-mixing. Note that by the strong Markov
property V n is a Brownianmotion independent ofFn

τn
(see e.g. [51], Theorem 13.11).

For n ∈ N, let Gn := ⋂
m≥n Fm

τm
. Then (Gn)n≥1 is a filtration in F with Gn ⊂ Fn

τn

and G∞ = σ
(⋃∞

n=1 Gn
) = G. For F ∈ G with P (F) > 0 we have by the martingale

convergence theorem P (F |Gn) → 1F in L1 (P) which implies

∣∣E (
h

(
V n)

P (F |Gn)
) − E

(
h

(
V n)

1F
)∣∣ ≤ ‖h‖sup E |P (F |Gn) − 1F | → 0

as n → ∞ for every h ∈ Cb (C (R+)). Now, using the independence of σ (V n) and
Gn , we have

E
(
h

(
V n) P (F |Gn)

) = Eh
(
V n)

P (F) =
∫

h dν P (F)

for every n ∈ N. Thus we obtain PV n

F → ν weakly. The assertion follows from
Corollary 3.3. �

Corollary 5.9 In the situation of Theorem 5.8 assume a nesting condition of the
filtrations: For every n ∈ N there exists a (finite) Fn-stopping time τn : � → R+
such that

(i) τn → 0 in probability as n → ∞ ,

(ii) Fn
τn

⊂ Fn+1
τn+1

for every n ∈ N, that is,
(Fn

τn

)
n≥1

is a filtration in F ,

(iii) σ
(⋃∞

n=1 Fn
τn

) = σ
(⋃∞

n=1 Fn∞
)
, where Fn∞ := σ

(⋃
t≥0 Fn

t

)
.

Then W n → ν mixing as n → ∞.

Proof Theorem 5.8 and Proposition 3.5. �
Theorem 5.8 and Corollary 5.9 are very basic results on the stable convergence of

semimartingales. Corollary 5.9 has been established in [99] while the generalization
in Theorem 5.8 is contained in [71].

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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The above nesting condition is undoubtedly very restrictive. It is, however, met
in the important case of the type of Example 4.3 where W n

t = n−1/2Wnt . If Ft :=
σ (Ws, s ≤ t) and Fn

t := Fnt , then the nesting condition is met, for example, with
τn = n−1/2.

General results on the stable convergence of sequences of semimartingales with
applications to stable convergence of discretized processes (without any nesting
condition) can be found in [60], Chap.7, [50], Sections VIII.5 and IX.7, [46, 47, 49].

An application of the preceding corollary can be found in Chap.6. Automatic
stability also occurs in classical central limit theorems for martingale arrays under a
nesting condition as is demonstrated in the next chapter.

http://dx.doi.org/10.1007/978-3-319-18329-9_4
http://dx.doi.org/10.1007/978-3-319-18329-9_7
http://dx.doi.org/10.1007/978-3-319-18329-9_6


Chapter 6
Stable Martingale Central Limit Theorems

Martingale central limit theorems are a generalization of classical central limit
theorems for sums of independent random variables which have found a wide range
of applications. In this chapter we will discuss the basic results with stable conver-
gence in view and will illustrate them with some examples. Further applications will
follow in subsequent chapters.

Webeginwith a fundamental stable central limit theorem formartingale difference
arrays.

6.1 Martingale Arrays and the Nesting Condition

For every n ∈ N let (Xnk)1≤k≤kn
be a sequence of real random variables defined

on a probability space (�,F, P), and let (Fnk)0≤k≤kn
be a filtration in F , i.e.

Fn0 ⊂ Fn1 ⊂ · · · ⊂ Fnkn ⊂ F . The sequence (Xnk)1≤k≤kn
is called adapted to

the filtration (Fnk)0≤k≤kn
if Xnk is measurable w.r.t. Fnk for all 1 ≤ k ≤ kn . The

triangular array (Xnk)1≤k≤kn ,n∈N of random variables is called adapted to the tri-
angular array (Fnk)0≤k≤kn ,n∈N of σ-fields if the row (Xnk)1≤k≤kn

is adapted to the
filtration (Fnk)0≤k≤kn

for every n ∈ N. Not all of the following results of a more
technical nature require the assumption of adaptedness. Therefore, we will always
state explicitly where adapted arrays are considered.

An array (Xnk)1≤k≤kn ,n∈N adapted to (Fnk)0≤k≤kn ,n∈N is called a martingale
difference array if Xnk ∈ L1 (P) with E

(
Xnk |Fn,k−1

) = 0 for all 1 ≤ k ≤ kn and
n ∈ N, which means that for every n ∈ N the sequence (Xnk)1≤k≤kn

is a martingale
difference sequence w.r.t. the filtration (Fnk)0≤k≤kn . A martingale difference array
is square integrable if Xnk ∈ L2(P) for all 1 ≤ k ≤ kn and n ∈ N. Note that
a martingale difference sequence or array is always by definition adapted to the
σ-fields under consideration.
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From now on, we assume that the sequence (kn)n∈N is nondecreasing with kn ≥ n
for all n ∈ N. We always set F∞ = σ

(⋃∞
n=1 Fnkn

)
. The array (Fnk)0≤k≤kn ,n∈N is

called nested ifFnk ⊂ Fn+1,k holds for all n ∈ N and 0 ≤ k ≤ kn . The subtle role of
this property of the σ-fields in stable martingale central limit theorems will become
evident in the sequel.

Our basic stable martingale central limit theorem reads as follows.

Theorem 6.1 Let (Xnk)1≤k≤kn ,n∈N be a square integrable martingale difference
array adapted to the array (Fnk)0≤k≤kn ,n∈N. Let Gnk = ⋂m≥n Fmk for n ∈ N and
0 ≤ k ≤ kn, and G = σ

(⋃∞
n=1 Gnkn

)
. Assume that

(N)

kn∑

k=1

E
(

X2
nk |Fn,k−1

)
→ η2 in probability as n → ∞

for some G-measurable real random variable η ≥ 0

and

(CLB)

kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}|Fn,k−1

)
→ 0 in probability as n → ∞

for every ε > 0

(conditional form of Lindeberg’s condition). Then

kn∑

k=1

Xnk → ηN G-stably as n → ∞ ,

where P N = N (0, 1) and N is independent of G.

The assertion may be read as

kn∑

k=1

Xnk → N
(
0, η2

)
G-stably as n → ∞ .

Remark 6.2 (a) By construction (Gnk)0≤k≤kn ,n∈N is a nested array of σ-fields with
Gnk ⊂ Fnk for all n ∈ N and 0 ≤ k ≤ kn .
(b) If η2 is constant, then G-measurability of η2 is immediate, and

∑kn
k=1 Xnk → ηN

G-stably implies
∑kn

k=1 Xnk
d→ ηN as n → ∞. Therefore, Theorem 6.1 contains

the classical central limit theorem for martingale difference arrays in which η2 is a
constant as a special case.
(c) If η2 isFn0-measurable for all n ≥ n0 and somen0 ∈ N, then it isGn00-measurable
and hence G-measurable. Measurability of η2 w.r.t.

⋂
n≥n0 Fn0 has sometimes been

used as an assumption in stable martingale central limit theorems.
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(d) The nesting condition which is satisfied in most applications yields full stable
convergence. In fact, if (Fnk)0≤k≤kn ,n∈N is nested, then Gnk = Fnk for all n ∈ N and
0 ≤ k ≤ kn , and measurability of η2 w.r.t. G = F∞ can be assumed w.l.o.g.

Corollary 6.3 (Random norming) In the situation of Theorem 6.1 assume
P
(
η2 > 0

)
> 0. Then

( kn∑

k=1

E
(

X2
nk |Fn,k−1

))−1/2 kn∑

k=1

Xnk → N G-mixing under P{η2>0}

as n → ∞.

Proof Applying Theorem 3.18 (b) to the assertion in Theorem 6.1 and condition (N),
we obtain

( kn∑

k=1

Xnk,

kn∑

k=1

E
(

X2
nk |Fn,k−1

)
)

→
(
ηN , η2

)
G-stably as n → ∞ .

Because
{
η2 > 0

} ∈ G this implies

( kn∑

k=1

Xnk,

kn∑

k=1

E
(

X2
nk |Fn,k−1

))

→
(
ηN , η2

)
G-stably under P{η2>0}

as n → ∞. The function g : R × R → R with

g (x, y) :=
{

x/
√

y , y > 0
0 , y ≤ 0

is Borel-measurable and P
(
ηN ,η2

)

{η2>0} -almost surely continuous so that by

Theorem 3.18 (c)

g

( kn∑

k=1

Xnk,

kn∑

k=1

E
(

X2
nk |Fn,k−1

))

→ g
(
ηN , η2

)
= N

G-stably as n → ∞ under P{η2>0} .

Since N and G are independent, the convergence is G-mixing. �

Corollary 6.4 (Random time change) For every n ∈ N, let (Xnk)k∈N be a square
integrable martingale difference sequence w.r.t. the filtration (Fnk)k≥0, and let τn :
� → N0 be a (finite) stopping time w.r.t. (Fnk)k≥0. For n ∈ N and k ≥ 0 set
Gnk =⋂m≥n Fmk and G = σ

(⋃
n∈N Gn∞

)
, where Gn∞ = σ

(⋃∞
k=0 Gnk

)
. If

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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(Nτn )

τn∑

k=1

E
(

X2
nk |Fn,k−1

)
→ η2 in probability as n → ∞

for someG-measurable real random variable η ≥ 0

and

(CLBτn )

τn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}|Fn,k−1

)
→ 0 in probability as n → ∞

for every ε > 0,

then

τn∑

k=1

Xnk → ηN G-stably as n → ∞ ,

where P N = N (0, 1) and N is independent of G.

Proof Since τn is a finite random variable for every n ∈ N, there exists some kn ∈ N

with P (τn > kn) ≤ 1/n. Inductively, we can construct the kn nondecreasing with
kn ≥ n for all n ∈ N. Thenσ

(⋃
n∈N Gnkn

) = G. For n ∈ N and 1 ≤ k ≤ kn setYnk :=
Xnk1{k≤τn}. Since τn is a stopping time w.r.t. (Fnk)k≥0, the array (Ynk)1≤k≤kn ,n∈N is
a square integrable martingale difference array w.r.t. (Fnk)0≤k≤kn ,n∈N. On the event
{τn ≤ kn} we have

kn∑

k=1

E
(

Y 2
nk |Fn,k−1

)
=

kn∧τn∑

k=1

E
(

X2
nk |Fn,k−1

)
=

τn∑

k=1

E
(

X2
nk |Fn,k−1

)

so that, for every ε > 0,

P

(∣∣∣
∣∣

kn∑

k=1

E
(

Y 2
nk |Fn,k−1

)
−

τn∑

k=1

E
(

X2
nk |Fn,k−1

)
∣∣∣
∣∣
≥ ε

)

≤ P (τn > kn) ≤ 1

n

which proves

kn∑

k=1

E
(

Y 2
nk |Fn,k−1

)
−

τn∑

k=1

E
(

X2
nk |Fn,k−1

)
→ 0 in probability as n → ∞

and thus

kn∑

k=1

E
(

Y 2
nk |Fn,k−1

)
→ η2 in probability as n → ∞ .
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On the event {τn ≤ kn} we also have
kn∑

k=1

Ynk =
kn∧τn∑

k=1

Xnk =
τn∑

k=1

Xnk

so that, by the same type of argument as above,

kn∑

k=1

Ynk −
τn∑

k=1

Xnk → 0 in probability as n → ∞ .

Finally, for all ε > 0, using |Ynk | ≤ |Xnk |,
kn∑

k=1

E
(

Y 2
nk1{|Ynk |≥ε}|Fn,k−1

)

≤
kn∧τn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}|Fn,k−1

)
≤

τn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}|Fn,k−1

)

which implies

kn∑

k=1

E
(

Y 2
nk1{|Ynk |≥ε}|Fn,k−1

)
→ 0 in probability as n → ∞

for all ε > 0. Therefore, Theorem 6.1 yields

kn∑

k=1

Ynk → ηN G-stably as n → ∞ ,

and, using Theorem 3.18 (a), we conclude

τn∑

k=1

Xnk → ηN G-stably as n → ∞ . �

The preceding corollary implies, for instance, the non-functional part of
Example 4.8 for stopping times.

As for the proof of Theorem 6.1 we demonstrate that the Lindeberg method works
in a basic general setting (see Step 1 of the proof). We require some technical results
which will also be useful later. Note that in these statements adaptedness is not
required.

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_4
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Lemma 6.5 Let (Xnk)1≤k≤kn ,n∈N be an array of nonnegative integrable random
variables, and let (Fnk)0≤k≤kn ,n∈N be an array of σ-fields. Then

kn∑

k=1

E
(
Xnk |Fn,k−1

)→ 0 in probability as n → ∞

implies

kn∑

k=1

Xnk → 0 in probability as n → ∞ .

Proof For every n ∈ N

τn = max

⎧
⎨

⎩
k ∈ {0, 1, . . . , kn} :

k∑

j=1

E
(
Xnj |Fn, j−1

) ≤ 1

⎫
⎬

⎭

is a stopping time w.r.t. the filtration (Fnk)0≤k≤kn
. From

∑τn
k=1 E

(
Xnk |Fn,k−1

) ≤
∑kn

k=1 E
(
Xnk |Fn,k−1

)
and

∑τn
k=1 E

(
Xnk |Fn,k−1

) ≤ 1 for all n ∈ N as well as the
assumption of the lemma we obtain by dominated convergence that

E

(
τn∑

k=1

Xnk

)

= E

(
τn∑

k=1

E
(
Xnk |Fn,k−1

)
)

→ 0 as n → ∞

so that, in particular,
∑τn

k=1 Xnk → 0 in probability. For every ε > 0 we have

P

(∣∣∣∣∣

kn∑

k=1

Xnk −
τn∑

k=1

Xnk

∣
∣∣∣∣
≥ ε

)

≤ P (τn < kn) = P

( kn∑

k=1

E
(
Xnk |Fn,k−1

)
> 1

)

→ 0

as n → ∞, which completes the proof. �

Exercise 6.1 Deduce Lemma 6.5 in the adapted case from the Lenglart inequality
in Lemma A.8 (a).

Proposition 6.6 Let (Xnk)1≤k≤kn ,n∈N be an array of integrable random variables,
and let (Fnk)0≤k≤kn ,n∈N be an array of σ-fields. Then
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(CLB1)

kn∑

k=1

E
(|Xnk | 1{|Xnk |≥ε}|Fn,k−1

)→ 0 in probability as n → ∞

for every ε > 0

(an L1-version of (CLB)) implies

max
1≤k≤kn

|Xnk | → 0 in probability as n → ∞ .

Proof From the assumption and Lemma 6.5 for all ε > 0 it follows that

kn∑

k=1

|Xnk | 1{|Xnk |≥ε} → 0 in probability as n → ∞ .

But for all ε > 0 and n ∈ N we have

P

(
max

1≤k≤kn
|Xnk | ≥ ε

)
≤ P

( kn∑

k=1

|Xnk | 1{|Xnk |≥ε} ≥ ε

)

,

which completes the proof. �

Proposition 6.7 Let (Xnk)1≤k≤kn ,n∈N be an array of square integrable random vari-
ables, and let (Fnk)0≤k≤kn ,n∈N be an array of σ-fields. Then the conditional Linde-
berg condition (CLB) implies

max
1≤k≤kn

E
(

X2
nk |Fn,k−1

)
→ 0 in probability as n → ∞ .

Proof For every ε > 0 and n ∈ N we have

max
1≤k≤kn

E
(

X2
nk |Fn,k−1

)

= max
1≤k≤kn

E
(

X2
nk1{|Xnk |<ε} + X2

nk1{|Xnk |≥ε}|Fn,k−1

)

≤ ε2 +
kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}|Fn,k−1

)
,

which clearly implies the desired result. �

Now we are prepared to give the

Proof of Theorem 6.1. For brevity we write σ2
nk = E

(
X2

nk |Fn,k−1
)
for all n ∈ N and

1 ≤ k ≤ kn .
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The proof proceeds in several steps.
Step 1. In addition to conditions (N) and (CLB) we assume that

(i)
kn∑

k=1

σ2
nk = η2 a.s. for all n ∈ N ,

(ii) η2 is Fn0-measurable for all n ∈ N, that is, η2 is G10-measurable, and

(iii) η2 ≤ C < ∞ a.s. for some constant C

and will show that
∑kn

k=1 Xnk
d→ ηN as n → ∞ holds.

W.l.o.g. we can assume that an array (Nnk)1≤k≤kn ,n∈N of independent standard
normal random variables is defined on (�,F, P) such that (Nnk)1≤k≤kn ,n∈N andF∞
are independent. Then for every n ∈ N the conditional distribution of

∑kn
k=1 σnk Nnk

givenF∞ is the normal distribution with mean zero and variance
∑kn

k=1 σ2
nk = η2, by

assumption (i). Therefore, with
d= denoting equality in distribution,

∑kn
k=1 σnk Nnk

d=
ηN .

Let f : R → R be bounded and three times continuously differentiable with
bounded derivatives. Taylor’s formula implies

f (x + h) = f (x) + f ′ (x) h + 1

2
f ′′ (x) h2 + R f (x, h) for all x, h ∈ R

with

∣
∣R f (x, h)

∣
∣ ≤ C ( f )min

{
h2, |h|3

}
for all x, h ∈ R ,

where f ′, f ′′ and f ′′′ are thederivatives of f andC ( f ) = max{ 16‖ f ′′′‖∞, ‖ f ′′‖∞} <

∞ with ‖g‖∞ denoting the sup-norm of the bounded function g : R → R.
Introducing

Ynk :=
k−1∑

j=1

Xnj +
kn∑

j=k+1

σnj Nnj

for all n ∈ N and 1 ≤ k ≤ kn we obtain

∣∣∣∣
∣
E

(

f

( kn∑

k=1

Xnk

))

− E ( f (ηN ))

∣∣
∣∣
∣

=
∣∣
∣∣
∣
E

(

f

( kn∑

k=1

Xnk

))

− E

(

f

( kn∑

k=1

σnk Nnk

))∣∣
∣∣
∣
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=
∣∣
∣∣∣

kn∑

k=1

[E ( f (Ynk + Xnk)) − E ( f (Ynk + σnk Nnk))]

∣∣
∣∣∣

=
∣
∣∣∣

kn∑

k=1

[
E
(

f ′ (Ynk) Xnk
)+ 1

2
E
(

f ′′ (Ynk) X2
nk

)
+ E

(
R f (Ynk, Xnk)

)

−E
(

f ′ (Ynk)σnk Nnk
)− 1

2
E
(

f ′′ (Ynk)σ2
nk N 2

nk

)
− E

(
R f (Ynk,σnk Nnk)

) ]
∣
∣∣∣ .

In the next crucial step of the proof we will show that the two expectations
involving f ′ on the right-hand side of this chain of equations vanish individu-
ally whereas the two expectations involving f ′′ are equal and hence cancel out.
Clearly, by independence of (Ynk,σnk) and Nnk we have E

(
f ′ (Ynk) σnk Nnk

) =
E
(

f ′ (Ynk)σnk
)

E (Nnk) = 0. We note that by independence of F∞ and(
Nn1, . . . , Nnkn

)
for all n ∈ N and 1 ≤ k ≤ kn the conditional distribution

of Ynk given F∞ is the normal distribution with mean
∑k−1

j=1 Xnj and variance
∑kn

j=k+1 σ2
nj = η2 −∑k

j=1 σ2
nj , where the last equality follows from assumption

(i). As a consequence of assumption (ii), this conditional distribution is measurable
w.r.t. Fn,k−1 up to F∞-null sets, and this implies that the conditional expectations
E
(

f ′ (Ynk) |F∞
)
and E

(
f ′′ (Ynk) |F∞

)
are measurable w.r.t.Fn,k−1 up toF∞-null

sets as well. Hence

E
(

f ′ (Ynk) Xnk
) = E

(
E
(

f ′ (Ynk) Xnk |F∞
))

= E
(
Xnk E

(
f ′ (Ynk) |F∞

)) = E
(
E
(
Xnk |Fn,k−1

)
E
(

f ′ (Ynk) |F∞
)) = 0

because E
(
Xnk |Fn,k−1

) = 0 and

E
(

f ′′ (Ynk) X2
nk

)
= E

(
E
(

X2
nk |Fn,k−1

)
E
(

f ′′ (Ynk) |F∞
))

= E
(
σ2

nk E
(

f ′′ (Ynk) |F∞
)) = E

(
f ′′ (Ynk)σ2

nk

)
= E

(
f ′′ (Ynk) σ2

nk N 2
nk

)
,

where the last equality holds by independence of (Ynk,σnk) and Nnk combined with
E
(
N 2

nk

) = 1. Consequently, we obtain

∣∣∣∣
∣
E

(

f

( kn∑

k=1

Xnk

))

− E ( f (ηN ))

∣∣∣∣
∣

≤
kn∑

k=1

[
E
(∣∣R f (Ynk, Xnk)

∣
∣)+ E

(∣∣R f (Ynk,σnk Nnk)
∣
∣)]

≤ C ( f )

kn∑

k=1

[
E
(
min

(
X2

nk, |Xnk |3
))

+ E
(
min

(
σ2

nk N 2
nk,σ

3
nk |Nnk |3

))]
,
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where the last inequality follows from the bound on
∣∣R f (x, h)

∣∣. For all n ∈ N and
ε > 0 we have

kn∑

k=1

E
(
min

(
X2

nk, |Xnk |3
))

≤
kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}

)
+

kn∑

k=1

E
(
|Xnk |3 1{|Xnk |<ε}

)

with

kn∑

k=1

E
(
|Xnk |3 1{|Xnk |<ε}

)
≤ ε

kn∑

k=1

E
(

X2
nk

)
= εE

( kn∑

k=1

σ2
nk

)

≤ εC

by assumptions (i) and (iii). Moreover,

kn∑

k=1

E
(
min

(
σ2

nk N 2
nk,σ

3
nk |Nnk |3

))
≤

kn∑

k=1

E
(
σ3

nk |Nnk |3
)

=
kn∑

k=1

E
(
σ3

nk

)
E
(
|Nnk |3

)
=
√

8

π
E

( kn∑

k=1

σ3
nk

)

≤
√

8

π
E

(

max
1≤k≤kn

σnk

kn∑

k=1

σ2
nk

)

≤
√

8

π
C E

(
max

1≤k≤kn
σ2

nk

)1/2

=
√

8

π
C E

(
max

1≤k≤kn
E
(

X2
nk1{|Xnk |<ε} + X2

nk1{|Xnk |≥ε}|Fn,k−1

))1/2

≤
√

8

π
C

⎡

⎣ε +
( kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}

))1/2⎤

⎦ .

Combining these results, for all n ∈ N and ε > 0 we arrive at

∣∣∣∣∣
E

(

f

( kn∑

k=1

Xnk

))

− E ( f (ηN ))

∣∣∣∣∣

≤ C ( f )

[ kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}

)
+
(

1 +
√

8

π

)

εC

+
√

8

π
C

( kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}

))1/2 ]
.



6.1 Martingale Arrays and the Nesting Condition 77

From (CLB) and assumptions (i) and (iii) we infer by dominated convergence
that

∑kn
k=1 E

(
X2

nk1{|Xnk |≥ε}
) → 0 as n → ∞ for every ε > 0. This implies

limn→∞ E
(

f
(∑kn

k=1 Xnk

))
= E ( f (ηZ)) which proves

∑kn
k=1 Xnk

d→ ηN as

n → ∞ and completes Step 1 of the proof.

Step 2. In the second step of the proof we assume (N), (CLB) and in addition

(iv)
kn∑

k=1

σ2
nk ≤ C < ∞ for some constant C and all n ∈ N

and will show that
∑kn

k=1 Xnk
d→ ηN as n → ∞ holds. For this, let m ∈ N

be fixed. Note that for all n ≥ m + 1 we have kn ≥ n ≥ m + 1 and that
(Xnk)m+1≤k≤kn ,n≥m+1 is a square integrable martingale difference array adapted
to the array (Fnk)m≤k≤kn ,n≥m+1. Clearly, for every n ≥ m + 1

τn (m) = max

⎧
⎨

⎩
k ∈ {m, m + 1, . . . , kn} :

k∑

j=m+1

σ2
nj ≤ E

(
η2|Gmm

)
⎫
⎬

⎭

is a stopping time w.r.t. the filtration (Fnk)m≤k≤kn
(observe that (Gnk)0≤k≤kn ,n∈N is

a nested array with Gnk ⊂ Fnk by Remark 6.2 (a)). For all n ≥ m + 1 we introduce

ξn (m) :=
⎡

⎣E
(
η2|Gmm

)
−

τn(m)∑

k=m+1

σ2
nk

⎤

⎦

1/2

and let (Ynk)kn+1≤k≤kn+n be independent random variables with P (Ynk = 1) =
1/2 = P (Ynk = −1) for all kn + 1 ≤ k ≤ kn + n which are independent of Fnkn .
Define

Znk (m) :=
⎧
⎨

⎩

Xnk1{k≤τn(m)} , m + 1 ≤ k ≤ kn
1√
n
ξn (m) Ynk , kn + 1 ≤ k ≤ kn + n

and

Hnk (m) :=
{
Fnk , m ≤ k ≤ kn

σ
(
Fnkn , Yn,kn+1, . . . , Ynk

)
, kn + 1 ≤ k ≤ kn + n .

The sequence (Hnk (m))m≤k≤kn+n is nondecreasing and (Znk (m))m+1≤k≤kn+n is
adapted to (Hnk (m))m≤k≤kn+n for every n ≥ m + 1. From (N) and assumption (iv)
we infer that η2 ≤ C almost surely so that |ξn (m) Ynk | ≤ C1/2 almost surely and,
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consequently, all Znk (m) are square integrable. For n ≥ m + 1 and m + 1 ≤ k ≤ kn

we have

E
(
Znk (m) |Hn,k−1 (m)

) = E
(
Xnk1{k≤τn(m)}|Fn,k−1

)

= 1{k≤τn(m)}E
(
Xnk |Fn,k−1

) = 0

because τn (m) is a stopping time w.r.t. (Fnk)m≤k≤kn
and E

(
Xnk |Fn,k−1

) = 0, and
for kn + 1 ≤ k ≤ kn + n we have

E
(
Znk (m) |Hn,k−1 (m)

) = E

(
1√
n

ξn (m) Ynk

∣
∣
∣
∣σ
(
Fnkn , Yn,kn+1, . . . , Yn,k−1

)
)

= 1√
n
ξn (m) E

(
Ynk |σ

(
Fnkn , Yn,kn+1, . . . , Yn,k−1

)) = 0

because ξn (m) is measurable w.r.t. Fnkn and, by independence of Ynk and
σ
(
Fnkn , Yn,kn+1, . . . , Yn,k−1

)
, we also get E

(
Ynk |σ

(
Fnkn , Yn,kn+1, . . . , Yn,k−1

)) =
E(Ynk) = 0 . Thus, (Znk (m))m+1≤k≤kn ,n≥m+1 is a square integrable martingale dif-
ference array with

kn+n∑

k=m+1

E
(

Z2
nk (m) |Hn,k−1 (m)

)

=
kn∑

k=m+1

E
(

X2
nk1{k≤τn(m)}|Fn,k−1

)

+
kn+n∑

k=kn+1

E

(
1

n
ξ2n (m) Y 2

nk

∣∣∣∣σ
(
Fnkn , Yn,kn+1, . . . , Yn,k−1

))

=
τn(m)∑

k=m+1

E
(

X2
nk |Fn,k−1

)
+
⎡

⎣E
(
η2|Gmm

)
−

τn(m)∑

k=m+1

σ2
nk

⎤

⎦ 1

n

kn+n∑

k=kn+1

E(Y 2
nk)

= E
(
η2|Gmm

)

for n ≥ m + 1. Thus, the martingale difference array (Znk(m))m+1≤k≤kn+n,n≥m+1

satisfies assumption (i) from Step 1 with E
(
η2|Gmm

)
instead of η2 if m is identified

with 0. Trivially, E
(
η2|Gmm

) ≤ C almost surely from η2 ≤ C almost surely. If m
is identified with 0 and since Gmm ⊂ Gnm holds for all n ≥ m + 1, assumptions (ii)
and (iii) are satisfied as well. Moreover, for all ε > 0 and n ≥ m + 1
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kn+n∑

k=m+1

E
(

Z2
nk (m) 1{|Znk (m)|≥ε}

)

≤
kn∑

k=m+1

E
(

X2
nk1{|Xnk |≥ε}

)

+1

n

kn+n∑

k=kn+1

E
(
ξ2n (m) Y 2

nk1{|ξn(m)Ynk |≥ε
√

n}
)

.

The first summand on the right-hand side of this inequality converges to zero by
(CLB), assumption (iv) and the dominated convergence theorem. The second sum-
mand is equal to zero for all sufficiently large n because |ξn (m) Ynk | ≤ C1/2 almost
surely for all n ≥ m + 1.

Thus we have shown that for every m ∈ N the square integrable martingale differ-
ence array (Znk (m))m+1≤k≤kn+n,n≥m+1 w.r.t. (Hnk (m))m≤k≤kn+n,n≥m+1 fulfills all

assumptions of Step 1 so that
∑kn+n

k=m+1 Znk (m)
d→ E

(
η2|Gmm

)1/2
N as n → ∞.

Because Gnk is nondecreasing in k and n the sequence (Gmm)m∈N is a nondecreas-
ing sequence of σ-fields with σ (Gmm : m ∈ N) = σ

(
Gnkn : n ∈ N

) = G. Conse-
quently, thanks to the martingale convergence theorem, E

(
η2|Gmm

)→ E
(
η2|G) =

η2 almost surely as m → ∞. Hence E
(
η2|Gmm

)1/2
N

d→ ηN as m → ∞. In order

to obtain
∑kn

k=1 Xnk
d→ ηN as n → ∞ it remains to verify in view of Theorem 3.21

that for every ε > 0

lim
m→∞ lim sup

n→∞
P

(∣∣∣∣∣

kn∑

k=1

Xnk −
kn+n∑

k=m+1

Znk (m)

∣
∣∣∣∣
≥ ε

)

= 0 .

For all n ≥ m + 1 we have

kn∑

k=1

Xnk −
kn+n∑

k=m+1

Znk (m)

=
kn∑

k=1

Xnk −
τn(m)∑

k=m+1

Xnk −
kn+n∑

k=kn+1

1√
n
ξn (m) Ynk

=
m∑

k=1

Xnk +
kn∑

k=τn(m)+1

Xnk − ξn (m)
1√
n

kn+n∑

k=kn+1

Ynk

= V1 (m, n) + V2 (m, n) − V3 (m, n) ,

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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say. Clearly, it suffices to show for all ε > 0 and j = 1, 2, 3 that

lim
m→∞ lim sup

n→∞
P
(∣∣Vj (m, n)

∣∣ ≥ ε
) = 0 .

Because for all ε > 0 and n ∈ N

kn∑

k=1

E
(|Xnk | 1{|Xnk |≥ε}|Fn,k−1

) ≤ 1

ε

kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}|Fn,k−1

)
,

condition (CLB) implies
∑m

k=1 Xnk → 0 in probability as n → ∞ for every m ∈ N

via Proposition 6.6, and limm→∞ lim supn→∞ P (|V1 (m, n)| ≥ ε) = 0 is immedi-
ate. To handle V2 (m, n) we write

E

⎛

⎜
⎝

⎛

⎝
kn∑

k=τn(m)+1

Xnk

⎞

⎠

2
⎞

⎟
⎠ = E

⎛

⎝
kn∑

k=τn(m)+1

σ2
nk1{τn(m)<kn}

⎞

⎠

= E

(( kn∑

k=1

σ2
nk − E

(
η2|Gmm

)
+ ξ2n (m) −

m∑

k=1

σ2
nk

)

1{τn(m)<kn}

)

≤ E

(∣∣∣∣
∣

kn∑

k=1

σ2
nk − η2

∣∣∣∣
∣

)

+ E
(∣∣∣η2 − E

(
η2|Gmm

)∣∣∣
)

+ E

(
m∑

k=1

σ2
nk

)

+ E
(
ξ2n (m) 1{τn(m)<kn}

)
= In + IIm + IIIm,n + IVm,n ,

say. Clearly, limn→∞ In = 0 by (N), assumption (iv) and dominated convergence,
and limm→∞ IIm = 0 by E

(
η2|Gmm

) → η2 almost surely as m → ∞, η2 ≤
C and dominated convergence. Obviously, IIIm,n ≤ m E

(
max1≤k≤kn σ2

nk

)
for all

n ≥ m + 1. But (CLB) implies max1≤k≤kn σ2
nk → 0 in probability as n → ∞ via

Proposition 6.7, whence E
(
max1≤k≤kn σ2

nk

)→ 0 as n → ∞ by assumption (iv) and
dominated convergence. Therefore, IIIm,n → 0 as n → ∞ for all m ∈ N. Finally, by
definition of τn (m), IVm,n ≤ E

(
max1≤k≤kn σ2

nk

)→ 0 as n → ∞ for every m ∈ N.

Thus we have shown that limm→∞ lim supn→∞ E

((∑kn
k=τn(m)+1 Xnk

)2) = 0, and

limm→∞ lim supn→∞ P (|V2 (m, n)| ≥ ε) = 0 follows by Markov’s inequality.
It remains to consider V3 (m, n). Writing ζn = 1√

n

∑kn+n
k=kn+1 Ynk for all n ∈ N we

note that (ζn) is bounded in probability (ζn in fact converges in distribution to the
standard normal distribution by the classical central limit theorem). Then we obtain
for all m ∈ N and n ≥ m + 1
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V3 (m, n) = ξn (m) ζn1{τn(m)<kn} + ξn (m) ζn1{τn(m)=kn}

≤
(

max
1≤k≤kn

σ2
nk

)1/2
|ζn| +

∣∣∣∣∣
E
(
η2|Gmm

)
−

kn∑

k=1

σ2
nk

∣∣∣∣∣

1/2

|ζn|

+
(

m∑

k=1

σ2
nk

)1/2

|ζn| .

The first and the third summand on the right-hand side of this inequality converge to
zero in probability as n → ∞ because max1≤k≤kn σ2

nk → 0 in probability and (ζn)

is bounded in probability. Hence for all ε > 0

lim
m→∞ lim sup

n→∞
P (|V3 (m, n)| ≥ ε)

≤ lim
m→∞ lim sup

n→∞
P

⎛

⎝

∣
∣
∣
∣
∣
E
(
η2|Gmm

)
−

kn∑

k=1

σ2
nk

∣
∣
∣
∣
∣

1/2

|ζn| ≥ ε

2

⎞

⎠ .

Because (ζn) is bounded in probability the limit on the right-hand side of this inequal-
ity is zero provided that

lim
m→∞ lim sup

n→∞
P

⎛

⎝

∣∣∣∣
∣
E
(
η2|Gmm

)
−

kn∑

k=1

σ2
nk

∣∣∣∣
∣

1/2

≥ ε

⎞

⎠ = 0

for every ε > 0. But this follows from the inequality

∣∣
∣∣∣
E
(
η2|Gmm

)
−

kn∑

k=1

σ2
nk

∣∣
∣∣∣

1/2

≤
∣
∣∣E
(
η2|Gmm

)
− η2

∣
∣∣
1/2 +

∣∣
∣∣∣
η2 −

kn∑

k=1

σ2
nk

∣∣
∣∣∣

1/2

,

condition (N) and E
(
η2|Gmm

)→ η2 as m → ∞ almost surely.

Summarizing our results we have shown that
∑kn

k=1 Xnk
d→ ηN as n → ∞. This

completes Step 2 of the proof.

Step 3. To remove assumption (iv) from Step 2, let 0 < c < ∞ be fixed. Then for
every n ∈ N

τn (c) = max

⎧
⎨

⎩
k ∈ {0, 1, . . . , kn} :

k∑

j=1

σ2
nj < c

⎫
⎬

⎭

is a stopping time w.r.t. (Fnk)0≤k≤kn
and Wnk (c) := Xnk1{k≤τn(c)} for 1 ≤ k ≤ kn

defines a square integrable martingale difference sequence w.r.t. (Fnk)0≤k≤kn
. For

all n ∈ N we have
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kn∑

k=1

E
(

W 2
nk (c) |Fn,k−1

)
=

kn∑

k=1

1{k≤τn(c)}E
(

X2
nk |Fn,k−1

)
=

τn(c)∑

k=1

σ2
nk < c

by definition of τn (c) so that the square integrable martingale difference array
(Wnk (c))1≤k≤kn ,n∈Nw.r.t. (Fnk)0≤k≤kn ,n∈N satisfies assumption (iv). From |Wnk (c)|
≤ |Xnk | for all n ∈ N, 1 ≤ k ≤ kn and 0 < c < ∞ and (CLB) it immediately follows
that

kn∑

k=1

E
(

W 2
nk (c) 1{|Wnk (c)|≥ε}|Fn,k−1

)
→ 0 in probability as n → ∞

for all ε > 0. Now we set η (c) := η1{η2<c} + √
c1{η2≥c} for all 0 < c < ∞ and

will show that

kn∑

k=1

E
(

W 2
nk (c) |Fn,k−1

)
→ η2 (c) = η21{η2<c} + c1{η2≥c}

in probability as n → ∞. To see this, for every ε > 0 and n ∈ N we write

P

(∣∣∣∣
∣

kn∑

k=1

E
(

W 2
nk (c) |Fn,k−1

)
− η2 (c)

∣∣∣∣
∣
≥ ε

)

= P

⎛

⎝

∣∣∣∣
∣∣

τn(c)∑

k=1

σ2
nk − η2 (c)

∣∣∣∣
∣∣
≥ ε

⎞

⎠

= P

⎛

⎝

⎧
⎨

⎩

∣∣∣∣∣
∣

τn(c)∑

k=1

σ2
nk − η2 (c)

∣∣∣∣∣
∣
≥ ε

⎫
⎬

⎭
∩
{ kn∑

k=1

σ2
nk < c

}

∩
{
η2 < c

}
⎞

⎠

+P

⎛

⎝

⎧
⎨

⎩

∣
∣∣∣∣∣

τn(c)∑

k=1

σ2
nk − η2 (c)

∣
∣∣∣∣∣
≥ ε

⎫
⎬

⎭
∩
{ kn∑

k=1

σ2
nk < c

}

∩
{
η2 ≥ c

}
⎞

⎠

+P

⎛

⎝

⎧
⎨

⎩

∣∣
∣∣∣∣

τn(c)∑

k=1

σ2
nk − η2 (c)

∣∣
∣∣∣∣
≥ ε

⎫
⎬

⎭
∩
{ kn∑

k=1

σ2
nk ≥ c

}

∩
{
η2 < c

}
⎞

⎠

+P

⎛

⎝

⎧
⎨

⎩

∣∣
∣∣∣∣

τn(c)∑

k=1

σ2
nk − η2 (c)

∣∣
∣∣∣∣
≥ ε

⎫
⎬

⎭
∩
{ kn∑

k=1

σ2
nk ≥ c

}

∩
{
η2 ≥ c

}
⎞

⎠

= P1,n + P2,n + P3,n + P4,n ,

say, and we will prove that Pj,n converges to zero as n → ∞ for 1 ≤ j ≤ 4.
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On the event
{∑kn

k=1 σ2
nk < c

}
∩ {η2 < c

}
we have τn (c) = kn and η2 (c) = η2

so that

P1,n ≤ P

(∣∣
∣∣∣

kn∑

k=1

σ2
nk − η2

∣∣
∣∣∣
≥ ε

)

→ 0 as → ∞

by condition (N). On the event
{∑kn

k=1 σ2
nk < c

}
∩ {η2 ≥ c

}
we have τn (c) = kn

and η2 (c) = c so that
∣
∣
∣
∣
∣
∣

τn(c)∑

k=1

σ2
nk − η2 (c)

∣
∣
∣
∣
∣
∣
= c −

kn∑

k=1

σ2
nk ≤ η2 −

kn∑

k=1

σ2
nk =

∣
∣
∣
∣
∣
η2 −

kn∑

k=1

σ2
nk

∣
∣
∣
∣
∣

whence

P2,n ≤ P

(∣∣
∣∣∣

kn∑

k=1

σ2
nk − η2

∣
∣
∣∣∣
≥ ε

)

→ 0 as n → ∞ .

On the event
{∑kn

k=1 σ2
nk ≥ c

}
∩ {η2 < c

}
we have η2 (c) = η2 < c ≤ ∑kn

k=1 σ2
nk ,

and
∑τn(c)

k=1 σ2
nk < c holds by definition of τn(c). Therefore, τn (c) < kn and c ≤

∑τn(c)+1
k=1 σ2

nk , again by definition of τn (c). Now we consider two cases:

Case 1.
∑τn(c)

k=1 σ2
nk ≤ η2. Then

∣∣
∣∣∣∣

τn(c)∑

k=1

σ2
nk − η2 (c)

∣∣
∣∣∣∣
= η2 −

τn(c)∑

k=1

σ2
nk < c −

τn(c)∑

k=1

σ2
nk

≤
τn(c)+1∑

k=1

σ2
nk −

τn(c)∑

k=1

σ2
nk ≤ max

1≤k≤kn
σ2

nk .

Case 2.
∑τn(c)

k=1 σ2
nk > η2. Then

∣∣
∣∣∣∣

τn(c)∑

k=1

σ2
nk − η2 (c)

∣∣
∣∣∣∣
=

τn(c)∑

k=1

σ2
nk − η2 ≤

kn∑

k=1

σ2
nk − η2 =

∣∣
∣∣∣

kn∑

k=1

σ2
nk − η2

∣∣
∣∣∣
.

Combining the two cases we see that

P3,n ≤ P

(
max

1≤k≤kn
σ2

nk ≥ ε

)
+ P

(∣∣
∣∣∣

kn∑

k=1

σ2
nk − η2

∣
∣∣
∣∣
≥ ε

)

→ 0 as n → ∞

from max1≤k≤kn σ2
nk → 0 in probability and condition (N).
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Finally, on the event
{∑kn

k=1 σ2
nk ≥ c

}
∩{η2 ≥ c

}
wehave η2 (c) = c and τn (c) <

kn and therefore
∑τn(c)

k=1 σ2
nk < c ≤∑τn(c)+1

k=1 σ2
nk . Thus

∣∣∣∣∣
∣

τn(c)∑

k=1

σ2
nk − η2 (c)

∣∣∣∣∣
∣
= c −

τn(c)∑

k=1

σ2
nk ≤

τn(c)+1∑

k=1

σ2
nk −

τn(c)∑

k=1

σ2
nk ≤ max

1≤k≤kn
σ2

nk

and, consequently,

P4,n ≤ P

(
max

1≤k≤kn
σ2

nk ≥ ε

)
→ 0 as n → ∞ .

Now we can apply the result established in Step 2 to obtain, for all 0 < c < ∞,
∑kn

k=1 Wnk (c)
d→ η (c) N as n → ∞.

For every ε > 0 and 0 < c < ∞we have P
(∣∣η2 (c) − η2

∣
∣ ≥ ε

) ≤ P
(
η2 ≥ c

)→
0 as c → ∞ so that η (c) → η in probability and hence η (c) N

d→ ηN . In order to

complete the proof of
∑kn

k=1 Xnk
d→ ηN as n → ∞ we have to show for all ε > 0

that

lim
c→∞ lim sup

n→∞
P

(∣∣
∣∣∣

kn∑

k=1

Xnk −
kn∑

k=1

Wnk (c)

∣∣
∣∣∣
≥ ε

)

= 0

(see Theorem 3.21). To see this, observe that

P

(∣∣∣∣∣

kn∑

k=1

Xnk −
kn∑

k=1

Wnk (c)

∣
∣∣∣∣
≥ ε

)

= P

⎛

⎝

∣∣
∣∣∣∣

kn∑

k=1

Xnk −
τn(c)∑

k=1

Xnk

∣∣
∣∣∣∣
≥ ε

⎞

⎠ ≤ P (τn (c) < kn) ≤ P

( kn∑

k=1

σ2
nk ≥ c

)

so that

lim sup
n→∞

P

(∣∣
∣∣∣

kn∑

k=1

Xnk −
kn∑

k=1

Wnk (c)

∣∣
∣∣∣
≥ ε

)

≤ lim sup
n→∞

P

( kn∑

k=1

σ2
nk ≥ c

)

→ 0

as c → ∞ because
(∑kn

k=1 σ2
nk

)
is bounded in probability by condition (N). This

completes the proof of
∑kn

k=1 Xnk
d→ ηN as n → ∞ and of Step 3.

Step 4. Nowwe will show that the convergence in distribution established so far is
G-stable. By monotonicity of Gnk in k and n we have G = σ (E) for E =⋃∞

m=1 Gmm ,

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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andE is a sub-field ofG becauseGmm is increasing inm. ByTheorem3.17 it is enough

to show that
∑kn

k=1 Xnk
d→ ηN as n → ∞ under PF = P (·|F) for all F ∈ E with

P (F) > 0. For this, let F ∈ E be fixed. Then F ∈ Gmm for some m ∈ N. For a sub-
σ-field H ⊂ F and an integrable random variable X on (�,F, P), let EP (X |H)

denote the conditional expectation of X w.r.t.H under P , whereas EPF (X |H) is the
conditional expectation of X w.r.t.H under PF . Observe that for F ∈ H any version
of EP (X |H) is also a version of EPF (X |H), that is, EP (X |H) = EPF (X |H)

PF -almost surely. Therefore, the array (Xnk)m+1≤k≤kn ,n≥m+1 is a square integrable
martingale difference array adapted to (Fnk)m≤k≤kn ,n≥m+1 under PF . Note that by
(N), (CLB) and Proposition 6.7 we have

kn∑

k=m+1

EP

(
X2

nk |Fn,k−1

)
→ η2 in P-probability as n → ∞

from which by EP
(
X2

nk |Fn,k−1
) = EPF

(
X2

nk |Fn,k−1
)

PF -almost surely for all
m + 1 ≤ k ≤ kn and n ≥ m + 1 we obtain

kn∑

k=m+1

EPF

(
X2

nk |Fn,k−1

)
→ η2 in PF -probability as n → ∞ .

Moreover,

kn∑

k=m+1

EPF

(
X2

nk1{|Xnk |≥ε}|Fn,k−1

)
→ 0 in PF -probability as n → ∞

for all ε > 0 is an immediate consequence of (CLB). Therefore
∑kn

k=m+1 Xnk
d→ ηN

under PF as n → ∞ by Step 3. Because max1≤k≤kn |Xnk | converges to zero in P-
probability by (CLB) and Proposition 6.6 and hence also in PF -probability we arrive

at
∑kn

k=1 Xnk
d→ ηN under PF as n → ∞ so that the proof of Theorem 6.1 is

complete. �

Remark 6.8 (a) In applications of Theorem 6.1 stronger conditions than (CLB) may
be used. Clearly, (CLB) is implied by the classical Lindeberg condition

(LB)

kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}

)
→ 0 as n → ∞ for every ε > 0

aswell as by the conditional Lyapunov condition of order p ∈ (2,∞), which requires
for some p ∈ (2,∞) that

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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(CLYp)

kn∑

k=1

E
(|Xnk |p |Fn,k−1

)→ 0 in probability as n → ∞

and entails (CLB) through the inequality, valid for all ε > 0,

kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}|Fn,k−1

)
≤ 1

εp−2

kn∑

k=1

E
(|Xnk |p |Fn,k−1

)

provided that Xnk ∈ Lp (P) for all n ∈ N and 1 ≤ k ≤ kn . In the latter case, (CLYp)

is obviously implied by the classical Lyapunov condition of order p ∈ (2,∞), that
is,

(LYp)

kn∑

k=1

E
(|Xnk |p)→ 0 as n → ∞.

(b) For independent random variables N with P N = N (0, 1) and η ≥ 0, the char-
acteristic function φηN of ηN is given by, for all t ∈ R,

φηN (t) = E (exp (i tηN )) =
∫

[0,∞)

E (exp (i tuN )) d Pη (u)

=
∫

[0,∞)

exp

(
−1

2
t2u2

)
d Pη (u) = Ee−t2η2/2 .

Thus φηN is real-valued and PηN is symmetric around zero. Therefore, all limit
random variables in Theorem 6.1 are symmetric around zero. Furthermore, the dis-
tribution PηN = P N

(
0, η2

)
satisfies PηN  λ if and only if P

(
η2 > 0

) = 1 and
then

d PηN

dλ
(x) = E

(
1

√
2πη2

e−x2/η2
)

, x ∈ R .

Exercise 6.2 (The case kn = ∞) In the situation of Theorem 6.1 let kn = ∞ for
every n ∈ N and assume that for every n ∈ N,

∞∑

k=1

Xnk converges a.s. in R

and

∞∑

k=1

E
(

X2
nk |Fn,k−1

)
< ∞ a.s.
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(By the martingale convergence theorem, both conditions are satisfied if

sup
k∈N

E

⎛

⎝
k∑

j=1

Xnj

⎞

⎠

2

=
∞∑

j=1

E X2
nj < ∞

for every n ∈ N.)
Show that

∞∑

j=1

Xnj → N
(
0, η2

)
G-stably as n → ∞ ,

where Gnkn = Gn∞ = σ
(⋃∞

j=0 Gnj

)
.

Exercise 6.3 In the situation of Theorem6.1 assume that (Fnk)0≤k≤kn ,n∈N is a nested
array and P

(
η2 > 0

)
> 0. Show that the limit points satisfy

L

(( kn∑

k=1

Xnk

)

n∈N

)

= R P{η2>0}-a.s.

6.2 Counterexamples

This section will shed some light on the role of the conditions in Theorem 6.1. The
first result shows that the row sums of a square integrable martingale difference array
have weak limit points if the row sums of the conditional variances are bounded in
probability.

Proposition 6.9 Let (Xnk)1≤k≤kn ,n∈N be a square integrable martingale differ-
ence array adapted to an array (Fnk)0≤k≤kn ,n∈N of σ-fields. If the sequence(∑kn

k=1 E
(
X2

nk |Fn,k−1
))

n∈N is bounded in probability, then the sequence
(∑kn

k=1 Xnk

)

n∈N is also bounded in probability.

Note that for sequences of real (or Rd -valued) random variables boundedness in
probability is the same as tightness.

Proof For any fixed n ∈ N, the process
(∑ j

k=1 E
(
X2

nk |Fn,k−1
))

0≤ j≤kn
is

the compensator (quadratic characteristic) of the positive submartingale((∑ j
k=1 Xnk

)2)

0≤ j≤kn

so that, for all 0 < C, M < ∞ by Lenglart’s inequality

of Theorem A.8 (a)
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P

(∣∣∣∣∣

kn∑

k=1

Xnk

∣
∣∣∣∣
≥ C

)

= P

⎛

⎝
( kn∑

k=1

Xnk

)2

≥ C2

⎞

⎠

≤ M

C2 + P

( kn∑

k=1

E
(

X2
nk |Fn,k−1

)
> M

)

.

Therefore, for all 0 < C, M < ∞,

sup
n∈N

P

(∣∣
∣
∣
∣

kn∑

k=1

Xnk

∣
∣
∣
∣
∣
≥ C

)

≤ M

C2 + sup
n∈N

P

( kn∑

k=1

E
(

X2
nk |Fn,k−1

)
> M

)

.

This inequality clearly implies the assertion by first letting C → ∞ and then
M → ∞. �

Boundedness in probability of
(∑kn

k=1 E
(
X2

nk |Fn,k−1
))

n∈N for a martingale dif-

ference array already entails the existence of weak limit points for the row sums
by Proposition 6.9, the role of the much stronger condition (N) in conjunction with
(CLB) is to ensure uniqueness of the weak limit points and their form as variance
mixtures of centered normals. In the sequel we will show by examples that condition
(N) is essential for obtaining stable convergence to a Gauss-kernel.

First, we will consider the special case of a non-random limit η2 in condition
(N). According to Remark 6.2 (b) conditions (CLB) and (N) with η2 = 1 imply
∑kn

k=1 Xnk
d→ N as n → ∞ with P N = N (0, 1) for any square integrable mar-

tingale difference array. This convergence, however, is in general not F∞-stable, as
shown by the following example.

Example 6.10 Let
(
W (i) (t)

)
t≥0 for i = 1, 2 be two independent Brownian motions.

(Here and in the subsequent example it is convenient to write W (t) instead of Wt .)
For all n ∈ N and 1 ≤ k ≤ kn = n we set

Xnk :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

W (1)
(

k

n

)
− W (1)

(
k − 1

n

)
, if n is even

W (2)
(

k

n

)
− W (2)

(
k − 1

n

)
, if n is odd

and Fnk := σ
(
Xnj , 1 ≤ j ≤ k

)
with Fn0 := {∅,�}. Then, by independence of

the increments of W (i), (Xnk)1≤k≤n,n∈N is a square integrable martingale difference
array w.r.t. (Fnk)0≤k≤n,n∈N. For all n ∈ N we have

∑n
k=1 E

(
X2

nk |Fn,k−1
) = 1,

again by independence of the increments of W (i). Moreover, for all ε > 0, all n ∈ N

and N with P N = N (0, 1),

n∑

k=1

E
(

X2
nk1{|Xnk |≥ε}

)
= E

(
N 21{|N |≥εn1/2}

)
→ 0 as n → ∞ .
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Finally, for all n ∈ N

n∑

k=1

Xnk =
{

W (1) (1) , if n is even
W (2) (1) , if n is odd ,

so that P
∑n

k=1 Xnk = P N .
In this example, condition (N) is satisfiedwith η2 = 1 (evenwith equality for every

n ∈ N instead of convergence in probability as n → ∞), the classical Lindeberg

condition (LB) is satisfiedwhich implies (CLB) byRemark 6.8 (a), and
∑n

k=1 Xnk
d→

N as n → ∞ for N with P N = N (0, 1) (again with equality (in distribution) for
every n instead of convergence in distribution as n → ∞). However,

∑n
k=1 Xnk

cannot converge σ
(
W (1) (1) , W (2) (1)

)
-stably (and σ

(
W (1) (1) , W (2) (1)

) ⊂ F∞).
Otherwise, we have δW (1)(1) = δW (2)(1) and thus W (1) (1) = W (2) (1) almost surely,
a contradiction.

One checks that G is trivial, that is, P (G) = {0, 1}, hence Theorem 6.1 yields
nothing else than distributional convergence in the present setting. For this, let n ∈ N

and 0 ≤ k ≤ kn = n be fixed. By definition Gnk ⊂ Fmk for all m ∈ N with m ≥ n
and

Fmk = σ

(
W (i)

(
j

m

)
− W (i)

(
j − 1

m

)
; 1 ≤ j ≤ k

)
⊂ σ

(
W (i) (t) ; 0 ≤ t ≤ k

m

)

with i = 1 if m is even and i = 2 if m is odd. For any ε > 0 we have k/m ≤ ε
for all large m so that Gnk ⊂ σ

(
W (1)(t); 0 ≤ t ≤ ε

)∩σ
(
W (2)(t); 0 ≤ t ≤ ε

)
which

implies

Gnk ⊂
⋂

ε>0

σ
(

W (1)(t); 0 ≤ t ≤ ε
)

∩
⋂

ε>0

σ
(

W (2)(t); 0 ≤ t ≤ ε
)

.

Hence also

G ⊂
⋂

ε>0

σ
(

W (1)(t); 0 ≤ t ≤ ε
)

∩
⋂

ε>0

σ
(

W (2)(t); 0 ≤ t ≤ ε
)

.

But by Blumenthal’s zero-one law for Brownian motion both σ-fields on the right-
hand side of the last display are trivial, which proves the assertion. �

Our next example showswhat can happen formartingale difference arrays satisfy-
ing (CLB) and (N), except for the fact that the random variable η2 is not measurable
w.r.t. the σ-field G.

Example 6.11 Let (W (t))t≥0 be a Brownian motion. For every n ∈ N and 1 ≤ k ≤
kn = 2n we define
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Snk :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

W

(
k

n

)
, 1 ≤ k ≤ n

W

(
1 + k − n

n
1{W (1)>0}

)
, n + 1 ≤ k ≤ 2n and n even

W

(
2 + k − n

n
1{W (1)>0}

)
, n + 1 ≤ k ≤ 2n and n odd

with Sn0 := 0, Xnk := Snk − Sn,k−1 and Fnk := σ (Sn0, . . . , Snk). Note that Snk =
W
( k

n

)
1{W (1)>0} + W (1) 1{W (1)≤0} for even n ∈ N and n + 1 ≤ k ≤ 2n and

Snk = W
(
1 + k

n

)
1{W (1)>0} + W (2) 1{W (1)≤0} for odd n ∈ N and n + 1 ≤ k ≤ 2n,

which shows that the random variables Snk are square integrable. Consequently, the
random variables Xnk are also square integrable, and the array (Xnk)1≤k≤2n,n∈N is,
by construction, adapted to the array (Fnk)0≤k≤2n,n∈N. For all n ∈ N and 1 ≤ k ≤ n
we have, by independence of the increments of (W (t))t≥0 and itsmoment properties,

E
(
Xnk |Fn,k−1

) = E

(
W

(
k

n

)
− W

(
k − 1

n

) ∣∣∣
∣W
(
1

n

)
, . . . , W

(
k − 1

n

))

= E

(
W

(
k

n

)
− W

(
k − 1

n

))
= 0

and

E
(

X2
nk |Fn,k−1

)

= E

([
W

(
k

n

)
− W

(
k − 1

n

)]2 ∣∣∣∣W
(
1

n

)
, . . . , W

(
k − 1

n

))

= E

([
W

(
k

n

)
− W

(
k − 1

n

)]2)

= 1

n
.

For all even n ∈ N and n + 1 ≤ k ≤ 2n we have

Xnk = Snk − Sn,k−1 =
[

W

(
k

n

)
− W

(
k − 1

n

)]
1{W (1)>0} .

Note that W (1) isFn,k−1-measurable and thatFn,k−1 ⊂ σ
(
W (t) , 0 ≤ t ≤ k−1

n

)
so

that W
( k

n

)− W
( k−1

n

)
is independent of Fn,k−1, by independence of the increments

of (W (t))t≥0. This implies

E
(
Xnk |Fn,k−1

) = 1{W (1)>0}E

(
W

(
k

n

)
− W

(
k − 1

n

) ∣∣∣
∣Fn,k−1

)

= 1{W (1)>0}E

(
W

(
k

n

)
− W

(
k − 1

n

))
= 0
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and

E
(

X2
nk |Fn,k−1

)
= 1{W (1)>0}E

([
W

(
k

n

)
− W

(
k − 1

n

)]2 ∣∣
∣∣Fn,k−1

)

= 1{W (1)>0}E

([
W

(
k

n

)
− W

(
k − 1

n

)]2)

= 1

n
1{W (1)>0} .

For all odd n ∈ N and n + 1 ≤ k ≤ 2n we have

Xnk = Snk − Sn,k−1 =
[

W

(
1 + k

n

)
− W

(
1 + k − 1

n

)]
1{W (1)>0} .

Note that again W (1) is measurable w.r.t. Fn,k−1, and that Fn,k−1 ⊂ σ (W (t) ,

0 ≤ t ≤ 1 + k−1
n

)
so that W

(
1 + k

n

)− W
(
1 + k−1

n

)
is independent ofFn,k−1. This

now implies

E
(
Xnk |Fn,k−1

) = 1{W (1)>0}E

(
W

(
1 + k

n

)
− W

(
1 + k − 1

n

) ∣∣
∣∣Fn,k−1

)

= 1{W (1)>0}E

(
W

(
1 + k

n

)
− W

(
1 + k − 1

n

))
= 0

and

E
(

X2
nk |Fn,k−1

)

= 1{W (1)>0}E

([
W

(
1 + k

n

)
− W

(
1 + k − 1

n

)]2 ∣∣∣∣Fn,k−1

)

= 1{W (1)>0}E

([
W

(
1 + k

n

)
− W

(
1 + k − 1

n

)]2)

= 1

n
1{W (1)>0} .

Thus we have shown that (Xnk)1≤k≤2n,n∈N is a square integrable martingale differ-
ence array w.r.t. (Fnk)0≤k≤2n,n∈N with

2n∑

k=1

E
(

X2
nk |Fn,k−1

)
= 1 + 1{W (1)>0}
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for alln ∈ N.Moreover, for alln ∈ N and1 ≤ k ≤ n, |Xnk |3 = ∣∣W ( k
n

)− W
( k−1

n

)∣∣3,

whereas |Xnk |3 ≤ ∣∣W
( k

n

)− W
( k−1

n

)∣∣3 for all even n ∈ N and n + 1 ≤ k ≤ 2n

and |Xnk |3 ≤ ∣∣W (
1 + k

n

)− W
(
1 + k−1

n

)∣∣3 for all odd n ∈ N and n + 1 ≤ k ≤ 2n.
This yields E

(|Xnk |3
) ≤ (8/π)1/2 n−3/2 for all n ∈ N and 1 ≤ k ≤ 2n, because

any increment of (W (t))t≥0 of length 1/n has a centered normal distribution with
variance 1/n. Consequently,

∑2n
k=1 E

(|Xnk |3
) ≤ 2 (8/π)1/2 n−1/2 for all n ∈ N so

that the array (Xnk)1≤k≤2n,n∈N satisfies the classical Ljapunov condition (LYp) of
order p = 3 and hence (CLB) byRemark 6.8 (a). Thus, all conditions of Theorem 6.1
except G-measurability of η2 = 1 + 1{W (1)>0} are satisfied. For all n ∈ N we have

2n∑

k=1

Xnk = Sn,2n =
{

W
(
1 + 1{W (1)>0}

)
, n even

W
(
2 + 1{W (1)>0}

)
, n odd

which shows that the sequences
(∑2n

k=1 Xnk

)

n∈N,n even
and

(∑2n
k=1 Xnk

)

n∈N,n odd

have two different limits in distribution. For a formal proof of PW(1+1{W (1)>0}) �=
PW(2+1{W (1)>0}) note that

W
(
1 + 1{W (1)>0}

) = W (2) 1{W (1)>0} + W (1) 1{W (1)≤0}
= [W (2) − W (1)] 1{W (1)>0} + W (1)

so that, by independence of the increments of (W (t))t≥0,

E
(

W
(
1 + 1{W (1)>0}

)2) = E
(
[W (2) − W (1)]2

)
P (W (1) > 0)

+ 2E (W (2) − W (1)) E
(
W (1) 1{W (1)>0}

)+ E
(

W (1)2
)

= 3

2

and

W
(
2 + 1{W (1)>0}

) = W (3) 1{W (1)>0} + W (2) 1{W (1)≤0}
= [W (3) − W (2)] 1{W (1)>0} + W (2)

so that

E
(

W
(
2 + 1{W (1)>0}

)2) = E
(
[W (3) − W (2)]2

)
P (W (1) > 0)

+ 2E (W (3) − W (2)) E
(
W (2) 1{W (1)>0}

)+ E
(

W (2)2
)

= 5

2
.

Thus we have produced an example for which the sequence
(∑2n

k=1 Xnk

)

n∈N
does not converge in distribution. If we alter the construction by setting Snk =
W
(
1 + k−n

n 1{W (1)>0}
)
for all n ∈ N and n + 1 ≤ k ≤ 2n, then we get



6.2 Counterexamples 93

∑2n
k=1 Xnk = W

(
1 + 1{W (1)>0}

)
for all n ∈ N, that is, now

∑2n
k=1 Xnk does converge

(mixing) in distribution (and all the other assumptions of Theorem 6.1 remain sat-
isfied, of course). The distribution of the limit random variable W

(
1 + 1{W (1)>0}

)

is not a variance mixture of centered normal distributions, however, because it is
not symmetric around zero, see Remark 6.8 (b): In view of W

(
1 + 1{W (1)>0}

) =
W (2) 1{W (1)>0} + W (1) 1{W (1)≤0}, it is clearly continuous, and

P
(
W
(
1 + 1{W (1)>0}

)
> 0
)

= P ({W (2) > 0} ∩ {W (1) > 0}) + P ({W (1) > 0} ∩ {W (1) ≤ 0}) <
1

2
.

Summarizing, we see that withoutG-measurability of η2 in Theorem6.1 theremay be

several different distributional limit points for the whole sequence
(∑2n

k=1 Xnk

)

n∈N
of row sums so that this sequence does not converge in distribution, or there may be
(mixing) convergence to a limit which is not a variance mixture of centered normal
distributions.

For a direct proof of the fact that the random variable η2 = 1 + 1{W (1)>0} is not
G-measurable, we show that as in Example 6.10 the σ-field G is trivial. For this, let
n ∈ N and 0 ≤ k ≤ kn = 2n be fixed. By definition, Gnk ⊂ Fmk for all m ∈ N with
m ≥ n. If even m ≥ 2n holds, then k ≤ 2n ≤ m so that for both definitions of the
Snk

Fmk = σ (Sm1, . . . , Smk) = σ

(
W

(
j

m

)
; 1 ≤ j ≤ k

)
⊂ σ

(
W (t) ; 0 ≤ t ≤ k

m

)
.

For any ε > 0 we have k/m ≤ ε for all large m so that Gnk ⊂ σ (W (t) ; 0 ≤ t ≤ ε)
and hence Gnk ⊂ ⋂

ε>0 σ (W (t) ; 0 ≤ t ≤ ε) =: FW (0+) which finally implies
G ⊂ FW (0+). By Blumenthal’s zero-one law for Brownian motion, the σ-field
FW (0+) is trivial, which implies the assertion. �

Our final example shows that convergence in probability in condition (N) in
Theorem 6.1 cannot be replaced by G-mixing convergence. Note that

kn∑

k=1

E
(

X2
nk |Fn,k−1

)
→ η2 G-mixing as n → ∞

by definition requires independence of σ
(
η2
)
and G so that the assumption of

G-measurability of η2 makes no sense now for a nonconstant η2.

Example 6.12 Let (Nk)k∈N be an independent sequence of standard normal random
variables, and let g, h : R → R be two continuous functions with |g| = |h| and
E
(|g (N1)|3

)
< ∞. For all n ∈ N and 1 ≤ k ≤ kn = 2n we set
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Xnk :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1/2Nk , 1 ≤ k ≤ n

n−1/2g

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠ Nk , n + 1 ≤ k ≤ 2n and n even

n−1/2h

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠ Nk , n + 1 ≤ k ≤ 2n and n odd

and Fnk := σ (N1, . . . , Nk) with Fn0 := {∅,�}. Then (Xnk)1≤k≤2n,n∈N is an array
of square integrable random variables adapted to (Fnk)0≤k≤2n,n∈N, and this array is
nested because Fn+1,k = σ (N1, . . . , Nk) = Fnk for all n ∈ N and 1 ≤ k ≤ 2n.
Since the Nk are independent standard normal random variables, for all n ∈ N and
1 ≤ k ≤ n we obtain

E
(
Xnk |Fn,k−1

) = n−1/2E (Nk |N1, . . . , Nk−1) = n−1/2E (Nk) = 0 ,

E
(

X2
nk |Fn,k−1

)
= n−1E

(
N 2

k |N1, . . . , Nk−1

)
= n−1E

(
N 2

k

)
= n−1

and

E
(
|Xnk |3

)
= n−3/2E

(
|Nk |3

)
=
(
8

π

)1/2
n−3/2 ,

whereas for all even n ∈ N and n + 1 ≤ k ≤ 2n

E
(
Xnk |Fn,k−1

) = n−1/2E

⎛

⎝Nkg

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠
∣∣
∣∣N1, . . . , Nn, . . . , Nk−1

⎞

⎠

= n−1/2g

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠ E (Nk |N1, . . . , Nk−1) = 0 ,

E
(

X2
nk |Fn,k−1

)
= n−1E

⎛

⎝N 2
k g2

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠
∣∣∣∣N1, . . . , Nn, . . . , Nk−1

⎞

⎠

= n−1g2

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠ E
(

N 2
k |N1, . . . , Nk−1

)

= n−1g2

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠
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and

E
(
|Xnk |3

)
= n−3/2E

⎛

⎜
⎝

∣∣
∣∣∣∣
g

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠

∣∣
∣∣∣∣

3
⎞

⎟
⎠ E

(
|Nk |3

)

=
(
8

π

)1/2
E
(
|g (N1)|3

)
n−3/2 ,

while for all odd n and n+1 ≤ k ≤ 2n, replacing g by h, clearly E
(
Xnk |Fn,k−1

) = 0
and

E
(

X2
nk |Fn,k−1

)
= n−1h2

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠ = n−1g2

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠

as well as

E
(|Xnk |3 |Fn,k−1

) =
(
8

π

)1/2
E
(|h (N1)|3

)
n−3/2 =

(
8

π

)1/2
E
(|g (N1)|3

)
n−3/2 ,

using |h| = |g|.
From the above results we see that (Xnk)1≤k≤2n,n∈N is a square integrable mar-

tingale difference array w.r.t. (Fnk)0≤k≤2n,n∈N with
∑2n

k=1 E
(|Xnk |3

) = ( 8
π

)1/2
(
1 + E

(|g (N1)|3
))

n−1/2 for all n ∈ N so that the classical Ljapunov condition
(LYp) of order p = 3 holds. Moreover,

2n∑

k=1

E
(

X2
nk |Fn,k−1

)
= 1 + g2

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠ d= 1 + g2 (N )

for all n ∈ N and a random variable N with P N = N (0, 1) which is independent
of F∞. It follows from the classical stable central limit theorem (see Example 3.13
(b)) and the continuity of g, using Theorem 3.18 (c), that

1 + g2

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠→ 1 + g2(N ) F∞-mixing as n → ∞ ,

which shows that condition (N) holds with mixing convergence instead of conver-
gence in probability. Note that for all even n ∈ N

2n∑

k=1

Xnk = n−1/2
n∑

k=1

Nk + g

⎛

⎝n−1/2
n∑

j=1

N j

⎞

⎠ n−1/2
2n∑

k=n+1

Nk
d= N + g (N ) N ′ ,

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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where N and N ′ are independent random variables with P N = P N ′ = N (0, 1)
which are independent of F∞, whereas for all odd n ∈ N, by the same argument,

2n∑

k=1

Xnk
d= N + h (N ) N ′ .

For the functions g (x) = x and h (x) = |x | for all x ∈ R the above assumptions on
g and h are satisfied, and P N+N N ′ �= P N+|N |N ′

. To verify the latter, observe that,

by independence of N and N ′, E
((

N + N N ′)4
)

= E
(
N 4
)

E
((
1 + N ′)4

)
= 30

because E
(
N 4
) = 3 and E

((
1 + N ′)4

)
= 10, whereas E

((
N + |N | N ′)4

)
= 24.

Therefore, our construction yields a square integrable martingale differ-

ence array with different distributional limits for
(∑2n

k=1 Xnk

)

n∈N,n even
and

(∑2n
k=1 Xnk

)

n∈N,n odd
.

If we take g = h, then we have
∑2n

k=1 Xnk
d= N + g (N ) N ′ for all n ∈ N and, by

the same reasoning as above for
∑2n

k=1 E
(
X2

nk |Fn,k−1
)
, we see that

2n∑

k=1

Xnk → N + g (N ) N ′ F∞-mixing as n → ∞ .

For the function g (x) := x1[0,∞) (x),x ∈ R, we obtain E
((

N + g (N ) N ′)3
)

=
3E
(
N 31[0,∞) (N )

)
> 0, showing that P N+g(N )N ′

is not symmetric around zero and
hence no mixture of centered normal distributions by Remark 6.8 (b).

Consequently, if in condition (N) of Theorem 6.1 convergence in probability is
replaced by F∞-mixing convergence, there may occur several subsequential weak
limits for the row sums, or the row sums may converge F∞-mixing, but to a limit
which is not a variance mixture of centered normals. �

6.3 Further Sufficient Conditions

The conditions (N) and (CLB) in Theorem 6.1 may be replaced by several other
sets of sufficient conditions. Some of these will be introduced and discussed in this
section, which is partly based on [34]. We always consider an array (Xnk)1≤k≤kn ,n∈N
of randomvariables and an array (Fnk)0≤k≤kn ,n∈N of sub-σ-fields ofF for somebasic
probability space (�,F, P). The σ-fields Gnk and G are defined as in Theorem 6.1.

For a square integrable array (Xnk)1≤k≤kn ,n∈N we introduce the condition
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(M2) E

(
max

1≤k≤kn
X2

nk

)
→ 0 as n → ∞

whereas the conditions

(M1) E

(
max

1≤k≤kn
|Xnk |

)
→ 0 as n → ∞

and

(CLB1)

kn∑

k=1

E
(|Xnk | 1{|Xnk |≥ε}|Fn,k−1

)→ 0 in probability as n → ∞

for every ε > 0

can be imposed on any array (Xnk)1≤k≤kn ,n∈N of integrable random variables.
Raikov’s condition

(R)

kn∑

k=1

X2
nk → η2 in probability as n → ∞ for some

G-measurable real random variable η ≥ 0,

which may replace condition (N), and, for any a > 0, the conditions

(Ta)

kn∑

k=1

Xnk1{|Xnk |>a} + E
(
Xnk1{|Xnk |≤a}|Fn,k−1

)→ 0

in probability as n → ∞ ,

(TMa) max
1≤k≤kn

∣∣Xnk1{|Xnk |≤a} − E
(
Xnk1{|Xnk |≤a}|Fn,k−1

)∣∣→ 0

in probability as n → ∞ ,

and

(TRa)

kn∑

k=1

[
Xnk1{|Xnk |≤a} − E

(
Xnk1{|Xnk |≤a}|Fn,k−1

)]2 → η2

in probability as n → ∞ for some G-measurable

real random variable η ≥ 0

are meaningful without any integrability assumption on (Xnk)1≤k≤kn ,n∈N.
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We will first disclose the relationship between these conditions without reference
to the central limit theorem.As a technical tool,weneed the followingpartial converse
of Lemma 6.5.

Lemma 6.13 Let (Xnk)1≤k≤kn ,n∈N be an array of nonnegative integrable ran-
dom variables adapted to the array (Fnk)0≤k≤kn ,n∈N of σ-fields. Assume that{
max1≤k≤kn Xnk : n ∈ N

}
is uniformly integrable. Then

kn∑

k=1

Xnk → 0 in probability as n → ∞

implies

kn∑

k=1

E
(
Xnk |Fn,k−1

)→ 0 in probability as n → ∞ .

Proof For every n ∈ N the process
(∑ j

k=1 E
(
Xnk |Fn,k−1

))

0≤ j≤kn
is the com-

pensator of the nonnegative submartingale
(∑ j

k=1 Xnk

)

0≤ j≤kn
so that, for every

ε, δ > 0 by Lenglart’s inequality in Lemma A.8 (b)

P

( kn∑

k=1

E
(
Xnk |Fn,k−1

) ≥ ε

)

≤ 1

ε

(
δ + E

(
max

1≤k≤kn
Xnk

))
+ P

( kn∑

k=1

Xnk > δ

)

.

Consequently,

lim sup
n→∞

P

( kn∑

k=1

E
(
Xnk |Fn,k−1

)
> ε

)

≤ δ

ε
+ 1

ε
lim sup

n→∞
E

(
max

1≤k≤kn
Xnk

)
.

Letting δ tend to zero and since 0 ≤ max1≤k≤kn Xnk ≤ ∑kn
k=1 Xnk → 0 in proba-

bility, and hence E
(
max1≤k≤kn Xnk

)→ 0 using uniform integrability, the assertion
follows. �

As a second technical tool, we need the following lemma.

Lemma 6.14 Let (Xnk)1≤k≤kn ,n∈N be an array of random variables with
∑kn

k=1 E
(
X2

nk

) ≤ C < ∞ for some constant C and all n ∈ N and with

(LB)

kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}

)
→ 0 as n → ∞ for every ε > 0.
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Then for every array (Fnk)0≤k≤kn ,n∈N of σ-fields

kn∑

k=1

E
(

X2
nk |Fn,k−1

)
−

kn∑

k=1

X2
nk → 0 in L1 (P) as n → ∞ .

Proof For every ε > 0 and n ∈ N we have

∣
∣
∣
∣
∣

kn∑

k=1

E
(

X2
nk |Fn,k−1

)
−

kn∑

k=1

X2
nk

∣
∣
∣
∣
∣

≤
kn∑

k=1

E
(

X2
nk1{|Xnk |>ε}|Fn,k−1

)
+

kn∑

k=1

X2
nk1{|Xnk |>ε}

+
∣
∣
∣
∣
∣

kn∑

k=1

[
X2

nk1{|Xnk |≤ε} − E
(

X2
nk1{|Xnk |≤ε}|Fn,k−1

)]
∣
∣
∣
∣
∣

= In + IIn + IIIn ,

say. Assumption (LB) implies In → 0 and IIn → 0 in L1 (P) as n → ∞, whereas
for IIIn we have

E
(

III 2n
)

=
kn∑

k=1

E

([
X2

nk1{|Xnk |≤ε} − E
(

X2
nk1{|Xnk |≤ε}|Fn,k−1

)]2)

≤
kn∑

k=1

E
(

X4
nk1{|Xnk |≤ε}

)
≤ ε2

kn∑

k=1

E
(

X2
nk

)
≤ ε2C

by assumption so that E (IIIn) ≤ εC1/2. Because ε > 0 is arbitrary, this clearly
implies the assertion of the lemma. �

Now we are prepared to analyze the relationship between the conditions (N) and
(CLB) and the additional conditions formulated above.

Proposition 6.15 Let (Xnk)1≤k≤kn ,n∈N be an array of square integrable random
variables adapted to the array (Fnk)0≤k≤kn ,n∈N of σ-fields. Then (M2) implies (M1)

and (CLB).

Proof Clearly, (M2) implies (M1). For the proof of (CLB)we note that for all ε, δ > 0
and n ∈ N we have

P

( kn∑

k=1

X2
nk1{|Xnk |≥ε} ≥ δ

)

≤ P

(
max

1≤k≤kn
|Xnk | ≥ ε

)
.
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Consequently, (M2) implies

kn∑

k=1

X2
nk1{|Xnk |≥ε} → 0 in probability as n → ∞

for every ε > 0 as well as uniform integrability of
{
max1≤k≤kn X2

nk : n ∈ N
}
, and

(CLB) follows by an application of Lemma 6.13. �

Proposition 6.16 Let (Xnk)1≤k≤kn ,n∈N be an array of square integrable random
variables, and let (Fnk)0≤k≤kn ,n∈N be an array of σ-fields. If (CLB) is satisfied and(∑kn

k=1 E
(
X2

nk |Fn,k−1
))

n∈N is bounded in probability, then

kn∑

k=1

E
(

X2
nk |Fn,k−1

)
−

kn∑

k=1

X2
nk → 0 in probability as n → ∞ .

In particular, (CLB) and (N) imply (R).

Proof For 0 < c < ∞ and n ∈ N we define the stopping time

τn (c) = max

⎧
⎨

⎩
k ∈ {0, 1, . . . , kn} :

k∑

j=1

E
(

X2
nj |Fn, j−1

)
≤ c

⎫
⎬

⎭

w.r.t. the filtration (Fnk)0≤k≤kn
and introduce the random variables

Xnk (c) := Xnk1{k≤τn(c)}, 1 ≤ k ≤ kn, n ∈ N .

Then for all 0 < c < ∞ and n ∈ N

kn∑

k=1

E
(
X2

nk |Fn,k−1
)−

kn∑

k=1

X2
nk =

kn∑

k=1

E
(
X2

nk |Fn,k−1
)−

kn∑

k=1

E
(
X2

nk (c) |Fn,k−1
)

+
kn∑

k=1

E
(
X2

nk (c) |Fn,k−1
)−

kn∑

k=1

X2
nk (c) +

kn∑

k=1

X2
nk (c) −

kn∑

k=1

X2
nk

= In (c) + IIn (c) + IIIn (c) ,

say. Because

In (c) =
kn∑

k=1

E
(

X2
nk |Fn,k−1

)
−

τn(c)∑

k=1

E
(

X2
nk |Fn,k−1

)
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we have

P (|In (c)| ≥ ε) ≤ P (τn (c) < kn) ≤ P

( kn∑

k=1

E
(

X2
nk |Fn,k−1

)
> c

)

for every ε > 0 and, similarly,

P (|IIIn (c)| ≥ ε) ≤ P (τn (c) < kn) ≤ P

( kn∑

k=1

E
(

X2
nk |Fn,k−1

)
> c

)

.

By definition of τn (c) we have

kn∑

k=1

E
(

X2
nk (c) |Fn,k−1

)
=

τn(c)∑

k=1

E
(

X2
nk |Fn,k−1

)
≤ c

for all n ∈ N, so that
∑kn

k=1 E
(
X2

nk (c)
) ≤ c. Moreover, from |Xnk (c)| ≤ |Xnk | we

see that (CLB) implies

kn∑

k=1

E
(

X2
nk (c) 1{|Xnk (c)|≥ε}|Fn,k−1

)
→ 0 in probability as n → ∞

for all ε > 0, so that, by dominated convergence,

kn∑

k=1

E
(

X2
nk (c) 1{|Xnk (c)|≥ε}

)
→ 0 as n → ∞ .

Therefore, Lemma 6.14 yields

IIn (c) =
kn∑

k=1

E
(

X2
nk (c) |Fn,k−1

)
−

kn∑

k=1

X2
nk (c) → 0 in L1 (P) as n → ∞ .

Now, for every ε > 0 and n ∈ N we have

P

(∣∣∣∣∣

kn∑

k=1

E
(

X2
nk |Fn,k−1

)
−

kn∑

k=1

X2
nk

∣
∣∣∣
∣
≥ 3ε

)

≤ P (|In (c)| ≥ ε) + P (|IIn (c)| ≥ ε) + P (|IIIn (c)| ≥ ε)

≤ 2P

( kn∑

k=1

E
(

X2
nk |Fn,k−1

)
> c

)

+ P (|IIn (c)| ≥ ε) .
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Here, P (|IIn (c)| ≥ ε) → 0 as n → ∞ because IIn (c) → 0 in L1 (P) as n →
∞, and the sequence

∑kn
k=1 E

(
X2

nk |Fn,k−1
)
, n ∈ N, is bounded in probability by

assumption. This proves

kn∑

k=1

E
(

X2
nk |Fn,k−1

)
−

kn∑

k=1

X2
nk → 0 in probability as n → ∞ . �

Proposition 6.17 Let (Xnk)1≤k≤kn ,n∈N be an array of square integrable random
variables, and let (Fnk)0≤k≤kn ,n∈N be an array of σ-fields. Then (CLB) implies
(CLB1).

Proof For every ε > 0 and n ∈ N we have

kn∑

k=1

E
(|Xnk | 1{|Xnk |≥ε}|Fn,k−1

) ≤ 1

ε

kn∑

k=1

E
(

X2
nk1{|Xnk |≥ε}|Fn,k−1

)
,

which proves the proposition. �

Proposition 6.18 Let (Xnk)1≤k≤kn ,n∈N be an array of integrable random variables
adapted to the array (Fnk)0≤k≤kn ,n∈N of σ-fields. Then (M1) implies (CLB1).

Proof For all ε, δ > 0 and n ∈ N we have

P

( kn∑

k=1

|Xnk | 1{|Xnk |≥ε} ≥ δ

)

≤ P

(
max

1≤k≤kn
|Xnk | ≥ ε

)
.

Consequently, (M1) implies

kn∑

k=1

|Xnk | 1{|Xnk |≥ε} → 0 in probability as n → ∞

for every ε > 0 as well as uniform integrability of
{
max1≤k≤kn |Xnk | : n ∈ N

}
, and

(CLB1) follows by an application of Lemma 6.13. �

Proposition 6.19 Let (Xnk)1≤k≤kn ,n∈N be a martingale difference array w.r.t. an
array (Fnk)0≤k≤kn ,n∈N of σ-fields. Then (CLB1) and (R) imply (Ta), (TMa) and
(TRa) for every a > 0.

Proof Fix a > 0. Because (Xnk)1≤k≤kn
is a martingale difference sequence w.r.t.

the filtration (Fnk)0≤k≤kn
, we have

E
(
Xnk1{|Xnk |≤a}|Fn,k−1

) = −E
(
Xnk1{|Xnk |>a}|Fn,k−1

)
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for all n ∈ N and 1 ≤ k ≤ kn . This fact will be crucial several times in the sequel.
For the proof of (Ta) we use it to obtain for all n ∈ N

kn∑

k=1

∣∣E
(
Xnk1{|Xnk |≤a}|Fn,k−1

)∣∣ =
kn∑

k=1

∣∣E
(
Xnk1{|Xnk |>a}|Fn,k−1

)∣∣

≤
kn∑

k=1

E
(|Xnk | 1{|Xnk |>a}|Fn,k−1

)

so that by condition (CLB1)

kn∑

k=1

∣
∣E
(
Xnk1{|Xnk |≤a}|Fn,k−1

)∣∣→ 0 in probability as n → ∞ .

Moreover, according to Lemma 6.5 condition (CLB1) implies

kn∑

k=1

|Xnk | 1{|Xnk |>a} → 0 in probability as n → ∞ ,

which completes the proof of (Ta).
To verify (TMa) we use Proposition 6.6 to obtain max1≤k≤kn |Xnk | → 0 in prob-

ability as n → ∞ from (CLB1), and the inequality

max
1≤k≤kn

∣∣Xnk1{|Xnk |≤a} − E
(
Xnk1{|Xnk |≤a}|Fn,k−1

)∣∣

≤ max
1≤k≤kn

|Xnk | +
kn∑

k=1

E
(|Xnk | 1{|Xnk |>a}|Fn,k−1

)

completes the proof by another application of condition (CLB1).
It remains to verify (TRa). Note that for all n ∈ N

∣∣∣∣
∣

kn∑

k=1

[
Xnk1{|Xnk |≤a} − E

(
Xnk1{|Xnk |≤a}|Fn,k−1

)]2 −
kn∑

k=1

X2
nk

∣∣∣∣
∣

≤
kn∑

k=1

X2
nk1{|Xnk |>a}

+ 2
kn∑

k=1

|Xnk | 1{|Xnk |≤a}
∣
∣E
(
Xnk1{|Xnk |≤a}|Fn,k−1

)∣∣
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+
kn∑

k=1

E
(
Xnk1{|Xnk |≤a}|Fn,k−1

)2

≤
kn∑

k=1

X2
nk1{|Xnk |>a} + 3a

kn∑

k=1

E
(|Xnk | 1{|Xnk |>a}|Fn,k−1

)
.

Now

kn∑

k=1

X2
nk1{|Xnk |>a} → 0 in probability as n → ∞

follows from max1≤k≤kn |Xnk | → 0 in probability, which when combined with
(CLB1) gives

kn∑

k=1

[
Xnk1{|Xnk |≤a} − E

(
Xnk1{|Xnk |≤a}|Fn,k−1

)]2 −
kn∑

k=1

X2
nk → 0

in probability as n → ∞. Now (TRa) follows from (R). �

As a consequence of Propositions 6.15–6.19 we see that for an array
(Xnk)1≤k≤kn ,n∈N of randomvariables adapted to an array (Fnk)0≤k≤kn ,n∈N ofσ-fields
the implications in the following display are true under appropriate moment assump-
tions and if (Xnk)1≤k≤kn ,n∈N is a martingale difference array w.r.t. (Fnk)0≤k≤kn ,n∈N
for the implication

(∗)⇒:

6.20 Conditions in the martingale central limit theorem:

(M2) and (N) ⇒ (M1) and (R)

⇓ ⇓
(CLB) and (N) ⇒ (CLB1) and (R)

(∗)⇒ (Ta), (TMa) and (TRa)

The conditions in the left column require square integrable random variables,
in the middle integrability is sufficient, and on the right-hand side no moments are
needed at all. The role of these conditions as sufficient conditions in a stable central
limit theorem is disclosed by the following proposition which shows that for any
array (Xnk)1≤k≤kn ,n∈N of random variables adapted to the array (Fnk)0≤k≤kn ,n∈N of
σ-fields which satisfies (Ta), (TMa) and (TRa) for some a > 0 there exists a bounded
martingale difference array which satisfies the strongest set of conditions (M2) and
(N) and has asymptotically equivalent row sums.

Proposition 6.21 Let (Xnk)1≤k≤kn ,n∈N be an array of random variables adapted
to an array (Fnk)0≤k≤kn ,n∈N of σ-fields. Assume that there exists some a > 0 for
which the conditions (Ta), (TMa) and (TRa) are satisfied. Then for the (bounded)
martingale difference array
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Xnk (a) := Xnk1{|Xnk |≤a} − E
(
Xnk1{|Xnk |≤a}|Fn,k−1

)
, 1 ≤ k ≤ kn, n ∈ N ,

w.r.t. (Fnk)0≤k≤kn ,n∈N the conditions (M2) and (N) are satisfied and

kn∑

k=1

Xnk −
kn∑

k=1

Xnk (a) → 0 in probability as n → ∞ .

Proof Note that condition (TMa) is tantamount to max1≤k≤kn |Xnk (a)| → 0 in
probability as n → ∞ and hence to max1≤k≤kn X2

nk (a) → 0 in probability. Because
|Xnk (a)| ≤ 2a for all n ∈ N and 1 ≤ k ≤ kn we obtain E

(
max1≤k≤kn X2

nk (a)
) →

0 as n → ∞ by dominated convergence, which is condition (M2) for the array
(Xnk (a))1≤k≤kn ,n∈N. By definition, we have

kn∑

k=1

Xnk −
kn∑

k=1

Xnk (a) =
kn∑

k=1

Xnk1{|Xnk |>a} + E
(
Xnk1{|Xnk |≤a}|Fn,k−1

)
,

which converges to zero in probability as n → ∞ by condition (Ta). Therefore, it
remains to show that the array (Xnk (a))1≤k≤kn ,n∈N satisfies condition (N). For this,
we define the stopping time

τn (c) = min

{

k ∈ {1, . . . , kn} :
k∑

i=1

X2
ni (a) > c

}

∧ kn

with min ∅ := ∞ for all n ∈ N and 0 < c < ∞ and set

Ynk (c) := Xnk (a) 1{k≤τn(c)}, 1 ≤ k ≤ kn, n ∈ N .

Then for all n ∈ N

kn∑

k=1

E
(

X2
nk (a) |Fn,k−1

)
−

kn∑

k=1

X2
nk (a)

=
kn∑

k=1

E
(

X2
nk (a) |Fn,k−1

)
−

kn∑

k=1

E
(

Y 2
nk (c) |Fn,k−1

)

+
kn∑

k=1

E
(

Y 2
nk (c) |Fn,k−1

)
−

kn∑

k=1

Y 2
nk (c)

+
kn∑

k=1

Y 2
nk (c) −

kn∑

k=1

X2
nk (a) = In (c) + IIn (c) + IIIn (c) ,
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say. Because

In (c) =
kn∑

k=1

E
(

X2
nk (a) |Fn,k−1

)
−

τn(c)∑

k=1

E
(

X2
nk (a) |Fn,k−1

)

we have for all n ∈ N and ε > 0

P (|In (c)| ≥ ε) ≤ P (τn (c) < kn) ≤ P

( kn∑

k=1

X2
nk (a) > c

)

.

Similarly, for all n ∈ N and ε > 0

P (|IIIn (c)| ≥ ε) ≤ P (τn (c) < kn) ≤ P

( kn∑

k=1

X2
nk (a) > c

)

.

To obtain a bound for IIn (c), note that for all ε, δ > 0 and n ∈ N we have

P

( kn∑

k=1

Y 2
nk (c) 1{|Ynk (c)|≥ε} ≥ δ

)

≤ P

(
max

1≤k≤kn
|Ynk (c)| ≥ ε

)

so that

kn∑

k=1

Y 2
nk (c) 1{|Ynk (c)|≥ε} → 0 in probability as n → ∞

for every ε > 0 because

max
1≤k≤kn

|Ynk (c)| ≤ max
1≤k≤kn

|Xnk (a)| → 0 in probability as n → ∞ .

Moreover, by definition of τn (c), for all n ∈ N

kn∑

k=1

Y 2
nk (c) =

τn(c)∑

k=1

X2
nk (a) ≤ c + max

1≤k≤kn
X2

nk (a) ≤ c + 4a2

so that
∑kn

k=1 E
(
Y 2

nk (c)
) ≤ c + 4a2 and, by dominated convergence,

kn∑

k=1

E
(

Y 2
nk (c) 1{|Ynk (c)|≥ε}

)
→ 0 as n → ∞
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for all ε > 0. Hence by Lemma 6.14 we see that IIn (c) → 0 in L1 (P) as n → ∞.
Now, for every ε > 0 and n ∈ N we get

P

(∣∣∣∣
∣

kn∑

k=1

E
(

X2
nk (a) |Fn,k−1

)
−

kn∑

k=1

X2
nk (a)

∣∣∣∣
∣
≥ 3ε

)

≤ P (|In (c)| ≥ ε) + P (|IIn (c)| ≥ ε) + P (|IIIn (c)| ≥ ε)

≤ 2P

( kn∑

k=1

X2
nk (a) > c

)

+ P (|IIn (c)| ≥ ε) .

Here, P (|IIn (c)| ≥ ε) → 0 as n → ∞, and the sequence
∑kn

k=1 X2
nk (a), n ∈ N, is

bounded in probability because condition (TRa) is tantamount to

kn∑

k=1

X2
nk (a) → η2 in probability as n → ∞ .

This proves

kn∑

k=1

E
(

X2
nk (a) |Fn,k−1

)
−

kn∑

k=1

X2
nk (a) → 0 in probability as n → ∞ ,

and another application of (TRa) gives

kn∑

k=1

E
(

X2
nk (a) |Fn,k−1

)
→ η2 in probability as n → ∞ ,

which is condition (N) for the array (Xnk (a))1≤k≤kn ,n∈N so that the proof is
complete. �

Corollary 6.22 Let (Xnk)1≤k≤kn ,n∈N be an array of random variables adapted to
an array (Fnk)0≤k≤kn ,n∈N of σ-fields. Assume that there exists some a > 0 for which
the conditions (Ta), (TMa) and (TRa) are satisfied. Then

kn∑

k=1

Xnk → ηN G-stably as n → ∞ ,

where P N = N (0, 1) and N is independent of G.

Proof Let the random variables Xnk (a), 1 ≤ k ≤ kn , n ∈ N, be defined as in Propo-
sition 6.21. Then according to Proposition 6.21, (Xnk (a))1≤k≤kn ,n∈N is a bounded
martingale difference array w.r.t. (Fnk)0≤k≤kn ,n∈N which satisfies (M2) and (N).
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According to Proposition 6.15 condition (CLB) is satisfied as well. Therefore by
Theorem 6.1

kn∑

k=1

Xnk (a) → ηN G-stably as n → ∞ .

Since by Proposition 6.21

kn∑

k=1

Xnk −
kn∑

k=1

Xnk (a) → 0 in probability as n → ∞ ,

the proof is completed by an application of part (a) of Theorem 3.18. �

The self-evident consequence of 6.20 and of Corollary 6.22 is the fact that for
a martingale difference array (Xnk)1≤k≤kn ,n∈N w.r.t. an array (Fnk)0≤k≤kn ,n∈N of
σ-fields any set of conditions occurring in 6.20 implies G-stable convergence of the
row sums to ηN . In the sense made precise by 6.20 and Proposition 6.21, as sufficient
conditions in the G-stable martingale central limit theorem, all these conditions are
tantamount to each other, though not mathematically equivalent.

A version of Corollary 6.22 for martingale difference arrays under the condi-
tions (M1) and (R) is contained in [58].

Exercise 6.4 ([58]) Let (Xnk)1≤k≤kn ,n∈N be a martingale difference array w.r.t.
(Fnk)0≤k≤kn ,n∈N. Under conditions (M1) and (R) we have

kn∑

k=1

Xnk → ηN G-stably

where P N = N (0, 1) and N is independent ofG (see Corollary 6.22 and 6.20). Show
that, in general, this assertion is not true if (M1) is replaced by the weaker condition
max1≤k≤kn |Xnk | → 0 in probability. To this end, consider an array (Xnk)1≤k≤kn ,n∈N
with Xn1, . . . , Xnn being independent and identically distributed, P

(
Xn1 = 1

n

) =
(
1 − 1

n

)1/n
and P (Xn1 = xn) = 1− (1 − 1

n

)1/n
, where xn < 0 is such that E Xn1 =

0. Furthermore, let Fnk = σ
(
Xnj , 1 ≤ j ≤ k

)
with Fn0 = {∅,�}.

6.4 Martingales

Let (�,F, P) be a probability space and F = (Fk)k≥0 a filtration, that is, a non-
decreasing sequence of sub-σ-fields of F . Set F∞ := σ

(⋃∞
k=0 Fk

)
. A sequence

(Xk)k≥1 of random variables on (�,F, P) is called adapted to F if Xk is measurable
w.r.t. Fk for every k ∈ N, and a sequence (Xk)k≥1 of integrable random variables

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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adapted to F is called a martingale difference sequence w.r.t. F, if E (Xk |Fk−1) = 0
for all k ∈ N.

Let (Xk)k≥1 be a martingale difference sequence w.r.t. the filtration F, and let
(an)n≥1 be a sequence of positive real numbers. Then

Xnk := 1

an
Xk for 1 ≤ k ≤ n and Fnk := Fk for 0 ≤ k ≤ n , n ∈ N

defines a martingale difference array (Xnk)1≤k≤n,n∈N w.r.t. (Fnk)0≤k≤n,n∈N, and the
σ-fields are nested because Fn+1,k = Fk = Fnk for all n ∈ N and 0 ≤ k ≤ n.
Therefore, Theorem 6.1 and the sufficient conditions of Sect. 6.3 can be applied
with G = F∞ and yield stable central limit theorems for the normalized partial sums
a−1

n
∑n

k=1 Xk of (Xk)k≥1 under appropriatemoment conditions. For ease of reference
we explicitly formulate here the two sets of sufficient conditions for martingale
difference sequences that will be applied later on.

Theorem 6.23 Let (Xk)k≥1 be a martingale difference sequence w.r.t. the filtration
F, and let (an)n∈N be a sequence of positive real numbers with an → ∞. If

(Ran )
1

a2
n

n∑

k=1

X2
k → η2 in probability as n → ∞

for some real random variable η ≥ 0

and

(M1,an )
1

an
E

(
max
1≤k≤n

|Xk |
)

→ 0 as n → ∞ ,

or if (Xk)k≥1 is square integrable with

(Nan )
1

a2
n

n∑

k=1

E
(

X2
k |Fk−1

)
→ η2 in probability as n → ∞

for some real random variable η ≥ 0

and

(CLBan )
1

a2
n

n∑

k=1

E
(

X2
k1{|Xk |≥εan}|Fk−1

)
→ 0 in probability as n → ∞

for all ε > 0 ,
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then

1

an

n∑

k=1

Xk → ηN F∞-stably as n → ∞ ,

where P N = N (0, 1) and N is independent of F∞.

Proof Proposition 6.20 and Corollary 6.22. Note that η2 in conditions (Nan ) and
(Ran ) is w.l.o.g. F∞-measurable. �

Condition (Ran ) and slightly stronger conditions than (M1,an ) appear in Theorem
2 of [15] and Theorem 2 of [4].

Corollary 6.24 (Random norming) Under the assumptions of Theorem 6.23 in case
P
(
η2 > 0

)
> 0 conditions (Ran ) and (M1,an

) imply

(
n∑

k=1

X2
k

)−1/2 n∑

k=1

Xk → N F∞-mixing under P{η2>0} as n → ∞,

and conditions (Nan ) and (CLBan ) imply

(
n∑

k=1

E
(

X2
k |Fk−1

)
)−1/2 n∑

k=1

Xk → N F∞-mixing under P{η2>0} as n → ∞ ,

where P N = N (0, 1) and N is independent of F∞.

Proof Replace Theorem 6.1 by Theorem 6.23 and condition (N) by conditions (Ran )
or (Nan ) in the proof of Corollary 6.3. �

An immediate consequence of the preceding theorem is the classical stable central
limit theorem of Examples 3.13 (b) or 3.16.

Remark 6.25 (a) In Theorem 6.23 we do require explicitly that an → ∞ as n → ∞.
However, if P

(
E
(
X2

k |Fk−1
)

> 0
)

> 0 for some k ∈ N, which means that not all
Xk vanish almost surely, then (Nan ) and (CLBan ) as well as (M1,an ) already imply
an → ∞ as n → ∞. For martingales X0 +∑n

k=1 Xk with X0 �= 0 the condition
an → ∞ assures the validity of Theorem 6.23.
(b) Just as in Remark 6.8, condition (CLBan ) is implied by its classical form

(LBan )
1

a2
n

n∑

k=1

E
(

X2
k1{|Xk |≥εan}

)
→ 0 as n → ∞ for all ε > 0

and by the conditional Lyapunov condition of order p ∈ (2,∞), which requires for
some p ∈ (2,∞) that

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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(CLYan ,p)
1

a p
n

n∑

k=1

E
(|Xk |p |Fk−1

)→ 0 in probability as n → ∞ .

Condition (CLYan ,p) itself is implied by its classical form

(LYan ,p)
1

a p
n

n∑

k=1

E
(|Xk |p)→ 0 as n → ∞ .

Corollary 6.26 (Stationary martingale differences) Let X = (Xn)n∈N be a station-

ary sequence of real random variables withσ-field IX = X−1
(
B (R)N (S)

)
induced

by invariant sets (S : RN → R
N being the shift operator; see Chap.5). If X1 ∈

L2 (P) and if X is a martingale difference sequence w.r.t. F = (Fk)k≥0, then

1√
n

n∑

k=1

Xk → E
(

X2
1|IX

)1/2
N F∞-stably as n → ∞ ,

where N is independent of F∞ with P N = N (0, 1). If X is also ergodic, that is,
P (IX ) = {0, 1}, then

1√
n

n∑

k=1

Xk → E
(

X2
1

)1/2
N F∞-mixing as n → ∞ .

The distributional convergence in this result goes back to [8, 45].

Proof The ergodic theorem implies

1

n

n∑

k=1

X2
k → E

(
X2
1|IX

)
a.s. and in L1 (P) as n → ∞

so that condition (Ran ) is satisfied with an = √
n and η = E

(
X2
1|IX

)1/2
. Since

the Xk are identically distributed, the classical Lindeberg condition (LBan ) is also
satisfied with an = √

n because for all ε > 0

1

n

n∑

k=1

E
(

X2
k1{|Xk |≥εn1/2}

)
= E

(
X2
11{|X1|≥εn1/2}

)
→ 0 as n → ∞ ,

which through the inequality, valid for all ε > 0 and n ∈ N,

(
1√
n

max
1≤k≤n

E (|Xk |)
)2

≤ 1

n
E

(
max
1≤k≤n

X2
k

)
≤ ε + 1

n

n∑

k=1

E
(

X2
11{|X1|≥εn1/2}

)

http://dx.doi.org/10.1007/978-3-319-18329-9_5
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implies (M1,an ). Therefore, Theorem 6.23 implies the first assertion. If IX is trivial,
then E

(
X2
1|IX

) = E
(
X2
1

)
almost surely, whence the second assertion. �

Let X = (Xn)n∈N be an exchangeable sequence of real random variables on
(�,F, P), that is, P

(
Xπ1 ,...,Xπn

)
= P(X1,...,Xn) for all permutations (π1, . . . ,πn)

of (1, . . . , n) and all n ∈ N. Then P(X1,X2,...,Xn ,Xn+1) = P(X2,X3,...,Xn+1,X1) so
that P(X1,X2,...,Xn) = P(X2,X3,...,Xn+1) for all n ∈ N, which shows the (Xn)n∈N is
stationary. Moreover, the σ-field induced in � by symmetric events is almost surely
equal to the tail-σ-field TX and almost surely equal to the invariant σ-field IX of the
stationary process X ; see e.g. [52], Corollary 1.6.

Corollary 6.27 (Exchangeable processes) If X = (Xn)n∈N is exchangeable with
X1 ∈ L2, then

1√
n

n∑

k=1

(Xk − E (X1|TX )) → Var (X1|TX )1/2 N F∞-stably as n → ∞ ,

where N is independent of F∞ = σ (Xk, k ∈ N) and P N = N (0, 1).

In [16] this result was obtained with TX instead of F∞ under the assumptions
E (X1|TX ) = 0 and E

(
X2
1|TX

) ≤ C for some finite constant C . The general result
is stated in [3], p. 59.

Proof Exchangeability implies that the conditional distribution of Xn given TX is
independent of n ∈ N. This yields E (Xn|TX ) = E (X1|TX ) almost surely for all n ∈
N. The randomvariablesYn := Xn−E (X1|TX ), n ∈ N, form amartingale difference
sequence w.r.t. the σ-fields Fn := σ (TX ∪ σ (X1, . . . , Xn)), n ≥ 0: Clearly, Yn is
Fn-measurable for all n ∈ N, and E (Y1|F0) = E (X1 − E (X1|TX ) |TX ) = 0
almost surely. Moreover, for all n ≥ 1, the σ-fields σ (X1, . . . , Xn−1) and σ (Xn)

are conditionally independent given TX , and Theorem 7.3.1 in [17] implies for all
n ≥ 2 almost surely

E (Yn|Fn−1) = E (Xn|Fn−1) − E (X1|TX ) = E (Xn|TX ) − E (X1|TX ) = 0 .

Furthermore, because TX = IX almost surely, we have E (X1|TX ) = E (X1|IX )

almost surely, from which it follows that (Yn)n∈N is a stationary process. Clearly,
X1 ∈ L2 (P) implies Y1 ∈ L2 (P), and an application of Corollary 6.26 yields the
assertion. �

For arbitrary stationary sequences (Xn)n∈N it is often possible to approximate the
partial sums

(∑n
i=1 Xi

)
n∈N by a martingale with stationary differences so that under

suitable conditions on the error term, Corollary 6.26 also yields a stable central
limit theorem in this general setting. In the ergodic case this approach is due to
Gordin [36] with generalization to the non-ergodic case in [27] (see also e.g. [22, 37,
41, 72]).

In order to check the assumptions of limit theorems, the following lemma is very
useful.
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Lemma 6.28 (Toeplitz) Let (bn)n≥1 be a sequence in [0,∞) such that b1 > 0 and∑∞
n=1 bn = ∞.

(a) Let (xn)n≥1 be a sequence in R. If limn→∞ xn = x with x ∈ R, then

lim
n→∞

∑n
j=1 b j x j
∑n

j=1 b j
= x .

(b) Assume bn > 0 for every n ≥ 1 and let (an)n≥1 be a sequence in R. If
limn→∞ an/bn = c with c ∈ R, then

lim
n→∞

∑n
j=1 a j

∑n
j=1 b j

= c .

The assumption in (b) can be read as �
(∑n

j=1 a j

)
/�
(∑n

j=1 b j

)
→ c. There-

fore, the variant (b) is called the discrete rule of de l’Hospital.

Proof (a) Let ε > 0 and n0 ∈ N be such that |xn − x | ≤ ε for every n > n0. Then
for n > n0

∣∣∣∣∣

∑n
j=1 b j x j
∑n

j=1 b j
− x

∣∣∣∣∣
≤
∑n

j=1 b j
∣∣x j − x

∣∣
∑n

j=1 b j
=
∑n0

j=1 b j
∣∣x j − x

∣∣
∑n

j=1 b j
+
∑n

j=n0+1 b j
∣∣x j − x

∣∣
∑n

j=1 b j

≤
∑n0

j=1 b j
∣∣x j − x

∣∣
∑n

j=1 b j
+ ε .

This implies

lim sup
n→∞

∣∣∣∣∣

∑n
j=1 b j x j
∑n

j=1 b j
− x

∣∣∣∣∣
≤ ε .

(b) follows from (a) by setting xn := an/bn . �

Example 6.29 (Adaptive Monte Carlo estimators) For X ∈ L1 (P), one wishes to
compute ϑ := E X .
(a) ([6]) We assume that there are a measurable space (Z, C), a measurable map
F : (Rd × Z,B

(
R

d
)⊗ C

) → (R,B (R)) and a (Z, C)-valued random variable Z
such that F (λ, Z) ∈ L1 (P) and E X = E F (λ, Z) for every λ ∈ R

d . Now let
(Zn)n≥1 be an independent and identically distributed sequence of (Z, C)-valued
random variables with Z1

d= Z , Z0 := 0, Fn := σ (Z0, . . . , Zn), F := (Fn)n≥0 and
(λn)n≥0 an F-adapted sequence of R

d -valued random variables with λ0 = 0. In this
abstract setting we investigate the adaptive Monte Carlo estimators
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ϑ̂n := 1

n

n∑

j=1

F
(
λ j−1, Z j

)
, n ≥ 1 ,

of ϑ. For all n ≥ 0 define Mn := ∑n
j=1

(
F
(
λ j−1, Z j

)− ϑ
)
with M0 = 0.

Then ϑ̂n − ϑ = Mn/n for all n ≥ 1. For p ∈ [1,∞), let f p : R
d → [0,∞],

f p (λ) := E |F (λ, Z)|p. If E f1 (λn) < ∞ for every n ≥ 0, then M = (Mn)n≥0 is
an F-martingale. In fact, since λn−1 is Fn−1-measurable and σ (Zn) and Fn−1 are
independent, for all n ≥ 1,

E |F (λn−1, Zn)| =
∫ ∫

|F (λ, z)| d P Z (z) d Pλn−1 (λ) = E f1 (λn−1) < ∞ ,

so that M is an F-adapted L1-process, and moreover, for all n ≥ 1,

E (F (λn−1, Zn) |Fn−1) =
∫

F (λn−1, z) d P Z (z) = ϑ ,

which implies

E (Mn|Fn−1) = Mn−1 + E (F (λn−1, Zn) |Fn−1) − ϑ = Mn−1 .

If additionally supn≥0 f p (λn) < ∞ almost surely for some p > 1, then it follows
from the strong law of large numbers formartingales in TheoremA.9 that Mn/n → 0
almost surely and hence ϑ̂n → ϑ almost surely as n → ∞. Now we assume

(i) λn → λ∞ a.s. for some Rd -valued random variable λ∞ ,

(ii) f2 < ∞ and f2 is continuous ,
(iii) E f2 (λn) < ∞ for every n ≥ 0 ,

(iv) F (·, z) : Rd → R is continuous for all z ∈ Z or
(iv’) supn≥0 f p (λn) < ∞ a.s. for some p > 2 .

Then an application of Corollary 6.23 yields

√
n
(
ϑ̂n − ϑ

) = n−1/2Mn → N
(
0, f2 (λ∞) − ϑ2

)
stably .

In view of (iii), M is an L2-martingale with quadratic characteristic

〈M〉n =
n∑

j=1

E
((

�M j
)2 |F j−1

)
=

n∑

j=1

(
f2
(
λ j−1

)− ϑ2
)

because, for all n ≥ 1,

E
(
(�Mn)2 |Fn−1

)
=
∫

(F (λn−1, z) − ϑ)2 d P Z (z) = f2 (λn−1) − ϑ2 .



6.4 Martingales 115

Since f2 (λn−1) → f2 (λ∞) almost surely by (i) and (ii), the Toeplitz Lemma 6.28
yields 〈M〉n/n → f2 (λ∞) − ϑ2 almost surely as n → ∞, which is condition
(Nan ) with an = n1/2. To verify the conditional Lindeberg condition (CLBan ) with
an = n1/2 note that for all n ∈ N and ε > 0

1

n

n∑

j=1

E
((

�M j
)2 1{|�M j |≥εn1/2}|F j−1

)

≤ 1

n

n∑

j=1

E
((

�M j
)2 1{|�M j |≥ε j1/2}|F j−1

)

so that (CLBan ) follows from

E
((

�M j
)2 1{|�M j |≥ε j1/2}|F j−1

)
→ 0 a.s. as j → ∞

and the Toeplitz Lemma 6.28. Now

E
((

�M j
)2 1{|�M j |≥ε j1/2}|F j−1

)

=
∫ (

F
(
λ j−1, z

)− ϑ
)2 1{|F(λ j−1,z)−ϑ|≥ε j1/2} d P Z (z) ,

and from (i) and (iv) it follows almost surely as j → ∞ for all z ∈ Z that
F
(
λ j−1, z

)→ F (λ∞, z) and hence

(
F
(
λ j−1, z

)− ϑ
)2 1{|F(λ j−1,z)−ϑ|≥ε j1/2} → 0

with an exceptional null set which is independent of z ∈ Z . Moreover, almost surely
for all j ∈ N and z ∈ Z

(
F
(
λ j−1, z

)− ϑ
)2 1{|F(λ j−1,z)−ϑ|≥ε j1/2}

≤ (F (λ j−1, z
)− ϑ

)2 → (F (λ∞, z) − ϑ)2 as j → ∞

and
∫ (

F
(
λ j−1, z

)− ϑ
)2

d P Z (z) = f2
(
λ j−1

)− ϑ2

→ f2 (λ∞) − ϑ2 =
∫

(F (λ∞, z) − ϑ)2 dPZ (z)
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from which almost surely, by Pratt’s dominated convergence theorem,

∫ (
F
(
λ j−1, z

)− ϑ
)2 1{|F(λ j−1,z)−ϑ|≥ε j1/2} d P Z (z) → 0 as j → ∞ .

Under condition (iv’) we have

E
(|�Mn|p |Fn−1

) = E
(|F (λn−1, Zn) − ϑ|p |Fn−1

)

≤ 2p−1E
(|F (λn−1, Zn)|p |Fn−1

)+ 2p−1 |ϑ|p

≤ 2p−1 sup
j≥0

f p
(
λ j
)+ 2p−1 |ϑ|p < ∞

almost surely for all n ≥ 1, hence the conditional Lyapunov condition

1

n p/2

n∑

j=1

E
(∣∣�M j

∣
∣p |F j−1

)→ 0 a.s.

Of course, one is mainly interested in estimators λn of the parameter λ which
provide minimal variance, that is λn → λmin almost surely with λmin ∈ R

d such
that

f2 (λmin) − ϑ2 = VarF (λmin, Z) = min
λ∈Rd

VarF (λ, Z) .

(b) ([68]) Assume X ∈ L2 (P) and VarX > 0. Let Y ∈ L2 (P) be another random
variable with E X = EY , VarY > 0 and Var (X − Y ) > 0. For λ ∈ R, let U (λ) :=
X − λ (X − Y ). Then EU (λ) = ϑ, and for

g (λ) := VarU (λ) = VarX − 2λCov (X, X − Y ) + λ2Var (X − Y )

we get

min
λ∈R

g (λ) = g (λmin) with λmin := Cov (X, X − Y )

Var (X − Y )

and

σ2
min := g (λmin) = VarX − Cov (X, X − Y )2

Var (X − Y )
= VarX

(
1 − ρ2X,X−Y

)
,

where

ρX,X−Y := Cov (X, X − Y )

(VarX Var (X − Y ))1/2

denotes the correlation coefficient.
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Now let ((Xn, Yn))n≥1 be an independent and identically distributed sequence of

R
2-valued random variables with (X1, Y1)

d= (X, Y ) and set

λ̂n :=
∑n

j=1 X j
(
X j − Y j

)

∑n
j=1

(
X j − Y j

)2

for all n ≥ 1 with λ̂0 := 0 and λ̃n := (−n) ∨ (̂λn ∧ n
)
for all n ≥ 0. We consider

the adaptive Monte Carlo estimator

ϑ̂n := 1

n

n∑

j=1

(
X j − λ̃ j−1

(
X j − Y j

))
, n ≥ 1 ,

of ϑ.
This setting is a special case of (a) with d = 1, Z = (X, Y ), Z = R

2, F (λ, z) =
z1 − λ (z1 − z2) and λn = λ̃n . The strong law of large numbers of Kolmogorov
implies that λ̂n → λmin almost surely and hence λ̃n → λmin almost surely as well.
Furthermore, f2 (λ) = VarF (λ, Z)+ϑ2 = g (λ)+ϑ2 < ∞ so that f2 is continuous
and thus supn≥0 f2

(̃
λn
)

< ∞ almost surely. Since
∣
∣̃λn
∣
∣ ≤ n, we have E f2

(̃
λn
)

< ∞
for every n ≥ 0. In particular, by (a), ϑ̂n → ϑ almost surely. Clearly, F (λ, z) is
continuous in λ for all z ∈ R

2. Thus (i)–(iv) are satisfied, and it follows from (a) that

√
n
(
ϑ̂n − ϑ

)→ N
(
0,σ2

min

)
mixing as n → ∞

and therefore, the estimator ϑ̂n provides the optimal variance reduction. �

Example 6.30 (The Pólya urn) Assume that an urn contains initially (at time 0) r
red balls and s black balls, r, s ∈ N. At every time n one draws at random a ball from
the urn and then puts it back into the urn with another m balls of the same colour,
m ∈ N. Then, at time n, the urn contains (once the new balls have been put into
the urn) r + s + mn balls. Let Yn and Xn = Yn/ (r + s + mn) denote the number
and the proportion of red balls inside the urn at time n, respectively. One models
the drawings using an independent and identically distributed sequence (Un)n≥1 of
U (0, 1)-distributed random variables as follows: If Un+1 ≤ Xn , the ball drawn at
time n + 1 is red, otherwise it is black. Then the dynamics of Y = (Yn)n≥0 and
X = (Xn)n≥0 are given by

Y0 = r, Yn+1 = Yn + m1{Un+1≤Xn}

and

X0 = r

r + s
, Xn+1 = Xn + m

r + s + m (n + 1)

(
1{Un+1≤Xn} − Xn

)
.
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The process X is a [0, 1]-valuedmartingalewith respect to the filtrationF = (Fn)n≥0,
Fn := σ (U1, . . . , Un) with F0 = {∅,�}, so that Xn → X∞ almost surely as n →
∞ by the martingale convergence theorem, where the limit X∞ is TX -measurable.
Furthermore, for fixed p ∈ N, the process Z = (Zn)n≥0 defined by

Zn :=
p−1∏

i=0

Yn + mi

r + s + m (n + i)

satisfies Zn → X p∞ almost surely and one checks that Z is also an F-martingale.
This implies

E X p∞ = E Z0 = Z0 =
p−1∏

i=0

r + mi

r + s + mi
.

Hence, the distribution of X∞ has themoments of a beta distribution with parameters
r/m and s/m. Both distributions have compact support, hence, they are equal.

Now, for n ≥ 1 introduce Vn := 1{Un≤Xn−1}. It is well known that (Vn)n≥1 is
exchangeable and

1

n

n∑

i=1

Vi → W := E (V1|TV ) a.s.

(see e.g. [64], Beispiel 10.15 and Satz 10.9). Since Var (V1|TV ) = W − W 2 =
W (1 − W ), Corollary 6.27 yields

√
n

(
1

n

n∑

i=1

Vi − W

)

= 1√
n

n∑

i=1

(Vi − W ) → N (0, W (1 − W )) stably .

We obtain

Xn = r

r + s + mn
+ m

∑n
i=1 Vi

r + s + mn
→ W a.s.

implying X∞ = W and

√
n (Xn − X∞) → N (0, X∞ (1 − X∞)) stably

using Theorem 3.7 (a) because

√
n

(

Xn − 1

n

n∑

i=1

Vi

)

= r
√

n

r + s + mn
− r + s

(r + s + mn)
√

n

n∑

i=1

Vi → 0 a.s.

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Distributional convergence of the randomly centered Xn has been investigated in
[41], pp. 80–81 and stable convergence is contained in [20], Example 6. (See
also [19], Corollary 4.2 and [39], Example 4.2 for an even stronger convergence
result.) �

Exercise 6.5 Let (Yn)n≥1 be an independent and identically distributed sequence
with Y1 ∈ L2 (P), EY1 = 0 and let X0 be a {−1, 0 + 1}-valued random vari-
able independent of (Yn)n≥1. Set Xn := Yn1{X0 �=0}, Mn := ∑n

j=0 X j , Fn :=
σ (X0, Y1, . . . , Yn) and F = (Fn)n≥0. Prove that M is an F-martingale,

n−1/2Mn → N
(
0,σ2X2

0

)
stably

and

n−1/2Mn
d→ P (X0 = 0) δ0 + P (X0 �= 0) N

(
0,σ2

)
,

where σ2 := Var Y1.

Exercise 6.6 Let (Zn)n≥1 be an independent and identically distributed sequence

with Z1 ∈ Lp (P) for some p > 2 and E Z1 = 0. Set Mn :=∑n
j=1

(∑ j−1
i=1 Zi/ i

)
Z j

with M0 = M1 = 0, σ2 := Var Z1 and V :=∑∞
i=1 Zi/ i . Show that

n−1/2Mn → N
(
0,σ2V 2

)
stably .

Exercise 6.7 (Martingale tail sums) Let M = (Mn)n≥0 be an L2-bounded martin-
gale with respect to the filtration F = (Fn)n≥0, Mn = X0+∑n

k=1 Xk and let an > 0.
Assume

a2
n

∑

j>n

E
(

X2
j |F j−1

)
→ η2 in probability as n → ∞

for some random variable η ≥ 0

and

a2
n

∑

j>n

E
(

X2
j1{|X j |≥ε/an}|F j−1

)
→ 0 in probability as n → ∞

for all ε > 0 .

Show that

an

∞∑

j=n+1

X j → N
(
0, η2

)
stably as n → ∞ .
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Exercise 6.8 (Stabilizing time change) Let F = (Fn)n≥0 be a filtration in F and
let M = (Mn)n≥0 be an F-martingale satisfying |�Mn| ≤ c < ∞ almost surely
for every n ≥ 1 and 〈M〉∞ = ∞ almost surely. Consider the F-stopping times
τn := inf {k ≥ 1 : 〈M〉k ≥ n}, n ∈ N. Show that

n−1/2Mτn → N (0, 1) mixing as n → ∞ .

Exercise 6.9 Show that the numbers Yn of red balls in the Pólya urn scheme of
Example 6.30 satisfy

n−1/2 (Yn − (r + s + mn) X∞) → N
(
0, m2X∞ (1 − X∞)

)
stably .

Exercise 6.10 Let X = (Xn)n≥1 be an exchangeable (X ,B (X ))-valued process,
where X is polish. Show that Xn → P X1|TX stably.

6.5 A Continuous Time Version

We finally present a continuous-time version of Theorem 6.23 and Corollary 6.24
for path-continuous (local) martingales. Its proof is obtained by using the associated
Dambis-Dubins-Schwarz Brownian motion.

Theorem 6.31 Let M = (Mt )t≥0 be a path-continuous local F-martingale, where
F = (Ft )t≥0 denotes a right-continuous filtration inF , and let a : (0,∞) → (0,∞)

be a nondecreasing function with a (t) → ∞ as t → ∞. Assume for the (continuous)
quadratic characteristic

〈M〉t

a (t)2
→ η2 in probability as t → ∞

for some R+-valued random variable η. Then

Mt

a (t)
→ N

(
0, η2

)
stably as t → ∞

and if P
(
η2 > 0

)
> 0,

Mt

〈M〉1/2t

→ N (0, 1) mixing under P{η2>0} as t → ∞ .

(Mt/0 := 0.)
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Proof Since 〈M − M0〉 = 〈M〉, wemay assume M0 = 0. Let (sn)n≥1 be an arbitrary
sequence in (0,∞) with sn ↑ ∞. The assertions reduce to

Msn

a (sn)
→ N

(
0, η2

)
stably as n → ∞

and

Msn

〈M〉1/2sn

→ N (0, 1) mixing under P{η2>0} as n → ∞ .

By the Dambis-Dubins-Schwarz time-change theorem there exists (possibly after
a suitable extension of the underlying probability space) a (continuous) Brownian
motion W such that M = W〈M〉 ([51], Theorem 18.4). For n ∈ N, define

W n
t := 1

a (sn)
Wa(sn)2t , t ≥ 0

andGn :=
(
Ga(sn)2t

)

t≥0
, where Gt = σ (Ws, s ≤ t). Then, by the scaling invariance

of Brownian motion, W n is a G
n-Brownian motion and the filtrations Gn satisfy

the nesting condition from Corollary 5.9 with tn := 1/a (sn): We have tn → 0,(
Ga(sn)2tn

)

n≥1
is a filtration and σ

(⋃∞
n=1 Ga(sn)2tn

)
= G∞. Consequently, it fol-

lows from Corollary 5.9 that W n → ν mixing, where ν = PW ∈ M1 (C (R+)).
Therefore, by Theorem 3.7 (b),

(
W n,

〈M〉sn

a (sn)2

)
→ ν ⊗ δη2 stably

and using the continuity of ϕ : C (R+) × R+ → R, ϕ (x, t) = x (t), Theorem 3.7
(c) yields

Msn

a (sn)
= 1

a (sn)
W〈M〉sn

= W n
〈M〉sn /a(sn)2

= ϕ

(
W n,

〈M〉sn

a (sn)2

)

→ (
ν ⊗ δη2

)ϕ = N
(
0, η2

)
stably

as n → ∞.
As for the second assertion, observe that by Theorem 3.7 (b)

(
Msn

a (sn)
,

〈M〉sn

a (sn)
2

)
→ Kη2 := N

(
0, η2

)
⊗ δη2 stably ,

http://dx.doi.org/10.1007/978-3-319-18329-9_5
http://dx.doi.org/10.1007/978-3-319-18329-9_5
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9
http://dx.doi.org/10.1007/978-3-319-18329-9
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in particular we have stable convergence under P{η2>0}, the function g : R2 → R,
g (x, y) := x/

√
y if y > 0 and g (x, y) := 0 if y ≤ 0 is Borel-measurable and

P{η2>0}Kη2 -almost surely continuous because

P{η2>0}Kη2 (R × {0}) =
∫

N
(
0, η2

)
(R) δη2 ({0}) d P{η2>0}

= P{η2>0}
(
η2 = 0

)
= 0

and moreover, Kη2 (ω, ·)g = N (0, 1) for ω ∈ {
η2 > 0

}
. Thus, it follows from

Theorem 3.7 (c) that

Msn

〈M〉1/2sn

= g

(
Msn

a (sn)
,

〈M〉sn

a (sn)2

)
→ N (0, 1) mixing under P{η2>0} . �

http://dx.doi.org/10.1007/978-3-319-18329-9


Chapter 7
Stable Functional Martingale Central Limit
Theorems

This chapter is devoted to stable functional central limit theorems for partial sum
processes based on martingale differences which correspond to the results for partial
sums presented in Sects. 6.1, 6.3 and 6.4. As in Chap.6 it is convenient to consider
arrays of martingale differences, but to keep technicalities as simple as possible, we
consider a fixed filtration F = (Fk)k≥0 on the basic probability space (�,F , P). As
usual,F∞ = σ

(⋃∞
k=0 Fk

)
. For every n ∈ N, let (Xnk)k≥1 be a martingale difference

sequence w.r.t. F, and for every n ∈ N and t ∈ [0,∞) set

S(n) (t) :=
[nt]∑
k=1

Xnk + (nt − [nt]) Xn,[nt]+1 .

Then
(
S(n) (t)

)
t∈[0,∞)

is a random process with sample paths in C (R+). Note that

the array
(Fn,k

)
k≥0,n∈N with Fn,k := Fk is obviously nested.

For a nonnegative stochastic process (η (t))t∈[0,∞) with paths in C (R+) and
square integrable Xnk we introduce the conditions

(Nt )

[nt]∑
k=1

E
(

X2
nk |Fk−1

)
→ η2 (t) in probability as n → ∞ for all t ∈ [0,∞)

and

(CLBt )

[nt]∑
k=1

E
(

X2
nk1{|Xnk |≥ε}|Fk−1

)
→ 0 in probability as n → ∞

for all ε > 0 and all t ∈ [0,∞) .

Note that any process η2 appearing in (Nt ) is nonnegative with almost surely non-
decreasing paths and η2 (0) = 0. The conditions (Nt ) and (CLBt ) are our basic

© Springer International Publishing Switzerland 2015
E. Häusler and H. Luschgy, Stable Convergence and Stable Limit Theorems,
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conditions which ensure stable convergence of S(n) to a Brownian motion with time
change η2.

Theorem 7.1 Let (Xnk)k∈N be a square integrable martingale difference sequence
w.r.t.

(Fn,k
)

k≥0 for every n ∈ N. Under (Nt ) and (CLBt ),

S(n) →
(

W
(
η2 (t)

))
t∈[0,∞)

F∞-stably as n → ∞ in C (R+) ,

where W = (W (t))t≥0 is a Brownian motion which is independent of F∞.

According to Proposition 3.20 we have to show that the finite dimensional dis-
tributions of S(n) converge F∞-stably to the finite dimensional distributions of(
W
(
η2 (t)

))
t∈[0,∞)

and that the sequence
(
S(n)

)
n∈N is tight in C (R+).

Proof of stable convergence of the finite dimensional distributions. For all 0 < t1 <

t2 < · · · < tr < ∞ we have to show

(
S(n) (t1) , . . . , S(n) (tr )

) → (
W
(
η2 (t1)

)
, . . . , W

(
η2 (tr )

)) F∞-stably as n → ∞ .

Clearly, this is equivalent to

(
S(n) (t1) , S(n) (t2) − S(n) (t1) , . . . , S(n) (tr ) − S(n) (tr−1)

) →(
W
(
η2 (t1)

)
, W

(
η2 (t2)

)− W
(
η2 (t1)

)
, . . . , W

(
η2 (tr )

)− W
(
η2 (tr−1)

))
F∞-stably as n → ∞. Putting t0 = 0 and observing that S(n) (t0) = W

(
η2 (t0)

) = 0,
by the Cramér-Wold technique, Corollary 3.19, (i) ⇔ (iii), the last convergence is
equivalent to

r∑
q=1

λq
(
S(n)

(
tq
)− S(n)

(
tq−1

)) →
r∑

q=1

λq

(
W
(
η2
(
tq
))− W

(
η2
(
tq−1

)))

F∞-stably as n → ∞ for all λ1, . . . ,λr ∈ R.
First, note that for all t ∈ [0,∞)

∣∣∣∣∣S(n) (t) −
[nt]∑
k=1

Xnk

∣∣∣∣∣ ≤ ∣∣Xn,[nt]+1
∣∣ ≤ max

1≤k≤[n(t+1)]
|Xnk | → 0

in probability as n → ∞, where the convergence to zero follows from (CLBt ) and
Proposition 6.6 (note that [nt]+ 1 ≤ [n (t + 1)]). Therefore, by Theorem 3.18 (a) it
is sufficient to show that

r∑
q=1

λq

⎛
⎝[ntq]∑

k=1

Xnk −
[ntq−1]∑

k=1

Xnk

⎞
⎠ →

r∑
q=1

λq

(
W
(
η2
(
tq
))− W

(
η2
(
tq−1

)))

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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F∞-stably as n → ∞. Setting I
([

ntq−1
]+ 1 ≤ k ≤ [

ntq
]) = 1 if

[
ntq−1

] + 1 ≤
k ≤ [

ntq
]
is true and = 0 otherwise, we have, for all n ∈ N and 1 ≤ k ≤ [ntr ],

r∑
q=1

λq

⎛
⎝[ntq]∑

k=1

Xnk −
[ntq−1]∑

k=1

Xnk

⎞
⎠

=
r∑

q=1

[ntr ]∑
k=1

λq I
([

ntq−1
]+ 1 ≤ k ≤ [

ntq
])

Xnk =
[ntr ]∑
k=1

ank Xnk ,

with

ank :=
r∑

q=1

λq I
([

ntq−1
]+ 1 ≤ k ≤ [

ntq
])

.

We see that (ank Xnk)1≤k≤[ntr ],n∈N is a square integrable martingale difference array
w.r.t. the nested array

(Fn,k
)
0≤k≤[ntr ],n∈N (where Fn,k = Fk) and

[ntr ]∑
k=1

E
(

a2
nk X2

nk |Fn,k−1

)
=

r∑
q=1

[ntq]∑
k=[ntq−1]+1

a2
nk E

(
X2

nk |Fk−1

)

=
r∑

q=1

[ntq]∑
k=[ntq−1]+1

λ2
q E

(
X2

nk |Fk−1

)

=
r∑

q=1

λ2
q

⎛
⎝[ntq]∑

k=1

E
(

X2
nk |Fk−1

)
−

[ntq−1]∑
k=1

E
(

X2
nk |Fk−1

)⎞⎠

→
r∑

q=1

λ2
q

(
η2
(
tq
)− η2

(
tq−1

))

in probability as n → ∞ by (Nt ). Moreover, for all ε > 0,

[ntr ]∑
k=1

E
(

a2
nk X2

nk1{|ank ||Xnk |≥ε}|Fn,k−1

)

≤
⎛
⎝ r∑

q=1

∣∣λq
∣∣
⎞
⎠

2
[ntr ]∑
k=1

E

(
X2

nk1
{
|Xnk |≥ε/

∑r
q=1|λq |

}|Fk−1

)
→ 0

in probability as n → ∞ by (CLBt ). Here, we assume w.l.o.g. that not all λq are
equal to zero. Therefore, Theorem 6.1 and Remark 6.2 imply

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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[ntr ]∑
k=1

ank Xnk →
⎛
⎝ r∑

q=1

λ2
q

(
η2
(
tq
)− η2

(
tq−1

))⎞⎠
1/2

N F∞-stably as n → ∞ ,

where N is independent of F∞ with P N = N (0, 1). But, by independence of the
increments of W , independence of W and F∞, and F∞-measurability of η2, using
Lemmas A.4 (c) and A.5 (a), the conditional distributions of

⎛
⎝ r∑

q=1

λ2
q

(
η2
(
tq
)− η2

(
tq−1

))⎞⎠
1/2

N and
r∑

q=1

λq
(
W
(
η2
(
tq
))− W

(
η2
(
tq−1

)))

given F∞ both coincide with

N

⎛
⎝0,

r∑
q=1

λ2
q

(
η2
(
tq
)− η2

(
tq−1

))⎞⎠
which gives

r∑
q=1

λq

⎛
⎝[ntq]∑

k=1

Xnk −
[ntq−1]∑

k=1

Xnk

⎞
⎠ →

r∑
q=1

λq

(
W
(
η2
(
tq
))− W

(
η2
(
tq−1

)))

F∞-stably as n → ∞ and completes the proof of the finite dimensional distributions.

Proof of tightness. We prove tightness of the sequence
(
S(n) (t)

)
t∈[0,T ], n ∈ N, in

C ([0, T ]) for every T ∈ N, that is, for every T ∈ N and ε > 0 we show

lim
δ↓0

lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣S(n) (s) − S(n) (t)
∣∣ ≥ ε

⎞
⎟⎠ = 0

(cf. [51], Theorem 16.5). Then the assertion follows from Proposition 3.20 and
Corollary 3.23. Let T ∈ N be fixed from now on.

Step 1. For n ∈ N and 0 ≤ k ≤ nT , (Xnk)1≤k≤nT,n∈N is a square integrable
martingale difference array w.r.t.

(Fn,k
)
0≤k≤nT,n∈N. We augment this array by inde-

pendent random variables Xnk for n ∈ N and k ≥ nT + 1 which are independent
of F∞ and satisfy P

(
Xnk = 1/

√
n
) = 1/2 = P

(
Xnk = −1/

√
n
)
. (These new ran-

dom variables Xnk should not be confusedwith the original random variables Xnk for
k ≥ nT +1,which play no role in the current proof for fixed T .) Ifwe setFT

n,k := Fn,k

for n ∈ N and 0 ≤ k ≤ nT andFT
n,k := σ

(FnT ∪ σ
(
Xn,nT +1, . . . , Xnk

))
for n ∈ N

and k ≥ nT + 1, then (Xnk)k,n∈N is a square integrable martingale difference array

w.r.t.
(
FT

n,k

)
k≥0,n∈N with

http://dx.doi.org/10.1007/978-3-319-18329-9_16
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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∞∑
k=1

E
(

X2
nk |FT

n,k−1

)
= ∞ a.s. for all n ∈ N .

For all n ∈ N and t ∈ [0,∞) we define the almost surely finite stopping times

τn (t) := max

⎧⎨
⎩ j ≥ 0 :

j∑
k=1

E
(

X2
nk |FT

n,k−1

)
≤ t

⎫⎬
⎭

w.r.t.
(
FT

n,k

)
k≥0

and

Tn (t) :=
τn(t)∑
k=1

Xnk .

Our first aim is to show that the process (Tn (t))t∈[0,∞) satisfies for every T̃ ∈ N and
ε > 0,

lim
δ↓0

lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T̃
|s−t |≤δ

|Tn (s) − Tn (t)| ≥ ε

⎞
⎟⎠ = 0 .

By monotonicity it is sufficient to show

lim
M→∞ lim sup

n→∞
P

⎛
⎜⎝ sup

0≤s,t≤T̃
|s−t |≤1/M

|Tn (s) − Tn (t)| ≥ ε

⎞
⎟⎠ = 0 .

To prove this, we use a classical discretization technique. Clearly,

sup
0≤s,t≤T̃

|s−t |≤1/M

|Tn (s) − Tn (t)|

≤ 3 max
0≤m≤T̃ M−1

sup
m/M≤t≤(m+1)/M

∣∣∣Tn (t) − Tn

( m

M

)∣∣∣
≤ 3 max

0≤m≤T̃ M−1
max

τn(m/M)+1≤ j≤τn((m+1)/M)

∣∣∣∣∣∣
j∑

k=τn(m/M)+1

Xnk

∣∣∣∣∣∣
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so that

P

⎛
⎜⎝ sup

0≤s,t≤T̃
|s−t |≤1/M

|Tn (s) − Tn (t)| ≥ ε

⎞
⎟⎠

≤
T̃ M−1∑
m=0

P

⎛
⎝ max

τn(m/M)+1≤ j≤τn((m+1)/M)

∣∣∣∣∣∣
j∑

k=τn(m/M)+1

Xnk

∣∣∣∣∣∣ ≥ ε

3

⎞
⎠ .

Now we use the maximal inequality of Theorem A.10. To apply this inequality
note that

max
τn(m/M)+1≤ j≤τn((m+1)/M)

∣∣∣∣∣∣
j∑

k=τn(m/M)+1

Xnk

∣∣∣∣∣∣ = max
1≤ j≤τn((m+1)/M)

∣∣∣∣∣∣
j∑

k=1

Xnk In (k)

∣∣∣∣∣∣
with In (k) := 1{τn(m/M)+1≤k≤τn((m+1)/M)}, where m and M are dropped from the

notation In (k) for convenience. Because τn (t) is a stopping time w.r.t.
(
FT

n,k

)
k≥0

for every t ∈ [0,∞), the random variable In (k) is FT
n,k−1-measurable and, conse-

quently, (Xnk In (k))k≥1 is a square integrable martingale difference sequence w.r.t.(
FT

n,k

)
k≥0

. For the associated square integrable martingale we have, for all j ∈ N,

E

⎛
⎜⎝
⎛
⎝ j∑

k=1

Xnk In (k)

⎞
⎠

2
⎞
⎟⎠ = E

⎛
⎝ τn((m+1)/M)∑

k=τn(m/M)+1

E
(

X2
nk |FT

n,k−1

)⎞⎠ ≤ m + 1

M

by definition of τn ((m + 1) /M) so that this martingale is uniformly integrable.
Therefore

P

⎛
⎝ max

τn(m/M)+1≤ j≤τn((m+1)/M)

∣∣∣∣∣∣
j∑

k=τn(m/M)+1

Xnk

∣∣∣∣∣∣ ≥ ε

3

⎞
⎠

≤ 6

ε
E

⎛
⎝
∣∣∣∣∣∣
τn((m+1)/M)∑

k=1

Xnk In (k)

∣∣∣∣∣∣ 1{∣∣∣∑τn ((m+1)/M)
k=1 Xnk In(k)

∣∣∣≥ ε
6

}
⎞
⎠

≤ 6

ε
E

⎛
⎜⎝
⎛
⎝τn((m+1)/M)∑

k=1

Xnk In (k)

⎞
⎠

2
⎞
⎟⎠

1/2

P

⎛
⎝
∣∣∣∣∣∣
τn((m+1)/M)∑

k=1

Xnk In (k)

∣∣∣∣∣∣ ≥ ε

6

⎞
⎠

1/2
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by Theorem A.10 and the Cauchy-Schwarz inequality. Thus we find

P

⎛
⎜⎝ sup

0≤s,t≤T̃
|s−t |≤1/M

|Tn (s) − Tn (t)| ≥ ε

⎞
⎟⎠

≤ 6

ε

T̃ M−1∑
m=0

E

⎛
⎝ τn((m+1)/M)∑

k=τn(m/M)+1

E
(

X2
nk |FT

n,k−1

)⎞⎠
1/2

× P

⎛
⎝
∣∣∣∣∣∣
τn((m+1)/M)∑

k=1

Xnk In (k)

∣∣∣∣∣∣ ≥ ε

6

⎞
⎠

1/2

≤ 6

ε

⎛
⎝T̃ M−1∑

m=0

E

⎛
⎝ τn((m+1)/M)∑

k=τn(m/M)+1

E
(

X2
nk |FT

n,k−1

)⎞⎠
⎞
⎠

1/2

×
⎛
⎝T̃ M−1∑

m=0

P

⎛
⎝
∣∣∣∣∣∣
τn((m+1)/M)∑

k=1

Xnk In (k)

∣∣∣∣∣∣ ≥ ε

6

⎞
⎠
⎞
⎠

1/2

≤ 6

ε
T̃ 1/2

⎛
⎝T̃ M−1∑

m=0

P

⎛
⎝
∣∣∣∣∣∣
τn((m+1)/M)∑

k=1

Xnk In (k)

∣∣∣∣∣∣ ≥ ε

6

⎞
⎠
⎞
⎠

1/2

because

T̃ M−1∑
m=0

E

⎛
⎝ τn((m+1)/M)∑

k=τn(m/M)+1

E
(

X2
nk |FT

n,k−1

)⎞⎠ = E

⎛
⎝τn(T̃ )∑

k=1

E
(

X2
nk |FT

n,k−1

)⎞⎠ ≤ T̃

by definition of τn
(
T̃
)
.

The probabilities on the right-hand side of the last chain of inequalities will be
handled by the martingale central limit theorem. Note that for all t ∈ [0,∞), ε > 0
and n ∈ N with ε

√
n > 1

τn(t)∑
k=1

E
(

X2
nk1{|Xnk |≥ε}|FT

n,k−1

)
≤

nT∑
k=1

E
(

X2
nk1{|Xnk |≥ε}|Fk−1

)

because 1{|Xnk |≥ε} = 0 for all k ≥ nT + 1. Therefore, (CLBt ) implies

τn(t)∑
k=1

E
(

X2
nk1{|Xnk |≥ε}|FT

n,k−1

)
→ 0 in probability as n → ∞
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for all t ∈ [0,∞) and ε > 0. Moreover, for all t ∈ [0,∞) and n ∈ N,

max
1≤k≤τn(t)+1

E
(

X2
nk |FT

n,k−1

)
≤ max

1≤k≤nT
E
(

X2
nk |Fk−1

)
∨ 1

n

so that, by (CLBt ) and Proposition 6.7, for all t ∈ [0,∞),

max
1≤k≤τn(t)+1

E
(

X2
nk |FT

n,k−1

)
→ 0 in probability as n → ∞ .

Since by definition of τn (t) we have

τn(t)∑
k=1

E
(

X2
nk |FT

n,k−1

)
≤ t <

τn(t)+1∑
k=1

E
(

X2
nk |FT

n,k−1

)

it follows that

τn(t)∑
k=1

E
(

X2
nk |FT

n,k−1

)
→ t in probability as n → ∞ .

Therefore, in probability as n → ∞, for all 0 ≤ m ≤ T̃ M − 1 and M ∈ N,

τn((m+1)/M)∑
k=1

E
(
(Xnk In (k))2 1{|Xnk In(k)|≥ε}|FT

n,k−1

)
→ 0

and

τn((m+1)/M)∑
k=1

E
(
(Xnk In (k))2 |FT

n,k−1

)
=

τn((m+1)/M)∑
k=τn(m/M)+1

E
(

X2
nk |FT

n,k−1

)

=
τn((m+1)/M)∑

k=1

E
(

X2
nk |FT

n,k−1

)
−

τn(m/M)∑
k=1

E
(

X2
nk |FT

n,k−1

)
→ 1

M
.

The martingale central limit theorem in the form of Corollary 6.4 gives

τn((m+1)/M)∑
k=1

Xnk In (k)
d→ NM as n → ∞

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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where P NM = N (0, 1/M) so that

lim
n→∞ P

⎛
⎝
∣∣∣∣∣∣
τn((m+1)/M)∑

k=1

Xnk In (k)

∣∣∣∣∣∣ ≥ ε

6

⎞
⎠ = 2

(
1 − �

(ε

6
M1/2

))
,

where� denotes the distribution function of the standard normal distribution. Hence

lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T̃
|s−t |≤1/M

|Tn (s) − Tn (t)| ≥ ε

⎞
⎟⎠ ≤ 12

ε
T̃ M1/2

(
1 − �

(ε

6
M1/2

))1/2
.

The bound on the right-hand side clearly converges to zero as M → ∞ and completes
the proof.

Step 2. In the second part of the proof we will switch from the time scales τn (·)
to the time scales [n · ] used in the definition of S(n). The potentialities of such a
random change of time in martingale central limit theory are elucidated in [81, 82].
Note that

t <

τn(t)+1∑
k=1

E
(

X2
nk |FT

n,k−1

)

by definition of τn (t) so that τn (t) → ∞ almost surely as t → ∞. Consequently,

τ−1
n ( j) := inf {t ∈ [0,∞) : τn (t) ≥ j}

is almost surely well-defined for all j ≥ 0. If j ≥ 0 is fixed, then for all t ∈ [0,∞),
by definition of τ−1

n ( j) and τn (t),

t < τ−1
n ( j) ⇔ τn (t) < j ⇔

j∑
k=1

E
(

X2
nk |FT

n,k−1

)
> t ,

which implies

τ−1
n ( j) =

j∑
k=1

E
(

X2
nk |FT

n,k−1

)

so that

j ∈
⎧⎨
⎩ j̃ ≥ 0 :

j̃∑
k=1

E
(

X2
nk |FT

n,k−1

)
≤ τ−1

n ( j)

⎫⎬
⎭
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and hence τn
(
τ−1

n ( j)
) ≥ j . Moreover, for all j ≥ 0,

τn
(
τ−1

n ( j)
)∑

k=1

Xnk =
j∑

k=1

Xnk a.s.

To see this, write

τn
(
τ−1

n ( j)
)∑

k=1

Xnk =
j∑

k=1

Xnk +
τn
(
τ−1

n ( j)
)∑

k= j+1

Xnk

and note that

j∑
k=1

E
(

X2
nk |FT

n,k−1

)
+

τn
(
τ−1

n ( j)
)∑

k= j+1

E
(

X2
nk |FT

n,k−1

)

=
τn
(
τ−1

n ( j)
)∑

k=1

E
(

X2
nk |FT

n,k−1

)
≤ τ−1

n ( j) =
j∑

k=1

E
(

X2
nk |FT

n,k−1

)

which gives

τn
(
τ−1

n ( j)
)∑

k= j+1

E
(

X2
nk |FT

n,k−1

)
= 0 a.s. ,

whence

τn
(
τ−1

n ( j)
)∑

k= j+1

Xnk = 0 a.s.

because X2
nk = 0 almost surely on the event

{
E
(

X2
nk |FT

n,k−1

)
= 0

}
.

By monotonicity in t we get

sup
0≤t≤T

∣∣∣∣∣
[nt]∑
k=1

E
(

X2
nk |Fk−1

)
− η2 (t)

∣∣∣∣∣
≤ max

0≤m≤MT

∣∣∣∣∣∣
[nm/M]∑

k=1

E
(

X2
nk |Fk−1

)
− η2

( m

M

)∣∣∣∣∣∣
+ sup

0≤s,t≤T
|s−t |≤1/M

∣∣∣η2 (s) − η2 (t)
∣∣∣
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for every M ∈ N, so that

sup
0≤t≤T

∣∣∣∣∣
[nt]∑
k=1

E
(

X2
nk |Fk−1

)
− η2 (t)

∣∣∣∣∣ → 0 in probability as n → ∞

by (Nt ) and continuity of the paths of the process η2. For all n ∈ N and 0 ≤ t ≤ T
we have nt ≤ nT and therefore

[nt]∑
k=1

E
(

X2
nk |FT

n,k−1

)
= τ−1

n ([nt]) =: ηn (t)

so that

sup
0≤t≤T

∣∣∣ηn (t) − η2 (t)
∣∣∣ → 0 in probability as n → ∞ .

Now we can show that

lim
δ↓0

lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣∣∣
[ns]∑
k=1

Xnk −
[nt]∑
k=1

Xnk

∣∣∣∣∣ ≥ ε

⎞
⎟⎠ = 0 .

To do this, observe again that nt ≤ nT for all t ∈ [0, T ] so that with probability one

[nt]∑
k=1

Xnk =
τn
(
τ−1

n ([nt])
)∑

k=1

Xnk =
τn(ηn(t))∑

k=1

Xnk = Tn (ηn (t)) .

Therefore

P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣∣∣
[ns]∑
k=1

Xnk −
[nt]∑
k=1

Xnk

∣∣∣∣∣ ≥ ε

⎞
⎟⎠

= P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

|Tn (ηn (s)) − Tn (ηn (t))| ≥ ε

⎞
⎟⎠ .

For all T̃ ∈ N and 0 < d ≤ 4 on the event



134 7 Stable Functional Martingale Central Limit Theorems

A :=

⎧⎪⎨
⎪⎩ sup

0≤s,t≤T
|s−t |≤δ

|Tn (ηn (s)) − Tn (ηn (t))| ≥ ε

⎫⎪⎬
⎪⎭ ∩

{
η2 (T ) ≤ T̃

}
∩

{
sup

0≤t≤T

∣∣∣ηn (t) − η2 (t)
∣∣∣ ≤ d

4

}
∩

⎧⎪⎨
⎪⎩ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣η2 (s) − η2 (t)
∣∣∣ ≤ d

2

⎫⎪⎬
⎪⎭

we get, for all s, t ∈ [0, T ] with |s − t | ≤ δ,

|ηn (s) − ηn (t)| ≤ 2 sup
0≤t≤T

∣∣∣ηn (t) − η2 (t)
∣∣∣+ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣η2 (s) − η2 (t)
∣∣∣ ≤ d

and, recalling that the paths of η2 are nondecreasing,

ηn (t) ≤ η2 (t) +
∣∣∣ηn (t) − η2 (t)

∣∣∣ ≤ T̃ + d

4
≤ T̃ + 1

as well as ηn (s) ≤ T̃ + 1. Therefore

A ⊂

⎧⎪⎨
⎪⎩ sup

0≤s,t≤T̃ +1
|s−t |≤d

|Tn (s) − Tn (t)| ≥ ε

⎫⎪⎬
⎪⎭

so that

P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣∣∣
[ns]∑
k=1

Xnk −
[nt]∑
k=1

Xnk

∣∣∣∣∣ ≥ ε

⎞
⎟⎠

≤ P

⎛
⎜⎝ sup

0≤s,t≤T̃ +1
|s−t |≤d

|Tn (s) − Tn (t)| ≥ ε

⎞
⎟⎠+ P

(
η2 (T ) > T̃

)

+ P

(
sup

0≤t≤T

∣∣∣ηn (t) − η2 (t)
∣∣∣ >

d

4

)
+ P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣η2 (s) − η2 (t)
∣∣∣ >

d

2

⎞
⎟⎠

which yields, for all δ > 0, T̃ ∈ N and 0 < d ≤ 4,
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lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣∣∣
[ns]∑
k=1

Xnk −
[nt]∑
k=1

Xnk

∣∣∣∣∣ ≥ ε

⎞
⎟⎠

≤ lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T̃ +1
|s−t |≤d

|Tn (s) − Tn (t)| ≥ ε

⎞
⎟⎠

+ P
(
η2 (T ) > T̃

)
+ P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣η2 (s) − η2 (t)
∣∣∣ >

d

2

⎞
⎟⎠ .

By continuity of the paths of η2 it follows for all T̃ ∈ N and 0 < d ≤ 4 that

lim
δ↓0

lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣∣∣
[ns]∑
k=1

Xnk −
[nt]∑
k=1

Xnk

∣∣∣∣∣ ≥ ε

⎞
⎟⎠

≤ lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T̃ +1
|s−t |≤d

|Tn (s) − Tn (t)| ≥ ε

⎞
⎟⎠+ P

(
η2 (T ) > T̃

)
.

The right-hand side of this inequality converges to zero asd ↓ 0 followedby T̃ → ∞,
which concludes the proof of

lim
δ↓0

lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣∣∣∣
[ns]∑
k=1

Xnk −
[nt]∑
k=1

Xnk

∣∣∣∣∣ ≥ ε

⎞
⎟⎠ = 0 .

Because

sup
0≤t≤T

∣∣∣∣∣S(n) (t) −
[nt]∑
k=1

Xnk

∣∣∣∣∣ ≤ max
1≤k≤nT

|Xnk | → 0 in probability as n → ∞

the sequence
(
S(n) (t)

)
t∈[0,T ], n ∈ N, satisfies

lim
δ↓0

lim sup
n→∞

P

⎛
⎜⎝ sup

0≤s,t≤T
|s−t |≤δ

∣∣S(n) (s) − S(n) (t)
∣∣ ≥ ε

⎞
⎟⎠ = 0 ,

as claimed. �
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Now we show that conditions (Nt ) and (CLBt ) may be replaced by other sets
of sufficient conditions which are functional versions of the conditions appearing in
Sect. 6.3.

For a square integrable array (Xnk)n,k∈N of random variables we introduce

(M2,t ) E

(
max

1≤k≤[nt]
X2

nk

)
→ 0 as n → ∞ for all t ∈ [0,∞)

whereas the conditions

(M1,t ) E

(
max

1≤k≤[nt]
|Xnk |

)
→ 0 as n → ∞ for all t ∈ [0,∞)

and

(CLB1,t )

[nt]∑
k=1

E
(|Xnk | 1{|Xnk |≥ε}|Fk−1

) → 0 in probability as n → ∞

for every ε > 0 and all t ∈ [0,∞)

only require integrable random variables.
The functional form of Raikov’s condition

(Rt )

[nt]∑
k=1

X2
nk → η2 (t) in probability as n → ∞ for all t ∈ [0,∞)

and, for any a > 0, the conditions

(Ta,t ) sup
0≤s≤t

∣∣∣∣∣
[ns]∑
k=1

[
Xnk1{|Xnk |>a} + E

(
Xnk1{|Xnk |≤a}|Fk−1

)]∣∣∣∣∣ → 0

in probability as n → ∞ for all t ∈ [0,∞)

and

(TRa,t )

[nt]∑
k=1

[
Xnk1{|Xnk |≤a} − E

(
Xnk1{|Xnk |≤a}|Fk−1

)]2 → η2 (t)

in probability as n → ∞ for all t ∈ [0,∞)

are meaningful without any integrability assumption on the Xnk .
For these conditions we have the following analogue of 6.20. Here we assume

for every n ∈ N that (Xnk)k∈N is adapted to F and that (Xnk)k∈N is a martingale

difference sequence w.r.t. F for the implication
(∗)⇒.

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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7.2 Conditions in the functional martingale central limit theorem:

(M2,t ) and (Nt ) ⇒ (M1,t ) and (Rt )

⇓ ⇓
(CLBt ) and (Nt ) ⇒ (CLB1,t ) and (Rt )

(∗)⇒ (Ta,t ) and (TRa,t )

Note that the implications (M2,t ) ⇒ (CLBt ) and (M2,t ) ⇒ (M1,t ) follow from
Proposition 6.15 for kn = [nt]. Moreover, (CLBt ) ⇒ (CLB1,t ) follows from Propo-
sition 6.17, and (M1,t ) ⇒ (CLB1,t ) follows from Proposition 6.18 for kn = [nt].
Under (M2,t ) and (Nt ) as well as (CLBt ) and (Nt ) Proposition 6.16 is applicable
to derive (Rt ) from (Nt ), again with kn = [nt]. Thus, the four implications in 7.2
without (∗) are true. To establish the implication with (∗) note that (Ta,t ) follows
from (CLB1,t ) and (Rt ) for every a > 0 by Proposition 6.19. To derive (TRa,t ) for
every a > 0 from (CLB1,t ) we use, for all n ∈ N and t ∈ [0,∞), the martingale
difference property of the Xnk to obtain the inequality

sup
0≤s≤t

∣∣∣∣∣
[ns]∑
k=1

Xnk1{|Xnk |>a} + E
(
Xnk1{|Xnk |≤a}|Fk−1

)∣∣∣∣∣
= sup

0≤s≤t

∣∣∣∣∣
[ns]∑
k=1

Xnk1{|Xnk |>a} − E
(
Xnk1{|Xnk |>a}|Fk−1

)∣∣∣∣∣
≤

[nt]∑
k=1

|Xnk | 1{|Xnk |>a} +
[nt]∑
k=1

E
(|Xnk | 1{|Xnk |>a}|Fk−1

)
.

Here, the right-hand side converges to zero in probability as n → ∞ by (CLB1,t )
and Lemma 6.5. Thus, all implications in 7.2 are proven.

The analogue of Proposition 6.21 reads as follows.

Proposition 7.3 For every n ∈ N, let (Xnk)k∈N be adapted to F = (Fk)k≥0. Assume
that there exists some a > 0 for which the conditions (Ta,t ) and (TRa,t ) are satisfied.
For all k, n ∈ N set

Xnk (a) := Xnk1{|Xnk |≤a} − E
(
Xnk1{|Xnk |≤a}|Fk−1

)
and for all n ∈ N and t ∈ [0,∞)

S(n,a) (t) :=
[nt]∑
k=1

Xnk (a) + (nt − [nt]) Xn,[nt]+1 (a) .

Then for every n ∈ N, (Xnk (a))k∈N is a bounded martingale difference sequence
w.r.t. F which satisfies (M2,t ) and (Nt ) as well as

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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sup
0≤s≤t

∣∣S(n) (s) − S(n,a) (s)
∣∣ → 0 in probability as n → ∞ for all t ∈ [0,∞) .

Proof Let a > 0 be fixed such that (Ta,t ) and (TRa,t ) hold. Then by (TRa,t ) for all
t ∈ [0,∞)

[nt]∑
k=1

X2
nk (a) → η2 (t) in probability as n → ∞

from which, by monotonicity in t for all t ∈ [0,∞),

sup
0≤s≤t

∣∣∣∣∣
[ns]∑
k=1

X2
nk (a) − η2 (s)

∣∣∣∣∣ → 0 in probability as n → ∞ .

Put Z(n) (s) := ∑[ns]
k=1 X2

nk (a) and let f (s − 0) denote the left-hand limit of f :
[0,∞) → R at s ∈ (0,∞) provided the limit exists. By continuity of the paths of
η2 we obtain from the last display that

sup
0≤s≤t

∣∣∣Z(n) (s − 0) − η2 (s)
∣∣∣ → 0 in probability as n → ∞

so that for all t ∈ [0,∞)

max
1≤k≤[nt]

X2
nk (a) ≤ sup

0≤s≤t

∣∣Z(n) (s) − Z(n) (s − 0)
∣∣ → 0 in probability as n → ∞

which shows that the array (Xnk (a))1≤k≤[nt],n∈N satisfies condition (TMa). There-
fore, Proposition 6.21 implies that conditions (M2,t ) and (Nt ) are satisfied for
(Xnk (a))k∈N, n ∈ N. For all n ∈ N and 0 ≤ s ≤ t < ∞ we have

∣∣S(n) (s) − S(n,a) (s)
∣∣ ≤

∣∣∣∣∣
[ns]∑
k=1

Xnk −
[ns]∑
k=1

Xnk (a)

∣∣∣∣∣+
∣∣Xn,[ns]+1 − Xn,[ns]+1 (a)

∣∣
so that

sup
0≤s≤t

∣∣S(n) (s) − S(n,a) (s)
∣∣

≤ sup
0≤s≤t

∣∣∣∣∣
[ns]∑
k=1

Xnk −
[ns]∑
k=1

Xnk (a)

∣∣∣∣∣+ max
1≤k≤[nt]+1

|Xnk − Xnk (a)|

= sup
0≤s≤t

∣∣∣∣∣
[ns]∑
k=1

[
Xnk1{|Xnk |>a} + E

(
Xnk1{|Xnk |≤a}|Fk−1

)]∣∣∣∣∣
+ max

1≤k≤[nt]+1

∣∣Xnk1{|Xnk |>a} + E
(
Xnk1{|Xnk |≤a}|Fk−1

)∣∣ .

http://dx.doi.org/10.1007/978-3-319-18329-9_6
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Both summands on the right-hand side converge to zero in probability as n → ∞
by condition (Ta,t ) (observe that [nt] + 1 ≤ [n (t + 1)] and note that

Xnk1{|Xnk |>a} + E
(
Xnk1{|Xnk |≤a}|Fk−1

)
is the jump of the process

[ns]∑
k=1

Xnk1{|Xnk |>a} + E
(
Xnk1{|Xnk |≤a}|Fk−1

)
, s ∈ [0,∞)

at time s = k/n and that these processes converge to zero in probability uniformly
on compact intervals by (Ta,t )). This completes the proof of the proposition. �

In many applications martingale difference arrays are obtained from a single
martingale difference sequence through renormalization. For this, let (Xk)k∈N be
a square integrable martingale difference sequence w.r.t. F. For every n ∈ N and
t ∈ [0,∞) we set

Sn (t) :=
[nt]∑
k=1

Xk + (nt − [nt]) X[nt]+1

so that (Sn (t))t∈[0,∞) is a random process with paths in C (R+). Its convergence
in distribution requires renormalization. For this, let (an)n∈N be a sequence of pos-
itive real numbers with an → ∞ as n → ∞. For a nonnegative stochastic process
(η (t))t∈[0,∞) with paths in C (R+) and square integrable Xk we introduce the con-
ditions

(Nan ,t )
1

a2
n

[nt]∑
k=1

E
(

X2
k |Fk−1

)
→ η2 (t) in probability as n → ∞

for all t ∈ [0,∞)

and

(CLBan ,t )
1

a2
n

[nt]∑
k=1

E
(

X2
k1{|Xk |≥εan}|Fk−1

)
→ 0 in probability as n → ∞

for all ε > 0 and all t ∈ [0,∞) .

Note that any process η2 appearing in (Nan ,t ) is nonnegative with almost surely
nondecreasing paths. The following result is a special case of Theorem 7.1.
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Theorem 7.4 Let (Xk)k∈N be a square integrable martingale difference sequence
w.r.t. F = (Fk)k≥0. Under (Nan ,t ) and (CLBan ,t ),

1

an
Sn →

(
W
(
η2 (t)

))
t∈[0,∞)

F∞-stably as n → ∞ ,

where W = (W (t))t≥0 is a Brownian motion which is independent of F∞.

The conditions (Nan ,t ) and (CLBan ,t ) may be replaced by

(Ran ,t )
1

a2
n

[nt]∑
k=1

X2
k → η2 (t) in probability as n → ∞ for all t ∈ [0,∞)

and

(M1,an ,t )
1

an
E

(
max

1≤k≤[nt]
|Xk |

)
→ 0 as n → ∞ for all t ∈ [0,∞) ,

which are meaningful for all martingale difference sequences, i.e. without the
assumption of square integrability.

Theorem 7.5 Let (Xk)k∈N be a martingale difference sequence w.r.t. F = (Fk)k≥0.
Under (Ran ,t ) and (M1,an ,t ),

1

an
Sn →

(
W
(
η2 (t)

))
t∈[0,∞)

F∞-stably as n → ∞ ,

where W = (W (t))t≥0 is a Brownian motion which is independent of F∞.

Proof For all n, k ∈ N set Xnk := Xk/an . Because (M1,an ,t ) and (Ran ,t ) are iden-
tical to (M1,t ) and (Rt ) for the array (Xnk)k,n∈N, it follows from 7.2 that for every
a > 0 the conditions (Ta,t ) and (TRa,t ) are satisfied for the array (Xnk)k,n∈N. Now
Proposition 7.3 and Theorem 7.1 imply for

Xnk (a) := Xnk1{|Xnk |≤a} − E
(
Xnk1{|Xnk |≤a}|Fk−1

)
and

S(n,a) (t) :=
[nt]∑
k=1

Xnk (a) + (nt − [nt]) Xn,[nt]+1 (a)

that

S(n,a) →
(

W
(
η2 (t)

))
t∈[0,∞)

F∞-stably in C (R+) as n → ∞ .
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Consequently, for all 0 < T < ∞, by Theorem 3.18 (c) and continuity of the
restriction map,

(
S(n,a) (t)

)
t∈[0,T ] →

(
W
(
η2 (t)

))
t∈[0,T ]

F∞-stably as n → ∞ in C ([0, T ]) .

For the process

1

an
Sn (t) = 1

an

( [nt]∑
k=1

Xk + (nt − [nt]) X[nt]+1

)

=
[nt]∑
k=1

Xnk + (nt − [nt]) Xn,[nt]+1 = S(n) (t)

we have, also by Proposition 7.3,

sup
0≤t≤T

∣∣∣∣ 1an
Sn (t) − S(n,a) (t)

∣∣∣∣ → 0 in probability as n → ∞ .

Theorem 3.18 (a) now implies

(
1

an
Sn (t)

)
t∈[0,T ]

→
(

W
(
η2 (t)

))
t∈[0,T ]

F∞-stably as n → ∞ in C ([0, T ]) ,

and

1

an
Sn →

(
W
(
η2 (t)

))
t∈R+

F∞-stably as n → ∞ in C (R+)

follows from Corollary 3.23. �

Remark 7.6 Let the sequence (an)n≥1 be regularly varying, that is

a[nλ]

an
→ � (λ) as n → ∞ for all λ ∈ (0,∞)

and some positive function � which is necessarily of the form � (λ) = λρ for some
ρ ∈ R+; see [10], Theorem 1.9.5. Assume ρ > 0.
(a) Condition

(Nan )
1

a2
n

n∑
k=1

E
(

X2
k |Fk−1

)
→ η2 in probability as n → ∞

for some real random variable η ≥ 0

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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from Sect. 6.4 implies condition (Nan ,t ) with η2 (t) = �2 (t) η2 for all t ∈ [0,∞)

(with � (0) := 0) because

1

a2
n

[nt]∑
k=1

E
(

X2
k |Fk−1

)
=
(

a[nt]

an

)2 1

a2
[nt]

[nt]∑
k=1

E
(

X2
k |Fk−1

)
→ �2 (t) η2

in probability as n → ∞ for all t ∈ (0,∞).
(b) Condition

(CLBan )
1

a2
n

n∑
k=1

E
(

X2
k1{|Xk |≥εan}|Fk−1

)
→ 0 in probability as n → ∞

for all ε > 0

implies (CLBan ,t ) because

1

a2
n

[nt]∑
k=1

E
(

X2
k1{|Xk |≥εan}|Fk−1

)

=
(

a[nt]

an

)2 1

a2
[nt]

[nt]∑
k=1

E
(

X2
k1{|Xk |≥(εan/a[nt])a[nt]}|Fk−1

)
→ 0

in probability as n → ∞ for all t ∈ (0,∞), taking into account that
(
a[nt]/an

)2 is
bounded in n and εan/a[nt] → ε/� (t) > 0 as n → ∞.
(c) Condition

(Ran )
1

a2
n

n∑
k=1

X2
k → η2 in probability as n → ∞

for some real random variable η ≥ 0

implies condition (Ran ,t )with η2 (t) = �2 (t) η2 for all t ∈ [0,∞) (with� (0) := 0)
by the same argument as in (a).
(d) Condition

(M1,an )
1

an
E

(
max
1≤k≤n

|Xk |
)

→ 0 as n → ∞

implies (M1,an ,t ) because

1

an
E

(
max

1≤k≤[nt]
|Xk |

)
= a[nt]

an

1

a[nt]
E

(
max

1≤k≤[nt]
|Xk |

)
→ 0 as n → ∞

for all t ∈ (0,∞) in view of the boundedness of
(
a[nt]/an

)
.

http://dx.doi.org/10.1007/978-3-319-18329-9_6
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Corollary 7.7 (Classical stable functional central limit theorem) Let (Xk)k≥1 be
an independent sequence such that (|Xk |)k≥1 is an identically distributed sequence,
X1 ∈ L2 (P) and E Xk = 0 for every k ∈ N. Then

1√
n

Sn → σW F∞-mixing as n → ∞ in C (R+) ,

where σ2 = Var X1, F∞ = σ (Xk, k ≥ 1) and W is a Brownian motion which is
independent of F∞.

Proof Take an = √
n, Fk = σ (X1, . . . , Xk), η2 (t) = σ2t in Theorem 7.4, and use

the scaling property of W . �

Corollary 7.8 (Stationary martingale differences) Let (Xk)k≥1 be a stationary mar-
tingale difference sequence w.r.t. F with X1 ∈ L2 (P). Then

1√
n

Sn → E
(

X2
1|IX

)1/2
W F∞-stably as n → ∞ in C (R+),

where IX is the invariant σ-field of the stationary process (Xk)k≥1 and W is a
Brownian motion which is independent of F∞.

Proof The proof of Corollary 6.26 shows that (Xk)k≥1 satisfies (Ran ) and (M1,an )
for an = √

n and η2 = E
(
X2
1|IX

)
. Therefore, according to Remark 7.6 (c) and (d),

(Ran ,t ) and (M1,an ,t ) are also satisfied. Theorem 7.5 implies

1√
n

Sn →
(

W
(
η2 (t)

))
t∈[0,∞)

F∞-stably as n → ∞ in C (R+)

with η2 (t) = E
(
X2
1|IX

)
t for all t ∈ [0,∞). But, by independence ofσ (W ) andF∞

andF∞-measurability of E
(
X2
1|IX

)
,
(
W
(
E
(
X2
1|IX

)
t
))

t∈[0,∞)
and E

(
X2
1|IX

)1/2
W

have the same conditional distribution w.r.t F∞, which yields the assertion. �

Corollary 7.9 (Exchangeable processes) Let (Zk)k≥1 be an exchangeable sequence
of real random variables with Z1 ∈ L2 (P) and let Xk := Zk − E (Z1|TZ ). Then

1√
n

Sn → Var (Z1|TZ)1/2 W F∞-stably as n → ∞ in C (R+),

where TZ is the tail-σ-field of the sequence (Zk)k≥1 and W is a Brownian motion
which is independent of F∞ = σ (Zk; k ≥ 1).

Proof Corollary 7.8; see also the proof of Corollary 6.27. �

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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For arbitrary stationary sequences (Xk)k∈N, Corollary 7.8 combined with
martingale approximations of the partial sums

(∑n
k=1 Xk

)
n∈N yield, under suitable

conditions, a stable functional central limit theorem (cf. e.g. [38, 66]). Recall that by
Example 5.7, a distributional functional central limit theorem in the ergodic case is
automatically mixing.

http://dx.doi.org/10.1007/978-3-319-18329-9_5


Chapter 8
A Stable Limit Theorem with Exponential
Rate

In this chapter we establish a stable limit theorem for “explosive” processes with
exponential rates. The increments of these processes are not asymptotically negligible
and thus do not satisfy the conditional Lindeberg condition. A simple example is
given by an independent sequence (Zn)n≥1 with P Zn = N

(
0, 2n−1

)
, X0 := 0,

Xn := ∑n
i=1 Zi and rate an := 2n/2. The subsequent limit theorem is suitable

for such situations. In order to formulate this limit theorem we need the following
observation.

Lemma 8.1 Let (Zn)n≥0 be an independent and identically distributed sequence
of real random variables and t ∈ R with |t | > 1. Then

(i) t−n Zn → 0 a.s. ,

(ii)
∑∞

n=0 t−n Zn converges a.s. in R ,

(iii)
∑∞

n=0 |t |−n |Zn| < ∞ a.s. ,

(iv) E log+ |Z0| < ∞
are equivalent assertions.

Proof (iii) ⇒ (ii) ⇒ (i) are obvious.
(i) ⇒ (iv). We have P

(
lim supn→∞

{∣∣t−n Zn
∣∣ > 1

}) = 0, implying by the
Borel-Cantelli lemma

∞ >

∞∑
n=0

P
(|t |−n |Zn| > 1

) =
∞∑

n=0

P
(|Z0| > |t |n) =

∞∑
n=0

P
(
log+ |Z0| > n log |t |) ,

hence (iv).
(iv) ⇒ (iii). Choose 1 < s < |t |. Then

∞∑
n=0

P
(|Zn| > sn) =

∞∑
n=0

P
(
log+ |Z0| > n log s

)
< ∞

© Springer International Publishing Switzerland 2015
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and thus again by the Borel-Cantelli lemma, P (lim infn→∞ {|Zn| ≤ sn}) = 1. This
gives (iii). �

In the sequel F = (Fn)n≥0 denotes a filtration in F and F∞ := σ
(⋃

n∈N0
Fn

)
.

For a real process X = (Xn)n≥0 the increments �Xn are defined by �X0 = 0 and
�Xn = Xn − Xn−1 for n ≥ 1.

Theorem 8.2 Let X = (Xn)n≥0 and A = (An)n≥0 be F-adapted real processes,
where A is nonnegative with An > 0 for every n ≥ n0 and some n0 ∈ N, let (an)n≥1
be a sequence in (0,∞) with an → ∞, and let G ∈ F∞ with P (G) > 0. Assume
that the following conditions are satisfied:

(i) There exists a nonnegative real random variable η with P
(
G ∩ {

η2 > 0
})

> 0
and

An

a2
n

→ η2 in PG-probability as n → ∞ ,

(ii) (Xn/an)n≥1 is bounded in PG∩{η2>0}-probability ,
(iii) there exists a p ∈ (1,∞) such that

lim
n→∞

a2
n−r

a2
n

= 1

pr
for every r ∈ N ,

(iv) there exists a probability distribution μ on B (R) with
∫
log+ |x | dμ (x) < ∞

such that

EP

(
exp

(
i t

�Xn

A1/2
n

) ∣∣∣Fn−1

)
→

∫
exp (i t x) dμ (x) in PG∩{η2>0}-probability

as n → ∞ for every t ∈ R.

Then

Xn

A1/2
n

→
∞∑
j=0

p− j/2Z j F∞-mixing under PG∩{η2>0}

and

Xn

an
→ η

∞∑
j=0

p− j/2Z j F∞-stably under PG∩{η2>0}

as n → ∞, where
(
Z j

)
j≥0 denotes an independent and identically distributed

sequence of real random variables independent of F∞ with P Z0 = μ.
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Note that the almost sure convergence of the above series follows from
Lemma 8.1. Condition (ii) means

lim
c→∞ sup

n∈N
PG∩{η2>0}

( |Xn|
an

> c

)
= 0

and is equivalent to the tightness of the sequence
(

P Xn/an

G∩{η2>0}
)

n≥1
. Typical rates are

an = cpn/2 with p ∈ (1,∞) and c ∈ (0,∞).
If ν ∈ M1 (R) denotes the distribution of

∑∞
j=0 p− j/2Z j under P , ϕ : �×R →

R, ϕ (ω, x) := η (ω) x and K (ω, ·) := νϕ(ω,·), then the assertions of Theorem 8.2
may be read as

Xn

A1/2
n

→ ν mixing under PG∩{η2>0}

and

Xn

an
→ K stably under PG∩{η2>0} .

Of course, in this formulation one does not need the P-independence of
(
Z j

)
j≥0

and F∞.
For measures μ which are not symmetric around zero the following variant of

Theorem8.2 turns out to be useful, for example, for the investigation of autoregressive
processes in Chap.9. If μ is symmetric around zero, both theorems coincide.

Theorem 8.3 Replace condition (iv) in Theorem 8.2 by
(v) there exists a probability distribution μ on B (R) with

∫
log+ |x | dμ (x) < ∞

such that

EP

(
exp

(
i t

(−1)n�Xn

A1/2
n

) ∣∣∣Fn−1

)
→

∫
exp (i t x) dμ (x)

in PG∩{η2>0}-probability as n → ∞ for every t ∈ R.

Then

(−1)n Xn

A1/2
n

→
∞∑
j=0

(−1) j p− j/2Z j F∞-mixing under PG∩{η2>0}

and

(−1)n Xn

an
→ η

∞∑
j=0

(−1) j p− j/2Z j F∞-stably under PG∩{η2>0} .

For the proofs, we need the following elementary result.

http://dx.doi.org/10.1007/978-3-319-18329-9_9
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Lemma 8.4 For complex numbers b0, . . . , br , c0, . . . , cr we have

r∏
j=0

c j −
r∏

j=0

b j =
r∑

j=0

d j
(
c j − b j

)
,

where

d j :=
j−1∏
k=0

ck

r∏
k= j+1

bk .

Proof For −1 ≤ j ≤ r let e j := ∏ j
k=0 ck

∏r
k= j+1 bk . Then d j c j = e j and d j b j =

e j−1 for 0 ≤ j ≤ r and therefore

r∑
j=0

d j
(
c j − b j

) =
r∑

j=0

(
e j − e j−1

) = er − e−1 =
r∏

k=0

ck −
r∏

k=0

bk . �

Proof of Theorem 8.2 and Theorem 8.3. Let Q := PG∩{η2>0} and for n ≥ 0 let

Ln := P
(
G ∩ {

η2 > 0
} |Fn

)
P

(
G ∩ {

η2 > 0
}) .

Note that (Ln)n≥0 is the density process of Q with respect to P , that is, Ln =
d Q |Fn/d P|Fn for every n ≥ 0.

We may assume without loss of generality that η2 is F∞-measurable. Then the
martingale convergence theorem yields

Ln → 1G∩{η2>0}
P

(
G ∩ {

η2 > 0
}) = d Q

d P
in L1 (P) as n → ∞ .

Also,
(
Z j

)
j≥1 and F∞ are independent under Q. Furthermore, let

ψ(t) :=
∫

exp(i t x) dμ(x) = EP exp(i t Z0) = EQ exp(i t Z0) ,

where the last equation is a consequence of the independence of F∞ and Z0, and

β :=
{

p1/2 , Theorem 8.2 ,

−p1/2 , Theorem 8.3 .
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Then by (iii), for every r ∈ N, we have an−r/an → |β|−r and for every n ∈ N

bn := (sign(β))n =
{

1 , Theorem 8.2 ,

(−1)n , Theorem 8.3 .

Step 1. For every r ∈ N0 we have

r∑
j=0

bn− j�Xn− j

β j A1/2
n− j

→
r∑

j=0

β− j Z j F∞-mixing under Q as n → ∞ .

By Corollary 3.19 with G = F∞ and E = ⋃
n∈N0

Fn it is enough to show that

∫
F
exp

⎛
⎝i t

r∑
j=0

bn− j�Xn− j

β j A1/2
n− j

⎞
⎠ d Q → Q(F)

r∏
j=0

ψ

(
t

β j

)
as n → ∞

for every t ∈ R, F ∈ E and r ∈ N0. Fixing t ∈ R and using the notation Bn, j :=
exp

(
i tbn− j�Xn− j/β

j A1/2
n− j

)
, C j := ψ

(
t/β j

)
and gn := ∏r

j=0 C j − ∏r
j=0 Bn, j

this means
∫

F gn d Q → 0. Assume F ∈ Fn1 for some n1 ∈ N0. For 0 ≤ j ≤ r , let

Dn, j :=
j−1∏
k=0

Ck

r∏
k= j+1

Bn,k .

Then
∣∣Dn, j

∣∣ ≤ 1, Dn, j is Fn− j−1-measurable and for n ≥ (n0 + r) ∨ (n1 + r + 1)
and 0 ≤ j ≤ r the random variable 1F Ln−r−1 is Fn−r−1-measurable and hence
Fn− j−1-measurable. In view of Lemma 8.4 and since Ln ≤ 1/P

(
G ∩ {

η2 > 0
})

and
∣∣C j − EP

(
Bn, j |Fn− j−1

)∣∣ ≤ 2, we obtain for n ≥ (n0 + r) ∨ (n1 + r + 1)

∣∣∣∣
∫

F
Ln−r−1gn dP

∣∣∣∣ =
∣∣∣∣∣∣

r∑
j=0

∫
F

Ln−r−1Dn, j
(
C j − EP

(
Bn, j |Fn− j−1

))
dP

∣∣∣∣∣∣
≤

r∑
j=0

∫
Ln−r−1

∣∣C j − EP
(
Bn, j |Fn− j−1

)∣∣ dP

≤
r∑

j=0

∫ ∣∣C j − EP
(
Bn, j |Fn− j−1

)∣∣ d Q

+ 2
r∑

j=0

∫
(G∩{η2>0})c

Ln−r−1 dP .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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It follows from (iv) and (v), respectively, that∫ ∣∣C j − EP
(
Bn, j |Fn− j−1

)∣∣ d Q → 0 as n → ∞ .

Moreover, ∫
(G∩{η2>0})c

Ln−r−1 dP → Q
((

G ∩
{
η2 > 0

})c) = 0

so that
∫

F Ln−r−1gn dP → 0 as n → ∞. Since |gn| ≤ 2, we get∣∣∣∣
∫

F
gn dQ −

∫
F

Ln−r−1gn dP

∣∣∣∣ ≤ 2
∫ ∣∣∣∣d Q

d P
− Ln−r−1

∣∣∣∣ dP → 0 as n → ∞ ,

which gives the assertion.
Step 2. For any r ∈ N0, we have

Xn − Xn−r−1

bn A1/2
n

→
r∑

j=0

β− j Z j F∞-mixing under Q as n → ∞ .

In fact, for 0 ≤ j ≤ r we obtain

bn− j�Xn− j

β j A1/2
n− j

− an−r−1�Xn− j

anbn A1/2
n−r−1

= bn− j�Xn− j

β j A1/2
n− j

(
1 − an− jβ

j

anbn− j bn

A1/2
n− j/an− j

A1/2
n−r−1/an−r−1

)
→ 0

in Q-probability as n → ∞, since by (i) and (iii) the second factor converges to zero
in Q-probability and the first factor converges by Step 1 with r = 0 in distribution
under Q. Consequently,

r∑
j=0

bn− j�Xn− j

β j A1/2
n− j

− an−r−1

anbn A1/2
n−r−1

r∑
j=0

�Xn− j → 0 in Q-probability as n → ∞ .

Since
∑r

j=0 �Xn− j = Xn − Xn−r−1, Step 1 and Theorem 3.18 (a) imply

an−r−1

an

Xn − Xn−r−1

bn A1/2
n−r−1

→
r∑

j=0

β− j Z j F∞-mixing under Q .

Using (i) again we have

A1/2
n−r−1/an−r−1

A1/2
n /an

→ 1 in Q-probability ,

so that the assertion follows from Theorem 3.18 (b) and (c).

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Step 3. For every ε > 0 we have

lim
r→∞ lim sup

n→∞
Q

(∣∣∣∣∣ Xn

bn A1/2
n

− Xn − Xn−r−1

bn A1/2
n

∣∣∣∣∣ > ε

)
= 0 .

Indeed, for r ∈ N0, n ≥ n0 ∨ (r + 2) and δ, ε > 0 we obtain the estimate

Q

(
|Xn−r−1|

A1/2
n

> ε

)

= Q

(
|Xn−r−1|

A1/2
n

> ε,
An

a2
n

> δ

)
+ Q

(
|Xn−r−1|

A1/2
n

> ε,
An

a2
n

≤ δ

)

≤ Q
(
|Xn−r−1| > ε

√
δan

)
+ Q

(
An

a2
n

≤ δ, η2 > 2δ

)
+ Q

(
η2 ≤ 2δ

)

≤ sup
j∈N

Q

(∣∣X j
∣∣

a j
>

ε
√

δan

an−r−1

)
+ Q

(∣∣∣∣ An

a2
n

− η2
∣∣∣∣ > δ

)
+ Q

(
η2 ≤ 2δ

)
.

Condition (iii) yields an/an−r−1 ≥ p(r+1)/2/2 for n ≥ n2(r), say. This implies in
view of (i), (ii) and the subadditivity of limsup

lim sup
r→∞

lim sup
n→∞

Q

(
|Xn−r−1|

A1/2
n

> ε

)

≤ lim sup
r→∞

(
sup
j∈N

Q

(∣∣X j
∣∣

a j
>

1

2
ε
√

δ p(r+1)/2

)
+ Q

(
η2 ≤ 2δ

))

= Q
(
η2 ≤ 2δ

)
.

We have Q
(
η2 ≤ 2δ

) → Q
(
η2 = 0

) = 0 as δ → 0, hence the assertion.
Step 4. Since

r∑
j=0

β− j Z j →
∞∑
j=0

β− j Z j P-a.s.

and hence F∞-mixing under Q as r → ∞, we obtain

Xn

bn A1/2
n

→
∞∑
j=0

β− j Z j F∞-mixing under Q

from Steps 2 and 3 and Theorem 3.21. By (i), A1/2
n /an → η in Q-probability so that

by Theorem 3.18

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Xn

bnan
= Xn

bn A1/2
n

A1/2
n

an
→ η

∞∑
j=0

β− j Z j F∞-stably under Q . �

In the situation of Theorem 8.2 or 8.3 with μ �= δ0 the conditional Lindeberg
condition under P or only under PG∩{η2>0} (with rate an) cannot be satisfied for

L2 (P)-processes X . Otherwise, we have �Xn/an → 0 in PG∩{η2>0}-probability
(cf. Proposition 6.6) and hence �Xn/A1/2

n → 0 in PG∩{η2>0}-probability by con-

dition (i), in contradiction to the mixing convergence bn�Xn/A1/2
n → μ under

PG∩{η2>0}, which has been shown in Step 1 of the above proof.

Corollary 8.5 (Stable central limit theorem) Assume μ = N
(
0, σ 2

)
for some σ 2 ∈

[0,∞) in Theorem 8.2 (iv). Then

Xn

A1/2
n

→ Z F∞-mixing under PG∩{η2>0}

and

Xn

an
→ ηZ F∞-stably under PG∩{η2>0} ,

where Z is P-independent of F∞ and P Z = N
(
0, σ 2 p/ (p − 1)

)
.

Proof Since
∑∞

j=0 p− j = p/ (p − 1), the assertion follows directly from
Theorem 8.2. �

The assertions of Corollary 8.5 may also be read as

Xn

A1/2
n

→ N

(
0,

σ 2 p

p − 1

)
mixing under PG∩{η2>0}

and

Xn

an
→ N

(
0,

σ 2 p

p − 1
η2

)
stably under PG∩{η2>0} .

For L2-martingales X and A = 〈X〉 the above central limit theorem for G = �

is a consequence of a limit theorem of Scott [88] (up to a non-trivial improvement
concerning the rate an), where the quadratic characteristic 〈X〉 of X is given by

〈X〉0 = 0 and 〈X〉n = ∑n
j=0 E

((
�X j

)2 |F j−1

)
for n ≥ 1.

Remark 8.6 If in Theorem8.2 or 8.3 the process X is anL2-martingale and A = 〈X〉,
then condition (i) with G = � implies that (Xn/an)n≥1 is bounded in P-probability
and, in particular, condition (ii) holds. In fact, since

(
X2
0 + 〈X〉n

)
/a2

n → η2 in

http://dx.doi.org/10.1007/978-3-319-18329-9_6
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P-probability, the sequence
((

X2
0 + 〈X〉n

)
/an

)
n≥1 is bounded in P-probability. By

the Lenglart inequality (see Theorem A.8 (a)) we have for every n ≥ 1 and b, c > 0

P

( |Xn|
an

≥ b

)
= P

(
X2

n ≥ b2a2
n

)
≤ c

b2
+ P

(
X2
0 + 〈X〉n > ca2

n

)

so that

sup
n∈N

P

( |Xn|
an

≥ b

)
≤ c

b2
+ sup

n∈N
P

(
X2
0 + 〈X〉n

a2
n

> c

)
.

This yields the assertion (cf. Proposition 6.9).

Exercise 8.1 Assume that μ = C (0, b) for some b ∈ (0,∞) in Theorem 8.2 (iv),
where C (0, b) denotes the Cauchy-distribution with scale parameter b (given by the
λ-density x �→ 1

πb(1+x2/b2)
, x ∈ R). Show that

Xn

A1/2
n

→ Z F∞-mixing under PG∩{η2>0} as n → ∞

and

Xn

an
→ ηZ F∞-stably under PG∩{η2>0} as n → ∞ ,

where Z is P-independent of F∞ and P Z = C
(
0, b

√
p/

(√
p − 1

))
.

An L2-martingale X = (Xn)n≥0 is said to have F-conditional Gaussian incre-
ments if P�Xn |Fn−1 = N (0,� 〈X〉n) for every n ∈ N.

Corollary 8.7 Let X = (Xn)n≥0 be an L2-martingale with F-conditional Gaussian
increments and 〈X〉n > 0 for every n ≥ n0 and some n0 ∈ N. Assume that conditions
(i) and (iii) in Theorem 8.2 are satisfied with G = � and A = 〈X〉. Then

Xn

〈X〉1/2n

→ N F∞-mixing under P{η2>0} as n → ∞

and

Xn

an
→ ηN F∞-stably under P{η2>0} as n → ∞ ,

where N is P-independent of F∞ and P N = N (0, 1).

http://dx.doi.org/10.1007/978-3-319-18329-9_6
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Proof Conditions (i) and (iii) of Theorem 8.2 are fulfilled by assumption and imply,
as n → ∞,

〈X〉n

pa2
n−1

= a2
n

pa2
n−1

〈X〉n

a2
n

→ η2 in P-probability

which yields

� 〈X〉n

a2
n−1

→ pη2 − η2 = (p − 1) η2 in P-probability .

This implies

� 〈X〉n

a2
n

= a2
n−1

a2
n

� 〈X〉n

a2
n−1

→ p − 1

p
η2 in P-probability

and therefore

� 〈X〉n

〈X〉n
→ p − 1

p
in P{η2>0}-probability .

Furthermore, since 〈X〉n is Fn−1-measurable,

P(�Xn ,〈X〉n)|Fn−1 = P�Xn |Fn−1 ⊗ δ〈X〉n = N (0,� 〈X〉n) ⊗ δ〈X〉n

(see Lemma A.5 (a)) so that

EP

(
exp

(
i t

�Xn

〈X〉1/2n

) ∣∣∣Fn−1

)
=

∫
exp

(
i t

x

〈X〉1/2n

)
N (0,� 〈X〉n) (dx)

= exp

(
− t2� 〈X〉n

2 〈X〉n

)
→ exp

(
− t2 (p − 1)

2p

)
in P{η2>0}-probability

as n → ∞ for every t ∈ R. The assertion follows from Corollary 8.5 with G = �

and Remark 8.6. �

Corollary 8.8 In the situation of Theorem 8.2 with G = � replace condition
(iv) by

(vi) there exist a probability distribution μ on B (R) with
∫
log+ |x | dμ (x) < ∞

and a real F∞-measurable discrete random variable S such that

EP

(
exp

(
i t

�Xn

A1/2
n

) ∣∣∣Fn−1

)
→

∫
exp (i t Sx) dμ (x) in P{η2>0}-probability

as n → ∞ for every t ∈ R.
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Then

Xn

A1/2
n

→ S
∞∑
j=0

p− j/2Z j F∞-stably under P{η2>0}

and

Xn

an
→ Sη

∞∑
j=0

p− j/2Z j F∞-stably under P{η2>0}

as n → ∞.

Proof Let supp
(
P S

) = {sk : k ≥ 1}, Gk := {S = sk} and

I :=
{

k ≥ 1 : P
(

Gk ∩
{
η2 > 0

})
> 0

}
.

Then

EP

(
exp

(
i t

�Xn

A1/2
n

) ∣∣∣Fn−1

)
→

∫
exp (i tsk x) dμ (x) in PGk∩{η2>0}-probability

as n → ∞ for every k ∈ I . Therefore, by Theorem 8.2

Xn

A1/2
n

→ sk

∞∑
j=0

p− j/2Z j F∞-mixing under PGk∩{η2>0}

and

Xn

an
→ skη

∞∑
j=1

p− j/2Z j F∞-stably under PGk∩{η2>0} ,

which can be read as

Xn

A1/2
n

→ S
∞∑
j=0

p− j/2Z j F∞-mixing under PGk∩{η2>0}

and

Xn

an
→ Sη

∞∑
j=1

p− j/2Z j F∞-stably under PGk∩{η2>0}
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for every k ∈ I , as n → ∞. Using
∑

k∈I P{η2>0} (Gk) PGk∩{η2>0} = P{η2>0}, the
assertion follows from Proposition 3.24. �

In just the same way, one deduces from Theorem 8.3 the

Corollary 8.9 In the situation of Theorem 8.3 with G = � replace condition
(v) by

(vii) there exist a probability distribution μ on B (R) with
∫
log+ |x | dμ (x) < ∞

and a real F∞-measurable discrete random variable S such that

EP

(
exp

(
i t

(−1)n �Xn

A1/2
n

) ∣∣∣Fn−1

)
→

∫
exp (i t Sx) dμ (x)

in P{η2>0}-probability as n → ∞ for every t ∈ R.

Then

(−1)n Xn

A1/2
n

→ S
∞∑
j=0

(−1) j p− j/2Z j F∞-stably under P{η2>0}

and

(−1)n Xn

an
→ Sη

∞∑
j=0

(−1) j p− j/2Z j F∞-stably under P{η2>0}

as n → ∞.

The Corollaries 8.8 and 8.9 may possibly be extended to more general random
variables S. But for our purposes the results are good enough.

The subsequent example provides an illustration of Corollary 8.7.

Example 8.10 (Explosive Gaussian autoregression of order one) Let (Zn)n≥1 be an
independent and identically distributed sequence of N

(
0, σ 2

)
-distributed random

variables with σ 2 ∈ (0,∞) and let X0 ∈ L2 (P) be independent of (Zn)n≥1.
Consider the autoregression defined by

Xn = ϑ Xn−1 + Zn, n ≥ 1 ,

where ϑ ∈ R. The least squares estimator of ϑ on the basis of the observations
X0, X1, . . . , Xn is given by

ϑ̂n =
∑n

j=1 X j X j−1∑n
j=1 X2

j−1

, n ≥ 2 .

Note that X2
n > 0 for all n ∈ N because, by the independence of Xn−1 and Zn ,

the distribution of Xn is continuous. We assume |ϑ | > 1 and derive a stable central
limit theorem for ϑ̂n . Let Fn := σ (X0, X1, . . . , Xn) = σ (X0, Z1, . . . , Zn), F :=

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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(Fn)n≥0 and Mn := ∑n
j=1 X j−1Z j/σ

2 with M0 = 0. Then M is an L2-martingale

w.r.t. the filtration F with quadratic characteristic 〈M〉n = ∑n
j=1 X2

j−1/σ
2. Since

n∑
j=1

X j X j−1 =
n∑

j=1

(
ϑ X j−1 + Z j

)
X j−1 = ϑ

n∑
j=1

X2
j−1 + σ 2Mn ,

we obtain ϑ̂n − ϑ = Mn/ 〈M〉n for all n ≥ 2. By induction, Xn = ϑn X0 +∑n
j=1 ϑn− j Z j for all n ≥ 0 so that by Lemma 8.1 (or the martingale convergence

theorem)

ϑ−n Xn → Y := X0 +
∞∑
j=1

ϑ− j Z j a.s. as n → ∞

and clearly PY−X0 = N
(
0, σ 2/(ϑ2 − 1)

)
. In particular, PY is continuous. Let

an := |ϑ |n /
(
ϑ2 − 1

)
for all n ∈ N. The discrete rule of de l’Hospital in Lemma 6.28

(b) yields

∑n
j=1 X2

j−1∑n
j=1 ϑ2( j−1)

→ Y 2 a.s. as n → ∞ .

Since
∑n

j=1 ϑ2( j−1) = (
ϑ2n − 1

)
/
(
ϑ2 − 1

) ∼ a2
n

(
ϑ2 − 1

)
, we get

〈M〉n

a2
n

→
(
ϑ2 − 1

)
Y 2

σ 2 =: η2 a.s. as n → ∞

and P
(
η2 > 0

) = 1. Furthermore, M obviously has F-conditional Gaussian incre-
ments. Consequently, by Corollary 8.7

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

) = σ Mn

〈M〉1/2n

→ σ N F∞-mixing ,

where N is independent of F∞ (and thus of Y ) and P N = N (0, 1), and using
Theorem 3.18

an
(
ϑ̂n − ϑ

) = a2
n

〈M〉n

Mn

an
→ N

η
= σ N(

ϑ2 − 1
)1/2 |Y |

F∞-stably as n → ∞ .

By the symmetry around zero of PU , we obtain, as n → ∞,

ϑn

ϑ2 − 1

(
ϑ̂n − ϑ

) → σ N(
ϑ2 − 1

)1/2 |Y |
F∞-stably

http://dx.doi.org/10.1007/978-3-319-18329-9_6
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or, what is that same in view of Lemma A.4 (c),

ϑn

ϑ2 − 1

(
ϑ̂n − ϑ

) → σ N(
ϑ2 − 1

)1/2
Y

F∞-stably .

If P X0 = N
(
0, τ 2

)
with τ ∈ [0,∞), then using the independence of Y and N we

get Pσ N/
(
ϑ2−1

)1/2
Y = C (0, b) with b = (

τ 2
(
ϑ2 − 1

)
/σ 2 + 1

)−1/2
so that

ϑn

ϑ2 − 1

(
ϑ̂n − ϑ

) d→ C (0, b) .

In case τ 2 = 0, that is, X0 = 0, we obtain b = 1. This distributional convergence of
the estimator is a classical result due to White [97]. The distributional convergence
under random norming is contained in [5], Theorem 2.8 and [98]. General (non-
normal) innovations Zn are treated in the next chapter. �

Further applications can be found in Chaps. 9 and 10.

http://dx.doi.org/10.1007/978-3-319-18329-9_2
http://dx.doi.org/10.1007/978-3-319-18329-9_9
http://dx.doi.org/10.1007/978-3-319-18329-9_10


Chapter 9
Autoregression of Order One

In this and the subsequent chapter we present concrete applications of previous
stable limit theorems. Here we consider an autoregressive process of order one X =
(Xn)n≥0 generated recursively by

Xn = ϑ Xn−1 + Zn , n ≥ 1 ,

where ϑ ∈ R, (Zn)n≥1 is an independent and identically distributed sequence of
real random variables and X0 is a real random variable independent of (Zn)n≥1. We
assume that P Z1 is continuous. Then X2

n > 0 almost surely for all n ≥ 1 since
by independence of Xn−1 and Zn , P Xn is continuous for n ≥ 1. The usual least
squares estimator for the parameter ϑ on the basis of the observations X0, . . . , Xn

is given by

ϑ̂n :=
∑n

j=1 X j X j−1∑n
j=1 X2

j−1

, n ≥ 2 ,

provided Z1 ∈ L1 (P) and E Z1 = 0. In the explosive case |ϑ | > 1, the effect of
the mean of Z1 disappears asymptotically so that ϑ̂n is also reasonable in that case
if E Z1 �= 0. We prove stable limit theorems for ϑ̂n under deterministic and random
norming.

Let Fn := σ (X0, X1, . . . , Xn) = σ (X0, Z1, . . . , Zn) for all n ≥ 0 and F :=
(Fn)n≥0. Define F-adapted processes by

An :=
n∑

j=1

X2
j−1 with A0 = 0

and

© Springer International Publishing Switzerland 2015
E. Häusler and H. Luschgy, Stable Convergence and Stable Limit Theorems,
Probability Theory and Stochastic Modelling 74,
DOI 10.1007/978-3-319-18329-9_9
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Bn :=
n∑

j=1

X j−1Z j with B0 = 0 .

Since
∑n

j=1 X j X j−1 =∑n
j=1

(
ϑ X j−1 + Z j

)
X j−1 = ϑ An + Bn , we obtain

ϑ̂n − ϑ = Bn/An for all n ≥ 2 .

Furthermore, by induction, we have Xn = ϑn X0 +∑n
j=1 ϑn− j Z j for all n ≥ 0.

If X0, Z1 ∈ L2 and E Z1 = 0 then B = (Bn)n≥0 is an L2-martingale w.r.t. F
with 〈B〉 = σ 2A. Therefore, in this setting, the strong law of large numbers for
martingales of Theorem A.9 yields ϑ̂n → ϑ almost surely, which says that ϑ̂n is
a strongly consistent estimator of ϑ (using

∑∞
j=1 Z2

j ≤ 2
(
1 + ϑ2

)∑∞
j=1 X2

j−1, so
that 〈B〉∞ = ∞ almost surely by Kolmogorov’s strong law of large numbers).

The ergodic case

In the ergodic case |ϑ | < 1 stable asymptotic normality of ϑ̂n holds.

Theorem 9.1 Assume |ϑ | < 1, X0, Z1 ∈ L2 and E Z1 = 0. Then

√
n
(
ϑ̂n − ϑ

)→ N
(
0, 1 − ϑ2

)
mixing

and

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ N
(
0, σ 2

)
mixing

as n → ∞, where σ 2 := Var Z1.

Note that σ 2 > 0 by the continuity of P Z1 . The above statements may also be
read as

√
n
(
ϑ̂n − ϑ

)→
(
1 − ϑ2

)1/2
N F∞-mixing

and

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ σ N F∞-mixing ,

where N is a real random variable independent of F∞ with P N = N (0, 1). Dis-
tributional convergence under deterministic norming was first investigated in [5],
Theorem 4.3.

The main idea of the following proof is taken from [74], p. 174 and p. 186.

http://dx.doi.org/10.1007/978-3-319-18329-9_4
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Proof of Theorem 9.1. The process B = (Bn)n≥0 is a square integrable F-martingale
with quadratic characteristic 〈B〉 = σ 2A, where A = (An)n≥n . We apply the stable
central limit theorem of Theorem 6.23.

Step 1. We rely on the fact that X2 = (X2
n

)
n≥0 is uniformly integrable. To prove

this, break Zn into a sum Zn = Vn + Wn , where

Vn = Vn (c) := Zn1{|Zn |≤c} − E Zn1{|Zn |≤c} and Wn = Wn (c) := Zn − Vn

for some large truncation level c ∈ (0,∞). Define

Gn = Gn (c) :=
n∑

j=1

ϑn− j V j and Hn := Hn (c) :=
n∑

j=1

ϑn− j W j .

Then Xn = ϑn X0 + Gn + Hn for n ≥ 0. Observe that

|Gn| ≤
n∑

j=1

|ϑ |n− j
∣∣Vj
∣∣ ≤ 2c

n∑
j=1

|ϑ |n− j = 2c
n−1∑
i=0

|ϑ |i = 2c
1 − |ϑ |n
1 − |ϑ | ≤ 2c

1 − |ϑ |

for every n ≥ 0 so that G = (Gn)n≥0 is uniformly bounded. Since the sequence
(Wn)n≥1 is independent and identically distributed with EW1 = E Z1 = 0, the
process H = (Hn)n≥0 satisfies

E H2
n =

n∑
j=1

ϑ2(n− j)EW 2
1 = EW 2

1
1 − ϑ2n

1 − ϑ2 ≤ EW 2
1

1 − ϑ2

for every n ≥ 0. Using W1 = Z11{|Z1|>c} + E Z11{|Z1|≤c} and Z1 ∈ L2 (P), domi-
nated convergence yields EW1 (c)2 → (E Z1)

2 = 0 as c → ∞. Let ε > 0. Choose
c ∈ (0,∞) such that supn≥0 E Hn (c)2 ≤ EW1 (c)2 /

(
1 − ϑ2

) ≤ ε/2 and then
a ≥ 8c2/ (1 − |ϑ |)2. Since

{
G2

n + H2
n > a

}
⊂
{

G2
n ≤ H2

n , H2
n > a/2

}
∪
{

G2
n ≥ H2

n , G2
n > a/2

}
we obtain(

G2
n + H2

n

)
1{G2

n+H2
n >a} ≤ 2H2

n 1{H2
n >a/2} + 2G2

n1{G2
n>a/2} ≤ 2H2

n

for every n ≥ 0 and hence

sup
n≥0

E
(

G2
n + H2

n

)
1{G2

n+H2
n >a} ≤ 2 sup

n≥0
E H2

n ≤ ε .

http://dx.doi.org/10.1007/978-3-319-18329-9_6
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This gives uniform integrability of G2 + H2, which implies uniform integrability of
X2 because X2

n ≤ 4
(
X2
0 + G2

n + H2
n

)
. In particular, X2 is L1-bounded.

Step 2. Now let us verify the assumptions of Theorem 6.23. We have for n ≥ 1

n∑
j=1

X2
j =

n∑
j=1

(
ϑ X j−1 + Z j

)2 = ϑ2An + 2ϑ Bn +
n∑

j=1

Z2
j

and thus by rearranging and dividing by n,

1 − ϑ2

σ 2n
〈B〉n = 1

n

(
X2
0 − X2

n

)
+ 2ϑ

n
Bn + 1

n

n∑
j=1

Z2
j .

On the right-hand side, the first term converges in L1 to zero, because X2 is L1-
bounded. The middle term converges in L2 to zero, because

1

n2 E B2
n = 1

n2 E 〈B〉n = σ 2

n2

n∑
j=1

E X2
j−1 ≤ σ 2n

n2 sup
n≥0

E X2
n → 0 .

The third term converges almost surely to σ 2 by the Kolmogorov strong law of large
numbers. Consequently,

〈B〉n

n
→ σ 4

1 − ϑ2 in probability as n → ∞ .

This is condition (Nan ) with an = √
n.

As concerns the conditional Lindeberg condition (CLBan ), we have for ε > 0 and
n ≥ 1

Ln (ε) := 1

n

n∑
j=1

E
(

X2
j−1Z2

j1{|X j−1Z j |≥ε
√

n}|F j−1

)

= 1

n

n∑
j=1

X2
j−1E

(
Z2

j1{|X j−1Z j |≥ε
√

n}|F j−1

)

≤ 1

n

n∑
j=1

X2
j−1E

(
Z2

j1
{

X2
j−1≥ε

√
n
} + Z2

j1
{

Z2
j ≥ε

√
n
}|F j−1

)

= σ 2

n

n∑
j=1

X2
j−11

{
X2

j−1≥ε
√

n
} + 1

nσ 2
〈B〉n E Z2

11
{

Z2
1≥ε

√
n
} .

The first term converges in L1 to zero because X2 is uniformly integrable by Step 1
and hence

http://dx.doi.org/10.1007/978-3-319-18329-9_6
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1

n

n∑
j=1

E X2
j−11

{
X2

j−1≥ε
√

n
} ≤ sup

j≥0
E X2

j1
{

X2
j ≥ε

√
n
} → 0 as n → ∞ .

The second term converges to zero in probability because Z1 ∈ L2 and (Nan ) holds.
Consequently, Ln (ε) → 0 in probability as n → ∞.

Now Theorem 6.23 yields

Bn√
n

→ N

(
0,

σ 4

1 − ϑ2

)
mixing .

Using Theorem 3.7 (b), (c), this implies

√
n
(
ϑ̂n − ϑ

) =
√

nBn

An
= Bn/

√
n

〈B〉n /nσ 2 → N
(
0, 1 − ϑ2

)
mixing

and

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

) = Bn

A1/2
n

= σ Bn

〈B〉1/2n

= σ Bn/
√

n

(〈B〉n /n)1/2
→ N

(
0, σ 2) mixing

as n → ∞. �
The explosive case

In the explosive case |ϑ | > 1 the asymptotic behavior of ϑ̂n depends on the
distribution of the innovations Zn . Let sign := 1(0,∞) − 1(−∞,0).

Theorem 9.2 Assume |ϑ | > 1 and E log+ |Z1| < ∞. Let Y := X0 +∑∞
j=1 ϑ− j Z j

(see Lemma 8.1) and let U be a real random variable independent of F∞ with
PU = PY−X0 . Then

ϑn (ϑ̂n − ϑ
)→

(
ϑ2 − 1

)
U

Y
F∞-stably ,

(sign (ϑ))n

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ sign (Y )
(
ϑ2 − 1

)1/2
U F∞-stably

and, if P Z1 is symmetric around zero,

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→
(
ϑ2 − 1

)1/2
U F∞-mixing

as n → ∞.

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_8
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Under the stronger assumptions X0, Z1 ∈ L2 and E Z1 = 0 distributional
convergence was first investigated in [5], and stable convergence has been touched in
[95]. Under the assumptions above, distributional convergence under deterministic
norming has been stated in [54], Lemma 3.1 in case X0 = 0 without proof.

In the special case of normal innovations, that is P Z1 = N
(
0, σ 2

)
with σ 2 ∈

(0,∞), Theorem 9.2 provides again the results of Example 8.10 (without assuming
X0 ∈ L2).

Proof We apply the stable limit Theorems 8.2 and 8.3, or more precisely, the
Corollaries 8.8 and 8.9. We have ϑ−n Xn → Y almost surely as n → ∞ by
Lemma 8.1 so that the discrete rule of de l’Hospital, Lemma 6.28 (b), yields
An/

∑n
j=1 ϑ2( j−1) → Y 2 almost surely. We may assume that Y is F∞-measurable.

Letan := |ϑ |n ,n ≥ 1. Since
∑n

j=1 ϑ2( j−1) = (ϑ2n − 1
)
/
(
ϑ2 − 1

) ∼ a2
n/
(
ϑ2 − 1

)
as n → ∞, we get

An

a2
n

→ Y 2

ϑ2 − 1
=: η2 a.s.

The distribution PY is continuous, hence P
(
η2 > 0

) = 1. This is condition (i) in
Theorem 8.2 with G = �. Condition (iii) of Theorem 8.2 holds with p = ϑ2. As
for condition (ii) of Theorem 8.2 with respect to the process B, note first that

1

an
|Bn| ≤ 1

an

n∑
j=1

∣∣X j−1
∣∣ ∣∣Z j

∣∣ =
∑n

j=1

∣∣X j−1
∣∣ ∣∣Z j

∣∣∑n
j=1 |ϑ | j−1

∣∣Z j
∣∣
∑n

j=1 |ϑ | j−1
∣∣Z j
∣∣

|ϑ |n

and |Xn−1| |Zn| /|ϑ |n−1 |Zn| → |Y | almost surely as n → ∞. Since

∞∑
n=1

P
(
|ϑ |n−1 |Zn| > 1

)
=

∞∑
n=1

P
(
|Z1| > |ϑ |−n+1

)
= ∞ ,

the Borel-Cantelli lemma yields P
(
lim supn→∞

{|ϑ |n−1 |Zn| > 1
}) = 1 and there-

fore,
∑∞

n=1 |ϑ |n−1 |Zn| = ∞ almost surely. Consequently, Lemma 6.28 (b) applies
and gives

∑n
j=1

∣∣X j−1
∣∣ ∣∣Z j

∣∣∑n
j=1 |ϑ | j−1

∣∣Z j
∣∣ → |Y | a.s.

Moreover, using Lemma 8.1,

1

|ϑ |n
n∑

j=1

|ϑ | j−1
∣∣Z j
∣∣ = n∑

j=1

∣∣Z j
∣∣

|ϑ |n− j+1
d=

n∑
k=1

|Zk |
|ϑ |k →

∞∑
k=1

|Zk |
|ϑ |k < ∞ a.s.

http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_8
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This implies that
(∑n

j=1

∣∣X j−1Z j
∣∣ /an

)
n≥1

, as a product of an almost surely

convergent sequence and a distributionally convergent sequence of real random vari-
ables, is bounded in probability and thus (Bn/an)n≥1 is bounded in probability.

Let ϕ denote the Fourier transform of P Z1 . Since An is Fn−1-measurable, we
obtain for all t ∈ R and n ≥ 2

E

(
exp

(
i t

�Bn

A1/2
n

) ∣∣∣Fn−1

)
= E

(
exp

(
i t

Xn−1Zn

A1/2
n

) ∣∣∣Fn−1

)

=
∫

exp

(
i t

Xn−1z

A1/2
n

)
d P Z1 (z) = ϕ

(
t Xn−1

A1/2
n

)
.

If ϑ > 1, then

Xn−1

A1/2
n

= Xn−1/ϑ
n−1

A1/2
n /ϑn−1

→ Y

ϑη
= Y

(
ϑ2 − 1

)1/2
|Y | ϑ = sign (Y )

(
ϑ2 − 1

)1/2
ϑ

a.s.

and if ϑ < −1,

(−1)n Xn−1

A1/2
n

= (−1)n Xn−1/ϑ
n−1

A1/2
n /ϑn−1

= an

A1/2
n

ϑn−1

(−1)n an

Xn−1

ϑn−1

→ Y

ϑη
= sign (Y )

(
ϑ2 − 1

)1/2
ϑ

a.s.

Let (Wn)n≥0 denote an independent and identically distributed sequence of real
random variables independent of F∞ with PW0 = P Z1 . In case ϑ > 1, we obtain

E

(
exp

(
i t

�Bn

A1/2
n

) ∣∣∣Fn−1

)
= ϕ

(
t Xn−1

A1/2
n

)
→ ϕ

(
t sign (Y )

(
ϑ2 − 1

)1/2
ϑ

)
P-a.s.

as n → ∞ for every t ∈ R. This is condition (vi) in Corollary 8.8 with μ =
P
(
ϑ2−1

)1/2
Z1/ϑ and S = sign (Y ). From Corollary 8.8 follows

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

) = Bn

A1/2
n

→ sign (Y )

(
ϑ2 − 1

)1/2
ϑ

∞∑
j=0

(
ϑ2
)− j/2

W j

F∞-stably. Since

http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8


166 9 Autoregression of Order One

(
ϑ2 − 1

)1/2
ϑ

∞∑
j=0

(
ϑ2
)− j/2

W j =
(
ϑ2 − 1

)1/2
ϑ

∞∑
j=0

ϑ− j W j

d=
(
ϑ2 − 1

)1/2 ∞∑
k=1

ϑ−k Wk
d=
(
ϑ2 − 1

)1/2
U

(where distributional equality is always meant under P), this can be read as

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ sign (Y )
(
ϑ2 − 1

)1/2
U F∞-stably

(see Lemma A.5 (b)). In case ϑ < −1, we obtain

E

(
exp

(
i t

(−1)n�Bn

A1/2
n

) ∣∣∣Fn−1

)

= ϕ

(
t (−1)n Xn−1

A1/2
n

)
→ ϕ

(
t sign (Y )

(
ϑ2 − 1

)1/2
ϑ

)

P-almost surely as n → ∞ for every t ∈ R so that condition (vii) in Corollary 8.9

is satisfied with μ = P
(
ϑ2−1

)1/2
Z1/ϑ and S = sign (Y ). Thus Corollary 8.9 yields

(−1)n

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)

= (−1)n Bn

A1/2
n

→ sign (Y )

(
ϑ2 − 1

)1/2
ϑ

∞∑
j=0

(−1) j (ϑ2)− j/2W j

F∞-stably. Since

(
ϑ2 − 1

)1/2
ϑ

∞∑
j=0

(−1) j
(
ϑ2
)− j/2

W j =
(
ϑ2 − 1

)1/2
ϑ

∞∑
j=0

ϑ− j W j
d= (ϑ2 − 1)1/2U ,

this reads as

(−1)n

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ sign (Y )
(
ϑ2 − 1

)1/2
U F∞-stably .

In both cases we thus obtain

http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
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(sign(ϑ))n

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ sign(Y )(ϑ2 − 1)1/2U F∞-stably .

As for the deterministic norming, we can conclude using Theorem 3.18

ϑn (ϑ̂n − ϑ
) = ϑn Bn

An
= (sign(ϑ))nan Bn

An
= an

A1/2
n

(sign(ϑ))n Bn

A1/2
n

= an

A1/2
n

(sign(ϑ))n

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)

→ sign(Y )(ϑ2 − 1)U

|Y | = (ϑ2 − 1)U

Y
F∞-stably .

Now assume that P Z1 is symmetric around zero. Then PU is also symmetric
around zero. Hence, by Lemma A.5 (c), Psign(Y )(ϑ2−1)1/2U |F∞ = P(ϑ2−1)1/2U so
that

(sign(ϑ))n

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ (ϑ2 − 1)1/2U F∞-mixing .

Thus, again by the symmetry of PU ,

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ (ϑ2 − 1)1/2U F∞-mixing . �

Exercise 9.1 Assume |ϑ | > 1 and P Z1 = C(0, b) with scale parameter b ∈ (0,∞).
Show that

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ C

(
0,

b(ϑ2 − 1)1/2

|ϑ | − 1

)
mixing

as n → ∞. More generally, if P Z1 = Sα (b), the symmetric α-stable distribution
with Fourier transform

∫
exp (i t x) d Sα (b) (x) = e−b|t |α , α ∈ (0, 2), b ∈ (0,∞),

then

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ Sα

(
b
(
ϑ2 − 1

)α/2

|ϑ |α − 1

)
mixing .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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(Note that C (0, b) = S1 (b).)

Exercise 9.2 Assume that |ϑ | > 1 and P Z1 is symmetric around zero. Show that

|ϑ |n (ϑ̂n − ϑ
)→ (ϑ2 − 1)U

Y
F∞-stably

with U and Y from Theorem 9.2.

The critical case

Theorem 9.3 Assume |ϑ | = 1, Z1 ∈ L2 and E Z1 = 0. Then

n
(
ϑ̂n − ϑ

)→ ϑ
W 2

1 − 1

2
∫ 1
0 W 2

t dt
F∞-mixing

and

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

)→ ϑσ
W 2

1 − 1

2
(∫ 1

0 W 2
t dt

)1/2 F∞-mixing

as n → ∞, where (Wt )t∈[0,1] denotes a Brownian motion independent of F∞.

Distributional convergence under deterministic norming for ϑ = 1 has already
been observed by [24, 73, 97]. One checks that the numerator and the denominator
of the first limiting random variable are positively correlated so that they are not
independent in both limiting random variables.

Proof of Theorem 9.3. Let ϑ = 1. Then Xn = X0 +∑n
i=1 Zi and hence, for n ≥ 1,

An =
n∑

j=1

⎛
⎝X0 +

j−1∑
i=1

Zi

⎞
⎠

2

= nX2
0 + 2X0

n∑
j=1

j−1∑
i=1

Zi +
n∑

j=1

⎛
⎝ j−1∑

i=1

Zi

⎞
⎠

2

= nX2
0 + 2X0

n−1∑
i=1

(n − i) Zi +
n∑

j=1

⎛
⎝ j−1∑

i=1

Zi

⎞
⎠

2

and

Bn =
n∑

j=1

⎛
⎝X0 +

j−1∑
i=1

Zi

⎞
⎠ Z j = X0

n∑
j=1

Z j +
n∑

j=1

⎛
⎝ j−1∑

i=1

Zi

⎞
⎠ Z j

= X0

n∑
j=1

Z j + 1

2

⎛
⎝ n∑

j=1

Z j

⎞
⎠

2

− 1

2

n∑
j=1

Z2
j .
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For n ∈ N, let Xn = (
Xn

t

)
t∈[0,1] denote the normalized (path-continuous) partial

sum process based on (Zn) fromExample 3.14 and let Y n
t :=

(∑[nt]
j=1 Z j

)
/σ

√
n, t ∈

[0, 1]. The map C ([0, 1]) → R
2, x �→

(
1
2 x (1)2 ,

(∫ 1
0 x (t)2 dt

)1/2)
is continuous

so that by Example 3.14 (or Corollary 7.7) and Theorem 3.18 (c)

(
1

2

(
Xn
1

)2
,

(∫ 1

0

(
Xn

t

)2
dt

)1/2
)

→
(
1

2
W 2

1 ,

(∫ 1

0
W 2

t dt

)1/2
)

F∞-mixing .

We have∣∣∣∣∣
(∫ 1

0

(
Xn

t

)2
dt

)1/2

−
(∫ 1

0

(
Y n

t

)2
dt

)1/2
∣∣∣∣∣ ≤

(∫ 1

0

∣∣Xn
t − Y n

t

∣∣2 dt

)1/2

≤ ∥∥Xn − Y n
∥∥
sup ≤ 1

σ
√

n
max
1≤ j≤n

∣∣Z j
∣∣→ 0 in probability

and moreover,

∫ 1

0

(
Y n

t

)2
dt = 1

σ 2n

n∑
j=1

∫ j/n

( j−1)/n

⎛
⎝ j−1∑

i=1

Zi

⎞
⎠

2

dt = 1

σ 2n2

n∑
j=1

⎛
⎝ j−1∑

i=1

Zi

⎞
⎠

2

.

Using Theorem 3.18 (a), (c) this implies

⎛
⎜⎝ 1

2σ 2n

⎛
⎝ n∑

j=1

Z j

⎞
⎠

2

,
1

σ 2n2

n∑
j=1

⎛
⎝ j−1∑

i=1

Zi

⎞
⎠

2
⎞
⎟⎠→

(
1

2
W 2

1 ,

∫ 1

0
W 2

t dt

)
F∞-mixing .

Since
(∑n

j=1 Z j

)
/n → 0 almost surely,

(∑n
j=1 Z2

j

)
/2σ 2n → 1/2 almost surely

by the Kolmogorov strong law of large numbers and
(∑n

i=1 i Zi
)
/n2 → 0 almost

surely by the Kolmogorov criterion (or Theorem A.9 with Bn = n2, p = 2), we
obtain in view of Theorem 3.18 (b), (c)

(
Bn

σ 2n
,

An

σ 2n2

)
→
(
1

2
W 2

1 − 1

2
,

∫ 1

0
W 2

t dt

)
F∞-mixing .

Consequently, by Theorem 3.18 (c), using P
(∫ 1

0 W 2
t dt > 0

)
= 1,

n
(
ϑ̂n − ϑ

) = nBn

An
= Bn/σ

2n

An/σ 2n2 → W 2
1 − 1

2
∫ 1
0 W 2

t dt
F∞-mixing

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_7
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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and

⎛
⎝ n∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂n − ϑ

) = Bn

A1/2
n

= σ
Bn/σ 2n√
An/σ 2n2

→ σ
W 2

1 − 1

2
(∫ 1

0 W 2
t dt

)1/2
F∞-mixing as n → ∞.

In case ϑ = −1, let Z̃n := (−1)n Zn . Then Xn = (−1)n
(

X0 +∑n
j=1 Z̃ j

)
and

hence, for all n ≥ 1,

An =
n∑

j=1

⎛
⎝(−1) j−1

⎛
⎝X0 +

j−1∑
i=1

Z̃i

⎞
⎠
⎞
⎠

2

= nX2
0 + 2X0

n−1∑
i=1

(n − i) Z̃i +
n∑

j=1

⎛
⎝ j−1∑

i=1

Z̃i

⎞
⎠

2

and

Bn =
n∑

j=1

⎛
⎝(−1) j−1

⎛
⎝X0 +

j−1∑
i=1

Z̃i

⎞
⎠
⎞
⎠ Z j = −

n∑
j=1

⎛
⎝X0 +

j−1∑
i=1

Z̃i

⎞
⎠ Z̃ j

= −X0

n∑
j=1

Z̃ j − 1

2

⎛
⎝ n∑

j=1

Z̃ j

⎞
⎠

2

+ 1

2

n∑
j=1

Z̃2
j .

Onemay applyCorollary 7.7 to the normalized partial sumprocess based on
(
Z̃n
)

n≥1.

One simply has to observe that now
(∑n

j=1 Z̃ j

)
/n → 0 almost surely by the

Kolmogorov criterion (or Theorem A.9). �
We see that in the case |ϑ | ≤ 1 the limiting distributions of ϑ̂n under deterministic

and random norming do not depend on the distribution P Z1 (and X0) while in the
explosive case |ϑ | > 1 they do.

Notice that in case |ϑ | = 1 there occurs a singularity in the sense that An/a2
n

does not converge in probability (with an = n) in contrast to the case |ϑ | �= 1. This
coincides with the fact that the observation process X is a martingale if ϑ = 1 and(
(−1)n Xn

)
n≥0 is a martingale if ϑ = −1 (see [63], [89], Chap. 5).

Remark 9.4 The preceding result provides a counterexample to Theorem 6.23 of
the type of Example 6.12 for arrays: In condition (Nan ) convergence in probability
cannot be replaced by mixing convergence. Assume the setting of Theorem 9.3 with
X0 = 0, Z1 ∈ Lp for some p > 2 and ϑ = 1. Then B = (Bn)n≥0, where

http://dx.doi.org/10.1007/978-3-319-18329-9_7
http://dx.doi.org/10.1007/978-3-319-18329-9_5
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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Bn =
n∑

j=1

⎛
⎝ j−1∑

i=1

Zi

⎞
⎠ Z j with B0 = B1 = 0

is a square integrable martingale with quadratic characteristic

〈B〉n = σ 2An = σ 2
n∑

j=1

⎛
⎝ j−1∑

i=1

Zi

⎞
⎠

2

.

The proof of Theorem 9.3 shows that

1

n2
〈B〉n = σ 4An

σ 2n2 → σ 4
∫ 1

0
W 2

t dt F∞-mixing .

Hence, condition (Nan ) with an = n holds with mixing convergence instead of
convergence in probability.Moreover, the conditional Lyapunov condition (CLYan ,p)
is satisfied for B which implies (CLBan ) by Remark 6.25. In fact, we have

1

n p

n∑
j=1

E

⎛
⎝
∣∣∣∣∣∣
⎛
⎝ j−1∑

i=1

Zi

⎞
⎠ Z j

∣∣∣∣∣∣
p ∣∣∣∣F j−1

⎞
⎠ = 1

n p

n∑
j=1

∣∣∣∣∣∣
j−1∑
i=1

Zi

∣∣∣∣∣∣
p

E |Z1|p .

Let b := (p − 1) /p. Then b > 1/2 and hence, for example, the strong law of large
numbers of Theorem A.9 (or Example 4.2) for the martingale

(∑n
i=1 Zi

)
n≥0 yields

∣∣∣∣∣
n−1∑
i=1

Zi

∣∣∣∣∣
p

n pb
→ 0 a.s.

so that by the discrete rule of de l’Hospital in Lemma 6.28 (b)

n∑
j=1

∣∣∣∣∣∣
j−1∑
i=1

Zi

∣∣∣∣∣∣
p

n∑
j=1

j pb

→ 0 a.s.

Since
∑n

j=1 j pb ∼ n pb+1/ (pb + 1) = n p/p, we obtain

1

n p

n∑
j=1

E

⎛
⎝
∣∣∣∣∣∣
⎛
⎝ j−1∑

i=1

Zi

⎞
⎠ Z j

∣∣∣∣∣∣
p ∣∣∣∣F j−1

⎞
⎠→ 0 a.s.

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_4
http://dx.doi.org/10.1007/978-3-319-18329-9_6


172 9 Autoregression of Order One

On the other hand, again, for example, by the proof of Theorem 9.3,

Bn

n
→ σ 2

2

(
W 2

1 − 1
)

F∞-mixing .

The distribution of the limiting random variable is not symmetric around zero and
hence is not a variance mixture of centered Gaussian distributions. �

Exercise 9.3 Assume ϑ = 1, Z1 ∈ L2 and E Z1 = 0. Show that

n−3/2
n∑

j=1

X j → σ

∫ 1

0
Wt dt F∞-mixing as n → ∞ ,

where (Wt )t∈[0,1] denotes a Brownian motion independent of F∞.

Exercise 9.4 (cf. [55]) Assume |ϑ | ≤ 1, X0, Z1 ∈ L2 and E Z1 = 0, and let γ > 0
be fixed. For every c ∈ N, set

τc := min

⎧⎨
⎩n ∈ N :

n∑
j=1

X2
j−1 ≥ cγ

⎫⎬
⎭ .

Show that τc is almost surely finite for every c ∈ N and

⎛
⎝ τc∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂τc − ϑ

)→ σ
√

γ N F∞-mixing as c → ∞

as well as

c1/2
(
ϑ̂τc − ϑ

)→ σ√
γ

N F∞-mixing as c → ∞ ,

where P N = N (0, 1) and N is independent of F∞.

Hint: Apply Corollary 6.4. The proof of X2
n/
∑n

j=1 X2
j−1 → 0 almost surely as

n → ∞ is a crucial step.
Exercise 9.4 shows that sequential sampling with random sample size τc leads to

the same normal limit for ϑ̂τc as c → ∞ for the whole range −1 ≤ ϑ ≤ 1 of the
autoregression parameter, in contrast to the result of Theorem 9.3.

http://dx.doi.org/10.1007/978-3-319-18329-9_6


Chapter 10
Galton-Watson Branching Processes

Let
(
Ynj

)
n, j∈N be independent and identically distributed random variables with val-

ues inN0, and let X0 be some random variable with values inNwhich is independent
of

(
Ynj

)
n, j∈N, where all these random variables are defined on the same probability

space (�,F , P). For every n ∈ N we set

Xn:=

Xn−1∑
j=1

Ynj .

The process X = (Xn)n≥0 is the Galton-Watson branching process.
The process X can be interpreted as follows: In a population of particles (which

may represent people, cells, neutrons, etc., depending on the field of application) each
particle j of the (n − 1)-th generation produces a random number Ynj (which may
be 0) of identical particles in the n-th generation, called the offspring of j , and it does
so independently of all other particles from the (n − 1)-th and all earlier generations.
The offspring distribution, i.e. the distribution of Ynj , is the same for all particles
in all generations. Then Xn is the total number of particles in the n-th generation,
with X0 being the (random) number of particles in the 0-th generation. Note that
excluding the value 0 of X0 is not an essential restriction because by definition of Xn

we would have Xn = 0 for all n ∈ N on the event {X0 = 0} so that (Xn)n≥0 would
be trivial on {X0 = 0}.

For every k ∈ N0 set pk:=P (Y11 = k). To exclude trivial cases, we always
assume p0 < 1 (if p0 = 1, then Xn = 0 almost surely for all n ∈ N) and p1 < 1
(if p1 = 1, then Xn = X0 almost surely for all n ∈ N). Clearly, if Xn = 0 for some
n ∈ N, then Xm = 0 for all m ≥ n, and the population is said to be extinct at time n.

One of the main features of the process X is the fact that with probability one
either Xn = 0 for all large n or limn→∞ Xn = ∞, that is, P ({limn→∞ Xn = 0} ∪
{limn→∞ Xn = ∞}) = 1; see e.g. [64], Satz 9.1. Whether the probability of
extinction ρ:=P (limn→∞ Xn = 0) equals 1 or is strictly less than 1 is completely

© Springer International Publishing Switzerland 2015
E. Häusler and H. Luschgy, Stable Convergence and Stable Limit Theorems,
Probability Theory and Stochastic Modelling 74,
DOI 10.1007/978-3-319-18329-9_10
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determined by the offspring mean α:=E (Y11). If α ≤ 1, then ρ = 1, and if α > 1,
then ρ < 1; see e.g. [64], Korollar 9.5. Observe that α > 0 because p0 < 1.

We are interested here in stable limit theorems motivated by asymptotic statistical
inference about α > 1 for n → ∞. This is only meaningful on the event

M+:=
{
lim

n→∞ Xn = ∞
}

because on the complementary event of extinction {limn→∞ Xn = 0} the number of
available data about the process X stays finite as n gets large. Therefore, we will
restrict ourselves to the case α > 1 in which P (M+) > 0 under suitable moment
conditions and in which the process X is called supercritical. In the sequel we will
discuss several different estimators of α in the supercritical case and derive stable
limit theorems for these estimators under deterministic and random norming. For
this, we have to collect a few more basic facts about the process X . We always
assume Y11 ∈ L2 (P) with σ 2:=Var (Y11) > 0 and X0 ∈ L2 (P) as well as α > 1.

LetF0 = σ (X0) andFn = σ
(
X0, Yi j ; 1 ≤ i ≤ n, j ∈ N

)
for all n ∈ N. Clearly,

F = (Fn)n≥0 is a filtration and X is F-adapted. As usual, F∞ = σ
(⋃∞

n=0 Fn
)
.

There exists a nonnegative M∞ ∈ L2 (F∞, P) with

Mn:=α−n Xn → M∞ a.s. and in L2 as n → ∞ .

This is a consequence of the fact that (Mn)n≥0 is an L2-bounded martingale w.r.t.
F and the martingale convergence theorem; see e.g. [64], Lemma 9.3 and Satz 9.4.
Moreover, {limn→∞ Xn = 0} = {M∞ = 0} almost surely so that

M+ = {M∞ > 0} a.s.

and P (M+) > 0; see e.g. [64], Satz 9.4 and the remark following it in combination
with Satz 9.6 and our assumption Y11 ∈ L2 (P).

A moment estimator

The first estimator which we will consider here is a simple moment estimator. It
appears in [44]. For all n ∈ N we have

E (Xn|Fn−1) =
Xn−1∑
j=1

E
(
Ynj |Fn−1

) = αXn−1

because E
(
Ynj |Fn−1

) = E
(
Ynj

) = α by independence of Ynj and Fn−1. Conse-
quently, E (Xn) = αE (Xn−1) for all n ∈ N, whence E (Xn) = αn E (X0) and

α = E (Xn)1/n

E (X0)
1/n .

http://dx.doi.org/10.1007/978-3-319-18329-9_9
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Ignoring the denominator because E (X0)
1/n → 1 as n → ∞, the principle of

moments yields the (unconditional) moment estimator

α̂(M)
n :=X1/n

n .

On M+ we have M∞ > 0 so that α−n Xn → M∞ almost surely implies

log Xn − n logα → log M∞ a.s. as n → ∞ .

This yields 1
n log Xn − logα → 0 almost surely so that α̂(M)

n → α almost surely on

M+. Thus, α̂(M)
n is a strongly consistent estimator for α on M+. On the other hand,

on M+ we get

n
(
log α̂(M)

n − logα
)

= log Xn − n logα → log M∞ a.s. as n → ∞

and, by the mean value theorem,

n
(
log α̂(M)

n − logα
)

= n

ξn

(
α̂(M)

n − α
)

for some ξn between α̂
(M)
n and α. Therefore, ξn → α almost surely as n → ∞ and

hence

n
(
α̂(M)

n − α
)

→ α log M∞ a.s. on M+ .

This exhibits a rather unusual asymptotic behavior of the estimator α̂
(M)
n .

A conditional moment estimator

To motivate the second estimator we apply the principle of moments condition-
ally to

α = E (Xn|Fn−1)

Xn−1
,

provided that Xn−1 ≥ 1. Replacing the conditional moment E (Xn|Fn−1) by Xn ,
we arrive at the estimator

α̂(L N )
n :=

Xn

Xn−1
.

Note that Xn = 0 for some n ∈ N implies Xm = 0 for all m ≥ n so that we have
Xn ≥ 1 for all ∈ N0 on M+ and hence

α̂(L N )
n = α

Mn

Mn−1
→ α

M∞
M∞

= α a.s. on M+ as n → ∞ ,
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which says that α̂
(L N )
n is a strongly consistent estimator for α on M+. This is the

Lotka-Nagaev estimator considered in [67]. A stable limit theorem for α̂
(L N )
n will be

derived here from the following stability result.

Theorem 10.1 Under the above assumptions,

1

α(n−1)/2

Xn−1∑
j=1

(
Ynj − α

) → σ M1/2∞ N F∞-stably as n → ∞ ,

where P N = N (0, 1) and N is P-independent of F∞.

Proof For all n ∈ N and j ≥ 0 set

F̃nj:=σ
(
X0, Ymk, 1 ≤ m ≤ n − 1, k ∈ N; Yn1, . . . , Ynj

)
so that F̃10 = σ (X0) and F̃n0 = σ (X0, Ymk, 1 ≤ m ≤ n − 1, k ∈ N) = Fn−1
for all n ≥ 2. The array

(F̃nj
)

j≥0,n∈N is clearly nondecreasing in j and n so that
it satisfies the nesting condition. For every n ∈ N the N0-valued random variable
Xn−1 is measurable w.r.t. F̃n0 and therefore a stopping time w.r.t.

(F̃nj
)

j≥0. More-

over, for every n ∈ N, by independence of Ynj and F̃n, j−1 and E
(
Ynj

) = α, the
sequence

(
Ynj − α

)
j∈N is a martingale difference sequence w.r.t.

(F̃nj
)

j≥0. There-

fore,
(
α−(n−1)/2

(
Ynj − α

))
j∈N is a martingale difference sequence w.r.t.

(F̃nj
)

j≥0

as well. By independence of Ynj and F̃n, j−1 again we have

Xn−1∑
j=1

E

((
Ynj − α

α(n−1)/2

)2 ∣∣∣∣F̃n, j−1

)
= 1

αn−1

Xn−1∑
j=1

E
((

Ynj − α
)2)

= σ 2 Xn−1

αn−1 → σ 2M∞ a.s. as n → ∞

so that condition (Nτn ) is satisfied with the finite stopping time τn = Xn−1 and
η2 = σ 2M∞. Moreover, again by independence of Ynj and F̃n, j−1,

Xn−1∑
j=1

E

((
Ynj − α

α(n−1)/2

)2

1{|Ynj −α|≥εα(n−1)/2}
∣∣∣∣F̃n, j−1

)

= 1

αn−1

Xn−1∑
j=1

E
((

Ynj − α
)2 1{|Ynj −α|≥εα(n−1)/2}

)

= Xn−1

αn−1 E
(
(Y11 − α)2 1{|Y11−α|≥εα(n−1)/2}

)
→ 0 a.s. as n → ∞
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so that condition (CLBτn ) is satisfied with the finite stopping time τn = Xn−1.

Observe that F∞ = σ
(⋃

n∈N
⋃

j≥0 F̃nj

)
. Therefore, the assertion follows from

Corollary 6.4 and Remark 6.2 (d). �

Corollary 10.2 Under the above assumptions,

X1/2
n−1

(
α̂(L N )

n − α
)

→ σ N F∞-mixing under PM+ as n → ∞

and

α(n−1)/2
(
α̂(L N )

n − α
)

→ σ M−1/2∞ N F∞-stably under PM+as n → ∞ ,

where P N = N (0, 1) and N is P-independent of F∞.

Proof On M+ we have almost surely

Xn−1∑
j=1

(
Ynj − α

) = Xn − αXn−1 = Xn−1

(
α̂(L N )

n − α
)

so that

X1/2
n−1

(
α̂(L N )

n − α
)

= α(n−1)/2

X1/2
n−1

1

α(n−1)/2

Xn−1∑
j=1

(
Ynj − α

)
.

Consequently, the first assertion follows from Theorem 10.1 and α(n−1)/2/X1/2
n−1 →

M−1/2∞ PM+ -almost surely as n → ∞ via Theorem 3.18 (b) and (c) (use g (x, y) =
xy).

On M+ we also get almost surely

α(n−1)/2
(
α̂(L N )

n − α
)

= α(n−1)/2

X1/2
n−1

X1/2
n−1

(
α̂(L N )

n − α
)

so that the second assertion follows from the first one and α(n−1)/2/X1/2
n−1 → M−1/2∞

PM+ -almost surely as n → ∞, again via Theorem 3.18 (b) and (c). �

A conditional least squares estimator

The third estimator is a conditional least squares estimator which is defined as the
minimizer of the sum of squares

n∑
i=1

(Xi − E (Xi |Fi−1))
2 =

n∑
i=1

(Xi − αXi−1)
2

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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and is given by

α̂(L S)
n :=

∑n
i=1 Xi Xi−1∑n

i=1 X2
i−1

.

Since
∑n

i=1 X2
i−1 ≥ X2

0 ≥ 1, α̂(L S)
n is well-defined. On M+ we have

Xi−1Xi

X2
i−1

= α̂
(L N )
i → α a.s. as i → ∞ ,

and the Toeplitz Lemma 6.28 (b) implies α̂
(L S)
n → α almost surely on M+ as

n → ∞ so that α̂
(L S)
n is strongly consistent on M+. To obtain stable limit theo-

rems for α̂
(L S)
n , we introduce the process U (L S) =

(
U (L S)

n

)
n≥0

with U (L S)
0 :=0 and

U (L S)
n :=

n∑
i=1

(
Xi−1Xi − αX2

i−1

)
for n ≥ 1

which is an F-martingale because E (Xi |Fi−1) = αXi−1. If E
(
X4
0

)
< ∞ and

E
(
Y 4
11

)
< ∞, then U (L S) is square integrable with quadratic characteristic

〈
U (L S)

〉
n

=
n∑

i=1

E

((

U (L S)

i

)2 ∣∣∣Fi−1

)

=
n∑

i=1

E

([
Xi−1Xi − αX2

i−1

]2 ∣∣∣Fi−1

)

=
n∑

i=1

X2
i−1E

([
Xi − αXi−1

]2 ∣∣Fi−1

)

=
n∑

i=1

X2
i−1

[
E

(
X2

i |Fi−1

)
− 2αXi−1E (Xi |Fi−1) + α2X2

i−1

]

= σ 2
n∑

i=1

X3
i−1

because E
(
X2

i |Fi−1
) = σ 2Xi−1 + α2X2

i−1 and E (Xi |Fi−1) = αXi−1. The fol-
lowing application of Theorem 8.2 and Corollary 8.5 is crucial.

Theorem 10.3 If E
(
X4
0

)
< ∞ and E

(
Y 4
11

)
< ∞, then

U (L S)
n〈

U (L S)
〉1/2
n

→ N F∞-mixing under PM+as n → ∞ ,

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
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where N is P-independent of F∞ with P N = N (0, 1).

Proof Here, we are in the setting of Remark 8.6 so that condition (ii) in Theorem 8.2
follows from conditions (i), (iii) and (iv). Consequently, we only have to verify these
conditions.

We verify condition (i) with G = �, an = α3n/2 and η = σ M3/2∞ /
(
α3 − 1

)1/2
.

For this, note thatα−3(i−1) X3
i−1 → M3∞ almost surely as i → ∞, so that the Toeplitz

Lemma 6.28 (b) implies

∑n
i=1 X3

i−1∑n
i=1 α3(i−1)

→ M3∞ a.s. as n → ∞ .

Because

n∑
i=1

α3(i−1) = α3n − 1

α3 − 1
∼ 1

α3 − 1
α3n

we get

〈
U (L S)

〉
n

a2
n

=
〈
U (L S)

〉
n

α3n
= σ 2

∑n
i=1 X3

i−1

α3n
→ σ 2

α3 − 1
M3∞ a.s. as n → ∞ ,

which implies (i).
For all n, r ∈ N we have a2

n−r/a2
n = 1/α3r which is (ii) with p = α3.

Finally, we will verify (iv) forμ = N (0, b)with b = (
α3 − 1

)
/α3, which means

that Corollary 8.5 applies and yields P Z = N (0, 1) because bp/ (p − 1) = 1 in
the present case. For the proof of (iv) we write for every t ∈ R and n ∈ N, using
measurability of Xn−1 and

〈
U (L S)

〉
n w.r.t. Fn−1,

EP

(
exp

(
i t


U (L S)
n〈

U (L S)
〉1/2
n

) ∣∣∣∣Fn−1

)
= EP

(
exp

(
i t

Xn−1Xn − αX2
n−1〈

U (L S)
〉1/2
n

) ∣∣∣∣Fn−1

)

= exp

(
i t

(−α) X2
n−1〈

U (L S)
〉1/2
n

)
EP

⎛
⎝exp

⎛
⎝i t

Xn−1〈
U (L S)

〉1/2
n

Xn−1∑
j=1

Ynj

⎞
⎠ ∣∣∣∣Fn−1

⎞
⎠

= exp

(
i
(−α) t Xn−1〈

U (L S)
〉1/2
n

)Xn−1

ζ

(
t Xn−1〈

U (L S)
〉1/2
n

)Xn−1

,

where ζ denotes the characteristic function of Y11 and we used independence of
σ

(
Ynj : j ∈ N

)
and Fn−1. Employing the characteristic function

φ (u) = exp

(
i

(−α

σ

)
u

)
ζ

( u

σ

)
, u ∈ R ,

http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_8


180 10 Galton-Watson Branching Processes

of the normalized random variable (Y11 − α) /σ , we get

EP

(
exp

(
i t


U (L S)
n〈

U (L S)
〉1/2
n

) ∣∣∣∣Fn−1

)
= φ

(
σ t Xn−1〈
U (L S)

〉1/2
n

)Xn−1

.

Note that on M+ we have

σ t Xn−1〈
U (L S)

〉1/2
n

= σ t X3/2
n−1〈

U (L S)
〉1/2
n

1

X1/2
n−1

with

σ t X3/2
n−1〈

U (L S)
〉1/2
n

= σ t

(
a2

n〈
U (L S)

〉
n

)1/2 (
α−(n−1) Xn−1

)3/2
α−3/2 → t

(
α3 − 1

α3

)1/2

almost surely as n → ∞. The classical central limit theorem for sums of independent
and identically distributed random variables yields

φ

(
x√
n

)n

→ exp

(
−1

2
x2

)
as n → ∞

uniformly in x ∈ R on compact intervals. Setting x = σ t X3/2
n−1/

〈
U (L S)

〉1/2
n and

n = Xn−1 and combining the last two facts, we obtain

φ

(
σ t Xn−1〈
U (L S)

〉1/2
n

)Xn−1

→ exp

(
−1

2
t2

α3 − 1

α3

)
a.s. on M+ as n → ∞ ,

which implies condition (iv) with b = (
α3 − 1

)
/α3 and concludes the proof. �

Corollary 10.4 Under the assumptions of Theorem 10.3,

∑n
i=1 X2

i−1(∑n
i=1 X3

i−1

)1/2
(
α̂(L S)

n − α
)

→ σ N F∞-mixing under PM+ as n → ∞

and

(
α3 − 1

)1/2
α2 − 1

αn/2
(
α̂(L S)

n − α
)

→ σ M−1/2∞ N F∞-stably under PM+ as n → ∞ ,

where P N = N (0, 1) and N is P-independent of F∞.
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Proof For all n ∈ N, we have

α̂(L S)
n =

∑n
i=1

(
Xi−1Xi − αX2

i−1

)
∑n

i=1 X2
i−1

+ α = U (L S)
n∑n

i=1 X2
i−1

+ α

so that ∑n
i=1 X2

i−1(∑n
i=1 X3

i−1

)1/2
(
α̂(L S)

n − α
)

= σ
U (L S)

n〈
U (L S)

〉1/2
n

.

Thus the first statement is immediate from Theorem 10.3. The second statement
follows from the first and

(
α3 − 1

)1/2
α2 − 1

αn/2

(∑n
i=1 X3

i−1

)1/2∑n
i=1 X2

i−1

→ M−1/2∞ a.s. on M+ as n → ∞ .

For this, use the asymptotic almost sure behavior of
∑n

i=1 X3
i−1 as n → ∞ estab-

lished before and

α−2n
n∑

i=1

X2
i−1 → 1

α2 − 1
M2∞ a.s. on M+ as n → ∞

which follows from α−(i−1) Xi−1 → M∞ almost surely as i → ∞ and the Toeplitz
Lemma 6.28 (b). �

A weighted conditional least squares estimator

To obtain a fourth estimator for α we observe that the conditional variance

Var (Xi |Fi−1) = E
[
(Xi − E (Xi |Fi−1))

2
∣∣Fi−1

]
= E

(
X2

i

∣∣Fi−1

)
− E

(
Xi

∣∣Fi−1
)2 = σ 2Xi−1

of Xi given Fi−1 strongly depends on i . It is therefore reasonable to stabilize this
conditional variance of the summand Xi − E (Xi |Fi−1) = Xi − αXi−1 in the
conditional least squares approach, that is, to consider the minimizer of the weighted
sum of squares

n∑
i=1

(Xi − E (Xi |Fi−1))
2

Var (Xi |Fi−1)
=

n∑
i=1

(Xi − αXi−1)
2

σ Xi−1
,

http://dx.doi.org/10.1007/978-3-319-18329-9_6
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which is given by

α̂(H)
n :=

∑n
i=1 Xi∑n

i=1 Xi−1
.

Since
∑n

i=1 Xi−1 ≥ X0 ≥ 1, α̂(H)
n is well-defined. On M+ we have

Xi

Xi−1
= α̂

(L N )
i → α a.s. as i → ∞ ,

and the Toeplitz Lemma 6.28 (b) implies α̂
(H)
n → α almost surely on M+ so that

α̂
(H)
n is strongly consistent on M+. This is the Harris estimator introduced in [42];

see also [43].
To derive stable limit theorems for α̂

(H)
n we introduce the process U (H) =(

U (H)
)

n≥0 with U (H)
0 :=0 and

U (H)
n :=

n∑
i=1

(Xi − αXi−1) for n ≥ 1 .

Under our original moment assumptions X0, Y11 ∈ L2 (P) the process U (H) is an
L2-martingale w.r.t. F with quadratic characteristic

〈
U (H)

〉
n

=
n∑

i=1

E

((

U (H)

i

)2 ∣∣∣Fi−1

)
= σ 2

n∑
i=1

Xi−1 =
n∑

i=1

Var (Xi |Fi−1) .

Again, an application of Theorem 8.2 and Corollary 8.5 is crucial.

Theorem 10.5 If X0, Y11 ∈ L2 (P), then

U (H)
n〈

U (H)
〉1/2
n

→ N F∞-mixing under PM+as n → ∞ ,

where N is P-independent of F∞ with P N = N (0, 1).

Proof We are again in the setting of Remark 8.6 so that we have to verify condi-
tions (i), (iii) and (iv) of Theorem 8.2.

First, we will show that condition (i) holds with G = �, an = αn/2 and η =
σ M∞/

(
α2 − 1

)1/2
. As in the proof of Theorem 10.3, α−(i−1) Xi−1 → M∞ almost

surely as i → ∞ and the Toeplitz Lemma 6.28 (b) imply

∑n
i=1 Xi−1∑n
i=1 αi−1

→ M∞ a.s. as n → ∞ .

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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Because

n∑
i=1

αi−1 = αn − 1

α − 1
∼ 1

α − 1
αn

we obtain〈
U (H)

〉
n

a2
n

=
〈
U (H)

〉
n

αn
= σ 2

∑n
i=1 Xi−1

αn
→ σ 2

α − 1
M∞ a.s. as n → ∞ ,

which gives (i).
For all n, r ∈ N we have a2

n−r/a2
n = 1/αr which is (ii) with p = α.

Finally, we verify (iv) for μ = N (0, b) with b = (α − 1) /α, which means
that Corollary 8.5 applies and yields P Z = N (0, 1) because bp/ (p − 1) = 1. For
the proof of (iv), as in the proof of Theorem 10.3 let ζ denote the characteristic
function of the random variable Y11 and φ that of the normalized random variable
(Y11 − α) /σ . Then for every t ∈ R and n ∈ N, by the same reasoning as in the proof
of Theorem 10.3,

EP

(
exp

(
i t


U (H)
n〈

U (H)
〉1/2
n

) ∣∣∣∣Fn−1

)
= EP

(
exp

(
i t

Xn − αXn−1〈
U (H)

〉1/2
n

) ∣∣∣∣Fn−1

)

= exp

(
i t

(−α) Xn−1〈
U (H)

〉1/2
n

)
EP

⎛
⎝exp

⎛
⎝i

t〈
U (H)

〉1/2
n

Xn−1∑
j=1

Ynj

⎞
⎠ ∣∣∣∣Fn−1

⎞
⎠

= exp

(
i t

(−α)〈
U (H)

〉1/2
n

)Xn−1

ζ

(
t〈

U (H)
〉1/2
n

)Xn−1

= φ

(
σ t〈

U (H)
〉1/2
n

)Xn−1

.

On M+ we have

σ t〈
U (H)

〉1/2
n

= σ t X1/2
n−1〈

U (H)
〉1/2
n

1

X1/2
n−1

with

σ t X1/2
n−1〈

U (H)
〉1/2
n

= σ t

(
a2

n〈
U (H)

〉
n

)1/2 (
α−(n−1) Xn−1

)1/2
α−1/2 → t

(
α − 1

α

)1/2

almost surely as n → ∞. Using again, as in the proof of Theorem 10.3,

φ

(
x√
n

)n

→ exp

(
−1

2
x2

)
as n → ∞

http://dx.doi.org/10.1007/978-3-319-18329-9_8
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uniformly in x ∈ R on compact intervals, now with x = σ t X1/2
n−1/

〈
U (H)

〉1/2
n and

n = Xn−1, we arrive at

φ

(
σ t〈

U (H)
〉1/2
n

)Xn−1

→ exp

(
−1

2
t2

α − 1

α

)
a.s. on M+ as n → ∞ ,

which implies condition (iv) with b = (α − 1) /α and concludes the proof. �

Corollary 10.6 Under the assumptions of Theorem 10.5,

(
n∑

i=1

Xi−1

)1/2 (
α̂(H)

n − α
)

→ σ N F∞-mixing under PM+ as n → ∞

and

αn/2

(α − 1)1/2

(
α̂(H)

n − α
)

→ σ M−1/2∞ N F∞-stably under PM+ as n → ∞ ,

where P N = N (0, 1) and N is P-independent of F∞.

Proof For all n ∈ N,

α̂(H)
n =

∑n
i=1 (Xi − αXi−1)∑n

i=1 Xi−1
+ α = U (H)

n∑n
i=1 Xi−1

+ α

so that

(
n∑

i=1

Xi−1

)1/2 (
α̂(H)

n − α
)

= σ
U (H)

n〈
U (H)

〉1/2
n

.

Thus the first statement follows immediately from Theorem 10.5. The second state-
ment follows from the first and

αn/2

(α − 1)1/2

(
n∑

i=1

Xi−1

)−1/2

= 1

(α − 1)1/2
σ

(
a2

n〈
U (H)

〉
n

)1/2

→ M−1/2∞

almost surely on M+ as n → ∞. �

The above stable central limit theorem for the Harris estimator and the stable
central limit theorem of Corollary 10.2 for the Lotka-Nagaev estimator are due to
Dion [25].

The moment estimator α̂
(M)
n converges to α at a linear rate and is therefore

clearly inferior asymptotically to the other three estimators, all of which converge
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exponentially fast. As Corollaries 10.2, 10.4 and 10.6 show, the order of the rate of
convergence is the same for all three of these estimators, namely αn/2. As the limits
of all three estimators are the same, we compare these estimators as in [44] in a
somewhat informal way by comparing the squares of the normalizing factors since
an estimator with a bigger normalizing factor is obviously preferable to a competitor
with a smaller one because, for example, it leads to shorter asymptotic confidence
intervals. As mentioned in [44], this is a concept of asymptotic efficiency in an
obvious, though not albeit standard sense.

Denoting the random normalizers of the three estimators α̂
(L N )
n , α̂(L S)

n and α̂
(H)
n

by Nn,L N , Nn,L S and Nn,H , respectively, and employing the asymptotic behavior of
Xn as well as of

∑n
i=1 Xk

i−1 for k = 1, 2, 3, which was established in the previous
proofs, we get almost surely as n → ∞ for all α ∈ (1,∞)

N 2
n,L N

N 2
n,L S

= Xn−1
∑n

i=1 X3
i−1(∑n

i=1 X2
i−1

)2 →
(
α2 − 1

)2
α

(
α3 − 1

) = α3 + α2 − α − 1

α3 + α2 + α
< 1 ,

N 2
n,L N

N 2
n,H

= Xn−1∑n
i=1 Xi−1

→ α − 1

α
< 1

and

N 2
n,L S

N 2
n,H

=
(∑n

i=1 X2
i−1

)2(∑n
i=1 X3

i−1

) (∑n
i=1 Xi−1

) →
(
α3 − 1

)
(α − 1)(

α2 − 1
)2 = α2 + α + 1

α2 + 2α + 1
< 1 .

These results show that the Harris estimator is asymptotically the best one, which
is not really surprising because this estimator can be viewed as a nonparametric
maximum likelihood estimator; see [40], Sect. 2.4. Of course, the results are the same
if the deterministic normalizers from Corollaries 10.2, 10.4 and 10.6 are considered.

Exercise 10.1 Let X be a supercritical Galton-Watson branching process with
X0, Y11 ∈ L2 (P) and Var (Y11) > 0, and assume pk < 1 for all k ∈ N0. If the
complete family tree

(
Yi j

)
1≤i≤n,1≤ j≤Xi−1

up to generation n ∈ N of X is observ-
able, then

p̂k,n:=
1

Zn

n∑
i=1

Xi−1∑
j=1

1{Yi j =k}

with Zn:=
∑n

i=1 Xi−1 is the nonparametric maximum likelihood estimator of pk

for every k ∈ N0; see [40, 42]. For every k ∈ N0, show that

p̂k,n → pk a.s. as n → ∞ on M+

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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and

αn/2

(α − 1)1/2
(

p̂k,n − pk
) → (pk (1 − pk))

1/2 M−1/2∞ N F∞-stably under PM+ ,

where P N = N (0, 1) and N and F∞ are P-independent.

Exercise 10.2 In the situation of Exercise 10.1, assume that after the (n − 1)-th
generation of X only the complete next generation

(
Ynj

)
1≤ j≤Xn−1

is observable. For
the estimator

p̃k,n:=
1

Xn−1

Xn−1∑
j=1

1{Ynj =k}

of pk show that for all k ∈ N0

p̃k,n → pk a.s. as n → ∞ on M+

and

X1/2
n−1

(
p̃k,n − pk

) → (pk (1 − pk))
1/2 N F∞-mixing under PM+ as n → ∞ ,

where P N = N (0, 1) and N and F∞ are P-independent.
Hint: The strong consistency of p̃k,n on M+ can be derived from the strong consis-
tency of p̂k,n on M+ appearing in Exercise 10.1.



Appendix A

Here we collect some basic facts about the weak topology on M1 (X ), conditional
distributions and martingales.

A.1 Weak Topology and Conditional Distributions

Let X be a separable metrizable topological space equipped with its Borel-σ-field
B (X ) and M1 (X ) the set of all probability measures on B (X ) equipped with the
weak topology. Let d be a metric on X that induces the topology and let Ub (X , d)

denote the subspace of Cb (X ) consisting of all d-uniformly continuous, bounded
real functions.

Theorem A.1 (Portmanteau theorem) Let (να)α be a net in M1 (X ) and ν ∈
M1 (X ). Let β be the system of all finite intersections of open balls in X . The
following statements are equivalent:

(i) να → ν weakly ,

(ii) lim
α

∫
hdνα =

∫
hdν for every h ∈ Ub (X , d),

(iii) lim inf
α

να (O) ≥ ν (O) for every open subset O ⊂ X ,

(iv) lim sup
α

να (C) ≤ ν (C) for every closed subset C ⊂ X ,

(v) lim
α

να (B) = ν (B) for every B ∈ B (X ) satisfying ν (∂B) = 0,

(vi) lim
α

να (B) = ν (B) for every B ∈ β satisfying ν (∂B) = 0.

Proof For the equivalences (i)–(v) see [69], Theorem II.6.1.
(v) ⇒ (vi) is obvious.
(vi) ⇒ (iii). Let β1 := {B ∈ β : ν (∂B) = 0} and let β2 denote the system of all

finite unions of sets from β1. Using that β1 is closed under finite intersections since
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∂
(⋂k

i=1 Bi

)
⊂ ⋃k

i=1 ∂Bi, the inclusion-exclusion formula yields limα να (G) =
ν (G) for every G ∈ β2. Moreover, we observe that β1 is a base for the topology
on X . In fact, if O ⊂ X is any open subset and x ∈ O, then there exists an r > 0
such that B (x, r) := {d (x, ·) < r} ⊂ O. Since ∂B (x, s) ⊂ {d (x, ·) = s}, s > 0,
these boundaries are pairwise disjoint and thus R := {s > 0 : ν (∂B (x, s)) > 0} is
countable. Hence, (0, r]∩Rc 	= ∅, and for s ∈ (0, r]∩Rc we obtain x ∈ B (x, s) ⊂ O
and B (x, s) ∈ β1. So β1 is a base. The space X having a countable base is strongly
Lindelöf, that is, every open cover of any open subset ofX has a countable subcover.
Consequently, for every open set O ⊂ X , there exists a sequence (Gn) in β2 such
that Gn ↑ O. One obtains

lim inf
α

να (O) ≥ lim
α

να (Gn) = ν (Gn) for every n ∈ N

and limn→∞ ν (Gn) = ν (O) which yields lim infα να (O) ≥ ν (O). �

Lemma A.2 We have

B
(
M1 (X )

)
= σ

(
ν →

∫
hdν, h ∈ Cb (X )

)
= σ (ν → ν (B) , B ∈ B (X )).

Proof Let gB (ν) = ν (B) and gh (ν) = ∫
hdν. A base β of the weak topology on

M1 (X ) belonging to σ (gh, h ∈ Cb (X )) is given by the collection of finite intersec-
tions of sets of the form {{gh ∈ U} : h ∈ Cb (X ) , U ⊂ R open}. The spaceM1 (X )

being separable andmetrizable and thus having a countable base is strongly Lindelöf.
Consequently, every open subset ofM1 (X ) is a countable union of sets from β. This
implies B (M1 (X )

) ⊂ σ (gh, h ∈ Cb (X )).
The inclusion σ (gh, h ∈ Cb (X )) ⊂ σ (gB, B ∈ B (X )) follows from the usual

approximation of h by B (X )-simple functions.
The system D := {

B ∈ B (X ) : gB is B (M1 (X )
)
-measurable

}
is a Dynkin-

system which contains every open subset of X by the Portmanteau theorem. Thus
D = B (X ) and we deduce σ (gB, B ∈ B (X )) ⊂ B (M1 (X )

)
. �

Let (�,F , P) be a probability space, G ⊂ F a sub-σ-field and X : (�,F) →
(X ,B (X )) a random variable. The distribution of X is denoted by PX . The condi-
tional distribution PX|G of X given G is the P-almost surely unique Markov kernel
in K1 (G,X ) such that

PX|G (·, B) = P (X ∈ B|G) P-a.s. for every B ∈ B (X ) .

It is characterized by the Radon-Nikodym equations

∫
G

PX|G (ω, B) dP (ω) = P
(

X−1 (B) ∩ G
)
for everyG ∈ G, B ∈ B (X ) ,

or, what is the same, by measure uniqueness, P ⊗ PX|G = P ⊗ δX on G ⊗ B (X ).
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For Borel-measurable functions f : X → R such that f (X) ∈ L1 (P) we have

E (f (X) |G) =
∫

f (x) PX|G (dx)

provided PX|G exists ([26], Theorem 10.2.5).

Theorem A.3 Assume thatX is polish. Then the conditional distribution PX|G exists.

Proof [26], Theorem 10.2.2. �

In the sequel we assume that the conditional distribution PX|G exists.

Lemma A.4 (a) If X is G-measurable, then PX|G = δX .

(b) PX|G = PX if and only if σ (X) and G are independent.

(c) Let Y be a further separable metrizable topological space and g : X → Y be
Borel-measurable. Then Pg(X)|G = (

PX|G)g .

(d) Let Q be a probability distribution onF with Q � P and dQ/dP beG-measurable.
Then QX|G = PX|G Q-almost surely.
In particular, Q ⊗ PX|G = Q ⊗ δX on G ⊗ B (X ) and QPX|G = QδX = QX.

Proof (a) We have δX ∈ K1 (G,X ) and δX clearly satisfies the Radon-Nikodym
equations for PX|G .

(b) We have PX|G = PX if and only if PX (B) P (G) = P
(
X−1 (B) ∩ G

)
for every

G ∈ G, B ∈ B (X ), that is, the independence of σ (X) and G.
(c) For every G ∈ G, C ∈ B (Y) we have

∫
G

(
PX|G)g

(ω, C) dP (ω) =
∫

G
PX|G (ω, g−1 (C)

)
dP (ω)

= P ({g (X) ∈ C} ∩ G) =
∫

G
Pg(X)|G (ω, C) dP (ω) .

(d) Let f := dQ/dP. For every G ∈ G and B ∈ B (X ) we obtain

∫
G

PX|G (ω, B) dQ (ω) =
∫

G
PX|G (ω, B) f (ω) dP (ω)

=
∫

G
EP (1B (X) f |G) dP =

∫
G
1B (X) f dP = Q

(
X−1 (B) ∩ G

)
. �

Now let Y be a further separable metrizable topological space and Y : (�,F) →
(Y,B (Y)) a random variable. Note that B (X × Y) = B (X ) ⊗B (Y) ([26], Propo-
sition 4.1.7). For K1 ∈ K1 (F ,X ) and K2 ∈ K1 (F ,Y) define the product kernel
K1 ⊗ K2 ∈ K1 (F ,X × Y) by K1 ⊗ K2 (ω, ·) := K1 (ω, ·) ⊗ K2 (ω, ·).

http://dx.doi.org/10.1007/978-3-319-18329-9_10
http://dx.doi.org/10.1007/978-3-319-18329-9_10
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Lemma A.5 Let Y be G-measurable.

(a) P(X,Y)|G = PX|G ⊗ δY .

(b) Let X̃ : (�,F) → (X ,B (X )) be a random variable with PX̃ = PX. If σ (X), G
are independent and σ

(
X̃
)
,G are independent, then P(X,Y)|G = P(X̃,Y)|G .

(c) Let X = Y = R. If σ(X) and G are independent and PX is symmetric around
zero, then PX|Y ||G = PXY |G .
In particular, if |Y | = 1 P-almost surely, then PXY |G = PX|G = PX.

Proof (a) Let K := PX|G ⊗ δY . Then K ∈ K1 (G,X × Y) and for every G ∈ G,
B ∈ B (X ), C ∈ B (Y)∫

G
K (ω, B × C) dP (ω) =

∫
G

PX|G (ω, B) δY(ω) (C) dP (ω)

=
∫

G∩Y−1(C)

PX|G (ω, B) dP (ω) = P
(

X−1 (B) ∩ Y−1 (C) ∩ G
)

= P
(
(X, Y)−1 (B × C) ∩ G

)
.

Measure uniqueness yields the assertion.
(b) By (a) and Lemma A.4 (b), P(X,Y)|G = PX ⊗ δY = PX̃ ⊗ δY = P(X̃,Y)|G .
(c) Let g, h : R2 → R be defined by g(x, y) := xy and h(x, y) := x|y|. Then by

(a) and Lemma A.4 (b) and (c) for every B ∈ B(R)

PX|Y ||G (·, B) = P(X,Y)|G (·, h−1 (B)
)

= PX ⊗ δY

(
h−1 (B)

)
=
∫

PX ({x ∈ R : x |y| ∈ B}) dδY (y)

=
∫

(0,∞)

PX ({x ∈ R : xy ∈ B}) dδY (y)

+
∫

{0}
PX ({x ∈ R : 0 ∈ B}) dδY (y)

+
∫

(−∞,0)
PX ({x ∈ R : −xy ∈ B}) dδY (y)

= PX ⊗ δY

(
g−1 (B)

)
= PXY |G (·, B) .

The assertion follows from Lemma 2.1 (b). �

Let μ be a probability distribution onF ⊗B (X )with μπ1 = P, π1 : �×X → �

being the projection. Then aMarkov kernel K ∈ K1 (F ,X ) is called a disintegration
of μ w.r.t. π1 if P ⊗ K = μ. The kernel K is then P-almost surely unique.

Theorem A.6 Assume that X is polish. Then a disintegration w.r.t. π1 exists for
every probability distribution μ on F ⊗ B (X ) with μπ1 = P.

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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Proof By Theorem A.3, the conditional distribution K̃ := μπ2|F⊗{∅,X } ∈
K1 (F ⊗ {∅,X } ,X ) exists, π2 : � × X → X being the projection. Since
F ⊗ {∅,X } = σ (π1), there exists a K ∈ K1 (F ,X ) such that K (π1 (ω, x) , B) =
K̃ ((ω, x) , B) for every ω ∈ �, x ∈ X , B ∈ B (X ). We obtain for F ∈ F and
B ∈ B (X )

P ⊗ K (F × B) =
∫

F
K (ω, B) dP (ω) =

∫
F×X

K (π1 (ω, x) , B) dμ (ω, x)

=
∫

F×X
K̃ ((ω, x) , B) dμ (ω, x) = μ

(
π−1
2 (B) ∩ (F × X )

)

= μ (F × B) .

Measure uniqueness yields P ⊗ K = μ. �

In view of the Radon-Nikodym equations for PX|G we see that PX|G is the disinte-
gration of P ⊗ δX |G ⊗B (X ) so that PX|G = E (δX |G) in the sense of Definition 2.4.

Lemma A.7 Assume that X is polish. Let K ∈ K1 (F ,X ) and let G1 ⊂ G2 ⊂ F be
sub-σ-fields.

(a) E (E (K|G2) |G1) = E (K|G1).
(b)E

(
PX|G2 |G1

) = PX|G1 .

(c)E (K|G) = ∫
M1(X )

ν PK|G (dν), where on the right-hand side K is regarded as an(M1 (X ) ,B (M1 (X )
))

-valued random variable (see Lemma A.2 ). In particular,
E (K (·, B) |G) = E (K|G) (·, B) for every B ∈ B (X ).

The conditional distribution PK|G in part (c) exists by Theorem A.3 because
M1 (X ) is polish.

Proof (a) LetH := E (K|G2) and J := E (K|G1). SinceP⊗H = P⊗K onG2⊗B (X )

and P ⊗ J = P ⊗ K on G1 ⊗ B (X ), we get P ⊗ J = P ⊗ H on G1 ⊗ B (X ) so that
J = E (H|G1).

(b) Using (a), we obtain

E
(

PX|G2 |G1
)

= E (E (δX |G2) |G1) = E (δX |G1) = PX|G1 .

(c) The right-hand side, denoted by H, satisfies

H (ω, B) =
∫

ν (B) PK|G (ω, dν)

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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so that H ∈ K1 (G,X ). We obtain for every G ∈ G, B ∈ B (X )

P ⊗ H (G × B) =
∫

G

∫
ν (B) PK|G (ω, dν) dP (ω)

=
∫

1G (ω) ν (B) dP ⊗ PK|G (ω, ν)

=
∫

1G (ω) ν (B) dP ⊗ δK (ω, ν)

=
∫

G
K (ω, B) dP (ω)

= P ⊗ K (G × B)

and measure uniqueness yields P ⊗ H = P ⊗ K on G ⊗ B (X ). This implies H =
E (K|G). Furthermore, for B ∈ B (X ) let gB : M1 (X ) → R, gB (ν) := ν (B). Then

E (K (·, B) |G) = E (gB (K) |G) =
∫

gB (ν) PK|G (dν) = H (·, B) . �

A.2 Martingales

Let I = [α,β] ∩ Z be an integer interval, where α ∈ Z, β ∈ Z ∪ {∞} and α < β
(like {0, . . . , k}, N or N0), let F = (Fn)n∈I be a filtration in F , that is, a nonde-
creasing family of sub-σ-fields of F , and let X = (Xn)n∈I be a real process defined
on (�,F , P). The increments (or differences) of X are given by �Xn = Xn − Xn−1
for n ∈ I , n ≥ α + 1 so that Xn = Xα + ∑n

j=1 �Xj, n ∈ I . The process [X]
defined by [X]n := ∑n

j=α+1

(
�Xj

)2 for n ∈ I , n ≥ α + 1 with [X]α = 0 is
called the quadratic variation of X. The process X is called F-adapted if Xn is
Fn-measurable for every n ∈ I . IfX is anF-martingale, i.e.X is integrable,F-adapted
and E (Xn|Fn−1) = Xn−1 for every n ∈ I , n ≥ α+1, then E (�Xn|Fn−1) = 0, n ∈ I ,
n ≥ α + 1. Conversely, if Z = (Zn)n∈I,n≥α+1 is an F-martingale increment (or mar-
tingale difference) sequence, that is, Z is integrable,F-adapted andE (Zn|Fn−1) = 0,
n ∈ I , n ≥ α+1, then for any randomvariableZα ∈ L1 (Fα, P) the processX defined
by Xn := Zα +∑n

j=α+1 Zj is an F-martingale.
If X is integrable and F-adapted, then its F-compensator A is defined by

An :=
n∑

j=α+1

E
(
�Xj|Fj−1

)
with Aα = 0 .
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The compensated process X − A is an F-martingale. Furthermore, X is an
F-submartingale, that is E (Xn|Fn−1) ≥ Xn−1 for every n ∈ I , n ≥ α + 1, if
and only if its F-compensator is (almost surely) nondecreasing.

For square integrable martingales X, the process 〈X〉 defined by

〈X〉n :=
n∑

j=α+1

E
((

�Xj
)2 |Fj−1

)
with 〈X〉α = 0

is called the quadratic F-characteristic of X and is the F-compensator of the non-
negative F-submartingale X2 = (

X2
n

)
n∈I and of [X].

Theorem A.8 (Lenglart’s inequalities) Let X be a nonnegative F-submartingale
with F-compensator A.
(a) For every a, b > 0,

P

(
sup
n∈I

Xn ≥ a

)
≤ b

a
+ P

(
Xα + Aβ > b

)
,

where Aβ := limn→∞ An if β = ∞.

(b) If X is nondecreasing, then for every a, b > 0,

P
(
Xα + Aβ ≥ a

) ≤ 1

a

⎛
⎝b + E sup

n∈I
n≥α+1

�Xn

⎞
⎠+ P

(
Xβ > b

)
,

where Xβ := limn→∞ Xn if β = ∞.

Proof [64], Satz 3.9. �

A process (Bn)n∈I is said to be F-predictable if Bα is Fα-measurable and Bn is
Fn−1-measurable for every n ∈ I , n ≥ α + 1. In this sense F-compensators are
F-predictable.

Theorem A.9 (Strong law of large numbers; Chow) Assume β = ∞. Let X be an
F-martingale, p ∈ (0, 2] and let B be an F-predictable, nonnegative, nondecreasing
process. If

∞∑
j=α+1

E
(∣∣�Xj

∣∣p |Fj−1
)

(
1 + Bj

)p < ∞ a.s. ,

then Xn/Bn → 0 almost surely on {B∞ = ∞} as n → ∞. In particular, if X is
square integrable and a > 1/2, then Xn/ 〈X〉a

n → 0 almost surely on {〈X〉∞ = ∞}.
Proof [64], Satz 5.4 (a) and Korollar 5.5. �
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Theorem A.10 (Brown’s inequality) Assume β = ∞. Let X = (Xk)k∈I be a uni-
formly integrable F-martingale. Then for all almost surely finite F-stopping times
τ : � → I ∪ {∞} (that is, τ (�) ⊂ I almost surely) and all ε > 0,

P

(
max

α≤k≤τ
|Xk| ≥ ε

)
≤ 2

ε
E
(|Xτ | 1{|Xτ |≥ε/2}

)
.

Proof Setting Mm := maxα≤k≤m |Xk∧τ | and observing that (|Xτ∧k |)k∈I is a non-
negative submartingale, by Doob’s maximal inequality we obtain for all m ∈ I and
ε > 0

2εP (Mm ≥ 2ε) ≤ E
(|Xm∧τ | 1{Mm≥2ε}

)
= E

(|Xm∧τ | 1{Mm≥2ε,|Xm∧τ |≥ε}
)+ E

(|Xm∧τ | 1{Mm≥2ε,|Xm∧τ |<ε}
)

≤ E
(|Xm∧τ | 1{|Xm∧τ |≥ε}

)+ εP (Mm ≥ 2ε)

so that

P (Mm ≥ 2ε) ≤ 1

ε
E
(|Xm∧τ | 1{|Xm∧τ |≥ε}

)
.

Using uniform integrability of the sequence (Xm∧τ )m∈I and letting m tend to infinity
implies the assertion. �

In [12] a sharper result is derived from Doob’s upcrossing inequality, but The-
orem A.10 is all that is needed in tightness proofs like that of Theorem 7.1. The
2ε-trick to obtain Theorem A.10 from Doob’s maximal inequality may be found for
example in [23], p. 18, or [96], Lemma 2.

http://dx.doi.org/10.1007/978-3-319-18329-9_7
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Solutions of Exercises

2.1. The system D := {B ∈ B (X ) : K (·, B) is F-measurable} is a Dynkin-system.
A standard argument yields the assertion.

2.2. If Kα → K weakly, then by Theorem 2.3, QKα → QK weakly (in M1 (X ))
for every probability distribution Q on F such that Q ≡ P. Conversely, if Q is a
probability distribution onF with Q � P and Q := (Q + P) /2, then Q ≡ P so that

1

2

∫
h dQKα + 1

2

∫
h dPKα =

∫
h dQKα

→
∫

h dQK = 1

2

∫
h dQK + 1

2

∫
h dPK

and ∫
h dPKα →

∫
h dPK

for every h ∈ Cb (X ). Consequently,
∫

h dQKα → ∫
h dQK and hence, QKα → QK

weakly. It follows from Theorem 2.3 that Kα → K weakly.

2.3. Assume Q � P and let g := dQ/dP. Then g f ∈ L1 (P) for every f ∈ L1 (Q).
The topology τ (Q) which is generated by the functions

K →
∫

f ⊗ h dQ ⊗ K =
∫

g f ⊗ h dP ⊗ K , f ∈ L1 (Q) , h ∈ Cb (X ) ,

is thus coarser than τ (P).

2.5. Check the proof of Theorem 2.7.
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2.6. If
{
PK : K ∈ �

}
is tight in M1

(M1 (X )
)
, then for every n ∈ N, there

exists a weakly compact set Mn ⊂ M1 (X ) such that supK∈� PK
(
Mc

n

) = supK∈�

P (K /∈ Mn) ≤ 2−n−1. Since Mn is tight for every n ∈ N, there exist compact sets
An ⊂ X such that supν∈Mn

ν
(
Ac

n

) ≤ 2−n−1. This implies for every K ∈ �, n ∈ N,

PK
(
Ac

n

) =
∫

K
(·, Ac

n

)
dP =

∫
{K /∈Mn}

K
(·, Ac

n

)
dP +

∫
{K∈Mn}

K
(·, Ac

n

)
dP

≤ 2−n−1 + 2−n−1 = 2−n ,

and hence, P� is tight.
Conversely, assume that P� is tight inM1 (X ). Then for every n ∈ N, there exists

a compact set An ⊂ X such that supK∈� PK
(
Ac

n

) ≤ 2−2n. Now for m ∈ N introduce
the set

Mm :=
{
ν ∈ M1 (X ) : ν

(
Ac

n

) ≤ 2−n for every n > m
}

.

Clearly Mm is tight and, by the Portmanteau theorem, Mm is weakly closed so that
Mm is a weakly compact subset ofM1 (X ). Using the Markov inequality, we obtain
for every K ∈ �, m ∈ N,

PK (Mc
m

) = P (K /∈ Mm) = P

(⋃
n>m

{
K
(·, Ac

n

)
> 2−n})

≤
∑
n>m

P
(
K
(·, Ac

n

)
> 2−n) ≤

∑
n>m

2nPK
(
Ac

n

) ≤
∑
n>m

2−n → 0

as m → ∞, which shows that P� is tight inM1
(M1 (X )

)
.

2.7. Recall that B (X × Y) = B (X ) ⊗ B (Y). Let w0 (X × Y) denote the topology
onM1 (X × Y) generated by the maps μ → ∫

h⊗k dμ, h ∈ Cb (X ), k ∈ Cb (Y). In
order to show that w0 (X × Y) coincides with the weak topology on M1 (X × Y)

we have to show that the map μ → ∫
g dμ is w0 (X × Y)-continuous for every

g ∈ Cb (X × Y). Let (μα)α be a net in M1 (X × Y) and μ ∈ M1 (X × Y) such
that μα → μ with respect to w0 (X × Y). Let dX and dY be metrics inducing the
topologies on X and Y , respectively. Let O ⊂ X , U ⊂ Y be open subsets and for
n ∈ N, let hO,n (x) := 1∧ n infz∈Oc dX (x, z) and kU,n (y) := 1∧ n infz∈Uc dY (y, z).
Then hO,n ∈ Cb (X ), kU,n ∈ Cb (Y), hO,n ↑ 1O and kU,n ↑ 1U so that hO,n ⊗ kU,n ↑
1O ⊗ 1U = 1O×U . We obtain

lim inf
α

μα (O × U) ≥ lim
α

∫
hO,n ⊗ kU,n dμα =

∫
hO,n ⊗ kU,n dμ for every n ∈ N

and by monotone convergence, limn→∞
∫

hO,n ⊗ kU,n dμ = μ (O × U) which yields
lim infα μα (O × U) ≥ μ (O × U).
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Analogously, if V ⊂ X and W ⊂ Y are closed subsets and h̃n := 1 − hVc,n,
k̃n := 1 − kWc,n, then h̃n ↓ 1V and k̃n ↓ 1W so that

lim sup
α

μα (V × W) ≤ lim
α

∫
h̃n ⊗ k̃n dμα =

∫
h̃n ⊗ K̃n dμ for every n ∈ N

and thus lim supα μα (V × W) ≤ μ (V × W).
Let β := {O × U : O ⊂ X open, U ⊂ Y open} and β1 := {G ∈ β : μ (∂G) =

0}. Then for G = O × U ∈ β1, using G = O × U and ∂G = G \ G,

μ (G) ≤ lim inf
α

μα (G) ≤ lim sup
α

μα (G) ≤ lim sup
α

(
G
) ≤ μ

(
G
) = μ (G)

so that limα μα (G) = μ (G).
The metric d ((x, y) , (x1, y1)) := dX (x, x1) ∨ dY (y, y1) induces the product

topology and the corresponding open balls satisfy

B ((x, y) , r) := {d ((x, y) , ·) < r} = {dX (x, ·) < r} × {
dY (y, ·) < r

}
.

Hence B ((x, y) , r) ∈ β. Furthermore, β is closed under finite intersections since⋂k
i=1 Gi = ⋂k

i=1 (Oi × Ui) =
(⋂k

i=1 Oi

)
×
(⋂k

i=1 Ui

)
. Now the Portmanteau

theorem yields μα → μ weakly, that is, limα

∫
g dμα = ∫

g dμ for every g ∈
Cb (X × Y). This completes the proof of the first assertion.

The second assertion is an immediate consequence of the first one and Theo-
rem 2.3.

2.8. For every F ∈ F , h ∈ Cb (X ), k ∈ Cb (Y), setting f := 1F
∫

k (y) K (·, dy), we
have∣∣∣∣

∫
1F ⊗ h ⊗ k dP ⊗ (Hα ⊗ Kα) −

∫
1F ⊗ h ⊗ k dP ⊗ (H ⊗ K)

∣∣∣∣
≤
∣∣∣∣
∫

1F ⊗ h ⊗ k dP ⊗ (Hα ⊗ Kα) −
∫

1F ⊗ h ⊗ k dP ⊗ (Hα ⊗ K)

∣∣∣∣
+
∣∣∣∣
∫

1F ⊗ h ⊗ k dP ⊗ (Hα ⊗ K) −
∫

1F ⊗ h ⊗ k dP ⊗ (H ⊗ K)

∣∣∣∣
≤
∫ ∣∣∣∣1F

∫
h (x) Hα (·, dx)

∣∣∣∣
∣∣∣∣
∫

k (y) Kα (·, dy) −
∫

k (y) K (·, dy)

∣∣∣∣ dP

+
∣∣∣∣
∫

f ⊗ h dP ⊗ Hα −
∫

f ⊗ h dP ⊗ H

∣∣∣∣
≤ ‖h‖sup

∫ ∣∣∣∣
∫

k (y) Kα (·, dy) −
∫

k (y) K (·, dy)

∣∣∣∣ dP

+
∣∣∣∣
∫

f ⊗ h dP ⊗ Hα −
∫

f ⊗ h dP ⊗ H

∣∣∣∣

http://dx.doi.org/10.1007/978-3-319-18329-9_2
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which yields

lim
α

∣∣∣∣
∫

1F ⊗ h ⊗ k dP ⊗ (Hα ⊗ Kα) −
∫

1F ⊗ h ⊗ k dP ⊗ (H ⊗ K)

∣∣∣∣ = 0 .

The assertion follows from Exercise 2.7.

3.1. Let (Fn)n≥1 be nonincreasing. Then for every h ∈ Cb (X ),

∫
h dPXn

Fn
=
∫

F
h (Xn) dP

1

P (Fn)
+
∫

Fn∩Fc
h (Xn) dP

1

P (Fn)

=
∫

h dPXn
F

P (F)

P (Fn)
+
∫

Fn∩Fc
h (Xn) dP

1

P (Fn)
.

Since P (F) /P (Fn) → 1 and

∣∣∣∣
∫

Fn∩Fc
h (Xn) dP

∣∣∣∣ ≤ ‖h‖supP
(
Fn ∩ Fc) → 0 ,

we obtain

lim
n→∞

∫
h dPXn

Fn
= lim

n→∞

∫
h dPXn

Fn
=
∫

hdν

so that PXn
Fn

→ ν weakly.
Now let (Fn)n≥1 be nondecreasing. Then for h ∈ Cb (X ) and n sufficiently large

∫
h dPXn

Fn
=
∫

F
h (Xn) dP

1

P (Fn)
−
∫

F∩Fc
n

h (Xn) dP
1

P (Fn)

=
∫

h dPXn
F

P (F)

P (Fn)
−
∫

F∩Fc
n

h (Xn) dP
1

P (Fn)
.

Since P
(
F ∩ Fc

n

) → 0, we obtain as above limn→∞
∫

h dPXn
Fn

= ∫
hdν.

3.2. If 1Fn → K G-stably, G ∈ G and h ∈ Cb (R) satisfies h (0) = 0 and h (1) = 1,
then by Theorem 3.2,

P (Fn ∩ G) = E1Gh
(
1Fn

) →
∫

1G ⊗ h dP ⊗ K =
∫

G
α dP .

Conversely, assume limn→∞ P (Fn ∩ G) = ∫
G α dP for every G ∈ G. Then for

G ∈ G with P (G) > 0, using PGK = (∫
α dPG

)
δ1 + (∫

(1 − α) dPG
)
δ0, we get

P
1Fn
G ({1}) = PG (Fn) →

∫
α dPG = PGK ({1})

http://dx.doi.org/10.1007/978-3-319-18329-9_2
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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and

P
1Fn
G ({0}) = 1 − PG (Fn) →

∫
(1 − α) dPG = PGK ({0}) .

This yields weak convergence P
1Fn
G → PGK in M1 (R). The assertion 1Fn → K

G-stably follows from Theorem 3.2.

3.3. Clearly, the Xn are identically distributed with PXn = (δ0 + δ1) /2. Let Q :=
2t dt. Then dQ/dP is G-measurable and QXn = ( 3

4 − an
)
δ0+(an + 1

4

)
δ1. Choosing

h ∈ Cb (R) such that h (0) = 0 and h (1) = 1 (e.g. h (t) = (t ∧ 1) ∨ 0) we get∫
h dQXn = an + 1

4 . Thus, if (an) is not convergent,
(
QXn

)
is not weakly convergent.

Consequently, by Theorem 3.2, (Xn) does not converge G-stably. Alternatively, one
can argue that the assertion follows immediately fromExample 1.2 and Theorem 3.7.

3.4. (i) ⇒ (ii) Assume Xn → K G-stably for some K ∈ K1 (G). Then for
f ∈ L1 (G, P) and h ∈ Cb (X ), by Theorem 3.2 and independence of σ (Xn) and G,

∫
f dPEh (Xn) = E f h (Xn) →

∫
f ⊗ h dP ⊗ K .

In particular, Eh (Xn) → ∫
h dPK and thus E f h (Xn) → ∫

f dP
∫

h dPK .
Corollary 3.3 yields Xn → PK G-mixing.

(ii) ⇒ (iii) is clear.
(iii) ⇒ (ii). Assume PXn → ν weakly. Then for f ∈ L1 (G, P) and h ∈ Cb (X ),

E f h (Xn) =
∫

f dPEh (Xn) →
∫

f dP
∫

hdν .

Corollary 3.3 yields Xn → ν G-mixing.
(ii) ⇒ (i) is clear.

3.5. The implications (i) ⇒ (ii) ⇒ (iii) are obvious consequences of Corollary 3.3
and the Portmanteau theorem.

(iii) ⇒ (i). Using the Portmanteau theorem again, we have

lim
n→∞ P (Xn ∈ B) = ν (B)

and
lim

n→∞ P ({Xn ∈ B} ∩ {Xk ∈ B}) = ν (B) P (Xk ∈ B)

for every k ∈ N and B ∈ B (X ) with ν (∂B) = 0. It remains to show that this implies

lim
n→∞ P ({Xn ∈ B} ∩ F) = ν (B) P (F)

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_1
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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for every F ∈ F and B ∈ B (X ) with ν (∂B) = 0. The assertion (i) then follows
from the Portmanteau theorem and Corollary 3.3.

In order to prove the above limiting relation, fix B ∈ B (X ) with ν (∂B) = 0 and
let Fn := {Xn ∈ B}. One checks that

L :=
{

f ∈ L2 (P) : lim
n→∞

∫
1Fn f dP = ν (B)

∫
f dP

}

is a closed vector subspace of L2 (P) containing 1� and 1Fk for every k ∈ N.
Consequently, the closed linear span of

{
1Fk : k ∈ N

} ∪ {1�} in L2 (P), denoted
by L1, satisfies L1 ⊂ L. Now let F ∈ F and let 1F = f1 + f2 with f1 ∈ L1 and
f2 = 1F − f1 belonging to the orthogonal complement of L1 ( f1 is the P-almost
surely unique best approximation to 1F from L1). Then we obtain

P (Fn ∩ F) =
∫

1Fn f1 dP → ν (B)

∫
f1 dP = ν (B) P (F) .

(i) ⇒ (iv) follows from Corollary 3.3.
(iv) ⇒ (ii). In view of Proposition 3.4 (c) and P

(
ν ⊗ δXk

) = ν ⊗ PXk , we have
Xn → ν σ (Xk)-mixing for every k ∈ N. The assertion now follows from Corol-
lary 3.3.

3.6. Assume Xn → X in probability for some (X ,B (X ))-valued random variable X.
Then by Corollary 3.6, Xn → δX stably. This implies ν = δX almost surely, hence,
ν is a Dirac measure.

3.7. (a) ([50], Lemma IX.6.5) Let k ∈ N. There exists a compact set A ⊂ X such
that P (X /∈ A) ≤ 1/k. Here we use that X is polish. Choose x1, . . . , xp ∈ A such
that A ⊂ ⋃p

i=1 {d (·, xi) < 1/k}. (d is a metric on X inducing the topology.) Since

{
d (Xn, X) ≥ 3

k

}
∩ {X ∈ A} ⊂

p⋃
i=1

{
d (xi, X) <

1

k
, d (xi, Xn) >

2

k

}

and setting hi (x) := k
[
(d (xi, x) − 1/k)+ ∧ 1

]
we obtain

P

(
d (Xn, X) ≥ 3

k

)
≤ P (X /∈ A) + P

(
d (Xn, X) ≥ 3

k
, X ∈ A

)

≤ 1

k
+

p∑
i=1

E1{d(xi,X)<1/k}1{d(xi,Xn)>2/k}

≤ 1

k
+

p∑
i=1

E1{d(xi,X)<1/k}hi (Xn) .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Using hi ∈ Cb (X ) and {d (xi, X) < 1/k} ∈ G, the last sum above converges to∑p
i=1 E1{d(xi,X)<1/k}hi (X) = 0, hence, lim supn→∞ P (d (Xn, X) ≥ 3/k) ≤ 1/k.

This yields Xn → X in probability as n → ∞.
(b) By assumption and Theorem 3.2 we have (Xn, X) → δX ⊗ δX G-stably so that

(Xn, X)
d→ P (δX ⊗ δX) = P(X,X). Let d be a metric on X inducing the topology.

Using the continuity of d : X ×X → R+, this yields Ed (Xn, X)∧1 → Ed (X, X)∧
1 = 0.

3.8. For ε > 0, we have

E
(
d
(
Xn,r, Yn

) ∧ 1
) =

∫
{d(Xn,r ,Yn)≤ε}

d
(
Xn,r, Yn

) ∧ 1 dP

+
∫
{d(Xn,r ,Yn)>ε}

d
(
Xn,r, Yn

) ∧ 1 dP

≤ ε + P
(
d
(
Xn,r, Yn

)
> ε

)
and for ε ∈ (0, 1),

P
(
d
(
Xn,r, Yn

)
> ε

) = P
(
d
(
Xn,r, Yn

) ∧ 1 > ε
) ≤ ε−1E

(
d
(
Xn,r, Yn

) ∧ 1
)

.

This yields the assertion.
Based on this formulation of condition (iii) one can also prove Theorem 3.10 as

follows.
For every bounded Lipschitz function h : X → Rwith Lipschitz constantL ∈ R+

and F ∈ G with P (F) > 0, we have∣∣∣∣
∫

h (Yn) dPF −
∫

h dPFK

∣∣∣∣ ≤
∫ ∣∣h (Yn) − h

(
Xn,r

)∣∣ dPF

+
∣∣∣∣
∫

h
(
Xn,r

)
dPF −

∫
h dPFKr

∣∣∣∣
+
∣∣∣∣
∫

h dPFKr −
∫

h dPFK

∣∣∣∣
and moreover,∫ ∣∣h (Yn) − h

(
Xn,r

)∣∣ dPF ≤
∫

L d
(
Xn,r, Yn

) ∧ 2 ‖h‖sup dPF

≤ L ∨ 2 ‖h‖sup
P (F)

∫
d
(
Xn,r, Yn

) ∧ 1 dP .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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We obtain

lim
n→∞

∣∣∣∣
∫

h (Yn) dPF −
∫

h dPFK

∣∣∣∣ = 0

and hence, PYn
F → PFK weakly (cf. [26], Theorem 11.3.3).

3.9. (i) ⇒ (iii) follows from Theorem 3.2 or Proposition 3.12.
(iii) ⇒ (ii). Let F ∈ E with P (F) > 0 so that F ∈ σ (Xk) for some k ∈ N.

Assume (Xn, Xk)
d→ μ as n → ∞ for some μ ∈ M1 (X × X ). By Proposition 3.4

(a), (b), there exists a subsequence (Xm) of (Xn) and K ∈ K1 (σ (Xk) , P) such that

Xm → K σ (Xk)-stably. Theorem 3.2 yields (Xm, Xk)
d→ P

(
K ⊗ δXk

)
as m → ∞

so that μ = P
(
K ⊗ δXk

)
. Now it follows from Proposition 3.4 (c) that Xn → K

σ (Xk)-stably. Consequently, by Theorem 3.2, PXn
F → PFK weakly.

(ii) ⇒ (i). Assume PXn
F → νF weakly for some νF ∈ M1 (X ) and every F ∈

E := ⋃∞
n=1 σ (Xn) with P (F) > 0. In view of Proposition 3.4 (a), there exists a

subsequence (Xm) of (Xn) and K ∈ K1 such that Xm → K stably. This implies
PXm

F → PFK weakly for every F ∈ F with P (F) > 0 so that νF = PFK for every
F ∈ E with P (F) > 0. One checks that

L :=
{

f ∈ L2 (P) : lim
n→∞ E f h (Xn) =

∫
f ⊗ h dP ⊗ K for every h ∈ Cb (X )

}

is a closed vector subspace of L2 (P) containing 1F , F ∈ E . Consequently, the
closed linear span of {1F : F ∈ E} in L2 (P), denoted by L1, satisfies L1 ⊂ L. Now
let F ∈ F with P (F) > 0 and let 1F = f1 + f2 with f1 ∈ L1 and f2 = 1F − f1
belonging to the orthogonal complement of L1. Since step functions are dense in
Lp-spaces, we have L2 (σ (Xk) , P) ⊂ L1 ⊂ L for every k ∈ N. Hence, for every
h ∈ Cb (X ), ∫

1Fh (Xn) dP =
∫

f1h (Xn) dP →
∫

f1 ⊗ h dP ⊗ K .

The assertion follows from Proposition 3.12.

3.10. Let

Xn
t := 1

σ
√

n

⎛
⎝ [nt]∑

j=1

Zj + (nt − [nt]) Z[nt]+1

⎞
⎠ , t ≥ 0 .

By Example 3.14, Xn → ν = PW mixing in C (R+), where W = (Wt)t≥0 denotes a
Brownian motion. Using the continuity of the restriction map C (R+) → C ([0, 1]),
x → x| [0, 1], we get

(
Xn

t

)
t∈[0,1] → P(Wt)t∈[0,1] mixing in C ([0, 1]) .

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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Define g : C ([0, 1]) → R by g(x) := maxt∈[0,1] x (t). Then g is continuous and
hence by Theorem 3.7 (c),

max
t∈[0,1] Xn

t → Pmaxt∈[0,1] Wt mixing .

Finally observe that Pmaxt∈[0,1] Wt = μ ([51], Proposition 13.13) and

max
t∈[0,1] Xn

t = 1

σ
√

n
max
0≤j≤n

j∑
i=1

Zj .

3.11. The “if” part. By Lemma A.5, we have P(X,Y) = P
(
P(X,Y)|G) = P

(
PX|G ⊗ δY

)
.

Consequently, Proposition 3.4 (c) yields Xn → X G-stably.
The “only if” part follows from Theorem 3.17.

3.12. An application of Theorem 3.17 with E = ⋃∞
k=1 σ (X1, . . . , Xk) shows that

Xn → X G-stably if and only if Xn → X σ (X1, . . . , Xk)-stably for every k ∈ N. The
assertion follows from Exercise 3.11.

4.1. Check the proof of Proposition 4.5.

4.2. Let d be a metric on X inducing the topology. For ε > 0 and k ∈ N, we have

P
(
d
(
Xτn , X

)
> ε

) ≤ P (τn < k) + P
(
d
(
Xτn , X

)
> ε, τn ≥ k

)
= P (τn < k) +

∞∑
j=k

P
(
d
(
Xj, X

)
> ε, τn = j

)

≤ P (τn < k) +
∞∑

j=k

P

(
sup
m≥k

d (Xm, X) > ε, τn = j

)

≤ P (τn < k) + P

(
sup
m≥k

d (Xm, X) > ε

)
.

Since limn→∞ P (τn < k) = 0 and limk→∞ P
(
supm≥k d (Xm, X) > ε

) = 0, we
obtain limn→∞ P

(
d
(
Xτn , X

)
> ε

) = 0.

4.3. Recall that P|H is purely atomic for a sub-σ-field H of F if there exists a

(possibly finite) sequence
(
Fj
)

j≥1 of P|H-atoms such that P
(⋃

j≥1 Fj

)
= 1, where

F ∈ H is called a P|H-atom if P (F) > 0 and every H ∈ H with H ⊂ F satisfies
P (H) = 0 or P (H) = P (F). If F, G ∈ H are P|H-atoms, then P (F ∩ G) = 0 or
P (F�G) = 0.

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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The “only if” part. Assume Xn → K stably for some K ∈ K1. Assume that τn →
∞ in probability andP|H is purely atomic, whereH := σ (τn, n ≥ 1). Let

(
Fj
)

j≥1 be

a sequence ofP|H-atoms satisfyingP
(⋃

j≥1 Fj

)
= 1 andP

(
Fj ∩ Fk

) = 0 for j 	= k.

Since P
(
Fj
) = ∑∞

k=1 P
(
Fj ∩ {τn = k}), there exist kn,j ∈ N such that P

(
Fj
) =

P
(
Fj ∩ {τn = kn,j

})
, that is, Fj ⊂ {

τn = kn,j
}

P-almost surely. Then kn,j → ∞ as
n → ∞. Consequently, for every F ∈ F , h ∈ Cb (X ) and every j,

∫
F

h
(
Xτn

)
dPFj =

∫
F

h
(
Xkn,j

)
dPFj →

∫
1F ⊗ h dPFj ⊗ K as n → ∞

so that by Theorem 3.2, Xτn → K stably under PFj . Using P = ∑
j≥1 P

(
Fj
)

PFj ,

Proposition 3.11 yields Xτn → K stably (under P) and hence, Xτn

d→ ν := PK .
The “if”-part follows as in Remark 4.7 (b) because P|H is purely atomic for every

finite sub-σ-fieldH ⊂ F .

4.4. By the subsequent Corollary 5.9 (see also Example 4.3) we have Xn → PW

mixing in C (R+). The assertion follows from Theorem 4.6 and Remark 4.7 (a).

4.5. The classical central limit theorem yields

P

⎛
⎝ n∑

j=1

Zj > 0

⎞
⎠ = (

Xn
1 > 0

) → 1 − �(0) = 1

2

and

P

⎛
⎝ n∑

j=1

Zj ≤ 0

⎞
⎠ = (

Xn
1 ≤ 0

) → �(0) = 1

2
,

where Xn
1 = σ−1n−1/2∑n

j=1 Zj and � denotes the distribution function of N (0, 1),

so that τn/n
d→ 1

2 (δ1 + δ2) (and 1
2 (δ1 + δ2) (0,∞) = 1). On the other hand,

P
(
Xτn
1 ≤ 0

) = P

⎛
⎝X2n

1 ≤ 0,
n∑

j=1

Zj ≤ 0

⎞
⎠

= P

⎛
⎝ 1

σ
√

n

2n∑
j=1

Zj ≤ 0,
1

σ
√

n

n∑
j=1

Zj ≤ 0

⎞
⎠

= P

(
σ−1n−1/2∑n

j=1 Zj,σ
−1n−1/2∑2n

j=n+1 Zj

)
(C) ,

whereC = {
(x, y) ∈ R

2 : x ≤ 0, x + y ≤ 0
}
, and hence, by the central limit theorem

and Fubini’s theorem, as n → ∞

http://dx.doi.org/10.1007/978-3-319-18329-9_3
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P
(
Xτn
1 ≤ 0

) = Pσ−1n−1/2∑n
j=1 Zj ⊗ Pσ−1n−1/2∑n

j=1 Zj (C)

→ N (0, 1) ⊗ N (0, 1) (C) =
∫

N (0, 1)
(
Cy
)

dN (0, 1) (y)

= 1

4
+
∫ ∞

0
�(−y) dN (0, 1) (y) = 1

4
+
∫ 0

−∞
�(y) dN (0, 1) (y)

= 3

8
	= �(0) ,

where the last equation follows from integration by parts.

4.6. Let w0 (X ) denote the topology on M1 (X ) generated by the maps ν →∫
hB,n dν, B ∈ B, n ∈ N. In order to show thatw0 (X ) coincides with the weak topol-

ogy on M1 (X ), we have to show that the map ν → ∫
hdν is w0 (X )-continuous

for every h ∈ Cb (X ). Let (να)α be a net in M1 (X ) and ν ∈ M1 (X ) such that
να → ν with respect to w0 (X ). Let O ⊂ X be open. Choose Bk ∈ B such that
Bk ↑ O as k → ∞. Then hBk ,m ↑ 1Bk as m → ∞ for every k ∈ N. Therefore, using
the monotone convergence theorem,

lim inf
α

να (O) ≥ lim inf
α

∫
hBk ,m dνα =

∫
hBkm dν for every k, m ∈ N ,

lim
m→∞

∫
hBk ,m dν = ν (Bk) and lim

k→∞ ν (Bk) = ν (O) ,

which yields lim infα να (O) ≥ ν (O). Consequently, by the Portmanteau theorem,
να → ν weakly, that is,

∫
hdνα → ∫

hdν for every h ∈ Cb (X ).

4.7. Since
(
PXn

)
n≥1 is tight, (Xn)n≥1 has a stably convergent subsequence by Propo-

sition 3.4 (a). Let (Xk) be any subsequence of (Xn) with Xk → H stably for some
H ∈ K1. By Theorem 4.9, there exists a subsequence (Xm) of (Xk) such that almost
surely,

1

r

r∑
m=1

δXm(ω) → H (ω, ·) weakly as r → ∞ .

Hence, H = K almost surely. Thus all subsequences of (Xn) which converge stably,
converge stably to K . So the original sequence must converge stably to K .

5.1. Check the proof of Proposition 5.1.

5.2. Check the proof of Proposition 5.3.

5.3. Apply Proposition 5.3 with fn : Zn → R, fn (z1, . . . , zn) := ∑n
j=1 g

(
zj
)
.

6.1. For n ∈ N and 0 ≤ k ≤ kn, define Ynk := ∑k
j=1 Xnj with Yn0 = 0.

Then (Ynk)0≤k≤kn
is a nonnegative submartingale (with respect to the filtration

http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_4
http://dx.doi.org/10.1007/978-3-319-18329-9_5
http://dx.doi.org/10.1007/978-3-319-18329-9_5
http://dx.doi.org/10.1007/978-3-319-18329-9_5
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(Fnk)0≤k≤kn
) with compensator Ank = ∑k

j=1 E
(
Xnj|Fn,j−1

)
. For ε, δ > 0 the

Lenglart inequality of Theorem A.8 (a) yields

P
(
Ynkn ≥ ε

) ≤ δ

ε
+ P

(
Ankn > δ

)
.

Letting n tend to infinity and then letting δ tend to zero gives the assertion.

6.2. One checks that for every n ∈ N there exists an rn ∈ N, rn ≥ n such that

∑
j>rn

Xnj → 0 in probability as n → ∞

and
rn∑

j=1

E
(

X2
nj|Fn,j−1

)
→ η2 in probability as n → ∞ .

The σ-field G from Theorem 6.1 which takes the form G = σ
(⋃∞

n=1 Gn∞
)
,

where Gn∞ = σ
(⋃∞

j=0 Gnj

)
, coincides with the σ-field σ

(⋃∞
n=1 Gnrn

)
. Now apply

Theorem 6.1 to the array (Xnk)1≤k≤rn,n∈N and (Fnk)0≤k≤rn,n∈N and Theorem 3.7 (a)
to get the assertion.

6.3. By Theorem 6.1, Remark 6.2 and Proposition 3.5 we have

kn∑
j=1

Xnj → N
(
0, η2

)
stably as n → ∞ .

The assertion follows from Theorem 4.1.

6.4. Let An = ⋂n
k=1

{
Xnk = 1

n

}
. Then P (An) = 1 − 1

n and

An ⊂
{
max
1≤k≤n

|Xnk | = 1

n

}
∩
{

n∑
k=1

X2
nk = 1

n

}
∩
{

n∑
k=1

Xnk = 1

}

so that max1≤k≤n |Xnk | → 0 and
∑n

k=1 X2
nk → 0 in probability (that is (R) with

η2 = 0), but
∑n

k=1 Xnk → 1 in probability.

6.5. We have E (Xn|Fn−1) = 1{X0 	=0}E (Yn|Fn−1) = 0 for n ≥ 1 so that M is a
martingale. Moreover,

〈M〉n =
n∑

j=1

E
(

X2
j |Fj−1

)
=

n∑
j=1

σ21{X0 	=0} = nσ21{X0 	=0} = nσ2X2
0

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_4
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which implies 〈M〉n /n = σ2X2
0 and thus condition (Nan ) is satisfied with an = √

n.
The conditional Lindeberg condition (CLBan ) is satisfied because

1

n

n∑
j=1

E
(

X2
j 1{|Xj|≥ε

√
n}|Fj−1

)
= 1

n

n∑
j=1

1{X0 	=0}EY2
1 1{|Y1|≥ε

√
n}

= 1{X0 	=0}EY2
1 1{|Y1|≥ε

√
n} → 0

on � as n → ∞. Hence, Theorem 6.23 yields Mn/
√

n → N
(
0,σ2X2

0

)
stably. In

particular, Mn/
√

n
d→ PN

(
0,σ2X2

0

) = P (X0 = 0) δ0 + P (X0 	= 0) N
(
0,σ2

)
.

6.6. Let Z0 := 0, Fn := σ (Z0, Z1, . . . , Zn), F = (Fn)n≥0, Un := ∑n
j=1 Zj/j

with U0 = 0 and Mn := ∑n
j=1 Uj−1Zj with M0 = M1 = 0. Then U and

M are square integrable F-martingales and U is L2-bounded because EU2
n =∑n

j=1 σ2/j2 ≤ ∑∞
j=1 σ2/j2 < ∞. The martingale convergence theorem yields

Un → V = ∑∞
j=1 Zj/j almost surely. We have 〈M〉n = ∑n

j=1 E
(

U2
j−1Z2

j |Fj−1

)
=

σ2∑n
j=1 U2

j−1 and hence, by the Toeplitz Lemma 6.28 (b), 1
n 〈M〉n → σ2V2 almost

surely. Moreover, the conditional Lyapunov condition (CLYan,p) with an = √
n and

p > 2 is satisfied because

1

np/2

n∑
j=1

E
(∣∣Uj−1Zj

∣∣p |Fj−1
) = 1

np/2

n∑
j=1

∣∣Uj−1
∣∣p E

∣∣Zj
∣∣p

= E |Z1|p
np/2−1

1

n

n∑
j=1

∣∣Uj−1
∣∣p → 0 a.s.

using
∑n

j=1

∣∣Uj−1
∣∣p /n → |V |p almost surely which follows again from the Toeplitz

lemma. The assertion now follows from Theorem 6.23 and Remark 6.25.

6.7. For n, k ∈ N, define Xnk := anXn+k and for n ∈ N, k ∈ N0, Fnk := Fn+k . Then
the nesting condition is obviously satisfied. Apply Exercise 6.2.

6.8. The stopping time τn is almost surely finite because 〈M〉∞ = ∞ almost surely.
Consider the arrays Xnk = �Mk/

√
n, k, n ∈ N, and Fnk = Fk , k ∈ N0, n ∈ N. Then

(Xnk) is a square integrable martingale difference array adapted to the nested array
(Fnk). We have for every n ∈ N,

τn∑
k=1

E
(

X2
nk|Fn,k−1

)
= 1

n

τn∑
k=1

E
(
(�Mk)

2 |Fk−1

)
= 1

n
〈M〉τn

and

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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1 ≤ 1

n
〈M〉τn

≤ 1

n

(
n + c2

)
= 1 + c2

n
.

Hence
τn∑

k=1

E
(

X2
nk |Fk−1

)
→ 1 a.s. as n → ∞

and (CLBτn ) is satisfied because |Xnk | ≤ c/
√

n. Consequently, by Corollary 6.4,

1√
n

Mτn = M0√
n

+
τn∑

k=1

Xnk → N (0, 1) mixing as n → ∞ .

6.9. Since (Yn − (r + s + mn) X∞) /
√

n = (r + s + mn) (Xn − X∞) /
√

n and
(r + s + mn) /

√
n ∼ m

√
n as n → ∞, the assertion follows from Example 6.30.

6.10. Let G := σ (Xn, n ≥ 1) and E := ⋃∞
k=1 σ (X1, . . . , Xk). Then E is a field with

σ (E) = G. If h ∈ Cb (X ) and F ∈ σ (X1, . . . , Xk) for some k ∈ N with P (F) > 0,
then for n > k

E1Fh (Xn) = EE (1Fh (Xn) |X1, . . . , Xk, TX)

= E (1FE (h (Xn) |X1, . . . , Xk, TX)) .

Since σ (Xn) and σ (X1, . . . , Xk) are conditionally independent given TX , we have

E (h (Xn) |X1, . . . , Xk, TX) = E (h (Xn) |TX) = E (h (X1) TX)

([17], Theorem 7.3.1) so that E1Fh (Xn) → E (1FE (h (X1) |TX)). The assertion
follows from Theorem 3.2 and Proposition 3.5.

8.1. The Cauchy-distribution μ = C (0, b) satisfies
∫
log+ |x| dμ (x) < ∞. More-

over, since
∑∞

j=0 p−j/2 = √
p/
(√

p − 1
)
, the distribution of

∑∞
j=0 p−j/2Zj for an

independent and identically distributed sequence
(
Zj
)

j≥0 of C (0, b)-distributed ran-

dom variables is C
(
0, b

√
p/
(√

p − 1
))
. Thus the assertion follows from Theo-

rem 8.2.

9.1. We have E log+ |Z1| < ∞ and PZ1 = C (0, b) is symmetric around zero.
Since

∑∞
j=1 |ϑ|−j = 1/ (|ϑ| − 1), the distribution of

(
ϑ2 − 1

)1/2∑∞
j=1 ϑ−jZj for an

independent and identically distributed sequence
(
Zj
)

j≥1 of C (0, b)-distributed ran-

dom variables is C
(
0, b

(
ϑ2 − 1

)1/2
/ (|ϑ| − 1)

)
. The assertion follows from The-

orem 9.2. In the more general case PZ1 = Sα (b), the distribution of
(
ϑ2 − 1

)1/2∑∞
j=1 ϑ−jZj is Sα

(
b
(
ϑ2 − 1

)α/2
/ (|ϑ|α − 1)

)
.

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_3
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_9
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9.2. Since PZ1 is symmetric around zero, the distribution PU is also symmet-
ric around zero. Hence, by Lemma A.5 (c), P(U/Y)|F∞ = P−(U/Y)|F∞ so that
Theorem 9.2 yields ϑn

(
ϑ̂n − ϑ

) → (
ϑ2 − 1

)
U/Y F∞-stably and−ϑn

(
ϑ̂n − ϑ

) →(
ϑ2 − 1

)
U/Y F∞-stably. This implies the assertion.

9.3. We have

n∑
j=0

Xj =
n∑

j=0

⎛
⎝X0 +

j∑
i=1

Zi

⎞
⎠ = (n + 1) X0 +

n−1∑
j=1

⎛
⎝ j∑

i=1

Zi

⎞
⎠+

n∑
i=1

Zi .

As in the proof of Theorem 9.3 one shows that

n−3/2
n−1∑
j=1

⎛
⎝ j∑

i=1

Zi

⎞
⎠ → σ

∫ 1

0
Wt dt F∞-mixing .

Using n−3/2 (n + 1) X0 → 0 almost surely, n−3/2∑n
i=1 Zi → 0 almost surely and

Theorem 3.18 (a), the assertion follows.

9.4. From Zj = Xj − ϑXj−1 we obtain Z2
j ≤ 2X2

j + 2ϑ2Xj−1 for every j ∈ N so

that
∑n

j=1 Z2
j ≤ 2

(
1 + ϑ2

)∑n
j=0 X2

j for every n ∈ N which, in view of Z1 ∈ L2

with E
(
Z2
1

)
> 0, implies An = ∑n

j=1 X2
j−1 → ∞ almost surely as n → ∞ by

Kolmogorov’s strong law of large numbers. This yields τc < ∞ almost surely for
every γ > 0 and c ∈ N.

For the proof of
X2

n

An
→ 0 a.s. as n → ∞

for all |ϑ| ≤ 1 we set, for n ≥ 2,

Rn := −2ϑBn + X2
0

An
+ 1 − ϑ2 = −2ϑ

∑n
j=1 Xj−1Zj + X2

0∑n
j=1 X2

j−1

+ 1 − ϑ2 .

Moreover, we set, for n ∈ N and λ > 0

Tn := 1√
n
max
1≤j≤n

∣∣Zj
∣∣ and Sn (λ) := 1

λn

n∑
j=1

Z2
j − 1 .

For every λ ∈ (0,σ2
)
and m ∈ N and all sufficiently large n ∈ N we will show that

X2
n

An
≤ Rn

Sn (λ)
+ 1

m
(
1 − mTn/

√
λ
)2 ,

http://dx.doi.org/10.1007/978-3-319-18329-9_9
http://dx.doi.org/10.1007/978-3-319-18329-9_9
http://dx.doi.org/10.1007/978-3-319-18329-9_3
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where Sn (λ) > 0 and mTn/
√

λ < 1 is true almost surely for all sufficiently large
n because Sn (λ) → σ2/λ − 1 > 0 and Tn → 0 almost surely as n → ∞ by
Kolmogorov’s strong law of large numbers. For the proof of this inequality, note that
X2

j = ϑ2X2
j−1 + 2ϑXj−1Zj + Z2

j for all j ∈ N so that

X2
n + An − X2

0 =
n∑

j=1

X2
j = ϑ2An + 2ϑBn +

n∑
j=1

Z2
j

for all n ∈ N, which, by rearranging terms, yields for n ≥ 2

RnAn =
n∑

j=1

Z2
j − X2

n .

If X2
n ≤ λn, then

RnAn ≥
n∑

j=1

Z2
j − λn = λnSn (λ) ≥ X2

n Sn (λ)

so that
X2

n

An
≤ Rn

Sn (λ)
.

Therefore, it remains to consider the case X2
n ≥ λn. For every n ∈ N we have,

because |ϑ| ≤ 1,

|Xn−1| ≥ |ϑ| |Xn−1| = |Xn − Zn| ≥ |Xn| − |Zn|

which gives, inductively, for all 1 ≤ j ≤ n,

∣∣Xn−j
∣∣ ≥ |Xn| −

j−1∑
k=0

|Zn−k|

so that, for all m, n ∈ N with n ≥ m

min
1≤j≤m

∣∣Xn−j
∣∣ ≥ |Xn| −

m−1∑
k=0

|Zn−k | = |Xn|
(
1 − 1

|Xn|
m−1∑
k=0

|Zn−k |
)

.

Moreover, X2
n ≥ λn implies

1

|Xn|
m−1∑
k=0

|Zn−k | ≤ m√
λn

max
0≤k≤m−1

|Zn−k | ≤ m√
λ

Tn
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so that

1 − 1

|Xn|
m−1∑
k=0

|Zn−k | ≥ 1 − m√
λ

Tn > 0

for all sufficiently large n and therefore

min
1≤j≤m

X2
n−j ≥ X2

n

(
1 − m√

λ
Tn

)2

.

This implies

An ≥ m min
1≤j≤m

X2
j−1 ≥ mX2

n

(
1 − m√

λ
Tn

)2

so that
X2

n

An
≤ 1

m
(
1 − mTn/

√
λ
)2 .

This completes the proof of the inequality

X2
n

An
≤ Rn

Sn (λ)
+ 1

m
(
1 − mTn/

√
λ
)2 ,

for all sufficiently large n.
Note that B is a square integrable martingale w.r.t. F and

〈B〉n = σ2An → ∞ a.s. as n → ∞ .

Therefore, Rn → 1 − ϑ2 almost surely as n → ∞ by the strong law of large
numbers A.9 for martingales. As noted above, Sn (λ) → σ2/λ − 1 and Tn → 0
almost surely. Consequently, the right-hand side of the last inequality converges
almost surely to

(
1 − ϑ2

)
/
(
σ2/λ − 1

) + 1/m, where λ ∈ (
0,σ2

)
and m ∈ N are

arbitrary. This implies
X2

n

An
→ 0 a.s. as n → ∞ .

Let γ > 0 be fixed. Clearly, τc → ∞ almost surely as c → ∞, and by definition
of τc,

cγ ≤ Aτc =
τc−1∑
j=1

X2
j−1 + X2

τc−1 < cγ + X2
τc−1
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which in view of X2
τc−1/Aτc → 0 almost surely as c → ∞ implies

1

c
Aτc → γ a.s. as c → ∞ .

In the next step we will show that

1√
c

Bτc → σ
√

γZ F∞-mixing as c → ∞

by an application of Corollary 6.4. For all c, j ∈ N we set Xc,j := Xj−1Zj/
√

c, and
for all c ∈ N and j ∈ N0 we set Fc,j := Fj. Then

(
Xc,j

)
c,j∈N is a square integrable

martingale difference array w.r.t. the nested array
(Fc,j

)
c∈N,j∈N0

of σ-fields, and for
every c ∈ N the random variable τc is by construction an almost surely finite stopping
time w.r.t.

(Fc,j
)

j∈N0
. We have

τc∑
j=1

E
(

X2
c,j|Fc,j−1

)
= 1

c

τc∑
j=1

X2
j−1E

(
Z2

j |Fj−1

)
= σ2

c
Aτc → σ2γ

almost surely as c → ∞ so that condition (Nτn ) in Corollary 6.4 is satisfied with
τn = τc and the constant random variable η2 = σ2γ. To verify the Lindeberg
condition (CLBτn ) with τn = τc we write, for all c ∈ N and ε, M > 0,

τc∑
j=1

E
(

X2
c,j1{|Xc,j|≥ε}|Fc,j−1

)

= 1

c

τc∑
j=1

X2
j−1E

(
Z2

j 1{|Xj−1Zj|≥ε
√

c}∩{|Zj|≤M}|Fj−1

)

+ 1

c

τc∑
j=1

X2
j−1E

(
Z2

j 1{|Xj−1Zj|≥ε
√

c}∩{|Zj|>M}|Fj−1

)

≤ M2

c

τc∑
j=1

X2
j−11{|Xj−1|≥ε

√
c/M} +

⎛
⎝1

c

τc∑
j=1

X2
j−1

⎞
⎠E

(
Z2
1 1{|Z1|>M}

)

= Ic (M) + IIc (M) ,

say. To verify that Ic (M) converges to zero in probability as c → ∞ for everyM > 0,
we first show that

1

c
max
1≤j≤τc

X2
j−1 → 0 a.s. as c → ∞ .

http://dx.doi.org/10.1007/978-3-319-18329-9_6
http://dx.doi.org/10.1007/978-3-319-18329-9_6
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For this, let δ > 0. With probability one there exists an nδ ∈ N with X2
n/An ≤ δ for

all n ≥ nδ and a cδ ∈ N with τc > nδ for all c ≥ cδ . Therefore, with probability one
for all c ≥ cδ

1

c
max
1≤j≤τc

X2
j−1 ≤ 1

c
max
1≤j≤nδ

X2
j−1 + 1

c
max

nδ<j≤τc

X2
j−1

Aj−1
Aj−1 ≤ 1

c
max
1≤j≤nδ

X2
j−1 + δ

c
Aτc .

The first summand on the right-hand side of this inequality converges to zero almost
surely as c → ∞ and the second one to δγ which, since δ > 0 is arbitrary, concludes
the proof. Now the inequality

P

⎛
⎝M2

c

τc∑
j=1

X2
j−11{|Xj−1|≥ε

√
c/M} ≥ δ

⎞
⎠ ≤ P

(
1√
c

max
1≤j≤τc

∣∣Xj−1
∣∣ ≥ ε/M

)
,

which holds for all δ > 0, shows that Ic (M) → 0 in probability as c → ∞ for all
M > 0. Clearly, IIc (M) → γE

(
Z2
1 1{|Z1|>M}

)
almost surely as c → ∞ for every

M > 0 where E
(
Z2
1 1{|Z1|>M}

) → 0 as M → ∞ because Z1 ∈ L2. This completes
the proof of

τc∑
j=1

E
(

X2
c,j1{|Xc,j|≥ε}|Fc,j−1

)
→ 0 in probability as c → ∞

for every ε > 0. Now by Corollary 6.4

1√
c

Bτc =
τc∑

j=1

Xc,j → σ
√

γN F∞-mixing as c → ∞ ,

where PN = N (0, 1) and N is independent of F∞. For every c ∈ N we have

ϑ̂τc − ϑ = Bτc

Aτc

so that we have shown

1√
c

⎛
⎝ τc∑

j=1

X2
j−1

⎞
⎠(ϑ̂τc − ϑ

) = 1√
c

Bτc → σ
√

γN

http://dx.doi.org/10.1007/978-3-319-18329-9_6
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F∞-mixing as c → ∞, which in view of Aτc/c → γ almost surely as c → ∞
implies both

⎛
⎝ τc∑

j=1

X2
j−1

⎞
⎠

1/2 (
ϑ̂τc − ϑ

) → σN F∞-mixing as c → ∞

and
c1/2

(
ϑ̂τc − ϑ

) → σ√
γ

N F∞-mixing as c → ∞ .

10.1. For every fixed k ∈ N0, set

Vk,n :=
Xn−1∑
j=1

(
1{Ynj=k} − pk

)
, n ∈ N .

Then
(
Vk,n

)
n∈N is a martingale difference sequence w.r.t. F = (Fn)n≥0: Clearly, Vk,n

is Fn-measurable for all n ∈ N, and
∣∣Vk,n

∣∣ ≤ Xn−1 so that Vk,n ∈ L1 (P) and

E
(
Vk,n|Fn−1

) =
Xn−1∑
j=1

E
(
1{Ynj=k} − pk |Fn−1

)
= 0

because E
(
1{Ynj=k}|Fn−1

)
= pk by independence of Ynj and Fn−1. Consequently,

M(k)
n :=

n∑
i=1

Vk,i , n ∈ N ,

defines an F-martingale M(k) =
(

M(k)
n

)
n≥0

(with M(k)
0 = 0) for which

p̂k,n − pk = 1

Zn

n∑
i=1

Xi−1∑
j=1

(
1{Yij=k} − pk

)
= M(k)

n

Zn
.

Since we also assume Y11 ∈ L2, the martingale M(k) is square integrable with
quadratic characteristic

〈
M(k)

〉
n

=
n∑

i=1

E
(

V2
k,i|Fi−1

)
, n ∈ N ,
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where

E

(
V2

k,i

∣∣∣∣Fi−1

)
= E

⎛
⎜⎝
⎡
⎣Xi−1∑

j=1

(
1{Yij=k} − pk

)⎤⎦
2 ∣∣∣∣Fi−1

⎞
⎟⎠

=
Xi−1∑

j,m=1

E
((

1{Yij=k} − pk

) (
1{Yim=k} − pk

) |Fi−1

)

=
Xi−1∑
j=1

E

((
1{Yij=k} − pk

)2) = pk (1 − pk) Xi−1

by independence of Yij, Yim and Fi−1 and independence of Yij and Yim for j 	= m.
Hence 〈

M(k)
〉
n

= pk (1 − pk) Zn .

If pk = 0, then clearly p̂k,n = 0 for all n ∈ N, and both assertions are trivial.
Therefore, assume pk > 0 from now on. Then pk (1 − pk) > 0 and

〈
M(k)

〉
n

→ ∞ a.s. on
{
lim

n→∞ Xn = ∞
}

= M+ .

The strong law of large numbers for L2-martingales of Theorem A.9 implies

M(k)
n〈

M(k)
〉
n

→ 0 a.s. as n → ∞ on M+

which because

p̂k,n − pk = pk (1 − pk)
M(k)

n〈
M(k)

〉
n

implies p̂k,n → pk almost surely as n → ∞ on M+.
To prove the stable limit theorem for p̂k,n, we will apply Theorem 8.2 in combi-

nation with Corollary 8.5 and Remark 8.6 to X = M(k) and A = 〈
M(k)

〉
with G = �

and an = αn/2. According to Remark 8.6 we only have to verify conditions (i), (iii),
and (iv) in Theorem 8.2.

As to condition (i), we have

〈
M(k)

〉
n

αn
→ pk (1 − pk)

α − 1
M∞ a.s. as n → ∞

and P (pk (1 − pk) M∞/ (α − 1) > 0) = P (M+) > 0, so that the condition is satis-
fied with η = (pk (1 − pk) M∞/ (α − 1))1/2.

http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
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Clearly, for all n, r ∈ N with n > r,

αn−r

αn
= 1

αr
,

so that condition (iii) of Theorem 8.2 is satisfied with p = α ∈ (1,∞).
It remains to prove condition (iv). For this, we set

W (k)
nj := 1{Ynj=k} − pk

(pk (1 − pk))
1/2

and note that

�M(k)
n〈

M(k)
〉1/2
n

= Vk,n

(pk (1 − pk))
1/2 Z1/2

n

= 1

Z1/2
n

Xn−1∑
j=1

W (k)
nj .

Let φk denote the characteristic function of the (normalized) random variable W (k)
11 .

Then

EP

(
exp

(
it

�M(k)
n〈

M(k)
〉1/2
n

) ∣∣∣∣Fn−1

)
= EP

⎛
⎝exp

⎛
⎝it

1

Z1/2
n

Xn−1∑
j=1

W (k)
nj

⎞
⎠∣∣∣∣Fn−1

⎞
⎠

= φk

(
t

Z1/2
n

)Xn−1

because Zn and Xn−1 are measurable w.r.t. Fn−1 and the random variables W (k)
nj are

independent and identically distributed with characteristic function φk . The classical
central limit theorem for sums of independent and identically distributed random
variables yields

φk

(
x√
n

)n

→ exp

(
−1

2
x2
)

as n → ∞

uniformly in x ∈ R on compact intervals. Setting x = tX1/2
n−1/Z1/2

n and n = Xn−1 we
get

φk

(
t

Z1/2
n

)Xn−1

= φk

(
tX1/2

n−1

Z1/2
n

1

X1/2
n−1

)Xn−1

→ exp

(
−1

2
t2

α − 1

α

)

almost surely on M+ as n → ∞ because

tX1/2
n−1

Z1/2
n

→ t

(
α − 1

α

)1/2

.

http://dx.doi.org/10.1007/978-3-319-18329-9_8
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Consequently, condition (iv) of Theorem 8.2 is satisfied for μ = N (0, b) with b =
(α − 1) /α. Now Corollary 8.5 implies

Z1/2
n

p̂k,n − pk

(pk (1 − pk))
1/2 = M(k)

n〈
M(k)

〉1/2
n

→ N F∞-mixing under PM+

and

Zn

αn/2

(̂
pk,n − pk

) →
(

pk (1 − pk)

α − 1

)1/2

M1/2∞ N F∞-stably under PM+ ,

where N is independent of F∞ and PN = N (0, 1), which because Zn/α
n →

M∞/ (α − 1) almost surely is equivalent to

αn/2

(α − 1)1/2
(̂
pk,n − pk

) → (pk (1 − pk))
1/2 M−1/2∞ N F∞-stably under PM+ .

10.2. A little algebra gives, with p̂n,k denoting the estimator from Exercise 10.1,

p̂n,k − p̂k,n−1 =
(

Zn−1

Zn
− 1

) (̂
pk,n−1 − pk

)+ Xn−1

Zn

(̃
pk,n − pk

)
,

which by strong consistency of p̂k,n and

Zn−1

Zn
→ 1

α
a.s. as n → ∞ on M+

as well as
Xn−1

Zn
→ α − 1

α
a.s. as n → ∞ on M+

yields p̃k,n → pk almost surely as n → ∞ on M+.
Replacing the random variables Ynj − α by 1{Ynj=k} − pk in Theorem 10.1 we

obtain
1

α(n−1)/2

Xn−1∑
j=1

(
1{Ynj=k} − pk

)
→ (pk (1 − pk))

1/2 M1/2∞ N

F∞-stably as n → ∞, where PN = N (0, 1) and N is P-independent of F∞. This
gives

X1/2
n−1

(̃
pk,n − pk

) → (pk (1 − pk))
1/2 N F∞-mixing under PM+ as n → ∞ .

http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_8
http://dx.doi.org/10.1007/978-3-319-18329-9_10
http://dx.doi.org/10.1007/978-3-319-18329-9_10
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(CLYan,p) 111
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Notation Index

a.s. Almost surely
B (X ) Borel σ-field
C (0, b) Cauchy distribution, 153
Cb (X ) Space of continuous, bounded functions on X , 11
C (R+) Space of continuous functions on R+
δx Dirac-measure
δX Dirac-kernel, 21
∂B Topological boundary
�Xn Increments, 146, 192
dQ
dP P-density of Q

EX Expectation
E (X|G) Conditional expectation
E (K|G) Conditional expectation, 15
F = (Fn)n∈I Filtration, 63, 192
F∞ 68, 108
Fn∞ 64
f ⊗ h Tensor product, 12
IX Invariant σ-field, 111
K1 ⊗ K2 189
K1 = K1 (F) = K1 (F,X ) Markov kernels, 12
K1 (G) = K1 (G,X ) G-measurable Markov kernels, 13
K1 (P) , K1 (G, P) P-equivalence classes of Markov kernels, 18
Lp (P) p-integrable functions
Lp (G, P) G-measurable, p-integrable functions
λ Lebesgue measure
M1 (X ) Probability measures on B (X ), 11
N
(
0,σ2

)
Normal distributions

N,N0 Natural numbers, N ∪ {0}
PX Distribution of X , image measure
PX|G Conditional distribution, 21, 188
PF = P(·∩F)

P(F)
13

Q ⊗ K 12
QK 12
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222 Notation Index

Q � P Absolute continuity
Q ≡ P Q � P and P � Q
R+ {x ∈ R : x ≥ 0} = [0,∞)

R R ∪ {−∞,∞}
Sα (b) Symmetric α-stable distribution, 167
σ (E) σ-field generated by E
σ (X), σ (Xn, n ≥ 1) σ-field generated by random variables
�
(M1 (X )

)
12

sign 163
supp (ν) Support, 40
TZ Tail σ-field, 55
τ = τ (P) = τ (F, P) Weak topology, 13
τ (G) = τ (G, P) Weak topology, 15
U (A) Uniform distribution
Ub (X ) = Ub (X , d) Space of d-uniformly continuous, bounded

functions on X , 16
VarX Variance
[X] Quadratic variation, 192
〈X〉 Quadratic characteristic, 193

Xn
d→ X , Xn

d→ ν Convergence in distribution

X
d= Y Distributional equality

1A Indicator function
x ∨ y, x ∧ y Maximum and minimum of real numbers
‖h‖sup Sup-norm, 11
B Topological closure
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mixing, 22, 33

stable, 21, 22, 33
weak, 11, 13

Convergence determining, 50

D
δ-method, 51
Differences, 192
Dirac-kernel, 21
Discrete rule of de l’Hospital, 113
Disintegration, 190
Distribution, 188

E
Empirical measure theorem, 49
Ergodic process, 57
Estimator

adaptive, 113
conditional least squares, 177
conditional moment, 175
least squares, 159
moment, 174

Exchangeable process, 112, 143

F
Filtration, 192

G
Galton-Watson branching process, 173

supercritical, 174
Gauss-kernel, 22
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H
Harris estimator, 182

I
Increments, 146, 192

L
Lenglart’s inequalities, 193
Limit point, 39
Lotka-Nagaev estimator, 176

M
Markov kernel, 12
Martingale, 192

difference array, 67
difference sequence, 192
increment sequence, 192
tail sums, 119

Mixing with density, 43

N
Nesting condition, 65, 68

O
Occupation time, 41
Offspring distribution, 173
Offspring mean, 174

P
Pólya’s urn, 117
Portmanteau theorem, 187
Probability of extinction, 173
Product kernel, 189

Product measure, 12
Purely atomic, 203

Q
Quadratic characteristic, 193
Quadratic variation, 192
Quasi-stationary process, 57

R
Raikov’s condition, 97, 136
Random norming, 110
Random time change, 69, 120

S
Stable with density, 44
Stationary

martingale differences, 111, 143
process, 57

Strongly Lindelöf, 188

T
Tail σ-field, 55
Tensor product, 12
Tightness, 11, 18
Toeplitz lemma, 113
Triangular array, 67

U
Unspecified limit, 30
U-statistics, 63

W
Weak topology, 11, 13
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